Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/mp_rank_00_model_states.pt +3 -0
- ckpts/universal/global_step20/mp_rank_06_model_states.pt +3 -0
- ckpts/universal/global_step40/zero/11.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_with_adj_2-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/blimp_irregular_plural_subject_verb_agreement_1-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_irregular_plural_subject_verb_agreement_2-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/blimp_wh_island-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/coqa-v1-res.json +1 -0
- lm-evaluation-harness/tests/testdata/crows_pairs_english_disability-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-prehistory-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/lambada_cloze-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/lambada_mt_de-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/math_prealgebra-v1-res.json +1 -0
- lm-evaluation-harness/tests/testdata/mathqa-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/pile_dm-mathematics-v0-loglikelihood_rolling +1 -0
- lm-evaluation-harness/tests/testdata/wikitext-v1-res.json +1 -0
- lm-evaluation-harness/tests/testdata/wmt20-zh-en-v0-greedy_until +1 -0
- venv/lib/python3.10/site-packages/transformers/models/beit/__init__.py +112 -0
- venv/lib/python3.10/site-packages/transformers/models/beit/__pycache__/configuration_beit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/beit/__pycache__/convert_beit_unilm_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/beit/__pycache__/feature_extraction_beit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/beit/__pycache__/image_processing_beit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/beit/__pycache__/modeling_beit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/beit/__pycache__/modeling_flax_beit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/beit/configuration_beit.py +231 -0
- venv/lib/python3.10/site-packages/transformers/models/beit/convert_beit_unilm_to_pytorch.py +374 -0
- venv/lib/python3.10/site-packages/transformers/models/beit/feature_extraction_beit.py +33 -0
- venv/lib/python3.10/site-packages/transformers/models/beit/image_processing_beit.py +531 -0
- venv/lib/python3.10/site-packages/transformers/models/beit/modeling_beit.py +1425 -0
- venv/lib/python3.10/site-packages/transformers/models/beit/modeling_flax_beit.py +948 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/__init__.py +197 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/configuration_bert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_original_tf2_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_pytorch_checkpoint_to_original_tf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_token_dropping_original_tf2_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_bert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_flax_bert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_tf_bert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert_fast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert_tf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/convert_bert_original_tf2_checkpoint_to_pytorch.py +245 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py +63 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/convert_bert_token_dropping_original_tf2_checkpoint_to_pytorch.py +187 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/modeling_bert.py +1867 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/modeling_flax_bert.py +1713 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/modeling_tf_bert.py +2114 -0
- venv/lib/python3.10/site-packages/transformers/models/bert/tokenization_bert.py +500 -0
ckpts/universal/global_step20/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47c4fd3935126d180959d8110cd061dbb13a2144994ed75933dc9d05bec308f7
|
3 |
+
size 4230084
|
ckpts/universal/global_step20/mp_rank_06_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:703865275d6419eab2b5f48649dbab58108bcbb91d05fba8c72ee5d3a5f2a7c8
|
3 |
+
size 4230084
|
ckpts/universal/global_step40/zero/11.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1bc07a27766fecfe0e8ab3fbed3c142f2f4750ddcad6990fadce473d8452c58
|
3 |
+
size 50332843
|
lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_with_adj_2-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"blimp_determiner_noun_agreement_with_adj_2": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_determiner_noun_agreement_with_adj_2": 0}}
|
lm-evaluation-harness/tests/testdata/blimp_irregular_plural_subject_verb_agreement_1-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
7084358b1b7dd7fb5ead1a58f4b499d6f7610eca897bfac25a986d0f9a91aa5d
|
lm-evaluation-harness/tests/testdata/blimp_irregular_plural_subject_verb_agreement_2-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"blimp_irregular_plural_subject_verb_agreement_2": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_irregular_plural_subject_verb_agreement_2": 0}}
|
lm-evaluation-harness/tests/testdata/blimp_wh_island-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"blimp_wh_island": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_wh_island": 0}}
|
lm-evaluation-harness/tests/testdata/coqa-v1-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"coqa": {"em": 0.0, "em_stderr": 0.0, "f1": 0.0, "f1_stderr": 0.0}}, "versions": {"coqa": 1}}
|
lm-evaluation-harness/tests/testdata/crows_pairs_english_disability-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"crows_pairs_english_disability": {"likelihood_difference": 0.3148684792547637, "likelihood_difference_stderr": 0.02800803147051987, "pct_stereotype": 0.36923076923076925, "pct_stereotype_stderr": 0.06032456592830047}}, "versions": {"crows_pairs_english_disability": 0}}
|
lm-evaluation-harness/tests/testdata/hendrycksTest-prehistory-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"hendrycksTest-prehistory": {"acc": 0.2623456790123457, "acc_norm": 0.26851851851851855, "acc_norm_stderr": 0.024659685185967277, "acc_stderr": 0.02447722285613511}}, "versions": {"hendrycksTest-prehistory": 0}}
|
lm-evaluation-harness/tests/testdata/lambada_cloze-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
7655e748b63ae7e9911411d2d2a2577221d6c861ca4448509992541294d689f3
|
lm-evaluation-harness/tests/testdata/lambada_mt_de-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"lambada_mt_de": {"acc": 0.0, "acc_stderr": 0.0, "ppl": 1.6479047769869253, "ppl_stderr": 0.006497321146240192}}, "versions": {"lambada_mt_de": 0}}
|
lm-evaluation-harness/tests/testdata/math_prealgebra-v1-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"math_prealgebra": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"math_prealgebra": 1}}
|
lm-evaluation-harness/tests/testdata/mathqa-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"mathqa": {"acc": 0.20770519262981574, "acc_norm": 0.2050251256281407, "acc_norm_stderr": 0.007390619359738901, "acc_stderr": 0.007426217631188539}}, "versions": {"mathqa": 0}}
|
lm-evaluation-harness/tests/testdata/pile_dm-mathematics-v0-loglikelihood_rolling
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
d5b7967c0ece8b816f3921a8bd0fad23365349e935b491595e2ad1135af42da6
|
lm-evaluation-harness/tests/testdata/wikitext-v1-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"wikitext": {"bits_per_byte": 3.202519859941674e-05, "byte_perplexity": 1.0000221984224973, "word_perplexity": 1.000118710696617}}, "versions": {"wikitext": 1}}
|
lm-evaluation-harness/tests/testdata/wmt20-zh-en-v0-greedy_until
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
07dbadfd6f2b2b9462ab6187dbfaabae6e5192ab89a8e4ede9237834b9364dd1
|
venv/lib/python3.10/site-packages/transformers/models/beit/__init__.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_flax_available,
|
21 |
+
is_torch_available,
|
22 |
+
is_vision_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]}
|
27 |
+
|
28 |
+
try:
|
29 |
+
if not is_vision_available():
|
30 |
+
raise OptionalDependencyNotAvailable()
|
31 |
+
except OptionalDependencyNotAvailable:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
_import_structure["feature_extraction_beit"] = ["BeitFeatureExtractor"]
|
35 |
+
_import_structure["image_processing_beit"] = ["BeitImageProcessor"]
|
36 |
+
|
37 |
+
try:
|
38 |
+
if not is_torch_available():
|
39 |
+
raise OptionalDependencyNotAvailable()
|
40 |
+
except OptionalDependencyNotAvailable:
|
41 |
+
pass
|
42 |
+
else:
|
43 |
+
_import_structure["modeling_beit"] = [
|
44 |
+
"BEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
45 |
+
"BeitForImageClassification",
|
46 |
+
"BeitForMaskedImageModeling",
|
47 |
+
"BeitForSemanticSegmentation",
|
48 |
+
"BeitModel",
|
49 |
+
"BeitPreTrainedModel",
|
50 |
+
"BeitBackbone",
|
51 |
+
]
|
52 |
+
|
53 |
+
|
54 |
+
try:
|
55 |
+
if not is_flax_available():
|
56 |
+
raise OptionalDependencyNotAvailable()
|
57 |
+
except OptionalDependencyNotAvailable:
|
58 |
+
pass
|
59 |
+
else:
|
60 |
+
_import_structure["modeling_flax_beit"] = [
|
61 |
+
"FlaxBeitForImageClassification",
|
62 |
+
"FlaxBeitForMaskedImageModeling",
|
63 |
+
"FlaxBeitModel",
|
64 |
+
"FlaxBeitPreTrainedModel",
|
65 |
+
]
|
66 |
+
|
67 |
+
if TYPE_CHECKING:
|
68 |
+
from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig
|
69 |
+
|
70 |
+
try:
|
71 |
+
if not is_vision_available():
|
72 |
+
raise OptionalDependencyNotAvailable()
|
73 |
+
except OptionalDependencyNotAvailable:
|
74 |
+
pass
|
75 |
+
else:
|
76 |
+
from .feature_extraction_beit import BeitFeatureExtractor
|
77 |
+
from .image_processing_beit import BeitImageProcessor
|
78 |
+
|
79 |
+
try:
|
80 |
+
if not is_torch_available():
|
81 |
+
raise OptionalDependencyNotAvailable()
|
82 |
+
except OptionalDependencyNotAvailable:
|
83 |
+
pass
|
84 |
+
else:
|
85 |
+
from .modeling_beit import (
|
86 |
+
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
87 |
+
BeitBackbone,
|
88 |
+
BeitForImageClassification,
|
89 |
+
BeitForMaskedImageModeling,
|
90 |
+
BeitForSemanticSegmentation,
|
91 |
+
BeitModel,
|
92 |
+
BeitPreTrainedModel,
|
93 |
+
)
|
94 |
+
|
95 |
+
try:
|
96 |
+
if not is_flax_available():
|
97 |
+
raise OptionalDependencyNotAvailable()
|
98 |
+
except OptionalDependencyNotAvailable:
|
99 |
+
pass
|
100 |
+
else:
|
101 |
+
from .modeling_flax_beit import (
|
102 |
+
FlaxBeitForImageClassification,
|
103 |
+
FlaxBeitForMaskedImageModeling,
|
104 |
+
FlaxBeitModel,
|
105 |
+
FlaxBeitPreTrainedModel,
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
else:
|
110 |
+
import sys
|
111 |
+
|
112 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/beit/__pycache__/configuration_beit.cpython-310.pyc
ADDED
Binary file (10.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/beit/__pycache__/convert_beit_unilm_to_pytorch.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/beit/__pycache__/feature_extraction_beit.cpython-310.pyc
ADDED
Binary file (997 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/beit/__pycache__/image_processing_beit.cpython-310.pyc
ADDED
Binary file (18.7 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/beit/__pycache__/modeling_beit.cpython-310.pyc
ADDED
Binary file (44.7 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/beit/__pycache__/modeling_flax_beit.cpython-310.pyc
ADDED
Binary file (28.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/beit/configuration_beit.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" BEiT model configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Mapping
|
18 |
+
|
19 |
+
from packaging import version
|
20 |
+
|
21 |
+
from ...configuration_utils import PretrainedConfig
|
22 |
+
from ...onnx import OnnxConfig
|
23 |
+
from ...utils import logging
|
24 |
+
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
from ..deprecated._archive_maps import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
31 |
+
|
32 |
+
|
33 |
+
class BeitConfig(BackboneConfigMixin, PretrainedConfig):
|
34 |
+
r"""
|
35 |
+
This is the configuration class to store the configuration of a [`BeitModel`]. It is used to instantiate an BEiT
|
36 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
37 |
+
defaults will yield a similar configuration to that of the BEiT
|
38 |
+
[microsoft/beit-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) architecture.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 8192):
|
42 |
+
Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during
|
43 |
+
pre-training.
|
44 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
45 |
+
Dimensionality of the encoder layers and the pooler layer.
|
46 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
47 |
+
Number of hidden layers in the Transformer encoder.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
49 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
50 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
51 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
52 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
53 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
54 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
55 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
56 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
57 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
58 |
+
The dropout ratio for the attention probabilities.
|
59 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
60 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
61 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
62 |
+
The epsilon used by the layer normalization layers.
|
63 |
+
image_size (`int`, *optional*, defaults to 224):
|
64 |
+
The size (resolution) of each image.
|
65 |
+
patch_size (`int`, *optional*, defaults to 16):
|
66 |
+
The size (resolution) of each patch.
|
67 |
+
num_channels (`int`, *optional*, defaults to 3):
|
68 |
+
The number of input channels.
|
69 |
+
use_mask_token (`bool`, *optional*, defaults to `False`):
|
70 |
+
Whether to use a mask token for masked image modeling.
|
71 |
+
use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`):
|
72 |
+
Whether to use BERT-style absolute position embeddings.
|
73 |
+
use_relative_position_bias (`bool`, *optional*, defaults to `False`):
|
74 |
+
Whether to use T5-style relative position embeddings in the self-attention layers.
|
75 |
+
use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`):
|
76 |
+
Whether to use the same relative position embeddings across all self-attention layers of the Transformer.
|
77 |
+
layer_scale_init_value (`float`, *optional*, defaults to 0.1):
|
78 |
+
Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale.
|
79 |
+
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
80 |
+
Stochastic depth rate per sample (when applied in the main path of residual layers).
|
81 |
+
use_mean_pooling (`bool`, *optional*, defaults to `True`):
|
82 |
+
Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the
|
83 |
+
CLS token, before applying the classification head.
|
84 |
+
pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`):
|
85 |
+
Pooling scales used in Pooling Pyramid Module applied on the last feature map.
|
86 |
+
use_auxiliary_head (`bool`, *optional*, defaults to `True`):
|
87 |
+
Whether to use an auxiliary head during training.
|
88 |
+
auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
|
89 |
+
Weight of the cross-entropy loss of the auxiliary head.
|
90 |
+
auxiliary_channels (`int`, *optional*, defaults to 256):
|
91 |
+
Number of channels to use in the auxiliary head.
|
92 |
+
auxiliary_num_convs (`int`, *optional*, defaults to 1):
|
93 |
+
Number of convolutional layers to use in the auxiliary head.
|
94 |
+
auxiliary_concat_input (`bool`, *optional*, defaults to `False`):
|
95 |
+
Whether to concatenate the output of the auxiliary head with the input before the classification layer.
|
96 |
+
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
|
97 |
+
The index that is ignored by the loss function of the semantic segmentation model.
|
98 |
+
out_features (`List[str]`, *optional*):
|
99 |
+
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
100 |
+
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
101 |
+
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
|
102 |
+
same order as defined in the `stage_names` attribute.
|
103 |
+
out_indices (`List[int]`, *optional*):
|
104 |
+
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
105 |
+
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
106 |
+
If unset and `out_features` is unset, will default to the last stage. Must be in the
|
107 |
+
same order as defined in the `stage_names` attribute.
|
108 |
+
add_fpn (`bool`, *optional*, defaults to `False`):
|
109 |
+
Whether to add a FPN as part of the backbone. Only relevant for [`BeitBackbone`].
|
110 |
+
reshape_hidden_states (`bool`, *optional*, defaults to `True`):
|
111 |
+
Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in
|
112 |
+
case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size,
|
113 |
+
seq_len, hidden_size)`. Only relevant for [`BeitBackbone`].
|
114 |
+
|
115 |
+
Example:
|
116 |
+
|
117 |
+
```python
|
118 |
+
>>> from transformers import BeitConfig, BeitModel
|
119 |
+
|
120 |
+
>>> # Initializing a BEiT beit-base-patch16-224-pt22k style configuration
|
121 |
+
>>> configuration = BeitConfig()
|
122 |
+
|
123 |
+
>>> # Initializing a model (with random weights) from the beit-base-patch16-224-pt22k style configuration
|
124 |
+
>>> model = BeitModel(configuration)
|
125 |
+
|
126 |
+
>>> # Accessing the model configuration
|
127 |
+
>>> configuration = model.config
|
128 |
+
```"""
|
129 |
+
|
130 |
+
model_type = "beit"
|
131 |
+
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
vocab_size=8192,
|
135 |
+
hidden_size=768,
|
136 |
+
num_hidden_layers=12,
|
137 |
+
num_attention_heads=12,
|
138 |
+
intermediate_size=3072,
|
139 |
+
hidden_act="gelu",
|
140 |
+
hidden_dropout_prob=0.0,
|
141 |
+
attention_probs_dropout_prob=0.0,
|
142 |
+
initializer_range=0.02,
|
143 |
+
layer_norm_eps=1e-12,
|
144 |
+
image_size=224,
|
145 |
+
patch_size=16,
|
146 |
+
num_channels=3,
|
147 |
+
use_mask_token=False,
|
148 |
+
use_absolute_position_embeddings=False,
|
149 |
+
use_relative_position_bias=False,
|
150 |
+
use_shared_relative_position_bias=False,
|
151 |
+
layer_scale_init_value=0.1,
|
152 |
+
drop_path_rate=0.1,
|
153 |
+
use_mean_pooling=True,
|
154 |
+
pool_scales=[1, 2, 3, 6],
|
155 |
+
use_auxiliary_head=True,
|
156 |
+
auxiliary_loss_weight=0.4,
|
157 |
+
auxiliary_channels=256,
|
158 |
+
auxiliary_num_convs=1,
|
159 |
+
auxiliary_concat_input=False,
|
160 |
+
semantic_loss_ignore_index=255,
|
161 |
+
out_features=None,
|
162 |
+
out_indices=None,
|
163 |
+
add_fpn=False,
|
164 |
+
reshape_hidden_states=True,
|
165 |
+
**kwargs,
|
166 |
+
):
|
167 |
+
super().__init__(**kwargs)
|
168 |
+
|
169 |
+
self.vocab_size = vocab_size
|
170 |
+
self.hidden_size = hidden_size
|
171 |
+
self.num_hidden_layers = num_hidden_layers
|
172 |
+
self.num_attention_heads = num_attention_heads
|
173 |
+
self.intermediate_size = intermediate_size
|
174 |
+
self.hidden_act = hidden_act
|
175 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
176 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
177 |
+
self.initializer_range = initializer_range
|
178 |
+
self.layer_norm_eps = layer_norm_eps
|
179 |
+
|
180 |
+
self.image_size = image_size
|
181 |
+
self.patch_size = patch_size
|
182 |
+
self.num_channels = num_channels
|
183 |
+
self.use_mask_token = use_mask_token
|
184 |
+
self.use_absolute_position_embeddings = use_absolute_position_embeddings
|
185 |
+
self.use_relative_position_bias = use_relative_position_bias
|
186 |
+
self.use_shared_relative_position_bias = use_shared_relative_position_bias
|
187 |
+
self.layer_scale_init_value = layer_scale_init_value
|
188 |
+
self.drop_path_rate = drop_path_rate
|
189 |
+
self.use_mean_pooling = use_mean_pooling
|
190 |
+
# decode head attributes (semantic segmentation)
|
191 |
+
self.pool_scales = pool_scales
|
192 |
+
# auxiliary head attributes (semantic segmentation)
|
193 |
+
self.use_auxiliary_head = use_auxiliary_head
|
194 |
+
self.auxiliary_loss_weight = auxiliary_loss_weight
|
195 |
+
self.auxiliary_channels = auxiliary_channels
|
196 |
+
self.auxiliary_num_convs = auxiliary_num_convs
|
197 |
+
self.auxiliary_concat_input = auxiliary_concat_input
|
198 |
+
self.semantic_loss_ignore_index = semantic_loss_ignore_index
|
199 |
+
|
200 |
+
# handle backwards compatibility
|
201 |
+
if "segmentation_indices" in kwargs:
|
202 |
+
logger.warning(
|
203 |
+
"The `segmentation_indices` argument is deprecated and will be removed in a future version, use `out_indices` instead.",
|
204 |
+
FutureWarning,
|
205 |
+
)
|
206 |
+
out_indices = kwargs.pop("segmentation_indices")
|
207 |
+
|
208 |
+
# backbone attributes
|
209 |
+
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, self.num_hidden_layers + 1)]
|
210 |
+
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
211 |
+
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
212 |
+
)
|
213 |
+
self.add_fpn = add_fpn
|
214 |
+
self.reshape_hidden_states = reshape_hidden_states
|
215 |
+
|
216 |
+
|
217 |
+
# Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig
|
218 |
+
class BeitOnnxConfig(OnnxConfig):
|
219 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
220 |
+
|
221 |
+
@property
|
222 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
223 |
+
return OrderedDict(
|
224 |
+
[
|
225 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
226 |
+
]
|
227 |
+
)
|
228 |
+
|
229 |
+
@property
|
230 |
+
def atol_for_validation(self) -> float:
|
231 |
+
return 1e-4
|
venv/lib/python3.10/site-packages/transformers/models/beit/convert_beit_unilm_to_pytorch.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert BEiT checkpoints from the unilm repository."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import requests
|
23 |
+
import torch
|
24 |
+
from datasets import load_dataset
|
25 |
+
from huggingface_hub import hf_hub_download
|
26 |
+
from PIL import Image
|
27 |
+
|
28 |
+
from transformers import (
|
29 |
+
BeitConfig,
|
30 |
+
BeitForImageClassification,
|
31 |
+
BeitForMaskedImageModeling,
|
32 |
+
BeitForSemanticSegmentation,
|
33 |
+
BeitImageProcessor,
|
34 |
+
)
|
35 |
+
from transformers.image_utils import PILImageResampling
|
36 |
+
from transformers.utils import logging
|
37 |
+
|
38 |
+
|
39 |
+
logging.set_verbosity_info()
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
|
43 |
+
# here we list all keys to be renamed (original name on the left, our name on the right)
|
44 |
+
def create_rename_keys(config, has_lm_head=False, is_semantic=False):
|
45 |
+
prefix = "backbone." if is_semantic else ""
|
46 |
+
|
47 |
+
rename_keys = []
|
48 |
+
for i in range(config.num_hidden_layers):
|
49 |
+
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
|
50 |
+
rename_keys.append((f"{prefix}blocks.{i}.norm1.weight", f"beit.encoder.layer.{i}.layernorm_before.weight"))
|
51 |
+
rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"beit.encoder.layer.{i}.layernorm_before.bias"))
|
52 |
+
rename_keys.append(
|
53 |
+
(f"{prefix}blocks.{i}.attn.proj.weight", f"beit.encoder.layer.{i}.attention.output.dense.weight")
|
54 |
+
)
|
55 |
+
rename_keys.append(
|
56 |
+
(f"{prefix}blocks.{i}.attn.proj.bias", f"beit.encoder.layer.{i}.attention.output.dense.bias")
|
57 |
+
)
|
58 |
+
rename_keys.append((f"{prefix}blocks.{i}.norm2.weight", f"beit.encoder.layer.{i}.layernorm_after.weight"))
|
59 |
+
rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"beit.encoder.layer.{i}.layernorm_after.bias"))
|
60 |
+
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.weight", f"beit.encoder.layer.{i}.intermediate.dense.weight"))
|
61 |
+
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.bias", f"beit.encoder.layer.{i}.intermediate.dense.bias"))
|
62 |
+
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"beit.encoder.layer.{i}.output.dense.weight"))
|
63 |
+
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"beit.encoder.layer.{i}.output.dense.bias"))
|
64 |
+
|
65 |
+
# projection layer + position embeddings
|
66 |
+
rename_keys.extend(
|
67 |
+
[
|
68 |
+
(f"{prefix}cls_token", "beit.embeddings.cls_token"),
|
69 |
+
(f"{prefix}patch_embed.proj.weight", "beit.embeddings.patch_embeddings.projection.weight"),
|
70 |
+
(f"{prefix}patch_embed.proj.bias", "beit.embeddings.patch_embeddings.projection.bias"),
|
71 |
+
]
|
72 |
+
)
|
73 |
+
|
74 |
+
if has_lm_head:
|
75 |
+
# mask token + shared relative position bias + layernorm
|
76 |
+
rename_keys.extend(
|
77 |
+
[
|
78 |
+
("mask_token", "beit.embeddings.mask_token"),
|
79 |
+
(
|
80 |
+
"rel_pos_bias.relative_position_bias_table",
|
81 |
+
"beit.encoder.relative_position_bias.relative_position_bias_table",
|
82 |
+
),
|
83 |
+
(
|
84 |
+
"rel_pos_bias.relative_position_index",
|
85 |
+
"beit.encoder.relative_position_bias.relative_position_index",
|
86 |
+
),
|
87 |
+
("norm.weight", "layernorm.weight"),
|
88 |
+
("norm.bias", "layernorm.bias"),
|
89 |
+
]
|
90 |
+
)
|
91 |
+
elif is_semantic:
|
92 |
+
# semantic segmentation classification heads
|
93 |
+
rename_keys.extend(
|
94 |
+
[
|
95 |
+
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
|
96 |
+
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
|
97 |
+
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
|
98 |
+
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
|
99 |
+
]
|
100 |
+
)
|
101 |
+
else:
|
102 |
+
# layernorm + classification head
|
103 |
+
rename_keys.extend(
|
104 |
+
[
|
105 |
+
("fc_norm.weight", "beit.pooler.layernorm.weight"),
|
106 |
+
("fc_norm.bias", "beit.pooler.layernorm.bias"),
|
107 |
+
("head.weight", "classifier.weight"),
|
108 |
+
("head.bias", "classifier.bias"),
|
109 |
+
]
|
110 |
+
)
|
111 |
+
|
112 |
+
return rename_keys
|
113 |
+
|
114 |
+
|
115 |
+
# we split up the matrix of each encoder layer into queries, keys and values
|
116 |
+
def read_in_q_k_v(state_dict, config, has_lm_head=False, is_semantic=False):
|
117 |
+
for i in range(config.num_hidden_layers):
|
118 |
+
prefix = "backbone." if is_semantic else ""
|
119 |
+
# queries, keys and values
|
120 |
+
in_proj_weight = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight")
|
121 |
+
q_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias")
|
122 |
+
v_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias")
|
123 |
+
|
124 |
+
state_dict[f"beit.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
|
125 |
+
: config.hidden_size, :
|
126 |
+
]
|
127 |
+
state_dict[f"beit.encoder.layer.{i}.attention.attention.query.bias"] = q_bias
|
128 |
+
state_dict[f"beit.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
|
129 |
+
config.hidden_size : config.hidden_size * 2, :
|
130 |
+
]
|
131 |
+
state_dict[f"beit.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
|
132 |
+
-config.hidden_size :, :
|
133 |
+
]
|
134 |
+
state_dict[f"beit.encoder.layer.{i}.attention.attention.value.bias"] = v_bias
|
135 |
+
|
136 |
+
# gamma_1 and gamma_2
|
137 |
+
# we call them lambda because otherwise they are renamed when using .from_pretrained
|
138 |
+
gamma_1 = state_dict.pop(f"{prefix}blocks.{i}.gamma_1")
|
139 |
+
gamma_2 = state_dict.pop(f"{prefix}blocks.{i}.gamma_2")
|
140 |
+
|
141 |
+
state_dict[f"beit.encoder.layer.{i}.lambda_1"] = gamma_1
|
142 |
+
state_dict[f"beit.encoder.layer.{i}.lambda_2"] = gamma_2
|
143 |
+
|
144 |
+
# relative_position bias table + index
|
145 |
+
if not has_lm_head:
|
146 |
+
# each layer has its own relative position bias
|
147 |
+
table = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_bias_table")
|
148 |
+
index = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_index")
|
149 |
+
|
150 |
+
state_dict[
|
151 |
+
f"beit.encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_bias_table"
|
152 |
+
] = table
|
153 |
+
state_dict[
|
154 |
+
f"beit.encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_index"
|
155 |
+
] = index
|
156 |
+
|
157 |
+
|
158 |
+
def rename_key(dct, old, new):
|
159 |
+
val = dct.pop(old)
|
160 |
+
dct[new] = val
|
161 |
+
|
162 |
+
|
163 |
+
# We will verify our results on an image of cute cats
|
164 |
+
def prepare_img():
|
165 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
166 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
167 |
+
return im
|
168 |
+
|
169 |
+
|
170 |
+
@torch.no_grad()
|
171 |
+
def convert_beit_checkpoint(checkpoint_url, pytorch_dump_folder_path):
|
172 |
+
"""
|
173 |
+
Copy/paste/tweak model's weights to our BEiT structure.
|
174 |
+
"""
|
175 |
+
|
176 |
+
# define default BEiT configuration
|
177 |
+
config = BeitConfig()
|
178 |
+
has_lm_head = False
|
179 |
+
is_semantic = False
|
180 |
+
repo_id = "huggingface/label-files"
|
181 |
+
# set config parameters based on URL
|
182 |
+
if checkpoint_url[-9:-4] == "pt22k":
|
183 |
+
# masked image modeling
|
184 |
+
config.use_shared_relative_position_bias = True
|
185 |
+
config.use_mask_token = True
|
186 |
+
has_lm_head = True
|
187 |
+
elif checkpoint_url[-9:-4] == "ft22k":
|
188 |
+
# intermediate fine-tuning on ImageNet-22k
|
189 |
+
config.use_relative_position_bias = True
|
190 |
+
config.num_labels = 21841
|
191 |
+
filename = "imagenet-22k-id2label.json"
|
192 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
193 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
194 |
+
# this dataset contains 21843 labels but the model only has 21841
|
195 |
+
# we delete the classes as mentioned in https://github.com/google-research/big_transfer/issues/18
|
196 |
+
del id2label[9205]
|
197 |
+
del id2label[15027]
|
198 |
+
config.id2label = id2label
|
199 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
200 |
+
elif checkpoint_url[-8:-4] == "to1k":
|
201 |
+
# fine-tuning on ImageNet-1k
|
202 |
+
config.use_relative_position_bias = True
|
203 |
+
config.num_labels = 1000
|
204 |
+
filename = "imagenet-1k-id2label.json"
|
205 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
206 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
207 |
+
config.id2label = id2label
|
208 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
209 |
+
if "384" in checkpoint_url:
|
210 |
+
config.image_size = 384
|
211 |
+
if "512" in checkpoint_url:
|
212 |
+
config.image_size = 512
|
213 |
+
elif "ade20k" in checkpoint_url:
|
214 |
+
# fine-tuning
|
215 |
+
config.use_relative_position_bias = True
|
216 |
+
config.num_labels = 150
|
217 |
+
filename = "ade20k-id2label.json"
|
218 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
219 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
220 |
+
config.id2label = id2label
|
221 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
222 |
+
config.image_size = 640
|
223 |
+
is_semantic = True
|
224 |
+
else:
|
225 |
+
raise ValueError("Checkpoint not supported, URL should either end with 'pt22k', 'ft22k', 'to1k' or 'ade20k'")
|
226 |
+
|
227 |
+
# size of the architecture
|
228 |
+
if "base" in checkpoint_url:
|
229 |
+
pass
|
230 |
+
elif "large" in checkpoint_url:
|
231 |
+
config.hidden_size = 1024
|
232 |
+
config.intermediate_size = 4096
|
233 |
+
config.num_hidden_layers = 24
|
234 |
+
config.num_attention_heads = 16
|
235 |
+
if "ade20k" in checkpoint_url:
|
236 |
+
config.image_size = 640
|
237 |
+
config.out_indices = [7, 11, 15, 23]
|
238 |
+
else:
|
239 |
+
raise ValueError("Should either find 'base' or 'large' in checkpoint URL")
|
240 |
+
|
241 |
+
# load state_dict of original model, remove and rename some keys
|
242 |
+
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", check_hash=True)
|
243 |
+
state_dict = state_dict["model"] if "ade20k" not in checkpoint_url else state_dict["state_dict"]
|
244 |
+
|
245 |
+
rename_keys = create_rename_keys(config, has_lm_head=has_lm_head, is_semantic=is_semantic)
|
246 |
+
for src, dest in rename_keys:
|
247 |
+
rename_key(state_dict, src, dest)
|
248 |
+
read_in_q_k_v(state_dict, config, has_lm_head=has_lm_head, is_semantic=is_semantic)
|
249 |
+
if is_semantic:
|
250 |
+
# add prefix to decoder keys
|
251 |
+
for key, val in state_dict.copy().items():
|
252 |
+
val = state_dict.pop(key)
|
253 |
+
if key.startswith("backbone.fpn"):
|
254 |
+
key = key.replace("backbone.fpn", "fpn")
|
255 |
+
state_dict[key] = val
|
256 |
+
|
257 |
+
# load HuggingFace model
|
258 |
+
if checkpoint_url[-9:-4] == "pt22k":
|
259 |
+
model = BeitForMaskedImageModeling(config)
|
260 |
+
elif "ade20k" in checkpoint_url:
|
261 |
+
model = BeitForSemanticSegmentation(config)
|
262 |
+
else:
|
263 |
+
model = BeitForImageClassification(config)
|
264 |
+
model.eval()
|
265 |
+
model.load_state_dict(state_dict)
|
266 |
+
|
267 |
+
# Check outputs on an image
|
268 |
+
if is_semantic:
|
269 |
+
image_processor = BeitImageProcessor(size=config.image_size, do_center_crop=False)
|
270 |
+
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
|
271 |
+
image = Image.open(ds[0]["file"])
|
272 |
+
else:
|
273 |
+
image_processor = BeitImageProcessor(
|
274 |
+
size=config.image_size, resample=PILImageResampling.BILINEAR, do_center_crop=False
|
275 |
+
)
|
276 |
+
image = prepare_img()
|
277 |
+
|
278 |
+
encoding = image_processor(images=image, return_tensors="pt")
|
279 |
+
pixel_values = encoding["pixel_values"]
|
280 |
+
|
281 |
+
outputs = model(pixel_values)
|
282 |
+
logits = outputs.logits
|
283 |
+
|
284 |
+
# verify logits
|
285 |
+
expected_shape = torch.Size([1, 1000])
|
286 |
+
if checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k"):
|
287 |
+
expected_shape = torch.Size([1, 196, 8192])
|
288 |
+
elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k"):
|
289 |
+
expected_shape = torch.Size([1, 196, 8192])
|
290 |
+
elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft22k"):
|
291 |
+
expected_shape = torch.Size([1, 21841])
|
292 |
+
expected_logits = torch.tensor([2.2288, 2.4671, 0.7395])
|
293 |
+
expected_class_idx = 2397
|
294 |
+
elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft22k"):
|
295 |
+
expected_shape = torch.Size([1, 21841])
|
296 |
+
expected_logits = torch.tensor([1.6881, -0.2787, 0.5901])
|
297 |
+
expected_class_idx = 2396
|
298 |
+
elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft1k"):
|
299 |
+
expected_logits = torch.tensor([0.1241, 0.0798, -0.6569])
|
300 |
+
expected_class_idx = 285
|
301 |
+
elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft22kto1k"):
|
302 |
+
expected_logits = torch.tensor([-1.2385, -1.0987, -1.0108])
|
303 |
+
expected_class_idx = 281
|
304 |
+
elif checkpoint_url[:-4].endswith("beit_base_patch16_384_pt22k_ft22kto1k"):
|
305 |
+
expected_logits = torch.tensor([-1.5303, -0.9484, -0.3147])
|
306 |
+
expected_class_idx = 761
|
307 |
+
elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft1k"):
|
308 |
+
expected_logits = torch.tensor([0.4610, -0.0928, 0.2086])
|
309 |
+
expected_class_idx = 761
|
310 |
+
elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft22kto1k"):
|
311 |
+
expected_logits = torch.tensor([-0.4804, 0.6257, -0.1837])
|
312 |
+
expected_class_idx = 761
|
313 |
+
elif checkpoint_url[:-4].endswith("beit_large_patch16_384_pt22k_ft22kto1k"):
|
314 |
+
expected_logits = torch.tensor([[-0.5122, 0.5117, -0.2113]])
|
315 |
+
expected_class_idx = 761
|
316 |
+
elif checkpoint_url[:-4].endswith("beit_large_patch16_512_pt22k_ft22kto1k"):
|
317 |
+
expected_logits = torch.tensor([-0.3062, 0.7261, 0.4852])
|
318 |
+
expected_class_idx = 761
|
319 |
+
elif checkpoint_url[:-4].endswith("beit_base_patch16_640_pt22k_ft22ktoade20k"):
|
320 |
+
expected_shape = (1, 150, 160, 160)
|
321 |
+
expected_logits = torch.tensor(
|
322 |
+
[
|
323 |
+
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
|
324 |
+
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
|
325 |
+
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
|
326 |
+
]
|
327 |
+
)
|
328 |
+
elif checkpoint_url[:-4].endswith("beit_large_patch16_640_pt22k_ft22ktoade20k"):
|
329 |
+
expected_shape = (1, 150, 160, 160)
|
330 |
+
expected_logits = torch.tensor(
|
331 |
+
[
|
332 |
+
[[-4.3305, -2.3049, -3.0161], [-2.9591, -1.5305, -2.2251], [-3.4198, -1.8004, -2.9062]],
|
333 |
+
[[-5.8922, -3.7435, -4.3978], [-4.2063, -2.7872, -3.4755], [-4.2791, -3.1874, -4.1681]],
|
334 |
+
[[0.9895, 4.3467, 4.7663], [4.2476, 5.6830, 6.1518], [4.5550, 6.2495, 6.5154]],
|
335 |
+
]
|
336 |
+
)
|
337 |
+
else:
|
338 |
+
raise ValueError("Can't verify logits as model is not supported")
|
339 |
+
|
340 |
+
if logits.shape != expected_shape:
|
341 |
+
raise ValueError(f"Shape of logits not as expected. {logits.shape=}, {expected_shape=}")
|
342 |
+
if not has_lm_head:
|
343 |
+
if is_semantic:
|
344 |
+
if not torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-3):
|
345 |
+
raise ValueError("First elements of logits not as expected")
|
346 |
+
else:
|
347 |
+
print("Predicted class idx:", logits.argmax(-1).item())
|
348 |
+
|
349 |
+
if not torch.allclose(logits[0, :3], expected_logits, atol=1e-3):
|
350 |
+
raise ValueError("First elements of logits not as expected")
|
351 |
+
if logits.argmax(-1).item() != expected_class_idx:
|
352 |
+
raise ValueError("Predicted class index not as expected")
|
353 |
+
|
354 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
355 |
+
print(f"Saving model to {pytorch_dump_folder_path}")
|
356 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
357 |
+
print(f"Saving image processor to {pytorch_dump_folder_path}")
|
358 |
+
image_processor.save_pretrained(pytorch_dump_folder_path)
|
359 |
+
|
360 |
+
|
361 |
+
if __name__ == "__main__":
|
362 |
+
parser = argparse.ArgumentParser()
|
363 |
+
|
364 |
+
parser.add_argument(
|
365 |
+
"--checkpoint_url",
|
366 |
+
default="https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth",
|
367 |
+
type=str,
|
368 |
+
help="URL to the original PyTorch checkpoint (.pth file).",
|
369 |
+
)
|
370 |
+
parser.add_argument(
|
371 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
|
372 |
+
)
|
373 |
+
args = parser.parse_args()
|
374 |
+
convert_beit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
|
venv/lib/python3.10/site-packages/transformers/models/beit/feature_extraction_beit.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for BEiT."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...utils import logging
|
20 |
+
from .image_processing_beit import BeitImageProcessor
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class BeitFeatureExtractor(BeitImageProcessor):
|
27 |
+
def __init__(self, *args, **kwargs) -> None:
|
28 |
+
warnings.warn(
|
29 |
+
"The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
|
30 |
+
" use BeitImageProcessor instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
super().__init__(*args, **kwargs)
|
venv/lib/python3.10/site-packages/transformers/models/beit/image_processing_beit.py
ADDED
@@ -0,0 +1,531 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for Beit."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
23 |
+
from ...image_transforms import resize, to_channel_dimension_format
|
24 |
+
from ...image_utils import (
|
25 |
+
IMAGENET_STANDARD_MEAN,
|
26 |
+
IMAGENET_STANDARD_STD,
|
27 |
+
ChannelDimension,
|
28 |
+
ImageInput,
|
29 |
+
PILImageResampling,
|
30 |
+
infer_channel_dimension_format,
|
31 |
+
is_scaled_image,
|
32 |
+
make_list_of_images,
|
33 |
+
to_numpy_array,
|
34 |
+
valid_images,
|
35 |
+
validate_kwargs,
|
36 |
+
validate_preprocess_arguments,
|
37 |
+
)
|
38 |
+
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
|
39 |
+
|
40 |
+
|
41 |
+
if is_vision_available():
|
42 |
+
import PIL
|
43 |
+
|
44 |
+
if is_torch_available():
|
45 |
+
import torch
|
46 |
+
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
|
51 |
+
class BeitImageProcessor(BaseImageProcessor):
|
52 |
+
r"""
|
53 |
+
Constructs a BEiT image processor.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
57 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
|
58 |
+
`do_resize` parameter in the `preprocess` method.
|
59 |
+
size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
|
60 |
+
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
|
61 |
+
method.
|
62 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
63 |
+
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
|
64 |
+
`preprocess` method.
|
65 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
|
67 |
+
is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
|
68 |
+
`preprocess` method.
|
69 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
|
70 |
+
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
|
71 |
+
Can be overridden by the `crop_size` parameter in the `preprocess` method.
|
72 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
73 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
74 |
+
`preprocess` method.
|
75 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
76 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
|
77 |
+
parameter in the `preprocess` method.
|
78 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
80 |
+
method.
|
81 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
82 |
+
The mean to use if normalizing the image. This is a float or list of floats of length of the number of
|
83 |
+
channels of the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
84 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
85 |
+
The standard deviation to use if normalizing the image. This is a float or list of floats of length of the
|
86 |
+
number of channels of the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
87 |
+
do_reduce_labels (`bool`, *optional*, defaults to `False`):
|
88 |
+
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
|
89 |
+
used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
|
90 |
+
background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
|
91 |
+
`preprocess` method.
|
92 |
+
"""
|
93 |
+
|
94 |
+
model_input_names = ["pixel_values"]
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
do_resize: bool = True,
|
99 |
+
size: Dict[str, int] = None,
|
100 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
101 |
+
do_center_crop: bool = True,
|
102 |
+
crop_size: Dict[str, int] = None,
|
103 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
104 |
+
do_rescale: bool = True,
|
105 |
+
do_normalize: bool = True,
|
106 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
107 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
108 |
+
do_reduce_labels: bool = False,
|
109 |
+
**kwargs,
|
110 |
+
) -> None:
|
111 |
+
if "reduce_labels" in kwargs:
|
112 |
+
warnings.warn(
|
113 |
+
"The `reduce_labels` parameter is deprecated and will be removed in a future version. Please use"
|
114 |
+
" `do_reduce_labels` instead.",
|
115 |
+
FutureWarning,
|
116 |
+
)
|
117 |
+
do_reduce_labels = kwargs.pop("reduce_labels")
|
118 |
+
super().__init__(**kwargs)
|
119 |
+
size = size if size is not None else {"height": 256, "width": 256}
|
120 |
+
size = get_size_dict(size)
|
121 |
+
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
122 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
123 |
+
self.do_resize = do_resize
|
124 |
+
self.size = size
|
125 |
+
self.resample = resample
|
126 |
+
self.do_center_crop = do_center_crop
|
127 |
+
self.crop_size = crop_size
|
128 |
+
self.do_rescale = do_rescale
|
129 |
+
self.rescale_factor = rescale_factor
|
130 |
+
self.do_normalize = do_normalize
|
131 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
132 |
+
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
133 |
+
self.do_reduce_labels = do_reduce_labels
|
134 |
+
self._valid_processor_keys = [
|
135 |
+
"images",
|
136 |
+
"segmentation_maps",
|
137 |
+
"do_resize",
|
138 |
+
"size",
|
139 |
+
"resample",
|
140 |
+
"do_center_crop",
|
141 |
+
"crop_size",
|
142 |
+
"do_rescale",
|
143 |
+
"rescale_factor",
|
144 |
+
"do_normalize",
|
145 |
+
"image_mean",
|
146 |
+
"image_std",
|
147 |
+
"do_reduce_labels",
|
148 |
+
"return_tensors",
|
149 |
+
"data_format",
|
150 |
+
"input_data_format",
|
151 |
+
]
|
152 |
+
|
153 |
+
@classmethod
|
154 |
+
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
155 |
+
"""
|
156 |
+
Overrides the `from_dict` method from the base class to make sure `reduce_labels` is updated if image processor
|
157 |
+
is created using from_dict and kwargs e.g. `BeitImageProcessor.from_pretrained(checkpoint, reduce_labels=True)`
|
158 |
+
"""
|
159 |
+
image_processor_dict = image_processor_dict.copy()
|
160 |
+
if "reduce_labels" in kwargs:
|
161 |
+
image_processor_dict["reduce_labels"] = kwargs.pop("reduce_labels")
|
162 |
+
return super().from_dict(image_processor_dict, **kwargs)
|
163 |
+
|
164 |
+
def resize(
|
165 |
+
self,
|
166 |
+
image: np.ndarray,
|
167 |
+
size: Dict[str, int],
|
168 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
169 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
170 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
171 |
+
**kwargs,
|
172 |
+
) -> np.ndarray:
|
173 |
+
"""
|
174 |
+
Resize an image to (size["height"], size["width"]).
|
175 |
+
|
176 |
+
Args:
|
177 |
+
image (`np.ndarray`):
|
178 |
+
Image to resize.
|
179 |
+
size (`Dict[str, int]`):
|
180 |
+
Size of the output image.
|
181 |
+
resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`):
|
182 |
+
Resampling filter to use when resiizing the image.
|
183 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
184 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
185 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
186 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
187 |
+
"""
|
188 |
+
size = get_size_dict(size, default_to_square=True, param_name="size")
|
189 |
+
if "height" not in size or "width" not in size:
|
190 |
+
raise ValueError(f"The `size` argument must contain `height` and `width` keys. Got {size.keys()}")
|
191 |
+
return resize(
|
192 |
+
image,
|
193 |
+
size=(size["height"], size["width"]),
|
194 |
+
resample=resample,
|
195 |
+
data_format=data_format,
|
196 |
+
input_data_format=input_data_format,
|
197 |
+
**kwargs,
|
198 |
+
)
|
199 |
+
|
200 |
+
def reduce_label(self, label: ImageInput) -> np.ndarray:
|
201 |
+
label = to_numpy_array(label)
|
202 |
+
# Avoid using underflow conversion
|
203 |
+
label[label == 0] = 255
|
204 |
+
label = label - 1
|
205 |
+
label[label == 254] = 255
|
206 |
+
return label
|
207 |
+
|
208 |
+
def _preprocess(
|
209 |
+
self,
|
210 |
+
image: ImageInput,
|
211 |
+
do_reduce_labels: bool = None,
|
212 |
+
do_resize: bool = None,
|
213 |
+
size: Dict[str, int] = None,
|
214 |
+
resample: PILImageResampling = None,
|
215 |
+
do_center_crop: bool = None,
|
216 |
+
crop_size: Dict[str, int] = None,
|
217 |
+
do_rescale: bool = None,
|
218 |
+
rescale_factor: float = None,
|
219 |
+
do_normalize: bool = None,
|
220 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
221 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
222 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
223 |
+
):
|
224 |
+
if do_reduce_labels:
|
225 |
+
image = self.reduce_label(image)
|
226 |
+
|
227 |
+
if do_resize:
|
228 |
+
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
229 |
+
|
230 |
+
if do_center_crop:
|
231 |
+
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
|
232 |
+
|
233 |
+
if do_rescale:
|
234 |
+
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
235 |
+
|
236 |
+
if do_normalize:
|
237 |
+
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
238 |
+
|
239 |
+
return image
|
240 |
+
|
241 |
+
def _preprocess_image(
|
242 |
+
self,
|
243 |
+
image: ImageInput,
|
244 |
+
do_resize: bool = None,
|
245 |
+
size: Dict[str, int] = None,
|
246 |
+
resample: PILImageResampling = None,
|
247 |
+
do_center_crop: bool = None,
|
248 |
+
crop_size: Dict[str, int] = None,
|
249 |
+
do_rescale: bool = None,
|
250 |
+
rescale_factor: float = None,
|
251 |
+
do_normalize: bool = None,
|
252 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
253 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
254 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
255 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
256 |
+
) -> np.ndarray:
|
257 |
+
"""Preprocesses a single image."""
|
258 |
+
# All transformations expect numpy arrays.
|
259 |
+
image = to_numpy_array(image)
|
260 |
+
if is_scaled_image(image) and do_rescale:
|
261 |
+
logger.warning_once(
|
262 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
263 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
264 |
+
)
|
265 |
+
if input_data_format is None:
|
266 |
+
input_data_format = infer_channel_dimension_format(image)
|
267 |
+
image = self._preprocess(
|
268 |
+
image,
|
269 |
+
do_reduce_labels=False,
|
270 |
+
do_resize=do_resize,
|
271 |
+
size=size,
|
272 |
+
resample=resample,
|
273 |
+
do_center_crop=do_center_crop,
|
274 |
+
crop_size=crop_size,
|
275 |
+
do_rescale=do_rescale,
|
276 |
+
rescale_factor=rescale_factor,
|
277 |
+
do_normalize=do_normalize,
|
278 |
+
image_mean=image_mean,
|
279 |
+
image_std=image_std,
|
280 |
+
input_data_format=input_data_format,
|
281 |
+
)
|
282 |
+
if data_format is not None:
|
283 |
+
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
284 |
+
return image
|
285 |
+
|
286 |
+
def _preprocess_segmentation_map(
|
287 |
+
self,
|
288 |
+
segmentation_map: ImageInput,
|
289 |
+
do_resize: bool = None,
|
290 |
+
size: Dict[str, int] = None,
|
291 |
+
resample: PILImageResampling = None,
|
292 |
+
do_center_crop: bool = None,
|
293 |
+
crop_size: Dict[str, int] = None,
|
294 |
+
do_reduce_labels: bool = None,
|
295 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
296 |
+
):
|
297 |
+
"""Preprocesses a single segmentation map."""
|
298 |
+
# All transformations expect numpy arrays.
|
299 |
+
segmentation_map = to_numpy_array(segmentation_map)
|
300 |
+
# Add an axis to the segmentation maps for transformations.
|
301 |
+
if segmentation_map.ndim == 2:
|
302 |
+
segmentation_map = segmentation_map[None, ...]
|
303 |
+
added_dimension = True
|
304 |
+
input_data_format = ChannelDimension.FIRST
|
305 |
+
else:
|
306 |
+
added_dimension = False
|
307 |
+
if input_data_format is None:
|
308 |
+
input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
|
309 |
+
segmentation_map = self._preprocess(
|
310 |
+
image=segmentation_map,
|
311 |
+
do_reduce_labels=do_reduce_labels,
|
312 |
+
do_resize=do_resize,
|
313 |
+
resample=resample,
|
314 |
+
size=size,
|
315 |
+
do_center_crop=do_center_crop,
|
316 |
+
crop_size=crop_size,
|
317 |
+
do_normalize=False,
|
318 |
+
do_rescale=False,
|
319 |
+
input_data_format=ChannelDimension.FIRST,
|
320 |
+
)
|
321 |
+
# Remove extra axis if added
|
322 |
+
if added_dimension:
|
323 |
+
segmentation_map = np.squeeze(segmentation_map, axis=0)
|
324 |
+
segmentation_map = segmentation_map.astype(np.int64)
|
325 |
+
return segmentation_map
|
326 |
+
|
327 |
+
def __call__(self, images, segmentation_maps=None, **kwargs):
|
328 |
+
# Overrides the `__call__` method of the `Preprocessor` class such that the images and segmentation maps can both
|
329 |
+
# be passed in as positional arguments.
|
330 |
+
return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)
|
331 |
+
|
332 |
+
def preprocess(
|
333 |
+
self,
|
334 |
+
images: ImageInput,
|
335 |
+
segmentation_maps: Optional[ImageInput] = None,
|
336 |
+
do_resize: bool = None,
|
337 |
+
size: Dict[str, int] = None,
|
338 |
+
resample: PILImageResampling = None,
|
339 |
+
do_center_crop: bool = None,
|
340 |
+
crop_size: Dict[str, int] = None,
|
341 |
+
do_rescale: bool = None,
|
342 |
+
rescale_factor: float = None,
|
343 |
+
do_normalize: bool = None,
|
344 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
345 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
346 |
+
do_reduce_labels: Optional[bool] = None,
|
347 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
348 |
+
data_format: ChannelDimension = ChannelDimension.FIRST,
|
349 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
350 |
+
**kwargs,
|
351 |
+
) -> PIL.Image.Image:
|
352 |
+
"""
|
353 |
+
Preprocess an image or batch of images.
|
354 |
+
|
355 |
+
Args:
|
356 |
+
images (`ImageInput`):
|
357 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
358 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
359 |
+
segmentation_maps (`ImageInput`, *optional*)
|
360 |
+
Segmentation maps to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
361 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
362 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
363 |
+
Whether to resize the image.
|
364 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
365 |
+
Size of the image after resizing.
|
366 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
367 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
|
368 |
+
has an effect if `do_resize` is set to `True`.
|
369 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
370 |
+
Whether to center crop the image.
|
371 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
372 |
+
Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
|
373 |
+
padded with zeros and then cropped
|
374 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
375 |
+
Whether to rescale the image values between [0 - 1].
|
376 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
377 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
378 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
379 |
+
Whether to normalize the image.
|
380 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
381 |
+
Image mean.
|
382 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
383 |
+
Image standard deviation.
|
384 |
+
do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
|
385 |
+
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
|
386 |
+
is used for background, and background itself is not included in all classes of a dataset (e.g.
|
387 |
+
ADE20k). The background label will be replaced by 255.
|
388 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
389 |
+
The type of tensors to return. Can be one of:
|
390 |
+
- Unset: Return a list of `np.ndarray`.
|
391 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
392 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
393 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
394 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
395 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
396 |
+
The channel dimension format for the output image. Can be one of:
|
397 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
398 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
399 |
+
- Unset: Use the channel dimension format of the input image.
|
400 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
401 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
402 |
+
from the input image. Can be one of:
|
403 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
404 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
405 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
406 |
+
"""
|
407 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
408 |
+
size = size if size is not None else self.size
|
409 |
+
size = get_size_dict(size, default_to_square=True, param_name="size")
|
410 |
+
resample = resample if resample is not None else self.resample
|
411 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
412 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
413 |
+
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
414 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
415 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
416 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
417 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
418 |
+
image_std = image_std if image_std is not None else self.image_std
|
419 |
+
do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
|
420 |
+
|
421 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
422 |
+
|
423 |
+
images = make_list_of_images(images)
|
424 |
+
|
425 |
+
if segmentation_maps is not None:
|
426 |
+
segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
|
427 |
+
|
428 |
+
if segmentation_maps is not None and not valid_images(segmentation_maps):
|
429 |
+
raise ValueError(
|
430 |
+
"Invalid segmentation_maps type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
431 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
432 |
+
)
|
433 |
+
if not valid_images(images):
|
434 |
+
raise ValueError(
|
435 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
436 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
437 |
+
)
|
438 |
+
|
439 |
+
validate_preprocess_arguments(
|
440 |
+
do_rescale=do_rescale,
|
441 |
+
rescale_factor=rescale_factor,
|
442 |
+
do_normalize=do_normalize,
|
443 |
+
image_mean=image_mean,
|
444 |
+
image_std=image_std,
|
445 |
+
do_center_crop=do_center_crop,
|
446 |
+
crop_size=crop_size,
|
447 |
+
do_resize=do_resize,
|
448 |
+
size=size,
|
449 |
+
resample=resample,
|
450 |
+
)
|
451 |
+
|
452 |
+
images = [
|
453 |
+
self._preprocess_image(
|
454 |
+
image=img,
|
455 |
+
do_resize=do_resize,
|
456 |
+
do_center_crop=do_center_crop,
|
457 |
+
do_rescale=do_rescale,
|
458 |
+
do_normalize=do_normalize,
|
459 |
+
resample=resample,
|
460 |
+
size=size,
|
461 |
+
rescale_factor=rescale_factor,
|
462 |
+
crop_size=crop_size,
|
463 |
+
image_mean=image_mean,
|
464 |
+
image_std=image_std,
|
465 |
+
data_format=data_format,
|
466 |
+
input_data_format=input_data_format,
|
467 |
+
)
|
468 |
+
for img in images
|
469 |
+
]
|
470 |
+
|
471 |
+
data = {"pixel_values": images}
|
472 |
+
|
473 |
+
if segmentation_maps is not None:
|
474 |
+
segmentation_maps = [
|
475 |
+
self._preprocess_segmentation_map(
|
476 |
+
segmentation_map=segmentation_map,
|
477 |
+
do_reduce_labels=do_reduce_labels,
|
478 |
+
do_resize=do_resize,
|
479 |
+
resample=resample,
|
480 |
+
size=size,
|
481 |
+
do_center_crop=do_center_crop,
|
482 |
+
crop_size=crop_size,
|
483 |
+
)
|
484 |
+
for segmentation_map in segmentation_maps
|
485 |
+
]
|
486 |
+
data["labels"] = segmentation_maps
|
487 |
+
|
488 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
489 |
+
|
490 |
+
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
|
491 |
+
"""
|
492 |
+
Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
|
493 |
+
|
494 |
+
Args:
|
495 |
+
outputs ([`BeitForSemanticSegmentation`]):
|
496 |
+
Raw outputs of the model.
|
497 |
+
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
|
498 |
+
List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
|
499 |
+
predictions will not be resized.
|
500 |
+
|
501 |
+
Returns:
|
502 |
+
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
|
503 |
+
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
|
504 |
+
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
|
505 |
+
"""
|
506 |
+
# TODO: add support for other frameworks
|
507 |
+
logits = outputs.logits
|
508 |
+
|
509 |
+
# Resize logits and compute semantic segmentation maps
|
510 |
+
if target_sizes is not None:
|
511 |
+
if len(logits) != len(target_sizes):
|
512 |
+
raise ValueError(
|
513 |
+
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
|
514 |
+
)
|
515 |
+
|
516 |
+
if is_torch_tensor(target_sizes):
|
517 |
+
target_sizes = target_sizes.numpy()
|
518 |
+
|
519 |
+
semantic_segmentation = []
|
520 |
+
|
521 |
+
for idx in range(len(logits)):
|
522 |
+
resized_logits = torch.nn.functional.interpolate(
|
523 |
+
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
|
524 |
+
)
|
525 |
+
semantic_map = resized_logits[0].argmax(dim=0)
|
526 |
+
semantic_segmentation.append(semantic_map)
|
527 |
+
else:
|
528 |
+
semantic_segmentation = logits.argmax(dim=1)
|
529 |
+
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
|
530 |
+
|
531 |
+
return semantic_segmentation
|
venv/lib/python3.10/site-packages/transformers/models/beit/modeling_beit.py
ADDED
@@ -0,0 +1,1425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch BEiT model."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections.abc
|
19 |
+
import math
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import Tensor, nn
|
26 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
27 |
+
|
28 |
+
from ...activations import ACT2FN
|
29 |
+
from ...modeling_outputs import (
|
30 |
+
BackboneOutput,
|
31 |
+
BaseModelOutput,
|
32 |
+
BaseModelOutputWithPooling,
|
33 |
+
ImageClassifierOutput,
|
34 |
+
MaskedLMOutput,
|
35 |
+
SemanticSegmenterOutput,
|
36 |
+
)
|
37 |
+
from ...modeling_utils import PreTrainedModel
|
38 |
+
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
|
39 |
+
from ...utils import (
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
)
|
46 |
+
from ...utils.backbone_utils import BackboneMixin
|
47 |
+
from .configuration_beit import BeitConfig
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
# General docstring
|
53 |
+
_CONFIG_FOR_DOC = "BeitConfig"
|
54 |
+
|
55 |
+
# Base docstring
|
56 |
+
_CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224-pt22k"
|
57 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
|
58 |
+
|
59 |
+
# Image classification docstring
|
60 |
+
_IMAGE_CLASS_CHECKPOINT = "microsoft/beit-base-patch16-224"
|
61 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
62 |
+
|
63 |
+
|
64 |
+
from ..deprecated._archive_maps import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
65 |
+
|
66 |
+
|
67 |
+
@dataclass
|
68 |
+
class BeitModelOutputWithPooling(BaseModelOutputWithPooling):
|
69 |
+
"""
|
70 |
+
Class for outputs of [`BeitModel`].
|
71 |
+
|
72 |
+
Args:
|
73 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
74 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
75 |
+
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
|
76 |
+
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
|
77 |
+
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
|
78 |
+
will be returned.
|
79 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
80 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
81 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
82 |
+
|
83 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
84 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
85 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
86 |
+
sequence_length)`.
|
87 |
+
|
88 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
89 |
+
heads.
|
90 |
+
"""
|
91 |
+
|
92 |
+
|
93 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
94 |
+
"""
|
95 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
96 |
+
|
97 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
98 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
99 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
100 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
101 |
+
argument.
|
102 |
+
"""
|
103 |
+
if drop_prob == 0.0 or not training:
|
104 |
+
return input
|
105 |
+
keep_prob = 1 - drop_prob
|
106 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
107 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
108 |
+
random_tensor.floor_() # binarize
|
109 |
+
output = input.div(keep_prob) * random_tensor
|
110 |
+
return output
|
111 |
+
|
112 |
+
|
113 |
+
class BeitDropPath(nn.Module):
|
114 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
115 |
+
|
116 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
117 |
+
super().__init__()
|
118 |
+
self.drop_prob = drop_prob
|
119 |
+
|
120 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
121 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
122 |
+
|
123 |
+
def extra_repr(self) -> str:
|
124 |
+
return "p={}".format(self.drop_prob)
|
125 |
+
|
126 |
+
|
127 |
+
# Based on timm implementation, which can be found here:
|
128 |
+
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
129 |
+
class BeitEmbeddings(nn.Module):
|
130 |
+
"""
|
131 |
+
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
|
132 |
+
|
133 |
+
"""
|
134 |
+
|
135 |
+
def __init__(self, config: BeitConfig) -> None:
|
136 |
+
super().__init__()
|
137 |
+
|
138 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
139 |
+
if config.use_mask_token:
|
140 |
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
141 |
+
else:
|
142 |
+
self.mask_token = None
|
143 |
+
self.patch_embeddings = BeitPatchEmbeddings(config)
|
144 |
+
num_patches = self.patch_embeddings.num_patches
|
145 |
+
if config.use_absolute_position_embeddings:
|
146 |
+
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
|
147 |
+
else:
|
148 |
+
self.position_embeddings = None
|
149 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
150 |
+
|
151 |
+
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor:
|
152 |
+
embeddings, (patch_height, patch_width) = self.patch_embeddings(
|
153 |
+
pixel_values, self.position_embeddings[:, 1:, :] if self.position_embeddings is not None else None
|
154 |
+
)
|
155 |
+
batch_size, seq_len, _ = embeddings.size()
|
156 |
+
|
157 |
+
if bool_masked_pos is not None:
|
158 |
+
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
|
159 |
+
# replace the masked visual tokens by mask_tokens
|
160 |
+
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
|
161 |
+
embeddings = embeddings * (1 - w) + mask_tokens * w
|
162 |
+
|
163 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
164 |
+
if self.position_embeddings is not None:
|
165 |
+
cls_tokens = cls_tokens + self.position_embeddings[:, :1, :]
|
166 |
+
|
167 |
+
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
168 |
+
|
169 |
+
embeddings = self.dropout(embeddings)
|
170 |
+
|
171 |
+
return embeddings, (patch_height, patch_width)
|
172 |
+
|
173 |
+
|
174 |
+
class BeitPatchEmbeddings(nn.Module):
|
175 |
+
"""
|
176 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
177 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
178 |
+
Transformer.
|
179 |
+
"""
|
180 |
+
|
181 |
+
def __init__(self, config):
|
182 |
+
super().__init__()
|
183 |
+
image_size, patch_size = config.image_size, config.patch_size
|
184 |
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
185 |
+
|
186 |
+
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
187 |
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
188 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
189 |
+
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
|
190 |
+
self.image_size = image_size
|
191 |
+
self.patch_size = patch_size
|
192 |
+
self.num_channels = num_channels
|
193 |
+
self.num_patches = num_patches
|
194 |
+
self.patch_shape = patch_shape
|
195 |
+
|
196 |
+
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
197 |
+
|
198 |
+
def forward(self, pixel_values: torch.Tensor, position_embedding: Optional[torch.Tensor] = None) -> torch.Tensor:
|
199 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
200 |
+
if num_channels != self.num_channels:
|
201 |
+
raise ValueError(
|
202 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
203 |
+
)
|
204 |
+
|
205 |
+
embeddings = self.projection(pixel_values)
|
206 |
+
patch_height, patch_width = embeddings.shape[2], embeddings.shape[3]
|
207 |
+
|
208 |
+
if position_embedding is not None:
|
209 |
+
# interpolate the position embedding to the corresponding size
|
210 |
+
position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute(
|
211 |
+
0, 3, 1, 2
|
212 |
+
)
|
213 |
+
position_embedding = nn.functional.interpolate(
|
214 |
+
position_embedding, size=(patch_height, patch_width), mode="bicubic"
|
215 |
+
)
|
216 |
+
embeddings = embeddings + position_embedding
|
217 |
+
|
218 |
+
embeddings = embeddings.flatten(2).transpose(1, 2)
|
219 |
+
|
220 |
+
return embeddings, (patch_height, patch_width)
|
221 |
+
|
222 |
+
|
223 |
+
class BeitSelfAttention(nn.Module):
|
224 |
+
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
|
225 |
+
super().__init__()
|
226 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
227 |
+
raise ValueError(
|
228 |
+
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
229 |
+
f"heads {config.num_attention_heads}."
|
230 |
+
)
|
231 |
+
|
232 |
+
self.num_attention_heads = config.num_attention_heads
|
233 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
234 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
235 |
+
|
236 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
237 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
238 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
239 |
+
|
240 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
241 |
+
|
242 |
+
if window_size:
|
243 |
+
self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size)
|
244 |
+
else:
|
245 |
+
self.relative_position_bias = None
|
246 |
+
|
247 |
+
def transpose_for_scores(self, x):
|
248 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
249 |
+
x = x.view(*new_x_shape)
|
250 |
+
return x.permute(0, 2, 1, 3)
|
251 |
+
|
252 |
+
def forward(
|
253 |
+
self,
|
254 |
+
hidden_states: torch.Tensor,
|
255 |
+
head_mask: Optional[torch.Tensor] = None,
|
256 |
+
output_attentions: bool = False,
|
257 |
+
relative_position_bias: Optional["BeitRelativePositionBias"] = None,
|
258 |
+
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
|
259 |
+
mixed_query_layer = self.query(hidden_states)
|
260 |
+
|
261 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
262 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
263 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
264 |
+
|
265 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
266 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
267 |
+
|
268 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
269 |
+
|
270 |
+
# Add relative position bias if present.
|
271 |
+
if self.relative_position_bias is not None:
|
272 |
+
attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0)
|
273 |
+
|
274 |
+
# Add shared relative position bias if provided.
|
275 |
+
if relative_position_bias is not None:
|
276 |
+
attention_scores = attention_scores + relative_position_bias
|
277 |
+
|
278 |
+
# Normalize the attention scores to probabilities.
|
279 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
280 |
+
|
281 |
+
# This is actually dropping out entire tokens to attend to, which might
|
282 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
283 |
+
attention_probs = self.dropout(attention_probs)
|
284 |
+
|
285 |
+
# Mask heads if we want to
|
286 |
+
if head_mask is not None:
|
287 |
+
attention_probs = attention_probs * head_mask
|
288 |
+
|
289 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
290 |
+
|
291 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
292 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
293 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
294 |
+
|
295 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
296 |
+
|
297 |
+
return outputs
|
298 |
+
|
299 |
+
|
300 |
+
class BeitSelfOutput(nn.Module):
|
301 |
+
"""
|
302 |
+
The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the
|
303 |
+
layernorm applied before each block.
|
304 |
+
"""
|
305 |
+
|
306 |
+
def __init__(self, config: BeitConfig) -> None:
|
307 |
+
super().__init__()
|
308 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
309 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
310 |
+
|
311 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor:
|
312 |
+
hidden_states = self.dense(hidden_states)
|
313 |
+
hidden_states = self.dropout(hidden_states)
|
314 |
+
|
315 |
+
return hidden_states
|
316 |
+
|
317 |
+
|
318 |
+
class BeitAttention(nn.Module):
|
319 |
+
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
|
320 |
+
super().__init__()
|
321 |
+
self.attention = BeitSelfAttention(config, window_size=window_size)
|
322 |
+
self.output = BeitSelfOutput(config)
|
323 |
+
self.pruned_heads = set()
|
324 |
+
|
325 |
+
def prune_heads(self, heads):
|
326 |
+
if len(heads) == 0:
|
327 |
+
return
|
328 |
+
heads, index = find_pruneable_heads_and_indices(
|
329 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
330 |
+
)
|
331 |
+
|
332 |
+
# Prune linear layers
|
333 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
334 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
335 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
336 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
337 |
+
|
338 |
+
# Update hyper params and store pruned heads
|
339 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
340 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
341 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
342 |
+
|
343 |
+
def forward(
|
344 |
+
self,
|
345 |
+
hidden_states: torch.Tensor,
|
346 |
+
head_mask: Optional[torch.Tensor] = None,
|
347 |
+
output_attentions: bool = False,
|
348 |
+
relative_position_bias: Optional["BeitRelativePositionBias"] = None,
|
349 |
+
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
|
350 |
+
self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias)
|
351 |
+
|
352 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
353 |
+
|
354 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
355 |
+
return outputs
|
356 |
+
|
357 |
+
|
358 |
+
class BeitIntermediate(nn.Module):
|
359 |
+
def __init__(self, config: BeitConfig) -> None:
|
360 |
+
super().__init__()
|
361 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
362 |
+
if isinstance(config.hidden_act, str):
|
363 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
364 |
+
else:
|
365 |
+
self.intermediate_act_fn = config.hidden_act
|
366 |
+
|
367 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
368 |
+
hidden_states = self.dense(hidden_states)
|
369 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
370 |
+
|
371 |
+
return hidden_states
|
372 |
+
|
373 |
+
|
374 |
+
class BeitOutput(nn.Module):
|
375 |
+
def __init__(self, config: BeitConfig) -> None:
|
376 |
+
super().__init__()
|
377 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
378 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
379 |
+
|
380 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
381 |
+
hidden_states = self.dense(hidden_states)
|
382 |
+
hidden_states = self.dropout(hidden_states)
|
383 |
+
|
384 |
+
return hidden_states
|
385 |
+
|
386 |
+
|
387 |
+
class BeitLayer(nn.Module):
|
388 |
+
"""This corresponds to the Block class in the timm implementation."""
|
389 |
+
|
390 |
+
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0) -> None:
|
391 |
+
super().__init__()
|
392 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
393 |
+
self.seq_len_dim = 1
|
394 |
+
self.attention = BeitAttention(config, window_size=window_size)
|
395 |
+
self.intermediate = BeitIntermediate(config)
|
396 |
+
self.output = BeitOutput(config)
|
397 |
+
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
398 |
+
self.drop_path = BeitDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
399 |
+
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
400 |
+
|
401 |
+
init_values = config.layer_scale_init_value
|
402 |
+
if init_values > 0:
|
403 |
+
self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
|
404 |
+
self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
|
405 |
+
else:
|
406 |
+
self.lambda_1, self.lambda_2 = None, None
|
407 |
+
|
408 |
+
def forward(
|
409 |
+
self,
|
410 |
+
hidden_states: torch.Tensor,
|
411 |
+
head_mask: Optional[torch.Tensor] = None,
|
412 |
+
output_attentions: bool = False,
|
413 |
+
relative_position_bias: Optional["BeitRelativePositionBias"] = None,
|
414 |
+
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
|
415 |
+
self_attention_outputs = self.attention(
|
416 |
+
self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention
|
417 |
+
head_mask,
|
418 |
+
output_attentions=output_attentions,
|
419 |
+
relative_position_bias=relative_position_bias,
|
420 |
+
)
|
421 |
+
attention_output = self_attention_outputs[0]
|
422 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
423 |
+
|
424 |
+
# apply lambda_1 if present
|
425 |
+
if self.lambda_1 is not None:
|
426 |
+
attention_output = self.lambda_1 * attention_output
|
427 |
+
|
428 |
+
# first residual connection
|
429 |
+
hidden_states = self.drop_path(attention_output) + hidden_states
|
430 |
+
|
431 |
+
# in BEiT, layernorm is also applied after self-attention
|
432 |
+
layer_output = self.layernorm_after(hidden_states)
|
433 |
+
|
434 |
+
layer_output = self.intermediate(layer_output)
|
435 |
+
layer_output = self.output(layer_output)
|
436 |
+
|
437 |
+
if self.lambda_2 is not None:
|
438 |
+
layer_output = self.lambda_2 * layer_output
|
439 |
+
|
440 |
+
# second residual connection
|
441 |
+
layer_output = self.drop_path(layer_output) + hidden_states
|
442 |
+
|
443 |
+
outputs = (layer_output,) + outputs
|
444 |
+
|
445 |
+
return outputs
|
446 |
+
|
447 |
+
|
448 |
+
class BeitRelativePositionBias(nn.Module):
|
449 |
+
def __init__(self, config: BeitConfig, window_size: tuple) -> None:
|
450 |
+
super().__init__()
|
451 |
+
self.window_size = window_size
|
452 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
453 |
+
self.relative_position_bias_table = nn.Parameter(
|
454 |
+
torch.zeros(self.num_relative_distance, config.num_attention_heads)
|
455 |
+
) # 2*Wh-1 * 2*Ww-1, nH
|
456 |
+
# cls to token & token 2 cls & cls to cls
|
457 |
+
|
458 |
+
# get pair-wise relative position index for each token inside the window
|
459 |
+
coords_h = torch.arange(window_size[0])
|
460 |
+
coords_w = torch.arange(window_size[1])
|
461 |
+
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww
|
462 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
463 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
464 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
465 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
466 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
467 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
468 |
+
relative_position_index = torch.zeros(
|
469 |
+
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
|
470 |
+
)
|
471 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
472 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
473 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
474 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
475 |
+
|
476 |
+
self.register_buffer("relative_position_index", relative_position_index, persistent=False)
|
477 |
+
|
478 |
+
def forward(self) -> torch.Tensor:
|
479 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
480 |
+
self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
|
481 |
+
) # Wh*Ww,Wh*Ww,nH
|
482 |
+
|
483 |
+
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
484 |
+
|
485 |
+
|
486 |
+
class BeitEncoder(nn.Module):
|
487 |
+
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
|
488 |
+
super().__init__()
|
489 |
+
self.config = config
|
490 |
+
if config.use_shared_relative_position_bias:
|
491 |
+
self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size)
|
492 |
+
else:
|
493 |
+
self.relative_position_bias = None
|
494 |
+
|
495 |
+
# stochastic depth decay rule
|
496 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
497 |
+
self.layer = nn.ModuleList(
|
498 |
+
[
|
499 |
+
BeitLayer(
|
500 |
+
config,
|
501 |
+
window_size=window_size if config.use_relative_position_bias else None,
|
502 |
+
drop_path_rate=dpr[i],
|
503 |
+
)
|
504 |
+
for i in range(config.num_hidden_layers)
|
505 |
+
]
|
506 |
+
)
|
507 |
+
self.gradient_checkpointing = False
|
508 |
+
|
509 |
+
def forward(
|
510 |
+
self,
|
511 |
+
hidden_states: torch.Tensor,
|
512 |
+
head_mask: Optional[torch.Tensor] = None,
|
513 |
+
output_attentions: bool = False,
|
514 |
+
output_hidden_states: bool = False,
|
515 |
+
return_dict: bool = True,
|
516 |
+
) -> Union[tuple, BaseModelOutput]:
|
517 |
+
all_hidden_states = () if output_hidden_states else None
|
518 |
+
all_self_attentions = () if output_attentions else None
|
519 |
+
|
520 |
+
for i, layer_module in enumerate(self.layer):
|
521 |
+
if output_hidden_states:
|
522 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
523 |
+
|
524 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
525 |
+
|
526 |
+
if self.gradient_checkpointing and self.training:
|
527 |
+
layer_outputs = self._gradient_checkpointing_func(
|
528 |
+
layer_module.__call__,
|
529 |
+
hidden_states,
|
530 |
+
layer_head_mask,
|
531 |
+
output_attentions,
|
532 |
+
)
|
533 |
+
else:
|
534 |
+
relative_position_bias = (
|
535 |
+
self.relative_position_bias() if self.relative_position_bias is not None else None
|
536 |
+
)
|
537 |
+
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias)
|
538 |
+
|
539 |
+
hidden_states = layer_outputs[0]
|
540 |
+
|
541 |
+
if output_attentions:
|
542 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
543 |
+
|
544 |
+
if output_hidden_states:
|
545 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
546 |
+
|
547 |
+
if not return_dict:
|
548 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
549 |
+
return BaseModelOutput(
|
550 |
+
last_hidden_state=hidden_states,
|
551 |
+
hidden_states=all_hidden_states,
|
552 |
+
attentions=all_self_attentions,
|
553 |
+
)
|
554 |
+
|
555 |
+
|
556 |
+
class BeitPreTrainedModel(PreTrainedModel):
|
557 |
+
"""
|
558 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
559 |
+
models.
|
560 |
+
"""
|
561 |
+
|
562 |
+
config_class = BeitConfig
|
563 |
+
base_model_prefix = "beit"
|
564 |
+
main_input_name = "pixel_values"
|
565 |
+
supports_gradient_checkpointing = True
|
566 |
+
|
567 |
+
def _init_weights(self, module):
|
568 |
+
"""Initialize the weights"""
|
569 |
+
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
|
570 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
571 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
572 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
573 |
+
if module.bias is not None:
|
574 |
+
module.bias.data.zero_()
|
575 |
+
elif isinstance(module, nn.Embedding):
|
576 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
577 |
+
if module.padding_idx is not None:
|
578 |
+
module.weight.data[module.padding_idx].zero_()
|
579 |
+
elif isinstance(module, nn.LayerNorm):
|
580 |
+
module.bias.data.zero_()
|
581 |
+
module.weight.data.fill_(1.0)
|
582 |
+
|
583 |
+
|
584 |
+
BEIT_START_DOCSTRING = r"""
|
585 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
586 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
587 |
+
behavior.
|
588 |
+
|
589 |
+
Parameters:
|
590 |
+
config ([`BeitConfig`]): Model configuration class with all the parameters of the model.
|
591 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
592 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
593 |
+
"""
|
594 |
+
|
595 |
+
BEIT_INPUTS_DOCSTRING = r"""
|
596 |
+
Args:
|
597 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
598 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
599 |
+
[`BeitImageProcessor.__call__`] for details.
|
600 |
+
|
601 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
602 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
603 |
+
|
604 |
+
- 1 indicates the head is **not masked**,
|
605 |
+
- 0 indicates the head is **masked**.
|
606 |
+
|
607 |
+
output_attentions (`bool`, *optional*):
|
608 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
609 |
+
tensors for more detail.
|
610 |
+
output_hidden_states (`bool`, *optional*):
|
611 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
612 |
+
more detail.
|
613 |
+
return_dict (`bool`, *optional*):
|
614 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
615 |
+
"""
|
616 |
+
|
617 |
+
|
618 |
+
@add_start_docstrings(
|
619 |
+
"The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
|
620 |
+
BEIT_START_DOCSTRING,
|
621 |
+
)
|
622 |
+
class BeitModel(BeitPreTrainedModel):
|
623 |
+
def __init__(self, config: BeitConfig, add_pooling_layer: bool = True) -> None:
|
624 |
+
super().__init__(config)
|
625 |
+
self.config = config
|
626 |
+
|
627 |
+
self.embeddings = BeitEmbeddings(config)
|
628 |
+
self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape)
|
629 |
+
|
630 |
+
self.layernorm = (
|
631 |
+
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
632 |
+
)
|
633 |
+
self.pooler = BeitPooler(config) if add_pooling_layer else None
|
634 |
+
|
635 |
+
# Initialize weights and apply final processing
|
636 |
+
self.post_init()
|
637 |
+
|
638 |
+
def get_input_embeddings(self):
|
639 |
+
return self.embeddings.patch_embeddings
|
640 |
+
|
641 |
+
def _prune_heads(self, heads_to_prune):
|
642 |
+
"""
|
643 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
644 |
+
class PreTrainedModel
|
645 |
+
"""
|
646 |
+
for layer, heads in heads_to_prune.items():
|
647 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
648 |
+
|
649 |
+
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
|
650 |
+
@add_code_sample_docstrings(
|
651 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
652 |
+
output_type=BeitModelOutputWithPooling,
|
653 |
+
config_class=_CONFIG_FOR_DOC,
|
654 |
+
modality="vision",
|
655 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
656 |
+
)
|
657 |
+
def forward(
|
658 |
+
self,
|
659 |
+
pixel_values: Optional[torch.Tensor] = None,
|
660 |
+
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
661 |
+
head_mask: Optional[torch.Tensor] = None,
|
662 |
+
output_attentions: Optional[bool] = None,
|
663 |
+
output_hidden_states: Optional[bool] = None,
|
664 |
+
return_dict: Optional[bool] = None,
|
665 |
+
) -> Union[tuple, BeitModelOutputWithPooling]:
|
666 |
+
r"""
|
667 |
+
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
|
668 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
669 |
+
"""
|
670 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
671 |
+
output_hidden_states = (
|
672 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
673 |
+
)
|
674 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
675 |
+
|
676 |
+
if pixel_values is None:
|
677 |
+
raise ValueError("You have to specify pixel_values")
|
678 |
+
|
679 |
+
# Prepare head mask if needed
|
680 |
+
# 1.0 in head_mask indicate we keep the head
|
681 |
+
# attention_probs has shape bsz x n_heads x N x N
|
682 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
683 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
684 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
685 |
+
|
686 |
+
embedding_output, (patch_height, patch_width) = self.embeddings(pixel_values, bool_masked_pos)
|
687 |
+
|
688 |
+
encoder_outputs = self.encoder(
|
689 |
+
embedding_output,
|
690 |
+
head_mask=head_mask,
|
691 |
+
output_attentions=output_attentions,
|
692 |
+
output_hidden_states=output_hidden_states,
|
693 |
+
return_dict=return_dict,
|
694 |
+
)
|
695 |
+
sequence_output = encoder_outputs[0]
|
696 |
+
sequence_output = self.layernorm(sequence_output)
|
697 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
698 |
+
|
699 |
+
if not return_dict:
|
700 |
+
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
|
701 |
+
return head_outputs + encoder_outputs[1:]
|
702 |
+
|
703 |
+
return BeitModelOutputWithPooling(
|
704 |
+
last_hidden_state=sequence_output,
|
705 |
+
pooler_output=pooled_output,
|
706 |
+
hidden_states=encoder_outputs.hidden_states,
|
707 |
+
attentions=encoder_outputs.attentions,
|
708 |
+
)
|
709 |
+
|
710 |
+
|
711 |
+
class BeitPooler(nn.Module):
|
712 |
+
def __init__(self, config: BeitConfig) -> None:
|
713 |
+
super().__init__()
|
714 |
+
self.layernorm = (
|
715 |
+
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None
|
716 |
+
)
|
717 |
+
|
718 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
719 |
+
if self.layernorm is not None:
|
720 |
+
# Mean pool the final hidden states of the patch tokens
|
721 |
+
patch_tokens = hidden_states[:, 1:, :]
|
722 |
+
pooled_output = self.layernorm(patch_tokens.mean(1))
|
723 |
+
else:
|
724 |
+
# Pool by simply taking the final hidden state of the [CLS] token
|
725 |
+
pooled_output = hidden_states[:, 0]
|
726 |
+
|
727 |
+
return pooled_output
|
728 |
+
|
729 |
+
|
730 |
+
@add_start_docstrings(
|
731 |
+
"""Beit Model transformer with a 'language' modeling head on top. BEiT does masked image modeling by predicting
|
732 |
+
visual tokens of a Vector-Quantize Variational Autoencoder (VQ-VAE), whereas other vision models like ViT and DeiT
|
733 |
+
predict RGB pixel values. As a result, this class is incompatible with [`AutoModelForMaskedImageModeling`], so you
|
734 |
+
will need to use [`BeitForMaskedImageModeling`] directly if you wish to do masked image modeling with BEiT.""",
|
735 |
+
BEIT_START_DOCSTRING,
|
736 |
+
)
|
737 |
+
class BeitForMaskedImageModeling(BeitPreTrainedModel):
|
738 |
+
def __init__(self, config: BeitConfig) -> None:
|
739 |
+
super().__init__(config)
|
740 |
+
|
741 |
+
self.num_labels = config.num_labels
|
742 |
+
self.beit = BeitModel(config, add_pooling_layer=False)
|
743 |
+
|
744 |
+
# Classifier head
|
745 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
746 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
|
747 |
+
|
748 |
+
# Initialize weights and apply final processing
|
749 |
+
self.post_init()
|
750 |
+
|
751 |
+
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
|
752 |
+
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
|
753 |
+
def forward(
|
754 |
+
self,
|
755 |
+
pixel_values: Optional[torch.Tensor] = None,
|
756 |
+
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
757 |
+
head_mask: Optional[torch.Tensor] = None,
|
758 |
+
labels: Optional[torch.Tensor] = None,
|
759 |
+
output_attentions: Optional[bool] = None,
|
760 |
+
output_hidden_states: Optional[bool] = None,
|
761 |
+
return_dict: Optional[bool] = None,
|
762 |
+
) -> Union[tuple, MaskedLMOutput]:
|
763 |
+
r"""
|
764 |
+
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
|
765 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
766 |
+
|
767 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
768 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
769 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
770 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
771 |
+
|
772 |
+
Returns:
|
773 |
+
|
774 |
+
Examples:
|
775 |
+
|
776 |
+
```python
|
777 |
+
>>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling
|
778 |
+
>>> import torch
|
779 |
+
>>> from PIL import Image
|
780 |
+
>>> import requests
|
781 |
+
|
782 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
783 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
784 |
+
|
785 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
|
786 |
+
>>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
|
787 |
+
|
788 |
+
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
|
789 |
+
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
|
790 |
+
>>> # create random boolean mask of shape (batch_size, num_patches)
|
791 |
+
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
|
792 |
+
|
793 |
+
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
|
794 |
+
>>> loss, logits = outputs.loss, outputs.logits
|
795 |
+
>>> list(logits.shape)
|
796 |
+
[1, 196, 8192]
|
797 |
+
```"""
|
798 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
799 |
+
|
800 |
+
outputs = self.beit(
|
801 |
+
pixel_values,
|
802 |
+
bool_masked_pos=bool_masked_pos,
|
803 |
+
head_mask=head_mask,
|
804 |
+
output_attentions=output_attentions,
|
805 |
+
output_hidden_states=output_hidden_states,
|
806 |
+
return_dict=return_dict,
|
807 |
+
)
|
808 |
+
|
809 |
+
sequence_output = outputs[0]
|
810 |
+
sequence_output = self.layernorm(sequence_output)
|
811 |
+
prediction_scores = self.lm_head(sequence_output[:, 1:])
|
812 |
+
|
813 |
+
masked_lm_loss = None
|
814 |
+
if labels is not None:
|
815 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
816 |
+
masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels)
|
817 |
+
|
818 |
+
if not return_dict:
|
819 |
+
output = (prediction_scores,) + outputs[1:]
|
820 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
821 |
+
|
822 |
+
return MaskedLMOutput(
|
823 |
+
loss=masked_lm_loss,
|
824 |
+
logits=prediction_scores,
|
825 |
+
hidden_states=outputs.hidden_states,
|
826 |
+
attentions=outputs.attentions,
|
827 |
+
)
|
828 |
+
|
829 |
+
|
830 |
+
@add_start_docstrings(
|
831 |
+
"""
|
832 |
+
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
|
833 |
+
hidden states of the patch tokens) e.g. for ImageNet.
|
834 |
+
""",
|
835 |
+
BEIT_START_DOCSTRING,
|
836 |
+
)
|
837 |
+
class BeitForImageClassification(BeitPreTrainedModel):
|
838 |
+
def __init__(self, config: BeitConfig) -> None:
|
839 |
+
super().__init__(config)
|
840 |
+
|
841 |
+
self.num_labels = config.num_labels
|
842 |
+
self.beit = BeitModel(config, add_pooling_layer=True)
|
843 |
+
|
844 |
+
# Classifier head
|
845 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
846 |
+
|
847 |
+
# Initialize weights and apply final processing
|
848 |
+
self.post_init()
|
849 |
+
|
850 |
+
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
|
851 |
+
@add_code_sample_docstrings(
|
852 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
853 |
+
output_type=ImageClassifierOutput,
|
854 |
+
config_class=_CONFIG_FOR_DOC,
|
855 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
856 |
+
)
|
857 |
+
def forward(
|
858 |
+
self,
|
859 |
+
pixel_values: Optional[torch.Tensor] = None,
|
860 |
+
head_mask: Optional[torch.Tensor] = None,
|
861 |
+
labels: Optional[torch.Tensor] = None,
|
862 |
+
output_attentions: Optional[bool] = None,
|
863 |
+
output_hidden_states: Optional[bool] = None,
|
864 |
+
return_dict: Optional[bool] = None,
|
865 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
866 |
+
r"""
|
867 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
868 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
869 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
870 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
871 |
+
"""
|
872 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
873 |
+
outputs = self.beit(
|
874 |
+
pixel_values,
|
875 |
+
head_mask=head_mask,
|
876 |
+
output_attentions=output_attentions,
|
877 |
+
output_hidden_states=output_hidden_states,
|
878 |
+
return_dict=return_dict,
|
879 |
+
)
|
880 |
+
|
881 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
882 |
+
|
883 |
+
logits = self.classifier(pooled_output)
|
884 |
+
|
885 |
+
loss = None
|
886 |
+
if labels is not None:
|
887 |
+
if self.config.problem_type is None:
|
888 |
+
if self.num_labels == 1:
|
889 |
+
self.config.problem_type = "regression"
|
890 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
891 |
+
self.config.problem_type = "single_label_classification"
|
892 |
+
else:
|
893 |
+
self.config.problem_type = "multi_label_classification"
|
894 |
+
|
895 |
+
if self.config.problem_type == "regression":
|
896 |
+
loss_fct = MSELoss()
|
897 |
+
if self.num_labels == 1:
|
898 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
899 |
+
else:
|
900 |
+
loss = loss_fct(logits, labels)
|
901 |
+
elif self.config.problem_type == "single_label_classification":
|
902 |
+
loss_fct = CrossEntropyLoss()
|
903 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
904 |
+
elif self.config.problem_type == "multi_label_classification":
|
905 |
+
loss_fct = BCEWithLogitsLoss()
|
906 |
+
loss = loss_fct(logits, labels)
|
907 |
+
if not return_dict:
|
908 |
+
output = (logits,) + outputs[2:]
|
909 |
+
return ((loss,) + output) if loss is not None else output
|
910 |
+
|
911 |
+
return ImageClassifierOutput(
|
912 |
+
loss=loss,
|
913 |
+
logits=logits,
|
914 |
+
hidden_states=outputs.hidden_states,
|
915 |
+
attentions=outputs.attentions,
|
916 |
+
)
|
917 |
+
|
918 |
+
|
919 |
+
class BeitConvModule(nn.Module):
|
920 |
+
"""
|
921 |
+
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
|
922 |
+
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
|
923 |
+
|
924 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
925 |
+
"""
|
926 |
+
|
927 |
+
def __init__(
|
928 |
+
self,
|
929 |
+
in_channels: int,
|
930 |
+
out_channels: int,
|
931 |
+
kernel_size: Union[int, Tuple[int, int]],
|
932 |
+
padding: Union[int, Tuple[int, int], str] = 0,
|
933 |
+
bias: bool = False,
|
934 |
+
dilation: Union[int, Tuple[int, int]] = 1,
|
935 |
+
) -> None:
|
936 |
+
super().__init__()
|
937 |
+
self.conv = nn.Conv2d(
|
938 |
+
in_channels=in_channels,
|
939 |
+
out_channels=out_channels,
|
940 |
+
kernel_size=kernel_size,
|
941 |
+
padding=padding,
|
942 |
+
bias=bias,
|
943 |
+
dilation=dilation,
|
944 |
+
)
|
945 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
946 |
+
self.activation = nn.ReLU()
|
947 |
+
|
948 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
949 |
+
output = self.conv(input)
|
950 |
+
output = self.bn(output)
|
951 |
+
output = self.activation(output)
|
952 |
+
|
953 |
+
return output
|
954 |
+
|
955 |
+
|
956 |
+
class BeitPyramidPoolingBlock(nn.Module):
|
957 |
+
def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None:
|
958 |
+
super().__init__()
|
959 |
+
self.layers = [
|
960 |
+
nn.AdaptiveAvgPool2d(pool_scale),
|
961 |
+
BeitConvModule(in_channels, channels, kernel_size=1),
|
962 |
+
]
|
963 |
+
for i, layer in enumerate(self.layers):
|
964 |
+
self.add_module(str(i), layer)
|
965 |
+
|
966 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
967 |
+
hidden_state = input
|
968 |
+
for layer in self.layers:
|
969 |
+
hidden_state = layer(hidden_state)
|
970 |
+
return hidden_state
|
971 |
+
|
972 |
+
|
973 |
+
class BeitPyramidPoolingModule(nn.Module):
|
974 |
+
"""
|
975 |
+
Pyramid Pooling Module (PPM) used in PSPNet.
|
976 |
+
|
977 |
+
Args:
|
978 |
+
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
|
979 |
+
Module.
|
980 |
+
in_channels (int): Input channels.
|
981 |
+
channels (int): Channels after modules, before conv_seg.
|
982 |
+
align_corners (bool): align_corners argument of F.interpolate.
|
983 |
+
|
984 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
985 |
+
"""
|
986 |
+
|
987 |
+
def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None:
|
988 |
+
super().__init__()
|
989 |
+
self.pool_scales = pool_scales
|
990 |
+
self.align_corners = align_corners
|
991 |
+
self.in_channels = in_channels
|
992 |
+
self.channels = channels
|
993 |
+
self.blocks = []
|
994 |
+
for i, pool_scale in enumerate(pool_scales):
|
995 |
+
block = BeitPyramidPoolingBlock(pool_scale=pool_scale, in_channels=in_channels, channels=channels)
|
996 |
+
self.blocks.append(block)
|
997 |
+
self.add_module(str(i), block)
|
998 |
+
|
999 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
1000 |
+
ppm_outs = []
|
1001 |
+
for ppm in self.blocks:
|
1002 |
+
ppm_out = ppm(x)
|
1003 |
+
upsampled_ppm_out = nn.functional.interpolate(
|
1004 |
+
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
|
1005 |
+
)
|
1006 |
+
ppm_outs.append(upsampled_ppm_out)
|
1007 |
+
return ppm_outs
|
1008 |
+
|
1009 |
+
|
1010 |
+
class BeitUperHead(nn.Module):
|
1011 |
+
"""
|
1012 |
+
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of
|
1013 |
+
[UPerNet](https://arxiv.org/abs/1807.10221).
|
1014 |
+
|
1015 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1016 |
+
"""
|
1017 |
+
|
1018 |
+
def __init__(self, config: BeitConfig) -> None:
|
1019 |
+
super().__init__()
|
1020 |
+
|
1021 |
+
self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6)
|
1022 |
+
self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768]
|
1023 |
+
self.channels = config.hidden_size
|
1024 |
+
self.align_corners = False
|
1025 |
+
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
|
1026 |
+
|
1027 |
+
# PSP Module
|
1028 |
+
self.psp_modules = BeitPyramidPoolingModule(
|
1029 |
+
self.pool_scales,
|
1030 |
+
self.in_channels[-1],
|
1031 |
+
self.channels,
|
1032 |
+
align_corners=self.align_corners,
|
1033 |
+
)
|
1034 |
+
self.bottleneck = BeitConvModule(
|
1035 |
+
self.in_channels[-1] + len(self.pool_scales) * self.channels,
|
1036 |
+
self.channels,
|
1037 |
+
kernel_size=3,
|
1038 |
+
padding=1,
|
1039 |
+
)
|
1040 |
+
# FPN Module
|
1041 |
+
self.lateral_convs = nn.ModuleList()
|
1042 |
+
self.fpn_convs = nn.ModuleList()
|
1043 |
+
for in_channels in self.in_channels[:-1]: # skip the top layer
|
1044 |
+
l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1)
|
1045 |
+
fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1)
|
1046 |
+
self.lateral_convs.append(l_conv)
|
1047 |
+
self.fpn_convs.append(fpn_conv)
|
1048 |
+
|
1049 |
+
self.fpn_bottleneck = BeitConvModule(
|
1050 |
+
len(self.in_channels) * self.channels,
|
1051 |
+
self.channels,
|
1052 |
+
kernel_size=3,
|
1053 |
+
padding=1,
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
def psp_forward(self, inputs):
|
1057 |
+
x = inputs[-1]
|
1058 |
+
psp_outs = [x]
|
1059 |
+
psp_outs.extend(self.psp_modules(x))
|
1060 |
+
psp_outs = torch.cat(psp_outs, dim=1)
|
1061 |
+
output = self.bottleneck(psp_outs)
|
1062 |
+
|
1063 |
+
return output
|
1064 |
+
|
1065 |
+
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
|
1066 |
+
# build laterals
|
1067 |
+
laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
|
1068 |
+
|
1069 |
+
laterals.append(self.psp_forward(encoder_hidden_states))
|
1070 |
+
|
1071 |
+
# build top-down path
|
1072 |
+
used_backbone_levels = len(laterals)
|
1073 |
+
for i in range(used_backbone_levels - 1, 0, -1):
|
1074 |
+
prev_shape = laterals[i - 1].shape[2:]
|
1075 |
+
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
|
1076 |
+
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
# build outputs
|
1080 |
+
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
|
1081 |
+
# append psp feature
|
1082 |
+
fpn_outs.append(laterals[-1])
|
1083 |
+
|
1084 |
+
for i in range(used_backbone_levels - 1, 0, -1):
|
1085 |
+
fpn_outs[i] = nn.functional.interpolate(
|
1086 |
+
fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners
|
1087 |
+
)
|
1088 |
+
fpn_outs = torch.cat(fpn_outs, dim=1)
|
1089 |
+
output = self.fpn_bottleneck(fpn_outs)
|
1090 |
+
output = self.classifier(output)
|
1091 |
+
|
1092 |
+
return output
|
1093 |
+
|
1094 |
+
|
1095 |
+
class BeitFCNHead(nn.Module):
|
1096 |
+
"""
|
1097 |
+
Fully Convolution Networks for Semantic Segmentation. This head is implemented of
|
1098 |
+
[FCNNet](https://arxiv.org/abs/1411.4038>).
|
1099 |
+
|
1100 |
+
Args:
|
1101 |
+
config (BeitConfig): Configuration.
|
1102 |
+
in_channels
|
1103 |
+
kernel_size (int): The kernel size for convs in the head. Default: 3.
|
1104 |
+
dilation (int): The dilation rate for convs in the head. Default: 1.
|
1105 |
+
|
1106 |
+
|
1107 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1108 |
+
"""
|
1109 |
+
|
1110 |
+
def __init__(
|
1111 |
+
self, config: BeitConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1
|
1112 |
+
) -> None:
|
1113 |
+
super().__init__()
|
1114 |
+
self.in_channels = config.hidden_size
|
1115 |
+
self.channels = config.auxiliary_channels
|
1116 |
+
self.num_convs = config.auxiliary_num_convs
|
1117 |
+
self.concat_input = config.auxiliary_concat_input
|
1118 |
+
self.in_index = in_index
|
1119 |
+
|
1120 |
+
conv_padding = (kernel_size // 2) * dilation
|
1121 |
+
convs = []
|
1122 |
+
convs.append(
|
1123 |
+
BeitConvModule(
|
1124 |
+
self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
|
1125 |
+
)
|
1126 |
+
)
|
1127 |
+
for i in range(self.num_convs - 1):
|
1128 |
+
convs.append(
|
1129 |
+
BeitConvModule(
|
1130 |
+
self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
|
1131 |
+
)
|
1132 |
+
)
|
1133 |
+
if self.num_convs == 0:
|
1134 |
+
self.convs = nn.Identity()
|
1135 |
+
else:
|
1136 |
+
self.convs = nn.Sequential(*convs)
|
1137 |
+
if self.concat_input:
|
1138 |
+
self.conv_cat = BeitConvModule(
|
1139 |
+
self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2
|
1140 |
+
)
|
1141 |
+
|
1142 |
+
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
|
1143 |
+
|
1144 |
+
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
|
1145 |
+
# just take the relevant feature maps
|
1146 |
+
hidden_states = encoder_hidden_states[self.in_index]
|
1147 |
+
output = self.convs(hidden_states)
|
1148 |
+
if self.concat_input:
|
1149 |
+
output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
|
1150 |
+
output = self.classifier(output)
|
1151 |
+
return output
|
1152 |
+
|
1153 |
+
|
1154 |
+
@add_start_docstrings(
|
1155 |
+
"""
|
1156 |
+
Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
|
1157 |
+
""",
|
1158 |
+
BEIT_START_DOCSTRING,
|
1159 |
+
)
|
1160 |
+
class BeitForSemanticSegmentation(BeitPreTrainedModel):
|
1161 |
+
def __init__(self, config: BeitConfig) -> None:
|
1162 |
+
super().__init__(config)
|
1163 |
+
|
1164 |
+
self.num_labels = config.num_labels
|
1165 |
+
self.beit = BeitModel(config, add_pooling_layer=False)
|
1166 |
+
|
1167 |
+
# FPNs
|
1168 |
+
if len(self.config.out_indices) != 4:
|
1169 |
+
raise ValueError(
|
1170 |
+
"BeitForSemanticSegmentation requires config.out_indices to be a list of 4 integers, "
|
1171 |
+
"specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of "
|
1172 |
+
"a base-sized architecture."
|
1173 |
+
)
|
1174 |
+
self.fpn1 = nn.Sequential(
|
1175 |
+
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
|
1176 |
+
nn.BatchNorm2d(config.hidden_size),
|
1177 |
+
nn.GELU(),
|
1178 |
+
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
|
1179 |
+
)
|
1180 |
+
self.fpn2 = nn.Sequential(
|
1181 |
+
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
|
1182 |
+
)
|
1183 |
+
self.fpn3 = nn.Identity()
|
1184 |
+
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
|
1185 |
+
|
1186 |
+
# Semantic segmentation head(s)
|
1187 |
+
self.decode_head = BeitUperHead(config)
|
1188 |
+
self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None
|
1189 |
+
|
1190 |
+
# Initialize weights and apply final processing
|
1191 |
+
self.post_init()
|
1192 |
+
|
1193 |
+
def compute_loss(self, logits, auxiliary_logits, labels):
|
1194 |
+
# upsample logits to the images' original size
|
1195 |
+
upsampled_logits = nn.functional.interpolate(
|
1196 |
+
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
|
1197 |
+
)
|
1198 |
+
if auxiliary_logits is not None:
|
1199 |
+
upsampled_auxiliary_logits = nn.functional.interpolate(
|
1200 |
+
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
|
1201 |
+
)
|
1202 |
+
# compute weighted loss
|
1203 |
+
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
|
1204 |
+
main_loss = loss_fct(upsampled_logits, labels)
|
1205 |
+
loss = main_loss
|
1206 |
+
if auxiliary_logits is not None:
|
1207 |
+
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
|
1208 |
+
loss += self.config.auxiliary_loss_weight * auxiliary_loss
|
1209 |
+
|
1210 |
+
return loss
|
1211 |
+
|
1212 |
+
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
|
1213 |
+
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
|
1214 |
+
def forward(
|
1215 |
+
self,
|
1216 |
+
pixel_values: Optional[torch.Tensor] = None,
|
1217 |
+
head_mask: Optional[torch.Tensor] = None,
|
1218 |
+
labels: Optional[torch.Tensor] = None,
|
1219 |
+
output_attentions: Optional[bool] = None,
|
1220 |
+
output_hidden_states: Optional[bool] = None,
|
1221 |
+
return_dict: Optional[bool] = None,
|
1222 |
+
) -> Union[tuple, SemanticSegmenterOutput]:
|
1223 |
+
r"""
|
1224 |
+
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
|
1225 |
+
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
|
1226 |
+
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
|
1227 |
+
|
1228 |
+
Returns:
|
1229 |
+
|
1230 |
+
Examples:
|
1231 |
+
|
1232 |
+
```python
|
1233 |
+
>>> from transformers import AutoImageProcessor, BeitForSemanticSegmentation
|
1234 |
+
>>> from PIL import Image
|
1235 |
+
>>> import requests
|
1236 |
+
|
1237 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1238 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1239 |
+
|
1240 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
|
1241 |
+
>>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
|
1242 |
+
|
1243 |
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
1244 |
+
>>> outputs = model(**inputs)
|
1245 |
+
>>> # logits are of shape (batch_size, num_labels, height, width)
|
1246 |
+
>>> logits = outputs.logits
|
1247 |
+
```"""
|
1248 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1249 |
+
output_hidden_states = (
|
1250 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1251 |
+
)
|
1252 |
+
|
1253 |
+
outputs = self.beit(
|
1254 |
+
pixel_values,
|
1255 |
+
head_mask=head_mask,
|
1256 |
+
output_attentions=output_attentions,
|
1257 |
+
output_hidden_states=True, # we need the intermediate hidden states
|
1258 |
+
return_dict=return_dict,
|
1259 |
+
)
|
1260 |
+
|
1261 |
+
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
1262 |
+
|
1263 |
+
# only keep certain features, and reshape
|
1264 |
+
# note that we do +1 as the encoder_hidden_states also includes the initial embeddings
|
1265 |
+
features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices]
|
1266 |
+
batch_size = pixel_values.shape[0]
|
1267 |
+
patch_resolution = self.config.image_size // self.config.patch_size
|
1268 |
+
features = [
|
1269 |
+
x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features
|
1270 |
+
]
|
1271 |
+
|
1272 |
+
# apply FPNs
|
1273 |
+
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
|
1274 |
+
for i in range(len(features)):
|
1275 |
+
features[i] = ops[i](features[i])
|
1276 |
+
|
1277 |
+
logits = self.decode_head(features)
|
1278 |
+
|
1279 |
+
auxiliary_logits = None
|
1280 |
+
if self.auxiliary_head is not None:
|
1281 |
+
auxiliary_logits = self.auxiliary_head(features)
|
1282 |
+
|
1283 |
+
loss = None
|
1284 |
+
if labels is not None:
|
1285 |
+
if self.config.num_labels == 1:
|
1286 |
+
raise ValueError("The number of labels should be greater than one")
|
1287 |
+
else:
|
1288 |
+
loss = self.compute_loss(logits, auxiliary_logits, labels)
|
1289 |
+
|
1290 |
+
if not return_dict:
|
1291 |
+
if output_hidden_states:
|
1292 |
+
output = (logits,) + outputs[1:]
|
1293 |
+
else:
|
1294 |
+
output = (logits,) + outputs[2:]
|
1295 |
+
return ((loss,) + output) if loss is not None else output
|
1296 |
+
|
1297 |
+
return SemanticSegmenterOutput(
|
1298 |
+
loss=loss,
|
1299 |
+
logits=logits,
|
1300 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
1301 |
+
attentions=outputs.attentions,
|
1302 |
+
)
|
1303 |
+
|
1304 |
+
|
1305 |
+
@add_start_docstrings(
|
1306 |
+
"""
|
1307 |
+
BEiT backbone, to be used with frameworks like DETR and MaskFormer.
|
1308 |
+
""",
|
1309 |
+
BEIT_START_DOCSTRING,
|
1310 |
+
)
|
1311 |
+
class BeitBackbone(BeitPreTrainedModel, BackboneMixin):
|
1312 |
+
def __init__(self, config):
|
1313 |
+
super().__init__(config)
|
1314 |
+
super()._init_backbone(config)
|
1315 |
+
|
1316 |
+
self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
|
1317 |
+
self.embeddings = BeitEmbeddings(config)
|
1318 |
+
self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape)
|
1319 |
+
|
1320 |
+
if config.add_fpn:
|
1321 |
+
if len(self.config.out_indices) != 4:
|
1322 |
+
raise ValueError(
|
1323 |
+
"BeitBackbone requires config.out_indices to be a list of 4 integers, "
|
1324 |
+
"specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of "
|
1325 |
+
"a base-sized architecture."
|
1326 |
+
)
|
1327 |
+
hidden_size = config.hidden_size
|
1328 |
+
self.fpn1 = nn.Sequential(
|
1329 |
+
nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2),
|
1330 |
+
nn.BatchNorm2d(hidden_size, eps=config.batch_norm_eps),
|
1331 |
+
nn.GELU(),
|
1332 |
+
nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2),
|
1333 |
+
)
|
1334 |
+
|
1335 |
+
self.fpn2 = nn.Sequential(nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2))
|
1336 |
+
self.fpn3 = nn.Identity()
|
1337 |
+
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
|
1338 |
+
|
1339 |
+
# initialize weights and apply final processing
|
1340 |
+
self.post_init()
|
1341 |
+
|
1342 |
+
def get_input_embeddings(self):
|
1343 |
+
return self.embeddings.patch_embeddings
|
1344 |
+
|
1345 |
+
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
|
1346 |
+
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
|
1347 |
+
def forward(
|
1348 |
+
self,
|
1349 |
+
pixel_values: Tensor,
|
1350 |
+
output_hidden_states: Optional[bool] = None,
|
1351 |
+
output_attentions: Optional[bool] = None,
|
1352 |
+
return_dict: Optional[bool] = None,
|
1353 |
+
) -> BackboneOutput:
|
1354 |
+
"""
|
1355 |
+
Returns:
|
1356 |
+
|
1357 |
+
Examples:
|
1358 |
+
|
1359 |
+
```python
|
1360 |
+
>>> from transformers import AutoImageProcessor, AutoBackbone
|
1361 |
+
>>> import torch
|
1362 |
+
>>> from PIL import Image
|
1363 |
+
>>> import requests
|
1364 |
+
|
1365 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1366 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1367 |
+
|
1368 |
+
>>> processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224")
|
1369 |
+
>>> model = AutoBackbone.from_pretrained(
|
1370 |
+
... "microsoft/beit-base-patch16-224", out_features=["stage1", "stage2", "stage3", "stage4"]
|
1371 |
+
... )
|
1372 |
+
|
1373 |
+
>>> inputs = processor(image, return_tensors="pt")
|
1374 |
+
|
1375 |
+
>>> outputs = model(**inputs)
|
1376 |
+
>>> feature_maps = outputs.feature_maps
|
1377 |
+
>>> list(feature_maps[-1].shape)
|
1378 |
+
[1, 768, 14, 14]
|
1379 |
+
```"""
|
1380 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1381 |
+
output_hidden_states = (
|
1382 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1383 |
+
)
|
1384 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1385 |
+
|
1386 |
+
batch_size = pixel_values.shape[0]
|
1387 |
+
embedding_output, (patch_height, patch_width) = self.embeddings(pixel_values)
|
1388 |
+
|
1389 |
+
outputs = self.encoder(
|
1390 |
+
embedding_output, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
1394 |
+
|
1395 |
+
feature_maps = ()
|
1396 |
+
for stage, hidden_state in zip(self.stage_names, hidden_states):
|
1397 |
+
if stage in self.out_features:
|
1398 |
+
if self.config.reshape_hidden_states:
|
1399 |
+
hidden_state = hidden_state[:, 1:, :]
|
1400 |
+
hidden_state = hidden_state.permute(0, 2, 1)
|
1401 |
+
hidden_state = hidden_state.reshape(batch_size, -1, patch_height, patch_width)
|
1402 |
+
|
1403 |
+
feature_maps += (hidden_state,)
|
1404 |
+
|
1405 |
+
if self.config.add_fpn:
|
1406 |
+
feature_maps = [
|
1407 |
+
self.fpn1(feature_maps[0]),
|
1408 |
+
self.fpn2(feature_maps[1]),
|
1409 |
+
self.fpn3(feature_maps[2]),
|
1410 |
+
self.fpn4(feature_maps[3]),
|
1411 |
+
]
|
1412 |
+
feature_maps = tuple(feature_maps)
|
1413 |
+
|
1414 |
+
if not return_dict:
|
1415 |
+
if output_hidden_states:
|
1416 |
+
output = (feature_maps,) + outputs[1:]
|
1417 |
+
else:
|
1418 |
+
output = (feature_maps,) + outputs[2:]
|
1419 |
+
return output
|
1420 |
+
|
1421 |
+
return BackboneOutput(
|
1422 |
+
feature_maps=feature_maps,
|
1423 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
1424 |
+
attentions=outputs.attentions,
|
1425 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/beit/modeling_flax_beit.py
ADDED
@@ -0,0 +1,948 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Microsoft Research and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
from typing import Callable, List, Optional, Tuple
|
18 |
+
|
19 |
+
import flax
|
20 |
+
import flax.linen as nn
|
21 |
+
import jax
|
22 |
+
import jax.numpy as jnp
|
23 |
+
import numpy as np
|
24 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
25 |
+
from flax.linen.attention import dot_product_attention_weights
|
26 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
27 |
+
|
28 |
+
from ...modeling_flax_outputs import (
|
29 |
+
FlaxBaseModelOutput,
|
30 |
+
FlaxBaseModelOutputWithPooling,
|
31 |
+
FlaxMaskedLMOutput,
|
32 |
+
FlaxSequenceClassifierOutput,
|
33 |
+
)
|
34 |
+
from ...modeling_flax_utils import (
|
35 |
+
ACT2FN,
|
36 |
+
FlaxPreTrainedModel,
|
37 |
+
append_replace_return_docstrings,
|
38 |
+
overwrite_call_docstring,
|
39 |
+
)
|
40 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward
|
41 |
+
from .configuration_beit import BeitConfig
|
42 |
+
|
43 |
+
|
44 |
+
@flax.struct.dataclass
|
45 |
+
class FlaxBeitModelOutputWithPooling(FlaxBaseModelOutputWithPooling):
|
46 |
+
"""
|
47 |
+
Class for outputs of [`FlaxBeitModel`].
|
48 |
+
|
49 |
+
Args:
|
50 |
+
last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`):
|
51 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
52 |
+
pooler_output (`jnp.ndarray` of shape `(batch_size, hidden_size)`):
|
53 |
+
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
|
54 |
+
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
|
55 |
+
will be returned.
|
56 |
+
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
57 |
+
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
|
58 |
+
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
|
59 |
+
the initial embedding outputs.
|
60 |
+
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
61 |
+
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
62 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
63 |
+
the self-attention heads.
|
64 |
+
"""
|
65 |
+
|
66 |
+
|
67 |
+
BEIT_START_DOCSTRING = r"""
|
68 |
+
|
69 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
70 |
+
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
|
71 |
+
|
72 |
+
This model is also a
|
73 |
+
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
|
74 |
+
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
|
75 |
+
behavior.
|
76 |
+
|
77 |
+
Finally, this model supports inherent JAX features such as:
|
78 |
+
|
79 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
80 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
81 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
82 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
83 |
+
|
84 |
+
Parameters:
|
85 |
+
config ([`BeitConfig`]): Model configuration class with all the parameters of the model.
|
86 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
87 |
+
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
88 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
89 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
90 |
+
`jax.numpy.bfloat16` (on TPUs).
|
91 |
+
|
92 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
93 |
+
specified all the computation will be performed with the given `dtype`.
|
94 |
+
|
95 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
96 |
+
parameters.**
|
97 |
+
|
98 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
99 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
100 |
+
"""
|
101 |
+
|
102 |
+
BEIT_INPUTS_DOCSTRING = r"""
|
103 |
+
Args:
|
104 |
+
pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
|
105 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
106 |
+
[`AutoImageProcessor.__call__`] for details.
|
107 |
+
|
108 |
+
output_attentions (`bool`, *optional*):
|
109 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
110 |
+
tensors for more detail.
|
111 |
+
output_hidden_states (`bool`, *optional*):
|
112 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
113 |
+
more detail.
|
114 |
+
return_dict (`bool`, *optional*):
|
115 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
116 |
+
"""
|
117 |
+
|
118 |
+
|
119 |
+
def relative_position_index_init(window_size: Tuple[int, int]) -> jnp.ndarray:
|
120 |
+
"""
|
121 |
+
get pair-wise relative position index for each token inside the window
|
122 |
+
"""
|
123 |
+
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
124 |
+
|
125 |
+
coords_h = np.arange(window_size[0])
|
126 |
+
coords_w = np.arange(window_size[1])
|
127 |
+
coords = np.stack(np.meshgrid(coords_h, coords_w, indexing="ij")) # 2, Wh, Ww
|
128 |
+
coords_flatten = np.reshape(coords, (2, -1))
|
129 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
130 |
+
relative_coords = np.transpose(relative_coords, (1, 2, 0)) # Wh*Ww, Wh*Ww, 2
|
131 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
132 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
133 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
134 |
+
|
135 |
+
relative_position_index = np.zeros(shape=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
136 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
137 |
+
relative_position_index[0, 0:] = num_relative_distance - 3
|
138 |
+
relative_position_index[0:, 0] = num_relative_distance - 2
|
139 |
+
relative_position_index[0, 0] = num_relative_distance - 1
|
140 |
+
return jnp.array(relative_position_index)
|
141 |
+
|
142 |
+
|
143 |
+
def ones_with_scale(key, shape, scale, dtype=jnp.float32):
|
144 |
+
return jnp.ones(shape, dtype) * scale
|
145 |
+
|
146 |
+
|
147 |
+
class FlaxBeitDropPath(nn.Module):
|
148 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
149 |
+
|
150 |
+
rate: float
|
151 |
+
|
152 |
+
@nn.module.compact
|
153 |
+
def __call__(self, inputs, deterministic: Optional[bool] = True):
|
154 |
+
if self.rate == 0.0:
|
155 |
+
return inputs
|
156 |
+
keep_prob = 1.0 - self.rate
|
157 |
+
if deterministic:
|
158 |
+
return inputs
|
159 |
+
else:
|
160 |
+
shape = (inputs.shape[0],) + (1,) * (inputs.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
161 |
+
rng = self.make_rng("droppath")
|
162 |
+
random_tensor = keep_prob + jax.random.uniform(rng, shape=shape, dtype=inputs.dtype)
|
163 |
+
binary_tensor = jnp.floor(random_tensor)
|
164 |
+
output = inputs / keep_prob * binary_tensor
|
165 |
+
return output
|
166 |
+
|
167 |
+
|
168 |
+
class FlaxBeitPatchEmbeddings(nn.Module):
|
169 |
+
config: BeitConfig
|
170 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
171 |
+
|
172 |
+
def setup(self):
|
173 |
+
self.num_channels = self.config.num_channels
|
174 |
+
image_size = self.config.image_size
|
175 |
+
patch_size = self.config.patch_size
|
176 |
+
num_patches = (image_size // patch_size) * (image_size // patch_size)
|
177 |
+
patch_shape = (image_size // patch_size, image_size // patch_size)
|
178 |
+
self.num_patches = num_patches
|
179 |
+
self.patch_shape = patch_shape
|
180 |
+
self.projection = nn.Conv(
|
181 |
+
self.config.hidden_size,
|
182 |
+
kernel_size=(patch_size, patch_size),
|
183 |
+
strides=(patch_size, patch_size),
|
184 |
+
padding="VALID",
|
185 |
+
dtype=self.dtype,
|
186 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
187 |
+
)
|
188 |
+
|
189 |
+
def __call__(self, pixel_values):
|
190 |
+
num_channels = pixel_values.shape[-1]
|
191 |
+
if num_channels != self.num_channels:
|
192 |
+
raise ValueError(
|
193 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
194 |
+
)
|
195 |
+
embeddings = self.projection(pixel_values)
|
196 |
+
batch_size, _, _, channels = embeddings.shape
|
197 |
+
return jnp.reshape(embeddings, (batch_size, -1, channels))
|
198 |
+
|
199 |
+
|
200 |
+
class FlaxBeitEmbeddings(nn.Module):
|
201 |
+
"""Construct the CLS token, position and patch embeddings."""
|
202 |
+
|
203 |
+
config: BeitConfig
|
204 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
205 |
+
|
206 |
+
def setup(self):
|
207 |
+
self.cls_token = self.param("cls_token", nn.initializers.zeros, (1, 1, self.config.hidden_size))
|
208 |
+
if self.config.use_mask_token:
|
209 |
+
self.mask_token = self.param("mask_token", nn.initializers.zeros, (1, 1, self.config.hidden_size))
|
210 |
+
self.patch_embeddings = FlaxBeitPatchEmbeddings(self.config, dtype=self.dtype)
|
211 |
+
num_patches = self.patch_embeddings.num_patches
|
212 |
+
if self.config.use_absolute_position_embeddings:
|
213 |
+
self.position_embeddings = self.param(
|
214 |
+
"position_embeddings", nn.initializers.zeros, (1, num_patches + 1, self.config.hidden_size)
|
215 |
+
)
|
216 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
217 |
+
|
218 |
+
def __call__(self, pixel_values, bool_masked_pos=None, deterministic=True):
|
219 |
+
embeddings = self.patch_embeddings(pixel_values)
|
220 |
+
batch_size, seq_len, _ = embeddings.shape
|
221 |
+
|
222 |
+
cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size))
|
223 |
+
cls_tokens = cls_tokens.astype(embeddings.dtype)
|
224 |
+
|
225 |
+
if bool_masked_pos is not None:
|
226 |
+
mask_tokens = jnp.broadcast_to(self.mask_token, (batch_size, seq_len, self.config.hidden_size))
|
227 |
+
mask_tokens = mask_tokens.astype(embeddings.dtype)
|
228 |
+
# replace the masked visual tokens by mask_tokens
|
229 |
+
w = jnp.expand_dims(bool_masked_pos, axis=-1)
|
230 |
+
embeddings = embeddings * (1 - w) + mask_tokens * w
|
231 |
+
|
232 |
+
embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1)
|
233 |
+
|
234 |
+
if self.config.use_absolute_position_embeddings:
|
235 |
+
embeddings = embeddings + self.position_embeddings.astype(embeddings.dtype)
|
236 |
+
|
237 |
+
embeddings = self.dropout(embeddings, deterministic=deterministic)
|
238 |
+
return embeddings
|
239 |
+
|
240 |
+
|
241 |
+
class FlaxBeitRelativePositionBias(nn.Module):
|
242 |
+
config: BeitConfig
|
243 |
+
window_size: Tuple[int, int]
|
244 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
245 |
+
|
246 |
+
def setup(self):
|
247 |
+
num_relative_distance = (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) + 3
|
248 |
+
self.relative_position_bias_table = self.param(
|
249 |
+
"relative_position_bias_table",
|
250 |
+
nn.initializers.zeros,
|
251 |
+
(num_relative_distance, self.config.num_attention_heads),
|
252 |
+
) # 2*Wh-1 * 2*Ww-1, nH
|
253 |
+
# cls to token & token 2 cls & cls to cls
|
254 |
+
|
255 |
+
self.relative_position_index = relative_position_index_init(self.window_size)
|
256 |
+
|
257 |
+
def __call__(self):
|
258 |
+
index = self.relative_position_index.reshape(-1)
|
259 |
+
shape = (self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1)
|
260 |
+
relative_position_bias = self.relative_position_bias_table[index].reshape(shape) # Wh*Ww,Wh*Ww,nH
|
261 |
+
return jnp.transpose(relative_position_bias, (2, 0, 1))
|
262 |
+
|
263 |
+
|
264 |
+
class FlaxBeitSelfAttention(nn.Module):
|
265 |
+
config: BeitConfig
|
266 |
+
window_size: Tuple[int, int]
|
267 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
268 |
+
|
269 |
+
def setup(self):
|
270 |
+
if self.config.hidden_size % self.config.num_attention_heads != 0 and not hasattr(
|
271 |
+
self.config, "embedding_size"
|
272 |
+
):
|
273 |
+
raise ValueError(
|
274 |
+
f"The hidden size {self.config.hidden_size,} is not a multiple of the number of attention "
|
275 |
+
f"heads {self.config.num_attention_heads}."
|
276 |
+
)
|
277 |
+
|
278 |
+
self.query = nn.Dense(
|
279 |
+
self.config.hidden_size,
|
280 |
+
dtype=self.dtype,
|
281 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
282 |
+
)
|
283 |
+
self.key = nn.Dense(
|
284 |
+
self.config.hidden_size,
|
285 |
+
dtype=self.dtype,
|
286 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
287 |
+
use_bias=False,
|
288 |
+
)
|
289 |
+
self.value = nn.Dense(
|
290 |
+
self.config.hidden_size,
|
291 |
+
dtype=self.dtype,
|
292 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
293 |
+
)
|
294 |
+
|
295 |
+
self.relative_position_bias = (
|
296 |
+
FlaxBeitRelativePositionBias(self.config, window_size=self.window_size, dtype=self.dtype)
|
297 |
+
if self.window_size
|
298 |
+
else None
|
299 |
+
)
|
300 |
+
|
301 |
+
def __call__(
|
302 |
+
self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False
|
303 |
+
):
|
304 |
+
head_dim = self.config.hidden_size // self.config.num_attention_heads
|
305 |
+
|
306 |
+
query_states = self.query(hidden_states).reshape(
|
307 |
+
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
308 |
+
)
|
309 |
+
value_states = self.value(hidden_states).reshape(
|
310 |
+
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
311 |
+
)
|
312 |
+
key_states = self.key(hidden_states).reshape(
|
313 |
+
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
314 |
+
)
|
315 |
+
|
316 |
+
dropout_rng = None
|
317 |
+
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
|
318 |
+
dropout_rng = self.make_rng("dropout")
|
319 |
+
|
320 |
+
attention_bias = jnp.array(0.0, dtype=self.dtype)
|
321 |
+
# Add relative position bias if present.
|
322 |
+
if self.relative_position_bias is not None:
|
323 |
+
attention_bias = jnp.expand_dims(self.relative_position_bias(), 0)
|
324 |
+
attention_bias = attention_bias.astype(query_states.dtype)
|
325 |
+
|
326 |
+
# Add shared relative position bias if provided.
|
327 |
+
if relative_position_bias is not None:
|
328 |
+
attention_bias = attention_bias + relative_position_bias.astype(attention_bias.dtype)
|
329 |
+
|
330 |
+
attn_weights = dot_product_attention_weights(
|
331 |
+
query_states,
|
332 |
+
key_states,
|
333 |
+
bias=attention_bias,
|
334 |
+
dropout_rng=dropout_rng,
|
335 |
+
dropout_rate=self.config.attention_probs_dropout_prob,
|
336 |
+
broadcast_dropout=True,
|
337 |
+
deterministic=deterministic,
|
338 |
+
dtype=self.dtype,
|
339 |
+
precision=None,
|
340 |
+
)
|
341 |
+
|
342 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
343 |
+
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
|
344 |
+
|
345 |
+
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
|
346 |
+
return outputs
|
347 |
+
|
348 |
+
|
349 |
+
class FlaxBeitSelfOutput(nn.Module):
|
350 |
+
config: BeitConfig
|
351 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
352 |
+
|
353 |
+
def setup(self):
|
354 |
+
self.dense = nn.Dense(
|
355 |
+
self.config.hidden_size,
|
356 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
357 |
+
dtype=self.dtype,
|
358 |
+
)
|
359 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
360 |
+
|
361 |
+
def __call__(self, hidden_states, deterministic: bool = True):
|
362 |
+
hidden_states = self.dense(hidden_states)
|
363 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
364 |
+
return hidden_states
|
365 |
+
|
366 |
+
|
367 |
+
class FlaxBeitAttention(nn.Module):
|
368 |
+
config: BeitConfig
|
369 |
+
window_size: Tuple[int, int]
|
370 |
+
dtype: jnp.dtype = jnp.float32
|
371 |
+
|
372 |
+
def setup(self):
|
373 |
+
self.attention = FlaxBeitSelfAttention(self.config, self.window_size, dtype=self.dtype)
|
374 |
+
self.output = FlaxBeitSelfOutput(self.config, dtype=self.dtype)
|
375 |
+
|
376 |
+
def __call__(
|
377 |
+
self, hidden_states, relative_position_bias=None, deterministic=True, output_attentions: bool = False
|
378 |
+
):
|
379 |
+
attn_outputs = self.attention(
|
380 |
+
hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions
|
381 |
+
)
|
382 |
+
attn_output = attn_outputs[0]
|
383 |
+
attn_output = self.output(attn_output, deterministic=deterministic)
|
384 |
+
|
385 |
+
outputs = (attn_output,)
|
386 |
+
|
387 |
+
if output_attentions:
|
388 |
+
outputs += (attn_outputs[1],)
|
389 |
+
|
390 |
+
return outputs
|
391 |
+
|
392 |
+
|
393 |
+
class FlaxBeitIntermediate(nn.Module):
|
394 |
+
config: BeitConfig
|
395 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
396 |
+
|
397 |
+
def setup(self):
|
398 |
+
self.dense = nn.Dense(
|
399 |
+
self.config.intermediate_size,
|
400 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
401 |
+
dtype=self.dtype,
|
402 |
+
)
|
403 |
+
self.activation = ACT2FN[self.config.hidden_act]
|
404 |
+
|
405 |
+
def __call__(self, hidden_states):
|
406 |
+
hidden_states = self.dense(hidden_states)
|
407 |
+
hidden_states = self.activation(hidden_states)
|
408 |
+
|
409 |
+
return hidden_states
|
410 |
+
|
411 |
+
|
412 |
+
class FlaxBeitOutput(nn.Module):
|
413 |
+
config: BeitConfig
|
414 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
415 |
+
|
416 |
+
def setup(self):
|
417 |
+
self.dense = nn.Dense(
|
418 |
+
self.config.hidden_size,
|
419 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
420 |
+
dtype=self.dtype,
|
421 |
+
)
|
422 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
423 |
+
|
424 |
+
def __call__(self, hidden_states, deterministic: bool = True):
|
425 |
+
hidden_states = self.dense(hidden_states)
|
426 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
427 |
+
|
428 |
+
return hidden_states
|
429 |
+
|
430 |
+
|
431 |
+
class FlaxBeitLayer(nn.Module):
|
432 |
+
config: BeitConfig
|
433 |
+
window_size: Tuple[int, int]
|
434 |
+
drop_path_rate: float
|
435 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
436 |
+
|
437 |
+
def setup(self):
|
438 |
+
self.attention = FlaxBeitAttention(self.config, self.window_size, dtype=self.dtype)
|
439 |
+
self.intermediate = FlaxBeitIntermediate(self.config, dtype=self.dtype)
|
440 |
+
self.output = FlaxBeitOutput(self.config, dtype=self.dtype)
|
441 |
+
self.layernorm_before = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
442 |
+
self.drop_path = FlaxBeitDropPath(rate=self.drop_path_rate)
|
443 |
+
self.layernorm_after = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
444 |
+
|
445 |
+
self.init_values = self.config.layer_scale_init_value
|
446 |
+
if self.init_values > 0:
|
447 |
+
self.lambda_1 = self.param("lambda_1", ones_with_scale, (self.config.hidden_size), self.init_values)
|
448 |
+
self.lambda_2 = self.param("lambda_2", ones_with_scale, (self.config.hidden_size), self.init_values)
|
449 |
+
else:
|
450 |
+
self.lambda_1 = None
|
451 |
+
self.lambda_2 = None
|
452 |
+
|
453 |
+
def __call__(
|
454 |
+
self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False
|
455 |
+
):
|
456 |
+
self_attention_outputs = self.attention(
|
457 |
+
self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention
|
458 |
+
relative_position_bias,
|
459 |
+
deterministic=deterministic,
|
460 |
+
output_attentions=output_attentions,
|
461 |
+
)
|
462 |
+
attention_output = self_attention_outputs[0]
|
463 |
+
|
464 |
+
# apply lambda_1 if present
|
465 |
+
if self.lambda_1 is not None:
|
466 |
+
attention_output = self.lambda_1.astype(attention_output.dtype) * attention_output
|
467 |
+
|
468 |
+
# first residual connection
|
469 |
+
hidden_states = self.drop_path(attention_output, deterministic=deterministic) + hidden_states
|
470 |
+
|
471 |
+
# in BEiT, layernorm is also applied after self-attention
|
472 |
+
layer_output = self.layernorm_after(hidden_states)
|
473 |
+
|
474 |
+
layer_output = self.intermediate(layer_output)
|
475 |
+
layer_output = self.output(layer_output, deterministic=deterministic)
|
476 |
+
|
477 |
+
# apply lambda_2 if present
|
478 |
+
if self.lambda_2 is not None:
|
479 |
+
layer_output = self.lambda_2.astype(layer_output.dtype) * layer_output
|
480 |
+
|
481 |
+
# second residual connection
|
482 |
+
layer_output = self.drop_path(layer_output, deterministic=deterministic) + hidden_states
|
483 |
+
|
484 |
+
outputs = (layer_output,)
|
485 |
+
|
486 |
+
if output_attentions:
|
487 |
+
outputs += (self_attention_outputs[1],)
|
488 |
+
|
489 |
+
return outputs
|
490 |
+
|
491 |
+
|
492 |
+
class FlaxBeitLayerCollection(nn.Module):
|
493 |
+
config: BeitConfig
|
494 |
+
window_size: Tuple[int, int]
|
495 |
+
drop_path_rates: List[float]
|
496 |
+
relative_position_bias: Callable[[], jnp.ndarray]
|
497 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
498 |
+
|
499 |
+
def setup(self):
|
500 |
+
self.layers = [
|
501 |
+
FlaxBeitLayer(
|
502 |
+
self.config,
|
503 |
+
window_size=self.window_size if self.config.use_relative_position_bias else None,
|
504 |
+
drop_path_rate=self.drop_path_rates[i],
|
505 |
+
name=str(i),
|
506 |
+
dtype=self.dtype,
|
507 |
+
)
|
508 |
+
for i in range(self.config.num_hidden_layers)
|
509 |
+
]
|
510 |
+
|
511 |
+
def __call__(
|
512 |
+
self,
|
513 |
+
hidden_states,
|
514 |
+
deterministic: bool = True,
|
515 |
+
output_attentions: bool = False,
|
516 |
+
output_hidden_states: bool = False,
|
517 |
+
return_dict: bool = True,
|
518 |
+
):
|
519 |
+
all_attentions = () if output_attentions else None
|
520 |
+
all_hidden_states = () if output_hidden_states else None
|
521 |
+
|
522 |
+
for i, layer in enumerate(self.layers):
|
523 |
+
if output_hidden_states:
|
524 |
+
all_hidden_states += (hidden_states,)
|
525 |
+
relative_position_bias = self.relative_position_bias() if self.relative_position_bias is not None else None
|
526 |
+
layer_outputs = layer(
|
527 |
+
hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions
|
528 |
+
)
|
529 |
+
|
530 |
+
hidden_states = layer_outputs[0]
|
531 |
+
|
532 |
+
if output_attentions:
|
533 |
+
all_attentions += (layer_outputs[1],)
|
534 |
+
|
535 |
+
if output_hidden_states:
|
536 |
+
all_hidden_states += (hidden_states,)
|
537 |
+
|
538 |
+
outputs = (hidden_states,)
|
539 |
+
if not return_dict:
|
540 |
+
return tuple(v for v in outputs if v is not None)
|
541 |
+
|
542 |
+
return FlaxBaseModelOutput(
|
543 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
544 |
+
)
|
545 |
+
|
546 |
+
|
547 |
+
class FlaxBeitEncoder(nn.Module):
|
548 |
+
config: BeitConfig
|
549 |
+
window_size: Tuple[int, int]
|
550 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
551 |
+
|
552 |
+
def setup(self):
|
553 |
+
if self.config.use_shared_relative_position_bias:
|
554 |
+
self.relative_position_bias = FlaxBeitRelativePositionBias(
|
555 |
+
config=self.config, window_size=self.window_size, dtype=self.dtype
|
556 |
+
)
|
557 |
+
|
558 |
+
# stochastic depth decay rule
|
559 |
+
drop_path_rates = list(np.linspace(0, self.config.drop_path_rate, self.config.num_hidden_layers))
|
560 |
+
self.layer = FlaxBeitLayerCollection(
|
561 |
+
self.config,
|
562 |
+
window_size=self.window_size,
|
563 |
+
drop_path_rates=drop_path_rates,
|
564 |
+
relative_position_bias=self.relative_position_bias
|
565 |
+
if self.config.use_shared_relative_position_bias
|
566 |
+
else None,
|
567 |
+
dtype=self.dtype,
|
568 |
+
)
|
569 |
+
|
570 |
+
def __call__(
|
571 |
+
self,
|
572 |
+
hidden_states,
|
573 |
+
deterministic: bool = True,
|
574 |
+
output_attentions: bool = False,
|
575 |
+
output_hidden_states: bool = False,
|
576 |
+
return_dict: bool = True,
|
577 |
+
):
|
578 |
+
return self.layer(
|
579 |
+
hidden_states,
|
580 |
+
deterministic=deterministic,
|
581 |
+
output_attentions=output_attentions,
|
582 |
+
output_hidden_states=output_hidden_states,
|
583 |
+
return_dict=return_dict,
|
584 |
+
)
|
585 |
+
|
586 |
+
|
587 |
+
class FlaxBeitPreTrainedModel(FlaxPreTrainedModel):
|
588 |
+
"""
|
589 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
590 |
+
models.
|
591 |
+
"""
|
592 |
+
|
593 |
+
config_class = BeitConfig
|
594 |
+
base_model_prefix = "beit"
|
595 |
+
main_input_name = "pixel_values"
|
596 |
+
module_class: nn.Module = None
|
597 |
+
|
598 |
+
def __init__(
|
599 |
+
self,
|
600 |
+
config: BeitConfig,
|
601 |
+
input_shape=None,
|
602 |
+
seed: int = 0,
|
603 |
+
dtype: jnp.dtype = jnp.float32,
|
604 |
+
_do_init: bool = True,
|
605 |
+
**kwargs,
|
606 |
+
):
|
607 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
608 |
+
if input_shape is None:
|
609 |
+
input_shape = (1, config.image_size, config.image_size, config.num_channels)
|
610 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
611 |
+
|
612 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
613 |
+
# init input tensors
|
614 |
+
pixel_values = jnp.zeros(input_shape, dtype=self.dtype)
|
615 |
+
|
616 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
617 |
+
dropout_rng, droppath_rng = jax.random.split(dropout_rng)
|
618 |
+
rngs = {"params": params_rng, "dropout": dropout_rng, "droppath": droppath_rng}
|
619 |
+
|
620 |
+
random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"]
|
621 |
+
|
622 |
+
if params is not None:
|
623 |
+
random_params = flatten_dict(unfreeze(random_params))
|
624 |
+
params = flatten_dict(unfreeze(params))
|
625 |
+
for missing_key in self._missing_keys:
|
626 |
+
params[missing_key] = random_params[missing_key]
|
627 |
+
self._missing_keys = set()
|
628 |
+
return freeze(unflatten_dict(params))
|
629 |
+
else:
|
630 |
+
return random_params
|
631 |
+
|
632 |
+
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
633 |
+
def __call__(
|
634 |
+
self,
|
635 |
+
pixel_values,
|
636 |
+
bool_masked_pos=None,
|
637 |
+
params: dict = None,
|
638 |
+
dropout_rng: jax.random.PRNGKey = None,
|
639 |
+
train: bool = False,
|
640 |
+
output_attentions: Optional[bool] = None,
|
641 |
+
output_hidden_states: Optional[bool] = None,
|
642 |
+
return_dict: Optional[bool] = None,
|
643 |
+
):
|
644 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
645 |
+
output_hidden_states = (
|
646 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
647 |
+
)
|
648 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
649 |
+
|
650 |
+
pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
|
651 |
+
# Handle any PRNG if needed
|
652 |
+
rngs = {}
|
653 |
+
if dropout_rng is not None:
|
654 |
+
dropout_rng, droppath_rng = jax.random.split(dropout_rng)
|
655 |
+
rngs["dropout"] = dropout_rng
|
656 |
+
rngs["droppath"] = droppath_rng
|
657 |
+
|
658 |
+
return self.module.apply(
|
659 |
+
{"params": params or self.params},
|
660 |
+
jnp.array(pixel_values, dtype=jnp.float32),
|
661 |
+
bool_masked_pos,
|
662 |
+
not train,
|
663 |
+
output_attentions,
|
664 |
+
output_hidden_states,
|
665 |
+
return_dict,
|
666 |
+
rngs=rngs,
|
667 |
+
)
|
668 |
+
|
669 |
+
|
670 |
+
class FlaxBeitPooler(nn.Module):
|
671 |
+
config: BeitConfig
|
672 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
673 |
+
|
674 |
+
def setup(self):
|
675 |
+
if self.config.use_mean_pooling:
|
676 |
+
self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
677 |
+
|
678 |
+
def __call__(self, hidden_states):
|
679 |
+
if self.config.use_mean_pooling:
|
680 |
+
# Mean pool the final hidden states of the patch tokens
|
681 |
+
patch_tokens = hidden_states[:, 1:, :]
|
682 |
+
pooled_output = self.layernorm(jnp.mean(patch_tokens, axis=1))
|
683 |
+
else:
|
684 |
+
# Pool by simply taking the final hidden state of the [CLS] token
|
685 |
+
pooled_output = hidden_states[:, 0]
|
686 |
+
|
687 |
+
return pooled_output
|
688 |
+
|
689 |
+
|
690 |
+
class FlaxBeitModule(nn.Module):
|
691 |
+
config: BeitConfig
|
692 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
693 |
+
add_pooling_layer: bool = True
|
694 |
+
|
695 |
+
def setup(self):
|
696 |
+
self.embeddings = FlaxBeitEmbeddings(self.config, dtype=self.dtype)
|
697 |
+
self.encoder = FlaxBeitEncoder(
|
698 |
+
self.config, window_size=self.embeddings.patch_embeddings.patch_shape, dtype=self.dtype
|
699 |
+
)
|
700 |
+
if not self.config.use_mean_pooling:
|
701 |
+
self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
702 |
+
self.pooler = FlaxBeitPooler(self.config, dtype=self.dtype) if self.add_pooling_layer else None
|
703 |
+
|
704 |
+
def __call__(
|
705 |
+
self,
|
706 |
+
pixel_values,
|
707 |
+
bool_masked_pos=None,
|
708 |
+
deterministic: bool = True,
|
709 |
+
output_attentions: bool = False,
|
710 |
+
output_hidden_states: bool = False,
|
711 |
+
return_dict: bool = True,
|
712 |
+
):
|
713 |
+
hidden_states = self.embeddings(pixel_values, bool_masked_pos, deterministic=deterministic)
|
714 |
+
|
715 |
+
outputs = self.encoder(
|
716 |
+
hidden_states,
|
717 |
+
deterministic=deterministic,
|
718 |
+
output_attentions=output_attentions,
|
719 |
+
output_hidden_states=output_hidden_states,
|
720 |
+
return_dict=return_dict,
|
721 |
+
)
|
722 |
+
hidden_states = outputs[0]
|
723 |
+
if not self.config.use_mean_pooling:
|
724 |
+
hidden_states = self.layernorm(hidden_states)
|
725 |
+
pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
|
726 |
+
|
727 |
+
if not return_dict:
|
728 |
+
# if pooled is None, don't return it
|
729 |
+
if pooled is None:
|
730 |
+
return (hidden_states,) + outputs[1:]
|
731 |
+
return (hidden_states, pooled) + outputs[1:]
|
732 |
+
|
733 |
+
return FlaxBeitModelOutputWithPooling(
|
734 |
+
last_hidden_state=hidden_states,
|
735 |
+
pooler_output=pooled,
|
736 |
+
hidden_states=outputs.hidden_states,
|
737 |
+
attentions=outputs.attentions,
|
738 |
+
)
|
739 |
+
|
740 |
+
|
741 |
+
@add_start_docstrings(
|
742 |
+
"The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
|
743 |
+
BEIT_START_DOCSTRING,
|
744 |
+
)
|
745 |
+
class FlaxBeitModel(FlaxBeitPreTrainedModel):
|
746 |
+
module_class = FlaxBeitModule
|
747 |
+
|
748 |
+
|
749 |
+
FLAX_BEIT_MODEL_DOCSTRING = """
|
750 |
+
Returns:
|
751 |
+
|
752 |
+
Examples:
|
753 |
+
|
754 |
+
```python
|
755 |
+
>>> from transformers import AutoImageProcessor, FlaxBeitModel
|
756 |
+
>>> from PIL import Image
|
757 |
+
>>> import requests
|
758 |
+
|
759 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
760 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
761 |
+
|
762 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
|
763 |
+
>>> model = FlaxBeitModel.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
|
764 |
+
|
765 |
+
>>> inputs = image_processor(images=image, return_tensors="np")
|
766 |
+
>>> outputs = model(**inputs)
|
767 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
768 |
+
```
|
769 |
+
"""
|
770 |
+
|
771 |
+
overwrite_call_docstring(FlaxBeitModel, FLAX_BEIT_MODEL_DOCSTRING)
|
772 |
+
append_replace_return_docstrings(FlaxBeitModel, output_type=FlaxBeitModelOutputWithPooling, config_class=BeitConfig)
|
773 |
+
|
774 |
+
|
775 |
+
class FlaxBeitForMaskedImageModelingModule(nn.Module):
|
776 |
+
config: BeitConfig
|
777 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
778 |
+
|
779 |
+
def setup(self):
|
780 |
+
self.beit = FlaxBeitModule(self.config, add_pooling_layer=False, dtype=self.dtype)
|
781 |
+
|
782 |
+
# Classifier head
|
783 |
+
self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
784 |
+
self.lm_head = nn.Dense(
|
785 |
+
self.config.vocab_size,
|
786 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
787 |
+
dtype=self.dtype,
|
788 |
+
)
|
789 |
+
|
790 |
+
def __call__(
|
791 |
+
self,
|
792 |
+
pixel_values=None,
|
793 |
+
bool_masked_pos=None,
|
794 |
+
deterministic: bool = True,
|
795 |
+
output_attentions=None,
|
796 |
+
output_hidden_states=None,
|
797 |
+
return_dict=None,
|
798 |
+
):
|
799 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
800 |
+
|
801 |
+
outputs = self.beit(
|
802 |
+
pixel_values,
|
803 |
+
bool_masked_pos,
|
804 |
+
deterministic=deterministic,
|
805 |
+
output_attentions=output_attentions,
|
806 |
+
output_hidden_states=output_hidden_states,
|
807 |
+
return_dict=return_dict,
|
808 |
+
)
|
809 |
+
|
810 |
+
sequence_output = outputs[0]
|
811 |
+
sequence_output = self.layernorm(sequence_output)
|
812 |
+
prediction_scores = self.lm_head(sequence_output[:, 1:])
|
813 |
+
|
814 |
+
if not return_dict:
|
815 |
+
output = (prediction_scores,) + outputs[2:]
|
816 |
+
return output
|
817 |
+
|
818 |
+
return FlaxMaskedLMOutput(
|
819 |
+
logits=prediction_scores,
|
820 |
+
hidden_states=outputs.hidden_states,
|
821 |
+
attentions=outputs.attentions,
|
822 |
+
)
|
823 |
+
|
824 |
+
|
825 |
+
@add_start_docstrings(
|
826 |
+
"Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).",
|
827 |
+
BEIT_START_DOCSTRING,
|
828 |
+
)
|
829 |
+
class FlaxBeitForMaskedImageModeling(FlaxBeitPreTrainedModel):
|
830 |
+
module_class = FlaxBeitForMaskedImageModelingModule
|
831 |
+
|
832 |
+
|
833 |
+
FLAX_BEIT_MLM_DOCSTRING = """
|
834 |
+
bool_masked_pos (`numpy.ndarray` of shape `(batch_size, num_patches)`):
|
835 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
836 |
+
|
837 |
+
Returns:
|
838 |
+
|
839 |
+
Examples:
|
840 |
+
|
841 |
+
```python
|
842 |
+
>>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling
|
843 |
+
>>> from PIL import Image
|
844 |
+
>>> import requests
|
845 |
+
|
846 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
847 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
848 |
+
|
849 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
|
850 |
+
>>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
|
851 |
+
|
852 |
+
>>> inputs = image_processor(images=image, return_tensors="np")
|
853 |
+
>>> outputs = model(**inputs)
|
854 |
+
>>> logits = outputs.logits
|
855 |
+
```
|
856 |
+
"""
|
857 |
+
|
858 |
+
overwrite_call_docstring(FlaxBeitForMaskedImageModeling, FLAX_BEIT_MLM_DOCSTRING)
|
859 |
+
append_replace_return_docstrings(
|
860 |
+
FlaxBeitForMaskedImageModeling, output_type=FlaxMaskedLMOutput, config_class=BeitConfig
|
861 |
+
)
|
862 |
+
|
863 |
+
|
864 |
+
class FlaxBeitForImageClassificationModule(nn.Module):
|
865 |
+
config: BeitConfig
|
866 |
+
dtype: jnp.dtype = jnp.float32
|
867 |
+
|
868 |
+
def setup(self):
|
869 |
+
self.beit = FlaxBeitModule(config=self.config, dtype=self.dtype, add_pooling_layer=True)
|
870 |
+
self.classifier = nn.Dense(
|
871 |
+
self.config.num_labels,
|
872 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
873 |
+
dtype=self.dtype,
|
874 |
+
)
|
875 |
+
|
876 |
+
def __call__(
|
877 |
+
self,
|
878 |
+
pixel_values=None,
|
879 |
+
bool_masked_pos=None,
|
880 |
+
deterministic: bool = True,
|
881 |
+
output_attentions=None,
|
882 |
+
output_hidden_states=None,
|
883 |
+
return_dict=None,
|
884 |
+
):
|
885 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
886 |
+
|
887 |
+
outputs = self.beit(
|
888 |
+
pixel_values,
|
889 |
+
deterministic=deterministic,
|
890 |
+
output_attentions=output_attentions,
|
891 |
+
output_hidden_states=output_hidden_states,
|
892 |
+
return_dict=return_dict,
|
893 |
+
)
|
894 |
+
|
895 |
+
pooled_output = outputs[1]
|
896 |
+
logits = self.classifier(pooled_output)
|
897 |
+
|
898 |
+
if not return_dict:
|
899 |
+
output = (logits,) + outputs[2:]
|
900 |
+
return output
|
901 |
+
|
902 |
+
return FlaxSequenceClassifierOutput(
|
903 |
+
logits=logits,
|
904 |
+
hidden_states=outputs.hidden_states,
|
905 |
+
attentions=outputs.attentions,
|
906 |
+
)
|
907 |
+
|
908 |
+
|
909 |
+
@add_start_docstrings(
|
910 |
+
"""
|
911 |
+
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
|
912 |
+
hidden states of the patch tokens) e.g. for ImageNet.
|
913 |
+
""",
|
914 |
+
BEIT_START_DOCSTRING,
|
915 |
+
)
|
916 |
+
class FlaxBeitForImageClassification(FlaxBeitPreTrainedModel):
|
917 |
+
module_class = FlaxBeitForImageClassificationModule
|
918 |
+
|
919 |
+
|
920 |
+
FLAX_BEIT_CLASSIF_DOCSTRING = """
|
921 |
+
Returns:
|
922 |
+
|
923 |
+
Example:
|
924 |
+
|
925 |
+
```python
|
926 |
+
>>> from transformers import AutoImageProcessor, FlaxBeitForImageClassification
|
927 |
+
>>> from PIL import Image
|
928 |
+
>>> import requests
|
929 |
+
|
930 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
931 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
932 |
+
|
933 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224")
|
934 |
+
>>> model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")
|
935 |
+
|
936 |
+
>>> inputs = image_processor(images=image, return_tensors="np")
|
937 |
+
>>> outputs = model(**inputs)
|
938 |
+
>>> logits = outputs.logits
|
939 |
+
>>> # model predicts one of the 1000 ImageNet classes
|
940 |
+
>>> predicted_class_idx = logits.argmax(-1).item()
|
941 |
+
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
|
942 |
+
```
|
943 |
+
"""
|
944 |
+
|
945 |
+
overwrite_call_docstring(FlaxBeitForImageClassification, FLAX_BEIT_CLASSIF_DOCSTRING)
|
946 |
+
append_replace_return_docstrings(
|
947 |
+
FlaxBeitForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=BeitConfig
|
948 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/bert/__init__.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_flax_available,
|
21 |
+
is_tensorflow_text_available,
|
22 |
+
is_tf_available,
|
23 |
+
is_tokenizers_available,
|
24 |
+
is_torch_available,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
_import_structure = {
|
29 |
+
"configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"],
|
30 |
+
"tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"],
|
31 |
+
}
|
32 |
+
|
33 |
+
try:
|
34 |
+
if not is_tokenizers_available():
|
35 |
+
raise OptionalDependencyNotAvailable()
|
36 |
+
except OptionalDependencyNotAvailable:
|
37 |
+
pass
|
38 |
+
else:
|
39 |
+
_import_structure["tokenization_bert_fast"] = ["BertTokenizerFast"]
|
40 |
+
|
41 |
+
try:
|
42 |
+
if not is_torch_available():
|
43 |
+
raise OptionalDependencyNotAvailable()
|
44 |
+
except OptionalDependencyNotAvailable:
|
45 |
+
pass
|
46 |
+
else:
|
47 |
+
_import_structure["modeling_bert"] = [
|
48 |
+
"BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
49 |
+
"BertForMaskedLM",
|
50 |
+
"BertForMultipleChoice",
|
51 |
+
"BertForNextSentencePrediction",
|
52 |
+
"BertForPreTraining",
|
53 |
+
"BertForQuestionAnswering",
|
54 |
+
"BertForSequenceClassification",
|
55 |
+
"BertForTokenClassification",
|
56 |
+
"BertLayer",
|
57 |
+
"BertLMHeadModel",
|
58 |
+
"BertModel",
|
59 |
+
"BertPreTrainedModel",
|
60 |
+
"load_tf_weights_in_bert",
|
61 |
+
]
|
62 |
+
|
63 |
+
try:
|
64 |
+
if not is_tf_available():
|
65 |
+
raise OptionalDependencyNotAvailable()
|
66 |
+
except OptionalDependencyNotAvailable:
|
67 |
+
pass
|
68 |
+
else:
|
69 |
+
_import_structure["modeling_tf_bert"] = [
|
70 |
+
"TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
71 |
+
"TFBertEmbeddings",
|
72 |
+
"TFBertForMaskedLM",
|
73 |
+
"TFBertForMultipleChoice",
|
74 |
+
"TFBertForNextSentencePrediction",
|
75 |
+
"TFBertForPreTraining",
|
76 |
+
"TFBertForQuestionAnswering",
|
77 |
+
"TFBertForSequenceClassification",
|
78 |
+
"TFBertForTokenClassification",
|
79 |
+
"TFBertLMHeadModel",
|
80 |
+
"TFBertMainLayer",
|
81 |
+
"TFBertModel",
|
82 |
+
"TFBertPreTrainedModel",
|
83 |
+
]
|
84 |
+
try:
|
85 |
+
if not is_tensorflow_text_available():
|
86 |
+
raise OptionalDependencyNotAvailable()
|
87 |
+
except OptionalDependencyNotAvailable:
|
88 |
+
pass
|
89 |
+
else:
|
90 |
+
_import_structure["tokenization_bert_tf"] = ["TFBertTokenizer"]
|
91 |
+
|
92 |
+
try:
|
93 |
+
if not is_flax_available():
|
94 |
+
raise OptionalDependencyNotAvailable()
|
95 |
+
except OptionalDependencyNotAvailable:
|
96 |
+
pass
|
97 |
+
else:
|
98 |
+
_import_structure["modeling_flax_bert"] = [
|
99 |
+
"FlaxBertForCausalLM",
|
100 |
+
"FlaxBertForMaskedLM",
|
101 |
+
"FlaxBertForMultipleChoice",
|
102 |
+
"FlaxBertForNextSentencePrediction",
|
103 |
+
"FlaxBertForPreTraining",
|
104 |
+
"FlaxBertForQuestionAnswering",
|
105 |
+
"FlaxBertForSequenceClassification",
|
106 |
+
"FlaxBertForTokenClassification",
|
107 |
+
"FlaxBertModel",
|
108 |
+
"FlaxBertPreTrainedModel",
|
109 |
+
]
|
110 |
+
|
111 |
+
if TYPE_CHECKING:
|
112 |
+
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
|
113 |
+
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
|
114 |
+
|
115 |
+
try:
|
116 |
+
if not is_tokenizers_available():
|
117 |
+
raise OptionalDependencyNotAvailable()
|
118 |
+
except OptionalDependencyNotAvailable:
|
119 |
+
pass
|
120 |
+
else:
|
121 |
+
from .tokenization_bert_fast import BertTokenizerFast
|
122 |
+
|
123 |
+
try:
|
124 |
+
if not is_torch_available():
|
125 |
+
raise OptionalDependencyNotAvailable()
|
126 |
+
except OptionalDependencyNotAvailable:
|
127 |
+
pass
|
128 |
+
else:
|
129 |
+
from .modeling_bert import (
|
130 |
+
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
131 |
+
BertForMaskedLM,
|
132 |
+
BertForMultipleChoice,
|
133 |
+
BertForNextSentencePrediction,
|
134 |
+
BertForPreTraining,
|
135 |
+
BertForQuestionAnswering,
|
136 |
+
BertForSequenceClassification,
|
137 |
+
BertForTokenClassification,
|
138 |
+
BertLayer,
|
139 |
+
BertLMHeadModel,
|
140 |
+
BertModel,
|
141 |
+
BertPreTrainedModel,
|
142 |
+
load_tf_weights_in_bert,
|
143 |
+
)
|
144 |
+
|
145 |
+
try:
|
146 |
+
if not is_tf_available():
|
147 |
+
raise OptionalDependencyNotAvailable()
|
148 |
+
except OptionalDependencyNotAvailable:
|
149 |
+
pass
|
150 |
+
else:
|
151 |
+
from .modeling_tf_bert import (
|
152 |
+
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
153 |
+
TFBertEmbeddings,
|
154 |
+
TFBertForMaskedLM,
|
155 |
+
TFBertForMultipleChoice,
|
156 |
+
TFBertForNextSentencePrediction,
|
157 |
+
TFBertForPreTraining,
|
158 |
+
TFBertForQuestionAnswering,
|
159 |
+
TFBertForSequenceClassification,
|
160 |
+
TFBertForTokenClassification,
|
161 |
+
TFBertLMHeadModel,
|
162 |
+
TFBertMainLayer,
|
163 |
+
TFBertModel,
|
164 |
+
TFBertPreTrainedModel,
|
165 |
+
)
|
166 |
+
|
167 |
+
try:
|
168 |
+
if not is_tensorflow_text_available():
|
169 |
+
raise OptionalDependencyNotAvailable()
|
170 |
+
except OptionalDependencyNotAvailable:
|
171 |
+
pass
|
172 |
+
else:
|
173 |
+
from .tokenization_bert_tf import TFBertTokenizer
|
174 |
+
|
175 |
+
try:
|
176 |
+
if not is_flax_available():
|
177 |
+
raise OptionalDependencyNotAvailable()
|
178 |
+
except OptionalDependencyNotAvailable:
|
179 |
+
pass
|
180 |
+
else:
|
181 |
+
from .modeling_flax_bert import (
|
182 |
+
FlaxBertForCausalLM,
|
183 |
+
FlaxBertForMaskedLM,
|
184 |
+
FlaxBertForMultipleChoice,
|
185 |
+
FlaxBertForNextSentencePrediction,
|
186 |
+
FlaxBertForPreTraining,
|
187 |
+
FlaxBertForQuestionAnswering,
|
188 |
+
FlaxBertForSequenceClassification,
|
189 |
+
FlaxBertForTokenClassification,
|
190 |
+
FlaxBertModel,
|
191 |
+
FlaxBertPreTrainedModel,
|
192 |
+
)
|
193 |
+
|
194 |
+
else:
|
195 |
+
import sys
|
196 |
+
|
197 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.92 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/configuration_bert.cpython-310.pyc
ADDED
Binary file (6.58 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_original_tf2_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (5.6 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (1.42 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_pytorch_checkpoint_to_original_tf.cpython-310.pyc
ADDED
Binary file (3.73 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/convert_bert_token_dropping_original_tf2_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (4.86 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_bert.cpython-310.pyc
ADDED
Binary file (54.8 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_flax_bert.cpython-310.pyc
ADDED
Binary file (42.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/modeling_tf_bert.cpython-310.pyc
ADDED
Binary file (61.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert.cpython-310.pyc
ADDED
Binary file (17 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert_fast.cpython-310.pyc
ADDED
Binary file (6.76 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bert/__pycache__/tokenization_bert_tf.cpython-310.pyc
ADDED
Binary file (9.28 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/bert/convert_bert_original_tf2_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
This script can be used to convert a head-less TF2.x Bert model to PyTorch, as published on the official (now
|
17 |
+
deprecated) GitHub: https://github.com/tensorflow/models/tree/v2.3.0/official/nlp/bert
|
18 |
+
|
19 |
+
TF2.x uses different variable names from the original BERT (TF 1.4) implementation. The script re-maps the TF2.x Bert
|
20 |
+
weight names to the original names, so the model can be imported with Huggingface/transformer.
|
21 |
+
|
22 |
+
You may adapt this script to include classification/MLM/NSP/etc. heads.
|
23 |
+
|
24 |
+
Note: This script is only working with an older version of the TensorFlow models repository (<= v2.3.0).
|
25 |
+
Models trained with never versions are not compatible with this script.
|
26 |
+
"""
|
27 |
+
import argparse
|
28 |
+
import os
|
29 |
+
import re
|
30 |
+
|
31 |
+
import tensorflow as tf
|
32 |
+
import torch
|
33 |
+
|
34 |
+
from transformers import BertConfig, BertModel
|
35 |
+
from transformers.utils import logging
|
36 |
+
|
37 |
+
|
38 |
+
logging.set_verbosity_info()
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
|
42 |
+
def load_tf2_weights_in_bert(model, tf_checkpoint_path, config):
|
43 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
44 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
45 |
+
# Load weights from TF model
|
46 |
+
init_vars = tf.train.list_variables(tf_path)
|
47 |
+
names = []
|
48 |
+
arrays = []
|
49 |
+
layer_depth = []
|
50 |
+
for full_name, shape in init_vars:
|
51 |
+
# logger.info(f"Loading TF weight {name} with shape {shape}")
|
52 |
+
name = full_name.split("/")
|
53 |
+
if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]:
|
54 |
+
logger.info(f"Skipping non-model layer {full_name}")
|
55 |
+
continue
|
56 |
+
if "optimizer" in full_name:
|
57 |
+
logger.info(f"Skipping optimization layer {full_name}")
|
58 |
+
continue
|
59 |
+
if name[0] == "model":
|
60 |
+
# ignore initial 'model'
|
61 |
+
name = name[1:]
|
62 |
+
# figure out how many levels deep the name is
|
63 |
+
depth = 0
|
64 |
+
for _name in name:
|
65 |
+
if _name.startswith("layer_with_weights"):
|
66 |
+
depth += 1
|
67 |
+
else:
|
68 |
+
break
|
69 |
+
layer_depth.append(depth)
|
70 |
+
# read data
|
71 |
+
array = tf.train.load_variable(tf_path, full_name)
|
72 |
+
names.append("/".join(name))
|
73 |
+
arrays.append(array)
|
74 |
+
logger.info(f"Read a total of {len(arrays):,} layers")
|
75 |
+
|
76 |
+
# Sanity check
|
77 |
+
if len(set(layer_depth)) != 1:
|
78 |
+
raise ValueError(f"Found layer names with different depths (layer depth {list(set(layer_depth))})")
|
79 |
+
layer_depth = list(set(layer_depth))[0]
|
80 |
+
if layer_depth != 1:
|
81 |
+
raise ValueError(
|
82 |
+
"The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP"
|
83 |
+
" heads."
|
84 |
+
)
|
85 |
+
|
86 |
+
# convert layers
|
87 |
+
logger.info("Converting weights...")
|
88 |
+
for full_name, array in zip(names, arrays):
|
89 |
+
name = full_name.split("/")
|
90 |
+
pointer = model
|
91 |
+
trace = []
|
92 |
+
for i, m_name in enumerate(name):
|
93 |
+
if m_name == ".ATTRIBUTES":
|
94 |
+
# variable names end with .ATTRIBUTES/VARIABLE_VALUE
|
95 |
+
break
|
96 |
+
if m_name.startswith("layer_with_weights"):
|
97 |
+
layer_num = int(m_name.split("-")[-1])
|
98 |
+
if layer_num <= 2:
|
99 |
+
# embedding layers
|
100 |
+
# layer_num 0: word_embeddings
|
101 |
+
# layer_num 1: position_embeddings
|
102 |
+
# layer_num 2: token_type_embeddings
|
103 |
+
continue
|
104 |
+
elif layer_num == 3:
|
105 |
+
# embedding LayerNorm
|
106 |
+
trace.extend(["embeddings", "LayerNorm"])
|
107 |
+
pointer = getattr(pointer, "embeddings")
|
108 |
+
pointer = getattr(pointer, "LayerNorm")
|
109 |
+
elif layer_num > 3 and layer_num < config.num_hidden_layers + 4:
|
110 |
+
# encoder layers
|
111 |
+
trace.extend(["encoder", "layer", str(layer_num - 4)])
|
112 |
+
pointer = getattr(pointer, "encoder")
|
113 |
+
pointer = getattr(pointer, "layer")
|
114 |
+
pointer = pointer[layer_num - 4]
|
115 |
+
elif layer_num == config.num_hidden_layers + 4:
|
116 |
+
# pooler layer
|
117 |
+
trace.extend(["pooler", "dense"])
|
118 |
+
pointer = getattr(pointer, "pooler")
|
119 |
+
pointer = getattr(pointer, "dense")
|
120 |
+
elif m_name == "embeddings":
|
121 |
+
trace.append("embeddings")
|
122 |
+
pointer = getattr(pointer, "embeddings")
|
123 |
+
if layer_num == 0:
|
124 |
+
trace.append("word_embeddings")
|
125 |
+
pointer = getattr(pointer, "word_embeddings")
|
126 |
+
elif layer_num == 1:
|
127 |
+
trace.append("position_embeddings")
|
128 |
+
pointer = getattr(pointer, "position_embeddings")
|
129 |
+
elif layer_num == 2:
|
130 |
+
trace.append("token_type_embeddings")
|
131 |
+
pointer = getattr(pointer, "token_type_embeddings")
|
132 |
+
else:
|
133 |
+
raise ValueError(f"Unknown embedding layer with name {full_name}")
|
134 |
+
trace.append("weight")
|
135 |
+
pointer = getattr(pointer, "weight")
|
136 |
+
elif m_name == "_attention_layer":
|
137 |
+
# self-attention layer
|
138 |
+
trace.extend(["attention", "self"])
|
139 |
+
pointer = getattr(pointer, "attention")
|
140 |
+
pointer = getattr(pointer, "self")
|
141 |
+
elif m_name == "_attention_layer_norm":
|
142 |
+
# output attention norm
|
143 |
+
trace.extend(["attention", "output", "LayerNorm"])
|
144 |
+
pointer = getattr(pointer, "attention")
|
145 |
+
pointer = getattr(pointer, "output")
|
146 |
+
pointer = getattr(pointer, "LayerNorm")
|
147 |
+
elif m_name == "_attention_output_dense":
|
148 |
+
# output attention dense
|
149 |
+
trace.extend(["attention", "output", "dense"])
|
150 |
+
pointer = getattr(pointer, "attention")
|
151 |
+
pointer = getattr(pointer, "output")
|
152 |
+
pointer = getattr(pointer, "dense")
|
153 |
+
elif m_name == "_output_dense":
|
154 |
+
# output dense
|
155 |
+
trace.extend(["output", "dense"])
|
156 |
+
pointer = getattr(pointer, "output")
|
157 |
+
pointer = getattr(pointer, "dense")
|
158 |
+
elif m_name == "_output_layer_norm":
|
159 |
+
# output dense
|
160 |
+
trace.extend(["output", "LayerNorm"])
|
161 |
+
pointer = getattr(pointer, "output")
|
162 |
+
pointer = getattr(pointer, "LayerNorm")
|
163 |
+
elif m_name == "_key_dense":
|
164 |
+
# attention key
|
165 |
+
trace.append("key")
|
166 |
+
pointer = getattr(pointer, "key")
|
167 |
+
elif m_name == "_query_dense":
|
168 |
+
# attention query
|
169 |
+
trace.append("query")
|
170 |
+
pointer = getattr(pointer, "query")
|
171 |
+
elif m_name == "_value_dense":
|
172 |
+
# attention value
|
173 |
+
trace.append("value")
|
174 |
+
pointer = getattr(pointer, "value")
|
175 |
+
elif m_name == "_intermediate_dense":
|
176 |
+
# attention intermediate dense
|
177 |
+
trace.extend(["intermediate", "dense"])
|
178 |
+
pointer = getattr(pointer, "intermediate")
|
179 |
+
pointer = getattr(pointer, "dense")
|
180 |
+
elif m_name == "_output_layer_norm":
|
181 |
+
# output layer norm
|
182 |
+
trace.append("output")
|
183 |
+
pointer = getattr(pointer, "output")
|
184 |
+
# weights & biases
|
185 |
+
elif m_name in ["bias", "beta"]:
|
186 |
+
trace.append("bias")
|
187 |
+
pointer = getattr(pointer, "bias")
|
188 |
+
elif m_name in ["kernel", "gamma"]:
|
189 |
+
trace.append("weight")
|
190 |
+
pointer = getattr(pointer, "weight")
|
191 |
+
else:
|
192 |
+
logger.warning(f"Ignored {m_name}")
|
193 |
+
# for certain layers reshape is necessary
|
194 |
+
trace = ".".join(trace)
|
195 |
+
if re.match(r"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)", trace) or re.match(
|
196 |
+
r"(\S+)\.attention\.output\.dense\.weight", trace
|
197 |
+
):
|
198 |
+
array = array.reshape(pointer.data.shape)
|
199 |
+
if "kernel" in full_name:
|
200 |
+
array = array.transpose()
|
201 |
+
if pointer.shape == array.shape:
|
202 |
+
pointer.data = torch.from_numpy(array)
|
203 |
+
else:
|
204 |
+
raise ValueError(
|
205 |
+
f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:"
|
206 |
+
f" {array.shape}"
|
207 |
+
)
|
208 |
+
logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}")
|
209 |
+
return model
|
210 |
+
|
211 |
+
|
212 |
+
def convert_tf2_checkpoint_to_pytorch(tf_checkpoint_path, config_path, pytorch_dump_path):
|
213 |
+
# Instantiate model
|
214 |
+
logger.info(f"Loading model based on config from {config_path}...")
|
215 |
+
config = BertConfig.from_json_file(config_path)
|
216 |
+
model = BertModel(config)
|
217 |
+
|
218 |
+
# Load weights from checkpoint
|
219 |
+
logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}...")
|
220 |
+
load_tf2_weights_in_bert(model, tf_checkpoint_path, config)
|
221 |
+
|
222 |
+
# Save pytorch-model
|
223 |
+
logger.info(f"Saving PyTorch model to {pytorch_dump_path}...")
|
224 |
+
torch.save(model.state_dict(), pytorch_dump_path)
|
225 |
+
|
226 |
+
|
227 |
+
if __name__ == "__main__":
|
228 |
+
parser = argparse.ArgumentParser()
|
229 |
+
parser.add_argument(
|
230 |
+
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path."
|
231 |
+
)
|
232 |
+
parser.add_argument(
|
233 |
+
"--bert_config_file",
|
234 |
+
type=str,
|
235 |
+
required=True,
|
236 |
+
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
|
237 |
+
)
|
238 |
+
parser.add_argument(
|
239 |
+
"--pytorch_dump_path",
|
240 |
+
type=str,
|
241 |
+
required=True,
|
242 |
+
help="Path to the output PyTorch model (must include filename).",
|
243 |
+
)
|
244 |
+
args = parser.parse_args()
|
245 |
+
convert_tf2_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
|
venv/lib/python3.10/site-packages/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert BERT checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logging.set_verbosity_info()
|
27 |
+
|
28 |
+
|
29 |
+
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
|
30 |
+
# Initialise PyTorch model
|
31 |
+
config = BertConfig.from_json_file(bert_config_file)
|
32 |
+
print(f"Building PyTorch model from configuration: {config}")
|
33 |
+
model = BertForPreTraining(config)
|
34 |
+
|
35 |
+
# Load weights from tf checkpoint
|
36 |
+
load_tf_weights_in_bert(model, config, tf_checkpoint_path)
|
37 |
+
|
38 |
+
# Save pytorch-model
|
39 |
+
print(f"Save PyTorch model to {pytorch_dump_path}")
|
40 |
+
torch.save(model.state_dict(), pytorch_dump_path)
|
41 |
+
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
parser = argparse.ArgumentParser()
|
45 |
+
# Required parameters
|
46 |
+
parser.add_argument(
|
47 |
+
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
48 |
+
)
|
49 |
+
parser.add_argument(
|
50 |
+
"--bert_config_file",
|
51 |
+
default=None,
|
52 |
+
type=str,
|
53 |
+
required=True,
|
54 |
+
help=(
|
55 |
+
"The config json file corresponding to the pre-trained BERT model. \n"
|
56 |
+
"This specifies the model architecture."
|
57 |
+
),
|
58 |
+
)
|
59 |
+
parser.add_argument(
|
60 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
61 |
+
)
|
62 |
+
args = parser.parse_args()
|
63 |
+
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
|
venv/lib/python3.10/site-packages/transformers/models/bert/convert_bert_token_dropping_original_tf2_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
This script converts a lm-head checkpoint from the "Token Dropping" implementation into a PyTorch-compatible BERT
|
17 |
+
model. The official implementation of "Token Dropping" can be found in the TensorFlow Models repository:
|
18 |
+
|
19 |
+
https://github.com/tensorflow/models/tree/master/official/projects/token_dropping
|
20 |
+
"""
|
21 |
+
import argparse
|
22 |
+
|
23 |
+
import tensorflow as tf
|
24 |
+
import torch
|
25 |
+
|
26 |
+
from transformers import BertConfig, BertForMaskedLM
|
27 |
+
from transformers.models.bert.modeling_bert import (
|
28 |
+
BertIntermediate,
|
29 |
+
BertLayer,
|
30 |
+
BertOutput,
|
31 |
+
BertPooler,
|
32 |
+
BertSelfAttention,
|
33 |
+
BertSelfOutput,
|
34 |
+
)
|
35 |
+
from transformers.utils import logging
|
36 |
+
|
37 |
+
|
38 |
+
logging.set_verbosity_info()
|
39 |
+
|
40 |
+
|
41 |
+
def convert_checkpoint_to_pytorch(tf_checkpoint_path: str, config_path: str, pytorch_dump_path: str):
|
42 |
+
def get_masked_lm_array(name: str):
|
43 |
+
full_name = f"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"
|
44 |
+
array = tf.train.load_variable(tf_checkpoint_path, full_name)
|
45 |
+
|
46 |
+
if "kernel" in name:
|
47 |
+
array = array.transpose()
|
48 |
+
|
49 |
+
return torch.from_numpy(array)
|
50 |
+
|
51 |
+
def get_encoder_array(name: str):
|
52 |
+
full_name = f"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"
|
53 |
+
array = tf.train.load_variable(tf_checkpoint_path, full_name)
|
54 |
+
|
55 |
+
if "kernel" in name:
|
56 |
+
array = array.transpose()
|
57 |
+
|
58 |
+
return torch.from_numpy(array)
|
59 |
+
|
60 |
+
def get_encoder_layer_array(layer_index: int, name: str):
|
61 |
+
full_name = f"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"
|
62 |
+
array = tf.train.load_variable(tf_checkpoint_path, full_name)
|
63 |
+
|
64 |
+
if "kernel" in name:
|
65 |
+
array = array.transpose()
|
66 |
+
|
67 |
+
return torch.from_numpy(array)
|
68 |
+
|
69 |
+
def get_encoder_attention_layer_array(layer_index: int, name: str, orginal_shape):
|
70 |
+
full_name = f"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"
|
71 |
+
array = tf.train.load_variable(tf_checkpoint_path, full_name)
|
72 |
+
array = array.reshape(orginal_shape)
|
73 |
+
|
74 |
+
if "kernel" in name:
|
75 |
+
array = array.transpose()
|
76 |
+
|
77 |
+
return torch.from_numpy(array)
|
78 |
+
|
79 |
+
print(f"Loading model based on config from {config_path}...")
|
80 |
+
config = BertConfig.from_json_file(config_path)
|
81 |
+
model = BertForMaskedLM(config)
|
82 |
+
|
83 |
+
# Layers
|
84 |
+
for layer_index in range(0, config.num_hidden_layers):
|
85 |
+
layer: BertLayer = model.bert.encoder.layer[layer_index]
|
86 |
+
|
87 |
+
# Self-attention
|
88 |
+
self_attn: BertSelfAttention = layer.attention.self
|
89 |
+
|
90 |
+
self_attn.query.weight.data = get_encoder_attention_layer_array(
|
91 |
+
layer_index, "_query_dense/kernel", self_attn.query.weight.data.shape
|
92 |
+
)
|
93 |
+
self_attn.query.bias.data = get_encoder_attention_layer_array(
|
94 |
+
layer_index, "_query_dense/bias", self_attn.query.bias.data.shape
|
95 |
+
)
|
96 |
+
self_attn.key.weight.data = get_encoder_attention_layer_array(
|
97 |
+
layer_index, "_key_dense/kernel", self_attn.key.weight.data.shape
|
98 |
+
)
|
99 |
+
self_attn.key.bias.data = get_encoder_attention_layer_array(
|
100 |
+
layer_index, "_key_dense/bias", self_attn.key.bias.data.shape
|
101 |
+
)
|
102 |
+
self_attn.value.weight.data = get_encoder_attention_layer_array(
|
103 |
+
layer_index, "_value_dense/kernel", self_attn.value.weight.data.shape
|
104 |
+
)
|
105 |
+
self_attn.value.bias.data = get_encoder_attention_layer_array(
|
106 |
+
layer_index, "_value_dense/bias", self_attn.value.bias.data.shape
|
107 |
+
)
|
108 |
+
|
109 |
+
# Self-attention Output
|
110 |
+
self_output: BertSelfOutput = layer.attention.output
|
111 |
+
|
112 |
+
self_output.dense.weight.data = get_encoder_attention_layer_array(
|
113 |
+
layer_index, "_output_dense/kernel", self_output.dense.weight.data.shape
|
114 |
+
)
|
115 |
+
self_output.dense.bias.data = get_encoder_attention_layer_array(
|
116 |
+
layer_index, "_output_dense/bias", self_output.dense.bias.data.shape
|
117 |
+
)
|
118 |
+
|
119 |
+
self_output.LayerNorm.weight.data = get_encoder_layer_array(layer_index, "_attention_layer_norm/gamma")
|
120 |
+
self_output.LayerNorm.bias.data = get_encoder_layer_array(layer_index, "_attention_layer_norm/beta")
|
121 |
+
|
122 |
+
# Intermediate
|
123 |
+
intermediate: BertIntermediate = layer.intermediate
|
124 |
+
|
125 |
+
intermediate.dense.weight.data = get_encoder_layer_array(layer_index, "_intermediate_dense/kernel")
|
126 |
+
intermediate.dense.bias.data = get_encoder_layer_array(layer_index, "_intermediate_dense/bias")
|
127 |
+
|
128 |
+
# Output
|
129 |
+
bert_output: BertOutput = layer.output
|
130 |
+
|
131 |
+
bert_output.dense.weight.data = get_encoder_layer_array(layer_index, "_output_dense/kernel")
|
132 |
+
bert_output.dense.bias.data = get_encoder_layer_array(layer_index, "_output_dense/bias")
|
133 |
+
|
134 |
+
bert_output.LayerNorm.weight.data = get_encoder_layer_array(layer_index, "_output_layer_norm/gamma")
|
135 |
+
bert_output.LayerNorm.bias.data = get_encoder_layer_array(layer_index, "_output_layer_norm/beta")
|
136 |
+
|
137 |
+
# Embeddings
|
138 |
+
model.bert.embeddings.position_embeddings.weight.data = get_encoder_array("_position_embedding_layer/embeddings")
|
139 |
+
model.bert.embeddings.token_type_embeddings.weight.data = get_encoder_array("_type_embedding_layer/embeddings")
|
140 |
+
model.bert.embeddings.LayerNorm.weight.data = get_encoder_array("_embedding_norm_layer/gamma")
|
141 |
+
model.bert.embeddings.LayerNorm.bias.data = get_encoder_array("_embedding_norm_layer/beta")
|
142 |
+
|
143 |
+
# LM Head
|
144 |
+
lm_head = model.cls.predictions.transform
|
145 |
+
|
146 |
+
lm_head.dense.weight.data = get_masked_lm_array("dense/kernel")
|
147 |
+
lm_head.dense.bias.data = get_masked_lm_array("dense/bias")
|
148 |
+
|
149 |
+
lm_head.LayerNorm.weight.data = get_masked_lm_array("layer_norm/gamma")
|
150 |
+
lm_head.LayerNorm.bias.data = get_masked_lm_array("layer_norm/beta")
|
151 |
+
|
152 |
+
model.bert.embeddings.word_embeddings.weight.data = get_masked_lm_array("embedding_table")
|
153 |
+
|
154 |
+
# Pooling
|
155 |
+
model.bert.pooler = BertPooler(config=config)
|
156 |
+
model.bert.pooler.dense.weight.data: BertPooler = get_encoder_array("_pooler_layer/kernel")
|
157 |
+
model.bert.pooler.dense.bias.data: BertPooler = get_encoder_array("_pooler_layer/bias")
|
158 |
+
|
159 |
+
# Export final model
|
160 |
+
model.save_pretrained(pytorch_dump_path)
|
161 |
+
|
162 |
+
# Integration test - should load without any errors ;)
|
163 |
+
new_model = BertForMaskedLM.from_pretrained(pytorch_dump_path)
|
164 |
+
print(new_model.eval())
|
165 |
+
|
166 |
+
print("Model conversion was done sucessfully!")
|
167 |
+
|
168 |
+
|
169 |
+
if __name__ == "__main__":
|
170 |
+
parser = argparse.ArgumentParser()
|
171 |
+
parser.add_argument(
|
172 |
+
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
|
173 |
+
)
|
174 |
+
parser.add_argument(
|
175 |
+
"--bert_config_file",
|
176 |
+
type=str,
|
177 |
+
required=True,
|
178 |
+
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
|
179 |
+
)
|
180 |
+
parser.add_argument(
|
181 |
+
"--pytorch_dump_path",
|
182 |
+
type=str,
|
183 |
+
required=True,
|
184 |
+
help="Path to the output PyTorch model.",
|
185 |
+
)
|
186 |
+
args = parser.parse_args()
|
187 |
+
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
|
venv/lib/python3.10/site-packages/transformers/models/bert/modeling_bert.py
ADDED
@@ -0,0 +1,1867 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch BERT model."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import warnings
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
|
29 |
+
from ...activations import ACT2FN
|
30 |
+
from ...modeling_outputs import (
|
31 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
32 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
33 |
+
CausalLMOutputWithCrossAttentions,
|
34 |
+
MaskedLMOutput,
|
35 |
+
MultipleChoiceModelOutput,
|
36 |
+
NextSentencePredictorOutput,
|
37 |
+
QuestionAnsweringModelOutput,
|
38 |
+
SequenceClassifierOutput,
|
39 |
+
TokenClassifierOutput,
|
40 |
+
)
|
41 |
+
from ...modeling_utils import PreTrainedModel
|
42 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
43 |
+
from ...utils import (
|
44 |
+
ModelOutput,
|
45 |
+
add_code_sample_docstrings,
|
46 |
+
add_start_docstrings,
|
47 |
+
add_start_docstrings_to_model_forward,
|
48 |
+
logging,
|
49 |
+
replace_return_docstrings,
|
50 |
+
)
|
51 |
+
from .configuration_bert import BertConfig
|
52 |
+
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__)
|
55 |
+
|
56 |
+
_CHECKPOINT_FOR_DOC = "google-bert/bert-base-uncased"
|
57 |
+
_CONFIG_FOR_DOC = "BertConfig"
|
58 |
+
|
59 |
+
# TokenClassification docstring
|
60 |
+
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbmdz/bert-large-cased-finetuned-conll03-english"
|
61 |
+
_TOKEN_CLASS_EXPECTED_OUTPUT = (
|
62 |
+
"['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] "
|
63 |
+
)
|
64 |
+
_TOKEN_CLASS_EXPECTED_LOSS = 0.01
|
65 |
+
|
66 |
+
# QuestionAnswering docstring
|
67 |
+
_CHECKPOINT_FOR_QA = "deepset/bert-base-cased-squad2"
|
68 |
+
_QA_EXPECTED_OUTPUT = "'a nice puppet'"
|
69 |
+
_QA_EXPECTED_LOSS = 7.41
|
70 |
+
_QA_TARGET_START_INDEX = 14
|
71 |
+
_QA_TARGET_END_INDEX = 15
|
72 |
+
|
73 |
+
# SequenceClassification docstring
|
74 |
+
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "textattack/bert-base-uncased-yelp-polarity"
|
75 |
+
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
|
76 |
+
_SEQ_CLASS_EXPECTED_LOSS = 0.01
|
77 |
+
|
78 |
+
|
79 |
+
from ..deprecated._archive_maps import BERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
80 |
+
|
81 |
+
|
82 |
+
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
|
83 |
+
"""Load tf checkpoints in a pytorch model."""
|
84 |
+
try:
|
85 |
+
import re
|
86 |
+
|
87 |
+
import numpy as np
|
88 |
+
import tensorflow as tf
|
89 |
+
except ImportError:
|
90 |
+
logger.error(
|
91 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
92 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
93 |
+
)
|
94 |
+
raise
|
95 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
96 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
97 |
+
# Load weights from TF model
|
98 |
+
init_vars = tf.train.list_variables(tf_path)
|
99 |
+
names = []
|
100 |
+
arrays = []
|
101 |
+
for name, shape in init_vars:
|
102 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
103 |
+
array = tf.train.load_variable(tf_path, name)
|
104 |
+
names.append(name)
|
105 |
+
arrays.append(array)
|
106 |
+
|
107 |
+
for name, array in zip(names, arrays):
|
108 |
+
name = name.split("/")
|
109 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
110 |
+
# which are not required for using pretrained model
|
111 |
+
if any(
|
112 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
113 |
+
for n in name
|
114 |
+
):
|
115 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
116 |
+
continue
|
117 |
+
pointer = model
|
118 |
+
for m_name in name:
|
119 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
120 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
121 |
+
else:
|
122 |
+
scope_names = [m_name]
|
123 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
124 |
+
pointer = getattr(pointer, "weight")
|
125 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
126 |
+
pointer = getattr(pointer, "bias")
|
127 |
+
elif scope_names[0] == "output_weights":
|
128 |
+
pointer = getattr(pointer, "weight")
|
129 |
+
elif scope_names[0] == "squad":
|
130 |
+
pointer = getattr(pointer, "classifier")
|
131 |
+
else:
|
132 |
+
try:
|
133 |
+
pointer = getattr(pointer, scope_names[0])
|
134 |
+
except AttributeError:
|
135 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
136 |
+
continue
|
137 |
+
if len(scope_names) >= 2:
|
138 |
+
num = int(scope_names[1])
|
139 |
+
pointer = pointer[num]
|
140 |
+
if m_name[-11:] == "_embeddings":
|
141 |
+
pointer = getattr(pointer, "weight")
|
142 |
+
elif m_name == "kernel":
|
143 |
+
array = np.transpose(array)
|
144 |
+
try:
|
145 |
+
if pointer.shape != array.shape:
|
146 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
147 |
+
except ValueError as e:
|
148 |
+
e.args += (pointer.shape, array.shape)
|
149 |
+
raise
|
150 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
151 |
+
pointer.data = torch.from_numpy(array)
|
152 |
+
return model
|
153 |
+
|
154 |
+
|
155 |
+
class BertEmbeddings(nn.Module):
|
156 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
157 |
+
|
158 |
+
def __init__(self, config):
|
159 |
+
super().__init__()
|
160 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
161 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
162 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
163 |
+
|
164 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
165 |
+
# any TensorFlow checkpoint file
|
166 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
167 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
168 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
169 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
170 |
+
self.register_buffer(
|
171 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
172 |
+
)
|
173 |
+
self.register_buffer(
|
174 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
175 |
+
)
|
176 |
+
|
177 |
+
def forward(
|
178 |
+
self,
|
179 |
+
input_ids: Optional[torch.LongTensor] = None,
|
180 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
181 |
+
position_ids: Optional[torch.LongTensor] = None,
|
182 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
183 |
+
past_key_values_length: int = 0,
|
184 |
+
) -> torch.Tensor:
|
185 |
+
if input_ids is not None:
|
186 |
+
input_shape = input_ids.size()
|
187 |
+
else:
|
188 |
+
input_shape = inputs_embeds.size()[:-1]
|
189 |
+
|
190 |
+
seq_length = input_shape[1]
|
191 |
+
|
192 |
+
if position_ids is None:
|
193 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
194 |
+
|
195 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
196 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
197 |
+
# issue #5664
|
198 |
+
if token_type_ids is None:
|
199 |
+
if hasattr(self, "token_type_ids"):
|
200 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
201 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
202 |
+
token_type_ids = buffered_token_type_ids_expanded
|
203 |
+
else:
|
204 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
205 |
+
|
206 |
+
if inputs_embeds is None:
|
207 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
208 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
209 |
+
|
210 |
+
embeddings = inputs_embeds + token_type_embeddings
|
211 |
+
if self.position_embedding_type == "absolute":
|
212 |
+
position_embeddings = self.position_embeddings(position_ids)
|
213 |
+
embeddings += position_embeddings
|
214 |
+
embeddings = self.LayerNorm(embeddings)
|
215 |
+
embeddings = self.dropout(embeddings)
|
216 |
+
return embeddings
|
217 |
+
|
218 |
+
|
219 |
+
class BertSelfAttention(nn.Module):
|
220 |
+
def __init__(self, config, position_embedding_type=None):
|
221 |
+
super().__init__()
|
222 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
223 |
+
raise ValueError(
|
224 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
225 |
+
f"heads ({config.num_attention_heads})"
|
226 |
+
)
|
227 |
+
|
228 |
+
self.num_attention_heads = config.num_attention_heads
|
229 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
230 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
231 |
+
|
232 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
233 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
234 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
235 |
+
|
236 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
237 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
238 |
+
config, "position_embedding_type", "absolute"
|
239 |
+
)
|
240 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
241 |
+
self.max_position_embeddings = config.max_position_embeddings
|
242 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
243 |
+
|
244 |
+
self.is_decoder = config.is_decoder
|
245 |
+
|
246 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
247 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
248 |
+
x = x.view(new_x_shape)
|
249 |
+
return x.permute(0, 2, 1, 3)
|
250 |
+
|
251 |
+
def forward(
|
252 |
+
self,
|
253 |
+
hidden_states: torch.Tensor,
|
254 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
255 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
256 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
257 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
258 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
259 |
+
output_attentions: Optional[bool] = False,
|
260 |
+
) -> Tuple[torch.Tensor]:
|
261 |
+
mixed_query_layer = self.query(hidden_states)
|
262 |
+
|
263 |
+
# If this is instantiated as a cross-attention module, the keys
|
264 |
+
# and values come from an encoder; the attention mask needs to be
|
265 |
+
# such that the encoder's padding tokens are not attended to.
|
266 |
+
is_cross_attention = encoder_hidden_states is not None
|
267 |
+
|
268 |
+
if is_cross_attention and past_key_value is not None:
|
269 |
+
# reuse k,v, cross_attentions
|
270 |
+
key_layer = past_key_value[0]
|
271 |
+
value_layer = past_key_value[1]
|
272 |
+
attention_mask = encoder_attention_mask
|
273 |
+
elif is_cross_attention:
|
274 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
275 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
276 |
+
attention_mask = encoder_attention_mask
|
277 |
+
elif past_key_value is not None:
|
278 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
279 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
280 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
281 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
282 |
+
else:
|
283 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
284 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
285 |
+
|
286 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
287 |
+
|
288 |
+
use_cache = past_key_value is not None
|
289 |
+
if self.is_decoder:
|
290 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
291 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
292 |
+
# key/value_states (first "if" case)
|
293 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
294 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
295 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
296 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
297 |
+
past_key_value = (key_layer, value_layer)
|
298 |
+
|
299 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
300 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
301 |
+
|
302 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
303 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
304 |
+
if use_cache:
|
305 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
306 |
+
-1, 1
|
307 |
+
)
|
308 |
+
else:
|
309 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
310 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
311 |
+
distance = position_ids_l - position_ids_r
|
312 |
+
|
313 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
314 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
315 |
+
|
316 |
+
if self.position_embedding_type == "relative_key":
|
317 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
318 |
+
attention_scores = attention_scores + relative_position_scores
|
319 |
+
elif self.position_embedding_type == "relative_key_query":
|
320 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
321 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
322 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
323 |
+
|
324 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
325 |
+
if attention_mask is not None:
|
326 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
327 |
+
attention_scores = attention_scores + attention_mask
|
328 |
+
|
329 |
+
# Normalize the attention scores to probabilities.
|
330 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
331 |
+
|
332 |
+
# This is actually dropping out entire tokens to attend to, which might
|
333 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
334 |
+
attention_probs = self.dropout(attention_probs)
|
335 |
+
|
336 |
+
# Mask heads if we want to
|
337 |
+
if head_mask is not None:
|
338 |
+
attention_probs = attention_probs * head_mask
|
339 |
+
|
340 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
341 |
+
|
342 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
343 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
344 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
345 |
+
|
346 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
347 |
+
|
348 |
+
if self.is_decoder:
|
349 |
+
outputs = outputs + (past_key_value,)
|
350 |
+
return outputs
|
351 |
+
|
352 |
+
|
353 |
+
class BertSelfOutput(nn.Module):
|
354 |
+
def __init__(self, config):
|
355 |
+
super().__init__()
|
356 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
357 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
358 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
359 |
+
|
360 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
361 |
+
hidden_states = self.dense(hidden_states)
|
362 |
+
hidden_states = self.dropout(hidden_states)
|
363 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
364 |
+
return hidden_states
|
365 |
+
|
366 |
+
|
367 |
+
class BertAttention(nn.Module):
|
368 |
+
def __init__(self, config, position_embedding_type=None):
|
369 |
+
super().__init__()
|
370 |
+
self.self = BertSelfAttention(config, position_embedding_type=position_embedding_type)
|
371 |
+
self.output = BertSelfOutput(config)
|
372 |
+
self.pruned_heads = set()
|
373 |
+
|
374 |
+
def prune_heads(self, heads):
|
375 |
+
if len(heads) == 0:
|
376 |
+
return
|
377 |
+
heads, index = find_pruneable_heads_and_indices(
|
378 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
379 |
+
)
|
380 |
+
|
381 |
+
# Prune linear layers
|
382 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
383 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
384 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
385 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
386 |
+
|
387 |
+
# Update hyper params and store pruned heads
|
388 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
389 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
390 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
391 |
+
|
392 |
+
def forward(
|
393 |
+
self,
|
394 |
+
hidden_states: torch.Tensor,
|
395 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
396 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
397 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
398 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
399 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
400 |
+
output_attentions: Optional[bool] = False,
|
401 |
+
) -> Tuple[torch.Tensor]:
|
402 |
+
self_outputs = self.self(
|
403 |
+
hidden_states,
|
404 |
+
attention_mask,
|
405 |
+
head_mask,
|
406 |
+
encoder_hidden_states,
|
407 |
+
encoder_attention_mask,
|
408 |
+
past_key_value,
|
409 |
+
output_attentions,
|
410 |
+
)
|
411 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
412 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
413 |
+
return outputs
|
414 |
+
|
415 |
+
|
416 |
+
class BertIntermediate(nn.Module):
|
417 |
+
def __init__(self, config):
|
418 |
+
super().__init__()
|
419 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
420 |
+
if isinstance(config.hidden_act, str):
|
421 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
422 |
+
else:
|
423 |
+
self.intermediate_act_fn = config.hidden_act
|
424 |
+
|
425 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
426 |
+
hidden_states = self.dense(hidden_states)
|
427 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
428 |
+
return hidden_states
|
429 |
+
|
430 |
+
|
431 |
+
class BertOutput(nn.Module):
|
432 |
+
def __init__(self, config):
|
433 |
+
super().__init__()
|
434 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
435 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
436 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
437 |
+
|
438 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
439 |
+
hidden_states = self.dense(hidden_states)
|
440 |
+
hidden_states = self.dropout(hidden_states)
|
441 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
442 |
+
return hidden_states
|
443 |
+
|
444 |
+
|
445 |
+
class BertLayer(nn.Module):
|
446 |
+
def __init__(self, config):
|
447 |
+
super().__init__()
|
448 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
449 |
+
self.seq_len_dim = 1
|
450 |
+
self.attention = BertAttention(config)
|
451 |
+
self.is_decoder = config.is_decoder
|
452 |
+
self.add_cross_attention = config.add_cross_attention
|
453 |
+
if self.add_cross_attention:
|
454 |
+
if not self.is_decoder:
|
455 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
456 |
+
self.crossattention = BertAttention(config, position_embedding_type="absolute")
|
457 |
+
self.intermediate = BertIntermediate(config)
|
458 |
+
self.output = BertOutput(config)
|
459 |
+
|
460 |
+
def forward(
|
461 |
+
self,
|
462 |
+
hidden_states: torch.Tensor,
|
463 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
464 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
465 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
466 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
467 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
468 |
+
output_attentions: Optional[bool] = False,
|
469 |
+
) -> Tuple[torch.Tensor]:
|
470 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
471 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
472 |
+
self_attention_outputs = self.attention(
|
473 |
+
hidden_states,
|
474 |
+
attention_mask,
|
475 |
+
head_mask,
|
476 |
+
output_attentions=output_attentions,
|
477 |
+
past_key_value=self_attn_past_key_value,
|
478 |
+
)
|
479 |
+
attention_output = self_attention_outputs[0]
|
480 |
+
|
481 |
+
# if decoder, the last output is tuple of self-attn cache
|
482 |
+
if self.is_decoder:
|
483 |
+
outputs = self_attention_outputs[1:-1]
|
484 |
+
present_key_value = self_attention_outputs[-1]
|
485 |
+
else:
|
486 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
487 |
+
|
488 |
+
cross_attn_present_key_value = None
|
489 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
490 |
+
if not hasattr(self, "crossattention"):
|
491 |
+
raise ValueError(
|
492 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
493 |
+
" by setting `config.add_cross_attention=True`"
|
494 |
+
)
|
495 |
+
|
496 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
497 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
498 |
+
cross_attention_outputs = self.crossattention(
|
499 |
+
attention_output,
|
500 |
+
attention_mask,
|
501 |
+
head_mask,
|
502 |
+
encoder_hidden_states,
|
503 |
+
encoder_attention_mask,
|
504 |
+
cross_attn_past_key_value,
|
505 |
+
output_attentions,
|
506 |
+
)
|
507 |
+
attention_output = cross_attention_outputs[0]
|
508 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
509 |
+
|
510 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
511 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
512 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
513 |
+
|
514 |
+
layer_output = apply_chunking_to_forward(
|
515 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
516 |
+
)
|
517 |
+
outputs = (layer_output,) + outputs
|
518 |
+
|
519 |
+
# if decoder, return the attn key/values as the last output
|
520 |
+
if self.is_decoder:
|
521 |
+
outputs = outputs + (present_key_value,)
|
522 |
+
|
523 |
+
return outputs
|
524 |
+
|
525 |
+
def feed_forward_chunk(self, attention_output):
|
526 |
+
intermediate_output = self.intermediate(attention_output)
|
527 |
+
layer_output = self.output(intermediate_output, attention_output)
|
528 |
+
return layer_output
|
529 |
+
|
530 |
+
|
531 |
+
class BertEncoder(nn.Module):
|
532 |
+
def __init__(self, config):
|
533 |
+
super().__init__()
|
534 |
+
self.config = config
|
535 |
+
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
|
536 |
+
self.gradient_checkpointing = False
|
537 |
+
|
538 |
+
def forward(
|
539 |
+
self,
|
540 |
+
hidden_states: torch.Tensor,
|
541 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
542 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
543 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
544 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
545 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
546 |
+
use_cache: Optional[bool] = None,
|
547 |
+
output_attentions: Optional[bool] = False,
|
548 |
+
output_hidden_states: Optional[bool] = False,
|
549 |
+
return_dict: Optional[bool] = True,
|
550 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
551 |
+
all_hidden_states = () if output_hidden_states else None
|
552 |
+
all_self_attentions = () if output_attentions else None
|
553 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
554 |
+
|
555 |
+
if self.gradient_checkpointing and self.training:
|
556 |
+
if use_cache:
|
557 |
+
logger.warning_once(
|
558 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
559 |
+
)
|
560 |
+
use_cache = False
|
561 |
+
|
562 |
+
next_decoder_cache = () if use_cache else None
|
563 |
+
for i, layer_module in enumerate(self.layer):
|
564 |
+
if output_hidden_states:
|
565 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
566 |
+
|
567 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
568 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
569 |
+
|
570 |
+
if self.gradient_checkpointing and self.training:
|
571 |
+
layer_outputs = self._gradient_checkpointing_func(
|
572 |
+
layer_module.__call__,
|
573 |
+
hidden_states,
|
574 |
+
attention_mask,
|
575 |
+
layer_head_mask,
|
576 |
+
encoder_hidden_states,
|
577 |
+
encoder_attention_mask,
|
578 |
+
past_key_value,
|
579 |
+
output_attentions,
|
580 |
+
)
|
581 |
+
else:
|
582 |
+
layer_outputs = layer_module(
|
583 |
+
hidden_states,
|
584 |
+
attention_mask,
|
585 |
+
layer_head_mask,
|
586 |
+
encoder_hidden_states,
|
587 |
+
encoder_attention_mask,
|
588 |
+
past_key_value,
|
589 |
+
output_attentions,
|
590 |
+
)
|
591 |
+
|
592 |
+
hidden_states = layer_outputs[0]
|
593 |
+
if use_cache:
|
594 |
+
next_decoder_cache += (layer_outputs[-1],)
|
595 |
+
if output_attentions:
|
596 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
597 |
+
if self.config.add_cross_attention:
|
598 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
599 |
+
|
600 |
+
if output_hidden_states:
|
601 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
602 |
+
|
603 |
+
if not return_dict:
|
604 |
+
return tuple(
|
605 |
+
v
|
606 |
+
for v in [
|
607 |
+
hidden_states,
|
608 |
+
next_decoder_cache,
|
609 |
+
all_hidden_states,
|
610 |
+
all_self_attentions,
|
611 |
+
all_cross_attentions,
|
612 |
+
]
|
613 |
+
if v is not None
|
614 |
+
)
|
615 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
616 |
+
last_hidden_state=hidden_states,
|
617 |
+
past_key_values=next_decoder_cache,
|
618 |
+
hidden_states=all_hidden_states,
|
619 |
+
attentions=all_self_attentions,
|
620 |
+
cross_attentions=all_cross_attentions,
|
621 |
+
)
|
622 |
+
|
623 |
+
|
624 |
+
class BertPooler(nn.Module):
|
625 |
+
def __init__(self, config):
|
626 |
+
super().__init__()
|
627 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
628 |
+
self.activation = nn.Tanh()
|
629 |
+
|
630 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
631 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
632 |
+
# to the first token.
|
633 |
+
first_token_tensor = hidden_states[:, 0]
|
634 |
+
pooled_output = self.dense(first_token_tensor)
|
635 |
+
pooled_output = self.activation(pooled_output)
|
636 |
+
return pooled_output
|
637 |
+
|
638 |
+
|
639 |
+
class BertPredictionHeadTransform(nn.Module):
|
640 |
+
def __init__(self, config):
|
641 |
+
super().__init__()
|
642 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
643 |
+
if isinstance(config.hidden_act, str):
|
644 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
645 |
+
else:
|
646 |
+
self.transform_act_fn = config.hidden_act
|
647 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
648 |
+
|
649 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
650 |
+
hidden_states = self.dense(hidden_states)
|
651 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
652 |
+
hidden_states = self.LayerNorm(hidden_states)
|
653 |
+
return hidden_states
|
654 |
+
|
655 |
+
|
656 |
+
class BertLMPredictionHead(nn.Module):
|
657 |
+
def __init__(self, config):
|
658 |
+
super().__init__()
|
659 |
+
self.transform = BertPredictionHeadTransform(config)
|
660 |
+
|
661 |
+
# The output weights are the same as the input embeddings, but there is
|
662 |
+
# an output-only bias for each token.
|
663 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
664 |
+
|
665 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
666 |
+
|
667 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
668 |
+
self.decoder.bias = self.bias
|
669 |
+
|
670 |
+
def forward(self, hidden_states):
|
671 |
+
hidden_states = self.transform(hidden_states)
|
672 |
+
hidden_states = self.decoder(hidden_states)
|
673 |
+
return hidden_states
|
674 |
+
|
675 |
+
|
676 |
+
class BertOnlyMLMHead(nn.Module):
|
677 |
+
def __init__(self, config):
|
678 |
+
super().__init__()
|
679 |
+
self.predictions = BertLMPredictionHead(config)
|
680 |
+
|
681 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
682 |
+
prediction_scores = self.predictions(sequence_output)
|
683 |
+
return prediction_scores
|
684 |
+
|
685 |
+
|
686 |
+
class BertOnlyNSPHead(nn.Module):
|
687 |
+
def __init__(self, config):
|
688 |
+
super().__init__()
|
689 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
690 |
+
|
691 |
+
def forward(self, pooled_output):
|
692 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
693 |
+
return seq_relationship_score
|
694 |
+
|
695 |
+
|
696 |
+
class BertPreTrainingHeads(nn.Module):
|
697 |
+
def __init__(self, config):
|
698 |
+
super().__init__()
|
699 |
+
self.predictions = BertLMPredictionHead(config)
|
700 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
701 |
+
|
702 |
+
def forward(self, sequence_output, pooled_output):
|
703 |
+
prediction_scores = self.predictions(sequence_output)
|
704 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
705 |
+
return prediction_scores, seq_relationship_score
|
706 |
+
|
707 |
+
|
708 |
+
class BertPreTrainedModel(PreTrainedModel):
|
709 |
+
"""
|
710 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
711 |
+
models.
|
712 |
+
"""
|
713 |
+
|
714 |
+
config_class = BertConfig
|
715 |
+
load_tf_weights = load_tf_weights_in_bert
|
716 |
+
base_model_prefix = "bert"
|
717 |
+
supports_gradient_checkpointing = True
|
718 |
+
|
719 |
+
def _init_weights(self, module):
|
720 |
+
"""Initialize the weights"""
|
721 |
+
if isinstance(module, nn.Linear):
|
722 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
723 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
724 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
725 |
+
if module.bias is not None:
|
726 |
+
module.bias.data.zero_()
|
727 |
+
elif isinstance(module, nn.Embedding):
|
728 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
729 |
+
if module.padding_idx is not None:
|
730 |
+
module.weight.data[module.padding_idx].zero_()
|
731 |
+
elif isinstance(module, nn.LayerNorm):
|
732 |
+
module.bias.data.zero_()
|
733 |
+
module.weight.data.fill_(1.0)
|
734 |
+
|
735 |
+
|
736 |
+
@dataclass
|
737 |
+
class BertForPreTrainingOutput(ModelOutput):
|
738 |
+
"""
|
739 |
+
Output type of [`BertForPreTraining`].
|
740 |
+
|
741 |
+
Args:
|
742 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
743 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
744 |
+
(classification) loss.
|
745 |
+
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
746 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
747 |
+
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
748 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
749 |
+
before SoftMax).
|
750 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
751 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
752 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
753 |
+
|
754 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
755 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
756 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
757 |
+
sequence_length)`.
|
758 |
+
|
759 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
760 |
+
heads.
|
761 |
+
"""
|
762 |
+
|
763 |
+
loss: Optional[torch.FloatTensor] = None
|
764 |
+
prediction_logits: torch.FloatTensor = None
|
765 |
+
seq_relationship_logits: torch.FloatTensor = None
|
766 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
767 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
768 |
+
|
769 |
+
|
770 |
+
BERT_START_DOCSTRING = r"""
|
771 |
+
|
772 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
773 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
774 |
+
etc.)
|
775 |
+
|
776 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
777 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
778 |
+
and behavior.
|
779 |
+
|
780 |
+
Parameters:
|
781 |
+
config ([`BertConfig`]): Model configuration class with all the parameters of the model.
|
782 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
783 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
784 |
+
"""
|
785 |
+
|
786 |
+
BERT_INPUTS_DOCSTRING = r"""
|
787 |
+
Args:
|
788 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
789 |
+
Indices of input sequence tokens in the vocabulary.
|
790 |
+
|
791 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
792 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
793 |
+
|
794 |
+
[What are input IDs?](../glossary#input-ids)
|
795 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
796 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
797 |
+
|
798 |
+
- 1 for tokens that are **not masked**,
|
799 |
+
- 0 for tokens that are **masked**.
|
800 |
+
|
801 |
+
[What are attention masks?](../glossary#attention-mask)
|
802 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
803 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
804 |
+
1]`:
|
805 |
+
|
806 |
+
- 0 corresponds to a *sentence A* token,
|
807 |
+
- 1 corresponds to a *sentence B* token.
|
808 |
+
|
809 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
810 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
811 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
812 |
+
config.max_position_embeddings - 1]`.
|
813 |
+
|
814 |
+
[What are position IDs?](../glossary#position-ids)
|
815 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
816 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
817 |
+
|
818 |
+
- 1 indicates the head is **not masked**,
|
819 |
+
- 0 indicates the head is **masked**.
|
820 |
+
|
821 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
822 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
823 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
824 |
+
model's internal embedding lookup matrix.
|
825 |
+
output_attentions (`bool`, *optional*):
|
826 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
827 |
+
tensors for more detail.
|
828 |
+
output_hidden_states (`bool`, *optional*):
|
829 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
830 |
+
more detail.
|
831 |
+
return_dict (`bool`, *optional*):
|
832 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
833 |
+
"""
|
834 |
+
|
835 |
+
|
836 |
+
@add_start_docstrings(
|
837 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
838 |
+
BERT_START_DOCSTRING,
|
839 |
+
)
|
840 |
+
class BertModel(BertPreTrainedModel):
|
841 |
+
"""
|
842 |
+
|
843 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
844 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
845 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
846 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
847 |
+
|
848 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
849 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
850 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
851 |
+
"""
|
852 |
+
|
853 |
+
def __init__(self, config, add_pooling_layer=True):
|
854 |
+
super().__init__(config)
|
855 |
+
self.config = config
|
856 |
+
|
857 |
+
self.embeddings = BertEmbeddings(config)
|
858 |
+
self.encoder = BertEncoder(config)
|
859 |
+
|
860 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
861 |
+
|
862 |
+
# Initialize weights and apply final processing
|
863 |
+
self.post_init()
|
864 |
+
|
865 |
+
def get_input_embeddings(self):
|
866 |
+
return self.embeddings.word_embeddings
|
867 |
+
|
868 |
+
def set_input_embeddings(self, value):
|
869 |
+
self.embeddings.word_embeddings = value
|
870 |
+
|
871 |
+
def _prune_heads(self, heads_to_prune):
|
872 |
+
"""
|
873 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
874 |
+
class PreTrainedModel
|
875 |
+
"""
|
876 |
+
for layer, heads in heads_to_prune.items():
|
877 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
878 |
+
|
879 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
880 |
+
@add_code_sample_docstrings(
|
881 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
882 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
883 |
+
config_class=_CONFIG_FOR_DOC,
|
884 |
+
)
|
885 |
+
def forward(
|
886 |
+
self,
|
887 |
+
input_ids: Optional[torch.Tensor] = None,
|
888 |
+
attention_mask: Optional[torch.Tensor] = None,
|
889 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
890 |
+
position_ids: Optional[torch.Tensor] = None,
|
891 |
+
head_mask: Optional[torch.Tensor] = None,
|
892 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
893 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
894 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
895 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
896 |
+
use_cache: Optional[bool] = None,
|
897 |
+
output_attentions: Optional[bool] = None,
|
898 |
+
output_hidden_states: Optional[bool] = None,
|
899 |
+
return_dict: Optional[bool] = None,
|
900 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
901 |
+
r"""
|
902 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
903 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
904 |
+
the model is configured as a decoder.
|
905 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
906 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
907 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
908 |
+
|
909 |
+
- 1 for tokens that are **not masked**,
|
910 |
+
- 0 for tokens that are **masked**.
|
911 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
912 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
913 |
+
|
914 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
915 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
916 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
917 |
+
use_cache (`bool`, *optional*):
|
918 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
919 |
+
`past_key_values`).
|
920 |
+
"""
|
921 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
922 |
+
output_hidden_states = (
|
923 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
924 |
+
)
|
925 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
926 |
+
|
927 |
+
if self.config.is_decoder:
|
928 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
929 |
+
else:
|
930 |
+
use_cache = False
|
931 |
+
|
932 |
+
if input_ids is not None and inputs_embeds is not None:
|
933 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
934 |
+
elif input_ids is not None:
|
935 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
936 |
+
input_shape = input_ids.size()
|
937 |
+
elif inputs_embeds is not None:
|
938 |
+
input_shape = inputs_embeds.size()[:-1]
|
939 |
+
else:
|
940 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
941 |
+
|
942 |
+
batch_size, seq_length = input_shape
|
943 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
944 |
+
|
945 |
+
# past_key_values_length
|
946 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
947 |
+
|
948 |
+
if attention_mask is None:
|
949 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
950 |
+
|
951 |
+
if token_type_ids is None:
|
952 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
953 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
954 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
955 |
+
token_type_ids = buffered_token_type_ids_expanded
|
956 |
+
else:
|
957 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
958 |
+
|
959 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
960 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
961 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
962 |
+
|
963 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
964 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
965 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
966 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
967 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
968 |
+
if encoder_attention_mask is None:
|
969 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
970 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
971 |
+
else:
|
972 |
+
encoder_extended_attention_mask = None
|
973 |
+
|
974 |
+
# Prepare head mask if needed
|
975 |
+
# 1.0 in head_mask indicate we keep the head
|
976 |
+
# attention_probs has shape bsz x n_heads x N x N
|
977 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
978 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
979 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
980 |
+
|
981 |
+
embedding_output = self.embeddings(
|
982 |
+
input_ids=input_ids,
|
983 |
+
position_ids=position_ids,
|
984 |
+
token_type_ids=token_type_ids,
|
985 |
+
inputs_embeds=inputs_embeds,
|
986 |
+
past_key_values_length=past_key_values_length,
|
987 |
+
)
|
988 |
+
encoder_outputs = self.encoder(
|
989 |
+
embedding_output,
|
990 |
+
attention_mask=extended_attention_mask,
|
991 |
+
head_mask=head_mask,
|
992 |
+
encoder_hidden_states=encoder_hidden_states,
|
993 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
994 |
+
past_key_values=past_key_values,
|
995 |
+
use_cache=use_cache,
|
996 |
+
output_attentions=output_attentions,
|
997 |
+
output_hidden_states=output_hidden_states,
|
998 |
+
return_dict=return_dict,
|
999 |
+
)
|
1000 |
+
sequence_output = encoder_outputs[0]
|
1001 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1002 |
+
|
1003 |
+
if not return_dict:
|
1004 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1005 |
+
|
1006 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1007 |
+
last_hidden_state=sequence_output,
|
1008 |
+
pooler_output=pooled_output,
|
1009 |
+
past_key_values=encoder_outputs.past_key_values,
|
1010 |
+
hidden_states=encoder_outputs.hidden_states,
|
1011 |
+
attentions=encoder_outputs.attentions,
|
1012 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
|
1016 |
+
@add_start_docstrings(
|
1017 |
+
"""
|
1018 |
+
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
1019 |
+
sentence prediction (classification)` head.
|
1020 |
+
""",
|
1021 |
+
BERT_START_DOCSTRING,
|
1022 |
+
)
|
1023 |
+
class BertForPreTraining(BertPreTrainedModel):
|
1024 |
+
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
1025 |
+
|
1026 |
+
def __init__(self, config):
|
1027 |
+
super().__init__(config)
|
1028 |
+
|
1029 |
+
self.bert = BertModel(config)
|
1030 |
+
self.cls = BertPreTrainingHeads(config)
|
1031 |
+
|
1032 |
+
# Initialize weights and apply final processing
|
1033 |
+
self.post_init()
|
1034 |
+
|
1035 |
+
def get_output_embeddings(self):
|
1036 |
+
return self.cls.predictions.decoder
|
1037 |
+
|
1038 |
+
def set_output_embeddings(self, new_embeddings):
|
1039 |
+
self.cls.predictions.decoder = new_embeddings
|
1040 |
+
|
1041 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1042 |
+
@replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1043 |
+
def forward(
|
1044 |
+
self,
|
1045 |
+
input_ids: Optional[torch.Tensor] = None,
|
1046 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1047 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1048 |
+
position_ids: Optional[torch.Tensor] = None,
|
1049 |
+
head_mask: Optional[torch.Tensor] = None,
|
1050 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1051 |
+
labels: Optional[torch.Tensor] = None,
|
1052 |
+
next_sentence_label: Optional[torch.Tensor] = None,
|
1053 |
+
output_attentions: Optional[bool] = None,
|
1054 |
+
output_hidden_states: Optional[bool] = None,
|
1055 |
+
return_dict: Optional[bool] = None,
|
1056 |
+
) -> Union[Tuple[torch.Tensor], BertForPreTrainingOutput]:
|
1057 |
+
r"""
|
1058 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1059 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1060 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
|
1061 |
+
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1062 |
+
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1063 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
|
1064 |
+
pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
|
1065 |
+
|
1066 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1067 |
+
- 1 indicates sequence B is a random sequence.
|
1068 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1069 |
+
Used to hide legacy arguments that have been deprecated.
|
1070 |
+
|
1071 |
+
Returns:
|
1072 |
+
|
1073 |
+
Example:
|
1074 |
+
|
1075 |
+
```python
|
1076 |
+
>>> from transformers import AutoTokenizer, BertForPreTraining
|
1077 |
+
>>> import torch
|
1078 |
+
|
1079 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
1080 |
+
>>> model = BertForPreTraining.from_pretrained("google-bert/bert-base-uncased")
|
1081 |
+
|
1082 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1083 |
+
>>> outputs = model(**inputs)
|
1084 |
+
|
1085 |
+
>>> prediction_logits = outputs.prediction_logits
|
1086 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
1087 |
+
```
|
1088 |
+
"""
|
1089 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1090 |
+
|
1091 |
+
outputs = self.bert(
|
1092 |
+
input_ids,
|
1093 |
+
attention_mask=attention_mask,
|
1094 |
+
token_type_ids=token_type_ids,
|
1095 |
+
position_ids=position_ids,
|
1096 |
+
head_mask=head_mask,
|
1097 |
+
inputs_embeds=inputs_embeds,
|
1098 |
+
output_attentions=output_attentions,
|
1099 |
+
output_hidden_states=output_hidden_states,
|
1100 |
+
return_dict=return_dict,
|
1101 |
+
)
|
1102 |
+
|
1103 |
+
sequence_output, pooled_output = outputs[:2]
|
1104 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
1105 |
+
|
1106 |
+
total_loss = None
|
1107 |
+
if labels is not None and next_sentence_label is not None:
|
1108 |
+
loss_fct = CrossEntropyLoss()
|
1109 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1110 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
1111 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
1112 |
+
|
1113 |
+
if not return_dict:
|
1114 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
1115 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1116 |
+
|
1117 |
+
return BertForPreTrainingOutput(
|
1118 |
+
loss=total_loss,
|
1119 |
+
prediction_logits=prediction_scores,
|
1120 |
+
seq_relationship_logits=seq_relationship_score,
|
1121 |
+
hidden_states=outputs.hidden_states,
|
1122 |
+
attentions=outputs.attentions,
|
1123 |
+
)
|
1124 |
+
|
1125 |
+
|
1126 |
+
@add_start_docstrings(
|
1127 |
+
"""Bert Model with a `language modeling` head on top for CLM fine-tuning.""", BERT_START_DOCSTRING
|
1128 |
+
)
|
1129 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
1130 |
+
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
1131 |
+
|
1132 |
+
def __init__(self, config):
|
1133 |
+
super().__init__(config)
|
1134 |
+
|
1135 |
+
if not config.is_decoder:
|
1136 |
+
logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`")
|
1137 |
+
|
1138 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1139 |
+
self.cls = BertOnlyMLMHead(config)
|
1140 |
+
|
1141 |
+
# Initialize weights and apply final processing
|
1142 |
+
self.post_init()
|
1143 |
+
|
1144 |
+
def get_output_embeddings(self):
|
1145 |
+
return self.cls.predictions.decoder
|
1146 |
+
|
1147 |
+
def set_output_embeddings(self, new_embeddings):
|
1148 |
+
self.cls.predictions.decoder = new_embeddings
|
1149 |
+
|
1150 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1151 |
+
@add_code_sample_docstrings(
|
1152 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1153 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
1154 |
+
config_class=_CONFIG_FOR_DOC,
|
1155 |
+
)
|
1156 |
+
def forward(
|
1157 |
+
self,
|
1158 |
+
input_ids: Optional[torch.Tensor] = None,
|
1159 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1160 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1161 |
+
position_ids: Optional[torch.Tensor] = None,
|
1162 |
+
head_mask: Optional[torch.Tensor] = None,
|
1163 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1164 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1165 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1166 |
+
labels: Optional[torch.Tensor] = None,
|
1167 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
1168 |
+
use_cache: Optional[bool] = None,
|
1169 |
+
output_attentions: Optional[bool] = None,
|
1170 |
+
output_hidden_states: Optional[bool] = None,
|
1171 |
+
return_dict: Optional[bool] = None,
|
1172 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
1173 |
+
r"""
|
1174 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1175 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1176 |
+
the model is configured as a decoder.
|
1177 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1178 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1179 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1180 |
+
|
1181 |
+
- 1 for tokens that are **not masked**,
|
1182 |
+
- 0 for tokens that are **masked**.
|
1183 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1184 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1185 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
1186 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
|
1187 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1188 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1189 |
+
|
1190 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1191 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1192 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1193 |
+
use_cache (`bool`, *optional*):
|
1194 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1195 |
+
`past_key_values`).
|
1196 |
+
"""
|
1197 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1198 |
+
if labels is not None:
|
1199 |
+
use_cache = False
|
1200 |
+
|
1201 |
+
outputs = self.bert(
|
1202 |
+
input_ids,
|
1203 |
+
attention_mask=attention_mask,
|
1204 |
+
token_type_ids=token_type_ids,
|
1205 |
+
position_ids=position_ids,
|
1206 |
+
head_mask=head_mask,
|
1207 |
+
inputs_embeds=inputs_embeds,
|
1208 |
+
encoder_hidden_states=encoder_hidden_states,
|
1209 |
+
encoder_attention_mask=encoder_attention_mask,
|
1210 |
+
past_key_values=past_key_values,
|
1211 |
+
use_cache=use_cache,
|
1212 |
+
output_attentions=output_attentions,
|
1213 |
+
output_hidden_states=output_hidden_states,
|
1214 |
+
return_dict=return_dict,
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
sequence_output = outputs[0]
|
1218 |
+
prediction_scores = self.cls(sequence_output)
|
1219 |
+
|
1220 |
+
lm_loss = None
|
1221 |
+
if labels is not None:
|
1222 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1223 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1224 |
+
labels = labels[:, 1:].contiguous()
|
1225 |
+
loss_fct = CrossEntropyLoss()
|
1226 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1227 |
+
|
1228 |
+
if not return_dict:
|
1229 |
+
output = (prediction_scores,) + outputs[2:]
|
1230 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1231 |
+
|
1232 |
+
return CausalLMOutputWithCrossAttentions(
|
1233 |
+
loss=lm_loss,
|
1234 |
+
logits=prediction_scores,
|
1235 |
+
past_key_values=outputs.past_key_values,
|
1236 |
+
hidden_states=outputs.hidden_states,
|
1237 |
+
attentions=outputs.attentions,
|
1238 |
+
cross_attentions=outputs.cross_attentions,
|
1239 |
+
)
|
1240 |
+
|
1241 |
+
def prepare_inputs_for_generation(
|
1242 |
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=True, **model_kwargs
|
1243 |
+
):
|
1244 |
+
input_shape = input_ids.shape
|
1245 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1246 |
+
if attention_mask is None:
|
1247 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1248 |
+
|
1249 |
+
# cut decoder_input_ids if past_key_values is used
|
1250 |
+
if past_key_values is not None:
|
1251 |
+
past_length = past_key_values[0][0].shape[2]
|
1252 |
+
|
1253 |
+
# Some generation methods already pass only the last input ID
|
1254 |
+
if input_ids.shape[1] > past_length:
|
1255 |
+
remove_prefix_length = past_length
|
1256 |
+
else:
|
1257 |
+
# Default to old behavior: keep only final ID
|
1258 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1259 |
+
|
1260 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1261 |
+
|
1262 |
+
return {
|
1263 |
+
"input_ids": input_ids,
|
1264 |
+
"attention_mask": attention_mask,
|
1265 |
+
"past_key_values": past_key_values,
|
1266 |
+
"use_cache": use_cache,
|
1267 |
+
}
|
1268 |
+
|
1269 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1270 |
+
reordered_past = ()
|
1271 |
+
for layer_past in past_key_values:
|
1272 |
+
reordered_past += (
|
1273 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1274 |
+
)
|
1275 |
+
return reordered_past
|
1276 |
+
|
1277 |
+
|
1278 |
+
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
|
1279 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
1280 |
+
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
1281 |
+
|
1282 |
+
def __init__(self, config):
|
1283 |
+
super().__init__(config)
|
1284 |
+
|
1285 |
+
if config.is_decoder:
|
1286 |
+
logger.warning(
|
1287 |
+
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
|
1288 |
+
"bi-directional self-attention."
|
1289 |
+
)
|
1290 |
+
|
1291 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1292 |
+
self.cls = BertOnlyMLMHead(config)
|
1293 |
+
|
1294 |
+
# Initialize weights and apply final processing
|
1295 |
+
self.post_init()
|
1296 |
+
|
1297 |
+
def get_output_embeddings(self):
|
1298 |
+
return self.cls.predictions.decoder
|
1299 |
+
|
1300 |
+
def set_output_embeddings(self, new_embeddings):
|
1301 |
+
self.cls.predictions.decoder = new_embeddings
|
1302 |
+
|
1303 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1304 |
+
@add_code_sample_docstrings(
|
1305 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1306 |
+
output_type=MaskedLMOutput,
|
1307 |
+
config_class=_CONFIG_FOR_DOC,
|
1308 |
+
expected_output="'paris'",
|
1309 |
+
expected_loss=0.88,
|
1310 |
+
)
|
1311 |
+
def forward(
|
1312 |
+
self,
|
1313 |
+
input_ids: Optional[torch.Tensor] = None,
|
1314 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1315 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1316 |
+
position_ids: Optional[torch.Tensor] = None,
|
1317 |
+
head_mask: Optional[torch.Tensor] = None,
|
1318 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1319 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1320 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1321 |
+
labels: Optional[torch.Tensor] = None,
|
1322 |
+
output_attentions: Optional[bool] = None,
|
1323 |
+
output_hidden_states: Optional[bool] = None,
|
1324 |
+
return_dict: Optional[bool] = None,
|
1325 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1326 |
+
r"""
|
1327 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1328 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1329 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1330 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1331 |
+
"""
|
1332 |
+
|
1333 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1334 |
+
|
1335 |
+
outputs = self.bert(
|
1336 |
+
input_ids,
|
1337 |
+
attention_mask=attention_mask,
|
1338 |
+
token_type_ids=token_type_ids,
|
1339 |
+
position_ids=position_ids,
|
1340 |
+
head_mask=head_mask,
|
1341 |
+
inputs_embeds=inputs_embeds,
|
1342 |
+
encoder_hidden_states=encoder_hidden_states,
|
1343 |
+
encoder_attention_mask=encoder_attention_mask,
|
1344 |
+
output_attentions=output_attentions,
|
1345 |
+
output_hidden_states=output_hidden_states,
|
1346 |
+
return_dict=return_dict,
|
1347 |
+
)
|
1348 |
+
|
1349 |
+
sequence_output = outputs[0]
|
1350 |
+
prediction_scores = self.cls(sequence_output)
|
1351 |
+
|
1352 |
+
masked_lm_loss = None
|
1353 |
+
if labels is not None:
|
1354 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1355 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1356 |
+
|
1357 |
+
if not return_dict:
|
1358 |
+
output = (prediction_scores,) + outputs[2:]
|
1359 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1360 |
+
|
1361 |
+
return MaskedLMOutput(
|
1362 |
+
loss=masked_lm_loss,
|
1363 |
+
logits=prediction_scores,
|
1364 |
+
hidden_states=outputs.hidden_states,
|
1365 |
+
attentions=outputs.attentions,
|
1366 |
+
)
|
1367 |
+
|
1368 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
1369 |
+
input_shape = input_ids.shape
|
1370 |
+
effective_batch_size = input_shape[0]
|
1371 |
+
|
1372 |
+
# add a dummy token
|
1373 |
+
if self.config.pad_token_id is None:
|
1374 |
+
raise ValueError("The PAD token should be defined for generation")
|
1375 |
+
|
1376 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
1377 |
+
dummy_token = torch.full(
|
1378 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
1379 |
+
)
|
1380 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1381 |
+
|
1382 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1383 |
+
|
1384 |
+
|
1385 |
+
@add_start_docstrings(
|
1386 |
+
"""Bert Model with a `next sentence prediction (classification)` head on top.""",
|
1387 |
+
BERT_START_DOCSTRING,
|
1388 |
+
)
|
1389 |
+
class BertForNextSentencePrediction(BertPreTrainedModel):
|
1390 |
+
def __init__(self, config):
|
1391 |
+
super().__init__(config)
|
1392 |
+
|
1393 |
+
self.bert = BertModel(config)
|
1394 |
+
self.cls = BertOnlyNSPHead(config)
|
1395 |
+
|
1396 |
+
# Initialize weights and apply final processing
|
1397 |
+
self.post_init()
|
1398 |
+
|
1399 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1400 |
+
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
|
1401 |
+
def forward(
|
1402 |
+
self,
|
1403 |
+
input_ids: Optional[torch.Tensor] = None,
|
1404 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1405 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1406 |
+
position_ids: Optional[torch.Tensor] = None,
|
1407 |
+
head_mask: Optional[torch.Tensor] = None,
|
1408 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1409 |
+
labels: Optional[torch.Tensor] = None,
|
1410 |
+
output_attentions: Optional[bool] = None,
|
1411 |
+
output_hidden_states: Optional[bool] = None,
|
1412 |
+
return_dict: Optional[bool] = None,
|
1413 |
+
**kwargs,
|
1414 |
+
) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
|
1415 |
+
r"""
|
1416 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1417 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1418 |
+
(see `input_ids` docstring). Indices should be in `[0, 1]`:
|
1419 |
+
|
1420 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1421 |
+
- 1 indicates sequence B is a random sequence.
|
1422 |
+
|
1423 |
+
Returns:
|
1424 |
+
|
1425 |
+
Example:
|
1426 |
+
|
1427 |
+
```python
|
1428 |
+
>>> from transformers import AutoTokenizer, BertForNextSentencePrediction
|
1429 |
+
>>> import torch
|
1430 |
+
|
1431 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
1432 |
+
>>> model = BertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased")
|
1433 |
+
|
1434 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1435 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1436 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
|
1437 |
+
|
1438 |
+
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
|
1439 |
+
>>> logits = outputs.logits
|
1440 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
1441 |
+
```
|
1442 |
+
"""
|
1443 |
+
|
1444 |
+
if "next_sentence_label" in kwargs:
|
1445 |
+
warnings.warn(
|
1446 |
+
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
|
1447 |
+
" `labels` instead.",
|
1448 |
+
FutureWarning,
|
1449 |
+
)
|
1450 |
+
labels = kwargs.pop("next_sentence_label")
|
1451 |
+
|
1452 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1453 |
+
|
1454 |
+
outputs = self.bert(
|
1455 |
+
input_ids,
|
1456 |
+
attention_mask=attention_mask,
|
1457 |
+
token_type_ids=token_type_ids,
|
1458 |
+
position_ids=position_ids,
|
1459 |
+
head_mask=head_mask,
|
1460 |
+
inputs_embeds=inputs_embeds,
|
1461 |
+
output_attentions=output_attentions,
|
1462 |
+
output_hidden_states=output_hidden_states,
|
1463 |
+
return_dict=return_dict,
|
1464 |
+
)
|
1465 |
+
|
1466 |
+
pooled_output = outputs[1]
|
1467 |
+
|
1468 |
+
seq_relationship_scores = self.cls(pooled_output)
|
1469 |
+
|
1470 |
+
next_sentence_loss = None
|
1471 |
+
if labels is not None:
|
1472 |
+
loss_fct = CrossEntropyLoss()
|
1473 |
+
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
|
1474 |
+
|
1475 |
+
if not return_dict:
|
1476 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
1477 |
+
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
1478 |
+
|
1479 |
+
return NextSentencePredictorOutput(
|
1480 |
+
loss=next_sentence_loss,
|
1481 |
+
logits=seq_relationship_scores,
|
1482 |
+
hidden_states=outputs.hidden_states,
|
1483 |
+
attentions=outputs.attentions,
|
1484 |
+
)
|
1485 |
+
|
1486 |
+
|
1487 |
+
@add_start_docstrings(
|
1488 |
+
"""
|
1489 |
+
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1490 |
+
output) e.g. for GLUE tasks.
|
1491 |
+
""",
|
1492 |
+
BERT_START_DOCSTRING,
|
1493 |
+
)
|
1494 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
1495 |
+
def __init__(self, config):
|
1496 |
+
super().__init__(config)
|
1497 |
+
self.num_labels = config.num_labels
|
1498 |
+
self.config = config
|
1499 |
+
|
1500 |
+
self.bert = BertModel(config)
|
1501 |
+
classifier_dropout = (
|
1502 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1503 |
+
)
|
1504 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1505 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1506 |
+
|
1507 |
+
# Initialize weights and apply final processing
|
1508 |
+
self.post_init()
|
1509 |
+
|
1510 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1511 |
+
@add_code_sample_docstrings(
|
1512 |
+
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
|
1513 |
+
output_type=SequenceClassifierOutput,
|
1514 |
+
config_class=_CONFIG_FOR_DOC,
|
1515 |
+
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
|
1516 |
+
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
|
1517 |
+
)
|
1518 |
+
def forward(
|
1519 |
+
self,
|
1520 |
+
input_ids: Optional[torch.Tensor] = None,
|
1521 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1522 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1523 |
+
position_ids: Optional[torch.Tensor] = None,
|
1524 |
+
head_mask: Optional[torch.Tensor] = None,
|
1525 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1526 |
+
labels: Optional[torch.Tensor] = None,
|
1527 |
+
output_attentions: Optional[bool] = None,
|
1528 |
+
output_hidden_states: Optional[bool] = None,
|
1529 |
+
return_dict: Optional[bool] = None,
|
1530 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1531 |
+
r"""
|
1532 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1533 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1534 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1535 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1536 |
+
"""
|
1537 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1538 |
+
|
1539 |
+
outputs = self.bert(
|
1540 |
+
input_ids,
|
1541 |
+
attention_mask=attention_mask,
|
1542 |
+
token_type_ids=token_type_ids,
|
1543 |
+
position_ids=position_ids,
|
1544 |
+
head_mask=head_mask,
|
1545 |
+
inputs_embeds=inputs_embeds,
|
1546 |
+
output_attentions=output_attentions,
|
1547 |
+
output_hidden_states=output_hidden_states,
|
1548 |
+
return_dict=return_dict,
|
1549 |
+
)
|
1550 |
+
|
1551 |
+
pooled_output = outputs[1]
|
1552 |
+
|
1553 |
+
pooled_output = self.dropout(pooled_output)
|
1554 |
+
logits = self.classifier(pooled_output)
|
1555 |
+
|
1556 |
+
loss = None
|
1557 |
+
if labels is not None:
|
1558 |
+
if self.config.problem_type is None:
|
1559 |
+
if self.num_labels == 1:
|
1560 |
+
self.config.problem_type = "regression"
|
1561 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1562 |
+
self.config.problem_type = "single_label_classification"
|
1563 |
+
else:
|
1564 |
+
self.config.problem_type = "multi_label_classification"
|
1565 |
+
|
1566 |
+
if self.config.problem_type == "regression":
|
1567 |
+
loss_fct = MSELoss()
|
1568 |
+
if self.num_labels == 1:
|
1569 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1570 |
+
else:
|
1571 |
+
loss = loss_fct(logits, labels)
|
1572 |
+
elif self.config.problem_type == "single_label_classification":
|
1573 |
+
loss_fct = CrossEntropyLoss()
|
1574 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1575 |
+
elif self.config.problem_type == "multi_label_classification":
|
1576 |
+
loss_fct = BCEWithLogitsLoss()
|
1577 |
+
loss = loss_fct(logits, labels)
|
1578 |
+
if not return_dict:
|
1579 |
+
output = (logits,) + outputs[2:]
|
1580 |
+
return ((loss,) + output) if loss is not None else output
|
1581 |
+
|
1582 |
+
return SequenceClassifierOutput(
|
1583 |
+
loss=loss,
|
1584 |
+
logits=logits,
|
1585 |
+
hidden_states=outputs.hidden_states,
|
1586 |
+
attentions=outputs.attentions,
|
1587 |
+
)
|
1588 |
+
|
1589 |
+
|
1590 |
+
@add_start_docstrings(
|
1591 |
+
"""
|
1592 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1593 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1594 |
+
""",
|
1595 |
+
BERT_START_DOCSTRING,
|
1596 |
+
)
|
1597 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
1598 |
+
def __init__(self, config):
|
1599 |
+
super().__init__(config)
|
1600 |
+
|
1601 |
+
self.bert = BertModel(config)
|
1602 |
+
classifier_dropout = (
|
1603 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1604 |
+
)
|
1605 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1606 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1607 |
+
|
1608 |
+
# Initialize weights and apply final processing
|
1609 |
+
self.post_init()
|
1610 |
+
|
1611 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1612 |
+
@add_code_sample_docstrings(
|
1613 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1614 |
+
output_type=MultipleChoiceModelOutput,
|
1615 |
+
config_class=_CONFIG_FOR_DOC,
|
1616 |
+
)
|
1617 |
+
def forward(
|
1618 |
+
self,
|
1619 |
+
input_ids: Optional[torch.Tensor] = None,
|
1620 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1621 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1622 |
+
position_ids: Optional[torch.Tensor] = None,
|
1623 |
+
head_mask: Optional[torch.Tensor] = None,
|
1624 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1625 |
+
labels: Optional[torch.Tensor] = None,
|
1626 |
+
output_attentions: Optional[bool] = None,
|
1627 |
+
output_hidden_states: Optional[bool] = None,
|
1628 |
+
return_dict: Optional[bool] = None,
|
1629 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
1630 |
+
r"""
|
1631 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1632 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1633 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1634 |
+
`input_ids` above)
|
1635 |
+
"""
|
1636 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1637 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1638 |
+
|
1639 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1640 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1641 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1642 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1643 |
+
inputs_embeds = (
|
1644 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1645 |
+
if inputs_embeds is not None
|
1646 |
+
else None
|
1647 |
+
)
|
1648 |
+
|
1649 |
+
outputs = self.bert(
|
1650 |
+
input_ids,
|
1651 |
+
attention_mask=attention_mask,
|
1652 |
+
token_type_ids=token_type_ids,
|
1653 |
+
position_ids=position_ids,
|
1654 |
+
head_mask=head_mask,
|
1655 |
+
inputs_embeds=inputs_embeds,
|
1656 |
+
output_attentions=output_attentions,
|
1657 |
+
output_hidden_states=output_hidden_states,
|
1658 |
+
return_dict=return_dict,
|
1659 |
+
)
|
1660 |
+
|
1661 |
+
pooled_output = outputs[1]
|
1662 |
+
|
1663 |
+
pooled_output = self.dropout(pooled_output)
|
1664 |
+
logits = self.classifier(pooled_output)
|
1665 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1666 |
+
|
1667 |
+
loss = None
|
1668 |
+
if labels is not None:
|
1669 |
+
loss_fct = CrossEntropyLoss()
|
1670 |
+
loss = loss_fct(reshaped_logits, labels)
|
1671 |
+
|
1672 |
+
if not return_dict:
|
1673 |
+
output = (reshaped_logits,) + outputs[2:]
|
1674 |
+
return ((loss,) + output) if loss is not None else output
|
1675 |
+
|
1676 |
+
return MultipleChoiceModelOutput(
|
1677 |
+
loss=loss,
|
1678 |
+
logits=reshaped_logits,
|
1679 |
+
hidden_states=outputs.hidden_states,
|
1680 |
+
attentions=outputs.attentions,
|
1681 |
+
)
|
1682 |
+
|
1683 |
+
|
1684 |
+
@add_start_docstrings(
|
1685 |
+
"""
|
1686 |
+
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1687 |
+
Named-Entity-Recognition (NER) tasks.
|
1688 |
+
""",
|
1689 |
+
BERT_START_DOCSTRING,
|
1690 |
+
)
|
1691 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
1692 |
+
def __init__(self, config):
|
1693 |
+
super().__init__(config)
|
1694 |
+
self.num_labels = config.num_labels
|
1695 |
+
|
1696 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1697 |
+
classifier_dropout = (
|
1698 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1699 |
+
)
|
1700 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1701 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1702 |
+
|
1703 |
+
# Initialize weights and apply final processing
|
1704 |
+
self.post_init()
|
1705 |
+
|
1706 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1707 |
+
@add_code_sample_docstrings(
|
1708 |
+
checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
|
1709 |
+
output_type=TokenClassifierOutput,
|
1710 |
+
config_class=_CONFIG_FOR_DOC,
|
1711 |
+
expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
|
1712 |
+
expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
|
1713 |
+
)
|
1714 |
+
def forward(
|
1715 |
+
self,
|
1716 |
+
input_ids: Optional[torch.Tensor] = None,
|
1717 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1718 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1719 |
+
position_ids: Optional[torch.Tensor] = None,
|
1720 |
+
head_mask: Optional[torch.Tensor] = None,
|
1721 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1722 |
+
labels: Optional[torch.Tensor] = None,
|
1723 |
+
output_attentions: Optional[bool] = None,
|
1724 |
+
output_hidden_states: Optional[bool] = None,
|
1725 |
+
return_dict: Optional[bool] = None,
|
1726 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1727 |
+
r"""
|
1728 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1729 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1730 |
+
"""
|
1731 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1732 |
+
|
1733 |
+
outputs = self.bert(
|
1734 |
+
input_ids,
|
1735 |
+
attention_mask=attention_mask,
|
1736 |
+
token_type_ids=token_type_ids,
|
1737 |
+
position_ids=position_ids,
|
1738 |
+
head_mask=head_mask,
|
1739 |
+
inputs_embeds=inputs_embeds,
|
1740 |
+
output_attentions=output_attentions,
|
1741 |
+
output_hidden_states=output_hidden_states,
|
1742 |
+
return_dict=return_dict,
|
1743 |
+
)
|
1744 |
+
|
1745 |
+
sequence_output = outputs[0]
|
1746 |
+
|
1747 |
+
sequence_output = self.dropout(sequence_output)
|
1748 |
+
logits = self.classifier(sequence_output)
|
1749 |
+
|
1750 |
+
loss = None
|
1751 |
+
if labels is not None:
|
1752 |
+
loss_fct = CrossEntropyLoss()
|
1753 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1754 |
+
|
1755 |
+
if not return_dict:
|
1756 |
+
output = (logits,) + outputs[2:]
|
1757 |
+
return ((loss,) + output) if loss is not None else output
|
1758 |
+
|
1759 |
+
return TokenClassifierOutput(
|
1760 |
+
loss=loss,
|
1761 |
+
logits=logits,
|
1762 |
+
hidden_states=outputs.hidden_states,
|
1763 |
+
attentions=outputs.attentions,
|
1764 |
+
)
|
1765 |
+
|
1766 |
+
|
1767 |
+
@add_start_docstrings(
|
1768 |
+
"""
|
1769 |
+
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1770 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1771 |
+
""",
|
1772 |
+
BERT_START_DOCSTRING,
|
1773 |
+
)
|
1774 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
1775 |
+
def __init__(self, config):
|
1776 |
+
super().__init__(config)
|
1777 |
+
self.num_labels = config.num_labels
|
1778 |
+
|
1779 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1780 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1781 |
+
|
1782 |
+
# Initialize weights and apply final processing
|
1783 |
+
self.post_init()
|
1784 |
+
|
1785 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1786 |
+
@add_code_sample_docstrings(
|
1787 |
+
checkpoint=_CHECKPOINT_FOR_QA,
|
1788 |
+
output_type=QuestionAnsweringModelOutput,
|
1789 |
+
config_class=_CONFIG_FOR_DOC,
|
1790 |
+
qa_target_start_index=_QA_TARGET_START_INDEX,
|
1791 |
+
qa_target_end_index=_QA_TARGET_END_INDEX,
|
1792 |
+
expected_output=_QA_EXPECTED_OUTPUT,
|
1793 |
+
expected_loss=_QA_EXPECTED_LOSS,
|
1794 |
+
)
|
1795 |
+
def forward(
|
1796 |
+
self,
|
1797 |
+
input_ids: Optional[torch.Tensor] = None,
|
1798 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1799 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1800 |
+
position_ids: Optional[torch.Tensor] = None,
|
1801 |
+
head_mask: Optional[torch.Tensor] = None,
|
1802 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1803 |
+
start_positions: Optional[torch.Tensor] = None,
|
1804 |
+
end_positions: Optional[torch.Tensor] = None,
|
1805 |
+
output_attentions: Optional[bool] = None,
|
1806 |
+
output_hidden_states: Optional[bool] = None,
|
1807 |
+
return_dict: Optional[bool] = None,
|
1808 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
1809 |
+
r"""
|
1810 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1811 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1812 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1813 |
+
are not taken into account for computing the loss.
|
1814 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1815 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1816 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1817 |
+
are not taken into account for computing the loss.
|
1818 |
+
"""
|
1819 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1820 |
+
|
1821 |
+
outputs = self.bert(
|
1822 |
+
input_ids,
|
1823 |
+
attention_mask=attention_mask,
|
1824 |
+
token_type_ids=token_type_ids,
|
1825 |
+
position_ids=position_ids,
|
1826 |
+
head_mask=head_mask,
|
1827 |
+
inputs_embeds=inputs_embeds,
|
1828 |
+
output_attentions=output_attentions,
|
1829 |
+
output_hidden_states=output_hidden_states,
|
1830 |
+
return_dict=return_dict,
|
1831 |
+
)
|
1832 |
+
|
1833 |
+
sequence_output = outputs[0]
|
1834 |
+
|
1835 |
+
logits = self.qa_outputs(sequence_output)
|
1836 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1837 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1838 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1839 |
+
|
1840 |
+
total_loss = None
|
1841 |
+
if start_positions is not None and end_positions is not None:
|
1842 |
+
# If we are on multi-GPU, split add a dimension
|
1843 |
+
if len(start_positions.size()) > 1:
|
1844 |
+
start_positions = start_positions.squeeze(-1)
|
1845 |
+
if len(end_positions.size()) > 1:
|
1846 |
+
end_positions = end_positions.squeeze(-1)
|
1847 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1848 |
+
ignored_index = start_logits.size(1)
|
1849 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1850 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1851 |
+
|
1852 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1853 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1854 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1855 |
+
total_loss = (start_loss + end_loss) / 2
|
1856 |
+
|
1857 |
+
if not return_dict:
|
1858 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1859 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1860 |
+
|
1861 |
+
return QuestionAnsweringModelOutput(
|
1862 |
+
loss=total_loss,
|
1863 |
+
start_logits=start_logits,
|
1864 |
+
end_logits=end_logits,
|
1865 |
+
hidden_states=outputs.hidden_states,
|
1866 |
+
attentions=outputs.attentions,
|
1867 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/bert/modeling_flax_bert.py
ADDED
@@ -0,0 +1,1713 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Callable, Optional, Tuple
|
17 |
+
|
18 |
+
import flax
|
19 |
+
import flax.linen as nn
|
20 |
+
import jax
|
21 |
+
import jax.numpy as jnp
|
22 |
+
import numpy as np
|
23 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
24 |
+
from flax.linen import combine_masks, make_causal_mask
|
25 |
+
from flax.linen import partitioning as nn_partitioning
|
26 |
+
from flax.linen.attention import dot_product_attention_weights
|
27 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
28 |
+
from jax import lax
|
29 |
+
|
30 |
+
from ...modeling_flax_outputs import (
|
31 |
+
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
32 |
+
FlaxBaseModelOutputWithPooling,
|
33 |
+
FlaxBaseModelOutputWithPoolingAndCrossAttentions,
|
34 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
35 |
+
FlaxMaskedLMOutput,
|
36 |
+
FlaxMultipleChoiceModelOutput,
|
37 |
+
FlaxNextSentencePredictorOutput,
|
38 |
+
FlaxQuestionAnsweringModelOutput,
|
39 |
+
FlaxSequenceClassifierOutput,
|
40 |
+
FlaxTokenClassifierOutput,
|
41 |
+
)
|
42 |
+
from ...modeling_flax_utils import (
|
43 |
+
ACT2FN,
|
44 |
+
FlaxPreTrainedModel,
|
45 |
+
append_call_sample_docstring,
|
46 |
+
append_replace_return_docstrings,
|
47 |
+
overwrite_call_docstring,
|
48 |
+
)
|
49 |
+
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
50 |
+
from .configuration_bert import BertConfig
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "google-bert/bert-base-uncased"
|
56 |
+
_CONFIG_FOR_DOC = "BertConfig"
|
57 |
+
|
58 |
+
remat = nn_partitioning.remat
|
59 |
+
|
60 |
+
|
61 |
+
@flax.struct.dataclass
|
62 |
+
class FlaxBertForPreTrainingOutput(ModelOutput):
|
63 |
+
"""
|
64 |
+
Output type of [`BertForPreTraining`].
|
65 |
+
|
66 |
+
Args:
|
67 |
+
prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
68 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
69 |
+
seq_relationship_logits (`jnp.ndarray` of shape `(batch_size, 2)`):
|
70 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
71 |
+
before SoftMax).
|
72 |
+
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
73 |
+
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
|
74 |
+
`(batch_size, sequence_length, hidden_size)`.
|
75 |
+
|
76 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
77 |
+
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
78 |
+
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
79 |
+
sequence_length)`.
|
80 |
+
|
81 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
82 |
+
heads.
|
83 |
+
"""
|
84 |
+
|
85 |
+
prediction_logits: jnp.ndarray = None
|
86 |
+
seq_relationship_logits: jnp.ndarray = None
|
87 |
+
hidden_states: Optional[Tuple[jnp.ndarray]] = None
|
88 |
+
attentions: Optional[Tuple[jnp.ndarray]] = None
|
89 |
+
|
90 |
+
|
91 |
+
BERT_START_DOCSTRING = r"""
|
92 |
+
|
93 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
94 |
+
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
|
95 |
+
|
96 |
+
This model is also a
|
97 |
+
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
|
98 |
+
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
|
99 |
+
behavior.
|
100 |
+
|
101 |
+
Finally, this model supports inherent JAX features such as:
|
102 |
+
|
103 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
104 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
105 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
106 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
107 |
+
|
108 |
+
Parameters:
|
109 |
+
config ([`BertConfig`]): Model configuration class with all the parameters of the model.
|
110 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
111 |
+
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
112 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
113 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
114 |
+
`jax.numpy.bfloat16` (on TPUs).
|
115 |
+
|
116 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
117 |
+
specified all the computation will be performed with the given `dtype`.
|
118 |
+
|
119 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
120 |
+
parameters.**
|
121 |
+
|
122 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
123 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
124 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
125 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
126 |
+
`jax.numpy.bfloat16` (on TPUs).
|
127 |
+
|
128 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
129 |
+
specified all the computation will be performed with the given `dtype`.
|
130 |
+
|
131 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
132 |
+
parameters.**
|
133 |
+
|
134 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
135 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
136 |
+
|
137 |
+
"""
|
138 |
+
|
139 |
+
BERT_INPUTS_DOCSTRING = r"""
|
140 |
+
Args:
|
141 |
+
input_ids (`numpy.ndarray` of shape `({0})`):
|
142 |
+
Indices of input sequence tokens in the vocabulary.
|
143 |
+
|
144 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
145 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
146 |
+
|
147 |
+
[What are input IDs?](../glossary#input-ids)
|
148 |
+
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
|
149 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
150 |
+
|
151 |
+
- 1 for tokens that are **not masked**,
|
152 |
+
- 0 for tokens that are **masked**.
|
153 |
+
|
154 |
+
[What are attention masks?](../glossary#attention-mask)
|
155 |
+
token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
|
156 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
157 |
+
1]`:
|
158 |
+
|
159 |
+
- 0 corresponds to a *sentence A* token,
|
160 |
+
- 1 corresponds to a *sentence B* token.
|
161 |
+
|
162 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
163 |
+
position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
|
164 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
165 |
+
config.max_position_embeddings - 1]`.
|
166 |
+
head_mask (`numpy.ndarray` of shape `({0})`, `optional):
|
167 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
168 |
+
|
169 |
+
- 1 indicates the head is **not masked**,
|
170 |
+
- 0 indicates the head is **masked**.
|
171 |
+
|
172 |
+
return_dict (`bool`, *optional*):
|
173 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
174 |
+
|
175 |
+
"""
|
176 |
+
|
177 |
+
|
178 |
+
class FlaxBertEmbeddings(nn.Module):
|
179 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
180 |
+
|
181 |
+
config: BertConfig
|
182 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
183 |
+
|
184 |
+
def setup(self):
|
185 |
+
self.word_embeddings = nn.Embed(
|
186 |
+
self.config.vocab_size,
|
187 |
+
self.config.hidden_size,
|
188 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
189 |
+
dtype=self.dtype,
|
190 |
+
)
|
191 |
+
self.position_embeddings = nn.Embed(
|
192 |
+
self.config.max_position_embeddings,
|
193 |
+
self.config.hidden_size,
|
194 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
195 |
+
dtype=self.dtype,
|
196 |
+
)
|
197 |
+
self.token_type_embeddings = nn.Embed(
|
198 |
+
self.config.type_vocab_size,
|
199 |
+
self.config.hidden_size,
|
200 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
201 |
+
dtype=self.dtype,
|
202 |
+
)
|
203 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
204 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
205 |
+
|
206 |
+
def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
|
207 |
+
# Embed
|
208 |
+
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
|
209 |
+
position_embeds = self.position_embeddings(position_ids.astype("i4"))
|
210 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
|
211 |
+
|
212 |
+
# Sum all embeddings
|
213 |
+
hidden_states = inputs_embeds + token_type_embeddings + position_embeds
|
214 |
+
|
215 |
+
# Layer Norm
|
216 |
+
hidden_states = self.LayerNorm(hidden_states)
|
217 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
218 |
+
return hidden_states
|
219 |
+
|
220 |
+
|
221 |
+
class FlaxBertSelfAttention(nn.Module):
|
222 |
+
config: BertConfig
|
223 |
+
causal: bool = False
|
224 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
225 |
+
|
226 |
+
def setup(self):
|
227 |
+
self.head_dim = self.config.hidden_size // self.config.num_attention_heads
|
228 |
+
if self.config.hidden_size % self.config.num_attention_heads != 0:
|
229 |
+
raise ValueError(
|
230 |
+
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
|
231 |
+
" : {self.config.num_attention_heads}"
|
232 |
+
)
|
233 |
+
|
234 |
+
self.query = nn.Dense(
|
235 |
+
self.config.hidden_size,
|
236 |
+
dtype=self.dtype,
|
237 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
238 |
+
)
|
239 |
+
self.key = nn.Dense(
|
240 |
+
self.config.hidden_size,
|
241 |
+
dtype=self.dtype,
|
242 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
243 |
+
)
|
244 |
+
self.value = nn.Dense(
|
245 |
+
self.config.hidden_size,
|
246 |
+
dtype=self.dtype,
|
247 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
248 |
+
)
|
249 |
+
|
250 |
+
if self.causal:
|
251 |
+
self.causal_mask = make_causal_mask(
|
252 |
+
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
|
253 |
+
)
|
254 |
+
|
255 |
+
def _split_heads(self, hidden_states):
|
256 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))
|
257 |
+
|
258 |
+
def _merge_heads(self, hidden_states):
|
259 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))
|
260 |
+
|
261 |
+
@nn.compact
|
262 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
|
263 |
+
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
264 |
+
"""
|
265 |
+
This function takes projected key, value states from a single input token and concatenates the states to cached
|
266 |
+
states from previous steps. This function is slighly adapted from the official Flax repository:
|
267 |
+
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
268 |
+
"""
|
269 |
+
# detect if we're initializing by absence of existing cache data.
|
270 |
+
is_initialized = self.has_variable("cache", "cached_key")
|
271 |
+
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
272 |
+
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
273 |
+
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
274 |
+
|
275 |
+
if is_initialized:
|
276 |
+
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
277 |
+
# update key, value caches with our new 1d spatial slices
|
278 |
+
cur_index = cache_index.value
|
279 |
+
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
280 |
+
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
281 |
+
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
282 |
+
cached_key.value = key
|
283 |
+
cached_value.value = value
|
284 |
+
num_updated_cache_vectors = query.shape[1]
|
285 |
+
cache_index.value = cache_index.value + num_updated_cache_vectors
|
286 |
+
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
|
287 |
+
pad_mask = jnp.broadcast_to(
|
288 |
+
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
289 |
+
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
290 |
+
)
|
291 |
+
attention_mask = combine_masks(pad_mask, attention_mask)
|
292 |
+
return key, value, attention_mask
|
293 |
+
|
294 |
+
def __call__(
|
295 |
+
self,
|
296 |
+
hidden_states,
|
297 |
+
attention_mask,
|
298 |
+
layer_head_mask,
|
299 |
+
key_value_states: Optional[jnp.ndarray] = None,
|
300 |
+
init_cache: bool = False,
|
301 |
+
deterministic=True,
|
302 |
+
output_attentions: bool = False,
|
303 |
+
):
|
304 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
305 |
+
# for the decoder
|
306 |
+
is_cross_attention = key_value_states is not None
|
307 |
+
batch_size = hidden_states.shape[0]
|
308 |
+
|
309 |
+
# get query proj
|
310 |
+
query_states = self.query(hidden_states)
|
311 |
+
# get key, value proj
|
312 |
+
if is_cross_attention:
|
313 |
+
# cross_attentions
|
314 |
+
key_states = self.key(key_value_states)
|
315 |
+
value_states = self.value(key_value_states)
|
316 |
+
else:
|
317 |
+
# self_attention
|
318 |
+
key_states = self.key(hidden_states)
|
319 |
+
value_states = self.value(hidden_states)
|
320 |
+
|
321 |
+
query_states = self._split_heads(query_states)
|
322 |
+
key_states = self._split_heads(key_states)
|
323 |
+
value_states = self._split_heads(value_states)
|
324 |
+
|
325 |
+
# handle cache prepare causal attention mask
|
326 |
+
if self.causal:
|
327 |
+
query_length, key_length = query_states.shape[1], key_states.shape[1]
|
328 |
+
if self.has_variable("cache", "cached_key"):
|
329 |
+
mask_shift = self.variables["cache"]["cache_index"]
|
330 |
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
331 |
+
causal_mask = lax.dynamic_slice(
|
332 |
+
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
|
333 |
+
)
|
334 |
+
else:
|
335 |
+
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
336 |
+
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
|
337 |
+
|
338 |
+
# combine masks if needed
|
339 |
+
if attention_mask is not None and self.causal:
|
340 |
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
|
341 |
+
attention_mask = combine_masks(attention_mask, causal_mask)
|
342 |
+
elif self.causal:
|
343 |
+
attention_mask = causal_mask
|
344 |
+
elif attention_mask is not None:
|
345 |
+
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
346 |
+
|
347 |
+
# During fast autoregressive decoding, we feed one position at a time,
|
348 |
+
# and cache the keys and values step by step.
|
349 |
+
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
|
350 |
+
key_states, value_states, attention_mask = self._concatenate_to_cache(
|
351 |
+
key_states, value_states, query_states, attention_mask
|
352 |
+
)
|
353 |
+
|
354 |
+
# Convert the boolean attention mask to an attention bias.
|
355 |
+
if attention_mask is not None:
|
356 |
+
# attention mask in the form of attention bias
|
357 |
+
attention_bias = lax.select(
|
358 |
+
attention_mask > 0,
|
359 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
360 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
361 |
+
)
|
362 |
+
else:
|
363 |
+
attention_bias = None
|
364 |
+
|
365 |
+
dropout_rng = None
|
366 |
+
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
|
367 |
+
dropout_rng = self.make_rng("dropout")
|
368 |
+
|
369 |
+
attn_weights = dot_product_attention_weights(
|
370 |
+
query_states,
|
371 |
+
key_states,
|
372 |
+
bias=attention_bias,
|
373 |
+
dropout_rng=dropout_rng,
|
374 |
+
dropout_rate=self.config.attention_probs_dropout_prob,
|
375 |
+
broadcast_dropout=True,
|
376 |
+
deterministic=deterministic,
|
377 |
+
dtype=self.dtype,
|
378 |
+
precision=None,
|
379 |
+
)
|
380 |
+
|
381 |
+
# Mask heads if we want to
|
382 |
+
if layer_head_mask is not None:
|
383 |
+
attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
|
384 |
+
|
385 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
386 |
+
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
|
387 |
+
|
388 |
+
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
|
389 |
+
return outputs
|
390 |
+
|
391 |
+
|
392 |
+
class FlaxBertSelfOutput(nn.Module):
|
393 |
+
config: BertConfig
|
394 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
395 |
+
|
396 |
+
def setup(self):
|
397 |
+
self.dense = nn.Dense(
|
398 |
+
self.config.hidden_size,
|
399 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
400 |
+
dtype=self.dtype,
|
401 |
+
)
|
402 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
403 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
404 |
+
|
405 |
+
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
|
406 |
+
hidden_states = self.dense(hidden_states)
|
407 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
408 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
409 |
+
return hidden_states
|
410 |
+
|
411 |
+
|
412 |
+
class FlaxBertAttention(nn.Module):
|
413 |
+
config: BertConfig
|
414 |
+
causal: bool = False
|
415 |
+
dtype: jnp.dtype = jnp.float32
|
416 |
+
|
417 |
+
def setup(self):
|
418 |
+
self.self = FlaxBertSelfAttention(self.config, causal=self.causal, dtype=self.dtype)
|
419 |
+
self.output = FlaxBertSelfOutput(self.config, dtype=self.dtype)
|
420 |
+
|
421 |
+
def __call__(
|
422 |
+
self,
|
423 |
+
hidden_states,
|
424 |
+
attention_mask,
|
425 |
+
layer_head_mask,
|
426 |
+
key_value_states=None,
|
427 |
+
init_cache=False,
|
428 |
+
deterministic=True,
|
429 |
+
output_attentions: bool = False,
|
430 |
+
):
|
431 |
+
# Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
|
432 |
+
# FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
|
433 |
+
# with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
|
434 |
+
attn_outputs = self.self(
|
435 |
+
hidden_states,
|
436 |
+
attention_mask,
|
437 |
+
layer_head_mask=layer_head_mask,
|
438 |
+
key_value_states=key_value_states,
|
439 |
+
init_cache=init_cache,
|
440 |
+
deterministic=deterministic,
|
441 |
+
output_attentions=output_attentions,
|
442 |
+
)
|
443 |
+
attn_output = attn_outputs[0]
|
444 |
+
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
|
445 |
+
|
446 |
+
outputs = (hidden_states,)
|
447 |
+
|
448 |
+
if output_attentions:
|
449 |
+
outputs += (attn_outputs[1],)
|
450 |
+
|
451 |
+
return outputs
|
452 |
+
|
453 |
+
|
454 |
+
class FlaxBertIntermediate(nn.Module):
|
455 |
+
config: BertConfig
|
456 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
457 |
+
|
458 |
+
def setup(self):
|
459 |
+
self.dense = nn.Dense(
|
460 |
+
self.config.intermediate_size,
|
461 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
462 |
+
dtype=self.dtype,
|
463 |
+
)
|
464 |
+
self.activation = ACT2FN[self.config.hidden_act]
|
465 |
+
|
466 |
+
def __call__(self, hidden_states):
|
467 |
+
hidden_states = self.dense(hidden_states)
|
468 |
+
hidden_states = self.activation(hidden_states)
|
469 |
+
return hidden_states
|
470 |
+
|
471 |
+
|
472 |
+
class FlaxBertOutput(nn.Module):
|
473 |
+
config: BertConfig
|
474 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
475 |
+
|
476 |
+
def setup(self):
|
477 |
+
self.dense = nn.Dense(
|
478 |
+
self.config.hidden_size,
|
479 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
480 |
+
dtype=self.dtype,
|
481 |
+
)
|
482 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
483 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
484 |
+
|
485 |
+
def __call__(self, hidden_states, attention_output, deterministic: bool = True):
|
486 |
+
hidden_states = self.dense(hidden_states)
|
487 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
488 |
+
hidden_states = self.LayerNorm(hidden_states + attention_output)
|
489 |
+
return hidden_states
|
490 |
+
|
491 |
+
|
492 |
+
class FlaxBertLayer(nn.Module):
|
493 |
+
config: BertConfig
|
494 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
495 |
+
|
496 |
+
def setup(self):
|
497 |
+
self.attention = FlaxBertAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype)
|
498 |
+
self.intermediate = FlaxBertIntermediate(self.config, dtype=self.dtype)
|
499 |
+
self.output = FlaxBertOutput(self.config, dtype=self.dtype)
|
500 |
+
if self.config.add_cross_attention:
|
501 |
+
self.crossattention = FlaxBertAttention(self.config, causal=False, dtype=self.dtype)
|
502 |
+
|
503 |
+
def __call__(
|
504 |
+
self,
|
505 |
+
hidden_states,
|
506 |
+
attention_mask,
|
507 |
+
layer_head_mask,
|
508 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
509 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
510 |
+
init_cache: bool = False,
|
511 |
+
deterministic: bool = True,
|
512 |
+
output_attentions: bool = False,
|
513 |
+
):
|
514 |
+
# Self Attention
|
515 |
+
attention_outputs = self.attention(
|
516 |
+
hidden_states,
|
517 |
+
attention_mask,
|
518 |
+
layer_head_mask=layer_head_mask,
|
519 |
+
init_cache=init_cache,
|
520 |
+
deterministic=deterministic,
|
521 |
+
output_attentions=output_attentions,
|
522 |
+
)
|
523 |
+
attention_output = attention_outputs[0]
|
524 |
+
|
525 |
+
# Cross-Attention Block
|
526 |
+
if encoder_hidden_states is not None:
|
527 |
+
cross_attention_outputs = self.crossattention(
|
528 |
+
attention_output,
|
529 |
+
attention_mask=encoder_attention_mask,
|
530 |
+
layer_head_mask=layer_head_mask,
|
531 |
+
key_value_states=encoder_hidden_states,
|
532 |
+
deterministic=deterministic,
|
533 |
+
output_attentions=output_attentions,
|
534 |
+
)
|
535 |
+
attention_output = cross_attention_outputs[0]
|
536 |
+
|
537 |
+
hidden_states = self.intermediate(attention_output)
|
538 |
+
hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
|
539 |
+
|
540 |
+
outputs = (hidden_states,)
|
541 |
+
|
542 |
+
if output_attentions:
|
543 |
+
outputs += (attention_outputs[1],)
|
544 |
+
if encoder_hidden_states is not None:
|
545 |
+
outputs += (cross_attention_outputs[1],)
|
546 |
+
return outputs
|
547 |
+
|
548 |
+
|
549 |
+
class FlaxBertLayerCollection(nn.Module):
|
550 |
+
config: BertConfig
|
551 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
552 |
+
gradient_checkpointing: bool = False
|
553 |
+
|
554 |
+
def setup(self):
|
555 |
+
if self.gradient_checkpointing:
|
556 |
+
FlaxBertCheckpointLayer = remat(FlaxBertLayer, static_argnums=(5, 6, 7))
|
557 |
+
self.layers = [
|
558 |
+
FlaxBertCheckpointLayer(self.config, name=str(i), dtype=self.dtype)
|
559 |
+
for i in range(self.config.num_hidden_layers)
|
560 |
+
]
|
561 |
+
else:
|
562 |
+
self.layers = [
|
563 |
+
FlaxBertLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
|
564 |
+
]
|
565 |
+
|
566 |
+
def __call__(
|
567 |
+
self,
|
568 |
+
hidden_states,
|
569 |
+
attention_mask,
|
570 |
+
head_mask,
|
571 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
572 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
573 |
+
init_cache: bool = False,
|
574 |
+
deterministic: bool = True,
|
575 |
+
output_attentions: bool = False,
|
576 |
+
output_hidden_states: bool = False,
|
577 |
+
return_dict: bool = True,
|
578 |
+
):
|
579 |
+
all_attentions = () if output_attentions else None
|
580 |
+
all_hidden_states = () if output_hidden_states else None
|
581 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
582 |
+
|
583 |
+
# Check if head_mask has a correct number of layers specified if desired
|
584 |
+
if head_mask is not None:
|
585 |
+
if head_mask.shape[0] != (len(self.layers)):
|
586 |
+
raise ValueError(
|
587 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
|
588 |
+
f" {head_mask.shape[0]}."
|
589 |
+
)
|
590 |
+
|
591 |
+
for i, layer in enumerate(self.layers):
|
592 |
+
if output_hidden_states:
|
593 |
+
all_hidden_states += (hidden_states,)
|
594 |
+
|
595 |
+
layer_outputs = layer(
|
596 |
+
hidden_states,
|
597 |
+
attention_mask,
|
598 |
+
head_mask[i] if head_mask is not None else None,
|
599 |
+
encoder_hidden_states,
|
600 |
+
encoder_attention_mask,
|
601 |
+
init_cache,
|
602 |
+
deterministic,
|
603 |
+
output_attentions,
|
604 |
+
)
|
605 |
+
|
606 |
+
hidden_states = layer_outputs[0]
|
607 |
+
|
608 |
+
if output_attentions:
|
609 |
+
all_attentions += (layer_outputs[1],)
|
610 |
+
|
611 |
+
if encoder_hidden_states is not None:
|
612 |
+
all_cross_attentions += (layer_outputs[2],)
|
613 |
+
|
614 |
+
if output_hidden_states:
|
615 |
+
all_hidden_states += (hidden_states,)
|
616 |
+
|
617 |
+
outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
|
618 |
+
|
619 |
+
if not return_dict:
|
620 |
+
return tuple(v for v in outputs if v is not None)
|
621 |
+
|
622 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
623 |
+
last_hidden_state=hidden_states,
|
624 |
+
hidden_states=all_hidden_states,
|
625 |
+
attentions=all_attentions,
|
626 |
+
cross_attentions=all_cross_attentions,
|
627 |
+
)
|
628 |
+
|
629 |
+
|
630 |
+
class FlaxBertEncoder(nn.Module):
|
631 |
+
config: BertConfig
|
632 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
633 |
+
gradient_checkpointing: bool = False
|
634 |
+
|
635 |
+
def setup(self):
|
636 |
+
self.layer = FlaxBertLayerCollection(
|
637 |
+
self.config,
|
638 |
+
dtype=self.dtype,
|
639 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
640 |
+
)
|
641 |
+
|
642 |
+
def __call__(
|
643 |
+
self,
|
644 |
+
hidden_states,
|
645 |
+
attention_mask,
|
646 |
+
head_mask,
|
647 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
648 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
649 |
+
init_cache: bool = False,
|
650 |
+
deterministic: bool = True,
|
651 |
+
output_attentions: bool = False,
|
652 |
+
output_hidden_states: bool = False,
|
653 |
+
return_dict: bool = True,
|
654 |
+
):
|
655 |
+
return self.layer(
|
656 |
+
hidden_states,
|
657 |
+
attention_mask,
|
658 |
+
head_mask=head_mask,
|
659 |
+
encoder_hidden_states=encoder_hidden_states,
|
660 |
+
encoder_attention_mask=encoder_attention_mask,
|
661 |
+
init_cache=init_cache,
|
662 |
+
deterministic=deterministic,
|
663 |
+
output_attentions=output_attentions,
|
664 |
+
output_hidden_states=output_hidden_states,
|
665 |
+
return_dict=return_dict,
|
666 |
+
)
|
667 |
+
|
668 |
+
|
669 |
+
class FlaxBertPooler(nn.Module):
|
670 |
+
config: BertConfig
|
671 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
672 |
+
|
673 |
+
def setup(self):
|
674 |
+
self.dense = nn.Dense(
|
675 |
+
self.config.hidden_size,
|
676 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
677 |
+
dtype=self.dtype,
|
678 |
+
)
|
679 |
+
|
680 |
+
def __call__(self, hidden_states):
|
681 |
+
cls_hidden_state = hidden_states[:, 0]
|
682 |
+
cls_hidden_state = self.dense(cls_hidden_state)
|
683 |
+
return nn.tanh(cls_hidden_state)
|
684 |
+
|
685 |
+
|
686 |
+
class FlaxBertPredictionHeadTransform(nn.Module):
|
687 |
+
config: BertConfig
|
688 |
+
dtype: jnp.dtype = jnp.float32
|
689 |
+
|
690 |
+
def setup(self):
|
691 |
+
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
|
692 |
+
self.activation = ACT2FN[self.config.hidden_act]
|
693 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
694 |
+
|
695 |
+
def __call__(self, hidden_states):
|
696 |
+
hidden_states = self.dense(hidden_states)
|
697 |
+
hidden_states = self.activation(hidden_states)
|
698 |
+
return self.LayerNorm(hidden_states)
|
699 |
+
|
700 |
+
|
701 |
+
class FlaxBertLMPredictionHead(nn.Module):
|
702 |
+
config: BertConfig
|
703 |
+
dtype: jnp.dtype = jnp.float32
|
704 |
+
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
|
705 |
+
|
706 |
+
def setup(self):
|
707 |
+
self.transform = FlaxBertPredictionHeadTransform(self.config, dtype=self.dtype)
|
708 |
+
self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False)
|
709 |
+
self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
|
710 |
+
|
711 |
+
def __call__(self, hidden_states, shared_embedding=None):
|
712 |
+
hidden_states = self.transform(hidden_states)
|
713 |
+
|
714 |
+
if shared_embedding is not None:
|
715 |
+
hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
|
716 |
+
else:
|
717 |
+
hidden_states = self.decoder(hidden_states)
|
718 |
+
|
719 |
+
bias = jnp.asarray(self.bias, self.dtype)
|
720 |
+
hidden_states += bias
|
721 |
+
return hidden_states
|
722 |
+
|
723 |
+
|
724 |
+
class FlaxBertOnlyMLMHead(nn.Module):
|
725 |
+
config: BertConfig
|
726 |
+
dtype: jnp.dtype = jnp.float32
|
727 |
+
|
728 |
+
def setup(self):
|
729 |
+
self.predictions = FlaxBertLMPredictionHead(self.config, dtype=self.dtype)
|
730 |
+
|
731 |
+
def __call__(self, hidden_states, shared_embedding=None):
|
732 |
+
hidden_states = self.predictions(hidden_states, shared_embedding=shared_embedding)
|
733 |
+
return hidden_states
|
734 |
+
|
735 |
+
|
736 |
+
class FlaxBertOnlyNSPHead(nn.Module):
|
737 |
+
dtype: jnp.dtype = jnp.float32
|
738 |
+
|
739 |
+
def setup(self):
|
740 |
+
self.seq_relationship = nn.Dense(2, dtype=self.dtype)
|
741 |
+
|
742 |
+
def __call__(self, pooled_output):
|
743 |
+
return self.seq_relationship(pooled_output)
|
744 |
+
|
745 |
+
|
746 |
+
class FlaxBertPreTrainingHeads(nn.Module):
|
747 |
+
config: BertConfig
|
748 |
+
dtype: jnp.dtype = jnp.float32
|
749 |
+
|
750 |
+
def setup(self):
|
751 |
+
self.predictions = FlaxBertLMPredictionHead(self.config, dtype=self.dtype)
|
752 |
+
self.seq_relationship = nn.Dense(2, dtype=self.dtype)
|
753 |
+
|
754 |
+
def __call__(self, hidden_states, pooled_output, shared_embedding=None):
|
755 |
+
prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding)
|
756 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
757 |
+
return prediction_scores, seq_relationship_score
|
758 |
+
|
759 |
+
|
760 |
+
class FlaxBertPreTrainedModel(FlaxPreTrainedModel):
|
761 |
+
"""
|
762 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
763 |
+
models.
|
764 |
+
"""
|
765 |
+
|
766 |
+
config_class = BertConfig
|
767 |
+
base_model_prefix = "bert"
|
768 |
+
module_class: nn.Module = None
|
769 |
+
|
770 |
+
def __init__(
|
771 |
+
self,
|
772 |
+
config: BertConfig,
|
773 |
+
input_shape: Tuple = (1, 1),
|
774 |
+
seed: int = 0,
|
775 |
+
dtype: jnp.dtype = jnp.float32,
|
776 |
+
_do_init: bool = True,
|
777 |
+
gradient_checkpointing: bool = False,
|
778 |
+
**kwargs,
|
779 |
+
):
|
780 |
+
module = self.module_class(
|
781 |
+
config=config,
|
782 |
+
dtype=dtype,
|
783 |
+
gradient_checkpointing=gradient_checkpointing,
|
784 |
+
**kwargs,
|
785 |
+
)
|
786 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
787 |
+
|
788 |
+
def enable_gradient_checkpointing(self):
|
789 |
+
self._module = self.module_class(
|
790 |
+
config=self.config,
|
791 |
+
dtype=self.dtype,
|
792 |
+
gradient_checkpointing=True,
|
793 |
+
)
|
794 |
+
|
795 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
796 |
+
# init input tensors
|
797 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
798 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
799 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
|
800 |
+
attention_mask = jnp.ones_like(input_ids)
|
801 |
+
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
|
802 |
+
|
803 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
804 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
805 |
+
|
806 |
+
if self.config.add_cross_attention:
|
807 |
+
encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
|
808 |
+
encoder_attention_mask = attention_mask
|
809 |
+
module_init_outputs = self.module.init(
|
810 |
+
rngs,
|
811 |
+
input_ids,
|
812 |
+
attention_mask,
|
813 |
+
token_type_ids,
|
814 |
+
position_ids,
|
815 |
+
head_mask,
|
816 |
+
encoder_hidden_states,
|
817 |
+
encoder_attention_mask,
|
818 |
+
return_dict=False,
|
819 |
+
)
|
820 |
+
else:
|
821 |
+
module_init_outputs = self.module.init(
|
822 |
+
rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False
|
823 |
+
)
|
824 |
+
|
825 |
+
random_params = module_init_outputs["params"]
|
826 |
+
|
827 |
+
if params is not None:
|
828 |
+
random_params = flatten_dict(unfreeze(random_params))
|
829 |
+
params = flatten_dict(unfreeze(params))
|
830 |
+
for missing_key in self._missing_keys:
|
831 |
+
params[missing_key] = random_params[missing_key]
|
832 |
+
self._missing_keys = set()
|
833 |
+
return freeze(unflatten_dict(params))
|
834 |
+
else:
|
835 |
+
return random_params
|
836 |
+
|
837 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache
|
838 |
+
def init_cache(self, batch_size, max_length):
|
839 |
+
r"""
|
840 |
+
Args:
|
841 |
+
batch_size (`int`):
|
842 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
843 |
+
max_length (`int`):
|
844 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
845 |
+
cache.
|
846 |
+
"""
|
847 |
+
# init input variables to retrieve cache
|
848 |
+
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
849 |
+
attention_mask = jnp.ones_like(input_ids, dtype="i4")
|
850 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
851 |
+
|
852 |
+
init_variables = self.module.init(
|
853 |
+
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
|
854 |
+
)
|
855 |
+
return unfreeze(init_variables["cache"])
|
856 |
+
|
857 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
858 |
+
def __call__(
|
859 |
+
self,
|
860 |
+
input_ids,
|
861 |
+
attention_mask=None,
|
862 |
+
token_type_ids=None,
|
863 |
+
position_ids=None,
|
864 |
+
head_mask=None,
|
865 |
+
encoder_hidden_states=None,
|
866 |
+
encoder_attention_mask=None,
|
867 |
+
params: dict = None,
|
868 |
+
dropout_rng: jax.random.PRNGKey = None,
|
869 |
+
train: bool = False,
|
870 |
+
output_attentions: Optional[bool] = None,
|
871 |
+
output_hidden_states: Optional[bool] = None,
|
872 |
+
return_dict: Optional[bool] = None,
|
873 |
+
past_key_values: dict = None,
|
874 |
+
):
|
875 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
876 |
+
output_hidden_states = (
|
877 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
878 |
+
)
|
879 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
880 |
+
|
881 |
+
# init input tensors if not passed
|
882 |
+
if token_type_ids is None:
|
883 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
884 |
+
|
885 |
+
if position_ids is None:
|
886 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
887 |
+
|
888 |
+
if attention_mask is None:
|
889 |
+
attention_mask = jnp.ones_like(input_ids)
|
890 |
+
|
891 |
+
if head_mask is None:
|
892 |
+
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
|
893 |
+
|
894 |
+
# Handle any PRNG if needed
|
895 |
+
rngs = {}
|
896 |
+
if dropout_rng is not None:
|
897 |
+
rngs["dropout"] = dropout_rng
|
898 |
+
|
899 |
+
inputs = {"params": params or self.params}
|
900 |
+
|
901 |
+
if self.config.add_cross_attention:
|
902 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
|
903 |
+
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
|
904 |
+
# changed by FlaxBertAttention module
|
905 |
+
if past_key_values:
|
906 |
+
inputs["cache"] = past_key_values
|
907 |
+
mutable = ["cache"]
|
908 |
+
else:
|
909 |
+
mutable = False
|
910 |
+
|
911 |
+
outputs = self.module.apply(
|
912 |
+
inputs,
|
913 |
+
jnp.array(input_ids, dtype="i4"),
|
914 |
+
jnp.array(attention_mask, dtype="i4"),
|
915 |
+
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
|
916 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
917 |
+
head_mask=jnp.array(head_mask, dtype="i4"),
|
918 |
+
encoder_hidden_states=encoder_hidden_states,
|
919 |
+
encoder_attention_mask=encoder_attention_mask,
|
920 |
+
deterministic=not train,
|
921 |
+
output_attentions=output_attentions,
|
922 |
+
output_hidden_states=output_hidden_states,
|
923 |
+
return_dict=return_dict,
|
924 |
+
rngs=rngs,
|
925 |
+
mutable=mutable,
|
926 |
+
)
|
927 |
+
|
928 |
+
# add updated cache to model output
|
929 |
+
if past_key_values is not None and return_dict:
|
930 |
+
outputs, past_key_values = outputs
|
931 |
+
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
|
932 |
+
return outputs
|
933 |
+
elif past_key_values is not None and not return_dict:
|
934 |
+
outputs, past_key_values = outputs
|
935 |
+
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
|
936 |
+
|
937 |
+
else:
|
938 |
+
outputs = self.module.apply(
|
939 |
+
inputs,
|
940 |
+
jnp.array(input_ids, dtype="i4"),
|
941 |
+
jnp.array(attention_mask, dtype="i4"),
|
942 |
+
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
|
943 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
944 |
+
head_mask=jnp.array(head_mask, dtype="i4"),
|
945 |
+
deterministic=not train,
|
946 |
+
output_attentions=output_attentions,
|
947 |
+
output_hidden_states=output_hidden_states,
|
948 |
+
return_dict=return_dict,
|
949 |
+
rngs=rngs,
|
950 |
+
)
|
951 |
+
|
952 |
+
return outputs
|
953 |
+
|
954 |
+
|
955 |
+
class FlaxBertModule(nn.Module):
|
956 |
+
config: BertConfig
|
957 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
958 |
+
add_pooling_layer: bool = True
|
959 |
+
gradient_checkpointing: bool = False
|
960 |
+
|
961 |
+
def setup(self):
|
962 |
+
self.embeddings = FlaxBertEmbeddings(self.config, dtype=self.dtype)
|
963 |
+
self.encoder = FlaxBertEncoder(
|
964 |
+
self.config,
|
965 |
+
dtype=self.dtype,
|
966 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
967 |
+
)
|
968 |
+
self.pooler = FlaxBertPooler(self.config, dtype=self.dtype)
|
969 |
+
|
970 |
+
def __call__(
|
971 |
+
self,
|
972 |
+
input_ids,
|
973 |
+
attention_mask,
|
974 |
+
token_type_ids: Optional[jnp.ndarray] = None,
|
975 |
+
position_ids: Optional[jnp.ndarray] = None,
|
976 |
+
head_mask: Optional[jnp.ndarray] = None,
|
977 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
978 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
979 |
+
init_cache: bool = False,
|
980 |
+
deterministic: bool = True,
|
981 |
+
output_attentions: bool = False,
|
982 |
+
output_hidden_states: bool = False,
|
983 |
+
return_dict: bool = True,
|
984 |
+
):
|
985 |
+
# make sure `token_type_ids` is correctly initialized when not passed
|
986 |
+
if token_type_ids is None:
|
987 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
988 |
+
|
989 |
+
# make sure `position_ids` is correctly initialized when not passed
|
990 |
+
if position_ids is None:
|
991 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
992 |
+
|
993 |
+
hidden_states = self.embeddings(
|
994 |
+
input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
|
995 |
+
)
|
996 |
+
outputs = self.encoder(
|
997 |
+
hidden_states,
|
998 |
+
attention_mask,
|
999 |
+
head_mask=head_mask,
|
1000 |
+
deterministic=deterministic,
|
1001 |
+
encoder_hidden_states=encoder_hidden_states,
|
1002 |
+
encoder_attention_mask=encoder_attention_mask,
|
1003 |
+
init_cache=init_cache,
|
1004 |
+
output_attentions=output_attentions,
|
1005 |
+
output_hidden_states=output_hidden_states,
|
1006 |
+
return_dict=return_dict,
|
1007 |
+
)
|
1008 |
+
hidden_states = outputs[0]
|
1009 |
+
pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
|
1010 |
+
|
1011 |
+
if not return_dict:
|
1012 |
+
# if pooled is None, don't return it
|
1013 |
+
if pooled is None:
|
1014 |
+
return (hidden_states,) + outputs[1:]
|
1015 |
+
return (hidden_states, pooled) + outputs[1:]
|
1016 |
+
|
1017 |
+
return FlaxBaseModelOutputWithPoolingAndCrossAttentions(
|
1018 |
+
last_hidden_state=hidden_states,
|
1019 |
+
pooler_output=pooled,
|
1020 |
+
hidden_states=outputs.hidden_states,
|
1021 |
+
attentions=outputs.attentions,
|
1022 |
+
cross_attentions=outputs.cross_attentions,
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
|
1026 |
+
@add_start_docstrings(
|
1027 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
1028 |
+
BERT_START_DOCSTRING,
|
1029 |
+
)
|
1030 |
+
class FlaxBertModel(FlaxBertPreTrainedModel):
|
1031 |
+
module_class = FlaxBertModule
|
1032 |
+
|
1033 |
+
|
1034 |
+
append_call_sample_docstring(FlaxBertModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC)
|
1035 |
+
|
1036 |
+
|
1037 |
+
class FlaxBertForPreTrainingModule(nn.Module):
|
1038 |
+
config: BertConfig
|
1039 |
+
dtype: jnp.dtype = jnp.float32
|
1040 |
+
gradient_checkpointing: bool = False
|
1041 |
+
|
1042 |
+
def setup(self):
|
1043 |
+
self.bert = FlaxBertModule(
|
1044 |
+
config=self.config,
|
1045 |
+
dtype=self.dtype,
|
1046 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1047 |
+
)
|
1048 |
+
self.cls = FlaxBertPreTrainingHeads(config=self.config, dtype=self.dtype)
|
1049 |
+
|
1050 |
+
def __call__(
|
1051 |
+
self,
|
1052 |
+
input_ids,
|
1053 |
+
attention_mask,
|
1054 |
+
token_type_ids,
|
1055 |
+
position_ids,
|
1056 |
+
head_mask,
|
1057 |
+
deterministic: bool = True,
|
1058 |
+
output_attentions: bool = False,
|
1059 |
+
output_hidden_states: bool = False,
|
1060 |
+
return_dict: bool = True,
|
1061 |
+
):
|
1062 |
+
# Model
|
1063 |
+
outputs = self.bert(
|
1064 |
+
input_ids,
|
1065 |
+
attention_mask,
|
1066 |
+
token_type_ids,
|
1067 |
+
position_ids,
|
1068 |
+
head_mask,
|
1069 |
+
deterministic=deterministic,
|
1070 |
+
output_attentions=output_attentions,
|
1071 |
+
output_hidden_states=output_hidden_states,
|
1072 |
+
return_dict=return_dict,
|
1073 |
+
)
|
1074 |
+
|
1075 |
+
if self.config.tie_word_embeddings:
|
1076 |
+
shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
1077 |
+
else:
|
1078 |
+
shared_embedding = None
|
1079 |
+
|
1080 |
+
hidden_states = outputs[0]
|
1081 |
+
pooled_output = outputs[1]
|
1082 |
+
|
1083 |
+
prediction_scores, seq_relationship_score = self.cls(
|
1084 |
+
hidden_states, pooled_output, shared_embedding=shared_embedding
|
1085 |
+
)
|
1086 |
+
|
1087 |
+
if not return_dict:
|
1088 |
+
return (prediction_scores, seq_relationship_score) + outputs[2:]
|
1089 |
+
|
1090 |
+
return FlaxBertForPreTrainingOutput(
|
1091 |
+
prediction_logits=prediction_scores,
|
1092 |
+
seq_relationship_logits=seq_relationship_score,
|
1093 |
+
hidden_states=outputs.hidden_states,
|
1094 |
+
attentions=outputs.attentions,
|
1095 |
+
)
|
1096 |
+
|
1097 |
+
|
1098 |
+
@add_start_docstrings(
|
1099 |
+
"""
|
1100 |
+
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
1101 |
+
sentence prediction (classification)` head.
|
1102 |
+
""",
|
1103 |
+
BERT_START_DOCSTRING,
|
1104 |
+
)
|
1105 |
+
class FlaxBertForPreTraining(FlaxBertPreTrainedModel):
|
1106 |
+
module_class = FlaxBertForPreTrainingModule
|
1107 |
+
|
1108 |
+
|
1109 |
+
FLAX_BERT_FOR_PRETRAINING_DOCSTRING = """
|
1110 |
+
Returns:
|
1111 |
+
|
1112 |
+
Example:
|
1113 |
+
|
1114 |
+
```python
|
1115 |
+
>>> from transformers import AutoTokenizer, FlaxBertForPreTraining
|
1116 |
+
|
1117 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
1118 |
+
>>> model = FlaxBertForPreTraining.from_pretrained("google-bert/bert-base-uncased")
|
1119 |
+
|
1120 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
|
1121 |
+
>>> outputs = model(**inputs)
|
1122 |
+
|
1123 |
+
>>> prediction_logits = outputs.prediction_logits
|
1124 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
1125 |
+
```
|
1126 |
+
"""
|
1127 |
+
|
1128 |
+
overwrite_call_docstring(
|
1129 |
+
FlaxBertForPreTraining,
|
1130 |
+
BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_BERT_FOR_PRETRAINING_DOCSTRING,
|
1131 |
+
)
|
1132 |
+
append_replace_return_docstrings(
|
1133 |
+
FlaxBertForPreTraining, output_type=FlaxBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
|
1134 |
+
)
|
1135 |
+
|
1136 |
+
|
1137 |
+
class FlaxBertForMaskedLMModule(nn.Module):
|
1138 |
+
config: BertConfig
|
1139 |
+
dtype: jnp.dtype = jnp.float32
|
1140 |
+
gradient_checkpointing: bool = False
|
1141 |
+
|
1142 |
+
def setup(self):
|
1143 |
+
self.bert = FlaxBertModule(
|
1144 |
+
config=self.config,
|
1145 |
+
add_pooling_layer=False,
|
1146 |
+
dtype=self.dtype,
|
1147 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1148 |
+
)
|
1149 |
+
self.cls = FlaxBertOnlyMLMHead(config=self.config, dtype=self.dtype)
|
1150 |
+
|
1151 |
+
def __call__(
|
1152 |
+
self,
|
1153 |
+
input_ids,
|
1154 |
+
attention_mask,
|
1155 |
+
token_type_ids,
|
1156 |
+
position_ids,
|
1157 |
+
head_mask,
|
1158 |
+
deterministic: bool = True,
|
1159 |
+
output_attentions: bool = False,
|
1160 |
+
output_hidden_states: bool = False,
|
1161 |
+
return_dict: bool = True,
|
1162 |
+
):
|
1163 |
+
# Model
|
1164 |
+
outputs = self.bert(
|
1165 |
+
input_ids,
|
1166 |
+
attention_mask,
|
1167 |
+
token_type_ids,
|
1168 |
+
position_ids,
|
1169 |
+
head_mask,
|
1170 |
+
deterministic=deterministic,
|
1171 |
+
output_attentions=output_attentions,
|
1172 |
+
output_hidden_states=output_hidden_states,
|
1173 |
+
return_dict=return_dict,
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
hidden_states = outputs[0]
|
1177 |
+
if self.config.tie_word_embeddings:
|
1178 |
+
shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
1179 |
+
else:
|
1180 |
+
shared_embedding = None
|
1181 |
+
|
1182 |
+
# Compute the prediction scores
|
1183 |
+
logits = self.cls(hidden_states, shared_embedding=shared_embedding)
|
1184 |
+
|
1185 |
+
if not return_dict:
|
1186 |
+
return (logits,) + outputs[1:]
|
1187 |
+
|
1188 |
+
return FlaxMaskedLMOutput(
|
1189 |
+
logits=logits,
|
1190 |
+
hidden_states=outputs.hidden_states,
|
1191 |
+
attentions=outputs.attentions,
|
1192 |
+
)
|
1193 |
+
|
1194 |
+
|
1195 |
+
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
|
1196 |
+
class FlaxBertForMaskedLM(FlaxBertPreTrainedModel):
|
1197 |
+
module_class = FlaxBertForMaskedLMModule
|
1198 |
+
|
1199 |
+
|
1200 |
+
append_call_sample_docstring(FlaxBertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC)
|
1201 |
+
|
1202 |
+
|
1203 |
+
class FlaxBertForNextSentencePredictionModule(nn.Module):
|
1204 |
+
config: BertConfig
|
1205 |
+
dtype: jnp.dtype = jnp.float32
|
1206 |
+
gradient_checkpointing: bool = False
|
1207 |
+
|
1208 |
+
def setup(self):
|
1209 |
+
self.bert = FlaxBertModule(
|
1210 |
+
config=self.config,
|
1211 |
+
dtype=self.dtype,
|
1212 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1213 |
+
)
|
1214 |
+
self.cls = FlaxBertOnlyNSPHead(dtype=self.dtype)
|
1215 |
+
|
1216 |
+
def __call__(
|
1217 |
+
self,
|
1218 |
+
input_ids,
|
1219 |
+
attention_mask,
|
1220 |
+
token_type_ids,
|
1221 |
+
position_ids,
|
1222 |
+
head_mask,
|
1223 |
+
deterministic: bool = True,
|
1224 |
+
output_attentions: bool = False,
|
1225 |
+
output_hidden_states: bool = False,
|
1226 |
+
return_dict: bool = True,
|
1227 |
+
):
|
1228 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1229 |
+
|
1230 |
+
# Model
|
1231 |
+
outputs = self.bert(
|
1232 |
+
input_ids,
|
1233 |
+
attention_mask,
|
1234 |
+
token_type_ids,
|
1235 |
+
position_ids,
|
1236 |
+
head_mask,
|
1237 |
+
deterministic=deterministic,
|
1238 |
+
output_attentions=output_attentions,
|
1239 |
+
output_hidden_states=output_hidden_states,
|
1240 |
+
return_dict=return_dict,
|
1241 |
+
)
|
1242 |
+
|
1243 |
+
pooled_output = outputs[1]
|
1244 |
+
seq_relationship_scores = self.cls(pooled_output)
|
1245 |
+
|
1246 |
+
if not return_dict:
|
1247 |
+
return (seq_relationship_scores,) + outputs[2:]
|
1248 |
+
|
1249 |
+
return FlaxNextSentencePredictorOutput(
|
1250 |
+
logits=seq_relationship_scores,
|
1251 |
+
hidden_states=outputs.hidden_states,
|
1252 |
+
attentions=outputs.attentions,
|
1253 |
+
)
|
1254 |
+
|
1255 |
+
|
1256 |
+
@add_start_docstrings(
|
1257 |
+
"""Bert Model with a `next sentence prediction (classification)` head on top.""",
|
1258 |
+
BERT_START_DOCSTRING,
|
1259 |
+
)
|
1260 |
+
class FlaxBertForNextSentencePrediction(FlaxBertPreTrainedModel):
|
1261 |
+
module_class = FlaxBertForNextSentencePredictionModule
|
1262 |
+
|
1263 |
+
|
1264 |
+
FLAX_BERT_FOR_NEXT_SENT_PRED_DOCSTRING = """
|
1265 |
+
Returns:
|
1266 |
+
|
1267 |
+
Example:
|
1268 |
+
|
1269 |
+
```python
|
1270 |
+
>>> from transformers import AutoTokenizer, FlaxBertForNextSentencePrediction
|
1271 |
+
|
1272 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
1273 |
+
>>> model = FlaxBertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased")
|
1274 |
+
|
1275 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1276 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1277 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="jax")
|
1278 |
+
|
1279 |
+
>>> outputs = model(**encoding)
|
1280 |
+
>>> logits = outputs.logits
|
1281 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
1282 |
+
```
|
1283 |
+
"""
|
1284 |
+
|
1285 |
+
|
1286 |
+
overwrite_call_docstring(
|
1287 |
+
FlaxBertForNextSentencePrediction,
|
1288 |
+
BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_BERT_FOR_NEXT_SENT_PRED_DOCSTRING,
|
1289 |
+
)
|
1290 |
+
append_replace_return_docstrings(
|
1291 |
+
FlaxBertForNextSentencePrediction, output_type=FlaxNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
|
1295 |
+
class FlaxBertForSequenceClassificationModule(nn.Module):
|
1296 |
+
config: BertConfig
|
1297 |
+
dtype: jnp.dtype = jnp.float32
|
1298 |
+
gradient_checkpointing: bool = False
|
1299 |
+
|
1300 |
+
def setup(self):
|
1301 |
+
self.bert = FlaxBertModule(
|
1302 |
+
config=self.config,
|
1303 |
+
dtype=self.dtype,
|
1304 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1305 |
+
)
|
1306 |
+
classifier_dropout = (
|
1307 |
+
self.config.classifier_dropout
|
1308 |
+
if self.config.classifier_dropout is not None
|
1309 |
+
else self.config.hidden_dropout_prob
|
1310 |
+
)
|
1311 |
+
self.dropout = nn.Dropout(rate=classifier_dropout)
|
1312 |
+
self.classifier = nn.Dense(
|
1313 |
+
self.config.num_labels,
|
1314 |
+
dtype=self.dtype,
|
1315 |
+
)
|
1316 |
+
|
1317 |
+
def __call__(
|
1318 |
+
self,
|
1319 |
+
input_ids,
|
1320 |
+
attention_mask,
|
1321 |
+
token_type_ids,
|
1322 |
+
position_ids,
|
1323 |
+
head_mask,
|
1324 |
+
deterministic: bool = True,
|
1325 |
+
output_attentions: bool = False,
|
1326 |
+
output_hidden_states: bool = False,
|
1327 |
+
return_dict: bool = True,
|
1328 |
+
):
|
1329 |
+
# Model
|
1330 |
+
outputs = self.bert(
|
1331 |
+
input_ids,
|
1332 |
+
attention_mask,
|
1333 |
+
token_type_ids,
|
1334 |
+
position_ids,
|
1335 |
+
head_mask,
|
1336 |
+
deterministic=deterministic,
|
1337 |
+
output_attentions=output_attentions,
|
1338 |
+
output_hidden_states=output_hidden_states,
|
1339 |
+
return_dict=return_dict,
|
1340 |
+
)
|
1341 |
+
|
1342 |
+
pooled_output = outputs[1]
|
1343 |
+
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
|
1344 |
+
logits = self.classifier(pooled_output)
|
1345 |
+
|
1346 |
+
if not return_dict:
|
1347 |
+
return (logits,) + outputs[2:]
|
1348 |
+
|
1349 |
+
return FlaxSequenceClassifierOutput(
|
1350 |
+
logits=logits,
|
1351 |
+
hidden_states=outputs.hidden_states,
|
1352 |
+
attentions=outputs.attentions,
|
1353 |
+
)
|
1354 |
+
|
1355 |
+
|
1356 |
+
@add_start_docstrings(
|
1357 |
+
"""
|
1358 |
+
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1359 |
+
output) e.g. for GLUE tasks.
|
1360 |
+
""",
|
1361 |
+
BERT_START_DOCSTRING,
|
1362 |
+
)
|
1363 |
+
class FlaxBertForSequenceClassification(FlaxBertPreTrainedModel):
|
1364 |
+
module_class = FlaxBertForSequenceClassificationModule
|
1365 |
+
|
1366 |
+
|
1367 |
+
append_call_sample_docstring(
|
1368 |
+
FlaxBertForSequenceClassification,
|
1369 |
+
_CHECKPOINT_FOR_DOC,
|
1370 |
+
FlaxSequenceClassifierOutput,
|
1371 |
+
_CONFIG_FOR_DOC,
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
|
1375 |
+
class FlaxBertForMultipleChoiceModule(nn.Module):
|
1376 |
+
config: BertConfig
|
1377 |
+
dtype: jnp.dtype = jnp.float32
|
1378 |
+
gradient_checkpointing: bool = False
|
1379 |
+
|
1380 |
+
def setup(self):
|
1381 |
+
self.bert = FlaxBertModule(
|
1382 |
+
config=self.config,
|
1383 |
+
dtype=self.dtype,
|
1384 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1385 |
+
)
|
1386 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
1387 |
+
self.classifier = nn.Dense(1, dtype=self.dtype)
|
1388 |
+
|
1389 |
+
def __call__(
|
1390 |
+
self,
|
1391 |
+
input_ids,
|
1392 |
+
attention_mask,
|
1393 |
+
token_type_ids,
|
1394 |
+
position_ids,
|
1395 |
+
head_mask,
|
1396 |
+
deterministic: bool = True,
|
1397 |
+
output_attentions: bool = False,
|
1398 |
+
output_hidden_states: bool = False,
|
1399 |
+
return_dict: bool = True,
|
1400 |
+
):
|
1401 |
+
num_choices = input_ids.shape[1]
|
1402 |
+
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
|
1403 |
+
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
|
1404 |
+
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
|
1405 |
+
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
|
1406 |
+
|
1407 |
+
# Model
|
1408 |
+
outputs = self.bert(
|
1409 |
+
input_ids,
|
1410 |
+
attention_mask,
|
1411 |
+
token_type_ids,
|
1412 |
+
position_ids,
|
1413 |
+
head_mask,
|
1414 |
+
deterministic=deterministic,
|
1415 |
+
output_attentions=output_attentions,
|
1416 |
+
output_hidden_states=output_hidden_states,
|
1417 |
+
return_dict=return_dict,
|
1418 |
+
)
|
1419 |
+
|
1420 |
+
pooled_output = outputs[1]
|
1421 |
+
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
|
1422 |
+
logits = self.classifier(pooled_output)
|
1423 |
+
|
1424 |
+
reshaped_logits = logits.reshape(-1, num_choices)
|
1425 |
+
|
1426 |
+
if not return_dict:
|
1427 |
+
return (reshaped_logits,) + outputs[2:]
|
1428 |
+
|
1429 |
+
return FlaxMultipleChoiceModelOutput(
|
1430 |
+
logits=reshaped_logits,
|
1431 |
+
hidden_states=outputs.hidden_states,
|
1432 |
+
attentions=outputs.attentions,
|
1433 |
+
)
|
1434 |
+
|
1435 |
+
|
1436 |
+
@add_start_docstrings(
|
1437 |
+
"""
|
1438 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1439 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1440 |
+
""",
|
1441 |
+
BERT_START_DOCSTRING,
|
1442 |
+
)
|
1443 |
+
class FlaxBertForMultipleChoice(FlaxBertPreTrainedModel):
|
1444 |
+
module_class = FlaxBertForMultipleChoiceModule
|
1445 |
+
|
1446 |
+
|
1447 |
+
overwrite_call_docstring(
|
1448 |
+
FlaxBertForMultipleChoice, BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
1449 |
+
)
|
1450 |
+
append_call_sample_docstring(
|
1451 |
+
FlaxBertForMultipleChoice, _CHECKPOINT_FOR_DOC, FlaxMultipleChoiceModelOutput, _CONFIG_FOR_DOC
|
1452 |
+
)
|
1453 |
+
|
1454 |
+
|
1455 |
+
class FlaxBertForTokenClassificationModule(nn.Module):
|
1456 |
+
config: BertConfig
|
1457 |
+
dtype: jnp.dtype = jnp.float32
|
1458 |
+
gradient_checkpointing: bool = False
|
1459 |
+
|
1460 |
+
def setup(self):
|
1461 |
+
self.bert = FlaxBertModule(
|
1462 |
+
config=self.config,
|
1463 |
+
dtype=self.dtype,
|
1464 |
+
add_pooling_layer=False,
|
1465 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1466 |
+
)
|
1467 |
+
classifier_dropout = (
|
1468 |
+
self.config.classifier_dropout
|
1469 |
+
if self.config.classifier_dropout is not None
|
1470 |
+
else self.config.hidden_dropout_prob
|
1471 |
+
)
|
1472 |
+
self.dropout = nn.Dropout(rate=classifier_dropout)
|
1473 |
+
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
|
1474 |
+
|
1475 |
+
def __call__(
|
1476 |
+
self,
|
1477 |
+
input_ids,
|
1478 |
+
attention_mask,
|
1479 |
+
token_type_ids,
|
1480 |
+
position_ids,
|
1481 |
+
head_mask,
|
1482 |
+
deterministic: bool = True,
|
1483 |
+
output_attentions: bool = False,
|
1484 |
+
output_hidden_states: bool = False,
|
1485 |
+
return_dict: bool = True,
|
1486 |
+
):
|
1487 |
+
# Model
|
1488 |
+
outputs = self.bert(
|
1489 |
+
input_ids,
|
1490 |
+
attention_mask,
|
1491 |
+
token_type_ids,
|
1492 |
+
position_ids,
|
1493 |
+
head_mask,
|
1494 |
+
deterministic=deterministic,
|
1495 |
+
output_attentions=output_attentions,
|
1496 |
+
output_hidden_states=output_hidden_states,
|
1497 |
+
return_dict=return_dict,
|
1498 |
+
)
|
1499 |
+
|
1500 |
+
hidden_states = outputs[0]
|
1501 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
1502 |
+
logits = self.classifier(hidden_states)
|
1503 |
+
|
1504 |
+
if not return_dict:
|
1505 |
+
return (logits,) + outputs[1:]
|
1506 |
+
|
1507 |
+
return FlaxTokenClassifierOutput(
|
1508 |
+
logits=logits,
|
1509 |
+
hidden_states=outputs.hidden_states,
|
1510 |
+
attentions=outputs.attentions,
|
1511 |
+
)
|
1512 |
+
|
1513 |
+
|
1514 |
+
@add_start_docstrings(
|
1515 |
+
"""
|
1516 |
+
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1517 |
+
Named-Entity-Recognition (NER) tasks.
|
1518 |
+
""",
|
1519 |
+
BERT_START_DOCSTRING,
|
1520 |
+
)
|
1521 |
+
class FlaxBertForTokenClassification(FlaxBertPreTrainedModel):
|
1522 |
+
module_class = FlaxBertForTokenClassificationModule
|
1523 |
+
|
1524 |
+
|
1525 |
+
append_call_sample_docstring(
|
1526 |
+
FlaxBertForTokenClassification, _CHECKPOINT_FOR_DOC, FlaxTokenClassifierOutput, _CONFIG_FOR_DOC
|
1527 |
+
)
|
1528 |
+
|
1529 |
+
|
1530 |
+
class FlaxBertForQuestionAnsweringModule(nn.Module):
|
1531 |
+
config: BertConfig
|
1532 |
+
dtype: jnp.dtype = jnp.float32
|
1533 |
+
gradient_checkpointing: bool = False
|
1534 |
+
|
1535 |
+
def setup(self):
|
1536 |
+
self.bert = FlaxBertModule(
|
1537 |
+
config=self.config,
|
1538 |
+
dtype=self.dtype,
|
1539 |
+
add_pooling_layer=False,
|
1540 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1541 |
+
)
|
1542 |
+
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
|
1543 |
+
|
1544 |
+
def __call__(
|
1545 |
+
self,
|
1546 |
+
input_ids,
|
1547 |
+
attention_mask,
|
1548 |
+
token_type_ids,
|
1549 |
+
position_ids,
|
1550 |
+
head_mask,
|
1551 |
+
deterministic: bool = True,
|
1552 |
+
output_attentions: bool = False,
|
1553 |
+
output_hidden_states: bool = False,
|
1554 |
+
return_dict: bool = True,
|
1555 |
+
):
|
1556 |
+
# Model
|
1557 |
+
outputs = self.bert(
|
1558 |
+
input_ids,
|
1559 |
+
attention_mask,
|
1560 |
+
token_type_ids,
|
1561 |
+
position_ids,
|
1562 |
+
head_mask,
|
1563 |
+
deterministic=deterministic,
|
1564 |
+
output_attentions=output_attentions,
|
1565 |
+
output_hidden_states=output_hidden_states,
|
1566 |
+
return_dict=return_dict,
|
1567 |
+
)
|
1568 |
+
|
1569 |
+
hidden_states = outputs[0]
|
1570 |
+
|
1571 |
+
logits = self.qa_outputs(hidden_states)
|
1572 |
+
start_logits, end_logits = jnp.split(logits, self.config.num_labels, axis=-1)
|
1573 |
+
start_logits = start_logits.squeeze(-1)
|
1574 |
+
end_logits = end_logits.squeeze(-1)
|
1575 |
+
|
1576 |
+
if not return_dict:
|
1577 |
+
return (start_logits, end_logits) + outputs[1:]
|
1578 |
+
|
1579 |
+
return FlaxQuestionAnsweringModelOutput(
|
1580 |
+
start_logits=start_logits,
|
1581 |
+
end_logits=end_logits,
|
1582 |
+
hidden_states=outputs.hidden_states,
|
1583 |
+
attentions=outputs.attentions,
|
1584 |
+
)
|
1585 |
+
|
1586 |
+
|
1587 |
+
@add_start_docstrings(
|
1588 |
+
"""
|
1589 |
+
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1590 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1591 |
+
""",
|
1592 |
+
BERT_START_DOCSTRING,
|
1593 |
+
)
|
1594 |
+
class FlaxBertForQuestionAnswering(FlaxBertPreTrainedModel):
|
1595 |
+
module_class = FlaxBertForQuestionAnsweringModule
|
1596 |
+
|
1597 |
+
|
1598 |
+
append_call_sample_docstring(
|
1599 |
+
FlaxBertForQuestionAnswering,
|
1600 |
+
_CHECKPOINT_FOR_DOC,
|
1601 |
+
FlaxQuestionAnsweringModelOutput,
|
1602 |
+
_CONFIG_FOR_DOC,
|
1603 |
+
)
|
1604 |
+
|
1605 |
+
|
1606 |
+
class FlaxBertForCausalLMModule(nn.Module):
|
1607 |
+
config: BertConfig
|
1608 |
+
dtype: jnp.dtype = jnp.float32
|
1609 |
+
gradient_checkpointing: bool = False
|
1610 |
+
|
1611 |
+
def setup(self):
|
1612 |
+
self.bert = FlaxBertModule(
|
1613 |
+
config=self.config,
|
1614 |
+
add_pooling_layer=False,
|
1615 |
+
dtype=self.dtype,
|
1616 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1617 |
+
)
|
1618 |
+
self.cls = FlaxBertOnlyMLMHead(config=self.config, dtype=self.dtype)
|
1619 |
+
|
1620 |
+
def __call__(
|
1621 |
+
self,
|
1622 |
+
input_ids,
|
1623 |
+
attention_mask,
|
1624 |
+
position_ids,
|
1625 |
+
token_type_ids: Optional[jnp.ndarray] = None,
|
1626 |
+
head_mask: Optional[jnp.ndarray] = None,
|
1627 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
1628 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
1629 |
+
init_cache: bool = False,
|
1630 |
+
deterministic: bool = True,
|
1631 |
+
output_attentions: bool = False,
|
1632 |
+
output_hidden_states: bool = False,
|
1633 |
+
return_dict: bool = True,
|
1634 |
+
):
|
1635 |
+
# Model
|
1636 |
+
outputs = self.bert(
|
1637 |
+
input_ids,
|
1638 |
+
attention_mask,
|
1639 |
+
token_type_ids,
|
1640 |
+
position_ids,
|
1641 |
+
head_mask,
|
1642 |
+
encoder_hidden_states=encoder_hidden_states,
|
1643 |
+
encoder_attention_mask=encoder_attention_mask,
|
1644 |
+
init_cache=init_cache,
|
1645 |
+
deterministic=deterministic,
|
1646 |
+
output_attentions=output_attentions,
|
1647 |
+
output_hidden_states=output_hidden_states,
|
1648 |
+
return_dict=return_dict,
|
1649 |
+
)
|
1650 |
+
|
1651 |
+
hidden_states = outputs[0]
|
1652 |
+
if self.config.tie_word_embeddings:
|
1653 |
+
shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
1654 |
+
else:
|
1655 |
+
shared_embedding = None
|
1656 |
+
|
1657 |
+
# Compute the prediction scores
|
1658 |
+
logits = self.cls(hidden_states, shared_embedding=shared_embedding)
|
1659 |
+
|
1660 |
+
if not return_dict:
|
1661 |
+
return (logits,) + outputs[1:]
|
1662 |
+
|
1663 |
+
return FlaxCausalLMOutputWithCrossAttentions(
|
1664 |
+
logits=logits,
|
1665 |
+
hidden_states=outputs.hidden_states,
|
1666 |
+
attentions=outputs.attentions,
|
1667 |
+
cross_attentions=outputs.cross_attentions,
|
1668 |
+
)
|
1669 |
+
|
1670 |
+
|
1671 |
+
@add_start_docstrings(
|
1672 |
+
"""
|
1673 |
+
Bert Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for
|
1674 |
+
autoregressive tasks.
|
1675 |
+
""",
|
1676 |
+
BERT_START_DOCSTRING,
|
1677 |
+
)
|
1678 |
+
class FlaxBertForCausalLM(FlaxBertPreTrainedModel):
|
1679 |
+
module_class = FlaxBertForCausalLMModule
|
1680 |
+
|
1681 |
+
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
|
1682 |
+
# initializing the cache
|
1683 |
+
batch_size, seq_length = input_ids.shape
|
1684 |
+
|
1685 |
+
past_key_values = self.init_cache(batch_size, max_length)
|
1686 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
1687 |
+
# But since the decoder uses a causal mask, those positions are masked anyway.
|
1688 |
+
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
|
1689 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
1690 |
+
if attention_mask is not None:
|
1691 |
+
position_ids = attention_mask.cumsum(axis=-1) - 1
|
1692 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
|
1693 |
+
else:
|
1694 |
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
1695 |
+
|
1696 |
+
return {
|
1697 |
+
"past_key_values": past_key_values,
|
1698 |
+
"attention_mask": extended_attention_mask,
|
1699 |
+
"position_ids": position_ids,
|
1700 |
+
}
|
1701 |
+
|
1702 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
1703 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
1704 |
+
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
|
1705 |
+
return model_kwargs
|
1706 |
+
|
1707 |
+
|
1708 |
+
append_call_sample_docstring(
|
1709 |
+
FlaxBertForCausalLM,
|
1710 |
+
_CHECKPOINT_FOR_DOC,
|
1711 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
1712 |
+
_CONFIG_FOR_DOC,
|
1713 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/bert/modeling_tf_bert.py
ADDED
@@ -0,0 +1,2114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" TF 2.0 BERT model."""
|
17 |
+
|
18 |
+
|
19 |
+
from __future__ import annotations
|
20 |
+
|
21 |
+
import math
|
22 |
+
import warnings
|
23 |
+
from dataclasses import dataclass
|
24 |
+
from typing import Dict, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import numpy as np
|
27 |
+
import tensorflow as tf
|
28 |
+
|
29 |
+
from ...activations_tf import get_tf_activation
|
30 |
+
from ...modeling_tf_outputs import (
|
31 |
+
TFBaseModelOutputWithPastAndCrossAttentions,
|
32 |
+
TFBaseModelOutputWithPoolingAndCrossAttentions,
|
33 |
+
TFCausalLMOutputWithCrossAttentions,
|
34 |
+
TFMaskedLMOutput,
|
35 |
+
TFMultipleChoiceModelOutput,
|
36 |
+
TFNextSentencePredictorOutput,
|
37 |
+
TFQuestionAnsweringModelOutput,
|
38 |
+
TFSequenceClassifierOutput,
|
39 |
+
TFTokenClassifierOutput,
|
40 |
+
)
|
41 |
+
from ...modeling_tf_utils import (
|
42 |
+
TFCausalLanguageModelingLoss,
|
43 |
+
TFMaskedLanguageModelingLoss,
|
44 |
+
TFModelInputType,
|
45 |
+
TFMultipleChoiceLoss,
|
46 |
+
TFNextSentencePredictionLoss,
|
47 |
+
TFPreTrainedModel,
|
48 |
+
TFQuestionAnsweringLoss,
|
49 |
+
TFSequenceClassificationLoss,
|
50 |
+
TFTokenClassificationLoss,
|
51 |
+
get_initializer,
|
52 |
+
keras,
|
53 |
+
keras_serializable,
|
54 |
+
unpack_inputs,
|
55 |
+
)
|
56 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
57 |
+
from ...utils import (
|
58 |
+
ModelOutput,
|
59 |
+
add_code_sample_docstrings,
|
60 |
+
add_start_docstrings,
|
61 |
+
add_start_docstrings_to_model_forward,
|
62 |
+
logging,
|
63 |
+
replace_return_docstrings,
|
64 |
+
)
|
65 |
+
from .configuration_bert import BertConfig
|
66 |
+
|
67 |
+
|
68 |
+
logger = logging.get_logger(__name__)
|
69 |
+
|
70 |
+
_CHECKPOINT_FOR_DOC = "google-bert/bert-base-uncased"
|
71 |
+
_CONFIG_FOR_DOC = "BertConfig"
|
72 |
+
|
73 |
+
# TokenClassification docstring
|
74 |
+
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbmdz/bert-large-cased-finetuned-conll03-english"
|
75 |
+
_TOKEN_CLASS_EXPECTED_OUTPUT = (
|
76 |
+
"['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] "
|
77 |
+
)
|
78 |
+
_TOKEN_CLASS_EXPECTED_LOSS = 0.01
|
79 |
+
|
80 |
+
# QuestionAnswering docstring
|
81 |
+
_CHECKPOINT_FOR_QA = "ydshieh/bert-base-cased-squad2"
|
82 |
+
_QA_EXPECTED_OUTPUT = "'a nice puppet'"
|
83 |
+
_QA_EXPECTED_LOSS = 7.41
|
84 |
+
_QA_TARGET_START_INDEX = 14
|
85 |
+
_QA_TARGET_END_INDEX = 15
|
86 |
+
|
87 |
+
# SequenceClassification docstring
|
88 |
+
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ydshieh/bert-base-uncased-yelp-polarity"
|
89 |
+
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
|
90 |
+
_SEQ_CLASS_EXPECTED_LOSS = 0.01
|
91 |
+
|
92 |
+
|
93 |
+
from ..deprecated._archive_maps import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
94 |
+
|
95 |
+
|
96 |
+
class TFBertPreTrainingLoss:
|
97 |
+
"""
|
98 |
+
Loss function suitable for BERT-like pretraining, that is, the task of pretraining a language model by combining
|
99 |
+
NSP + MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss
|
100 |
+
computation.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor:
|
104 |
+
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE)
|
105 |
+
|
106 |
+
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
|
107 |
+
unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0])
|
108 |
+
# make sure only labels that are not equal to -100
|
109 |
+
# are taken into account for the loss computation
|
110 |
+
lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype)
|
111 |
+
masked_lm_losses = unmasked_lm_losses * lm_loss_mask
|
112 |
+
reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask)
|
113 |
+
|
114 |
+
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
|
115 |
+
unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels["next_sentence_label"]), y_pred=logits[1])
|
116 |
+
ns_loss_mask = tf.cast(labels["next_sentence_label"] != -100, dtype=unmasked_ns_loss.dtype)
|
117 |
+
masked_ns_loss = unmasked_ns_loss * ns_loss_mask
|
118 |
+
|
119 |
+
reduced_masked_ns_loss = tf.reduce_sum(masked_ns_loss) / tf.reduce_sum(ns_loss_mask)
|
120 |
+
|
121 |
+
return tf.reshape(reduced_masked_lm_loss + reduced_masked_ns_loss, (1,))
|
122 |
+
|
123 |
+
|
124 |
+
class TFBertEmbeddings(keras.layers.Layer):
|
125 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
126 |
+
|
127 |
+
def __init__(self, config: BertConfig, **kwargs):
|
128 |
+
super().__init__(**kwargs)
|
129 |
+
|
130 |
+
self.config = config
|
131 |
+
self.hidden_size = config.hidden_size
|
132 |
+
self.max_position_embeddings = config.max_position_embeddings
|
133 |
+
self.initializer_range = config.initializer_range
|
134 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
135 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
136 |
+
|
137 |
+
def build(self, input_shape=None):
|
138 |
+
with tf.name_scope("word_embeddings"):
|
139 |
+
self.weight = self.add_weight(
|
140 |
+
name="weight",
|
141 |
+
shape=[self.config.vocab_size, self.hidden_size],
|
142 |
+
initializer=get_initializer(self.initializer_range),
|
143 |
+
)
|
144 |
+
|
145 |
+
with tf.name_scope("token_type_embeddings"):
|
146 |
+
self.token_type_embeddings = self.add_weight(
|
147 |
+
name="embeddings",
|
148 |
+
shape=[self.config.type_vocab_size, self.hidden_size],
|
149 |
+
initializer=get_initializer(self.initializer_range),
|
150 |
+
)
|
151 |
+
|
152 |
+
with tf.name_scope("position_embeddings"):
|
153 |
+
self.position_embeddings = self.add_weight(
|
154 |
+
name="embeddings",
|
155 |
+
shape=[self.max_position_embeddings, self.hidden_size],
|
156 |
+
initializer=get_initializer(self.initializer_range),
|
157 |
+
)
|
158 |
+
|
159 |
+
if self.built:
|
160 |
+
return
|
161 |
+
self.built = True
|
162 |
+
if getattr(self, "LayerNorm", None) is not None:
|
163 |
+
with tf.name_scope(self.LayerNorm.name):
|
164 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
165 |
+
|
166 |
+
def call(
|
167 |
+
self,
|
168 |
+
input_ids: tf.Tensor = None,
|
169 |
+
position_ids: tf.Tensor = None,
|
170 |
+
token_type_ids: tf.Tensor = None,
|
171 |
+
inputs_embeds: tf.Tensor = None,
|
172 |
+
past_key_values_length=0,
|
173 |
+
training: bool = False,
|
174 |
+
) -> tf.Tensor:
|
175 |
+
"""
|
176 |
+
Applies embedding based on inputs tensor.
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
final_embeddings (`tf.Tensor`): output embedding tensor.
|
180 |
+
"""
|
181 |
+
if input_ids is None and inputs_embeds is None:
|
182 |
+
raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
|
183 |
+
|
184 |
+
if input_ids is not None:
|
185 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
186 |
+
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
|
187 |
+
|
188 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
189 |
+
|
190 |
+
if token_type_ids is None:
|
191 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
192 |
+
|
193 |
+
if position_ids is None:
|
194 |
+
position_ids = tf.expand_dims(
|
195 |
+
tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0
|
196 |
+
)
|
197 |
+
|
198 |
+
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
|
199 |
+
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
|
200 |
+
final_embeddings = inputs_embeds + position_embeds + token_type_embeds
|
201 |
+
final_embeddings = self.LayerNorm(inputs=final_embeddings)
|
202 |
+
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
|
203 |
+
|
204 |
+
return final_embeddings
|
205 |
+
|
206 |
+
|
207 |
+
class TFBertSelfAttention(keras.layers.Layer):
|
208 |
+
def __init__(self, config: BertConfig, **kwargs):
|
209 |
+
super().__init__(**kwargs)
|
210 |
+
|
211 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
212 |
+
raise ValueError(
|
213 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
|
214 |
+
f"of attention heads ({config.num_attention_heads})"
|
215 |
+
)
|
216 |
+
|
217 |
+
self.num_attention_heads = config.num_attention_heads
|
218 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
219 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
220 |
+
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
|
221 |
+
|
222 |
+
self.query = keras.layers.Dense(
|
223 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
|
224 |
+
)
|
225 |
+
self.key = keras.layers.Dense(
|
226 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
|
227 |
+
)
|
228 |
+
self.value = keras.layers.Dense(
|
229 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
|
230 |
+
)
|
231 |
+
self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
|
232 |
+
|
233 |
+
self.is_decoder = config.is_decoder
|
234 |
+
self.config = config
|
235 |
+
|
236 |
+
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
|
237 |
+
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
|
238 |
+
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
|
239 |
+
|
240 |
+
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
|
241 |
+
return tf.transpose(tensor, perm=[0, 2, 1, 3])
|
242 |
+
|
243 |
+
def call(
|
244 |
+
self,
|
245 |
+
hidden_states: tf.Tensor,
|
246 |
+
attention_mask: tf.Tensor,
|
247 |
+
head_mask: tf.Tensor,
|
248 |
+
encoder_hidden_states: tf.Tensor,
|
249 |
+
encoder_attention_mask: tf.Tensor,
|
250 |
+
past_key_value: Tuple[tf.Tensor],
|
251 |
+
output_attentions: bool,
|
252 |
+
training: bool = False,
|
253 |
+
) -> Tuple[tf.Tensor]:
|
254 |
+
batch_size = shape_list(hidden_states)[0]
|
255 |
+
mixed_query_layer = self.query(inputs=hidden_states)
|
256 |
+
|
257 |
+
# If this is instantiated as a cross-attention module, the keys
|
258 |
+
# and values come from an encoder; the attention mask needs to be
|
259 |
+
# such that the encoder's padding tokens are not attended to.
|
260 |
+
is_cross_attention = encoder_hidden_states is not None
|
261 |
+
|
262 |
+
if is_cross_attention and past_key_value is not None:
|
263 |
+
# reuse k,v, cross_attentions
|
264 |
+
key_layer = past_key_value[0]
|
265 |
+
value_layer = past_key_value[1]
|
266 |
+
attention_mask = encoder_attention_mask
|
267 |
+
elif is_cross_attention:
|
268 |
+
key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
|
269 |
+
value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
|
270 |
+
attention_mask = encoder_attention_mask
|
271 |
+
elif past_key_value is not None:
|
272 |
+
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
|
273 |
+
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
|
274 |
+
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
|
275 |
+
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
|
276 |
+
else:
|
277 |
+
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
|
278 |
+
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
|
279 |
+
|
280 |
+
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
|
281 |
+
|
282 |
+
if self.is_decoder:
|
283 |
+
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
|
284 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
285 |
+
# key/value_states (first "if" case)
|
286 |
+
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
|
287 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
288 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
289 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
290 |
+
past_key_value = (key_layer, value_layer)
|
291 |
+
|
292 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
293 |
+
# (batch size, num_heads, seq_len_q, seq_len_k)
|
294 |
+
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
|
295 |
+
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
|
296 |
+
attention_scores = tf.divide(attention_scores, dk)
|
297 |
+
|
298 |
+
if attention_mask is not None:
|
299 |
+
# Apply the attention mask is (precomputed for all layers in TFBertModel call() function)
|
300 |
+
attention_scores = tf.add(attention_scores, attention_mask)
|
301 |
+
|
302 |
+
# Normalize the attention scores to probabilities.
|
303 |
+
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
|
304 |
+
|
305 |
+
# This is actually dropping out entire tokens to attend to, which might
|
306 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
307 |
+
attention_probs = self.dropout(inputs=attention_probs, training=training)
|
308 |
+
|
309 |
+
# Mask heads if we want to
|
310 |
+
if head_mask is not None:
|
311 |
+
attention_probs = tf.multiply(attention_probs, head_mask)
|
312 |
+
|
313 |
+
attention_output = tf.matmul(attention_probs, value_layer)
|
314 |
+
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
|
315 |
+
|
316 |
+
# (batch_size, seq_len_q, all_head_size)
|
317 |
+
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
|
318 |
+
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
|
319 |
+
|
320 |
+
if self.is_decoder:
|
321 |
+
outputs = outputs + (past_key_value,)
|
322 |
+
return outputs
|
323 |
+
|
324 |
+
def build(self, input_shape=None):
|
325 |
+
if self.built:
|
326 |
+
return
|
327 |
+
self.built = True
|
328 |
+
if getattr(self, "query", None) is not None:
|
329 |
+
with tf.name_scope(self.query.name):
|
330 |
+
self.query.build([None, None, self.config.hidden_size])
|
331 |
+
if getattr(self, "key", None) is not None:
|
332 |
+
with tf.name_scope(self.key.name):
|
333 |
+
self.key.build([None, None, self.config.hidden_size])
|
334 |
+
if getattr(self, "value", None) is not None:
|
335 |
+
with tf.name_scope(self.value.name):
|
336 |
+
self.value.build([None, None, self.config.hidden_size])
|
337 |
+
|
338 |
+
|
339 |
+
class TFBertSelfOutput(keras.layers.Layer):
|
340 |
+
def __init__(self, config: BertConfig, **kwargs):
|
341 |
+
super().__init__(**kwargs)
|
342 |
+
|
343 |
+
self.dense = keras.layers.Dense(
|
344 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
345 |
+
)
|
346 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
347 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
348 |
+
self.config = config
|
349 |
+
|
350 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
351 |
+
hidden_states = self.dense(inputs=hidden_states)
|
352 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
353 |
+
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
|
354 |
+
|
355 |
+
return hidden_states
|
356 |
+
|
357 |
+
def build(self, input_shape=None):
|
358 |
+
if self.built:
|
359 |
+
return
|
360 |
+
self.built = True
|
361 |
+
if getattr(self, "dense", None) is not None:
|
362 |
+
with tf.name_scope(self.dense.name):
|
363 |
+
self.dense.build([None, None, self.config.hidden_size])
|
364 |
+
if getattr(self, "LayerNorm", None) is not None:
|
365 |
+
with tf.name_scope(self.LayerNorm.name):
|
366 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
367 |
+
|
368 |
+
|
369 |
+
class TFBertAttention(keras.layers.Layer):
|
370 |
+
def __init__(self, config: BertConfig, **kwargs):
|
371 |
+
super().__init__(**kwargs)
|
372 |
+
|
373 |
+
self.self_attention = TFBertSelfAttention(config, name="self")
|
374 |
+
self.dense_output = TFBertSelfOutput(config, name="output")
|
375 |
+
|
376 |
+
def prune_heads(self, heads):
|
377 |
+
raise NotImplementedError
|
378 |
+
|
379 |
+
def call(
|
380 |
+
self,
|
381 |
+
input_tensor: tf.Tensor,
|
382 |
+
attention_mask: tf.Tensor,
|
383 |
+
head_mask: tf.Tensor,
|
384 |
+
encoder_hidden_states: tf.Tensor,
|
385 |
+
encoder_attention_mask: tf.Tensor,
|
386 |
+
past_key_value: Tuple[tf.Tensor],
|
387 |
+
output_attentions: bool,
|
388 |
+
training: bool = False,
|
389 |
+
) -> Tuple[tf.Tensor]:
|
390 |
+
self_outputs = self.self_attention(
|
391 |
+
hidden_states=input_tensor,
|
392 |
+
attention_mask=attention_mask,
|
393 |
+
head_mask=head_mask,
|
394 |
+
encoder_hidden_states=encoder_hidden_states,
|
395 |
+
encoder_attention_mask=encoder_attention_mask,
|
396 |
+
past_key_value=past_key_value,
|
397 |
+
output_attentions=output_attentions,
|
398 |
+
training=training,
|
399 |
+
)
|
400 |
+
attention_output = self.dense_output(
|
401 |
+
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
|
402 |
+
)
|
403 |
+
# add attentions (possibly with past_key_value) if we output them
|
404 |
+
outputs = (attention_output,) + self_outputs[1:]
|
405 |
+
|
406 |
+
return outputs
|
407 |
+
|
408 |
+
def build(self, input_shape=None):
|
409 |
+
if self.built:
|
410 |
+
return
|
411 |
+
self.built = True
|
412 |
+
if getattr(self, "self_attention", None) is not None:
|
413 |
+
with tf.name_scope(self.self_attention.name):
|
414 |
+
self.self_attention.build(None)
|
415 |
+
if getattr(self, "dense_output", None) is not None:
|
416 |
+
with tf.name_scope(self.dense_output.name):
|
417 |
+
self.dense_output.build(None)
|
418 |
+
|
419 |
+
|
420 |
+
class TFBertIntermediate(keras.layers.Layer):
|
421 |
+
def __init__(self, config: BertConfig, **kwargs):
|
422 |
+
super().__init__(**kwargs)
|
423 |
+
|
424 |
+
self.dense = keras.layers.Dense(
|
425 |
+
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
426 |
+
)
|
427 |
+
|
428 |
+
if isinstance(config.hidden_act, str):
|
429 |
+
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
|
430 |
+
else:
|
431 |
+
self.intermediate_act_fn = config.hidden_act
|
432 |
+
self.config = config
|
433 |
+
|
434 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
435 |
+
hidden_states = self.dense(inputs=hidden_states)
|
436 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
437 |
+
|
438 |
+
return hidden_states
|
439 |
+
|
440 |
+
def build(self, input_shape=None):
|
441 |
+
if self.built:
|
442 |
+
return
|
443 |
+
self.built = True
|
444 |
+
if getattr(self, "dense", None) is not None:
|
445 |
+
with tf.name_scope(self.dense.name):
|
446 |
+
self.dense.build([None, None, self.config.hidden_size])
|
447 |
+
|
448 |
+
|
449 |
+
class TFBertOutput(keras.layers.Layer):
|
450 |
+
def __init__(self, config: BertConfig, **kwargs):
|
451 |
+
super().__init__(**kwargs)
|
452 |
+
|
453 |
+
self.dense = keras.layers.Dense(
|
454 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
455 |
+
)
|
456 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
457 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
458 |
+
self.config = config
|
459 |
+
|
460 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
461 |
+
hidden_states = self.dense(inputs=hidden_states)
|
462 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
463 |
+
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
|
464 |
+
|
465 |
+
return hidden_states
|
466 |
+
|
467 |
+
def build(self, input_shape=None):
|
468 |
+
if self.built:
|
469 |
+
return
|
470 |
+
self.built = True
|
471 |
+
if getattr(self, "dense", None) is not None:
|
472 |
+
with tf.name_scope(self.dense.name):
|
473 |
+
self.dense.build([None, None, self.config.intermediate_size])
|
474 |
+
if getattr(self, "LayerNorm", None) is not None:
|
475 |
+
with tf.name_scope(self.LayerNorm.name):
|
476 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
477 |
+
|
478 |
+
|
479 |
+
class TFBertLayer(keras.layers.Layer):
|
480 |
+
def __init__(self, config: BertConfig, **kwargs):
|
481 |
+
super().__init__(**kwargs)
|
482 |
+
|
483 |
+
self.attention = TFBertAttention(config, name="attention")
|
484 |
+
self.is_decoder = config.is_decoder
|
485 |
+
self.add_cross_attention = config.add_cross_attention
|
486 |
+
if self.add_cross_attention:
|
487 |
+
if not self.is_decoder:
|
488 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
489 |
+
self.crossattention = TFBertAttention(config, name="crossattention")
|
490 |
+
self.intermediate = TFBertIntermediate(config, name="intermediate")
|
491 |
+
self.bert_output = TFBertOutput(config, name="output")
|
492 |
+
|
493 |
+
def call(
|
494 |
+
self,
|
495 |
+
hidden_states: tf.Tensor,
|
496 |
+
attention_mask: tf.Tensor,
|
497 |
+
head_mask: tf.Tensor,
|
498 |
+
encoder_hidden_states: tf.Tensor | None,
|
499 |
+
encoder_attention_mask: tf.Tensor | None,
|
500 |
+
past_key_value: Tuple[tf.Tensor] | None,
|
501 |
+
output_attentions: bool,
|
502 |
+
training: bool = False,
|
503 |
+
) -> Tuple[tf.Tensor]:
|
504 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
505 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
506 |
+
self_attention_outputs = self.attention(
|
507 |
+
input_tensor=hidden_states,
|
508 |
+
attention_mask=attention_mask,
|
509 |
+
head_mask=head_mask,
|
510 |
+
encoder_hidden_states=None,
|
511 |
+
encoder_attention_mask=None,
|
512 |
+
past_key_value=self_attn_past_key_value,
|
513 |
+
output_attentions=output_attentions,
|
514 |
+
training=training,
|
515 |
+
)
|
516 |
+
attention_output = self_attention_outputs[0]
|
517 |
+
|
518 |
+
# if decoder, the last output is tuple of self-attn cache
|
519 |
+
if self.is_decoder:
|
520 |
+
outputs = self_attention_outputs[1:-1]
|
521 |
+
present_key_value = self_attention_outputs[-1]
|
522 |
+
else:
|
523 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
524 |
+
|
525 |
+
cross_attn_present_key_value = None
|
526 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
527 |
+
if not hasattr(self, "crossattention"):
|
528 |
+
raise ValueError(
|
529 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
530 |
+
" by setting `config.add_cross_attention=True`"
|
531 |
+
)
|
532 |
+
|
533 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
534 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
535 |
+
cross_attention_outputs = self.crossattention(
|
536 |
+
input_tensor=attention_output,
|
537 |
+
attention_mask=attention_mask,
|
538 |
+
head_mask=head_mask,
|
539 |
+
encoder_hidden_states=encoder_hidden_states,
|
540 |
+
encoder_attention_mask=encoder_attention_mask,
|
541 |
+
past_key_value=cross_attn_past_key_value,
|
542 |
+
output_attentions=output_attentions,
|
543 |
+
training=training,
|
544 |
+
)
|
545 |
+
attention_output = cross_attention_outputs[0]
|
546 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
547 |
+
|
548 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
549 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
550 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
551 |
+
|
552 |
+
intermediate_output = self.intermediate(hidden_states=attention_output)
|
553 |
+
layer_output = self.bert_output(
|
554 |
+
hidden_states=intermediate_output, input_tensor=attention_output, training=training
|
555 |
+
)
|
556 |
+
outputs = (layer_output,) + outputs # add attentions if we output them
|
557 |
+
|
558 |
+
# if decoder, return the attn key/values as the last output
|
559 |
+
if self.is_decoder:
|
560 |
+
outputs = outputs + (present_key_value,)
|
561 |
+
|
562 |
+
return outputs
|
563 |
+
|
564 |
+
def build(self, input_shape=None):
|
565 |
+
if self.built:
|
566 |
+
return
|
567 |
+
self.built = True
|
568 |
+
if getattr(self, "attention", None) is not None:
|
569 |
+
with tf.name_scope(self.attention.name):
|
570 |
+
self.attention.build(None)
|
571 |
+
if getattr(self, "intermediate", None) is not None:
|
572 |
+
with tf.name_scope(self.intermediate.name):
|
573 |
+
self.intermediate.build(None)
|
574 |
+
if getattr(self, "bert_output", None) is not None:
|
575 |
+
with tf.name_scope(self.bert_output.name):
|
576 |
+
self.bert_output.build(None)
|
577 |
+
if getattr(self, "crossattention", None) is not None:
|
578 |
+
with tf.name_scope(self.crossattention.name):
|
579 |
+
self.crossattention.build(None)
|
580 |
+
|
581 |
+
|
582 |
+
class TFBertEncoder(keras.layers.Layer):
|
583 |
+
def __init__(self, config: BertConfig, **kwargs):
|
584 |
+
super().__init__(**kwargs)
|
585 |
+
self.config = config
|
586 |
+
self.layer = [TFBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
|
587 |
+
|
588 |
+
def call(
|
589 |
+
self,
|
590 |
+
hidden_states: tf.Tensor,
|
591 |
+
attention_mask: tf.Tensor,
|
592 |
+
head_mask: tf.Tensor,
|
593 |
+
encoder_hidden_states: tf.Tensor | None,
|
594 |
+
encoder_attention_mask: tf.Tensor | None,
|
595 |
+
past_key_values: Tuple[Tuple[tf.Tensor]] | None,
|
596 |
+
use_cache: Optional[bool],
|
597 |
+
output_attentions: bool,
|
598 |
+
output_hidden_states: bool,
|
599 |
+
return_dict: bool,
|
600 |
+
training: bool = False,
|
601 |
+
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
|
602 |
+
all_hidden_states = () if output_hidden_states else None
|
603 |
+
all_attentions = () if output_attentions else None
|
604 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
605 |
+
|
606 |
+
next_decoder_cache = () if use_cache else None
|
607 |
+
for i, layer_module in enumerate(self.layer):
|
608 |
+
if output_hidden_states:
|
609 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
610 |
+
|
611 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
612 |
+
|
613 |
+
layer_outputs = layer_module(
|
614 |
+
hidden_states=hidden_states,
|
615 |
+
attention_mask=attention_mask,
|
616 |
+
head_mask=head_mask[i],
|
617 |
+
encoder_hidden_states=encoder_hidden_states,
|
618 |
+
encoder_attention_mask=encoder_attention_mask,
|
619 |
+
past_key_value=past_key_value,
|
620 |
+
output_attentions=output_attentions,
|
621 |
+
training=training,
|
622 |
+
)
|
623 |
+
hidden_states = layer_outputs[0]
|
624 |
+
|
625 |
+
if use_cache:
|
626 |
+
next_decoder_cache += (layer_outputs[-1],)
|
627 |
+
|
628 |
+
if output_attentions:
|
629 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
630 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
631 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
632 |
+
|
633 |
+
# Add last layer
|
634 |
+
if output_hidden_states:
|
635 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
636 |
+
|
637 |
+
if not return_dict:
|
638 |
+
return tuple(
|
639 |
+
v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
|
640 |
+
)
|
641 |
+
|
642 |
+
return TFBaseModelOutputWithPastAndCrossAttentions(
|
643 |
+
last_hidden_state=hidden_states,
|
644 |
+
past_key_values=next_decoder_cache,
|
645 |
+
hidden_states=all_hidden_states,
|
646 |
+
attentions=all_attentions,
|
647 |
+
cross_attentions=all_cross_attentions,
|
648 |
+
)
|
649 |
+
|
650 |
+
def build(self, input_shape=None):
|
651 |
+
if self.built:
|
652 |
+
return
|
653 |
+
self.built = True
|
654 |
+
if getattr(self, "layer", None) is not None:
|
655 |
+
for layer in self.layer:
|
656 |
+
with tf.name_scope(layer.name):
|
657 |
+
layer.build(None)
|
658 |
+
|
659 |
+
|
660 |
+
class TFBertPooler(keras.layers.Layer):
|
661 |
+
def __init__(self, config: BertConfig, **kwargs):
|
662 |
+
super().__init__(**kwargs)
|
663 |
+
|
664 |
+
self.dense = keras.layers.Dense(
|
665 |
+
units=config.hidden_size,
|
666 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
667 |
+
activation="tanh",
|
668 |
+
name="dense",
|
669 |
+
)
|
670 |
+
self.config = config
|
671 |
+
|
672 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
673 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
674 |
+
# to the first token.
|
675 |
+
first_token_tensor = hidden_states[:, 0]
|
676 |
+
pooled_output = self.dense(inputs=first_token_tensor)
|
677 |
+
|
678 |
+
return pooled_output
|
679 |
+
|
680 |
+
def build(self, input_shape=None):
|
681 |
+
if self.built:
|
682 |
+
return
|
683 |
+
self.built = True
|
684 |
+
if getattr(self, "dense", None) is not None:
|
685 |
+
with tf.name_scope(self.dense.name):
|
686 |
+
self.dense.build([None, None, self.config.hidden_size])
|
687 |
+
|
688 |
+
|
689 |
+
class TFBertPredictionHeadTransform(keras.layers.Layer):
|
690 |
+
def __init__(self, config: BertConfig, **kwargs):
|
691 |
+
super().__init__(**kwargs)
|
692 |
+
|
693 |
+
self.dense = keras.layers.Dense(
|
694 |
+
units=config.hidden_size,
|
695 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
696 |
+
name="dense",
|
697 |
+
)
|
698 |
+
|
699 |
+
if isinstance(config.hidden_act, str):
|
700 |
+
self.transform_act_fn = get_tf_activation(config.hidden_act)
|
701 |
+
else:
|
702 |
+
self.transform_act_fn = config.hidden_act
|
703 |
+
|
704 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
705 |
+
self.config = config
|
706 |
+
|
707 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
708 |
+
hidden_states = self.dense(inputs=hidden_states)
|
709 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
710 |
+
hidden_states = self.LayerNorm(inputs=hidden_states)
|
711 |
+
|
712 |
+
return hidden_states
|
713 |
+
|
714 |
+
def build(self, input_shape=None):
|
715 |
+
if self.built:
|
716 |
+
return
|
717 |
+
self.built = True
|
718 |
+
if getattr(self, "dense", None) is not None:
|
719 |
+
with tf.name_scope(self.dense.name):
|
720 |
+
self.dense.build([None, None, self.config.hidden_size])
|
721 |
+
if getattr(self, "LayerNorm", None) is not None:
|
722 |
+
with tf.name_scope(self.LayerNorm.name):
|
723 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
724 |
+
|
725 |
+
|
726 |
+
class TFBertLMPredictionHead(keras.layers.Layer):
|
727 |
+
def __init__(self, config: BertConfig, input_embeddings: keras.layers.Layer, **kwargs):
|
728 |
+
super().__init__(**kwargs)
|
729 |
+
|
730 |
+
self.config = config
|
731 |
+
self.hidden_size = config.hidden_size
|
732 |
+
|
733 |
+
self.transform = TFBertPredictionHeadTransform(config, name="transform")
|
734 |
+
|
735 |
+
# The output weights are the same as the input embeddings, but there is
|
736 |
+
# an output-only bias for each token.
|
737 |
+
self.input_embeddings = input_embeddings
|
738 |
+
|
739 |
+
def build(self, input_shape=None):
|
740 |
+
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
|
741 |
+
|
742 |
+
if self.built:
|
743 |
+
return
|
744 |
+
self.built = True
|
745 |
+
if getattr(self, "transform", None) is not None:
|
746 |
+
with tf.name_scope(self.transform.name):
|
747 |
+
self.transform.build(None)
|
748 |
+
|
749 |
+
def get_output_embeddings(self) -> keras.layers.Layer:
|
750 |
+
return self.input_embeddings
|
751 |
+
|
752 |
+
def set_output_embeddings(self, value: tf.Variable):
|
753 |
+
self.input_embeddings.weight = value
|
754 |
+
self.input_embeddings.vocab_size = shape_list(value)[0]
|
755 |
+
|
756 |
+
def get_bias(self) -> Dict[str, tf.Variable]:
|
757 |
+
return {"bias": self.bias}
|
758 |
+
|
759 |
+
def set_bias(self, value: tf.Variable):
|
760 |
+
self.bias = value["bias"]
|
761 |
+
self.config.vocab_size = shape_list(value["bias"])[0]
|
762 |
+
|
763 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
764 |
+
hidden_states = self.transform(hidden_states=hidden_states)
|
765 |
+
seq_length = shape_list(hidden_states)[1]
|
766 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
|
767 |
+
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
|
768 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
|
769 |
+
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
|
770 |
+
|
771 |
+
return hidden_states
|
772 |
+
|
773 |
+
|
774 |
+
class TFBertMLMHead(keras.layers.Layer):
|
775 |
+
def __init__(self, config: BertConfig, input_embeddings: keras.layers.Layer, **kwargs):
|
776 |
+
super().__init__(**kwargs)
|
777 |
+
|
778 |
+
self.predictions = TFBertLMPredictionHead(config, input_embeddings, name="predictions")
|
779 |
+
|
780 |
+
def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
|
781 |
+
prediction_scores = self.predictions(hidden_states=sequence_output)
|
782 |
+
|
783 |
+
return prediction_scores
|
784 |
+
|
785 |
+
def build(self, input_shape=None):
|
786 |
+
if self.built:
|
787 |
+
return
|
788 |
+
self.built = True
|
789 |
+
if getattr(self, "predictions", None) is not None:
|
790 |
+
with tf.name_scope(self.predictions.name):
|
791 |
+
self.predictions.build(None)
|
792 |
+
|
793 |
+
|
794 |
+
class TFBertNSPHead(keras.layers.Layer):
|
795 |
+
def __init__(self, config: BertConfig, **kwargs):
|
796 |
+
super().__init__(**kwargs)
|
797 |
+
|
798 |
+
self.seq_relationship = keras.layers.Dense(
|
799 |
+
units=2,
|
800 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
801 |
+
name="seq_relationship",
|
802 |
+
)
|
803 |
+
self.config = config
|
804 |
+
|
805 |
+
def call(self, pooled_output: tf.Tensor) -> tf.Tensor:
|
806 |
+
seq_relationship_score = self.seq_relationship(inputs=pooled_output)
|
807 |
+
|
808 |
+
return seq_relationship_score
|
809 |
+
|
810 |
+
def build(self, input_shape=None):
|
811 |
+
if self.built:
|
812 |
+
return
|
813 |
+
self.built = True
|
814 |
+
if getattr(self, "seq_relationship", None) is not None:
|
815 |
+
with tf.name_scope(self.seq_relationship.name):
|
816 |
+
self.seq_relationship.build([None, None, self.config.hidden_size])
|
817 |
+
|
818 |
+
|
819 |
+
@keras_serializable
|
820 |
+
class TFBertMainLayer(keras.layers.Layer):
|
821 |
+
config_class = BertConfig
|
822 |
+
|
823 |
+
def __init__(self, config: BertConfig, add_pooling_layer: bool = True, **kwargs):
|
824 |
+
super().__init__(**kwargs)
|
825 |
+
|
826 |
+
self.config = config
|
827 |
+
self.is_decoder = config.is_decoder
|
828 |
+
|
829 |
+
self.embeddings = TFBertEmbeddings(config, name="embeddings")
|
830 |
+
self.encoder = TFBertEncoder(config, name="encoder")
|
831 |
+
self.pooler = TFBertPooler(config, name="pooler") if add_pooling_layer else None
|
832 |
+
|
833 |
+
def get_input_embeddings(self) -> keras.layers.Layer:
|
834 |
+
return self.embeddings
|
835 |
+
|
836 |
+
def set_input_embeddings(self, value: tf.Variable):
|
837 |
+
self.embeddings.weight = value
|
838 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
839 |
+
|
840 |
+
def _prune_heads(self, heads_to_prune):
|
841 |
+
"""
|
842 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
843 |
+
class PreTrainedModel
|
844 |
+
"""
|
845 |
+
raise NotImplementedError
|
846 |
+
|
847 |
+
@unpack_inputs
|
848 |
+
def call(
|
849 |
+
self,
|
850 |
+
input_ids: TFModelInputType | None = None,
|
851 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
852 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
853 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
854 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
855 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
856 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
857 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
858 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
859 |
+
use_cache: Optional[bool] = None,
|
860 |
+
output_attentions: Optional[bool] = None,
|
861 |
+
output_hidden_states: Optional[bool] = None,
|
862 |
+
return_dict: Optional[bool] = None,
|
863 |
+
training: bool = False,
|
864 |
+
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
|
865 |
+
if not self.config.is_decoder:
|
866 |
+
use_cache = False
|
867 |
+
|
868 |
+
if input_ids is not None and inputs_embeds is not None:
|
869 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
870 |
+
elif input_ids is not None:
|
871 |
+
input_shape = shape_list(input_ids)
|
872 |
+
elif inputs_embeds is not None:
|
873 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
874 |
+
else:
|
875 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
876 |
+
|
877 |
+
batch_size, seq_length = input_shape
|
878 |
+
|
879 |
+
if past_key_values is None:
|
880 |
+
past_key_values_length = 0
|
881 |
+
past_key_values = [None] * len(self.encoder.layer)
|
882 |
+
else:
|
883 |
+
past_key_values_length = shape_list(past_key_values[0][0])[-2]
|
884 |
+
|
885 |
+
if attention_mask is None:
|
886 |
+
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
|
887 |
+
|
888 |
+
if token_type_ids is None:
|
889 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
890 |
+
|
891 |
+
embedding_output = self.embeddings(
|
892 |
+
input_ids=input_ids,
|
893 |
+
position_ids=position_ids,
|
894 |
+
token_type_ids=token_type_ids,
|
895 |
+
inputs_embeds=inputs_embeds,
|
896 |
+
past_key_values_length=past_key_values_length,
|
897 |
+
training=training,
|
898 |
+
)
|
899 |
+
|
900 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
901 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
902 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
903 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
904 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
905 |
+
attention_mask_shape = shape_list(attention_mask)
|
906 |
+
|
907 |
+
mask_seq_length = seq_length + past_key_values_length
|
908 |
+
# Copied from `modeling_tf_t5.py`
|
909 |
+
# Provided a padding mask of dimensions [batch_size, mask_seq_length]
|
910 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
911 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
|
912 |
+
if self.is_decoder:
|
913 |
+
seq_ids = tf.range(mask_seq_length)
|
914 |
+
causal_mask = tf.less_equal(
|
915 |
+
tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
|
916 |
+
seq_ids[None, :, None],
|
917 |
+
)
|
918 |
+
causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
|
919 |
+
extended_attention_mask = causal_mask * attention_mask[:, None, :]
|
920 |
+
attention_mask_shape = shape_list(extended_attention_mask)
|
921 |
+
extended_attention_mask = tf.reshape(
|
922 |
+
extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
|
923 |
+
)
|
924 |
+
if past_key_values[0] is not None:
|
925 |
+
# attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
|
926 |
+
extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
|
927 |
+
else:
|
928 |
+
extended_attention_mask = tf.reshape(
|
929 |
+
attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
|
930 |
+
)
|
931 |
+
|
932 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
933 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
934 |
+
# positions we want to attend and -10000.0 for masked positions.
|
935 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
936 |
+
# effectively the same as removing these entirely.
|
937 |
+
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
|
938 |
+
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
|
939 |
+
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
|
940 |
+
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
|
941 |
+
|
942 |
+
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
|
943 |
+
if self.is_decoder and encoder_attention_mask is not None:
|
944 |
+
# If a 2D ou 3D attention mask is provided for the cross-attention
|
945 |
+
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
|
946 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
947 |
+
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
|
948 |
+
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
|
949 |
+
if num_dims_encoder_attention_mask == 3:
|
950 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
|
951 |
+
if num_dims_encoder_attention_mask == 2:
|
952 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
|
953 |
+
|
954 |
+
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
|
955 |
+
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
|
956 |
+
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
|
957 |
+
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
|
958 |
+
|
959 |
+
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
|
960 |
+
else:
|
961 |
+
encoder_extended_attention_mask = None
|
962 |
+
|
963 |
+
# Prepare head mask if needed
|
964 |
+
# 1.0 in head_mask indicate we keep the head
|
965 |
+
# attention_probs has shape bsz x n_heads x N x N
|
966 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
967 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
968 |
+
if head_mask is not None:
|
969 |
+
raise NotImplementedError
|
970 |
+
else:
|
971 |
+
head_mask = [None] * self.config.num_hidden_layers
|
972 |
+
|
973 |
+
encoder_outputs = self.encoder(
|
974 |
+
hidden_states=embedding_output,
|
975 |
+
attention_mask=extended_attention_mask,
|
976 |
+
head_mask=head_mask,
|
977 |
+
encoder_hidden_states=encoder_hidden_states,
|
978 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
979 |
+
past_key_values=past_key_values,
|
980 |
+
use_cache=use_cache,
|
981 |
+
output_attentions=output_attentions,
|
982 |
+
output_hidden_states=output_hidden_states,
|
983 |
+
return_dict=return_dict,
|
984 |
+
training=training,
|
985 |
+
)
|
986 |
+
|
987 |
+
sequence_output = encoder_outputs[0]
|
988 |
+
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
|
989 |
+
|
990 |
+
if not return_dict:
|
991 |
+
return (
|
992 |
+
sequence_output,
|
993 |
+
pooled_output,
|
994 |
+
) + encoder_outputs[1:]
|
995 |
+
|
996 |
+
return TFBaseModelOutputWithPoolingAndCrossAttentions(
|
997 |
+
last_hidden_state=sequence_output,
|
998 |
+
pooler_output=pooled_output,
|
999 |
+
past_key_values=encoder_outputs.past_key_values,
|
1000 |
+
hidden_states=encoder_outputs.hidden_states,
|
1001 |
+
attentions=encoder_outputs.attentions,
|
1002 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
def build(self, input_shape=None):
|
1006 |
+
if self.built:
|
1007 |
+
return
|
1008 |
+
self.built = True
|
1009 |
+
if getattr(self, "embeddings", None) is not None:
|
1010 |
+
with tf.name_scope(self.embeddings.name):
|
1011 |
+
self.embeddings.build(None)
|
1012 |
+
if getattr(self, "encoder", None) is not None:
|
1013 |
+
with tf.name_scope(self.encoder.name):
|
1014 |
+
self.encoder.build(None)
|
1015 |
+
if getattr(self, "pooler", None) is not None:
|
1016 |
+
with tf.name_scope(self.pooler.name):
|
1017 |
+
self.pooler.build(None)
|
1018 |
+
|
1019 |
+
|
1020 |
+
class TFBertPreTrainedModel(TFPreTrainedModel):
|
1021 |
+
"""
|
1022 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
1023 |
+
models.
|
1024 |
+
"""
|
1025 |
+
|
1026 |
+
config_class = BertConfig
|
1027 |
+
base_model_prefix = "bert"
|
1028 |
+
|
1029 |
+
|
1030 |
+
@dataclass
|
1031 |
+
class TFBertForPreTrainingOutput(ModelOutput):
|
1032 |
+
"""
|
1033 |
+
Output type of [`TFBertForPreTraining`].
|
1034 |
+
|
1035 |
+
Args:
|
1036 |
+
prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
1037 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
1038 |
+
seq_relationship_logits (`tf.Tensor` of shape `(batch_size, 2)`):
|
1039 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
1040 |
+
before SoftMax).
|
1041 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
1042 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
1043 |
+
`(batch_size, sequence_length, hidden_size)`.
|
1044 |
+
|
1045 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
1046 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
1047 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
1048 |
+
sequence_length)`.
|
1049 |
+
|
1050 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
1051 |
+
heads.
|
1052 |
+
"""
|
1053 |
+
|
1054 |
+
loss: tf.Tensor | None = None
|
1055 |
+
prediction_logits: tf.Tensor = None
|
1056 |
+
seq_relationship_logits: tf.Tensor = None
|
1057 |
+
hidden_states: Optional[Union[Tuple[tf.Tensor], tf.Tensor]] = None
|
1058 |
+
attentions: Optional[Union[Tuple[tf.Tensor], tf.Tensor]] = None
|
1059 |
+
|
1060 |
+
|
1061 |
+
BERT_START_DOCSTRING = r"""
|
1062 |
+
|
1063 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1064 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1065 |
+
etc.)
|
1066 |
+
|
1067 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
1068 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
1069 |
+
behavior.
|
1070 |
+
|
1071 |
+
<Tip>
|
1072 |
+
|
1073 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
1074 |
+
|
1075 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
1076 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
1077 |
+
|
1078 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
1079 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
1080 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
1081 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
1082 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
1083 |
+
positional argument:
|
1084 |
+
|
1085 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
1086 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
1087 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
1088 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
1089 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
1090 |
+
|
1091 |
+
Note that when creating models and layers with
|
1092 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
1093 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
1094 |
+
|
1095 |
+
</Tip>
|
1096 |
+
|
1097 |
+
Args:
|
1098 |
+
config ([`BertConfig`]): Model configuration class with all the parameters of the model.
|
1099 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1100 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
1101 |
+
"""
|
1102 |
+
|
1103 |
+
BERT_INPUTS_DOCSTRING = r"""
|
1104 |
+
Args:
|
1105 |
+
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
|
1106 |
+
Indices of input sequence tokens in the vocabulary.
|
1107 |
+
|
1108 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
1109 |
+
[`PreTrainedTokenizer.encode`] for details.
|
1110 |
+
|
1111 |
+
[What are input IDs?](../glossary#input-ids)
|
1112 |
+
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
1113 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1114 |
+
|
1115 |
+
- 1 for tokens that are **not masked**,
|
1116 |
+
- 0 for tokens that are **masked**.
|
1117 |
+
|
1118 |
+
[What are attention masks?](../glossary#attention-mask)
|
1119 |
+
token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
1120 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
1121 |
+
1]`:
|
1122 |
+
|
1123 |
+
- 0 corresponds to a *sentence A* token,
|
1124 |
+
- 1 corresponds to a *sentence B* token.
|
1125 |
+
|
1126 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
1127 |
+
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
1128 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1129 |
+
config.max_position_embeddings - 1]`.
|
1130 |
+
|
1131 |
+
[What are position IDs?](../glossary#position-ids)
|
1132 |
+
head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1133 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
1134 |
+
|
1135 |
+
- 1 indicates the head is **not masked**,
|
1136 |
+
- 0 indicates the head is **masked**.
|
1137 |
+
|
1138 |
+
inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
|
1139 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1140 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1141 |
+
model's internal embedding lookup matrix.
|
1142 |
+
output_attentions (`bool`, *optional*):
|
1143 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1144 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
1145 |
+
config will be used instead.
|
1146 |
+
output_hidden_states (`bool`, *optional*):
|
1147 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1148 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
1149 |
+
used instead.
|
1150 |
+
return_dict (`bool`, *optional*):
|
1151 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
1152 |
+
eager mode, in graph mode the value will always be set to True.
|
1153 |
+
training (`bool`, *optional*, defaults to `False``):
|
1154 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
1155 |
+
behaviors between training and evaluation).
|
1156 |
+
"""
|
1157 |
+
|
1158 |
+
|
1159 |
+
@add_start_docstrings(
|
1160 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
1161 |
+
BERT_START_DOCSTRING,
|
1162 |
+
)
|
1163 |
+
class TFBertModel(TFBertPreTrainedModel):
|
1164 |
+
def __init__(self, config: BertConfig, add_pooling_layer: bool = True, *inputs, **kwargs):
|
1165 |
+
super().__init__(config, *inputs, **kwargs)
|
1166 |
+
|
1167 |
+
self.bert = TFBertMainLayer(config, add_pooling_layer, name="bert")
|
1168 |
+
|
1169 |
+
@unpack_inputs
|
1170 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1171 |
+
@add_code_sample_docstrings(
|
1172 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1173 |
+
output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
|
1174 |
+
config_class=_CONFIG_FOR_DOC,
|
1175 |
+
)
|
1176 |
+
def call(
|
1177 |
+
self,
|
1178 |
+
input_ids: TFModelInputType | None = None,
|
1179 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1180 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1181 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1182 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1183 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1184 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
1185 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1186 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1187 |
+
use_cache: Optional[bool] = None,
|
1188 |
+
output_attentions: Optional[bool] = None,
|
1189 |
+
output_hidden_states: Optional[bool] = None,
|
1190 |
+
return_dict: Optional[bool] = None,
|
1191 |
+
training: Optional[bool] = False,
|
1192 |
+
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
|
1193 |
+
r"""
|
1194 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1195 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1196 |
+
the model is configured as a decoder.
|
1197 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1198 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1199 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1200 |
+
|
1201 |
+
- 1 for tokens that are **not masked**,
|
1202 |
+
- 0 for tokens that are **masked**.
|
1203 |
+
|
1204 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
1205 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1206 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1207 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1208 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1209 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
1210 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1211 |
+
`past_key_values`). Set to `False` during training, `True` during generation
|
1212 |
+
"""
|
1213 |
+
outputs = self.bert(
|
1214 |
+
input_ids=input_ids,
|
1215 |
+
attention_mask=attention_mask,
|
1216 |
+
token_type_ids=token_type_ids,
|
1217 |
+
position_ids=position_ids,
|
1218 |
+
head_mask=head_mask,
|
1219 |
+
inputs_embeds=inputs_embeds,
|
1220 |
+
encoder_hidden_states=encoder_hidden_states,
|
1221 |
+
encoder_attention_mask=encoder_attention_mask,
|
1222 |
+
past_key_values=past_key_values,
|
1223 |
+
use_cache=use_cache,
|
1224 |
+
output_attentions=output_attentions,
|
1225 |
+
output_hidden_states=output_hidden_states,
|
1226 |
+
return_dict=return_dict,
|
1227 |
+
training=training,
|
1228 |
+
)
|
1229 |
+
return outputs
|
1230 |
+
|
1231 |
+
def build(self, input_shape=None):
|
1232 |
+
if self.built:
|
1233 |
+
return
|
1234 |
+
self.built = True
|
1235 |
+
if getattr(self, "bert", None) is not None:
|
1236 |
+
with tf.name_scope(self.bert.name):
|
1237 |
+
self.bert.build(None)
|
1238 |
+
|
1239 |
+
|
1240 |
+
@add_start_docstrings(
|
1241 |
+
"""
|
1242 |
+
Bert Model with two heads on top as done during the pretraining:
|
1243 |
+
a `masked language modeling` head and a `next sentence prediction (classification)` head.
|
1244 |
+
""",
|
1245 |
+
BERT_START_DOCSTRING,
|
1246 |
+
)
|
1247 |
+
class TFBertForPreTraining(TFBertPreTrainedModel, TFBertPreTrainingLoss):
|
1248 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1249 |
+
_keys_to_ignore_on_load_unexpected = [
|
1250 |
+
r"position_ids",
|
1251 |
+
r"cls.predictions.decoder.weight",
|
1252 |
+
r"cls.predictions.decoder.bias",
|
1253 |
+
]
|
1254 |
+
|
1255 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
1256 |
+
super().__init__(config, *inputs, **kwargs)
|
1257 |
+
|
1258 |
+
self.bert = TFBertMainLayer(config, name="bert")
|
1259 |
+
self.nsp = TFBertNSPHead(config, name="nsp___cls")
|
1260 |
+
self.mlm = TFBertMLMHead(config, input_embeddings=self.bert.embeddings, name="mlm___cls")
|
1261 |
+
|
1262 |
+
def get_lm_head(self) -> keras.layers.Layer:
|
1263 |
+
return self.mlm.predictions
|
1264 |
+
|
1265 |
+
def get_prefix_bias_name(self) -> str:
|
1266 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
1267 |
+
return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name
|
1268 |
+
|
1269 |
+
@unpack_inputs
|
1270 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1271 |
+
@replace_return_docstrings(output_type=TFBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1272 |
+
def call(
|
1273 |
+
self,
|
1274 |
+
input_ids: TFModelInputType | None = None,
|
1275 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1276 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1277 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1278 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1279 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1280 |
+
output_attentions: Optional[bool] = None,
|
1281 |
+
output_hidden_states: Optional[bool] = None,
|
1282 |
+
return_dict: Optional[bool] = None,
|
1283 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1284 |
+
next_sentence_label: np.ndarray | tf.Tensor | None = None,
|
1285 |
+
training: Optional[bool] = False,
|
1286 |
+
) -> Union[TFBertForPreTrainingOutput, Tuple[tf.Tensor]]:
|
1287 |
+
r"""
|
1288 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1289 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1290 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1291 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1292 |
+
next_sentence_label (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1293 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1294 |
+
(see `input_ids` docstring) Indices should be in `[0, 1]`:
|
1295 |
+
|
1296 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1297 |
+
- 1 indicates sequence B is a random sequence.
|
1298 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1299 |
+
Used to hide legacy arguments that have been deprecated.
|
1300 |
+
|
1301 |
+
Return:
|
1302 |
+
|
1303 |
+
Examples:
|
1304 |
+
|
1305 |
+
```python
|
1306 |
+
>>> import tensorflow as tf
|
1307 |
+
>>> from transformers import AutoTokenizer, TFBertForPreTraining
|
1308 |
+
|
1309 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
1310 |
+
>>> model = TFBertForPreTraining.from_pretrained("google-bert/bert-base-uncased")
|
1311 |
+
>>> input_ids = tokenizer("Hello, my dog is cute", add_special_tokens=True, return_tensors="tf")
|
1312 |
+
>>> # Batch size 1
|
1313 |
+
|
1314 |
+
>>> outputs = model(input_ids)
|
1315 |
+
>>> prediction_logits, seq_relationship_logits = outputs[:2]
|
1316 |
+
```"""
|
1317 |
+
outputs = self.bert(
|
1318 |
+
input_ids=input_ids,
|
1319 |
+
attention_mask=attention_mask,
|
1320 |
+
token_type_ids=token_type_ids,
|
1321 |
+
position_ids=position_ids,
|
1322 |
+
head_mask=head_mask,
|
1323 |
+
inputs_embeds=inputs_embeds,
|
1324 |
+
output_attentions=output_attentions,
|
1325 |
+
output_hidden_states=output_hidden_states,
|
1326 |
+
return_dict=return_dict,
|
1327 |
+
training=training,
|
1328 |
+
)
|
1329 |
+
sequence_output, pooled_output = outputs[:2]
|
1330 |
+
prediction_scores = self.mlm(sequence_output=sequence_output, training=training)
|
1331 |
+
seq_relationship_score = self.nsp(pooled_output=pooled_output)
|
1332 |
+
total_loss = None
|
1333 |
+
|
1334 |
+
if labels is not None and next_sentence_label is not None:
|
1335 |
+
d_labels = {"labels": labels}
|
1336 |
+
d_labels["next_sentence_label"] = next_sentence_label
|
1337 |
+
total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, seq_relationship_score))
|
1338 |
+
|
1339 |
+
if not return_dict:
|
1340 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
1341 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1342 |
+
|
1343 |
+
return TFBertForPreTrainingOutput(
|
1344 |
+
loss=total_loss,
|
1345 |
+
prediction_logits=prediction_scores,
|
1346 |
+
seq_relationship_logits=seq_relationship_score,
|
1347 |
+
hidden_states=outputs.hidden_states,
|
1348 |
+
attentions=outputs.attentions,
|
1349 |
+
)
|
1350 |
+
|
1351 |
+
def build(self, input_shape=None):
|
1352 |
+
if self.built:
|
1353 |
+
return
|
1354 |
+
self.built = True
|
1355 |
+
if getattr(self, "bert", None) is not None:
|
1356 |
+
with tf.name_scope(self.bert.name):
|
1357 |
+
self.bert.build(None)
|
1358 |
+
if getattr(self, "nsp", None) is not None:
|
1359 |
+
with tf.name_scope(self.nsp.name):
|
1360 |
+
self.nsp.build(None)
|
1361 |
+
if getattr(self, "mlm", None) is not None:
|
1362 |
+
with tf.name_scope(self.mlm.name):
|
1363 |
+
self.mlm.build(None)
|
1364 |
+
|
1365 |
+
|
1366 |
+
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
|
1367 |
+
class TFBertForMaskedLM(TFBertPreTrainedModel, TFMaskedLanguageModelingLoss):
|
1368 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1369 |
+
_keys_to_ignore_on_load_unexpected = [
|
1370 |
+
r"pooler",
|
1371 |
+
r"cls.seq_relationship",
|
1372 |
+
r"cls.predictions.decoder.weight",
|
1373 |
+
r"nsp___cls",
|
1374 |
+
]
|
1375 |
+
|
1376 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
1377 |
+
super().__init__(config, *inputs, **kwargs)
|
1378 |
+
|
1379 |
+
if config.is_decoder:
|
1380 |
+
logger.warning(
|
1381 |
+
"If you want to use `TFBertForMaskedLM` make sure `config.is_decoder=False` for "
|
1382 |
+
"bi-directional self-attention."
|
1383 |
+
)
|
1384 |
+
|
1385 |
+
self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert")
|
1386 |
+
self.mlm = TFBertMLMHead(config, input_embeddings=self.bert.embeddings, name="mlm___cls")
|
1387 |
+
|
1388 |
+
def get_lm_head(self) -> keras.layers.Layer:
|
1389 |
+
return self.mlm.predictions
|
1390 |
+
|
1391 |
+
def get_prefix_bias_name(self) -> str:
|
1392 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
1393 |
+
return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name
|
1394 |
+
|
1395 |
+
@unpack_inputs
|
1396 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1397 |
+
@add_code_sample_docstrings(
|
1398 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1399 |
+
output_type=TFMaskedLMOutput,
|
1400 |
+
config_class=_CONFIG_FOR_DOC,
|
1401 |
+
expected_output="'paris'",
|
1402 |
+
expected_loss=0.88,
|
1403 |
+
)
|
1404 |
+
def call(
|
1405 |
+
self,
|
1406 |
+
input_ids: TFModelInputType | None = None,
|
1407 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1408 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1409 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1410 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1411 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1412 |
+
output_attentions: Optional[bool] = None,
|
1413 |
+
output_hidden_states: Optional[bool] = None,
|
1414 |
+
return_dict: Optional[bool] = None,
|
1415 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1416 |
+
training: Optional[bool] = False,
|
1417 |
+
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
|
1418 |
+
r"""
|
1419 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
1420 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1421 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1422 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1423 |
+
"""
|
1424 |
+
outputs = self.bert(
|
1425 |
+
input_ids=input_ids,
|
1426 |
+
attention_mask=attention_mask,
|
1427 |
+
token_type_ids=token_type_ids,
|
1428 |
+
position_ids=position_ids,
|
1429 |
+
head_mask=head_mask,
|
1430 |
+
inputs_embeds=inputs_embeds,
|
1431 |
+
output_attentions=output_attentions,
|
1432 |
+
output_hidden_states=output_hidden_states,
|
1433 |
+
return_dict=return_dict,
|
1434 |
+
training=training,
|
1435 |
+
)
|
1436 |
+
sequence_output = outputs[0]
|
1437 |
+
prediction_scores = self.mlm(sequence_output=sequence_output, training=training)
|
1438 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
|
1439 |
+
|
1440 |
+
if not return_dict:
|
1441 |
+
output = (prediction_scores,) + outputs[2:]
|
1442 |
+
return ((loss,) + output) if loss is not None else output
|
1443 |
+
|
1444 |
+
return TFMaskedLMOutput(
|
1445 |
+
loss=loss,
|
1446 |
+
logits=prediction_scores,
|
1447 |
+
hidden_states=outputs.hidden_states,
|
1448 |
+
attentions=outputs.attentions,
|
1449 |
+
)
|
1450 |
+
|
1451 |
+
def build(self, input_shape=None):
|
1452 |
+
if self.built:
|
1453 |
+
return
|
1454 |
+
self.built = True
|
1455 |
+
if getattr(self, "bert", None) is not None:
|
1456 |
+
with tf.name_scope(self.bert.name):
|
1457 |
+
self.bert.build(None)
|
1458 |
+
if getattr(self, "mlm", None) is not None:
|
1459 |
+
with tf.name_scope(self.mlm.name):
|
1460 |
+
self.mlm.build(None)
|
1461 |
+
|
1462 |
+
|
1463 |
+
class TFBertLMHeadModel(TFBertPreTrainedModel, TFCausalLanguageModelingLoss):
|
1464 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1465 |
+
_keys_to_ignore_on_load_unexpected = [
|
1466 |
+
r"pooler",
|
1467 |
+
r"cls.seq_relationship",
|
1468 |
+
r"cls.predictions.decoder.weight",
|
1469 |
+
r"nsp___cls",
|
1470 |
+
]
|
1471 |
+
|
1472 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
1473 |
+
super().__init__(config, *inputs, **kwargs)
|
1474 |
+
|
1475 |
+
if not config.is_decoder:
|
1476 |
+
logger.warning("If you want to use `TFBertLMHeadModel` as a standalone, add `is_decoder=True.`")
|
1477 |
+
|
1478 |
+
self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert")
|
1479 |
+
self.mlm = TFBertMLMHead(config, input_embeddings=self.bert.embeddings, name="mlm___cls")
|
1480 |
+
|
1481 |
+
def get_lm_head(self) -> keras.layers.Layer:
|
1482 |
+
return self.mlm.predictions
|
1483 |
+
|
1484 |
+
def get_prefix_bias_name(self) -> str:
|
1485 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
1486 |
+
return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name
|
1487 |
+
|
1488 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
|
1489 |
+
input_shape = input_ids.shape
|
1490 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1491 |
+
if attention_mask is None:
|
1492 |
+
attention_mask = tf.ones(input_shape)
|
1493 |
+
|
1494 |
+
# cut decoder_input_ids if past is used
|
1495 |
+
if past_key_values is not None:
|
1496 |
+
input_ids = input_ids[:, -1:]
|
1497 |
+
|
1498 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
|
1499 |
+
|
1500 |
+
@unpack_inputs
|
1501 |
+
@add_code_sample_docstrings(
|
1502 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1503 |
+
output_type=TFCausalLMOutputWithCrossAttentions,
|
1504 |
+
config_class=_CONFIG_FOR_DOC,
|
1505 |
+
)
|
1506 |
+
def call(
|
1507 |
+
self,
|
1508 |
+
input_ids: TFModelInputType | None = None,
|
1509 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1510 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1511 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1512 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1513 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1514 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
1515 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1516 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1517 |
+
use_cache: Optional[bool] = None,
|
1518 |
+
output_attentions: Optional[bool] = None,
|
1519 |
+
output_hidden_states: Optional[bool] = None,
|
1520 |
+
return_dict: Optional[bool] = None,
|
1521 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1522 |
+
training: Optional[bool] = False,
|
1523 |
+
**kwargs,
|
1524 |
+
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
|
1525 |
+
r"""
|
1526 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1527 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1528 |
+
the model is configured as a decoder.
|
1529 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1530 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1531 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1532 |
+
|
1533 |
+
- 1 for tokens that are **not masked**,
|
1534 |
+
- 0 for tokens that are **masked**.
|
1535 |
+
|
1536 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
1537 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1538 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1539 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1540 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1541 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
1542 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1543 |
+
`past_key_values`). Set to `False` during training, `True` during generation
|
1544 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
1545 |
+
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
|
1546 |
+
config.vocab_size - 1]`.
|
1547 |
+
"""
|
1548 |
+
outputs = self.bert(
|
1549 |
+
input_ids=input_ids,
|
1550 |
+
attention_mask=attention_mask,
|
1551 |
+
token_type_ids=token_type_ids,
|
1552 |
+
position_ids=position_ids,
|
1553 |
+
head_mask=head_mask,
|
1554 |
+
inputs_embeds=inputs_embeds,
|
1555 |
+
encoder_hidden_states=encoder_hidden_states,
|
1556 |
+
encoder_attention_mask=encoder_attention_mask,
|
1557 |
+
past_key_values=past_key_values,
|
1558 |
+
use_cache=use_cache,
|
1559 |
+
output_attentions=output_attentions,
|
1560 |
+
output_hidden_states=output_hidden_states,
|
1561 |
+
return_dict=return_dict,
|
1562 |
+
training=training,
|
1563 |
+
)
|
1564 |
+
sequence_output = outputs[0]
|
1565 |
+
logits = self.mlm(sequence_output=sequence_output, training=training)
|
1566 |
+
loss = None
|
1567 |
+
|
1568 |
+
if labels is not None:
|
1569 |
+
# shift labels to the left and cut last logit token
|
1570 |
+
shifted_logits = logits[:, :-1]
|
1571 |
+
labels = labels[:, 1:]
|
1572 |
+
loss = self.hf_compute_loss(labels=labels, logits=shifted_logits)
|
1573 |
+
|
1574 |
+
if not return_dict:
|
1575 |
+
output = (logits,) + outputs[2:]
|
1576 |
+
return ((loss,) + output) if loss is not None else output
|
1577 |
+
|
1578 |
+
return TFCausalLMOutputWithCrossAttentions(
|
1579 |
+
loss=loss,
|
1580 |
+
logits=logits,
|
1581 |
+
past_key_values=outputs.past_key_values,
|
1582 |
+
hidden_states=outputs.hidden_states,
|
1583 |
+
attentions=outputs.attentions,
|
1584 |
+
cross_attentions=outputs.cross_attentions,
|
1585 |
+
)
|
1586 |
+
|
1587 |
+
def build(self, input_shape=None):
|
1588 |
+
if self.built:
|
1589 |
+
return
|
1590 |
+
self.built = True
|
1591 |
+
if getattr(self, "bert", None) is not None:
|
1592 |
+
with tf.name_scope(self.bert.name):
|
1593 |
+
self.bert.build(None)
|
1594 |
+
if getattr(self, "mlm", None) is not None:
|
1595 |
+
with tf.name_scope(self.mlm.name):
|
1596 |
+
self.mlm.build(None)
|
1597 |
+
|
1598 |
+
|
1599 |
+
@add_start_docstrings(
|
1600 |
+
"""Bert Model with a `next sentence prediction (classification)` head on top.""",
|
1601 |
+
BERT_START_DOCSTRING,
|
1602 |
+
)
|
1603 |
+
class TFBertForNextSentencePrediction(TFBertPreTrainedModel, TFNextSentencePredictionLoss):
|
1604 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1605 |
+
_keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"cls.predictions"]
|
1606 |
+
|
1607 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
1608 |
+
super().__init__(config, *inputs, **kwargs)
|
1609 |
+
|
1610 |
+
self.bert = TFBertMainLayer(config, name="bert")
|
1611 |
+
self.nsp = TFBertNSPHead(config, name="nsp___cls")
|
1612 |
+
|
1613 |
+
@unpack_inputs
|
1614 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1615 |
+
@replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
|
1616 |
+
def call(
|
1617 |
+
self,
|
1618 |
+
input_ids: TFModelInputType | None = None,
|
1619 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1620 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1621 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1622 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1623 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1624 |
+
output_attentions: Optional[bool] = None,
|
1625 |
+
output_hidden_states: Optional[bool] = None,
|
1626 |
+
return_dict: Optional[bool] = None,
|
1627 |
+
next_sentence_label: np.ndarray | tf.Tensor | None = None,
|
1628 |
+
training: Optional[bool] = False,
|
1629 |
+
) -> Union[TFNextSentencePredictorOutput, Tuple[tf.Tensor]]:
|
1630 |
+
r"""
|
1631 |
+
Return:
|
1632 |
+
|
1633 |
+
Examples:
|
1634 |
+
|
1635 |
+
```python
|
1636 |
+
>>> import tensorflow as tf
|
1637 |
+
>>> from transformers import AutoTokenizer, TFBertForNextSentencePrediction
|
1638 |
+
|
1639 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
1640 |
+
>>> model = TFBertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased")
|
1641 |
+
|
1642 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1643 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1644 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf")
|
1645 |
+
|
1646 |
+
>>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0]
|
1647 |
+
>>> assert logits[0][0] < logits[0][1] # the next sentence was random
|
1648 |
+
```"""
|
1649 |
+
outputs = self.bert(
|
1650 |
+
input_ids=input_ids,
|
1651 |
+
attention_mask=attention_mask,
|
1652 |
+
token_type_ids=token_type_ids,
|
1653 |
+
position_ids=position_ids,
|
1654 |
+
head_mask=head_mask,
|
1655 |
+
inputs_embeds=inputs_embeds,
|
1656 |
+
output_attentions=output_attentions,
|
1657 |
+
output_hidden_states=output_hidden_states,
|
1658 |
+
return_dict=return_dict,
|
1659 |
+
training=training,
|
1660 |
+
)
|
1661 |
+
pooled_output = outputs[1]
|
1662 |
+
seq_relationship_scores = self.nsp(pooled_output=pooled_output)
|
1663 |
+
next_sentence_loss = (
|
1664 |
+
None
|
1665 |
+
if next_sentence_label is None
|
1666 |
+
else self.hf_compute_loss(labels=next_sentence_label, logits=seq_relationship_scores)
|
1667 |
+
)
|
1668 |
+
|
1669 |
+
if not return_dict:
|
1670 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
1671 |
+
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
1672 |
+
|
1673 |
+
return TFNextSentencePredictorOutput(
|
1674 |
+
loss=next_sentence_loss,
|
1675 |
+
logits=seq_relationship_scores,
|
1676 |
+
hidden_states=outputs.hidden_states,
|
1677 |
+
attentions=outputs.attentions,
|
1678 |
+
)
|
1679 |
+
|
1680 |
+
def build(self, input_shape=None):
|
1681 |
+
if self.built:
|
1682 |
+
return
|
1683 |
+
self.built = True
|
1684 |
+
if getattr(self, "bert", None) is not None:
|
1685 |
+
with tf.name_scope(self.bert.name):
|
1686 |
+
self.bert.build(None)
|
1687 |
+
if getattr(self, "nsp", None) is not None:
|
1688 |
+
with tf.name_scope(self.nsp.name):
|
1689 |
+
self.nsp.build(None)
|
1690 |
+
|
1691 |
+
|
1692 |
+
@add_start_docstrings(
|
1693 |
+
"""
|
1694 |
+
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1695 |
+
output) e.g. for GLUE tasks.
|
1696 |
+
""",
|
1697 |
+
BERT_START_DOCSTRING,
|
1698 |
+
)
|
1699 |
+
class TFBertForSequenceClassification(TFBertPreTrainedModel, TFSequenceClassificationLoss):
|
1700 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1701 |
+
_keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"]
|
1702 |
+
_keys_to_ignore_on_load_missing = [r"dropout"]
|
1703 |
+
|
1704 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
1705 |
+
super().__init__(config, *inputs, **kwargs)
|
1706 |
+
|
1707 |
+
self.num_labels = config.num_labels
|
1708 |
+
|
1709 |
+
self.bert = TFBertMainLayer(config, name="bert")
|
1710 |
+
classifier_dropout = (
|
1711 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1712 |
+
)
|
1713 |
+
self.dropout = keras.layers.Dropout(rate=classifier_dropout)
|
1714 |
+
self.classifier = keras.layers.Dense(
|
1715 |
+
units=config.num_labels,
|
1716 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1717 |
+
name="classifier",
|
1718 |
+
)
|
1719 |
+
self.config = config
|
1720 |
+
|
1721 |
+
@unpack_inputs
|
1722 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1723 |
+
@add_code_sample_docstrings(
|
1724 |
+
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
|
1725 |
+
output_type=TFSequenceClassifierOutput,
|
1726 |
+
config_class=_CONFIG_FOR_DOC,
|
1727 |
+
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
|
1728 |
+
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
|
1729 |
+
)
|
1730 |
+
def call(
|
1731 |
+
self,
|
1732 |
+
input_ids: TFModelInputType | None = None,
|
1733 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1734 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1735 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1736 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1737 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1738 |
+
output_attentions: Optional[bool] = None,
|
1739 |
+
output_hidden_states: Optional[bool] = None,
|
1740 |
+
return_dict: Optional[bool] = None,
|
1741 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1742 |
+
training: Optional[bool] = False,
|
1743 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
1744 |
+
r"""
|
1745 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
1746 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1747 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1748 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1749 |
+
"""
|
1750 |
+
outputs = self.bert(
|
1751 |
+
input_ids=input_ids,
|
1752 |
+
attention_mask=attention_mask,
|
1753 |
+
token_type_ids=token_type_ids,
|
1754 |
+
position_ids=position_ids,
|
1755 |
+
head_mask=head_mask,
|
1756 |
+
inputs_embeds=inputs_embeds,
|
1757 |
+
output_attentions=output_attentions,
|
1758 |
+
output_hidden_states=output_hidden_states,
|
1759 |
+
return_dict=return_dict,
|
1760 |
+
training=training,
|
1761 |
+
)
|
1762 |
+
pooled_output = outputs[1]
|
1763 |
+
pooled_output = self.dropout(inputs=pooled_output, training=training)
|
1764 |
+
logits = self.classifier(inputs=pooled_output)
|
1765 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
1766 |
+
|
1767 |
+
if not return_dict:
|
1768 |
+
output = (logits,) + outputs[2:]
|
1769 |
+
return ((loss,) + output) if loss is not None else output
|
1770 |
+
|
1771 |
+
return TFSequenceClassifierOutput(
|
1772 |
+
loss=loss,
|
1773 |
+
logits=logits,
|
1774 |
+
hidden_states=outputs.hidden_states,
|
1775 |
+
attentions=outputs.attentions,
|
1776 |
+
)
|
1777 |
+
|
1778 |
+
def build(self, input_shape=None):
|
1779 |
+
if self.built:
|
1780 |
+
return
|
1781 |
+
self.built = True
|
1782 |
+
if getattr(self, "bert", None) is not None:
|
1783 |
+
with tf.name_scope(self.bert.name):
|
1784 |
+
self.bert.build(None)
|
1785 |
+
if getattr(self, "classifier", None) is not None:
|
1786 |
+
with tf.name_scope(self.classifier.name):
|
1787 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1788 |
+
|
1789 |
+
|
1790 |
+
@add_start_docstrings(
|
1791 |
+
"""
|
1792 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1793 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1794 |
+
""",
|
1795 |
+
BERT_START_DOCSTRING,
|
1796 |
+
)
|
1797 |
+
class TFBertForMultipleChoice(TFBertPreTrainedModel, TFMultipleChoiceLoss):
|
1798 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1799 |
+
_keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"]
|
1800 |
+
_keys_to_ignore_on_load_missing = [r"dropout"]
|
1801 |
+
|
1802 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
1803 |
+
super().__init__(config, *inputs, **kwargs)
|
1804 |
+
|
1805 |
+
self.bert = TFBertMainLayer(config, name="bert")
|
1806 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
1807 |
+
self.classifier = keras.layers.Dense(
|
1808 |
+
units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
1809 |
+
)
|
1810 |
+
self.config = config
|
1811 |
+
|
1812 |
+
@unpack_inputs
|
1813 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1814 |
+
@add_code_sample_docstrings(
|
1815 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1816 |
+
output_type=TFMultipleChoiceModelOutput,
|
1817 |
+
config_class=_CONFIG_FOR_DOC,
|
1818 |
+
)
|
1819 |
+
def call(
|
1820 |
+
self,
|
1821 |
+
input_ids: TFModelInputType | None = None,
|
1822 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1823 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1824 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1825 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1826 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1827 |
+
output_attentions: Optional[bool] = None,
|
1828 |
+
output_hidden_states: Optional[bool] = None,
|
1829 |
+
return_dict: Optional[bool] = None,
|
1830 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1831 |
+
training: Optional[bool] = False,
|
1832 |
+
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
|
1833 |
+
r"""
|
1834 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
1835 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
1836 |
+
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
|
1837 |
+
"""
|
1838 |
+
if input_ids is not None:
|
1839 |
+
num_choices = shape_list(input_ids)[1]
|
1840 |
+
seq_length = shape_list(input_ids)[2]
|
1841 |
+
else:
|
1842 |
+
num_choices = shape_list(inputs_embeds)[1]
|
1843 |
+
seq_length = shape_list(inputs_embeds)[2]
|
1844 |
+
|
1845 |
+
flat_input_ids = tf.reshape(tensor=input_ids, shape=(-1, seq_length)) if input_ids is not None else None
|
1846 |
+
flat_attention_mask = (
|
1847 |
+
tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None
|
1848 |
+
)
|
1849 |
+
flat_token_type_ids = (
|
1850 |
+
tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None
|
1851 |
+
)
|
1852 |
+
flat_position_ids = (
|
1853 |
+
tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None
|
1854 |
+
)
|
1855 |
+
flat_inputs_embeds = (
|
1856 |
+
tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3]))
|
1857 |
+
if inputs_embeds is not None
|
1858 |
+
else None
|
1859 |
+
)
|
1860 |
+
outputs = self.bert(
|
1861 |
+
input_ids=flat_input_ids,
|
1862 |
+
attention_mask=flat_attention_mask,
|
1863 |
+
token_type_ids=flat_token_type_ids,
|
1864 |
+
position_ids=flat_position_ids,
|
1865 |
+
head_mask=head_mask,
|
1866 |
+
inputs_embeds=flat_inputs_embeds,
|
1867 |
+
output_attentions=output_attentions,
|
1868 |
+
output_hidden_states=output_hidden_states,
|
1869 |
+
return_dict=return_dict,
|
1870 |
+
training=training,
|
1871 |
+
)
|
1872 |
+
pooled_output = outputs[1]
|
1873 |
+
pooled_output = self.dropout(inputs=pooled_output, training=training)
|
1874 |
+
logits = self.classifier(inputs=pooled_output)
|
1875 |
+
reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices))
|
1876 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits)
|
1877 |
+
|
1878 |
+
if not return_dict:
|
1879 |
+
output = (reshaped_logits,) + outputs[2:]
|
1880 |
+
return ((loss,) + output) if loss is not None else output
|
1881 |
+
|
1882 |
+
return TFMultipleChoiceModelOutput(
|
1883 |
+
loss=loss,
|
1884 |
+
logits=reshaped_logits,
|
1885 |
+
hidden_states=outputs.hidden_states,
|
1886 |
+
attentions=outputs.attentions,
|
1887 |
+
)
|
1888 |
+
|
1889 |
+
def build(self, input_shape=None):
|
1890 |
+
if self.built:
|
1891 |
+
return
|
1892 |
+
self.built = True
|
1893 |
+
if getattr(self, "bert", None) is not None:
|
1894 |
+
with tf.name_scope(self.bert.name):
|
1895 |
+
self.bert.build(None)
|
1896 |
+
if getattr(self, "classifier", None) is not None:
|
1897 |
+
with tf.name_scope(self.classifier.name):
|
1898 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1899 |
+
|
1900 |
+
|
1901 |
+
@add_start_docstrings(
|
1902 |
+
"""
|
1903 |
+
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1904 |
+
Named-Entity-Recognition (NER) tasks.
|
1905 |
+
""",
|
1906 |
+
BERT_START_DOCSTRING,
|
1907 |
+
)
|
1908 |
+
class TFBertForTokenClassification(TFBertPreTrainedModel, TFTokenClassificationLoss):
|
1909 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1910 |
+
_keys_to_ignore_on_load_unexpected = [
|
1911 |
+
r"pooler",
|
1912 |
+
r"mlm___cls",
|
1913 |
+
r"nsp___cls",
|
1914 |
+
r"cls.predictions",
|
1915 |
+
r"cls.seq_relationship",
|
1916 |
+
]
|
1917 |
+
_keys_to_ignore_on_load_missing = [r"dropout"]
|
1918 |
+
|
1919 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
1920 |
+
super().__init__(config, *inputs, **kwargs)
|
1921 |
+
|
1922 |
+
self.num_labels = config.num_labels
|
1923 |
+
|
1924 |
+
self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert")
|
1925 |
+
classifier_dropout = (
|
1926 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1927 |
+
)
|
1928 |
+
self.dropout = keras.layers.Dropout(rate=classifier_dropout)
|
1929 |
+
self.classifier = keras.layers.Dense(
|
1930 |
+
units=config.num_labels,
|
1931 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1932 |
+
name="classifier",
|
1933 |
+
)
|
1934 |
+
self.config = config
|
1935 |
+
|
1936 |
+
@unpack_inputs
|
1937 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1938 |
+
@add_code_sample_docstrings(
|
1939 |
+
checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
|
1940 |
+
output_type=TFTokenClassifierOutput,
|
1941 |
+
config_class=_CONFIG_FOR_DOC,
|
1942 |
+
expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
|
1943 |
+
expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
|
1944 |
+
)
|
1945 |
+
def call(
|
1946 |
+
self,
|
1947 |
+
input_ids: TFModelInputType | None = None,
|
1948 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1949 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1950 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1951 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1952 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1953 |
+
output_attentions: Optional[bool] = None,
|
1954 |
+
output_hidden_states: Optional[bool] = None,
|
1955 |
+
return_dict: Optional[bool] = None,
|
1956 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1957 |
+
training: Optional[bool] = False,
|
1958 |
+
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
|
1959 |
+
r"""
|
1960 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
1961 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1962 |
+
"""
|
1963 |
+
outputs = self.bert(
|
1964 |
+
input_ids=input_ids,
|
1965 |
+
attention_mask=attention_mask,
|
1966 |
+
token_type_ids=token_type_ids,
|
1967 |
+
position_ids=position_ids,
|
1968 |
+
head_mask=head_mask,
|
1969 |
+
inputs_embeds=inputs_embeds,
|
1970 |
+
output_attentions=output_attentions,
|
1971 |
+
output_hidden_states=output_hidden_states,
|
1972 |
+
return_dict=return_dict,
|
1973 |
+
training=training,
|
1974 |
+
)
|
1975 |
+
sequence_output = outputs[0]
|
1976 |
+
sequence_output = self.dropout(inputs=sequence_output, training=training)
|
1977 |
+
logits = self.classifier(inputs=sequence_output)
|
1978 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
1979 |
+
|
1980 |
+
if not return_dict:
|
1981 |
+
output = (logits,) + outputs[2:]
|
1982 |
+
return ((loss,) + output) if loss is not None else output
|
1983 |
+
|
1984 |
+
return TFTokenClassifierOutput(
|
1985 |
+
loss=loss,
|
1986 |
+
logits=logits,
|
1987 |
+
hidden_states=outputs.hidden_states,
|
1988 |
+
attentions=outputs.attentions,
|
1989 |
+
)
|
1990 |
+
|
1991 |
+
def build(self, input_shape=None):
|
1992 |
+
if self.built:
|
1993 |
+
return
|
1994 |
+
self.built = True
|
1995 |
+
if getattr(self, "bert", None) is not None:
|
1996 |
+
with tf.name_scope(self.bert.name):
|
1997 |
+
self.bert.build(None)
|
1998 |
+
if getattr(self, "classifier", None) is not None:
|
1999 |
+
with tf.name_scope(self.classifier.name):
|
2000 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
2001 |
+
|
2002 |
+
|
2003 |
+
@add_start_docstrings(
|
2004 |
+
"""
|
2005 |
+
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
2006 |
+
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
2007 |
+
""",
|
2008 |
+
BERT_START_DOCSTRING,
|
2009 |
+
)
|
2010 |
+
class TFBertForQuestionAnswering(TFBertPreTrainedModel, TFQuestionAnsweringLoss):
|
2011 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
2012 |
+
_keys_to_ignore_on_load_unexpected = [
|
2013 |
+
r"pooler",
|
2014 |
+
r"mlm___cls",
|
2015 |
+
r"nsp___cls",
|
2016 |
+
r"cls.predictions",
|
2017 |
+
r"cls.seq_relationship",
|
2018 |
+
]
|
2019 |
+
|
2020 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
2021 |
+
super().__init__(config, *inputs, **kwargs)
|
2022 |
+
|
2023 |
+
self.num_labels = config.num_labels
|
2024 |
+
|
2025 |
+
self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert")
|
2026 |
+
self.qa_outputs = keras.layers.Dense(
|
2027 |
+
units=config.num_labels,
|
2028 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
2029 |
+
name="qa_outputs",
|
2030 |
+
)
|
2031 |
+
self.config = config
|
2032 |
+
|
2033 |
+
@unpack_inputs
|
2034 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
2035 |
+
@add_code_sample_docstrings(
|
2036 |
+
checkpoint=_CHECKPOINT_FOR_QA,
|
2037 |
+
output_type=TFQuestionAnsweringModelOutput,
|
2038 |
+
config_class=_CONFIG_FOR_DOC,
|
2039 |
+
qa_target_start_index=_QA_TARGET_START_INDEX,
|
2040 |
+
qa_target_end_index=_QA_TARGET_END_INDEX,
|
2041 |
+
expected_output=_QA_EXPECTED_OUTPUT,
|
2042 |
+
expected_loss=_QA_EXPECTED_LOSS,
|
2043 |
+
)
|
2044 |
+
def call(
|
2045 |
+
self,
|
2046 |
+
input_ids: TFModelInputType | None = None,
|
2047 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
2048 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
2049 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
2050 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
2051 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
2052 |
+
output_attentions: Optional[bool] = None,
|
2053 |
+
output_hidden_states: Optional[bool] = None,
|
2054 |
+
return_dict: Optional[bool] = None,
|
2055 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
2056 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
2057 |
+
training: Optional[bool] = False,
|
2058 |
+
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
|
2059 |
+
r"""
|
2060 |
+
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
2061 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
2062 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
2063 |
+
are not taken into account for computing the loss.
|
2064 |
+
end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
2065 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
2066 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
2067 |
+
are not taken into account for computing the loss.
|
2068 |
+
"""
|
2069 |
+
outputs = self.bert(
|
2070 |
+
input_ids=input_ids,
|
2071 |
+
attention_mask=attention_mask,
|
2072 |
+
token_type_ids=token_type_ids,
|
2073 |
+
position_ids=position_ids,
|
2074 |
+
head_mask=head_mask,
|
2075 |
+
inputs_embeds=inputs_embeds,
|
2076 |
+
output_attentions=output_attentions,
|
2077 |
+
output_hidden_states=output_hidden_states,
|
2078 |
+
return_dict=return_dict,
|
2079 |
+
training=training,
|
2080 |
+
)
|
2081 |
+
sequence_output = outputs[0]
|
2082 |
+
logits = self.qa_outputs(inputs=sequence_output)
|
2083 |
+
start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1)
|
2084 |
+
start_logits = tf.squeeze(input=start_logits, axis=-1)
|
2085 |
+
end_logits = tf.squeeze(input=end_logits, axis=-1)
|
2086 |
+
loss = None
|
2087 |
+
|
2088 |
+
if start_positions is not None and end_positions is not None:
|
2089 |
+
labels = {"start_position": start_positions}
|
2090 |
+
labels["end_position"] = end_positions
|
2091 |
+
loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits))
|
2092 |
+
|
2093 |
+
if not return_dict:
|
2094 |
+
output = (start_logits, end_logits) + outputs[2:]
|
2095 |
+
return ((loss,) + output) if loss is not None else output
|
2096 |
+
|
2097 |
+
return TFQuestionAnsweringModelOutput(
|
2098 |
+
loss=loss,
|
2099 |
+
start_logits=start_logits,
|
2100 |
+
end_logits=end_logits,
|
2101 |
+
hidden_states=outputs.hidden_states,
|
2102 |
+
attentions=outputs.attentions,
|
2103 |
+
)
|
2104 |
+
|
2105 |
+
def build(self, input_shape=None):
|
2106 |
+
if self.built:
|
2107 |
+
return
|
2108 |
+
self.built = True
|
2109 |
+
if getattr(self, "bert", None) is not None:
|
2110 |
+
with tf.name_scope(self.bert.name):
|
2111 |
+
self.bert.build(None)
|
2112 |
+
if getattr(self, "qa_outputs", None) is not None:
|
2113 |
+
with tf.name_scope(self.qa_outputs.name):
|
2114 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
venv/lib/python3.10/site-packages/transformers/models/bert/tokenization_bert.py
ADDED
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for Bert."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections
|
19 |
+
import os
|
20 |
+
import unicodedata
|
21 |
+
from typing import List, Optional, Tuple
|
22 |
+
|
23 |
+
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
24 |
+
from ...utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
30 |
+
|
31 |
+
|
32 |
+
def load_vocab(vocab_file):
|
33 |
+
"""Loads a vocabulary file into a dictionary."""
|
34 |
+
vocab = collections.OrderedDict()
|
35 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
36 |
+
tokens = reader.readlines()
|
37 |
+
for index, token in enumerate(tokens):
|
38 |
+
token = token.rstrip("\n")
|
39 |
+
vocab[token] = index
|
40 |
+
return vocab
|
41 |
+
|
42 |
+
|
43 |
+
def whitespace_tokenize(text):
|
44 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
45 |
+
text = text.strip()
|
46 |
+
if not text:
|
47 |
+
return []
|
48 |
+
tokens = text.split()
|
49 |
+
return tokens
|
50 |
+
|
51 |
+
|
52 |
+
class BertTokenizer(PreTrainedTokenizer):
|
53 |
+
r"""
|
54 |
+
Construct a BERT tokenizer. Based on WordPiece.
|
55 |
+
|
56 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
57 |
+
this superclass for more information regarding those methods.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
vocab_file (`str`):
|
61 |
+
File containing the vocabulary.
|
62 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether or not to lowercase the input when tokenizing.
|
64 |
+
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not to do basic tokenization before WordPiece.
|
66 |
+
never_split (`Iterable`, *optional*):
|
67 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
68 |
+
`do_basic_tokenize=True`
|
69 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
70 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
71 |
+
token instead.
|
72 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
73 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
74 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
75 |
+
token of a sequence built with special tokens.
|
76 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
77 |
+
The token used for padding, for example when batching sequences of different lengths.
|
78 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
79 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
80 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
81 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
82 |
+
The token used for masking values. This is the token used when training this model with masked language
|
83 |
+
modeling. This is the token which the model will try to predict.
|
84 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
85 |
+
Whether or not to tokenize Chinese characters.
|
86 |
+
|
87 |
+
This should likely be deactivated for Japanese (see this
|
88 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
89 |
+
strip_accents (`bool`, *optional*):
|
90 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
91 |
+
value for `lowercase` (as in the original BERT).
|
92 |
+
"""
|
93 |
+
|
94 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
vocab_file,
|
99 |
+
do_lower_case=True,
|
100 |
+
do_basic_tokenize=True,
|
101 |
+
never_split=None,
|
102 |
+
unk_token="[UNK]",
|
103 |
+
sep_token="[SEP]",
|
104 |
+
pad_token="[PAD]",
|
105 |
+
cls_token="[CLS]",
|
106 |
+
mask_token="[MASK]",
|
107 |
+
tokenize_chinese_chars=True,
|
108 |
+
strip_accents=None,
|
109 |
+
**kwargs,
|
110 |
+
):
|
111 |
+
if not os.path.isfile(vocab_file):
|
112 |
+
raise ValueError(
|
113 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
114 |
+
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
115 |
+
)
|
116 |
+
self.vocab = load_vocab(vocab_file)
|
117 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
118 |
+
self.do_basic_tokenize = do_basic_tokenize
|
119 |
+
if do_basic_tokenize:
|
120 |
+
self.basic_tokenizer = BasicTokenizer(
|
121 |
+
do_lower_case=do_lower_case,
|
122 |
+
never_split=never_split,
|
123 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
124 |
+
strip_accents=strip_accents,
|
125 |
+
)
|
126 |
+
|
127 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
128 |
+
|
129 |
+
super().__init__(
|
130 |
+
do_lower_case=do_lower_case,
|
131 |
+
do_basic_tokenize=do_basic_tokenize,
|
132 |
+
never_split=never_split,
|
133 |
+
unk_token=unk_token,
|
134 |
+
sep_token=sep_token,
|
135 |
+
pad_token=pad_token,
|
136 |
+
cls_token=cls_token,
|
137 |
+
mask_token=mask_token,
|
138 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
139 |
+
strip_accents=strip_accents,
|
140 |
+
**kwargs,
|
141 |
+
)
|
142 |
+
|
143 |
+
@property
|
144 |
+
def do_lower_case(self):
|
145 |
+
return self.basic_tokenizer.do_lower_case
|
146 |
+
|
147 |
+
@property
|
148 |
+
def vocab_size(self):
|
149 |
+
return len(self.vocab)
|
150 |
+
|
151 |
+
def get_vocab(self):
|
152 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
153 |
+
|
154 |
+
def _tokenize(self, text, split_special_tokens=False):
|
155 |
+
split_tokens = []
|
156 |
+
if self.do_basic_tokenize:
|
157 |
+
for token in self.basic_tokenizer.tokenize(
|
158 |
+
text, never_split=self.all_special_tokens if not split_special_tokens else None
|
159 |
+
):
|
160 |
+
# If the token is part of the never_split set
|
161 |
+
if token in self.basic_tokenizer.never_split:
|
162 |
+
split_tokens.append(token)
|
163 |
+
else:
|
164 |
+
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
165 |
+
else:
|
166 |
+
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
167 |
+
return split_tokens
|
168 |
+
|
169 |
+
def _convert_token_to_id(self, token):
|
170 |
+
"""Converts a token (str) in an id using the vocab."""
|
171 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
172 |
+
|
173 |
+
def _convert_id_to_token(self, index):
|
174 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
175 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
176 |
+
|
177 |
+
def convert_tokens_to_string(self, tokens):
|
178 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
179 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
180 |
+
return out_string
|
181 |
+
|
182 |
+
def build_inputs_with_special_tokens(
|
183 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
184 |
+
) -> List[int]:
|
185 |
+
"""
|
186 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
187 |
+
adding special tokens. A BERT sequence has the following format:
|
188 |
+
|
189 |
+
- single sequence: `[CLS] X [SEP]`
|
190 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
191 |
+
|
192 |
+
Args:
|
193 |
+
token_ids_0 (`List[int]`):
|
194 |
+
List of IDs to which the special tokens will be added.
|
195 |
+
token_ids_1 (`List[int]`, *optional*):
|
196 |
+
Optional second list of IDs for sequence pairs.
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
200 |
+
"""
|
201 |
+
if token_ids_1 is None:
|
202 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
203 |
+
cls = [self.cls_token_id]
|
204 |
+
sep = [self.sep_token_id]
|
205 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
206 |
+
|
207 |
+
def get_special_tokens_mask(
|
208 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
209 |
+
) -> List[int]:
|
210 |
+
"""
|
211 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
212 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
213 |
+
|
214 |
+
Args:
|
215 |
+
token_ids_0 (`List[int]`):
|
216 |
+
List of IDs.
|
217 |
+
token_ids_1 (`List[int]`, *optional*):
|
218 |
+
Optional second list of IDs for sequence pairs.
|
219 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
220 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
221 |
+
|
222 |
+
Returns:
|
223 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
224 |
+
"""
|
225 |
+
|
226 |
+
if already_has_special_tokens:
|
227 |
+
return super().get_special_tokens_mask(
|
228 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
229 |
+
)
|
230 |
+
|
231 |
+
if token_ids_1 is not None:
|
232 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
233 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
234 |
+
|
235 |
+
def create_token_type_ids_from_sequences(
|
236 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
237 |
+
) -> List[int]:
|
238 |
+
"""
|
239 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
240 |
+
pair mask has the following format:
|
241 |
+
|
242 |
+
```
|
243 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
244 |
+
| first sequence | second sequence |
|
245 |
+
```
|
246 |
+
|
247 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
248 |
+
|
249 |
+
Args:
|
250 |
+
token_ids_0 (`List[int]`):
|
251 |
+
List of IDs.
|
252 |
+
token_ids_1 (`List[int]`, *optional*):
|
253 |
+
Optional second list of IDs for sequence pairs.
|
254 |
+
|
255 |
+
Returns:
|
256 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
257 |
+
"""
|
258 |
+
sep = [self.sep_token_id]
|
259 |
+
cls = [self.cls_token_id]
|
260 |
+
if token_ids_1 is None:
|
261 |
+
return len(cls + token_ids_0 + sep) * [0]
|
262 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
263 |
+
|
264 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
265 |
+
index = 0
|
266 |
+
if os.path.isdir(save_directory):
|
267 |
+
vocab_file = os.path.join(
|
268 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
269 |
+
)
|
270 |
+
else:
|
271 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
272 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
273 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
274 |
+
if index != token_index:
|
275 |
+
logger.warning(
|
276 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
277 |
+
" Please check that the vocabulary is not corrupted!"
|
278 |
+
)
|
279 |
+
index = token_index
|
280 |
+
writer.write(token + "\n")
|
281 |
+
index += 1
|
282 |
+
return (vocab_file,)
|
283 |
+
|
284 |
+
|
285 |
+
class BasicTokenizer(object):
|
286 |
+
"""
|
287 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
288 |
+
|
289 |
+
Args:
|
290 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
291 |
+
Whether or not to lowercase the input when tokenizing.
|
292 |
+
never_split (`Iterable`, *optional*):
|
293 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
294 |
+
`do_basic_tokenize=True`
|
295 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
296 |
+
Whether or not to tokenize Chinese characters.
|
297 |
+
|
298 |
+
This should likely be deactivated for Japanese (see this
|
299 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
300 |
+
strip_accents (`bool`, *optional*):
|
301 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
302 |
+
value for `lowercase` (as in the original BERT).
|
303 |
+
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
304 |
+
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
305 |
+
the full context of the words, such as contractions.
|
306 |
+
"""
|
307 |
+
|
308 |
+
def __init__(
|
309 |
+
self,
|
310 |
+
do_lower_case=True,
|
311 |
+
never_split=None,
|
312 |
+
tokenize_chinese_chars=True,
|
313 |
+
strip_accents=None,
|
314 |
+
do_split_on_punc=True,
|
315 |
+
):
|
316 |
+
if never_split is None:
|
317 |
+
never_split = []
|
318 |
+
self.do_lower_case = do_lower_case
|
319 |
+
self.never_split = set(never_split)
|
320 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
321 |
+
self.strip_accents = strip_accents
|
322 |
+
self.do_split_on_punc = do_split_on_punc
|
323 |
+
|
324 |
+
def tokenize(self, text, never_split=None):
|
325 |
+
"""
|
326 |
+
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
327 |
+
|
328 |
+
Args:
|
329 |
+
never_split (`List[str]`, *optional*)
|
330 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
331 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
332 |
+
"""
|
333 |
+
# union() returns a new set by concatenating the two sets.
|
334 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
335 |
+
text = self._clean_text(text)
|
336 |
+
|
337 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
338 |
+
# models. This is also applied to the English models now, but it doesn't
|
339 |
+
# matter since the English models were not trained on any Chinese data
|
340 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
341 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
342 |
+
# words in the English Wikipedia.).
|
343 |
+
if self.tokenize_chinese_chars:
|
344 |
+
text = self._tokenize_chinese_chars(text)
|
345 |
+
# prevents treating the same character with different unicode codepoints as different characters
|
346 |
+
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
347 |
+
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
348 |
+
split_tokens = []
|
349 |
+
for token in orig_tokens:
|
350 |
+
if token not in never_split:
|
351 |
+
if self.do_lower_case:
|
352 |
+
token = token.lower()
|
353 |
+
if self.strip_accents is not False:
|
354 |
+
token = self._run_strip_accents(token)
|
355 |
+
elif self.strip_accents:
|
356 |
+
token = self._run_strip_accents(token)
|
357 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
358 |
+
|
359 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
360 |
+
return output_tokens
|
361 |
+
|
362 |
+
def _run_strip_accents(self, text):
|
363 |
+
"""Strips accents from a piece of text."""
|
364 |
+
text = unicodedata.normalize("NFD", text)
|
365 |
+
output = []
|
366 |
+
for char in text:
|
367 |
+
cat = unicodedata.category(char)
|
368 |
+
if cat == "Mn":
|
369 |
+
continue
|
370 |
+
output.append(char)
|
371 |
+
return "".join(output)
|
372 |
+
|
373 |
+
def _run_split_on_punc(self, text, never_split=None):
|
374 |
+
"""Splits punctuation on a piece of text."""
|
375 |
+
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
376 |
+
return [text]
|
377 |
+
chars = list(text)
|
378 |
+
i = 0
|
379 |
+
start_new_word = True
|
380 |
+
output = []
|
381 |
+
while i < len(chars):
|
382 |
+
char = chars[i]
|
383 |
+
if _is_punctuation(char):
|
384 |
+
output.append([char])
|
385 |
+
start_new_word = True
|
386 |
+
else:
|
387 |
+
if start_new_word:
|
388 |
+
output.append([])
|
389 |
+
start_new_word = False
|
390 |
+
output[-1].append(char)
|
391 |
+
i += 1
|
392 |
+
|
393 |
+
return ["".join(x) for x in output]
|
394 |
+
|
395 |
+
def _tokenize_chinese_chars(self, text):
|
396 |
+
"""Adds whitespace around any CJK character."""
|
397 |
+
output = []
|
398 |
+
for char in text:
|
399 |
+
cp = ord(char)
|
400 |
+
if self._is_chinese_char(cp):
|
401 |
+
output.append(" ")
|
402 |
+
output.append(char)
|
403 |
+
output.append(" ")
|
404 |
+
else:
|
405 |
+
output.append(char)
|
406 |
+
return "".join(output)
|
407 |
+
|
408 |
+
def _is_chinese_char(self, cp):
|
409 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
410 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
411 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
412 |
+
#
|
413 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
414 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
415 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
416 |
+
# space-separated words, so they are not treated specially and handled
|
417 |
+
# like the all of the other languages.
|
418 |
+
if (
|
419 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
420 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
421 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
422 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
423 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
424 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
425 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
426 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
427 |
+
): #
|
428 |
+
return True
|
429 |
+
|
430 |
+
return False
|
431 |
+
|
432 |
+
def _clean_text(self, text):
|
433 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
434 |
+
output = []
|
435 |
+
for char in text:
|
436 |
+
cp = ord(char)
|
437 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
438 |
+
continue
|
439 |
+
if _is_whitespace(char):
|
440 |
+
output.append(" ")
|
441 |
+
else:
|
442 |
+
output.append(char)
|
443 |
+
return "".join(output)
|
444 |
+
|
445 |
+
|
446 |
+
class WordpieceTokenizer(object):
|
447 |
+
"""Runs WordPiece tokenization."""
|
448 |
+
|
449 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
450 |
+
self.vocab = vocab
|
451 |
+
self.unk_token = unk_token
|
452 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
453 |
+
|
454 |
+
def tokenize(self, text):
|
455 |
+
"""
|
456 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
457 |
+
tokenization using the given vocabulary.
|
458 |
+
|
459 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
460 |
+
|
461 |
+
Args:
|
462 |
+
text: A single token or whitespace separated tokens. This should have
|
463 |
+
already been passed through *BasicTokenizer*.
|
464 |
+
|
465 |
+
Returns:
|
466 |
+
A list of wordpiece tokens.
|
467 |
+
"""
|
468 |
+
|
469 |
+
output_tokens = []
|
470 |
+
for token in whitespace_tokenize(text):
|
471 |
+
chars = list(token)
|
472 |
+
if len(chars) > self.max_input_chars_per_word:
|
473 |
+
output_tokens.append(self.unk_token)
|
474 |
+
continue
|
475 |
+
|
476 |
+
is_bad = False
|
477 |
+
start = 0
|
478 |
+
sub_tokens = []
|
479 |
+
while start < len(chars):
|
480 |
+
end = len(chars)
|
481 |
+
cur_substr = None
|
482 |
+
while start < end:
|
483 |
+
substr = "".join(chars[start:end])
|
484 |
+
if start > 0:
|
485 |
+
substr = "##" + substr
|
486 |
+
if substr in self.vocab:
|
487 |
+
cur_substr = substr
|
488 |
+
break
|
489 |
+
end -= 1
|
490 |
+
if cur_substr is None:
|
491 |
+
is_bad = True
|
492 |
+
break
|
493 |
+
sub_tokens.append(cur_substr)
|
494 |
+
start = end
|
495 |
+
|
496 |
+
if is_bad:
|
497 |
+
output_tokens.append(self.unk_token)
|
498 |
+
else:
|
499 |
+
output_tokens.extend(sub_tokens)
|
500 |
+
return output_tokens
|