Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/zero/11.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/11.attention.query_key_value.weight/fp32.pt +3 -0
- ckpts/universal/global_step20/zero/11.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/17.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/24.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/24.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/24.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/cuda/__init__.py +1412 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/_memory_viz.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/_sanitizer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/comm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/error.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/graphs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/jiterator.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/memory.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/nccl.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/nvtx.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/profiler.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/random.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/sparse.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/__pycache__/streams.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/amp/__init__.py +11 -0
- venv/lib/python3.10/site-packages/torch/cuda/amp/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/amp/__pycache__/autocast_mode.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/amp/__pycache__/common.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/amp/__pycache__/grad_scaler.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/amp/autocast_mode.py +144 -0
- venv/lib/python3.10/site-packages/torch/cuda/amp/common.py +9 -0
- venv/lib/python3.10/site-packages/torch/cuda/amp/grad_scaler.py +28 -0
- venv/lib/python3.10/site-packages/torch/cuda/jiterator.py +185 -0
- venv/lib/python3.10/site-packages/torch/cuda/memory.py +914 -0
- venv/lib/python3.10/site-packages/torch/cuda/profiler.py +61 -0
- venv/lib/python3.10/site-packages/torch/include/clog.h +108 -0
- venv/lib/python3.10/site-packages/torch/include/cpuinfo.h +1956 -0
- venv/lib/python3.10/site-packages/torch/include/dnnl.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/dnnl_config.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/dnnl_debug.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/dnnl_ocl.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/dnnl_sycl.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/dnnl_sycl_types.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/dnnl_threadpool.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/dnnl_types.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/dnnl_version.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/experiments-config.h +25 -0
- venv/lib/python3.10/site-packages/torch/include/fp16.h +11 -0
- venv/lib/python3.10/site-packages/torch/include/fxdiv.h +425 -0
- venv/lib/python3.10/site-packages/torch/include/libshm.h +46 -0
- venv/lib/python3.10/site-packages/torch/include/nnpack.h +659 -0
ckpts/universal/global_step20/zero/11.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:356151db3e8faf82c073da70a6e056425fcc45a2b0970b707a513579f35f3333
|
3 |
+
size 50332843
|
ckpts/universal/global_step20/zero/11.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7d7627bc9a3c917891aa8408fbeeae1dbc23b07b3b9a003d958165eb8bd1246
|
3 |
+
size 50332749
|
ckpts/universal/global_step20/zero/11.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:523460a090ec65446cc6a8d4693ef0107650c6fd11c6d977e02f123e9863ce23
|
3 |
+
size 33555627
|
ckpts/universal/global_step20/zero/17.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e54fbc32a8b1254807e878ba1cd35e94b720b342cbc46a4f1c16bdfd873bd7ce
|
3 |
+
size 33555612
|
ckpts/universal/global_step20/zero/24.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e82149015d85bc08b00227a304e699480097baacbf1704add001ecfa7245340
|
3 |
+
size 33555612
|
ckpts/universal/global_step20/zero/24.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b81a2876bfdd26b7928ac452190c8e85c73b8a8aa31da6508ef0ff87f6f6469
|
3 |
+
size 33555627
|
ckpts/universal/global_step20/zero/24.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67d90a6232ca06174ec19b38aa8d4bffa27dfadeb7d3c357fc014fd442ceafd6
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/torch/cuda/__init__.py
ADDED
@@ -0,0 +1,1412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
This package adds support for CUDA tensor types.
|
3 |
+
|
4 |
+
It implements the same function as CPU tensors, but they utilize
|
5 |
+
GPUs for computation.
|
6 |
+
|
7 |
+
It is lazily initialized, so you can always import it, and use
|
8 |
+
:func:`is_available()` to determine if your system supports CUDA.
|
9 |
+
|
10 |
+
:ref:`cuda-semantics` has more details about working with CUDA.
|
11 |
+
"""
|
12 |
+
|
13 |
+
|
14 |
+
import contextlib
|
15 |
+
import importlib
|
16 |
+
import os
|
17 |
+
import sys
|
18 |
+
import threading
|
19 |
+
import traceback
|
20 |
+
import warnings
|
21 |
+
from functools import lru_cache
|
22 |
+
from typing import Any, Callable, cast, List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch._C
|
26 |
+
from torch.types import Device
|
27 |
+
from .. import device as _device
|
28 |
+
from .._utils import _dummy_type, _LazySeedTracker, classproperty
|
29 |
+
from ._utils import _get_device_index
|
30 |
+
from .graphs import (
|
31 |
+
CUDAGraph,
|
32 |
+
graph,
|
33 |
+
graph_pool_handle,
|
34 |
+
is_current_stream_capturing,
|
35 |
+
make_graphed_callables,
|
36 |
+
)
|
37 |
+
from .streams import Event, ExternalStream, Stream
|
38 |
+
|
39 |
+
try:
|
40 |
+
from torch._C import _cudart # type: ignore[attr-defined]
|
41 |
+
except ImportError:
|
42 |
+
_cudart = None
|
43 |
+
|
44 |
+
_initialized = False
|
45 |
+
_tls = threading.local()
|
46 |
+
_initialization_lock = threading.Lock()
|
47 |
+
_queued_calls: List[
|
48 |
+
Tuple[Callable[[], None], List[str]]
|
49 |
+
] = [] # don't invoke these until initialization occurs
|
50 |
+
_is_in_bad_fork = getattr(torch._C, "_cuda_isInBadFork", lambda: False)
|
51 |
+
_device_t = Union[_device, str, int, None]
|
52 |
+
|
53 |
+
_HAS_PYNVML = False
|
54 |
+
_PYNVML_ERR = None
|
55 |
+
try:
|
56 |
+
import pynvml # type: ignore[import]
|
57 |
+
|
58 |
+
_HAS_PYNVML = True
|
59 |
+
except ImportError as err:
|
60 |
+
_PYNVML_ERR = err # sometimes a lib is installed but the import fails for some other reason, so we log the error for later
|
61 |
+
|
62 |
+
_lazy_seed_tracker = _LazySeedTracker()
|
63 |
+
|
64 |
+
# Define dummy _CudaDeviceProperties type if PyTorch was compiled without CUDA
|
65 |
+
if hasattr(torch._C, "_CudaDeviceProperties"):
|
66 |
+
_CudaDeviceProperties = torch._C._CudaDeviceProperties
|
67 |
+
else:
|
68 |
+
_CudaDeviceProperties = _dummy_type("_CudaDeviceProperties") # type: ignore[assignment, misc]
|
69 |
+
|
70 |
+
if hasattr(torch._C, "_cuda_exchangeDevice"):
|
71 |
+
_exchange_device = torch._C._cuda_exchangeDevice
|
72 |
+
else:
|
73 |
+
|
74 |
+
def _exchange_device(device: int) -> int:
|
75 |
+
if device < 0:
|
76 |
+
return -1
|
77 |
+
raise RuntimeError("PyTorch was compiled without CUDA support")
|
78 |
+
|
79 |
+
|
80 |
+
if hasattr(torch._C, "_cuda_maybeExchangeDevice"):
|
81 |
+
_maybe_exchange_device = torch._C._cuda_maybeExchangeDevice
|
82 |
+
else:
|
83 |
+
|
84 |
+
def _maybe_exchange_device(device: int) -> int:
|
85 |
+
if device < 0:
|
86 |
+
return -1
|
87 |
+
raise RuntimeError("PyTorch was compiled without CUDA support")
|
88 |
+
|
89 |
+
|
90 |
+
has_half: bool = True
|
91 |
+
has_magma: bool = torch._C._has_magma
|
92 |
+
|
93 |
+
default_generators: Tuple[torch._C.Generator] = () # type: ignore[assignment]
|
94 |
+
|
95 |
+
|
96 |
+
def _is_compiled() -> bool:
|
97 |
+
r"""Return true if compile with CUDA support."""
|
98 |
+
return hasattr(torch._C, "_cuda_getDeviceCount")
|
99 |
+
|
100 |
+
|
101 |
+
def _nvml_based_avail() -> bool:
|
102 |
+
return os.getenv("PYTORCH_NVML_BASED_CUDA_CHECK") == "1"
|
103 |
+
|
104 |
+
|
105 |
+
def is_available() -> bool:
|
106 |
+
r"""Return a bool indicating if CUDA is currently available."""
|
107 |
+
if not _is_compiled():
|
108 |
+
return False
|
109 |
+
if _nvml_based_avail():
|
110 |
+
# The user has set an env variable to request this availability check that attempts to avoid fork poisoning by
|
111 |
+
# using NVML at the cost of a weaker CUDA availability assessment. Note that if NVML discovery/initialization
|
112 |
+
# fails, this assessment falls back to the default CUDA Runtime API assessment (`cudaGetDeviceCount`)
|
113 |
+
return device_count() > 0
|
114 |
+
else:
|
115 |
+
# The default availability inspection never throws and returns 0 if the driver is missing or can't
|
116 |
+
# be initialized. This uses the CUDA Runtime API `cudaGetDeviceCount` which in turn initializes the CUDA Driver
|
117 |
+
# API via `cuInit`
|
118 |
+
return torch._C._cuda_getDeviceCount() > 0
|
119 |
+
|
120 |
+
|
121 |
+
def is_bf16_supported():
|
122 |
+
r"""Return a bool indicating if the current CUDA/ROCm device supports dtype bfloat16."""
|
123 |
+
# Check for ROCm, if true return true, no ROCM_VERSION check required,
|
124 |
+
# since it is supported on AMD GPU archs.
|
125 |
+
if torch.version.hip:
|
126 |
+
return True
|
127 |
+
|
128 |
+
device = torch.cuda.current_device()
|
129 |
+
|
130 |
+
# Check for CUDA version and device compute capability.
|
131 |
+
# This is a fast way to check for it.
|
132 |
+
cuda_version = torch.version.cuda
|
133 |
+
if (
|
134 |
+
cuda_version is not None
|
135 |
+
and int(cuda_version.split(".")[0]) >= 11
|
136 |
+
and torch.cuda.get_device_properties(device).major >= 8
|
137 |
+
):
|
138 |
+
return True
|
139 |
+
|
140 |
+
# Finally try to create a bfloat16 device.
|
141 |
+
return _check_bf16_tensor_supported(device)
|
142 |
+
|
143 |
+
|
144 |
+
@lru_cache(maxsize=16)
|
145 |
+
def _check_bf16_tensor_supported(device: _device_t):
|
146 |
+
try:
|
147 |
+
torch.tensor([1.0], dtype=torch.bfloat16, device=device)
|
148 |
+
return True
|
149 |
+
except Exception:
|
150 |
+
return False
|
151 |
+
|
152 |
+
|
153 |
+
def _sleep(cycles):
|
154 |
+
torch._C._cuda_sleep(cycles)
|
155 |
+
|
156 |
+
|
157 |
+
def _check_capability():
|
158 |
+
incorrect_binary_warn = """
|
159 |
+
Found GPU%d %s which requires CUDA_VERSION >= %d to
|
160 |
+
work properly, but your PyTorch was compiled
|
161 |
+
with CUDA_VERSION %d. Please install the correct PyTorch binary
|
162 |
+
using instructions from https://pytorch.org
|
163 |
+
"""
|
164 |
+
|
165 |
+
old_gpu_warn = """
|
166 |
+
Found GPU%d %s which is of cuda capability %d.%d.
|
167 |
+
PyTorch no longer supports this GPU because it is too old.
|
168 |
+
The minimum cuda capability supported by this library is %d.%d.
|
169 |
+
"""
|
170 |
+
|
171 |
+
if torch.version.cuda is not None: # on ROCm we don't want this check
|
172 |
+
CUDA_VERSION = torch._C._cuda_getCompiledVersion()
|
173 |
+
for d in range(device_count()):
|
174 |
+
capability = get_device_capability(d)
|
175 |
+
major = capability[0]
|
176 |
+
minor = capability[1]
|
177 |
+
name = get_device_name(d)
|
178 |
+
current_arch = major * 10 + minor
|
179 |
+
min_arch = min(
|
180 |
+
(int(arch.split("_")[1]) for arch in torch.cuda.get_arch_list()),
|
181 |
+
default=35,
|
182 |
+
)
|
183 |
+
if current_arch < min_arch:
|
184 |
+
warnings.warn(
|
185 |
+
old_gpu_warn
|
186 |
+
% (d, name, major, minor, min_arch // 10, min_arch % 10)
|
187 |
+
)
|
188 |
+
|
189 |
+
|
190 |
+
def _check_cubins():
|
191 |
+
incompatible_device_warn = """
|
192 |
+
{} with CUDA capability sm_{} is not compatible with the current PyTorch installation.
|
193 |
+
The current PyTorch install supports CUDA capabilities {}.
|
194 |
+
If you want to use the {} GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/
|
195 |
+
"""
|
196 |
+
if torch.version.cuda is None: # on ROCm we don't want this check
|
197 |
+
return
|
198 |
+
arch_list = get_arch_list()
|
199 |
+
if len(arch_list) == 0:
|
200 |
+
return
|
201 |
+
supported_sm = [int(arch.split("_")[1]) for arch in arch_list if "sm_" in arch]
|
202 |
+
for idx in range(device_count()):
|
203 |
+
cap_major, cap_minor = get_device_capability(idx)
|
204 |
+
# NVIDIA GPU compute architectures are backward compatible within major version
|
205 |
+
supported = any(sm // 10 == cap_major for sm in supported_sm)
|
206 |
+
if not supported:
|
207 |
+
device_name = get_device_name(idx)
|
208 |
+
capability = cap_major * 10 + cap_minor
|
209 |
+
warnings.warn(
|
210 |
+
incompatible_device_warn.format(
|
211 |
+
device_name, capability, " ".join(arch_list), device_name
|
212 |
+
)
|
213 |
+
)
|
214 |
+
|
215 |
+
|
216 |
+
def is_initialized():
|
217 |
+
r"""Return whether PyTorch's CUDA state has been initialized."""
|
218 |
+
return _initialized and not _is_in_bad_fork()
|
219 |
+
|
220 |
+
|
221 |
+
def _lazy_call(callable, **kwargs):
|
222 |
+
if is_initialized():
|
223 |
+
callable()
|
224 |
+
else:
|
225 |
+
# TODO(torch_deploy): this accesses linecache, which attempts to read the
|
226 |
+
# file system to get traceback info. Patch linecache or do something
|
227 |
+
# else here if this ends up being important.
|
228 |
+
global _lazy_seed_tracker
|
229 |
+
if kwargs.get("seed_all", False):
|
230 |
+
_lazy_seed_tracker.queue_seed_all(callable, traceback.format_stack())
|
231 |
+
elif kwargs.get("seed", False):
|
232 |
+
_lazy_seed_tracker.queue_seed(callable, traceback.format_stack())
|
233 |
+
else:
|
234 |
+
# Don't store the actual traceback to avoid memory cycle
|
235 |
+
_queued_calls.append((callable, traceback.format_stack()))
|
236 |
+
|
237 |
+
|
238 |
+
_lazy_call(_check_capability)
|
239 |
+
_lazy_call(_check_cubins)
|
240 |
+
|
241 |
+
|
242 |
+
class DeferredCudaCallError(Exception):
|
243 |
+
pass
|
244 |
+
|
245 |
+
|
246 |
+
OutOfMemoryError = torch._C._OutOfMemoryError
|
247 |
+
|
248 |
+
|
249 |
+
def init():
|
250 |
+
r"""Initialize PyTorch's CUDA state.
|
251 |
+
|
252 |
+
You may need to call this explicitly if you are interacting with
|
253 |
+
PyTorch via its C API, as Python bindings for CUDA functionality
|
254 |
+
will not be available until this initialization takes place.
|
255 |
+
Ordinary users should not need this, as all of PyTorch's CUDA methods
|
256 |
+
automatically initialize CUDA state on-demand.
|
257 |
+
|
258 |
+
Does nothing if the CUDA state is already initialized.
|
259 |
+
"""
|
260 |
+
_lazy_init()
|
261 |
+
|
262 |
+
|
263 |
+
def _lazy_init():
|
264 |
+
global _initialized, _queued_calls
|
265 |
+
if is_initialized() or hasattr(_tls, "is_initializing"):
|
266 |
+
return
|
267 |
+
with _initialization_lock:
|
268 |
+
# We be double-checked locking, boys! This is OK because
|
269 |
+
# the above test was GIL protected anyway. The inner test
|
270 |
+
# is for when a thread blocked on some other thread which was
|
271 |
+
# doing the initialization; when they get the lock, they will
|
272 |
+
# find there is nothing left to do.
|
273 |
+
if is_initialized():
|
274 |
+
return
|
275 |
+
# It is important to prevent other threads from entering _lazy_init
|
276 |
+
# immediately, while we are still guaranteed to have the GIL, because some
|
277 |
+
# of the C calls we make below will release the GIL
|
278 |
+
if _is_in_bad_fork():
|
279 |
+
raise RuntimeError(
|
280 |
+
"Cannot re-initialize CUDA in forked subprocess. To use CUDA with "
|
281 |
+
"multiprocessing, you must use the 'spawn' start method"
|
282 |
+
)
|
283 |
+
if not hasattr(torch._C, "_cuda_getDeviceCount"):
|
284 |
+
raise AssertionError("Torch not compiled with CUDA enabled")
|
285 |
+
if _cudart is None:
|
286 |
+
raise AssertionError(
|
287 |
+
"libcudart functions unavailable. It looks like you have a broken build?"
|
288 |
+
)
|
289 |
+
# This function throws if there's a driver initialization error, no GPUs
|
290 |
+
# are found or any other error occurs
|
291 |
+
if "CUDA_MODULE_LOADING" not in os.environ:
|
292 |
+
os.environ["CUDA_MODULE_LOADING"] = "LAZY"
|
293 |
+
torch._C._cuda_init()
|
294 |
+
# Some of the queued calls may reentrantly call _lazy_init();
|
295 |
+
# we need to just return without initializing in that case.
|
296 |
+
# However, we must not let any *other* threads in!
|
297 |
+
_tls.is_initializing = True
|
298 |
+
|
299 |
+
for calls in _lazy_seed_tracker.get_calls():
|
300 |
+
if calls:
|
301 |
+
_queued_calls.append(calls)
|
302 |
+
|
303 |
+
try:
|
304 |
+
for queued_call, orig_traceback in _queued_calls:
|
305 |
+
try:
|
306 |
+
queued_call()
|
307 |
+
except Exception as e:
|
308 |
+
msg = (
|
309 |
+
f"CUDA call failed lazily at initialization with error: {str(e)}\n\n"
|
310 |
+
f"CUDA call was originally invoked at:\n\n{''.join(orig_traceback)}"
|
311 |
+
)
|
312 |
+
raise DeferredCudaCallError(msg) from e
|
313 |
+
finally:
|
314 |
+
delattr(_tls, "is_initializing")
|
315 |
+
_initialized = True
|
316 |
+
|
317 |
+
|
318 |
+
def cudart():
|
319 |
+
_lazy_init()
|
320 |
+
return _cudart
|
321 |
+
|
322 |
+
|
323 |
+
class cudaStatus:
|
324 |
+
SUCCESS: int = 0
|
325 |
+
ERROR_NOT_READY: int = 34
|
326 |
+
|
327 |
+
|
328 |
+
class CudaError(RuntimeError):
|
329 |
+
def __init__(self, code: int) -> None:
|
330 |
+
msg = _cudart.cudaGetErrorString(_cudart.cudaError(code))
|
331 |
+
super().__init__(f"{msg} ({code})")
|
332 |
+
|
333 |
+
|
334 |
+
def check_error(res: int) -> None:
|
335 |
+
if res != _cudart.cudaError.success:
|
336 |
+
raise CudaError(res)
|
337 |
+
|
338 |
+
|
339 |
+
class _DeviceGuard:
|
340 |
+
def __init__(self, index: int):
|
341 |
+
self.idx = index
|
342 |
+
self.prev_idx = -1
|
343 |
+
|
344 |
+
def __enter__(self):
|
345 |
+
self.prev_idx = torch.cuda._exchange_device(self.idx)
|
346 |
+
|
347 |
+
def __exit__(self, type: Any, value: Any, traceback: Any):
|
348 |
+
self.idx = torch.cuda._maybe_exchange_device(self.prev_idx)
|
349 |
+
return False
|
350 |
+
|
351 |
+
|
352 |
+
class device:
|
353 |
+
r"""Context-manager that changes the selected device.
|
354 |
+
|
355 |
+
Args:
|
356 |
+
device (torch.device or int): device index to select. It's a no-op if
|
357 |
+
this argument is a negative integer or ``None``.
|
358 |
+
"""
|
359 |
+
|
360 |
+
def __init__(self, device: Any):
|
361 |
+
self.idx = _get_device_index(device, optional=True)
|
362 |
+
self.prev_idx = -1
|
363 |
+
|
364 |
+
def __enter__(self):
|
365 |
+
self.prev_idx = torch.cuda._exchange_device(self.idx)
|
366 |
+
|
367 |
+
def __exit__(self, type: Any, value: Any, traceback: Any):
|
368 |
+
self.idx = torch.cuda._maybe_exchange_device(self.prev_idx)
|
369 |
+
return False
|
370 |
+
|
371 |
+
|
372 |
+
class device_of(device):
|
373 |
+
r"""Context-manager that changes the current device to that of given object.
|
374 |
+
|
375 |
+
You can use both tensors and storages as arguments. If a given object is
|
376 |
+
not allocated on a GPU, this is a no-op.
|
377 |
+
|
378 |
+
Args:
|
379 |
+
obj (Tensor or Storage): object allocated on the selected device.
|
380 |
+
"""
|
381 |
+
|
382 |
+
def __init__(self, obj):
|
383 |
+
idx = obj.get_device() if obj.is_cuda else -1
|
384 |
+
super().__init__(idx)
|
385 |
+
|
386 |
+
|
387 |
+
def set_device(device: _device_t) -> None:
|
388 |
+
r"""Set the current device.
|
389 |
+
|
390 |
+
Usage of this function is discouraged in favor of :any:`device`. In most
|
391 |
+
cases it's better to use ``CUDA_VISIBLE_DEVICES`` environmental variable.
|
392 |
+
|
393 |
+
Args:
|
394 |
+
device (torch.device or int): selected device. This function is a no-op
|
395 |
+
if this argument is negative.
|
396 |
+
"""
|
397 |
+
device = _get_device_index(device)
|
398 |
+
if device >= 0:
|
399 |
+
torch._C._cuda_setDevice(device)
|
400 |
+
|
401 |
+
|
402 |
+
def get_device_name(device: Optional[_device_t] = None) -> str:
|
403 |
+
r"""Get the name of a device.
|
404 |
+
|
405 |
+
Args:
|
406 |
+
device (torch.device or int, optional): device for which to return the
|
407 |
+
name. This function is a no-op if this argument is a negative
|
408 |
+
integer. It uses the current device, given by :func:`~torch.cuda.current_device`,
|
409 |
+
if :attr:`device` is ``None`` (default).
|
410 |
+
|
411 |
+
Returns:
|
412 |
+
str: the name of the device
|
413 |
+
"""
|
414 |
+
return get_device_properties(device).name
|
415 |
+
|
416 |
+
|
417 |
+
def get_device_capability(device: Optional[_device_t] = None) -> Tuple[int, int]:
|
418 |
+
r"""Get the cuda capability of a device.
|
419 |
+
|
420 |
+
Args:
|
421 |
+
device (torch.device or int, optional): device for which to return the
|
422 |
+
device capability. This function is a no-op if this argument is
|
423 |
+
a negative integer. It uses the current device, given by
|
424 |
+
:func:`~torch.cuda.current_device`, if :attr:`device` is ``None``
|
425 |
+
(default).
|
426 |
+
|
427 |
+
Returns:
|
428 |
+
tuple(int, int): the major and minor cuda capability of the device
|
429 |
+
"""
|
430 |
+
prop = get_device_properties(device)
|
431 |
+
return prop.major, prop.minor
|
432 |
+
|
433 |
+
|
434 |
+
def get_device_properties(device: _device_t) -> _CudaDeviceProperties:
|
435 |
+
r"""Get the properties of a device.
|
436 |
+
|
437 |
+
Args:
|
438 |
+
device (torch.device or int or str): device for which to return the
|
439 |
+
properties of the device.
|
440 |
+
|
441 |
+
Returns:
|
442 |
+
_CudaDeviceProperties: the properties of the device
|
443 |
+
"""
|
444 |
+
_lazy_init() # will define _get_device_properties
|
445 |
+
device = _get_device_index(device, optional=True)
|
446 |
+
if device < 0 or device >= device_count():
|
447 |
+
raise AssertionError("Invalid device id")
|
448 |
+
return _get_device_properties(device) # type: ignore[name-defined]
|
449 |
+
|
450 |
+
|
451 |
+
def can_device_access_peer(device: _device_t, peer_device: _device_t) -> bool:
|
452 |
+
r"""Check if peer access between two devices is possible."""
|
453 |
+
_lazy_init()
|
454 |
+
device = _get_device_index(device, optional=True)
|
455 |
+
peer_device = _get_device_index(peer_device)
|
456 |
+
if device < 0 or device >= device_count():
|
457 |
+
raise AssertionError("Invalid device id")
|
458 |
+
if peer_device < 0 or peer_device >= device_count():
|
459 |
+
raise AssertionError("Invalid peer device id")
|
460 |
+
return torch._C._cuda_canDeviceAccessPeer(device, peer_device)
|
461 |
+
|
462 |
+
|
463 |
+
class StreamContext:
|
464 |
+
r"""Context-manager that selects a given stream.
|
465 |
+
|
466 |
+
All CUDA kernels queued within its context will be enqueued on a selected
|
467 |
+
stream.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
Stream (Stream): selected stream. This manager is a no-op if it's
|
471 |
+
``None``.
|
472 |
+
.. note:: Streams are per-device.
|
473 |
+
"""
|
474 |
+
cur_stream: Optional["torch.cuda.Stream"]
|
475 |
+
|
476 |
+
def __init__(self, stream: Optional["torch.cuda.Stream"]):
|
477 |
+
self.stream = stream
|
478 |
+
self.idx = _get_device_index(None, True)
|
479 |
+
if not torch.jit.is_scripting():
|
480 |
+
if self.idx is None:
|
481 |
+
self.idx = -1
|
482 |
+
|
483 |
+
self.src_prev_stream = (
|
484 |
+
None if not torch.jit.is_scripting() else torch.cuda.default_stream(None)
|
485 |
+
)
|
486 |
+
self.dst_prev_stream = (
|
487 |
+
None if not torch.jit.is_scripting() else torch.cuda.default_stream(None)
|
488 |
+
)
|
489 |
+
|
490 |
+
def __enter__(self):
|
491 |
+
# Local cur_stream variable for type refinement
|
492 |
+
cur_stream = self.stream
|
493 |
+
# Return if stream is None or CUDA device not available
|
494 |
+
if cur_stream is None or self.idx == -1:
|
495 |
+
return
|
496 |
+
self.src_prev_stream = torch.cuda.current_stream(None)
|
497 |
+
|
498 |
+
# If the stream is not on the current device, then
|
499 |
+
# set the current stream on the device
|
500 |
+
if self.src_prev_stream.device != cur_stream.device:
|
501 |
+
with device(cur_stream.device):
|
502 |
+
self.dst_prev_stream = torch.cuda.current_stream(cur_stream.device)
|
503 |
+
torch.cuda.set_stream(cur_stream)
|
504 |
+
|
505 |
+
def __exit__(self, type: Any, value: Any, traceback: Any):
|
506 |
+
# Local cur_stream variable for type refinement
|
507 |
+
cur_stream = self.stream
|
508 |
+
# If stream is None or no CUDA device available, return
|
509 |
+
if cur_stream is None or self.idx == -1:
|
510 |
+
return
|
511 |
+
|
512 |
+
# Reset the stream on the original device
|
513 |
+
# and destination device
|
514 |
+
if self.src_prev_stream.device != cur_stream.device: # type: ignore[union-attr]
|
515 |
+
torch.cuda.set_stream(self.dst_prev_stream) # type: ignore[arg-type]
|
516 |
+
torch.cuda.set_stream(self.src_prev_stream) # type: ignore[arg-type]
|
517 |
+
|
518 |
+
|
519 |
+
def stream(stream: Optional["torch.cuda.Stream"]) -> StreamContext:
|
520 |
+
r"""Wrap around the Context-manager StreamContext that selects a given stream.
|
521 |
+
|
522 |
+
Arguments:
|
523 |
+
stream (Stream): selected stream. This manager is a no-op if it's
|
524 |
+
``None``.
|
525 |
+
..Note:: In eager mode stream is of type Stream class while in JIT it is
|
526 |
+
an object of the custom class ``torch.classes.cuda.Stream``.
|
527 |
+
"""
|
528 |
+
return StreamContext(stream)
|
529 |
+
|
530 |
+
|
531 |
+
def _set_stream_by_id(stream_id, device_index, device_type):
|
532 |
+
r"""set stream specified by the stream id, device index and
|
533 |
+
device type
|
534 |
+
|
535 |
+
Args: stream_id (int): stream id in stream pool
|
536 |
+
device_index (int): device index in topo
|
537 |
+
device_type (int): enum device type
|
538 |
+
"""
|
539 |
+
torch._C._cuda_setStream(
|
540 |
+
stream_id=stream_id,
|
541 |
+
device_index=device_index,
|
542 |
+
device_type=device_type,
|
543 |
+
)
|
544 |
+
|
545 |
+
|
546 |
+
def set_stream(stream: Stream):
|
547 |
+
r"""Set the current stream.This is a wrapper API to set the stream.
|
548 |
+
Usage of this function is discouraged in favor of the ``stream``
|
549 |
+
context manager.
|
550 |
+
|
551 |
+
Args:
|
552 |
+
stream (Stream): selected stream. This function is a no-op
|
553 |
+
if this argument is ``None``.
|
554 |
+
"""
|
555 |
+
if stream is None:
|
556 |
+
return
|
557 |
+
_set_stream_by_id(
|
558 |
+
stream_id=stream.stream_id,
|
559 |
+
device_index=stream.device_index,
|
560 |
+
device_type=stream.device_type,
|
561 |
+
)
|
562 |
+
|
563 |
+
|
564 |
+
def _parse_visible_devices() -> Union[List[int], List[str]]:
|
565 |
+
r"""Parse CUDA_VISIBLE_DEVICES environment variable."""
|
566 |
+
var = os.getenv("CUDA_VISIBLE_DEVICES")
|
567 |
+
if var is None:
|
568 |
+
return list(range(64))
|
569 |
+
|
570 |
+
def _strtoul(s: str) -> int:
|
571 |
+
"""Return -1 or positive integer sequence string starts with."""
|
572 |
+
if not s:
|
573 |
+
return -1
|
574 |
+
for idx, c in enumerate(s):
|
575 |
+
if not (c.isdigit() or (idx == 0 and c in "+-")):
|
576 |
+
break
|
577 |
+
if idx + 1 == len(s):
|
578 |
+
idx += 1
|
579 |
+
return int(s[:idx]) if idx > 0 else -1
|
580 |
+
|
581 |
+
def parse_list_with_prefix(lst: str, prefix: str) -> List[str]:
|
582 |
+
rcs: List[str] = []
|
583 |
+
for elem in lst.split(","):
|
584 |
+
# Repeated id results in empty set
|
585 |
+
if elem in rcs:
|
586 |
+
return cast(List[str], [])
|
587 |
+
# Anything other but prefix is ignored
|
588 |
+
if not elem.startswith(prefix):
|
589 |
+
break
|
590 |
+
rcs.append(elem)
|
591 |
+
return rcs
|
592 |
+
|
593 |
+
if var.startswith("GPU-"):
|
594 |
+
return parse_list_with_prefix(var, "GPU-")
|
595 |
+
if var.startswith("MIG-"):
|
596 |
+
return parse_list_with_prefix(var, "MIG-")
|
597 |
+
# CUDA_VISIBLE_DEVICES uses something like strtoul
|
598 |
+
# which makes `1gpu2,2ampere` is equivalent to `1,2`
|
599 |
+
rc: List[int] = []
|
600 |
+
for elem in var.split(","):
|
601 |
+
x = _strtoul(elem.strip())
|
602 |
+
# Repeated ordinal results in empty set
|
603 |
+
if x in rc:
|
604 |
+
return cast(List[int], [])
|
605 |
+
# Negative value aborts the sequence
|
606 |
+
if x < 0:
|
607 |
+
break
|
608 |
+
rc.append(x)
|
609 |
+
return rc
|
610 |
+
|
611 |
+
|
612 |
+
def _raw_device_count_nvml() -> int:
|
613 |
+
r"""Return number of devices as reported by NVML or negative value if NVML discovery/initialization failed."""
|
614 |
+
from ctypes import byref, c_int, CDLL
|
615 |
+
|
616 |
+
nvml_h = CDLL("libnvidia-ml.so.1")
|
617 |
+
rc = nvml_h.nvmlInit()
|
618 |
+
if rc != 0:
|
619 |
+
warnings.warn("Can't initialize NVML")
|
620 |
+
return -1
|
621 |
+
dev_count = c_int(-1)
|
622 |
+
rc = nvml_h.nvmlDeviceGetCount_v2(byref(dev_count))
|
623 |
+
if rc != 0:
|
624 |
+
warnings.warn("Can't get nvml device count")
|
625 |
+
return -1
|
626 |
+
del nvml_h
|
627 |
+
return dev_count.value
|
628 |
+
|
629 |
+
|
630 |
+
def _raw_device_uuid_nvml() -> Optional[List[str]]:
|
631 |
+
r"""Return list of device UUID as reported by NVML or None if NVM discovery/initialization failed."""
|
632 |
+
from ctypes import byref, c_int, c_void_p, CDLL, create_string_buffer
|
633 |
+
|
634 |
+
nvml_h = CDLL("libnvidia-ml.so.1")
|
635 |
+
rc = nvml_h.nvmlInit()
|
636 |
+
if rc != 0:
|
637 |
+
warnings.warn("Can't initialize NVML")
|
638 |
+
return None
|
639 |
+
dev_count = c_int(-1)
|
640 |
+
rc = nvml_h.nvmlDeviceGetCount_v2(byref(dev_count))
|
641 |
+
if rc != 0:
|
642 |
+
warnings.warn("Can't get nvml device count")
|
643 |
+
return None
|
644 |
+
uuids: List[str] = []
|
645 |
+
for idx in range(dev_count.value):
|
646 |
+
dev_id = c_void_p()
|
647 |
+
rc = nvml_h.nvmlDeviceGetHandleByIndex_v2(idx, byref(dev_id))
|
648 |
+
if rc != 0:
|
649 |
+
warnings.warn("Can't get device handle")
|
650 |
+
return None
|
651 |
+
buf_len = 96
|
652 |
+
buf = create_string_buffer(buf_len)
|
653 |
+
rc = nvml_h.nvmlDeviceGetUUID(dev_id, buf, buf_len)
|
654 |
+
if rc != 0:
|
655 |
+
warnings.warn("Can't get device UUID")
|
656 |
+
return None
|
657 |
+
uuids.append(buf.raw.decode("ascii").strip("\0"))
|
658 |
+
del nvml_h
|
659 |
+
return uuids
|
660 |
+
|
661 |
+
|
662 |
+
def _transform_uuid_to_ordinals(candidates: List[str], uuids: List[str]) -> List[int]:
|
663 |
+
r"""Given the set of partial uuids and list of known uuids builds a set of ordinals excluding ambiguous partials IDs."""
|
664 |
+
|
665 |
+
def uuid_to_orinal(candidate: str, uuids: List[str]) -> int:
|
666 |
+
best_match = -1
|
667 |
+
for idx, uuid in enumerate(uuids):
|
668 |
+
if not uuid.startswith(candidate):
|
669 |
+
continue
|
670 |
+
# Ambiguous candidate
|
671 |
+
if best_match != -1:
|
672 |
+
return -1
|
673 |
+
best_match = idx
|
674 |
+
return best_match
|
675 |
+
|
676 |
+
rc: List[int] = []
|
677 |
+
for candidate in candidates:
|
678 |
+
idx = uuid_to_orinal(candidate, uuids)
|
679 |
+
# First invalid ordinal stops parsing
|
680 |
+
if idx < 0:
|
681 |
+
break
|
682 |
+
# Duplicates result in empty set
|
683 |
+
if idx in rc:
|
684 |
+
return cast(List[int], [])
|
685 |
+
rc.append(idx)
|
686 |
+
return rc
|
687 |
+
|
688 |
+
|
689 |
+
def _device_count_nvml() -> int:
|
690 |
+
r"""Return number of devices as reported by NVML taking CUDA_VISIBLE_DEVICES into account.
|
691 |
+
|
692 |
+
Negative value is returned if NVML discovery or initialization has failed.
|
693 |
+
"""
|
694 |
+
visible_devices = _parse_visible_devices()
|
695 |
+
if not visible_devices:
|
696 |
+
return 0
|
697 |
+
try:
|
698 |
+
if type(visible_devices[0]) is str:
|
699 |
+
# Skip MIG parsing
|
700 |
+
if visible_devices[0].startswith("MIG-"):
|
701 |
+
return -1
|
702 |
+
uuids = _raw_device_uuid_nvml()
|
703 |
+
if uuids is None:
|
704 |
+
return -1
|
705 |
+
visible_devices = _transform_uuid_to_ordinals(
|
706 |
+
cast(List[str], visible_devices), uuids
|
707 |
+
)
|
708 |
+
else:
|
709 |
+
raw_cnt = _raw_device_count_nvml()
|
710 |
+
if raw_cnt <= 0:
|
711 |
+
return raw_cnt
|
712 |
+
# Trim the list up to a maximum available device
|
713 |
+
for idx, val in enumerate(visible_devices):
|
714 |
+
if cast(int, val) >= raw_cnt:
|
715 |
+
return idx
|
716 |
+
except OSError:
|
717 |
+
return -1
|
718 |
+
except AttributeError:
|
719 |
+
return -1
|
720 |
+
return len(visible_devices)
|
721 |
+
|
722 |
+
|
723 |
+
def _get_nvml_device_index(device: Optional[Union[int, Device]]) -> int:
|
724 |
+
r"""Return the NVML index of the device, taking CUDA_VISIBLE_DEVICES into account."""
|
725 |
+
idx = _get_device_index(device, optional=True)
|
726 |
+
visible_devices = _parse_visible_devices()
|
727 |
+
if type(visible_devices[0]) is str:
|
728 |
+
uuids = _raw_device_uuid_nvml()
|
729 |
+
if uuids is None:
|
730 |
+
raise RuntimeError("Can't get device UUIDs")
|
731 |
+
visible_devices = _transform_uuid_to_ordinals(
|
732 |
+
cast(List[str], visible_devices), uuids
|
733 |
+
)
|
734 |
+
visible_devices = cast(List[int], visible_devices)
|
735 |
+
if idx < 0 or idx >= len(visible_devices):
|
736 |
+
raise RuntimeError(
|
737 |
+
f"device {idx} is not visible (CUDA_VISIBLE_DEVICES={visible_devices})"
|
738 |
+
)
|
739 |
+
return visible_devices[idx]
|
740 |
+
|
741 |
+
|
742 |
+
@lru_cache(maxsize=1)
|
743 |
+
def device_count() -> int:
|
744 |
+
r"""Return the number of GPUs available."""
|
745 |
+
if not _is_compiled():
|
746 |
+
return 0
|
747 |
+
# bypass _device_count_nvml() if rocm (not supported)
|
748 |
+
nvml_count = -1 if torch.version.hip else _device_count_nvml()
|
749 |
+
return torch._C._cuda_getDeviceCount() if nvml_count < 0 else nvml_count
|
750 |
+
|
751 |
+
|
752 |
+
def get_arch_list() -> List[str]:
|
753 |
+
r"""Return list CUDA architectures this library was compiled for."""
|
754 |
+
if not is_available():
|
755 |
+
return []
|
756 |
+
arch_flags = torch._C._cuda_getArchFlags()
|
757 |
+
if arch_flags is None:
|
758 |
+
return []
|
759 |
+
return arch_flags.split()
|
760 |
+
|
761 |
+
|
762 |
+
def get_gencode_flags() -> str:
|
763 |
+
r"""Return NVCC gencode flags this library was compiled with."""
|
764 |
+
arch_list = get_arch_list()
|
765 |
+
if len(arch_list) == 0:
|
766 |
+
return ""
|
767 |
+
arch_list_ = [arch.split("_") for arch in arch_list]
|
768 |
+
return " ".join(
|
769 |
+
[
|
770 |
+
f"-gencode compute=compute_{arch},code={kind}_{arch}"
|
771 |
+
for (kind, arch) in arch_list_
|
772 |
+
]
|
773 |
+
)
|
774 |
+
|
775 |
+
|
776 |
+
def current_device() -> int:
|
777 |
+
r"""Return the index of a currently selected device."""
|
778 |
+
_lazy_init()
|
779 |
+
return torch._C._cuda_getDevice()
|
780 |
+
|
781 |
+
|
782 |
+
def synchronize(device: _device_t = None) -> None:
|
783 |
+
r"""Wait for all kernels in all streams on a CUDA device to complete.
|
784 |
+
|
785 |
+
Args:
|
786 |
+
device (torch.device or int, optional): device for which to synchronize.
|
787 |
+
It uses the current device, given by :func:`~torch.cuda.current_device`,
|
788 |
+
if :attr:`device` is ``None`` (default).
|
789 |
+
"""
|
790 |
+
_lazy_init()
|
791 |
+
with torch.cuda.device(device):
|
792 |
+
return torch._C._cuda_synchronize()
|
793 |
+
|
794 |
+
|
795 |
+
def ipc_collect():
|
796 |
+
r"""Force collects GPU memory after it has been released by CUDA IPC.
|
797 |
+
|
798 |
+
.. note::
|
799 |
+
Checks if any sent CUDA tensors could be cleaned from the memory. Force
|
800 |
+
closes shared memory file used for reference counting if there is no
|
801 |
+
active counters. Useful when the producer process stopped actively sending
|
802 |
+
tensors and want to release unused memory.
|
803 |
+
"""
|
804 |
+
_lazy_init()
|
805 |
+
return torch._C._cuda_ipc_collect()
|
806 |
+
|
807 |
+
|
808 |
+
def current_stream(device: Optional[_device_t] = None) -> Stream:
|
809 |
+
r"""Return the currently selected :class:`Stream` for a given device.
|
810 |
+
|
811 |
+
Args:
|
812 |
+
device (torch.device or int, optional): selected device. Returns
|
813 |
+
the currently selected :class:`Stream` for the current device, given
|
814 |
+
by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None``
|
815 |
+
(default).
|
816 |
+
"""
|
817 |
+
_lazy_init()
|
818 |
+
streamdata = torch._C._cuda_getCurrentStream(
|
819 |
+
_get_device_index(device, optional=True)
|
820 |
+
)
|
821 |
+
return Stream(
|
822 |
+
stream_id=streamdata[0], device_index=streamdata[1], device_type=streamdata[2]
|
823 |
+
)
|
824 |
+
|
825 |
+
|
826 |
+
def default_stream(device: Optional[_device_t] = None) -> Stream:
|
827 |
+
r"""Return the default :class:`Stream` for a given device.
|
828 |
+
|
829 |
+
Args:
|
830 |
+
device (torch.device or int, optional): selected device. Returns
|
831 |
+
the default :class:`Stream` for the current device, given by
|
832 |
+
:func:`~torch.cuda.current_device`, if :attr:`device` is ``None``
|
833 |
+
(default).
|
834 |
+
"""
|
835 |
+
_lazy_init()
|
836 |
+
streamdata = torch._C._cuda_getDefaultStream(
|
837 |
+
_get_device_index(device, optional=True)
|
838 |
+
)
|
839 |
+
return Stream(
|
840 |
+
stream_id=streamdata[0], device_index=streamdata[1], device_type=streamdata[2]
|
841 |
+
)
|
842 |
+
|
843 |
+
|
844 |
+
def current_blas_handle():
|
845 |
+
r"""Return cublasHandle_t pointer to current cuBLAS handle"""
|
846 |
+
_lazy_init()
|
847 |
+
return torch._C._cuda_getCurrentBlasHandle()
|
848 |
+
|
849 |
+
|
850 |
+
def set_sync_debug_mode(debug_mode: Union[int, str]) -> None:
|
851 |
+
r"""Set the debug mode for cuda synchronizing operations.
|
852 |
+
|
853 |
+
Args:
|
854 |
+
debug_mode(str or int): if "default" or 0, don't error or warn on synchronizing operations,
|
855 |
+
if "warn" or 1, warn on synchronizing operations, if "error" or 2, error out synchronizing operations.
|
856 |
+
|
857 |
+
Warning:
|
858 |
+
This is an experimental feature, and not all synchronizing operations will trigger warning or error. In
|
859 |
+
particular, operations in torch.distributed and torch.sparse namespaces are not covered yet.
|
860 |
+
"""
|
861 |
+
_lazy_init()
|
862 |
+
if isinstance(debug_mode, str):
|
863 |
+
if debug_mode == "default":
|
864 |
+
debug_mode = 0
|
865 |
+
elif debug_mode == "warn":
|
866 |
+
debug_mode = 1
|
867 |
+
elif debug_mode == "error":
|
868 |
+
debug_mode = 2
|
869 |
+
else:
|
870 |
+
raise RuntimeError(
|
871 |
+
"invalid value of debug_mode, expected one of `default`, `warn`, `error`"
|
872 |
+
)
|
873 |
+
|
874 |
+
torch._C._cuda_set_sync_debug_mode(debug_mode)
|
875 |
+
|
876 |
+
|
877 |
+
def get_sync_debug_mode() -> int:
|
878 |
+
r"""Return current value of debug mode for cuda synchronizing operations."""
|
879 |
+
_lazy_init()
|
880 |
+
return torch._C._cuda_get_sync_debug_mode()
|
881 |
+
|
882 |
+
|
883 |
+
def _get_pynvml_handler(device: Optional[Union[Device, int]] = None):
|
884 |
+
if not _HAS_PYNVML:
|
885 |
+
raise ModuleNotFoundError(
|
886 |
+
"pynvml does not seem to be installed or it can't be imported."
|
887 |
+
) from _PYNVML_ERR
|
888 |
+
from pynvml import NVMLError_DriverNotLoaded
|
889 |
+
|
890 |
+
try:
|
891 |
+
pynvml.nvmlInit()
|
892 |
+
except NVMLError_DriverNotLoaded as e:
|
893 |
+
raise RuntimeError("cuda driver can't be loaded, is cuda enabled?") from e
|
894 |
+
|
895 |
+
device = _get_nvml_device_index(device)
|
896 |
+
handle = pynvml.nvmlDeviceGetHandleByIndex(device)
|
897 |
+
return handle
|
898 |
+
|
899 |
+
|
900 |
+
def memory_usage(device: Optional[Union[Device, int]] = None) -> int:
|
901 |
+
r"""Return the percent of time over the past sample period during which global (device)
|
902 |
+
memory was being read or written as given by `nvidia-smi`.
|
903 |
+
|
904 |
+
Args:
|
905 |
+
device (torch.device or int, optional): selected device. Returns
|
906 |
+
statistic for the current device, given by :func:`~torch.cuda.current_device`,
|
907 |
+
if :attr:`device` is ``None`` (default).
|
908 |
+
|
909 |
+
Warning: Each sample period may be between 1 second and 1/6 second,
|
910 |
+
depending on the product being queried.
|
911 |
+
"""
|
912 |
+
handle = _get_pynvml_handler()
|
913 |
+
|
914 |
+
device = _get_nvml_device_index(device)
|
915 |
+
handle = pynvml.nvmlDeviceGetHandleByIndex(device)
|
916 |
+
return pynvml.nvmlDeviceGetUtilizationRates(handle).memory
|
917 |
+
|
918 |
+
|
919 |
+
def utilization(device: Optional[Union[Device, int]] = None) -> int:
|
920 |
+
r"""Return the percent of time over the past sample period during which one or
|
921 |
+
more kernels was executing on the GPU as given by `nvidia-smi`.
|
922 |
+
|
923 |
+
Args:
|
924 |
+
device (torch.device or int, optional): selected device. Returns
|
925 |
+
statistic for the current device, given by :func:`~torch.cuda.current_device`,
|
926 |
+
if :attr:`device` is ``None`` (default).
|
927 |
+
|
928 |
+
Warning: Each sample period may be between 1 second and 1/6 second,
|
929 |
+
depending on the product being queried.
|
930 |
+
"""
|
931 |
+
handle = _get_pynvml_handler(device)
|
932 |
+
device = _get_nvml_device_index(device)
|
933 |
+
handle = pynvml.nvmlDeviceGetHandleByIndex(device)
|
934 |
+
return pynvml.nvmlDeviceGetUtilizationRates(handle).gpu
|
935 |
+
|
936 |
+
|
937 |
+
def temperature(device: Optional[Union[Device, int]] = None) -> int:
|
938 |
+
r"""Return the average temperature of the GPU sensor in Degrees C (Centigrades).
|
939 |
+
|
940 |
+
The average temperature is computed based on past sample period as given by `nvidia-smi`.
|
941 |
+
|
942 |
+
Args:
|
943 |
+
device (torch.device or int, optional): selected device. Returns
|
944 |
+
statistic for the current device, given by :func:`~torch.cuda.current_device`,
|
945 |
+
if :attr:`device` is ``None`` (default).
|
946 |
+
|
947 |
+
Warning: Each sample period may be between 1 second and 1/6 second,
|
948 |
+
depending on the product being queried.
|
949 |
+
"""
|
950 |
+
handle = _get_pynvml_handler(device)
|
951 |
+
# 0 refers to the temperature sensor for the GPU die.
|
952 |
+
return pynvml.nvmlDeviceGetTemperature(handle, 0)
|
953 |
+
|
954 |
+
|
955 |
+
def power_draw(device: Optional[Union[Device, int]] = None) -> int:
|
956 |
+
r"""Return the average power draw of the GPU sensor in mW (MilliWatts)
|
957 |
+
over the past sample period as given by `nvidia-smi` for Fermi or newer fully supported devices.
|
958 |
+
|
959 |
+
Args:
|
960 |
+
device (torch.device or int, optional): selected device. Returns
|
961 |
+
statistic for the current device, given by :func:`~torch.cuda.current_device`,
|
962 |
+
if :attr:`device` is ``None`` (default).
|
963 |
+
|
964 |
+
Warning: Each sample period may be between 1 second and 1/6 second,
|
965 |
+
depending on the product being queried.
|
966 |
+
"""
|
967 |
+
handle = _get_pynvml_handler(device)
|
968 |
+
return pynvml.nvmlDeviceGetPowerUsage(handle)
|
969 |
+
|
970 |
+
|
971 |
+
def clock_rate(device: Optional[Union[Device, int]] = None) -> int:
|
972 |
+
r"""Return the clock speed of the GPU SM in Hz Hertz over the past sample period as given by `nvidia-smi`.
|
973 |
+
|
974 |
+
Args:
|
975 |
+
device (torch.device or int, optional): selected device. Returns
|
976 |
+
statistic for the current device, given by :func:`~torch.cuda.current_device`,
|
977 |
+
if :attr:`device` is ``None`` (default).
|
978 |
+
|
979 |
+
Warning: Each sample period may be between 1 second and 1/6 second,
|
980 |
+
depending on the product being queried.
|
981 |
+
"""
|
982 |
+
handle = _get_pynvml_handler(device)
|
983 |
+
return pynvml.nvmlDeviceGetClockInfo(handle, 1)
|
984 |
+
|
985 |
+
|
986 |
+
def _get_device(device: Union[int, str, torch.device]) -> torch.device:
|
987 |
+
r"""Return the torch.device type object from the passed in device.
|
988 |
+
|
989 |
+
Args:
|
990 |
+
device (torch.device or int): selected device.
|
991 |
+
"""
|
992 |
+
if isinstance(device, str):
|
993 |
+
device = torch.device(device)
|
994 |
+
elif isinstance(device, int):
|
995 |
+
device = torch.device("cuda", device)
|
996 |
+
return device
|
997 |
+
|
998 |
+
|
999 |
+
def _get_generator(device: torch.device) -> torch._C.Generator:
|
1000 |
+
r"""Return the CUDA Generator object for the given device.
|
1001 |
+
|
1002 |
+
Args:
|
1003 |
+
device (torch.device): selected device.
|
1004 |
+
"""
|
1005 |
+
idx = device.index
|
1006 |
+
if idx is None:
|
1007 |
+
idx = current_device()
|
1008 |
+
return torch.cuda.default_generators[idx]
|
1009 |
+
|
1010 |
+
|
1011 |
+
def _set_rng_state_offset(
|
1012 |
+
offset: int, device: Union[int, str, torch.device] = "cuda"
|
1013 |
+
) -> None:
|
1014 |
+
r"""Set the random number generator state offset of the specified GPU.
|
1015 |
+
|
1016 |
+
Args:
|
1017 |
+
offset (int): The desired offset
|
1018 |
+
device (torch.device or int, optional): The device to set the RNG state.
|
1019 |
+
Default: ``'cuda'`` (i.e., ``torch.device('cuda')``, the current CUDA device).
|
1020 |
+
"""
|
1021 |
+
final_device = _get_device(device)
|
1022 |
+
|
1023 |
+
def cb():
|
1024 |
+
default_generator = _get_generator(final_device)
|
1025 |
+
default_generator.set_offset(offset)
|
1026 |
+
|
1027 |
+
_lazy_call(cb)
|
1028 |
+
|
1029 |
+
|
1030 |
+
def _get_rng_state_offset(device: Union[int, str, torch.device] = "cuda") -> int:
|
1031 |
+
r"""Return the random number generator state offset of the specified GPU.
|
1032 |
+
|
1033 |
+
Args:
|
1034 |
+
device (torch.device or int, optional): The device to return the RNG state offset of.
|
1035 |
+
Default: ``'cuda'`` (i.e., ``torch.device('cuda')``, the current CUDA device).
|
1036 |
+
|
1037 |
+
.. warning::
|
1038 |
+
This function eagerly initializes CUDA.
|
1039 |
+
"""
|
1040 |
+
_lazy_init()
|
1041 |
+
final_device = _get_device(device)
|
1042 |
+
default_generator = _get_generator(final_device)
|
1043 |
+
return default_generator.get_offset()
|
1044 |
+
|
1045 |
+
|
1046 |
+
from .memory import * # noqa: F403
|
1047 |
+
|
1048 |
+
|
1049 |
+
from .random import * # noqa: F403
|
1050 |
+
|
1051 |
+
################################################################################
|
1052 |
+
# Define Storage and Tensor classes
|
1053 |
+
################################################################################
|
1054 |
+
|
1055 |
+
|
1056 |
+
@staticmethod # type: ignore[misc]
|
1057 |
+
def _lazy_new(cls, *args, **kwargs):
|
1058 |
+
_lazy_init()
|
1059 |
+
# We may need to call lazy init again if we are a forked child
|
1060 |
+
# del _CudaBase.__new__
|
1061 |
+
return super(_CudaBase, cls).__new__(cls, *args, **kwargs)
|
1062 |
+
|
1063 |
+
|
1064 |
+
class _CudaBase:
|
1065 |
+
is_cuda = True
|
1066 |
+
is_sparse = False
|
1067 |
+
|
1068 |
+
def type(self, *args, **kwargs):
|
1069 |
+
# We could use a Protocol here to tell mypy that self has `get_device` method
|
1070 |
+
# but it is only available in the typing module on Python >= 3.8
|
1071 |
+
# or on typing_extensions module on Python >= 3.6
|
1072 |
+
with device(self.get_device()): # type: ignore[attr-defined]
|
1073 |
+
return super().type(*args, **kwargs) # type: ignore[misc]
|
1074 |
+
|
1075 |
+
__new__ = _lazy_new
|
1076 |
+
|
1077 |
+
|
1078 |
+
from torch.storage import _LegacyStorage, _warn_typed_storage_removal
|
1079 |
+
|
1080 |
+
|
1081 |
+
class _CudaLegacyStorage(_LegacyStorage):
|
1082 |
+
@classmethod
|
1083 |
+
def from_buffer(cls, *args, **kwargs):
|
1084 |
+
_warn_typed_storage_removal()
|
1085 |
+
raise RuntimeError("from_buffer: Not available for CUDA storage")
|
1086 |
+
|
1087 |
+
@classmethod
|
1088 |
+
def _new_with_weak_ptr(cls, *args, **kwargs):
|
1089 |
+
raise RuntimeError("_new_with_weak_ptr: Not available for CUDA storage")
|
1090 |
+
|
1091 |
+
@classmethod
|
1092 |
+
def _new_shared_filename(cls, manager, obj, size, *, device=None, dtype=None):
|
1093 |
+
raise RuntimeError("_new_shared_filename: Not available for CUDA storage")
|
1094 |
+
|
1095 |
+
|
1096 |
+
class ByteStorage(_CudaLegacyStorage):
|
1097 |
+
@classproperty
|
1098 |
+
def dtype(self):
|
1099 |
+
_warn_typed_storage_removal()
|
1100 |
+
return self._dtype
|
1101 |
+
|
1102 |
+
@classproperty
|
1103 |
+
def _dtype(self):
|
1104 |
+
return torch.uint8
|
1105 |
+
|
1106 |
+
|
1107 |
+
class DoubleStorage(_CudaLegacyStorage):
|
1108 |
+
@classproperty
|
1109 |
+
def dtype(self):
|
1110 |
+
_warn_typed_storage_removal()
|
1111 |
+
return self._dtype
|
1112 |
+
|
1113 |
+
@classproperty
|
1114 |
+
def _dtype(self):
|
1115 |
+
return torch.double
|
1116 |
+
|
1117 |
+
|
1118 |
+
class FloatStorage(_CudaLegacyStorage):
|
1119 |
+
@classproperty
|
1120 |
+
def dtype(self):
|
1121 |
+
_warn_typed_storage_removal()
|
1122 |
+
return self._dtype
|
1123 |
+
|
1124 |
+
@classproperty
|
1125 |
+
def _dtype(self):
|
1126 |
+
return torch.float
|
1127 |
+
|
1128 |
+
|
1129 |
+
class HalfStorage(_CudaLegacyStorage):
|
1130 |
+
@classproperty
|
1131 |
+
def dtype(self):
|
1132 |
+
_warn_typed_storage_removal()
|
1133 |
+
return self._dtype
|
1134 |
+
|
1135 |
+
@classproperty
|
1136 |
+
def _dtype(self):
|
1137 |
+
return torch.half
|
1138 |
+
|
1139 |
+
|
1140 |
+
class LongStorage(_CudaLegacyStorage):
|
1141 |
+
@classproperty
|
1142 |
+
def dtype(self):
|
1143 |
+
_warn_typed_storage_removal()
|
1144 |
+
return self._dtype
|
1145 |
+
|
1146 |
+
@classproperty
|
1147 |
+
def _dtype(self):
|
1148 |
+
return torch.long
|
1149 |
+
|
1150 |
+
|
1151 |
+
class IntStorage(_CudaLegacyStorage):
|
1152 |
+
@classproperty
|
1153 |
+
def dtype(self):
|
1154 |
+
_warn_typed_storage_removal()
|
1155 |
+
return self._dtype
|
1156 |
+
|
1157 |
+
@classproperty
|
1158 |
+
def _dtype(self):
|
1159 |
+
return torch.int
|
1160 |
+
|
1161 |
+
|
1162 |
+
class ShortStorage(_CudaLegacyStorage):
|
1163 |
+
@classproperty
|
1164 |
+
def dtype(self):
|
1165 |
+
_warn_typed_storage_removal()
|
1166 |
+
return self._dtype
|
1167 |
+
|
1168 |
+
@classproperty
|
1169 |
+
def _dtype(self):
|
1170 |
+
return torch.short
|
1171 |
+
|
1172 |
+
|
1173 |
+
class CharStorage(_CudaLegacyStorage):
|
1174 |
+
@classproperty
|
1175 |
+
def dtype(self):
|
1176 |
+
_warn_typed_storage_removal()
|
1177 |
+
return self._dtype
|
1178 |
+
|
1179 |
+
@classproperty
|
1180 |
+
def _dtype(self):
|
1181 |
+
return torch.int8
|
1182 |
+
|
1183 |
+
|
1184 |
+
class BoolStorage(_CudaLegacyStorage):
|
1185 |
+
@classproperty
|
1186 |
+
def dtype(self):
|
1187 |
+
_warn_typed_storage_removal()
|
1188 |
+
return self._dtype
|
1189 |
+
|
1190 |
+
@classproperty
|
1191 |
+
def _dtype(self):
|
1192 |
+
return torch.bool
|
1193 |
+
|
1194 |
+
|
1195 |
+
class BFloat16Storage(_CudaLegacyStorage):
|
1196 |
+
@classproperty
|
1197 |
+
def dtype(self):
|
1198 |
+
_warn_typed_storage_removal()
|
1199 |
+
return self._dtype
|
1200 |
+
|
1201 |
+
@classproperty
|
1202 |
+
def _dtype(self):
|
1203 |
+
return torch.bfloat16
|
1204 |
+
|
1205 |
+
|
1206 |
+
class ComplexDoubleStorage(_CudaLegacyStorage):
|
1207 |
+
@classproperty
|
1208 |
+
def dtype(self):
|
1209 |
+
_warn_typed_storage_removal()
|
1210 |
+
return self._dtype
|
1211 |
+
|
1212 |
+
@classproperty
|
1213 |
+
def _dtype(self):
|
1214 |
+
return torch.cdouble
|
1215 |
+
|
1216 |
+
|
1217 |
+
class ComplexFloatStorage(_CudaLegacyStorage):
|
1218 |
+
@classproperty
|
1219 |
+
def dtype(self):
|
1220 |
+
_warn_typed_storage_removal()
|
1221 |
+
return self._dtype
|
1222 |
+
|
1223 |
+
@classproperty
|
1224 |
+
def _dtype(self):
|
1225 |
+
return torch.cfloat
|
1226 |
+
|
1227 |
+
|
1228 |
+
del _LegacyStorage
|
1229 |
+
del _CudaLegacyStorage
|
1230 |
+
|
1231 |
+
torch._storage_classes.add(DoubleStorage)
|
1232 |
+
torch._storage_classes.add(FloatStorage)
|
1233 |
+
torch._storage_classes.add(LongStorage)
|
1234 |
+
torch._storage_classes.add(IntStorage)
|
1235 |
+
torch._storage_classes.add(ShortStorage)
|
1236 |
+
torch._storage_classes.add(CharStorage)
|
1237 |
+
torch._storage_classes.add(ByteStorage)
|
1238 |
+
torch._storage_classes.add(HalfStorage)
|
1239 |
+
torch._storage_classes.add(BoolStorage)
|
1240 |
+
torch._storage_classes.add(BFloat16Storage)
|
1241 |
+
torch._storage_classes.add(ComplexDoubleStorage)
|
1242 |
+
torch._storage_classes.add(ComplexFloatStorage)
|
1243 |
+
|
1244 |
+
|
1245 |
+
class _WrappedTritonKernel:
|
1246 |
+
"""Just a simple wrapper to store some metadata for testing purposes."""
|
1247 |
+
|
1248 |
+
def __init__(self, kernel):
|
1249 |
+
self.kernel = kernel
|
1250 |
+
self.kernel_invoked = False
|
1251 |
+
|
1252 |
+
def __call__(self, *args, **kwargs):
|
1253 |
+
res = self.kernel(*args, **kwargs)
|
1254 |
+
self.kernel_invoked = True
|
1255 |
+
return res
|
1256 |
+
|
1257 |
+
|
1258 |
+
def _register_triton_kernels():
|
1259 |
+
if torch._running_with_deploy():
|
1260 |
+
return
|
1261 |
+
|
1262 |
+
@_WrappedTritonKernel
|
1263 |
+
def kernel_impl(*args, **kwargs):
|
1264 |
+
from torch.sparse._triton_ops import bsr_dense_mm
|
1265 |
+
|
1266 |
+
return bsr_dense_mm(*args, skip_checks=True, **kwargs)
|
1267 |
+
|
1268 |
+
@_WrappedTritonKernel
|
1269 |
+
def addmm_kernel_impl(*args, **kwargs):
|
1270 |
+
from torch.sparse._triton_ops import bsr_dense_addmm
|
1271 |
+
|
1272 |
+
return bsr_dense_addmm(*args, skip_checks=True, **kwargs)
|
1273 |
+
|
1274 |
+
has_triton = importlib.util.find_spec("triton") is not None
|
1275 |
+
if has_triton:
|
1276 |
+
torch._TritonLibrary.registerOp(
|
1277 |
+
"_triton_bsr_dense_mm_out",
|
1278 |
+
"_triton_bsr_dense_mm_out(Tensor bsr, Tensor dense, *, Tensor(a!) out) -> Tensor(a!)",
|
1279 |
+
kernel_impl,
|
1280 |
+
"SparseCsrCUDA",
|
1281 |
+
)
|
1282 |
+
|
1283 |
+
torch._TritonLibrary.registerOp(
|
1284 |
+
"_triton_bsr_dense_addmm_out",
|
1285 |
+
(
|
1286 |
+
"_triton_bsr_dense_addmm_out(Tensor input, Tensor bsr, Tensor dense,"
|
1287 |
+
" *, Scalar beta, Scalar alpha, Tensor(a!) out) -> Tensor(a!)"
|
1288 |
+
),
|
1289 |
+
addmm_kernel_impl,
|
1290 |
+
"SparseCsrCUDA",
|
1291 |
+
)
|
1292 |
+
|
1293 |
+
|
1294 |
+
_lazy_call(_register_triton_kernels)
|
1295 |
+
|
1296 |
+
|
1297 |
+
from . import amp, jiterator, nvtx, profiler, sparse
|
1298 |
+
|
1299 |
+
__all__ = [
|
1300 |
+
# Typed storage and tensors
|
1301 |
+
"BFloat16Storage",
|
1302 |
+
"BFloat16Tensor",
|
1303 |
+
"BoolStorage",
|
1304 |
+
"BoolTensor",
|
1305 |
+
"ByteStorage",
|
1306 |
+
"ByteTensor",
|
1307 |
+
"CharStorage",
|
1308 |
+
"CharTensor",
|
1309 |
+
"ComplexDoubleStorage",
|
1310 |
+
"ComplexFloatStorage",
|
1311 |
+
"DoubleStorage",
|
1312 |
+
"DoubleTensor",
|
1313 |
+
"FloatStorage",
|
1314 |
+
"FloatTensor",
|
1315 |
+
"HalfStorage",
|
1316 |
+
"HalfTensor",
|
1317 |
+
"IntStorage",
|
1318 |
+
"IntTensor",
|
1319 |
+
"LongStorage",
|
1320 |
+
"LongTensor",
|
1321 |
+
"ShortStorage",
|
1322 |
+
"ShortTensor",
|
1323 |
+
"CUDAGraph",
|
1324 |
+
"CudaError",
|
1325 |
+
"DeferredCudaCallError",
|
1326 |
+
"Event",
|
1327 |
+
"ExternalStream",
|
1328 |
+
"OutOfMemoryError",
|
1329 |
+
"Stream",
|
1330 |
+
"StreamContext",
|
1331 |
+
"amp",
|
1332 |
+
"caching_allocator_alloc",
|
1333 |
+
"caching_allocator_delete",
|
1334 |
+
"can_device_access_peer",
|
1335 |
+
"check_error",
|
1336 |
+
"cudaStatus",
|
1337 |
+
"cudart",
|
1338 |
+
"current_blas_handle",
|
1339 |
+
"current_device",
|
1340 |
+
"current_stream",
|
1341 |
+
"default_generators",
|
1342 |
+
"default_stream",
|
1343 |
+
"device",
|
1344 |
+
"device_count",
|
1345 |
+
"device_of",
|
1346 |
+
"empty_cache",
|
1347 |
+
"get_allocator_backend",
|
1348 |
+
"CUDAPluggableAllocator",
|
1349 |
+
"change_current_allocator",
|
1350 |
+
"get_arch_list",
|
1351 |
+
"get_device_capability",
|
1352 |
+
"get_device_name",
|
1353 |
+
"get_device_properties",
|
1354 |
+
"get_gencode_flags",
|
1355 |
+
"get_rng_state",
|
1356 |
+
"get_rng_state_all",
|
1357 |
+
"get_sync_debug_mode",
|
1358 |
+
"graph",
|
1359 |
+
"graph_pool_handle",
|
1360 |
+
"graphs",
|
1361 |
+
"has_half",
|
1362 |
+
"has_magma",
|
1363 |
+
"init",
|
1364 |
+
"initial_seed",
|
1365 |
+
"ipc_collect",
|
1366 |
+
"is_available",
|
1367 |
+
"is_bf16_supported",
|
1368 |
+
"is_current_stream_capturing",
|
1369 |
+
"is_initialized",
|
1370 |
+
"jiterator",
|
1371 |
+
"list_gpu_processes",
|
1372 |
+
"make_graphed_callables",
|
1373 |
+
"manual_seed",
|
1374 |
+
"manual_seed_all",
|
1375 |
+
"max_memory_allocated",
|
1376 |
+
"max_memory_cached",
|
1377 |
+
"max_memory_reserved",
|
1378 |
+
"mem_get_info",
|
1379 |
+
"memory",
|
1380 |
+
"memory_allocated",
|
1381 |
+
"memory_cached",
|
1382 |
+
"memory_reserved",
|
1383 |
+
"memory_snapshot",
|
1384 |
+
"memory_stats",
|
1385 |
+
"memory_stats_as_nested_dict",
|
1386 |
+
"memory_summary",
|
1387 |
+
"memory_usage",
|
1388 |
+
"temperature",
|
1389 |
+
"power_draw",
|
1390 |
+
"clock_rate",
|
1391 |
+
"nccl",
|
1392 |
+
"nvtx",
|
1393 |
+
"profiler",
|
1394 |
+
"random",
|
1395 |
+
"reset_accumulated_memory_stats",
|
1396 |
+
"reset_max_memory_allocated",
|
1397 |
+
"reset_max_memory_cached",
|
1398 |
+
"reset_peak_memory_stats",
|
1399 |
+
"seed",
|
1400 |
+
"seed_all",
|
1401 |
+
"set_device",
|
1402 |
+
"set_per_process_memory_fraction",
|
1403 |
+
"set_rng_state",
|
1404 |
+
"set_rng_state_all",
|
1405 |
+
"set_stream",
|
1406 |
+
"set_sync_debug_mode",
|
1407 |
+
"sparse",
|
1408 |
+
"stream",
|
1409 |
+
"streams",
|
1410 |
+
"synchronize",
|
1411 |
+
"utilization",
|
1412 |
+
]
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (40.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/_memory_viz.cpython-310.pyc
ADDED
Binary file (20.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/_sanitizer.cpython-310.pyc
ADDED
Binary file (22.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/_utils.cpython-310.pyc
ADDED
Binary file (1.54 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/comm.cpython-310.pyc
ADDED
Binary file (398 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/error.cpython-310.pyc
ADDED
Binary file (175 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/graphs.cpython-310.pyc
ADDED
Binary file (19 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/jiterator.cpython-310.pyc
ADDED
Binary file (6.42 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/memory.cpython-310.pyc
ADDED
Binary file (34 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/nccl.cpython-310.pyc
ADDED
Binary file (3.68 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/nvtx.cpython-310.pyc
ADDED
Binary file (3.02 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/profiler.cpython-310.pyc
ADDED
Binary file (1.91 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/random.cpython-310.pyc
ADDED
Binary file (5.54 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/sparse.cpython-310.pyc
ADDED
Binary file (176 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/__pycache__/streams.cpython-310.pyc
ADDED
Binary file (9.61 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/amp/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .autocast_mode import autocast, custom_bwd, custom_fwd
|
2 |
+
from .common import amp_definitely_not_available
|
3 |
+
from .grad_scaler import GradScaler
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
"amp_definitely_not_available",
|
7 |
+
"autocast",
|
8 |
+
"custom_bwd",
|
9 |
+
"custom_fwd",
|
10 |
+
"GradScaler",
|
11 |
+
]
|
venv/lib/python3.10/site-packages/torch/cuda/amp/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (421 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/amp/__pycache__/autocast_mode.cpython-310.pyc
ADDED
Binary file (4.79 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/amp/__pycache__/common.cpython-310.pyc
ADDED
Binary file (439 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/amp/__pycache__/grad_scaler.cpython-310.pyc
ADDED
Binary file (1.09 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/amp/autocast_mode.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import functools
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
try:
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
HAS_NUMPY = True
|
10 |
+
except ModuleNotFoundError:
|
11 |
+
np = None # type: ignore[assignment]
|
12 |
+
from typing import Any
|
13 |
+
|
14 |
+
__all__ = ["autocast", "custom_fwd", "custom_bwd"]
|
15 |
+
|
16 |
+
|
17 |
+
class autocast(torch.amp.autocast_mode.autocast):
|
18 |
+
r"""See :class:`torch.autocast`.
|
19 |
+
|
20 |
+
``torch.cuda.amp.autocast(args...)`` is equivalent to ``torch.autocast("cuda", args...)``
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
enabled: bool = True,
|
26 |
+
dtype: torch.dtype = torch.float16,
|
27 |
+
cache_enabled: bool = True,
|
28 |
+
):
|
29 |
+
if torch._jit_internal.is_scripting():
|
30 |
+
self._enabled = enabled
|
31 |
+
self.device = "cuda"
|
32 |
+
self.fast_dtype = dtype
|
33 |
+
return
|
34 |
+
super().__init__(
|
35 |
+
"cuda", enabled=enabled, dtype=dtype, cache_enabled=cache_enabled
|
36 |
+
)
|
37 |
+
|
38 |
+
def __enter__(self):
|
39 |
+
if torch._jit_internal.is_scripting():
|
40 |
+
return self
|
41 |
+
return super().__enter__()
|
42 |
+
|
43 |
+
# TODO: discuss a unified TorchScript-friendly API for autocast
|
44 |
+
def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any): # type: ignore[override]
|
45 |
+
if torch._jit_internal.is_scripting():
|
46 |
+
return
|
47 |
+
return super().__exit__(exc_type, exc_val, exc_tb)
|
48 |
+
|
49 |
+
def __call__(self, func):
|
50 |
+
if torch._jit_internal.is_scripting():
|
51 |
+
return func
|
52 |
+
return super().__call__(func)
|
53 |
+
|
54 |
+
|
55 |
+
# Casts Tensors and containers of Tensors. Special-cases passthroughs for strings and np.ndarrays, which
|
56 |
+
# may be falsely detected as "Iterables."
|
57 |
+
def _cast(value, dtype):
|
58 |
+
if isinstance(value, torch.Tensor):
|
59 |
+
is_eligible = (
|
60 |
+
value.is_floating_point()
|
61 |
+
and value.is_cuda
|
62 |
+
and (value.dtype is not torch.float64)
|
63 |
+
)
|
64 |
+
return value.to(dtype) if is_eligible else value
|
65 |
+
elif isinstance(value, (str, bytes)):
|
66 |
+
return value
|
67 |
+
elif HAS_NUMPY and isinstance(value, np.ndarray):
|
68 |
+
return value
|
69 |
+
elif isinstance(value, collections.abc.Mapping):
|
70 |
+
return {_cast(k, dtype): _cast(v, dtype) for k, v in value.items()}
|
71 |
+
elif isinstance(value, collections.abc.Iterable):
|
72 |
+
iterable = (_cast(v, dtype) for v in value)
|
73 |
+
if isinstance(value, (list, tuple)):
|
74 |
+
return type(value)(iterable)
|
75 |
+
else:
|
76 |
+
return iterable
|
77 |
+
else:
|
78 |
+
return value
|
79 |
+
|
80 |
+
|
81 |
+
# custom_fwd is a decorator that may or may not be used with arguments, following
|
82 |
+
# https://github.com/dabeaz/python-cookbook/tree/master/src/9/defining_a_decorator_that_takes_an_optional_argument.
|
83 |
+
# this works:
|
84 |
+
# @custom_fwd
|
85 |
+
# def forward(...):
|
86 |
+
# this also works:
|
87 |
+
# @custom_fwd(cast_inputs=torch.float)
|
88 |
+
# def forward(...):
|
89 |
+
def custom_fwd(fwd=None, *, cast_inputs=None):
|
90 |
+
"""
|
91 |
+
Create a helper decorator for ``forward`` methods of custom autograd functions.
|
92 |
+
|
93 |
+
Autograd functions are subclasses of :class:`torch.autograd.Function`.
|
94 |
+
See the :ref:`example page<amp-custom-examples>` for more detail.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
cast_inputs (:class:`torch.dtype` or None, optional, default=None): If not ``None``,
|
98 |
+
when ``forward`` runs in an autocast-enabled region, casts incoming
|
99 |
+
floating-point CUDA Tensors to the target dtype (non-floating-point Tensors are not affected),
|
100 |
+
then executes ``forward`` with autocast disabled.
|
101 |
+
If ``None``, ``forward``'s internal ops execute with the current autocast state.
|
102 |
+
|
103 |
+
.. note::
|
104 |
+
If the decorated ``forward`` is called outside an autocast-enabled region,
|
105 |
+
:func:`custom_fwd<custom_fwd>` is a no-op and ``cast_inputs`` has no effect.
|
106 |
+
"""
|
107 |
+
if fwd is None:
|
108 |
+
return functools.partial(custom_fwd, cast_inputs=cast_inputs)
|
109 |
+
|
110 |
+
@functools.wraps(fwd)
|
111 |
+
def decorate_fwd(*args, **kwargs):
|
112 |
+
args[0]._dtype = torch.get_autocast_gpu_dtype()
|
113 |
+
if cast_inputs is None:
|
114 |
+
args[0]._fwd_used_autocast = torch.is_autocast_enabled()
|
115 |
+
return fwd(*args, **kwargs)
|
116 |
+
else:
|
117 |
+
autocast_context = torch.is_autocast_enabled()
|
118 |
+
args[0]._fwd_used_autocast = False
|
119 |
+
if autocast_context:
|
120 |
+
with autocast(enabled=False):
|
121 |
+
return fwd(*_cast(args, cast_inputs), **_cast(kwargs, cast_inputs))
|
122 |
+
else:
|
123 |
+
return fwd(*args, **kwargs)
|
124 |
+
|
125 |
+
return decorate_fwd
|
126 |
+
|
127 |
+
|
128 |
+
# Autograd ensures incoming gradients are the same type as forward outputs. Allowing a separate
|
129 |
+
# cast_inputs argument on custom_bwd is unnecessary and could cause errors if it doesn't match
|
130 |
+
# cast_inputs supplied to custom_fwd.
|
131 |
+
def custom_bwd(bwd):
|
132 |
+
"""Create a helper decorator for backward methods of custom autograd functions.
|
133 |
+
|
134 |
+
Autograd functions are subclasses of :class:`torch.autograd.Function`.
|
135 |
+
Ensures that ``backward`` executes with the same autocast state as ``forward``.
|
136 |
+
See the :ref:`example page<amp-custom-examples>` for more detail.
|
137 |
+
"""
|
138 |
+
|
139 |
+
@functools.wraps(bwd)
|
140 |
+
def decorate_bwd(*args, **kwargs):
|
141 |
+
with autocast(enabled=args[0]._fwd_used_autocast, dtype=args[0]._dtype):
|
142 |
+
return bwd(*args, **kwargs)
|
143 |
+
|
144 |
+
return decorate_bwd
|
venv/lib/python3.10/site-packages/torch/cuda/amp/common.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from importlib.util import find_spec
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
__all__ = ["amp_definitely_not_available"]
|
6 |
+
|
7 |
+
|
8 |
+
def amp_definitely_not_available():
|
9 |
+
return not (torch.cuda.is_available() or find_spec("torch_xla"))
|
venv/lib/python3.10/site-packages/torch/cuda/amp/grad_scaler.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.amp.grad_scaler import OptState
|
3 |
+
|
4 |
+
__all__ = ["GradScaler", "OptState"]
|
5 |
+
|
6 |
+
|
7 |
+
class GradScaler(torch.amp.GradScaler):
|
8 |
+
r"""
|
9 |
+
See :class:`torch.amp.GradScaler`.
|
10 |
+
``torch.cuda.amp.GradScaler(args...)`` is equivalent to ``torch.amp.GradScaler("cuda", args...)``
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
init_scale: float = 2.0**16,
|
16 |
+
growth_factor: float = 2.0,
|
17 |
+
backoff_factor: float = 0.5,
|
18 |
+
growth_interval: int = 2000,
|
19 |
+
enabled: bool = True,
|
20 |
+
) -> None:
|
21 |
+
super().__init__(
|
22 |
+
"cuda",
|
23 |
+
init_scale=init_scale,
|
24 |
+
growth_factor=growth_factor,
|
25 |
+
backoff_factor=backoff_factor,
|
26 |
+
growth_interval=growth_interval,
|
27 |
+
enabled=enabled,
|
28 |
+
)
|
venv/lib/python3.10/site-packages/torch/cuda/jiterator.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import Callable, List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import Tensor
|
6 |
+
|
7 |
+
__all__: List[str] = []
|
8 |
+
|
9 |
+
|
10 |
+
class _CodeParser:
|
11 |
+
def __init__(self, code_string: str):
|
12 |
+
optional_ws = r"\s*"
|
13 |
+
required_ws = r"\s+"
|
14 |
+
template_params = r"(?P<template_params>\<.+\>)"
|
15 |
+
return_type = r"(?P<return_type>\w+)"
|
16 |
+
function_name = r"(?P<function_name>\w+)"
|
17 |
+
function_params = r"(?P<function_params>\(.+\))"
|
18 |
+
function_body = r"(?P<function_body>\{.+\})"
|
19 |
+
|
20 |
+
pattern = (
|
21 |
+
optional_ws
|
22 |
+
+ "template"
|
23 |
+
+ optional_ws
|
24 |
+
+ template_params
|
25 |
+
+ optional_ws
|
26 |
+
+ return_type
|
27 |
+
+ required_ws
|
28 |
+
+ function_name
|
29 |
+
+ optional_ws
|
30 |
+
+ function_params
|
31 |
+
+ optional_ws
|
32 |
+
+ function_body
|
33 |
+
+ optional_ws
|
34 |
+
)
|
35 |
+
|
36 |
+
result = re.match(
|
37 |
+
pattern, code_string, re.DOTALL
|
38 |
+
) # DOTALL for matching multiline
|
39 |
+
|
40 |
+
if result is None:
|
41 |
+
raise Exception(
|
42 |
+
f"Couldn't parse code, please check correctness:\n {code_string}"
|
43 |
+
)
|
44 |
+
|
45 |
+
self.template_params = result["template_params"]
|
46 |
+
self.return_type = result["return_type"]
|
47 |
+
self.function_name = result["function_name"]
|
48 |
+
self.function_params = result["function_params"]
|
49 |
+
self.function_body = result["function_body"]
|
50 |
+
|
51 |
+
|
52 |
+
class _JittedFunction:
|
53 |
+
def __init__(
|
54 |
+
self, code_string: str, return_by_ref: bool, num_outputs: int, **kwargs
|
55 |
+
):
|
56 |
+
self.code_string = code_string
|
57 |
+
|
58 |
+
assert (
|
59 |
+
return_by_ref or num_outputs == 1
|
60 |
+
), "Return by value only works for single output. "
|
61 |
+
self.return_by_ref = return_by_ref
|
62 |
+
self.num_outputs = num_outputs
|
63 |
+
|
64 |
+
parsed_code = _CodeParser(code_string)
|
65 |
+
self.kernel_name = parsed_code.function_name
|
66 |
+
|
67 |
+
self.kwargs_dict = kwargs
|
68 |
+
self.is_cuda_available = torch.cuda.is_available()
|
69 |
+
|
70 |
+
def __call__(self, *tensors: Tensor, **kwargs):
|
71 |
+
# Jiterator follow torch.cuda's lazy initialization behavior
|
72 |
+
# Defer checking cuda's availability at the function invocation time
|
73 |
+
assert (
|
74 |
+
self.is_cuda_available
|
75 |
+
), "Jiterator is only supported on CUDA and ROCm GPUs, none are available."
|
76 |
+
|
77 |
+
assert len(tensors) <= 8, "jiterator only supports up to 8 tensor inputs."
|
78 |
+
|
79 |
+
expanded_kwargs = self.kwargs_dict.copy()
|
80 |
+
for key, value in kwargs.items():
|
81 |
+
if key in self.kwargs_dict:
|
82 |
+
expanded_kwargs[key] = value
|
83 |
+
else:
|
84 |
+
raise KeyError(f"{key} is not declared in function definition")
|
85 |
+
|
86 |
+
return torch._C._cuda_jiterator_compile_and_launch_kernel(
|
87 |
+
self.code_string,
|
88 |
+
self.kernel_name,
|
89 |
+
self.return_by_ref,
|
90 |
+
self.num_outputs,
|
91 |
+
tensors,
|
92 |
+
expanded_kwargs,
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
def _create_jit_fn(code_string: str, **kwargs) -> Callable:
|
97 |
+
"""
|
98 |
+
Create a jiterator-generated cuda kernel for an elementwise op.
|
99 |
+
|
100 |
+
The code string has to be a valid CUDA function that describes the computation for a single element. The code
|
101 |
+
string has to follow the c++ template pattern, as shown in the example below. This function will be inlined
|
102 |
+
into elementwise kernel template, and compiled on the fly. Compiled kernel will be cached in memory, as well as
|
103 |
+
local temp dir.
|
104 |
+
|
105 |
+
Jiterator-generated kernels accepts noncontiguous tensors, and supports broadcasting and type promotion.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
code_string (str): CUDA code string to be compiled by jiterator. The entry functor must return by value.
|
109 |
+
kwargs (Dict, optional): Keyword arguments for generated function
|
110 |
+
|
111 |
+
Example::
|
112 |
+
|
113 |
+
code_string = "template <typename T> T my_kernel(T x, T y, T alpha) { return -x + alpha * y; }"
|
114 |
+
jitted_fn = create_jit_fn(code_string, alpha=1.0)
|
115 |
+
a = torch.rand(3, device='cuda')
|
116 |
+
b = torch.rand(3, device='cuda')
|
117 |
+
# invoke jitted function like a regular python function
|
118 |
+
result = jitted_fn(a, b, alpha=3.14)
|
119 |
+
|
120 |
+
code_string also allows multiple function definitions, and the last function will be treated as the entry function.
|
121 |
+
|
122 |
+
Example::
|
123 |
+
|
124 |
+
code_string = "template <typename T> T util_fn(T x, T y) { return ::sin(x) + ::cos(y); }"
|
125 |
+
code_string += "template <typename T> T my_kernel(T x, T y, T val) { return ::min(val, util_fn(x, y)); }"
|
126 |
+
jitted_fn = create_jit_fn(code_string, val=0.0)
|
127 |
+
a = torch.rand(3, device='cuda')
|
128 |
+
b = torch.rand(3, device='cuda')
|
129 |
+
# invoke jitted function like a regular python function
|
130 |
+
result = jitted_fn(a, b) # using default val=0.0
|
131 |
+
|
132 |
+
Jiterator can be used together with python registration to override an operator's cuda kernel.
|
133 |
+
Following example is overriding gelu's cuda kernel with relu.
|
134 |
+
|
135 |
+
Example::
|
136 |
+
|
137 |
+
code_string = "template <typename T> T my_gelu(T a) { return a > 0 ? a : 0; }"
|
138 |
+
my_gelu = create_jit_fn(code_string)
|
139 |
+
my_lib = torch.library.Library("aten", "IMPL")
|
140 |
+
my_lib.impl('aten::gelu', my_gelu, "CUDA")
|
141 |
+
# torch.nn.GELU and torch.nn.function.gelu are now overridden
|
142 |
+
a = torch.rand(3, device='cuda')
|
143 |
+
torch.allclose(torch.nn.functional.gelu(a), torch.nn.functional.relu(a))
|
144 |
+
|
145 |
+
.. warning::
|
146 |
+
This API is in beta and may change in future releases.
|
147 |
+
|
148 |
+
.. warning::
|
149 |
+
This API only supports up to 8 inputs and 1 output
|
150 |
+
|
151 |
+
.. warning::
|
152 |
+
All input tensors must live in CUDA device
|
153 |
+
"""
|
154 |
+
return _JittedFunction(code_string, return_by_ref=False, num_outputs=1, **kwargs)
|
155 |
+
|
156 |
+
|
157 |
+
def _create_multi_output_jit_fn(
|
158 |
+
code_string: str, num_outputs: int, **kwargs
|
159 |
+
) -> Callable:
|
160 |
+
"""
|
161 |
+
Create a jiterator-generated cuda kernel for an elementwise op that supports returning one or more outputs.
|
162 |
+
|
163 |
+
Args:
|
164 |
+
code_string (str): CUDA code string to be compiled by jiterator. The entry functor must return value by reference.
|
165 |
+
num_outputs(int): number of outputs return by the kernel
|
166 |
+
kwargs (Dict, optional): Keyword arguments for generated function
|
167 |
+
|
168 |
+
Example::
|
169 |
+
|
170 |
+
code_string = "template <typename T> void my_kernel(T x, T y, T alpha, T& out) { out = -x + alpha * y; }"
|
171 |
+
jitted_fn = create_jit_fn(code_string, alpha=1.0)
|
172 |
+
a = torch.rand(3, device='cuda')
|
173 |
+
b = torch.rand(3, device='cuda')
|
174 |
+
# invoke jitted function like a regular python function
|
175 |
+
result = jitted_fn(a, b, alpha=3.14)
|
176 |
+
|
177 |
+
.. warning::
|
178 |
+
This API is in beta and may change in future releases.
|
179 |
+
|
180 |
+
.. warning::
|
181 |
+
This API only supports up to 8 inputs and 8 outputs
|
182 |
+
"""
|
183 |
+
return _JittedFunction(
|
184 |
+
code_string, return_by_ref=True, num_outputs=num_outputs, **kwargs
|
185 |
+
)
|
venv/lib/python3.10/site-packages/torch/cuda/memory.py
ADDED
@@ -0,0 +1,914 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""This package adds support for device memory management implemented in CUDA."""
|
2 |
+
|
3 |
+
import collections
|
4 |
+
import contextlib
|
5 |
+
import ctypes
|
6 |
+
import pickle
|
7 |
+
import sys
|
8 |
+
import warnings
|
9 |
+
from inspect import signature
|
10 |
+
|
11 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch import _C
|
15 |
+
|
16 |
+
from torch.types import Device
|
17 |
+
from .._utils import _dummy_type
|
18 |
+
from . import _get_device_index, _get_nvml_device_index, _lazy_init, is_initialized
|
19 |
+
|
20 |
+
from ._memory_viz import memory as _memory, segments as _segments
|
21 |
+
|
22 |
+
__all__ = [
|
23 |
+
"caching_allocator_alloc",
|
24 |
+
"caching_allocator_delete",
|
25 |
+
"set_per_process_memory_fraction",
|
26 |
+
"empty_cache",
|
27 |
+
"memory_stats",
|
28 |
+
"memory_stats_as_nested_dict",
|
29 |
+
"reset_accumulated_memory_stats",
|
30 |
+
"reset_peak_memory_stats",
|
31 |
+
"reset_max_memory_allocated",
|
32 |
+
"reset_max_memory_cached",
|
33 |
+
"memory_allocated",
|
34 |
+
"max_memory_allocated",
|
35 |
+
"memory_reserved",
|
36 |
+
"max_memory_reserved",
|
37 |
+
"memory_cached",
|
38 |
+
"max_memory_cached",
|
39 |
+
"memory_snapshot",
|
40 |
+
"memory_summary",
|
41 |
+
"list_gpu_processes",
|
42 |
+
"mem_get_info",
|
43 |
+
"get_allocator_backend",
|
44 |
+
"CUDAPluggableAllocator",
|
45 |
+
"change_current_allocator",
|
46 |
+
]
|
47 |
+
|
48 |
+
|
49 |
+
if not hasattr(torch._C, "_cuda_CUDAAllocator"):
|
50 |
+
# Define dummy base classes
|
51 |
+
torch._C.__dict__["_cuda_CUDAAllocator"] = _dummy_type("_cuda_CUDAAllocator")
|
52 |
+
|
53 |
+
|
54 |
+
def _host_allocator():
|
55 |
+
_lazy_init()
|
56 |
+
return torch._C._cuda_cudaHostAllocator()
|
57 |
+
|
58 |
+
|
59 |
+
@contextlib.contextmanager
|
60 |
+
def _free_mutex():
|
61 |
+
torch._C._cuda_lock_mutex()
|
62 |
+
try:
|
63 |
+
yield
|
64 |
+
finally:
|
65 |
+
torch._C._cuda_unlock_mutex()
|
66 |
+
|
67 |
+
|
68 |
+
def caching_allocator_alloc(size, device: Union[Device, int] = None, stream=None):
|
69 |
+
r"""Perform a memory allocation using the CUDA memory allocator.
|
70 |
+
|
71 |
+
Memory is allocated for a given device and a stream, this
|
72 |
+
function is intended to be used for interoperability with other
|
73 |
+
frameworks. Allocated memory is released through
|
74 |
+
:func:`~torch.cuda.caching_allocator_delete`.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
size (int): number of bytes to be allocated.
|
78 |
+
device (torch.device or int, optional): selected device. If it is
|
79 |
+
``None`` the default CUDA device is used.
|
80 |
+
stream (torch.cuda.Stream or int, optional): selected stream. If is ``None`` then
|
81 |
+
the default stream for the selected device is used.
|
82 |
+
|
83 |
+
.. note::
|
84 |
+
See :ref:`cuda-memory-management` for more details about GPU memory
|
85 |
+
management.
|
86 |
+
"""
|
87 |
+
if device is None:
|
88 |
+
device = torch.cuda.current_device()
|
89 |
+
device = _get_device_index(device)
|
90 |
+
if stream is None:
|
91 |
+
stream = torch.cuda.current_stream(device)
|
92 |
+
if isinstance(stream, torch.cuda.streams.Stream):
|
93 |
+
stream = stream.cuda_stream
|
94 |
+
if not isinstance(stream, int):
|
95 |
+
raise TypeError(
|
96 |
+
"Invalid type for stream argument, must be "
|
97 |
+
"`torch.cuda.Stream` or `int` representing a pointer "
|
98 |
+
"to a existing stream"
|
99 |
+
)
|
100 |
+
with torch.cuda.device(device):
|
101 |
+
return torch._C._cuda_cudaCachingAllocator_raw_alloc(size, stream)
|
102 |
+
|
103 |
+
|
104 |
+
def caching_allocator_delete(mem_ptr):
|
105 |
+
r"""Delete memory allocated using the CUDA memory allocator.
|
106 |
+
|
107 |
+
Memory allocated with :func:`~torch.cuda.caching_allocator_alloc`.
|
108 |
+
is freed here. The associated device and stream are tracked inside
|
109 |
+
the allocator.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
mem_ptr (int): memory address to be freed by the allocator.
|
113 |
+
|
114 |
+
.. note::
|
115 |
+
See :ref:`cuda-memory-management` for more details about GPU memory
|
116 |
+
management.
|
117 |
+
"""
|
118 |
+
torch._C._cuda_cudaCachingAllocator_raw_delete(mem_ptr)
|
119 |
+
|
120 |
+
|
121 |
+
def set_per_process_memory_fraction(
|
122 |
+
fraction, device: Union[Device, int] = None
|
123 |
+
) -> None:
|
124 |
+
r"""Set memory fraction for a process.
|
125 |
+
|
126 |
+
The fraction is used to limit an caching allocator to allocated memory on a CUDA device.
|
127 |
+
The allowed value equals the total visible memory multiplied fraction.
|
128 |
+
If trying to allocate more than the allowed value in a process, will raise an out of
|
129 |
+
memory error in allocator.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
fraction(float): Range: 0~1. Allowed memory equals total_memory * fraction.
|
133 |
+
device (torch.device or int, optional): selected device. If it is
|
134 |
+
``None`` the default CUDA device is used.
|
135 |
+
.. note::
|
136 |
+
In general, the total available free memory is less than the total capacity.
|
137 |
+
"""
|
138 |
+
_lazy_init()
|
139 |
+
if device is None:
|
140 |
+
device = torch.cuda.current_device()
|
141 |
+
device = _get_device_index(device)
|
142 |
+
if not isinstance(fraction, float):
|
143 |
+
raise TypeError("Invalid type for fraction argument, must be `float`")
|
144 |
+
if fraction < 0 or fraction > 1:
|
145 |
+
raise ValueError(f"Invalid fraction value: {fraction}. Allowed range: 0~1")
|
146 |
+
|
147 |
+
torch._C._cuda_setMemoryFraction(fraction, device)
|
148 |
+
|
149 |
+
|
150 |
+
def empty_cache() -> None:
|
151 |
+
r"""Release all unoccupied cached memory currently held by the caching
|
152 |
+
allocator so that those can be used in other GPU application and visible in
|
153 |
+
`nvidia-smi`.
|
154 |
+
|
155 |
+
.. note::
|
156 |
+
:func:`~torch.cuda.empty_cache` doesn't increase the amount of GPU
|
157 |
+
memory available for PyTorch. However, it may help reduce fragmentation
|
158 |
+
of GPU memory in certain cases. See :ref:`cuda-memory-management` for
|
159 |
+
more details about GPU memory management.
|
160 |
+
"""
|
161 |
+
if is_initialized():
|
162 |
+
torch._C._cuda_emptyCache()
|
163 |
+
|
164 |
+
|
165 |
+
def memory_stats(device: Union[Device, int] = None) -> Dict[str, Any]:
|
166 |
+
r"""Return a dictionary of CUDA memory allocator statistics for a given device.
|
167 |
+
|
168 |
+
The return value of this function is a dictionary of statistics, each of
|
169 |
+
which is a non-negative integer.
|
170 |
+
|
171 |
+
Core statistics:
|
172 |
+
|
173 |
+
- ``"allocated.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
174 |
+
number of allocation requests received by the memory allocator.
|
175 |
+
- ``"allocated_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
176 |
+
amount of allocated memory.
|
177 |
+
- ``"segment.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
178 |
+
number of reserved segments from ``cudaMalloc()``.
|
179 |
+
- ``"reserved_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
180 |
+
amount of reserved memory.
|
181 |
+
- ``"active.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
182 |
+
number of active memory blocks.
|
183 |
+
- ``"active_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
184 |
+
amount of active memory.
|
185 |
+
- ``"inactive_split.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
186 |
+
number of inactive, non-releasable memory blocks.
|
187 |
+
- ``"inactive_split_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
188 |
+
amount of inactive, non-releasable memory.
|
189 |
+
|
190 |
+
For these core statistics, values are broken down as follows.
|
191 |
+
|
192 |
+
Pool type:
|
193 |
+
|
194 |
+
- ``all``: combined statistics across all memory pools.
|
195 |
+
- ``large_pool``: statistics for the large allocation pool
|
196 |
+
(as of October 2019, for size >= 1MB allocations).
|
197 |
+
- ``small_pool``: statistics for the small allocation pool
|
198 |
+
(as of October 2019, for size < 1MB allocations).
|
199 |
+
|
200 |
+
Metric type:
|
201 |
+
|
202 |
+
- ``current``: current value of this metric.
|
203 |
+
- ``peak``: maximum value of this metric.
|
204 |
+
- ``allocated``: historical total increase in this metric.
|
205 |
+
- ``freed``: historical total decrease in this metric.
|
206 |
+
|
207 |
+
In addition to the core statistics, we also provide some simple event
|
208 |
+
counters:
|
209 |
+
|
210 |
+
- ``"num_alloc_retries"``: number of failed ``cudaMalloc`` calls that
|
211 |
+
result in a cache flush and retry.
|
212 |
+
- ``"num_ooms"``: number of out-of-memory errors thrown.
|
213 |
+
|
214 |
+
The caching allocator can be configured via ENV to not split blocks larger than a
|
215 |
+
defined size (see Memory Management section of the Cuda Semantics documentation).
|
216 |
+
This helps avoid memory fragmentation but may have a performance
|
217 |
+
penalty. Additional outputs to assist with tuning and evaluating impact:
|
218 |
+
|
219 |
+
- ``"max_split_size"``: blocks above this size will not be split.
|
220 |
+
- ``"oversize_allocations.{current,peak,allocated,freed}"``:
|
221 |
+
number of over-size allocation requests received by the memory allocator.
|
222 |
+
- ``"oversize_segments.{current,peak,allocated,freed}"``:
|
223 |
+
number of over-size reserved segments from ``cudaMalloc()``.
|
224 |
+
|
225 |
+
The caching allocator can be configured via ENV to round memory allocations in order
|
226 |
+
to reduce fragmentation. Sometimes the overhead from rounding can be higher than
|
227 |
+
the fragmentation it helps reduce. The following stat can be used to check if
|
228 |
+
rounding adds too much overhead:
|
229 |
+
|
230 |
+
- ``"requested_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
|
231 |
+
memory requested by client code, compare this with allocated_bytes to check if
|
232 |
+
allocation rounding adds too much overhead.
|
233 |
+
|
234 |
+
Args:
|
235 |
+
device (torch.device or int, optional): selected device. Returns
|
236 |
+
statistics for the current device, given by :func:`~torch.cuda.current_device`,
|
237 |
+
if :attr:`device` is ``None`` (default).
|
238 |
+
|
239 |
+
.. note::
|
240 |
+
See :ref:`cuda-memory-management` for more details about GPU memory
|
241 |
+
management.
|
242 |
+
|
243 |
+
.. note::
|
244 |
+
With :ref:`backend:cudaMallocAsync<cuda-memory-envvars>`, some stats are not
|
245 |
+
meaningful, and are always reported as zero.
|
246 |
+
"""
|
247 |
+
result = []
|
248 |
+
|
249 |
+
def _recurse_add_to_result(prefix, obj):
|
250 |
+
if isinstance(obj, dict):
|
251 |
+
if len(prefix) > 0:
|
252 |
+
prefix += "."
|
253 |
+
for k, v in obj.items():
|
254 |
+
_recurse_add_to_result(prefix + k, v)
|
255 |
+
else:
|
256 |
+
result.append((prefix, obj))
|
257 |
+
|
258 |
+
stats = memory_stats_as_nested_dict(device=device)
|
259 |
+
_recurse_add_to_result("", stats)
|
260 |
+
result.sort()
|
261 |
+
|
262 |
+
return collections.OrderedDict(result)
|
263 |
+
|
264 |
+
|
265 |
+
def memory_stats_as_nested_dict(device: Union[Device, int] = None) -> Dict[str, Any]:
|
266 |
+
r"""Return the result of :func:`~torch.cuda.memory_stats` as a nested dictionary."""
|
267 |
+
if not is_initialized():
|
268 |
+
return {}
|
269 |
+
device = _get_device_index(device, optional=True)
|
270 |
+
return torch._C._cuda_memoryStats(device)
|
271 |
+
|
272 |
+
|
273 |
+
def reset_accumulated_memory_stats(device: Union[Device, int] = None) -> None:
|
274 |
+
r"""Reset the "accumulated" (historical) stats tracked by the CUDA memory allocator.
|
275 |
+
|
276 |
+
See :func:`~torch.cuda.memory_stats` for details. Accumulated stats correspond to
|
277 |
+
the `"allocated"` and `"freed"` keys in each individual stat dict, as well as
|
278 |
+
`"num_alloc_retries"` and `"num_ooms"`.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
device (torch.device or int, optional): selected device. Returns
|
282 |
+
statistic for the current device, given by :func:`~torch.cuda.current_device`,
|
283 |
+
if :attr:`device` is ``None`` (default).
|
284 |
+
|
285 |
+
.. note::
|
286 |
+
See :ref:`cuda-memory-management` for more details about GPU memory
|
287 |
+
management.
|
288 |
+
"""
|
289 |
+
device = _get_device_index(device, optional=True)
|
290 |
+
return torch._C._cuda_resetAccumulatedMemoryStats(device)
|
291 |
+
|
292 |
+
|
293 |
+
def reset_peak_memory_stats(device: Union[Device, int] = None) -> None:
|
294 |
+
r"""Reset the "peak" stats tracked by the CUDA memory allocator.
|
295 |
+
|
296 |
+
See :func:`~torch.cuda.memory_stats` for details. Peak stats correspond to the
|
297 |
+
`"peak"` key in each individual stat dict.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
device (torch.device or int, optional): selected device. Returns
|
301 |
+
statistic for the current device, given by :func:`~torch.cuda.current_device`,
|
302 |
+
if :attr:`device` is ``None`` (default).
|
303 |
+
|
304 |
+
.. note::
|
305 |
+
See :ref:`cuda-memory-management` for more details about GPU memory
|
306 |
+
management.
|
307 |
+
"""
|
308 |
+
device = _get_device_index(device, optional=True)
|
309 |
+
return torch._C._cuda_resetPeakMemoryStats(device)
|
310 |
+
|
311 |
+
|
312 |
+
def reset_max_memory_allocated(device: Union[Device, int] = None) -> None:
|
313 |
+
r"""Reset the starting point in tracking maximum GPU memory occupied by tensors for a given device.
|
314 |
+
|
315 |
+
See :func:`~torch.cuda.max_memory_allocated` for details.
|
316 |
+
|
317 |
+
Args:
|
318 |
+
device (torch.device or int, optional): selected device. Returns
|
319 |
+
statistic for the current device, given by :func:`~torch.cuda.current_device`,
|
320 |
+
if :attr:`device` is ``None`` (default).
|
321 |
+
|
322 |
+
.. warning::
|
323 |
+
This function now calls :func:`~torch.cuda.reset_peak_memory_stats`, which resets
|
324 |
+
/all/ peak memory stats.
|
325 |
+
|
326 |
+
.. note::
|
327 |
+
See :ref:`cuda-memory-management` for more details about GPU memory
|
328 |
+
management.
|
329 |
+
"""
|
330 |
+
warnings.warn(
|
331 |
+
"torch.cuda.reset_max_memory_allocated now calls torch.cuda.reset_peak_memory_stats, "
|
332 |
+
"which resets /all/ peak memory stats.",
|
333 |
+
FutureWarning,
|
334 |
+
)
|
335 |
+
return reset_peak_memory_stats(device=device)
|
336 |
+
|
337 |
+
|
338 |
+
def reset_max_memory_cached(device: Union[Device, int] = None) -> None:
|
339 |
+
r"""Reset the starting point in tracking maximum GPU memory managed by the caching allocator for a given device.
|
340 |
+
|
341 |
+
See :func:`~torch.cuda.max_memory_cached` for details.
|
342 |
+
|
343 |
+
Args:
|
344 |
+
device (torch.device or int, optional): selected device. Returns
|
345 |
+
statistic for the current device, given by :func:`~torch.cuda.current_device`,
|
346 |
+
if :attr:`device` is ``None`` (default).
|
347 |
+
|
348 |
+
.. warning::
|
349 |
+
This function now calls :func:`~torch.cuda.reset_peak_memory_stats`, which resets
|
350 |
+
/all/ peak memory stats.
|
351 |
+
|
352 |
+
.. note::
|
353 |
+
See :ref:`cuda-memory-management` for more details about GPU memory
|
354 |
+
management.
|
355 |
+
"""
|
356 |
+
warnings.warn(
|
357 |
+
"torch.cuda.reset_max_memory_cached now calls torch.cuda.reset_peak_memory_stats, "
|
358 |
+
"which resets /all/ peak memory stats.",
|
359 |
+
FutureWarning,
|
360 |
+
)
|
361 |
+
return reset_peak_memory_stats(device=device)
|
362 |
+
|
363 |
+
|
364 |
+
def memory_allocated(device: Union[Device, int] = None) -> int:
|
365 |
+
r"""Return the current GPU memory occupied by tensors in bytes for a given device.
|
366 |
+
|
367 |
+
Args:
|
368 |
+
device (torch.device or int, optional): selected device. Returns
|
369 |
+
statistic for the current device, given by :func:`~torch.cuda.current_device`,
|
370 |
+
if :attr:`device` is ``None`` (default).
|
371 |
+
|
372 |
+
.. note::
|
373 |
+
This is likely less than the amount shown in `nvidia-smi` since some
|
374 |
+
unused memory can be held by the caching allocator and some context
|
375 |
+
needs to be created on GPU. See :ref:`cuda-memory-management` for more
|
376 |
+
details about GPU memory management.
|
377 |
+
"""
|
378 |
+
return memory_stats(device=device).get("allocated_bytes.all.current", 0)
|
379 |
+
|
380 |
+
|
381 |
+
def max_memory_allocated(device: Union[Device, int] = None) -> int:
|
382 |
+
r"""Return the maximum GPU memory occupied by tensors in bytes for a given device.
|
383 |
+
|
384 |
+
By default, this returns the peak allocated memory since the beginning of
|
385 |
+
this program. :func:`~torch.cuda.reset_peak_memory_stats` can be used to
|
386 |
+
reset the starting point in tracking this metric. For example, these two
|
387 |
+
functions can measure the peak allocated memory usage of each iteration in a
|
388 |
+
training loop.
|
389 |
+
|
390 |
+
Args:
|
391 |
+
device (torch.device or int, optional): selected device. Returns
|
392 |
+
statistic for the current device, given by :func:`~torch.cuda.current_device`,
|
393 |
+
if :attr:`device` is ``None`` (default).
|
394 |
+
|
395 |
+
.. note::
|
396 |
+
See :ref:`cuda-memory-management` for more details about GPU memory
|
397 |
+
management.
|
398 |
+
"""
|
399 |
+
return memory_stats(device=device).get("allocated_bytes.all.peak", 0)
|
400 |
+
|
401 |
+
|
402 |
+
def memory_reserved(device: Union[Device, int] = None) -> int:
|
403 |
+
r"""Return the current GPU memory managed by the caching allocator in bytes for a given device.
|
404 |
+
|
405 |
+
Args:
|
406 |
+
device (torch.device or int, optional): selected device. Returns
|
407 |
+
statistic for the current device, given by :func:`~torch.cuda.current_device`,
|
408 |
+
if :attr:`device` is ``None`` (default).
|
409 |
+
|
410 |
+
.. note::
|
411 |
+
See :ref:`cuda-memory-management` for more details about GPU memory
|
412 |
+
management.
|
413 |
+
"""
|
414 |
+
return memory_stats(device=device).get("reserved_bytes.all.current", 0)
|
415 |
+
|
416 |
+
|
417 |
+
def max_memory_reserved(device: Union[Device, int] = None) -> int:
|
418 |
+
r"""Return the maximum GPU memory managed by the caching allocator in bytes for a given device.
|
419 |
+
|
420 |
+
By default, this returns the peak cached memory since the beginning of this
|
421 |
+
program. :func:`~torch.cuda.reset_peak_memory_stats` can be used to reset
|
422 |
+
the starting point in tracking this metric. For example, these two functions
|
423 |
+
can measure the peak cached memory amount of each iteration in a training
|
424 |
+
loop.
|
425 |
+
|
426 |
+
Args:
|
427 |
+
device (torch.device or int, optional): selected device. Returns
|
428 |
+
statistic for the current device, given by :func:`~torch.cuda.current_device`,
|
429 |
+
if :attr:`device` is ``None`` (default).
|
430 |
+
|
431 |
+
.. note::
|
432 |
+
See :ref:`cuda-memory-management` for more details about GPU memory
|
433 |
+
management.
|
434 |
+
"""
|
435 |
+
return memory_stats(device=device).get("reserved_bytes.all.peak", 0)
|
436 |
+
|
437 |
+
|
438 |
+
def memory_cached(device: Union[Device, int] = None) -> int:
|
439 |
+
r"""Deprecated; see :func:`~torch.cuda.memory_reserved`."""
|
440 |
+
warnings.warn(
|
441 |
+
"torch.cuda.memory_cached has been renamed to torch.cuda.memory_reserved",
|
442 |
+
FutureWarning,
|
443 |
+
)
|
444 |
+
return memory_reserved(device=device)
|
445 |
+
|
446 |
+
|
447 |
+
def max_memory_cached(device: Union[Device, int] = None) -> int:
|
448 |
+
r"""Deprecated; see :func:`~torch.cuda.max_memory_reserved`."""
|
449 |
+
warnings.warn(
|
450 |
+
"torch.cuda.max_memory_cached has been renamed to torch.cuda.max_memory_reserved",
|
451 |
+
FutureWarning,
|
452 |
+
)
|
453 |
+
return max_memory_reserved(device=device)
|
454 |
+
|
455 |
+
|
456 |
+
def memory_snapshot():
|
457 |
+
r"""Return a snapshot of the CUDA memory allocator state across all devices.
|
458 |
+
|
459 |
+
Interpreting the output of this function requires familiarity with the
|
460 |
+
memory allocator internals.
|
461 |
+
|
462 |
+
.. note::
|
463 |
+
See :ref:`cuda-memory-management` for more details about GPU memory
|
464 |
+
management.
|
465 |
+
"""
|
466 |
+
return torch._C._cuda_memorySnapshot()["segments"]
|
467 |
+
|
468 |
+
|
469 |
+
def memory_summary(device: Union[Device, int] = None, abbreviated: bool = False) -> str:
|
470 |
+
r"""Return a human-readable printout of the current memory allocator statistics for a given device.
|
471 |
+
|
472 |
+
This can be useful to display periodically during training, or when
|
473 |
+
handling out-of-memory exceptions.
|
474 |
+
|
475 |
+
Args:
|
476 |
+
device (torch.device or int, optional): selected device. Returns
|
477 |
+
printout for the current device, given by :func:`~torch.cuda.current_device`,
|
478 |
+
if :attr:`device` is ``None`` (default).
|
479 |
+
abbreviated (bool, optional): whether to return an abbreviated summary
|
480 |
+
(default: False).
|
481 |
+
|
482 |
+
.. note::
|
483 |
+
See :ref:`cuda-memory-management` for more details about GPU memory
|
484 |
+
management.
|
485 |
+
"""
|
486 |
+
device = _get_device_index(device, optional=True)
|
487 |
+
stats = memory_stats(device=device)
|
488 |
+
|
489 |
+
def _format_size(sz, pref_sz):
|
490 |
+
prefixes = ["B ", "KiB", "MiB", "GiB", "TiB", "PiB"]
|
491 |
+
prefix = prefixes[0]
|
492 |
+
for new_prefix in prefixes[1:]:
|
493 |
+
if pref_sz < 768 * 1024:
|
494 |
+
break
|
495 |
+
prefix = new_prefix
|
496 |
+
sz //= 1024
|
497 |
+
pref_sz /= 1024
|
498 |
+
return f"{sz:6d} {prefix}"
|
499 |
+
|
500 |
+
def _format_count(cnt, pref_cnt):
|
501 |
+
prefixes = [" ", "K", "M"]
|
502 |
+
prefix = prefixes[0]
|
503 |
+
for new_prefix in prefixes[1:]:
|
504 |
+
if pref_cnt < 750 * 1000:
|
505 |
+
break
|
506 |
+
prefix = new_prefix
|
507 |
+
cnt //= 1000
|
508 |
+
pref_cnt /= 1000
|
509 |
+
return f"{cnt:7d} {prefix} "
|
510 |
+
|
511 |
+
metrics_to_display = [
|
512 |
+
("allocated_bytes", "Allocated memory", _format_size),
|
513 |
+
("active_bytes", "Active memory", _format_size),
|
514 |
+
("requested_bytes", "Requested memory", _format_size),
|
515 |
+
("reserved_bytes", "GPU reserved memory", _format_size),
|
516 |
+
("inactive_split_bytes", "Non-releasable memory", _format_size),
|
517 |
+
("allocation", "Allocations", _format_count),
|
518 |
+
("active", "Active allocs", _format_count),
|
519 |
+
("segment", "GPU reserved segments", _format_count),
|
520 |
+
("inactive_split", "Non-releasable allocs", _format_count),
|
521 |
+
]
|
522 |
+
|
523 |
+
lines = []
|
524 |
+
lines.append("=" * 75)
|
525 |
+
lines.append(" {_:16} PyTorch CUDA memory summary, device ID {device:<17d} ")
|
526 |
+
lines.append("-" * 75)
|
527 |
+
lines.append(
|
528 |
+
" {_:9} CUDA OOMs: {num_ooms:<12d} | {_:6} cudaMalloc retries: {num_alloc_retries:<8d} "
|
529 |
+
)
|
530 |
+
lines.append("=" * 75)
|
531 |
+
lines.append(
|
532 |
+
" Metric | Cur Usage | Peak Usage | Tot Alloc | Tot Freed "
|
533 |
+
)
|
534 |
+
|
535 |
+
for metric_key, metric_name, formatter in metrics_to_display:
|
536 |
+
lines.append("-" * 75)
|
537 |
+
submetrics = [("all", metric_name)]
|
538 |
+
if not abbreviated:
|
539 |
+
submetrics.append(("large_pool", " from large pool"))
|
540 |
+
submetrics.append(("small_pool", " from small pool"))
|
541 |
+
|
542 |
+
current_prefval, peak_prefval, allocated_prefval, freed_prefval = (
|
543 |
+
None,
|
544 |
+
None,
|
545 |
+
None,
|
546 |
+
None,
|
547 |
+
)
|
548 |
+
|
549 |
+
for submetric_key, submetric_name in submetrics:
|
550 |
+
prefix = metric_key + "." + submetric_key + "."
|
551 |
+
|
552 |
+
current = stats[prefix + "current"]
|
553 |
+
peak = stats[prefix + "peak"]
|
554 |
+
allocated = stats[prefix + "allocated"]
|
555 |
+
freed = stats[prefix + "freed"]
|
556 |
+
|
557 |
+
if current_prefval is None:
|
558 |
+
current_prefval = current
|
559 |
+
peak_prefval = peak
|
560 |
+
allocated_prefval = allocated
|
561 |
+
freed_prefval = freed
|
562 |
+
|
563 |
+
lines.append(
|
564 |
+
" {:<21} | {} | {} | {} | {} ".format(
|
565 |
+
submetric_name,
|
566 |
+
formatter(current, current_prefval),
|
567 |
+
formatter(peak, peak_prefval),
|
568 |
+
formatter(allocated, allocated_prefval),
|
569 |
+
formatter(freed, freed_prefval),
|
570 |
+
),
|
571 |
+
)
|
572 |
+
|
573 |
+
metrics_to_display = [
|
574 |
+
("oversize_allocations", "Oversize allocations", _format_count),
|
575 |
+
("oversize_segments", "Oversize GPU segments", _format_count),
|
576 |
+
]
|
577 |
+
|
578 |
+
for metric_key, metric_name, formatter in metrics_to_display:
|
579 |
+
lines.append("-" * 75)
|
580 |
+
|
581 |
+
prefix = metric_key + "."
|
582 |
+
|
583 |
+
current = stats[prefix + "current"]
|
584 |
+
peak = stats[prefix + "peak"]
|
585 |
+
allocated = stats[prefix + "allocated"]
|
586 |
+
freed = stats[prefix + "freed"]
|
587 |
+
|
588 |
+
lines.append(
|
589 |
+
" {:<21} | {} | {} | {} | {} ".format(
|
590 |
+
metric_name,
|
591 |
+
formatter(current, current),
|
592 |
+
formatter(peak, peak),
|
593 |
+
formatter(allocated, allocated),
|
594 |
+
formatter(freed, freed),
|
595 |
+
),
|
596 |
+
)
|
597 |
+
|
598 |
+
lines.append("=" * 75)
|
599 |
+
|
600 |
+
fmt_dict = {"_": "", "device": device}
|
601 |
+
for k, v in stats.items():
|
602 |
+
fmt_dict[k.replace(".", "-")] = v
|
603 |
+
return "|" + "|\n|".join(lines).format(**fmt_dict) + "|\n"
|
604 |
+
|
605 |
+
|
606 |
+
def list_gpu_processes(device: Union[Device, int] = None) -> str:
|
607 |
+
r"""Return a human-readable printout of the running processes and their GPU memory use for a given device.
|
608 |
+
|
609 |
+
This can be useful to display periodically during training, or when
|
610 |
+
handling out-of-memory exceptions.
|
611 |
+
|
612 |
+
Args:
|
613 |
+
device (torch.device or int, optional): selected device. Returns
|
614 |
+
printout for the current device, given by :func:`~torch.cuda.current_device`,
|
615 |
+
if :attr:`device` is ``None`` (default).
|
616 |
+
"""
|
617 |
+
try:
|
618 |
+
import pynvml # type: ignore[import]
|
619 |
+
except ModuleNotFoundError:
|
620 |
+
return "pynvml module not found, please install pynvml"
|
621 |
+
from pynvml import NVMLError_DriverNotLoaded
|
622 |
+
|
623 |
+
try:
|
624 |
+
pynvml.nvmlInit()
|
625 |
+
except NVMLError_DriverNotLoaded:
|
626 |
+
return "cuda driver can't be loaded, is cuda enabled?"
|
627 |
+
device = _get_nvml_device_index(device)
|
628 |
+
handle = pynvml.nvmlDeviceGetHandleByIndex(device)
|
629 |
+
procs = pynvml.nvmlDeviceGetComputeRunningProcesses(handle)
|
630 |
+
lines = []
|
631 |
+
lines.append(f"GPU:{device}")
|
632 |
+
if len(procs) == 0:
|
633 |
+
lines.append("no processes are running")
|
634 |
+
for p in procs:
|
635 |
+
mem = p.usedGpuMemory / (1024 * 1024)
|
636 |
+
lines.append(f"process {p.pid:>10d} uses {mem:>12.3f} MB GPU memory")
|
637 |
+
return "\n".join(lines)
|
638 |
+
|
639 |
+
|
640 |
+
def mem_get_info(device: Union[Device, int] = None) -> Tuple[int, int]:
|
641 |
+
r"""Return the global free and total GPU memory for a given device using cudaMemGetInfo.
|
642 |
+
|
643 |
+
Args:
|
644 |
+
device (torch.device or int, optional): selected device. Returns
|
645 |
+
statistic for the current device, given by :func:`~torch.cuda.current_device`,
|
646 |
+
if :attr:`device` is ``None`` (default).
|
647 |
+
|
648 |
+
.. note::
|
649 |
+
See :ref:`cuda-memory-management` for more
|
650 |
+
details about GPU memory management.
|
651 |
+
"""
|
652 |
+
if device is None:
|
653 |
+
device = torch.cuda.current_device()
|
654 |
+
device = _get_device_index(device)
|
655 |
+
return torch.cuda.cudart().cudaMemGetInfo(device)
|
656 |
+
|
657 |
+
|
658 |
+
def _record_memory_history_legacy(
|
659 |
+
enabled: bool,
|
660 |
+
record_context=True,
|
661 |
+
trace_alloc_max_entries=1,
|
662 |
+
trace_alloc_record_context=False,
|
663 |
+
device: Union[Device, int] = None,
|
664 |
+
record_context_cpp=False,
|
665 |
+
):
|
666 |
+
_C._cuda_record_memory_history_legacy(
|
667 |
+
enabled,
|
668 |
+
record_context,
|
669 |
+
trace_alloc_max_entries,
|
670 |
+
trace_alloc_record_context,
|
671 |
+
record_context_cpp,
|
672 |
+
)
|
673 |
+
|
674 |
+
|
675 |
+
def _record_memory_history(enabled="all", *args, **kwargs):
|
676 |
+
"""Enable recording of stack traces associated with memory
|
677 |
+
allocations, so you can tell what allocated any piece of memory in
|
678 |
+
:func:`torch.cuda.memory._snapshot()`.
|
679 |
+
|
680 |
+
In addition too keeping stack traces with each current allocation and free,
|
681 |
+
this will also enable recording of a history of all alloc/free events.
|
682 |
+
|
683 |
+
Use :func:`torch.cuda.memory._snapshot()` to retrieve this information,
|
684 |
+
and the tools in `_memory_viz.py` to visualize snapshots.
|
685 |
+
|
686 |
+
The Python trace collection is fast (2us per trace), so you may consider
|
687 |
+
enabling this on production jobs if you anticipate ever having to debug
|
688 |
+
memory issues.
|
689 |
+
|
690 |
+
C++ trace collection is also fast (~50ns/frame), which for many typical programs
|
691 |
+
works out to ~2us per trace, but can vary depending on stack depth.
|
692 |
+
|
693 |
+
Args:
|
694 |
+
enabled (Literal[None, "state", "all"], optional):
|
695 |
+
`None`, disable recording memory history.
|
696 |
+
`"state"`, keep information for currenly allocated memory.
|
697 |
+
`"all"`, additionally keep a history of all alloc/free calls.
|
698 |
+
Defaults to "all".
|
699 |
+
context (Literal[None, "state", "alloc", "all"], optional):
|
700 |
+
`None`, Do not record any tracebacks.
|
701 |
+
`"state"`, Record tracebacks for currently allocated memory.
|
702 |
+
`"alloc"`, additionally keep tracebacks for alloc calls.
|
703 |
+
`"all"`, additionally keep tracebacks for free calls.
|
704 |
+
Defaults to "all".
|
705 |
+
stacks (Literal["python", "all"], optional):
|
706 |
+
`"python"`, include Python, TorchScript, and inductor frames in tracebacks
|
707 |
+
`"all"`, additionally include C++ frames
|
708 |
+
Defaults to "all".
|
709 |
+
max_entries (int, optional): Keep a maximum of `max_entries`
|
710 |
+
alloc/free events in the recorded history recorded.
|
711 |
+
"""
|
712 |
+
if isinstance(enabled, bool):
|
713 |
+
return _record_memory_history_legacy(enabled, *args, **kwargs)
|
714 |
+
else:
|
715 |
+
return _record_memory_history_impl(enabled, *args, **kwargs)
|
716 |
+
|
717 |
+
|
718 |
+
def _record_memory_history_impl(
|
719 |
+
enabled: Optional[str] = "all",
|
720 |
+
context: Optional[str] = "all",
|
721 |
+
stacks: str = "all",
|
722 |
+
max_entries: int = sys.maxsize,
|
723 |
+
device: Union[Device, int] = None,
|
724 |
+
):
|
725 |
+
_C._cuda_record_memory_history(enabled, context, stacks, max_entries)
|
726 |
+
|
727 |
+
|
728 |
+
_record_memory_history.__signature__ = signature(_record_memory_history_impl) # type: ignore[attr-defined]
|
729 |
+
|
730 |
+
|
731 |
+
def _snapshot(device: Union[Device, int] = None):
|
732 |
+
"""Save a snapshot of CUDA memory state at the time it was called.
|
733 |
+
|
734 |
+
The state is represented as a dictionary with the following structure.
|
735 |
+
|
736 |
+
.. code-block:: python
|
737 |
+
|
738 |
+
class Snapshot(TypedDict):
|
739 |
+
segments : List[Segment]
|
740 |
+
device_traces: List[List[TraceEntry]]
|
741 |
+
|
742 |
+
class Segment(TypedDict):
|
743 |
+
# Segments are memory returned from a cudaMalloc call.
|
744 |
+
# The size of reserved memory is the sum of all Segments.
|
745 |
+
# Segments are cached and reused for future allocations.
|
746 |
+
# If the reuse is smaller than the segment, the segment
|
747 |
+
# is split into more then one Block.
|
748 |
+
# empty_cache() frees Segments that are entirely inactive.
|
749 |
+
address: int
|
750 |
+
total_size: int # cudaMalloc'd size of segment
|
751 |
+
stream: int
|
752 |
+
segment_type: Literal['small', 'large'] # 'large' (>1MB)
|
753 |
+
allocated_size: int # size of memory in use
|
754 |
+
active_size: int # size of memory in use or in active_awaiting_free state
|
755 |
+
blocks : List[Block]
|
756 |
+
|
757 |
+
class Block(TypedDict):
|
758 |
+
# A piece of memory returned from the allocator, or
|
759 |
+
# current cached but inactive.
|
760 |
+
size: int
|
761 |
+
requested_size: int # size requested during malloc, may be smaller than
|
762 |
+
# size due to rounding
|
763 |
+
address: int
|
764 |
+
state: Literal['active_allocated', # used by a tensor
|
765 |
+
'active_awaiting_free', # waiting for another stream to finish using
|
766 |
+
# this, then it will become free
|
767 |
+
'inactive',] # free for reuse
|
768 |
+
frames: List[Frame] # stack trace from where the allocation occurred
|
769 |
+
|
770 |
+
class Frame(TypedDict):
|
771 |
+
filename: str
|
772 |
+
line: int
|
773 |
+
name: str
|
774 |
+
|
775 |
+
class TraceEntry(TypedDict):
|
776 |
+
# When `torch.cuda.memory._record_memory_history()` is enabled,
|
777 |
+
# the snapshot will contain TraceEntry objects that record each
|
778 |
+
# action the allocator took.
|
779 |
+
action: Literal[
|
780 |
+
'alloc' # memory allocated
|
781 |
+
'free_requested', # the allocated received a call to free memory
|
782 |
+
'free_completed', # the memory that was requested to be freed is now
|
783 |
+
# able to be used in future allocation calls
|
784 |
+
'segment_alloc', # the caching allocator ask cudaMalloc for more memory
|
785 |
+
# and added it as a segment in its cache
|
786 |
+
'segment_free', # the caching allocator called cudaFree to return memory
|
787 |
+
# to cuda possibly trying free up memory to
|
788 |
+
# allocate more segments or because empty_caches was called
|
789 |
+
'oom', # the allocator threw an OOM exception. 'size' is
|
790 |
+
# the requested number of bytes that did not succeed
|
791 |
+
'snapshot' # the allocator generated a memory snapshot
|
792 |
+
# useful to coorelate a previously taken
|
793 |
+
# snapshot with this trace
|
794 |
+
]
|
795 |
+
addr: int # not present for OOM
|
796 |
+
frames: List[Frame]
|
797 |
+
size: int
|
798 |
+
stream: int
|
799 |
+
device_free: int # only present for OOM, the amount of
|
800 |
+
# memory cuda still reports to be free
|
801 |
+
|
802 |
+
Returns:
|
803 |
+
The Snapshot dictionary object
|
804 |
+
"""
|
805 |
+
return _C._cuda_memorySnapshot()
|
806 |
+
|
807 |
+
|
808 |
+
def _dump_snapshot(filename="dump_snapshot.pickle"):
|
809 |
+
"""
|
810 |
+
Save a pickled version of the `torch.memory._snapshot()` dictionary to a file.
|
811 |
+
|
812 |
+
This file can be opened by the interactive snapshot viewer at pytorch.org/memory_viz
|
813 |
+
|
814 |
+
Args:
|
815 |
+
filename (str, optional): Name of the file to create. Defaults to "dump_snapshot.pickle".
|
816 |
+
"""
|
817 |
+
s = _snapshot()
|
818 |
+
with open(filename, "wb") as f:
|
819 |
+
pickle.dump(s, f)
|
820 |
+
|
821 |
+
|
822 |
+
def _save_segment_usage(filename="output.svg", snapshot=None):
|
823 |
+
if snapshot is None:
|
824 |
+
snapshot = _snapshot()
|
825 |
+
with open(filename, "w") as f:
|
826 |
+
f.write(_segments(snapshot))
|
827 |
+
|
828 |
+
|
829 |
+
def _save_memory_usage(filename="output.svg", snapshot=None):
|
830 |
+
if snapshot is None:
|
831 |
+
snapshot = _snapshot()
|
832 |
+
with open(filename, "w") as f:
|
833 |
+
f.write(_memory(snapshot))
|
834 |
+
|
835 |
+
|
836 |
+
def _set_allocator_settings(env: str):
|
837 |
+
return torch._C._cuda_cudaCachingAllocator_set_allocator_settings(env)
|
838 |
+
|
839 |
+
|
840 |
+
def get_allocator_backend() -> str:
|
841 |
+
r"""Return a string describing the active allocator backend as set by
|
842 |
+
``PYTORCH_CUDA_ALLOC_CONF``. Currently available backends are
|
843 |
+
``native`` (PyTorch's native caching allocator) and `cudaMallocAsync``
|
844 |
+
(CUDA's built-in asynchronous allocator).
|
845 |
+
|
846 |
+
.. note::
|
847 |
+
See :ref:`cuda-memory-management` for details on choosing the allocator backend.
|
848 |
+
"""
|
849 |
+
return torch._C._cuda_getAllocatorBackend()
|
850 |
+
|
851 |
+
|
852 |
+
class _CUDAAllocator:
|
853 |
+
r"""Wrapper over internal CUDA memory allocators."""
|
854 |
+
|
855 |
+
def __init__(self, allocator: torch._C._cuda_CUDAAllocator):
|
856 |
+
self._allocator = allocator
|
857 |
+
|
858 |
+
def allocator(self):
|
859 |
+
return self._allocator
|
860 |
+
|
861 |
+
|
862 |
+
class CUDAPluggableAllocator(_CUDAAllocator):
|
863 |
+
r"""CUDA memory allocator loaded from a so file."""
|
864 |
+
|
865 |
+
def __init__(self, path_to_so_file: str, alloc_fn_name: str, free_fn_name: str):
|
866 |
+
r"""Memory allocators are compiled in .so files and loaded dynamically using ctypes.
|
867 |
+
|
868 |
+
To change the active allocator use the :func:`torch.memory.cuda.change_current_allocator` function.
|
869 |
+
|
870 |
+
Args:
|
871 |
+
path_to_so_file(str): Path in the filesystem to the `.so` file containing
|
872 |
+
the allocator functions
|
873 |
+
alloc_fn_name(str): Name of the function to perform the memory allocation
|
874 |
+
in the so file. The signature must be:
|
875 |
+
void* alloc_fn_name(ssize_t size, int device, cudaStream_t stream);
|
876 |
+
free_fn_name(str): Name of the function to perform the memory release
|
877 |
+
in the so file. The signature must be:
|
878 |
+
void free_fn_name(void* ptr, size_t size, cudaStream_t stream);
|
879 |
+
|
880 |
+
.. warning::
|
881 |
+
This is currently supported only in unix OSs
|
882 |
+
|
883 |
+
.. note::
|
884 |
+
See :ref:`cuda-memory-management` for details on creating and using a custom allocator
|
885 |
+
"""
|
886 |
+
allocator = ctypes.CDLL(path_to_so_file)
|
887 |
+
alloc_fn = ctypes.cast(getattr(allocator, alloc_fn_name), ctypes.c_void_p).value
|
888 |
+
free_fn = ctypes.cast(getattr(allocator, free_fn_name), ctypes.c_void_p).value
|
889 |
+
assert alloc_fn is not None
|
890 |
+
assert free_fn is not None
|
891 |
+
self._allocator = torch._C._cuda_customAllocator(alloc_fn, free_fn)
|
892 |
+
|
893 |
+
|
894 |
+
def change_current_allocator(allocator: _CUDAAllocator) -> None:
|
895 |
+
r"""Change the currently used memory allocator to be the one provided.
|
896 |
+
|
897 |
+
If the current allocator has already been used/initialized, this function will error.
|
898 |
+
|
899 |
+
|
900 |
+
Args:
|
901 |
+
allocator (torch.cuda.memory._CUDAAllocator): allocator to be set as the active one.
|
902 |
+
.. note::
|
903 |
+
See :ref:`cuda-memory-management` for details on creating and using a custom allocator
|
904 |
+
"""
|
905 |
+
torch._C._cuda_changeCurrentAllocator(allocator.allocator())
|
906 |
+
|
907 |
+
|
908 |
+
def _get_current_allocator() -> _CUDAAllocator:
|
909 |
+
r"""Return the allocator being currently used.
|
910 |
+
|
911 |
+
.. note::
|
912 |
+
See :ref:`cuda-memory-management` for details on creating and using a custom allocator
|
913 |
+
"""
|
914 |
+
return _CUDAAllocator(torch._C._cuda_getAllocator())
|
venv/lib/python3.10/site-packages/torch/cuda/profiler.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import tempfile
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from . import check_error, cudart
|
6 |
+
|
7 |
+
__all__ = ["init", "start", "stop", "profile"]
|
8 |
+
|
9 |
+
DEFAULT_FLAGS = [
|
10 |
+
"gpustarttimestamp",
|
11 |
+
"gpuendtimestamp",
|
12 |
+
"gridsize3d",
|
13 |
+
"threadblocksize",
|
14 |
+
"streamid",
|
15 |
+
"enableonstart 0",
|
16 |
+
"conckerneltrace",
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
def init(output_file, flags=None, output_mode="key_value"):
|
21 |
+
rt = cudart()
|
22 |
+
if not hasattr(rt, "cudaOutputMode"):
|
23 |
+
raise AssertionError("HIP does not support profiler initialization!")
|
24 |
+
if (
|
25 |
+
hasattr(torch.version, "cuda")
|
26 |
+
and torch.version.cuda is not None
|
27 |
+
and int(torch.version.cuda.split(".")[0]) >= 12
|
28 |
+
):
|
29 |
+
# Check https://github.com/pytorch/pytorch/pull/91118
|
30 |
+
# cudaProfilerInitialize is no longer needed after CUDA 12
|
31 |
+
raise AssertionError("CUDA12+ does not need profiler initialization!")
|
32 |
+
flags = DEFAULT_FLAGS if flags is None else flags
|
33 |
+
if output_mode == "key_value":
|
34 |
+
output_mode_enum = rt.cudaOutputMode.KeyValuePair
|
35 |
+
elif output_mode == "csv":
|
36 |
+
output_mode_enum = rt.cudaOutputMode.CSV
|
37 |
+
else:
|
38 |
+
raise RuntimeError(
|
39 |
+
"supported CUDA profiler output modes are: key_value and csv"
|
40 |
+
)
|
41 |
+
with tempfile.NamedTemporaryFile(delete=True) as f:
|
42 |
+
f.write(b"\n".join(f.encode("ascii") for f in flags))
|
43 |
+
f.flush()
|
44 |
+
check_error(rt.cudaProfilerInitialize(f.name, output_file, output_mode_enum))
|
45 |
+
|
46 |
+
|
47 |
+
def start():
|
48 |
+
check_error(cudart().cudaProfilerStart())
|
49 |
+
|
50 |
+
|
51 |
+
def stop():
|
52 |
+
check_error(cudart().cudaProfilerStop())
|
53 |
+
|
54 |
+
|
55 |
+
@contextlib.contextmanager
|
56 |
+
def profile():
|
57 |
+
try:
|
58 |
+
start()
|
59 |
+
yield
|
60 |
+
finally:
|
61 |
+
stop()
|
venv/lib/python3.10/site-packages/torch/include/clog.h
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
* All rights reserved.
|
4 |
+
*
|
5 |
+
* This source code is licensed under the BSD-style license found in the
|
6 |
+
* LICENSE file in the root directory of this source tree.
|
7 |
+
*/
|
8 |
+
|
9 |
+
#pragma once
|
10 |
+
|
11 |
+
#include <stdarg.h>
|
12 |
+
#include <stdlib.h>
|
13 |
+
#include <inttypes.h>
|
14 |
+
|
15 |
+
#define CLOG_NONE 0
|
16 |
+
#define CLOG_FATAL 1
|
17 |
+
#define CLOG_ERROR 2
|
18 |
+
#define CLOG_WARNING 3
|
19 |
+
#define CLOG_INFO 4
|
20 |
+
#define CLOG_DEBUG 5
|
21 |
+
|
22 |
+
#ifndef CLOG_VISIBILITY
|
23 |
+
#if defined(__ELF__)
|
24 |
+
#define CLOG_VISIBILITY __attribute__((__visibility__("internal")))
|
25 |
+
#elif defined(__MACH__)
|
26 |
+
#define CLOG_VISIBILITY __attribute__((__visibility__("hidden")))
|
27 |
+
#else
|
28 |
+
#define CLOG_VISIBILITY
|
29 |
+
#endif
|
30 |
+
#endif
|
31 |
+
|
32 |
+
#ifndef CLOG_ARGUMENTS_FORMAT
|
33 |
+
#if defined(__GNUC__)
|
34 |
+
#define CLOG_ARGUMENTS_FORMAT __attribute__((__format__(__printf__, 1, 2)))
|
35 |
+
#else
|
36 |
+
#define CLOG_ARGUMENTS_FORMAT
|
37 |
+
#endif
|
38 |
+
#endif
|
39 |
+
|
40 |
+
#ifdef __cplusplus
|
41 |
+
extern "C" {
|
42 |
+
#endif
|
43 |
+
|
44 |
+
CLOG_VISIBILITY void clog_vlog_debug(const char* module, const char* format, va_list args);
|
45 |
+
CLOG_VISIBILITY void clog_vlog_info(const char* module, const char* format, va_list args);
|
46 |
+
CLOG_VISIBILITY void clog_vlog_warning(const char* module, const char* format, va_list args);
|
47 |
+
CLOG_VISIBILITY void clog_vlog_error(const char* module, const char* format, va_list args);
|
48 |
+
CLOG_VISIBILITY void clog_vlog_fatal(const char* module, const char* format, va_list args);
|
49 |
+
|
50 |
+
#define CLOG_DEFINE_LOG_DEBUG(log_debug_function_name, module, level) \
|
51 |
+
CLOG_ARGUMENTS_FORMAT \
|
52 |
+
inline static void log_debug_function_name(const char* format, ...) { \
|
53 |
+
if (level >= CLOG_DEBUG) { \
|
54 |
+
va_list args; \
|
55 |
+
va_start(args, format); \
|
56 |
+
clog_vlog_debug(module, format, args); \
|
57 |
+
va_end(args); \
|
58 |
+
} \
|
59 |
+
}
|
60 |
+
|
61 |
+
#define CLOG_DEFINE_LOG_INFO(log_info_function_name, module, level) \
|
62 |
+
CLOG_ARGUMENTS_FORMAT \
|
63 |
+
inline static void log_info_function_name(const char* format, ...) { \
|
64 |
+
if (level >= CLOG_INFO) { \
|
65 |
+
va_list args; \
|
66 |
+
va_start(args, format); \
|
67 |
+
clog_vlog_info(module, format, args); \
|
68 |
+
va_end(args); \
|
69 |
+
} \
|
70 |
+
}
|
71 |
+
|
72 |
+
#define CLOG_DEFINE_LOG_WARNING(log_warning_function_name, module, level) \
|
73 |
+
CLOG_ARGUMENTS_FORMAT \
|
74 |
+
inline static void log_warning_function_name(const char* format, ...) { \
|
75 |
+
if (level >= CLOG_WARNING) { \
|
76 |
+
va_list args; \
|
77 |
+
va_start(args, format); \
|
78 |
+
clog_vlog_warning(module, format, args); \
|
79 |
+
va_end(args); \
|
80 |
+
} \
|
81 |
+
}
|
82 |
+
|
83 |
+
#define CLOG_DEFINE_LOG_ERROR(log_error_function_name, module, level) \
|
84 |
+
CLOG_ARGUMENTS_FORMAT \
|
85 |
+
inline static void log_error_function_name(const char* format, ...) { \
|
86 |
+
if (level >= CLOG_ERROR) { \
|
87 |
+
va_list args; \
|
88 |
+
va_start(args, format); \
|
89 |
+
clog_vlog_error(module, format, args); \
|
90 |
+
va_end(args); \
|
91 |
+
} \
|
92 |
+
}
|
93 |
+
|
94 |
+
#define CLOG_DEFINE_LOG_FATAL(log_fatal_function_name, module, level) \
|
95 |
+
CLOG_ARGUMENTS_FORMAT \
|
96 |
+
inline static void log_fatal_function_name(const char* format, ...) { \
|
97 |
+
if (level >= CLOG_FATAL) { \
|
98 |
+
va_list args; \
|
99 |
+
va_start(args, format); \
|
100 |
+
clog_vlog_fatal(module, format, args); \
|
101 |
+
va_end(args); \
|
102 |
+
} \
|
103 |
+
abort(); \
|
104 |
+
}
|
105 |
+
|
106 |
+
#ifdef __cplusplus
|
107 |
+
} /* extern "C" */
|
108 |
+
#endif
|
venv/lib/python3.10/site-packages/torch/include/cpuinfo.h
ADDED
@@ -0,0 +1,1956 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#ifndef CPUINFO_H
|
3 |
+
#define CPUINFO_H
|
4 |
+
|
5 |
+
#ifndef __cplusplus
|
6 |
+
#include <stdbool.h>
|
7 |
+
#endif
|
8 |
+
|
9 |
+
#ifdef __APPLE__
|
10 |
+
#include <TargetConditionals.h>
|
11 |
+
#endif
|
12 |
+
|
13 |
+
#include <stdint.h>
|
14 |
+
|
15 |
+
/* Identify architecture and define corresponding macro */
|
16 |
+
|
17 |
+
#if defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__) || defined(_M_IX86)
|
18 |
+
#define CPUINFO_ARCH_X86 1
|
19 |
+
#endif
|
20 |
+
|
21 |
+
#if defined(__x86_64__) || defined(__x86_64) || defined(_M_X64) || defined(_M_AMD64)
|
22 |
+
#define CPUINFO_ARCH_X86_64 1
|
23 |
+
#endif
|
24 |
+
|
25 |
+
#if defined(__arm__) || defined(_M_ARM)
|
26 |
+
#define CPUINFO_ARCH_ARM 1
|
27 |
+
#endif
|
28 |
+
|
29 |
+
#if defined(__aarch64__) || defined(_M_ARM64)
|
30 |
+
#define CPUINFO_ARCH_ARM64 1
|
31 |
+
#endif
|
32 |
+
|
33 |
+
#if defined(__PPC64__) || defined(__powerpc64__) || defined(_ARCH_PPC64)
|
34 |
+
#define CPUINFO_ARCH_PPC64 1
|
35 |
+
#endif
|
36 |
+
|
37 |
+
#if defined(__asmjs__)
|
38 |
+
#define CPUINFO_ARCH_ASMJS 1
|
39 |
+
#endif
|
40 |
+
|
41 |
+
#if defined(__wasm__)
|
42 |
+
#if defined(__wasm_simd128__)
|
43 |
+
#define CPUINFO_ARCH_WASMSIMD 1
|
44 |
+
#else
|
45 |
+
#define CPUINFO_ARCH_WASM 1
|
46 |
+
#endif
|
47 |
+
#endif
|
48 |
+
|
49 |
+
/* Define other architecture-specific macros as 0 */
|
50 |
+
|
51 |
+
#ifndef CPUINFO_ARCH_X86
|
52 |
+
#define CPUINFO_ARCH_X86 0
|
53 |
+
#endif
|
54 |
+
|
55 |
+
#ifndef CPUINFO_ARCH_X86_64
|
56 |
+
#define CPUINFO_ARCH_X86_64 0
|
57 |
+
#endif
|
58 |
+
|
59 |
+
#ifndef CPUINFO_ARCH_ARM
|
60 |
+
#define CPUINFO_ARCH_ARM 0
|
61 |
+
#endif
|
62 |
+
|
63 |
+
#ifndef CPUINFO_ARCH_ARM64
|
64 |
+
#define CPUINFO_ARCH_ARM64 0
|
65 |
+
#endif
|
66 |
+
|
67 |
+
#ifndef CPUINFO_ARCH_PPC64
|
68 |
+
#define CPUINFO_ARCH_PPC64 0
|
69 |
+
#endif
|
70 |
+
|
71 |
+
#ifndef CPUINFO_ARCH_ASMJS
|
72 |
+
#define CPUINFO_ARCH_ASMJS 0
|
73 |
+
#endif
|
74 |
+
|
75 |
+
#ifndef CPUINFO_ARCH_WASM
|
76 |
+
#define CPUINFO_ARCH_WASM 0
|
77 |
+
#endif
|
78 |
+
|
79 |
+
#ifndef CPUINFO_ARCH_WASMSIMD
|
80 |
+
#define CPUINFO_ARCH_WASMSIMD 0
|
81 |
+
#endif
|
82 |
+
|
83 |
+
#if CPUINFO_ARCH_X86 && defined(_MSC_VER)
|
84 |
+
#define CPUINFO_ABI __cdecl
|
85 |
+
#elif CPUINFO_ARCH_X86 && defined(__GNUC__)
|
86 |
+
#define CPUINFO_ABI __attribute__((__cdecl__))
|
87 |
+
#else
|
88 |
+
#define CPUINFO_ABI
|
89 |
+
#endif
|
90 |
+
|
91 |
+
#define CPUINFO_CACHE_UNIFIED 0x00000001
|
92 |
+
#define CPUINFO_CACHE_INCLUSIVE 0x00000002
|
93 |
+
#define CPUINFO_CACHE_COMPLEX_INDEXING 0x00000004
|
94 |
+
|
95 |
+
struct cpuinfo_cache {
|
96 |
+
/** Cache size in bytes */
|
97 |
+
uint32_t size;
|
98 |
+
/** Number of ways of associativity */
|
99 |
+
uint32_t associativity;
|
100 |
+
/** Number of sets */
|
101 |
+
uint32_t sets;
|
102 |
+
/** Number of partitions */
|
103 |
+
uint32_t partitions;
|
104 |
+
/** Line size in bytes */
|
105 |
+
uint32_t line_size;
|
106 |
+
/**
|
107 |
+
* Binary characteristics of the cache (unified cache, inclusive cache, cache with complex indexing).
|
108 |
+
*
|
109 |
+
* @see CPUINFO_CACHE_UNIFIED, CPUINFO_CACHE_INCLUSIVE, CPUINFO_CACHE_COMPLEX_INDEXING
|
110 |
+
*/
|
111 |
+
uint32_t flags;
|
112 |
+
/** Index of the first logical processor that shares this cache */
|
113 |
+
uint32_t processor_start;
|
114 |
+
/** Number of logical processors that share this cache */
|
115 |
+
uint32_t processor_count;
|
116 |
+
};
|
117 |
+
|
118 |
+
struct cpuinfo_trace_cache {
|
119 |
+
uint32_t uops;
|
120 |
+
uint32_t associativity;
|
121 |
+
};
|
122 |
+
|
123 |
+
#define CPUINFO_PAGE_SIZE_4KB 0x1000
|
124 |
+
#define CPUINFO_PAGE_SIZE_1MB 0x100000
|
125 |
+
#define CPUINFO_PAGE_SIZE_2MB 0x200000
|
126 |
+
#define CPUINFO_PAGE_SIZE_4MB 0x400000
|
127 |
+
#define CPUINFO_PAGE_SIZE_16MB 0x1000000
|
128 |
+
#define CPUINFO_PAGE_SIZE_1GB 0x40000000
|
129 |
+
|
130 |
+
struct cpuinfo_tlb {
|
131 |
+
uint32_t entries;
|
132 |
+
uint32_t associativity;
|
133 |
+
uint64_t pages;
|
134 |
+
};
|
135 |
+
|
136 |
+
/** Vendor of processor core design */
|
137 |
+
enum cpuinfo_vendor {
|
138 |
+
/** Processor vendor is not known to the library, or the library failed to get vendor information from the OS. */
|
139 |
+
cpuinfo_vendor_unknown = 0,
|
140 |
+
|
141 |
+
/* Active vendors of modern CPUs */
|
142 |
+
|
143 |
+
/**
|
144 |
+
* Intel Corporation. Vendor of x86, x86-64, IA64, and ARM processor microarchitectures.
|
145 |
+
*
|
146 |
+
* Sold its ARM design subsidiary in 2006. The last ARM processor design was released in 2004.
|
147 |
+
*/
|
148 |
+
cpuinfo_vendor_intel = 1,
|
149 |
+
/** Advanced Micro Devices, Inc. Vendor of x86 and x86-64 processor microarchitectures. */
|
150 |
+
cpuinfo_vendor_amd = 2,
|
151 |
+
/** ARM Holdings plc. Vendor of ARM and ARM64 processor microarchitectures. */
|
152 |
+
cpuinfo_vendor_arm = 3,
|
153 |
+
/** Qualcomm Incorporated. Vendor of ARM and ARM64 processor microarchitectures. */
|
154 |
+
cpuinfo_vendor_qualcomm = 4,
|
155 |
+
/** Apple Inc. Vendor of ARM and ARM64 processor microarchitectures. */
|
156 |
+
cpuinfo_vendor_apple = 5,
|
157 |
+
/** Samsung Electronics Co., Ltd. Vendir if ARM64 processor microarchitectures. */
|
158 |
+
cpuinfo_vendor_samsung = 6,
|
159 |
+
/** Nvidia Corporation. Vendor of ARM64-compatible processor microarchitectures. */
|
160 |
+
cpuinfo_vendor_nvidia = 7,
|
161 |
+
/** MIPS Technologies, Inc. Vendor of MIPS processor microarchitectures. */
|
162 |
+
cpuinfo_vendor_mips = 8,
|
163 |
+
/** International Business Machines Corporation. Vendor of PowerPC processor microarchitectures. */
|
164 |
+
cpuinfo_vendor_ibm = 9,
|
165 |
+
/** Ingenic Semiconductor. Vendor of MIPS processor microarchitectures. */
|
166 |
+
cpuinfo_vendor_ingenic = 10,
|
167 |
+
/**
|
168 |
+
* VIA Technologies, Inc. Vendor of x86 and x86-64 processor microarchitectures.
|
169 |
+
*
|
170 |
+
* Processors are designed by Centaur Technology, a subsidiary of VIA Technologies.
|
171 |
+
*/
|
172 |
+
cpuinfo_vendor_via = 11,
|
173 |
+
/** Cavium, Inc. Vendor of ARM64 processor microarchitectures. */
|
174 |
+
cpuinfo_vendor_cavium = 12,
|
175 |
+
/** Broadcom, Inc. Vendor of ARM processor microarchitectures. */
|
176 |
+
cpuinfo_vendor_broadcom = 13,
|
177 |
+
/** Applied Micro Circuits Corporation (APM). Vendor of ARM64 processor microarchitectures. */
|
178 |
+
cpuinfo_vendor_apm = 14,
|
179 |
+
/**
|
180 |
+
* Huawei Technologies Co., Ltd. Vendor of ARM64 processor microarchitectures.
|
181 |
+
*
|
182 |
+
* Processors are designed by HiSilicon, a subsidiary of Huawei.
|
183 |
+
*/
|
184 |
+
cpuinfo_vendor_huawei = 15,
|
185 |
+
/**
|
186 |
+
* Hygon (Chengdu Haiguang Integrated Circuit Design Co., Ltd), Vendor of x86-64 processor microarchitectures.
|
187 |
+
*
|
188 |
+
* Processors are variants of AMD cores.
|
189 |
+
*/
|
190 |
+
cpuinfo_vendor_hygon = 16,
|
191 |
+
|
192 |
+
/* Active vendors of embedded CPUs */
|
193 |
+
|
194 |
+
/** Texas Instruments Inc. Vendor of ARM processor microarchitectures. */
|
195 |
+
cpuinfo_vendor_texas_instruments = 30,
|
196 |
+
/** Marvell Technology Group Ltd. Vendor of ARM processor microarchitectures. */
|
197 |
+
cpuinfo_vendor_marvell = 31,
|
198 |
+
/** RDC Semiconductor Co., Ltd. Vendor of x86 processor microarchitectures. */
|
199 |
+
cpuinfo_vendor_rdc = 32,
|
200 |
+
/** DM&P Electronics Inc. Vendor of x86 processor microarchitectures. */
|
201 |
+
cpuinfo_vendor_dmp = 33,
|
202 |
+
/** Motorola, Inc. Vendor of PowerPC and ARM processor microarchitectures. */
|
203 |
+
cpuinfo_vendor_motorola = 34,
|
204 |
+
|
205 |
+
/* Defunct CPU vendors */
|
206 |
+
|
207 |
+
/**
|
208 |
+
* Transmeta Corporation. Vendor of x86 processor microarchitectures.
|
209 |
+
*
|
210 |
+
* Now defunct. The last processor design was released in 2004.
|
211 |
+
* Transmeta processors implemented VLIW ISA and used binary translation to execute x86 code.
|
212 |
+
*/
|
213 |
+
cpuinfo_vendor_transmeta = 50,
|
214 |
+
/**
|
215 |
+
* Cyrix Corporation. Vendor of x86 processor microarchitectures.
|
216 |
+
*
|
217 |
+
* Now defunct. The last processor design was released in 1996.
|
218 |
+
*/
|
219 |
+
cpuinfo_vendor_cyrix = 51,
|
220 |
+
/**
|
221 |
+
* Rise Technology. Vendor of x86 processor microarchitectures.
|
222 |
+
*
|
223 |
+
* Now defunct. The last processor design was released in 1999.
|
224 |
+
*/
|
225 |
+
cpuinfo_vendor_rise = 52,
|
226 |
+
/**
|
227 |
+
* National Semiconductor. Vendor of x86 processor microarchitectures.
|
228 |
+
*
|
229 |
+
* Sold its x86 design subsidiary in 1999. The last processor design was released in 1998.
|
230 |
+
*/
|
231 |
+
cpuinfo_vendor_nsc = 53,
|
232 |
+
/**
|
233 |
+
* Silicon Integrated Systems. Vendor of x86 processor microarchitectures.
|
234 |
+
*
|
235 |
+
* Sold its x86 design subsidiary in 2001. The last processor design was released in 2001.
|
236 |
+
*/
|
237 |
+
cpuinfo_vendor_sis = 54,
|
238 |
+
/**
|
239 |
+
* NexGen. Vendor of x86 processor microarchitectures.
|
240 |
+
*
|
241 |
+
* Now defunct. The last processor design was released in 1994.
|
242 |
+
* NexGen designed the first x86 microarchitecture which decomposed x86 instructions into simple microoperations.
|
243 |
+
*/
|
244 |
+
cpuinfo_vendor_nexgen = 55,
|
245 |
+
/**
|
246 |
+
* United Microelectronics Corporation. Vendor of x86 processor microarchitectures.
|
247 |
+
*
|
248 |
+
* Ceased x86 in the early 1990s. The last processor design was released in 1991.
|
249 |
+
* Designed U5C and U5D processors. Both are 486 level.
|
250 |
+
*/
|
251 |
+
cpuinfo_vendor_umc = 56,
|
252 |
+
/**
|
253 |
+
* Digital Equipment Corporation. Vendor of ARM processor microarchitecture.
|
254 |
+
*
|
255 |
+
* Sold its ARM designs in 1997. The last processor design was released in 1997.
|
256 |
+
*/
|
257 |
+
cpuinfo_vendor_dec = 57,
|
258 |
+
};
|
259 |
+
|
260 |
+
/**
|
261 |
+
* Processor microarchitecture
|
262 |
+
*
|
263 |
+
* Processors with different microarchitectures often have different instruction performance characteristics,
|
264 |
+
* and may have dramatically different pipeline organization.
|
265 |
+
*/
|
266 |
+
enum cpuinfo_uarch {
|
267 |
+
/** Microarchitecture is unknown, or the library failed to get information about the microarchitecture from OS */
|
268 |
+
cpuinfo_uarch_unknown = 0,
|
269 |
+
|
270 |
+
/** Pentium and Pentium MMX microarchitecture. */
|
271 |
+
cpuinfo_uarch_p5 = 0x00100100,
|
272 |
+
/** Intel Quark microarchitecture. */
|
273 |
+
cpuinfo_uarch_quark = 0x00100101,
|
274 |
+
|
275 |
+
/** Pentium Pro, Pentium II, and Pentium III. */
|
276 |
+
cpuinfo_uarch_p6 = 0x00100200,
|
277 |
+
/** Pentium M. */
|
278 |
+
cpuinfo_uarch_dothan = 0x00100201,
|
279 |
+
/** Intel Core microarchitecture. */
|
280 |
+
cpuinfo_uarch_yonah = 0x00100202,
|
281 |
+
/** Intel Core 2 microarchitecture on 65 nm process. */
|
282 |
+
cpuinfo_uarch_conroe = 0x00100203,
|
283 |
+
/** Intel Core 2 microarchitecture on 45 nm process. */
|
284 |
+
cpuinfo_uarch_penryn = 0x00100204,
|
285 |
+
/** Intel Nehalem and Westmere microarchitectures (Core i3/i5/i7 1st gen). */
|
286 |
+
cpuinfo_uarch_nehalem = 0x00100205,
|
287 |
+
/** Intel Sandy Bridge microarchitecture (Core i3/i5/i7 2nd gen). */
|
288 |
+
cpuinfo_uarch_sandy_bridge = 0x00100206,
|
289 |
+
/** Intel Ivy Bridge microarchitecture (Core i3/i5/i7 3rd gen). */
|
290 |
+
cpuinfo_uarch_ivy_bridge = 0x00100207,
|
291 |
+
/** Intel Haswell microarchitecture (Core i3/i5/i7 4th gen). */
|
292 |
+
cpuinfo_uarch_haswell = 0x00100208,
|
293 |
+
/** Intel Broadwell microarchitecture. */
|
294 |
+
cpuinfo_uarch_broadwell = 0x00100209,
|
295 |
+
/** Intel Sky Lake microarchitecture (14 nm, including Kaby/Coffee/Whiskey/Amber/Comet/Cascade/Cooper Lake). */
|
296 |
+
cpuinfo_uarch_sky_lake = 0x0010020A,
|
297 |
+
/** DEPRECATED (Intel Kaby Lake microarchitecture). */
|
298 |
+
cpuinfo_uarch_kaby_lake = 0x0010020A,
|
299 |
+
/** Intel Palm Cove microarchitecture (10 nm, Cannon Lake). */
|
300 |
+
cpuinfo_uarch_palm_cove = 0x0010020B,
|
301 |
+
/** Intel Sunny Cove microarchitecture (10 nm, Ice Lake). */
|
302 |
+
cpuinfo_uarch_sunny_cove = 0x0010020C,
|
303 |
+
|
304 |
+
/** Pentium 4 with Willamette, Northwood, or Foster cores. */
|
305 |
+
cpuinfo_uarch_willamette = 0x00100300,
|
306 |
+
/** Pentium 4 with Prescott and later cores. */
|
307 |
+
cpuinfo_uarch_prescott = 0x00100301,
|
308 |
+
|
309 |
+
/** Intel Atom on 45 nm process. */
|
310 |
+
cpuinfo_uarch_bonnell = 0x00100400,
|
311 |
+
/** Intel Atom on 32 nm process. */
|
312 |
+
cpuinfo_uarch_saltwell = 0x00100401,
|
313 |
+
/** Intel Silvermont microarchitecture (22 nm out-of-order Atom). */
|
314 |
+
cpuinfo_uarch_silvermont = 0x00100402,
|
315 |
+
/** Intel Airmont microarchitecture (14 nm out-of-order Atom). */
|
316 |
+
cpuinfo_uarch_airmont = 0x00100403,
|
317 |
+
/** Intel Goldmont microarchitecture (Denverton, Apollo Lake). */
|
318 |
+
cpuinfo_uarch_goldmont = 0x00100404,
|
319 |
+
/** Intel Goldmont Plus microarchitecture (Gemini Lake). */
|
320 |
+
cpuinfo_uarch_goldmont_plus = 0x00100405,
|
321 |
+
|
322 |
+
/** Intel Knights Ferry HPC boards. */
|
323 |
+
cpuinfo_uarch_knights_ferry = 0x00100500,
|
324 |
+
/** Intel Knights Corner HPC boards (aka Xeon Phi). */
|
325 |
+
cpuinfo_uarch_knights_corner = 0x00100501,
|
326 |
+
/** Intel Knights Landing microarchitecture (second-gen MIC). */
|
327 |
+
cpuinfo_uarch_knights_landing = 0x00100502,
|
328 |
+
/** Intel Knights Hill microarchitecture (third-gen MIC). */
|
329 |
+
cpuinfo_uarch_knights_hill = 0x00100503,
|
330 |
+
/** Intel Knights Mill Xeon Phi. */
|
331 |
+
cpuinfo_uarch_knights_mill = 0x00100504,
|
332 |
+
|
333 |
+
/** Intel/Marvell XScale series. */
|
334 |
+
cpuinfo_uarch_xscale = 0x00100600,
|
335 |
+
|
336 |
+
/** AMD K5. */
|
337 |
+
cpuinfo_uarch_k5 = 0x00200100,
|
338 |
+
/** AMD K6 and alike. */
|
339 |
+
cpuinfo_uarch_k6 = 0x00200101,
|
340 |
+
/** AMD Athlon and Duron. */
|
341 |
+
cpuinfo_uarch_k7 = 0x00200102,
|
342 |
+
/** AMD Athlon 64, Opteron 64. */
|
343 |
+
cpuinfo_uarch_k8 = 0x00200103,
|
344 |
+
/** AMD Family 10h (Barcelona, Istambul, Magny-Cours). */
|
345 |
+
cpuinfo_uarch_k10 = 0x00200104,
|
346 |
+
/**
|
347 |
+
* AMD Bulldozer microarchitecture
|
348 |
+
* Zambezi FX-series CPUs, Zurich, Valencia and Interlagos Opteron CPUs.
|
349 |
+
*/
|
350 |
+
cpuinfo_uarch_bulldozer = 0x00200105,
|
351 |
+
/**
|
352 |
+
* AMD Piledriver microarchitecture
|
353 |
+
* Vishera FX-series CPUs, Trinity and Richland APUs, Delhi, Seoul, Abu Dhabi Opteron CPUs.
|
354 |
+
*/
|
355 |
+
cpuinfo_uarch_piledriver = 0x00200106,
|
356 |
+
/** AMD Steamroller microarchitecture (Kaveri APUs). */
|
357 |
+
cpuinfo_uarch_steamroller = 0x00200107,
|
358 |
+
/** AMD Excavator microarchitecture (Carizzo APUs). */
|
359 |
+
cpuinfo_uarch_excavator = 0x00200108,
|
360 |
+
/** AMD Zen microarchitecture (12/14 nm Ryzen and EPYC CPUs). */
|
361 |
+
cpuinfo_uarch_zen = 0x00200109,
|
362 |
+
/** AMD Zen 2 microarchitecture (7 nm Ryzen and EPYC CPUs). */
|
363 |
+
cpuinfo_uarch_zen2 = 0x0020010A,
|
364 |
+
/** AMD Zen 3 microarchitecture. */
|
365 |
+
cpuinfo_uarch_zen3 = 0x0020010B,
|
366 |
+
/** AMD Zen 4 microarchitecture. */
|
367 |
+
cpuinfo_uarch_zen4 = 0x0020010C,
|
368 |
+
|
369 |
+
/** NSC Geode and AMD Geode GX and LX. */
|
370 |
+
cpuinfo_uarch_geode = 0x00200200,
|
371 |
+
/** AMD Bobcat mobile microarchitecture. */
|
372 |
+
cpuinfo_uarch_bobcat = 0x00200201,
|
373 |
+
/** AMD Jaguar mobile microarchitecture. */
|
374 |
+
cpuinfo_uarch_jaguar = 0x00200202,
|
375 |
+
/** AMD Puma mobile microarchitecture. */
|
376 |
+
cpuinfo_uarch_puma = 0x00200203,
|
377 |
+
|
378 |
+
/** ARM7 series. */
|
379 |
+
cpuinfo_uarch_arm7 = 0x00300100,
|
380 |
+
/** ARM9 series. */
|
381 |
+
cpuinfo_uarch_arm9 = 0x00300101,
|
382 |
+
/** ARM 1136, ARM 1156, ARM 1176, or ARM 11MPCore. */
|
383 |
+
cpuinfo_uarch_arm11 = 0x00300102,
|
384 |
+
|
385 |
+
/** ARM Cortex-A5. */
|
386 |
+
cpuinfo_uarch_cortex_a5 = 0x00300205,
|
387 |
+
/** ARM Cortex-A7. */
|
388 |
+
cpuinfo_uarch_cortex_a7 = 0x00300207,
|
389 |
+
/** ARM Cortex-A8. */
|
390 |
+
cpuinfo_uarch_cortex_a8 = 0x00300208,
|
391 |
+
/** ARM Cortex-A9. */
|
392 |
+
cpuinfo_uarch_cortex_a9 = 0x00300209,
|
393 |
+
/** ARM Cortex-A12. */
|
394 |
+
cpuinfo_uarch_cortex_a12 = 0x00300212,
|
395 |
+
/** ARM Cortex-A15. */
|
396 |
+
cpuinfo_uarch_cortex_a15 = 0x00300215,
|
397 |
+
/** ARM Cortex-A17. */
|
398 |
+
cpuinfo_uarch_cortex_a17 = 0x00300217,
|
399 |
+
|
400 |
+
/** ARM Cortex-A32. */
|
401 |
+
cpuinfo_uarch_cortex_a32 = 0x00300332,
|
402 |
+
/** ARM Cortex-A35. */
|
403 |
+
cpuinfo_uarch_cortex_a35 = 0x00300335,
|
404 |
+
/** ARM Cortex-A53. */
|
405 |
+
cpuinfo_uarch_cortex_a53 = 0x00300353,
|
406 |
+
/** ARM Cortex-A55 revision 0 (restricted dual-issue capabilities compared to revision 1+). */
|
407 |
+
cpuinfo_uarch_cortex_a55r0 = 0x00300354,
|
408 |
+
/** ARM Cortex-A55. */
|
409 |
+
cpuinfo_uarch_cortex_a55 = 0x00300355,
|
410 |
+
/** ARM Cortex-A57. */
|
411 |
+
cpuinfo_uarch_cortex_a57 = 0x00300357,
|
412 |
+
/** ARM Cortex-A65. */
|
413 |
+
cpuinfo_uarch_cortex_a65 = 0x00300365,
|
414 |
+
/** ARM Cortex-A72. */
|
415 |
+
cpuinfo_uarch_cortex_a72 = 0x00300372,
|
416 |
+
/** ARM Cortex-A73. */
|
417 |
+
cpuinfo_uarch_cortex_a73 = 0x00300373,
|
418 |
+
/** ARM Cortex-A75. */
|
419 |
+
cpuinfo_uarch_cortex_a75 = 0x00300375,
|
420 |
+
/** ARM Cortex-A76. */
|
421 |
+
cpuinfo_uarch_cortex_a76 = 0x00300376,
|
422 |
+
/** ARM Cortex-A77. */
|
423 |
+
cpuinfo_uarch_cortex_a77 = 0x00300377,
|
424 |
+
/** ARM Cortex-A78. */
|
425 |
+
cpuinfo_uarch_cortex_a78 = 0x00300378,
|
426 |
+
|
427 |
+
/** ARM Neoverse N1. */
|
428 |
+
cpuinfo_uarch_neoverse_n1 = 0x00300400,
|
429 |
+
/** ARM Neoverse E1. */
|
430 |
+
cpuinfo_uarch_neoverse_e1 = 0x00300401,
|
431 |
+
/** ARM Neoverse V1. */
|
432 |
+
cpuinfo_uarch_neoverse_v1 = 0x00300402,
|
433 |
+
/** ARM Neoverse N2. */
|
434 |
+
cpuinfo_uarch_neoverse_n2 = 0x00300403,
|
435 |
+
/** ARM Neoverse V2. */
|
436 |
+
cpuinfo_uarch_neoverse_v2 = 0x00300404,
|
437 |
+
|
438 |
+
/** ARM Cortex-X1. */
|
439 |
+
cpuinfo_uarch_cortex_x1 = 0x00300501,
|
440 |
+
/** ARM Cortex-X2. */
|
441 |
+
cpuinfo_uarch_cortex_x2 = 0x00300502,
|
442 |
+
/** ARM Cortex-X3. */
|
443 |
+
cpuinfo_uarch_cortex_x3 = 0x00300503,
|
444 |
+
|
445 |
+
/** ARM Cortex-A510. */
|
446 |
+
cpuinfo_uarch_cortex_a510 = 0x00300551,
|
447 |
+
/** ARM Cortex-A710. */
|
448 |
+
cpuinfo_uarch_cortex_a710 = 0x00300571,
|
449 |
+
/** ARM Cortex-A715. */
|
450 |
+
cpuinfo_uarch_cortex_a715 = 0x00300572,
|
451 |
+
|
452 |
+
/** Qualcomm Scorpion. */
|
453 |
+
cpuinfo_uarch_scorpion = 0x00400100,
|
454 |
+
/** Qualcomm Krait. */
|
455 |
+
cpuinfo_uarch_krait = 0x00400101,
|
456 |
+
/** Qualcomm Kryo. */
|
457 |
+
cpuinfo_uarch_kryo = 0x00400102,
|
458 |
+
/** Qualcomm Falkor. */
|
459 |
+
cpuinfo_uarch_falkor = 0x00400103,
|
460 |
+
/** Qualcomm Saphira. */
|
461 |
+
cpuinfo_uarch_saphira = 0x00400104,
|
462 |
+
|
463 |
+
/** Nvidia Denver. */
|
464 |
+
cpuinfo_uarch_denver = 0x00500100,
|
465 |
+
/** Nvidia Denver 2. */
|
466 |
+
cpuinfo_uarch_denver2 = 0x00500101,
|
467 |
+
/** Nvidia Carmel. */
|
468 |
+
cpuinfo_uarch_carmel = 0x00500102,
|
469 |
+
|
470 |
+
/** Samsung Exynos M1 (Exynos 8890 big cores). */
|
471 |
+
cpuinfo_uarch_exynos_m1 = 0x00600100,
|
472 |
+
/** Samsung Exynos M2 (Exynos 8895 big cores). */
|
473 |
+
cpuinfo_uarch_exynos_m2 = 0x00600101,
|
474 |
+
/** Samsung Exynos M3 (Exynos 9810 big cores). */
|
475 |
+
cpuinfo_uarch_exynos_m3 = 0x00600102,
|
476 |
+
/** Samsung Exynos M4 (Exynos 9820 big cores). */
|
477 |
+
cpuinfo_uarch_exynos_m4 = 0x00600103,
|
478 |
+
/** Samsung Exynos M5 (Exynos 9830 big cores). */
|
479 |
+
cpuinfo_uarch_exynos_m5 = 0x00600104,
|
480 |
+
|
481 |
+
/* Deprecated synonym for Cortex-A76 */
|
482 |
+
cpuinfo_uarch_cortex_a76ae = 0x00300376,
|
483 |
+
/* Deprecated names for Exynos. */
|
484 |
+
cpuinfo_uarch_mongoose_m1 = 0x00600100,
|
485 |
+
cpuinfo_uarch_mongoose_m2 = 0x00600101,
|
486 |
+
cpuinfo_uarch_meerkat_m3 = 0x00600102,
|
487 |
+
cpuinfo_uarch_meerkat_m4 = 0x00600103,
|
488 |
+
|
489 |
+
/** Apple A6 and A6X processors. */
|
490 |
+
cpuinfo_uarch_swift = 0x00700100,
|
491 |
+
/** Apple A7 processor. */
|
492 |
+
cpuinfo_uarch_cyclone = 0x00700101,
|
493 |
+
/** Apple A8 and A8X processor. */
|
494 |
+
cpuinfo_uarch_typhoon = 0x00700102,
|
495 |
+
/** Apple A9 and A9X processor. */
|
496 |
+
cpuinfo_uarch_twister = 0x00700103,
|
497 |
+
/** Apple A10 and A10X processor. */
|
498 |
+
cpuinfo_uarch_hurricane = 0x00700104,
|
499 |
+
/** Apple A11 processor (big cores). */
|
500 |
+
cpuinfo_uarch_monsoon = 0x00700105,
|
501 |
+
/** Apple A11 processor (little cores). */
|
502 |
+
cpuinfo_uarch_mistral = 0x00700106,
|
503 |
+
/** Apple A12 processor (big cores). */
|
504 |
+
cpuinfo_uarch_vortex = 0x00700107,
|
505 |
+
/** Apple A12 processor (little cores). */
|
506 |
+
cpuinfo_uarch_tempest = 0x00700108,
|
507 |
+
/** Apple A13 processor (big cores). */
|
508 |
+
cpuinfo_uarch_lightning = 0x00700109,
|
509 |
+
/** Apple A13 processor (little cores). */
|
510 |
+
cpuinfo_uarch_thunder = 0x0070010A,
|
511 |
+
/** Apple A14 / M1 processor (big cores). */
|
512 |
+
cpuinfo_uarch_firestorm = 0x0070010B,
|
513 |
+
/** Apple A14 / M1 processor (little cores). */
|
514 |
+
cpuinfo_uarch_icestorm = 0x0070010C,
|
515 |
+
/** Apple A15 / M2 processor (big cores). */
|
516 |
+
cpuinfo_uarch_avalanche = 0x0070010D,
|
517 |
+
/** Apple A15 / M2 processor (little cores). */
|
518 |
+
cpuinfo_uarch_blizzard = 0x0070010E,
|
519 |
+
|
520 |
+
/** Cavium ThunderX. */
|
521 |
+
cpuinfo_uarch_thunderx = 0x00800100,
|
522 |
+
/** Cavium ThunderX2 (originally Broadcom Vulkan). */
|
523 |
+
cpuinfo_uarch_thunderx2 = 0x00800200,
|
524 |
+
|
525 |
+
/** Marvell PJ4. */
|
526 |
+
cpuinfo_uarch_pj4 = 0x00900100,
|
527 |
+
|
528 |
+
/** Broadcom Brahma B15. */
|
529 |
+
cpuinfo_uarch_brahma_b15 = 0x00A00100,
|
530 |
+
/** Broadcom Brahma B53. */
|
531 |
+
cpuinfo_uarch_brahma_b53 = 0x00A00101,
|
532 |
+
|
533 |
+
/** Applied Micro X-Gene. */
|
534 |
+
cpuinfo_uarch_xgene = 0x00B00100,
|
535 |
+
|
536 |
+
/* Hygon Dhyana (a modification of AMD Zen for Chinese market). */
|
537 |
+
cpuinfo_uarch_dhyana = 0x01000100,
|
538 |
+
|
539 |
+
/** HiSilicon TaiShan v110 (Huawei Kunpeng 920 series processors). */
|
540 |
+
cpuinfo_uarch_taishan_v110 = 0x00C00100,
|
541 |
+
};
|
542 |
+
|
543 |
+
struct cpuinfo_processor {
|
544 |
+
/** SMT (hyperthread) ID within a core */
|
545 |
+
uint32_t smt_id;
|
546 |
+
/** Core containing this logical processor */
|
547 |
+
const struct cpuinfo_core* core;
|
548 |
+
/** Cluster of cores containing this logical processor */
|
549 |
+
const struct cpuinfo_cluster* cluster;
|
550 |
+
/** Physical package containing this logical processor */
|
551 |
+
const struct cpuinfo_package* package;
|
552 |
+
#if defined(__linux__)
|
553 |
+
/**
|
554 |
+
* Linux-specific ID for the logical processor:
|
555 |
+
* - Linux kernel exposes information about this logical processor in /sys/devices/system/cpu/cpu<linux_id>/
|
556 |
+
* - Bit <linux_id> in the cpu_set_t identifies this logical processor
|
557 |
+
*/
|
558 |
+
int linux_id;
|
559 |
+
#endif
|
560 |
+
#if defined(_WIN32) || defined(__CYGWIN__)
|
561 |
+
/** Windows-specific ID for the group containing the logical processor. */
|
562 |
+
uint16_t windows_group_id;
|
563 |
+
/**
|
564 |
+
* Windows-specific ID of the logical processor within its group:
|
565 |
+
* - Bit <windows_processor_id> in the KAFFINITY mask identifies this logical processor within its group.
|
566 |
+
*/
|
567 |
+
uint16_t windows_processor_id;
|
568 |
+
#endif
|
569 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
570 |
+
/** APIC ID (unique x86-specific ID of the logical processor) */
|
571 |
+
uint32_t apic_id;
|
572 |
+
#endif
|
573 |
+
struct {
|
574 |
+
/** Level 1 instruction cache */
|
575 |
+
const struct cpuinfo_cache* l1i;
|
576 |
+
/** Level 1 data cache */
|
577 |
+
const struct cpuinfo_cache* l1d;
|
578 |
+
/** Level 2 unified or data cache */
|
579 |
+
const struct cpuinfo_cache* l2;
|
580 |
+
/** Level 3 unified or data cache */
|
581 |
+
const struct cpuinfo_cache* l3;
|
582 |
+
/** Level 4 unified or data cache */
|
583 |
+
const struct cpuinfo_cache* l4;
|
584 |
+
} cache;
|
585 |
+
};
|
586 |
+
|
587 |
+
struct cpuinfo_core {
|
588 |
+
/** Index of the first logical processor on this core. */
|
589 |
+
uint32_t processor_start;
|
590 |
+
/** Number of logical processors on this core */
|
591 |
+
uint32_t processor_count;
|
592 |
+
/** Core ID within a package */
|
593 |
+
uint32_t core_id;
|
594 |
+
/** Cluster containing this core */
|
595 |
+
const struct cpuinfo_cluster* cluster;
|
596 |
+
/** Physical package containing this core. */
|
597 |
+
const struct cpuinfo_package* package;
|
598 |
+
/** Vendor of the CPU microarchitecture for this core */
|
599 |
+
enum cpuinfo_vendor vendor;
|
600 |
+
/** CPU microarchitecture for this core */
|
601 |
+
enum cpuinfo_uarch uarch;
|
602 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
603 |
+
/** Value of CPUID leaf 1 EAX register for this core */
|
604 |
+
uint32_t cpuid;
|
605 |
+
#elif CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
606 |
+
/** Value of Main ID Register (MIDR) for this core */
|
607 |
+
uint32_t midr;
|
608 |
+
#endif
|
609 |
+
/** Clock rate (non-Turbo) of the core, in Hz */
|
610 |
+
uint64_t frequency;
|
611 |
+
};
|
612 |
+
|
613 |
+
struct cpuinfo_cluster {
|
614 |
+
/** Index of the first logical processor in the cluster */
|
615 |
+
uint32_t processor_start;
|
616 |
+
/** Number of logical processors in the cluster */
|
617 |
+
uint32_t processor_count;
|
618 |
+
/** Index of the first core in the cluster */
|
619 |
+
uint32_t core_start;
|
620 |
+
/** Number of cores on the cluster */
|
621 |
+
uint32_t core_count;
|
622 |
+
/** Cluster ID within a package */
|
623 |
+
uint32_t cluster_id;
|
624 |
+
/** Physical package containing the cluster */
|
625 |
+
const struct cpuinfo_package* package;
|
626 |
+
/** CPU microarchitecture vendor of the cores in the cluster */
|
627 |
+
enum cpuinfo_vendor vendor;
|
628 |
+
/** CPU microarchitecture of the cores in the cluster */
|
629 |
+
enum cpuinfo_uarch uarch;
|
630 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
631 |
+
/** Value of CPUID leaf 1 EAX register of the cores in the cluster */
|
632 |
+
uint32_t cpuid;
|
633 |
+
#elif CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
634 |
+
/** Value of Main ID Register (MIDR) of the cores in the cluster */
|
635 |
+
uint32_t midr;
|
636 |
+
#endif
|
637 |
+
/** Clock rate (non-Turbo) of the cores in the cluster, in Hz */
|
638 |
+
uint64_t frequency;
|
639 |
+
};
|
640 |
+
|
641 |
+
#define CPUINFO_PACKAGE_NAME_MAX 48
|
642 |
+
|
643 |
+
struct cpuinfo_package {
|
644 |
+
/** SoC or processor chip model name */
|
645 |
+
char name[CPUINFO_PACKAGE_NAME_MAX];
|
646 |
+
/** Index of the first logical processor on this physical package */
|
647 |
+
uint32_t processor_start;
|
648 |
+
/** Number of logical processors on this physical package */
|
649 |
+
uint32_t processor_count;
|
650 |
+
/** Index of the first core on this physical package */
|
651 |
+
uint32_t core_start;
|
652 |
+
/** Number of cores on this physical package */
|
653 |
+
uint32_t core_count;
|
654 |
+
/** Index of the first cluster of cores on this physical package */
|
655 |
+
uint32_t cluster_start;
|
656 |
+
/** Number of clusters of cores on this physical package */
|
657 |
+
uint32_t cluster_count;
|
658 |
+
};
|
659 |
+
|
660 |
+
struct cpuinfo_uarch_info {
|
661 |
+
/** Type of CPU microarchitecture */
|
662 |
+
enum cpuinfo_uarch uarch;
|
663 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
664 |
+
/** Value of CPUID leaf 1 EAX register for the microarchitecture */
|
665 |
+
uint32_t cpuid;
|
666 |
+
#elif CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
667 |
+
/** Value of Main ID Register (MIDR) for the microarchitecture */
|
668 |
+
uint32_t midr;
|
669 |
+
#endif
|
670 |
+
/** Number of logical processors with the microarchitecture */
|
671 |
+
uint32_t processor_count;
|
672 |
+
/** Number of cores with the microarchitecture */
|
673 |
+
uint32_t core_count;
|
674 |
+
};
|
675 |
+
|
676 |
+
#ifdef __cplusplus
|
677 |
+
extern "C" {
|
678 |
+
#endif
|
679 |
+
|
680 |
+
bool CPUINFO_ABI cpuinfo_initialize(void);
|
681 |
+
|
682 |
+
void CPUINFO_ABI cpuinfo_deinitialize(void);
|
683 |
+
|
684 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
685 |
+
/* This structure is not a part of stable API. Use cpuinfo_has_x86_* functions instead. */
|
686 |
+
struct cpuinfo_x86_isa {
|
687 |
+
#if CPUINFO_ARCH_X86
|
688 |
+
bool rdtsc;
|
689 |
+
#endif
|
690 |
+
bool rdtscp;
|
691 |
+
bool rdpid;
|
692 |
+
bool sysenter;
|
693 |
+
#if CPUINFO_ARCH_X86
|
694 |
+
bool syscall;
|
695 |
+
#endif
|
696 |
+
bool msr;
|
697 |
+
bool clzero;
|
698 |
+
bool clflush;
|
699 |
+
bool clflushopt;
|
700 |
+
bool mwait;
|
701 |
+
bool mwaitx;
|
702 |
+
#if CPUINFO_ARCH_X86
|
703 |
+
bool emmx;
|
704 |
+
#endif
|
705 |
+
bool fxsave;
|
706 |
+
bool xsave;
|
707 |
+
#if CPUINFO_ARCH_X86
|
708 |
+
bool fpu;
|
709 |
+
bool mmx;
|
710 |
+
bool mmx_plus;
|
711 |
+
#endif
|
712 |
+
bool three_d_now;
|
713 |
+
bool three_d_now_plus;
|
714 |
+
#if CPUINFO_ARCH_X86
|
715 |
+
bool three_d_now_geode;
|
716 |
+
#endif
|
717 |
+
bool prefetch;
|
718 |
+
bool prefetchw;
|
719 |
+
bool prefetchwt1;
|
720 |
+
#if CPUINFO_ARCH_X86
|
721 |
+
bool daz;
|
722 |
+
bool sse;
|
723 |
+
bool sse2;
|
724 |
+
#endif
|
725 |
+
bool sse3;
|
726 |
+
bool ssse3;
|
727 |
+
bool sse4_1;
|
728 |
+
bool sse4_2;
|
729 |
+
bool sse4a;
|
730 |
+
bool misaligned_sse;
|
731 |
+
bool avx;
|
732 |
+
bool avxvnni;
|
733 |
+
bool fma3;
|
734 |
+
bool fma4;
|
735 |
+
bool xop;
|
736 |
+
bool f16c;
|
737 |
+
bool avx2;
|
738 |
+
bool avx512f;
|
739 |
+
bool avx512pf;
|
740 |
+
bool avx512er;
|
741 |
+
bool avx512cd;
|
742 |
+
bool avx512dq;
|
743 |
+
bool avx512bw;
|
744 |
+
bool avx512vl;
|
745 |
+
bool avx512ifma;
|
746 |
+
bool avx512vbmi;
|
747 |
+
bool avx512vbmi2;
|
748 |
+
bool avx512bitalg;
|
749 |
+
bool avx512vpopcntdq;
|
750 |
+
bool avx512vnni;
|
751 |
+
bool avx512bf16;
|
752 |
+
bool avx512fp16;
|
753 |
+
bool avx512vp2intersect;
|
754 |
+
bool avx512_4vnniw;
|
755 |
+
bool avx512_4fmaps;
|
756 |
+
bool hle;
|
757 |
+
bool rtm;
|
758 |
+
bool xtest;
|
759 |
+
bool mpx;
|
760 |
+
#if CPUINFO_ARCH_X86
|
761 |
+
bool cmov;
|
762 |
+
bool cmpxchg8b;
|
763 |
+
#endif
|
764 |
+
bool cmpxchg16b;
|
765 |
+
bool clwb;
|
766 |
+
bool movbe;
|
767 |
+
#if CPUINFO_ARCH_X86_64
|
768 |
+
bool lahf_sahf;
|
769 |
+
#endif
|
770 |
+
bool fs_gs_base;
|
771 |
+
bool lzcnt;
|
772 |
+
bool popcnt;
|
773 |
+
bool tbm;
|
774 |
+
bool bmi;
|
775 |
+
bool bmi2;
|
776 |
+
bool adx;
|
777 |
+
bool aes;
|
778 |
+
bool vaes;
|
779 |
+
bool pclmulqdq;
|
780 |
+
bool vpclmulqdq;
|
781 |
+
bool gfni;
|
782 |
+
bool rdrand;
|
783 |
+
bool rdseed;
|
784 |
+
bool sha;
|
785 |
+
bool rng;
|
786 |
+
bool ace;
|
787 |
+
bool ace2;
|
788 |
+
bool phe;
|
789 |
+
bool pmm;
|
790 |
+
bool lwp;
|
791 |
+
};
|
792 |
+
|
793 |
+
extern struct cpuinfo_x86_isa cpuinfo_isa;
|
794 |
+
#endif
|
795 |
+
|
796 |
+
static inline bool cpuinfo_has_x86_rdtsc(void) {
|
797 |
+
#if CPUINFO_ARCH_X86_64
|
798 |
+
return true;
|
799 |
+
#elif CPUINFO_ARCH_X86
|
800 |
+
#if defined(__ANDROID__)
|
801 |
+
return true;
|
802 |
+
#else
|
803 |
+
return cpuinfo_isa.rdtsc;
|
804 |
+
#endif
|
805 |
+
#else
|
806 |
+
return false;
|
807 |
+
#endif
|
808 |
+
}
|
809 |
+
|
810 |
+
static inline bool cpuinfo_has_x86_rdtscp(void) {
|
811 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
812 |
+
return cpuinfo_isa.rdtscp;
|
813 |
+
#else
|
814 |
+
return false;
|
815 |
+
#endif
|
816 |
+
}
|
817 |
+
|
818 |
+
static inline bool cpuinfo_has_x86_rdpid(void) {
|
819 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
820 |
+
return cpuinfo_isa.rdpid;
|
821 |
+
#else
|
822 |
+
return false;
|
823 |
+
#endif
|
824 |
+
}
|
825 |
+
|
826 |
+
static inline bool cpuinfo_has_x86_clzero(void) {
|
827 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
828 |
+
return cpuinfo_isa.clzero;
|
829 |
+
#else
|
830 |
+
return false;
|
831 |
+
#endif
|
832 |
+
}
|
833 |
+
|
834 |
+
static inline bool cpuinfo_has_x86_mwait(void) {
|
835 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
836 |
+
return cpuinfo_isa.mwait;
|
837 |
+
#else
|
838 |
+
return false;
|
839 |
+
#endif
|
840 |
+
}
|
841 |
+
|
842 |
+
static inline bool cpuinfo_has_x86_mwaitx(void) {
|
843 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
844 |
+
return cpuinfo_isa.mwaitx;
|
845 |
+
#else
|
846 |
+
return false;
|
847 |
+
#endif
|
848 |
+
}
|
849 |
+
|
850 |
+
static inline bool cpuinfo_has_x86_fxsave(void) {
|
851 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
852 |
+
return cpuinfo_isa.fxsave;
|
853 |
+
#else
|
854 |
+
return false;
|
855 |
+
#endif
|
856 |
+
}
|
857 |
+
|
858 |
+
static inline bool cpuinfo_has_x86_xsave(void) {
|
859 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
860 |
+
return cpuinfo_isa.xsave;
|
861 |
+
#else
|
862 |
+
return false;
|
863 |
+
#endif
|
864 |
+
}
|
865 |
+
|
866 |
+
static inline bool cpuinfo_has_x86_fpu(void) {
|
867 |
+
#if CPUINFO_ARCH_X86_64
|
868 |
+
return true;
|
869 |
+
#elif CPUINFO_ARCH_X86
|
870 |
+
#if defined(__ANDROID__)
|
871 |
+
return true;
|
872 |
+
#else
|
873 |
+
return cpuinfo_isa.fpu;
|
874 |
+
#endif
|
875 |
+
#else
|
876 |
+
return false;
|
877 |
+
#endif
|
878 |
+
}
|
879 |
+
|
880 |
+
static inline bool cpuinfo_has_x86_mmx(void) {
|
881 |
+
#if CPUINFO_ARCH_X86_64
|
882 |
+
return true;
|
883 |
+
#elif CPUINFO_ARCH_X86
|
884 |
+
#if defined(__ANDROID__)
|
885 |
+
return true;
|
886 |
+
#else
|
887 |
+
return cpuinfo_isa.mmx;
|
888 |
+
#endif
|
889 |
+
#else
|
890 |
+
return false;
|
891 |
+
#endif
|
892 |
+
}
|
893 |
+
|
894 |
+
static inline bool cpuinfo_has_x86_mmx_plus(void) {
|
895 |
+
#if CPUINFO_ARCH_X86_64
|
896 |
+
return true;
|
897 |
+
#elif CPUINFO_ARCH_X86
|
898 |
+
#if defined(__ANDROID__)
|
899 |
+
return true;
|
900 |
+
#else
|
901 |
+
return cpuinfo_isa.mmx_plus;
|
902 |
+
#endif
|
903 |
+
#else
|
904 |
+
return false;
|
905 |
+
#endif
|
906 |
+
}
|
907 |
+
|
908 |
+
static inline bool cpuinfo_has_x86_3dnow(void) {
|
909 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
910 |
+
return cpuinfo_isa.three_d_now;
|
911 |
+
#else
|
912 |
+
return false;
|
913 |
+
#endif
|
914 |
+
}
|
915 |
+
|
916 |
+
static inline bool cpuinfo_has_x86_3dnow_plus(void) {
|
917 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
918 |
+
return cpuinfo_isa.three_d_now_plus;
|
919 |
+
#else
|
920 |
+
return false;
|
921 |
+
#endif
|
922 |
+
}
|
923 |
+
|
924 |
+
static inline bool cpuinfo_has_x86_3dnow_geode(void) {
|
925 |
+
#if CPUINFO_ARCH_X86_64
|
926 |
+
return false;
|
927 |
+
#elif CPUINFO_ARCH_X86
|
928 |
+
#if defined(__ANDROID__)
|
929 |
+
return false;
|
930 |
+
#else
|
931 |
+
return cpuinfo_isa.three_d_now_geode;
|
932 |
+
#endif
|
933 |
+
#else
|
934 |
+
return false;
|
935 |
+
#endif
|
936 |
+
}
|
937 |
+
|
938 |
+
static inline bool cpuinfo_has_x86_prefetch(void) {
|
939 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
940 |
+
return cpuinfo_isa.prefetch;
|
941 |
+
#else
|
942 |
+
return false;
|
943 |
+
#endif
|
944 |
+
}
|
945 |
+
|
946 |
+
static inline bool cpuinfo_has_x86_prefetchw(void) {
|
947 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
948 |
+
return cpuinfo_isa.prefetchw;
|
949 |
+
#else
|
950 |
+
return false;
|
951 |
+
#endif
|
952 |
+
}
|
953 |
+
|
954 |
+
static inline bool cpuinfo_has_x86_prefetchwt1(void) {
|
955 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
956 |
+
return cpuinfo_isa.prefetchwt1;
|
957 |
+
#else
|
958 |
+
return false;
|
959 |
+
#endif
|
960 |
+
}
|
961 |
+
|
962 |
+
static inline bool cpuinfo_has_x86_daz(void) {
|
963 |
+
#if CPUINFO_ARCH_X86_64
|
964 |
+
return true;
|
965 |
+
#elif CPUINFO_ARCH_X86
|
966 |
+
#if defined(__ANDROID__)
|
967 |
+
return true;
|
968 |
+
#else
|
969 |
+
return cpuinfo_isa.daz;
|
970 |
+
#endif
|
971 |
+
#else
|
972 |
+
return false;
|
973 |
+
#endif
|
974 |
+
}
|
975 |
+
|
976 |
+
static inline bool cpuinfo_has_x86_sse(void) {
|
977 |
+
#if CPUINFO_ARCH_X86_64
|
978 |
+
return true;
|
979 |
+
#elif CPUINFO_ARCH_X86
|
980 |
+
#if defined(__ANDROID__)
|
981 |
+
return true;
|
982 |
+
#else
|
983 |
+
return cpuinfo_isa.sse;
|
984 |
+
#endif
|
985 |
+
#else
|
986 |
+
return false;
|
987 |
+
#endif
|
988 |
+
}
|
989 |
+
|
990 |
+
static inline bool cpuinfo_has_x86_sse2(void) {
|
991 |
+
#if CPUINFO_ARCH_X86_64
|
992 |
+
return true;
|
993 |
+
#elif CPUINFO_ARCH_X86
|
994 |
+
#if defined(__ANDROID__)
|
995 |
+
return true;
|
996 |
+
#else
|
997 |
+
return cpuinfo_isa.sse2;
|
998 |
+
#endif
|
999 |
+
#else
|
1000 |
+
return false;
|
1001 |
+
#endif
|
1002 |
+
}
|
1003 |
+
|
1004 |
+
static inline bool cpuinfo_has_x86_sse3(void) {
|
1005 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1006 |
+
#if defined(__ANDROID__)
|
1007 |
+
return true;
|
1008 |
+
#else
|
1009 |
+
return cpuinfo_isa.sse3;
|
1010 |
+
#endif
|
1011 |
+
#else
|
1012 |
+
return false;
|
1013 |
+
#endif
|
1014 |
+
}
|
1015 |
+
|
1016 |
+
static inline bool cpuinfo_has_x86_ssse3(void) {
|
1017 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1018 |
+
#if defined(__ANDROID__)
|
1019 |
+
return true;
|
1020 |
+
#else
|
1021 |
+
return cpuinfo_isa.ssse3;
|
1022 |
+
#endif
|
1023 |
+
#else
|
1024 |
+
return false;
|
1025 |
+
#endif
|
1026 |
+
}
|
1027 |
+
|
1028 |
+
static inline bool cpuinfo_has_x86_sse4_1(void) {
|
1029 |
+
#if CPUINFO_ARCH_X86_64
|
1030 |
+
#if defined(__ANDROID__)
|
1031 |
+
return true;
|
1032 |
+
#else
|
1033 |
+
return cpuinfo_isa.sse4_1;
|
1034 |
+
#endif
|
1035 |
+
#elif CPUINFO_ARCH_X86
|
1036 |
+
return cpuinfo_isa.sse4_1;
|
1037 |
+
#else
|
1038 |
+
return false;
|
1039 |
+
#endif
|
1040 |
+
}
|
1041 |
+
|
1042 |
+
static inline bool cpuinfo_has_x86_sse4_2(void) {
|
1043 |
+
#if CPUINFO_ARCH_X86_64
|
1044 |
+
#if defined(__ANDROID__)
|
1045 |
+
return true;
|
1046 |
+
#else
|
1047 |
+
return cpuinfo_isa.sse4_2;
|
1048 |
+
#endif
|
1049 |
+
#elif CPUINFO_ARCH_X86
|
1050 |
+
return cpuinfo_isa.sse4_2;
|
1051 |
+
#else
|
1052 |
+
return false;
|
1053 |
+
#endif
|
1054 |
+
}
|
1055 |
+
|
1056 |
+
static inline bool cpuinfo_has_x86_sse4a(void) {
|
1057 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1058 |
+
return cpuinfo_isa.sse4a;
|
1059 |
+
#else
|
1060 |
+
return false;
|
1061 |
+
#endif
|
1062 |
+
}
|
1063 |
+
|
1064 |
+
static inline bool cpuinfo_has_x86_misaligned_sse(void) {
|
1065 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1066 |
+
return cpuinfo_isa.misaligned_sse;
|
1067 |
+
#else
|
1068 |
+
return false;
|
1069 |
+
#endif
|
1070 |
+
}
|
1071 |
+
|
1072 |
+
static inline bool cpuinfo_has_x86_avx(void) {
|
1073 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1074 |
+
return cpuinfo_isa.avx;
|
1075 |
+
#else
|
1076 |
+
return false;
|
1077 |
+
#endif
|
1078 |
+
}
|
1079 |
+
|
1080 |
+
static inline bool cpuinfo_has_x86_avxvnni(void) {
|
1081 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1082 |
+
return cpuinfo_isa.avxvnni;
|
1083 |
+
#else
|
1084 |
+
return false;
|
1085 |
+
#endif
|
1086 |
+
}
|
1087 |
+
|
1088 |
+
static inline bool cpuinfo_has_x86_fma3(void) {
|
1089 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1090 |
+
return cpuinfo_isa.fma3;
|
1091 |
+
#else
|
1092 |
+
return false;
|
1093 |
+
#endif
|
1094 |
+
}
|
1095 |
+
|
1096 |
+
static inline bool cpuinfo_has_x86_fma4(void) {
|
1097 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1098 |
+
return cpuinfo_isa.fma4;
|
1099 |
+
#else
|
1100 |
+
return false;
|
1101 |
+
#endif
|
1102 |
+
}
|
1103 |
+
|
1104 |
+
static inline bool cpuinfo_has_x86_xop(void) {
|
1105 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1106 |
+
return cpuinfo_isa.xop;
|
1107 |
+
#else
|
1108 |
+
return false;
|
1109 |
+
#endif
|
1110 |
+
}
|
1111 |
+
|
1112 |
+
static inline bool cpuinfo_has_x86_f16c(void) {
|
1113 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1114 |
+
return cpuinfo_isa.f16c;
|
1115 |
+
#else
|
1116 |
+
return false;
|
1117 |
+
#endif
|
1118 |
+
}
|
1119 |
+
|
1120 |
+
static inline bool cpuinfo_has_x86_avx2(void) {
|
1121 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1122 |
+
return cpuinfo_isa.avx2;
|
1123 |
+
#else
|
1124 |
+
return false;
|
1125 |
+
#endif
|
1126 |
+
}
|
1127 |
+
|
1128 |
+
static inline bool cpuinfo_has_x86_avx512f(void) {
|
1129 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1130 |
+
return cpuinfo_isa.avx512f;
|
1131 |
+
#else
|
1132 |
+
return false;
|
1133 |
+
#endif
|
1134 |
+
}
|
1135 |
+
|
1136 |
+
static inline bool cpuinfo_has_x86_avx512pf(void) {
|
1137 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1138 |
+
return cpuinfo_isa.avx512pf;
|
1139 |
+
#else
|
1140 |
+
return false;
|
1141 |
+
#endif
|
1142 |
+
}
|
1143 |
+
|
1144 |
+
static inline bool cpuinfo_has_x86_avx512er(void) {
|
1145 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1146 |
+
return cpuinfo_isa.avx512er;
|
1147 |
+
#else
|
1148 |
+
return false;
|
1149 |
+
#endif
|
1150 |
+
}
|
1151 |
+
|
1152 |
+
static inline bool cpuinfo_has_x86_avx512cd(void) {
|
1153 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1154 |
+
return cpuinfo_isa.avx512cd;
|
1155 |
+
#else
|
1156 |
+
return false;
|
1157 |
+
#endif
|
1158 |
+
}
|
1159 |
+
|
1160 |
+
static inline bool cpuinfo_has_x86_avx512dq(void) {
|
1161 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1162 |
+
return cpuinfo_isa.avx512dq;
|
1163 |
+
#else
|
1164 |
+
return false;
|
1165 |
+
#endif
|
1166 |
+
}
|
1167 |
+
|
1168 |
+
static inline bool cpuinfo_has_x86_avx512bw(void) {
|
1169 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1170 |
+
return cpuinfo_isa.avx512bw;
|
1171 |
+
#else
|
1172 |
+
return false;
|
1173 |
+
#endif
|
1174 |
+
}
|
1175 |
+
|
1176 |
+
static inline bool cpuinfo_has_x86_avx512vl(void) {
|
1177 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1178 |
+
return cpuinfo_isa.avx512vl;
|
1179 |
+
#else
|
1180 |
+
return false;
|
1181 |
+
#endif
|
1182 |
+
}
|
1183 |
+
|
1184 |
+
static inline bool cpuinfo_has_x86_avx512ifma(void) {
|
1185 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1186 |
+
return cpuinfo_isa.avx512ifma;
|
1187 |
+
#else
|
1188 |
+
return false;
|
1189 |
+
#endif
|
1190 |
+
}
|
1191 |
+
|
1192 |
+
static inline bool cpuinfo_has_x86_avx512vbmi(void) {
|
1193 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1194 |
+
return cpuinfo_isa.avx512vbmi;
|
1195 |
+
#else
|
1196 |
+
return false;
|
1197 |
+
#endif
|
1198 |
+
}
|
1199 |
+
|
1200 |
+
static inline bool cpuinfo_has_x86_avx512vbmi2(void) {
|
1201 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1202 |
+
return cpuinfo_isa.avx512vbmi2;
|
1203 |
+
#else
|
1204 |
+
return false;
|
1205 |
+
#endif
|
1206 |
+
}
|
1207 |
+
|
1208 |
+
static inline bool cpuinfo_has_x86_avx512bitalg(void) {
|
1209 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1210 |
+
return cpuinfo_isa.avx512bitalg;
|
1211 |
+
#else
|
1212 |
+
return false;
|
1213 |
+
#endif
|
1214 |
+
}
|
1215 |
+
|
1216 |
+
static inline bool cpuinfo_has_x86_avx512vpopcntdq(void) {
|
1217 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1218 |
+
return cpuinfo_isa.avx512vpopcntdq;
|
1219 |
+
#else
|
1220 |
+
return false;
|
1221 |
+
#endif
|
1222 |
+
}
|
1223 |
+
|
1224 |
+
static inline bool cpuinfo_has_x86_avx512vnni(void) {
|
1225 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1226 |
+
return cpuinfo_isa.avx512vnni;
|
1227 |
+
#else
|
1228 |
+
return false;
|
1229 |
+
#endif
|
1230 |
+
}
|
1231 |
+
|
1232 |
+
static inline bool cpuinfo_has_x86_avx512bf16(void) {
|
1233 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1234 |
+
return cpuinfo_isa.avx512bf16;
|
1235 |
+
#else
|
1236 |
+
return false;
|
1237 |
+
#endif
|
1238 |
+
}
|
1239 |
+
|
1240 |
+
static inline bool cpuinfo_has_x86_avx512fp16(void) {
|
1241 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1242 |
+
return cpuinfo_isa.avx512fp16;
|
1243 |
+
#else
|
1244 |
+
return false;
|
1245 |
+
#endif
|
1246 |
+
}
|
1247 |
+
|
1248 |
+
static inline bool cpuinfo_has_x86_avx512vp2intersect(void) {
|
1249 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1250 |
+
return cpuinfo_isa.avx512vp2intersect;
|
1251 |
+
#else
|
1252 |
+
return false;
|
1253 |
+
#endif
|
1254 |
+
}
|
1255 |
+
|
1256 |
+
static inline bool cpuinfo_has_x86_avx512_4vnniw(void) {
|
1257 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1258 |
+
return cpuinfo_isa.avx512_4vnniw;
|
1259 |
+
#else
|
1260 |
+
return false;
|
1261 |
+
#endif
|
1262 |
+
}
|
1263 |
+
|
1264 |
+
static inline bool cpuinfo_has_x86_avx512_4fmaps(void) {
|
1265 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1266 |
+
return cpuinfo_isa.avx512_4fmaps;
|
1267 |
+
#else
|
1268 |
+
return false;
|
1269 |
+
#endif
|
1270 |
+
}
|
1271 |
+
|
1272 |
+
static inline bool cpuinfo_has_x86_hle(void) {
|
1273 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1274 |
+
return cpuinfo_isa.hle;
|
1275 |
+
#else
|
1276 |
+
return false;
|
1277 |
+
#endif
|
1278 |
+
}
|
1279 |
+
|
1280 |
+
static inline bool cpuinfo_has_x86_rtm(void) {
|
1281 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1282 |
+
return cpuinfo_isa.rtm;
|
1283 |
+
#else
|
1284 |
+
return false;
|
1285 |
+
#endif
|
1286 |
+
}
|
1287 |
+
|
1288 |
+
static inline bool cpuinfo_has_x86_xtest(void) {
|
1289 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1290 |
+
return cpuinfo_isa.xtest;
|
1291 |
+
#else
|
1292 |
+
return false;
|
1293 |
+
#endif
|
1294 |
+
}
|
1295 |
+
|
1296 |
+
static inline bool cpuinfo_has_x86_mpx(void) {
|
1297 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1298 |
+
return cpuinfo_isa.mpx;
|
1299 |
+
#else
|
1300 |
+
return false;
|
1301 |
+
#endif
|
1302 |
+
}
|
1303 |
+
|
1304 |
+
static inline bool cpuinfo_has_x86_cmov(void) {
|
1305 |
+
#if CPUINFO_ARCH_X86_64
|
1306 |
+
return true;
|
1307 |
+
#elif CPUINFO_ARCH_X86
|
1308 |
+
return cpuinfo_isa.cmov;
|
1309 |
+
#else
|
1310 |
+
return false;
|
1311 |
+
#endif
|
1312 |
+
}
|
1313 |
+
|
1314 |
+
static inline bool cpuinfo_has_x86_cmpxchg8b(void) {
|
1315 |
+
#if CPUINFO_ARCH_X86_64
|
1316 |
+
return true;
|
1317 |
+
#elif CPUINFO_ARCH_X86
|
1318 |
+
return cpuinfo_isa.cmpxchg8b;
|
1319 |
+
#else
|
1320 |
+
return false;
|
1321 |
+
#endif
|
1322 |
+
}
|
1323 |
+
|
1324 |
+
static inline bool cpuinfo_has_x86_cmpxchg16b(void) {
|
1325 |
+
#if CPUINFO_ARCH_X86_64
|
1326 |
+
return cpuinfo_isa.cmpxchg16b;
|
1327 |
+
#else
|
1328 |
+
return false;
|
1329 |
+
#endif
|
1330 |
+
}
|
1331 |
+
|
1332 |
+
static inline bool cpuinfo_has_x86_clwb(void) {
|
1333 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1334 |
+
return cpuinfo_isa.clwb;
|
1335 |
+
#else
|
1336 |
+
return false;
|
1337 |
+
#endif
|
1338 |
+
}
|
1339 |
+
|
1340 |
+
static inline bool cpuinfo_has_x86_movbe(void) {
|
1341 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1342 |
+
return cpuinfo_isa.movbe;
|
1343 |
+
#else
|
1344 |
+
return false;
|
1345 |
+
#endif
|
1346 |
+
}
|
1347 |
+
|
1348 |
+
static inline bool cpuinfo_has_x86_lahf_sahf(void) {
|
1349 |
+
#if CPUINFO_ARCH_X86
|
1350 |
+
return true;
|
1351 |
+
#elif CPUINFO_ARCH_X86_64
|
1352 |
+
return cpuinfo_isa.lahf_sahf;
|
1353 |
+
#else
|
1354 |
+
return false;
|
1355 |
+
#endif
|
1356 |
+
}
|
1357 |
+
|
1358 |
+
static inline bool cpuinfo_has_x86_lzcnt(void) {
|
1359 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1360 |
+
return cpuinfo_isa.lzcnt;
|
1361 |
+
#else
|
1362 |
+
return false;
|
1363 |
+
#endif
|
1364 |
+
}
|
1365 |
+
|
1366 |
+
static inline bool cpuinfo_has_x86_popcnt(void) {
|
1367 |
+
#if CPUINFO_ARCH_X86_64
|
1368 |
+
#if defined(__ANDROID__)
|
1369 |
+
return true;
|
1370 |
+
#else
|
1371 |
+
return cpuinfo_isa.popcnt;
|
1372 |
+
#endif
|
1373 |
+
#elif CPUINFO_ARCH_X86
|
1374 |
+
return cpuinfo_isa.popcnt;
|
1375 |
+
#else
|
1376 |
+
return false;
|
1377 |
+
#endif
|
1378 |
+
}
|
1379 |
+
|
1380 |
+
static inline bool cpuinfo_has_x86_tbm(void) {
|
1381 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1382 |
+
return cpuinfo_isa.tbm;
|
1383 |
+
#else
|
1384 |
+
return false;
|
1385 |
+
#endif
|
1386 |
+
}
|
1387 |
+
|
1388 |
+
static inline bool cpuinfo_has_x86_bmi(void) {
|
1389 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1390 |
+
return cpuinfo_isa.bmi;
|
1391 |
+
#else
|
1392 |
+
return false;
|
1393 |
+
#endif
|
1394 |
+
}
|
1395 |
+
|
1396 |
+
static inline bool cpuinfo_has_x86_bmi2(void) {
|
1397 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1398 |
+
return cpuinfo_isa.bmi2;
|
1399 |
+
#else
|
1400 |
+
return false;
|
1401 |
+
#endif
|
1402 |
+
}
|
1403 |
+
|
1404 |
+
static inline bool cpuinfo_has_x86_adx(void) {
|
1405 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1406 |
+
return cpuinfo_isa.adx;
|
1407 |
+
#else
|
1408 |
+
return false;
|
1409 |
+
#endif
|
1410 |
+
}
|
1411 |
+
|
1412 |
+
static inline bool cpuinfo_has_x86_aes(void) {
|
1413 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1414 |
+
return cpuinfo_isa.aes;
|
1415 |
+
#else
|
1416 |
+
return false;
|
1417 |
+
#endif
|
1418 |
+
}
|
1419 |
+
|
1420 |
+
static inline bool cpuinfo_has_x86_vaes(void) {
|
1421 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1422 |
+
return cpuinfo_isa.vaes;
|
1423 |
+
#else
|
1424 |
+
return false;
|
1425 |
+
#endif
|
1426 |
+
}
|
1427 |
+
|
1428 |
+
static inline bool cpuinfo_has_x86_pclmulqdq(void) {
|
1429 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1430 |
+
return cpuinfo_isa.pclmulqdq;
|
1431 |
+
#else
|
1432 |
+
return false;
|
1433 |
+
#endif
|
1434 |
+
}
|
1435 |
+
|
1436 |
+
static inline bool cpuinfo_has_x86_vpclmulqdq(void) {
|
1437 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1438 |
+
return cpuinfo_isa.vpclmulqdq;
|
1439 |
+
#else
|
1440 |
+
return false;
|
1441 |
+
#endif
|
1442 |
+
}
|
1443 |
+
|
1444 |
+
static inline bool cpuinfo_has_x86_gfni(void) {
|
1445 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1446 |
+
return cpuinfo_isa.gfni;
|
1447 |
+
#else
|
1448 |
+
return false;
|
1449 |
+
#endif
|
1450 |
+
}
|
1451 |
+
|
1452 |
+
static inline bool cpuinfo_has_x86_rdrand(void) {
|
1453 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1454 |
+
return cpuinfo_isa.rdrand;
|
1455 |
+
#else
|
1456 |
+
return false;
|
1457 |
+
#endif
|
1458 |
+
}
|
1459 |
+
|
1460 |
+
static inline bool cpuinfo_has_x86_rdseed(void) {
|
1461 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1462 |
+
return cpuinfo_isa.rdseed;
|
1463 |
+
#else
|
1464 |
+
return false;
|
1465 |
+
#endif
|
1466 |
+
}
|
1467 |
+
|
1468 |
+
static inline bool cpuinfo_has_x86_sha(void) {
|
1469 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1470 |
+
return cpuinfo_isa.sha;
|
1471 |
+
#else
|
1472 |
+
return false;
|
1473 |
+
#endif
|
1474 |
+
}
|
1475 |
+
|
1476 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1477 |
+
/* This structure is not a part of stable API. Use cpuinfo_has_arm_* functions instead. */
|
1478 |
+
struct cpuinfo_arm_isa {
|
1479 |
+
#if CPUINFO_ARCH_ARM
|
1480 |
+
bool thumb;
|
1481 |
+
bool thumb2;
|
1482 |
+
bool thumbee;
|
1483 |
+
bool jazelle;
|
1484 |
+
bool armv5e;
|
1485 |
+
bool armv6;
|
1486 |
+
bool armv6k;
|
1487 |
+
bool armv7;
|
1488 |
+
bool armv7mp;
|
1489 |
+
bool armv8;
|
1490 |
+
bool idiv;
|
1491 |
+
|
1492 |
+
bool vfpv2;
|
1493 |
+
bool vfpv3;
|
1494 |
+
bool d32;
|
1495 |
+
bool fp16;
|
1496 |
+
bool fma;
|
1497 |
+
|
1498 |
+
bool wmmx;
|
1499 |
+
bool wmmx2;
|
1500 |
+
bool neon;
|
1501 |
+
#endif
|
1502 |
+
#if CPUINFO_ARCH_ARM64
|
1503 |
+
bool atomics;
|
1504 |
+
bool bf16;
|
1505 |
+
bool sve;
|
1506 |
+
bool sve2;
|
1507 |
+
bool i8mm;
|
1508 |
+
#endif
|
1509 |
+
bool rdm;
|
1510 |
+
bool fp16arith;
|
1511 |
+
bool dot;
|
1512 |
+
bool jscvt;
|
1513 |
+
bool fcma;
|
1514 |
+
bool fhm;
|
1515 |
+
|
1516 |
+
bool aes;
|
1517 |
+
bool sha1;
|
1518 |
+
bool sha2;
|
1519 |
+
bool pmull;
|
1520 |
+
bool crc32;
|
1521 |
+
};
|
1522 |
+
|
1523 |
+
extern struct cpuinfo_arm_isa cpuinfo_isa;
|
1524 |
+
#endif
|
1525 |
+
|
1526 |
+
static inline bool cpuinfo_has_arm_thumb(void) {
|
1527 |
+
#if CPUINFO_ARCH_ARM
|
1528 |
+
return cpuinfo_isa.thumb;
|
1529 |
+
#else
|
1530 |
+
return false;
|
1531 |
+
#endif
|
1532 |
+
}
|
1533 |
+
|
1534 |
+
static inline bool cpuinfo_has_arm_thumb2(void) {
|
1535 |
+
#if CPUINFO_ARCH_ARM
|
1536 |
+
return cpuinfo_isa.thumb2;
|
1537 |
+
#else
|
1538 |
+
return false;
|
1539 |
+
#endif
|
1540 |
+
}
|
1541 |
+
|
1542 |
+
static inline bool cpuinfo_has_arm_v5e(void) {
|
1543 |
+
#if CPUINFO_ARCH_ARM
|
1544 |
+
return cpuinfo_isa.armv5e;
|
1545 |
+
#else
|
1546 |
+
return false;
|
1547 |
+
#endif
|
1548 |
+
}
|
1549 |
+
|
1550 |
+
static inline bool cpuinfo_has_arm_v6(void) {
|
1551 |
+
#if CPUINFO_ARCH_ARM
|
1552 |
+
return cpuinfo_isa.armv6;
|
1553 |
+
#else
|
1554 |
+
return false;
|
1555 |
+
#endif
|
1556 |
+
}
|
1557 |
+
|
1558 |
+
static inline bool cpuinfo_has_arm_v6k(void) {
|
1559 |
+
#if CPUINFO_ARCH_ARM
|
1560 |
+
return cpuinfo_isa.armv6k;
|
1561 |
+
#else
|
1562 |
+
return false;
|
1563 |
+
#endif
|
1564 |
+
}
|
1565 |
+
|
1566 |
+
static inline bool cpuinfo_has_arm_v7(void) {
|
1567 |
+
#if CPUINFO_ARCH_ARM
|
1568 |
+
return cpuinfo_isa.armv7;
|
1569 |
+
#else
|
1570 |
+
return false;
|
1571 |
+
#endif
|
1572 |
+
}
|
1573 |
+
|
1574 |
+
static inline bool cpuinfo_has_arm_v7mp(void) {
|
1575 |
+
#if CPUINFO_ARCH_ARM
|
1576 |
+
return cpuinfo_isa.armv7mp;
|
1577 |
+
#else
|
1578 |
+
return false;
|
1579 |
+
#endif
|
1580 |
+
}
|
1581 |
+
|
1582 |
+
static inline bool cpuinfo_has_arm_v8(void) {
|
1583 |
+
#if CPUINFO_ARCH_ARM64
|
1584 |
+
return true;
|
1585 |
+
#elif CPUINFO_ARCH_ARM
|
1586 |
+
return cpuinfo_isa.armv8;
|
1587 |
+
#else
|
1588 |
+
return false;
|
1589 |
+
#endif
|
1590 |
+
}
|
1591 |
+
|
1592 |
+
static inline bool cpuinfo_has_arm_idiv(void) {
|
1593 |
+
#if CPUINFO_ARCH_ARM64
|
1594 |
+
return true;
|
1595 |
+
#elif CPUINFO_ARCH_ARM
|
1596 |
+
return cpuinfo_isa.idiv;
|
1597 |
+
#else
|
1598 |
+
return false;
|
1599 |
+
#endif
|
1600 |
+
}
|
1601 |
+
|
1602 |
+
static inline bool cpuinfo_has_arm_vfpv2(void) {
|
1603 |
+
#if CPUINFO_ARCH_ARM
|
1604 |
+
return cpuinfo_isa.vfpv2;
|
1605 |
+
#else
|
1606 |
+
return false;
|
1607 |
+
#endif
|
1608 |
+
}
|
1609 |
+
|
1610 |
+
static inline bool cpuinfo_has_arm_vfpv3(void) {
|
1611 |
+
#if CPUINFO_ARCH_ARM64
|
1612 |
+
return true;
|
1613 |
+
#elif CPUINFO_ARCH_ARM
|
1614 |
+
return cpuinfo_isa.vfpv3;
|
1615 |
+
#else
|
1616 |
+
return false;
|
1617 |
+
#endif
|
1618 |
+
}
|
1619 |
+
|
1620 |
+
static inline bool cpuinfo_has_arm_vfpv3_d32(void) {
|
1621 |
+
#if CPUINFO_ARCH_ARM64
|
1622 |
+
return true;
|
1623 |
+
#elif CPUINFO_ARCH_ARM
|
1624 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.d32;
|
1625 |
+
#else
|
1626 |
+
return false;
|
1627 |
+
#endif
|
1628 |
+
}
|
1629 |
+
|
1630 |
+
static inline bool cpuinfo_has_arm_vfpv3_fp16(void) {
|
1631 |
+
#if CPUINFO_ARCH_ARM64
|
1632 |
+
return true;
|
1633 |
+
#elif CPUINFO_ARCH_ARM
|
1634 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.fp16;
|
1635 |
+
#else
|
1636 |
+
return false;
|
1637 |
+
#endif
|
1638 |
+
}
|
1639 |
+
|
1640 |
+
static inline bool cpuinfo_has_arm_vfpv3_fp16_d32(void) {
|
1641 |
+
#if CPUINFO_ARCH_ARM64
|
1642 |
+
return true;
|
1643 |
+
#elif CPUINFO_ARCH_ARM
|
1644 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.fp16 && cpuinfo_isa.d32;
|
1645 |
+
#else
|
1646 |
+
return false;
|
1647 |
+
#endif
|
1648 |
+
}
|
1649 |
+
|
1650 |
+
static inline bool cpuinfo_has_arm_vfpv4(void) {
|
1651 |
+
#if CPUINFO_ARCH_ARM64
|
1652 |
+
return true;
|
1653 |
+
#elif CPUINFO_ARCH_ARM
|
1654 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.fma;
|
1655 |
+
#else
|
1656 |
+
return false;
|
1657 |
+
#endif
|
1658 |
+
}
|
1659 |
+
|
1660 |
+
static inline bool cpuinfo_has_arm_vfpv4_d32(void) {
|
1661 |
+
#if CPUINFO_ARCH_ARM64
|
1662 |
+
return true;
|
1663 |
+
#elif CPUINFO_ARCH_ARM
|
1664 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.fma && cpuinfo_isa.d32;
|
1665 |
+
#else
|
1666 |
+
return false;
|
1667 |
+
#endif
|
1668 |
+
}
|
1669 |
+
|
1670 |
+
static inline bool cpuinfo_has_arm_fp16_arith(void) {
|
1671 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1672 |
+
return cpuinfo_isa.fp16arith;
|
1673 |
+
#else
|
1674 |
+
return false;
|
1675 |
+
#endif
|
1676 |
+
}
|
1677 |
+
|
1678 |
+
static inline bool cpuinfo_has_arm_bf16(void) {
|
1679 |
+
#if CPUINFO_ARCH_ARM64
|
1680 |
+
return cpuinfo_isa.bf16;
|
1681 |
+
#else
|
1682 |
+
return false;
|
1683 |
+
#endif
|
1684 |
+
}
|
1685 |
+
|
1686 |
+
static inline bool cpuinfo_has_arm_wmmx(void) {
|
1687 |
+
#if CPUINFO_ARCH_ARM
|
1688 |
+
return cpuinfo_isa.wmmx;
|
1689 |
+
#else
|
1690 |
+
return false;
|
1691 |
+
#endif
|
1692 |
+
}
|
1693 |
+
|
1694 |
+
static inline bool cpuinfo_has_arm_wmmx2(void) {
|
1695 |
+
#if CPUINFO_ARCH_ARM
|
1696 |
+
return cpuinfo_isa.wmmx2;
|
1697 |
+
#else
|
1698 |
+
return false;
|
1699 |
+
#endif
|
1700 |
+
}
|
1701 |
+
|
1702 |
+
static inline bool cpuinfo_has_arm_neon(void) {
|
1703 |
+
#if CPUINFO_ARCH_ARM64
|
1704 |
+
return true;
|
1705 |
+
#elif CPUINFO_ARCH_ARM
|
1706 |
+
return cpuinfo_isa.neon;
|
1707 |
+
#else
|
1708 |
+
return false;
|
1709 |
+
#endif
|
1710 |
+
}
|
1711 |
+
|
1712 |
+
static inline bool cpuinfo_has_arm_neon_fp16(void) {
|
1713 |
+
#if CPUINFO_ARCH_ARM64
|
1714 |
+
return true;
|
1715 |
+
#elif CPUINFO_ARCH_ARM
|
1716 |
+
return cpuinfo_isa.neon && cpuinfo_isa.fp16;
|
1717 |
+
#else
|
1718 |
+
return false;
|
1719 |
+
#endif
|
1720 |
+
}
|
1721 |
+
|
1722 |
+
static inline bool cpuinfo_has_arm_neon_fma(void) {
|
1723 |
+
#if CPUINFO_ARCH_ARM64
|
1724 |
+
return true;
|
1725 |
+
#elif CPUINFO_ARCH_ARM
|
1726 |
+
return cpuinfo_isa.neon && cpuinfo_isa.fma;
|
1727 |
+
#else
|
1728 |
+
return false;
|
1729 |
+
#endif
|
1730 |
+
}
|
1731 |
+
|
1732 |
+
static inline bool cpuinfo_has_arm_neon_v8(void) {
|
1733 |
+
#if CPUINFO_ARCH_ARM64
|
1734 |
+
return true;
|
1735 |
+
#elif CPUINFO_ARCH_ARM
|
1736 |
+
return cpuinfo_isa.neon && cpuinfo_isa.armv8;
|
1737 |
+
#else
|
1738 |
+
return false;
|
1739 |
+
#endif
|
1740 |
+
}
|
1741 |
+
|
1742 |
+
static inline bool cpuinfo_has_arm_atomics(void) {
|
1743 |
+
#if CPUINFO_ARCH_ARM64
|
1744 |
+
return cpuinfo_isa.atomics;
|
1745 |
+
#else
|
1746 |
+
return false;
|
1747 |
+
#endif
|
1748 |
+
}
|
1749 |
+
|
1750 |
+
static inline bool cpuinfo_has_arm_neon_rdm(void) {
|
1751 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1752 |
+
return cpuinfo_isa.rdm;
|
1753 |
+
#else
|
1754 |
+
return false;
|
1755 |
+
#endif
|
1756 |
+
}
|
1757 |
+
|
1758 |
+
static inline bool cpuinfo_has_arm_neon_fp16_arith(void) {
|
1759 |
+
#if CPUINFO_ARCH_ARM
|
1760 |
+
return cpuinfo_isa.neon && cpuinfo_isa.fp16arith;
|
1761 |
+
#elif CPUINFO_ARCH_ARM64
|
1762 |
+
return cpuinfo_isa.fp16arith;
|
1763 |
+
#else
|
1764 |
+
return false;
|
1765 |
+
#endif
|
1766 |
+
}
|
1767 |
+
|
1768 |
+
static inline bool cpuinfo_has_arm_fhm(void) {
|
1769 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1770 |
+
return cpuinfo_isa.fhm;
|
1771 |
+
#else
|
1772 |
+
return false;
|
1773 |
+
#endif
|
1774 |
+
}
|
1775 |
+
|
1776 |
+
static inline bool cpuinfo_has_arm_neon_dot(void) {
|
1777 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1778 |
+
return cpuinfo_isa.dot;
|
1779 |
+
#else
|
1780 |
+
return false;
|
1781 |
+
#endif
|
1782 |
+
}
|
1783 |
+
|
1784 |
+
static inline bool cpuinfo_has_arm_neon_bf16(void) {
|
1785 |
+
#if CPUINFO_ARCH_ARM64
|
1786 |
+
return cpuinfo_isa.bf16;
|
1787 |
+
#else
|
1788 |
+
return false;
|
1789 |
+
#endif
|
1790 |
+
}
|
1791 |
+
|
1792 |
+
static inline bool cpuinfo_has_arm_jscvt(void) {
|
1793 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1794 |
+
return cpuinfo_isa.jscvt;
|
1795 |
+
#else
|
1796 |
+
return false;
|
1797 |
+
#endif
|
1798 |
+
}
|
1799 |
+
|
1800 |
+
static inline bool cpuinfo_has_arm_fcma(void) {
|
1801 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1802 |
+
return cpuinfo_isa.fcma;
|
1803 |
+
#else
|
1804 |
+
return false;
|
1805 |
+
#endif
|
1806 |
+
}
|
1807 |
+
|
1808 |
+
static inline bool cpuinfo_has_arm_i8mm(void) {
|
1809 |
+
#if CPUINFO_ARCH_ARM64
|
1810 |
+
return cpuinfo_isa.i8mm;
|
1811 |
+
#else
|
1812 |
+
return false;
|
1813 |
+
#endif
|
1814 |
+
}
|
1815 |
+
|
1816 |
+
static inline bool cpuinfo_has_arm_aes(void) {
|
1817 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1818 |
+
return cpuinfo_isa.aes;
|
1819 |
+
#else
|
1820 |
+
return false;
|
1821 |
+
#endif
|
1822 |
+
}
|
1823 |
+
|
1824 |
+
static inline bool cpuinfo_has_arm_sha1(void) {
|
1825 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1826 |
+
return cpuinfo_isa.sha1;
|
1827 |
+
#else
|
1828 |
+
return false;
|
1829 |
+
#endif
|
1830 |
+
}
|
1831 |
+
|
1832 |
+
static inline bool cpuinfo_has_arm_sha2(void) {
|
1833 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1834 |
+
return cpuinfo_isa.sha2;
|
1835 |
+
#else
|
1836 |
+
return false;
|
1837 |
+
#endif
|
1838 |
+
}
|
1839 |
+
|
1840 |
+
static inline bool cpuinfo_has_arm_pmull(void) {
|
1841 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1842 |
+
return cpuinfo_isa.pmull;
|
1843 |
+
#else
|
1844 |
+
return false;
|
1845 |
+
#endif
|
1846 |
+
}
|
1847 |
+
|
1848 |
+
static inline bool cpuinfo_has_arm_crc32(void) {
|
1849 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1850 |
+
return cpuinfo_isa.crc32;
|
1851 |
+
#else
|
1852 |
+
return false;
|
1853 |
+
#endif
|
1854 |
+
}
|
1855 |
+
|
1856 |
+
static inline bool cpuinfo_has_arm_sve(void) {
|
1857 |
+
#if CPUINFO_ARCH_ARM64
|
1858 |
+
return cpuinfo_isa.sve;
|
1859 |
+
#else
|
1860 |
+
return false;
|
1861 |
+
#endif
|
1862 |
+
}
|
1863 |
+
|
1864 |
+
static inline bool cpuinfo_has_arm_sve_bf16(void) {
|
1865 |
+
#if CPUINFO_ARCH_ARM64
|
1866 |
+
return cpuinfo_isa.sve && cpuinfo_isa.bf16;
|
1867 |
+
#else
|
1868 |
+
return false;
|
1869 |
+
#endif
|
1870 |
+
}
|
1871 |
+
|
1872 |
+
static inline bool cpuinfo_has_arm_sve2(void) {
|
1873 |
+
#if CPUINFO_ARCH_ARM64
|
1874 |
+
return cpuinfo_isa.sve2;
|
1875 |
+
#else
|
1876 |
+
return false;
|
1877 |
+
#endif
|
1878 |
+
}
|
1879 |
+
|
1880 |
+
const struct cpuinfo_processor* CPUINFO_ABI cpuinfo_get_processors(void);
|
1881 |
+
const struct cpuinfo_core* CPUINFO_ABI cpuinfo_get_cores(void);
|
1882 |
+
const struct cpuinfo_cluster* CPUINFO_ABI cpuinfo_get_clusters(void);
|
1883 |
+
const struct cpuinfo_package* CPUINFO_ABI cpuinfo_get_packages(void);
|
1884 |
+
const struct cpuinfo_uarch_info* CPUINFO_ABI cpuinfo_get_uarchs(void);
|
1885 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1i_caches(void);
|
1886 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1d_caches(void);
|
1887 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l2_caches(void);
|
1888 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l3_caches(void);
|
1889 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l4_caches(void);
|
1890 |
+
|
1891 |
+
const struct cpuinfo_processor* CPUINFO_ABI cpuinfo_get_processor(uint32_t index);
|
1892 |
+
const struct cpuinfo_core* CPUINFO_ABI cpuinfo_get_core(uint32_t index);
|
1893 |
+
const struct cpuinfo_cluster* CPUINFO_ABI cpuinfo_get_cluster(uint32_t index);
|
1894 |
+
const struct cpuinfo_package* CPUINFO_ABI cpuinfo_get_package(uint32_t index);
|
1895 |
+
const struct cpuinfo_uarch_info* CPUINFO_ABI cpuinfo_get_uarch(uint32_t index);
|
1896 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1i_cache(uint32_t index);
|
1897 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1d_cache(uint32_t index);
|
1898 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l2_cache(uint32_t index);
|
1899 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l3_cache(uint32_t index);
|
1900 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l4_cache(uint32_t index);
|
1901 |
+
|
1902 |
+
uint32_t CPUINFO_ABI cpuinfo_get_processors_count(void);
|
1903 |
+
uint32_t CPUINFO_ABI cpuinfo_get_cores_count(void);
|
1904 |
+
uint32_t CPUINFO_ABI cpuinfo_get_clusters_count(void);
|
1905 |
+
uint32_t CPUINFO_ABI cpuinfo_get_packages_count(void);
|
1906 |
+
uint32_t CPUINFO_ABI cpuinfo_get_uarchs_count(void);
|
1907 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l1i_caches_count(void);
|
1908 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l1d_caches_count(void);
|
1909 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l2_caches_count(void);
|
1910 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l3_caches_count(void);
|
1911 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l4_caches_count(void);
|
1912 |
+
|
1913 |
+
/**
|
1914 |
+
* Returns upper bound on cache size.
|
1915 |
+
*/
|
1916 |
+
uint32_t CPUINFO_ABI cpuinfo_get_max_cache_size(void);
|
1917 |
+
|
1918 |
+
/**
|
1919 |
+
* Identify the logical processor that executes the current thread.
|
1920 |
+
*
|
1921 |
+
* There is no guarantee that the thread will stay on the same logical processor for any time.
|
1922 |
+
* Callers should treat the result as only a hint, and be prepared to handle NULL return value.
|
1923 |
+
*/
|
1924 |
+
const struct cpuinfo_processor* CPUINFO_ABI cpuinfo_get_current_processor(void);
|
1925 |
+
|
1926 |
+
/**
|
1927 |
+
* Identify the core that executes the current thread.
|
1928 |
+
*
|
1929 |
+
* There is no guarantee that the thread will stay on the same core for any time.
|
1930 |
+
* Callers should treat the result as only a hint, and be prepared to handle NULL return value.
|
1931 |
+
*/
|
1932 |
+
const struct cpuinfo_core* CPUINFO_ABI cpuinfo_get_current_core(void);
|
1933 |
+
|
1934 |
+
/**
|
1935 |
+
* Identify the microarchitecture index of the core that executes the current thread.
|
1936 |
+
* If the system does not support such identification, the function returns 0.
|
1937 |
+
*
|
1938 |
+
* There is no guarantee that the thread will stay on the same type of core for any time.
|
1939 |
+
* Callers should treat the result as only a hint.
|
1940 |
+
*/
|
1941 |
+
uint32_t CPUINFO_ABI cpuinfo_get_current_uarch_index(void);
|
1942 |
+
|
1943 |
+
/**
|
1944 |
+
* Identify the microarchitecture index of the core that executes the current thread.
|
1945 |
+
* If the system does not support such identification, the function returns the user-specified default value.
|
1946 |
+
*
|
1947 |
+
* There is no guarantee that the thread will stay on the same type of core for any time.
|
1948 |
+
* Callers should treat the result as only a hint.
|
1949 |
+
*/
|
1950 |
+
uint32_t CPUINFO_ABI cpuinfo_get_current_uarch_index_with_default(uint32_t default_uarch_index);
|
1951 |
+
|
1952 |
+
#ifdef __cplusplus
|
1953 |
+
} /* extern "C" */
|
1954 |
+
#endif
|
1955 |
+
|
1956 |
+
#endif /* CPUINFO_H */
|
venv/lib/python3.10/site-packages/torch/include/dnnl.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_H
|
18 |
+
#define DNNL_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_H */
|
venv/lib/python3.10/site-packages/torch/include/dnnl_config.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_CONFIG_H
|
18 |
+
#define DNNL_CONFIG_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_config.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_CONFIG_H */
|
venv/lib/python3.10/site-packages/torch/include/dnnl_debug.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_DEBUG_H
|
18 |
+
#define DNNL_DEBUG_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_debug.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_DEBUG_H */
|
venv/lib/python3.10/site-packages/torch/include/dnnl_ocl.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_OCL_H
|
18 |
+
#define DNNL_OCL_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_ocl.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_OCL_H */
|
venv/lib/python3.10/site-packages/torch/include/dnnl_sycl.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_SYCL_H
|
18 |
+
#define DNNL_SYCL_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_sycl.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_SYCL_H */
|
venv/lib/python3.10/site-packages/torch/include/dnnl_sycl_types.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_SYCL_TYPES_H
|
18 |
+
#define DNNL_SYCL_TYPES_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_sycl_types.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_SYCL_TYPES_H */
|
venv/lib/python3.10/site-packages/torch/include/dnnl_threadpool.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_THREADPOOL_H
|
18 |
+
#define DNNL_THREADPOOL_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_threadpool.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_THREADPOOL_H */
|
venv/lib/python3.10/site-packages/torch/include/dnnl_types.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_TYPES_H
|
18 |
+
#define DNNL_TYPES_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_types.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_TYPES_H */
|
venv/lib/python3.10/site-packages/torch/include/dnnl_version.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_VERSION_H
|
18 |
+
#define DNNL_VERSION_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_version.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_VERSION_H */
|
venv/lib/python3.10/site-packages/torch/include/experiments-config.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright 2023 Google LLC
|
2 |
+
//
|
3 |
+
// This source code is licensed under the BSD-style license found in the
|
4 |
+
// LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <stdbool.h>
|
9 |
+
|
10 |
+
#ifdef __cplusplus
|
11 |
+
extern "C" {
|
12 |
+
#endif
|
13 |
+
|
14 |
+
struct xnn_experiment_config {
|
15 |
+
bool adaptive_avx_optimization;
|
16 |
+
};
|
17 |
+
|
18 |
+
struct xnn_experiment_config* xnn_get_experiment_config();
|
19 |
+
|
20 |
+
void xnn_experiment_enable_adaptive_avx_optimization();
|
21 |
+
|
22 |
+
|
23 |
+
#ifdef __cplusplus
|
24 |
+
} // extern "C"
|
25 |
+
#endif
|
venv/lib/python3.10/site-packages/torch/include/fp16.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#ifndef FP16_H
|
3 |
+
#define FP16_H
|
4 |
+
|
5 |
+
#include <fp16/fp16.h>
|
6 |
+
|
7 |
+
#if defined(PSIMD_H)
|
8 |
+
#include <fp16/psimd.h>
|
9 |
+
#endif
|
10 |
+
|
11 |
+
#endif /* FP16_H */
|
venv/lib/python3.10/site-packages/torch/include/fxdiv.h
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#ifndef FXDIV_H
|
3 |
+
#define FXDIV_H
|
4 |
+
|
5 |
+
#if defined(__cplusplus) && (__cplusplus >= 201103L)
|
6 |
+
#include <cstddef>
|
7 |
+
#include <cstdint>
|
8 |
+
#include <climits>
|
9 |
+
#elif !defined(__OPENCL_VERSION__)
|
10 |
+
#include <stddef.h>
|
11 |
+
#include <stdint.h>
|
12 |
+
#include <limits.h>
|
13 |
+
#endif
|
14 |
+
|
15 |
+
#if defined(_MSC_VER)
|
16 |
+
#include <intrin.h>
|
17 |
+
#if defined(_M_IX86) || defined(_M_X64)
|
18 |
+
#include <immintrin.h>
|
19 |
+
#endif
|
20 |
+
#endif
|
21 |
+
|
22 |
+
#ifndef FXDIV_USE_INLINE_ASSEMBLY
|
23 |
+
#define FXDIV_USE_INLINE_ASSEMBLY 0
|
24 |
+
#endif
|
25 |
+
|
26 |
+
static inline uint64_t fxdiv_mulext_uint32_t(uint32_t a, uint32_t b) {
|
27 |
+
#if defined(_MSC_VER) && defined(_M_IX86)
|
28 |
+
return (uint64_t) __emulu((unsigned int) a, (unsigned int) b);
|
29 |
+
#else
|
30 |
+
return (uint64_t) a * (uint64_t) b;
|
31 |
+
#endif
|
32 |
+
}
|
33 |
+
|
34 |
+
static inline uint32_t fxdiv_mulhi_uint32_t(uint32_t a, uint32_t b) {
|
35 |
+
#if defined(__OPENCL_VERSION__)
|
36 |
+
return mul_hi(a, b);
|
37 |
+
#elif defined(__CUDA_ARCH__)
|
38 |
+
return (uint32_t) __umulhi((unsigned int) a, (unsigned int) b);
|
39 |
+
#elif defined(_MSC_VER) && defined(_M_IX86)
|
40 |
+
return (uint32_t) (__emulu((unsigned int) a, (unsigned int) b) >> 32);
|
41 |
+
#elif defined(_MSC_VER) && defined(_M_ARM)
|
42 |
+
return (uint32_t) _MulUnsignedHigh((unsigned long) a, (unsigned long) b);
|
43 |
+
#else
|
44 |
+
return (uint32_t) (((uint64_t) a * (uint64_t) b) >> 32);
|
45 |
+
#endif
|
46 |
+
}
|
47 |
+
|
48 |
+
static inline uint64_t fxdiv_mulhi_uint64_t(uint64_t a, uint64_t b) {
|
49 |
+
#if defined(__OPENCL_VERSION__)
|
50 |
+
return mul_hi(a, b);
|
51 |
+
#elif defined(__CUDA_ARCH__)
|
52 |
+
return (uint64_t) __umul64hi((unsigned long long) a, (unsigned long long) b);
|
53 |
+
#elif defined(_MSC_VER) && defined(_M_X64)
|
54 |
+
return (uint64_t) __umulh((unsigned __int64) a, (unsigned __int64) b);
|
55 |
+
#elif defined(__GNUC__) && defined(__SIZEOF_INT128__)
|
56 |
+
return (uint64_t) (((((unsigned __int128) a) * ((unsigned __int128) b))) >> 64);
|
57 |
+
#else
|
58 |
+
const uint32_t a_lo = (uint32_t) a;
|
59 |
+
const uint32_t a_hi = (uint32_t) (a >> 32);
|
60 |
+
const uint32_t b_lo = (uint32_t) b;
|
61 |
+
const uint32_t b_hi = (uint32_t) (b >> 32);
|
62 |
+
|
63 |
+
const uint64_t t = fxdiv_mulext_uint32_t(a_hi, b_lo) +
|
64 |
+
(uint64_t) fxdiv_mulhi_uint32_t(a_lo, b_lo);
|
65 |
+
return fxdiv_mulext_uint32_t(a_hi, b_hi) + (t >> 32) +
|
66 |
+
((fxdiv_mulext_uint32_t(a_lo, b_hi) + (uint64_t) (uint32_t) t) >> 32);
|
67 |
+
#endif
|
68 |
+
}
|
69 |
+
|
70 |
+
static inline size_t fxdiv_mulhi_size_t(size_t a, size_t b) {
|
71 |
+
#if SIZE_MAX == UINT32_MAX
|
72 |
+
return (size_t) fxdiv_mulhi_uint32_t((uint32_t) a, (uint32_t) b);
|
73 |
+
#elif SIZE_MAX == UINT64_MAX
|
74 |
+
return (size_t) fxdiv_mulhi_uint64_t((uint64_t) a, (uint64_t) b);
|
75 |
+
#else
|
76 |
+
#error Unsupported platform
|
77 |
+
#endif
|
78 |
+
}
|
79 |
+
|
80 |
+
struct fxdiv_divisor_uint32_t {
|
81 |
+
uint32_t value;
|
82 |
+
uint32_t m;
|
83 |
+
uint8_t s1;
|
84 |
+
uint8_t s2;
|
85 |
+
};
|
86 |
+
|
87 |
+
struct fxdiv_result_uint32_t {
|
88 |
+
uint32_t quotient;
|
89 |
+
uint32_t remainder;
|
90 |
+
};
|
91 |
+
|
92 |
+
struct fxdiv_divisor_uint64_t {
|
93 |
+
uint64_t value;
|
94 |
+
uint64_t m;
|
95 |
+
uint8_t s1;
|
96 |
+
uint8_t s2;
|
97 |
+
};
|
98 |
+
|
99 |
+
struct fxdiv_result_uint64_t {
|
100 |
+
uint64_t quotient;
|
101 |
+
uint64_t remainder;
|
102 |
+
};
|
103 |
+
|
104 |
+
struct fxdiv_divisor_size_t {
|
105 |
+
size_t value;
|
106 |
+
size_t m;
|
107 |
+
uint8_t s1;
|
108 |
+
uint8_t s2;
|
109 |
+
};
|
110 |
+
|
111 |
+
struct fxdiv_result_size_t {
|
112 |
+
size_t quotient;
|
113 |
+
size_t remainder;
|
114 |
+
};
|
115 |
+
|
116 |
+
static inline struct fxdiv_divisor_uint32_t fxdiv_init_uint32_t(uint32_t d) {
|
117 |
+
struct fxdiv_divisor_uint32_t result = { d };
|
118 |
+
if (d == 1) {
|
119 |
+
result.m = UINT32_C(1);
|
120 |
+
result.s1 = 0;
|
121 |
+
result.s2 = 0;
|
122 |
+
} else {
|
123 |
+
#if defined(__OPENCL_VERSION__)
|
124 |
+
const uint32_t l_minus_1 = 31 - clz(d - 1);
|
125 |
+
#elif defined(__CUDA_ARCH__)
|
126 |
+
const uint32_t l_minus_1 = 31 - __clz((int) (d - 1));
|
127 |
+
#elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM) || defined(_M_ARM64))
|
128 |
+
unsigned long l_minus_1;
|
129 |
+
_BitScanReverse(&l_minus_1, (unsigned long) (d - 1));
|
130 |
+
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && FXDIV_USE_INLINE_ASSEMBLY
|
131 |
+
uint32_t l_minus_1;
|
132 |
+
__asm__("BSRL %[d_minus_1], %[l_minus_1]"
|
133 |
+
: [l_minus_1] "=r" (l_minus_1)
|
134 |
+
: [d_minus_1] "r" (d - 1)
|
135 |
+
: "cc");
|
136 |
+
#elif defined(__GNUC__)
|
137 |
+
const uint32_t l_minus_1 = 31 - __builtin_clz(d - 1);
|
138 |
+
#else
|
139 |
+
/* Based on Algorithm 2 from Hacker's delight */
|
140 |
+
|
141 |
+
uint32_t l_minus_1 = 0;
|
142 |
+
uint32_t x = d - 1;
|
143 |
+
uint32_t y = x >> 16;
|
144 |
+
if (y != 0) {
|
145 |
+
l_minus_1 += 16;
|
146 |
+
x = y;
|
147 |
+
}
|
148 |
+
y = x >> 8;
|
149 |
+
if (y != 0) {
|
150 |
+
l_minus_1 += 8;
|
151 |
+
x = y;
|
152 |
+
}
|
153 |
+
y = x >> 4;
|
154 |
+
if (y != 0) {
|
155 |
+
l_minus_1 += 4;
|
156 |
+
x = y;
|
157 |
+
}
|
158 |
+
y = x >> 2;
|
159 |
+
if (y != 0) {
|
160 |
+
l_minus_1 += 2;
|
161 |
+
x = y;
|
162 |
+
}
|
163 |
+
if ((x & 2) != 0) {
|
164 |
+
l_minus_1 += 1;
|
165 |
+
}
|
166 |
+
#endif
|
167 |
+
uint32_t u_hi = (UINT32_C(2) << (uint32_t) l_minus_1) - d;
|
168 |
+
|
169 |
+
/* Division of 64-bit number u_hi:UINT32_C(0) by 32-bit number d, 32-bit quotient output q */
|
170 |
+
#if defined(__GNUC__) && defined(__i386__) && FXDIV_USE_INLINE_ASSEMBLY
|
171 |
+
uint32_t q;
|
172 |
+
__asm__("DIVL %[d]"
|
173 |
+
: "=a" (q), "+d" (u_hi)
|
174 |
+
: [d] "r" (d), "a" (0)
|
175 |
+
: "cc");
|
176 |
+
#elif (defined(_MSC_VER) && _MSC_VER >= 1920) && !defined(__clang__) && !defined(__INTEL_COMPILER) && (defined(_M_IX86) || defined(_M_X64))
|
177 |
+
unsigned int remainder;
|
178 |
+
const uint32_t q = (uint32_t) _udiv64((unsigned __int64) ((uint64_t) u_hi << 32), (unsigned int) d, &remainder);
|
179 |
+
#else
|
180 |
+
const uint32_t q = ((uint64_t) u_hi << 32) / d;
|
181 |
+
#endif
|
182 |
+
|
183 |
+
result.m = q + UINT32_C(1);
|
184 |
+
result.s1 = 1;
|
185 |
+
result.s2 = (uint8_t) l_minus_1;
|
186 |
+
}
|
187 |
+
return result;
|
188 |
+
}
|
189 |
+
|
190 |
+
static inline struct fxdiv_divisor_uint64_t fxdiv_init_uint64_t(uint64_t d) {
|
191 |
+
struct fxdiv_divisor_uint64_t result = { d };
|
192 |
+
if (d == 1) {
|
193 |
+
result.m = UINT64_C(1);
|
194 |
+
result.s1 = 0;
|
195 |
+
result.s2 = 0;
|
196 |
+
} else {
|
197 |
+
#if defined(__OPENCL_VERSION__)
|
198 |
+
const uint32_t nlz_d = clz(d);
|
199 |
+
const uint32_t l_minus_1 = 63 - clz(d - 1);
|
200 |
+
#elif defined(__CUDA_ARCH__)
|
201 |
+
const uint32_t nlz_d = __clzll((long long) d);
|
202 |
+
const uint32_t l_minus_1 = 63 - __clzll((long long) (d - 1));
|
203 |
+
#elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_ARM64))
|
204 |
+
unsigned long l_minus_1;
|
205 |
+
_BitScanReverse64(&l_minus_1, (unsigned __int64) (d - 1));
|
206 |
+
unsigned long bsr_d;
|
207 |
+
_BitScanReverse64(&bsr_d, (unsigned __int64) d);
|
208 |
+
const uint32_t nlz_d = bsr_d ^ 0x3F;
|
209 |
+
#elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_ARM))
|
210 |
+
const uint64_t d_minus_1 = d - 1;
|
211 |
+
const uint8_t d_is_power_of_2 = (d & d_minus_1) == 0;
|
212 |
+
unsigned long l_minus_1;
|
213 |
+
if ((uint32_t) (d_minus_1 >> 32) == 0) {
|
214 |
+
_BitScanReverse(&l_minus_1, (unsigned long) d_minus_1);
|
215 |
+
} else {
|
216 |
+
_BitScanReverse(&l_minus_1, (unsigned long) (uint32_t) (d_minus_1 >> 32));
|
217 |
+
l_minus_1 += 32;
|
218 |
+
}
|
219 |
+
const uint32_t nlz_d = ((uint8_t) l_minus_1 ^ UINT8_C(0x3F)) - d_is_power_of_2;
|
220 |
+
#elif defined(__GNUC__) && defined(__x86_64__) && FXDIV_USE_INLINE_ASSEMBLY
|
221 |
+
uint64_t l_minus_1;
|
222 |
+
__asm__("BSRQ %[d_minus_1], %[l_minus_1]"
|
223 |
+
: [l_minus_1] "=r" (l_minus_1)
|
224 |
+
: [d_minus_1] "r" (d - 1)
|
225 |
+
: "cc");
|
226 |
+
#elif defined(__GNUC__)
|
227 |
+
const uint32_t l_minus_1 = 63 - __builtin_clzll(d - 1);
|
228 |
+
const uint32_t nlz_d = __builtin_clzll(d);
|
229 |
+
#else
|
230 |
+
/* Based on Algorithm 2 from Hacker's delight */
|
231 |
+
const uint64_t d_minus_1 = d - 1;
|
232 |
+
const uint32_t d_is_power_of_2 = (d & d_minus_1) == 0;
|
233 |
+
uint32_t l_minus_1 = 0;
|
234 |
+
uint32_t x = (uint32_t) d_minus_1;
|
235 |
+
uint32_t y = d_minus_1 >> 32;
|
236 |
+
if (y != 0) {
|
237 |
+
l_minus_1 += 32;
|
238 |
+
x = y;
|
239 |
+
}
|
240 |
+
y = x >> 16;
|
241 |
+
if (y != 0) {
|
242 |
+
l_minus_1 += 16;
|
243 |
+
x = y;
|
244 |
+
}
|
245 |
+
y = x >> 8;
|
246 |
+
if (y != 0) {
|
247 |
+
l_minus_1 += 8;
|
248 |
+
x = y;
|
249 |
+
}
|
250 |
+
y = x >> 4;
|
251 |
+
if (y != 0) {
|
252 |
+
l_minus_1 += 4;
|
253 |
+
x = y;
|
254 |
+
}
|
255 |
+
y = x >> 2;
|
256 |
+
if (y != 0) {
|
257 |
+
l_minus_1 += 2;
|
258 |
+
x = y;
|
259 |
+
}
|
260 |
+
if ((x & 2) != 0) {
|
261 |
+
l_minus_1 += 1;
|
262 |
+
}
|
263 |
+
const uint32_t nlz_d = (l_minus_1 ^ UINT32_C(0x3F)) - d_is_power_of_2;
|
264 |
+
#endif
|
265 |
+
uint64_t u_hi = (UINT64_C(2) << (uint32_t) l_minus_1) - d;
|
266 |
+
|
267 |
+
/* Division of 128-bit number u_hi:UINT64_C(0) by 64-bit number d, 64-bit quotient output q */
|
268 |
+
#if defined(__GNUC__) && defined(__x86_64__) && FXDIV_USE_INLINE_ASSEMBLY
|
269 |
+
uint64_t q;
|
270 |
+
__asm__("DIVQ %[d]"
|
271 |
+
: "=a" (q), "+d" (u_hi)
|
272 |
+
: [d] "r" (d), "a" (UINT64_C(0))
|
273 |
+
: "cc");
|
274 |
+
#elif 0 && defined(__GNUC__) && defined(__SIZEOF_INT128__)
|
275 |
+
/* GCC, Clang, and Intel Compiler fail to inline optimized implementation and call into support library for 128-bit division */
|
276 |
+
const uint64_t q = (uint64_t) (((unsigned __int128) u_hi << 64) / ((unsigned __int128) d));
|
277 |
+
#elif (defined(_MSC_VER) && _MSC_VER >= 1920) && !defined(__clang__) && !defined(__INTEL_COMPILER) && defined(_M_X64)
|
278 |
+
unsigned __int64 remainder;
|
279 |
+
const uint64_t q = (uint64_t) _udiv128((unsigned __int64) u_hi, 0, (unsigned __int64) d, &remainder);
|
280 |
+
#else
|
281 |
+
/* Implementation based on code from Hacker's delight */
|
282 |
+
|
283 |
+
/* Normalize divisor and shift divident left */
|
284 |
+
d <<= nlz_d;
|
285 |
+
u_hi <<= nlz_d;
|
286 |
+
/* Break divisor up into two 32-bit digits */
|
287 |
+
const uint64_t d_hi = (uint32_t) (d >> 32);
|
288 |
+
const uint32_t d_lo = (uint32_t) d;
|
289 |
+
|
290 |
+
/* Compute the first quotient digit, q1 */
|
291 |
+
uint64_t q1 = u_hi / d_hi;
|
292 |
+
uint64_t r1 = u_hi - q1 * d_hi;
|
293 |
+
|
294 |
+
while ((q1 >> 32) != 0 || fxdiv_mulext_uint32_t((uint32_t) q1, d_lo) > (r1 << 32)) {
|
295 |
+
q1 -= 1;
|
296 |
+
r1 += d_hi;
|
297 |
+
if ((r1 >> 32) != 0) {
|
298 |
+
break;
|
299 |
+
}
|
300 |
+
}
|
301 |
+
|
302 |
+
/* Multiply and subtract. */
|
303 |
+
u_hi = (u_hi << 32) - q1 * d;
|
304 |
+
|
305 |
+
/* Compute the second quotient digit, q0 */
|
306 |
+
uint64_t q0 = u_hi / d_hi;
|
307 |
+
uint64_t r0 = u_hi - q0 * d_hi;
|
308 |
+
|
309 |
+
while ((q0 >> 32) != 0 || fxdiv_mulext_uint32_t((uint32_t) q0, d_lo) > (r0 << 32)) {
|
310 |
+
q0 -= 1;
|
311 |
+
r0 += d_hi;
|
312 |
+
if ((r0 >> 32) != 0) {
|
313 |
+
break;
|
314 |
+
}
|
315 |
+
}
|
316 |
+
const uint64_t q = (q1 << 32) | (uint32_t) q0;
|
317 |
+
#endif
|
318 |
+
result.m = q + UINT64_C(1);
|
319 |
+
result.s1 = 1;
|
320 |
+
result.s2 = (uint8_t) l_minus_1;
|
321 |
+
}
|
322 |
+
return result;
|
323 |
+
}
|
324 |
+
|
325 |
+
static inline struct fxdiv_divisor_size_t fxdiv_init_size_t(size_t d) {
|
326 |
+
#if SIZE_MAX == UINT32_MAX
|
327 |
+
const struct fxdiv_divisor_uint32_t uint_result = fxdiv_init_uint32_t((uint32_t) d);
|
328 |
+
#elif SIZE_MAX == UINT64_MAX
|
329 |
+
const struct fxdiv_divisor_uint64_t uint_result = fxdiv_init_uint64_t((uint64_t) d);
|
330 |
+
#else
|
331 |
+
#error Unsupported platform
|
332 |
+
#endif
|
333 |
+
struct fxdiv_divisor_size_t size_result = {
|
334 |
+
(size_t) uint_result.value,
|
335 |
+
(size_t) uint_result.m,
|
336 |
+
uint_result.s1,
|
337 |
+
uint_result.s2
|
338 |
+
};
|
339 |
+
return size_result;
|
340 |
+
}
|
341 |
+
|
342 |
+
static inline uint32_t fxdiv_quotient_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) {
|
343 |
+
const uint32_t t = fxdiv_mulhi_uint32_t(n, divisor.m);
|
344 |
+
return (t + ((n - t) >> divisor.s1)) >> divisor.s2;
|
345 |
+
}
|
346 |
+
|
347 |
+
static inline uint64_t fxdiv_quotient_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) {
|
348 |
+
const uint64_t t = fxdiv_mulhi_uint64_t(n, divisor.m);
|
349 |
+
return (t + ((n - t) >> divisor.s1)) >> divisor.s2;
|
350 |
+
}
|
351 |
+
|
352 |
+
static inline size_t fxdiv_quotient_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) {
|
353 |
+
#if SIZE_MAX == UINT32_MAX
|
354 |
+
const struct fxdiv_divisor_uint32_t uint32_divisor = {
|
355 |
+
(uint32_t) divisor.value,
|
356 |
+
(uint32_t) divisor.m,
|
357 |
+
divisor.s1,
|
358 |
+
divisor.s2
|
359 |
+
};
|
360 |
+
return fxdiv_quotient_uint32_t((uint32_t) n, uint32_divisor);
|
361 |
+
#elif SIZE_MAX == UINT64_MAX
|
362 |
+
const struct fxdiv_divisor_uint64_t uint64_divisor = {
|
363 |
+
(uint64_t) divisor.value,
|
364 |
+
(uint64_t) divisor.m,
|
365 |
+
divisor.s1,
|
366 |
+
divisor.s2
|
367 |
+
};
|
368 |
+
return fxdiv_quotient_uint64_t((uint64_t) n, uint64_divisor);
|
369 |
+
#else
|
370 |
+
#error Unsupported platform
|
371 |
+
#endif
|
372 |
+
}
|
373 |
+
|
374 |
+
static inline uint32_t fxdiv_remainder_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) {
|
375 |
+
const uint32_t quotient = fxdiv_quotient_uint32_t(n, divisor);
|
376 |
+
return n - quotient * divisor.value;
|
377 |
+
}
|
378 |
+
|
379 |
+
static inline uint64_t fxdiv_remainder_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) {
|
380 |
+
const uint64_t quotient = fxdiv_quotient_uint64_t(n, divisor);
|
381 |
+
return n - quotient * divisor.value;
|
382 |
+
}
|
383 |
+
|
384 |
+
static inline size_t fxdiv_remainder_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) {
|
385 |
+
const size_t quotient = fxdiv_quotient_size_t(n, divisor);
|
386 |
+
return n - quotient * divisor.value;
|
387 |
+
}
|
388 |
+
|
389 |
+
static inline uint32_t fxdiv_round_down_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t granularity) {
|
390 |
+
const uint32_t quotient = fxdiv_quotient_uint32_t(n, granularity);
|
391 |
+
return quotient * granularity.value;
|
392 |
+
}
|
393 |
+
|
394 |
+
static inline uint64_t fxdiv_round_down_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t granularity) {
|
395 |
+
const uint64_t quotient = fxdiv_quotient_uint64_t(n, granularity);
|
396 |
+
return quotient * granularity.value;
|
397 |
+
}
|
398 |
+
|
399 |
+
static inline size_t fxdiv_round_down_size_t(size_t n, const struct fxdiv_divisor_size_t granularity) {
|
400 |
+
const size_t quotient = fxdiv_quotient_size_t(n, granularity);
|
401 |
+
return quotient * granularity.value;
|
402 |
+
}
|
403 |
+
|
404 |
+
static inline struct fxdiv_result_uint32_t fxdiv_divide_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) {
|
405 |
+
const uint32_t quotient = fxdiv_quotient_uint32_t(n, divisor);
|
406 |
+
const uint32_t remainder = n - quotient * divisor.value;
|
407 |
+
struct fxdiv_result_uint32_t result = { quotient, remainder };
|
408 |
+
return result;
|
409 |
+
}
|
410 |
+
|
411 |
+
static inline struct fxdiv_result_uint64_t fxdiv_divide_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) {
|
412 |
+
const uint64_t quotient = fxdiv_quotient_uint64_t(n, divisor);
|
413 |
+
const uint64_t remainder = n - quotient * divisor.value;
|
414 |
+
struct fxdiv_result_uint64_t result = { quotient, remainder };
|
415 |
+
return result;
|
416 |
+
}
|
417 |
+
|
418 |
+
static inline struct fxdiv_result_size_t fxdiv_divide_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) {
|
419 |
+
const size_t quotient = fxdiv_quotient_size_t(n, divisor);
|
420 |
+
const size_t remainder = n - quotient * divisor.value;
|
421 |
+
struct fxdiv_result_size_t result = { quotient, remainder };
|
422 |
+
return result;
|
423 |
+
}
|
424 |
+
|
425 |
+
#endif /* FXDIV_H */
|
venv/lib/python3.10/site-packages/torch/include/libshm.h
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/MapAllocator.h>
|
4 |
+
|
5 |
+
#ifdef __cplusplus
|
6 |
+
|
7 |
+
void libshm_init(const char* manager_exec_path);
|
8 |
+
|
9 |
+
// Superclass to run a constructor before at::RefcountedMapAllocator
|
10 |
+
class THManagedMapAllocatorInit {
|
11 |
+
protected:
|
12 |
+
THManagedMapAllocatorInit(const char* manager_handle, const char* filename);
|
13 |
+
std::string manager_handle_;
|
14 |
+
};
|
15 |
+
|
16 |
+
// Like a at::RefcountedMapAllocator, but it also makes use of an external
|
17 |
+
// shared memory manager process to ensure that shared memory regions actually
|
18 |
+
// get freed in the end (even if processes lose the memory).
|
19 |
+
class THManagedMapAllocator : private THManagedMapAllocatorInit,
|
20 |
+
public at::RefcountedMapAllocator {
|
21 |
+
public:
|
22 |
+
THManagedMapAllocator(
|
23 |
+
const char* manager_handle,
|
24 |
+
const char* filename,
|
25 |
+
int flags,
|
26 |
+
size_t size);
|
27 |
+
|
28 |
+
void close() override;
|
29 |
+
|
30 |
+
~THManagedMapAllocator() override {
|
31 |
+
close();
|
32 |
+
}
|
33 |
+
|
34 |
+
static at::DataPtr makeDataPtr(
|
35 |
+
const char* manager_handle,
|
36 |
+
const char* filename,
|
37 |
+
int flags,
|
38 |
+
size_t size);
|
39 |
+
static THManagedMapAllocator* fromDataPtr(const at::DataPtr&);
|
40 |
+
|
41 |
+
const char* manager_handle() const {
|
42 |
+
return manager_handle_.c_str();
|
43 |
+
}
|
44 |
+
};
|
45 |
+
|
46 |
+
#endif
|
venv/lib/python3.10/site-packages/torch/include/nnpack.h
ADDED
@@ -0,0 +1,659 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <stddef.h>
|
4 |
+
#include <stdint.h>
|
5 |
+
#include <stdbool.h>
|
6 |
+
|
7 |
+
#include <pthreadpool.h>
|
8 |
+
|
9 |
+
#ifdef __cplusplus
|
10 |
+
extern "C" {
|
11 |
+
#endif
|
12 |
+
|
13 |
+
/**
|
14 |
+
* @brief Status code for any NNPACK function call.
|
15 |
+
*/
|
16 |
+
enum nnp_status {
|
17 |
+
/** The call succeeded, and all output arguments now contain valid data. */
|
18 |
+
nnp_status_success = 0,
|
19 |
+
/** NNPACK function was called with batch_size == 0. */
|
20 |
+
nnp_status_invalid_batch_size = 2,
|
21 |
+
/** NNPACK function was called with channels == 0. */
|
22 |
+
nnp_status_invalid_channels = 3,
|
23 |
+
/** NNPACK function was called with input_channels == 0. */
|
24 |
+
nnp_status_invalid_input_channels = 4,
|
25 |
+
/** NNPACK function was called with output_channels == 0. */
|
26 |
+
nnp_status_invalid_output_channels = 5,
|
27 |
+
/** NNPACK function was called with input_size.height == 0 or input_size.width == 0 */
|
28 |
+
nnp_status_invalid_input_size = 10,
|
29 |
+
/** NNPACK function was called with input_stride.height == 0 or input_stride.width == 0 */
|
30 |
+
nnp_status_invalid_input_stride = 11,
|
31 |
+
/** NNPACK function was called with input_padding not less than respective kernel (or pooling) size, i.e.:
|
32 |
+
*
|
33 |
+
* - input_padding.left >= kernel_size.width (>= pooling_size.width)
|
34 |
+
* - input_padding.right >= kernel_size.width (>= pooling_size.width)
|
35 |
+
* - input_padding.top >= kernel_size.height (>= pooling_size.height)
|
36 |
+
* - input_padding.bottom >= kernel_size.height (>= pooling_size.height)
|
37 |
+
*/
|
38 |
+
nnp_status_invalid_input_padding = 12,
|
39 |
+
/** NNPACK function was called with kernel_size.height == 0 or kernel_size.width == 0 */
|
40 |
+
nnp_status_invalid_kernel_size = 13,
|
41 |
+
/** NNPACK function was called with pooling_size.height == 0 or pooling_size.width == 0 */
|
42 |
+
nnp_status_invalid_pooling_size = 14,
|
43 |
+
/** NNPACK function was called with pooling_stride.height == 0 or pooling_stride.width == 0 */
|
44 |
+
nnp_status_invalid_pooling_stride = 15,
|
45 |
+
/** NNPACK function was called with convolution algorithm not in nnp_convolution_algorithm enumeration */
|
46 |
+
nnp_status_invalid_algorithm = 16,
|
47 |
+
/** NNPACK function was called with convolution transform strategy not in nnp_convolution_transform_strategy enum */
|
48 |
+
nnp_status_invalid_transform_strategy = 17,
|
49 |
+
/** NNPACK function was called with output_subsampling.height == 0 or output_subsampling.width == 0 */
|
50 |
+
nnp_status_invalid_output_subsampling = 13,
|
51 |
+
/** NNPACK function was called with activation not in nnp_activation enum */
|
52 |
+
nnp_status_invalid_activation = 14,
|
53 |
+
/** NNPACK function was called with invalid activation parameters */
|
54 |
+
nnp_status_invalid_activation_parameters = 15,
|
55 |
+
|
56 |
+
/** NNPACK does not support the particular input size for the function */
|
57 |
+
nnp_status_unsupported_input_size = 20,
|
58 |
+
/** NNPACK does not support the particular input stride for the function */
|
59 |
+
nnp_status_unsupported_input_stride = 21,
|
60 |
+
/** NNPACK does not support the particular input padding for the function */
|
61 |
+
nnp_status_unsupported_input_padding = 22,
|
62 |
+
/** NNPACK does not support the particular kernel size for the function */
|
63 |
+
nnp_status_unsupported_kernel_size = 23,
|
64 |
+
/** NNPACK does not support the particular pooling size for the function */
|
65 |
+
nnp_status_unsupported_pooling_size = 24,
|
66 |
+
/** NNPACK does not support the particular pooling stride for the function */
|
67 |
+
nnp_status_unsupported_pooling_stride = 25,
|
68 |
+
/** NNPACK does not support the particular convolution algorithm for the function */
|
69 |
+
nnp_status_unsupported_algorithm = 26,
|
70 |
+
/** NNPACK does not support the particular convolution transform strategy for the algorithm */
|
71 |
+
nnp_status_unsupported_transform_strategy = 27,
|
72 |
+
/** NNPACK does not support the particular activation function for the function */
|
73 |
+
nnp_status_unsupported_activation = 28,
|
74 |
+
/** NNPACK does not support the particular activation function parameters for the function */
|
75 |
+
nnp_status_unsupported_activation_parameters = 29,
|
76 |
+
|
77 |
+
/** NNPACK function was called before the library was initialized */
|
78 |
+
nnp_status_uninitialized = 50,
|
79 |
+
/** NNPACK does not implement this function for the host CPU */
|
80 |
+
nnp_status_unsupported_hardware = 51,
|
81 |
+
/** NNPACK failed to allocate memory for temporary buffers */
|
82 |
+
nnp_status_out_of_memory = 52,
|
83 |
+
/** Scratch space buffer is too small */
|
84 |
+
nnp_status_insufficient_buffer = 53,
|
85 |
+
/** Scratch space buffer is not properly aligned */
|
86 |
+
nnp_status_misaligned_buffer = 54
|
87 |
+
};
|
88 |
+
|
89 |
+
/**
|
90 |
+
* @brief Activation applied applied after a convolutional or fully-connected layer.
|
91 |
+
*/
|
92 |
+
enum nnp_activation {
|
93 |
+
/** Identity activation f(x) := x, i.e. no transformation */
|
94 |
+
nnp_activation_identity = 0,
|
95 |
+
/** ReLU activation f(x) := max(0, x) */
|
96 |
+
nnp_activation_relu = 1,
|
97 |
+
};
|
98 |
+
|
99 |
+
/**
|
100 |
+
* @brief Algorithm for computing convolutional layers.
|
101 |
+
*/
|
102 |
+
enum nnp_convolution_algorithm {
|
103 |
+
/** Let NNPACK choose the algorithm depending on layer parameters */
|
104 |
+
nnp_convolution_algorithm_auto = 0,
|
105 |
+
/** Tiled convolution based on 2D Fourier transform with 8x8 blocks. Supports kernels up to 8x8. */
|
106 |
+
nnp_convolution_algorithm_ft8x8 = 1,
|
107 |
+
/** Tiled convolution based on 2D Fourier transform with 16x16 blocks. Supports kernels up to 16x16. */
|
108 |
+
nnp_convolution_algorithm_ft16x16 = 2,
|
109 |
+
/** Tiled convolution based on 2D Winograd transform F(3x3, 6x6) with 8x8 blocks. Supports only 3x3 kernels. */
|
110 |
+
nnp_convolution_algorithm_wt8x8 = 3,
|
111 |
+
/** Direct convolution via implicit GEMM. */
|
112 |
+
nnp_convolution_algorithm_implicit_gemm = 4,
|
113 |
+
/** Direct convolution implementation. */
|
114 |
+
nnp_convolution_algorithm_direct = 5,
|
115 |
+
/**
|
116 |
+
* Tiled convolution based on 2D Winograd transform F(3x3, 6x6) with 8x8 blocks in FP16.
|
117 |
+
* Supports only 3x3 kernels. Implemented only for new ARM processors (with NEON-HP),
|
118 |
+
* on non-supported processors falls back to nnp_convolution_algorithm_wt8x8.
|
119 |
+
*/
|
120 |
+
nnp_convolution_algorithm_wt8x8_fp16 = 6,
|
121 |
+
};
|
122 |
+
|
123 |
+
enum nnp_convolution_transform_strategy {
|
124 |
+
nnp_convolution_transform_strategy_compute = 1,
|
125 |
+
nnp_convolution_transform_strategy_precompute = 2,
|
126 |
+
nnp_convolution_transform_strategy_reuse = 3
|
127 |
+
};
|
128 |
+
|
129 |
+
/* For backward compatibility */
|
130 |
+
#define nnp_convolution_transform_strategy_block_based nnp_convolution_transform_strategy_compute
|
131 |
+
#define nnp_convolution_transform_strategy_tuple_based nnp_convolution_transform_strategy_compute
|
132 |
+
|
133 |
+
/**
|
134 |
+
* @brief Size of images, kernels, and pooling filters in NNPACK.
|
135 |
+
*/
|
136 |
+
struct nnp_size {
|
137 |
+
/** Width (horizontal size) of an image, kernel, or pooling filter. */
|
138 |
+
size_t width;
|
139 |
+
/** Height (vertical size) of an image, kernel, or pooling filter. */
|
140 |
+
size_t height;
|
141 |
+
};
|
142 |
+
|
143 |
+
/**
|
144 |
+
* @brief Padding of images in NNPACK.
|
145 |
+
*/
|
146 |
+
struct nnp_padding {
|
147 |
+
/** Padding above the image data */
|
148 |
+
size_t top;
|
149 |
+
/** Padding on the right of image data */
|
150 |
+
size_t right;
|
151 |
+
/** Padding below the image data */
|
152 |
+
size_t bottom;
|
153 |
+
/** Padding on the left of image data */
|
154 |
+
size_t left;
|
155 |
+
};
|
156 |
+
|
157 |
+
/**
|
158 |
+
* @brief Profiling information about time spent in different phases of a function call.
|
159 |
+
*/
|
160 |
+
struct nnp_profile {
|
161 |
+
/** Time spent inside the function call, in seconds. */
|
162 |
+
double total;
|
163 |
+
/** Time spend on transformation of the input or input gradient tensor, in seconds. */
|
164 |
+
double input_transform;
|
165 |
+
/** Time spend on transformation of the kernel or kernel gradient tensor, in seconds. */
|
166 |
+
double kernel_transform;
|
167 |
+
/** Time spend on transformation of the output or output gradient tensor, in seconds. */
|
168 |
+
double output_transform;
|
169 |
+
/** Time spend on multiplication-accumulation of transformed coefficients, in seconds. */
|
170 |
+
double block_multiplication;
|
171 |
+
};
|
172 |
+
|
173 |
+
enum nnp_status nnp_initialize(void);
|
174 |
+
|
175 |
+
enum nnp_status nnp_deinitialize(void);
|
176 |
+
|
177 |
+
/**
|
178 |
+
* @brief Computes output of a 2D convolutional layer from input and kernel tensors.
|
179 |
+
* @details This function targets training of convolutional neural networks and performs forward propagation.
|
180 |
+
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
|
181 |
+
* For minibatch size 1, use nnp_convolution_inference for optimal performance.
|
182 |
+
* @param algorithm The type of algorithm to use for convolution. Possible values are:
|
183 |
+
*
|
184 |
+
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
|
185 |
+
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
|
186 |
+
* Supports kernels up to 8x8.
|
187 |
+
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
|
188 |
+
* Supports kernels up to 16x16.
|
189 |
+
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6).
|
190 |
+
* Supports only 3x3 kernels.
|
191 |
+
*
|
192 |
+
* @param batch_size The number of images on the input and output of the convolutional layer.
|
193 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input images.
|
194 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output images.
|
195 |
+
* @param input_size Size of input images, excluding implicit zero-padding.
|
196 |
+
* @param input_padding Implicit zero-padding of input images.
|
197 |
+
* @param kernel_size Kernel size.
|
198 |
+
* @param[in] input A 4D tensor input[batch_size][input_channels][input_size.height][input_size.width].
|
199 |
+
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
|
200 |
+
* @param[in] bias A 1D array bias[output_channels].
|
201 |
+
* @param[out] output A 4D tensor output[batch_size][output_channels][output_size.height][output_size.width] where
|
202 |
+
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
|
203 |
+
* (kernel_size.height - 1)
|
204 |
+
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
|
205 |
+
* (kernel_size.width - 1)
|
206 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
207 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
208 |
+
* @param[out] profile An optional pointer to profiling structure.
|
209 |
+
* If provided, the structure would record time spent in different phases of the computation.
|
210 |
+
*/
|
211 |
+
|
212 |
+
enum nnp_status nnp_convolution_output(
|
213 |
+
enum nnp_convolution_algorithm algorithm,
|
214 |
+
size_t batch_size,
|
215 |
+
size_t input_channels,
|
216 |
+
size_t output_channels,
|
217 |
+
struct nnp_size input_size,
|
218 |
+
struct nnp_padding input_padding,
|
219 |
+
struct nnp_size kernel_size,
|
220 |
+
const float* input,
|
221 |
+
const float* kernel,
|
222 |
+
const float* bias,
|
223 |
+
float* output,
|
224 |
+
void* workspace_buffer,
|
225 |
+
size_t* workspace_size,
|
226 |
+
enum nnp_activation activation,
|
227 |
+
const void* activation_parameters,
|
228 |
+
pthreadpool_t threadpool,
|
229 |
+
struct nnp_profile* profile);
|
230 |
+
|
231 |
+
/**
|
232 |
+
* @brief Computes gradient of input of a 2D convolutional layer from gradient of output and kernel tensors.
|
233 |
+
* @details This function targets training of convolutional neural networks and performs backward propagation.
|
234 |
+
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
|
235 |
+
* @param algorithm The type of algorithm to use for convolution. Possible values are:
|
236 |
+
*
|
237 |
+
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
|
238 |
+
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
|
239 |
+
* Supports kernels up to 8x8.
|
240 |
+
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
|
241 |
+
* Supports kernels up to 16x16.
|
242 |
+
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6).
|
243 |
+
* Supports only 3x3 kernels.
|
244 |
+
*
|
245 |
+
* @param batch_size The number of images (and their gradients) on the input and output of the convolutional layer.
|
246 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input images (and gradients).
|
247 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output images (and gradients).
|
248 |
+
* @param input_size Size of input images and their gradients, excluding implicit zero-padding.
|
249 |
+
* @param input_padding Implicit zero-padding of input images.
|
250 |
+
* @param kernel_size Kernel size.
|
251 |
+
* @param[in] grad_output A 4D tensor grad_output[batch_size][output_channels][output_size.height][output_size.width]
|
252 |
+
* where
|
253 |
+
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
|
254 |
+
* (kernel_size.height - 1)
|
255 |
+
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
|
256 |
+
* (kernel_size.width - 1)
|
257 |
+
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
|
258 |
+
* @param[out] grad_input A 4D tensor grad_input[batch_size][input_channels][input_size.height][input_size.width].
|
259 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
260 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
261 |
+
* @param[out] profile An optional pointer to profiling structure.
|
262 |
+
* If provided, the structure would record time spent in different phases of the computation.
|
263 |
+
*/
|
264 |
+
enum nnp_status nnp_convolution_input_gradient(
|
265 |
+
enum nnp_convolution_algorithm algorithm,
|
266 |
+
size_t batch_size,
|
267 |
+
size_t input_channels,
|
268 |
+
size_t output_channels,
|
269 |
+
struct nnp_size input_size,
|
270 |
+
struct nnp_padding input_padding,
|
271 |
+
struct nnp_size kernel_size,
|
272 |
+
const float* grad_output,
|
273 |
+
const float* kernel,
|
274 |
+
float* grad_input,
|
275 |
+
void* workspace_buffer,
|
276 |
+
size_t* workspace_size,
|
277 |
+
enum nnp_activation activation,
|
278 |
+
const void* activation_parameters,
|
279 |
+
pthreadpool_t threadpool,
|
280 |
+
struct nnp_profile* profile);
|
281 |
+
|
282 |
+
/**
|
283 |
+
* @brief Computes gradient of kernel of a 2D convolutional layer from gradient of output and input tensors.
|
284 |
+
* @details This function targets training of convolutional neural networks and performs backward propagation.
|
285 |
+
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
|
286 |
+
* @param algorithm The type of algorithm to use for convolution. Possible values are:
|
287 |
+
*
|
288 |
+
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
|
289 |
+
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
|
290 |
+
* Supports kernels up to 8x8.
|
291 |
+
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
|
292 |
+
* Supports kernels up to 16x16.
|
293 |
+
*
|
294 |
+
* @param batch_size The number of images (and their gradients) on the input and output of the convolutional layer.
|
295 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input images.
|
296 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output images (and gradients).
|
297 |
+
* @param input_size Size of input images and their gradients, excluding implicit zero-padding.
|
298 |
+
* @param input_padding Implicit zero-padding of input images.
|
299 |
+
* @param kernel_size Kernel size.
|
300 |
+
* @param[in] input A 4D tensor input[batch_size][input_channels][input_size.height][input_size.width].
|
301 |
+
* @param[in] grad_output A 4D tensor grad_output[batch_size][output_channels][output_size.height][output_size.width]
|
302 |
+
* where
|
303 |
+
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
|
304 |
+
* (kernel_size.height - 1)
|
305 |
+
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
|
306 |
+
* (kernel_size.width - 1)
|
307 |
+
* @param[out] grad_kernel A 4D tensor
|
308 |
+
* grad_kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
|
309 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
310 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
311 |
+
* @param[out] profile An optional pointer to profiling structure.
|
312 |
+
* If provided, the structure would record time spent in different phases of the computation.
|
313 |
+
*/
|
314 |
+
enum nnp_status nnp_convolution_kernel_gradient(
|
315 |
+
enum nnp_convolution_algorithm algorithm,
|
316 |
+
size_t batch_size,
|
317 |
+
size_t input_channels,
|
318 |
+
size_t output_channels,
|
319 |
+
struct nnp_size input_size,
|
320 |
+
struct nnp_padding input_padding,
|
321 |
+
struct nnp_size kernel_size,
|
322 |
+
const float* input,
|
323 |
+
const float* grad_output,
|
324 |
+
float* grad_kernel,
|
325 |
+
void* workspace_buffer,
|
326 |
+
size_t* workspace_size,
|
327 |
+
enum nnp_activation activation,
|
328 |
+
const void* activation_parameters,
|
329 |
+
pthreadpool_t threadpool,
|
330 |
+
struct nnp_profile* profile);
|
331 |
+
|
332 |
+
/**
|
333 |
+
* @brief Computes output of a 2D convolutional layer for a single input image and a kernel tensor.
|
334 |
+
* @details This function targets prediction with convolutional neural networks and performs forward propagation.
|
335 |
+
* @param algorithm The type of algorithm to use for convolution. Possible values are:
|
336 |
+
*
|
337 |
+
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
|
338 |
+
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
|
339 |
+
* Supports kernels up to 8x8.
|
340 |
+
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
|
341 |
+
* Supports kernels up to 16x16.
|
342 |
+
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6).
|
343 |
+
* Supports only 3x3 kernels.
|
344 |
+
*
|
345 |
+
* @param transform_strategy A strategy that guides computation of kernel transforms coefficients.
|
346 |
+
* Possible values are:
|
347 |
+
*
|
348 |
+
* - nnp_convolution_transform_strategy_block_based -- do multiplication-accumulations on blocks of transformed
|
349 |
+
* coefficients.
|
350 |
+
* - nnp_convolution_transform_strategy_tuple_based -- do multiplication-accumulations on tuples of transformed
|
351 |
+
* coefficients.
|
352 |
+
*
|
353 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input image.
|
354 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output image.
|
355 |
+
* @param input_size Size of input image, excluding implicit zero-padding.
|
356 |
+
* @param input_padding Implicit zero-padding of input image.
|
357 |
+
* @param kernel_size Kernel size.
|
358 |
+
* @param output_subsampling Subsample region for output, also known as convolution stride.
|
359 |
+
* @param[in] input A 3D tensor input[input_channels][input_size.height][input_size.width].
|
360 |
+
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
|
361 |
+
* @param[in] bias A 1D array bias[output_channels].
|
362 |
+
* @param[out] output A 3D tensor output[output_channels][output_size.height][output_size.width] where
|
363 |
+
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
|
364 |
+
* (kernel_size.height - 1)
|
365 |
+
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
|
366 |
+
* (kernel_size.width - 1)
|
367 |
+
* @param[in] workspace_buffer Buffer for scratch memory used during computation. Buffer must be aligned on 64 bytes.
|
368 |
+
* If workspace_buffer is NULL and workspace_size is non-NULL, NNPACK would store the size
|
369 |
+
* of required workspace memory at the workspace_size location, and exit without
|
370 |
+
* computations.
|
371 |
+
* If workspace_buffer is NULL and workspace_size is NULL, NNPACK would allocate memory
|
372 |
+
* before and deallocate after this computation, potentially at significant runtime cost.
|
373 |
+
* @param[in,out] workspace_size Pointer to the size of workspace buffer.
|
374 |
+
* If workspace_buffer is NULL, NNPACK will write the size of required scratch memory to
|
375 |
+
* the location specified by this pointer.
|
376 |
+
* If workspace_buffer is non-NULL, NNPACK expects workspace_size to specify the size of
|
377 |
+
* the buffer, in bytes.
|
378 |
+
* If workspace_size is NULL, workspace_buffer must be NULL as well. In this case NNPACK
|
379 |
+
* would allocate memory before and deallocate after this computation, potentially at
|
380 |
+
* significant runtime cost.
|
381 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
382 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
383 |
+
* @param[out] profile An optional pointer to profiling structure.
|
384 |
+
* If provided, the structure would record time spent in different phases of the computation.
|
385 |
+
*/
|
386 |
+
enum nnp_status nnp_convolution_inference(
|
387 |
+
enum nnp_convolution_algorithm algorithm,
|
388 |
+
enum nnp_convolution_transform_strategy transform_strategy,
|
389 |
+
size_t input_channels,
|
390 |
+
size_t output_channels,
|
391 |
+
struct nnp_size input_size,
|
392 |
+
struct nnp_padding input_padding,
|
393 |
+
struct nnp_size kernel_size,
|
394 |
+
struct nnp_size output_subsampling,
|
395 |
+
const float* input,
|
396 |
+
const float* kernel,
|
397 |
+
const float* bias,
|
398 |
+
float* output,
|
399 |
+
void* workspace_buffer,
|
400 |
+
size_t* workspace_size,
|
401 |
+
enum nnp_activation activation,
|
402 |
+
const void* activation_parameters,
|
403 |
+
pthreadpool_t threadpool,
|
404 |
+
struct nnp_profile* profile);
|
405 |
+
|
406 |
+
/**
|
407 |
+
* @brief Computes output of a fully connected layer from input and kernel matrices.
|
408 |
+
* @details This function targets training of convolutional neural networks and performs forward propagation.
|
409 |
+
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
|
410 |
+
* For minibatch size 1, use nnp_fully_connected_inference for optimal performance.
|
411 |
+
* @param batch_size The number of vectors on the input and output of the fully connected layer.
|
412 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input matrix.
|
413 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output matrix.
|
414 |
+
* @param[in] input A 2D matrix input[batch_size][input_channels].
|
415 |
+
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels].
|
416 |
+
* @param[out] output A 2D matrix output[batch_size][output_channels].
|
417 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
418 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
419 |
+
*/
|
420 |
+
enum nnp_status nnp_fully_connected_output(
|
421 |
+
size_t batch_size,
|
422 |
+
size_t input_channels,
|
423 |
+
size_t output_channels,
|
424 |
+
const float input[],
|
425 |
+
const float kernel[],
|
426 |
+
float output[],
|
427 |
+
pthreadpool_t threadpool,
|
428 |
+
struct nnp_profile* profile);
|
429 |
+
|
430 |
+
/**
|
431 |
+
* @brief Computes output of a fully connected layer for a single input vector and a kernel matrix.
|
432 |
+
* @details This function targets prediction with convolutional neural networks and performs forward propagation.
|
433 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input vector.
|
434 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output vector.
|
435 |
+
* @param[in] input A 1D array input[input_channels] of FP32 elements.
|
436 |
+
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels] of FP32 elements.
|
437 |
+
* @param[out] output A 1D array output[output_channels] of FP32 elements.
|
438 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
439 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
440 |
+
*/
|
441 |
+
enum nnp_status nnp_fully_connected_inference(
|
442 |
+
size_t input_channels,
|
443 |
+
size_t output_channels,
|
444 |
+
const float* input,
|
445 |
+
const float* kernel,
|
446 |
+
float* output,
|
447 |
+
pthreadpool_t threadpool);
|
448 |
+
|
449 |
+
/**
|
450 |
+
* @brief Computes output of a fully connected layer for a single input vector and a kernel matrix.
|
451 |
+
* @details This function targets prediction with convolutional neural networks and performs forward propagation.
|
452 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input vector.
|
453 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output vector.
|
454 |
+
* @param[in] input A 1D array input[input_channels] of FP32 elements.
|
455 |
+
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels] of FP16 (ARM alternative format) elements.
|
456 |
+
* @param[out] output A 1D array output[output_channels] of FP32 elements.
|
457 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
458 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
459 |
+
*/
|
460 |
+
enum nnp_status nnp_fully_connected_inference_f16f32(
|
461 |
+
size_t input_channels,
|
462 |
+
size_t output_channels,
|
463 |
+
const float* input,
|
464 |
+
const void* kernel,
|
465 |
+
float* output,
|
466 |
+
pthreadpool_t threadpool);
|
467 |
+
|
468 |
+
/**
|
469 |
+
* @brief Computes output of a max-pooling layer for an input tensor.
|
470 |
+
* @details This function targets both prediction and training of convolutional neural networks and performs forward
|
471 |
+
* propagation. Is is optimized for both large and small minibatch sizes.
|
472 |
+
* @param batch_size The number of images on the input and output of the max-pooling layer.
|
473 |
+
* @param channels The number of channels (AKA features, dimensions) in both input and output images.
|
474 |
+
* @param input_size Size of input images, excluding implicit zero-padding.
|
475 |
+
* @param input_padding Implicit padding of input images. The padding pixels are ignored by the pooling filter, but
|
476 |
+
* affect the output size.
|
477 |
+
* @param pooling_size Size of the pooling filter. Only 2x2 filter are currently supported.
|
478 |
+
* @param pooling_stride Stride of the pooling filter. Only 2x2 strides are currently supported.
|
479 |
+
* @param[in] input A 4D tensor input[batch_size][channels][input_size.height][input_size.width].
|
480 |
+
* @param[out] output A 4D tensor output[batch_size][channels][output_size.height][output_size.width] where
|
481 |
+
* output_size.height = ceil(
|
482 |
+
* (input_padding.top + input_size.height + input_padding.bottom - pooling_size.height) /
|
483 |
+
* pooling_stride.height) + 1
|
484 |
+
* output_size.width = ceil(
|
485 |
+
* (input_padding.left + input_size.width + input_padding.right - pooling_size.width) /
|
486 |
+
* pooling_stride.width) + 1
|
487 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
488 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
489 |
+
*/
|
490 |
+
enum nnp_status nnp_max_pooling_output(
|
491 |
+
size_t batch_size,
|
492 |
+
size_t channels,
|
493 |
+
struct nnp_size input_size,
|
494 |
+
struct nnp_padding input_padding,
|
495 |
+
struct nnp_size pooling_size,
|
496 |
+
struct nnp_size pooling_stride,
|
497 |
+
const float input[],
|
498 |
+
float output[],
|
499 |
+
pthreadpool_t threadpool);
|
500 |
+
|
501 |
+
/**
|
502 |
+
* @brief Computes output of a softmax layer for an input matrix.
|
503 |
+
* @details This function targets both prediction and training of convolutional neural networks and performs forward
|
504 |
+
* propagation. Is is optimized for both large and small minibatch sizes.
|
505 |
+
* @param batch_size The number of vectors on the input and output of the softmax layer.
|
506 |
+
* @param channels The number of channels (AKA features, dimensions) in both input and output vectors.
|
507 |
+
* @param[in] input A 2D matrix input[batch_size][channels].
|
508 |
+
* @param[out] output A 2D matrix output[batch_size][channels].
|
509 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
510 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
511 |
+
*/
|
512 |
+
enum nnp_status nnp_softmax_output(
|
513 |
+
size_t batch_size,
|
514 |
+
size_t channels,
|
515 |
+
const float input[],
|
516 |
+
float output[],
|
517 |
+
pthreadpool_t threadpool);
|
518 |
+
|
519 |
+
/**
|
520 |
+
* @brief Computes output of a rectified linear unit (ReLU) layer for an input matrix.
|
521 |
+
* @details This function targets both prediction and training of convolutional neural networks and performs forward
|
522 |
+
* propagation. Is is optimized for both large and small minibatch sizes.
|
523 |
+
* @param batch_size The number of vectors on the input and output of the ReLU layer.
|
524 |
+
* @param channels The number of channels (AKA features, dimensions) in both input and output matrices.
|
525 |
+
* @param[in] input A 2D matrix input[batch_size][channels].
|
526 |
+
* @param[out] output A 2D matrix output[batch_size][channels].
|
527 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
528 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
529 |
+
*/
|
530 |
+
enum nnp_status nnp_relu_output(
|
531 |
+
size_t batch_size,
|
532 |
+
size_t channels,
|
533 |
+
const float input[],
|
534 |
+
float output[],
|
535 |
+
float negative_slope,
|
536 |
+
pthreadpool_t threadpool);
|
537 |
+
|
538 |
+
/**
|
539 |
+
* @brief Computes gradient of input of a rectified linear unit (ReLU) layer from gradient of output and input matrices.
|
540 |
+
* @details This function targets training of convolutional neural networks and performs backward propagation.
|
541 |
+
* Is is optimized for both large and small minibatch sizes.
|
542 |
+
* @param batch_size The number of vectors on the input and output of the ReLU layer.
|
543 |
+
* @param channels The number of channels (AKA features, dimensions) in both input and output matrices.
|
544 |
+
* @param[in] input A 2D matrix input[batch_size][channels].
|
545 |
+
* @param[out] output A 2D matrix output[batch_size][channels].
|
546 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
547 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
548 |
+
*/
|
549 |
+
enum nnp_status nnp_relu_input_gradient(
|
550 |
+
size_t batch_size,
|
551 |
+
size_t channels,
|
552 |
+
const float grad_output[],
|
553 |
+
const float input[],
|
554 |
+
float grad_input[],
|
555 |
+
float negative_slope,
|
556 |
+
pthreadpool_t threadpool);
|
557 |
+
|
558 |
+
#ifdef __cplusplus
|
559 |
+
} /* extern "C" */
|
560 |
+
#endif
|
561 |
+
|
562 |
+
#ifdef __cplusplus
|
563 |
+
// Backward compatible implementations for nnp_convolution_*, if we are in C++
|
564 |
+
// mode.
|
565 |
+
inline enum nnp_status nnp_convolution_output(
|
566 |
+
enum nnp_convolution_algorithm algorithm,
|
567 |
+
size_t batch_size,
|
568 |
+
size_t input_channels,
|
569 |
+
size_t output_channels,
|
570 |
+
struct nnp_size input_size,
|
571 |
+
struct nnp_padding input_padding,
|
572 |
+
struct nnp_size kernel_size,
|
573 |
+
const float input[],
|
574 |
+
const float kernel[],
|
575 |
+
const float bias[],
|
576 |
+
float output[],
|
577 |
+
pthreadpool_t threadpool,
|
578 |
+
struct nnp_profile* profile)
|
579 |
+
{
|
580 |
+
return nnp_convolution_output(
|
581 |
+
algorithm,
|
582 |
+
batch_size, input_channels, output_channels,
|
583 |
+
input_size, input_padding, kernel_size,
|
584 |
+
input, kernel, bias, output,
|
585 |
+
NULL, NULL,
|
586 |
+
nnp_activation_identity, NULL, threadpool, profile);
|
587 |
+
}
|
588 |
+
|
589 |
+
inline enum nnp_status nnp_convolution_input_gradient(
|
590 |
+
enum nnp_convolution_algorithm algorithm,
|
591 |
+
size_t batch_size,
|
592 |
+
size_t input_channels,
|
593 |
+
size_t output_channels,
|
594 |
+
struct nnp_size input_size,
|
595 |
+
struct nnp_padding input_padding,
|
596 |
+
struct nnp_size kernel_size,
|
597 |
+
const float grad_output[],
|
598 |
+
const float kernel[],
|
599 |
+
float grad_input[],
|
600 |
+
pthreadpool_t threadpool,
|
601 |
+
struct nnp_profile* profile)
|
602 |
+
{
|
603 |
+
return nnp_convolution_input_gradient(
|
604 |
+
algorithm,
|
605 |
+
batch_size, input_channels, output_channels,
|
606 |
+
input_size, input_padding, kernel_size,
|
607 |
+
grad_output, kernel, grad_input,
|
608 |
+
NULL, NULL,
|
609 |
+
nnp_activation_identity, NULL, threadpool, profile);
|
610 |
+
}
|
611 |
+
|
612 |
+
inline enum nnp_status nnp_convolution_kernel_gradient(
|
613 |
+
enum nnp_convolution_algorithm algorithm,
|
614 |
+
size_t batch_size,
|
615 |
+
size_t input_channels,
|
616 |
+
size_t output_channels,
|
617 |
+
struct nnp_size input_size,
|
618 |
+
struct nnp_padding input_padding,
|
619 |
+
struct nnp_size kernel_size,
|
620 |
+
const float input[],
|
621 |
+
const float grad_output[],
|
622 |
+
float grad_kernel[],
|
623 |
+
pthreadpool_t threadpool,
|
624 |
+
struct nnp_profile* profile)
|
625 |
+
{
|
626 |
+
return nnp_convolution_kernel_gradient(
|
627 |
+
algorithm,
|
628 |
+
batch_size, input_channels, output_channels,
|
629 |
+
input_size, input_padding, kernel_size,
|
630 |
+
input, grad_output, grad_kernel,
|
631 |
+
NULL, NULL,
|
632 |
+
nnp_activation_identity, NULL, threadpool, profile);
|
633 |
+
}
|
634 |
+
|
635 |
+
inline enum nnp_status nnp_convolution_inference(
|
636 |
+
enum nnp_convolution_algorithm algorithm,
|
637 |
+
enum nnp_convolution_transform_strategy transform_strategy,
|
638 |
+
size_t input_channels,
|
639 |
+
size_t output_channels,
|
640 |
+
struct nnp_size input_size,
|
641 |
+
struct nnp_padding input_padding,
|
642 |
+
struct nnp_size kernel_size,
|
643 |
+
struct nnp_size output_subsampling,
|
644 |
+
const float input[],
|
645 |
+
const float kernel[],
|
646 |
+
const float bias[],
|
647 |
+
float output[],
|
648 |
+
pthreadpool_t threadpool,
|
649 |
+
struct nnp_profile* profile) {
|
650 |
+
return nnp_convolution_inference(
|
651 |
+
algorithm, transform_strategy,
|
652 |
+
input_channels, output_channels,
|
653 |
+
input_size, input_padding, kernel_size, output_subsampling,
|
654 |
+
input, kernel, bias, output, NULL, NULL,
|
655 |
+
nnp_activation_identity, NULL,
|
656 |
+
threadpool, profile);
|
657 |
+
}
|
658 |
+
|
659 |
+
#endif // __cplusplus
|