applied-ai-018 commited on
Commit
1d6b48b
·
verified ·
1 Parent(s): db7b882

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. venv/lib/python3.10/site-packages/mpmath/functions/__init__.py +14 -0
  2. venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/__init__.cpython-310.pyc +0 -0
  3. venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/bessel.cpython-310.pyc +0 -0
  4. venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/elliptic.cpython-310.pyc +0 -0
  5. venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/expintegrals.cpython-310.pyc +0 -0
  6. venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/factorials.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/functions.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/hypergeometric.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/orthogonal.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/qfunctions.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/rszeta.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/signals.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/theta.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/zeta.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/zetazeros.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/mpmath/functions/bessel.py +1108 -0
  17. venv/lib/python3.10/site-packages/mpmath/functions/elliptic.py +1431 -0
  18. venv/lib/python3.10/site-packages/mpmath/functions/expintegrals.py +425 -0
  19. venv/lib/python3.10/site-packages/mpmath/functions/factorials.py +187 -0
  20. venv/lib/python3.10/site-packages/mpmath/functions/functions.py +645 -0
  21. venv/lib/python3.10/site-packages/mpmath/functions/hypergeometric.py +1413 -0
  22. venv/lib/python3.10/site-packages/mpmath/functions/orthogonal.py +493 -0
  23. venv/lib/python3.10/site-packages/mpmath/functions/qfunctions.py +280 -0
  24. venv/lib/python3.10/site-packages/mpmath/functions/rszeta.py +1403 -0
  25. venv/lib/python3.10/site-packages/mpmath/functions/signals.py +32 -0
  26. venv/lib/python3.10/site-packages/mpmath/functions/theta.py +1049 -0
  27. venv/lib/python3.10/site-packages/mpmath/functions/zeta.py +1154 -0
  28. venv/lib/python3.10/site-packages/mpmath/functions/zetazeros.py +1018 -0
  29. venv/lib/python3.10/site-packages/mpmath/matrices/__init__.py +2 -0
  30. venv/lib/python3.10/site-packages/mpmath/matrices/matrices.py +1005 -0
  31. venv/lib/python3.10/site-packages/mpmath/tests/__init__.py +0 -0
  32. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/extratest_gamma.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/extratest_zeta.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/runtests.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_basic_ops.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_bitwise.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_calculus.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_compatibility.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_convert.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_diff.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_division.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_eigen.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_eigen_symmetric.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_elliptic.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_fp.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_functions.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_functions2.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_gammazeta.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_hp.cpython-310.pyc +0 -0
venv/lib/python3.10/site-packages/mpmath/functions/__init__.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from . import functions
2
+ # Hack to update methods
3
+ from . import factorials
4
+ from . import hypergeometric
5
+ from . import expintegrals
6
+ from . import bessel
7
+ from . import orthogonal
8
+ from . import theta
9
+ from . import elliptic
10
+ from . import signals
11
+ from . import zeta
12
+ from . import rszeta
13
+ from . import zetazeros
14
+ from . import qfunctions
venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (595 Bytes). View file
 
venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/bessel.cpython-310.pyc ADDED
Binary file (34.1 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/elliptic.cpython-310.pyc ADDED
Binary file (40.3 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/expintegrals.cpython-310.pyc ADDED
Binary file (10.2 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/factorials.cpython-310.pyc ADDED
Binary file (4.49 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/functions.cpython-310.pyc ADDED
Binary file (17.7 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/hypergeometric.cpython-310.pyc ADDED
Binary file (39.7 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/orthogonal.cpython-310.pyc ADDED
Binary file (14.4 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/qfunctions.cpython-310.pyc ADDED
Binary file (7.58 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/rszeta.cpython-310.pyc ADDED
Binary file (29.4 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/signals.cpython-310.pyc ADDED
Binary file (1.14 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/theta.cpython-310.pyc ADDED
Binary file (21 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/zeta.cpython-310.pyc ADDED
Binary file (32.2 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/functions/__pycache__/zetazeros.cpython-310.pyc ADDED
Binary file (29.9 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/functions/bessel.py ADDED
@@ -0,0 +1,1108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .functions import defun, defun_wrapped
2
+
3
+ @defun
4
+ def j0(ctx, x):
5
+ """Computes the Bessel function `J_0(x)`. See :func:`~mpmath.besselj`."""
6
+ return ctx.besselj(0, x)
7
+
8
+ @defun
9
+ def j1(ctx, x):
10
+ """Computes the Bessel function `J_1(x)`. See :func:`~mpmath.besselj`."""
11
+ return ctx.besselj(1, x)
12
+
13
+ @defun
14
+ def besselj(ctx, n, z, derivative=0, **kwargs):
15
+ if type(n) is int:
16
+ n_isint = True
17
+ else:
18
+ n = ctx.convert(n)
19
+ n_isint = ctx.isint(n)
20
+ if n_isint:
21
+ n = int(ctx._re(n))
22
+ if n_isint and n < 0:
23
+ return (-1)**n * ctx.besselj(-n, z, derivative, **kwargs)
24
+ z = ctx.convert(z)
25
+ M = ctx.mag(z)
26
+ if derivative:
27
+ d = ctx.convert(derivative)
28
+ # TODO: the integer special-casing shouldn't be necessary.
29
+ # However, the hypergeometric series gets inaccurate for large d
30
+ # because of inaccurate pole cancellation at a pole far from
31
+ # zero (needs to be fixed in hypercomb or hypsum)
32
+ if ctx.isint(d) and d >= 0:
33
+ d = int(d)
34
+ orig = ctx.prec
35
+ try:
36
+ ctx.prec += 15
37
+ v = ctx.fsum((-1)**k * ctx.binomial(d,k) * ctx.besselj(2*k+n-d,z)
38
+ for k in range(d+1))
39
+ finally:
40
+ ctx.prec = orig
41
+ v *= ctx.mpf(2)**(-d)
42
+ else:
43
+ def h(n,d):
44
+ r = ctx.fmul(ctx.fmul(z, z, prec=ctx.prec+M), -0.25, exact=True)
45
+ B = [0.5*(n-d+1), 0.5*(n-d+2)]
46
+ T = [([2,ctx.pi,z],[d-2*n,0.5,n-d],[],B,[(n+1)*0.5,(n+2)*0.5],B+[n+1],r)]
47
+ return T
48
+ v = ctx.hypercomb(h, [n,d], **kwargs)
49
+ else:
50
+ # Fast case: J_n(x), n int, appropriate magnitude for fixed-point calculation
51
+ if (not derivative) and n_isint and abs(M) < 10 and abs(n) < 20:
52
+ try:
53
+ return ctx._besselj(n, z)
54
+ except NotImplementedError:
55
+ pass
56
+ if not z:
57
+ if not n:
58
+ v = ctx.one + n+z
59
+ elif ctx.re(n) > 0:
60
+ v = n*z
61
+ else:
62
+ v = ctx.inf + z + n
63
+ else:
64
+ #v = 0
65
+ orig = ctx.prec
66
+ try:
67
+ # XXX: workaround for accuracy in low level hypergeometric series
68
+ # when alternating, large arguments
69
+ ctx.prec += min(3*abs(M), ctx.prec)
70
+ w = ctx.fmul(z, 0.5, exact=True)
71
+ def h(n):
72
+ r = ctx.fneg(ctx.fmul(w, w, prec=max(0,ctx.prec+M)), exact=True)
73
+ return [([w], [n], [], [n+1], [], [n+1], r)]
74
+ v = ctx.hypercomb(h, [n], **kwargs)
75
+ finally:
76
+ ctx.prec = orig
77
+ v = +v
78
+ return v
79
+
80
+ @defun
81
+ def besseli(ctx, n, z, derivative=0, **kwargs):
82
+ n = ctx.convert(n)
83
+ z = ctx.convert(z)
84
+ if not z:
85
+ if derivative:
86
+ raise ValueError
87
+ if not n:
88
+ # I(0,0) = 1
89
+ return 1+n+z
90
+ if ctx.isint(n):
91
+ return 0*(n+z)
92
+ r = ctx.re(n)
93
+ if r == 0:
94
+ return ctx.nan*(n+z)
95
+ elif r > 0:
96
+ return 0*(n+z)
97
+ else:
98
+ return ctx.inf+(n+z)
99
+ M = ctx.mag(z)
100
+ if derivative:
101
+ d = ctx.convert(derivative)
102
+ def h(n,d):
103
+ r = ctx.fmul(ctx.fmul(z, z, prec=ctx.prec+M), 0.25, exact=True)
104
+ B = [0.5*(n-d+1), 0.5*(n-d+2), n+1]
105
+ T = [([2,ctx.pi,z],[d-2*n,0.5,n-d],[n+1],B,[(n+1)*0.5,(n+2)*0.5],B,r)]
106
+ return T
107
+ v = ctx.hypercomb(h, [n,d], **kwargs)
108
+ else:
109
+ def h(n):
110
+ w = ctx.fmul(z, 0.5, exact=True)
111
+ r = ctx.fmul(w, w, prec=max(0,ctx.prec+M))
112
+ return [([w], [n], [], [n+1], [], [n+1], r)]
113
+ v = ctx.hypercomb(h, [n], **kwargs)
114
+ return v
115
+
116
+ @defun_wrapped
117
+ def bessely(ctx, n, z, derivative=0, **kwargs):
118
+ if not z:
119
+ if derivative:
120
+ # Not implemented
121
+ raise ValueError
122
+ if not n:
123
+ # ~ log(z/2)
124
+ return -ctx.inf + (n+z)
125
+ if ctx.im(n):
126
+ return ctx.nan * (n+z)
127
+ r = ctx.re(n)
128
+ q = n+0.5
129
+ if ctx.isint(q):
130
+ if n > 0:
131
+ return -ctx.inf + (n+z)
132
+ else:
133
+ return 0 * (n+z)
134
+ if r < 0 and int(ctx.floor(q)) % 2:
135
+ return ctx.inf + (n+z)
136
+ else:
137
+ return ctx.ninf + (n+z)
138
+ # XXX: use hypercomb
139
+ ctx.prec += 10
140
+ m, d = ctx.nint_distance(n)
141
+ if d < -ctx.prec:
142
+ h = +ctx.eps
143
+ ctx.prec *= 2
144
+ n += h
145
+ elif d < 0:
146
+ ctx.prec -= d
147
+ # TODO: avoid cancellation for imaginary arguments
148
+ cos, sin = ctx.cospi_sinpi(n)
149
+ return (ctx.besselj(n,z,derivative,**kwargs)*cos - \
150
+ ctx.besselj(-n,z,derivative,**kwargs))/sin
151
+
152
+ @defun_wrapped
153
+ def besselk(ctx, n, z, **kwargs):
154
+ if not z:
155
+ return ctx.inf
156
+ M = ctx.mag(z)
157
+ if M < 1:
158
+ # Represent as limit definition
159
+ def h(n):
160
+ r = (z/2)**2
161
+ T1 = [z, 2], [-n, n-1], [n], [], [], [1-n], r
162
+ T2 = [z, 2], [n, -n-1], [-n], [], [], [1+n], r
163
+ return T1, T2
164
+ # We could use the limit definition always, but it leads
165
+ # to very bad cancellation (of exponentially large terms)
166
+ # for large real z
167
+ # Instead represent in terms of 2F0
168
+ else:
169
+ ctx.prec += M
170
+ def h(n):
171
+ return [([ctx.pi/2, z, ctx.exp(-z)], [0.5,-0.5,1], [], [], \
172
+ [n+0.5, 0.5-n], [], -1/(2*z))]
173
+ return ctx.hypercomb(h, [n], **kwargs)
174
+
175
+ @defun_wrapped
176
+ def hankel1(ctx,n,x,**kwargs):
177
+ return ctx.besselj(n,x,**kwargs) + ctx.j*ctx.bessely(n,x,**kwargs)
178
+
179
+ @defun_wrapped
180
+ def hankel2(ctx,n,x,**kwargs):
181
+ return ctx.besselj(n,x,**kwargs) - ctx.j*ctx.bessely(n,x,**kwargs)
182
+
183
+ @defun_wrapped
184
+ def whitm(ctx,k,m,z,**kwargs):
185
+ if z == 0:
186
+ # M(k,m,z) = 0^(1/2+m)
187
+ if ctx.re(m) > -0.5:
188
+ return z
189
+ elif ctx.re(m) < -0.5:
190
+ return ctx.inf + z
191
+ else:
192
+ return ctx.nan * z
193
+ x = ctx.fmul(-0.5, z, exact=True)
194
+ y = 0.5+m
195
+ return ctx.exp(x) * z**y * ctx.hyp1f1(y-k, 1+2*m, z, **kwargs)
196
+
197
+ @defun_wrapped
198
+ def whitw(ctx,k,m,z,**kwargs):
199
+ if z == 0:
200
+ g = abs(ctx.re(m))
201
+ if g < 0.5:
202
+ return z
203
+ elif g > 0.5:
204
+ return ctx.inf + z
205
+ else:
206
+ return ctx.nan * z
207
+ x = ctx.fmul(-0.5, z, exact=True)
208
+ y = 0.5+m
209
+ return ctx.exp(x) * z**y * ctx.hyperu(y-k, 1+2*m, z, **kwargs)
210
+
211
+ @defun
212
+ def hyperu(ctx, a, b, z, **kwargs):
213
+ a, atype = ctx._convert_param(a)
214
+ b, btype = ctx._convert_param(b)
215
+ z = ctx.convert(z)
216
+ if not z:
217
+ if ctx.re(b) <= 1:
218
+ return ctx.gammaprod([1-b],[a-b+1])
219
+ else:
220
+ return ctx.inf + z
221
+ bb = 1+a-b
222
+ bb, bbtype = ctx._convert_param(bb)
223
+ try:
224
+ orig = ctx.prec
225
+ try:
226
+ ctx.prec += 10
227
+ v = ctx.hypsum(2, 0, (atype, bbtype), [a, bb], -1/z, maxterms=ctx.prec)
228
+ return v / z**a
229
+ finally:
230
+ ctx.prec = orig
231
+ except ctx.NoConvergence:
232
+ pass
233
+ def h(a,b):
234
+ w = ctx.sinpi(b)
235
+ T1 = ([ctx.pi,w],[1,-1],[],[a-b+1,b],[a],[b],z)
236
+ T2 = ([-ctx.pi,w,z],[1,-1,1-b],[],[a,2-b],[a-b+1],[2-b],z)
237
+ return T1, T2
238
+ return ctx.hypercomb(h, [a,b], **kwargs)
239
+
240
+ @defun
241
+ def struveh(ctx,n,z, **kwargs):
242
+ n = ctx.convert(n)
243
+ z = ctx.convert(z)
244
+ # http://functions.wolfram.com/Bessel-TypeFunctions/StruveH/26/01/02/
245
+ def h(n):
246
+ return [([z/2, 0.5*ctx.sqrt(ctx.pi)], [n+1, -1], [], [n+1.5], [1], [1.5, n+1.5], -(z/2)**2)]
247
+ return ctx.hypercomb(h, [n], **kwargs)
248
+
249
+ @defun
250
+ def struvel(ctx,n,z, **kwargs):
251
+ n = ctx.convert(n)
252
+ z = ctx.convert(z)
253
+ # http://functions.wolfram.com/Bessel-TypeFunctions/StruveL/26/01/02/
254
+ def h(n):
255
+ return [([z/2, 0.5*ctx.sqrt(ctx.pi)], [n+1, -1], [], [n+1.5], [1], [1.5, n+1.5], (z/2)**2)]
256
+ return ctx.hypercomb(h, [n], **kwargs)
257
+
258
+ def _anger(ctx,which,v,z,**kwargs):
259
+ v = ctx._convert_param(v)[0]
260
+ z = ctx.convert(z)
261
+ def h(v):
262
+ b = ctx.mpq_1_2
263
+ u = v*b
264
+ m = b*3
265
+ a1,a2,b1,b2 = m-u, m+u, 1-u, 1+u
266
+ c, s = ctx.cospi_sinpi(u)
267
+ if which == 0:
268
+ A, B = [b*z, s], [c]
269
+ if which == 1:
270
+ A, B = [b*z, -c], [s]
271
+ w = ctx.square_exp_arg(z, mult=-0.25)
272
+ T1 = A, [1, 1], [], [a1,a2], [1], [a1,a2], w
273
+ T2 = B, [1], [], [b1,b2], [1], [b1,b2], w
274
+ return T1, T2
275
+ return ctx.hypercomb(h, [v], **kwargs)
276
+
277
+ @defun
278
+ def angerj(ctx, v, z, **kwargs):
279
+ return _anger(ctx, 0, v, z, **kwargs)
280
+
281
+ @defun
282
+ def webere(ctx, v, z, **kwargs):
283
+ return _anger(ctx, 1, v, z, **kwargs)
284
+
285
+ @defun
286
+ def lommels1(ctx, u, v, z, **kwargs):
287
+ u = ctx._convert_param(u)[0]
288
+ v = ctx._convert_param(v)[0]
289
+ z = ctx.convert(z)
290
+ def h(u,v):
291
+ b = ctx.mpq_1_2
292
+ w = ctx.square_exp_arg(z, mult=-0.25)
293
+ return ([u-v+1, u+v+1, z], [-1, -1, u+1], [], [], [1], \
294
+ [b*(u-v+3),b*(u+v+3)], w),
295
+ return ctx.hypercomb(h, [u,v], **kwargs)
296
+
297
+ @defun
298
+ def lommels2(ctx, u, v, z, **kwargs):
299
+ u = ctx._convert_param(u)[0]
300
+ v = ctx._convert_param(v)[0]
301
+ z = ctx.convert(z)
302
+ # Asymptotic expansion (GR p. 947) -- need to be careful
303
+ # not to use for small arguments
304
+ # def h(u,v):
305
+ # b = ctx.mpq_1_2
306
+ # w = -(z/2)**(-2)
307
+ # return ([z], [u-1], [], [], [b*(1-u+v)], [b*(1-u-v)], w),
308
+ def h(u,v):
309
+ b = ctx.mpq_1_2
310
+ w = ctx.square_exp_arg(z, mult=-0.25)
311
+ T1 = [u-v+1, u+v+1, z], [-1, -1, u+1], [], [], [1], [b*(u-v+3),b*(u+v+3)], w
312
+ T2 = [2, z], [u+v-1, -v], [v, b*(u+v+1)], [b*(v-u+1)], [], [1-v], w
313
+ T3 = [2, z], [u-v-1, v], [-v, b*(u-v+1)], [b*(1-u-v)], [], [1+v], w
314
+ #c1 = ctx.cospi((u-v)*b)
315
+ #c2 = ctx.cospi((u+v)*b)
316
+ #s = ctx.sinpi(v)
317
+ #r1 = (u-v+1)*b
318
+ #r2 = (u+v+1)*b
319
+ #T2 = [c1, s, z, 2], [1, -1, -v, v], [], [-v+1], [], [-v+1], w
320
+ #T3 = [-c2, s, z, 2], [1, -1, v, -v], [], [v+1], [], [v+1], w
321
+ #T2 = [c1, s, z, 2], [1, -1, -v, v+u-1], [r1, r2], [-v+1], [], [-v+1], w
322
+ #T3 = [-c2, s, z, 2], [1, -1, v, -v+u-1], [r1, r2], [v+1], [], [v+1], w
323
+ return T1, T2, T3
324
+ return ctx.hypercomb(h, [u,v], **kwargs)
325
+
326
+ @defun
327
+ def ber(ctx, n, z, **kwargs):
328
+ n = ctx.convert(n)
329
+ z = ctx.convert(z)
330
+ # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinBer2/26/01/02/0001/
331
+ def h(n):
332
+ r = -(z/4)**4
333
+ cos, sin = ctx.cospi_sinpi(-0.75*n)
334
+ T1 = [cos, z/2], [1, n], [], [n+1], [], [0.5, 0.5*(n+1), 0.5*n+1], r
335
+ T2 = [sin, z/2], [1, n+2], [], [n+2], [], [1.5, 0.5*(n+3), 0.5*n+1], r
336
+ return T1, T2
337
+ return ctx.hypercomb(h, [n], **kwargs)
338
+
339
+ @defun
340
+ def bei(ctx, n, z, **kwargs):
341
+ n = ctx.convert(n)
342
+ z = ctx.convert(z)
343
+ # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinBei2/26/01/02/0001/
344
+ def h(n):
345
+ r = -(z/4)**4
346
+ cos, sin = ctx.cospi_sinpi(0.75*n)
347
+ T1 = [cos, z/2], [1, n+2], [], [n+2], [], [1.5, 0.5*(n+3), 0.5*n+1], r
348
+ T2 = [sin, z/2], [1, n], [], [n+1], [], [0.5, 0.5*(n+1), 0.5*n+1], r
349
+ return T1, T2
350
+ return ctx.hypercomb(h, [n], **kwargs)
351
+
352
+ @defun
353
+ def ker(ctx, n, z, **kwargs):
354
+ n = ctx.convert(n)
355
+ z = ctx.convert(z)
356
+ # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinKer2/26/01/02/0001/
357
+ def h(n):
358
+ r = -(z/4)**4
359
+ cos1, sin1 = ctx.cospi_sinpi(0.25*n)
360
+ cos2, sin2 = ctx.cospi_sinpi(0.75*n)
361
+ T1 = [2, z, 4*cos1], [-n-3, n, 1], [-n], [], [], [0.5, 0.5*(1+n), 0.5*(n+2)], r
362
+ T2 = [2, z, -sin1], [-n-3, 2+n, 1], [-n-1], [], [], [1.5, 0.5*(3+n), 0.5*(n+2)], r
363
+ T3 = [2, z, 4*cos2], [n-3, -n, 1], [n], [], [], [0.5, 0.5*(1-n), 1-0.5*n], r
364
+ T4 = [2, z, -sin2], [n-3, 2-n, 1], [n-1], [], [], [1.5, 0.5*(3-n), 1-0.5*n], r
365
+ return T1, T2, T3, T4
366
+ return ctx.hypercomb(h, [n], **kwargs)
367
+
368
+ @defun
369
+ def kei(ctx, n, z, **kwargs):
370
+ n = ctx.convert(n)
371
+ z = ctx.convert(z)
372
+ # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinKei2/26/01/02/0001/
373
+ def h(n):
374
+ r = -(z/4)**4
375
+ cos1, sin1 = ctx.cospi_sinpi(0.75*n)
376
+ cos2, sin2 = ctx.cospi_sinpi(0.25*n)
377
+ T1 = [-cos1, 2, z], [1, n-3, 2-n], [n-1], [], [], [1.5, 0.5*(3-n), 1-0.5*n], r
378
+ T2 = [-sin1, 2, z], [1, n-1, -n], [n], [], [], [0.5, 0.5*(1-n), 1-0.5*n], r
379
+ T3 = [-sin2, 2, z], [1, -n-1, n], [-n], [], [], [0.5, 0.5*(n+1), 0.5*(n+2)], r
380
+ T4 = [-cos2, 2, z], [1, -n-3, n+2], [-n-1], [], [], [1.5, 0.5*(n+3), 0.5*(n+2)], r
381
+ return T1, T2, T3, T4
382
+ return ctx.hypercomb(h, [n], **kwargs)
383
+
384
+ # TODO: do this more generically?
385
+ def c_memo(f):
386
+ name = f.__name__
387
+ def f_wrapped(ctx):
388
+ cache = ctx._misc_const_cache
389
+ prec = ctx.prec
390
+ p,v = cache.get(name, (-1,0))
391
+ if p >= prec:
392
+ return +v
393
+ else:
394
+ cache[name] = (prec, f(ctx))
395
+ return cache[name][1]
396
+ return f_wrapped
397
+
398
+ @c_memo
399
+ def _airyai_C1(ctx):
400
+ return 1 / (ctx.cbrt(9) * ctx.gamma(ctx.mpf(2)/3))
401
+
402
+ @c_memo
403
+ def _airyai_C2(ctx):
404
+ return -1 / (ctx.cbrt(3) * ctx.gamma(ctx.mpf(1)/3))
405
+
406
+ @c_memo
407
+ def _airybi_C1(ctx):
408
+ return 1 / (ctx.nthroot(3,6) * ctx.gamma(ctx.mpf(2)/3))
409
+
410
+ @c_memo
411
+ def _airybi_C2(ctx):
412
+ return ctx.nthroot(3,6) / ctx.gamma(ctx.mpf(1)/3)
413
+
414
+ def _airybi_n2_inf(ctx):
415
+ prec = ctx.prec
416
+ try:
417
+ v = ctx.power(3,'2/3')*ctx.gamma('2/3')/(2*ctx.pi)
418
+ finally:
419
+ ctx.prec = prec
420
+ return +v
421
+
422
+ # Derivatives at z = 0
423
+ # TODO: could be expressed more elegantly using triple factorials
424
+ def _airyderiv_0(ctx, z, n, ntype, which):
425
+ if ntype == 'Z':
426
+ if n < 0:
427
+ return z
428
+ r = ctx.mpq_1_3
429
+ prec = ctx.prec
430
+ try:
431
+ ctx.prec += 10
432
+ v = ctx.gamma((n+1)*r) * ctx.power(3,n*r) / ctx.pi
433
+ if which == 0:
434
+ v *= ctx.sinpi(2*(n+1)*r)
435
+ v /= ctx.power(3,'2/3')
436
+ else:
437
+ v *= abs(ctx.sinpi(2*(n+1)*r))
438
+ v /= ctx.power(3,'1/6')
439
+ finally:
440
+ ctx.prec = prec
441
+ return +v + z
442
+ else:
443
+ # singular (does the limit exist?)
444
+ raise NotImplementedError
445
+
446
+ @defun
447
+ def airyai(ctx, z, derivative=0, **kwargs):
448
+ z = ctx.convert(z)
449
+ if derivative:
450
+ n, ntype = ctx._convert_param(derivative)
451
+ else:
452
+ n = 0
453
+ # Values at infinities
454
+ if not ctx.isnormal(z) and z:
455
+ if n and ntype == 'Z':
456
+ if n == -1:
457
+ if z == ctx.inf:
458
+ return ctx.mpf(1)/3 + 1/z
459
+ if z == ctx.ninf:
460
+ return ctx.mpf(-2)/3 + 1/z
461
+ if n < -1:
462
+ if z == ctx.inf:
463
+ return z
464
+ if z == ctx.ninf:
465
+ return (-1)**n * (-z)
466
+ if (not n) and z == ctx.inf or z == ctx.ninf:
467
+ return 1/z
468
+ # TODO: limits
469
+ raise ValueError("essential singularity of Ai(z)")
470
+ # Account for exponential scaling
471
+ if z:
472
+ extraprec = max(0, int(1.5*ctx.mag(z)))
473
+ else:
474
+ extraprec = 0
475
+ if n:
476
+ if n == 1:
477
+ def h():
478
+ # http://functions.wolfram.com/03.07.06.0005.01
479
+ if ctx._re(z) > 4:
480
+ ctx.prec += extraprec
481
+ w = z**1.5; r = -0.75/w; u = -2*w/3
482
+ ctx.prec -= extraprec
483
+ C = -ctx.exp(u)/(2*ctx.sqrt(ctx.pi))*ctx.nthroot(z,4)
484
+ return ([C],[1],[],[],[(-1,6),(7,6)],[],r),
485
+ # http://functions.wolfram.com/03.07.26.0001.01
486
+ else:
487
+ ctx.prec += extraprec
488
+ w = z**3 / 9
489
+ ctx.prec -= extraprec
490
+ C1 = _airyai_C1(ctx) * 0.5
491
+ C2 = _airyai_C2(ctx)
492
+ T1 = [C1,z],[1,2],[],[],[],[ctx.mpq_5_3],w
493
+ T2 = [C2],[1],[],[],[],[ctx.mpq_1_3],w
494
+ return T1, T2
495
+ return ctx.hypercomb(h, [], **kwargs)
496
+ else:
497
+ if z == 0:
498
+ return _airyderiv_0(ctx, z, n, ntype, 0)
499
+ # http://functions.wolfram.com/03.05.20.0004.01
500
+ def h(n):
501
+ ctx.prec += extraprec
502
+ w = z**3/9
503
+ ctx.prec -= extraprec
504
+ q13,q23,q43 = ctx.mpq_1_3, ctx.mpq_2_3, ctx.mpq_4_3
505
+ a1=q13; a2=1; b1=(1-n)*q13; b2=(2-n)*q13; b3=1-n*q13
506
+ T1 = [3, z], [n-q23, -n], [a1], [b1,b2,b3], \
507
+ [a1,a2], [b1,b2,b3], w
508
+ a1=q23; b1=(2-n)*q13; b2=1-n*q13; b3=(4-n)*q13
509
+ T2 = [3, z, -z], [n-q43, -n, 1], [a1], [b1,b2,b3], \
510
+ [a1,a2], [b1,b2,b3], w
511
+ return T1, T2
512
+ v = ctx.hypercomb(h, [n], **kwargs)
513
+ if ctx._is_real_type(z) and ctx.isint(n):
514
+ v = ctx._re(v)
515
+ return v
516
+ else:
517
+ def h():
518
+ if ctx._re(z) > 4:
519
+ # We could use 1F1, but it results in huge cancellation;
520
+ # the following expansion is better.
521
+ # TODO: asymptotic series for derivatives
522
+ ctx.prec += extraprec
523
+ w = z**1.5; r = -0.75/w; u = -2*w/3
524
+ ctx.prec -= extraprec
525
+ C = ctx.exp(u)/(2*ctx.sqrt(ctx.pi)*ctx.nthroot(z,4))
526
+ return ([C],[1],[],[],[(1,6),(5,6)],[],r),
527
+ else:
528
+ ctx.prec += extraprec
529
+ w = z**3 / 9
530
+ ctx.prec -= extraprec
531
+ C1 = _airyai_C1(ctx)
532
+ C2 = _airyai_C2(ctx)
533
+ T1 = [C1],[1],[],[],[],[ctx.mpq_2_3],w
534
+ T2 = [z*C2],[1],[],[],[],[ctx.mpq_4_3],w
535
+ return T1, T2
536
+ return ctx.hypercomb(h, [], **kwargs)
537
+
538
+ @defun
539
+ def airybi(ctx, z, derivative=0, **kwargs):
540
+ z = ctx.convert(z)
541
+ if derivative:
542
+ n, ntype = ctx._convert_param(derivative)
543
+ else:
544
+ n = 0
545
+ # Values at infinities
546
+ if not ctx.isnormal(z) and z:
547
+ if n and ntype == 'Z':
548
+ if z == ctx.inf:
549
+ return z
550
+ if z == ctx.ninf:
551
+ if n == -1:
552
+ return 1/z
553
+ if n == -2:
554
+ return _airybi_n2_inf(ctx)
555
+ if n < -2:
556
+ return (-1)**n * (-z)
557
+ if not n:
558
+ if z == ctx.inf:
559
+ return z
560
+ if z == ctx.ninf:
561
+ return 1/z
562
+ # TODO: limits
563
+ raise ValueError("essential singularity of Bi(z)")
564
+ if z:
565
+ extraprec = max(0, int(1.5*ctx.mag(z)))
566
+ else:
567
+ extraprec = 0
568
+ if n:
569
+ if n == 1:
570
+ # http://functions.wolfram.com/03.08.26.0001.01
571
+ def h():
572
+ ctx.prec += extraprec
573
+ w = z**3 / 9
574
+ ctx.prec -= extraprec
575
+ C1 = _airybi_C1(ctx)*0.5
576
+ C2 = _airybi_C2(ctx)
577
+ T1 = [C1,z],[1,2],[],[],[],[ctx.mpq_5_3],w
578
+ T2 = [C2],[1],[],[],[],[ctx.mpq_1_3],w
579
+ return T1, T2
580
+ return ctx.hypercomb(h, [], **kwargs)
581
+ else:
582
+ if z == 0:
583
+ return _airyderiv_0(ctx, z, n, ntype, 1)
584
+ def h(n):
585
+ ctx.prec += extraprec
586
+ w = z**3/9
587
+ ctx.prec -= extraprec
588
+ q13,q23,q43 = ctx.mpq_1_3, ctx.mpq_2_3, ctx.mpq_4_3
589
+ q16 = ctx.mpq_1_6
590
+ q56 = ctx.mpq_5_6
591
+ a1=q13; a2=1; b1=(1-n)*q13; b2=(2-n)*q13; b3=1-n*q13
592
+ T1 = [3, z], [n-q16, -n], [a1], [b1,b2,b3], \
593
+ [a1,a2], [b1,b2,b3], w
594
+ a1=q23; b1=(2-n)*q13; b2=1-n*q13; b3=(4-n)*q13
595
+ T2 = [3, z], [n-q56, 1-n], [a1], [b1,b2,b3], \
596
+ [a1,a2], [b1,b2,b3], w
597
+ return T1, T2
598
+ v = ctx.hypercomb(h, [n], **kwargs)
599
+ if ctx._is_real_type(z) and ctx.isint(n):
600
+ v = ctx._re(v)
601
+ return v
602
+ else:
603
+ def h():
604
+ ctx.prec += extraprec
605
+ w = z**3 / 9
606
+ ctx.prec -= extraprec
607
+ C1 = _airybi_C1(ctx)
608
+ C2 = _airybi_C2(ctx)
609
+ T1 = [C1],[1],[],[],[],[ctx.mpq_2_3],w
610
+ T2 = [z*C2],[1],[],[],[],[ctx.mpq_4_3],w
611
+ return T1, T2
612
+ return ctx.hypercomb(h, [], **kwargs)
613
+
614
+ def _airy_zero(ctx, which, k, derivative, complex=False):
615
+ # Asymptotic formulas are given in DLMF section 9.9
616
+ def U(t): return t**(2/3.)*(1-7/(t**2*48))
617
+ def T(t): return t**(2/3.)*(1+5/(t**2*48))
618
+ k = int(k)
619
+ if k < 1:
620
+ raise ValueError("k cannot be less than 1")
621
+ if not derivative in (0,1):
622
+ raise ValueError("Derivative should lie between 0 and 1")
623
+ if which == 0:
624
+ if derivative:
625
+ return ctx.findroot(lambda z: ctx.airyai(z,1),
626
+ -U(3*ctx.pi*(4*k-3)/8))
627
+ return ctx.findroot(ctx.airyai, -T(3*ctx.pi*(4*k-1)/8))
628
+ if which == 1 and complex == False:
629
+ if derivative:
630
+ return ctx.findroot(lambda z: ctx.airybi(z,1),
631
+ -U(3*ctx.pi*(4*k-1)/8))
632
+ return ctx.findroot(ctx.airybi, -T(3*ctx.pi*(4*k-3)/8))
633
+ if which == 1 and complex == True:
634
+ if derivative:
635
+ t = 3*ctx.pi*(4*k-3)/8 + 0.75j*ctx.ln2
636
+ s = ctx.expjpi(ctx.mpf(1)/3) * T(t)
637
+ return ctx.findroot(lambda z: ctx.airybi(z,1), s)
638
+ t = 3*ctx.pi*(4*k-1)/8 + 0.75j*ctx.ln2
639
+ s = ctx.expjpi(ctx.mpf(1)/3) * U(t)
640
+ return ctx.findroot(ctx.airybi, s)
641
+
642
+ @defun
643
+ def airyaizero(ctx, k, derivative=0):
644
+ return _airy_zero(ctx, 0, k, derivative, False)
645
+
646
+ @defun
647
+ def airybizero(ctx, k, derivative=0, complex=False):
648
+ return _airy_zero(ctx, 1, k, derivative, complex)
649
+
650
+ def _scorer(ctx, z, which, kwargs):
651
+ z = ctx.convert(z)
652
+ if ctx.isinf(z):
653
+ if z == ctx.inf:
654
+ if which == 0: return 1/z
655
+ if which == 1: return z
656
+ if z == ctx.ninf:
657
+ return 1/z
658
+ raise ValueError("essential singularity")
659
+ if z:
660
+ extraprec = max(0, int(1.5*ctx.mag(z)))
661
+ else:
662
+ extraprec = 0
663
+ if kwargs.get('derivative'):
664
+ raise NotImplementedError
665
+ # Direct asymptotic expansions, to avoid
666
+ # exponentially large cancellation
667
+ try:
668
+ if ctx.mag(z) > 3:
669
+ if which == 0 and abs(ctx.arg(z)) < ctx.pi/3 * 0.999:
670
+ def h():
671
+ return (([ctx.pi,z],[-1,-1],[],[],[(1,3),(2,3),1],[],9/z**3),)
672
+ return ctx.hypercomb(h, [], maxterms=ctx.prec, force_series=True)
673
+ if which == 1 and abs(ctx.arg(-z)) < 2*ctx.pi/3 * 0.999:
674
+ def h():
675
+ return (([-ctx.pi,z],[-1,-1],[],[],[(1,3),(2,3),1],[],9/z**3),)
676
+ return ctx.hypercomb(h, [], maxterms=ctx.prec, force_series=True)
677
+ except ctx.NoConvergence:
678
+ pass
679
+ def h():
680
+ A = ctx.airybi(z, **kwargs)/3
681
+ B = -2*ctx.pi
682
+ if which == 1:
683
+ A *= 2
684
+ B *= -1
685
+ ctx.prec += extraprec
686
+ w = z**3/9
687
+ ctx.prec -= extraprec
688
+ T1 = [A], [1], [], [], [], [], 0
689
+ T2 = [B,z], [-1,2], [], [], [1], [ctx.mpq_4_3,ctx.mpq_5_3], w
690
+ return T1, T2
691
+ return ctx.hypercomb(h, [], **kwargs)
692
+
693
+ @defun
694
+ def scorergi(ctx, z, **kwargs):
695
+ return _scorer(ctx, z, 0, kwargs)
696
+
697
+ @defun
698
+ def scorerhi(ctx, z, **kwargs):
699
+ return _scorer(ctx, z, 1, kwargs)
700
+
701
+ @defun_wrapped
702
+ def coulombc(ctx, l, eta, _cache={}):
703
+ if (l, eta) in _cache and _cache[l,eta][0] >= ctx.prec:
704
+ return +_cache[l,eta][1]
705
+ G3 = ctx.loggamma(2*l+2)
706
+ G1 = ctx.loggamma(1+l+ctx.j*eta)
707
+ G2 = ctx.loggamma(1+l-ctx.j*eta)
708
+ v = 2**l * ctx.exp((-ctx.pi*eta+G1+G2)/2 - G3)
709
+ if not (ctx.im(l) or ctx.im(eta)):
710
+ v = ctx.re(v)
711
+ _cache[l,eta] = (ctx.prec, v)
712
+ return v
713
+
714
+ @defun_wrapped
715
+ def coulombf(ctx, l, eta, z, w=1, chop=True, **kwargs):
716
+ # Regular Coulomb wave function
717
+ # Note: w can be either 1 or -1; the other may be better in some cases
718
+ # TODO: check that chop=True chops when and only when it should
719
+ #ctx.prec += 10
720
+ def h(l, eta):
721
+ try:
722
+ jw = ctx.j*w
723
+ jwz = ctx.fmul(jw, z, exact=True)
724
+ jwz2 = ctx.fmul(jwz, -2, exact=True)
725
+ C = ctx.coulombc(l, eta)
726
+ T1 = [C, z, ctx.exp(jwz)], [1, l+1, 1], [], [], [1+l+jw*eta], \
727
+ [2*l+2], jwz2
728
+ except ValueError:
729
+ T1 = [0], [-1], [], [], [], [], 0
730
+ return (T1,)
731
+ v = ctx.hypercomb(h, [l,eta], **kwargs)
732
+ if chop and (not ctx.im(l)) and (not ctx.im(eta)) and (not ctx.im(z)) and \
733
+ (ctx.re(z) >= 0):
734
+ v = ctx.re(v)
735
+ return v
736
+
737
+ @defun_wrapped
738
+ def _coulomb_chi(ctx, l, eta, _cache={}):
739
+ if (l, eta) in _cache and _cache[l,eta][0] >= ctx.prec:
740
+ return _cache[l,eta][1]
741
+ def terms():
742
+ l2 = -l-1
743
+ jeta = ctx.j*eta
744
+ return [ctx.loggamma(1+l+jeta) * (-0.5j),
745
+ ctx.loggamma(1+l-jeta) * (0.5j),
746
+ ctx.loggamma(1+l2+jeta) * (0.5j),
747
+ ctx.loggamma(1+l2-jeta) * (-0.5j),
748
+ -(l+0.5)*ctx.pi]
749
+ v = ctx.sum_accurately(terms, 1)
750
+ _cache[l,eta] = (ctx.prec, v)
751
+ return v
752
+
753
+ @defun_wrapped
754
+ def coulombg(ctx, l, eta, z, w=1, chop=True, **kwargs):
755
+ # Irregular Coulomb wave function
756
+ # Note: w can be either 1 or -1; the other may be better in some cases
757
+ # TODO: check that chop=True chops when and only when it should
758
+ if not ctx._im(l):
759
+ l = ctx._re(l) # XXX: for isint
760
+ def h(l, eta):
761
+ # Force perturbation for integers and half-integers
762
+ if ctx.isint(l*2):
763
+ T1 = [0], [-1], [], [], [], [], 0
764
+ return (T1,)
765
+ l2 = -l-1
766
+ try:
767
+ chi = ctx._coulomb_chi(l, eta)
768
+ jw = ctx.j*w
769
+ s = ctx.sin(chi); c = ctx.cos(chi)
770
+ C1 = ctx.coulombc(l,eta)
771
+ C2 = ctx.coulombc(l2,eta)
772
+ u = ctx.exp(jw*z)
773
+ x = -2*jw*z
774
+ T1 = [s, C1, z, u, c], [-1, 1, l+1, 1, 1], [], [], \
775
+ [1+l+jw*eta], [2*l+2], x
776
+ T2 = [-s, C2, z, u], [-1, 1, l2+1, 1], [], [], \
777
+ [1+l2+jw*eta], [2*l2+2], x
778
+ return T1, T2
779
+ except ValueError:
780
+ T1 = [0], [-1], [], [], [], [], 0
781
+ return (T1,)
782
+ v = ctx.hypercomb(h, [l,eta], **kwargs)
783
+ if chop and (not ctx._im(l)) and (not ctx._im(eta)) and (not ctx._im(z)) and \
784
+ (ctx._re(z) >= 0):
785
+ v = ctx._re(v)
786
+ return v
787
+
788
+ def mcmahon(ctx,kind,prime,v,m):
789
+ """
790
+ Computes an estimate for the location of the Bessel function zero
791
+ j_{v,m}, y_{v,m}, j'_{v,m} or y'_{v,m} using McMahon's asymptotic
792
+ expansion (Abramowitz & Stegun 9.5.12-13, DLMF 20.21(vi)).
793
+
794
+ Returns (r,err) where r is the estimated location of the root
795
+ and err is a positive number estimating the error of the
796
+ asymptotic expansion.
797
+ """
798
+ u = 4*v**2
799
+ if kind == 1 and not prime: b = (4*m+2*v-1)*ctx.pi/4
800
+ if kind == 2 and not prime: b = (4*m+2*v-3)*ctx.pi/4
801
+ if kind == 1 and prime: b = (4*m+2*v-3)*ctx.pi/4
802
+ if kind == 2 and prime: b = (4*m+2*v-1)*ctx.pi/4
803
+ if not prime:
804
+ s1 = b
805
+ s2 = -(u-1)/(8*b)
806
+ s3 = -4*(u-1)*(7*u-31)/(3*(8*b)**3)
807
+ s4 = -32*(u-1)*(83*u**2-982*u+3779)/(15*(8*b)**5)
808
+ s5 = -64*(u-1)*(6949*u**3-153855*u**2+1585743*u-6277237)/(105*(8*b)**7)
809
+ if prime:
810
+ s1 = b
811
+ s2 = -(u+3)/(8*b)
812
+ s3 = -4*(7*u**2+82*u-9)/(3*(8*b)**3)
813
+ s4 = -32*(83*u**3+2075*u**2-3039*u+3537)/(15*(8*b)**5)
814
+ s5 = -64*(6949*u**4+296492*u**3-1248002*u**2+7414380*u-5853627)/(105*(8*b)**7)
815
+ terms = [s1,s2,s3,s4,s5]
816
+ s = s1
817
+ err = 0.0
818
+ for i in range(1,len(terms)):
819
+ if abs(terms[i]) < abs(terms[i-1]):
820
+ s += terms[i]
821
+ else:
822
+ err = abs(terms[i])
823
+ if i == len(terms)-1:
824
+ err = abs(terms[-1])
825
+ return s, err
826
+
827
+ def generalized_bisection(ctx,f,a,b,n):
828
+ """
829
+ Given f known to have exactly n simple roots within [a,b],
830
+ return a list of n intervals isolating the roots
831
+ and having opposite signs at the endpoints.
832
+
833
+ TODO: this can be optimized, e.g. by reusing evaluation points.
834
+ """
835
+ if n < 1:
836
+ raise ValueError("n cannot be less than 1")
837
+ N = n+1
838
+ points = []
839
+ signs = []
840
+ while 1:
841
+ points = ctx.linspace(a,b,N)
842
+ signs = [ctx.sign(f(x)) for x in points]
843
+ ok_intervals = [(points[i],points[i+1]) for i in range(N-1) \
844
+ if signs[i]*signs[i+1] == -1]
845
+ if len(ok_intervals) == n:
846
+ return ok_intervals
847
+ N = N*2
848
+
849
+ def find_in_interval(ctx, f, ab):
850
+ return ctx.findroot(f, ab, solver='illinois', verify=False)
851
+
852
+ def bessel_zero(ctx, kind, prime, v, m, isoltol=0.01, _interval_cache={}):
853
+ prec = ctx.prec
854
+ workprec = max(prec, ctx.mag(v), ctx.mag(m))+10
855
+ try:
856
+ ctx.prec = workprec
857
+ v = ctx.mpf(v)
858
+ m = int(m)
859
+ prime = int(prime)
860
+ if v < 0:
861
+ raise ValueError("v cannot be negative")
862
+ if m < 1:
863
+ raise ValueError("m cannot be less than 1")
864
+ if not prime in (0,1):
865
+ raise ValueError("prime should lie between 0 and 1")
866
+ if kind == 1:
867
+ if prime: f = lambda x: ctx.besselj(v,x,derivative=1)
868
+ else: f = lambda x: ctx.besselj(v,x)
869
+ if kind == 2:
870
+ if prime: f = lambda x: ctx.bessely(v,x,derivative=1)
871
+ else: f = lambda x: ctx.bessely(v,x)
872
+ # The first root of J' is very close to 0 for small
873
+ # orders, and this needs to be special-cased
874
+ if kind == 1 and prime and m == 1:
875
+ if v == 0:
876
+ return ctx.zero
877
+ if v <= 1:
878
+ # TODO: use v <= j'_{v,1} < y_{v,1}?
879
+ r = 2*ctx.sqrt(v*(1+v)/(v+2))
880
+ return find_in_interval(ctx, f, (r/10, 2*r))
881
+ if (kind,prime,v,m) in _interval_cache:
882
+ return find_in_interval(ctx, f, _interval_cache[kind,prime,v,m])
883
+ r, err = mcmahon(ctx, kind, prime, v, m)
884
+ if err < isoltol:
885
+ return find_in_interval(ctx, f, (r-isoltol, r+isoltol))
886
+ # An x such that 0 < x < r_{v,1}
887
+ if kind == 1 and not prime: low = 2.4
888
+ if kind == 1 and prime: low = 1.8
889
+ if kind == 2 and not prime: low = 0.8
890
+ if kind == 2 and prime: low = 2.0
891
+ n = m+1
892
+ while 1:
893
+ r1, err = mcmahon(ctx, kind, prime, v, n)
894
+ if err < isoltol:
895
+ r2, err2 = mcmahon(ctx, kind, prime, v, n+1)
896
+ intervals = generalized_bisection(ctx, f, low, 0.5*(r1+r2), n)
897
+ for k, ab in enumerate(intervals):
898
+ _interval_cache[kind,prime,v,k+1] = ab
899
+ return find_in_interval(ctx, f, intervals[m-1])
900
+ else:
901
+ n = n*2
902
+ finally:
903
+ ctx.prec = prec
904
+
905
+ @defun
906
+ def besseljzero(ctx, v, m, derivative=0):
907
+ r"""
908
+ For a real order `\nu \ge 0` and a positive integer `m`, returns
909
+ `j_{\nu,m}`, the `m`-th positive zero of the Bessel function of the
910
+ first kind `J_{\nu}(z)` (see :func:`~mpmath.besselj`). Alternatively,
911
+ with *derivative=1*, gives the first nonnegative simple zero
912
+ `j'_{\nu,m}` of `J'_{\nu}(z)`.
913
+
914
+ The indexing convention is that used by Abramowitz & Stegun
915
+ and the DLMF. Note the special case `j'_{0,1} = 0`, while all other
916
+ zeros are positive. In effect, only simple zeros are counted
917
+ (all zeros of Bessel functions are simple except possibly `z = 0`)
918
+ and `j_{\nu,m}` becomes a monotonic function of both `\nu`
919
+ and `m`.
920
+
921
+ The zeros are interlaced according to the inequalities
922
+
923
+ .. math ::
924
+
925
+ j'_{\nu,k} < j_{\nu,k} < j'_{\nu,k+1}
926
+
927
+ j_{\nu,1} < j_{\nu+1,2} < j_{\nu,2} < j_{\nu+1,2} < j_{\nu,3} < \cdots
928
+
929
+ **Examples**
930
+
931
+ Initial zeros of the Bessel functions `J_0(z), J_1(z), J_2(z)`::
932
+
933
+ >>> from mpmath import *
934
+ >>> mp.dps = 25; mp.pretty = True
935
+ >>> besseljzero(0,1); besseljzero(0,2); besseljzero(0,3)
936
+ 2.404825557695772768621632
937
+ 5.520078110286310649596604
938
+ 8.653727912911012216954199
939
+ >>> besseljzero(1,1); besseljzero(1,2); besseljzero(1,3)
940
+ 3.831705970207512315614436
941
+ 7.01558666981561875353705
942
+ 10.17346813506272207718571
943
+ >>> besseljzero(2,1); besseljzero(2,2); besseljzero(2,3)
944
+ 5.135622301840682556301402
945
+ 8.417244140399864857783614
946
+ 11.61984117214905942709415
947
+
948
+ Initial zeros of `J'_0(z), J'_1(z), J'_2(z)`::
949
+
950
+ 0.0
951
+ 3.831705970207512315614436
952
+ 7.01558666981561875353705
953
+ >>> besseljzero(1,1,1); besseljzero(1,2,1); besseljzero(1,3,1)
954
+ 1.84118378134065930264363
955
+ 5.331442773525032636884016
956
+ 8.536316366346285834358961
957
+ >>> besseljzero(2,1,1); besseljzero(2,2,1); besseljzero(2,3,1)
958
+ 3.054236928227140322755932
959
+ 6.706133194158459146634394
960
+ 9.969467823087595793179143
961
+
962
+ Zeros with large index::
963
+
964
+ >>> besseljzero(0,100); besseljzero(0,1000); besseljzero(0,10000)
965
+ 313.3742660775278447196902
966
+ 3140.807295225078628895545
967
+ 31415.14114171350798533666
968
+ >>> besseljzero(5,100); besseljzero(5,1000); besseljzero(5,10000)
969
+ 321.1893195676003157339222
970
+ 3148.657306813047523500494
971
+ 31422.9947255486291798943
972
+ >>> besseljzero(0,100,1); besseljzero(0,1000,1); besseljzero(0,10000,1)
973
+ 311.8018681873704508125112
974
+ 3139.236339643802482833973
975
+ 31413.57032947022399485808
976
+
977
+ Zeros of functions with large order::
978
+
979
+ >>> besseljzero(50,1)
980
+ 57.11689916011917411936228
981
+ >>> besseljzero(50,2)
982
+ 62.80769876483536093435393
983
+ >>> besseljzero(50,100)
984
+ 388.6936600656058834640981
985
+ >>> besseljzero(50,1,1)
986
+ 52.99764038731665010944037
987
+ >>> besseljzero(50,2,1)
988
+ 60.02631933279942589882363
989
+ >>> besseljzero(50,100,1)
990
+ 387.1083151608726181086283
991
+
992
+ Zeros of functions with fractional order::
993
+
994
+ >>> besseljzero(0.5,1); besseljzero(1.5,1); besseljzero(2.25,4)
995
+ 3.141592653589793238462643
996
+ 4.493409457909064175307881
997
+ 15.15657692957458622921634
998
+
999
+ Both `J_{\nu}(z)` and `J'_{\nu}(z)` can be expressed as infinite
1000
+ products over their zeros::
1001
+
1002
+ >>> v,z = 2, mpf(1)
1003
+ >>> (z/2)**v/gamma(v+1) * \
1004
+ ... nprod(lambda k: 1-(z/besseljzero(v,k))**2, [1,inf])
1005
+ ...
1006
+ 0.1149034849319004804696469
1007
+ >>> besselj(v,z)
1008
+ 0.1149034849319004804696469
1009
+ >>> (z/2)**(v-1)/2/gamma(v) * \
1010
+ ... nprod(lambda k: 1-(z/besseljzero(v,k,1))**2, [1,inf])
1011
+ ...
1012
+ 0.2102436158811325550203884
1013
+ >>> besselj(v,z,1)
1014
+ 0.2102436158811325550203884
1015
+
1016
+ """
1017
+ return +bessel_zero(ctx, 1, derivative, v, m)
1018
+
1019
+ @defun
1020
+ def besselyzero(ctx, v, m, derivative=0):
1021
+ r"""
1022
+ For a real order `\nu \ge 0` and a positive integer `m`, returns
1023
+ `y_{\nu,m}`, the `m`-th positive zero of the Bessel function of the
1024
+ second kind `Y_{\nu}(z)` (see :func:`~mpmath.bessely`). Alternatively,
1025
+ with *derivative=1*, gives the first positive zero `y'_{\nu,m}` of
1026
+ `Y'_{\nu}(z)`.
1027
+
1028
+ The zeros are interlaced according to the inequalities
1029
+
1030
+ .. math ::
1031
+
1032
+ y_{\nu,k} < y'_{\nu,k} < y_{\nu,k+1}
1033
+
1034
+ y_{\nu,1} < y_{\nu+1,2} < y_{\nu,2} < y_{\nu+1,2} < y_{\nu,3} < \cdots
1035
+
1036
+ **Examples**
1037
+
1038
+ Initial zeros of the Bessel functions `Y_0(z), Y_1(z), Y_2(z)`::
1039
+
1040
+ >>> from mpmath import *
1041
+ >>> mp.dps = 25; mp.pretty = True
1042
+ >>> besselyzero(0,1); besselyzero(0,2); besselyzero(0,3)
1043
+ 0.8935769662791675215848871
1044
+ 3.957678419314857868375677
1045
+ 7.086051060301772697623625
1046
+ >>> besselyzero(1,1); besselyzero(1,2); besselyzero(1,3)
1047
+ 2.197141326031017035149034
1048
+ 5.429681040794135132772005
1049
+ 8.596005868331168926429606
1050
+ >>> besselyzero(2,1); besselyzero(2,2); besselyzero(2,3)
1051
+ 3.384241767149593472701426
1052
+ 6.793807513268267538291167
1053
+ 10.02347797936003797850539
1054
+
1055
+ Initial zeros of `Y'_0(z), Y'_1(z), Y'_2(z)`::
1056
+
1057
+ >>> besselyzero(0,1,1); besselyzero(0,2,1); besselyzero(0,3,1)
1058
+ 2.197141326031017035149034
1059
+ 5.429681040794135132772005
1060
+ 8.596005868331168926429606
1061
+ >>> besselyzero(1,1,1); besselyzero(1,2,1); besselyzero(1,3,1)
1062
+ 3.683022856585177699898967
1063
+ 6.941499953654175655751944
1064
+ 10.12340465543661307978775
1065
+ >>> besselyzero(2,1,1); besselyzero(2,2,1); besselyzero(2,3,1)
1066
+ 5.002582931446063945200176
1067
+ 8.350724701413079526349714
1068
+ 11.57419546521764654624265
1069
+
1070
+ Zeros with large index::
1071
+
1072
+ >>> besselyzero(0,100); besselyzero(0,1000); besselyzero(0,10000)
1073
+ 311.8034717601871549333419
1074
+ 3139.236498918198006794026
1075
+ 31413.57034538691205229188
1076
+ >>> besselyzero(5,100); besselyzero(5,1000); besselyzero(5,10000)
1077
+ 319.6183338562782156235062
1078
+ 3147.086508524556404473186
1079
+ 31421.42392920214673402828
1080
+ >>> besselyzero(0,100,1); besselyzero(0,1000,1); besselyzero(0,10000,1)
1081
+ 313.3726705426359345050449
1082
+ 3140.807136030340213610065
1083
+ 31415.14112579761578220175
1084
+
1085
+ Zeros of functions with large order::
1086
+
1087
+ >>> besselyzero(50,1)
1088
+ 53.50285882040036394680237
1089
+ >>> besselyzero(50,2)
1090
+ 60.11244442774058114686022
1091
+ >>> besselyzero(50,100)
1092
+ 387.1096509824943957706835
1093
+ >>> besselyzero(50,1,1)
1094
+ 56.96290427516751320063605
1095
+ >>> besselyzero(50,2,1)
1096
+ 62.74888166945933944036623
1097
+ >>> besselyzero(50,100,1)
1098
+ 388.6923300548309258355475
1099
+
1100
+ Zeros of functions with fractional order::
1101
+
1102
+ >>> besselyzero(0.5,1); besselyzero(1.5,1); besselyzero(2.25,4)
1103
+ 1.570796326794896619231322
1104
+ 2.798386045783887136720249
1105
+ 13.56721208770735123376018
1106
+
1107
+ """
1108
+ return +bessel_zero(ctx, 2, derivative, v, m)
venv/lib/python3.10/site-packages/mpmath/functions/elliptic.py ADDED
@@ -0,0 +1,1431 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r"""
2
+ Elliptic functions historically comprise the elliptic integrals
3
+ and their inverses, and originate from the problem of computing the
4
+ arc length of an ellipse. From a more modern point of view,
5
+ an elliptic function is defined as a doubly periodic function, i.e.
6
+ a function which satisfies
7
+
8
+ .. math ::
9
+
10
+ f(z + 2 \omega_1) = f(z + 2 \omega_2) = f(z)
11
+
12
+ for some half-periods `\omega_1, \omega_2` with
13
+ `\mathrm{Im}[\omega_1 / \omega_2] > 0`. The canonical elliptic
14
+ functions are the Jacobi elliptic functions. More broadly, this section
15
+ includes quasi-doubly periodic functions (such as the Jacobi theta
16
+ functions) and other functions useful in the study of elliptic functions.
17
+
18
+ Many different conventions for the arguments of
19
+ elliptic functions are in use. It is even standard to use
20
+ different parameterizations for different functions in the same
21
+ text or software (and mpmath is no exception).
22
+ The usual parameters are the elliptic nome `q`, which usually
23
+ must satisfy `|q| < 1`; the elliptic parameter `m` (an arbitrary
24
+ complex number); the elliptic modulus `k` (an arbitrary complex
25
+ number); and the half-period ratio `\tau`, which usually must
26
+ satisfy `\mathrm{Im}[\tau] > 0`.
27
+ These quantities can be expressed in terms of each other
28
+ using the following relations:
29
+
30
+ .. math ::
31
+
32
+ m = k^2
33
+
34
+ .. math ::
35
+
36
+ \tau = i \frac{K(1-m)}{K(m)}
37
+
38
+ .. math ::
39
+
40
+ q = e^{i \pi \tau}
41
+
42
+ .. math ::
43
+
44
+ k = \frac{\vartheta_2^2(q)}{\vartheta_3^2(q)}
45
+
46
+ In addition, an alternative definition is used for the nome in
47
+ number theory, which we here denote by q-bar:
48
+
49
+ .. math ::
50
+
51
+ \bar{q} = q^2 = e^{2 i \pi \tau}
52
+
53
+ For convenience, mpmath provides functions to convert
54
+ between the various parameters (:func:`~mpmath.qfrom`, :func:`~mpmath.mfrom`,
55
+ :func:`~mpmath.kfrom`, :func:`~mpmath.taufrom`, :func:`~mpmath.qbarfrom`).
56
+
57
+ **References**
58
+
59
+ 1. [AbramowitzStegun]_
60
+
61
+ 2. [WhittakerWatson]_
62
+
63
+ """
64
+
65
+ from .functions import defun, defun_wrapped
66
+
67
+ @defun_wrapped
68
+ def eta(ctx, tau):
69
+ r"""
70
+ Returns the Dedekind eta function of tau in the upper half-plane.
71
+
72
+ >>> from mpmath import *
73
+ >>> mp.dps = 25; mp.pretty = True
74
+ >>> eta(1j); gamma(0.25) / (2*pi**0.75)
75
+ (0.7682254223260566590025942 + 0.0j)
76
+ 0.7682254223260566590025942
77
+ >>> tau = sqrt(2) + sqrt(5)*1j
78
+ >>> eta(-1/tau); sqrt(-1j*tau) * eta(tau)
79
+ (0.9022859908439376463573294 + 0.07985093673948098408048575j)
80
+ (0.9022859908439376463573295 + 0.07985093673948098408048575j)
81
+ >>> eta(tau+1); exp(pi*1j/12) * eta(tau)
82
+ (0.4493066139717553786223114 + 0.3290014793877986663915939j)
83
+ (0.4493066139717553786223114 + 0.3290014793877986663915939j)
84
+ >>> f = lambda z: diff(eta, z) / eta(z)
85
+ >>> chop(36*diff(f,tau)**2 - 24*diff(f,tau,2)*f(tau) + diff(f,tau,3))
86
+ 0.0
87
+
88
+ """
89
+ if ctx.im(tau) <= 0.0:
90
+ raise ValueError("eta is only defined in the upper half-plane")
91
+ q = ctx.expjpi(tau/12)
92
+ return q * ctx.qp(q**24)
93
+
94
+ def nome(ctx, m):
95
+ m = ctx.convert(m)
96
+ if not m:
97
+ return m
98
+ if m == ctx.one:
99
+ return m
100
+ if ctx.isnan(m):
101
+ return m
102
+ if ctx.isinf(m):
103
+ if m == ctx.ninf:
104
+ return type(m)(-1)
105
+ else:
106
+ return ctx.mpc(-1)
107
+ a = ctx.ellipk(ctx.one-m)
108
+ b = ctx.ellipk(m)
109
+ v = ctx.exp(-ctx.pi*a/b)
110
+ if not ctx._im(m) and ctx._re(m) < 1:
111
+ if ctx._is_real_type(m):
112
+ return v.real
113
+ else:
114
+ return v.real + 0j
115
+ elif m == 2:
116
+ v = ctx.mpc(0, v.imag)
117
+ return v
118
+
119
+ @defun_wrapped
120
+ def qfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None):
121
+ r"""
122
+ Returns the elliptic nome `q`, given any of `q, m, k, \tau, \bar{q}`::
123
+
124
+ >>> from mpmath import *
125
+ >>> mp.dps = 25; mp.pretty = True
126
+ >>> qfrom(q=0.25)
127
+ 0.25
128
+ >>> qfrom(m=mfrom(q=0.25))
129
+ 0.25
130
+ >>> qfrom(k=kfrom(q=0.25))
131
+ 0.25
132
+ >>> qfrom(tau=taufrom(q=0.25))
133
+ (0.25 + 0.0j)
134
+ >>> qfrom(qbar=qbarfrom(q=0.25))
135
+ 0.25
136
+
137
+ """
138
+ if q is not None:
139
+ return ctx.convert(q)
140
+ if m is not None:
141
+ return nome(ctx, m)
142
+ if k is not None:
143
+ return nome(ctx, ctx.convert(k)**2)
144
+ if tau is not None:
145
+ return ctx.expjpi(tau)
146
+ if qbar is not None:
147
+ return ctx.sqrt(qbar)
148
+
149
+ @defun_wrapped
150
+ def qbarfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None):
151
+ r"""
152
+ Returns the number-theoretic nome `\bar q`, given any of
153
+ `q, m, k, \tau, \bar{q}`::
154
+
155
+ >>> from mpmath import *
156
+ >>> mp.dps = 25; mp.pretty = True
157
+ >>> qbarfrom(qbar=0.25)
158
+ 0.25
159
+ >>> qbarfrom(q=qfrom(qbar=0.25))
160
+ 0.25
161
+ >>> qbarfrom(m=extraprec(20)(mfrom)(qbar=0.25)) # ill-conditioned
162
+ 0.25
163
+ >>> qbarfrom(k=extraprec(20)(kfrom)(qbar=0.25)) # ill-conditioned
164
+ 0.25
165
+ >>> qbarfrom(tau=taufrom(qbar=0.25))
166
+ (0.25 + 0.0j)
167
+
168
+ """
169
+ if qbar is not None:
170
+ return ctx.convert(qbar)
171
+ if q is not None:
172
+ return ctx.convert(q) ** 2
173
+ if m is not None:
174
+ return nome(ctx, m) ** 2
175
+ if k is not None:
176
+ return nome(ctx, ctx.convert(k)**2) ** 2
177
+ if tau is not None:
178
+ return ctx.expjpi(2*tau)
179
+
180
+ @defun_wrapped
181
+ def taufrom(ctx, q=None, m=None, k=None, tau=None, qbar=None):
182
+ r"""
183
+ Returns the elliptic half-period ratio `\tau`, given any of
184
+ `q, m, k, \tau, \bar{q}`::
185
+
186
+ >>> from mpmath import *
187
+ >>> mp.dps = 25; mp.pretty = True
188
+ >>> taufrom(tau=0.5j)
189
+ (0.0 + 0.5j)
190
+ >>> taufrom(q=qfrom(tau=0.5j))
191
+ (0.0 + 0.5j)
192
+ >>> taufrom(m=mfrom(tau=0.5j))
193
+ (0.0 + 0.5j)
194
+ >>> taufrom(k=kfrom(tau=0.5j))
195
+ (0.0 + 0.5j)
196
+ >>> taufrom(qbar=qbarfrom(tau=0.5j))
197
+ (0.0 + 0.5j)
198
+
199
+ """
200
+ if tau is not None:
201
+ return ctx.convert(tau)
202
+ if m is not None:
203
+ m = ctx.convert(m)
204
+ return ctx.j*ctx.ellipk(1-m)/ctx.ellipk(m)
205
+ if k is not None:
206
+ k = ctx.convert(k)
207
+ return ctx.j*ctx.ellipk(1-k**2)/ctx.ellipk(k**2)
208
+ if q is not None:
209
+ return ctx.log(q) / (ctx.pi*ctx.j)
210
+ if qbar is not None:
211
+ qbar = ctx.convert(qbar)
212
+ return ctx.log(qbar) / (2*ctx.pi*ctx.j)
213
+
214
+ @defun_wrapped
215
+ def kfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None):
216
+ r"""
217
+ Returns the elliptic modulus `k`, given any of
218
+ `q, m, k, \tau, \bar{q}`::
219
+
220
+ >>> from mpmath import *
221
+ >>> mp.dps = 25; mp.pretty = True
222
+ >>> kfrom(k=0.25)
223
+ 0.25
224
+ >>> kfrom(m=mfrom(k=0.25))
225
+ 0.25
226
+ >>> kfrom(q=qfrom(k=0.25))
227
+ 0.25
228
+ >>> kfrom(tau=taufrom(k=0.25))
229
+ (0.25 + 0.0j)
230
+ >>> kfrom(qbar=qbarfrom(k=0.25))
231
+ 0.25
232
+
233
+ As `q \to 1` and `q \to -1`, `k` rapidly approaches
234
+ `1` and `i \infty` respectively::
235
+
236
+ >>> kfrom(q=0.75)
237
+ 0.9999999999999899166471767
238
+ >>> kfrom(q=-0.75)
239
+ (0.0 + 7041781.096692038332790615j)
240
+ >>> kfrom(q=1)
241
+ 1
242
+ >>> kfrom(q=-1)
243
+ (0.0 + +infj)
244
+ """
245
+ if k is not None:
246
+ return ctx.convert(k)
247
+ if m is not None:
248
+ return ctx.sqrt(m)
249
+ if tau is not None:
250
+ q = ctx.expjpi(tau)
251
+ if qbar is not None:
252
+ q = ctx.sqrt(qbar)
253
+ if q == 1:
254
+ return q
255
+ if q == -1:
256
+ return ctx.mpc(0,'inf')
257
+ return (ctx.jtheta(2,0,q)/ctx.jtheta(3,0,q))**2
258
+
259
+ @defun_wrapped
260
+ def mfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None):
261
+ r"""
262
+ Returns the elliptic parameter `m`, given any of
263
+ `q, m, k, \tau, \bar{q}`::
264
+
265
+ >>> from mpmath import *
266
+ >>> mp.dps = 25; mp.pretty = True
267
+ >>> mfrom(m=0.25)
268
+ 0.25
269
+ >>> mfrom(q=qfrom(m=0.25))
270
+ 0.25
271
+ >>> mfrom(k=kfrom(m=0.25))
272
+ 0.25
273
+ >>> mfrom(tau=taufrom(m=0.25))
274
+ (0.25 + 0.0j)
275
+ >>> mfrom(qbar=qbarfrom(m=0.25))
276
+ 0.25
277
+
278
+ As `q \to 1` and `q \to -1`, `m` rapidly approaches
279
+ `1` and `-\infty` respectively::
280
+
281
+ >>> mfrom(q=0.75)
282
+ 0.9999999999999798332943533
283
+ >>> mfrom(q=-0.75)
284
+ -49586681013729.32611558353
285
+ >>> mfrom(q=1)
286
+ 1.0
287
+ >>> mfrom(q=-1)
288
+ -inf
289
+
290
+ The inverse nome as a function of `q` has an integer
291
+ Taylor series expansion::
292
+
293
+ >>> taylor(lambda q: mfrom(q), 0, 7)
294
+ [0.0, 16.0, -128.0, 704.0, -3072.0, 11488.0, -38400.0, 117632.0]
295
+
296
+ """
297
+ if m is not None:
298
+ return m
299
+ if k is not None:
300
+ return k**2
301
+ if tau is not None:
302
+ q = ctx.expjpi(tau)
303
+ if qbar is not None:
304
+ q = ctx.sqrt(qbar)
305
+ if q == 1:
306
+ return ctx.convert(q)
307
+ if q == -1:
308
+ return q*ctx.inf
309
+ v = (ctx.jtheta(2,0,q)/ctx.jtheta(3,0,q))**4
310
+ if ctx._is_real_type(q) and q < 0:
311
+ v = v.real
312
+ return v
313
+
314
+ jacobi_spec = {
315
+ 'sn' : ([3],[2],[1],[4], 'sin', 'tanh'),
316
+ 'cn' : ([4],[2],[2],[4], 'cos', 'sech'),
317
+ 'dn' : ([4],[3],[3],[4], '1', 'sech'),
318
+ 'ns' : ([2],[3],[4],[1], 'csc', 'coth'),
319
+ 'nc' : ([2],[4],[4],[2], 'sec', 'cosh'),
320
+ 'nd' : ([3],[4],[4],[3], '1', 'cosh'),
321
+ 'sc' : ([3],[4],[1],[2], 'tan', 'sinh'),
322
+ 'sd' : ([3,3],[2,4],[1],[3], 'sin', 'sinh'),
323
+ 'cd' : ([3],[2],[2],[3], 'cos', '1'),
324
+ 'cs' : ([4],[3],[2],[1], 'cot', 'csch'),
325
+ 'dc' : ([2],[3],[3],[2], 'sec', '1'),
326
+ 'ds' : ([2,4],[3,3],[3],[1], 'csc', 'csch'),
327
+ 'cc' : None,
328
+ 'ss' : None,
329
+ 'nn' : None,
330
+ 'dd' : None
331
+ }
332
+
333
+ @defun
334
+ def ellipfun(ctx, kind, u=None, m=None, q=None, k=None, tau=None):
335
+ try:
336
+ S = jacobi_spec[kind]
337
+ except KeyError:
338
+ raise ValueError("First argument must be a two-character string "
339
+ "containing 's', 'c', 'd' or 'n', e.g.: 'sn'")
340
+ if u is None:
341
+ def f(*args, **kwargs):
342
+ return ctx.ellipfun(kind, *args, **kwargs)
343
+ f.__name__ = kind
344
+ return f
345
+ prec = ctx.prec
346
+ try:
347
+ ctx.prec += 10
348
+ u = ctx.convert(u)
349
+ q = ctx.qfrom(m=m, q=q, k=k, tau=tau)
350
+ if S is None:
351
+ v = ctx.one + 0*q*u
352
+ elif q == ctx.zero:
353
+ if S[4] == '1': v = ctx.one
354
+ else: v = getattr(ctx, S[4])(u)
355
+ v += 0*q*u
356
+ elif q == ctx.one:
357
+ if S[5] == '1': v = ctx.one
358
+ else: v = getattr(ctx, S[5])(u)
359
+ v += 0*q*u
360
+ else:
361
+ t = u / ctx.jtheta(3, 0, q)**2
362
+ v = ctx.one
363
+ for a in S[0]: v *= ctx.jtheta(a, 0, q)
364
+ for b in S[1]: v /= ctx.jtheta(b, 0, q)
365
+ for c in S[2]: v *= ctx.jtheta(c, t, q)
366
+ for d in S[3]: v /= ctx.jtheta(d, t, q)
367
+ finally:
368
+ ctx.prec = prec
369
+ return +v
370
+
371
+ @defun_wrapped
372
+ def kleinj(ctx, tau=None, **kwargs):
373
+ r"""
374
+ Evaluates the Klein j-invariant, which is a modular function defined for
375
+ `\tau` in the upper half-plane as
376
+
377
+ .. math ::
378
+
379
+ J(\tau) = \frac{g_2^3(\tau)}{g_2^3(\tau) - 27 g_3^2(\tau)}
380
+
381
+ where `g_2` and `g_3` are the modular invariants of the Weierstrass
382
+ elliptic function,
383
+
384
+ .. math ::
385
+
386
+ g_2(\tau) = 60 \sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} (m \tau+n)^{-4}
387
+
388
+ g_3(\tau) = 140 \sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} (m \tau+n)^{-6}.
389
+
390
+ An alternative, common notation is that of the j-function
391
+ `j(\tau) = 1728 J(\tau)`.
392
+
393
+ **Plots**
394
+
395
+ .. literalinclude :: /plots/kleinj.py
396
+ .. image :: /plots/kleinj.png
397
+ .. literalinclude :: /plots/kleinj2.py
398
+ .. image :: /plots/kleinj2.png
399
+
400
+ **Examples**
401
+
402
+ Verifying the functional equation `J(\tau) = J(\tau+1) = J(-\tau^{-1})`::
403
+
404
+ >>> from mpmath import *
405
+ >>> mp.dps = 25; mp.pretty = True
406
+ >>> tau = 0.625+0.75*j
407
+ >>> tau = 0.625+0.75*j
408
+ >>> kleinj(tau)
409
+ (-0.1507492166511182267125242 + 0.07595948379084571927228948j)
410
+ >>> kleinj(tau+1)
411
+ (-0.1507492166511182267125242 + 0.07595948379084571927228948j)
412
+ >>> kleinj(-1/tau)
413
+ (-0.1507492166511182267125242 + 0.07595948379084571927228946j)
414
+
415
+ The j-function has a famous Laurent series expansion in terms of the nome
416
+ `\bar{q}`, `j(\tau) = \bar{q}^{-1} + 744 + 196884\bar{q} + \ldots`::
417
+
418
+ >>> mp.dps = 15
419
+ >>> taylor(lambda q: 1728*q*kleinj(qbar=q), 0, 5, singular=True)
420
+ [1.0, 744.0, 196884.0, 21493760.0, 864299970.0, 20245856256.0]
421
+
422
+ The j-function admits exact evaluation at special algebraic points
423
+ related to the Heegner numbers 1, 2, 3, 7, 11, 19, 43, 67, 163::
424
+
425
+ >>> @extraprec(10)
426
+ ... def h(n):
427
+ ... v = (1+sqrt(n)*j)
428
+ ... if n > 2:
429
+ ... v *= 0.5
430
+ ... return v
431
+ ...
432
+ >>> mp.dps = 25
433
+ >>> for n in [1,2,3,7,11,19,43,67,163]:
434
+ ... n, chop(1728*kleinj(h(n)))
435
+ ...
436
+ (1, 1728.0)
437
+ (2, 8000.0)
438
+ (3, 0.0)
439
+ (7, -3375.0)
440
+ (11, -32768.0)
441
+ (19, -884736.0)
442
+ (43, -884736000.0)
443
+ (67, -147197952000.0)
444
+ (163, -262537412640768000.0)
445
+
446
+ Also at other special points, the j-function assumes explicit
447
+ algebraic values, e.g.::
448
+
449
+ >>> chop(1728*kleinj(j*sqrt(5)))
450
+ 1264538.909475140509320227
451
+ >>> identify(cbrt(_)) # note: not simplified
452
+ '((100+sqrt(13520))/2)'
453
+ >>> (50+26*sqrt(5))**3
454
+ 1264538.909475140509320227
455
+
456
+ """
457
+ q = ctx.qfrom(tau=tau, **kwargs)
458
+ t2 = ctx.jtheta(2,0,q)
459
+ t3 = ctx.jtheta(3,0,q)
460
+ t4 = ctx.jtheta(4,0,q)
461
+ P = (t2**8 + t3**8 + t4**8)**3
462
+ Q = 54*(t2*t3*t4)**8
463
+ return P/Q
464
+
465
+
466
+ def RF_calc(ctx, x, y, z, r):
467
+ if y == z: return RC_calc(ctx, x, y, r)
468
+ if x == z: return RC_calc(ctx, y, x, r)
469
+ if x == y: return RC_calc(ctx, z, x, r)
470
+ if not (ctx.isnormal(x) and ctx.isnormal(y) and ctx.isnormal(z)):
471
+ if ctx.isnan(x) or ctx.isnan(y) or ctx.isnan(z):
472
+ return x*y*z
473
+ if ctx.isinf(x) or ctx.isinf(y) or ctx.isinf(z):
474
+ return ctx.zero
475
+ xm,ym,zm = x,y,z
476
+ A0 = Am = (x+y+z)/3
477
+ Q = ctx.root(3*r, -6) * max(abs(A0-x),abs(A0-y),abs(A0-z))
478
+ g = ctx.mpf(0.25)
479
+ pow4 = ctx.one
480
+ while 1:
481
+ xs = ctx.sqrt(xm)
482
+ ys = ctx.sqrt(ym)
483
+ zs = ctx.sqrt(zm)
484
+ lm = xs*ys + xs*zs + ys*zs
485
+ Am1 = (Am+lm)*g
486
+ xm, ym, zm = (xm+lm)*g, (ym+lm)*g, (zm+lm)*g
487
+ if pow4 * Q < abs(Am):
488
+ break
489
+ Am = Am1
490
+ pow4 *= g
491
+ t = pow4/Am
492
+ X = (A0-x)*t
493
+ Y = (A0-y)*t
494
+ Z = -X-Y
495
+ E2 = X*Y-Z**2
496
+ E3 = X*Y*Z
497
+ return ctx.power(Am,-0.5) * (9240-924*E2+385*E2**2+660*E3-630*E2*E3)/9240
498
+
499
+ def RC_calc(ctx, x, y, r, pv=True):
500
+ if not (ctx.isnormal(x) and ctx.isnormal(y)):
501
+ if ctx.isinf(x) or ctx.isinf(y):
502
+ return 1/(x*y)
503
+ if y == 0:
504
+ return ctx.inf
505
+ if x == 0:
506
+ return ctx.pi / ctx.sqrt(y) / 2
507
+ raise ValueError
508
+ # Cauchy principal value
509
+ if pv and ctx._im(y) == 0 and ctx._re(y) < 0:
510
+ return ctx.sqrt(x/(x-y)) * RC_calc(ctx, x-y, -y, r)
511
+ if x == y:
512
+ return 1/ctx.sqrt(x)
513
+ extraprec = 2*max(0,-ctx.mag(x-y)+ctx.mag(x))
514
+ ctx.prec += extraprec
515
+ if ctx._is_real_type(x) and ctx._is_real_type(y):
516
+ x = ctx._re(x)
517
+ y = ctx._re(y)
518
+ a = ctx.sqrt(x/y)
519
+ if x < y:
520
+ b = ctx.sqrt(y-x)
521
+ v = ctx.acos(a)/b
522
+ else:
523
+ b = ctx.sqrt(x-y)
524
+ v = ctx.acosh(a)/b
525
+ else:
526
+ sx = ctx.sqrt(x)
527
+ sy = ctx.sqrt(y)
528
+ v = ctx.acos(sx/sy)/(ctx.sqrt((1-x/y))*sy)
529
+ ctx.prec -= extraprec
530
+ return v
531
+
532
+ def RJ_calc(ctx, x, y, z, p, r, integration):
533
+ """
534
+ With integration == 0, computes RJ only using Carlson's algorithm
535
+ (may be wrong for some values).
536
+ With integration == 1, uses an initial integration to make sure
537
+ Carlson's algorithm is correct.
538
+ With integration == 2, uses only integration.
539
+ """
540
+ if not (ctx.isnormal(x) and ctx.isnormal(y) and \
541
+ ctx.isnormal(z) and ctx.isnormal(p)):
542
+ if ctx.isnan(x) or ctx.isnan(y) or ctx.isnan(z) or ctx.isnan(p):
543
+ return x*y*z
544
+ if ctx.isinf(x) or ctx.isinf(y) or ctx.isinf(z) or ctx.isinf(p):
545
+ return ctx.zero
546
+ if not p:
547
+ return ctx.inf
548
+ if (not x) + (not y) + (not z) > 1:
549
+ return ctx.inf
550
+ # Check conditions and fall back on integration for argument
551
+ # reduction if needed. The following conditions might be needlessly
552
+ # restrictive.
553
+ initial_integral = ctx.zero
554
+ if integration >= 1:
555
+ ok = (x.real >= 0 and y.real >= 0 and z.real >= 0 and p.real > 0)
556
+ if not ok:
557
+ if x == p or y == p or z == p:
558
+ ok = True
559
+ if not ok:
560
+ if p.imag != 0 or p.real >= 0:
561
+ if (x.imag == 0 and x.real >= 0 and ctx.conj(y) == z):
562
+ ok = True
563
+ if (y.imag == 0 and y.real >= 0 and ctx.conj(x) == z):
564
+ ok = True
565
+ if (z.imag == 0 and z.real >= 0 and ctx.conj(x) == y):
566
+ ok = True
567
+ if not ok or (integration == 2):
568
+ N = ctx.ceil(-min(x.real, y.real, z.real, p.real)) + 1
569
+ # Integrate around any singularities
570
+ if all((t.imag >= 0 or t.real > 0) for t in [x, y, z, p]):
571
+ margin = ctx.j
572
+ elif all((t.imag < 0 or t.real > 0) for t in [x, y, z, p]):
573
+ margin = -ctx.j
574
+ else:
575
+ margin = 1
576
+ # Go through the upper half-plane, but low enough that any
577
+ # parameter starting in the lower plane doesn't cross the
578
+ # branch cut
579
+ for t in [x, y, z, p]:
580
+ if t.imag >= 0 or t.real > 0:
581
+ continue
582
+ margin = min(margin, abs(t.imag) * 0.5)
583
+ margin *= ctx.j
584
+ N += margin
585
+ F = lambda t: 1/(ctx.sqrt(t+x)*ctx.sqrt(t+y)*ctx.sqrt(t+z)*(t+p))
586
+ if integration == 2:
587
+ return 1.5 * ctx.quadsubdiv(F, [0, N, ctx.inf])
588
+ initial_integral = 1.5 * ctx.quadsubdiv(F, [0, N])
589
+ x += N; y += N; z += N; p += N
590
+ xm,ym,zm,pm = x,y,z,p
591
+ A0 = Am = (x + y + z + 2*p)/5
592
+ delta = (p-x)*(p-y)*(p-z)
593
+ Q = ctx.root(0.25*r, -6) * max(abs(A0-x),abs(A0-y),abs(A0-z),abs(A0-p))
594
+ g = ctx.mpf(0.25)
595
+ pow4 = ctx.one
596
+ S = 0
597
+ while 1:
598
+ sx = ctx.sqrt(xm)
599
+ sy = ctx.sqrt(ym)
600
+ sz = ctx.sqrt(zm)
601
+ sp = ctx.sqrt(pm)
602
+ lm = sx*sy + sx*sz + sy*sz
603
+ Am1 = (Am+lm)*g
604
+ xm = (xm+lm)*g; ym = (ym+lm)*g; zm = (zm+lm)*g; pm = (pm+lm)*g
605
+ dm = (sp+sx) * (sp+sy) * (sp+sz)
606
+ em = delta * pow4**3 / dm**2
607
+ if pow4 * Q < abs(Am):
608
+ break
609
+ T = RC_calc(ctx, ctx.one, ctx.one+em, r) * pow4 / dm
610
+ S += T
611
+ pow4 *= g
612
+ Am = Am1
613
+ t = pow4 / Am
614
+ X = (A0-x)*t
615
+ Y = (A0-y)*t
616
+ Z = (A0-z)*t
617
+ P = (-X-Y-Z)/2
618
+ E2 = X*Y + X*Z + Y*Z - 3*P**2
619
+ E3 = X*Y*Z + 2*E2*P + 4*P**3
620
+ E4 = (2*X*Y*Z + E2*P + 3*P**3)*P
621
+ E5 = X*Y*Z*P**2
622
+ P = 24024 - 5148*E2 + 2457*E2**2 + 4004*E3 - 4158*E2*E3 - 3276*E4 + 2772*E5
623
+ Q = 24024
624
+ v1 = pow4 * ctx.power(Am, -1.5) * P/Q
625
+ v2 = 6*S
626
+ return initial_integral + v1 + v2
627
+
628
+ @defun
629
+ def elliprf(ctx, x, y, z):
630
+ r"""
631
+ Evaluates the Carlson symmetric elliptic integral of the first kind
632
+
633
+ .. math ::
634
+
635
+ R_F(x,y,z) = \frac{1}{2}
636
+ \int_0^{\infty} \frac{dt}{\sqrt{(t+x)(t+y)(t+z)}}
637
+
638
+ which is defined for `x,y,z \notin (-\infty,0)`, and with
639
+ at most one of `x,y,z` being zero.
640
+
641
+ For real `x,y,z \ge 0`, the principal square root is taken in the integrand.
642
+ For complex `x,y,z`, the principal square root is taken as `t \to \infty`
643
+ and as `t \to 0` non-principal branches are chosen as necessary so as to
644
+ make the integrand continuous.
645
+
646
+ **Examples**
647
+
648
+ Some basic values and limits::
649
+
650
+ >>> from mpmath import *
651
+ >>> mp.dps = 25; mp.pretty = True
652
+ >>> elliprf(0,1,1); pi/2
653
+ 1.570796326794896619231322
654
+ 1.570796326794896619231322
655
+ >>> elliprf(0,1,inf)
656
+ 0.0
657
+ >>> elliprf(1,1,1)
658
+ 1.0
659
+ >>> elliprf(2,2,2)**2
660
+ 0.5
661
+ >>> elliprf(1,0,0); elliprf(0,0,1); elliprf(0,1,0); elliprf(0,0,0)
662
+ +inf
663
+ +inf
664
+ +inf
665
+ +inf
666
+
667
+ Representing complete elliptic integrals in terms of `R_F`::
668
+
669
+ >>> m = mpf(0.75)
670
+ >>> ellipk(m); elliprf(0,1-m,1)
671
+ 2.156515647499643235438675
672
+ 2.156515647499643235438675
673
+ >>> ellipe(m); elliprf(0,1-m,1)-m*elliprd(0,1-m,1)/3
674
+ 1.211056027568459524803563
675
+ 1.211056027568459524803563
676
+
677
+ Some symmetries and argument transformations::
678
+
679
+ >>> x,y,z = 2,3,4
680
+ >>> elliprf(x,y,z); elliprf(y,x,z); elliprf(z,y,x)
681
+ 0.5840828416771517066928492
682
+ 0.5840828416771517066928492
683
+ 0.5840828416771517066928492
684
+ >>> k = mpf(100000)
685
+ >>> elliprf(k*x,k*y,k*z); k**(-0.5) * elliprf(x,y,z)
686
+ 0.001847032121923321253219284
687
+ 0.001847032121923321253219284
688
+ >>> l = sqrt(x*y) + sqrt(y*z) + sqrt(z*x)
689
+ >>> elliprf(x,y,z); 2*elliprf(x+l,y+l,z+l)
690
+ 0.5840828416771517066928492
691
+ 0.5840828416771517066928492
692
+ >>> elliprf((x+l)/4,(y+l)/4,(z+l)/4)
693
+ 0.5840828416771517066928492
694
+
695
+ Comparing with numerical integration::
696
+
697
+ >>> x,y,z = 2,3,4
698
+ >>> elliprf(x,y,z)
699
+ 0.5840828416771517066928492
700
+ >>> f = lambda t: 0.5*((t+x)*(t+y)*(t+z))**(-0.5)
701
+ >>> q = extradps(25)(quad)
702
+ >>> q(f, [0,inf])
703
+ 0.5840828416771517066928492
704
+
705
+ With the following arguments, the square root in the integrand becomes
706
+ discontinuous at `t = 1/2` if the principal branch is used. To obtain
707
+ the right value, `-\sqrt{r}` must be taken instead of `\sqrt{r}`
708
+ on `t \in (0, 1/2)`::
709
+
710
+ >>> x,y,z = j-1,j,0
711
+ >>> elliprf(x,y,z)
712
+ (0.7961258658423391329305694 - 1.213856669836495986430094j)
713
+ >>> -q(f, [0,0.5]) + q(f, [0.5,inf])
714
+ (0.7961258658423391329305694 - 1.213856669836495986430094j)
715
+
716
+ The so-called *first lemniscate constant*, a transcendental number::
717
+
718
+ >>> elliprf(0,1,2)
719
+ 1.31102877714605990523242
720
+ >>> extradps(25)(quad)(lambda t: 1/sqrt(1-t**4), [0,1])
721
+ 1.31102877714605990523242
722
+ >>> gamma('1/4')**2/(4*sqrt(2*pi))
723
+ 1.31102877714605990523242
724
+
725
+ **References**
726
+
727
+ 1. [Carlson]_
728
+ 2. [DLMF]_ Chapter 19. Elliptic Integrals
729
+
730
+ """
731
+ x = ctx.convert(x)
732
+ y = ctx.convert(y)
733
+ z = ctx.convert(z)
734
+ prec = ctx.prec
735
+ try:
736
+ ctx.prec += 20
737
+ tol = ctx.eps * 2**10
738
+ v = RF_calc(ctx, x, y, z, tol)
739
+ finally:
740
+ ctx.prec = prec
741
+ return +v
742
+
743
+ @defun
744
+ def elliprc(ctx, x, y, pv=True):
745
+ r"""
746
+ Evaluates the degenerate Carlson symmetric elliptic integral
747
+ of the first kind
748
+
749
+ .. math ::
750
+
751
+ R_C(x,y) = R_F(x,y,y) =
752
+ \frac{1}{2} \int_0^{\infty} \frac{dt}{(t+y) \sqrt{(t+x)}}.
753
+
754
+ If `y \in (-\infty,0)`, either a value defined by continuity,
755
+ or with *pv=True* the Cauchy principal value, can be computed.
756
+
757
+ If `x \ge 0, y > 0`, the value can be expressed in terms of
758
+ elementary functions as
759
+
760
+ .. math ::
761
+
762
+ R_C(x,y) =
763
+ \begin{cases}
764
+ \dfrac{1}{\sqrt{y-x}}
765
+ \cos^{-1}\left(\sqrt{\dfrac{x}{y}}\right), & x < y \\
766
+ \dfrac{1}{\sqrt{y}}, & x = y \\
767
+ \dfrac{1}{\sqrt{x-y}}
768
+ \cosh^{-1}\left(\sqrt{\dfrac{x}{y}}\right), & x > y \\
769
+ \end{cases}.
770
+
771
+ **Examples**
772
+
773
+ Some special values and limits::
774
+
775
+ >>> from mpmath import *
776
+ >>> mp.dps = 25; mp.pretty = True
777
+ >>> elliprc(1,2)*4; elliprc(0,1)*2; +pi
778
+ 3.141592653589793238462643
779
+ 3.141592653589793238462643
780
+ 3.141592653589793238462643
781
+ >>> elliprc(1,0)
782
+ +inf
783
+ >>> elliprc(5,5)**2
784
+ 0.2
785
+ >>> elliprc(1,inf); elliprc(inf,1); elliprc(inf,inf)
786
+ 0.0
787
+ 0.0
788
+ 0.0
789
+
790
+ Comparing with the elementary closed-form solution::
791
+
792
+ >>> elliprc('1/3', '1/5'); sqrt(7.5)*acosh(sqrt('5/3'))
793
+ 2.041630778983498390751238
794
+ 2.041630778983498390751238
795
+ >>> elliprc('1/5', '1/3'); sqrt(7.5)*acos(sqrt('3/5'))
796
+ 1.875180765206547065111085
797
+ 1.875180765206547065111085
798
+
799
+ Comparing with numerical integration::
800
+
801
+ >>> q = extradps(25)(quad)
802
+ >>> elliprc(2, -3, pv=True)
803
+ 0.3333969101113672670749334
804
+ >>> elliprc(2, -3, pv=False)
805
+ (0.3333969101113672670749334 + 0.7024814731040726393156375j)
806
+ >>> 0.5*q(lambda t: 1/(sqrt(t+2)*(t-3)), [0,3-j,6,inf])
807
+ (0.3333969101113672670749334 + 0.7024814731040726393156375j)
808
+
809
+ """
810
+ x = ctx.convert(x)
811
+ y = ctx.convert(y)
812
+ prec = ctx.prec
813
+ try:
814
+ ctx.prec += 20
815
+ tol = ctx.eps * 2**10
816
+ v = RC_calc(ctx, x, y, tol, pv)
817
+ finally:
818
+ ctx.prec = prec
819
+ return +v
820
+
821
+ @defun
822
+ def elliprj(ctx, x, y, z, p, integration=1):
823
+ r"""
824
+ Evaluates the Carlson symmetric elliptic integral of the third kind
825
+
826
+ .. math ::
827
+
828
+ R_J(x,y,z,p) = \frac{3}{2}
829
+ \int_0^{\infty} \frac{dt}{(t+p)\sqrt{(t+x)(t+y)(t+z)}}.
830
+
831
+ Like :func:`~mpmath.elliprf`, the branch of the square root in the integrand
832
+ is defined so as to be continuous along the path of integration for
833
+ complex values of the arguments.
834
+
835
+ **Examples**
836
+
837
+ Some values and limits::
838
+
839
+ >>> from mpmath import *
840
+ >>> mp.dps = 25; mp.pretty = True
841
+ >>> elliprj(1,1,1,1)
842
+ 1.0
843
+ >>> elliprj(2,2,2,2); 1/(2*sqrt(2))
844
+ 0.3535533905932737622004222
845
+ 0.3535533905932737622004222
846
+ >>> elliprj(0,1,2,2)
847
+ 1.067937989667395702268688
848
+ >>> 3*(2*gamma('5/4')**2-pi**2/gamma('1/4')**2)/(sqrt(2*pi))
849
+ 1.067937989667395702268688
850
+ >>> elliprj(0,1,1,2); 3*pi*(2-sqrt(2))/4
851
+ 1.380226776765915172432054
852
+ 1.380226776765915172432054
853
+ >>> elliprj(1,3,2,0); elliprj(0,1,1,0); elliprj(0,0,0,0)
854
+ +inf
855
+ +inf
856
+ +inf
857
+ >>> elliprj(1,inf,1,0); elliprj(1,1,1,inf)
858
+ 0.0
859
+ 0.0
860
+ >>> chop(elliprj(1+j, 1-j, 1, 1))
861
+ 0.8505007163686739432927844
862
+
863
+ Scale transformation::
864
+
865
+ >>> x,y,z,p = 2,3,4,5
866
+ >>> k = mpf(100000)
867
+ >>> elliprj(k*x,k*y,k*z,k*p); k**(-1.5)*elliprj(x,y,z,p)
868
+ 4.521291677592745527851168e-9
869
+ 4.521291677592745527851168e-9
870
+
871
+ Comparing with numerical integration::
872
+
873
+ >>> elliprj(1,2,3,4)
874
+ 0.2398480997495677621758617
875
+ >>> f = lambda t: 1/((t+4)*sqrt((t+1)*(t+2)*(t+3)))
876
+ >>> 1.5*quad(f, [0,inf])
877
+ 0.2398480997495677621758617
878
+ >>> elliprj(1,2+1j,3,4-2j)
879
+ (0.216888906014633498739952 + 0.04081912627366673332369512j)
880
+ >>> f = lambda t: 1/((t+4-2j)*sqrt((t+1)*(t+2+1j)*(t+3)))
881
+ >>> 1.5*quad(f, [0,inf])
882
+ (0.216888906014633498739952 + 0.04081912627366673332369511j)
883
+
884
+ """
885
+ x = ctx.convert(x)
886
+ y = ctx.convert(y)
887
+ z = ctx.convert(z)
888
+ p = ctx.convert(p)
889
+ prec = ctx.prec
890
+ try:
891
+ ctx.prec += 20
892
+ tol = ctx.eps * 2**10
893
+ v = RJ_calc(ctx, x, y, z, p, tol, integration)
894
+ finally:
895
+ ctx.prec = prec
896
+ return +v
897
+
898
+ @defun
899
+ def elliprd(ctx, x, y, z):
900
+ r"""
901
+ Evaluates the degenerate Carlson symmetric elliptic integral
902
+ of the third kind or Carlson elliptic integral of the
903
+ second kind `R_D(x,y,z) = R_J(x,y,z,z)`.
904
+
905
+ See :func:`~mpmath.elliprj` for additional information.
906
+
907
+ **Examples**
908
+
909
+ >>> from mpmath import *
910
+ >>> mp.dps = 25; mp.pretty = True
911
+ >>> elliprd(1,2,3)
912
+ 0.2904602810289906442326534
913
+ >>> elliprj(1,2,3,3)
914
+ 0.2904602810289906442326534
915
+
916
+ The so-called *second lemniscate constant*, a transcendental number::
917
+
918
+ >>> elliprd(0,2,1)/3
919
+ 0.5990701173677961037199612
920
+ >>> extradps(25)(quad)(lambda t: t**2/sqrt(1-t**4), [0,1])
921
+ 0.5990701173677961037199612
922
+ >>> gamma('3/4')**2/sqrt(2*pi)
923
+ 0.5990701173677961037199612
924
+
925
+ """
926
+ return ctx.elliprj(x,y,z,z)
927
+
928
+ @defun
929
+ def elliprg(ctx, x, y, z):
930
+ r"""
931
+ Evaluates the Carlson completely symmetric elliptic integral
932
+ of the second kind
933
+
934
+ .. math ::
935
+
936
+ R_G(x,y,z) = \frac{1}{4} \int_0^{\infty}
937
+ \frac{t}{\sqrt{(t+x)(t+y)(t+z)}}
938
+ \left( \frac{x}{t+x} + \frac{y}{t+y} + \frac{z}{t+z}\right) dt.
939
+
940
+ **Examples**
941
+
942
+ Evaluation for real and complex arguments::
943
+
944
+ >>> from mpmath import *
945
+ >>> mp.dps = 25; mp.pretty = True
946
+ >>> elliprg(0,1,1)*4; +pi
947
+ 3.141592653589793238462643
948
+ 3.141592653589793238462643
949
+ >>> elliprg(0,0.5,1)
950
+ 0.6753219405238377512600874
951
+ >>> chop(elliprg(1+j, 1-j, 2))
952
+ 1.172431327676416604532822
953
+
954
+ A double integral that can be evaluated in terms of `R_G`::
955
+
956
+ >>> x,y,z = 2,3,4
957
+ >>> def f(t,u):
958
+ ... st = fp.sin(t); ct = fp.cos(t)
959
+ ... su = fp.sin(u); cu = fp.cos(u)
960
+ ... return (x*(st*cu)**2 + y*(st*su)**2 + z*ct**2)**0.5 * st
961
+ ...
962
+ >>> nprint(mpf(fp.quad(f, [0,fp.pi], [0,2*fp.pi])/(4*fp.pi)), 13)
963
+ 1.725503028069
964
+ >>> nprint(elliprg(x,y,z), 13)
965
+ 1.725503028069
966
+
967
+ """
968
+ x = ctx.convert(x)
969
+ y = ctx.convert(y)
970
+ z = ctx.convert(z)
971
+ zeros = (not x) + (not y) + (not z)
972
+ if zeros == 3:
973
+ return (x+y+z)*0
974
+ if zeros == 2:
975
+ if x: return 0.5*ctx.sqrt(x)
976
+ if y: return 0.5*ctx.sqrt(y)
977
+ return 0.5*ctx.sqrt(z)
978
+ if zeros == 1:
979
+ if not z:
980
+ x, z = z, x
981
+ def terms():
982
+ T1 = 0.5*z*ctx.elliprf(x,y,z)
983
+ T2 = -0.5*(x-z)*(y-z)*ctx.elliprd(x,y,z)/3
984
+ T3 = 0.5*ctx.sqrt(x)*ctx.sqrt(y)/ctx.sqrt(z)
985
+ return T1,T2,T3
986
+ return ctx.sum_accurately(terms)
987
+
988
+
989
+ @defun_wrapped
990
+ def ellipf(ctx, phi, m):
991
+ r"""
992
+ Evaluates the Legendre incomplete elliptic integral of the first kind
993
+
994
+ .. math ::
995
+
996
+ F(\phi,m) = \int_0^{\phi} \frac{dt}{\sqrt{1-m \sin^2 t}}
997
+
998
+ or equivalently
999
+
1000
+ .. math ::
1001
+
1002
+ F(\phi,m) = \int_0^{\sin \phi}
1003
+ \frac{dt}{\left(\sqrt{1-t^2}\right)\left(\sqrt{1-mt^2}\right)}.
1004
+
1005
+ The function reduces to a complete elliptic integral of the first kind
1006
+ (see :func:`~mpmath.ellipk`) when `\phi = \frac{\pi}{2}`; that is,
1007
+
1008
+ .. math ::
1009
+
1010
+ F\left(\frac{\pi}{2}, m\right) = K(m).
1011
+
1012
+ In the defining integral, it is assumed that the principal branch
1013
+ of the square root is taken and that the path of integration avoids
1014
+ crossing any branch cuts. Outside `-\pi/2 \le \Re(\phi) \le \pi/2`,
1015
+ the function extends quasi-periodically as
1016
+
1017
+ .. math ::
1018
+
1019
+ F(\phi + n \pi, m) = 2 n K(m) + F(\phi,m), n \in \mathbb{Z}.
1020
+
1021
+ **Plots**
1022
+
1023
+ .. literalinclude :: /plots/ellipf.py
1024
+ .. image :: /plots/ellipf.png
1025
+
1026
+ **Examples**
1027
+
1028
+ Basic values and limits::
1029
+
1030
+ >>> from mpmath import *
1031
+ >>> mp.dps = 25; mp.pretty = True
1032
+ >>> ellipf(0,1)
1033
+ 0.0
1034
+ >>> ellipf(0,0)
1035
+ 0.0
1036
+ >>> ellipf(1,0); ellipf(2+3j,0)
1037
+ 1.0
1038
+ (2.0 + 3.0j)
1039
+ >>> ellipf(1,1); log(sec(1)+tan(1))
1040
+ 1.226191170883517070813061
1041
+ 1.226191170883517070813061
1042
+ >>> ellipf(pi/2, -0.5); ellipk(-0.5)
1043
+ 1.415737208425956198892166
1044
+ 1.415737208425956198892166
1045
+ >>> ellipf(pi/2+eps, 1); ellipf(-pi/2-eps, 1)
1046
+ +inf
1047
+ +inf
1048
+ >>> ellipf(1.5, 1)
1049
+ 3.340677542798311003320813
1050
+
1051
+ Comparing with numerical integration::
1052
+
1053
+ >>> z,m = 0.5, 1.25
1054
+ >>> ellipf(z,m)
1055
+ 0.5287219202206327872978255
1056
+ >>> quad(lambda t: (1-m*sin(t)**2)**(-0.5), [0,z])
1057
+ 0.5287219202206327872978255
1058
+
1059
+ The arguments may be complex numbers::
1060
+
1061
+ >>> ellipf(3j, 0.5)
1062
+ (0.0 + 1.713602407841590234804143j)
1063
+ >>> ellipf(3+4j, 5-6j)
1064
+ (1.269131241950351323305741 - 0.3561052815014558335412538j)
1065
+ >>> z,m = 2+3j, 1.25
1066
+ >>> k = 1011
1067
+ >>> ellipf(z+pi*k,m); ellipf(z,m) + 2*k*ellipk(m)
1068
+ (4086.184383622179764082821 - 3003.003538923749396546871j)
1069
+ (4086.184383622179764082821 - 3003.003538923749396546871j)
1070
+
1071
+ For `|\Re(z)| < \pi/2`, the function can be expressed as a
1072
+ hypergeometric series of two variables
1073
+ (see :func:`~mpmath.appellf1`)::
1074
+
1075
+ >>> z,m = 0.5, 0.25
1076
+ >>> ellipf(z,m)
1077
+ 0.5050887275786480788831083
1078
+ >>> sin(z)*appellf1(0.5,0.5,0.5,1.5,sin(z)**2,m*sin(z)**2)
1079
+ 0.5050887275786480788831083
1080
+
1081
+ """
1082
+ z = phi
1083
+ if not (ctx.isnormal(z) and ctx.isnormal(m)):
1084
+ if m == 0:
1085
+ return z + m
1086
+ if z == 0:
1087
+ return z * m
1088
+ if m == ctx.inf or m == ctx.ninf: return z/m
1089
+ raise ValueError
1090
+ x = z.real
1091
+ ctx.prec += max(0, ctx.mag(x))
1092
+ pi = +ctx.pi
1093
+ away = abs(x) > pi/2
1094
+ if m == 1:
1095
+ if away:
1096
+ return ctx.inf
1097
+ if away:
1098
+ d = ctx.nint(x/pi)
1099
+ z = z-pi*d
1100
+ P = 2*d*ctx.ellipk(m)
1101
+ else:
1102
+ P = 0
1103
+ c, s = ctx.cos_sin(z)
1104
+ return s * ctx.elliprf(c**2, 1-m*s**2, 1) + P
1105
+
1106
+ @defun_wrapped
1107
+ def ellipe(ctx, *args):
1108
+ r"""
1109
+ Called with a single argument `m`, evaluates the Legendre complete
1110
+ elliptic integral of the second kind, `E(m)`, defined by
1111
+
1112
+ .. math :: E(m) = \int_0^{\pi/2} \sqrt{1-m \sin^2 t} \, dt \,=\,
1113
+ \frac{\pi}{2}
1114
+ \,_2F_1\left(\frac{1}{2}, -\frac{1}{2}, 1, m\right).
1115
+
1116
+ Called with two arguments `\phi, m`, evaluates the incomplete elliptic
1117
+ integral of the second kind
1118
+
1119
+ .. math ::
1120
+
1121
+ E(\phi,m) = \int_0^{\phi} \sqrt{1-m \sin^2 t} \, dt =
1122
+ \int_0^{\sin z}
1123
+ \frac{\sqrt{1-mt^2}}{\sqrt{1-t^2}} \, dt.
1124
+
1125
+ The incomplete integral reduces to a complete integral when
1126
+ `\phi = \frac{\pi}{2}`; that is,
1127
+
1128
+ .. math ::
1129
+
1130
+ E\left(\frac{\pi}{2}, m\right) = E(m).
1131
+
1132
+ In the defining integral, it is assumed that the principal branch
1133
+ of the square root is taken and that the path of integration avoids
1134
+ crossing any branch cuts. Outside `-\pi/2 \le \Re(z) \le \pi/2`,
1135
+ the function extends quasi-periodically as
1136
+
1137
+ .. math ::
1138
+
1139
+ E(\phi + n \pi, m) = 2 n E(m) + E(\phi,m), n \in \mathbb{Z}.
1140
+
1141
+ **Plots**
1142
+
1143
+ .. literalinclude :: /plots/ellipe.py
1144
+ .. image :: /plots/ellipe.png
1145
+
1146
+ **Examples for the complete integral**
1147
+
1148
+ Basic values and limits::
1149
+
1150
+ >>> from mpmath import *
1151
+ >>> mp.dps = 25; mp.pretty = True
1152
+ >>> ellipe(0)
1153
+ 1.570796326794896619231322
1154
+ >>> ellipe(1)
1155
+ 1.0
1156
+ >>> ellipe(-1)
1157
+ 1.910098894513856008952381
1158
+ >>> ellipe(2)
1159
+ (0.5990701173677961037199612 + 0.5990701173677961037199612j)
1160
+ >>> ellipe(inf)
1161
+ (0.0 + +infj)
1162
+ >>> ellipe(-inf)
1163
+ +inf
1164
+
1165
+ Verifying the defining integral and hypergeometric
1166
+ representation::
1167
+
1168
+ >>> ellipe(0.5)
1169
+ 1.350643881047675502520175
1170
+ >>> quad(lambda t: sqrt(1-0.5*sin(t)**2), [0, pi/2])
1171
+ 1.350643881047675502520175
1172
+ >>> pi/2*hyp2f1(0.5,-0.5,1,0.5)
1173
+ 1.350643881047675502520175
1174
+
1175
+ Evaluation is supported for arbitrary complex `m`::
1176
+
1177
+ >>> ellipe(0.5+0.25j)
1178
+ (1.360868682163129682716687 - 0.1238733442561786843557315j)
1179
+ >>> ellipe(3+4j)
1180
+ (1.499553520933346954333612 - 1.577879007912758274533309j)
1181
+
1182
+ A definite integral::
1183
+
1184
+ >>> quad(ellipe, [0,1])
1185
+ 1.333333333333333333333333
1186
+
1187
+ **Examples for the incomplete integral**
1188
+
1189
+ Basic values and limits::
1190
+
1191
+ >>> ellipe(0,1)
1192
+ 0.0
1193
+ >>> ellipe(0,0)
1194
+ 0.0
1195
+ >>> ellipe(1,0)
1196
+ 1.0
1197
+ >>> ellipe(2+3j,0)
1198
+ (2.0 + 3.0j)
1199
+ >>> ellipe(1,1); sin(1)
1200
+ 0.8414709848078965066525023
1201
+ 0.8414709848078965066525023
1202
+ >>> ellipe(pi/2, -0.5); ellipe(-0.5)
1203
+ 1.751771275694817862026502
1204
+ 1.751771275694817862026502
1205
+ >>> ellipe(pi/2, 1); ellipe(-pi/2, 1)
1206
+ 1.0
1207
+ -1.0
1208
+ >>> ellipe(1.5, 1)
1209
+ 0.9974949866040544309417234
1210
+
1211
+ Comparing with numerical integration::
1212
+
1213
+ >>> z,m = 0.5, 1.25
1214
+ >>> ellipe(z,m)
1215
+ 0.4740152182652628394264449
1216
+ >>> quad(lambda t: sqrt(1-m*sin(t)**2), [0,z])
1217
+ 0.4740152182652628394264449
1218
+
1219
+ The arguments may be complex numbers::
1220
+
1221
+ >>> ellipe(3j, 0.5)
1222
+ (0.0 + 7.551991234890371873502105j)
1223
+ >>> ellipe(3+4j, 5-6j)
1224
+ (24.15299022574220502424466 + 75.2503670480325997418156j)
1225
+ >>> k = 35
1226
+ >>> z,m = 2+3j, 1.25
1227
+ >>> ellipe(z+pi*k,m); ellipe(z,m) + 2*k*ellipe(m)
1228
+ (48.30138799412005235090766 + 17.47255216721987688224357j)
1229
+ (48.30138799412005235090766 + 17.47255216721987688224357j)
1230
+
1231
+ For `|\Re(z)| < \pi/2`, the function can be expressed as a
1232
+ hypergeometric series of two variables
1233
+ (see :func:`~mpmath.appellf1`)::
1234
+
1235
+ >>> z,m = 0.5, 0.25
1236
+ >>> ellipe(z,m)
1237
+ 0.4950017030164151928870375
1238
+ >>> sin(z)*appellf1(0.5,0.5,-0.5,1.5,sin(z)**2,m*sin(z)**2)
1239
+ 0.4950017030164151928870376
1240
+
1241
+ """
1242
+ if len(args) == 1:
1243
+ return ctx._ellipe(args[0])
1244
+ else:
1245
+ phi, m = args
1246
+ z = phi
1247
+ if not (ctx.isnormal(z) and ctx.isnormal(m)):
1248
+ if m == 0:
1249
+ return z + m
1250
+ if z == 0:
1251
+ return z * m
1252
+ if m == ctx.inf or m == ctx.ninf:
1253
+ return ctx.inf
1254
+ raise ValueError
1255
+ x = z.real
1256
+ ctx.prec += max(0, ctx.mag(x))
1257
+ pi = +ctx.pi
1258
+ away = abs(x) > pi/2
1259
+ if away:
1260
+ d = ctx.nint(x/pi)
1261
+ z = z-pi*d
1262
+ P = 2*d*ctx.ellipe(m)
1263
+ else:
1264
+ P = 0
1265
+ def terms():
1266
+ c, s = ctx.cos_sin(z)
1267
+ x = c**2
1268
+ y = 1-m*s**2
1269
+ RF = ctx.elliprf(x, y, 1)
1270
+ RD = ctx.elliprd(x, y, 1)
1271
+ return s*RF, -m*s**3*RD/3
1272
+ return ctx.sum_accurately(terms) + P
1273
+
1274
+ @defun_wrapped
1275
+ def ellippi(ctx, *args):
1276
+ r"""
1277
+ Called with three arguments `n, \phi, m`, evaluates the Legendre
1278
+ incomplete elliptic integral of the third kind
1279
+
1280
+ .. math ::
1281
+
1282
+ \Pi(n; \phi, m) = \int_0^{\phi}
1283
+ \frac{dt}{(1-n \sin^2 t) \sqrt{1-m \sin^2 t}} =
1284
+ \int_0^{\sin \phi}
1285
+ \frac{dt}{(1-nt^2) \sqrt{1-t^2} \sqrt{1-mt^2}}.
1286
+
1287
+ Called with two arguments `n, m`, evaluates the complete
1288
+ elliptic integral of the third kind
1289
+ `\Pi(n,m) = \Pi(n; \frac{\pi}{2},m)`.
1290
+
1291
+ In the defining integral, it is assumed that the principal branch
1292
+ of the square root is taken and that the path of integration avoids
1293
+ crossing any branch cuts. Outside `-\pi/2 \le \Re(\phi) \le \pi/2`,
1294
+ the function extends quasi-periodically as
1295
+
1296
+ .. math ::
1297
+
1298
+ \Pi(n,\phi+k\pi,m) = 2k\Pi(n,m) + \Pi(n,\phi,m), k \in \mathbb{Z}.
1299
+
1300
+ **Plots**
1301
+
1302
+ .. literalinclude :: /plots/ellippi.py
1303
+ .. image :: /plots/ellippi.png
1304
+
1305
+ **Examples for the complete integral**
1306
+
1307
+ Some basic values and limits::
1308
+
1309
+ >>> from mpmath import *
1310
+ >>> mp.dps = 25; mp.pretty = True
1311
+ >>> ellippi(0,-5); ellipk(-5)
1312
+ 0.9555039270640439337379334
1313
+ 0.9555039270640439337379334
1314
+ >>> ellippi(inf,2)
1315
+ 0.0
1316
+ >>> ellippi(2,inf)
1317
+ 0.0
1318
+ >>> abs(ellippi(1,5))
1319
+ +inf
1320
+ >>> abs(ellippi(0.25,1))
1321
+ +inf
1322
+
1323
+ Evaluation in terms of simpler functions::
1324
+
1325
+ >>> ellippi(0.25,0.25); ellipe(0.25)/(1-0.25)
1326
+ 1.956616279119236207279727
1327
+ 1.956616279119236207279727
1328
+ >>> ellippi(3,0); pi/(2*sqrt(-2))
1329
+ (0.0 - 1.11072073453959156175397j)
1330
+ (0.0 - 1.11072073453959156175397j)
1331
+ >>> ellippi(-3,0); pi/(2*sqrt(4))
1332
+ 0.7853981633974483096156609
1333
+ 0.7853981633974483096156609
1334
+
1335
+ **Examples for the incomplete integral**
1336
+
1337
+ Basic values and limits::
1338
+
1339
+ >>> ellippi(0.25,-0.5); ellippi(0.25,pi/2,-0.5)
1340
+ 1.622944760954741603710555
1341
+ 1.622944760954741603710555
1342
+ >>> ellippi(1,0,1)
1343
+ 0.0
1344
+ >>> ellippi(inf,0,1)
1345
+ 0.0
1346
+ >>> ellippi(0,0.25,0.5); ellipf(0.25,0.5)
1347
+ 0.2513040086544925794134591
1348
+ 0.2513040086544925794134591
1349
+ >>> ellippi(1,1,1); (log(sec(1)+tan(1))+sec(1)*tan(1))/2
1350
+ 2.054332933256248668692452
1351
+ 2.054332933256248668692452
1352
+ >>> ellippi(0.25, 53*pi/2, 0.75); 53*ellippi(0.25,0.75)
1353
+ 135.240868757890840755058
1354
+ 135.240868757890840755058
1355
+ >>> ellippi(0.5,pi/4,0.5); 2*ellipe(pi/4,0.5)-1/sqrt(3)
1356
+ 0.9190227391656969903987269
1357
+ 0.9190227391656969903987269
1358
+
1359
+ Complex arguments are supported::
1360
+
1361
+ >>> ellippi(0.5, 5+6j-2*pi, -7-8j)
1362
+ (-0.3612856620076747660410167 + 0.5217735339984807829755815j)
1363
+
1364
+ Some degenerate cases::
1365
+
1366
+ >>> ellippi(1,1)
1367
+ +inf
1368
+ >>> ellippi(1,0)
1369
+ +inf
1370
+ >>> ellippi(1,2,0)
1371
+ +inf
1372
+ >>> ellippi(1,2,1)
1373
+ +inf
1374
+ >>> ellippi(1,0,1)
1375
+ 0.0
1376
+
1377
+ """
1378
+ if len(args) == 2:
1379
+ n, m = args
1380
+ complete = True
1381
+ z = phi = ctx.pi/2
1382
+ else:
1383
+ n, phi, m = args
1384
+ complete = False
1385
+ z = phi
1386
+ if not (ctx.isnormal(n) and ctx.isnormal(z) and ctx.isnormal(m)):
1387
+ if ctx.isnan(n) or ctx.isnan(z) or ctx.isnan(m):
1388
+ raise ValueError
1389
+ if complete:
1390
+ if m == 0:
1391
+ if n == 1:
1392
+ return ctx.inf
1393
+ return ctx.pi/(2*ctx.sqrt(1-n))
1394
+ if n == 0: return ctx.ellipk(m)
1395
+ if ctx.isinf(n) or ctx.isinf(m): return ctx.zero
1396
+ else:
1397
+ if z == 0: return z
1398
+ if ctx.isinf(n): return ctx.zero
1399
+ if ctx.isinf(m): return ctx.zero
1400
+ if ctx.isinf(n) or ctx.isinf(z) or ctx.isinf(m):
1401
+ raise ValueError
1402
+ if complete:
1403
+ if m == 1:
1404
+ if n == 1:
1405
+ return ctx.inf
1406
+ return -ctx.inf/ctx.sign(n-1)
1407
+ away = False
1408
+ else:
1409
+ x = z.real
1410
+ ctx.prec += max(0, ctx.mag(x))
1411
+ pi = +ctx.pi
1412
+ away = abs(x) > pi/2
1413
+ if away:
1414
+ d = ctx.nint(x/pi)
1415
+ z = z-pi*d
1416
+ P = 2*d*ctx.ellippi(n,m)
1417
+ if ctx.isinf(P):
1418
+ return ctx.inf
1419
+ else:
1420
+ P = 0
1421
+ def terms():
1422
+ if complete:
1423
+ c, s = ctx.zero, ctx.one
1424
+ else:
1425
+ c, s = ctx.cos_sin(z)
1426
+ x = c**2
1427
+ y = 1-m*s**2
1428
+ RF = ctx.elliprf(x, y, 1)
1429
+ RJ = ctx.elliprj(x, y, 1, 1-n*s**2)
1430
+ return s*RF, n*s**3*RJ/3
1431
+ return ctx.sum_accurately(terms) + P
venv/lib/python3.10/site-packages/mpmath/functions/expintegrals.py ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .functions import defun, defun_wrapped
2
+
3
+ @defun_wrapped
4
+ def _erf_complex(ctx, z):
5
+ z2 = ctx.square_exp_arg(z, -1)
6
+ #z2 = -z**2
7
+ v = (2/ctx.sqrt(ctx.pi))*z * ctx.hyp1f1((1,2),(3,2), z2)
8
+ if not ctx._re(z):
9
+ v = ctx._im(v)*ctx.j
10
+ return v
11
+
12
+ @defun_wrapped
13
+ def _erfc_complex(ctx, z):
14
+ if ctx.re(z) > 2:
15
+ z2 = ctx.square_exp_arg(z)
16
+ nz2 = ctx.fneg(z2, exact=True)
17
+ v = ctx.exp(nz2)/ctx.sqrt(ctx.pi) * ctx.hyperu((1,2),(1,2), z2)
18
+ else:
19
+ v = 1 - ctx._erf_complex(z)
20
+ if not ctx._re(z):
21
+ v = 1+ctx._im(v)*ctx.j
22
+ return v
23
+
24
+ @defun
25
+ def erf(ctx, z):
26
+ z = ctx.convert(z)
27
+ if ctx._is_real_type(z):
28
+ try:
29
+ return ctx._erf(z)
30
+ except NotImplementedError:
31
+ pass
32
+ if ctx._is_complex_type(z) and not z.imag:
33
+ try:
34
+ return type(z)(ctx._erf(z.real))
35
+ except NotImplementedError:
36
+ pass
37
+ return ctx._erf_complex(z)
38
+
39
+ @defun
40
+ def erfc(ctx, z):
41
+ z = ctx.convert(z)
42
+ if ctx._is_real_type(z):
43
+ try:
44
+ return ctx._erfc(z)
45
+ except NotImplementedError:
46
+ pass
47
+ if ctx._is_complex_type(z) and not z.imag:
48
+ try:
49
+ return type(z)(ctx._erfc(z.real))
50
+ except NotImplementedError:
51
+ pass
52
+ return ctx._erfc_complex(z)
53
+
54
+ @defun
55
+ def square_exp_arg(ctx, z, mult=1, reciprocal=False):
56
+ prec = ctx.prec*4+20
57
+ if reciprocal:
58
+ z2 = ctx.fmul(z, z, prec=prec)
59
+ z2 = ctx.fdiv(ctx.one, z2, prec=prec)
60
+ else:
61
+ z2 = ctx.fmul(z, z, prec=prec)
62
+ if mult != 1:
63
+ z2 = ctx.fmul(z2, mult, exact=True)
64
+ return z2
65
+
66
+ @defun_wrapped
67
+ def erfi(ctx, z):
68
+ if not z:
69
+ return z
70
+ z2 = ctx.square_exp_arg(z)
71
+ v = (2/ctx.sqrt(ctx.pi)*z) * ctx.hyp1f1((1,2), (3,2), z2)
72
+ if not ctx._re(z):
73
+ v = ctx._im(v)*ctx.j
74
+ return v
75
+
76
+ @defun_wrapped
77
+ def erfinv(ctx, x):
78
+ xre = ctx._re(x)
79
+ if (xre != x) or (xre < -1) or (xre > 1):
80
+ return ctx.bad_domain("erfinv(x) is defined only for -1 <= x <= 1")
81
+ x = xre
82
+ #if ctx.isnan(x): return x
83
+ if not x: return x
84
+ if x == 1: return ctx.inf
85
+ if x == -1: return ctx.ninf
86
+ if abs(x) < 0.9:
87
+ a = 0.53728*x**3 + 0.813198*x
88
+ else:
89
+ # An asymptotic formula
90
+ u = ctx.ln(2/ctx.pi/(abs(x)-1)**2)
91
+ a = ctx.sign(x) * ctx.sqrt(u - ctx.ln(u))/ctx.sqrt(2)
92
+ ctx.prec += 10
93
+ return ctx.findroot(lambda t: ctx.erf(t)-x, a)
94
+
95
+ @defun_wrapped
96
+ def npdf(ctx, x, mu=0, sigma=1):
97
+ sigma = ctx.convert(sigma)
98
+ return ctx.exp(-(x-mu)**2/(2*sigma**2)) / (sigma*ctx.sqrt(2*ctx.pi))
99
+
100
+ @defun_wrapped
101
+ def ncdf(ctx, x, mu=0, sigma=1):
102
+ a = (x-mu)/(sigma*ctx.sqrt(2))
103
+ if a < 0:
104
+ return ctx.erfc(-a)/2
105
+ else:
106
+ return (1+ctx.erf(a))/2
107
+
108
+ @defun_wrapped
109
+ def betainc(ctx, a, b, x1=0, x2=1, regularized=False):
110
+ if x1 == x2:
111
+ v = 0
112
+ elif not x1:
113
+ if x1 == 0 and x2 == 1:
114
+ v = ctx.beta(a, b)
115
+ else:
116
+ v = x2**a * ctx.hyp2f1(a, 1-b, a+1, x2) / a
117
+ else:
118
+ m, d = ctx.nint_distance(a)
119
+ if m <= 0:
120
+ if d < -ctx.prec:
121
+ h = +ctx.eps
122
+ ctx.prec *= 2
123
+ a += h
124
+ elif d < -4:
125
+ ctx.prec -= d
126
+ s1 = x2**a * ctx.hyp2f1(a,1-b,a+1,x2)
127
+ s2 = x1**a * ctx.hyp2f1(a,1-b,a+1,x1)
128
+ v = (s1 - s2) / a
129
+ if regularized:
130
+ v /= ctx.beta(a,b)
131
+ return v
132
+
133
+ @defun
134
+ def gammainc(ctx, z, a=0, b=None, regularized=False):
135
+ regularized = bool(regularized)
136
+ z = ctx.convert(z)
137
+ if a is None:
138
+ a = ctx.zero
139
+ lower_modified = False
140
+ else:
141
+ a = ctx.convert(a)
142
+ lower_modified = a != ctx.zero
143
+ if b is None:
144
+ b = ctx.inf
145
+ upper_modified = False
146
+ else:
147
+ b = ctx.convert(b)
148
+ upper_modified = b != ctx.inf
149
+ # Complete gamma function
150
+ if not (upper_modified or lower_modified):
151
+ if regularized:
152
+ if ctx.re(z) < 0:
153
+ return ctx.inf
154
+ elif ctx.re(z) > 0:
155
+ return ctx.one
156
+ else:
157
+ return ctx.nan
158
+ return ctx.gamma(z)
159
+ if a == b:
160
+ return ctx.zero
161
+ # Standardize
162
+ if ctx.re(a) > ctx.re(b):
163
+ return -ctx.gammainc(z, b, a, regularized)
164
+ # Generalized gamma
165
+ if upper_modified and lower_modified:
166
+ return +ctx._gamma3(z, a, b, regularized)
167
+ # Upper gamma
168
+ elif lower_modified:
169
+ return ctx._upper_gamma(z, a, regularized)
170
+ # Lower gamma
171
+ elif upper_modified:
172
+ return ctx._lower_gamma(z, b, regularized)
173
+
174
+ @defun
175
+ def _lower_gamma(ctx, z, b, regularized=False):
176
+ # Pole
177
+ if ctx.isnpint(z):
178
+ return type(z)(ctx.inf)
179
+ G = [z] * regularized
180
+ negb = ctx.fneg(b, exact=True)
181
+ def h(z):
182
+ T1 = [ctx.exp(negb), b, z], [1, z, -1], [], G, [1], [1+z], b
183
+ return (T1,)
184
+ return ctx.hypercomb(h, [z])
185
+
186
+ @defun
187
+ def _upper_gamma(ctx, z, a, regularized=False):
188
+ # Fast integer case, when available
189
+ if ctx.isint(z):
190
+ try:
191
+ if regularized:
192
+ # Gamma pole
193
+ if ctx.isnpint(z):
194
+ return type(z)(ctx.zero)
195
+ orig = ctx.prec
196
+ try:
197
+ ctx.prec += 10
198
+ return ctx._gamma_upper_int(z, a) / ctx.gamma(z)
199
+ finally:
200
+ ctx.prec = orig
201
+ else:
202
+ return ctx._gamma_upper_int(z, a)
203
+ except NotImplementedError:
204
+ pass
205
+ # hypercomb is unable to detect the exact zeros, so handle them here
206
+ if z == 2 and a == -1:
207
+ return (z+a)*0
208
+ if z == 3 and (a == -1-1j or a == -1+1j):
209
+ return (z+a)*0
210
+ nega = ctx.fneg(a, exact=True)
211
+ G = [z] * regularized
212
+ # Use 2F0 series when possible; fall back to lower gamma representation
213
+ try:
214
+ def h(z):
215
+ r = z-1
216
+ return [([ctx.exp(nega), a], [1, r], [], G, [1, -r], [], 1/nega)]
217
+ return ctx.hypercomb(h, [z], force_series=True)
218
+ except ctx.NoConvergence:
219
+ def h(z):
220
+ T1 = [], [1, z-1], [z], G, [], [], 0
221
+ T2 = [-ctx.exp(nega), a, z], [1, z, -1], [], G, [1], [1+z], a
222
+ return T1, T2
223
+ return ctx.hypercomb(h, [z])
224
+
225
+ @defun
226
+ def _gamma3(ctx, z, a, b, regularized=False):
227
+ pole = ctx.isnpint(z)
228
+ if regularized and pole:
229
+ return ctx.zero
230
+ try:
231
+ ctx.prec += 15
232
+ # We don't know in advance whether it's better to write as a difference
233
+ # of lower or upper gamma functions, so try both
234
+ T1 = ctx.gammainc(z, a, regularized=regularized)
235
+ T2 = ctx.gammainc(z, b, regularized=regularized)
236
+ R = T1 - T2
237
+ if ctx.mag(R) - max(ctx.mag(T1), ctx.mag(T2)) > -10:
238
+ return R
239
+ if not pole:
240
+ T1 = ctx.gammainc(z, 0, b, regularized=regularized)
241
+ T2 = ctx.gammainc(z, 0, a, regularized=regularized)
242
+ R = T1 - T2
243
+ # May be ok, but should probably at least print a warning
244
+ # about possible cancellation
245
+ if 1: #ctx.mag(R) - max(ctx.mag(T1), ctx.mag(T2)) > -10:
246
+ return R
247
+ finally:
248
+ ctx.prec -= 15
249
+ raise NotImplementedError
250
+
251
+ @defun_wrapped
252
+ def expint(ctx, n, z):
253
+ if ctx.isint(n) and ctx._is_real_type(z):
254
+ try:
255
+ return ctx._expint_int(n, z)
256
+ except NotImplementedError:
257
+ pass
258
+ if ctx.isnan(n) or ctx.isnan(z):
259
+ return z*n
260
+ if z == ctx.inf:
261
+ return 1/z
262
+ if z == 0:
263
+ # integral from 1 to infinity of t^n
264
+ if ctx.re(n) <= 1:
265
+ # TODO: reasonable sign of infinity
266
+ return type(z)(ctx.inf)
267
+ else:
268
+ return ctx.one/(n-1)
269
+ if n == 0:
270
+ return ctx.exp(-z)/z
271
+ if n == -1:
272
+ return ctx.exp(-z)*(z+1)/z**2
273
+ return z**(n-1) * ctx.gammainc(1-n, z)
274
+
275
+ @defun_wrapped
276
+ def li(ctx, z, offset=False):
277
+ if offset:
278
+ if z == 2:
279
+ return ctx.zero
280
+ return ctx.ei(ctx.ln(z)) - ctx.ei(ctx.ln2)
281
+ if not z:
282
+ return z
283
+ if z == 1:
284
+ return ctx.ninf
285
+ return ctx.ei(ctx.ln(z))
286
+
287
+ @defun
288
+ def ei(ctx, z):
289
+ try:
290
+ return ctx._ei(z)
291
+ except NotImplementedError:
292
+ return ctx._ei_generic(z)
293
+
294
+ @defun_wrapped
295
+ def _ei_generic(ctx, z):
296
+ # Note: the following is currently untested because mp and fp
297
+ # both use special-case ei code
298
+ if z == ctx.inf:
299
+ return z
300
+ if z == ctx.ninf:
301
+ return ctx.zero
302
+ if ctx.mag(z) > 1:
303
+ try:
304
+ r = ctx.one/z
305
+ v = ctx.exp(z)*ctx.hyper([1,1],[],r,
306
+ maxterms=ctx.prec, force_series=True)/z
307
+ im = ctx._im(z)
308
+ if im > 0:
309
+ v += ctx.pi*ctx.j
310
+ if im < 0:
311
+ v -= ctx.pi*ctx.j
312
+ return v
313
+ except ctx.NoConvergence:
314
+ pass
315
+ v = z*ctx.hyp2f2(1,1,2,2,z) + ctx.euler
316
+ if ctx._im(z):
317
+ v += 0.5*(ctx.log(z) - ctx.log(ctx.one/z))
318
+ else:
319
+ v += ctx.log(abs(z))
320
+ return v
321
+
322
+ @defun
323
+ def e1(ctx, z):
324
+ try:
325
+ return ctx._e1(z)
326
+ except NotImplementedError:
327
+ return ctx.expint(1, z)
328
+
329
+ @defun
330
+ def ci(ctx, z):
331
+ try:
332
+ return ctx._ci(z)
333
+ except NotImplementedError:
334
+ return ctx._ci_generic(z)
335
+
336
+ @defun_wrapped
337
+ def _ci_generic(ctx, z):
338
+ if ctx.isinf(z):
339
+ if z == ctx.inf: return ctx.zero
340
+ if z == ctx.ninf: return ctx.pi*1j
341
+ jz = ctx.fmul(ctx.j,z,exact=True)
342
+ njz = ctx.fneg(jz,exact=True)
343
+ v = 0.5*(ctx.ei(jz) + ctx.ei(njz))
344
+ zreal = ctx._re(z)
345
+ zimag = ctx._im(z)
346
+ if zreal == 0:
347
+ if zimag > 0: v += ctx.pi*0.5j
348
+ if zimag < 0: v -= ctx.pi*0.5j
349
+ if zreal < 0:
350
+ if zimag >= 0: v += ctx.pi*1j
351
+ if zimag < 0: v -= ctx.pi*1j
352
+ if ctx._is_real_type(z) and zreal > 0:
353
+ v = ctx._re(v)
354
+ return v
355
+
356
+ @defun
357
+ def si(ctx, z):
358
+ try:
359
+ return ctx._si(z)
360
+ except NotImplementedError:
361
+ return ctx._si_generic(z)
362
+
363
+ @defun_wrapped
364
+ def _si_generic(ctx, z):
365
+ if ctx.isinf(z):
366
+ if z == ctx.inf: return 0.5*ctx.pi
367
+ if z == ctx.ninf: return -0.5*ctx.pi
368
+ # Suffers from cancellation near 0
369
+ if ctx.mag(z) >= -1:
370
+ jz = ctx.fmul(ctx.j,z,exact=True)
371
+ njz = ctx.fneg(jz,exact=True)
372
+ v = (-0.5j)*(ctx.ei(jz) - ctx.ei(njz))
373
+ zreal = ctx._re(z)
374
+ if zreal > 0:
375
+ v -= 0.5*ctx.pi
376
+ if zreal < 0:
377
+ v += 0.5*ctx.pi
378
+ if ctx._is_real_type(z):
379
+ v = ctx._re(v)
380
+ return v
381
+ else:
382
+ return z*ctx.hyp1f2((1,2),(3,2),(3,2),-0.25*z*z)
383
+
384
+ @defun_wrapped
385
+ def chi(ctx, z):
386
+ nz = ctx.fneg(z, exact=True)
387
+ v = 0.5*(ctx.ei(z) + ctx.ei(nz))
388
+ zreal = ctx._re(z)
389
+ zimag = ctx._im(z)
390
+ if zimag > 0:
391
+ v += ctx.pi*0.5j
392
+ elif zimag < 0:
393
+ v -= ctx.pi*0.5j
394
+ elif zreal < 0:
395
+ v += ctx.pi*1j
396
+ return v
397
+
398
+ @defun_wrapped
399
+ def shi(ctx, z):
400
+ # Suffers from cancellation near 0
401
+ if ctx.mag(z) >= -1:
402
+ nz = ctx.fneg(z, exact=True)
403
+ v = 0.5*(ctx.ei(z) - ctx.ei(nz))
404
+ zimag = ctx._im(z)
405
+ if zimag > 0: v -= 0.5j*ctx.pi
406
+ if zimag < 0: v += 0.5j*ctx.pi
407
+ return v
408
+ else:
409
+ return z * ctx.hyp1f2((1,2),(3,2),(3,2),0.25*z*z)
410
+
411
+ @defun_wrapped
412
+ def fresnels(ctx, z):
413
+ if z == ctx.inf:
414
+ return ctx.mpf(0.5)
415
+ if z == ctx.ninf:
416
+ return ctx.mpf(-0.5)
417
+ return ctx.pi*z**3/6*ctx.hyp1f2((3,4),(3,2),(7,4),-ctx.pi**2*z**4/16)
418
+
419
+ @defun_wrapped
420
+ def fresnelc(ctx, z):
421
+ if z == ctx.inf:
422
+ return ctx.mpf(0.5)
423
+ if z == ctx.ninf:
424
+ return ctx.mpf(-0.5)
425
+ return z*ctx.hyp1f2((1,4),(1,2),(5,4),-ctx.pi**2*z**4/16)
venv/lib/python3.10/site-packages/mpmath/functions/factorials.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ..libmp.backend import xrange
2
+ from .functions import defun, defun_wrapped
3
+
4
+ @defun
5
+ def gammaprod(ctx, a, b, _infsign=False):
6
+ a = [ctx.convert(x) for x in a]
7
+ b = [ctx.convert(x) for x in b]
8
+ poles_num = []
9
+ poles_den = []
10
+ regular_num = []
11
+ regular_den = []
12
+ for x in a: [regular_num, poles_num][ctx.isnpint(x)].append(x)
13
+ for x in b: [regular_den, poles_den][ctx.isnpint(x)].append(x)
14
+ # One more pole in numerator or denominator gives 0 or inf
15
+ if len(poles_num) < len(poles_den): return ctx.zero
16
+ if len(poles_num) > len(poles_den):
17
+ # Get correct sign of infinity for x+h, h -> 0 from above
18
+ # XXX: hack, this should be done properly
19
+ if _infsign:
20
+ a = [x and x*(1+ctx.eps) or x+ctx.eps for x in poles_num]
21
+ b = [x and x*(1+ctx.eps) or x+ctx.eps for x in poles_den]
22
+ return ctx.sign(ctx.gammaprod(a+regular_num,b+regular_den)) * ctx.inf
23
+ else:
24
+ return ctx.inf
25
+ # All poles cancel
26
+ # lim G(i)/G(j) = (-1)**(i+j) * gamma(1-j) / gamma(1-i)
27
+ p = ctx.one
28
+ orig = ctx.prec
29
+ try:
30
+ ctx.prec = orig + 15
31
+ while poles_num:
32
+ i = poles_num.pop()
33
+ j = poles_den.pop()
34
+ p *= (-1)**(i+j) * ctx.gamma(1-j) / ctx.gamma(1-i)
35
+ for x in regular_num: p *= ctx.gamma(x)
36
+ for x in regular_den: p /= ctx.gamma(x)
37
+ finally:
38
+ ctx.prec = orig
39
+ return +p
40
+
41
+ @defun
42
+ def beta(ctx, x, y):
43
+ x = ctx.convert(x)
44
+ y = ctx.convert(y)
45
+ if ctx.isinf(y):
46
+ x, y = y, x
47
+ if ctx.isinf(x):
48
+ if x == ctx.inf and not ctx._im(y):
49
+ if y == ctx.ninf:
50
+ return ctx.nan
51
+ if y > 0:
52
+ return ctx.zero
53
+ if ctx.isint(y):
54
+ return ctx.nan
55
+ if y < 0:
56
+ return ctx.sign(ctx.gamma(y)) * ctx.inf
57
+ return ctx.nan
58
+ xy = ctx.fadd(x, y, prec=2*ctx.prec)
59
+ return ctx.gammaprod([x, y], [xy])
60
+
61
+ @defun
62
+ def binomial(ctx, n, k):
63
+ n1 = ctx.fadd(n, 1, prec=2*ctx.prec)
64
+ k1 = ctx.fadd(k, 1, prec=2*ctx.prec)
65
+ nk1 = ctx.fsub(n1, k, prec=2*ctx.prec)
66
+ return ctx.gammaprod([n1], [k1, nk1])
67
+
68
+ @defun
69
+ def rf(ctx, x, n):
70
+ xn = ctx.fadd(x, n, prec=2*ctx.prec)
71
+ return ctx.gammaprod([xn], [x])
72
+
73
+ @defun
74
+ def ff(ctx, x, n):
75
+ x1 = ctx.fadd(x, 1, prec=2*ctx.prec)
76
+ xn1 = ctx.fadd(ctx.fsub(x, n, prec=2*ctx.prec), 1, prec=2*ctx.prec)
77
+ return ctx.gammaprod([x1], [xn1])
78
+
79
+ @defun_wrapped
80
+ def fac2(ctx, x):
81
+ if ctx.isinf(x):
82
+ if x == ctx.inf:
83
+ return x
84
+ return ctx.nan
85
+ return 2**(x/2)*(ctx.pi/2)**((ctx.cospi(x)-1)/4)*ctx.gamma(x/2+1)
86
+
87
+ @defun_wrapped
88
+ def barnesg(ctx, z):
89
+ if ctx.isinf(z):
90
+ if z == ctx.inf:
91
+ return z
92
+ return ctx.nan
93
+ if ctx.isnan(z):
94
+ return z
95
+ if (not ctx._im(z)) and ctx._re(z) <= 0 and ctx.isint(ctx._re(z)):
96
+ return z*0
97
+ # Account for size (would not be needed if computing log(G))
98
+ if abs(z) > 5:
99
+ ctx.dps += 2*ctx.log(abs(z),2)
100
+ # Reflection formula
101
+ if ctx.re(z) < -ctx.dps:
102
+ w = 1-z
103
+ pi2 = 2*ctx.pi
104
+ u = ctx.expjpi(2*w)
105
+ v = ctx.j*ctx.pi/12 - ctx.j*ctx.pi*w**2/2 + w*ctx.ln(1-u) - \
106
+ ctx.j*ctx.polylog(2, u)/pi2
107
+ v = ctx.barnesg(2-z)*ctx.exp(v)/pi2**w
108
+ if ctx._is_real_type(z):
109
+ v = ctx._re(v)
110
+ return v
111
+ # Estimate terms for asymptotic expansion
112
+ # TODO: fixme, obviously
113
+ N = ctx.dps // 2 + 5
114
+ G = 1
115
+ while abs(z) < N or ctx.re(z) < 1:
116
+ G /= ctx.gamma(z)
117
+ z += 1
118
+ z -= 1
119
+ s = ctx.mpf(1)/12
120
+ s -= ctx.log(ctx.glaisher)
121
+ s += z*ctx.log(2*ctx.pi)/2
122
+ s += (z**2/2-ctx.mpf(1)/12)*ctx.log(z)
123
+ s -= 3*z**2/4
124
+ z2k = z2 = z**2
125
+ for k in xrange(1, N+1):
126
+ t = ctx.bernoulli(2*k+2) / (4*k*(k+1)*z2k)
127
+ if abs(t) < ctx.eps:
128
+ #print k, N # check how many terms were needed
129
+ break
130
+ z2k *= z2
131
+ s += t
132
+ #if k == N:
133
+ # print "warning: series for barnesg failed to converge", ctx.dps
134
+ return G*ctx.exp(s)
135
+
136
+ @defun
137
+ def superfac(ctx, z):
138
+ return ctx.barnesg(z+2)
139
+
140
+ @defun_wrapped
141
+ def hyperfac(ctx, z):
142
+ # XXX: estimate needed extra bits accurately
143
+ if z == ctx.inf:
144
+ return z
145
+ if abs(z) > 5:
146
+ extra = 4*int(ctx.log(abs(z),2))
147
+ else:
148
+ extra = 0
149
+ ctx.prec += extra
150
+ if not ctx._im(z) and ctx._re(z) < 0 and ctx.isint(ctx._re(z)):
151
+ n = int(ctx.re(z))
152
+ h = ctx.hyperfac(-n-1)
153
+ if ((n+1)//2) & 1:
154
+ h = -h
155
+ if ctx._is_complex_type(z):
156
+ return h + 0j
157
+ return h
158
+ zp1 = z+1
159
+ # Wrong branch cut
160
+ #v = ctx.gamma(zp1)**z
161
+ #ctx.prec -= extra
162
+ #return v / ctx.barnesg(zp1)
163
+ v = ctx.exp(z*ctx.loggamma(zp1))
164
+ ctx.prec -= extra
165
+ return v / ctx.barnesg(zp1)
166
+
167
+ '''
168
+ @defun
169
+ def psi0(ctx, z):
170
+ """Shortcut for psi(0,z) (the digamma function)"""
171
+ return ctx.psi(0, z)
172
+
173
+ @defun
174
+ def psi1(ctx, z):
175
+ """Shortcut for psi(1,z) (the trigamma function)"""
176
+ return ctx.psi(1, z)
177
+
178
+ @defun
179
+ def psi2(ctx, z):
180
+ """Shortcut for psi(2,z) (the tetragamma function)"""
181
+ return ctx.psi(2, z)
182
+
183
+ @defun
184
+ def psi3(ctx, z):
185
+ """Shortcut for psi(3,z) (the pentagamma function)"""
186
+ return ctx.psi(3, z)
187
+ '''
venv/lib/python3.10/site-packages/mpmath/functions/functions.py ADDED
@@ -0,0 +1,645 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ..libmp.backend import xrange
2
+
3
+ class SpecialFunctions(object):
4
+ """
5
+ This class implements special functions using high-level code.
6
+
7
+ Elementary and some other functions (e.g. gamma function, basecase
8
+ hypergeometric series) are assumed to be predefined by the context as
9
+ "builtins" or "low-level" functions.
10
+ """
11
+ defined_functions = {}
12
+
13
+ # The series for the Jacobi theta functions converge for |q| < 1;
14
+ # in the current implementation they throw a ValueError for
15
+ # abs(q) > THETA_Q_LIM
16
+ THETA_Q_LIM = 1 - 10**-7
17
+
18
+ def __init__(self):
19
+ cls = self.__class__
20
+ for name in cls.defined_functions:
21
+ f, wrap = cls.defined_functions[name]
22
+ cls._wrap_specfun(name, f, wrap)
23
+
24
+ self.mpq_1 = self._mpq((1,1))
25
+ self.mpq_0 = self._mpq((0,1))
26
+ self.mpq_1_2 = self._mpq((1,2))
27
+ self.mpq_3_2 = self._mpq((3,2))
28
+ self.mpq_1_4 = self._mpq((1,4))
29
+ self.mpq_1_16 = self._mpq((1,16))
30
+ self.mpq_3_16 = self._mpq((3,16))
31
+ self.mpq_5_2 = self._mpq((5,2))
32
+ self.mpq_3_4 = self._mpq((3,4))
33
+ self.mpq_7_4 = self._mpq((7,4))
34
+ self.mpq_5_4 = self._mpq((5,4))
35
+ self.mpq_1_3 = self._mpq((1,3))
36
+ self.mpq_2_3 = self._mpq((2,3))
37
+ self.mpq_4_3 = self._mpq((4,3))
38
+ self.mpq_1_6 = self._mpq((1,6))
39
+ self.mpq_5_6 = self._mpq((5,6))
40
+ self.mpq_5_3 = self._mpq((5,3))
41
+
42
+ self._misc_const_cache = {}
43
+
44
+ self._aliases.update({
45
+ 'phase' : 'arg',
46
+ 'conjugate' : 'conj',
47
+ 'nthroot' : 'root',
48
+ 'polygamma' : 'psi',
49
+ 'hurwitz' : 'zeta',
50
+ #'digamma' : 'psi0',
51
+ #'trigamma' : 'psi1',
52
+ #'tetragamma' : 'psi2',
53
+ #'pentagamma' : 'psi3',
54
+ 'fibonacci' : 'fib',
55
+ 'factorial' : 'fac',
56
+ })
57
+
58
+ self.zetazero_memoized = self.memoize(self.zetazero)
59
+
60
+ # Default -- do nothing
61
+ @classmethod
62
+ def _wrap_specfun(cls, name, f, wrap):
63
+ setattr(cls, name, f)
64
+
65
+ # Optional fast versions of common functions in common cases.
66
+ # If not overridden, default (generic hypergeometric series)
67
+ # implementations will be used
68
+ def _besselj(ctx, n, z): raise NotImplementedError
69
+ def _erf(ctx, z): raise NotImplementedError
70
+ def _erfc(ctx, z): raise NotImplementedError
71
+ def _gamma_upper_int(ctx, z, a): raise NotImplementedError
72
+ def _expint_int(ctx, n, z): raise NotImplementedError
73
+ def _zeta(ctx, s): raise NotImplementedError
74
+ def _zetasum_fast(ctx, s, a, n, derivatives, reflect): raise NotImplementedError
75
+ def _ei(ctx, z): raise NotImplementedError
76
+ def _e1(ctx, z): raise NotImplementedError
77
+ def _ci(ctx, z): raise NotImplementedError
78
+ def _si(ctx, z): raise NotImplementedError
79
+ def _altzeta(ctx, s): raise NotImplementedError
80
+
81
+ def defun_wrapped(f):
82
+ SpecialFunctions.defined_functions[f.__name__] = f, True
83
+ return f
84
+
85
+ def defun(f):
86
+ SpecialFunctions.defined_functions[f.__name__] = f, False
87
+ return f
88
+
89
+ def defun_static(f):
90
+ setattr(SpecialFunctions, f.__name__, f)
91
+ return f
92
+
93
+ @defun_wrapped
94
+ def cot(ctx, z): return ctx.one / ctx.tan(z)
95
+
96
+ @defun_wrapped
97
+ def sec(ctx, z): return ctx.one / ctx.cos(z)
98
+
99
+ @defun_wrapped
100
+ def csc(ctx, z): return ctx.one / ctx.sin(z)
101
+
102
+ @defun_wrapped
103
+ def coth(ctx, z): return ctx.one / ctx.tanh(z)
104
+
105
+ @defun_wrapped
106
+ def sech(ctx, z): return ctx.one / ctx.cosh(z)
107
+
108
+ @defun_wrapped
109
+ def csch(ctx, z): return ctx.one / ctx.sinh(z)
110
+
111
+ @defun_wrapped
112
+ def acot(ctx, z):
113
+ if not z:
114
+ return ctx.pi * 0.5
115
+ else:
116
+ return ctx.atan(ctx.one / z)
117
+
118
+ @defun_wrapped
119
+ def asec(ctx, z): return ctx.acos(ctx.one / z)
120
+
121
+ @defun_wrapped
122
+ def acsc(ctx, z): return ctx.asin(ctx.one / z)
123
+
124
+ @defun_wrapped
125
+ def acoth(ctx, z):
126
+ if not z:
127
+ return ctx.pi * 0.5j
128
+ else:
129
+ return ctx.atanh(ctx.one / z)
130
+
131
+
132
+ @defun_wrapped
133
+ def asech(ctx, z): return ctx.acosh(ctx.one / z)
134
+
135
+ @defun_wrapped
136
+ def acsch(ctx, z): return ctx.asinh(ctx.one / z)
137
+
138
+ @defun
139
+ def sign(ctx, x):
140
+ x = ctx.convert(x)
141
+ if not x or ctx.isnan(x):
142
+ return x
143
+ if ctx._is_real_type(x):
144
+ if x > 0:
145
+ return ctx.one
146
+ else:
147
+ return -ctx.one
148
+ return x / abs(x)
149
+
150
+ @defun
151
+ def agm(ctx, a, b=1):
152
+ if b == 1:
153
+ return ctx.agm1(a)
154
+ a = ctx.convert(a)
155
+ b = ctx.convert(b)
156
+ return ctx._agm(a, b)
157
+
158
+ @defun_wrapped
159
+ def sinc(ctx, x):
160
+ if ctx.isinf(x):
161
+ return 1/x
162
+ if not x:
163
+ return x+1
164
+ return ctx.sin(x)/x
165
+
166
+ @defun_wrapped
167
+ def sincpi(ctx, x):
168
+ if ctx.isinf(x):
169
+ return 1/x
170
+ if not x:
171
+ return x+1
172
+ return ctx.sinpi(x)/(ctx.pi*x)
173
+
174
+ # TODO: tests; improve implementation
175
+ @defun_wrapped
176
+ def expm1(ctx, x):
177
+ if not x:
178
+ return ctx.zero
179
+ # exp(x) - 1 ~ x
180
+ if ctx.mag(x) < -ctx.prec:
181
+ return x + 0.5*x**2
182
+ # TODO: accurately eval the smaller of the real/imag parts
183
+ return ctx.sum_accurately(lambda: iter([ctx.exp(x),-1]),1)
184
+
185
+ @defun_wrapped
186
+ def log1p(ctx, x):
187
+ if not x:
188
+ return ctx.zero
189
+ if ctx.mag(x) < -ctx.prec:
190
+ return x - 0.5*x**2
191
+ return ctx.log(ctx.fadd(1, x, prec=2*ctx.prec))
192
+
193
+ @defun_wrapped
194
+ def powm1(ctx, x, y):
195
+ mag = ctx.mag
196
+ one = ctx.one
197
+ w = x**y - one
198
+ M = mag(w)
199
+ # Only moderate cancellation
200
+ if M > -8:
201
+ return w
202
+ # Check for the only possible exact cases
203
+ if not w:
204
+ if (not y) or (x in (1, -1, 1j, -1j) and ctx.isint(y)):
205
+ return w
206
+ x1 = x - one
207
+ magy = mag(y)
208
+ lnx = ctx.ln(x)
209
+ # Small y: x^y - 1 ~ log(x)*y + O(log(x)^2 * y^2)
210
+ if magy + mag(lnx) < -ctx.prec:
211
+ return lnx*y + (lnx*y)**2/2
212
+ # TODO: accurately eval the smaller of the real/imag part
213
+ return ctx.sum_accurately(lambda: iter([x**y, -1]), 1)
214
+
215
+ @defun
216
+ def _rootof1(ctx, k, n):
217
+ k = int(k)
218
+ n = int(n)
219
+ k %= n
220
+ if not k:
221
+ return ctx.one
222
+ elif 2*k == n:
223
+ return -ctx.one
224
+ elif 4*k == n:
225
+ return ctx.j
226
+ elif 4*k == 3*n:
227
+ return -ctx.j
228
+ return ctx.expjpi(2*ctx.mpf(k)/n)
229
+
230
+ @defun
231
+ def root(ctx, x, n, k=0):
232
+ n = int(n)
233
+ x = ctx.convert(x)
234
+ if k:
235
+ # Special case: there is an exact real root
236
+ if (n & 1 and 2*k == n-1) and (not ctx.im(x)) and (ctx.re(x) < 0):
237
+ return -ctx.root(-x, n)
238
+ # Multiply by root of unity
239
+ prec = ctx.prec
240
+ try:
241
+ ctx.prec += 10
242
+ v = ctx.root(x, n, 0) * ctx._rootof1(k, n)
243
+ finally:
244
+ ctx.prec = prec
245
+ return +v
246
+ return ctx._nthroot(x, n)
247
+
248
+ @defun
249
+ def unitroots(ctx, n, primitive=False):
250
+ gcd = ctx._gcd
251
+ prec = ctx.prec
252
+ try:
253
+ ctx.prec += 10
254
+ if primitive:
255
+ v = [ctx._rootof1(k,n) for k in range(n) if gcd(k,n) == 1]
256
+ else:
257
+ # TODO: this can be done *much* faster
258
+ v = [ctx._rootof1(k,n) for k in range(n)]
259
+ finally:
260
+ ctx.prec = prec
261
+ return [+x for x in v]
262
+
263
+ @defun
264
+ def arg(ctx, x):
265
+ x = ctx.convert(x)
266
+ re = ctx._re(x)
267
+ im = ctx._im(x)
268
+ return ctx.atan2(im, re)
269
+
270
+ @defun
271
+ def fabs(ctx, x):
272
+ return abs(ctx.convert(x))
273
+
274
+ @defun
275
+ def re(ctx, x):
276
+ x = ctx.convert(x)
277
+ if hasattr(x, "real"): # py2.5 doesn't have .real/.imag for all numbers
278
+ return x.real
279
+ return x
280
+
281
+ @defun
282
+ def im(ctx, x):
283
+ x = ctx.convert(x)
284
+ if hasattr(x, "imag"): # py2.5 doesn't have .real/.imag for all numbers
285
+ return x.imag
286
+ return ctx.zero
287
+
288
+ @defun
289
+ def conj(ctx, x):
290
+ x = ctx.convert(x)
291
+ try:
292
+ return x.conjugate()
293
+ except AttributeError:
294
+ return x
295
+
296
+ @defun
297
+ def polar(ctx, z):
298
+ return (ctx.fabs(z), ctx.arg(z))
299
+
300
+ @defun_wrapped
301
+ def rect(ctx, r, phi):
302
+ return r * ctx.mpc(*ctx.cos_sin(phi))
303
+
304
+ @defun
305
+ def log(ctx, x, b=None):
306
+ if b is None:
307
+ return ctx.ln(x)
308
+ wp = ctx.prec + 20
309
+ return ctx.ln(x, prec=wp) / ctx.ln(b, prec=wp)
310
+
311
+ @defun
312
+ def log10(ctx, x):
313
+ return ctx.log(x, 10)
314
+
315
+ @defun
316
+ def fmod(ctx, x, y):
317
+ return ctx.convert(x) % ctx.convert(y)
318
+
319
+ @defun
320
+ def degrees(ctx, x):
321
+ return x / ctx.degree
322
+
323
+ @defun
324
+ def radians(ctx, x):
325
+ return x * ctx.degree
326
+
327
+ def _lambertw_special(ctx, z, k):
328
+ # W(0,0) = 0; all other branches are singular
329
+ if not z:
330
+ if not k:
331
+ return z
332
+ return ctx.ninf + z
333
+ if z == ctx.inf:
334
+ if k == 0:
335
+ return z
336
+ else:
337
+ return z + 2*k*ctx.pi*ctx.j
338
+ if z == ctx.ninf:
339
+ return (-z) + (2*k+1)*ctx.pi*ctx.j
340
+ # Some kind of nan or complex inf/nan?
341
+ return ctx.ln(z)
342
+
343
+ import math
344
+ import cmath
345
+
346
+ def _lambertw_approx_hybrid(z, k):
347
+ imag_sign = 0
348
+ if hasattr(z, "imag"):
349
+ x = float(z.real)
350
+ y = z.imag
351
+ if y:
352
+ imag_sign = (-1) ** (y < 0)
353
+ y = float(y)
354
+ else:
355
+ x = float(z)
356
+ y = 0.0
357
+ imag_sign = 0
358
+ # hack to work regardless of whether Python supports -0.0
359
+ if not y:
360
+ y = 0.0
361
+ z = complex(x,y)
362
+ if k == 0:
363
+ if -4.0 < y < 4.0 and -1.0 < x < 2.5:
364
+ if imag_sign:
365
+ # Taylor series in upper/lower half-plane
366
+ if y > 1.00: return (0.876+0.645j) + (0.118-0.174j)*(z-(0.75+2.5j))
367
+ if y > 0.25: return (0.505+0.204j) + (0.375-0.132j)*(z-(0.75+0.5j))
368
+ if y < -1.00: return (0.876-0.645j) + (0.118+0.174j)*(z-(0.75-2.5j))
369
+ if y < -0.25: return (0.505-0.204j) + (0.375+0.132j)*(z-(0.75-0.5j))
370
+ # Taylor series near -1
371
+ if x < -0.5:
372
+ if imag_sign >= 0:
373
+ return (-0.318+1.34j) + (-0.697-0.593j)*(z+1)
374
+ else:
375
+ return (-0.318-1.34j) + (-0.697+0.593j)*(z+1)
376
+ # return real type
377
+ r = -0.367879441171442
378
+ if (not imag_sign) and x > r:
379
+ z = x
380
+ # Singularity near -1/e
381
+ if x < -0.2:
382
+ return -1 + 2.33164398159712*(z-r)**0.5 - 1.81218788563936*(z-r)
383
+ # Taylor series near 0
384
+ if x < 0.5: return z
385
+ # Simple linear approximation
386
+ return 0.2 + 0.3*z
387
+ if (not imag_sign) and x > 0.0:
388
+ L1 = math.log(x); L2 = math.log(L1)
389
+ else:
390
+ L1 = cmath.log(z); L2 = cmath.log(L1)
391
+ elif k == -1:
392
+ # return real type
393
+ r = -0.367879441171442
394
+ if (not imag_sign) and r < x < 0.0:
395
+ z = x
396
+ if (imag_sign >= 0) and y < 0.1 and -0.6 < x < -0.2:
397
+ return -1 - 2.33164398159712*(z-r)**0.5 - 1.81218788563936*(z-r)
398
+ if (not imag_sign) and -0.2 <= x < 0.0:
399
+ L1 = math.log(-x)
400
+ return L1 - math.log(-L1)
401
+ else:
402
+ if imag_sign == -1 and (not y) and x < 0.0:
403
+ L1 = cmath.log(z) - 3.1415926535897932j
404
+ else:
405
+ L1 = cmath.log(z) - 6.2831853071795865j
406
+ L2 = cmath.log(L1)
407
+ return L1 - L2 + L2/L1 + L2*(L2-2)/(2*L1**2)
408
+
409
+ def _lambertw_series(ctx, z, k, tol):
410
+ """
411
+ Return rough approximation for W_k(z) from an asymptotic series,
412
+ sufficiently accurate for the Halley iteration to converge to
413
+ the correct value.
414
+ """
415
+ magz = ctx.mag(z)
416
+ if (-10 < magz < 900) and (-1000 < k < 1000):
417
+ # Near the branch point at -1/e
418
+ if magz < 1 and abs(z+0.36787944117144) < 0.05:
419
+ if k == 0 or (k == -1 and ctx._im(z) >= 0) or \
420
+ (k == 1 and ctx._im(z) < 0):
421
+ delta = ctx.sum_accurately(lambda: [z, ctx.exp(-1)])
422
+ cancellation = -ctx.mag(delta)
423
+ ctx.prec += cancellation
424
+ # Use series given in Corless et al.
425
+ p = ctx.sqrt(2*(ctx.e*z+1))
426
+ ctx.prec -= cancellation
427
+ u = {0:ctx.mpf(-1), 1:ctx.mpf(1)}
428
+ a = {0:ctx.mpf(2), 1:ctx.mpf(-1)}
429
+ if k != 0:
430
+ p = -p
431
+ s = ctx.zero
432
+ # The series converges, so we could use it directly, but unless
433
+ # *extremely* close, it is better to just use the first few
434
+ # terms to get a good approximation for the iteration
435
+ for l in xrange(max(2,cancellation)):
436
+ if l not in u:
437
+ a[l] = ctx.fsum(u[j]*u[l+1-j] for j in xrange(2,l))
438
+ u[l] = (l-1)*(u[l-2]/2+a[l-2]/4)/(l+1)-a[l]/2-u[l-1]/(l+1)
439
+ term = u[l] * p**l
440
+ s += term
441
+ if ctx.mag(term) < -tol:
442
+ return s, True
443
+ l += 1
444
+ ctx.prec += cancellation//2
445
+ return s, False
446
+ if k == 0 or k == -1:
447
+ return _lambertw_approx_hybrid(z, k), False
448
+ if k == 0:
449
+ if magz < -1:
450
+ return z*(1-z), False
451
+ L1 = ctx.ln(z)
452
+ L2 = ctx.ln(L1)
453
+ elif k == -1 and (not ctx._im(z)) and (-0.36787944117144 < ctx._re(z) < 0):
454
+ L1 = ctx.ln(-z)
455
+ return L1 - ctx.ln(-L1), False
456
+ else:
457
+ # This holds both as z -> 0 and z -> inf.
458
+ # Relative error is O(1/log(z)).
459
+ L1 = ctx.ln(z) + 2j*ctx.pi*k
460
+ L2 = ctx.ln(L1)
461
+ return L1 - L2 + L2/L1 + L2*(L2-2)/(2*L1**2), False
462
+
463
+ @defun
464
+ def lambertw(ctx, z, k=0):
465
+ z = ctx.convert(z)
466
+ k = int(k)
467
+ if not ctx.isnormal(z):
468
+ return _lambertw_special(ctx, z, k)
469
+ prec = ctx.prec
470
+ ctx.prec += 20 + ctx.mag(k or 1)
471
+ wp = ctx.prec
472
+ tol = wp - 5
473
+ w, done = _lambertw_series(ctx, z, k, tol)
474
+ if not done:
475
+ # Use Halley iteration to solve w*exp(w) = z
476
+ two = ctx.mpf(2)
477
+ for i in xrange(100):
478
+ ew = ctx.exp(w)
479
+ wew = w*ew
480
+ wewz = wew-z
481
+ wn = w - wewz/(wew+ew-(w+two)*wewz/(two*w+two))
482
+ if ctx.mag(wn-w) <= ctx.mag(wn) - tol:
483
+ w = wn
484
+ break
485
+ else:
486
+ w = wn
487
+ if i == 100:
488
+ ctx.warn("Lambert W iteration failed to converge for z = %s" % z)
489
+ ctx.prec = prec
490
+ return +w
491
+
492
+ @defun_wrapped
493
+ def bell(ctx, n, x=1):
494
+ x = ctx.convert(x)
495
+ if not n:
496
+ if ctx.isnan(x):
497
+ return x
498
+ return type(x)(1)
499
+ if ctx.isinf(x) or ctx.isinf(n) or ctx.isnan(x) or ctx.isnan(n):
500
+ return x**n
501
+ if n == 1: return x
502
+ if n == 2: return x*(x+1)
503
+ if x == 0: return ctx.sincpi(n)
504
+ return _polyexp(ctx, n, x, True) / ctx.exp(x)
505
+
506
+ def _polyexp(ctx, n, x, extra=False):
507
+ def _terms():
508
+ if extra:
509
+ yield ctx.sincpi(n)
510
+ t = x
511
+ k = 1
512
+ while 1:
513
+ yield k**n * t
514
+ k += 1
515
+ t = t*x/k
516
+ return ctx.sum_accurately(_terms, check_step=4)
517
+
518
+ @defun_wrapped
519
+ def polyexp(ctx, s, z):
520
+ if ctx.isinf(z) or ctx.isinf(s) or ctx.isnan(z) or ctx.isnan(s):
521
+ return z**s
522
+ if z == 0: return z*s
523
+ if s == 0: return ctx.expm1(z)
524
+ if s == 1: return ctx.exp(z)*z
525
+ if s == 2: return ctx.exp(z)*z*(z+1)
526
+ return _polyexp(ctx, s, z)
527
+
528
+ @defun_wrapped
529
+ def cyclotomic(ctx, n, z):
530
+ n = int(n)
531
+ if n < 0:
532
+ raise ValueError("n cannot be negative")
533
+ p = ctx.one
534
+ if n == 0:
535
+ return p
536
+ if n == 1:
537
+ return z - p
538
+ if n == 2:
539
+ return z + p
540
+ # Use divisor product representation. Unfortunately, this sometimes
541
+ # includes singularities for roots of unity, which we have to cancel out.
542
+ # Matching zeros/poles pairwise, we have (1-z^a)/(1-z^b) ~ a/b + O(z-1).
543
+ a_prod = 1
544
+ b_prod = 1
545
+ num_zeros = 0
546
+ num_poles = 0
547
+ for d in range(1,n+1):
548
+ if not n % d:
549
+ w = ctx.moebius(n//d)
550
+ # Use powm1 because it is important that we get 0 only
551
+ # if it really is exactly 0
552
+ b = -ctx.powm1(z, d)
553
+ if b:
554
+ p *= b**w
555
+ else:
556
+ if w == 1:
557
+ a_prod *= d
558
+ num_zeros += 1
559
+ elif w == -1:
560
+ b_prod *= d
561
+ num_poles += 1
562
+ #print n, num_zeros, num_poles
563
+ if num_zeros:
564
+ if num_zeros > num_poles:
565
+ p *= 0
566
+ else:
567
+ p *= a_prod
568
+ p /= b_prod
569
+ return p
570
+
571
+ @defun
572
+ def mangoldt(ctx, n):
573
+ r"""
574
+ Evaluates the von Mangoldt function `\Lambda(n) = \log p`
575
+ if `n = p^k` a power of a prime, and `\Lambda(n) = 0` otherwise.
576
+
577
+ **Examples**
578
+
579
+ >>> from mpmath import *
580
+ >>> mp.dps = 25; mp.pretty = True
581
+ >>> [mangoldt(n) for n in range(-2,3)]
582
+ [0.0, 0.0, 0.0, 0.0, 0.6931471805599453094172321]
583
+ >>> mangoldt(6)
584
+ 0.0
585
+ >>> mangoldt(7)
586
+ 1.945910149055313305105353
587
+ >>> mangoldt(8)
588
+ 0.6931471805599453094172321
589
+ >>> fsum(mangoldt(n) for n in range(101))
590
+ 94.04531122935739224600493
591
+ >>> fsum(mangoldt(n) for n in range(10001))
592
+ 10013.39669326311478372032
593
+
594
+ """
595
+ n = int(n)
596
+ if n < 2:
597
+ return ctx.zero
598
+ if n % 2 == 0:
599
+ # Must be a power of two
600
+ if n & (n-1) == 0:
601
+ return +ctx.ln2
602
+ else:
603
+ return ctx.zero
604
+ # TODO: the following could be generalized into a perfect
605
+ # power testing function
606
+ # ---
607
+ # Look for a small factor
608
+ for p in (3,5,7,11,13,17,19,23,29,31):
609
+ if not n % p:
610
+ q, r = n // p, 0
611
+ while q > 1:
612
+ q, r = divmod(q, p)
613
+ if r:
614
+ return ctx.zero
615
+ return ctx.ln(p)
616
+ if ctx.isprime(n):
617
+ return ctx.ln(n)
618
+ # Obviously, we could use arbitrary-precision arithmetic for this...
619
+ if n > 10**30:
620
+ raise NotImplementedError
621
+ k = 2
622
+ while 1:
623
+ p = int(n**(1./k) + 0.5)
624
+ if p < 2:
625
+ return ctx.zero
626
+ if p ** k == n:
627
+ if ctx.isprime(p):
628
+ return ctx.ln(p)
629
+ k += 1
630
+
631
+ @defun
632
+ def stirling1(ctx, n, k, exact=False):
633
+ v = ctx._stirling1(int(n), int(k))
634
+ if exact:
635
+ return int(v)
636
+ else:
637
+ return ctx.mpf(v)
638
+
639
+ @defun
640
+ def stirling2(ctx, n, k, exact=False):
641
+ v = ctx._stirling2(int(n), int(k))
642
+ if exact:
643
+ return int(v)
644
+ else:
645
+ return ctx.mpf(v)
venv/lib/python3.10/site-packages/mpmath/functions/hypergeometric.py ADDED
@@ -0,0 +1,1413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ..libmp.backend import xrange
2
+ from .functions import defun, defun_wrapped
3
+
4
+ def _check_need_perturb(ctx, terms, prec, discard_known_zeros):
5
+ perturb = recompute = False
6
+ extraprec = 0
7
+ discard = []
8
+ for term_index, term in enumerate(terms):
9
+ w_s, c_s, alpha_s, beta_s, a_s, b_s, z = term
10
+ have_singular_nongamma_weight = False
11
+ # Avoid division by zero in leading factors (TODO:
12
+ # also check for near division by zero?)
13
+ for k, w in enumerate(w_s):
14
+ if not w:
15
+ if ctx.re(c_s[k]) <= 0 and c_s[k]:
16
+ perturb = recompute = True
17
+ have_singular_nongamma_weight = True
18
+ pole_count = [0, 0, 0]
19
+ # Check for gamma and series poles and near-poles
20
+ for data_index, data in enumerate([alpha_s, beta_s, b_s]):
21
+ for i, x in enumerate(data):
22
+ n, d = ctx.nint_distance(x)
23
+ # Poles
24
+ if n > 0:
25
+ continue
26
+ if d == ctx.ninf:
27
+ # OK if we have a polynomial
28
+ # ------------------------------
29
+ ok = False
30
+ if data_index == 2:
31
+ for u in a_s:
32
+ if ctx.isnpint(u) and u >= int(n):
33
+ ok = True
34
+ break
35
+ if ok:
36
+ continue
37
+ pole_count[data_index] += 1
38
+ # ------------------------------
39
+ #perturb = recompute = True
40
+ #return perturb, recompute, extraprec
41
+ elif d < -4:
42
+ extraprec += -d
43
+ recompute = True
44
+ if discard_known_zeros and pole_count[1] > pole_count[0] + pole_count[2] \
45
+ and not have_singular_nongamma_weight:
46
+ discard.append(term_index)
47
+ elif sum(pole_count):
48
+ perturb = recompute = True
49
+ return perturb, recompute, extraprec, discard
50
+
51
+ _hypercomb_msg = """
52
+ hypercomb() failed to converge to the requested %i bits of accuracy
53
+ using a working precision of %i bits. The function value may be zero or
54
+ infinite; try passing zeroprec=N or infprec=M to bound finite values between
55
+ 2^(-N) and 2^M. Otherwise try a higher maxprec or maxterms.
56
+ """
57
+
58
+ @defun
59
+ def hypercomb(ctx, function, params=[], discard_known_zeros=True, **kwargs):
60
+ orig = ctx.prec
61
+ sumvalue = ctx.zero
62
+ dist = ctx.nint_distance
63
+ ninf = ctx.ninf
64
+ orig_params = params[:]
65
+ verbose = kwargs.get('verbose', False)
66
+ maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(orig))
67
+ kwargs['maxprec'] = maxprec # For calls to hypsum
68
+ zeroprec = kwargs.get('zeroprec')
69
+ infprec = kwargs.get('infprec')
70
+ perturbed_reference_value = None
71
+ hextra = 0
72
+ try:
73
+ while 1:
74
+ ctx.prec += 10
75
+ if ctx.prec > maxprec:
76
+ raise ValueError(_hypercomb_msg % (orig, ctx.prec))
77
+ orig2 = ctx.prec
78
+ params = orig_params[:]
79
+ terms = function(*params)
80
+ if verbose:
81
+ print()
82
+ print("ENTERING hypercomb main loop")
83
+ print("prec =", ctx.prec)
84
+ print("hextra", hextra)
85
+ perturb, recompute, extraprec, discard = \
86
+ _check_need_perturb(ctx, terms, orig, discard_known_zeros)
87
+ ctx.prec += extraprec
88
+ if perturb:
89
+ if "hmag" in kwargs:
90
+ hmag = kwargs["hmag"]
91
+ elif ctx._fixed_precision:
92
+ hmag = int(ctx.prec*0.3)
93
+ else:
94
+ hmag = orig + 10 + hextra
95
+ h = ctx.ldexp(ctx.one, -hmag)
96
+ ctx.prec = orig2 + 10 + hmag + 10
97
+ for k in range(len(params)):
98
+ params[k] += h
99
+ # Heuristically ensure that the perturbations
100
+ # are "independent" so that two perturbations
101
+ # don't accidentally cancel each other out
102
+ # in a subtraction.
103
+ h += h/(k+1)
104
+ if recompute:
105
+ terms = function(*params)
106
+ if discard_known_zeros:
107
+ terms = [term for (i, term) in enumerate(terms) if i not in discard]
108
+ if not terms:
109
+ return ctx.zero
110
+ evaluated_terms = []
111
+ for term_index, term_data in enumerate(terms):
112
+ w_s, c_s, alpha_s, beta_s, a_s, b_s, z = term_data
113
+ if verbose:
114
+ print()
115
+ print(" Evaluating term %i/%i : %iF%i" % \
116
+ (term_index+1, len(terms), len(a_s), len(b_s)))
117
+ print(" powers", ctx.nstr(w_s), ctx.nstr(c_s))
118
+ print(" gamma", ctx.nstr(alpha_s), ctx.nstr(beta_s))
119
+ print(" hyper", ctx.nstr(a_s), ctx.nstr(b_s))
120
+ print(" z", ctx.nstr(z))
121
+ #v = ctx.hyper(a_s, b_s, z, **kwargs)
122
+ #for a in alpha_s: v *= ctx.gamma(a)
123
+ #for b in beta_s: v *= ctx.rgamma(b)
124
+ #for w, c in zip(w_s, c_s): v *= ctx.power(w, c)
125
+ v = ctx.fprod([ctx.hyper(a_s, b_s, z, **kwargs)] + \
126
+ [ctx.gamma(a) for a in alpha_s] + \
127
+ [ctx.rgamma(b) for b in beta_s] + \
128
+ [ctx.power(w,c) for (w,c) in zip(w_s,c_s)])
129
+ if verbose:
130
+ print(" Value:", v)
131
+ evaluated_terms.append(v)
132
+
133
+ if len(terms) == 1 and (not perturb):
134
+ sumvalue = evaluated_terms[0]
135
+ break
136
+
137
+ if ctx._fixed_precision:
138
+ sumvalue = ctx.fsum(evaluated_terms)
139
+ break
140
+
141
+ sumvalue = ctx.fsum(evaluated_terms)
142
+ term_magnitudes = [ctx.mag(x) for x in evaluated_terms]
143
+ max_magnitude = max(term_magnitudes)
144
+ sum_magnitude = ctx.mag(sumvalue)
145
+ cancellation = max_magnitude - sum_magnitude
146
+ if verbose:
147
+ print()
148
+ print(" Cancellation:", cancellation, "bits")
149
+ print(" Increased precision:", ctx.prec - orig, "bits")
150
+
151
+ precision_ok = cancellation < ctx.prec - orig
152
+
153
+ if zeroprec is None:
154
+ zero_ok = False
155
+ else:
156
+ zero_ok = max_magnitude - ctx.prec < -zeroprec
157
+ if infprec is None:
158
+ inf_ok = False
159
+ else:
160
+ inf_ok = max_magnitude > infprec
161
+
162
+ if precision_ok and (not perturb) or ctx.isnan(cancellation):
163
+ break
164
+ elif precision_ok:
165
+ if perturbed_reference_value is None:
166
+ hextra += 20
167
+ perturbed_reference_value = sumvalue
168
+ continue
169
+ elif ctx.mag(sumvalue - perturbed_reference_value) <= \
170
+ ctx.mag(sumvalue) - orig:
171
+ break
172
+ elif zero_ok:
173
+ sumvalue = ctx.zero
174
+ break
175
+ elif inf_ok:
176
+ sumvalue = ctx.inf
177
+ break
178
+ elif 'hmag' in kwargs:
179
+ break
180
+ else:
181
+ hextra *= 2
182
+ perturbed_reference_value = sumvalue
183
+ # Increase precision
184
+ else:
185
+ increment = min(max(cancellation, orig//2), max(extraprec,orig))
186
+ ctx.prec += increment
187
+ if verbose:
188
+ print(" Must start over with increased precision")
189
+ continue
190
+ finally:
191
+ ctx.prec = orig
192
+ return +sumvalue
193
+
194
+ @defun
195
+ def hyper(ctx, a_s, b_s, z, **kwargs):
196
+ """
197
+ Hypergeometric function, general case.
198
+ """
199
+ z = ctx.convert(z)
200
+ p = len(a_s)
201
+ q = len(b_s)
202
+ a_s = [ctx._convert_param(a) for a in a_s]
203
+ b_s = [ctx._convert_param(b) for b in b_s]
204
+ # Reduce degree by eliminating common parameters
205
+ if kwargs.get('eliminate', True):
206
+ elim_nonpositive = kwargs.get('eliminate_all', False)
207
+ i = 0
208
+ while i < q and a_s:
209
+ b = b_s[i]
210
+ if b in a_s and (elim_nonpositive or not ctx.isnpint(b[0])):
211
+ a_s.remove(b)
212
+ b_s.remove(b)
213
+ p -= 1
214
+ q -= 1
215
+ else:
216
+ i += 1
217
+ # Handle special cases
218
+ if p == 0:
219
+ if q == 1: return ctx._hyp0f1(b_s, z, **kwargs)
220
+ elif q == 0: return ctx.exp(z)
221
+ elif p == 1:
222
+ if q == 1: return ctx._hyp1f1(a_s, b_s, z, **kwargs)
223
+ elif q == 2: return ctx._hyp1f2(a_s, b_s, z, **kwargs)
224
+ elif q == 0: return ctx._hyp1f0(a_s[0][0], z)
225
+ elif p == 2:
226
+ if q == 1: return ctx._hyp2f1(a_s, b_s, z, **kwargs)
227
+ elif q == 2: return ctx._hyp2f2(a_s, b_s, z, **kwargs)
228
+ elif q == 3: return ctx._hyp2f3(a_s, b_s, z, **kwargs)
229
+ elif q == 0: return ctx._hyp2f0(a_s, b_s, z, **kwargs)
230
+ elif p == q+1:
231
+ return ctx._hypq1fq(p, q, a_s, b_s, z, **kwargs)
232
+ elif p > q+1 and not kwargs.get('force_series'):
233
+ return ctx._hyp_borel(p, q, a_s, b_s, z, **kwargs)
234
+ coeffs, types = zip(*(a_s+b_s))
235
+ return ctx.hypsum(p, q, types, coeffs, z, **kwargs)
236
+
237
+ @defun
238
+ def hyp0f1(ctx,b,z,**kwargs):
239
+ return ctx.hyper([],[b],z,**kwargs)
240
+
241
+ @defun
242
+ def hyp1f1(ctx,a,b,z,**kwargs):
243
+ return ctx.hyper([a],[b],z,**kwargs)
244
+
245
+ @defun
246
+ def hyp1f2(ctx,a1,b1,b2,z,**kwargs):
247
+ return ctx.hyper([a1],[b1,b2],z,**kwargs)
248
+
249
+ @defun
250
+ def hyp2f1(ctx,a,b,c,z,**kwargs):
251
+ return ctx.hyper([a,b],[c],z,**kwargs)
252
+
253
+ @defun
254
+ def hyp2f2(ctx,a1,a2,b1,b2,z,**kwargs):
255
+ return ctx.hyper([a1,a2],[b1,b2],z,**kwargs)
256
+
257
+ @defun
258
+ def hyp2f3(ctx,a1,a2,b1,b2,b3,z,**kwargs):
259
+ return ctx.hyper([a1,a2],[b1,b2,b3],z,**kwargs)
260
+
261
+ @defun
262
+ def hyp2f0(ctx,a,b,z,**kwargs):
263
+ return ctx.hyper([a,b],[],z,**kwargs)
264
+
265
+ @defun
266
+ def hyp3f2(ctx,a1,a2,a3,b1,b2,z,**kwargs):
267
+ return ctx.hyper([a1,a2,a3],[b1,b2],z,**kwargs)
268
+
269
+ @defun_wrapped
270
+ def _hyp1f0(ctx, a, z):
271
+ return (1-z) ** (-a)
272
+
273
+ @defun
274
+ def _hyp0f1(ctx, b_s, z, **kwargs):
275
+ (b, btype), = b_s
276
+ if z:
277
+ magz = ctx.mag(z)
278
+ else:
279
+ magz = 0
280
+ if magz >= 8 and not kwargs.get('force_series'):
281
+ try:
282
+ # http://functions.wolfram.com/HypergeometricFunctions/
283
+ # Hypergeometric0F1/06/02/03/0004/
284
+ # TODO: handle the all-real case more efficiently!
285
+ # TODO: figure out how much precision is needed (exponential growth)
286
+ orig = ctx.prec
287
+ try:
288
+ ctx.prec += 12 + magz//2
289
+ def h():
290
+ w = ctx.sqrt(-z)
291
+ jw = ctx.j*w
292
+ u = 1/(4*jw)
293
+ c = ctx.mpq_1_2 - b
294
+ E = ctx.exp(2*jw)
295
+ T1 = ([-jw,E], [c,-1], [], [], [b-ctx.mpq_1_2, ctx.mpq_3_2-b], [], -u)
296
+ T2 = ([jw,E], [c,1], [], [], [b-ctx.mpq_1_2, ctx.mpq_3_2-b], [], u)
297
+ return T1, T2
298
+ v = ctx.hypercomb(h, [], force_series=True)
299
+ v = ctx.gamma(b)/(2*ctx.sqrt(ctx.pi))*v
300
+ finally:
301
+ ctx.prec = orig
302
+ if ctx._is_real_type(b) and ctx._is_real_type(z):
303
+ v = ctx._re(v)
304
+ return +v
305
+ except ctx.NoConvergence:
306
+ pass
307
+ return ctx.hypsum(0, 1, (btype,), [b], z, **kwargs)
308
+
309
+ @defun
310
+ def _hyp1f1(ctx, a_s, b_s, z, **kwargs):
311
+ (a, atype), = a_s
312
+ (b, btype), = b_s
313
+ if not z:
314
+ return ctx.one+z
315
+ magz = ctx.mag(z)
316
+ if magz >= 7 and not (ctx.isint(a) and ctx.re(a) <= 0):
317
+ if ctx.isinf(z):
318
+ if ctx.sign(a) == ctx.sign(b) == ctx.sign(z) == 1:
319
+ return ctx.inf
320
+ return ctx.nan * z
321
+ try:
322
+ try:
323
+ ctx.prec += magz
324
+ sector = ctx._im(z) < 0
325
+ def h(a,b):
326
+ if sector:
327
+ E = ctx.expjpi(ctx.fneg(a, exact=True))
328
+ else:
329
+ E = ctx.expjpi(a)
330
+ rz = 1/z
331
+ T1 = ([E,z], [1,-a], [b], [b-a], [a, 1+a-b], [], -rz)
332
+ T2 = ([ctx.exp(z),z], [1,a-b], [b], [a], [b-a, 1-a], [], rz)
333
+ return T1, T2
334
+ v = ctx.hypercomb(h, [a,b], force_series=True)
335
+ if ctx._is_real_type(a) and ctx._is_real_type(b) and ctx._is_real_type(z):
336
+ v = ctx._re(v)
337
+ return +v
338
+ except ctx.NoConvergence:
339
+ pass
340
+ finally:
341
+ ctx.prec -= magz
342
+ v = ctx.hypsum(1, 1, (atype, btype), [a, b], z, **kwargs)
343
+ return v
344
+
345
+ def _hyp2f1_gosper(ctx,a,b,c,z,**kwargs):
346
+ # Use Gosper's recurrence
347
+ # See http://www.math.utexas.edu/pipermail/maxima/2006/000126.html
348
+ _a,_b,_c,_z = a, b, c, z
349
+ orig = ctx.prec
350
+ maxprec = kwargs.get('maxprec', 100*orig)
351
+ extra = 10
352
+ while 1:
353
+ ctx.prec = orig + extra
354
+ #a = ctx.convert(_a)
355
+ #b = ctx.convert(_b)
356
+ #c = ctx.convert(_c)
357
+ z = ctx.convert(_z)
358
+ d = ctx.mpf(0)
359
+ e = ctx.mpf(1)
360
+ f = ctx.mpf(0)
361
+ k = 0
362
+ # Common subexpression elimination, unfortunately making
363
+ # things a bit unreadable. The formula is quite messy to begin
364
+ # with, though...
365
+ abz = a*b*z
366
+ ch = c * ctx.mpq_1_2
367
+ c1h = (c+1) * ctx.mpq_1_2
368
+ nz = 1-z
369
+ g = z/nz
370
+ abg = a*b*g
371
+ cba = c-b-a
372
+ z2 = z-2
373
+ tol = -ctx.prec - 10
374
+ nstr = ctx.nstr
375
+ nprint = ctx.nprint
376
+ mag = ctx.mag
377
+ maxmag = ctx.ninf
378
+ while 1:
379
+ kch = k+ch
380
+ kakbz = (k+a)*(k+b)*z / (4*(k+1)*kch*(k+c1h))
381
+ d1 = kakbz*(e-(k+cba)*d*g)
382
+ e1 = kakbz*(d*abg+(k+c)*e)
383
+ ft = d*(k*(cba*z+k*z2-c)-abz)/(2*kch*nz)
384
+ f1 = f + e - ft
385
+ maxmag = max(maxmag, mag(f1))
386
+ if mag(f1-f) < tol:
387
+ break
388
+ d, e, f = d1, e1, f1
389
+ k += 1
390
+ cancellation = maxmag - mag(f1)
391
+ if cancellation < extra:
392
+ break
393
+ else:
394
+ extra += cancellation
395
+ if extra > maxprec:
396
+ raise ctx.NoConvergence
397
+ return f1
398
+
399
+ @defun
400
+ def _hyp2f1(ctx, a_s, b_s, z, **kwargs):
401
+ (a, atype), (b, btype) = a_s
402
+ (c, ctype), = b_s
403
+ if z == 1:
404
+ # TODO: the following logic can be simplified
405
+ convergent = ctx.re(c-a-b) > 0
406
+ finite = (ctx.isint(a) and a <= 0) or (ctx.isint(b) and b <= 0)
407
+ zerodiv = ctx.isint(c) and c <= 0 and not \
408
+ ((ctx.isint(a) and c <= a <= 0) or (ctx.isint(b) and c <= b <= 0))
409
+ #print "bz", a, b, c, z, convergent, finite, zerodiv
410
+ # Gauss's theorem gives the value if convergent
411
+ if (convergent or finite) and not zerodiv:
412
+ return ctx.gammaprod([c, c-a-b], [c-a, c-b], _infsign=True)
413
+ # Otherwise, there is a pole and we take the
414
+ # sign to be that when approaching from below
415
+ # XXX: this evaluation is not necessarily correct in all cases
416
+ return ctx.hyp2f1(a,b,c,1-ctx.eps*2) * ctx.inf
417
+
418
+ # Equal to 1 (first term), unless there is a subsequent
419
+ # division by zero
420
+ if not z:
421
+ # Division by zero but power of z is higher than
422
+ # first order so cancels
423
+ if c or a == 0 or b == 0:
424
+ return 1+z
425
+ # Indeterminate
426
+ return ctx.nan
427
+
428
+ # Hit zero denominator unless numerator goes to 0 first
429
+ if ctx.isint(c) and c <= 0:
430
+ if (ctx.isint(a) and c <= a <= 0) or \
431
+ (ctx.isint(b) and c <= b <= 0):
432
+ pass
433
+ else:
434
+ # Pole in series
435
+ return ctx.inf
436
+
437
+ absz = abs(z)
438
+
439
+ # Fast case: standard series converges rapidly,
440
+ # possibly in finitely many terms
441
+ if absz <= 0.8 or (ctx.isint(a) and a <= 0 and a >= -1000) or \
442
+ (ctx.isint(b) and b <= 0 and b >= -1000):
443
+ return ctx.hypsum(2, 1, (atype, btype, ctype), [a, b, c], z, **kwargs)
444
+
445
+ orig = ctx.prec
446
+ try:
447
+ ctx.prec += 10
448
+
449
+ # Use 1/z transformation
450
+ if absz >= 1.3:
451
+ def h(a,b):
452
+ t = ctx.mpq_1-c; ab = a-b; rz = 1/z
453
+ T1 = ([-z],[-a], [c,-ab],[b,c-a], [a,t+a],[ctx.mpq_1+ab], rz)
454
+ T2 = ([-z],[-b], [c,ab],[a,c-b], [b,t+b],[ctx.mpq_1-ab], rz)
455
+ return T1, T2
456
+ v = ctx.hypercomb(h, [a,b], **kwargs)
457
+
458
+ # Use 1-z transformation
459
+ elif abs(1-z) <= 0.75:
460
+ def h(a,b):
461
+ t = c-a-b; ca = c-a; cb = c-b; rz = 1-z
462
+ T1 = [], [], [c,t], [ca,cb], [a,b], [1-t], rz
463
+ T2 = [rz], [t], [c,a+b-c], [a,b], [ca,cb], [1+t], rz
464
+ return T1, T2
465
+ v = ctx.hypercomb(h, [a,b], **kwargs)
466
+
467
+ # Use z/(z-1) transformation
468
+ elif abs(z/(z-1)) <= 0.75:
469
+ v = ctx.hyp2f1(a, c-b, c, z/(z-1)) / (1-z)**a
470
+
471
+ # Remaining part of unit circle
472
+ else:
473
+ v = _hyp2f1_gosper(ctx,a,b,c,z,**kwargs)
474
+
475
+ finally:
476
+ ctx.prec = orig
477
+ return +v
478
+
479
+ @defun
480
+ def _hypq1fq(ctx, p, q, a_s, b_s, z, **kwargs):
481
+ r"""
482
+ Evaluates 3F2, 4F3, 5F4, ...
483
+ """
484
+ a_s, a_types = zip(*a_s)
485
+ b_s, b_types = zip(*b_s)
486
+ a_s = list(a_s)
487
+ b_s = list(b_s)
488
+ absz = abs(z)
489
+ ispoly = False
490
+ for a in a_s:
491
+ if ctx.isint(a) and a <= 0:
492
+ ispoly = True
493
+ break
494
+ # Direct summation
495
+ if absz < 1 or ispoly:
496
+ try:
497
+ return ctx.hypsum(p, q, a_types+b_types, a_s+b_s, z, **kwargs)
498
+ except ctx.NoConvergence:
499
+ if absz > 1.1 or ispoly:
500
+ raise
501
+ # Use expansion at |z-1| -> 0.
502
+ # Reference: Wolfgang Buhring, "Generalized Hypergeometric Functions at
503
+ # Unit Argument", Proc. Amer. Math. Soc., Vol. 114, No. 1 (Jan. 1992),
504
+ # pp.145-153
505
+ # The current implementation has several problems:
506
+ # 1. We only implement it for 3F2. The expansion coefficients are
507
+ # given by extremely messy nested sums in the higher degree cases
508
+ # (see reference). Is efficient sequential generation of the coefficients
509
+ # possible in the > 3F2 case?
510
+ # 2. Although the series converges, it may do so slowly, so we need
511
+ # convergence acceleration. The acceleration implemented by
512
+ # nsum does not always help, so results returned are sometimes
513
+ # inaccurate! Can we do better?
514
+ # 3. We should check conditions for convergence, and possibly
515
+ # do a better job of cancelling out gamma poles if possible.
516
+ if z == 1:
517
+ # XXX: should also check for division by zero in the
518
+ # denominator of the series (cf. hyp2f1)
519
+ S = ctx.re(sum(b_s)-sum(a_s))
520
+ if S <= 0:
521
+ #return ctx.hyper(a_s, b_s, 1-ctx.eps*2, **kwargs) * ctx.inf
522
+ return ctx.hyper(a_s, b_s, 0.9, **kwargs) * ctx.inf
523
+ if (p,q) == (3,2) and abs(z-1) < 0.05: # and kwargs.get('sum1')
524
+ #print "Using alternate summation (experimental)"
525
+ a1,a2,a3 = a_s
526
+ b1,b2 = b_s
527
+ u = b1+b2-a3
528
+ initial = ctx.gammaprod([b2-a3,b1-a3,a1,a2],[b2-a3,b1-a3,1,u])
529
+ def term(k, _cache={0:initial}):
530
+ u = b1+b2-a3+k
531
+ if k in _cache:
532
+ t = _cache[k]
533
+ else:
534
+ t = _cache[k-1]
535
+ t *= (b1+k-a3-1)*(b2+k-a3-1)
536
+ t /= k*(u-1)
537
+ _cache[k] = t
538
+ return t * ctx.hyp2f1(a1,a2,u,z)
539
+ try:
540
+ S = ctx.nsum(term, [0,ctx.inf], verbose=kwargs.get('verbose'),
541
+ strict=kwargs.get('strict', True))
542
+ return S * ctx.gammaprod([b1,b2],[a1,a2,a3])
543
+ except ctx.NoConvergence:
544
+ pass
545
+ # Try to use convergence acceleration on and close to the unit circle.
546
+ # Problem: the convergence acceleration degenerates as |z-1| -> 0,
547
+ # except for special cases. Everywhere else, the Shanks transformation
548
+ # is very efficient.
549
+ if absz < 1.1 and ctx._re(z) <= 1:
550
+
551
+ def term(kk, _cache={0:ctx.one}):
552
+ k = int(kk)
553
+ if k != kk:
554
+ t = z ** ctx.mpf(kk) / ctx.fac(kk)
555
+ for a in a_s: t *= ctx.rf(a,kk)
556
+ for b in b_s: t /= ctx.rf(b,kk)
557
+ return t
558
+ if k in _cache:
559
+ return _cache[k]
560
+ t = term(k-1)
561
+ m = k-1
562
+ for j in xrange(p): t *= (a_s[j]+m)
563
+ for j in xrange(q): t /= (b_s[j]+m)
564
+ t *= z
565
+ t /= k
566
+ _cache[k] = t
567
+ return t
568
+
569
+ sum_method = kwargs.get('sum_method', 'r+s+e')
570
+
571
+ try:
572
+ return ctx.nsum(term, [0,ctx.inf], verbose=kwargs.get('verbose'),
573
+ strict=kwargs.get('strict', True),
574
+ method=sum_method.replace('e',''))
575
+ except ctx.NoConvergence:
576
+ if 'e' not in sum_method:
577
+ raise
578
+ pass
579
+
580
+ if kwargs.get('verbose'):
581
+ print("Attempting Euler-Maclaurin summation")
582
+
583
+
584
+ """
585
+ Somewhat slower version (one diffs_exp for each factor).
586
+ However, this would be faster with fast direct derivatives
587
+ of the gamma function.
588
+
589
+ def power_diffs(k0):
590
+ r = 0
591
+ l = ctx.log(z)
592
+ while 1:
593
+ yield z**ctx.mpf(k0) * l**r
594
+ r += 1
595
+
596
+ def loggamma_diffs(x, reciprocal=False):
597
+ sign = (-1) ** reciprocal
598
+ yield sign * ctx.loggamma(x)
599
+ i = 0
600
+ while 1:
601
+ yield sign * ctx.psi(i,x)
602
+ i += 1
603
+
604
+ def hyper_diffs(k0):
605
+ b2 = b_s + [1]
606
+ A = [ctx.diffs_exp(loggamma_diffs(a+k0)) for a in a_s]
607
+ B = [ctx.diffs_exp(loggamma_diffs(b+k0,True)) for b in b2]
608
+ Z = [power_diffs(k0)]
609
+ C = ctx.gammaprod([b for b in b2], [a for a in a_s])
610
+ for d in ctx.diffs_prod(A + B + Z):
611
+ v = C * d
612
+ yield v
613
+ """
614
+
615
+ def log_diffs(k0):
616
+ b2 = b_s + [1]
617
+ yield sum(ctx.loggamma(a+k0) for a in a_s) - \
618
+ sum(ctx.loggamma(b+k0) for b in b2) + k0*ctx.log(z)
619
+ i = 0
620
+ while 1:
621
+ v = sum(ctx.psi(i,a+k0) for a in a_s) - \
622
+ sum(ctx.psi(i,b+k0) for b in b2)
623
+ if i == 0:
624
+ v += ctx.log(z)
625
+ yield v
626
+ i += 1
627
+
628
+ def hyper_diffs(k0):
629
+ C = ctx.gammaprod([b for b in b_s], [a for a in a_s])
630
+ for d in ctx.diffs_exp(log_diffs(k0)):
631
+ v = C * d
632
+ yield v
633
+
634
+ tol = ctx.eps / 1024
635
+ prec = ctx.prec
636
+ try:
637
+ trunc = 50 * ctx.dps
638
+ ctx.prec += 20
639
+ for i in xrange(5):
640
+ head = ctx.fsum(term(k) for k in xrange(trunc))
641
+ tail, err = ctx.sumem(term, [trunc, ctx.inf], tol=tol,
642
+ adiffs=hyper_diffs(trunc),
643
+ verbose=kwargs.get('verbose'),
644
+ error=True,
645
+ _fast_abort=True)
646
+ if err < tol:
647
+ v = head + tail
648
+ break
649
+ trunc *= 2
650
+ # Need to increase precision because calculation of
651
+ # derivatives may be inaccurate
652
+ ctx.prec += ctx.prec//2
653
+ if i == 4:
654
+ raise ctx.NoConvergence(\
655
+ "Euler-Maclaurin summation did not converge")
656
+ finally:
657
+ ctx.prec = prec
658
+ return +v
659
+
660
+ # Use 1/z transformation
661
+ # http://functions.wolfram.com/HypergeometricFunctions/
662
+ # HypergeometricPFQ/06/01/05/02/0004/
663
+ def h(*args):
664
+ a_s = list(args[:p])
665
+ b_s = list(args[p:])
666
+ Ts = []
667
+ recz = ctx.one/z
668
+ negz = ctx.fneg(z, exact=True)
669
+ for k in range(q+1):
670
+ ak = a_s[k]
671
+ C = [negz]
672
+ Cp = [-ak]
673
+ Gn = b_s + [ak] + [a_s[j]-ak for j in range(q+1) if j != k]
674
+ Gd = a_s + [b_s[j]-ak for j in range(q)]
675
+ Fn = [ak] + [ak-b_s[j]+1 for j in range(q)]
676
+ Fd = [1-a_s[j]+ak for j in range(q+1) if j != k]
677
+ Ts.append((C, Cp, Gn, Gd, Fn, Fd, recz))
678
+ return Ts
679
+ return ctx.hypercomb(h, a_s+b_s, **kwargs)
680
+
681
+ @defun
682
+ def _hyp_borel(ctx, p, q, a_s, b_s, z, **kwargs):
683
+ if a_s:
684
+ a_s, a_types = zip(*a_s)
685
+ a_s = list(a_s)
686
+ else:
687
+ a_s, a_types = [], ()
688
+ if b_s:
689
+ b_s, b_types = zip(*b_s)
690
+ b_s = list(b_s)
691
+ else:
692
+ b_s, b_types = [], ()
693
+ kwargs['maxterms'] = kwargs.get('maxterms', ctx.prec)
694
+ try:
695
+ return ctx.hypsum(p, q, a_types+b_types, a_s+b_s, z, **kwargs)
696
+ except ctx.NoConvergence:
697
+ pass
698
+ prec = ctx.prec
699
+ try:
700
+ tol = kwargs.get('asymp_tol', ctx.eps/4)
701
+ ctx.prec += 10
702
+ # hypsum is has a conservative tolerance. So we try again:
703
+ def term(k, cache={0:ctx.one}):
704
+ if k in cache:
705
+ return cache[k]
706
+ t = term(k-1)
707
+ for a in a_s: t *= (a+(k-1))
708
+ for b in b_s: t /= (b+(k-1))
709
+ t *= z
710
+ t /= k
711
+ cache[k] = t
712
+ return t
713
+ s = ctx.one
714
+ for k in xrange(1, ctx.prec):
715
+ t = term(k)
716
+ s += t
717
+ if abs(t) <= tol:
718
+ return s
719
+ finally:
720
+ ctx.prec = prec
721
+ if p <= q+3:
722
+ contour = kwargs.get('contour')
723
+ if not contour:
724
+ if ctx.arg(z) < 0.25:
725
+ u = z / max(1, abs(z))
726
+ if ctx.arg(z) >= 0:
727
+ contour = [0, 2j, (2j+2)/u, 2/u, ctx.inf]
728
+ else:
729
+ contour = [0, -2j, (-2j+2)/u, 2/u, ctx.inf]
730
+ #contour = [0, 2j/z, 2/z, ctx.inf]
731
+ #contour = [0, 2j, 2/z, ctx.inf]
732
+ #contour = [0, 2j, ctx.inf]
733
+ else:
734
+ contour = [0, ctx.inf]
735
+ quad_kwargs = kwargs.get('quad_kwargs', {})
736
+ def g(t):
737
+ return ctx.exp(-t)*ctx.hyper(a_s, b_s+[1], t*z)
738
+ I, err = ctx.quad(g, contour, error=True, **quad_kwargs)
739
+ if err <= abs(I)*ctx.eps*8:
740
+ return I
741
+ raise ctx.NoConvergence
742
+
743
+
744
+ @defun
745
+ def _hyp2f2(ctx, a_s, b_s, z, **kwargs):
746
+ (a1, a1type), (a2, a2type) = a_s
747
+ (b1, b1type), (b2, b2type) = b_s
748
+
749
+ absz = abs(z)
750
+ magz = ctx.mag(z)
751
+ orig = ctx.prec
752
+
753
+ # Asymptotic expansion is ~ exp(z)
754
+ asymp_extraprec = magz
755
+
756
+ # Asymptotic series is in terms of 3F1
757
+ can_use_asymptotic = (not kwargs.get('force_series')) and \
758
+ (ctx.mag(absz) > 3)
759
+
760
+ # TODO: much of the following could be shared with 2F3 instead of
761
+ # copypasted
762
+ if can_use_asymptotic:
763
+ #print "using asymp"
764
+ try:
765
+ try:
766
+ ctx.prec += asymp_extraprec
767
+ # http://functions.wolfram.com/HypergeometricFunctions/
768
+ # Hypergeometric2F2/06/02/02/0002/
769
+ def h(a1,a2,b1,b2):
770
+ X = a1+a2-b1-b2
771
+ A2 = a1+a2
772
+ B2 = b1+b2
773
+ c = {}
774
+ c[0] = ctx.one
775
+ c[1] = (A2-1)*X+b1*b2-a1*a2
776
+ s1 = 0
777
+ k = 0
778
+ tprev = 0
779
+ while 1:
780
+ if k not in c:
781
+ uu1 = 1-B2+2*a1+a1**2+2*a2+a2**2-A2*B2+a1*a2+b1*b2+(2*B2-3*(A2+1))*k+2*k**2
782
+ uu2 = (k-A2+b1-1)*(k-A2+b2-1)*(k-X-2)
783
+ c[k] = ctx.one/k * (uu1*c[k-1]-uu2*c[k-2])
784
+ t1 = c[k] * z**(-k)
785
+ if abs(t1) < 0.1*ctx.eps:
786
+ #print "Convergence :)"
787
+ break
788
+ # Quit if the series doesn't converge quickly enough
789
+ if k > 5 and abs(tprev) / abs(t1) < 1.5:
790
+ #print "No convergence :("
791
+ raise ctx.NoConvergence
792
+ s1 += t1
793
+ tprev = t1
794
+ k += 1
795
+ S = ctx.exp(z)*s1
796
+ T1 = [z,S], [X,1], [b1,b2],[a1,a2],[],[],0
797
+ T2 = [-z],[-a1],[b1,b2,a2-a1],[a2,b1-a1,b2-a1],[a1,a1-b1+1,a1-b2+1],[a1-a2+1],-1/z
798
+ T3 = [-z],[-a2],[b1,b2,a1-a2],[a1,b1-a2,b2-a2],[a2,a2-b1+1,a2-b2+1],[-a1+a2+1],-1/z
799
+ return T1, T2, T3
800
+ v = ctx.hypercomb(h, [a1,a2,b1,b2], force_series=True, maxterms=4*ctx.prec)
801
+ if sum(ctx._is_real_type(u) for u in [a1,a2,b1,b2,z]) == 5:
802
+ v = ctx.re(v)
803
+ return v
804
+ except ctx.NoConvergence:
805
+ pass
806
+ finally:
807
+ ctx.prec = orig
808
+
809
+ return ctx.hypsum(2, 2, (a1type, a2type, b1type, b2type), [a1, a2, b1, b2], z, **kwargs)
810
+
811
+
812
+
813
+ @defun
814
+ def _hyp1f2(ctx, a_s, b_s, z, **kwargs):
815
+ (a1, a1type), = a_s
816
+ (b1, b1type), (b2, b2type) = b_s
817
+
818
+ absz = abs(z)
819
+ magz = ctx.mag(z)
820
+ orig = ctx.prec
821
+
822
+ # Asymptotic expansion is ~ exp(sqrt(z))
823
+ asymp_extraprec = z and magz//2
824
+
825
+ # Asymptotic series is in terms of 3F0
826
+ can_use_asymptotic = (not kwargs.get('force_series')) and \
827
+ (ctx.mag(absz) > 19) and \
828
+ (ctx.sqrt(absz) > 1.5*orig) # and \
829
+ # ctx._hyp_check_convergence([a1, a1-b1+1, a1-b2+1], [],
830
+ # 1/absz, orig+40+asymp_extraprec)
831
+
832
+ # TODO: much of the following could be shared with 2F3 instead of
833
+ # copypasted
834
+ if can_use_asymptotic:
835
+ #print "using asymp"
836
+ try:
837
+ try:
838
+ ctx.prec += asymp_extraprec
839
+ # http://functions.wolfram.com/HypergeometricFunctions/
840
+ # Hypergeometric1F2/06/02/03/
841
+ def h(a1,b1,b2):
842
+ X = ctx.mpq_1_2*(a1-b1-b2+ctx.mpq_1_2)
843
+ c = {}
844
+ c[0] = ctx.one
845
+ c[1] = 2*(ctx.mpq_1_4*(3*a1+b1+b2-2)*(a1-b1-b2)+b1*b2-ctx.mpq_3_16)
846
+ c[2] = 2*(b1*b2+ctx.mpq_1_4*(a1-b1-b2)*(3*a1+b1+b2-2)-ctx.mpq_3_16)**2+\
847
+ ctx.mpq_1_16*(-16*(2*a1-3)*b1*b2 + \
848
+ 4*(a1-b1-b2)*(-8*a1**2+11*a1+b1+b2-2)-3)
849
+ s1 = 0
850
+ s2 = 0
851
+ k = 0
852
+ tprev = 0
853
+ while 1:
854
+ if k not in c:
855
+ uu1 = (3*k**2+(-6*a1+2*b1+2*b2-4)*k + 3*a1**2 - \
856
+ (b1-b2)**2 - 2*a1*(b1+b2-2) + ctx.mpq_1_4)
857
+ uu2 = (k-a1+b1-b2-ctx.mpq_1_2)*(k-a1-b1+b2-ctx.mpq_1_2)*\
858
+ (k-a1+b1+b2-ctx.mpq_5_2)
859
+ c[k] = ctx.one/(2*k)*(uu1*c[k-1]-uu2*c[k-2])
860
+ w = c[k] * (-z)**(-0.5*k)
861
+ t1 = (-ctx.j)**k * ctx.mpf(2)**(-k) * w
862
+ t2 = ctx.j**k * ctx.mpf(2)**(-k) * w
863
+ if abs(t1) < 0.1*ctx.eps:
864
+ #print "Convergence :)"
865
+ break
866
+ # Quit if the series doesn't converge quickly enough
867
+ if k > 5 and abs(tprev) / abs(t1) < 1.5:
868
+ #print "No convergence :("
869
+ raise ctx.NoConvergence
870
+ s1 += t1
871
+ s2 += t2
872
+ tprev = t1
873
+ k += 1
874
+ S = ctx.expj(ctx.pi*X+2*ctx.sqrt(-z))*s1 + \
875
+ ctx.expj(-(ctx.pi*X+2*ctx.sqrt(-z)))*s2
876
+ T1 = [0.5*S, ctx.pi, -z], [1, -0.5, X], [b1, b2], [a1],\
877
+ [], [], 0
878
+ T2 = [-z], [-a1], [b1,b2],[b1-a1,b2-a1], \
879
+ [a1,a1-b1+1,a1-b2+1], [], 1/z
880
+ return T1, T2
881
+ v = ctx.hypercomb(h, [a1,b1,b2], force_series=True, maxterms=4*ctx.prec)
882
+ if sum(ctx._is_real_type(u) for u in [a1,b1,b2,z]) == 4:
883
+ v = ctx.re(v)
884
+ return v
885
+ except ctx.NoConvergence:
886
+ pass
887
+ finally:
888
+ ctx.prec = orig
889
+
890
+ #print "not using asymp"
891
+ return ctx.hypsum(1, 2, (a1type, b1type, b2type), [a1, b1, b2], z, **kwargs)
892
+
893
+
894
+
895
+ @defun
896
+ def _hyp2f3(ctx, a_s, b_s, z, **kwargs):
897
+ (a1, a1type), (a2, a2type) = a_s
898
+ (b1, b1type), (b2, b2type), (b3, b3type) = b_s
899
+
900
+ absz = abs(z)
901
+ magz = ctx.mag(z)
902
+
903
+ # Asymptotic expansion is ~ exp(sqrt(z))
904
+ asymp_extraprec = z and magz//2
905
+ orig = ctx.prec
906
+
907
+ # Asymptotic series is in terms of 4F1
908
+ # The square root below empirically provides a plausible criterion
909
+ # for the leading series to converge
910
+ can_use_asymptotic = (not kwargs.get('force_series')) and \
911
+ (ctx.mag(absz) > 19) and (ctx.sqrt(absz) > 1.5*orig)
912
+
913
+ if can_use_asymptotic:
914
+ #print "using asymp"
915
+ try:
916
+ try:
917
+ ctx.prec += asymp_extraprec
918
+ # http://functions.wolfram.com/HypergeometricFunctions/
919
+ # Hypergeometric2F3/06/02/03/01/0002/
920
+ def h(a1,a2,b1,b2,b3):
921
+ X = ctx.mpq_1_2*(a1+a2-b1-b2-b3+ctx.mpq_1_2)
922
+ A2 = a1+a2
923
+ B3 = b1+b2+b3
924
+ A = a1*a2
925
+ B = b1*b2+b3*b2+b1*b3
926
+ R = b1*b2*b3
927
+ c = {}
928
+ c[0] = ctx.one
929
+ c[1] = 2*(B - A + ctx.mpq_1_4*(3*A2+B3-2)*(A2-B3) - ctx.mpq_3_16)
930
+ c[2] = ctx.mpq_1_2*c[1]**2 + ctx.mpq_1_16*(-16*(2*A2-3)*(B-A) + 32*R +\
931
+ 4*(-8*A2**2 + 11*A2 + 8*A + B3 - 2)*(A2-B3)-3)
932
+ s1 = 0
933
+ s2 = 0
934
+ k = 0
935
+ tprev = 0
936
+ while 1:
937
+ if k not in c:
938
+ uu1 = (k-2*X-3)*(k-2*X-2*b1-1)*(k-2*X-2*b2-1)*\
939
+ (k-2*X-2*b3-1)
940
+ uu2 = (4*(k-1)**3 - 6*(4*X+B3)*(k-1)**2 + \
941
+ 2*(24*X**2+12*B3*X+4*B+B3-1)*(k-1) - 32*X**3 - \
942
+ 24*B3*X**2 - 4*B - 8*R - 4*(4*B+B3-1)*X + 2*B3-1)
943
+ uu3 = (5*(k-1)**2+2*(-10*X+A2-3*B3+3)*(k-1)+2*c[1])
944
+ c[k] = ctx.one/(2*k)*(uu1*c[k-3]-uu2*c[k-2]+uu3*c[k-1])
945
+ w = c[k] * ctx.power(-z, -0.5*k)
946
+ t1 = (-ctx.j)**k * ctx.mpf(2)**(-k) * w
947
+ t2 = ctx.j**k * ctx.mpf(2)**(-k) * w
948
+ if abs(t1) < 0.1*ctx.eps:
949
+ break
950
+ # Quit if the series doesn't converge quickly enough
951
+ if k > 5 and abs(tprev) / abs(t1) < 1.5:
952
+ raise ctx.NoConvergence
953
+ s1 += t1
954
+ s2 += t2
955
+ tprev = t1
956
+ k += 1
957
+ S = ctx.expj(ctx.pi*X+2*ctx.sqrt(-z))*s1 + \
958
+ ctx.expj(-(ctx.pi*X+2*ctx.sqrt(-z)))*s2
959
+ T1 = [0.5*S, ctx.pi, -z], [1, -0.5, X], [b1, b2, b3], [a1, a2],\
960
+ [], [], 0
961
+ T2 = [-z], [-a1], [b1,b2,b3,a2-a1],[a2,b1-a1,b2-a1,b3-a1], \
962
+ [a1,a1-b1+1,a1-b2+1,a1-b3+1], [a1-a2+1], 1/z
963
+ T3 = [-z], [-a2], [b1,b2,b3,a1-a2],[a1,b1-a2,b2-a2,b3-a2], \
964
+ [a2,a2-b1+1,a2-b2+1,a2-b3+1],[-a1+a2+1], 1/z
965
+ return T1, T2, T3
966
+ v = ctx.hypercomb(h, [a1,a2,b1,b2,b3], force_series=True, maxterms=4*ctx.prec)
967
+ if sum(ctx._is_real_type(u) for u in [a1,a2,b1,b2,b3,z]) == 6:
968
+ v = ctx.re(v)
969
+ return v
970
+ except ctx.NoConvergence:
971
+ pass
972
+ finally:
973
+ ctx.prec = orig
974
+
975
+ return ctx.hypsum(2, 3, (a1type, a2type, b1type, b2type, b3type), [a1, a2, b1, b2, b3], z, **kwargs)
976
+
977
+ @defun
978
+ def _hyp2f0(ctx, a_s, b_s, z, **kwargs):
979
+ (a, atype), (b, btype) = a_s
980
+ # We want to try aggressively to use the asymptotic expansion,
981
+ # and fall back only when absolutely necessary
982
+ try:
983
+ kwargsb = kwargs.copy()
984
+ kwargsb['maxterms'] = kwargsb.get('maxterms', ctx.prec)
985
+ return ctx.hypsum(2, 0, (atype,btype), [a,b], z, **kwargsb)
986
+ except ctx.NoConvergence:
987
+ if kwargs.get('force_series'):
988
+ raise
989
+ pass
990
+ def h(a, b):
991
+ w = ctx.sinpi(b)
992
+ rz = -1/z
993
+ T1 = ([ctx.pi,w,rz],[1,-1,a],[],[a-b+1,b],[a],[b],rz)
994
+ T2 = ([-ctx.pi,w,rz],[1,-1,1+a-b],[],[a,2-b],[a-b+1],[2-b],rz)
995
+ return T1, T2
996
+ return ctx.hypercomb(h, [a, 1+a-b], **kwargs)
997
+
998
+ @defun
999
+ def meijerg(ctx, a_s, b_s, z, r=1, series=None, **kwargs):
1000
+ an, ap = a_s
1001
+ bm, bq = b_s
1002
+ n = len(an)
1003
+ p = n + len(ap)
1004
+ m = len(bm)
1005
+ q = m + len(bq)
1006
+ a = an+ap
1007
+ b = bm+bq
1008
+ a = [ctx.convert(_) for _ in a]
1009
+ b = [ctx.convert(_) for _ in b]
1010
+ z = ctx.convert(z)
1011
+ if series is None:
1012
+ if p < q: series = 1
1013
+ if p > q: series = 2
1014
+ if p == q:
1015
+ if m+n == p and abs(z) > 1:
1016
+ series = 2
1017
+ else:
1018
+ series = 1
1019
+ if kwargs.get('verbose'):
1020
+ print("Meijer G m,n,p,q,series =", m,n,p,q,series)
1021
+ if series == 1:
1022
+ def h(*args):
1023
+ a = args[:p]
1024
+ b = args[p:]
1025
+ terms = []
1026
+ for k in range(m):
1027
+ bases = [z]
1028
+ expts = [b[k]/r]
1029
+ gn = [b[j]-b[k] for j in range(m) if j != k]
1030
+ gn += [1-a[j]+b[k] for j in range(n)]
1031
+ gd = [a[j]-b[k] for j in range(n,p)]
1032
+ gd += [1-b[j]+b[k] for j in range(m,q)]
1033
+ hn = [1-a[j]+b[k] for j in range(p)]
1034
+ hd = [1-b[j]+b[k] for j in range(q) if j != k]
1035
+ hz = (-ctx.one)**(p-m-n) * z**(ctx.one/r)
1036
+ terms.append((bases, expts, gn, gd, hn, hd, hz))
1037
+ return terms
1038
+ else:
1039
+ def h(*args):
1040
+ a = args[:p]
1041
+ b = args[p:]
1042
+ terms = []
1043
+ for k in range(n):
1044
+ bases = [z]
1045
+ if r == 1:
1046
+ expts = [a[k]-1]
1047
+ else:
1048
+ expts = [(a[k]-1)/ctx.convert(r)]
1049
+ gn = [a[k]-a[j] for j in range(n) if j != k]
1050
+ gn += [1-a[k]+b[j] for j in range(m)]
1051
+ gd = [a[k]-b[j] for j in range(m,q)]
1052
+ gd += [1-a[k]+a[j] for j in range(n,p)]
1053
+ hn = [1-a[k]+b[j] for j in range(q)]
1054
+ hd = [1+a[j]-a[k] for j in range(p) if j != k]
1055
+ hz = (-ctx.one)**(q-m-n) / z**(ctx.one/r)
1056
+ terms.append((bases, expts, gn, gd, hn, hd, hz))
1057
+ return terms
1058
+ return ctx.hypercomb(h, a+b, **kwargs)
1059
+
1060
+ @defun_wrapped
1061
+ def appellf1(ctx,a,b1,b2,c,x,y,**kwargs):
1062
+ # Assume x smaller
1063
+ # We will use x for the outer loop
1064
+ if abs(x) > abs(y):
1065
+ x, y = y, x
1066
+ b1, b2 = b2, b1
1067
+ def ok(x):
1068
+ return abs(x) < 0.99
1069
+ # Finite cases
1070
+ if ctx.isnpint(a):
1071
+ pass
1072
+ elif ctx.isnpint(b1):
1073
+ pass
1074
+ elif ctx.isnpint(b2):
1075
+ x, y, b1, b2 = y, x, b2, b1
1076
+ else:
1077
+ #print x, y
1078
+ # Note: ok if |y| > 1, because
1079
+ # 2F1 implements analytic continuation
1080
+ if not ok(x):
1081
+ u1 = (x-y)/(x-1)
1082
+ if not ok(u1):
1083
+ raise ValueError("Analytic continuation not implemented")
1084
+ #print "Using analytic continuation"
1085
+ return (1-x)**(-b1)*(1-y)**(c-a-b2)*\
1086
+ ctx.appellf1(c-a,b1,c-b1-b2,c,u1,y,**kwargs)
1087
+ return ctx.hyper2d({'m+n':[a],'m':[b1],'n':[b2]}, {'m+n':[c]}, x,y, **kwargs)
1088
+
1089
+ @defun
1090
+ def appellf2(ctx,a,b1,b2,c1,c2,x,y,**kwargs):
1091
+ # TODO: continuation
1092
+ return ctx.hyper2d({'m+n':[a],'m':[b1],'n':[b2]},
1093
+ {'m':[c1],'n':[c2]}, x,y, **kwargs)
1094
+
1095
+ @defun
1096
+ def appellf3(ctx,a1,a2,b1,b2,c,x,y,**kwargs):
1097
+ outer_polynomial = ctx.isnpint(a1) or ctx.isnpint(b1)
1098
+ inner_polynomial = ctx.isnpint(a2) or ctx.isnpint(b2)
1099
+ if not outer_polynomial:
1100
+ if inner_polynomial or abs(x) > abs(y):
1101
+ x, y = y, x
1102
+ a1,a2,b1,b2 = a2,a1,b2,b1
1103
+ return ctx.hyper2d({'m':[a1,b1],'n':[a2,b2]}, {'m+n':[c]},x,y,**kwargs)
1104
+
1105
+ @defun
1106
+ def appellf4(ctx,a,b,c1,c2,x,y,**kwargs):
1107
+ # TODO: continuation
1108
+ return ctx.hyper2d({'m+n':[a,b]}, {'m':[c1],'n':[c2]},x,y,**kwargs)
1109
+
1110
+ @defun
1111
+ def hyper2d(ctx, a, b, x, y, **kwargs):
1112
+ r"""
1113
+ Sums the generalized 2D hypergeometric series
1114
+
1115
+ .. math ::
1116
+
1117
+ \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
1118
+ \frac{P((a),m,n)}{Q((b),m,n)}
1119
+ \frac{x^m y^n} {m! n!}
1120
+
1121
+ where `(a) = (a_1,\ldots,a_r)`, `(b) = (b_1,\ldots,b_s)` and where
1122
+ `P` and `Q` are products of rising factorials such as `(a_j)_n` or
1123
+ `(a_j)_{m+n}`. `P` and `Q` are specified in the form of dicts, with
1124
+ the `m` and `n` dependence as keys and parameter lists as values.
1125
+ The supported rising factorials are given in the following table
1126
+ (note that only a few are supported in `Q`):
1127
+
1128
+ +------------+-------------------+--------+
1129
+ | Key | Rising factorial | `Q` |
1130
+ +============+===================+========+
1131
+ | ``'m'`` | `(a_j)_m` | Yes |
1132
+ +------------+-------------------+--------+
1133
+ | ``'n'`` | `(a_j)_n` | Yes |
1134
+ +------------+-------------------+--------+
1135
+ | ``'m+n'`` | `(a_j)_{m+n}` | Yes |
1136
+ +------------+-------------------+--------+
1137
+ | ``'m-n'`` | `(a_j)_{m-n}` | No |
1138
+ +------------+-------------------+--------+
1139
+ | ``'n-m'`` | `(a_j)_{n-m}` | No |
1140
+ +------------+-------------------+--------+
1141
+ | ``'2m+n'`` | `(a_j)_{2m+n}` | No |
1142
+ +------------+-------------------+--------+
1143
+ | ``'2m-n'`` | `(a_j)_{2m-n}` | No |
1144
+ +------------+-------------------+--------+
1145
+ | ``'2n-m'`` | `(a_j)_{2n-m}` | No |
1146
+ +------------+-------------------+--------+
1147
+
1148
+ For example, the Appell F1 and F4 functions
1149
+
1150
+ .. math ::
1151
+
1152
+ F_1 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
1153
+ \frac{(a)_{m+n} (b)_m (c)_n}{(d)_{m+n}}
1154
+ \frac{x^m y^n}{m! n!}
1155
+
1156
+ F_4 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
1157
+ \frac{(a)_{m+n} (b)_{m+n}}{(c)_m (d)_{n}}
1158
+ \frac{x^m y^n}{m! n!}
1159
+
1160
+ can be represented respectively as
1161
+
1162
+ ``hyper2d({'m+n':[a], 'm':[b], 'n':[c]}, {'m+n':[d]}, x, y)``
1163
+
1164
+ ``hyper2d({'m+n':[a,b]}, {'m':[c], 'n':[d]}, x, y)``
1165
+
1166
+ More generally, :func:`~mpmath.hyper2d` can evaluate any of the 34 distinct
1167
+ convergent second-order (generalized Gaussian) hypergeometric
1168
+ series enumerated by Horn, as well as the Kampe de Feriet
1169
+ function.
1170
+
1171
+ The series is computed by rewriting it so that the inner
1172
+ series (i.e. the series containing `n` and `y`) has the form of an
1173
+ ordinary generalized hypergeometric series and thereby can be
1174
+ evaluated efficiently using :func:`~mpmath.hyper`. If possible,
1175
+ manually swapping `x` and `y` and the corresponding parameters
1176
+ can sometimes give better results.
1177
+
1178
+ **Examples**
1179
+
1180
+ Two separable cases: a product of two geometric series, and a
1181
+ product of two Gaussian hypergeometric functions::
1182
+
1183
+ >>> from mpmath import *
1184
+ >>> mp.dps = 25; mp.pretty = True
1185
+ >>> x, y = mpf(0.25), mpf(0.5)
1186
+ >>> hyper2d({'m':1,'n':1}, {}, x,y)
1187
+ 2.666666666666666666666667
1188
+ >>> 1/(1-x)/(1-y)
1189
+ 2.666666666666666666666667
1190
+ >>> hyper2d({'m':[1,2],'n':[3,4]}, {'m':[5],'n':[6]}, x,y)
1191
+ 4.164358531238938319669856
1192
+ >>> hyp2f1(1,2,5,x)*hyp2f1(3,4,6,y)
1193
+ 4.164358531238938319669856
1194
+
1195
+ Some more series that can be done in closed form::
1196
+
1197
+ >>> hyper2d({'m':1,'n':1},{'m+n':1},x,y)
1198
+ 2.013417124712514809623881
1199
+ >>> (exp(x)*x-exp(y)*y)/(x-y)
1200
+ 2.013417124712514809623881
1201
+
1202
+ Six of the 34 Horn functions, G1-G3 and H1-H3::
1203
+
1204
+ >>> from mpmath import *
1205
+ >>> mp.dps = 10; mp.pretty = True
1206
+ >>> x, y = 0.0625, 0.125
1207
+ >>> a1,a2,b1,b2,c1,c2,d = 1.1,-1.2,-1.3,-1.4,1.5,-1.6,1.7
1208
+ >>> hyper2d({'m+n':a1,'n-m':b1,'m-n':b2},{},x,y) # G1
1209
+ 1.139090746
1210
+ >>> nsum(lambda m,n: rf(a1,m+n)*rf(b1,n-m)*rf(b2,m-n)*\
1211
+ ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
1212
+ 1.139090746
1213
+ >>> hyper2d({'m':a1,'n':a2,'n-m':b1,'m-n':b2},{},x,y) # G2
1214
+ 0.9503682696
1215
+ >>> nsum(lambda m,n: rf(a1,m)*rf(a2,n)*rf(b1,n-m)*rf(b2,m-n)*\
1216
+ ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
1217
+ 0.9503682696
1218
+ >>> hyper2d({'2n-m':a1,'2m-n':a2},{},x,y) # G3
1219
+ 1.029372029
1220
+ >>> nsum(lambda m,n: rf(a1,2*n-m)*rf(a2,2*m-n)*\
1221
+ ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
1222
+ 1.029372029
1223
+ >>> hyper2d({'m-n':a1,'m+n':b1,'n':c1},{'m':d},x,y) # H1
1224
+ -1.605331256
1225
+ >>> nsum(lambda m,n: rf(a1,m-n)*rf(b1,m+n)*rf(c1,n)/rf(d,m)*\
1226
+ ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
1227
+ -1.605331256
1228
+ >>> hyper2d({'m-n':a1,'m':b1,'n':[c1,c2]},{'m':d},x,y) # H2
1229
+ -2.35405404
1230
+ >>> nsum(lambda m,n: rf(a1,m-n)*rf(b1,m)*rf(c1,n)*rf(c2,n)/rf(d,m)*\
1231
+ ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
1232
+ -2.35405404
1233
+ >>> hyper2d({'2m+n':a1,'n':b1},{'m+n':c1},x,y) # H3
1234
+ 0.974479074
1235
+ >>> nsum(lambda m,n: rf(a1,2*m+n)*rf(b1,n)/rf(c1,m+n)*\
1236
+ ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
1237
+ 0.974479074
1238
+
1239
+ **References**
1240
+
1241
+ 1. [SrivastavaKarlsson]_
1242
+ 2. [Weisstein]_ http://mathworld.wolfram.com/HornFunction.html
1243
+ 3. [Weisstein]_ http://mathworld.wolfram.com/AppellHypergeometricFunction.html
1244
+
1245
+ """
1246
+ x = ctx.convert(x)
1247
+ y = ctx.convert(y)
1248
+ def parse(dct, key):
1249
+ args = dct.pop(key, [])
1250
+ try:
1251
+ args = list(args)
1252
+ except TypeError:
1253
+ args = [args]
1254
+ return [ctx.convert(arg) for arg in args]
1255
+ a_s = dict(a)
1256
+ b_s = dict(b)
1257
+ a_m = parse(a, 'm')
1258
+ a_n = parse(a, 'n')
1259
+ a_m_add_n = parse(a, 'm+n')
1260
+ a_m_sub_n = parse(a, 'm-n')
1261
+ a_n_sub_m = parse(a, 'n-m')
1262
+ a_2m_add_n = parse(a, '2m+n')
1263
+ a_2m_sub_n = parse(a, '2m-n')
1264
+ a_2n_sub_m = parse(a, '2n-m')
1265
+ b_m = parse(b, 'm')
1266
+ b_n = parse(b, 'n')
1267
+ b_m_add_n = parse(b, 'm+n')
1268
+ if a: raise ValueError("unsupported key: %r" % a.keys()[0])
1269
+ if b: raise ValueError("unsupported key: %r" % b.keys()[0])
1270
+ s = 0
1271
+ outer = ctx.one
1272
+ m = ctx.mpf(0)
1273
+ ok_count = 0
1274
+ prec = ctx.prec
1275
+ maxterms = kwargs.get('maxterms', 20*prec)
1276
+ try:
1277
+ ctx.prec += 10
1278
+ tol = +ctx.eps
1279
+ while 1:
1280
+ inner_sign = 1
1281
+ outer_sign = 1
1282
+ inner_a = list(a_n)
1283
+ inner_b = list(b_n)
1284
+ outer_a = [a+m for a in a_m]
1285
+ outer_b = [b+m for b in b_m]
1286
+ # (a)_{m+n} = (a)_m (a+m)_n
1287
+ for a in a_m_add_n:
1288
+ a = a+m
1289
+ inner_a.append(a)
1290
+ outer_a.append(a)
1291
+ # (b)_{m+n} = (b)_m (b+m)_n
1292
+ for b in b_m_add_n:
1293
+ b = b+m
1294
+ inner_b.append(b)
1295
+ outer_b.append(b)
1296
+ # (a)_{n-m} = (a-m)_n / (a-m)_m
1297
+ for a in a_n_sub_m:
1298
+ inner_a.append(a-m)
1299
+ outer_b.append(a-m-1)
1300
+ # (a)_{m-n} = (-1)^(m+n) (1-a-m)_m / (1-a-m)_n
1301
+ for a in a_m_sub_n:
1302
+ inner_sign *= (-1)
1303
+ outer_sign *= (-1)**(m)
1304
+ inner_b.append(1-a-m)
1305
+ outer_a.append(-a-m)
1306
+ # (a)_{2m+n} = (a)_{2m} (a+2m)_n
1307
+ for a in a_2m_add_n:
1308
+ inner_a.append(a+2*m)
1309
+ outer_a.append((a+2*m)*(1+a+2*m))
1310
+ # (a)_{2m-n} = (-1)^(2m+n) (1-a-2m)_{2m} / (1-a-2m)_n
1311
+ for a in a_2m_sub_n:
1312
+ inner_sign *= (-1)
1313
+ inner_b.append(1-a-2*m)
1314
+ outer_a.append((a+2*m)*(1+a+2*m))
1315
+ # (a)_{2n-m} = 4^n ((a-m)/2)_n ((a-m+1)/2)_n / (a-m)_m
1316
+ for a in a_2n_sub_m:
1317
+ inner_sign *= 4
1318
+ inner_a.append(0.5*(a-m))
1319
+ inner_a.append(0.5*(a-m+1))
1320
+ outer_b.append(a-m-1)
1321
+ inner = ctx.hyper(inner_a, inner_b, inner_sign*y,
1322
+ zeroprec=ctx.prec, **kwargs)
1323
+ term = outer * inner * outer_sign
1324
+ if abs(term) < tol:
1325
+ ok_count += 1
1326
+ else:
1327
+ ok_count = 0
1328
+ if ok_count >= 3 or not outer:
1329
+ break
1330
+ s += term
1331
+ for a in outer_a: outer *= a
1332
+ for b in outer_b: outer /= b
1333
+ m += 1
1334
+ outer = outer * x / m
1335
+ if m > maxterms:
1336
+ raise ctx.NoConvergence("maxterms exceeded in hyper2d")
1337
+ finally:
1338
+ ctx.prec = prec
1339
+ return +s
1340
+
1341
+ """
1342
+ @defun
1343
+ def kampe_de_feriet(ctx,a,b,c,d,e,f,x,y,**kwargs):
1344
+ return ctx.hyper2d({'m+n':a,'m':b,'n':c},
1345
+ {'m+n':d,'m':e,'n':f}, x,y, **kwargs)
1346
+ """
1347
+
1348
+ @defun
1349
+ def bihyper(ctx, a_s, b_s, z, **kwargs):
1350
+ r"""
1351
+ Evaluates the bilateral hypergeometric series
1352
+
1353
+ .. math ::
1354
+
1355
+ \,_AH_B(a_1, \ldots, a_k; b_1, \ldots, b_B; z) =
1356
+ \sum_{n=-\infty}^{\infty}
1357
+ \frac{(a_1)_n \ldots (a_A)_n}
1358
+ {(b_1)_n \ldots (b_B)_n} \, z^n
1359
+
1360
+ where, for direct convergence, `A = B` and `|z| = 1`, although a
1361
+ regularized sum exists more generally by considering the
1362
+ bilateral series as a sum of two ordinary hypergeometric
1363
+ functions. In order for the series to make sense, none of the
1364
+ parameters may be integers.
1365
+
1366
+ **Examples**
1367
+
1368
+ The value of `\,_2H_2` at `z = 1` is given by Dougall's formula::
1369
+
1370
+ >>> from mpmath import *
1371
+ >>> mp.dps = 25; mp.pretty = True
1372
+ >>> a,b,c,d = 0.5, 1.5, 2.25, 3.25
1373
+ >>> bihyper([a,b],[c,d],1)
1374
+ -14.49118026212345786148847
1375
+ >>> gammaprod([c,d,1-a,1-b,c+d-a-b-1],[c-a,d-a,c-b,d-b])
1376
+ -14.49118026212345786148847
1377
+
1378
+ The regularized function `\,_1H_0` can be expressed as the
1379
+ sum of one `\,_2F_0` function and one `\,_1F_1` function::
1380
+
1381
+ >>> a = mpf(0.25)
1382
+ >>> z = mpf(0.75)
1383
+ >>> bihyper([a], [], z)
1384
+ (0.2454393389657273841385582 + 0.2454393389657273841385582j)
1385
+ >>> hyper([a,1],[],z) + (hyper([1],[1-a],-1/z)-1)
1386
+ (0.2454393389657273841385582 + 0.2454393389657273841385582j)
1387
+ >>> hyper([a,1],[],z) + hyper([1],[2-a],-1/z)/z/(a-1)
1388
+ (0.2454393389657273841385582 + 0.2454393389657273841385582j)
1389
+
1390
+ **References**
1391
+
1392
+ 1. [Slater]_ (chapter 6: "Bilateral Series", pp. 180-189)
1393
+ 2. [Wikipedia]_ http://en.wikipedia.org/wiki/Bilateral_hypergeometric_series
1394
+
1395
+ """
1396
+ z = ctx.convert(z)
1397
+ c_s = a_s + b_s
1398
+ p = len(a_s)
1399
+ q = len(b_s)
1400
+ if (p, q) == (0,0) or (p, q) == (1,1):
1401
+ return ctx.zero * z
1402
+ neg = (p-q) % 2
1403
+ def h(*c_s):
1404
+ a_s = list(c_s[:p])
1405
+ b_s = list(c_s[p:])
1406
+ aa_s = [2-b for b in b_s]
1407
+ bb_s = [2-a for a in a_s]
1408
+ rp = [(-1)**neg * z] + [1-b for b in b_s] + [1-a for a in a_s]
1409
+ rc = [-1] + [1]*len(b_s) + [-1]*len(a_s)
1410
+ T1 = [], [], [], [], a_s + [1], b_s, z
1411
+ T2 = rp, rc, [], [], aa_s + [1], bb_s, (-1)**neg / z
1412
+ return T1, T2
1413
+ return ctx.hypercomb(h, c_s, **kwargs)
venv/lib/python3.10/site-packages/mpmath/functions/orthogonal.py ADDED
@@ -0,0 +1,493 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .functions import defun, defun_wrapped
2
+
3
+ def _hermite_param(ctx, n, z, parabolic_cylinder):
4
+ """
5
+ Combined calculation of the Hermite polynomial H_n(z) (and its
6
+ generalization to complex n) and the parabolic cylinder
7
+ function D.
8
+ """
9
+ n, ntyp = ctx._convert_param(n)
10
+ z = ctx.convert(z)
11
+ q = -ctx.mpq_1_2
12
+ # For re(z) > 0, 2F0 -- http://functions.wolfram.com/
13
+ # HypergeometricFunctions/HermiteHGeneral/06/02/0009/
14
+ # Otherwise, there is a reflection formula
15
+ # 2F0 + http://functions.wolfram.com/HypergeometricFunctions/
16
+ # HermiteHGeneral/16/01/01/0006/
17
+ #
18
+ # TODO:
19
+ # An alternative would be to use
20
+ # http://functions.wolfram.com/HypergeometricFunctions/
21
+ # HermiteHGeneral/06/02/0006/
22
+ #
23
+ # Also, the 1F1 expansion
24
+ # http://functions.wolfram.com/HypergeometricFunctions/
25
+ # HermiteHGeneral/26/01/02/0001/
26
+ # should probably be used for tiny z
27
+ if not z:
28
+ T1 = [2, ctx.pi], [n, 0.5], [], [q*(n-1)], [], [], 0
29
+ if parabolic_cylinder:
30
+ T1[1][0] += q*n
31
+ return T1,
32
+ can_use_2f0 = ctx.isnpint(-n) or ctx.re(z) > 0 or \
33
+ (ctx.re(z) == 0 and ctx.im(z) > 0)
34
+ expprec = ctx.prec*4 + 20
35
+ if parabolic_cylinder:
36
+ u = ctx.fmul(ctx.fmul(z,z,prec=expprec), -0.25, exact=True)
37
+ w = ctx.fmul(z, ctx.sqrt(0.5,prec=expprec), prec=expprec)
38
+ else:
39
+ w = z
40
+ w2 = ctx.fmul(w, w, prec=expprec)
41
+ rw2 = ctx.fdiv(1, w2, prec=expprec)
42
+ nrw2 = ctx.fneg(rw2, exact=True)
43
+ nw = ctx.fneg(w, exact=True)
44
+ if can_use_2f0:
45
+ T1 = [2, w], [n, n], [], [], [q*n, q*(n-1)], [], nrw2
46
+ terms = [T1]
47
+ else:
48
+ T1 = [2, nw], [n, n], [], [], [q*n, q*(n-1)], [], nrw2
49
+ T2 = [2, ctx.pi, nw], [n+2, 0.5, 1], [], [q*n], [q*(n-1)], [1-q], w2
50
+ terms = [T1,T2]
51
+ # Multiply by prefactor for D_n
52
+ if parabolic_cylinder:
53
+ expu = ctx.exp(u)
54
+ for i in range(len(terms)):
55
+ terms[i][1][0] += q*n
56
+ terms[i][0].append(expu)
57
+ terms[i][1].append(1)
58
+ return tuple(terms)
59
+
60
+ @defun
61
+ def hermite(ctx, n, z, **kwargs):
62
+ return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 0), [], **kwargs)
63
+
64
+ @defun
65
+ def pcfd(ctx, n, z, **kwargs):
66
+ r"""
67
+ Gives the parabolic cylinder function in Whittaker's notation
68
+ `D_n(z) = U(-n-1/2, z)` (see :func:`~mpmath.pcfu`).
69
+ It solves the differential equation
70
+
71
+ .. math ::
72
+
73
+ y'' + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right) y = 0.
74
+
75
+ and can be represented in terms of Hermite polynomials
76
+ (see :func:`~mpmath.hermite`) as
77
+
78
+ .. math ::
79
+
80
+ D_n(z) = 2^{-n/2} e^{-z^2/4} H_n\left(\frac{z}{\sqrt{2}}\right).
81
+
82
+ **Plots**
83
+
84
+ .. literalinclude :: /plots/pcfd.py
85
+ .. image :: /plots/pcfd.png
86
+
87
+ **Examples**
88
+
89
+ >>> from mpmath import *
90
+ >>> mp.dps = 25; mp.pretty = True
91
+ >>> pcfd(0,0); pcfd(1,0); pcfd(2,0); pcfd(3,0)
92
+ 1.0
93
+ 0.0
94
+ -1.0
95
+ 0.0
96
+ >>> pcfd(4,0); pcfd(-3,0)
97
+ 3.0
98
+ 0.6266570686577501256039413
99
+ >>> pcfd('1/2', 2+3j)
100
+ (-5.363331161232920734849056 - 3.858877821790010714163487j)
101
+ >>> pcfd(2, -10)
102
+ 1.374906442631438038871515e-9
103
+
104
+ Verifying the differential equation::
105
+
106
+ >>> n = mpf(2.5)
107
+ >>> y = lambda z: pcfd(n,z)
108
+ >>> z = 1.75
109
+ >>> chop(diff(y,z,2) + (n+0.5-0.25*z**2)*y(z))
110
+ 0.0
111
+
112
+ Rational Taylor series expansion when `n` is an integer::
113
+
114
+ >>> taylor(lambda z: pcfd(5,z), 0, 7)
115
+ [0.0, 15.0, 0.0, -13.75, 0.0, 3.96875, 0.0, -0.6015625]
116
+
117
+ """
118
+ return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 1), [], **kwargs)
119
+
120
+ @defun
121
+ def pcfu(ctx, a, z, **kwargs):
122
+ r"""
123
+ Gives the parabolic cylinder function `U(a,z)`, which may be
124
+ defined for `\Re(z) > 0` in terms of the confluent
125
+ U-function (see :func:`~mpmath.hyperu`) by
126
+
127
+ .. math ::
128
+
129
+ U(a,z) = 2^{-\frac{1}{4}-\frac{a}{2}} e^{-\frac{1}{4} z^2}
130
+ U\left(\frac{a}{2}+\frac{1}{4},
131
+ \frac{1}{2}, \frac{1}{2}z^2\right)
132
+
133
+ or, for arbitrary `z`,
134
+
135
+ .. math ::
136
+
137
+ e^{-\frac{1}{4}z^2} U(a,z) =
138
+ U(a,0) \,_1F_1\left(-\tfrac{a}{2}+\tfrac{1}{4};
139
+ \tfrac{1}{2}; -\tfrac{1}{2}z^2\right) +
140
+ U'(a,0) z \,_1F_1\left(-\tfrac{a}{2}+\tfrac{3}{4};
141
+ \tfrac{3}{2}; -\tfrac{1}{2}z^2\right).
142
+
143
+ **Examples**
144
+
145
+ Connection to other functions::
146
+
147
+ >>> from mpmath import *
148
+ >>> mp.dps = 25; mp.pretty = True
149
+ >>> z = mpf(3)
150
+ >>> pcfu(0.5,z)
151
+ 0.03210358129311151450551963
152
+ >>> sqrt(pi/2)*exp(z**2/4)*erfc(z/sqrt(2))
153
+ 0.03210358129311151450551963
154
+ >>> pcfu(0.5,-z)
155
+ 23.75012332835297233711255
156
+ >>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2))
157
+ 23.75012332835297233711255
158
+ >>> pcfu(0.5,-z)
159
+ 23.75012332835297233711255
160
+ >>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2))
161
+ 23.75012332835297233711255
162
+
163
+ """
164
+ n, _ = ctx._convert_param(a)
165
+ return ctx.pcfd(-n-ctx.mpq_1_2, z)
166
+
167
+ @defun
168
+ def pcfv(ctx, a, z, **kwargs):
169
+ r"""
170
+ Gives the parabolic cylinder function `V(a,z)`, which can be
171
+ represented in terms of :func:`~mpmath.pcfu` as
172
+
173
+ .. math ::
174
+
175
+ V(a,z) = \frac{\Gamma(a+\tfrac{1}{2}) (U(a,-z)-\sin(\pi a) U(a,z)}{\pi}.
176
+
177
+ **Examples**
178
+
179
+ Wronskian relation between `U` and `V`::
180
+
181
+ >>> from mpmath import *
182
+ >>> mp.dps = 25; mp.pretty = True
183
+ >>> a, z = 2, 3
184
+ >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)
185
+ 0.7978845608028653558798921
186
+ >>> sqrt(2/pi)
187
+ 0.7978845608028653558798921
188
+ >>> a, z = 2.5, 3
189
+ >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)
190
+ 0.7978845608028653558798921
191
+ >>> a, z = 0.25, -1
192
+ >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)
193
+ 0.7978845608028653558798921
194
+ >>> a, z = 2+1j, 2+3j
195
+ >>> chop(pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z))
196
+ 0.7978845608028653558798921
197
+
198
+ """
199
+ n, ntype = ctx._convert_param(a)
200
+ z = ctx.convert(z)
201
+ q = ctx.mpq_1_2
202
+ r = ctx.mpq_1_4
203
+ if ntype == 'Q' and ctx.isint(n*2):
204
+ # Faster for half-integers
205
+ def h():
206
+ jz = ctx.fmul(z, -1j, exact=True)
207
+ T1terms = _hermite_param(ctx, -n-q, z, 1)
208
+ T2terms = _hermite_param(ctx, n-q, jz, 1)
209
+ for T in T1terms:
210
+ T[0].append(1j)
211
+ T[1].append(1)
212
+ T[3].append(q-n)
213
+ u = ctx.expjpi((q*n-r)) * ctx.sqrt(2/ctx.pi)
214
+ for T in T2terms:
215
+ T[0].append(u)
216
+ T[1].append(1)
217
+ return T1terms + T2terms
218
+ v = ctx.hypercomb(h, [], **kwargs)
219
+ if ctx._is_real_type(n) and ctx._is_real_type(z):
220
+ v = ctx._re(v)
221
+ return v
222
+ else:
223
+ def h(n):
224
+ w = ctx.square_exp_arg(z, -0.25)
225
+ u = ctx.square_exp_arg(z, 0.5)
226
+ e = ctx.exp(w)
227
+ l = [ctx.pi, q, ctx.exp(w)]
228
+ Y1 = l, [-q, n*q+r, 1], [r-q*n], [], [q*n+r], [q], u
229
+ Y2 = l + [z], [-q, n*q-r, 1, 1], [1-r-q*n], [], [q*n+1-r], [1+q], u
230
+ c, s = ctx.cospi_sinpi(r+q*n)
231
+ Y1[0].append(s)
232
+ Y2[0].append(c)
233
+ for Y in (Y1, Y2):
234
+ Y[1].append(1)
235
+ Y[3].append(q-n)
236
+ return Y1, Y2
237
+ return ctx.hypercomb(h, [n], **kwargs)
238
+
239
+
240
+ @defun
241
+ def pcfw(ctx, a, z, **kwargs):
242
+ r"""
243
+ Gives the parabolic cylinder function `W(a,z)` defined in (DLMF 12.14).
244
+
245
+ **Examples**
246
+
247
+ Value at the origin::
248
+
249
+ >>> from mpmath import *
250
+ >>> mp.dps = 25; mp.pretty = True
251
+ >>> a = mpf(0.25)
252
+ >>> pcfw(a,0)
253
+ 0.9722833245718180765617104
254
+ >>> power(2,-0.75)*sqrt(abs(gamma(0.25+0.5j*a)/gamma(0.75+0.5j*a)))
255
+ 0.9722833245718180765617104
256
+ >>> diff(pcfw,(a,0),(0,1))
257
+ -0.5142533944210078966003624
258
+ >>> -power(2,-0.25)*sqrt(abs(gamma(0.75+0.5j*a)/gamma(0.25+0.5j*a)))
259
+ -0.5142533944210078966003624
260
+
261
+ """
262
+ n, _ = ctx._convert_param(a)
263
+ z = ctx.convert(z)
264
+ def terms():
265
+ phi2 = ctx.arg(ctx.gamma(0.5 + ctx.j*n))
266
+ phi2 = (ctx.loggamma(0.5+ctx.j*n) - ctx.loggamma(0.5-ctx.j*n))/2j
267
+ rho = ctx.pi/8 + 0.5*phi2
268
+ # XXX: cancellation computing k
269
+ k = ctx.sqrt(1 + ctx.exp(2*ctx.pi*n)) - ctx.exp(ctx.pi*n)
270
+ C = ctx.sqrt(k/2) * ctx.exp(0.25*ctx.pi*n)
271
+ yield C * ctx.expj(rho) * ctx.pcfu(ctx.j*n, z*ctx.expjpi(-0.25))
272
+ yield C * ctx.expj(-rho) * ctx.pcfu(-ctx.j*n, z*ctx.expjpi(0.25))
273
+ v = ctx.sum_accurately(terms)
274
+ if ctx._is_real_type(n) and ctx._is_real_type(z):
275
+ v = ctx._re(v)
276
+ return v
277
+
278
+ """
279
+ Even/odd PCFs. Useful?
280
+
281
+ @defun
282
+ def pcfy1(ctx, a, z, **kwargs):
283
+ a, _ = ctx._convert_param(n)
284
+ z = ctx.convert(z)
285
+ def h():
286
+ w = ctx.square_exp_arg(z)
287
+ w1 = ctx.fmul(w, -0.25, exact=True)
288
+ w2 = ctx.fmul(w, 0.5, exact=True)
289
+ e = ctx.exp(w1)
290
+ return [e], [1], [], [], [ctx.mpq_1_2*a+ctx.mpq_1_4], [ctx.mpq_1_2], w2
291
+ return ctx.hypercomb(h, [], **kwargs)
292
+
293
+ @defun
294
+ def pcfy2(ctx, a, z, **kwargs):
295
+ a, _ = ctx._convert_param(n)
296
+ z = ctx.convert(z)
297
+ def h():
298
+ w = ctx.square_exp_arg(z)
299
+ w1 = ctx.fmul(w, -0.25, exact=True)
300
+ w2 = ctx.fmul(w, 0.5, exact=True)
301
+ e = ctx.exp(w1)
302
+ return [e, z], [1, 1], [], [], [ctx.mpq_1_2*a+ctx.mpq_3_4], \
303
+ [ctx.mpq_3_2], w2
304
+ return ctx.hypercomb(h, [], **kwargs)
305
+ """
306
+
307
+ @defun_wrapped
308
+ def gegenbauer(ctx, n, a, z, **kwargs):
309
+ # Special cases: a+0.5, a*2 poles
310
+ if ctx.isnpint(a):
311
+ return 0*(z+n)
312
+ if ctx.isnpint(a+0.5):
313
+ # TODO: something else is required here
314
+ # E.g.: gegenbauer(-2, -0.5, 3) == -12
315
+ if ctx.isnpint(n+1):
316
+ raise NotImplementedError("Gegenbauer function with two limits")
317
+ def h(a):
318
+ a2 = 2*a
319
+ T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z)
320
+ return [T]
321
+ return ctx.hypercomb(h, [a], **kwargs)
322
+ def h(n):
323
+ a2 = 2*a
324
+ T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z)
325
+ return [T]
326
+ return ctx.hypercomb(h, [n], **kwargs)
327
+
328
+ @defun_wrapped
329
+ def jacobi(ctx, n, a, b, x, **kwargs):
330
+ if not ctx.isnpint(a):
331
+ def h(n):
332
+ return (([], [], [a+n+1], [n+1, a+1], [-n, a+b+n+1], [a+1], (1-x)*0.5),)
333
+ return ctx.hypercomb(h, [n], **kwargs)
334
+ if not ctx.isint(b):
335
+ def h(n, a):
336
+ return (([], [], [-b], [n+1, -b-n], [-n, a+b+n+1], [b+1], (x+1)*0.5),)
337
+ return ctx.hypercomb(h, [n, a], **kwargs)
338
+ # XXX: determine appropriate limit
339
+ return ctx.binomial(n+a,n) * ctx.hyp2f1(-n,1+n+a+b,a+1,(1-x)/2, **kwargs)
340
+
341
+ @defun_wrapped
342
+ def laguerre(ctx, n, a, z, **kwargs):
343
+ # XXX: limits, poles
344
+ #if ctx.isnpint(n):
345
+ # return 0*(a+z)
346
+ def h(a):
347
+ return (([], [], [a+n+1], [a+1, n+1], [-n], [a+1], z),)
348
+ return ctx.hypercomb(h, [a], **kwargs)
349
+
350
+ @defun_wrapped
351
+ def legendre(ctx, n, x, **kwargs):
352
+ if ctx.isint(n):
353
+ n = int(n)
354
+ # Accuracy near zeros
355
+ if (n + (n < 0)) & 1:
356
+ if not x:
357
+ return x
358
+ mag = ctx.mag(x)
359
+ if mag < -2*ctx.prec-10:
360
+ return x
361
+ if mag < -5:
362
+ ctx.prec += -mag
363
+ return ctx.hyp2f1(-n,n+1,1,(1-x)/2, **kwargs)
364
+
365
+ @defun
366
+ def legenp(ctx, n, m, z, type=2, **kwargs):
367
+ # Legendre function, 1st kind
368
+ n = ctx.convert(n)
369
+ m = ctx.convert(m)
370
+ # Faster
371
+ if not m:
372
+ return ctx.legendre(n, z, **kwargs)
373
+ # TODO: correct evaluation at singularities
374
+ if type == 2:
375
+ def h(n,m):
376
+ g = m*0.5
377
+ T = [1+z, 1-z], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z)
378
+ return (T,)
379
+ return ctx.hypercomb(h, [n,m], **kwargs)
380
+ if type == 3:
381
+ def h(n,m):
382
+ g = m*0.5
383
+ T = [z+1, z-1], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z)
384
+ return (T,)
385
+ return ctx.hypercomb(h, [n,m], **kwargs)
386
+ raise ValueError("requires type=2 or type=3")
387
+
388
+ @defun
389
+ def legenq(ctx, n, m, z, type=2, **kwargs):
390
+ # Legendre function, 2nd kind
391
+ n = ctx.convert(n)
392
+ m = ctx.convert(m)
393
+ z = ctx.convert(z)
394
+ if z in (1, -1):
395
+ #if ctx.isint(m):
396
+ # return ctx.nan
397
+ #return ctx.inf # unsigned
398
+ return ctx.nan
399
+ if type == 2:
400
+ def h(n, m):
401
+ cos, sin = ctx.cospi_sinpi(m)
402
+ s = 2 * sin / ctx.pi
403
+ c = cos
404
+ a = 1+z
405
+ b = 1-z
406
+ u = m/2
407
+ w = (1-z)/2
408
+ T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \
409
+ [-n, n+1], [1-m], w
410
+ T2 = [-s, a, b], [-1, -u, u], [n+m+1], [n-m+1, m+1], \
411
+ [-n, n+1], [m+1], w
412
+ return T1, T2
413
+ return ctx.hypercomb(h, [n, m], **kwargs)
414
+ if type == 3:
415
+ # The following is faster when there only is a single series
416
+ # Note: not valid for -1 < z < 0 (?)
417
+ if abs(z) > 1:
418
+ def h(n, m):
419
+ T1 = [ctx.expjpi(m), 2, ctx.pi, z, z-1, z+1], \
420
+ [1, -n-1, 0.5, -n-m-1, 0.5*m, 0.5*m], \
421
+ [n+m+1], [n+1.5], \
422
+ [0.5*(2+n+m), 0.5*(1+n+m)], [n+1.5], z**(-2)
423
+ return [T1]
424
+ return ctx.hypercomb(h, [n, m], **kwargs)
425
+ else:
426
+ # not valid for 1 < z < inf ?
427
+ def h(n, m):
428
+ s = 2 * ctx.sinpi(m) / ctx.pi
429
+ c = ctx.expjpi(m)
430
+ a = 1+z
431
+ b = z-1
432
+ u = m/2
433
+ w = (1-z)/2
434
+ T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \
435
+ [-n, n+1], [1-m], w
436
+ T2 = [-s, c, a, b], [-1, 1, -u, u], [n+m+1], [n-m+1, m+1], \
437
+ [-n, n+1], [m+1], w
438
+ return T1, T2
439
+ return ctx.hypercomb(h, [n, m], **kwargs)
440
+ raise ValueError("requires type=2 or type=3")
441
+
442
+ @defun_wrapped
443
+ def chebyt(ctx, n, x, **kwargs):
444
+ if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1:
445
+ return x * 0
446
+ return ctx.hyp2f1(-n,n,(1,2),(1-x)/2, **kwargs)
447
+
448
+ @defun_wrapped
449
+ def chebyu(ctx, n, x, **kwargs):
450
+ if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1:
451
+ return x * 0
452
+ return (n+1) * ctx.hyp2f1(-n, n+2, (3,2), (1-x)/2, **kwargs)
453
+
454
+ @defun
455
+ def spherharm(ctx, l, m, theta, phi, **kwargs):
456
+ l = ctx.convert(l)
457
+ m = ctx.convert(m)
458
+ theta = ctx.convert(theta)
459
+ phi = ctx.convert(phi)
460
+ l_isint = ctx.isint(l)
461
+ l_natural = l_isint and l >= 0
462
+ m_isint = ctx.isint(m)
463
+ if l_isint and l < 0 and m_isint:
464
+ return ctx.spherharm(-(l+1), m, theta, phi, **kwargs)
465
+ if theta == 0 and m_isint and m < 0:
466
+ return ctx.zero * 1j
467
+ if l_natural and m_isint:
468
+ if abs(m) > l:
469
+ return ctx.zero * 1j
470
+ # http://functions.wolfram.com/Polynomials/
471
+ # SphericalHarmonicY/26/01/02/0004/
472
+ def h(l,m):
473
+ absm = abs(m)
474
+ C = [-1, ctx.expj(m*phi),
475
+ (2*l+1)*ctx.fac(l+absm)/ctx.pi/ctx.fac(l-absm),
476
+ ctx.sin(theta)**2,
477
+ ctx.fac(absm), 2]
478
+ P = [0.5*m*(ctx.sign(m)+1), 1, 0.5, 0.5*absm, -1, -absm-1]
479
+ return ((C, P, [], [], [absm-l, l+absm+1], [absm+1],
480
+ ctx.sin(0.5*theta)**2),)
481
+ else:
482
+ # http://functions.wolfram.com/HypergeometricFunctions/
483
+ # SphericalHarmonicYGeneral/26/01/02/0001/
484
+ def h(l,m):
485
+ if ctx.isnpint(l-m+1) or ctx.isnpint(l+m+1) or ctx.isnpint(1-m):
486
+ return (([0], [-1], [], [], [], [], 0),)
487
+ cos, sin = ctx.cos_sin(0.5*theta)
488
+ C = [0.5*ctx.expj(m*phi), (2*l+1)/ctx.pi,
489
+ ctx.gamma(l-m+1), ctx.gamma(l+m+1),
490
+ cos**2, sin**2]
491
+ P = [1, 0.5, 0.5, -0.5, 0.5*m, -0.5*m]
492
+ return ((C, P, [], [1-m], [-l,l+1], [1-m], sin**2),)
493
+ return ctx.hypercomb(h, [l,m], **kwargs)
venv/lib/python3.10/site-packages/mpmath/functions/qfunctions.py ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .functions import defun, defun_wrapped
2
+
3
+ @defun
4
+ def qp(ctx, a, q=None, n=None, **kwargs):
5
+ r"""
6
+ Evaluates the q-Pochhammer symbol (or q-rising factorial)
7
+
8
+ .. math ::
9
+
10
+ (a; q)_n = \prod_{k=0}^{n-1} (1-a q^k)
11
+
12
+ where `n = \infty` is permitted if `|q| < 1`. Called with two arguments,
13
+ ``qp(a,q)`` computes `(a;q)_{\infty}`; with a single argument, ``qp(q)``
14
+ computes `(q;q)_{\infty}`. The special case
15
+
16
+ .. math ::
17
+
18
+ \phi(q) = (q; q)_{\infty} = \prod_{k=1}^{\infty} (1-q^k) =
19
+ \sum_{k=-\infty}^{\infty} (-1)^k q^{(3k^2-k)/2}
20
+
21
+ is also known as the Euler function, or (up to a factor `q^{-1/24}`)
22
+ the Dedekind eta function.
23
+
24
+ **Examples**
25
+
26
+ If `n` is a positive integer, the function amounts to a finite product::
27
+
28
+ >>> from mpmath import *
29
+ >>> mp.dps = 25; mp.pretty = True
30
+ >>> qp(2,3,5)
31
+ -725305.0
32
+ >>> fprod(1-2*3**k for k in range(5))
33
+ -725305.0
34
+ >>> qp(2,3,0)
35
+ 1.0
36
+
37
+ Complex arguments are allowed::
38
+
39
+ >>> qp(2-1j, 0.75j)
40
+ (0.4628842231660149089976379 + 4.481821753552703090628793j)
41
+
42
+ The regular Pochhammer symbol `(a)_n` is obtained in the
43
+ following limit as `q \to 1`::
44
+
45
+ >>> a, n = 4, 7
46
+ >>> limit(lambda q: qp(q**a,q,n) / (1-q)**n, 1)
47
+ 604800.0
48
+ >>> rf(a,n)
49
+ 604800.0
50
+
51
+ The Taylor series of the reciprocal Euler function gives
52
+ the partition function `P(n)`, i.e. the number of ways of writing
53
+ `n` as a sum of positive integers::
54
+
55
+ >>> taylor(lambda q: 1/qp(q), 0, 10)
56
+ [1.0, 1.0, 2.0, 3.0, 5.0, 7.0, 11.0, 15.0, 22.0, 30.0, 42.0]
57
+
58
+ Special values include::
59
+
60
+ >>> qp(0)
61
+ 1.0
62
+ >>> findroot(diffun(qp), -0.4) # location of maximum
63
+ -0.4112484791779547734440257
64
+ >>> qp(_)
65
+ 1.228348867038575112586878
66
+
67
+ The q-Pochhammer symbol is related to the Jacobi theta functions.
68
+ For example, the following identity holds::
69
+
70
+ >>> q = mpf(0.5) # arbitrary
71
+ >>> qp(q)
72
+ 0.2887880950866024212788997
73
+ >>> root(3,-2)*root(q,-24)*jtheta(2,pi/6,root(q,6))
74
+ 0.2887880950866024212788997
75
+
76
+ """
77
+ a = ctx.convert(a)
78
+ if n is None:
79
+ n = ctx.inf
80
+ else:
81
+ n = ctx.convert(n)
82
+ if n < 0:
83
+ raise ValueError("n cannot be negative")
84
+ if q is None:
85
+ q = a
86
+ else:
87
+ q = ctx.convert(q)
88
+ if n == 0:
89
+ return ctx.one + 0*(a+q)
90
+ infinite = (n == ctx.inf)
91
+ same = (a == q)
92
+ if infinite:
93
+ if abs(q) >= 1:
94
+ if same and (q == -1 or q == 1):
95
+ return ctx.zero * q
96
+ raise ValueError("q-function only defined for |q| < 1")
97
+ elif q == 0:
98
+ return ctx.one - a
99
+ maxterms = kwargs.get('maxterms', 50*ctx.prec)
100
+ if infinite and same:
101
+ # Euler's pentagonal theorem
102
+ def terms():
103
+ t = 1
104
+ yield t
105
+ k = 1
106
+ x1 = q
107
+ x2 = q**2
108
+ while 1:
109
+ yield (-1)**k * x1
110
+ yield (-1)**k * x2
111
+ x1 *= q**(3*k+1)
112
+ x2 *= q**(3*k+2)
113
+ k += 1
114
+ if k > maxterms:
115
+ raise ctx.NoConvergence
116
+ return ctx.sum_accurately(terms)
117
+ # return ctx.nprod(lambda k: 1-a*q**k, [0,n-1])
118
+ def factors():
119
+ k = 0
120
+ r = ctx.one
121
+ while 1:
122
+ yield 1 - a*r
123
+ r *= q
124
+ k += 1
125
+ if k >= n:
126
+ return
127
+ if k > maxterms:
128
+ raise ctx.NoConvergence
129
+ return ctx.mul_accurately(factors)
130
+
131
+ @defun_wrapped
132
+ def qgamma(ctx, z, q, **kwargs):
133
+ r"""
134
+ Evaluates the q-gamma function
135
+
136
+ .. math ::
137
+
138
+ \Gamma_q(z) = \frac{(q; q)_{\infty}}{(q^z; q)_{\infty}} (1-q)^{1-z}.
139
+
140
+
141
+ **Examples**
142
+
143
+ Evaluation for real and complex arguments::
144
+
145
+ >>> from mpmath import *
146
+ >>> mp.dps = 25; mp.pretty = True
147
+ >>> qgamma(4,0.75)
148
+ 4.046875
149
+ >>> qgamma(6,6)
150
+ 121226245.0
151
+ >>> qgamma(3+4j, 0.5j)
152
+ (0.1663082382255199834630088 + 0.01952474576025952984418217j)
153
+
154
+ The q-gamma function satisfies a functional equation similar
155
+ to that of the ordinary gamma function::
156
+
157
+ >>> q = mpf(0.25)
158
+ >>> z = mpf(2.5)
159
+ >>> qgamma(z+1,q)
160
+ 1.428277424823760954685912
161
+ >>> (1-q**z)/(1-q)*qgamma(z,q)
162
+ 1.428277424823760954685912
163
+
164
+ """
165
+ if abs(q) > 1:
166
+ return ctx.qgamma(z,1/q)*q**((z-2)*(z-1)*0.5)
167
+ return ctx.qp(q, q, None, **kwargs) / \
168
+ ctx.qp(q**z, q, None, **kwargs) * (1-q)**(1-z)
169
+
170
+ @defun_wrapped
171
+ def qfac(ctx, z, q, **kwargs):
172
+ r"""
173
+ Evaluates the q-factorial,
174
+
175
+ .. math ::
176
+
177
+ [n]_q! = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})
178
+
179
+ or more generally
180
+
181
+ .. math ::
182
+
183
+ [z]_q! = \frac{(q;q)_z}{(1-q)^z}.
184
+
185
+ **Examples**
186
+
187
+ >>> from mpmath import *
188
+ >>> mp.dps = 25; mp.pretty = True
189
+ >>> qfac(0,0)
190
+ 1.0
191
+ >>> qfac(4,3)
192
+ 2080.0
193
+ >>> qfac(5,6)
194
+ 121226245.0
195
+ >>> qfac(1+1j, 2+1j)
196
+ (0.4370556551322672478613695 + 0.2609739839216039203708921j)
197
+
198
+ """
199
+ if ctx.isint(z) and ctx._re(z) > 0:
200
+ n = int(ctx._re(z))
201
+ return ctx.qp(q, q, n, **kwargs) / (1-q)**n
202
+ return ctx.qgamma(z+1, q, **kwargs)
203
+
204
+ @defun
205
+ def qhyper(ctx, a_s, b_s, q, z, **kwargs):
206
+ r"""
207
+ Evaluates the basic hypergeometric series or hypergeometric q-series
208
+
209
+ .. math ::
210
+
211
+ \,_r\phi_s \left[\begin{matrix}
212
+ a_1 & a_2 & \ldots & a_r \\
213
+ b_1 & b_2 & \ldots & b_s
214
+ \end{matrix} ; q,z \right] =
215
+ \sum_{n=0}^\infty
216
+ \frac{(a_1;q)_n, \ldots, (a_r;q)_n}
217
+ {(b_1;q)_n, \ldots, (b_s;q)_n}
218
+ \left((-1)^n q^{n\choose 2}\right)^{1+s-r}
219
+ \frac{z^n}{(q;q)_n}
220
+
221
+ where `(a;q)_n` denotes the q-Pochhammer symbol (see :func:`~mpmath.qp`).
222
+
223
+ **Examples**
224
+
225
+ Evaluation works for real and complex arguments::
226
+
227
+ >>> from mpmath import *
228
+ >>> mp.dps = 25; mp.pretty = True
229
+ >>> qhyper([0.5], [2.25], 0.25, 4)
230
+ -0.1975849091263356009534385
231
+ >>> qhyper([0.5], [2.25], 0.25-0.25j, 4)
232
+ (2.806330244925716649839237 + 3.568997623337943121769938j)
233
+ >>> qhyper([1+j], [2,3+0.5j], 0.25, 3+4j)
234
+ (9.112885171773400017270226 - 1.272756997166375050700388j)
235
+
236
+ Comparing with a summation of the defining series, using
237
+ :func:`~mpmath.nsum`::
238
+
239
+ >>> b, q, z = 3, 0.25, 0.5
240
+ >>> qhyper([], [b], q, z)
241
+ 0.6221136748254495583228324
242
+ >>> nsum(lambda n: z**n / qp(q,q,n)/qp(b,q,n) * q**(n*(n-1)), [0,inf])
243
+ 0.6221136748254495583228324
244
+
245
+ """
246
+ #a_s = [ctx._convert_param(a)[0] for a in a_s]
247
+ #b_s = [ctx._convert_param(b)[0] for b in b_s]
248
+ #q = ctx._convert_param(q)[0]
249
+ a_s = [ctx.convert(a) for a in a_s]
250
+ b_s = [ctx.convert(b) for b in b_s]
251
+ q = ctx.convert(q)
252
+ z = ctx.convert(z)
253
+ r = len(a_s)
254
+ s = len(b_s)
255
+ d = 1+s-r
256
+ maxterms = kwargs.get('maxterms', 50*ctx.prec)
257
+ def terms():
258
+ t = ctx.one
259
+ yield t
260
+ qk = 1
261
+ k = 0
262
+ x = 1
263
+ while 1:
264
+ for a in a_s:
265
+ p = 1 - a*qk
266
+ t *= p
267
+ for b in b_s:
268
+ p = 1 - b*qk
269
+ if not p:
270
+ raise ValueError
271
+ t /= p
272
+ t *= z
273
+ x *= (-1)**d * qk ** d
274
+ qk *= q
275
+ t /= (1 - qk)
276
+ k += 1
277
+ yield t * x
278
+ if k > maxterms:
279
+ raise ctx.NoConvergence
280
+ return ctx.sum_accurately(terms)
venv/lib/python3.10/site-packages/mpmath/functions/rszeta.py ADDED
@@ -0,0 +1,1403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ---------------------------------------------------------------------
3
+ .. sectionauthor:: Juan Arias de Reyna <[email protected]>
4
+
5
+ This module implements zeta-related functions using the Riemann-Siegel
6
+ expansion: zeta_offline(s,k=0)
7
+
8
+ * coef(J, eps): Need in the computation of Rzeta(s,k)
9
+
10
+ * Rzeta_simul(s, der=0) computes Rzeta^(k)(s) and Rzeta^(k)(1-s) simultaneously
11
+ for 0 <= k <= der. Used by zeta_offline and z_offline
12
+
13
+ * Rzeta_set(s, derivatives) computes Rzeta^(k)(s) for given derivatives, used by
14
+ z_half(t,k) and zeta_half
15
+
16
+ * z_offline(w,k): Z(w) and its derivatives of order k <= 4
17
+ * z_half(t,k): Z(t) (Riemann Siegel function) and its derivatives of order k <= 4
18
+ * zeta_offline(s): zeta(s) and its derivatives of order k<= 4
19
+ * zeta_half(1/2+it,k): zeta(s) and its derivatives of order k<= 4
20
+
21
+ * rs_zeta(s,k=0) Computes zeta^(k)(s) Unifies zeta_half and zeta_offline
22
+ * rs_z(w,k=0) Computes Z^(k)(w) Unifies z_offline and z_half
23
+ ----------------------------------------------------------------------
24
+
25
+ This program uses Riemann-Siegel expansion even to compute
26
+ zeta(s) on points s = sigma + i t with sigma arbitrary not
27
+ necessarily equal to 1/2.
28
+
29
+ It is founded on a new deduction of the formula, with rigorous
30
+ and sharp bounds for the terms and rest of this expansion.
31
+
32
+ More information on the papers:
33
+
34
+ J. Arias de Reyna, High Precision Computation of Riemann's
35
+ Zeta Function by the Riemann-Siegel Formula I, II
36
+
37
+ We refer to them as I, II.
38
+
39
+ In them we shall find detailed explanation of all the
40
+ procedure.
41
+
42
+ The program uses Riemann-Siegel expansion.
43
+ This is useful when t is big, ( say t > 10000 ).
44
+ The precision is limited, roughly it can compute zeta(sigma+it)
45
+ with an error less than exp(-c t) for some constant c depending
46
+ on sigma. The program gives an error when the Riemann-Siegel
47
+ formula can not compute to the wanted precision.
48
+
49
+ """
50
+
51
+ import math
52
+
53
+ class RSCache(object):
54
+ def __init__(ctx):
55
+ ctx._rs_cache = [0, 10, {}, {}]
56
+
57
+ from .functions import defun
58
+
59
+ #-------------------------------------------------------------------------------#
60
+ # #
61
+ # coef(ctx, J, eps, _cache=[0, 10, {} ] ) #
62
+ # #
63
+ #-------------------------------------------------------------------------------#
64
+
65
+ # This function computes the coefficients c[n] defined on (I, equation (47))
66
+ # but see also (II, section 3.14).
67
+ #
68
+ # Since these coefficients are very difficult to compute we save the values
69
+ # in a cache. So if we compute several values of the functions Rzeta(s) for
70
+ # near values of s, we do not recompute these coefficients.
71
+ #
72
+ # c[n] are the Taylor coefficients of the function:
73
+ #
74
+ # F(z):= (exp(pi*j*(z*z/2+3/8))-j* sqrt(2) cos(pi*z/2))/(2*cos(pi *z))
75
+ #
76
+ #
77
+
78
+ def _coef(ctx, J, eps):
79
+ r"""
80
+ Computes the coefficients `c_n` for `0\le n\le 2J` with error less than eps
81
+
82
+ **Definition**
83
+
84
+ The coefficients c_n are defined by
85
+
86
+ .. math ::
87
+
88
+ \begin{equation}
89
+ F(z)=\frac{e^{\pi i
90
+ \bigl(\frac{z^2}{2}+\frac38\bigr)}-i\sqrt{2}\cos\frac{\pi}{2}z}{2\cos\pi
91
+ z}=\sum_{n=0}^\infty c_{2n} z^{2n}
92
+ \end{equation}
93
+
94
+ they are computed applying the relation
95
+
96
+ .. math ::
97
+
98
+ \begin{multline}
99
+ c_{2n}=-\frac{i}{\sqrt{2}}\Bigl(\frac{\pi}{2}\Bigr)^{2n}
100
+ \sum_{k=0}^n\frac{(-1)^k}{(2k)!}
101
+ 2^{2n-2k}\frac{(-1)^{n-k}E_{2n-2k}}{(2n-2k)!}+\\
102
+ +e^{3\pi i/8}\sum_{j=0}^n(-1)^j\frac{
103
+ E_{2j}}{(2j)!}\frac{i^{n-j}\pi^{n+j}}{(n-j)!2^{n-j+1}}.
104
+ \end{multline}
105
+ """
106
+
107
+ newJ = J+2 # compute more coefficients that are needed
108
+ neweps6 = eps/2. # compute with a slight more precision that are needed
109
+
110
+ # PREPARATION FOR THE COMPUTATION OF V(N) AND W(N)
111
+ # See II Section 3.16
112
+ #
113
+ # Computing the exponent wpvw of the error II equation (81)
114
+ wpvw = max(ctx.mag(10*(newJ+3)), 4*newJ+5-ctx.mag(neweps6))
115
+
116
+ # Preparation of Euler numbers (we need until the 2*RS_NEWJ)
117
+ E = ctx._eulernum(2*newJ)
118
+
119
+ # Now we have in the cache all the needed Euler numbers.
120
+ #
121
+ # Computing the powers of pi
122
+ #
123
+ # We need to compute the powers pi**n for 1<= n <= 2*J
124
+ # with relative error less than 2**(-wpvw)
125
+ # it is easy to show that this is obtained
126
+ # taking wppi as the least d with
127
+ # 2**d>40*J and 2**d> 4.24 *newJ + 2**wpvw
128
+ # In II Section 3.9 we need also that
129
+ # wppi > wptcoef[0], and that the powers
130
+ # here computed 0<= k <= 2*newJ are more
131
+ # than those needed there that are 2*L-2.
132
+ # so we need J >= L this will be checked
133
+ # before computing tcoef[]
134
+ wppi = max(ctx.mag(40*newJ), ctx.mag(newJ)+3 +wpvw)
135
+ ctx.prec = wppi
136
+ pipower = {}
137
+ pipower[0] = ctx.one
138
+ pipower[1] = ctx.pi
139
+ for n in range(2,2*newJ+1):
140
+ pipower[n] = pipower[n-1]*ctx.pi
141
+
142
+ # COMPUTING THE COEFFICIENTS v(n) AND w(n)
143
+ # see II equation (61) and equations (81) and (82)
144
+ ctx.prec = wpvw+2
145
+ v={}
146
+ w={}
147
+ for n in range(0,newJ+1):
148
+ va = (-1)**n * ctx._eulernum(2*n)
149
+ va = ctx.mpf(va)/ctx.fac(2*n)
150
+ v[n]=va*pipower[2*n]
151
+ for n in range(0,2*newJ+1):
152
+ wa = ctx.one/ctx.fac(n)
153
+ wa=wa/(2**n)
154
+ w[n]=wa*pipower[n]
155
+
156
+ # COMPUTATION OF THE CONVOLUTIONS RS_P1 AND RS_P2
157
+ # See II Section 3.16
158
+ ctx.prec = 15
159
+ wpp1a = 9 - ctx.mag(neweps6)
160
+ P1 = {}
161
+ for n in range(0,newJ+1):
162
+ ctx.prec = 15
163
+ wpp1 = max(ctx.mag(10*(n+4)),4*n+wpp1a)
164
+ ctx.prec = wpp1
165
+ sump = 0
166
+ for k in range(0,n+1):
167
+ sump += ((-1)**k) * v[k]*w[2*n-2*k]
168
+ P1[n]=((-1)**(n+1))*ctx.j*sump
169
+ P2={}
170
+ for n in range(0,newJ+1):
171
+ ctx.prec = 15
172
+ wpp2 = max(ctx.mag(10*(n+4)),4*n+wpp1a)
173
+ ctx.prec = wpp2
174
+ sump = 0
175
+ for k in range(0,n+1):
176
+ sump += (ctx.j**(n-k)) * v[k]*w[n-k]
177
+ P2[n]=sump
178
+ # COMPUTING THE COEFFICIENTS c[2n]
179
+ # See II Section 3.14
180
+ ctx.prec = 15
181
+ wpc0 = 5 - ctx.mag(neweps6)
182
+ wpc = max(6,4*newJ+wpc0)
183
+ ctx.prec = wpc
184
+ mu = ctx.sqrt(ctx.mpf('2'))/2
185
+ nu = ctx.expjpi(3./8)/2
186
+ c={}
187
+ for n in range(0,newJ):
188
+ ctx.prec = 15
189
+ wpc = max(6,4*n+wpc0)
190
+ ctx.prec = wpc
191
+ c[2*n] = mu*P1[n]+nu*P2[n]
192
+ for n in range(1,2*newJ,2):
193
+ c[n] = 0
194
+ return [newJ, neweps6, c, pipower]
195
+
196
+ def coef(ctx, J, eps):
197
+ _cache = ctx._rs_cache
198
+ if J <= _cache[0] and eps >= _cache[1]:
199
+ return _cache[2], _cache[3]
200
+ orig = ctx._mp.prec
201
+ try:
202
+ data = _coef(ctx._mp, J, eps)
203
+ finally:
204
+ ctx._mp.prec = orig
205
+ if ctx is not ctx._mp:
206
+ data[2] = dict((k,ctx.convert(v)) for (k,v) in data[2].items())
207
+ data[3] = dict((k,ctx.convert(v)) for (k,v) in data[3].items())
208
+ ctx._rs_cache[:] = data
209
+ return ctx._rs_cache[2], ctx._rs_cache[3]
210
+
211
+ #-------------------------------------------------------------------------------#
212
+ # #
213
+ # Rzeta_simul(s,k=0) #
214
+ # #
215
+ #-------------------------------------------------------------------------------#
216
+ # This function return a list with the values:
217
+ # Rzeta(sigma+it), conj(Rzeta(1-sigma+it)),Rzeta'(sigma+it), conj(Rzeta'(1-sigma+it)),
218
+ # .... , Rzeta^{(k)}(sigma+it), conj(Rzeta^{(k)}(1-sigma+it))
219
+ #
220
+ # Useful to compute the function zeta(s) and Z(w) or its derivatives.
221
+ #
222
+
223
+ def aux_M_Fp(ctx, xA, xeps4, a, xB1, xL):
224
+ # COMPUTING M NUMBER OF DERIVATIVES Fp[m] TO COMPUTE
225
+ # See II Section 3.11 equations (47) and (48)
226
+ aux1 = 126.0657606*xA/xeps4 # 126.06.. = 316/sqrt(2*pi)
227
+ aux1 = ctx.ln(aux1)
228
+ aux2 = (2*ctx.ln(ctx.pi)+ctx.ln(xB1)+ctx.ln(a))/3 -ctx.ln(2*ctx.pi)/2
229
+ m = 3*xL-3
230
+ aux3= (ctx.loggamma(m+1)-ctx.loggamma(m/3.0+2))/2 -ctx.loggamma((m+1)/2.)
231
+ while((aux1 < m*aux2+ aux3)and (m>1)):
232
+ m = m - 1
233
+ aux3 = (ctx.loggamma(m+1)-ctx.loggamma(m/3.0+2))/2 -ctx.loggamma((m+1)/2.)
234
+ xM = m
235
+ return xM
236
+
237
+ def aux_J_needed(ctx, xA, xeps4, a, xB1, xM):
238
+ # DETERMINATION OF J THE NUMBER OF TERMS NEEDED
239
+ # IN THE TAYLOR SERIES OF F.
240
+ # See II Section 3.11 equation (49))
241
+ # Only determine one
242
+ h1 = xeps4/(632*xA)
243
+ h2 = xB1*a * 126.31337419529260248 # = pi^2*e^2*sqrt(3)
244
+ h2 = h1 * ctx.power((h2/xM**2),(xM-1)/3) / xM
245
+ h3 = min(h1,h2)
246
+ return h3
247
+
248
+ def Rzeta_simul(ctx, s, der=0):
249
+ # First we take the value of ctx.prec
250
+ wpinitial = ctx.prec
251
+
252
+ # INITIALIZATION
253
+ # Take the real and imaginary part of s
254
+ t = ctx._im(s)
255
+ xsigma = ctx._re(s)
256
+ ysigma = 1 - xsigma
257
+
258
+ # Now compute several parameter that appear on the program
259
+ ctx.prec = 15
260
+ a = ctx.sqrt(t/(2*ctx.pi))
261
+ xasigma = a ** xsigma
262
+ yasigma = a ** ysigma
263
+
264
+ # We need a simple bound A1 < asigma (see II Section 3.1 and 3.3)
265
+ xA1=ctx.power(2, ctx.mag(xasigma)-1)
266
+ yA1=ctx.power(2, ctx.mag(yasigma)-1)
267
+
268
+ # We compute various epsilon's (see II end of Section 3.1)
269
+ eps = ctx.power(2, -wpinitial)
270
+ eps1 = eps/6.
271
+ xeps2 = eps * xA1/3.
272
+ yeps2 = eps * yA1/3.
273
+
274
+ # COMPUTING SOME COEFFICIENTS THAT DEPENDS
275
+ # ON sigma
276
+ # constant b and c (see I Theorem 2 formula (26) )
277
+ # coefficients A and B1 (see I Section 6.1 equation (50))
278
+ #
279
+ # here we not need high precision
280
+ ctx.prec = 15
281
+ if xsigma > 0:
282
+ xb = 2.
283
+ xc = math.pow(9,xsigma)/4.44288
284
+ # 4.44288 =(math.sqrt(2)*math.pi)
285
+ xA = math.pow(9,xsigma)
286
+ xB1 = 1
287
+ else:
288
+ xb = 2.25158 # math.sqrt( (3-2* math.log(2))*math.pi )
289
+ xc = math.pow(2,-xsigma)/4.44288
290
+ xA = math.pow(2,-xsigma)
291
+ xB1 = 1.10789 # = 2*sqrt(1-log(2))
292
+
293
+ if(ysigma > 0):
294
+ yb = 2.
295
+ yc = math.pow(9,ysigma)/4.44288
296
+ # 4.44288 =(math.sqrt(2)*math.pi)
297
+ yA = math.pow(9,ysigma)
298
+ yB1 = 1
299
+ else:
300
+ yb = 2.25158 # math.sqrt( (3-2* math.log(2))*math.pi )
301
+ yc = math.pow(2,-ysigma)/4.44288
302
+ yA = math.pow(2,-ysigma)
303
+ yB1 = 1.10789 # = 2*sqrt(1-log(2))
304
+
305
+ # COMPUTING L THE NUMBER OF TERMS NEEDED IN THE RIEMANN-SIEGEL
306
+ # CORRECTION
307
+ # See II Section 3.2
308
+ ctx.prec = 15
309
+ xL = 1
310
+ while 3*xc*ctx.gamma(xL*0.5) * ctx.power(xb*a,-xL) >= xeps2:
311
+ xL = xL+1
312
+ xL = max(2,xL)
313
+ yL = 1
314
+ while 3*yc*ctx.gamma(yL*0.5) * ctx.power(yb*a,-yL) >= yeps2:
315
+ yL = yL+1
316
+ yL = max(2,yL)
317
+
318
+ # The number L has to satify some conditions.
319
+ # If not RS can not compute Rzeta(s) with the prescribed precision
320
+ # (see II, Section 3.2 condition (20) ) and
321
+ # (II, Section 3.3 condition (22) ). Also we have added
322
+ # an additional technical condition in Section 3.17 Proposition 17
323
+ if ((3*xL >= 2*a*a/25.) or (3*xL+2+xsigma<0) or (abs(xsigma) > a/2.) or \
324
+ (3*yL >= 2*a*a/25.) or (3*yL+2+ysigma<0) or (abs(ysigma) > a/2.)):
325
+ ctx.prec = wpinitial
326
+ raise NotImplementedError("Riemann-Siegel can not compute with such precision")
327
+
328
+ # We take the maximum of the two values
329
+ L = max(xL, yL)
330
+
331
+ # INITIALIZATION (CONTINUATION)
332
+ #
333
+ # eps3 is the constant defined on (II, Section 3.5 equation (27) )
334
+ # each term of the RS correction must be computed with error <= eps3
335
+ xeps3 = xeps2/(4*xL)
336
+ yeps3 = yeps2/(4*yL)
337
+
338
+ # eps4 is defined on (II Section 3.6 equation (30) )
339
+ # each component of the formula (II Section 3.6 equation (29) )
340
+ # must be computed with error <= eps4
341
+ xeps4 = xeps3/(3*xL)
342
+ yeps4 = yeps3/(3*yL)
343
+
344
+ # COMPUTING M NUMBER OF DERIVATIVES Fp[m] TO COMPUTE
345
+ xM = aux_M_Fp(ctx, xA, xeps4, a, xB1, xL)
346
+ yM = aux_M_Fp(ctx, yA, yeps4, a, yB1, yL)
347
+ M = max(xM, yM)
348
+
349
+ # COMPUTING NUMBER OF TERMS J NEEDED
350
+ h3 = aux_J_needed(ctx, xA, xeps4, a, xB1, xM)
351
+ h4 = aux_J_needed(ctx, yA, yeps4, a, yB1, yM)
352
+ h3 = min(h3,h4)
353
+ J = 12
354
+ jvalue = (2*ctx.pi)**J / ctx.gamma(J+1)
355
+ while jvalue > h3:
356
+ J = J+1
357
+ jvalue = (2*ctx.pi)*jvalue/J
358
+
359
+ # COMPUTING eps5[m] for 1 <= m <= 21
360
+ # See II Section 10 equation (43)
361
+ # We choose the minimum of the two possibilities
362
+ eps5={}
363
+ xforeps5 = math.pi*math.pi*xB1*a
364
+ yforeps5 = math.pi*math.pi*yB1*a
365
+ for m in range(0,22):
366
+ xaux1 = math.pow(xforeps5, m/3)/(316.*xA)
367
+ yaux1 = math.pow(yforeps5, m/3)/(316.*yA)
368
+ aux1 = min(xaux1, yaux1)
369
+ aux2 = ctx.gamma(m+1)/ctx.gamma(m/3.0+0.5)
370
+ aux2 = math.sqrt(aux2)
371
+ eps5[m] = (aux1*aux2*min(xeps4,yeps4))
372
+
373
+ # COMPUTING wpfp
374
+ # See II Section 3.13 equation (59)
375
+ twenty = min(3*L-3, 21)+1
376
+ aux = 6812*J
377
+ wpfp = ctx.mag(44*J)
378
+ for m in range(0,twenty):
379
+ wpfp = max(wpfp, ctx.mag(aux*ctx.gamma(m+1)/eps5[m]))
380
+
381
+ # COMPUTING N AND p
382
+ # See II Section
383
+ ctx.prec = wpfp + ctx.mag(t)+20
384
+ a = ctx.sqrt(t/(2*ctx.pi))
385
+ N = ctx.floor(a)
386
+ p = 1-2*(a-N)
387
+
388
+ # now we get a rounded version of p
389
+ # to the precision wpfp
390
+ # this possibly is not necessary
391
+ num=ctx.floor(p*(ctx.mpf('2')**wpfp))
392
+ difference = p * (ctx.mpf('2')**wpfp)-num
393
+ if (difference < 0.5):
394
+ num = num
395
+ else:
396
+ num = num+1
397
+ p = ctx.convert(num * (ctx.mpf('2')**(-wpfp)))
398
+
399
+ # COMPUTING THE COEFFICIENTS c[n] = cc[n]
400
+ # We shall use the notation cc[n], since there is
401
+ # a constant that is called c
402
+ # See II Section 3.14
403
+ # We compute the coefficients and also save then in a
404
+ # cache. The bulk of the computation is passed to
405
+ # the function coef()
406
+ #
407
+ # eps6 is defined in II Section 3.13 equation (58)
408
+ eps6 = ctx.power(ctx.convert(2*ctx.pi), J)/(ctx.gamma(J+1)*3*J)
409
+
410
+ # Now we compute the coefficients
411
+ cc = {}
412
+ cont = {}
413
+ cont, pipowers = coef(ctx, J, eps6)
414
+ cc=cont.copy() # we need a copy since we have to change his values.
415
+ Fp={} # this is the adequate locus of this
416
+ for n in range(M, 3*L-2):
417
+ Fp[n] = 0
418
+ Fp={}
419
+ ctx.prec = wpfp
420
+ for m in range(0,M+1):
421
+ sumP = 0
422
+ for k in range(2*J-m-1,-1,-1):
423
+ sumP = (sumP * p)+ cc[k]
424
+ Fp[m] = sumP
425
+ # preparation of the new coefficients
426
+ for k in range(0,2*J-m-1):
427
+ cc[k] = (k+1)* cc[k+1]
428
+
429
+ # COMPUTING THE NUMBERS xd[u,n,k], yd[u,n,k]
430
+ # See II Section 3.17
431
+ #
432
+ # First we compute the working precisions xwpd[k]
433
+ # Se II equation (92)
434
+ xwpd={}
435
+ d1 = max(6,ctx.mag(40*L*L))
436
+ xd2 = 13+ctx.mag((1+abs(xsigma))*xA)-ctx.mag(xeps4)-1
437
+ xconst = ctx.ln(8/(ctx.pi*ctx.pi*a*a*xB1*xB1)) /2
438
+ for n in range(0,L):
439
+ xd3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*xconst)+xd2
440
+ xwpd[n]=max(xd3,d1)
441
+
442
+ # procedure of II Section 3.17
443
+ ctx.prec = xwpd[1]+10
444
+ xpsigma = 1-(2*xsigma)
445
+ xd = {}
446
+ xd[0,0,-2]=0; xd[0,0,-1]=0; xd[0,0,0]=1; xd[0,0,1]=0
447
+ xd[0,-1,-2]=0; xd[0,-1,-1]=0; xd[0,-1,0]=1; xd[0,-1,1]=0
448
+ for n in range(1,L):
449
+ ctx.prec = xwpd[n]+10
450
+ for k in range(0,3*n//2+1):
451
+ m = 3*n-2*k
452
+ if(m!=0):
453
+ m1 = ctx.one/m
454
+ c1= m1/4
455
+ c2=(xpsigma*m1)/2
456
+ c3=-(m+1)
457
+ xd[0,n,k]=c3*xd[0,n-1,k-2]+c1*xd[0,n-1,k]+c2*xd[0,n-1,k-1]
458
+ else:
459
+ xd[0,n,k]=0
460
+ for r in range(0,k):
461
+ add=xd[0,n,r]*(ctx.mpf('1.0')*ctx.fac(2*k-2*r)/ctx.fac(k-r))
462
+ xd[0,n,k] -= ((-1)**(k-r))*add
463
+ xd[0,n,-2]=0; xd[0,n,-1]=0; xd[0,n,3*n//2+1]=0
464
+ for mu in range(-2,der+1):
465
+ for n in range(-2,L):
466
+ for k in range(-3,max(1,3*n//2+2)):
467
+ if( (mu<0)or (n<0) or(k<0)or (k>3*n//2)):
468
+ xd[mu,n,k] = 0
469
+ for mu in range(1,der+1):
470
+ for n in range(0,L):
471
+ ctx.prec = xwpd[n]+10
472
+ for k in range(0,3*n//2+1):
473
+ aux=(2*mu-2)*xd[mu-2,n-2,k-3]+2*(xsigma+n-2)*xd[mu-1,n-2,k-3]
474
+ xd[mu,n,k] = aux - xd[mu-1,n-1,k-1]
475
+
476
+ # Now we compute the working precisions ywpd[k]
477
+ # Se II equation (92)
478
+ ywpd={}
479
+ d1 = max(6,ctx.mag(40*L*L))
480
+ yd2 = 13+ctx.mag((1+abs(ysigma))*yA)-ctx.mag(yeps4)-1
481
+ yconst = ctx.ln(8/(ctx.pi*ctx.pi*a*a*yB1*yB1)) /2
482
+ for n in range(0,L):
483
+ yd3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*yconst)+yd2
484
+ ywpd[n]=max(yd3,d1)
485
+
486
+ # procedure of II Section 3.17
487
+ ctx.prec = ywpd[1]+10
488
+ ypsigma = 1-(2*ysigma)
489
+ yd = {}
490
+ yd[0,0,-2]=0; yd[0,0,-1]=0; yd[0,0,0]=1; yd[0,0,1]=0
491
+ yd[0,-1,-2]=0; yd[0,-1,-1]=0; yd[0,-1,0]=1; yd[0,-1,1]=0
492
+ for n in range(1,L):
493
+ ctx.prec = ywpd[n]+10
494
+ for k in range(0,3*n//2+1):
495
+ m = 3*n-2*k
496
+ if(m!=0):
497
+ m1 = ctx.one/m
498
+ c1= m1/4
499
+ c2=(ypsigma*m1)/2
500
+ c3=-(m+1)
501
+ yd[0,n,k]=c3*yd[0,n-1,k-2]+c1*yd[0,n-1,k]+c2*yd[0,n-1,k-1]
502
+ else:
503
+ yd[0,n,k]=0
504
+ for r in range(0,k):
505
+ add=yd[0,n,r]*(ctx.mpf('1.0')*ctx.fac(2*k-2*r)/ctx.fac(k-r))
506
+ yd[0,n,k] -= ((-1)**(k-r))*add
507
+ yd[0,n,-2]=0; yd[0,n,-1]=0; yd[0,n,3*n//2+1]=0
508
+
509
+ for mu in range(-2,der+1):
510
+ for n in range(-2,L):
511
+ for k in range(-3,max(1,3*n//2+2)):
512
+ if( (mu<0)or (n<0) or(k<0)or (k>3*n//2)):
513
+ yd[mu,n,k] = 0
514
+ for mu in range(1,der+1):
515
+ for n in range(0,L):
516
+ ctx.prec = ywpd[n]+10
517
+ for k in range(0,3*n//2+1):
518
+ aux=(2*mu-2)*yd[mu-2,n-2,k-3]+2*(ysigma+n-2)*yd[mu-1,n-2,k-3]
519
+ yd[mu,n,k] = aux - yd[mu-1,n-1,k-1]
520
+
521
+ # COMPUTING THE COEFFICIENTS xtcoef[k,l]
522
+ # See II Section 3.9
523
+ #
524
+ # computing the needed wp
525
+ xwptcoef={}
526
+ xwpterm={}
527
+ ctx.prec = 15
528
+ c1 = ctx.mag(40*(L+2))
529
+ xc2 = ctx.mag(68*(L+2)*xA)
530
+ xc4 = ctx.mag(xB1*a*math.sqrt(ctx.pi))-1
531
+ for k in range(0,L):
532
+ xc3 = xc2 - k*xc4+ctx.mag(ctx.fac(k+0.5))/2.
533
+ xwptcoef[k] = (max(c1,xc3-ctx.mag(xeps4)+1)+1 +20)*1.5
534
+ xwpterm[k] = (max(c1,ctx.mag(L+2)+xc3-ctx.mag(xeps3)+1)+1 +20)
535
+ ywptcoef={}
536
+ ywpterm={}
537
+ ctx.prec = 15
538
+ c1 = ctx.mag(40*(L+2))
539
+ yc2 = ctx.mag(68*(L+2)*yA)
540
+ yc4 = ctx.mag(yB1*a*math.sqrt(ctx.pi))-1
541
+ for k in range(0,L):
542
+ yc3 = yc2 - k*yc4+ctx.mag(ctx.fac(k+0.5))/2.
543
+ ywptcoef[k] = ((max(c1,yc3-ctx.mag(yeps4)+1))+10)*1.5
544
+ ywpterm[k] = (max(c1,ctx.mag(L+2)+yc3-ctx.mag(yeps3)+1)+1)+10
545
+
546
+ # check of power of pi
547
+ # computing the fortcoef[mu,k,ell]
548
+ xfortcoef={}
549
+ for mu in range(0,der+1):
550
+ for k in range(0,L):
551
+ for ell in range(-2,3*k//2+1):
552
+ xfortcoef[mu,k,ell]=0
553
+ for mu in range(0,der+1):
554
+ for k in range(0,L):
555
+ ctx.prec = xwptcoef[k]
556
+ for ell in range(0,3*k//2+1):
557
+ xfortcoef[mu,k,ell]=xd[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell]
558
+ xfortcoef[mu,k,ell]=xfortcoef[mu,k,ell]/((2*ctx.j)**ell)
559
+
560
+ def trunc_a(t):
561
+ wp = ctx.prec
562
+ ctx.prec = wp + 2
563
+ aa = ctx.sqrt(t/(2*ctx.pi))
564
+ ctx.prec = wp
565
+ return aa
566
+
567
+ # computing the tcoef[k,ell]
568
+ xtcoef={}
569
+ for mu in range(0,der+1):
570
+ for k in range(0,L):
571
+ for ell in range(-2,3*k//2+1):
572
+ xtcoef[mu,k,ell]=0
573
+ ctx.prec = max(xwptcoef[0],ywptcoef[0])+3
574
+ aa= trunc_a(t)
575
+ la = -ctx.ln(aa)
576
+
577
+ for chi in range(0,der+1):
578
+ for k in range(0,L):
579
+ ctx.prec = xwptcoef[k]
580
+ for ell in range(0,3*k//2+1):
581
+ xtcoef[chi,k,ell] =0
582
+ for mu in range(0, chi+1):
583
+ tcoefter=ctx.binomial(chi,mu)*ctx.power(la,mu)*xfortcoef[chi-mu,k,ell]
584
+ xtcoef[chi,k,ell] += tcoefter
585
+
586
+ # COMPUTING THE COEFFICIENTS ytcoef[k,l]
587
+ # See II Section 3.9
588
+ #
589
+ # computing the needed wp
590
+ # check of power of pi
591
+ # computing the fortcoef[mu,k,ell]
592
+ yfortcoef={}
593
+ for mu in range(0,der+1):
594
+ for k in range(0,L):
595
+ for ell in range(-2,3*k//2+1):
596
+ yfortcoef[mu,k,ell]=0
597
+ for mu in range(0,der+1):
598
+ for k in range(0,L):
599
+ ctx.prec = ywptcoef[k]
600
+ for ell in range(0,3*k//2+1):
601
+ yfortcoef[mu,k,ell]=yd[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell]
602
+ yfortcoef[mu,k,ell]=yfortcoef[mu,k,ell]/((2*ctx.j)**ell)
603
+ # computing the tcoef[k,ell]
604
+ ytcoef={}
605
+ for chi in range(0,der+1):
606
+ for k in range(0,L):
607
+ for ell in range(-2,3*k//2+1):
608
+ ytcoef[chi,k,ell]=0
609
+ for chi in range(0,der+1):
610
+ for k in range(0,L):
611
+ ctx.prec = ywptcoef[k]
612
+ for ell in range(0,3*k//2+1):
613
+ ytcoef[chi,k,ell] =0
614
+ for mu in range(0, chi+1):
615
+ tcoefter=ctx.binomial(chi,mu)*ctx.power(la,mu)*yfortcoef[chi-mu,k,ell]
616
+ ytcoef[chi,k,ell] += tcoefter
617
+
618
+ # COMPUTING tv[k,ell]
619
+ # See II Section 3.8
620
+ #
621
+ # a has a good value
622
+ ctx.prec = max(xwptcoef[0], ywptcoef[0])+2
623
+ av = {}
624
+ av[0] = 1
625
+ av[1] = av[0]/a
626
+
627
+ ctx.prec = max(xwptcoef[0],ywptcoef[0])
628
+ for k in range(2,L):
629
+ av[k] = av[k-1] * av[1]
630
+
631
+ # Computing the quotients
632
+ xtv = {}
633
+ for chi in range(0,der+1):
634
+ for k in range(0,L):
635
+ ctx.prec = xwptcoef[k]
636
+ for ell in range(0,3*k//2+1):
637
+ xtv[chi,k,ell] = xtcoef[chi,k,ell]* av[k]
638
+ # Computing the quotients
639
+ ytv = {}
640
+ for chi in range(0,der+1):
641
+ for k in range(0,L):
642
+ ctx.prec = ywptcoef[k]
643
+ for ell in range(0,3*k//2+1):
644
+ ytv[chi,k,ell] = ytcoef[chi,k,ell]* av[k]
645
+
646
+ # COMPUTING THE TERMS xterm[k]
647
+ # See II Section 3.6
648
+ xterm = {}
649
+ for chi in range(0,der+1):
650
+ for n in range(0,L):
651
+ ctx.prec = xwpterm[n]
652
+ te = 0
653
+ for k in range(0, 3*n//2+1):
654
+ te += xtv[chi,n,k]
655
+ xterm[chi,n] = te
656
+
657
+ # COMPUTING THE TERMS yterm[k]
658
+ # See II Section 3.6
659
+ yterm = {}
660
+ for chi in range(0,der+1):
661
+ for n in range(0,L):
662
+ ctx.prec = ywpterm[n]
663
+ te = 0
664
+ for k in range(0, 3*n//2+1):
665
+ te += ytv[chi,n,k]
666
+ yterm[chi,n] = te
667
+
668
+ # COMPUTING rssum
669
+ # See II Section 3.5
670
+ xrssum={}
671
+ ctx.prec=15
672
+ xrsbound = math.sqrt(ctx.pi) * xc /(xb*a)
673
+ ctx.prec=15
674
+ xwprssum = ctx.mag(4.4*((L+3)**2)*xrsbound / xeps2)
675
+ xwprssum = max(xwprssum, ctx.mag(10*(L+1)))
676
+ ctx.prec = xwprssum
677
+ for chi in range(0,der+1):
678
+ xrssum[chi] = 0
679
+ for k in range(1,L+1):
680
+ xrssum[chi] += xterm[chi,L-k]
681
+ yrssum={}
682
+ ctx.prec=15
683
+ yrsbound = math.sqrt(ctx.pi) * yc /(yb*a)
684
+ ctx.prec=15
685
+ ywprssum = ctx.mag(4.4*((L+3)**2)*yrsbound / yeps2)
686
+ ywprssum = max(ywprssum, ctx.mag(10*(L+1)))
687
+ ctx.prec = ywprssum
688
+ for chi in range(0,der+1):
689
+ yrssum[chi] = 0
690
+ for k in range(1,L+1):
691
+ yrssum[chi] += yterm[chi,L-k]
692
+
693
+ # COMPUTING S3
694
+ # See II Section 3.19
695
+ ctx.prec = 15
696
+ A2 = 2**(max(ctx.mag(abs(xrssum[0])), ctx.mag(abs(yrssum[0]))))
697
+ eps8 = eps/(3*A2)
698
+ T = t *ctx.ln(t/(2*ctx.pi))
699
+ xwps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-xsigma))*T)
700
+ ywps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-ysigma))*T)
701
+
702
+ ctx.prec = max(xwps3, ywps3)
703
+
704
+ tpi = t/(2*ctx.pi)
705
+ arg = (t/2)*ctx.ln(tpi)-(t/2)-ctx.pi/8
706
+ U = ctx.expj(-arg)
707
+ a = trunc_a(t)
708
+ xasigma = ctx.power(a, -xsigma)
709
+ yasigma = ctx.power(a, -ysigma)
710
+ xS3 = ((-1)**(N-1)) * xasigma * U
711
+ yS3 = ((-1)**(N-1)) * yasigma * U
712
+
713
+ # COMPUTING S1 the zetasum
714
+ # See II Section 3.18
715
+ ctx.prec = 15
716
+ xwpsum = 4+ ctx.mag((N+ctx.power(N,1-xsigma))*ctx.ln(N) /eps1)
717
+ ywpsum = 4+ ctx.mag((N+ctx.power(N,1-ysigma))*ctx.ln(N) /eps1)
718
+ wpsum = max(xwpsum, ywpsum)
719
+
720
+ ctx.prec = wpsum +10
721
+ '''
722
+ # This can be improved
723
+ xS1={}
724
+ yS1={}
725
+ for chi in range(0,der+1):
726
+ xS1[chi] = 0
727
+ yS1[chi] = 0
728
+ for n in range(1,int(N)+1):
729
+ ln = ctx.ln(n)
730
+ xexpn = ctx.exp(-ln*(xsigma+ctx.j*t))
731
+ yexpn = ctx.conj(1/(n*xexpn))
732
+ for chi in range(0,der+1):
733
+ pown = ctx.power(-ln, chi)
734
+ xterm = pown*xexpn
735
+ yterm = pown*yexpn
736
+ xS1[chi] += xterm
737
+ yS1[chi] += yterm
738
+ '''
739
+ xS1, yS1 = ctx._zetasum(s, 1, int(N)-1, range(0,der+1), True)
740
+
741
+ # END OF COMPUTATION of xrz, yrz
742
+ # See II Section 3.1
743
+ ctx.prec = 15
744
+ xabsS1 = abs(xS1[der])
745
+ xabsS2 = abs(xrssum[der] * xS3)
746
+ xwpend = max(6, wpinitial+ctx.mag(6*(3*xabsS1+7*xabsS2) ) )
747
+
748
+ ctx.prec = xwpend
749
+ xrz={}
750
+ for chi in range(0,der+1):
751
+ xrz[chi] = xS1[chi]+xrssum[chi]*xS3
752
+
753
+ ctx.prec = 15
754
+ yabsS1 = abs(yS1[der])
755
+ yabsS2 = abs(yrssum[der] * yS3)
756
+ ywpend = max(6, wpinitial+ctx.mag(6*(3*yabsS1+7*yabsS2) ) )
757
+
758
+ ctx.prec = ywpend
759
+ yrz={}
760
+ for chi in range(0,der+1):
761
+ yrz[chi] = yS1[chi]+yrssum[chi]*yS3
762
+ yrz[chi] = ctx.conj(yrz[chi])
763
+ ctx.prec = wpinitial
764
+ return xrz, yrz
765
+
766
+ def Rzeta_set(ctx, s, derivatives=[0]):
767
+ r"""
768
+ Computes several derivatives of the auxiliary function of Riemann `R(s)`.
769
+
770
+ **Definition**
771
+
772
+ The function is defined by
773
+
774
+ .. math ::
775
+
776
+ \begin{equation}
777
+ {\mathop{\mathcal R }\nolimits}(s)=
778
+ \int_{0\swarrow1}\frac{x^{-s} e^{\pi i x^2}}{e^{\pi i x}-
779
+ e^{-\pi i x}}\,dx
780
+ \end{equation}
781
+
782
+ To this function we apply the Riemann-Siegel expansion.
783
+ """
784
+ der = max(derivatives)
785
+ # First we take the value of ctx.prec
786
+ # During the computation we will change ctx.prec, and finally we will
787
+ # restaurate the initial value
788
+ wpinitial = ctx.prec
789
+ # Take the real and imaginary part of s
790
+ t = ctx._im(s)
791
+ sigma = ctx._re(s)
792
+ # Now compute several parameter that appear on the program
793
+ ctx.prec = 15
794
+ a = ctx.sqrt(t/(2*ctx.pi)) # Careful
795
+ asigma = ctx.power(a, sigma) # Careful
796
+ # We need a simple bound A1 < asigma (see II Section 3.1 and 3.3)
797
+ A1 = ctx.power(2, ctx.mag(asigma)-1)
798
+ # We compute various epsilon's (see II end of Section 3.1)
799
+ eps = ctx.power(2, -wpinitial)
800
+ eps1 = eps/6.
801
+ eps2 = eps * A1/3.
802
+ # COMPUTING SOME COEFFICIENTS THAT DEPENDS
803
+ # ON sigma
804
+ # constant b and c (see I Theorem 2 formula (26) )
805
+ # coefficients A and B1 (see I Section 6.1 equation (50))
806
+ # here we not need high precision
807
+ ctx.prec = 15
808
+ if sigma > 0:
809
+ b = 2.
810
+ c = math.pow(9,sigma)/4.44288
811
+ # 4.44288 =(math.sqrt(2)*math.pi)
812
+ A = math.pow(9,sigma)
813
+ B1 = 1
814
+ else:
815
+ b = 2.25158 # math.sqrt( (3-2* math.log(2))*math.pi )
816
+ c = math.pow(2,-sigma)/4.44288
817
+ A = math.pow(2,-sigma)
818
+ B1 = 1.10789 # = 2*sqrt(1-log(2))
819
+ # COMPUTING L THE NUMBER OF TERMS NEEDED IN THE RIEMANN-SIEGEL
820
+ # CORRECTION
821
+ # See II Section 3.2
822
+ ctx.prec = 15
823
+ L = 1
824
+ while 3*c*ctx.gamma(L*0.5) * ctx.power(b*a,-L) >= eps2:
825
+ L = L+1
826
+ L = max(2,L)
827
+ # The number L has to satify some conditions.
828
+ # If not RS can not compute Rzeta(s) with the prescribed precision
829
+ # (see II, Section 3.2 condition (20) ) and
830
+ # (II, Section 3.3 condition (22) ). Also we have added
831
+ # an additional technical condition in Section 3.17 Proposition 17
832
+ if ((3*L >= 2*a*a/25.) or (3*L+2+sigma<0) or (abs(sigma)> a/2.)):
833
+ #print 'Error Riemann-Siegel can not compute with such precision'
834
+ ctx.prec = wpinitial
835
+ raise NotImplementedError("Riemann-Siegel can not compute with such precision")
836
+
837
+ # INITIALIZATION (CONTINUATION)
838
+ #
839
+ # eps3 is the constant defined on (II, Section 3.5 equation (27) )
840
+ # each term of the RS correction must be computed with error <= eps3
841
+ eps3 = eps2/(4*L)
842
+
843
+ # eps4 is defined on (II Section 3.6 equation (30) )
844
+ # each component of the formula (II Section 3.6 equation (29) )
845
+ # must be computed with error <= eps4
846
+ eps4 = eps3/(3*L)
847
+
848
+ # COMPUTING M. NUMBER OF DERIVATIVES Fp[m] TO COMPUTE
849
+ M = aux_M_Fp(ctx, A, eps4, a, B1, L)
850
+ Fp = {}
851
+ for n in range(M, 3*L-2):
852
+ Fp[n] = 0
853
+
854
+ # But I have not seen an instance of M != 3*L-3
855
+ #
856
+ # DETERMINATION OF J THE NUMBER OF TERMS NEEDED
857
+ # IN THE TAYLOR SERIES OF F.
858
+ # See II Section 3.11 equation (49))
859
+ h1 = eps4/(632*A)
860
+ h2 = ctx.pi*ctx.pi*B1*a *ctx.sqrt(3)*math.e*math.e
861
+ h2 = h1 * ctx.power((h2/M**2),(M-1)/3) / M
862
+ h3 = min(h1,h2)
863
+ J=12
864
+ jvalue = (2*ctx.pi)**J / ctx.gamma(J+1)
865
+ while jvalue > h3:
866
+ J = J+1
867
+ jvalue = (2*ctx.pi)*jvalue/J
868
+
869
+ # COMPUTING eps5[m] for 1 <= m <= 21
870
+ # See II Section 10 equation (43)
871
+ eps5={}
872
+ foreps5 = math.pi*math.pi*B1*a
873
+ for m in range(0,22):
874
+ aux1 = math.pow(foreps5, m/3)/(316.*A)
875
+ aux2 = ctx.gamma(m+1)/ctx.gamma(m/3.0+0.5)
876
+ aux2 = math.sqrt(aux2)
877
+ eps5[m] = aux1*aux2*eps4
878
+
879
+ # COMPUTING wpfp
880
+ # See II Section 3.13 equation (59)
881
+ twenty = min(3*L-3, 21)+1
882
+ aux = 6812*J
883
+ wpfp = ctx.mag(44*J)
884
+ for m in range(0, twenty):
885
+ wpfp = max(wpfp, ctx.mag(aux*ctx.gamma(m+1)/eps5[m]))
886
+ # COMPUTING N AND p
887
+ # See II Section
888
+ ctx.prec = wpfp + ctx.mag(t) + 20
889
+ a = ctx.sqrt(t/(2*ctx.pi))
890
+ N = ctx.floor(a)
891
+ p = 1-2*(a-N)
892
+
893
+ # now we get a rounded version of p to the precision wpfp
894
+ # this possibly is not necessary
895
+ num = ctx.floor(p*(ctx.mpf(2)**wpfp))
896
+ difference = p * (ctx.mpf(2)**wpfp)-num
897
+ if difference < 0.5:
898
+ num = num
899
+ else:
900
+ num = num+1
901
+ p = ctx.convert(num * (ctx.mpf(2)**(-wpfp)))
902
+
903
+ # COMPUTING THE COEFFICIENTS c[n] = cc[n]
904
+ # We shall use the notation cc[n], since there is
905
+ # a constant that is called c
906
+ # See II Section 3.14
907
+ # We compute the coefficients and also save then in a
908
+ # cache. The bulk of the computation is passed to
909
+ # the function coef()
910
+ #
911
+ # eps6 is defined in II Section 3.13 equation (58)
912
+ eps6 = ctx.power(2*ctx.pi, J)/(ctx.gamma(J+1)*3*J)
913
+
914
+ # Now we compute the coefficients
915
+ cc={}
916
+ cont={}
917
+ cont, pipowers = coef(ctx, J, eps6)
918
+ cc = cont.copy() # we need a copy since we have
919
+ Fp={}
920
+ for n in range(M, 3*L-2):
921
+ Fp[n] = 0
922
+ ctx.prec = wpfp
923
+ for m in range(0,M+1):
924
+ sumP = 0
925
+ for k in range(2*J-m-1,-1,-1):
926
+ sumP = (sumP * p) + cc[k]
927
+ Fp[m] = sumP
928
+ # preparation of the new coefficients
929
+ for k in range(0, 2*J-m-1):
930
+ cc[k] = (k+1) * cc[k+1]
931
+
932
+ # COMPUTING THE NUMBERS d[n,k]
933
+ # See II Section 3.17
934
+
935
+ # First we compute the working precisions wpd[k]
936
+ # Se II equation (92)
937
+ wpd = {}
938
+ d1 = max(6, ctx.mag(40*L*L))
939
+ d2 = 13+ctx.mag((1+abs(sigma))*A)-ctx.mag(eps4)-1
940
+ const = ctx.ln(8/(ctx.pi*ctx.pi*a*a*B1*B1)) /2
941
+ for n in range(0,L):
942
+ d3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*const)+d2
943
+ wpd[n] = max(d3,d1)
944
+
945
+ # procedure of II Section 3.17
946
+ ctx.prec = wpd[1]+10
947
+ psigma = 1-(2*sigma)
948
+ d = {}
949
+ d[0,0,-2]=0; d[0,0,-1]=0; d[0,0,0]=1; d[0,0,1]=0
950
+ d[0,-1,-2]=0; d[0,-1,-1]=0; d[0,-1,0]=1; d[0,-1,1]=0
951
+ for n in range(1,L):
952
+ ctx.prec = wpd[n]+10
953
+ for k in range(0,3*n//2+1):
954
+ m = 3*n-2*k
955
+ if (m!=0):
956
+ m1 = ctx.one/m
957
+ c1 = m1/4
958
+ c2 = (psigma*m1)/2
959
+ c3 = -(m+1)
960
+ d[0,n,k] = c3*d[0,n-1,k-2]+c1*d[0,n-1,k]+c2*d[0,n-1,k-1]
961
+ else:
962
+ d[0,n,k]=0
963
+ for r in range(0,k):
964
+ add = d[0,n,r]*(ctx.one*ctx.fac(2*k-2*r)/ctx.fac(k-r))
965
+ d[0,n,k] -= ((-1)**(k-r))*add
966
+ d[0,n,-2]=0; d[0,n,-1]=0; d[0,n,3*n//2+1]=0
967
+
968
+ for mu in range(-2,der+1):
969
+ for n in range(-2,L):
970
+ for k in range(-3,max(1,3*n//2+2)):
971
+ if ((mu<0)or (n<0) or(k<0)or (k>3*n//2)):
972
+ d[mu,n,k] = 0
973
+
974
+ for mu in range(1,der+1):
975
+ for n in range(0,L):
976
+ ctx.prec = wpd[n]+10
977
+ for k in range(0,3*n//2+1):
978
+ aux=(2*mu-2)*d[mu-2,n-2,k-3]+2*(sigma+n-2)*d[mu-1,n-2,k-3]
979
+ d[mu,n,k] = aux - d[mu-1,n-1,k-1]
980
+
981
+ # COMPUTING THE COEFFICIENTS t[k,l]
982
+ # See II Section 3.9
983
+ #
984
+ # computing the needed wp
985
+ wptcoef = {}
986
+ wpterm = {}
987
+ ctx.prec = 15
988
+ c1 = ctx.mag(40*(L+2))
989
+ c2 = ctx.mag(68*(L+2)*A)
990
+ c4 = ctx.mag(B1*a*math.sqrt(ctx.pi))-1
991
+ for k in range(0,L):
992
+ c3 = c2 - k*c4+ctx.mag(ctx.fac(k+0.5))/2.
993
+ wptcoef[k] = max(c1,c3-ctx.mag(eps4)+1)+1 +10
994
+ wpterm[k] = max(c1,ctx.mag(L+2)+c3-ctx.mag(eps3)+1)+1 +10
995
+
996
+ # check of power of pi
997
+
998
+ # computing the fortcoef[mu,k,ell]
999
+ fortcoef={}
1000
+ for mu in derivatives:
1001
+ for k in range(0,L):
1002
+ for ell in range(-2,3*k//2+1):
1003
+ fortcoef[mu,k,ell]=0
1004
+
1005
+ for mu in derivatives:
1006
+ for k in range(0,L):
1007
+ ctx.prec = wptcoef[k]
1008
+ for ell in range(0,3*k//2+1):
1009
+ fortcoef[mu,k,ell]=d[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell]
1010
+ fortcoef[mu,k,ell]=fortcoef[mu,k,ell]/((2*ctx.j)**ell)
1011
+
1012
+ def trunc_a(t):
1013
+ wp = ctx.prec
1014
+ ctx.prec = wp + 2
1015
+ aa = ctx.sqrt(t/(2*ctx.pi))
1016
+ ctx.prec = wp
1017
+ return aa
1018
+
1019
+ # computing the tcoef[chi,k,ell]
1020
+ tcoef={}
1021
+ for chi in derivatives:
1022
+ for k in range(0,L):
1023
+ for ell in range(-2,3*k//2+1):
1024
+ tcoef[chi,k,ell]=0
1025
+ ctx.prec = wptcoef[0]+3
1026
+ aa = trunc_a(t)
1027
+ la = -ctx.ln(aa)
1028
+
1029
+ for chi in derivatives:
1030
+ for k in range(0,L):
1031
+ ctx.prec = wptcoef[k]
1032
+ for ell in range(0,3*k//2+1):
1033
+ tcoef[chi,k,ell] = 0
1034
+ for mu in range(0, chi+1):
1035
+ tcoefter = ctx.binomial(chi,mu) * la**mu * \
1036
+ fortcoef[chi-mu,k,ell]
1037
+ tcoef[chi,k,ell] += tcoefter
1038
+
1039
+ # COMPUTING tv[k,ell]
1040
+ # See II Section 3.8
1041
+
1042
+ # Computing the powers av[k] = a**(-k)
1043
+ ctx.prec = wptcoef[0] + 2
1044
+
1045
+ # a has a good value of a.
1046
+ # See II Section 3.6
1047
+ av = {}
1048
+ av[0] = 1
1049
+ av[1] = av[0]/a
1050
+
1051
+ ctx.prec = wptcoef[0]
1052
+ for k in range(2,L):
1053
+ av[k] = av[k-1] * av[1]
1054
+
1055
+ # Computing the quotients
1056
+ tv = {}
1057
+ for chi in derivatives:
1058
+ for k in range(0,L):
1059
+ ctx.prec = wptcoef[k]
1060
+ for ell in range(0,3*k//2+1):
1061
+ tv[chi,k,ell] = tcoef[chi,k,ell]* av[k]
1062
+
1063
+ # COMPUTING THE TERMS term[k]
1064
+ # See II Section 3.6
1065
+ term = {}
1066
+ for chi in derivatives:
1067
+ for n in range(0,L):
1068
+ ctx.prec = wpterm[n]
1069
+ te = 0
1070
+ for k in range(0, 3*n//2+1):
1071
+ te += tv[chi,n,k]
1072
+ term[chi,n] = te
1073
+
1074
+ # COMPUTING rssum
1075
+ # See II Section 3.5
1076
+ rssum={}
1077
+ ctx.prec=15
1078
+ rsbound = math.sqrt(ctx.pi) * c /(b*a)
1079
+ ctx.prec=15
1080
+ wprssum = ctx.mag(4.4*((L+3)**2)*rsbound / eps2)
1081
+ wprssum = max(wprssum, ctx.mag(10*(L+1)))
1082
+ ctx.prec = wprssum
1083
+ for chi in derivatives:
1084
+ rssum[chi] = 0
1085
+ for k in range(1,L+1):
1086
+ rssum[chi] += term[chi,L-k]
1087
+
1088
+ # COMPUTING S3
1089
+ # See II Section 3.19
1090
+ ctx.prec = 15
1091
+ A2 = 2**(ctx.mag(rssum[0]))
1092
+ eps8 = eps/(3* A2)
1093
+ T = t * ctx.ln(t/(2*ctx.pi))
1094
+ wps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-sigma))*T)
1095
+
1096
+ ctx.prec = wps3
1097
+ tpi = t/(2*ctx.pi)
1098
+ arg = (t/2)*ctx.ln(tpi)-(t/2)-ctx.pi/8
1099
+ U = ctx.expj(-arg)
1100
+ a = trunc_a(t)
1101
+ asigma = ctx.power(a, -sigma)
1102
+ S3 = ((-1)**(N-1)) * asigma * U
1103
+
1104
+ # COMPUTING S1 the zetasum
1105
+ # See II Section 3.18
1106
+ ctx.prec = 15
1107
+ wpsum = 4 + ctx.mag((N+ctx.power(N,1-sigma))*ctx.ln(N)/eps1)
1108
+
1109
+ ctx.prec = wpsum + 10
1110
+ '''
1111
+ # This can be improved
1112
+ S1 = {}
1113
+ for chi in derivatives:
1114
+ S1[chi] = 0
1115
+ for n in range(1,int(N)+1):
1116
+ ln = ctx.ln(n)
1117
+ expn = ctx.exp(-ln*(sigma+ctx.j*t))
1118
+ for chi in derivatives:
1119
+ term = ctx.power(-ln, chi)*expn
1120
+ S1[chi] += term
1121
+ '''
1122
+ S1 = ctx._zetasum(s, 1, int(N)-1, derivatives)[0]
1123
+
1124
+ # END OF COMPUTATION
1125
+ # See II Section 3.1
1126
+ ctx.prec = 15
1127
+ absS1 = abs(S1[der])
1128
+ absS2 = abs(rssum[der] * S3)
1129
+ wpend = max(6, wpinitial + ctx.mag(6*(3*absS1+7*absS2)))
1130
+ ctx.prec = wpend
1131
+ rz = {}
1132
+ for chi in derivatives:
1133
+ rz[chi] = S1[chi]+rssum[chi]*S3
1134
+ ctx.prec = wpinitial
1135
+ return rz
1136
+
1137
+
1138
+ def z_half(ctx,t,der=0):
1139
+ r"""
1140
+ z_half(t,der=0) Computes Z^(der)(t)
1141
+ """
1142
+ s=ctx.mpf('0.5')+ctx.j*t
1143
+ wpinitial = ctx.prec
1144
+ ctx.prec = 15
1145
+ tt = t/(2*ctx.pi)
1146
+ wptheta = wpinitial +1 + ctx.mag(3*(tt**1.5)*ctx.ln(tt))
1147
+ wpz = wpinitial + 1 + ctx.mag(12*tt*ctx.ln(tt))
1148
+ ctx.prec = wptheta
1149
+ theta = ctx.siegeltheta(t)
1150
+ ctx.prec = wpz
1151
+ rz = Rzeta_set(ctx,s, range(der+1))
1152
+ if der > 0: ps1 = ctx._re(ctx.psi(0,s/2)/2 - ctx.ln(ctx.pi)/2)
1153
+ if der > 1: ps2 = ctx._re(ctx.j*ctx.psi(1,s/2)/4)
1154
+ if der > 2: ps3 = ctx._re(-ctx.psi(2,s/2)/8)
1155
+ if der > 3: ps4 = ctx._re(-ctx.j*ctx.psi(3,s/2)/16)
1156
+ exptheta = ctx.expj(theta)
1157
+ if der == 0:
1158
+ z = 2*exptheta*rz[0]
1159
+ if der == 1:
1160
+ zf = 2j*exptheta
1161
+ z = zf*(ps1*rz[0]+rz[1])
1162
+ if der == 2:
1163
+ zf = 2 * exptheta
1164
+ z = -zf*(2*rz[1]*ps1+rz[0]*ps1**2+rz[2]-ctx.j*rz[0]*ps2)
1165
+ if der == 3:
1166
+ zf = -2j*exptheta
1167
+ z = 3*rz[1]*ps1**2+rz[0]*ps1**3+3*ps1*rz[2]
1168
+ z = zf*(z-3j*rz[1]*ps2-3j*rz[0]*ps1*ps2+rz[3]-rz[0]*ps3)
1169
+ if der == 4:
1170
+ zf = 2*exptheta
1171
+ z = 4*rz[1]*ps1**3+rz[0]*ps1**4+6*ps1**2*rz[2]
1172
+ z = z-12j*rz[1]*ps1*ps2-6j*rz[0]*ps1**2*ps2-6j*rz[2]*ps2-3*rz[0]*ps2*ps2
1173
+ z = z + 4*ps1*rz[3]-4*rz[1]*ps3-4*rz[0]*ps1*ps3+rz[4]+ctx.j*rz[0]*ps4
1174
+ z = zf*z
1175
+ ctx.prec = wpinitial
1176
+ return ctx._re(z)
1177
+
1178
+ def zeta_half(ctx, s, k=0):
1179
+ """
1180
+ zeta_half(s,k=0) Computes zeta^(k)(s) when Re s = 0.5
1181
+ """
1182
+ wpinitial = ctx.prec
1183
+ sigma = ctx._re(s)
1184
+ t = ctx._im(s)
1185
+ #--- compute wptheta, wpR, wpbasic ---
1186
+ ctx.prec = 53
1187
+ # X see II Section 3.21 (109) and (110)
1188
+ if sigma > 0:
1189
+ X = ctx.sqrt(abs(s))
1190
+ else:
1191
+ X = (2*ctx.pi)**(sigma-1) * abs(1-s)**(0.5-sigma)
1192
+ # M1 see II Section 3.21 (111) and (112)
1193
+ if sigma > 0:
1194
+ M1 = 2*ctx.sqrt(t/(2*ctx.pi))
1195
+ else:
1196
+ M1 = 4 * t * X
1197
+ # T see II Section 3.21 (113)
1198
+ abst = abs(0.5-s)
1199
+ T = 2* abst*math.log(abst)
1200
+ # computing wpbasic, wptheta, wpR see II Section 3.21
1201
+ wpbasic = max(6,3+ctx.mag(t))
1202
+ wpbasic2 = 2+ctx.mag(2.12*M1+21.2*M1*X+1.3*M1*X*T)+wpinitial+1
1203
+ wpbasic = max(wpbasic, wpbasic2)
1204
+ wptheta = max(4, 3+ctx.mag(2.7*M1*X)+wpinitial+1)
1205
+ wpR = 3+ctx.mag(1.1+2*X)+wpinitial+1
1206
+ ctx.prec = wptheta
1207
+ theta = ctx.siegeltheta(t-ctx.j*(sigma-ctx.mpf('0.5')))
1208
+ if k > 0: ps1 = (ctx._re(ctx.psi(0,s/2)))/2 - ctx.ln(ctx.pi)/2
1209
+ if k > 1: ps2 = -(ctx._im(ctx.psi(1,s/2)))/4
1210
+ if k > 2: ps3 = -(ctx._re(ctx.psi(2,s/2)))/8
1211
+ if k > 3: ps4 = (ctx._im(ctx.psi(3,s/2)))/16
1212
+ ctx.prec = wpR
1213
+ xrz = Rzeta_set(ctx,s,range(k+1))
1214
+ yrz={}
1215
+ for chi in range(0,k+1):
1216
+ yrz[chi] = ctx.conj(xrz[chi])
1217
+ ctx.prec = wpbasic
1218
+ exptheta = ctx.expj(-2*theta)
1219
+ if k==0:
1220
+ zv = xrz[0]+exptheta*yrz[0]
1221
+ if k==1:
1222
+ zv1 = -yrz[1] - 2*yrz[0]*ps1
1223
+ zv = xrz[1] + exptheta*zv1
1224
+ if k==2:
1225
+ zv1 = 4*yrz[1]*ps1+4*yrz[0]*(ps1**2)+yrz[2]+2j*yrz[0]*ps2
1226
+ zv = xrz[2]+exptheta*zv1
1227
+ if k==3:
1228
+ zv1 = -12*yrz[1]*ps1**2-8*yrz[0]*ps1**3-6*yrz[2]*ps1-6j*yrz[1]*ps2
1229
+ zv1 = zv1 - 12j*yrz[0]*ps1*ps2-yrz[3]+2*yrz[0]*ps3
1230
+ zv = xrz[3]+exptheta*zv1
1231
+ if k == 4:
1232
+ zv1 = 32*yrz[1]*ps1**3 +16*yrz[0]*ps1**4+24*yrz[2]*ps1**2
1233
+ zv1 = zv1 +48j*yrz[1]*ps1*ps2+48j*yrz[0]*(ps1**2)*ps2
1234
+ zv1 = zv1+12j*yrz[2]*ps2-12*yrz[0]*ps2**2+8*yrz[3]*ps1-8*yrz[1]*ps3
1235
+ zv1 = zv1-16*yrz[0]*ps1*ps3+yrz[4]-2j*yrz[0]*ps4
1236
+ zv = xrz[4]+exptheta*zv1
1237
+ ctx.prec = wpinitial
1238
+ return zv
1239
+
1240
+ def zeta_offline(ctx, s, k=0):
1241
+ """
1242
+ Computes zeta^(k)(s) off the line
1243
+ """
1244
+ wpinitial = ctx.prec
1245
+ sigma = ctx._re(s)
1246
+ t = ctx._im(s)
1247
+ #--- compute wptheta, wpR, wpbasic ---
1248
+ ctx.prec = 53
1249
+ # X see II Section 3.21 (109) and (110)
1250
+ if sigma > 0:
1251
+ X = ctx.power(abs(s), 0.5)
1252
+ else:
1253
+ X = ctx.power(2*ctx.pi, sigma-1)*ctx.power(abs(1-s),0.5-sigma)
1254
+ # M1 see II Section 3.21 (111) and (112)
1255
+ if (sigma > 0):
1256
+ M1 = 2*ctx.sqrt(t/(2*ctx.pi))
1257
+ else:
1258
+ M1 = 4 * t * X
1259
+ # M2 see II Section 3.21 (111) and (112)
1260
+ if (1-sigma > 0):
1261
+ M2 = 2*ctx.sqrt(t/(2*ctx.pi))
1262
+ else:
1263
+ M2 = 4*t*ctx.power(2*ctx.pi, -sigma)*ctx.power(abs(s),sigma-0.5)
1264
+ # T see II Section 3.21 (113)
1265
+ abst = abs(0.5-s)
1266
+ T = 2* abst*math.log(abst)
1267
+ # computing wpbasic, wptheta, wpR see II Section 3.21
1268
+ wpbasic = max(6,3+ctx.mag(t))
1269
+ wpbasic2 = 2+ctx.mag(2.12*M1+21.2*M2*X+1.3*M2*X*T)+wpinitial+1
1270
+ wpbasic = max(wpbasic, wpbasic2)
1271
+ wptheta = max(4, 3+ctx.mag(2.7*M2*X)+wpinitial+1)
1272
+ wpR = 3+ctx.mag(1.1+2*X)+wpinitial+1
1273
+ ctx.prec = wptheta
1274
+ theta = ctx.siegeltheta(t-ctx.j*(sigma-ctx.mpf('0.5')))
1275
+ s1 = s
1276
+ s2 = ctx.conj(1-s1)
1277
+ ctx.prec = wpR
1278
+ xrz, yrz = Rzeta_simul(ctx, s, k)
1279
+ if k > 0: ps1 = (ctx.psi(0,s1/2)+ctx.psi(0,(1-s1)/2))/4 - ctx.ln(ctx.pi)/2
1280
+ if k > 1: ps2 = ctx.j*(ctx.psi(1,s1/2)-ctx.psi(1,(1-s1)/2))/8
1281
+ if k > 2: ps3 = -(ctx.psi(2,s1/2)+ctx.psi(2,(1-s1)/2))/16
1282
+ if k > 3: ps4 = -ctx.j*(ctx.psi(3,s1/2)-ctx.psi(3,(1-s1)/2))/32
1283
+ ctx.prec = wpbasic
1284
+ exptheta = ctx.expj(-2*theta)
1285
+ if k == 0:
1286
+ zv = xrz[0]+exptheta*yrz[0]
1287
+ if k == 1:
1288
+ zv1 = -yrz[1]-2*yrz[0]*ps1
1289
+ zv = xrz[1]+exptheta*zv1
1290
+ if k == 2:
1291
+ zv1 = 4*yrz[1]*ps1+4*yrz[0]*(ps1**2) +yrz[2]+2j*yrz[0]*ps2
1292
+ zv = xrz[2]+exptheta*zv1
1293
+ if k == 3:
1294
+ zv1 = -12*yrz[1]*ps1**2 -8*yrz[0]*ps1**3-6*yrz[2]*ps1-6j*yrz[1]*ps2
1295
+ zv1 = zv1 - 12j*yrz[0]*ps1*ps2-yrz[3]+2*yrz[0]*ps3
1296
+ zv = xrz[3]+exptheta*zv1
1297
+ if k == 4:
1298
+ zv1 = 32*yrz[1]*ps1**3 +16*yrz[0]*ps1**4+24*yrz[2]*ps1**2
1299
+ zv1 = zv1 +48j*yrz[1]*ps1*ps2+48j*yrz[0]*(ps1**2)*ps2
1300
+ zv1 = zv1+12j*yrz[2]*ps2-12*yrz[0]*ps2**2+8*yrz[3]*ps1-8*yrz[1]*ps3
1301
+ zv1 = zv1-16*yrz[0]*ps1*ps3+yrz[4]-2j*yrz[0]*ps4
1302
+ zv = xrz[4]+exptheta*zv1
1303
+ ctx.prec = wpinitial
1304
+ return zv
1305
+
1306
+ def z_offline(ctx, w, k=0):
1307
+ r"""
1308
+ Computes Z(w) and its derivatives off the line
1309
+ """
1310
+ s = ctx.mpf('0.5')+ctx.j*w
1311
+ s1 = s
1312
+ s2 = ctx.conj(1-s1)
1313
+ wpinitial = ctx.prec
1314
+ ctx.prec = 35
1315
+ # X see II Section 3.21 (109) and (110)
1316
+ # M1 see II Section 3.21 (111) and (112)
1317
+ if (ctx._re(s1) >= 0):
1318
+ M1 = 2*ctx.sqrt(ctx._im(s1)/(2 * ctx.pi))
1319
+ X = ctx.sqrt(abs(s1))
1320
+ else:
1321
+ X = (2*ctx.pi)**(ctx._re(s1)-1) * abs(1-s1)**(0.5-ctx._re(s1))
1322
+ M1 = 4 * ctx._im(s1)*X
1323
+ # M2 see II Section 3.21 (111) and (112)
1324
+ if (ctx._re(s2) >= 0):
1325
+ M2 = 2*ctx.sqrt(ctx._im(s2)/(2 * ctx.pi))
1326
+ else:
1327
+ M2 = 4 * ctx._im(s2)*(2*ctx.pi)**(ctx._re(s2)-1)*abs(1-s2)**(0.5-ctx._re(s2))
1328
+ # T see II Section 3.21 Prop. 27
1329
+ T = 2*abs(ctx.siegeltheta(w))
1330
+ # defining some precisions
1331
+ # see II Section 3.22 (115), (116), (117)
1332
+ aux1 = ctx.sqrt(X)
1333
+ aux2 = aux1*(M1+M2)
1334
+ aux3 = 3 +wpinitial
1335
+ wpbasic = max(6, 3+ctx.mag(T), ctx.mag(aux2*(26+2*T))+aux3)
1336
+ wptheta = max(4,ctx.mag(2.04*aux2)+aux3)
1337
+ wpR = ctx.mag(4*aux1)+aux3
1338
+ # now the computations
1339
+ ctx.prec = wptheta
1340
+ theta = ctx.siegeltheta(w)
1341
+ ctx.prec = wpR
1342
+ xrz, yrz = Rzeta_simul(ctx,s,k)
1343
+ pta = 0.25 + 0.5j*w
1344
+ ptb = 0.25 - 0.5j*w
1345
+ if k > 0: ps1 = 0.25*(ctx.psi(0,pta)+ctx.psi(0,ptb)) - ctx.ln(ctx.pi)/2
1346
+ if k > 1: ps2 = (1j/8)*(ctx.psi(1,pta)-ctx.psi(1,ptb))
1347
+ if k > 2: ps3 = (-1./16)*(ctx.psi(2,pta)+ctx.psi(2,ptb))
1348
+ if k > 3: ps4 = (-1j/32)*(ctx.psi(3,pta)-ctx.psi(3,ptb))
1349
+ ctx.prec = wpbasic
1350
+ exptheta = ctx.expj(theta)
1351
+ if k == 0:
1352
+ zv = exptheta*xrz[0]+yrz[0]/exptheta
1353
+ j = ctx.j
1354
+ if k == 1:
1355
+ zv = j*exptheta*(xrz[1]+xrz[0]*ps1)-j*(yrz[1]+yrz[0]*ps1)/exptheta
1356
+ if k == 2:
1357
+ zv = exptheta*(-2*xrz[1]*ps1-xrz[0]*ps1**2-xrz[2]+j*xrz[0]*ps2)
1358
+ zv =zv + (-2*yrz[1]*ps1-yrz[0]*ps1**2-yrz[2]-j*yrz[0]*ps2)/exptheta
1359
+ if k == 3:
1360
+ zv1 = -3*xrz[1]*ps1**2-xrz[0]*ps1**3-3*xrz[2]*ps1+j*3*xrz[1]*ps2
1361
+ zv1 = (zv1+ 3j*xrz[0]*ps1*ps2-xrz[3]+xrz[0]*ps3)*j*exptheta
1362
+ zv2 = 3*yrz[1]*ps1**2+yrz[0]*ps1**3+3*yrz[2]*ps1+j*3*yrz[1]*ps2
1363
+ zv2 = j*(zv2 + 3j*yrz[0]*ps1*ps2+ yrz[3]-yrz[0]*ps3)/exptheta
1364
+ zv = zv1+zv2
1365
+ if k == 4:
1366
+ zv1 = 4*xrz[1]*ps1**3+xrz[0]*ps1**4 + 6*xrz[2]*ps1**2
1367
+ zv1 = zv1-12j*xrz[1]*ps1*ps2-6j*xrz[0]*ps1**2*ps2-6j*xrz[2]*ps2
1368
+ zv1 = zv1-3*xrz[0]*ps2*ps2+4*xrz[3]*ps1-4*xrz[1]*ps3-4*xrz[0]*ps1*ps3
1369
+ zv1 = zv1+xrz[4]+j*xrz[0]*ps4
1370
+ zv2 = 4*yrz[1]*ps1**3+yrz[0]*ps1**4 + 6*yrz[2]*ps1**2
1371
+ zv2 = zv2+12j*yrz[1]*ps1*ps2+6j*yrz[0]*ps1**2*ps2+6j*yrz[2]*ps2
1372
+ zv2 = zv2-3*yrz[0]*ps2*ps2+4*yrz[3]*ps1-4*yrz[1]*ps3-4*yrz[0]*ps1*ps3
1373
+ zv2 = zv2+yrz[4]-j*yrz[0]*ps4
1374
+ zv = exptheta*zv1+zv2/exptheta
1375
+ ctx.prec = wpinitial
1376
+ return zv
1377
+
1378
+ @defun
1379
+ def rs_zeta(ctx, s, derivative=0, **kwargs):
1380
+ if derivative > 4:
1381
+ raise NotImplementedError
1382
+ s = ctx.convert(s)
1383
+ re = ctx._re(s); im = ctx._im(s)
1384
+ if im < 0:
1385
+ z = ctx.conj(ctx.rs_zeta(ctx.conj(s), derivative))
1386
+ return z
1387
+ critical_line = (re == 0.5)
1388
+ if critical_line:
1389
+ return zeta_half(ctx, s, derivative)
1390
+ else:
1391
+ return zeta_offline(ctx, s, derivative)
1392
+
1393
+ @defun
1394
+ def rs_z(ctx, w, derivative=0):
1395
+ w = ctx.convert(w)
1396
+ re = ctx._re(w); im = ctx._im(w)
1397
+ if re < 0:
1398
+ return rs_z(ctx, -w, derivative)
1399
+ critical_line = (im == 0)
1400
+ if critical_line :
1401
+ return z_half(ctx, w, derivative)
1402
+ else:
1403
+ return z_offline(ctx, w, derivative)
venv/lib/python3.10/site-packages/mpmath/functions/signals.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .functions import defun_wrapped
2
+
3
+ @defun_wrapped
4
+ def squarew(ctx, t, amplitude=1, period=1):
5
+ P = period
6
+ A = amplitude
7
+ return A*((-1)**ctx.floor(2*t/P))
8
+
9
+ @defun_wrapped
10
+ def trianglew(ctx, t, amplitude=1, period=1):
11
+ A = amplitude
12
+ P = period
13
+
14
+ return 2*A*(0.5 - ctx.fabs(1 - 2*ctx.frac(t/P + 0.25)))
15
+
16
+ @defun_wrapped
17
+ def sawtoothw(ctx, t, amplitude=1, period=1):
18
+ A = amplitude
19
+ P = period
20
+ return A*ctx.frac(t/P)
21
+
22
+ @defun_wrapped
23
+ def unit_triangle(ctx, t, amplitude=1):
24
+ A = amplitude
25
+ if t <= -1 or t >= 1:
26
+ return ctx.zero
27
+ return A*(-ctx.fabs(t) + 1)
28
+
29
+ @defun_wrapped
30
+ def sigmoid(ctx, t, amplitude=1):
31
+ A = amplitude
32
+ return A / (1 + ctx.exp(-t))
venv/lib/python3.10/site-packages/mpmath/functions/theta.py ADDED
@@ -0,0 +1,1049 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .functions import defun, defun_wrapped
2
+
3
+ @defun
4
+ def _jacobi_theta2(ctx, z, q):
5
+ extra1 = 10
6
+ extra2 = 20
7
+ # the loops below break when the fixed precision quantities
8
+ # a and b go to zero;
9
+ # right shifting small negative numbers by wp one obtains -1, not zero,
10
+ # so the condition a**2 + b**2 > MIN is used to break the loops.
11
+ MIN = 2
12
+ if z == ctx.zero:
13
+ if (not ctx._im(q)):
14
+ wp = ctx.prec + extra1
15
+ x = ctx.to_fixed(ctx._re(q), wp)
16
+ x2 = (x*x) >> wp
17
+ a = b = x2
18
+ s = x2
19
+ while abs(a) > MIN:
20
+ b = (b*x2) >> wp
21
+ a = (a*b) >> wp
22
+ s += a
23
+ s = (1 << (wp+1)) + (s << 1)
24
+ s = ctx.ldexp(s, -wp)
25
+ else:
26
+ wp = ctx.prec + extra1
27
+ xre = ctx.to_fixed(ctx._re(q), wp)
28
+ xim = ctx.to_fixed(ctx._im(q), wp)
29
+ x2re = (xre*xre - xim*xim) >> wp
30
+ x2im = (xre*xim) >> (wp-1)
31
+ are = bre = x2re
32
+ aim = bim = x2im
33
+ sre = (1<<wp) + are
34
+ sim = aim
35
+ while are**2 + aim**2 > MIN:
36
+ bre, bim = (bre * x2re - bim * x2im) >> wp, \
37
+ (bre * x2im + bim * x2re) >> wp
38
+ are, aim = (are * bre - aim * bim) >> wp, \
39
+ (are * bim + aim * bre) >> wp
40
+ sre += are
41
+ sim += aim
42
+ sre = (sre << 1)
43
+ sim = (sim << 1)
44
+ sre = ctx.ldexp(sre, -wp)
45
+ sim = ctx.ldexp(sim, -wp)
46
+ s = ctx.mpc(sre, sim)
47
+ else:
48
+ if (not ctx._im(q)) and (not ctx._im(z)):
49
+ wp = ctx.prec + extra1
50
+ x = ctx.to_fixed(ctx._re(q), wp)
51
+ x2 = (x*x) >> wp
52
+ a = b = x2
53
+ c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp)
54
+ cn = c1 = ctx.to_fixed(c1, wp)
55
+ sn = s1 = ctx.to_fixed(s1, wp)
56
+ c2 = (c1*c1 - s1*s1) >> wp
57
+ s2 = (c1 * s1) >> (wp - 1)
58
+ cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
59
+ s = c1 + ((a * cn) >> wp)
60
+ while abs(a) > MIN:
61
+ b = (b*x2) >> wp
62
+ a = (a*b) >> wp
63
+ cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
64
+ s += (a * cn) >> wp
65
+ s = (s << 1)
66
+ s = ctx.ldexp(s, -wp)
67
+ s *= ctx.nthroot(q, 4)
68
+ return s
69
+ # case z real, q complex
70
+ elif not ctx._im(z):
71
+ wp = ctx.prec + extra2
72
+ xre = ctx.to_fixed(ctx._re(q), wp)
73
+ xim = ctx.to_fixed(ctx._im(q), wp)
74
+ x2re = (xre*xre - xim*xim) >> wp
75
+ x2im = (xre*xim) >> (wp - 1)
76
+ are = bre = x2re
77
+ aim = bim = x2im
78
+ c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp)
79
+ cn = c1 = ctx.to_fixed(c1, wp)
80
+ sn = s1 = ctx.to_fixed(s1, wp)
81
+ c2 = (c1*c1 - s1*s1) >> wp
82
+ s2 = (c1 * s1) >> (wp - 1)
83
+ cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
84
+ sre = c1 + ((are * cn) >> wp)
85
+ sim = ((aim * cn) >> wp)
86
+ while are**2 + aim**2 > MIN:
87
+ bre, bim = (bre * x2re - bim * x2im) >> wp, \
88
+ (bre * x2im + bim * x2re) >> wp
89
+ are, aim = (are * bre - aim * bim) >> wp, \
90
+ (are * bim + aim * bre) >> wp
91
+ cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
92
+ sre += ((are * cn) >> wp)
93
+ sim += ((aim * cn) >> wp)
94
+ sre = (sre << 1)
95
+ sim = (sim << 1)
96
+ sre = ctx.ldexp(sre, -wp)
97
+ sim = ctx.ldexp(sim, -wp)
98
+ s = ctx.mpc(sre, sim)
99
+ #case z complex, q real
100
+ elif not ctx._im(q):
101
+ wp = ctx.prec + extra2
102
+ x = ctx.to_fixed(ctx._re(q), wp)
103
+ x2 = (x*x) >> wp
104
+ a = b = x2
105
+ prec0 = ctx.prec
106
+ ctx.prec = wp
107
+ c1, s1 = ctx.cos_sin(z)
108
+ ctx.prec = prec0
109
+ cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
110
+ cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
111
+ snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
112
+ snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
113
+ #c2 = (c1*c1 - s1*s1) >> wp
114
+ c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp
115
+ c2im = (c1re*c1im - s1re*s1im) >> (wp - 1)
116
+ #s2 = (c1 * s1) >> (wp - 1)
117
+ s2re = (c1re*s1re - c1im*s1im) >> (wp - 1)
118
+ s2im = (c1re*s1im + c1im*s1re) >> (wp - 1)
119
+ #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
120
+ t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
121
+ t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
122
+ t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
123
+ t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
124
+ cnre = t1
125
+ cnim = t2
126
+ snre = t3
127
+ snim = t4
128
+ sre = c1re + ((a * cnre) >> wp)
129
+ sim = c1im + ((a * cnim) >> wp)
130
+ while abs(a) > MIN:
131
+ b = (b*x2) >> wp
132
+ a = (a*b) >> wp
133
+ t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
134
+ t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
135
+ t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
136
+ t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
137
+ cnre = t1
138
+ cnim = t2
139
+ snre = t3
140
+ snim = t4
141
+ sre += ((a * cnre) >> wp)
142
+ sim += ((a * cnim) >> wp)
143
+ sre = (sre << 1)
144
+ sim = (sim << 1)
145
+ sre = ctx.ldexp(sre, -wp)
146
+ sim = ctx.ldexp(sim, -wp)
147
+ s = ctx.mpc(sre, sim)
148
+ # case z and q complex
149
+ else:
150
+ wp = ctx.prec + extra2
151
+ xre = ctx.to_fixed(ctx._re(q), wp)
152
+ xim = ctx.to_fixed(ctx._im(q), wp)
153
+ x2re = (xre*xre - xim*xim) >> wp
154
+ x2im = (xre*xim) >> (wp - 1)
155
+ are = bre = x2re
156
+ aim = bim = x2im
157
+ prec0 = ctx.prec
158
+ ctx.prec = wp
159
+ # cos(z), sin(z) with z complex
160
+ c1, s1 = ctx.cos_sin(z)
161
+ ctx.prec = prec0
162
+ cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
163
+ cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
164
+ snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
165
+ snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
166
+ c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp
167
+ c2im = (c1re*c1im - s1re*s1im) >> (wp - 1)
168
+ s2re = (c1re*s1re - c1im*s1im) >> (wp - 1)
169
+ s2im = (c1re*s1im + c1im*s1re) >> (wp - 1)
170
+ t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
171
+ t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
172
+ t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
173
+ t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
174
+ cnre = t1
175
+ cnim = t2
176
+ snre = t3
177
+ snim = t4
178
+ n = 1
179
+ termre = c1re
180
+ termim = c1im
181
+ sre = c1re + ((are * cnre - aim * cnim) >> wp)
182
+ sim = c1im + ((are * cnim + aim * cnre) >> wp)
183
+ n = 3
184
+ termre = ((are * cnre - aim * cnim) >> wp)
185
+ termim = ((are * cnim + aim * cnre) >> wp)
186
+ sre = c1re + ((are * cnre - aim * cnim) >> wp)
187
+ sim = c1im + ((are * cnim + aim * cnre) >> wp)
188
+ n = 5
189
+ while are**2 + aim**2 > MIN:
190
+ bre, bim = (bre * x2re - bim * x2im) >> wp, \
191
+ (bre * x2im + bim * x2re) >> wp
192
+ are, aim = (are * bre - aim * bim) >> wp, \
193
+ (are * bim + aim * bre) >> wp
194
+ #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
195
+ t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
196
+ t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
197
+ t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
198
+ t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
199
+ cnre = t1
200
+ cnim = t2
201
+ snre = t3
202
+ snim = t4
203
+ termre = ((are * cnre - aim * cnim) >> wp)
204
+ termim = ((aim * cnre + are * cnim) >> wp)
205
+ sre += ((are * cnre - aim * cnim) >> wp)
206
+ sim += ((aim * cnre + are * cnim) >> wp)
207
+ n += 2
208
+ sre = (sre << 1)
209
+ sim = (sim << 1)
210
+ sre = ctx.ldexp(sre, -wp)
211
+ sim = ctx.ldexp(sim, -wp)
212
+ s = ctx.mpc(sre, sim)
213
+ s *= ctx.nthroot(q, 4)
214
+ return s
215
+
216
+ @defun
217
+ def _djacobi_theta2(ctx, z, q, nd):
218
+ MIN = 2
219
+ extra1 = 10
220
+ extra2 = 20
221
+ if (not ctx._im(q)) and (not ctx._im(z)):
222
+ wp = ctx.prec + extra1
223
+ x = ctx.to_fixed(ctx._re(q), wp)
224
+ x2 = (x*x) >> wp
225
+ a = b = x2
226
+ c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp)
227
+ cn = c1 = ctx.to_fixed(c1, wp)
228
+ sn = s1 = ctx.to_fixed(s1, wp)
229
+ c2 = (c1*c1 - s1*s1) >> wp
230
+ s2 = (c1 * s1) >> (wp - 1)
231
+ cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
232
+ if (nd&1):
233
+ s = s1 + ((a * sn * 3**nd) >> wp)
234
+ else:
235
+ s = c1 + ((a * cn * 3**nd) >> wp)
236
+ n = 2
237
+ while abs(a) > MIN:
238
+ b = (b*x2) >> wp
239
+ a = (a*b) >> wp
240
+ cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
241
+ if nd&1:
242
+ s += (a * sn * (2*n+1)**nd) >> wp
243
+ else:
244
+ s += (a * cn * (2*n+1)**nd) >> wp
245
+ n += 1
246
+ s = -(s << 1)
247
+ s = ctx.ldexp(s, -wp)
248
+ # case z real, q complex
249
+ elif not ctx._im(z):
250
+ wp = ctx.prec + extra2
251
+ xre = ctx.to_fixed(ctx._re(q), wp)
252
+ xim = ctx.to_fixed(ctx._im(q), wp)
253
+ x2re = (xre*xre - xim*xim) >> wp
254
+ x2im = (xre*xim) >> (wp - 1)
255
+ are = bre = x2re
256
+ aim = bim = x2im
257
+ c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp)
258
+ cn = c1 = ctx.to_fixed(c1, wp)
259
+ sn = s1 = ctx.to_fixed(s1, wp)
260
+ c2 = (c1*c1 - s1*s1) >> wp
261
+ s2 = (c1 * s1) >> (wp - 1)
262
+ cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
263
+ if (nd&1):
264
+ sre = s1 + ((are * sn * 3**nd) >> wp)
265
+ sim = ((aim * sn * 3**nd) >> wp)
266
+ else:
267
+ sre = c1 + ((are * cn * 3**nd) >> wp)
268
+ sim = ((aim * cn * 3**nd) >> wp)
269
+ n = 5
270
+ while are**2 + aim**2 > MIN:
271
+ bre, bim = (bre * x2re - bim * x2im) >> wp, \
272
+ (bre * x2im + bim * x2re) >> wp
273
+ are, aim = (are * bre - aim * bim) >> wp, \
274
+ (are * bim + aim * bre) >> wp
275
+ cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
276
+
277
+ if (nd&1):
278
+ sre += ((are * sn * n**nd) >> wp)
279
+ sim += ((aim * sn * n**nd) >> wp)
280
+ else:
281
+ sre += ((are * cn * n**nd) >> wp)
282
+ sim += ((aim * cn * n**nd) >> wp)
283
+ n += 2
284
+ sre = -(sre << 1)
285
+ sim = -(sim << 1)
286
+ sre = ctx.ldexp(sre, -wp)
287
+ sim = ctx.ldexp(sim, -wp)
288
+ s = ctx.mpc(sre, sim)
289
+ #case z complex, q real
290
+ elif not ctx._im(q):
291
+ wp = ctx.prec + extra2
292
+ x = ctx.to_fixed(ctx._re(q), wp)
293
+ x2 = (x*x) >> wp
294
+ a = b = x2
295
+ prec0 = ctx.prec
296
+ ctx.prec = wp
297
+ c1, s1 = ctx.cos_sin(z)
298
+ ctx.prec = prec0
299
+ cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
300
+ cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
301
+ snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
302
+ snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
303
+ #c2 = (c1*c1 - s1*s1) >> wp
304
+ c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp
305
+ c2im = (c1re*c1im - s1re*s1im) >> (wp - 1)
306
+ #s2 = (c1 * s1) >> (wp - 1)
307
+ s2re = (c1re*s1re - c1im*s1im) >> (wp - 1)
308
+ s2im = (c1re*s1im + c1im*s1re) >> (wp - 1)
309
+ #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
310
+ t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
311
+ t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
312
+ t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
313
+ t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
314
+ cnre = t1
315
+ cnim = t2
316
+ snre = t3
317
+ snim = t4
318
+ if (nd&1):
319
+ sre = s1re + ((a * snre * 3**nd) >> wp)
320
+ sim = s1im + ((a * snim * 3**nd) >> wp)
321
+ else:
322
+ sre = c1re + ((a * cnre * 3**nd) >> wp)
323
+ sim = c1im + ((a * cnim * 3**nd) >> wp)
324
+ n = 5
325
+ while abs(a) > MIN:
326
+ b = (b*x2) >> wp
327
+ a = (a*b) >> wp
328
+ t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
329
+ t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
330
+ t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
331
+ t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
332
+ cnre = t1
333
+ cnim = t2
334
+ snre = t3
335
+ snim = t4
336
+ if (nd&1):
337
+ sre += ((a * snre * n**nd) >> wp)
338
+ sim += ((a * snim * n**nd) >> wp)
339
+ else:
340
+ sre += ((a * cnre * n**nd) >> wp)
341
+ sim += ((a * cnim * n**nd) >> wp)
342
+ n += 2
343
+ sre = -(sre << 1)
344
+ sim = -(sim << 1)
345
+ sre = ctx.ldexp(sre, -wp)
346
+ sim = ctx.ldexp(sim, -wp)
347
+ s = ctx.mpc(sre, sim)
348
+ # case z and q complex
349
+ else:
350
+ wp = ctx.prec + extra2
351
+ xre = ctx.to_fixed(ctx._re(q), wp)
352
+ xim = ctx.to_fixed(ctx._im(q), wp)
353
+ x2re = (xre*xre - xim*xim) >> wp
354
+ x2im = (xre*xim) >> (wp - 1)
355
+ are = bre = x2re
356
+ aim = bim = x2im
357
+ prec0 = ctx.prec
358
+ ctx.prec = wp
359
+ # cos(2*z), sin(2*z) with z complex
360
+ c1, s1 = ctx.cos_sin(z)
361
+ ctx.prec = prec0
362
+ cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
363
+ cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
364
+ snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
365
+ snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
366
+ c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp
367
+ c2im = (c1re*c1im - s1re*s1im) >> (wp - 1)
368
+ s2re = (c1re*s1re - c1im*s1im) >> (wp - 1)
369
+ s2im = (c1re*s1im + c1im*s1re) >> (wp - 1)
370
+ t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
371
+ t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
372
+ t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
373
+ t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
374
+ cnre = t1
375
+ cnim = t2
376
+ snre = t3
377
+ snim = t4
378
+ if (nd&1):
379
+ sre = s1re + (((are * snre - aim * snim) * 3**nd) >> wp)
380
+ sim = s1im + (((are * snim + aim * snre)* 3**nd) >> wp)
381
+ else:
382
+ sre = c1re + (((are * cnre - aim * cnim) * 3**nd) >> wp)
383
+ sim = c1im + (((are * cnim + aim * cnre)* 3**nd) >> wp)
384
+ n = 5
385
+ while are**2 + aim**2 > MIN:
386
+ bre, bim = (bre * x2re - bim * x2im) >> wp, \
387
+ (bre * x2im + bim * x2re) >> wp
388
+ are, aim = (are * bre - aim * bim) >> wp, \
389
+ (are * bim + aim * bre) >> wp
390
+ #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
391
+ t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
392
+ t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
393
+ t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
394
+ t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
395
+ cnre = t1
396
+ cnim = t2
397
+ snre = t3
398
+ snim = t4
399
+ if (nd&1):
400
+ sre += (((are * snre - aim * snim) * n**nd) >> wp)
401
+ sim += (((aim * snre + are * snim) * n**nd) >> wp)
402
+ else:
403
+ sre += (((are * cnre - aim * cnim) * n**nd) >> wp)
404
+ sim += (((aim * cnre + are * cnim) * n**nd) >> wp)
405
+ n += 2
406
+ sre = -(sre << 1)
407
+ sim = -(sim << 1)
408
+ sre = ctx.ldexp(sre, -wp)
409
+ sim = ctx.ldexp(sim, -wp)
410
+ s = ctx.mpc(sre, sim)
411
+ s *= ctx.nthroot(q, 4)
412
+ if (nd&1):
413
+ return (-1)**(nd//2) * s
414
+ else:
415
+ return (-1)**(1 + nd//2) * s
416
+
417
+ @defun
418
+ def _jacobi_theta3(ctx, z, q):
419
+ extra1 = 10
420
+ extra2 = 20
421
+ MIN = 2
422
+ if z == ctx.zero:
423
+ if not ctx._im(q):
424
+ wp = ctx.prec + extra1
425
+ x = ctx.to_fixed(ctx._re(q), wp)
426
+ s = x
427
+ a = b = x
428
+ x2 = (x*x) >> wp
429
+ while abs(a) > MIN:
430
+ b = (b*x2) >> wp
431
+ a = (a*b) >> wp
432
+ s += a
433
+ s = (1 << wp) + (s << 1)
434
+ s = ctx.ldexp(s, -wp)
435
+ return s
436
+ else:
437
+ wp = ctx.prec + extra1
438
+ xre = ctx.to_fixed(ctx._re(q), wp)
439
+ xim = ctx.to_fixed(ctx._im(q), wp)
440
+ x2re = (xre*xre - xim*xim) >> wp
441
+ x2im = (xre*xim) >> (wp - 1)
442
+ sre = are = bre = xre
443
+ sim = aim = bim = xim
444
+ while are**2 + aim**2 > MIN:
445
+ bre, bim = (bre * x2re - bim * x2im) >> wp, \
446
+ (bre * x2im + bim * x2re) >> wp
447
+ are, aim = (are * bre - aim * bim) >> wp, \
448
+ (are * bim + aim * bre) >> wp
449
+ sre += are
450
+ sim += aim
451
+ sre = (1 << wp) + (sre << 1)
452
+ sim = (sim << 1)
453
+ sre = ctx.ldexp(sre, -wp)
454
+ sim = ctx.ldexp(sim, -wp)
455
+ s = ctx.mpc(sre, sim)
456
+ return s
457
+ else:
458
+ if (not ctx._im(q)) and (not ctx._im(z)):
459
+ s = 0
460
+ wp = ctx.prec + extra1
461
+ x = ctx.to_fixed(ctx._re(q), wp)
462
+ a = b = x
463
+ x2 = (x*x) >> wp
464
+ c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp)
465
+ c1 = ctx.to_fixed(c1, wp)
466
+ s1 = ctx.to_fixed(s1, wp)
467
+ cn = c1
468
+ sn = s1
469
+ s += (a * cn) >> wp
470
+ while abs(a) > MIN:
471
+ b = (b*x2) >> wp
472
+ a = (a*b) >> wp
473
+ cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
474
+ s += (a * cn) >> wp
475
+ s = (1 << wp) + (s << 1)
476
+ s = ctx.ldexp(s, -wp)
477
+ return s
478
+ # case z real, q complex
479
+ elif not ctx._im(z):
480
+ wp = ctx.prec + extra2
481
+ xre = ctx.to_fixed(ctx._re(q), wp)
482
+ xim = ctx.to_fixed(ctx._im(q), wp)
483
+ x2re = (xre*xre - xim*xim) >> wp
484
+ x2im = (xre*xim) >> (wp - 1)
485
+ are = bre = xre
486
+ aim = bim = xim
487
+ c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp)
488
+ c1 = ctx.to_fixed(c1, wp)
489
+ s1 = ctx.to_fixed(s1, wp)
490
+ cn = c1
491
+ sn = s1
492
+ sre = (are * cn) >> wp
493
+ sim = (aim * cn) >> wp
494
+ while are**2 + aim**2 > MIN:
495
+ bre, bim = (bre * x2re - bim * x2im) >> wp, \
496
+ (bre * x2im + bim * x2re) >> wp
497
+ are, aim = (are * bre - aim * bim) >> wp, \
498
+ (are * bim + aim * bre) >> wp
499
+ cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
500
+ sre += (are * cn) >> wp
501
+ sim += (aim * cn) >> wp
502
+ sre = (1 << wp) + (sre << 1)
503
+ sim = (sim << 1)
504
+ sre = ctx.ldexp(sre, -wp)
505
+ sim = ctx.ldexp(sim, -wp)
506
+ s = ctx.mpc(sre, sim)
507
+ return s
508
+ #case z complex, q real
509
+ elif not ctx._im(q):
510
+ wp = ctx.prec + extra2
511
+ x = ctx.to_fixed(ctx._re(q), wp)
512
+ a = b = x
513
+ x2 = (x*x) >> wp
514
+ prec0 = ctx.prec
515
+ ctx.prec = wp
516
+ c1, s1 = ctx.cos_sin(2*z)
517
+ ctx.prec = prec0
518
+ cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
519
+ cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
520
+ snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
521
+ snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
522
+ sre = (a * cnre) >> wp
523
+ sim = (a * cnim) >> wp
524
+ while abs(a) > MIN:
525
+ b = (b*x2) >> wp
526
+ a = (a*b) >> wp
527
+ t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp
528
+ t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp
529
+ t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp
530
+ t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp
531
+ cnre = t1
532
+ cnim = t2
533
+ snre = t3
534
+ snim = t4
535
+ sre += (a * cnre) >> wp
536
+ sim += (a * cnim) >> wp
537
+ sre = (1 << wp) + (sre << 1)
538
+ sim = (sim << 1)
539
+ sre = ctx.ldexp(sre, -wp)
540
+ sim = ctx.ldexp(sim, -wp)
541
+ s = ctx.mpc(sre, sim)
542
+ return s
543
+ # case z and q complex
544
+ else:
545
+ wp = ctx.prec + extra2
546
+ xre = ctx.to_fixed(ctx._re(q), wp)
547
+ xim = ctx.to_fixed(ctx._im(q), wp)
548
+ x2re = (xre*xre - xim*xim) >> wp
549
+ x2im = (xre*xim) >> (wp - 1)
550
+ are = bre = xre
551
+ aim = bim = xim
552
+ prec0 = ctx.prec
553
+ ctx.prec = wp
554
+ # cos(2*z), sin(2*z) with z complex
555
+ c1, s1 = ctx.cos_sin(2*z)
556
+ ctx.prec = prec0
557
+ cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
558
+ cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
559
+ snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
560
+ snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
561
+ sre = (are * cnre - aim * cnim) >> wp
562
+ sim = (aim * cnre + are * cnim) >> wp
563
+ while are**2 + aim**2 > MIN:
564
+ bre, bim = (bre * x2re - bim * x2im) >> wp, \
565
+ (bre * x2im + bim * x2re) >> wp
566
+ are, aim = (are * bre - aim * bim) >> wp, \
567
+ (are * bim + aim * bre) >> wp
568
+ t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp
569
+ t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp
570
+ t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp
571
+ t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp
572
+ cnre = t1
573
+ cnim = t2
574
+ snre = t3
575
+ snim = t4
576
+ sre += (are * cnre - aim * cnim) >> wp
577
+ sim += (aim * cnre + are * cnim) >> wp
578
+ sre = (1 << wp) + (sre << 1)
579
+ sim = (sim << 1)
580
+ sre = ctx.ldexp(sre, -wp)
581
+ sim = ctx.ldexp(sim, -wp)
582
+ s = ctx.mpc(sre, sim)
583
+ return s
584
+
585
+ @defun
586
+ def _djacobi_theta3(ctx, z, q, nd):
587
+ """nd=1,2,3 order of the derivative with respect to z"""
588
+ MIN = 2
589
+ extra1 = 10
590
+ extra2 = 20
591
+ if (not ctx._im(q)) and (not ctx._im(z)):
592
+ s = 0
593
+ wp = ctx.prec + extra1
594
+ x = ctx.to_fixed(ctx._re(q), wp)
595
+ a = b = x
596
+ x2 = (x*x) >> wp
597
+ c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp)
598
+ c1 = ctx.to_fixed(c1, wp)
599
+ s1 = ctx.to_fixed(s1, wp)
600
+ cn = c1
601
+ sn = s1
602
+ if (nd&1):
603
+ s += (a * sn) >> wp
604
+ else:
605
+ s += (a * cn) >> wp
606
+ n = 2
607
+ while abs(a) > MIN:
608
+ b = (b*x2) >> wp
609
+ a = (a*b) >> wp
610
+ cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
611
+ if nd&1:
612
+ s += (a * sn * n**nd) >> wp
613
+ else:
614
+ s += (a * cn * n**nd) >> wp
615
+ n += 1
616
+ s = -(s << (nd+1))
617
+ s = ctx.ldexp(s, -wp)
618
+ # case z real, q complex
619
+ elif not ctx._im(z):
620
+ wp = ctx.prec + extra2
621
+ xre = ctx.to_fixed(ctx._re(q), wp)
622
+ xim = ctx.to_fixed(ctx._im(q), wp)
623
+ x2re = (xre*xre - xim*xim) >> wp
624
+ x2im = (xre*xim) >> (wp - 1)
625
+ are = bre = xre
626
+ aim = bim = xim
627
+ c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp)
628
+ c1 = ctx.to_fixed(c1, wp)
629
+ s1 = ctx.to_fixed(s1, wp)
630
+ cn = c1
631
+ sn = s1
632
+ if (nd&1):
633
+ sre = (are * sn) >> wp
634
+ sim = (aim * sn) >> wp
635
+ else:
636
+ sre = (are * cn) >> wp
637
+ sim = (aim * cn) >> wp
638
+ n = 2
639
+ while are**2 + aim**2 > MIN:
640
+ bre, bim = (bre * x2re - bim * x2im) >> wp, \
641
+ (bre * x2im + bim * x2re) >> wp
642
+ are, aim = (are * bre - aim * bim) >> wp, \
643
+ (are * bim + aim * bre) >> wp
644
+ cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
645
+ if nd&1:
646
+ sre += (are * sn * n**nd) >> wp
647
+ sim += (aim * sn * n**nd) >> wp
648
+ else:
649
+ sre += (are * cn * n**nd) >> wp
650
+ sim += (aim * cn * n**nd) >> wp
651
+ n += 1
652
+ sre = -(sre << (nd+1))
653
+ sim = -(sim << (nd+1))
654
+ sre = ctx.ldexp(sre, -wp)
655
+ sim = ctx.ldexp(sim, -wp)
656
+ s = ctx.mpc(sre, sim)
657
+ #case z complex, q real
658
+ elif not ctx._im(q):
659
+ wp = ctx.prec + extra2
660
+ x = ctx.to_fixed(ctx._re(q), wp)
661
+ a = b = x
662
+ x2 = (x*x) >> wp
663
+ prec0 = ctx.prec
664
+ ctx.prec = wp
665
+ c1, s1 = ctx.cos_sin(2*z)
666
+ ctx.prec = prec0
667
+ cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
668
+ cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
669
+ snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
670
+ snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
671
+ if (nd&1):
672
+ sre = (a * snre) >> wp
673
+ sim = (a * snim) >> wp
674
+ else:
675
+ sre = (a * cnre) >> wp
676
+ sim = (a * cnim) >> wp
677
+ n = 2
678
+ while abs(a) > MIN:
679
+ b = (b*x2) >> wp
680
+ a = (a*b) >> wp
681
+ t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp
682
+ t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp
683
+ t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp
684
+ t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp
685
+ cnre = t1
686
+ cnim = t2
687
+ snre = t3
688
+ snim = t4
689
+ if (nd&1):
690
+ sre += (a * snre * n**nd) >> wp
691
+ sim += (a * snim * n**nd) >> wp
692
+ else:
693
+ sre += (a * cnre * n**nd) >> wp
694
+ sim += (a * cnim * n**nd) >> wp
695
+ n += 1
696
+ sre = -(sre << (nd+1))
697
+ sim = -(sim << (nd+1))
698
+ sre = ctx.ldexp(sre, -wp)
699
+ sim = ctx.ldexp(sim, -wp)
700
+ s = ctx.mpc(sre, sim)
701
+ # case z and q complex
702
+ else:
703
+ wp = ctx.prec + extra2
704
+ xre = ctx.to_fixed(ctx._re(q), wp)
705
+ xim = ctx.to_fixed(ctx._im(q), wp)
706
+ x2re = (xre*xre - xim*xim) >> wp
707
+ x2im = (xre*xim) >> (wp - 1)
708
+ are = bre = xre
709
+ aim = bim = xim
710
+ prec0 = ctx.prec
711
+ ctx.prec = wp
712
+ # cos(2*z), sin(2*z) with z complex
713
+ c1, s1 = ctx.cos_sin(2*z)
714
+ ctx.prec = prec0
715
+ cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
716
+ cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
717
+ snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
718
+ snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
719
+ if (nd&1):
720
+ sre = (are * snre - aim * snim) >> wp
721
+ sim = (aim * snre + are * snim) >> wp
722
+ else:
723
+ sre = (are * cnre - aim * cnim) >> wp
724
+ sim = (aim * cnre + are * cnim) >> wp
725
+ n = 2
726
+ while are**2 + aim**2 > MIN:
727
+ bre, bim = (bre * x2re - bim * x2im) >> wp, \
728
+ (bre * x2im + bim * x2re) >> wp
729
+ are, aim = (are * bre - aim * bim) >> wp, \
730
+ (are * bim + aim * bre) >> wp
731
+ t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp
732
+ t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp
733
+ t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp
734
+ t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp
735
+ cnre = t1
736
+ cnim = t2
737
+ snre = t3
738
+ snim = t4
739
+ if(nd&1):
740
+ sre += ((are * snre - aim * snim) * n**nd) >> wp
741
+ sim += ((aim * snre + are * snim) * n**nd) >> wp
742
+ else:
743
+ sre += ((are * cnre - aim * cnim) * n**nd) >> wp
744
+ sim += ((aim * cnre + are * cnim) * n**nd) >> wp
745
+ n += 1
746
+ sre = -(sre << (nd+1))
747
+ sim = -(sim << (nd+1))
748
+ sre = ctx.ldexp(sre, -wp)
749
+ sim = ctx.ldexp(sim, -wp)
750
+ s = ctx.mpc(sre, sim)
751
+ if (nd&1):
752
+ return (-1)**(nd//2) * s
753
+ else:
754
+ return (-1)**(1 + nd//2) * s
755
+
756
+ @defun
757
+ def _jacobi_theta2a(ctx, z, q):
758
+ """
759
+ case ctx._im(z) != 0
760
+ theta(2, z, q) =
761
+ q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n=-inf, inf)
762
+ max term for minimum (2*n+1)*log(q).real - 2* ctx._im(z)
763
+ n0 = int(ctx._im(z)/log(q).real - 1/2)
764
+ theta(2, z, q) =
765
+ q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n=n0, inf) +
766
+ q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n, n0-1, -inf)
767
+ """
768
+ n = n0 = int(ctx._im(z)/ctx._re(ctx.log(q)) - 1/2)
769
+ e2 = ctx.expj(2*z)
770
+ e = e0 = ctx.expj((2*n+1)*z)
771
+ a = q**(n*n + n)
772
+ # leading term
773
+ term = a * e
774
+ s = term
775
+ eps1 = ctx.eps*abs(term)
776
+ while 1:
777
+ n += 1
778
+ e = e * e2
779
+ term = q**(n*n + n) * e
780
+ if abs(term) < eps1:
781
+ break
782
+ s += term
783
+ e = e0
784
+ e2 = ctx.expj(-2*z)
785
+ n = n0
786
+ while 1:
787
+ n -= 1
788
+ e = e * e2
789
+ term = q**(n*n + n) * e
790
+ if abs(term) < eps1:
791
+ break
792
+ s += term
793
+ s = s * ctx.nthroot(q, 4)
794
+ return s
795
+
796
+ @defun
797
+ def _jacobi_theta3a(ctx, z, q):
798
+ """
799
+ case ctx._im(z) != 0
800
+ theta3(z, q) = Sum(q**(n*n) * exp(j*2*n*z), n, -inf, inf)
801
+ max term for n*abs(log(q).real) + ctx._im(z) ~= 0
802
+ n0 = int(- ctx._im(z)/abs(log(q).real))
803
+ """
804
+ n = n0 = int(-ctx._im(z)/abs(ctx._re(ctx.log(q))))
805
+ e2 = ctx.expj(2*z)
806
+ e = e0 = ctx.expj(2*n*z)
807
+ s = term = q**(n*n) * e
808
+ eps1 = ctx.eps*abs(term)
809
+ while 1:
810
+ n += 1
811
+ e = e * e2
812
+ term = q**(n*n) * e
813
+ if abs(term) < eps1:
814
+ break
815
+ s += term
816
+ e = e0
817
+ e2 = ctx.expj(-2*z)
818
+ n = n0
819
+ while 1:
820
+ n -= 1
821
+ e = e * e2
822
+ term = q**(n*n) * e
823
+ if abs(term) < eps1:
824
+ break
825
+ s += term
826
+ return s
827
+
828
+ @defun
829
+ def _djacobi_theta2a(ctx, z, q, nd):
830
+ """
831
+ case ctx._im(z) != 0
832
+ dtheta(2, z, q, nd) =
833
+ j* q**1/4 * Sum(q**(n*n + n) * (2*n+1)*exp(j*(2*n + 1)*z), n=-inf, inf)
834
+ max term for (2*n0+1)*log(q).real - 2* ctx._im(z) ~= 0
835
+ n0 = int(ctx._im(z)/log(q).real - 1/2)
836
+ """
837
+ n = n0 = int(ctx._im(z)/ctx._re(ctx.log(q)) - 1/2)
838
+ e2 = ctx.expj(2*z)
839
+ e = e0 = ctx.expj((2*n + 1)*z)
840
+ a = q**(n*n + n)
841
+ # leading term
842
+ term = (2*n+1)**nd * a * e
843
+ s = term
844
+ eps1 = ctx.eps*abs(term)
845
+ while 1:
846
+ n += 1
847
+ e = e * e2
848
+ term = (2*n+1)**nd * q**(n*n + n) * e
849
+ if abs(term) < eps1:
850
+ break
851
+ s += term
852
+ e = e0
853
+ e2 = ctx.expj(-2*z)
854
+ n = n0
855
+ while 1:
856
+ n -= 1
857
+ e = e * e2
858
+ term = (2*n+1)**nd * q**(n*n + n) * e
859
+ if abs(term) < eps1:
860
+ break
861
+ s += term
862
+ return ctx.j**nd * s * ctx.nthroot(q, 4)
863
+
864
+ @defun
865
+ def _djacobi_theta3a(ctx, z, q, nd):
866
+ """
867
+ case ctx._im(z) != 0
868
+ djtheta3(z, q, nd) = (2*j)**nd *
869
+ Sum(q**(n*n) * n**nd * exp(j*2*n*z), n, -inf, inf)
870
+ max term for minimum n*abs(log(q).real) + ctx._im(z)
871
+ """
872
+ n = n0 = int(-ctx._im(z)/abs(ctx._re(ctx.log(q))))
873
+ e2 = ctx.expj(2*z)
874
+ e = e0 = ctx.expj(2*n*z)
875
+ a = q**(n*n) * e
876
+ s = term = n**nd * a
877
+ if n != 0:
878
+ eps1 = ctx.eps*abs(term)
879
+ else:
880
+ eps1 = ctx.eps*abs(a)
881
+ while 1:
882
+ n += 1
883
+ e = e * e2
884
+ a = q**(n*n) * e
885
+ term = n**nd * a
886
+ if n != 0:
887
+ aterm = abs(term)
888
+ else:
889
+ aterm = abs(a)
890
+ if aterm < eps1:
891
+ break
892
+ s += term
893
+ e = e0
894
+ e2 = ctx.expj(-2*z)
895
+ n = n0
896
+ while 1:
897
+ n -= 1
898
+ e = e * e2
899
+ a = q**(n*n) * e
900
+ term = n**nd * a
901
+ if n != 0:
902
+ aterm = abs(term)
903
+ else:
904
+ aterm = abs(a)
905
+ if aterm < eps1:
906
+ break
907
+ s += term
908
+ return (2*ctx.j)**nd * s
909
+
910
+ @defun
911
+ def jtheta(ctx, n, z, q, derivative=0):
912
+ if derivative:
913
+ return ctx._djtheta(n, z, q, derivative)
914
+
915
+ z = ctx.convert(z)
916
+ q = ctx.convert(q)
917
+
918
+ # Implementation note
919
+ # If ctx._im(z) is close to zero, _jacobi_theta2 and _jacobi_theta3
920
+ # are used,
921
+ # which compute the series starting from n=0 using fixed precision
922
+ # numbers;
923
+ # otherwise _jacobi_theta2a and _jacobi_theta3a are used, which compute
924
+ # the series starting from n=n0, which is the largest term.
925
+
926
+ # TODO: write _jacobi_theta2a and _jacobi_theta3a using fixed-point
927
+
928
+ if abs(q) > ctx.THETA_Q_LIM:
929
+ raise ValueError('abs(q) > THETA_Q_LIM = %f' % ctx.THETA_Q_LIM)
930
+
931
+ extra = 10
932
+ if z:
933
+ M = ctx.mag(z)
934
+ if M > 5 or (n == 1 and M < -5):
935
+ extra += 2*abs(M)
936
+ cz = 0.5
937
+ extra2 = 50
938
+ prec0 = ctx.prec
939
+ try:
940
+ ctx.prec += extra
941
+ if n == 1:
942
+ if ctx._im(z):
943
+ if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
944
+ ctx.dps += extra2
945
+ res = ctx._jacobi_theta2(z - ctx.pi/2, q)
946
+ else:
947
+ ctx.dps += 10
948
+ res = ctx._jacobi_theta2a(z - ctx.pi/2, q)
949
+ else:
950
+ res = ctx._jacobi_theta2(z - ctx.pi/2, q)
951
+ elif n == 2:
952
+ if ctx._im(z):
953
+ if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
954
+ ctx.dps += extra2
955
+ res = ctx._jacobi_theta2(z, q)
956
+ else:
957
+ ctx.dps += 10
958
+ res = ctx._jacobi_theta2a(z, q)
959
+ else:
960
+ res = ctx._jacobi_theta2(z, q)
961
+ elif n == 3:
962
+ if ctx._im(z):
963
+ if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
964
+ ctx.dps += extra2
965
+ res = ctx._jacobi_theta3(z, q)
966
+ else:
967
+ ctx.dps += 10
968
+ res = ctx._jacobi_theta3a(z, q)
969
+ else:
970
+ res = ctx._jacobi_theta3(z, q)
971
+ elif n == 4:
972
+ if ctx._im(z):
973
+ if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
974
+ ctx.dps += extra2
975
+ res = ctx._jacobi_theta3(z, -q)
976
+ else:
977
+ ctx.dps += 10
978
+ res = ctx._jacobi_theta3a(z, -q)
979
+ else:
980
+ res = ctx._jacobi_theta3(z, -q)
981
+ else:
982
+ raise ValueError
983
+ finally:
984
+ ctx.prec = prec0
985
+ return res
986
+
987
+ @defun
988
+ def _djtheta(ctx, n, z, q, derivative=1):
989
+ z = ctx.convert(z)
990
+ q = ctx.convert(q)
991
+ nd = int(derivative)
992
+
993
+ if abs(q) > ctx.THETA_Q_LIM:
994
+ raise ValueError('abs(q) > THETA_Q_LIM = %f' % ctx.THETA_Q_LIM)
995
+ extra = 10 + ctx.prec * nd // 10
996
+ if z:
997
+ M = ctx.mag(z)
998
+ if M > 5 or (n != 1 and M < -5):
999
+ extra += 2*abs(M)
1000
+ cz = 0.5
1001
+ extra2 = 50
1002
+ prec0 = ctx.prec
1003
+ try:
1004
+ ctx.prec += extra
1005
+ if n == 1:
1006
+ if ctx._im(z):
1007
+ if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
1008
+ ctx.dps += extra2
1009
+ res = ctx._djacobi_theta2(z - ctx.pi/2, q, nd)
1010
+ else:
1011
+ ctx.dps += 10
1012
+ res = ctx._djacobi_theta2a(z - ctx.pi/2, q, nd)
1013
+ else:
1014
+ res = ctx._djacobi_theta2(z - ctx.pi/2, q, nd)
1015
+ elif n == 2:
1016
+ if ctx._im(z):
1017
+ if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
1018
+ ctx.dps += extra2
1019
+ res = ctx._djacobi_theta2(z, q, nd)
1020
+ else:
1021
+ ctx.dps += 10
1022
+ res = ctx._djacobi_theta2a(z, q, nd)
1023
+ else:
1024
+ res = ctx._djacobi_theta2(z, q, nd)
1025
+ elif n == 3:
1026
+ if ctx._im(z):
1027
+ if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
1028
+ ctx.dps += extra2
1029
+ res = ctx._djacobi_theta3(z, q, nd)
1030
+ else:
1031
+ ctx.dps += 10
1032
+ res = ctx._djacobi_theta3a(z, q, nd)
1033
+ else:
1034
+ res = ctx._djacobi_theta3(z, q, nd)
1035
+ elif n == 4:
1036
+ if ctx._im(z):
1037
+ if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
1038
+ ctx.dps += extra2
1039
+ res = ctx._djacobi_theta3(z, -q, nd)
1040
+ else:
1041
+ ctx.dps += 10
1042
+ res = ctx._djacobi_theta3a(z, -q, nd)
1043
+ else:
1044
+ res = ctx._djacobi_theta3(z, -q, nd)
1045
+ else:
1046
+ raise ValueError
1047
+ finally:
1048
+ ctx.prec = prec0
1049
+ return +res
venv/lib/python3.10/site-packages/mpmath/functions/zeta.py ADDED
@@ -0,0 +1,1154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+
3
+ from ..libmp.backend import xrange
4
+ from .functions import defun, defun_wrapped, defun_static
5
+
6
+ @defun
7
+ def stieltjes(ctx, n, a=1):
8
+ n = ctx.convert(n)
9
+ a = ctx.convert(a)
10
+ if n < 0:
11
+ return ctx.bad_domain("Stieltjes constants defined for n >= 0")
12
+ if hasattr(ctx, "stieltjes_cache"):
13
+ stieltjes_cache = ctx.stieltjes_cache
14
+ else:
15
+ stieltjes_cache = ctx.stieltjes_cache = {}
16
+ if a == 1:
17
+ if n == 0:
18
+ return +ctx.euler
19
+ if n in stieltjes_cache:
20
+ prec, s = stieltjes_cache[n]
21
+ if prec >= ctx.prec:
22
+ return +s
23
+ mag = 1
24
+ def f(x):
25
+ xa = x/a
26
+ v = (xa-ctx.j)*ctx.ln(a-ctx.j*x)**n/(1+xa**2)/(ctx.exp(2*ctx.pi*x)-1)
27
+ return ctx._re(v) / mag
28
+ orig = ctx.prec
29
+ try:
30
+ # Normalize integrand by approx. magnitude to
31
+ # speed up quadrature (which uses absolute error)
32
+ if n > 50:
33
+ ctx.prec = 20
34
+ mag = ctx.quad(f, [0,ctx.inf], maxdegree=3)
35
+ ctx.prec = orig + 10 + int(n**0.5)
36
+ s = ctx.quad(f, [0,ctx.inf], maxdegree=20)
37
+ v = ctx.ln(a)**n/(2*a) - ctx.ln(a)**(n+1)/(n+1) + 2*s/a*mag
38
+ finally:
39
+ ctx.prec = orig
40
+ if a == 1 and ctx.isint(n):
41
+ stieltjes_cache[n] = (ctx.prec, v)
42
+ return +v
43
+
44
+ @defun_wrapped
45
+ def siegeltheta(ctx, t, derivative=0):
46
+ d = int(derivative)
47
+ if (t == ctx.inf or t == ctx.ninf):
48
+ if d < 2:
49
+ if t == ctx.ninf and d == 0:
50
+ return ctx.ninf
51
+ return ctx.inf
52
+ else:
53
+ return ctx.zero
54
+ if d == 0:
55
+ if ctx._im(t):
56
+ # XXX: cancellation occurs
57
+ a = ctx.loggamma(0.25+0.5j*t)
58
+ b = ctx.loggamma(0.25-0.5j*t)
59
+ return -ctx.ln(ctx.pi)/2*t - 0.5j*(a-b)
60
+ else:
61
+ if ctx.isinf(t):
62
+ return t
63
+ return ctx._im(ctx.loggamma(0.25+0.5j*t)) - ctx.ln(ctx.pi)/2*t
64
+ if d > 0:
65
+ a = (-0.5j)**(d-1)*ctx.polygamma(d-1, 0.25-0.5j*t)
66
+ b = (0.5j)**(d-1)*ctx.polygamma(d-1, 0.25+0.5j*t)
67
+ if ctx._im(t):
68
+ if d == 1:
69
+ return -0.5*ctx.log(ctx.pi)+0.25*(a+b)
70
+ else:
71
+ return 0.25*(a+b)
72
+ else:
73
+ if d == 1:
74
+ return ctx._re(-0.5*ctx.log(ctx.pi)+0.25*(a+b))
75
+ else:
76
+ return ctx._re(0.25*(a+b))
77
+
78
+ @defun_wrapped
79
+ def grampoint(ctx, n):
80
+ # asymptotic expansion, from
81
+ # http://mathworld.wolfram.com/GramPoint.html
82
+ g = 2*ctx.pi*ctx.exp(1+ctx.lambertw((8*n+1)/(8*ctx.e)))
83
+ return ctx.findroot(lambda t: ctx.siegeltheta(t)-ctx.pi*n, g)
84
+
85
+
86
+ @defun_wrapped
87
+ def siegelz(ctx, t, **kwargs):
88
+ d = int(kwargs.get("derivative", 0))
89
+ t = ctx.convert(t)
90
+ t1 = ctx._re(t)
91
+ t2 = ctx._im(t)
92
+ prec = ctx.prec
93
+ try:
94
+ if abs(t1) > 500*prec and t2**2 < t1:
95
+ v = ctx.rs_z(t, d)
96
+ if ctx._is_real_type(t):
97
+ return ctx._re(v)
98
+ return v
99
+ except NotImplementedError:
100
+ pass
101
+ ctx.prec += 21
102
+ e1 = ctx.expj(ctx.siegeltheta(t))
103
+ z = ctx.zeta(0.5+ctx.j*t)
104
+ if d == 0:
105
+ v = e1*z
106
+ ctx.prec=prec
107
+ if ctx._is_real_type(t):
108
+ return ctx._re(v)
109
+ return +v
110
+ z1 = ctx.zeta(0.5+ctx.j*t, derivative=1)
111
+ theta1 = ctx.siegeltheta(t, derivative=1)
112
+ if d == 1:
113
+ v = ctx.j*e1*(z1+z*theta1)
114
+ ctx.prec=prec
115
+ if ctx._is_real_type(t):
116
+ return ctx._re(v)
117
+ return +v
118
+ z2 = ctx.zeta(0.5+ctx.j*t, derivative=2)
119
+ theta2 = ctx.siegeltheta(t, derivative=2)
120
+ comb1 = theta1**2-ctx.j*theta2
121
+ if d == 2:
122
+ def terms():
123
+ return [2*z1*theta1, z2, z*comb1]
124
+ v = ctx.sum_accurately(terms, 1)
125
+ v = -e1*v
126
+ ctx.prec = prec
127
+ if ctx._is_real_type(t):
128
+ return ctx._re(v)
129
+ return +v
130
+ ctx.prec += 10
131
+ z3 = ctx.zeta(0.5+ctx.j*t, derivative=3)
132
+ theta3 = ctx.siegeltheta(t, derivative=3)
133
+ comb2 = theta1**3-3*ctx.j*theta1*theta2-theta3
134
+ if d == 3:
135
+ def terms():
136
+ return [3*theta1*z2, 3*z1*comb1, z3+z*comb2]
137
+ v = ctx.sum_accurately(terms, 1)
138
+ v = -ctx.j*e1*v
139
+ ctx.prec = prec
140
+ if ctx._is_real_type(t):
141
+ return ctx._re(v)
142
+ return +v
143
+ z4 = ctx.zeta(0.5+ctx.j*t, derivative=4)
144
+ theta4 = ctx.siegeltheta(t, derivative=4)
145
+ def terms():
146
+ return [theta1**4, -6*ctx.j*theta1**2*theta2, -3*theta2**2,
147
+ -4*theta1*theta3, ctx.j*theta4]
148
+ comb3 = ctx.sum_accurately(terms, 1)
149
+ if d == 4:
150
+ def terms():
151
+ return [6*theta1**2*z2, -6*ctx.j*z2*theta2, 4*theta1*z3,
152
+ 4*z1*comb2, z4, z*comb3]
153
+ v = ctx.sum_accurately(terms, 1)
154
+ v = e1*v
155
+ ctx.prec = prec
156
+ if ctx._is_real_type(t):
157
+ return ctx._re(v)
158
+ return +v
159
+ if d > 4:
160
+ h = lambda x: ctx.siegelz(x, derivative=4)
161
+ return ctx.diff(h, t, n=d-4)
162
+
163
+
164
+ _zeta_zeros = [
165
+ 14.134725142,21.022039639,25.010857580,30.424876126,32.935061588,
166
+ 37.586178159,40.918719012,43.327073281,48.005150881,49.773832478,
167
+ 52.970321478,56.446247697,59.347044003,60.831778525,65.112544048,
168
+ 67.079810529,69.546401711,72.067157674,75.704690699,77.144840069,
169
+ 79.337375020,82.910380854,84.735492981,87.425274613,88.809111208,
170
+ 92.491899271,94.651344041,95.870634228,98.831194218,101.317851006,
171
+ 103.725538040,105.446623052,107.168611184,111.029535543,111.874659177,
172
+ 114.320220915,116.226680321,118.790782866,121.370125002,122.946829294,
173
+ 124.256818554,127.516683880,129.578704200,131.087688531,133.497737203,
174
+ 134.756509753,138.116042055,139.736208952,141.123707404,143.111845808,
175
+ 146.000982487,147.422765343,150.053520421,150.925257612,153.024693811,
176
+ 156.112909294,157.597591818,158.849988171,161.188964138,163.030709687,
177
+ 165.537069188,167.184439978,169.094515416,169.911976479,173.411536520,
178
+ 174.754191523,176.441434298,178.377407776,179.916484020,182.207078484,
179
+ 184.874467848,185.598783678,187.228922584,189.416158656,192.026656361,
180
+ 193.079726604,195.265396680,196.876481841,198.015309676,201.264751944,
181
+ 202.493594514,204.189671803,205.394697202,207.906258888,209.576509717,
182
+ 211.690862595,213.347919360,214.547044783,216.169538508,219.067596349,
183
+ 220.714918839,221.430705555,224.007000255,224.983324670,227.421444280,
184
+ 229.337413306,231.250188700,231.987235253,233.693404179,236.524229666,
185
+ ]
186
+
187
+ def _load_zeta_zeros(url):
188
+ import urllib
189
+ d = urllib.urlopen(url)
190
+ L = [float(x) for x in d.readlines()]
191
+ # Sanity check
192
+ assert round(L[0]) == 14
193
+ _zeta_zeros[:] = L
194
+
195
+ @defun
196
+ def oldzetazero(ctx, n, url='http://www.dtc.umn.edu/~odlyzko/zeta_tables/zeros1'):
197
+ n = int(n)
198
+ if n < 0:
199
+ return ctx.zetazero(-n).conjugate()
200
+ if n == 0:
201
+ raise ValueError("n must be nonzero")
202
+ if n > len(_zeta_zeros) and n <= 100000:
203
+ _load_zeta_zeros(url)
204
+ if n > len(_zeta_zeros):
205
+ raise NotImplementedError("n too large for zetazeros")
206
+ return ctx.mpc(0.5, ctx.findroot(ctx.siegelz, _zeta_zeros[n-1]))
207
+
208
+ @defun_wrapped
209
+ def riemannr(ctx, x):
210
+ if x == 0:
211
+ return ctx.zero
212
+ # Check if a simple asymptotic estimate is accurate enough
213
+ if abs(x) > 1000:
214
+ a = ctx.li(x)
215
+ b = 0.5*ctx.li(ctx.sqrt(x))
216
+ if abs(b) < abs(a)*ctx.eps:
217
+ return a
218
+ if abs(x) < 0.01:
219
+ # XXX
220
+ ctx.prec += int(-ctx.log(abs(x),2))
221
+ # Sum Gram's series
222
+ s = t = ctx.one
223
+ u = ctx.ln(x)
224
+ k = 1
225
+ while abs(t) > abs(s)*ctx.eps:
226
+ t = t * u / k
227
+ s += t / (k * ctx._zeta_int(k+1))
228
+ k += 1
229
+ return s
230
+
231
+ @defun_static
232
+ def primepi(ctx, x):
233
+ x = int(x)
234
+ if x < 2:
235
+ return 0
236
+ return len(ctx.list_primes(x))
237
+
238
+ # TODO: fix the interface wrt contexts
239
+ @defun_wrapped
240
+ def primepi2(ctx, x):
241
+ x = int(x)
242
+ if x < 2:
243
+ return ctx._iv.zero
244
+ if x < 2657:
245
+ return ctx._iv.mpf(ctx.primepi(x))
246
+ mid = ctx.li(x)
247
+ # Schoenfeld's estimate for x >= 2657, assuming RH
248
+ err = ctx.sqrt(x,rounding='u')*ctx.ln(x,rounding='u')/8/ctx.pi(rounding='d')
249
+ a = ctx.floor((ctx._iv.mpf(mid)-err).a, rounding='d')
250
+ b = ctx.ceil((ctx._iv.mpf(mid)+err).b, rounding='u')
251
+ return ctx._iv.mpf([a,b])
252
+
253
+ @defun_wrapped
254
+ def primezeta(ctx, s):
255
+ if ctx.isnan(s):
256
+ return s
257
+ if ctx.re(s) <= 0:
258
+ raise ValueError("prime zeta function defined only for re(s) > 0")
259
+ if s == 1:
260
+ return ctx.inf
261
+ if s == 0.5:
262
+ return ctx.mpc(ctx.ninf, ctx.pi)
263
+ r = ctx.re(s)
264
+ if r > ctx.prec:
265
+ return 0.5**s
266
+ else:
267
+ wp = ctx.prec + int(r)
268
+ def terms():
269
+ orig = ctx.prec
270
+ # zeta ~ 1+eps; need to set precision
271
+ # to get logarithm accurately
272
+ k = 0
273
+ while 1:
274
+ k += 1
275
+ u = ctx.moebius(k)
276
+ if not u:
277
+ continue
278
+ ctx.prec = wp
279
+ t = u*ctx.ln(ctx.zeta(k*s))/k
280
+ if not t:
281
+ return
282
+ #print ctx.prec, ctx.nstr(t)
283
+ ctx.prec = orig
284
+ yield t
285
+ return ctx.sum_accurately(terms)
286
+
287
+ # TODO: for bernpoly and eulerpoly, ensure that all exact zeros are covered
288
+
289
+ @defun_wrapped
290
+ def bernpoly(ctx, n, z):
291
+ # Slow implementation:
292
+ #return sum(ctx.binomial(n,k)*ctx.bernoulli(k)*z**(n-k) for k in xrange(0,n+1))
293
+ n = int(n)
294
+ if n < 0:
295
+ raise ValueError("Bernoulli polynomials only defined for n >= 0")
296
+ if z == 0 or (z == 1 and n > 1):
297
+ return ctx.bernoulli(n)
298
+ if z == 0.5:
299
+ return (ctx.ldexp(1,1-n)-1)*ctx.bernoulli(n)
300
+ if n <= 3:
301
+ if n == 0: return z ** 0
302
+ if n == 1: return z - 0.5
303
+ if n == 2: return (6*z*(z-1)+1)/6
304
+ if n == 3: return z*(z*(z-1.5)+0.5)
305
+ if ctx.isinf(z):
306
+ return z ** n
307
+ if ctx.isnan(z):
308
+ return z
309
+ if abs(z) > 2:
310
+ def terms():
311
+ t = ctx.one
312
+ yield t
313
+ r = ctx.one/z
314
+ k = 1
315
+ while k <= n:
316
+ t = t*(n+1-k)/k*r
317
+ if not (k > 2 and k & 1):
318
+ yield t*ctx.bernoulli(k)
319
+ k += 1
320
+ return ctx.sum_accurately(terms) * z**n
321
+ else:
322
+ def terms():
323
+ yield ctx.bernoulli(n)
324
+ t = ctx.one
325
+ k = 1
326
+ while k <= n:
327
+ t = t*(n+1-k)/k * z
328
+ m = n-k
329
+ if not (m > 2 and m & 1):
330
+ yield t*ctx.bernoulli(m)
331
+ k += 1
332
+ return ctx.sum_accurately(terms)
333
+
334
+ @defun_wrapped
335
+ def eulerpoly(ctx, n, z):
336
+ n = int(n)
337
+ if n < 0:
338
+ raise ValueError("Euler polynomials only defined for n >= 0")
339
+ if n <= 2:
340
+ if n == 0: return z ** 0
341
+ if n == 1: return z - 0.5
342
+ if n == 2: return z*(z-1)
343
+ if ctx.isinf(z):
344
+ return z**n
345
+ if ctx.isnan(z):
346
+ return z
347
+ m = n+1
348
+ if z == 0:
349
+ return -2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0
350
+ if z == 1:
351
+ return 2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0
352
+ if z == 0.5:
353
+ if n % 2:
354
+ return ctx.zero
355
+ # Use exact code for Euler numbers
356
+ if n < 100 or n*ctx.mag(0.46839865*n) < ctx.prec*0.25:
357
+ return ctx.ldexp(ctx._eulernum(n), -n)
358
+ # http://functions.wolfram.com/Polynomials/EulerE2/06/01/02/01/0002/
359
+ def terms():
360
+ t = ctx.one
361
+ k = 0
362
+ w = ctx.ldexp(1,n+2)
363
+ while 1:
364
+ v = n-k+1
365
+ if not (v > 2 and v & 1):
366
+ yield (2-w)*ctx.bernoulli(v)*t
367
+ k += 1
368
+ if k > n:
369
+ break
370
+ t = t*z*(n-k+2)/k
371
+ w *= 0.5
372
+ return ctx.sum_accurately(terms) / m
373
+
374
+ @defun
375
+ def eulernum(ctx, n, exact=False):
376
+ n = int(n)
377
+ if exact:
378
+ return int(ctx._eulernum(n))
379
+ if n < 100:
380
+ return ctx.mpf(ctx._eulernum(n))
381
+ if n % 2:
382
+ return ctx.zero
383
+ return ctx.ldexp(ctx.eulerpoly(n,0.5), n)
384
+
385
+ # TODO: this should be implemented low-level
386
+ def polylog_series(ctx, s, z):
387
+ tol = +ctx.eps
388
+ l = ctx.zero
389
+ k = 1
390
+ zk = z
391
+ while 1:
392
+ term = zk / k**s
393
+ l += term
394
+ if abs(term) < tol:
395
+ break
396
+ zk *= z
397
+ k += 1
398
+ return l
399
+
400
+ def polylog_continuation(ctx, n, z):
401
+ if n < 0:
402
+ return z*0
403
+ twopij = 2j * ctx.pi
404
+ a = -twopij**n/ctx.fac(n) * ctx.bernpoly(n, ctx.ln(z)/twopij)
405
+ if ctx._is_real_type(z) and z < 0:
406
+ a = ctx._re(a)
407
+ if ctx._im(z) < 0 or (ctx._im(z) == 0 and ctx._re(z) >= 1):
408
+ a -= twopij*ctx.ln(z)**(n-1)/ctx.fac(n-1)
409
+ return a
410
+
411
+ def polylog_unitcircle(ctx, n, z):
412
+ tol = +ctx.eps
413
+ if n > 1:
414
+ l = ctx.zero
415
+ logz = ctx.ln(z)
416
+ logmz = ctx.one
417
+ m = 0
418
+ while 1:
419
+ if (n-m) != 1:
420
+ term = ctx.zeta(n-m) * logmz / ctx.fac(m)
421
+ if term and abs(term) < tol:
422
+ break
423
+ l += term
424
+ logmz *= logz
425
+ m += 1
426
+ l += ctx.ln(z)**(n-1)/ctx.fac(n-1)*(ctx.harmonic(n-1)-ctx.ln(-ctx.ln(z)))
427
+ elif n < 1: # else
428
+ l = ctx.fac(-n)*(-ctx.ln(z))**(n-1)
429
+ logz = ctx.ln(z)
430
+ logkz = ctx.one
431
+ k = 0
432
+ while 1:
433
+ b = ctx.bernoulli(k-n+1)
434
+ if b:
435
+ term = b*logkz/(ctx.fac(k)*(k-n+1))
436
+ if abs(term) < tol:
437
+ break
438
+ l -= term
439
+ logkz *= logz
440
+ k += 1
441
+ else:
442
+ raise ValueError
443
+ if ctx._is_real_type(z) and z < 0:
444
+ l = ctx._re(l)
445
+ return l
446
+
447
+ def polylog_general(ctx, s, z):
448
+ v = ctx.zero
449
+ u = ctx.ln(z)
450
+ if not abs(u) < 5: # theoretically |u| < 2*pi
451
+ j = ctx.j
452
+ v = 1-s
453
+ y = ctx.ln(-z)/(2*ctx.pi*j)
454
+ return ctx.gamma(v)*(j**v*ctx.zeta(v,0.5+y) + j**-v*ctx.zeta(v,0.5-y))/(2*ctx.pi)**v
455
+ t = 1
456
+ k = 0
457
+ while 1:
458
+ term = ctx.zeta(s-k) * t
459
+ if abs(term) < ctx.eps:
460
+ break
461
+ v += term
462
+ k += 1
463
+ t *= u
464
+ t /= k
465
+ return ctx.gamma(1-s)*(-u)**(s-1) + v
466
+
467
+ @defun_wrapped
468
+ def polylog(ctx, s, z):
469
+ s = ctx.convert(s)
470
+ z = ctx.convert(z)
471
+ if z == 1:
472
+ return ctx.zeta(s)
473
+ if z == -1:
474
+ return -ctx.altzeta(s)
475
+ if s == 0:
476
+ return z/(1-z)
477
+ if s == 1:
478
+ return -ctx.ln(1-z)
479
+ if s == -1:
480
+ return z/(1-z)**2
481
+ if abs(z) <= 0.75 or (not ctx.isint(s) and abs(z) < 0.9):
482
+ return polylog_series(ctx, s, z)
483
+ if abs(z) >= 1.4 and ctx.isint(s):
484
+ return (-1)**(s+1)*polylog_series(ctx, s, 1/z) + polylog_continuation(ctx, int(ctx.re(s)), z)
485
+ if ctx.isint(s):
486
+ return polylog_unitcircle(ctx, int(ctx.re(s)), z)
487
+ return polylog_general(ctx, s, z)
488
+
489
+ @defun_wrapped
490
+ def clsin(ctx, s, z, pi=False):
491
+ if ctx.isint(s) and s < 0 and int(s) % 2 == 1:
492
+ return z*0
493
+ if pi:
494
+ a = ctx.expjpi(z)
495
+ else:
496
+ a = ctx.expj(z)
497
+ if ctx._is_real_type(z) and ctx._is_real_type(s):
498
+ return ctx.im(ctx.polylog(s,a))
499
+ b = 1/a
500
+ return (-0.5j)*(ctx.polylog(s,a) - ctx.polylog(s,b))
501
+
502
+ @defun_wrapped
503
+ def clcos(ctx, s, z, pi=False):
504
+ if ctx.isint(s) and s < 0 and int(s) % 2 == 0:
505
+ return z*0
506
+ if pi:
507
+ a = ctx.expjpi(z)
508
+ else:
509
+ a = ctx.expj(z)
510
+ if ctx._is_real_type(z) and ctx._is_real_type(s):
511
+ return ctx.re(ctx.polylog(s,a))
512
+ b = 1/a
513
+ return 0.5*(ctx.polylog(s,a) + ctx.polylog(s,b))
514
+
515
+ @defun
516
+ def altzeta(ctx, s, **kwargs):
517
+ try:
518
+ return ctx._altzeta(s, **kwargs)
519
+ except NotImplementedError:
520
+ return ctx._altzeta_generic(s)
521
+
522
+ @defun_wrapped
523
+ def _altzeta_generic(ctx, s):
524
+ if s == 1:
525
+ return ctx.ln2 + 0*s
526
+ return -ctx.powm1(2, 1-s) * ctx.zeta(s)
527
+
528
+ @defun
529
+ def zeta(ctx, s, a=1, derivative=0, method=None, **kwargs):
530
+ d = int(derivative)
531
+ if a == 1 and not (d or method):
532
+ try:
533
+ return ctx._zeta(s, **kwargs)
534
+ except NotImplementedError:
535
+ pass
536
+ s = ctx.convert(s)
537
+ prec = ctx.prec
538
+ method = kwargs.get('method')
539
+ verbose = kwargs.get('verbose')
540
+ if (not s) and (not derivative):
541
+ return ctx.mpf(0.5) - ctx._convert_param(a)[0]
542
+ if a == 1 and method != 'euler-maclaurin':
543
+ im = abs(ctx._im(s))
544
+ re = abs(ctx._re(s))
545
+ #if (im < prec or method == 'borwein') and not derivative:
546
+ # try:
547
+ # if verbose:
548
+ # print "zeta: Attempting to use the Borwein algorithm"
549
+ # return ctx._zeta(s, **kwargs)
550
+ # except NotImplementedError:
551
+ # if verbose:
552
+ # print "zeta: Could not use the Borwein algorithm"
553
+ # pass
554
+ if abs(im) > 500*prec and 10*re < prec and derivative <= 4 or \
555
+ method == 'riemann-siegel':
556
+ try: # py2.4 compatible try block
557
+ try:
558
+ if verbose:
559
+ print("zeta: Attempting to use the Riemann-Siegel algorithm")
560
+ return ctx.rs_zeta(s, derivative, **kwargs)
561
+ except NotImplementedError:
562
+ if verbose:
563
+ print("zeta: Could not use the Riemann-Siegel algorithm")
564
+ pass
565
+ finally:
566
+ ctx.prec = prec
567
+ if s == 1:
568
+ return ctx.inf
569
+ abss = abs(s)
570
+ if abss == ctx.inf:
571
+ if ctx.re(s) == ctx.inf:
572
+ if d == 0:
573
+ return ctx.one
574
+ return ctx.zero
575
+ return s*0
576
+ elif ctx.isnan(abss):
577
+ return 1/s
578
+ if ctx.re(s) > 2*ctx.prec and a == 1 and not derivative:
579
+ return ctx.one + ctx.power(2, -s)
580
+ return +ctx._hurwitz(s, a, d, **kwargs)
581
+
582
+ @defun
583
+ def _hurwitz(ctx, s, a=1, d=0, **kwargs):
584
+ prec = ctx.prec
585
+ verbose = kwargs.get('verbose')
586
+ try:
587
+ extraprec = 10
588
+ ctx.prec += extraprec
589
+ # We strongly want to special-case rational a
590
+ a, atype = ctx._convert_param(a)
591
+ if ctx.re(s) < 0:
592
+ if verbose:
593
+ print("zeta: Attempting reflection formula")
594
+ try:
595
+ return _hurwitz_reflection(ctx, s, a, d, atype)
596
+ except NotImplementedError:
597
+ pass
598
+ if verbose:
599
+ print("zeta: Reflection formula failed")
600
+ if verbose:
601
+ print("zeta: Using the Euler-Maclaurin algorithm")
602
+ while 1:
603
+ ctx.prec = prec + extraprec
604
+ T1, T2 = _hurwitz_em(ctx, s, a, d, prec+10, verbose)
605
+ cancellation = ctx.mag(T1) - ctx.mag(T1+T2)
606
+ if verbose:
607
+ print("Term 1:", T1)
608
+ print("Term 2:", T2)
609
+ print("Cancellation:", cancellation, "bits")
610
+ if cancellation < extraprec:
611
+ return T1 + T2
612
+ else:
613
+ extraprec = max(2*extraprec, min(cancellation + 5, 100*prec))
614
+ if extraprec > kwargs.get('maxprec', 100*prec):
615
+ raise ctx.NoConvergence("zeta: too much cancellation")
616
+ finally:
617
+ ctx.prec = prec
618
+
619
+ def _hurwitz_reflection(ctx, s, a, d, atype):
620
+ # TODO: implement for derivatives
621
+ if d != 0:
622
+ raise NotImplementedError
623
+ res = ctx.re(s)
624
+ negs = -s
625
+ # Integer reflection formula
626
+ if ctx.isnpint(s):
627
+ n = int(res)
628
+ if n <= 0:
629
+ return ctx.bernpoly(1-n, a) / (n-1)
630
+ if not (atype == 'Q' or atype == 'Z'):
631
+ raise NotImplementedError
632
+ t = 1-s
633
+ # We now require a to be standardized
634
+ v = 0
635
+ shift = 0
636
+ b = a
637
+ while ctx.re(b) > 1:
638
+ b -= 1
639
+ v -= b**negs
640
+ shift -= 1
641
+ while ctx.re(b) <= 0:
642
+ v += b**negs
643
+ b += 1
644
+ shift += 1
645
+ # Rational reflection formula
646
+ try:
647
+ p, q = a._mpq_
648
+ except:
649
+ assert a == int(a)
650
+ p = int(a)
651
+ q = 1
652
+ p += shift*q
653
+ assert 1 <= p <= q
654
+ g = ctx.fsum(ctx.cospi(t/2-2*k*b)*ctx._hurwitz(t,(k,q)) \
655
+ for k in range(1,q+1))
656
+ g *= 2*ctx.gamma(t)/(2*ctx.pi*q)**t
657
+ v += g
658
+ return v
659
+
660
+ def _hurwitz_em(ctx, s, a, d, prec, verbose):
661
+ # May not be converted at this point
662
+ a = ctx.convert(a)
663
+ tol = -prec
664
+ # Estimate number of terms for Euler-Maclaurin summation; could be improved
665
+ M1 = 0
666
+ M2 = prec // 3
667
+ N = M2
668
+ lsum = 0
669
+ # This speeds up the recurrence for derivatives
670
+ if ctx.isint(s):
671
+ s = int(ctx._re(s))
672
+ s1 = s-1
673
+ while 1:
674
+ # Truncated L-series
675
+ l = ctx._zetasum(s, M1+a, M2-M1-1, [d])[0][0]
676
+ #if d:
677
+ # l = ctx.fsum((-ctx.ln(n+a))**d * (n+a)**negs for n in range(M1,M2))
678
+ #else:
679
+ # l = ctx.fsum((n+a)**negs for n in range(M1,M2))
680
+ lsum += l
681
+ M2a = M2+a
682
+ logM2a = ctx.ln(M2a)
683
+ logM2ad = logM2a**d
684
+ logs = [logM2ad]
685
+ logr = 1/logM2a
686
+ rM2a = 1/M2a
687
+ M2as = M2a**(-s)
688
+ if d:
689
+ tailsum = ctx.gammainc(d+1, s1*logM2a) / s1**(d+1)
690
+ else:
691
+ tailsum = 1/((s1)*(M2a)**s1)
692
+ tailsum += 0.5 * logM2ad * M2as
693
+ U = [1]
694
+ r = M2as
695
+ fact = 2
696
+ for j in range(1, N+1):
697
+ # TODO: the following could perhaps be tidied a bit
698
+ j2 = 2*j
699
+ if j == 1:
700
+ upds = [1]
701
+ else:
702
+ upds = [j2-2, j2-1]
703
+ for m in upds:
704
+ D = min(m,d+1)
705
+ if m <= d:
706
+ logs.append(logs[-1] * logr)
707
+ Un = [0]*(D+1)
708
+ for i in xrange(D): Un[i] = (1-m-s)*U[i]
709
+ for i in xrange(1,D+1): Un[i] += (d-(i-1))*U[i-1]
710
+ U = Un
711
+ r *= rM2a
712
+ t = ctx.fdot(U, logs) * r * ctx.bernoulli(j2)/(-fact)
713
+ tailsum += t
714
+ if ctx.mag(t) < tol:
715
+ return lsum, (-1)**d * tailsum
716
+ fact *= (j2+1)*(j2+2)
717
+ if verbose:
718
+ print("Sum range:", M1, M2, "term magnitude", ctx.mag(t), "tolerance", tol)
719
+ M1, M2 = M2, M2*2
720
+ if ctx.re(s) < 0:
721
+ N += N//2
722
+
723
+
724
+
725
+ @defun
726
+ def _zetasum(ctx, s, a, n, derivatives=[0], reflect=False):
727
+ """
728
+ Returns [xd0,xd1,...,xdr], [yd0,yd1,...ydr] where
729
+
730
+ xdk = D^k ( 1/a^s + 1/(a+1)^s + ... + 1/(a+n)^s )
731
+ ydk = D^k conj( 1/a^(1-s) + 1/(a+1)^(1-s) + ... + 1/(a+n)^(1-s) )
732
+
733
+ D^k = kth derivative with respect to s, k ranges over the given list of
734
+ derivatives (which should consist of either a single element
735
+ or a range 0,1,...r). If reflect=False, the ydks are not computed.
736
+ """
737
+ #print "zetasum", s, a, n
738
+ # don't use the fixed-point code if there are large exponentials
739
+ if abs(ctx.re(s)) < 0.5 * ctx.prec:
740
+ try:
741
+ return ctx._zetasum_fast(s, a, n, derivatives, reflect)
742
+ except NotImplementedError:
743
+ pass
744
+ negs = ctx.fneg(s, exact=True)
745
+ have_derivatives = derivatives != [0]
746
+ have_one_derivative = len(derivatives) == 1
747
+ if not reflect:
748
+ if not have_derivatives:
749
+ return [ctx.fsum((a+k)**negs for k in xrange(n+1))], []
750
+ if have_one_derivative:
751
+ d = derivatives[0]
752
+ x = ctx.fsum(ctx.ln(a+k)**d * (a+k)**negs for k in xrange(n+1))
753
+ return [(-1)**d * x], []
754
+ maxd = max(derivatives)
755
+ if not have_one_derivative:
756
+ derivatives = range(maxd+1)
757
+ xs = [ctx.zero for d in derivatives]
758
+ if reflect:
759
+ ys = [ctx.zero for d in derivatives]
760
+ else:
761
+ ys = []
762
+ for k in xrange(n+1):
763
+ w = a + k
764
+ xterm = w ** negs
765
+ if reflect:
766
+ yterm = ctx.conj(ctx.one / (w * xterm))
767
+ if have_derivatives:
768
+ logw = -ctx.ln(w)
769
+ if have_one_derivative:
770
+ logw = logw ** maxd
771
+ xs[0] += xterm * logw
772
+ if reflect:
773
+ ys[0] += yterm * logw
774
+ else:
775
+ t = ctx.one
776
+ for d in derivatives:
777
+ xs[d] += xterm * t
778
+ if reflect:
779
+ ys[d] += yterm * t
780
+ t *= logw
781
+ else:
782
+ xs[0] += xterm
783
+ if reflect:
784
+ ys[0] += yterm
785
+ return xs, ys
786
+
787
+ @defun
788
+ def dirichlet(ctx, s, chi=[1], derivative=0):
789
+ s = ctx.convert(s)
790
+ q = len(chi)
791
+ d = int(derivative)
792
+ if d > 2:
793
+ raise NotImplementedError("arbitrary order derivatives")
794
+ prec = ctx.prec
795
+ try:
796
+ ctx.prec += 10
797
+ if s == 1:
798
+ have_pole = True
799
+ for x in chi:
800
+ if x and x != 1:
801
+ have_pole = False
802
+ h = +ctx.eps
803
+ ctx.prec *= 2*(d+1)
804
+ s += h
805
+ if have_pole:
806
+ return +ctx.inf
807
+ z = ctx.zero
808
+ for p in range(1,q+1):
809
+ if chi[p%q]:
810
+ if d == 1:
811
+ z += chi[p%q] * (ctx.zeta(s, (p,q), 1) - \
812
+ ctx.zeta(s, (p,q))*ctx.log(q))
813
+ else:
814
+ z += chi[p%q] * ctx.zeta(s, (p,q))
815
+ z /= q**s
816
+ finally:
817
+ ctx.prec = prec
818
+ return +z
819
+
820
+
821
+ def secondzeta_main_term(ctx, s, a, **kwargs):
822
+ tol = ctx.eps
823
+ f = lambda n: ctx.gammainc(0.5*s, a*gamm**2, regularized=True)*gamm**(-s)
824
+ totsum = term = ctx.zero
825
+ mg = ctx.inf
826
+ n = 0
827
+ while mg > tol:
828
+ totsum += term
829
+ n += 1
830
+ gamm = ctx.im(ctx.zetazero_memoized(n))
831
+ term = f(n)
832
+ mg = abs(term)
833
+ err = 0
834
+ if kwargs.get("error"):
835
+ sg = ctx.re(s)
836
+ err = 0.5*ctx.pi**(-1)*max(1,sg)*a**(sg-0.5)*ctx.log(gamm/(2*ctx.pi))*\
837
+ ctx.gammainc(-0.5, a*gamm**2)/abs(ctx.gamma(s/2))
838
+ err = abs(err)
839
+ return +totsum, err, n
840
+
841
+ def secondzeta_prime_term(ctx, s, a, **kwargs):
842
+ tol = ctx.eps
843
+ f = lambda n: ctx.gammainc(0.5*(1-s),0.25*ctx.log(n)**2 * a**(-1))*\
844
+ ((0.5*ctx.log(n))**(s-1))*ctx.mangoldt(n)/ctx.sqrt(n)/\
845
+ (2*ctx.gamma(0.5*s)*ctx.sqrt(ctx.pi))
846
+ totsum = term = ctx.zero
847
+ mg = ctx.inf
848
+ n = 1
849
+ while mg > tol or n < 9:
850
+ totsum += term
851
+ n += 1
852
+ term = f(n)
853
+ if term == 0:
854
+ mg = ctx.inf
855
+ else:
856
+ mg = abs(term)
857
+ if kwargs.get("error"):
858
+ err = mg
859
+ return +totsum, err, n
860
+
861
+ def secondzeta_exp_term(ctx, s, a):
862
+ if ctx.isint(s) and ctx.re(s) <= 0:
863
+ m = int(round(ctx.re(s)))
864
+ if not m & 1:
865
+ return ctx.mpf('-0.25')**(-m//2)
866
+ tol = ctx.eps
867
+ f = lambda n: (0.25*a)**n/((n+0.5*s)*ctx.fac(n))
868
+ totsum = ctx.zero
869
+ term = f(0)
870
+ mg = ctx.inf
871
+ n = 0
872
+ while mg > tol:
873
+ totsum += term
874
+ n += 1
875
+ term = f(n)
876
+ mg = abs(term)
877
+ v = a**(0.5*s)*totsum/ctx.gamma(0.5*s)
878
+ return v
879
+
880
+ def secondzeta_singular_term(ctx, s, a, **kwargs):
881
+ factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s))
882
+ extraprec = ctx.mag(factor)
883
+ ctx.prec += extraprec
884
+ factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s))
885
+ tol = ctx.eps
886
+ f = lambda n: ctx.bernpoly(n,0.75)*(4*ctx.sqrt(a))**n*\
887
+ ctx.gamma(0.5*n)/((s+n-1)*ctx.fac(n))
888
+ totsum = ctx.zero
889
+ mg1 = ctx.inf
890
+ n = 1
891
+ term = f(n)
892
+ mg2 = abs(term)
893
+ while mg2 > tol and mg2 <= mg1:
894
+ totsum += term
895
+ n += 1
896
+ term = f(n)
897
+ totsum += term
898
+ n +=1
899
+ term = f(n)
900
+ mg1 = mg2
901
+ mg2 = abs(term)
902
+ totsum += term
903
+ pole = -2*(s-1)**(-2)+(ctx.euler+ctx.log(16*ctx.pi**2*a))*(s-1)**(-1)
904
+ st = factor*(pole+totsum)
905
+ err = 0
906
+ if kwargs.get("error"):
907
+ if not ((mg2 > tol) and (mg2 <= mg1)):
908
+ if mg2 <= tol:
909
+ err = ctx.mpf(10)**int(ctx.log(abs(factor*tol),10))
910
+ if mg2 > mg1:
911
+ err = ctx.mpf(10)**int(ctx.log(abs(factor*mg1),10))
912
+ err = max(err, ctx.eps*1.)
913
+ ctx.prec -= extraprec
914
+ return +st, err
915
+
916
+ @defun
917
+ def secondzeta(ctx, s, a = 0.015, **kwargs):
918
+ r"""
919
+ Evaluates the secondary zeta function `Z(s)`, defined for
920
+ `\mathrm{Re}(s)>1` by
921
+
922
+ .. math ::
923
+
924
+ Z(s) = \sum_{n=1}^{\infty} \frac{1}{\tau_n^s}
925
+
926
+ where `\frac12+i\tau_n` runs through the zeros of `\zeta(s)` with
927
+ imaginary part positive.
928
+
929
+ `Z(s)` extends to a meromorphic function on `\mathbb{C}` with a
930
+ double pole at `s=1` and simple poles at the points `-2n` for
931
+ `n=0`, 1, 2, ...
932
+
933
+ **Examples**
934
+
935
+ >>> from mpmath import *
936
+ >>> mp.pretty = True; mp.dps = 15
937
+ >>> secondzeta(2)
938
+ 0.023104993115419
939
+ >>> xi = lambda s: 0.5*s*(s-1)*pi**(-0.5*s)*gamma(0.5*s)*zeta(s)
940
+ >>> Xi = lambda t: xi(0.5+t*j)
941
+ >>> chop(-0.5*diff(Xi,0,n=2)/Xi(0))
942
+ 0.023104993115419
943
+
944
+ We may ask for an approximate error value::
945
+
946
+ >>> secondzeta(0.5+100j, error=True)
947
+ ((-0.216272011276718 - 0.844952708937228j), 2.22044604925031e-16)
948
+
949
+ The function has poles at the negative odd integers,
950
+ and dyadic rational values at the negative even integers::
951
+
952
+ >>> mp.dps = 30
953
+ >>> secondzeta(-8)
954
+ -0.67236328125
955
+ >>> secondzeta(-7)
956
+ +inf
957
+
958
+ **Implementation notes**
959
+
960
+ The function is computed as sum of four terms `Z(s)=A(s)-P(s)+E(s)-S(s)`
961
+ respectively main, prime, exponential and singular terms.
962
+ The main term `A(s)` is computed from the zeros of zeta.
963
+ The prime term depends on the von Mangoldt function.
964
+ The singular term is responsible for the poles of the function.
965
+
966
+ The four terms depends on a small parameter `a`. We may change the
967
+ value of `a`. Theoretically this has no effect on the sum of the four
968
+ terms, but in practice may be important.
969
+
970
+ A smaller value of the parameter `a` makes `A(s)` depend on
971
+ a smaller number of zeros of zeta, but `P(s)` uses more values of
972
+ von Mangoldt function.
973
+
974
+ We may also add a verbose option to obtain data about the
975
+ values of the four terms.
976
+
977
+ >>> mp.dps = 10
978
+ >>> secondzeta(0.5 + 40j, error=True, verbose=True)
979
+ main term = (-30190318549.138656312556 - 13964804384.624622876523j)
980
+ computed using 19 zeros of zeta
981
+ prime term = (132717176.89212754625045 + 188980555.17563978290601j)
982
+ computed using 9 values of the von Mangoldt function
983
+ exponential term = (542447428666.07179812536 + 362434922978.80192435203j)
984
+ singular term = (512124392939.98154322355 + 348281138038.65531023921j)
985
+ ((0.059471043 + 0.3463514534j), 1.455191523e-11)
986
+
987
+ >>> secondzeta(0.5 + 40j, a=0.04, error=True, verbose=True)
988
+ main term = (-151962888.19606243907725 - 217930683.90210294051982j)
989
+ computed using 9 zeros of zeta
990
+ prime term = (2476659342.3038722372461 + 28711581821.921627163136j)
991
+ computed using 37 values of the von Mangoldt function
992
+ exponential term = (178506047114.7838188264 + 819674143244.45677330576j)
993
+ singular term = (175877424884.22441310708 + 790744630738.28669174871j)
994
+ ((0.059471043 + 0.3463514534j), 1.455191523e-11)
995
+
996
+ Notice the great cancellation between the four terms. Changing `a`, the
997
+ four terms are very different numbers but the cancellation gives
998
+ the good value of Z(s).
999
+
1000
+ **References**
1001
+
1002
+ A. Voros, Zeta functions for the Riemann zeros, Ann. Institute Fourier,
1003
+ 53, (2003) 665--699.
1004
+
1005
+ A. Voros, Zeta functions over Zeros of Zeta Functions, Lecture Notes
1006
+ of the Unione Matematica Italiana, Springer, 2009.
1007
+ """
1008
+ s = ctx.convert(s)
1009
+ a = ctx.convert(a)
1010
+ tol = ctx.eps
1011
+ if ctx.isint(s) and ctx.re(s) <= 1:
1012
+ if abs(s-1) < tol*1000:
1013
+ return ctx.inf
1014
+ m = int(round(ctx.re(s)))
1015
+ if m & 1:
1016
+ return ctx.inf
1017
+ else:
1018
+ return ((-1)**(-m//2)*\
1019
+ ctx.fraction(8-ctx.eulernum(-m,exact=True),2**(-m+3)))
1020
+ prec = ctx.prec
1021
+ try:
1022
+ t3 = secondzeta_exp_term(ctx, s, a)
1023
+ extraprec = max(ctx.mag(t3),0)
1024
+ ctx.prec += extraprec + 3
1025
+ t1, r1, gt = secondzeta_main_term(ctx,s,a,error='True', verbose='True')
1026
+ t2, r2, pt = secondzeta_prime_term(ctx,s,a,error='True', verbose='True')
1027
+ t4, r4 = secondzeta_singular_term(ctx,s,a,error='True')
1028
+ t3 = secondzeta_exp_term(ctx, s, a)
1029
+ err = r1+r2+r4
1030
+ t = t1-t2+t3-t4
1031
+ if kwargs.get("verbose"):
1032
+ print('main term =', t1)
1033
+ print(' computed using', gt, 'zeros of zeta')
1034
+ print('prime term =', t2)
1035
+ print(' computed using', pt, 'values of the von Mangoldt function')
1036
+ print('exponential term =', t3)
1037
+ print('singular term =', t4)
1038
+ finally:
1039
+ ctx.prec = prec
1040
+ if kwargs.get("error"):
1041
+ w = max(ctx.mag(abs(t)),0)
1042
+ err = max(err*2**w, ctx.eps*1.*2**w)
1043
+ return +t, err
1044
+ return +t
1045
+
1046
+
1047
+ @defun_wrapped
1048
+ def lerchphi(ctx, z, s, a):
1049
+ r"""
1050
+ Gives the Lerch transcendent, defined for `|z| < 1` and
1051
+ `\Re{a} > 0` by
1052
+
1053
+ .. math ::
1054
+
1055
+ \Phi(z,s,a) = \sum_{k=0}^{\infty} \frac{z^k}{(a+k)^s}
1056
+
1057
+ and generally by the recurrence `\Phi(z,s,a) = z \Phi(z,s,a+1) + a^{-s}`
1058
+ along with the integral representation valid for `\Re{a} > 0`
1059
+
1060
+ .. math ::
1061
+
1062
+ \Phi(z,s,a) = \frac{1}{2 a^s} +
1063
+ \int_0^{\infty} \frac{z^t}{(a+t)^s} dt -
1064
+ 2 \int_0^{\infty} \frac{\sin(t \log z - s
1065
+ \operatorname{arctan}(t/a)}{(a^2 + t^2)^{s/2}
1066
+ (e^{2 \pi t}-1)} dt.
1067
+
1068
+ The Lerch transcendent generalizes the Hurwitz zeta function :func:`zeta`
1069
+ (`z = 1`) and the polylogarithm :func:`polylog` (`a = 1`).
1070
+
1071
+ **Examples**
1072
+
1073
+ Several evaluations in terms of simpler functions::
1074
+
1075
+ >>> from mpmath import *
1076
+ >>> mp.dps = 25; mp.pretty = True
1077
+ >>> lerchphi(-1,2,0.5); 4*catalan
1078
+ 3.663862376708876060218414
1079
+ 3.663862376708876060218414
1080
+ >>> diff(lerchphi, (-1,-2,1), (0,1,0)); 7*zeta(3)/(4*pi**2)
1081
+ 0.2131391994087528954617607
1082
+ 0.2131391994087528954617607
1083
+ >>> lerchphi(-4,1,1); log(5)/4
1084
+ 0.4023594781085250936501898
1085
+ 0.4023594781085250936501898
1086
+ >>> lerchphi(-3+2j,1,0.5); 2*atanh(sqrt(-3+2j))/sqrt(-3+2j)
1087
+ (1.142423447120257137774002 + 0.2118232380980201350495795j)
1088
+ (1.142423447120257137774002 + 0.2118232380980201350495795j)
1089
+
1090
+ Evaluation works for complex arguments and `|z| \ge 1`::
1091
+
1092
+ >>> lerchphi(1+2j, 3-j, 4+2j)
1093
+ (0.002025009957009908600539469 + 0.003327897536813558807438089j)
1094
+ >>> lerchphi(-2,2,-2.5)
1095
+ -12.28676272353094275265944
1096
+ >>> lerchphi(10,10,10)
1097
+ (-4.462130727102185701817349e-11 - 1.575172198981096218823481e-12j)
1098
+ >>> lerchphi(10,10,-10.5)
1099
+ (112658784011940.5605789002 - 498113185.5756221777743631j)
1100
+
1101
+ Some degenerate cases::
1102
+
1103
+ >>> lerchphi(0,1,2)
1104
+ 0.5
1105
+ >>> lerchphi(0,1,-2)
1106
+ -0.5
1107
+
1108
+ Reduction to simpler functions::
1109
+
1110
+ >>> lerchphi(1, 4.25+1j, 1)
1111
+ (1.044674457556746668033975 - 0.04674508654012658932271226j)
1112
+ >>> zeta(4.25+1j)
1113
+ (1.044674457556746668033975 - 0.04674508654012658932271226j)
1114
+ >>> lerchphi(1 - 0.5**10, 4.25+1j, 1)
1115
+ (1.044629338021507546737197 - 0.04667768813963388181708101j)
1116
+ >>> lerchphi(3, 4, 1)
1117
+ (1.249503297023366545192592 - 0.2314252413375664776474462j)
1118
+ >>> polylog(4, 3) / 3
1119
+ (1.249503297023366545192592 - 0.2314252413375664776474462j)
1120
+ >>> lerchphi(3, 4, 1 - 0.5**10)
1121
+ (1.253978063946663945672674 - 0.2316736622836535468765376j)
1122
+
1123
+ **References**
1124
+
1125
+ 1. [DLMF]_ section 25.14
1126
+
1127
+ """
1128
+ if z == 0:
1129
+ return a ** (-s)
1130
+ # Faster, but these cases are useful for testing right now
1131
+ if z == 1:
1132
+ return ctx.zeta(s, a)
1133
+ if a == 1:
1134
+ return ctx.polylog(s, z) / z
1135
+ if ctx.re(a) < 1:
1136
+ if ctx.isnpint(a):
1137
+ raise ValueError("Lerch transcendent complex infinity")
1138
+ m = int(ctx.ceil(1-ctx.re(a)))
1139
+ v = ctx.zero
1140
+ zpow = ctx.one
1141
+ for n in xrange(m):
1142
+ v += zpow / (a+n)**s
1143
+ zpow *= z
1144
+ return zpow * ctx.lerchphi(z,s, a+m) + v
1145
+ g = ctx.ln(z)
1146
+ v = 1/(2*a**s) + ctx.gammainc(1-s, -a*g) * (-g)**(s-1) / z**a
1147
+ h = s / 2
1148
+ r = 2*ctx.pi
1149
+ f = lambda t: ctx.sin(s*ctx.atan(t/a)-t*g) / \
1150
+ ((a**2+t**2)**h * ctx.expm1(r*t))
1151
+ v += 2*ctx.quad(f, [0, ctx.inf])
1152
+ if not ctx.im(z) and not ctx.im(s) and not ctx.im(a) and ctx.re(z) < 1:
1153
+ v = ctx.chop(v)
1154
+ return v
venv/lib/python3.10/site-packages/mpmath/functions/zetazeros.py ADDED
@@ -0,0 +1,1018 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ The function zetazero(n) computes the n-th nontrivial zero of zeta(s).
3
+
4
+ The general strategy is to locate a block of Gram intervals B where we
5
+ know exactly the number of zeros contained and which of those zeros
6
+ is that which we search.
7
+
8
+ If n <= 400 000 000 we know exactly the Rosser exceptions, contained
9
+ in a list in this file. Hence for n<=400 000 000 we simply
10
+ look at these list of exceptions. If our zero is implicated in one of
11
+ these exceptions we have our block B. In other case we simply locate
12
+ the good Rosser block containing our zero.
13
+
14
+ For n > 400 000 000 we apply the method of Turing, as complemented by
15
+ Lehman, Brent and Trudgian to find a suitable B.
16
+ """
17
+
18
+ from .functions import defun, defun_wrapped
19
+
20
+ def find_rosser_block_zero(ctx, n):
21
+ """for n<400 000 000 determines a block were one find our zero"""
22
+ for k in range(len(_ROSSER_EXCEPTIONS)//2):
23
+ a=_ROSSER_EXCEPTIONS[2*k][0]
24
+ b=_ROSSER_EXCEPTIONS[2*k][1]
25
+ if ((a<= n-2) and (n-1 <= b)):
26
+ t0 = ctx.grampoint(a)
27
+ t1 = ctx.grampoint(b)
28
+ v0 = ctx._fp.siegelz(t0)
29
+ v1 = ctx._fp.siegelz(t1)
30
+ my_zero_number = n-a-1
31
+ zero_number_block = b-a
32
+ pattern = _ROSSER_EXCEPTIONS[2*k+1]
33
+ return (my_zero_number, [a,b], [t0,t1], [v0,v1])
34
+ k = n-2
35
+ t,v,b = compute_triple_tvb(ctx, k)
36
+ T = [t]
37
+ V = [v]
38
+ while b < 0:
39
+ k -= 1
40
+ t,v,b = compute_triple_tvb(ctx, k)
41
+ T.insert(0,t)
42
+ V.insert(0,v)
43
+ my_zero_number = n-k-1
44
+ m = n-1
45
+ t,v,b = compute_triple_tvb(ctx, m)
46
+ T.append(t)
47
+ V.append(v)
48
+ while b < 0:
49
+ m += 1
50
+ t,v,b = compute_triple_tvb(ctx, m)
51
+ T.append(t)
52
+ V.append(v)
53
+ return (my_zero_number, [k,m], T, V)
54
+
55
+ def wpzeros(t):
56
+ """Precision needed to compute higher zeros"""
57
+ wp = 53
58
+ if t > 3*10**8:
59
+ wp = 63
60
+ if t > 10**11:
61
+ wp = 70
62
+ if t > 10**14:
63
+ wp = 83
64
+ return wp
65
+
66
+ def separate_zeros_in_block(ctx, zero_number_block, T, V, limitloop=None,
67
+ fp_tolerance=None):
68
+ """Separate the zeros contained in the block T, limitloop
69
+ determines how long one must search"""
70
+ if limitloop is None:
71
+ limitloop = ctx.inf
72
+ loopnumber = 0
73
+ variations = count_variations(V)
74
+ while ((variations < zero_number_block) and (loopnumber <limitloop)):
75
+ a = T[0]
76
+ v = V[0]
77
+ newT = [a]
78
+ newV = [v]
79
+ variations = 0
80
+ for n in range(1,len(T)):
81
+ b2 = T[n]
82
+ u = V[n]
83
+ if (u*v>0):
84
+ alpha = ctx.sqrt(u/v)
85
+ b= (alpha*a+b2)/(alpha+1)
86
+ else:
87
+ b = (a+b2)/2
88
+ if fp_tolerance < 10:
89
+ w = ctx._fp.siegelz(b)
90
+ if abs(w)<fp_tolerance:
91
+ w = ctx.siegelz(b)
92
+ else:
93
+ w=ctx.siegelz(b)
94
+ if v*w<0:
95
+ variations += 1
96
+ newT.append(b)
97
+ newV.append(w)
98
+ u = V[n]
99
+ if u*w <0:
100
+ variations += 1
101
+ newT.append(b2)
102
+ newV.append(u)
103
+ a = b2
104
+ v = u
105
+ T = newT
106
+ V = newV
107
+ loopnumber +=1
108
+ if (limitloop>ITERATION_LIMIT)and(loopnumber>2)and(variations+2==zero_number_block):
109
+ dtMax=0
110
+ dtSec=0
111
+ kMax = 0
112
+ for k1 in range(1,len(T)):
113
+ dt = T[k1]-T[k1-1]
114
+ if dt > dtMax:
115
+ kMax=k1
116
+ dtSec = dtMax
117
+ dtMax = dt
118
+ elif (dt<dtMax) and(dt >dtSec):
119
+ dtSec = dt
120
+ if dtMax>3*dtSec:
121
+ f = lambda x: ctx.rs_z(x,derivative=1)
122
+ t0=T[kMax-1]
123
+ t1 = T[kMax]
124
+ t=ctx.findroot(f, (t0,t1), solver ='illinois',verify=False, verbose=False)
125
+ v = ctx.siegelz(t)
126
+ if (t0<t) and (t<t1) and (v*V[kMax]<0):
127
+ T.insert(kMax,t)
128
+ V.insert(kMax,v)
129
+ variations = count_variations(V)
130
+ if variations == zero_number_block:
131
+ separated = True
132
+ else:
133
+ separated = False
134
+ return (T,V, separated)
135
+
136
+ def separate_my_zero(ctx, my_zero_number, zero_number_block, T, V, prec):
137
+ """If we know which zero of this block is mine,
138
+ the function separates the zero"""
139
+ variations = 0
140
+ v0 = V[0]
141
+ for k in range(1,len(V)):
142
+ v1 = V[k]
143
+ if v0*v1 < 0:
144
+ variations +=1
145
+ if variations == my_zero_number:
146
+ k0 = k
147
+ leftv = v0
148
+ rightv = v1
149
+ v0 = v1
150
+ t1 = T[k0]
151
+ t0 = T[k0-1]
152
+ ctx.prec = prec
153
+ wpz = wpzeros(my_zero_number*ctx.log(my_zero_number))
154
+
155
+ guard = 4*ctx.mag(my_zero_number)
156
+ precs = [ctx.prec+4]
157
+ index=0
158
+ while precs[0] > 2*wpz:
159
+ index +=1
160
+ precs = [precs[0] // 2 +3+2*index] + precs
161
+ ctx.prec = precs[0] + guard
162
+ r = ctx.findroot(lambda x:ctx.siegelz(x), (t0,t1), solver ='illinois', verbose=False)
163
+ #print "first step at", ctx.dps, "digits"
164
+ z=ctx.mpc(0.5,r)
165
+ for prec in precs[1:]:
166
+ ctx.prec = prec + guard
167
+ #print "refining to", ctx.dps, "digits"
168
+ znew = z - ctx.zeta(z) / ctx.zeta(z, derivative=1)
169
+ #print "difference", ctx.nstr(abs(z-znew))
170
+ z=ctx.mpc(0.5,ctx.im(znew))
171
+ return ctx.im(z)
172
+
173
+ def sure_number_block(ctx, n):
174
+ """The number of good Rosser blocks needed to apply
175
+ Turing method
176
+ References:
177
+ R. P. Brent, On the Zeros of the Riemann Zeta Function
178
+ in the Critical Strip, Math. Comp. 33 (1979) 1361--1372
179
+ T. Trudgian, Improvements to Turing Method, Math. Comp."""
180
+ if n < 9*10**5:
181
+ return(2)
182
+ g = ctx.grampoint(n-100)
183
+ lg = ctx._fp.ln(g)
184
+ brent = 0.0061 * lg**2 +0.08*lg
185
+ trudgian = 0.0031 * lg**2 +0.11*lg
186
+ N = ctx.ceil(min(brent,trudgian))
187
+ N = int(N)
188
+ return N
189
+
190
+ def compute_triple_tvb(ctx, n):
191
+ t = ctx.grampoint(n)
192
+ v = ctx._fp.siegelz(t)
193
+ if ctx.mag(abs(v))<ctx.mag(t)-45:
194
+ v = ctx.siegelz(t)
195
+ b = v*(-1)**n
196
+ return t,v,b
197
+
198
+
199
+
200
+ ITERATION_LIMIT = 4
201
+
202
+ def search_supergood_block(ctx, n, fp_tolerance):
203
+ """To use for n>400 000 000"""
204
+ sb = sure_number_block(ctx, n)
205
+ number_goodblocks = 0
206
+ m2 = n-1
207
+ t, v, b = compute_triple_tvb(ctx, m2)
208
+ Tf = [t]
209
+ Vf = [v]
210
+ while b < 0:
211
+ m2 += 1
212
+ t,v,b = compute_triple_tvb(ctx, m2)
213
+ Tf.append(t)
214
+ Vf.append(v)
215
+ goodpoints = [m2]
216
+ T = [t]
217
+ V = [v]
218
+ while number_goodblocks < 2*sb:
219
+ m2 += 1
220
+ t, v, b = compute_triple_tvb(ctx, m2)
221
+ T.append(t)
222
+ V.append(v)
223
+ while b < 0:
224
+ m2 += 1
225
+ t,v,b = compute_triple_tvb(ctx, m2)
226
+ T.append(t)
227
+ V.append(v)
228
+ goodpoints.append(m2)
229
+ zn = len(T)-1
230
+ A, B, separated =\
231
+ separate_zeros_in_block(ctx, zn, T, V, limitloop=ITERATION_LIMIT,
232
+ fp_tolerance=fp_tolerance)
233
+ Tf.pop()
234
+ Tf.extend(A)
235
+ Vf.pop()
236
+ Vf.extend(B)
237
+ if separated:
238
+ number_goodblocks += 1
239
+ else:
240
+ number_goodblocks = 0
241
+ T = [t]
242
+ V = [v]
243
+ # Now the same procedure to the left
244
+ number_goodblocks = 0
245
+ m2 = n-2
246
+ t, v, b = compute_triple_tvb(ctx, m2)
247
+ Tf.insert(0,t)
248
+ Vf.insert(0,v)
249
+ while b < 0:
250
+ m2 -= 1
251
+ t,v,b = compute_triple_tvb(ctx, m2)
252
+ Tf.insert(0,t)
253
+ Vf.insert(0,v)
254
+ goodpoints.insert(0,m2)
255
+ T = [t]
256
+ V = [v]
257
+ while number_goodblocks < 2*sb:
258
+ m2 -= 1
259
+ t, v, b = compute_triple_tvb(ctx, m2)
260
+ T.insert(0,t)
261
+ V.insert(0,v)
262
+ while b < 0:
263
+ m2 -= 1
264
+ t,v,b = compute_triple_tvb(ctx, m2)
265
+ T.insert(0,t)
266
+ V.insert(0,v)
267
+ goodpoints.insert(0,m2)
268
+ zn = len(T)-1
269
+ A, B, separated =\
270
+ separate_zeros_in_block(ctx, zn, T, V, limitloop=ITERATION_LIMIT, fp_tolerance=fp_tolerance)
271
+ A.pop()
272
+ Tf = A+Tf
273
+ B.pop()
274
+ Vf = B+Vf
275
+ if separated:
276
+ number_goodblocks += 1
277
+ else:
278
+ number_goodblocks = 0
279
+ T = [t]
280
+ V = [v]
281
+ r = goodpoints[2*sb]
282
+ lg = len(goodpoints)
283
+ s = goodpoints[lg-2*sb-1]
284
+ tr, vr, br = compute_triple_tvb(ctx, r)
285
+ ar = Tf.index(tr)
286
+ ts, vs, bs = compute_triple_tvb(ctx, s)
287
+ as1 = Tf.index(ts)
288
+ T = Tf[ar:as1+1]
289
+ V = Vf[ar:as1+1]
290
+ zn = s-r
291
+ A, B, separated =\
292
+ separate_zeros_in_block(ctx, zn,T,V,limitloop=ITERATION_LIMIT, fp_tolerance=fp_tolerance)
293
+ if separated:
294
+ return (n-r-1,[r,s],A,B)
295
+ q = goodpoints[sb]
296
+ lg = len(goodpoints)
297
+ t = goodpoints[lg-sb-1]
298
+ tq, vq, bq = compute_triple_tvb(ctx, q)
299
+ aq = Tf.index(tq)
300
+ tt, vt, bt = compute_triple_tvb(ctx, t)
301
+ at = Tf.index(tt)
302
+ T = Tf[aq:at+1]
303
+ V = Vf[aq:at+1]
304
+ return (n-q-1,[q,t],T,V)
305
+
306
+ def count_variations(V):
307
+ count = 0
308
+ vold = V[0]
309
+ for n in range(1, len(V)):
310
+ vnew = V[n]
311
+ if vold*vnew < 0:
312
+ count +=1
313
+ vold = vnew
314
+ return count
315
+
316
+ def pattern_construct(ctx, block, T, V):
317
+ pattern = '('
318
+ a = block[0]
319
+ b = block[1]
320
+ t0,v0,b0 = compute_triple_tvb(ctx, a)
321
+ k = 0
322
+ k0 = 0
323
+ for n in range(a+1,b+1):
324
+ t1,v1,b1 = compute_triple_tvb(ctx, n)
325
+ lgT =len(T)
326
+ while (k < lgT) and (T[k] <= t1):
327
+ k += 1
328
+ L = V[k0:k]
329
+ L.append(v1)
330
+ L.insert(0,v0)
331
+ count = count_variations(L)
332
+ pattern = pattern + ("%s" % count)
333
+ if b1 > 0:
334
+ pattern = pattern + ')('
335
+ k0 = k
336
+ t0,v0,b0 = t1,v1,b1
337
+ pattern = pattern[:-1]
338
+ return pattern
339
+
340
+ @defun
341
+ def zetazero(ctx, n, info=False, round=True):
342
+ r"""
343
+ Computes the `n`-th nontrivial zero of `\zeta(s)` on the critical line,
344
+ i.e. returns an approximation of the `n`-th largest complex number
345
+ `s = \frac{1}{2} + ti` for which `\zeta(s) = 0`. Equivalently, the
346
+ imaginary part `t` is a zero of the Z-function (:func:`~mpmath.siegelz`).
347
+
348
+ **Examples**
349
+
350
+ The first few zeros::
351
+
352
+ >>> from mpmath import *
353
+ >>> mp.dps = 25; mp.pretty = True
354
+ >>> zetazero(1)
355
+ (0.5 + 14.13472514173469379045725j)
356
+ >>> zetazero(2)
357
+ (0.5 + 21.02203963877155499262848j)
358
+ >>> zetazero(20)
359
+ (0.5 + 77.14484006887480537268266j)
360
+
361
+ Verifying that the values are zeros::
362
+
363
+ >>> for n in range(1,5):
364
+ ... s = zetazero(n)
365
+ ... chop(zeta(s)), chop(siegelz(s.imag))
366
+ ...
367
+ (0.0, 0.0)
368
+ (0.0, 0.0)
369
+ (0.0, 0.0)
370
+ (0.0, 0.0)
371
+
372
+ Negative indices give the conjugate zeros (`n = 0` is undefined)::
373
+
374
+ >>> zetazero(-1)
375
+ (0.5 - 14.13472514173469379045725j)
376
+
377
+ :func:`~mpmath.zetazero` supports arbitrarily large `n` and arbitrary precision::
378
+
379
+ >>> mp.dps = 15
380
+ >>> zetazero(1234567)
381
+ (0.5 + 727690.906948208j)
382
+ >>> mp.dps = 50
383
+ >>> zetazero(1234567)
384
+ (0.5 + 727690.9069482075392389420041147142092708393819935j)
385
+ >>> chop(zeta(_)/_)
386
+ 0.0
387
+
388
+ with *info=True*, :func:`~mpmath.zetazero` gives additional information::
389
+
390
+ >>> mp.dps = 15
391
+ >>> zetazero(542964976,info=True)
392
+ ((0.5 + 209039046.578535j), [542964969, 542964978], 6, '(013111110)')
393
+
394
+ This means that the zero is between Gram points 542964969 and 542964978;
395
+ it is the 6-th zero between them. Finally (01311110) is the pattern
396
+ of zeros in this interval. The numbers indicate the number of zeros
397
+ in each Gram interval (Rosser blocks between parenthesis). In this case
398
+ there is only one Rosser block of length nine.
399
+ """
400
+ n = int(n)
401
+ if n < 0:
402
+ return ctx.zetazero(-n).conjugate()
403
+ if n == 0:
404
+ raise ValueError("n must be nonzero")
405
+ wpinitial = ctx.prec
406
+ try:
407
+ wpz, fp_tolerance = comp_fp_tolerance(ctx, n)
408
+ ctx.prec = wpz
409
+ if n < 400000000:
410
+ my_zero_number, block, T, V =\
411
+ find_rosser_block_zero(ctx, n)
412
+ else:
413
+ my_zero_number, block, T, V =\
414
+ search_supergood_block(ctx, n, fp_tolerance)
415
+ zero_number_block = block[1]-block[0]
416
+ T, V, separated = separate_zeros_in_block(ctx, zero_number_block, T, V,
417
+ limitloop=ctx.inf, fp_tolerance=fp_tolerance)
418
+ if info:
419
+ pattern = pattern_construct(ctx,block,T,V)
420
+ prec = max(wpinitial, wpz)
421
+ t = separate_my_zero(ctx, my_zero_number, zero_number_block,T,V,prec)
422
+ v = ctx.mpc(0.5,t)
423
+ finally:
424
+ ctx.prec = wpinitial
425
+ if round:
426
+ v =+v
427
+ if info:
428
+ return (v,block,my_zero_number,pattern)
429
+ else:
430
+ return v
431
+
432
+ def gram_index(ctx, t):
433
+ if t > 10**13:
434
+ wp = 3*ctx.log(t, 10)
435
+ else:
436
+ wp = 0
437
+ prec = ctx.prec
438
+ try:
439
+ ctx.prec += wp
440
+ h = int(ctx.siegeltheta(t)/ctx.pi)
441
+ finally:
442
+ ctx.prec = prec
443
+ return(h)
444
+
445
+ def count_to(ctx, t, T, V):
446
+ count = 0
447
+ vold = V[0]
448
+ told = T[0]
449
+ tnew = T[1]
450
+ k = 1
451
+ while tnew < t:
452
+ vnew = V[k]
453
+ if vold*vnew < 0:
454
+ count += 1
455
+ vold = vnew
456
+ k += 1
457
+ tnew = T[k]
458
+ a = ctx.siegelz(t)
459
+ if a*vold < 0:
460
+ count += 1
461
+ return count
462
+
463
+ def comp_fp_tolerance(ctx, n):
464
+ wpz = wpzeros(n*ctx.log(n))
465
+ if n < 15*10**8:
466
+ fp_tolerance = 0.0005
467
+ elif n <= 10**14:
468
+ fp_tolerance = 0.1
469
+ else:
470
+ fp_tolerance = 100
471
+ return wpz, fp_tolerance
472
+
473
+ @defun
474
+ def nzeros(ctx, t):
475
+ r"""
476
+ Computes the number of zeros of the Riemann zeta function in
477
+ `(0,1) \times (0,t]`, usually denoted by `N(t)`.
478
+
479
+ **Examples**
480
+
481
+ The first zero has imaginary part between 14 and 15::
482
+
483
+ >>> from mpmath import *
484
+ >>> mp.dps = 15; mp.pretty = True
485
+ >>> nzeros(14)
486
+ 0
487
+ >>> nzeros(15)
488
+ 1
489
+ >>> zetazero(1)
490
+ (0.5 + 14.1347251417347j)
491
+
492
+ Some closely spaced zeros::
493
+
494
+ >>> nzeros(10**7)
495
+ 21136125
496
+ >>> zetazero(21136125)
497
+ (0.5 + 9999999.32718175j)
498
+ >>> zetazero(21136126)
499
+ (0.5 + 10000000.2400236j)
500
+ >>> nzeros(545439823.215)
501
+ 1500000001
502
+ >>> zetazero(1500000001)
503
+ (0.5 + 545439823.201985j)
504
+ >>> zetazero(1500000002)
505
+ (0.5 + 545439823.325697j)
506
+
507
+ This confirms the data given by J. van de Lune,
508
+ H. J. J. te Riele and D. T. Winter in 1986.
509
+ """
510
+ if t < 14.1347251417347:
511
+ return 0
512
+ x = gram_index(ctx, t)
513
+ k = int(ctx.floor(x))
514
+ wpinitial = ctx.prec
515
+ wpz, fp_tolerance = comp_fp_tolerance(ctx, k)
516
+ ctx.prec = wpz
517
+ a = ctx.siegelz(t)
518
+ if k == -1 and a < 0:
519
+ return 0
520
+ elif k == -1 and a > 0:
521
+ return 1
522
+ if k+2 < 400000000:
523
+ Rblock = find_rosser_block_zero(ctx, k+2)
524
+ else:
525
+ Rblock = search_supergood_block(ctx, k+2, fp_tolerance)
526
+ n1, n2 = Rblock[1]
527
+ if n2-n1 == 1:
528
+ b = Rblock[3][0]
529
+ if a*b > 0:
530
+ ctx.prec = wpinitial
531
+ return k+1
532
+ else:
533
+ ctx.prec = wpinitial
534
+ return k+2
535
+ my_zero_number,block, T, V = Rblock
536
+ zero_number_block = n2-n1
537
+ T, V, separated = separate_zeros_in_block(ctx,\
538
+ zero_number_block, T, V,\
539
+ limitloop=ctx.inf,\
540
+ fp_tolerance=fp_tolerance)
541
+ n = count_to(ctx, t, T, V)
542
+ ctx.prec = wpinitial
543
+ return n+n1+1
544
+
545
+ @defun_wrapped
546
+ def backlunds(ctx, t):
547
+ r"""
548
+ Computes the function
549
+ `S(t) = \operatorname{arg} \zeta(\frac{1}{2} + it) / \pi`.
550
+
551
+ See Titchmarsh Section 9.3 for details of the definition.
552
+
553
+ **Examples**
554
+
555
+ >>> from mpmath import *
556
+ >>> mp.dps = 15; mp.pretty = True
557
+ >>> backlunds(217.3)
558
+ 0.16302205431184
559
+
560
+ Generally, the value is a small number. At Gram points it is an integer,
561
+ frequently equal to 0::
562
+
563
+ >>> chop(backlunds(grampoint(200)))
564
+ 0.0
565
+ >>> backlunds(extraprec(10)(grampoint)(211))
566
+ 1.0
567
+ >>> backlunds(extraprec(10)(grampoint)(232))
568
+ -1.0
569
+
570
+ The number of zeros of the Riemann zeta function up to height `t`
571
+ satisfies `N(t) = \theta(t)/\pi + 1 + S(t)` (see :func:nzeros` and
572
+ :func:`siegeltheta`)::
573
+
574
+ >>> t = 1234.55
575
+ >>> nzeros(t)
576
+ 842
577
+ >>> siegeltheta(t)/pi+1+backlunds(t)
578
+ 842.0
579
+
580
+ """
581
+ return ctx.nzeros(t)-1-ctx.siegeltheta(t)/ctx.pi
582
+
583
+
584
+ """
585
+ _ROSSER_EXCEPTIONS is a list of all exceptions to
586
+ Rosser's rule for n <= 400 000 000.
587
+
588
+ Alternately the entry is of type [n,m], or a string.
589
+ The string is the zero pattern of the Block and the relevant
590
+ adjacent. For example (010)3 corresponds to a block
591
+ composed of three Gram intervals, the first ant third without
592
+ a zero and the intermediate with a zero. The next Gram interval
593
+ contain three zeros. So that in total we have 4 zeros in 4 Gram
594
+ blocks. n and m are the indices of the Gram points of this
595
+ interval of four Gram intervals. The Rosser exception is therefore
596
+ formed by the three Gram intervals that are signaled between
597
+ parenthesis.
598
+
599
+ We have included also some Rosser's exceptions beyond n=400 000 000
600
+ that are noted in the literature by some reason.
601
+
602
+ The list is composed from the data published in the references:
603
+
604
+ R. P. Brent, J. van de Lune, H. J. J. te Riele, D. T. Winter,
605
+ 'On the Zeros of the Riemann Zeta Function in the Critical Strip. II',
606
+ Math. Comp. 39 (1982) 681--688.
607
+ See also Corrigenda in Math. Comp. 46 (1986) 771.
608
+
609
+ J. van de Lune, H. J. J. te Riele,
610
+ 'On the Zeros of the Riemann Zeta Function in the Critical Strip. III',
611
+ Math. Comp. 41 (1983) 759--767.
612
+ See also Corrigenda in Math. Comp. 46 (1986) 771.
613
+
614
+ J. van de Lune,
615
+ 'Sums of Equal Powers of Positive Integers',
616
+ Dissertation,
617
+ Vrije Universiteit te Amsterdam, Centrum voor Wiskunde en Informatica,
618
+ Amsterdam, 1984.
619
+
620
+ Thanks to the authors all this papers and those others that have
621
+ contributed to make this possible.
622
+ """
623
+
624
+
625
+
626
+
627
+
628
+
629
+
630
+ _ROSSER_EXCEPTIONS = \
631
+ [[13999525, 13999528], '(00)3',
632
+ [30783329, 30783332], '(00)3',
633
+ [30930926, 30930929], '3(00)',
634
+ [37592215, 37592218], '(00)3',
635
+ [40870156, 40870159], '(00)3',
636
+ [43628107, 43628110], '(00)3',
637
+ [46082042, 46082045], '(00)3',
638
+ [46875667, 46875670], '(00)3',
639
+ [49624540, 49624543], '3(00)',
640
+ [50799238, 50799241], '(00)3',
641
+ [55221453, 55221456], '3(00)',
642
+ [56948779, 56948782], '3(00)',
643
+ [60515663, 60515666], '(00)3',
644
+ [61331766, 61331770], '(00)40',
645
+ [69784843, 69784846], '3(00)',
646
+ [75052114, 75052117], '(00)3',
647
+ [79545240, 79545243], '3(00)',
648
+ [79652247, 79652250], '3(00)',
649
+ [83088043, 83088046], '(00)3',
650
+ [83689522, 83689525], '3(00)',
651
+ [85348958, 85348961], '(00)3',
652
+ [86513820, 86513823], '(00)3',
653
+ [87947596, 87947599], '3(00)',
654
+ [88600095, 88600098], '(00)3',
655
+ [93681183, 93681186], '(00)3',
656
+ [100316551, 100316554], '3(00)',
657
+ [100788444, 100788447], '(00)3',
658
+ [106236172, 106236175], '(00)3',
659
+ [106941327, 106941330], '3(00)',
660
+ [107287955, 107287958], '(00)3',
661
+ [107532016, 107532019], '3(00)',
662
+ [110571044, 110571047], '(00)3',
663
+ [111885253, 111885256], '3(00)',
664
+ [113239783, 113239786], '(00)3',
665
+ [120159903, 120159906], '(00)3',
666
+ [121424391, 121424394], '3(00)',
667
+ [121692931, 121692934], '3(00)',
668
+ [121934170, 121934173], '3(00)',
669
+ [122612848, 122612851], '3(00)',
670
+ [126116567, 126116570], '(00)3',
671
+ [127936513, 127936516], '(00)3',
672
+ [128710277, 128710280], '3(00)',
673
+ [129398902, 129398905], '3(00)',
674
+ [130461096, 130461099], '3(00)',
675
+ [131331947, 131331950], '3(00)',
676
+ [137334071, 137334074], '3(00)',
677
+ [137832603, 137832606], '(00)3',
678
+ [138799471, 138799474], '3(00)',
679
+ [139027791, 139027794], '(00)3',
680
+ [141617806, 141617809], '(00)3',
681
+ [144454931, 144454934], '(00)3',
682
+ [145402379, 145402382], '3(00)',
683
+ [146130245, 146130248], '3(00)',
684
+ [147059770, 147059773], '(00)3',
685
+ [147896099, 147896102], '3(00)',
686
+ [151097113, 151097116], '(00)3',
687
+ [152539438, 152539441], '(00)3',
688
+ [152863168, 152863171], '3(00)',
689
+ [153522726, 153522729], '3(00)',
690
+ [155171524, 155171527], '3(00)',
691
+ [155366607, 155366610], '(00)3',
692
+ [157260686, 157260689], '3(00)',
693
+ [157269224, 157269227], '(00)3',
694
+ [157755123, 157755126], '(00)3',
695
+ [158298484, 158298487], '3(00)',
696
+ [160369050, 160369053], '3(00)',
697
+ [162962787, 162962790], '(00)3',
698
+ [163724709, 163724712], '(00)3',
699
+ [164198113, 164198116], '3(00)',
700
+ [164689301, 164689305], '(00)40',
701
+ [164880228, 164880231], '3(00)',
702
+ [166201932, 166201935], '(00)3',
703
+ [168573836, 168573839], '(00)3',
704
+ [169750763, 169750766], '(00)3',
705
+ [170375507, 170375510], '(00)3',
706
+ [170704879, 170704882], '3(00)',
707
+ [172000992, 172000995], '3(00)',
708
+ [173289941, 173289944], '(00)3',
709
+ [173737613, 173737616], '3(00)',
710
+ [174102513, 174102516], '(00)3',
711
+ [174284990, 174284993], '(00)3',
712
+ [174500513, 174500516], '(00)3',
713
+ [175710609, 175710612], '(00)3',
714
+ [176870843, 176870846], '3(00)',
715
+ [177332732, 177332735], '3(00)',
716
+ [177902861, 177902864], '3(00)',
717
+ [179979095, 179979098], '(00)3',
718
+ [181233726, 181233729], '3(00)',
719
+ [181625435, 181625438], '(00)3',
720
+ [182105255, 182105259], '22(00)',
721
+ [182223559, 182223562], '3(00)',
722
+ [191116404, 191116407], '3(00)',
723
+ [191165599, 191165602], '3(00)',
724
+ [191297535, 191297539], '(00)22',
725
+ [192485616, 192485619], '(00)3',
726
+ [193264634, 193264638], '22(00)',
727
+ [194696968, 194696971], '(00)3',
728
+ [195876805, 195876808], '(00)3',
729
+ [195916548, 195916551], '3(00)',
730
+ [196395160, 196395163], '3(00)',
731
+ [196676303, 196676306], '(00)3',
732
+ [197889882, 197889885], '3(00)',
733
+ [198014122, 198014125], '(00)3',
734
+ [199235289, 199235292], '(00)3',
735
+ [201007375, 201007378], '(00)3',
736
+ [201030605, 201030608], '3(00)',
737
+ [201184290, 201184293], '3(00)',
738
+ [201685414, 201685418], '(00)22',
739
+ [202762875, 202762878], '3(00)',
740
+ [202860957, 202860960], '3(00)',
741
+ [203832577, 203832580], '3(00)',
742
+ [205880544, 205880547], '(00)3',
743
+ [206357111, 206357114], '(00)3',
744
+ [207159767, 207159770], '3(00)',
745
+ [207167343, 207167346], '3(00)',
746
+ [207482539, 207482543], '3(010)',
747
+ [207669540, 207669543], '3(00)',
748
+ [208053426, 208053429], '(00)3',
749
+ [208110027, 208110030], '3(00)',
750
+ [209513826, 209513829], '3(00)',
751
+ [212623522, 212623525], '(00)3',
752
+ [213841715, 213841718], '(00)3',
753
+ [214012333, 214012336], '(00)3',
754
+ [214073567, 214073570], '(00)3',
755
+ [215170600, 215170603], '3(00)',
756
+ [215881039, 215881042], '3(00)',
757
+ [216274604, 216274607], '3(00)',
758
+ [216957120, 216957123], '3(00)',
759
+ [217323208, 217323211], '(00)3',
760
+ [218799264, 218799267], '(00)3',
761
+ [218803557, 218803560], '3(00)',
762
+ [219735146, 219735149], '(00)3',
763
+ [219830062, 219830065], '3(00)',
764
+ [219897904, 219897907], '(00)3',
765
+ [221205545, 221205548], '(00)3',
766
+ [223601929, 223601932], '(00)3',
767
+ [223907076, 223907079], '3(00)',
768
+ [223970397, 223970400], '(00)3',
769
+ [224874044, 224874048], '22(00)',
770
+ [225291157, 225291160], '(00)3',
771
+ [227481734, 227481737], '(00)3',
772
+ [228006442, 228006445], '3(00)',
773
+ [228357900, 228357903], '(00)3',
774
+ [228386399, 228386402], '(00)3',
775
+ [228907446, 228907449], '(00)3',
776
+ [228984552, 228984555], '3(00)',
777
+ [229140285, 229140288], '3(00)',
778
+ [231810024, 231810027], '(00)3',
779
+ [232838062, 232838065], '3(00)',
780
+ [234389088, 234389091], '3(00)',
781
+ [235588194, 235588197], '(00)3',
782
+ [236645695, 236645698], '(00)3',
783
+ [236962876, 236962879], '3(00)',
784
+ [237516723, 237516727], '04(00)',
785
+ [240004911, 240004914], '(00)3',
786
+ [240221306, 240221309], '3(00)',
787
+ [241389213, 241389217], '(010)3',
788
+ [241549003, 241549006], '(00)3',
789
+ [241729717, 241729720], '(00)3',
790
+ [241743684, 241743687], '3(00)',
791
+ [243780200, 243780203], '3(00)',
792
+ [243801317, 243801320], '(00)3',
793
+ [244122072, 244122075], '(00)3',
794
+ [244691224, 244691227], '3(00)',
795
+ [244841577, 244841580], '(00)3',
796
+ [245813461, 245813464], '(00)3',
797
+ [246299475, 246299478], '(00)3',
798
+ [246450176, 246450179], '3(00)',
799
+ [249069349, 249069352], '(00)3',
800
+ [250076378, 250076381], '(00)3',
801
+ [252442157, 252442160], '3(00)',
802
+ [252904231, 252904234], '3(00)',
803
+ [255145220, 255145223], '(00)3',
804
+ [255285971, 255285974], '3(00)',
805
+ [256713230, 256713233], '(00)3',
806
+ [257992082, 257992085], '(00)3',
807
+ [258447955, 258447959], '22(00)',
808
+ [259298045, 259298048], '3(00)',
809
+ [262141503, 262141506], '(00)3',
810
+ [263681743, 263681746], '3(00)',
811
+ [266527881, 266527885], '(010)3',
812
+ [266617122, 266617125], '(00)3',
813
+ [266628044, 266628047], '3(00)',
814
+ [267305763, 267305766], '(00)3',
815
+ [267388404, 267388407], '3(00)',
816
+ [267441672, 267441675], '3(00)',
817
+ [267464886, 267464889], '(00)3',
818
+ [267554907, 267554910], '3(00)',
819
+ [269787480, 269787483], '(00)3',
820
+ [270881434, 270881437], '(00)3',
821
+ [270997583, 270997586], '3(00)',
822
+ [272096378, 272096381], '3(00)',
823
+ [272583009, 272583012], '(00)3',
824
+ [274190881, 274190884], '3(00)',
825
+ [274268747, 274268750], '(00)3',
826
+ [275297429, 275297432], '3(00)',
827
+ [275545476, 275545479], '3(00)',
828
+ [275898479, 275898482], '3(00)',
829
+ [275953000, 275953003], '(00)3',
830
+ [277117197, 277117201], '(00)22',
831
+ [277447310, 277447313], '3(00)',
832
+ [279059657, 279059660], '3(00)',
833
+ [279259144, 279259147], '3(00)',
834
+ [279513636, 279513639], '3(00)',
835
+ [279849069, 279849072], '3(00)',
836
+ [280291419, 280291422], '(00)3',
837
+ [281449425, 281449428], '3(00)',
838
+ [281507953, 281507956], '3(00)',
839
+ [281825600, 281825603], '(00)3',
840
+ [282547093, 282547096], '3(00)',
841
+ [283120963, 283120966], '3(00)',
842
+ [283323493, 283323496], '(00)3',
843
+ [284764535, 284764538], '3(00)',
844
+ [286172639, 286172642], '3(00)',
845
+ [286688824, 286688827], '(00)3',
846
+ [287222172, 287222175], '3(00)',
847
+ [287235534, 287235537], '3(00)',
848
+ [287304861, 287304864], '3(00)',
849
+ [287433571, 287433574], '(00)3',
850
+ [287823551, 287823554], '(00)3',
851
+ [287872422, 287872425], '3(00)',
852
+ [288766615, 288766618], '3(00)',
853
+ [290122963, 290122966], '3(00)',
854
+ [290450849, 290450853], '(00)22',
855
+ [291426141, 291426144], '3(00)',
856
+ [292810353, 292810356], '3(00)',
857
+ [293109861, 293109864], '3(00)',
858
+ [293398054, 293398057], '3(00)',
859
+ [294134426, 294134429], '3(00)',
860
+ [294216438, 294216441], '(00)3',
861
+ [295367141, 295367144], '3(00)',
862
+ [297834111, 297834114], '3(00)',
863
+ [299099969, 299099972], '3(00)',
864
+ [300746958, 300746961], '3(00)',
865
+ [301097423, 301097426], '(00)3',
866
+ [301834209, 301834212], '(00)3',
867
+ [302554791, 302554794], '(00)3',
868
+ [303497445, 303497448], '3(00)',
869
+ [304165344, 304165347], '3(00)',
870
+ [304790218, 304790222], '3(010)',
871
+ [305302352, 305302355], '(00)3',
872
+ [306785996, 306785999], '3(00)',
873
+ [307051443, 307051446], '3(00)',
874
+ [307481539, 307481542], '3(00)',
875
+ [308605569, 308605572], '3(00)',
876
+ [309237610, 309237613], '3(00)',
877
+ [310509287, 310509290], '(00)3',
878
+ [310554057, 310554060], '3(00)',
879
+ [310646345, 310646348], '3(00)',
880
+ [311274896, 311274899], '(00)3',
881
+ [311894272, 311894275], '3(00)',
882
+ [312269470, 312269473], '(00)3',
883
+ [312306601, 312306605], '(00)40',
884
+ [312683193, 312683196], '3(00)',
885
+ [314499804, 314499807], '3(00)',
886
+ [314636802, 314636805], '(00)3',
887
+ [314689897, 314689900], '3(00)',
888
+ [314721319, 314721322], '3(00)',
889
+ [316132890, 316132893], '3(00)',
890
+ [316217470, 316217474], '(010)3',
891
+ [316465705, 316465708], '3(00)',
892
+ [316542790, 316542793], '(00)3',
893
+ [320822347, 320822350], '3(00)',
894
+ [321733242, 321733245], '3(00)',
895
+ [324413970, 324413973], '(00)3',
896
+ [325950140, 325950143], '(00)3',
897
+ [326675884, 326675887], '(00)3',
898
+ [326704208, 326704211], '3(00)',
899
+ [327596247, 327596250], '3(00)',
900
+ [328123172, 328123175], '3(00)',
901
+ [328182212, 328182215], '(00)3',
902
+ [328257498, 328257501], '3(00)',
903
+ [328315836, 328315839], '(00)3',
904
+ [328800974, 328800977], '(00)3',
905
+ [328998509, 328998512], '3(00)',
906
+ [329725370, 329725373], '(00)3',
907
+ [332080601, 332080604], '(00)3',
908
+ [332221246, 332221249], '(00)3',
909
+ [332299899, 332299902], '(00)3',
910
+ [332532822, 332532825], '(00)3',
911
+ [333334544, 333334548], '(00)22',
912
+ [333881266, 333881269], '3(00)',
913
+ [334703267, 334703270], '3(00)',
914
+ [334875138, 334875141], '3(00)',
915
+ [336531451, 336531454], '3(00)',
916
+ [336825907, 336825910], '(00)3',
917
+ [336993167, 336993170], '(00)3',
918
+ [337493998, 337494001], '3(00)',
919
+ [337861034, 337861037], '3(00)',
920
+ [337899191, 337899194], '(00)3',
921
+ [337958123, 337958126], '(00)3',
922
+ [342331982, 342331985], '3(00)',
923
+ [342676068, 342676071], '3(00)',
924
+ [347063781, 347063784], '3(00)',
925
+ [347697348, 347697351], '3(00)',
926
+ [347954319, 347954322], '3(00)',
927
+ [348162775, 348162778], '3(00)',
928
+ [349210702, 349210705], '(00)3',
929
+ [349212913, 349212916], '3(00)',
930
+ [349248650, 349248653], '(00)3',
931
+ [349913500, 349913503], '3(00)',
932
+ [350891529, 350891532], '3(00)',
933
+ [351089323, 351089326], '3(00)',
934
+ [351826158, 351826161], '3(00)',
935
+ [352228580, 352228583], '(00)3',
936
+ [352376244, 352376247], '3(00)',
937
+ [352853758, 352853761], '(00)3',
938
+ [355110439, 355110442], '(00)3',
939
+ [355808090, 355808094], '(00)40',
940
+ [355941556, 355941559], '3(00)',
941
+ [356360231, 356360234], '(00)3',
942
+ [356586657, 356586660], '3(00)',
943
+ [356892926, 356892929], '(00)3',
944
+ [356908232, 356908235], '3(00)',
945
+ [357912730, 357912733], '3(00)',
946
+ [358120344, 358120347], '3(00)',
947
+ [359044096, 359044099], '(00)3',
948
+ [360819357, 360819360], '3(00)',
949
+ [361399662, 361399666], '(010)3',
950
+ [362361315, 362361318], '(00)3',
951
+ [363610112, 363610115], '(00)3',
952
+ [363964804, 363964807], '3(00)',
953
+ [364527375, 364527378], '(00)3',
954
+ [365090327, 365090330], '(00)3',
955
+ [365414539, 365414542], '3(00)',
956
+ [366738474, 366738477], '3(00)',
957
+ [368714778, 368714783], '04(010)',
958
+ [368831545, 368831548], '(00)3',
959
+ [368902387, 368902390], '(00)3',
960
+ [370109769, 370109772], '3(00)',
961
+ [370963333, 370963336], '3(00)',
962
+ [372541136, 372541140], '3(010)',
963
+ [372681562, 372681565], '(00)3',
964
+ [373009410, 373009413], '(00)3',
965
+ [373458970, 373458973], '3(00)',
966
+ [375648658, 375648661], '3(00)',
967
+ [376834728, 376834731], '3(00)',
968
+ [377119945, 377119948], '(00)3',
969
+ [377335703, 377335706], '(00)3',
970
+ [378091745, 378091748], '3(00)',
971
+ [379139522, 379139525], '3(00)',
972
+ [380279160, 380279163], '(00)3',
973
+ [380619442, 380619445], '3(00)',
974
+ [381244231, 381244234], '3(00)',
975
+ [382327446, 382327450], '(010)3',
976
+ [382357073, 382357076], '3(00)',
977
+ [383545479, 383545482], '3(00)',
978
+ [384363766, 384363769], '(00)3',
979
+ [384401786, 384401790], '22(00)',
980
+ [385198212, 385198215], '3(00)',
981
+ [385824476, 385824479], '(00)3',
982
+ [385908194, 385908197], '3(00)',
983
+ [386946806, 386946809], '3(00)',
984
+ [387592175, 387592179], '22(00)',
985
+ [388329293, 388329296], '(00)3',
986
+ [388679566, 388679569], '3(00)',
987
+ [388832142, 388832145], '3(00)',
988
+ [390087103, 390087106], '(00)3',
989
+ [390190926, 390190930], '(00)22',
990
+ [390331207, 390331210], '3(00)',
991
+ [391674495, 391674498], '3(00)',
992
+ [391937831, 391937834], '3(00)',
993
+ [391951632, 391951636], '(00)22',
994
+ [392963986, 392963989], '(00)3',
995
+ [393007921, 393007924], '3(00)',
996
+ [393373210, 393373213], '3(00)',
997
+ [393759572, 393759575], '(00)3',
998
+ [394036662, 394036665], '(00)3',
999
+ [395813866, 395813869], '(00)3',
1000
+ [395956690, 395956693], '3(00)',
1001
+ [396031670, 396031673], '3(00)',
1002
+ [397076433, 397076436], '3(00)',
1003
+ [397470601, 397470604], '3(00)',
1004
+ [398289458, 398289461], '3(00)',
1005
+ #
1006
+ [368714778, 368714783], '04(010)',
1007
+ [437953499, 437953504], '04(010)',
1008
+ [526196233, 526196238], '032(00)',
1009
+ [744719566, 744719571], '(010)40',
1010
+ [750375857, 750375862], '032(00)',
1011
+ [958241932, 958241937], '04(010)',
1012
+ [983377342, 983377347], '(00)410',
1013
+ [1003780080, 1003780085], '04(010)',
1014
+ [1070232754, 1070232759], '(00)230',
1015
+ [1209834865, 1209834870], '032(00)',
1016
+ [1257209100, 1257209105], '(00)410',
1017
+ [1368002233, 1368002238], '(00)230'
1018
+ ]
venv/lib/python3.10/site-packages/mpmath/matrices/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from . import eigen # to set methods
2
+ from . import eigen_symmetric # to set methods
venv/lib/python3.10/site-packages/mpmath/matrices/matrices.py ADDED
@@ -0,0 +1,1005 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ..libmp.backend import xrange
2
+ import warnings
3
+
4
+ # TODO: interpret list as vectors (for multiplication)
5
+
6
+ rowsep = '\n'
7
+ colsep = ' '
8
+
9
+ class _matrix(object):
10
+ """
11
+ Numerical matrix.
12
+
13
+ Specify the dimensions or the data as a nested list.
14
+ Elements default to zero.
15
+ Use a flat list to create a column vector easily.
16
+
17
+ The datatype of the context (mpf for mp, mpi for iv, and float for fp) is used to store the data.
18
+
19
+ Creating matrices
20
+ -----------------
21
+
22
+ Matrices in mpmath are implemented using dictionaries. Only non-zero values
23
+ are stored, so it is cheap to represent sparse matrices.
24
+
25
+ The most basic way to create one is to use the ``matrix`` class directly.
26
+ You can create an empty matrix specifying the dimensions:
27
+
28
+ >>> from mpmath import *
29
+ >>> mp.dps = 15
30
+ >>> matrix(2)
31
+ matrix(
32
+ [['0.0', '0.0'],
33
+ ['0.0', '0.0']])
34
+ >>> matrix(2, 3)
35
+ matrix(
36
+ [['0.0', '0.0', '0.0'],
37
+ ['0.0', '0.0', '0.0']])
38
+
39
+ Calling ``matrix`` with one dimension will create a square matrix.
40
+
41
+ To access the dimensions of a matrix, use the ``rows`` or ``cols`` keyword:
42
+
43
+ >>> A = matrix(3, 2)
44
+ >>> A
45
+ matrix(
46
+ [['0.0', '0.0'],
47
+ ['0.0', '0.0'],
48
+ ['0.0', '0.0']])
49
+ >>> A.rows
50
+ 3
51
+ >>> A.cols
52
+ 2
53
+
54
+ You can also change the dimension of an existing matrix. This will set the
55
+ new elements to 0. If the new dimension is smaller than before, the
56
+ concerning elements are discarded:
57
+
58
+ >>> A.rows = 2
59
+ >>> A
60
+ matrix(
61
+ [['0.0', '0.0'],
62
+ ['0.0', '0.0']])
63
+
64
+ Internally ``mpmathify`` is used every time an element is set. This
65
+ is done using the syntax A[row,column], counting from 0:
66
+
67
+ >>> A = matrix(2)
68
+ >>> A[1,1] = 1 + 1j
69
+ >>> A
70
+ matrix(
71
+ [['0.0', '0.0'],
72
+ ['0.0', mpc(real='1.0', imag='1.0')]])
73
+
74
+ A more comfortable way to create a matrix lets you use nested lists:
75
+
76
+ >>> matrix([[1, 2], [3, 4]])
77
+ matrix(
78
+ [['1.0', '2.0'],
79
+ ['3.0', '4.0']])
80
+
81
+ Convenient advanced functions are available for creating various standard
82
+ matrices, see ``zeros``, ``ones``, ``diag``, ``eye``, ``randmatrix`` and
83
+ ``hilbert``.
84
+
85
+ Vectors
86
+ .......
87
+
88
+ Vectors may also be represented by the ``matrix`` class (with rows = 1 or cols = 1).
89
+ For vectors there are some things which make life easier. A column vector can
90
+ be created using a flat list, a row vectors using an almost flat nested list::
91
+
92
+ >>> matrix([1, 2, 3])
93
+ matrix(
94
+ [['1.0'],
95
+ ['2.0'],
96
+ ['3.0']])
97
+ >>> matrix([[1, 2, 3]])
98
+ matrix(
99
+ [['1.0', '2.0', '3.0']])
100
+
101
+ Optionally vectors can be accessed like lists, using only a single index::
102
+
103
+ >>> x = matrix([1, 2, 3])
104
+ >>> x[1]
105
+ mpf('2.0')
106
+ >>> x[1,0]
107
+ mpf('2.0')
108
+
109
+ Other
110
+ .....
111
+
112
+ Like you probably expected, matrices can be printed::
113
+
114
+ >>> print randmatrix(3) # doctest:+SKIP
115
+ [ 0.782963853573023 0.802057689719883 0.427895717335467]
116
+ [0.0541876859348597 0.708243266653103 0.615134039977379]
117
+ [ 0.856151514955773 0.544759264818486 0.686210904770947]
118
+
119
+ Use ``nstr`` or ``nprint`` to specify the number of digits to print::
120
+
121
+ >>> nprint(randmatrix(5), 3) # doctest:+SKIP
122
+ [2.07e-1 1.66e-1 5.06e-1 1.89e-1 8.29e-1]
123
+ [6.62e-1 6.55e-1 4.47e-1 4.82e-1 2.06e-2]
124
+ [4.33e-1 7.75e-1 6.93e-2 2.86e-1 5.71e-1]
125
+ [1.01e-1 2.53e-1 6.13e-1 3.32e-1 2.59e-1]
126
+ [1.56e-1 7.27e-2 6.05e-1 6.67e-2 2.79e-1]
127
+
128
+ As matrices are mutable, you will need to copy them sometimes::
129
+
130
+ >>> A = matrix(2)
131
+ >>> A
132
+ matrix(
133
+ [['0.0', '0.0'],
134
+ ['0.0', '0.0']])
135
+ >>> B = A.copy()
136
+ >>> B[0,0] = 1
137
+ >>> B
138
+ matrix(
139
+ [['1.0', '0.0'],
140
+ ['0.0', '0.0']])
141
+ >>> A
142
+ matrix(
143
+ [['0.0', '0.0'],
144
+ ['0.0', '0.0']])
145
+
146
+ Finally, it is possible to convert a matrix to a nested list. This is very useful,
147
+ as most Python libraries involving matrices or arrays (namely NumPy or SymPy)
148
+ support this format::
149
+
150
+ >>> B.tolist()
151
+ [[mpf('1.0'), mpf('0.0')], [mpf('0.0'), mpf('0.0')]]
152
+
153
+
154
+ Matrix operations
155
+ -----------------
156
+
157
+ You can add and subtract matrices of compatible dimensions::
158
+
159
+ >>> A = matrix([[1, 2], [3, 4]])
160
+ >>> B = matrix([[-2, 4], [5, 9]])
161
+ >>> A + B
162
+ matrix(
163
+ [['-1.0', '6.0'],
164
+ ['8.0', '13.0']])
165
+ >>> A - B
166
+ matrix(
167
+ [['3.0', '-2.0'],
168
+ ['-2.0', '-5.0']])
169
+ >>> A + ones(3) # doctest:+ELLIPSIS
170
+ Traceback (most recent call last):
171
+ ...
172
+ ValueError: incompatible dimensions for addition
173
+
174
+ It is possible to multiply or add matrices and scalars. In the latter case the
175
+ operation will be done element-wise::
176
+
177
+ >>> A * 2
178
+ matrix(
179
+ [['2.0', '4.0'],
180
+ ['6.0', '8.0']])
181
+ >>> A / 4
182
+ matrix(
183
+ [['0.25', '0.5'],
184
+ ['0.75', '1.0']])
185
+ >>> A - 1
186
+ matrix(
187
+ [['0.0', '1.0'],
188
+ ['2.0', '3.0']])
189
+
190
+ Of course you can perform matrix multiplication, if the dimensions are
191
+ compatible, using ``@`` (for Python >= 3.5) or ``*``. For clarity, ``@`` is
192
+ recommended (`PEP 465 <https://www.python.org/dev/peps/pep-0465/>`), because
193
+ the meaning of ``*`` is different in many other Python libraries such as NumPy.
194
+
195
+ >>> A @ B # doctest:+SKIP
196
+ matrix(
197
+ [['8.0', '22.0'],
198
+ ['14.0', '48.0']])
199
+ >>> A * B # same as A @ B
200
+ matrix(
201
+ [['8.0', '22.0'],
202
+ ['14.0', '48.0']])
203
+ >>> matrix([[1, 2, 3]]) * matrix([[-6], [7], [-2]])
204
+ matrix(
205
+ [['2.0']])
206
+
207
+ ..
208
+ COMMENT: TODO: the above "doctest:+SKIP" may be removed as soon as we
209
+ have dropped support for Python 3.5 and below.
210
+
211
+ You can raise powers of square matrices::
212
+
213
+ >>> A**2
214
+ matrix(
215
+ [['7.0', '10.0'],
216
+ ['15.0', '22.0']])
217
+
218
+ Negative powers will calculate the inverse::
219
+
220
+ >>> A**-1
221
+ matrix(
222
+ [['-2.0', '1.0'],
223
+ ['1.5', '-0.5']])
224
+ >>> A * A**-1
225
+ matrix(
226
+ [['1.0', '1.0842021724855e-19'],
227
+ ['-2.16840434497101e-19', '1.0']])
228
+
229
+
230
+
231
+ Matrix transposition is straightforward::
232
+
233
+ >>> A = ones(2, 3)
234
+ >>> A
235
+ matrix(
236
+ [['1.0', '1.0', '1.0'],
237
+ ['1.0', '1.0', '1.0']])
238
+ >>> A.T
239
+ matrix(
240
+ [['1.0', '1.0'],
241
+ ['1.0', '1.0'],
242
+ ['1.0', '1.0']])
243
+
244
+ Norms
245
+ .....
246
+
247
+ Sometimes you need to know how "large" a matrix or vector is. Due to their
248
+ multidimensional nature it's not possible to compare them, but there are
249
+ several functions to map a matrix or a vector to a positive real number, the
250
+ so called norms.
251
+
252
+ For vectors the p-norm is intended, usually the 1-, the 2- and the oo-norm are
253
+ used.
254
+
255
+ >>> x = matrix([-10, 2, 100])
256
+ >>> norm(x, 1)
257
+ mpf('112.0')
258
+ >>> norm(x, 2)
259
+ mpf('100.5186549850325')
260
+ >>> norm(x, inf)
261
+ mpf('100.0')
262
+
263
+ Please note that the 2-norm is the most used one, though it is more expensive
264
+ to calculate than the 1- or oo-norm.
265
+
266
+ It is possible to generalize some vector norms to matrix norm::
267
+
268
+ >>> A = matrix([[1, -1000], [100, 50]])
269
+ >>> mnorm(A, 1)
270
+ mpf('1050.0')
271
+ >>> mnorm(A, inf)
272
+ mpf('1001.0')
273
+ >>> mnorm(A, 'F')
274
+ mpf('1006.2310867787777')
275
+
276
+ The last norm (the "Frobenius-norm") is an approximation for the 2-norm, which
277
+ is hard to calculate and not available. The Frobenius-norm lacks some
278
+ mathematical properties you might expect from a norm.
279
+ """
280
+
281
+ def __init__(self, *args, **kwargs):
282
+ self.__data = {}
283
+ # LU decompostion cache, this is useful when solving the same system
284
+ # multiple times, when calculating the inverse and when calculating the
285
+ # determinant
286
+ self._LU = None
287
+ if "force_type" in kwargs:
288
+ warnings.warn("The force_type argument was removed, it did not work"
289
+ " properly anyway. If you want to force floating-point or"
290
+ " interval computations, use the respective methods from `fp`"
291
+ " or `mp` instead, e.g., `fp.matrix()` or `iv.matrix()`."
292
+ " If you want to truncate values to integer, use .apply(int) instead.")
293
+ if isinstance(args[0], (list, tuple)):
294
+ if isinstance(args[0][0], (list, tuple)):
295
+ # interpret nested list as matrix
296
+ A = args[0]
297
+ self.__rows = len(A)
298
+ self.__cols = len(A[0])
299
+ for i, row in enumerate(A):
300
+ for j, a in enumerate(row):
301
+ # note: this will call __setitem__ which will call self.ctx.convert() to convert the datatype.
302
+ self[i, j] = a
303
+ else:
304
+ # interpret list as row vector
305
+ v = args[0]
306
+ self.__rows = len(v)
307
+ self.__cols = 1
308
+ for i, e in enumerate(v):
309
+ self[i, 0] = e
310
+ elif isinstance(args[0], int):
311
+ # create empty matrix of given dimensions
312
+ if len(args) == 1:
313
+ self.__rows = self.__cols = args[0]
314
+ else:
315
+ if not isinstance(args[1], int):
316
+ raise TypeError("expected int")
317
+ self.__rows = args[0]
318
+ self.__cols = args[1]
319
+ elif isinstance(args[0], _matrix):
320
+ A = args[0]
321
+ self.__rows = A._matrix__rows
322
+ self.__cols = A._matrix__cols
323
+ for i in xrange(A.__rows):
324
+ for j in xrange(A.__cols):
325
+ self[i, j] = A[i, j]
326
+ elif hasattr(args[0], 'tolist'):
327
+ A = self.ctx.matrix(args[0].tolist())
328
+ self.__data = A._matrix__data
329
+ self.__rows = A._matrix__rows
330
+ self.__cols = A._matrix__cols
331
+ else:
332
+ raise TypeError('could not interpret given arguments')
333
+
334
+ def apply(self, f):
335
+ """
336
+ Return a copy of self with the function `f` applied elementwise.
337
+ """
338
+ new = self.ctx.matrix(self.__rows, self.__cols)
339
+ for i in xrange(self.__rows):
340
+ for j in xrange(self.__cols):
341
+ new[i,j] = f(self[i,j])
342
+ return new
343
+
344
+ def __nstr__(self, n=None, **kwargs):
345
+ # Build table of string representations of the elements
346
+ res = []
347
+ # Track per-column max lengths for pretty alignment
348
+ maxlen = [0] * self.cols
349
+ for i in range(self.rows):
350
+ res.append([])
351
+ for j in range(self.cols):
352
+ if n:
353
+ string = self.ctx.nstr(self[i,j], n, **kwargs)
354
+ else:
355
+ string = str(self[i,j])
356
+ res[-1].append(string)
357
+ maxlen[j] = max(len(string), maxlen[j])
358
+ # Patch strings together
359
+ for i, row in enumerate(res):
360
+ for j, elem in enumerate(row):
361
+ # Pad each element up to maxlen so the columns line up
362
+ row[j] = elem.rjust(maxlen[j])
363
+ res[i] = "[" + colsep.join(row) + "]"
364
+ return rowsep.join(res)
365
+
366
+ def __str__(self):
367
+ return self.__nstr__()
368
+
369
+ def _toliststr(self, avoid_type=False):
370
+ """
371
+ Create a list string from a matrix.
372
+
373
+ If avoid_type: avoid multiple 'mpf's.
374
+ """
375
+ # XXX: should be something like self.ctx._types
376
+ typ = self.ctx.mpf
377
+ s = '['
378
+ for i in xrange(self.__rows):
379
+ s += '['
380
+ for j in xrange(self.__cols):
381
+ if not avoid_type or not isinstance(self[i,j], typ):
382
+ a = repr(self[i,j])
383
+ else:
384
+ a = "'" + str(self[i,j]) + "'"
385
+ s += a + ', '
386
+ s = s[:-2]
387
+ s += '],\n '
388
+ s = s[:-3]
389
+ s += ']'
390
+ return s
391
+
392
+ def tolist(self):
393
+ """
394
+ Convert the matrix to a nested list.
395
+ """
396
+ return [[self[i,j] for j in range(self.__cols)] for i in range(self.__rows)]
397
+
398
+ def __repr__(self):
399
+ if self.ctx.pretty:
400
+ return self.__str__()
401
+ s = 'matrix(\n'
402
+ s += self._toliststr(avoid_type=True) + ')'
403
+ return s
404
+
405
+ def __get_element(self, key):
406
+ '''
407
+ Fast extraction of the i,j element from the matrix
408
+ This function is for private use only because is unsafe:
409
+ 1. Does not check on the value of key it expects key to be a integer tuple (i,j)
410
+ 2. Does not check bounds
411
+ '''
412
+ if key in self.__data:
413
+ return self.__data[key]
414
+ else:
415
+ return self.ctx.zero
416
+
417
+ def __set_element(self, key, value):
418
+ '''
419
+ Fast assignment of the i,j element in the matrix
420
+ This function is unsafe:
421
+ 1. Does not check on the value of key it expects key to be a integer tuple (i,j)
422
+ 2. Does not check bounds
423
+ 3. Does not check the value type
424
+ 4. Does not reset the LU cache
425
+ '''
426
+ if value: # only store non-zeros
427
+ self.__data[key] = value
428
+ elif key in self.__data:
429
+ del self.__data[key]
430
+
431
+
432
+ def __getitem__(self, key):
433
+ '''
434
+ Getitem function for mp matrix class with slice index enabled
435
+ it allows the following assingments
436
+ scalar to a slice of the matrix
437
+ B = A[:,2:6]
438
+ '''
439
+ # Convert vector to matrix indexing
440
+ if isinstance(key, int) or isinstance(key,slice):
441
+ # only sufficent for vectors
442
+ if self.__rows == 1:
443
+ key = (0, key)
444
+ elif self.__cols == 1:
445
+ key = (key, 0)
446
+ else:
447
+ raise IndexError('insufficient indices for matrix')
448
+
449
+ if isinstance(key[0],slice) or isinstance(key[1],slice):
450
+
451
+ #Rows
452
+ if isinstance(key[0],slice):
453
+ #Check bounds
454
+ if (key[0].start is None or key[0].start >= 0) and \
455
+ (key[0].stop is None or key[0].stop <= self.__rows+1):
456
+ # Generate indices
457
+ rows = xrange(*key[0].indices(self.__rows))
458
+ else:
459
+ raise IndexError('Row index out of bounds')
460
+ else:
461
+ # Single row
462
+ rows = [key[0]]
463
+
464
+ # Columns
465
+ if isinstance(key[1],slice):
466
+ # Check bounds
467
+ if (key[1].start is None or key[1].start >= 0) and \
468
+ (key[1].stop is None or key[1].stop <= self.__cols+1):
469
+ # Generate indices
470
+ columns = xrange(*key[1].indices(self.__cols))
471
+ else:
472
+ raise IndexError('Column index out of bounds')
473
+
474
+ else:
475
+ # Single column
476
+ columns = [key[1]]
477
+
478
+ # Create matrix slice
479
+ m = self.ctx.matrix(len(rows),len(columns))
480
+
481
+ # Assign elements to the output matrix
482
+ for i,x in enumerate(rows):
483
+ for j,y in enumerate(columns):
484
+ m.__set_element((i,j),self.__get_element((x,y)))
485
+
486
+ return m
487
+
488
+ else:
489
+ # single element extraction
490
+ if key[0] >= self.__rows or key[1] >= self.__cols:
491
+ raise IndexError('matrix index out of range')
492
+ if key in self.__data:
493
+ return self.__data[key]
494
+ else:
495
+ return self.ctx.zero
496
+
497
+ def __setitem__(self, key, value):
498
+ # setitem function for mp matrix class with slice index enabled
499
+ # it allows the following assingments
500
+ # scalar to a slice of the matrix
501
+ # A[:,2:6] = 2.5
502
+ # submatrix to matrix (the value matrix should be the same size as the slice size)
503
+ # A[3,:] = B where A is n x m and B is n x 1
504
+ # Convert vector to matrix indexing
505
+ if isinstance(key, int) or isinstance(key,slice):
506
+ # only sufficent for vectors
507
+ if self.__rows == 1:
508
+ key = (0, key)
509
+ elif self.__cols == 1:
510
+ key = (key, 0)
511
+ else:
512
+ raise IndexError('insufficient indices for matrix')
513
+ # Slice indexing
514
+ if isinstance(key[0],slice) or isinstance(key[1],slice):
515
+ # Rows
516
+ if isinstance(key[0],slice):
517
+ # Check bounds
518
+ if (key[0].start is None or key[0].start >= 0) and \
519
+ (key[0].stop is None or key[0].stop <= self.__rows+1):
520
+ # generate row indices
521
+ rows = xrange(*key[0].indices(self.__rows))
522
+ else:
523
+ raise IndexError('Row index out of bounds')
524
+ else:
525
+ # Single row
526
+ rows = [key[0]]
527
+ # Columns
528
+ if isinstance(key[1],slice):
529
+ # Check bounds
530
+ if (key[1].start is None or key[1].start >= 0) and \
531
+ (key[1].stop is None or key[1].stop <= self.__cols+1):
532
+ # Generate column indices
533
+ columns = xrange(*key[1].indices(self.__cols))
534
+ else:
535
+ raise IndexError('Column index out of bounds')
536
+ else:
537
+ # Single column
538
+ columns = [key[1]]
539
+ # Assign slice with a scalar
540
+ if isinstance(value,self.ctx.matrix):
541
+ # Assign elements to matrix if input and output dimensions match
542
+ if len(rows) == value.rows and len(columns) == value.cols:
543
+ for i,x in enumerate(rows):
544
+ for j,y in enumerate(columns):
545
+ self.__set_element((x,y), value.__get_element((i,j)))
546
+ else:
547
+ raise ValueError('Dimensions do not match')
548
+ else:
549
+ # Assign slice with scalars
550
+ value = self.ctx.convert(value)
551
+ for i in rows:
552
+ for j in columns:
553
+ self.__set_element((i,j), value)
554
+ else:
555
+ # Single element assingment
556
+ # Check bounds
557
+ if key[0] >= self.__rows or key[1] >= self.__cols:
558
+ raise IndexError('matrix index out of range')
559
+ # Convert and store value
560
+ value = self.ctx.convert(value)
561
+ if value: # only store non-zeros
562
+ self.__data[key] = value
563
+ elif key in self.__data:
564
+ del self.__data[key]
565
+
566
+ if self._LU:
567
+ self._LU = None
568
+ return
569
+
570
+ def __iter__(self):
571
+ for i in xrange(self.__rows):
572
+ for j in xrange(self.__cols):
573
+ yield self[i,j]
574
+
575
+ def __mul__(self, other):
576
+ if isinstance(other, self.ctx.matrix):
577
+ # dot multiplication
578
+ if self.__cols != other.__rows:
579
+ raise ValueError('dimensions not compatible for multiplication')
580
+ new = self.ctx.matrix(self.__rows, other.__cols)
581
+ self_zero = self.ctx.zero
582
+ self_get = self.__data.get
583
+ other_zero = other.ctx.zero
584
+ other_get = other.__data.get
585
+ for i in xrange(self.__rows):
586
+ for j in xrange(other.__cols):
587
+ new[i, j] = self.ctx.fdot((self_get((i,k), self_zero), other_get((k,j), other_zero))
588
+ for k in xrange(other.__rows))
589
+ return new
590
+ else:
591
+ # try scalar multiplication
592
+ new = self.ctx.matrix(self.__rows, self.__cols)
593
+ for i in xrange(self.__rows):
594
+ for j in xrange(self.__cols):
595
+ new[i, j] = other * self[i, j]
596
+ return new
597
+
598
+ def __matmul__(self, other):
599
+ return self.__mul__(other)
600
+
601
+ def __rmul__(self, other):
602
+ # assume other is scalar and thus commutative
603
+ if isinstance(other, self.ctx.matrix):
604
+ raise TypeError("other should not be type of ctx.matrix")
605
+ return self.__mul__(other)
606
+
607
+ def __pow__(self, other):
608
+ # avoid cyclic import problems
609
+ #from linalg import inverse
610
+ if not isinstance(other, int):
611
+ raise ValueError('only integer exponents are supported')
612
+ if not self.__rows == self.__cols:
613
+ raise ValueError('only powers of square matrices are defined')
614
+ n = other
615
+ if n == 0:
616
+ return self.ctx.eye(self.__rows)
617
+ if n < 0:
618
+ n = -n
619
+ neg = True
620
+ else:
621
+ neg = False
622
+ i = n
623
+ y = 1
624
+ z = self.copy()
625
+ while i != 0:
626
+ if i % 2 == 1:
627
+ y = y * z
628
+ z = z*z
629
+ i = i // 2
630
+ if neg:
631
+ y = self.ctx.inverse(y)
632
+ return y
633
+
634
+ def __div__(self, other):
635
+ # assume other is scalar and do element-wise divison
636
+ assert not isinstance(other, self.ctx.matrix)
637
+ new = self.ctx.matrix(self.__rows, self.__cols)
638
+ for i in xrange(self.__rows):
639
+ for j in xrange(self.__cols):
640
+ new[i,j] = self[i,j] / other
641
+ return new
642
+
643
+ __truediv__ = __div__
644
+
645
+ def __add__(self, other):
646
+ if isinstance(other, self.ctx.matrix):
647
+ if not (self.__rows == other.__rows and self.__cols == other.__cols):
648
+ raise ValueError('incompatible dimensions for addition')
649
+ new = self.ctx.matrix(self.__rows, self.__cols)
650
+ for i in xrange(self.__rows):
651
+ for j in xrange(self.__cols):
652
+ new[i,j] = self[i,j] + other[i,j]
653
+ return new
654
+ else:
655
+ # assume other is scalar and add element-wise
656
+ new = self.ctx.matrix(self.__rows, self.__cols)
657
+ for i in xrange(self.__rows):
658
+ for j in xrange(self.__cols):
659
+ new[i,j] += self[i,j] + other
660
+ return new
661
+
662
+ def __radd__(self, other):
663
+ return self.__add__(other)
664
+
665
+ def __sub__(self, other):
666
+ if isinstance(other, self.ctx.matrix) and not (self.__rows == other.__rows
667
+ and self.__cols == other.__cols):
668
+ raise ValueError('incompatible dimensions for subtraction')
669
+ return self.__add__(other * (-1))
670
+
671
+ def __pos__(self):
672
+ """
673
+ +M returns a copy of M, rounded to current working precision.
674
+ """
675
+ return (+1) * self
676
+
677
+ def __neg__(self):
678
+ return (-1) * self
679
+
680
+ def __rsub__(self, other):
681
+ return -self + other
682
+
683
+ def __eq__(self, other):
684
+ return self.__rows == other.__rows and self.__cols == other.__cols \
685
+ and self.__data == other.__data
686
+
687
+ def __len__(self):
688
+ if self.rows == 1:
689
+ return self.cols
690
+ elif self.cols == 1:
691
+ return self.rows
692
+ else:
693
+ return self.rows # do it like numpy
694
+
695
+ def __getrows(self):
696
+ return self.__rows
697
+
698
+ def __setrows(self, value):
699
+ for key in self.__data.copy():
700
+ if key[0] >= value:
701
+ del self.__data[key]
702
+ self.__rows = value
703
+
704
+ rows = property(__getrows, __setrows, doc='number of rows')
705
+
706
+ def __getcols(self):
707
+ return self.__cols
708
+
709
+ def __setcols(self, value):
710
+ for key in self.__data.copy():
711
+ if key[1] >= value:
712
+ del self.__data[key]
713
+ self.__cols = value
714
+
715
+ cols = property(__getcols, __setcols, doc='number of columns')
716
+
717
+ def transpose(self):
718
+ new = self.ctx.matrix(self.__cols, self.__rows)
719
+ for i in xrange(self.__rows):
720
+ for j in xrange(self.__cols):
721
+ new[j,i] = self[i,j]
722
+ return new
723
+
724
+ T = property(transpose)
725
+
726
+ def conjugate(self):
727
+ return self.apply(self.ctx.conj)
728
+
729
+ def transpose_conj(self):
730
+ return self.conjugate().transpose()
731
+
732
+ H = property(transpose_conj)
733
+
734
+ def copy(self):
735
+ new = self.ctx.matrix(self.__rows, self.__cols)
736
+ new.__data = self.__data.copy()
737
+ return new
738
+
739
+ __copy__ = copy
740
+
741
+ def column(self, n):
742
+ m = self.ctx.matrix(self.rows, 1)
743
+ for i in range(self.rows):
744
+ m[i] = self[i,n]
745
+ return m
746
+
747
+ class MatrixMethods(object):
748
+
749
+ def __init__(ctx):
750
+ # XXX: subclass
751
+ ctx.matrix = type('matrix', (_matrix,), {})
752
+ ctx.matrix.ctx = ctx
753
+ ctx.matrix.convert = ctx.convert
754
+
755
+ def eye(ctx, n, **kwargs):
756
+ """
757
+ Create square identity matrix n x n.
758
+ """
759
+ A = ctx.matrix(n, **kwargs)
760
+ for i in xrange(n):
761
+ A[i,i] = 1
762
+ return A
763
+
764
+ def diag(ctx, diagonal, **kwargs):
765
+ """
766
+ Create square diagonal matrix using given list.
767
+
768
+ Example:
769
+ >>> from mpmath import diag, mp
770
+ >>> mp.pretty = False
771
+ >>> diag([1, 2, 3])
772
+ matrix(
773
+ [['1.0', '0.0', '0.0'],
774
+ ['0.0', '2.0', '0.0'],
775
+ ['0.0', '0.0', '3.0']])
776
+ """
777
+ A = ctx.matrix(len(diagonal), **kwargs)
778
+ for i in xrange(len(diagonal)):
779
+ A[i,i] = diagonal[i]
780
+ return A
781
+
782
+ def zeros(ctx, *args, **kwargs):
783
+ """
784
+ Create matrix m x n filled with zeros.
785
+ One given dimension will create square matrix n x n.
786
+
787
+ Example:
788
+ >>> from mpmath import zeros, mp
789
+ >>> mp.pretty = False
790
+ >>> zeros(2)
791
+ matrix(
792
+ [['0.0', '0.0'],
793
+ ['0.0', '0.0']])
794
+ """
795
+ if len(args) == 1:
796
+ m = n = args[0]
797
+ elif len(args) == 2:
798
+ m = args[0]
799
+ n = args[1]
800
+ else:
801
+ raise TypeError('zeros expected at most 2 arguments, got %i' % len(args))
802
+ A = ctx.matrix(m, n, **kwargs)
803
+ for i in xrange(m):
804
+ for j in xrange(n):
805
+ A[i,j] = 0
806
+ return A
807
+
808
+ def ones(ctx, *args, **kwargs):
809
+ """
810
+ Create matrix m x n filled with ones.
811
+ One given dimension will create square matrix n x n.
812
+
813
+ Example:
814
+ >>> from mpmath import ones, mp
815
+ >>> mp.pretty = False
816
+ >>> ones(2)
817
+ matrix(
818
+ [['1.0', '1.0'],
819
+ ['1.0', '1.0']])
820
+ """
821
+ if len(args) == 1:
822
+ m = n = args[0]
823
+ elif len(args) == 2:
824
+ m = args[0]
825
+ n = args[1]
826
+ else:
827
+ raise TypeError('ones expected at most 2 arguments, got %i' % len(args))
828
+ A = ctx.matrix(m, n, **kwargs)
829
+ for i in xrange(m):
830
+ for j in xrange(n):
831
+ A[i,j] = 1
832
+ return A
833
+
834
+ def hilbert(ctx, m, n=None):
835
+ """
836
+ Create (pseudo) hilbert matrix m x n.
837
+ One given dimension will create hilbert matrix n x n.
838
+
839
+ The matrix is very ill-conditioned and symmetric, positive definite if
840
+ square.
841
+ """
842
+ if n is None:
843
+ n = m
844
+ A = ctx.matrix(m, n)
845
+ for i in xrange(m):
846
+ for j in xrange(n):
847
+ A[i,j] = ctx.one / (i + j + 1)
848
+ return A
849
+
850
+ def randmatrix(ctx, m, n=None, min=0, max=1, **kwargs):
851
+ """
852
+ Create a random m x n matrix.
853
+
854
+ All values are >= min and <max.
855
+ n defaults to m.
856
+
857
+ Example:
858
+ >>> from mpmath import randmatrix
859
+ >>> randmatrix(2) # doctest:+SKIP
860
+ matrix(
861
+ [['0.53491598236191806', '0.57195669543302752'],
862
+ ['0.85589992269513615', '0.82444367501382143']])
863
+ """
864
+ if not n:
865
+ n = m
866
+ A = ctx.matrix(m, n, **kwargs)
867
+ for i in xrange(m):
868
+ for j in xrange(n):
869
+ A[i,j] = ctx.rand() * (max - min) + min
870
+ return A
871
+
872
+ def swap_row(ctx, A, i, j):
873
+ """
874
+ Swap row i with row j.
875
+ """
876
+ if i == j:
877
+ return
878
+ if isinstance(A, ctx.matrix):
879
+ for k in xrange(A.cols):
880
+ A[i,k], A[j,k] = A[j,k], A[i,k]
881
+ elif isinstance(A, list):
882
+ A[i], A[j] = A[j], A[i]
883
+ else:
884
+ raise TypeError('could not interpret type')
885
+
886
+ def extend(ctx, A, b):
887
+ """
888
+ Extend matrix A with column b and return result.
889
+ """
890
+ if not isinstance(A, ctx.matrix):
891
+ raise TypeError("A should be a type of ctx.matrix")
892
+ if A.rows != len(b):
893
+ raise ValueError("Value should be equal to len(b)")
894
+ A = A.copy()
895
+ A.cols += 1
896
+ for i in xrange(A.rows):
897
+ A[i, A.cols-1] = b[i]
898
+ return A
899
+
900
+ def norm(ctx, x, p=2):
901
+ r"""
902
+ Gives the entrywise `p`-norm of an iterable *x*, i.e. the vector norm
903
+ `\left(\sum_k |x_k|^p\right)^{1/p}`, for any given `1 \le p \le \infty`.
904
+
905
+ Special cases:
906
+
907
+ If *x* is not iterable, this just returns ``absmax(x)``.
908
+
909
+ ``p=1`` gives the sum of absolute values.
910
+
911
+ ``p=2`` is the standard Euclidean vector norm.
912
+
913
+ ``p=inf`` gives the magnitude of the largest element.
914
+
915
+ For *x* a matrix, ``p=2`` is the Frobenius norm.
916
+ For operator matrix norms, use :func:`~mpmath.mnorm` instead.
917
+
918
+ You can use the string 'inf' as well as float('inf') or mpf('inf')
919
+ to specify the infinity norm.
920
+
921
+ **Examples**
922
+
923
+ >>> from mpmath import *
924
+ >>> mp.dps = 15; mp.pretty = False
925
+ >>> x = matrix([-10, 2, 100])
926
+ >>> norm(x, 1)
927
+ mpf('112.0')
928
+ >>> norm(x, 2)
929
+ mpf('100.5186549850325')
930
+ >>> norm(x, inf)
931
+ mpf('100.0')
932
+
933
+ """
934
+ try:
935
+ iter(x)
936
+ except TypeError:
937
+ return ctx.absmax(x)
938
+ if type(p) is not int:
939
+ p = ctx.convert(p)
940
+ if p == ctx.inf:
941
+ return max(ctx.absmax(i) for i in x)
942
+ elif p == 1:
943
+ return ctx.fsum(x, absolute=1)
944
+ elif p == 2:
945
+ return ctx.sqrt(ctx.fsum(x, absolute=1, squared=1))
946
+ elif p > 1:
947
+ return ctx.nthroot(ctx.fsum(abs(i)**p for i in x), p)
948
+ else:
949
+ raise ValueError('p has to be >= 1')
950
+
951
+ def mnorm(ctx, A, p=1):
952
+ r"""
953
+ Gives the matrix (operator) `p`-norm of A. Currently ``p=1`` and ``p=inf``
954
+ are supported:
955
+
956
+ ``p=1`` gives the 1-norm (maximal column sum)
957
+
958
+ ``p=inf`` gives the `\infty`-norm (maximal row sum).
959
+ You can use the string 'inf' as well as float('inf') or mpf('inf')
960
+
961
+ ``p=2`` (not implemented) for a square matrix is the usual spectral
962
+ matrix norm, i.e. the largest singular value.
963
+
964
+ ``p='f'`` (or 'F', 'fro', 'Frobenius, 'frobenius') gives the
965
+ Frobenius norm, which is the elementwise 2-norm. The Frobenius norm is an
966
+ approximation of the spectral norm and satisfies
967
+
968
+ .. math ::
969
+
970
+ \frac{1}{\sqrt{\mathrm{rank}(A)}} \|A\|_F \le \|A\|_2 \le \|A\|_F
971
+
972
+ The Frobenius norm lacks some mathematical properties that might
973
+ be expected of a norm.
974
+
975
+ For general elementwise `p`-norms, use :func:`~mpmath.norm` instead.
976
+
977
+ **Examples**
978
+
979
+ >>> from mpmath import *
980
+ >>> mp.dps = 15; mp.pretty = False
981
+ >>> A = matrix([[1, -1000], [100, 50]])
982
+ >>> mnorm(A, 1)
983
+ mpf('1050.0')
984
+ >>> mnorm(A, inf)
985
+ mpf('1001.0')
986
+ >>> mnorm(A, 'F')
987
+ mpf('1006.2310867787777')
988
+
989
+ """
990
+ A = ctx.matrix(A)
991
+ if type(p) is not int:
992
+ if type(p) is str and 'frobenius'.startswith(p.lower()):
993
+ return ctx.norm(A, 2)
994
+ p = ctx.convert(p)
995
+ m, n = A.rows, A.cols
996
+ if p == 1:
997
+ return max(ctx.fsum((A[i,j] for i in xrange(m)), absolute=1) for j in xrange(n))
998
+ elif p == ctx.inf:
999
+ return max(ctx.fsum((A[i,j] for j in xrange(n)), absolute=1) for i in xrange(m))
1000
+ else:
1001
+ raise NotImplementedError("matrix p-norm for arbitrary p")
1002
+
1003
+ if __name__ == '__main__':
1004
+ import doctest
1005
+ doctest.testmod()
venv/lib/python3.10/site-packages/mpmath/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (180 Bytes). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/extratest_gamma.cpython-310.pyc ADDED
Binary file (6.74 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/extratest_zeta.cpython-310.pyc ADDED
Binary file (971 Bytes). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/runtests.cpython-310.pyc ADDED
Binary file (3.71 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_basic_ops.cpython-310.pyc ADDED
Binary file (14 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_bitwise.cpython-310.pyc ADDED
Binary file (6.66 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_calculus.cpython-310.pyc ADDED
Binary file (7.35 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_compatibility.cpython-310.pyc ADDED
Binary file (1.97 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_convert.cpython-310.pyc ADDED
Binary file (9.52 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_diff.cpython-310.pyc ADDED
Binary file (3.65 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_division.cpython-310.pyc ADDED
Binary file (4.45 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_eigen.cpython-310.pyc ADDED
Binary file (3.58 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_eigen_symmetric.cpython-310.pyc ADDED
Binary file (8.97 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_elliptic.cpython-310.pyc ADDED
Binary file (19.8 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_fp.cpython-310.pyc ADDED
Binary file (53.4 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_functions.cpython-310.pyc ADDED
Binary file (31.7 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_functions2.cpython-310.pyc ADDED
Binary file (66.8 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_gammazeta.cpython-310.pyc ADDED
Binary file (26.1 kB). View file
 
venv/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_hp.cpython-310.pyc ADDED
Binary file (8.72 kB). View file