diff --git a/ckpts/universal/global_step40/mp_rank_00_model_states.pt b/ckpts/universal/global_step40/mp_rank_00_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..fb5478ef54ab4595140f23a42a89817133d91870 --- /dev/null +++ b/ckpts/universal/global_step40/mp_rank_00_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4b7d35b36f77067fc43080d60dd3ef746bc7cf3392e64b745bb189df6d181803 +size 4230084 diff --git a/ckpts/universal/global_step40/mp_rank_01_model_states.pt b/ckpts/universal/global_step40/mp_rank_01_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..ea46737991583b60296bc74ca122248fcffaa055 --- /dev/null +++ b/ckpts/universal/global_step40/mp_rank_01_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2f15d2ad8b9c13e89266a02d8334fbd0dffe08e6327b0d1e62dbc8a5f98d8887 +size 4230020 diff --git a/ckpts/universal/global_step40/mp_rank_02_model_states.pt b/ckpts/universal/global_step40/mp_rank_02_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..5d3953f7cfb4a86ae8bc30505c7d75504c774de4 --- /dev/null +++ b/ckpts/universal/global_step40/mp_rank_02_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:993e4f3b1663d6b7feeb5f0a573c122d4cffef1ae58a090d53c1a3d38232e32d +size 4230020 diff --git a/ckpts/universal/global_step40/mp_rank_03_model_states.pt b/ckpts/universal/global_step40/mp_rank_03_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..7a28639ec433d75c4419b14a61c9e72c1b8a51e8 --- /dev/null +++ b/ckpts/universal/global_step40/mp_rank_03_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:950695f4903c0daf2607beba21d30a9ba630f0344037c93569e79ce4bc4e0b83 +size 4230020 diff --git a/ckpts/universal/global_step40/mp_rank_04_model_states.pt b/ckpts/universal/global_step40/mp_rank_04_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..ad2ec25bc615cb7f4bb751de47d74e2a2425dd3a --- /dev/null +++ b/ckpts/universal/global_step40/mp_rank_04_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:10234e7ac599d8a5d5f21852832c76f968cda22e0f99cb4b769646bb76c364f4 +size 4230084 diff --git a/ckpts/universal/global_step40/mp_rank_05_model_states.pt b/ckpts/universal/global_step40/mp_rank_05_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..fffd08df16e4062f491fd91f9edd636919aea3b7 --- /dev/null +++ b/ckpts/universal/global_step40/mp_rank_05_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ce135a01f4c2defcf6a168ec5fb8291faaf7c966cfeb92ba648b6f7404507ad8 +size 4230084 diff --git a/ckpts/universal/global_step40/mp_rank_06_model_states.pt b/ckpts/universal/global_step40/mp_rank_06_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..53aa3a0c5cb6b6f433175e52f21865606559e413 --- /dev/null +++ b/ckpts/universal/global_step40/mp_rank_06_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:73eb5f72b6bb9868c1a608707fdfa8674fbc30bb44351016675e89949cab7920 +size 4230084 diff --git a/ckpts/universal/global_step40/mp_rank_07_model_states.pt b/ckpts/universal/global_step40/mp_rank_07_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..dc912040dff6c398ae409a67fbcb9d80228a24ff --- /dev/null +++ b/ckpts/universal/global_step40/mp_rank_07_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cc249171ab7e29645b27c09175560c00640839f21402776edcf487d6695fa8a7 +size 4230084 diff --git a/ckpts/universal/global_step60/zero/22.mlp.dense_h_to_4h_swiglu.weight/fp32.pt b/ckpts/universal/global_step60/zero/22.mlp.dense_h_to_4h_swiglu.weight/fp32.pt new file mode 100644 index 0000000000000000000000000000000000000000..7fc66cf32cbd1126d903276965a93a0d653500fc --- /dev/null +++ b/ckpts/universal/global_step60/zero/22.mlp.dense_h_to_4h_swiglu.weight/fp32.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d507ceadfd0c8d1bb6fc106ccf3a723668faeebe4c271070786ff2b86ef084aa +size 33555533 diff --git a/venv/lib/python3.10/site-packages/numpy/_utils/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/numpy/_utils/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ca5fe5a0354157f3b232d5fbeb805b903614efed Binary files /dev/null and b/venv/lib/python3.10/site-packages/numpy/_utils/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/numpy/_utils/__pycache__/_pep440.cpython-310.pyc b/venv/lib/python3.10/site-packages/numpy/_utils/__pycache__/_pep440.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fbba82fc2c4ef864f7c1190eebb4c37c8966ec8e Binary files /dev/null and b/venv/lib/python3.10/site-packages/numpy/_utils/__pycache__/_pep440.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/numpy/matrixlib/__init__.py b/venv/lib/python3.10/site-packages/numpy/matrixlib/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..8a7597d30387c98c0e7e66a0bfc82f5e64823d95 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/matrixlib/__init__.py @@ -0,0 +1,11 @@ +"""Sub-package containing the matrix class and related functions. + +""" +from . import defmatrix +from .defmatrix import * + +__all__ = defmatrix.__all__ + +from numpy._pytesttester import PytestTester +test = PytestTester(__name__) +del PytestTester diff --git a/venv/lib/python3.10/site-packages/numpy/matrixlib/__init__.pyi b/venv/lib/python3.10/site-packages/numpy/matrixlib/__init__.pyi new file mode 100644 index 0000000000000000000000000000000000000000..b0ca8c9ca03d39efa03bede061f2a4f8ef90523a --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/matrixlib/__init__.pyi @@ -0,0 +1,15 @@ +from numpy._pytesttester import PytestTester + +from numpy import ( + matrix as matrix, +) + +from numpy.matrixlib.defmatrix import ( + bmat as bmat, + mat as mat, + asmatrix as asmatrix, +) + +__all__: list[str] +__path__: list[str] +test: PytestTester diff --git a/venv/lib/python3.10/site-packages/numpy/matrixlib/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/numpy/matrixlib/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..09f42cc8b14f0ee8685a952403bc668a6f205922 Binary files /dev/null and b/venv/lib/python3.10/site-packages/numpy/matrixlib/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/numpy/matrixlib/__pycache__/defmatrix.cpython-310.pyc b/venv/lib/python3.10/site-packages/numpy/matrixlib/__pycache__/defmatrix.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..94cc4d87be385b4be5fa812049cc22fa7138b3c1 Binary files /dev/null and b/venv/lib/python3.10/site-packages/numpy/matrixlib/__pycache__/defmatrix.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.py b/venv/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.py new file mode 100644 index 0000000000000000000000000000000000000000..d029b13fb8b561247fb031e44a14de285a1d9d4a --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.py @@ -0,0 +1,1114 @@ +__all__ = ['matrix', 'bmat', 'mat', 'asmatrix'] + +import sys +import warnings +import ast + +from .._utils import set_module +import numpy.core.numeric as N +from numpy.core.numeric import concatenate, isscalar +# While not in __all__, matrix_power used to be defined here, so we import +# it for backward compatibility. +from numpy.linalg import matrix_power + + +def _convert_from_string(data): + for char in '[]': + data = data.replace(char, '') + + rows = data.split(';') + newdata = [] + count = 0 + for row in rows: + trow = row.split(',') + newrow = [] + for col in trow: + temp = col.split() + newrow.extend(map(ast.literal_eval, temp)) + if count == 0: + Ncols = len(newrow) + elif len(newrow) != Ncols: + raise ValueError("Rows not the same size.") + count += 1 + newdata.append(newrow) + return newdata + + +@set_module('numpy') +def asmatrix(data, dtype=None): + """ + Interpret the input as a matrix. + + Unlike `matrix`, `asmatrix` does not make a copy if the input is already + a matrix or an ndarray. Equivalent to ``matrix(data, copy=False)``. + + Parameters + ---------- + data : array_like + Input data. + dtype : data-type + Data-type of the output matrix. + + Returns + ------- + mat : matrix + `data` interpreted as a matrix. + + Examples + -------- + >>> x = np.array([[1, 2], [3, 4]]) + + >>> m = np.asmatrix(x) + + >>> x[0,0] = 5 + + >>> m + matrix([[5, 2], + [3, 4]]) + + """ + return matrix(data, dtype=dtype, copy=False) + + +@set_module('numpy') +class matrix(N.ndarray): + """ + matrix(data, dtype=None, copy=True) + + .. note:: It is no longer recommended to use this class, even for linear + algebra. Instead use regular arrays. The class may be removed + in the future. + + Returns a matrix from an array-like object, or from a string of data. + A matrix is a specialized 2-D array that retains its 2-D nature + through operations. It has certain special operators, such as ``*`` + (matrix multiplication) and ``**`` (matrix power). + + Parameters + ---------- + data : array_like or string + If `data` is a string, it is interpreted as a matrix with commas + or spaces separating columns, and semicolons separating rows. + dtype : data-type + Data-type of the output matrix. + copy : bool + If `data` is already an `ndarray`, then this flag determines + whether the data is copied (the default), or whether a view is + constructed. + + See Also + -------- + array + + Examples + -------- + >>> a = np.matrix('1 2; 3 4') + >>> a + matrix([[1, 2], + [3, 4]]) + + >>> np.matrix([[1, 2], [3, 4]]) + matrix([[1, 2], + [3, 4]]) + + """ + __array_priority__ = 10.0 + def __new__(subtype, data, dtype=None, copy=True): + warnings.warn('the matrix subclass is not the recommended way to ' + 'represent matrices or deal with linear algebra (see ' + 'https://docs.scipy.org/doc/numpy/user/' + 'numpy-for-matlab-users.html). ' + 'Please adjust your code to use regular ndarray.', + PendingDeprecationWarning, stacklevel=2) + if isinstance(data, matrix): + dtype2 = data.dtype + if (dtype is None): + dtype = dtype2 + if (dtype2 == dtype) and (not copy): + return data + return data.astype(dtype) + + if isinstance(data, N.ndarray): + if dtype is None: + intype = data.dtype + else: + intype = N.dtype(dtype) + new = data.view(subtype) + if intype != data.dtype: + return new.astype(intype) + if copy: return new.copy() + else: return new + + if isinstance(data, str): + data = _convert_from_string(data) + + # now convert data to an array + arr = N.array(data, dtype=dtype, copy=copy) + ndim = arr.ndim + shape = arr.shape + if (ndim > 2): + raise ValueError("matrix must be 2-dimensional") + elif ndim == 0: + shape = (1, 1) + elif ndim == 1: + shape = (1, shape[0]) + + order = 'C' + if (ndim == 2) and arr.flags.fortran: + order = 'F' + + if not (order or arr.flags.contiguous): + arr = arr.copy() + + ret = N.ndarray.__new__(subtype, shape, arr.dtype, + buffer=arr, + order=order) + return ret + + def __array_finalize__(self, obj): + self._getitem = False + if (isinstance(obj, matrix) and obj._getitem): return + ndim = self.ndim + if (ndim == 2): + return + if (ndim > 2): + newshape = tuple([x for x in self.shape if x > 1]) + ndim = len(newshape) + if ndim == 2: + self.shape = newshape + return + elif (ndim > 2): + raise ValueError("shape too large to be a matrix.") + else: + newshape = self.shape + if ndim == 0: + self.shape = (1, 1) + elif ndim == 1: + self.shape = (1, newshape[0]) + return + + def __getitem__(self, index): + self._getitem = True + + try: + out = N.ndarray.__getitem__(self, index) + finally: + self._getitem = False + + if not isinstance(out, N.ndarray): + return out + + if out.ndim == 0: + return out[()] + if out.ndim == 1: + sh = out.shape[0] + # Determine when we should have a column array + try: + n = len(index) + except Exception: + n = 0 + if n > 1 and isscalar(index[1]): + out.shape = (sh, 1) + else: + out.shape = (1, sh) + return out + + def __mul__(self, other): + if isinstance(other, (N.ndarray, list, tuple)) : + # This promotes 1-D vectors to row vectors + return N.dot(self, asmatrix(other)) + if isscalar(other) or not hasattr(other, '__rmul__') : + return N.dot(self, other) + return NotImplemented + + def __rmul__(self, other): + return N.dot(other, self) + + def __imul__(self, other): + self[:] = self * other + return self + + def __pow__(self, other): + return matrix_power(self, other) + + def __ipow__(self, other): + self[:] = self ** other + return self + + def __rpow__(self, other): + return NotImplemented + + def _align(self, axis): + """A convenience function for operations that need to preserve axis + orientation. + """ + if axis is None: + return self[0, 0] + elif axis==0: + return self + elif axis==1: + return self.transpose() + else: + raise ValueError("unsupported axis") + + def _collapse(self, axis): + """A convenience function for operations that want to collapse + to a scalar like _align, but are using keepdims=True + """ + if axis is None: + return self[0, 0] + else: + return self + + # Necessary because base-class tolist expects dimension + # reduction by x[0] + def tolist(self): + """ + Return the matrix as a (possibly nested) list. + + See `ndarray.tolist` for full documentation. + + See Also + -------- + ndarray.tolist + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.tolist() + [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] + + """ + return self.__array__().tolist() + + # To preserve orientation of result... + def sum(self, axis=None, dtype=None, out=None): + """ + Returns the sum of the matrix elements, along the given axis. + + Refer to `numpy.sum` for full documentation. + + See Also + -------- + numpy.sum + + Notes + ----- + This is the same as `ndarray.sum`, except that where an `ndarray` would + be returned, a `matrix` object is returned instead. + + Examples + -------- + >>> x = np.matrix([[1, 2], [4, 3]]) + >>> x.sum() + 10 + >>> x.sum(axis=1) + matrix([[3], + [7]]) + >>> x.sum(axis=1, dtype='float') + matrix([[3.], + [7.]]) + >>> out = np.zeros((2, 1), dtype='float') + >>> x.sum(axis=1, dtype='float', out=np.asmatrix(out)) + matrix([[3.], + [7.]]) + + """ + return N.ndarray.sum(self, axis, dtype, out, keepdims=True)._collapse(axis) + + + # To update docstring from array to matrix... + def squeeze(self, axis=None): + """ + Return a possibly reshaped matrix. + + Refer to `numpy.squeeze` for more documentation. + + Parameters + ---------- + axis : None or int or tuple of ints, optional + Selects a subset of the axes of length one in the shape. + If an axis is selected with shape entry greater than one, + an error is raised. + + Returns + ------- + squeezed : matrix + The matrix, but as a (1, N) matrix if it had shape (N, 1). + + See Also + -------- + numpy.squeeze : related function + + Notes + ----- + If `m` has a single column then that column is returned + as the single row of a matrix. Otherwise `m` is returned. + The returned matrix is always either `m` itself or a view into `m`. + Supplying an axis keyword argument will not affect the returned matrix + but it may cause an error to be raised. + + Examples + -------- + >>> c = np.matrix([[1], [2]]) + >>> c + matrix([[1], + [2]]) + >>> c.squeeze() + matrix([[1, 2]]) + >>> r = c.T + >>> r + matrix([[1, 2]]) + >>> r.squeeze() + matrix([[1, 2]]) + >>> m = np.matrix([[1, 2], [3, 4]]) + >>> m.squeeze() + matrix([[1, 2], + [3, 4]]) + + """ + return N.ndarray.squeeze(self, axis=axis) + + + # To update docstring from array to matrix... + def flatten(self, order='C'): + """ + Return a flattened copy of the matrix. + + All `N` elements of the matrix are placed into a single row. + + Parameters + ---------- + order : {'C', 'F', 'A', 'K'}, optional + 'C' means to flatten in row-major (C-style) order. 'F' means to + flatten in column-major (Fortran-style) order. 'A' means to + flatten in column-major order if `m` is Fortran *contiguous* in + memory, row-major order otherwise. 'K' means to flatten `m` in + the order the elements occur in memory. The default is 'C'. + + Returns + ------- + y : matrix + A copy of the matrix, flattened to a `(1, N)` matrix where `N` + is the number of elements in the original matrix. + + See Also + -------- + ravel : Return a flattened array. + flat : A 1-D flat iterator over the matrix. + + Examples + -------- + >>> m = np.matrix([[1,2], [3,4]]) + >>> m.flatten() + matrix([[1, 2, 3, 4]]) + >>> m.flatten('F') + matrix([[1, 3, 2, 4]]) + + """ + return N.ndarray.flatten(self, order=order) + + def mean(self, axis=None, dtype=None, out=None): + """ + Returns the average of the matrix elements along the given axis. + + Refer to `numpy.mean` for full documentation. + + See Also + -------- + numpy.mean + + Notes + ----- + Same as `ndarray.mean` except that, where that returns an `ndarray`, + this returns a `matrix` object. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3, 4))) + >>> x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.mean() + 5.5 + >>> x.mean(0) + matrix([[4., 5., 6., 7.]]) + >>> x.mean(1) + matrix([[ 1.5], + [ 5.5], + [ 9.5]]) + + """ + return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis) + + def std(self, axis=None, dtype=None, out=None, ddof=0): + """ + Return the standard deviation of the array elements along the given axis. + + Refer to `numpy.std` for full documentation. + + See Also + -------- + numpy.std + + Notes + ----- + This is the same as `ndarray.std`, except that where an `ndarray` would + be returned, a `matrix` object is returned instead. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3, 4))) + >>> x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.std() + 3.4520525295346629 # may vary + >>> x.std(0) + matrix([[ 3.26598632, 3.26598632, 3.26598632, 3.26598632]]) # may vary + >>> x.std(1) + matrix([[ 1.11803399], + [ 1.11803399], + [ 1.11803399]]) + + """ + return N.ndarray.std(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis) + + def var(self, axis=None, dtype=None, out=None, ddof=0): + """ + Returns the variance of the matrix elements, along the given axis. + + Refer to `numpy.var` for full documentation. + + See Also + -------- + numpy.var + + Notes + ----- + This is the same as `ndarray.var`, except that where an `ndarray` would + be returned, a `matrix` object is returned instead. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3, 4))) + >>> x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.var() + 11.916666666666666 + >>> x.var(0) + matrix([[ 10.66666667, 10.66666667, 10.66666667, 10.66666667]]) # may vary + >>> x.var(1) + matrix([[1.25], + [1.25], + [1.25]]) + + """ + return N.ndarray.var(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis) + + def prod(self, axis=None, dtype=None, out=None): + """ + Return the product of the array elements over the given axis. + + Refer to `prod` for full documentation. + + See Also + -------- + prod, ndarray.prod + + Notes + ----- + Same as `ndarray.prod`, except, where that returns an `ndarray`, this + returns a `matrix` object instead. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.prod() + 0 + >>> x.prod(0) + matrix([[ 0, 45, 120, 231]]) + >>> x.prod(1) + matrix([[ 0], + [ 840], + [7920]]) + + """ + return N.ndarray.prod(self, axis, dtype, out, keepdims=True)._collapse(axis) + + def any(self, axis=None, out=None): + """ + Test whether any array element along a given axis evaluates to True. + + Refer to `numpy.any` for full documentation. + + Parameters + ---------- + axis : int, optional + Axis along which logical OR is performed + out : ndarray, optional + Output to existing array instead of creating new one, must have + same shape as expected output + + Returns + ------- + any : bool, ndarray + Returns a single bool if `axis` is ``None``; otherwise, + returns `ndarray` + + """ + return N.ndarray.any(self, axis, out, keepdims=True)._collapse(axis) + + def all(self, axis=None, out=None): + """ + Test whether all matrix elements along a given axis evaluate to True. + + Parameters + ---------- + See `numpy.all` for complete descriptions + + See Also + -------- + numpy.all + + Notes + ----- + This is the same as `ndarray.all`, but it returns a `matrix` object. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> y = x[0]; y + matrix([[0, 1, 2, 3]]) + >>> (x == y) + matrix([[ True, True, True, True], + [False, False, False, False], + [False, False, False, False]]) + >>> (x == y).all() + False + >>> (x == y).all(0) + matrix([[False, False, False, False]]) + >>> (x == y).all(1) + matrix([[ True], + [False], + [False]]) + + """ + return N.ndarray.all(self, axis, out, keepdims=True)._collapse(axis) + + def max(self, axis=None, out=None): + """ + Return the maximum value along an axis. + + Parameters + ---------- + See `amax` for complete descriptions + + See Also + -------- + amax, ndarray.max + + Notes + ----- + This is the same as `ndarray.max`, but returns a `matrix` object + where `ndarray.max` would return an ndarray. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.max() + 11 + >>> x.max(0) + matrix([[ 8, 9, 10, 11]]) + >>> x.max(1) + matrix([[ 3], + [ 7], + [11]]) + + """ + return N.ndarray.max(self, axis, out, keepdims=True)._collapse(axis) + + def argmax(self, axis=None, out=None): + """ + Indexes of the maximum values along an axis. + + Return the indexes of the first occurrences of the maximum values + along the specified axis. If axis is None, the index is for the + flattened matrix. + + Parameters + ---------- + See `numpy.argmax` for complete descriptions + + See Also + -------- + numpy.argmax + + Notes + ----- + This is the same as `ndarray.argmax`, but returns a `matrix` object + where `ndarray.argmax` would return an `ndarray`. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.argmax() + 11 + >>> x.argmax(0) + matrix([[2, 2, 2, 2]]) + >>> x.argmax(1) + matrix([[3], + [3], + [3]]) + + """ + return N.ndarray.argmax(self, axis, out)._align(axis) + + def min(self, axis=None, out=None): + """ + Return the minimum value along an axis. + + Parameters + ---------- + See `amin` for complete descriptions. + + See Also + -------- + amin, ndarray.min + + Notes + ----- + This is the same as `ndarray.min`, but returns a `matrix` object + where `ndarray.min` would return an ndarray. + + Examples + -------- + >>> x = -np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, -1, -2, -3], + [ -4, -5, -6, -7], + [ -8, -9, -10, -11]]) + >>> x.min() + -11 + >>> x.min(0) + matrix([[ -8, -9, -10, -11]]) + >>> x.min(1) + matrix([[ -3], + [ -7], + [-11]]) + + """ + return N.ndarray.min(self, axis, out, keepdims=True)._collapse(axis) + + def argmin(self, axis=None, out=None): + """ + Indexes of the minimum values along an axis. + + Return the indexes of the first occurrences of the minimum values + along the specified axis. If axis is None, the index is for the + flattened matrix. + + Parameters + ---------- + See `numpy.argmin` for complete descriptions. + + See Also + -------- + numpy.argmin + + Notes + ----- + This is the same as `ndarray.argmin`, but returns a `matrix` object + where `ndarray.argmin` would return an `ndarray`. + + Examples + -------- + >>> x = -np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, -1, -2, -3], + [ -4, -5, -6, -7], + [ -8, -9, -10, -11]]) + >>> x.argmin() + 11 + >>> x.argmin(0) + matrix([[2, 2, 2, 2]]) + >>> x.argmin(1) + matrix([[3], + [3], + [3]]) + + """ + return N.ndarray.argmin(self, axis, out)._align(axis) + + def ptp(self, axis=None, out=None): + """ + Peak-to-peak (maximum - minimum) value along the given axis. + + Refer to `numpy.ptp` for full documentation. + + See Also + -------- + numpy.ptp + + Notes + ----- + Same as `ndarray.ptp`, except, where that would return an `ndarray` object, + this returns a `matrix` object. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.ptp() + 11 + >>> x.ptp(0) + matrix([[8, 8, 8, 8]]) + >>> x.ptp(1) + matrix([[3], + [3], + [3]]) + + """ + return N.ndarray.ptp(self, axis, out)._align(axis) + + @property + def I(self): + """ + Returns the (multiplicative) inverse of invertible `self`. + + Parameters + ---------- + None + + Returns + ------- + ret : matrix object + If `self` is non-singular, `ret` is such that ``ret * self`` == + ``self * ret`` == ``np.matrix(np.eye(self[0,:].size))`` all return + ``True``. + + Raises + ------ + numpy.linalg.LinAlgError: Singular matrix + If `self` is singular. + + See Also + -------- + linalg.inv + + Examples + -------- + >>> m = np.matrix('[1, 2; 3, 4]'); m + matrix([[1, 2], + [3, 4]]) + >>> m.getI() + matrix([[-2. , 1. ], + [ 1.5, -0.5]]) + >>> m.getI() * m + matrix([[ 1., 0.], # may vary + [ 0., 1.]]) + + """ + M, N = self.shape + if M == N: + from numpy.linalg import inv as func + else: + from numpy.linalg import pinv as func + return asmatrix(func(self)) + + @property + def A(self): + """ + Return `self` as an `ndarray` object. + + Equivalent to ``np.asarray(self)``. + + Parameters + ---------- + None + + Returns + ------- + ret : ndarray + `self` as an `ndarray` + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.getA() + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + + """ + return self.__array__() + + @property + def A1(self): + """ + Return `self` as a flattened `ndarray`. + + Equivalent to ``np.asarray(x).ravel()`` + + Parameters + ---------- + None + + Returns + ------- + ret : ndarray + `self`, 1-D, as an `ndarray` + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.getA1() + array([ 0, 1, 2, ..., 9, 10, 11]) + + + """ + return self.__array__().ravel() + + + def ravel(self, order='C'): + """ + Return a flattened matrix. + + Refer to `numpy.ravel` for more documentation. + + Parameters + ---------- + order : {'C', 'F', 'A', 'K'}, optional + The elements of `m` are read using this index order. 'C' means to + index the elements in C-like order, with the last axis index + changing fastest, back to the first axis index changing slowest. + 'F' means to index the elements in Fortran-like index order, with + the first index changing fastest, and the last index changing + slowest. Note that the 'C' and 'F' options take no account of the + memory layout of the underlying array, and only refer to the order + of axis indexing. 'A' means to read the elements in Fortran-like + index order if `m` is Fortran *contiguous* in memory, C-like order + otherwise. 'K' means to read the elements in the order they occur + in memory, except for reversing the data when strides are negative. + By default, 'C' index order is used. + + Returns + ------- + ret : matrix + Return the matrix flattened to shape `(1, N)` where `N` + is the number of elements in the original matrix. + A copy is made only if necessary. + + See Also + -------- + matrix.flatten : returns a similar output matrix but always a copy + matrix.flat : a flat iterator on the array. + numpy.ravel : related function which returns an ndarray + + """ + return N.ndarray.ravel(self, order=order) + + @property + def T(self): + """ + Returns the transpose of the matrix. + + Does *not* conjugate! For the complex conjugate transpose, use ``.H``. + + Parameters + ---------- + None + + Returns + ------- + ret : matrix object + The (non-conjugated) transpose of the matrix. + + See Also + -------- + transpose, getH + + Examples + -------- + >>> m = np.matrix('[1, 2; 3, 4]') + >>> m + matrix([[1, 2], + [3, 4]]) + >>> m.getT() + matrix([[1, 3], + [2, 4]]) + + """ + return self.transpose() + + @property + def H(self): + """ + Returns the (complex) conjugate transpose of `self`. + + Equivalent to ``np.transpose(self)`` if `self` is real-valued. + + Parameters + ---------- + None + + Returns + ------- + ret : matrix object + complex conjugate transpose of `self` + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))) + >>> z = x - 1j*x; z + matrix([[ 0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j], + [ 4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j], + [ 8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]]) + >>> z.getH() + matrix([[ 0. -0.j, 4. +4.j, 8. +8.j], + [ 1. +1.j, 5. +5.j, 9. +9.j], + [ 2. +2.j, 6. +6.j, 10.+10.j], + [ 3. +3.j, 7. +7.j, 11.+11.j]]) + + """ + if issubclass(self.dtype.type, N.complexfloating): + return self.transpose().conjugate() + else: + return self.transpose() + + # kept for compatibility + getT = T.fget + getA = A.fget + getA1 = A1.fget + getH = H.fget + getI = I.fget + +def _from_string(str, gdict, ldict): + rows = str.split(';') + rowtup = [] + for row in rows: + trow = row.split(',') + newrow = [] + for x in trow: + newrow.extend(x.split()) + trow = newrow + coltup = [] + for col in trow: + col = col.strip() + try: + thismat = ldict[col] + except KeyError: + try: + thismat = gdict[col] + except KeyError as e: + raise NameError(f"name {col!r} is not defined") from None + + coltup.append(thismat) + rowtup.append(concatenate(coltup, axis=-1)) + return concatenate(rowtup, axis=0) + + +@set_module('numpy') +def bmat(obj, ldict=None, gdict=None): + """ + Build a matrix object from a string, nested sequence, or array. + + Parameters + ---------- + obj : str or array_like + Input data. If a string, variables in the current scope may be + referenced by name. + ldict : dict, optional + A dictionary that replaces local operands in current frame. + Ignored if `obj` is not a string or `gdict` is None. + gdict : dict, optional + A dictionary that replaces global operands in current frame. + Ignored if `obj` is not a string. + + Returns + ------- + out : matrix + Returns a matrix object, which is a specialized 2-D array. + + See Also + -------- + block : + A generalization of this function for N-d arrays, that returns normal + ndarrays. + + Examples + -------- + >>> A = np.mat('1 1; 1 1') + >>> B = np.mat('2 2; 2 2') + >>> C = np.mat('3 4; 5 6') + >>> D = np.mat('7 8; 9 0') + + All the following expressions construct the same block matrix: + + >>> np.bmat([[A, B], [C, D]]) + matrix([[1, 1, 2, 2], + [1, 1, 2, 2], + [3, 4, 7, 8], + [5, 6, 9, 0]]) + >>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]]) + matrix([[1, 1, 2, 2], + [1, 1, 2, 2], + [3, 4, 7, 8], + [5, 6, 9, 0]]) + >>> np.bmat('A,B; C,D') + matrix([[1, 1, 2, 2], + [1, 1, 2, 2], + [3, 4, 7, 8], + [5, 6, 9, 0]]) + + """ + if isinstance(obj, str): + if gdict is None: + # get previous frame + frame = sys._getframe().f_back + glob_dict = frame.f_globals + loc_dict = frame.f_locals + else: + glob_dict = gdict + loc_dict = ldict + + return matrix(_from_string(obj, glob_dict, loc_dict)) + + if isinstance(obj, (tuple, list)): + # [[A,B],[C,D]] + arr_rows = [] + for row in obj: + if isinstance(row, N.ndarray): # not 2-d + return matrix(concatenate(obj, axis=-1)) + else: + arr_rows.append(concatenate(row, axis=-1)) + return matrix(concatenate(arr_rows, axis=0)) + if isinstance(obj, N.ndarray): + return matrix(obj) + +mat = asmatrix diff --git a/venv/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.pyi b/venv/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.pyi new file mode 100644 index 0000000000000000000000000000000000000000..9d0d1ee50b6600bce80f1f5b1363e5ee3102a02a --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.pyi @@ -0,0 +1,16 @@ +from collections.abc import Sequence, Mapping +from typing import Any +from numpy import matrix as matrix +from numpy._typing import ArrayLike, DTypeLike, NDArray + +__all__: list[str] + +def bmat( + obj: str | Sequence[ArrayLike] | NDArray[Any], + ldict: None | Mapping[str, Any] = ..., + gdict: None | Mapping[str, Any] = ..., +) -> matrix[Any, Any]: ... + +def asmatrix(data: ArrayLike, dtype: DTypeLike = ...) -> matrix[Any, Any]: ... + +mat = asmatrix diff --git a/venv/lib/python3.10/site-packages/numpy/matrixlib/setup.py b/venv/lib/python3.10/site-packages/numpy/matrixlib/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..4fed75de1cbc22357c675fd8ce2d52cbb6829b50 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/matrixlib/setup.py @@ -0,0 +1,12 @@ +#!/usr/bin/env python3 +def configuration(parent_package='', top_path=None): + from numpy.distutils.misc_util import Configuration + config = Configuration('matrixlib', parent_package, top_path) + config.add_subpackage('tests') + config.add_data_files('*.pyi') + return config + +if __name__ == "__main__": + from numpy.distutils.core import setup + config = configuration(top_path='').todict() + setup(**config) diff --git a/venv/lib/python3.10/site-packages/numpy/matrixlib/tests/__init__.py b/venv/lib/python3.10/site-packages/numpy/matrixlib/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_defmatrix.py b/venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_defmatrix.py new file mode 100644 index 0000000000000000000000000000000000000000..4cb5f3a375e933fbc63b3aaab12527e60423de0c --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_defmatrix.py @@ -0,0 +1,453 @@ +import collections.abc + +import numpy as np +from numpy import matrix, asmatrix, bmat +from numpy.testing import ( + assert_, assert_equal, assert_almost_equal, assert_array_equal, + assert_array_almost_equal, assert_raises + ) +from numpy.linalg import matrix_power +from numpy.matrixlib import mat + +class TestCtor: + def test_basic(self): + A = np.array([[1, 2], [3, 4]]) + mA = matrix(A) + assert_(np.all(mA.A == A)) + + B = bmat("A,A;A,A") + C = bmat([[A, A], [A, A]]) + D = np.array([[1, 2, 1, 2], + [3, 4, 3, 4], + [1, 2, 1, 2], + [3, 4, 3, 4]]) + assert_(np.all(B.A == D)) + assert_(np.all(C.A == D)) + + E = np.array([[5, 6], [7, 8]]) + AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) + assert_(np.all(bmat([A, E]) == AEresult)) + + vec = np.arange(5) + mvec = matrix(vec) + assert_(mvec.shape == (1, 5)) + + def test_exceptions(self): + # Check for ValueError when called with invalid string data. + assert_raises(ValueError, matrix, "invalid") + + def test_bmat_nondefault_str(self): + A = np.array([[1, 2], [3, 4]]) + B = np.array([[5, 6], [7, 8]]) + Aresult = np.array([[1, 2, 1, 2], + [3, 4, 3, 4], + [1, 2, 1, 2], + [3, 4, 3, 4]]) + mixresult = np.array([[1, 2, 5, 6], + [3, 4, 7, 8], + [5, 6, 1, 2], + [7, 8, 3, 4]]) + assert_(np.all(bmat("A,A;A,A") == Aresult)) + assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) + assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) + assert_( + np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) + b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) + assert_(np.all(b2 == mixresult)) + + +class TestProperties: + def test_sum(self): + """Test whether matrix.sum(axis=1) preserves orientation. + Fails in NumPy <= 0.9.6.2127. + """ + M = matrix([[1, 2, 0, 0], + [3, 4, 0, 0], + [1, 2, 1, 2], + [3, 4, 3, 4]]) + sum0 = matrix([8, 12, 4, 6]) + sum1 = matrix([3, 7, 6, 14]).T + sumall = 30 + assert_array_equal(sum0, M.sum(axis=0)) + assert_array_equal(sum1, M.sum(axis=1)) + assert_equal(sumall, M.sum()) + + assert_array_equal(sum0, np.sum(M, axis=0)) + assert_array_equal(sum1, np.sum(M, axis=1)) + assert_equal(sumall, np.sum(M)) + + def test_prod(self): + x = matrix([[1, 2, 3], [4, 5, 6]]) + assert_equal(x.prod(), 720) + assert_equal(x.prod(0), matrix([[4, 10, 18]])) + assert_equal(x.prod(1), matrix([[6], [120]])) + + assert_equal(np.prod(x), 720) + assert_equal(np.prod(x, axis=0), matrix([[4, 10, 18]])) + assert_equal(np.prod(x, axis=1), matrix([[6], [120]])) + + y = matrix([0, 1, 3]) + assert_(y.prod() == 0) + + def test_max(self): + x = matrix([[1, 2, 3], [4, 5, 6]]) + assert_equal(x.max(), 6) + assert_equal(x.max(0), matrix([[4, 5, 6]])) + assert_equal(x.max(1), matrix([[3], [6]])) + + assert_equal(np.max(x), 6) + assert_equal(np.max(x, axis=0), matrix([[4, 5, 6]])) + assert_equal(np.max(x, axis=1), matrix([[3], [6]])) + + def test_min(self): + x = matrix([[1, 2, 3], [4, 5, 6]]) + assert_equal(x.min(), 1) + assert_equal(x.min(0), matrix([[1, 2, 3]])) + assert_equal(x.min(1), matrix([[1], [4]])) + + assert_equal(np.min(x), 1) + assert_equal(np.min(x, axis=0), matrix([[1, 2, 3]])) + assert_equal(np.min(x, axis=1), matrix([[1], [4]])) + + def test_ptp(self): + x = np.arange(4).reshape((2, 2)) + assert_(x.ptp() == 3) + assert_(np.all(x.ptp(0) == np.array([2, 2]))) + assert_(np.all(x.ptp(1) == np.array([1, 1]))) + + def test_var(self): + x = np.arange(9).reshape((3, 3)) + mx = x.view(np.matrix) + assert_equal(x.var(ddof=0), mx.var(ddof=0)) + assert_equal(x.var(ddof=1), mx.var(ddof=1)) + + def test_basic(self): + import numpy.linalg as linalg + + A = np.array([[1., 2.], + [3., 4.]]) + mA = matrix(A) + assert_(np.allclose(linalg.inv(A), mA.I)) + assert_(np.all(np.array(np.transpose(A) == mA.T))) + assert_(np.all(np.array(np.transpose(A) == mA.H))) + assert_(np.all(A == mA.A)) + + B = A + 2j*A + mB = matrix(B) + assert_(np.allclose(linalg.inv(B), mB.I)) + assert_(np.all(np.array(np.transpose(B) == mB.T))) + assert_(np.all(np.array(np.transpose(B).conj() == mB.H))) + + def test_pinv(self): + x = matrix(np.arange(6).reshape(2, 3)) + xpinv = matrix([[-0.77777778, 0.27777778], + [-0.11111111, 0.11111111], + [ 0.55555556, -0.05555556]]) + assert_almost_equal(x.I, xpinv) + + def test_comparisons(self): + A = np.arange(100).reshape(10, 10) + mA = matrix(A) + mB = matrix(A) + 0.1 + assert_(np.all(mB == A+0.1)) + assert_(np.all(mB == matrix(A+0.1))) + assert_(not np.any(mB == matrix(A-0.1))) + assert_(np.all(mA < mB)) + assert_(np.all(mA <= mB)) + assert_(np.all(mA <= mA)) + assert_(not np.any(mA < mA)) + + assert_(not np.any(mB < mA)) + assert_(np.all(mB >= mA)) + assert_(np.all(mB >= mB)) + assert_(not np.any(mB > mB)) + + assert_(np.all(mA == mA)) + assert_(not np.any(mA == mB)) + assert_(np.all(mB != mA)) + + assert_(not np.all(abs(mA) > 0)) + assert_(np.all(abs(mB > 0))) + + def test_asmatrix(self): + A = np.arange(100).reshape(10, 10) + mA = asmatrix(A) + A[0, 0] = -10 + assert_(A[0, 0] == mA[0, 0]) + + def test_noaxis(self): + A = matrix([[1, 0], [0, 1]]) + assert_(A.sum() == matrix(2)) + assert_(A.mean() == matrix(0.5)) + + def test_repr(self): + A = matrix([[1, 0], [0, 1]]) + assert_(repr(A) == "matrix([[1, 0],\n [0, 1]])") + + def test_make_bool_matrix_from_str(self): + A = matrix('True; True; False') + B = matrix([[True], [True], [False]]) + assert_array_equal(A, B) + +class TestCasting: + def test_basic(self): + A = np.arange(100).reshape(10, 10) + mA = matrix(A) + + mB = mA.copy() + O = np.ones((10, 10), np.float64) * 0.1 + mB = mB + O + assert_(mB.dtype.type == np.float64) + assert_(np.all(mA != mB)) + assert_(np.all(mB == mA+0.1)) + + mC = mA.copy() + O = np.ones((10, 10), np.complex128) + mC = mC * O + assert_(mC.dtype.type == np.complex128) + assert_(np.all(mA != mB)) + + +class TestAlgebra: + def test_basic(self): + import numpy.linalg as linalg + + A = np.array([[1., 2.], [3., 4.]]) + mA = matrix(A) + + B = np.identity(2) + for i in range(6): + assert_(np.allclose((mA ** i).A, B)) + B = np.dot(B, A) + + Ainv = linalg.inv(A) + B = np.identity(2) + for i in range(6): + assert_(np.allclose((mA ** -i).A, B)) + B = np.dot(B, Ainv) + + assert_(np.allclose((mA * mA).A, np.dot(A, A))) + assert_(np.allclose((mA + mA).A, (A + A))) + assert_(np.allclose((3*mA).A, (3*A))) + + mA2 = matrix(A) + mA2 *= 3 + assert_(np.allclose(mA2.A, 3*A)) + + def test_pow(self): + """Test raising a matrix to an integer power works as expected.""" + m = matrix("1. 2.; 3. 4.") + m2 = m.copy() + m2 **= 2 + mi = m.copy() + mi **= -1 + m4 = m2.copy() + m4 **= 2 + assert_array_almost_equal(m2, m**2) + assert_array_almost_equal(m4, np.dot(m2, m2)) + assert_array_almost_equal(np.dot(mi, m), np.eye(2)) + + def test_scalar_type_pow(self): + m = matrix([[1, 2], [3, 4]]) + for scalar_t in [np.int8, np.uint8]: + two = scalar_t(2) + assert_array_almost_equal(m ** 2, m ** two) + + def test_notimplemented(self): + '''Check that 'not implemented' operations produce a failure.''' + A = matrix([[1., 2.], + [3., 4.]]) + + # __rpow__ + with assert_raises(TypeError): + 1.0**A + + # __mul__ with something not a list, ndarray, tuple, or scalar + with assert_raises(TypeError): + A*object() + + +class TestMatrixReturn: + def test_instance_methods(self): + a = matrix([1.0], dtype='f8') + methodargs = { + 'astype': ('intc',), + 'clip': (0.0, 1.0), + 'compress': ([1],), + 'repeat': (1,), + 'reshape': (1,), + 'swapaxes': (0, 0), + 'dot': np.array([1.0]), + } + excluded_methods = [ + 'argmin', 'choose', 'dump', 'dumps', 'fill', 'getfield', + 'getA', 'getA1', 'item', 'nonzero', 'put', 'putmask', 'resize', + 'searchsorted', 'setflags', 'setfield', 'sort', + 'partition', 'argpartition', + 'take', 'tofile', 'tolist', 'tostring', 'tobytes', 'all', 'any', + 'sum', 'argmax', 'argmin', 'min', 'max', 'mean', 'var', 'ptp', + 'prod', 'std', 'ctypes', 'itemset', + ] + for attrib in dir(a): + if attrib.startswith('_') or attrib in excluded_methods: + continue + f = getattr(a, attrib) + if isinstance(f, collections.abc.Callable): + # reset contents of a + a.astype('f8') + a.fill(1.0) + if attrib in methodargs: + args = methodargs[attrib] + else: + args = () + b = f(*args) + assert_(type(b) is matrix, "%s" % attrib) + assert_(type(a.real) is matrix) + assert_(type(a.imag) is matrix) + c, d = matrix([0.0]).nonzero() + assert_(type(c) is np.ndarray) + assert_(type(d) is np.ndarray) + + +class TestIndexing: + def test_basic(self): + x = asmatrix(np.zeros((3, 2), float)) + y = np.zeros((3, 1), float) + y[:, 0] = [0.8, 0.2, 0.3] + x[:, 1] = y > 0.5 + assert_equal(x, [[0, 1], [0, 0], [0, 0]]) + + +class TestNewScalarIndexing: + a = matrix([[1, 2], [3, 4]]) + + def test_dimesions(self): + a = self.a + x = a[0] + assert_equal(x.ndim, 2) + + def test_array_from_matrix_list(self): + a = self.a + x = np.array([a, a]) + assert_equal(x.shape, [2, 2, 2]) + + def test_array_to_list(self): + a = self.a + assert_equal(a.tolist(), [[1, 2], [3, 4]]) + + def test_fancy_indexing(self): + a = self.a + x = a[1, [0, 1, 0]] + assert_(isinstance(x, matrix)) + assert_equal(x, matrix([[3, 4, 3]])) + x = a[[1, 0]] + assert_(isinstance(x, matrix)) + assert_equal(x, matrix([[3, 4], [1, 2]])) + x = a[[[1], [0]], [[1, 0], [0, 1]]] + assert_(isinstance(x, matrix)) + assert_equal(x, matrix([[4, 3], [1, 2]])) + + def test_matrix_element(self): + x = matrix([[1, 2, 3], [4, 5, 6]]) + assert_equal(x[0][0], matrix([[1, 2, 3]])) + assert_equal(x[0][0].shape, (1, 3)) + assert_equal(x[0].shape, (1, 3)) + assert_equal(x[:, 0].shape, (2, 1)) + + x = matrix(0) + assert_equal(x[0, 0], 0) + assert_equal(x[0], 0) + assert_equal(x[:, 0].shape, x.shape) + + def test_scalar_indexing(self): + x = asmatrix(np.zeros((3, 2), float)) + assert_equal(x[0, 0], x[0][0]) + + def test_row_column_indexing(self): + x = asmatrix(np.eye(2)) + assert_array_equal(x[0,:], [[1, 0]]) + assert_array_equal(x[1,:], [[0, 1]]) + assert_array_equal(x[:, 0], [[1], [0]]) + assert_array_equal(x[:, 1], [[0], [1]]) + + def test_boolean_indexing(self): + A = np.arange(6) + A.shape = (3, 2) + x = asmatrix(A) + assert_array_equal(x[:, np.array([True, False])], x[:, 0]) + assert_array_equal(x[np.array([True, False, False]),:], x[0,:]) + + def test_list_indexing(self): + A = np.arange(6) + A.shape = (3, 2) + x = asmatrix(A) + assert_array_equal(x[:, [1, 0]], x[:, ::-1]) + assert_array_equal(x[[2, 1, 0],:], x[::-1,:]) + + +class TestPower: + def test_returntype(self): + a = np.array([[0, 1], [0, 0]]) + assert_(type(matrix_power(a, 2)) is np.ndarray) + a = mat(a) + assert_(type(matrix_power(a, 2)) is matrix) + + def test_list(self): + assert_array_equal(matrix_power([[0, 1], [0, 0]], 2), [[0, 0], [0, 0]]) + + +class TestShape: + + a = np.array([[1], [2]]) + m = matrix([[1], [2]]) + + def test_shape(self): + assert_equal(self.a.shape, (2, 1)) + assert_equal(self.m.shape, (2, 1)) + + def test_numpy_ravel(self): + assert_equal(np.ravel(self.a).shape, (2,)) + assert_equal(np.ravel(self.m).shape, (2,)) + + def test_member_ravel(self): + assert_equal(self.a.ravel().shape, (2,)) + assert_equal(self.m.ravel().shape, (1, 2)) + + def test_member_flatten(self): + assert_equal(self.a.flatten().shape, (2,)) + assert_equal(self.m.flatten().shape, (1, 2)) + + def test_numpy_ravel_order(self): + x = np.array([[1, 2, 3], [4, 5, 6]]) + assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6]) + assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6]) + assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6]) + assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6]) + x = matrix([[1, 2, 3], [4, 5, 6]]) + assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6]) + assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6]) + assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6]) + assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6]) + + def test_matrix_ravel_order(self): + x = matrix([[1, 2, 3], [4, 5, 6]]) + assert_equal(x.ravel(), [[1, 2, 3, 4, 5, 6]]) + assert_equal(x.ravel(order='F'), [[1, 4, 2, 5, 3, 6]]) + assert_equal(x.T.ravel(), [[1, 4, 2, 5, 3, 6]]) + assert_equal(x.T.ravel(order='A'), [[1, 2, 3, 4, 5, 6]]) + + def test_array_memory_sharing(self): + assert_(np.may_share_memory(self.a, self.a.ravel())) + assert_(not np.may_share_memory(self.a, self.a.flatten())) + + def test_matrix_memory_sharing(self): + assert_(np.may_share_memory(self.m, self.m.ravel())) + assert_(not np.may_share_memory(self.m, self.m.flatten())) + + def test_expand_dims_matrix(self): + # matrices are always 2d - so expand_dims only makes sense when the + # type is changed away from matrix. + a = np.arange(10).reshape((2, 5)).view(np.matrix) + expanded = np.expand_dims(a, axis=1) + assert_equal(expanded.ndim, 3) + assert_(not isinstance(expanded, np.matrix)) diff --git a/venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_interaction.py b/venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_interaction.py new file mode 100644 index 0000000000000000000000000000000000000000..5154bd621c61d7c081630c4659f74d70059e1746 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_interaction.py @@ -0,0 +1,354 @@ +"""Tests of interaction of matrix with other parts of numpy. + +Note that tests with MaskedArray and linalg are done in separate files. +""" +import pytest + +import textwrap +import warnings + +import numpy as np +from numpy.testing import (assert_, assert_equal, assert_raises, + assert_raises_regex, assert_array_equal, + assert_almost_equal, assert_array_almost_equal) + + +def test_fancy_indexing(): + # The matrix class messes with the shape. While this is always + # weird (getitem is not used, it does not have setitem nor knows + # about fancy indexing), this tests gh-3110 + # 2018-04-29: moved here from core.tests.test_index. + m = np.matrix([[1, 2], [3, 4]]) + + assert_(isinstance(m[[0, 1, 0], :], np.matrix)) + + # gh-3110. Note the transpose currently because matrices do *not* + # support dimension fixing for fancy indexing correctly. + x = np.asmatrix(np.arange(50).reshape(5, 10)) + assert_equal(x[:2, np.array(-1)], x[:2, -1].T) + + +def test_polynomial_mapdomain(): + # test that polynomial preserved matrix subtype. + # 2018-04-29: moved here from polynomial.tests.polyutils. + dom1 = [0, 4] + dom2 = [1, 3] + x = np.matrix([dom1, dom1]) + res = np.polynomial.polyutils.mapdomain(x, dom1, dom2) + assert_(isinstance(res, np.matrix)) + + +def test_sort_matrix_none(): + # 2018-04-29: moved here from core.tests.test_multiarray + a = np.matrix([[2, 1, 0]]) + actual = np.sort(a, axis=None) + expected = np.matrix([[0, 1, 2]]) + assert_equal(actual, expected) + assert_(type(expected) is np.matrix) + + +def test_partition_matrix_none(): + # gh-4301 + # 2018-04-29: moved here from core.tests.test_multiarray + a = np.matrix([[2, 1, 0]]) + actual = np.partition(a, 1, axis=None) + expected = np.matrix([[0, 1, 2]]) + assert_equal(actual, expected) + assert_(type(expected) is np.matrix) + + +def test_dot_scalar_and_matrix_of_objects(): + # Ticket #2469 + # 2018-04-29: moved here from core.tests.test_multiarray + arr = np.matrix([1, 2], dtype=object) + desired = np.matrix([[3, 6]], dtype=object) + assert_equal(np.dot(arr, 3), desired) + assert_equal(np.dot(3, arr), desired) + + +def test_inner_scalar_and_matrix(): + # 2018-04-29: moved here from core.tests.test_multiarray + for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': + sca = np.array(3, dtype=dt)[()] + arr = np.matrix([[1, 2], [3, 4]], dtype=dt) + desired = np.matrix([[3, 6], [9, 12]], dtype=dt) + assert_equal(np.inner(arr, sca), desired) + assert_equal(np.inner(sca, arr), desired) + + +def test_inner_scalar_and_matrix_of_objects(): + # Ticket #4482 + # 2018-04-29: moved here from core.tests.test_multiarray + arr = np.matrix([1, 2], dtype=object) + desired = np.matrix([[3, 6]], dtype=object) + assert_equal(np.inner(arr, 3), desired) + assert_equal(np.inner(3, arr), desired) + + +def test_iter_allocate_output_subtype(): + # Make sure that the subtype with priority wins + # 2018-04-29: moved here from core.tests.test_nditer, given the + # matrix specific shape test. + + # matrix vs ndarray + a = np.matrix([[1, 2], [3, 4]]) + b = np.arange(4).reshape(2, 2).T + i = np.nditer([a, b, None], [], + [['readonly'], ['readonly'], ['writeonly', 'allocate']]) + assert_(type(i.operands[2]) is np.matrix) + assert_(type(i.operands[2]) is not np.ndarray) + assert_equal(i.operands[2].shape, (2, 2)) + + # matrix always wants things to be 2D + b = np.arange(4).reshape(1, 2, 2) + assert_raises(RuntimeError, np.nditer, [a, b, None], [], + [['readonly'], ['readonly'], ['writeonly', 'allocate']]) + # but if subtypes are disabled, the result can still work + i = np.nditer([a, b, None], [], + [['readonly'], ['readonly'], + ['writeonly', 'allocate', 'no_subtype']]) + assert_(type(i.operands[2]) is np.ndarray) + assert_(type(i.operands[2]) is not np.matrix) + assert_equal(i.operands[2].shape, (1, 2, 2)) + + +def like_function(): + # 2018-04-29: moved here from core.tests.test_numeric + a = np.matrix([[1, 2], [3, 4]]) + for like_function in np.zeros_like, np.ones_like, np.empty_like: + b = like_function(a) + assert_(type(b) is np.matrix) + + c = like_function(a, subok=False) + assert_(type(c) is not np.matrix) + + +def test_array_astype(): + # 2018-04-29: copied here from core.tests.test_api + # subok=True passes through a matrix + a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4') + b = a.astype('f4', subok=True, copy=False) + assert_(a is b) + + # subok=True is default, and creates a subtype on a cast + b = a.astype('i4', copy=False) + assert_equal(a, b) + assert_equal(type(b), np.matrix) + + # subok=False never returns a matrix + b = a.astype('f4', subok=False, copy=False) + assert_equal(a, b) + assert_(not (a is b)) + assert_(type(b) is not np.matrix) + + +def test_stack(): + # 2018-04-29: copied here from core.tests.test_shape_base + # check np.matrix cannot be stacked + m = np.matrix([[1, 2], [3, 4]]) + assert_raises_regex(ValueError, 'shape too large to be a matrix', + np.stack, [m, m]) + + +def test_object_scalar_multiply(): + # Tickets #2469 and #4482 + # 2018-04-29: moved here from core.tests.test_ufunc + arr = np.matrix([1, 2], dtype=object) + desired = np.matrix([[3, 6]], dtype=object) + assert_equal(np.multiply(arr, 3), desired) + assert_equal(np.multiply(3, arr), desired) + + +def test_nanfunctions_matrices(): + # Check that it works and that type and + # shape are preserved + # 2018-04-29: moved here from core.tests.test_nanfunctions + mat = np.matrix(np.eye(3)) + for f in [np.nanmin, np.nanmax]: + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (1, 3)) + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 1)) + res = f(mat) + assert_(np.isscalar(res)) + # check that rows of nan are dealt with for subclasses (#4628) + mat[1] = np.nan + for f in [np.nanmin, np.nanmax]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(not np.any(np.isnan(res))) + assert_(len(w) == 0) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0]) + and not np.isnan(res[2, 0])) + assert_(len(w) == 1, 'no warning raised') + assert_(issubclass(w[0].category, RuntimeWarning)) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mat) + assert_(np.isscalar(res)) + assert_(res != np.nan) + assert_(len(w) == 0) + + +def test_nanfunctions_matrices_general(): + # Check that it works and that type and + # shape are preserved + # 2018-04-29: moved here from core.tests.test_nanfunctions + mat = np.matrix(np.eye(3)) + for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod, + np.nanmean, np.nanvar, np.nanstd): + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (1, 3)) + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 1)) + res = f(mat) + assert_(np.isscalar(res)) + + for f in np.nancumsum, np.nancumprod: + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 3)) + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 3)) + res = f(mat) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (1, 3*3)) + + +def test_average_matrix(): + # 2018-04-29: moved here from core.tests.test_function_base. + y = np.matrix(np.random.rand(5, 5)) + assert_array_equal(y.mean(0), np.average(y, 0)) + + a = np.matrix([[1, 2], [3, 4]]) + w = np.matrix([[1, 2], [3, 4]]) + + r = np.average(a, axis=0, weights=w) + assert_equal(type(r), np.matrix) + assert_equal(r, [[2.5, 10.0/3]]) + + +def test_trapz_matrix(): + # Test to make sure matrices give the same answer as ndarrays + # 2018-04-29: moved here from core.tests.test_function_base. + x = np.linspace(0, 5) + y = x * x + r = np.trapz(y, x) + mx = np.matrix(x) + my = np.matrix(y) + mr = np.trapz(my, mx) + assert_almost_equal(mr, r) + + +def test_ediff1d_matrix(): + # 2018-04-29: moved here from core.tests.test_arraysetops. + assert(isinstance(np.ediff1d(np.matrix(1)), np.matrix)) + assert(isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix)) + + +def test_apply_along_axis_matrix(): + # this test is particularly malicious because matrix + # refuses to become 1d + # 2018-04-29: moved here from core.tests.test_shape_base. + def double(row): + return row * 2 + + m = np.matrix([[0, 1], [2, 3]]) + expected = np.matrix([[0, 2], [4, 6]]) + + result = np.apply_along_axis(double, 0, m) + assert_(isinstance(result, np.matrix)) + assert_array_equal(result, expected) + + result = np.apply_along_axis(double, 1, m) + assert_(isinstance(result, np.matrix)) + assert_array_equal(result, expected) + + +def test_kron_matrix(): + # 2018-04-29: moved here from core.tests.test_shape_base. + a = np.ones([2, 2]) + m = np.asmatrix(a) + assert_equal(type(np.kron(a, a)), np.ndarray) + assert_equal(type(np.kron(m, m)), np.matrix) + assert_equal(type(np.kron(a, m)), np.matrix) + assert_equal(type(np.kron(m, a)), np.matrix) + + +class TestConcatenatorMatrix: + # 2018-04-29: moved here from core.tests.test_index_tricks. + def test_matrix(self): + a = [1, 2] + b = [3, 4] + + ab_r = np.r_['r', a, b] + ab_c = np.r_['c', a, b] + + assert_equal(type(ab_r), np.matrix) + assert_equal(type(ab_c), np.matrix) + + assert_equal(np.array(ab_r), [[1, 2, 3, 4]]) + assert_equal(np.array(ab_c), [[1], [2], [3], [4]]) + + assert_raises(ValueError, lambda: np.r_['rc', a, b]) + + def test_matrix_scalar(self): + r = np.r_['r', [1, 2], 3] + assert_equal(type(r), np.matrix) + assert_equal(np.array(r), [[1, 2, 3]]) + + def test_matrix_builder(self): + a = np.array([1]) + b = np.array([2]) + c = np.array([3]) + d = np.array([4]) + actual = np.r_['a, b; c, d'] + expected = np.bmat([[a, b], [c, d]]) + + assert_equal(actual, expected) + assert_equal(type(actual), type(expected)) + + +def test_array_equal_error_message_matrix(): + # 2018-04-29: moved here from testing.tests.test_utils. + with pytest.raises(AssertionError) as exc_info: + assert_equal(np.array([1, 2]), np.matrix([1, 2])) + msg = str(exc_info.value) + msg_reference = textwrap.dedent("""\ + + Arrays are not equal + + (shapes (2,), (1, 2) mismatch) + x: array([1, 2]) + y: matrix([[1, 2]])""") + assert_equal(msg, msg_reference) + + +def test_array_almost_equal_matrix(): + # Matrix slicing keeps things 2-D, while array does not necessarily. + # See gh-8452. + # 2018-04-29: moved here from testing.tests.test_utils. + m1 = np.matrix([[1., 2.]]) + m2 = np.matrix([[1., np.nan]]) + m3 = np.matrix([[1., -np.inf]]) + m4 = np.matrix([[np.nan, np.inf]]) + m5 = np.matrix([[1., 2.], [np.nan, np.inf]]) + for assert_func in assert_array_almost_equal, assert_almost_equal: + for m in m1, m2, m3, m4, m5: + assert_func(m, m) + a = np.array(m) + assert_func(a, m) + assert_func(m, a) diff --git a/venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py b/venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py new file mode 100644 index 0000000000000000000000000000000000000000..106c2e38217a633829329a94df077c097fbcbf7a --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py @@ -0,0 +1,93 @@ +""" Test functions for linalg module using the matrix class.""" +import numpy as np + +from numpy.linalg.tests.test_linalg import ( + LinalgCase, apply_tag, TestQR as _TestQR, LinalgTestCase, + _TestNorm2D, _TestNormDoubleBase, _TestNormSingleBase, _TestNormInt64Base, + SolveCases, InvCases, EigvalsCases, EigCases, SVDCases, CondCases, + PinvCases, DetCases, LstsqCases) + + +CASES = [] + +# square test cases +CASES += apply_tag('square', [ + LinalgCase("0x0_matrix", + np.empty((0, 0), dtype=np.double).view(np.matrix), + np.empty((0, 1), dtype=np.double).view(np.matrix), + tags={'size-0'}), + LinalgCase("matrix_b_only", + np.array([[1., 2.], [3., 4.]]), + np.matrix([2., 1.]).T), + LinalgCase("matrix_a_and_b", + np.matrix([[1., 2.], [3., 4.]]), + np.matrix([2., 1.]).T), +]) + +# hermitian test-cases +CASES += apply_tag('hermitian', [ + LinalgCase("hmatrix_a_and_b", + np.matrix([[1., 2.], [2., 1.]]), + None), +]) +# No need to make generalized or strided cases for matrices. + + +class MatrixTestCase(LinalgTestCase): + TEST_CASES = CASES + + +class TestSolveMatrix(SolveCases, MatrixTestCase): + pass + + +class TestInvMatrix(InvCases, MatrixTestCase): + pass + + +class TestEigvalsMatrix(EigvalsCases, MatrixTestCase): + pass + + +class TestEigMatrix(EigCases, MatrixTestCase): + pass + + +class TestSVDMatrix(SVDCases, MatrixTestCase): + pass + + +class TestCondMatrix(CondCases, MatrixTestCase): + pass + + +class TestPinvMatrix(PinvCases, MatrixTestCase): + pass + + +class TestDetMatrix(DetCases, MatrixTestCase): + pass + + +class TestLstsqMatrix(LstsqCases, MatrixTestCase): + pass + + +class _TestNorm2DMatrix(_TestNorm2D): + array = np.matrix + + +class TestNormDoubleMatrix(_TestNorm2DMatrix, _TestNormDoubleBase): + pass + + +class TestNormSingleMatrix(_TestNorm2DMatrix, _TestNormSingleBase): + pass + + +class TestNormInt64Matrix(_TestNorm2DMatrix, _TestNormInt64Base): + pass + + +class TestQRMatrix(_TestQR): + array = np.matrix diff --git a/venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_multiarray.py b/venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_multiarray.py new file mode 100644 index 0000000000000000000000000000000000000000..638d0d1534deba060140ffda3b61950a0b4f815d --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/matrixlib/tests/test_multiarray.py @@ -0,0 +1,16 @@ +import numpy as np +from numpy.testing import assert_, assert_equal, assert_array_equal + +class TestView: + def test_type(self): + x = np.array([1, 2, 3]) + assert_(isinstance(x.view(np.matrix), np.matrix)) + + def test_keywords(self): + x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)]) + # We must be specific about the endianness here: + y = x.view(dtype='>> np.array(x**2 for x in range(10)) + array( at ...>, dtype=object) + +is valid NumPy code which will create a 0-dimensional object +array. Type checkers will complain about the above example when using +the NumPy types however. If you really intended to do the above, then +you can either use a ``# type: ignore`` comment: + +.. code-block:: python + + >>> np.array(x**2 for x in range(10)) # type: ignore + +or explicitly type the array like object as `~typing.Any`: + +.. code-block:: python + + >>> from typing import Any + >>> array_like: Any = (x**2 for x in range(10)) + >>> np.array(array_like) + array( at ...>, dtype=object) + +ndarray +~~~~~~~ + +It's possible to mutate the dtype of an array at runtime. For example, +the following code is valid: + +.. code-block:: python + + >>> x = np.array([1, 2]) + >>> x.dtype = np.bool_ + +This sort of mutation is not allowed by the types. Users who want to +write statically typed code should instead use the `numpy.ndarray.view` +method to create a view of the array with a different dtype. + +DTypeLike +~~~~~~~~~ + +The `DTypeLike` type tries to avoid creation of dtype objects using +dictionary of fields like below: + +.. code-block:: python + + >>> x = np.dtype({"field1": (float, 1), "field2": (int, 3)}) + +Although this is valid NumPy code, the type checker will complain about it, +since its usage is discouraged. +Please see : :ref:`Data type objects ` + +Number precision +~~~~~~~~~~~~~~~~ + +The precision of `numpy.number` subclasses is treated as a covariant generic +parameter (see :class:`~NBitBase`), simplifying the annotating of processes +involving precision-based casting. + +.. code-block:: python + + >>> from typing import TypeVar + >>> import numpy as np + >>> import numpy.typing as npt + + >>> T = TypeVar("T", bound=npt.NBitBase) + >>> def func(a: "np.floating[T]", b: "np.floating[T]") -> "np.floating[T]": + ... ... + +Consequently, the likes of `~numpy.float16`, `~numpy.float32` and +`~numpy.float64` are still sub-types of `~numpy.floating`, but, contrary to +runtime, they're not necessarily considered as sub-classes. + +Timedelta64 +~~~~~~~~~~~ + +The `~numpy.timedelta64` class is not considered a subclass of +`~numpy.signedinteger`, the former only inheriting from `~numpy.generic` +while static type checking. + +0D arrays +~~~~~~~~~ + +During runtime numpy aggressively casts any passed 0D arrays into their +corresponding `~numpy.generic` instance. Until the introduction of shape +typing (see :pep:`646`) it is unfortunately not possible to make the +necessary distinction between 0D and >0D arrays. While thus not strictly +correct, all operations are that can potentially perform a 0D-array -> scalar +cast are currently annotated as exclusively returning an `ndarray`. + +If it is known in advance that an operation _will_ perform a +0D-array -> scalar cast, then one can consider manually remedying the +situation with either `typing.cast` or a ``# type: ignore`` comment. + +Record array dtypes +~~~~~~~~~~~~~~~~~~~ + +The dtype of `numpy.recarray`, and the `numpy.rec` functions in general, +can be specified in one of two ways: + +* Directly via the ``dtype`` argument. +* With up to five helper arguments that operate via `numpy.format_parser`: + ``formats``, ``names``, ``titles``, ``aligned`` and ``byteorder``. + +These two approaches are currently typed as being mutually exclusive, +*i.e.* if ``dtype`` is specified than one may not specify ``formats``. +While this mutual exclusivity is not (strictly) enforced during runtime, +combining both dtype specifiers can lead to unexpected or even downright +buggy behavior. + +API +--- + +""" +# NOTE: The API section will be appended with additional entries +# further down in this file + +from numpy._typing import ( + ArrayLike, + DTypeLike, + NBitBase, + NDArray, +) + +__all__ = ["ArrayLike", "DTypeLike", "NBitBase", "NDArray"] + +if __doc__ is not None: + from numpy._typing._add_docstring import _docstrings + __doc__ += _docstrings + __doc__ += '\n.. autoclass:: numpy.typing.NBitBase\n' + del _docstrings + +from numpy._pytesttester import PytestTester +test = PytestTester(__name__) +del PytestTester diff --git a/venv/lib/python3.10/site-packages/numpy/typing/mypy_plugin.py b/venv/lib/python3.10/site-packages/numpy/typing/mypy_plugin.py new file mode 100644 index 0000000000000000000000000000000000000000..8ec9637016e324daa88c682a05709fbed850d0c1 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/mypy_plugin.py @@ -0,0 +1,196 @@ +"""A mypy_ plugin for managing a number of platform-specific annotations. +Its functionality can be split into three distinct parts: + +* Assigning the (platform-dependent) precisions of certain `~numpy.number` + subclasses, including the likes of `~numpy.int_`, `~numpy.intp` and + `~numpy.longlong`. See the documentation on + :ref:`scalar types ` for a comprehensive overview + of the affected classes. Without the plugin the precision of all relevant + classes will be inferred as `~typing.Any`. +* Removing all extended-precision `~numpy.number` subclasses that are + unavailable for the platform in question. Most notably this includes the + likes of `~numpy.float128` and `~numpy.complex256`. Without the plugin *all* + extended-precision types will, as far as mypy is concerned, be available + to all platforms. +* Assigning the (platform-dependent) precision of `~numpy.ctypeslib.c_intp`. + Without the plugin the type will default to `ctypes.c_int64`. + + .. versionadded:: 1.22 + +Examples +-------- +To enable the plugin, one must add it to their mypy `configuration file`_: + +.. code-block:: ini + + [mypy] + plugins = numpy.typing.mypy_plugin + +.. _mypy: http://mypy-lang.org/ +.. _configuration file: https://mypy.readthedocs.io/en/stable/config_file.html + +""" + +from __future__ import annotations + +from collections.abc import Iterable +from typing import Final, TYPE_CHECKING, Callable + +import numpy as np + +try: + import mypy.types + from mypy.types import Type + from mypy.plugin import Plugin, AnalyzeTypeContext + from mypy.nodes import MypyFile, ImportFrom, Statement + from mypy.build import PRI_MED + + _HookFunc = Callable[[AnalyzeTypeContext], Type] + MYPY_EX: None | ModuleNotFoundError = None +except ModuleNotFoundError as ex: + MYPY_EX = ex + +__all__: list[str] = [] + + +def _get_precision_dict() -> dict[str, str]: + names = [ + ("_NBitByte", np.byte), + ("_NBitShort", np.short), + ("_NBitIntC", np.intc), + ("_NBitIntP", np.intp), + ("_NBitInt", np.int_), + ("_NBitLongLong", np.longlong), + + ("_NBitHalf", np.half), + ("_NBitSingle", np.single), + ("_NBitDouble", np.double), + ("_NBitLongDouble", np.longdouble), + ] + ret = {} + for name, typ in names: + n: int = 8 * typ().dtype.itemsize + ret[f'numpy._typing._nbit.{name}'] = f"numpy._{n}Bit" + return ret + + +def _get_extended_precision_list() -> list[str]: + extended_names = [ + "uint128", + "uint256", + "int128", + "int256", + "float80", + "float96", + "float128", + "float256", + "complex160", + "complex192", + "complex256", + "complex512", + ] + return [i for i in extended_names if hasattr(np, i)] + + +def _get_c_intp_name() -> str: + # Adapted from `np.core._internal._getintp_ctype` + char = np.dtype('p').char + if char == 'i': + return "c_int" + elif char == 'l': + return "c_long" + elif char == 'q': + return "c_longlong" + else: + return "c_long" + + +#: A dictionary mapping type-aliases in `numpy._typing._nbit` to +#: concrete `numpy.typing.NBitBase` subclasses. +_PRECISION_DICT: Final = _get_precision_dict() + +#: A list with the names of all extended precision `np.number` subclasses. +_EXTENDED_PRECISION_LIST: Final = _get_extended_precision_list() + +#: The name of the ctypes quivalent of `np.intp` +_C_INTP: Final = _get_c_intp_name() + + +def _hook(ctx: AnalyzeTypeContext) -> Type: + """Replace a type-alias with a concrete ``NBitBase`` subclass.""" + typ, _, api = ctx + name = typ.name.split(".")[-1] + name_new = _PRECISION_DICT[f"numpy._typing._nbit.{name}"] + return api.named_type(name_new) + + +if TYPE_CHECKING or MYPY_EX is None: + def _index(iterable: Iterable[Statement], id: str) -> int: + """Identify the first ``ImportFrom`` instance the specified `id`.""" + for i, value in enumerate(iterable): + if getattr(value, "id", None) == id: + return i + raise ValueError("Failed to identify a `ImportFrom` instance " + f"with the following id: {id!r}") + + def _override_imports( + file: MypyFile, + module: str, + imports: list[tuple[str, None | str]], + ) -> None: + """Override the first `module`-based import with new `imports`.""" + # Construct a new `from module import y` statement + import_obj = ImportFrom(module, 0, names=imports) + import_obj.is_top_level = True + + # Replace the first `module`-based import statement with `import_obj` + for lst in [file.defs, file.imports]: # type: list[Statement] + i = _index(lst, module) + lst[i] = import_obj + + class _NumpyPlugin(Plugin): + """A mypy plugin for handling versus numpy-specific typing tasks.""" + + def get_type_analyze_hook(self, fullname: str) -> None | _HookFunc: + """Set the precision of platform-specific `numpy.number` + subclasses. + + For example: `numpy.int_`, `numpy.longlong` and `numpy.longdouble`. + """ + if fullname in _PRECISION_DICT: + return _hook + return None + + def get_additional_deps( + self, file: MypyFile + ) -> list[tuple[int, str, int]]: + """Handle all import-based overrides. + + * Import platform-specific extended-precision `numpy.number` + subclasses (*e.g.* `numpy.float96`, `numpy.float128` and + `numpy.complex256`). + * Import the appropriate `ctypes` equivalent to `numpy.intp`. + + """ + ret = [(PRI_MED, file.fullname, -1)] + + if file.fullname == "numpy": + _override_imports( + file, "numpy._typing._extended_precision", + imports=[(v, v) for v in _EXTENDED_PRECISION_LIST], + ) + elif file.fullname == "numpy.ctypeslib": + _override_imports( + file, "ctypes", + imports=[(_C_INTP, "_c_intp")], + ) + return ret + + def plugin(version: str) -> type[_NumpyPlugin]: + """An entry-point for mypy.""" + return _NumpyPlugin + +else: + def plugin(version: str) -> type[_NumpyPlugin]: + """An entry-point for mypy.""" + raise MYPY_EX diff --git a/venv/lib/python3.10/site-packages/numpy/typing/setup.py b/venv/lib/python3.10/site-packages/numpy/typing/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..c444e769fb6d94ffc0bff6cec25cd30a86858f2e --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/setup.py @@ -0,0 +1,11 @@ +def configuration(parent_package='', top_path=None): + from numpy.distutils.misc_util import Configuration + config = Configuration('typing', parent_package, top_path) + config.add_subpackage('tests') + config.add_data_dir('tests/data') + return config + + +if __name__ == '__main__': + from numpy.distutils.core import setup + setup(configuration=configuration) diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/__init__.py b/venv/lib/python3.10/site-packages/numpy/typing/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..62c1a115a5814016bbb74c5000f04e9e6f594e91 Binary files /dev/null and b/venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_isfile.cpython-310.pyc b/venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_isfile.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a0bf6070b1c33751f8a50c0652110fbe03ae8278 Binary files /dev/null and b/venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_isfile.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_runtime.cpython-310.pyc b/venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_runtime.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b6b277d7a4203c393a05772609c1da350d44a33d Binary files /dev/null and b/venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_runtime.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_typing.cpython-310.pyc b/venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_typing.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3391bf913110dbcd56e6568b58614fd1688135a8 Binary files /dev/null and b/venv/lib/python3.10/site-packages/numpy/typing/tests/__pycache__/test_typing.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arithmetic.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arithmetic.pyi new file mode 100644 index 0000000000000000000000000000000000000000..3bbc101cfd236c01a8d72e24bcf36cda87da8a10 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arithmetic.pyi @@ -0,0 +1,121 @@ +from typing import Any +import numpy as np + +b_ = np.bool_() +dt = np.datetime64(0, "D") +td = np.timedelta64(0, "D") + +AR_b: np.ndarray[Any, np.dtype[np.bool_]] +AR_u: np.ndarray[Any, np.dtype[np.uint32]] +AR_i: np.ndarray[Any, np.dtype[np.int64]] +AR_f: np.ndarray[Any, np.dtype[np.float64]] +AR_c: np.ndarray[Any, np.dtype[np.complex128]] +AR_m: np.ndarray[Any, np.dtype[np.timedelta64]] +AR_M: np.ndarray[Any, np.dtype[np.datetime64]] + +ANY: Any + +AR_LIKE_b: list[bool] +AR_LIKE_u: list[np.uint32] +AR_LIKE_i: list[int] +AR_LIKE_f: list[float] +AR_LIKE_c: list[complex] +AR_LIKE_m: list[np.timedelta64] +AR_LIKE_M: list[np.datetime64] + +# Array subtraction + +# NOTE: mypys `NoReturn` errors are, unfortunately, not that great +_1 = AR_b - AR_LIKE_b # E: Need type annotation +_2 = AR_LIKE_b - AR_b # E: Need type annotation +AR_i - bytes() # E: No overload variant + +AR_f - AR_LIKE_m # E: Unsupported operand types +AR_f - AR_LIKE_M # E: Unsupported operand types +AR_c - AR_LIKE_m # E: Unsupported operand types +AR_c - AR_LIKE_M # E: Unsupported operand types + +AR_m - AR_LIKE_f # E: Unsupported operand types +AR_M - AR_LIKE_f # E: Unsupported operand types +AR_m - AR_LIKE_c # E: Unsupported operand types +AR_M - AR_LIKE_c # E: Unsupported operand types + +AR_m - AR_LIKE_M # E: Unsupported operand types +AR_LIKE_m - AR_M # E: Unsupported operand types + +# array floor division + +AR_M // AR_LIKE_b # E: Unsupported operand types +AR_M // AR_LIKE_u # E: Unsupported operand types +AR_M // AR_LIKE_i # E: Unsupported operand types +AR_M // AR_LIKE_f # E: Unsupported operand types +AR_M // AR_LIKE_c # E: Unsupported operand types +AR_M // AR_LIKE_m # E: Unsupported operand types +AR_M // AR_LIKE_M # E: Unsupported operand types + +AR_b // AR_LIKE_M # E: Unsupported operand types +AR_u // AR_LIKE_M # E: Unsupported operand types +AR_i // AR_LIKE_M # E: Unsupported operand types +AR_f // AR_LIKE_M # E: Unsupported operand types +AR_c // AR_LIKE_M # E: Unsupported operand types +AR_m // AR_LIKE_M # E: Unsupported operand types +AR_M // AR_LIKE_M # E: Unsupported operand types + +_3 = AR_m // AR_LIKE_b # E: Need type annotation +AR_m // AR_LIKE_c # E: Unsupported operand types + +AR_b // AR_LIKE_m # E: Unsupported operand types +AR_u // AR_LIKE_m # E: Unsupported operand types +AR_i // AR_LIKE_m # E: Unsupported operand types +AR_f // AR_LIKE_m # E: Unsupported operand types +AR_c // AR_LIKE_m # E: Unsupported operand types + +# Array multiplication + +AR_b *= AR_LIKE_u # E: incompatible type +AR_b *= AR_LIKE_i # E: incompatible type +AR_b *= AR_LIKE_f # E: incompatible type +AR_b *= AR_LIKE_c # E: incompatible type +AR_b *= AR_LIKE_m # E: incompatible type + +AR_u *= AR_LIKE_i # E: incompatible type +AR_u *= AR_LIKE_f # E: incompatible type +AR_u *= AR_LIKE_c # E: incompatible type +AR_u *= AR_LIKE_m # E: incompatible type + +AR_i *= AR_LIKE_f # E: incompatible type +AR_i *= AR_LIKE_c # E: incompatible type +AR_i *= AR_LIKE_m # E: incompatible type + +AR_f *= AR_LIKE_c # E: incompatible type +AR_f *= AR_LIKE_m # E: incompatible type + +# Array power + +AR_b **= AR_LIKE_b # E: Invalid self argument +AR_b **= AR_LIKE_u # E: Invalid self argument +AR_b **= AR_LIKE_i # E: Invalid self argument +AR_b **= AR_LIKE_f # E: Invalid self argument +AR_b **= AR_LIKE_c # E: Invalid self argument + +AR_u **= AR_LIKE_i # E: incompatible type +AR_u **= AR_LIKE_f # E: incompatible type +AR_u **= AR_LIKE_c # E: incompatible type + +AR_i **= AR_LIKE_f # E: incompatible type +AR_i **= AR_LIKE_c # E: incompatible type + +AR_f **= AR_LIKE_c # E: incompatible type + +# Scalars + +b_ - b_ # E: No overload variant + +dt + dt # E: Unsupported operand types +td - dt # E: Unsupported operand types +td % 1 # E: Unsupported operand types +td / dt # E: No overload +td % dt # E: Unsupported operand types + +-b_ # E: Unsupported operand type ++b_ # E: Unsupported operand type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_constructors.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_constructors.pyi new file mode 100644 index 0000000000000000000000000000000000000000..278894631f937151177e9b4e5a4c815772a16676 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_constructors.pyi @@ -0,0 +1,33 @@ +import numpy as np + +a: np.ndarray +generator = (i for i in range(10)) + +np.require(a, requirements=1) # E: No overload variant +np.require(a, requirements="TEST") # E: incompatible type + +np.zeros("test") # E: incompatible type +np.zeros() # E: require at least one argument + +np.ones("test") # E: incompatible type +np.ones() # E: require at least one argument + +np.array(0, float, True) # E: No overload variant + +np.linspace(None, 'bob') # E: No overload variant +np.linspace(0, 2, num=10.0) # E: No overload variant +np.linspace(0, 2, endpoint='True') # E: No overload variant +np.linspace(0, 2, retstep=b'False') # E: No overload variant +np.linspace(0, 2, dtype=0) # E: No overload variant +np.linspace(0, 2, axis=None) # E: No overload variant + +np.logspace(None, 'bob') # E: No overload variant +np.logspace(0, 2, base=None) # E: No overload variant + +np.geomspace(None, 'bob') # E: No overload variant + +np.stack(generator) # E: No overload variant +np.hstack({1, 2}) # E: No overload variant +np.vstack(1) # E: No overload variant + +np.array([1], like=1) # E: No overload variant diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_like.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_like.pyi new file mode 100644 index 0000000000000000000000000000000000000000..133b5fd497006be2680dd108ed4cb5696442bad5 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_like.pyi @@ -0,0 +1,16 @@ +import numpy as np +from numpy._typing import ArrayLike + + +class A: + pass + + +x1: ArrayLike = (i for i in range(10)) # E: Incompatible types in assignment +x2: ArrayLike = A() # E: Incompatible types in assignment +x3: ArrayLike = {1: "foo", 2: "bar"} # E: Incompatible types in assignment + +scalar = np.int64(1) +scalar.__array__(dtype=np.float64) # E: No overload variant +array = np.array([1]) +array.__array__(dtype=np.float64) # E: No overload variant diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_pad.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_pad.pyi new file mode 100644 index 0000000000000000000000000000000000000000..2be51a87181dcc14068d7036fe44d1d3cc9d9d6f --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/array_pad.pyi @@ -0,0 +1,6 @@ +import numpy as np +import numpy.typing as npt + +AR_i8: npt.NDArray[np.int64] + +np.pad(AR_i8, 2, mode="bob") # E: No overload variant diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arrayprint.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arrayprint.pyi new file mode 100644 index 0000000000000000000000000000000000000000..71b921e3a5a3774548a9beab955a3b481d360d21 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arrayprint.pyi @@ -0,0 +1,14 @@ +from collections.abc import Callable +from typing import Any +import numpy as np + +AR: np.ndarray +func1: Callable[[Any], str] +func2: Callable[[np.integer[Any]], str] + +np.array2string(AR, style=None) # E: Unexpected keyword argument +np.array2string(AR, legacy="1.14") # E: incompatible type +np.array2string(AR, sign="*") # E: incompatible type +np.array2string(AR, floatmode="default") # E: incompatible type +np.array2string(AR, formatter={"A": func1}) # E: incompatible type +np.array2string(AR, formatter={"float": func2}) # E: Incompatible types diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arrayterator.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arrayterator.pyi new file mode 100644 index 0000000000000000000000000000000000000000..c50fb2ec4e52f7e09eff0067135168cc98b96389 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/arrayterator.pyi @@ -0,0 +1,14 @@ +from typing import Any +import numpy as np + +AR_i8: np.ndarray[Any, np.dtype[np.int64]] +ar_iter = np.lib.Arrayterator(AR_i8) + +np.lib.Arrayterator(np.int64()) # E: incompatible type +ar_iter.shape = (10, 5) # E: is read-only +ar_iter[None] # E: Invalid index type +ar_iter[None, 1] # E: Invalid index type +ar_iter[np.intp()] # E: Invalid index type +ar_iter[np.intp(), ...] # E: Invalid index type +ar_iter[AR_i8] # E: Invalid index type +ar_iter[AR_i8, :] # E: Invalid index type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/bitwise_ops.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/bitwise_ops.pyi new file mode 100644 index 0000000000000000000000000000000000000000..ee9090007924620b987d1f734c0269398671075d --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/bitwise_ops.pyi @@ -0,0 +1,20 @@ +import numpy as np + +i8 = np.int64() +i4 = np.int32() +u8 = np.uint64() +b_ = np.bool_() +i = int() + +f8 = np.float64() + +b_ >> f8 # E: No overload variant +i8 << f8 # E: No overload variant +i | f8 # E: Unsupported operand types +i8 ^ f8 # E: No overload variant +u8 & f8 # E: No overload variant +~f8 # E: Unsupported operand type + +# mypys' error message for `NoReturn` is unfortunately pretty bad +# TODO: Re-enable this once we add support for numerical precision for `number`s +# a = u8 | 0 # E: Need type annotation diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/char.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/char.pyi new file mode 100644 index 0000000000000000000000000000000000000000..320f05df5228a8802dcd117dea9b8c8185a7a943 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/char.pyi @@ -0,0 +1,66 @@ +import numpy as np +import numpy.typing as npt + +AR_U: npt.NDArray[np.str_] +AR_S: npt.NDArray[np.bytes_] + +np.char.equal(AR_U, AR_S) # E: incompatible type + +np.char.not_equal(AR_U, AR_S) # E: incompatible type + +np.char.greater_equal(AR_U, AR_S) # E: incompatible type + +np.char.less_equal(AR_U, AR_S) # E: incompatible type + +np.char.greater(AR_U, AR_S) # E: incompatible type + +np.char.less(AR_U, AR_S) # E: incompatible type + +np.char.encode(AR_S) # E: incompatible type +np.char.decode(AR_U) # E: incompatible type + +np.char.join(AR_U, b"_") # E: incompatible type +np.char.join(AR_S, "_") # E: incompatible type + +np.char.ljust(AR_U, 5, fillchar=b"a") # E: incompatible type +np.char.ljust(AR_S, 5, fillchar="a") # E: incompatible type +np.char.rjust(AR_U, 5, fillchar=b"a") # E: incompatible type +np.char.rjust(AR_S, 5, fillchar="a") # E: incompatible type + +np.char.lstrip(AR_U, chars=b"a") # E: incompatible type +np.char.lstrip(AR_S, chars="a") # E: incompatible type +np.char.strip(AR_U, chars=b"a") # E: incompatible type +np.char.strip(AR_S, chars="a") # E: incompatible type +np.char.rstrip(AR_U, chars=b"a") # E: incompatible type +np.char.rstrip(AR_S, chars="a") # E: incompatible type + +np.char.partition(AR_U, b"a") # E: incompatible type +np.char.partition(AR_S, "a") # E: incompatible type +np.char.rpartition(AR_U, b"a") # E: incompatible type +np.char.rpartition(AR_S, "a") # E: incompatible type + +np.char.replace(AR_U, b"_", b"-") # E: incompatible type +np.char.replace(AR_S, "_", "-") # E: incompatible type + +np.char.split(AR_U, b"_") # E: incompatible type +np.char.split(AR_S, "_") # E: incompatible type +np.char.rsplit(AR_U, b"_") # E: incompatible type +np.char.rsplit(AR_S, "_") # E: incompatible type + +np.char.count(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type +np.char.count(AR_S, "a", end=9) # E: incompatible type + +np.char.endswith(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type +np.char.endswith(AR_S, "a", end=9) # E: incompatible type +np.char.startswith(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type +np.char.startswith(AR_S, "a", end=9) # E: incompatible type + +np.char.find(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type +np.char.find(AR_S, "a", end=9) # E: incompatible type +np.char.rfind(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type +np.char.rfind(AR_S, "a", end=9) # E: incompatible type + +np.char.index(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type +np.char.index(AR_S, "a", end=9) # E: incompatible type +np.char.rindex(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type +np.char.rindex(AR_S, "a", end=9) # E: incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/chararray.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/chararray.pyi new file mode 100644 index 0000000000000000000000000000000000000000..ebc182ec2f0409ddb6218b55b8d8ada528e1ddb9 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/chararray.pyi @@ -0,0 +1,62 @@ +import numpy as np +from typing import Any + +AR_U: np.chararray[Any, np.dtype[np.str_]] +AR_S: np.chararray[Any, np.dtype[np.bytes_]] + +AR_S.encode() # E: Invalid self argument +AR_U.decode() # E: Invalid self argument + +AR_U.join(b"_") # E: incompatible type +AR_S.join("_") # E: incompatible type + +AR_U.ljust(5, fillchar=b"a") # E: incompatible type +AR_S.ljust(5, fillchar="a") # E: incompatible type +AR_U.rjust(5, fillchar=b"a") # E: incompatible type +AR_S.rjust(5, fillchar="a") # E: incompatible type + +AR_U.lstrip(chars=b"a") # E: incompatible type +AR_S.lstrip(chars="a") # E: incompatible type +AR_U.strip(chars=b"a") # E: incompatible type +AR_S.strip(chars="a") # E: incompatible type +AR_U.rstrip(chars=b"a") # E: incompatible type +AR_S.rstrip(chars="a") # E: incompatible type + +AR_U.partition(b"a") # E: incompatible type +AR_S.partition("a") # E: incompatible type +AR_U.rpartition(b"a") # E: incompatible type +AR_S.rpartition("a") # E: incompatible type + +AR_U.replace(b"_", b"-") # E: incompatible type +AR_S.replace("_", "-") # E: incompatible type + +AR_U.split(b"_") # E: incompatible type +AR_S.split("_") # E: incompatible type +AR_S.split(1) # E: incompatible type +AR_U.rsplit(b"_") # E: incompatible type +AR_S.rsplit("_") # E: incompatible type + +AR_U.count(b"a", start=[1, 2, 3]) # E: incompatible type +AR_S.count("a", end=9) # E: incompatible type + +AR_U.endswith(b"a", start=[1, 2, 3]) # E: incompatible type +AR_S.endswith("a", end=9) # E: incompatible type +AR_U.startswith(b"a", start=[1, 2, 3]) # E: incompatible type +AR_S.startswith("a", end=9) # E: incompatible type + +AR_U.find(b"a", start=[1, 2, 3]) # E: incompatible type +AR_S.find("a", end=9) # E: incompatible type +AR_U.rfind(b"a", start=[1, 2, 3]) # E: incompatible type +AR_S.rfind("a", end=9) # E: incompatible type + +AR_U.index(b"a", start=[1, 2, 3]) # E: incompatible type +AR_S.index("a", end=9) # E: incompatible type +AR_U.rindex(b"a", start=[1, 2, 3]) # E: incompatible type +AR_S.rindex("a", end=9) # E: incompatible type + +AR_U == AR_S # E: Unsupported operand types +AR_U != AR_S # E: Unsupported operand types +AR_U >= AR_S # E: Unsupported operand types +AR_U <= AR_S # E: Unsupported operand types +AR_U > AR_S # E: Unsupported operand types +AR_U < AR_S # E: Unsupported operand types diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/comparisons.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/comparisons.pyi new file mode 100644 index 0000000000000000000000000000000000000000..febd0a18c89107fb4d433ac4532657f888ab15ab --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/comparisons.pyi @@ -0,0 +1,27 @@ +from typing import Any +import numpy as np + +AR_i: np.ndarray[Any, np.dtype[np.int64]] +AR_f: np.ndarray[Any, np.dtype[np.float64]] +AR_c: np.ndarray[Any, np.dtype[np.complex128]] +AR_m: np.ndarray[Any, np.dtype[np.timedelta64]] +AR_M: np.ndarray[Any, np.dtype[np.datetime64]] + +AR_f > AR_m # E: Unsupported operand types +AR_c > AR_m # E: Unsupported operand types + +AR_m > AR_f # E: Unsupported operand types +AR_m > AR_c # E: Unsupported operand types + +AR_i > AR_M # E: Unsupported operand types +AR_f > AR_M # E: Unsupported operand types +AR_m > AR_M # E: Unsupported operand types + +AR_M > AR_i # E: Unsupported operand types +AR_M > AR_f # E: Unsupported operand types +AR_M > AR_m # E: Unsupported operand types + +AR_i > str() # E: No overload variant +AR_i > bytes() # E: No overload variant +str() > AR_M # E: Unsupported operand types +bytes() > AR_M # E: Unsupported operand types diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/constants.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/constants.pyi new file mode 100644 index 0000000000000000000000000000000000000000..324cbe9fa735c40fb630cab3380d844392aabf92 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/constants.pyi @@ -0,0 +1,7 @@ +import numpy as np + +np.Inf = np.Inf # E: Cannot assign to final +np.ALLOW_THREADS = np.ALLOW_THREADS # E: Cannot assign to final +np.little_endian = np.little_endian # E: Cannot assign to final +np.UFUNC_PYVALS_NAME = "bob" # E: Incompatible types +np.CLIP = 2 # E: Incompatible types diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/datasource.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/datasource.pyi new file mode 100644 index 0000000000000000000000000000000000000000..345277d45370fe1442f6cf010528a3eefce07f29 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/datasource.pyi @@ -0,0 +1,15 @@ +from pathlib import Path +import numpy as np + +path: Path +d1: np.DataSource + +d1.abspath(path) # E: incompatible type +d1.abspath(b"...") # E: incompatible type + +d1.exists(path) # E: incompatible type +d1.exists(b"...") # E: incompatible type + +d1.open(path, "r") # E: incompatible type +d1.open(b"...", encoding="utf8") # E: incompatible type +d1.open(None, newline="/n") # E: incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/dtype.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/dtype.pyi new file mode 100644 index 0000000000000000000000000000000000000000..0f3810f3c014aafac0e149cfc6da0ec38c61f165 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/dtype.pyi @@ -0,0 +1,20 @@ +import numpy as np + + +class Test1: + not_dtype = np.dtype(float) + + +class Test2: + dtype = float + + +np.dtype(Test1()) # E: No overload variant of "dtype" matches +np.dtype(Test2()) # E: incompatible type + +np.dtype( # E: No overload variant of "dtype" matches + { + "field1": (float, 1), + "field2": (int, 3), + } +) diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/einsumfunc.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/einsumfunc.pyi new file mode 100644 index 0000000000000000000000000000000000000000..2d1f3741851ee0533dcc2b1171a6bf7c98f76c93 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/einsumfunc.pyi @@ -0,0 +1,12 @@ +from typing import Any +import numpy as np + +AR_i: np.ndarray[Any, np.dtype[np.int64]] +AR_f: np.ndarray[Any, np.dtype[np.float64]] +AR_m: np.ndarray[Any, np.dtype[np.timedelta64]] +AR_U: np.ndarray[Any, np.dtype[np.str_]] + +np.einsum("i,i->i", AR_i, AR_m) # E: incompatible type +np.einsum("i,i->i", AR_f, AR_f, dtype=np.int32) # E: incompatible type +np.einsum("i,i->i", AR_i, AR_i, out=AR_U) # E: Value of type variable "_ArrayType" of "einsum" cannot be +np.einsum("i,i->i", AR_i, AR_i, out=AR_U, casting="unsafe") # E: No overload variant diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/flatiter.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/flatiter.pyi new file mode 100644 index 0000000000000000000000000000000000000000..b4ce10ba566d7ccfb2c6523c926bf4571c7e4a27 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/flatiter.pyi @@ -0,0 +1,25 @@ +from typing import Any + +import numpy as np +from numpy._typing import _SupportsArray + + +class Index: + def __index__(self) -> int: + ... + + +a: "np.flatiter[np.ndarray]" +supports_array: _SupportsArray + +a.base = Any # E: Property "base" defined in "flatiter" is read-only +a.coords = Any # E: Property "coords" defined in "flatiter" is read-only +a.index = Any # E: Property "index" defined in "flatiter" is read-only +a.copy(order='C') # E: Unexpected keyword argument + +# NOTE: Contrary to `ndarray.__getitem__` its counterpart in `flatiter` +# does not accept objects with the `__array__` or `__index__` protocols; +# boolean indexing is just plain broken (gh-17175) +a[np.bool_()] # E: No overload variant of "__getitem__" +a[Index()] # E: No overload variant of "__getitem__" +a[supports_array] # E: No overload variant of "__getitem__" diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/fromnumeric.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/fromnumeric.pyi new file mode 100644 index 0000000000000000000000000000000000000000..b679703c7dd61ccc0fb5b54a0582a1401095e67d --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/fromnumeric.pyi @@ -0,0 +1,161 @@ +"""Tests for :mod:`numpy.core.fromnumeric`.""" + +import numpy as np +import numpy.typing as npt + +A = np.array(True, ndmin=2, dtype=bool) +A.setflags(write=False) +AR_U: npt.NDArray[np.str_] + +a = np.bool_(True) + +np.take(a, None) # E: No overload variant +np.take(a, axis=1.0) # E: No overload variant +np.take(A, out=1) # E: No overload variant +np.take(A, mode="bob") # E: No overload variant + +np.reshape(a, None) # E: No overload variant +np.reshape(A, 1, order="bob") # E: No overload variant + +np.choose(a, None) # E: No overload variant +np.choose(a, out=1.0) # E: No overload variant +np.choose(A, mode="bob") # E: No overload variant + +np.repeat(a, None) # E: No overload variant +np.repeat(A, 1, axis=1.0) # E: No overload variant + +np.swapaxes(A, None, 1) # E: No overload variant +np.swapaxes(A, 1, [0]) # E: No overload variant + +np.transpose(A, axes=1.0) # E: No overload variant + +np.partition(a, None) # E: No overload variant +np.partition( # E: No overload variant + a, 0, axis="bob" +) +np.partition( # E: No overload variant + A, 0, kind="bob" +) +np.partition( + A, 0, order=range(5) # E: Argument "order" to "partition" has incompatible type +) + +np.argpartition( + a, None # E: incompatible type +) +np.argpartition( + a, 0, axis="bob" # E: incompatible type +) +np.argpartition( + A, 0, kind="bob" # E: incompatible type +) +np.argpartition( + A, 0, order=range(5) # E: Argument "order" to "argpartition" has incompatible type +) + +np.sort(A, axis="bob") # E: No overload variant +np.sort(A, kind="bob") # E: No overload variant +np.sort(A, order=range(5)) # E: Argument "order" to "sort" has incompatible type + +np.argsort(A, axis="bob") # E: Argument "axis" to "argsort" has incompatible type +np.argsort(A, kind="bob") # E: Argument "kind" to "argsort" has incompatible type +np.argsort(A, order=range(5)) # E: Argument "order" to "argsort" has incompatible type + +np.argmax(A, axis="bob") # E: No overload variant of "argmax" matches argument type +np.argmax(A, kind="bob") # E: No overload variant of "argmax" matches argument type + +np.argmin(A, axis="bob") # E: No overload variant of "argmin" matches argument type +np.argmin(A, kind="bob") # E: No overload variant of "argmin" matches argument type + +np.searchsorted( # E: No overload variant of "searchsorted" matches argument type + A[0], 0, side="bob" +) +np.searchsorted( # E: No overload variant of "searchsorted" matches argument type + A[0], 0, sorter=1.0 +) + +np.resize(A, 1.0) # E: No overload variant + +np.squeeze(A, 1.0) # E: No overload variant of "squeeze" matches argument type + +np.diagonal(A, offset=None) # E: No overload variant +np.diagonal(A, axis1="bob") # E: No overload variant +np.diagonal(A, axis2=[]) # E: No overload variant + +np.trace(A, offset=None) # E: No overload variant +np.trace(A, axis1="bob") # E: No overload variant +np.trace(A, axis2=[]) # E: No overload variant + +np.ravel(a, order="bob") # E: No overload variant + +np.compress( # E: No overload variant + [True], A, axis=1.0 +) + +np.clip(a, 1, 2, out=1) # E: No overload variant of "clip" matches argument type + +np.sum(a, axis=1.0) # E: No overload variant +np.sum(a, keepdims=1.0) # E: No overload variant +np.sum(a, initial=[1]) # E: No overload variant + +np.all(a, axis=1.0) # E: No overload variant +np.all(a, keepdims=1.0) # E: No overload variant +np.all(a, out=1.0) # E: No overload variant + +np.any(a, axis=1.0) # E: No overload variant +np.any(a, keepdims=1.0) # E: No overload variant +np.any(a, out=1.0) # E: No overload variant + +np.cumsum(a, axis=1.0) # E: No overload variant +np.cumsum(a, dtype=1.0) # E: No overload variant +np.cumsum(a, out=1.0) # E: No overload variant + +np.ptp(a, axis=1.0) # E: No overload variant +np.ptp(a, keepdims=1.0) # E: No overload variant +np.ptp(a, out=1.0) # E: No overload variant + +np.amax(a, axis=1.0) # E: No overload variant +np.amax(a, keepdims=1.0) # E: No overload variant +np.amax(a, out=1.0) # E: No overload variant +np.amax(a, initial=[1.0]) # E: No overload variant +np.amax(a, where=[1.0]) # E: incompatible type + +np.amin(a, axis=1.0) # E: No overload variant +np.amin(a, keepdims=1.0) # E: No overload variant +np.amin(a, out=1.0) # E: No overload variant +np.amin(a, initial=[1.0]) # E: No overload variant +np.amin(a, where=[1.0]) # E: incompatible type + +np.prod(a, axis=1.0) # E: No overload variant +np.prod(a, out=False) # E: No overload variant +np.prod(a, keepdims=1.0) # E: No overload variant +np.prod(a, initial=int) # E: No overload variant +np.prod(a, where=1.0) # E: No overload variant +np.prod(AR_U) # E: incompatible type + +np.cumprod(a, axis=1.0) # E: No overload variant +np.cumprod(a, out=False) # E: No overload variant +np.cumprod(AR_U) # E: incompatible type + +np.size(a, axis=1.0) # E: Argument "axis" to "size" has incompatible type + +np.around(a, decimals=1.0) # E: No overload variant +np.around(a, out=type) # E: No overload variant +np.around(AR_U) # E: incompatible type + +np.mean(a, axis=1.0) # E: No overload variant +np.mean(a, out=False) # E: No overload variant +np.mean(a, keepdims=1.0) # E: No overload variant +np.mean(AR_U) # E: incompatible type + +np.std(a, axis=1.0) # E: No overload variant +np.std(a, out=False) # E: No overload variant +np.std(a, ddof='test') # E: No overload variant +np.std(a, keepdims=1.0) # E: No overload variant +np.std(AR_U) # E: incompatible type + +np.var(a, axis=1.0) # E: No overload variant +np.var(a, out=False) # E: No overload variant +np.var(a, ddof='test') # E: No overload variant +np.var(a, keepdims=1.0) # E: No overload variant +np.var(AR_U) # E: incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/histograms.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/histograms.pyi new file mode 100644 index 0000000000000000000000000000000000000000..22499d39175ac4252d6ebc7a8c9c63421d64faee --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/histograms.pyi @@ -0,0 +1,12 @@ +import numpy as np +import numpy.typing as npt + +AR_i8: npt.NDArray[np.int64] +AR_f8: npt.NDArray[np.float64] + +np.histogram_bin_edges(AR_i8, range=(0, 1, 2)) # E: incompatible type + +np.histogram(AR_i8, range=(0, 1, 2)) # E: incompatible type + +np.histogramdd(AR_i8, range=(0, 1)) # E: incompatible type +np.histogramdd(AR_i8, range=[(0, 1, 2)]) # E: incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/index_tricks.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/index_tricks.pyi new file mode 100644 index 0000000000000000000000000000000000000000..22f6f4a61e8e11079e40d3755b0c01200ffdf762 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/index_tricks.pyi @@ -0,0 +1,14 @@ +import numpy as np + +AR_LIKE_i: list[int] +AR_LIKE_f: list[float] + +np.ndindex([1, 2, 3]) # E: No overload variant +np.unravel_index(AR_LIKE_f, (1, 2, 3)) # E: incompatible type +np.ravel_multi_index(AR_LIKE_i, (1, 2, 3), mode="bob") # E: No overload variant +np.mgrid[1] # E: Invalid index type +np.mgrid[...] # E: Invalid index type +np.ogrid[1] # E: Invalid index type +np.ogrid[...] # E: Invalid index type +np.fill_diagonal(AR_LIKE_f, 2) # E: incompatible type +np.diag_indices(1.0) # E: incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/lib_function_base.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/lib_function_base.pyi new file mode 100644 index 0000000000000000000000000000000000000000..9cad2da03911e848ad5791286a52598c996d3285 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/lib_function_base.pyi @@ -0,0 +1,53 @@ +from typing import Any + +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] +AR_c16: npt.NDArray[np.complex128] +AR_m: npt.NDArray[np.timedelta64] +AR_M: npt.NDArray[np.datetime64] +AR_O: npt.NDArray[np.object_] + +def func(a: int) -> None: ... + +np.average(AR_m) # E: incompatible type +np.select(1, [AR_f8]) # E: incompatible type +np.angle(AR_m) # E: incompatible type +np.unwrap(AR_m) # E: incompatible type +np.unwrap(AR_c16) # E: incompatible type +np.trim_zeros(1) # E: incompatible type +np.place(1, [True], 1.5) # E: incompatible type +np.vectorize(1) # E: incompatible type +np.add_newdoc("__main__", 1.5, "docstring") # E: incompatible type +np.place(AR_f8, slice(None), 5) # E: incompatible type + +np.interp(AR_f8, AR_c16, AR_f8) # E: incompatible type +np.interp(AR_c16, AR_f8, AR_f8) # E: incompatible type +np.interp(AR_f8, AR_f8, AR_f8, period=AR_c16) # E: No overload variant +np.interp(AR_f8, AR_f8, AR_O) # E: incompatible type + +np.cov(AR_m) # E: incompatible type +np.cov(AR_O) # E: incompatible type +np.corrcoef(AR_m) # E: incompatible type +np.corrcoef(AR_O) # E: incompatible type +np.corrcoef(AR_f8, bias=True) # E: No overload variant +np.corrcoef(AR_f8, ddof=2) # E: No overload variant +np.blackman(1j) # E: incompatible type +np.bartlett(1j) # E: incompatible type +np.hanning(1j) # E: incompatible type +np.hamming(1j) # E: incompatible type +np.hamming(AR_c16) # E: incompatible type +np.kaiser(1j, 1) # E: incompatible type +np.sinc(AR_O) # E: incompatible type +np.median(AR_M) # E: incompatible type + +np.add_newdoc_ufunc(func, "docstring") # E: incompatible type +np.percentile(AR_f8, 50j) # E: No overload variant +np.percentile(AR_f8, 50, interpolation="bob") # E: No overload variant +np.quantile(AR_f8, 0.5j) # E: No overload variant +np.quantile(AR_f8, 0.5, interpolation="bob") # E: No overload variant +np.meshgrid(AR_f8, AR_f8, indexing="bob") # E: incompatible type +np.delete(AR_f8, AR_f8) # E: incompatible type +np.insert(AR_f8, AR_f8, 1.5) # E: incompatible type +np.digitize(AR_f8, 1j) # E: No overload variant diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/lib_utils.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/lib_utils.pyi new file mode 100644 index 0000000000000000000000000000000000000000..e16c926aa6450fc30f72e50b4463f6a0fcd7d9ad --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/lib_utils.pyi @@ -0,0 +1,13 @@ +import numpy as np + +np.deprecate(1) # E: No overload variant + +np.deprecate_with_doc(1) # E: incompatible type + +np.byte_bounds(1) # E: incompatible type + +np.who(1) # E: incompatible type + +np.lookfor(None) # E: incompatible type + +np.safe_eval(None) # E: incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/lib_version.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/lib_version.pyi new file mode 100644 index 0000000000000000000000000000000000000000..2758cfe4043883eaaa3651efe726bd31b853e603 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/lib_version.pyi @@ -0,0 +1,6 @@ +from numpy.lib import NumpyVersion + +version: NumpyVersion + +NumpyVersion(b"1.8.0") # E: incompatible type +version >= b"1.8.0" # E: Unsupported operand types diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/linalg.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/linalg.pyi new file mode 100644 index 0000000000000000000000000000000000000000..da9390328bd7ca1ebcab5a1ce0736f7f4df57d96 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/linalg.pyi @@ -0,0 +1,48 @@ +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] +AR_O: npt.NDArray[np.object_] +AR_M: npt.NDArray[np.datetime64] + +np.linalg.tensorsolve(AR_O, AR_O) # E: incompatible type + +np.linalg.solve(AR_O, AR_O) # E: incompatible type + +np.linalg.tensorinv(AR_O) # E: incompatible type + +np.linalg.inv(AR_O) # E: incompatible type + +np.linalg.matrix_power(AR_M, 5) # E: incompatible type + +np.linalg.cholesky(AR_O) # E: incompatible type + +np.linalg.qr(AR_O) # E: incompatible type +np.linalg.qr(AR_f8, mode="bob") # E: No overload variant + +np.linalg.eigvals(AR_O) # E: incompatible type + +np.linalg.eigvalsh(AR_O) # E: incompatible type +np.linalg.eigvalsh(AR_O, UPLO="bob") # E: No overload variant + +np.linalg.eig(AR_O) # E: incompatible type + +np.linalg.eigh(AR_O) # E: incompatible type +np.linalg.eigh(AR_O, UPLO="bob") # E: No overload variant + +np.linalg.svd(AR_O) # E: incompatible type + +np.linalg.cond(AR_O) # E: incompatible type +np.linalg.cond(AR_f8, p="bob") # E: incompatible type + +np.linalg.matrix_rank(AR_O) # E: incompatible type + +np.linalg.pinv(AR_O) # E: incompatible type + +np.linalg.slogdet(AR_O) # E: incompatible type + +np.linalg.det(AR_O) # E: incompatible type + +np.linalg.norm(AR_f8, ord="bob") # E: No overload variant + +np.linalg.multi_dot([AR_M]) # E: incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ndarray.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ndarray.pyi new file mode 100644 index 0000000000000000000000000000000000000000..5a5130d40649087cf8a50e1b9e6cf82837cc349a --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ndarray.pyi @@ -0,0 +1,11 @@ +import numpy as np + +# Ban setting dtype since mutating the type of the array in place +# makes having ndarray be generic over dtype impossible. Generally +# users should use `ndarray.view` in this situation anyway. See +# +# https://github.com/numpy/numpy-stubs/issues/7 +# +# for more context. +float_array = np.array([1.0]) +float_array.dtype = np.bool_ # E: Property "dtype" defined in "ndarray" is read-only diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ndarray_misc.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ndarray_misc.pyi new file mode 100644 index 0000000000000000000000000000000000000000..77bd9a44e8902ce85ae9b4e6e4d94c64a16f4f6e --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ndarray_misc.pyi @@ -0,0 +1,43 @@ +""" +Tests for miscellaneous (non-magic) ``np.ndarray``/``np.generic`` methods. + +More extensive tests are performed for the methods' +function-based counterpart in `../from_numeric.py`. + +""" + +from typing import Any +import numpy as np + +f8: np.float64 +AR_f8: np.ndarray[Any, np.dtype[np.float64]] +AR_M: np.ndarray[Any, np.dtype[np.datetime64]] +AR_b: np.ndarray[Any, np.dtype[np.bool_]] + +ctypes_obj = AR_f8.ctypes + +reveal_type(ctypes_obj.get_data()) # E: has no attribute +reveal_type(ctypes_obj.get_shape()) # E: has no attribute +reveal_type(ctypes_obj.get_strides()) # E: has no attribute +reveal_type(ctypes_obj.get_as_parameter()) # E: has no attribute + +f8.argpartition(0) # E: has no attribute +f8.diagonal() # E: has no attribute +f8.dot(1) # E: has no attribute +f8.nonzero() # E: has no attribute +f8.partition(0) # E: has no attribute +f8.put(0, 2) # E: has no attribute +f8.setfield(2, np.float64) # E: has no attribute +f8.sort() # E: has no attribute +f8.trace() # E: has no attribute + +AR_M.__int__() # E: Invalid self argument +AR_M.__float__() # E: Invalid self argument +AR_M.__complex__() # E: Invalid self argument +AR_b.__index__() # E: Invalid self argument + +AR_f8[1.5] # E: No overload variant +AR_f8["field_a"] # E: No overload variant +AR_f8[["field_a", "field_b"]] # E: Invalid index type + +AR_f8.__array_finalize__(object()) # E: incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/nditer.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/nditer.pyi new file mode 100644 index 0000000000000000000000000000000000000000..1e8e37ee5fe09373a6be5e8a2b2ddb9f84725eb0 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/nditer.pyi @@ -0,0 +1,8 @@ +import numpy as np + +class Test(np.nditer): ... # E: Cannot inherit from final class + +np.nditer([0, 1], flags=["test"]) # E: incompatible type +np.nditer([0, 1], op_flags=[["test"]]) # E: incompatible type +np.nditer([0, 1], itershape=(1.0,)) # E: incompatible type +np.nditer([0, 1], buffersize=1.0) # E: incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/numerictypes.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/numerictypes.pyi new file mode 100644 index 0000000000000000000000000000000000000000..ce5662d5e66a3c62a12231f90eb1275007b546b6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/numerictypes.pyi @@ -0,0 +1,11 @@ +import numpy as np + +# Technically this works, but probably shouldn't. See +# +# https://github.com/numpy/numpy/issues/16366 +# +np.maximum_sctype(1) # E: No overload variant + +np.issubsctype(1, np.int64) # E: incompatible type + +np.issubdtype(1, np.int64) # E: incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/random.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/random.pyi new file mode 100644 index 0000000000000000000000000000000000000000..f0e682019281662559b2cf6bcece236a00695351 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/random.pyi @@ -0,0 +1,61 @@ +import numpy as np +from typing import Any + +SEED_FLOAT: float = 457.3 +SEED_ARR_FLOAT: np.ndarray[Any, np.dtype[np.float64]] = np.array([1.0, 2, 3, 4]) +SEED_ARRLIKE_FLOAT: list[float] = [1.0, 2.0, 3.0, 4.0] +SEED_SEED_SEQ: np.random.SeedSequence = np.random.SeedSequence(0) +SEED_STR: str = "String seeding not allowed" +# default rng +np.random.default_rng(SEED_FLOAT) # E: incompatible type +np.random.default_rng(SEED_ARR_FLOAT) # E: incompatible type +np.random.default_rng(SEED_ARRLIKE_FLOAT) # E: incompatible type +np.random.default_rng(SEED_STR) # E: incompatible type + +# Seed Sequence +np.random.SeedSequence(SEED_FLOAT) # E: incompatible type +np.random.SeedSequence(SEED_ARR_FLOAT) # E: incompatible type +np.random.SeedSequence(SEED_ARRLIKE_FLOAT) # E: incompatible type +np.random.SeedSequence(SEED_SEED_SEQ) # E: incompatible type +np.random.SeedSequence(SEED_STR) # E: incompatible type + +seed_seq: np.random.bit_generator.SeedSequence = np.random.SeedSequence() +seed_seq.spawn(11.5) # E: incompatible type +seed_seq.generate_state(3.14) # E: incompatible type +seed_seq.generate_state(3, np.uint8) # E: incompatible type +seed_seq.generate_state(3, "uint8") # E: incompatible type +seed_seq.generate_state(3, "u1") # E: incompatible type +seed_seq.generate_state(3, np.uint16) # E: incompatible type +seed_seq.generate_state(3, "uint16") # E: incompatible type +seed_seq.generate_state(3, "u2") # E: incompatible type +seed_seq.generate_state(3, np.int32) # E: incompatible type +seed_seq.generate_state(3, "int32") # E: incompatible type +seed_seq.generate_state(3, "i4") # E: incompatible type + +# Bit Generators +np.random.MT19937(SEED_FLOAT) # E: incompatible type +np.random.MT19937(SEED_ARR_FLOAT) # E: incompatible type +np.random.MT19937(SEED_ARRLIKE_FLOAT) # E: incompatible type +np.random.MT19937(SEED_STR) # E: incompatible type + +np.random.PCG64(SEED_FLOAT) # E: incompatible type +np.random.PCG64(SEED_ARR_FLOAT) # E: incompatible type +np.random.PCG64(SEED_ARRLIKE_FLOAT) # E: incompatible type +np.random.PCG64(SEED_STR) # E: incompatible type + +np.random.Philox(SEED_FLOAT) # E: incompatible type +np.random.Philox(SEED_ARR_FLOAT) # E: incompatible type +np.random.Philox(SEED_ARRLIKE_FLOAT) # E: incompatible type +np.random.Philox(SEED_STR) # E: incompatible type + +np.random.SFC64(SEED_FLOAT) # E: incompatible type +np.random.SFC64(SEED_ARR_FLOAT) # E: incompatible type +np.random.SFC64(SEED_ARRLIKE_FLOAT) # E: incompatible type +np.random.SFC64(SEED_STR) # E: incompatible type + +# Generator +np.random.Generator(None) # E: incompatible type +np.random.Generator(12333283902830213) # E: incompatible type +np.random.Generator("OxFEEDF00D") # E: incompatible type +np.random.Generator([123, 234]) # E: incompatible type +np.random.Generator(np.array([123, 234], dtype="u4")) # E: incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/rec.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/rec.pyi new file mode 100644 index 0000000000000000000000000000000000000000..a57f1ba27d74504ff59232a4a5929ccaf55dd445 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/rec.pyi @@ -0,0 +1,17 @@ +import numpy as np +import numpy.typing as npt + +AR_i8: npt.NDArray[np.int64] + +np.rec.fromarrays(1) # E: No overload variant +np.rec.fromarrays([1, 2, 3], dtype=[("f8", "f8")], formats=["f8", "f8"]) # E: No overload variant + +np.rec.fromrecords(AR_i8) # E: incompatible type +np.rec.fromrecords([(1.5,)], dtype=[("f8", "f8")], formats=["f8", "f8"]) # E: No overload variant + +np.rec.fromstring("string", dtype=[("f8", "f8")]) # E: No overload variant +np.rec.fromstring(b"bytes") # E: No overload variant +np.rec.fromstring(b"(1.5,)", dtype=[("f8", "f8")], formats=["f8", "f8"]) # E: No overload variant + +with open("test", "r") as f: + np.rec.fromfile(f, dtype=[("f8", "f8")]) # E: No overload variant diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/scalars.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/scalars.pyi new file mode 100644 index 0000000000000000000000000000000000000000..2a6c2c7addfc89060112ff4e4536e00bebcaa72a --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/scalars.pyi @@ -0,0 +1,92 @@ +import sys +import numpy as np + +f2: np.float16 +f8: np.float64 +c8: np.complex64 + +# Construction + +np.float32(3j) # E: incompatible type + +# Technically the following examples are valid NumPy code. But they +# are not considered a best practice, and people who wish to use the +# stubs should instead do +# +# np.array([1.0, 0.0, 0.0], dtype=np.float32) +# np.array([], dtype=np.complex64) +# +# See e.g. the discussion on the mailing list +# +# https://mail.python.org/pipermail/numpy-discussion/2020-April/080566.html +# +# and the issue +# +# https://github.com/numpy/numpy-stubs/issues/41 +# +# for more context. +np.float32([1.0, 0.0, 0.0]) # E: incompatible type +np.complex64([]) # E: incompatible type + +np.complex64(1, 2) # E: Too many arguments +# TODO: protocols (can't check for non-existent protocols w/ __getattr__) + +np.datetime64(0) # E: No overload variant + +class A: + def __float__(self): + return 1.0 + + +np.int8(A()) # E: incompatible type +np.int16(A()) # E: incompatible type +np.int32(A()) # E: incompatible type +np.int64(A()) # E: incompatible type +np.uint8(A()) # E: incompatible type +np.uint16(A()) # E: incompatible type +np.uint32(A()) # E: incompatible type +np.uint64(A()) # E: incompatible type + +np.void("test") # E: No overload variant +np.void("test", dtype=None) # E: No overload variant + +np.generic(1) # E: Cannot instantiate abstract class +np.number(1) # E: Cannot instantiate abstract class +np.integer(1) # E: Cannot instantiate abstract class +np.inexact(1) # E: Cannot instantiate abstract class +np.character("test") # E: Cannot instantiate abstract class +np.flexible(b"test") # E: Cannot instantiate abstract class + +np.float64(value=0.0) # E: Unexpected keyword argument +np.int64(value=0) # E: Unexpected keyword argument +np.uint64(value=0) # E: Unexpected keyword argument +np.complex128(value=0.0j) # E: Unexpected keyword argument +np.str_(value='bob') # E: No overload variant +np.bytes_(value=b'test') # E: No overload variant +np.void(value=b'test') # E: No overload variant +np.bool_(value=True) # E: Unexpected keyword argument +np.datetime64(value="2019") # E: No overload variant +np.timedelta64(value=0) # E: Unexpected keyword argument + +np.bytes_(b"hello", encoding='utf-8') # E: No overload variant +np.str_("hello", encoding='utf-8') # E: No overload variant + +f8.item(1) # E: incompatible type +f8.item((0, 1)) # E: incompatible type +f8.squeeze(axis=1) # E: incompatible type +f8.squeeze(axis=(0, 1)) # E: incompatible type +f8.transpose(1) # E: incompatible type + +def func(a: np.float32) -> None: ... + +func(f2) # E: incompatible type +func(f8) # E: incompatible type + +round(c8) # E: No overload variant + +c8.__getnewargs__() # E: Invalid self argument +f2.__getnewargs__() # E: Invalid self argument +f2.hex() # E: Invalid self argument +np.float16.fromhex("0x0.0p+0") # E: Invalid self argument +f2.__trunc__() # E: Invalid self argument +f2.__getformat__("float") # E: Invalid self argument diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/stride_tricks.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/stride_tricks.pyi new file mode 100644 index 0000000000000000000000000000000000000000..f2bfba7432a89b41e095377e1d7e0e5f87d07109 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/stride_tricks.pyi @@ -0,0 +1,9 @@ +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] + +np.lib.stride_tricks.as_strided(AR_f8, shape=8) # E: No overload variant +np.lib.stride_tricks.as_strided(AR_f8, strides=8) # E: No overload variant + +np.lib.stride_tricks.sliding_window_view(AR_f8, axis=(1,)) # E: No overload variant diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/testing.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/testing.pyi new file mode 100644 index 0000000000000000000000000000000000000000..803870e2feadd18815ebc57665aa63d42423c752 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/testing.pyi @@ -0,0 +1,28 @@ +import numpy as np +import numpy.typing as npt + +AR_U: npt.NDArray[np.str_] + +def func() -> bool: ... + +np.testing.assert_(True, msg=1) # E: incompatible type +np.testing.build_err_msg(1, "test") # E: incompatible type +np.testing.assert_almost_equal(AR_U, AR_U) # E: incompatible type +np.testing.assert_approx_equal([1, 2, 3], [1, 2, 3]) # E: incompatible type +np.testing.assert_array_almost_equal(AR_U, AR_U) # E: incompatible type +np.testing.assert_array_less(AR_U, AR_U) # E: incompatible type +np.testing.assert_string_equal(b"a", b"a") # E: incompatible type + +np.testing.assert_raises(expected_exception=TypeError, callable=func) # E: No overload variant +np.testing.assert_raises_regex(expected_exception=TypeError, expected_regex="T", callable=func) # E: No overload variant + +np.testing.assert_allclose(AR_U, AR_U) # E: incompatible type +np.testing.assert_array_almost_equal_nulp(AR_U, AR_U) # E: incompatible type +np.testing.assert_array_max_ulp(AR_U, AR_U) # E: incompatible type + +np.testing.assert_warns(warning_class=RuntimeWarning, func=func) # E: No overload variant +np.testing.assert_no_warnings(func=func) # E: No overload variant +np.testing.assert_no_warnings(func, None) # E: Too many arguments +np.testing.assert_no_warnings(func, test=None) # E: Unexpected keyword argument + +np.testing.assert_no_gc_cycles(func=func) # E: No overload variant diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/twodim_base.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/twodim_base.pyi new file mode 100644 index 0000000000000000000000000000000000000000..faa430095a5fabbf721732ecec867cac434e9259 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/twodim_base.pyi @@ -0,0 +1,37 @@ +from typing import Any, TypeVar + +import numpy as np +import numpy.typing as npt + + +def func1(ar: npt.NDArray[Any], a: int) -> npt.NDArray[np.str_]: + pass + + +def func2(ar: npt.NDArray[Any], a: float) -> float: + pass + + +AR_b: npt.NDArray[np.bool_] +AR_m: npt.NDArray[np.timedelta64] + +AR_LIKE_b: list[bool] + +np.eye(10, M=20.0) # E: No overload variant +np.eye(10, k=2.5, dtype=int) # E: No overload variant + +np.diag(AR_b, k=0.5) # E: No overload variant +np.diagflat(AR_b, k=0.5) # E: No overload variant + +np.tri(10, M=20.0) # E: No overload variant +np.tri(10, k=2.5, dtype=int) # E: No overload variant + +np.tril(AR_b, k=0.5) # E: No overload variant +np.triu(AR_b, k=0.5) # E: No overload variant + +np.vander(AR_m) # E: incompatible type + +np.histogram2d(AR_m) # E: No overload variant + +np.mask_indices(10, func1) # E: incompatible type +np.mask_indices(10, func2, 10.5) # E: incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/type_check.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/type_check.pyi new file mode 100644 index 0000000000000000000000000000000000000000..95f52bfbd260914c429cbf0ca57f1ff4b03cbb1d --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/type_check.pyi @@ -0,0 +1,13 @@ +import numpy as np +import numpy.typing as npt + +DTYPE_i8: np.dtype[np.int64] + +np.mintypecode(DTYPE_i8) # E: incompatible type +np.iscomplexobj(DTYPE_i8) # E: incompatible type +np.isrealobj(DTYPE_i8) # E: incompatible type + +np.typename(DTYPE_i8) # E: No overload variant +np.typename("invalid") # E: No overload variant + +np.common_type(np.timedelta64()) # E: incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ufunc_config.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ufunc_config.pyi new file mode 100644 index 0000000000000000000000000000000000000000..f547fbb46b85a92c77d81bf287c13a37d6d9e6ad --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ufunc_config.pyi @@ -0,0 +1,21 @@ +"""Typing tests for `numpy.core._ufunc_config`.""" + +import numpy as np + +def func1(a: str, b: int, c: float) -> None: ... +def func2(a: str, *, b: int) -> None: ... + +class Write1: + def write1(self, a: str) -> None: ... + +class Write2: + def write(self, a: str, b: str) -> None: ... + +class Write3: + def write(self, *, a: str) -> None: ... + +np.seterrcall(func1) # E: Argument 1 to "seterrcall" has incompatible type +np.seterrcall(func2) # E: Argument 1 to "seterrcall" has incompatible type +np.seterrcall(Write1()) # E: Argument 1 to "seterrcall" has incompatible type +np.seterrcall(Write2()) # E: Argument 1 to "seterrcall" has incompatible type +np.seterrcall(Write3()) # E: Argument 1 to "seterrcall" has incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ufunclike.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ufunclike.pyi new file mode 100644 index 0000000000000000000000000000000000000000..2f9fd14c8cf2082bfaf6b4e6a816cafd5299e47f --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ufunclike.pyi @@ -0,0 +1,21 @@ +from typing import Any +import numpy as np + +AR_c: np.ndarray[Any, np.dtype[np.complex128]] +AR_m: np.ndarray[Any, np.dtype[np.timedelta64]] +AR_M: np.ndarray[Any, np.dtype[np.datetime64]] +AR_O: np.ndarray[Any, np.dtype[np.object_]] + +np.fix(AR_c) # E: incompatible type +np.fix(AR_m) # E: incompatible type +np.fix(AR_M) # E: incompatible type + +np.isposinf(AR_c) # E: incompatible type +np.isposinf(AR_m) # E: incompatible type +np.isposinf(AR_M) # E: incompatible type +np.isposinf(AR_O) # E: incompatible type + +np.isneginf(AR_c) # E: incompatible type +np.isneginf(AR_m) # E: incompatible type +np.isneginf(AR_M) # E: incompatible type +np.isneginf(AR_O) # E: incompatible type diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ufuncs.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ufuncs.pyi new file mode 100644 index 0000000000000000000000000000000000000000..e827267c6072e5ace7862016944e52dfa00ed7a8 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/ufuncs.pyi @@ -0,0 +1,41 @@ +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] + +np.sin.nin + "foo" # E: Unsupported operand types +np.sin(1, foo="bar") # E: No overload variant + +np.abs(None) # E: No overload variant + +np.add(1, 1, 1) # E: No overload variant +np.add(1, 1, axis=0) # E: No overload variant + +np.matmul(AR_f8, AR_f8, where=True) # E: No overload variant + +np.frexp(AR_f8, out=None) # E: No overload variant +np.frexp(AR_f8, out=AR_f8) # E: No overload variant + +np.absolute.outer() # E: "None" not callable +np.frexp.outer() # E: "None" not callable +np.divmod.outer() # E: "None" not callable +np.matmul.outer() # E: "None" not callable + +np.absolute.reduceat() # E: "None" not callable +np.frexp.reduceat() # E: "None" not callable +np.divmod.reduceat() # E: "None" not callable +np.matmul.reduceat() # E: "None" not callable + +np.absolute.reduce() # E: "None" not callable +np.frexp.reduce() # E: "None" not callable +np.divmod.reduce() # E: "None" not callable +np.matmul.reduce() # E: "None" not callable + +np.absolute.accumulate() # E: "None" not callable +np.frexp.accumulate() # E: "None" not callable +np.divmod.accumulate() # E: "None" not callable +np.matmul.accumulate() # E: "None" not callable + +np.frexp.at() # E: "None" not callable +np.divmod.at() # E: "None" not callable +np.matmul.at() # E: "None" not callable diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/warnings_and_errors.pyi b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/warnings_and_errors.pyi new file mode 100644 index 0000000000000000000000000000000000000000..f4fa38293738a2d1d61d522927aea367e21cb9c6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/fail/warnings_and_errors.pyi @@ -0,0 +1,5 @@ +import numpy as np + +np.AxisError(1.0) # E: No overload variant +np.AxisError(1, ndim=2.0) # E: No overload variant +np.AxisError(2, msg_prefix=404) # E: No overload variant diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/mypy.ini b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/mypy.ini new file mode 100644 index 0000000000000000000000000000000000000000..1cc16e03965d8c2c3206d6a88d85a95c79b81c8e --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/mypy.ini @@ -0,0 +1,5 @@ +[mypy] +plugins = numpy.typing.mypy_plugin +show_absolute_path = True +implicit_reexport = False +pretty = True diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/array_constructors.py b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/array_constructors.py new file mode 100644 index 0000000000000000000000000000000000000000..e035a73c6fe914a14f80131184f6c78ccc3d84f1 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/array_constructors.py @@ -0,0 +1,137 @@ +import sys +from typing import Any +import numpy as np + + +class Index: + def __index__(self) -> int: + return 0 + + +class SubClass(np.ndarray): + pass + + +def func(i: int, j: int, **kwargs: Any) -> SubClass: + return B + + +i8 = np.int64(1) + +A = np.array([1]) +B = A.view(SubClass).copy() +B_stack = np.array([[1], [1]]).view(SubClass) +C = [1] + +np.ndarray(Index()) +np.ndarray([Index()]) + +np.array(1, dtype=float) +np.array(1, copy=False) +np.array(1, order='F') +np.array(1, order=None) +np.array(1, subok=True) +np.array(1, ndmin=3) +np.array(1, str, copy=True, order='C', subok=False, ndmin=2) + +np.asarray(A) +np.asarray(B) +np.asarray(C) + +np.asanyarray(A) +np.asanyarray(B) +np.asanyarray(B, dtype=int) +np.asanyarray(C) + +np.ascontiguousarray(A) +np.ascontiguousarray(B) +np.ascontiguousarray(C) + +np.asfortranarray(A) +np.asfortranarray(B) +np.asfortranarray(C) + +np.require(A) +np.require(B) +np.require(B, dtype=int) +np.require(B, requirements=None) +np.require(B, requirements="E") +np.require(B, requirements=["ENSUREARRAY"]) +np.require(B, requirements={"F", "E"}) +np.require(B, requirements=["C", "OWNDATA"]) +np.require(B, requirements="W") +np.require(B, requirements="A") +np.require(C) + +np.linspace(0, 2) +np.linspace(0.5, [0, 1, 2]) +np.linspace([0, 1, 2], 3) +np.linspace(0j, 2) +np.linspace(0, 2, num=10) +np.linspace(0, 2, endpoint=True) +np.linspace(0, 2, retstep=True) +np.linspace(0j, 2j, retstep=True) +np.linspace(0, 2, dtype=bool) +np.linspace([0, 1], [2, 3], axis=Index()) + +np.logspace(0, 2, base=2) +np.logspace(0, 2, base=2) +np.logspace(0, 2, base=[1j, 2j], num=2) + +np.geomspace(1, 2) + +np.zeros_like(A) +np.zeros_like(C) +np.zeros_like(B) +np.zeros_like(B, dtype=np.int64) + +np.ones_like(A) +np.ones_like(C) +np.ones_like(B) +np.ones_like(B, dtype=np.int64) + +np.empty_like(A) +np.empty_like(C) +np.empty_like(B) +np.empty_like(B, dtype=np.int64) + +np.full_like(A, i8) +np.full_like(C, i8) +np.full_like(B, i8) +np.full_like(B, i8, dtype=np.int64) + +np.ones(1) +np.ones([1, 1, 1]) + +np.full(1, i8) +np.full([1, 1, 1], i8) + +np.indices([1, 2, 3]) +np.indices([1, 2, 3], sparse=True) + +np.fromfunction(func, (3, 5)) + +np.identity(10) + +np.atleast_1d(C) +np.atleast_1d(A) +np.atleast_1d(C, C) +np.atleast_1d(C, A) +np.atleast_1d(A, A) + +np.atleast_2d(C) + +np.atleast_3d(C) + +np.vstack([C, C]) +np.vstack([C, A]) +np.vstack([A, A]) + +np.hstack([C, C]) + +np.stack([C, C]) +np.stack([C, C], axis=0) +np.stack([C, C], out=B_stack) + +np.block([[C, C], [C, C]]) +np.block(A) diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/arrayterator.py b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/arrayterator.py new file mode 100644 index 0000000000000000000000000000000000000000..572be5e2fe29ba978b78c8b65b116b5b54a4d01a --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/arrayterator.py @@ -0,0 +1,27 @@ + +from __future__ import annotations + +from typing import Any +import numpy as np + +AR_i8: np.ndarray[Any, np.dtype[np.int_]] = np.arange(10) +ar_iter = np.lib.Arrayterator(AR_i8) + +ar_iter.var +ar_iter.buf_size +ar_iter.start +ar_iter.stop +ar_iter.step +ar_iter.shape +ar_iter.flat + +ar_iter.__array__() + +for i in ar_iter: + pass + +ar_iter[0] +ar_iter[...] +ar_iter[:] +ar_iter[0, 0, 0] +ar_iter[..., 0, :] diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/dtype.py b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/dtype.py new file mode 100644 index 0000000000000000000000000000000000000000..6ec44e6b06cdc443b1dd930d8f06fe70be577e97 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/dtype.py @@ -0,0 +1,57 @@ +import numpy as np + +dtype_obj = np.dtype(np.str_) +void_dtype_obj = np.dtype([("f0", np.float64), ("f1", np.float32)]) + +np.dtype(dtype=np.int64) +np.dtype(int) +np.dtype("int") +np.dtype(None) + +np.dtype((int, 2)) +np.dtype((int, (1,))) + +np.dtype({"names": ["a", "b"], "formats": [int, float]}) +np.dtype({"names": ["a"], "formats": [int], "titles": [object]}) +np.dtype({"names": ["a"], "formats": [int], "titles": [object()]}) + +np.dtype([("name", np.str_, 16), ("grades", np.float64, (2,)), ("age", "int32")]) + +np.dtype( + { + "names": ["a", "b"], + "formats": [int, float], + "itemsize": 9, + "aligned": False, + "titles": ["x", "y"], + "offsets": [0, 1], + } +) + +np.dtype((np.float_, float)) + + +class Test: + dtype = np.dtype(float) + + +np.dtype(Test()) + +# Methods and attributes +dtype_obj.base +dtype_obj.subdtype +dtype_obj.newbyteorder() +dtype_obj.type +dtype_obj.name +dtype_obj.names + +dtype_obj * 0 +dtype_obj * 2 + +0 * dtype_obj +2 * dtype_obj + +void_dtype_obj["f0"] +void_dtype_obj[0] +void_dtype_obj[["f0", "f1"]] +void_dtype_obj[["f0"]] diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/literal.py b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/literal.py new file mode 100644 index 0000000000000000000000000000000000000000..d06431eed4da31ada71eeb3947f6b238e7b2fb74 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/literal.py @@ -0,0 +1,47 @@ +from __future__ import annotations + +from functools import partial +from collections.abc import Callable + +import pytest # type: ignore +import numpy as np + +AR = np.array(0) +AR.setflags(write=False) + +KACF = frozenset({None, "K", "A", "C", "F"}) +ACF = frozenset({None, "A", "C", "F"}) +CF = frozenset({None, "C", "F"}) + +order_list: list[tuple[frozenset, Callable]] = [ + (KACF, partial(np.ndarray, 1)), + (KACF, AR.tobytes), + (KACF, partial(AR.astype, int)), + (KACF, AR.copy), + (ACF, partial(AR.reshape, 1)), + (KACF, AR.flatten), + (KACF, AR.ravel), + (KACF, partial(np.array, 1)), + (CF, partial(np.zeros, 1)), + (CF, partial(np.ones, 1)), + (CF, partial(np.empty, 1)), + (CF, partial(np.full, 1, 1)), + (KACF, partial(np.zeros_like, AR)), + (KACF, partial(np.ones_like, AR)), + (KACF, partial(np.empty_like, AR)), + (KACF, partial(np.full_like, AR, 1)), + (KACF, partial(np.add, 1, 1)), # i.e. np.ufunc.__call__ + (ACF, partial(np.reshape, AR, 1)), + (KACF, partial(np.ravel, AR)), + (KACF, partial(np.asarray, 1)), + (KACF, partial(np.asanyarray, 1)), +] + +for order_set, func in order_list: + for order in order_set: + func(order=order) + + invalid_orders = KACF - order_set + for order in invalid_orders: + with pytest.raises(ValueError): + func(order=order) diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/ndarray_misc.py b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/ndarray_misc.py new file mode 100644 index 0000000000000000000000000000000000000000..6beacc5d7cc9e586f9d6abe5ac5d3a62381ffc59 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/ndarray_misc.py @@ -0,0 +1,185 @@ +""" +Tests for miscellaneous (non-magic) ``np.ndarray``/``np.generic`` methods. + +More extensive tests are performed for the methods' +function-based counterpart in `../from_numeric.py`. + +""" + +from __future__ import annotations + +import operator +from typing import cast, Any + +import numpy as np + +class SubClass(np.ndarray): ... + +i4 = np.int32(1) +A: np.ndarray[Any, np.dtype[np.int32]] = np.array([[1]], dtype=np.int32) +B0 = np.empty((), dtype=np.int32).view(SubClass) +B1 = np.empty((1,), dtype=np.int32).view(SubClass) +B2 = np.empty((1, 1), dtype=np.int32).view(SubClass) +C: np.ndarray[Any, np.dtype[np.int32]] = np.array([0, 1, 2], dtype=np.int32) +D = np.ones(3).view(SubClass) + +i4.all() +A.all() +A.all(axis=0) +A.all(keepdims=True) +A.all(out=B0) + +i4.any() +A.any() +A.any(axis=0) +A.any(keepdims=True) +A.any(out=B0) + +i4.argmax() +A.argmax() +A.argmax(axis=0) +A.argmax(out=B0) + +i4.argmin() +A.argmin() +A.argmin(axis=0) +A.argmin(out=B0) + +i4.argsort() +A.argsort() + +i4.choose([()]) +_choices = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype=np.int32) +C.choose(_choices) +C.choose(_choices, out=D) + +i4.clip(1) +A.clip(1) +A.clip(None, 1) +A.clip(1, out=B2) +A.clip(None, 1, out=B2) + +i4.compress([1]) +A.compress([1]) +A.compress([1], out=B1) + +i4.conj() +A.conj() +B0.conj() + +i4.conjugate() +A.conjugate() +B0.conjugate() + +i4.cumprod() +A.cumprod() +A.cumprod(out=B1) + +i4.cumsum() +A.cumsum() +A.cumsum(out=B1) + +i4.max() +A.max() +A.max(axis=0) +A.max(keepdims=True) +A.max(out=B0) + +i4.mean() +A.mean() +A.mean(axis=0) +A.mean(keepdims=True) +A.mean(out=B0) + +i4.min() +A.min() +A.min(axis=0) +A.min(keepdims=True) +A.min(out=B0) + +i4.newbyteorder() +A.newbyteorder() +B0.newbyteorder('|') + +i4.prod() +A.prod() +A.prod(axis=0) +A.prod(keepdims=True) +A.prod(out=B0) + +i4.ptp() +A.ptp() +A.ptp(axis=0) +A.ptp(keepdims=True) +A.astype(int).ptp(out=B0) + +i4.round() +A.round() +A.round(out=B2) + +i4.repeat(1) +A.repeat(1) +B0.repeat(1) + +i4.std() +A.std() +A.std(axis=0) +A.std(keepdims=True) +A.std(out=B0.astype(np.float64)) + +i4.sum() +A.sum() +A.sum(axis=0) +A.sum(keepdims=True) +A.sum(out=B0) + +i4.take(0) +A.take(0) +A.take([0]) +A.take(0, out=B0) +A.take([0], out=B1) + +i4.var() +A.var() +A.var(axis=0) +A.var(keepdims=True) +A.var(out=B0) + +A.argpartition([0]) + +A.diagonal() + +A.dot(1) +A.dot(1, out=B2) + +A.nonzero() + +C.searchsorted(1) + +A.trace() +A.trace(out=B0) + +void = cast(np.void, np.array(1, dtype=[("f", np.float64)]).take(0)) +void.setfield(10, np.float64) + +A.item(0) +C.item(0) + +A.ravel() +C.ravel() + +A.flatten() +C.flatten() + +A.reshape(1) +C.reshape(3) + +int(np.array(1.0, dtype=np.float64)) +int(np.array("1", dtype=np.str_)) + +float(np.array(1.0, dtype=np.float64)) +float(np.array("1", dtype=np.str_)) + +complex(np.array(1.0, dtype=np.float64)) + +operator.index(np.array(1, dtype=np.int64)) diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/numeric.py b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/numeric.py new file mode 100644 index 0000000000000000000000000000000000000000..c4a73c1e9b7c2792da739047b1d7c88c22c6acfb --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/numeric.py @@ -0,0 +1,90 @@ +""" +Tests for :mod:`numpy.core.numeric`. + +Does not include tests which fall under ``array_constructors``. + +""" + +from __future__ import annotations + +import numpy as np + +class SubClass(np.ndarray): + ... + +i8 = np.int64(1) + +A = np.arange(27).reshape(3, 3, 3) +B: list[list[list[int]]] = A.tolist() +C = np.empty((27, 27)).view(SubClass) + +np.count_nonzero(i8) +np.count_nonzero(A) +np.count_nonzero(B) +np.count_nonzero(A, keepdims=True) +np.count_nonzero(A, axis=0) + +np.isfortran(i8) +np.isfortran(A) + +np.argwhere(i8) +np.argwhere(A) + +np.flatnonzero(i8) +np.flatnonzero(A) + +np.correlate(B[0][0], A.ravel(), mode="valid") +np.correlate(A.ravel(), A.ravel(), mode="same") + +np.convolve(B[0][0], A.ravel(), mode="valid") +np.convolve(A.ravel(), A.ravel(), mode="same") + +np.outer(i8, A) +np.outer(B, A) +np.outer(A, A) +np.outer(A, A, out=C) + +np.tensordot(B, A) +np.tensordot(A, A) +np.tensordot(A, A, axes=0) +np.tensordot(A, A, axes=(0, 1)) + +np.isscalar(i8) +np.isscalar(A) +np.isscalar(B) + +np.roll(A, 1) +np.roll(A, (1, 2)) +np.roll(B, 1) + +np.rollaxis(A, 0, 1) + +np.moveaxis(A, 0, 1) +np.moveaxis(A, (0, 1), (1, 2)) + +np.cross(B, A) +np.cross(A, A) + +np.indices([0, 1, 2]) +np.indices([0, 1, 2], sparse=False) +np.indices([0, 1, 2], sparse=True) + +np.binary_repr(1) + +np.base_repr(1) + +np.allclose(i8, A) +np.allclose(B, A) +np.allclose(A, A) + +np.isclose(i8, A) +np.isclose(B, A) +np.isclose(A, A) + +np.array_equal(i8, A) +np.array_equal(B, A) +np.array_equal(A, A) + +np.array_equiv(i8, A) +np.array_equiv(B, A) +np.array_equiv(A, A) diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/numerictypes.py b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/numerictypes.py new file mode 100644 index 0000000000000000000000000000000000000000..63b6ad0e22e221e22ad9eba9b48a526a6c741b5d --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/numerictypes.py @@ -0,0 +1,42 @@ +import numpy as np + +np.maximum_sctype("S8") +np.maximum_sctype(object) + +np.issctype(object) +np.issctype("S8") + +np.obj2sctype(list) +np.obj2sctype(list, default=None) +np.obj2sctype(list, default=np.bytes_) + +np.issubclass_(np.int32, int) +np.issubclass_(np.float64, float) +np.issubclass_(np.float64, (int, float)) + +np.issubsctype("int64", int) +np.issubsctype(np.array([1]), np.array([1])) + +np.issubdtype("S1", np.bytes_) +np.issubdtype(np.float64, np.float32) + +np.sctype2char("S1") +np.sctype2char(list) + +np.cast[int] +np.cast["i8"] +np.cast[np.int64] + +np.nbytes[int] +np.nbytes["i8"] +np.nbytes[np.int64] + +np.ScalarType +np.ScalarType[0] +np.ScalarType[3] +np.ScalarType[8] +np.ScalarType[10] + +np.typecodes["Character"] +np.typecodes["Complex"] +np.typecodes["All"] diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/simple.py b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/simple.py new file mode 100644 index 0000000000000000000000000000000000000000..80116870287e4faa58f1640974536ae0ee6250d0 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/simple.py @@ -0,0 +1,165 @@ +"""Simple expression that should pass with mypy.""" +import operator + +import numpy as np +from collections.abc import Iterable + +# Basic checks +array = np.array([1, 2]) + + +def ndarray_func(x): + # type: (np.ndarray) -> np.ndarray + return x + + +ndarray_func(np.array([1, 2])) +array == 1 +array.dtype == float + +# Dtype construction +np.dtype(float) +np.dtype(np.float64) +np.dtype(None) +np.dtype("float64") +np.dtype(np.dtype(float)) +np.dtype(("U", 10)) +np.dtype((np.int32, (2, 2))) +# Define the arguments on the previous line to prevent bidirectional +# type inference in mypy from broadening the types. +two_tuples_dtype = [("R", "u1"), ("G", "u1"), ("B", "u1")] +np.dtype(two_tuples_dtype) + +three_tuples_dtype = [("R", "u1", 2)] +np.dtype(three_tuples_dtype) + +mixed_tuples_dtype = [("R", "u1"), ("G", np.str_, 1)] +np.dtype(mixed_tuples_dtype) + +shape_tuple_dtype = [("R", "u1", (2, 2))] +np.dtype(shape_tuple_dtype) + +shape_like_dtype = [("R", "u1", (2, 2)), ("G", np.str_, 1)] +np.dtype(shape_like_dtype) + +object_dtype = [("field1", object)] +np.dtype(object_dtype) + +np.dtype((np.int32, (np.int8, 4))) + +# Dtype comparison +np.dtype(float) == float +np.dtype(float) != np.float64 +np.dtype(float) < None +np.dtype(float) <= "float64" +np.dtype(float) > np.dtype(float) +np.dtype(float) >= np.dtype(("U", 10)) + +# Iteration and indexing +def iterable_func(x): + # type: (Iterable) -> Iterable + return x + + +iterable_func(array) +[element for element in array] +iter(array) +zip(array, array) +array[1] +array[:] +array[...] +array[:] = 0 + +array_2d = np.ones((3, 3)) +array_2d[:2, :2] +array_2d[..., 0] +array_2d[:2, :2] = 0 + +# Other special methods +len(array) +str(array) +array_scalar = np.array(1) +int(array_scalar) +float(array_scalar) +# currently does not work due to https://github.com/python/typeshed/issues/1904 +# complex(array_scalar) +bytes(array_scalar) +operator.index(array_scalar) +bool(array_scalar) + +# comparisons +array < 1 +array <= 1 +array == 1 +array != 1 +array > 1 +array >= 1 +1 < array +1 <= array +1 == array +1 != array +1 > array +1 >= array + +# binary arithmetic +array + 1 +1 + array +array += 1 + +array - 1 +1 - array +array -= 1 + +array * 1 +1 * array +array *= 1 + +nonzero_array = np.array([1, 2]) +array / 1 +1 / nonzero_array +float_array = np.array([1.0, 2.0]) +float_array /= 1 + +array // 1 +1 // nonzero_array +array //= 1 + +array % 1 +1 % nonzero_array +array %= 1 + +divmod(array, 1) +divmod(1, nonzero_array) + +array ** 1 +1 ** array +array **= 1 + +array << 1 +1 << array +array <<= 1 + +array >> 1 +1 >> array +array >>= 1 + +array & 1 +1 & array +array &= 1 + +array ^ 1 +1 ^ array +array ^= 1 + +array | 1 +1 | array +array |= 1 + +# unary arithmetic +-array ++array +abs(array) +~array + +# Other methods +np.array([1, 2]).transpose() diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/ufunc_config.py b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/ufunc_config.py new file mode 100644 index 0000000000000000000000000000000000000000..58dd3e550a51984e2d331f9f017ef5651630d749 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/ufunc_config.py @@ -0,0 +1,64 @@ +"""Typing tests for `numpy.core._ufunc_config`.""" + +import numpy as np + + +def func1(a: str, b: int) -> None: + return None + + +def func2(a: str, b: int, c: float = 1.0) -> None: + return None + + +def func3(a: str, b: int) -> int: + return 0 + + +class Write1: + def write(self, a: str) -> None: + return None + + +class Write2: + def write(self, a: str, b: int = 1) -> None: + return None + + +class Write3: + def write(self, a: str) -> int: + return 0 + + +_err_default = np.geterr() +_bufsize_default = np.getbufsize() +_errcall_default = np.geterrcall() + +try: + np.seterr(all=None) + np.seterr(divide="ignore") + np.seterr(over="warn") + np.seterr(under="call") + np.seterr(invalid="raise") + np.geterr() + + np.setbufsize(4096) + np.getbufsize() + + np.seterrcall(func1) + np.seterrcall(func2) + np.seterrcall(func3) + np.seterrcall(Write1()) + np.seterrcall(Write2()) + np.seterrcall(Write3()) + np.geterrcall() + + with np.errstate(call=func1, all="call"): + pass + with np.errstate(call=Write1(), divide="log", over="log"): + pass + +finally: + np.seterr(**_err_default) + np.setbufsize(_bufsize_default) + np.seterrcall(_errcall_default) diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/ufuncs.py b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/ufuncs.py new file mode 100644 index 0000000000000000000000000000000000000000..3cc31ae5e30506481192d0e4b2f3df8347af65c8 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/ufuncs.py @@ -0,0 +1,17 @@ +import numpy as np + +np.sin(1) +np.sin([1, 2, 3]) +np.sin(1, out=np.empty(1)) +np.matmul(np.ones((2, 2, 2)), np.ones((2, 2, 2)), axes=[(0, 1), (0, 1), (0, 1)]) +np.sin(1, signature="D->D") +np.sin(1, extobj=[16, 1, lambda: None]) +# NOTE: `np.generic` subclasses are not guaranteed to support addition; +# re-enable this we can infer the exact return type of `np.sin(...)`. +# +# np.sin(1) + np.sin(1) +np.sin.types[0] +np.sin.__name__ +np.sin.__doc__ + +np.abs(np.array([1])) diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/test_isfile.py b/venv/lib/python3.10/site-packages/numpy/typing/tests/test_isfile.py new file mode 100644 index 0000000000000000000000000000000000000000..2ca2c9b21f94c37252fc6130f9f03a4ad4e04433 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/test_isfile.py @@ -0,0 +1,32 @@ +import os +import sys +from pathlib import Path + +import numpy as np +from numpy.testing import assert_ + +ROOT = Path(np.__file__).parents[0] +FILES = [ + ROOT / "py.typed", + ROOT / "__init__.pyi", + ROOT / "ctypeslib.pyi", + ROOT / "core" / "__init__.pyi", + ROOT / "f2py" / "__init__.pyi", + ROOT / "fft" / "__init__.pyi", + ROOT / "lib" / "__init__.pyi", + ROOT / "linalg" / "__init__.pyi", + ROOT / "ma" / "__init__.pyi", + ROOT / "matrixlib" / "__init__.pyi", + ROOT / "polynomial" / "__init__.pyi", + ROOT / "random" / "__init__.pyi", + ROOT / "testing" / "__init__.pyi", +] +if sys.version_info < (3, 12): + FILES += [ROOT / "distutils" / "__init__.pyi"] + + +class TestIsFile: + def test_isfile(self): + """Test if all ``.pyi`` files are properly installed.""" + for file in FILES: + assert_(os.path.isfile(file)) diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/test_runtime.py b/venv/lib/python3.10/site-packages/numpy/typing/tests/test_runtime.py new file mode 100644 index 0000000000000000000000000000000000000000..c32c5db3266aff7643cc70b1e139aa17e24a26f6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/test_runtime.py @@ -0,0 +1,109 @@ +"""Test the runtime usage of `numpy.typing`.""" + +from __future__ import annotations + +from typing import ( + get_type_hints, + Union, + NamedTuple, + get_args, + get_origin, + Any, +) + +import pytest +import numpy as np +import numpy.typing as npt +import numpy._typing as _npt + + +class TypeTup(NamedTuple): + typ: type + args: tuple[type, ...] + origin: None | type + + +NDArrayTup = TypeTup(npt.NDArray, npt.NDArray.__args__, np.ndarray) + +TYPES = { + "ArrayLike": TypeTup(npt.ArrayLike, npt.ArrayLike.__args__, Union), + "DTypeLike": TypeTup(npt.DTypeLike, npt.DTypeLike.__args__, Union), + "NBitBase": TypeTup(npt.NBitBase, (), None), + "NDArray": NDArrayTup, +} + + +@pytest.mark.parametrize("name,tup", TYPES.items(), ids=TYPES.keys()) +def test_get_args(name: type, tup: TypeTup) -> None: + """Test `typing.get_args`.""" + typ, ref = tup.typ, tup.args + out = get_args(typ) + assert out == ref + + +@pytest.mark.parametrize("name,tup", TYPES.items(), ids=TYPES.keys()) +def test_get_origin(name: type, tup: TypeTup) -> None: + """Test `typing.get_origin`.""" + typ, ref = tup.typ, tup.origin + out = get_origin(typ) + assert out == ref + + +@pytest.mark.parametrize("name,tup", TYPES.items(), ids=TYPES.keys()) +def test_get_type_hints(name: type, tup: TypeTup) -> None: + """Test `typing.get_type_hints`.""" + typ = tup.typ + + # Explicitly set `__annotations__` in order to circumvent the + # stringification performed by `from __future__ import annotations` + def func(a): pass + func.__annotations__ = {"a": typ, "return": None} + + out = get_type_hints(func) + ref = {"a": typ, "return": type(None)} + assert out == ref + + +@pytest.mark.parametrize("name,tup", TYPES.items(), ids=TYPES.keys()) +def test_get_type_hints_str(name: type, tup: TypeTup) -> None: + """Test `typing.get_type_hints` with string-representation of types.""" + typ_str, typ = f"npt.{name}", tup.typ + + # Explicitly set `__annotations__` in order to circumvent the + # stringification performed by `from __future__ import annotations` + def func(a): pass + func.__annotations__ = {"a": typ_str, "return": None} + + out = get_type_hints(func) + ref = {"a": typ, "return": type(None)} + assert out == ref + + +def test_keys() -> None: + """Test that ``TYPES.keys()`` and ``numpy.typing.__all__`` are synced.""" + keys = TYPES.keys() + ref = set(npt.__all__) + assert keys == ref + + +PROTOCOLS: dict[str, tuple[type[Any], object]] = { + "_SupportsDType": (_npt._SupportsDType, np.int64(1)), + "_SupportsArray": (_npt._SupportsArray, np.arange(10)), + "_SupportsArrayFunc": (_npt._SupportsArrayFunc, np.arange(10)), + "_NestedSequence": (_npt._NestedSequence, [1]), +} + + +@pytest.mark.parametrize("cls,obj", PROTOCOLS.values(), ids=PROTOCOLS.keys()) +class TestRuntimeProtocol: + def test_isinstance(self, cls: type[Any], obj: object) -> None: + assert isinstance(obj, cls) + assert not isinstance(None, cls) + + def test_issubclass(self, cls: type[Any], obj: object) -> None: + if cls is _npt._SupportsDType: + pytest.xfail( + "Protocols with non-method members don't support issubclass()" + ) + assert issubclass(type(obj), cls) + assert not issubclass(type(None), cls) diff --git a/venv/lib/python3.10/site-packages/numpy/typing/tests/test_typing.py b/venv/lib/python3.10/site-packages/numpy/typing/tests/test_typing.py new file mode 100644 index 0000000000000000000000000000000000000000..6f778e551576a0a18099dc7fcc06745e0d4f030b --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy/typing/tests/test_typing.py @@ -0,0 +1,300 @@ +from __future__ import annotations + +import importlib.util +import os +import re +import shutil +from collections import defaultdict +from collections.abc import Iterator +from typing import TYPE_CHECKING + +import pytest +from numpy.typing.mypy_plugin import _EXTENDED_PRECISION_LIST + + +# Only trigger a full `mypy` run if this environment variable is set +# Note that these tests tend to take over a minute even on a macOS M1 CPU, +# and more than that in CI. +RUN_MYPY = "NPY_RUN_MYPY_IN_TESTSUITE" in os.environ +if RUN_MYPY and RUN_MYPY not in ('0', '', 'false'): + RUN_MYPY = True + +# Skips all functions in this file +pytestmark = pytest.mark.skipif( + not RUN_MYPY, + reason="`NPY_RUN_MYPY_IN_TESTSUITE` not set" +) + + +# Only trigger a full `mypy` run if this environment variable is set +# Note that these tests tend to take over a minute even on a macOS M1 CPU, +# and more than that in CI. +RUN_MYPY = "NPY_RUN_MYPY_IN_TESTSUITE" in os.environ +if RUN_MYPY and RUN_MYPY not in ('0', '', 'false'): + RUN_MYPY = True + +# Skips all functions in this file +pytestmark = pytest.mark.skipif( + not RUN_MYPY, + reason="`NPY_RUN_MYPY_IN_TESTSUITE` not set" +) + + +try: + from mypy import api +except ImportError: + NO_MYPY = True +else: + NO_MYPY = False + +if TYPE_CHECKING: + # We need this as annotation, but it's located in a private namespace. + # As a compromise, do *not* import it during runtime + from _pytest.mark.structures import ParameterSet + +DATA_DIR = os.path.join(os.path.dirname(__file__), "data") +PASS_DIR = os.path.join(DATA_DIR, "pass") +FAIL_DIR = os.path.join(DATA_DIR, "fail") +REVEAL_DIR = os.path.join(DATA_DIR, "reveal") +MISC_DIR = os.path.join(DATA_DIR, "misc") +MYPY_INI = os.path.join(DATA_DIR, "mypy.ini") +CACHE_DIR = os.path.join(DATA_DIR, ".mypy_cache") + +#: A dictionary with file names as keys and lists of the mypy stdout as values. +#: To-be populated by `run_mypy`. +OUTPUT_MYPY: defaultdict[str, list[str]] = defaultdict(list) + + +def _key_func(key: str) -> str: + """Split at the first occurrence of the ``:`` character. + + Windows drive-letters (*e.g.* ``C:``) are ignored herein. + """ + drive, tail = os.path.splitdrive(key) + return os.path.join(drive, tail.split(":", 1)[0]) + + +def _strip_filename(msg: str) -> tuple[int, str]: + """Strip the filename and line number from a mypy message.""" + _, tail = os.path.splitdrive(msg) + _, lineno, msg = tail.split(":", 2) + return int(lineno), msg.strip() + + +def strip_func(match: re.Match[str]) -> str: + """`re.sub` helper function for stripping module names.""" + return match.groups()[1] + + +@pytest.fixture(scope="module", autouse=True) +def run_mypy() -> None: + """Clears the cache and run mypy before running any of the typing tests. + + The mypy results are cached in `OUTPUT_MYPY` for further use. + + The cache refresh can be skipped using + + NUMPY_TYPING_TEST_CLEAR_CACHE=0 pytest numpy/typing/tests + """ + if ( + os.path.isdir(CACHE_DIR) + and bool(os.environ.get("NUMPY_TYPING_TEST_CLEAR_CACHE", True)) + ): + shutil.rmtree(CACHE_DIR) + + split_pattern = re.compile(r"(\s+)?\^(\~+)?") + for directory in (PASS_DIR, REVEAL_DIR, FAIL_DIR, MISC_DIR): + # Run mypy + stdout, stderr, exit_code = api.run([ + "--config-file", + MYPY_INI, + "--cache-dir", + CACHE_DIR, + directory, + ]) + if stderr: + pytest.fail(f"Unexpected mypy standard error\n\n{stderr}") + elif exit_code not in {0, 1}: + pytest.fail(f"Unexpected mypy exit code: {exit_code}\n\n{stdout}") + + str_concat = "" + filename: str | None = None + for i in stdout.split("\n"): + if "note:" in i: + continue + if filename is None: + filename = _key_func(i) + + str_concat += f"{i}\n" + if split_pattern.match(i) is not None: + OUTPUT_MYPY[filename].append(str_concat) + str_concat = "" + filename = None + + +def get_test_cases(directory: str) -> Iterator[ParameterSet]: + for root, _, files in os.walk(directory): + for fname in files: + short_fname, ext = os.path.splitext(fname) + if ext in (".pyi", ".py"): + fullpath = os.path.join(root, fname) + yield pytest.param(fullpath, id=short_fname) + + +@pytest.mark.slow +@pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") +@pytest.mark.parametrize("path", get_test_cases(PASS_DIR)) +def test_success(path) -> None: + # Alias `OUTPUT_MYPY` so that it appears in the local namespace + output_mypy = OUTPUT_MYPY + if path in output_mypy: + msg = "Unexpected mypy output\n\n" + msg += "\n".join(_strip_filename(v)[1] for v in output_mypy[path]) + raise AssertionError(msg) + + +@pytest.mark.slow +@pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") +@pytest.mark.parametrize("path", get_test_cases(FAIL_DIR)) +def test_fail(path: str) -> None: + __tracebackhide__ = True + + with open(path) as fin: + lines = fin.readlines() + + errors = defaultdict(lambda: "") + + output_mypy = OUTPUT_MYPY + assert path in output_mypy + + for error_line in output_mypy[path]: + lineno, error_line = _strip_filename(error_line) + errors[lineno] += f'{error_line}\n' + + for i, line in enumerate(lines): + lineno = i + 1 + if ( + line.startswith('#') + or (" E:" not in line and lineno not in errors) + ): + continue + + target_line = lines[lineno - 1] + if "# E:" in target_line: + expression, _, marker = target_line.partition(" # E: ") + expected_error = errors[lineno].strip() + marker = marker.strip() + _test_fail(path, expression, marker, expected_error, lineno) + else: + pytest.fail( + f"Unexpected mypy output at line {lineno}\n\n{errors[lineno]}" + ) + + +_FAIL_MSG1 = """Extra error at line {} + +Expression: {} +Extra error: {!r} +""" + +_FAIL_MSG2 = """Error mismatch at line {} + +Expression: {} +Expected error: {} +Observed error: {!r} +""" + + +def _test_fail( + path: str, + expression: str, + error: str, + expected_error: None | str, + lineno: int, +) -> None: + if expected_error is None: + raise AssertionError(_FAIL_MSG1.format(lineno, expression, error)) + elif error not in expected_error: + raise AssertionError(_FAIL_MSG2.format( + lineno, expression, expected_error, error + )) + + +_REVEAL_MSG = """Reveal mismatch at line {} + +{} +""" + + +@pytest.mark.slow +@pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") +@pytest.mark.parametrize("path", get_test_cases(REVEAL_DIR)) +def test_reveal(path: str) -> None: + """Validate that mypy correctly infers the return-types of + the expressions in `path`. + """ + __tracebackhide__ = True + + output_mypy = OUTPUT_MYPY + if path not in output_mypy: + return + + for error_line in output_mypy[path]: + lineno, error_line = _strip_filename(error_line) + raise AssertionError(_REVEAL_MSG.format(lineno, error_line)) + + +@pytest.mark.slow +@pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") +@pytest.mark.parametrize("path", get_test_cases(PASS_DIR)) +def test_code_runs(path: str) -> None: + """Validate that the code in `path` properly during runtime.""" + path_without_extension, _ = os.path.splitext(path) + dirname, filename = path.split(os.sep)[-2:] + + spec = importlib.util.spec_from_file_location( + f"{dirname}.{filename}", path + ) + assert spec is not None + assert spec.loader is not None + + test_module = importlib.util.module_from_spec(spec) + spec.loader.exec_module(test_module) + + +LINENO_MAPPING = { + 11: "uint128", + 12: "uint256", + 14: "int128", + 15: "int256", + 17: "float80", + 18: "float96", + 19: "float128", + 20: "float256", + 22: "complex160", + 23: "complex192", + 24: "complex256", + 25: "complex512", +} + + +@pytest.mark.slow +@pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") +def test_extended_precision() -> None: + path = os.path.join(MISC_DIR, "extended_precision.pyi") + output_mypy = OUTPUT_MYPY + assert path in output_mypy + + with open(path) as f: + expression_list = f.readlines() + + for _msg in output_mypy[path]: + lineno, msg = _strip_filename(_msg) + expression = expression_list[lineno - 1].rstrip("\n") + + if LINENO_MAPPING[lineno] in _EXTENDED_PRECISION_LIST: + raise AssertionError(_REVEAL_MSG.format(lineno, msg)) + elif "error" not in msg: + _test_fail( + path, expression, msg, 'Expression is of type "Any"', lineno + )