Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step80/zero/13.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/13.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/20.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/20.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/__init__.py +19 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/__pycache__/diffgeom.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/__pycache__/rn.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/diffgeom.py +2273 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/rn.py +143 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_class_structure.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_diffgeom.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_function_diffgeom_book.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_hyperbolic_space.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/tests/test_class_structure.py +33 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/tests/test_diffgeom.py +342 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/tests/test_function_diffgeom_book.py +145 -0
- venv/lib/python3.10/site-packages/sympy/diffgeom/tests/test_hyperbolic_space.py +91 -0
- venv/lib/python3.10/site-packages/sympy/logic/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/__pycache__/boolalg.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/__pycache__/inference.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/algorithms/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/dpll.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/dpll2.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/minisat22_wrapper.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/pycosat_wrapper.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/algorithms/dpll.py +308 -0
- venv/lib/python3.10/site-packages/sympy/logic/algorithms/dpll2.py +659 -0
- venv/lib/python3.10/site-packages/sympy/logic/algorithms/minisat22_wrapper.py +46 -0
- venv/lib/python3.10/site-packages/sympy/logic/algorithms/pycosat_wrapper.py +41 -0
- venv/lib/python3.10/site-packages/sympy/logic/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/tests/__pycache__/test_boolalg.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/tests/__pycache__/test_dimacs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/tests/__pycache__/test_inference.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/tests/test_boolalg.py +1340 -0
- venv/lib/python3.10/site-packages/sympy/logic/tests/test_dimacs.py +234 -0
- venv/lib/python3.10/site-packages/sympy/logic/tests/test_inference.py +315 -0
- venv/lib/python3.10/site-packages/sympy/logic/utilities/__init__.py +3 -0
- venv/lib/python3.10/site-packages/sympy/logic/utilities/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/logic/utilities/__pycache__/dimacs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/plotting/__init__.py +22 -0
- venv/lib/python3.10/site-packages/sympy/plotting/experimental_lambdify.py +643 -0
- venv/lib/python3.10/site-packages/sympy/plotting/plot.py +2637 -0
- venv/lib/python3.10/site-packages/sympy/plotting/plot_implicit.py +432 -0
- venv/lib/python3.10/site-packages/sympy/plotting/pygletplot/__init__.py +138 -0
- venv/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/__init__.cpython-310.pyc +0 -0
ckpts/universal/global_step80/zero/13.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:785559081eb2828103a981407fbf5905cd526067bbd395412d0efb018602b891
|
3 |
+
size 33555612
|
ckpts/universal/global_step80/zero/13.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d79c0316c53126b57df63fd5587d56c318d6a1e27a71ee40751cac93110a7da
|
3 |
+
size 33555533
|
ckpts/universal/global_step80/zero/20.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f7fa65e5a53100f630453eca9a75ea41f58a021f60c5a95cfceddf09b584a02
|
3 |
+
size 33555627
|
ckpts/universal/global_step80/zero/20.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34e9f6573a2fddcb5d8671b6ed96d08bf0e548aba706f1aabf5a0b3bbbf759e6
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/sympy/diffgeom/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .diffgeom import (
|
2 |
+
BaseCovarDerivativeOp, BaseScalarField, BaseVectorField, Commutator,
|
3 |
+
contravariant_order, CoordSystem, CoordinateSymbol,
|
4 |
+
CovarDerivativeOp, covariant_order, Differential, intcurve_diffequ,
|
5 |
+
intcurve_series, LieDerivative, Manifold, metric_to_Christoffel_1st,
|
6 |
+
metric_to_Christoffel_2nd, metric_to_Ricci_components,
|
7 |
+
metric_to_Riemann_components, Patch, Point, TensorProduct, twoform_to_matrix,
|
8 |
+
vectors_in_basis, WedgeProduct,
|
9 |
+
)
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
'BaseCovarDerivativeOp', 'BaseScalarField', 'BaseVectorField', 'Commutator',
|
13 |
+
'contravariant_order', 'CoordSystem', 'CoordinateSymbol',
|
14 |
+
'CovarDerivativeOp', 'covariant_order', 'Differential', 'intcurve_diffequ',
|
15 |
+
'intcurve_series', 'LieDerivative', 'Manifold', 'metric_to_Christoffel_1st',
|
16 |
+
'metric_to_Christoffel_2nd', 'metric_to_Ricci_components',
|
17 |
+
'metric_to_Riemann_components', 'Patch', 'Point', 'TensorProduct',
|
18 |
+
'twoform_to_matrix', 'vectors_in_basis', 'WedgeProduct',
|
19 |
+
]
|
venv/lib/python3.10/site-packages/sympy/diffgeom/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (862 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/diffgeom/__pycache__/diffgeom.cpython-310.pyc
ADDED
Binary file (76.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/diffgeom/__pycache__/rn.cpython-310.pyc
ADDED
Binary file (3.65 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/diffgeom/diffgeom.py
ADDED
@@ -0,0 +1,2273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
from functools import reduce
|
5 |
+
from itertools import permutations
|
6 |
+
|
7 |
+
from sympy.combinatorics import Permutation
|
8 |
+
from sympy.core import (
|
9 |
+
Basic, Expr, Function, diff,
|
10 |
+
Pow, Mul, Add, Lambda, S, Tuple, Dict
|
11 |
+
)
|
12 |
+
from sympy.core.cache import cacheit
|
13 |
+
|
14 |
+
from sympy.core.symbol import Symbol, Dummy
|
15 |
+
from sympy.core.symbol import Str
|
16 |
+
from sympy.core.sympify import _sympify
|
17 |
+
from sympy.functions import factorial
|
18 |
+
from sympy.matrices import ImmutableDenseMatrix as Matrix
|
19 |
+
from sympy.solvers import solve
|
20 |
+
|
21 |
+
from sympy.utilities.exceptions import (sympy_deprecation_warning,
|
22 |
+
SymPyDeprecationWarning,
|
23 |
+
ignore_warnings)
|
24 |
+
|
25 |
+
|
26 |
+
# TODO you are a bit excessive in the use of Dummies
|
27 |
+
# TODO dummy point, literal field
|
28 |
+
# TODO too often one needs to call doit or simplify on the output, check the
|
29 |
+
# tests and find out why
|
30 |
+
from sympy.tensor.array import ImmutableDenseNDimArray
|
31 |
+
|
32 |
+
|
33 |
+
class Manifold(Basic):
|
34 |
+
"""
|
35 |
+
A mathematical manifold.
|
36 |
+
|
37 |
+
Explanation
|
38 |
+
===========
|
39 |
+
|
40 |
+
A manifold is a topological space that locally resembles
|
41 |
+
Euclidean space near each point [1].
|
42 |
+
This class does not provide any means to study the topological
|
43 |
+
characteristics of the manifold that it represents, though.
|
44 |
+
|
45 |
+
Parameters
|
46 |
+
==========
|
47 |
+
|
48 |
+
name : str
|
49 |
+
The name of the manifold.
|
50 |
+
|
51 |
+
dim : int
|
52 |
+
The dimension of the manifold.
|
53 |
+
|
54 |
+
Examples
|
55 |
+
========
|
56 |
+
|
57 |
+
>>> from sympy.diffgeom import Manifold
|
58 |
+
>>> m = Manifold('M', 2)
|
59 |
+
>>> m
|
60 |
+
M
|
61 |
+
>>> m.dim
|
62 |
+
2
|
63 |
+
|
64 |
+
References
|
65 |
+
==========
|
66 |
+
|
67 |
+
.. [1] https://en.wikipedia.org/wiki/Manifold
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __new__(cls, name, dim, **kwargs):
|
71 |
+
if not isinstance(name, Str):
|
72 |
+
name = Str(name)
|
73 |
+
dim = _sympify(dim)
|
74 |
+
obj = super().__new__(cls, name, dim)
|
75 |
+
|
76 |
+
obj.patches = _deprecated_list(
|
77 |
+
"""
|
78 |
+
Manifold.patches is deprecated. The Manifold object is now
|
79 |
+
immutable. Instead use a separate list to keep track of the
|
80 |
+
patches.
|
81 |
+
""", [])
|
82 |
+
return obj
|
83 |
+
|
84 |
+
@property
|
85 |
+
def name(self):
|
86 |
+
return self.args[0]
|
87 |
+
|
88 |
+
@property
|
89 |
+
def dim(self):
|
90 |
+
return self.args[1]
|
91 |
+
|
92 |
+
|
93 |
+
class Patch(Basic):
|
94 |
+
"""
|
95 |
+
A patch on a manifold.
|
96 |
+
|
97 |
+
Explanation
|
98 |
+
===========
|
99 |
+
|
100 |
+
Coordinate patch, or patch in short, is a simply-connected open set around
|
101 |
+
a point in the manifold [1]. On a manifold one can have many patches that
|
102 |
+
do not always include the whole manifold. On these patches coordinate
|
103 |
+
charts can be defined that permit the parameterization of any point on the
|
104 |
+
patch in terms of a tuple of real numbers (the coordinates).
|
105 |
+
|
106 |
+
This class does not provide any means to study the topological
|
107 |
+
characteristics of the patch that it represents.
|
108 |
+
|
109 |
+
Parameters
|
110 |
+
==========
|
111 |
+
|
112 |
+
name : str
|
113 |
+
The name of the patch.
|
114 |
+
|
115 |
+
manifold : Manifold
|
116 |
+
The manifold on which the patch is defined.
|
117 |
+
|
118 |
+
Examples
|
119 |
+
========
|
120 |
+
|
121 |
+
>>> from sympy.diffgeom import Manifold, Patch
|
122 |
+
>>> m = Manifold('M', 2)
|
123 |
+
>>> p = Patch('P', m)
|
124 |
+
>>> p
|
125 |
+
P
|
126 |
+
>>> p.dim
|
127 |
+
2
|
128 |
+
|
129 |
+
References
|
130 |
+
==========
|
131 |
+
|
132 |
+
.. [1] G. Sussman, J. Wisdom, W. Farr, Functional Differential Geometry
|
133 |
+
(2013)
|
134 |
+
|
135 |
+
"""
|
136 |
+
def __new__(cls, name, manifold, **kwargs):
|
137 |
+
if not isinstance(name, Str):
|
138 |
+
name = Str(name)
|
139 |
+
obj = super().__new__(cls, name, manifold)
|
140 |
+
|
141 |
+
obj.manifold.patches.append(obj) # deprecated
|
142 |
+
obj.coord_systems = _deprecated_list(
|
143 |
+
"""
|
144 |
+
Patch.coord_systms is deprecated. The Patch class is now
|
145 |
+
immutable. Instead use a separate list to keep track of coordinate
|
146 |
+
systems.
|
147 |
+
""", [])
|
148 |
+
return obj
|
149 |
+
|
150 |
+
@property
|
151 |
+
def name(self):
|
152 |
+
return self.args[0]
|
153 |
+
|
154 |
+
@property
|
155 |
+
def manifold(self):
|
156 |
+
return self.args[1]
|
157 |
+
|
158 |
+
@property
|
159 |
+
def dim(self):
|
160 |
+
return self.manifold.dim
|
161 |
+
|
162 |
+
|
163 |
+
class CoordSystem(Basic):
|
164 |
+
"""
|
165 |
+
A coordinate system defined on the patch.
|
166 |
+
|
167 |
+
Explanation
|
168 |
+
===========
|
169 |
+
|
170 |
+
Coordinate system is a system that uses one or more coordinates to uniquely
|
171 |
+
determine the position of the points or other geometric elements on a
|
172 |
+
manifold [1].
|
173 |
+
|
174 |
+
By passing ``Symbols`` to *symbols* parameter, user can define the name and
|
175 |
+
assumptions of coordinate symbols of the coordinate system. If not passed,
|
176 |
+
these symbols are generated automatically and are assumed to be real valued.
|
177 |
+
|
178 |
+
By passing *relations* parameter, user can define the transform relations of
|
179 |
+
coordinate systems. Inverse transformation and indirect transformation can
|
180 |
+
be found automatically. If this parameter is not passed, coordinate
|
181 |
+
transformation cannot be done.
|
182 |
+
|
183 |
+
Parameters
|
184 |
+
==========
|
185 |
+
|
186 |
+
name : str
|
187 |
+
The name of the coordinate system.
|
188 |
+
|
189 |
+
patch : Patch
|
190 |
+
The patch where the coordinate system is defined.
|
191 |
+
|
192 |
+
symbols : list of Symbols, optional
|
193 |
+
Defines the names and assumptions of coordinate symbols.
|
194 |
+
|
195 |
+
relations : dict, optional
|
196 |
+
Key is a tuple of two strings, who are the names of the systems where
|
197 |
+
the coordinates transform from and transform to.
|
198 |
+
Value is a tuple of the symbols before transformation and a tuple of
|
199 |
+
the expressions after transformation.
|
200 |
+
|
201 |
+
Examples
|
202 |
+
========
|
203 |
+
|
204 |
+
We define two-dimensional Cartesian coordinate system and polar coordinate
|
205 |
+
system.
|
206 |
+
|
207 |
+
>>> from sympy import symbols, pi, sqrt, atan2, cos, sin
|
208 |
+
>>> from sympy.diffgeom import Manifold, Patch, CoordSystem
|
209 |
+
>>> m = Manifold('M', 2)
|
210 |
+
>>> p = Patch('P', m)
|
211 |
+
>>> x, y = symbols('x y', real=True)
|
212 |
+
>>> r, theta = symbols('r theta', nonnegative=True)
|
213 |
+
>>> relation_dict = {
|
214 |
+
... ('Car2D', 'Pol'): [(x, y), (sqrt(x**2 + y**2), atan2(y, x))],
|
215 |
+
... ('Pol', 'Car2D'): [(r, theta), (r*cos(theta), r*sin(theta))]
|
216 |
+
... }
|
217 |
+
>>> Car2D = CoordSystem('Car2D', p, (x, y), relation_dict)
|
218 |
+
>>> Pol = CoordSystem('Pol', p, (r, theta), relation_dict)
|
219 |
+
|
220 |
+
``symbols`` property returns ``CoordinateSymbol`` instances. These symbols
|
221 |
+
are not same with the symbols used to construct the coordinate system.
|
222 |
+
|
223 |
+
>>> Car2D
|
224 |
+
Car2D
|
225 |
+
>>> Car2D.dim
|
226 |
+
2
|
227 |
+
>>> Car2D.symbols
|
228 |
+
(x, y)
|
229 |
+
>>> _[0].func
|
230 |
+
<class 'sympy.diffgeom.diffgeom.CoordinateSymbol'>
|
231 |
+
|
232 |
+
``transformation()`` method returns the transformation function from
|
233 |
+
one coordinate system to another. ``transform()`` method returns the
|
234 |
+
transformed coordinates.
|
235 |
+
|
236 |
+
>>> Car2D.transformation(Pol)
|
237 |
+
Lambda((x, y), Matrix([
|
238 |
+
[sqrt(x**2 + y**2)],
|
239 |
+
[ atan2(y, x)]]))
|
240 |
+
>>> Car2D.transform(Pol)
|
241 |
+
Matrix([
|
242 |
+
[sqrt(x**2 + y**2)],
|
243 |
+
[ atan2(y, x)]])
|
244 |
+
>>> Car2D.transform(Pol, [1, 2])
|
245 |
+
Matrix([
|
246 |
+
[sqrt(5)],
|
247 |
+
[atan(2)]])
|
248 |
+
|
249 |
+
``jacobian()`` method returns the Jacobian matrix of coordinate
|
250 |
+
transformation between two systems. ``jacobian_determinant()`` method
|
251 |
+
returns the Jacobian determinant of coordinate transformation between two
|
252 |
+
systems.
|
253 |
+
|
254 |
+
>>> Pol.jacobian(Car2D)
|
255 |
+
Matrix([
|
256 |
+
[cos(theta), -r*sin(theta)],
|
257 |
+
[sin(theta), r*cos(theta)]])
|
258 |
+
>>> Pol.jacobian(Car2D, [1, pi/2])
|
259 |
+
Matrix([
|
260 |
+
[0, -1],
|
261 |
+
[1, 0]])
|
262 |
+
>>> Car2D.jacobian_determinant(Pol)
|
263 |
+
1/sqrt(x**2 + y**2)
|
264 |
+
>>> Car2D.jacobian_determinant(Pol, [1,0])
|
265 |
+
1
|
266 |
+
|
267 |
+
References
|
268 |
+
==========
|
269 |
+
|
270 |
+
.. [1] https://en.wikipedia.org/wiki/Coordinate_system
|
271 |
+
|
272 |
+
"""
|
273 |
+
def __new__(cls, name, patch, symbols=None, relations={}, **kwargs):
|
274 |
+
if not isinstance(name, Str):
|
275 |
+
name = Str(name)
|
276 |
+
|
277 |
+
# canonicallize the symbols
|
278 |
+
if symbols is None:
|
279 |
+
names = kwargs.get('names', None)
|
280 |
+
if names is None:
|
281 |
+
symbols = Tuple(
|
282 |
+
*[Symbol('%s_%s' % (name.name, i), real=True)
|
283 |
+
for i in range(patch.dim)]
|
284 |
+
)
|
285 |
+
else:
|
286 |
+
sympy_deprecation_warning(
|
287 |
+
f"""
|
288 |
+
The 'names' argument to CoordSystem is deprecated. Use 'symbols' instead. That
|
289 |
+
is, replace
|
290 |
+
|
291 |
+
CoordSystem(..., names={names})
|
292 |
+
|
293 |
+
with
|
294 |
+
|
295 |
+
CoordSystem(..., symbols=[{', '.join(["Symbol(" + repr(n) + ", real=True)" for n in names])}])
|
296 |
+
""",
|
297 |
+
deprecated_since_version="1.7",
|
298 |
+
active_deprecations_target="deprecated-diffgeom-mutable",
|
299 |
+
)
|
300 |
+
symbols = Tuple(
|
301 |
+
*[Symbol(n, real=True) for n in names]
|
302 |
+
)
|
303 |
+
else:
|
304 |
+
syms = []
|
305 |
+
for s in symbols:
|
306 |
+
if isinstance(s, Symbol):
|
307 |
+
syms.append(Symbol(s.name, **s._assumptions.generator))
|
308 |
+
elif isinstance(s, str):
|
309 |
+
sympy_deprecation_warning(
|
310 |
+
f"""
|
311 |
+
|
312 |
+
Passing a string as the coordinate symbol name to CoordSystem is deprecated.
|
313 |
+
Pass a Symbol with the appropriate name and assumptions instead.
|
314 |
+
|
315 |
+
That is, replace {s} with Symbol({s!r}, real=True).
|
316 |
+
""",
|
317 |
+
|
318 |
+
deprecated_since_version="1.7",
|
319 |
+
active_deprecations_target="deprecated-diffgeom-mutable",
|
320 |
+
)
|
321 |
+
syms.append(Symbol(s, real=True))
|
322 |
+
symbols = Tuple(*syms)
|
323 |
+
|
324 |
+
# canonicallize the relations
|
325 |
+
rel_temp = {}
|
326 |
+
for k,v in relations.items():
|
327 |
+
s1, s2 = k
|
328 |
+
if not isinstance(s1, Str):
|
329 |
+
s1 = Str(s1)
|
330 |
+
if not isinstance(s2, Str):
|
331 |
+
s2 = Str(s2)
|
332 |
+
key = Tuple(s1, s2)
|
333 |
+
|
334 |
+
# Old version used Lambda as a value.
|
335 |
+
if isinstance(v, Lambda):
|
336 |
+
v = (tuple(v.signature), tuple(v.expr))
|
337 |
+
else:
|
338 |
+
v = (tuple(v[0]), tuple(v[1]))
|
339 |
+
rel_temp[key] = v
|
340 |
+
relations = Dict(rel_temp)
|
341 |
+
|
342 |
+
# construct the object
|
343 |
+
obj = super().__new__(cls, name, patch, symbols, relations)
|
344 |
+
|
345 |
+
# Add deprecated attributes
|
346 |
+
obj.transforms = _deprecated_dict(
|
347 |
+
"""
|
348 |
+
CoordSystem.transforms is deprecated. The CoordSystem class is now
|
349 |
+
immutable. Use the 'relations' keyword argument to the
|
350 |
+
CoordSystems() constructor to specify relations.
|
351 |
+
""", {})
|
352 |
+
obj._names = [str(n) for n in symbols]
|
353 |
+
obj.patch.coord_systems.append(obj) # deprecated
|
354 |
+
obj._dummies = [Dummy(str(n)) for n in symbols] # deprecated
|
355 |
+
obj._dummy = Dummy()
|
356 |
+
|
357 |
+
return obj
|
358 |
+
|
359 |
+
@property
|
360 |
+
def name(self):
|
361 |
+
return self.args[0]
|
362 |
+
|
363 |
+
@property
|
364 |
+
def patch(self):
|
365 |
+
return self.args[1]
|
366 |
+
|
367 |
+
@property
|
368 |
+
def manifold(self):
|
369 |
+
return self.patch.manifold
|
370 |
+
|
371 |
+
@property
|
372 |
+
def symbols(self):
|
373 |
+
return tuple(CoordinateSymbol(self, i, **s._assumptions.generator)
|
374 |
+
for i,s in enumerate(self.args[2]))
|
375 |
+
|
376 |
+
@property
|
377 |
+
def relations(self):
|
378 |
+
return self.args[3]
|
379 |
+
|
380 |
+
@property
|
381 |
+
def dim(self):
|
382 |
+
return self.patch.dim
|
383 |
+
|
384 |
+
##########################################################################
|
385 |
+
# Finding transformation relation
|
386 |
+
##########################################################################
|
387 |
+
|
388 |
+
def transformation(self, sys):
|
389 |
+
"""
|
390 |
+
Return coordinate transformation function from *self* to *sys*.
|
391 |
+
|
392 |
+
Parameters
|
393 |
+
==========
|
394 |
+
|
395 |
+
sys : CoordSystem
|
396 |
+
|
397 |
+
Returns
|
398 |
+
=======
|
399 |
+
|
400 |
+
sympy.Lambda
|
401 |
+
|
402 |
+
Examples
|
403 |
+
========
|
404 |
+
|
405 |
+
>>> from sympy.diffgeom.rn import R2_r, R2_p
|
406 |
+
>>> R2_r.transformation(R2_p)
|
407 |
+
Lambda((x, y), Matrix([
|
408 |
+
[sqrt(x**2 + y**2)],
|
409 |
+
[ atan2(y, x)]]))
|
410 |
+
|
411 |
+
"""
|
412 |
+
signature = self.args[2]
|
413 |
+
|
414 |
+
key = Tuple(self.name, sys.name)
|
415 |
+
if self == sys:
|
416 |
+
expr = Matrix(self.symbols)
|
417 |
+
elif key in self.relations:
|
418 |
+
expr = Matrix(self.relations[key][1])
|
419 |
+
elif key[::-1] in self.relations:
|
420 |
+
expr = Matrix(self._inverse_transformation(sys, self))
|
421 |
+
else:
|
422 |
+
expr = Matrix(self._indirect_transformation(self, sys))
|
423 |
+
return Lambda(signature, expr)
|
424 |
+
|
425 |
+
@staticmethod
|
426 |
+
def _solve_inverse(sym1, sym2, exprs, sys1_name, sys2_name):
|
427 |
+
ret = solve(
|
428 |
+
[t[0] - t[1] for t in zip(sym2, exprs)],
|
429 |
+
list(sym1), dict=True)
|
430 |
+
|
431 |
+
if len(ret) == 0:
|
432 |
+
temp = "Cannot solve inverse relation from {} to {}."
|
433 |
+
raise NotImplementedError(temp.format(sys1_name, sys2_name))
|
434 |
+
elif len(ret) > 1:
|
435 |
+
temp = "Obtained multiple inverse relation from {} to {}."
|
436 |
+
raise ValueError(temp.format(sys1_name, sys2_name))
|
437 |
+
|
438 |
+
return ret[0]
|
439 |
+
|
440 |
+
@classmethod
|
441 |
+
def _inverse_transformation(cls, sys1, sys2):
|
442 |
+
# Find the transformation relation from sys2 to sys1
|
443 |
+
forward = sys1.transform(sys2)
|
444 |
+
inv_results = cls._solve_inverse(sys1.symbols, sys2.symbols, forward,
|
445 |
+
sys1.name, sys2.name)
|
446 |
+
signature = tuple(sys1.symbols)
|
447 |
+
return [inv_results[s] for s in signature]
|
448 |
+
|
449 |
+
@classmethod
|
450 |
+
@cacheit
|
451 |
+
def _indirect_transformation(cls, sys1, sys2):
|
452 |
+
# Find the transformation relation between two indirectly connected
|
453 |
+
# coordinate systems
|
454 |
+
rel = sys1.relations
|
455 |
+
path = cls._dijkstra(sys1, sys2)
|
456 |
+
|
457 |
+
transforms = []
|
458 |
+
for s1, s2 in zip(path, path[1:]):
|
459 |
+
if (s1, s2) in rel:
|
460 |
+
transforms.append(rel[(s1, s2)])
|
461 |
+
else:
|
462 |
+
sym2, inv_exprs = rel[(s2, s1)]
|
463 |
+
sym1 = tuple(Dummy() for i in sym2)
|
464 |
+
ret = cls._solve_inverse(sym2, sym1, inv_exprs, s2, s1)
|
465 |
+
ret = tuple(ret[s] for s in sym2)
|
466 |
+
transforms.append((sym1, ret))
|
467 |
+
syms = sys1.args[2]
|
468 |
+
exprs = syms
|
469 |
+
for newsyms, newexprs in transforms:
|
470 |
+
exprs = tuple(e.subs(zip(newsyms, exprs)) for e in newexprs)
|
471 |
+
return exprs
|
472 |
+
|
473 |
+
@staticmethod
|
474 |
+
def _dijkstra(sys1, sys2):
|
475 |
+
# Use Dijkstra algorithm to find the shortest path between two indirectly-connected
|
476 |
+
# coordinate systems
|
477 |
+
# return value is the list of the names of the systems.
|
478 |
+
relations = sys1.relations
|
479 |
+
graph = {}
|
480 |
+
for s1, s2 in relations.keys():
|
481 |
+
if s1 not in graph:
|
482 |
+
graph[s1] = {s2}
|
483 |
+
else:
|
484 |
+
graph[s1].add(s2)
|
485 |
+
if s2 not in graph:
|
486 |
+
graph[s2] = {s1}
|
487 |
+
else:
|
488 |
+
graph[s2].add(s1)
|
489 |
+
|
490 |
+
path_dict = {sys:[0, [], 0] for sys in graph} # minimum distance, path, times of visited
|
491 |
+
|
492 |
+
def visit(sys):
|
493 |
+
path_dict[sys][2] = 1
|
494 |
+
for newsys in graph[sys]:
|
495 |
+
distance = path_dict[sys][0] + 1
|
496 |
+
if path_dict[newsys][0] >= distance or not path_dict[newsys][1]:
|
497 |
+
path_dict[newsys][0] = distance
|
498 |
+
path_dict[newsys][1] = list(path_dict[sys][1])
|
499 |
+
path_dict[newsys][1].append(sys)
|
500 |
+
|
501 |
+
visit(sys1.name)
|
502 |
+
|
503 |
+
while True:
|
504 |
+
min_distance = max(path_dict.values(), key=lambda x:x[0])[0]
|
505 |
+
newsys = None
|
506 |
+
for sys, lst in path_dict.items():
|
507 |
+
if 0 < lst[0] <= min_distance and not lst[2]:
|
508 |
+
min_distance = lst[0]
|
509 |
+
newsys = sys
|
510 |
+
if newsys is None:
|
511 |
+
break
|
512 |
+
visit(newsys)
|
513 |
+
|
514 |
+
result = path_dict[sys2.name][1]
|
515 |
+
result.append(sys2.name)
|
516 |
+
|
517 |
+
if result == [sys2.name]:
|
518 |
+
raise KeyError("Two coordinate systems are not connected.")
|
519 |
+
return result
|
520 |
+
|
521 |
+
def connect_to(self, to_sys, from_coords, to_exprs, inverse=True, fill_in_gaps=False):
|
522 |
+
sympy_deprecation_warning(
|
523 |
+
"""
|
524 |
+
The CoordSystem.connect_to() method is deprecated. Instead,
|
525 |
+
generate a new instance of CoordSystem with the 'relations'
|
526 |
+
keyword argument (CoordSystem classes are now immutable).
|
527 |
+
""",
|
528 |
+
deprecated_since_version="1.7",
|
529 |
+
active_deprecations_target="deprecated-diffgeom-mutable",
|
530 |
+
)
|
531 |
+
|
532 |
+
from_coords, to_exprs = dummyfy(from_coords, to_exprs)
|
533 |
+
self.transforms[to_sys] = Matrix(from_coords), Matrix(to_exprs)
|
534 |
+
|
535 |
+
if inverse:
|
536 |
+
to_sys.transforms[self] = self._inv_transf(from_coords, to_exprs)
|
537 |
+
|
538 |
+
if fill_in_gaps:
|
539 |
+
self._fill_gaps_in_transformations()
|
540 |
+
|
541 |
+
@staticmethod
|
542 |
+
def _inv_transf(from_coords, to_exprs):
|
543 |
+
# Will be removed when connect_to is removed
|
544 |
+
inv_from = [i.as_dummy() for i in from_coords]
|
545 |
+
inv_to = solve(
|
546 |
+
[t[0] - t[1] for t in zip(inv_from, to_exprs)],
|
547 |
+
list(from_coords), dict=True)[0]
|
548 |
+
inv_to = [inv_to[fc] for fc in from_coords]
|
549 |
+
return Matrix(inv_from), Matrix(inv_to)
|
550 |
+
|
551 |
+
@staticmethod
|
552 |
+
def _fill_gaps_in_transformations():
|
553 |
+
# Will be removed when connect_to is removed
|
554 |
+
raise NotImplementedError
|
555 |
+
|
556 |
+
##########################################################################
|
557 |
+
# Coordinate transformations
|
558 |
+
##########################################################################
|
559 |
+
|
560 |
+
def transform(self, sys, coordinates=None):
|
561 |
+
"""
|
562 |
+
Return the result of coordinate transformation from *self* to *sys*.
|
563 |
+
If coordinates are not given, coordinate symbols of *self* are used.
|
564 |
+
|
565 |
+
Parameters
|
566 |
+
==========
|
567 |
+
|
568 |
+
sys : CoordSystem
|
569 |
+
|
570 |
+
coordinates : Any iterable, optional.
|
571 |
+
|
572 |
+
Returns
|
573 |
+
=======
|
574 |
+
|
575 |
+
sympy.ImmutableDenseMatrix containing CoordinateSymbol
|
576 |
+
|
577 |
+
Examples
|
578 |
+
========
|
579 |
+
|
580 |
+
>>> from sympy.diffgeom.rn import R2_r, R2_p
|
581 |
+
>>> R2_r.transform(R2_p)
|
582 |
+
Matrix([
|
583 |
+
[sqrt(x**2 + y**2)],
|
584 |
+
[ atan2(y, x)]])
|
585 |
+
>>> R2_r.transform(R2_p, [0, 1])
|
586 |
+
Matrix([
|
587 |
+
[ 1],
|
588 |
+
[pi/2]])
|
589 |
+
|
590 |
+
"""
|
591 |
+
if coordinates is None:
|
592 |
+
coordinates = self.symbols
|
593 |
+
if self != sys:
|
594 |
+
transf = self.transformation(sys)
|
595 |
+
coordinates = transf(*coordinates)
|
596 |
+
else:
|
597 |
+
coordinates = Matrix(coordinates)
|
598 |
+
return coordinates
|
599 |
+
|
600 |
+
def coord_tuple_transform_to(self, to_sys, coords):
|
601 |
+
"""Transform ``coords`` to coord system ``to_sys``."""
|
602 |
+
sympy_deprecation_warning(
|
603 |
+
"""
|
604 |
+
The CoordSystem.coord_tuple_transform_to() method is deprecated.
|
605 |
+
Use the CoordSystem.transform() method instead.
|
606 |
+
""",
|
607 |
+
deprecated_since_version="1.7",
|
608 |
+
active_deprecations_target="deprecated-diffgeom-mutable",
|
609 |
+
)
|
610 |
+
|
611 |
+
coords = Matrix(coords)
|
612 |
+
if self != to_sys:
|
613 |
+
with ignore_warnings(SymPyDeprecationWarning):
|
614 |
+
transf = self.transforms[to_sys]
|
615 |
+
coords = transf[1].subs(list(zip(transf[0], coords)))
|
616 |
+
return coords
|
617 |
+
|
618 |
+
def jacobian(self, sys, coordinates=None):
|
619 |
+
"""
|
620 |
+
Return the jacobian matrix of a transformation on given coordinates.
|
621 |
+
If coordinates are not given, coordinate symbols of *self* are used.
|
622 |
+
|
623 |
+
Parameters
|
624 |
+
==========
|
625 |
+
|
626 |
+
sys : CoordSystem
|
627 |
+
|
628 |
+
coordinates : Any iterable, optional.
|
629 |
+
|
630 |
+
Returns
|
631 |
+
=======
|
632 |
+
|
633 |
+
sympy.ImmutableDenseMatrix
|
634 |
+
|
635 |
+
Examples
|
636 |
+
========
|
637 |
+
|
638 |
+
>>> from sympy.diffgeom.rn import R2_r, R2_p
|
639 |
+
>>> R2_p.jacobian(R2_r)
|
640 |
+
Matrix([
|
641 |
+
[cos(theta), -rho*sin(theta)],
|
642 |
+
[sin(theta), rho*cos(theta)]])
|
643 |
+
>>> R2_p.jacobian(R2_r, [1, 0])
|
644 |
+
Matrix([
|
645 |
+
[1, 0],
|
646 |
+
[0, 1]])
|
647 |
+
|
648 |
+
"""
|
649 |
+
result = self.transform(sys).jacobian(self.symbols)
|
650 |
+
if coordinates is not None:
|
651 |
+
result = result.subs(list(zip(self.symbols, coordinates)))
|
652 |
+
return result
|
653 |
+
jacobian_matrix = jacobian
|
654 |
+
|
655 |
+
def jacobian_determinant(self, sys, coordinates=None):
|
656 |
+
"""
|
657 |
+
Return the jacobian determinant of a transformation on given
|
658 |
+
coordinates. If coordinates are not given, coordinate symbols of *self*
|
659 |
+
are used.
|
660 |
+
|
661 |
+
Parameters
|
662 |
+
==========
|
663 |
+
|
664 |
+
sys : CoordSystem
|
665 |
+
|
666 |
+
coordinates : Any iterable, optional.
|
667 |
+
|
668 |
+
Returns
|
669 |
+
=======
|
670 |
+
|
671 |
+
sympy.Expr
|
672 |
+
|
673 |
+
Examples
|
674 |
+
========
|
675 |
+
|
676 |
+
>>> from sympy.diffgeom.rn import R2_r, R2_p
|
677 |
+
>>> R2_r.jacobian_determinant(R2_p)
|
678 |
+
1/sqrt(x**2 + y**2)
|
679 |
+
>>> R2_r.jacobian_determinant(R2_p, [1, 0])
|
680 |
+
1
|
681 |
+
|
682 |
+
"""
|
683 |
+
return self.jacobian(sys, coordinates).det()
|
684 |
+
|
685 |
+
|
686 |
+
##########################################################################
|
687 |
+
# Points
|
688 |
+
##########################################################################
|
689 |
+
|
690 |
+
def point(self, coords):
|
691 |
+
"""Create a ``Point`` with coordinates given in this coord system."""
|
692 |
+
return Point(self, coords)
|
693 |
+
|
694 |
+
def point_to_coords(self, point):
|
695 |
+
"""Calculate the coordinates of a point in this coord system."""
|
696 |
+
return point.coords(self)
|
697 |
+
|
698 |
+
##########################################################################
|
699 |
+
# Base fields.
|
700 |
+
##########################################################################
|
701 |
+
|
702 |
+
def base_scalar(self, coord_index):
|
703 |
+
"""Return ``BaseScalarField`` that takes a point and returns one of the coordinates."""
|
704 |
+
return BaseScalarField(self, coord_index)
|
705 |
+
coord_function = base_scalar
|
706 |
+
|
707 |
+
def base_scalars(self):
|
708 |
+
"""Returns a list of all coordinate functions.
|
709 |
+
For more details see the ``base_scalar`` method of this class."""
|
710 |
+
return [self.base_scalar(i) for i in range(self.dim)]
|
711 |
+
coord_functions = base_scalars
|
712 |
+
|
713 |
+
def base_vector(self, coord_index):
|
714 |
+
"""Return a basis vector field.
|
715 |
+
The basis vector field for this coordinate system. It is also an
|
716 |
+
operator on scalar fields."""
|
717 |
+
return BaseVectorField(self, coord_index)
|
718 |
+
|
719 |
+
def base_vectors(self):
|
720 |
+
"""Returns a list of all base vectors.
|
721 |
+
For more details see the ``base_vector`` method of this class."""
|
722 |
+
return [self.base_vector(i) for i in range(self.dim)]
|
723 |
+
|
724 |
+
def base_oneform(self, coord_index):
|
725 |
+
"""Return a basis 1-form field.
|
726 |
+
The basis one-form field for this coordinate system. It is also an
|
727 |
+
operator on vector fields."""
|
728 |
+
return Differential(self.coord_function(coord_index))
|
729 |
+
|
730 |
+
def base_oneforms(self):
|
731 |
+
"""Returns a list of all base oneforms.
|
732 |
+
For more details see the ``base_oneform`` method of this class."""
|
733 |
+
return [self.base_oneform(i) for i in range(self.dim)]
|
734 |
+
|
735 |
+
|
736 |
+
class CoordinateSymbol(Symbol):
|
737 |
+
"""A symbol which denotes an abstract value of i-th coordinate of
|
738 |
+
the coordinate system with given context.
|
739 |
+
|
740 |
+
Explanation
|
741 |
+
===========
|
742 |
+
|
743 |
+
Each coordinates in coordinate system are represented by unique symbol,
|
744 |
+
such as x, y, z in Cartesian coordinate system.
|
745 |
+
|
746 |
+
You may not construct this class directly. Instead, use `symbols` method
|
747 |
+
of CoordSystem.
|
748 |
+
|
749 |
+
Parameters
|
750 |
+
==========
|
751 |
+
|
752 |
+
coord_sys : CoordSystem
|
753 |
+
|
754 |
+
index : integer
|
755 |
+
|
756 |
+
Examples
|
757 |
+
========
|
758 |
+
|
759 |
+
>>> from sympy import symbols, Lambda, Matrix, sqrt, atan2, cos, sin
|
760 |
+
>>> from sympy.diffgeom import Manifold, Patch, CoordSystem
|
761 |
+
>>> m = Manifold('M', 2)
|
762 |
+
>>> p = Patch('P', m)
|
763 |
+
>>> x, y = symbols('x y', real=True)
|
764 |
+
>>> r, theta = symbols('r theta', nonnegative=True)
|
765 |
+
>>> relation_dict = {
|
766 |
+
... ('Car2D', 'Pol'): Lambda((x, y), Matrix([sqrt(x**2 + y**2), atan2(y, x)])),
|
767 |
+
... ('Pol', 'Car2D'): Lambda((r, theta), Matrix([r*cos(theta), r*sin(theta)]))
|
768 |
+
... }
|
769 |
+
>>> Car2D = CoordSystem('Car2D', p, [x, y], relation_dict)
|
770 |
+
>>> Pol = CoordSystem('Pol', p, [r, theta], relation_dict)
|
771 |
+
>>> x, y = Car2D.symbols
|
772 |
+
|
773 |
+
``CoordinateSymbol`` contains its coordinate symbol and index.
|
774 |
+
|
775 |
+
>>> x.name
|
776 |
+
'x'
|
777 |
+
>>> x.coord_sys == Car2D
|
778 |
+
True
|
779 |
+
>>> x.index
|
780 |
+
0
|
781 |
+
>>> x.is_real
|
782 |
+
True
|
783 |
+
|
784 |
+
You can transform ``CoordinateSymbol`` into other coordinate system using
|
785 |
+
``rewrite()`` method.
|
786 |
+
|
787 |
+
>>> x.rewrite(Pol)
|
788 |
+
r*cos(theta)
|
789 |
+
>>> sqrt(x**2 + y**2).rewrite(Pol).simplify()
|
790 |
+
r
|
791 |
+
|
792 |
+
"""
|
793 |
+
def __new__(cls, coord_sys, index, **assumptions):
|
794 |
+
name = coord_sys.args[2][index].name
|
795 |
+
obj = super().__new__(cls, name, **assumptions)
|
796 |
+
obj.coord_sys = coord_sys
|
797 |
+
obj.index = index
|
798 |
+
return obj
|
799 |
+
|
800 |
+
def __getnewargs__(self):
|
801 |
+
return (self.coord_sys, self.index)
|
802 |
+
|
803 |
+
def _hashable_content(self):
|
804 |
+
return (
|
805 |
+
self.coord_sys, self.index
|
806 |
+
) + tuple(sorted(self.assumptions0.items()))
|
807 |
+
|
808 |
+
def _eval_rewrite(self, rule, args, **hints):
|
809 |
+
if isinstance(rule, CoordSystem):
|
810 |
+
return rule.transform(self.coord_sys)[self.index]
|
811 |
+
return super()._eval_rewrite(rule, args, **hints)
|
812 |
+
|
813 |
+
|
814 |
+
class Point(Basic):
|
815 |
+
"""Point defined in a coordinate system.
|
816 |
+
|
817 |
+
Explanation
|
818 |
+
===========
|
819 |
+
|
820 |
+
Mathematically, point is defined in the manifold and does not have any coordinates
|
821 |
+
by itself. Coordinate system is what imbues the coordinates to the point by coordinate
|
822 |
+
chart. However, due to the difficulty of realizing such logic, you must supply
|
823 |
+
a coordinate system and coordinates to define a Point here.
|
824 |
+
|
825 |
+
The usage of this object after its definition is independent of the
|
826 |
+
coordinate system that was used in order to define it, however due to
|
827 |
+
limitations in the simplification routines you can arrive at complicated
|
828 |
+
expressions if you use inappropriate coordinate systems.
|
829 |
+
|
830 |
+
Parameters
|
831 |
+
==========
|
832 |
+
|
833 |
+
coord_sys : CoordSystem
|
834 |
+
|
835 |
+
coords : list
|
836 |
+
The coordinates of the point.
|
837 |
+
|
838 |
+
Examples
|
839 |
+
========
|
840 |
+
|
841 |
+
>>> from sympy import pi
|
842 |
+
>>> from sympy.diffgeom import Point
|
843 |
+
>>> from sympy.diffgeom.rn import R2, R2_r, R2_p
|
844 |
+
>>> rho, theta = R2_p.symbols
|
845 |
+
|
846 |
+
>>> p = Point(R2_p, [rho, 3*pi/4])
|
847 |
+
|
848 |
+
>>> p.manifold == R2
|
849 |
+
True
|
850 |
+
|
851 |
+
>>> p.coords()
|
852 |
+
Matrix([
|
853 |
+
[ rho],
|
854 |
+
[3*pi/4]])
|
855 |
+
>>> p.coords(R2_r)
|
856 |
+
Matrix([
|
857 |
+
[-sqrt(2)*rho/2],
|
858 |
+
[ sqrt(2)*rho/2]])
|
859 |
+
|
860 |
+
"""
|
861 |
+
|
862 |
+
def __new__(cls, coord_sys, coords, **kwargs):
|
863 |
+
coords = Matrix(coords)
|
864 |
+
obj = super().__new__(cls, coord_sys, coords)
|
865 |
+
obj._coord_sys = coord_sys
|
866 |
+
obj._coords = coords
|
867 |
+
return obj
|
868 |
+
|
869 |
+
@property
|
870 |
+
def patch(self):
|
871 |
+
return self._coord_sys.patch
|
872 |
+
|
873 |
+
@property
|
874 |
+
def manifold(self):
|
875 |
+
return self._coord_sys.manifold
|
876 |
+
|
877 |
+
@property
|
878 |
+
def dim(self):
|
879 |
+
return self.manifold.dim
|
880 |
+
|
881 |
+
def coords(self, sys=None):
|
882 |
+
"""
|
883 |
+
Coordinates of the point in given coordinate system. If coordinate system
|
884 |
+
is not passed, it returns the coordinates in the coordinate system in which
|
885 |
+
the poin was defined.
|
886 |
+
"""
|
887 |
+
if sys is None:
|
888 |
+
return self._coords
|
889 |
+
else:
|
890 |
+
return self._coord_sys.transform(sys, self._coords)
|
891 |
+
|
892 |
+
@property
|
893 |
+
def free_symbols(self):
|
894 |
+
return self._coords.free_symbols
|
895 |
+
|
896 |
+
|
897 |
+
class BaseScalarField(Expr):
|
898 |
+
"""Base scalar field over a manifold for a given coordinate system.
|
899 |
+
|
900 |
+
Explanation
|
901 |
+
===========
|
902 |
+
|
903 |
+
A scalar field takes a point as an argument and returns a scalar.
|
904 |
+
A base scalar field of a coordinate system takes a point and returns one of
|
905 |
+
the coordinates of that point in the coordinate system in question.
|
906 |
+
|
907 |
+
To define a scalar field you need to choose the coordinate system and the
|
908 |
+
index of the coordinate.
|
909 |
+
|
910 |
+
The use of the scalar field after its definition is independent of the
|
911 |
+
coordinate system in which it was defined, however due to limitations in
|
912 |
+
the simplification routines you may arrive at more complicated
|
913 |
+
expression if you use unappropriate coordinate systems.
|
914 |
+
You can build complicated scalar fields by just building up SymPy
|
915 |
+
expressions containing ``BaseScalarField`` instances.
|
916 |
+
|
917 |
+
Parameters
|
918 |
+
==========
|
919 |
+
|
920 |
+
coord_sys : CoordSystem
|
921 |
+
|
922 |
+
index : integer
|
923 |
+
|
924 |
+
Examples
|
925 |
+
========
|
926 |
+
|
927 |
+
>>> from sympy import Function, pi
|
928 |
+
>>> from sympy.diffgeom import BaseScalarField
|
929 |
+
>>> from sympy.diffgeom.rn import R2_r, R2_p
|
930 |
+
>>> rho, _ = R2_p.symbols
|
931 |
+
>>> point = R2_p.point([rho, 0])
|
932 |
+
>>> fx, fy = R2_r.base_scalars()
|
933 |
+
>>> ftheta = BaseScalarField(R2_r, 1)
|
934 |
+
|
935 |
+
>>> fx(point)
|
936 |
+
rho
|
937 |
+
>>> fy(point)
|
938 |
+
0
|
939 |
+
|
940 |
+
>>> (fx**2+fy**2).rcall(point)
|
941 |
+
rho**2
|
942 |
+
|
943 |
+
>>> g = Function('g')
|
944 |
+
>>> fg = g(ftheta-pi)
|
945 |
+
>>> fg.rcall(point)
|
946 |
+
g(-pi)
|
947 |
+
|
948 |
+
"""
|
949 |
+
|
950 |
+
is_commutative = True
|
951 |
+
|
952 |
+
def __new__(cls, coord_sys, index, **kwargs):
|
953 |
+
index = _sympify(index)
|
954 |
+
obj = super().__new__(cls, coord_sys, index)
|
955 |
+
obj._coord_sys = coord_sys
|
956 |
+
obj._index = index
|
957 |
+
return obj
|
958 |
+
|
959 |
+
@property
|
960 |
+
def coord_sys(self):
|
961 |
+
return self.args[0]
|
962 |
+
|
963 |
+
@property
|
964 |
+
def index(self):
|
965 |
+
return self.args[1]
|
966 |
+
|
967 |
+
@property
|
968 |
+
def patch(self):
|
969 |
+
return self.coord_sys.patch
|
970 |
+
|
971 |
+
@property
|
972 |
+
def manifold(self):
|
973 |
+
return self.coord_sys.manifold
|
974 |
+
|
975 |
+
@property
|
976 |
+
def dim(self):
|
977 |
+
return self.manifold.dim
|
978 |
+
|
979 |
+
def __call__(self, *args):
|
980 |
+
"""Evaluating the field at a point or doing nothing.
|
981 |
+
If the argument is a ``Point`` instance, the field is evaluated at that
|
982 |
+
point. The field is returned itself if the argument is any other
|
983 |
+
object. It is so in order to have working recursive calling mechanics
|
984 |
+
for all fields (check the ``__call__`` method of ``Expr``).
|
985 |
+
"""
|
986 |
+
point = args[0]
|
987 |
+
if len(args) != 1 or not isinstance(point, Point):
|
988 |
+
return self
|
989 |
+
coords = point.coords(self._coord_sys)
|
990 |
+
# XXX Calling doit is necessary with all the Subs expressions
|
991 |
+
# XXX Calling simplify is necessary with all the trig expressions
|
992 |
+
return simplify(coords[self._index]).doit()
|
993 |
+
|
994 |
+
# XXX Workaround for limitations on the content of args
|
995 |
+
free_symbols: set[Any] = set()
|
996 |
+
|
997 |
+
|
998 |
+
class BaseVectorField(Expr):
|
999 |
+
r"""Base vector field over a manifold for a given coordinate system.
|
1000 |
+
|
1001 |
+
Explanation
|
1002 |
+
===========
|
1003 |
+
|
1004 |
+
A vector field is an operator taking a scalar field and returning a
|
1005 |
+
directional derivative (which is also a scalar field).
|
1006 |
+
A base vector field is the same type of operator, however the derivation is
|
1007 |
+
specifically done with respect to a chosen coordinate.
|
1008 |
+
|
1009 |
+
To define a base vector field you need to choose the coordinate system and
|
1010 |
+
the index of the coordinate.
|
1011 |
+
|
1012 |
+
The use of the vector field after its definition is independent of the
|
1013 |
+
coordinate system in which it was defined, however due to limitations in the
|
1014 |
+
simplification routines you may arrive at more complicated expression if you
|
1015 |
+
use unappropriate coordinate systems.
|
1016 |
+
|
1017 |
+
Parameters
|
1018 |
+
==========
|
1019 |
+
coord_sys : CoordSystem
|
1020 |
+
|
1021 |
+
index : integer
|
1022 |
+
|
1023 |
+
Examples
|
1024 |
+
========
|
1025 |
+
|
1026 |
+
>>> from sympy import Function
|
1027 |
+
>>> from sympy.diffgeom.rn import R2_p, R2_r
|
1028 |
+
>>> from sympy.diffgeom import BaseVectorField
|
1029 |
+
>>> from sympy import pprint
|
1030 |
+
|
1031 |
+
>>> x, y = R2_r.symbols
|
1032 |
+
>>> rho, theta = R2_p.symbols
|
1033 |
+
>>> fx, fy = R2_r.base_scalars()
|
1034 |
+
>>> point_p = R2_p.point([rho, theta])
|
1035 |
+
>>> point_r = R2_r.point([x, y])
|
1036 |
+
|
1037 |
+
>>> g = Function('g')
|
1038 |
+
>>> s_field = g(fx, fy)
|
1039 |
+
|
1040 |
+
>>> v = BaseVectorField(R2_r, 1)
|
1041 |
+
>>> pprint(v(s_field))
|
1042 |
+
/ d \|
|
1043 |
+
|---(g(x, xi))||
|
1044 |
+
\dxi /|xi=y
|
1045 |
+
>>> pprint(v(s_field).rcall(point_r).doit())
|
1046 |
+
d
|
1047 |
+
--(g(x, y))
|
1048 |
+
dy
|
1049 |
+
>>> pprint(v(s_field).rcall(point_p))
|
1050 |
+
/ d \|
|
1051 |
+
|---(g(rho*cos(theta), xi))||
|
1052 |
+
\dxi /|xi=rho*sin(theta)
|
1053 |
+
|
1054 |
+
"""
|
1055 |
+
|
1056 |
+
is_commutative = False
|
1057 |
+
|
1058 |
+
def __new__(cls, coord_sys, index, **kwargs):
|
1059 |
+
index = _sympify(index)
|
1060 |
+
obj = super().__new__(cls, coord_sys, index)
|
1061 |
+
obj._coord_sys = coord_sys
|
1062 |
+
obj._index = index
|
1063 |
+
return obj
|
1064 |
+
|
1065 |
+
@property
|
1066 |
+
def coord_sys(self):
|
1067 |
+
return self.args[0]
|
1068 |
+
|
1069 |
+
@property
|
1070 |
+
def index(self):
|
1071 |
+
return self.args[1]
|
1072 |
+
|
1073 |
+
@property
|
1074 |
+
def patch(self):
|
1075 |
+
return self.coord_sys.patch
|
1076 |
+
|
1077 |
+
@property
|
1078 |
+
def manifold(self):
|
1079 |
+
return self.coord_sys.manifold
|
1080 |
+
|
1081 |
+
@property
|
1082 |
+
def dim(self):
|
1083 |
+
return self.manifold.dim
|
1084 |
+
|
1085 |
+
def __call__(self, scalar_field):
|
1086 |
+
"""Apply on a scalar field.
|
1087 |
+
The action of a vector field on a scalar field is a directional
|
1088 |
+
differentiation.
|
1089 |
+
If the argument is not a scalar field an error is raised.
|
1090 |
+
"""
|
1091 |
+
if covariant_order(scalar_field) or contravariant_order(scalar_field):
|
1092 |
+
raise ValueError('Only scalar fields can be supplied as arguments to vector fields.')
|
1093 |
+
|
1094 |
+
if scalar_field is None:
|
1095 |
+
return self
|
1096 |
+
|
1097 |
+
base_scalars = list(scalar_field.atoms(BaseScalarField))
|
1098 |
+
|
1099 |
+
# First step: e_x(x+r**2) -> e_x(x) + 2*r*e_x(r)
|
1100 |
+
d_var = self._coord_sys._dummy
|
1101 |
+
# TODO: you need a real dummy function for the next line
|
1102 |
+
d_funcs = [Function('_#_%s' % i)(d_var) for i,
|
1103 |
+
b in enumerate(base_scalars)]
|
1104 |
+
d_result = scalar_field.subs(list(zip(base_scalars, d_funcs)))
|
1105 |
+
d_result = d_result.diff(d_var)
|
1106 |
+
|
1107 |
+
# Second step: e_x(x) -> 1 and e_x(r) -> cos(atan2(x, y))
|
1108 |
+
coords = self._coord_sys.symbols
|
1109 |
+
d_funcs_deriv = [f.diff(d_var) for f in d_funcs]
|
1110 |
+
d_funcs_deriv_sub = []
|
1111 |
+
for b in base_scalars:
|
1112 |
+
jac = self._coord_sys.jacobian(b._coord_sys, coords)
|
1113 |
+
d_funcs_deriv_sub.append(jac[b._index, self._index])
|
1114 |
+
d_result = d_result.subs(list(zip(d_funcs_deriv, d_funcs_deriv_sub)))
|
1115 |
+
|
1116 |
+
# Remove the dummies
|
1117 |
+
result = d_result.subs(list(zip(d_funcs, base_scalars)))
|
1118 |
+
result = result.subs(list(zip(coords, self._coord_sys.coord_functions())))
|
1119 |
+
return result.doit()
|
1120 |
+
|
1121 |
+
|
1122 |
+
def _find_coords(expr):
|
1123 |
+
# Finds CoordinateSystems existing in expr
|
1124 |
+
fields = expr.atoms(BaseScalarField, BaseVectorField)
|
1125 |
+
result = set()
|
1126 |
+
for f in fields:
|
1127 |
+
result.add(f._coord_sys)
|
1128 |
+
return result
|
1129 |
+
|
1130 |
+
|
1131 |
+
class Commutator(Expr):
|
1132 |
+
r"""Commutator of two vector fields.
|
1133 |
+
|
1134 |
+
Explanation
|
1135 |
+
===========
|
1136 |
+
|
1137 |
+
The commutator of two vector fields `v_1` and `v_2` is defined as the
|
1138 |
+
vector field `[v_1, v_2]` that evaluated on each scalar field `f` is equal
|
1139 |
+
to `v_1(v_2(f)) - v_2(v_1(f))`.
|
1140 |
+
|
1141 |
+
Examples
|
1142 |
+
========
|
1143 |
+
|
1144 |
+
|
1145 |
+
>>> from sympy.diffgeom.rn import R2_p, R2_r
|
1146 |
+
>>> from sympy.diffgeom import Commutator
|
1147 |
+
>>> from sympy import simplify
|
1148 |
+
|
1149 |
+
>>> fx, fy = R2_r.base_scalars()
|
1150 |
+
>>> e_x, e_y = R2_r.base_vectors()
|
1151 |
+
>>> e_r = R2_p.base_vector(0)
|
1152 |
+
|
1153 |
+
>>> c_xy = Commutator(e_x, e_y)
|
1154 |
+
>>> c_xr = Commutator(e_x, e_r)
|
1155 |
+
>>> c_xy
|
1156 |
+
0
|
1157 |
+
|
1158 |
+
Unfortunately, the current code is not able to compute everything:
|
1159 |
+
|
1160 |
+
>>> c_xr
|
1161 |
+
Commutator(e_x, e_rho)
|
1162 |
+
>>> simplify(c_xr(fy**2))
|
1163 |
+
-2*cos(theta)*y**2/(x**2 + y**2)
|
1164 |
+
|
1165 |
+
"""
|
1166 |
+
def __new__(cls, v1, v2):
|
1167 |
+
if (covariant_order(v1) or contravariant_order(v1) != 1
|
1168 |
+
or covariant_order(v2) or contravariant_order(v2) != 1):
|
1169 |
+
raise ValueError(
|
1170 |
+
'Only commutators of vector fields are supported.')
|
1171 |
+
if v1 == v2:
|
1172 |
+
return S.Zero
|
1173 |
+
coord_sys = set().union(*[_find_coords(v) for v in (v1, v2)])
|
1174 |
+
if len(coord_sys) == 1:
|
1175 |
+
# Only one coordinate systems is used, hence it is easy enough to
|
1176 |
+
# actually evaluate the commutator.
|
1177 |
+
if all(isinstance(v, BaseVectorField) for v in (v1, v2)):
|
1178 |
+
return S.Zero
|
1179 |
+
bases_1, bases_2 = [list(v.atoms(BaseVectorField))
|
1180 |
+
for v in (v1, v2)]
|
1181 |
+
coeffs_1 = [v1.expand().coeff(b) for b in bases_1]
|
1182 |
+
coeffs_2 = [v2.expand().coeff(b) for b in bases_2]
|
1183 |
+
res = 0
|
1184 |
+
for c1, b1 in zip(coeffs_1, bases_1):
|
1185 |
+
for c2, b2 in zip(coeffs_2, bases_2):
|
1186 |
+
res += c1*b1(c2)*b2 - c2*b2(c1)*b1
|
1187 |
+
return res
|
1188 |
+
else:
|
1189 |
+
obj = super().__new__(cls, v1, v2)
|
1190 |
+
obj._v1 = v1 # deprecated assignment
|
1191 |
+
obj._v2 = v2 # deprecated assignment
|
1192 |
+
return obj
|
1193 |
+
|
1194 |
+
@property
|
1195 |
+
def v1(self):
|
1196 |
+
return self.args[0]
|
1197 |
+
|
1198 |
+
@property
|
1199 |
+
def v2(self):
|
1200 |
+
return self.args[1]
|
1201 |
+
|
1202 |
+
def __call__(self, scalar_field):
|
1203 |
+
"""Apply on a scalar field.
|
1204 |
+
If the argument is not a scalar field an error is raised.
|
1205 |
+
"""
|
1206 |
+
return self.v1(self.v2(scalar_field)) - self.v2(self.v1(scalar_field))
|
1207 |
+
|
1208 |
+
|
1209 |
+
class Differential(Expr):
|
1210 |
+
r"""Return the differential (exterior derivative) of a form field.
|
1211 |
+
|
1212 |
+
Explanation
|
1213 |
+
===========
|
1214 |
+
|
1215 |
+
The differential of a form (i.e. the exterior derivative) has a complicated
|
1216 |
+
definition in the general case.
|
1217 |
+
The differential `df` of the 0-form `f` is defined for any vector field `v`
|
1218 |
+
as `df(v) = v(f)`.
|
1219 |
+
|
1220 |
+
Examples
|
1221 |
+
========
|
1222 |
+
|
1223 |
+
>>> from sympy import Function
|
1224 |
+
>>> from sympy.diffgeom.rn import R2_r
|
1225 |
+
>>> from sympy.diffgeom import Differential
|
1226 |
+
>>> from sympy import pprint
|
1227 |
+
|
1228 |
+
>>> fx, fy = R2_r.base_scalars()
|
1229 |
+
>>> e_x, e_y = R2_r.base_vectors()
|
1230 |
+
>>> g = Function('g')
|
1231 |
+
>>> s_field = g(fx, fy)
|
1232 |
+
>>> dg = Differential(s_field)
|
1233 |
+
|
1234 |
+
>>> dg
|
1235 |
+
d(g(x, y))
|
1236 |
+
>>> pprint(dg(e_x))
|
1237 |
+
/ d \|
|
1238 |
+
|---(g(xi, y))||
|
1239 |
+
\dxi /|xi=x
|
1240 |
+
>>> pprint(dg(e_y))
|
1241 |
+
/ d \|
|
1242 |
+
|---(g(x, xi))||
|
1243 |
+
\dxi /|xi=y
|
1244 |
+
|
1245 |
+
Applying the exterior derivative operator twice always results in:
|
1246 |
+
|
1247 |
+
>>> Differential(dg)
|
1248 |
+
0
|
1249 |
+
"""
|
1250 |
+
|
1251 |
+
is_commutative = False
|
1252 |
+
|
1253 |
+
def __new__(cls, form_field):
|
1254 |
+
if contravariant_order(form_field):
|
1255 |
+
raise ValueError(
|
1256 |
+
'A vector field was supplied as an argument to Differential.')
|
1257 |
+
if isinstance(form_field, Differential):
|
1258 |
+
return S.Zero
|
1259 |
+
else:
|
1260 |
+
obj = super().__new__(cls, form_field)
|
1261 |
+
obj._form_field = form_field # deprecated assignment
|
1262 |
+
return obj
|
1263 |
+
|
1264 |
+
@property
|
1265 |
+
def form_field(self):
|
1266 |
+
return self.args[0]
|
1267 |
+
|
1268 |
+
def __call__(self, *vector_fields):
|
1269 |
+
"""Apply on a list of vector_fields.
|
1270 |
+
|
1271 |
+
Explanation
|
1272 |
+
===========
|
1273 |
+
|
1274 |
+
If the number of vector fields supplied is not equal to 1 + the order of
|
1275 |
+
the form field inside the differential the result is undefined.
|
1276 |
+
|
1277 |
+
For 1-forms (i.e. differentials of scalar fields) the evaluation is
|
1278 |
+
done as `df(v)=v(f)`. However if `v` is ``None`` instead of a vector
|
1279 |
+
field, the differential is returned unchanged. This is done in order to
|
1280 |
+
permit partial contractions for higher forms.
|
1281 |
+
|
1282 |
+
In the general case the evaluation is done by applying the form field
|
1283 |
+
inside the differential on a list with one less elements than the number
|
1284 |
+
of elements in the original list. Lowering the number of vector fields
|
1285 |
+
is achieved through replacing each pair of fields by their
|
1286 |
+
commutator.
|
1287 |
+
|
1288 |
+
If the arguments are not vectors or ``None``s an error is raised.
|
1289 |
+
"""
|
1290 |
+
if any((contravariant_order(a) != 1 or covariant_order(a)) and a is not None
|
1291 |
+
for a in vector_fields):
|
1292 |
+
raise ValueError('The arguments supplied to Differential should be vector fields or Nones.')
|
1293 |
+
k = len(vector_fields)
|
1294 |
+
if k == 1:
|
1295 |
+
if vector_fields[0]:
|
1296 |
+
return vector_fields[0].rcall(self._form_field)
|
1297 |
+
return self
|
1298 |
+
else:
|
1299 |
+
# For higher form it is more complicated:
|
1300 |
+
# Invariant formula:
|
1301 |
+
# https://en.wikipedia.org/wiki/Exterior_derivative#Invariant_formula
|
1302 |
+
# df(v1, ... vn) = +/- vi(f(v1..no i..vn))
|
1303 |
+
# +/- f([vi,vj],v1..no i, no j..vn)
|
1304 |
+
f = self._form_field
|
1305 |
+
v = vector_fields
|
1306 |
+
ret = 0
|
1307 |
+
for i in range(k):
|
1308 |
+
t = v[i].rcall(f.rcall(*v[:i] + v[i + 1:]))
|
1309 |
+
ret += (-1)**i*t
|
1310 |
+
for j in range(i + 1, k):
|
1311 |
+
c = Commutator(v[i], v[j])
|
1312 |
+
if c: # TODO this is ugly - the Commutator can be Zero and
|
1313 |
+
# this causes the next line to fail
|
1314 |
+
t = f.rcall(*(c,) + v[:i] + v[i + 1:j] + v[j + 1:])
|
1315 |
+
ret += (-1)**(i + j)*t
|
1316 |
+
return ret
|
1317 |
+
|
1318 |
+
|
1319 |
+
class TensorProduct(Expr):
|
1320 |
+
"""Tensor product of forms.
|
1321 |
+
|
1322 |
+
Explanation
|
1323 |
+
===========
|
1324 |
+
|
1325 |
+
The tensor product permits the creation of multilinear functionals (i.e.
|
1326 |
+
higher order tensors) out of lower order fields (e.g. 1-forms and vector
|
1327 |
+
fields). However, the higher tensors thus created lack the interesting
|
1328 |
+
features provided by the other type of product, the wedge product, namely
|
1329 |
+
they are not antisymmetric and hence are not form fields.
|
1330 |
+
|
1331 |
+
Examples
|
1332 |
+
========
|
1333 |
+
|
1334 |
+
>>> from sympy.diffgeom.rn import R2_r
|
1335 |
+
>>> from sympy.diffgeom import TensorProduct
|
1336 |
+
|
1337 |
+
>>> fx, fy = R2_r.base_scalars()
|
1338 |
+
>>> e_x, e_y = R2_r.base_vectors()
|
1339 |
+
>>> dx, dy = R2_r.base_oneforms()
|
1340 |
+
|
1341 |
+
>>> TensorProduct(dx, dy)(e_x, e_y)
|
1342 |
+
1
|
1343 |
+
>>> TensorProduct(dx, dy)(e_y, e_x)
|
1344 |
+
0
|
1345 |
+
>>> TensorProduct(dx, fx*dy)(fx*e_x, e_y)
|
1346 |
+
x**2
|
1347 |
+
>>> TensorProduct(e_x, e_y)(fx**2, fy**2)
|
1348 |
+
4*x*y
|
1349 |
+
>>> TensorProduct(e_y, dx)(fy)
|
1350 |
+
dx
|
1351 |
+
|
1352 |
+
You can nest tensor products.
|
1353 |
+
|
1354 |
+
>>> tp1 = TensorProduct(dx, dy)
|
1355 |
+
>>> TensorProduct(tp1, dx)(e_x, e_y, e_x)
|
1356 |
+
1
|
1357 |
+
|
1358 |
+
You can make partial contraction for instance when 'raising an index'.
|
1359 |
+
Putting ``None`` in the second argument of ``rcall`` means that the
|
1360 |
+
respective position in the tensor product is left as it is.
|
1361 |
+
|
1362 |
+
>>> TP = TensorProduct
|
1363 |
+
>>> metric = TP(dx, dx) + 3*TP(dy, dy)
|
1364 |
+
>>> metric.rcall(e_y, None)
|
1365 |
+
3*dy
|
1366 |
+
|
1367 |
+
Or automatically pad the args with ``None`` without specifying them.
|
1368 |
+
|
1369 |
+
>>> metric.rcall(e_y)
|
1370 |
+
3*dy
|
1371 |
+
|
1372 |
+
"""
|
1373 |
+
def __new__(cls, *args):
|
1374 |
+
scalar = Mul(*[m for m in args if covariant_order(m) + contravariant_order(m) == 0])
|
1375 |
+
multifields = [m for m in args if covariant_order(m) + contravariant_order(m)]
|
1376 |
+
if multifields:
|
1377 |
+
if len(multifields) == 1:
|
1378 |
+
return scalar*multifields[0]
|
1379 |
+
return scalar*super().__new__(cls, *multifields)
|
1380 |
+
else:
|
1381 |
+
return scalar
|
1382 |
+
|
1383 |
+
def __call__(self, *fields):
|
1384 |
+
"""Apply on a list of fields.
|
1385 |
+
|
1386 |
+
If the number of input fields supplied is not equal to the order of
|
1387 |
+
the tensor product field, the list of arguments is padded with ``None``'s.
|
1388 |
+
|
1389 |
+
The list of arguments is divided in sublists depending on the order of
|
1390 |
+
the forms inside the tensor product. The sublists are provided as
|
1391 |
+
arguments to these forms and the resulting expressions are given to the
|
1392 |
+
constructor of ``TensorProduct``.
|
1393 |
+
|
1394 |
+
"""
|
1395 |
+
tot_order = covariant_order(self) + contravariant_order(self)
|
1396 |
+
tot_args = len(fields)
|
1397 |
+
if tot_args != tot_order:
|
1398 |
+
fields = list(fields) + [None]*(tot_order - tot_args)
|
1399 |
+
orders = [covariant_order(f) + contravariant_order(f) for f in self._args]
|
1400 |
+
indices = [sum(orders[:i + 1]) for i in range(len(orders) - 1)]
|
1401 |
+
fields = [fields[i:j] for i, j in zip([0] + indices, indices + [None])]
|
1402 |
+
multipliers = [t[0].rcall(*t[1]) for t in zip(self._args, fields)]
|
1403 |
+
return TensorProduct(*multipliers)
|
1404 |
+
|
1405 |
+
|
1406 |
+
class WedgeProduct(TensorProduct):
|
1407 |
+
"""Wedge product of forms.
|
1408 |
+
|
1409 |
+
Explanation
|
1410 |
+
===========
|
1411 |
+
|
1412 |
+
In the context of integration only completely antisymmetric forms make
|
1413 |
+
sense. The wedge product permits the creation of such forms.
|
1414 |
+
|
1415 |
+
Examples
|
1416 |
+
========
|
1417 |
+
|
1418 |
+
>>> from sympy.diffgeom.rn import R2_r
|
1419 |
+
>>> from sympy.diffgeom import WedgeProduct
|
1420 |
+
|
1421 |
+
>>> fx, fy = R2_r.base_scalars()
|
1422 |
+
>>> e_x, e_y = R2_r.base_vectors()
|
1423 |
+
>>> dx, dy = R2_r.base_oneforms()
|
1424 |
+
|
1425 |
+
>>> WedgeProduct(dx, dy)(e_x, e_y)
|
1426 |
+
1
|
1427 |
+
>>> WedgeProduct(dx, dy)(e_y, e_x)
|
1428 |
+
-1
|
1429 |
+
>>> WedgeProduct(dx, fx*dy)(fx*e_x, e_y)
|
1430 |
+
x**2
|
1431 |
+
>>> WedgeProduct(e_x, e_y)(fy, None)
|
1432 |
+
-e_x
|
1433 |
+
|
1434 |
+
You can nest wedge products.
|
1435 |
+
|
1436 |
+
>>> wp1 = WedgeProduct(dx, dy)
|
1437 |
+
>>> WedgeProduct(wp1, dx)(e_x, e_y, e_x)
|
1438 |
+
0
|
1439 |
+
|
1440 |
+
"""
|
1441 |
+
# TODO the calculation of signatures is slow
|
1442 |
+
# TODO you do not need all these permutations (neither the prefactor)
|
1443 |
+
def __call__(self, *fields):
|
1444 |
+
"""Apply on a list of vector_fields.
|
1445 |
+
The expression is rewritten internally in terms of tensor products and evaluated."""
|
1446 |
+
orders = (covariant_order(e) + contravariant_order(e) for e in self.args)
|
1447 |
+
mul = 1/Mul(*(factorial(o) for o in orders))
|
1448 |
+
perms = permutations(fields)
|
1449 |
+
perms_par = (Permutation(
|
1450 |
+
p).signature() for p in permutations(range(len(fields))))
|
1451 |
+
tensor_prod = TensorProduct(*self.args)
|
1452 |
+
return mul*Add(*[tensor_prod(*p[0])*p[1] for p in zip(perms, perms_par)])
|
1453 |
+
|
1454 |
+
|
1455 |
+
class LieDerivative(Expr):
|
1456 |
+
"""Lie derivative with respect to a vector field.
|
1457 |
+
|
1458 |
+
Explanation
|
1459 |
+
===========
|
1460 |
+
|
1461 |
+
The transport operator that defines the Lie derivative is the pushforward of
|
1462 |
+
the field to be derived along the integral curve of the field with respect
|
1463 |
+
to which one derives.
|
1464 |
+
|
1465 |
+
Examples
|
1466 |
+
========
|
1467 |
+
|
1468 |
+
>>> from sympy.diffgeom.rn import R2_r, R2_p
|
1469 |
+
>>> from sympy.diffgeom import (LieDerivative, TensorProduct)
|
1470 |
+
|
1471 |
+
>>> fx, fy = R2_r.base_scalars()
|
1472 |
+
>>> e_x, e_y = R2_r.base_vectors()
|
1473 |
+
>>> e_rho, e_theta = R2_p.base_vectors()
|
1474 |
+
>>> dx, dy = R2_r.base_oneforms()
|
1475 |
+
|
1476 |
+
>>> LieDerivative(e_x, fy)
|
1477 |
+
0
|
1478 |
+
>>> LieDerivative(e_x, fx)
|
1479 |
+
1
|
1480 |
+
>>> LieDerivative(e_x, e_x)
|
1481 |
+
0
|
1482 |
+
|
1483 |
+
The Lie derivative of a tensor field by another tensor field is equal to
|
1484 |
+
their commutator:
|
1485 |
+
|
1486 |
+
>>> LieDerivative(e_x, e_rho)
|
1487 |
+
Commutator(e_x, e_rho)
|
1488 |
+
>>> LieDerivative(e_x + e_y, fx)
|
1489 |
+
1
|
1490 |
+
|
1491 |
+
>>> tp = TensorProduct(dx, dy)
|
1492 |
+
>>> LieDerivative(e_x, tp)
|
1493 |
+
LieDerivative(e_x, TensorProduct(dx, dy))
|
1494 |
+
>>> LieDerivative(e_x, tp)
|
1495 |
+
LieDerivative(e_x, TensorProduct(dx, dy))
|
1496 |
+
|
1497 |
+
"""
|
1498 |
+
def __new__(cls, v_field, expr):
|
1499 |
+
expr_form_ord = covariant_order(expr)
|
1500 |
+
if contravariant_order(v_field) != 1 or covariant_order(v_field):
|
1501 |
+
raise ValueError('Lie derivatives are defined only with respect to'
|
1502 |
+
' vector fields. The supplied argument was not a '
|
1503 |
+
'vector field.')
|
1504 |
+
if expr_form_ord > 0:
|
1505 |
+
obj = super().__new__(cls, v_field, expr)
|
1506 |
+
# deprecated assignments
|
1507 |
+
obj._v_field = v_field
|
1508 |
+
obj._expr = expr
|
1509 |
+
return obj
|
1510 |
+
if expr.atoms(BaseVectorField):
|
1511 |
+
return Commutator(v_field, expr)
|
1512 |
+
else:
|
1513 |
+
return v_field.rcall(expr)
|
1514 |
+
|
1515 |
+
@property
|
1516 |
+
def v_field(self):
|
1517 |
+
return self.args[0]
|
1518 |
+
|
1519 |
+
@property
|
1520 |
+
def expr(self):
|
1521 |
+
return self.args[1]
|
1522 |
+
|
1523 |
+
def __call__(self, *args):
|
1524 |
+
v = self.v_field
|
1525 |
+
expr = self.expr
|
1526 |
+
lead_term = v(expr(*args))
|
1527 |
+
rest = Add(*[Mul(*args[:i] + (Commutator(v, args[i]),) + args[i + 1:])
|
1528 |
+
for i in range(len(args))])
|
1529 |
+
return lead_term - rest
|
1530 |
+
|
1531 |
+
|
1532 |
+
class BaseCovarDerivativeOp(Expr):
|
1533 |
+
"""Covariant derivative operator with respect to a base vector.
|
1534 |
+
|
1535 |
+
Examples
|
1536 |
+
========
|
1537 |
+
|
1538 |
+
>>> from sympy.diffgeom.rn import R2_r
|
1539 |
+
>>> from sympy.diffgeom import BaseCovarDerivativeOp
|
1540 |
+
>>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
|
1541 |
+
|
1542 |
+
>>> TP = TensorProduct
|
1543 |
+
>>> fx, fy = R2_r.base_scalars()
|
1544 |
+
>>> e_x, e_y = R2_r.base_vectors()
|
1545 |
+
>>> dx, dy = R2_r.base_oneforms()
|
1546 |
+
|
1547 |
+
>>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy))
|
1548 |
+
>>> ch
|
1549 |
+
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
|
1550 |
+
>>> cvd = BaseCovarDerivativeOp(R2_r, 0, ch)
|
1551 |
+
>>> cvd(fx)
|
1552 |
+
1
|
1553 |
+
>>> cvd(fx*e_x)
|
1554 |
+
e_x
|
1555 |
+
"""
|
1556 |
+
|
1557 |
+
def __new__(cls, coord_sys, index, christoffel):
|
1558 |
+
index = _sympify(index)
|
1559 |
+
christoffel = ImmutableDenseNDimArray(christoffel)
|
1560 |
+
obj = super().__new__(cls, coord_sys, index, christoffel)
|
1561 |
+
# deprecated assignments
|
1562 |
+
obj._coord_sys = coord_sys
|
1563 |
+
obj._index = index
|
1564 |
+
obj._christoffel = christoffel
|
1565 |
+
return obj
|
1566 |
+
|
1567 |
+
@property
|
1568 |
+
def coord_sys(self):
|
1569 |
+
return self.args[0]
|
1570 |
+
|
1571 |
+
@property
|
1572 |
+
def index(self):
|
1573 |
+
return self.args[1]
|
1574 |
+
|
1575 |
+
@property
|
1576 |
+
def christoffel(self):
|
1577 |
+
return self.args[2]
|
1578 |
+
|
1579 |
+
def __call__(self, field):
|
1580 |
+
"""Apply on a scalar field.
|
1581 |
+
|
1582 |
+
The action of a vector field on a scalar field is a directional
|
1583 |
+
differentiation.
|
1584 |
+
If the argument is not a scalar field the behaviour is undefined.
|
1585 |
+
"""
|
1586 |
+
if covariant_order(field) != 0:
|
1587 |
+
raise NotImplementedError()
|
1588 |
+
|
1589 |
+
field = vectors_in_basis(field, self._coord_sys)
|
1590 |
+
|
1591 |
+
wrt_vector = self._coord_sys.base_vector(self._index)
|
1592 |
+
wrt_scalar = self._coord_sys.coord_function(self._index)
|
1593 |
+
vectors = list(field.atoms(BaseVectorField))
|
1594 |
+
|
1595 |
+
# First step: replace all vectors with something susceptible to
|
1596 |
+
# derivation and do the derivation
|
1597 |
+
# TODO: you need a real dummy function for the next line
|
1598 |
+
d_funcs = [Function('_#_%s' % i)(wrt_scalar) for i,
|
1599 |
+
b in enumerate(vectors)]
|
1600 |
+
d_result = field.subs(list(zip(vectors, d_funcs)))
|
1601 |
+
d_result = wrt_vector(d_result)
|
1602 |
+
|
1603 |
+
# Second step: backsubstitute the vectors in
|
1604 |
+
d_result = d_result.subs(list(zip(d_funcs, vectors)))
|
1605 |
+
|
1606 |
+
# Third step: evaluate the derivatives of the vectors
|
1607 |
+
derivs = []
|
1608 |
+
for v in vectors:
|
1609 |
+
d = Add(*[(self._christoffel[k, wrt_vector._index, v._index]
|
1610 |
+
*v._coord_sys.base_vector(k))
|
1611 |
+
for k in range(v._coord_sys.dim)])
|
1612 |
+
derivs.append(d)
|
1613 |
+
to_subs = [wrt_vector(d) for d in d_funcs]
|
1614 |
+
# XXX: This substitution can fail when there are Dummy symbols and the
|
1615 |
+
# cache is disabled: https://github.com/sympy/sympy/issues/17794
|
1616 |
+
result = d_result.subs(list(zip(to_subs, derivs)))
|
1617 |
+
|
1618 |
+
# Remove the dummies
|
1619 |
+
result = result.subs(list(zip(d_funcs, vectors)))
|
1620 |
+
return result.doit()
|
1621 |
+
|
1622 |
+
|
1623 |
+
class CovarDerivativeOp(Expr):
|
1624 |
+
"""Covariant derivative operator.
|
1625 |
+
|
1626 |
+
Examples
|
1627 |
+
========
|
1628 |
+
|
1629 |
+
>>> from sympy.diffgeom.rn import R2_r
|
1630 |
+
>>> from sympy.diffgeom import CovarDerivativeOp
|
1631 |
+
>>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
|
1632 |
+
>>> TP = TensorProduct
|
1633 |
+
>>> fx, fy = R2_r.base_scalars()
|
1634 |
+
>>> e_x, e_y = R2_r.base_vectors()
|
1635 |
+
>>> dx, dy = R2_r.base_oneforms()
|
1636 |
+
>>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy))
|
1637 |
+
|
1638 |
+
>>> ch
|
1639 |
+
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
|
1640 |
+
>>> cvd = CovarDerivativeOp(fx*e_x, ch)
|
1641 |
+
>>> cvd(fx)
|
1642 |
+
x
|
1643 |
+
>>> cvd(fx*e_x)
|
1644 |
+
x*e_x
|
1645 |
+
|
1646 |
+
"""
|
1647 |
+
|
1648 |
+
def __new__(cls, wrt, christoffel):
|
1649 |
+
if len({v._coord_sys for v in wrt.atoms(BaseVectorField)}) > 1:
|
1650 |
+
raise NotImplementedError()
|
1651 |
+
if contravariant_order(wrt) != 1 or covariant_order(wrt):
|
1652 |
+
raise ValueError('Covariant derivatives are defined only with '
|
1653 |
+
'respect to vector fields. The supplied argument '
|
1654 |
+
'was not a vector field.')
|
1655 |
+
christoffel = ImmutableDenseNDimArray(christoffel)
|
1656 |
+
obj = super().__new__(cls, wrt, christoffel)
|
1657 |
+
# deprecated assignments
|
1658 |
+
obj._wrt = wrt
|
1659 |
+
obj._christoffel = christoffel
|
1660 |
+
return obj
|
1661 |
+
|
1662 |
+
@property
|
1663 |
+
def wrt(self):
|
1664 |
+
return self.args[0]
|
1665 |
+
|
1666 |
+
@property
|
1667 |
+
def christoffel(self):
|
1668 |
+
return self.args[1]
|
1669 |
+
|
1670 |
+
def __call__(self, field):
|
1671 |
+
vectors = list(self._wrt.atoms(BaseVectorField))
|
1672 |
+
base_ops = [BaseCovarDerivativeOp(v._coord_sys, v._index, self._christoffel)
|
1673 |
+
for v in vectors]
|
1674 |
+
return self._wrt.subs(list(zip(vectors, base_ops))).rcall(field)
|
1675 |
+
|
1676 |
+
|
1677 |
+
###############################################################################
|
1678 |
+
# Integral curves on vector fields
|
1679 |
+
###############################################################################
|
1680 |
+
def intcurve_series(vector_field, param, start_point, n=6, coord_sys=None, coeffs=False):
|
1681 |
+
r"""Return the series expansion for an integral curve of the field.
|
1682 |
+
|
1683 |
+
Explanation
|
1684 |
+
===========
|
1685 |
+
|
1686 |
+
Integral curve is a function `\gamma` taking a parameter in `R` to a point
|
1687 |
+
in the manifold. It verifies the equation:
|
1688 |
+
|
1689 |
+
`V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)`
|
1690 |
+
|
1691 |
+
where the given ``vector_field`` is denoted as `V`. This holds for any
|
1692 |
+
value `t` for the parameter and any scalar field `f`.
|
1693 |
+
|
1694 |
+
This equation can also be decomposed of a basis of coordinate functions
|
1695 |
+
`V(f_i)\big(\gamma(t)\big) = \frac{d}{dt}f_i\big(\gamma(t)\big) \quad \forall i`
|
1696 |
+
|
1697 |
+
This function returns a series expansion of `\gamma(t)` in terms of the
|
1698 |
+
coordinate system ``coord_sys``. The equations and expansions are necessarily
|
1699 |
+
done in coordinate-system-dependent way as there is no other way to
|
1700 |
+
represent movement between points on the manifold (i.e. there is no such
|
1701 |
+
thing as a difference of points for a general manifold).
|
1702 |
+
|
1703 |
+
Parameters
|
1704 |
+
==========
|
1705 |
+
vector_field
|
1706 |
+
the vector field for which an integral curve will be given
|
1707 |
+
|
1708 |
+
param
|
1709 |
+
the argument of the function `\gamma` from R to the curve
|
1710 |
+
|
1711 |
+
start_point
|
1712 |
+
the point which corresponds to `\gamma(0)`
|
1713 |
+
|
1714 |
+
n
|
1715 |
+
the order to which to expand
|
1716 |
+
|
1717 |
+
coord_sys
|
1718 |
+
the coordinate system in which to expand
|
1719 |
+
coeffs (default False) - if True return a list of elements of the expansion
|
1720 |
+
|
1721 |
+
Examples
|
1722 |
+
========
|
1723 |
+
|
1724 |
+
Use the predefined R2 manifold:
|
1725 |
+
|
1726 |
+
>>> from sympy.abc import t, x, y
|
1727 |
+
>>> from sympy.diffgeom.rn import R2_p, R2_r
|
1728 |
+
>>> from sympy.diffgeom import intcurve_series
|
1729 |
+
|
1730 |
+
Specify a starting point and a vector field:
|
1731 |
+
|
1732 |
+
>>> start_point = R2_r.point([x, y])
|
1733 |
+
>>> vector_field = R2_r.e_x
|
1734 |
+
|
1735 |
+
Calculate the series:
|
1736 |
+
|
1737 |
+
>>> intcurve_series(vector_field, t, start_point, n=3)
|
1738 |
+
Matrix([
|
1739 |
+
[t + x],
|
1740 |
+
[ y]])
|
1741 |
+
|
1742 |
+
Or get the elements of the expansion in a list:
|
1743 |
+
|
1744 |
+
>>> series = intcurve_series(vector_field, t, start_point, n=3, coeffs=True)
|
1745 |
+
>>> series[0]
|
1746 |
+
Matrix([
|
1747 |
+
[x],
|
1748 |
+
[y]])
|
1749 |
+
>>> series[1]
|
1750 |
+
Matrix([
|
1751 |
+
[t],
|
1752 |
+
[0]])
|
1753 |
+
>>> series[2]
|
1754 |
+
Matrix([
|
1755 |
+
[0],
|
1756 |
+
[0]])
|
1757 |
+
|
1758 |
+
The series in the polar coordinate system:
|
1759 |
+
|
1760 |
+
>>> series = intcurve_series(vector_field, t, start_point,
|
1761 |
+
... n=3, coord_sys=R2_p, coeffs=True)
|
1762 |
+
>>> series[0]
|
1763 |
+
Matrix([
|
1764 |
+
[sqrt(x**2 + y**2)],
|
1765 |
+
[ atan2(y, x)]])
|
1766 |
+
>>> series[1]
|
1767 |
+
Matrix([
|
1768 |
+
[t*x/sqrt(x**2 + y**2)],
|
1769 |
+
[ -t*y/(x**2 + y**2)]])
|
1770 |
+
>>> series[2]
|
1771 |
+
Matrix([
|
1772 |
+
[t**2*(-x**2/(x**2 + y**2)**(3/2) + 1/sqrt(x**2 + y**2))/2],
|
1773 |
+
[ t**2*x*y/(x**2 + y**2)**2]])
|
1774 |
+
|
1775 |
+
See Also
|
1776 |
+
========
|
1777 |
+
|
1778 |
+
intcurve_diffequ
|
1779 |
+
|
1780 |
+
"""
|
1781 |
+
if contravariant_order(vector_field) != 1 or covariant_order(vector_field):
|
1782 |
+
raise ValueError('The supplied field was not a vector field.')
|
1783 |
+
|
1784 |
+
def iter_vfield(scalar_field, i):
|
1785 |
+
"""Return ``vector_field`` called `i` times on ``scalar_field``."""
|
1786 |
+
return reduce(lambda s, v: v.rcall(s), [vector_field, ]*i, scalar_field)
|
1787 |
+
|
1788 |
+
def taylor_terms_per_coord(coord_function):
|
1789 |
+
"""Return the series for one of the coordinates."""
|
1790 |
+
return [param**i*iter_vfield(coord_function, i).rcall(start_point)/factorial(i)
|
1791 |
+
for i in range(n)]
|
1792 |
+
coord_sys = coord_sys if coord_sys else start_point._coord_sys
|
1793 |
+
coord_functions = coord_sys.coord_functions()
|
1794 |
+
taylor_terms = [taylor_terms_per_coord(f) for f in coord_functions]
|
1795 |
+
if coeffs:
|
1796 |
+
return [Matrix(t) for t in zip(*taylor_terms)]
|
1797 |
+
else:
|
1798 |
+
return Matrix([sum(c) for c in taylor_terms])
|
1799 |
+
|
1800 |
+
|
1801 |
+
def intcurve_diffequ(vector_field, param, start_point, coord_sys=None):
|
1802 |
+
r"""Return the differential equation for an integral curve of the field.
|
1803 |
+
|
1804 |
+
Explanation
|
1805 |
+
===========
|
1806 |
+
|
1807 |
+
Integral curve is a function `\gamma` taking a parameter in `R` to a point
|
1808 |
+
in the manifold. It verifies the equation:
|
1809 |
+
|
1810 |
+
`V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)`
|
1811 |
+
|
1812 |
+
where the given ``vector_field`` is denoted as `V`. This holds for any
|
1813 |
+
value `t` for the parameter and any scalar field `f`.
|
1814 |
+
|
1815 |
+
This function returns the differential equation of `\gamma(t)` in terms of the
|
1816 |
+
coordinate system ``coord_sys``. The equations and expansions are necessarily
|
1817 |
+
done in coordinate-system-dependent way as there is no other way to
|
1818 |
+
represent movement between points on the manifold (i.e. there is no such
|
1819 |
+
thing as a difference of points for a general manifold).
|
1820 |
+
|
1821 |
+
Parameters
|
1822 |
+
==========
|
1823 |
+
|
1824 |
+
vector_field
|
1825 |
+
the vector field for which an integral curve will be given
|
1826 |
+
|
1827 |
+
param
|
1828 |
+
the argument of the function `\gamma` from R to the curve
|
1829 |
+
|
1830 |
+
start_point
|
1831 |
+
the point which corresponds to `\gamma(0)`
|
1832 |
+
|
1833 |
+
coord_sys
|
1834 |
+
the coordinate system in which to give the equations
|
1835 |
+
|
1836 |
+
Returns
|
1837 |
+
=======
|
1838 |
+
|
1839 |
+
a tuple of (equations, initial conditions)
|
1840 |
+
|
1841 |
+
Examples
|
1842 |
+
========
|
1843 |
+
|
1844 |
+
Use the predefined R2 manifold:
|
1845 |
+
|
1846 |
+
>>> from sympy.abc import t
|
1847 |
+
>>> from sympy.diffgeom.rn import R2, R2_p, R2_r
|
1848 |
+
>>> from sympy.diffgeom import intcurve_diffequ
|
1849 |
+
|
1850 |
+
Specify a starting point and a vector field:
|
1851 |
+
|
1852 |
+
>>> start_point = R2_r.point([0, 1])
|
1853 |
+
>>> vector_field = -R2.y*R2.e_x + R2.x*R2.e_y
|
1854 |
+
|
1855 |
+
Get the equation:
|
1856 |
+
|
1857 |
+
>>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point)
|
1858 |
+
>>> equations
|
1859 |
+
[f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]
|
1860 |
+
>>> init_cond
|
1861 |
+
[f_0(0), f_1(0) - 1]
|
1862 |
+
|
1863 |
+
The series in the polar coordinate system:
|
1864 |
+
|
1865 |
+
>>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p)
|
1866 |
+
>>> equations
|
1867 |
+
[Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]
|
1868 |
+
>>> init_cond
|
1869 |
+
[f_0(0) - 1, f_1(0) - pi/2]
|
1870 |
+
|
1871 |
+
See Also
|
1872 |
+
========
|
1873 |
+
|
1874 |
+
intcurve_series
|
1875 |
+
|
1876 |
+
"""
|
1877 |
+
if contravariant_order(vector_field) != 1 or covariant_order(vector_field):
|
1878 |
+
raise ValueError('The supplied field was not a vector field.')
|
1879 |
+
coord_sys = coord_sys if coord_sys else start_point._coord_sys
|
1880 |
+
gammas = [Function('f_%d' % i)(param) for i in range(
|
1881 |
+
start_point._coord_sys.dim)]
|
1882 |
+
arbitrary_p = Point(coord_sys, gammas)
|
1883 |
+
coord_functions = coord_sys.coord_functions()
|
1884 |
+
equations = [simplify(diff(cf.rcall(arbitrary_p), param) - vector_field.rcall(cf).rcall(arbitrary_p))
|
1885 |
+
for cf in coord_functions]
|
1886 |
+
init_cond = [simplify(cf.rcall(arbitrary_p).subs(param, 0) - cf.rcall(start_point))
|
1887 |
+
for cf in coord_functions]
|
1888 |
+
return equations, init_cond
|
1889 |
+
|
1890 |
+
|
1891 |
+
###############################################################################
|
1892 |
+
# Helpers
|
1893 |
+
###############################################################################
|
1894 |
+
def dummyfy(args, exprs):
|
1895 |
+
# TODO Is this a good idea?
|
1896 |
+
d_args = Matrix([s.as_dummy() for s in args])
|
1897 |
+
reps = dict(zip(args, d_args))
|
1898 |
+
d_exprs = Matrix([_sympify(expr).subs(reps) for expr in exprs])
|
1899 |
+
return d_args, d_exprs
|
1900 |
+
|
1901 |
+
###############################################################################
|
1902 |
+
# Helpers
|
1903 |
+
###############################################################################
|
1904 |
+
def contravariant_order(expr, _strict=False):
|
1905 |
+
"""Return the contravariant order of an expression.
|
1906 |
+
|
1907 |
+
Examples
|
1908 |
+
========
|
1909 |
+
|
1910 |
+
>>> from sympy.diffgeom import contravariant_order
|
1911 |
+
>>> from sympy.diffgeom.rn import R2
|
1912 |
+
>>> from sympy.abc import a
|
1913 |
+
|
1914 |
+
>>> contravariant_order(a)
|
1915 |
+
0
|
1916 |
+
>>> contravariant_order(a*R2.x + 2)
|
1917 |
+
0
|
1918 |
+
>>> contravariant_order(a*R2.x*R2.e_y + R2.e_x)
|
1919 |
+
1
|
1920 |
+
|
1921 |
+
"""
|
1922 |
+
# TODO move some of this to class methods.
|
1923 |
+
# TODO rewrite using the .as_blah_blah methods
|
1924 |
+
if isinstance(expr, Add):
|
1925 |
+
orders = [contravariant_order(e) for e in expr.args]
|
1926 |
+
if len(set(orders)) != 1:
|
1927 |
+
raise ValueError('Misformed expression containing contravariant fields of varying order.')
|
1928 |
+
return orders[0]
|
1929 |
+
elif isinstance(expr, Mul):
|
1930 |
+
orders = [contravariant_order(e) for e in expr.args]
|
1931 |
+
not_zero = [o for o in orders if o != 0]
|
1932 |
+
if len(not_zero) > 1:
|
1933 |
+
raise ValueError('Misformed expression containing multiplication between vectors.')
|
1934 |
+
return 0 if not not_zero else not_zero[0]
|
1935 |
+
elif isinstance(expr, Pow):
|
1936 |
+
if covariant_order(expr.base) or covariant_order(expr.exp):
|
1937 |
+
raise ValueError(
|
1938 |
+
'Misformed expression containing a power of a vector.')
|
1939 |
+
return 0
|
1940 |
+
elif isinstance(expr, BaseVectorField):
|
1941 |
+
return 1
|
1942 |
+
elif isinstance(expr, TensorProduct):
|
1943 |
+
return sum(contravariant_order(a) for a in expr.args)
|
1944 |
+
elif not _strict or expr.atoms(BaseScalarField):
|
1945 |
+
return 0
|
1946 |
+
else: # If it does not contain anything related to the diffgeom module and it is _strict
|
1947 |
+
return -1
|
1948 |
+
|
1949 |
+
|
1950 |
+
def covariant_order(expr, _strict=False):
|
1951 |
+
"""Return the covariant order of an expression.
|
1952 |
+
|
1953 |
+
Examples
|
1954 |
+
========
|
1955 |
+
|
1956 |
+
>>> from sympy.diffgeom import covariant_order
|
1957 |
+
>>> from sympy.diffgeom.rn import R2
|
1958 |
+
>>> from sympy.abc import a
|
1959 |
+
|
1960 |
+
>>> covariant_order(a)
|
1961 |
+
0
|
1962 |
+
>>> covariant_order(a*R2.x + 2)
|
1963 |
+
0
|
1964 |
+
>>> covariant_order(a*R2.x*R2.dy + R2.dx)
|
1965 |
+
1
|
1966 |
+
|
1967 |
+
"""
|
1968 |
+
# TODO move some of this to class methods.
|
1969 |
+
# TODO rewrite using the .as_blah_blah methods
|
1970 |
+
if isinstance(expr, Add):
|
1971 |
+
orders = [covariant_order(e) for e in expr.args]
|
1972 |
+
if len(set(orders)) != 1:
|
1973 |
+
raise ValueError('Misformed expression containing form fields of varying order.')
|
1974 |
+
return orders[0]
|
1975 |
+
elif isinstance(expr, Mul):
|
1976 |
+
orders = [covariant_order(e) for e in expr.args]
|
1977 |
+
not_zero = [o for o in orders if o != 0]
|
1978 |
+
if len(not_zero) > 1:
|
1979 |
+
raise ValueError('Misformed expression containing multiplication between forms.')
|
1980 |
+
return 0 if not not_zero else not_zero[0]
|
1981 |
+
elif isinstance(expr, Pow):
|
1982 |
+
if covariant_order(expr.base) or covariant_order(expr.exp):
|
1983 |
+
raise ValueError(
|
1984 |
+
'Misformed expression containing a power of a form.')
|
1985 |
+
return 0
|
1986 |
+
elif isinstance(expr, Differential):
|
1987 |
+
return covariant_order(*expr.args) + 1
|
1988 |
+
elif isinstance(expr, TensorProduct):
|
1989 |
+
return sum(covariant_order(a) for a in expr.args)
|
1990 |
+
elif not _strict or expr.atoms(BaseScalarField):
|
1991 |
+
return 0
|
1992 |
+
else: # If it does not contain anything related to the diffgeom module and it is _strict
|
1993 |
+
return -1
|
1994 |
+
|
1995 |
+
|
1996 |
+
###############################################################################
|
1997 |
+
# Coordinate transformation functions
|
1998 |
+
###############################################################################
|
1999 |
+
def vectors_in_basis(expr, to_sys):
|
2000 |
+
"""Transform all base vectors in base vectors of a specified coord basis.
|
2001 |
+
While the new base vectors are in the new coordinate system basis, any
|
2002 |
+
coefficients are kept in the old system.
|
2003 |
+
|
2004 |
+
Examples
|
2005 |
+
========
|
2006 |
+
|
2007 |
+
>>> from sympy.diffgeom import vectors_in_basis
|
2008 |
+
>>> from sympy.diffgeom.rn import R2_r, R2_p
|
2009 |
+
|
2010 |
+
>>> vectors_in_basis(R2_r.e_x, R2_p)
|
2011 |
+
-y*e_theta/(x**2 + y**2) + x*e_rho/sqrt(x**2 + y**2)
|
2012 |
+
>>> vectors_in_basis(R2_p.e_r, R2_r)
|
2013 |
+
sin(theta)*e_y + cos(theta)*e_x
|
2014 |
+
|
2015 |
+
"""
|
2016 |
+
vectors = list(expr.atoms(BaseVectorField))
|
2017 |
+
new_vectors = []
|
2018 |
+
for v in vectors:
|
2019 |
+
cs = v._coord_sys
|
2020 |
+
jac = cs.jacobian(to_sys, cs.coord_functions())
|
2021 |
+
new = (jac.T*Matrix(to_sys.base_vectors()))[v._index]
|
2022 |
+
new_vectors.append(new)
|
2023 |
+
return expr.subs(list(zip(vectors, new_vectors)))
|
2024 |
+
|
2025 |
+
|
2026 |
+
###############################################################################
|
2027 |
+
# Coordinate-dependent functions
|
2028 |
+
###############################################################################
|
2029 |
+
def twoform_to_matrix(expr):
|
2030 |
+
"""Return the matrix representing the twoform.
|
2031 |
+
|
2032 |
+
For the twoform `w` return the matrix `M` such that `M[i,j]=w(e_i, e_j)`,
|
2033 |
+
where `e_i` is the i-th base vector field for the coordinate system in
|
2034 |
+
which the expression of `w` is given.
|
2035 |
+
|
2036 |
+
Examples
|
2037 |
+
========
|
2038 |
+
|
2039 |
+
>>> from sympy.diffgeom.rn import R2
|
2040 |
+
>>> from sympy.diffgeom import twoform_to_matrix, TensorProduct
|
2041 |
+
>>> TP = TensorProduct
|
2042 |
+
|
2043 |
+
>>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
|
2044 |
+
Matrix([
|
2045 |
+
[1, 0],
|
2046 |
+
[0, 1]])
|
2047 |
+
>>> twoform_to_matrix(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
|
2048 |
+
Matrix([
|
2049 |
+
[x, 0],
|
2050 |
+
[0, 1]])
|
2051 |
+
>>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy) - TP(R2.dx, R2.dy)/2)
|
2052 |
+
Matrix([
|
2053 |
+
[ 1, 0],
|
2054 |
+
[-1/2, 1]])
|
2055 |
+
|
2056 |
+
"""
|
2057 |
+
if covariant_order(expr) != 2 or contravariant_order(expr):
|
2058 |
+
raise ValueError('The input expression is not a two-form.')
|
2059 |
+
coord_sys = _find_coords(expr)
|
2060 |
+
if len(coord_sys) != 1:
|
2061 |
+
raise ValueError('The input expression concerns more than one '
|
2062 |
+
'coordinate systems, hence there is no unambiguous '
|
2063 |
+
'way to choose a coordinate system for the matrix.')
|
2064 |
+
coord_sys = coord_sys.pop()
|
2065 |
+
vectors = coord_sys.base_vectors()
|
2066 |
+
expr = expr.expand()
|
2067 |
+
matrix_content = [[expr.rcall(v1, v2) for v1 in vectors]
|
2068 |
+
for v2 in vectors]
|
2069 |
+
return Matrix(matrix_content)
|
2070 |
+
|
2071 |
+
|
2072 |
+
def metric_to_Christoffel_1st(expr):
|
2073 |
+
"""Return the nested list of Christoffel symbols for the given metric.
|
2074 |
+
This returns the Christoffel symbol of first kind that represents the
|
2075 |
+
Levi-Civita connection for the given metric.
|
2076 |
+
|
2077 |
+
Examples
|
2078 |
+
========
|
2079 |
+
|
2080 |
+
>>> from sympy.diffgeom.rn import R2
|
2081 |
+
>>> from sympy.diffgeom import metric_to_Christoffel_1st, TensorProduct
|
2082 |
+
>>> TP = TensorProduct
|
2083 |
+
|
2084 |
+
>>> metric_to_Christoffel_1st(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
|
2085 |
+
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
|
2086 |
+
>>> metric_to_Christoffel_1st(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
|
2087 |
+
[[[1/2, 0], [0, 0]], [[0, 0], [0, 0]]]
|
2088 |
+
|
2089 |
+
"""
|
2090 |
+
matrix = twoform_to_matrix(expr)
|
2091 |
+
if not matrix.is_symmetric():
|
2092 |
+
raise ValueError(
|
2093 |
+
'The two-form representing the metric is not symmetric.')
|
2094 |
+
coord_sys = _find_coords(expr).pop()
|
2095 |
+
deriv_matrices = [matrix.applyfunc(d) for d in coord_sys.base_vectors()]
|
2096 |
+
indices = list(range(coord_sys.dim))
|
2097 |
+
christoffel = [[[(deriv_matrices[k][i, j] + deriv_matrices[j][i, k] - deriv_matrices[i][j, k])/2
|
2098 |
+
for k in indices]
|
2099 |
+
for j in indices]
|
2100 |
+
for i in indices]
|
2101 |
+
return ImmutableDenseNDimArray(christoffel)
|
2102 |
+
|
2103 |
+
|
2104 |
+
def metric_to_Christoffel_2nd(expr):
|
2105 |
+
"""Return the nested list of Christoffel symbols for the given metric.
|
2106 |
+
This returns the Christoffel symbol of second kind that represents the
|
2107 |
+
Levi-Civita connection for the given metric.
|
2108 |
+
|
2109 |
+
Examples
|
2110 |
+
========
|
2111 |
+
|
2112 |
+
>>> from sympy.diffgeom.rn import R2
|
2113 |
+
>>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
|
2114 |
+
>>> TP = TensorProduct
|
2115 |
+
|
2116 |
+
>>> metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
|
2117 |
+
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
|
2118 |
+
>>> metric_to_Christoffel_2nd(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
|
2119 |
+
[[[1/(2*x), 0], [0, 0]], [[0, 0], [0, 0]]]
|
2120 |
+
|
2121 |
+
"""
|
2122 |
+
ch_1st = metric_to_Christoffel_1st(expr)
|
2123 |
+
coord_sys = _find_coords(expr).pop()
|
2124 |
+
indices = list(range(coord_sys.dim))
|
2125 |
+
# XXX workaround, inverting a matrix does not work if it contains non
|
2126 |
+
# symbols
|
2127 |
+
#matrix = twoform_to_matrix(expr).inv()
|
2128 |
+
matrix = twoform_to_matrix(expr)
|
2129 |
+
s_fields = set()
|
2130 |
+
for e in matrix:
|
2131 |
+
s_fields.update(e.atoms(BaseScalarField))
|
2132 |
+
s_fields = list(s_fields)
|
2133 |
+
dums = coord_sys.symbols
|
2134 |
+
matrix = matrix.subs(list(zip(s_fields, dums))).inv().subs(list(zip(dums, s_fields)))
|
2135 |
+
# XXX end of workaround
|
2136 |
+
christoffel = [[[Add(*[matrix[i, l]*ch_1st[l, j, k] for l in indices])
|
2137 |
+
for k in indices]
|
2138 |
+
for j in indices]
|
2139 |
+
for i in indices]
|
2140 |
+
return ImmutableDenseNDimArray(christoffel)
|
2141 |
+
|
2142 |
+
|
2143 |
+
def metric_to_Riemann_components(expr):
|
2144 |
+
"""Return the components of the Riemann tensor expressed in a given basis.
|
2145 |
+
|
2146 |
+
Given a metric it calculates the components of the Riemann tensor in the
|
2147 |
+
canonical basis of the coordinate system in which the metric expression is
|
2148 |
+
given.
|
2149 |
+
|
2150 |
+
Examples
|
2151 |
+
========
|
2152 |
+
|
2153 |
+
>>> from sympy import exp
|
2154 |
+
>>> from sympy.diffgeom.rn import R2
|
2155 |
+
>>> from sympy.diffgeom import metric_to_Riemann_components, TensorProduct
|
2156 |
+
>>> TP = TensorProduct
|
2157 |
+
|
2158 |
+
>>> metric_to_Riemann_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
|
2159 |
+
[[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]]
|
2160 |
+
>>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \
|
2161 |
+
R2.r**2*TP(R2.dtheta, R2.dtheta)
|
2162 |
+
>>> non_trivial_metric
|
2163 |
+
exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta)
|
2164 |
+
>>> riemann = metric_to_Riemann_components(non_trivial_metric)
|
2165 |
+
>>> riemann[0, :, :, :]
|
2166 |
+
[[[0, 0], [0, 0]], [[0, exp(-2*rho)*rho], [-exp(-2*rho)*rho, 0]]]
|
2167 |
+
>>> riemann[1, :, :, :]
|
2168 |
+
[[[0, -1/rho], [1/rho, 0]], [[0, 0], [0, 0]]]
|
2169 |
+
|
2170 |
+
"""
|
2171 |
+
ch_2nd = metric_to_Christoffel_2nd(expr)
|
2172 |
+
coord_sys = _find_coords(expr).pop()
|
2173 |
+
indices = list(range(coord_sys.dim))
|
2174 |
+
deriv_ch = [[[[d(ch_2nd[i, j, k])
|
2175 |
+
for d in coord_sys.base_vectors()]
|
2176 |
+
for k in indices]
|
2177 |
+
for j in indices]
|
2178 |
+
for i in indices]
|
2179 |
+
riemann_a = [[[[deriv_ch[rho][sig][nu][mu] - deriv_ch[rho][sig][mu][nu]
|
2180 |
+
for nu in indices]
|
2181 |
+
for mu in indices]
|
2182 |
+
for sig in indices]
|
2183 |
+
for rho in indices]
|
2184 |
+
riemann_b = [[[[Add(*[ch_2nd[rho, l, mu]*ch_2nd[l, sig, nu] - ch_2nd[rho, l, nu]*ch_2nd[l, sig, mu] for l in indices])
|
2185 |
+
for nu in indices]
|
2186 |
+
for mu in indices]
|
2187 |
+
for sig in indices]
|
2188 |
+
for rho in indices]
|
2189 |
+
riemann = [[[[riemann_a[rho][sig][mu][nu] + riemann_b[rho][sig][mu][nu]
|
2190 |
+
for nu in indices]
|
2191 |
+
for mu in indices]
|
2192 |
+
for sig in indices]
|
2193 |
+
for rho in indices]
|
2194 |
+
return ImmutableDenseNDimArray(riemann)
|
2195 |
+
|
2196 |
+
|
2197 |
+
def metric_to_Ricci_components(expr):
|
2198 |
+
|
2199 |
+
"""Return the components of the Ricci tensor expressed in a given basis.
|
2200 |
+
|
2201 |
+
Given a metric it calculates the components of the Ricci tensor in the
|
2202 |
+
canonical basis of the coordinate system in which the metric expression is
|
2203 |
+
given.
|
2204 |
+
|
2205 |
+
Examples
|
2206 |
+
========
|
2207 |
+
|
2208 |
+
>>> from sympy import exp
|
2209 |
+
>>> from sympy.diffgeom.rn import R2
|
2210 |
+
>>> from sympy.diffgeom import metric_to_Ricci_components, TensorProduct
|
2211 |
+
>>> TP = TensorProduct
|
2212 |
+
|
2213 |
+
>>> metric_to_Ricci_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
|
2214 |
+
[[0, 0], [0, 0]]
|
2215 |
+
>>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \
|
2216 |
+
R2.r**2*TP(R2.dtheta, R2.dtheta)
|
2217 |
+
>>> non_trivial_metric
|
2218 |
+
exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta)
|
2219 |
+
>>> metric_to_Ricci_components(non_trivial_metric)
|
2220 |
+
[[1/rho, 0], [0, exp(-2*rho)*rho]]
|
2221 |
+
|
2222 |
+
"""
|
2223 |
+
riemann = metric_to_Riemann_components(expr)
|
2224 |
+
coord_sys = _find_coords(expr).pop()
|
2225 |
+
indices = list(range(coord_sys.dim))
|
2226 |
+
ricci = [[Add(*[riemann[k, i, k, j] for k in indices])
|
2227 |
+
for j in indices]
|
2228 |
+
for i in indices]
|
2229 |
+
return ImmutableDenseNDimArray(ricci)
|
2230 |
+
|
2231 |
+
###############################################################################
|
2232 |
+
# Classes for deprecation
|
2233 |
+
###############################################################################
|
2234 |
+
|
2235 |
+
class _deprecated_container:
|
2236 |
+
# This class gives deprecation warning.
|
2237 |
+
# When deprecated features are completely deleted, this should be removed as well.
|
2238 |
+
# See https://github.com/sympy/sympy/pull/19368
|
2239 |
+
def __init__(self, message, data):
|
2240 |
+
super().__init__(data)
|
2241 |
+
self.message = message
|
2242 |
+
|
2243 |
+
def warn(self):
|
2244 |
+
sympy_deprecation_warning(
|
2245 |
+
self.message,
|
2246 |
+
deprecated_since_version="1.7",
|
2247 |
+
active_deprecations_target="deprecated-diffgeom-mutable",
|
2248 |
+
stacklevel=4
|
2249 |
+
)
|
2250 |
+
|
2251 |
+
def __iter__(self):
|
2252 |
+
self.warn()
|
2253 |
+
return super().__iter__()
|
2254 |
+
|
2255 |
+
def __getitem__(self, key):
|
2256 |
+
self.warn()
|
2257 |
+
return super().__getitem__(key)
|
2258 |
+
|
2259 |
+
def __contains__(self, key):
|
2260 |
+
self.warn()
|
2261 |
+
return super().__contains__(key)
|
2262 |
+
|
2263 |
+
|
2264 |
+
class _deprecated_list(_deprecated_container, list):
|
2265 |
+
pass
|
2266 |
+
|
2267 |
+
|
2268 |
+
class _deprecated_dict(_deprecated_container, dict):
|
2269 |
+
pass
|
2270 |
+
|
2271 |
+
|
2272 |
+
# Import at end to avoid cyclic imports
|
2273 |
+
from sympy.simplify.simplify import simplify
|
venv/lib/python3.10/site-packages/sympy/diffgeom/rn.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Predefined R^n manifolds together with common coord. systems.
|
2 |
+
|
3 |
+
Coordinate systems are predefined as well as the transformation laws between
|
4 |
+
them.
|
5 |
+
|
6 |
+
Coordinate functions can be accessed as attributes of the manifold (eg `R2.x`),
|
7 |
+
as attributes of the coordinate systems (eg `R2_r.x` and `R2_p.theta`), or by
|
8 |
+
using the usual `coord_sys.coord_function(index, name)` interface.
|
9 |
+
"""
|
10 |
+
|
11 |
+
from typing import Any
|
12 |
+
import warnings
|
13 |
+
|
14 |
+
from sympy.core.symbol import (Dummy, symbols)
|
15 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
16 |
+
from sympy.functions.elementary.trigonometric import (acos, atan2, cos, sin)
|
17 |
+
from .diffgeom import Manifold, Patch, CoordSystem
|
18 |
+
|
19 |
+
__all__ = [
|
20 |
+
'R2', 'R2_origin', 'relations_2d', 'R2_r', 'R2_p',
|
21 |
+
'R3', 'R3_origin', 'relations_3d', 'R3_r', 'R3_c', 'R3_s'
|
22 |
+
]
|
23 |
+
|
24 |
+
###############################################################################
|
25 |
+
# R2
|
26 |
+
###############################################################################
|
27 |
+
R2: Any = Manifold('R^2', 2)
|
28 |
+
|
29 |
+
R2_origin: Any = Patch('origin', R2)
|
30 |
+
|
31 |
+
x, y = symbols('x y', real=True)
|
32 |
+
r, theta = symbols('rho theta', nonnegative=True)
|
33 |
+
|
34 |
+
relations_2d = {
|
35 |
+
('rectangular', 'polar'): [(x, y), (sqrt(x**2 + y**2), atan2(y, x))],
|
36 |
+
('polar', 'rectangular'): [(r, theta), (r*cos(theta), r*sin(theta))],
|
37 |
+
}
|
38 |
+
|
39 |
+
R2_r: Any = CoordSystem('rectangular', R2_origin, (x, y), relations_2d)
|
40 |
+
R2_p: Any = CoordSystem('polar', R2_origin, (r, theta), relations_2d)
|
41 |
+
|
42 |
+
# support deprecated feature
|
43 |
+
with warnings.catch_warnings():
|
44 |
+
warnings.simplefilter("ignore")
|
45 |
+
x, y, r, theta = symbols('x y r theta', cls=Dummy)
|
46 |
+
R2_r.connect_to(R2_p, [x, y],
|
47 |
+
[sqrt(x**2 + y**2), atan2(y, x)],
|
48 |
+
inverse=False, fill_in_gaps=False)
|
49 |
+
R2_p.connect_to(R2_r, [r, theta],
|
50 |
+
[r*cos(theta), r*sin(theta)],
|
51 |
+
inverse=False, fill_in_gaps=False)
|
52 |
+
|
53 |
+
# Defining the basis coordinate functions and adding shortcuts for them to the
|
54 |
+
# manifold and the patch.
|
55 |
+
R2.x, R2.y = R2_origin.x, R2_origin.y = R2_r.x, R2_r.y = R2_r.coord_functions()
|
56 |
+
R2.r, R2.theta = R2_origin.r, R2_origin.theta = R2_p.r, R2_p.theta = R2_p.coord_functions()
|
57 |
+
|
58 |
+
# Defining the basis vector fields and adding shortcuts for them to the
|
59 |
+
# manifold and the patch.
|
60 |
+
R2.e_x, R2.e_y = R2_origin.e_x, R2_origin.e_y = R2_r.e_x, R2_r.e_y = R2_r.base_vectors()
|
61 |
+
R2.e_r, R2.e_theta = R2_origin.e_r, R2_origin.e_theta = R2_p.e_r, R2_p.e_theta = R2_p.base_vectors()
|
62 |
+
|
63 |
+
# Defining the basis oneform fields and adding shortcuts for them to the
|
64 |
+
# manifold and the patch.
|
65 |
+
R2.dx, R2.dy = R2_origin.dx, R2_origin.dy = R2_r.dx, R2_r.dy = R2_r.base_oneforms()
|
66 |
+
R2.dr, R2.dtheta = R2_origin.dr, R2_origin.dtheta = R2_p.dr, R2_p.dtheta = R2_p.base_oneforms()
|
67 |
+
|
68 |
+
###############################################################################
|
69 |
+
# R3
|
70 |
+
###############################################################################
|
71 |
+
R3: Any = Manifold('R^3', 3)
|
72 |
+
|
73 |
+
R3_origin: Any = Patch('origin', R3)
|
74 |
+
|
75 |
+
x, y, z = symbols('x y z', real=True)
|
76 |
+
rho, psi, r, theta, phi = symbols('rho psi r theta phi', nonnegative=True)
|
77 |
+
|
78 |
+
relations_3d = {
|
79 |
+
('rectangular', 'cylindrical'): [(x, y, z),
|
80 |
+
(sqrt(x**2 + y**2), atan2(y, x), z)],
|
81 |
+
('cylindrical', 'rectangular'): [(rho, psi, z),
|
82 |
+
(rho*cos(psi), rho*sin(psi), z)],
|
83 |
+
('rectangular', 'spherical'): [(x, y, z),
|
84 |
+
(sqrt(x**2 + y**2 + z**2),
|
85 |
+
acos(z/sqrt(x**2 + y**2 + z**2)),
|
86 |
+
atan2(y, x))],
|
87 |
+
('spherical', 'rectangular'): [(r, theta, phi),
|
88 |
+
(r*sin(theta)*cos(phi),
|
89 |
+
r*sin(theta)*sin(phi),
|
90 |
+
r*cos(theta))],
|
91 |
+
('cylindrical', 'spherical'): [(rho, psi, z),
|
92 |
+
(sqrt(rho**2 + z**2),
|
93 |
+
acos(z/sqrt(rho**2 + z**2)),
|
94 |
+
psi)],
|
95 |
+
('spherical', 'cylindrical'): [(r, theta, phi),
|
96 |
+
(r*sin(theta), phi, r*cos(theta))],
|
97 |
+
}
|
98 |
+
|
99 |
+
R3_r: Any = CoordSystem('rectangular', R3_origin, (x, y, z), relations_3d)
|
100 |
+
R3_c: Any = CoordSystem('cylindrical', R3_origin, (rho, psi, z), relations_3d)
|
101 |
+
R3_s: Any = CoordSystem('spherical', R3_origin, (r, theta, phi), relations_3d)
|
102 |
+
|
103 |
+
# support deprecated feature
|
104 |
+
with warnings.catch_warnings():
|
105 |
+
warnings.simplefilter("ignore")
|
106 |
+
x, y, z, rho, psi, r, theta, phi = symbols('x y z rho psi r theta phi', cls=Dummy)
|
107 |
+
R3_r.connect_to(R3_c, [x, y, z],
|
108 |
+
[sqrt(x**2 + y**2), atan2(y, x), z],
|
109 |
+
inverse=False, fill_in_gaps=False)
|
110 |
+
R3_c.connect_to(R3_r, [rho, psi, z],
|
111 |
+
[rho*cos(psi), rho*sin(psi), z],
|
112 |
+
inverse=False, fill_in_gaps=False)
|
113 |
+
## rectangular <-> spherical
|
114 |
+
R3_r.connect_to(R3_s, [x, y, z],
|
115 |
+
[sqrt(x**2 + y**2 + z**2), acos(z/
|
116 |
+
sqrt(x**2 + y**2 + z**2)), atan2(y, x)],
|
117 |
+
inverse=False, fill_in_gaps=False)
|
118 |
+
R3_s.connect_to(R3_r, [r, theta, phi],
|
119 |
+
[r*sin(theta)*cos(phi), r*sin(
|
120 |
+
theta)*sin(phi), r*cos(theta)],
|
121 |
+
inverse=False, fill_in_gaps=False)
|
122 |
+
## cylindrical <-> spherical
|
123 |
+
R3_c.connect_to(R3_s, [rho, psi, z],
|
124 |
+
[sqrt(rho**2 + z**2), acos(z/sqrt(rho**2 + z**2)), psi],
|
125 |
+
inverse=False, fill_in_gaps=False)
|
126 |
+
R3_s.connect_to(R3_c, [r, theta, phi],
|
127 |
+
[r*sin(theta), phi, r*cos(theta)],
|
128 |
+
inverse=False, fill_in_gaps=False)
|
129 |
+
|
130 |
+
# Defining the basis coordinate functions.
|
131 |
+
R3_r.x, R3_r.y, R3_r.z = R3_r.coord_functions()
|
132 |
+
R3_c.rho, R3_c.psi, R3_c.z = R3_c.coord_functions()
|
133 |
+
R3_s.r, R3_s.theta, R3_s.phi = R3_s.coord_functions()
|
134 |
+
|
135 |
+
# Defining the basis vector fields.
|
136 |
+
R3_r.e_x, R3_r.e_y, R3_r.e_z = R3_r.base_vectors()
|
137 |
+
R3_c.e_rho, R3_c.e_psi, R3_c.e_z = R3_c.base_vectors()
|
138 |
+
R3_s.e_r, R3_s.e_theta, R3_s.e_phi = R3_s.base_vectors()
|
139 |
+
|
140 |
+
# Defining the basis oneform fields.
|
141 |
+
R3_r.dx, R3_r.dy, R3_r.dz = R3_r.base_oneforms()
|
142 |
+
R3_c.drho, R3_c.dpsi, R3_c.dz = R3_c.base_oneforms()
|
143 |
+
R3_s.dr, R3_s.dtheta, R3_s.dphi = R3_s.base_oneforms()
|
venv/lib/python3.10/site-packages/sympy/diffgeom/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (188 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_class_structure.cpython-310.pyc
ADDED
Binary file (1.47 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_diffgeom.cpython-310.pyc
ADDED
Binary file (13.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_function_diffgeom_book.cpython-310.pyc
ADDED
Binary file (4.97 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_hyperbolic_space.cpython-310.pyc
ADDED
Binary file (2.75 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/diffgeom/tests/test_class_structure.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.diffgeom import Manifold, Patch, CoordSystem, Point
|
2 |
+
from sympy.core.function import Function
|
3 |
+
from sympy.core.symbol import symbols
|
4 |
+
from sympy.testing.pytest import warns_deprecated_sympy
|
5 |
+
|
6 |
+
m = Manifold('m', 2)
|
7 |
+
p = Patch('p', m)
|
8 |
+
a, b = symbols('a b')
|
9 |
+
cs = CoordSystem('cs', p, [a, b])
|
10 |
+
x, y = symbols('x y')
|
11 |
+
f = Function('f')
|
12 |
+
s1, s2 = cs.coord_functions()
|
13 |
+
v1, v2 = cs.base_vectors()
|
14 |
+
f1, f2 = cs.base_oneforms()
|
15 |
+
|
16 |
+
def test_point():
|
17 |
+
point = Point(cs, [x, y])
|
18 |
+
assert point != Point(cs, [2, y])
|
19 |
+
#TODO assert point.subs(x, 2) == Point(cs, [2, y])
|
20 |
+
#TODO assert point.free_symbols == set([x, y])
|
21 |
+
|
22 |
+
def test_subs():
|
23 |
+
assert s1.subs(s1, s2) == s2
|
24 |
+
assert v1.subs(v1, v2) == v2
|
25 |
+
assert f1.subs(f1, f2) == f2
|
26 |
+
assert (x*f(s1) + y).subs(s1, s2) == x*f(s2) + y
|
27 |
+
assert (f(s1)*v1).subs(v1, v2) == f(s1)*v2
|
28 |
+
assert (y*f(s1)*f1).subs(f1, f2) == y*f(s1)*f2
|
29 |
+
|
30 |
+
def test_deprecated():
|
31 |
+
with warns_deprecated_sympy():
|
32 |
+
cs_wname = CoordSystem('cs', p, ['a', 'b'])
|
33 |
+
assert cs_wname == cs_wname.func(*cs_wname.args)
|
venv/lib/python3.10/site-packages/sympy/diffgeom/tests/test_diffgeom.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Lambda, Symbol, symbols
|
2 |
+
from sympy.diffgeom.rn import R2, R2_p, R2_r, R3_r, R3_c, R3_s, R2_origin
|
3 |
+
from sympy.diffgeom import (Manifold, Patch, CoordSystem, Commutator, Differential, TensorProduct,
|
4 |
+
WedgeProduct, BaseCovarDerivativeOp, CovarDerivativeOp, LieDerivative,
|
5 |
+
covariant_order, contravariant_order, twoform_to_matrix, metric_to_Christoffel_1st,
|
6 |
+
metric_to_Christoffel_2nd, metric_to_Riemann_components,
|
7 |
+
metric_to_Ricci_components, intcurve_diffequ, intcurve_series)
|
8 |
+
from sympy.simplify import trigsimp, simplify
|
9 |
+
from sympy.functions import sqrt, atan2, sin
|
10 |
+
from sympy.matrices import Matrix
|
11 |
+
from sympy.testing.pytest import raises, nocache_fail
|
12 |
+
from sympy.testing.pytest import warns_deprecated_sympy
|
13 |
+
|
14 |
+
TP = TensorProduct
|
15 |
+
|
16 |
+
|
17 |
+
def test_coordsys_transform():
|
18 |
+
# test inverse transforms
|
19 |
+
p, q, r, s = symbols('p q r s')
|
20 |
+
rel = {('first', 'second'): [(p, q), (q, -p)]}
|
21 |
+
R2_pq = CoordSystem('first', R2_origin, [p, q], rel)
|
22 |
+
R2_rs = CoordSystem('second', R2_origin, [r, s], rel)
|
23 |
+
r, s = R2_rs.symbols
|
24 |
+
assert R2_rs.transform(R2_pq) == Matrix([[-s], [r]])
|
25 |
+
|
26 |
+
# inverse transform impossible case
|
27 |
+
a, b = symbols('a b', positive=True)
|
28 |
+
rel = {('first', 'second'): [(a,), (-a,)]}
|
29 |
+
R2_a = CoordSystem('first', R2_origin, [a], rel)
|
30 |
+
R2_b = CoordSystem('second', R2_origin, [b], rel)
|
31 |
+
# This transformation is uninvertible because there is no positive a, b satisfying a = -b
|
32 |
+
with raises(NotImplementedError):
|
33 |
+
R2_b.transform(R2_a)
|
34 |
+
|
35 |
+
# inverse transform ambiguous case
|
36 |
+
c, d = symbols('c d')
|
37 |
+
rel = {('first', 'second'): [(c,), (c**2,)]}
|
38 |
+
R2_c = CoordSystem('first', R2_origin, [c], rel)
|
39 |
+
R2_d = CoordSystem('second', R2_origin, [d], rel)
|
40 |
+
# The transform method should throw if it finds multiple inverses for a coordinate transformation.
|
41 |
+
with raises(ValueError):
|
42 |
+
R2_d.transform(R2_c)
|
43 |
+
|
44 |
+
# test indirect transformation
|
45 |
+
a, b, c, d, e, f = symbols('a, b, c, d, e, f')
|
46 |
+
rel = {('C1', 'C2'): [(a, b), (2*a, 3*b)],
|
47 |
+
('C2', 'C3'): [(c, d), (3*c, 2*d)]}
|
48 |
+
C1 = CoordSystem('C1', R2_origin, (a, b), rel)
|
49 |
+
C2 = CoordSystem('C2', R2_origin, (c, d), rel)
|
50 |
+
C3 = CoordSystem('C3', R2_origin, (e, f), rel)
|
51 |
+
a, b = C1.symbols
|
52 |
+
c, d = C2.symbols
|
53 |
+
e, f = C3.symbols
|
54 |
+
assert C2.transform(C1) == Matrix([c/2, d/3])
|
55 |
+
assert C1.transform(C3) == Matrix([6*a, 6*b])
|
56 |
+
assert C3.transform(C1) == Matrix([e/6, f/6])
|
57 |
+
assert C3.transform(C2) == Matrix([e/3, f/2])
|
58 |
+
|
59 |
+
a, b, c, d, e, f = symbols('a, b, c, d, e, f')
|
60 |
+
rel = {('C1', 'C2'): [(a, b), (2*a, 3*b + 1)],
|
61 |
+
('C3', 'C2'): [(e, f), (-e - 2, 2*f)]}
|
62 |
+
C1 = CoordSystem('C1', R2_origin, (a, b), rel)
|
63 |
+
C2 = CoordSystem('C2', R2_origin, (c, d), rel)
|
64 |
+
C3 = CoordSystem('C3', R2_origin, (e, f), rel)
|
65 |
+
a, b = C1.symbols
|
66 |
+
c, d = C2.symbols
|
67 |
+
e, f = C3.symbols
|
68 |
+
assert C2.transform(C1) == Matrix([c/2, (d - 1)/3])
|
69 |
+
assert C1.transform(C3) == Matrix([-2*a - 2, (3*b + 1)/2])
|
70 |
+
assert C3.transform(C1) == Matrix([-e/2 - 1, (2*f - 1)/3])
|
71 |
+
assert C3.transform(C2) == Matrix([-e - 2, 2*f])
|
72 |
+
|
73 |
+
# old signature uses Lambda
|
74 |
+
a, b, c, d, e, f = symbols('a, b, c, d, e, f')
|
75 |
+
rel = {('C1', 'C2'): Lambda((a, b), (2*a, 3*b + 1)),
|
76 |
+
('C3', 'C2'): Lambda((e, f), (-e - 2, 2*f))}
|
77 |
+
C1 = CoordSystem('C1', R2_origin, (a, b), rel)
|
78 |
+
C2 = CoordSystem('C2', R2_origin, (c, d), rel)
|
79 |
+
C3 = CoordSystem('C3', R2_origin, (e, f), rel)
|
80 |
+
a, b = C1.symbols
|
81 |
+
c, d = C2.symbols
|
82 |
+
e, f = C3.symbols
|
83 |
+
assert C2.transform(C1) == Matrix([c/2, (d - 1)/3])
|
84 |
+
assert C1.transform(C3) == Matrix([-2*a - 2, (3*b + 1)/2])
|
85 |
+
assert C3.transform(C1) == Matrix([-e/2 - 1, (2*f - 1)/3])
|
86 |
+
assert C3.transform(C2) == Matrix([-e - 2, 2*f])
|
87 |
+
|
88 |
+
|
89 |
+
def test_R2():
|
90 |
+
x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True)
|
91 |
+
point_r = R2_r.point([x0, y0])
|
92 |
+
point_p = R2_p.point([r0, theta0])
|
93 |
+
|
94 |
+
# r**2 = x**2 + y**2
|
95 |
+
assert (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_r) == 0
|
96 |
+
assert trigsimp( (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_p) ) == 0
|
97 |
+
assert trigsimp(R2.e_r(R2.x**2 + R2.y**2).rcall(point_p).doit()) == 2*r0
|
98 |
+
|
99 |
+
# polar->rect->polar == Id
|
100 |
+
a, b = symbols('a b', positive=True)
|
101 |
+
m = Matrix([[a], [b]])
|
102 |
+
|
103 |
+
#TODO assert m == R2_r.transform(R2_p, R2_p.transform(R2_r, [a, b])).applyfunc(simplify)
|
104 |
+
assert m == R2_p.transform(R2_r, R2_r.transform(R2_p, m)).applyfunc(simplify)
|
105 |
+
|
106 |
+
# deprecated method
|
107 |
+
with warns_deprecated_sympy():
|
108 |
+
assert m == R2_p.coord_tuple_transform_to(
|
109 |
+
R2_r, R2_r.coord_tuple_transform_to(R2_p, m)).applyfunc(simplify)
|
110 |
+
|
111 |
+
|
112 |
+
def test_R3():
|
113 |
+
a, b, c = symbols('a b c', positive=True)
|
114 |
+
m = Matrix([[a], [b], [c]])
|
115 |
+
|
116 |
+
assert m == R3_c.transform(R3_r, R3_r.transform(R3_c, m)).applyfunc(simplify)
|
117 |
+
#TODO assert m == R3_r.transform(R3_c, R3_c.transform(R3_r, m)).applyfunc(simplify)
|
118 |
+
assert m == R3_s.transform(
|
119 |
+
R3_r, R3_r.transform(R3_s, m)).applyfunc(simplify)
|
120 |
+
#TODO assert m == R3_r.transform(R3_s, R3_s.transform(R3_r, m)).applyfunc(simplify)
|
121 |
+
assert m == R3_s.transform(
|
122 |
+
R3_c, R3_c.transform(R3_s, m)).applyfunc(simplify)
|
123 |
+
#TODO assert m == R3_c.transform(R3_s, R3_s.transform(R3_c, m)).applyfunc(simplify)
|
124 |
+
|
125 |
+
with warns_deprecated_sympy():
|
126 |
+
assert m == R3_c.coord_tuple_transform_to(
|
127 |
+
R3_r, R3_r.coord_tuple_transform_to(R3_c, m)).applyfunc(simplify)
|
128 |
+
#TODO assert m == R3_r.coord_tuple_transform_to(R3_c, R3_c.coord_tuple_transform_to(R3_r, m)).applyfunc(simplify)
|
129 |
+
assert m == R3_s.coord_tuple_transform_to(
|
130 |
+
R3_r, R3_r.coord_tuple_transform_to(R3_s, m)).applyfunc(simplify)
|
131 |
+
#TODO assert m == R3_r.coord_tuple_transform_to(R3_s, R3_s.coord_tuple_transform_to(R3_r, m)).applyfunc(simplify)
|
132 |
+
assert m == R3_s.coord_tuple_transform_to(
|
133 |
+
R3_c, R3_c.coord_tuple_transform_to(R3_s, m)).applyfunc(simplify)
|
134 |
+
#TODO assert m == R3_c.coord_tuple_transform_to(R3_s, R3_s.coord_tuple_transform_to(R3_c, m)).applyfunc(simplify)
|
135 |
+
|
136 |
+
|
137 |
+
def test_CoordinateSymbol():
|
138 |
+
x, y = R2_r.symbols
|
139 |
+
r, theta = R2_p.symbols
|
140 |
+
assert y.rewrite(R2_p) == r*sin(theta)
|
141 |
+
|
142 |
+
|
143 |
+
def test_point():
|
144 |
+
x, y = symbols('x, y')
|
145 |
+
p = R2_r.point([x, y])
|
146 |
+
assert p.free_symbols == {x, y}
|
147 |
+
assert p.coords(R2_r) == p.coords() == Matrix([x, y])
|
148 |
+
assert p.coords(R2_p) == Matrix([sqrt(x**2 + y**2), atan2(y, x)])
|
149 |
+
|
150 |
+
|
151 |
+
def test_commutator():
|
152 |
+
assert Commutator(R2.e_x, R2.e_y) == 0
|
153 |
+
assert Commutator(R2.x*R2.e_x, R2.x*R2.e_x) == 0
|
154 |
+
assert Commutator(R2.x*R2.e_x, R2.x*R2.e_y) == R2.x*R2.e_y
|
155 |
+
c = Commutator(R2.e_x, R2.e_r)
|
156 |
+
assert c(R2.x) == R2.y*(R2.x**2 + R2.y**2)**(-1)*sin(R2.theta)
|
157 |
+
|
158 |
+
|
159 |
+
def test_differential():
|
160 |
+
xdy = R2.x*R2.dy
|
161 |
+
dxdy = Differential(xdy)
|
162 |
+
assert xdy.rcall(None) == xdy
|
163 |
+
assert dxdy(R2.e_x, R2.e_y) == 1
|
164 |
+
assert dxdy(R2.e_x, R2.x*R2.e_y) == R2.x
|
165 |
+
assert Differential(dxdy) == 0
|
166 |
+
|
167 |
+
|
168 |
+
def test_products():
|
169 |
+
assert TensorProduct(
|
170 |
+
R2.dx, R2.dy)(R2.e_x, R2.e_y) == R2.dx(R2.e_x)*R2.dy(R2.e_y) == 1
|
171 |
+
assert TensorProduct(R2.dx, R2.dy)(None, R2.e_y) == R2.dx
|
172 |
+
assert TensorProduct(R2.dx, R2.dy)(R2.e_x, None) == R2.dy
|
173 |
+
assert TensorProduct(R2.dx, R2.dy)(R2.e_x) == R2.dy
|
174 |
+
assert TensorProduct(R2.x, R2.dx) == R2.x*R2.dx
|
175 |
+
assert TensorProduct(
|
176 |
+
R2.e_x, R2.e_y)(R2.x, R2.y) == R2.e_x(R2.x) * R2.e_y(R2.y) == 1
|
177 |
+
assert TensorProduct(R2.e_x, R2.e_y)(None, R2.y) == R2.e_x
|
178 |
+
assert TensorProduct(R2.e_x, R2.e_y)(R2.x, None) == R2.e_y
|
179 |
+
assert TensorProduct(R2.e_x, R2.e_y)(R2.x) == R2.e_y
|
180 |
+
assert TensorProduct(R2.x, R2.e_x) == R2.x * R2.e_x
|
181 |
+
assert TensorProduct(
|
182 |
+
R2.dx, R2.e_y)(R2.e_x, R2.y) == R2.dx(R2.e_x) * R2.e_y(R2.y) == 1
|
183 |
+
assert TensorProduct(R2.dx, R2.e_y)(None, R2.y) == R2.dx
|
184 |
+
assert TensorProduct(R2.dx, R2.e_y)(R2.e_x, None) == R2.e_y
|
185 |
+
assert TensorProduct(R2.dx, R2.e_y)(R2.e_x) == R2.e_y
|
186 |
+
assert TensorProduct(R2.x, R2.e_x) == R2.x * R2.e_x
|
187 |
+
assert TensorProduct(
|
188 |
+
R2.e_x, R2.dy)(R2.x, R2.e_y) == R2.e_x(R2.x) * R2.dy(R2.e_y) == 1
|
189 |
+
assert TensorProduct(R2.e_x, R2.dy)(None, R2.e_y) == R2.e_x
|
190 |
+
assert TensorProduct(R2.e_x, R2.dy)(R2.x, None) == R2.dy
|
191 |
+
assert TensorProduct(R2.e_x, R2.dy)(R2.x) == R2.dy
|
192 |
+
assert TensorProduct(R2.e_y,R2.e_x)(R2.x**2 + R2.y**2,R2.x**2 + R2.y**2) == 4*R2.x*R2.y
|
193 |
+
|
194 |
+
assert WedgeProduct(R2.dx, R2.dy)(R2.e_x, R2.e_y) == 1
|
195 |
+
assert WedgeProduct(R2.e_x, R2.e_y)(R2.x, R2.y) == 1
|
196 |
+
|
197 |
+
|
198 |
+
def test_lie_derivative():
|
199 |
+
assert LieDerivative(R2.e_x, R2.y) == R2.e_x(R2.y) == 0
|
200 |
+
assert LieDerivative(R2.e_x, R2.x) == R2.e_x(R2.x) == 1
|
201 |
+
assert LieDerivative(R2.e_x, R2.e_x) == Commutator(R2.e_x, R2.e_x) == 0
|
202 |
+
assert LieDerivative(R2.e_x, R2.e_r) == Commutator(R2.e_x, R2.e_r)
|
203 |
+
assert LieDerivative(R2.e_x + R2.e_y, R2.x) == 1
|
204 |
+
assert LieDerivative(
|
205 |
+
R2.e_x, TensorProduct(R2.dx, R2.dy))(R2.e_x, R2.e_y) == 0
|
206 |
+
|
207 |
+
|
208 |
+
@nocache_fail
|
209 |
+
def test_covar_deriv():
|
210 |
+
ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
|
211 |
+
cvd = BaseCovarDerivativeOp(R2_r, 0, ch)
|
212 |
+
assert cvd(R2.x) == 1
|
213 |
+
# This line fails if the cache is disabled:
|
214 |
+
assert cvd(R2.x*R2.e_x) == R2.e_x
|
215 |
+
cvd = CovarDerivativeOp(R2.x*R2.e_x, ch)
|
216 |
+
assert cvd(R2.x) == R2.x
|
217 |
+
assert cvd(R2.x*R2.e_x) == R2.x*R2.e_x
|
218 |
+
|
219 |
+
|
220 |
+
def test_intcurve_diffequ():
|
221 |
+
t = symbols('t')
|
222 |
+
start_point = R2_r.point([1, 0])
|
223 |
+
vector_field = -R2.y*R2.e_x + R2.x*R2.e_y
|
224 |
+
equations, init_cond = intcurve_diffequ(vector_field, t, start_point)
|
225 |
+
assert str(equations) == '[f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]'
|
226 |
+
assert str(init_cond) == '[f_0(0) - 1, f_1(0)]'
|
227 |
+
equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p)
|
228 |
+
assert str(
|
229 |
+
equations) == '[Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]'
|
230 |
+
assert str(init_cond) == '[f_0(0) - 1, f_1(0)]'
|
231 |
+
|
232 |
+
|
233 |
+
def test_helpers_and_coordinate_dependent():
|
234 |
+
one_form = R2.dr + R2.dx
|
235 |
+
two_form = Differential(R2.x*R2.dr + R2.r*R2.dx)
|
236 |
+
three_form = Differential(
|
237 |
+
R2.y*two_form) + Differential(R2.x*Differential(R2.r*R2.dr))
|
238 |
+
metric = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dy, R2.dy)
|
239 |
+
metric_ambig = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dr, R2.dr)
|
240 |
+
misform_a = TensorProduct(R2.dr, R2.dr) + R2.dr
|
241 |
+
misform_b = R2.dr**4
|
242 |
+
misform_c = R2.dx*R2.dy
|
243 |
+
twoform_not_sym = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dx, R2.dy)
|
244 |
+
twoform_not_TP = WedgeProduct(R2.dx, R2.dy)
|
245 |
+
|
246 |
+
one_vector = R2.e_x + R2.e_y
|
247 |
+
two_vector = TensorProduct(R2.e_x, R2.e_y)
|
248 |
+
three_vector = TensorProduct(R2.e_x, R2.e_y, R2.e_x)
|
249 |
+
two_wp = WedgeProduct(R2.e_x,R2.e_y)
|
250 |
+
|
251 |
+
assert covariant_order(one_form) == 1
|
252 |
+
assert covariant_order(two_form) == 2
|
253 |
+
assert covariant_order(three_form) == 3
|
254 |
+
assert covariant_order(two_form + metric) == 2
|
255 |
+
assert covariant_order(two_form + metric_ambig) == 2
|
256 |
+
assert covariant_order(two_form + twoform_not_sym) == 2
|
257 |
+
assert covariant_order(two_form + twoform_not_TP) == 2
|
258 |
+
|
259 |
+
assert contravariant_order(one_vector) == 1
|
260 |
+
assert contravariant_order(two_vector) == 2
|
261 |
+
assert contravariant_order(three_vector) == 3
|
262 |
+
assert contravariant_order(two_vector + two_wp) == 2
|
263 |
+
|
264 |
+
raises(ValueError, lambda: covariant_order(misform_a))
|
265 |
+
raises(ValueError, lambda: covariant_order(misform_b))
|
266 |
+
raises(ValueError, lambda: covariant_order(misform_c))
|
267 |
+
|
268 |
+
assert twoform_to_matrix(metric) == Matrix([[1, 0], [0, 1]])
|
269 |
+
assert twoform_to_matrix(twoform_not_sym) == Matrix([[1, 0], [1, 0]])
|
270 |
+
assert twoform_to_matrix(twoform_not_TP) == Matrix([[0, -1], [1, 0]])
|
271 |
+
|
272 |
+
raises(ValueError, lambda: twoform_to_matrix(one_form))
|
273 |
+
raises(ValueError, lambda: twoform_to_matrix(three_form))
|
274 |
+
raises(ValueError, lambda: twoform_to_matrix(metric_ambig))
|
275 |
+
|
276 |
+
raises(ValueError, lambda: metric_to_Christoffel_1st(twoform_not_sym))
|
277 |
+
raises(ValueError, lambda: metric_to_Christoffel_2nd(twoform_not_sym))
|
278 |
+
raises(ValueError, lambda: metric_to_Riemann_components(twoform_not_sym))
|
279 |
+
raises(ValueError, lambda: metric_to_Ricci_components(twoform_not_sym))
|
280 |
+
|
281 |
+
|
282 |
+
def test_correct_arguments():
|
283 |
+
raises(ValueError, lambda: R2.e_x(R2.e_x))
|
284 |
+
raises(ValueError, lambda: R2.e_x(R2.dx))
|
285 |
+
|
286 |
+
raises(ValueError, lambda: Commutator(R2.e_x, R2.x))
|
287 |
+
raises(ValueError, lambda: Commutator(R2.dx, R2.e_x))
|
288 |
+
|
289 |
+
raises(ValueError, lambda: Differential(Differential(R2.e_x)))
|
290 |
+
|
291 |
+
raises(ValueError, lambda: R2.dx(R2.x))
|
292 |
+
|
293 |
+
raises(ValueError, lambda: LieDerivative(R2.dx, R2.dx))
|
294 |
+
raises(ValueError, lambda: LieDerivative(R2.x, R2.dx))
|
295 |
+
|
296 |
+
raises(ValueError, lambda: CovarDerivativeOp(R2.dx, []))
|
297 |
+
raises(ValueError, lambda: CovarDerivativeOp(R2.x, []))
|
298 |
+
|
299 |
+
a = Symbol('a')
|
300 |
+
raises(ValueError, lambda: intcurve_series(R2.dx, a, R2_r.point([1, 2])))
|
301 |
+
raises(ValueError, lambda: intcurve_series(R2.x, a, R2_r.point([1, 2])))
|
302 |
+
|
303 |
+
raises(ValueError, lambda: intcurve_diffequ(R2.dx, a, R2_r.point([1, 2])))
|
304 |
+
raises(ValueError, lambda: intcurve_diffequ(R2.x, a, R2_r.point([1, 2])))
|
305 |
+
|
306 |
+
raises(ValueError, lambda: contravariant_order(R2.e_x + R2.dx))
|
307 |
+
raises(ValueError, lambda: covariant_order(R2.e_x + R2.dx))
|
308 |
+
|
309 |
+
raises(ValueError, lambda: contravariant_order(R2.e_x*R2.e_y))
|
310 |
+
raises(ValueError, lambda: covariant_order(R2.dx*R2.dy))
|
311 |
+
|
312 |
+
def test_simplify():
|
313 |
+
x, y = R2_r.coord_functions()
|
314 |
+
dx, dy = R2_r.base_oneforms()
|
315 |
+
ex, ey = R2_r.base_vectors()
|
316 |
+
assert simplify(x) == x
|
317 |
+
assert simplify(x*y) == x*y
|
318 |
+
assert simplify(dx*dy) == dx*dy
|
319 |
+
assert simplify(ex*ey) == ex*ey
|
320 |
+
assert ((1-x)*dx)/(1-x)**2 == dx/(1-x)
|
321 |
+
|
322 |
+
|
323 |
+
def test_issue_17917():
|
324 |
+
X = R2.x*R2.e_x - R2.y*R2.e_y
|
325 |
+
Y = (R2.x**2 + R2.y**2)*R2.e_x - R2.x*R2.y*R2.e_y
|
326 |
+
assert LieDerivative(X, Y).expand() == (
|
327 |
+
R2.x**2*R2.e_x - 3*R2.y**2*R2.e_x - R2.x*R2.y*R2.e_y)
|
328 |
+
|
329 |
+
def test_deprecations():
|
330 |
+
m = Manifold('M', 2)
|
331 |
+
p = Patch('P', m)
|
332 |
+
with warns_deprecated_sympy():
|
333 |
+
CoordSystem('Car2d', p, names=['x', 'y'])
|
334 |
+
|
335 |
+
with warns_deprecated_sympy():
|
336 |
+
c = CoordSystem('Car2d', p, ['x', 'y'])
|
337 |
+
|
338 |
+
with warns_deprecated_sympy():
|
339 |
+
list(m.patches)
|
340 |
+
|
341 |
+
with warns_deprecated_sympy():
|
342 |
+
list(c.transforms)
|
venv/lib/python3.10/site-packages/sympy/diffgeom/tests/test_function_diffgeom_book.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.diffgeom.rn import R2, R2_p, R2_r, R3_r
|
2 |
+
from sympy.diffgeom import intcurve_series, Differential, WedgeProduct
|
3 |
+
from sympy.core import symbols, Function, Derivative
|
4 |
+
from sympy.simplify import trigsimp, simplify
|
5 |
+
from sympy.functions import sqrt, atan2, sin, cos
|
6 |
+
from sympy.matrices import Matrix
|
7 |
+
|
8 |
+
# Most of the functionality is covered in the
|
9 |
+
# test_functional_diffgeom_ch* tests which are based on the
|
10 |
+
# example from the paper of Sussman and Wisdom.
|
11 |
+
# If they do not cover something, additional tests are added in other test
|
12 |
+
# functions.
|
13 |
+
|
14 |
+
# From "Functional Differential Geometry" as of 2011
|
15 |
+
# by Sussman and Wisdom.
|
16 |
+
|
17 |
+
|
18 |
+
def test_functional_diffgeom_ch2():
|
19 |
+
x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True)
|
20 |
+
x, y = symbols('x, y', real=True)
|
21 |
+
f = Function('f')
|
22 |
+
|
23 |
+
assert (R2_p.point_to_coords(R2_r.point([x0, y0])) ==
|
24 |
+
Matrix([sqrt(x0**2 + y0**2), atan2(y0, x0)]))
|
25 |
+
assert (R2_r.point_to_coords(R2_p.point([r0, theta0])) ==
|
26 |
+
Matrix([r0*cos(theta0), r0*sin(theta0)]))
|
27 |
+
|
28 |
+
assert R2_p.jacobian(R2_r, [r0, theta0]) == Matrix(
|
29 |
+
[[cos(theta0), -r0*sin(theta0)], [sin(theta0), r0*cos(theta0)]])
|
30 |
+
|
31 |
+
field = f(R2.x, R2.y)
|
32 |
+
p1_in_rect = R2_r.point([x0, y0])
|
33 |
+
p1_in_polar = R2_p.point([sqrt(x0**2 + y0**2), atan2(y0, x0)])
|
34 |
+
assert field.rcall(p1_in_rect) == f(x0, y0)
|
35 |
+
assert field.rcall(p1_in_polar) == f(x0, y0)
|
36 |
+
|
37 |
+
p_r = R2_r.point([x0, y0])
|
38 |
+
p_p = R2_p.point([r0, theta0])
|
39 |
+
assert R2.x(p_r) == x0
|
40 |
+
assert R2.x(p_p) == r0*cos(theta0)
|
41 |
+
assert R2.r(p_p) == r0
|
42 |
+
assert R2.r(p_r) == sqrt(x0**2 + y0**2)
|
43 |
+
assert R2.theta(p_r) == atan2(y0, x0)
|
44 |
+
|
45 |
+
h = R2.x*R2.r**2 + R2.y**3
|
46 |
+
assert h.rcall(p_r) == x0*(x0**2 + y0**2) + y0**3
|
47 |
+
assert h.rcall(p_p) == r0**3*sin(theta0)**3 + r0**3*cos(theta0)
|
48 |
+
|
49 |
+
|
50 |
+
def test_functional_diffgeom_ch3():
|
51 |
+
x0, y0 = symbols('x0, y0', real=True)
|
52 |
+
x, y, t = symbols('x, y, t', real=True)
|
53 |
+
f = Function('f')
|
54 |
+
b1 = Function('b1')
|
55 |
+
b2 = Function('b2')
|
56 |
+
p_r = R2_r.point([x0, y0])
|
57 |
+
|
58 |
+
s_field = f(R2.x, R2.y)
|
59 |
+
v_field = b1(R2.x)*R2.e_x + b2(R2.y)*R2.e_y
|
60 |
+
assert v_field.rcall(s_field).rcall(p_r).doit() == b1(
|
61 |
+
x0)*Derivative(f(x0, y0), x0) + b2(y0)*Derivative(f(x0, y0), y0)
|
62 |
+
|
63 |
+
assert R2.e_x(R2.r**2).rcall(p_r) == 2*x0
|
64 |
+
v = R2.e_x + 2*R2.e_y
|
65 |
+
s = R2.r**2 + 3*R2.x
|
66 |
+
assert v.rcall(s).rcall(p_r).doit() == 2*x0 + 4*y0 + 3
|
67 |
+
|
68 |
+
circ = -R2.y*R2.e_x + R2.x*R2.e_y
|
69 |
+
series = intcurve_series(circ, t, R2_r.point([1, 0]), coeffs=True)
|
70 |
+
series_x, series_y = zip(*series)
|
71 |
+
assert all(
|
72 |
+
[term == cos(t).taylor_term(i, t) for i, term in enumerate(series_x)])
|
73 |
+
assert all(
|
74 |
+
[term == sin(t).taylor_term(i, t) for i, term in enumerate(series_y)])
|
75 |
+
|
76 |
+
|
77 |
+
def test_functional_diffgeom_ch4():
|
78 |
+
x0, y0, theta0 = symbols('x0, y0, theta0', real=True)
|
79 |
+
x, y, r, theta = symbols('x, y, r, theta', real=True)
|
80 |
+
r0 = symbols('r0', positive=True)
|
81 |
+
f = Function('f')
|
82 |
+
b1 = Function('b1')
|
83 |
+
b2 = Function('b2')
|
84 |
+
p_r = R2_r.point([x0, y0])
|
85 |
+
p_p = R2_p.point([r0, theta0])
|
86 |
+
|
87 |
+
f_field = b1(R2.x, R2.y)*R2.dx + b2(R2.x, R2.y)*R2.dy
|
88 |
+
assert f_field.rcall(R2.e_x).rcall(p_r) == b1(x0, y0)
|
89 |
+
assert f_field.rcall(R2.e_y).rcall(p_r) == b2(x0, y0)
|
90 |
+
|
91 |
+
s_field_r = f(R2.x, R2.y)
|
92 |
+
df = Differential(s_field_r)
|
93 |
+
assert df(R2.e_x).rcall(p_r).doit() == Derivative(f(x0, y0), x0)
|
94 |
+
assert df(R2.e_y).rcall(p_r).doit() == Derivative(f(x0, y0), y0)
|
95 |
+
|
96 |
+
s_field_p = f(R2.r, R2.theta)
|
97 |
+
df = Differential(s_field_p)
|
98 |
+
assert trigsimp(df(R2.e_x).rcall(p_p).doit()) == (
|
99 |
+
cos(theta0)*Derivative(f(r0, theta0), r0) -
|
100 |
+
sin(theta0)*Derivative(f(r0, theta0), theta0)/r0)
|
101 |
+
assert trigsimp(df(R2.e_y).rcall(p_p).doit()) == (
|
102 |
+
sin(theta0)*Derivative(f(r0, theta0), r0) +
|
103 |
+
cos(theta0)*Derivative(f(r0, theta0), theta0)/r0)
|
104 |
+
|
105 |
+
assert R2.dx(R2.e_x).rcall(p_r) == 1
|
106 |
+
assert R2.dx(R2.e_x) == 1
|
107 |
+
assert R2.dx(R2.e_y).rcall(p_r) == 0
|
108 |
+
assert R2.dx(R2.e_y) == 0
|
109 |
+
|
110 |
+
circ = -R2.y*R2.e_x + R2.x*R2.e_y
|
111 |
+
assert R2.dx(circ).rcall(p_r).doit() == -y0
|
112 |
+
assert R2.dy(circ).rcall(p_r) == x0
|
113 |
+
assert R2.dr(circ).rcall(p_r) == 0
|
114 |
+
assert simplify(R2.dtheta(circ).rcall(p_r)) == 1
|
115 |
+
|
116 |
+
assert (circ - R2.e_theta).rcall(s_field_r).rcall(p_r) == 0
|
117 |
+
|
118 |
+
|
119 |
+
def test_functional_diffgeom_ch6():
|
120 |
+
u0, u1, u2, v0, v1, v2, w0, w1, w2 = symbols('u0:3, v0:3, w0:3', real=True)
|
121 |
+
|
122 |
+
u = u0*R2.e_x + u1*R2.e_y
|
123 |
+
v = v0*R2.e_x + v1*R2.e_y
|
124 |
+
wp = WedgeProduct(R2.dx, R2.dy)
|
125 |
+
assert wp(u, v) == u0*v1 - u1*v0
|
126 |
+
|
127 |
+
u = u0*R3_r.e_x + u1*R3_r.e_y + u2*R3_r.e_z
|
128 |
+
v = v0*R3_r.e_x + v1*R3_r.e_y + v2*R3_r.e_z
|
129 |
+
w = w0*R3_r.e_x + w1*R3_r.e_y + w2*R3_r.e_z
|
130 |
+
wp = WedgeProduct(R3_r.dx, R3_r.dy, R3_r.dz)
|
131 |
+
assert wp(
|
132 |
+
u, v, w) == Matrix(3, 3, [u0, u1, u2, v0, v1, v2, w0, w1, w2]).det()
|
133 |
+
|
134 |
+
a, b, c = symbols('a, b, c', cls=Function)
|
135 |
+
a_f = a(R3_r.x, R3_r.y, R3_r.z)
|
136 |
+
b_f = b(R3_r.x, R3_r.y, R3_r.z)
|
137 |
+
c_f = c(R3_r.x, R3_r.y, R3_r.z)
|
138 |
+
theta = a_f*R3_r.dx + b_f*R3_r.dy + c_f*R3_r.dz
|
139 |
+
dtheta = Differential(theta)
|
140 |
+
da = Differential(a_f)
|
141 |
+
db = Differential(b_f)
|
142 |
+
dc = Differential(c_f)
|
143 |
+
expr = dtheta - WedgeProduct(
|
144 |
+
da, R3_r.dx) - WedgeProduct(db, R3_r.dy) - WedgeProduct(dc, R3_r.dz)
|
145 |
+
assert expr.rcall(R3_r.e_x, R3_r.e_y) == 0
|
venv/lib/python3.10/site-packages/sympy/diffgeom/tests/test_hyperbolic_space.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r'''
|
2 |
+
unit test describing the hyperbolic half-plane with the Poincare metric. This
|
3 |
+
is a basic model of hyperbolic geometry on the (positive) half-space
|
4 |
+
|
5 |
+
{(x,y) \in R^2 | y > 0}
|
6 |
+
|
7 |
+
with the Riemannian metric
|
8 |
+
|
9 |
+
ds^2 = (dx^2 + dy^2)/y^2
|
10 |
+
|
11 |
+
It has constant negative scalar curvature = -2
|
12 |
+
|
13 |
+
https://en.wikipedia.org/wiki/Poincare_half-plane_model
|
14 |
+
'''
|
15 |
+
from sympy.matrices.dense import diag
|
16 |
+
from sympy.diffgeom import (twoform_to_matrix,
|
17 |
+
metric_to_Christoffel_1st, metric_to_Christoffel_2nd,
|
18 |
+
metric_to_Riemann_components, metric_to_Ricci_components)
|
19 |
+
import sympy.diffgeom.rn
|
20 |
+
from sympy.tensor.array import ImmutableDenseNDimArray
|
21 |
+
|
22 |
+
|
23 |
+
def test_H2():
|
24 |
+
TP = sympy.diffgeom.TensorProduct
|
25 |
+
R2 = sympy.diffgeom.rn.R2
|
26 |
+
y = R2.y
|
27 |
+
dy = R2.dy
|
28 |
+
dx = R2.dx
|
29 |
+
g = (TP(dx, dx) + TP(dy, dy))*y**(-2)
|
30 |
+
automat = twoform_to_matrix(g)
|
31 |
+
mat = diag(y**(-2), y**(-2))
|
32 |
+
assert mat == automat
|
33 |
+
|
34 |
+
gamma1 = metric_to_Christoffel_1st(g)
|
35 |
+
assert gamma1[0, 0, 0] == 0
|
36 |
+
assert gamma1[0, 0, 1] == -y**(-3)
|
37 |
+
assert gamma1[0, 1, 0] == -y**(-3)
|
38 |
+
assert gamma1[0, 1, 1] == 0
|
39 |
+
|
40 |
+
assert gamma1[1, 1, 1] == -y**(-3)
|
41 |
+
assert gamma1[1, 1, 0] == 0
|
42 |
+
assert gamma1[1, 0, 1] == 0
|
43 |
+
assert gamma1[1, 0, 0] == y**(-3)
|
44 |
+
|
45 |
+
gamma2 = metric_to_Christoffel_2nd(g)
|
46 |
+
assert gamma2[0, 0, 0] == 0
|
47 |
+
assert gamma2[0, 0, 1] == -y**(-1)
|
48 |
+
assert gamma2[0, 1, 0] == -y**(-1)
|
49 |
+
assert gamma2[0, 1, 1] == 0
|
50 |
+
|
51 |
+
assert gamma2[1, 1, 1] == -y**(-1)
|
52 |
+
assert gamma2[1, 1, 0] == 0
|
53 |
+
assert gamma2[1, 0, 1] == 0
|
54 |
+
assert gamma2[1, 0, 0] == y**(-1)
|
55 |
+
|
56 |
+
Rm = metric_to_Riemann_components(g)
|
57 |
+
assert Rm[0, 0, 0, 0] == 0
|
58 |
+
assert Rm[0, 0, 0, 1] == 0
|
59 |
+
assert Rm[0, 0, 1, 0] == 0
|
60 |
+
assert Rm[0, 0, 1, 1] == 0
|
61 |
+
|
62 |
+
assert Rm[0, 1, 0, 0] == 0
|
63 |
+
assert Rm[0, 1, 0, 1] == -y**(-2)
|
64 |
+
assert Rm[0, 1, 1, 0] == y**(-2)
|
65 |
+
assert Rm[0, 1, 1, 1] == 0
|
66 |
+
|
67 |
+
assert Rm[1, 0, 0, 0] == 0
|
68 |
+
assert Rm[1, 0, 0, 1] == y**(-2)
|
69 |
+
assert Rm[1, 0, 1, 0] == -y**(-2)
|
70 |
+
assert Rm[1, 0, 1, 1] == 0
|
71 |
+
|
72 |
+
assert Rm[1, 1, 0, 0] == 0
|
73 |
+
assert Rm[1, 1, 0, 1] == 0
|
74 |
+
assert Rm[1, 1, 1, 0] == 0
|
75 |
+
assert Rm[1, 1, 1, 1] == 0
|
76 |
+
|
77 |
+
Ric = metric_to_Ricci_components(g)
|
78 |
+
assert Ric[0, 0] == -y**(-2)
|
79 |
+
assert Ric[0, 1] == 0
|
80 |
+
assert Ric[1, 0] == 0
|
81 |
+
assert Ric[0, 0] == -y**(-2)
|
82 |
+
|
83 |
+
assert Ric == ImmutableDenseNDimArray([-y**(-2), 0, 0, -y**(-2)], (2, 2))
|
84 |
+
|
85 |
+
## scalar curvature is -2
|
86 |
+
#TODO - it would be nice to have index contraction built-in
|
87 |
+
R = (Ric[0, 0] + Ric[1, 1])*y**2
|
88 |
+
assert R == -2
|
89 |
+
|
90 |
+
## Gauss curvature is -1
|
91 |
+
assert R/2 == -1
|
venv/lib/python3.10/site-packages/sympy/logic/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (690 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/logic/__pycache__/boolalg.cpython-310.pyc
ADDED
Binary file (101 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/logic/__pycache__/inference.cpython-310.pyc
ADDED
Binary file (9.01 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/logic/algorithms/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (190 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/dpll.cpython-310.pyc
ADDED
Binary file (8.03 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/dpll2.cpython-310.pyc
ADDED
Binary file (17.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/minisat22_wrapper.cpython-310.pyc
ADDED
Binary file (1.94 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/pycosat_wrapper.cpython-310.pyc
ADDED
Binary file (1.42 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/logic/algorithms/dpll.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of DPLL algorithm
|
2 |
+
|
3 |
+
Further improvements: eliminate calls to pl_true, implement branching rules,
|
4 |
+
efficient unit propagation.
|
5 |
+
|
6 |
+
References:
|
7 |
+
- https://en.wikipedia.org/wiki/DPLL_algorithm
|
8 |
+
- https://www.researchgate.net/publication/242384772_Implementations_of_the_DPLL_Algorithm
|
9 |
+
"""
|
10 |
+
|
11 |
+
from sympy.core.sorting import default_sort_key
|
12 |
+
from sympy.logic.boolalg import Or, Not, conjuncts, disjuncts, to_cnf, \
|
13 |
+
to_int_repr, _find_predicates
|
14 |
+
from sympy.assumptions.cnf import CNF
|
15 |
+
from sympy.logic.inference import pl_true, literal_symbol
|
16 |
+
|
17 |
+
|
18 |
+
def dpll_satisfiable(expr):
|
19 |
+
"""
|
20 |
+
Check satisfiability of a propositional sentence.
|
21 |
+
It returns a model rather than True when it succeeds
|
22 |
+
|
23 |
+
>>> from sympy.abc import A, B
|
24 |
+
>>> from sympy.logic.algorithms.dpll import dpll_satisfiable
|
25 |
+
>>> dpll_satisfiable(A & ~B)
|
26 |
+
{A: True, B: False}
|
27 |
+
>>> dpll_satisfiable(A & ~A)
|
28 |
+
False
|
29 |
+
|
30 |
+
"""
|
31 |
+
if not isinstance(expr, CNF):
|
32 |
+
clauses = conjuncts(to_cnf(expr))
|
33 |
+
else:
|
34 |
+
clauses = expr.clauses
|
35 |
+
if False in clauses:
|
36 |
+
return False
|
37 |
+
symbols = sorted(_find_predicates(expr), key=default_sort_key)
|
38 |
+
symbols_int_repr = set(range(1, len(symbols) + 1))
|
39 |
+
clauses_int_repr = to_int_repr(clauses, symbols)
|
40 |
+
result = dpll_int_repr(clauses_int_repr, symbols_int_repr, {})
|
41 |
+
if not result:
|
42 |
+
return result
|
43 |
+
output = {}
|
44 |
+
for key in result:
|
45 |
+
output.update({symbols[key - 1]: result[key]})
|
46 |
+
return output
|
47 |
+
|
48 |
+
|
49 |
+
def dpll(clauses, symbols, model):
|
50 |
+
"""
|
51 |
+
Compute satisfiability in a partial model.
|
52 |
+
Clauses is an array of conjuncts.
|
53 |
+
|
54 |
+
>>> from sympy.abc import A, B, D
|
55 |
+
>>> from sympy.logic.algorithms.dpll import dpll
|
56 |
+
>>> dpll([A, B, D], [A, B], {D: False})
|
57 |
+
False
|
58 |
+
|
59 |
+
"""
|
60 |
+
# compute DP kernel
|
61 |
+
P, value = find_unit_clause(clauses, model)
|
62 |
+
while P:
|
63 |
+
model.update({P: value})
|
64 |
+
symbols.remove(P)
|
65 |
+
if not value:
|
66 |
+
P = ~P
|
67 |
+
clauses = unit_propagate(clauses, P)
|
68 |
+
P, value = find_unit_clause(clauses, model)
|
69 |
+
P, value = find_pure_symbol(symbols, clauses)
|
70 |
+
while P:
|
71 |
+
model.update({P: value})
|
72 |
+
symbols.remove(P)
|
73 |
+
if not value:
|
74 |
+
P = ~P
|
75 |
+
clauses = unit_propagate(clauses, P)
|
76 |
+
P, value = find_pure_symbol(symbols, clauses)
|
77 |
+
# end DP kernel
|
78 |
+
unknown_clauses = []
|
79 |
+
for c in clauses:
|
80 |
+
val = pl_true(c, model)
|
81 |
+
if val is False:
|
82 |
+
return False
|
83 |
+
if val is not True:
|
84 |
+
unknown_clauses.append(c)
|
85 |
+
if not unknown_clauses:
|
86 |
+
return model
|
87 |
+
if not clauses:
|
88 |
+
return model
|
89 |
+
P = symbols.pop()
|
90 |
+
model_copy = model.copy()
|
91 |
+
model.update({P: True})
|
92 |
+
model_copy.update({P: False})
|
93 |
+
symbols_copy = symbols[:]
|
94 |
+
return (dpll(unit_propagate(unknown_clauses, P), symbols, model) or
|
95 |
+
dpll(unit_propagate(unknown_clauses, Not(P)), symbols_copy, model_copy))
|
96 |
+
|
97 |
+
|
98 |
+
def dpll_int_repr(clauses, symbols, model):
|
99 |
+
"""
|
100 |
+
Compute satisfiability in a partial model.
|
101 |
+
Arguments are expected to be in integer representation
|
102 |
+
|
103 |
+
>>> from sympy.logic.algorithms.dpll import dpll_int_repr
|
104 |
+
>>> dpll_int_repr([{1}, {2}, {3}], {1, 2}, {3: False})
|
105 |
+
False
|
106 |
+
|
107 |
+
"""
|
108 |
+
# compute DP kernel
|
109 |
+
P, value = find_unit_clause_int_repr(clauses, model)
|
110 |
+
while P:
|
111 |
+
model.update({P: value})
|
112 |
+
symbols.remove(P)
|
113 |
+
if not value:
|
114 |
+
P = -P
|
115 |
+
clauses = unit_propagate_int_repr(clauses, P)
|
116 |
+
P, value = find_unit_clause_int_repr(clauses, model)
|
117 |
+
P, value = find_pure_symbol_int_repr(symbols, clauses)
|
118 |
+
while P:
|
119 |
+
model.update({P: value})
|
120 |
+
symbols.remove(P)
|
121 |
+
if not value:
|
122 |
+
P = -P
|
123 |
+
clauses = unit_propagate_int_repr(clauses, P)
|
124 |
+
P, value = find_pure_symbol_int_repr(symbols, clauses)
|
125 |
+
# end DP kernel
|
126 |
+
unknown_clauses = []
|
127 |
+
for c in clauses:
|
128 |
+
val = pl_true_int_repr(c, model)
|
129 |
+
if val is False:
|
130 |
+
return False
|
131 |
+
if val is not True:
|
132 |
+
unknown_clauses.append(c)
|
133 |
+
if not unknown_clauses:
|
134 |
+
return model
|
135 |
+
P = symbols.pop()
|
136 |
+
model_copy = model.copy()
|
137 |
+
model.update({P: True})
|
138 |
+
model_copy.update({P: False})
|
139 |
+
symbols_copy = symbols.copy()
|
140 |
+
return (dpll_int_repr(unit_propagate_int_repr(unknown_clauses, P), symbols, model) or
|
141 |
+
dpll_int_repr(unit_propagate_int_repr(unknown_clauses, -P), symbols_copy, model_copy))
|
142 |
+
|
143 |
+
### helper methods for DPLL
|
144 |
+
|
145 |
+
|
146 |
+
def pl_true_int_repr(clause, model={}):
|
147 |
+
"""
|
148 |
+
Lightweight version of pl_true.
|
149 |
+
Argument clause represents the set of args of an Or clause. This is used
|
150 |
+
inside dpll_int_repr, it is not meant to be used directly.
|
151 |
+
|
152 |
+
>>> from sympy.logic.algorithms.dpll import pl_true_int_repr
|
153 |
+
>>> pl_true_int_repr({1, 2}, {1: False})
|
154 |
+
>>> pl_true_int_repr({1, 2}, {1: False, 2: False})
|
155 |
+
False
|
156 |
+
|
157 |
+
"""
|
158 |
+
result = False
|
159 |
+
for lit in clause:
|
160 |
+
if lit < 0:
|
161 |
+
p = model.get(-lit)
|
162 |
+
if p is not None:
|
163 |
+
p = not p
|
164 |
+
else:
|
165 |
+
p = model.get(lit)
|
166 |
+
if p is True:
|
167 |
+
return True
|
168 |
+
elif p is None:
|
169 |
+
result = None
|
170 |
+
return result
|
171 |
+
|
172 |
+
|
173 |
+
def unit_propagate(clauses, symbol):
|
174 |
+
"""
|
175 |
+
Returns an equivalent set of clauses
|
176 |
+
If a set of clauses contains the unit clause l, the other clauses are
|
177 |
+
simplified by the application of the two following rules:
|
178 |
+
|
179 |
+
1. every clause containing l is removed
|
180 |
+
2. in every clause that contains ~l this literal is deleted
|
181 |
+
|
182 |
+
Arguments are expected to be in CNF.
|
183 |
+
|
184 |
+
>>> from sympy.abc import A, B, D
|
185 |
+
>>> from sympy.logic.algorithms.dpll import unit_propagate
|
186 |
+
>>> unit_propagate([A | B, D | ~B, B], B)
|
187 |
+
[D, B]
|
188 |
+
|
189 |
+
"""
|
190 |
+
output = []
|
191 |
+
for c in clauses:
|
192 |
+
if c.func != Or:
|
193 |
+
output.append(c)
|
194 |
+
continue
|
195 |
+
for arg in c.args:
|
196 |
+
if arg == ~symbol:
|
197 |
+
output.append(Or(*[x for x in c.args if x != ~symbol]))
|
198 |
+
break
|
199 |
+
if arg == symbol:
|
200 |
+
break
|
201 |
+
else:
|
202 |
+
output.append(c)
|
203 |
+
return output
|
204 |
+
|
205 |
+
|
206 |
+
def unit_propagate_int_repr(clauses, s):
|
207 |
+
"""
|
208 |
+
Same as unit_propagate, but arguments are expected to be in integer
|
209 |
+
representation
|
210 |
+
|
211 |
+
>>> from sympy.logic.algorithms.dpll import unit_propagate_int_repr
|
212 |
+
>>> unit_propagate_int_repr([{1, 2}, {3, -2}, {2}], 2)
|
213 |
+
[{3}]
|
214 |
+
|
215 |
+
"""
|
216 |
+
negated = {-s}
|
217 |
+
return [clause - negated for clause in clauses if s not in clause]
|
218 |
+
|
219 |
+
|
220 |
+
def find_pure_symbol(symbols, unknown_clauses):
|
221 |
+
"""
|
222 |
+
Find a symbol and its value if it appears only as a positive literal
|
223 |
+
(or only as a negative) in clauses.
|
224 |
+
|
225 |
+
>>> from sympy.abc import A, B, D
|
226 |
+
>>> from sympy.logic.algorithms.dpll import find_pure_symbol
|
227 |
+
>>> find_pure_symbol([A, B, D], [A|~B,~B|~D,D|A])
|
228 |
+
(A, True)
|
229 |
+
|
230 |
+
"""
|
231 |
+
for sym in symbols:
|
232 |
+
found_pos, found_neg = False, False
|
233 |
+
for c in unknown_clauses:
|
234 |
+
if not found_pos and sym in disjuncts(c):
|
235 |
+
found_pos = True
|
236 |
+
if not found_neg and Not(sym) in disjuncts(c):
|
237 |
+
found_neg = True
|
238 |
+
if found_pos != found_neg:
|
239 |
+
return sym, found_pos
|
240 |
+
return None, None
|
241 |
+
|
242 |
+
|
243 |
+
def find_pure_symbol_int_repr(symbols, unknown_clauses):
|
244 |
+
"""
|
245 |
+
Same as find_pure_symbol, but arguments are expected
|
246 |
+
to be in integer representation
|
247 |
+
|
248 |
+
>>> from sympy.logic.algorithms.dpll import find_pure_symbol_int_repr
|
249 |
+
>>> find_pure_symbol_int_repr({1,2,3},
|
250 |
+
... [{1, -2}, {-2, -3}, {3, 1}])
|
251 |
+
(1, True)
|
252 |
+
|
253 |
+
"""
|
254 |
+
all_symbols = set().union(*unknown_clauses)
|
255 |
+
found_pos = all_symbols.intersection(symbols)
|
256 |
+
found_neg = all_symbols.intersection([-s for s in symbols])
|
257 |
+
for p in found_pos:
|
258 |
+
if -p not in found_neg:
|
259 |
+
return p, True
|
260 |
+
for p in found_neg:
|
261 |
+
if -p not in found_pos:
|
262 |
+
return -p, False
|
263 |
+
return None, None
|
264 |
+
|
265 |
+
|
266 |
+
def find_unit_clause(clauses, model):
|
267 |
+
"""
|
268 |
+
A unit clause has only 1 variable that is not bound in the model.
|
269 |
+
|
270 |
+
>>> from sympy.abc import A, B, D
|
271 |
+
>>> from sympy.logic.algorithms.dpll import find_unit_clause
|
272 |
+
>>> find_unit_clause([A | B | D, B | ~D, A | ~B], {A:True})
|
273 |
+
(B, False)
|
274 |
+
|
275 |
+
"""
|
276 |
+
for clause in clauses:
|
277 |
+
num_not_in_model = 0
|
278 |
+
for literal in disjuncts(clause):
|
279 |
+
sym = literal_symbol(literal)
|
280 |
+
if sym not in model:
|
281 |
+
num_not_in_model += 1
|
282 |
+
P, value = sym, not isinstance(literal, Not)
|
283 |
+
if num_not_in_model == 1:
|
284 |
+
return P, value
|
285 |
+
return None, None
|
286 |
+
|
287 |
+
|
288 |
+
def find_unit_clause_int_repr(clauses, model):
|
289 |
+
"""
|
290 |
+
Same as find_unit_clause, but arguments are expected to be in
|
291 |
+
integer representation.
|
292 |
+
|
293 |
+
>>> from sympy.logic.algorithms.dpll import find_unit_clause_int_repr
|
294 |
+
>>> find_unit_clause_int_repr([{1, 2, 3},
|
295 |
+
... {2, -3}, {1, -2}], {1: True})
|
296 |
+
(2, False)
|
297 |
+
|
298 |
+
"""
|
299 |
+
bound = set(model) | {-sym for sym in model}
|
300 |
+
for clause in clauses:
|
301 |
+
unbound = clause - bound
|
302 |
+
if len(unbound) == 1:
|
303 |
+
p = unbound.pop()
|
304 |
+
if p < 0:
|
305 |
+
return -p, False
|
306 |
+
else:
|
307 |
+
return p, True
|
308 |
+
return None, None
|
venv/lib/python3.10/site-packages/sympy/logic/algorithms/dpll2.py
ADDED
@@ -0,0 +1,659 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of DPLL algorithm
|
2 |
+
|
3 |
+
Features:
|
4 |
+
- Clause learning
|
5 |
+
- Watch literal scheme
|
6 |
+
- VSIDS heuristic
|
7 |
+
|
8 |
+
References:
|
9 |
+
- https://en.wikipedia.org/wiki/DPLL_algorithm
|
10 |
+
"""
|
11 |
+
|
12 |
+
from collections import defaultdict
|
13 |
+
from heapq import heappush, heappop
|
14 |
+
|
15 |
+
from sympy.core.sorting import ordered
|
16 |
+
from sympy.assumptions.cnf import EncodedCNF
|
17 |
+
|
18 |
+
|
19 |
+
def dpll_satisfiable(expr, all_models=False):
|
20 |
+
"""
|
21 |
+
Check satisfiability of a propositional sentence.
|
22 |
+
It returns a model rather than True when it succeeds.
|
23 |
+
Returns a generator of all models if all_models is True.
|
24 |
+
|
25 |
+
Examples
|
26 |
+
========
|
27 |
+
|
28 |
+
>>> from sympy.abc import A, B
|
29 |
+
>>> from sympy.logic.algorithms.dpll2 import dpll_satisfiable
|
30 |
+
>>> dpll_satisfiable(A & ~B)
|
31 |
+
{A: True, B: False}
|
32 |
+
>>> dpll_satisfiable(A & ~A)
|
33 |
+
False
|
34 |
+
|
35 |
+
"""
|
36 |
+
if not isinstance(expr, EncodedCNF):
|
37 |
+
exprs = EncodedCNF()
|
38 |
+
exprs.add_prop(expr)
|
39 |
+
expr = exprs
|
40 |
+
|
41 |
+
# Return UNSAT when False (encoded as 0) is present in the CNF
|
42 |
+
if {0} in expr.data:
|
43 |
+
if all_models:
|
44 |
+
return (f for f in [False])
|
45 |
+
return False
|
46 |
+
|
47 |
+
solver = SATSolver(expr.data, expr.variables, set(), expr.symbols)
|
48 |
+
models = solver._find_model()
|
49 |
+
|
50 |
+
if all_models:
|
51 |
+
return _all_models(models)
|
52 |
+
|
53 |
+
try:
|
54 |
+
return next(models)
|
55 |
+
except StopIteration:
|
56 |
+
return False
|
57 |
+
|
58 |
+
# Uncomment to confirm the solution is valid (hitting set for the clauses)
|
59 |
+
#else:
|
60 |
+
#for cls in clauses_int_repr:
|
61 |
+
#assert solver.var_settings.intersection(cls)
|
62 |
+
|
63 |
+
|
64 |
+
def _all_models(models):
|
65 |
+
satisfiable = False
|
66 |
+
try:
|
67 |
+
while True:
|
68 |
+
yield next(models)
|
69 |
+
satisfiable = True
|
70 |
+
except StopIteration:
|
71 |
+
if not satisfiable:
|
72 |
+
yield False
|
73 |
+
|
74 |
+
|
75 |
+
class SATSolver:
|
76 |
+
"""
|
77 |
+
Class for representing a SAT solver capable of
|
78 |
+
finding a model to a boolean theory in conjunctive
|
79 |
+
normal form.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(self, clauses, variables, var_settings, symbols=None,
|
83 |
+
heuristic='vsids', clause_learning='none', INTERVAL=500):
|
84 |
+
|
85 |
+
self.var_settings = var_settings
|
86 |
+
self.heuristic = heuristic
|
87 |
+
self.is_unsatisfied = False
|
88 |
+
self._unit_prop_queue = []
|
89 |
+
self.update_functions = []
|
90 |
+
self.INTERVAL = INTERVAL
|
91 |
+
|
92 |
+
if symbols is None:
|
93 |
+
self.symbols = list(ordered(variables))
|
94 |
+
else:
|
95 |
+
self.symbols = symbols
|
96 |
+
|
97 |
+
self._initialize_variables(variables)
|
98 |
+
self._initialize_clauses(clauses)
|
99 |
+
|
100 |
+
if 'vsids' == heuristic:
|
101 |
+
self._vsids_init()
|
102 |
+
self.heur_calculate = self._vsids_calculate
|
103 |
+
self.heur_lit_assigned = self._vsids_lit_assigned
|
104 |
+
self.heur_lit_unset = self._vsids_lit_unset
|
105 |
+
self.heur_clause_added = self._vsids_clause_added
|
106 |
+
|
107 |
+
# Note: Uncomment this if/when clause learning is enabled
|
108 |
+
#self.update_functions.append(self._vsids_decay)
|
109 |
+
|
110 |
+
else:
|
111 |
+
raise NotImplementedError
|
112 |
+
|
113 |
+
if 'simple' == clause_learning:
|
114 |
+
self.add_learned_clause = self._simple_add_learned_clause
|
115 |
+
self.compute_conflict = self.simple_compute_conflict
|
116 |
+
self.update_functions.append(self.simple_clean_clauses)
|
117 |
+
elif 'none' == clause_learning:
|
118 |
+
self.add_learned_clause = lambda x: None
|
119 |
+
self.compute_conflict = lambda: None
|
120 |
+
else:
|
121 |
+
raise NotImplementedError
|
122 |
+
|
123 |
+
# Create the base level
|
124 |
+
self.levels = [Level(0)]
|
125 |
+
self._current_level.varsettings = var_settings
|
126 |
+
|
127 |
+
# Keep stats
|
128 |
+
self.num_decisions = 0
|
129 |
+
self.num_learned_clauses = 0
|
130 |
+
self.original_num_clauses = len(self.clauses)
|
131 |
+
|
132 |
+
def _initialize_variables(self, variables):
|
133 |
+
"""Set up the variable data structures needed."""
|
134 |
+
self.sentinels = defaultdict(set)
|
135 |
+
self.occurrence_count = defaultdict(int)
|
136 |
+
self.variable_set = [False] * (len(variables) + 1)
|
137 |
+
|
138 |
+
def _initialize_clauses(self, clauses):
|
139 |
+
"""Set up the clause data structures needed.
|
140 |
+
|
141 |
+
For each clause, the following changes are made:
|
142 |
+
- Unit clauses are queued for propagation right away.
|
143 |
+
- Non-unit clauses have their first and last literals set as sentinels.
|
144 |
+
- The number of clauses a literal appears in is computed.
|
145 |
+
"""
|
146 |
+
self.clauses = [list(clause) for clause in clauses]
|
147 |
+
|
148 |
+
for i, clause in enumerate(self.clauses):
|
149 |
+
|
150 |
+
# Handle the unit clauses
|
151 |
+
if 1 == len(clause):
|
152 |
+
self._unit_prop_queue.append(clause[0])
|
153 |
+
continue
|
154 |
+
|
155 |
+
self.sentinels[clause[0]].add(i)
|
156 |
+
self.sentinels[clause[-1]].add(i)
|
157 |
+
|
158 |
+
for lit in clause:
|
159 |
+
self.occurrence_count[lit] += 1
|
160 |
+
|
161 |
+
def _find_model(self):
|
162 |
+
"""
|
163 |
+
Main DPLL loop. Returns a generator of models.
|
164 |
+
|
165 |
+
Variables are chosen successively, and assigned to be either
|
166 |
+
True or False. If a solution is not found with this setting,
|
167 |
+
the opposite is chosen and the search continues. The solver
|
168 |
+
halts when every variable has a setting.
|
169 |
+
|
170 |
+
Examples
|
171 |
+
========
|
172 |
+
|
173 |
+
>>> from sympy.logic.algorithms.dpll2 import SATSolver
|
174 |
+
>>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
|
175 |
+
... {3, -2}], {1, 2, 3}, set())
|
176 |
+
>>> list(l._find_model())
|
177 |
+
[{1: True, 2: False, 3: False}, {1: True, 2: True, 3: True}]
|
178 |
+
|
179 |
+
>>> from sympy.abc import A, B, C
|
180 |
+
>>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
|
181 |
+
... {3, -2}], {1, 2, 3}, set(), [A, B, C])
|
182 |
+
>>> list(l._find_model())
|
183 |
+
[{A: True, B: False, C: False}, {A: True, B: True, C: True}]
|
184 |
+
|
185 |
+
"""
|
186 |
+
|
187 |
+
# We use this variable to keep track of if we should flip a
|
188 |
+
# variable setting in successive rounds
|
189 |
+
flip_var = False
|
190 |
+
|
191 |
+
# Check if unit prop says the theory is unsat right off the bat
|
192 |
+
self._simplify()
|
193 |
+
if self.is_unsatisfied:
|
194 |
+
return
|
195 |
+
|
196 |
+
# While the theory still has clauses remaining
|
197 |
+
while True:
|
198 |
+
# Perform cleanup / fixup at regular intervals
|
199 |
+
if self.num_decisions % self.INTERVAL == 0:
|
200 |
+
for func in self.update_functions:
|
201 |
+
func()
|
202 |
+
|
203 |
+
if flip_var:
|
204 |
+
# We have just backtracked and we are trying to opposite literal
|
205 |
+
flip_var = False
|
206 |
+
lit = self._current_level.decision
|
207 |
+
|
208 |
+
else:
|
209 |
+
# Pick a literal to set
|
210 |
+
lit = self.heur_calculate()
|
211 |
+
self.num_decisions += 1
|
212 |
+
|
213 |
+
# Stopping condition for a satisfying theory
|
214 |
+
if 0 == lit:
|
215 |
+
yield {self.symbols[abs(lit) - 1]:
|
216 |
+
lit > 0 for lit in self.var_settings}
|
217 |
+
while self._current_level.flipped:
|
218 |
+
self._undo()
|
219 |
+
if len(self.levels) == 1:
|
220 |
+
return
|
221 |
+
flip_lit = -self._current_level.decision
|
222 |
+
self._undo()
|
223 |
+
self.levels.append(Level(flip_lit, flipped=True))
|
224 |
+
flip_var = True
|
225 |
+
continue
|
226 |
+
|
227 |
+
# Start the new decision level
|
228 |
+
self.levels.append(Level(lit))
|
229 |
+
|
230 |
+
# Assign the literal, updating the clauses it satisfies
|
231 |
+
self._assign_literal(lit)
|
232 |
+
|
233 |
+
# _simplify the theory
|
234 |
+
self._simplify()
|
235 |
+
|
236 |
+
# Check if we've made the theory unsat
|
237 |
+
if self.is_unsatisfied:
|
238 |
+
|
239 |
+
self.is_unsatisfied = False
|
240 |
+
|
241 |
+
# We unroll all of the decisions until we can flip a literal
|
242 |
+
while self._current_level.flipped:
|
243 |
+
self._undo()
|
244 |
+
|
245 |
+
# If we've unrolled all the way, the theory is unsat
|
246 |
+
if 1 == len(self.levels):
|
247 |
+
return
|
248 |
+
|
249 |
+
# Detect and add a learned clause
|
250 |
+
self.add_learned_clause(self.compute_conflict())
|
251 |
+
|
252 |
+
# Try the opposite setting of the most recent decision
|
253 |
+
flip_lit = -self._current_level.decision
|
254 |
+
self._undo()
|
255 |
+
self.levels.append(Level(flip_lit, flipped=True))
|
256 |
+
flip_var = True
|
257 |
+
|
258 |
+
########################
|
259 |
+
# Helper Methods #
|
260 |
+
########################
|
261 |
+
@property
|
262 |
+
def _current_level(self):
|
263 |
+
"""The current decision level data structure
|
264 |
+
|
265 |
+
Examples
|
266 |
+
========
|
267 |
+
|
268 |
+
>>> from sympy.logic.algorithms.dpll2 import SATSolver
|
269 |
+
>>> l = SATSolver([{1}, {2}], {1, 2}, set())
|
270 |
+
>>> next(l._find_model())
|
271 |
+
{1: True, 2: True}
|
272 |
+
>>> l._current_level.decision
|
273 |
+
0
|
274 |
+
>>> l._current_level.flipped
|
275 |
+
False
|
276 |
+
>>> l._current_level.var_settings
|
277 |
+
{1, 2}
|
278 |
+
|
279 |
+
"""
|
280 |
+
return self.levels[-1]
|
281 |
+
|
282 |
+
def _clause_sat(self, cls):
|
283 |
+
"""Check if a clause is satisfied by the current variable setting.
|
284 |
+
|
285 |
+
Examples
|
286 |
+
========
|
287 |
+
|
288 |
+
>>> from sympy.logic.algorithms.dpll2 import SATSolver
|
289 |
+
>>> l = SATSolver([{1}, {-1}], {1}, set())
|
290 |
+
>>> try:
|
291 |
+
... next(l._find_model())
|
292 |
+
... except StopIteration:
|
293 |
+
... pass
|
294 |
+
>>> l._clause_sat(0)
|
295 |
+
False
|
296 |
+
>>> l._clause_sat(1)
|
297 |
+
True
|
298 |
+
|
299 |
+
"""
|
300 |
+
for lit in self.clauses[cls]:
|
301 |
+
if lit in self.var_settings:
|
302 |
+
return True
|
303 |
+
return False
|
304 |
+
|
305 |
+
def _is_sentinel(self, lit, cls):
|
306 |
+
"""Check if a literal is a sentinel of a given clause.
|
307 |
+
|
308 |
+
Examples
|
309 |
+
========
|
310 |
+
|
311 |
+
>>> from sympy.logic.algorithms.dpll2 import SATSolver
|
312 |
+
>>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
|
313 |
+
... {3, -2}], {1, 2, 3}, set())
|
314 |
+
>>> next(l._find_model())
|
315 |
+
{1: True, 2: False, 3: False}
|
316 |
+
>>> l._is_sentinel(2, 3)
|
317 |
+
True
|
318 |
+
>>> l._is_sentinel(-3, 1)
|
319 |
+
False
|
320 |
+
|
321 |
+
"""
|
322 |
+
return cls in self.sentinels[lit]
|
323 |
+
|
324 |
+
def _assign_literal(self, lit):
|
325 |
+
"""Make a literal assignment.
|
326 |
+
|
327 |
+
The literal assignment must be recorded as part of the current
|
328 |
+
decision level. Additionally, if the literal is marked as a
|
329 |
+
sentinel of any clause, then a new sentinel must be chosen. If
|
330 |
+
this is not possible, then unit propagation is triggered and
|
331 |
+
another literal is added to the queue to be set in the future.
|
332 |
+
|
333 |
+
Examples
|
334 |
+
========
|
335 |
+
|
336 |
+
>>> from sympy.logic.algorithms.dpll2 import SATSolver
|
337 |
+
>>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
|
338 |
+
... {3, -2}], {1, 2, 3}, set())
|
339 |
+
>>> next(l._find_model())
|
340 |
+
{1: True, 2: False, 3: False}
|
341 |
+
>>> l.var_settings
|
342 |
+
{-3, -2, 1}
|
343 |
+
|
344 |
+
>>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
|
345 |
+
... {3, -2}], {1, 2, 3}, set())
|
346 |
+
>>> l._assign_literal(-1)
|
347 |
+
>>> try:
|
348 |
+
... next(l._find_model())
|
349 |
+
... except StopIteration:
|
350 |
+
... pass
|
351 |
+
>>> l.var_settings
|
352 |
+
{-1}
|
353 |
+
|
354 |
+
"""
|
355 |
+
self.var_settings.add(lit)
|
356 |
+
self._current_level.var_settings.add(lit)
|
357 |
+
self.variable_set[abs(lit)] = True
|
358 |
+
self.heur_lit_assigned(lit)
|
359 |
+
|
360 |
+
sentinel_list = list(self.sentinels[-lit])
|
361 |
+
|
362 |
+
for cls in sentinel_list:
|
363 |
+
if not self._clause_sat(cls):
|
364 |
+
other_sentinel = None
|
365 |
+
for newlit in self.clauses[cls]:
|
366 |
+
if newlit != -lit:
|
367 |
+
if self._is_sentinel(newlit, cls):
|
368 |
+
other_sentinel = newlit
|
369 |
+
elif not self.variable_set[abs(newlit)]:
|
370 |
+
self.sentinels[-lit].remove(cls)
|
371 |
+
self.sentinels[newlit].add(cls)
|
372 |
+
other_sentinel = None
|
373 |
+
break
|
374 |
+
|
375 |
+
# Check if no sentinel update exists
|
376 |
+
if other_sentinel:
|
377 |
+
self._unit_prop_queue.append(other_sentinel)
|
378 |
+
|
379 |
+
def _undo(self):
|
380 |
+
"""
|
381 |
+
_undo the changes of the most recent decision level.
|
382 |
+
|
383 |
+
Examples
|
384 |
+
========
|
385 |
+
|
386 |
+
>>> from sympy.logic.algorithms.dpll2 import SATSolver
|
387 |
+
>>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
|
388 |
+
... {3, -2}], {1, 2, 3}, set())
|
389 |
+
>>> next(l._find_model())
|
390 |
+
{1: True, 2: False, 3: False}
|
391 |
+
>>> level = l._current_level
|
392 |
+
>>> level.decision, level.var_settings, level.flipped
|
393 |
+
(-3, {-3, -2}, False)
|
394 |
+
>>> l._undo()
|
395 |
+
>>> level = l._current_level
|
396 |
+
>>> level.decision, level.var_settings, level.flipped
|
397 |
+
(0, {1}, False)
|
398 |
+
|
399 |
+
"""
|
400 |
+
# Undo the variable settings
|
401 |
+
for lit in self._current_level.var_settings:
|
402 |
+
self.var_settings.remove(lit)
|
403 |
+
self.heur_lit_unset(lit)
|
404 |
+
self.variable_set[abs(lit)] = False
|
405 |
+
|
406 |
+
# Pop the level off the stack
|
407 |
+
self.levels.pop()
|
408 |
+
|
409 |
+
#########################
|
410 |
+
# Propagation #
|
411 |
+
#########################
|
412 |
+
"""
|
413 |
+
Propagation methods should attempt to soundly simplify the boolean
|
414 |
+
theory, and return True if any simplification occurred and False
|
415 |
+
otherwise.
|
416 |
+
"""
|
417 |
+
def _simplify(self):
|
418 |
+
"""Iterate over the various forms of propagation to simplify the theory.
|
419 |
+
|
420 |
+
Examples
|
421 |
+
========
|
422 |
+
|
423 |
+
>>> from sympy.logic.algorithms.dpll2 import SATSolver
|
424 |
+
>>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
|
425 |
+
... {3, -2}], {1, 2, 3}, set())
|
426 |
+
>>> l.variable_set
|
427 |
+
[False, False, False, False]
|
428 |
+
>>> l.sentinels
|
429 |
+
{-3: {0, 2}, -2: {3, 4}, 2: {0, 3}, 3: {2, 4}}
|
430 |
+
|
431 |
+
>>> l._simplify()
|
432 |
+
|
433 |
+
>>> l.variable_set
|
434 |
+
[False, True, False, False]
|
435 |
+
>>> l.sentinels
|
436 |
+
{-3: {0, 2}, -2: {3, 4}, -1: set(), 2: {0, 3},
|
437 |
+
...3: {2, 4}}
|
438 |
+
|
439 |
+
"""
|
440 |
+
changed = True
|
441 |
+
while changed:
|
442 |
+
changed = False
|
443 |
+
changed |= self._unit_prop()
|
444 |
+
changed |= self._pure_literal()
|
445 |
+
|
446 |
+
def _unit_prop(self):
|
447 |
+
"""Perform unit propagation on the current theory."""
|
448 |
+
result = len(self._unit_prop_queue) > 0
|
449 |
+
while self._unit_prop_queue:
|
450 |
+
next_lit = self._unit_prop_queue.pop()
|
451 |
+
if -next_lit in self.var_settings:
|
452 |
+
self.is_unsatisfied = True
|
453 |
+
self._unit_prop_queue = []
|
454 |
+
return False
|
455 |
+
else:
|
456 |
+
self._assign_literal(next_lit)
|
457 |
+
|
458 |
+
return result
|
459 |
+
|
460 |
+
def _pure_literal(self):
|
461 |
+
"""Look for pure literals and assign them when found."""
|
462 |
+
return False
|
463 |
+
|
464 |
+
#########################
|
465 |
+
# Heuristics #
|
466 |
+
#########################
|
467 |
+
def _vsids_init(self):
|
468 |
+
"""Initialize the data structures needed for the VSIDS heuristic."""
|
469 |
+
self.lit_heap = []
|
470 |
+
self.lit_scores = {}
|
471 |
+
|
472 |
+
for var in range(1, len(self.variable_set)):
|
473 |
+
self.lit_scores[var] = float(-self.occurrence_count[var])
|
474 |
+
self.lit_scores[-var] = float(-self.occurrence_count[-var])
|
475 |
+
heappush(self.lit_heap, (self.lit_scores[var], var))
|
476 |
+
heappush(self.lit_heap, (self.lit_scores[-var], -var))
|
477 |
+
|
478 |
+
def _vsids_decay(self):
|
479 |
+
"""Decay the VSIDS scores for every literal.
|
480 |
+
|
481 |
+
Examples
|
482 |
+
========
|
483 |
+
|
484 |
+
>>> from sympy.logic.algorithms.dpll2 import SATSolver
|
485 |
+
>>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
|
486 |
+
... {3, -2}], {1, 2, 3}, set())
|
487 |
+
|
488 |
+
>>> l.lit_scores
|
489 |
+
{-3: -2.0, -2: -2.0, -1: 0.0, 1: 0.0, 2: -2.0, 3: -2.0}
|
490 |
+
|
491 |
+
>>> l._vsids_decay()
|
492 |
+
|
493 |
+
>>> l.lit_scores
|
494 |
+
{-3: -1.0, -2: -1.0, -1: 0.0, 1: 0.0, 2: -1.0, 3: -1.0}
|
495 |
+
|
496 |
+
"""
|
497 |
+
# We divide every literal score by 2 for a decay factor
|
498 |
+
# Note: This doesn't change the heap property
|
499 |
+
for lit in self.lit_scores.keys():
|
500 |
+
self.lit_scores[lit] /= 2.0
|
501 |
+
|
502 |
+
def _vsids_calculate(self):
|
503 |
+
"""
|
504 |
+
VSIDS Heuristic Calculation
|
505 |
+
|
506 |
+
Examples
|
507 |
+
========
|
508 |
+
|
509 |
+
>>> from sympy.logic.algorithms.dpll2 import SATSolver
|
510 |
+
>>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
|
511 |
+
... {3, -2}], {1, 2, 3}, set())
|
512 |
+
|
513 |
+
>>> l.lit_heap
|
514 |
+
[(-2.0, -3), (-2.0, 2), (-2.0, -2), (0.0, 1), (-2.0, 3), (0.0, -1)]
|
515 |
+
|
516 |
+
>>> l._vsids_calculate()
|
517 |
+
-3
|
518 |
+
|
519 |
+
>>> l.lit_heap
|
520 |
+
[(-2.0, -2), (-2.0, 2), (0.0, -1), (0.0, 1), (-2.0, 3)]
|
521 |
+
|
522 |
+
"""
|
523 |
+
if len(self.lit_heap) == 0:
|
524 |
+
return 0
|
525 |
+
|
526 |
+
# Clean out the front of the heap as long the variables are set
|
527 |
+
while self.variable_set[abs(self.lit_heap[0][1])]:
|
528 |
+
heappop(self.lit_heap)
|
529 |
+
if len(self.lit_heap) == 0:
|
530 |
+
return 0
|
531 |
+
|
532 |
+
return heappop(self.lit_heap)[1]
|
533 |
+
|
534 |
+
def _vsids_lit_assigned(self, lit):
|
535 |
+
"""Handle the assignment of a literal for the VSIDS heuristic."""
|
536 |
+
pass
|
537 |
+
|
538 |
+
def _vsids_lit_unset(self, lit):
|
539 |
+
"""Handle the unsetting of a literal for the VSIDS heuristic.
|
540 |
+
|
541 |
+
Examples
|
542 |
+
========
|
543 |
+
|
544 |
+
>>> from sympy.logic.algorithms.dpll2 import SATSolver
|
545 |
+
>>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
|
546 |
+
... {3, -2}], {1, 2, 3}, set())
|
547 |
+
>>> l.lit_heap
|
548 |
+
[(-2.0, -3), (-2.0, 2), (-2.0, -2), (0.0, 1), (-2.0, 3), (0.0, -1)]
|
549 |
+
|
550 |
+
>>> l._vsids_lit_unset(2)
|
551 |
+
|
552 |
+
>>> l.lit_heap
|
553 |
+
[(-2.0, -3), (-2.0, -2), (-2.0, -2), (-2.0, 2), (-2.0, 3), (0.0, -1),
|
554 |
+
...(-2.0, 2), (0.0, 1)]
|
555 |
+
|
556 |
+
"""
|
557 |
+
var = abs(lit)
|
558 |
+
heappush(self.lit_heap, (self.lit_scores[var], var))
|
559 |
+
heappush(self.lit_heap, (self.lit_scores[-var], -var))
|
560 |
+
|
561 |
+
def _vsids_clause_added(self, cls):
|
562 |
+
"""Handle the addition of a new clause for the VSIDS heuristic.
|
563 |
+
|
564 |
+
Examples
|
565 |
+
========
|
566 |
+
|
567 |
+
>>> from sympy.logic.algorithms.dpll2 import SATSolver
|
568 |
+
>>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
|
569 |
+
... {3, -2}], {1, 2, 3}, set())
|
570 |
+
|
571 |
+
>>> l.num_learned_clauses
|
572 |
+
0
|
573 |
+
>>> l.lit_scores
|
574 |
+
{-3: -2.0, -2: -2.0, -1: 0.0, 1: 0.0, 2: -2.0, 3: -2.0}
|
575 |
+
|
576 |
+
>>> l._vsids_clause_added({2, -3})
|
577 |
+
|
578 |
+
>>> l.num_learned_clauses
|
579 |
+
1
|
580 |
+
>>> l.lit_scores
|
581 |
+
{-3: -1.0, -2: -2.0, -1: 0.0, 1: 0.0, 2: -1.0, 3: -2.0}
|
582 |
+
|
583 |
+
"""
|
584 |
+
self.num_learned_clauses += 1
|
585 |
+
for lit in cls:
|
586 |
+
self.lit_scores[lit] += 1
|
587 |
+
|
588 |
+
########################
|
589 |
+
# Clause Learning #
|
590 |
+
########################
|
591 |
+
def _simple_add_learned_clause(self, cls):
|
592 |
+
"""Add a new clause to the theory.
|
593 |
+
|
594 |
+
Examples
|
595 |
+
========
|
596 |
+
|
597 |
+
>>> from sympy.logic.algorithms.dpll2 import SATSolver
|
598 |
+
>>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
|
599 |
+
... {3, -2}], {1, 2, 3}, set())
|
600 |
+
|
601 |
+
>>> l.num_learned_clauses
|
602 |
+
0
|
603 |
+
>>> l.clauses
|
604 |
+
[[2, -3], [1], [3, -3], [2, -2], [3, -2]]
|
605 |
+
>>> l.sentinels
|
606 |
+
{-3: {0, 2}, -2: {3, 4}, 2: {0, 3}, 3: {2, 4}}
|
607 |
+
|
608 |
+
>>> l._simple_add_learned_clause([3])
|
609 |
+
|
610 |
+
>>> l.clauses
|
611 |
+
[[2, -3], [1], [3, -3], [2, -2], [3, -2], [3]]
|
612 |
+
>>> l.sentinels
|
613 |
+
{-3: {0, 2}, -2: {3, 4}, 2: {0, 3}, 3: {2, 4, 5}}
|
614 |
+
|
615 |
+
"""
|
616 |
+
cls_num = len(self.clauses)
|
617 |
+
self.clauses.append(cls)
|
618 |
+
|
619 |
+
for lit in cls:
|
620 |
+
self.occurrence_count[lit] += 1
|
621 |
+
|
622 |
+
self.sentinels[cls[0]].add(cls_num)
|
623 |
+
self.sentinels[cls[-1]].add(cls_num)
|
624 |
+
|
625 |
+
self.heur_clause_added(cls)
|
626 |
+
|
627 |
+
def _simple_compute_conflict(self):
|
628 |
+
""" Build a clause representing the fact that at least one decision made
|
629 |
+
so far is wrong.
|
630 |
+
|
631 |
+
Examples
|
632 |
+
========
|
633 |
+
|
634 |
+
>>> from sympy.logic.algorithms.dpll2 import SATSolver
|
635 |
+
>>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
|
636 |
+
... {3, -2}], {1, 2, 3}, set())
|
637 |
+
>>> next(l._find_model())
|
638 |
+
{1: True, 2: False, 3: False}
|
639 |
+
>>> l._simple_compute_conflict()
|
640 |
+
[3]
|
641 |
+
|
642 |
+
"""
|
643 |
+
return [-(level.decision) for level in self.levels[1:]]
|
644 |
+
|
645 |
+
def _simple_clean_clauses(self):
|
646 |
+
"""Clean up learned clauses."""
|
647 |
+
pass
|
648 |
+
|
649 |
+
|
650 |
+
class Level:
|
651 |
+
"""
|
652 |
+
Represents a single level in the DPLL algorithm, and contains
|
653 |
+
enough information for a sound backtracking procedure.
|
654 |
+
"""
|
655 |
+
|
656 |
+
def __init__(self, decision, flipped=False):
|
657 |
+
self.decision = decision
|
658 |
+
self.var_settings = set()
|
659 |
+
self.flipped = flipped
|
venv/lib/python3.10/site-packages/sympy/logic/algorithms/minisat22_wrapper.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.assumptions.cnf import EncodedCNF
|
2 |
+
|
3 |
+
def minisat22_satisfiable(expr, all_models=False, minimal=False):
|
4 |
+
|
5 |
+
if not isinstance(expr, EncodedCNF):
|
6 |
+
exprs = EncodedCNF()
|
7 |
+
exprs.add_prop(expr)
|
8 |
+
expr = exprs
|
9 |
+
|
10 |
+
from pysat.solvers import Minisat22
|
11 |
+
|
12 |
+
# Return UNSAT when False (encoded as 0) is present in the CNF
|
13 |
+
if {0} in expr.data:
|
14 |
+
if all_models:
|
15 |
+
return (f for f in [False])
|
16 |
+
return False
|
17 |
+
|
18 |
+
r = Minisat22(expr.data)
|
19 |
+
|
20 |
+
if minimal:
|
21 |
+
r.set_phases([-(i+1) for i in range(r.nof_vars())])
|
22 |
+
|
23 |
+
if not r.solve():
|
24 |
+
return False
|
25 |
+
|
26 |
+
if not all_models:
|
27 |
+
return {expr.symbols[abs(lit) - 1]: lit > 0 for lit in r.get_model()}
|
28 |
+
|
29 |
+
else:
|
30 |
+
# Make solutions SymPy compatible by creating a generator
|
31 |
+
def _gen(results):
|
32 |
+
satisfiable = False
|
33 |
+
while results.solve():
|
34 |
+
sol = results.get_model()
|
35 |
+
yield {expr.symbols[abs(lit) - 1]: lit > 0 for lit in sol}
|
36 |
+
if minimal:
|
37 |
+
results.add_clause([-i for i in sol if i>0])
|
38 |
+
else:
|
39 |
+
results.add_clause([-i for i in sol])
|
40 |
+
satisfiable = True
|
41 |
+
if not satisfiable:
|
42 |
+
yield False
|
43 |
+
raise StopIteration
|
44 |
+
|
45 |
+
|
46 |
+
return _gen(r)
|
venv/lib/python3.10/site-packages/sympy/logic/algorithms/pycosat_wrapper.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.assumptions.cnf import EncodedCNF
|
2 |
+
|
3 |
+
|
4 |
+
def pycosat_satisfiable(expr, all_models=False):
|
5 |
+
import pycosat
|
6 |
+
if not isinstance(expr, EncodedCNF):
|
7 |
+
exprs = EncodedCNF()
|
8 |
+
exprs.add_prop(expr)
|
9 |
+
expr = exprs
|
10 |
+
|
11 |
+
# Return UNSAT when False (encoded as 0) is present in the CNF
|
12 |
+
if {0} in expr.data:
|
13 |
+
if all_models:
|
14 |
+
return (f for f in [False])
|
15 |
+
return False
|
16 |
+
|
17 |
+
if not all_models:
|
18 |
+
r = pycosat.solve(expr.data)
|
19 |
+
result = (r != "UNSAT")
|
20 |
+
if not result:
|
21 |
+
return result
|
22 |
+
return {expr.symbols[abs(lit) - 1]: lit > 0 for lit in r}
|
23 |
+
else:
|
24 |
+
r = pycosat.itersolve(expr.data)
|
25 |
+
result = (r != "UNSAT")
|
26 |
+
if not result:
|
27 |
+
return result
|
28 |
+
|
29 |
+
# Make solutions SymPy compatible by creating a generator
|
30 |
+
def _gen(results):
|
31 |
+
satisfiable = False
|
32 |
+
try:
|
33 |
+
while True:
|
34 |
+
sol = next(results)
|
35 |
+
yield {expr.symbols[abs(lit) - 1]: lit > 0 for lit in sol}
|
36 |
+
satisfiable = True
|
37 |
+
except StopIteration:
|
38 |
+
if not satisfiable:
|
39 |
+
yield False
|
40 |
+
|
41 |
+
return _gen(r)
|
venv/lib/python3.10/site-packages/sympy/logic/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/logic/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (185 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/logic/tests/__pycache__/test_boolalg.cpython-310.pyc
ADDED
Binary file (48.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/logic/tests/__pycache__/test_dimacs.cpython-310.pyc
ADDED
Binary file (4.42 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/logic/tests/__pycache__/test_inference.cpython-310.pyc
ADDED
Binary file (11.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/logic/tests/test_boolalg.py
ADDED
@@ -0,0 +1,1340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.assumptions.ask import Q
|
2 |
+
from sympy.assumptions.refine import refine
|
3 |
+
from sympy.core.numbers import oo
|
4 |
+
from sympy.core.relational import Equality, Eq, Ne
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.core.symbol import (Dummy, symbols)
|
7 |
+
from sympy.functions import Piecewise
|
8 |
+
from sympy.functions.elementary.trigonometric import cos, sin
|
9 |
+
from sympy.sets.sets import (Interval, Union)
|
10 |
+
from sympy.simplify.simplify import simplify
|
11 |
+
from sympy.logic.boolalg import (
|
12 |
+
And, Boolean, Equivalent, ITE, Implies, Nand, Nor, Not, Or,
|
13 |
+
POSform, SOPform, Xor, Xnor, conjuncts, disjuncts,
|
14 |
+
distribute_or_over_and, distribute_and_over_or,
|
15 |
+
eliminate_implications, is_nnf, is_cnf, is_dnf, simplify_logic,
|
16 |
+
to_nnf, to_cnf, to_dnf, to_int_repr, bool_map, true, false,
|
17 |
+
BooleanAtom, is_literal, term_to_integer,
|
18 |
+
truth_table, as_Boolean, to_anf, is_anf, distribute_xor_over_and,
|
19 |
+
anf_coeffs, ANFform, bool_minterm, bool_maxterm, bool_monomial,
|
20 |
+
_check_pair, _convert_to_varsSOP, _convert_to_varsPOS, Exclusive,
|
21 |
+
gateinputcount)
|
22 |
+
from sympy.assumptions.cnf import CNF
|
23 |
+
|
24 |
+
from sympy.testing.pytest import raises, XFAIL, slow
|
25 |
+
|
26 |
+
from itertools import combinations, permutations, product
|
27 |
+
|
28 |
+
A, B, C, D = symbols('A:D')
|
29 |
+
a, b, c, d, e, w, x, y, z = symbols('a:e w:z')
|
30 |
+
|
31 |
+
|
32 |
+
def test_overloading():
|
33 |
+
"""Test that |, & are overloaded as expected"""
|
34 |
+
|
35 |
+
assert A & B == And(A, B)
|
36 |
+
assert A | B == Or(A, B)
|
37 |
+
assert (A & B) | C == Or(And(A, B), C)
|
38 |
+
assert A >> B == Implies(A, B)
|
39 |
+
assert A << B == Implies(B, A)
|
40 |
+
assert ~A == Not(A)
|
41 |
+
assert A ^ B == Xor(A, B)
|
42 |
+
|
43 |
+
|
44 |
+
def test_And():
|
45 |
+
assert And() is true
|
46 |
+
assert And(A) == A
|
47 |
+
assert And(True) is true
|
48 |
+
assert And(False) is false
|
49 |
+
assert And(True, True) is true
|
50 |
+
assert And(True, False) is false
|
51 |
+
assert And(False, False) is false
|
52 |
+
assert And(True, A) == A
|
53 |
+
assert And(False, A) is false
|
54 |
+
assert And(True, True, True) is true
|
55 |
+
assert And(True, True, A) == A
|
56 |
+
assert And(True, False, A) is false
|
57 |
+
assert And(1, A) == A
|
58 |
+
raises(TypeError, lambda: And(2, A))
|
59 |
+
raises(TypeError, lambda: And(A < 2, A))
|
60 |
+
assert And(A < 1, A >= 1) is false
|
61 |
+
e = A > 1
|
62 |
+
assert And(e, e.canonical) == e.canonical
|
63 |
+
g, l, ge, le = A > B, B < A, A >= B, B <= A
|
64 |
+
assert And(g, l, ge, le) == And(ge, g)
|
65 |
+
assert {And(*i) for i in permutations((l,g,le,ge))} == {And(ge, g)}
|
66 |
+
assert And(And(Eq(a, 0), Eq(b, 0)), And(Ne(a, 0), Eq(c, 0))) is false
|
67 |
+
|
68 |
+
|
69 |
+
def test_Or():
|
70 |
+
assert Or() is false
|
71 |
+
assert Or(A) == A
|
72 |
+
assert Or(True) is true
|
73 |
+
assert Or(False) is false
|
74 |
+
assert Or(True, True) is true
|
75 |
+
assert Or(True, False) is true
|
76 |
+
assert Or(False, False) is false
|
77 |
+
assert Or(True, A) is true
|
78 |
+
assert Or(False, A) == A
|
79 |
+
assert Or(True, False, False) is true
|
80 |
+
assert Or(True, False, A) is true
|
81 |
+
assert Or(False, False, A) == A
|
82 |
+
assert Or(1, A) is true
|
83 |
+
raises(TypeError, lambda: Or(2, A))
|
84 |
+
raises(TypeError, lambda: Or(A < 2, A))
|
85 |
+
assert Or(A < 1, A >= 1) is true
|
86 |
+
e = A > 1
|
87 |
+
assert Or(e, e.canonical) == e
|
88 |
+
g, l, ge, le = A > B, B < A, A >= B, B <= A
|
89 |
+
assert Or(g, l, ge, le) == Or(g, ge)
|
90 |
+
|
91 |
+
|
92 |
+
def test_Xor():
|
93 |
+
assert Xor() is false
|
94 |
+
assert Xor(A) == A
|
95 |
+
assert Xor(A, A) is false
|
96 |
+
assert Xor(True, A, A) is true
|
97 |
+
assert Xor(A, A, A, A, A) == A
|
98 |
+
assert Xor(True, False, False, A, B) == ~Xor(A, B)
|
99 |
+
assert Xor(True) is true
|
100 |
+
assert Xor(False) is false
|
101 |
+
assert Xor(True, True) is false
|
102 |
+
assert Xor(True, False) is true
|
103 |
+
assert Xor(False, False) is false
|
104 |
+
assert Xor(True, A) == ~A
|
105 |
+
assert Xor(False, A) == A
|
106 |
+
assert Xor(True, False, False) is true
|
107 |
+
assert Xor(True, False, A) == ~A
|
108 |
+
assert Xor(False, False, A) == A
|
109 |
+
assert isinstance(Xor(A, B), Xor)
|
110 |
+
assert Xor(A, B, Xor(C, D)) == Xor(A, B, C, D)
|
111 |
+
assert Xor(A, B, Xor(B, C)) == Xor(A, C)
|
112 |
+
assert Xor(A < 1, A >= 1, B) == Xor(0, 1, B) == Xor(1, 0, B)
|
113 |
+
e = A > 1
|
114 |
+
assert Xor(e, e.canonical) == Xor(0, 0) == Xor(1, 1)
|
115 |
+
|
116 |
+
|
117 |
+
def test_rewrite_as_And():
|
118 |
+
expr = x ^ y
|
119 |
+
assert expr.rewrite(And) == (x | y) & (~x | ~y)
|
120 |
+
|
121 |
+
|
122 |
+
def test_rewrite_as_Or():
|
123 |
+
expr = x ^ y
|
124 |
+
assert expr.rewrite(Or) == (x & ~y) | (y & ~x)
|
125 |
+
|
126 |
+
|
127 |
+
def test_rewrite_as_Nand():
|
128 |
+
expr = (y & z) | (z & ~w)
|
129 |
+
assert expr.rewrite(Nand) == ~(~(y & z) & ~(z & ~w))
|
130 |
+
|
131 |
+
|
132 |
+
def test_rewrite_as_Nor():
|
133 |
+
expr = z & (y | ~w)
|
134 |
+
assert expr.rewrite(Nor) == ~(~z | ~(y | ~w))
|
135 |
+
|
136 |
+
|
137 |
+
def test_Not():
|
138 |
+
raises(TypeError, lambda: Not(True, False))
|
139 |
+
assert Not(True) is false
|
140 |
+
assert Not(False) is true
|
141 |
+
assert Not(0) is true
|
142 |
+
assert Not(1) is false
|
143 |
+
assert Not(2) is false
|
144 |
+
|
145 |
+
|
146 |
+
def test_Nand():
|
147 |
+
assert Nand() is false
|
148 |
+
assert Nand(A) == ~A
|
149 |
+
assert Nand(True) is false
|
150 |
+
assert Nand(False) is true
|
151 |
+
assert Nand(True, True) is false
|
152 |
+
assert Nand(True, False) is true
|
153 |
+
assert Nand(False, False) is true
|
154 |
+
assert Nand(True, A) == ~A
|
155 |
+
assert Nand(False, A) is true
|
156 |
+
assert Nand(True, True, True) is false
|
157 |
+
assert Nand(True, True, A) == ~A
|
158 |
+
assert Nand(True, False, A) is true
|
159 |
+
|
160 |
+
|
161 |
+
def test_Nor():
|
162 |
+
assert Nor() is true
|
163 |
+
assert Nor(A) == ~A
|
164 |
+
assert Nor(True) is false
|
165 |
+
assert Nor(False) is true
|
166 |
+
assert Nor(True, True) is false
|
167 |
+
assert Nor(True, False) is false
|
168 |
+
assert Nor(False, False) is true
|
169 |
+
assert Nor(True, A) is false
|
170 |
+
assert Nor(False, A) == ~A
|
171 |
+
assert Nor(True, True, True) is false
|
172 |
+
assert Nor(True, True, A) is false
|
173 |
+
assert Nor(True, False, A) is false
|
174 |
+
|
175 |
+
|
176 |
+
def test_Xnor():
|
177 |
+
assert Xnor() is true
|
178 |
+
assert Xnor(A) == ~A
|
179 |
+
assert Xnor(A, A) is true
|
180 |
+
assert Xnor(True, A, A) is false
|
181 |
+
assert Xnor(A, A, A, A, A) == ~A
|
182 |
+
assert Xnor(True) is false
|
183 |
+
assert Xnor(False) is true
|
184 |
+
assert Xnor(True, True) is true
|
185 |
+
assert Xnor(True, False) is false
|
186 |
+
assert Xnor(False, False) is true
|
187 |
+
assert Xnor(True, A) == A
|
188 |
+
assert Xnor(False, A) == ~A
|
189 |
+
assert Xnor(True, False, False) is false
|
190 |
+
assert Xnor(True, False, A) == A
|
191 |
+
assert Xnor(False, False, A) == ~A
|
192 |
+
|
193 |
+
|
194 |
+
def test_Implies():
|
195 |
+
raises(ValueError, lambda: Implies(A, B, C))
|
196 |
+
assert Implies(True, True) is true
|
197 |
+
assert Implies(True, False) is false
|
198 |
+
assert Implies(False, True) is true
|
199 |
+
assert Implies(False, False) is true
|
200 |
+
assert Implies(0, A) is true
|
201 |
+
assert Implies(1, 1) is true
|
202 |
+
assert Implies(1, 0) is false
|
203 |
+
assert A >> B == B << A
|
204 |
+
assert (A < 1) >> (A >= 1) == (A >= 1)
|
205 |
+
assert (A < 1) >> (S.One > A) is true
|
206 |
+
assert A >> A is true
|
207 |
+
|
208 |
+
|
209 |
+
def test_Equivalent():
|
210 |
+
assert Equivalent(A, B) == Equivalent(B, A) == Equivalent(A, B, A)
|
211 |
+
assert Equivalent() is true
|
212 |
+
assert Equivalent(A, A) == Equivalent(A) is true
|
213 |
+
assert Equivalent(True, True) == Equivalent(False, False) is true
|
214 |
+
assert Equivalent(True, False) == Equivalent(False, True) is false
|
215 |
+
assert Equivalent(A, True) == A
|
216 |
+
assert Equivalent(A, False) == Not(A)
|
217 |
+
assert Equivalent(A, B, True) == A & B
|
218 |
+
assert Equivalent(A, B, False) == ~A & ~B
|
219 |
+
assert Equivalent(1, A) == A
|
220 |
+
assert Equivalent(0, A) == Not(A)
|
221 |
+
assert Equivalent(A, Equivalent(B, C)) != Equivalent(Equivalent(A, B), C)
|
222 |
+
assert Equivalent(A < 1, A >= 1) is false
|
223 |
+
assert Equivalent(A < 1, A >= 1, 0) is false
|
224 |
+
assert Equivalent(A < 1, A >= 1, 1) is false
|
225 |
+
assert Equivalent(A < 1, S.One > A) == Equivalent(1, 1) == Equivalent(0, 0)
|
226 |
+
assert Equivalent(Equality(A, B), Equality(B, A)) is true
|
227 |
+
|
228 |
+
|
229 |
+
def test_Exclusive():
|
230 |
+
assert Exclusive(False, False, False) is true
|
231 |
+
assert Exclusive(True, False, False) is true
|
232 |
+
assert Exclusive(True, True, False) is false
|
233 |
+
assert Exclusive(True, True, True) is false
|
234 |
+
|
235 |
+
|
236 |
+
def test_equals():
|
237 |
+
assert Not(Or(A, B)).equals(And(Not(A), Not(B))) is True
|
238 |
+
assert Equivalent(A, B).equals((A >> B) & (B >> A)) is True
|
239 |
+
assert ((A | ~B) & (~A | B)).equals((~A & ~B) | (A & B)) is True
|
240 |
+
assert (A >> B).equals(~A >> ~B) is False
|
241 |
+
assert (A >> (B >> A)).equals(A >> (C >> A)) is False
|
242 |
+
raises(NotImplementedError, lambda: (A & B).equals(A > B))
|
243 |
+
|
244 |
+
|
245 |
+
def test_simplification_boolalg():
|
246 |
+
"""
|
247 |
+
Test working of simplification methods.
|
248 |
+
"""
|
249 |
+
set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
|
250 |
+
set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
|
251 |
+
assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x))
|
252 |
+
assert Not(SOPform([x, y, z], set2)) == \
|
253 |
+
Not(Or(And(Not(x), Not(z)), And(x, z)))
|
254 |
+
assert POSform([x, y, z], set1 + set2) is true
|
255 |
+
assert SOPform([x, y, z], set1 + set2) is true
|
256 |
+
assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true
|
257 |
+
|
258 |
+
minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
|
259 |
+
[1, 1, 1, 1]]
|
260 |
+
dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
|
261 |
+
assert (
|
262 |
+
SOPform([w, x, y, z], minterms, dontcares) ==
|
263 |
+
Or(And(y, z), And(Not(w), Not(x))))
|
264 |
+
assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)
|
265 |
+
|
266 |
+
minterms = [1, 3, 7, 11, 15]
|
267 |
+
dontcares = [0, 2, 5]
|
268 |
+
assert (
|
269 |
+
SOPform([w, x, y, z], minterms, dontcares) ==
|
270 |
+
Or(And(y, z), And(Not(w), Not(x))))
|
271 |
+
assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)
|
272 |
+
|
273 |
+
minterms = [1, [0, 0, 1, 1], 7, [1, 0, 1, 1],
|
274 |
+
[1, 1, 1, 1]]
|
275 |
+
dontcares = [0, [0, 0, 1, 0], 5]
|
276 |
+
assert (
|
277 |
+
SOPform([w, x, y, z], minterms, dontcares) ==
|
278 |
+
Or(And(y, z), And(Not(w), Not(x))))
|
279 |
+
assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)
|
280 |
+
|
281 |
+
minterms = [1, {y: 1, z: 1}]
|
282 |
+
dontcares = [0, [0, 0, 1, 0], 5]
|
283 |
+
assert (
|
284 |
+
SOPform([w, x, y, z], minterms, dontcares) ==
|
285 |
+
Or(And(y, z), And(Not(w), Not(x))))
|
286 |
+
assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)
|
287 |
+
|
288 |
+
|
289 |
+
minterms = [{y: 1, z: 1}, 1]
|
290 |
+
dontcares = [[0, 0, 0, 0]]
|
291 |
+
|
292 |
+
minterms = [[0, 0, 0]]
|
293 |
+
raises(ValueError, lambda: SOPform([w, x, y, z], minterms))
|
294 |
+
raises(ValueError, lambda: POSform([w, x, y, z], minterms))
|
295 |
+
|
296 |
+
raises(TypeError, lambda: POSform([w, x, y, z], ["abcdefg"]))
|
297 |
+
|
298 |
+
# test simplification
|
299 |
+
ans = And(A, Or(B, C))
|
300 |
+
assert simplify_logic(A & (B | C)) == ans
|
301 |
+
assert simplify_logic((A & B) | (A & C)) == ans
|
302 |
+
assert simplify_logic(Implies(A, B)) == Or(Not(A), B)
|
303 |
+
assert simplify_logic(Equivalent(A, B)) == \
|
304 |
+
Or(And(A, B), And(Not(A), Not(B)))
|
305 |
+
assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C)
|
306 |
+
assert simplify_logic(And(Equality(A, 2), A)) is S.false
|
307 |
+
assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A)
|
308 |
+
assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C)
|
309 |
+
assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \
|
310 |
+
== And(Equality(A, 3), Or(B, C))
|
311 |
+
b = (~x & ~y & ~z) | (~x & ~y & z)
|
312 |
+
e = And(A, b)
|
313 |
+
assert simplify_logic(e) == A & ~x & ~y
|
314 |
+
raises(ValueError, lambda: simplify_logic(A & (B | C), form='blabla'))
|
315 |
+
assert simplify(Or(x <= y, And(x < y, z))) == (x <= y)
|
316 |
+
assert simplify(Or(x <= y, And(y > x, z))) == (x <= y)
|
317 |
+
assert simplify(Or(x >= y, And(y < x, z))) == (x >= y)
|
318 |
+
|
319 |
+
# Check that expressions with nine variables or more are not simplified
|
320 |
+
# (without the force-flag)
|
321 |
+
a, b, c, d, e, f, g, h, j = symbols('a b c d e f g h j')
|
322 |
+
expr = a & b & c & d & e & f & g & h & j | \
|
323 |
+
a & b & c & d & e & f & g & h & ~j
|
324 |
+
# This expression can be simplified to get rid of the j variables
|
325 |
+
assert simplify_logic(expr) == expr
|
326 |
+
|
327 |
+
# Test dontcare
|
328 |
+
assert simplify_logic((a & b) | c | d, dontcare=(a & b)) == c | d
|
329 |
+
|
330 |
+
# check input
|
331 |
+
ans = SOPform([x, y], [[1, 0]])
|
332 |
+
assert SOPform([x, y], [[1, 0]]) == ans
|
333 |
+
assert POSform([x, y], [[1, 0]]) == ans
|
334 |
+
|
335 |
+
raises(ValueError, lambda: SOPform([x], [[1]], [[1]]))
|
336 |
+
assert SOPform([x], [[1]], [[0]]) is true
|
337 |
+
assert SOPform([x], [[0]], [[1]]) is true
|
338 |
+
assert SOPform([x], [], []) is false
|
339 |
+
|
340 |
+
raises(ValueError, lambda: POSform([x], [[1]], [[1]]))
|
341 |
+
assert POSform([x], [[1]], [[0]]) is true
|
342 |
+
assert POSform([x], [[0]], [[1]]) is true
|
343 |
+
assert POSform([x], [], []) is false
|
344 |
+
|
345 |
+
# check working of simplify
|
346 |
+
assert simplify((A & B) | (A & C)) == And(A, Or(B, C))
|
347 |
+
assert simplify(And(x, Not(x))) == False
|
348 |
+
assert simplify(Or(x, Not(x))) == True
|
349 |
+
assert simplify(And(Eq(x, 0), Eq(x, y))) == And(Eq(x, 0), Eq(y, 0))
|
350 |
+
assert And(Eq(x - 1, 0), Eq(x, y)).simplify() == And(Eq(x, 1), Eq(y, 1))
|
351 |
+
assert And(Ne(x - 1, 0), Ne(x, y)).simplify() == And(Ne(x, 1), Ne(x, y))
|
352 |
+
assert And(Eq(x - 1, 0), Ne(x, y)).simplify() == And(Eq(x, 1), Ne(y, 1))
|
353 |
+
assert And(Eq(x - 1, 0), Eq(x, z + y), Eq(y + x, 0)).simplify(
|
354 |
+
) == And(Eq(x, 1), Eq(y, -1), Eq(z, 2))
|
355 |
+
assert And(Eq(x - 1, 0), Eq(x + 2, 3)).simplify() == Eq(x, 1)
|
356 |
+
assert And(Ne(x - 1, 0), Ne(x + 2, 3)).simplify() == Ne(x, 1)
|
357 |
+
assert And(Eq(x - 1, 0), Eq(x + 2, 2)).simplify() == False
|
358 |
+
assert And(Ne(x - 1, 0), Ne(x + 2, 2)).simplify(
|
359 |
+
) == And(Ne(x, 1), Ne(x, 0))
|
360 |
+
|
361 |
+
|
362 |
+
def test_bool_map():
|
363 |
+
"""
|
364 |
+
Test working of bool_map function.
|
365 |
+
"""
|
366 |
+
|
367 |
+
minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
|
368 |
+
[1, 1, 1, 1]]
|
369 |
+
assert bool_map(Not(Not(a)), a) == (a, {a: a})
|
370 |
+
assert bool_map(SOPform([w, x, y, z], minterms),
|
371 |
+
POSform([w, x, y, z], minterms)) == \
|
372 |
+
(And(Or(Not(w), y), Or(Not(x), y), z), {x: x, w: w, z: z, y: y})
|
373 |
+
assert bool_map(SOPform([x, z, y], [[1, 0, 1]]),
|
374 |
+
SOPform([a, b, c], [[1, 0, 1]])) != False
|
375 |
+
function1 = SOPform([x, z, y], [[1, 0, 1], [0, 0, 1]])
|
376 |
+
function2 = SOPform([a, b, c], [[1, 0, 1], [1, 0, 0]])
|
377 |
+
assert bool_map(function1, function2) == \
|
378 |
+
(function1, {y: a, z: b})
|
379 |
+
assert bool_map(Xor(x, y), ~Xor(x, y)) == False
|
380 |
+
assert bool_map(And(x, y), Or(x, y)) is None
|
381 |
+
assert bool_map(And(x, y), And(x, y, z)) is None
|
382 |
+
# issue 16179
|
383 |
+
assert bool_map(Xor(x, y, z), ~Xor(x, y, z)) == False
|
384 |
+
assert bool_map(Xor(a, x, y, z), ~Xor(a, x, y, z)) == False
|
385 |
+
|
386 |
+
|
387 |
+
def test_bool_symbol():
|
388 |
+
"""Test that mixing symbols with boolean values
|
389 |
+
works as expected"""
|
390 |
+
|
391 |
+
assert And(A, True) == A
|
392 |
+
assert And(A, True, True) == A
|
393 |
+
assert And(A, False) is false
|
394 |
+
assert And(A, True, False) is false
|
395 |
+
assert Or(A, True) is true
|
396 |
+
assert Or(A, False) == A
|
397 |
+
|
398 |
+
|
399 |
+
def test_is_boolean():
|
400 |
+
assert isinstance(True, Boolean) is False
|
401 |
+
assert isinstance(true, Boolean) is True
|
402 |
+
assert 1 == True
|
403 |
+
assert 1 != true
|
404 |
+
assert (1 == true) is False
|
405 |
+
assert 0 == False
|
406 |
+
assert 0 != false
|
407 |
+
assert (0 == false) is False
|
408 |
+
assert true.is_Boolean is True
|
409 |
+
assert (A & B).is_Boolean
|
410 |
+
assert (A | B).is_Boolean
|
411 |
+
assert (~A).is_Boolean
|
412 |
+
assert (A ^ B).is_Boolean
|
413 |
+
assert A.is_Boolean != isinstance(A, Boolean)
|
414 |
+
assert isinstance(A, Boolean)
|
415 |
+
|
416 |
+
|
417 |
+
def test_subs():
|
418 |
+
assert (A & B).subs(A, True) == B
|
419 |
+
assert (A & B).subs(A, False) is false
|
420 |
+
assert (A & B).subs(B, True) == A
|
421 |
+
assert (A & B).subs(B, False) is false
|
422 |
+
assert (A & B).subs({A: True, B: True}) is true
|
423 |
+
assert (A | B).subs(A, True) is true
|
424 |
+
assert (A | B).subs(A, False) == B
|
425 |
+
assert (A | B).subs(B, True) is true
|
426 |
+
assert (A | B).subs(B, False) == A
|
427 |
+
assert (A | B).subs({A: True, B: True}) is true
|
428 |
+
|
429 |
+
|
430 |
+
"""
|
431 |
+
we test for axioms of boolean algebra
|
432 |
+
see https://en.wikipedia.org/wiki/Boolean_algebra_(structure)
|
433 |
+
"""
|
434 |
+
|
435 |
+
|
436 |
+
def test_commutative():
|
437 |
+
"""Test for commutativity of And and Or"""
|
438 |
+
A, B = map(Boolean, symbols('A,B'))
|
439 |
+
|
440 |
+
assert A & B == B & A
|
441 |
+
assert A | B == B | A
|
442 |
+
|
443 |
+
|
444 |
+
def test_and_associativity():
|
445 |
+
"""Test for associativity of And"""
|
446 |
+
|
447 |
+
assert (A & B) & C == A & (B & C)
|
448 |
+
|
449 |
+
|
450 |
+
def test_or_assicativity():
|
451 |
+
assert ((A | B) | C) == (A | (B | C))
|
452 |
+
|
453 |
+
|
454 |
+
def test_double_negation():
|
455 |
+
a = Boolean()
|
456 |
+
assert ~(~a) == a
|
457 |
+
|
458 |
+
|
459 |
+
# test methods
|
460 |
+
|
461 |
+
def test_eliminate_implications():
|
462 |
+
assert eliminate_implications(Implies(A, B, evaluate=False)) == (~A) | B
|
463 |
+
assert eliminate_implications(
|
464 |
+
A >> (C >> Not(B))) == Or(Or(Not(B), Not(C)), Not(A))
|
465 |
+
assert eliminate_implications(Equivalent(A, B, C, D)) == \
|
466 |
+
(~A | B) & (~B | C) & (~C | D) & (~D | A)
|
467 |
+
|
468 |
+
|
469 |
+
def test_conjuncts():
|
470 |
+
assert conjuncts(A & B & C) == {A, B, C}
|
471 |
+
assert conjuncts((A | B) & C) == {A | B, C}
|
472 |
+
assert conjuncts(A) == {A}
|
473 |
+
assert conjuncts(True) == {True}
|
474 |
+
assert conjuncts(False) == {False}
|
475 |
+
|
476 |
+
|
477 |
+
def test_disjuncts():
|
478 |
+
assert disjuncts(A | B | C) == {A, B, C}
|
479 |
+
assert disjuncts((A | B) & C) == {(A | B) & C}
|
480 |
+
assert disjuncts(A) == {A}
|
481 |
+
assert disjuncts(True) == {True}
|
482 |
+
assert disjuncts(False) == {False}
|
483 |
+
|
484 |
+
|
485 |
+
def test_distribute():
|
486 |
+
assert distribute_and_over_or(Or(And(A, B), C)) == And(Or(A, C), Or(B, C))
|
487 |
+
assert distribute_or_over_and(And(A, Or(B, C))) == Or(And(A, B), And(A, C))
|
488 |
+
assert distribute_xor_over_and(And(A, Xor(B, C))) == Xor(And(A, B), And(A, C))
|
489 |
+
|
490 |
+
|
491 |
+
def test_to_anf():
|
492 |
+
x, y, z = symbols('x,y,z')
|
493 |
+
assert to_anf(And(x, y)) == And(x, y)
|
494 |
+
assert to_anf(Or(x, y)) == Xor(x, y, And(x, y))
|
495 |
+
assert to_anf(Or(Implies(x, y), And(x, y), y)) == \
|
496 |
+
Xor(x, True, x & y, remove_true=False)
|
497 |
+
assert to_anf(Or(Nand(x, y), Nor(x, y), Xnor(x, y), Implies(x, y))) == True
|
498 |
+
assert to_anf(Or(x, Not(y), Nor(x,z), And(x, y), Nand(y, z))) == \
|
499 |
+
Xor(True, And(y, z), And(x, y, z), remove_true=False)
|
500 |
+
assert to_anf(Xor(x, y)) == Xor(x, y)
|
501 |
+
assert to_anf(Not(x)) == Xor(x, True, remove_true=False)
|
502 |
+
assert to_anf(Nand(x, y)) == Xor(True, And(x, y), remove_true=False)
|
503 |
+
assert to_anf(Nor(x, y)) == Xor(x, y, True, And(x, y), remove_true=False)
|
504 |
+
assert to_anf(Implies(x, y)) == Xor(x, True, And(x, y), remove_true=False)
|
505 |
+
assert to_anf(Equivalent(x, y)) == Xor(x, y, True, remove_true=False)
|
506 |
+
assert to_anf(Nand(x | y, x >> y), deep=False) == \
|
507 |
+
Xor(True, And(Or(x, y), Implies(x, y)), remove_true=False)
|
508 |
+
assert to_anf(Nor(x ^ y, x & y), deep=False) == \
|
509 |
+
Xor(True, Or(Xor(x, y), And(x, y)), remove_true=False)
|
510 |
+
|
511 |
+
|
512 |
+
def test_to_nnf():
|
513 |
+
assert to_nnf(true) is true
|
514 |
+
assert to_nnf(false) is false
|
515 |
+
assert to_nnf(A) == A
|
516 |
+
assert to_nnf(A | ~A | B) is true
|
517 |
+
assert to_nnf(A & ~A & B) is false
|
518 |
+
assert to_nnf(A >> B) == ~A | B
|
519 |
+
assert to_nnf(Equivalent(A, B, C)) == (~A | B) & (~B | C) & (~C | A)
|
520 |
+
assert to_nnf(A ^ B ^ C) == \
|
521 |
+
(A | B | C) & (~A | ~B | C) & (A | ~B | ~C) & (~A | B | ~C)
|
522 |
+
assert to_nnf(ITE(A, B, C)) == (~A | B) & (A | C)
|
523 |
+
assert to_nnf(Not(A | B | C)) == ~A & ~B & ~C
|
524 |
+
assert to_nnf(Not(A & B & C)) == ~A | ~B | ~C
|
525 |
+
assert to_nnf(Not(A >> B)) == A & ~B
|
526 |
+
assert to_nnf(Not(Equivalent(A, B, C))) == And(Or(A, B, C), Or(~A, ~B, ~C))
|
527 |
+
assert to_nnf(Not(A ^ B ^ C)) == \
|
528 |
+
(~A | B | C) & (A | ~B | C) & (A | B | ~C) & (~A | ~B | ~C)
|
529 |
+
assert to_nnf(Not(ITE(A, B, C))) == (~A | ~B) & (A | ~C)
|
530 |
+
assert to_nnf((A >> B) ^ (B >> A)) == (A & ~B) | (~A & B)
|
531 |
+
assert to_nnf((A >> B) ^ (B >> A), False) == \
|
532 |
+
(~A | ~B | A | B) & ((A & ~B) | (~A & B))
|
533 |
+
assert ITE(A, 1, 0).to_nnf() == A
|
534 |
+
assert ITE(A, 0, 1).to_nnf() == ~A
|
535 |
+
# although ITE can hold non-Boolean, it will complain if
|
536 |
+
# an attempt is made to convert the ITE to Boolean nnf
|
537 |
+
raises(TypeError, lambda: ITE(A < 1, [1], B).to_nnf())
|
538 |
+
|
539 |
+
|
540 |
+
def test_to_cnf():
|
541 |
+
assert to_cnf(~(B | C)) == And(Not(B), Not(C))
|
542 |
+
assert to_cnf((A & B) | C) == And(Or(A, C), Or(B, C))
|
543 |
+
assert to_cnf(A >> B) == (~A) | B
|
544 |
+
assert to_cnf(A >> (B & C)) == (~A | B) & (~A | C)
|
545 |
+
assert to_cnf(A & (B | C) | ~A & (B | C), True) == B | C
|
546 |
+
assert to_cnf(A & B) == And(A, B)
|
547 |
+
|
548 |
+
assert to_cnf(Equivalent(A, B)) == And(Or(A, Not(B)), Or(B, Not(A)))
|
549 |
+
assert to_cnf(Equivalent(A, B & C)) == \
|
550 |
+
(~A | B) & (~A | C) & (~B | ~C | A)
|
551 |
+
assert to_cnf(Equivalent(A, B | C), True) == \
|
552 |
+
And(Or(Not(B), A), Or(Not(C), A), Or(B, C, Not(A)))
|
553 |
+
assert to_cnf(A + 1) == A + 1
|
554 |
+
|
555 |
+
|
556 |
+
def test_issue_18904():
|
557 |
+
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15 = symbols('x1:16')
|
558 |
+
eq = (( x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 ) |
|
559 |
+
( x1 & x2 & x3 & x4 & x5 & x6 & x7 & x10 & x9 ) |
|
560 |
+
( x1 & x11 & x3 & x12 & x5 & x13 & x14 & x15 & x9 ))
|
561 |
+
assert is_cnf(to_cnf(eq))
|
562 |
+
raises(ValueError, lambda: to_cnf(eq, simplify=True))
|
563 |
+
for f, t in zip((And, Or), (to_cnf, to_dnf)):
|
564 |
+
eq = f(x1, x2, x3, x4, x5, x6, x7, x8, x9)
|
565 |
+
raises(ValueError, lambda: to_cnf(eq, simplify=True))
|
566 |
+
assert t(eq, simplify=True, force=True) == eq
|
567 |
+
|
568 |
+
|
569 |
+
def test_issue_9949():
|
570 |
+
assert is_cnf(to_cnf((b > -5) | (a > 2) & (a < 4)))
|
571 |
+
|
572 |
+
|
573 |
+
def test_to_CNF():
|
574 |
+
assert CNF.CNF_to_cnf(CNF.to_CNF(~(B | C))) == to_cnf(~(B | C))
|
575 |
+
assert CNF.CNF_to_cnf(CNF.to_CNF((A & B) | C)) == to_cnf((A & B) | C)
|
576 |
+
assert CNF.CNF_to_cnf(CNF.to_CNF(A >> B)) == to_cnf(A >> B)
|
577 |
+
assert CNF.CNF_to_cnf(CNF.to_CNF(A >> (B & C))) == to_cnf(A >> (B & C))
|
578 |
+
assert CNF.CNF_to_cnf(CNF.to_CNF(A & (B | C) | ~A & (B | C))) == to_cnf(A & (B | C) | ~A & (B | C))
|
579 |
+
assert CNF.CNF_to_cnf(CNF.to_CNF(A & B)) == to_cnf(A & B)
|
580 |
+
|
581 |
+
|
582 |
+
def test_to_dnf():
|
583 |
+
assert to_dnf(~(B | C)) == And(Not(B), Not(C))
|
584 |
+
assert to_dnf(A & (B | C)) == Or(And(A, B), And(A, C))
|
585 |
+
assert to_dnf(A >> B) == (~A) | B
|
586 |
+
assert to_dnf(A >> (B & C)) == (~A) | (B & C)
|
587 |
+
assert to_dnf(A | B) == A | B
|
588 |
+
|
589 |
+
assert to_dnf(Equivalent(A, B), True) == \
|
590 |
+
Or(And(A, B), And(Not(A), Not(B)))
|
591 |
+
assert to_dnf(Equivalent(A, B & C), True) == \
|
592 |
+
Or(And(A, B, C), And(Not(A), Not(B)), And(Not(A), Not(C)))
|
593 |
+
assert to_dnf(A + 1) == A + 1
|
594 |
+
|
595 |
+
|
596 |
+
def test_to_int_repr():
|
597 |
+
x, y, z = map(Boolean, symbols('x,y,z'))
|
598 |
+
|
599 |
+
def sorted_recursive(arg):
|
600 |
+
try:
|
601 |
+
return sorted(sorted_recursive(x) for x in arg)
|
602 |
+
except TypeError: # arg is not a sequence
|
603 |
+
return arg
|
604 |
+
|
605 |
+
assert sorted_recursive(to_int_repr([x | y, z | x], [x, y, z])) == \
|
606 |
+
sorted_recursive([[1, 2], [1, 3]])
|
607 |
+
assert sorted_recursive(to_int_repr([x | y, z | ~x], [x, y, z])) == \
|
608 |
+
sorted_recursive([[1, 2], [3, -1]])
|
609 |
+
|
610 |
+
|
611 |
+
def test_is_anf():
|
612 |
+
x, y = symbols('x,y')
|
613 |
+
assert is_anf(true) is True
|
614 |
+
assert is_anf(false) is True
|
615 |
+
assert is_anf(x) is True
|
616 |
+
assert is_anf(And(x, y)) is True
|
617 |
+
assert is_anf(Xor(x, y, And(x, y))) is True
|
618 |
+
assert is_anf(Xor(x, y, Or(x, y))) is False
|
619 |
+
assert is_anf(Xor(Not(x), y)) is False
|
620 |
+
|
621 |
+
|
622 |
+
def test_is_nnf():
|
623 |
+
assert is_nnf(true) is True
|
624 |
+
assert is_nnf(A) is True
|
625 |
+
assert is_nnf(~A) is True
|
626 |
+
assert is_nnf(A & B) is True
|
627 |
+
assert is_nnf((A & B) | (~A & A) | (~B & B) | (~A & ~B), False) is True
|
628 |
+
assert is_nnf((A | B) & (~A | ~B)) is True
|
629 |
+
assert is_nnf(Not(Or(A, B))) is False
|
630 |
+
assert is_nnf(A ^ B) is False
|
631 |
+
assert is_nnf((A & B) | (~A & A) | (~B & B) | (~A & ~B), True) is False
|
632 |
+
|
633 |
+
|
634 |
+
def test_is_cnf():
|
635 |
+
assert is_cnf(x) is True
|
636 |
+
assert is_cnf(x | y | z) is True
|
637 |
+
assert is_cnf(x & y & z) is True
|
638 |
+
assert is_cnf((x | y) & z) is True
|
639 |
+
assert is_cnf((x & y) | z) is False
|
640 |
+
assert is_cnf(~(x & y) | z) is False
|
641 |
+
|
642 |
+
|
643 |
+
def test_is_dnf():
|
644 |
+
assert is_dnf(x) is True
|
645 |
+
assert is_dnf(x | y | z) is True
|
646 |
+
assert is_dnf(x & y & z) is True
|
647 |
+
assert is_dnf((x & y) | z) is True
|
648 |
+
assert is_dnf((x | y) & z) is False
|
649 |
+
assert is_dnf(~(x | y) & z) is False
|
650 |
+
|
651 |
+
|
652 |
+
def test_ITE():
|
653 |
+
A, B, C = symbols('A:C')
|
654 |
+
assert ITE(True, False, True) is false
|
655 |
+
assert ITE(True, True, False) is true
|
656 |
+
assert ITE(False, True, False) is false
|
657 |
+
assert ITE(False, False, True) is true
|
658 |
+
assert isinstance(ITE(A, B, C), ITE)
|
659 |
+
|
660 |
+
A = True
|
661 |
+
assert ITE(A, B, C) == B
|
662 |
+
A = False
|
663 |
+
assert ITE(A, B, C) == C
|
664 |
+
B = True
|
665 |
+
assert ITE(And(A, B), B, C) == C
|
666 |
+
assert ITE(Or(A, False), And(B, True), False) is false
|
667 |
+
assert ITE(x, A, B) == Not(x)
|
668 |
+
assert ITE(x, B, A) == x
|
669 |
+
assert ITE(1, x, y) == x
|
670 |
+
assert ITE(0, x, y) == y
|
671 |
+
raises(TypeError, lambda: ITE(2, x, y))
|
672 |
+
raises(TypeError, lambda: ITE(1, [], y))
|
673 |
+
raises(TypeError, lambda: ITE(1, (), y))
|
674 |
+
raises(TypeError, lambda: ITE(1, y, []))
|
675 |
+
assert ITE(1, 1, 1) is S.true
|
676 |
+
assert isinstance(ITE(1, 1, 1, evaluate=False), ITE)
|
677 |
+
|
678 |
+
raises(TypeError, lambda: ITE(x > 1, y, x))
|
679 |
+
assert ITE(Eq(x, True), y, x) == ITE(x, y, x)
|
680 |
+
assert ITE(Eq(x, False), y, x) == ITE(~x, y, x)
|
681 |
+
assert ITE(Ne(x, True), y, x) == ITE(~x, y, x)
|
682 |
+
assert ITE(Ne(x, False), y, x) == ITE(x, y, x)
|
683 |
+
assert ITE(Eq(S. true, x), y, x) == ITE(x, y, x)
|
684 |
+
assert ITE(Eq(S.false, x), y, x) == ITE(~x, y, x)
|
685 |
+
assert ITE(Ne(S.true, x), y, x) == ITE(~x, y, x)
|
686 |
+
assert ITE(Ne(S.false, x), y, x) == ITE(x, y, x)
|
687 |
+
# 0 and 1 in the context are not treated as True/False
|
688 |
+
# so the equality must always be False since dissimilar
|
689 |
+
# objects cannot be equal
|
690 |
+
assert ITE(Eq(x, 0), y, x) == x
|
691 |
+
assert ITE(Eq(x, 1), y, x) == x
|
692 |
+
assert ITE(Ne(x, 0), y, x) == y
|
693 |
+
assert ITE(Ne(x, 1), y, x) == y
|
694 |
+
assert ITE(Eq(x, 0), y, z).subs(x, 0) == y
|
695 |
+
assert ITE(Eq(x, 0), y, z).subs(x, 1) == z
|
696 |
+
raises(ValueError, lambda: ITE(x > 1, y, x, z))
|
697 |
+
|
698 |
+
|
699 |
+
def test_is_literal():
|
700 |
+
assert is_literal(True) is True
|
701 |
+
assert is_literal(False) is True
|
702 |
+
assert is_literal(A) is True
|
703 |
+
assert is_literal(~A) is True
|
704 |
+
assert is_literal(Or(A, B)) is False
|
705 |
+
assert is_literal(Q.zero(A)) is True
|
706 |
+
assert is_literal(Not(Q.zero(A))) is True
|
707 |
+
assert is_literal(Or(A, B)) is False
|
708 |
+
assert is_literal(And(Q.zero(A), Q.zero(B))) is False
|
709 |
+
assert is_literal(x < 3)
|
710 |
+
assert not is_literal(x + y < 3)
|
711 |
+
|
712 |
+
|
713 |
+
def test_operators():
|
714 |
+
# Mostly test __and__, __rand__, and so on
|
715 |
+
assert True & A == A & True == A
|
716 |
+
assert False & A == A & False == False
|
717 |
+
assert A & B == And(A, B)
|
718 |
+
assert True | A == A | True == True
|
719 |
+
assert False | A == A | False == A
|
720 |
+
assert A | B == Or(A, B)
|
721 |
+
assert ~A == Not(A)
|
722 |
+
assert True >> A == A << True == A
|
723 |
+
assert False >> A == A << False == True
|
724 |
+
assert A >> True == True << A == True
|
725 |
+
assert A >> False == False << A == ~A
|
726 |
+
assert A >> B == B << A == Implies(A, B)
|
727 |
+
assert True ^ A == A ^ True == ~A
|
728 |
+
assert False ^ A == A ^ False == A
|
729 |
+
assert A ^ B == Xor(A, B)
|
730 |
+
|
731 |
+
|
732 |
+
def test_true_false():
|
733 |
+
assert true is S.true
|
734 |
+
assert false is S.false
|
735 |
+
assert true is not True
|
736 |
+
assert false is not False
|
737 |
+
assert true
|
738 |
+
assert not false
|
739 |
+
assert true == True
|
740 |
+
assert false == False
|
741 |
+
assert not (true == False)
|
742 |
+
assert not (false == True)
|
743 |
+
assert not (true == false)
|
744 |
+
|
745 |
+
assert hash(true) == hash(True)
|
746 |
+
assert hash(false) == hash(False)
|
747 |
+
assert len({true, True}) == len({false, False}) == 1
|
748 |
+
|
749 |
+
assert isinstance(true, BooleanAtom)
|
750 |
+
assert isinstance(false, BooleanAtom)
|
751 |
+
# We don't want to subclass from bool, because bool subclasses from
|
752 |
+
# int. But operators like &, |, ^, <<, >>, and ~ act differently on 0 and
|
753 |
+
# 1 then we want them to on true and false. See the docstrings of the
|
754 |
+
# various And, Or, etc. functions for examples.
|
755 |
+
assert not isinstance(true, bool)
|
756 |
+
assert not isinstance(false, bool)
|
757 |
+
|
758 |
+
# Note: using 'is' comparison is important here. We want these to return
|
759 |
+
# true and false, not True and False
|
760 |
+
|
761 |
+
assert Not(true) is false
|
762 |
+
assert Not(True) is false
|
763 |
+
assert Not(false) is true
|
764 |
+
assert Not(False) is true
|
765 |
+
assert ~true is false
|
766 |
+
assert ~false is true
|
767 |
+
|
768 |
+
for T, F in product((True, true), (False, false)):
|
769 |
+
assert And(T, F) is false
|
770 |
+
assert And(F, T) is false
|
771 |
+
assert And(F, F) is false
|
772 |
+
assert And(T, T) is true
|
773 |
+
assert And(T, x) == x
|
774 |
+
assert And(F, x) is false
|
775 |
+
if not (T is True and F is False):
|
776 |
+
assert T & F is false
|
777 |
+
assert F & T is false
|
778 |
+
if F is not False:
|
779 |
+
assert F & F is false
|
780 |
+
if T is not True:
|
781 |
+
assert T & T is true
|
782 |
+
|
783 |
+
assert Or(T, F) is true
|
784 |
+
assert Or(F, T) is true
|
785 |
+
assert Or(F, F) is false
|
786 |
+
assert Or(T, T) is true
|
787 |
+
assert Or(T, x) is true
|
788 |
+
assert Or(F, x) == x
|
789 |
+
if not (T is True and F is False):
|
790 |
+
assert T | F is true
|
791 |
+
assert F | T is true
|
792 |
+
if F is not False:
|
793 |
+
assert F | F is false
|
794 |
+
if T is not True:
|
795 |
+
assert T | T is true
|
796 |
+
|
797 |
+
assert Xor(T, F) is true
|
798 |
+
assert Xor(F, T) is true
|
799 |
+
assert Xor(F, F) is false
|
800 |
+
assert Xor(T, T) is false
|
801 |
+
assert Xor(T, x) == ~x
|
802 |
+
assert Xor(F, x) == x
|
803 |
+
if not (T is True and F is False):
|
804 |
+
assert T ^ F is true
|
805 |
+
assert F ^ T is true
|
806 |
+
if F is not False:
|
807 |
+
assert F ^ F is false
|
808 |
+
if T is not True:
|
809 |
+
assert T ^ T is false
|
810 |
+
|
811 |
+
assert Nand(T, F) is true
|
812 |
+
assert Nand(F, T) is true
|
813 |
+
assert Nand(F, F) is true
|
814 |
+
assert Nand(T, T) is false
|
815 |
+
assert Nand(T, x) == ~x
|
816 |
+
assert Nand(F, x) is true
|
817 |
+
|
818 |
+
assert Nor(T, F) is false
|
819 |
+
assert Nor(F, T) is false
|
820 |
+
assert Nor(F, F) is true
|
821 |
+
assert Nor(T, T) is false
|
822 |
+
assert Nor(T, x) is false
|
823 |
+
assert Nor(F, x) == ~x
|
824 |
+
|
825 |
+
assert Implies(T, F) is false
|
826 |
+
assert Implies(F, T) is true
|
827 |
+
assert Implies(F, F) is true
|
828 |
+
assert Implies(T, T) is true
|
829 |
+
assert Implies(T, x) == x
|
830 |
+
assert Implies(F, x) is true
|
831 |
+
assert Implies(x, T) is true
|
832 |
+
assert Implies(x, F) == ~x
|
833 |
+
if not (T is True and F is False):
|
834 |
+
assert T >> F is false
|
835 |
+
assert F << T is false
|
836 |
+
assert F >> T is true
|
837 |
+
assert T << F is true
|
838 |
+
if F is not False:
|
839 |
+
assert F >> F is true
|
840 |
+
assert F << F is true
|
841 |
+
if T is not True:
|
842 |
+
assert T >> T is true
|
843 |
+
assert T << T is true
|
844 |
+
|
845 |
+
assert Equivalent(T, F) is false
|
846 |
+
assert Equivalent(F, T) is false
|
847 |
+
assert Equivalent(F, F) is true
|
848 |
+
assert Equivalent(T, T) is true
|
849 |
+
assert Equivalent(T, x) == x
|
850 |
+
assert Equivalent(F, x) == ~x
|
851 |
+
assert Equivalent(x, T) == x
|
852 |
+
assert Equivalent(x, F) == ~x
|
853 |
+
|
854 |
+
assert ITE(T, T, T) is true
|
855 |
+
assert ITE(T, T, F) is true
|
856 |
+
assert ITE(T, F, T) is false
|
857 |
+
assert ITE(T, F, F) is false
|
858 |
+
assert ITE(F, T, T) is true
|
859 |
+
assert ITE(F, T, F) is false
|
860 |
+
assert ITE(F, F, T) is true
|
861 |
+
assert ITE(F, F, F) is false
|
862 |
+
|
863 |
+
assert all(i.simplify(1, 2) is i for i in (S.true, S.false))
|
864 |
+
|
865 |
+
|
866 |
+
def test_bool_as_set():
|
867 |
+
assert ITE(y <= 0, False, y >= 1).as_set() == Interval(1, oo)
|
868 |
+
assert And(x <= 2, x >= -2).as_set() == Interval(-2, 2)
|
869 |
+
assert Or(x >= 2, x <= -2).as_set() == Interval(-oo, -2) + Interval(2, oo)
|
870 |
+
assert Not(x > 2).as_set() == Interval(-oo, 2)
|
871 |
+
# issue 10240
|
872 |
+
assert Not(And(x > 2, x < 3)).as_set() == \
|
873 |
+
Union(Interval(-oo, 2), Interval(3, oo))
|
874 |
+
assert true.as_set() == S.UniversalSet
|
875 |
+
assert false.as_set() is S.EmptySet
|
876 |
+
assert x.as_set() == S.UniversalSet
|
877 |
+
assert And(Or(x < 1, x > 3), x < 2).as_set() == Interval.open(-oo, 1)
|
878 |
+
assert And(x < 1, sin(x) < 3).as_set() == (x < 1).as_set()
|
879 |
+
raises(NotImplementedError, lambda: (sin(x) < 1).as_set())
|
880 |
+
# watch for object morph in as_set
|
881 |
+
assert Eq(-1, cos(2*x)**2/sin(2*x)**2).as_set() is S.EmptySet
|
882 |
+
|
883 |
+
|
884 |
+
@XFAIL
|
885 |
+
def test_multivariate_bool_as_set():
|
886 |
+
x, y = symbols('x,y')
|
887 |
+
|
888 |
+
assert And(x >= 0, y >= 0).as_set() == Interval(0, oo)*Interval(0, oo)
|
889 |
+
assert Or(x >= 0, y >= 0).as_set() == S.Reals*S.Reals - \
|
890 |
+
Interval(-oo, 0, True, True)*Interval(-oo, 0, True, True)
|
891 |
+
|
892 |
+
|
893 |
+
def test_all_or_nothing():
|
894 |
+
x = symbols('x', extended_real=True)
|
895 |
+
args = x >= -oo, x <= oo
|
896 |
+
v = And(*args)
|
897 |
+
if v.func is And:
|
898 |
+
assert len(v.args) == len(args) - args.count(S.true)
|
899 |
+
else:
|
900 |
+
assert v == True
|
901 |
+
v = Or(*args)
|
902 |
+
if v.func is Or:
|
903 |
+
assert len(v.args) == 2
|
904 |
+
else:
|
905 |
+
assert v == True
|
906 |
+
|
907 |
+
|
908 |
+
def test_canonical_atoms():
|
909 |
+
assert true.canonical == true
|
910 |
+
assert false.canonical == false
|
911 |
+
|
912 |
+
|
913 |
+
def test_negated_atoms():
|
914 |
+
assert true.negated == false
|
915 |
+
assert false.negated == true
|
916 |
+
|
917 |
+
|
918 |
+
def test_issue_8777():
|
919 |
+
assert And(x > 2, x < oo).as_set() == Interval(2, oo, left_open=True)
|
920 |
+
assert And(x >= 1, x < oo).as_set() == Interval(1, oo)
|
921 |
+
assert (x < oo).as_set() == Interval(-oo, oo)
|
922 |
+
assert (x > -oo).as_set() == Interval(-oo, oo)
|
923 |
+
|
924 |
+
|
925 |
+
def test_issue_8975():
|
926 |
+
assert Or(And(-oo < x, x <= -2), And(2 <= x, x < oo)).as_set() == \
|
927 |
+
Interval(-oo, -2) + Interval(2, oo)
|
928 |
+
|
929 |
+
|
930 |
+
def test_term_to_integer():
|
931 |
+
assert term_to_integer([1, 0, 1, 0, 0, 1, 0]) == 82
|
932 |
+
assert term_to_integer('0010101000111001') == 10809
|
933 |
+
|
934 |
+
|
935 |
+
def test_issue_21971():
|
936 |
+
a, b, c, d = symbols('a b c d')
|
937 |
+
f = a & b & c | a & c
|
938 |
+
assert f.subs(a & c, d) == b & d | d
|
939 |
+
assert f.subs(a & b & c, d) == a & c | d
|
940 |
+
|
941 |
+
f = (a | b | c) & (a | c)
|
942 |
+
assert f.subs(a | c, d) == (b | d) & d
|
943 |
+
assert f.subs(a | b | c, d) == (a | c) & d
|
944 |
+
|
945 |
+
f = (a ^ b ^ c) & (a ^ c)
|
946 |
+
assert f.subs(a ^ c, d) == (b ^ d) & d
|
947 |
+
assert f.subs(a ^ b ^ c, d) == (a ^ c) & d
|
948 |
+
|
949 |
+
|
950 |
+
def test_truth_table():
|
951 |
+
assert list(truth_table(And(x, y), [x, y], input=False)) == \
|
952 |
+
[False, False, False, True]
|
953 |
+
assert list(truth_table(x | y, [x, y], input=False)) == \
|
954 |
+
[False, True, True, True]
|
955 |
+
assert list(truth_table(x >> y, [x, y], input=False)) == \
|
956 |
+
[True, True, False, True]
|
957 |
+
assert list(truth_table(And(x, y), [x, y])) == \
|
958 |
+
[([0, 0], False), ([0, 1], False), ([1, 0], False), ([1, 1], True)]
|
959 |
+
|
960 |
+
|
961 |
+
def test_issue_8571():
|
962 |
+
for t in (S.true, S.false):
|
963 |
+
raises(TypeError, lambda: +t)
|
964 |
+
raises(TypeError, lambda: -t)
|
965 |
+
raises(TypeError, lambda: abs(t))
|
966 |
+
# use int(bool(t)) to get 0 or 1
|
967 |
+
raises(TypeError, lambda: int(t))
|
968 |
+
|
969 |
+
for o in [S.Zero, S.One, x]:
|
970 |
+
for _ in range(2):
|
971 |
+
raises(TypeError, lambda: o + t)
|
972 |
+
raises(TypeError, lambda: o - t)
|
973 |
+
raises(TypeError, lambda: o % t)
|
974 |
+
raises(TypeError, lambda: o*t)
|
975 |
+
raises(TypeError, lambda: o/t)
|
976 |
+
raises(TypeError, lambda: o**t)
|
977 |
+
o, t = t, o # do again in reversed order
|
978 |
+
|
979 |
+
|
980 |
+
def test_expand_relational():
|
981 |
+
n = symbols('n', negative=True)
|
982 |
+
p, q = symbols('p q', positive=True)
|
983 |
+
r = ((n + q*(-n/q + 1))/(q*(-n/q + 1)) < 0)
|
984 |
+
assert r is not S.false
|
985 |
+
assert r.expand() is S.false
|
986 |
+
assert (q > 0).expand() is S.true
|
987 |
+
|
988 |
+
|
989 |
+
def test_issue_12717():
|
990 |
+
assert S.true.is_Atom == True
|
991 |
+
assert S.false.is_Atom == True
|
992 |
+
|
993 |
+
|
994 |
+
def test_as_Boolean():
|
995 |
+
nz = symbols('nz', nonzero=True)
|
996 |
+
assert all(as_Boolean(i) is S.true for i in (True, S.true, 1, nz))
|
997 |
+
z = symbols('z', zero=True)
|
998 |
+
assert all(as_Boolean(i) is S.false for i in (False, S.false, 0, z))
|
999 |
+
assert all(as_Boolean(i) == i for i in (x, x < 0))
|
1000 |
+
for i in (2, S(2), x + 1, []):
|
1001 |
+
raises(TypeError, lambda: as_Boolean(i))
|
1002 |
+
|
1003 |
+
|
1004 |
+
def test_binary_symbols():
|
1005 |
+
assert ITE(x < 1, y, z).binary_symbols == {y, z}
|
1006 |
+
for f in (Eq, Ne):
|
1007 |
+
assert f(x, 1).binary_symbols == set()
|
1008 |
+
assert f(x, True).binary_symbols == {x}
|
1009 |
+
assert f(x, False).binary_symbols == {x}
|
1010 |
+
assert S.true.binary_symbols == set()
|
1011 |
+
assert S.false.binary_symbols == set()
|
1012 |
+
assert x.binary_symbols == {x}
|
1013 |
+
assert And(x, Eq(y, False), Eq(z, 1)).binary_symbols == {x, y}
|
1014 |
+
assert Q.prime(x).binary_symbols == set()
|
1015 |
+
assert Q.lt(x, 1).binary_symbols == set()
|
1016 |
+
assert Q.is_true(x).binary_symbols == {x}
|
1017 |
+
assert Q.eq(x, True).binary_symbols == {x}
|
1018 |
+
assert Q.prime(x).binary_symbols == set()
|
1019 |
+
|
1020 |
+
|
1021 |
+
def test_BooleanFunction_diff():
|
1022 |
+
assert And(x, y).diff(x) == Piecewise((0, Eq(y, False)), (1, True))
|
1023 |
+
|
1024 |
+
|
1025 |
+
def test_issue_14700():
|
1026 |
+
A, B, C, D, E, F, G, H = symbols('A B C D E F G H')
|
1027 |
+
q = ((B & D & H & ~F) | (B & H & ~C & ~D) | (B & H & ~C & ~F) |
|
1028 |
+
(B & H & ~D & ~G) | (B & H & ~F & ~G) | (C & G & ~B & ~D) |
|
1029 |
+
(C & G & ~D & ~H) | (C & G & ~F & ~H) | (D & F & H & ~B) |
|
1030 |
+
(D & F & ~G & ~H) | (B & D & F & ~C & ~H) | (D & E & F & ~B & ~C) |
|
1031 |
+
(D & F & ~A & ~B & ~C) | (D & F & ~A & ~C & ~H) |
|
1032 |
+
(A & B & D & F & ~E & ~H))
|
1033 |
+
soldnf = ((B & D & H & ~F) | (D & F & H & ~B) | (B & H & ~C & ~D) |
|
1034 |
+
(B & H & ~D & ~G) | (C & G & ~B & ~D) | (C & G & ~D & ~H) |
|
1035 |
+
(C & G & ~F & ~H) | (D & F & ~G & ~H) | (D & E & F & ~C & ~H) |
|
1036 |
+
(D & F & ~A & ~C & ~H) | (A & B & D & F & ~E & ~H))
|
1037 |
+
solcnf = ((B | C | D) & (B | D | G) & (C | D | H) & (C | F | H) &
|
1038 |
+
(D | G | H) & (F | G | H) & (B | F | ~D | ~H) &
|
1039 |
+
(~B | ~D | ~F | ~H) & (D | ~B | ~C | ~G | ~H) &
|
1040 |
+
(A | H | ~C | ~D | ~F | ~G) & (H | ~C | ~D | ~E | ~F | ~G) &
|
1041 |
+
(B | E | H | ~A | ~D | ~F | ~G))
|
1042 |
+
assert simplify_logic(q, "dnf") == soldnf
|
1043 |
+
assert simplify_logic(q, "cnf") == solcnf
|
1044 |
+
|
1045 |
+
minterms = [[0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1],
|
1046 |
+
[0, 0, 1, 1], [1, 0, 1, 1]]
|
1047 |
+
dontcares = [[1, 0, 0, 0], [1, 0, 0, 1], [1, 1, 0, 0], [1, 1, 0, 1]]
|
1048 |
+
assert SOPform([w, x, y, z], minterms) == (x & ~w) | (y & z & ~x)
|
1049 |
+
# Should not be more complicated with don't cares
|
1050 |
+
assert SOPform([w, x, y, z], minterms, dontcares) == \
|
1051 |
+
(x & ~w) | (y & z & ~x)
|
1052 |
+
|
1053 |
+
|
1054 |
+
def test_relational_simplification():
|
1055 |
+
w, x, y, z = symbols('w x y z', real=True)
|
1056 |
+
d, e = symbols('d e', real=False)
|
1057 |
+
# Test all combinations or sign and order
|
1058 |
+
assert Or(x >= y, x < y).simplify() == S.true
|
1059 |
+
assert Or(x >= y, y > x).simplify() == S.true
|
1060 |
+
assert Or(x >= y, -x > -y).simplify() == S.true
|
1061 |
+
assert Or(x >= y, -y < -x).simplify() == S.true
|
1062 |
+
assert Or(-x <= -y, x < y).simplify() == S.true
|
1063 |
+
assert Or(-x <= -y, -x > -y).simplify() == S.true
|
1064 |
+
assert Or(-x <= -y, y > x).simplify() == S.true
|
1065 |
+
assert Or(-x <= -y, -y < -x).simplify() == S.true
|
1066 |
+
assert Or(y <= x, x < y).simplify() == S.true
|
1067 |
+
assert Or(y <= x, y > x).simplify() == S.true
|
1068 |
+
assert Or(y <= x, -x > -y).simplify() == S.true
|
1069 |
+
assert Or(y <= x, -y < -x).simplify() == S.true
|
1070 |
+
assert Or(-y >= -x, x < y).simplify() == S.true
|
1071 |
+
assert Or(-y >= -x, y > x).simplify() == S.true
|
1072 |
+
assert Or(-y >= -x, -x > -y).simplify() == S.true
|
1073 |
+
assert Or(-y >= -x, -y < -x).simplify() == S.true
|
1074 |
+
|
1075 |
+
assert Or(x < y, x >= y).simplify() == S.true
|
1076 |
+
assert Or(y > x, x >= y).simplify() == S.true
|
1077 |
+
assert Or(-x > -y, x >= y).simplify() == S.true
|
1078 |
+
assert Or(-y < -x, x >= y).simplify() == S.true
|
1079 |
+
assert Or(x < y, -x <= -y).simplify() == S.true
|
1080 |
+
assert Or(-x > -y, -x <= -y).simplify() == S.true
|
1081 |
+
assert Or(y > x, -x <= -y).simplify() == S.true
|
1082 |
+
assert Or(-y < -x, -x <= -y).simplify() == S.true
|
1083 |
+
assert Or(x < y, y <= x).simplify() == S.true
|
1084 |
+
assert Or(y > x, y <= x).simplify() == S.true
|
1085 |
+
assert Or(-x > -y, y <= x).simplify() == S.true
|
1086 |
+
assert Or(-y < -x, y <= x).simplify() == S.true
|
1087 |
+
assert Or(x < y, -y >= -x).simplify() == S.true
|
1088 |
+
assert Or(y > x, -y >= -x).simplify() == S.true
|
1089 |
+
assert Or(-x > -y, -y >= -x).simplify() == S.true
|
1090 |
+
assert Or(-y < -x, -y >= -x).simplify() == S.true
|
1091 |
+
|
1092 |
+
# Some other tests
|
1093 |
+
assert Or(x >= y, w < z, x <= y).simplify() == S.true
|
1094 |
+
assert And(x >= y, x < y).simplify() == S.false
|
1095 |
+
assert Or(x >= y, Eq(y, x)).simplify() == (x >= y)
|
1096 |
+
assert And(x >= y, Eq(y, x)).simplify() == Eq(x, y)
|
1097 |
+
assert And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify() == \
|
1098 |
+
(Eq(x, y) & (x >= 1) & (y >= 5) & (y > z))
|
1099 |
+
assert Or(Eq(x, y), x >= y, w < y, z < y).simplify() == \
|
1100 |
+
(x >= y) | (y > z) | (w < y)
|
1101 |
+
assert And(Eq(x, y), x >= y, w < y, y >= z, z < y).simplify() == \
|
1102 |
+
Eq(x, y) & (y > z) & (w < y)
|
1103 |
+
# assert And(Eq(x, y), x >= y, w < y, y >= z, z < y).simplify(relational_minmax=True) == \
|
1104 |
+
# And(Eq(x, y), y > Max(w, z))
|
1105 |
+
# assert Or(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify(relational_minmax=True) == \
|
1106 |
+
# (Eq(x, y) | (x >= 1) | (y > Min(2, z)))
|
1107 |
+
assert And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify() == \
|
1108 |
+
(Eq(x, y) & (x >= 1) & (y >= 5) & (y > z))
|
1109 |
+
assert (Eq(x, y) & Eq(d, e) & (x >= y) & (d >= e)).simplify() == \
|
1110 |
+
(Eq(x, y) & Eq(d, e) & (d >= e))
|
1111 |
+
assert And(Eq(x, y), Eq(x, -y)).simplify() == And(Eq(x, 0), Eq(y, 0))
|
1112 |
+
assert Xor(x >= y, x <= y).simplify() == Ne(x, y)
|
1113 |
+
assert And(x > 1, x < -1, Eq(x, y)).simplify() == S.false
|
1114 |
+
# From #16690
|
1115 |
+
assert And(x >= y, Eq(y, 0)).simplify() == And(x >= 0, Eq(y, 0))
|
1116 |
+
assert Or(Ne(x, 1), Ne(x, 2)).simplify() == S.true
|
1117 |
+
assert And(Eq(x, 1), Ne(2, x)).simplify() == Eq(x, 1)
|
1118 |
+
assert Or(Eq(x, 1), Ne(2, x)).simplify() == Ne(x, 2)
|
1119 |
+
|
1120 |
+
def test_issue_8373():
|
1121 |
+
x = symbols('x', real=True)
|
1122 |
+
assert Or(x < 1, x > -1).simplify() == S.true
|
1123 |
+
assert Or(x < 1, x >= 1).simplify() == S.true
|
1124 |
+
assert And(x < 1, x >= 1).simplify() == S.false
|
1125 |
+
assert Or(x <= 1, x >= 1).simplify() == S.true
|
1126 |
+
|
1127 |
+
|
1128 |
+
def test_issue_7950():
|
1129 |
+
x = symbols('x', real=True)
|
1130 |
+
assert And(Eq(x, 1), Eq(x, 2)).simplify() == S.false
|
1131 |
+
|
1132 |
+
|
1133 |
+
@slow
|
1134 |
+
def test_relational_simplification_numerically():
|
1135 |
+
def test_simplification_numerically_function(original, simplified):
|
1136 |
+
symb = original.free_symbols
|
1137 |
+
n = len(symb)
|
1138 |
+
valuelist = list(set(combinations(list(range(-(n-1), n))*n, n)))
|
1139 |
+
for values in valuelist:
|
1140 |
+
sublist = dict(zip(symb, values))
|
1141 |
+
originalvalue = original.subs(sublist)
|
1142 |
+
simplifiedvalue = simplified.subs(sublist)
|
1143 |
+
assert originalvalue == simplifiedvalue, "Original: {}\nand"\
|
1144 |
+
" simplified: {}\ndo not evaluate to the same value for {}"\
|
1145 |
+
"".format(original, simplified, sublist)
|
1146 |
+
|
1147 |
+
w, x, y, z = symbols('w x y z', real=True)
|
1148 |
+
d, e = symbols('d e', real=False)
|
1149 |
+
|
1150 |
+
expressions = (And(Eq(x, y), x >= y, w < y, y >= z, z < y),
|
1151 |
+
And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y),
|
1152 |
+
Or(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y),
|
1153 |
+
And(x >= y, Eq(y, x)),
|
1154 |
+
Or(And(Eq(x, y), x >= y, w < y, Or(y >= z, z < y)),
|
1155 |
+
And(Eq(x, y), x >= 1, 2 < y, y >= -1, z < y)),
|
1156 |
+
(Eq(x, y) & Eq(d, e) & (x >= y) & (d >= e)),
|
1157 |
+
)
|
1158 |
+
|
1159 |
+
for expression in expressions:
|
1160 |
+
test_simplification_numerically_function(expression,
|
1161 |
+
expression.simplify())
|
1162 |
+
|
1163 |
+
|
1164 |
+
def test_relational_simplification_patterns_numerically():
|
1165 |
+
from sympy.core import Wild
|
1166 |
+
from sympy.logic.boolalg import _simplify_patterns_and, \
|
1167 |
+
_simplify_patterns_or, _simplify_patterns_xor
|
1168 |
+
a = Wild('a')
|
1169 |
+
b = Wild('b')
|
1170 |
+
c = Wild('c')
|
1171 |
+
symb = [a, b, c]
|
1172 |
+
patternlists = [[And, _simplify_patterns_and()],
|
1173 |
+
[Or, _simplify_patterns_or()],
|
1174 |
+
[Xor, _simplify_patterns_xor()]]
|
1175 |
+
valuelist = list(set(combinations(list(range(-2, 3))*3, 3)))
|
1176 |
+
# Skip combinations of +/-2 and 0, except for all 0
|
1177 |
+
valuelist = [v for v in valuelist if any([w % 2 for w in v]) or not any(v)]
|
1178 |
+
for func, patternlist in patternlists:
|
1179 |
+
for pattern in patternlist:
|
1180 |
+
original = func(*pattern[0].args)
|
1181 |
+
simplified = pattern[1]
|
1182 |
+
for values in valuelist:
|
1183 |
+
sublist = dict(zip(symb, values))
|
1184 |
+
originalvalue = original.xreplace(sublist)
|
1185 |
+
simplifiedvalue = simplified.xreplace(sublist)
|
1186 |
+
assert originalvalue == simplifiedvalue, "Original: {}\nand"\
|
1187 |
+
" simplified: {}\ndo not evaluate to the same value for"\
|
1188 |
+
"{}".format(pattern[0], simplified, sublist)
|
1189 |
+
|
1190 |
+
|
1191 |
+
def test_issue_16803():
|
1192 |
+
n = symbols('n')
|
1193 |
+
# No simplification done, but should not raise an exception
|
1194 |
+
assert ((n > 3) | (n < 0) | ((n > 0) & (n < 3))).simplify() == \
|
1195 |
+
(n > 3) | (n < 0) | ((n > 0) & (n < 3))
|
1196 |
+
|
1197 |
+
|
1198 |
+
def test_issue_17530():
|
1199 |
+
r = {x: oo, y: oo}
|
1200 |
+
assert Or(x + y > 0, x - y < 0).subs(r)
|
1201 |
+
assert not And(x + y < 0, x - y < 0).subs(r)
|
1202 |
+
raises(TypeError, lambda: Or(x + y < 0, x - y < 0).subs(r))
|
1203 |
+
raises(TypeError, lambda: And(x + y > 0, x - y < 0).subs(r))
|
1204 |
+
raises(TypeError, lambda: And(x + y > 0, x - y < 0).subs(r))
|
1205 |
+
|
1206 |
+
|
1207 |
+
def test_anf_coeffs():
|
1208 |
+
assert anf_coeffs([1, 0]) == [1, 1]
|
1209 |
+
assert anf_coeffs([0, 0, 0, 1]) == [0, 0, 0, 1]
|
1210 |
+
assert anf_coeffs([0, 1, 1, 1]) == [0, 1, 1, 1]
|
1211 |
+
assert anf_coeffs([1, 1, 1, 0]) == [1, 0, 0, 1]
|
1212 |
+
assert anf_coeffs([1, 0, 0, 0]) == [1, 1, 1, 1]
|
1213 |
+
assert anf_coeffs([1, 0, 0, 1]) == [1, 1, 1, 0]
|
1214 |
+
assert anf_coeffs([1, 1, 0, 1]) == [1, 0, 1, 1]
|
1215 |
+
|
1216 |
+
|
1217 |
+
def test_ANFform():
|
1218 |
+
x, y = symbols('x,y')
|
1219 |
+
assert ANFform([x], [1, 1]) == True
|
1220 |
+
assert ANFform([x], [0, 0]) == False
|
1221 |
+
assert ANFform([x], [1, 0]) == Xor(x, True, remove_true=False)
|
1222 |
+
assert ANFform([x, y], [1, 1, 1, 0]) == \
|
1223 |
+
Xor(True, And(x, y), remove_true=False)
|
1224 |
+
|
1225 |
+
|
1226 |
+
def test_bool_minterm():
|
1227 |
+
x, y = symbols('x,y')
|
1228 |
+
assert bool_minterm(3, [x, y]) == And(x, y)
|
1229 |
+
assert bool_minterm([1, 0], [x, y]) == And(Not(y), x)
|
1230 |
+
|
1231 |
+
|
1232 |
+
def test_bool_maxterm():
|
1233 |
+
x, y = symbols('x,y')
|
1234 |
+
assert bool_maxterm(2, [x, y]) == Or(Not(x), y)
|
1235 |
+
assert bool_maxterm([0, 1], [x, y]) == Or(Not(y), x)
|
1236 |
+
|
1237 |
+
|
1238 |
+
def test_bool_monomial():
|
1239 |
+
x, y = symbols('x,y')
|
1240 |
+
assert bool_monomial(1, [x, y]) == y
|
1241 |
+
assert bool_monomial([1, 1], [x, y]) == And(x, y)
|
1242 |
+
|
1243 |
+
|
1244 |
+
def test_check_pair():
|
1245 |
+
assert _check_pair([0, 1, 0], [0, 1, 1]) == 2
|
1246 |
+
assert _check_pair([0, 1, 0], [1, 1, 1]) == -1
|
1247 |
+
|
1248 |
+
|
1249 |
+
def test_issue_19114():
|
1250 |
+
expr = (B & C) | (A & ~C) | (~A & ~B)
|
1251 |
+
# Expression is minimal, but there are multiple minimal forms possible
|
1252 |
+
res1 = (A & B) | (C & ~A) | (~B & ~C)
|
1253 |
+
result = to_dnf(expr, simplify=True)
|
1254 |
+
assert result in (expr, res1)
|
1255 |
+
|
1256 |
+
|
1257 |
+
def test_issue_20870():
|
1258 |
+
result = SOPform([a, b, c, d], [1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15])
|
1259 |
+
expected = ((d & ~b) | (a & b & c) | (a & ~c & ~d) |
|
1260 |
+
(b & ~a & ~c) | (c & ~a & ~d))
|
1261 |
+
assert result == expected
|
1262 |
+
|
1263 |
+
|
1264 |
+
def test_convert_to_varsSOP():
|
1265 |
+
assert _convert_to_varsSOP([0, 1, 0], [x, y, z]) == And(Not(x), y, Not(z))
|
1266 |
+
assert _convert_to_varsSOP([3, 1, 0], [x, y, z]) == And(y, Not(z))
|
1267 |
+
|
1268 |
+
|
1269 |
+
def test_convert_to_varsPOS():
|
1270 |
+
assert _convert_to_varsPOS([0, 1, 0], [x, y, z]) == Or(x, Not(y), z)
|
1271 |
+
assert _convert_to_varsPOS([3, 1, 0], [x, y, z]) == Or(Not(y), z)
|
1272 |
+
|
1273 |
+
|
1274 |
+
def test_gateinputcount():
|
1275 |
+
a, b, c, d, e = symbols('a:e')
|
1276 |
+
assert gateinputcount(And(a, b)) == 2
|
1277 |
+
assert gateinputcount(a | b & c & d ^ (e | a)) == 9
|
1278 |
+
assert gateinputcount(And(a, True)) == 0
|
1279 |
+
raises(TypeError, lambda: gateinputcount(a*b))
|
1280 |
+
|
1281 |
+
|
1282 |
+
def test_refine():
|
1283 |
+
# relational
|
1284 |
+
assert not refine(x < 0, ~(x < 0))
|
1285 |
+
assert refine(x < 0, (x < 0))
|
1286 |
+
assert refine(x < 0, (0 > x)) is S.true
|
1287 |
+
assert refine(x < 0, (y < 0)) == (x < 0)
|
1288 |
+
assert not refine(x <= 0, ~(x <= 0))
|
1289 |
+
assert refine(x <= 0, (x <= 0))
|
1290 |
+
assert refine(x <= 0, (0 >= x)) is S.true
|
1291 |
+
assert refine(x <= 0, (y <= 0)) == (x <= 0)
|
1292 |
+
assert not refine(x > 0, ~(x > 0))
|
1293 |
+
assert refine(x > 0, (x > 0))
|
1294 |
+
assert refine(x > 0, (0 < x)) is S.true
|
1295 |
+
assert refine(x > 0, (y > 0)) == (x > 0)
|
1296 |
+
assert not refine(x >= 0, ~(x >= 0))
|
1297 |
+
assert refine(x >= 0, (x >= 0))
|
1298 |
+
assert refine(x >= 0, (0 <= x)) is S.true
|
1299 |
+
assert refine(x >= 0, (y >= 0)) == (x >= 0)
|
1300 |
+
assert not refine(Eq(x, 0), ~(Eq(x, 0)))
|
1301 |
+
assert refine(Eq(x, 0), (Eq(x, 0)))
|
1302 |
+
assert refine(Eq(x, 0), (Eq(0, x))) is S.true
|
1303 |
+
assert refine(Eq(x, 0), (Eq(y, 0))) == Eq(x, 0)
|
1304 |
+
assert not refine(Ne(x, 0), ~(Ne(x, 0)))
|
1305 |
+
assert refine(Ne(x, 0), (Ne(0, x))) is S.true
|
1306 |
+
assert refine(Ne(x, 0), (Ne(x, 0)))
|
1307 |
+
assert refine(Ne(x, 0), (Ne(y, 0))) == (Ne(x, 0))
|
1308 |
+
|
1309 |
+
# boolean functions
|
1310 |
+
assert refine(And(x > 0, y > 0), (x > 0)) == (y > 0)
|
1311 |
+
assert refine(And(x > 0, y > 0), (x > 0) & (y > 0)) is S.true
|
1312 |
+
|
1313 |
+
# predicates
|
1314 |
+
assert refine(Q.positive(x), Q.positive(x)) is S.true
|
1315 |
+
assert refine(Q.positive(x), Q.negative(x)) is S.false
|
1316 |
+
assert refine(Q.positive(x), Q.real(x)) == Q.positive(x)
|
1317 |
+
|
1318 |
+
|
1319 |
+
def test_relational_threeterm_simplification_patterns_numerically():
|
1320 |
+
from sympy.core import Wild
|
1321 |
+
from sympy.logic.boolalg import _simplify_patterns_and3
|
1322 |
+
a = Wild('a')
|
1323 |
+
b = Wild('b')
|
1324 |
+
c = Wild('c')
|
1325 |
+
symb = [a, b, c]
|
1326 |
+
patternlists = [[And, _simplify_patterns_and3()]]
|
1327 |
+
valuelist = list(set(combinations(list(range(-2, 3))*3, 3)))
|
1328 |
+
# Skip combinations of +/-2 and 0, except for all 0
|
1329 |
+
valuelist = [v for v in valuelist if any([w % 2 for w in v]) or not any(v)]
|
1330 |
+
for func, patternlist in patternlists:
|
1331 |
+
for pattern in patternlist:
|
1332 |
+
original = func(*pattern[0].args)
|
1333 |
+
simplified = pattern[1]
|
1334 |
+
for values in valuelist:
|
1335 |
+
sublist = dict(zip(symb, values))
|
1336 |
+
originalvalue = original.xreplace(sublist)
|
1337 |
+
simplifiedvalue = simplified.xreplace(sublist)
|
1338 |
+
assert originalvalue == simplifiedvalue, "Original: {}\nand"\
|
1339 |
+
" simplified: {}\ndo not evaluate to the same value for"\
|
1340 |
+
"{}".format(pattern[0], simplified, sublist)
|
venv/lib/python3.10/site-packages/sympy/logic/tests/test_dimacs.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Various tests on satisfiability using dimacs cnf file syntax
|
2 |
+
You can find lots of cnf files in
|
3 |
+
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/
|
4 |
+
"""
|
5 |
+
|
6 |
+
from sympy.logic.utilities.dimacs import load
|
7 |
+
from sympy.logic.algorithms.dpll import dpll_satisfiable
|
8 |
+
|
9 |
+
|
10 |
+
def test_f1():
|
11 |
+
assert bool(dpll_satisfiable(load(f1)))
|
12 |
+
|
13 |
+
|
14 |
+
def test_f2():
|
15 |
+
assert bool(dpll_satisfiable(load(f2)))
|
16 |
+
|
17 |
+
|
18 |
+
def test_f3():
|
19 |
+
assert bool(dpll_satisfiable(load(f3)))
|
20 |
+
|
21 |
+
|
22 |
+
def test_f4():
|
23 |
+
assert not bool(dpll_satisfiable(load(f4)))
|
24 |
+
|
25 |
+
|
26 |
+
def test_f5():
|
27 |
+
assert bool(dpll_satisfiable(load(f5)))
|
28 |
+
|
29 |
+
f1 = """c simple example
|
30 |
+
c Resolution: SATISFIABLE
|
31 |
+
c
|
32 |
+
p cnf 3 2
|
33 |
+
1 -3 0
|
34 |
+
2 3 -1 0
|
35 |
+
"""
|
36 |
+
|
37 |
+
|
38 |
+
f2 = """c an example from Quinn's text, 16 variables and 18 clauses.
|
39 |
+
c Resolution: SATISFIABLE
|
40 |
+
c
|
41 |
+
p cnf 16 18
|
42 |
+
1 2 0
|
43 |
+
-2 -4 0
|
44 |
+
3 4 0
|
45 |
+
-4 -5 0
|
46 |
+
5 -6 0
|
47 |
+
6 -7 0
|
48 |
+
6 7 0
|
49 |
+
7 -16 0
|
50 |
+
8 -9 0
|
51 |
+
-8 -14 0
|
52 |
+
9 10 0
|
53 |
+
9 -10 0
|
54 |
+
-10 -11 0
|
55 |
+
10 12 0
|
56 |
+
11 12 0
|
57 |
+
13 14 0
|
58 |
+
14 -15 0
|
59 |
+
15 16 0
|
60 |
+
"""
|
61 |
+
|
62 |
+
f3 = """c
|
63 |
+
p cnf 6 9
|
64 |
+
-1 0
|
65 |
+
-3 0
|
66 |
+
2 -1 0
|
67 |
+
2 -4 0
|
68 |
+
5 -4 0
|
69 |
+
-1 -3 0
|
70 |
+
-4 -6 0
|
71 |
+
1 3 -2 0
|
72 |
+
4 6 -2 -5 0
|
73 |
+
"""
|
74 |
+
|
75 |
+
f4 = """c
|
76 |
+
c file: hole6.cnf [http://people.sc.fsu.edu/~jburkardt/data/cnf/hole6.cnf]
|
77 |
+
c
|
78 |
+
c SOURCE: John Hooker ([email protected])
|
79 |
+
c
|
80 |
+
c DESCRIPTION: Pigeon hole problem of placing n (for file 'holen.cnf') pigeons
|
81 |
+
c in n+1 holes without placing 2 pigeons in the same hole
|
82 |
+
c
|
83 |
+
c NOTE: Part of the collection at the Forschungsinstitut fuer
|
84 |
+
c anwendungsorientierte Wissensverarbeitung in Ulm Germany.
|
85 |
+
c
|
86 |
+
c NOTE: Not satisfiable
|
87 |
+
c
|
88 |
+
p cnf 42 133
|
89 |
+
-1 -7 0
|
90 |
+
-1 -13 0
|
91 |
+
-1 -19 0
|
92 |
+
-1 -25 0
|
93 |
+
-1 -31 0
|
94 |
+
-1 -37 0
|
95 |
+
-7 -13 0
|
96 |
+
-7 -19 0
|
97 |
+
-7 -25 0
|
98 |
+
-7 -31 0
|
99 |
+
-7 -37 0
|
100 |
+
-13 -19 0
|
101 |
+
-13 -25 0
|
102 |
+
-13 -31 0
|
103 |
+
-13 -37 0
|
104 |
+
-19 -25 0
|
105 |
+
-19 -31 0
|
106 |
+
-19 -37 0
|
107 |
+
-25 -31 0
|
108 |
+
-25 -37 0
|
109 |
+
-31 -37 0
|
110 |
+
-2 -8 0
|
111 |
+
-2 -14 0
|
112 |
+
-2 -20 0
|
113 |
+
-2 -26 0
|
114 |
+
-2 -32 0
|
115 |
+
-2 -38 0
|
116 |
+
-8 -14 0
|
117 |
+
-8 -20 0
|
118 |
+
-8 -26 0
|
119 |
+
-8 -32 0
|
120 |
+
-8 -38 0
|
121 |
+
-14 -20 0
|
122 |
+
-14 -26 0
|
123 |
+
-14 -32 0
|
124 |
+
-14 -38 0
|
125 |
+
-20 -26 0
|
126 |
+
-20 -32 0
|
127 |
+
-20 -38 0
|
128 |
+
-26 -32 0
|
129 |
+
-26 -38 0
|
130 |
+
-32 -38 0
|
131 |
+
-3 -9 0
|
132 |
+
-3 -15 0
|
133 |
+
-3 -21 0
|
134 |
+
-3 -27 0
|
135 |
+
-3 -33 0
|
136 |
+
-3 -39 0
|
137 |
+
-9 -15 0
|
138 |
+
-9 -21 0
|
139 |
+
-9 -27 0
|
140 |
+
-9 -33 0
|
141 |
+
-9 -39 0
|
142 |
+
-15 -21 0
|
143 |
+
-15 -27 0
|
144 |
+
-15 -33 0
|
145 |
+
-15 -39 0
|
146 |
+
-21 -27 0
|
147 |
+
-21 -33 0
|
148 |
+
-21 -39 0
|
149 |
+
-27 -33 0
|
150 |
+
-27 -39 0
|
151 |
+
-33 -39 0
|
152 |
+
-4 -10 0
|
153 |
+
-4 -16 0
|
154 |
+
-4 -22 0
|
155 |
+
-4 -28 0
|
156 |
+
-4 -34 0
|
157 |
+
-4 -40 0
|
158 |
+
-10 -16 0
|
159 |
+
-10 -22 0
|
160 |
+
-10 -28 0
|
161 |
+
-10 -34 0
|
162 |
+
-10 -40 0
|
163 |
+
-16 -22 0
|
164 |
+
-16 -28 0
|
165 |
+
-16 -34 0
|
166 |
+
-16 -40 0
|
167 |
+
-22 -28 0
|
168 |
+
-22 -34 0
|
169 |
+
-22 -40 0
|
170 |
+
-28 -34 0
|
171 |
+
-28 -40 0
|
172 |
+
-34 -40 0
|
173 |
+
-5 -11 0
|
174 |
+
-5 -17 0
|
175 |
+
-5 -23 0
|
176 |
+
-5 -29 0
|
177 |
+
-5 -35 0
|
178 |
+
-5 -41 0
|
179 |
+
-11 -17 0
|
180 |
+
-11 -23 0
|
181 |
+
-11 -29 0
|
182 |
+
-11 -35 0
|
183 |
+
-11 -41 0
|
184 |
+
-17 -23 0
|
185 |
+
-17 -29 0
|
186 |
+
-17 -35 0
|
187 |
+
-17 -41 0
|
188 |
+
-23 -29 0
|
189 |
+
-23 -35 0
|
190 |
+
-23 -41 0
|
191 |
+
-29 -35 0
|
192 |
+
-29 -41 0
|
193 |
+
-35 -41 0
|
194 |
+
-6 -12 0
|
195 |
+
-6 -18 0
|
196 |
+
-6 -24 0
|
197 |
+
-6 -30 0
|
198 |
+
-6 -36 0
|
199 |
+
-6 -42 0
|
200 |
+
-12 -18 0
|
201 |
+
-12 -24 0
|
202 |
+
-12 -30 0
|
203 |
+
-12 -36 0
|
204 |
+
-12 -42 0
|
205 |
+
-18 -24 0
|
206 |
+
-18 -30 0
|
207 |
+
-18 -36 0
|
208 |
+
-18 -42 0
|
209 |
+
-24 -30 0
|
210 |
+
-24 -36 0
|
211 |
+
-24 -42 0
|
212 |
+
-30 -36 0
|
213 |
+
-30 -42 0
|
214 |
+
-36 -42 0
|
215 |
+
6 5 4 3 2 1 0
|
216 |
+
12 11 10 9 8 7 0
|
217 |
+
18 17 16 15 14 13 0
|
218 |
+
24 23 22 21 20 19 0
|
219 |
+
30 29 28 27 26 25 0
|
220 |
+
36 35 34 33 32 31 0
|
221 |
+
42 41 40 39 38 37 0
|
222 |
+
"""
|
223 |
+
|
224 |
+
f5 = """c simple example requiring variable selection
|
225 |
+
c
|
226 |
+
c NOTE: Satisfiable
|
227 |
+
c
|
228 |
+
p cnf 5 5
|
229 |
+
1 2 3 0
|
230 |
+
1 -2 3 0
|
231 |
+
4 5 -3 0
|
232 |
+
1 -4 -3 0
|
233 |
+
-1 -5 0
|
234 |
+
"""
|
venv/lib/python3.10/site-packages/sympy/logic/tests/test_inference.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""For more tests on satisfiability, see test_dimacs"""
|
2 |
+
|
3 |
+
from sympy.assumptions.ask import Q
|
4 |
+
from sympy.core.symbol import symbols
|
5 |
+
from sympy.logic.boolalg import And, Implies, Equivalent, true, false
|
6 |
+
from sympy.logic.inference import literal_symbol, \
|
7 |
+
pl_true, satisfiable, valid, entails, PropKB
|
8 |
+
from sympy.logic.algorithms.dpll import dpll, dpll_satisfiable, \
|
9 |
+
find_pure_symbol, find_unit_clause, unit_propagate, \
|
10 |
+
find_pure_symbol_int_repr, find_unit_clause_int_repr, \
|
11 |
+
unit_propagate_int_repr
|
12 |
+
from sympy.logic.algorithms.dpll2 import dpll_satisfiable as dpll2_satisfiable
|
13 |
+
from sympy.testing.pytest import raises
|
14 |
+
|
15 |
+
|
16 |
+
def test_literal():
|
17 |
+
A, B = symbols('A,B')
|
18 |
+
assert literal_symbol(True) is True
|
19 |
+
assert literal_symbol(False) is False
|
20 |
+
assert literal_symbol(A) is A
|
21 |
+
assert literal_symbol(~A) is A
|
22 |
+
|
23 |
+
|
24 |
+
def test_find_pure_symbol():
|
25 |
+
A, B, C = symbols('A,B,C')
|
26 |
+
assert find_pure_symbol([A], [A]) == (A, True)
|
27 |
+
assert find_pure_symbol([A, B], [~A | B, ~B | A]) == (None, None)
|
28 |
+
assert find_pure_symbol([A, B, C], [ A | ~B, ~B | ~C, C | A]) == (A, True)
|
29 |
+
assert find_pure_symbol([A, B, C], [~A | B, B | ~C, C | A]) == (B, True)
|
30 |
+
assert find_pure_symbol([A, B, C], [~A | ~B, ~B | ~C, C | A]) == (B, False)
|
31 |
+
assert find_pure_symbol(
|
32 |
+
[A, B, C], [~A | B, ~B | ~C, C | A]) == (None, None)
|
33 |
+
|
34 |
+
|
35 |
+
def test_find_pure_symbol_int_repr():
|
36 |
+
assert find_pure_symbol_int_repr([1], [{1}]) == (1, True)
|
37 |
+
assert find_pure_symbol_int_repr([1, 2],
|
38 |
+
[{-1, 2}, {-2, 1}]) == (None, None)
|
39 |
+
assert find_pure_symbol_int_repr([1, 2, 3],
|
40 |
+
[{1, -2}, {-2, -3}, {3, 1}]) == (1, True)
|
41 |
+
assert find_pure_symbol_int_repr([1, 2, 3],
|
42 |
+
[{-1, 2}, {2, -3}, {3, 1}]) == (2, True)
|
43 |
+
assert find_pure_symbol_int_repr([1, 2, 3],
|
44 |
+
[{-1, -2}, {-2, -3}, {3, 1}]) == (2, False)
|
45 |
+
assert find_pure_symbol_int_repr([1, 2, 3],
|
46 |
+
[{-1, 2}, {-2, -3}, {3, 1}]) == (None, None)
|
47 |
+
|
48 |
+
|
49 |
+
def test_unit_clause():
|
50 |
+
A, B, C = symbols('A,B,C')
|
51 |
+
assert find_unit_clause([A], {}) == (A, True)
|
52 |
+
assert find_unit_clause([A, ~A], {}) == (A, True) # Wrong ??
|
53 |
+
assert find_unit_clause([A | B], {A: True}) == (B, True)
|
54 |
+
assert find_unit_clause([A | B], {B: True}) == (A, True)
|
55 |
+
assert find_unit_clause(
|
56 |
+
[A | B | C, B | ~C, A | ~B], {A: True}) == (B, False)
|
57 |
+
assert find_unit_clause([A | B | C, B | ~C, A | B], {A: True}) == (B, True)
|
58 |
+
assert find_unit_clause([A | B | C, B | ~C, A ], {}) == (A, True)
|
59 |
+
|
60 |
+
|
61 |
+
def test_unit_clause_int_repr():
|
62 |
+
assert find_unit_clause_int_repr(map(set, [[1]]), {}) == (1, True)
|
63 |
+
assert find_unit_clause_int_repr(map(set, [[1], [-1]]), {}) == (1, True)
|
64 |
+
assert find_unit_clause_int_repr([{1, 2}], {1: True}) == (2, True)
|
65 |
+
assert find_unit_clause_int_repr([{1, 2}], {2: True}) == (1, True)
|
66 |
+
assert find_unit_clause_int_repr(map(set,
|
67 |
+
[[1, 2, 3], [2, -3], [1, -2]]), {1: True}) == (2, False)
|
68 |
+
assert find_unit_clause_int_repr(map(set,
|
69 |
+
[[1, 2, 3], [3, -3], [1, 2]]), {1: True}) == (2, True)
|
70 |
+
|
71 |
+
A, B, C = symbols('A,B,C')
|
72 |
+
assert find_unit_clause([A | B | C, B | ~C, A ], {}) == (A, True)
|
73 |
+
|
74 |
+
|
75 |
+
def test_unit_propagate():
|
76 |
+
A, B, C = symbols('A,B,C')
|
77 |
+
assert unit_propagate([A | B], A) == []
|
78 |
+
assert unit_propagate([A | B, ~A | C, ~C | B, A], A) == [C, ~C | B, A]
|
79 |
+
|
80 |
+
|
81 |
+
def test_unit_propagate_int_repr():
|
82 |
+
assert unit_propagate_int_repr([{1, 2}], 1) == []
|
83 |
+
assert unit_propagate_int_repr(map(set,
|
84 |
+
[[1, 2], [-1, 3], [-3, 2], [1]]), 1) == [{3}, {-3, 2}]
|
85 |
+
|
86 |
+
|
87 |
+
def test_dpll():
|
88 |
+
"""This is also tested in test_dimacs"""
|
89 |
+
A, B, C = symbols('A,B,C')
|
90 |
+
assert dpll([A | B], [A, B], {A: True, B: True}) == {A: True, B: True}
|
91 |
+
|
92 |
+
|
93 |
+
def test_dpll_satisfiable():
|
94 |
+
A, B, C = symbols('A,B,C')
|
95 |
+
assert dpll_satisfiable( A & ~A ) is False
|
96 |
+
assert dpll_satisfiable( A & ~B ) == {A: True, B: False}
|
97 |
+
assert dpll_satisfiable(
|
98 |
+
A | B ) in ({A: True}, {B: True}, {A: True, B: True})
|
99 |
+
assert dpll_satisfiable(
|
100 |
+
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
|
101 |
+
assert dpll_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False},
|
102 |
+
{A: True, C: True}, {B: True, C: True})
|
103 |
+
assert dpll_satisfiable( A & B & C ) == {A: True, B: True, C: True}
|
104 |
+
assert dpll_satisfiable( (A | B) & (A >> B) ) == {B: True}
|
105 |
+
assert dpll_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
|
106 |
+
assert dpll_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
|
107 |
+
|
108 |
+
|
109 |
+
def test_dpll2_satisfiable():
|
110 |
+
A, B, C = symbols('A,B,C')
|
111 |
+
assert dpll2_satisfiable( A & ~A ) is False
|
112 |
+
assert dpll2_satisfiable( A & ~B ) == {A: True, B: False}
|
113 |
+
assert dpll2_satisfiable(
|
114 |
+
A | B ) in ({A: True}, {B: True}, {A: True, B: True})
|
115 |
+
assert dpll2_satisfiable(
|
116 |
+
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
|
117 |
+
assert dpll2_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
|
118 |
+
{A: True, B: True, C: True})
|
119 |
+
assert dpll2_satisfiable( A & B & C ) == {A: True, B: True, C: True}
|
120 |
+
assert dpll2_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
|
121 |
+
{B: True, A: True})
|
122 |
+
assert dpll2_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
|
123 |
+
assert dpll2_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
|
124 |
+
|
125 |
+
|
126 |
+
def test_minisat22_satisfiable():
|
127 |
+
A, B, C = symbols('A,B,C')
|
128 |
+
minisat22_satisfiable = lambda expr: satisfiable(expr, algorithm="minisat22")
|
129 |
+
assert minisat22_satisfiable( A & ~A ) is False
|
130 |
+
assert minisat22_satisfiable( A & ~B ) == {A: True, B: False}
|
131 |
+
assert minisat22_satisfiable(
|
132 |
+
A | B ) in ({A: True}, {B: False}, {A: False, B: True}, {A: True, B: True}, {A: True, B: False})
|
133 |
+
assert minisat22_satisfiable(
|
134 |
+
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
|
135 |
+
assert minisat22_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
|
136 |
+
{A: True, B: True, C: True}, {A: False, B: True, C: True}, {A: True, B: False, C: False})
|
137 |
+
assert minisat22_satisfiable( A & B & C ) == {A: True, B: True, C: True}
|
138 |
+
assert minisat22_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
|
139 |
+
{B: True, A: True})
|
140 |
+
assert minisat22_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
|
141 |
+
assert minisat22_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
|
142 |
+
|
143 |
+
def test_minisat22_minimal_satisfiable():
|
144 |
+
A, B, C = symbols('A,B,C')
|
145 |
+
minisat22_satisfiable = lambda expr, minimal=True: satisfiable(expr, algorithm="minisat22", minimal=True)
|
146 |
+
assert minisat22_satisfiable( A & ~A ) is False
|
147 |
+
assert minisat22_satisfiable( A & ~B ) == {A: True, B: False}
|
148 |
+
assert minisat22_satisfiable(
|
149 |
+
A | B ) in ({A: True}, {B: False}, {A: False, B: True}, {A: True, B: True}, {A: True, B: False})
|
150 |
+
assert minisat22_satisfiable(
|
151 |
+
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
|
152 |
+
assert minisat22_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
|
153 |
+
{A: True, B: True, C: True}, {A: False, B: True, C: True}, {A: True, B: False, C: False})
|
154 |
+
assert minisat22_satisfiable( A & B & C ) == {A: True, B: True, C: True}
|
155 |
+
assert minisat22_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
|
156 |
+
{B: True, A: True})
|
157 |
+
assert minisat22_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
|
158 |
+
assert minisat22_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
|
159 |
+
g = satisfiable((A | B | C),algorithm="minisat22",minimal=True,all_models=True)
|
160 |
+
sol = next(g)
|
161 |
+
first_solution = {key for key, value in sol.items() if value}
|
162 |
+
sol=next(g)
|
163 |
+
second_solution = {key for key, value in sol.items() if value}
|
164 |
+
sol=next(g)
|
165 |
+
third_solution = {key for key, value in sol.items() if value}
|
166 |
+
assert not first_solution <= second_solution
|
167 |
+
assert not second_solution <= third_solution
|
168 |
+
assert not first_solution <= third_solution
|
169 |
+
|
170 |
+
def test_satisfiable():
|
171 |
+
A, B, C = symbols('A,B,C')
|
172 |
+
assert satisfiable(A & (A >> B) & ~B) is False
|
173 |
+
|
174 |
+
|
175 |
+
def test_valid():
|
176 |
+
A, B, C = symbols('A,B,C')
|
177 |
+
assert valid(A >> (B >> A)) is True
|
178 |
+
assert valid((A >> (B >> C)) >> ((A >> B) >> (A >> C))) is True
|
179 |
+
assert valid((~B >> ~A) >> (A >> B)) is True
|
180 |
+
assert valid(A | B | C) is False
|
181 |
+
assert valid(A >> B) is False
|
182 |
+
|
183 |
+
|
184 |
+
def test_pl_true():
|
185 |
+
A, B, C = symbols('A,B,C')
|
186 |
+
assert pl_true(True) is True
|
187 |
+
assert pl_true( A & B, {A: True, B: True}) is True
|
188 |
+
assert pl_true( A | B, {A: True}) is True
|
189 |
+
assert pl_true( A | B, {B: True}) is True
|
190 |
+
assert pl_true( A | B, {A: None, B: True}) is True
|
191 |
+
assert pl_true( A >> B, {A: False}) is True
|
192 |
+
assert pl_true( A | B | ~C, {A: False, B: True, C: True}) is True
|
193 |
+
assert pl_true(Equivalent(A, B), {A: False, B: False}) is True
|
194 |
+
|
195 |
+
# test for false
|
196 |
+
assert pl_true(False) is False
|
197 |
+
assert pl_true( A & B, {A: False, B: False}) is False
|
198 |
+
assert pl_true( A & B, {A: False}) is False
|
199 |
+
assert pl_true( A & B, {B: False}) is False
|
200 |
+
assert pl_true( A | B, {A: False, B: False}) is False
|
201 |
+
|
202 |
+
#test for None
|
203 |
+
assert pl_true(B, {B: None}) is None
|
204 |
+
assert pl_true( A & B, {A: True, B: None}) is None
|
205 |
+
assert pl_true( A >> B, {A: True, B: None}) is None
|
206 |
+
assert pl_true(Equivalent(A, B), {A: None}) is None
|
207 |
+
assert pl_true(Equivalent(A, B), {A: True, B: None}) is None
|
208 |
+
|
209 |
+
# Test for deep
|
210 |
+
assert pl_true(A | B, {A: False}, deep=True) is None
|
211 |
+
assert pl_true(~A & ~B, {A: False}, deep=True) is None
|
212 |
+
assert pl_true(A | B, {A: False, B: False}, deep=True) is False
|
213 |
+
assert pl_true(A & B & (~A | ~B), {A: True}, deep=True) is False
|
214 |
+
assert pl_true((C >> A) >> (B >> A), {C: True}, deep=True) is True
|
215 |
+
|
216 |
+
|
217 |
+
def test_pl_true_wrong_input():
|
218 |
+
from sympy.core.numbers import pi
|
219 |
+
raises(ValueError, lambda: pl_true('John Cleese'))
|
220 |
+
raises(ValueError, lambda: pl_true(42 + pi + pi ** 2))
|
221 |
+
raises(ValueError, lambda: pl_true(42))
|
222 |
+
|
223 |
+
|
224 |
+
def test_entails():
|
225 |
+
A, B, C = symbols('A, B, C')
|
226 |
+
assert entails(A, [A >> B, ~B]) is False
|
227 |
+
assert entails(B, [Equivalent(A, B), A]) is True
|
228 |
+
assert entails((A >> B) >> (~A >> ~B)) is False
|
229 |
+
assert entails((A >> B) >> (~B >> ~A)) is True
|
230 |
+
|
231 |
+
|
232 |
+
def test_PropKB():
|
233 |
+
A, B, C = symbols('A,B,C')
|
234 |
+
kb = PropKB()
|
235 |
+
assert kb.ask(A >> B) is False
|
236 |
+
assert kb.ask(A >> (B >> A)) is True
|
237 |
+
kb.tell(A >> B)
|
238 |
+
kb.tell(B >> C)
|
239 |
+
assert kb.ask(A) is False
|
240 |
+
assert kb.ask(B) is False
|
241 |
+
assert kb.ask(C) is False
|
242 |
+
assert kb.ask(~A) is False
|
243 |
+
assert kb.ask(~B) is False
|
244 |
+
assert kb.ask(~C) is False
|
245 |
+
assert kb.ask(A >> C) is True
|
246 |
+
kb.tell(A)
|
247 |
+
assert kb.ask(A) is True
|
248 |
+
assert kb.ask(B) is True
|
249 |
+
assert kb.ask(C) is True
|
250 |
+
assert kb.ask(~C) is False
|
251 |
+
kb.retract(A)
|
252 |
+
assert kb.ask(C) is False
|
253 |
+
|
254 |
+
|
255 |
+
def test_propKB_tolerant():
|
256 |
+
""""tolerant to bad input"""
|
257 |
+
kb = PropKB()
|
258 |
+
A, B, C = symbols('A,B,C')
|
259 |
+
assert kb.ask(B) is False
|
260 |
+
|
261 |
+
def test_satisfiable_non_symbols():
|
262 |
+
x, y = symbols('x y')
|
263 |
+
assumptions = Q.zero(x*y)
|
264 |
+
facts = Implies(Q.zero(x*y), Q.zero(x) | Q.zero(y))
|
265 |
+
query = ~Q.zero(x) & ~Q.zero(y)
|
266 |
+
refutations = [
|
267 |
+
{Q.zero(x): True, Q.zero(x*y): True},
|
268 |
+
{Q.zero(y): True, Q.zero(x*y): True},
|
269 |
+
{Q.zero(x): True, Q.zero(y): True, Q.zero(x*y): True},
|
270 |
+
{Q.zero(x): True, Q.zero(y): False, Q.zero(x*y): True},
|
271 |
+
{Q.zero(x): False, Q.zero(y): True, Q.zero(x*y): True}]
|
272 |
+
assert not satisfiable(And(assumptions, facts, query), algorithm='dpll')
|
273 |
+
assert satisfiable(And(assumptions, facts, ~query), algorithm='dpll') in refutations
|
274 |
+
assert not satisfiable(And(assumptions, facts, query), algorithm='dpll2')
|
275 |
+
assert satisfiable(And(assumptions, facts, ~query), algorithm='dpll2') in refutations
|
276 |
+
|
277 |
+
def test_satisfiable_bool():
|
278 |
+
from sympy.core.singleton import S
|
279 |
+
assert satisfiable(true) == {true: true}
|
280 |
+
assert satisfiable(S.true) == {true: true}
|
281 |
+
assert satisfiable(false) is False
|
282 |
+
assert satisfiable(S.false) is False
|
283 |
+
|
284 |
+
|
285 |
+
def test_satisfiable_all_models():
|
286 |
+
from sympy.abc import A, B
|
287 |
+
assert next(satisfiable(False, all_models=True)) is False
|
288 |
+
assert list(satisfiable((A >> ~A) & A, all_models=True)) == [False]
|
289 |
+
assert list(satisfiable(True, all_models=True)) == [{true: true}]
|
290 |
+
|
291 |
+
models = [{A: True, B: False}, {A: False, B: True}]
|
292 |
+
result = satisfiable(A ^ B, all_models=True)
|
293 |
+
models.remove(next(result))
|
294 |
+
models.remove(next(result))
|
295 |
+
raises(StopIteration, lambda: next(result))
|
296 |
+
assert not models
|
297 |
+
|
298 |
+
assert list(satisfiable(Equivalent(A, B), all_models=True)) == \
|
299 |
+
[{A: False, B: False}, {A: True, B: True}]
|
300 |
+
|
301 |
+
models = [{A: False, B: False}, {A: False, B: True}, {A: True, B: True}]
|
302 |
+
for model in satisfiable(A >> B, all_models=True):
|
303 |
+
models.remove(model)
|
304 |
+
assert not models
|
305 |
+
|
306 |
+
# This is a santiy test to check that only the required number
|
307 |
+
# of solutions are generated. The expr below has 2**100 - 1 models
|
308 |
+
# which would time out the test if all are generated at once.
|
309 |
+
from sympy.utilities.iterables import numbered_symbols
|
310 |
+
from sympy.logic.boolalg import Or
|
311 |
+
sym = numbered_symbols()
|
312 |
+
X = [next(sym) for i in range(100)]
|
313 |
+
result = satisfiable(Or(*X), all_models=True)
|
314 |
+
for i in range(10):
|
315 |
+
assert next(result)
|
venv/lib/python3.10/site-packages/sympy/logic/utilities/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .dimacs import load_file
|
2 |
+
|
3 |
+
__all__ = ['load_file']
|
venv/lib/python3.10/site-packages/sympy/logic/utilities/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (251 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/logic/utilities/__pycache__/dimacs.cpython-310.pyc
ADDED
Binary file (1.55 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/plotting/__init__.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .plot import plot_backends
|
2 |
+
from .plot_implicit import plot_implicit
|
3 |
+
from .textplot import textplot
|
4 |
+
from .pygletplot import PygletPlot
|
5 |
+
from .plot import PlotGrid
|
6 |
+
from .plot import (plot, plot_parametric, plot3d, plot3d_parametric_surface,
|
7 |
+
plot3d_parametric_line, plot_contour)
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
'plot_backends',
|
11 |
+
|
12 |
+
'plot_implicit',
|
13 |
+
|
14 |
+
'textplot',
|
15 |
+
|
16 |
+
'PygletPlot',
|
17 |
+
|
18 |
+
'PlotGrid',
|
19 |
+
|
20 |
+
'plot', 'plot_parametric', 'plot3d', 'plot3d_parametric_surface',
|
21 |
+
'plot3d_parametric_line', 'plot_contour'
|
22 |
+
]
|
venv/lib/python3.10/site-packages/sympy/plotting/experimental_lambdify.py
ADDED
@@ -0,0 +1,643 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" rewrite of lambdify - This stuff is not stable at all.
|
2 |
+
|
3 |
+
It is for internal use in the new plotting module.
|
4 |
+
It may (will! see the Q'n'A in the source) be rewritten.
|
5 |
+
|
6 |
+
It's completely self contained. Especially it does not use lambdarepr.
|
7 |
+
|
8 |
+
It does not aim to replace the current lambdify. Most importantly it will never
|
9 |
+
ever support anything else than SymPy expressions (no Matrices, dictionaries
|
10 |
+
and so on).
|
11 |
+
"""
|
12 |
+
|
13 |
+
|
14 |
+
import re
|
15 |
+
from sympy.core.numbers import (I, NumberSymbol, oo, zoo)
|
16 |
+
from sympy.core.symbol import Symbol
|
17 |
+
from sympy.utilities.iterables import numbered_symbols
|
18 |
+
|
19 |
+
# We parse the expression string into a tree that identifies functions. Then
|
20 |
+
# we translate the names of the functions and we translate also some strings
|
21 |
+
# that are not names of functions (all this according to translation
|
22 |
+
# dictionaries).
|
23 |
+
# If the translation goes to another module (like numpy) the
|
24 |
+
# module is imported and 'func' is translated to 'module.func'.
|
25 |
+
# If a function can not be translated, the inner nodes of that part of the
|
26 |
+
# tree are not translated. So if we have Integral(sqrt(x)), sqrt is not
|
27 |
+
# translated to np.sqrt and the Integral does not crash.
|
28 |
+
# A namespace for all this is generated by crawling the (func, args) tree of
|
29 |
+
# the expression. The creation of this namespace involves many ugly
|
30 |
+
# workarounds.
|
31 |
+
# The namespace consists of all the names needed for the SymPy expression and
|
32 |
+
# all the name of modules used for translation. Those modules are imported only
|
33 |
+
# as a name (import numpy as np) in order to keep the namespace small and
|
34 |
+
# manageable.
|
35 |
+
|
36 |
+
# Please, if there is a bug, do not try to fix it here! Rewrite this by using
|
37 |
+
# the method proposed in the last Q'n'A below. That way the new function will
|
38 |
+
# work just as well, be just as simple, but it wont need any new workarounds.
|
39 |
+
# If you insist on fixing it here, look at the workarounds in the function
|
40 |
+
# sympy_expression_namespace and in lambdify.
|
41 |
+
|
42 |
+
# Q: Why are you not using Python abstract syntax tree?
|
43 |
+
# A: Because it is more complicated and not much more powerful in this case.
|
44 |
+
|
45 |
+
# Q: What if I have Symbol('sin') or g=Function('f')?
|
46 |
+
# A: You will break the algorithm. We should use srepr to defend against this?
|
47 |
+
# The problem with Symbol('sin') is that it will be printed as 'sin'. The
|
48 |
+
# parser will distinguish it from the function 'sin' because functions are
|
49 |
+
# detected thanks to the opening parenthesis, but the lambda expression won't
|
50 |
+
# understand the difference if we have also the sin function.
|
51 |
+
# The solution (complicated) is to use srepr and maybe ast.
|
52 |
+
# The problem with the g=Function('f') is that it will be printed as 'f' but in
|
53 |
+
# the global namespace we have only 'g'. But as the same printer is used in the
|
54 |
+
# constructor of the namespace there will be no problem.
|
55 |
+
|
56 |
+
# Q: What if some of the printers are not printing as expected?
|
57 |
+
# A: The algorithm wont work. You must use srepr for those cases. But even
|
58 |
+
# srepr may not print well. All problems with printers should be considered
|
59 |
+
# bugs.
|
60 |
+
|
61 |
+
# Q: What about _imp_ functions?
|
62 |
+
# A: Those are taken care for by evalf. A special case treatment will work
|
63 |
+
# faster but it's not worth the code complexity.
|
64 |
+
|
65 |
+
# Q: Will ast fix all possible problems?
|
66 |
+
# A: No. You will always have to use some printer. Even srepr may not work in
|
67 |
+
# some cases. But if the printer does not work, that should be considered a
|
68 |
+
# bug.
|
69 |
+
|
70 |
+
# Q: Is there same way to fix all possible problems?
|
71 |
+
# A: Probably by constructing our strings ourself by traversing the (func,
|
72 |
+
# args) tree and creating the namespace at the same time. That actually sounds
|
73 |
+
# good.
|
74 |
+
|
75 |
+
from sympy.external import import_module
|
76 |
+
import warnings
|
77 |
+
|
78 |
+
#TODO debugging output
|
79 |
+
|
80 |
+
|
81 |
+
class vectorized_lambdify:
|
82 |
+
""" Return a sufficiently smart, vectorized and lambdified function.
|
83 |
+
|
84 |
+
Returns only reals.
|
85 |
+
|
86 |
+
Explanation
|
87 |
+
===========
|
88 |
+
|
89 |
+
This function uses experimental_lambdify to created a lambdified
|
90 |
+
expression ready to be used with numpy. Many of the functions in SymPy
|
91 |
+
are not implemented in numpy so in some cases we resort to Python cmath or
|
92 |
+
even to evalf.
|
93 |
+
|
94 |
+
The following translations are tried:
|
95 |
+
only numpy complex
|
96 |
+
- on errors raised by SymPy trying to work with ndarray:
|
97 |
+
only Python cmath and then vectorize complex128
|
98 |
+
|
99 |
+
When using Python cmath there is no need for evalf or float/complex
|
100 |
+
because Python cmath calls those.
|
101 |
+
|
102 |
+
This function never tries to mix numpy directly with evalf because numpy
|
103 |
+
does not understand SymPy Float. If this is needed one can use the
|
104 |
+
float_wrap_evalf/complex_wrap_evalf options of experimental_lambdify or
|
105 |
+
better one can be explicit about the dtypes that numpy works with.
|
106 |
+
Check numpy bug http://projects.scipy.org/numpy/ticket/1013 to know what
|
107 |
+
types of errors to expect.
|
108 |
+
"""
|
109 |
+
def __init__(self, args, expr):
|
110 |
+
self.args = args
|
111 |
+
self.expr = expr
|
112 |
+
self.np = import_module('numpy')
|
113 |
+
|
114 |
+
self.lambda_func_1 = experimental_lambdify(
|
115 |
+
args, expr, use_np=True)
|
116 |
+
self.vector_func_1 = self.lambda_func_1
|
117 |
+
|
118 |
+
self.lambda_func_2 = experimental_lambdify(
|
119 |
+
args, expr, use_python_cmath=True)
|
120 |
+
self.vector_func_2 = self.np.vectorize(
|
121 |
+
self.lambda_func_2, otypes=[complex])
|
122 |
+
|
123 |
+
self.vector_func = self.vector_func_1
|
124 |
+
self.failure = False
|
125 |
+
|
126 |
+
def __call__(self, *args):
|
127 |
+
np = self.np
|
128 |
+
|
129 |
+
try:
|
130 |
+
temp_args = (np.array(a, dtype=complex) for a in args)
|
131 |
+
results = self.vector_func(*temp_args)
|
132 |
+
results = np.ma.masked_where(
|
133 |
+
np.abs(results.imag) > 1e-7 * np.abs(results),
|
134 |
+
results.real, copy=False)
|
135 |
+
return results
|
136 |
+
except ValueError:
|
137 |
+
if self.failure:
|
138 |
+
raise
|
139 |
+
|
140 |
+
self.failure = True
|
141 |
+
self.vector_func = self.vector_func_2
|
142 |
+
warnings.warn(
|
143 |
+
'The evaluation of the expression is problematic. '
|
144 |
+
'We are trying a failback method that may still work. '
|
145 |
+
'Please report this as a bug.')
|
146 |
+
return self.__call__(*args)
|
147 |
+
|
148 |
+
|
149 |
+
class lambdify:
|
150 |
+
"""Returns the lambdified function.
|
151 |
+
|
152 |
+
Explanation
|
153 |
+
===========
|
154 |
+
|
155 |
+
This function uses experimental_lambdify to create a lambdified
|
156 |
+
expression. It uses cmath to lambdify the expression. If the function
|
157 |
+
is not implemented in Python cmath, Python cmath calls evalf on those
|
158 |
+
functions.
|
159 |
+
"""
|
160 |
+
|
161 |
+
def __init__(self, args, expr):
|
162 |
+
self.args = args
|
163 |
+
self.expr = expr
|
164 |
+
self.lambda_func_1 = experimental_lambdify(
|
165 |
+
args, expr, use_python_cmath=True, use_evalf=True)
|
166 |
+
self.lambda_func_2 = experimental_lambdify(
|
167 |
+
args, expr, use_python_math=True, use_evalf=True)
|
168 |
+
self.lambda_func_3 = experimental_lambdify(
|
169 |
+
args, expr, use_evalf=True, complex_wrap_evalf=True)
|
170 |
+
self.lambda_func = self.lambda_func_1
|
171 |
+
self.failure = False
|
172 |
+
|
173 |
+
def __call__(self, args):
|
174 |
+
try:
|
175 |
+
#The result can be sympy.Float. Hence wrap it with complex type.
|
176 |
+
result = complex(self.lambda_func(args))
|
177 |
+
if abs(result.imag) > 1e-7 * abs(result):
|
178 |
+
return None
|
179 |
+
return result.real
|
180 |
+
except (ZeroDivisionError, OverflowError):
|
181 |
+
return None
|
182 |
+
except TypeError as e:
|
183 |
+
if self.failure:
|
184 |
+
raise e
|
185 |
+
|
186 |
+
if self.lambda_func == self.lambda_func_1:
|
187 |
+
self.lambda_func = self.lambda_func_2
|
188 |
+
return self.__call__(args)
|
189 |
+
|
190 |
+
self.failure = True
|
191 |
+
self.lambda_func = self.lambda_func_3
|
192 |
+
warnings.warn(
|
193 |
+
'The evaluation of the expression is problematic. '
|
194 |
+
'We are trying a failback method that may still work. '
|
195 |
+
'Please report this as a bug.', stacklevel=2)
|
196 |
+
return self.__call__(args)
|
197 |
+
|
198 |
+
|
199 |
+
def experimental_lambdify(*args, **kwargs):
|
200 |
+
l = Lambdifier(*args, **kwargs)
|
201 |
+
return l
|
202 |
+
|
203 |
+
|
204 |
+
class Lambdifier:
|
205 |
+
def __init__(self, args, expr, print_lambda=False, use_evalf=False,
|
206 |
+
float_wrap_evalf=False, complex_wrap_evalf=False,
|
207 |
+
use_np=False, use_python_math=False, use_python_cmath=False,
|
208 |
+
use_interval=False):
|
209 |
+
|
210 |
+
self.print_lambda = print_lambda
|
211 |
+
self.use_evalf = use_evalf
|
212 |
+
self.float_wrap_evalf = float_wrap_evalf
|
213 |
+
self.complex_wrap_evalf = complex_wrap_evalf
|
214 |
+
self.use_np = use_np
|
215 |
+
self.use_python_math = use_python_math
|
216 |
+
self.use_python_cmath = use_python_cmath
|
217 |
+
self.use_interval = use_interval
|
218 |
+
|
219 |
+
# Constructing the argument string
|
220 |
+
# - check
|
221 |
+
if not all(isinstance(a, Symbol) for a in args):
|
222 |
+
raise ValueError('The arguments must be Symbols.')
|
223 |
+
# - use numbered symbols
|
224 |
+
syms = numbered_symbols(exclude=expr.free_symbols)
|
225 |
+
newargs = [next(syms) for _ in args]
|
226 |
+
expr = expr.xreplace(dict(zip(args, newargs)))
|
227 |
+
argstr = ', '.join([str(a) for a in newargs])
|
228 |
+
del syms, newargs, args
|
229 |
+
|
230 |
+
# Constructing the translation dictionaries and making the translation
|
231 |
+
self.dict_str = self.get_dict_str()
|
232 |
+
self.dict_fun = self.get_dict_fun()
|
233 |
+
exprstr = str(expr)
|
234 |
+
newexpr = self.tree2str_translate(self.str2tree(exprstr))
|
235 |
+
|
236 |
+
# Constructing the namespaces
|
237 |
+
namespace = {}
|
238 |
+
namespace.update(self.sympy_atoms_namespace(expr))
|
239 |
+
namespace.update(self.sympy_expression_namespace(expr))
|
240 |
+
# XXX Workaround
|
241 |
+
# Ugly workaround because Pow(a,Half) prints as sqrt(a)
|
242 |
+
# and sympy_expression_namespace can not catch it.
|
243 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
244 |
+
namespace.update({'sqrt': sqrt})
|
245 |
+
namespace.update({'Eq': lambda x, y: x == y})
|
246 |
+
namespace.update({'Ne': lambda x, y: x != y})
|
247 |
+
# End workaround.
|
248 |
+
if use_python_math:
|
249 |
+
namespace.update({'math': __import__('math')})
|
250 |
+
if use_python_cmath:
|
251 |
+
namespace.update({'cmath': __import__('cmath')})
|
252 |
+
if use_np:
|
253 |
+
try:
|
254 |
+
namespace.update({'np': __import__('numpy')})
|
255 |
+
except ImportError:
|
256 |
+
raise ImportError(
|
257 |
+
'experimental_lambdify failed to import numpy.')
|
258 |
+
if use_interval:
|
259 |
+
namespace.update({'imath': __import__(
|
260 |
+
'sympy.plotting.intervalmath', fromlist=['intervalmath'])})
|
261 |
+
namespace.update({'math': __import__('math')})
|
262 |
+
|
263 |
+
# Construct the lambda
|
264 |
+
if self.print_lambda:
|
265 |
+
print(newexpr)
|
266 |
+
eval_str = 'lambda %s : ( %s )' % (argstr, newexpr)
|
267 |
+
self.eval_str = eval_str
|
268 |
+
exec("MYNEWLAMBDA = %s" % eval_str, namespace)
|
269 |
+
self.lambda_func = namespace['MYNEWLAMBDA']
|
270 |
+
|
271 |
+
def __call__(self, *args, **kwargs):
|
272 |
+
return self.lambda_func(*args, **kwargs)
|
273 |
+
|
274 |
+
|
275 |
+
##############################################################################
|
276 |
+
# Dicts for translating from SymPy to other modules
|
277 |
+
##############################################################################
|
278 |
+
###
|
279 |
+
# builtins
|
280 |
+
###
|
281 |
+
# Functions with different names in builtins
|
282 |
+
builtin_functions_different = {
|
283 |
+
'Min': 'min',
|
284 |
+
'Max': 'max',
|
285 |
+
'Abs': 'abs',
|
286 |
+
}
|
287 |
+
|
288 |
+
# Strings that should be translated
|
289 |
+
builtin_not_functions = {
|
290 |
+
'I': '1j',
|
291 |
+
# 'oo': '1e400',
|
292 |
+
}
|
293 |
+
|
294 |
+
###
|
295 |
+
# numpy
|
296 |
+
###
|
297 |
+
|
298 |
+
# Functions that are the same in numpy
|
299 |
+
numpy_functions_same = [
|
300 |
+
'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'exp', 'log',
|
301 |
+
'sqrt', 'floor', 'conjugate',
|
302 |
+
]
|
303 |
+
|
304 |
+
# Functions with different names in numpy
|
305 |
+
numpy_functions_different = {
|
306 |
+
"acos": "arccos",
|
307 |
+
"acosh": "arccosh",
|
308 |
+
"arg": "angle",
|
309 |
+
"asin": "arcsin",
|
310 |
+
"asinh": "arcsinh",
|
311 |
+
"atan": "arctan",
|
312 |
+
"atan2": "arctan2",
|
313 |
+
"atanh": "arctanh",
|
314 |
+
"ceiling": "ceil",
|
315 |
+
"im": "imag",
|
316 |
+
"ln": "log",
|
317 |
+
"Max": "amax",
|
318 |
+
"Min": "amin",
|
319 |
+
"re": "real",
|
320 |
+
"Abs": "abs",
|
321 |
+
}
|
322 |
+
|
323 |
+
# Strings that should be translated
|
324 |
+
numpy_not_functions = {
|
325 |
+
'pi': 'np.pi',
|
326 |
+
'oo': 'np.inf',
|
327 |
+
'E': 'np.e',
|
328 |
+
}
|
329 |
+
|
330 |
+
###
|
331 |
+
# Python math
|
332 |
+
###
|
333 |
+
|
334 |
+
# Functions that are the same in math
|
335 |
+
math_functions_same = [
|
336 |
+
'sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'atan2',
|
337 |
+
'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh',
|
338 |
+
'exp', 'log', 'erf', 'sqrt', 'floor', 'factorial', 'gamma',
|
339 |
+
]
|
340 |
+
|
341 |
+
# Functions with different names in math
|
342 |
+
math_functions_different = {
|
343 |
+
'ceiling': 'ceil',
|
344 |
+
'ln': 'log',
|
345 |
+
'loggamma': 'lgamma'
|
346 |
+
}
|
347 |
+
|
348 |
+
# Strings that should be translated
|
349 |
+
math_not_functions = {
|
350 |
+
'pi': 'math.pi',
|
351 |
+
'E': 'math.e',
|
352 |
+
}
|
353 |
+
|
354 |
+
###
|
355 |
+
# Python cmath
|
356 |
+
###
|
357 |
+
|
358 |
+
# Functions that are the same in cmath
|
359 |
+
cmath_functions_same = [
|
360 |
+
'sin', 'cos', 'tan', 'asin', 'acos', 'atan',
|
361 |
+
'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh',
|
362 |
+
'exp', 'log', 'sqrt',
|
363 |
+
]
|
364 |
+
|
365 |
+
# Functions with different names in cmath
|
366 |
+
cmath_functions_different = {
|
367 |
+
'ln': 'log',
|
368 |
+
'arg': 'phase',
|
369 |
+
}
|
370 |
+
|
371 |
+
# Strings that should be translated
|
372 |
+
cmath_not_functions = {
|
373 |
+
'pi': 'cmath.pi',
|
374 |
+
'E': 'cmath.e',
|
375 |
+
}
|
376 |
+
|
377 |
+
###
|
378 |
+
# intervalmath
|
379 |
+
###
|
380 |
+
|
381 |
+
interval_not_functions = {
|
382 |
+
'pi': 'math.pi',
|
383 |
+
'E': 'math.e'
|
384 |
+
}
|
385 |
+
|
386 |
+
interval_functions_same = [
|
387 |
+
'sin', 'cos', 'exp', 'tan', 'atan', 'log',
|
388 |
+
'sqrt', 'cosh', 'sinh', 'tanh', 'floor',
|
389 |
+
'acos', 'asin', 'acosh', 'asinh', 'atanh',
|
390 |
+
'Abs', 'And', 'Or'
|
391 |
+
]
|
392 |
+
|
393 |
+
interval_functions_different = {
|
394 |
+
'Min': 'imin',
|
395 |
+
'Max': 'imax',
|
396 |
+
'ceiling': 'ceil',
|
397 |
+
|
398 |
+
}
|
399 |
+
|
400 |
+
###
|
401 |
+
# mpmath, etc
|
402 |
+
###
|
403 |
+
#TODO
|
404 |
+
|
405 |
+
###
|
406 |
+
# Create the final ordered tuples of dictionaries
|
407 |
+
###
|
408 |
+
|
409 |
+
# For strings
|
410 |
+
def get_dict_str(self):
|
411 |
+
dict_str = dict(self.builtin_not_functions)
|
412 |
+
if self.use_np:
|
413 |
+
dict_str.update(self.numpy_not_functions)
|
414 |
+
if self.use_python_math:
|
415 |
+
dict_str.update(self.math_not_functions)
|
416 |
+
if self.use_python_cmath:
|
417 |
+
dict_str.update(self.cmath_not_functions)
|
418 |
+
if self.use_interval:
|
419 |
+
dict_str.update(self.interval_not_functions)
|
420 |
+
return dict_str
|
421 |
+
|
422 |
+
# For functions
|
423 |
+
def get_dict_fun(self):
|
424 |
+
dict_fun = dict(self.builtin_functions_different)
|
425 |
+
if self.use_np:
|
426 |
+
for s in self.numpy_functions_same:
|
427 |
+
dict_fun[s] = 'np.' + s
|
428 |
+
for k, v in self.numpy_functions_different.items():
|
429 |
+
dict_fun[k] = 'np.' + v
|
430 |
+
if self.use_python_math:
|
431 |
+
for s in self.math_functions_same:
|
432 |
+
dict_fun[s] = 'math.' + s
|
433 |
+
for k, v in self.math_functions_different.items():
|
434 |
+
dict_fun[k] = 'math.' + v
|
435 |
+
if self.use_python_cmath:
|
436 |
+
for s in self.cmath_functions_same:
|
437 |
+
dict_fun[s] = 'cmath.' + s
|
438 |
+
for k, v in self.cmath_functions_different.items():
|
439 |
+
dict_fun[k] = 'cmath.' + v
|
440 |
+
if self.use_interval:
|
441 |
+
for s in self.interval_functions_same:
|
442 |
+
dict_fun[s] = 'imath.' + s
|
443 |
+
for k, v in self.interval_functions_different.items():
|
444 |
+
dict_fun[k] = 'imath.' + v
|
445 |
+
return dict_fun
|
446 |
+
|
447 |
+
##############################################################################
|
448 |
+
# The translator functions, tree parsers, etc.
|
449 |
+
##############################################################################
|
450 |
+
|
451 |
+
def str2tree(self, exprstr):
|
452 |
+
"""Converts an expression string to a tree.
|
453 |
+
|
454 |
+
Explanation
|
455 |
+
===========
|
456 |
+
|
457 |
+
Functions are represented by ('func_name(', tree_of_arguments).
|
458 |
+
Other expressions are (head_string, mid_tree, tail_str).
|
459 |
+
Expressions that do not contain functions are directly returned.
|
460 |
+
|
461 |
+
Examples
|
462 |
+
========
|
463 |
+
|
464 |
+
>>> from sympy.abc import x, y, z
|
465 |
+
>>> from sympy import Integral, sin
|
466 |
+
>>> from sympy.plotting.experimental_lambdify import Lambdifier
|
467 |
+
>>> str2tree = Lambdifier([x], x).str2tree
|
468 |
+
|
469 |
+
>>> str2tree(str(Integral(x, (x, 1, y))))
|
470 |
+
('', ('Integral(', 'x, (x, 1, y)'), ')')
|
471 |
+
>>> str2tree(str(x+y))
|
472 |
+
'x + y'
|
473 |
+
>>> str2tree(str(x+y*sin(z)+1))
|
474 |
+
('x + y*', ('sin(', 'z'), ') + 1')
|
475 |
+
>>> str2tree('sin(y*(y + 1.1) + (sin(y)))')
|
476 |
+
('', ('sin(', ('y*(y + 1.1) + (', ('sin(', 'y'), '))')), ')')
|
477 |
+
"""
|
478 |
+
#matches the first 'function_name('
|
479 |
+
first_par = re.search(r'(\w+\()', exprstr)
|
480 |
+
if first_par is None:
|
481 |
+
return exprstr
|
482 |
+
else:
|
483 |
+
start = first_par.start()
|
484 |
+
end = first_par.end()
|
485 |
+
head = exprstr[:start]
|
486 |
+
func = exprstr[start:end]
|
487 |
+
tail = exprstr[end:]
|
488 |
+
count = 0
|
489 |
+
for i, c in enumerate(tail):
|
490 |
+
if c == '(':
|
491 |
+
count += 1
|
492 |
+
elif c == ')':
|
493 |
+
count -= 1
|
494 |
+
if count == -1:
|
495 |
+
break
|
496 |
+
func_tail = self.str2tree(tail[:i])
|
497 |
+
tail = self.str2tree(tail[i:])
|
498 |
+
return (head, (func, func_tail), tail)
|
499 |
+
|
500 |
+
@classmethod
|
501 |
+
def tree2str(cls, tree):
|
502 |
+
"""Converts a tree to string without translations.
|
503 |
+
|
504 |
+
Examples
|
505 |
+
========
|
506 |
+
|
507 |
+
>>> from sympy.abc import x, y, z
|
508 |
+
>>> from sympy import sin
|
509 |
+
>>> from sympy.plotting.experimental_lambdify import Lambdifier
|
510 |
+
>>> str2tree = Lambdifier([x], x).str2tree
|
511 |
+
>>> tree2str = Lambdifier([x], x).tree2str
|
512 |
+
|
513 |
+
>>> tree2str(str2tree(str(x+y*sin(z)+1)))
|
514 |
+
'x + y*sin(z) + 1'
|
515 |
+
"""
|
516 |
+
if isinstance(tree, str):
|
517 |
+
return tree
|
518 |
+
else:
|
519 |
+
return ''.join(map(cls.tree2str, tree))
|
520 |
+
|
521 |
+
def tree2str_translate(self, tree):
|
522 |
+
"""Converts a tree to string with translations.
|
523 |
+
|
524 |
+
Explanation
|
525 |
+
===========
|
526 |
+
|
527 |
+
Function names are translated by translate_func.
|
528 |
+
Other strings are translated by translate_str.
|
529 |
+
"""
|
530 |
+
if isinstance(tree, str):
|
531 |
+
return self.translate_str(tree)
|
532 |
+
elif isinstance(tree, tuple) and len(tree) == 2:
|
533 |
+
return self.translate_func(tree[0][:-1], tree[1])
|
534 |
+
else:
|
535 |
+
return ''.join([self.tree2str_translate(t) for t in tree])
|
536 |
+
|
537 |
+
def translate_str(self, estr):
|
538 |
+
"""Translate substrings of estr using in order the dictionaries in
|
539 |
+
dict_tuple_str."""
|
540 |
+
for pattern, repl in self.dict_str.items():
|
541 |
+
estr = re.sub(pattern, repl, estr)
|
542 |
+
return estr
|
543 |
+
|
544 |
+
def translate_func(self, func_name, argtree):
|
545 |
+
"""Translate function names and the tree of arguments.
|
546 |
+
|
547 |
+
Explanation
|
548 |
+
===========
|
549 |
+
|
550 |
+
If the function name is not in the dictionaries of dict_tuple_fun then the
|
551 |
+
function is surrounded by a float((...).evalf()).
|
552 |
+
|
553 |
+
The use of float is necessary as np.<function>(sympy.Float(..)) raises an
|
554 |
+
error."""
|
555 |
+
if func_name in self.dict_fun:
|
556 |
+
new_name = self.dict_fun[func_name]
|
557 |
+
argstr = self.tree2str_translate(argtree)
|
558 |
+
return new_name + '(' + argstr
|
559 |
+
elif func_name in ['Eq', 'Ne']:
|
560 |
+
op = {'Eq': '==', 'Ne': '!='}
|
561 |
+
return "(lambda x, y: x {} y)({}".format(op[func_name], self.tree2str_translate(argtree))
|
562 |
+
else:
|
563 |
+
template = '(%s(%s)).evalf(' if self.use_evalf else '%s(%s'
|
564 |
+
if self.float_wrap_evalf:
|
565 |
+
template = 'float(%s)' % template
|
566 |
+
elif self.complex_wrap_evalf:
|
567 |
+
template = 'complex(%s)' % template
|
568 |
+
|
569 |
+
# Wrapping should only happen on the outermost expression, which
|
570 |
+
# is the only thing we know will be a number.
|
571 |
+
float_wrap_evalf = self.float_wrap_evalf
|
572 |
+
complex_wrap_evalf = self.complex_wrap_evalf
|
573 |
+
self.float_wrap_evalf = False
|
574 |
+
self.complex_wrap_evalf = False
|
575 |
+
ret = template % (func_name, self.tree2str_translate(argtree))
|
576 |
+
self.float_wrap_evalf = float_wrap_evalf
|
577 |
+
self.complex_wrap_evalf = complex_wrap_evalf
|
578 |
+
return ret
|
579 |
+
|
580 |
+
##############################################################################
|
581 |
+
# The namespace constructors
|
582 |
+
##############################################################################
|
583 |
+
|
584 |
+
@classmethod
|
585 |
+
def sympy_expression_namespace(cls, expr):
|
586 |
+
"""Traverses the (func, args) tree of an expression and creates a SymPy
|
587 |
+
namespace. All other modules are imported only as a module name. That way
|
588 |
+
the namespace is not polluted and rests quite small. It probably causes much
|
589 |
+
more variable lookups and so it takes more time, but there are no tests on
|
590 |
+
that for the moment."""
|
591 |
+
if expr is None:
|
592 |
+
return {}
|
593 |
+
else:
|
594 |
+
funcname = str(expr.func)
|
595 |
+
# XXX Workaround
|
596 |
+
# Here we add an ugly workaround because str(func(x))
|
597 |
+
# is not always the same as str(func). Eg
|
598 |
+
# >>> str(Integral(x))
|
599 |
+
# "Integral(x)"
|
600 |
+
# >>> str(Integral)
|
601 |
+
# "<class 'sympy.integrals.integrals.Integral'>"
|
602 |
+
# >>> str(sqrt(x))
|
603 |
+
# "sqrt(x)"
|
604 |
+
# >>> str(sqrt)
|
605 |
+
# "<function sqrt at 0x3d92de8>"
|
606 |
+
# >>> str(sin(x))
|
607 |
+
# "sin(x)"
|
608 |
+
# >>> str(sin)
|
609 |
+
# "sin"
|
610 |
+
# Either one of those can be used but not all at the same time.
|
611 |
+
# The code considers the sin example as the right one.
|
612 |
+
regexlist = [
|
613 |
+
r'<class \'sympy[\w.]*?.([\w]*)\'>$',
|
614 |
+
# the example Integral
|
615 |
+
r'<function ([\w]*) at 0x[\w]*>$', # the example sqrt
|
616 |
+
]
|
617 |
+
for r in regexlist:
|
618 |
+
m = re.match(r, funcname)
|
619 |
+
if m is not None:
|
620 |
+
funcname = m.groups()[0]
|
621 |
+
# End of the workaround
|
622 |
+
# XXX debug: print funcname
|
623 |
+
args_dict = {}
|
624 |
+
for a in expr.args:
|
625 |
+
if (isinstance(a, Symbol) or
|
626 |
+
isinstance(a, NumberSymbol) or
|
627 |
+
a in [I, zoo, oo]):
|
628 |
+
continue
|
629 |
+
else:
|
630 |
+
args_dict.update(cls.sympy_expression_namespace(a))
|
631 |
+
args_dict.update({funcname: expr.func})
|
632 |
+
return args_dict
|
633 |
+
|
634 |
+
@staticmethod
|
635 |
+
def sympy_atoms_namespace(expr):
|
636 |
+
"""For no real reason this function is separated from
|
637 |
+
sympy_expression_namespace. It can be moved to it."""
|
638 |
+
atoms = expr.atoms(Symbol, NumberSymbol, I, zoo, oo)
|
639 |
+
d = {}
|
640 |
+
for a in atoms:
|
641 |
+
# XXX debug: print 'atom:' + str(a)
|
642 |
+
d[str(a)] = a
|
643 |
+
return d
|
venv/lib/python3.10/site-packages/sympy/plotting/plot.py
ADDED
@@ -0,0 +1,2637 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Plotting module for SymPy.
|
2 |
+
|
3 |
+
A plot is represented by the ``Plot`` class that contains a reference to the
|
4 |
+
backend and a list of the data series to be plotted. The data series are
|
5 |
+
instances of classes meant to simplify getting points and meshes from SymPy
|
6 |
+
expressions. ``plot_backends`` is a dictionary with all the backends.
|
7 |
+
|
8 |
+
This module gives only the essential. For all the fancy stuff use directly
|
9 |
+
the backend. You can get the backend wrapper for every plot from the
|
10 |
+
``_backend`` attribute. Moreover the data series classes have various useful
|
11 |
+
methods like ``get_points``, ``get_meshes``, etc, that may
|
12 |
+
be useful if you wish to use another plotting library.
|
13 |
+
|
14 |
+
Especially if you need publication ready graphs and this module is not enough
|
15 |
+
for you - just get the ``_backend`` attribute and add whatever you want
|
16 |
+
directly to it. In the case of matplotlib (the common way to graph data in
|
17 |
+
python) just copy ``_backend.fig`` which is the figure and ``_backend.ax``
|
18 |
+
which is the axis and work on them as you would on any other matplotlib object.
|
19 |
+
|
20 |
+
Simplicity of code takes much greater importance than performance. Do not use it
|
21 |
+
if you care at all about performance. A new backend instance is initialized
|
22 |
+
every time you call ``show()`` and the old one is left to the garbage collector.
|
23 |
+
"""
|
24 |
+
|
25 |
+
|
26 |
+
from collections.abc import Callable
|
27 |
+
|
28 |
+
|
29 |
+
from sympy.core.basic import Basic
|
30 |
+
from sympy.core.containers import Tuple
|
31 |
+
from sympy.core.expr import Expr
|
32 |
+
from sympy.core.function import arity, Function
|
33 |
+
from sympy.core.symbol import (Dummy, Symbol)
|
34 |
+
from sympy.core.sympify import sympify
|
35 |
+
from sympy.external import import_module
|
36 |
+
from sympy.printing.latex import latex
|
37 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
38 |
+
from sympy.utilities.iterables import is_sequence
|
39 |
+
from .experimental_lambdify import (vectorized_lambdify, lambdify)
|
40 |
+
|
41 |
+
# N.B.
|
42 |
+
# When changing the minimum module version for matplotlib, please change
|
43 |
+
# the same in the `SymPyDocTestFinder`` in `sympy/testing/runtests.py`
|
44 |
+
|
45 |
+
# Backend specific imports - textplot
|
46 |
+
from sympy.plotting.textplot import textplot
|
47 |
+
|
48 |
+
# Global variable
|
49 |
+
# Set to False when running tests / doctests so that the plots don't show.
|
50 |
+
_show = True
|
51 |
+
|
52 |
+
|
53 |
+
def unset_show():
|
54 |
+
"""
|
55 |
+
Disable show(). For use in the tests.
|
56 |
+
"""
|
57 |
+
global _show
|
58 |
+
_show = False
|
59 |
+
|
60 |
+
def _str_or_latex(label):
|
61 |
+
if isinstance(label, Basic):
|
62 |
+
return latex(label, mode='inline')
|
63 |
+
return str(label)
|
64 |
+
|
65 |
+
##############################################################################
|
66 |
+
# The public interface
|
67 |
+
##############################################################################
|
68 |
+
|
69 |
+
|
70 |
+
class Plot:
|
71 |
+
"""The central class of the plotting module.
|
72 |
+
|
73 |
+
Explanation
|
74 |
+
===========
|
75 |
+
|
76 |
+
For interactive work the function :func:`plot()` is better suited.
|
77 |
+
|
78 |
+
This class permits the plotting of SymPy expressions using numerous
|
79 |
+
backends (:external:mod:`matplotlib`, textplot, the old pyglet module for SymPy, Google
|
80 |
+
charts api, etc).
|
81 |
+
|
82 |
+
The figure can contain an arbitrary number of plots of SymPy expressions,
|
83 |
+
lists of coordinates of points, etc. Plot has a private attribute _series that
|
84 |
+
contains all data series to be plotted (expressions for lines or surfaces,
|
85 |
+
lists of points, etc (all subclasses of BaseSeries)). Those data series are
|
86 |
+
instances of classes not imported by ``from sympy import *``.
|
87 |
+
|
88 |
+
The customization of the figure is on two levels. Global options that
|
89 |
+
concern the figure as a whole (e.g. title, xlabel, scale, etc) and
|
90 |
+
per-data series options (e.g. name) and aesthetics (e.g. color, point shape,
|
91 |
+
line type, etc.).
|
92 |
+
|
93 |
+
The difference between options and aesthetics is that an aesthetic can be
|
94 |
+
a function of the coordinates (or parameters in a parametric plot). The
|
95 |
+
supported values for an aesthetic are:
|
96 |
+
|
97 |
+
- None (the backend uses default values)
|
98 |
+
- a constant
|
99 |
+
- a function of one variable (the first coordinate or parameter)
|
100 |
+
- a function of two variables (the first and second coordinate or parameters)
|
101 |
+
- a function of three variables (only in nonparametric 3D plots)
|
102 |
+
|
103 |
+
Their implementation depends on the backend so they may not work in some
|
104 |
+
backends.
|
105 |
+
|
106 |
+
If the plot is parametric and the arity of the aesthetic function permits
|
107 |
+
it the aesthetic is calculated over parameters and not over coordinates.
|
108 |
+
If the arity does not permit calculation over parameters the calculation is
|
109 |
+
done over coordinates.
|
110 |
+
|
111 |
+
Only cartesian coordinates are supported for the moment, but you can use
|
112 |
+
the parametric plots to plot in polar, spherical and cylindrical
|
113 |
+
coordinates.
|
114 |
+
|
115 |
+
The arguments for the constructor Plot must be subclasses of BaseSeries.
|
116 |
+
|
117 |
+
Any global option can be specified as a keyword argument.
|
118 |
+
|
119 |
+
The global options for a figure are:
|
120 |
+
|
121 |
+
- title : str
|
122 |
+
- xlabel : str or Symbol
|
123 |
+
- ylabel : str or Symbol
|
124 |
+
- zlabel : str or Symbol
|
125 |
+
- legend : bool
|
126 |
+
- xscale : {'linear', 'log'}
|
127 |
+
- yscale : {'linear', 'log'}
|
128 |
+
- axis : bool
|
129 |
+
- axis_center : tuple of two floats or {'center', 'auto'}
|
130 |
+
- xlim : tuple of two floats
|
131 |
+
- ylim : tuple of two floats
|
132 |
+
- aspect_ratio : tuple of two floats or {'auto'}
|
133 |
+
- autoscale : bool
|
134 |
+
- margin : float in [0, 1]
|
135 |
+
- backend : {'default', 'matplotlib', 'text'} or a subclass of BaseBackend
|
136 |
+
- size : optional tuple of two floats, (width, height); default: None
|
137 |
+
|
138 |
+
The per data series options and aesthetics are:
|
139 |
+
There are none in the base series. See below for options for subclasses.
|
140 |
+
|
141 |
+
Some data series support additional aesthetics or options:
|
142 |
+
|
143 |
+
:class:`~.LineOver1DRangeSeries`, :class:`~.Parametric2DLineSeries`, and
|
144 |
+
:class:`~.Parametric3DLineSeries` support the following:
|
145 |
+
|
146 |
+
Aesthetics:
|
147 |
+
|
148 |
+
- line_color : string, or float, or function, optional
|
149 |
+
Specifies the color for the plot, which depends on the backend being
|
150 |
+
used.
|
151 |
+
|
152 |
+
For example, if ``MatplotlibBackend`` is being used, then
|
153 |
+
Matplotlib string colors are acceptable (``"red"``, ``"r"``,
|
154 |
+
``"cyan"``, ``"c"``, ...).
|
155 |
+
Alternatively, we can use a float number, 0 < color < 1, wrapped in a
|
156 |
+
string (for example, ``line_color="0.5"``) to specify grayscale colors.
|
157 |
+
Alternatively, We can specify a function returning a single
|
158 |
+
float value: this will be used to apply a color-loop (for example,
|
159 |
+
``line_color=lambda x: math.cos(x)``).
|
160 |
+
|
161 |
+
Note that by setting line_color, it would be applied simultaneously
|
162 |
+
to all the series.
|
163 |
+
|
164 |
+
Options:
|
165 |
+
|
166 |
+
- label : str
|
167 |
+
- steps : bool
|
168 |
+
- integers_only : bool
|
169 |
+
|
170 |
+
:class:`~.SurfaceOver2DRangeSeries` and :class:`~.ParametricSurfaceSeries`
|
171 |
+
support the following:
|
172 |
+
|
173 |
+
Aesthetics:
|
174 |
+
|
175 |
+
- surface_color : function which returns a float.
|
176 |
+
"""
|
177 |
+
|
178 |
+
def __init__(self, *args,
|
179 |
+
title=None, xlabel=None, ylabel=None, zlabel=None, aspect_ratio='auto',
|
180 |
+
xlim=None, ylim=None, axis_center='auto', axis=True,
|
181 |
+
xscale='linear', yscale='linear', legend=False, autoscale=True,
|
182 |
+
margin=0, annotations=None, markers=None, rectangles=None,
|
183 |
+
fill=None, backend='default', size=None, **kwargs):
|
184 |
+
super().__init__()
|
185 |
+
|
186 |
+
# Options for the graph as a whole.
|
187 |
+
# The possible values for each option are described in the docstring of
|
188 |
+
# Plot. They are based purely on convention, no checking is done.
|
189 |
+
self.title = title
|
190 |
+
self.xlabel = xlabel
|
191 |
+
self.ylabel = ylabel
|
192 |
+
self.zlabel = zlabel
|
193 |
+
self.aspect_ratio = aspect_ratio
|
194 |
+
self.axis_center = axis_center
|
195 |
+
self.axis = axis
|
196 |
+
self.xscale = xscale
|
197 |
+
self.yscale = yscale
|
198 |
+
self.legend = legend
|
199 |
+
self.autoscale = autoscale
|
200 |
+
self.margin = margin
|
201 |
+
self.annotations = annotations
|
202 |
+
self.markers = markers
|
203 |
+
self.rectangles = rectangles
|
204 |
+
self.fill = fill
|
205 |
+
|
206 |
+
# Contains the data objects to be plotted. The backend should be smart
|
207 |
+
# enough to iterate over this list.
|
208 |
+
self._series = []
|
209 |
+
self._series.extend(args)
|
210 |
+
|
211 |
+
# The backend type. On every show() a new backend instance is created
|
212 |
+
# in self._backend which is tightly coupled to the Plot instance
|
213 |
+
# (thanks to the parent attribute of the backend).
|
214 |
+
if isinstance(backend, str):
|
215 |
+
self.backend = plot_backends[backend]
|
216 |
+
elif (type(backend) == type) and issubclass(backend, BaseBackend):
|
217 |
+
self.backend = backend
|
218 |
+
else:
|
219 |
+
raise TypeError(
|
220 |
+
"backend must be either a string or a subclass of BaseBackend")
|
221 |
+
|
222 |
+
is_real = \
|
223 |
+
lambda lim: all(getattr(i, 'is_real', True) for i in lim)
|
224 |
+
is_finite = \
|
225 |
+
lambda lim: all(getattr(i, 'is_finite', True) for i in lim)
|
226 |
+
|
227 |
+
# reduce code repetition
|
228 |
+
def check_and_set(t_name, t):
|
229 |
+
if t:
|
230 |
+
if not is_real(t):
|
231 |
+
raise ValueError(
|
232 |
+
"All numbers from {}={} must be real".format(t_name, t))
|
233 |
+
if not is_finite(t):
|
234 |
+
raise ValueError(
|
235 |
+
"All numbers from {}={} must be finite".format(t_name, t))
|
236 |
+
setattr(self, t_name, (float(t[0]), float(t[1])))
|
237 |
+
|
238 |
+
self.xlim = None
|
239 |
+
check_and_set("xlim", xlim)
|
240 |
+
self.ylim = None
|
241 |
+
check_and_set("ylim", ylim)
|
242 |
+
self.size = None
|
243 |
+
check_and_set("size", size)
|
244 |
+
|
245 |
+
|
246 |
+
def show(self):
|
247 |
+
# TODO move this to the backend (also for save)
|
248 |
+
if hasattr(self, '_backend'):
|
249 |
+
self._backend.close()
|
250 |
+
self._backend = self.backend(self)
|
251 |
+
self._backend.show()
|
252 |
+
|
253 |
+
def save(self, path):
|
254 |
+
if hasattr(self, '_backend'):
|
255 |
+
self._backend.close()
|
256 |
+
self._backend = self.backend(self)
|
257 |
+
self._backend.save(path)
|
258 |
+
|
259 |
+
def __str__(self):
|
260 |
+
series_strs = [('[%d]: ' % i) + str(s)
|
261 |
+
for i, s in enumerate(self._series)]
|
262 |
+
return 'Plot object containing:\n' + '\n'.join(series_strs)
|
263 |
+
|
264 |
+
def __getitem__(self, index):
|
265 |
+
return self._series[index]
|
266 |
+
|
267 |
+
def __setitem__(self, index, *args):
|
268 |
+
if len(args) == 1 and isinstance(args[0], BaseSeries):
|
269 |
+
self._series[index] = args
|
270 |
+
|
271 |
+
def __delitem__(self, index):
|
272 |
+
del self._series[index]
|
273 |
+
|
274 |
+
def append(self, arg):
|
275 |
+
"""Adds an element from a plot's series to an existing plot.
|
276 |
+
|
277 |
+
Examples
|
278 |
+
========
|
279 |
+
|
280 |
+
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
|
281 |
+
second plot's first series object to the first, use the
|
282 |
+
``append`` method, like so:
|
283 |
+
|
284 |
+
.. plot::
|
285 |
+
:format: doctest
|
286 |
+
:include-source: True
|
287 |
+
|
288 |
+
>>> from sympy import symbols
|
289 |
+
>>> from sympy.plotting import plot
|
290 |
+
>>> x = symbols('x')
|
291 |
+
>>> p1 = plot(x*x, show=False)
|
292 |
+
>>> p2 = plot(x, show=False)
|
293 |
+
>>> p1.append(p2[0])
|
294 |
+
>>> p1
|
295 |
+
Plot object containing:
|
296 |
+
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
|
297 |
+
[1]: cartesian line: x for x over (-10.0, 10.0)
|
298 |
+
>>> p1.show()
|
299 |
+
|
300 |
+
See Also
|
301 |
+
========
|
302 |
+
|
303 |
+
extend
|
304 |
+
|
305 |
+
"""
|
306 |
+
if isinstance(arg, BaseSeries):
|
307 |
+
self._series.append(arg)
|
308 |
+
else:
|
309 |
+
raise TypeError('Must specify element of plot to append.')
|
310 |
+
|
311 |
+
def extend(self, arg):
|
312 |
+
"""Adds all series from another plot.
|
313 |
+
|
314 |
+
Examples
|
315 |
+
========
|
316 |
+
|
317 |
+
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
|
318 |
+
second plot to the first, use the ``extend`` method, like so:
|
319 |
+
|
320 |
+
.. plot::
|
321 |
+
:format: doctest
|
322 |
+
:include-source: True
|
323 |
+
|
324 |
+
>>> from sympy import symbols
|
325 |
+
>>> from sympy.plotting import plot
|
326 |
+
>>> x = symbols('x')
|
327 |
+
>>> p1 = plot(x**2, show=False)
|
328 |
+
>>> p2 = plot(x, -x, show=False)
|
329 |
+
>>> p1.extend(p2)
|
330 |
+
>>> p1
|
331 |
+
Plot object containing:
|
332 |
+
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
|
333 |
+
[1]: cartesian line: x for x over (-10.0, 10.0)
|
334 |
+
[2]: cartesian line: -x for x over (-10.0, 10.0)
|
335 |
+
>>> p1.show()
|
336 |
+
|
337 |
+
"""
|
338 |
+
if isinstance(arg, Plot):
|
339 |
+
self._series.extend(arg._series)
|
340 |
+
elif is_sequence(arg):
|
341 |
+
self._series.extend(arg)
|
342 |
+
else:
|
343 |
+
raise TypeError('Expecting Plot or sequence of BaseSeries')
|
344 |
+
|
345 |
+
|
346 |
+
class PlotGrid:
|
347 |
+
"""This class helps to plot subplots from already created SymPy plots
|
348 |
+
in a single figure.
|
349 |
+
|
350 |
+
Examples
|
351 |
+
========
|
352 |
+
|
353 |
+
.. plot::
|
354 |
+
:context: close-figs
|
355 |
+
:format: doctest
|
356 |
+
:include-source: True
|
357 |
+
|
358 |
+
>>> from sympy import symbols
|
359 |
+
>>> from sympy.plotting import plot, plot3d, PlotGrid
|
360 |
+
>>> x, y = symbols('x, y')
|
361 |
+
>>> p1 = plot(x, x**2, x**3, (x, -5, 5))
|
362 |
+
>>> p2 = plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
|
363 |
+
>>> p3 = plot(x**3, (x, -5, 5))
|
364 |
+
>>> p4 = plot3d(x*y, (x, -5, 5), (y, -5, 5))
|
365 |
+
|
366 |
+
Plotting vertically in a single line:
|
367 |
+
|
368 |
+
.. plot::
|
369 |
+
:context: close-figs
|
370 |
+
:format: doctest
|
371 |
+
:include-source: True
|
372 |
+
|
373 |
+
>>> PlotGrid(2, 1, p1, p2)
|
374 |
+
PlotGrid object containing:
|
375 |
+
Plot[0]:Plot object containing:
|
376 |
+
[0]: cartesian line: x for x over (-5.0, 5.0)
|
377 |
+
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
|
378 |
+
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
|
379 |
+
Plot[1]:Plot object containing:
|
380 |
+
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
|
381 |
+
[1]: cartesian line: x for x over (-5.0, 5.0)
|
382 |
+
|
383 |
+
Plotting horizontally in a single line:
|
384 |
+
|
385 |
+
.. plot::
|
386 |
+
:context: close-figs
|
387 |
+
:format: doctest
|
388 |
+
:include-source: True
|
389 |
+
|
390 |
+
>>> PlotGrid(1, 3, p2, p3, p4)
|
391 |
+
PlotGrid object containing:
|
392 |
+
Plot[0]:Plot object containing:
|
393 |
+
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
|
394 |
+
[1]: cartesian line: x for x over (-5.0, 5.0)
|
395 |
+
Plot[1]:Plot object containing:
|
396 |
+
[0]: cartesian line: x**3 for x over (-5.0, 5.0)
|
397 |
+
Plot[2]:Plot object containing:
|
398 |
+
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
399 |
+
|
400 |
+
Plotting in a grid form:
|
401 |
+
|
402 |
+
.. plot::
|
403 |
+
:context: close-figs
|
404 |
+
:format: doctest
|
405 |
+
:include-source: True
|
406 |
+
|
407 |
+
>>> PlotGrid(2, 2, p1, p2, p3, p4)
|
408 |
+
PlotGrid object containing:
|
409 |
+
Plot[0]:Plot object containing:
|
410 |
+
[0]: cartesian line: x for x over (-5.0, 5.0)
|
411 |
+
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
|
412 |
+
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
|
413 |
+
Plot[1]:Plot object containing:
|
414 |
+
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
|
415 |
+
[1]: cartesian line: x for x over (-5.0, 5.0)
|
416 |
+
Plot[2]:Plot object containing:
|
417 |
+
[0]: cartesian line: x**3 for x over (-5.0, 5.0)
|
418 |
+
Plot[3]:Plot object containing:
|
419 |
+
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
420 |
+
|
421 |
+
"""
|
422 |
+
def __init__(self, nrows, ncolumns, *args, show=True, size=None, **kwargs):
|
423 |
+
"""
|
424 |
+
Parameters
|
425 |
+
==========
|
426 |
+
|
427 |
+
nrows :
|
428 |
+
The number of rows that should be in the grid of the
|
429 |
+
required subplot.
|
430 |
+
ncolumns :
|
431 |
+
The number of columns that should be in the grid
|
432 |
+
of the required subplot.
|
433 |
+
|
434 |
+
nrows and ncolumns together define the required grid.
|
435 |
+
|
436 |
+
Arguments
|
437 |
+
=========
|
438 |
+
|
439 |
+
A list of predefined plot objects entered in a row-wise sequence
|
440 |
+
i.e. plot objects which are to be in the top row of the required
|
441 |
+
grid are written first, then the second row objects and so on
|
442 |
+
|
443 |
+
Keyword arguments
|
444 |
+
=================
|
445 |
+
|
446 |
+
show : Boolean
|
447 |
+
The default value is set to ``True``. Set show to ``False`` and
|
448 |
+
the function will not display the subplot. The returned instance
|
449 |
+
of the ``PlotGrid`` class can then be used to save or display the
|
450 |
+
plot by calling the ``save()`` and ``show()`` methods
|
451 |
+
respectively.
|
452 |
+
size : (float, float), optional
|
453 |
+
A tuple in the form (width, height) in inches to specify the size of
|
454 |
+
the overall figure. The default value is set to ``None``, meaning
|
455 |
+
the size will be set by the default backend.
|
456 |
+
"""
|
457 |
+
self.nrows = nrows
|
458 |
+
self.ncolumns = ncolumns
|
459 |
+
self._series = []
|
460 |
+
self.args = args
|
461 |
+
for arg in args:
|
462 |
+
self._series.append(arg._series)
|
463 |
+
self.backend = DefaultBackend
|
464 |
+
self.size = size
|
465 |
+
if show:
|
466 |
+
self.show()
|
467 |
+
|
468 |
+
def show(self):
|
469 |
+
if hasattr(self, '_backend'):
|
470 |
+
self._backend.close()
|
471 |
+
self._backend = self.backend(self)
|
472 |
+
self._backend.show()
|
473 |
+
|
474 |
+
def save(self, path):
|
475 |
+
if hasattr(self, '_backend'):
|
476 |
+
self._backend.close()
|
477 |
+
self._backend = self.backend(self)
|
478 |
+
self._backend.save(path)
|
479 |
+
|
480 |
+
def __str__(self):
|
481 |
+
plot_strs = [('Plot[%d]:' % i) + str(plot)
|
482 |
+
for i, plot in enumerate(self.args)]
|
483 |
+
|
484 |
+
return 'PlotGrid object containing:\n' + '\n'.join(plot_strs)
|
485 |
+
|
486 |
+
|
487 |
+
##############################################################################
|
488 |
+
# Data Series
|
489 |
+
##############################################################################
|
490 |
+
#TODO more general way to calculate aesthetics (see get_color_array)
|
491 |
+
|
492 |
+
### The base class for all series
|
493 |
+
class BaseSeries:
|
494 |
+
"""Base class for the data objects containing stuff to be plotted.
|
495 |
+
|
496 |
+
Explanation
|
497 |
+
===========
|
498 |
+
|
499 |
+
The backend should check if it supports the data series that is given.
|
500 |
+
(e.g. TextBackend supports only LineOver1DRangeSeries).
|
501 |
+
It is the backend responsibility to know how to use the class of
|
502 |
+
data series that is given.
|
503 |
+
|
504 |
+
Some data series classes are grouped (using a class attribute like is_2Dline)
|
505 |
+
according to the api they present (based only on convention). The backend is
|
506 |
+
not obliged to use that api (e.g. LineOver1DRangeSeries belongs to the
|
507 |
+
is_2Dline group and presents the get_points method, but the
|
508 |
+
TextBackend does not use the get_points method).
|
509 |
+
"""
|
510 |
+
|
511 |
+
# Some flags follow. The rationale for using flags instead of checking base
|
512 |
+
# classes is that setting multiple flags is simpler than multiple
|
513 |
+
# inheritance.
|
514 |
+
|
515 |
+
is_2Dline = False
|
516 |
+
# Some of the backends expect:
|
517 |
+
# - get_points returning 1D np.arrays list_x, list_y
|
518 |
+
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
|
519 |
+
# with the colors calculated at the points from get_points
|
520 |
+
|
521 |
+
is_3Dline = False
|
522 |
+
# Some of the backends expect:
|
523 |
+
# - get_points returning 1D np.arrays list_x, list_y, list_y
|
524 |
+
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
|
525 |
+
# with the colors calculated at the points from get_points
|
526 |
+
|
527 |
+
is_3Dsurface = False
|
528 |
+
# Some of the backends expect:
|
529 |
+
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
|
530 |
+
# - get_points an alias for get_meshes
|
531 |
+
|
532 |
+
is_contour = False
|
533 |
+
# Some of the backends expect:
|
534 |
+
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
|
535 |
+
# - get_points an alias for get_meshes
|
536 |
+
|
537 |
+
is_implicit = False
|
538 |
+
# Some of the backends expect:
|
539 |
+
# - get_meshes returning mesh_x (1D array), mesh_y(1D array,
|
540 |
+
# mesh_z (2D np.arrays)
|
541 |
+
# - get_points an alias for get_meshes
|
542 |
+
# Different from is_contour as the colormap in backend will be
|
543 |
+
# different
|
544 |
+
|
545 |
+
is_parametric = False
|
546 |
+
# The calculation of aesthetics expects:
|
547 |
+
# - get_parameter_points returning one or two np.arrays (1D or 2D)
|
548 |
+
# used for calculation aesthetics
|
549 |
+
|
550 |
+
def __init__(self):
|
551 |
+
super().__init__()
|
552 |
+
|
553 |
+
@property
|
554 |
+
def is_3D(self):
|
555 |
+
flags3D = [
|
556 |
+
self.is_3Dline,
|
557 |
+
self.is_3Dsurface
|
558 |
+
]
|
559 |
+
return any(flags3D)
|
560 |
+
|
561 |
+
@property
|
562 |
+
def is_line(self):
|
563 |
+
flagslines = [
|
564 |
+
self.is_2Dline,
|
565 |
+
self.is_3Dline
|
566 |
+
]
|
567 |
+
return any(flagslines)
|
568 |
+
|
569 |
+
|
570 |
+
### 2D lines
|
571 |
+
class Line2DBaseSeries(BaseSeries):
|
572 |
+
"""A base class for 2D lines.
|
573 |
+
|
574 |
+
- adding the label, steps and only_integers options
|
575 |
+
- making is_2Dline true
|
576 |
+
- defining get_segments and get_color_array
|
577 |
+
"""
|
578 |
+
|
579 |
+
is_2Dline = True
|
580 |
+
|
581 |
+
_dim = 2
|
582 |
+
|
583 |
+
def __init__(self):
|
584 |
+
super().__init__()
|
585 |
+
self.label = None
|
586 |
+
self.steps = False
|
587 |
+
self.only_integers = False
|
588 |
+
self.line_color = None
|
589 |
+
|
590 |
+
def get_data(self):
|
591 |
+
""" Return lists of coordinates for plotting the line.
|
592 |
+
|
593 |
+
Returns
|
594 |
+
=======
|
595 |
+
x : list
|
596 |
+
List of x-coordinates
|
597 |
+
|
598 |
+
y : list
|
599 |
+
List of y-coordinates
|
600 |
+
|
601 |
+
z : list
|
602 |
+
List of z-coordinates in case of Parametric3DLineSeries
|
603 |
+
"""
|
604 |
+
np = import_module('numpy')
|
605 |
+
points = self.get_points()
|
606 |
+
if self.steps is True:
|
607 |
+
if len(points) == 2:
|
608 |
+
x = np.array((points[0], points[0])).T.flatten()[1:]
|
609 |
+
y = np.array((points[1], points[1])).T.flatten()[:-1]
|
610 |
+
points = (x, y)
|
611 |
+
else:
|
612 |
+
x = np.repeat(points[0], 3)[2:]
|
613 |
+
y = np.repeat(points[1], 3)[:-2]
|
614 |
+
z = np.repeat(points[2], 3)[1:-1]
|
615 |
+
points = (x, y, z)
|
616 |
+
return points
|
617 |
+
|
618 |
+
def get_segments(self):
|
619 |
+
sympy_deprecation_warning(
|
620 |
+
"""
|
621 |
+
The Line2DBaseSeries.get_segments() method is deprecated.
|
622 |
+
|
623 |
+
Instead, use the MatplotlibBackend.get_segments() method, or use
|
624 |
+
The get_points() or get_data() methods.
|
625 |
+
""",
|
626 |
+
deprecated_since_version="1.9",
|
627 |
+
active_deprecations_target="deprecated-get-segments")
|
628 |
+
|
629 |
+
np = import_module('numpy')
|
630 |
+
points = type(self).get_data(self)
|
631 |
+
points = np.ma.array(points).T.reshape(-1, 1, self._dim)
|
632 |
+
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
|
633 |
+
|
634 |
+
def get_color_array(self):
|
635 |
+
np = import_module('numpy')
|
636 |
+
c = self.line_color
|
637 |
+
if hasattr(c, '__call__'):
|
638 |
+
f = np.vectorize(c)
|
639 |
+
nargs = arity(c)
|
640 |
+
if nargs == 1 and self.is_parametric:
|
641 |
+
x = self.get_parameter_points()
|
642 |
+
return f(centers_of_segments(x))
|
643 |
+
else:
|
644 |
+
variables = list(map(centers_of_segments, self.get_points()))
|
645 |
+
if nargs == 1:
|
646 |
+
return f(variables[0])
|
647 |
+
elif nargs == 2:
|
648 |
+
return f(*variables[:2])
|
649 |
+
else: # only if the line is 3D (otherwise raises an error)
|
650 |
+
return f(*variables)
|
651 |
+
else:
|
652 |
+
return c*np.ones(self.nb_of_points)
|
653 |
+
|
654 |
+
|
655 |
+
class List2DSeries(Line2DBaseSeries):
|
656 |
+
"""Representation for a line consisting of list of points."""
|
657 |
+
|
658 |
+
def __init__(self, list_x, list_y):
|
659 |
+
np = import_module('numpy')
|
660 |
+
super().__init__()
|
661 |
+
self.list_x = np.array(list_x)
|
662 |
+
self.list_y = np.array(list_y)
|
663 |
+
self.label = 'list'
|
664 |
+
|
665 |
+
def __str__(self):
|
666 |
+
return 'list plot'
|
667 |
+
|
668 |
+
def get_points(self):
|
669 |
+
return (self.list_x, self.list_y)
|
670 |
+
|
671 |
+
|
672 |
+
class LineOver1DRangeSeries(Line2DBaseSeries):
|
673 |
+
"""Representation for a line consisting of a SymPy expression over a range."""
|
674 |
+
|
675 |
+
def __init__(self, expr, var_start_end, **kwargs):
|
676 |
+
super().__init__()
|
677 |
+
self.expr = sympify(expr)
|
678 |
+
self.label = kwargs.get('label', None) or self.expr
|
679 |
+
self.var = sympify(var_start_end[0])
|
680 |
+
self.start = float(var_start_end[1])
|
681 |
+
self.end = float(var_start_end[2])
|
682 |
+
self.nb_of_points = kwargs.get('nb_of_points', 300)
|
683 |
+
self.adaptive = kwargs.get('adaptive', True)
|
684 |
+
self.depth = kwargs.get('depth', 12)
|
685 |
+
self.line_color = kwargs.get('line_color', None)
|
686 |
+
self.xscale = kwargs.get('xscale', 'linear')
|
687 |
+
|
688 |
+
def __str__(self):
|
689 |
+
return 'cartesian line: %s for %s over %s' % (
|
690 |
+
str(self.expr), str(self.var), str((self.start, self.end)))
|
691 |
+
|
692 |
+
def get_points(self):
|
693 |
+
""" Return lists of coordinates for plotting. Depending on the
|
694 |
+
``adaptive`` option, this function will either use an adaptive algorithm
|
695 |
+
or it will uniformly sample the expression over the provided range.
|
696 |
+
|
697 |
+
Returns
|
698 |
+
=======
|
699 |
+
x : list
|
700 |
+
List of x-coordinates
|
701 |
+
|
702 |
+
y : list
|
703 |
+
List of y-coordinates
|
704 |
+
|
705 |
+
|
706 |
+
Explanation
|
707 |
+
===========
|
708 |
+
|
709 |
+
The adaptive sampling is done by recursively checking if three
|
710 |
+
points are almost collinear. If they are not collinear, then more
|
711 |
+
points are added between those points.
|
712 |
+
|
713 |
+
References
|
714 |
+
==========
|
715 |
+
|
716 |
+
.. [1] Adaptive polygonal approximation of parametric curves,
|
717 |
+
Luiz Henrique de Figueiredo.
|
718 |
+
|
719 |
+
"""
|
720 |
+
if self.only_integers or not self.adaptive:
|
721 |
+
return self._uniform_sampling()
|
722 |
+
else:
|
723 |
+
f = lambdify([self.var], self.expr)
|
724 |
+
x_coords = []
|
725 |
+
y_coords = []
|
726 |
+
np = import_module('numpy')
|
727 |
+
def sample(p, q, depth):
|
728 |
+
""" Samples recursively if three points are almost collinear.
|
729 |
+
For depth < 6, points are added irrespective of whether they
|
730 |
+
satisfy the collinearity condition or not. The maximum depth
|
731 |
+
allowed is 12.
|
732 |
+
"""
|
733 |
+
# Randomly sample to avoid aliasing.
|
734 |
+
random = 0.45 + np.random.rand() * 0.1
|
735 |
+
if self.xscale == 'log':
|
736 |
+
xnew = 10**(np.log10(p[0]) + random * (np.log10(q[0]) -
|
737 |
+
np.log10(p[0])))
|
738 |
+
else:
|
739 |
+
xnew = p[0] + random * (q[0] - p[0])
|
740 |
+
ynew = f(xnew)
|
741 |
+
new_point = np.array([xnew, ynew])
|
742 |
+
|
743 |
+
# Maximum depth
|
744 |
+
if depth > self.depth:
|
745 |
+
x_coords.append(q[0])
|
746 |
+
y_coords.append(q[1])
|
747 |
+
|
748 |
+
# Sample irrespective of whether the line is flat till the
|
749 |
+
# depth of 6. We are not using linspace to avoid aliasing.
|
750 |
+
elif depth < 6:
|
751 |
+
sample(p, new_point, depth + 1)
|
752 |
+
sample(new_point, q, depth + 1)
|
753 |
+
|
754 |
+
# Sample ten points if complex values are encountered
|
755 |
+
# at both ends. If there is a real value in between, then
|
756 |
+
# sample those points further.
|
757 |
+
elif p[1] is None and q[1] is None:
|
758 |
+
if self.xscale == 'log':
|
759 |
+
xarray = np.logspace(p[0], q[0], 10)
|
760 |
+
else:
|
761 |
+
xarray = np.linspace(p[0], q[0], 10)
|
762 |
+
yarray = list(map(f, xarray))
|
763 |
+
if not all(y is None for y in yarray):
|
764 |
+
for i in range(len(yarray) - 1):
|
765 |
+
if not (yarray[i] is None and yarray[i + 1] is None):
|
766 |
+
sample([xarray[i], yarray[i]],
|
767 |
+
[xarray[i + 1], yarray[i + 1]], depth + 1)
|
768 |
+
|
769 |
+
# Sample further if one of the end points in None (i.e. a
|
770 |
+
# complex value) or the three points are not almost collinear.
|
771 |
+
elif (p[1] is None or q[1] is None or new_point[1] is None
|
772 |
+
or not flat(p, new_point, q)):
|
773 |
+
sample(p, new_point, depth + 1)
|
774 |
+
sample(new_point, q, depth + 1)
|
775 |
+
else:
|
776 |
+
x_coords.append(q[0])
|
777 |
+
y_coords.append(q[1])
|
778 |
+
|
779 |
+
f_start = f(self.start)
|
780 |
+
f_end = f(self.end)
|
781 |
+
x_coords.append(self.start)
|
782 |
+
y_coords.append(f_start)
|
783 |
+
sample(np.array([self.start, f_start]),
|
784 |
+
np.array([self.end, f_end]), 0)
|
785 |
+
|
786 |
+
return (x_coords, y_coords)
|
787 |
+
|
788 |
+
def _uniform_sampling(self):
|
789 |
+
np = import_module('numpy')
|
790 |
+
if self.only_integers is True:
|
791 |
+
if self.xscale == 'log':
|
792 |
+
list_x = np.logspace(int(self.start), int(self.end),
|
793 |
+
num=int(self.end) - int(self.start) + 1)
|
794 |
+
else:
|
795 |
+
list_x = np.linspace(int(self.start), int(self.end),
|
796 |
+
num=int(self.end) - int(self.start) + 1)
|
797 |
+
else:
|
798 |
+
if self.xscale == 'log':
|
799 |
+
list_x = np.logspace(self.start, self.end, num=self.nb_of_points)
|
800 |
+
else:
|
801 |
+
list_x = np.linspace(self.start, self.end, num=self.nb_of_points)
|
802 |
+
f = vectorized_lambdify([self.var], self.expr)
|
803 |
+
list_y = f(list_x)
|
804 |
+
return (list_x, list_y)
|
805 |
+
|
806 |
+
|
807 |
+
class Parametric2DLineSeries(Line2DBaseSeries):
|
808 |
+
"""Representation for a line consisting of two parametric SymPy expressions
|
809 |
+
over a range."""
|
810 |
+
|
811 |
+
is_parametric = True
|
812 |
+
|
813 |
+
def __init__(self, expr_x, expr_y, var_start_end, **kwargs):
|
814 |
+
super().__init__()
|
815 |
+
self.expr_x = sympify(expr_x)
|
816 |
+
self.expr_y = sympify(expr_y)
|
817 |
+
self.label = kwargs.get('label', None) or \
|
818 |
+
Tuple(self.expr_x, self.expr_y)
|
819 |
+
self.var = sympify(var_start_end[0])
|
820 |
+
self.start = float(var_start_end[1])
|
821 |
+
self.end = float(var_start_end[2])
|
822 |
+
self.nb_of_points = kwargs.get('nb_of_points', 300)
|
823 |
+
self.adaptive = kwargs.get('adaptive', True)
|
824 |
+
self.depth = kwargs.get('depth', 12)
|
825 |
+
self.line_color = kwargs.get('line_color', None)
|
826 |
+
|
827 |
+
def __str__(self):
|
828 |
+
return 'parametric cartesian line: (%s, %s) for %s over %s' % (
|
829 |
+
str(self.expr_x), str(self.expr_y), str(self.var),
|
830 |
+
str((self.start, self.end)))
|
831 |
+
|
832 |
+
def get_parameter_points(self):
|
833 |
+
np = import_module('numpy')
|
834 |
+
return np.linspace(self.start, self.end, num=self.nb_of_points)
|
835 |
+
|
836 |
+
def _uniform_sampling(self):
|
837 |
+
param = self.get_parameter_points()
|
838 |
+
fx = vectorized_lambdify([self.var], self.expr_x)
|
839 |
+
fy = vectorized_lambdify([self.var], self.expr_y)
|
840 |
+
list_x = fx(param)
|
841 |
+
list_y = fy(param)
|
842 |
+
return (list_x, list_y)
|
843 |
+
|
844 |
+
def get_points(self):
|
845 |
+
""" Return lists of coordinates for plotting. Depending on the
|
846 |
+
``adaptive`` option, this function will either use an adaptive algorithm
|
847 |
+
or it will uniformly sample the expression over the provided range.
|
848 |
+
|
849 |
+
Returns
|
850 |
+
=======
|
851 |
+
x : list
|
852 |
+
List of x-coordinates
|
853 |
+
|
854 |
+
y : list
|
855 |
+
List of y-coordinates
|
856 |
+
|
857 |
+
|
858 |
+
Explanation
|
859 |
+
===========
|
860 |
+
|
861 |
+
The adaptive sampling is done by recursively checking if three
|
862 |
+
points are almost collinear. If they are not collinear, then more
|
863 |
+
points are added between those points.
|
864 |
+
|
865 |
+
References
|
866 |
+
==========
|
867 |
+
|
868 |
+
.. [1] Adaptive polygonal approximation of parametric curves,
|
869 |
+
Luiz Henrique de Figueiredo.
|
870 |
+
|
871 |
+
"""
|
872 |
+
if not self.adaptive:
|
873 |
+
return self._uniform_sampling()
|
874 |
+
|
875 |
+
f_x = lambdify([self.var], self.expr_x)
|
876 |
+
f_y = lambdify([self.var], self.expr_y)
|
877 |
+
x_coords = []
|
878 |
+
y_coords = []
|
879 |
+
|
880 |
+
def sample(param_p, param_q, p, q, depth):
|
881 |
+
""" Samples recursively if three points are almost collinear.
|
882 |
+
For depth < 6, points are added irrespective of whether they
|
883 |
+
satisfy the collinearity condition or not. The maximum depth
|
884 |
+
allowed is 12.
|
885 |
+
"""
|
886 |
+
# Randomly sample to avoid aliasing.
|
887 |
+
np = import_module('numpy')
|
888 |
+
random = 0.45 + np.random.rand() * 0.1
|
889 |
+
param_new = param_p + random * (param_q - param_p)
|
890 |
+
xnew = f_x(param_new)
|
891 |
+
ynew = f_y(param_new)
|
892 |
+
new_point = np.array([xnew, ynew])
|
893 |
+
|
894 |
+
# Maximum depth
|
895 |
+
if depth > self.depth:
|
896 |
+
x_coords.append(q[0])
|
897 |
+
y_coords.append(q[1])
|
898 |
+
|
899 |
+
# Sample irrespective of whether the line is flat till the
|
900 |
+
# depth of 6. We are not using linspace to avoid aliasing.
|
901 |
+
elif depth < 6:
|
902 |
+
sample(param_p, param_new, p, new_point, depth + 1)
|
903 |
+
sample(param_new, param_q, new_point, q, depth + 1)
|
904 |
+
|
905 |
+
# Sample ten points if complex values are encountered
|
906 |
+
# at both ends. If there is a real value in between, then
|
907 |
+
# sample those points further.
|
908 |
+
elif ((p[0] is None and q[1] is None) or
|
909 |
+
(p[1] is None and q[1] is None)):
|
910 |
+
param_array = np.linspace(param_p, param_q, 10)
|
911 |
+
x_array = list(map(f_x, param_array))
|
912 |
+
y_array = list(map(f_y, param_array))
|
913 |
+
if not all(x is None and y is None
|
914 |
+
for x, y in zip(x_array, y_array)):
|
915 |
+
for i in range(len(y_array) - 1):
|
916 |
+
if ((x_array[i] is not None and y_array[i] is not None) or
|
917 |
+
(x_array[i + 1] is not None and y_array[i + 1] is not None)):
|
918 |
+
point_a = [x_array[i], y_array[i]]
|
919 |
+
point_b = [x_array[i + 1], y_array[i + 1]]
|
920 |
+
sample(param_array[i], param_array[i], point_a,
|
921 |
+
point_b, depth + 1)
|
922 |
+
|
923 |
+
# Sample further if one of the end points in None (i.e. a complex
|
924 |
+
# value) or the three points are not almost collinear.
|
925 |
+
elif (p[0] is None or p[1] is None
|
926 |
+
or q[1] is None or q[0] is None
|
927 |
+
or not flat(p, new_point, q)):
|
928 |
+
sample(param_p, param_new, p, new_point, depth + 1)
|
929 |
+
sample(param_new, param_q, new_point, q, depth + 1)
|
930 |
+
else:
|
931 |
+
x_coords.append(q[0])
|
932 |
+
y_coords.append(q[1])
|
933 |
+
|
934 |
+
f_start_x = f_x(self.start)
|
935 |
+
f_start_y = f_y(self.start)
|
936 |
+
start = [f_start_x, f_start_y]
|
937 |
+
f_end_x = f_x(self.end)
|
938 |
+
f_end_y = f_y(self.end)
|
939 |
+
end = [f_end_x, f_end_y]
|
940 |
+
x_coords.append(f_start_x)
|
941 |
+
y_coords.append(f_start_y)
|
942 |
+
sample(self.start, self.end, start, end, 0)
|
943 |
+
|
944 |
+
return x_coords, y_coords
|
945 |
+
|
946 |
+
|
947 |
+
### 3D lines
|
948 |
+
class Line3DBaseSeries(Line2DBaseSeries):
|
949 |
+
"""A base class for 3D lines.
|
950 |
+
|
951 |
+
Most of the stuff is derived from Line2DBaseSeries."""
|
952 |
+
|
953 |
+
is_2Dline = False
|
954 |
+
is_3Dline = True
|
955 |
+
_dim = 3
|
956 |
+
|
957 |
+
def __init__(self):
|
958 |
+
super().__init__()
|
959 |
+
|
960 |
+
|
961 |
+
class Parametric3DLineSeries(Line3DBaseSeries):
|
962 |
+
"""Representation for a 3D line consisting of three parametric SymPy
|
963 |
+
expressions and a range."""
|
964 |
+
|
965 |
+
is_parametric = True
|
966 |
+
|
967 |
+
def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs):
|
968 |
+
super().__init__()
|
969 |
+
self.expr_x = sympify(expr_x)
|
970 |
+
self.expr_y = sympify(expr_y)
|
971 |
+
self.expr_z = sympify(expr_z)
|
972 |
+
self.label = kwargs.get('label', None) or \
|
973 |
+
Tuple(self.expr_x, self.expr_y)
|
974 |
+
self.var = sympify(var_start_end[0])
|
975 |
+
self.start = float(var_start_end[1])
|
976 |
+
self.end = float(var_start_end[2])
|
977 |
+
self.nb_of_points = kwargs.get('nb_of_points', 300)
|
978 |
+
self.line_color = kwargs.get('line_color', None)
|
979 |
+
self._xlim = None
|
980 |
+
self._ylim = None
|
981 |
+
self._zlim = None
|
982 |
+
|
983 |
+
def __str__(self):
|
984 |
+
return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % (
|
985 |
+
str(self.expr_x), str(self.expr_y), str(self.expr_z),
|
986 |
+
str(self.var), str((self.start, self.end)))
|
987 |
+
|
988 |
+
def get_parameter_points(self):
|
989 |
+
np = import_module('numpy')
|
990 |
+
return np.linspace(self.start, self.end, num=self.nb_of_points)
|
991 |
+
|
992 |
+
def get_points(self):
|
993 |
+
np = import_module('numpy')
|
994 |
+
param = self.get_parameter_points()
|
995 |
+
fx = vectorized_lambdify([self.var], self.expr_x)
|
996 |
+
fy = vectorized_lambdify([self.var], self.expr_y)
|
997 |
+
fz = vectorized_lambdify([self.var], self.expr_z)
|
998 |
+
|
999 |
+
list_x = fx(param)
|
1000 |
+
list_y = fy(param)
|
1001 |
+
list_z = fz(param)
|
1002 |
+
|
1003 |
+
list_x = np.array(list_x, dtype=np.float64)
|
1004 |
+
list_y = np.array(list_y, dtype=np.float64)
|
1005 |
+
list_z = np.array(list_z, dtype=np.float64)
|
1006 |
+
|
1007 |
+
list_x = np.ma.masked_invalid(list_x)
|
1008 |
+
list_y = np.ma.masked_invalid(list_y)
|
1009 |
+
list_z = np.ma.masked_invalid(list_z)
|
1010 |
+
|
1011 |
+
self._xlim = (np.amin(list_x), np.amax(list_x))
|
1012 |
+
self._ylim = (np.amin(list_y), np.amax(list_y))
|
1013 |
+
self._zlim = (np.amin(list_z), np.amax(list_z))
|
1014 |
+
return list_x, list_y, list_z
|
1015 |
+
|
1016 |
+
|
1017 |
+
### Surfaces
|
1018 |
+
class SurfaceBaseSeries(BaseSeries):
|
1019 |
+
"""A base class for 3D surfaces."""
|
1020 |
+
|
1021 |
+
is_3Dsurface = True
|
1022 |
+
|
1023 |
+
def __init__(self):
|
1024 |
+
super().__init__()
|
1025 |
+
self.surface_color = None
|
1026 |
+
|
1027 |
+
def get_color_array(self):
|
1028 |
+
np = import_module('numpy')
|
1029 |
+
c = self.surface_color
|
1030 |
+
if isinstance(c, Callable):
|
1031 |
+
f = np.vectorize(c)
|
1032 |
+
nargs = arity(c)
|
1033 |
+
if self.is_parametric:
|
1034 |
+
variables = list(map(centers_of_faces, self.get_parameter_meshes()))
|
1035 |
+
if nargs == 1:
|
1036 |
+
return f(variables[0])
|
1037 |
+
elif nargs == 2:
|
1038 |
+
return f(*variables)
|
1039 |
+
variables = list(map(centers_of_faces, self.get_meshes()))
|
1040 |
+
if nargs == 1:
|
1041 |
+
return f(variables[0])
|
1042 |
+
elif nargs == 2:
|
1043 |
+
return f(*variables[:2])
|
1044 |
+
else:
|
1045 |
+
return f(*variables)
|
1046 |
+
else:
|
1047 |
+
if isinstance(self, SurfaceOver2DRangeSeries):
|
1048 |
+
return c*np.ones(min(self.nb_of_points_x, self.nb_of_points_y))
|
1049 |
+
else:
|
1050 |
+
return c*np.ones(min(self.nb_of_points_u, self.nb_of_points_v))
|
1051 |
+
|
1052 |
+
|
1053 |
+
class SurfaceOver2DRangeSeries(SurfaceBaseSeries):
|
1054 |
+
"""Representation for a 3D surface consisting of a SymPy expression and 2D
|
1055 |
+
range."""
|
1056 |
+
def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs):
|
1057 |
+
super().__init__()
|
1058 |
+
self.expr = sympify(expr)
|
1059 |
+
self.var_x = sympify(var_start_end_x[0])
|
1060 |
+
self.start_x = float(var_start_end_x[1])
|
1061 |
+
self.end_x = float(var_start_end_x[2])
|
1062 |
+
self.var_y = sympify(var_start_end_y[0])
|
1063 |
+
self.start_y = float(var_start_end_y[1])
|
1064 |
+
self.end_y = float(var_start_end_y[2])
|
1065 |
+
self.nb_of_points_x = kwargs.get('nb_of_points_x', 50)
|
1066 |
+
self.nb_of_points_y = kwargs.get('nb_of_points_y', 50)
|
1067 |
+
self.surface_color = kwargs.get('surface_color', None)
|
1068 |
+
|
1069 |
+
self._xlim = (self.start_x, self.end_x)
|
1070 |
+
self._ylim = (self.start_y, self.end_y)
|
1071 |
+
|
1072 |
+
def __str__(self):
|
1073 |
+
return ('cartesian surface: %s for'
|
1074 |
+
' %s over %s and %s over %s') % (
|
1075 |
+
str(self.expr),
|
1076 |
+
str(self.var_x),
|
1077 |
+
str((self.start_x, self.end_x)),
|
1078 |
+
str(self.var_y),
|
1079 |
+
str((self.start_y, self.end_y)))
|
1080 |
+
|
1081 |
+
def get_meshes(self):
|
1082 |
+
np = import_module('numpy')
|
1083 |
+
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
|
1084 |
+
num=self.nb_of_points_x),
|
1085 |
+
np.linspace(self.start_y, self.end_y,
|
1086 |
+
num=self.nb_of_points_y))
|
1087 |
+
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
|
1088 |
+
mesh_z = f(mesh_x, mesh_y)
|
1089 |
+
mesh_z = np.array(mesh_z, dtype=np.float64)
|
1090 |
+
mesh_z = np.ma.masked_invalid(mesh_z)
|
1091 |
+
self._zlim = (np.amin(mesh_z), np.amax(mesh_z))
|
1092 |
+
return mesh_x, mesh_y, mesh_z
|
1093 |
+
|
1094 |
+
|
1095 |
+
class ParametricSurfaceSeries(SurfaceBaseSeries):
|
1096 |
+
"""Representation for a 3D surface consisting of three parametric SymPy
|
1097 |
+
expressions and a range."""
|
1098 |
+
|
1099 |
+
is_parametric = True
|
1100 |
+
|
1101 |
+
def __init__(
|
1102 |
+
self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v,
|
1103 |
+
**kwargs):
|
1104 |
+
super().__init__()
|
1105 |
+
self.expr_x = sympify(expr_x)
|
1106 |
+
self.expr_y = sympify(expr_y)
|
1107 |
+
self.expr_z = sympify(expr_z)
|
1108 |
+
self.var_u = sympify(var_start_end_u[0])
|
1109 |
+
self.start_u = float(var_start_end_u[1])
|
1110 |
+
self.end_u = float(var_start_end_u[2])
|
1111 |
+
self.var_v = sympify(var_start_end_v[0])
|
1112 |
+
self.start_v = float(var_start_end_v[1])
|
1113 |
+
self.end_v = float(var_start_end_v[2])
|
1114 |
+
self.nb_of_points_u = kwargs.get('nb_of_points_u', 50)
|
1115 |
+
self.nb_of_points_v = kwargs.get('nb_of_points_v', 50)
|
1116 |
+
self.surface_color = kwargs.get('surface_color', None)
|
1117 |
+
|
1118 |
+
def __str__(self):
|
1119 |
+
return ('parametric cartesian surface: (%s, %s, %s) for'
|
1120 |
+
' %s over %s and %s over %s') % (
|
1121 |
+
str(self.expr_x),
|
1122 |
+
str(self.expr_y),
|
1123 |
+
str(self.expr_z),
|
1124 |
+
str(self.var_u),
|
1125 |
+
str((self.start_u, self.end_u)),
|
1126 |
+
str(self.var_v),
|
1127 |
+
str((self.start_v, self.end_v)))
|
1128 |
+
|
1129 |
+
def get_parameter_meshes(self):
|
1130 |
+
np = import_module('numpy')
|
1131 |
+
return np.meshgrid(np.linspace(self.start_u, self.end_u,
|
1132 |
+
num=self.nb_of_points_u),
|
1133 |
+
np.linspace(self.start_v, self.end_v,
|
1134 |
+
num=self.nb_of_points_v))
|
1135 |
+
|
1136 |
+
def get_meshes(self):
|
1137 |
+
np = import_module('numpy')
|
1138 |
+
|
1139 |
+
mesh_u, mesh_v = self.get_parameter_meshes()
|
1140 |
+
fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x)
|
1141 |
+
fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y)
|
1142 |
+
fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z)
|
1143 |
+
|
1144 |
+
mesh_x = fx(mesh_u, mesh_v)
|
1145 |
+
mesh_y = fy(mesh_u, mesh_v)
|
1146 |
+
mesh_z = fz(mesh_u, mesh_v)
|
1147 |
+
|
1148 |
+
mesh_x = np.array(mesh_x, dtype=np.float64)
|
1149 |
+
mesh_y = np.array(mesh_y, dtype=np.float64)
|
1150 |
+
mesh_z = np.array(mesh_z, dtype=np.float64)
|
1151 |
+
|
1152 |
+
mesh_x = np.ma.masked_invalid(mesh_x)
|
1153 |
+
mesh_y = np.ma.masked_invalid(mesh_y)
|
1154 |
+
mesh_z = np.ma.masked_invalid(mesh_z)
|
1155 |
+
|
1156 |
+
self._xlim = (np.amin(mesh_x), np.amax(mesh_x))
|
1157 |
+
self._ylim = (np.amin(mesh_y), np.amax(mesh_y))
|
1158 |
+
self._zlim = (np.amin(mesh_z), np.amax(mesh_z))
|
1159 |
+
|
1160 |
+
return mesh_x, mesh_y, mesh_z
|
1161 |
+
|
1162 |
+
|
1163 |
+
### Contours
|
1164 |
+
class ContourSeries(BaseSeries):
|
1165 |
+
"""Representation for a contour plot."""
|
1166 |
+
# The code is mostly repetition of SurfaceOver2DRange.
|
1167 |
+
# Presently used in contour_plot function
|
1168 |
+
|
1169 |
+
is_contour = True
|
1170 |
+
|
1171 |
+
def __init__(self, expr, var_start_end_x, var_start_end_y):
|
1172 |
+
super().__init__()
|
1173 |
+
self.nb_of_points_x = 50
|
1174 |
+
self.nb_of_points_y = 50
|
1175 |
+
self.expr = sympify(expr)
|
1176 |
+
self.var_x = sympify(var_start_end_x[0])
|
1177 |
+
self.start_x = float(var_start_end_x[1])
|
1178 |
+
self.end_x = float(var_start_end_x[2])
|
1179 |
+
self.var_y = sympify(var_start_end_y[0])
|
1180 |
+
self.start_y = float(var_start_end_y[1])
|
1181 |
+
self.end_y = float(var_start_end_y[2])
|
1182 |
+
|
1183 |
+
self.get_points = self.get_meshes
|
1184 |
+
|
1185 |
+
self._xlim = (self.start_x, self.end_x)
|
1186 |
+
self._ylim = (self.start_y, self.end_y)
|
1187 |
+
|
1188 |
+
def __str__(self):
|
1189 |
+
return ('contour: %s for '
|
1190 |
+
'%s over %s and %s over %s') % (
|
1191 |
+
str(self.expr),
|
1192 |
+
str(self.var_x),
|
1193 |
+
str((self.start_x, self.end_x)),
|
1194 |
+
str(self.var_y),
|
1195 |
+
str((self.start_y, self.end_y)))
|
1196 |
+
|
1197 |
+
def get_meshes(self):
|
1198 |
+
np = import_module('numpy')
|
1199 |
+
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
|
1200 |
+
num=self.nb_of_points_x),
|
1201 |
+
np.linspace(self.start_y, self.end_y,
|
1202 |
+
num=self.nb_of_points_y))
|
1203 |
+
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
|
1204 |
+
return (mesh_x, mesh_y, f(mesh_x, mesh_y))
|
1205 |
+
|
1206 |
+
|
1207 |
+
##############################################################################
|
1208 |
+
# Backends
|
1209 |
+
##############################################################################
|
1210 |
+
|
1211 |
+
class BaseBackend:
|
1212 |
+
"""Base class for all backends. A backend represents the plotting library,
|
1213 |
+
which implements the necessary functionalities in order to use SymPy
|
1214 |
+
plotting functions.
|
1215 |
+
|
1216 |
+
How the plotting module works:
|
1217 |
+
|
1218 |
+
1. Whenever a plotting function is called, the provided expressions are
|
1219 |
+
processed and a list of instances of the :class:`BaseSeries` class is
|
1220 |
+
created, containing the necessary information to plot the expressions
|
1221 |
+
(e.g. the expression, ranges, series name, ...). Eventually, these
|
1222 |
+
objects will generate the numerical data to be plotted.
|
1223 |
+
2. A :class:`~.Plot` object is instantiated, which stores the list of
|
1224 |
+
series and the main attributes of the plot (e.g. axis labels, title, ...).
|
1225 |
+
3. When the ``show`` command is executed, a new backend is instantiated,
|
1226 |
+
which loops through each series object to generate and plot the
|
1227 |
+
numerical data. The backend is also going to set the axis labels, title,
|
1228 |
+
..., according to the values stored in the Plot instance.
|
1229 |
+
|
1230 |
+
The backend should check if it supports the data series that it is given
|
1231 |
+
(e.g. :class:`TextBackend` supports only :class:`LineOver1DRangeSeries`).
|
1232 |
+
|
1233 |
+
It is the backend responsibility to know how to use the class of data series
|
1234 |
+
that it's given. Note that the current implementation of the ``*Series``
|
1235 |
+
classes is "matplotlib-centric": the numerical data returned by the
|
1236 |
+
``get_points`` and ``get_meshes`` methods is meant to be used directly by
|
1237 |
+
Matplotlib. Therefore, the new backend will have to pre-process the
|
1238 |
+
numerical data to make it compatible with the chosen plotting library.
|
1239 |
+
Keep in mind that future SymPy versions may improve the ``*Series`` classes
|
1240 |
+
in order to return numerical data "non-matplotlib-centric", hence if you code
|
1241 |
+
a new backend you have the responsibility to check if its working on each
|
1242 |
+
SymPy release.
|
1243 |
+
|
1244 |
+
Please explore the :class:`MatplotlibBackend` source code to understand how a
|
1245 |
+
backend should be coded.
|
1246 |
+
|
1247 |
+
Methods
|
1248 |
+
=======
|
1249 |
+
|
1250 |
+
In order to be used by SymPy plotting functions, a backend must implement
|
1251 |
+
the following methods:
|
1252 |
+
|
1253 |
+
* show(self): used to loop over the data series, generate the numerical
|
1254 |
+
data, plot it and set the axis labels, title, ...
|
1255 |
+
* save(self, path): used to save the current plot to the specified file
|
1256 |
+
path.
|
1257 |
+
* close(self): used to close the current plot backend (note: some plotting
|
1258 |
+
library does not support this functionality. In that case, just raise a
|
1259 |
+
warning).
|
1260 |
+
|
1261 |
+
See also
|
1262 |
+
========
|
1263 |
+
|
1264 |
+
MatplotlibBackend
|
1265 |
+
"""
|
1266 |
+
def __init__(self, parent):
|
1267 |
+
super().__init__()
|
1268 |
+
self.parent = parent
|
1269 |
+
|
1270 |
+
def show(self):
|
1271 |
+
raise NotImplementedError
|
1272 |
+
|
1273 |
+
def save(self, path):
|
1274 |
+
raise NotImplementedError
|
1275 |
+
|
1276 |
+
def close(self):
|
1277 |
+
raise NotImplementedError
|
1278 |
+
|
1279 |
+
|
1280 |
+
# Don't have to check for the success of importing matplotlib in each case;
|
1281 |
+
# we will only be using this backend if we can successfully import matploblib
|
1282 |
+
class MatplotlibBackend(BaseBackend):
|
1283 |
+
""" This class implements the functionalities to use Matplotlib with SymPy
|
1284 |
+
plotting functions.
|
1285 |
+
"""
|
1286 |
+
def __init__(self, parent):
|
1287 |
+
super().__init__(parent)
|
1288 |
+
self.matplotlib = import_module('matplotlib',
|
1289 |
+
import_kwargs={'fromlist': ['pyplot', 'cm', 'collections']},
|
1290 |
+
min_module_version='1.1.0', catch=(RuntimeError,))
|
1291 |
+
self.plt = self.matplotlib.pyplot
|
1292 |
+
self.cm = self.matplotlib.cm
|
1293 |
+
self.LineCollection = self.matplotlib.collections.LineCollection
|
1294 |
+
aspect = getattr(self.parent, 'aspect_ratio', 'auto')
|
1295 |
+
if aspect != 'auto':
|
1296 |
+
aspect = float(aspect[1]) / aspect[0]
|
1297 |
+
|
1298 |
+
if isinstance(self.parent, Plot):
|
1299 |
+
nrows, ncolumns = 1, 1
|
1300 |
+
series_list = [self.parent._series]
|
1301 |
+
elif isinstance(self.parent, PlotGrid):
|
1302 |
+
nrows, ncolumns = self.parent.nrows, self.parent.ncolumns
|
1303 |
+
series_list = self.parent._series
|
1304 |
+
|
1305 |
+
self.ax = []
|
1306 |
+
self.fig = self.plt.figure(figsize=parent.size)
|
1307 |
+
|
1308 |
+
for i, series in enumerate(series_list):
|
1309 |
+
are_3D = [s.is_3D for s in series]
|
1310 |
+
|
1311 |
+
if any(are_3D) and not all(are_3D):
|
1312 |
+
raise ValueError('The matplotlib backend cannot mix 2D and 3D.')
|
1313 |
+
elif all(are_3D):
|
1314 |
+
# mpl_toolkits.mplot3d is necessary for
|
1315 |
+
# projection='3d'
|
1316 |
+
mpl_toolkits = import_module('mpl_toolkits', # noqa
|
1317 |
+
import_kwargs={'fromlist': ['mplot3d']})
|
1318 |
+
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, projection='3d', aspect=aspect))
|
1319 |
+
|
1320 |
+
elif not any(are_3D):
|
1321 |
+
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, aspect=aspect))
|
1322 |
+
self.ax[i].spines['left'].set_position('zero')
|
1323 |
+
self.ax[i].spines['right'].set_color('none')
|
1324 |
+
self.ax[i].spines['bottom'].set_position('zero')
|
1325 |
+
self.ax[i].spines['top'].set_color('none')
|
1326 |
+
self.ax[i].xaxis.set_ticks_position('bottom')
|
1327 |
+
self.ax[i].yaxis.set_ticks_position('left')
|
1328 |
+
|
1329 |
+
@staticmethod
|
1330 |
+
def get_segments(x, y, z=None):
|
1331 |
+
""" Convert two list of coordinates to a list of segments to be used
|
1332 |
+
with Matplotlib's :external:class:`~matplotlib.collections.LineCollection`.
|
1333 |
+
|
1334 |
+
Parameters
|
1335 |
+
==========
|
1336 |
+
x : list
|
1337 |
+
List of x-coordinates
|
1338 |
+
|
1339 |
+
y : list
|
1340 |
+
List of y-coordinates
|
1341 |
+
|
1342 |
+
z : list
|
1343 |
+
List of z-coordinates for a 3D line.
|
1344 |
+
"""
|
1345 |
+
np = import_module('numpy')
|
1346 |
+
if z is not None:
|
1347 |
+
dim = 3
|
1348 |
+
points = (x, y, z)
|
1349 |
+
else:
|
1350 |
+
dim = 2
|
1351 |
+
points = (x, y)
|
1352 |
+
points = np.ma.array(points).T.reshape(-1, 1, dim)
|
1353 |
+
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
|
1354 |
+
|
1355 |
+
def _process_series(self, series, ax, parent):
|
1356 |
+
np = import_module('numpy')
|
1357 |
+
mpl_toolkits = import_module(
|
1358 |
+
'mpl_toolkits', import_kwargs={'fromlist': ['mplot3d']})
|
1359 |
+
|
1360 |
+
# XXX Workaround for matplotlib issue
|
1361 |
+
# https://github.com/matplotlib/matplotlib/issues/17130
|
1362 |
+
xlims, ylims, zlims = [], [], []
|
1363 |
+
|
1364 |
+
for s in series:
|
1365 |
+
# Create the collections
|
1366 |
+
if s.is_2Dline:
|
1367 |
+
x, y = s.get_data()
|
1368 |
+
if (isinstance(s.line_color, (int, float)) or
|
1369 |
+
callable(s.line_color)):
|
1370 |
+
segments = self.get_segments(x, y)
|
1371 |
+
collection = self.LineCollection(segments)
|
1372 |
+
collection.set_array(s.get_color_array())
|
1373 |
+
ax.add_collection(collection)
|
1374 |
+
else:
|
1375 |
+
lbl = _str_or_latex(s.label)
|
1376 |
+
line, = ax.plot(x, y, label=lbl, color=s.line_color)
|
1377 |
+
elif s.is_contour:
|
1378 |
+
ax.contour(*s.get_meshes())
|
1379 |
+
elif s.is_3Dline:
|
1380 |
+
x, y, z = s.get_data()
|
1381 |
+
if (isinstance(s.line_color, (int, float)) or
|
1382 |
+
callable(s.line_color)):
|
1383 |
+
art3d = mpl_toolkits.mplot3d.art3d
|
1384 |
+
segments = self.get_segments(x, y, z)
|
1385 |
+
collection = art3d.Line3DCollection(segments)
|
1386 |
+
collection.set_array(s.get_color_array())
|
1387 |
+
ax.add_collection(collection)
|
1388 |
+
else:
|
1389 |
+
lbl = _str_or_latex(s.label)
|
1390 |
+
ax.plot(x, y, z, label=lbl, color=s.line_color)
|
1391 |
+
|
1392 |
+
xlims.append(s._xlim)
|
1393 |
+
ylims.append(s._ylim)
|
1394 |
+
zlims.append(s._zlim)
|
1395 |
+
elif s.is_3Dsurface:
|
1396 |
+
x, y, z = s.get_meshes()
|
1397 |
+
collection = ax.plot_surface(x, y, z,
|
1398 |
+
cmap=getattr(self.cm, 'viridis', self.cm.jet),
|
1399 |
+
rstride=1, cstride=1, linewidth=0.1)
|
1400 |
+
if isinstance(s.surface_color, (float, int, Callable)):
|
1401 |
+
color_array = s.get_color_array()
|
1402 |
+
color_array = color_array.reshape(color_array.size)
|
1403 |
+
collection.set_array(color_array)
|
1404 |
+
else:
|
1405 |
+
collection.set_color(s.surface_color)
|
1406 |
+
|
1407 |
+
xlims.append(s._xlim)
|
1408 |
+
ylims.append(s._ylim)
|
1409 |
+
zlims.append(s._zlim)
|
1410 |
+
elif s.is_implicit:
|
1411 |
+
points = s.get_raster()
|
1412 |
+
if len(points) == 2:
|
1413 |
+
# interval math plotting
|
1414 |
+
x, y = _matplotlib_list(points[0])
|
1415 |
+
ax.fill(x, y, facecolor=s.line_color, edgecolor='None')
|
1416 |
+
else:
|
1417 |
+
# use contourf or contour depending on whether it is
|
1418 |
+
# an inequality or equality.
|
1419 |
+
# XXX: ``contour`` plots multiple lines. Should be fixed.
|
1420 |
+
ListedColormap = self.matplotlib.colors.ListedColormap
|
1421 |
+
colormap = ListedColormap(["white", s.line_color])
|
1422 |
+
xarray, yarray, zarray, plot_type = points
|
1423 |
+
if plot_type == 'contour':
|
1424 |
+
ax.contour(xarray, yarray, zarray, cmap=colormap)
|
1425 |
+
else:
|
1426 |
+
ax.contourf(xarray, yarray, zarray, cmap=colormap)
|
1427 |
+
else:
|
1428 |
+
raise NotImplementedError(
|
1429 |
+
'{} is not supported in the SymPy plotting module '
|
1430 |
+
'with matplotlib backend. Please report this issue.'
|
1431 |
+
.format(ax))
|
1432 |
+
|
1433 |
+
Axes3D = mpl_toolkits.mplot3d.Axes3D
|
1434 |
+
if not isinstance(ax, Axes3D):
|
1435 |
+
ax.autoscale_view(
|
1436 |
+
scalex=ax.get_autoscalex_on(),
|
1437 |
+
scaley=ax.get_autoscaley_on())
|
1438 |
+
else:
|
1439 |
+
# XXX Workaround for matplotlib issue
|
1440 |
+
# https://github.com/matplotlib/matplotlib/issues/17130
|
1441 |
+
if xlims:
|
1442 |
+
xlims = np.array(xlims)
|
1443 |
+
xlim = (np.amin(xlims[:, 0]), np.amax(xlims[:, 1]))
|
1444 |
+
ax.set_xlim(xlim)
|
1445 |
+
else:
|
1446 |
+
ax.set_xlim([0, 1])
|
1447 |
+
|
1448 |
+
if ylims:
|
1449 |
+
ylims = np.array(ylims)
|
1450 |
+
ylim = (np.amin(ylims[:, 0]), np.amax(ylims[:, 1]))
|
1451 |
+
ax.set_ylim(ylim)
|
1452 |
+
else:
|
1453 |
+
ax.set_ylim([0, 1])
|
1454 |
+
|
1455 |
+
if zlims:
|
1456 |
+
zlims = np.array(zlims)
|
1457 |
+
zlim = (np.amin(zlims[:, 0]), np.amax(zlims[:, 1]))
|
1458 |
+
ax.set_zlim(zlim)
|
1459 |
+
else:
|
1460 |
+
ax.set_zlim([0, 1])
|
1461 |
+
|
1462 |
+
# Set global options.
|
1463 |
+
# TODO The 3D stuff
|
1464 |
+
# XXX The order of those is important.
|
1465 |
+
if parent.xscale and not isinstance(ax, Axes3D):
|
1466 |
+
ax.set_xscale(parent.xscale)
|
1467 |
+
if parent.yscale and not isinstance(ax, Axes3D):
|
1468 |
+
ax.set_yscale(parent.yscale)
|
1469 |
+
if not isinstance(ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check
|
1470 |
+
ax.set_autoscale_on(parent.autoscale)
|
1471 |
+
if parent.axis_center:
|
1472 |
+
val = parent.axis_center
|
1473 |
+
if isinstance(ax, Axes3D):
|
1474 |
+
pass
|
1475 |
+
elif val == 'center':
|
1476 |
+
ax.spines['left'].set_position('center')
|
1477 |
+
ax.spines['bottom'].set_position('center')
|
1478 |
+
elif val == 'auto':
|
1479 |
+
xl, xh = ax.get_xlim()
|
1480 |
+
yl, yh = ax.get_ylim()
|
1481 |
+
pos_left = ('data', 0) if xl*xh <= 0 else 'center'
|
1482 |
+
pos_bottom = ('data', 0) if yl*yh <= 0 else 'center'
|
1483 |
+
ax.spines['left'].set_position(pos_left)
|
1484 |
+
ax.spines['bottom'].set_position(pos_bottom)
|
1485 |
+
else:
|
1486 |
+
ax.spines['left'].set_position(('data', val[0]))
|
1487 |
+
ax.spines['bottom'].set_position(('data', val[1]))
|
1488 |
+
if not parent.axis:
|
1489 |
+
ax.set_axis_off()
|
1490 |
+
if parent.legend:
|
1491 |
+
if ax.legend():
|
1492 |
+
ax.legend_.set_visible(parent.legend)
|
1493 |
+
if parent.margin:
|
1494 |
+
ax.set_xmargin(parent.margin)
|
1495 |
+
ax.set_ymargin(parent.margin)
|
1496 |
+
if parent.title:
|
1497 |
+
ax.set_title(parent.title)
|
1498 |
+
if parent.xlabel:
|
1499 |
+
xlbl = _str_or_latex(parent.xlabel)
|
1500 |
+
ax.set_xlabel(xlbl, position=(1, 0))
|
1501 |
+
if parent.ylabel:
|
1502 |
+
ylbl = _str_or_latex(parent.ylabel)
|
1503 |
+
ax.set_ylabel(ylbl, position=(0, 1))
|
1504 |
+
if isinstance(ax, Axes3D) and parent.zlabel:
|
1505 |
+
zlbl = _str_or_latex(parent.zlabel)
|
1506 |
+
ax.set_zlabel(zlbl, position=(0, 1))
|
1507 |
+
if parent.annotations:
|
1508 |
+
for a in parent.annotations:
|
1509 |
+
ax.annotate(**a)
|
1510 |
+
if parent.markers:
|
1511 |
+
for marker in parent.markers:
|
1512 |
+
# make a copy of the marker dictionary
|
1513 |
+
# so that it doesn't get altered
|
1514 |
+
m = marker.copy()
|
1515 |
+
args = m.pop('args')
|
1516 |
+
ax.plot(*args, **m)
|
1517 |
+
if parent.rectangles:
|
1518 |
+
for r in parent.rectangles:
|
1519 |
+
rect = self.matplotlib.patches.Rectangle(**r)
|
1520 |
+
ax.add_patch(rect)
|
1521 |
+
if parent.fill:
|
1522 |
+
ax.fill_between(**parent.fill)
|
1523 |
+
|
1524 |
+
# xlim and ylim should always be set at last so that plot limits
|
1525 |
+
# doesn't get altered during the process.
|
1526 |
+
if parent.xlim:
|
1527 |
+
ax.set_xlim(parent.xlim)
|
1528 |
+
if parent.ylim:
|
1529 |
+
ax.set_ylim(parent.ylim)
|
1530 |
+
|
1531 |
+
|
1532 |
+
def process_series(self):
|
1533 |
+
"""
|
1534 |
+
Iterates over every ``Plot`` object and further calls
|
1535 |
+
_process_series()
|
1536 |
+
"""
|
1537 |
+
parent = self.parent
|
1538 |
+
if isinstance(parent, Plot):
|
1539 |
+
series_list = [parent._series]
|
1540 |
+
else:
|
1541 |
+
series_list = parent._series
|
1542 |
+
|
1543 |
+
for i, (series, ax) in enumerate(zip(series_list, self.ax)):
|
1544 |
+
if isinstance(self.parent, PlotGrid):
|
1545 |
+
parent = self.parent.args[i]
|
1546 |
+
self._process_series(series, ax, parent)
|
1547 |
+
|
1548 |
+
def show(self):
|
1549 |
+
self.process_series()
|
1550 |
+
#TODO after fixing https://github.com/ipython/ipython/issues/1255
|
1551 |
+
# you can uncomment the next line and remove the pyplot.show() call
|
1552 |
+
#self.fig.show()
|
1553 |
+
if _show:
|
1554 |
+
self.fig.tight_layout()
|
1555 |
+
self.plt.show()
|
1556 |
+
else:
|
1557 |
+
self.close()
|
1558 |
+
|
1559 |
+
def save(self, path):
|
1560 |
+
self.process_series()
|
1561 |
+
self.fig.savefig(path)
|
1562 |
+
|
1563 |
+
def close(self):
|
1564 |
+
self.plt.close(self.fig)
|
1565 |
+
|
1566 |
+
|
1567 |
+
class TextBackend(BaseBackend):
|
1568 |
+
def __init__(self, parent):
|
1569 |
+
super().__init__(parent)
|
1570 |
+
|
1571 |
+
def show(self):
|
1572 |
+
if not _show:
|
1573 |
+
return
|
1574 |
+
if len(self.parent._series) != 1:
|
1575 |
+
raise ValueError(
|
1576 |
+
'The TextBackend supports only one graph per Plot.')
|
1577 |
+
elif not isinstance(self.parent._series[0], LineOver1DRangeSeries):
|
1578 |
+
raise ValueError(
|
1579 |
+
'The TextBackend supports only expressions over a 1D range')
|
1580 |
+
else:
|
1581 |
+
ser = self.parent._series[0]
|
1582 |
+
textplot(ser.expr, ser.start, ser.end)
|
1583 |
+
|
1584 |
+
def close(self):
|
1585 |
+
pass
|
1586 |
+
|
1587 |
+
|
1588 |
+
class DefaultBackend(BaseBackend):
|
1589 |
+
def __new__(cls, parent):
|
1590 |
+
matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,))
|
1591 |
+
if matplotlib:
|
1592 |
+
return MatplotlibBackend(parent)
|
1593 |
+
else:
|
1594 |
+
return TextBackend(parent)
|
1595 |
+
|
1596 |
+
|
1597 |
+
plot_backends = {
|
1598 |
+
'matplotlib': MatplotlibBackend,
|
1599 |
+
'text': TextBackend,
|
1600 |
+
'default': DefaultBackend
|
1601 |
+
}
|
1602 |
+
|
1603 |
+
|
1604 |
+
##############################################################################
|
1605 |
+
# Finding the centers of line segments or mesh faces
|
1606 |
+
##############################################################################
|
1607 |
+
|
1608 |
+
def centers_of_segments(array):
|
1609 |
+
np = import_module('numpy')
|
1610 |
+
return np.mean(np.vstack((array[:-1], array[1:])), 0)
|
1611 |
+
|
1612 |
+
|
1613 |
+
def centers_of_faces(array):
|
1614 |
+
np = import_module('numpy')
|
1615 |
+
return np.mean(np.dstack((array[:-1, :-1],
|
1616 |
+
array[1:, :-1],
|
1617 |
+
array[:-1, 1:],
|
1618 |
+
array[:-1, :-1],
|
1619 |
+
)), 2)
|
1620 |
+
|
1621 |
+
|
1622 |
+
def flat(x, y, z, eps=1e-3):
|
1623 |
+
"""Checks whether three points are almost collinear"""
|
1624 |
+
np = import_module('numpy')
|
1625 |
+
# Workaround plotting piecewise (#8577):
|
1626 |
+
# workaround for `lambdify` in `.experimental_lambdify` fails
|
1627 |
+
# to return numerical values in some cases. Lower-level fix
|
1628 |
+
# in `lambdify` is possible.
|
1629 |
+
vector_a = (x - y).astype(np.float64)
|
1630 |
+
vector_b = (z - y).astype(np.float64)
|
1631 |
+
dot_product = np.dot(vector_a, vector_b)
|
1632 |
+
vector_a_norm = np.linalg.norm(vector_a)
|
1633 |
+
vector_b_norm = np.linalg.norm(vector_b)
|
1634 |
+
cos_theta = dot_product / (vector_a_norm * vector_b_norm)
|
1635 |
+
return abs(cos_theta + 1) < eps
|
1636 |
+
|
1637 |
+
|
1638 |
+
def _matplotlib_list(interval_list):
|
1639 |
+
"""
|
1640 |
+
Returns lists for matplotlib ``fill`` command from a list of bounding
|
1641 |
+
rectangular intervals
|
1642 |
+
"""
|
1643 |
+
xlist = []
|
1644 |
+
ylist = []
|
1645 |
+
if len(interval_list):
|
1646 |
+
for intervals in interval_list:
|
1647 |
+
intervalx = intervals[0]
|
1648 |
+
intervaly = intervals[1]
|
1649 |
+
xlist.extend([intervalx.start, intervalx.start,
|
1650 |
+
intervalx.end, intervalx.end, None])
|
1651 |
+
ylist.extend([intervaly.start, intervaly.end,
|
1652 |
+
intervaly.end, intervaly.start, None])
|
1653 |
+
else:
|
1654 |
+
#XXX Ugly hack. Matplotlib does not accept empty lists for ``fill``
|
1655 |
+
xlist.extend((None, None, None, None))
|
1656 |
+
ylist.extend((None, None, None, None))
|
1657 |
+
return xlist, ylist
|
1658 |
+
|
1659 |
+
|
1660 |
+
####New API for plotting module ####
|
1661 |
+
|
1662 |
+
# TODO: Add color arrays for plots.
|
1663 |
+
# TODO: Add more plotting options for 3d plots.
|
1664 |
+
# TODO: Adaptive sampling for 3D plots.
|
1665 |
+
|
1666 |
+
def plot(*args, show=True, **kwargs):
|
1667 |
+
"""Plots a function of a single variable as a curve.
|
1668 |
+
|
1669 |
+
Parameters
|
1670 |
+
==========
|
1671 |
+
|
1672 |
+
args :
|
1673 |
+
The first argument is the expression representing the function
|
1674 |
+
of single variable to be plotted.
|
1675 |
+
|
1676 |
+
The last argument is a 3-tuple denoting the range of the free
|
1677 |
+
variable. e.g. ``(x, 0, 5)``
|
1678 |
+
|
1679 |
+
Typical usage examples are in the following:
|
1680 |
+
|
1681 |
+
- Plotting a single expression with a single range.
|
1682 |
+
``plot(expr, range, **kwargs)``
|
1683 |
+
- Plotting a single expression with the default range (-10, 10).
|
1684 |
+
``plot(expr, **kwargs)``
|
1685 |
+
- Plotting multiple expressions with a single range.
|
1686 |
+
``plot(expr1, expr2, ..., range, **kwargs)``
|
1687 |
+
- Plotting multiple expressions with multiple ranges.
|
1688 |
+
``plot((expr1, range1), (expr2, range2), ..., **kwargs)``
|
1689 |
+
|
1690 |
+
It is best practice to specify range explicitly because default
|
1691 |
+
range may change in the future if a more advanced default range
|
1692 |
+
detection algorithm is implemented.
|
1693 |
+
|
1694 |
+
show : bool, optional
|
1695 |
+
The default value is set to ``True``. Set show to ``False`` and
|
1696 |
+
the function will not display the plot. The returned instance of
|
1697 |
+
the ``Plot`` class can then be used to save or display the plot
|
1698 |
+
by calling the ``save()`` and ``show()`` methods respectively.
|
1699 |
+
|
1700 |
+
line_color : string, or float, or function, optional
|
1701 |
+
Specifies the color for the plot.
|
1702 |
+
See ``Plot`` to see how to set color for the plots.
|
1703 |
+
Note that by setting ``line_color``, it would be applied simultaneously
|
1704 |
+
to all the series.
|
1705 |
+
|
1706 |
+
title : str, optional
|
1707 |
+
Title of the plot. It is set to the latex representation of
|
1708 |
+
the expression, if the plot has only one expression.
|
1709 |
+
|
1710 |
+
label : str, optional
|
1711 |
+
The label of the expression in the plot. It will be used when
|
1712 |
+
called with ``legend``. Default is the name of the expression.
|
1713 |
+
e.g. ``sin(x)``
|
1714 |
+
|
1715 |
+
xlabel : str or expression, optional
|
1716 |
+
Label for the x-axis.
|
1717 |
+
|
1718 |
+
ylabel : str or expression, optional
|
1719 |
+
Label for the y-axis.
|
1720 |
+
|
1721 |
+
xscale : 'linear' or 'log', optional
|
1722 |
+
Sets the scaling of the x-axis.
|
1723 |
+
|
1724 |
+
yscale : 'linear' or 'log', optional
|
1725 |
+
Sets the scaling of the y-axis.
|
1726 |
+
|
1727 |
+
axis_center : (float, float), optional
|
1728 |
+
Tuple of two floats denoting the coordinates of the center or
|
1729 |
+
{'center', 'auto'}
|
1730 |
+
|
1731 |
+
xlim : (float, float), optional
|
1732 |
+
Denotes the x-axis limits, ``(min, max)```.
|
1733 |
+
|
1734 |
+
ylim : (float, float), optional
|
1735 |
+
Denotes the y-axis limits, ``(min, max)```.
|
1736 |
+
|
1737 |
+
annotations : list, optional
|
1738 |
+
A list of dictionaries specifying the type of annotation
|
1739 |
+
required. The keys in the dictionary should be equivalent
|
1740 |
+
to the arguments of the :external:mod:`matplotlib`'s
|
1741 |
+
:external:meth:`~matplotlib.axes.Axes.annotate` method.
|
1742 |
+
|
1743 |
+
markers : list, optional
|
1744 |
+
A list of dictionaries specifying the type the markers required.
|
1745 |
+
The keys in the dictionary should be equivalent to the arguments
|
1746 |
+
of the :external:mod:`matplotlib`'s :external:func:`~matplotlib.pyplot.plot()` function
|
1747 |
+
along with the marker related keyworded arguments.
|
1748 |
+
|
1749 |
+
rectangles : list, optional
|
1750 |
+
A list of dictionaries specifying the dimensions of the
|
1751 |
+
rectangles to be plotted. The keys in the dictionary should be
|
1752 |
+
equivalent to the arguments of the :external:mod:`matplotlib`'s
|
1753 |
+
:external:class:`~matplotlib.patches.Rectangle` class.
|
1754 |
+
|
1755 |
+
fill : dict, optional
|
1756 |
+
A dictionary specifying the type of color filling required in
|
1757 |
+
the plot. The keys in the dictionary should be equivalent to the
|
1758 |
+
arguments of the :external:mod:`matplotlib`'s
|
1759 |
+
:external:meth:`~matplotlib.axes.Axes.fill_between` method.
|
1760 |
+
|
1761 |
+
adaptive : bool, optional
|
1762 |
+
The default value is set to ``True``. Set adaptive to ``False``
|
1763 |
+
and specify ``nb_of_points`` if uniform sampling is required.
|
1764 |
+
|
1765 |
+
The plotting uses an adaptive algorithm which samples
|
1766 |
+
recursively to accurately plot. The adaptive algorithm uses a
|
1767 |
+
random point near the midpoint of two points that has to be
|
1768 |
+
further sampled. Hence the same plots can appear slightly
|
1769 |
+
different.
|
1770 |
+
|
1771 |
+
depth : int, optional
|
1772 |
+
Recursion depth of the adaptive algorithm. A depth of value
|
1773 |
+
`n` samples a maximum of `2^{n}` points.
|
1774 |
+
|
1775 |
+
If the ``adaptive`` flag is set to ``False``, this will be
|
1776 |
+
ignored.
|
1777 |
+
|
1778 |
+
nb_of_points : int, optional
|
1779 |
+
Used when the ``adaptive`` is set to ``False``. The function
|
1780 |
+
is uniformly sampled at ``nb_of_points`` number of points.
|
1781 |
+
|
1782 |
+
If the ``adaptive`` flag is set to ``True``, this will be
|
1783 |
+
ignored.
|
1784 |
+
|
1785 |
+
size : (float, float), optional
|
1786 |
+
A tuple in the form (width, height) in inches to specify the size of
|
1787 |
+
the overall figure. The default value is set to ``None``, meaning
|
1788 |
+
the size will be set by the default backend.
|
1789 |
+
|
1790 |
+
Examples
|
1791 |
+
========
|
1792 |
+
|
1793 |
+
.. plot::
|
1794 |
+
:context: close-figs
|
1795 |
+
:format: doctest
|
1796 |
+
:include-source: True
|
1797 |
+
|
1798 |
+
>>> from sympy import symbols
|
1799 |
+
>>> from sympy.plotting import plot
|
1800 |
+
>>> x = symbols('x')
|
1801 |
+
|
1802 |
+
Single Plot
|
1803 |
+
|
1804 |
+
.. plot::
|
1805 |
+
:context: close-figs
|
1806 |
+
:format: doctest
|
1807 |
+
:include-source: True
|
1808 |
+
|
1809 |
+
>>> plot(x**2, (x, -5, 5))
|
1810 |
+
Plot object containing:
|
1811 |
+
[0]: cartesian line: x**2 for x over (-5.0, 5.0)
|
1812 |
+
|
1813 |
+
Multiple plots with single range.
|
1814 |
+
|
1815 |
+
.. plot::
|
1816 |
+
:context: close-figs
|
1817 |
+
:format: doctest
|
1818 |
+
:include-source: True
|
1819 |
+
|
1820 |
+
>>> plot(x, x**2, x**3, (x, -5, 5))
|
1821 |
+
Plot object containing:
|
1822 |
+
[0]: cartesian line: x for x over (-5.0, 5.0)
|
1823 |
+
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
|
1824 |
+
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
|
1825 |
+
|
1826 |
+
Multiple plots with different ranges.
|
1827 |
+
|
1828 |
+
.. plot::
|
1829 |
+
:context: close-figs
|
1830 |
+
:format: doctest
|
1831 |
+
:include-source: True
|
1832 |
+
|
1833 |
+
>>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
|
1834 |
+
Plot object containing:
|
1835 |
+
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
|
1836 |
+
[1]: cartesian line: x for x over (-5.0, 5.0)
|
1837 |
+
|
1838 |
+
No adaptive sampling.
|
1839 |
+
|
1840 |
+
.. plot::
|
1841 |
+
:context: close-figs
|
1842 |
+
:format: doctest
|
1843 |
+
:include-source: True
|
1844 |
+
|
1845 |
+
>>> plot(x**2, adaptive=False, nb_of_points=400)
|
1846 |
+
Plot object containing:
|
1847 |
+
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
|
1848 |
+
|
1849 |
+
See Also
|
1850 |
+
========
|
1851 |
+
|
1852 |
+
Plot, LineOver1DRangeSeries
|
1853 |
+
|
1854 |
+
"""
|
1855 |
+
args = list(map(sympify, args))
|
1856 |
+
free = set()
|
1857 |
+
for a in args:
|
1858 |
+
if isinstance(a, Expr):
|
1859 |
+
free |= a.free_symbols
|
1860 |
+
if len(free) > 1:
|
1861 |
+
raise ValueError(
|
1862 |
+
'The same variable should be used in all '
|
1863 |
+
'univariate expressions being plotted.')
|
1864 |
+
x = free.pop() if free else Symbol('x')
|
1865 |
+
kwargs.setdefault('xlabel', x)
|
1866 |
+
kwargs.setdefault('ylabel', Function('f')(x))
|
1867 |
+
series = []
|
1868 |
+
plot_expr = check_arguments(args, 1, 1)
|
1869 |
+
series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr]
|
1870 |
+
|
1871 |
+
plots = Plot(*series, **kwargs)
|
1872 |
+
if show:
|
1873 |
+
plots.show()
|
1874 |
+
return plots
|
1875 |
+
|
1876 |
+
|
1877 |
+
def plot_parametric(*args, show=True, **kwargs):
|
1878 |
+
"""
|
1879 |
+
Plots a 2D parametric curve.
|
1880 |
+
|
1881 |
+
Parameters
|
1882 |
+
==========
|
1883 |
+
|
1884 |
+
args
|
1885 |
+
Common specifications are:
|
1886 |
+
|
1887 |
+
- Plotting a single parametric curve with a range
|
1888 |
+
``plot_parametric((expr_x, expr_y), range)``
|
1889 |
+
- Plotting multiple parametric curves with the same range
|
1890 |
+
``plot_parametric((expr_x, expr_y), ..., range)``
|
1891 |
+
- Plotting multiple parametric curves with different ranges
|
1892 |
+
``plot_parametric((expr_x, expr_y, range), ...)``
|
1893 |
+
|
1894 |
+
``expr_x`` is the expression representing $x$ component of the
|
1895 |
+
parametric function.
|
1896 |
+
|
1897 |
+
``expr_y`` is the expression representing $y$ component of the
|
1898 |
+
parametric function.
|
1899 |
+
|
1900 |
+
``range`` is a 3-tuple denoting the parameter symbol, start and
|
1901 |
+
stop. For example, ``(u, 0, 5)``.
|
1902 |
+
|
1903 |
+
If the range is not specified, then a default range of (-10, 10)
|
1904 |
+
is used.
|
1905 |
+
|
1906 |
+
However, if the arguments are specified as
|
1907 |
+
``(expr_x, expr_y, range), ...``, you must specify the ranges
|
1908 |
+
for each expressions manually.
|
1909 |
+
|
1910 |
+
Default range may change in the future if a more advanced
|
1911 |
+
algorithm is implemented.
|
1912 |
+
|
1913 |
+
adaptive : bool, optional
|
1914 |
+
Specifies whether to use the adaptive sampling or not.
|
1915 |
+
|
1916 |
+
The default value is set to ``True``. Set adaptive to ``False``
|
1917 |
+
and specify ``nb_of_points`` if uniform sampling is required.
|
1918 |
+
|
1919 |
+
depth : int, optional
|
1920 |
+
The recursion depth of the adaptive algorithm. A depth of
|
1921 |
+
value $n$ samples a maximum of $2^n$ points.
|
1922 |
+
|
1923 |
+
nb_of_points : int, optional
|
1924 |
+
Used when the ``adaptive`` flag is set to ``False``.
|
1925 |
+
|
1926 |
+
Specifies the number of the points used for the uniform
|
1927 |
+
sampling.
|
1928 |
+
|
1929 |
+
line_color : string, or float, or function, optional
|
1930 |
+
Specifies the color for the plot.
|
1931 |
+
See ``Plot`` to see how to set color for the plots.
|
1932 |
+
Note that by setting ``line_color``, it would be applied simultaneously
|
1933 |
+
to all the series.
|
1934 |
+
|
1935 |
+
label : str, optional
|
1936 |
+
The label of the expression in the plot. It will be used when
|
1937 |
+
called with ``legend``. Default is the name of the expression.
|
1938 |
+
e.g. ``sin(x)``
|
1939 |
+
|
1940 |
+
xlabel : str, optional
|
1941 |
+
Label for the x-axis.
|
1942 |
+
|
1943 |
+
ylabel : str, optional
|
1944 |
+
Label for the y-axis.
|
1945 |
+
|
1946 |
+
xscale : 'linear' or 'log', optional
|
1947 |
+
Sets the scaling of the x-axis.
|
1948 |
+
|
1949 |
+
yscale : 'linear' or 'log', optional
|
1950 |
+
Sets the scaling of the y-axis.
|
1951 |
+
|
1952 |
+
axis_center : (float, float), optional
|
1953 |
+
Tuple of two floats denoting the coordinates of the center or
|
1954 |
+
{'center', 'auto'}
|
1955 |
+
|
1956 |
+
xlim : (float, float), optional
|
1957 |
+
Denotes the x-axis limits, ``(min, max)```.
|
1958 |
+
|
1959 |
+
ylim : (float, float), optional
|
1960 |
+
Denotes the y-axis limits, ``(min, max)```.
|
1961 |
+
|
1962 |
+
size : (float, float), optional
|
1963 |
+
A tuple in the form (width, height) in inches to specify the size of
|
1964 |
+
the overall figure. The default value is set to ``None``, meaning
|
1965 |
+
the size will be set by the default backend.
|
1966 |
+
|
1967 |
+
Examples
|
1968 |
+
========
|
1969 |
+
|
1970 |
+
.. plot::
|
1971 |
+
:context: reset
|
1972 |
+
:format: doctest
|
1973 |
+
:include-source: True
|
1974 |
+
|
1975 |
+
>>> from sympy import plot_parametric, symbols, cos, sin
|
1976 |
+
>>> u = symbols('u')
|
1977 |
+
|
1978 |
+
A parametric plot with a single expression:
|
1979 |
+
|
1980 |
+
.. plot::
|
1981 |
+
:context: close-figs
|
1982 |
+
:format: doctest
|
1983 |
+
:include-source: True
|
1984 |
+
|
1985 |
+
>>> plot_parametric((cos(u), sin(u)), (u, -5, 5))
|
1986 |
+
Plot object containing:
|
1987 |
+
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
|
1988 |
+
|
1989 |
+
A parametric plot with multiple expressions with the same range:
|
1990 |
+
|
1991 |
+
.. plot::
|
1992 |
+
:context: close-figs
|
1993 |
+
:format: doctest
|
1994 |
+
:include-source: True
|
1995 |
+
|
1996 |
+
>>> plot_parametric((cos(u), sin(u)), (u, cos(u)), (u, -10, 10))
|
1997 |
+
Plot object containing:
|
1998 |
+
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0)
|
1999 |
+
[1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0)
|
2000 |
+
|
2001 |
+
A parametric plot with multiple expressions with different ranges
|
2002 |
+
for each curve:
|
2003 |
+
|
2004 |
+
.. plot::
|
2005 |
+
:context: close-figs
|
2006 |
+
:format: doctest
|
2007 |
+
:include-source: True
|
2008 |
+
|
2009 |
+
>>> plot_parametric((cos(u), sin(u), (u, -5, 5)),
|
2010 |
+
... (cos(u), u, (u, -5, 5)))
|
2011 |
+
Plot object containing:
|
2012 |
+
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
|
2013 |
+
[1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0)
|
2014 |
+
|
2015 |
+
Notes
|
2016 |
+
=====
|
2017 |
+
|
2018 |
+
The plotting uses an adaptive algorithm which samples recursively to
|
2019 |
+
accurately plot the curve. The adaptive algorithm uses a random point
|
2020 |
+
near the midpoint of two points that has to be further sampled.
|
2021 |
+
Hence, repeating the same plot command can give slightly different
|
2022 |
+
results because of the random sampling.
|
2023 |
+
|
2024 |
+
If there are multiple plots, then the same optional arguments are
|
2025 |
+
applied to all the plots drawn in the same canvas. If you want to
|
2026 |
+
set these options separately, you can index the returned ``Plot``
|
2027 |
+
object and set it.
|
2028 |
+
|
2029 |
+
For example, when you specify ``line_color`` once, it would be
|
2030 |
+
applied simultaneously to both series.
|
2031 |
+
|
2032 |
+
.. plot::
|
2033 |
+
:context: close-figs
|
2034 |
+
:format: doctest
|
2035 |
+
:include-source: True
|
2036 |
+
|
2037 |
+
>>> from sympy import pi
|
2038 |
+
>>> expr1 = (u, cos(2*pi*u)/2 + 1/2)
|
2039 |
+
>>> expr2 = (u, sin(2*pi*u)/2 + 1/2)
|
2040 |
+
>>> p = plot_parametric(expr1, expr2, (u, 0, 1), line_color='blue')
|
2041 |
+
|
2042 |
+
If you want to specify the line color for the specific series, you
|
2043 |
+
should index each item and apply the property manually.
|
2044 |
+
|
2045 |
+
.. plot::
|
2046 |
+
:context: close-figs
|
2047 |
+
:format: doctest
|
2048 |
+
:include-source: True
|
2049 |
+
|
2050 |
+
>>> p[0].line_color = 'red'
|
2051 |
+
>>> p.show()
|
2052 |
+
|
2053 |
+
See Also
|
2054 |
+
========
|
2055 |
+
|
2056 |
+
Plot, Parametric2DLineSeries
|
2057 |
+
"""
|
2058 |
+
args = list(map(sympify, args))
|
2059 |
+
series = []
|
2060 |
+
plot_expr = check_arguments(args, 2, 1)
|
2061 |
+
series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr]
|
2062 |
+
plots = Plot(*series, **kwargs)
|
2063 |
+
if show:
|
2064 |
+
plots.show()
|
2065 |
+
return plots
|
2066 |
+
|
2067 |
+
|
2068 |
+
def plot3d_parametric_line(*args, show=True, **kwargs):
|
2069 |
+
"""
|
2070 |
+
Plots a 3D parametric line plot.
|
2071 |
+
|
2072 |
+
Usage
|
2073 |
+
=====
|
2074 |
+
|
2075 |
+
Single plot:
|
2076 |
+
|
2077 |
+
``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)``
|
2078 |
+
|
2079 |
+
If the range is not specified, then a default range of (-10, 10) is used.
|
2080 |
+
|
2081 |
+
Multiple plots.
|
2082 |
+
|
2083 |
+
``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)``
|
2084 |
+
|
2085 |
+
Ranges have to be specified for every expression.
|
2086 |
+
|
2087 |
+
Default range may change in the future if a more advanced default range
|
2088 |
+
detection algorithm is implemented.
|
2089 |
+
|
2090 |
+
Arguments
|
2091 |
+
=========
|
2092 |
+
|
2093 |
+
expr_x : Expression representing the function along x.
|
2094 |
+
|
2095 |
+
expr_y : Expression representing the function along y.
|
2096 |
+
|
2097 |
+
expr_z : Expression representing the function along z.
|
2098 |
+
|
2099 |
+
range : (:class:`~.Symbol`, float, float)
|
2100 |
+
A 3-tuple denoting the range of the parameter variable, e.g., (u, 0, 5).
|
2101 |
+
|
2102 |
+
Keyword Arguments
|
2103 |
+
=================
|
2104 |
+
|
2105 |
+
Arguments for ``Parametric3DLineSeries`` class.
|
2106 |
+
|
2107 |
+
nb_of_points : The range is uniformly sampled at ``nb_of_points``
|
2108 |
+
number of points.
|
2109 |
+
|
2110 |
+
Aesthetics:
|
2111 |
+
|
2112 |
+
line_color : string, or float, or function, optional
|
2113 |
+
Specifies the color for the plot.
|
2114 |
+
See ``Plot`` to see how to set color for the plots.
|
2115 |
+
Note that by setting ``line_color``, it would be applied simultaneously
|
2116 |
+
to all the series.
|
2117 |
+
|
2118 |
+
label : str
|
2119 |
+
The label to the plot. It will be used when called with ``legend=True``
|
2120 |
+
to denote the function with the given label in the plot.
|
2121 |
+
|
2122 |
+
If there are multiple plots, then the same series arguments are applied to
|
2123 |
+
all the plots. If you want to set these options separately, you can index
|
2124 |
+
the returned ``Plot`` object and set it.
|
2125 |
+
|
2126 |
+
Arguments for ``Plot`` class.
|
2127 |
+
|
2128 |
+
title : str
|
2129 |
+
Title of the plot.
|
2130 |
+
|
2131 |
+
size : (float, float), optional
|
2132 |
+
A tuple in the form (width, height) in inches to specify the size of
|
2133 |
+
the overall figure. The default value is set to ``None``, meaning
|
2134 |
+
the size will be set by the default backend.
|
2135 |
+
|
2136 |
+
Examples
|
2137 |
+
========
|
2138 |
+
|
2139 |
+
.. plot::
|
2140 |
+
:context: reset
|
2141 |
+
:format: doctest
|
2142 |
+
:include-source: True
|
2143 |
+
|
2144 |
+
>>> from sympy import symbols, cos, sin
|
2145 |
+
>>> from sympy.plotting import plot3d_parametric_line
|
2146 |
+
>>> u = symbols('u')
|
2147 |
+
|
2148 |
+
Single plot.
|
2149 |
+
|
2150 |
+
.. plot::
|
2151 |
+
:context: close-figs
|
2152 |
+
:format: doctest
|
2153 |
+
:include-source: True
|
2154 |
+
|
2155 |
+
>>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5))
|
2156 |
+
Plot object containing:
|
2157 |
+
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
|
2158 |
+
|
2159 |
+
|
2160 |
+
Multiple plots.
|
2161 |
+
|
2162 |
+
.. plot::
|
2163 |
+
:context: close-figs
|
2164 |
+
:format: doctest
|
2165 |
+
:include-source: True
|
2166 |
+
|
2167 |
+
>>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)),
|
2168 |
+
... (sin(u), u**2, u, (u, -5, 5)))
|
2169 |
+
Plot object containing:
|
2170 |
+
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
|
2171 |
+
[1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0)
|
2172 |
+
|
2173 |
+
|
2174 |
+
See Also
|
2175 |
+
========
|
2176 |
+
|
2177 |
+
Plot, Parametric3DLineSeries
|
2178 |
+
|
2179 |
+
"""
|
2180 |
+
args = list(map(sympify, args))
|
2181 |
+
series = []
|
2182 |
+
plot_expr = check_arguments(args, 3, 1)
|
2183 |
+
series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr]
|
2184 |
+
kwargs.setdefault("xlabel", "x")
|
2185 |
+
kwargs.setdefault("ylabel", "y")
|
2186 |
+
kwargs.setdefault("zlabel", "z")
|
2187 |
+
plots = Plot(*series, **kwargs)
|
2188 |
+
if show:
|
2189 |
+
plots.show()
|
2190 |
+
return plots
|
2191 |
+
|
2192 |
+
|
2193 |
+
def plot3d(*args, show=True, **kwargs):
|
2194 |
+
"""
|
2195 |
+
Plots a 3D surface plot.
|
2196 |
+
|
2197 |
+
Usage
|
2198 |
+
=====
|
2199 |
+
|
2200 |
+
Single plot
|
2201 |
+
|
2202 |
+
``plot3d(expr, range_x, range_y, **kwargs)``
|
2203 |
+
|
2204 |
+
If the ranges are not specified, then a default range of (-10, 10) is used.
|
2205 |
+
|
2206 |
+
Multiple plot with the same range.
|
2207 |
+
|
2208 |
+
``plot3d(expr1, expr2, range_x, range_y, **kwargs)``
|
2209 |
+
|
2210 |
+
If the ranges are not specified, then a default range of (-10, 10) is used.
|
2211 |
+
|
2212 |
+
Multiple plots with different ranges.
|
2213 |
+
|
2214 |
+
``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
|
2215 |
+
|
2216 |
+
Ranges have to be specified for every expression.
|
2217 |
+
|
2218 |
+
Default range may change in the future if a more advanced default range
|
2219 |
+
detection algorithm is implemented.
|
2220 |
+
|
2221 |
+
Arguments
|
2222 |
+
=========
|
2223 |
+
|
2224 |
+
expr : Expression representing the function along x.
|
2225 |
+
|
2226 |
+
range_x : (:class:`~.Symbol`, float, float)
|
2227 |
+
A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5).
|
2228 |
+
|
2229 |
+
range_y : (:class:`~.Symbol`, float, float)
|
2230 |
+
A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5).
|
2231 |
+
|
2232 |
+
Keyword Arguments
|
2233 |
+
=================
|
2234 |
+
|
2235 |
+
Arguments for ``SurfaceOver2DRangeSeries`` class:
|
2236 |
+
|
2237 |
+
nb_of_points_x : int
|
2238 |
+
The x range is sampled uniformly at ``nb_of_points_x`` of points.
|
2239 |
+
|
2240 |
+
nb_of_points_y : int
|
2241 |
+
The y range is sampled uniformly at ``nb_of_points_y`` of points.
|
2242 |
+
|
2243 |
+
Aesthetics:
|
2244 |
+
|
2245 |
+
surface_color : Function which returns a float
|
2246 |
+
Specifies the color for the surface of the plot.
|
2247 |
+
See :class:`~.Plot` for more details.
|
2248 |
+
|
2249 |
+
If there are multiple plots, then the same series arguments are applied to
|
2250 |
+
all the plots. If you want to set these options separately, you can index
|
2251 |
+
the returned ``Plot`` object and set it.
|
2252 |
+
|
2253 |
+
Arguments for ``Plot`` class:
|
2254 |
+
|
2255 |
+
title : str
|
2256 |
+
Title of the plot.
|
2257 |
+
|
2258 |
+
size : (float, float), optional
|
2259 |
+
A tuple in the form (width, height) in inches to specify the size of the
|
2260 |
+
overall figure. The default value is set to ``None``, meaning the size will
|
2261 |
+
be set by the default backend.
|
2262 |
+
|
2263 |
+
Examples
|
2264 |
+
========
|
2265 |
+
|
2266 |
+
.. plot::
|
2267 |
+
:context: reset
|
2268 |
+
:format: doctest
|
2269 |
+
:include-source: True
|
2270 |
+
|
2271 |
+
>>> from sympy import symbols
|
2272 |
+
>>> from sympy.plotting import plot3d
|
2273 |
+
>>> x, y = symbols('x y')
|
2274 |
+
|
2275 |
+
Single plot
|
2276 |
+
|
2277 |
+
.. plot::
|
2278 |
+
:context: close-figs
|
2279 |
+
:format: doctest
|
2280 |
+
:include-source: True
|
2281 |
+
|
2282 |
+
>>> plot3d(x*y, (x, -5, 5), (y, -5, 5))
|
2283 |
+
Plot object containing:
|
2284 |
+
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
2285 |
+
|
2286 |
+
|
2287 |
+
Multiple plots with same range
|
2288 |
+
|
2289 |
+
.. plot::
|
2290 |
+
:context: close-figs
|
2291 |
+
:format: doctest
|
2292 |
+
:include-source: True
|
2293 |
+
|
2294 |
+
>>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5))
|
2295 |
+
Plot object containing:
|
2296 |
+
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
2297 |
+
[1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
2298 |
+
|
2299 |
+
|
2300 |
+
Multiple plots with different ranges.
|
2301 |
+
|
2302 |
+
.. plot::
|
2303 |
+
:context: close-figs
|
2304 |
+
:format: doctest
|
2305 |
+
:include-source: True
|
2306 |
+
|
2307 |
+
>>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)),
|
2308 |
+
... (x*y, (x, -3, 3), (y, -3, 3)))
|
2309 |
+
Plot object containing:
|
2310 |
+
[0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
2311 |
+
[1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0)
|
2312 |
+
|
2313 |
+
|
2314 |
+
See Also
|
2315 |
+
========
|
2316 |
+
|
2317 |
+
Plot, SurfaceOver2DRangeSeries
|
2318 |
+
|
2319 |
+
"""
|
2320 |
+
|
2321 |
+
args = list(map(sympify, args))
|
2322 |
+
series = []
|
2323 |
+
plot_expr = check_arguments(args, 1, 2)
|
2324 |
+
series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr]
|
2325 |
+
kwargs.setdefault("xlabel", series[0].var_x)
|
2326 |
+
kwargs.setdefault("ylabel", series[0].var_y)
|
2327 |
+
kwargs.setdefault("zlabel", Function('f')(series[0].var_x, series[0].var_y))
|
2328 |
+
plots = Plot(*series, **kwargs)
|
2329 |
+
if show:
|
2330 |
+
plots.show()
|
2331 |
+
return plots
|
2332 |
+
|
2333 |
+
|
2334 |
+
def plot3d_parametric_surface(*args, show=True, **kwargs):
|
2335 |
+
"""
|
2336 |
+
Plots a 3D parametric surface plot.
|
2337 |
+
|
2338 |
+
Explanation
|
2339 |
+
===========
|
2340 |
+
|
2341 |
+
Single plot.
|
2342 |
+
|
2343 |
+
``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)``
|
2344 |
+
|
2345 |
+
If the ranges is not specified, then a default range of (-10, 10) is used.
|
2346 |
+
|
2347 |
+
Multiple plots.
|
2348 |
+
|
2349 |
+
``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)``
|
2350 |
+
|
2351 |
+
Ranges have to be specified for every expression.
|
2352 |
+
|
2353 |
+
Default range may change in the future if a more advanced default range
|
2354 |
+
detection algorithm is implemented.
|
2355 |
+
|
2356 |
+
Arguments
|
2357 |
+
=========
|
2358 |
+
|
2359 |
+
expr_x : Expression representing the function along ``x``.
|
2360 |
+
|
2361 |
+
expr_y : Expression representing the function along ``y``.
|
2362 |
+
|
2363 |
+
expr_z : Expression representing the function along ``z``.
|
2364 |
+
|
2365 |
+
range_u : (:class:`~.Symbol`, float, float)
|
2366 |
+
A 3-tuple denoting the range of the u variable, e.g. (u, 0, 5).
|
2367 |
+
|
2368 |
+
range_v : (:class:`~.Symbol`, float, float)
|
2369 |
+
A 3-tuple denoting the range of the v variable, e.g. (v, 0, 5).
|
2370 |
+
|
2371 |
+
Keyword Arguments
|
2372 |
+
=================
|
2373 |
+
|
2374 |
+
Arguments for ``ParametricSurfaceSeries`` class:
|
2375 |
+
|
2376 |
+
nb_of_points_u : int
|
2377 |
+
The ``u`` range is sampled uniformly at ``nb_of_points_v`` of points
|
2378 |
+
|
2379 |
+
nb_of_points_y : int
|
2380 |
+
The ``v`` range is sampled uniformly at ``nb_of_points_y`` of points
|
2381 |
+
|
2382 |
+
Aesthetics:
|
2383 |
+
|
2384 |
+
surface_color : Function which returns a float
|
2385 |
+
Specifies the color for the surface of the plot. See
|
2386 |
+
:class:`~Plot` for more details.
|
2387 |
+
|
2388 |
+
If there are multiple plots, then the same series arguments are applied for
|
2389 |
+
all the plots. If you want to set these options separately, you can index
|
2390 |
+
the returned ``Plot`` object and set it.
|
2391 |
+
|
2392 |
+
|
2393 |
+
Arguments for ``Plot`` class:
|
2394 |
+
|
2395 |
+
title : str
|
2396 |
+
Title of the plot.
|
2397 |
+
|
2398 |
+
size : (float, float), optional
|
2399 |
+
A tuple in the form (width, height) in inches to specify the size of the
|
2400 |
+
overall figure. The default value is set to ``None``, meaning the size will
|
2401 |
+
be set by the default backend.
|
2402 |
+
|
2403 |
+
Examples
|
2404 |
+
========
|
2405 |
+
|
2406 |
+
.. plot::
|
2407 |
+
:context: reset
|
2408 |
+
:format: doctest
|
2409 |
+
:include-source: True
|
2410 |
+
|
2411 |
+
>>> from sympy import symbols, cos, sin
|
2412 |
+
>>> from sympy.plotting import plot3d_parametric_surface
|
2413 |
+
>>> u, v = symbols('u v')
|
2414 |
+
|
2415 |
+
Single plot.
|
2416 |
+
|
2417 |
+
.. plot::
|
2418 |
+
:context: close-figs
|
2419 |
+
:format: doctest
|
2420 |
+
:include-source: True
|
2421 |
+
|
2422 |
+
>>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v,
|
2423 |
+
... (u, -5, 5), (v, -5, 5))
|
2424 |
+
Plot object containing:
|
2425 |
+
[0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0)
|
2426 |
+
|
2427 |
+
|
2428 |
+
See Also
|
2429 |
+
========
|
2430 |
+
|
2431 |
+
Plot, ParametricSurfaceSeries
|
2432 |
+
|
2433 |
+
"""
|
2434 |
+
|
2435 |
+
args = list(map(sympify, args))
|
2436 |
+
series = []
|
2437 |
+
plot_expr = check_arguments(args, 3, 2)
|
2438 |
+
series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr]
|
2439 |
+
kwargs.setdefault("xlabel", "x")
|
2440 |
+
kwargs.setdefault("ylabel", "y")
|
2441 |
+
kwargs.setdefault("zlabel", "z")
|
2442 |
+
plots = Plot(*series, **kwargs)
|
2443 |
+
if show:
|
2444 |
+
plots.show()
|
2445 |
+
return plots
|
2446 |
+
|
2447 |
+
def plot_contour(*args, show=True, **kwargs):
|
2448 |
+
"""
|
2449 |
+
Draws contour plot of a function
|
2450 |
+
|
2451 |
+
Usage
|
2452 |
+
=====
|
2453 |
+
|
2454 |
+
Single plot
|
2455 |
+
|
2456 |
+
``plot_contour(expr, range_x, range_y, **kwargs)``
|
2457 |
+
|
2458 |
+
If the ranges are not specified, then a default range of (-10, 10) is used.
|
2459 |
+
|
2460 |
+
Multiple plot with the same range.
|
2461 |
+
|
2462 |
+
``plot_contour(expr1, expr2, range_x, range_y, **kwargs)``
|
2463 |
+
|
2464 |
+
If the ranges are not specified, then a default range of (-10, 10) is used.
|
2465 |
+
|
2466 |
+
Multiple plots with different ranges.
|
2467 |
+
|
2468 |
+
``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
|
2469 |
+
|
2470 |
+
Ranges have to be specified for every expression.
|
2471 |
+
|
2472 |
+
Default range may change in the future if a more advanced default range
|
2473 |
+
detection algorithm is implemented.
|
2474 |
+
|
2475 |
+
Arguments
|
2476 |
+
=========
|
2477 |
+
|
2478 |
+
expr : Expression representing the function along x.
|
2479 |
+
|
2480 |
+
range_x : (:class:`Symbol`, float, float)
|
2481 |
+
A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5).
|
2482 |
+
|
2483 |
+
range_y : (:class:`Symbol`, float, float)
|
2484 |
+
A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5).
|
2485 |
+
|
2486 |
+
Keyword Arguments
|
2487 |
+
=================
|
2488 |
+
|
2489 |
+
Arguments for ``ContourSeries`` class:
|
2490 |
+
|
2491 |
+
nb_of_points_x : int
|
2492 |
+
The x range is sampled uniformly at ``nb_of_points_x`` of points.
|
2493 |
+
|
2494 |
+
nb_of_points_y : int
|
2495 |
+
The y range is sampled uniformly at ``nb_of_points_y`` of points.
|
2496 |
+
|
2497 |
+
Aesthetics:
|
2498 |
+
|
2499 |
+
surface_color : Function which returns a float
|
2500 |
+
Specifies the color for the surface of the plot. See
|
2501 |
+
:class:`sympy.plotting.Plot` for more details.
|
2502 |
+
|
2503 |
+
If there are multiple plots, then the same series arguments are applied to
|
2504 |
+
all the plots. If you want to set these options separately, you can index
|
2505 |
+
the returned ``Plot`` object and set it.
|
2506 |
+
|
2507 |
+
Arguments for ``Plot`` class:
|
2508 |
+
|
2509 |
+
title : str
|
2510 |
+
Title of the plot.
|
2511 |
+
|
2512 |
+
size : (float, float), optional
|
2513 |
+
A tuple in the form (width, height) in inches to specify the size of
|
2514 |
+
the overall figure. The default value is set to ``None``, meaning
|
2515 |
+
the size will be set by the default backend.
|
2516 |
+
|
2517 |
+
See Also
|
2518 |
+
========
|
2519 |
+
|
2520 |
+
Plot, ContourSeries
|
2521 |
+
|
2522 |
+
"""
|
2523 |
+
|
2524 |
+
args = list(map(sympify, args))
|
2525 |
+
plot_expr = check_arguments(args, 1, 2)
|
2526 |
+
series = [ContourSeries(*arg) for arg in plot_expr]
|
2527 |
+
plot_contours = Plot(*series, **kwargs)
|
2528 |
+
if len(plot_expr[0].free_symbols) > 2:
|
2529 |
+
raise ValueError('Contour Plot cannot Plot for more than two variables.')
|
2530 |
+
if show:
|
2531 |
+
plot_contours.show()
|
2532 |
+
return plot_contours
|
2533 |
+
|
2534 |
+
def check_arguments(args, expr_len, nb_of_free_symbols):
|
2535 |
+
"""
|
2536 |
+
Checks the arguments and converts into tuples of the
|
2537 |
+
form (exprs, ranges).
|
2538 |
+
|
2539 |
+
Examples
|
2540 |
+
========
|
2541 |
+
|
2542 |
+
.. plot::
|
2543 |
+
:context: reset
|
2544 |
+
:format: doctest
|
2545 |
+
:include-source: True
|
2546 |
+
|
2547 |
+
>>> from sympy import cos, sin, symbols
|
2548 |
+
>>> from sympy.plotting.plot import check_arguments
|
2549 |
+
>>> x = symbols('x')
|
2550 |
+
>>> check_arguments([cos(x), sin(x)], 2, 1)
|
2551 |
+
[(cos(x), sin(x), (x, -10, 10))]
|
2552 |
+
|
2553 |
+
>>> check_arguments([x, x**2], 1, 1)
|
2554 |
+
[(x, (x, -10, 10)), (x**2, (x, -10, 10))]
|
2555 |
+
"""
|
2556 |
+
if not args:
|
2557 |
+
return []
|
2558 |
+
if expr_len > 1 and isinstance(args[0], Expr):
|
2559 |
+
# Multiple expressions same range.
|
2560 |
+
# The arguments are tuples when the expression length is
|
2561 |
+
# greater than 1.
|
2562 |
+
if len(args) < expr_len:
|
2563 |
+
raise ValueError("len(args) should not be less than expr_len")
|
2564 |
+
for i in range(len(args)):
|
2565 |
+
if isinstance(args[i], Tuple):
|
2566 |
+
break
|
2567 |
+
else:
|
2568 |
+
i = len(args) + 1
|
2569 |
+
|
2570 |
+
exprs = Tuple(*args[:i])
|
2571 |
+
free_symbols = list(set().union(*[e.free_symbols for e in exprs]))
|
2572 |
+
if len(args) == expr_len + nb_of_free_symbols:
|
2573 |
+
#Ranges given
|
2574 |
+
plots = [exprs + Tuple(*args[expr_len:])]
|
2575 |
+
else:
|
2576 |
+
default_range = Tuple(-10, 10)
|
2577 |
+
ranges = []
|
2578 |
+
for symbol in free_symbols:
|
2579 |
+
ranges.append(Tuple(symbol) + default_range)
|
2580 |
+
|
2581 |
+
for i in range(len(free_symbols) - nb_of_free_symbols):
|
2582 |
+
ranges.append(Tuple(Dummy()) + default_range)
|
2583 |
+
plots = [exprs + Tuple(*ranges)]
|
2584 |
+
return plots
|
2585 |
+
|
2586 |
+
if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and
|
2587 |
+
len(args[0]) == expr_len and
|
2588 |
+
expr_len != 3):
|
2589 |
+
# Cannot handle expressions with number of expression = 3. It is
|
2590 |
+
# not possible to differentiate between expressions and ranges.
|
2591 |
+
#Series of plots with same range
|
2592 |
+
for i in range(len(args)):
|
2593 |
+
if isinstance(args[i], Tuple) and len(args[i]) != expr_len:
|
2594 |
+
break
|
2595 |
+
if not isinstance(args[i], Tuple):
|
2596 |
+
args[i] = Tuple(args[i])
|
2597 |
+
else:
|
2598 |
+
i = len(args) + 1
|
2599 |
+
|
2600 |
+
exprs = args[:i]
|
2601 |
+
assert all(isinstance(e, Expr) for expr in exprs for e in expr)
|
2602 |
+
free_symbols = list(set().union(*[e.free_symbols for expr in exprs
|
2603 |
+
for e in expr]))
|
2604 |
+
|
2605 |
+
if len(free_symbols) > nb_of_free_symbols:
|
2606 |
+
raise ValueError("The number of free_symbols in the expression "
|
2607 |
+
"is greater than %d" % nb_of_free_symbols)
|
2608 |
+
if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple):
|
2609 |
+
ranges = Tuple(*list(args[
|
2610 |
+
i:i + nb_of_free_symbols]))
|
2611 |
+
plots = [expr + ranges for expr in exprs]
|
2612 |
+
return plots
|
2613 |
+
else:
|
2614 |
+
# Use default ranges.
|
2615 |
+
default_range = Tuple(-10, 10)
|
2616 |
+
ranges = []
|
2617 |
+
for symbol in free_symbols:
|
2618 |
+
ranges.append(Tuple(symbol) + default_range)
|
2619 |
+
|
2620 |
+
for i in range(nb_of_free_symbols - len(free_symbols)):
|
2621 |
+
ranges.append(Tuple(Dummy()) + default_range)
|
2622 |
+
ranges = Tuple(*ranges)
|
2623 |
+
plots = [expr + ranges for expr in exprs]
|
2624 |
+
return plots
|
2625 |
+
|
2626 |
+
elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols:
|
2627 |
+
# Multiple plots with different ranges.
|
2628 |
+
for arg in args:
|
2629 |
+
for i in range(expr_len):
|
2630 |
+
if not isinstance(arg[i], Expr):
|
2631 |
+
raise ValueError("Expected an expression, given %s" %
|
2632 |
+
str(arg[i]))
|
2633 |
+
for i in range(nb_of_free_symbols):
|
2634 |
+
if not len(arg[i + expr_len]) == 3:
|
2635 |
+
raise ValueError("The ranges should be a tuple of "
|
2636 |
+
"length 3, got %s" % str(arg[i + expr_len]))
|
2637 |
+
return args
|
venv/lib/python3.10/site-packages/sympy/plotting/plot_implicit.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implicit plotting module for SymPy.
|
2 |
+
|
3 |
+
Explanation
|
4 |
+
===========
|
5 |
+
|
6 |
+
The module implements a data series called ImplicitSeries which is used by
|
7 |
+
``Plot`` class to plot implicit plots for different backends. The module,
|
8 |
+
by default, implements plotting using interval arithmetic. It switches to a
|
9 |
+
fall back algorithm if the expression cannot be plotted using interval arithmetic.
|
10 |
+
It is also possible to specify to use the fall back algorithm for all plots.
|
11 |
+
|
12 |
+
Boolean combinations of expressions cannot be plotted by the fall back
|
13 |
+
algorithm.
|
14 |
+
|
15 |
+
See Also
|
16 |
+
========
|
17 |
+
|
18 |
+
sympy.plotting.plot
|
19 |
+
|
20 |
+
References
|
21 |
+
==========
|
22 |
+
|
23 |
+
.. [1] Jeffrey Allen Tupper. Reliable Two-Dimensional Graphing Methods for
|
24 |
+
Mathematical Formulae with Two Free Variables.
|
25 |
+
|
26 |
+
.. [2] Jeffrey Allen Tupper. Graphing Equations with Generalized Interval
|
27 |
+
Arithmetic. Master's thesis. University of Toronto, 1996
|
28 |
+
|
29 |
+
"""
|
30 |
+
|
31 |
+
|
32 |
+
from .plot import BaseSeries, Plot
|
33 |
+
from .experimental_lambdify import experimental_lambdify, vectorized_lambdify
|
34 |
+
from .intervalmath import interval
|
35 |
+
from sympy.core.relational import (Equality, GreaterThan, LessThan,
|
36 |
+
Relational, StrictLessThan, StrictGreaterThan)
|
37 |
+
from sympy.core.containers import Tuple
|
38 |
+
from sympy.core.relational import Eq
|
39 |
+
from sympy.core.symbol import (Dummy, Symbol)
|
40 |
+
from sympy.core.sympify import sympify
|
41 |
+
from sympy.external import import_module
|
42 |
+
from sympy.logic.boolalg import BooleanFunction
|
43 |
+
from sympy.polys.polyutils import _sort_gens
|
44 |
+
from sympy.utilities.decorator import doctest_depends_on
|
45 |
+
from sympy.utilities.iterables import flatten
|
46 |
+
import warnings
|
47 |
+
|
48 |
+
|
49 |
+
class ImplicitSeries(BaseSeries):
|
50 |
+
""" Representation for Implicit plot """
|
51 |
+
is_implicit = True
|
52 |
+
|
53 |
+
def __init__(self, expr, var_start_end_x, var_start_end_y,
|
54 |
+
has_equality, use_interval_math, depth, nb_of_points,
|
55 |
+
line_color):
|
56 |
+
super().__init__()
|
57 |
+
self.expr = sympify(expr)
|
58 |
+
self.label = self.expr
|
59 |
+
self.var_x = sympify(var_start_end_x[0])
|
60 |
+
self.start_x = float(var_start_end_x[1])
|
61 |
+
self.end_x = float(var_start_end_x[2])
|
62 |
+
self.var_y = sympify(var_start_end_y[0])
|
63 |
+
self.start_y = float(var_start_end_y[1])
|
64 |
+
self.end_y = float(var_start_end_y[2])
|
65 |
+
self.get_points = self.get_raster
|
66 |
+
self.has_equality = has_equality # If the expression has equality, i.e.
|
67 |
+
#Eq, Greaterthan, LessThan.
|
68 |
+
self.nb_of_points = nb_of_points
|
69 |
+
self.use_interval_math = use_interval_math
|
70 |
+
self.depth = 4 + depth
|
71 |
+
self.line_color = line_color
|
72 |
+
|
73 |
+
def __str__(self):
|
74 |
+
return ('Implicit equation: %s for '
|
75 |
+
'%s over %s and %s over %s') % (
|
76 |
+
str(self.expr),
|
77 |
+
str(self.var_x),
|
78 |
+
str((self.start_x, self.end_x)),
|
79 |
+
str(self.var_y),
|
80 |
+
str((self.start_y, self.end_y)))
|
81 |
+
|
82 |
+
def get_raster(self):
|
83 |
+
func = experimental_lambdify((self.var_x, self.var_y), self.expr,
|
84 |
+
use_interval=True)
|
85 |
+
xinterval = interval(self.start_x, self.end_x)
|
86 |
+
yinterval = interval(self.start_y, self.end_y)
|
87 |
+
try:
|
88 |
+
func(xinterval, yinterval)
|
89 |
+
except AttributeError:
|
90 |
+
# XXX: AttributeError("'list' object has no attribute 'is_real'")
|
91 |
+
# That needs fixing somehow - we shouldn't be catching
|
92 |
+
# AttributeError here.
|
93 |
+
if self.use_interval_math:
|
94 |
+
warnings.warn("Adaptive meshing could not be applied to the"
|
95 |
+
" expression. Using uniform meshing.", stacklevel=7)
|
96 |
+
self.use_interval_math = False
|
97 |
+
|
98 |
+
if self.use_interval_math:
|
99 |
+
return self._get_raster_interval(func)
|
100 |
+
else:
|
101 |
+
return self._get_meshes_grid()
|
102 |
+
|
103 |
+
def _get_raster_interval(self, func):
|
104 |
+
""" Uses interval math to adaptively mesh and obtain the plot"""
|
105 |
+
k = self.depth
|
106 |
+
interval_list = []
|
107 |
+
#Create initial 32 divisions
|
108 |
+
np = import_module('numpy')
|
109 |
+
xsample = np.linspace(self.start_x, self.end_x, 33)
|
110 |
+
ysample = np.linspace(self.start_y, self.end_y, 33)
|
111 |
+
|
112 |
+
#Add a small jitter so that there are no false positives for equality.
|
113 |
+
# Ex: y==x becomes True for x interval(1, 2) and y interval(1, 2)
|
114 |
+
#which will draw a rectangle.
|
115 |
+
jitterx = (np.random.rand(
|
116 |
+
len(xsample)) * 2 - 1) * (self.end_x - self.start_x) / 2**20
|
117 |
+
jittery = (np.random.rand(
|
118 |
+
len(ysample)) * 2 - 1) * (self.end_y - self.start_y) / 2**20
|
119 |
+
xsample += jitterx
|
120 |
+
ysample += jittery
|
121 |
+
|
122 |
+
xinter = [interval(x1, x2) for x1, x2 in zip(xsample[:-1],
|
123 |
+
xsample[1:])]
|
124 |
+
yinter = [interval(y1, y2) for y1, y2 in zip(ysample[:-1],
|
125 |
+
ysample[1:])]
|
126 |
+
interval_list = [[x, y] for x in xinter for y in yinter]
|
127 |
+
plot_list = []
|
128 |
+
|
129 |
+
#recursive call refinepixels which subdivides the intervals which are
|
130 |
+
#neither True nor False according to the expression.
|
131 |
+
def refine_pixels(interval_list):
|
132 |
+
""" Evaluates the intervals and subdivides the interval if the
|
133 |
+
expression is partially satisfied."""
|
134 |
+
temp_interval_list = []
|
135 |
+
plot_list = []
|
136 |
+
for intervals in interval_list:
|
137 |
+
|
138 |
+
#Convert the array indices to x and y values
|
139 |
+
intervalx = intervals[0]
|
140 |
+
intervaly = intervals[1]
|
141 |
+
func_eval = func(intervalx, intervaly)
|
142 |
+
#The expression is valid in the interval. Change the contour
|
143 |
+
#array values to 1.
|
144 |
+
if func_eval[1] is False or func_eval[0] is False:
|
145 |
+
pass
|
146 |
+
elif func_eval == (True, True):
|
147 |
+
plot_list.append([intervalx, intervaly])
|
148 |
+
elif func_eval[1] is None or func_eval[0] is None:
|
149 |
+
#Subdivide
|
150 |
+
avgx = intervalx.mid
|
151 |
+
avgy = intervaly.mid
|
152 |
+
a = interval(intervalx.start, avgx)
|
153 |
+
b = interval(avgx, intervalx.end)
|
154 |
+
c = interval(intervaly.start, avgy)
|
155 |
+
d = interval(avgy, intervaly.end)
|
156 |
+
temp_interval_list.append([a, c])
|
157 |
+
temp_interval_list.append([a, d])
|
158 |
+
temp_interval_list.append([b, c])
|
159 |
+
temp_interval_list.append([b, d])
|
160 |
+
return temp_interval_list, plot_list
|
161 |
+
|
162 |
+
while k >= 0 and len(interval_list):
|
163 |
+
interval_list, plot_list_temp = refine_pixels(interval_list)
|
164 |
+
plot_list.extend(plot_list_temp)
|
165 |
+
k = k - 1
|
166 |
+
#Check whether the expression represents an equality
|
167 |
+
#If it represents an equality, then none of the intervals
|
168 |
+
#would have satisfied the expression due to floating point
|
169 |
+
#differences. Add all the undecided values to the plot.
|
170 |
+
if self.has_equality:
|
171 |
+
for intervals in interval_list:
|
172 |
+
intervalx = intervals[0]
|
173 |
+
intervaly = intervals[1]
|
174 |
+
func_eval = func(intervalx, intervaly)
|
175 |
+
if func_eval[1] and func_eval[0] is not False:
|
176 |
+
plot_list.append([intervalx, intervaly])
|
177 |
+
return plot_list, 'fill'
|
178 |
+
|
179 |
+
def _get_meshes_grid(self):
|
180 |
+
"""Generates the mesh for generating a contour.
|
181 |
+
|
182 |
+
In the case of equality, ``contour`` function of matplotlib can
|
183 |
+
be used. In other cases, matplotlib's ``contourf`` is used.
|
184 |
+
"""
|
185 |
+
equal = False
|
186 |
+
if isinstance(self.expr, Equality):
|
187 |
+
expr = self.expr.lhs - self.expr.rhs
|
188 |
+
equal = True
|
189 |
+
|
190 |
+
elif isinstance(self.expr, (GreaterThan, StrictGreaterThan)):
|
191 |
+
expr = self.expr.lhs - self.expr.rhs
|
192 |
+
|
193 |
+
elif isinstance(self.expr, (LessThan, StrictLessThan)):
|
194 |
+
expr = self.expr.rhs - self.expr.lhs
|
195 |
+
else:
|
196 |
+
raise NotImplementedError("The expression is not supported for "
|
197 |
+
"plotting in uniform meshed plot.")
|
198 |
+
np = import_module('numpy')
|
199 |
+
xarray = np.linspace(self.start_x, self.end_x, self.nb_of_points)
|
200 |
+
yarray = np.linspace(self.start_y, self.end_y, self.nb_of_points)
|
201 |
+
x_grid, y_grid = np.meshgrid(xarray, yarray)
|
202 |
+
|
203 |
+
func = vectorized_lambdify((self.var_x, self.var_y), expr)
|
204 |
+
z_grid = func(x_grid, y_grid)
|
205 |
+
z_grid[np.ma.where(z_grid < 0)] = -1
|
206 |
+
z_grid[np.ma.where(z_grid > 0)] = 1
|
207 |
+
if equal:
|
208 |
+
return xarray, yarray, z_grid, 'contour'
|
209 |
+
else:
|
210 |
+
return xarray, yarray, z_grid, 'contourf'
|
211 |
+
|
212 |
+
|
213 |
+
@doctest_depends_on(modules=('matplotlib',))
|
214 |
+
def plot_implicit(expr, x_var=None, y_var=None, adaptive=True, depth=0,
|
215 |
+
points=300, line_color="blue", show=True, **kwargs):
|
216 |
+
"""A plot function to plot implicit equations / inequalities.
|
217 |
+
|
218 |
+
Arguments
|
219 |
+
=========
|
220 |
+
|
221 |
+
- expr : The equation / inequality that is to be plotted.
|
222 |
+
- x_var (optional) : symbol to plot on x-axis or tuple giving symbol
|
223 |
+
and range as ``(symbol, xmin, xmax)``
|
224 |
+
- y_var (optional) : symbol to plot on y-axis or tuple giving symbol
|
225 |
+
and range as ``(symbol, ymin, ymax)``
|
226 |
+
|
227 |
+
If neither ``x_var`` nor ``y_var`` are given then the free symbols in the
|
228 |
+
expression will be assigned in the order they are sorted.
|
229 |
+
|
230 |
+
The following keyword arguments can also be used:
|
231 |
+
|
232 |
+
- ``adaptive`` Boolean. The default value is set to True. It has to be
|
233 |
+
set to False if you want to use a mesh grid.
|
234 |
+
|
235 |
+
- ``depth`` integer. The depth of recursion for adaptive mesh grid.
|
236 |
+
Default value is 0. Takes value in the range (0, 4).
|
237 |
+
|
238 |
+
- ``points`` integer. The number of points if adaptive mesh grid is not
|
239 |
+
used. Default value is 300.
|
240 |
+
|
241 |
+
- ``show`` Boolean. Default value is True. If set to False, the plot will
|
242 |
+
not be shown. See ``Plot`` for further information.
|
243 |
+
|
244 |
+
- ``title`` string. The title for the plot.
|
245 |
+
|
246 |
+
- ``xlabel`` string. The label for the x-axis
|
247 |
+
|
248 |
+
- ``ylabel`` string. The label for the y-axis
|
249 |
+
|
250 |
+
Aesthetics options:
|
251 |
+
|
252 |
+
- ``line_color``: float or string. Specifies the color for the plot.
|
253 |
+
See ``Plot`` to see how to set color for the plots.
|
254 |
+
Default value is "Blue"
|
255 |
+
|
256 |
+
plot_implicit, by default, uses interval arithmetic to plot functions. If
|
257 |
+
the expression cannot be plotted using interval arithmetic, it defaults to
|
258 |
+
a generating a contour using a mesh grid of fixed number of points. By
|
259 |
+
setting adaptive to False, you can force plot_implicit to use the mesh
|
260 |
+
grid. The mesh grid method can be effective when adaptive plotting using
|
261 |
+
interval arithmetic, fails to plot with small line width.
|
262 |
+
|
263 |
+
Examples
|
264 |
+
========
|
265 |
+
|
266 |
+
Plot expressions:
|
267 |
+
|
268 |
+
.. plot::
|
269 |
+
:context: reset
|
270 |
+
:format: doctest
|
271 |
+
:include-source: True
|
272 |
+
|
273 |
+
>>> from sympy import plot_implicit, symbols, Eq, And
|
274 |
+
>>> x, y = symbols('x y')
|
275 |
+
|
276 |
+
Without any ranges for the symbols in the expression:
|
277 |
+
|
278 |
+
.. plot::
|
279 |
+
:context: close-figs
|
280 |
+
:format: doctest
|
281 |
+
:include-source: True
|
282 |
+
|
283 |
+
>>> p1 = plot_implicit(Eq(x**2 + y**2, 5))
|
284 |
+
|
285 |
+
With the range for the symbols:
|
286 |
+
|
287 |
+
.. plot::
|
288 |
+
:context: close-figs
|
289 |
+
:format: doctest
|
290 |
+
:include-source: True
|
291 |
+
|
292 |
+
>>> p2 = plot_implicit(
|
293 |
+
... Eq(x**2 + y**2, 3), (x, -3, 3), (y, -3, 3))
|
294 |
+
|
295 |
+
With depth of recursion as argument:
|
296 |
+
|
297 |
+
.. plot::
|
298 |
+
:context: close-figs
|
299 |
+
:format: doctest
|
300 |
+
:include-source: True
|
301 |
+
|
302 |
+
>>> p3 = plot_implicit(
|
303 |
+
... Eq(x**2 + y**2, 5), (x, -4, 4), (y, -4, 4), depth = 2)
|
304 |
+
|
305 |
+
Using mesh grid and not using adaptive meshing:
|
306 |
+
|
307 |
+
.. plot::
|
308 |
+
:context: close-figs
|
309 |
+
:format: doctest
|
310 |
+
:include-source: True
|
311 |
+
|
312 |
+
>>> p4 = plot_implicit(
|
313 |
+
... Eq(x**2 + y**2, 5), (x, -5, 5), (y, -2, 2),
|
314 |
+
... adaptive=False)
|
315 |
+
|
316 |
+
Using mesh grid without using adaptive meshing with number of points
|
317 |
+
specified:
|
318 |
+
|
319 |
+
.. plot::
|
320 |
+
:context: close-figs
|
321 |
+
:format: doctest
|
322 |
+
:include-source: True
|
323 |
+
|
324 |
+
>>> p5 = plot_implicit(
|
325 |
+
... Eq(x**2 + y**2, 5), (x, -5, 5), (y, -2, 2),
|
326 |
+
... adaptive=False, points=400)
|
327 |
+
|
328 |
+
Plotting regions:
|
329 |
+
|
330 |
+
.. plot::
|
331 |
+
:context: close-figs
|
332 |
+
:format: doctest
|
333 |
+
:include-source: True
|
334 |
+
|
335 |
+
>>> p6 = plot_implicit(y > x**2)
|
336 |
+
|
337 |
+
Plotting Using boolean conjunctions:
|
338 |
+
|
339 |
+
.. plot::
|
340 |
+
:context: close-figs
|
341 |
+
:format: doctest
|
342 |
+
:include-source: True
|
343 |
+
|
344 |
+
>>> p7 = plot_implicit(And(y > x, y > -x))
|
345 |
+
|
346 |
+
When plotting an expression with a single variable (y - 1, for example),
|
347 |
+
specify the x or the y variable explicitly:
|
348 |
+
|
349 |
+
.. plot::
|
350 |
+
:context: close-figs
|
351 |
+
:format: doctest
|
352 |
+
:include-source: True
|
353 |
+
|
354 |
+
>>> p8 = plot_implicit(y - 1, y_var=y)
|
355 |
+
>>> p9 = plot_implicit(x - 1, x_var=x)
|
356 |
+
"""
|
357 |
+
has_equality = False # Represents whether the expression contains an Equality,
|
358 |
+
#GreaterThan or LessThan
|
359 |
+
|
360 |
+
def arg_expand(bool_expr):
|
361 |
+
"""
|
362 |
+
Recursively expands the arguments of an Boolean Function
|
363 |
+
"""
|
364 |
+
for arg in bool_expr.args:
|
365 |
+
if isinstance(arg, BooleanFunction):
|
366 |
+
arg_expand(arg)
|
367 |
+
elif isinstance(arg, Relational):
|
368 |
+
arg_list.append(arg)
|
369 |
+
|
370 |
+
arg_list = []
|
371 |
+
if isinstance(expr, BooleanFunction):
|
372 |
+
arg_expand(expr)
|
373 |
+
|
374 |
+
#Check whether there is an equality in the expression provided.
|
375 |
+
if any(isinstance(e, (Equality, GreaterThan, LessThan))
|
376 |
+
for e in arg_list):
|
377 |
+
has_equality = True
|
378 |
+
|
379 |
+
elif not isinstance(expr, Relational):
|
380 |
+
expr = Eq(expr, 0)
|
381 |
+
has_equality = True
|
382 |
+
elif isinstance(expr, (Equality, GreaterThan, LessThan)):
|
383 |
+
has_equality = True
|
384 |
+
|
385 |
+
xyvar = [i for i in (x_var, y_var) if i is not None]
|
386 |
+
free_symbols = expr.free_symbols
|
387 |
+
range_symbols = Tuple(*flatten(xyvar)).free_symbols
|
388 |
+
undeclared = free_symbols - range_symbols
|
389 |
+
if len(free_symbols & range_symbols) > 2:
|
390 |
+
raise NotImplementedError("Implicit plotting is not implemented for "
|
391 |
+
"more than 2 variables")
|
392 |
+
|
393 |
+
#Create default ranges if the range is not provided.
|
394 |
+
default_range = Tuple(-5, 5)
|
395 |
+
def _range_tuple(s):
|
396 |
+
if isinstance(s, Symbol):
|
397 |
+
return Tuple(s) + default_range
|
398 |
+
if len(s) == 3:
|
399 |
+
return Tuple(*s)
|
400 |
+
raise ValueError('symbol or `(symbol, min, max)` expected but got %s' % s)
|
401 |
+
|
402 |
+
if len(xyvar) == 0:
|
403 |
+
xyvar = list(_sort_gens(free_symbols))
|
404 |
+
var_start_end_x = _range_tuple(xyvar[0])
|
405 |
+
x = var_start_end_x[0]
|
406 |
+
if len(xyvar) != 2:
|
407 |
+
if x in undeclared or not undeclared:
|
408 |
+
xyvar.append(Dummy('f(%s)' % x.name))
|
409 |
+
else:
|
410 |
+
xyvar.append(undeclared.pop())
|
411 |
+
var_start_end_y = _range_tuple(xyvar[1])
|
412 |
+
|
413 |
+
#Check whether the depth is greater than 4 or less than 0.
|
414 |
+
if depth > 4:
|
415 |
+
depth = 4
|
416 |
+
elif depth < 0:
|
417 |
+
depth = 0
|
418 |
+
|
419 |
+
series_argument = ImplicitSeries(expr, var_start_end_x, var_start_end_y,
|
420 |
+
has_equality, adaptive, depth,
|
421 |
+
points, line_color)
|
422 |
+
|
423 |
+
#set the x and y limits
|
424 |
+
kwargs['xlim'] = tuple(float(x) for x in var_start_end_x[1:])
|
425 |
+
kwargs['ylim'] = tuple(float(y) for y in var_start_end_y[1:])
|
426 |
+
# set the x and y labels
|
427 |
+
kwargs.setdefault('xlabel', var_start_end_x[0])
|
428 |
+
kwargs.setdefault('ylabel', var_start_end_y[0])
|
429 |
+
p = Plot(series_argument, **kwargs)
|
430 |
+
if show:
|
431 |
+
p.show()
|
432 |
+
return p
|
venv/lib/python3.10/site-packages/sympy/plotting/pygletplot/__init__.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Plotting module that can plot 2D and 3D functions
|
2 |
+
"""
|
3 |
+
|
4 |
+
from sympy.utilities.decorator import doctest_depends_on
|
5 |
+
|
6 |
+
@doctest_depends_on(modules=('pyglet',))
|
7 |
+
def PygletPlot(*args, **kwargs):
|
8 |
+
"""
|
9 |
+
|
10 |
+
Plot Examples
|
11 |
+
=============
|
12 |
+
|
13 |
+
See examples/advanced/pyglet_plotting.py for many more examples.
|
14 |
+
|
15 |
+
>>> from sympy.plotting.pygletplot import PygletPlot as Plot
|
16 |
+
>>> from sympy.abc import x, y, z
|
17 |
+
|
18 |
+
>>> Plot(x*y**3-y*x**3)
|
19 |
+
[0]: -x**3*y + x*y**3, 'mode=cartesian'
|
20 |
+
|
21 |
+
>>> p = Plot()
|
22 |
+
>>> p[1] = x*y
|
23 |
+
>>> p[1].color = z, (0.4,0.4,0.9), (0.9,0.4,0.4)
|
24 |
+
|
25 |
+
>>> p = Plot()
|
26 |
+
>>> p[1] = x**2+y**2
|
27 |
+
>>> p[2] = -x**2-y**2
|
28 |
+
|
29 |
+
|
30 |
+
Variable Intervals
|
31 |
+
==================
|
32 |
+
|
33 |
+
The basic format is [var, min, max, steps], but the
|
34 |
+
syntax is flexible and arguments left out are taken
|
35 |
+
from the defaults for the current coordinate mode:
|
36 |
+
|
37 |
+
>>> Plot(x**2) # implies [x,-5,5,100]
|
38 |
+
[0]: x**2, 'mode=cartesian'
|
39 |
+
|
40 |
+
>>> Plot(x**2, [], []) # [x,-1,1,40], [y,-1,1,40]
|
41 |
+
[0]: x**2, 'mode=cartesian'
|
42 |
+
>>> Plot(x**2-y**2, [100], [100]) # [x,-1,1,100], [y,-1,1,100]
|
43 |
+
[0]: x**2 - y**2, 'mode=cartesian'
|
44 |
+
>>> Plot(x**2, [x,-13,13,100])
|
45 |
+
[0]: x**2, 'mode=cartesian'
|
46 |
+
>>> Plot(x**2, [-13,13]) # [x,-13,13,100]
|
47 |
+
[0]: x**2, 'mode=cartesian'
|
48 |
+
>>> Plot(x**2, [x,-13,13]) # [x,-13,13,100]
|
49 |
+
[0]: x**2, 'mode=cartesian'
|
50 |
+
>>> Plot(1*x, [], [x], mode='cylindrical')
|
51 |
+
... # [unbound_theta,0,2*Pi,40], [x,-1,1,20]
|
52 |
+
[0]: x, 'mode=cartesian'
|
53 |
+
|
54 |
+
|
55 |
+
Coordinate Modes
|
56 |
+
================
|
57 |
+
|
58 |
+
Plot supports several curvilinear coordinate modes, and
|
59 |
+
they independent for each plotted function. You can specify
|
60 |
+
a coordinate mode explicitly with the 'mode' named argument,
|
61 |
+
but it can be automatically determined for Cartesian or
|
62 |
+
parametric plots, and therefore must only be specified for
|
63 |
+
polar, cylindrical, and spherical modes.
|
64 |
+
|
65 |
+
Specifically, Plot(function arguments) and Plot[n] =
|
66 |
+
(function arguments) will interpret your arguments as a
|
67 |
+
Cartesian plot if you provide one function and a parametric
|
68 |
+
plot if you provide two or three functions. Similarly, the
|
69 |
+
arguments will be interpreted as a curve if one variable is
|
70 |
+
used, and a surface if two are used.
|
71 |
+
|
72 |
+
Supported mode names by number of variables:
|
73 |
+
|
74 |
+
1: parametric, cartesian, polar
|
75 |
+
2: parametric, cartesian, cylindrical = polar, spherical
|
76 |
+
|
77 |
+
>>> Plot(1, mode='spherical')
|
78 |
+
|
79 |
+
|
80 |
+
Calculator-like Interface
|
81 |
+
=========================
|
82 |
+
|
83 |
+
>>> p = Plot(visible=False)
|
84 |
+
>>> f = x**2
|
85 |
+
>>> p[1] = f
|
86 |
+
>>> p[2] = f.diff(x)
|
87 |
+
>>> p[3] = f.diff(x).diff(x)
|
88 |
+
>>> p
|
89 |
+
[1]: x**2, 'mode=cartesian'
|
90 |
+
[2]: 2*x, 'mode=cartesian'
|
91 |
+
[3]: 2, 'mode=cartesian'
|
92 |
+
>>> p.show()
|
93 |
+
>>> p.clear()
|
94 |
+
>>> p
|
95 |
+
<blank plot>
|
96 |
+
>>> p[1] = x**2+y**2
|
97 |
+
>>> p[1].style = 'solid'
|
98 |
+
>>> p[2] = -x**2-y**2
|
99 |
+
>>> p[2].style = 'wireframe'
|
100 |
+
>>> p[1].color = z, (0.4,0.4,0.9), (0.9,0.4,0.4)
|
101 |
+
>>> p[1].style = 'both'
|
102 |
+
>>> p[2].style = 'both'
|
103 |
+
>>> p.close()
|
104 |
+
|
105 |
+
|
106 |
+
Plot Window Keyboard Controls
|
107 |
+
=============================
|
108 |
+
|
109 |
+
Screen Rotation:
|
110 |
+
X,Y axis Arrow Keys, A,S,D,W, Numpad 4,6,8,2
|
111 |
+
Z axis Q,E, Numpad 7,9
|
112 |
+
|
113 |
+
Model Rotation:
|
114 |
+
Z axis Z,C, Numpad 1,3
|
115 |
+
|
116 |
+
Zoom: R,F, PgUp,PgDn, Numpad +,-
|
117 |
+
|
118 |
+
Reset Camera: X, Numpad 5
|
119 |
+
|
120 |
+
Camera Presets:
|
121 |
+
XY F1
|
122 |
+
XZ F2
|
123 |
+
YZ F3
|
124 |
+
Perspective F4
|
125 |
+
|
126 |
+
Sensitivity Modifier: SHIFT
|
127 |
+
|
128 |
+
Axes Toggle:
|
129 |
+
Visible F5
|
130 |
+
Colors F6
|
131 |
+
|
132 |
+
Close Window: ESCAPE
|
133 |
+
|
134 |
+
=============================
|
135 |
+
"""
|
136 |
+
|
137 |
+
from sympy.plotting.pygletplot.plot import PygletPlot
|
138 |
+
return PygletPlot(*args, **kwargs)
|
venv/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.99 kB). View file
|
|