applied-ai-018 commited on
Commit
211d94e
·
verified ·
1 Parent(s): 0f3cb53

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step80/zero/12.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
  2. ckpts/universal/global_step80/zero/12.post_attention_layernorm.weight/fp32.pt +3 -0
  3. venv/lib/python3.10/site-packages/sympy/physics/optics/__init__.py +38 -0
  4. venv/lib/python3.10/site-packages/sympy/physics/optics/gaussopt.py +923 -0
  5. venv/lib/python3.10/site-packages/sympy/physics/optics/medium.py +253 -0
  6. venv/lib/python3.10/site-packages/sympy/physics/optics/polarization.py +732 -0
  7. venv/lib/python3.10/site-packages/sympy/physics/optics/tests/__init__.py +0 -0
  8. venv/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_gaussopt.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_medium.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_polarization.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/sympy/physics/optics/tests/test_gaussopt.py +102 -0
  13. venv/lib/python3.10/site-packages/sympy/physics/optics/tests/test_medium.py +48 -0
  14. venv/lib/python3.10/site-packages/sympy/physics/optics/tests/test_polarization.py +57 -0
  15. venv/lib/python3.10/site-packages/sympy/physics/optics/tests/test_utils.py +202 -0
  16. venv/lib/python3.10/site-packages/sympy/physics/optics/tests/test_waves.py +82 -0
  17. venv/lib/python3.10/site-packages/sympy/physics/optics/utils.py +698 -0
  18. venv/lib/python3.10/site-packages/sympy/physics/optics/waves.py +340 -0
  19. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_boson.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_cartesian.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_circuitplot.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_constants.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_density.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_fermion.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_grover.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_hilbert.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_identitysearch.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_innerproduct.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_matrixutils.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_operator.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_operatorordering.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_operatorset.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_piab.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_qapply.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_qasm.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_qexpr.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_qubit.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_represent.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_sho1d.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_shor.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_spin.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_state.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_trace.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/sympy/physics/vector/__init__.py +36 -0
  45. venv/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/__init__.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/dyadic.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/fieldfunctions.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/frame.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/functions.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/point.cpython-310.pyc +0 -0
ckpts/universal/global_step80/zero/12.post_attention_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5249306b6c88a8b0f7e183856e76e85d5314fad1a0ea18a293c4b77df960ec67
3
+ size 9387
ckpts/universal/global_step80/zero/12.post_attention_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:888bb28c5de66a00fdc5566bb8fdd0815a3efd1a22060ccfeb266189d7298f2a
3
+ size 9293
venv/lib/python3.10/site-packages/sympy/physics/optics/__init__.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __all__ = [
2
+ 'TWave',
3
+
4
+ 'RayTransferMatrix', 'FreeSpace', 'FlatRefraction', 'CurvedRefraction',
5
+ 'FlatMirror', 'CurvedMirror', 'ThinLens', 'GeometricRay', 'BeamParameter',
6
+ 'waist2rayleigh', 'rayleigh2waist', 'geometric_conj_ab',
7
+ 'geometric_conj_af', 'geometric_conj_bf', 'gaussian_conj',
8
+ 'conjugate_gauss_beams',
9
+
10
+ 'Medium',
11
+
12
+ 'refraction_angle', 'deviation', 'fresnel_coefficients', 'brewster_angle',
13
+ 'critical_angle', 'lens_makers_formula', 'mirror_formula', 'lens_formula',
14
+ 'hyperfocal_distance', 'transverse_magnification',
15
+
16
+ 'jones_vector', 'stokes_vector', 'jones_2_stokes', 'linear_polarizer',
17
+ 'phase_retarder', 'half_wave_retarder', 'quarter_wave_retarder',
18
+ 'transmissive_filter', 'reflective_filter', 'mueller_matrix',
19
+ 'polarizing_beam_splitter',
20
+ ]
21
+ from .waves import TWave
22
+
23
+ from .gaussopt import (RayTransferMatrix, FreeSpace, FlatRefraction,
24
+ CurvedRefraction, FlatMirror, CurvedMirror, ThinLens, GeometricRay,
25
+ BeamParameter, waist2rayleigh, rayleigh2waist, geometric_conj_ab,
26
+ geometric_conj_af, geometric_conj_bf, gaussian_conj,
27
+ conjugate_gauss_beams)
28
+
29
+ from .medium import Medium
30
+
31
+ from .utils import (refraction_angle, deviation, fresnel_coefficients,
32
+ brewster_angle, critical_angle, lens_makers_formula, mirror_formula,
33
+ lens_formula, hyperfocal_distance, transverse_magnification)
34
+
35
+ from .polarization import (jones_vector, stokes_vector, jones_2_stokes,
36
+ linear_polarizer, phase_retarder, half_wave_retarder,
37
+ quarter_wave_retarder, transmissive_filter, reflective_filter,
38
+ mueller_matrix, polarizing_beam_splitter)
venv/lib/python3.10/site-packages/sympy/physics/optics/gaussopt.py ADDED
@@ -0,0 +1,923 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Gaussian optics.
3
+
4
+ The module implements:
5
+
6
+ - Ray transfer matrices for geometrical and gaussian optics.
7
+
8
+ See RayTransferMatrix, GeometricRay and BeamParameter
9
+
10
+ - Conjugation relations for geometrical and gaussian optics.
11
+
12
+ See geometric_conj*, gauss_conj and conjugate_gauss_beams
13
+
14
+ The conventions for the distances are as follows:
15
+
16
+ focal distance
17
+ positive for convergent lenses
18
+ object distance
19
+ positive for real objects
20
+ image distance
21
+ positive for real images
22
+ """
23
+
24
+ __all__ = [
25
+ 'RayTransferMatrix',
26
+ 'FreeSpace',
27
+ 'FlatRefraction',
28
+ 'CurvedRefraction',
29
+ 'FlatMirror',
30
+ 'CurvedMirror',
31
+ 'ThinLens',
32
+ 'GeometricRay',
33
+ 'BeamParameter',
34
+ 'waist2rayleigh',
35
+ 'rayleigh2waist',
36
+ 'geometric_conj_ab',
37
+ 'geometric_conj_af',
38
+ 'geometric_conj_bf',
39
+ 'gaussian_conj',
40
+ 'conjugate_gauss_beams',
41
+ ]
42
+
43
+
44
+ from sympy.core.expr import Expr
45
+ from sympy.core.numbers import (I, pi)
46
+ from sympy.core.sympify import sympify
47
+ from sympy.functions.elementary.complexes import (im, re)
48
+ from sympy.functions.elementary.miscellaneous import sqrt
49
+ from sympy.functions.elementary.trigonometric import atan2
50
+ from sympy.matrices.dense import Matrix, MutableDenseMatrix
51
+ from sympy.polys.rationaltools import together
52
+ from sympy.utilities.misc import filldedent
53
+
54
+ ###
55
+ # A, B, C, D matrices
56
+ ###
57
+
58
+
59
+ class RayTransferMatrix(MutableDenseMatrix):
60
+ """
61
+ Base class for a Ray Transfer Matrix.
62
+
63
+ It should be used if there is not already a more specific subclass mentioned
64
+ in See Also.
65
+
66
+ Parameters
67
+ ==========
68
+
69
+ parameters :
70
+ A, B, C and D or 2x2 matrix (Matrix(2, 2, [A, B, C, D]))
71
+
72
+ Examples
73
+ ========
74
+
75
+ >>> from sympy.physics.optics import RayTransferMatrix, ThinLens
76
+ >>> from sympy import Symbol, Matrix
77
+
78
+ >>> mat = RayTransferMatrix(1, 2, 3, 4)
79
+ >>> mat
80
+ Matrix([
81
+ [1, 2],
82
+ [3, 4]])
83
+
84
+ >>> RayTransferMatrix(Matrix([[1, 2], [3, 4]]))
85
+ Matrix([
86
+ [1, 2],
87
+ [3, 4]])
88
+
89
+ >>> mat.A
90
+ 1
91
+
92
+ >>> f = Symbol('f')
93
+ >>> lens = ThinLens(f)
94
+ >>> lens
95
+ Matrix([
96
+ [ 1, 0],
97
+ [-1/f, 1]])
98
+
99
+ >>> lens.C
100
+ -1/f
101
+
102
+ See Also
103
+ ========
104
+
105
+ GeometricRay, BeamParameter,
106
+ FreeSpace, FlatRefraction, CurvedRefraction,
107
+ FlatMirror, CurvedMirror, ThinLens
108
+
109
+ References
110
+ ==========
111
+
112
+ .. [1] https://en.wikipedia.org/wiki/Ray_transfer_matrix_analysis
113
+ """
114
+
115
+ def __new__(cls, *args):
116
+
117
+ if len(args) == 4:
118
+ temp = ((args[0], args[1]), (args[2], args[3]))
119
+ elif len(args) == 1 \
120
+ and isinstance(args[0], Matrix) \
121
+ and args[0].shape == (2, 2):
122
+ temp = args[0]
123
+ else:
124
+ raise ValueError(filldedent('''
125
+ Expecting 2x2 Matrix or the 4 elements of
126
+ the Matrix but got %s''' % str(args)))
127
+ return Matrix.__new__(cls, temp)
128
+
129
+ def __mul__(self, other):
130
+ if isinstance(other, RayTransferMatrix):
131
+ return RayTransferMatrix(Matrix.__mul__(self, other))
132
+ elif isinstance(other, GeometricRay):
133
+ return GeometricRay(Matrix.__mul__(self, other))
134
+ elif isinstance(other, BeamParameter):
135
+ temp = self*Matrix(((other.q,), (1,)))
136
+ q = (temp[0]/temp[1]).expand(complex=True)
137
+ return BeamParameter(other.wavelen,
138
+ together(re(q)),
139
+ z_r=together(im(q)))
140
+ else:
141
+ return Matrix.__mul__(self, other)
142
+
143
+ @property
144
+ def A(self):
145
+ """
146
+ The A parameter of the Matrix.
147
+
148
+ Examples
149
+ ========
150
+
151
+ >>> from sympy.physics.optics import RayTransferMatrix
152
+ >>> mat = RayTransferMatrix(1, 2, 3, 4)
153
+ >>> mat.A
154
+ 1
155
+ """
156
+ return self[0, 0]
157
+
158
+ @property
159
+ def B(self):
160
+ """
161
+ The B parameter of the Matrix.
162
+
163
+ Examples
164
+ ========
165
+
166
+ >>> from sympy.physics.optics import RayTransferMatrix
167
+ >>> mat = RayTransferMatrix(1, 2, 3, 4)
168
+ >>> mat.B
169
+ 2
170
+ """
171
+ return self[0, 1]
172
+
173
+ @property
174
+ def C(self):
175
+ """
176
+ The C parameter of the Matrix.
177
+
178
+ Examples
179
+ ========
180
+
181
+ >>> from sympy.physics.optics import RayTransferMatrix
182
+ >>> mat = RayTransferMatrix(1, 2, 3, 4)
183
+ >>> mat.C
184
+ 3
185
+ """
186
+ return self[1, 0]
187
+
188
+ @property
189
+ def D(self):
190
+ """
191
+ The D parameter of the Matrix.
192
+
193
+ Examples
194
+ ========
195
+
196
+ >>> from sympy.physics.optics import RayTransferMatrix
197
+ >>> mat = RayTransferMatrix(1, 2, 3, 4)
198
+ >>> mat.D
199
+ 4
200
+ """
201
+ return self[1, 1]
202
+
203
+
204
+ class FreeSpace(RayTransferMatrix):
205
+ """
206
+ Ray Transfer Matrix for free space.
207
+
208
+ Parameters
209
+ ==========
210
+
211
+ distance
212
+
213
+ See Also
214
+ ========
215
+
216
+ RayTransferMatrix
217
+
218
+ Examples
219
+ ========
220
+
221
+ >>> from sympy.physics.optics import FreeSpace
222
+ >>> from sympy import symbols
223
+ >>> d = symbols('d')
224
+ >>> FreeSpace(d)
225
+ Matrix([
226
+ [1, d],
227
+ [0, 1]])
228
+ """
229
+ def __new__(cls, d):
230
+ return RayTransferMatrix.__new__(cls, 1, d, 0, 1)
231
+
232
+
233
+ class FlatRefraction(RayTransferMatrix):
234
+ """
235
+ Ray Transfer Matrix for refraction.
236
+
237
+ Parameters
238
+ ==========
239
+
240
+ n1 :
241
+ Refractive index of one medium.
242
+ n2 :
243
+ Refractive index of other medium.
244
+
245
+ See Also
246
+ ========
247
+
248
+ RayTransferMatrix
249
+
250
+ Examples
251
+ ========
252
+
253
+ >>> from sympy.physics.optics import FlatRefraction
254
+ >>> from sympy import symbols
255
+ >>> n1, n2 = symbols('n1 n2')
256
+ >>> FlatRefraction(n1, n2)
257
+ Matrix([
258
+ [1, 0],
259
+ [0, n1/n2]])
260
+ """
261
+ def __new__(cls, n1, n2):
262
+ n1, n2 = map(sympify, (n1, n2))
263
+ return RayTransferMatrix.__new__(cls, 1, 0, 0, n1/n2)
264
+
265
+
266
+ class CurvedRefraction(RayTransferMatrix):
267
+ """
268
+ Ray Transfer Matrix for refraction on curved interface.
269
+
270
+ Parameters
271
+ ==========
272
+
273
+ R :
274
+ Radius of curvature (positive for concave).
275
+ n1 :
276
+ Refractive index of one medium.
277
+ n2 :
278
+ Refractive index of other medium.
279
+
280
+ See Also
281
+ ========
282
+
283
+ RayTransferMatrix
284
+
285
+ Examples
286
+ ========
287
+
288
+ >>> from sympy.physics.optics import CurvedRefraction
289
+ >>> from sympy import symbols
290
+ >>> R, n1, n2 = symbols('R n1 n2')
291
+ >>> CurvedRefraction(R, n1, n2)
292
+ Matrix([
293
+ [ 1, 0],
294
+ [(n1 - n2)/(R*n2), n1/n2]])
295
+ """
296
+ def __new__(cls, R, n1, n2):
297
+ R, n1, n2 = map(sympify, (R, n1, n2))
298
+ return RayTransferMatrix.__new__(cls, 1, 0, (n1 - n2)/R/n2, n1/n2)
299
+
300
+
301
+ class FlatMirror(RayTransferMatrix):
302
+ """
303
+ Ray Transfer Matrix for reflection.
304
+
305
+ See Also
306
+ ========
307
+
308
+ RayTransferMatrix
309
+
310
+ Examples
311
+ ========
312
+
313
+ >>> from sympy.physics.optics import FlatMirror
314
+ >>> FlatMirror()
315
+ Matrix([
316
+ [1, 0],
317
+ [0, 1]])
318
+ """
319
+ def __new__(cls):
320
+ return RayTransferMatrix.__new__(cls, 1, 0, 0, 1)
321
+
322
+
323
+ class CurvedMirror(RayTransferMatrix):
324
+ """
325
+ Ray Transfer Matrix for reflection from curved surface.
326
+
327
+ Parameters
328
+ ==========
329
+
330
+ R : radius of curvature (positive for concave)
331
+
332
+ See Also
333
+ ========
334
+
335
+ RayTransferMatrix
336
+
337
+ Examples
338
+ ========
339
+
340
+ >>> from sympy.physics.optics import CurvedMirror
341
+ >>> from sympy import symbols
342
+ >>> R = symbols('R')
343
+ >>> CurvedMirror(R)
344
+ Matrix([
345
+ [ 1, 0],
346
+ [-2/R, 1]])
347
+ """
348
+ def __new__(cls, R):
349
+ R = sympify(R)
350
+ return RayTransferMatrix.__new__(cls, 1, 0, -2/R, 1)
351
+
352
+
353
+ class ThinLens(RayTransferMatrix):
354
+ """
355
+ Ray Transfer Matrix for a thin lens.
356
+
357
+ Parameters
358
+ ==========
359
+
360
+ f :
361
+ The focal distance.
362
+
363
+ See Also
364
+ ========
365
+
366
+ RayTransferMatrix
367
+
368
+ Examples
369
+ ========
370
+
371
+ >>> from sympy.physics.optics import ThinLens
372
+ >>> from sympy import symbols
373
+ >>> f = symbols('f')
374
+ >>> ThinLens(f)
375
+ Matrix([
376
+ [ 1, 0],
377
+ [-1/f, 1]])
378
+ """
379
+ def __new__(cls, f):
380
+ f = sympify(f)
381
+ return RayTransferMatrix.__new__(cls, 1, 0, -1/f, 1)
382
+
383
+
384
+ ###
385
+ # Representation for geometric ray
386
+ ###
387
+
388
+ class GeometricRay(MutableDenseMatrix):
389
+ """
390
+ Representation for a geometric ray in the Ray Transfer Matrix formalism.
391
+
392
+ Parameters
393
+ ==========
394
+
395
+ h : height, and
396
+ angle : angle, or
397
+ matrix : a 2x1 matrix (Matrix(2, 1, [height, angle]))
398
+
399
+ Examples
400
+ ========
401
+
402
+ >>> from sympy.physics.optics import GeometricRay, FreeSpace
403
+ >>> from sympy import symbols, Matrix
404
+ >>> d, h, angle = symbols('d, h, angle')
405
+
406
+ >>> GeometricRay(h, angle)
407
+ Matrix([
408
+ [ h],
409
+ [angle]])
410
+
411
+ >>> FreeSpace(d)*GeometricRay(h, angle)
412
+ Matrix([
413
+ [angle*d + h],
414
+ [ angle]])
415
+
416
+ >>> GeometricRay( Matrix( ((h,), (angle,)) ) )
417
+ Matrix([
418
+ [ h],
419
+ [angle]])
420
+
421
+ See Also
422
+ ========
423
+
424
+ RayTransferMatrix
425
+
426
+ """
427
+
428
+ def __new__(cls, *args):
429
+ if len(args) == 1 and isinstance(args[0], Matrix) \
430
+ and args[0].shape == (2, 1):
431
+ temp = args[0]
432
+ elif len(args) == 2:
433
+ temp = ((args[0],), (args[1],))
434
+ else:
435
+ raise ValueError(filldedent('''
436
+ Expecting 2x1 Matrix or the 2 elements of
437
+ the Matrix but got %s''' % str(args)))
438
+ return Matrix.__new__(cls, temp)
439
+
440
+ @property
441
+ def height(self):
442
+ """
443
+ The distance from the optical axis.
444
+
445
+ Examples
446
+ ========
447
+
448
+ >>> from sympy.physics.optics import GeometricRay
449
+ >>> from sympy import symbols
450
+ >>> h, angle = symbols('h, angle')
451
+ >>> gRay = GeometricRay(h, angle)
452
+ >>> gRay.height
453
+ h
454
+ """
455
+ return self[0]
456
+
457
+ @property
458
+ def angle(self):
459
+ """
460
+ The angle with the optical axis.
461
+
462
+ Examples
463
+ ========
464
+
465
+ >>> from sympy.physics.optics import GeometricRay
466
+ >>> from sympy import symbols
467
+ >>> h, angle = symbols('h, angle')
468
+ >>> gRay = GeometricRay(h, angle)
469
+ >>> gRay.angle
470
+ angle
471
+ """
472
+ return self[1]
473
+
474
+
475
+ ###
476
+ # Representation for gauss beam
477
+ ###
478
+
479
+ class BeamParameter(Expr):
480
+ """
481
+ Representation for a gaussian ray in the Ray Transfer Matrix formalism.
482
+
483
+ Parameters
484
+ ==========
485
+
486
+ wavelen : the wavelength,
487
+ z : the distance to waist, and
488
+ w : the waist, or
489
+ z_r : the rayleigh range.
490
+ n : the refractive index of medium.
491
+
492
+ Examples
493
+ ========
494
+
495
+ >>> from sympy.physics.optics import BeamParameter
496
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
497
+ >>> p.q
498
+ 1 + 1.88679245283019*I*pi
499
+
500
+ >>> p.q.n()
501
+ 1.0 + 5.92753330865999*I
502
+ >>> p.w_0.n()
503
+ 0.00100000000000000
504
+ >>> p.z_r.n()
505
+ 5.92753330865999
506
+
507
+ >>> from sympy.physics.optics import FreeSpace
508
+ >>> fs = FreeSpace(10)
509
+ >>> p1 = fs*p
510
+ >>> p.w.n()
511
+ 0.00101413072159615
512
+ >>> p1.w.n()
513
+ 0.00210803120913829
514
+
515
+ See Also
516
+ ========
517
+
518
+ RayTransferMatrix
519
+
520
+ References
521
+ ==========
522
+
523
+ .. [1] https://en.wikipedia.org/wiki/Complex_beam_parameter
524
+ .. [2] https://en.wikipedia.org/wiki/Gaussian_beam
525
+ """
526
+ #TODO A class Complex may be implemented. The BeamParameter may
527
+ # subclass it. See:
528
+ # https://groups.google.com/d/topic/sympy/7XkU07NRBEs/discussion
529
+
530
+ def __new__(cls, wavelen, z, z_r=None, w=None, n=1):
531
+ wavelen = sympify(wavelen)
532
+ z = sympify(z)
533
+ n = sympify(n)
534
+
535
+ if z_r is not None and w is None:
536
+ z_r = sympify(z_r)
537
+ elif w is not None and z_r is None:
538
+ z_r = waist2rayleigh(sympify(w), wavelen, n)
539
+ elif z_r is None and w is None:
540
+ raise ValueError('Must specify one of w and z_r.')
541
+
542
+ return Expr.__new__(cls, wavelen, z, z_r, n)
543
+
544
+ @property
545
+ def wavelen(self):
546
+ return self.args[0]
547
+
548
+ @property
549
+ def z(self):
550
+ return self.args[1]
551
+
552
+ @property
553
+ def z_r(self):
554
+ return self.args[2]
555
+
556
+ @property
557
+ def n(self):
558
+ return self.args[3]
559
+
560
+ @property
561
+ def q(self):
562
+ """
563
+ The complex parameter representing the beam.
564
+
565
+ Examples
566
+ ========
567
+
568
+ >>> from sympy.physics.optics import BeamParameter
569
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
570
+ >>> p.q
571
+ 1 + 1.88679245283019*I*pi
572
+ """
573
+ return self.z + I*self.z_r
574
+
575
+ @property
576
+ def radius(self):
577
+ """
578
+ The radius of curvature of the phase front.
579
+
580
+ Examples
581
+ ========
582
+
583
+ >>> from sympy.physics.optics import BeamParameter
584
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
585
+ >>> p.radius
586
+ 1 + 3.55998576005696*pi**2
587
+ """
588
+ return self.z*(1 + (self.z_r/self.z)**2)
589
+
590
+ @property
591
+ def w(self):
592
+ """
593
+ The radius of the beam w(z), at any position z along the beam.
594
+ The beam radius at `1/e^2` intensity (axial value).
595
+
596
+ See Also
597
+ ========
598
+
599
+ w_0 :
600
+ The minimal radius of beam.
601
+
602
+ Examples
603
+ ========
604
+
605
+ >>> from sympy.physics.optics import BeamParameter
606
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
607
+ >>> p.w
608
+ 0.001*sqrt(0.2809/pi**2 + 1)
609
+ """
610
+ return self.w_0*sqrt(1 + (self.z/self.z_r)**2)
611
+
612
+ @property
613
+ def w_0(self):
614
+ """
615
+ The minimal radius of beam at `1/e^2` intensity (peak value).
616
+
617
+ See Also
618
+ ========
619
+
620
+ w : the beam radius at `1/e^2` intensity (axial value).
621
+
622
+ Examples
623
+ ========
624
+
625
+ >>> from sympy.physics.optics import BeamParameter
626
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
627
+ >>> p.w_0
628
+ 0.00100000000000000
629
+ """
630
+ return sqrt(self.z_r/(pi*self.n)*self.wavelen)
631
+
632
+ @property
633
+ def divergence(self):
634
+ """
635
+ Half of the total angular spread.
636
+
637
+ Examples
638
+ ========
639
+
640
+ >>> from sympy.physics.optics import BeamParameter
641
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
642
+ >>> p.divergence
643
+ 0.00053/pi
644
+ """
645
+ return self.wavelen/pi/self.w_0
646
+
647
+ @property
648
+ def gouy(self):
649
+ """
650
+ The Gouy phase.
651
+
652
+ Examples
653
+ ========
654
+
655
+ >>> from sympy.physics.optics import BeamParameter
656
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
657
+ >>> p.gouy
658
+ atan(0.53/pi)
659
+ """
660
+ return atan2(self.z, self.z_r)
661
+
662
+ @property
663
+ def waist_approximation_limit(self):
664
+ """
665
+ The minimal waist for which the gauss beam approximation is valid.
666
+
667
+ Explanation
668
+ ===========
669
+
670
+ The gauss beam is a solution to the paraxial equation. For curvatures
671
+ that are too great it is not a valid approximation.
672
+
673
+ Examples
674
+ ========
675
+
676
+ >>> from sympy.physics.optics import BeamParameter
677
+ >>> p = BeamParameter(530e-9, 1, w=1e-3)
678
+ >>> p.waist_approximation_limit
679
+ 1.06e-6/pi
680
+ """
681
+ return 2*self.wavelen/pi
682
+
683
+
684
+ ###
685
+ # Utilities
686
+ ###
687
+
688
+ def waist2rayleigh(w, wavelen, n=1):
689
+ """
690
+ Calculate the rayleigh range from the waist of a gaussian beam.
691
+
692
+ See Also
693
+ ========
694
+
695
+ rayleigh2waist, BeamParameter
696
+
697
+ Examples
698
+ ========
699
+
700
+ >>> from sympy.physics.optics import waist2rayleigh
701
+ >>> from sympy import symbols
702
+ >>> w, wavelen = symbols('w wavelen')
703
+ >>> waist2rayleigh(w, wavelen)
704
+ pi*w**2/wavelen
705
+ """
706
+ w, wavelen = map(sympify, (w, wavelen))
707
+ return w**2*n*pi/wavelen
708
+
709
+
710
+ def rayleigh2waist(z_r, wavelen):
711
+ """Calculate the waist from the rayleigh range of a gaussian beam.
712
+
713
+ See Also
714
+ ========
715
+
716
+ waist2rayleigh, BeamParameter
717
+
718
+ Examples
719
+ ========
720
+
721
+ >>> from sympy.physics.optics import rayleigh2waist
722
+ >>> from sympy import symbols
723
+ >>> z_r, wavelen = symbols('z_r wavelen')
724
+ >>> rayleigh2waist(z_r, wavelen)
725
+ sqrt(wavelen*z_r)/sqrt(pi)
726
+ """
727
+ z_r, wavelen = map(sympify, (z_r, wavelen))
728
+ return sqrt(z_r/pi*wavelen)
729
+
730
+
731
+ def geometric_conj_ab(a, b):
732
+ """
733
+ Conjugation relation for geometrical beams under paraxial conditions.
734
+
735
+ Explanation
736
+ ===========
737
+
738
+ Takes the distances to the optical element and returns the needed
739
+ focal distance.
740
+
741
+ See Also
742
+ ========
743
+
744
+ geometric_conj_af, geometric_conj_bf
745
+
746
+ Examples
747
+ ========
748
+
749
+ >>> from sympy.physics.optics import geometric_conj_ab
750
+ >>> from sympy import symbols
751
+ >>> a, b = symbols('a b')
752
+ >>> geometric_conj_ab(a, b)
753
+ a*b/(a + b)
754
+ """
755
+ a, b = map(sympify, (a, b))
756
+ if a.is_infinite or b.is_infinite:
757
+ return a if b.is_infinite else b
758
+ else:
759
+ return a*b/(a + b)
760
+
761
+
762
+ def geometric_conj_af(a, f):
763
+ """
764
+ Conjugation relation for geometrical beams under paraxial conditions.
765
+
766
+ Explanation
767
+ ===========
768
+
769
+ Takes the object distance (for geometric_conj_af) or the image distance
770
+ (for geometric_conj_bf) to the optical element and the focal distance.
771
+ Then it returns the other distance needed for conjugation.
772
+
773
+ See Also
774
+ ========
775
+
776
+ geometric_conj_ab
777
+
778
+ Examples
779
+ ========
780
+
781
+ >>> from sympy.physics.optics.gaussopt import geometric_conj_af, geometric_conj_bf
782
+ >>> from sympy import symbols
783
+ >>> a, b, f = symbols('a b f')
784
+ >>> geometric_conj_af(a, f)
785
+ a*f/(a - f)
786
+ >>> geometric_conj_bf(b, f)
787
+ b*f/(b - f)
788
+ """
789
+ a, f = map(sympify, (a, f))
790
+ return -geometric_conj_ab(a, -f)
791
+
792
+ geometric_conj_bf = geometric_conj_af
793
+
794
+
795
+ def gaussian_conj(s_in, z_r_in, f):
796
+ """
797
+ Conjugation relation for gaussian beams.
798
+
799
+ Parameters
800
+ ==========
801
+
802
+ s_in :
803
+ The distance to optical element from the waist.
804
+ z_r_in :
805
+ The rayleigh range of the incident beam.
806
+ f :
807
+ The focal length of the optical element.
808
+
809
+ Returns
810
+ =======
811
+
812
+ a tuple containing (s_out, z_r_out, m)
813
+ s_out :
814
+ The distance between the new waist and the optical element.
815
+ z_r_out :
816
+ The rayleigh range of the emergent beam.
817
+ m :
818
+ The ration between the new and the old waists.
819
+
820
+ Examples
821
+ ========
822
+
823
+ >>> from sympy.physics.optics import gaussian_conj
824
+ >>> from sympy import symbols
825
+ >>> s_in, z_r_in, f = symbols('s_in z_r_in f')
826
+
827
+ >>> gaussian_conj(s_in, z_r_in, f)[0]
828
+ 1/(-1/(s_in + z_r_in**2/(-f + s_in)) + 1/f)
829
+
830
+ >>> gaussian_conj(s_in, z_r_in, f)[1]
831
+ z_r_in/(1 - s_in**2/f**2 + z_r_in**2/f**2)
832
+
833
+ >>> gaussian_conj(s_in, z_r_in, f)[2]
834
+ 1/sqrt(1 - s_in**2/f**2 + z_r_in**2/f**2)
835
+ """
836
+ s_in, z_r_in, f = map(sympify, (s_in, z_r_in, f))
837
+ s_out = 1 / ( -1/(s_in + z_r_in**2/(s_in - f)) + 1/f )
838
+ m = 1/sqrt((1 - (s_in/f)**2) + (z_r_in/f)**2)
839
+ z_r_out = z_r_in / ((1 - (s_in/f)**2) + (z_r_in/f)**2)
840
+ return (s_out, z_r_out, m)
841
+
842
+
843
+ def conjugate_gauss_beams(wavelen, waist_in, waist_out, **kwargs):
844
+ """
845
+ Find the optical setup conjugating the object/image waists.
846
+
847
+ Parameters
848
+ ==========
849
+
850
+ wavelen :
851
+ The wavelength of the beam.
852
+ waist_in and waist_out :
853
+ The waists to be conjugated.
854
+ f :
855
+ The focal distance of the element used in the conjugation.
856
+
857
+ Returns
858
+ =======
859
+
860
+ a tuple containing (s_in, s_out, f)
861
+ s_in :
862
+ The distance before the optical element.
863
+ s_out :
864
+ The distance after the optical element.
865
+ f :
866
+ The focal distance of the optical element.
867
+
868
+ Examples
869
+ ========
870
+
871
+ >>> from sympy.physics.optics import conjugate_gauss_beams
872
+ >>> from sympy import symbols, factor
873
+ >>> l, w_i, w_o, f = symbols('l w_i w_o f')
874
+
875
+ >>> conjugate_gauss_beams(l, w_i, w_o, f=f)[0]
876
+ f*(1 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))
877
+
878
+ >>> factor(conjugate_gauss_beams(l, w_i, w_o, f=f)[1])
879
+ f*w_o**2*(w_i**2/w_o**2 - sqrt(w_i**2/w_o**2 -
880
+ pi**2*w_i**4/(f**2*l**2)))/w_i**2
881
+
882
+ >>> conjugate_gauss_beams(l, w_i, w_o, f=f)[2]
883
+ f
884
+ """
885
+ #TODO add the other possible arguments
886
+ wavelen, waist_in, waist_out = map(sympify, (wavelen, waist_in, waist_out))
887
+ m = waist_out / waist_in
888
+ z = waist2rayleigh(waist_in, wavelen)
889
+ if len(kwargs) != 1:
890
+ raise ValueError("The function expects only one named argument")
891
+ elif 'dist' in kwargs:
892
+ raise NotImplementedError(filldedent('''
893
+ Currently only focal length is supported as a parameter'''))
894
+ elif 'f' in kwargs:
895
+ f = sympify(kwargs['f'])
896
+ s_in = f * (1 - sqrt(1/m**2 - z**2/f**2))
897
+ s_out = gaussian_conj(s_in, z, f)[0]
898
+ elif 's_in' in kwargs:
899
+ raise NotImplementedError(filldedent('''
900
+ Currently only focal length is supported as a parameter'''))
901
+ else:
902
+ raise ValueError(filldedent('''
903
+ The functions expects the focal length as a named argument'''))
904
+ return (s_in, s_out, f)
905
+
906
+ #TODO
907
+ #def plot_beam():
908
+ # """Plot the beam radius as it propagates in space."""
909
+ # pass
910
+
911
+ #TODO
912
+ #def plot_beam_conjugation():
913
+ # """
914
+ # Plot the intersection of two beams.
915
+ #
916
+ # Represents the conjugation relation.
917
+ #
918
+ # See Also
919
+ # ========
920
+ #
921
+ # conjugate_gauss_beams
922
+ # """
923
+ # pass
venv/lib/python3.10/site-packages/sympy/physics/optics/medium.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ **Contains**
3
+
4
+ * Medium
5
+ """
6
+ from sympy.physics.units import second, meter, kilogram, ampere
7
+
8
+ __all__ = ['Medium']
9
+
10
+ from sympy.core.basic import Basic
11
+ from sympy.core.symbol import Str
12
+ from sympy.core.sympify import _sympify
13
+ from sympy.functions.elementary.miscellaneous import sqrt
14
+ from sympy.physics.units import speed_of_light, u0, e0
15
+
16
+
17
+ c = speed_of_light.convert_to(meter/second)
18
+ _e0mksa = e0.convert_to(ampere**2*second**4/(kilogram*meter**3))
19
+ _u0mksa = u0.convert_to(meter*kilogram/(ampere**2*second**2))
20
+
21
+
22
+ class Medium(Basic):
23
+
24
+ """
25
+ This class represents an optical medium. The prime reason to implement this is
26
+ to facilitate refraction, Fermat's principle, etc.
27
+
28
+ Explanation
29
+ ===========
30
+
31
+ An optical medium is a material through which electromagnetic waves propagate.
32
+ The permittivity and permeability of the medium define how electromagnetic
33
+ waves propagate in it.
34
+
35
+
36
+ Parameters
37
+ ==========
38
+
39
+ name: string
40
+ The display name of the Medium.
41
+
42
+ permittivity: Sympifyable
43
+ Electric permittivity of the space.
44
+
45
+ permeability: Sympifyable
46
+ Magnetic permeability of the space.
47
+
48
+ n: Sympifyable
49
+ Index of refraction of the medium.
50
+
51
+
52
+ Examples
53
+ ========
54
+
55
+ >>> from sympy.abc import epsilon, mu
56
+ >>> from sympy.physics.optics import Medium
57
+ >>> m1 = Medium('m1')
58
+ >>> m2 = Medium('m2', epsilon, mu)
59
+ >>> m1.intrinsic_impedance
60
+ 149896229*pi*kilogram*meter**2/(1250000*ampere**2*second**3)
61
+ >>> m2.refractive_index
62
+ 299792458*meter*sqrt(epsilon*mu)/second
63
+
64
+
65
+ References
66
+ ==========
67
+
68
+ .. [1] https://en.wikipedia.org/wiki/Optical_medium
69
+
70
+ """
71
+
72
+ def __new__(cls, name, permittivity=None, permeability=None, n=None):
73
+ if not isinstance(name, Str):
74
+ name = Str(name)
75
+
76
+ permittivity = _sympify(permittivity) if permittivity is not None else permittivity
77
+ permeability = _sympify(permeability) if permeability is not None else permeability
78
+ n = _sympify(n) if n is not None else n
79
+
80
+ if n is not None:
81
+ if permittivity is not None and permeability is None:
82
+ permeability = n**2/(c**2*permittivity)
83
+ return MediumPP(name, permittivity, permeability)
84
+ elif permeability is not None and permittivity is None:
85
+ permittivity = n**2/(c**2*permeability)
86
+ return MediumPP(name, permittivity, permeability)
87
+ elif permittivity is not None and permittivity is not None:
88
+ raise ValueError("Specifying all of permittivity, permeability, and n is not allowed")
89
+ else:
90
+ return MediumN(name, n)
91
+ elif permittivity is not None and permeability is not None:
92
+ return MediumPP(name, permittivity, permeability)
93
+ elif permittivity is None and permeability is None:
94
+ return MediumPP(name, _e0mksa, _u0mksa)
95
+ else:
96
+ raise ValueError("Arguments are underspecified. Either specify n or any two of permittivity, "
97
+ "permeability, and n")
98
+
99
+ @property
100
+ def name(self):
101
+ return self.args[0]
102
+
103
+ @property
104
+ def speed(self):
105
+ """
106
+ Returns speed of the electromagnetic wave travelling in the medium.
107
+
108
+ Examples
109
+ ========
110
+
111
+ >>> from sympy.physics.optics import Medium
112
+ >>> m = Medium('m')
113
+ >>> m.speed
114
+ 299792458*meter/second
115
+ >>> m2 = Medium('m2', n=1)
116
+ >>> m.speed == m2.speed
117
+ True
118
+
119
+ """
120
+ return c / self.n
121
+
122
+ @property
123
+ def refractive_index(self):
124
+ """
125
+ Returns refractive index of the medium.
126
+
127
+ Examples
128
+ ========
129
+
130
+ >>> from sympy.physics.optics import Medium
131
+ >>> m = Medium('m')
132
+ >>> m.refractive_index
133
+ 1
134
+
135
+ """
136
+ return (c/self.speed)
137
+
138
+
139
+ class MediumN(Medium):
140
+
141
+ """
142
+ Represents an optical medium for which only the refractive index is known.
143
+ Useful for simple ray optics.
144
+
145
+ This class should never be instantiated directly.
146
+ Instead it should be instantiated indirectly by instantiating Medium with
147
+ only n specified.
148
+
149
+ Examples
150
+ ========
151
+ >>> from sympy.physics.optics import Medium
152
+ >>> m = Medium('m', n=2)
153
+ >>> m
154
+ MediumN(Str('m'), 2)
155
+ """
156
+
157
+ def __new__(cls, name, n):
158
+ obj = super(Medium, cls).__new__(cls, name, n)
159
+ return obj
160
+
161
+ @property
162
+ def n(self):
163
+ return self.args[1]
164
+
165
+
166
+ class MediumPP(Medium):
167
+ """
168
+ Represents an optical medium for which the permittivity and permeability are known.
169
+
170
+ This class should never be instantiated directly. Instead it should be
171
+ instantiated indirectly by instantiating Medium with any two of
172
+ permittivity, permeability, and n specified, or by not specifying any
173
+ of permittivity, permeability, or n, in which case default values for
174
+ permittivity and permeability will be used.
175
+
176
+ Examples
177
+ ========
178
+ >>> from sympy.physics.optics import Medium
179
+ >>> from sympy.abc import epsilon, mu
180
+ >>> m1 = Medium('m1', permittivity=epsilon, permeability=mu)
181
+ >>> m1
182
+ MediumPP(Str('m1'), epsilon, mu)
183
+ >>> m2 = Medium('m2')
184
+ >>> m2
185
+ MediumPP(Str('m2'), 625000*ampere**2*second**4/(22468879468420441*pi*kilogram*meter**3), pi*kilogram*meter/(2500000*ampere**2*second**2))
186
+ """
187
+
188
+
189
+ def __new__(cls, name, permittivity, permeability):
190
+ obj = super(Medium, cls).__new__(cls, name, permittivity, permeability)
191
+ return obj
192
+
193
+ @property
194
+ def intrinsic_impedance(self):
195
+ """
196
+ Returns intrinsic impedance of the medium.
197
+
198
+ Explanation
199
+ ===========
200
+
201
+ The intrinsic impedance of a medium is the ratio of the
202
+ transverse components of the electric and magnetic fields
203
+ of the electromagnetic wave travelling in the medium.
204
+ In a region with no electrical conductivity it simplifies
205
+ to the square root of ratio of magnetic permeability to
206
+ electric permittivity.
207
+
208
+ Examples
209
+ ========
210
+
211
+ >>> from sympy.physics.optics import Medium
212
+ >>> m = Medium('m')
213
+ >>> m.intrinsic_impedance
214
+ 149896229*pi*kilogram*meter**2/(1250000*ampere**2*second**3)
215
+
216
+ """
217
+ return sqrt(self.permeability / self.permittivity)
218
+
219
+ @property
220
+ def permittivity(self):
221
+ """
222
+ Returns electric permittivity of the medium.
223
+
224
+ Examples
225
+ ========
226
+
227
+ >>> from sympy.physics.optics import Medium
228
+ >>> m = Medium('m')
229
+ >>> m.permittivity
230
+ 625000*ampere**2*second**4/(22468879468420441*pi*kilogram*meter**3)
231
+
232
+ """
233
+ return self.args[1]
234
+
235
+ @property
236
+ def permeability(self):
237
+ """
238
+ Returns magnetic permeability of the medium.
239
+
240
+ Examples
241
+ ========
242
+
243
+ >>> from sympy.physics.optics import Medium
244
+ >>> m = Medium('m')
245
+ >>> m.permeability
246
+ pi*kilogram*meter/(2500000*ampere**2*second**2)
247
+
248
+ """
249
+ return self.args[2]
250
+
251
+ @property
252
+ def n(self):
253
+ return c*sqrt(self.permittivity*self.permeability)
venv/lib/python3.10/site-packages/sympy/physics/optics/polarization.py ADDED
@@ -0,0 +1,732 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ The module implements routines to model the polarization of optical fields
5
+ and can be used to calculate the effects of polarization optical elements on
6
+ the fields.
7
+
8
+ - Jones vectors.
9
+
10
+ - Stokes vectors.
11
+
12
+ - Jones matrices.
13
+
14
+ - Mueller matrices.
15
+
16
+ Examples
17
+ ========
18
+
19
+ We calculate a generic Jones vector:
20
+
21
+ >>> from sympy import symbols, pprint, zeros, simplify
22
+ >>> from sympy.physics.optics.polarization import (jones_vector, stokes_vector,
23
+ ... half_wave_retarder, polarizing_beam_splitter, jones_2_stokes)
24
+
25
+ >>> psi, chi, p, I0 = symbols("psi, chi, p, I0", real=True)
26
+ >>> x0 = jones_vector(psi, chi)
27
+ >>> pprint(x0, use_unicode=True)
28
+ ⎡-ⅈ⋅sin(χ)⋅sin(ψ) + cos(χ)⋅cos(ψ)⎤
29
+ ⎢ ⎥
30
+ ⎣ⅈ⋅sin(χ)⋅cos(ψ) + sin(ψ)⋅cos(χ) ⎦
31
+
32
+ And the more general Stokes vector:
33
+
34
+ >>> s0 = stokes_vector(psi, chi, p, I0)
35
+ >>> pprint(s0, use_unicode=True)
36
+ ⎡ I₀ ⎤
37
+ ⎢ ⎥
38
+ ⎢I₀⋅p⋅cos(2⋅χ)⋅cos(2⋅ψ)⎥
39
+ ⎢ ⎥
40
+ ⎢I₀⋅p⋅sin(2⋅ψ)⋅cos(2⋅χ)⎥
41
+ ⎢ ⎥
42
+ ⎣ I₀⋅p⋅sin(2⋅χ) ⎦
43
+
44
+ We calculate how the Jones vector is modified by a half-wave plate:
45
+
46
+ >>> alpha = symbols("alpha", real=True)
47
+ >>> HWP = half_wave_retarder(alpha)
48
+ >>> x1 = simplify(HWP*x0)
49
+
50
+ We calculate the very common operation of passing a beam through a half-wave
51
+ plate and then through a polarizing beam-splitter. We do this by putting this
52
+ Jones vector as the first entry of a two-Jones-vector state that is transformed
53
+ by a 4x4 Jones matrix modelling the polarizing beam-splitter to get the
54
+ transmitted and reflected Jones vectors:
55
+
56
+ >>> PBS = polarizing_beam_splitter()
57
+ >>> X1 = zeros(4, 1)
58
+ >>> X1[:2, :] = x1
59
+ >>> X2 = PBS*X1
60
+ >>> transmitted_port = X2[:2, :]
61
+ >>> reflected_port = X2[2:, :]
62
+
63
+ This allows us to calculate how the power in both ports depends on the initial
64
+ polarization:
65
+
66
+ >>> transmitted_power = jones_2_stokes(transmitted_port)[0]
67
+ >>> reflected_power = jones_2_stokes(reflected_port)[0]
68
+ >>> print(transmitted_power)
69
+ cos(-2*alpha + chi + psi)**2/2 + cos(2*alpha + chi - psi)**2/2
70
+
71
+
72
+ >>> print(reflected_power)
73
+ sin(-2*alpha + chi + psi)**2/2 + sin(2*alpha + chi - psi)**2/2
74
+
75
+ Please see the description of the individual functions for further
76
+ details and examples.
77
+
78
+ References
79
+ ==========
80
+
81
+ .. [1] https://en.wikipedia.org/wiki/Jones_calculus
82
+ .. [2] https://en.wikipedia.org/wiki/Mueller_calculus
83
+ .. [3] https://en.wikipedia.org/wiki/Stokes_parameters
84
+
85
+ """
86
+
87
+ from sympy.core.numbers import (I, pi)
88
+ from sympy.functions.elementary.complexes import (Abs, im, re)
89
+ from sympy.functions.elementary.exponential import exp
90
+ from sympy.functions.elementary.miscellaneous import sqrt
91
+ from sympy.functions.elementary.trigonometric import (cos, sin)
92
+ from sympy.matrices.dense import Matrix
93
+ from sympy.simplify.simplify import simplify
94
+ from sympy.physics.quantum import TensorProduct
95
+
96
+
97
+ def jones_vector(psi, chi):
98
+ """A Jones vector corresponding to a polarization ellipse with `psi` tilt,
99
+ and `chi` circularity.
100
+
101
+ Parameters
102
+ ==========
103
+
104
+ psi : numeric type or SymPy Symbol
105
+ The tilt of the polarization relative to the `x` axis.
106
+
107
+ chi : numeric type or SymPy Symbol
108
+ The angle adjacent to the mayor axis of the polarization ellipse.
109
+
110
+
111
+ Returns
112
+ =======
113
+
114
+ Matrix :
115
+ A Jones vector.
116
+
117
+ Examples
118
+ ========
119
+
120
+ The axes on the Poincaré sphere.
121
+
122
+ >>> from sympy import pprint, symbols, pi
123
+ >>> from sympy.physics.optics.polarization import jones_vector
124
+ >>> psi, chi = symbols("psi, chi", real=True)
125
+
126
+ A general Jones vector.
127
+
128
+ >>> pprint(jones_vector(psi, chi), use_unicode=True)
129
+ ⎡-ⅈ⋅sin(χ)⋅sin(ψ) + cos(χ)⋅cos(ψ)⎤
130
+ ⎢ ⎥
131
+ ⎣ⅈ⋅sin(χ)⋅cos(ψ) + sin(ψ)⋅cos(χ) ⎦
132
+
133
+ Horizontal polarization.
134
+
135
+ >>> pprint(jones_vector(0, 0), use_unicode=True)
136
+ ⎡1⎤
137
+ ⎢ ⎥
138
+ ⎣0⎦
139
+
140
+ Vertical polarization.
141
+
142
+ >>> pprint(jones_vector(pi/2, 0), use_unicode=True)
143
+ ⎡0⎤
144
+ ⎢ ⎥
145
+ ⎣1⎦
146
+
147
+ Diagonal polarization.
148
+
149
+ >>> pprint(jones_vector(pi/4, 0), use_unicode=True)
150
+ ⎡√2⎤
151
+ ⎢──⎥
152
+ ⎢2 ⎥
153
+ ⎢ ⎥
154
+ ⎢√2⎥
155
+ ⎢──⎥
156
+ ⎣2 ⎦
157
+
158
+ Anti-diagonal polarization.
159
+
160
+ >>> pprint(jones_vector(-pi/4, 0), use_unicode=True)
161
+ ⎡ √2 ⎤
162
+ ⎢ ── ⎥
163
+ ⎢ 2 ⎥
164
+ ⎢ ⎥
165
+ ⎢-√2 ⎥
166
+ ⎢────⎥
167
+ ⎣ 2 ⎦
168
+
169
+ Right-hand circular polarization.
170
+
171
+ >>> pprint(jones_vector(0, pi/4), use_unicode=True)
172
+ ⎡ √2 ⎤
173
+ ⎢ ── ⎥
174
+ ⎢ 2 ⎥
175
+ ⎢ ⎥
176
+ ⎢√2⋅ⅈ⎥
177
+ ⎢────⎥
178
+ ⎣ 2 ⎦
179
+
180
+ Left-hand circular polarization.
181
+
182
+ >>> pprint(jones_vector(0, -pi/4), use_unicode=True)
183
+ ⎡ √2 ⎤
184
+ ⎢ ── ⎥
185
+ ⎢ 2 ⎥
186
+ ⎢ ⎥
187
+ ⎢-√2⋅ⅈ ⎥
188
+ ⎢──────⎥
189
+ ⎣ 2 ⎦
190
+
191
+ """
192
+ return Matrix([-I*sin(chi)*sin(psi) + cos(chi)*cos(psi),
193
+ I*sin(chi)*cos(psi) + sin(psi)*cos(chi)])
194
+
195
+
196
+ def stokes_vector(psi, chi, p=1, I=1):
197
+ """A Stokes vector corresponding to a polarization ellipse with ``psi``
198
+ tilt, and ``chi`` circularity.
199
+
200
+ Parameters
201
+ ==========
202
+
203
+ psi : numeric type or SymPy Symbol
204
+ The tilt of the polarization relative to the ``x`` axis.
205
+ chi : numeric type or SymPy Symbol
206
+ The angle adjacent to the mayor axis of the polarization ellipse.
207
+ p : numeric type or SymPy Symbol
208
+ The degree of polarization.
209
+ I : numeric type or SymPy Symbol
210
+ The intensity of the field.
211
+
212
+
213
+ Returns
214
+ =======
215
+
216
+ Matrix :
217
+ A Stokes vector.
218
+
219
+ Examples
220
+ ========
221
+
222
+ The axes on the Poincaré sphere.
223
+
224
+ >>> from sympy import pprint, symbols, pi
225
+ >>> from sympy.physics.optics.polarization import stokes_vector
226
+ >>> psi, chi, p, I = symbols("psi, chi, p, I", real=True)
227
+ >>> pprint(stokes_vector(psi, chi, p, I), use_unicode=True)
228
+ ⎡ I ⎤
229
+ ⎢ ⎥
230
+ ⎢I⋅p⋅cos(2⋅χ)⋅cos(2⋅ψ)⎥
231
+ ⎢ ⎥
232
+ ⎢I⋅p⋅sin(2⋅ψ)⋅cos(2⋅χ)⎥
233
+ ⎢ ⎥
234
+ ⎣ I⋅p⋅sin(2⋅χ) ⎦
235
+
236
+
237
+ Horizontal polarization
238
+
239
+ >>> pprint(stokes_vector(0, 0), use_unicode=True)
240
+ ⎡1⎤
241
+ ⎢ ⎥
242
+ ⎢1⎥
243
+ ⎢ ⎥
244
+ ⎢0⎥
245
+ ⎢ ⎥
246
+ ⎣0⎦
247
+
248
+ Vertical polarization
249
+
250
+ >>> pprint(stokes_vector(pi/2, 0), use_unicode=True)
251
+ ⎡1 ⎤
252
+ ⎢ ⎥
253
+ ⎢-1⎥
254
+ ⎢ ⎥
255
+ ⎢0 ⎥
256
+ ⎢ ⎥
257
+ ⎣0 ⎦
258
+
259
+ Diagonal polarization
260
+
261
+ >>> pprint(stokes_vector(pi/4, 0), use_unicode=True)
262
+ ⎡1⎤
263
+ ⎢ ⎥
264
+ ⎢0⎥
265
+ ⎢ ⎥
266
+ ⎢1⎥
267
+ ⎢ ⎥
268
+ ⎣0⎦
269
+
270
+ Anti-diagonal polarization
271
+
272
+ >>> pprint(stokes_vector(-pi/4, 0), use_unicode=True)
273
+ ⎡1 ⎤
274
+ ⎢ ⎥
275
+ ⎢0 ⎥
276
+ ⎢ ⎥
277
+ ⎢-1⎥
278
+ ⎢ ⎥
279
+ ⎣0 ⎦
280
+
281
+ Right-hand circular polarization
282
+
283
+ >>> pprint(stokes_vector(0, pi/4), use_unicode=True)
284
+ ⎡1⎤
285
+ ⎢ ⎥
286
+ ⎢0⎥
287
+ ⎢ ⎥
288
+ ⎢0⎥
289
+ ⎢ ⎥
290
+ ⎣1⎦
291
+
292
+ Left-hand circular polarization
293
+
294
+ >>> pprint(stokes_vector(0, -pi/4), use_unicode=True)
295
+ ⎡1 ⎤
296
+ ⎢ ⎥
297
+ ⎢0 ⎥
298
+ ⎢ ⎥
299
+ ⎢0 ⎥
300
+ ⎢ ⎥
301
+ ⎣-1⎦
302
+
303
+ Unpolarized light
304
+
305
+ >>> pprint(stokes_vector(0, 0, 0), use_unicode=True)
306
+ ⎡1⎤
307
+ ⎢ ⎥
308
+ ⎢0⎥
309
+ ⎢ ⎥
310
+ ⎢0⎥
311
+ ⎢ ⎥
312
+ ⎣0⎦
313
+
314
+ """
315
+ S0 = I
316
+ S1 = I*p*cos(2*psi)*cos(2*chi)
317
+ S2 = I*p*sin(2*psi)*cos(2*chi)
318
+ S3 = I*p*sin(2*chi)
319
+ return Matrix([S0, S1, S2, S3])
320
+
321
+
322
+ def jones_2_stokes(e):
323
+ """Return the Stokes vector for a Jones vector ``e``.
324
+
325
+ Parameters
326
+ ==========
327
+
328
+ e : SymPy Matrix
329
+ A Jones vector.
330
+
331
+ Returns
332
+ =======
333
+
334
+ SymPy Matrix
335
+ A Jones vector.
336
+
337
+ Examples
338
+ ========
339
+
340
+ The axes on the Poincaré sphere.
341
+
342
+ >>> from sympy import pprint, pi
343
+ >>> from sympy.physics.optics.polarization import jones_vector
344
+ >>> from sympy.physics.optics.polarization import jones_2_stokes
345
+ >>> H = jones_vector(0, 0)
346
+ >>> V = jones_vector(pi/2, 0)
347
+ >>> D = jones_vector(pi/4, 0)
348
+ >>> A = jones_vector(-pi/4, 0)
349
+ >>> R = jones_vector(0, pi/4)
350
+ >>> L = jones_vector(0, -pi/4)
351
+ >>> pprint([jones_2_stokes(e) for e in [H, V, D, A, R, L]],
352
+ ... use_unicode=True)
353
+ ⎡⎡1⎤ ⎡1 ⎤ ⎡1⎤ ⎡1 ⎤ ⎡1⎤ ⎡1 ⎤⎤
354
+ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥
355
+ ⎢⎢1⎥ ⎢-1⎥ ⎢0⎥ ⎢0 ⎥ ⎢0⎥ ⎢0 ⎥⎥
356
+ ⎢⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥⎥
357
+ ⎢⎢0⎥ ⎢0 ⎥ ⎢1⎥ ⎢-1⎥ ⎢0⎥ ⎢0 ⎥⎥
358
+ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥
359
+ ⎣⎣0⎦ ⎣0 ⎦ ⎣0⎦ ⎣0 ⎦ ⎣1⎦ ⎣-1⎦⎦
360
+
361
+ """
362
+ ex, ey = e
363
+ return Matrix([Abs(ex)**2 + Abs(ey)**2,
364
+ Abs(ex)**2 - Abs(ey)**2,
365
+ 2*re(ex*ey.conjugate()),
366
+ -2*im(ex*ey.conjugate())])
367
+
368
+
369
+ def linear_polarizer(theta=0):
370
+ """A linear polarizer Jones matrix with transmission axis at
371
+ an angle ``theta``.
372
+
373
+ Parameters
374
+ ==========
375
+
376
+ theta : numeric type or SymPy Symbol
377
+ The angle of the transmission axis relative to the horizontal plane.
378
+
379
+ Returns
380
+ =======
381
+
382
+ SymPy Matrix
383
+ A Jones matrix representing the polarizer.
384
+
385
+ Examples
386
+ ========
387
+
388
+ A generic polarizer.
389
+
390
+ >>> from sympy import pprint, symbols
391
+ >>> from sympy.physics.optics.polarization import linear_polarizer
392
+ >>> theta = symbols("theta", real=True)
393
+ >>> J = linear_polarizer(theta)
394
+ >>> pprint(J, use_unicode=True)
395
+ ⎡ 2 ⎤
396
+ ⎢ cos (θ) sin(θ)⋅cos(θ)⎥
397
+ ⎢ ⎥
398
+ ⎢ 2 ⎥
399
+ ⎣sin(θ)⋅cos(θ) sin (θ) ⎦
400
+
401
+
402
+ """
403
+ M = Matrix([[cos(theta)**2, sin(theta)*cos(theta)],
404
+ [sin(theta)*cos(theta), sin(theta)**2]])
405
+ return M
406
+
407
+
408
+ def phase_retarder(theta=0, delta=0):
409
+ """A phase retarder Jones matrix with retardance ``delta`` at angle ``theta``.
410
+
411
+ Parameters
412
+ ==========
413
+
414
+ theta : numeric type or SymPy Symbol
415
+ The angle of the fast axis relative to the horizontal plane.
416
+ delta : numeric type or SymPy Symbol
417
+ The phase difference between the fast and slow axes of the
418
+ transmitted light.
419
+
420
+ Returns
421
+ =======
422
+
423
+ SymPy Matrix :
424
+ A Jones matrix representing the retarder.
425
+
426
+ Examples
427
+ ========
428
+
429
+ A generic retarder.
430
+
431
+ >>> from sympy import pprint, symbols
432
+ >>> from sympy.physics.optics.polarization import phase_retarder
433
+ >>> theta, delta = symbols("theta, delta", real=True)
434
+ >>> R = phase_retarder(theta, delta)
435
+ >>> pprint(R, use_unicode=True)
436
+ ⎡ -ⅈ⋅δ -ⅈ⋅δ ⎤
437
+ ⎢ ───── ───── ⎥
438
+ ⎢⎛ ⅈ⋅δ 2 2 ⎞ 2 ⎛ ⅈ⋅δ⎞ 2 ⎥
439
+ ⎢⎝ℯ ⋅sin (θ) + cos (θ)⎠⋅ℯ ⎝1 - ℯ ⎠⋅ℯ ⋅sin(θ)⋅cos(θ)⎥
440
+ ⎢ ⎥
441
+ ⎢ -ⅈ⋅δ -ⅈ⋅δ ⎥
442
+ ⎢ ───── ─────⎥
443
+ ⎢⎛ ⅈ⋅δ⎞ 2 ⎛ ⅈ⋅δ 2 2 ⎞ 2 ⎥
444
+ ⎣⎝1 - ℯ ⎠⋅ℯ ⋅sin(θ)⋅cos(θ) ⎝ℯ ⋅cos (θ) + sin (θ)⎠⋅ℯ ⎦
445
+
446
+ """
447
+ R = Matrix([[cos(theta)**2 + exp(I*delta)*sin(theta)**2,
448
+ (1-exp(I*delta))*cos(theta)*sin(theta)],
449
+ [(1-exp(I*delta))*cos(theta)*sin(theta),
450
+ sin(theta)**2 + exp(I*delta)*cos(theta)**2]])
451
+ return R*exp(-I*delta/2)
452
+
453
+
454
+ def half_wave_retarder(theta):
455
+ """A half-wave retarder Jones matrix at angle ``theta``.
456
+
457
+ Parameters
458
+ ==========
459
+
460
+ theta : numeric type or SymPy Symbol
461
+ The angle of the fast axis relative to the horizontal plane.
462
+
463
+ Returns
464
+ =======
465
+
466
+ SymPy Matrix
467
+ A Jones matrix representing the retarder.
468
+
469
+ Examples
470
+ ========
471
+
472
+ A generic half-wave plate.
473
+
474
+ >>> from sympy import pprint, symbols
475
+ >>> from sympy.physics.optics.polarization import half_wave_retarder
476
+ >>> theta= symbols("theta", real=True)
477
+ >>> HWP = half_wave_retarder(theta)
478
+ >>> pprint(HWP, use_unicode=True)
479
+ ⎡ ⎛ 2 2 ⎞ ⎤
480
+ ⎢-ⅈ⋅⎝- sin (θ) + cos (θ)⎠ -2⋅ⅈ⋅sin(θ)⋅cos(θ) ⎥
481
+ ⎢ ⎥
482
+ ⎢ ⎛ 2 2 ⎞⎥
483
+ ⎣ -2⋅ⅈ⋅sin(θ)⋅cos(θ) -ⅈ⋅⎝sin (θ) - cos (θ)⎠⎦
484
+
485
+ """
486
+ return phase_retarder(theta, pi)
487
+
488
+
489
+ def quarter_wave_retarder(theta):
490
+ """A quarter-wave retarder Jones matrix at angle ``theta``.
491
+
492
+ Parameters
493
+ ==========
494
+
495
+ theta : numeric type or SymPy Symbol
496
+ The angle of the fast axis relative to the horizontal plane.
497
+
498
+ Returns
499
+ =======
500
+
501
+ SymPy Matrix
502
+ A Jones matrix representing the retarder.
503
+
504
+ Examples
505
+ ========
506
+
507
+ A generic quarter-wave plate.
508
+
509
+ >>> from sympy import pprint, symbols
510
+ >>> from sympy.physics.optics.polarization import quarter_wave_retarder
511
+ >>> theta= symbols("theta", real=True)
512
+ >>> QWP = quarter_wave_retarder(theta)
513
+ >>> pprint(QWP, use_unicode=True)
514
+ ⎡ -ⅈ⋅π -ⅈ⋅π ⎤
515
+ ⎢ ───── ───── ⎥
516
+ ⎢⎛ 2 2 ⎞ 4 4 ⎥
517
+ ⎢⎝ⅈ⋅sin (θ) + cos (θ)⎠⋅ℯ (1 - ⅈ)⋅ℯ ⋅sin(θ)⋅cos(θ)⎥
518
+ ⎢ ⎥
519
+ ⎢ -ⅈ⋅π -ⅈ⋅π ⎥
520
+ ⎢ ───── ─────⎥
521
+ ⎢ 4 ⎛ 2 2 ⎞ 4 ⎥
522
+ ⎣(1 - ⅈ)⋅ℯ ⋅sin(θ)⋅cos(θ) ⎝sin (θ) + ⅈ⋅cos (θ)⎠⋅ℯ ⎦
523
+
524
+ """
525
+ return phase_retarder(theta, pi/2)
526
+
527
+
528
+ def transmissive_filter(T):
529
+ """An attenuator Jones matrix with transmittance ``T``.
530
+
531
+ Parameters
532
+ ==========
533
+
534
+ T : numeric type or SymPy Symbol
535
+ The transmittance of the attenuator.
536
+
537
+ Returns
538
+ =======
539
+
540
+ SymPy Matrix
541
+ A Jones matrix representing the filter.
542
+
543
+ Examples
544
+ ========
545
+
546
+ A generic filter.
547
+
548
+ >>> from sympy import pprint, symbols
549
+ >>> from sympy.physics.optics.polarization import transmissive_filter
550
+ >>> T = symbols("T", real=True)
551
+ >>> NDF = transmissive_filter(T)
552
+ >>> pprint(NDF, use_unicode=True)
553
+ ⎡√T 0 ⎤
554
+ ⎢ ⎥
555
+ ⎣0 √T⎦
556
+
557
+ """
558
+ return Matrix([[sqrt(T), 0], [0, sqrt(T)]])
559
+
560
+
561
+ def reflective_filter(R):
562
+ """A reflective filter Jones matrix with reflectance ``R``.
563
+
564
+ Parameters
565
+ ==========
566
+
567
+ R : numeric type or SymPy Symbol
568
+ The reflectance of the filter.
569
+
570
+ Returns
571
+ =======
572
+
573
+ SymPy Matrix
574
+ A Jones matrix representing the filter.
575
+
576
+ Examples
577
+ ========
578
+
579
+ A generic filter.
580
+
581
+ >>> from sympy import pprint, symbols
582
+ >>> from sympy.physics.optics.polarization import reflective_filter
583
+ >>> R = symbols("R", real=True)
584
+ >>> pprint(reflective_filter(R), use_unicode=True)
585
+ ⎡√R 0 ⎤
586
+ ⎢ ⎥
587
+ ⎣0 -√R⎦
588
+
589
+ """
590
+ return Matrix([[sqrt(R), 0], [0, -sqrt(R)]])
591
+
592
+
593
+ def mueller_matrix(J):
594
+ """The Mueller matrix corresponding to Jones matrix `J`.
595
+
596
+ Parameters
597
+ ==========
598
+
599
+ J : SymPy Matrix
600
+ A Jones matrix.
601
+
602
+ Returns
603
+ =======
604
+
605
+ SymPy Matrix
606
+ The corresponding Mueller matrix.
607
+
608
+ Examples
609
+ ========
610
+
611
+ Generic optical components.
612
+
613
+ >>> from sympy import pprint, symbols
614
+ >>> from sympy.physics.optics.polarization import (mueller_matrix,
615
+ ... linear_polarizer, half_wave_retarder, quarter_wave_retarder)
616
+ >>> theta = symbols("theta", real=True)
617
+
618
+ A linear_polarizer
619
+
620
+ >>> pprint(mueller_matrix(linear_polarizer(theta)), use_unicode=True)
621
+ ⎡ cos(2⋅θ) sin(2⋅θ) ⎤
622
+ ⎢ 1/2 ──────── ──────── 0⎥
623
+ ⎢ 2 2 ⎥
624
+ ⎢ ⎥
625
+ ⎢cos(2⋅θ) cos(4⋅θ) 1 sin(4⋅θ) ⎥
626
+ ⎢──────── ──────── + ─ ──────── 0⎥
627
+ ⎢ 2 4 4 4 ⎥
628
+ ⎢ ⎥
629
+ ⎢sin(2⋅θ) sin(4⋅θ) 1 cos(4⋅θ) ⎥
630
+ ⎢──────── ──────── ─ - ──────── 0⎥
631
+ ⎢ 2 4 4 4 ⎥
632
+ ⎢ ⎥
633
+ ⎣ 0 0 0 0⎦
634
+
635
+ A half-wave plate
636
+
637
+ >>> pprint(mueller_matrix(half_wave_retarder(theta)), use_unicode=True)
638
+ ⎡1 0 0 0 ⎤
639
+ ⎢ ⎥
640
+ ⎢ 4 2 ⎥
641
+ ⎢0 8⋅sin (θ) - 8⋅sin (θ) + 1 sin(4⋅θ) 0 ⎥
642
+ ⎢ ⎥
643
+ ⎢ 4 2 ⎥
644
+ ⎢0 sin(4⋅θ) - 8⋅sin (θ) + 8⋅sin (θ) - 1 0 ⎥
645
+ ⎢ ⎥
646
+ ⎣0 0 0 -1⎦
647
+
648
+ A quarter-wave plate
649
+
650
+ >>> pprint(mueller_matrix(quarter_wave_retarder(theta)), use_unicode=True)
651
+ ⎡1 0 0 0 ⎤
652
+ ⎢ ⎥
653
+ ⎢ cos(4⋅θ) 1 sin(4⋅θ) ⎥
654
+ ⎢0 ──────── + ─ ──────── -sin(2⋅θ)⎥
655
+ ⎢ 2 2 2 ⎥
656
+ ⎢ ⎥
657
+ ⎢ sin(4⋅θ) 1 cos(4⋅θ) ⎥
658
+ ⎢0 ──────── ─ - ──────── cos(2⋅θ) ⎥
659
+ ⎢ 2 2 2 ⎥
660
+ ⎢ ⎥
661
+ ⎣0 sin(2⋅θ) -cos(2⋅θ) 0 ⎦
662
+
663
+ """
664
+ A = Matrix([[1, 0, 0, 1],
665
+ [1, 0, 0, -1],
666
+ [0, 1, 1, 0],
667
+ [0, -I, I, 0]])
668
+
669
+ return simplify(A*TensorProduct(J, J.conjugate())*A.inv())
670
+
671
+
672
+ def polarizing_beam_splitter(Tp=1, Rs=1, Ts=0, Rp=0, phia=0, phib=0):
673
+ r"""A polarizing beam splitter Jones matrix at angle `theta`.
674
+
675
+ Parameters
676
+ ==========
677
+
678
+ J : SymPy Matrix
679
+ A Jones matrix.
680
+ Tp : numeric type or SymPy Symbol
681
+ The transmissivity of the P-polarized component.
682
+ Rs : numeric type or SymPy Symbol
683
+ The reflectivity of the S-polarized component.
684
+ Ts : numeric type or SymPy Symbol
685
+ The transmissivity of the S-polarized component.
686
+ Rp : numeric type or SymPy Symbol
687
+ The reflectivity of the P-polarized component.
688
+ phia : numeric type or SymPy Symbol
689
+ The phase difference between transmitted and reflected component for
690
+ output mode a.
691
+ phib : numeric type or SymPy Symbol
692
+ The phase difference between transmitted and reflected component for
693
+ output mode b.
694
+
695
+
696
+ Returns
697
+ =======
698
+
699
+ SymPy Matrix
700
+ A 4x4 matrix representing the PBS. This matrix acts on a 4x1 vector
701
+ whose first two entries are the Jones vector on one of the PBS ports,
702
+ and the last two entries the Jones vector on the other port.
703
+
704
+ Examples
705
+ ========
706
+
707
+ Generic polarizing beam-splitter.
708
+
709
+ >>> from sympy import pprint, symbols
710
+ >>> from sympy.physics.optics.polarization import polarizing_beam_splitter
711
+ >>> Ts, Rs, Tp, Rp = symbols(r"Ts, Rs, Tp, Rp", positive=True)
712
+ >>> phia, phib = symbols("phi_a, phi_b", real=True)
713
+ >>> PBS = polarizing_beam_splitter(Tp, Rs, Ts, Rp, phia, phib)
714
+ >>> pprint(PBS, use_unicode=False)
715
+ [ ____ ____ ]
716
+ [ \/ Tp 0 I*\/ Rp 0 ]
717
+ [ ]
718
+ [ ____ ____ I*phi_a]
719
+ [ 0 \/ Ts 0 -I*\/ Rs *e ]
720
+ [ ]
721
+ [ ____ ____ ]
722
+ [I*\/ Rp 0 \/ Tp 0 ]
723
+ [ ]
724
+ [ ____ I*phi_b ____ ]
725
+ [ 0 -I*\/ Rs *e 0 \/ Ts ]
726
+
727
+ """
728
+ PBS = Matrix([[sqrt(Tp), 0, I*sqrt(Rp), 0],
729
+ [0, sqrt(Ts), 0, -I*sqrt(Rs)*exp(I*phia)],
730
+ [I*sqrt(Rp), 0, sqrt(Tp), 0],
731
+ [0, -I*sqrt(Rs)*exp(I*phib), 0, sqrt(Ts)]])
732
+ return PBS
venv/lib/python3.10/site-packages/sympy/physics/optics/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (194 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_gaussopt.cpython-310.pyc ADDED
Binary file (4.11 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_medium.cpython-310.pyc ADDED
Binary file (2.17 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_polarization.cpython-310.pyc ADDED
Binary file (2.22 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/optics/tests/test_gaussopt.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.evalf import N
2
+ from sympy.core.numbers import (Float, I, oo, pi)
3
+ from sympy.core.symbol import symbols
4
+ from sympy.functions.elementary.miscellaneous import sqrt
5
+ from sympy.functions.elementary.trigonometric import atan2
6
+ from sympy.matrices.dense import Matrix
7
+ from sympy.polys.polytools import factor
8
+
9
+ from sympy.physics.optics import (BeamParameter, CurvedMirror,
10
+ CurvedRefraction, FlatMirror, FlatRefraction, FreeSpace, GeometricRay,
11
+ RayTransferMatrix, ThinLens, conjugate_gauss_beams,
12
+ gaussian_conj, geometric_conj_ab, geometric_conj_af, geometric_conj_bf,
13
+ rayleigh2waist, waist2rayleigh)
14
+
15
+
16
+ def streq(a, b):
17
+ return str(a) == str(b)
18
+
19
+
20
+ def test_gauss_opt():
21
+ mat = RayTransferMatrix(1, 2, 3, 4)
22
+ assert mat == Matrix([[1, 2], [3, 4]])
23
+ assert mat == RayTransferMatrix( Matrix([[1, 2], [3, 4]]) )
24
+ assert [mat.A, mat.B, mat.C, mat.D] == [1, 2, 3, 4]
25
+
26
+ d, f, h, n1, n2, R = symbols('d f h n1 n2 R')
27
+ lens = ThinLens(f)
28
+ assert lens == Matrix([[ 1, 0], [-1/f, 1]])
29
+ assert lens.C == -1/f
30
+ assert FreeSpace(d) == Matrix([[ 1, d], [0, 1]])
31
+ assert FlatRefraction(n1, n2) == Matrix([[1, 0], [0, n1/n2]])
32
+ assert CurvedRefraction(
33
+ R, n1, n2) == Matrix([[1, 0], [(n1 - n2)/(R*n2), n1/n2]])
34
+ assert FlatMirror() == Matrix([[1, 0], [0, 1]])
35
+ assert CurvedMirror(R) == Matrix([[ 1, 0], [-2/R, 1]])
36
+ assert ThinLens(f) == Matrix([[ 1, 0], [-1/f, 1]])
37
+
38
+ mul = CurvedMirror(R)*FreeSpace(d)
39
+ mul_mat = Matrix([[ 1, 0], [-2/R, 1]])*Matrix([[ 1, d], [0, 1]])
40
+ assert mul.A == mul_mat[0, 0]
41
+ assert mul.B == mul_mat[0, 1]
42
+ assert mul.C == mul_mat[1, 0]
43
+ assert mul.D == mul_mat[1, 1]
44
+
45
+ angle = symbols('angle')
46
+ assert GeometricRay(h, angle) == Matrix([[ h], [angle]])
47
+ assert FreeSpace(
48
+ d)*GeometricRay(h, angle) == Matrix([[angle*d + h], [angle]])
49
+ assert GeometricRay( Matrix( ((h,), (angle,)) ) ) == Matrix([[h], [angle]])
50
+ assert (FreeSpace(d)*GeometricRay(h, angle)).height == angle*d + h
51
+ assert (FreeSpace(d)*GeometricRay(h, angle)).angle == angle
52
+
53
+ p = BeamParameter(530e-9, 1, w=1e-3)
54
+ assert streq(p.q, 1 + 1.88679245283019*I*pi)
55
+ assert streq(N(p.q), 1.0 + 5.92753330865999*I)
56
+ assert streq(N(p.w_0), Float(0.00100000000000000))
57
+ assert streq(N(p.z_r), Float(5.92753330865999))
58
+ fs = FreeSpace(10)
59
+ p1 = fs*p
60
+ assert streq(N(p.w), Float(0.00101413072159615))
61
+ assert streq(N(p1.w), Float(0.00210803120913829))
62
+
63
+ w, wavelen = symbols('w wavelen')
64
+ assert waist2rayleigh(w, wavelen) == pi*w**2/wavelen
65
+ z_r, wavelen = symbols('z_r wavelen')
66
+ assert rayleigh2waist(z_r, wavelen) == sqrt(wavelen*z_r)/sqrt(pi)
67
+
68
+ a, b, f = symbols('a b f')
69
+ assert geometric_conj_ab(a, b) == a*b/(a + b)
70
+ assert geometric_conj_af(a, f) == a*f/(a - f)
71
+ assert geometric_conj_bf(b, f) == b*f/(b - f)
72
+ assert geometric_conj_ab(oo, b) == b
73
+ assert geometric_conj_ab(a, oo) == a
74
+
75
+ s_in, z_r_in, f = symbols('s_in z_r_in f')
76
+ assert gaussian_conj(
77
+ s_in, z_r_in, f)[0] == 1/(-1/(s_in + z_r_in**2/(-f + s_in)) + 1/f)
78
+ assert gaussian_conj(
79
+ s_in, z_r_in, f)[1] == z_r_in/(1 - s_in**2/f**2 + z_r_in**2/f**2)
80
+ assert gaussian_conj(
81
+ s_in, z_r_in, f)[2] == 1/sqrt(1 - s_in**2/f**2 + z_r_in**2/f**2)
82
+
83
+ l, w_i, w_o, f = symbols('l w_i w_o f')
84
+ assert conjugate_gauss_beams(l, w_i, w_o, f=f)[0] == f*(
85
+ -sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)) + 1)
86
+ assert factor(conjugate_gauss_beams(l, w_i, w_o, f=f)[1]) == f*w_o**2*(
87
+ w_i**2/w_o**2 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))/w_i**2
88
+ assert conjugate_gauss_beams(l, w_i, w_o, f=f)[2] == f
89
+
90
+ z, l, w_0 = symbols('z l w_0', positive=True)
91
+ p = BeamParameter(l, z, w=w_0)
92
+ assert p.radius == z*(pi**2*w_0**4/(l**2*z**2) + 1)
93
+ assert p.w == w_0*sqrt(l**2*z**2/(pi**2*w_0**4) + 1)
94
+ assert p.w_0 == w_0
95
+ assert p.divergence == l/(pi*w_0)
96
+ assert p.gouy == atan2(z, pi*w_0**2/l)
97
+ assert p.waist_approximation_limit == 2*l/pi
98
+
99
+ p = BeamParameter(530e-9, 1, w=1e-3, n=2)
100
+ assert streq(p.q, 1 + 3.77358490566038*I*pi)
101
+ assert streq(N(p.z_r), Float(11.8550666173200))
102
+ assert streq(N(p.w_0), Float(0.00100000000000000))
venv/lib/python3.10/site-packages/sympy/physics/optics/tests/test_medium.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.functions.elementary.miscellaneous import sqrt
2
+ from sympy.physics.optics import Medium
3
+ from sympy.abc import epsilon, mu, n
4
+ from sympy.physics.units import speed_of_light, u0, e0, m, kg, s, A
5
+
6
+ from sympy.testing.pytest import raises
7
+
8
+ c = speed_of_light.convert_to(m/s)
9
+ e0 = e0.convert_to(A**2*s**4/(kg*m**3))
10
+ u0 = u0.convert_to(m*kg/(A**2*s**2))
11
+
12
+
13
+ def test_medium():
14
+ m1 = Medium('m1')
15
+ assert m1.intrinsic_impedance == sqrt(u0/e0)
16
+ assert m1.speed == 1/sqrt(e0*u0)
17
+ assert m1.refractive_index == c*sqrt(e0*u0)
18
+ assert m1.permittivity == e0
19
+ assert m1.permeability == u0
20
+ m2 = Medium('m2', epsilon, mu)
21
+ assert m2.intrinsic_impedance == sqrt(mu/epsilon)
22
+ assert m2.speed == 1/sqrt(epsilon*mu)
23
+ assert m2.refractive_index == c*sqrt(epsilon*mu)
24
+ assert m2.permittivity == epsilon
25
+ assert m2.permeability == mu
26
+ # Increasing electric permittivity and magnetic permeability
27
+ # by small amount from its value in vacuum.
28
+ m3 = Medium('m3', 9.0*10**(-12)*s**4*A**2/(m**3*kg), 1.45*10**(-6)*kg*m/(A**2*s**2))
29
+ assert m3.refractive_index > m1.refractive_index
30
+ assert m3 != m1
31
+ # Decreasing electric permittivity and magnetic permeability
32
+ # by small amount from its value in vacuum.
33
+ m4 = Medium('m4', 7.0*10**(-12)*s**4*A**2/(m**3*kg), 1.15*10**(-6)*kg*m/(A**2*s**2))
34
+ assert m4.refractive_index < m1.refractive_index
35
+ m5 = Medium('m5', permittivity=710*10**(-12)*s**4*A**2/(m**3*kg), n=1.33)
36
+ assert abs(m5.intrinsic_impedance - 6.24845417765552*kg*m**2/(A**2*s**3)) \
37
+ < 1e-12*kg*m**2/(A**2*s**3)
38
+ assert abs(m5.speed - 225407863.157895*m/s) < 1e-6*m/s
39
+ assert abs(m5.refractive_index - 1.33000000000000) < 1e-12
40
+ assert abs(m5.permittivity - 7.1e-10*A**2*s**4/(kg*m**3)) \
41
+ < 1e-20*A**2*s**4/(kg*m**3)
42
+ assert abs(m5.permeability - 2.77206575232851e-8*kg*m/(A**2*s**2)) \
43
+ < 1e-20*kg*m/(A**2*s**2)
44
+ m6 = Medium('m6', None, mu, n)
45
+ assert m6.permittivity == n**2/(c**2*mu)
46
+ # test for equality of refractive indices
47
+ assert Medium('m7').refractive_index == Medium('m8', e0, u0).refractive_index
48
+ raises(ValueError, lambda:Medium('m9', e0, u0, 2))
venv/lib/python3.10/site-packages/sympy/physics/optics/tests/test_polarization.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.physics.optics.polarization import (jones_vector, stokes_vector,
2
+ jones_2_stokes, linear_polarizer, phase_retarder, half_wave_retarder,
3
+ quarter_wave_retarder, transmissive_filter, reflective_filter,
4
+ mueller_matrix, polarizing_beam_splitter)
5
+ from sympy.core.numbers import (I, pi)
6
+ from sympy.core.singleton import S
7
+ from sympy.core.symbol import symbols
8
+ from sympy.functions.elementary.exponential import exp
9
+ from sympy.matrices.dense import Matrix
10
+
11
+
12
+ def test_polarization():
13
+ assert jones_vector(0, 0) == Matrix([1, 0])
14
+ assert jones_vector(pi/2, 0) == Matrix([0, 1])
15
+ #################################################################
16
+ assert stokes_vector(0, 0) == Matrix([1, 1, 0, 0])
17
+ assert stokes_vector(pi/2, 0) == Matrix([1, -1, 0, 0])
18
+ #################################################################
19
+ H = jones_vector(0, 0)
20
+ V = jones_vector(pi/2, 0)
21
+ D = jones_vector(pi/4, 0)
22
+ A = jones_vector(-pi/4, 0)
23
+ R = jones_vector(0, pi/4)
24
+ L = jones_vector(0, -pi/4)
25
+
26
+ res = [Matrix([1, 1, 0, 0]),
27
+ Matrix([1, -1, 0, 0]),
28
+ Matrix([1, 0, 1, 0]),
29
+ Matrix([1, 0, -1, 0]),
30
+ Matrix([1, 0, 0, 1]),
31
+ Matrix([1, 0, 0, -1])]
32
+
33
+ assert [jones_2_stokes(e) for e in [H, V, D, A, R, L]] == res
34
+ #################################################################
35
+ assert linear_polarizer(0) == Matrix([[1, 0], [0, 0]])
36
+ #################################################################
37
+ delta = symbols("delta", real=True)
38
+ res = Matrix([[exp(-I*delta/2), 0], [0, exp(I*delta/2)]])
39
+ assert phase_retarder(0, delta) == res
40
+ #################################################################
41
+ assert half_wave_retarder(0) == Matrix([[-I, 0], [0, I]])
42
+ #################################################################
43
+ res = Matrix([[exp(-I*pi/4), 0], [0, I*exp(-I*pi/4)]])
44
+ assert quarter_wave_retarder(0) == res
45
+ #################################################################
46
+ assert transmissive_filter(1) == Matrix([[1, 0], [0, 1]])
47
+ #################################################################
48
+ assert reflective_filter(1) == Matrix([[1, 0], [0, -1]])
49
+
50
+ res = Matrix([[S(1)/2, S(1)/2, 0, 0],
51
+ [S(1)/2, S(1)/2, 0, 0],
52
+ [0, 0, 0, 0],
53
+ [0, 0, 0, 0]])
54
+ assert mueller_matrix(linear_polarizer(0)) == res
55
+ #################################################################
56
+ res = Matrix([[1, 0, 0, 0], [0, 0, 0, -I], [0, 0, 1, 0], [0, -I, 0, 0]])
57
+ assert polarizing_beam_splitter() == res
venv/lib/python3.10/site-packages/sympy/physics/optics/tests/test_utils.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import comp, Rational
2
+ from sympy.physics.optics.utils import (refraction_angle, fresnel_coefficients,
3
+ deviation, brewster_angle, critical_angle, lens_makers_formula,
4
+ mirror_formula, lens_formula, hyperfocal_distance,
5
+ transverse_magnification)
6
+ from sympy.physics.optics.medium import Medium
7
+ from sympy.physics.units import e0
8
+
9
+ from sympy.core.numbers import oo
10
+ from sympy.core.symbol import symbols
11
+ from sympy.functions.elementary.miscellaneous import sqrt
12
+ from sympy.matrices.dense import Matrix
13
+ from sympy.geometry.point import Point3D
14
+ from sympy.geometry.line import Ray3D
15
+ from sympy.geometry.plane import Plane
16
+
17
+ from sympy.testing.pytest import raises
18
+
19
+
20
+ ae = lambda a, b, n: comp(a, b, 10**-n)
21
+
22
+
23
+ def test_refraction_angle():
24
+ n1, n2 = symbols('n1, n2')
25
+ m1 = Medium('m1')
26
+ m2 = Medium('m2')
27
+ r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
28
+ i = Matrix([1, 1, 1])
29
+ n = Matrix([0, 0, 1])
30
+ normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
31
+ P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
32
+ assert refraction_angle(r1, 1, 1, n) == Matrix([
33
+ [ 1],
34
+ [ 1],
35
+ [-1]])
36
+ assert refraction_angle([1, 1, 1], 1, 1, n) == Matrix([
37
+ [ 1],
38
+ [ 1],
39
+ [-1]])
40
+ assert refraction_angle((1, 1, 1), 1, 1, n) == Matrix([
41
+ [ 1],
42
+ [ 1],
43
+ [-1]])
44
+ assert refraction_angle(i, 1, 1, [0, 0, 1]) == Matrix([
45
+ [ 1],
46
+ [ 1],
47
+ [-1]])
48
+ assert refraction_angle(i, 1, 1, (0, 0, 1)) == Matrix([
49
+ [ 1],
50
+ [ 1],
51
+ [-1]])
52
+ assert refraction_angle(i, 1, 1, normal_ray) == Matrix([
53
+ [ 1],
54
+ [ 1],
55
+ [-1]])
56
+ assert refraction_angle(i, 1, 1, plane=P) == Matrix([
57
+ [ 1],
58
+ [ 1],
59
+ [-1]])
60
+ assert refraction_angle(r1, 1, 1, plane=P) == \
61
+ Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
62
+ assert refraction_angle(r1, m1, 1.33, plane=P) == \
63
+ Ray3D(Point3D(0, 0, 0), Point3D(Rational(100, 133), Rational(100, 133), -789378201649271*sqrt(3)/1000000000000000))
64
+ assert refraction_angle(r1, 1, m2, plane=P) == \
65
+ Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
66
+ assert refraction_angle(r1, n1, n2, plane=P) == \
67
+ Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
68
+ assert refraction_angle(r1, 1.33, 1, plane=P) == 0 # TIR
69
+ assert refraction_angle(r1, 1, 1, normal_ray) == \
70
+ Ray3D(Point3D(0, 0, 0), direction_ratio=[1, 1, -1])
71
+ assert ae(refraction_angle(0.5, 1, 2), 0.24207, 5)
72
+ assert ae(refraction_angle(0.5, 2, 1), 1.28293, 5)
73
+ raises(ValueError, lambda: refraction_angle(r1, m1, m2, normal_ray, P))
74
+ raises(TypeError, lambda: refraction_angle(m1, m1, m2)) # can add other values for arg[0]
75
+ raises(TypeError, lambda: refraction_angle(r1, m1, m2, None, i))
76
+ raises(TypeError, lambda: refraction_angle(r1, m1, m2, m2))
77
+
78
+
79
+ def test_fresnel_coefficients():
80
+ assert all(ae(i, j, 5) for i, j in zip(
81
+ fresnel_coefficients(0.5, 1, 1.33),
82
+ [0.11163, -0.17138, 0.83581, 0.82862]))
83
+ assert all(ae(i, j, 5) for i, j in zip(
84
+ fresnel_coefficients(0.5, 1.33, 1),
85
+ [-0.07726, 0.20482, 1.22724, 1.20482]))
86
+ m1 = Medium('m1')
87
+ m2 = Medium('m2', n=2)
88
+ assert all(ae(i, j, 5) for i, j in zip(
89
+ fresnel_coefficients(0.3, m1, m2),
90
+ [0.31784, -0.34865, 0.65892, 0.65135]))
91
+ ans = [[-0.23563, -0.97184], [0.81648, -0.57738]]
92
+ got = fresnel_coefficients(0.6, m2, m1)
93
+ for i, j in zip(got, ans):
94
+ for a, b in zip(i.as_real_imag(), j):
95
+ assert ae(a, b, 5)
96
+
97
+
98
+ def test_deviation():
99
+ n1, n2 = symbols('n1, n2')
100
+ r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
101
+ n = Matrix([0, 0, 1])
102
+ i = Matrix([-1, -1, -1])
103
+ normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
104
+ P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
105
+ assert deviation(r1, 1, 1, normal=n) == 0
106
+ assert deviation(r1, 1, 1, plane=P) == 0
107
+ assert deviation(r1, 1, 1.1, plane=P).evalf(3) + 0.119 < 1e-3
108
+ assert deviation(i, 1, 1.1, normal=normal_ray).evalf(3) + 0.119 < 1e-3
109
+ assert deviation(r1, 1.33, 1, plane=P) is None # TIR
110
+ assert deviation(r1, 1, 1, normal=[0, 0, 1]) == 0
111
+ assert deviation([-1, -1, -1], 1, 1, normal=[0, 0, 1]) == 0
112
+ assert ae(deviation(0.5, 1, 2), -0.25793, 5)
113
+ assert ae(deviation(0.5, 2, 1), 0.78293, 5)
114
+
115
+
116
+ def test_brewster_angle():
117
+ m1 = Medium('m1', n=1)
118
+ m2 = Medium('m2', n=1.33)
119
+ assert ae(brewster_angle(m1, m2), 0.93, 2)
120
+ m1 = Medium('m1', permittivity=e0, n=1)
121
+ m2 = Medium('m2', permittivity=e0, n=1.33)
122
+ assert ae(brewster_angle(m1, m2), 0.93, 2)
123
+ assert ae(brewster_angle(1, 1.33), 0.93, 2)
124
+
125
+
126
+ def test_critical_angle():
127
+ m1 = Medium('m1', n=1)
128
+ m2 = Medium('m2', n=1.33)
129
+ assert ae(critical_angle(m2, m1), 0.85, 2)
130
+
131
+
132
+ def test_lens_makers_formula():
133
+ n1, n2 = symbols('n1, n2')
134
+ m1 = Medium('m1', permittivity=e0, n=1)
135
+ m2 = Medium('m2', permittivity=e0, n=1.33)
136
+ assert lens_makers_formula(n1, n2, 10, -10) == 5.0*n2/(n1 - n2)
137
+ assert ae(lens_makers_formula(m1, m2, 10, -10), -20.15, 2)
138
+ assert ae(lens_makers_formula(1.33, 1, 10, -10), 15.15, 2)
139
+
140
+
141
+ def test_mirror_formula():
142
+ u, v, f = symbols('u, v, f')
143
+ assert mirror_formula(focal_length=f, u=u) == f*u/(-f + u)
144
+ assert mirror_formula(focal_length=f, v=v) == f*v/(-f + v)
145
+ assert mirror_formula(u=u, v=v) == u*v/(u + v)
146
+ assert mirror_formula(u=oo, v=v) == v
147
+ assert mirror_formula(u=oo, v=oo) is oo
148
+ assert mirror_formula(focal_length=oo, u=u) == -u
149
+ assert mirror_formula(u=u, v=oo) == u
150
+ assert mirror_formula(focal_length=oo, v=oo) is oo
151
+ assert mirror_formula(focal_length=f, v=oo) == f
152
+ assert mirror_formula(focal_length=oo, v=v) == -v
153
+ assert mirror_formula(focal_length=oo, u=oo) is oo
154
+ assert mirror_formula(focal_length=f, u=oo) == f
155
+ assert mirror_formula(focal_length=oo, u=u) == -u
156
+ raises(ValueError, lambda: mirror_formula(focal_length=f, u=u, v=v))
157
+
158
+
159
+ def test_lens_formula():
160
+ u, v, f = symbols('u, v, f')
161
+ assert lens_formula(focal_length=f, u=u) == f*u/(f + u)
162
+ assert lens_formula(focal_length=f, v=v) == f*v/(f - v)
163
+ assert lens_formula(u=u, v=v) == u*v/(u - v)
164
+ assert lens_formula(u=oo, v=v) == v
165
+ assert lens_formula(u=oo, v=oo) is oo
166
+ assert lens_formula(focal_length=oo, u=u) == u
167
+ assert lens_formula(u=u, v=oo) == -u
168
+ assert lens_formula(focal_length=oo, v=oo) is -oo
169
+ assert lens_formula(focal_length=oo, v=v) == v
170
+ assert lens_formula(focal_length=f, v=oo) == -f
171
+ assert lens_formula(focal_length=oo, u=oo) is oo
172
+ assert lens_formula(focal_length=oo, u=u) == u
173
+ assert lens_formula(focal_length=f, u=oo) == f
174
+ raises(ValueError, lambda: lens_formula(focal_length=f, u=u, v=v))
175
+
176
+
177
+ def test_hyperfocal_distance():
178
+ f, N, c = symbols('f, N, c')
179
+ assert hyperfocal_distance(f=f, N=N, c=c) == f**2/(N*c)
180
+ assert ae(hyperfocal_distance(f=0.5, N=8, c=0.0033), 9.47, 2)
181
+
182
+
183
+ def test_transverse_magnification():
184
+ si, so = symbols('si, so')
185
+ assert transverse_magnification(si, so) == -si/so
186
+ assert transverse_magnification(30, 15) == -2
187
+
188
+
189
+ def test_lens_makers_formula_thick_lens():
190
+ n1, n2 = symbols('n1, n2')
191
+ m1 = Medium('m1', permittivity=e0, n=1)
192
+ m2 = Medium('m2', permittivity=e0, n=1.33)
193
+ assert ae(lens_makers_formula(m1, m2, 10, -10, d=1), -19.82, 2)
194
+ assert lens_makers_formula(n1, n2, 1, -1, d=0.1) == n2/((2.0 - (0.1*n1 - 0.1*n2)/n1)*(n1 - n2))
195
+
196
+
197
+ def test_lens_makers_formula_plano_lens():
198
+ n1, n2 = symbols('n1, n2')
199
+ m1 = Medium('m1', permittivity=e0, n=1)
200
+ m2 = Medium('m2', permittivity=e0, n=1.33)
201
+ assert ae(lens_makers_formula(m1, m2, 10, oo), -40.30, 2)
202
+ assert lens_makers_formula(n1, n2, 10, oo) == 10.0*n2/(n1 - n2)
venv/lib/python3.10/site-packages/sympy/physics/optics/tests/test_waves.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.function import (Derivative, Function)
2
+ from sympy.core.numbers import (I, pi)
3
+ from sympy.core.symbol import (Symbol, symbols)
4
+ from sympy.functions.elementary.miscellaneous import sqrt
5
+ from sympy.functions.elementary.trigonometric import (atan2, cos, sin)
6
+ from sympy.simplify.simplify import simplify
7
+ from sympy.abc import epsilon, mu
8
+ from sympy.functions.elementary.exponential import exp
9
+ from sympy.physics.units import speed_of_light, m, s
10
+ from sympy.physics.optics import TWave
11
+
12
+ from sympy.testing.pytest import raises
13
+
14
+ c = speed_of_light.convert_to(m/s)
15
+
16
+ def test_twave():
17
+ A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f')
18
+ n = Symbol('n') # Refractive index
19
+ t = Symbol('t') # Time
20
+ x = Symbol('x') # Spatial variable
21
+ E = Function('E')
22
+ w1 = TWave(A1, f, phi1)
23
+ w2 = TWave(A2, f, phi2)
24
+ assert w1.amplitude == A1
25
+ assert w1.frequency == f
26
+ assert w1.phase == phi1
27
+ assert w1.wavelength == c/(f*n)
28
+ assert w1.time_period == 1/f
29
+ assert w1.angular_velocity == 2*pi*f
30
+ assert w1.wavenumber == 2*pi*f*n/c
31
+ assert w1.speed == c/n
32
+
33
+ w3 = w1 + w2
34
+ assert w3.amplitude == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2)
35
+ assert w3.frequency == f
36
+ assert w3.phase == atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2))
37
+ assert w3.wavelength == c/(f*n)
38
+ assert w3.time_period == 1/f
39
+ assert w3.angular_velocity == 2*pi*f
40
+ assert w3.wavenumber == 2*pi*f*n/c
41
+ assert w3.speed == c/n
42
+ assert simplify(w3.rewrite(sin) - w2.rewrite(sin) - w1.rewrite(sin)) == 0
43
+ assert w3.rewrite('pde') == epsilon*mu*Derivative(E(x, t), t, t) + Derivative(E(x, t), x, x)
44
+ assert w3.rewrite(cos) == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2)
45
+ + A2**2)*cos(pi*f*n*x*s/(149896229*m) - 2*pi*f*t + atan2(A1*sin(phi1)
46
+ + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2)))
47
+ assert w3.rewrite(exp) == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2)
48
+ + A2**2)*exp(I*(-2*pi*f*t + atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1)
49
+ + A2*cos(phi2)) + pi*s*f*n*x/(149896229*m)))
50
+
51
+ w4 = TWave(A1, None, 0, 1/f)
52
+ assert w4.frequency == f
53
+
54
+ w5 = w1 - w2
55
+ assert w5.amplitude == sqrt(A1**2 - 2*A1*A2*cos(phi1 - phi2) + A2**2)
56
+ assert w5.frequency == f
57
+ assert w5.phase == atan2(A1*sin(phi1) - A2*sin(phi2), A1*cos(phi1) - A2*cos(phi2))
58
+ assert w5.wavelength == c/(f*n)
59
+ assert w5.time_period == 1/f
60
+ assert w5.angular_velocity == 2*pi*f
61
+ assert w5.wavenumber == 2*pi*f*n/c
62
+ assert w5.speed == c/n
63
+ assert simplify(w5.rewrite(sin) - w1.rewrite(sin) + w2.rewrite(sin)) == 0
64
+ assert w5.rewrite('pde') == epsilon*mu*Derivative(E(x, t), t, t) + Derivative(E(x, t), x, x)
65
+ assert w5.rewrite(cos) == sqrt(A1**2 - 2*A1*A2*cos(phi1 - phi2)
66
+ + A2**2)*cos(-2*pi*f*t + atan2(A1*sin(phi1) - A2*sin(phi2), A1*cos(phi1)
67
+ - A2*cos(phi2)) + pi*s*f*n*x/(149896229*m))
68
+ assert w5.rewrite(exp) == sqrt(A1**2 - 2*A1*A2*cos(phi1 - phi2)
69
+ + A2**2)*exp(I*(-2*pi*f*t + atan2(A1*sin(phi1) - A2*sin(phi2), A1*cos(phi1)
70
+ - A2*cos(phi2)) + pi*s*f*n*x/(149896229*m)))
71
+
72
+ w6 = 2*w1
73
+ assert w6.amplitude == 2*A1
74
+ assert w6.frequency == f
75
+ assert w6.phase == phi1
76
+ w7 = -w6
77
+ assert w7.amplitude == -2*A1
78
+ assert w7.frequency == f
79
+ assert w7.phase == phi1
80
+
81
+ raises(ValueError, lambda:TWave(A1))
82
+ raises(ValueError, lambda:TWave(A1, f, phi1, t))
venv/lib/python3.10/site-packages/sympy/physics/optics/utils.py ADDED
@@ -0,0 +1,698 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ **Contains**
3
+
4
+ * refraction_angle
5
+ * fresnel_coefficients
6
+ * deviation
7
+ * brewster_angle
8
+ * critical_angle
9
+ * lens_makers_formula
10
+ * mirror_formula
11
+ * lens_formula
12
+ * hyperfocal_distance
13
+ * transverse_magnification
14
+ """
15
+
16
+ __all__ = ['refraction_angle',
17
+ 'deviation',
18
+ 'fresnel_coefficients',
19
+ 'brewster_angle',
20
+ 'critical_angle',
21
+ 'lens_makers_formula',
22
+ 'mirror_formula',
23
+ 'lens_formula',
24
+ 'hyperfocal_distance',
25
+ 'transverse_magnification'
26
+ ]
27
+
28
+ from sympy.core.numbers import (Float, I, oo, pi, zoo)
29
+ from sympy.core.singleton import S
30
+ from sympy.core.symbol import Symbol
31
+ from sympy.core.sympify import sympify
32
+ from sympy.functions.elementary.miscellaneous import sqrt
33
+ from sympy.functions.elementary.trigonometric import (acos, asin, atan2, cos, sin, tan)
34
+ from sympy.matrices.dense import Matrix
35
+ from sympy.polys.polytools import cancel
36
+ from sympy.series.limits import Limit
37
+ from sympy.geometry.line import Ray3D
38
+ from sympy.geometry.util import intersection
39
+ from sympy.geometry.plane import Plane
40
+ from sympy.utilities.iterables import is_sequence
41
+ from .medium import Medium
42
+
43
+
44
+ def refractive_index_of_medium(medium):
45
+ """
46
+ Helper function that returns refractive index, given a medium
47
+ """
48
+ if isinstance(medium, Medium):
49
+ n = medium.refractive_index
50
+ else:
51
+ n = sympify(medium)
52
+ return n
53
+
54
+
55
+ def refraction_angle(incident, medium1, medium2, normal=None, plane=None):
56
+ """
57
+ This function calculates transmitted vector after refraction at planar
58
+ surface. ``medium1`` and ``medium2`` can be ``Medium`` or any sympifiable object.
59
+ If ``incident`` is a number then treated as angle of incidence (in radians)
60
+ in which case refraction angle is returned.
61
+
62
+ If ``incident`` is an object of `Ray3D`, `normal` also has to be an instance
63
+ of `Ray3D` in order to get the output as a `Ray3D`. Please note that if
64
+ plane of separation is not provided and normal is an instance of `Ray3D`,
65
+ ``normal`` will be assumed to be intersecting incident ray at the plane of
66
+ separation. This will not be the case when `normal` is a `Matrix` or
67
+ any other sequence.
68
+ If ``incident`` is an instance of `Ray3D` and `plane` has not been provided
69
+ and ``normal`` is not `Ray3D`, output will be a `Matrix`.
70
+
71
+ Parameters
72
+ ==========
73
+
74
+ incident : Matrix, Ray3D, sequence or a number
75
+ Incident vector or angle of incidence
76
+ medium1 : sympy.physics.optics.medium.Medium or sympifiable
77
+ Medium 1 or its refractive index
78
+ medium2 : sympy.physics.optics.medium.Medium or sympifiable
79
+ Medium 2 or its refractive index
80
+ normal : Matrix, Ray3D, or sequence
81
+ Normal vector
82
+ plane : Plane
83
+ Plane of separation of the two media.
84
+
85
+ Returns
86
+ =======
87
+
88
+ Returns an angle of refraction or a refracted ray depending on inputs.
89
+
90
+ Examples
91
+ ========
92
+
93
+ >>> from sympy.physics.optics import refraction_angle
94
+ >>> from sympy.geometry import Point3D, Ray3D, Plane
95
+ >>> from sympy.matrices import Matrix
96
+ >>> from sympy import symbols, pi
97
+ >>> n = Matrix([0, 0, 1])
98
+ >>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
99
+ >>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
100
+ >>> refraction_angle(r1, 1, 1, n)
101
+ Matrix([
102
+ [ 1],
103
+ [ 1],
104
+ [-1]])
105
+ >>> refraction_angle(r1, 1, 1, plane=P)
106
+ Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
107
+
108
+ With different index of refraction of the two media
109
+
110
+ >>> n1, n2 = symbols('n1, n2')
111
+ >>> refraction_angle(r1, n1, n2, n)
112
+ Matrix([
113
+ [ n1/n2],
114
+ [ n1/n2],
115
+ [-sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)]])
116
+ >>> refraction_angle(r1, n1, n2, plane=P)
117
+ Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
118
+ >>> round(refraction_angle(pi/6, 1.2, 1.5), 5)
119
+ 0.41152
120
+ """
121
+
122
+ n1 = refractive_index_of_medium(medium1)
123
+ n2 = refractive_index_of_medium(medium2)
124
+
125
+ # check if an incidence angle was supplied instead of a ray
126
+ try:
127
+ angle_of_incidence = float(incident)
128
+ except TypeError:
129
+ angle_of_incidence = None
130
+
131
+ try:
132
+ critical_angle_ = critical_angle(medium1, medium2)
133
+ except (ValueError, TypeError):
134
+ critical_angle_ = None
135
+
136
+ if angle_of_incidence is not None:
137
+ if normal is not None or plane is not None:
138
+ raise ValueError('Normal/plane not allowed if incident is an angle')
139
+
140
+ if not 0.0 <= angle_of_incidence < pi*0.5:
141
+ raise ValueError('Angle of incidence not in range [0:pi/2)')
142
+
143
+ if critical_angle_ and angle_of_incidence > critical_angle_:
144
+ raise ValueError('Ray undergoes total internal reflection')
145
+ return asin(n1*sin(angle_of_incidence)/n2)
146
+
147
+ # Treat the incident as ray below
148
+ # A flag to check whether to return Ray3D or not
149
+ return_ray = False
150
+
151
+ if plane is not None and normal is not None:
152
+ raise ValueError("Either plane or normal is acceptable.")
153
+
154
+ if not isinstance(incident, Matrix):
155
+ if is_sequence(incident):
156
+ _incident = Matrix(incident)
157
+ elif isinstance(incident, Ray3D):
158
+ _incident = Matrix(incident.direction_ratio)
159
+ else:
160
+ raise TypeError(
161
+ "incident should be a Matrix, Ray3D, or sequence")
162
+ else:
163
+ _incident = incident
164
+
165
+ # If plane is provided, get direction ratios of the normal
166
+ # to the plane from the plane else go with `normal` param.
167
+ if plane is not None:
168
+ if not isinstance(plane, Plane):
169
+ raise TypeError("plane should be an instance of geometry.plane.Plane")
170
+ # If we have the plane, we can get the intersection
171
+ # point of incident ray and the plane and thus return
172
+ # an instance of Ray3D.
173
+ if isinstance(incident, Ray3D):
174
+ return_ray = True
175
+ intersection_pt = plane.intersection(incident)[0]
176
+ _normal = Matrix(plane.normal_vector)
177
+ else:
178
+ if not isinstance(normal, Matrix):
179
+ if is_sequence(normal):
180
+ _normal = Matrix(normal)
181
+ elif isinstance(normal, Ray3D):
182
+ _normal = Matrix(normal.direction_ratio)
183
+ if isinstance(incident, Ray3D):
184
+ intersection_pt = intersection(incident, normal)
185
+ if len(intersection_pt) == 0:
186
+ raise ValueError(
187
+ "Normal isn't concurrent with the incident ray.")
188
+ else:
189
+ return_ray = True
190
+ intersection_pt = intersection_pt[0]
191
+ else:
192
+ raise TypeError(
193
+ "Normal should be a Matrix, Ray3D, or sequence")
194
+ else:
195
+ _normal = normal
196
+
197
+ eta = n1/n2 # Relative index of refraction
198
+ # Calculating magnitude of the vectors
199
+ mag_incident = sqrt(sum([i**2 for i in _incident]))
200
+ mag_normal = sqrt(sum([i**2 for i in _normal]))
201
+ # Converting vectors to unit vectors by dividing
202
+ # them with their magnitudes
203
+ _incident /= mag_incident
204
+ _normal /= mag_normal
205
+ c1 = -_incident.dot(_normal) # cos(angle_of_incidence)
206
+ cs2 = 1 - eta**2*(1 - c1**2) # cos(angle_of_refraction)**2
207
+ if cs2.is_negative: # This is the case of total internal reflection(TIR).
208
+ return S.Zero
209
+ drs = eta*_incident + (eta*c1 - sqrt(cs2))*_normal
210
+ # Multiplying unit vector by its magnitude
211
+ drs = drs*mag_incident
212
+ if not return_ray:
213
+ return drs
214
+ else:
215
+ return Ray3D(intersection_pt, direction_ratio=drs)
216
+
217
+
218
+ def fresnel_coefficients(angle_of_incidence, medium1, medium2):
219
+ """
220
+ This function uses Fresnel equations to calculate reflection and
221
+ transmission coefficients. Those are obtained for both polarisations
222
+ when the electric field vector is in the plane of incidence (labelled 'p')
223
+ and when the electric field vector is perpendicular to the plane of
224
+ incidence (labelled 's'). There are four real coefficients unless the
225
+ incident ray reflects in total internal in which case there are two complex
226
+ ones. Angle of incidence is the angle between the incident ray and the
227
+ surface normal. ``medium1`` and ``medium2`` can be ``Medium`` or any
228
+ sympifiable object.
229
+
230
+ Parameters
231
+ ==========
232
+
233
+ angle_of_incidence : sympifiable
234
+
235
+ medium1 : Medium or sympifiable
236
+ Medium 1 or its refractive index
237
+
238
+ medium2 : Medium or sympifiable
239
+ Medium 2 or its refractive index
240
+
241
+ Returns
242
+ =======
243
+
244
+ Returns a list with four real Fresnel coefficients:
245
+ [reflection p (TM), reflection s (TE),
246
+ transmission p (TM), transmission s (TE)]
247
+ If the ray is undergoes total internal reflection then returns a
248
+ list of two complex Fresnel coefficients:
249
+ [reflection p (TM), reflection s (TE)]
250
+
251
+ Examples
252
+ ========
253
+
254
+ >>> from sympy.physics.optics import fresnel_coefficients
255
+ >>> fresnel_coefficients(0.3, 1, 2)
256
+ [0.317843553417859, -0.348645229818821,
257
+ 0.658921776708929, 0.651354770181179]
258
+ >>> fresnel_coefficients(0.6, 2, 1)
259
+ [-0.235625382192159 - 0.971843958291041*I,
260
+ 0.816477005968898 - 0.577377951366403*I]
261
+
262
+ References
263
+ ==========
264
+
265
+ .. [1] https://en.wikipedia.org/wiki/Fresnel_equations
266
+ """
267
+ if not 0 <= 2*angle_of_incidence < pi:
268
+ raise ValueError('Angle of incidence not in range [0:pi/2)')
269
+
270
+ n1 = refractive_index_of_medium(medium1)
271
+ n2 = refractive_index_of_medium(medium2)
272
+
273
+ angle_of_refraction = asin(n1*sin(angle_of_incidence)/n2)
274
+ try:
275
+ angle_of_total_internal_reflection_onset = critical_angle(n1, n2)
276
+ except ValueError:
277
+ angle_of_total_internal_reflection_onset = None
278
+
279
+ if angle_of_total_internal_reflection_onset is None or\
280
+ angle_of_total_internal_reflection_onset > angle_of_incidence:
281
+ R_s = -sin(angle_of_incidence - angle_of_refraction)\
282
+ /sin(angle_of_incidence + angle_of_refraction)
283
+ R_p = tan(angle_of_incidence - angle_of_refraction)\
284
+ /tan(angle_of_incidence + angle_of_refraction)
285
+ T_s = 2*sin(angle_of_refraction)*cos(angle_of_incidence)\
286
+ /sin(angle_of_incidence + angle_of_refraction)
287
+ T_p = 2*sin(angle_of_refraction)*cos(angle_of_incidence)\
288
+ /(sin(angle_of_incidence + angle_of_refraction)\
289
+ *cos(angle_of_incidence - angle_of_refraction))
290
+ return [R_p, R_s, T_p, T_s]
291
+ else:
292
+ n = n2/n1
293
+ R_s = cancel((cos(angle_of_incidence)-\
294
+ I*sqrt(sin(angle_of_incidence)**2 - n**2))\
295
+ /(cos(angle_of_incidence)+\
296
+ I*sqrt(sin(angle_of_incidence)**2 - n**2)))
297
+ R_p = cancel((n**2*cos(angle_of_incidence)-\
298
+ I*sqrt(sin(angle_of_incidence)**2 - n**2))\
299
+ /(n**2*cos(angle_of_incidence)+\
300
+ I*sqrt(sin(angle_of_incidence)**2 - n**2)))
301
+ return [R_p, R_s]
302
+
303
+
304
+ def deviation(incident, medium1, medium2, normal=None, plane=None):
305
+ """
306
+ This function calculates the angle of deviation of a ray
307
+ due to refraction at planar surface.
308
+
309
+ Parameters
310
+ ==========
311
+
312
+ incident : Matrix, Ray3D, sequence or float
313
+ Incident vector or angle of incidence
314
+ medium1 : sympy.physics.optics.medium.Medium or sympifiable
315
+ Medium 1 or its refractive index
316
+ medium2 : sympy.physics.optics.medium.Medium or sympifiable
317
+ Medium 2 or its refractive index
318
+ normal : Matrix, Ray3D, or sequence
319
+ Normal vector
320
+ plane : Plane
321
+ Plane of separation of the two media.
322
+
323
+ Returns angular deviation between incident and refracted rays
324
+
325
+ Examples
326
+ ========
327
+
328
+ >>> from sympy.physics.optics import deviation
329
+ >>> from sympy.geometry import Point3D, Ray3D, Plane
330
+ >>> from sympy.matrices import Matrix
331
+ >>> from sympy import symbols
332
+ >>> n1, n2 = symbols('n1, n2')
333
+ >>> n = Matrix([0, 0, 1])
334
+ >>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
335
+ >>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
336
+ >>> deviation(r1, 1, 1, n)
337
+ 0
338
+ >>> deviation(r1, n1, n2, plane=P)
339
+ -acos(-sqrt(-2*n1**2/(3*n2**2) + 1)) + acos(-sqrt(3)/3)
340
+ >>> round(deviation(0.1, 1.2, 1.5), 5)
341
+ -0.02005
342
+ """
343
+ refracted = refraction_angle(incident,
344
+ medium1,
345
+ medium2,
346
+ normal=normal,
347
+ plane=plane)
348
+ try:
349
+ angle_of_incidence = Float(incident)
350
+ except TypeError:
351
+ angle_of_incidence = None
352
+
353
+ if angle_of_incidence is not None:
354
+ return float(refracted) - angle_of_incidence
355
+
356
+ if refracted != 0:
357
+ if isinstance(refracted, Ray3D):
358
+ refracted = Matrix(refracted.direction_ratio)
359
+
360
+ if not isinstance(incident, Matrix):
361
+ if is_sequence(incident):
362
+ _incident = Matrix(incident)
363
+ elif isinstance(incident, Ray3D):
364
+ _incident = Matrix(incident.direction_ratio)
365
+ else:
366
+ raise TypeError(
367
+ "incident should be a Matrix, Ray3D, or sequence")
368
+ else:
369
+ _incident = incident
370
+
371
+ if plane is None:
372
+ if not isinstance(normal, Matrix):
373
+ if is_sequence(normal):
374
+ _normal = Matrix(normal)
375
+ elif isinstance(normal, Ray3D):
376
+ _normal = Matrix(normal.direction_ratio)
377
+ else:
378
+ raise TypeError(
379
+ "normal should be a Matrix, Ray3D, or sequence")
380
+ else:
381
+ _normal = normal
382
+ else:
383
+ _normal = Matrix(plane.normal_vector)
384
+
385
+ mag_incident = sqrt(sum([i**2 for i in _incident]))
386
+ mag_normal = sqrt(sum([i**2 for i in _normal]))
387
+ mag_refracted = sqrt(sum([i**2 for i in refracted]))
388
+ _incident /= mag_incident
389
+ _normal /= mag_normal
390
+ refracted /= mag_refracted
391
+ i = acos(_incident.dot(_normal))
392
+ r = acos(refracted.dot(_normal))
393
+ return i - r
394
+
395
+
396
+ def brewster_angle(medium1, medium2):
397
+ """
398
+ This function calculates the Brewster's angle of incidence to Medium 2 from
399
+ Medium 1 in radians.
400
+
401
+ Parameters
402
+ ==========
403
+
404
+ medium 1 : Medium or sympifiable
405
+ Refractive index of Medium 1
406
+ medium 2 : Medium or sympifiable
407
+ Refractive index of Medium 1
408
+
409
+ Examples
410
+ ========
411
+
412
+ >>> from sympy.physics.optics import brewster_angle
413
+ >>> brewster_angle(1, 1.33)
414
+ 0.926093295503462
415
+
416
+ """
417
+
418
+ n1 = refractive_index_of_medium(medium1)
419
+ n2 = refractive_index_of_medium(medium2)
420
+
421
+ return atan2(n2, n1)
422
+
423
+ def critical_angle(medium1, medium2):
424
+ """
425
+ This function calculates the critical angle of incidence (marking the onset
426
+ of total internal) to Medium 2 from Medium 1 in radians.
427
+
428
+ Parameters
429
+ ==========
430
+
431
+ medium 1 : Medium or sympifiable
432
+ Refractive index of Medium 1.
433
+ medium 2 : Medium or sympifiable
434
+ Refractive index of Medium 1.
435
+
436
+ Examples
437
+ ========
438
+
439
+ >>> from sympy.physics.optics import critical_angle
440
+ >>> critical_angle(1.33, 1)
441
+ 0.850908514477849
442
+
443
+ """
444
+
445
+ n1 = refractive_index_of_medium(medium1)
446
+ n2 = refractive_index_of_medium(medium2)
447
+
448
+ if n2 > n1:
449
+ raise ValueError('Total internal reflection impossible for n1 < n2')
450
+ else:
451
+ return asin(n2/n1)
452
+
453
+
454
+
455
+ def lens_makers_formula(n_lens, n_surr, r1, r2, d=0):
456
+ """
457
+ This function calculates focal length of a lens.
458
+ It follows cartesian sign convention.
459
+
460
+ Parameters
461
+ ==========
462
+
463
+ n_lens : Medium or sympifiable
464
+ Index of refraction of lens.
465
+ n_surr : Medium or sympifiable
466
+ Index of reflection of surrounding.
467
+ r1 : sympifiable
468
+ Radius of curvature of first surface.
469
+ r2 : sympifiable
470
+ Radius of curvature of second surface.
471
+ d : sympifiable, optional
472
+ Thickness of lens, default value is 0.
473
+
474
+ Examples
475
+ ========
476
+
477
+ >>> from sympy.physics.optics import lens_makers_formula
478
+ >>> from sympy import S
479
+ >>> lens_makers_formula(1.33, 1, 10, -10)
480
+ 15.1515151515151
481
+ >>> lens_makers_formula(1.2, 1, 10, S.Infinity)
482
+ 50.0000000000000
483
+ >>> lens_makers_formula(1.33, 1, 10, -10, d=1)
484
+ 15.3418463277618
485
+
486
+ """
487
+
488
+ if isinstance(n_lens, Medium):
489
+ n_lens = n_lens.refractive_index
490
+ else:
491
+ n_lens = sympify(n_lens)
492
+ if isinstance(n_surr, Medium):
493
+ n_surr = n_surr.refractive_index
494
+ else:
495
+ n_surr = sympify(n_surr)
496
+ d = sympify(d)
497
+
498
+ focal_length = 1/((n_lens - n_surr) / n_surr*(1/r1 - 1/r2 + (((n_lens - n_surr) * d) / (n_lens * r1 * r2))))
499
+
500
+ if focal_length == zoo:
501
+ return S.Infinity
502
+ return focal_length
503
+
504
+
505
+ def mirror_formula(focal_length=None, u=None, v=None):
506
+ """
507
+ This function provides one of the three parameters
508
+ when two of them are supplied.
509
+ This is valid only for paraxial rays.
510
+
511
+ Parameters
512
+ ==========
513
+
514
+ focal_length : sympifiable
515
+ Focal length of the mirror.
516
+ u : sympifiable
517
+ Distance of object from the pole on
518
+ the principal axis.
519
+ v : sympifiable
520
+ Distance of the image from the pole
521
+ on the principal axis.
522
+
523
+ Examples
524
+ ========
525
+
526
+ >>> from sympy.physics.optics import mirror_formula
527
+ >>> from sympy.abc import f, u, v
528
+ >>> mirror_formula(focal_length=f, u=u)
529
+ f*u/(-f + u)
530
+ >>> mirror_formula(focal_length=f, v=v)
531
+ f*v/(-f + v)
532
+ >>> mirror_formula(u=u, v=v)
533
+ u*v/(u + v)
534
+
535
+ """
536
+ if focal_length and u and v:
537
+ raise ValueError("Please provide only two parameters")
538
+
539
+ focal_length = sympify(focal_length)
540
+ u = sympify(u)
541
+ v = sympify(v)
542
+ if u is oo:
543
+ _u = Symbol('u')
544
+ if v is oo:
545
+ _v = Symbol('v')
546
+ if focal_length is oo:
547
+ _f = Symbol('f')
548
+ if focal_length is None:
549
+ if u is oo and v is oo:
550
+ return Limit(Limit(_v*_u/(_v + _u), _u, oo), _v, oo).doit()
551
+ if u is oo:
552
+ return Limit(v*_u/(v + _u), _u, oo).doit()
553
+ if v is oo:
554
+ return Limit(_v*u/(_v + u), _v, oo).doit()
555
+ return v*u/(v + u)
556
+ if u is None:
557
+ if v is oo and focal_length is oo:
558
+ return Limit(Limit(_v*_f/(_v - _f), _v, oo), _f, oo).doit()
559
+ if v is oo:
560
+ return Limit(_v*focal_length/(_v - focal_length), _v, oo).doit()
561
+ if focal_length is oo:
562
+ return Limit(v*_f/(v - _f), _f, oo).doit()
563
+ return v*focal_length/(v - focal_length)
564
+ if v is None:
565
+ if u is oo and focal_length is oo:
566
+ return Limit(Limit(_u*_f/(_u - _f), _u, oo), _f, oo).doit()
567
+ if u is oo:
568
+ return Limit(_u*focal_length/(_u - focal_length), _u, oo).doit()
569
+ if focal_length is oo:
570
+ return Limit(u*_f/(u - _f), _f, oo).doit()
571
+ return u*focal_length/(u - focal_length)
572
+
573
+
574
+ def lens_formula(focal_length=None, u=None, v=None):
575
+ """
576
+ This function provides one of the three parameters
577
+ when two of them are supplied.
578
+ This is valid only for paraxial rays.
579
+
580
+ Parameters
581
+ ==========
582
+
583
+ focal_length : sympifiable
584
+ Focal length of the mirror.
585
+ u : sympifiable
586
+ Distance of object from the optical center on
587
+ the principal axis.
588
+ v : sympifiable
589
+ Distance of the image from the optical center
590
+ on the principal axis.
591
+
592
+ Examples
593
+ ========
594
+
595
+ >>> from sympy.physics.optics import lens_formula
596
+ >>> from sympy.abc import f, u, v
597
+ >>> lens_formula(focal_length=f, u=u)
598
+ f*u/(f + u)
599
+ >>> lens_formula(focal_length=f, v=v)
600
+ f*v/(f - v)
601
+ >>> lens_formula(u=u, v=v)
602
+ u*v/(u - v)
603
+
604
+ """
605
+ if focal_length and u and v:
606
+ raise ValueError("Please provide only two parameters")
607
+
608
+ focal_length = sympify(focal_length)
609
+ u = sympify(u)
610
+ v = sympify(v)
611
+ if u is oo:
612
+ _u = Symbol('u')
613
+ if v is oo:
614
+ _v = Symbol('v')
615
+ if focal_length is oo:
616
+ _f = Symbol('f')
617
+ if focal_length is None:
618
+ if u is oo and v is oo:
619
+ return Limit(Limit(_v*_u/(_u - _v), _u, oo), _v, oo).doit()
620
+ if u is oo:
621
+ return Limit(v*_u/(_u - v), _u, oo).doit()
622
+ if v is oo:
623
+ return Limit(_v*u/(u - _v), _v, oo).doit()
624
+ return v*u/(u - v)
625
+ if u is None:
626
+ if v is oo and focal_length is oo:
627
+ return Limit(Limit(_v*_f/(_f - _v), _v, oo), _f, oo).doit()
628
+ if v is oo:
629
+ return Limit(_v*focal_length/(focal_length - _v), _v, oo).doit()
630
+ if focal_length is oo:
631
+ return Limit(v*_f/(_f - v), _f, oo).doit()
632
+ return v*focal_length/(focal_length - v)
633
+ if v is None:
634
+ if u is oo and focal_length is oo:
635
+ return Limit(Limit(_u*_f/(_u + _f), _u, oo), _f, oo).doit()
636
+ if u is oo:
637
+ return Limit(_u*focal_length/(_u + focal_length), _u, oo).doit()
638
+ if focal_length is oo:
639
+ return Limit(u*_f/(u + _f), _f, oo).doit()
640
+ return u*focal_length/(u + focal_length)
641
+
642
+ def hyperfocal_distance(f, N, c):
643
+ """
644
+
645
+ Parameters
646
+ ==========
647
+
648
+ f: sympifiable
649
+ Focal length of a given lens.
650
+
651
+ N: sympifiable
652
+ F-number of a given lens.
653
+
654
+ c: sympifiable
655
+ Circle of Confusion (CoC) of a given image format.
656
+
657
+ Example
658
+ =======
659
+
660
+ >>> from sympy.physics.optics import hyperfocal_distance
661
+ >>> round(hyperfocal_distance(f = 0.5, N = 8, c = 0.0033), 2)
662
+ 9.47
663
+ """
664
+
665
+ f = sympify(f)
666
+ N = sympify(N)
667
+ c = sympify(c)
668
+
669
+ return (1/(N * c))*(f**2)
670
+
671
+ def transverse_magnification(si, so):
672
+ """
673
+
674
+ Calculates the transverse magnification, which is the ratio of the
675
+ image size to the object size.
676
+
677
+ Parameters
678
+ ==========
679
+
680
+ so: sympifiable
681
+ Lens-object distance.
682
+
683
+ si: sympifiable
684
+ Lens-image distance.
685
+
686
+ Example
687
+ =======
688
+
689
+ >>> from sympy.physics.optics import transverse_magnification
690
+ >>> transverse_magnification(30, 15)
691
+ -2
692
+
693
+ """
694
+
695
+ si = sympify(si)
696
+ so = sympify(so)
697
+
698
+ return (-(si/so))
venv/lib/python3.10/site-packages/sympy/physics/optics/waves.py ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module has all the classes and functions related to waves in optics.
3
+
4
+ **Contains**
5
+
6
+ * TWave
7
+ """
8
+
9
+ __all__ = ['TWave']
10
+
11
+ from sympy.core.basic import Basic
12
+ from sympy.core.expr import Expr
13
+ from sympy.core.function import Derivative, Function
14
+ from sympy.core.numbers import (Number, pi, I)
15
+ from sympy.core.singleton import S
16
+ from sympy.core.symbol import (Symbol, symbols)
17
+ from sympy.core.sympify import _sympify, sympify
18
+ from sympy.functions.elementary.exponential import exp
19
+ from sympy.functions.elementary.miscellaneous import sqrt
20
+ from sympy.functions.elementary.trigonometric import (atan2, cos, sin)
21
+ from sympy.physics.units import speed_of_light, meter, second
22
+
23
+
24
+ c = speed_of_light.convert_to(meter/second)
25
+
26
+
27
+ class TWave(Expr):
28
+
29
+ r"""
30
+ This is a simple transverse sine wave travelling in a one-dimensional space.
31
+ Basic properties are required at the time of creation of the object,
32
+ but they can be changed later with respective methods provided.
33
+
34
+ Explanation
35
+ ===========
36
+
37
+ It is represented as :math:`A \times cos(k*x - \omega \times t + \phi )`,
38
+ where :math:`A` is the amplitude, :math:`\omega` is the angular frequency,
39
+ :math:`k` is the wavenumber (spatial frequency), :math:`x` is a spatial variable
40
+ to represent the position on the dimension on which the wave propagates,
41
+ and :math:`\phi` is the phase angle of the wave.
42
+
43
+
44
+ Arguments
45
+ =========
46
+
47
+ amplitude : Sympifyable
48
+ Amplitude of the wave.
49
+ frequency : Sympifyable
50
+ Frequency of the wave.
51
+ phase : Sympifyable
52
+ Phase angle of the wave.
53
+ time_period : Sympifyable
54
+ Time period of the wave.
55
+ n : Sympifyable
56
+ Refractive index of the medium.
57
+
58
+ Raises
59
+ =======
60
+
61
+ ValueError : When neither frequency nor time period is provided
62
+ or they are not consistent.
63
+ TypeError : When anything other than TWave objects is added.
64
+
65
+
66
+ Examples
67
+ ========
68
+
69
+ >>> from sympy import symbols
70
+ >>> from sympy.physics.optics import TWave
71
+ >>> A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f')
72
+ >>> w1 = TWave(A1, f, phi1)
73
+ >>> w2 = TWave(A2, f, phi2)
74
+ >>> w3 = w1 + w2 # Superposition of two waves
75
+ >>> w3
76
+ TWave(sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2), f,
77
+ atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2)), 1/f, n)
78
+ >>> w3.amplitude
79
+ sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2)
80
+ >>> w3.phase
81
+ atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2))
82
+ >>> w3.speed
83
+ 299792458*meter/(second*n)
84
+ >>> w3.angular_velocity
85
+ 2*pi*f
86
+
87
+ """
88
+
89
+ def __new__(
90
+ cls,
91
+ amplitude,
92
+ frequency=None,
93
+ phase=S.Zero,
94
+ time_period=None,
95
+ n=Symbol('n')):
96
+ if time_period is not None:
97
+ time_period = _sympify(time_period)
98
+ _frequency = S.One/time_period
99
+ if frequency is not None:
100
+ frequency = _sympify(frequency)
101
+ _time_period = S.One/frequency
102
+ if time_period is not None:
103
+ if frequency != S.One/time_period:
104
+ raise ValueError("frequency and time_period should be consistent.")
105
+ if frequency is None and time_period is None:
106
+ raise ValueError("Either frequency or time period is needed.")
107
+ if frequency is None:
108
+ frequency = _frequency
109
+ if time_period is None:
110
+ time_period = _time_period
111
+
112
+ amplitude = _sympify(amplitude)
113
+ phase = _sympify(phase)
114
+ n = sympify(n)
115
+ obj = Basic.__new__(cls, amplitude, frequency, phase, time_period, n)
116
+ return obj
117
+
118
+ @property
119
+ def amplitude(self):
120
+ """
121
+ Returns the amplitude of the wave.
122
+
123
+ Examples
124
+ ========
125
+
126
+ >>> from sympy import symbols
127
+ >>> from sympy.physics.optics import TWave
128
+ >>> A, phi, f = symbols('A, phi, f')
129
+ >>> w = TWave(A, f, phi)
130
+ >>> w.amplitude
131
+ A
132
+ """
133
+ return self.args[0]
134
+
135
+ @property
136
+ def frequency(self):
137
+ """
138
+ Returns the frequency of the wave,
139
+ in cycles per second.
140
+
141
+ Examples
142
+ ========
143
+
144
+ >>> from sympy import symbols
145
+ >>> from sympy.physics.optics import TWave
146
+ >>> A, phi, f = symbols('A, phi, f')
147
+ >>> w = TWave(A, f, phi)
148
+ >>> w.frequency
149
+ f
150
+ """
151
+ return self.args[1]
152
+
153
+ @property
154
+ def phase(self):
155
+ """
156
+ Returns the phase angle of the wave,
157
+ in radians.
158
+
159
+ Examples
160
+ ========
161
+
162
+ >>> from sympy import symbols
163
+ >>> from sympy.physics.optics import TWave
164
+ >>> A, phi, f = symbols('A, phi, f')
165
+ >>> w = TWave(A, f, phi)
166
+ >>> w.phase
167
+ phi
168
+ """
169
+ return self.args[2]
170
+
171
+ @property
172
+ def time_period(self):
173
+ """
174
+ Returns the temporal period of the wave,
175
+ in seconds per cycle.
176
+
177
+ Examples
178
+ ========
179
+
180
+ >>> from sympy import symbols
181
+ >>> from sympy.physics.optics import TWave
182
+ >>> A, phi, f = symbols('A, phi, f')
183
+ >>> w = TWave(A, f, phi)
184
+ >>> w.time_period
185
+ 1/f
186
+ """
187
+ return self.args[3]
188
+
189
+ @property
190
+ def n(self):
191
+ """
192
+ Returns the refractive index of the medium
193
+ """
194
+ return self.args[4]
195
+
196
+ @property
197
+ def wavelength(self):
198
+ """
199
+ Returns the wavelength (spatial period) of the wave,
200
+ in meters per cycle.
201
+ It depends on the medium of the wave.
202
+
203
+ Examples
204
+ ========
205
+
206
+ >>> from sympy import symbols
207
+ >>> from sympy.physics.optics import TWave
208
+ >>> A, phi, f = symbols('A, phi, f')
209
+ >>> w = TWave(A, f, phi)
210
+ >>> w.wavelength
211
+ 299792458*meter/(second*f*n)
212
+ """
213
+ return c/(self.frequency*self.n)
214
+
215
+
216
+ @property
217
+ def speed(self):
218
+ """
219
+ Returns the propagation speed of the wave,
220
+ in meters per second.
221
+ It is dependent on the propagation medium.
222
+
223
+ Examples
224
+ ========
225
+
226
+ >>> from sympy import symbols
227
+ >>> from sympy.physics.optics import TWave
228
+ >>> A, phi, f = symbols('A, phi, f')
229
+ >>> w = TWave(A, f, phi)
230
+ >>> w.speed
231
+ 299792458*meter/(second*n)
232
+ """
233
+ return self.wavelength*self.frequency
234
+
235
+ @property
236
+ def angular_velocity(self):
237
+ """
238
+ Returns the angular velocity of the wave,
239
+ in radians per second.
240
+
241
+ Examples
242
+ ========
243
+
244
+ >>> from sympy import symbols
245
+ >>> from sympy.physics.optics import TWave
246
+ >>> A, phi, f = symbols('A, phi, f')
247
+ >>> w = TWave(A, f, phi)
248
+ >>> w.angular_velocity
249
+ 2*pi*f
250
+ """
251
+ return 2*pi*self.frequency
252
+
253
+ @property
254
+ def wavenumber(self):
255
+ """
256
+ Returns the wavenumber of the wave,
257
+ in radians per meter.
258
+
259
+ Examples
260
+ ========
261
+
262
+ >>> from sympy import symbols
263
+ >>> from sympy.physics.optics import TWave
264
+ >>> A, phi, f = symbols('A, phi, f')
265
+ >>> w = TWave(A, f, phi)
266
+ >>> w.wavenumber
267
+ pi*second*f*n/(149896229*meter)
268
+ """
269
+ return 2*pi/self.wavelength
270
+
271
+ def __str__(self):
272
+ """String representation of a TWave."""
273
+ from sympy.printing import sstr
274
+ return type(self).__name__ + sstr(self.args)
275
+
276
+ __repr__ = __str__
277
+
278
+ def __add__(self, other):
279
+ """
280
+ Addition of two waves will result in their superposition.
281
+ The type of interference will depend on their phase angles.
282
+ """
283
+ if isinstance(other, TWave):
284
+ if self.frequency == other.frequency and self.wavelength == other.wavelength:
285
+ return TWave(sqrt(self.amplitude**2 + other.amplitude**2 + 2 *
286
+ self.amplitude*other.amplitude*cos(
287
+ self.phase - other.phase)),
288
+ self.frequency,
289
+ atan2(self.amplitude*sin(self.phase)
290
+ + other.amplitude*sin(other.phase),
291
+ self.amplitude*cos(self.phase)
292
+ + other.amplitude*cos(other.phase))
293
+ )
294
+ else:
295
+ raise NotImplementedError("Interference of waves with different frequencies"
296
+ " has not been implemented.")
297
+ else:
298
+ raise TypeError(type(other).__name__ + " and TWave objects cannot be added.")
299
+
300
+ def __mul__(self, other):
301
+ """
302
+ Multiplying a wave by a scalar rescales the amplitude of the wave.
303
+ """
304
+ other = sympify(other)
305
+ if isinstance(other, Number):
306
+ return TWave(self.amplitude*other, *self.args[1:])
307
+ else:
308
+ raise TypeError(type(other).__name__ + " and TWave objects cannot be multiplied.")
309
+
310
+ def __sub__(self, other):
311
+ return self.__add__(-1*other)
312
+
313
+ def __neg__(self):
314
+ return self.__mul__(-1)
315
+
316
+ def __radd__(self, other):
317
+ return self.__add__(other)
318
+
319
+ def __rmul__(self, other):
320
+ return self.__mul__(other)
321
+
322
+ def __rsub__(self, other):
323
+ return (-self).__radd__(other)
324
+
325
+ def _eval_rewrite_as_sin(self, *args, **kwargs):
326
+ return self.amplitude*sin(self.wavenumber*Symbol('x')
327
+ - self.angular_velocity*Symbol('t') + self.phase + pi/2, evaluate=False)
328
+
329
+ def _eval_rewrite_as_cos(self, *args, **kwargs):
330
+ return self.amplitude*cos(self.wavenumber*Symbol('x')
331
+ - self.angular_velocity*Symbol('t') + self.phase)
332
+
333
+ def _eval_rewrite_as_pde(self, *args, **kwargs):
334
+ mu, epsilon, x, t = symbols('mu, epsilon, x, t')
335
+ E = Function('E')
336
+ return Derivative(E(x, t), x, 2) + mu*epsilon*Derivative(E(x, t), t, 2)
337
+
338
+ def _eval_rewrite_as_exp(self, *args, **kwargs):
339
+ return self.amplitude*exp(I*(self.wavenumber*Symbol('x')
340
+ - self.angular_velocity*Symbol('t') + self.phase))
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_boson.cpython-310.pyc ADDED
Binary file (1.7 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_cartesian.cpython-310.pyc ADDED
Binary file (3.91 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_circuitplot.cpython-310.pyc ADDED
Binary file (2.8 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_constants.cpython-310.pyc ADDED
Binary file (604 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_density.cpython-310.pyc ADDED
Binary file (8.47 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_fermion.cpython-310.pyc ADDED
Binary file (1.18 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_grover.cpython-310.pyc ADDED
Binary file (3.46 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_hilbert.cpython-310.pyc ADDED
Binary file (2.93 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_identitysearch.cpython-310.pyc ADDED
Binary file (10.1 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_innerproduct.cpython-310.pyc ADDED
Binary file (2.83 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_matrixutils.cpython-310.pyc ADDED
Binary file (3.59 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_operator.cpython-310.pyc ADDED
Binary file (7.41 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_operatorordering.cpython-310.pyc ADDED
Binary file (1.41 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_operatorset.cpython-310.pyc ADDED
Binary file (2.51 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_piab.cpython-310.pyc ADDED
Binary file (1.6 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_qapply.cpython-310.pyc ADDED
Binary file (6.36 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_qasm.cpython-310.pyc ADDED
Binary file (4.31 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_qexpr.cpython-310.pyc ADDED
Binary file (1.9 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_qubit.cpython-310.pyc ADDED
Binary file (7.98 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_represent.cpython-310.pyc ADDED
Binary file (6.09 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_sho1d.cpython-310.pyc ADDED
Binary file (4.97 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_shor.cpython-310.pyc ADDED
Binary file (1.03 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_spin.cpython-310.pyc ADDED
Binary file (200 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_state.cpython-310.pyc ADDED
Binary file (7.26 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_trace.cpython-310.pyc ADDED
Binary file (3.32 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/vector/__init__.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __all__ = [
2
+ 'CoordinateSym', 'ReferenceFrame',
3
+
4
+ 'Dyadic',
5
+
6
+ 'Vector',
7
+
8
+ 'Point',
9
+
10
+ 'cross', 'dot', 'express', 'time_derivative', 'outer',
11
+ 'kinematic_equations', 'get_motion_params', 'partial_velocity',
12
+ 'dynamicsymbols',
13
+
14
+ 'vprint', 'vsstrrepr', 'vsprint', 'vpprint', 'vlatex', 'init_vprinting',
15
+
16
+ 'curl', 'divergence', 'gradient', 'is_conservative', 'is_solenoidal',
17
+ 'scalar_potential', 'scalar_potential_difference',
18
+
19
+ ]
20
+ from .frame import CoordinateSym, ReferenceFrame
21
+
22
+ from .dyadic import Dyadic
23
+
24
+ from .vector import Vector
25
+
26
+ from .point import Point
27
+
28
+ from .functions import (cross, dot, express, time_derivative, outer,
29
+ kinematic_equations, get_motion_params, partial_velocity,
30
+ dynamicsymbols)
31
+
32
+ from .printing import (vprint, vsstrrepr, vsprint, vpprint, vlatex,
33
+ init_vprinting)
34
+
35
+ from .fieldfunctions import (curl, divergence, gradient, is_conservative,
36
+ is_solenoidal, scalar_potential, scalar_potential_difference)
venv/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.08 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/dyadic.cpython-310.pyc ADDED
Binary file (17.5 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/fieldfunctions.cpython-310.pyc ADDED
Binary file (7.75 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/frame.cpython-310.pyc ADDED
Binary file (45.8 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/functions.cpython-310.pyc ADDED
Binary file (19.4 kB). View file
 
venv/lib/python3.10/site-packages/sympy/physics/vector/__pycache__/point.cpython-310.pyc ADDED
Binary file (18.7 kB). View file