Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/22.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/22.attention.query_key_value.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__init__.py +5 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/aot_autograd.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/autograd_function.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/batch_norm_replacement.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/benchmark_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/compile_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/compilers.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/eager_transforms.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/functional_call.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/fx_minifier.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/make_functional.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/partitioners.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/pyfunctorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/python_key.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/pytree_hacks.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/top_operators_github_usage.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/vmap.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__init__.py +5 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/collect_metadata_analysis.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/dispatch_and_compile_graph.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/functional_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/input_output_analysis.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/jit_compile_runtime_wrappers.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/logging_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/runtime_wrappers.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/schemas.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/subclass_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/traced_function_transforms.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/collect_metadata_analysis.py +626 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py +192 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/functional_utils.py +370 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/input_output_analysis.py +432 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py +936 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/logging_utils.py +135 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py +1021 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/schemas.py +696 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/subclass_utils.py +295 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py +698 -0
- venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/utils.py +226 -0
- venv/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py +1246 -0
- venv/lib/python3.10/site-packages/torch/_functorch/apis.py +401 -0
- venv/lib/python3.10/site-packages/torch/_functorch/autograd_function.py +659 -0
- venv/lib/python3.10/site-packages/torch/_functorch/batch_norm_replacement.py +24 -0
- venv/lib/python3.10/site-packages/torch/_functorch/benchmark_utils.py +195 -0
ckpts/universal/global_step120/zero/22.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d22d5573f9a1c363406a5caaba27fa962267b596020bb774e5e0a941bd35bdf9
|
3 |
+
size 50332828
|
ckpts/universal/global_step120/zero/22.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd6970ddc989fe7653460eb102c1cb92dec1227367988731e8b574254a582c36
|
3 |
+
size 50332749
|
venv/lib/python3.10/site-packages/torch/_functorch/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the BSD-style license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (184 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/aot_autograd.cpython-310.pyc
ADDED
Binary file (27.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/autograd_function.cpython-310.pyc
ADDED
Binary file (15.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/batch_norm_replacement.cpython-310.pyc
ADDED
Binary file (1.04 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/benchmark_utils.cpython-310.pyc
ADDED
Binary file (5.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/compile_utils.cpython-310.pyc
ADDED
Binary file (3.13 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/compilers.cpython-310.pyc
ADDED
Binary file (13.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/eager_transforms.cpython-310.pyc
ADDED
Binary file (54.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/functional_call.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/fx_minifier.cpython-310.pyc
ADDED
Binary file (13.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/make_functional.cpython-310.pyc
ADDED
Binary file (21.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/partitioners.cpython-310.pyc
ADDED
Binary file (30.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/pyfunctorch.cpython-310.pyc
ADDED
Binary file (8.07 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/python_key.cpython-310.pyc
ADDED
Binary file (391 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/pytree_hacks.cpython-310.pyc
ADDED
Binary file (584 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/top_operators_github_usage.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (1.32 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/__pycache__/vmap.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the BSD-style license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (198 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/collect_metadata_analysis.cpython-310.pyc
ADDED
Binary file (10.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/dispatch_and_compile_graph.cpython-310.pyc
ADDED
Binary file (4.12 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/functional_utils.cpython-310.pyc
ADDED
Binary file (8.65 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/input_output_analysis.cpython-310.pyc
ADDED
Binary file (9.7 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/jit_compile_runtime_wrappers.cpython-310.pyc
ADDED
Binary file (19.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/logging_utils.cpython-310.pyc
ADDED
Binary file (4.32 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/runtime_wrappers.cpython-310.pyc
ADDED
Binary file (15.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/schemas.cpython-310.pyc
ADDED
Binary file (14.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/subclass_utils.cpython-310.pyc
ADDED
Binary file (6.29 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/traced_function_transforms.cpython-310.pyc
ADDED
Binary file (15.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (6.76 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/collect_metadata_analysis.py
ADDED
@@ -0,0 +1,626 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module is one of the analysis modules - it takes as input a function or graph
|
3 |
+
and some preexisting properties, and returns some data that is useful for deciding
|
4 |
+
how to further proceed with compilation or construct runtime wrappers.
|
5 |
+
|
6 |
+
In particular, the analysis here constructs view and mutation metadata from running
|
7 |
+
a functionalized version of the graph under compilation.
|
8 |
+
"""
|
9 |
+
|
10 |
+
import collections
|
11 |
+
import logging
|
12 |
+
from functools import wraps
|
13 |
+
from typing import Callable, DefaultDict, Dict, List
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.utils._pytree as pytree
|
17 |
+
from torch import Tensor
|
18 |
+
from torch._subclasses.functional_tensor import FunctionalTensor, FunctionalTensorMode
|
19 |
+
from torch._subclasses.meta_utils import safe_is_leaf
|
20 |
+
from torch.fx.experimental.symbolic_shapes import is_concrete_int
|
21 |
+
from torch.multiprocessing.reductions import StorageWeakRef
|
22 |
+
from torch.utils._python_dispatch import (
|
23 |
+
is_traceable_wrapper_subclass,
|
24 |
+
transform_subclass,
|
25 |
+
)
|
26 |
+
from .functional_utils import (
|
27 |
+
are_all_mutations_hidden_from_autograd,
|
28 |
+
are_all_mutations_under_no_grad_or_inference_mode,
|
29 |
+
from_fun,
|
30 |
+
has_data_mutation,
|
31 |
+
has_metadata_mutation,
|
32 |
+
has_same_metadata,
|
33 |
+
to_fun,
|
34 |
+
)
|
35 |
+
from .schemas import (
|
36 |
+
InputAliasInfo,
|
37 |
+
MutationType,
|
38 |
+
OutputAliasInfo,
|
39 |
+
OutputType,
|
40 |
+
ViewAndMutationMeta,
|
41 |
+
)
|
42 |
+
from .subclass_utils import create_subclass_meta
|
43 |
+
|
44 |
+
from .utils import _get_autocast_states, KNOWN_TYPES, strict_zip
|
45 |
+
|
46 |
+
zip = strict_zip
|
47 |
+
|
48 |
+
log = logging.getLogger(__name__)
|
49 |
+
|
50 |
+
|
51 |
+
# This is a version of functionalization that is specifically designed
|
52 |
+
# for the AOTAutograd use case.
|
53 |
+
#
|
54 |
+
# Unlike functorch's variant, this doesn't use the functorch level system,
|
55 |
+
# instead it directly uses PyTorch's conventional dispatcher to hit the
|
56 |
+
# functionalization key. In particular, this means that FunctionalTensorWrapper
|
57 |
+
# can have autograd data stored directly on it.
|
58 |
+
#
|
59 |
+
# In typical AOTAutograd usage, the dispatch key order will look like:
|
60 |
+
#
|
61 |
+
# Autograd - Functionalization ~~~~> Proxy Mode - Fake Tensor
|
62 |
+
# outer tensor inner tensor
|
63 |
+
#
|
64 |
+
# Returns:
|
65 |
+
# - ViewAndMutationMeta, telling us metadata about the inputs and outputs, and
|
66 |
+
# The list of outputs from the forward, but **only** the outputs that we need
|
67 |
+
# to pass in as tangents into the backward.
|
68 |
+
# Specifically, aliased outputs from the forward get regenerated, and don't participate
|
69 |
+
# in the compiled backward function.
|
70 |
+
def run_functionalized_fw_and_collect_metadata(
|
71 |
+
f,
|
72 |
+
*,
|
73 |
+
keep_input_mutations: bool,
|
74 |
+
# TODO: refactor to kill this flag
|
75 |
+
is_train: bool = False,
|
76 |
+
pre_dispatch: bool = False,
|
77 |
+
) -> Callable[..., ViewAndMutationMeta]:
|
78 |
+
memo: Dict[Tensor, Tensor] = {}
|
79 |
+
|
80 |
+
def _to_fun(t):
|
81 |
+
if isinstance(t, Tensor):
|
82 |
+
if t in memo:
|
83 |
+
return memo[t]
|
84 |
+
r = to_fun(t)
|
85 |
+
memo[t] = r
|
86 |
+
return r
|
87 |
+
else:
|
88 |
+
return t
|
89 |
+
|
90 |
+
@wraps(f)
|
91 |
+
def inner(*flat_args):
|
92 |
+
# This function is meant to be run with the forward, which expects a flat list of tensor/symint/other args.
|
93 |
+
assert all(isinstance(a, tuple(KNOWN_TYPES)) for a in flat_args)
|
94 |
+
|
95 |
+
input_info: List[InputAliasInfo] = []
|
96 |
+
output_info: List[OutputAliasInfo] = []
|
97 |
+
|
98 |
+
prior_grad_enabled = torch.is_grad_enabled()
|
99 |
+
prior_autocast_states = _get_autocast_states()
|
100 |
+
|
101 |
+
# See Note [Disabling Functionalize TLS Above Python Functionalization]
|
102 |
+
disable_above = torch._C._ExcludeDispatchKeyGuard(
|
103 |
+
torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
|
104 |
+
)
|
105 |
+
|
106 |
+
# It doesn't matter if we run this under predispatch or not because it is
|
107 |
+
# only for figuring out metadata
|
108 |
+
mode = FunctionalTensorMode(_allow_token_discovery=True)
|
109 |
+
with disable_above, mode:
|
110 |
+
# precondition: The passed in function already handles unflattening inputs + flattening outputs
|
111 |
+
flat_f_args = pytree.tree_map(_to_fun, flat_args)
|
112 |
+
flat_f_outs = f(*flat_f_args)
|
113 |
+
|
114 |
+
if prior_autocast_states != _get_autocast_states():
|
115 |
+
raise RuntimeError(
|
116 |
+
"AOTAutograd does not support tracing graphs that mutate the autocast state. "
|
117 |
+
"Dynamo will only insert autocast context managers (e.g. with torch.autocast(..)) into the graph, "
|
118 |
+
"which will unwind all of their mutations to autocast state before the graph exits. "
|
119 |
+
"If you encounter this error while using torch.compile, please file a bug."
|
120 |
+
)
|
121 |
+
|
122 |
+
# Inspect the state of the input tensor functional wrapper to detect input mutation info
|
123 |
+
# If inp[i] has a metadata-only mutation, then maybe_inputs_with_mutated_metadata[i] contains the updated version
|
124 |
+
for i, (arg, f_arg) in enumerate(zip(flat_args, flat_f_args)):
|
125 |
+
# NB: Mutation of non-contiguous tensor subclass input can result in a mismatch in
|
126 |
+
# strides between the functionalized arg inner tensors and non-functionalized arg inner
|
127 |
+
# tensors. This is a problem as the inner tensor stride change may not be reflected
|
128 |
+
# correctly in the outer tensor, so disallow this for now.
|
129 |
+
mutates_data = has_data_mutation(f_arg)
|
130 |
+
if (
|
131 |
+
mutates_data
|
132 |
+
and not arg.is_contiguous()
|
133 |
+
and is_traceable_wrapper_subclass(arg)
|
134 |
+
):
|
135 |
+
raise RuntimeError(
|
136 |
+
"Mutations on non-contiguous inputs are currently not allowed on "
|
137 |
+
"tensor subclasses"
|
138 |
+
)
|
139 |
+
|
140 |
+
if not isinstance(arg, Tensor):
|
141 |
+
new_arg = arg
|
142 |
+
else:
|
143 |
+
new_arg = from_fun(f_arg)
|
144 |
+
mutates_metadata = has_metadata_mutation(
|
145 |
+
f_arg, arg, check_only_storage_mutation=False
|
146 |
+
)
|
147 |
+
if mutates_metadata and is_traceable_wrapper_subclass(arg):
|
148 |
+
raise RuntimeError(
|
149 |
+
"Metadata mutations are currently not allowed on tensor subclasses"
|
150 |
+
)
|
151 |
+
mutates_storage_metadata = has_metadata_mutation(
|
152 |
+
f_arg, arg, check_only_storage_mutation=True
|
153 |
+
)
|
154 |
+
mutations_hidden_from_autograd = are_all_mutations_hidden_from_autograd(
|
155 |
+
f_arg
|
156 |
+
)
|
157 |
+
mutations_under_no_grad_or_inference_mode = (
|
158 |
+
mutates_data
|
159 |
+
and are_all_mutations_under_no_grad_or_inference_mode(f_arg)
|
160 |
+
)
|
161 |
+
|
162 |
+
# Here, we're saying that if an input experienced a set call, inp.set_(other),
|
163 |
+
# then we can effectively not have to worry about whether its data was mutated.
|
164 |
+
# There are 3 cases:
|
165 |
+
# (1) We mutate inp *after* the set_() call. other is a graph intermediate.
|
166 |
+
# In this case, we're not really mutating the input storage of "inp";
|
167 |
+
# we're mutating the storage of an intermdiate value (other),
|
168 |
+
# and slamming that storage into the input tensor. So no data mutation is necessary.
|
169 |
+
# (2) We mutate inp *after* the set_() call. other is a graph *input*.
|
170 |
+
# In this case, the data mutation will be properly handled in the runtime
|
171 |
+
# epilogue during the processing of "other"
|
172 |
+
# (3) We mutate inp *before* the set_() call.
|
173 |
+
# This case is *not* currently handled.
|
174 |
+
# TODO: discuss this in the PR. Both supporting this, and detecting + erroring out,
|
175 |
+
# seem painful to get working.
|
176 |
+
if mutates_storage_metadata:
|
177 |
+
mutates_data = False
|
178 |
+
|
179 |
+
requires_grad = isinstance(f_arg, torch.Tensor) and f_arg.requires_grad
|
180 |
+
|
181 |
+
input_info.append(
|
182 |
+
InputAliasInfo(
|
183 |
+
is_leaf=isinstance(arg, Tensor) and safe_is_leaf(arg),
|
184 |
+
mutates_data=mutates_data,
|
185 |
+
mutates_metadata=mutates_metadata,
|
186 |
+
mutations_hidden_from_autograd=mutations_hidden_from_autograd,
|
187 |
+
mutates_storage_metadata=mutates_storage_metadata,
|
188 |
+
mutations_under_no_grad_or_inference_mode=mutations_under_no_grad_or_inference_mode,
|
189 |
+
requires_grad=requires_grad,
|
190 |
+
keep_input_mutations=keep_input_mutations,
|
191 |
+
)
|
192 |
+
)
|
193 |
+
|
194 |
+
# If a function involves creating a tensor, and returning a view of it, such that its _base is the intermediate,
|
195 |
+
# We need to make sure our graph returns the _base as a graph output, and we manually recreate the view
|
196 |
+
# to return to the user. Why? The backend compiler is free to (incorrectly) not set requires_grad
|
197 |
+
# on the base tensor, but we are obligated to properly set requires-gradness on the real output.
|
198 |
+
|
199 |
+
inp_storage_refs = {
|
200 |
+
StorageWeakRef(inpt.untyped_storage()): idx
|
201 |
+
for idx, inpt in enumerate(flat_f_args)
|
202 |
+
if isinstance(inpt, Tensor)
|
203 |
+
}
|
204 |
+
|
205 |
+
# We need inp tensor id's to be able to tell if an outputs **are** inputs.
|
206 |
+
inp_tensor_ids = {id(inpt) for inpt in flat_f_args if isinstance(inpt, Tensor)}
|
207 |
+
# We need output tensor id's to tell if any output._base` attributes **are** other outputs.
|
208 |
+
# (This is also a dict because we need to know that output's index, so we can regenerate
|
209 |
+
# the alias from it).
|
210 |
+
out_tensor_ids = {id(o): i for i, o in enumerate(flat_f_outs)}
|
211 |
+
|
212 |
+
# Keep track of which outputs alias other outputs
|
213 |
+
out_tensor_alias_counts: DefaultDict = collections.defaultdict(int)
|
214 |
+
# This tells us, for a given group of outputs that alias each other,
|
215 |
+
# whether they e.g. all came from an unbind call
|
216 |
+
num_aliased_tensors_that_are_multi_output_views: DefaultDict = (
|
217 |
+
collections.defaultdict(int)
|
218 |
+
)
|
219 |
+
out_storage_to_tensors: DefaultDict = collections.defaultdict(set)
|
220 |
+
curr_storage = None
|
221 |
+
for o in flat_f_outs:
|
222 |
+
if isinstance(o, torch.Tensor):
|
223 |
+
curr_storage = StorageWeakRef(o.untyped_storage())
|
224 |
+
out_tensor_alias_counts[curr_storage] += 1
|
225 |
+
# Note: [AOTAutograd: differentiable outputs that alias each other from a multi-output view call]
|
226 |
+
# This is an optimization on top of the "alias of intermediates" logic,
|
227 |
+
# which you can read more about under Note [AOT Autograd: outputs aliasing inputs or intermediates!]
|
228 |
+
#
|
229 |
+
# Before describing the optimization: this is important for AOTAutograd to have good
|
230 |
+
# perf around, multi-output views. HOWEVER:
|
231 |
+
# - There is a more generic change to AOTAutograd that we'd like to make, that subsumes this case,
|
232 |
+
# around using pre-dispatch tracing to partition out a graph so we can faithfully replay all
|
233 |
+
# views without having to regenerate them at runtime.
|
234 |
+
# - It's loosely described in this doc (more details will be added soon):
|
235 |
+
# https://docs.google.com/document/d/1DlfFq8TKbuAn2zyJxLfoW-X1qkkm5PLdHFtySo03QAk/edit
|
236 |
+
# - Once that change lands, we should just rip out this "optimization", since:
|
237 |
+
# (1) It will be fully unnecessary
|
238 |
+
# (2) Although it is only a few lines of code, it is a bit difficult to reason about
|
239 |
+
# its correctness with the autograd engine in all cases.
|
240 |
+
#
|
241 |
+
#
|
242 |
+
# What is this optimization? Consider the below case:
|
243 |
+
# def f(x):
|
244 |
+
# intermediate = x.mul(2)
|
245 |
+
# # x and intermediate here require grad
|
246 |
+
# o1, o2, ... o10 = intermediate.unbind(-1)
|
247 |
+
# return intermediate, o1, o2, ... o10
|
248 |
+
# Now, the "intermediate base" handling in AOTAutograd implies that we must do the following:
|
249 |
+
# (1) return "intermediate as an extra output of the compiled graph
|
250 |
+
# (2) regenerate each aliased output off of "intermediate", **outside** of the autograd.Function.
|
251 |
+
# The reason AOTAutograd ordinarily does this is for safety: the autograd engine needs to know
|
252 |
+
# that o1 through o10 are all aliased, and if we blindly return o1 through o10 from the autograd.Function,
|
253 |
+
# this information will be hidden.
|
254 |
+
# In particular, mutating one alias might require autograd to update autograd metadata on the other aliases
|
255 |
+
# (like their grad_fn, for example, when the autograd engine needs to do view-replay).
|
256 |
+
#
|
257 |
+
# However, intermediate_base logic can be bad for backward performance (we sometimes generate
|
258 |
+
# as_strided calls during the intermediate base logic, which can have a slow backward formula).
|
259 |
+
# Is it possible to find a set of conditions where it is **safe** to hide the output aliasing from autograd?
|
260 |
+
#
|
261 |
+
# For a set of outputs of the graph that alias each other, o_1...o_k, consider:
|
262 |
+
# (1) They came from the same multi-output view op, e.g. o_1, ..., o_k = intermediate.unbind(0)
|
263 |
+
# (2) If there are any other aliases of o_1 through o_k (in the example above, intermediate),
|
264 |
+
# **at most** 1 can escape from the graph (e.g. there is not some other graph input/output
|
265 |
+
# o_other, that aliases these outputs)
|
266 |
+
# (3) o_1...o_k all require_grad, they all share the same ._base, and their ._base requires grad.
|
267 |
+
# This condition is important because it's what causes slowness in the intermediate_base
|
268 |
+
# codepath of aot_autograd. Ordinarily, o_1...o_k would all get a grad_fn, and
|
269 |
+
# aot_autograd's view-replay might give each output an AsStridedBackward as its grad_fn.
|
270 |
+
# "K" AsStridedBackward calls will be *much* slower than a single UnbindBackward.
|
271 |
+
# In this setup, is it possible to mutate one of the outputs o_i in a way that would affect the autograd meta
|
272 |
+
# of the other aliases?
|
273 |
+
#
|
274 |
+
# Claim: No! Consider a few example (which I'm pretty sure cover all cases of mutation w.r.t. autograd):
|
275 |
+
# (a) What happens if we mutate any of o_1 through o_k directly?
|
276 |
+
# Autograd raises an error:
|
277 |
+
# "RuntimeError: Output 0 of UnbindBackward0 is a view and is being modified inplace. This view is
|
278 |
+
# the output of a function that returns multiple views. Such functions do not allow the output
|
279 |
+
# views to be modified inplace. You should replace the inplace operation by an out-of-place one."
|
280 |
+
# (b) What if we take a view of o_k and mutate it, o_k.view(o_k.shape).mul_(2)?
|
281 |
+
# Autograd raises the same error- the "multi-output-view"ness of an alias propagates to future views.
|
282 |
+
# (c) What if we mutate o_k under no_grad?
|
283 |
+
# Autograd raises the same error
|
284 |
+
# (d) What if we detach and mutate, e.g. o_k.detach().mul_(2)?
|
285 |
+
# Autograd allows this, *but* autograd updates all alias's grad_fn's to be error functions when accessed.
|
286 |
+
# Autograd raises the same error
|
287 |
+
# (e) What if we try to mutate another alias of o_1...o_k, that was **not** created from a multi-output view?
|
288 |
+
# We promised that there is at most **one** such alias, e.g. intermediate in the example above.
|
289 |
+
# You can mutate intermediate, but in eager mode this will change the grad_fn of o_1...o_k
|
290 |
+
# to be error fn's.
|
291 |
+
# Since intermediate was the *only* non-multi-output-alias, there are no other aliases
|
292 |
+
# of `intermediate` around that were produced by the compiled fn and have a valid grad_fn.
|
293 |
+
#
|
294 |
+
# Coming back to this optimization:
|
295 |
+
# Given that it is not possible for mutating one of these aliases to affect the autograd metadata of another alias
|
296 |
+
# without causing an error in eager mode, we will simple hide the aliasing from autograd during torch.compile
|
297 |
+
# if all of the above conditions are met.
|
298 |
+
# This has the slight downside that it's possible to write some "bad" code that autograd will raise an error on
|
299 |
+
# in eager but fail to during torch.compile, but it has the benefit that this code has much better performance.
|
300 |
+
# NOTE: if and when we eventually update AOTAutograd to do the "view graph slicing" defined here:
|
301 |
+
# https://docs.google.com/document/d/1DlfFq8TKbuAn2zyJxLfoW-X1qkkm5PLdHFtySo03QAk/edit,
|
302 |
+
# then this optimization will probably matter less and might be ok to remove.
|
303 |
+
is_cur_tensor_multi_out_view = isinstance(
|
304 |
+
o, FunctionalTensor
|
305 |
+
) and torch._functionalize_is_multi_output_view( # type: ignore[attr-defined]
|
306 |
+
o.elem
|
307 |
+
)
|
308 |
+
if is_cur_tensor_multi_out_view:
|
309 |
+
num_aliased_tensors_that_are_multi_output_views[curr_storage] += 1
|
310 |
+
out_storage_to_tensors[curr_storage].add(o)
|
311 |
+
|
312 |
+
# maps the id of an intermediate base to its index in the output of the compiled forward
|
313 |
+
intermediate_base_tensor_id_to_output_idx: Dict[int, int] = {}
|
314 |
+
intermediate_bases: List[torch.Tensor] = []
|
315 |
+
# Why Do We Care If Storage Changed?
|
316 |
+
# It's important to understand the implications of storage changes in complex scenarios. Take this example:
|
317 |
+
#
|
318 |
+
# def f(x):
|
319 |
+
# x_storage = x.untyped_storage()
|
320 |
+
# non_leaf_tensor = torch.ones(4, requires_grad=True).clone()
|
321 |
+
#
|
322 |
+
# # Using no_grad() and _unsafe_preserve_version_counter to simulate the .data = operation
|
323 |
+
# with torch.no_grad(), torch.autograd._unsafe_preserve_version_counter(x):
|
324 |
+
# x.set_(non_leaf_tensor.untyped_storage())
|
325 |
+
#
|
326 |
+
# out = x.view(-1)
|
327 |
+
#
|
328 |
+
# # Restoring x to its original storage, again simulating .data = operation
|
329 |
+
# with torch.no_grad(), torch.autograd._unsafe_preserve_version_counter(x):
|
330 |
+
# x.set_(x_storage)
|
331 |
+
#
|
332 |
+
# return out
|
333 |
+
#
|
334 |
+
# In this scenario, 'x' and 'out' have different shapes and are stored at different memory addresses, aka no aliasing.
|
335 |
+
# However, due to how set_() and more specificlaly, set is functionalized, is defined to preserve eager semantics,
|
336 |
+
# the autograd engine mistakenly assumes that 'x' and 'out' are aliased, treating 'x' as 'out._base'.
|
337 |
+
# This misinterpretation leads to an 'alias_of_input' flag, causing an unnecessary as_strided() call to be generated,
|
338 |
+
# which could lead to issues later in the code.
|
339 |
+
for o in flat_f_outs:
|
340 |
+
functional_tensor_storage_changed = isinstance(
|
341 |
+
o, FunctionalTensor
|
342 |
+
) and torch._functionalize_was_storage_changed( # type: ignore[attr-defined]
|
343 |
+
o.elem
|
344 |
+
)
|
345 |
+
curr_storage = (
|
346 |
+
None
|
347 |
+
if not isinstance(o, torch.Tensor)
|
348 |
+
else StorageWeakRef(o.untyped_storage())
|
349 |
+
)
|
350 |
+
outs_with_identical_metadata_that_require_grad = (
|
351 |
+
[]
|
352 |
+
if not isinstance(o, Tensor)
|
353 |
+
else [
|
354 |
+
curr
|
355 |
+
for curr in out_storage_to_tensors[curr_storage]
|
356 |
+
if has_same_metadata(o, curr)
|
357 |
+
and curr.requires_grad
|
358 |
+
and o is not curr
|
359 |
+
]
|
360 |
+
)
|
361 |
+
|
362 |
+
# See Note [Accessing .grad_fn on FunctionalTensor]
|
363 |
+
# In-place operations on views will trigger a lazy rebase of the autograd graph;
|
364 |
+
# this runs during access to the .grad_fn. The rebase logic will invoke view ops
|
365 |
+
# on FunctionalTensors, so we must enable a FunctionalTensorMode here to ensure
|
366 |
+
# these op calls succeed.
|
367 |
+
grad_fn = None
|
368 |
+
if isinstance(o, Tensor):
|
369 |
+
with FunctionalTensorMode():
|
370 |
+
grad_fn = o.grad_fn
|
371 |
+
|
372 |
+
is_result_of_custom_autograd_fn = False
|
373 |
+
# Need to check for both custom cpp (CppFunction) and python (BackwardCFunction)
|
374 |
+
# autograd fns
|
375 |
+
if type(grad_fn).__name__ == "CppFunction":
|
376 |
+
is_result_of_custom_autograd_fn = True
|
377 |
+
if isinstance(grad_fn, torch.autograd.function.BackwardCFunction):
|
378 |
+
is_result_of_custom_autograd_fn = True
|
379 |
+
|
380 |
+
if not isinstance(o, Tensor):
|
381 |
+
output_type = OutputType.non_alias
|
382 |
+
base_idx = None
|
383 |
+
elif (
|
384 |
+
curr_storage in inp_storage_refs
|
385 |
+
and grad_fn is not None
|
386 |
+
and is_result_of_custom_autograd_fn
|
387 |
+
):
|
388 |
+
output_type = OutputType.custom_function_view
|
389 |
+
base_idx = None
|
390 |
+
elif (
|
391 |
+
curr_storage in inp_storage_refs
|
392 |
+
and not functional_tensor_storage_changed
|
393 |
+
):
|
394 |
+
base_idx = inp_storage_refs[curr_storage]
|
395 |
+
is_input_tensor = id(o) in inp_tensor_ids
|
396 |
+
num_aliased_outs = out_tensor_alias_counts[curr_storage]
|
397 |
+
num_multi_output_view_outs = (
|
398 |
+
num_aliased_tensors_that_are_multi_output_views[curr_storage]
|
399 |
+
)
|
400 |
+
num_aliased_outs_that_are_not_multi_output_views = (
|
401 |
+
num_aliased_outs - num_multi_output_view_outs
|
402 |
+
)
|
403 |
+
if (
|
404 |
+
grad_fn is not None
|
405 |
+
and num_aliased_outs_that_are_not_multi_output_views == 0
|
406 |
+
):
|
407 |
+
# See Note: [AOTAutograd: differentiable outputs that alias each other from a multi-output view call]
|
408 |
+
# In particular, given:
|
409 |
+
# def f(x):
|
410 |
+
# return list(x.unbind(0))
|
411 |
+
# The main reason we ordinarily try to regenerate these output aliases outside of the
|
412 |
+
# compiled autograd.Function is because if any of the outputs are later mutated,
|
413 |
+
# autograd needs to perform view-replay to regenerate them.
|
414 |
+
# However, autograd does not allow users to mutate multi-output views
|
415 |
+
# in any way that can change the autograd metadata of other aliases.
|
416 |
+
# So we hide this aliasing from autograd here.
|
417 |
+
log.debug(
|
418 |
+
"Encountered AOTAutograd case: differentiable outputs that \
|
419 |
+
alias each other from a multi-output view call"
|
420 |
+
)
|
421 |
+
output_type = OutputType.non_alias
|
422 |
+
elif is_input_tensor:
|
423 |
+
output_type = OutputType.is_input
|
424 |
+
else:
|
425 |
+
output_type = OutputType.alias_of_input
|
426 |
+
|
427 |
+
# We only need to handle the intermediate base case when both
|
428 |
+
# the intermediate base and the output require gradients.
|
429 |
+
# See Note [AOT Autograd: outputs aliasing inputs or intermediates!]
|
430 |
+
elif o._base is not None and o.requires_grad and o._base.requires_grad:
|
431 |
+
num_aliased_outs = out_tensor_alias_counts[curr_storage]
|
432 |
+
num_multi_output_view_outs = (
|
433 |
+
num_aliased_tensors_that_are_multi_output_views[curr_storage]
|
434 |
+
)
|
435 |
+
num_aliased_outs_that_are_not_multi_output_views = (
|
436 |
+
num_aliased_outs - num_multi_output_view_outs
|
437 |
+
)
|
438 |
+
# Note: [AOTAutograd: differentiable outputs that alias each other from a multi-output view call]
|
439 |
+
if (
|
440 |
+
out_tensor_alias_counts[curr_storage] == 1
|
441 |
+
or num_aliased_outs_that_are_not_multi_output_views <= 1
|
442 |
+
):
|
443 |
+
# Note [Intermediate Bases Optimization]
|
444 |
+
# Normally if we have an output that aliases an intermediate,
|
445 |
+
# we need to add the extra "intermediate base" logic further down
|
446 |
+
# to prevent autograd from yelling at us if the user later tries to
|
447 |
+
# mutate that output.
|
448 |
+
# However, the common case here is if we have an output that aliases an intermediate,
|
449 |
+
# but doesn't alias any other outputs.
|
450 |
+
# In that case, autograd shouldn't have to worry about the aliasing at all
|
451 |
+
# (if that output is mutated, there are no other live aliases for autograd to worry about).
|
452 |
+
# The "intermediate bases" can hurt inductor perf by forcing more variables to become outputs.
|
453 |
+
# So as an optimization, we won't do intermediate base handling in this case.
|
454 |
+
# Instead, we'll hide the aliasing from autograd using aten._unsafe_view().
|
455 |
+
if (
|
456 |
+
out_tensor_alias_counts[curr_storage] != 1
|
457 |
+
and num_aliased_outs_that_are_not_multi_output_views <= 1
|
458 |
+
):
|
459 |
+
log.debug(
|
460 |
+
"Encountered AOTAutograd case: differentiable outputs that alias each other \
|
461 |
+
from a multi-output view call"
|
462 |
+
)
|
463 |
+
output_type = OutputType.unsafe_view_alias
|
464 |
+
base_idx = None
|
465 |
+
else:
|
466 |
+
# First, check if o's ._base is an existing output
|
467 |
+
maybe_existing_out_idx = out_tensor_ids.get(id(o._base), None)
|
468 |
+
if maybe_existing_out_idx is not None:
|
469 |
+
# Special case where the output is an alias of a graph intermediate, but that intermediate
|
470 |
+
# is itself also a user output.
|
471 |
+
output_type = (
|
472 |
+
OutputType.alias_of_intermediate_base_is_user_output
|
473 |
+
)
|
474 |
+
base_idx = maybe_existing_out_idx
|
475 |
+
else:
|
476 |
+
# Next, check if o's ._base is an intermediate base that we already returned
|
477 |
+
maybe_existing_base_output_idx = (
|
478 |
+
intermediate_base_tensor_id_to_output_idx.get(
|
479 |
+
id(o._base), None
|
480 |
+
)
|
481 |
+
)
|
482 |
+
if maybe_existing_base_output_idx is not None:
|
483 |
+
output_type = OutputType.alias_of_intermediate
|
484 |
+
base_idx = maybe_existing_base_output_idx
|
485 |
+
else:
|
486 |
+
# Otherwise, take o._base and explicitly return it as an output in the compiled graph
|
487 |
+
new_out_idx = len(intermediate_bases)
|
488 |
+
base_idx = new_out_idx
|
489 |
+
# Indicate to the logic later on (when we trace the joint)
|
490 |
+
# that this particular output should get it's ._base appended to the forward graph outputs
|
491 |
+
output_type = (
|
492 |
+
OutputType.alias_of_intermediate_save_as_output
|
493 |
+
)
|
494 |
+
intermediate_base_tensor_id_to_output_idx[
|
495 |
+
id(o._base)
|
496 |
+
] = new_out_idx
|
497 |
+
intermediate_bases.append(o._base)
|
498 |
+
elif (
|
499 |
+
# See https://github.com/pytorch/pytorch/issues/100348 for this case.
|
500 |
+
# This protects against the specific case where a user fn returns (output, output.detach())
|
501 |
+
out_tensor_alias_counts[curr_storage] > 1
|
502 |
+
and len(outs_with_identical_metadata_that_require_grad) > 0
|
503 |
+
and not o.requires_grad
|
504 |
+
):
|
505 |
+
assert len(outs_with_identical_metadata_that_require_grad) > 0
|
506 |
+
# In theory we could use any of these tensors to regenerate the aliased outputs from,
|
507 |
+
# since they all alias each other and have identical metatadata
|
508 |
+
out_alias = outs_with_identical_metadata_that_require_grad[0]
|
509 |
+
existing_out_idx = out_tensor_ids[id(out_alias)]
|
510 |
+
output_type = OutputType.alias_of_intermediate_base_is_user_output
|
511 |
+
base_idx = existing_out_idx
|
512 |
+
else:
|
513 |
+
output_type = OutputType.non_alias
|
514 |
+
base_idx = None
|
515 |
+
|
516 |
+
if isinstance(o, torch.Tensor):
|
517 |
+
dynamic_dims = {
|
518 |
+
i for i, s in enumerate(o.shape) if not is_concrete_int(s)
|
519 |
+
}
|
520 |
+
else:
|
521 |
+
dynamic_dims = None
|
522 |
+
out_info = OutputAliasInfo(
|
523 |
+
output_type=output_type,
|
524 |
+
raw_type=type(o),
|
525 |
+
base_idx=base_idx,
|
526 |
+
dynamic_dims=dynamic_dims,
|
527 |
+
requires_grad=isinstance(o, torch.Tensor) and o.requires_grad,
|
528 |
+
)
|
529 |
+
output_info.append(out_info)
|
530 |
+
|
531 |
+
# See Note [AOT Autograd: Views to avoid tangents aliasing inputs]
|
532 |
+
def view_avoid_dupes_with_primals(t):
|
533 |
+
if isinstance(t, Tensor) and is_traceable_wrapper_subclass(t):
|
534 |
+
return transform_subclass(
|
535 |
+
t, lambda _, inner_t: view_avoid_dupes_with_primals(inner_t)
|
536 |
+
)
|
537 |
+
if isinstance(t, Tensor):
|
538 |
+
return t.view(t.shape)
|
539 |
+
return t
|
540 |
+
|
541 |
+
# This analysis function returns *only* the outputs that are meant to be tangents to the backwards.
|
542 |
+
# Anything that aliases (inputs returned in the fw due to metadata mutations, or outputs that alias inputs/intermediates)
|
543 |
+
# are *regenerated* later, and not used directly in the autograd graph
|
544 |
+
f_input_tangents = [
|
545 |
+
inp
|
546 |
+
for inp, info in zip(flat_f_args, input_info)
|
547 |
+
if info.mutation_type == MutationType.MUTATED_OUT_GRAPH
|
548 |
+
and info.mutates_data
|
549 |
+
and info.requires_grad
|
550 |
+
]
|
551 |
+
f_output_tangents = [
|
552 |
+
o
|
553 |
+
for o, info in zip(flat_f_outs, output_info)
|
554 |
+
if info.output_type
|
555 |
+
in [
|
556 |
+
OutputType.non_alias,
|
557 |
+
OutputType.unsafe_view_alias,
|
558 |
+
OutputType.custom_function_view,
|
559 |
+
]
|
560 |
+
and issubclass(info.raw_type, torch.Tensor)
|
561 |
+
and info.requires_grad
|
562 |
+
]
|
563 |
+
# intermediate bases are also included in the backward graph
|
564 |
+
f_tangents = f_input_tangents + f_output_tangents + intermediate_bases
|
565 |
+
traced_tangents = pytree.tree_map(from_fun, f_tangents)
|
566 |
+
traced_tangents = pytree.tree_map(
|
567 |
+
view_avoid_dupes_with_primals, traced_tangents
|
568 |
+
)
|
569 |
+
user_outs = pytree.tree_map(from_fun, f_output_tangents)
|
570 |
+
|
571 |
+
f_mutated_inputs = [
|
572 |
+
inp
|
573 |
+
for inp, info in zip(flat_f_args, input_info)
|
574 |
+
if info.mutation_type == MutationType.MUTATED_OUT_GRAPH
|
575 |
+
]
|
576 |
+
f_metadata_mutated_inputs = [
|
577 |
+
inp for inp, info in zip(flat_f_args, input_info) if info.mutates_metadata
|
578 |
+
]
|
579 |
+
# This logic (annoyingly) re-figures out exactly what the outputs to the compiled fw graph will be.
|
580 |
+
# When handling subclasses, we need info about **all** outputs of compiled forward graph,
|
581 |
+
# so we know precisely which graph outputs to wrap back into tensor subclasses
|
582 |
+
# Ideally we would refactor this so not have an is_train flag, and have the separate
|
583 |
+
# inference and training paths decide which inputs/output to ask for subclass info on.
|
584 |
+
# However, we currently stash indexing information on each SubclassMeta about its order
|
585 |
+
# in the graph outputs list.
|
586 |
+
f_fw_graph_outs = list(flat_f_outs)
|
587 |
+
if is_train or not keep_input_mutations:
|
588 |
+
f_fw_graph_outs = f_mutated_inputs + f_fw_graph_outs
|
589 |
+
else:
|
590 |
+
# even when "keep_input_mutations" is True,
|
591 |
+
# we never keep metadata-only mutations in the fw graph
|
592 |
+
f_fw_graph_outs = f_metadata_mutated_inputs + f_fw_graph_outs
|
593 |
+
if is_train:
|
594 |
+
f_fw_graph_outs = f_fw_graph_outs + intermediate_bases
|
595 |
+
fw_graph_outs = pytree.tree_map(from_fun, f_fw_graph_outs)
|
596 |
+
|
597 |
+
grad_enabled_mutation = None
|
598 |
+
if torch.is_grad_enabled() != prior_grad_enabled:
|
599 |
+
grad_enabled_mutation = torch.is_grad_enabled()
|
600 |
+
torch.set_grad_enabled(
|
601 |
+
prior_grad_enabled
|
602 |
+
) # Restore the prior state after tracing it
|
603 |
+
log.debug(
|
604 |
+
(
|
605 |
+
"grad_mode mutation encountered in graph. "
|
606 |
+
"Will emit mutation epilogue, to set grad_mode=%s"
|
607 |
+
),
|
608 |
+
grad_enabled_mutation,
|
609 |
+
)
|
610 |
+
|
611 |
+
metadata = ViewAndMutationMeta(
|
612 |
+
input_info=input_info,
|
613 |
+
output_info=output_info,
|
614 |
+
num_intermediate_bases=len(intermediate_bases),
|
615 |
+
keep_input_mutations=keep_input_mutations,
|
616 |
+
traced_tangents=traced_tangents,
|
617 |
+
subclass_inp_meta=create_subclass_meta(flat_args),
|
618 |
+
subclass_fw_graph_out_meta=create_subclass_meta(fw_graph_outs),
|
619 |
+
subclass_tangent_meta=create_subclass_meta(traced_tangents),
|
620 |
+
is_train=is_train,
|
621 |
+
grad_enabled_mutation=grad_enabled_mutation,
|
622 |
+
tokens=mode._tokens,
|
623 |
+
)
|
624 |
+
return metadata
|
625 |
+
|
626 |
+
return inner
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module dispatches the graphs to either the forward-only or joint compilation
|
3 |
+
pathways, taking into account the AOTConfig and the collected ViewAndMutationMetadata.
|
4 |
+
"""
|
5 |
+
|
6 |
+
from typing import Any, Callable, List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.utils._pytree as pytree
|
10 |
+
import torch.utils.dlpack
|
11 |
+
from torch import Tensor
|
12 |
+
from torch._dispatch.python import enable_python_dispatcher
|
13 |
+
from torch._dynamo.utils import lazy_format_graph_code
|
14 |
+
from torch._logging import getArtifactLogger, trace_structured
|
15 |
+
from torch._subclasses.functional_tensor import FunctionalTensorMode
|
16 |
+
from torch.fx.experimental.proxy_tensor import make_fx
|
17 |
+
|
18 |
+
from .functional_utils import (
|
19 |
+
assert_functional_graph,
|
20 |
+
propagate_input_mutation_stacktraces,
|
21 |
+
)
|
22 |
+
from .schemas import AOTConfig, SubclassMeta, ViewAndMutationMeta
|
23 |
+
from .traced_function_transforms import (
|
24 |
+
aot_dispatch_subclass,
|
25 |
+
create_functionalized_fn,
|
26 |
+
create_joint,
|
27 |
+
fn_input_mutations_to_outputs,
|
28 |
+
fn_prepped_for_autograd,
|
29 |
+
)
|
30 |
+
|
31 |
+
aot_graphs_log = getArtifactLogger(__name__, "aot_graphs")
|
32 |
+
|
33 |
+
|
34 |
+
def _create_graph(f, args, *, aot_config: AOTConfig) -> torch.fx.GraphModule:
|
35 |
+
# FunctionalTensorMode must be enabled here.
|
36 |
+
# See Note [Accessing .grad_fn on FunctionalTensor]
|
37 |
+
with enable_python_dispatcher(), FunctionalTensorMode(
|
38 |
+
pre_dispatch=aot_config.pre_dispatch, export=aot_config.is_export
|
39 |
+
):
|
40 |
+
fx_g = make_fx(
|
41 |
+
f,
|
42 |
+
decomposition_table=aot_config.decompositions,
|
43 |
+
record_module_stack=True,
|
44 |
+
pre_dispatch=aot_config.pre_dispatch,
|
45 |
+
)(*args)
|
46 |
+
|
47 |
+
return fx_g
|
48 |
+
|
49 |
+
|
50 |
+
def aot_dispatch_base_graph(
|
51 |
+
flat_fn,
|
52 |
+
flat_args: List[Tensor],
|
53 |
+
aot_config: AOTConfig,
|
54 |
+
*,
|
55 |
+
fw_metadata: ViewAndMutationMeta,
|
56 |
+
) -> Union[Callable, Tuple[Callable, List[Any], Optional[SubclassMeta]]]:
|
57 |
+
# aot_dispatch_base requires functionalization, but doesn't need to handle as many cases as the autograd case.
|
58 |
+
# The cases that aot_dispatch_base doesn't need to handle include:
|
59 |
+
# - outputs that are aliases of graph intermediates
|
60 |
+
# - outputs that are aliases of graph inputs
|
61 |
+
# While cases that it does need to handle include:
|
62 |
+
# - input mutations (including when inputs are aliases of each other)
|
63 |
+
# - input metadata mutations
|
64 |
+
fn_to_trace = fn_input_mutations_to_outputs(
|
65 |
+
flat_fn,
|
66 |
+
fw_metadata,
|
67 |
+
keep_data_input_mutations=aot_config.keep_inference_input_mutations,
|
68 |
+
)
|
69 |
+
|
70 |
+
fn_to_trace, updated_flat_args = create_functionalized_fn(
|
71 |
+
fn_to_trace,
|
72 |
+
flat_args,
|
73 |
+
meta=fw_metadata,
|
74 |
+
aot_config=aot_config,
|
75 |
+
trace_joint=False,
|
76 |
+
)
|
77 |
+
|
78 |
+
(
|
79 |
+
fn_to_trace,
|
80 |
+
updated_flat_args_subclasses_desugared,
|
81 |
+
maybe_subclass_meta,
|
82 |
+
) = aot_dispatch_subclass(
|
83 |
+
fn_to_trace,
|
84 |
+
updated_flat_args,
|
85 |
+
is_joint_structure=False,
|
86 |
+
meta=fw_metadata,
|
87 |
+
fw_only=flat_fn,
|
88 |
+
)
|
89 |
+
|
90 |
+
fw_module = _create_graph(
|
91 |
+
fn_to_trace,
|
92 |
+
updated_flat_args_subclasses_desugared,
|
93 |
+
aot_config=aot_config,
|
94 |
+
)
|
95 |
+
|
96 |
+
# As long as we opted to remove input mutations, then
|
97 |
+
# there should be *NO* mutating ops in the graph at this point.
|
98 |
+
copy_count = assert_functional_graph(fw_module.graph)
|
99 |
+
|
100 |
+
fw_module.graph.eliminate_dead_code()
|
101 |
+
fw_module.recompile()
|
102 |
+
|
103 |
+
copy_count2 = assert_functional_graph(fw_module.graph)
|
104 |
+
propagate_input_mutation_stacktraces(fw_module.graph)
|
105 |
+
|
106 |
+
assert copy_count == copy_count2
|
107 |
+
|
108 |
+
if aot_config.enable_log:
|
109 |
+
aot_graphs_log.info(
|
110 |
+
"%s", lazy_format_graph_code("Forward graph", fw_module, aot_config.aot_id)
|
111 |
+
)
|
112 |
+
trace_structured(
|
113 |
+
"aot_forward_graph",
|
114 |
+
payload_fn=lambda: fw_module.print_readable(print_output=False),
|
115 |
+
)
|
116 |
+
|
117 |
+
# TODO: should factor this into a separate function for export that always only returns just the graph.
|
118 |
+
if aot_config.is_export:
|
119 |
+
assert (
|
120 |
+
maybe_subclass_meta is None
|
121 |
+
), "aot_export_module does not support tensor subclass inputs for now."
|
122 |
+
return fw_module
|
123 |
+
return fw_module, list(updated_flat_args_subclasses_desugared), maybe_subclass_meta
|
124 |
+
|
125 |
+
|
126 |
+
# Has the precondition that there
|
127 |
+
# are no duplicate arguments in flat_args (e.g., the same Tensor
|
128 |
+
# object never shows up twice. However, two tensor inputs MAY alias
|
129 |
+
# the same storage, so long as they have separate TensorImpls.)
|
130 |
+
def aot_dispatch_autograd_graph(
|
131 |
+
flat_fn,
|
132 |
+
flat_args: List[Any],
|
133 |
+
aot_config: AOTConfig,
|
134 |
+
*,
|
135 |
+
fw_metadata: ViewAndMutationMeta,
|
136 |
+
) -> Union[Callable, Tuple[Callable, List[Any], Optional[SubclassMeta]]]:
|
137 |
+
# traced_tangents corresponds to the set of outputs in the traced forward that should get grad_outputs in the traced backward.
|
138 |
+
# It includes outputs of the original forward, *and* any updated inputs due to input mutations.
|
139 |
+
# However, it does *not* include any outputs that are aliases of inputs or intermediates, or any metadata-only input mutations.
|
140 |
+
traced_tangents = pytree.tree_map(
|
141 |
+
lambda x: x.detach().contiguous() if isinstance(x, Tensor) else x,
|
142 |
+
fw_metadata.traced_tangents,
|
143 |
+
)
|
144 |
+
|
145 |
+
joint_inputs = (flat_args, traced_tangents)
|
146 |
+
|
147 |
+
fn_prepared_for_autograd = fn_prepped_for_autograd(
|
148 |
+
flat_fn,
|
149 |
+
fw_metadata,
|
150 |
+
)
|
151 |
+
joint_fn_to_trace = create_joint(fn_prepared_for_autograd, aot_config=aot_config)
|
152 |
+
|
153 |
+
joint_fn_to_trace, updated_joint_inputs = create_functionalized_fn(
|
154 |
+
joint_fn_to_trace,
|
155 |
+
joint_inputs,
|
156 |
+
meta=fw_metadata,
|
157 |
+
aot_config=aot_config,
|
158 |
+
trace_joint=True,
|
159 |
+
)
|
160 |
+
|
161 |
+
subclass_tracing_info = aot_dispatch_subclass(
|
162 |
+
joint_fn_to_trace,
|
163 |
+
updated_joint_inputs,
|
164 |
+
is_joint_structure=True,
|
165 |
+
meta=fw_metadata,
|
166 |
+
fw_only=flat_fn,
|
167 |
+
)
|
168 |
+
|
169 |
+
joint_fn_to_trace = subclass_tracing_info.plain_tensor_trace_fn
|
170 |
+
updated_joint_inputs = subclass_tracing_info.plain_tensor_args
|
171 |
+
maybe_subclass_meta = subclass_tracing_info.maybe_subclass_meta
|
172 |
+
|
173 |
+
fx_g = _create_graph(joint_fn_to_trace, updated_joint_inputs, aot_config=aot_config)
|
174 |
+
|
175 |
+
# There should be *NO* mutating ops in the graph at this point.
|
176 |
+
assert_functional_graph(fx_g.graph)
|
177 |
+
|
178 |
+
# Redundant with the check above, but worth having in case tracing introduced
|
179 |
+
# a fake tensor. Unlikely.
|
180 |
+
# See Note: [Fake Modules and AOTAutograd]
|
181 |
+
torch._dynamo.utils.assert_no_fake_params_or_buffers(fx_g)
|
182 |
+
fx_g.graph.eliminate_dead_code()
|
183 |
+
fx_g.recompile()
|
184 |
+
# TODO: in AOTAutograd, we create metadata like _indices_of_inps_to_detach to detect
|
185 |
+
# when we need to manually detach() some inputs in the forward.
|
186 |
+
# Higher order ops might eventually need to do the same.
|
187 |
+
if aot_config.is_export:
|
188 |
+
assert (
|
189 |
+
maybe_subclass_meta is None
|
190 |
+
), "aot_export_module does not support tensor subclass inputs for now."
|
191 |
+
return fx_g
|
192 |
+
return fx_g, updated_joint_inputs, maybe_subclass_meta
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/functional_utils.py
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file contains utilities related to functionalization in AOTAutograd:
|
3 |
+
1. converting to/from functional tensors
|
4 |
+
2. detecting Tensor mutations - both metadata and Tensor value
|
5 |
+
3. regenerating/replaying views from their base
|
6 |
+
4. checking if a graph is functional i.e. whether it contains any mutation ops
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import Tensor
|
11 |
+
from torch._subclasses.fake_tensor import FakeTensor
|
12 |
+
from torch._subclasses.functional_tensor import FunctionalTensor
|
13 |
+
from torch.fx.experimental.symbolic_shapes import definitely_true, sym_eq
|
14 |
+
from torch.multiprocessing.reductions import StorageWeakRef
|
15 |
+
from torch.utils._python_dispatch import (
|
16 |
+
is_traceable_wrapper_subclass,
|
17 |
+
transform_subclass,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
def to_fun(t):
|
22 |
+
if isinstance(t, Tensor):
|
23 |
+
if is_traceable_wrapper_subclass(t):
|
24 |
+
# See Note [Functionalization always runs last]
|
25 |
+
# This means that if we want to "functionalize" a subclass, we need to ensure that the functional wrapper
|
26 |
+
# goes at the bottom.
|
27 |
+
# recurse here, so we can support nested wrapper subclasses
|
28 |
+
out = transform_subclass(t, lambda _, inner_t: to_fun(inner_t))
|
29 |
+
torch._mirror_autograd_meta_to(t, out) # type: ignore[attr-defined]
|
30 |
+
return out
|
31 |
+
else:
|
32 |
+
return FunctionalTensor.to_functional(t)
|
33 |
+
else:
|
34 |
+
return t
|
35 |
+
|
36 |
+
|
37 |
+
def sync_functional_tensor(t):
|
38 |
+
if is_traceable_wrapper_subclass(t):
|
39 |
+
attrs, ctx = t.__tensor_flatten__() # type: ignore[attr-defined]
|
40 |
+
for attr in attrs:
|
41 |
+
sync_functional_tensor(getattr(t, attr))
|
42 |
+
else:
|
43 |
+
torch._sync(t)
|
44 |
+
|
45 |
+
|
46 |
+
# When subclasses are involved, t here will usually look something like:
|
47 |
+
# SubclassA(SubclassB(FunctionalTensor(_to_fun_tensor(FakeTensor))))
|
48 |
+
def from_fun(t):
|
49 |
+
if isinstance(t, Tensor) and is_traceable_wrapper_subclass(t):
|
50 |
+
# See Note [Functionalization always runs last]
|
51 |
+
# This means that if we want to "functionalize" a subclass, we need to ensure that the functional wrapper
|
52 |
+
# goes at the bottom.
|
53 |
+
# recurse here, so we can support nested wrapper subclasses
|
54 |
+
out = transform_subclass(t, lambda _, inner_t: from_fun(inner_t))
|
55 |
+
torch._mirror_autograd_meta_to(t, out) # type: ignore[attr-defined]
|
56 |
+
return out
|
57 |
+
|
58 |
+
if not isinstance(t, FunctionalTensor):
|
59 |
+
# quick sanity assert
|
60 |
+
if isinstance(t, torch.Tensor):
|
61 |
+
assert not torch._is_functional_tensor(t) # type: ignore[attr-defined]
|
62 |
+
return t
|
63 |
+
sync_functional_tensor(t)
|
64 |
+
return torch._from_functional_tensor(t.elem)
|
65 |
+
|
66 |
+
|
67 |
+
def is_fun(t):
|
68 |
+
if isinstance(t, Tensor) and is_traceable_wrapper_subclass(t):
|
69 |
+
# See Note [Functionalization always runs last]
|
70 |
+
# This means that if we want to "functionalize" a subclass, we need to ensure that the functional wrapper
|
71 |
+
# goes at the bottom.
|
72 |
+
# recurse here, so we can support nested wrapper subclasses
|
73 |
+
t_attrs, _ = t.__tensor_flatten__() # type: ignore[attr-defined]
|
74 |
+
t_inners = [getattr(t, attr) for attr in t_attrs]
|
75 |
+
any_fun = any(is_fun(x) for x in t_inners)
|
76 |
+
all_fun = all(is_fun(x) for x in t_inners)
|
77 |
+
assert any_fun == all_fun
|
78 |
+
return any_fun
|
79 |
+
|
80 |
+
return isinstance(t, FunctionalTensor)
|
81 |
+
|
82 |
+
|
83 |
+
# t here is either
|
84 |
+
# (1) A FunctionalTensor(_to_functional_tensor(FakeTensor))
|
85 |
+
# (2) A traceable tensor subclass that holds a FunctionalTensor
|
86 |
+
# (3) Not a tensor
|
87 |
+
def has_data_mutation(t):
|
88 |
+
if is_traceable_wrapper_subclass(t):
|
89 |
+
attrs, _ = t.__tensor_flatten__()
|
90 |
+
# A tensor subclass was updated if any of its inner elements were updated
|
91 |
+
return any(has_data_mutation(getattr(t, attr)) for attr in attrs)
|
92 |
+
else:
|
93 |
+
if isinstance(t, torch.Tensor):
|
94 |
+
assert isinstance(t, FunctionalTensor)
|
95 |
+
return torch._functionalize_has_data_mutation(t.elem) # type: ignore[attr-defined]
|
96 |
+
return False
|
97 |
+
|
98 |
+
|
99 |
+
def are_all_mutations_hidden_from_autograd(t):
|
100 |
+
if is_traceable_wrapper_subclass(t):
|
101 |
+
attrs, _ = t.__tensor_flatten__()
|
102 |
+
# If all inner elements are mutations hidden from autograd, then it is a mutation hidden from autograd.
|
103 |
+
return all(
|
104 |
+
are_all_mutations_hidden_from_autograd(getattr(t, attr)) for attr in attrs
|
105 |
+
)
|
106 |
+
elif isinstance(t, torch.Tensor):
|
107 |
+
assert isinstance(t, FunctionalTensor)
|
108 |
+
return torch._functionalize_are_all_mutations_hidden_from_autograd(t.elem)
|
109 |
+
else:
|
110 |
+
return False
|
111 |
+
|
112 |
+
|
113 |
+
def are_all_mutations_under_no_grad_or_inference_mode(t):
|
114 |
+
if is_traceable_wrapper_subclass(t):
|
115 |
+
attrs, _ = t.__tensor_flatten__()
|
116 |
+
return all(
|
117 |
+
are_all_mutations_under_no_grad_or_inference_mode(getattr(t, attr))
|
118 |
+
for attr in attrs
|
119 |
+
)
|
120 |
+
else:
|
121 |
+
assert isinstance(t, FunctionalTensor)
|
122 |
+
return torch._functionalize_are_all_mutations_under_no_grad_or_inference_mode(
|
123 |
+
t.elem
|
124 |
+
)
|
125 |
+
|
126 |
+
|
127 |
+
# f_arg here is either
|
128 |
+
# (1) A FunctionalTensor(_to_functional_tensor(FakeTensor))
|
129 |
+
# (2) A traceable tensor subclass that holds a FunctionalTensor
|
130 |
+
# (3) Not a tensor
|
131 |
+
# Assumption: arg promises to be the "original" tensor wrapped by f_arg
|
132 |
+
# Note: "storage mutations" coming from set_() are a type of metadata mutation. So:
|
133 |
+
# - check_only_storage_mutation=True: only return true if there was a storage mutation
|
134 |
+
# - check_only_storage_mutation=Flse: return true if there was any metadata mutation (including a storage mutation)
|
135 |
+
def has_metadata_mutation(f_arg, arg, *, check_only_storage_mutation: bool):
|
136 |
+
if is_traceable_wrapper_subclass(f_arg):
|
137 |
+
attrs, _ = f_arg.__tensor_flatten__()
|
138 |
+
# A tensor subclass was updated if any of its inner elements were updated
|
139 |
+
f_inner_ts = [getattr(f_arg, attr) for attr in attrs]
|
140 |
+
inner_ts = [getattr(arg, attr) for attr in attrs]
|
141 |
+
return any(
|
142 |
+
has_metadata_mutation(
|
143 |
+
f_inner_t,
|
144 |
+
inner_t,
|
145 |
+
check_only_storage_mutation=check_only_storage_mutation,
|
146 |
+
)
|
147 |
+
for f_inner_t, inner_t in zip(f_inner_ts, inner_ts)
|
148 |
+
)
|
149 |
+
else:
|
150 |
+
if not isinstance(f_arg, torch.Tensor):
|
151 |
+
assert not isinstance(arg, torch.Tensor)
|
152 |
+
return False
|
153 |
+
assert isinstance(f_arg, FunctionalTensor)
|
154 |
+
assert isinstance(arg, FakeTensor)
|
155 |
+
|
156 |
+
arg_after = torch._from_functional_tensor(f_arg.elem)
|
157 |
+
# This is true if the current tensor experienced at least one set_() call
|
158 |
+
maybe_storage_changed = torch._functionalize_was_storage_changed(f_arg.elem) # type: ignore[attr-defined]
|
159 |
+
# However, multiple set_() calls can cancel out. So we also check whether the
|
160 |
+
# storage of the tensor has changed.
|
161 |
+
# Note: if an input experienced two set_() calls that cancel out, **and**
|
162 |
+
# it experiences an data mutation, we pessimistically think that the set_()
|
163 |
+
# call is necessary here. We could in theory fix this, but this will
|
164 |
+
# hopefully never happen in user code, and is not needed for fsdp.
|
165 |
+
same_storages = StorageWeakRef(arg.untyped_storage()) == StorageWeakRef(
|
166 |
+
arg_after.untyped_storage()
|
167 |
+
)
|
168 |
+
has_storage_metadata_mutation = maybe_storage_changed and not same_storages
|
169 |
+
if check_only_storage_mutation:
|
170 |
+
return has_storage_metadata_mutation
|
171 |
+
|
172 |
+
# storage metadata mutation is a type of metadata mutation, so return true if we saw one
|
173 |
+
if has_storage_metadata_mutation:
|
174 |
+
return True
|
175 |
+
|
176 |
+
maybe_metadata_mutated = torch._functionalize_has_metadata_mutation(f_arg.elem) # type: ignore[attr-defined]
|
177 |
+
# This is true if the current tensor experienced at least one metadata mutation.
|
178 |
+
# So if false, we know there was no metadata mutation
|
179 |
+
if not maybe_metadata_mutated:
|
180 |
+
return False
|
181 |
+
|
182 |
+
# However, multi metadata mutations can cancel out.
|
183 |
+
# So we also check if the concrete sizes/strides on the tensor have changed.
|
184 |
+
same_sizes = arg.shape == arg_after.shape
|
185 |
+
same_strides = arg.stride() == arg_after.stride()
|
186 |
+
same_offsets = arg.storage_offset() == arg_after.storage_offset()
|
187 |
+
has_metadata_mutation_ = maybe_metadata_mutated and not (
|
188 |
+
same_sizes and same_strides and same_offsets
|
189 |
+
)
|
190 |
+
# We consider a tensor to have been metadata mutated if its storage was mutated through a set_() call.
|
191 |
+
return has_metadata_mutation_
|
192 |
+
|
193 |
+
|
194 |
+
def gen_alias_from_base(aliased_base_tensor, target_meta_tensor, target_requires_grad):
|
195 |
+
# Try to do view-replay if possible.
|
196 |
+
# fall back to .as_strided() if we can't.
|
197 |
+
if target_meta_tensor._base is not None:
|
198 |
+
# The base that we want to replay our view off of might have a different shape than the view's original base.
|
199 |
+
b = target_meta_tensor._base
|
200 |
+
abt = aliased_base_tensor
|
201 |
+
# Don't unnecessarily call as_strided if nothing changed; as_strided's
|
202 |
+
# backward is poorly implemented and slow
|
203 |
+
if abt is not b and (
|
204 |
+
abt.size() != b.size()
|
205 |
+
or abt.stride() != b.stride()
|
206 |
+
or abt.storage_offset() != b.storage_offset()
|
207 |
+
):
|
208 |
+
reshaped_base_tensor = aliased_base_tensor.as_strided(
|
209 |
+
b.size(), b.stride(), b.storage_offset()
|
210 |
+
)
|
211 |
+
else:
|
212 |
+
reshaped_base_tensor = aliased_base_tensor
|
213 |
+
out = target_meta_tensor._view_func(reshaped_base_tensor)
|
214 |
+
# This shape mismatch can happen due to a bug in inplace/view handling in autograd.
|
215 |
+
# Try putting a breakpoint here and running
|
216 |
+
# `test/functorch/test_aotdispatch TestAOTAutograd.test_output_all_alias_types`
|
217 |
+
# Also, https://github.com/pytorch/pytorch/issues/49825
|
218 |
+
#
|
219 |
+
# As a stopgap, we'll fall back to as_strided.
|
220 |
+
if out is not None and out.shape == target_meta_tensor.shape:
|
221 |
+
if aliased_base_tensor.requires_grad and not target_requires_grad:
|
222 |
+
out = out.detach()
|
223 |
+
elif not aliased_base_tensor.requires_grad and target_requires_grad:
|
224 |
+
out.requires_grad_(True)
|
225 |
+
return out
|
226 |
+
size = target_meta_tensor.size()
|
227 |
+
stride = target_meta_tensor.stride()
|
228 |
+
storage_offset = target_meta_tensor.storage_offset()
|
229 |
+
if aliased_base_tensor.is_complex() and not target_meta_tensor.is_complex():
|
230 |
+
aliased_out = torch.view_as_real(aliased_base_tensor).as_strided(
|
231 |
+
size, stride, storage_offset
|
232 |
+
)
|
233 |
+
elif not aliased_base_tensor.is_complex() and target_meta_tensor.is_complex():
|
234 |
+
aliased_out = torch.view_as_complex(aliased_base_tensor).as_strided(
|
235 |
+
size, stride, storage_offset
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
aliased_out = aliased_base_tensor.as_strided(size, stride, storage_offset)
|
239 |
+
# For outputs aliasing inputs, we need to check if the requires-gradness has changed.
|
240 |
+
if aliased_base_tensor.requires_grad and not target_requires_grad:
|
241 |
+
aliased_out = aliased_out.detach()
|
242 |
+
elif not aliased_base_tensor.requires_grad and target_requires_grad:
|
243 |
+
aliased_out.requires_grad_(True)
|
244 |
+
# For outputs aliasing inputs, we need to check if the dtype has changed.
|
245 |
+
# as_strided() is the "most generic" view, but it does not cover cross-dtype views
|
246 |
+
if aliased_out.dtype != target_meta_tensor.dtype:
|
247 |
+
aliased_out = aliased_out.view(target_meta_tensor.dtype)
|
248 |
+
return aliased_out
|
249 |
+
|
250 |
+
|
251 |
+
def has_same_metadata(t1, t2):
|
252 |
+
return (
|
253 |
+
definitely_true(sym_eq(t1.size(), t2.size()))
|
254 |
+
and definitely_true(sym_eq(t1.stride(), t2.stride()))
|
255 |
+
and definitely_true(t1.storage_offset() == t2.storage_offset())
|
256 |
+
and t1.is_conj() == t2.is_conj()
|
257 |
+
and t1.is_neg() == t2.is_neg()
|
258 |
+
)
|
259 |
+
|
260 |
+
|
261 |
+
# new_arg and arg here are either:
|
262 |
+
# (1) both a FakeTensor
|
263 |
+
# (2) both a traceable tensor subclass that holds a FakeTensor
|
264 |
+
# Pre-condition: the two args are the "old" and "new" inputs from running functionalization.
|
265 |
+
# When we run functionalization and wrap our inputs into FunctionalTensors,
|
266 |
+
# we can detect whether or not an input was mutated by checking to see if the inner tensor has changed
|
267 |
+
#
|
268 |
+
# Normally it would be enough just to check if arg is new_arg, which is normally enough for functionalization
|
269 |
+
# to confirm that inputs were not mutated when running the user's model with functionalization on.
|
270 |
+
# But when we have subclass inputs, we can't rely on that:
|
271 |
+
# `from_fun(to_fun(x)) is x` will return False, because the call to `from_fun` constructs
|
272 |
+
# a brand new subclass instance: we are calling __tensor_unflatten__, and going
|
273 |
+
# from Subclass(FakeTensor) to Subclass(FunctionalTensor(FakeTensor))
|
274 |
+
def was_tensor_updated(arg, new_arg):
|
275 |
+
if is_traceable_wrapper_subclass(arg):
|
276 |
+
assert is_traceable_wrapper_subclass(new_arg)
|
277 |
+
attrs, _ = arg.__tensor_flatten__()
|
278 |
+
new_attrs, _ = new_arg.__tensor_flatten__()
|
279 |
+
assert attrs == new_attrs
|
280 |
+
# A tensor subclass was updated if any of its inner elements were updated
|
281 |
+
return any(
|
282 |
+
was_tensor_updated(getattr(arg, attr), getattr(new_arg, attr))
|
283 |
+
for attr in attrs
|
284 |
+
)
|
285 |
+
else:
|
286 |
+
return arg is not new_arg
|
287 |
+
|
288 |
+
|
289 |
+
# new_arg and arg here are either:
|
290 |
+
# (1) both a FakeTensor
|
291 |
+
# (2) both a traceable tensor subclass that holds a FakeTensor
|
292 |
+
# Pre-condition: the two args are the "old" and "new" inputs from running functionalization.
|
293 |
+
# When we run functionalization and wrap our inputs into FunctionalTensors,
|
294 |
+
# we can detect whether or not an input was mutated by checking to see if the inner tensor has changed,
|
295 |
+
# but shares storage with the old input
|
296 |
+
def was_tensor_metadata_updated(arg, new_arg):
|
297 |
+
if is_traceable_wrapper_subclass(arg):
|
298 |
+
assert is_traceable_wrapper_subclass(new_arg)
|
299 |
+
attrs, _ = arg.__tensor_flatten__()
|
300 |
+
new_attrs, _ = new_arg.__tensor_flatten__()
|
301 |
+
assert attrs == new_attrs
|
302 |
+
# A tensor subclass was updated if any of its inner elements were updated
|
303 |
+
return any(
|
304 |
+
was_tensor_metadata_updated(getattr(arg, attr), getattr(new_arg, attr))
|
305 |
+
for attr in attrs
|
306 |
+
)
|
307 |
+
else:
|
308 |
+
return arg is not new_arg and StorageWeakRef(
|
309 |
+
arg.untyped_storage()
|
310 |
+
) == StorageWeakRef(new_arg.untyped_storage())
|
311 |
+
|
312 |
+
|
313 |
+
# Returns the number of detected copy_
|
314 |
+
def assert_functional_graph(fx_g: torch.fx.Graph) -> int:
|
315 |
+
placeholders = set()
|
316 |
+
copy_count = 0
|
317 |
+
# NB: It would also be nice to verify that the mutations all happen at the
|
318 |
+
# end, but we also do some administrative views after mutations so this
|
319 |
+
# isn't actually true. (TODO: Could this cause problems for Inductor?)
|
320 |
+
for n in fx_g.nodes:
|
321 |
+
if n.op == "placeholder":
|
322 |
+
placeholders.add(n)
|
323 |
+
if isinstance(n.target, torch._ops.OpOverload):
|
324 |
+
if n.target is torch.ops.aten.copy_.default:
|
325 |
+
suffix = True
|
326 |
+
# Can only copy_ into an input, and can only do so once
|
327 |
+
assert n.args[0] in placeholders
|
328 |
+
placeholders.remove(n.args[0])
|
329 |
+
copy_count += 1
|
330 |
+
else:
|
331 |
+
assert (
|
332 |
+
not n.target._schema.is_mutable
|
333 |
+
), f"aot_autograd expected to have an entirely functional graph, but found {n.format_node()}"
|
334 |
+
return copy_count
|
335 |
+
|
336 |
+
|
337 |
+
def propagate_input_mutation_stacktraces(fx_g: torch.fx.Graph) -> None:
|
338 |
+
placeholders = set()
|
339 |
+
for n in fx_g.nodes:
|
340 |
+
if n.op == "placeholder":
|
341 |
+
placeholders.add(n)
|
342 |
+
if isinstance(n.target, torch._ops.OpOverload):
|
343 |
+
if n.target is torch.ops.aten.copy_.default:
|
344 |
+
# Can only copy_ into an input, and can only do so once
|
345 |
+
assert n.args[0] in placeholders
|
346 |
+
placeholders.remove(n.args[0])
|
347 |
+
copy_from_node = n.args[1]
|
348 |
+
# Pre-condition: every node has a "stack_trace" field in its meta,
|
349 |
+
# but copy_() nodes do not (since we manually added them during functionalization).
|
350 |
+
# Instead, we manually propagate here.
|
351 |
+
if "stack_trace" in copy_from_node.meta:
|
352 |
+
assert "stack_trace" not in n.meta, str(n)
|
353 |
+
n.meta["stack_trace"] = copy_from_node.meta["stack_trace"]
|
354 |
+
|
355 |
+
|
356 |
+
def _check_if_mutation_can_be_in_graph(
|
357 |
+
keep_input_mutations: bool,
|
358 |
+
mutates_data,
|
359 |
+
mutates_metadata,
|
360 |
+
mutations_hidden_from_autograd,
|
361 |
+
mutations_under_no_grad_or_inference_mode,
|
362 |
+
requires_grad,
|
363 |
+
):
|
364 |
+
if keep_input_mutations:
|
365 |
+
return mutates_data and (
|
366 |
+
(not mutates_metadata and not requires_grad)
|
367 |
+
or mutations_hidden_from_autograd
|
368 |
+
or mutations_under_no_grad_or_inference_mode
|
369 |
+
)
|
370 |
+
return False
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/input_output_analysis.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module is one of the analysis modules - it takes as input a function or graph
|
3 |
+
and some preexisting properties, and returns some data that is useful for deciding
|
4 |
+
how to further proceed with compilation or construct runtime wrappers.
|
5 |
+
|
6 |
+
In particular, the following analyses are provided:
|
7 |
+
1. Refine the view and mutation metadata collected previously - removing duplicate
|
8 |
+
inputs or mapping views to their bases.
|
9 |
+
2. We also analyze the function signature for export graphs.
|
10 |
+
"""
|
11 |
+
|
12 |
+
import itertools
|
13 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.utils._pytree as pytree
|
17 |
+
from torch import Tensor
|
18 |
+
from torch._subclasses.functional_tensor import FunctionalTensor
|
19 |
+
from torch.fx.experimental.symbolic_shapes import is_concrete_int
|
20 |
+
from .schemas import (
|
21 |
+
BackwardSignature,
|
22 |
+
GraphSignature,
|
23 |
+
InputAliasInfo,
|
24 |
+
OutputAliasInfo,
|
25 |
+
OutputType,
|
26 |
+
ViewAndMutationMeta,
|
27 |
+
)
|
28 |
+
from .utils import strict_zip
|
29 |
+
|
30 |
+
zip = strict_zip
|
31 |
+
|
32 |
+
|
33 |
+
def remove_dupe_metadata(
|
34 |
+
m: ViewAndMutationMeta,
|
35 |
+
keep_arg_mask: List[bool],
|
36 |
+
add_dupe_map: List[int],
|
37 |
+
) -> ViewAndMutationMeta:
|
38 |
+
assert len(m.input_info) == len(keep_arg_mask)
|
39 |
+
# Easy invariant: the first argument should never be a dupe (it will be kept)
|
40 |
+
assert len(keep_arg_mask) > 0 and keep_arg_mask[0]
|
41 |
+
|
42 |
+
# Filter dupe'd mutated inputs out of traced_tangents
|
43 |
+
num_data_mutations = len([x for x in m.input_info if x.mutates_data])
|
44 |
+
other_traced_tangents = m.traced_tangents[num_data_mutations:]
|
45 |
+
inp_traced_tangents = m.traced_tangents[:num_data_mutations]
|
46 |
+
filtered_inp_traced_tangents = [
|
47 |
+
x
|
48 |
+
for i, x in enumerate(inp_traced_tangents)
|
49 |
+
if keep_arg_mask[m.mutated_inp_runtime_indices[i]]
|
50 |
+
]
|
51 |
+
traced_tangents = filtered_inp_traced_tangents + other_traced_tangents
|
52 |
+
|
53 |
+
return ViewAndMutationMeta(
|
54 |
+
input_info=[x for i, x in enumerate(m.input_info) if keep_arg_mask[i]],
|
55 |
+
# For outputs that are views of inputs, we store the index of the input that the output
|
56 |
+
# was generated from. Need to update that index to account for removed dupes.
|
57 |
+
output_info=[
|
58 |
+
OutputAliasInfo(
|
59 |
+
output_type=o.output_type,
|
60 |
+
raw_type=o.raw_type,
|
61 |
+
dynamic_dims=o.dynamic_dims,
|
62 |
+
base_idx=None if o.base_idx is None else add_dupe_map[o.base_idx],
|
63 |
+
requires_grad=o.requires_grad,
|
64 |
+
)
|
65 |
+
for o in m.output_info
|
66 |
+
],
|
67 |
+
num_intermediate_bases=m.num_intermediate_bases,
|
68 |
+
keep_input_mutations=m.keep_input_mutations,
|
69 |
+
traced_tangents=traced_tangents,
|
70 |
+
# We are guaranteed not to get here, since dupes are not supported today with subclass inputs.
|
71 |
+
subclass_inp_meta=[],
|
72 |
+
subclass_fw_graph_out_meta=[],
|
73 |
+
subclass_tangent_meta=[],
|
74 |
+
is_train=m.is_train,
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
# Given our ViewAndMutation metadata, this fn constructs a new set of metadata,
|
79 |
+
# after adding synthetic base arguments to the function.
|
80 |
+
# Most of the work in this fn is slogging through all of the metadata corresponding to inputs,
|
81 |
+
# and updating it with our synthetic base calling convention.
|
82 |
+
#
|
83 |
+
# When config.debug_assert is set, we automatically regenerate the metadata
|
84 |
+
# and compare it to this output for sanity.
|
85 |
+
#
|
86 |
+
# In addition to the updated metadata, also return the list of input indices
|
87 |
+
# that will need to be updated in the synthetic base epilogue
|
88 |
+
|
89 |
+
|
90 |
+
# Given our ViewAndMutation metadata, this fn constructs a new set of metadata,
|
91 |
+
# after adding synthetic base arguments to the function.
|
92 |
+
# Most of the work in this fn is slogging through all of the metadata corresponding to inputs,
|
93 |
+
# and updating it with our synthetic base calling convention.
|
94 |
+
#
|
95 |
+
# When config.debug_assert is set, we automatically regenerate the metadata
|
96 |
+
# and compare it to this output for sanity.
|
97 |
+
#
|
98 |
+
# In addition to the updated metadata, also return the list of input indices
|
99 |
+
# that will need to be updated in the synthetic base epilogue
|
100 |
+
def create_synthetic_base_metadata(
|
101 |
+
m: ViewAndMutationMeta,
|
102 |
+
# Maps each outer argument idx to its inner idx (or, if this outer arg is generated from a
|
103 |
+
# synthetic base, you get a tuple of (i, TensorMeta), telling you the base tensor idx, and view metadata)
|
104 |
+
synthetic_base_info: List[Union[int, Tuple[int, torch.Tensor]]],
|
105 |
+
outer_args: List[Any],
|
106 |
+
inner_args: List[Any],
|
107 |
+
) -> Tuple[ViewAndMutationMeta, List[int]]:
|
108 |
+
# maps inner arg indices to outer arg indices
|
109 |
+
synthetic_base_to_indices: Dict[int, List[int]] = {}
|
110 |
+
for inner_idx in range(len(inner_args)):
|
111 |
+
outer_aliased_indices_of_current_base_arg = [
|
112 |
+
outer_idx
|
113 |
+
for outer_idx, inner_idx_or_tuple in enumerate(synthetic_base_info)
|
114 |
+
if (isinstance(inner_idx_or_tuple, int) and inner_idx_or_tuple == inner_idx)
|
115 |
+
or (
|
116 |
+
isinstance(inner_idx_or_tuple, tuple)
|
117 |
+
and inner_idx_or_tuple[0] == inner_idx
|
118 |
+
)
|
119 |
+
]
|
120 |
+
synthetic_base_to_indices[inner_idx] = outer_aliased_indices_of_current_base_arg
|
121 |
+
|
122 |
+
# given the requires_grad info on mutated inputs,
|
123 |
+
# generate the requires_grad info on those same mutated inputs, but after constructing synthetic bases.
|
124 |
+
input_infos = []
|
125 |
+
for outer_indices in synthetic_base_to_indices.values():
|
126 |
+
# leaf-ness should be all-or-nothing for aliased tensor.
|
127 |
+
# (aka if "a" and "b" are views, then a.is_leaf == b.is_leaf)
|
128 |
+
any_leaf = any(m.input_info[x].is_leaf for x in outer_indices)
|
129 |
+
all_leaf = all(m.input_info[x].is_leaf for x in outer_indices)
|
130 |
+
assert any_leaf == all_leaf
|
131 |
+
|
132 |
+
mutates_data = (
|
133 |
+
True
|
134 |
+
if len(outer_indices) > 1
|
135 |
+
else m.input_info[outer_indices[0]].mutates_data
|
136 |
+
)
|
137 |
+
mutates_metadata = (
|
138 |
+
False
|
139 |
+
if len(outer_indices) > 1
|
140 |
+
else m.input_info[outer_indices[0]].mutates_metadata
|
141 |
+
)
|
142 |
+
requires_grad = any(m.input_info[x].requires_grad for x in outer_indices)
|
143 |
+
mutations_hidden_from_autograd = all(
|
144 |
+
m.input_info[x].mutations_hidden_from_autograd for x in outer_indices
|
145 |
+
)
|
146 |
+
mutations_under_no_grad_or_inference_mode = all(
|
147 |
+
m.input_info[x].mutations_under_no_grad_or_inference_mode
|
148 |
+
for x in outer_indices
|
149 |
+
)
|
150 |
+
|
151 |
+
inpt_info = InputAliasInfo(
|
152 |
+
# If len(outer_indices) > 1, then this input is a synthetic base.
|
153 |
+
# The invariant is that to the rest of aot autograd, synthetic bases only show up if
|
154 |
+
# one of their aliases gets a data mutation. And if any of their aliases get metadata
|
155 |
+
# mutations, they will be hidden from the rest of aot autograd.
|
156 |
+
mutates_data=mutates_data,
|
157 |
+
mutates_metadata=mutates_metadata,
|
158 |
+
mutations_hidden_from_autograd=all(
|
159 |
+
m.input_info[x].mutations_hidden_from_autograd for x in outer_indices
|
160 |
+
),
|
161 |
+
mutates_storage_metadata=False
|
162 |
+
if len(outer_indices) > 1
|
163 |
+
else m.input_info[outer_indices[0]].mutates_storage_metadata,
|
164 |
+
mutations_under_no_grad_or_inference_mode=mutations_under_no_grad_or_inference_mode,
|
165 |
+
is_leaf=any_leaf,
|
166 |
+
requires_grad=requires_grad,
|
167 |
+
keep_input_mutations=m.keep_input_mutations,
|
168 |
+
)
|
169 |
+
input_infos.append(inpt_info)
|
170 |
+
|
171 |
+
# Find any inputs that fulfill the following criteria:
|
172 |
+
# (1) They are part of a synthetic base (because they alias another input,
|
173 |
+
# and at least one input experiences a data mutation)
|
174 |
+
# (2) They experience a metadata mutation
|
175 |
+
outer_aliased_arg_idx_with_metadata_mutations = [
|
176 |
+
outer_idx
|
177 |
+
for outer_idx, inpt_info in enumerate(m.input_info)
|
178 |
+
if inpt_info.mutates_metadata
|
179 |
+
and not isinstance(synthetic_base_info[outer_idx], int)
|
180 |
+
]
|
181 |
+
|
182 |
+
# grab the original requires grad info on the outputs, except the ones from the mutated inputs
|
183 |
+
input_metadata_output_info = [
|
184 |
+
OutputAliasInfo(
|
185 |
+
output_type=OutputType.alias_of_input,
|
186 |
+
raw_type=FunctionalTensor,
|
187 |
+
dynamic_dims={
|
188 |
+
i
|
189 |
+
for i, s in enumerate(outer_args[outer_idx].shape)
|
190 |
+
if not is_concrete_int(s)
|
191 |
+
},
|
192 |
+
base_idx=synthetic_base_info[outer_idx][0], # type: ignore[index]
|
193 |
+
requires_grad=outer_args[outer_idx].requires_grad,
|
194 |
+
)
|
195 |
+
for outer_idx in outer_aliased_arg_idx_with_metadata_mutations
|
196 |
+
]
|
197 |
+
existing_output_infos = []
|
198 |
+
for o in m.output_info:
|
199 |
+
new_base_idx = (
|
200 |
+
None
|
201 |
+
if o.base_idx is None
|
202 |
+
else (
|
203 |
+
synthetic_base_info[o.base_idx]
|
204 |
+
if isinstance(synthetic_base_info[o.base_idx], int)
|
205 |
+
else synthetic_base_info[o.base_idx][0] # type: ignore[index]
|
206 |
+
)
|
207 |
+
)
|
208 |
+
# If base_idx is changed for OutputType.is_input, we need to update the output type to reflect the change
|
209 |
+
new_output_type = (
|
210 |
+
OutputType.alias_of_input
|
211 |
+
if o.output_type == OutputType.is_input and o.base_idx != new_base_idx
|
212 |
+
else o.output_type
|
213 |
+
)
|
214 |
+
existing_output_infos.append(
|
215 |
+
OutputAliasInfo(
|
216 |
+
output_type=new_output_type,
|
217 |
+
raw_type=o.raw_type,
|
218 |
+
dynamic_dims=o.dynamic_dims,
|
219 |
+
# Map the input idx pre-synthetic-bases to the new idx post-synthetic-bases
|
220 |
+
base_idx=new_base_idx, # type: ignore[arg-type]
|
221 |
+
requires_grad=o.requires_grad,
|
222 |
+
)
|
223 |
+
)
|
224 |
+
|
225 |
+
inner_mutated_tangents = [
|
226 |
+
x
|
227 |
+
for inner_idx, x in enumerate(inner_args)
|
228 |
+
if input_infos[inner_idx].mutates_data and input_infos[inner_idx].requires_grad
|
229 |
+
]
|
230 |
+
|
231 |
+
output_info = existing_output_infos + input_metadata_output_info
|
232 |
+
# Regenerate traced tangents to include mutated inputs including synthetic bases
|
233 |
+
traced_tangents = (
|
234 |
+
inner_mutated_tangents + m.traced_tangents[len(inner_mutated_tangents) :]
|
235 |
+
)
|
236 |
+
|
237 |
+
return (
|
238 |
+
ViewAndMutationMeta(
|
239 |
+
input_info=input_infos,
|
240 |
+
output_info=output_info,
|
241 |
+
num_intermediate_bases=m.num_intermediate_bases,
|
242 |
+
keep_input_mutations=m.keep_input_mutations,
|
243 |
+
traced_tangents=traced_tangents,
|
244 |
+
# We are guaranteed not to get here, since synthetic_base codepaths are not supported today with subclass inputs.
|
245 |
+
subclass_inp_meta=[],
|
246 |
+
subclass_fw_graph_out_meta=[],
|
247 |
+
subclass_tangent_meta=[],
|
248 |
+
is_train=m.is_train,
|
249 |
+
),
|
250 |
+
outer_aliased_arg_idx_with_metadata_mutations,
|
251 |
+
)
|
252 |
+
|
253 |
+
|
254 |
+
def _get_last_mem_address(x):
|
255 |
+
out = x.storage_offset()
|
256 |
+
for size, stride in zip(x.size(), x.stride()):
|
257 |
+
out += (size - 1) * stride
|
258 |
+
return out
|
259 |
+
|
260 |
+
|
261 |
+
# Assumption: x and y are known to share a storage, and we are trying to determine
|
262 |
+
# if their memory is actually completely disjoint, based on sizes/strides/storage_offset
|
263 |
+
def _tensors_definitely_do_not_overlap(x, y):
|
264 |
+
if x is y:
|
265 |
+
return False
|
266 |
+
if x.numel() == 0 or y.numel() == 0:
|
267 |
+
return True
|
268 |
+
|
269 |
+
# Make x always on the left
|
270 |
+
if x.storage_offset() > y.storage_offset():
|
271 |
+
x, y = y, x
|
272 |
+
# Short-circuit in the "obvious" overlapping case: both tensors are contiguous
|
273 |
+
if x.is_contiguous() and y.is_contiguous():
|
274 |
+
if x.storage_offset() + x.numel() > y.storage_offset():
|
275 |
+
# definitely overlap
|
276 |
+
return False
|
277 |
+
else:
|
278 |
+
# definitely no overlap
|
279 |
+
return True
|
280 |
+
|
281 |
+
# Short-circuit: if last memory address of x is < start of y, then not overlapping.
|
282 |
+
x_last = _get_last_mem_address(x)
|
283 |
+
if x_last < y.storage_offset():
|
284 |
+
return True
|
285 |
+
|
286 |
+
if x.dim() == 2 and y.dim() == 2 and x.stride(1) == 1 and y.stride(1) == 1:
|
287 |
+
# This cases is needed for the shampoo optimizer.
|
288 |
+
# All tensors are 2d (non-contiguous), have the same outer stride, and have an inner stride of 1
|
289 |
+
# (so rows are contiguous)
|
290 |
+
if x.stride(0) == y.stride(0):
|
291 |
+
offset_delta = y.storage_offset() - x.storage_offset()
|
292 |
+
if offset_delta < x.size(1):
|
293 |
+
# definitely overlaps (row 0 of y overlaps with row 0 of x)
|
294 |
+
# Example:
|
295 |
+
# base = torch.arange(32).reshape(4, 8)
|
296 |
+
# x = base.narrow(1, 0, 4)
|
297 |
+
# x: size=(4, 4), stride=(8, 1), offset=0
|
298 |
+
# y = base.narrow(1, 3, 4)
|
299 |
+
# y: size=(4, 4), stride=(8, 1), offset=3
|
300 |
+
return False
|
301 |
+
x_total_elems_covered = x.stride(0) * (x.size(0) - 1) + x.size(1)
|
302 |
+
if x_total_elems_covered <= offset_delta:
|
303 |
+
# definitely does not overlap (last byte of x is before start of y)
|
304 |
+
# Example:
|
305 |
+
# x: size=(4, 4), stride=(8, 1), offset=0 (last byte is 27)
|
306 |
+
# y: size=(4, 4), stride=(8, 1), offset=28 (start byte is 28)
|
307 |
+
return True
|
308 |
+
# At this point, we want to check if the 0th row of y
|
309 |
+
# overlaps with **some** row of x.
|
310 |
+
# We can check this by shifting y backward by the shared stride, repeatedly,
|
311 |
+
# until the first row of y is before the first row of x.
|
312 |
+
# Then we can check if these rows overlap.
|
313 |
+
# We can accomplish this by modding our offset by the stride.
|
314 |
+
offset_delta_mod = offset_delta % x.stride(0)
|
315 |
+
# Example:
|
316 |
+
# 0 1 2 3
|
317 |
+
# 9 10 11 12
|
318 |
+
# 18 19 20 21
|
319 |
+
# 27 28 29 30
|
320 |
+
# x: size=(4, 4), stride=(9, 1), offset=0
|
321 |
+
# y: size=(4, 4), stride=(9, 1), offset=22 (this would not overlap)
|
322 |
+
# y: size=(4, 4), stride=(9, 1), offset=23 (this would not overlap)
|
323 |
+
# y: size=(4, 4), stride=(9, 1), offset=24 (this would overlap)
|
324 |
+
# y: size=(4, 4), stride=(9, 1), offset=25 (this would overlap)
|
325 |
+
# If the interval [modded_offset, modded_offset + x_size] falls entirely
|
326 |
+
# without
|
327 |
+
if offset_delta_mod + y.size(1) <= x.stride(0):
|
328 |
+
return True
|
329 |
+
else:
|
330 |
+
return False
|
331 |
+
return False
|
332 |
+
|
333 |
+
|
334 |
+
def compute_overlapping_inputs(fwd_inputs, aliased_input_indices):
|
335 |
+
actual_aliased_indices = set()
|
336 |
+
for j in range(len(aliased_input_indices)):
|
337 |
+
for i in range(j):
|
338 |
+
i_ = aliased_input_indices[i]
|
339 |
+
j_ = aliased_input_indices[j]
|
340 |
+
if not _tensors_definitely_do_not_overlap(fwd_inputs[i_], fwd_inputs[j_]):
|
341 |
+
actual_aliased_indices.add(i_)
|
342 |
+
actual_aliased_indices.add(j_)
|
343 |
+
return actual_aliased_indices
|
344 |
+
|
345 |
+
|
346 |
+
def _graph_input_names(gm):
|
347 |
+
return [node.name for node in gm.graph.nodes if node.op == "placeholder"]
|
348 |
+
|
349 |
+
|
350 |
+
def _graph_output_names(gm):
|
351 |
+
output_node = next(iter(reversed(gm.graph.nodes)))
|
352 |
+
assert output_node.op == "output" and len(output_node.args) == 1
|
353 |
+
return_args = output_node.args[0]
|
354 |
+
return [getattr(return_arg, "name", None) for return_arg in return_args]
|
355 |
+
|
356 |
+
|
357 |
+
def create_graph_signature(
|
358 |
+
fx_g: torch.fx.GraphModule,
|
359 |
+
fw_metadata: ViewAndMutationMeta,
|
360 |
+
in_spec: pytree.TreeSpec,
|
361 |
+
out_spec: pytree.TreeSpec,
|
362 |
+
*,
|
363 |
+
user_args_flat: List[Tensor],
|
364 |
+
params_and_buffers_flat: List[Tensor],
|
365 |
+
param_names: List[str],
|
366 |
+
buffer_names: List[str],
|
367 |
+
trace_joint: bool,
|
368 |
+
num_user_fw_outs: Optional[int],
|
369 |
+
loss_index: Optional[int],
|
370 |
+
) -> GraphSignature:
|
371 |
+
# Retrieve graph input names
|
372 |
+
graph_input_names = _graph_input_names(fx_g)
|
373 |
+
# Retrieve graph output names
|
374 |
+
graph_output_names = _graph_output_names(fx_g)
|
375 |
+
|
376 |
+
num_params_buffers = len(param_names) + len(buffer_names)
|
377 |
+
num_tokens = len(fw_metadata.tokens)
|
378 |
+
# We have enough restrictions on the graph (no de-duping, synthetic bases, etc),
|
379 |
+
# Such that # graph inps = # user inps + # params + # buffers
|
380 |
+
num_user_args = len(graph_input_names) - num_params_buffers - num_tokens
|
381 |
+
|
382 |
+
if trace_joint:
|
383 |
+
assert num_user_fw_outs is not None
|
384 |
+
num_fw_outs = num_user_fw_outs + fw_metadata.num_mutated_inp_runtime_indices
|
385 |
+
backward_output_names = graph_output_names[num_fw_outs:]
|
386 |
+
|
387 |
+
grad_index = itertools.count(0)
|
388 |
+
gradients_to_parameters = {
|
389 |
+
backward_output_names[next(grad_index)]: param_names[i]
|
390 |
+
for i, param in enumerate(params_and_buffers_flat)
|
391 |
+
if param.requires_grad
|
392 |
+
}
|
393 |
+
|
394 |
+
gradients_to_user_inputs = {
|
395 |
+
backward_output_names[next(grad_index)]: graph_input_names[
|
396 |
+
i + len(params_and_buffers_flat)
|
397 |
+
]
|
398 |
+
for i, user_input in enumerate(user_args_flat)
|
399 |
+
if user_input.requires_grad
|
400 |
+
}
|
401 |
+
|
402 |
+
assert len(gradients_to_parameters) + len(gradients_to_user_inputs) == len(
|
403 |
+
backward_output_names
|
404 |
+
)
|
405 |
+
|
406 |
+
# Check that we have fully accounted for all graph outputs
|
407 |
+
backward_signature = BackwardSignature(
|
408 |
+
gradients_to_parameters,
|
409 |
+
gradients_to_user_inputs,
|
410 |
+
graph_output_names[loss_index],
|
411 |
+
)
|
412 |
+
else:
|
413 |
+
backward_signature = None
|
414 |
+
num_user_fw_outs = (
|
415 |
+
len(graph_output_names)
|
416 |
+
- fw_metadata.num_mutated_inp_runtime_indices
|
417 |
+
- num_tokens
|
418 |
+
)
|
419 |
+
|
420 |
+
return GraphSignature.from_tracing_metadata(
|
421 |
+
in_spec=in_spec,
|
422 |
+
out_spec=out_spec,
|
423 |
+
graph_input_names=graph_input_names,
|
424 |
+
graph_output_names=graph_output_names,
|
425 |
+
view_mutation_metadata=fw_metadata,
|
426 |
+
named_parameters=param_names,
|
427 |
+
named_buffers=buffer_names,
|
428 |
+
num_user_inputs=num_user_args,
|
429 |
+
num_user_outputs=num_user_fw_outs,
|
430 |
+
loss_index=loss_index,
|
431 |
+
backward_signature=backward_signature,
|
432 |
+
)
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py
ADDED
@@ -0,0 +1,936 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
These are the runtime wrappers that are associated with JIT-compiling.
|
3 |
+
|
4 |
+
This includes the forward-only and joint JIT runtime wrappers.
|
5 |
+
|
6 |
+
This module depends heavily on the runtime wrapper building blocks defined
|
7 |
+
in `runtime_wrappers`.
|
8 |
+
"""
|
9 |
+
|
10 |
+
import logging
|
11 |
+
from contextlib import nullcontext
|
12 |
+
from functools import wraps
|
13 |
+
from typing import Any, List, Optional
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.utils.dlpack
|
17 |
+
from torch import Tensor
|
18 |
+
from torch._dynamo.utils import lazy_format_graph_code
|
19 |
+
from torch._guards import detect_fake_mode, tracing, TracingContext
|
20 |
+
from torch._logging import getArtifactLogger, trace_structured
|
21 |
+
from torch._prims_common import CUDARngStateHelper
|
22 |
+
from torch._subclasses import FakeTensor
|
23 |
+
from torch.fx.experimental._backward_state import BackwardState
|
24 |
+
from torch.fx.experimental.proxy_tensor import is_sym_node
|
25 |
+
from torch.fx.experimental.symbolic_shapes import fx_placeholder_vals
|
26 |
+
from .. import config
|
27 |
+
from .dispatch_and_compile_graph import (
|
28 |
+
aot_dispatch_autograd_graph,
|
29 |
+
aot_dispatch_base_graph,
|
30 |
+
)
|
31 |
+
from .logging_utils import describe_input, format_guard_bug_msg, track_graph_compiling
|
32 |
+
|
33 |
+
from .runtime_wrappers import (
|
34 |
+
aot_dispatch_subclass_wrapper,
|
35 |
+
create_runtime_wrapper,
|
36 |
+
functionalized_rng_runtime_epilogue,
|
37 |
+
)
|
38 |
+
from .schemas import (
|
39 |
+
AOTConfig,
|
40 |
+
MutationType,
|
41 |
+
OutputType,
|
42 |
+
SubclassMeta,
|
43 |
+
TensorAlias,
|
44 |
+
ViewAndMutationMeta,
|
45 |
+
)
|
46 |
+
from .subclass_utils import (
|
47 |
+
compute_inner_mutated_inp_indices_from_subclass_meta,
|
48 |
+
unwrap_tensor_subclasses,
|
49 |
+
wrap_tensor_subclasses,
|
50 |
+
)
|
51 |
+
|
52 |
+
from .utils import (
|
53 |
+
_get_symint_hints,
|
54 |
+
call_func_at_runtime_with_args,
|
55 |
+
make_boxed_func,
|
56 |
+
normalize_as_list,
|
57 |
+
strict_zip,
|
58 |
+
)
|
59 |
+
|
60 |
+
zip = strict_zip
|
61 |
+
|
62 |
+
log = logging.getLogger(__name__)
|
63 |
+
aot_joint_log = getArtifactLogger(__name__, "aot_joint_graph")
|
64 |
+
aot_graphs_log = getArtifactLogger(__name__, "aot_graphs")
|
65 |
+
|
66 |
+
aten = torch.ops.aten
|
67 |
+
|
68 |
+
|
69 |
+
def _compute_output_meta_with_inductor_strides(fw_module, fwd_output_strides):
|
70 |
+
out = [n.meta["val"] for n in (list(fw_module.graph.nodes)[-1].args[0])]
|
71 |
+
# will only be set for inductor
|
72 |
+
if not fwd_output_strides:
|
73 |
+
return out
|
74 |
+
with TracingContext.get().fake_mode.shape_env.suppress_guards():
|
75 |
+
for i in range(len(out)):
|
76 |
+
if not isinstance(out[i], Tensor):
|
77 |
+
continue
|
78 |
+
if all(s1 == s2 for s1, s2 in zip(out[i].stride(), fwd_output_strides[i])):
|
79 |
+
continue
|
80 |
+
out[i] = out[i].as_strided(out[i].shape, fwd_output_strides[i])
|
81 |
+
return out
|
82 |
+
|
83 |
+
|
84 |
+
def aot_dispatch_base(
|
85 |
+
flat_fn,
|
86 |
+
flat_args: List[Tensor],
|
87 |
+
aot_config: AOTConfig,
|
88 |
+
*,
|
89 |
+
fw_metadata: ViewAndMutationMeta,
|
90 |
+
):
|
91 |
+
fw_module, updated_flat_args, maybe_subclass_meta = aot_dispatch_base_graph( # type: ignore[misc]
|
92 |
+
flat_fn, flat_args, aot_config, fw_metadata=fw_metadata
|
93 |
+
)
|
94 |
+
|
95 |
+
disable_amp = torch._C._is_any_autocast_enabled()
|
96 |
+
context = torch._C._DisableAutocast if disable_amp else nullcontext
|
97 |
+
fakified_out = None
|
98 |
+
|
99 |
+
with context(), track_graph_compiling(aot_config, "inference"):
|
100 |
+
compiler = (
|
101 |
+
aot_config.inference_compiler
|
102 |
+
if aot_config.inference_compiler is not None
|
103 |
+
else aot_config.fw_compiler
|
104 |
+
)
|
105 |
+
if config.functionalize_rng_ops:
|
106 |
+
# Add the seed and offset as example inputs to pass to the compiler
|
107 |
+
fake_mode = detect_fake_mode()
|
108 |
+
seed, offset = CUDARngStateHelper.get_torch_state_as_tuple(fake_mode)
|
109 |
+
updated_flat_args.extend([seed, offset])
|
110 |
+
|
111 |
+
if tracing_context := torch._guards.TracingContext.try_get():
|
112 |
+
tracing_context.fw_metadata = (
|
113 |
+
fw_metadata
|
114 |
+
if maybe_subclass_meta is None
|
115 |
+
else maybe_subclass_meta.fw_metadata
|
116 |
+
)
|
117 |
+
|
118 |
+
with TracingContext.report_output_strides() as fwd_output_strides:
|
119 |
+
compiled_fw = compiler(fw_module, updated_flat_args)
|
120 |
+
|
121 |
+
# see note: [Returning Fake Tensors on First AOT Autograd Call]
|
122 |
+
if tracing_context and tracing_context.fakify_first_call:
|
123 |
+
fakified_out = _compute_output_meta_with_inductor_strides(
|
124 |
+
fw_module, fwd_output_strides
|
125 |
+
)
|
126 |
+
|
127 |
+
# However, create_runtime_wrapper does not expect the rng offsets in the
|
128 |
+
# output. So, we have to create another wrapper and take out the offset. As
|
129 |
+
# a result, we have to account for not boxed_call compilers as well.
|
130 |
+
if not hasattr(compiled_fw, "_boxed_call"):
|
131 |
+
compiled_fw = make_boxed_func(compiled_fw)
|
132 |
+
|
133 |
+
# Create a wrapper to set up the rng functionalize bits
|
134 |
+
@wraps(compiled_fw)
|
135 |
+
def rng_functionalization_wrapper(args):
|
136 |
+
# see note: [Returning Fake Tensors on First AOT Autograd Call]
|
137 |
+
nonlocal fakified_out
|
138 |
+
if fakified_out is not None:
|
139 |
+
out = fakified_out
|
140 |
+
fakified_out = None
|
141 |
+
return out
|
142 |
+
|
143 |
+
# args is a list because compiled_fw is boxed_call
|
144 |
+
if fw_metadata.is_rng_op_functionalized:
|
145 |
+
# Add the seed and offset to args
|
146 |
+
seed, offset = CUDARngStateHelper.get_torch_state_as_tuple()
|
147 |
+
args.extend([seed, offset])
|
148 |
+
out = compiled_fw(args)
|
149 |
+
out = functionalized_rng_runtime_epilogue(fw_metadata, out)
|
150 |
+
return out
|
151 |
+
else:
|
152 |
+
return compiled_fw(args)
|
153 |
+
|
154 |
+
if maybe_subclass_meta is not None:
|
155 |
+
compiled_fw_func = aot_dispatch_subclass_wrapper(
|
156 |
+
rng_functionalization_wrapper,
|
157 |
+
subclass_metas=fw_metadata.subclass_fw_graph_out_meta,
|
158 |
+
num_fw_outs_saved_for_bw=None,
|
159 |
+
)
|
160 |
+
else:
|
161 |
+
compiled_fw_func = rng_functionalization_wrapper
|
162 |
+
|
163 |
+
if not hasattr(compiled_fw_func, "_boxed_call"):
|
164 |
+
compiled_fw_func = make_boxed_func(compiled_fw_func)
|
165 |
+
|
166 |
+
compiled_fn = create_runtime_wrapper(
|
167 |
+
compiled_fw_func,
|
168 |
+
runtime_metadata=fw_metadata,
|
169 |
+
indices_of_inps_to_detach=[],
|
170 |
+
trace_joint=False,
|
171 |
+
keep_input_mutations=aot_config.keep_inference_input_mutations,
|
172 |
+
disable_amp=disable_amp,
|
173 |
+
)
|
174 |
+
|
175 |
+
return compiled_fn
|
176 |
+
|
177 |
+
|
178 |
+
def aot_dispatch_autograd(
|
179 |
+
flat_fn,
|
180 |
+
flat_args: List[Any],
|
181 |
+
aot_config: AOTConfig,
|
182 |
+
*,
|
183 |
+
fw_metadata: ViewAndMutationMeta,
|
184 |
+
):
|
185 |
+
fw_metadata.deterministic = torch.are_deterministic_algorithms_enabled()
|
186 |
+
fx_g, joint_inputs, maybe_subclass_meta = aot_dispatch_autograd_graph( # type: ignore[misc]
|
187 |
+
flat_fn, flat_args, aot_config, fw_metadata=fw_metadata
|
188 |
+
)
|
189 |
+
|
190 |
+
# Copied from aot_dispatch_autograd_graph.
|
191 |
+
disable_amp = torch._C._is_any_autocast_enabled()
|
192 |
+
|
193 |
+
if aot_config.enable_log:
|
194 |
+
aot_joint_log.info(
|
195 |
+
"%s", lazy_format_graph_code("Joint graph", fx_g, aot_config.aot_id)
|
196 |
+
)
|
197 |
+
trace_structured(
|
198 |
+
"aot_joint_graph",
|
199 |
+
payload_fn=lambda: fx_g.print_readable(print_output=False), # type: ignore[union-attr]
|
200 |
+
)
|
201 |
+
|
202 |
+
fakify_first_call = False
|
203 |
+
fakified_out = None
|
204 |
+
|
205 |
+
with torch.no_grad():
|
206 |
+
inner_meta = (
|
207 |
+
fw_metadata
|
208 |
+
if maybe_subclass_meta is None
|
209 |
+
else maybe_subclass_meta.fw_metadata
|
210 |
+
)
|
211 |
+
with track_graph_compiling(aot_config, "joint"):
|
212 |
+
# See Note: [Partitioner handling for Subclasses, Part 1]
|
213 |
+
# See Note: [Recomputing subclass mutation handling]
|
214 |
+
mutated_inp_runtime_indices = (
|
215 |
+
compute_inner_mutated_inp_indices_from_subclass_meta(
|
216 |
+
fw_metadata, inner_meta
|
217 |
+
)
|
218 |
+
)
|
219 |
+
num_mutated_inp_runtime_indices = len(mutated_inp_runtime_indices)
|
220 |
+
num_inner_fwd_outputs = (
|
221 |
+
num_mutated_inp_runtime_indices
|
222 |
+
+ inner_meta.num_outputs
|
223 |
+
+ inner_meta.num_intermediate_bases
|
224 |
+
+ inner_meta.num_outputs_rng_offset
|
225 |
+
+ len(
|
226 |
+
fw_metadata.tokens
|
227 |
+
) # See Note [Side-Effectful Tokens in AOTAutograd]
|
228 |
+
)
|
229 |
+
fw_module, bw_module = aot_config.partition_fn(
|
230 |
+
fx_g, joint_inputs, num_fwd_outputs=num_inner_fwd_outputs
|
231 |
+
)
|
232 |
+
|
233 |
+
fw_outs = next(n for n in fw_module.graph.nodes if n.op == "output").args[0]
|
234 |
+
# we only need to bookkeep the symints that are saved for bw, not any symints
|
235 |
+
# the user forward might have returned in its own output
|
236 |
+
fw_outs_saved_for_bw = fw_outs[num_inner_fwd_outputs:]
|
237 |
+
num_fw_outs_saved_for_bw = len(fw_outs_saved_for_bw)
|
238 |
+
symint_outs_saved_for_bw = [
|
239 |
+
n for n in fw_outs_saved_for_bw if is_sym_node(n)
|
240 |
+
]
|
241 |
+
fw_metadata.num_symints_saved_for_bw = len(symint_outs_saved_for_bw)
|
242 |
+
inner_meta.num_symints_saved_for_bw = len(symint_outs_saved_for_bw)
|
243 |
+
_num_symints_saved_for_bw = len(symint_outs_saved_for_bw)
|
244 |
+
|
245 |
+
# Note [Detaching inputs that never need gradients]
|
246 |
+
# See https://github.com/pytorch/pytorch/issues/97745
|
247 |
+
# Suppose we have a function like this that we want to compile:
|
248 |
+
#
|
249 |
+
# def f(x, y):
|
250 |
+
# return torch.mul(x, y.detach())
|
251 |
+
#
|
252 |
+
# What gradients should we compute for x and y?
|
253 |
+
# By default, AOTAutograd will compute a gradient for **every** input that requires gradients,
|
254 |
+
# and so we'll compute:
|
255 |
+
# x_grad_input = y
|
256 |
+
# y_grad_input = None
|
257 |
+
# Does this preserve the semantics of eager mode?
|
258 |
+
# Unfortunately, no.
|
259 |
+
# Doing the above will cause autograd to **continue** to backprop the autograd tape
|
260 |
+
# that was generated from constructing y.
|
261 |
+
#
|
262 |
+
# This is **different** from what would have happened in eager mode.
|
263 |
+
# In eager mode, if we backprop through the output of this function, autograd will only traverse
|
264 |
+
# the bit of the autograd tape corresponding to "x".
|
265 |
+
# In particular, if a user had previously backpropped through y's autograd tape,
|
266 |
+
# And then they try to backprop through the output of the above function,
|
267 |
+
# then we'll hit the dreaded "Trying to backward through the graph a second time" error.
|
268 |
+
#
|
269 |
+
# You might think: If autograd sees that a gradient is None, shouldn't it stop early,
|
270 |
+
# instead of continuing the backprop through the ancestors of that node in the graph?
|
271 |
+
#
|
272 |
+
# Autograd has two passes:
|
273 |
+
# (1) a first pass that traverses the autograd graph and figures out which nodes need to be executed
|
274 |
+
# (2) a second pass that actually goes ahead and executes each node when it becomes ready,
|
275 |
+
# propagating gradients
|
276 |
+
# By the time we're executing a node and we see that it produces a None, the set of nodes to execute
|
277 |
+
# is already locked-in.
|
278 |
+
#
|
279 |
+
# The fix: instead, we can recognize statically that the graph we're compiling will never contribute
|
280 |
+
# gradients to y, and prevent autograd from trying to traverse y's autograd tape at all.
|
281 |
+
# We can do this by manually detach'ing y before sending it through the `CompiledFunction`.
|
282 |
+
#
|
283 |
+
# Note that this solution is not bulletproof.
|
284 |
+
# It's possible to construct a case where eager may or may not have have tried to autograd through y,
|
285 |
+
# depending on the actual grad_outputs that were passed in during the backward.
|
286 |
+
# There is no easy fix for this: the simplest fix would be to run with `retain_graph=True`,
|
287 |
+
# allowing autograd to re-use the graph.
|
288 |
+
#
|
289 |
+
# An example of this case is:
|
290 |
+
# def f(x):
|
291 |
+
# return x.detach() * 2, x * 3
|
292 |
+
# If we were to only backprop through outs[0], in eager, we would stop
|
293 |
+
# If we backward only on the first output, we shouldn't send a grad through x.
|
294 |
+
# But the custom autograd function doesn't know that: it will materialize zero grads for x * 3
|
295 |
+
# and we will end up with a zero grad at x.
|
296 |
+
# If we later backprop through the second output, this will also require backprop'ing through x.
|
297 |
+
# Meaning we'll need to use `retain_graph=True` to be able to backprop through x the second time.
|
298 |
+
_indices_of_inps_to_detach = []
|
299 |
+
bw_outs = next(n for n in bw_module.graph.nodes if n.op == "output").args[0]
|
300 |
+
|
301 |
+
# TODO: we should apply the below "detach inputs if their gradients are statically known to be None"
|
302 |
+
# optimization even if we have subclass inputs/outputs (we do not handle this today).
|
303 |
+
# Computing which our our inputs get None gradients is a bit more complicated,
|
304 |
+
# if any of our inputs are subclasses. Why?
|
305 |
+
# (a) we need to make sure that we call .detach() on the input subclasses, since autograd sees subclasses.
|
306 |
+
# (b) The grad_outputs that we AOT computed in our backward graph are the desugared tensor tensors,
|
307 |
+
# so we need to figure out which subclass fw inputs they map to.
|
308 |
+
if maybe_subclass_meta is None:
|
309 |
+
assert (
|
310 |
+
len(bw_outs)
|
311 |
+
== len(fw_metadata.input_info) + inner_meta.num_outputs_rng_offset
|
312 |
+
)
|
313 |
+
for i, (bw_out) in enumerate(bw_outs):
|
314 |
+
if bw_out is None:
|
315 |
+
_indices_of_inps_to_detach.append(i)
|
316 |
+
|
317 |
+
if aot_config.enable_log:
|
318 |
+
aot_graphs_log.info(
|
319 |
+
"%s",
|
320 |
+
lazy_format_graph_code("Forward graph", fw_module, aot_config.aot_id),
|
321 |
+
)
|
322 |
+
aot_graphs_log.info(
|
323 |
+
"%s",
|
324 |
+
lazy_format_graph_code("Backward graph", bw_module, aot_config.aot_id),
|
325 |
+
)
|
326 |
+
trace_structured(
|
327 |
+
"aot_forward_graph",
|
328 |
+
payload_fn=lambda: fw_module.print_readable(print_output=False),
|
329 |
+
)
|
330 |
+
trace_structured(
|
331 |
+
"aot_backward_graph",
|
332 |
+
payload_fn=lambda: bw_module.print_readable(print_output=False),
|
333 |
+
)
|
334 |
+
|
335 |
+
with track_graph_compiling(aot_config, "forward"):
|
336 |
+
# flat_args at this point might still be subclasses-
|
337 |
+
# make sure to pass the unwrapped fake tensors into the compiler!
|
338 |
+
adjusted_flat_args = joint_inputs[0]
|
339 |
+
if config.functionalize_rng_ops:
|
340 |
+
# Update example inputs for the fw_compiler
|
341 |
+
fake_mode = detect_fake_mode()
|
342 |
+
seed, offset = CUDARngStateHelper.get_torch_state_as_tuple(fake_mode)
|
343 |
+
adjusted_flat_args.extend([seed, offset])
|
344 |
+
# We are not clearing flat_args here because
|
345 |
+
# 1) There is a check in the debug compiler at the end
|
346 |
+
# 2) It does not matter as these are fake tensors
|
347 |
+
|
348 |
+
if tracing_context := torch._guards.TracingContext.try_get():
|
349 |
+
tracing_context.fw_metadata = inner_meta
|
350 |
+
|
351 |
+
with TracingContext.report_output_strides() as fwd_output_strides:
|
352 |
+
compiled_fw_func = aot_config.fw_compiler(fw_module, adjusted_flat_args)
|
353 |
+
if not hasattr(compiled_fw_func, "_boxed_call"):
|
354 |
+
compiled_fw_func = make_boxed_func(compiled_fw_func)
|
355 |
+
|
356 |
+
# see note: [Returning Fake Tensors on First AOT Autograd Call]
|
357 |
+
if tracing_context and tracing_context.fakify_first_call:
|
358 |
+
fakified_out = _compute_output_meta_with_inductor_strides(
|
359 |
+
fw_module, fwd_output_strides
|
360 |
+
)
|
361 |
+
fakify_first_call = True
|
362 |
+
|
363 |
+
if maybe_subclass_meta is not None:
|
364 |
+
# Why do we need to pass in num_fw_outs_saved_for_bw?
|
365 |
+
# See Note: [Partitioner handling for Subclasses, Part 2]
|
366 |
+
compiled_fw_func = aot_dispatch_subclass_wrapper(
|
367 |
+
compiled_fw_func,
|
368 |
+
subclass_metas=fw_metadata.subclass_fw_graph_out_meta,
|
369 |
+
num_fw_outs_saved_for_bw=num_fw_outs_saved_for_bw,
|
370 |
+
)
|
371 |
+
if not hasattr(compiled_fw_func, "_boxed_call"):
|
372 |
+
compiled_fw_func = make_boxed_func(compiled_fw_func)
|
373 |
+
|
374 |
+
# NB: It's important to compile backwards ahead of time, as this may
|
375 |
+
# add extra guards which we need to apply to the Dynamo cache at
|
376 |
+
# forwards
|
377 |
+
with track_graph_compiling(aot_config, "backward"):
|
378 |
+
placeholder_list = fx_placeholder_vals(bw_module)
|
379 |
+
|
380 |
+
forward_saved_for_backwards_strides = None
|
381 |
+
if fwd_output_strides is not None:
|
382 |
+
forward_saved_for_backwards_strides = fwd_output_strides[
|
383 |
+
inner_meta.tensors_saved_for_backwards_slice
|
384 |
+
]
|
385 |
+
|
386 |
+
# saved activations can have different stride to eager if
|
387 |
+
# the compiler does layout optimization. We should restride the
|
388 |
+
# tensor passed in for compiling the backward graph using the
|
389 |
+
# saved tensor's stride.
|
390 |
+
for i in range(len(placeholder_list)):
|
391 |
+
ph_arg = placeholder_list[i]
|
392 |
+
if not isinstance(ph_arg, torch.Tensor):
|
393 |
+
continue
|
394 |
+
|
395 |
+
if forward_saved_for_backwards_strides is None:
|
396 |
+
continue
|
397 |
+
|
398 |
+
real_stride = None
|
399 |
+
# Per all_args calling convention
|
400 |
+
j = i - len(symint_outs_saved_for_bw)
|
401 |
+
if 0 <= j < len(forward_saved_for_backwards_strides):
|
402 |
+
real_stride = forward_saved_for_backwards_strides[j]
|
403 |
+
if real_stride is None:
|
404 |
+
continue
|
405 |
+
|
406 |
+
# Comparing ph_arg.stride() with real_stride directly may
|
407 |
+
# cause dynamic dimensions in ph_arg being specialized to static
|
408 |
+
# value. Using the hints to avoid that.
|
409 |
+
if _get_symint_hints(ph_arg.stride()) != real_stride:
|
410 |
+
# Note that here we use the stride of the real tensor to
|
411 |
+
# restride a FakeTensor. This does not cause trouble
|
412 |
+
# for dynamic shape since this code path only get
|
413 |
+
# executed if layout optimization is enabled. And we
|
414 |
+
# disable layout optimization for dynamic shape right
|
415 |
+
# now.
|
416 |
+
#
|
417 |
+
# A solution that decide stride order based on real
|
418 |
+
# tensor's stride and then apply that stride order to
|
419 |
+
# the FakeTensor does not work smoothly since some
|
420 |
+
# tensor's layout is not 'dense'. E.g. mixnet_l has a
|
421 |
+
# tensor with size [8, 64, 112, 112] and strides
|
422 |
+
# (2408448, 1, 21504, 192). The solution mentioned will
|
423 |
+
# decide a stride of (802816, 1, 7168, 64) for this
|
424 |
+
# tensor which is wrong.
|
425 |
+
placeholder_list[i] = ph_arg.as_strided(ph_arg.size(), real_stride)
|
426 |
+
|
427 |
+
compiled_bw_func = None
|
428 |
+
if len(symint_outs_saved_for_bw):
|
429 |
+
context = torch._C._DisableAutocast if disable_amp else nullcontext
|
430 |
+
with context():
|
431 |
+
try:
|
432 |
+
compiled_bw_func = aot_config.bw_compiler(
|
433 |
+
bw_module, placeholder_list
|
434 |
+
)
|
435 |
+
except Exception:
|
436 |
+
log.warning(
|
437 |
+
"failed to eagerly compile backwards for dynamic, suppressing in case backwards not needed",
|
438 |
+
exc_info=True,
|
439 |
+
)
|
440 |
+
# Compiled autograd will run the bw_module in the backward pass,
|
441 |
+
# so recompilation need happen anyway if the backward pass is ever
|
442 |
+
# called.
|
443 |
+
#
|
444 |
+
# The reason we do the GraphModule recompilation here is because
|
445 |
+
# the lazy recompilation will cause issue in the backward pass
|
446 |
+
# with compiled autograd.
|
447 |
+
#
|
448 |
+
# Do the _LazyGraphModule.force_recompile here rather than when
|
449 |
+
# bw_module is first generated by the partitioner because the bw_module.recompile
|
450 |
+
# may be called in some code path later and cause the _LazyGraphModule.forward
|
451 |
+
# becomes the lazy version again. One example is when dynamic shape is enabled
|
452 |
+
# upfront, the bw_compiler will be called above which can cause extra
|
453 |
+
# graph module recompilation on bw_module.
|
454 |
+
if torch._dynamo.compiled_autograd.compiled_autograd_enabled_count:
|
455 |
+
from torch.fx._lazy_graph_module import _LazyGraphModule
|
456 |
+
|
457 |
+
_LazyGraphModule.force_recompile(bw_module)
|
458 |
+
|
459 |
+
saved_context = TracingContext.try_get()
|
460 |
+
|
461 |
+
backward_state_indices = [
|
462 |
+
idx for idx, x in enumerate(flat_args) if isinstance(x, BackwardState)
|
463 |
+
]
|
464 |
+
assert len(backward_state_indices) <= 1
|
465 |
+
|
466 |
+
class CompiledFunction(torch.autograd.Function):
|
467 |
+
compiled_fw = compiled_fw_func
|
468 |
+
compiled_bw = compiled_bw_func
|
469 |
+
metadata: ViewAndMutationMeta = fw_metadata # type: ignore[assignment]
|
470 |
+
maybe_subclass_metadata: Optional[SubclassMeta] = maybe_subclass_meta
|
471 |
+
num_symints_saved_for_bw = _num_symints_saved_for_bw
|
472 |
+
_compiled_autograd_should_lift = False
|
473 |
+
_fakify_first_call = fakify_first_call
|
474 |
+
|
475 |
+
@staticmethod
|
476 |
+
def _compiled_autograd_key(ctx):
|
477 |
+
return (ctx._autograd_function_id, *ctx.symints)
|
478 |
+
|
479 |
+
@staticmethod
|
480 |
+
def forward(ctx, *deduped_flat_tensor_args):
|
481 |
+
args = deduped_flat_tensor_args
|
482 |
+
if backward_state_indices:
|
483 |
+
bw_state = args[backward_state_indices[0]]
|
484 |
+
assert isinstance(bw_state, BackwardState)
|
485 |
+
ctx._compiled_autograd_backward_state = bw_state
|
486 |
+
|
487 |
+
marked_dirty_inps = []
|
488 |
+
for i in fw_metadata.mutated_graph_handled_indices_seen_by_autograd:
|
489 |
+
arg = deduped_flat_tensor_args[i]
|
490 |
+
if not (arg.requires_grad and arg.is_leaf): # would error
|
491 |
+
ctx.mark_dirty(arg)
|
492 |
+
marked_dirty_inps.append(arg)
|
493 |
+
|
494 |
+
if not CompiledFunction._fakify_first_call:
|
495 |
+
if CompiledFunction.metadata.is_rng_op_functionalized:
|
496 |
+
# Add the seed and offset to args
|
497 |
+
seed, offset = CUDARngStateHelper.get_torch_state_as_tuple()
|
498 |
+
args = (*args, seed, offset)
|
499 |
+
# There is a pretty complicated calling convention around what the compiled fw returns.
|
500 |
+
# The full list of outputs and their relative order is:
|
501 |
+
# (*tokens, *mutated_inputs, *fw_outs, *fw_intermediate_bases, *saved_tensors, *saved_symints)
|
502 |
+
# - Note that in the synthetic bases case, mutated_inputs will correspond to an updated version
|
503 |
+
# of the original view, and not the synthetic base
|
504 |
+
|
505 |
+
fw_outs = call_func_at_runtime_with_args(
|
506 |
+
CompiledFunction.compiled_fw,
|
507 |
+
args,
|
508 |
+
disable_amp=disable_amp,
|
509 |
+
)
|
510 |
+
else:
|
511 |
+
nonlocal fakified_out
|
512 |
+
assert fakified_out is not None
|
513 |
+
CompiledFunction._fakify_first_call = False
|
514 |
+
fw_outs = fakified_out
|
515 |
+
fakified_out = None
|
516 |
+
|
517 |
+
num_outputs = CompiledFunction.metadata.num_outputs
|
518 |
+
num_outputs_aliased = CompiledFunction.metadata.num_outputs_aliased
|
519 |
+
num_mutated_runtime_inps = (
|
520 |
+
CompiledFunction.metadata.num_mutated_inp_runtime_indices
|
521 |
+
)
|
522 |
+
num_tokens = len(CompiledFunction.metadata.tokens)
|
523 |
+
num_forward_returns = CompiledFunction.metadata.num_forward_returns
|
524 |
+
num_forward = CompiledFunction.metadata.num_forward
|
525 |
+
|
526 |
+
# Partitioners must put symint arguments at the end separate from tensor arguments
|
527 |
+
tensors_saved_for_backwards = fw_outs[
|
528 |
+
CompiledFunction.metadata.tensors_saved_for_backwards_slice
|
529 |
+
]
|
530 |
+
assert all(isinstance(x, torch.Tensor) for x in tensors_saved_for_backwards)
|
531 |
+
# See Note [Detaching saved tensors in AOTAutograd]
|
532 |
+
ctx.save_for_backward(
|
533 |
+
*(
|
534 |
+
x.detach() if x._is_view() else x
|
535 |
+
for x in tensors_saved_for_backwards
|
536 |
+
)
|
537 |
+
)
|
538 |
+
symint_outs = fw_outs[
|
539 |
+
CompiledFunction.metadata.symints_saved_for_backwards_slice
|
540 |
+
]
|
541 |
+
assert all(
|
542 |
+
isinstance(x, (int, float, torch.SymInt, torch.SymFloat))
|
543 |
+
for x in symint_outs
|
544 |
+
), str([type(x) for x in symint_outs])
|
545 |
+
ctx.symints = symint_outs
|
546 |
+
|
547 |
+
raw_returns = fw_outs[0 : num_forward_returns + num_tokens]
|
548 |
+
|
549 |
+
# Wrap all autograd.Function.forward() outputs that are aliases
|
550 |
+
# so that autograd.Function doesn't treat them as tensors
|
551 |
+
if num_mutated_runtime_inps > 0:
|
552 |
+
for i, idx in enumerate(
|
553 |
+
CompiledFunction.metadata.mutated_inp_runtime_indices
|
554 |
+
):
|
555 |
+
# We could make this faster by only looping over inputs with metadata-only mutations
|
556 |
+
# (instead of looping over inputs with either data or metadata mutations), but there shouldn't be many.
|
557 |
+
info = CompiledFunction.metadata.input_info[idx]
|
558 |
+
if info.mutates_metadata and not info.mutates_data:
|
559 |
+
raw_returns[i] = TensorAlias(raw_returns[i])
|
560 |
+
|
561 |
+
if config.debug_assert:
|
562 |
+
user_mutated_inputs_raw = raw_returns[0:num_mutated_runtime_inps]
|
563 |
+
mut_inp_infos = [
|
564 |
+
x
|
565 |
+
for x in CompiledFunction.metadata.input_info
|
566 |
+
if x.mutates_data or x.mutates_metadata
|
567 |
+
]
|
568 |
+
assert len(user_mutated_inputs_raw) == len(mut_inp_infos)
|
569 |
+
|
570 |
+
if CompiledFunction.metadata.num_unsafe_view_outputs > 0:
|
571 |
+
for idx in CompiledFunction.metadata.unsafe_view_out_indices:
|
572 |
+
raw_return_idx = num_mutated_runtime_inps + idx
|
573 |
+
o = raw_returns[raw_return_idx]
|
574 |
+
raw_returns[raw_return_idx] = torch.ops.aten._unsafe_view(
|
575 |
+
o, o.shape
|
576 |
+
)
|
577 |
+
|
578 |
+
if num_outputs_aliased > 0:
|
579 |
+
for idx in CompiledFunction.metadata.aliased_out_indices:
|
580 |
+
raw_return_idx = num_mutated_runtime_inps + idx
|
581 |
+
raw_returns[raw_return_idx] = TensorAlias(
|
582 |
+
raw_returns[raw_return_idx]
|
583 |
+
)
|
584 |
+
|
585 |
+
if config.debug_assert:
|
586 |
+
intermediates_raw = raw_returns[
|
587 |
+
num_mutated_runtime_inps + num_outputs :
|
588 |
+
]
|
589 |
+
assert not any(
|
590 |
+
isinstance(x, TensorAlias) for x in intermediates_raw
|
591 |
+
)
|
592 |
+
|
593 |
+
# invariant: intermediate bases always require gradients, so we don't have to
|
594 |
+
# consider marking them as non-differentiable.
|
595 |
+
raw_returns_not_including_intermediate_bases = raw_returns[
|
596 |
+
: num_mutated_runtime_inps + num_outputs
|
597 |
+
]
|
598 |
+
raw_returns_meta = [
|
599 |
+
x
|
600 |
+
for x in CompiledFunction.metadata.input_info
|
601 |
+
if x.mutation_type == MutationType.MUTATED_OUT_GRAPH
|
602 |
+
] + CompiledFunction.metadata.output_info
|
603 |
+
|
604 |
+
fw_outs_not_requiring_grad = [
|
605 |
+
x
|
606 |
+
for (i, x) in enumerate(raw_returns_not_including_intermediate_bases)
|
607 |
+
if isinstance(x, torch.Tensor) and not raw_returns_meta[i].requires_grad
|
608 |
+
]
|
609 |
+
ctx.mark_non_differentiable(*fw_outs_not_requiring_grad)
|
610 |
+
ctx._materialize_non_diff_grads = False
|
611 |
+
|
612 |
+
functionalized_rng_runtime_epilogue(
|
613 |
+
CompiledFunction.metadata,
|
614 |
+
fw_outs[num_forward_returns:num_forward],
|
615 |
+
return_new_outs=False,
|
616 |
+
)
|
617 |
+
return tuple(raw_returns) + tuple(marked_dirty_inps)
|
618 |
+
|
619 |
+
@staticmethod
|
620 |
+
def backward(ctx, *flat_args):
|
621 |
+
# Calling convention: we expect a grad_out passed to the backward:
|
622 |
+
# - for every output of the fw that does *not* alias an input or graph intermediate
|
623 |
+
# - for every updated_input generated by the fw that does *not* alias an input (aka only data-mutations)
|
624 |
+
# - for every graph intermediate that we need to use to generate an output later.
|
625 |
+
# The other outputs in the autograd.Function.forward that do *not* show up in the backward include:
|
626 |
+
# - outputs that alias inputs or graph intermediates
|
627 |
+
# - updated inputs due to metadata-only mutations.
|
628 |
+
# We need to return them in the forward, but ensure that they all do not get gradients in the backward,
|
629 |
+
# and we filter them out here before passing the remaining grad_outputs into the compiled backward.
|
630 |
+
num_intermediate_bases = CompiledFunction.metadata.num_intermediate_bases
|
631 |
+
num_graph_handled_inputs = (
|
632 |
+
CompiledFunction.metadata.num_mutated_graph_handled_indices_seen_by_autograd
|
633 |
+
)
|
634 |
+
num_mutated_runtime_inps = (
|
635 |
+
CompiledFunction.metadata.num_mutated_inp_runtime_indices
|
636 |
+
)
|
637 |
+
expected_grad_outs = (
|
638 |
+
CompiledFunction.metadata.num_outputs
|
639 |
+
+ num_mutated_runtime_inps
|
640 |
+
+ num_intermediate_bases
|
641 |
+
)
|
642 |
+
deterministic = CompiledFunction.metadata.deterministic
|
643 |
+
global_deterministic = torch.are_deterministic_algorithms_enabled()
|
644 |
+
if deterministic is not None:
|
645 |
+
torch._check(
|
646 |
+
not (not deterministic and global_deterministic),
|
647 |
+
lambda: (
|
648 |
+
"This compiled backward function is being run with "
|
649 |
+
"torch.use_deterministic_algorithms(True), "
|
650 |
+
"but it was previously generated during the forward function while "
|
651 |
+
"torch.use_deterministic_algorithms(False) was set."
|
652 |
+
),
|
653 |
+
)
|
654 |
+
|
655 |
+
if num_graph_handled_inputs > 0:
|
656 |
+
flat_args = flat_args[:-num_graph_handled_inputs]
|
657 |
+
assert len(flat_args) == expected_grad_outs
|
658 |
+
out_info = CompiledFunction.metadata.output_info
|
659 |
+
|
660 |
+
inp_tangents, out_tangents, intermediate_base_tangents = (
|
661 |
+
flat_args[0:num_mutated_runtime_inps],
|
662 |
+
flat_args[
|
663 |
+
num_mutated_runtime_inps : num_mutated_runtime_inps
|
664 |
+
+ CompiledFunction.metadata.num_outputs
|
665 |
+
],
|
666 |
+
flat_args[
|
667 |
+
num_mutated_runtime_inps + CompiledFunction.metadata.num_outputs :
|
668 |
+
],
|
669 |
+
)
|
670 |
+
# input_info contains info on *every* input,
|
671 |
+
# But in the backward(), we are only given grad outputs for every mutated input
|
672 |
+
# We then need to filter out the grad outputs that correspond to metadata-only mutations or don't require grad
|
673 |
+
input_info = CompiledFunction.metadata.input_info
|
674 |
+
inp_tangents_filtered = [
|
675 |
+
x
|
676 |
+
for x, info_idx in zip(
|
677 |
+
inp_tangents, CompiledFunction.metadata.mutated_inp_runtime_indices
|
678 |
+
)
|
679 |
+
if input_info[info_idx].mutates_data
|
680 |
+
and input_info[info_idx].requires_grad
|
681 |
+
]
|
682 |
+
# We also need to filter out grad outputs that correspond to outputs aliasing inputs/intermediates
|
683 |
+
out_tangents_filtered = [
|
684 |
+
x
|
685 |
+
for x, info in zip(out_tangents, out_info)
|
686 |
+
if info.output_type
|
687 |
+
in [
|
688 |
+
OutputType.non_alias,
|
689 |
+
OutputType.unsafe_view_alias,
|
690 |
+
OutputType.custom_function_view,
|
691 |
+
]
|
692 |
+
and issubclass(info.raw_type, torch.Tensor)
|
693 |
+
and info.requires_grad
|
694 |
+
]
|
695 |
+
# intermediate bases always require gradients, and always participate in the backward graph.
|
696 |
+
flat_bw_args_with_grads = [
|
697 |
+
*inp_tangents_filtered,
|
698 |
+
*out_tangents_filtered,
|
699 |
+
*intermediate_base_tangents,
|
700 |
+
]
|
701 |
+
num_flat_bw_args_with_grads = len(flat_bw_args_with_grads)
|
702 |
+
|
703 |
+
# sanity asserts
|
704 |
+
# metadata_only_inps = [
|
705 |
+
# x for x, info_idx in zip(inp_tangents, mutated_inp_indices)
|
706 |
+
# if not input_info[info_idx].mutates_data
|
707 |
+
# ]
|
708 |
+
# aliased_outputs = [
|
709 |
+
# x for x, info in zip(out_tangents, out_info) if info.output_type != OutputType.non_alias]
|
710 |
+
# assert all(x is None for x in metadata_only_inps)
|
711 |
+
# assert all(x is None for x in aliased_outputs)
|
712 |
+
|
713 |
+
rng_args = []
|
714 |
+
if CompiledFunction.metadata.is_rng_op_functionalized:
|
715 |
+
# Add the seed and offset to args
|
716 |
+
rng_args = CUDARngStateHelper.get_torch_state_as_tuple()
|
717 |
+
|
718 |
+
all_args = [
|
719 |
+
*ctx.symints,
|
720 |
+
*ctx.saved_tensors,
|
721 |
+
*flat_bw_args_with_grads,
|
722 |
+
*rng_args,
|
723 |
+
]
|
724 |
+
del flat_bw_args_with_grads
|
725 |
+
|
726 |
+
tangents_start_idx = (
|
727 |
+
len(all_args) - num_flat_bw_args_with_grads - len(rng_args)
|
728 |
+
)
|
729 |
+
tangents_end_idx = len(all_args) - len(rng_args)
|
730 |
+
|
731 |
+
# Note: [AOTAutograd Backward Guards]
|
732 |
+
# During AOTDispatch, we eagerly create and trace out a joint fw-bw graph.
|
733 |
+
# Doing so requires us to "guess" about some of the metadata of our grad_outputs.
|
734 |
+
#
|
735 |
+
# In particular: if an output to the forward is a plain tensor or a subclass,
|
736 |
+
# its corresponding grad_output in the backward **may or may not** be
|
737 |
+
# a plain tensor or a subclass. The main cases are:
|
738 |
+
# (1) If an output is a plain tensor, its grad_out will also be a plain tensor,
|
739 |
+
# *unless* the output is used in some subclass compute later in the forward graph,
|
740 |
+
# which will cause its grad_output to become a subclass
|
741 |
+
# (2) If an output is a subclass, its grad_out will also be a subclass,
|
742 |
+
# *unless* the output of the forward did not actually participate in the gradient computation,
|
743 |
+
# in which case autograd will insert a plain tensor of zeros for the grad_output.
|
744 |
+
# We could avoid this case with `torch.autograd.Function.set_materialize_grads`,
|
745 |
+
# although this is not turned on today in AOTAutgrad and would require more work.
|
746 |
+
#
|
747 |
+
# Today, we make a guess on subclass-ness based on the above examples,
|
748 |
+
# and hard-error in the backward if we guessed wrong.
|
749 |
+
#
|
750 |
+
# In the future, we should add backward guards that would allow us to
|
751 |
+
# properly handle this case instead of erroring: we would need to retrace the backward graph,
|
752 |
+
# since we might produce an entirely different trace if our grad_outputs are subclass or not.
|
753 |
+
assert (
|
754 |
+
len(CompiledFunction.metadata.output_types)
|
755 |
+
== num_flat_bw_args_with_grads
|
756 |
+
)
|
757 |
+
grad_output_types = [
|
758 |
+
type(x) for x in all_args[-num_flat_bw_args_with_grads:]
|
759 |
+
]
|
760 |
+
# In general, we can add more asserts/guards here for when we partitioned
|
761 |
+
# with incorrect assumptions about the grad_outputs.
|
762 |
+
# Normalize FakeTensor -> torch.Tensor
|
763 |
+
# - during tracing our types are FakeTensor
|
764 |
+
# - at runtime in the backward our types are torch.Tensor...
|
765 |
+
# - unless we're running compiled backward, in which case they are also FakeTensor
|
766 |
+
grad_output_types_ = [
|
767 |
+
torch.Tensor if x is FakeTensor else x for x in grad_output_types
|
768 |
+
]
|
769 |
+
assert (
|
770 |
+
grad_output_types_ == CompiledFunction.metadata.output_types
|
771 |
+
), f"""\
|
772 |
+
We incorrectly attempted to compile the backward with incorrect subclass metadata.
|
773 |
+
If you run into this error, please file an issue.
|
774 |
+
Expected grad_output types: {str(CompiledFunction.metadata.output_types)}
|
775 |
+
Got grad_output types: {str(grad_output_types)}"""
|
776 |
+
|
777 |
+
# TODO: figure out how to refactor the backward properly so I can use aot_dispatch_subclass_wrapper() here.
|
778 |
+
if CompiledFunction.maybe_subclass_metadata is not None:
|
779 |
+
# Get the number of tangents after unwrapping
|
780 |
+
len_tangents = len(
|
781 |
+
unwrap_tensor_subclasses(
|
782 |
+
all_args[tangents_start_idx:tangents_end_idx],
|
783 |
+
is_joint_structure=False,
|
784 |
+
)
|
785 |
+
)
|
786 |
+
all_args = unwrap_tensor_subclasses(all_args, is_joint_structure=False)
|
787 |
+
tangents_start_idx = len(all_args) - len_tangents - len(rng_args)
|
788 |
+
tangents_end_idx = tangents_start_idx + len_tangents
|
789 |
+
|
790 |
+
# Make the tangents contiguous. Note that we must do this after subclass desugaring
|
791 |
+
# because inputs to inductor have to be contiguous
|
792 |
+
all_args = [
|
793 |
+
t.contiguous()
|
794 |
+
if (
|
795 |
+
(tangents_start_idx <= i < tangents_end_idx)
|
796 |
+
and (not t.is_contiguous())
|
797 |
+
)
|
798 |
+
else t
|
799 |
+
for i, t in enumerate(all_args)
|
800 |
+
]
|
801 |
+
|
802 |
+
def call_compiled_backward():
|
803 |
+
if ctx._is_compiled_autograd_tracing():
|
804 |
+
# For compiled autograd, run raw FX graph so that it can be inlined into the larger graph
|
805 |
+
symints = ctx._get_compiled_autograd_symints()
|
806 |
+
assert len(symints) == len(ctx.symints)
|
807 |
+
all_args[: len(symints)] = symints
|
808 |
+
if backward_state_indices:
|
809 |
+
assert ctx._compiled_autograd_backward_state.proxy is not None
|
810 |
+
all_args.append(ctx._compiled_autograd_backward_state)
|
811 |
+
context = torch._C._DisableAutocast if disable_amp else nullcontext
|
812 |
+
with context():
|
813 |
+
out = normalize_as_list(bw_module(*all_args))
|
814 |
+
out = functionalized_rng_runtime_epilogue(
|
815 |
+
CompiledFunction.metadata, out
|
816 |
+
)
|
817 |
+
return tuple(out)
|
818 |
+
assert (
|
819 |
+
not backward_state_indices
|
820 |
+
), "BackwardState requires CompiledAutograd"
|
821 |
+
ctx.maybe_clear_saved_tensors()
|
822 |
+
if CompiledFunction.compiled_bw is None:
|
823 |
+
context = torch._C._DisableAutocast if disable_amp else nullcontext
|
824 |
+
with tracing(saved_context), context(), track_graph_compiling(
|
825 |
+
aot_config, "backward"
|
826 |
+
):
|
827 |
+
CompiledFunction.compiled_bw = aot_config.bw_compiler(
|
828 |
+
bw_module, placeholder_list
|
829 |
+
)
|
830 |
+
|
831 |
+
out = call_func_at_runtime_with_args(
|
832 |
+
CompiledFunction.compiled_bw,
|
833 |
+
all_args,
|
834 |
+
steal_args=True,
|
835 |
+
disable_amp=disable_amp,
|
836 |
+
)
|
837 |
+
|
838 |
+
out = functionalized_rng_runtime_epilogue(
|
839 |
+
CompiledFunction.metadata, out
|
840 |
+
)
|
841 |
+
return tuple(out)
|
842 |
+
|
843 |
+
if torch.is_grad_enabled() and any(
|
844 |
+
t.requires_grad for t in all_args if isinstance(t, torch.Tensor)
|
845 |
+
):
|
846 |
+
# Ensure that the graph is connected, and error if double backward is performed.
|
847 |
+
# See comment for why once_differentiable is not sufficient:
|
848 |
+
# https://github.com/pytorch/pytorch/pull/92348/files#r1072962107
|
849 |
+
class CompiledFunctionBackward(torch.autograd.Function):
|
850 |
+
# CompiledFunctionBackward is not yet supported in dynamo skipfiles
|
851 |
+
_compiled_autograd_should_lift = False
|
852 |
+
|
853 |
+
@staticmethod
|
854 |
+
def forward(ctx, *unused_args):
|
855 |
+
outs = call_compiled_backward()
|
856 |
+
# TODO: figure out how to refactor the backward properly so I can use aot_dispatch_subclass_wrapper() here.
|
857 |
+
if CompiledFunction.maybe_subclass_metadata is not None:
|
858 |
+
assert (
|
859 |
+
CompiledFunction.maybe_subclass_metadata.grad_input_metas
|
860 |
+
is not None
|
861 |
+
)
|
862 |
+
outs_wrapped = wrap_tensor_subclasses(
|
863 |
+
outs,
|
864 |
+
subclass_metas=CompiledFunction.maybe_subclass_metadata.grad_input_metas,
|
865 |
+
)
|
866 |
+
return outs_wrapped
|
867 |
+
return outs
|
868 |
+
|
869 |
+
@staticmethod
|
870 |
+
def backward(ctx, *args):
|
871 |
+
raise RuntimeError(
|
872 |
+
"torch.compile with aot_autograd does not currently support double backward"
|
873 |
+
)
|
874 |
+
|
875 |
+
CompiledFunctionBackward._compiled_autograd_key = ( # type: ignore[method-assign]
|
876 |
+
CompiledFunction._compiled_autograd_key
|
877 |
+
)
|
878 |
+
|
879 |
+
# Pass args even though they're unused, so that the graph is built
|
880 |
+
out = CompiledFunctionBackward.apply(*all_args)
|
881 |
+
else:
|
882 |
+
out = call_compiled_backward()
|
883 |
+
|
884 |
+
# TODO: figure out how to refactor the backward properly so I can use aot_dispatch_subclass_wrapper() here.
|
885 |
+
if CompiledFunction.maybe_subclass_metadata is not None:
|
886 |
+
assert (
|
887 |
+
CompiledFunction.maybe_subclass_metadata.grad_input_metas
|
888 |
+
is not None
|
889 |
+
)
|
890 |
+
outs_wrapped = wrap_tensor_subclasses(
|
891 |
+
out,
|
892 |
+
subclass_metas=CompiledFunction.maybe_subclass_metadata.grad_input_metas,
|
893 |
+
)
|
894 |
+
return outs_wrapped
|
895 |
+
return out
|
896 |
+
|
897 |
+
compiled_function = create_runtime_wrapper(
|
898 |
+
CompiledFunction.apply,
|
899 |
+
runtime_metadata=fw_metadata,
|
900 |
+
indices_of_inps_to_detach=_indices_of_inps_to_detach,
|
901 |
+
trace_joint=True,
|
902 |
+
keep_input_mutations=aot_config.keep_inference_input_mutations,
|
903 |
+
disable_amp=disable_amp,
|
904 |
+
)
|
905 |
+
|
906 |
+
if not config.debug_assert:
|
907 |
+
return compiled_function
|
908 |
+
|
909 |
+
flat_requires_grad = [
|
910 |
+
a.requires_grad if isinstance(a, Tensor) else None for a in flat_args
|
911 |
+
]
|
912 |
+
|
913 |
+
@wraps(compiled_function)
|
914 |
+
def debug_compiled_function(*args):
|
915 |
+
# TODO: Check aliasing relationships
|
916 |
+
# TODO: Check strides for metadata mutation
|
917 |
+
# (NB: ideally, this logic is factored out of this function and
|
918 |
+
# you move these debug checks there)
|
919 |
+
|
920 |
+
# Check requires grad. Bad case is when we compiled with
|
921 |
+
# requires_grad = False, but input requires_grad = True
|
922 |
+
# (vice versa is OK; we compute a gradient and then throw
|
923 |
+
# it away when it hits the input.)
|
924 |
+
for i, a in enumerate(args):
|
925 |
+
can_require_grad = flat_requires_grad[i]
|
926 |
+
if can_require_grad is None:
|
927 |
+
assert not isinstance(a, Tensor)
|
928 |
+
elif not can_require_grad:
|
929 |
+
assert not a.requires_grad, format_guard_bug_msg(
|
930 |
+
aot_config,
|
931 |
+
f"{describe_input(i, aot_config)} would not require grad",
|
932 |
+
)
|
933 |
+
|
934 |
+
return compiled_function(*args)
|
935 |
+
|
936 |
+
return debug_compiled_function
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/logging_utils.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Contains utils for logging in AOTAutograd, including managing the names of the graphs under
|
3 |
+
compilation, capturing user-friendly tracebacks, and debug messages.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import collections
|
7 |
+
from contextlib import contextmanager
|
8 |
+
from typing import List, Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.fx.traceback as fx_traceback
|
12 |
+
|
13 |
+
# This is a list since looking forward, we can have this arbitrarily nested.
|
14 |
+
graph_being_compiled: List[str] = []
|
15 |
+
# TODO: It would be nice to reset the numbering every time aot_id goes
|
16 |
+
# up, but this is annoying to do right now (because we don't know if
|
17 |
+
# an aot_id will come back from the dead), so right now this also happens
|
18 |
+
# to be a globally unique number too (at the cost of wobbling if you change
|
19 |
+
# how the graphs compile)
|
20 |
+
nth_graph: int = 0
|
21 |
+
model_name: str = "model"
|
22 |
+
|
23 |
+
|
24 |
+
def set_model_name(name):
|
25 |
+
global model_name
|
26 |
+
model_name = name
|
27 |
+
|
28 |
+
|
29 |
+
def get_aot_compilation_context() -> Tuple[List[str], str, int]:
|
30 |
+
return list(graph_being_compiled), model_name, nth_graph
|
31 |
+
|
32 |
+
|
33 |
+
def get_aot_graph_name() -> str:
|
34 |
+
"""
|
35 |
+
Returns the name of the graph being compiled.
|
36 |
+
"""
|
37 |
+
global model_name, graph_being_compiled, nth_graph
|
38 |
+
return f"{model_name}__{'_'.join(graph_being_compiled)}_{nth_graph}"
|
39 |
+
|
40 |
+
|
41 |
+
get_graph_being_compiled = get_aot_graph_name
|
42 |
+
|
43 |
+
|
44 |
+
@contextmanager
|
45 |
+
def track_graph_compiling(aot_config, graph_name):
|
46 |
+
global graph_being_compiled
|
47 |
+
# TODO: Don't shove the aot_id in here; set it in the context
|
48 |
+
graph_being_compiled = [f"{aot_config.aot_id}_{graph_name}"]
|
49 |
+
try:
|
50 |
+
yield
|
51 |
+
finally:
|
52 |
+
global nth_graph
|
53 |
+
nth_graph += 1
|
54 |
+
graph_being_compiled = []
|
55 |
+
|
56 |
+
|
57 |
+
# Set up hooks so that during backward the fx's stack_trace is properly set
|
58 |
+
callback_set = False
|
59 |
+
|
60 |
+
|
61 |
+
def setup_stacktrace_preservation_hooks(roots: List):
|
62 |
+
def iter_graph(roots):
|
63 |
+
if not roots:
|
64 |
+
return
|
65 |
+
seen = set()
|
66 |
+
q = collections.deque() # type: ignore[var-annotated]
|
67 |
+
for node in roots:
|
68 |
+
if node is not None and node not in seen:
|
69 |
+
seen.add(node)
|
70 |
+
q.append(node)
|
71 |
+
|
72 |
+
while q:
|
73 |
+
node = q.popleft()
|
74 |
+
for fn, _idx in node.next_functions:
|
75 |
+
if fn in seen or fn is None:
|
76 |
+
continue
|
77 |
+
seen.add(fn)
|
78 |
+
q.append(fn)
|
79 |
+
|
80 |
+
yield node
|
81 |
+
|
82 |
+
def get_callback(saved_stack_):
|
83 |
+
def callback():
|
84 |
+
global callback_set
|
85 |
+
fx_traceback.set_stack_trace(saved_stack_)
|
86 |
+
callback_set = False
|
87 |
+
|
88 |
+
return callback
|
89 |
+
|
90 |
+
def get_prehook(stack_, seq_nr):
|
91 |
+
def prehook(grad_output):
|
92 |
+
global callback_set
|
93 |
+
|
94 |
+
if not callback_set:
|
95 |
+
torch.autograd.variable.Variable._execution_engine.queue_callback( # type: ignore[attr-defined]
|
96 |
+
get_callback(fx_traceback.format_stack())
|
97 |
+
)
|
98 |
+
callback_set = True
|
99 |
+
|
100 |
+
fx_traceback.set_stack_trace(stack_)
|
101 |
+
fx_traceback.set_grad_fn_seq_nr(seq_nr)
|
102 |
+
|
103 |
+
return prehook
|
104 |
+
|
105 |
+
def get_posthook(special_stack_, seq_nr):
|
106 |
+
def posthook(grad_input, grad_output):
|
107 |
+
fx_traceback.set_stack_trace(special_stack_)
|
108 |
+
fx_traceback.reset_grad_fn_seq_nr()
|
109 |
+
|
110 |
+
return posthook
|
111 |
+
|
112 |
+
for node in iter_graph(roots):
|
113 |
+
forward_node_stack = node.metadata.get("traceback_", [])
|
114 |
+
node.register_prehook(get_prehook(forward_node_stack, node._sequence_nr()))
|
115 |
+
|
116 |
+
special_stack = forward_node_stack.copy()
|
117 |
+
special_stack.append(
|
118 |
+
"Gradient addition node due to multiple use of tensor around:"
|
119 |
+
)
|
120 |
+
node.register_hook(get_posthook(special_stack, node._sequence_nr()))
|
121 |
+
|
122 |
+
|
123 |
+
def describe_input(i, aot_config):
|
124 |
+
if i < aot_config.num_params_buffers:
|
125 |
+
return f"parameter/buffer {i}"
|
126 |
+
else:
|
127 |
+
return f"input {i - aot_config.num_params_buffers}"
|
128 |
+
|
129 |
+
|
130 |
+
def format_guard_bug_msg(aot_config, expected):
|
131 |
+
return (
|
132 |
+
f"At compilation time, graph {aot_config.aot_id} was compiled under the "
|
133 |
+
f"assumption that {expected}, but at runtime this was not the case. "
|
134 |
+
"This indicates a guard bug in AOTAutograd or Dynamo, please file a bug to PyTorch."
|
135 |
+
)
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py
ADDED
@@ -0,0 +1,1021 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module defines runtime wrappers, which, based on previous analysis attempts to:
|
3 |
+
1. process the inputs and outputs
|
4 |
+
2. apply mutations
|
5 |
+
3. handle functionalized randomness
|
6 |
+
4. deduplicate inputs and consolidate views into their bases (see input_output_analysis)
|
7 |
+
"""
|
8 |
+
|
9 |
+
import collections
|
10 |
+
import pprint
|
11 |
+
from functools import wraps
|
12 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.utils.dlpack
|
16 |
+
from torch import Tensor
|
17 |
+
from torch._guards import DuplicateInputs, TracingContext
|
18 |
+
from torch._prims_common import CUDARngStateHelper
|
19 |
+
from torch.multiprocessing.reductions import StorageWeakRef
|
20 |
+
from .. import config
|
21 |
+
from .collect_metadata_analysis import run_functionalized_fw_and_collect_metadata
|
22 |
+
|
23 |
+
from .functional_utils import gen_alias_from_base
|
24 |
+
from .input_output_analysis import (
|
25 |
+
compute_overlapping_inputs,
|
26 |
+
create_synthetic_base_metadata,
|
27 |
+
remove_dupe_metadata,
|
28 |
+
)
|
29 |
+
from .logging_utils import describe_input, format_guard_bug_msg
|
30 |
+
from .schemas import (
|
31 |
+
AOTConfig,
|
32 |
+
InputAliasInfo,
|
33 |
+
OutputType,
|
34 |
+
SubclassCreationMeta,
|
35 |
+
TensorAlias,
|
36 |
+
ViewAndMutationMeta,
|
37 |
+
)
|
38 |
+
from .subclass_utils import (
|
39 |
+
requires_subclass_dispatch,
|
40 |
+
unwrap_tensor_subclasses,
|
41 |
+
wrap_tensor_subclasses,
|
42 |
+
)
|
43 |
+
|
44 |
+
from .utils import (
|
45 |
+
call_func_at_runtime_with_args,
|
46 |
+
make_boxed_func,
|
47 |
+
partial_flatten_asdict,
|
48 |
+
strict_zip,
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
zip = strict_zip
|
53 |
+
|
54 |
+
|
55 |
+
# The wrapper created by this function handles all of the runtime aliasing and mutation "epilogue" logic
|
56 |
+
# that needs to run after the compiled function.
|
57 |
+
#
|
58 |
+
# This function accepts a trace_joint flag, indicating whether or not we're generating the runtime
|
59 |
+
# epilogue for a forward-only inference graph, or for an autograd.Function.apply function.
|
60 |
+
# This is because there are some minor differences in how we treat these cases at runtime:
|
61 |
+
# - resize_() is currently handled in the inference case, but not fully handled in the autograd case.
|
62 |
+
# - the autograd cases inserts TensorAlias wrapper objects for outputs that alias inputs
|
63 |
+
def create_runtime_wrapper(
|
64 |
+
compiled_fn,
|
65 |
+
*,
|
66 |
+
runtime_metadata: ViewAndMutationMeta,
|
67 |
+
indices_of_inps_to_detach: List[int],
|
68 |
+
trace_joint: bool,
|
69 |
+
keep_input_mutations: bool,
|
70 |
+
disable_amp: bool,
|
71 |
+
):
|
72 |
+
num_tokens = len(runtime_metadata.tokens)
|
73 |
+
|
74 |
+
if not hasattr(compiled_fn, "_boxed_call"):
|
75 |
+
compiled_fn = make_boxed_func(compiled_fn)
|
76 |
+
|
77 |
+
def runtime_wrapper(*args):
|
78 |
+
# Pass in effect tokens (See Note [Side-Effectful Tokens in AOTAutograd])
|
79 |
+
args = (*[torch.tensor([])] * num_tokens, *args)
|
80 |
+
|
81 |
+
if trace_joint:
|
82 |
+
args_ = list(args)
|
83 |
+
# See Note [Detaching inputs that never need gradients]
|
84 |
+
for idx in indices_of_inps_to_detach:
|
85 |
+
if isinstance(args_[idx], torch.Tensor):
|
86 |
+
args_[idx] = args_[idx].detach()
|
87 |
+
with torch.autograd._force_original_view_tracking(True):
|
88 |
+
all_outs = call_func_at_runtime_with_args(
|
89 |
+
compiled_fn,
|
90 |
+
args_,
|
91 |
+
disable_amp=disable_amp,
|
92 |
+
)
|
93 |
+
else:
|
94 |
+
# When we have an inference graph, we run with torch.no_grad.
|
95 |
+
# It's possible to get an inference graph with inputs that require grad,
|
96 |
+
# in which case we want to make sure autograd is disabled
|
97 |
+
# (since e.g., inductor will generate aten.addmm.out calls which autograd will complain on)
|
98 |
+
if torch.is_grad_enabled():
|
99 |
+
with torch.no_grad():
|
100 |
+
all_outs = call_func_at_runtime_with_args(
|
101 |
+
compiled_fn,
|
102 |
+
args,
|
103 |
+
disable_amp=disable_amp,
|
104 |
+
)
|
105 |
+
else:
|
106 |
+
all_outs = call_func_at_runtime_with_args(
|
107 |
+
compiled_fn,
|
108 |
+
args,
|
109 |
+
disable_amp=disable_amp,
|
110 |
+
)
|
111 |
+
|
112 |
+
num_mutated_runtime_inps = runtime_metadata.num_mutated_inp_runtime_indices
|
113 |
+
num_intermediate_bases = runtime_metadata.num_intermediate_bases
|
114 |
+
|
115 |
+
if keep_input_mutations and trace_joint:
|
116 |
+
num_input_mutations_handled_by_autograd = (
|
117 |
+
runtime_metadata.num_mutated_graph_handled_indices_seen_by_autograd
|
118 |
+
)
|
119 |
+
# autograd.Function requires us to return the mutated inputs as extra outputs to the autograd.Function.forward
|
120 |
+
if num_input_mutations_handled_by_autograd > 0:
|
121 |
+
all_outs = all_outs[:-num_input_mutations_handled_by_autograd]
|
122 |
+
|
123 |
+
assert (
|
124 |
+
len(all_outs)
|
125 |
+
== num_mutated_runtime_inps
|
126 |
+
+ runtime_metadata.num_outputs
|
127 |
+
+ num_intermediate_bases
|
128 |
+
+ num_tokens
|
129 |
+
)
|
130 |
+
|
131 |
+
# Toss out the effect tokens (See Note [Side-Effectful Tokens in AOTAutograd])
|
132 |
+
all_outs = all_outs[num_tokens:]
|
133 |
+
|
134 |
+
# Step 3: After running the compiled fw, apply updates to mutated inputs
|
135 |
+
num_mutations_to_apply = runtime_metadata.num_mutated_inp_runtime_indices
|
136 |
+
if num_mutations_to_apply > 0:
|
137 |
+
updated_inputs = all_outs[:num_mutations_to_apply]
|
138 |
+
fw_outs = all_outs[num_mutations_to_apply:]
|
139 |
+
|
140 |
+
for i, inpt_idx in enumerate(runtime_metadata.mutated_inp_runtime_indices):
|
141 |
+
meta = runtime_metadata.input_info[inpt_idx]
|
142 |
+
if not meta.mutates_data and not meta.mutates_metadata:
|
143 |
+
continue
|
144 |
+
original_inpt = args[inpt_idx]
|
145 |
+
updated_inpt = updated_inputs[i]
|
146 |
+
if meta.mutates_storage_metadata:
|
147 |
+
# mutates_storage_metadata means our input saw a x.set_(y) call.
|
148 |
+
# What if x **also** saw a data and/or a metadata mutation?
|
149 |
+
# (1) If the [meta]data mutation occurred after the set_(),
|
150 |
+
# then there is no need to copy_() the data.
|
151 |
+
# When we perform x.set_(x_updated), we are guaranteed that
|
152 |
+
# x_updated already has the final version of the data/metadata
|
153 |
+
# (2) If a data mutation occurred before the set_().
|
154 |
+
# This case seems very difficult to support.
|
155 |
+
# TODO: discuss on the PR and decide if we want to tr to
|
156 |
+
# either support it, or detect and ban it.
|
157 |
+
if trace_joint:
|
158 |
+
assert isinstance(updated_inpt, TensorAlias)
|
159 |
+
updated_inpt = updated_inpt.alias
|
160 |
+
with torch.no_grad():
|
161 |
+
original_inpt.set_(updated_inpt)
|
162 |
+
continue
|
163 |
+
if meta.mutates_metadata and not meta.mutates_data:
|
164 |
+
if trace_joint:
|
165 |
+
assert isinstance(updated_inpt, TensorAlias)
|
166 |
+
updated_inpt = updated_inpt.alias
|
167 |
+
# We need to grab the size/stride/storage_offset from the compiled forward,
|
168 |
+
# and use that to mutate the metadata of the input
|
169 |
+
original_inpt.as_strided_(
|
170 |
+
updated_inpt.size(),
|
171 |
+
updated_inpt.stride(),
|
172 |
+
updated_inpt.storage_offset(),
|
173 |
+
)
|
174 |
+
else:
|
175 |
+
if meta.mutates_data and meta.mutates_metadata:
|
176 |
+
original_inpt.as_strided_(
|
177 |
+
updated_inpt.size(),
|
178 |
+
updated_inpt.stride(),
|
179 |
+
updated_inpt.storage_offset(),
|
180 |
+
)
|
181 |
+
else:
|
182 |
+
assert meta.mutates_data
|
183 |
+
if meta.is_leaf and original_inpt.requires_grad:
|
184 |
+
# We can hit this situation in this case:
|
185 |
+
# def f(x):
|
186 |
+
# x.detach().mul_(2)
|
187 |
+
# return x + 1
|
188 |
+
# AOTAutograd will see a mutation in the above case, and try to
|
189 |
+
# apply a copy_() here, in the epilogue.
|
190 |
+
# But if x required gradients, and is a leaf, then autograd
|
191 |
+
# will yell at us for trying to mutate it.
|
192 |
+
# However, it's only possible to end up in this scenario (like the above)
|
193 |
+
# if all of the mutations to the leaf input were non-autograd-tracking mutations
|
194 |
+
# (aka mutations under no_grad(), or on detached views).
|
195 |
+
# In that case, we fully want to hide the mutation from autograd, so detaching is ok.
|
196 |
+
original_inpt.detach().copy_(updated_inpt)
|
197 |
+
else:
|
198 |
+
original_inpt.copy_(updated_inpt)
|
199 |
+
else:
|
200 |
+
fw_outs = all_outs
|
201 |
+
|
202 |
+
# Step 4: Manually regenerate any outputs that are aliased to inputs, instead of
|
203 |
+
# compiling them.
|
204 |
+
if runtime_metadata.num_outputs_aliased > 0:
|
205 |
+
# The compiled forward also returned intermediate bases. We don't want to return them to the user.
|
206 |
+
if runtime_metadata.num_intermediate_bases > 0:
|
207 |
+
fw_outs_no_intermediate_bases = fw_outs[
|
208 |
+
: -runtime_metadata.num_intermediate_bases
|
209 |
+
]
|
210 |
+
intermediate_bases = fw_outs[-runtime_metadata.num_intermediate_bases :]
|
211 |
+
else:
|
212 |
+
fw_outs_no_intermediate_bases = fw_outs
|
213 |
+
intermediate_bases = []
|
214 |
+
|
215 |
+
assert len(fw_outs_no_intermediate_bases) == len(
|
216 |
+
runtime_metadata.output_info
|
217 |
+
)
|
218 |
+
fw_outs_including_aliases = []
|
219 |
+
for i, (o, info) in enumerate(
|
220 |
+
zip(fw_outs_no_intermediate_bases, runtime_metadata.output_info)
|
221 |
+
):
|
222 |
+
if info.output_type in [
|
223 |
+
OutputType.non_alias,
|
224 |
+
OutputType.unsafe_view_alias,
|
225 |
+
OutputType.custom_function_view,
|
226 |
+
]:
|
227 |
+
fw_outs_including_aliases.append(o)
|
228 |
+
continue
|
229 |
+
if trace_joint:
|
230 |
+
assert isinstance(o, TensorAlias)
|
231 |
+
o_ = o.alias
|
232 |
+
else:
|
233 |
+
o_ = o
|
234 |
+
|
235 |
+
o_grad = runtime_metadata.output_info[i].requires_grad
|
236 |
+
if info.output_type == OutputType.alias_of_input:
|
237 |
+
aliased_base_tensor = args[info.base_idx] # type: ignore[index]
|
238 |
+
regenerated_out = gen_alias_from_base(
|
239 |
+
aliased_base_tensor, o_, o_grad
|
240 |
+
)
|
241 |
+
fw_outs_including_aliases.append(regenerated_out)
|
242 |
+
continue
|
243 |
+
elif info.output_type == OutputType.is_input:
|
244 |
+
aliased_base_tensor = args[info.base_idx] # type: ignore[index]
|
245 |
+
regenerated_out = aliased_base_tensor
|
246 |
+
fw_outs_including_aliases.append(regenerated_out)
|
247 |
+
continue
|
248 |
+
elif info.output_type == OutputType.alias_of_intermediate:
|
249 |
+
base_tensor_list = intermediate_bases
|
250 |
+
elif (
|
251 |
+
info.output_type == OutputType.alias_of_intermediate_save_as_output
|
252 |
+
):
|
253 |
+
base_tensor_list = intermediate_bases
|
254 |
+
else:
|
255 |
+
assert (
|
256 |
+
info.output_type
|
257 |
+
== OutputType.alias_of_intermediate_base_is_user_output
|
258 |
+
)
|
259 |
+
base_tensor_list = fw_outs_no_intermediate_bases
|
260 |
+
aliased_base_tensor = base_tensor_list[info.base_idx]
|
261 |
+
# TODO: handle the custom autograd function case here.
|
262 |
+
# We need a way to check whether a tensor came from a custom autograd fn from python,
|
263 |
+
# AND a way to replay that custom view fn.
|
264 |
+
regenerated_out = gen_alias_from_base(aliased_base_tensor, o_, o_grad)
|
265 |
+
fw_outs_including_aliases.append(regenerated_out)
|
266 |
+
ret_outs = fw_outs_including_aliases
|
267 |
+
else:
|
268 |
+
ret_outs = fw_outs
|
269 |
+
|
270 |
+
if runtime_metadata.dynamic_outputs:
|
271 |
+
for t, o in zip(ret_outs, runtime_metadata.output_info):
|
272 |
+
if o.dynamic_dims is None:
|
273 |
+
continue
|
274 |
+
if hasattr(t, "_dynamo_weak_dynamic_indices"):
|
275 |
+
t._dynamo_weak_dynamic_indices |= o.dynamic_dims
|
276 |
+
else:
|
277 |
+
t._dynamo_weak_dynamic_indices = o.dynamic_dims.copy()
|
278 |
+
if runtime_metadata.grad_enabled_mutation is not None:
|
279 |
+
torch.set_grad_enabled(runtime_metadata.grad_enabled_mutation)
|
280 |
+
return ret_outs
|
281 |
+
|
282 |
+
return runtime_wrapper
|
283 |
+
|
284 |
+
|
285 |
+
# Calling convention: If we are running functionalized RNG, then outs consists
|
286 |
+
# of (user_outs, rng_offset)
|
287 |
+
def functionalized_rng_runtime_epilogue(
|
288 |
+
metadata: ViewAndMutationMeta, outs, return_new_outs=True
|
289 |
+
):
|
290 |
+
if metadata.is_rng_op_functionalized:
|
291 |
+
assert metadata.num_outputs_rng_offset == 1
|
292 |
+
new_rng_offset = outs[-1]
|
293 |
+
CUDARngStateHelper.set_new_offset(new_rng_offset)
|
294 |
+
if return_new_outs:
|
295 |
+
user_outs = outs[:-1]
|
296 |
+
return user_outs
|
297 |
+
else:
|
298 |
+
return None
|
299 |
+
return outs
|
300 |
+
|
301 |
+
|
302 |
+
# This wrapper handles the AOTDispatch runtime logic for tensor subclasses.
|
303 |
+
# At runtime, we have a compiled function that knows how to operate on the domain of DenseTensor -> DenseTensor,
|
304 |
+
# But the user might have passed us some tensor subclass inputs (or expect some subclass tensor outputs).
|
305 |
+
# This function handles the wrapping and unwrapping of tensor subclasses at runtime.
|
306 |
+
def aot_dispatch_subclass_wrapper(
|
307 |
+
runtime_fn: Callable,
|
308 |
+
*,
|
309 |
+
subclass_metas: List[Union[int, SubclassCreationMeta]],
|
310 |
+
num_fw_outs_saved_for_bw: Optional[int],
|
311 |
+
) -> Callable:
|
312 |
+
def inner_fn(args):
|
313 |
+
unwrapped_args = unwrap_tensor_subclasses(args, is_joint_structure=False)
|
314 |
+
# expectation: runtime_fn is a boxed fn
|
315 |
+
unwrapped_outs = runtime_fn(unwrapped_args)
|
316 |
+
wrapped_outs = wrap_tensor_subclasses(
|
317 |
+
unwrapped_outs,
|
318 |
+
subclass_metas=subclass_metas,
|
319 |
+
num_fw_outs_saved_for_bw=num_fw_outs_saved_for_bw,
|
320 |
+
is_runtime=True,
|
321 |
+
)
|
322 |
+
return wrapped_outs
|
323 |
+
|
324 |
+
# box it
|
325 |
+
inner_fn._boxed_call = True # type: ignore[attr-defined]
|
326 |
+
return inner_fn
|
327 |
+
|
328 |
+
|
329 |
+
# MOTIVATION:
|
330 |
+
#
|
331 |
+
# When tracing functions for future execution, one must be careful not to pass
|
332 |
+
# in the same input tensor multiple times (e.g., f(x, x), as this can result
|
333 |
+
# in graphs that are ONLY valid if you later pass a new tensor in exactly the
|
334 |
+
# same way (e.g., f(y, y)). (NB: we really mean duplicate; two distinct
|
335 |
+
# tensors that alias each other is a different situation that is covered by
|
336 |
+
# aot_dispatch_deduplicated_autograd). Here are two examples:
|
337 |
+
#
|
338 |
+
# (1) Suppose you have a function:
|
339 |
+
#
|
340 |
+
# def f(x, y):
|
341 |
+
# return x + y
|
342 |
+
#
|
343 |
+
# If you make_fx(f)(x, x), you will trace out:
|
344 |
+
#
|
345 |
+
# def f(x, y):
|
346 |
+
# return y + y
|
347 |
+
#
|
348 |
+
# Oops!
|
349 |
+
#
|
350 |
+
# (2) For most tensors x and y, you can compute f's gradient with respect to
|
351 |
+
# these to inputs by saying torch.autograd.grad(f(x, y), (x, y)). However,
|
352 |
+
# if x is y, you will trace out a program that gets incorrect gradients:
|
353 |
+
#
|
354 |
+
# >>> x = torch.randn(1, requires_grad=True)
|
355 |
+
# >>> torch.autograd.grad(x + x, (x, x))
|
356 |
+
# (tensor([2.]), tensor([2.]))
|
357 |
+
#
|
358 |
+
# In other words, the gradient is double-counted. Deduplicating the arguments
|
359 |
+
# gives you an appropriate gradient:
|
360 |
+
#
|
361 |
+
# >>> y = torch.randn(1, requires_grad=True)
|
362 |
+
# >>> torch.autograd.grad(x + y, (x, y))
|
363 |
+
# (tensor([1.]), tensor([1.]))
|
364 |
+
#
|
365 |
+
# HOW TO DEDUPLICATE:
|
366 |
+
#
|
367 |
+
# There are a few strategies, in order of preference:
|
368 |
+
#
|
369 |
+
# 1. For every duplicate argument to the function, detach it into
|
370 |
+
# a separate leaf tensor, so that it is no longer duplicated.
|
371 |
+
#
|
372 |
+
# PRO: The resulting compiled graph works for any configuration
|
373 |
+
# of duplicated arguments.
|
374 |
+
#
|
375 |
+
# CON: It does not (naively) work if you mutate the metadata of inputs:
|
376 |
+
#
|
377 |
+
# def f(x, y):
|
378 |
+
# x.transpose_(0, 1)
|
379 |
+
# y.transpose_(0, 2)
|
380 |
+
#
|
381 |
+
# x = torch.randn(2, 3, 4)
|
382 |
+
# f(x, x)
|
383 |
+
#
|
384 |
+
# The ordering of the transposes inside f dictates whether or not
|
385 |
+
# you get [4, 2, 3] or [3, 4, 2]. This means that you cannot precompute
|
386 |
+
# what metadata mutations should get applied to each input; you need to
|
387 |
+
# assume they aren't duplicates (what we do today) or preserve
|
388 |
+
# the original metadata mutations exactly in order, so that they work
|
389 |
+
# for any duplicate configuration.
|
390 |
+
#
|
391 |
+
# CON: It does not (naively) work if you mutate the data of inputs.
|
392 |
+
# In particular, leaf tensors that require grad cannot be mutated,
|
393 |
+
# this makes it impossible to differentiate with respect to the original
|
394 |
+
# base.
|
395 |
+
#
|
396 |
+
# 2. For every duplicate argument to the function, remove it, so it is
|
397 |
+
# no longer part of the "true" signature:
|
398 |
+
#
|
399 |
+
# PRO: Implemented naively, it still works for metadata/data mutation.
|
400 |
+
#
|
401 |
+
# CON: The resulting compiled graph is duplicate-specialized: it only
|
402 |
+
# works if future calls duplicate arguments in exactly the same way.
|
403 |
+
# Horribly, Dynamo doesn't guard on this at the moment. But even if
|
404 |
+
# it did, you could still end up recompiling a bunch of each duplicate.
|
405 |
+
#
|
406 |
+
# Our strategy is to do (1) if we can, and do (2) otherwise, erroring if
|
407 |
+
# Dynamo's guards are not enough. In practice, this seems to cover
|
408 |
+
# everything.
|
409 |
+
#
|
410 |
+
def aot_wrapper_dedupe(
|
411 |
+
flat_fn,
|
412 |
+
flat_args: List[Tensor],
|
413 |
+
aot_config: AOTConfig,
|
414 |
+
*,
|
415 |
+
compiler_fn,
|
416 |
+
fw_metadata,
|
417 |
+
):
|
418 |
+
# Use information about whether or not flat_fn mutates its arguments
|
419 |
+
# or not to handle dupe args
|
420 |
+
|
421 |
+
# Strategy 1: For any input that is not mutated, we can leafify it if we
|
422 |
+
# need to remove a duplicate.
|
423 |
+
leaf_flat_args = []
|
424 |
+
args_set = set()
|
425 |
+
ok = True
|
426 |
+
|
427 |
+
for i, a in enumerate(flat_args):
|
428 |
+
if not isinstance(a, torch.Tensor):
|
429 |
+
leaf_flat_args.append(a)
|
430 |
+
elif a not in args_set:
|
431 |
+
args_set.add(a)
|
432 |
+
leaf_flat_args.append(a)
|
433 |
+
elif (
|
434 |
+
not fw_metadata.input_info[i].mutates_data
|
435 |
+
and not fw_metadata.input_info[i].mutates_metadata
|
436 |
+
):
|
437 |
+
leaf_flat_args.append(a.detach().requires_grad_(a.requires_grad))
|
438 |
+
else:
|
439 |
+
ok = False
|
440 |
+
break
|
441 |
+
|
442 |
+
if ok:
|
443 |
+
return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata)
|
444 |
+
|
445 |
+
if requires_subclass_dispatch(leaf_flat_args, fw_metadata):
|
446 |
+
raise RuntimeError(
|
447 |
+
"""\
|
448 |
+
Encountered duplicate inputs that are mutated in the graph, but at least one input/output
|
449 |
+
to the graph is a tensor subclass. This is not supported today. You can try to
|
450 |
+
remove the aliasing yourself as a workaround, or otherwise file an issue on github."""
|
451 |
+
)
|
452 |
+
|
453 |
+
# export path: ban duplicate inputs for now, add later if requested.
|
454 |
+
if aot_config.is_export:
|
455 |
+
raise RuntimeError(
|
456 |
+
f"""\
|
457 |
+
Encountered duplicated inputs that are mutated in the graph you are trying to export.
|
458 |
+
This functionality is currently not supported. If needed, please file a github issue.
|
459 |
+
|
460 |
+
fw_metadata={str(fw_metadata)}
|
461 |
+
"""
|
462 |
+
)
|
463 |
+
|
464 |
+
# Strategy 2: Duplicate specialize.
|
465 |
+
#
|
466 |
+
# In Haskell types, suppose you have:
|
467 |
+
#
|
468 |
+
# add_dupe_args :: DedupedArgs -> Args
|
469 |
+
# remove_dupe_args :: Args -> DedupedArgs
|
470 |
+
#
|
471 |
+
# compiler_fn
|
472 |
+
# :: (DedupedArgs -> R) -> DedupedArgs -> AOTConfig -> (DedupedArgs -> R)
|
473 |
+
# deped_compiler_fn
|
474 |
+
# :: (Args -> R) -> Args -> AOTConfig -> (Args -> R)
|
475 |
+
#
|
476 |
+
# Then the code below can be written in point-free style as:
|
477 |
+
#
|
478 |
+
# deduped_compiler_fn f a c =
|
479 |
+
# compiler_fn (f . add_dupe_args) (remove_dupe_args a) c . remove_dupe_args
|
480 |
+
#
|
481 |
+
# Suppose you have:
|
482 |
+
#
|
483 |
+
# [a, b, a, c]
|
484 |
+
#
|
485 |
+
# We want:
|
486 |
+
#
|
487 |
+
# remove_dupe_args([a, b, a, c]) == [a, b, c]
|
488 |
+
# add_dupe_args([a, b, c]) == [a, b, a, c]
|
489 |
+
#
|
490 |
+
# This is done via (respectively):
|
491 |
+
#
|
492 |
+
# seen_args = {a: 0, b: 1, c: 2}
|
493 |
+
# enumerate(add_dupe_map) = [ # how to get args from the deduped list
|
494 |
+
# (0, 0),
|
495 |
+
# (1, 1),
|
496 |
+
# (2, 0),
|
497 |
+
# (3, 2),
|
498 |
+
# ]
|
499 |
+
# keep_arg_mask = [True, True, False, True]
|
500 |
+
|
501 |
+
seen_args: Dict[Tensor, int] = {}
|
502 |
+
keep_arg_mask = []
|
503 |
+
# Implicitly map duped arg position (list index) to de-duped arg position
|
504 |
+
add_dupe_map: List[int] = []
|
505 |
+
duped_arg_len = len(flat_args)
|
506 |
+
|
507 |
+
j = 0 # index into deduped_flat_args
|
508 |
+
for t in flat_args:
|
509 |
+
if isinstance(t, torch.Tensor):
|
510 |
+
if t in seen_args:
|
511 |
+
keep_arg_mask.append(False)
|
512 |
+
add_dupe_map.append(seen_args[t])
|
513 |
+
continue
|
514 |
+
seen_args[t] = j
|
515 |
+
|
516 |
+
keep_arg_mask.append(True)
|
517 |
+
add_dupe_map.append(j)
|
518 |
+
j += 1
|
519 |
+
assert (
|
520 |
+
len(add_dupe_map) == duped_arg_len
|
521 |
+
), f"Expects add_dupe_map to have length {duped_arg_len} but got {len(add_dupe_map)}"
|
522 |
+
|
523 |
+
# NB: Hot path, avoid set lookups here
|
524 |
+
# TODO: Can avoid the zip here too, probably
|
525 |
+
def remove_dupe_args(args):
|
526 |
+
return [t for t, keep in zip(args, keep_arg_mask) if keep]
|
527 |
+
|
528 |
+
def add_dupe_args(args):
|
529 |
+
return [args[add_dupe_map[i]] for i in range(duped_arg_len)]
|
530 |
+
|
531 |
+
deduped_flat_args = remove_dupe_args(flat_args)
|
532 |
+
|
533 |
+
# Update our input metadata to remove duped input metadata.
|
534 |
+
updated_fw_metadata = remove_dupe_metadata(fw_metadata, keep_arg_mask, add_dupe_map)
|
535 |
+
|
536 |
+
if (
|
537 |
+
tracing_context := TracingContext.try_get()
|
538 |
+
and aot_config.aot_autograd_arg_pos_to_source
|
539 |
+
):
|
540 |
+
# TODO(voz): This structure is 1:1, we could consider an alternate structure like
|
541 |
+
# kept_pos:[dupe_arg_pos], however, add_dupe_map is 1:1 so we would need a new structure there,
|
542 |
+
# which feels like needless complexity for a tiny bit of efficiency at this point.
|
543 |
+
for dupe_arg_pos, (kept_pos, keep_arg) in enumerate(
|
544 |
+
zip(add_dupe_map, keep_arg_mask)
|
545 |
+
):
|
546 |
+
if not keep_arg:
|
547 |
+
dupe_arg_source = aot_config.aot_autograd_arg_pos_to_source[
|
548 |
+
dupe_arg_pos
|
549 |
+
]
|
550 |
+
kept_arg_source = aot_config.aot_autograd_arg_pos_to_source[kept_pos]
|
551 |
+
tracing_context.guards_context.aotautograd_guards.append( # type: ignore[attr-defined]
|
552 |
+
DuplicateInputs(kept_arg_source, dupe_arg_source)
|
553 |
+
)
|
554 |
+
|
555 |
+
@wraps(flat_fn)
|
556 |
+
def wrapped_flat_fn(*args):
|
557 |
+
return flat_fn(*add_dupe_args(args))
|
558 |
+
|
559 |
+
if config.debug_assert:
|
560 |
+
ref_fw_metadata = run_functionalized_fw_and_collect_metadata(
|
561 |
+
wrapped_flat_fn,
|
562 |
+
keep_input_mutations=fw_metadata.keep_input_mutations,
|
563 |
+
is_train=fw_metadata.is_train,
|
564 |
+
)(*deduped_flat_args)
|
565 |
+
assert (
|
566 |
+
ref_fw_metadata == updated_fw_metadata
|
567 |
+
), f"ref_metadata={str(ref_fw_metadata)}, actual_metadata={str(updated_fw_metadata)}"
|
568 |
+
|
569 |
+
compiled_fn = compiler_fn(
|
570 |
+
wrapped_flat_fn, deduped_flat_args, aot_config, fw_metadata=updated_fw_metadata
|
571 |
+
)
|
572 |
+
|
573 |
+
if not hasattr(compiled_fn, "_boxed_call"):
|
574 |
+
compiled_fn = make_boxed_func(compiled_fn)
|
575 |
+
|
576 |
+
@wraps(compiled_fn)
|
577 |
+
def wrapped_compiled_fn(args):
|
578 |
+
deduped_args = remove_dupe_args(args)
|
579 |
+
args.clear()
|
580 |
+
return compiled_fn(deduped_args)
|
581 |
+
|
582 |
+
wrapped_compiled_fn._boxed_call = True # type: ignore[attr-defined]
|
583 |
+
|
584 |
+
# This can be uncommented when we properly guard for duplicates,
|
585 |
+
# but right now we must not do it.
|
586 |
+
# if not config.debug_assert:
|
587 |
+
# return wrapped_compiled_fn
|
588 |
+
|
589 |
+
@wraps(wrapped_compiled_fn)
|
590 |
+
def debugged_compiled_fn(args):
|
591 |
+
# Test that the computed remove/add arg functions are an inverse
|
592 |
+
new_args = add_dupe_args(remove_dupe_args(args))
|
593 |
+
seen: Dict[Any, None] = {}
|
594 |
+
for i, (x, y) in enumerate(zip(new_args, args)):
|
595 |
+
seen[y] = None
|
596 |
+
assert x is y, format_guard_bug_msg(
|
597 |
+
aot_config,
|
598 |
+
f"{describe_input(i, aot_config)} would be a duplicate of "
|
599 |
+
f"{describe_input(add_dupe_map[i], aot_config)}",
|
600 |
+
)
|
601 |
+
# This is only an error if there is metadata mutation on both of
|
602 |
+
# the duped arguments; in this case, we need to know what order
|
603 |
+
# the metadata mutation applies in. You'll get the correct result
|
604 |
+
# otherwise, because a graph that assumes distinct inputs works if
|
605 |
+
# you dupe the inputs (the gradient contributions from each input
|
606 |
+
# will get summed up appropriately.)
|
607 |
+
#
|
608 |
+
# TODO: work out how to setup this assert correctly
|
609 |
+
"""
|
610 |
+
assert len(seen) == unique_args, format_guard_bug_msg(aot_config,
|
611 |
+
f"there would be {unique_args} distinct arguments"
|
612 |
+
)
|
613 |
+
"""
|
614 |
+
return wrapped_compiled_fn(args)
|
615 |
+
|
616 |
+
debugged_compiled_fn._boxed_call = True # type: ignore[attr-defined]
|
617 |
+
|
618 |
+
return debugged_compiled_fn
|
619 |
+
|
620 |
+
|
621 |
+
# This layer handles the situation where you have two inputs that alias each other,
|
622 |
+
# and one of the inputs is mutated.
|
623 |
+
# We need to take special care to ensure that the mutation is applied to the other aliases in the graph.
|
624 |
+
#
|
625 |
+
# pre-condition: aot_wrapper_dedup has already run.
|
626 |
+
# (This function will in theory work if there are duplicate args.
|
627 |
+
# However, the synthetic base code path is a bit sub-optimal, and running with dupe'd inputs
|
628 |
+
# would cause us to hit that path more frequently).
|
629 |
+
def aot_wrapper_synthetic_base(
|
630 |
+
flat_fn,
|
631 |
+
flat_args: List[Tensor],
|
632 |
+
aot_config: AOTConfig,
|
633 |
+
*,
|
634 |
+
fw_metadata: ViewAndMutationMeta,
|
635 |
+
# Currently, the only reason we need to plumb this bool is because
|
636 |
+
# the synthetic base code prohibits more cases in the autograd case than the inference case.
|
637 |
+
needs_autograd: bool,
|
638 |
+
compiler_fn,
|
639 |
+
):
|
640 |
+
is_inference = not needs_autograd
|
641 |
+
flat_args_with_synthetic_bases, synthetic_base_info = merge_view_inputs(
|
642 |
+
flat_args,
|
643 |
+
fw_metadata.input_info,
|
644 |
+
is_inference=is_inference,
|
645 |
+
)
|
646 |
+
# Happy path: we don't need synthetic bases
|
647 |
+
if synthetic_base_info is None:
|
648 |
+
return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata)
|
649 |
+
|
650 |
+
# export path: ban synthetic bases for now, add later if requested.
|
651 |
+
if requires_subclass_dispatch(flat_args, fw_metadata):
|
652 |
+
raise RuntimeError(
|
653 |
+
"""\
|
654 |
+
Encountered aliased inputs that are mutated in the graph, but at least one input/output
|
655 |
+
to the graph is a tensor subclass. This is not supported today. You can try to
|
656 |
+
remove the aliasing yourself as a workaround, or otherwise file an issue on github."""
|
657 |
+
)
|
658 |
+
|
659 |
+
if aot_config.is_export:
|
660 |
+
raise RuntimeError(
|
661 |
+
f"""\
|
662 |
+
Encountered aliased inputs that are mutated in the graph you are trying to export.
|
663 |
+
This functionality is currently not supported. If needed, please file a github issue.
|
664 |
+
|
665 |
+
synthetic_base_info={str(synthetic_base_info)}
|
666 |
+
|
667 |
+
fw_metadata={str(fw_metadata)}
|
668 |
+
"""
|
669 |
+
)
|
670 |
+
|
671 |
+
assert len(fw_metadata.input_info) == len(synthetic_base_info)
|
672 |
+
|
673 |
+
# Update our forward metadata to take synthetic bases into account
|
674 |
+
(
|
675 |
+
fw_metadata_updated,
|
676 |
+
aliased_arg_idx_with_metadata_mutations,
|
677 |
+
) = create_synthetic_base_metadata(
|
678 |
+
fw_metadata, synthetic_base_info, flat_args, flat_args_with_synthetic_bases
|
679 |
+
)
|
680 |
+
|
681 |
+
num_aliased_args_with_metadata_mutations = len(
|
682 |
+
aliased_arg_idx_with_metadata_mutations
|
683 |
+
)
|
684 |
+
|
685 |
+
def _unpack_synthetic_bases(primals: Tuple[Any, ...]) -> List[Any]:
|
686 |
+
f_args_inner = []
|
687 |
+
for inner_idx_or_tuple in synthetic_base_info:
|
688 |
+
if isinstance(inner_idx_or_tuple, int):
|
689 |
+
f_args_inner.append(primals[inner_idx_or_tuple])
|
690 |
+
else:
|
691 |
+
inner_base_idx, view_tensor = inner_idx_or_tuple
|
692 |
+
base = primals[inner_base_idx]
|
693 |
+
view_arg = gen_alias_from_base(
|
694 |
+
base, view_tensor, view_tensor.requires_grad
|
695 |
+
)
|
696 |
+
f_args_inner.append(view_arg)
|
697 |
+
return f_args_inner
|
698 |
+
|
699 |
+
@wraps(flat_fn)
|
700 |
+
def wrapped_flat_fn(*args):
|
701 |
+
unpacked_args = _unpack_synthetic_bases(args)
|
702 |
+
# This is a bit subtle. The goal of this entire function (aot_dispatch_synthetic_bases)
|
703 |
+
# is to relieve the downstream logic from having to reason about mutations on inputs that alias
|
704 |
+
# each other, by replacing aliased inputs with a synthetic base.
|
705 |
+
# One area where this breaks down a bit however is if one of those aliased inputs
|
706 |
+
# experienced a metadata mutation.
|
707 |
+
# We are now obligated to reapply the metadata mutation directly to the user's input;
|
708 |
+
# it isn't enough to apply mutations back to the synthetic base in the downstream logic.
|
709 |
+
#
|
710 |
+
# The way we handle this is by pretending that those aliased inputs that experience metadata mutations
|
711 |
+
# are additional outputs in the user's forward function.
|
712 |
+
# The downstream logic will just treat these as "user outputs that alias inputs".
|
713 |
+
# However, we will manually grab them at runtime here, use them to reapply the metadata mutation
|
714 |
+
# to the user inputs, and not return them to the user.
|
715 |
+
aliased_args_with_metadata_mutations = [
|
716 |
+
x
|
717 |
+
for i, x in enumerate(unpacked_args)
|
718 |
+
if i in aliased_arg_idx_with_metadata_mutations
|
719 |
+
]
|
720 |
+
if len(aliased_args_with_metadata_mutations) > 0:
|
721 |
+
return *(flat_fn(*unpacked_args)), *aliased_args_with_metadata_mutations
|
722 |
+
else:
|
723 |
+
return flat_fn(*unpacked_args)
|
724 |
+
|
725 |
+
if config.debug_assert:
|
726 |
+
ref_fw_metadata = run_functionalized_fw_and_collect_metadata(
|
727 |
+
wrapped_flat_fn,
|
728 |
+
keep_input_mutations=fw_metadata.keep_input_mutations,
|
729 |
+
is_train=fw_metadata.is_train,
|
730 |
+
)(*flat_args_with_synthetic_bases)
|
731 |
+
assert ref_fw_metadata == fw_metadata_updated, (
|
732 |
+
f"ref_metadata={pprint.pformat(partial_flatten_asdict(ref_fw_metadata))}, "
|
733 |
+
f"\nactual_metadata={pprint.pformat(partial_flatten_asdict(fw_metadata_updated))}"
|
734 |
+
)
|
735 |
+
|
736 |
+
compiled_fn = compiler_fn(
|
737 |
+
wrapped_flat_fn,
|
738 |
+
flat_args_with_synthetic_bases,
|
739 |
+
aot_config,
|
740 |
+
fw_metadata=fw_metadata_updated,
|
741 |
+
)
|
742 |
+
|
743 |
+
if not hasattr(compiled_fn, "_boxed_call"):
|
744 |
+
compiled_fn = make_boxed_func(compiled_fn)
|
745 |
+
|
746 |
+
@wraps(compiled_fn)
|
747 |
+
def wrapped_compiled_fn(args):
|
748 |
+
args_with_synthetic_bases, synthetic_base_info = merge_view_inputs(
|
749 |
+
args, fw_metadata.input_info, is_inference=is_inference
|
750 |
+
)
|
751 |
+
assert synthetic_base_info is not None
|
752 |
+
aliased_args_w_metadata_mutations = [
|
753 |
+
args[i] for i in aliased_arg_idx_with_metadata_mutations
|
754 |
+
]
|
755 |
+
args.clear()
|
756 |
+
outs = compiled_fn(args_with_synthetic_bases)
|
757 |
+
if num_aliased_args_with_metadata_mutations > 0:
|
758 |
+
# This code does not handle **all** input metadata mutations.
|
759 |
+
# Instead, it only handles metadata mutations on inputs that were converted into synthetic bases
|
760 |
+
# (which only happens if at least one aliased input experienced a data mutation).
|
761 |
+
# e.g:
|
762 |
+
# def f(a, b):
|
763 |
+
# a.mul_(2)
|
764 |
+
# b.t_(1, 0)
|
765 |
+
# f(x.view(2, 2), x.view(2, 2))
|
766 |
+
mutated_metadata_inps = outs[-num_aliased_args_with_metadata_mutations:]
|
767 |
+
user_outs = outs[:-num_aliased_args_with_metadata_mutations]
|
768 |
+
for inp, mutated_inp in zip(
|
769 |
+
aliased_args_w_metadata_mutations, mutated_metadata_inps
|
770 |
+
):
|
771 |
+
inp.as_strided_(
|
772 |
+
mutated_inp.size(),
|
773 |
+
mutated_inp.stride(),
|
774 |
+
mutated_inp.storage_offset(),
|
775 |
+
)
|
776 |
+
return user_outs
|
777 |
+
return outs
|
778 |
+
|
779 |
+
return wrapped_compiled_fn
|
780 |
+
|
781 |
+
|
782 |
+
# Note [Handling mutations on an input that aliases other inputs]
|
783 |
+
# The easiest example to show-case this edge case is here:
|
784 |
+
#
|
785 |
+
# def f(a, b):
|
786 |
+
# a.mul_(2)
|
787 |
+
# out = a + b
|
788 |
+
# return out
|
789 |
+
# b = torch.ones(...)
|
790 |
+
# a = b.view(-1)
|
791 |
+
# f(a, b)
|
792 |
+
#
|
793 |
+
# In this situation, if a and b happened to be aliased, we need to trace something different!
|
794 |
+
# Suppose we had b = a.view(-1)
|
795 |
+
# (In this case, that means that `a._base is b`)
|
796 |
+
#
|
797 |
+
# We need to ensure that the aliasing relationship between a and b is preserved.
|
798 |
+
# We do that detecting the specific situation above (mutate an input that aliases another input),
|
799 |
+
# and when we do that, we create a synthetic base argument. Then inside of the traced forward,
|
800 |
+
# we regenerate a and b off of that base.
|
801 |
+
# The complete example of the transformed function looks like this:
|
802 |
+
#
|
803 |
+
# // The traced forward takes in a synthetic base, and regenerates the aliased inputs as views
|
804 |
+
# // We could consider getting view-replay support here to minimize as_strided_scatter ops in the graph
|
805 |
+
# def traced_forward(base):
|
806 |
+
# a = base.as_strided(...)
|
807 |
+
# b = base.as_strided(...)
|
808 |
+
# a_updated = a.mul(2)
|
809 |
+
# base_updated = torch.as_strided_scatter(base, a_updated, ...)
|
810 |
+
# b_updated = base_updated.as_strided(...)
|
811 |
+
# out = a_updated + b_updated
|
812 |
+
# return a_updated, out
|
813 |
+
#
|
814 |
+
# def compiled_fn(a, b):
|
815 |
+
# // we detect that a is the "differentiable base" here
|
816 |
+
# base = a
|
817 |
+
# // In other situations, we might do either:
|
818 |
+
# // (1) a and b are both views off of some larger differentiable base
|
819 |
+
# // assert a._base is b._base and a._base is not None
|
820 |
+
# // base = a._base
|
821 |
+
# // (2) a and b both don't require gradients. Create a base from the storage
|
822 |
+
# // assert a._base is None and b._base is None
|
823 |
+
# // base = torch.Tensor(a.storage())
|
824 |
+
# a_updated, out = traced_forward(base)
|
825 |
+
# a.copy_(a_updated)
|
826 |
+
# return out
|
827 |
+
#
|
828 |
+
# This function:
|
829 |
+
# (1) Merges input views into a synthetic base argument, when any of those input views are mutated
|
830 |
+
# (2) Returns metadata telling the autograd.Function how to modify their arguments properly,
|
831 |
+
# to respect the new calling convention.
|
832 |
+
#
|
833 |
+
# The calling convention is as follows.
|
834 |
+
# Any inputs that were originally views of one another get yanked, and replaced with a synthetic base.
|
835 |
+
# The argument list ordering goes [base1, ..., baseN], [arg1, ..., argN],
|
836 |
+
# Where the ordering of the bases is determined from the ordering of the original view args.
|
837 |
+
# baseA will come before baseB if the earliest original argument coming from baseA
|
838 |
+
# showed up earlier in the argument list than the earliest original argument coming from baseB.
|
839 |
+
#
|
840 |
+
# Example, given some tensors a, b, c, d
|
841 |
+
# call site:
|
842 |
+
# f(a, c.view(-1), b.view(-1), b, c, d)
|
843 |
+
# Modified argument list:
|
844 |
+
# c_base comes first because the first c view came earlier in arg list than the first b view
|
845 |
+
# a and d still show up in the modified arg list, but b and c don't- they're regenerated from their bases
|
846 |
+
# b_base = torch.Tensor(b.storage())
|
847 |
+
# c_base = torch.Tensor(c.storage())
|
848 |
+
# f(c_base, b_base, a, d)
|
849 |
+
def merge_view_inputs(
|
850 |
+
fwd_inputs: List[Any],
|
851 |
+
mutated_input_info: List[InputAliasInfo],
|
852 |
+
*,
|
853 |
+
# The autograd case currently has more restrictions than the inference case.
|
854 |
+
is_inference: bool,
|
855 |
+
) -> Tuple[List[Any], Optional[List[Union[int, Tuple[int, torch.Tensor]]]]]:
|
856 |
+
def _are_differentiable_views(view1, view2):
|
857 |
+
if view1 is view2:
|
858 |
+
return True
|
859 |
+
if view1._base is None and view2._base is None:
|
860 |
+
return False
|
861 |
+
if view1._base is view2._base or view1._base is view2 or view1 is view2._base:
|
862 |
+
return True
|
863 |
+
return False
|
864 |
+
|
865 |
+
def _same_dtype_views(view1, view2):
|
866 |
+
if view1.dtype != view2.dtype:
|
867 |
+
return False
|
868 |
+
if view1._base is not None and view1.dtype != view1._base.dtype:
|
869 |
+
return False
|
870 |
+
if view2._base is not None and view2.dtype != view2._base.dtype:
|
871 |
+
return False
|
872 |
+
return True
|
873 |
+
|
874 |
+
assert len(fwd_inputs) == len(mutated_input_info)
|
875 |
+
storage_ref_to_idx: Dict[StorageWeakRef, List[int]] = collections.defaultdict(list)
|
876 |
+
base_args = []
|
877 |
+
other_args = []
|
878 |
+
for i, inpt in enumerate(fwd_inputs):
|
879 |
+
if isinstance(inpt, Tensor):
|
880 |
+
storage_ref = StorageWeakRef(inpt.untyped_storage())
|
881 |
+
storage_ref_to_idx[storage_ref].append(i)
|
882 |
+
else:
|
883 |
+
other_args.append(inpt)
|
884 |
+
# Note [Synthetic Base Info Metadata]
|
885 |
+
# This list contains metadata that tells you what the i'th argument in the inner calling convention should be.
|
886 |
+
# It's either:
|
887 |
+
# - another int (corresponding to the index in the argument list of the element from the outer calling convention)
|
888 |
+
# - idx, view_tensor, where we can generate the new output with view_tensor._view_func(old_args[idx])
|
889 |
+
# idx corresponds to which synthetic base from the outer calling context to view
|
890 |
+
inner_calling_convention_meta: Dict[int, Union[int, Tuple[int, torch.Tensor]]] = {}
|
891 |
+
for aliased_input_indices in storage_ref_to_idx.values():
|
892 |
+
if len(aliased_input_indices) <= 1 or not any(
|
893 |
+
# We only care about mutations that affect all aliases,
|
894 |
+
# so metadata mutations on an input doesn't require us to do synthetic base handling.
|
895 |
+
mutated_input_info[inpt_idx].mutates_data
|
896 |
+
for inpt_idx in aliased_input_indices
|
897 |
+
):
|
898 |
+
for curr_idx in aliased_input_indices:
|
899 |
+
other_args.append(fwd_inputs[curr_idx])
|
900 |
+
continue
|
901 |
+
|
902 |
+
# Here, we attempt to do a more complicated check to detect false aliasing
|
903 |
+
# (e.g. if all the tensors have the same storage, but don't actually overlap)
|
904 |
+
# In theory, we could have a large group of tensors that all share storages, where only *some* of them
|
905 |
+
# have overlapping memory.
|
906 |
+
# I don't bother with that case for now: here, we only bail out earlier if we detect that **every** pair
|
907 |
+
# of tensors in the current group that shares a storage is non-overlapping.
|
908 |
+
aliased_input_indices_no_false_sharing = compute_overlapping_inputs(
|
909 |
+
fwd_inputs, aliased_input_indices
|
910 |
+
)
|
911 |
+
if len(aliased_input_indices_no_false_sharing) <= 1:
|
912 |
+
for curr_idx in aliased_input_indices:
|
913 |
+
other_args.append(fwd_inputs[curr_idx])
|
914 |
+
continue
|
915 |
+
|
916 |
+
# We detected an input that was mutated, AND aliases with another input.
|
917 |
+
# we need to replace this set of aliased inputs with a single synthetic base.
|
918 |
+
# For now, I'm banning a bunch of cases. We expect dynamo to properly detect these cases
|
919 |
+
# and error out. We can fix them later.
|
920 |
+
# These checks are transitive, so we don't need to check every pair.
|
921 |
+
for idx1, idx2 in zip(
|
922 |
+
aliased_input_indices, aliased_input_indices[1:], strict=False
|
923 |
+
):
|
924 |
+
view1 = fwd_inputs[idx1]
|
925 |
+
view2 = fwd_inputs[idx2]
|
926 |
+
# The "inputs that are aliased but have different differentiable bases" case
|
927 |
+
# is more complicated and hopefully pretty rare. Not currently handled.
|
928 |
+
if not is_inference:
|
929 |
+
assert _are_differentiable_views(
|
930 |
+
view1, view2
|
931 |
+
), "aot_autograd() does not yet handle non-differentiable view input mutations."
|
932 |
+
# Regenerating views when reinterpreting complex / real tensors seems non-trivial,
|
933 |
+
# not handling for now
|
934 |
+
assert _same_dtype_views(
|
935 |
+
view1, view2
|
936 |
+
), "aot_autograd() does not yet handle input mutations on views with different dtypes."
|
937 |
+
non_none_bases = [
|
938 |
+
fwd_inputs[i]._base
|
939 |
+
for i in aliased_input_indices
|
940 |
+
if fwd_inputs[i]._base is not None
|
941 |
+
]
|
942 |
+
aliases_with_none_bases = [
|
943 |
+
fwd_inputs[i] for i in aliased_input_indices if fwd_inputs[i]._base is None
|
944 |
+
]
|
945 |
+
if len(non_none_bases) == 0:
|
946 |
+
# Case where none of the aliases have a ._base
|
947 |
+
# we generate a synthetic base without gradients, and generate views off of it
|
948 |
+
# We hit this case when we have input tensors to the graph that share a storage,
|
949 |
+
# but do not have a ._base field.
|
950 |
+
# Wondering when we hit this case?
|
951 |
+
# The _base field simply says that autograd knows about the aliasing relationship,
|
952 |
+
# but sometimes we create tensors which are aliased out of the same storage but guaranteed
|
953 |
+
# to be disjoint. In these cases, we will skip setting up the _base relationship
|
954 |
+
# for performance reasons (because the fact that the tensors share the same storage
|
955 |
+
# is unobservable unless you (1) do naughty things with resize_/as_strided
|
956 |
+
# or (2) look at the storage--as we are doing here.)
|
957 |
+
# One particular example of this is optimizer steps on the LSTM module:
|
958 |
+
# LSTM parameters are packed into a contiguous storage for efficiency reasons when
|
959 |
+
# calling cuDNN kernels, so when these parameters get passed to the optimizer we will
|
960 |
+
# find they share the same storage, but do not have _base set since they are all disjoint.
|
961 |
+
#
|
962 |
+
# NOTE: There is one case where this is unsafe:
|
963 |
+
# torch.Tensor(storage) will ALWAYS create a 1D tensor, which is not necessarily
|
964 |
+
# the same shape as the "actual" base that the tensor came from.
|
965 |
+
# For the most part this is fine, because we always use as_strided()
|
966 |
+
# to generate the original aliased inputs again.
|
967 |
+
# If we were to use view-replay though, this could cause the aliased views
|
968 |
+
# to have incorrect sizes.
|
969 |
+
example_idx = aliased_input_indices[0]
|
970 |
+
example_alias = fwd_inputs[example_idx]
|
971 |
+
# Note that this function is re-used at both trace time and runtime.
|
972 |
+
# At trace time, we're under a FakeMode so synthetic_base becomes a FakeTensor.
|
973 |
+
synthetic_base = torch.empty(
|
974 |
+
(0,), dtype=example_alias.dtype, device=example_alias.device
|
975 |
+
)
|
976 |
+
# We don't actually have a convenient way of going from storage -> tensor,
|
977 |
+
# So using set_() here (we suffer some minor overhead, but this case is rare).
|
978 |
+
synthetic_base.set_(example_alias.untyped_storage())
|
979 |
+
else:
|
980 |
+
# Case where all of the aliases require gradients, and have the same _base.
|
981 |
+
synthetic_base = non_none_bases[0]
|
982 |
+
for other_base in non_none_bases[1:]:
|
983 |
+
assert (
|
984 |
+
other_base is synthetic_base
|
985 |
+
), "aot_autograd() does not yet handle non-differentiable view input mutations."
|
986 |
+
for alias in aliases_with_none_bases:
|
987 |
+
assert (
|
988 |
+
alias is synthetic_base
|
989 |
+
), "aot_autograd() does not yet handle non-differentiable view input mutations."
|
990 |
+
base_args.append(synthetic_base)
|
991 |
+
for curr_view_idx in aliased_input_indices:
|
992 |
+
curr_view = fwd_inputs[curr_view_idx]
|
993 |
+
base_idx = len(base_args) - 1
|
994 |
+
# We store just enough info here so that we can regenerate the view later.
|
995 |
+
# Regeneration: curr_view._view_func(args[base_idx])
|
996 |
+
inner_calling_convention_meta[curr_view_idx] = (base_idx, curr_view)
|
997 |
+
if len(base_args) == 0:
|
998 |
+
assert len(other_args) == len(fwd_inputs)
|
999 |
+
# If no synthetic bases are necessary, just return the original inputs.
|
1000 |
+
return fwd_inputs, None
|
1001 |
+
else:
|
1002 |
+
# Otherwise, return:
|
1003 |
+
# (1) The new args according to the updated calling convention: (synthetic_bases, other_args)
|
1004 |
+
# (2) Metadata telling functionalization how to generate the inner argument list given the outer calling convention.
|
1005 |
+
# We post-process it into a list, where meta[i] tells you info about the i'th argument in the inner calling convention.
|
1006 |
+
args_to_functionalization = base_args + other_args
|
1007 |
+
arg_to_old_idx_map = {arg: i for (i, arg) in enumerate(fwd_inputs)}
|
1008 |
+
for i, other_arg in enumerate(other_args):
|
1009 |
+
new_idx = len(base_args) + i
|
1010 |
+
old_idx = arg_to_old_idx_map[other_arg]
|
1011 |
+
inner_calling_convention_meta[old_idx] = new_idx
|
1012 |
+
# post process into a list
|
1013 |
+
post_processed_calling_convention_meta: List[
|
1014 |
+
Union[int, Tuple[int, torch.Tensor]]
|
1015 |
+
] = [-1 for _ in range(len(inner_calling_convention_meta))]
|
1016 |
+
for k, v in inner_calling_convention_meta.items():
|
1017 |
+
post_processed_calling_convention_meta[k] = v
|
1018 |
+
# Quick assert: every argument in the inner calling convention should be accounted for.
|
1019 |
+
for x in post_processed_calling_convention_meta:
|
1020 |
+
assert x != -1
|
1021 |
+
return args_to_functionalization, post_processed_calling_convention_meta
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/schemas.py
ADDED
@@ -0,0 +1,696 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The various dataclasses, Enums, namedtuples etc used in AOTAutograd. This includes
|
3 |
+
input/output types, metadata, config, function signatures etc.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import collections
|
7 |
+
import functools
|
8 |
+
from dataclasses import dataclass, field
|
9 |
+
from enum import Enum
|
10 |
+
from typing import Any, Callable, Dict, List, NewType, Optional, Set, Tuple, Union
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.utils._pytree as pytree
|
14 |
+
from torch._guards import Source
|
15 |
+
from torch._subclasses import FakeTensor
|
16 |
+
from torch._subclasses.fake_tensor import is_fake
|
17 |
+
|
18 |
+
from .. import config
|
19 |
+
|
20 |
+
from .functional_utils import _check_if_mutation_can_be_in_graph
|
21 |
+
from .utils import strict_zip
|
22 |
+
|
23 |
+
zip = strict_zip
|
24 |
+
|
25 |
+
OutputType = Enum(
|
26 |
+
"OutputType",
|
27 |
+
(
|
28 |
+
# output is not an alias
|
29 |
+
"non_alias",
|
30 |
+
# output aliases an input
|
31 |
+
"alias_of_input",
|
32 |
+
# output **is** an input tensor
|
33 |
+
"is_input",
|
34 |
+
# output has a ._base tensor, which is a graph intermediate.
|
35 |
+
# We need to return its ._base as a graph output,
|
36 |
+
# so its requires_grad info is populated correctly.
|
37 |
+
# Instructs the runtime code to regenerate the current output
|
38 |
+
# from a base tensor, graph_intermediates[base_idx]
|
39 |
+
"alias_of_intermediate_save_as_output",
|
40 |
+
# Same as above; but we don't need to explicitly add its ._base
|
41 |
+
# as a graph output, because it already **is** a graph output.
|
42 |
+
"alias_of_intermediate",
|
43 |
+
# Same as above; but the output's ._base is **already** a user output.
|
44 |
+
# Instructs the runtime code to regenerate the current output from
|
45 |
+
# a base tensor, user_outputs[base_idx]
|
46 |
+
"alias_of_intermediate_base_is_user_output",
|
47 |
+
# See Note [Intermediate Bases Optimization]
|
48 |
+
"unsafe_view_alias",
|
49 |
+
# output is an alias, but has a custom autograd.Function backward.
|
50 |
+
# In this case, we don't want to do view-replay, since we won't be able to replay the custom function.
|
51 |
+
# Instead, we'll treat this output "normally", and trace its backward into the graph.
|
52 |
+
"custom_function_view",
|
53 |
+
),
|
54 |
+
)
|
55 |
+
|
56 |
+
|
57 |
+
# This class stores info about every user output.
|
58 |
+
@dataclass(frozen=True)
|
59 |
+
class OutputAliasInfo:
|
60 |
+
# Tells us if this output is:
|
61 |
+
# (1) a regular (non-aliased) output
|
62 |
+
# (2) an alias of a forward input
|
63 |
+
# (3) **is** a forward input (special case of "alias_of_input")
|
64 |
+
# (4) an alias of an intermediate (aka an alias of an output of the inner traced forward)
|
65 |
+
# (5) an alias of an intermediate, that explicitly requires returning the intermediate
|
66 |
+
# as a graph output
|
67 |
+
# (6) an alias of an intermediate, where that intermediate is also a user output
|
68 |
+
output_type: OutputType
|
69 |
+
# The raw type of the output (torch.Tensor, SymInt, etc)
|
70 |
+
raw_type: type
|
71 |
+
# If (1) above, then
|
72 |
+
# - base_idx is None
|
73 |
+
# If (2) or (3) above, then
|
74 |
+
# - Tells us that the base of this alias is user_fwd_input[base_idx]
|
75 |
+
# (This is an index into the inputs *before* we make synthetic bases)
|
76 |
+
# If (4) or (5) above, then
|
77 |
+
# - Tells us that the base of this alias is output_graph_intermediates[base_idx]
|
78 |
+
# here, this refers to the index of the *direct* traced
|
79 |
+
# If (6) above, then:
|
80 |
+
# - Tells us that the base of this alias is output_user_fwds[base_idx]
|
81 |
+
# here, this refers to the index of the *direct* traced
|
82 |
+
base_idx: Optional[int]
|
83 |
+
# If it is a Tensor, what the dynamic dims are (otherwise is None)
|
84 |
+
dynamic_dims: Optional[Set[int]]
|
85 |
+
# requires_grad
|
86 |
+
requires_grad: bool
|
87 |
+
|
88 |
+
|
89 |
+
class MutationType(Enum):
|
90 |
+
NOT_MUTATED = 1
|
91 |
+
MUTATED_IN_GRAPH = 2
|
92 |
+
MUTATED_OUT_GRAPH = 3
|
93 |
+
|
94 |
+
|
95 |
+
# This class tells us info about user inputs.
|
96 |
+
@dataclass(frozen=True)
|
97 |
+
class InputAliasInfo:
|
98 |
+
is_leaf: bool
|
99 |
+
mutates_data: bool
|
100 |
+
mutates_metadata: bool
|
101 |
+
mutations_hidden_from_autograd: bool
|
102 |
+
mutations_under_no_grad_or_inference_mode: bool
|
103 |
+
mutates_storage_metadata: bool
|
104 |
+
requires_grad: bool
|
105 |
+
keep_input_mutations: bool
|
106 |
+
|
107 |
+
def __post_init__(self):
|
108 |
+
if self.mutates_storage_metadata:
|
109 |
+
# For convenience, we guarantee that this is always true.
|
110 |
+
# In practice, If we call .set_(), then at runtime there is no need
|
111 |
+
# to additionally fix up the tensor metadata, since our runtime
|
112 |
+
# call to inp.set_(updated_inp) will already have the right metadata
|
113 |
+
assert self.mutates_metadata
|
114 |
+
|
115 |
+
@functools.cached_property
|
116 |
+
def mutation_type(self) -> MutationType:
|
117 |
+
if (not self.mutates_data) and (not self.mutates_metadata):
|
118 |
+
return MutationType.NOT_MUTATED
|
119 |
+
|
120 |
+
if _check_if_mutation_can_be_in_graph(
|
121 |
+
self.keep_input_mutations,
|
122 |
+
self.mutates_data,
|
123 |
+
self.mutates_metadata,
|
124 |
+
self.mutations_hidden_from_autograd,
|
125 |
+
self.mutations_under_no_grad_or_inference_mode,
|
126 |
+
self.requires_grad,
|
127 |
+
):
|
128 |
+
return MutationType.MUTATED_IN_GRAPH
|
129 |
+
|
130 |
+
return MutationType.MUTATED_OUT_GRAPH
|
131 |
+
|
132 |
+
|
133 |
+
@dataclass
|
134 |
+
class SubclassCreationMeta:
|
135 |
+
"""
|
136 |
+
Used for AOTDispatch.
|
137 |
+
This dataclass gives us the information we need to reconstruct a tensor subclass
|
138 |
+
from our flat inputs.
|
139 |
+
Why is this important? The graph that we'd like to trace out contains flat tensor inputs,
|
140 |
+
But the user's original model may have subclass inputs and outputs.
|
141 |
+
So we need to wrap/unwrap subclasses as necessary to translate between the user's
|
142 |
+
view (subclass inps/outs), and the backend compiler's view (graph with no subclass args).
|
143 |
+
|
144 |
+
Complications arise mostly from the fact that a subclass can hold more than one inner tensor;
|
145 |
+
So for a given subclass input/output, we need to carefully track which indices map
|
146 |
+
to the subclass tensor in the corresponding "dense-tensor-only" graph.
|
147 |
+
"""
|
148 |
+
|
149 |
+
# In the inner graph that only takes in dense tensor inputs,
|
150 |
+
# this maps to the first index of "tensors that should go in this subclass wrapper"
|
151 |
+
flat_tensor_start_idx: int
|
152 |
+
# The number of tensors that live in this subclass wrapper
|
153 |
+
arg_count: int
|
154 |
+
# Stores the original subclass itself.
|
155 |
+
# This is needed because we need the autograd metadata on the original subclass
|
156 |
+
# (this is guaranteed to be a wrapper subclass that holds a fake tensor,
|
157 |
+
# so holding onto this at runtime shouldn't leak memory)
|
158 |
+
original_subclass: torch.Tensor
|
159 |
+
# meta and inner_keys are produced by the subclass's __tensor_flatten__.
|
160 |
+
# We need to keep them around along with outer_size / outer_stride to plumb them
|
161 |
+
# into __tensor_unflatten__.
|
162 |
+
meta: Any
|
163 |
+
inner_keys: List[Any]
|
164 |
+
outer_size: Tuple[int, ...]
|
165 |
+
outer_stride: Tuple[int, ...]
|
166 |
+
|
167 |
+
def creation_fn(self, all_args, *, is_runtime: bool):
|
168 |
+
curr_args = all_args[
|
169 |
+
self.flat_tensor_start_idx : self.flat_tensor_start_idx + self.arg_count
|
170 |
+
]
|
171 |
+
assert len(curr_args) == len(
|
172 |
+
self.inner_keys
|
173 |
+
), f"inner_keys: {str(self.inner_keys)}. len(curr_args): {len(curr_args)}"
|
174 |
+
# NB: Sometimes we have real inner tensors and symbolic metadata.
|
175 |
+
# TODO: Resolve this so we always have matching real / symbolic tensors / metadata.
|
176 |
+
out = type(self.original_subclass).__tensor_unflatten__( # type: ignore[attr-defined]
|
177 |
+
dict(zip(self.inner_keys, curr_args)),
|
178 |
+
self.meta,
|
179 |
+
self.outer_size,
|
180 |
+
self.outer_stride,
|
181 |
+
)
|
182 |
+
if not is_runtime:
|
183 |
+
# After wrapping up the inner dense tensors into a subclass, we need to make sure that our new wrapper
|
184 |
+
# has correct autograd metadata, since we'll be tracing through the autograd engine with the subclass.
|
185 |
+
# We don't trace through the autograd engine at runtime though, so no need
|
186 |
+
# to compute this extra metadata then!
|
187 |
+
torch._mirror_autograd_meta_to(self.original_subclass, out) # type: ignore[attr-defined]
|
188 |
+
|
189 |
+
return out
|
190 |
+
|
191 |
+
def __post_init__(self):
|
192 |
+
# sanity assert to make sure we don't leak memory
|
193 |
+
assert is_fake(self.original_subclass)
|
194 |
+
|
195 |
+
|
196 |
+
# This class encapsulates all aliasing + mutation info we need about the forward graph
|
197 |
+
# See a more detailed overview of the edge case handling at
|
198 |
+
# https://docs.google.com/document/d/19UoIh_SVrMy_b2Sx5ZaeOJttm6P0Qmyss2rdBuyfoic/edit
|
199 |
+
@dataclass(eq=False)
|
200 |
+
class ViewAndMutationMeta:
|
201 |
+
# length = # user inputs
|
202 |
+
# This gives us info about every input, and what sort of mutation happened to it (if any)
|
203 |
+
input_info: List[InputAliasInfo]
|
204 |
+
|
205 |
+
# length = # user outputs
|
206 |
+
# This gives us info about every output (mostly around whether it aliases other tensors)
|
207 |
+
output_info: List[OutputAliasInfo]
|
208 |
+
|
209 |
+
# length = the number of intermediate bases appended as outputs to the end of the forward graph.
|
210 |
+
# Note: this is not necessarily the same thing as:
|
211 |
+
# len([x for x in output_info if x.output_type == OutputType.alias_of_intermediate])
|
212 |
+
# Because outputs might share a ._base, or an output's ._base might itself be
|
213 |
+
# another user output (in both cases, we won't redundantly append bases to the end of the graph)
|
214 |
+
num_intermediate_bases: int
|
215 |
+
|
216 |
+
# For inference only: instructs us to keep data-only input mutations directly in the graph
|
217 |
+
keep_input_mutations: bool
|
218 |
+
|
219 |
+
# length = (# inputs w data mutations) + (# user outputs that are non_aliasing tensors)
|
220 |
+
# + (# intermediate bases)
|
221 |
+
# These are the FakeTensor (or potential SymInt) outputs that we traced from our
|
222 |
+
# metadata pass of the user's forward function.
|
223 |
+
# Their only use today is to pass them as a best-guess for tangents when tracing the joint.
|
224 |
+
# Stashing them as part of our "metadata" makes it simpler if we want to run our analysis
|
225 |
+
# pass once, and re-use the output throughout AOTAutograd
|
226 |
+
traced_tangents: List[Any]
|
227 |
+
|
228 |
+
# Each of these is a list telling us about subclasses for the inputs/outputs/grad_outs
|
229 |
+
# They are used throughout AOTDispatch to tell us how to generate a list of subclass tensors,
|
230 |
+
# Given a (potentially larger) list of plain torch tensors.
|
231 |
+
|
232 |
+
# Taking subclass_inp_meta as an example:
|
233 |
+
# subclass_inp_meta[i] = j (an int) tells us:
|
234 |
+
# "The i'th user input is not a subclass, and corresponds to inputs[j] of the plain-tensor graph."
|
235 |
+
# subclass_inp_meta[i] = SubclassCreationMeta(flat_tensor_start_idx=3, arg_count=2)
|
236 |
+
# "The i'th user input is subclass holding two inner tensors, which are
|
237 |
+
# inputs[3] and inputs[4] of the plain-tensor graph".
|
238 |
+
|
239 |
+
# length = # user inputs
|
240 |
+
subclass_inp_meta: List[Union[int, SubclassCreationMeta]]
|
241 |
+
# So, the full set of outputs to the forward graph looks something like:
|
242 |
+
# (*mutated_inps, *user_outs, *intermediate_bases, *saved_for_bw_tensors)
|
243 |
+
# where the first 3 of those 4 can be subclasses
|
244 |
+
# (but not saved_for_bw tensors, since these are internal to the compiler
|
245 |
+
# and not user visible, so there's no point in wrapping/unwrapping them at runtime).
|
246 |
+
# This list contains subclass information on all of the fw graph outputs
|
247 |
+
# except for saved_for_bw_tensors.
|
248 |
+
subclass_fw_graph_out_meta: List[Union[int, SubclassCreationMeta]]
|
249 |
+
# length = # backward graph inputs
|
250 |
+
subclass_tangent_meta: List[Union[int, SubclassCreationMeta]]
|
251 |
+
# TODO: we should kill this
|
252 |
+
# (need to default it to not break internal)
|
253 |
+
is_train: bool = False
|
254 |
+
|
255 |
+
num_symints_saved_for_bw: Optional[int] = None
|
256 |
+
|
257 |
+
# The grad_enabled mutation that will be emitted in the runtime_wrapper epilogue
|
258 |
+
# NOTE: AOTAutograd will assume that the ambient `is_grad_enabled` is the grad mode
|
259 |
+
# that is intended to be in effect prior to running the graph, in keeping with
|
260 |
+
# equivalence to eager mode. It is the responsibility of upstream graph acquisition
|
261 |
+
# to reset the grad mode to its pre-graph value prior to calling aot_autograd.
|
262 |
+
grad_enabled_mutation: Optional[bool] = None
|
263 |
+
|
264 |
+
# Keeps track of whether `torch.use_deterministic_algorithms` was turned on
|
265 |
+
# when the forward was run. If deterministic mode was turned off during the
|
266 |
+
# forward, but is turned on during the backward call, then an error is
|
267 |
+
# raised
|
268 |
+
deterministic: Optional[bool] = None
|
269 |
+
|
270 |
+
# Map of effect type (ex. _EffectType.ORDERED) to token. If there are
|
271 |
+
# side-effectful operators, FunctionalTensorMode will populate this
|
272 |
+
# dictionary telling us how many tokens we will need during tracing.
|
273 |
+
tokens: Dict[Any, torch.Tensor] = field(default_factory=dict)
|
274 |
+
|
275 |
+
def __post_init__(self):
|
276 |
+
# pre-compute the indices of the inputs that are mutated.
|
277 |
+
# When keep_input_mutations is set, we don't need to worry about our epilogue
|
278 |
+
# handling data-only mutations, because we keep them directly in the graph.
|
279 |
+
|
280 |
+
mutated_inp_runtime_indices = [
|
281 |
+
i
|
282 |
+
for i, m in enumerate(self.input_info)
|
283 |
+
if (m.mutation_type == MutationType.MUTATED_OUT_GRAPH)
|
284 |
+
]
|
285 |
+
|
286 |
+
mutated_graph_handled_indices = [
|
287 |
+
i
|
288 |
+
for i, m in enumerate(self.input_info)
|
289 |
+
if m.mutation_type == MutationType.MUTATED_IN_GRAPH
|
290 |
+
]
|
291 |
+
self.mutated_graph_handled_indices = mutated_graph_handled_indices
|
292 |
+
self.num_mutated_graph_handled_indices = len(self.mutated_graph_handled_indices)
|
293 |
+
|
294 |
+
mutated_graph_handled_indices_seen_by_autograd = [
|
295 |
+
i
|
296 |
+
for i in mutated_graph_handled_indices
|
297 |
+
if not self.input_info[i].mutations_hidden_from_autograd
|
298 |
+
]
|
299 |
+
|
300 |
+
self.mutated_graph_handled_indices_seen_by_autograd = (
|
301 |
+
mutated_graph_handled_indices_seen_by_autograd
|
302 |
+
)
|
303 |
+
self.num_mutated_graph_handled_indices_seen_by_autograd = len(
|
304 |
+
self.mutated_graph_handled_indices_seen_by_autograd
|
305 |
+
)
|
306 |
+
|
307 |
+
aliased_out_indices = [
|
308 |
+
i
|
309 |
+
for i, m in enumerate(self.output_info)
|
310 |
+
if m.output_type
|
311 |
+
not in [
|
312 |
+
OutputType.non_alias,
|
313 |
+
OutputType.unsafe_view_alias,
|
314 |
+
OutputType.custom_function_view,
|
315 |
+
]
|
316 |
+
]
|
317 |
+
unsafe_view_out_indices = [
|
318 |
+
i
|
319 |
+
for i, m in enumerate(self.output_info)
|
320 |
+
if m.output_type is OutputType.unsafe_view_alias
|
321 |
+
]
|
322 |
+
|
323 |
+
# This is pre-computed in post_init for perf.
|
324 |
+
# It contains the index of every element
|
325 |
+
# of input_info that corresponds to a mutation (data or metadata or both)
|
326 |
+
self.mutated_inp_runtime_indices = mutated_inp_runtime_indices
|
327 |
+
self.num_mutated_inp_runtime_indices = len(self.mutated_inp_runtime_indices)
|
328 |
+
|
329 |
+
# This is pre-computed for perf.
|
330 |
+
# It contains the index of every element
|
331 |
+
# of output_info that corresponds to an alias (either of an input or intermediate)
|
332 |
+
self.aliased_out_indices = aliased_out_indices
|
333 |
+
self.unsafe_view_out_indices = unsafe_view_out_indices
|
334 |
+
self.num_outputs = len(self.output_info)
|
335 |
+
self.num_outputs_non_aliased = len(
|
336 |
+
[
|
337 |
+
x
|
338 |
+
for x in self.output_info
|
339 |
+
if x.output_type
|
340 |
+
in [
|
341 |
+
OutputType.non_alias,
|
342 |
+
OutputType.unsafe_view_alias,
|
343 |
+
OutputType.custom_function_view,
|
344 |
+
]
|
345 |
+
]
|
346 |
+
)
|
347 |
+
self.num_outputs_aliased_to_inputs = len(
|
348 |
+
[
|
349 |
+
x
|
350 |
+
for x in self.output_info
|
351 |
+
if x.output_type
|
352 |
+
in [
|
353 |
+
OutputType.alias_of_input,
|
354 |
+
OutputType.is_input,
|
355 |
+
]
|
356 |
+
]
|
357 |
+
)
|
358 |
+
self.num_unsafe_view_outputs = len(self.unsafe_view_out_indices)
|
359 |
+
self.num_outputs_aliased_to_intermediates = len(
|
360 |
+
[
|
361 |
+
x
|
362 |
+
for x in self.output_info
|
363 |
+
if x.output_type
|
364 |
+
in [
|
365 |
+
OutputType.alias_of_intermediate,
|
366 |
+
OutputType.alias_of_intermediate_save_as_output,
|
367 |
+
OutputType.alias_of_intermediate_base_is_user_output,
|
368 |
+
]
|
369 |
+
]
|
370 |
+
)
|
371 |
+
self.num_outputs_aliased = (
|
372 |
+
self.num_outputs_aliased_to_inputs
|
373 |
+
+ self.num_outputs_aliased_to_intermediates
|
374 |
+
)
|
375 |
+
|
376 |
+
self.dynamic_outputs = any(o.dynamic_dims for o in self.output_info)
|
377 |
+
# See Note: [AOTAutograd Backward Guards]
|
378 |
+
# This is pre-computed for fast asserts on the types of our grad_outputs in the backward.
|
379 |
+
# Eventually, we should kill this and replace with real backward guards.
|
380 |
+
# (we want to precompute the "runtime" types, so replace FakeTensor with torch.Tensor)
|
381 |
+
self.output_types = [
|
382 |
+
torch.Tensor if isinstance(x, FakeTensor) else type(x)
|
383 |
+
for x in self.traced_tangents
|
384 |
+
]
|
385 |
+
|
386 |
+
self.is_rng_op_functionalized = config.functionalize_rng_ops
|
387 |
+
# All of the above metadata is collected by tracing the fw function.
|
388 |
+
# However, extra outputs for rng offsets behave differently. Both fwd
|
389 |
+
# and bwd graphs have their own outputs for the total consumed offsets.
|
390 |
+
# Unlike mutated inputs, we don't have to worry about sending the right
|
391 |
+
# set of tensors between fwd and bwd. Fwd and bwd offsets are
|
392 |
+
# independent and simpler to handle. Therefore, we track them
|
393 |
+
# separately.
|
394 |
+
self.num_outputs_rng_offset = 1 if self.is_rng_op_functionalized else 0
|
395 |
+
|
396 |
+
# Our forward() returns both (mutated_inputs, outputs, output_intermediate_bases, saved_tensors, saved_symints)
|
397 |
+
self.num_forward_returns = (
|
398 |
+
self.num_mutated_inp_runtime_indices
|
399 |
+
+ self.num_outputs
|
400 |
+
+ self.num_intermediate_bases
|
401 |
+
)
|
402 |
+
# In case of functionalization of rng ops, the fw_module returns one
|
403 |
+
# additional output for rng offset. This rng offset is used right
|
404 |
+
# away to advance the rng state, and is not passed on to the raw
|
405 |
+
# outputs. However, we need to know the exact boundary to identify
|
406 |
+
# which tensors to be saved for the bwd graph. num_forward captures
|
407 |
+
# this information.
|
408 |
+
self.num_forward = self.num_forward_returns + self.num_outputs_rng_offset
|
409 |
+
|
410 |
+
@property
|
411 |
+
def tensors_saved_for_backwards_slice(self):
|
412 |
+
assert self.num_symints_saved_for_bw is not None
|
413 |
+
if self.num_symints_saved_for_bw > 0:
|
414 |
+
return slice(self.num_forward, -self.num_symints_saved_for_bw)
|
415 |
+
else:
|
416 |
+
return slice(self.num_forward, None)
|
417 |
+
|
418 |
+
@property
|
419 |
+
def symints_saved_for_backwards_slice(self):
|
420 |
+
assert self.num_symints_saved_for_bw is not None
|
421 |
+
if self.num_symints_saved_for_bw > 0:
|
422 |
+
return slice(-self.num_symints_saved_for_bw, None)
|
423 |
+
else:
|
424 |
+
return slice(0, 0) # empty slice
|
425 |
+
|
426 |
+
def __eq__(self, other):
|
427 |
+
if not isinstance(other, ViewAndMutationMeta):
|
428 |
+
return NotImplemented
|
429 |
+
return (
|
430 |
+
self.input_info == other.input_info
|
431 |
+
and self.output_info == other.output_info
|
432 |
+
and self.num_intermediate_bases == other.num_intermediate_bases
|
433 |
+
and self.keep_input_mutations == other.keep_input_mutations
|
434 |
+
and self.is_rng_op_functionalized == other.is_rng_op_functionalized
|
435 |
+
and self.num_outputs_rng_offset == other.num_outputs_rng_offset
|
436 |
+
and len(self.traced_tangents) == len(other.traced_tangents)
|
437 |
+
and all(
|
438 |
+
x.shape == y.shape and x.dtype == y.dtype
|
439 |
+
for x, y, in zip(self.traced_tangents, other.traced_tangents)
|
440 |
+
)
|
441 |
+
)
|
442 |
+
|
443 |
+
|
444 |
+
@dataclass(eq=False)
|
445 |
+
class SubclassMeta:
|
446 |
+
# A copy of all forward metadata, but computed on the *dense* tensor forward (after desugaring subclasses)
|
447 |
+
# So for example, if the user had a model containing two `TwoTensor` inputs,
|
448 |
+
# Then `SubclassMeta.fw_metadata.input_infos` would have length 4 here.
|
449 |
+
fw_metadata: ViewAndMutationMeta
|
450 |
+
|
451 |
+
# Note: [Computing Subclass Metadata about grad_inputs]
|
452 |
+
# Given a list of flattened, plain tensor grad_inputs, this tells us how to reconstruct the grad_input subclasses
|
453 |
+
#
|
454 |
+
# You might think: why not just assume that all grad_inputs will have the same subclass-ness as the original inputs?
|
455 |
+
# (AOTAutograd generally assumes other properties, e.g. that grad_outputs are contiguous)
|
456 |
+
#
|
457 |
+
# This doesn't really work though. take this example:
|
458 |
+
#
|
459 |
+
# def f(DoubleTensor, DenseTensor):
|
460 |
+
# return DoubleTensor * DenseTensor
|
461 |
+
#
|
462 |
+
# In the above example, the .grad field of *both* DoubleTensor and DenseTensor will be a DoubleTensor.
|
463 |
+
# When we trace out a joint fw-bw graph, we'll end up returning two subclasses for the two grad_inputs.
|
464 |
+
# This means that our backward graph will return 4 outputs (two dense tensors for each DoubleTensor grad_input)
|
465 |
+
# and we need to properly store the metadata that tells us how to turn these 4 outputs back into DoubleTensors.
|
466 |
+
#
|
467 |
+
# Note that this info **cannot** easily be figured out from ViewAndMutationMeta.
|
468 |
+
# We can only compute this info by tracing the entire joint and examining the grad_inputs that we computed.
|
469 |
+
#
|
470 |
+
# See Note: [AOTAutograd Backward Guards]
|
471 |
+
# This will also eventually require us to install backward guards,
|
472 |
+
# in case we made incorrect assumptions about the subclass-ness of our grad_outputs
|
473 |
+
#
|
474 |
+
# Optional field because we don't compute for inference graphs
|
475 |
+
grad_input_metas: Optional[List[Union[int, SubclassCreationMeta]]]
|
476 |
+
|
477 |
+
def __init__(self):
|
478 |
+
# The fields in this class get set after its construction.
|
479 |
+
pass
|
480 |
+
|
481 |
+
|
482 |
+
# This class exists because:
|
483 |
+
# - the autograd.Function.forward() in aot autograd returns outputs that might alias inputs
|
484 |
+
# - we only care about the metadata on those aliases, so we can regenerate them.
|
485 |
+
# We do not want them to participate in the autograd.Function.
|
486 |
+
# We do that by wrapping them in an opaque class, so the autograd.Function
|
487 |
+
# does not know to treat them as tensors.
|
488 |
+
@dataclass(frozen=True)
|
489 |
+
class TensorAlias:
|
490 |
+
alias: torch.Tensor
|
491 |
+
|
492 |
+
|
493 |
+
@dataclass
|
494 |
+
class BackwardSignature:
|
495 |
+
"""
|
496 |
+
Provides information about the backward section of an exported
|
497 |
+
joint forward-backward graph.
|
498 |
+
For a particular fx GraphModule, this class contains information on:
|
499 |
+
(1) A mapping from each gradient (backwards output) to the parameter
|
500 |
+
it corresponds to (forward input)
|
501 |
+
(2) A mapping from each gradient (backwards output) to the user input
|
502 |
+
it corresponds to (forward input)
|
503 |
+
(3) Which of the forward outputs corresponds to the loss, that we backprop on.
|
504 |
+
|
505 |
+
Each string name is the `node.name` of the corresponding node in the fx graph.
|
506 |
+
"""
|
507 |
+
|
508 |
+
gradients_to_parameters: Dict[str, str]
|
509 |
+
gradients_to_user_inputs: Dict[str, str]
|
510 |
+
loss_output: str
|
511 |
+
|
512 |
+
|
513 |
+
GraphOutputName = NewType("GraphOutputName", str)
|
514 |
+
GraphInputName = NewType("GraphInputName", str)
|
515 |
+
FQN = NewType("FQN", str)
|
516 |
+
|
517 |
+
|
518 |
+
@dataclass
|
519 |
+
class GraphSignature:
|
520 |
+
"""
|
521 |
+
Provides information about an exported module.
|
522 |
+
For a particular fx GraphModule, this class contains information on:
|
523 |
+
(1) Which graph inputs are parameters, buffers, or user inputs
|
524 |
+
(2) (for params/buffers) a mapping from the name of each graph argument
|
525 |
+
to its parameter/buffer FQN in the original nn.Module.
|
526 |
+
(3) If there are input mutations, these are represented as extra outputs
|
527 |
+
in the fx GraphModule. We provide a mapping from these
|
528 |
+
extra output names to the names of the actual inputs.
|
529 |
+
(4) The pytree metadata on how to flatten/unflatten inputs and outputs.
|
530 |
+
The corresponding FX GraphModule only accepts and returns
|
531 |
+
pytree-flattened inputs/outputs.
|
532 |
+
(5) (Optionally) if the FX is a joint forward-backward graph, we provide
|
533 |
+
a signature on the backward section of the joint graph.
|
534 |
+
"""
|
535 |
+
|
536 |
+
parameters: List[FQN]
|
537 |
+
buffers: List[FQN]
|
538 |
+
|
539 |
+
user_inputs: List[GraphInputName]
|
540 |
+
user_outputs: List[GraphOutputName]
|
541 |
+
inputs_to_parameters: Dict[GraphInputName, FQN]
|
542 |
+
inputs_to_buffers: Dict[GraphInputName, FQN]
|
543 |
+
|
544 |
+
# If the user's module mutates a buffer,
|
545 |
+
# it's represented in the graph as an extra graph output.
|
546 |
+
# This dict is a mapping from
|
547 |
+
# "graph outputs that correspond to updated buffers"
|
548 |
+
# to the FQN names of those mutated buffers.
|
549 |
+
buffers_to_mutate: Dict[GraphOutputName, FQN]
|
550 |
+
user_inputs_to_mutate: Dict[GraphOutputName, GraphInputName]
|
551 |
+
|
552 |
+
in_spec: pytree.TreeSpec
|
553 |
+
out_spec: pytree.TreeSpec
|
554 |
+
|
555 |
+
backward_signature: Optional[BackwardSignature]
|
556 |
+
|
557 |
+
input_tokens: List[GraphInputName]
|
558 |
+
output_tokens: List[GraphOutputName]
|
559 |
+
|
560 |
+
@classmethod
|
561 |
+
def from_tracing_metadata(
|
562 |
+
cls,
|
563 |
+
*,
|
564 |
+
in_spec: pytree.TreeSpec,
|
565 |
+
out_spec: pytree.TreeSpec,
|
566 |
+
graph_input_names: List[str],
|
567 |
+
graph_output_names: List[str],
|
568 |
+
view_mutation_metadata: ViewAndMutationMeta,
|
569 |
+
named_parameters: List[str],
|
570 |
+
named_buffers: List[str],
|
571 |
+
num_user_inputs: int,
|
572 |
+
num_user_outputs: int,
|
573 |
+
loss_index: Optional[int],
|
574 |
+
backward_signature: Optional[BackwardSignature],
|
575 |
+
) -> "GraphSignature":
|
576 |
+
graph_inputs = graph_input_names
|
577 |
+
graph_outputs = graph_output_names
|
578 |
+
parameters = list(named_parameters)
|
579 |
+
buffers = list(named_buffers)
|
580 |
+
num_tokens = len(view_mutation_metadata.tokens)
|
581 |
+
|
582 |
+
# Calling convention assumptions:
|
583 |
+
# (1) graph inputs = (input_tokens, params, buffers, user_inputs)
|
584 |
+
# (2) graph outputs = (output_tokens, mutated_inputs, user_outs, param_gradients)
|
585 |
+
# (If we are capturing an inference graph, this convention is identical
|
586 |
+
# except that param_gradients is empty)
|
587 |
+
# See Note [Side-Effectful Tokens in AOTAutograd] for information on tokens
|
588 |
+
|
589 |
+
# Address input calling conventions:
|
590 |
+
start, stop = 0, num_tokens
|
591 |
+
input_tokens = graph_inputs[start:stop]
|
592 |
+
|
593 |
+
start, stop = stop, stop + len(parameters)
|
594 |
+
inputs_to_parameters = dict(zip(graph_inputs[start:stop], parameters))
|
595 |
+
|
596 |
+
start, stop = stop, stop + len(buffers)
|
597 |
+
inputs_to_buffers = dict(
|
598 |
+
zip(
|
599 |
+
graph_inputs[start:stop],
|
600 |
+
buffers,
|
601 |
+
)
|
602 |
+
)
|
603 |
+
|
604 |
+
start, stop = stop, stop + num_user_inputs
|
605 |
+
user_inputs = graph_inputs[start:stop]
|
606 |
+
|
607 |
+
# We should've gone through all the inputs now
|
608 |
+
assert len(graph_inputs) - stop == 0
|
609 |
+
|
610 |
+
# Address output calling conventions:
|
611 |
+
start, stop = 0, num_tokens
|
612 |
+
output_tokens = graph_outputs[start:stop]
|
613 |
+
|
614 |
+
names = [*input_tokens, *parameters, *buffers, *user_inputs]
|
615 |
+
mutations = []
|
616 |
+
for idx, input_info in enumerate(view_mutation_metadata.input_info):
|
617 |
+
if input_info.mutates_data:
|
618 |
+
# Only buffers can be mutated, not parameters
|
619 |
+
assert idx >= len(parameters)
|
620 |
+
mutations.append(names[idx + num_tokens])
|
621 |
+
|
622 |
+
assert len(mutations) == view_mutation_metadata.num_mutated_inp_runtime_indices
|
623 |
+
|
624 |
+
start, stop = (
|
625 |
+
stop,
|
626 |
+
stop + view_mutation_metadata.num_mutated_inp_runtime_indices,
|
627 |
+
)
|
628 |
+
outputs_to_mutations = dict(zip(graph_outputs[start:stop], mutations))
|
629 |
+
|
630 |
+
user_inputs_to_mutate = {}
|
631 |
+
buffers_to_mutate = {}
|
632 |
+
for output_name, mutation_name in outputs_to_mutations.items():
|
633 |
+
if mutation_name in user_inputs:
|
634 |
+
user_inputs_to_mutate[output_name] = mutation_name
|
635 |
+
else:
|
636 |
+
assert mutation_name in buffers
|
637 |
+
buffers_to_mutate[output_name] = mutation_name
|
638 |
+
|
639 |
+
start, stop = stop, stop + num_user_outputs
|
640 |
+
user_outputs = graph_outputs[start:stop]
|
641 |
+
|
642 |
+
unused_outputs = len(graph_outputs) - stop
|
643 |
+
if backward_signature is not None:
|
644 |
+
unused_outputs -= len(backward_signature.gradients_to_parameters) + len(
|
645 |
+
backward_signature.gradients_to_user_inputs
|
646 |
+
)
|
647 |
+
assert unused_outputs == 0
|
648 |
+
|
649 |
+
return GraphSignature(
|
650 |
+
parameters=parameters, # type: ignore[arg-type]
|
651 |
+
buffers=buffers, # type: ignore[arg-type]
|
652 |
+
user_inputs=user_inputs, # type: ignore[arg-type]
|
653 |
+
user_outputs=user_outputs, # type: ignore[arg-type]
|
654 |
+
inputs_to_buffers=inputs_to_buffers, # type: ignore[arg-type]
|
655 |
+
inputs_to_parameters=inputs_to_parameters, # type: ignore[arg-type]
|
656 |
+
user_inputs_to_mutate=user_inputs_to_mutate,
|
657 |
+
buffers_to_mutate=buffers_to_mutate, # type: ignore[arg-type]
|
658 |
+
in_spec=in_spec,
|
659 |
+
out_spec=out_spec,
|
660 |
+
backward_signature=backward_signature,
|
661 |
+
input_tokens=input_tokens, # type: ignore[arg-type]
|
662 |
+
output_tokens=output_tokens, # type: ignore[arg-type]
|
663 |
+
)
|
664 |
+
|
665 |
+
|
666 |
+
@dataclass
|
667 |
+
class AOTConfig:
|
668 |
+
"""
|
669 |
+
Configuration for AOTDispatcher
|
670 |
+
"""
|
671 |
+
|
672 |
+
fw_compiler: Callable
|
673 |
+
bw_compiler: Callable
|
674 |
+
partition_fn: Callable
|
675 |
+
decompositions: Dict[Callable, Callable]
|
676 |
+
num_params_buffers: int
|
677 |
+
aot_id: int
|
678 |
+
keep_inference_input_mutations: bool
|
679 |
+
is_export: bool = False
|
680 |
+
no_tangents: bool = False
|
681 |
+
dynamic_shapes: bool = False
|
682 |
+
aot_autograd_arg_pos_to_source: Optional[List[Source]] = None
|
683 |
+
inference_compiler: Optional[Callable] = None
|
684 |
+
enable_log: bool = True
|
685 |
+
# this is always false outside of export.
|
686 |
+
pre_dispatch: bool = False
|
687 |
+
|
688 |
+
def __post_init__(self):
|
689 |
+
if self.pre_dispatch:
|
690 |
+
assert self.is_export, "Can only have pre_dispatch IR for export."
|
691 |
+
|
692 |
+
|
693 |
+
SubclassTracingInfo = collections.namedtuple(
|
694 |
+
"SubclassTracingInfo",
|
695 |
+
["plain_tensor_trace_fn", "plain_tensor_args", "maybe_subclass_meta"],
|
696 |
+
)
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/subclass_utils.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file contains utilities for tracing through __torch_dispatch__ based tensor subclasses and modes.
|
3 |
+
AOTAutograd's responsibility is to trace through all pytorch capabilities that live in the pytorch dispatcher,
|
4 |
+
and this includes tensor subclasses that implement __torch_dispatch__.
|
5 |
+
"""
|
6 |
+
|
7 |
+
from typing import Any, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch.utils._pytree as pytree
|
10 |
+
|
11 |
+
from torch import Tensor
|
12 |
+
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
|
13 |
+
|
14 |
+
from .schemas import MutationType, SubclassCreationMeta, ViewAndMutationMeta
|
15 |
+
from .utils import strict_zip
|
16 |
+
|
17 |
+
zip = strict_zip
|
18 |
+
|
19 |
+
|
20 |
+
def requires_subclass_dispatch(args, fw_metadata: ViewAndMutationMeta) -> bool:
|
21 |
+
args_flattened = pytree.arg_tree_leaves(*args)
|
22 |
+
any_subclass_args = any(
|
23 |
+
is_traceable_wrapper_subclass(x)
|
24 |
+
for x in args_flattened
|
25 |
+
if isinstance(x, Tensor)
|
26 |
+
)
|
27 |
+
from torch._functorch._aot_autograd.schemas import SubclassCreationMeta
|
28 |
+
|
29 |
+
any_subclass_outputs = any(
|
30 |
+
type(x) is SubclassCreationMeta for x in fw_metadata.subclass_fw_graph_out_meta
|
31 |
+
)
|
32 |
+
# This tells us whether or not we need to perform any unwrapping/wrapping of tensor subclasses at runtime.
|
33 |
+
return any_subclass_args or any_subclass_outputs
|
34 |
+
|
35 |
+
|
36 |
+
# Given a flat list of arguments, some of which may be tensor subclasses,
|
37 |
+
# computes metadata about "how to reconstruct the current list of subclasses,
|
38 |
+
# if we were given their flattened dense tensors instead"
|
39 |
+
def create_subclass_meta(
|
40 |
+
curr_args: Union[List[Any], Tuple[Any, ...]],
|
41 |
+
) -> List[Union[int, SubclassCreationMeta]]:
|
42 |
+
idx = 0
|
43 |
+
infos: List[Union[int, SubclassCreationMeta]] = []
|
44 |
+
for a in curr_args:
|
45 |
+
if isinstance(a, Tensor) and is_traceable_wrapper_subclass(a):
|
46 |
+
attrs, meta = a.__tensor_flatten__() # type: ignore[attr-defined]
|
47 |
+
start_idx = idx
|
48 |
+
cnt = len(attrs)
|
49 |
+
curr_cnt = cnt
|
50 |
+
infos.append(
|
51 |
+
SubclassCreationMeta(
|
52 |
+
flat_tensor_start_idx=start_idx,
|
53 |
+
arg_count=curr_cnt,
|
54 |
+
original_subclass=a,
|
55 |
+
meta=meta,
|
56 |
+
inner_keys=attrs,
|
57 |
+
outer_size=a.shape,
|
58 |
+
outer_stride=a.stride(),
|
59 |
+
)
|
60 |
+
)
|
61 |
+
else:
|
62 |
+
infos.append(idx)
|
63 |
+
cnt = 1
|
64 |
+
idx += cnt
|
65 |
+
return infos
|
66 |
+
|
67 |
+
|
68 |
+
# Output structure:
|
69 |
+
# - List[Tensor] if tracing an inference graph
|
70 |
+
# - Tuple[List[Tensor], List[Tensor]] if tracing a joint graph.
|
71 |
+
# This function effectively concats each inner list of subclass tensors
|
72 |
+
# into a (potentially longer) list of inner tensors.
|
73 |
+
#
|
74 |
+
# This function takes in a pytree of arguments and unwraps any tensor subclasses.
|
75 |
+
# Annoyingly, we can't use pytrees to perform the unwrapping, because unwrapping returns
|
76 |
+
# a list of tensors that we would then need to concat together.
|
77 |
+
# Instead, we specialize the logic for the inference vs. joint graph case.
|
78 |
+
# NOTE: this function is hot, since we unwrap tensor subclass inputs at runtime
|
79 |
+
def unwrap_tensor_subclasses(wrapped_args, *, is_joint_structure: bool):
|
80 |
+
def concat_inner_tensors_from_subclasses(xs):
|
81 |
+
xs_inner = []
|
82 |
+
for x in xs:
|
83 |
+
if isinstance(x, Tensor) and is_traceable_wrapper_subclass(x):
|
84 |
+
attrs, _ = x.__tensor_flatten__() # type: ignore[attr-defined]
|
85 |
+
xs_inner += [getattr(x, attr) for attr in attrs]
|
86 |
+
else:
|
87 |
+
xs_inner += [x]
|
88 |
+
return xs_inner
|
89 |
+
|
90 |
+
if is_joint_structure:
|
91 |
+
assert isinstance(wrapped_args, tuple) and len(wrapped_args) == 2
|
92 |
+
assert isinstance(wrapped_args[0], (tuple, list)) and isinstance(
|
93 |
+
wrapped_args[1], (tuple, list)
|
94 |
+
)
|
95 |
+
unwrapped_args_fw = concat_inner_tensors_from_subclasses(wrapped_args[0])
|
96 |
+
unwrapped_args_tangents = concat_inner_tensors_from_subclasses(wrapped_args[1])
|
97 |
+
unwrapped_args = (unwrapped_args_fw, unwrapped_args_tangents)
|
98 |
+
else:
|
99 |
+
assert isinstance(wrapped_args, (list, tuple))
|
100 |
+
unwrapped_args_fw = concat_inner_tensors_from_subclasses(wrapped_args)
|
101 |
+
unwrapped_args = unwrapped_args_fw
|
102 |
+
return unwrapped_args
|
103 |
+
|
104 |
+
|
105 |
+
# Turns a flattened list of tensor arguments into (maybe) subclass tensors.
|
106 |
+
# This function is used both at trace time and runtime, so we have an is_runtime flag telling us which context we're in.
|
107 |
+
def wrap_tensor_subclasses(
|
108 |
+
unwrapped_args: Union[Tuple[Any, ...], List[Any]],
|
109 |
+
*,
|
110 |
+
subclass_metas: List[Union[int, SubclassCreationMeta]],
|
111 |
+
num_fw_outs_saved_for_bw: Optional[int] = None,
|
112 |
+
is_runtime: bool = False,
|
113 |
+
) -> Tuple[Any, ...]:
|
114 |
+
wrapped_args = []
|
115 |
+
num_args_tallied = 0
|
116 |
+
for subclass_meta in subclass_metas:
|
117 |
+
if isinstance(subclass_meta, int):
|
118 |
+
wrapped_args.append(unwrapped_args[subclass_meta])
|
119 |
+
num_args_tallied += 1
|
120 |
+
else:
|
121 |
+
assert isinstance(subclass_meta, SubclassCreationMeta)
|
122 |
+
wrapped_args.append(
|
123 |
+
subclass_meta.creation_fn(unwrapped_args, is_runtime=is_runtime)
|
124 |
+
)
|
125 |
+
num_args_tallied += subclass_meta.arg_count
|
126 |
+
|
127 |
+
# Note: [Partitioner handling for Subclasses, Part 2]
|
128 |
+
# At the beginning of AOTAutograd, we collect metadata on the inputs and outputs of the user fw,
|
129 |
+
# to figure out which inputs/outputs are subclasses, and how to reconstruct the subclasses after flattening them.
|
130 |
+
#
|
131 |
+
# When this function is called at runtime in the forward,
|
132 |
+
# we have been passed a list of (flattened) dense-tensor fw-outs, and need to reconstruct any subclass fw outs.
|
133 |
+
#
|
134 |
+
# One reasonable question that you should ask: when should the dense_tensor -> subclass_tensor wrapping happen?
|
135 |
+
# Answer: we do it **inside of our compiled autograd.Function**.
|
136 |
+
# This seems like morally the right place: autograd happens above subclass desugaring,
|
137 |
+
# so autograd should see actual tensor subclasses at runtime, and not flattened dense tensors.
|
138 |
+
#
|
139 |
+
# This causes a tricky interaction though: when we run the min-cut partitioner to divvy up the joint graph
|
140 |
+
# into a forward and backward graph, we end up with some activations that show up as extra outputs
|
141 |
+
# in the compiled forward graph, that are **not** user outputs.
|
142 |
+
# These activations are not visible to the user, and so there's no need for us to wrap them back into subclasses.
|
143 |
+
#
|
144 |
+
# On top of that, when we first computed subclass metadata (in `run_functionalized_fw_and_collect_metadata`),
|
145 |
+
# we computed subclass metadata on every forward output, but this did **not** include activations
|
146 |
+
# created by the partitioner.
|
147 |
+
# as a result, `unwrapped_args` here will correspond to (*unwrapped_user_fw_outs, *activations),
|
148 |
+
# but `subclass_metas` will only correspond to subclass metatadata on `user_fw_outs`.
|
149 |
+
# We then need to make sure that we return (*wrapped_user_fw_outs, *activations).
|
150 |
+
if num_fw_outs_saved_for_bw is not None:
|
151 |
+
assert len(unwrapped_args) == num_args_tallied + num_fw_outs_saved_for_bw, (
|
152 |
+
f"Expected the number actual unwrapped-subclass outputs {len(unwrapped_args)} to equal "
|
153 |
+
f"the number of args calculated from subclasses ({num_args_tallied}) plus the number of "
|
154 |
+
f"additional activations saved for the backward pass ({num_fw_outs_saved_for_bw})"
|
155 |
+
)
|
156 |
+
activations = unwrapped_args[num_args_tallied:]
|
157 |
+
if isinstance(wrapped_args, tuple) and isinstance(activations, tuple):
|
158 |
+
return wrapped_args + activations
|
159 |
+
return tuple(list(wrapped_args) + list(activations))
|
160 |
+
else:
|
161 |
+
assert len(unwrapped_args) == num_args_tallied
|
162 |
+
return tuple(wrapped_args)
|
163 |
+
|
164 |
+
|
165 |
+
# Given a bunch of "dense" tensor arguments, this function (potentially) wraps them into tensor subclasses.
|
166 |
+
# This function carefully handles the inference vs. joint cases:
|
167 |
+
# - when is_joint_structure is True, args is (primals, tangents)
|
168 |
+
# - when is_joint_structure is False, args is [*primals]
|
169 |
+
def wrap_tensor_subclasses_maybe_joint(
|
170 |
+
unwrapped_args, *, is_joint_structure: bool, meta: ViewAndMutationMeta
|
171 |
+
) -> Union[Tuple[Any, ...], List[Any]]:
|
172 |
+
# Since this function is re-used for both inference and joint graphs,
|
173 |
+
if is_joint_structure:
|
174 |
+
assert isinstance(unwrapped_args, tuple) and len(unwrapped_args) == 2
|
175 |
+
assert isinstance(unwrapped_args[0], (tuple, list)) and isinstance(
|
176 |
+
unwrapped_args[1], (tuple, list)
|
177 |
+
)
|
178 |
+
primals, tangents = unwrapped_args[0], unwrapped_args[1]
|
179 |
+
wrapped_primals = wrap_tensor_subclasses(
|
180 |
+
primals, subclass_metas=meta.subclass_inp_meta
|
181 |
+
)
|
182 |
+
wrapped_tangents = wrap_tensor_subclasses(
|
183 |
+
tangents, subclass_metas=meta.subclass_tangent_meta
|
184 |
+
)
|
185 |
+
return (wrapped_primals, wrapped_tangents)
|
186 |
+
else:
|
187 |
+
wrapped_args = wrap_tensor_subclasses(
|
188 |
+
unwrapped_args, subclass_metas=meta.subclass_inp_meta
|
189 |
+
)
|
190 |
+
return wrapped_args
|
191 |
+
|
192 |
+
|
193 |
+
# TODO: UNUSED. delete?
|
194 |
+
def create_metadata_for_subclass(meta: ViewAndMutationMeta) -> ViewAndMutationMeta:
|
195 |
+
# input infos
|
196 |
+
input_info = []
|
197 |
+
for inp, subclass_meta in zip(meta.input_info, meta.subclass_inp_meta):
|
198 |
+
num_inps = 1 if isinstance(subclass_meta, int) else subclass_meta.arg_count
|
199 |
+
for _ in range(num_inps):
|
200 |
+
input_info.append(inp)
|
201 |
+
|
202 |
+
# output infos
|
203 |
+
output_info = []
|
204 |
+
subclass_out_meta_user_outs_only = meta.subclass_fw_graph_out_meta[
|
205 |
+
meta.num_mutated_inp_runtime_indices :
|
206 |
+
]
|
207 |
+
if meta.num_intermediate_bases > 0:
|
208 |
+
subclass_out_meta_user_outs_only = subclass_out_meta_user_outs_only[
|
209 |
+
: -meta.num_intermediate_bases
|
210 |
+
]
|
211 |
+
# sanity assert
|
212 |
+
assert len(meta.output_info) == len(subclass_out_meta_user_outs_only)
|
213 |
+
# Assume that the information on the output is shared by all of its inner tensors.
|
214 |
+
for out, subclass_meta in zip(meta.output_info, subclass_out_meta_user_outs_only):
|
215 |
+
num_outs = 1 if isinstance(subclass_meta, int) else subclass_meta.arg_count
|
216 |
+
for _ in range(num_outs):
|
217 |
+
output_info.append(out)
|
218 |
+
|
219 |
+
# A bit hacky, but we don't actually care about all of the metadata here.
|
220 |
+
# This metadata is used **underneath** both autograd and subclass de-sugaring,
|
221 |
+
# So all we really care about is stuff like:
|
222 |
+
# - num inputs/outputs (needed by the partitioner)
|
223 |
+
# - input mutations (**not** used today, since we don't handle input mutations inside the subclass,
|
224 |
+
# although we should handle this eventually)
|
225 |
+
# TODO: add a test case to assert we error when this happens, instead of getting silent correctness
|
226 |
+
num_intermediate_bases = None
|
227 |
+
keep_input_mutations = meta.keep_input_mutations
|
228 |
+
traced_tangents = None
|
229 |
+
subclass_inp_meta = None
|
230 |
+
subclass_fw_graph_out_meta = None
|
231 |
+
subclass_tangent_meta = None
|
232 |
+
|
233 |
+
metadata = ViewAndMutationMeta(
|
234 |
+
input_info=input_info, # type: ignore[arg-type]
|
235 |
+
output_info=output_info, # type: ignore[arg-type]
|
236 |
+
num_intermediate_bases=num_intermediate_bases, # type: ignore[arg-type]
|
237 |
+
keep_input_mutations=keep_input_mutations, # type: ignore[arg-type]
|
238 |
+
traced_tangents=traced_tangents, # type: ignore[arg-type]
|
239 |
+
subclass_inp_meta=subclass_inp_meta, # type: ignore[arg-type]
|
240 |
+
subclass_fw_graph_out_meta=subclass_fw_graph_out_meta, # type: ignore[arg-type]
|
241 |
+
subclass_tangent_meta=subclass_tangent_meta, # type: ignore[arg-type]
|
242 |
+
)
|
243 |
+
return metadata
|
244 |
+
|
245 |
+
|
246 |
+
def compute_inner_mutated_inp_indices_from_subclass_meta(
|
247 |
+
fw_metadata: ViewAndMutationMeta,
|
248 |
+
inner_metadata: ViewAndMutationMeta,
|
249 |
+
) -> List[int]:
|
250 |
+
# Note: [Recomputing subclass mutation handling]
|
251 |
+
#
|
252 |
+
# Generally, if a subclass requires grad, its components will not require grad.
|
253 |
+
# But for the purposes of tracking returned tensors, we should treat those component
|
254 |
+
# tensors as if they require grad.
|
255 |
+
#
|
256 |
+
# For example, if the subclass tensor requires grad and will be mutated in a way that
|
257 |
+
# requires us to handle the mutation outside of the graph, we need to return it
|
258 |
+
# from the forward graph. The inner_meta data won't consider the component tensors
|
259 |
+
# as if they need to be returned, because they don't require grad; but really, we
|
260 |
+
# should handle those tensors the same way we handle the subclass tensor itself; i.e.
|
261 |
+
# if we'd include the subclass tensor as part of the outputs, then we should also
|
262 |
+
# include the component tensors.
|
263 |
+
#
|
264 |
+
# To do this, we patch num_mutated_inp_runtime_indices below by expanding the inputs
|
265 |
+
# from the outer subclass tensors and propagating
|
266 |
+
|
267 |
+
updated_input_info = []
|
268 |
+
inner_idx = 0
|
269 |
+
if not fw_metadata.subclass_inp_meta:
|
270 |
+
# Sometimes we don't have subclass info, e.g. synthetic_base codepaths
|
271 |
+
return inner_metadata.mutated_inp_runtime_indices
|
272 |
+
assert len(fw_metadata.subclass_inp_meta) == len(fw_metadata.input_info)
|
273 |
+
for outer_idx, inp_meta in enumerate(fw_metadata.subclass_inp_meta):
|
274 |
+
if isinstance(inp_meta, int):
|
275 |
+
assert outer_idx < len(fw_metadata.input_info)
|
276 |
+
if inner_metadata is not None:
|
277 |
+
assert inner_idx < len(inner_metadata.input_info)
|
278 |
+
assert (
|
279 |
+
inner_metadata.input_info[inner_idx]
|
280 |
+
== fw_metadata.input_info[outer_idx]
|
281 |
+
)
|
282 |
+
updated_input_info.append(fw_metadata.input_info[outer_idx])
|
283 |
+
inner_idx += 1
|
284 |
+
else:
|
285 |
+
for _ in range(inp_meta.arg_count):
|
286 |
+
updated_input_info.append(fw_metadata.input_info[outer_idx])
|
287 |
+
inner_idx += 1
|
288 |
+
if inner_metadata is not None:
|
289 |
+
assert len(inner_metadata.input_info) == len(updated_input_info)
|
290 |
+
|
291 |
+
return [
|
292 |
+
i
|
293 |
+
for i, inp in enumerate(updated_input_info)
|
294 |
+
if inp.mutation_type == MutationType.MUTATED_OUT_GRAPH
|
295 |
+
]
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py
ADDED
@@ -0,0 +1,698 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module is responsible for transforming functions to be traced into a form
|
3 |
+
that is easier for the downstream infra (e.g. Autograd, FX, AOTAutograd analysis)
|
4 |
+
to handle.
|
5 |
+
|
6 |
+
It does so by:
|
7 |
+
1. functionalization (including RNG functionalzation)
|
8 |
+
2. creating a joint graph when required
|
9 |
+
3. transforming mutations into extra outputs
|
10 |
+
4. dispatching subclasses
|
11 |
+
"""
|
12 |
+
|
13 |
+
import warnings
|
14 |
+
from contextlib import nullcontext
|
15 |
+
from functools import wraps
|
16 |
+
from typing import Any, Callable, List, Tuple, Union
|
17 |
+
from unittest.mock import patch
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.fx.traceback as fx_traceback
|
21 |
+
import torch.utils._pytree as pytree
|
22 |
+
from torch import Tensor
|
23 |
+
from torch._decomp.decompositions_for_rng import PhiloxStateTracker
|
24 |
+
from torch._guards import detect_fake_mode
|
25 |
+
from torch._prims_common import CUDARngStateHelper
|
26 |
+
from torch.fx.experimental.symbolic_shapes import definitely_false, sym_eq
|
27 |
+
from torch.nn.utils import stateless
|
28 |
+
|
29 |
+
from .. import config
|
30 |
+
from .collect_metadata_analysis import run_functionalized_fw_and_collect_metadata
|
31 |
+
from .functional_utils import (
|
32 |
+
from_fun,
|
33 |
+
has_data_mutation,
|
34 |
+
has_metadata_mutation,
|
35 |
+
is_fun,
|
36 |
+
sync_functional_tensor,
|
37 |
+
to_fun,
|
38 |
+
)
|
39 |
+
from .logging_utils import setup_stacktrace_preservation_hooks
|
40 |
+
from .schemas import (
|
41 |
+
AOTConfig,
|
42 |
+
MutationType,
|
43 |
+
OutputType,
|
44 |
+
SubclassMeta,
|
45 |
+
SubclassTracingInfo,
|
46 |
+
ViewAndMutationMeta,
|
47 |
+
)
|
48 |
+
from .subclass_utils import (
|
49 |
+
create_subclass_meta,
|
50 |
+
requires_subclass_dispatch,
|
51 |
+
unwrap_tensor_subclasses,
|
52 |
+
wrap_tensor_subclasses_maybe_joint,
|
53 |
+
)
|
54 |
+
from .utils import maybe_to_fresh_input
|
55 |
+
|
56 |
+
|
57 |
+
# This function returns a new function that returns mutated inputs as outputs.
|
58 |
+
# if keep_data_input_mutations is set, then we assume that data-only mutations
|
59 |
+
# will be left in the graph, and we only return metadata-mutated inputs as outputs.
|
60 |
+
def fn_input_mutations_to_outputs(
|
61 |
+
fn: Callable,
|
62 |
+
meta: ViewAndMutationMeta,
|
63 |
+
keep_data_input_mutations: bool,
|
64 |
+
) -> Any:
|
65 |
+
@wraps(fn)
|
66 |
+
def inner_fn(*args):
|
67 |
+
outs = fn(*args)
|
68 |
+
assert len(meta.output_info) == len(outs)
|
69 |
+
# The compiled fw will return mutated input tensors, *including* metadata-only mutation.
|
70 |
+
# However, if keep_data_input_mutations is set, the compiled fw only needs to return metadata-mutated inputs.
|
71 |
+
# (because data-only input mutations are handled directly in the compiled graph)
|
72 |
+
mutated_inputs_to_return = [
|
73 |
+
x for (i, x) in enumerate(args) if i in meta.mutated_inp_runtime_indices
|
74 |
+
]
|
75 |
+
return *mutated_inputs_to_return, *outs
|
76 |
+
|
77 |
+
return inner_fn
|
78 |
+
|
79 |
+
|
80 |
+
# This function takes in a fn with external aliasing and mutation,
|
81 |
+
# and returns a new fn with no external aliasing and mutation,
|
82 |
+
# as needed for autograd.
|
83 |
+
# The main transformations are:
|
84 |
+
# - Return mutated inputs as extra outputs
|
85 |
+
# - Clone mutated inputs that require gradients,
|
86 |
+
# because autograd will require us to pass the pre-mutated inputs into autograd.grad
|
87 |
+
# - Return intermediate bases of outputs as additional outputs,
|
88 |
+
# needed to appease autograd.Function
|
89 |
+
# The new function returns:
|
90 |
+
# (1) The updated outputs
|
91 |
+
# (2) A boolean mask of len(new_fn_outputs),
|
92 |
+
# that can be used to tell autograd.grad which outputs should get tangents
|
93 |
+
# if we trace the backward.
|
94 |
+
def fn_prepped_for_autograd(
|
95 |
+
fn: Callable,
|
96 |
+
meta: ViewAndMutationMeta,
|
97 |
+
) -> Any:
|
98 |
+
@wraps(fn)
|
99 |
+
def inner_fn(*args):
|
100 |
+
args_maybe_cloned = [
|
101 |
+
maybe_to_fresh_input(i, t, meta) for i, t in enumerate(args)
|
102 |
+
]
|
103 |
+
|
104 |
+
outs = fn(*args_maybe_cloned)
|
105 |
+
assert isinstance(outs, (tuple, list))
|
106 |
+
outs = list(outs)
|
107 |
+
assert len(meta.output_info) == len(outs)
|
108 |
+
|
109 |
+
mutated_inputs_to_return = [
|
110 |
+
x
|
111 |
+
for (i, x) in enumerate(args_maybe_cloned)
|
112 |
+
if i in meta.mutated_inp_runtime_indices
|
113 |
+
]
|
114 |
+
|
115 |
+
intermediate_bases = []
|
116 |
+
for i, (o, info) in enumerate(zip(outs, meta.output_info)):
|
117 |
+
if info.output_type == OutputType.alias_of_intermediate_save_as_output:
|
118 |
+
intermediate_bases.append(o._base)
|
119 |
+
|
120 |
+
assert meta.num_intermediate_bases == len(intermediate_bases)
|
121 |
+
|
122 |
+
# the compiled forward should return (mutated_inputs, user_outs, intermediate_bases)
|
123 |
+
fw_outs_to_return = *mutated_inputs_to_return, *outs, *intermediate_bases
|
124 |
+
|
125 |
+
# Also return a boolean mask specifying which outputs to this function will be used as tangents
|
126 |
+
mutated_inputs_grad_mask = [
|
127 |
+
meta.input_info[meta.mutated_inp_runtime_indices[i]].mutates_data
|
128 |
+
and meta.input_info[meta.mutated_inp_runtime_indices[i]].requires_grad
|
129 |
+
for (i, x) in enumerate(mutated_inputs_to_return)
|
130 |
+
]
|
131 |
+
|
132 |
+
# Pass any (non-aliased) outputs in as tangents, since they'll be returned as outputs in the fw
|
133 |
+
# For outputs that are aliases of intermediates, we will have returned the output's _base as an output in the graph instead,
|
134 |
+
# which we *should* send to grad()
|
135 |
+
output_grad_mask = [
|
136 |
+
meta.output_info[i].output_type
|
137 |
+
in [
|
138 |
+
OutputType.non_alias,
|
139 |
+
OutputType.unsafe_view_alias,
|
140 |
+
OutputType.custom_function_view,
|
141 |
+
]
|
142 |
+
# Also, only tensor outputs should participate in the backward
|
143 |
+
# (in particular, Symint outputs in the forward graph shouldn't get tangents)
|
144 |
+
and issubclass(meta.output_info[i].raw_type, Tensor)
|
145 |
+
and meta.output_info[i].requires_grad
|
146 |
+
for (i, x) in enumerate(outs)
|
147 |
+
]
|
148 |
+
|
149 |
+
intermediate_base_grad_mask = [True for _ in range(len(intermediate_bases))]
|
150 |
+
|
151 |
+
out_grad_mask = (
|
152 |
+
mutated_inputs_grad_mask + output_grad_mask + intermediate_base_grad_mask
|
153 |
+
)
|
154 |
+
assert len(out_grad_mask) == len(fw_outs_to_return)
|
155 |
+
|
156 |
+
# Take care to grab and sync the updated inputs from primals_after_cloning (the inputs we actually mutate!)
|
157 |
+
# and not primals (the preserved inputs, pre-mutation, that we pass to grad())
|
158 |
+
# This is annoying: our joint function needs to be aware of functionalization
|
159 |
+
# (syncing mutated inputs before calling autograd.grad())
|
160 |
+
# In theory, we could make the autograd engine do this automatically, although that probably isn't any cleaner.
|
161 |
+
for arg in args_maybe_cloned:
|
162 |
+
if not isinstance(arg, Tensor):
|
163 |
+
continue
|
164 |
+
sync_functional_tensor(arg)
|
165 |
+
|
166 |
+
return fw_outs_to_return, out_grad_mask
|
167 |
+
|
168 |
+
return inner_fn
|
169 |
+
|
170 |
+
|
171 |
+
# Given a fn, computes the joint.
|
172 |
+
# NOTE: fn is expects the following behavior:
|
173 |
+
# (1) fn() needs to return a tuple of (outs, mask),
|
174 |
+
# where `mask` tells us which outputs are meant to have tangents.
|
175 |
+
# we don't know this info automatically, because we don't actually want to blindly
|
176 |
+
# compute tangents for every output that requires grad.
|
177 |
+
# Specifically, outputs that alias inputs won't participate in the backward and get tangents.
|
178 |
+
# (2) fn() cannot mutate any inputs that require gradient.
|
179 |
+
# otherwise, when we compute autograd.grad(), we will not take those input mutations into account
|
180 |
+
# (the way this is handled is that we ensure any inputs that normally get mutated are cloned first)
|
181 |
+
def create_joint(fn: Callable, *, aot_config: AOTConfig) -> Any:
|
182 |
+
def inner_fn(primals: List[Any], tangents: List[Any]):
|
183 |
+
outs, tangent_mask = fn(*primals)
|
184 |
+
assert len(tangent_mask) == len(outs)
|
185 |
+
outs_to_grad = [
|
186 |
+
o for needs_tangent, o in zip(tangent_mask, outs) if needs_tangent
|
187 |
+
]
|
188 |
+
assert len(outs_to_grad) == len(tangents)
|
189 |
+
|
190 |
+
# Get the inputs that need gradients
|
191 |
+
grad_primals = []
|
192 |
+
inputs_needs_grads = []
|
193 |
+
# Note that we're not using primals here,
|
194 |
+
# being carefully not to pass any mutated inputs into autograd.grad()
|
195 |
+
for p in primals:
|
196 |
+
is_grad_tensor = isinstance(p, Tensor) and p.requires_grad
|
197 |
+
inputs_needs_grads.append(is_grad_tensor)
|
198 |
+
if is_grad_tensor:
|
199 |
+
grad_primals.append(p)
|
200 |
+
|
201 |
+
# Get the outputs that need gradients
|
202 |
+
needed_outs = []
|
203 |
+
needed_tangents = []
|
204 |
+
for out, tangent in zip(outs_to_grad, tangents):
|
205 |
+
if isinstance(out, Tensor) and out.requires_grad:
|
206 |
+
# A bit sketchy, but fixes e.g. test_aot_autograd_exhaustive_matmul_cpu_float32
|
207 |
+
# The issue is that we are sensitive to decomps that don't accurately maintain
|
208 |
+
# their output's _base.shape compared to eager mode, and this helps mitigate a bit.
|
209 |
+
# The not definitely_false is also sketchy; if unbacked
|
210 |
+
# symints are involved, we're just going to assume that the
|
211 |
+
# decomps setup the base shape correctly
|
212 |
+
needed_outs.append(
|
213 |
+
out
|
214 |
+
if not definitely_false(sym_eq(out.shape, tangent.shape))
|
215 |
+
else out.view(tangent.shape)
|
216 |
+
)
|
217 |
+
needed_tangents.append(tangent)
|
218 |
+
|
219 |
+
setup_stacktrace_preservation_hooks([out.grad_fn for out in needed_outs])
|
220 |
+
|
221 |
+
if config.functionalize_rng_ops:
|
222 |
+
PhiloxStateTracker.mark_beginning_of_backward()
|
223 |
+
backward_out: Tuple[Tensor, ...] = tuple()
|
224 |
+
# Call the backwards pass
|
225 |
+
if grad_primals:
|
226 |
+
with fx_traceback.preserve_node_meta():
|
227 |
+
# for full graph export, we always export a joint graph where we assume no tangents are needed.
|
228 |
+
if aot_config.no_tangents:
|
229 |
+
assert len(needed_tangents) == 1 and needed_tangents[0].numel() == 1
|
230 |
+
backward_out = torch.autograd.grad(
|
231 |
+
needed_outs,
|
232 |
+
grad_primals,
|
233 |
+
allow_unused=True,
|
234 |
+
)
|
235 |
+
else:
|
236 |
+
backward_out = torch.autograd.grad(
|
237 |
+
needed_outs,
|
238 |
+
grad_primals,
|
239 |
+
grad_outputs=needed_tangents,
|
240 |
+
allow_unused=True,
|
241 |
+
)
|
242 |
+
backward_out_iter = iter(backward_out)
|
243 |
+
return outs, [
|
244 |
+
next(backward_out_iter) if i else None for i in inputs_needs_grads
|
245 |
+
]
|
246 |
+
|
247 |
+
def inner_fn_with_anomaly(*args):
|
248 |
+
with fx_traceback.preserve_node_meta(), warnings.catch_warnings():
|
249 |
+
warnings.filterwarnings("ignore", "Anomaly Detection has been enabled.")
|
250 |
+
with torch.autograd.detect_anomaly(check_nan=False):
|
251 |
+
return inner_fn(*args)
|
252 |
+
|
253 |
+
return inner_fn_with_anomaly
|
254 |
+
|
255 |
+
|
256 |
+
def create_functionalized_rng_ops_wrapper(func, args, trace_joint=True) -> Any:
|
257 |
+
# Functionalization of rng ops changes the calling convention of the joint graph.
|
258 |
+
# It goes from (primals, tangents) to (seed, offset, primals, tangents)
|
259 |
+
# At runtime, we pass on the current seed and offset. This is hidden from
|
260 |
+
# the user.
|
261 |
+
fake_mode = detect_fake_mode()
|
262 |
+
if fake_mode is None:
|
263 |
+
fake_mode = nullcontext()
|
264 |
+
|
265 |
+
def override_get_rng_state(device: Union[int, str, torch.device] = "cuda"):
|
266 |
+
out = PhiloxStateTracker.get_state_as_tensor()
|
267 |
+
return out
|
268 |
+
|
269 |
+
def override_set_rng_state(x, device: Union[int, str, torch.device] = "cuda"):
|
270 |
+
PhiloxStateTracker.set_state_from_tensor(x)
|
271 |
+
|
272 |
+
def append_rng_offsets(args):
|
273 |
+
if trace_joint:
|
274 |
+
# args signature before: Tuple(fwd_outputs), Tuple(bwd_outputs)
|
275 |
+
# args signature after: Tuple(fwd_outputs, new_fwd_rng_offset), Tuple(bwd_offset, new_bwd_rng_offset)
|
276 |
+
return (
|
277 |
+
(*args[0], PhiloxStateTracker.get_updated_fwd_offset()),
|
278 |
+
(*args[1], PhiloxStateTracker.get_updated_bwd_offset()),
|
279 |
+
)
|
280 |
+
else:
|
281 |
+
# args signature before: Tuple(fwd_outputs)
|
282 |
+
# args signature after: Tuple(fwd_outputs, new_fwd_rng_offset)
|
283 |
+
return (*args, PhiloxStateTracker.get_updated_fwd_offset())
|
284 |
+
|
285 |
+
def traced_joint(
|
286 |
+
primals, tangents, fwd_seed, fwd_base_offset, bwd_seed, bwd_base_offset
|
287 |
+
):
|
288 |
+
with patch("torch.cuda.get_rng_state", override_get_rng_state), patch(
|
289 |
+
"torch.cuda.set_rng_state", override_set_rng_state
|
290 |
+
):
|
291 |
+
return append_rng_offsets(func(primals, tangents))
|
292 |
+
|
293 |
+
def traced_forward(*primals_fwd_seed_fwd_base_offset):
|
294 |
+
# The signature is (*primals, seed, offset)
|
295 |
+
with patch("torch.cuda.get_rng_state", override_get_rng_state), patch(
|
296 |
+
"torch.cuda.set_rng_state", override_set_rng_state
|
297 |
+
):
|
298 |
+
return append_rng_offsets(func(*primals_fwd_seed_fwd_base_offset[:-2]))
|
299 |
+
|
300 |
+
if trace_joint:
|
301 |
+
# Get the current seed and offset to setup tracing.
|
302 |
+
fwd_seed, fwd_base_offset = CUDARngStateHelper.get_torch_state_as_tuple(
|
303 |
+
fake_mode
|
304 |
+
)
|
305 |
+
bwd_seed, bwd_base_offset = CUDARngStateHelper.get_torch_state_as_tuple(
|
306 |
+
fake_mode
|
307 |
+
)
|
308 |
+
PhiloxStateTracker.record_state(fwd_seed, fwd_base_offset, "forward")
|
309 |
+
PhiloxStateTracker.record_state(bwd_seed, bwd_base_offset, "backward")
|
310 |
+
return traced_joint, (
|
311 |
+
*args,
|
312 |
+
fwd_seed,
|
313 |
+
fwd_base_offset,
|
314 |
+
bwd_seed,
|
315 |
+
bwd_base_offset,
|
316 |
+
)
|
317 |
+
else:
|
318 |
+
# Get the current seed and offset to setup tracing.
|
319 |
+
fwd_seed, fwd_base_offset = CUDARngStateHelper.get_torch_state_as_tuple(
|
320 |
+
fake_mode
|
321 |
+
)
|
322 |
+
PhiloxStateTracker.record_state(fwd_seed, fwd_base_offset, "forward")
|
323 |
+
return traced_forward, (*args, fwd_seed, fwd_base_offset)
|
324 |
+
|
325 |
+
|
326 |
+
# This creates the final function that we want to trace using make_fx(),
|
327 |
+
# in both aot_dispatch_autograd and aot_dispatch_base.
|
328 |
+
# Preconditions:
|
329 |
+
# - fn corresponds to the user's fw function
|
330 |
+
# - fn arguments have been flattened, duplicate arguments have been handled
|
331 |
+
# - In the returned function, the "primals" arguments *includes* synthetic bases.
|
332 |
+
# This function does the work of functionalizing the input function,
|
333 |
+
# and performing copy_() calls at the end of the function if `keep_input_mutations` is set.
|
334 |
+
# The function returned has signature that is either:
|
335 |
+
# (1) "traced_fn(primals: List[Any])" if trace_joint is False
|
336 |
+
# (2) "traced_fn(primals: List[Any], tangents: List[Any])" if trace_joint is True
|
337 |
+
# Returns a new (functionalized) function, and updated arguments to call it with.
|
338 |
+
def create_functionalized_fn(
|
339 |
+
fn,
|
340 |
+
args,
|
341 |
+
*,
|
342 |
+
meta: ViewAndMutationMeta,
|
343 |
+
aot_config: AOTConfig,
|
344 |
+
trace_joint: bool,
|
345 |
+
) -> Any:
|
346 |
+
@wraps(fn)
|
347 |
+
def _functionalized_f_helper(*args):
|
348 |
+
# See Note [Disabling Functionalize TLS Above Python Functionalization]
|
349 |
+
disable_above = torch._C._ExcludeDispatchKeyGuard(
|
350 |
+
torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
|
351 |
+
)
|
352 |
+
|
353 |
+
# See Note [Side-Effectful Tokens in AOTAutograd]
|
354 |
+
if trace_joint:
|
355 |
+
assert (
|
356 |
+
isinstance(args, tuple)
|
357 |
+
and len(args) == 2
|
358 |
+
and isinstance(args[0], (list, tuple))
|
359 |
+
)
|
360 |
+
tokens = args[0][: len(meta.tokens)]
|
361 |
+
actual_args = args[0][len(meta.tokens) :]
|
362 |
+
args = (actual_args, args[1])
|
363 |
+
else:
|
364 |
+
tokens = args[: len(meta.tokens)]
|
365 |
+
args = args[len(meta.tokens) :]
|
366 |
+
assert all(token.numel() == 0 for token in tokens)
|
367 |
+
|
368 |
+
with disable_above:
|
369 |
+
# Wrap inputs into functional wrappers
|
370 |
+
f_args = pytree.tree_map(to_fun, args)
|
371 |
+
f_tokens = pytree.tree_map(to_fun, tokens)
|
372 |
+
|
373 |
+
# Populate the current FunctionalTensorMode with the tokens per
|
374 |
+
# operator. See Note [FunctionalTensorMode is Stateful]
|
375 |
+
functional_tensor_mode = (
|
376 |
+
torch.utils._python_dispatch._detect_functional_mode()
|
377 |
+
)
|
378 |
+
assert functional_tensor_mode is not None
|
379 |
+
for i, k in enumerate(meta.tokens.keys()):
|
380 |
+
functional_tensor_mode._tokens[k] = f_tokens[i]
|
381 |
+
|
382 |
+
# Run the joint
|
383 |
+
f_outs = fn(*f_args)
|
384 |
+
|
385 |
+
# Return both the tokens and the outputs
|
386 |
+
# See Note [Side-Effectful Tokens in AOTAutograd]
|
387 |
+
f_outs = (*functional_tensor_mode._tokens.values(), *f_outs)
|
388 |
+
|
389 |
+
if trace_joint:
|
390 |
+
# We support a limited amount of mutation of graph inputs during the backward pass.
|
391 |
+
# (This is used e.g. by Float8, which needs to update buffers during the backward pass)
|
392 |
+
# Here, we perform extra checks for primals that were mutated in the **backward**
|
393 |
+
# We're doing the checks here instead of doing them with the rest of the input mutation handling because:
|
394 |
+
# - We need to detect inputs that were mutated in the backward **separately** from mutations that happened
|
395 |
+
# during the forward, because the handling is different: some input mutations from the the forward
|
396 |
+
# can be only handled in a fw-only runtime epilogue, and in theory if we wanted to handle those same
|
397 |
+
# types of mutations in the backward we would need a bw-only runtime epilogue.
|
398 |
+
# - We could in theory have our analysis pass differentiate mutations in the fw from mutations in
|
399 |
+
# the bw by running our analysis first on the fw-only graph, and then on the joint graph. This would
|
400 |
+
# require an extra round of tracing though, so it's more efficient to do in-line here.
|
401 |
+
assert (
|
402 |
+
isinstance(args, tuple)
|
403 |
+
and len(args) == 2
|
404 |
+
and isinstance(args[0], (list, tuple))
|
405 |
+
)
|
406 |
+
# Only look at mutations that happened to forward inputs (e.g. fw buffers that were saved for bw)
|
407 |
+
primals_before = args[0]
|
408 |
+
primals_after = pytree.tree_map(from_fun, f_args[0])
|
409 |
+
for f_inpt, before, after, inpt_info in zip(
|
410 |
+
f_args[0], primals_before, primals_after, meta.input_info
|
411 |
+
):
|
412 |
+
# Ban metadata mutations on fw inputs during the bw
|
413 |
+
if not inpt_info.mutates_metadata:
|
414 |
+
assert not has_metadata_mutation(
|
415 |
+
f_inpt, before, check_only_storage_mutation=False
|
416 |
+
), "Found a graph input that had its metadata mutated in the backward. This is not supported"
|
417 |
+
# Allow data mutations on fw inputs during the bw, but only if they do not require grad
|
418 |
+
# So we can guarantee that we can keep the mutations in the graph
|
419 |
+
if has_data_mutation(f_inpt) and not inpt_info.mutates_data:
|
420 |
+
assert (
|
421 |
+
not inpt_info.requires_grad
|
422 |
+
), "Found a graph input that requires_grad and was mutated in the backward. This is not supported"
|
423 |
+
# Otherwise, put the mutation in the graph
|
424 |
+
before.copy_(after)
|
425 |
+
# Now that we covered mutations to *forward* inputs during the backward,
|
426 |
+
# we also need to cover mutations to *backward-only* inputs during the backward (e.g. mutation to a grad_out).
|
427 |
+
# Today, we will just error in all cases of this happening unless someone needs us to support it.
|
428 |
+
tangents_before = args[1]
|
429 |
+
tangents_after = pytree.tree_map(from_fun, f_args[1])
|
430 |
+
for f_inpt, before, after in zip(
|
431 |
+
f_args[1], tangents_before, tangents_after
|
432 |
+
):
|
433 |
+
assert not has_metadata_mutation(
|
434 |
+
f_inpt, before, check_only_storage_mutation=False
|
435 |
+
) and not has_data_mutation(
|
436 |
+
f_inpt
|
437 |
+
), "Found an input to the backward that was mutated during the backward pass. This is not supported"
|
438 |
+
|
439 |
+
if aot_config.keep_inference_input_mutations:
|
440 |
+
# Note: This is a bit annoying. There's a layering issue here, where:
|
441 |
+
# (1) functionalization needs to operate on **synthetic base** inputs, before unpacking them into the "real" inputs.
|
442 |
+
# (2) For keep_input_mutations, we support tracing a call to copy_() directly on mutated inputs.
|
443 |
+
# However, we **only** want to support this for inputs that have data-only (and no metadata) mutations,
|
444 |
+
# because inductor (and backends in generally) would prefer not to see these (e.g. as_strided_(), resize_()).
|
445 |
+
# This makes it pretty difficult for this logic to operate on synthetic bases.
|
446 |
+
# (3) In addition, there are cases where it's significantly cheaper to perform the copy on the individual
|
447 |
+
# (unpacked) input aliases, instead of the synthetic base.
|
448 |
+
# Example case where (3) could be important:
|
449 |
+
#
|
450 |
+
# def f(x, y):
|
451 |
+
# x.mul_(2)
|
452 |
+
# y.mul_(3)
|
453 |
+
# return x, y
|
454 |
+
# a = torch.ones(1'000'000)
|
455 |
+
# x, y = out(a[0:9], a[1:10])
|
456 |
+
#
|
457 |
+
# It would be much better to add copy_() calls into the graph for the two tiny slices, instead of materializing
|
458 |
+
# a giant "updated synthetic base" and copying into a's entire storage.
|
459 |
+
#
|
460 |
+
# For now, we are pessimistically not performing the optimization from (3);
|
461 |
+
# we will materialize an "updated" synthetic base, and copy it back to the synthetic input base.
|
462 |
+
# This allows us to factor aot autograd much more nicely, since only one area of the code needs to worry
|
463 |
+
# about synthetic bases.
|
464 |
+
for i, (inpt_old, inpt_f) in enumerate(
|
465 |
+
zip(args, f_args) if not trace_joint else zip(args[0], f_args[0])
|
466 |
+
):
|
467 |
+
if not isinstance(inpt_f, torch.Tensor):
|
468 |
+
continue
|
469 |
+
assert is_fun(inpt_f)
|
470 |
+
inpt_new = from_fun(inpt_f)
|
471 |
+
if meta.input_info[i].mutation_type == MutationType.MUTATED_IN_GRAPH:
|
472 |
+
# We found an input that had a (data-only) mutation.
|
473 |
+
# Since keep_input_mutations is set, we need to faithfully apply a copy_()
|
474 |
+
# so the compiler will see the input mutation in the graph.
|
475 |
+
if meta.input_info[i].mutations_hidden_from_autograd:
|
476 |
+
# Hidden from autograd = run under no_grad, **and** don't bump VC
|
477 |
+
with torch.no_grad(), torch.autograd._unsafe_preserve_version_counter(
|
478 |
+
inpt_old
|
479 |
+
):
|
480 |
+
inpt_old.copy_(inpt_new)
|
481 |
+
elif meta.input_info[i].mutations_under_no_grad_or_inference_mode:
|
482 |
+
# Under no_grad = run under no_grad (we still bump the VC though)
|
483 |
+
# (inference_mode will also bump the VC, as long as the tensor in question
|
484 |
+
# was created outside of inference_mode)
|
485 |
+
with torch.no_grad():
|
486 |
+
inpt_old.copy_(inpt_new)
|
487 |
+
else:
|
488 |
+
inpt_old.copy_(inpt_new)
|
489 |
+
|
490 |
+
# When an output tensor is a functionalized mutated input, and we
|
491 |
+
# were able to move the mutation in to the graph then we can return
|
492 |
+
# the mutated input directly. This prevents duplicating the
|
493 |
+
# tensors contents.
|
494 |
+
flat_outs, outs_spec = pytree.tree_flatten(f_outs)
|
495 |
+
flat_outs = [from_fun(o) for o in flat_outs]
|
496 |
+
num_outs = len(meta.output_info)
|
497 |
+
|
498 |
+
for i, outp in enumerate(flat_outs[:num_outs]):
|
499 |
+
info = meta.output_info[i]
|
500 |
+
if info.output_type != OutputType.is_input:
|
501 |
+
continue
|
502 |
+
|
503 |
+
assert info.base_idx is not None
|
504 |
+
if (
|
505 |
+
meta.input_info[info.base_idx].mutation_type
|
506 |
+
== MutationType.MUTATED_IN_GRAPH
|
507 |
+
):
|
508 |
+
flat_outs[i] = args[info.base_idx]
|
509 |
+
return pytree.tree_unflatten(flat_outs, outs_spec)
|
510 |
+
|
511 |
+
return pytree.tree_map(from_fun, f_outs)
|
512 |
+
|
513 |
+
# Kinda annoying, but needed to make sure that the fx graph we trace out has "primals"
|
514 |
+
# and "tangents" as its input names (which are special-cased by the partitioner)
|
515 |
+
# TODO (tmanlaibaatar) revisit this if we ever need to turn on non-strict joint graph export
|
516 |
+
def joint_helper(primals, tangents):
|
517 |
+
return _functionalized_f_helper(primals, tangents)
|
518 |
+
|
519 |
+
helper = joint_helper if trace_joint else _functionalized_f_helper
|
520 |
+
if config.functionalize_rng_ops:
|
521 |
+
# Setup the wrapper for functionalization of rng ops
|
522 |
+
helper, args = create_functionalized_rng_ops_wrapper(helper, args, trace_joint)
|
523 |
+
|
524 |
+
# Additionally pass in tokens as inputs
|
525 |
+
# See Note [Side-Effectful Tokens in AOTAutograd]
|
526 |
+
additional_token_inputs = [torch.tensor([])] * len(meta.tokens)
|
527 |
+
if trace_joint:
|
528 |
+
args = ([*additional_token_inputs, *args[0]], *args[1:])
|
529 |
+
else:
|
530 |
+
args = [*additional_token_inputs, *args]
|
531 |
+
|
532 |
+
return helper, args
|
533 |
+
|
534 |
+
|
535 |
+
# Given a function operating on Subclass -> Subclass, returns an function that operates on Tensor -> Tensor
|
536 |
+
# Also returns:
|
537 |
+
# - the new set of arguments to pass into this function (now that tensor subclasses have been eliminated)
|
538 |
+
# - the updated ViewAndMutationMeta for this dense -> dense function.
|
539 |
+
# The other important arguments are:
|
540 |
+
# - flat_fn_maybe_joint: when is_joint_structure=True, this is the joint fw-bw function.
|
541 |
+
# when is_joint_structure=False, this is just the forward function.
|
542 |
+
# - fw_only: this is *always* the forward-only function.
|
543 |
+
# Why do we need this? We need to collect updated ViewAndMutationMeta on our new dense -> dense functions.
|
544 |
+
# In particular, we need this to tell the partitioner how many dense forward outputs there are.
|
545 |
+
def aot_dispatch_subclass(
|
546 |
+
flat_fn_maybe_joint,
|
547 |
+
args: List[Any],
|
548 |
+
*,
|
549 |
+
is_joint_structure: bool,
|
550 |
+
meta: ViewAndMutationMeta,
|
551 |
+
fw_only: Callable,
|
552 |
+
) -> SubclassTracingInfo:
|
553 |
+
# Skip logic if we don't need to trace through any subclasses
|
554 |
+
req_subclass_dispatch = requires_subclass_dispatch(args, meta)
|
555 |
+
if not req_subclass_dispatch:
|
556 |
+
return SubclassTracingInfo(
|
557 |
+
plain_tensor_trace_fn=flat_fn_maybe_joint,
|
558 |
+
plain_tensor_args=args,
|
559 |
+
maybe_subclass_meta=None,
|
560 |
+
)
|
561 |
+
|
562 |
+
# TODO: add subclass guards (later PR).
|
563 |
+
|
564 |
+
# What's going on here? We need to compute subclass metadata about the outputs of the joint (grad_inputs).
|
565 |
+
# Annoying: we don't know the grad input metas until we're in the middle of tracing the joint,
|
566 |
+
# so we set it later, while we're tracing the joint (see inner_fn() below).
|
567 |
+
# Another option would be to run our run_functionalized_fw_and_collect_metadata() function
|
568 |
+
# directly on the joint, but this would hurt compile time (adding yet another pass through the joint).
|
569 |
+
subclass_meta = SubclassMeta()
|
570 |
+
|
571 |
+
def inner_fn(fn, args, *, use_trace_joint: bool):
|
572 |
+
# Step 1: wrap tensor inputs into subclasses if necessary
|
573 |
+
all_args = wrap_tensor_subclasses_maybe_joint(
|
574 |
+
args, is_joint_structure=use_trace_joint, meta=meta
|
575 |
+
)
|
576 |
+
|
577 |
+
# Step 2: call the inner function, with our (maybe subclass) inputs
|
578 |
+
wrapped_outs = fn(*all_args)
|
579 |
+
|
580 |
+
if use_trace_joint:
|
581 |
+
# See Note: [Computing Subclass Metadata about grad_inputs]
|
582 |
+
# We also stash subclass info on our grad_inputs, if we're tracing the joint.
|
583 |
+
nonlocal subclass_meta
|
584 |
+
assert isinstance(wrapped_outs, tuple) and len(wrapped_outs) == 2
|
585 |
+
# Don't need fw outs since we already have subclass metadata on them
|
586 |
+
grad_inputs = wrapped_outs[1]
|
587 |
+
subclass_meta.grad_input_metas = create_subclass_meta(grad_inputs)
|
588 |
+
|
589 |
+
# Step 3: Unwrap any subclass outputs back into dense tensors
|
590 |
+
unwrapped_outs = unwrap_tensor_subclasses(
|
591 |
+
wrapped_outs, is_joint_structure=use_trace_joint
|
592 |
+
)
|
593 |
+
return unwrapped_outs
|
594 |
+
|
595 |
+
def joint_fn(primals, tangents):
|
596 |
+
return inner_fn(flat_fn_maybe_joint, (primals, tangents), use_trace_joint=True)
|
597 |
+
|
598 |
+
def fw_fn(*primals):
|
599 |
+
return inner_fn(flat_fn_maybe_joint, primals, use_trace_joint=False)
|
600 |
+
|
601 |
+
def metadata_fn(*primals):
|
602 |
+
return inner_fn(fw_only, primals, use_trace_joint=False)
|
603 |
+
|
604 |
+
args_unwrapped = unwrap_tensor_subclasses(
|
605 |
+
args, is_joint_structure=is_joint_structure
|
606 |
+
)
|
607 |
+
|
608 |
+
if is_joint_structure:
|
609 |
+
primals_unwrapped = args_unwrapped[0]
|
610 |
+
fn_to_trace = joint_fn
|
611 |
+
else:
|
612 |
+
primals_unwrapped = args_unwrapped
|
613 |
+
fn_to_trace = fw_fn
|
614 |
+
|
615 |
+
# Note: [Partitioner handling for Subclasses, Part 1]
|
616 |
+
# The way the partitioner works is that:
|
617 |
+
# (1) we pass is a single graph containing the joint fw/bw,
|
618 |
+
# where the # of graph outputs corresponds to # fw_outputs + # grad_inputs
|
619 |
+
# (2) The partitioner accepts an arguments, num_fwd_outputs,
|
620 |
+
# and assumes that the first "num_fwd_outputs" graph outputs correspond
|
621 |
+
# to outputs of the forward graph.
|
622 |
+
# How do tensor subclasses enter the picture?
|
623 |
+
# the num_fwd_outputs in the final graph is actually non-trivial to compute,
|
624 |
+
# because it can be influenced by input mutations and intermediate bases.
|
625 |
+
# So we compute it by inspecting the current ViewAndMutationMeta object.
|
626 |
+
# However, the original ViewAndMutationMeta that we computed was created
|
627 |
+
# on the subclass -> subclass graph,
|
628 |
+
# which can have a different number of outputs than the dense -> dense graph.
|
629 |
+
# That's why we createa a fresh metadata object on the dense -> dense function here,
|
630 |
+
# and plumb it back up to the partitioner.
|
631 |
+
# See Note: [Partitioner handling for Subclasses, Part 2] for more info.
|
632 |
+
meta_updated = run_functionalized_fw_and_collect_metadata(
|
633 |
+
metadata_fn,
|
634 |
+
keep_input_mutations=meta.keep_input_mutations,
|
635 |
+
is_train=meta.is_train,
|
636 |
+
)(*primals_unwrapped)
|
637 |
+
|
638 |
+
subclass_meta.fw_metadata = meta_updated
|
639 |
+
|
640 |
+
return SubclassTracingInfo(
|
641 |
+
plain_tensor_trace_fn=fn_to_trace,
|
642 |
+
plain_tensor_args=args_unwrapped,
|
643 |
+
maybe_subclass_meta=subclass_meta,
|
644 |
+
)
|
645 |
+
|
646 |
+
|
647 |
+
class PropagateUnbackedSymInts(torch.fx.Interpreter):
|
648 |
+
def run_node(self, n: torch.fx.Node):
|
649 |
+
import sympy
|
650 |
+
|
651 |
+
result = super().run_node(n)
|
652 |
+
# TODO: handle Tensor returns
|
653 |
+
if "example_value" in n.meta:
|
654 |
+
if isinstance(result, torch.SymInt) and isinstance(
|
655 |
+
result.node.expr, sympy.Symbol
|
656 |
+
):
|
657 |
+
torch._check(result == n.meta["example_value"])
|
658 |
+
|
659 |
+
return result
|
660 |
+
|
661 |
+
|
662 |
+
def create_functional_call(mod, params_spec, params_len, store_orig_mod=False):
|
663 |
+
# Redundant with dynamo, but worth having in case this gets invoked elsewhere.
|
664 |
+
# https://github.com/pytorch/pytorch/issues/103569
|
665 |
+
|
666 |
+
def functional_call(*args, **kwargs):
|
667 |
+
with stateless._reparametrize_module(
|
668 |
+
mod, pytree.tree_unflatten(args[:params_len], params_spec)
|
669 |
+
):
|
670 |
+
if isinstance(mod, torch.fx.GraphModule):
|
671 |
+
with fx_traceback.preserve_node_meta(), warnings.catch_warnings():
|
672 |
+
warnings.filterwarnings(
|
673 |
+
"ignore", "Anomaly Detection has been enabled."
|
674 |
+
)
|
675 |
+
with torch.autograd.detect_anomaly(check_nan=False):
|
676 |
+
out = PropagateUnbackedSymInts(mod).run(
|
677 |
+
*args[params_len:], **kwargs
|
678 |
+
)
|
679 |
+
else:
|
680 |
+
out = mod(*args[params_len:], **kwargs)
|
681 |
+
|
682 |
+
if not isinstance(out, (tuple, list)):
|
683 |
+
raise RuntimeError(
|
684 |
+
"Graph output must be a tuple(). This is so that we can avoid "
|
685 |
+
"pytree processing of the outputs. Please change the module to "
|
686 |
+
"have tuple outputs or use aot_module instead."
|
687 |
+
)
|
688 |
+
return out
|
689 |
+
|
690 |
+
# Note [Preserving the nn module stack metadata during export non-strict mode]
|
691 |
+
# This path is currently only used by the non-strict export flow,
|
692 |
+
# where we cannot rely on dynamo to preserve nn stack metadata in our captured graph.
|
693 |
+
# Instead, we stash the original user nn module here, and rely on `make_fx` to grab
|
694 |
+
# this stashed module and use it to track nn module stack metadata
|
695 |
+
if store_orig_mod and not hasattr(functional_call, "_orig_mod"):
|
696 |
+
functional_call._orig_mod = mod # type: ignore[attr-defined]
|
697 |
+
|
698 |
+
return functional_call
|
venv/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/utils.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Contains various utils for AOTAutograd, including those for handling collections.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import dataclasses
|
6 |
+
import warnings
|
7 |
+
from contextlib import nullcontext
|
8 |
+
from functools import wraps
|
9 |
+
from typing import Any, Callable, List, Optional, Tuple
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.utils._pytree as pytree
|
13 |
+
from torch.fx.experimental._backward_state import BackwardState
|
14 |
+
from torch.fx.experimental.proxy_tensor import py_sym_types
|
15 |
+
|
16 |
+
KNOWN_TYPES = [
|
17 |
+
torch.Tensor,
|
18 |
+
BackwardState,
|
19 |
+
int,
|
20 |
+
str,
|
21 |
+
float,
|
22 |
+
bool,
|
23 |
+
type(None),
|
24 |
+
*py_sym_types,
|
25 |
+
]
|
26 |
+
|
27 |
+
original_zip = zip
|
28 |
+
|
29 |
+
|
30 |
+
def strict_zip(*iterables, strict=True, **kwargs):
|
31 |
+
if not strict:
|
32 |
+
return original_zip(*iterables, **kwargs)
|
33 |
+
|
34 |
+
shortest_length = min(len(it) for it in iterables)
|
35 |
+
for iterable in iterables:
|
36 |
+
if len(iterable) != shortest_length:
|
37 |
+
raise ValueError(
|
38 |
+
"The iterables have different lengths and strict mode is enabled."
|
39 |
+
)
|
40 |
+
|
41 |
+
return original_zip(*iterables, **kwargs)
|
42 |
+
|
43 |
+
|
44 |
+
def _get_symint_hints(exprs):
|
45 |
+
"""
|
46 |
+
Get the hints of a list/tuple of int/SymInt.
|
47 |
+
"""
|
48 |
+
if isinstance(exprs, (list, tuple)):
|
49 |
+
return type(exprs)(_get_symint_hints(e) for e in exprs)
|
50 |
+
elif isinstance(exprs, torch.SymInt):
|
51 |
+
return exprs.node.shape_env.size_hint(exprs.node.expr)
|
52 |
+
else:
|
53 |
+
return exprs
|
54 |
+
|
55 |
+
|
56 |
+
def partial_flatten_asdict(obj: Any) -> Any:
|
57 |
+
if dataclasses.is_dataclass(obj):
|
58 |
+
return {
|
59 |
+
field.name: getattr(obj, field.name) for field in dataclasses.fields(obj)
|
60 |
+
}
|
61 |
+
elif isinstance(obj, (list, tuple)):
|
62 |
+
return obj.__class__([partial_flatten_asdict(item) for item in obj])
|
63 |
+
elif isinstance(obj, dict):
|
64 |
+
return {k: partial_flatten_asdict(v) for k, v in obj.items()}
|
65 |
+
else:
|
66 |
+
return obj
|
67 |
+
|
68 |
+
|
69 |
+
def normalize_as_list(x):
|
70 |
+
if isinstance(x, tuple):
|
71 |
+
return list(x)
|
72 |
+
elif isinstance(x, list):
|
73 |
+
return x
|
74 |
+
return [x]
|
75 |
+
|
76 |
+
|
77 |
+
def _get_autocast_states():
|
78 |
+
return [
|
79 |
+
torch.is_autocast_enabled(),
|
80 |
+
torch.is_autocast_cpu_enabled(),
|
81 |
+
torch.get_autocast_gpu_dtype(),
|
82 |
+
torch.get_autocast_cpu_dtype(),
|
83 |
+
torch.is_autocast_cache_enabled(),
|
84 |
+
]
|
85 |
+
|
86 |
+
|
87 |
+
def make_boxed_func(f):
|
88 |
+
def g(args):
|
89 |
+
return f(*args)
|
90 |
+
|
91 |
+
g._boxed_call = True # type: ignore[attr-defined]
|
92 |
+
return g
|
93 |
+
|
94 |
+
|
95 |
+
def make_boxed_compiler(compiler):
|
96 |
+
@wraps(compiler)
|
97 |
+
def f(fx_g, inps):
|
98 |
+
out_f = compiler(fx_g, inps)
|
99 |
+
fx_g = make_boxed_func(out_f)
|
100 |
+
return fx_g
|
101 |
+
|
102 |
+
return f
|
103 |
+
|
104 |
+
|
105 |
+
def call_func_at_runtime_with_args(f, args, steal_args=False, disable_amp=False):
|
106 |
+
if not steal_args:
|
107 |
+
args = list(args)
|
108 |
+
assert isinstance(args, list)
|
109 |
+
|
110 |
+
context = torch._C._DisableAutocast if disable_amp else nullcontext
|
111 |
+
with context():
|
112 |
+
if hasattr(f, "_boxed_call"):
|
113 |
+
out = normalize_as_list(f(args))
|
114 |
+
else:
|
115 |
+
# TODO: Please remove soon
|
116 |
+
# https://github.com/pytorch/pytorch/pull/83137#issuecomment-1211320670
|
117 |
+
warnings.warn(
|
118 |
+
"Your compiler for AOTAutograd is returning a function that doesn't take boxed arguments. "
|
119 |
+
"Please wrap it with functorch.compile.make_boxed_func or handle the boxed arguments yourself. "
|
120 |
+
"See https://github.com/pytorch/pytorch/pull/83137#issuecomment-1211320670 for rationale."
|
121 |
+
)
|
122 |
+
out = normalize_as_list(f(*args))
|
123 |
+
return out
|
124 |
+
|
125 |
+
|
126 |
+
# Inspired by autodidax (thanks!)
|
127 |
+
class PytreeThunk:
|
128 |
+
spec: Optional[pytree.TreeSpec] = None
|
129 |
+
# These are some kinda dumb microoptimizations that save about 3-4 us of overhead.
|
130 |
+
is_simple: Optional[
|
131 |
+
bool
|
132 |
+
] = None # if the output spec is a tuple/list, we won't bother unflattening it.
|
133 |
+
is_really_simple: Optional[bool] = None # if the output spec is a LeafSpec
|
134 |
+
|
135 |
+
def set(self, spec: pytree.TreeSpec) -> None:
|
136 |
+
assert self.spec is None or self.spec == spec
|
137 |
+
assert spec is not None
|
138 |
+
self.spec: pytree.TreeSpec = spec
|
139 |
+
if self.spec.type in {tuple, list} and all(
|
140 |
+
child.is_leaf() for child in spec.children_specs
|
141 |
+
):
|
142 |
+
self.is_simple = True
|
143 |
+
if self.spec.is_leaf():
|
144 |
+
self.is_really_simple = True
|
145 |
+
|
146 |
+
def unflatten(self, x: List[Any]) -> Any:
|
147 |
+
if self.is_really_simple:
|
148 |
+
return x[0]
|
149 |
+
if self.is_simple:
|
150 |
+
return x
|
151 |
+
assert self.spec is not None
|
152 |
+
return pytree.tree_unflatten(x, self.spec)
|
153 |
+
|
154 |
+
|
155 |
+
# Creates a function that returns flattened inputs and outputs
|
156 |
+
# Also returns the output tree spec, which is needed to recover the "unflattened"
|
157 |
+
# output tree structure later.
|
158 |
+
def create_tree_flattened_fn(fn, args, kwargs=None) -> Tuple[Callable, PytreeThunk]:
|
159 |
+
if kwargs is None:
|
160 |
+
kwargs = {}
|
161 |
+
# Save the args_spec for flat_tensor_args to unflatten while tracing
|
162 |
+
_, tensor_args_spec = pytree.tree_flatten((args, kwargs))
|
163 |
+
out_spec = PytreeThunk()
|
164 |
+
|
165 |
+
def flat_fn(*flat_args):
|
166 |
+
# The input are flattened tensor args. Prepare the args in the
|
167 |
+
# order that original function expects. Add static args as well.
|
168 |
+
# They will appear as tensor constants in the traced graph.
|
169 |
+
nonlocal out_spec
|
170 |
+
args, kwargs = pytree.tree_unflatten(flat_args, tensor_args_spec)
|
171 |
+
tree_out = fn(*args, **kwargs)
|
172 |
+
flat_out, spec = pytree.tree_flatten(tree_out)
|
173 |
+
for i in flat_out:
|
174 |
+
is_known_type = False
|
175 |
+
for j in KNOWN_TYPES:
|
176 |
+
if isinstance(i, j):
|
177 |
+
is_known_type = True
|
178 |
+
break
|
179 |
+
if not is_known_type:
|
180 |
+
raise RuntimeError(
|
181 |
+
f"Found {type(i)} in output, which is not a known type. "
|
182 |
+
"If this type holds tensors, you need to register a pytree for it. "
|
183 |
+
"See https://github.com/pytorch/functorch/issues/475 for a brief "
|
184 |
+
"explanation why. If you don't need to register a pytree, please "
|
185 |
+
"leave a comment explaining your use case and we'll make this more "
|
186 |
+
"ergonomic to deal with"
|
187 |
+
)
|
188 |
+
out_spec.set(spec)
|
189 |
+
return flat_out
|
190 |
+
|
191 |
+
# Can't use functools.wraps here because the wrapper has different
|
192 |
+
# calling convention
|
193 |
+
if hasattr(fn, "_orig_mod"):
|
194 |
+
flat_fn._orig_mod = fn._orig_mod # type: ignore[attr-defined]
|
195 |
+
|
196 |
+
return flat_fn, out_spec
|
197 |
+
|
198 |
+
|
199 |
+
# This function takes in a tensor t, and returns one of t, t.view(), or t.clone().
|
200 |
+
# When tracing the joint forward + backward, for any inputs in the graph that are mutated,
|
201 |
+
# we need to clone them first (and similarly for metadata-only mutations, we need to view them first).
|
202 |
+
# The idea is that when we trace the backward, we need to pass in the *original* primals
|
203 |
+
# to autograd.grad(), before they were mutated.
|
204 |
+
# Note: when we have synthetic base inputs, we need to clone them *before* creating views off of them.
|
205 |
+
# This means that "idx" here represents the index of the (potentially) synthetic base.
|
206 |
+
# What we need to do is:
|
207 |
+
# (1) map the current (post-synthetic-base calling convention) input argument index
|
208 |
+
# to int index pre-synthetic-base-calling-convention.
|
209 |
+
# (2) There could be multiple, if this index corresponds to a synthetic base
|
210 |
+
# that has multiple input aliases.
|
211 |
+
# (3) If any of those corresponding inputs get metadata mutations, then we clone the base.
|
212 |
+
def maybe_to_fresh_input(idx, t, meta):
|
213 |
+
if not isinstance(t, torch.Tensor):
|
214 |
+
return t
|
215 |
+
if idx in meta.mutated_inp_runtime_indices:
|
216 |
+
# We only need to bother cloning mutated inputs that participate in autograd.
|
217 |
+
mutated_inp_idx = meta.mutated_inp_runtime_indices.index(idx)
|
218 |
+
if meta.input_info[idx].requires_grad and meta.input_info[idx].mutates_data:
|
219 |
+
# Make sure the primal we pass to autograd.grad()
|
220 |
+
# sees the tensor before the mutation
|
221 |
+
return t.clone()
|
222 |
+
if meta.input_info[idx] and meta.input_info[idx].mutates_metadata:
|
223 |
+
# Make sure the primal we pass to autograd.grad()
|
224 |
+
# sees the tensor before the metadata mutation
|
225 |
+
return t.view(t.shape)
|
226 |
+
return t
|
venv/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py
ADDED
@@ -0,0 +1,1246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import itertools
|
4 |
+
from contextlib import nullcontext
|
5 |
+
from functools import partial, wraps
|
6 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple
|
7 |
+
from unittest.mock import patch
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils._pytree as pytree
|
12 |
+
import torch.utils.dlpack
|
13 |
+
from torch import Tensor
|
14 |
+
from torch._dispatch.python import enable_python_dispatcher
|
15 |
+
from torch._dynamo import compiled_autograd
|
16 |
+
from torch._dynamo.utils import dynamo_timed, preserve_rng_state
|
17 |
+
from torch._guards import detect_fake_mode
|
18 |
+
from torch._subclasses import FakeTensor, FakeTensorMode
|
19 |
+
from torch.fx.experimental.proxy_tensor import make_fx
|
20 |
+
from torch.fx.experimental.symbolic_shapes import (
|
21 |
+
ShapeEnv
|
22 |
+
)
|
23 |
+
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
|
24 |
+
from torch._decomp.decompositions_for_rng import PhiloxStateTracker, rng_decompositions
|
25 |
+
from . import config
|
26 |
+
from .partitioners import default_partition
|
27 |
+
|
28 |
+
from ._aot_autograd.utils import ( # noqa: F401
|
29 |
+
strict_zip,
|
30 |
+
_get_symint_hints,
|
31 |
+
KNOWN_TYPES,
|
32 |
+
partial_flatten_asdict,
|
33 |
+
normalize_as_list,
|
34 |
+
_get_autocast_states,
|
35 |
+
make_boxed_func,
|
36 |
+
make_boxed_compiler,
|
37 |
+
call_func_at_runtime_with_args,
|
38 |
+
create_tree_flattened_fn,
|
39 |
+
maybe_to_fresh_input,
|
40 |
+
)
|
41 |
+
from ._aot_autograd.logging_utils import ( # noqa: F401
|
42 |
+
graph_being_compiled,
|
43 |
+
nth_graph,
|
44 |
+
model_name,
|
45 |
+
set_model_name,
|
46 |
+
get_aot_compilation_context,
|
47 |
+
get_aot_graph_name,
|
48 |
+
get_graph_being_compiled,
|
49 |
+
track_graph_compiling,
|
50 |
+
callback_set,
|
51 |
+
setup_stacktrace_preservation_hooks,
|
52 |
+
describe_input,
|
53 |
+
format_guard_bug_msg,
|
54 |
+
)
|
55 |
+
from ._aot_autograd.functional_utils import ( # noqa: F401
|
56 |
+
is_fun,
|
57 |
+
to_fun,
|
58 |
+
from_fun,
|
59 |
+
sync_functional_tensor,
|
60 |
+
has_metadata_mutation,
|
61 |
+
has_data_mutation,
|
62 |
+
are_all_mutations_hidden_from_autograd,
|
63 |
+
are_all_mutations_under_no_grad_or_inference_mode,
|
64 |
+
gen_alias_from_base,
|
65 |
+
assert_functional_graph,
|
66 |
+
_check_if_mutation_can_be_in_graph,
|
67 |
+
)
|
68 |
+
from ._aot_autograd.schemas import ( # noqa: F401
|
69 |
+
OutputType,
|
70 |
+
OutputAliasInfo,
|
71 |
+
MutationType,
|
72 |
+
InputAliasInfo,
|
73 |
+
SubclassCreationMeta,
|
74 |
+
ViewAndMutationMeta,
|
75 |
+
SubclassMeta,
|
76 |
+
TensorAlias,
|
77 |
+
BackwardSignature,
|
78 |
+
GraphOutputName,
|
79 |
+
GraphInputName,
|
80 |
+
FQN,
|
81 |
+
GraphSignature,
|
82 |
+
AOTConfig,
|
83 |
+
)
|
84 |
+
from ._aot_autograd.subclass_utils import ( # noqa: F401
|
85 |
+
requires_subclass_dispatch,
|
86 |
+
unwrap_tensor_subclasses,
|
87 |
+
wrap_tensor_subclasses,
|
88 |
+
wrap_tensor_subclasses_maybe_joint,
|
89 |
+
create_metadata_for_subclass,
|
90 |
+
)
|
91 |
+
from ._aot_autograd.collect_metadata_analysis import ( # noqa: F401
|
92 |
+
run_functionalized_fw_and_collect_metadata,
|
93 |
+
)
|
94 |
+
from ._aot_autograd.input_output_analysis import ( # noqa: F401
|
95 |
+
remove_dupe_metadata,
|
96 |
+
create_synthetic_base_metadata,
|
97 |
+
_tensors_definitely_do_not_overlap,
|
98 |
+
compute_overlapping_inputs,
|
99 |
+
create_graph_signature,
|
100 |
+
)
|
101 |
+
from ._aot_autograd.traced_function_transforms import ( # noqa: F401
|
102 |
+
fn_input_mutations_to_outputs,
|
103 |
+
fn_prepped_for_autograd,
|
104 |
+
create_functionalized_fn,
|
105 |
+
create_functionalized_rng_ops_wrapper,
|
106 |
+
aot_dispatch_subclass,
|
107 |
+
create_functional_call,
|
108 |
+
create_joint,
|
109 |
+
)
|
110 |
+
from ._aot_autograd.runtime_wrappers import ( # noqa: F401
|
111 |
+
create_runtime_wrapper,
|
112 |
+
functionalized_rng_runtime_epilogue,
|
113 |
+
aot_dispatch_subclass_wrapper,
|
114 |
+
aot_wrapper_dedupe,
|
115 |
+
aot_wrapper_synthetic_base,
|
116 |
+
merge_view_inputs,
|
117 |
+
)
|
118 |
+
from ._aot_autograd.dispatch_and_compile_graph import ( # noqa: F401
|
119 |
+
aot_dispatch_base_graph,
|
120 |
+
aot_dispatch_autograd_graph,
|
121 |
+
)
|
122 |
+
from ._aot_autograd.jit_compile_runtime_wrappers import ( # noqa: F401
|
123 |
+
aot_dispatch_base,
|
124 |
+
aot_dispatch_autograd,
|
125 |
+
)
|
126 |
+
|
127 |
+
zip = strict_zip
|
128 |
+
|
129 |
+
# This global counter increments every time we compile a graph with
|
130 |
+
# AOTAutograd. You can use this to correlate runtime error messages
|
131 |
+
# with compile time (e.g., if you get an error at runtime saying
|
132 |
+
# compiled graph 3 failed, you can set a breakpoint at compile time
|
133 |
+
# for this graph number to investigate further at compile time.)
|
134 |
+
#
|
135 |
+
# NB: this is different from get_aot_compilation_context, which tracks
|
136 |
+
# each underlying graph that is compiled. In contrast, AOT_COUNTER
|
137 |
+
# corresponds to top-level invocations of aot_module/aot_function;
|
138 |
+
# one counter is allocated per entire compiled block (but this block
|
139 |
+
# may involve compiling multiple subgraphs; e.g., for forwards/backwards)
|
140 |
+
AOT_COUNTER = itertools.count()
|
141 |
+
|
142 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
143 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
144 |
+
#
|
145 |
+
# AOT Autograd contains a pretty non-trivial amount of logic to handle edge cases around aliasing and mutation
|
146 |
+
# that are external to the graph (they show up as side effects in some way when you run the graph).
|
147 |
+
#
|
148 |
+
# Take a look at `test_aotdispatch.py TestAOTAutograd.test_input_mutation*` tests for some examples functions
|
149 |
+
# and what they're compiled graphs looks like.
|
150 |
+
# Below is a very long comment detailing several edge cases, and showing how AOT Autograd handles them.
|
151 |
+
#
|
152 |
+
# Note [AOT Autograd: input data mutations]
|
153 |
+
#
|
154 |
+
# If we compile a function that mutates inputs, then those input mutations are real side effects
|
155 |
+
# that a user expects to see after running the compiled graph.
|
156 |
+
# However, the graph that we want to send to a backend needs to be *entirely* functional.
|
157 |
+
# The way we reconcile this difference is that we remove the mutations completely from the graph that we compile
|
158 |
+
# but we update the graph to return (updated_inputs, user_outputs).
|
159 |
+
# In the epilogue that runs after the compiled graph is executed, we copy the updated inputs back to the originals.
|
160 |
+
#
|
161 |
+
# Example: original user code:
|
162 |
+
# def f(x):
|
163 |
+
# x.mul_(2)
|
164 |
+
# out = x.mul(3)
|
165 |
+
# return out
|
166 |
+
#
|
167 |
+
# After AOT Autograd compiles, we end up with a:
|
168 |
+
# (a) compiled graph
|
169 |
+
# (b) autograd.Function.forward() method, that executes the compiled graph
|
170 |
+
# (c) wrapper function, that calls the autograd.Function.forward() and performs the epilogue
|
171 |
+
#
|
172 |
+
# The output of (a, b, c) are all written below.
|
173 |
+
#
|
174 |
+
# def compiled_forward_graph(x):
|
175 |
+
# x_updated = x.mul(2)
|
176 |
+
# out = x_updated.mul(3)
|
177 |
+
# return x_updated, out
|
178 |
+
#
|
179 |
+
# # x_updated gets a gradient in the compiled backward
|
180 |
+
# def compiled_backward_graph(grad_x_updated, grad_out):
|
181 |
+
# grad_x = ...
|
182 |
+
# return grad_x
|
183 |
+
#
|
184 |
+
# def autograd.Function.forward(x):
|
185 |
+
# x_updated, out = compiled_forward_graph(x)
|
186 |
+
# return x_updated, out
|
187 |
+
#
|
188 |
+
# def compiled_wrapper(x):
|
189 |
+
# x_updated, out = autograd.Function.apply(x)
|
190 |
+
# x.copy_(x_updated)
|
191 |
+
# return out
|
192 |
+
#
|
193 |
+
# Another important thing to note is that updated inputs (due to data mutations) *do* participate
|
194 |
+
# in the compiled backward graph! Since the compiled forward graph gets N extra outputs
|
195 |
+
# (due to updated inputs showing up as graph outputs),
|
196 |
+
# The compiled backward gets an additional N inputs.
|
197 |
+
# That way, during the x.copy_(x_updated) bit in the epilogue, gradients will flow from the updated input
|
198 |
+
# back to the original input.
|
199 |
+
|
200 |
+
|
201 |
+
# Note [AOT Autograd: input metadata mutations]
|
202 |
+
#
|
203 |
+
# For the same reason as input mutations, we also don't put input metadata mutations in the graph.
|
204 |
+
# Instead, we return the updated version of the input (a view), and mutate the input's metadata outside of the graph
|
205 |
+
#
|
206 |
+
# Example: original user code:
|
207 |
+
# def f(x):
|
208 |
+
# x.t_()
|
209 |
+
# out = x.mul(3)
|
210 |
+
# return out
|
211 |
+
#
|
212 |
+
# AOT Autograd output (compiled graph, autograd.Function.forward(), wrapper function):
|
213 |
+
# def compiled_forward_graph(x):
|
214 |
+
# x_updated = x.t()
|
215 |
+
# out = x_updated.mul(3)
|
216 |
+
# return x_updated, out
|
217 |
+
#
|
218 |
+
# # x_updated does *not* get a gradient in the compiled backward
|
219 |
+
# def compiled_backward_graph(grad_out):
|
220 |
+
# grad_x = ...
|
221 |
+
# return grad_x
|
222 |
+
#
|
223 |
+
# def autograd.Function.forward(x):
|
224 |
+
# x_updated, out = compiled_forward_graph(x)
|
225 |
+
# return x_updated, out
|
226 |
+
#
|
227 |
+
# def compiled_wrapper(x):
|
228 |
+
# x_updated, out = autograd.Function.apply(x)
|
229 |
+
# x.as_strided_(x_updated)
|
230 |
+
# return out
|
231 |
+
|
232 |
+
|
233 |
+
# Note [AOT Autograd: outputs aliasing inputs or intermediates!]
|
234 |
+
#
|
235 |
+
# AOT Autograd needs special handling for outputs that alias graph inputs or intermediates!
|
236 |
+
# Why?
|
237 |
+
# (1) autograd.Function.forward() has a limitation, where views that returned in the forward cannot later be mutated.
|
238 |
+
# (2) views don't need to be compiled in the graph anyway - it's cheap to generate them outside of the compiled graph,
|
239 |
+
# in an epilogue.
|
240 |
+
# For outputs that alias inputs, we do the following:
|
241 |
+
# (a) *still* return the aliased output as a graph output
|
242 |
+
# (b) In the AOT Autograd wrapper/epilogue, we don't return that aliased output. Instead, we use it to regenerate the output.
|
243 |
+
#
|
244 |
+
# For outputs that alias *intermediates*, we do the following:
|
245 |
+
# (a) Return the output in the compiled forward, **and** return it's ._base (a graph intermediates) as an output in the forward
|
246 |
+
# (b) Use (output, graph_intermediate) to regenerate the alias, and return that to the user (instead of the compiled fw output).
|
247 |
+
# You might wonder why we return the aliased output directly in the graph (and making the graph compute it),
|
248 |
+
# only to not return it and instead generate a fresh alias off of the intermediate,
|
249 |
+
# instead of (say) just storing metadata about the size/stride of the output somewhere to generate the alias. There are two reasons:
|
250 |
+
# (1) Getting the actual alias tensor allows us to use view-replay to generate the alias, instead of an as_strided() call
|
251 |
+
# (2) Inductor (and other backends) are free to change the memory format of graph outputs, if it results in better performance.
|
252 |
+
# This can result in problems if a user later tries to .view() that output expecting it to have one set of strides,
|
253 |
+
# when it has a different set of strides.
|
254 |
+
# By including the view op directly in the graph, inductor takes that into account when deciding what memory format
|
255 |
+
# the graph intermediate should be.
|
256 |
+
#
|
257 |
+
# Another important thing to note is how our traced backward() graph handles aliases.
|
258 |
+
# (this applies to outputs aliasing inputs, outputs aliasing intermediates,
|
259 |
+
# *and* updated inputs returned in the compiled forward due to metadata-only mutations).
|
260 |
+
# Any outputs that alias (either inputs or intermediates) do NOT participate in the compiled backward graph
|
261 |
+
# It would be wasteful to include them in the compiled backward(), because we regenerate them eagerly
|
262 |
+
# at the end of the forward.
|
263 |
+
#
|
264 |
+
# Example: original user code:
|
265 |
+
# def f(x):
|
266 |
+
# out1 = x.t()
|
267 |
+
# intermediate = x.mul(2)
|
268 |
+
# out2 = intermediate.view(-1)
|
269 |
+
# return out1, out2
|
270 |
+
#
|
271 |
+
# AOT Autograd output (compiled graph, autograd.Function.forward(), wrapper function):
|
272 |
+
# def compiled_forward_graph(x):
|
273 |
+
# out1 = x.t()
|
274 |
+
# intermediate = x.mul(2)
|
275 |
+
# out2 = intermediate.view(-1)
|
276 |
+
# # the compiled graph also returns the intermediate
|
277 |
+
# return out1, out2, intermediate
|
278 |
+
#
|
279 |
+
# # intermediate gets a gradient in the compiled backward.
|
280 |
+
# # both output aliases (out1 and out2) do not.
|
281 |
+
# def compiled_backward_graph(grad_intermediate):
|
282 |
+
# grad_x = ...
|
283 |
+
# return grad_x
|
284 |
+
#
|
285 |
+
# def autograd.Function.forward(x):
|
286 |
+
# out1, out2, intermediate = compiled_forward_graph(x)
|
287 |
+
# return out1, out2, intermediate
|
288 |
+
#
|
289 |
+
# def compiled_wrapper(x):
|
290 |
+
# out1, out2, intermediate = autograd.Function.apply(x)
|
291 |
+
# # regenerate out1 from the input
|
292 |
+
# out1_regenerated = out1._view_func(x)
|
293 |
+
# # regenerate out1 from the intermediate
|
294 |
+
# out2_regenerated = out2._view_func(intermediate)
|
295 |
+
# return out1_regenerated, out2_regenerated
|
296 |
+
|
297 |
+
|
298 |
+
# Note [AOT Autograd: mutations to inputs that alias other inputs]
|
299 |
+
#
|
300 |
+
# Another edge case that is (only partially) handled today is when an input is mutated, but itself aliases another input.
|
301 |
+
# AOT Autograd needs to **ensure** that functionalization knows that the two inputs are aliased to each other.
|
302 |
+
# That way, when the aliased input is accessed later in the graph, functionalization knows to "update" the alias
|
303 |
+
# given the mutation that occurred.
|
304 |
+
#
|
305 |
+
# This is handled by updating the calling convention: we create a "synthetic base" that becomes a new input
|
306 |
+
# in the compiled function, and we regenerate the original (aliased) inputs directly off of the base
|
307 |
+
# inside of the compiled function.
|
308 |
+
#
|
309 |
+
# This logic is fully encapsulated in aot_wrapper_synthetic_base()
|
310 |
+
#
|
311 |
+
# Example: original user code:
|
312 |
+
# def f(x, x_view):
|
313 |
+
# x.mul_(2)
|
314 |
+
# out = x * x_view
|
315 |
+
# return out
|
316 |
+
# f(x, x.view(-1))
|
317 |
+
#
|
318 |
+
# AOT Autograd output (compiled graph, autograd.Function.forward(), wrapper function):
|
319 |
+
# def compiled_forward_graph(base)
|
320 |
+
# x = generate_x(base)
|
321 |
+
# x_view = generate_x_view(base)
|
322 |
+
# x_updated = x.mul(2)
|
323 |
+
# x_view_updated = x_updated.view(-1)
|
324 |
+
# out = x_updated * x_view_updated
|
325 |
+
# return x_updated, out
|
326 |
+
#
|
327 |
+
# # The calling convention change from (aliases) -> (base) happens
|
328 |
+
# # *outside* of the autograd.Function.forward().
|
329 |
+
# # That means the forward() only has 1 input (base),
|
330 |
+
# # and the backward() only has 1 output (grad_base)
|
331 |
+
# def compiled_backward_graph(grad_out):
|
332 |
+
# grad_base = ...
|
333 |
+
# return grad_base
|
334 |
+
#
|
335 |
+
# def autograd.Function.forward(base):
|
336 |
+
# x_updated, out = compiled_forward_graph(base)
|
337 |
+
# return x_updated, out
|
338 |
+
#
|
339 |
+
# # The compiled wrapper is where we create synthetic bases.
|
340 |
+
# # The info on which inputs are mutated is also tracked *before* synthetic base creation.
|
341 |
+
# def compiled_wrapper(x, x_view):
|
342 |
+
# base = merge_view_inputs(x, x_view)
|
343 |
+
# x_updated, out = autograd.Function.apply(base)
|
344 |
+
# # x and x_view are aliased in eager mode, so this mutation to x will automatically affect x_view.
|
345 |
+
# x.copy_(x_updated)
|
346 |
+
# return out
|
347 |
+
|
348 |
+
|
349 |
+
# Note [AOT Autograd: Views to avoid tangents aliasing inputs]
|
350 |
+
#
|
351 |
+
# We view every forward output when creating out tangent tensors to handle the problematic
|
352 |
+
# case in which a subclass does extra aliasing between graph outputs/inputs in a way that
|
353 |
+
# is not visible above the sublass.
|
354 |
+
#
|
355 |
+
# Ordinarily, when constructing the joint function that we want to trace in AOTAutograd,
|
356 |
+
# we're guaranteed that the tangent tensors that we pass
|
357 |
+
# into the joint are distinct tensors from the primals. This is because when
|
358 |
+
# decide which forward outputs to create tangents for, we only create tangents
|
359 |
+
# for forward outputs that are not aliases of inputs (See Note
|
360 |
+
# [AOT Autograd: outputs aliasing inputs or intermediates!]).
|
361 |
+
#
|
362 |
+
# However, when wrapper tensor subclasses enter the picture, it is possible
|
363 |
+
# to have an output of the forward that is a subclass that is not an
|
364 |
+
# input / alias of an input, but one of its inner tensors is an alias!
|
365 |
+
# NestedTensor is an example: Performing an out-of-place pointwise op on a
|
366 |
+
# NestedTensor constructs a fresh NestedTensor that holds onto the input's
|
367 |
+
# offsets tensor directly.
|
368 |
+
#
|
369 |
+
# Having tangent tensors that are the same as the (primal) forward inputs,
|
370 |
+
# can cause problems during tracing as make_fx() will specialize on our
|
371 |
+
# duplicate inputs: If we passed in the same tensor for primals_1 and
|
372 |
+
# tangents_1 during tracing, make_fx() will happily sub out all usages of
|
373 |
+
# tangents_1 with primals_1 in the graph, which is not what we want.
|
374 |
+
#
|
375 |
+
# To work around this, we view every forward output when creating out tangent
|
376 |
+
# tensors so that tangents can never be the same as forward inputs even if
|
377 |
+
# forward inputs alias forward outputs.
|
378 |
+
|
379 |
+
# Note [Side-Effectful Tokens in AOTAutograd]
|
380 |
+
#
|
381 |
+
# We allow some some side-effectful operators in
|
382 |
+
# the post-AOTAutograd (functional) graph, such as prints and torchbind operations.
|
383 |
+
# To ensure that these side-effects are compatible to future graph passes that
|
384 |
+
# assume that the graph is functional, we will thread "effect tokens" to show
|
385 |
+
# data dependence between these side-effectful operators. Practically speaking,
|
386 |
+
# effect tokens are just dummy values (torch.tensor([])). The graph would look
|
387 |
+
# like the following:
|
388 |
+
#
|
389 |
+
# def gm(self, token0, reader):
|
390 |
+
# token1, frame = with_token(ordered_effect_op, (reader,), token0)
|
391 |
+
# frame = frame * 2
|
392 |
+
# token2, frame2 = with_token(ordered_effect_op, (reader,), token1)
|
393 |
+
# frame2 = frame2 * 2
|
394 |
+
# return token2, frame, frame2
|
395 |
+
#
|
396 |
+
# We will pass the token as an input to the graph, thread it through
|
397 |
+
# side-effectful operators using the `with_effects` high order operator, and then
|
398 |
+
# return the updated token as an output.
|
399 |
+
# So the signature of the graph input would look something like
|
400 |
+
# (*tokens, *params_buffers, *user_inputs), and the signature of the graph
|
401 |
+
# output would look something like (*tokens, *outputs).
|
402 |
+
|
403 |
+
#
|
404 |
+
#
|
405 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
406 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
407 |
+
|
408 |
+
|
409 |
+
aot_autograd_decompositions = {}
|
410 |
+
|
411 |
+
@dynamo_timed
|
412 |
+
def create_aot_dispatcher_function(
|
413 |
+
flat_fn, flat_args: List[Any], aot_config: AOTConfig
|
414 |
+
):
|
415 |
+
"""
|
416 |
+
Traces the forward and backward graphs of the attr:`flat_fn` to generate a
|
417 |
+
joint graph. The joint graph is an Fx graph with Aten ops. Please refer to
|
418 |
+
the tracing mechanism to understand the graph capturing details.
|
419 |
+
|
420 |
+
The joint graph is then passed through attr:`partition_fn` to isolate the
|
421 |
+
forward and backward portions, which are then respectively compiled via the
|
422 |
+
provided attr:`fw_compiler` and attr:`bw_compiler`.
|
423 |
+
|
424 |
+
The resulting compiled forward and backward graphs are then wrapped up in a
|
425 |
+
``torch.autograd.Function`` object.
|
426 |
+
|
427 |
+
The calling convention here is that the first aot_config.num_params_buffers
|
428 |
+
inputs in flat_args are parameters and buffers, and the rest are inputs.
|
429 |
+
|
430 |
+
We use this to assume that parameters/buffer's shapes don't change.
|
431 |
+
|
432 |
+
Note: this function is used both by aot_function and aot_export (controlled by aot_config.is_export)
|
433 |
+
When aot_config.is_export is True, we return an FX graph + metadata
|
434 |
+
When aot_config.is_export is False, we return an ordinary runtime function
|
435 |
+
"""
|
436 |
+
|
437 |
+
# This is the main entry point.
|
438 |
+
# TODO: Chillee argues that dynamo itself should pass in fake tensors to
|
439 |
+
# the list of arguments when compiling; at the moment we do not do this
|
440 |
+
|
441 |
+
if aot_config.decompositions is None:
|
442 |
+
aot_config.decompositions = {}
|
443 |
+
|
444 |
+
|
445 |
+
aot_config.decompositions = {
|
446 |
+
**aot_autograd_decompositions,
|
447 |
+
**aot_config.decompositions,
|
448 |
+
}
|
449 |
+
|
450 |
+
if config.functionalize_rng_ops:
|
451 |
+
# Update the decompositions with functionalized random decompositions
|
452 |
+
aot_config.decompositions = {
|
453 |
+
**rng_decompositions,
|
454 |
+
**aot_config.decompositions,
|
455 |
+
}
|
456 |
+
|
457 |
+
# Check flat_args to see if they're already fake. If so, use that fake
|
458 |
+
# mode instead.
|
459 |
+
|
460 |
+
fake_mode = detect_fake_mode(flat_args)
|
461 |
+
if fake_mode is None:
|
462 |
+
shape_env = ShapeEnv() if aot_config.dynamic_shapes else None
|
463 |
+
fake_mode = FakeTensorMode(shape_env=shape_env)
|
464 |
+
else:
|
465 |
+
shape_env = fake_mode.shape_env
|
466 |
+
|
467 |
+
python_dispatcher_mode = (
|
468 |
+
enable_python_dispatcher() if shape_env is not None else nullcontext()
|
469 |
+
)
|
470 |
+
|
471 |
+
with torch.autograd.set_multithreading_enabled(
|
472 |
+
False
|
473 |
+
), preserve_rng_state(), fake_mode, python_dispatcher_mode, PhiloxStateTracker():
|
474 |
+
|
475 |
+
def process_inputs(flat_args):
|
476 |
+
def convert(idx, x):
|
477 |
+
if shape_env is not None:
|
478 |
+
from torch._dynamo.source import ConstantSource
|
479 |
+
if isinstance(x, int):
|
480 |
+
# We always specialize on scalar values in export.
|
481 |
+
if aot_config.is_export:
|
482 |
+
return x
|
483 |
+
source = ConstantSource(f"sym_{idx}")
|
484 |
+
return shape_env.create_symintnode(
|
485 |
+
shape_env.create_symbol(x, source),
|
486 |
+
hint=x,
|
487 |
+
source=source
|
488 |
+
)
|
489 |
+
if not isinstance(x, torch.Tensor):
|
490 |
+
return x
|
491 |
+
if isinstance(x, FakeTensor):
|
492 |
+
assert x.fake_mode is fake_mode
|
493 |
+
return x
|
494 |
+
if is_traceable_wrapper_subclass(x):
|
495 |
+
attrs, _ = x.__tensor_flatten__()
|
496 |
+
if all(isinstance(getattr(x, attr), FakeTensor) for attr in attrs):
|
497 |
+
assert all(getattr(x, attr).fake_mode is fake_mode for attr in attrs)
|
498 |
+
return x
|
499 |
+
|
500 |
+
|
501 |
+
# see note [Tensor Fakification and Symbol Caching]
|
502 |
+
symbolic_context = None
|
503 |
+
source = None
|
504 |
+
if tracing_context := torch._guards.TracingContext.try_get():
|
505 |
+
if x in tracing_context.tensor_to_context:
|
506 |
+
symbolic_context = tracing_context.tensor_to_context[x]
|
507 |
+
source = symbolic_context.tensor_source
|
508 |
+
if (
|
509 |
+
idx < aot_config.num_params_buffers
|
510 |
+
and config.static_weight_shapes
|
511 |
+
and not symbolic_context
|
512 |
+
):
|
513 |
+
# TODO: Ensure that this codepath is never exercised from
|
514 |
+
# Dynamo
|
515 |
+
return fake_mode.from_tensor(x, static_shapes=True)
|
516 |
+
|
517 |
+
return fake_mode.from_tensor(
|
518 |
+
x, static_shapes=False, symbolic_context=symbolic_context, source=source
|
519 |
+
)
|
520 |
+
return [convert(idx, x) for idx, x in enumerate(flat_args)]
|
521 |
+
|
522 |
+
fake_flat_args = process_inputs(flat_args)
|
523 |
+
|
524 |
+
needs_autograd = (
|
525 |
+
any(x.requires_grad for x in fake_flat_args if isinstance(x, Tensor))
|
526 |
+
and torch.is_grad_enabled()
|
527 |
+
)
|
528 |
+
|
529 |
+
with enable_python_dispatcher():
|
530 |
+
# Patch set_rng_state as set_rng_state with fake tensors is
|
531 |
+
# nonsensical. This does not affect the collection of metadata.
|
532 |
+
with patch("torch.cuda.set_rng_state", lambda *args: None):
|
533 |
+
fw_metadata = run_functionalized_fw_and_collect_metadata(
|
534 |
+
flat_fn,
|
535 |
+
keep_input_mutations=aot_config.keep_inference_input_mutations,
|
536 |
+
is_train=needs_autograd,
|
537 |
+
pre_dispatch=aot_config.pre_dispatch,
|
538 |
+
)(*fake_flat_args)
|
539 |
+
|
540 |
+
req_subclass_dispatch = requires_subclass_dispatch(fake_flat_args, fw_metadata)
|
541 |
+
|
542 |
+
if needs_autograd and not any(x.requires_grad for x in fw_metadata.output_info):
|
543 |
+
# We realized that none of the outputs require grad,
|
544 |
+
# so we actually have an inference graph.
|
545 |
+
needs_autograd = False
|
546 |
+
# A bit silly: right now in the subclass codepath, our ViewAndMutationMeta
|
547 |
+
# changes depending on whether we pass in is_train / keep_input_mutations,
|
548 |
+
# so we're forced to recompute the metadata.
|
549 |
+
# TODO: refactor the subclass path of run_functionalized_fw_and_collect_metadata
|
550 |
+
# so that this is unnecessary.
|
551 |
+
if req_subclass_dispatch:
|
552 |
+
fw_metadata = run_functionalized_fw_and_collect_metadata(
|
553 |
+
flat_fn,
|
554 |
+
keep_input_mutations=aot_config.keep_inference_input_mutations and not needs_autograd,
|
555 |
+
is_train=needs_autograd,
|
556 |
+
pre_dispatch=aot_config.pre_dispatch,
|
557 |
+
)(*fake_flat_args)
|
558 |
+
else:
|
559 |
+
fw_metadata = ViewAndMutationMeta(
|
560 |
+
input_info=fw_metadata.input_info,
|
561 |
+
output_info=fw_metadata.output_info,
|
562 |
+
num_intermediate_bases=fw_metadata.num_intermediate_bases,
|
563 |
+
keep_input_mutations=aot_config.keep_inference_input_mutations and not needs_autograd,
|
564 |
+
traced_tangents=fw_metadata.traced_tangents,
|
565 |
+
subclass_inp_meta=fw_metadata.subclass_inp_meta,
|
566 |
+
subclass_fw_graph_out_meta=fw_metadata.subclass_fw_graph_out_meta,
|
567 |
+
subclass_tangent_meta=fw_metadata.subclass_tangent_meta,
|
568 |
+
is_train=needs_autograd,
|
569 |
+
)
|
570 |
+
|
571 |
+
|
572 |
+
if fw_metadata.num_intermediate_bases > 0:
|
573 |
+
assert not req_subclass_dispatch, f"""\
|
574 |
+
torch.compile is currently being used with tensor subclass inputs:
|
575 |
+
{','.join([str(type(x)) for x in fake_flat_args])}. We are attempting to a compile a graph with two graph outputs
|
576 |
+
that alias one another, which is currently unsupported in the subclass use case. If you run into this,
|
577 |
+
please file a github issue"""
|
578 |
+
|
579 |
+
if aot_config.is_export:
|
580 |
+
# aot_export: ban input metadata mutations for now to keep shared code paths simpler.
|
581 |
+
# Keeping .resize_() in the graph will require some work
|
582 |
+
# Allowing it but keeping the graph functional will require some calling convention changes.
|
583 |
+
if len([x for x in fw_metadata.input_info if x.mutates_metadata]) != 0:
|
584 |
+
raise RuntimeError(f"""\
|
585 |
+
Found an input that received a metadata mutation, through e.g. a call to `.resize_()` or `.transpose_()`.
|
586 |
+
This is currently banned in the aot_export workflow. If you need this functionality, please file a github issue.
|
587 |
+
|
588 |
+
fw_metadata={str(fw_metadata)}""")
|
589 |
+
# In export, banning data mutations on inputs that require grad for now.
|
590 |
+
# This should be rare, and is tricky to get right. When we trace the backward,
|
591 |
+
# we currently trace with autograd.grad instead of .backward(), which makes it difficult
|
592 |
+
# to ensure that we run autograd all the way through the input **before** it saw the mutation.
|
593 |
+
if len([x for x in fw_metadata.input_info if x.requires_grad and x.mutates_data]) != 0:
|
594 |
+
raise RuntimeError(f"""\
|
595 |
+
Found a graph input that requires gradients, and received a mutation.
|
596 |
+
This is currently banned in the aot_export workflow. If you need this functionality, please file a github issue.
|
597 |
+
|
598 |
+
fw_metadata={str(fw_metadata)}""")
|
599 |
+
if req_subclass_dispatch:
|
600 |
+
raise RuntimeError("""\
|
601 |
+
aot_export is not currently supported with traceable tensor subclass.
|
602 |
+
If you need this feature, please comment on <CREATE_ISSUE_LINK>""")
|
603 |
+
|
604 |
+
# Need to decide on a strategy for functionalized RNG: toggling via global config seems bad,
|
605 |
+
# and turning it on will require a non-trivial calling convention change for any export runtime.
|
606 |
+
if config.functionalize_rng_ops:
|
607 |
+
raise RuntimeError("""\
|
608 |
+
Functionalized RNG is not currently supported in the aot_export workflow. Please file a github issue,
|
609 |
+
or otherwise set torch._functorch.config.functionalize_rng_ops = False.""")
|
610 |
+
|
611 |
+
# crappy version of dispatcher
|
612 |
+
# TODO: Do this properly
|
613 |
+
if needs_autograd:
|
614 |
+
# For now, aot_dispatch_autograd knows to explicitly return a graph
|
615 |
+
# when run with export, and an opaque callable otherwise.
|
616 |
+
# In theory we could factor these out, but I wanted to let the dust
|
617 |
+
# settle on how functionalized rng fits into export first.
|
618 |
+
compiler_fn = aot_dispatch_autograd_graph if aot_config.is_export else aot_dispatch_autograd
|
619 |
+
else:
|
620 |
+
# aot_dispatch_base_graph contains only the "graph bits", while aot_dispatch_base
|
621 |
+
# includes some extra work around handling a runtime epilogue.
|
622 |
+
compiler_fn = aot_dispatch_base_graph if aot_config.is_export else aot_dispatch_base
|
623 |
+
|
624 |
+
compiler_fn = partial(aot_wrapper_synthetic_base, compiler_fn=compiler_fn, needs_autograd=needs_autograd)
|
625 |
+
compiler_fn = partial(aot_wrapper_dedupe, compiler_fn=compiler_fn)
|
626 |
+
# You can put more passes here
|
627 |
+
|
628 |
+
compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata)
|
629 |
+
if aot_config.is_export:
|
630 |
+
# During export, we don't get back a callable - we get back the raw fx graph
|
631 |
+
# (either a joint or an inference-only graph)
|
632 |
+
assert isinstance(compiled_fn, torch.fx.GraphModule)
|
633 |
+
return compiled_fn, fw_metadata
|
634 |
+
|
635 |
+
if not hasattr(compiled_fn, "_boxed_call"):
|
636 |
+
compiled_fn = make_boxed_func(compiled_fn)
|
637 |
+
|
638 |
+
return compiled_fn
|
639 |
+
|
640 |
+
|
641 |
+
def aot_function(
|
642 |
+
fn: Callable,
|
643 |
+
fw_compiler: Callable,
|
644 |
+
bw_compiler: Optional[Callable] = None,
|
645 |
+
partition_fn: Callable = default_partition,
|
646 |
+
decompositions: Optional[Dict] = None,
|
647 |
+
num_params_buffers: int = 0,
|
648 |
+
keep_inference_input_mutations: bool = False,
|
649 |
+
inference_compiler: Optional[Callable] = None,
|
650 |
+
*,
|
651 |
+
# Whether or not to trace with dynamic shapes
|
652 |
+
dynamic=False,
|
653 |
+
enable_log=True,
|
654 |
+
) -> Callable:
|
655 |
+
"""
|
656 |
+
Traces the forward and backward graph of :attr:`fn` using torch dispatch
|
657 |
+
mechanism, and then compiles the generated forward and backward graphs
|
658 |
+
through :attr:`fw_compiler` and :attr:`bw_compiler`.
|
659 |
+
|
660 |
+
:func:`aot_function` traces the forward and backward graph ahead of time,
|
661 |
+
and generates a joint forward and backward graph. :attr:`partition_fn` is
|
662 |
+
then used to separate out forward and backward graphs. The partitioner
|
663 |
+
function can be used to perform optimizations such as recomputation. One can
|
664 |
+
set `decompositions` dictionary to decompose the operators into a sequence
|
665 |
+
of core or simpler operators supported by the backend compilers.
|
666 |
+
|
667 |
+
.. warning::
|
668 |
+
This API is experimental and likely to change.
|
669 |
+
|
670 |
+
Args:
|
671 |
+
fn (Callable): A Python function that takes one ore more arguments. Must
|
672 |
+
return one or more Tensors.
|
673 |
+
fw_compiler (Callable): A Python function that accepts an Fx graph with
|
674 |
+
Aten ops and input args, and returns a Callable that semantically is
|
675 |
+
equivalent to the input Fx graph.
|
676 |
+
bw_compiler (Optional[Callable]): A Python function that accepts an
|
677 |
+
Fx graph with Aten ops and input args, and returns a Callable that
|
678 |
+
semantically is equivalent to the input Fx graph. Default: None
|
679 |
+
(when None, it defaults to the :attr:`fw_compiler`)
|
680 |
+
partition_fn (Callable): A Python function that takes a joint forward
|
681 |
+
and backward graph, and partitions it into separate forward and
|
682 |
+
backward graphs.
|
683 |
+
decompositions (Dict): A dictionary to define the decomposition of
|
684 |
+
larger Aten ops into simpler or core Aten ops.
|
685 |
+
inference_compiler (Optional[Callable]): A Python function that accepts an
|
686 |
+
Fx graph with Aten ops and input args, and returns a Callable that
|
687 |
+
semantically is equivalent to the input Fx graph. inference_compiler is invoked
|
688 |
+
if no autograd is needed. Default: None
|
689 |
+
(when None, it defaults to the :attr:`fw_compiler`)
|
690 |
+
Returns:
|
691 |
+
Returns a ``Callable`` that retains the eager behavior of the original
|
692 |
+
:attr:`fn`, but with forward and backward graph compiled via
|
693 |
+
:attr:`fw_compile` and :attr:`bw_compile`.
|
694 |
+
|
695 |
+
A simple example usage of :func:`aot_function` is as follows. This example
|
696 |
+
will print the forward and backward graphs of the function ``fn``
|
697 |
+
|
698 |
+
>>> fn = lambda x : x.sin().cos()
|
699 |
+
>>> def print_compile_fn(fx_module, args):
|
700 |
+
>>> print(fx_module)
|
701 |
+
>>> return fx_module
|
702 |
+
>>> aot_fn = aot_function(fn, print_compile_fn)
|
703 |
+
>>> x = torch.randn(4, 5, requires_grad=True)
|
704 |
+
>>> aot_fn(x)
|
705 |
+
"""
|
706 |
+
|
707 |
+
if bw_compiler is None:
|
708 |
+
bw_compiler = fw_compiler
|
709 |
+
if inference_compiler is None:
|
710 |
+
inference_compiler = fw_compiler
|
711 |
+
aot_config = AOTConfig(
|
712 |
+
fw_compiler=fw_compiler,
|
713 |
+
bw_compiler=bw_compiler,
|
714 |
+
inference_compiler=inference_compiler,
|
715 |
+
partition_fn=partition_fn,
|
716 |
+
decompositions=decompositions,
|
717 |
+
num_params_buffers=num_params_buffers,
|
718 |
+
aot_id=next(AOT_COUNTER),
|
719 |
+
keep_inference_input_mutations=keep_inference_input_mutations,
|
720 |
+
dynamic_shapes=dynamic,
|
721 |
+
aot_autograd_arg_pos_to_source=None,
|
722 |
+
is_export=False,
|
723 |
+
no_tangents=False,
|
724 |
+
enable_log=enable_log,
|
725 |
+
)
|
726 |
+
cached_res = None
|
727 |
+
|
728 |
+
@wraps(fn)
|
729 |
+
def returned_function(*args, **kwargs):
|
730 |
+
nonlocal cached_res
|
731 |
+
# Now flatten the tensor args
|
732 |
+
flat_args = pytree.arg_tree_leaves(*args, **kwargs)
|
733 |
+
|
734 |
+
# Compile the function and save it in the cache
|
735 |
+
if cached_res is None:
|
736 |
+
flat_fn, out_spec = create_tree_flattened_fn(fn, args, kwargs)
|
737 |
+
|
738 |
+
compiled_fn = create_aot_dispatcher_function(
|
739 |
+
flat_fn,
|
740 |
+
flat_args,
|
741 |
+
aot_config,
|
742 |
+
)
|
743 |
+
cached_res = (compiled_fn, out_spec)
|
744 |
+
|
745 |
+
cached_fn, out_spec = cached_res
|
746 |
+
out = cached_fn(flat_args)
|
747 |
+
return out_spec.unflatten(out)
|
748 |
+
|
749 |
+
return returned_function
|
750 |
+
|
751 |
+
|
752 |
+
def aot_module(mod: nn.Module, *args, **kwargs) -> nn.Module:
|
753 |
+
"""
|
754 |
+
Traces the forward and backward graph of :attr:`mod` using torch dispatch
|
755 |
+
tracing mechanism. It is wrapper function, that underneath uses
|
756 |
+
:func:`aot_function` to perform tracing and compilation.
|
757 |
+
|
758 |
+
:func:`aot_module` lifts the parameters and buffers of ``nn.Module`` as inputs
|
759 |
+
to a new callable which is then compiled through :func:`aot_function`.
|
760 |
+
|
761 |
+
.. warning::
|
762 |
+
This API is experimental and likely to change.
|
763 |
+
|
764 |
+
Args:
|
765 |
+
mod (Callable): A ``nn.Module`` module.
|
766 |
+
args : args to be passed to :func:`aot_function`
|
767 |
+
kwargs : kwargs to be passed to :func:`aot_function`
|
768 |
+
|
769 |
+
Returns:
|
770 |
+
Returns a ``nn.Module`` that retains the eager behavior of the original
|
771 |
+
:attr:`mod`, but with forward and backward graph compiled.
|
772 |
+
|
773 |
+
"""
|
774 |
+
# See Note: [Fake Modules and AOTAutograd]
|
775 |
+
torch._dynamo.utils.assert_no_fake_params_or_buffers(mod)
|
776 |
+
|
777 |
+
def functional_call(named_params, named_buffers, *args, **kwargs):
|
778 |
+
params_and_buffers = {**named_params, **named_buffers}
|
779 |
+
return torch.func.functional_call(mod, params_and_buffers, args, kwargs)
|
780 |
+
|
781 |
+
named_params = dict(mod.named_parameters(remove_duplicate=False))
|
782 |
+
named_buffers = dict(mod.named_buffers(remove_duplicate=False))
|
783 |
+
num_params_buffers = len(named_params) + len(named_buffers)
|
784 |
+
compiled_f = aot_function(
|
785 |
+
functional_call, *args, num_params_buffers=num_params_buffers, **kwargs
|
786 |
+
)
|
787 |
+
|
788 |
+
class AOTModule(nn.Module):
|
789 |
+
def __init__(self):
|
790 |
+
super().__init__()
|
791 |
+
self.orig_module = mod
|
792 |
+
|
793 |
+
def forward(self, *args, **kwargs):
|
794 |
+
return compiled_f(
|
795 |
+
named_params,
|
796 |
+
named_buffers,
|
797 |
+
*args,
|
798 |
+
**kwargs,
|
799 |
+
)
|
800 |
+
|
801 |
+
return AOTModule()
|
802 |
+
|
803 |
+
|
804 |
+
def aot_module_simplified(
|
805 |
+
mod: nn.Module,
|
806 |
+
args,
|
807 |
+
fw_compiler: Callable,
|
808 |
+
bw_compiler: Optional[Callable] = None,
|
809 |
+
partition_fn: Callable = default_partition,
|
810 |
+
decompositions: Optional[Dict] = None,
|
811 |
+
keep_inference_input_mutations=False,
|
812 |
+
inference_compiler: Optional[Callable] = None,
|
813 |
+
) -> nn.Module:
|
814 |
+
"""
|
815 |
+
This is the simplified or low overhead version of aot_module. For frontends
|
816 |
+
like TorchDynamo, the input functions/modules to AOT are static and have
|
817 |
+
unpacked inputs/outputs. This gives us an opportunity to remove the
|
818 |
+
(1) pytree overhead to parse inputs/outputs,
|
819 |
+
(2) AOT Autograd cache,
|
820 |
+
(3) Reading of params/buffers in every forward call
|
821 |
+
|
822 |
+
:func:`aot_module_simplified` removes these overheads.
|
823 |
+
"""
|
824 |
+
params = {
|
825 |
+
**dict(mod.named_parameters(remove_duplicate=False)),
|
826 |
+
**dict(mod.named_buffers(remove_duplicate=False)),
|
827 |
+
}
|
828 |
+
params_flat, params_spec = pytree.tree_flatten(params)
|
829 |
+
params_flat = list(params_flat)
|
830 |
+
params_len = len(params_flat)
|
831 |
+
|
832 |
+
functional_call = create_functional_call(mod, params_spec, params_len)
|
833 |
+
|
834 |
+
if bw_compiler is None:
|
835 |
+
bw_compiler = fw_compiler
|
836 |
+
if inference_compiler is None:
|
837 |
+
inference_compiler = fw_compiler
|
838 |
+
|
839 |
+
seen_sources = set()
|
840 |
+
|
841 |
+
full_args = []
|
842 |
+
# First, the params
|
843 |
+
full_args.extend(params_flat)
|
844 |
+
|
845 |
+
if tracing_context := torch._guards.TracingContext.try_get():
|
846 |
+
tracing_context.params_flat = params_flat
|
847 |
+
|
848 |
+
aot_autograd_arg_pos_to_source = None
|
849 |
+
# Then, the params 1:1 mapped sources, if relevant.
|
850 |
+
if hasattr(mod, "_param_name_to_source"):
|
851 |
+
aot_autograd_arg_pos_to_source = []
|
852 |
+
# We now know this came from dynamo, and (1) we care about guards,
|
853 |
+
# so setting up aot_autograd_arg_pos_to_source for downstream dedup guards
|
854 |
+
# can now be done safely. (2) Dynamo logic protects the 1:1 sizing below.
|
855 |
+
for name in params.keys():
|
856 |
+
assert name in mod._param_name_to_source, f"{name} not found."
|
857 |
+
source = mod._param_name_to_source[name]
|
858 |
+
assert source not in seen_sources, source
|
859 |
+
seen_sources.add(source)
|
860 |
+
aot_autograd_arg_pos_to_source.append(source)
|
861 |
+
|
862 |
+
# Next, the input args
|
863 |
+
full_args.extend(args)
|
864 |
+
|
865 |
+
if hasattr(mod, "graph"):
|
866 |
+
# Non dynamo entrypoints can get to here...
|
867 |
+
for i, node in enumerate(mod.graph.nodes):
|
868 |
+
if node.op == "placeholder":
|
869 |
+
if hasattr(node, "_dynamo_source"):
|
870 |
+
# ... but not here!
|
871 |
+
if aot_autograd_arg_pos_to_source is None:
|
872 |
+
aot_autograd_arg_pos_to_source = []
|
873 |
+
source = node._dynamo_source
|
874 |
+
assert source not in seen_sources, source
|
875 |
+
seen_sources.add(source)
|
876 |
+
aot_autograd_arg_pos_to_source.append(source)
|
877 |
+
|
878 |
+
if aot_autograd_arg_pos_to_source is not None:
|
879 |
+
assert len(full_args) == len(aot_autograd_arg_pos_to_source)
|
880 |
+
|
881 |
+
dynamic_shapes = False
|
882 |
+
for x in full_args:
|
883 |
+
if isinstance(x, FakeTensor):
|
884 |
+
dynamic_shapes = x.fake_mode.shape_env is not None
|
885 |
+
break
|
886 |
+
|
887 |
+
aot_config = AOTConfig(
|
888 |
+
fw_compiler=fw_compiler,
|
889 |
+
bw_compiler=bw_compiler,
|
890 |
+
inference_compiler=inference_compiler,
|
891 |
+
partition_fn=partition_fn,
|
892 |
+
decompositions=decompositions,
|
893 |
+
num_params_buffers=params_len,
|
894 |
+
aot_id=next(AOT_COUNTER),
|
895 |
+
keep_inference_input_mutations=keep_inference_input_mutations,
|
896 |
+
dynamic_shapes=dynamic_shapes,
|
897 |
+
aot_autograd_arg_pos_to_source=aot_autograd_arg_pos_to_source,
|
898 |
+
is_export=False,
|
899 |
+
no_tangents=False,
|
900 |
+
)
|
901 |
+
|
902 |
+
with compiled_autograd.disable():
|
903 |
+
compiled_fn = create_aot_dispatcher_function(
|
904 |
+
functional_call,
|
905 |
+
full_args,
|
906 |
+
aot_config,
|
907 |
+
)
|
908 |
+
|
909 |
+
# TODO: There is something deeply wrong here; compiled_fn running with
|
910 |
+
# the boxed calling convention, but aot_module_simplified somehow
|
911 |
+
# historically returned a function that was not the boxed calling
|
912 |
+
# convention. This should get fixed...
|
913 |
+
def forward(*runtime_args):
|
914 |
+
full_args = []
|
915 |
+
full_args.extend(params_flat)
|
916 |
+
full_args.extend(runtime_args)
|
917 |
+
return compiled_fn(full_args)
|
918 |
+
|
919 |
+
# Just for convenience
|
920 |
+
forward.zero_grad = mod.zero_grad
|
921 |
+
forward.named_parameters = mod.named_parameters
|
922 |
+
forward.named_buffers = mod.named_buffers
|
923 |
+
|
924 |
+
return forward
|
925 |
+
|
926 |
+
|
927 |
+
def aot_export_module(
|
928 |
+
mod: nn.Module,
|
929 |
+
args,
|
930 |
+
*,
|
931 |
+
decompositions: Optional[Dict] = None,
|
932 |
+
# If true, we'll return a joint forward-backward graph,
|
933 |
+
# As well as metadata on the loss + gradients in the backward.
|
934 |
+
trace_joint: bool,
|
935 |
+
# If trace_joint is True, we expect your module to return a scalar loss.
|
936 |
+
# Your module can return multiple outputs, so you must specify which output the loss is.
|
937 |
+
output_loss_index: Optional[int] = None,
|
938 |
+
pre_dispatch: bool = False,
|
939 |
+
kwargs=None,
|
940 |
+
) -> Tuple[torch.fx.GraphModule, GraphSignature]:
|
941 |
+
"""
|
942 |
+
This function takes in a module, and returns:
|
943 |
+
(1) an FX graph that can be exported
|
944 |
+
(2) some metadata about the graph
|
945 |
+
|
946 |
+
If `trace_joint=True` we will return a joint graph of the forward + backward.
|
947 |
+
|
948 |
+
The traced FX graph will have the following properties compared to the original module:
|
949 |
+
(1) Inputs and outputs to the module will be pytree-flattened
|
950 |
+
(2) Parameters and buffers on the module will be lifted into graph inputs,
|
951 |
+
graph_inputs = (*parameters, *buffers, *user_inputs)
|
952 |
+
(3) The graph will be fully functionalized
|
953 |
+
(4) Any input mutations will be converted into additional outputs in the graph,
|
954 |
+
meaning whoever calls this graph is responsible for applying the mutations
|
955 |
+
back to the original inputs.
|
956 |
+
(5) If is_joint is provided the graph will return parameter gradients in addition to user outputs.
|
957 |
+
The graph output will look like:
|
958 |
+
graph_outputs = (*updated_inputs, *user_outputs, *param_gradients)
|
959 |
+
|
960 |
+
There are also several restrictions on what modules can use this API. In particular:
|
961 |
+
(1) If trace_joint is specified, we expect the loss function to be **fused**
|
962 |
+
into the module forward. One of the outputs to the forward must be a scalar loss,
|
963 |
+
which is specified with `output_loss_index`.
|
964 |
+
All other outputs to the forward are presumed to not require gradients.
|
965 |
+
(2) This API cannot capture optimizers (although in theory we could build an API for this).
|
966 |
+
(3) Metadata mutations on params/buffers/inputs are banned.
|
967 |
+
(4) Data mutations on anything that requires gradients are banned (parameters)
|
968 |
+
(5) If an input is mutated, it is not allowed to alias any other inputs.
|
969 |
+
(6) Parameters must not be duplicated.
|
970 |
+
"""
|
971 |
+
if pre_dispatch and trace_joint:
|
972 |
+
raise RuntimeError("pre_dispatch is not supported when trace_joint is True.")
|
973 |
+
named_parameters = dict(mod.named_parameters(remove_duplicate=False))
|
974 |
+
named_buffers = dict(mod.named_buffers(remove_duplicate=False))
|
975 |
+
|
976 |
+
params_and_buffers = {
|
977 |
+
**dict(named_parameters),
|
978 |
+
**dict(named_buffers),
|
979 |
+
}
|
980 |
+
params_and_buffers_flat, params_spec = pytree.tree_flatten(params_and_buffers)
|
981 |
+
params_and_buffers_flat = tuple(params_and_buffers_flat)
|
982 |
+
params_len = len(params_and_buffers_flat)
|
983 |
+
|
984 |
+
kwargs = kwargs or {}
|
985 |
+
|
986 |
+
functional_call = create_functional_call(mod, params_spec, params_len, store_orig_mod=True)
|
987 |
+
|
988 |
+
num_fw_outs = None
|
989 |
+
|
990 |
+
if trace_joint:
|
991 |
+
# This helper effectively just adds some extra asserts about what the backward will look like:
|
992 |
+
# Outputs must include a scalar loss, that we compute gradients w.r.t.
|
993 |
+
# We don't compute gradients w.r.t. anything else: so just in case we detach()
|
994 |
+
# and other output tensors.
|
995 |
+
def fn_to_trace(*args):
|
996 |
+
nonlocal num_fw_outs
|
997 |
+
out = functional_call(*args)
|
998 |
+
if output_loss_index is None:
|
999 |
+
raise RuntimeError("""\
|
1000 |
+
If trace_joint=Trueit is required that one of your forward outputs must be a scalar loss.
|
1001 |
+
You must specify the which (index) output is the loss with output_loss_index.""")
|
1002 |
+
if isinstance(out, (torch.Tensor)):
|
1003 |
+
out = (out,)
|
1004 |
+
if not isinstance(out, (tuple, list)):
|
1005 |
+
raise RuntimeError(f"Expected forward output to be either a tensor or a list/tuple of tensors. found {type(out)}")
|
1006 |
+
|
1007 |
+
for i, o in enumerate(out):
|
1008 |
+
# We only want to create a backward graph w.r.t. the loss that the user passed in.
|
1009 |
+
# This implies that every other output should not require gradients.
|
1010 |
+
# Instead of making this an error (and forcing the user to detach all other outputs
|
1011 |
+
# of their forward),
|
1012 |
+
# we'll automatically detach them here.
|
1013 |
+
if o.requires_grad and i != output_loss_index:
|
1014 |
+
raise RuntimeError(f"""\
|
1015 |
+
Found an output of the forward that requires gradients, that was not the scalar loss.
|
1016 |
+
We require all outputs to the forward that are not the scalar loss to not require gradient,
|
1017 |
+
because we will only compute a backward graph against the scalar loss.
|
1018 |
+
You can fix this by calling .detach() on each of your forward outputs that is not the loss.
|
1019 |
+
You specified that output index {output_loss_index} is the loss, but we found that
|
1020 |
+
the output at index {i} requires gradients.""")
|
1021 |
+
out_loss = out[output_loss_index]
|
1022 |
+
num_fw_outs = len(out)
|
1023 |
+
if not out_loss.requires_grad:
|
1024 |
+
raise RuntimeError(f"""\
|
1025 |
+
The output at index {output_loss_index} was marked as the loss, but it does not require gradients""")
|
1026 |
+
if out_loss.numel() != 1:
|
1027 |
+
raise RuntimeError(f"""\
|
1028 |
+
We require the output marked as the loss (at index {output_loss_index}) to be a scalar, but it has shape {out_loss.shape}""")
|
1029 |
+
return out
|
1030 |
+
ctx = nullcontext
|
1031 |
+
else:
|
1032 |
+
# Run under no_grad, so our tracing machinery only traces an inference graph.
|
1033 |
+
ctx = torch.no_grad
|
1034 |
+
fn_to_trace = functional_call
|
1035 |
+
|
1036 |
+
full_args = []
|
1037 |
+
# First, the params
|
1038 |
+
# NB: It is REQUIRED that parameters come first, Inductor infers "fixed"
|
1039 |
+
# parameters by looking at the difference in parameter count outside
|
1040 |
+
# and inside AOTAutograd, and assumes the prefix of arguments are fixed
|
1041 |
+
# arguments
|
1042 |
+
full_args.extend(params_and_buffers_flat)
|
1043 |
+
# Next, the input args
|
1044 |
+
full_args.extend(args)
|
1045 |
+
|
1046 |
+
with ctx():
|
1047 |
+
fx_g, metadata, in_spec, out_spec = _aot_export_function(
|
1048 |
+
fn_to_trace,
|
1049 |
+
full_args,
|
1050 |
+
decompositions=decompositions,
|
1051 |
+
num_params_buffers=params_len,
|
1052 |
+
no_tangents=True,
|
1053 |
+
pre_dispatch=pre_dispatch,
|
1054 |
+
kwargs=kwargs,
|
1055 |
+
)
|
1056 |
+
if trace_joint:
|
1057 |
+
def flattened_joint(*args):
|
1058 |
+
# The idea here is that the joint graph that AOTAutograd creates has some strict properties:
|
1059 |
+
# (1) It accepts two arguments (primals, tangents), and pytree_flattens them
|
1060 |
+
# (2) It returns a tuple of (fw_outs, gradients)
|
1061 |
+
# This is a very useful convention for anyone who wants to partition the joint graph
|
1062 |
+
# into a separate forward and backward graph.
|
1063 |
+
# However,
|
1064 |
+
# (1) for people exporting a single joint graph, it would be preferable not to have
|
1065 |
+
# any pytrees in the graph.
|
1066 |
+
# (2) We are guaranteed in the aot_export_module case that the forward outputs a loss,
|
1067 |
+
# and there are therefore no tangents that are needed to run the joint graph.
|
1068 |
+
# (3) AOTAutograd creates a grad_input for every input in the forward,
|
1069 |
+
# including None's for inputs that are not grad-requiring tensors.
|
1070 |
+
# we don't want these in our export graph.
|
1071 |
+
# and there are therefore no tangents that are needed to run the joint graph.
|
1072 |
+
# This function "fixes" both of the above by removing any tangent inputs,
|
1073 |
+
# and removing pytrees from the original FX graph.
|
1074 |
+
fake_tangents = [None for _ in range(metadata.num_outputs + metadata.num_mutated_inp_runtime_indices)]
|
1075 |
+
fw_outs, gradients = fx_g(args, fake_tangents)
|
1076 |
+
assert len(gradients) == len(args)
|
1077 |
+
output_gradients = []
|
1078 |
+
for i, (a, grad) in enumerate(zip(args, gradients)):
|
1079 |
+
if isinstance(a, torch.Tensor) and a.requires_grad:
|
1080 |
+
assert grad is not None, """\
|
1081 |
+
Found a parameter that did not receive a gradient.
|
1082 |
+
"This is most likely a bug, but if this needs to be supported please comment on this Github issue:
|
1083 |
+
https://github.com/pytorch/pytorch/issues/101192
|
1084 |
+
"""
|
1085 |
+
output_gradients.append(grad)
|
1086 |
+
else:
|
1087 |
+
assert grad is None
|
1088 |
+
return *fw_outs, *output_gradients
|
1089 |
+
fx_g = make_fx(flattened_joint)(*full_args)
|
1090 |
+
|
1091 |
+
user_args_flat = pytree.arg_tree_leaves(*args, **kwargs)
|
1092 |
+
return fx_g, create_graph_signature(
|
1093 |
+
fx_g,
|
1094 |
+
metadata,
|
1095 |
+
in_spec,
|
1096 |
+
out_spec,
|
1097 |
+
user_args_flat=user_args_flat,
|
1098 |
+
params_and_buffers_flat=params_and_buffers_flat,
|
1099 |
+
param_names=list(named_parameters.keys()),
|
1100 |
+
buffer_names=list(named_buffers.keys()),
|
1101 |
+
trace_joint=trace_joint,
|
1102 |
+
num_user_fw_outs=num_fw_outs,
|
1103 |
+
loss_index=output_loss_index,
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
def aot_export_joint_simple(
|
1107 |
+
func: Callable,
|
1108 |
+
args,
|
1109 |
+
*,
|
1110 |
+
trace_joint: bool,
|
1111 |
+
# It looks like the main consequence of this API is that for dynamic shapes,
|
1112 |
+
# it will assume that parms/buffers are static.
|
1113 |
+
# With the new inferred dynamic shapes API, maybe this doesn't matter?
|
1114 |
+
num_params_buffers: int = 0,
|
1115 |
+
decompositions: Optional[Dict] = None,
|
1116 |
+
) -> torch.fx.GraphModule:
|
1117 |
+
"""
|
1118 |
+
A simplified version of export. Used by higher order operators.
|
1119 |
+
|
1120 |
+
This function makes a high-level "no calling convention changes" guarantee:
|
1121 |
+
- If no inputs require grad (so we export an inference graph),
|
1122 |
+
there are *no* calling convention change between the exported graph, and "func".
|
1123 |
+
- If at least one input requires grad (so we trace out and export a joint fw-bw graph),
|
1124 |
+
Then if you were partition the graph into a separate forward and backward graph,
|
1125 |
+
The forward graph will have no calling convention changes compared to "func".
|
1126 |
+
|
1127 |
+
The above also relies on some strong restrictions around which functions this API accepts:
|
1128 |
+
(1) `args` cannot contain any pytrees (they must have been pytree_flattened already)
|
1129 |
+
(2) `func` cannot mutate any inputs
|
1130 |
+
(3) The outputs of `func` cannot alias any inputs.
|
1131 |
+
|
1132 |
+
Note: this function is only lightly tested today. It will probably be tested more heavily by higher order ops.
|
1133 |
+
"""
|
1134 |
+
if trace_joint:
|
1135 |
+
ctx = nullcontext
|
1136 |
+
else:
|
1137 |
+
# Run under no_grad, so our tracing machinery only traces an inference graph.
|
1138 |
+
ctx = torch.no_grad
|
1139 |
+
|
1140 |
+
with ctx():
|
1141 |
+
fx_g, metadata, in_spec, out_spec = _aot_export_function(
|
1142 |
+
func,
|
1143 |
+
args,
|
1144 |
+
decompositions=decompositions,
|
1145 |
+
)
|
1146 |
+
in_spec, _kw_in_spec = in_spec.children_specs
|
1147 |
+
# At this point, we can just directly return the (joint or inference graph) that we traced.
|
1148 |
+
# First though: a bunch of assertions to make sure that our graph doesn't require
|
1149 |
+
# any calling convention changes compared to the original function.
|
1150 |
+
# These restrictions are *in addition to* the general restrictions on export.
|
1151 |
+
|
1152 |
+
# No input mutations
|
1153 |
+
if len([x for x in metadata.input_info if x.mutates_data or x.mutates_metadata]) != 0:
|
1154 |
+
raise RuntimeError(f"aot_export_joint_simple does not support input mutations. {str(metadata)}")
|
1155 |
+
# No output aliasing
|
1156 |
+
if len([x for x in metadata.output_info if x.output_type != OutputType.non_alias]) != 0:
|
1157 |
+
raise RuntimeError(f"aot_export_joint_simple does not support outputs that alias inputs. {str(metadata)}")
|
1158 |
+
# No pytrees
|
1159 |
+
if in_spec.is_leaf():
|
1160 |
+
raise RuntimeError(f"aot_export_joint_simple requires inputs to be a single list/tuple. in_spec={str(in_spec)}")
|
1161 |
+
if not all(child.is_leaf() for child in in_spec.children_specs):
|
1162 |
+
raise RuntimeError(f"aot_export_joint_simple requires individual inputs not to be pytrees. in_spec={str(in_spec)}")
|
1163 |
+
if out_spec.is_leaf():
|
1164 |
+
raise RuntimeError(f"aot_export_joint_simple requires outputs to be a single list/tuple. out_spec={str(out_spec)}")
|
1165 |
+
if not all(child.is_leaf() for child in out_spec.children_specs):
|
1166 |
+
raise RuntimeError(f"aot_export_joint_simple requires individual outputs not to be pytrees. out_spec={str(out_spec)}")
|
1167 |
+
# TODO: we might have to temporarily patch config.functionalize_rng
|
1168 |
+
# so that it doesn't run when we're exporting a higher order op.
|
1169 |
+
|
1170 |
+
if config.debug_assert:
|
1171 |
+
# Smoke test that after partitioning, we can run the forward without any calling convention changes.
|
1172 |
+
fw_module, bw_module = aot_config.default_partition( # noqa: F821
|
1173 |
+
fx_g, args, num_fwd_outputs=len(fw_metadata.output_infos) # noqa: F821
|
1174 |
+
)
|
1175 |
+
# Attempt to run the fw_module with the original user inputs
|
1176 |
+
fake_mode = detect_fake_mode(args)
|
1177 |
+
if fake_mode is None:
|
1178 |
+
fake_mode = FakeTensorMode()
|
1179 |
+
with fake_mode:
|
1180 |
+
fw_module(*args)
|
1181 |
+
return fx_g
|
1182 |
+
|
1183 |
+
# Private for now because we aren't providing a contract on what to return
|
1184 |
+
# for joint graphs (we could when there's a clearer use case)
|
1185 |
+
# In the future, we may need to add more export API's that provide their own strong guarantees.
|
1186 |
+
# This is meant as a general helper function for handling various export-y use cases.
|
1187 |
+
def _aot_export_function(
|
1188 |
+
func: Callable,
|
1189 |
+
args,
|
1190 |
+
*,
|
1191 |
+
num_params_buffers: int = 0,
|
1192 |
+
decompositions: Optional[Dict] = None,
|
1193 |
+
# If we're exporting a joint graph and we don't want any tangent inputs in the graph
|
1194 |
+
# (because we are backpropping through a scalar 1 loss),
|
1195 |
+
# we need to explicitly specify not to include tangents in the graph.
|
1196 |
+
# It's not enough just to check that our tangent is a scalar, since we also
|
1197 |
+
# need to know if it is a 1 (no need to make it a graph input), or something else
|
1198 |
+
# (requiring it to be a graph input).
|
1199 |
+
# We don't know this info at trace time though, so we need to make it an explicit config.
|
1200 |
+
no_tangents: bool = False,
|
1201 |
+
pre_dispatch: bool = False,
|
1202 |
+
kwargs=None,
|
1203 |
+
) -> Tuple[torch.fx.GraphModule, ViewAndMutationMeta, pytree.TreeSpec, pytree.TreeSpec]:
|
1204 |
+
kwargs = kwargs or {}
|
1205 |
+
|
1206 |
+
flat_fn, out_spec = create_tree_flattened_fn(func, args, kwargs)
|
1207 |
+
flat_args, in_spec = pytree.tree_flatten((args, kwargs))
|
1208 |
+
|
1209 |
+
dynamic_shapes = False
|
1210 |
+
for x in flat_args:
|
1211 |
+
if isinstance(x, FakeTensor):
|
1212 |
+
dynamic_shapes = x.fake_mode.shape_env is not None
|
1213 |
+
break
|
1214 |
+
|
1215 |
+
# The export use case doesn't care about several bits of AOTConfig
|
1216 |
+
# (1) compilers (we just export the graph)
|
1217 |
+
# (2) partitioners (export is only full graph, user can partition themselves)
|
1218 |
+
aot_config = AOTConfig(
|
1219 |
+
fw_compiler=None,
|
1220 |
+
bw_compiler=None,
|
1221 |
+
inference_compiler=None,
|
1222 |
+
partition_fn=None,
|
1223 |
+
decompositions=decompositions,
|
1224 |
+
num_params_buffers=num_params_buffers,
|
1225 |
+
aot_id=next(AOT_COUNTER),
|
1226 |
+
# For now there's no use case involving keeping input mutations in the graph
|
1227 |
+
# (which we can only do in the inference case anyway).
|
1228 |
+
# We can add this later if we need to.
|
1229 |
+
keep_inference_input_mutations=False,
|
1230 |
+
dynamic_shapes=dynamic_shapes,
|
1231 |
+
aot_autograd_arg_pos_to_source=None,
|
1232 |
+
is_export=True,
|
1233 |
+
no_tangents=no_tangents,
|
1234 |
+
pre_dispatch=pre_dispatch,
|
1235 |
+
)
|
1236 |
+
|
1237 |
+
fx_g, meta = create_aot_dispatcher_function(
|
1238 |
+
flat_fn,
|
1239 |
+
flat_args,
|
1240 |
+
aot_config,
|
1241 |
+
)
|
1242 |
+
return fx_g, meta, in_spec, out_spec.spec
|
1243 |
+
|
1244 |
+
|
1245 |
+
compiled_function = aot_function
|
1246 |
+
compiled_module = aot_module
|
venv/lib/python3.10/site-packages/torch/_functorch/apis.py
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# NOTE: We allow Dynamo to see this file (via torch/_dynamo/trace_rules.py) so that it can
|
2 |
+
# trace through functorch transforms.
|
3 |
+
# Currently, we can't allow Dynamo to see `eager_transforms.py`/`vmap.py` as that break a lot of thing
|
4 |
+
# and there isn't a mechanism to selectively expose only some functions (eg. grad) from a file
|
5 |
+
# to Dynamo.
|
6 |
+
from torch._functorch.vmap import (vmap_impl, _check_randomness_arg,
|
7 |
+
Callable, in_dims_t, out_dims_t, _check_out_dims_is_int_or_int_pytree,
|
8 |
+
_process_batched_inputs, _chunked_vmap)
|
9 |
+
from torch._functorch.utils import exposed_in, argnums_t
|
10 |
+
import functools
|
11 |
+
|
12 |
+
# vmap(func)(inputs) wraps all Tensor inputs to be batched in BatchedTensors,
|
13 |
+
# sends those into func, and then unwraps the output BatchedTensors. Operations
|
14 |
+
# on BatchedTensors perform the batched operations that the user is asking for.
|
15 |
+
#
|
16 |
+
# vmap's randomness behavior differs from JAX's, which would require a PRNG key
|
17 |
+
# to be passed everywhere.
|
18 |
+
|
19 |
+
|
20 |
+
@exposed_in('torch.func')
|
21 |
+
def vmap(
|
22 |
+
func: Callable,
|
23 |
+
in_dims: in_dims_t = 0,
|
24 |
+
out_dims: out_dims_t = 0,
|
25 |
+
randomness: str = 'error',
|
26 |
+
*,
|
27 |
+
chunk_size=None) -> Callable:
|
28 |
+
"""
|
29 |
+
vmap is the vectorizing map; ``vmap(func)`` returns a new function that
|
30 |
+
maps ``func`` over some dimension of the inputs. Semantically, vmap
|
31 |
+
pushes the map into PyTorch operations called by ``func``, effectively
|
32 |
+
vectorizing those operations.
|
33 |
+
|
34 |
+
vmap is useful for handling batch dimensions: one can write a function
|
35 |
+
``func`` that runs on examples and then lift it to a function that can
|
36 |
+
take batches of examples with ``vmap(func)``. vmap can also be used to
|
37 |
+
compute batched gradients when composed with autograd.
|
38 |
+
|
39 |
+
.. note::
|
40 |
+
:func:`torch.vmap` is aliased to :func:`torch.func.vmap` for
|
41 |
+
convenience. Use whichever one you'd like.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
func (function): A Python function that takes one or more arguments.
|
45 |
+
Must return one or more Tensors.
|
46 |
+
in_dims (int or nested structure): Specifies which dimension of the
|
47 |
+
inputs should be mapped over. ``in_dims`` should have a
|
48 |
+
structure like the inputs. If the ``in_dim`` for a particular
|
49 |
+
input is None, then that indicates there is no map dimension.
|
50 |
+
Default: 0.
|
51 |
+
out_dims (int or Tuple[int]): Specifies where the mapped dimension
|
52 |
+
should appear in the outputs. If ``out_dims`` is a Tuple, then
|
53 |
+
it should have one element per output. Default: 0.
|
54 |
+
randomness (str): Specifies whether the randomness in this
|
55 |
+
vmap should be the same or different across batches. If 'different',
|
56 |
+
the randomness for each batch will be different. If 'same', the
|
57 |
+
randomness will be the same across batches. If 'error', any calls to
|
58 |
+
random functions will error. Default: 'error'. WARNING: this flag
|
59 |
+
only applies to random PyTorch operations and does not apply to
|
60 |
+
Python's random module or numpy randomness.
|
61 |
+
chunk_size (None or int): If None (default), apply a single vmap over inputs.
|
62 |
+
If not None, then compute the vmap :attr:`chunk_size` samples at a time.
|
63 |
+
Note that :attr:`chunk_size=1` is equivalent to computing the vmap with a for-loop.
|
64 |
+
If you run into memory issues computing the vmap, please try a non-None chunk_size.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
Returns a new "batched" function. It takes the same inputs as
|
68 |
+
``func``, except each input has an extra dimension at the index
|
69 |
+
specified by ``in_dims``. It takes returns the same outputs as
|
70 |
+
``func``, except each output has an extra dimension at the index
|
71 |
+
specified by ``out_dims``.
|
72 |
+
|
73 |
+
.. warning:
|
74 |
+
:func:`vmap` works best with functional-style code. Please do not
|
75 |
+
perform any side-effects in ``func``, with the exception of
|
76 |
+
in-place PyTorch operations. Examples of side-effects include mutating
|
77 |
+
Python data structures and assigning values to variables not captured
|
78 |
+
in ``func``.
|
79 |
+
|
80 |
+
One example of using :func:`vmap` is to compute batched dot products. PyTorch
|
81 |
+
doesn't provide a batched ``torch.dot`` API; instead of unsuccessfully
|
82 |
+
rummaging through docs, use :func:`vmap` to construct a new function.
|
83 |
+
|
84 |
+
>>> torch.dot # [D], [D] -> []
|
85 |
+
>>> batched_dot = torch.func.vmap(torch.dot) # [N, D], [N, D] -> [N]
|
86 |
+
>>> x, y = torch.randn(2, 5), torch.randn(2, 5)
|
87 |
+
>>> batched_dot(x, y)
|
88 |
+
|
89 |
+
:func:`vmap` can be helpful in hiding batch dimensions, leading to a simpler
|
90 |
+
model authoring experience.
|
91 |
+
|
92 |
+
>>> batch_size, feature_size = 3, 5
|
93 |
+
>>> weights = torch.randn(feature_size, requires_grad=True)
|
94 |
+
>>>
|
95 |
+
>>> def model(feature_vec):
|
96 |
+
>>> # Very simple linear model with activation
|
97 |
+
>>> return feature_vec.dot(weights).relu()
|
98 |
+
>>>
|
99 |
+
>>> examples = torch.randn(batch_size, feature_size)
|
100 |
+
>>> result = torch.vmap(model)(examples)
|
101 |
+
|
102 |
+
:func:`vmap` can also help vectorize computations that were previously difficult
|
103 |
+
or impossible to batch. One example is higher-order gradient computation.
|
104 |
+
The PyTorch autograd engine computes vjps (vector-Jacobian products).
|
105 |
+
Computing a full Jacobian matrix for some function f: R^N -> R^N usually
|
106 |
+
requires N calls to ``autograd.grad``, one per Jacobian row. Using :func:`vmap`,
|
107 |
+
we can vectorize the whole computation, computing the Jacobian in a single
|
108 |
+
call to ``autograd.grad``.
|
109 |
+
|
110 |
+
>>> # Setup
|
111 |
+
>>> N = 5
|
112 |
+
>>> f = lambda x: x ** 2
|
113 |
+
>>> x = torch.randn(N, requires_grad=True)
|
114 |
+
>>> y = f(x)
|
115 |
+
>>> I_N = torch.eye(N)
|
116 |
+
>>>
|
117 |
+
>>> # Sequential approach
|
118 |
+
>>> jacobian_rows = [torch.autograd.grad(y, x, v, retain_graph=True)[0]
|
119 |
+
>>> for v in I_N.unbind()]
|
120 |
+
>>> jacobian = torch.stack(jacobian_rows)
|
121 |
+
>>>
|
122 |
+
>>> # vectorized gradient computation
|
123 |
+
>>> def get_vjp(v):
|
124 |
+
>>> return torch.autograd.grad(y, x, v)
|
125 |
+
>>> jacobian = torch.vmap(get_vjp)(I_N)
|
126 |
+
|
127 |
+
:func:`vmap` can also be nested, producing an output with multiple batched dimensions
|
128 |
+
|
129 |
+
>>> torch.dot # [D], [D] -> []
|
130 |
+
>>> batched_dot = torch.vmap(torch.vmap(torch.dot)) # [N1, N0, D], [N1, N0, D] -> [N1, N0]
|
131 |
+
>>> x, y = torch.randn(2, 3, 5), torch.randn(2, 3, 5)
|
132 |
+
>>> batched_dot(x, y) # tensor of size [2, 3]
|
133 |
+
|
134 |
+
If the inputs are not batched along the first dimension, ``in_dims`` specifies
|
135 |
+
the dimension that each inputs are batched along as
|
136 |
+
|
137 |
+
>>> torch.dot # [N], [N] -> []
|
138 |
+
>>> batched_dot = torch.vmap(torch.dot, in_dims=1) # [N, D], [N, D] -> [D]
|
139 |
+
>>> x, y = torch.randn(2, 5), torch.randn(2, 5)
|
140 |
+
>>> batched_dot(x, y) # output is [5] instead of [2] if batched along the 0th dimension
|
141 |
+
|
142 |
+
If there are multiple inputs each of which is batched along different dimensions,
|
143 |
+
``in_dims`` must be a tuple with the batch dimension for each input as
|
144 |
+
|
145 |
+
>>> torch.dot # [D], [D] -> []
|
146 |
+
>>> batched_dot = torch.vmap(torch.dot, in_dims=(0, None)) # [N, D], [D] -> [N]
|
147 |
+
>>> x, y = torch.randn(2, 5), torch.randn(5)
|
148 |
+
>>> batched_dot(x, y) # second arg doesn't have a batch dim because in_dim[1] was None
|
149 |
+
|
150 |
+
If the input is a Python struct, ``in_dims`` must be a tuple containing a struct
|
151 |
+
matching the shape of the input:
|
152 |
+
|
153 |
+
>>> f = lambda dict: torch.dot(dict['x'], dict['y'])
|
154 |
+
>>> x, y = torch.randn(2, 5), torch.randn(5)
|
155 |
+
>>> input = {'x': x, 'y': y}
|
156 |
+
>>> batched_dot = torch.vmap(f, in_dims=({'x': 0, 'y': None},))
|
157 |
+
>>> batched_dot(input)
|
158 |
+
|
159 |
+
By default, the output is batched along the first dimension. However, it can be batched
|
160 |
+
along any dimension by using ``out_dims``
|
161 |
+
|
162 |
+
>>> f = lambda x: x ** 2
|
163 |
+
>>> x = torch.randn(2, 5)
|
164 |
+
>>> batched_pow = torch.vmap(f, out_dims=1)
|
165 |
+
>>> batched_pow(x) # [5, 2]
|
166 |
+
|
167 |
+
For any function that uses kwargs, the returned function will not batch the kwargs but will
|
168 |
+
accept kwargs
|
169 |
+
|
170 |
+
>>> x = torch.randn([2, 5])
|
171 |
+
>>> def fn(x, scale=4.):
|
172 |
+
>>> return x * scale
|
173 |
+
>>>
|
174 |
+
>>> batched_pow = torch.vmap(fn)
|
175 |
+
>>> assert torch.allclose(batched_pow(x), x * 4)
|
176 |
+
>>> batched_pow(x, scale=x) # scale is not batched, output has shape [2, 2, 5]
|
177 |
+
|
178 |
+
.. note::
|
179 |
+
vmap does not provide general autobatching or handle variable-length
|
180 |
+
sequences out of the box.
|
181 |
+
"""
|
182 |
+
_check_randomness_arg(randomness)
|
183 |
+
if not (chunk_size is None or chunk_size > 0):
|
184 |
+
raise ValueError(f"vmap: chunk_size should be None or greater than 0. (got {chunk_size})")
|
185 |
+
|
186 |
+
# @functools.wraps(func)
|
187 |
+
def wrapped(*args, **kwargs):
|
188 |
+
return vmap_impl(func, in_dims, out_dims, randomness, chunk_size, *args, **kwargs)
|
189 |
+
|
190 |
+
return wrapped
|
191 |
+
|
192 |
+
|
193 |
+
def chunk_vmap(
|
194 |
+
func: Callable,
|
195 |
+
in_dims: in_dims_t = 0,
|
196 |
+
out_dims: out_dims_t = 0,
|
197 |
+
randomness: str = 'error',
|
198 |
+
chunks=2) -> Callable:
|
199 |
+
"""
|
200 |
+
chunk_vmap is the vectorizing map (vmap) using chunks of input data. It is a mix of vmap (which vectorizes
|
201 |
+
everything) and map (which executes things sequentially). ``chunk_vmap`` vectorizes the input with number of
|
202 |
+
chunks at a time. For more details about vectorizing map, see :func:`vmap`.
|
203 |
+
|
204 |
+
.. note::
|
205 |
+
Please use :func:`vmap` with ``chunk_size`` argument instead of this API.
|
206 |
+
|
207 |
+
Args:
|
208 |
+
func (function): A Python function that takes one or more arguments.
|
209 |
+
Must return one or more Tensors.
|
210 |
+
in_dims (int or nested structure): Specifies which dimension of the
|
211 |
+
inputs should be mapped over. ``in_dims`` should have a
|
212 |
+
structure like the inputs. If the ``in_dim`` for a particular
|
213 |
+
input is None, then that indicates there is no map dimension.
|
214 |
+
Default: 0.
|
215 |
+
out_dims (int or Tuple[int]): Specifies where the mapped dimension
|
216 |
+
should appear in the outputs. If ``out_dims`` is a Tuple, then
|
217 |
+
it should have one element per output. Default: 0.
|
218 |
+
randomness (str): Specifies whether the randomness in this
|
219 |
+
vmap should be the same or different across batches. If 'different',
|
220 |
+
the randomness for each batch will be different. If 'same', the
|
221 |
+
randomness will be the same across batches. If 'error', any calls to
|
222 |
+
random functions will error. Default: 'error'. WARNING: this flag
|
223 |
+
only applies to random PyTorch operations and does not apply to
|
224 |
+
Python's random module or numpy randomness.
|
225 |
+
chunks (int): Number of chunks to use to split the input data. Default is 2.
|
226 |
+
If equals to 1 then :func:`vmap` is called.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
Returns a new "batched" function. It takes the same inputs as
|
230 |
+
``func``, except each input has an extra dimension at the index
|
231 |
+
specified by ``in_dims``. It takes returns the same outputs as
|
232 |
+
``func``, except each output has an extra dimension at the index
|
233 |
+
specified by ``out_dims``.
|
234 |
+
"""
|
235 |
+
_check_randomness_arg(randomness)
|
236 |
+
|
237 |
+
if chunks == 1:
|
238 |
+
return vmap(func, in_dims=in_dims, out_dims=out_dims, randomness=randomness)
|
239 |
+
|
240 |
+
def _get_chunk_flat_args(flat_args_, flat_in_dims_, chunks_):
|
241 |
+
flat_args_chunks = tuple(
|
242 |
+
t.chunk(chunks_, dim=in_dim) if in_dim is not None else [t, ] * chunks_
|
243 |
+
for t, in_dim in zip(flat_args_, flat_in_dims_)
|
244 |
+
)
|
245 |
+
# transpose chunk dim and flatten structure
|
246 |
+
# chunks_flat_args is a list of flatten args
|
247 |
+
chunks_flat_args = zip(*flat_args_chunks)
|
248 |
+
return chunks_flat_args
|
249 |
+
|
250 |
+
@functools.wraps(func)
|
251 |
+
def wrapped_with_chunks(*args, **kwargs):
|
252 |
+
_check_out_dims_is_int_or_int_pytree(out_dims, func)
|
253 |
+
_, flat_in_dims, flat_args, args_spec = _process_batched_inputs(in_dims, args, func)
|
254 |
+
# Chunk flat arguments
|
255 |
+
chunks_flat_args = _get_chunk_flat_args(flat_args, flat_in_dims, chunks)
|
256 |
+
|
257 |
+
# Apply vmap on chunks
|
258 |
+
return _chunked_vmap(func, flat_in_dims, chunks_flat_args, args_spec, out_dims, randomness, **kwargs)
|
259 |
+
|
260 |
+
return wrapped_with_chunks
|
261 |
+
|
262 |
+
|
263 |
+
@exposed_in("torch.func")
|
264 |
+
def grad(func: Callable, argnums: argnums_t = 0, has_aux: bool = False) -> Callable:
|
265 |
+
"""``grad`` operator helps computing gradients of ``func`` with respect to the
|
266 |
+
input(s) specified by ``argnums``. This operator can be nested to
|
267 |
+
compute higher-order gradients.
|
268 |
+
|
269 |
+
Args:
|
270 |
+
func (Callable): A Python function that takes one or more arguments.
|
271 |
+
Must return a single-element Tensor. If specified ``has_aux`` equals ``True``,
|
272 |
+
function can return a tuple of single-element Tensor and other auxiliary objects:
|
273 |
+
``(output, aux)``.
|
274 |
+
argnums (int or Tuple[int]): Specifies arguments to compute gradients with respect to.
|
275 |
+
``argnums`` can be single integer or tuple of integers. Default: 0.
|
276 |
+
has_aux (bool): Flag indicating that ``func`` returns a tensor and other
|
277 |
+
auxiliary objects: ``(output, aux)``. Default: False.
|
278 |
+
|
279 |
+
Returns:
|
280 |
+
Function to compute gradients with respect to its inputs. By default, the output of
|
281 |
+
the function is the gradient tensor(s) with respect to the first argument.
|
282 |
+
If specified ``has_aux`` equals ``True``, tuple of gradients and output auxiliary objects
|
283 |
+
is returned. If ``argnums`` is a tuple of integers, a tuple of output gradients with
|
284 |
+
respect to each ``argnums`` value is returned.
|
285 |
+
|
286 |
+
Example of using ``grad``:
|
287 |
+
|
288 |
+
>>> # xdoctest: +SKIP
|
289 |
+
>>> from torch.func import grad
|
290 |
+
>>> x = torch.randn([])
|
291 |
+
>>> cos_x = grad(lambda x: torch.sin(x))(x)
|
292 |
+
>>> assert torch.allclose(cos_x, x.cos())
|
293 |
+
>>>
|
294 |
+
>>> # Second-order gradients
|
295 |
+
>>> neg_sin_x = grad(grad(lambda x: torch.sin(x)))(x)
|
296 |
+
>>> assert torch.allclose(neg_sin_x, -x.sin())
|
297 |
+
|
298 |
+
When composed with ``vmap``, ``grad`` can be used to compute per-sample-gradients:
|
299 |
+
|
300 |
+
>>> # xdoctest: +SKIP
|
301 |
+
>>> from torch.func import grad, vmap
|
302 |
+
>>> batch_size, feature_size = 3, 5
|
303 |
+
>>>
|
304 |
+
>>> def model(weights, feature_vec):
|
305 |
+
>>> # Very simple linear model with activation
|
306 |
+
>>> assert feature_vec.dim() == 1
|
307 |
+
>>> return feature_vec.dot(weights).relu()
|
308 |
+
>>>
|
309 |
+
>>> def compute_loss(weights, example, target):
|
310 |
+
>>> y = model(weights, example)
|
311 |
+
>>> return ((y - target) ** 2).mean() # MSELoss
|
312 |
+
>>>
|
313 |
+
>>> weights = torch.randn(feature_size, requires_grad=True)
|
314 |
+
>>> examples = torch.randn(batch_size, feature_size)
|
315 |
+
>>> targets = torch.randn(batch_size)
|
316 |
+
>>> inputs = (weights, examples, targets)
|
317 |
+
>>> grad_weight_per_example = vmap(grad(compute_loss), in_dims=(None, 0, 0))(*inputs)
|
318 |
+
|
319 |
+
Example of using ``grad`` with ``has_aux`` and ``argnums``:
|
320 |
+
|
321 |
+
>>> # xdoctest: +SKIP
|
322 |
+
>>> from torch.func import grad
|
323 |
+
>>> def my_loss_func(y, y_pred):
|
324 |
+
>>> loss_per_sample = (0.5 * y_pred - y) ** 2
|
325 |
+
>>> loss = loss_per_sample.mean()
|
326 |
+
>>> return loss, (y_pred, loss_per_sample)
|
327 |
+
>>>
|
328 |
+
>>> fn = grad(my_loss_func, argnums=(0, 1), has_aux=True)
|
329 |
+
>>> y_true = torch.rand(4)
|
330 |
+
>>> y_preds = torch.rand(4, requires_grad=True)
|
331 |
+
>>> out = fn(y_true, y_preds)
|
332 |
+
>>> # > output is ((grads w.r.t y_true, grads w.r.t y_preds), (y_pred, loss_per_sample))
|
333 |
+
|
334 |
+
.. note::
|
335 |
+
Using PyTorch ``torch.no_grad`` together with ``grad``.
|
336 |
+
|
337 |
+
Case 1: Using ``torch.no_grad`` inside a function:
|
338 |
+
|
339 |
+
>>> # xdoctest: +SKIP
|
340 |
+
>>> def f(x):
|
341 |
+
>>> with torch.no_grad():
|
342 |
+
>>> c = x ** 2
|
343 |
+
>>> return x - c
|
344 |
+
|
345 |
+
In this case, ``grad(f)(x)`` will respect the inner ``torch.no_grad``.
|
346 |
+
|
347 |
+
Case 2: Using ``grad`` inside ``torch.no_grad`` context manager:
|
348 |
+
|
349 |
+
>>> # xdoctest: +SKIP
|
350 |
+
>>> with torch.no_grad():
|
351 |
+
>>> grad(f)(x)
|
352 |
+
|
353 |
+
In this case, ``grad`` will respect the inner ``torch.no_grad``, but not the
|
354 |
+
outer one. This is because ``grad`` is a "function transform": its result
|
355 |
+
should not depend on the result of a context manager outside of ``f``.
|
356 |
+
|
357 |
+
"""
|
358 |
+
# To avoid cyclical dependency.
|
359 |
+
import torch._functorch.eager_transforms as eager_transforms
|
360 |
+
|
361 |
+
@functools.wraps(func)
|
362 |
+
def wrapper(*args, **kwargs):
|
363 |
+
return eager_transforms.grad_impl(func, argnums, has_aux, args, kwargs)
|
364 |
+
return wrapper
|
365 |
+
|
366 |
+
|
367 |
+
@exposed_in("torch.func")
|
368 |
+
def grad_and_value(func: Callable, argnums: argnums_t = 0, has_aux: bool = False) -> Callable:
|
369 |
+
"""
|
370 |
+
Returns a function to compute a tuple of the gradient and primal, or
|
371 |
+
forward, computation.
|
372 |
+
|
373 |
+
Args:
|
374 |
+
func (Callable): A Python function that takes one or more arguments.
|
375 |
+
Must return a single-element Tensor. If specified ``has_aux``
|
376 |
+
equals ``True``, function can return a tuple of single-element
|
377 |
+
Tensor and other auxiliary objects: ``(output, aux)``.
|
378 |
+
argnums (int or Tuple[int]): Specifies arguments to compute gradients
|
379 |
+
with respect to. ``argnums`` can be single integer or tuple of
|
380 |
+
integers. Default: 0.
|
381 |
+
has_aux (bool): Flag indicating that ``func`` returns a tensor and
|
382 |
+
other auxiliary objects: ``(output, aux)``. Default: False.
|
383 |
+
|
384 |
+
Returns:
|
385 |
+
Function to compute a tuple of gradients with respect to its inputs
|
386 |
+
and the forward computation. By default, the output of the function is
|
387 |
+
a tuple of the gradient tensor(s) with respect to the first argument
|
388 |
+
and the primal computation. If specified ``has_aux`` equals
|
389 |
+
``True``, tuple of gradients and tuple of the forward computation with
|
390 |
+
output auxiliary objects is returned. If ``argnums`` is a tuple of
|
391 |
+
integers, a tuple of a tuple of the output gradients with respect to
|
392 |
+
each ``argnums`` value and the forward computation is returned.
|
393 |
+
|
394 |
+
See :func:`grad` for examples
|
395 |
+
"""
|
396 |
+
from torch._functorch import eager_transforms
|
397 |
+
|
398 |
+
@functools.wraps(func)
|
399 |
+
def wrapper(*args, **kwargs):
|
400 |
+
return eager_transforms.grad_and_value_impl(func, argnums, has_aux, args, kwargs)
|
401 |
+
return wrapper
|
venv/lib/python3.10/site-packages/torch/_functorch/autograd_function.py
ADDED
@@ -0,0 +1,659 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch._ops import HigherOrderOperator
|
3 |
+
from torch._C._functorch import TransformType
|
4 |
+
from torch._functorch.utils import enable_single_level_autograd_function
|
5 |
+
import torch.utils._pytree as pytree
|
6 |
+
from torch._C._functorch import (
|
7 |
+
_wrap_for_grad,
|
8 |
+
_unwrap_for_grad,
|
9 |
+
current_level,
|
10 |
+
)
|
11 |
+
from torch._functorch.vmap import (
|
12 |
+
wrap_batched,
|
13 |
+
unwrap_batched,
|
14 |
+
restore_vmap,
|
15 |
+
_add_batch_dim,
|
16 |
+
)
|
17 |
+
from torch._functorch.apis import vmap
|
18 |
+
from torch._functorch.vmap import _broadcast_to_and_flatten
|
19 |
+
from torch.autograd.forward_ad import _set_fwd_grad_enabled
|
20 |
+
from typing import Any, NamedTuple, Tuple
|
21 |
+
|
22 |
+
# autograd.Function technically runs before the regular PyTorch dispatcher.
|
23 |
+
# This is how features like autocast and torch_dispatch (e.g. PythonTLSSnapshot)
|
24 |
+
# work with it. One day we might decide to change this, but until then,
|
25 |
+
# we need to give the illusion that autograd.Function runs before those things.
|
26 |
+
#
|
27 |
+
# We do this by using creating a custom HigherOrderOperator that only functorch
|
28 |
+
# dispatches specially.
|
29 |
+
class CustomFunctionHigherOrderOperator(HigherOrderOperator):
|
30 |
+
def __init__(self):
|
31 |
+
super().__init__('custom_function_call')
|
32 |
+
|
33 |
+
def __call__(self, autograd_function, *args, **kwargs):
|
34 |
+
# When custom_function_call is done dispatching through functorch,
|
35 |
+
# it should just invoke the autograd.Function. This is consistent
|
36 |
+
# with the autograd.Function behavior of being invoked before the
|
37 |
+
# PyTorch dispatcher.
|
38 |
+
#
|
39 |
+
# This will lead us into trouble later down the line, but this is
|
40 |
+
# pre-existing. There is an invariant that a function traced by
|
41 |
+
# make_fx should have the same behavior when provided the same
|
42 |
+
# Tensor. However, make_fx sees autograd.Function as a composite
|
43 |
+
# (because autograd.Function happens before the Python dispatch key)
|
44 |
+
# and only traces the forward pass.
|
45 |
+
if torch._C._are_functorch_transforms_active():
|
46 |
+
return super().__call__(autograd_function, *args, **kwargs)
|
47 |
+
return autograd_function.apply(*args, **kwargs)
|
48 |
+
|
49 |
+
|
50 |
+
# "custom_function_call"
|
51 |
+
# This is the mechanism for an autograd.Function that works with functorch transforms.
|
52 |
+
# It wraps an autograd.Function; interactions with functorch transforms are defined
|
53 |
+
# via PyDispatcher and HigherOrderOperator rather than through the traditional PyTorch
|
54 |
+
# dispatcher.
|
55 |
+
custom_function_call = CustomFunctionHigherOrderOperator()
|
56 |
+
|
57 |
+
|
58 |
+
# The grad rule for custom_function_call is to construct a new _SingleLevelFunction
|
59 |
+
# (autograd.Function that only works with a single layer (level) of functorch) that:
|
60 |
+
# - unwraps the inputs
|
61 |
+
# - redispatches to custom_function_call
|
62 |
+
# - wraps the outputs
|
63 |
+
# and whose backward pass calls the original autograd.Function's backward.
|
64 |
+
#
|
65 |
+
# Why do we need to redispatch to custom_function_call?
|
66 |
+
# -----------------------------------------------------
|
67 |
+
# This is consistent with how ATen operators work with functorch's grad transform:
|
68 |
+
# they always redispatch to the original operator.
|
69 |
+
# Consider torch.sin, and let's say we do grad0(grad1(torch.sin))(x)
|
70 |
+
#
|
71 |
+
# grad1 will:
|
72 |
+
# - set up the autograd graph
|
73 |
+
# - unwrap the inputs
|
74 |
+
# - redispatch to at::sin (*)
|
75 |
+
# - rewrap the outputs on the return
|
76 |
+
#
|
77 |
+
# On the redispatch in (*), grad0 will:
|
78 |
+
# - set up the autograd graph
|
79 |
+
# - unwrap the inputs
|
80 |
+
# - redispatch to at::sin
|
81 |
+
# - rewrap the outputs on the return
|
82 |
+
#
|
83 |
+
# To "set up the autograd graph", we generate a _SingleLevelFunction
|
84 |
+
# and apply it.
|
85 |
+
@custom_function_call.py_impl(TransformType.Grad)
|
86 |
+
@custom_function_call.py_impl(TransformType.Jvp)
|
87 |
+
def custom_function_call_grad(interpreter, autograd_function, *operands):
|
88 |
+
Generated = generate_single_level_function(interpreter, autograd_function)
|
89 |
+
with enable_single_level_autograd_function():
|
90 |
+
flat_out = Generated.apply(*operands)
|
91 |
+
return flat_out
|
92 |
+
|
93 |
+
|
94 |
+
def generate_single_level_function(interpreter, autograd_function):
|
95 |
+
level = interpreter.level()
|
96 |
+
|
97 |
+
def forward(*operands):
|
98 |
+
unwrapped_operands = pytree.tree_map_only(
|
99 |
+
torch.Tensor,
|
100 |
+
lambda x: _unwrap_for_grad(x, level),
|
101 |
+
operands)
|
102 |
+
# Both enable_grad() and _set_fwd_grad_enabled() are necessary no matter
|
103 |
+
# the transform. _SingleLevelFunction will turn off both fwd and bwd
|
104 |
+
# gradient computation and we need to turn it back on here.
|
105 |
+
with torch.enable_grad(), _set_fwd_grad_enabled(True), interpreter.lower():
|
106 |
+
unwrapped_output = custom_function_call(autograd_function, *unwrapped_operands)
|
107 |
+
|
108 |
+
# See NOTE [mark_dirty object identity check]
|
109 |
+
def wrap_fn(output):
|
110 |
+
return _wrap_for_grad(output, level)
|
111 |
+
|
112 |
+
return wrap_outputs_maintaining_identity(
|
113 |
+
unwrapped_output,
|
114 |
+
unwrapped_operands,
|
115 |
+
operands,
|
116 |
+
wrap_fn)
|
117 |
+
|
118 |
+
def setup_context(ctx, inputs, output):
|
119 |
+
return autograd_function.setup_context(ctx, inputs, output)
|
120 |
+
|
121 |
+
# backward is only used if the transform is TransformType.Grad
|
122 |
+
def backward(ctx, *grads):
|
123 |
+
result = autograd_function.backward(ctx, *grads)
|
124 |
+
return result
|
125 |
+
|
126 |
+
# jvp is only used if the transform is TransformType.Jvp
|
127 |
+
def jvp(ctx, *tangents):
|
128 |
+
result = autograd_function.jvp(ctx, *tangents)
|
129 |
+
return result
|
130 |
+
|
131 |
+
# This is the sequence of magic words to dynamically generate a Subclass with
|
132 |
+
# a given name. A Tensor's .grad_fn field has a class name that is the original
|
133 |
+
# autograd.Function's name + Backward, so we do this to generate some
|
134 |
+
# meaningful name.
|
135 |
+
name = f'{autograd_function.__name__}Generated'
|
136 |
+
Generated = type(
|
137 |
+
name,
|
138 |
+
(torch.autograd.function._SingleLevelFunction,),
|
139 |
+
{
|
140 |
+
'forward': staticmethod(forward),
|
141 |
+
'backward': staticmethod(backward),
|
142 |
+
'jvp': staticmethod(jvp),
|
143 |
+
'setup_context': staticmethod(setup_context),
|
144 |
+
},
|
145 |
+
)
|
146 |
+
return Generated
|
147 |
+
|
148 |
+
# wrap_outputs_maintaining_identity handles outputs from the vmap,
|
149 |
+
# backward (vjp), and jvp staticmethod. The way it distinguishes
|
150 |
+
# between the vmap case and the {backward, jvp} case is if the out_dims
|
151 |
+
# are specified or not.
|
152 |
+
#
|
153 |
+
# NB: we cannot use out_dims=None as the deciding factor. This because
|
154 |
+
# out_dims=None can still happen in the vmap staticmethod! What the
|
155 |
+
# user is saying in that case is that their output does not have a
|
156 |
+
# dimension that is being vmapped over, which is valid.
|
157 |
+
NO_OUT_DIMS = "not specified"
|
158 |
+
|
159 |
+
# NOTE [mark_dirty object identity check]
|
160 |
+
# autograd.Function's ctx.mark_dirty expect a returned input
|
161 |
+
# to have the same object identity as the input.
|
162 |
+
# Mode-only functorch will greatly simplify this logic.
|
163 |
+
def wrap_outputs_maintaining_identity(
|
164 |
+
outputs, unwrapped_inputs, orig_inputs, wrap_fn, out_dims=NO_OUT_DIMS):
|
165 |
+
flat_unwrapped_inputs = pytree.arg_tree_leaves(*unwrapped_inputs)
|
166 |
+
flat_orig_inputs = pytree.arg_tree_leaves(*orig_inputs)
|
167 |
+
|
168 |
+
unwrapped_input_to_orig_input = {
|
169 |
+
id(unwrapped): orig
|
170 |
+
for unwrapped, orig in zip(flat_unwrapped_inputs, flat_orig_inputs)
|
171 |
+
}
|
172 |
+
|
173 |
+
flat_outputs, spec = pytree.tree_flatten(outputs)
|
174 |
+
result = []
|
175 |
+
|
176 |
+
out_dims_specified = out_dims != NO_OUT_DIMS
|
177 |
+
|
178 |
+
if out_dims_specified:
|
179 |
+
flat_out_dims = _broadcast_to_and_flatten(out_dims, spec)
|
180 |
+
# _broadcast_to_and_flatten returns None if it is unable to broadcast.
|
181 |
+
# TODO: update following link from master to stable once that's out
|
182 |
+
if flat_out_dims is None:
|
183 |
+
raise RuntimeError(
|
184 |
+
f"The autograd.Function's vmap staticmethod returned an "
|
185 |
+
f"incompatible (output, out_dims) tuple. "
|
186 |
+
f"Expected out_dims={out_dims} "
|
187 |
+
f"to be compatible with the structure of `output`. "
|
188 |
+
f"out_dims has structure {pytree.tree_flatten(out_dims)[1]} "
|
189 |
+
f"but output has structure {spec}. "
|
190 |
+
f"For more details, please see "
|
191 |
+
f"https://pytorch.org/docs/master/notes/extending.func.html"
|
192 |
+
)
|
193 |
+
|
194 |
+
for i, output in enumerate(flat_outputs):
|
195 |
+
if not isinstance(output, torch.Tensor):
|
196 |
+
result.append(output)
|
197 |
+
continue
|
198 |
+
if id(output) in unwrapped_input_to_orig_input:
|
199 |
+
result.append(unwrapped_input_to_orig_input[id(output)])
|
200 |
+
continue
|
201 |
+
if out_dims_specified:
|
202 |
+
result.append(wrap_fn(output, flat_out_dims[i])) # type: ignore[possibly-undefined, index]
|
203 |
+
else:
|
204 |
+
result.append(wrap_fn(output))
|
205 |
+
|
206 |
+
return pytree.tree_unflatten(result, spec)
|
207 |
+
|
208 |
+
|
209 |
+
# NOTE: [functorch vjp and autograd interaction]
|
210 |
+
# There's an edge case with the functorch vjp and autograd interaction
|
211 |
+
# that will eventually be fixed by mode-only functorch.
|
212 |
+
# The TL;DR is that there's no way to unwrap a dead GradTensorWrapper,
|
213 |
+
# so we (the framework) need to do it manually. Regular PyTorch operators
|
214 |
+
# automatically do so this is consistent.
|
215 |
+
#
|
216 |
+
# class MyExp(torch.autograd.Function):
|
217 |
+
# @staticmethod
|
218 |
+
# def forward(x):
|
219 |
+
# return x.exp()
|
220 |
+
#
|
221 |
+
# @staticmethod
|
222 |
+
# def setup_context(ctx, inputs, output):
|
223 |
+
# y = output
|
224 |
+
# ctx.save_for_backward(y)
|
225 |
+
#
|
226 |
+
# @staticmethod
|
227 |
+
# def backward(gy):
|
228 |
+
# y, = ctx.saved_tensors()
|
229 |
+
# return MyMul.apply(gy, y)
|
230 |
+
#
|
231 |
+
# x = torch.randn([], requires_grad=True)
|
232 |
+
# gy = torch.randn([], requires_grad=True)
|
233 |
+
# _, vjp_fn = vjp(MySin.apply, x)
|
234 |
+
# result = vjp_fn(gy)
|
235 |
+
#
|
236 |
+
# MyMul is an autograd.Function that is not shown here.
|
237 |
+
# It saves a `y` for backward (since gy requires grad).
|
238 |
+
#
|
239 |
+
# in vjp_fn(gy), we get:
|
240 |
+
# > MyMul.apply(gy, GradTensorWrapper(y, level=dead))
|
241 |
+
# Because the y that is saved for backward by MyExp is a GradTensorWrapper
|
242 |
+
# but is now dead since we are outside the vjp context.
|
243 |
+
#
|
244 |
+
# PyTorch dispatcher operations, upon seeing a dead GradTensorWrapper,
|
245 |
+
# will automatically unwrap the GradTensorWrapper when applied.
|
246 |
+
# But since autograd.Function technically sits above the regular PyTorch
|
247 |
+
# dispatcher, it doesn't get this treatment. So we manually do
|
248 |
+
# the unwrapping to be consistent with regular PyTorch dispatcher operations.
|
249 |
+
|
250 |
+
|
251 |
+
class VmapInfo(NamedTuple):
|
252 |
+
batch_size: int
|
253 |
+
randomness: str
|
254 |
+
|
255 |
+
|
256 |
+
def has_overriden_vmap_rule(autograd_function):
|
257 |
+
return autograd_function.vmap is not torch.autograd.Function.vmap
|
258 |
+
|
259 |
+
|
260 |
+
def validate_vmap_returns_tuple_of_two_elements(result):
|
261 |
+
base_error_msg = (
|
262 |
+
"Expected the vmap staticmethod to have two returns, an output "
|
263 |
+
"and out_dims with pytree structure compatible with the output. "
|
264 |
+
)
|
265 |
+
if not isinstance(result, tuple):
|
266 |
+
raise RuntimeError(base_error_msg + f"Got a {type(result)} instead")
|
267 |
+
if not len(result) == 2:
|
268 |
+
raise RuntimeError(base_error_msg + f"Got {len(result)} returns instead")
|
269 |
+
|
270 |
+
@custom_function_call.py_impl(TransformType.Vmap)
|
271 |
+
def custom_function_call_vmap(interpreter, autograd_function, *operands):
|
272 |
+
if autograd_function.generate_vmap_rule:
|
273 |
+
if has_overriden_vmap_rule(autograd_function):
|
274 |
+
# TODO: Update link to stable once that's out
|
275 |
+
# https://github.com/pytorch/pytorch/issues/92029
|
276 |
+
raise RuntimeError(
|
277 |
+
f"You tried to vmap over {autograd_function.__name__}, but "
|
278 |
+
f"it has both generate_vmap_rule=True and an overriden vmap "
|
279 |
+
f"staticmethod. Please set generate_vmap_rule=False or delete "
|
280 |
+
f"the overriden vmap staticmethod to avoid ambiguity. "
|
281 |
+
f"For more details, please see "
|
282 |
+
f"https://pytorch.org/docs/master/notes/extending.func.html")
|
283 |
+
return custom_function_call_vmap_generate_rule(interpreter, autograd_function, *operands)
|
284 |
+
|
285 |
+
if not has_overriden_vmap_rule(autograd_function):
|
286 |
+
# TODO: Update link to stable once that's out
|
287 |
+
# https://github.com/pytorch/pytorch/issues/92029
|
288 |
+
raise RuntimeError(
|
289 |
+
f"You tried to vmap over {autograd_function.__name__}, but "
|
290 |
+
f"it does not have vmap support. Please override and implement the "
|
291 |
+
f"vmap staticmethod or set generate_vmap_rule=True. "
|
292 |
+
f"For more details, please see "
|
293 |
+
f"https://pytorch.org/docs/master/notes/extending.func.html")
|
294 |
+
|
295 |
+
current_level = interpreter.level()
|
296 |
+
info = VmapInfo(
|
297 |
+
batch_size=interpreter.batch_size(),
|
298 |
+
randomness=interpreter.randomness(),
|
299 |
+
)
|
300 |
+
unwrapped_operands, in_dims = unwrap_batched(operands, current_level)
|
301 |
+
|
302 |
+
# If none of the tensors are batched at the current level, then we skip the
|
303 |
+
# current level. This saves the user from needing to handle this case in
|
304 |
+
# their vmap staticmethod (and is consistent with our C++ batching rule API)
|
305 |
+
if pytree.tree_all(lambda dim: dim is None, in_dims):
|
306 |
+
with interpreter.lower():
|
307 |
+
return custom_function_call(autograd_function, *operands)
|
308 |
+
|
309 |
+
with interpreter.lower():
|
310 |
+
result = autograd_function.vmap(info, in_dims, *unwrapped_operands)
|
311 |
+
validate_vmap_returns_tuple_of_two_elements(result)
|
312 |
+
unwrapped_output, out_dims = result
|
313 |
+
|
314 |
+
# See NOTE [mark_dirty object identity check]
|
315 |
+
def wrap_fn(output, out_dim):
|
316 |
+
return output if out_dim is None else _add_batch_dim(output, out_dim, current_level)
|
317 |
+
|
318 |
+
return wrap_outputs_maintaining_identity(
|
319 |
+
unwrapped_output,
|
320 |
+
unwrapped_operands,
|
321 |
+
operands,
|
322 |
+
wrap_fn,
|
323 |
+
out_dims=out_dims)
|
324 |
+
|
325 |
+
|
326 |
+
def custom_function_call_vmap_generate_rule(interpreter, autograd_function, *operands):
|
327 |
+
unwrapped_operands, in_dims = unwrap_batched(operands, interpreter.level())
|
328 |
+
vmapped_function, get_out_dims = vmapify_autograd_function(
|
329 |
+
autograd_function, in_dims, interpreter.batch_size(), interpreter.randomness())
|
330 |
+
|
331 |
+
with interpreter.lower():
|
332 |
+
output = custom_function_call(vmapped_function, *unwrapped_operands)
|
333 |
+
|
334 |
+
out_dims = get_out_dims()
|
335 |
+
return wrap_batched(output, out_dims, interpreter.level())
|
336 |
+
|
337 |
+
|
338 |
+
@custom_function_call.py_impl(TransformType.Functionalize)
|
339 |
+
def custom_function_call_functionalize(interpreter, autograd_function, generate_vmap_rule, *operands):
|
340 |
+
raise RuntimeError("NYI: Functionalize rule for custom_function_call")
|
341 |
+
|
342 |
+
|
343 |
+
def vmapify_autograd_function(autograd_function, in_dims, batch_size, randomness):
|
344 |
+
# The following values are saved from the forward() and setup_context()
|
345 |
+
# and used in backward().
|
346 |
+
# Why do we save the values out here instead of on the ctx object?
|
347 |
+
# - out_dims: There's no way to retrieve this from forward()
|
348 |
+
# - input_shapes, saved_tensors_bdims: I'm a bit scared of nesting
|
349 |
+
# vmap(vmap( but not completely sure if it is a problem. If we
|
350 |
+
# assigned those fields to the ctx object, the worry is that they
|
351 |
+
# get overwritten.
|
352 |
+
init_val = "not populated"
|
353 |
+
out_dims = init_val
|
354 |
+
input_shapes: Any = init_val
|
355 |
+
saved_tensors_bdims: Any = init_val
|
356 |
+
|
357 |
+
def forward(*operands):
|
358 |
+
nonlocal out_dims
|
359 |
+
outputs, out_dims = restore_vmap(
|
360 |
+
autograd_function.forward, in_dims, batch_size, randomness)(*operands)
|
361 |
+
return outputs
|
362 |
+
|
363 |
+
def setup_context(ctx, inputs, outputs):
|
364 |
+
input_shapes_ = None
|
365 |
+
saved_tensors_bdims_ = None
|
366 |
+
|
367 |
+
def inner(inputs, outputs):
|
368 |
+
# wrapped_ctx.save_for_backward will:
|
369 |
+
# - unwrap batchedtensors into (tensor, bdim)
|
370 |
+
# - save_for_backward(*unwrapped_tensors)
|
371 |
+
# - assign the bdims to wrapped_ctx._pt_saved_tensors_bdims
|
372 |
+
wrapped_ctx = CtxCustomSave(ctx, current_level())
|
373 |
+
autograd_function.setup_context(wrapped_ctx, inputs, outputs)
|
374 |
+
|
375 |
+
# input_shapes are used for reductify later to reduce expanded gradients
|
376 |
+
# to the correct shape.
|
377 |
+
# See NOTE: [Why can't we rely on autograd to reduce expanded gradients?]
|
378 |
+
# for more details
|
379 |
+
nonlocal input_shapes_
|
380 |
+
input_shapes_ = tuple(inp.shape if isinstance(inp, torch.Tensor) else None
|
381 |
+
for inp in inputs)
|
382 |
+
nonlocal saved_tensors_bdims_
|
383 |
+
saved_tensors_bdims_ = wrapped_ctx._pt_saved_tensors_bdims
|
384 |
+
|
385 |
+
# See NOTE: [Why do we need to run setup_context under a vmap?]
|
386 |
+
restore_vmap(
|
387 |
+
inner,
|
388 |
+
(in_dims, out_dims),
|
389 |
+
batch_size,
|
390 |
+
randomness,
|
391 |
+
)(inputs, outputs)
|
392 |
+
|
393 |
+
nonlocal input_shapes
|
394 |
+
input_shapes = input_shapes_
|
395 |
+
nonlocal saved_tensors_bdims
|
396 |
+
saved_tensors_bdims = saved_tensors_bdims_
|
397 |
+
|
398 |
+
def jvp(ctx, *tangents):
|
399 |
+
assert out_dims != init_val
|
400 |
+
assert saved_tensors_bdims != init_val
|
401 |
+
|
402 |
+
def jvp_no_context(saved_tensors, tangents):
|
403 |
+
wrapped_ctx = CtxWithSavedTensors(ctx, saved_tensors)
|
404 |
+
return autograd_function.jvp(wrapped_ctx, *tangents)
|
405 |
+
|
406 |
+
tangent_in_dims = get_tangents_in_dims(in_dims, tangents)
|
407 |
+
out_tangents, out_tangents_dims = restore_vmap(
|
408 |
+
jvp_no_context, (saved_tensors_bdims, tangent_in_dims), batch_size, randomness)(
|
409 |
+
ctx.saved_tensors, tangents)
|
410 |
+
|
411 |
+
result = reductify(out_tangents, out_tangents_dims, out_dims, batch_size)
|
412 |
+
return result
|
413 |
+
|
414 |
+
def backward(ctx, *grad_outputs):
|
415 |
+
assert out_dims != init_val
|
416 |
+
assert input_shapes != init_val
|
417 |
+
assert saved_tensors_bdims != init_val
|
418 |
+
|
419 |
+
def backward_no_context(inputs):
|
420 |
+
saved_tensors, grad_outputs = inputs
|
421 |
+
wrapped_ctx = CtxWithSavedTensors(ctx, saved_tensors)
|
422 |
+
return autograd_function.backward(wrapped_ctx, *grad_outputs)
|
423 |
+
|
424 |
+
grad_ins, grad_ins_dims = restore_vmap(
|
425 |
+
backward_no_context, ((saved_tensors_bdims, out_dims),), batch_size, randomness)(
|
426 |
+
(ctx.saved_tensors, grad_outputs))
|
427 |
+
result = reductify(grad_ins, grad_ins_dims, in_dims, batch_size, input_shapes)
|
428 |
+
return result
|
429 |
+
|
430 |
+
name = f'Vmapped{autograd_function.__name__}'
|
431 |
+
Generated = type(
|
432 |
+
name,
|
433 |
+
(torch.autograd.Function,),
|
434 |
+
{
|
435 |
+
'forward': staticmethod(forward),
|
436 |
+
'backward': staticmethod(backward),
|
437 |
+
'jvp': staticmethod(jvp),
|
438 |
+
'setup_context': staticmethod(setup_context),
|
439 |
+
'generate_vmap_rule': True
|
440 |
+
}
|
441 |
+
)
|
442 |
+
|
443 |
+
def get_out_dims():
|
444 |
+
assert out_dims != init_val
|
445 |
+
return out_dims
|
446 |
+
|
447 |
+
return Generated, get_out_dims
|
448 |
+
|
449 |
+
|
450 |
+
# tangents might be None, so we need to replace
|
451 |
+
# the corresponding in_dims with None.
|
452 |
+
def get_tangents_in_dims(input_dims, tangents):
|
453 |
+
flat_in_dims, spec = pytree.tree_flatten(input_dims)
|
454 |
+
flat_tangents = pytree.arg_tree_leaves(*tangents)
|
455 |
+
result = [None if tangent is None else in_dim
|
456 |
+
for in_dim, tangent in zip(flat_in_dims, flat_tangents)]
|
457 |
+
return pytree.tree_unflatten(result, spec)
|
458 |
+
|
459 |
+
|
460 |
+
# NOTE: [Why do we need to run setup_context under a vmap?]
|
461 |
+
# Consider the following autograd.Function
|
462 |
+
#
|
463 |
+
# class Sum(torch.autograd.Function):
|
464 |
+
# @staticmethod
|
465 |
+
# def forward(x):
|
466 |
+
# return x.sum()
|
467 |
+
# @staticmethod
|
468 |
+
# def setup_context(ctx, inputs, outputs):
|
469 |
+
# ctx.x_shape = inputs[0]
|
470 |
+
# @staticmethod
|
471 |
+
# def backward(ctx, gy):
|
472 |
+
# return gy.expand(ctx.x_shape)
|
473 |
+
#
|
474 |
+
# x = torch.randn(B, 4)
|
475 |
+
# in_dims = 0
|
476 |
+
# vmap(Sum.apply, in_dims)(x)
|
477 |
+
#
|
478 |
+
# Let’s assume for a moment that we didn’t vmap setup_context in VmappedSum:
|
479 |
+
#
|
480 |
+
# class VmappedSum(torch.autograd.Function):
|
481 |
+
# @staticmethod
|
482 |
+
# def forward(x):
|
483 |
+
# return vmap(Sum.forward, in_dims)(x)
|
484 |
+
#
|
485 |
+
# @staticmethod
|
486 |
+
# def setup_context(ctx, inputs, outputs):
|
487 |
+
# Sum.setup_context(ctx, inputs, outputs)
|
488 |
+
#
|
489 |
+
# @staticmethod
|
490 |
+
# def backward(ctx, gy):
|
491 |
+
# def backward_no_context(gy):
|
492 |
+
# return gy.expand(ctx.x_shape)
|
493 |
+
#
|
494 |
+
# dims = (0,)
|
495 |
+
# gx = vmap(backward_no_context, dims)(gy)
|
496 |
+
# return gx
|
497 |
+
#
|
498 |
+
# We end up saving [B, 4] as x_shape. In the backward, gy has shape [B],
|
499 |
+
# and we’re doing:
|
500 |
+
#
|
501 |
+
# def backward_no_context(gy):
|
502 |
+
# return gy.expand([B, 4])
|
503 |
+
#
|
504 |
+
# gx = vmap(backward_no_context, dims)(gy: "Tensor[B]")
|
505 |
+
#
|
506 |
+
# This gives us the wrong result (gx has shape [B, B, 4], but it should
|
507 |
+
# have shape [4]). Performing vmap over setup_context means the shape
|
508 |
+
# saved has shape [4] and leads to a correct result shape for gx.
|
509 |
+
|
510 |
+
# Wraps a ctx object. Forwards all attr accesses to the underlying object
|
511 |
+
# except for the attrs in _pt_attrs
|
512 |
+
class WrappedCtx:
|
513 |
+
_pt_reserved_attrs: Tuple[str, ...] = ('_pt_reserved_attrs', '_pt_inner_ctx')
|
514 |
+
|
515 |
+
def __init__(self, ctx):
|
516 |
+
if not isinstance(ctx, WrappedCtx):
|
517 |
+
reserved_attrs = type(self)._pt_reserved_attrs
|
518 |
+
for name in reserved_attrs:
|
519 |
+
if not hasattr(ctx, name):
|
520 |
+
continue
|
521 |
+
raise RuntimeError(
|
522 |
+
f'PyTorch reserves the {reserved_attrs} field on ctx. '
|
523 |
+
'Please name your fields on ctx something else to avoid name '
|
524 |
+
'collision.')
|
525 |
+
self._pt_inner_ctx = ctx
|
526 |
+
|
527 |
+
def __getattr__(self, name):
|
528 |
+
return getattr(self._pt_inner_ctx, name)
|
529 |
+
|
530 |
+
def __setattr__(self, name, value):
|
531 |
+
if name in type(self)._pt_reserved_attrs:
|
532 |
+
self.__dict__[name] = value
|
533 |
+
return
|
534 |
+
return setattr(self._pt_inner_ctx, name, value)
|
535 |
+
|
536 |
+
# Wraps ctx to create a new ctx object that overrides saved_tensors.
|
537 |
+
class CtxWithSavedTensors(WrappedCtx):
|
538 |
+
_pt_reserved_attrs = ('_pt_new_saved_tensors', *WrappedCtx._pt_reserved_attrs)
|
539 |
+
|
540 |
+
def __init__(self, ctx, new_saved_tensors):
|
541 |
+
super().__init__(ctx)
|
542 |
+
self._pt_new_saved_tensors = new_saved_tensors
|
543 |
+
|
544 |
+
@property
|
545 |
+
def saved_tensors(self):
|
546 |
+
return self._pt_new_saved_tensors
|
547 |
+
|
548 |
+
class CtxCustomSave(WrappedCtx):
|
549 |
+
_pt_reserved_attrs = ('_pt_saved_tensors_bdims', '_pt_current_level',
|
550 |
+
*WrappedCtx._pt_reserved_attrs)
|
551 |
+
|
552 |
+
def __init__(self, ctx, current_level):
|
553 |
+
super().__init__(ctx)
|
554 |
+
self._pt_saved_tensors_bdims = ()
|
555 |
+
self._pt_current_level = current_level
|
556 |
+
|
557 |
+
def save_for_backward(self, *tensors):
|
558 |
+
unwrapped_tensors, bdims = unwrap_batched(tensors, self._pt_current_level)
|
559 |
+
self._pt_inner_ctx.save_for_backward(*unwrapped_tensors)
|
560 |
+
self._pt_saved_tensors_bdims = bdims
|
561 |
+
|
562 |
+
def save_for_forward(self, *tensors):
|
563 |
+
unwrapped_tensors, bdims = unwrap_batched(tensors, self._pt_current_level)
|
564 |
+
self._pt_inner_ctx.save_for_forward(*unwrapped_tensors)
|
565 |
+
self._pt_saved_tensors_bdims = bdims
|
566 |
+
|
567 |
+
|
568 |
+
def reductify(grad_input, grad_input_bdim, input_bdim, batch_size,
|
569 |
+
target_shape_without_bdim_to_reduce_to=None):
|
570 |
+
if not isinstance(grad_input, tuple):
|
571 |
+
grad_input = (grad_input,)
|
572 |
+
if not isinstance(grad_input_bdim, tuple):
|
573 |
+
grad_input_bdim = (grad_input_bdim,)
|
574 |
+
if not isinstance(input_bdim, tuple):
|
575 |
+
input_bdim = (input_bdim,)
|
576 |
+
|
577 |
+
if target_shape_without_bdim_to_reduce_to is None:
|
578 |
+
target_shape_without_bdim_to_reduce_to = len(grad_input) * (None,)
|
579 |
+
result = tuple(
|
580 |
+
reductify_leaf(gi, gi_bdim, i_bdim, batch_size, maybe_ishape)
|
581 |
+
for gi, gi_bdim, i_bdim, maybe_ishape in
|
582 |
+
zip(grad_input, grad_input_bdim, input_bdim, target_shape_without_bdim_to_reduce_to)
|
583 |
+
)
|
584 |
+
return result
|
585 |
+
|
586 |
+
|
587 |
+
def reductify_leaf(grad_input, grad_input_bdim, input_bdim, batch_size,
|
588 |
+
target_shape_without_bdim_to_reduce_to=None):
|
589 |
+
if grad_input is None:
|
590 |
+
return None
|
591 |
+
|
592 |
+
if grad_input_bdim is None and input_bdim is None:
|
593 |
+
return grad_input
|
594 |
+
|
595 |
+
if grad_input_bdim is not None and input_bdim is None:
|
596 |
+
return grad_input.sum(grad_input_bdim)
|
597 |
+
|
598 |
+
# NOTE: [Why can't we rely on autograd to reduce expanded gradients?]
|
599 |
+
# For reverse-mode AD,
|
600 |
+
# given a grad_input and input, it is valid for the user to return a
|
601 |
+
# grad_input that has a broadcasted shape when compared to the input.
|
602 |
+
# In this situation, autograd automatically reduces the grad_input to
|
603 |
+
# the shape of the input.
|
604 |
+
#
|
605 |
+
# However, when input_bdim is not None, we have problems.
|
606 |
+
#
|
607 |
+
# [example 1]
|
608 |
+
# grad_input: Tensor[3, 4], input: Tensor[B, 4]
|
609 |
+
# We can expand grad_input to Tensor[B, 3, 4], but that isn't broadcastable
|
610 |
+
# from [B, 4].
|
611 |
+
#
|
612 |
+
# [example 2]
|
613 |
+
# grad_input: Tensor[3, B, 4], input: Tensor[B, 4]
|
614 |
+
# We can swizzle grad_input to Tensor[B, 3, 4], but that isn't broadcastable
|
615 |
+
# from [B, 4].
|
616 |
+
#
|
617 |
+
# This means that we need to also reduce the grad_input to the shape of the
|
618 |
+
# input. This behavior is controlled by the `target_shape_without_bdim_to_reduce_to` flag;
|
619 |
+
# if not-None then we do the reducing manually, otherwise, we do not do a reduction.
|
620 |
+
assert input_bdim is not None
|
621 |
+
|
622 |
+
if grad_input_bdim is None:
|
623 |
+
grad_input = grad_input.unsqueeze(input_bdim)
|
624 |
+
new_shape = list(grad_input.shape)
|
625 |
+
new_shape[input_bdim] = batch_size
|
626 |
+
grad_input = grad_input.expand(new_shape)
|
627 |
+
grad_input_bdim = input_bdim
|
628 |
+
|
629 |
+
if target_shape_without_bdim_to_reduce_to is not None:
|
630 |
+
return vmap(torch.Tensor.sum_to_size, in_dims=(grad_input_bdim, None), out_dims=input_bdim)(
|
631 |
+
grad_input, target_shape_without_bdim_to_reduce_to)
|
632 |
+
|
633 |
+
if input_bdim != grad_input_bdim:
|
634 |
+
grad_input = grad_input.movedim(grad_input_bdim, input_bdim)
|
635 |
+
return grad_input
|
636 |
+
|
637 |
+
|
638 |
+
class AutogradFunctionApply(HigherOrderOperator):
|
639 |
+
def __init__(self):
|
640 |
+
super().__init__("autograd_function_apply")
|
641 |
+
|
642 |
+
def __call__(self, fwd, bwd, *fwd_args):
|
643 |
+
saved_values = None
|
644 |
+
|
645 |
+
class ApplyTemplate(torch.autograd.Function):
|
646 |
+
@staticmethod
|
647 |
+
def forward(ctx, *args):
|
648 |
+
nonlocal saved_values
|
649 |
+
output, saved_values = fwd(None, *args)
|
650 |
+
return output
|
651 |
+
|
652 |
+
@staticmethod
|
653 |
+
def backward(ctx, *grad):
|
654 |
+
return bwd(None, *grad, *saved_values)
|
655 |
+
|
656 |
+
return ApplyTemplate.apply(*fwd_args)
|
657 |
+
|
658 |
+
|
659 |
+
autograd_function_apply = AutogradFunctionApply()
|
venv/lib/python3.10/site-packages/torch/_functorch/batch_norm_replacement.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from torch._functorch.utils import exposed_in
|
3 |
+
|
4 |
+
|
5 |
+
def batch_norm_without_running_stats(module: nn.Module):
|
6 |
+
if isinstance(module, nn.modules.batchnorm._BatchNorm) and module.track_running_stats:
|
7 |
+
module.running_mean = None
|
8 |
+
module.running_var = None
|
9 |
+
module.num_batches_tracked = None
|
10 |
+
module.track_running_stats = False
|
11 |
+
|
12 |
+
|
13 |
+
@exposed_in("torch.func")
|
14 |
+
def replace_all_batch_norm_modules_(root: nn.Module) -> nn.Module:
|
15 |
+
"""
|
16 |
+
In place updates :attr:`root` by setting the ``running_mean`` and ``running_var`` to be None and
|
17 |
+
setting track_running_stats to be False for any nn.BatchNorm module in :attr:`root`
|
18 |
+
"""
|
19 |
+
# base case
|
20 |
+
batch_norm_without_running_stats(root)
|
21 |
+
|
22 |
+
for obj in root.modules():
|
23 |
+
batch_norm_without_running_stats(obj)
|
24 |
+
return root
|
venv/lib/python3.10/site-packages/torch/_functorch/benchmark_utils.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import contextlib
|
4 |
+
import time
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch.profiler import profile, ProfilerActivity
|
10 |
+
|
11 |
+
|
12 |
+
def synchronize():
|
13 |
+
pass
|
14 |
+
|
15 |
+
|
16 |
+
def dump_chrome_trace(f, input, trace_filename, optimize_ctx, activities, num_runs=1,
|
17 |
+
devices=None, kwargs_for_f=None, kwargs_for_profiler=None):
|
18 |
+
"""
|
19 |
+
Output the chrome trace of running f(input, **kwargs_for_f) with [optimize_ctx]
|
20 |
+
[num_runs] times to [trace_filename].
|
21 |
+
|
22 |
+
[activities] are the activities that the profiler will record, e.g. ProfilerActivity.CUDA.
|
23 |
+
Return total runtime without the profiler
|
24 |
+
|
25 |
+
Outputs to trace_filename
|
26 |
+
"""
|
27 |
+
|
28 |
+
if devices is None:
|
29 |
+
devices = ["cuda"]
|
30 |
+
|
31 |
+
global synchronize
|
32 |
+
if devices != ["cpu"] and torch.cuda.is_available():
|
33 |
+
synchronize = torch.cuda.synchronize
|
34 |
+
|
35 |
+
if kwargs_for_f is None:
|
36 |
+
kwargs_for_f = {}
|
37 |
+
if kwargs_for_profiler is None:
|
38 |
+
kwargs_for_profiler = {}
|
39 |
+
|
40 |
+
with optimize_ctx:
|
41 |
+
torch.manual_seed(1337)
|
42 |
+
for _ in range(5): # warmup runs
|
43 |
+
f(input, **kwargs_for_f)
|
44 |
+
synchronize()
|
45 |
+
torch.manual_seed(1337)
|
46 |
+
t0 = time.perf_counter()
|
47 |
+
for _ in range(num_runs):
|
48 |
+
f(input, **kwargs_for_f)
|
49 |
+
synchronize()
|
50 |
+
t1 = time.perf_counter()
|
51 |
+
timing = t1 - t0
|
52 |
+
|
53 |
+
with profile(activities=activities, **kwargs_for_profiler) as prof:
|
54 |
+
with optimize_ctx:
|
55 |
+
synchronize()
|
56 |
+
torch.manual_seed(1337)
|
57 |
+
for _ in range(num_runs):
|
58 |
+
f(input, **kwargs_for_f)
|
59 |
+
synchronize()
|
60 |
+
prof.export_chrome_trace(trace_filename)
|
61 |
+
|
62 |
+
return timing
|
63 |
+
|
64 |
+
|
65 |
+
def get_chrome_trace_events(filename):
|
66 |
+
f = open(filename)
|
67 |
+
data = json.load(f)
|
68 |
+
events = data["traceEvents"]
|
69 |
+
return events
|
70 |
+
|
71 |
+
|
72 |
+
def is_gpu_compute_event(event):
|
73 |
+
global gpu_pids
|
74 |
+
return "pid" in event and event["pid"] in gpu_pids and "ph" in event and event["ph"] == "X"
|
75 |
+
|
76 |
+
|
77 |
+
def get_sorted_gpu_events(events):
|
78 |
+
sorted_gpu_events = []
|
79 |
+
for event in events:
|
80 |
+
if not is_gpu_compute_event(event):
|
81 |
+
continue
|
82 |
+
sorted_gpu_events.append(event)
|
83 |
+
return sorted(sorted_gpu_events, key=lambda x: x["ts"])
|
84 |
+
|
85 |
+
|
86 |
+
def get_duration(sorted_gpu_events):
|
87 |
+
if len(sorted_gpu_events) == 0:
|
88 |
+
return 0
|
89 |
+
event = sorted_gpu_events[0]
|
90 |
+
current_end_time = event["ts"] + event["dur"]
|
91 |
+
total_duration = event["dur"]
|
92 |
+
for event in sorted_gpu_events[1:]:
|
93 |
+
start_time = max(event["ts"], current_end_time)
|
94 |
+
end_time = event["ts"] + event["dur"]
|
95 |
+
total_duration = total_duration + max(end_time - start_time, 0)
|
96 |
+
current_end_time = max(current_end_time, end_time)
|
97 |
+
return total_duration
|
98 |
+
|
99 |
+
|
100 |
+
def get_sorted_gpu_mm_conv_events(events):
|
101 |
+
def is_mm_conv_event(event):
|
102 |
+
return "name" in event and ("gemm" in event["name"] or "conv" in event["name"]
|
103 |
+
or "cutlass" in event["name"] or "wgrad" in event["name"])
|
104 |
+
gpu_events = get_sorted_gpu_events(events)
|
105 |
+
sorted_events = []
|
106 |
+
for event in gpu_events:
|
107 |
+
if not is_mm_conv_event(event):
|
108 |
+
continue
|
109 |
+
sorted_events.append(event)
|
110 |
+
return sorted_events
|
111 |
+
|
112 |
+
|
113 |
+
gpu_pids = []
|
114 |
+
|
115 |
+
|
116 |
+
def compute_utilization(filename: str, total_length: float):
|
117 |
+
"""
|
118 |
+
Process the chrome traces outputs by the pytorch profiler to compute GPU Utilization
|
119 |
+
and percent of times spent on matmul and convolution
|
120 |
+
|
121 |
+
Args:
|
122 |
+
filename(str): Name of chrome traces file produced by pytorch profiler
|
123 |
+
|
124 |
+
total_length(float): total length of the process without profiler in second
|
125 |
+
|
126 |
+
Return:
|
127 |
+
tuple: (GPU Utilization, percent of time spent on matmul and convolution)
|
128 |
+
"""
|
129 |
+
events = get_chrome_trace_events(filename)
|
130 |
+
|
131 |
+
# get pids of GPU events
|
132 |
+
global gpu_pids
|
133 |
+
gpu_pids = []
|
134 |
+
for event in events:
|
135 |
+
if "name" not in event:
|
136 |
+
continue
|
137 |
+
if event["name"] == 'process_labels' and "GPU" in event["args"]["labels"]:
|
138 |
+
gpu_pids.append(event["pid"])
|
139 |
+
|
140 |
+
total_length = total_length * 1e6
|
141 |
+
sorted_gpu_events = get_sorted_gpu_events(events)
|
142 |
+
utilization = get_duration(sorted_gpu_events) / total_length
|
143 |
+
|
144 |
+
sorted_gpu_mm_conv_events = get_sorted_gpu_mm_conv_events(events)
|
145 |
+
mm_conv_utilization = get_duration(sorted_gpu_mm_conv_events) / total_length
|
146 |
+
|
147 |
+
return utilization, mm_conv_utilization
|
148 |
+
|
149 |
+
|
150 |
+
def benchmark_utilization(f, input, trace_folder, optimize_ctx=None, trace_file_name="tmp_chrome_trace", num_runs=1):
|
151 |
+
"""
|
152 |
+
Benchmark the GPU Utilization and percent of time spent on matmul and convolution operations of
|
153 |
+
running f(input, **kwargs_for_f) with [optimize_ctx] [num_runs] times.
|
154 |
+
It will produce a chrome trace file in trace_folder/trace_file_name.json
|
155 |
+
|
156 |
+
Example:
|
157 |
+
|
158 |
+
```
|
159 |
+
def f(a):
|
160 |
+
return a.sum()
|
161 |
+
a = torch.rand(2**20, device="cuda")
|
162 |
+
utilization, mm_conv_utilization = benchmark_utilization(f, a, "tmp", trace_file_name = "tmp_chrome_trace")
|
163 |
+
```
|
164 |
+
|
165 |
+
Args:
|
166 |
+
f: function to benchmark
|
167 |
+
|
168 |
+
input: input to :attr:`f`
|
169 |
+
|
170 |
+
trace_folder: name of the folder to store the chrome trace
|
171 |
+
|
172 |
+
optimize_ctx: the context in which f will run
|
173 |
+
|
174 |
+
trace_file_name: name of the dumped chrome trace file, default to "tmp_chrome_trace"
|
175 |
+
|
176 |
+
num_runs: number of times to run f, excluding the warm-up runs, default to 1.
|
177 |
+
|
178 |
+
Return:
|
179 |
+
tuple: (GPU Utilization, percent of time spent on matmul and convolution)
|
180 |
+
|
181 |
+
"""
|
182 |
+
isExist = os.path.exists(trace_folder)
|
183 |
+
if not isExist:
|
184 |
+
os.makedirs(trace_folder)
|
185 |
+
print("create folder " + trace_folder)
|
186 |
+
|
187 |
+
if optimize_ctx is None:
|
188 |
+
optimize_ctx = contextlib.nullcontext()
|
189 |
+
|
190 |
+
chrome_trace_file_name = os.path.join(trace_folder, trace_file_name + ".json")
|
191 |
+
total_length = dump_chrome_trace(f, input, chrome_trace_file_name, optimize_ctx,
|
192 |
+
[ProfilerActivity.CUDA], num_runs=num_runs, devices="cuda")
|
193 |
+
utilization, mm_conv_utilization = compute_utilization(chrome_trace_file_name, total_length)
|
194 |
+
|
195 |
+
return utilization, mm_conv_utilization
|