Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- venv/lib/python3.10/site-packages/deepspeed/checkpoint/__pycache__/ds_to_universal.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/checkpoint/__pycache__/zero_checkpoint.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/basic_layer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/compress.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/constants.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/helper.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/scheduler.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/__init__.py +7 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/config.py +304 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/engine.py +636 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/quantization/__init__.py +4 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/quantization/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/quantization/__pycache__/layers.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/quantization/__pycache__/quantization.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/quantization/__pycache__/quantization_context.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/quantization/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/quantization/layers.py +114 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/quantization/quantization.py +111 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/quantization/quantization_context.py +13 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/quantization/utils.py +288 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/__init__.py +7 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/allocator.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/config_v2.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/engine_factory.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/engine_v2.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/inference_parameter.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/inference_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/logging.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/scheduling_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/allocator.py +42 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/config_v2.py +43 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/engine_factory.py +129 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/engine_v2.py +268 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/inference_parameter.py +89 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/inference_utils.py +105 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/logging.py +26 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/__init__.py +8 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/__init__.py +16 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/__pycache__/attention_configs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/__pycache__/embedding_config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/__pycache__/linear_config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/__pycache__/norm_config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/attention_configs.py +110 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/embedding_config.py +70 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/linear_config.py +43 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/moe_config.py +56 -0
venv/lib/python3.10/site-packages/deepspeed/checkpoint/__pycache__/ds_to_universal.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/checkpoint/__pycache__/zero_checkpoint.cpython-310.pyc
ADDED
Binary file (5.49 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (375 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/basic_layer.cpython-310.pyc
ADDED
Binary file (22.8 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/compress.cpython-310.pyc
ADDED
Binary file (6.61 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/config.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/constants.cpython-310.pyc
ADDED
Binary file (5.02 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/helper.cpython-310.pyc
ADDED
Binary file (9.93 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/scheduler.cpython-310.pyc
ADDED
Binary file (4.63 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/compression/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (6.09 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
from .v2 import RaggedInferenceEngineConfig, DeepSpeedTPConfig
|
6 |
+
from .v2.engine_v2 import InferenceEngineV2
|
7 |
+
from .v2 import build_hf_engine, build_engine_from_ds_checkpoint
|
venv/lib/python3.10/site-packages/deepspeed/inference/config.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import deepspeed
|
8 |
+
from deepspeed.pydantic_v1 import Field, validator
|
9 |
+
from deepspeed.runtime.config_utils import DeepSpeedConfigModel
|
10 |
+
from deepspeed.runtime.zero.config import DeepSpeedZeroConfig
|
11 |
+
from typing import Dict, Union
|
12 |
+
from enum import Enum
|
13 |
+
|
14 |
+
|
15 |
+
class DtypeEnum(Enum):
|
16 |
+
# The torch dtype must always be the first value (so we return torch.dtype)
|
17 |
+
fp16 = torch.float16, "torch.float16", "fp16", "float16", "half"
|
18 |
+
fp32 = torch.float32, "torch.float32", "fp32", "float32", "float"
|
19 |
+
bf16 = torch.bfloat16, "torch.bfloat16", "bf16", "bfloat16", "bfloat"
|
20 |
+
int8 = torch.int8, "torch.int8", "int8"
|
21 |
+
|
22 |
+
# Copied from https://stackoverflow.com/a/43210118
|
23 |
+
# Allows us to use multiple values for each Enum index and returns first
|
24 |
+
# listed value when Enum is called
|
25 |
+
def __new__(cls, *values):
|
26 |
+
obj = object.__new__(cls)
|
27 |
+
# first value is canonical value
|
28 |
+
obj._value_ = values[0]
|
29 |
+
for other_value in values[1:]:
|
30 |
+
cls._value2member_map_[other_value] = obj
|
31 |
+
obj._all_values = values
|
32 |
+
return obj
|
33 |
+
|
34 |
+
def __repr__(self):
|
35 |
+
return "<%s.%s: %s>" % (
|
36 |
+
self.__class__.__name__,
|
37 |
+
self._name_,
|
38 |
+
", ".join([repr(v) for v in self._all_values]),
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
class MoETypeEnum(str, Enum):
|
43 |
+
residual = "residual"
|
44 |
+
standard = "standard"
|
45 |
+
|
46 |
+
|
47 |
+
class DeepSpeedTPConfig(DeepSpeedConfigModel):
|
48 |
+
""" Configure tensor parallelism settings """
|
49 |
+
|
50 |
+
enabled: bool = True
|
51 |
+
""" Turn tensor parallelism on/off. """
|
52 |
+
|
53 |
+
tp_size: int = 1
|
54 |
+
""" Number of devices to split the model across using tensor parallelism. """
|
55 |
+
|
56 |
+
mpu: object = None
|
57 |
+
"""
|
58 |
+
A model parallelism unit object that implements
|
59 |
+
``get_{model,data}_parallel_{rank,group,world_size}()``.
|
60 |
+
"""
|
61 |
+
|
62 |
+
tp_group: object = None
|
63 |
+
|
64 |
+
|
65 |
+
class DeepSpeedMoEConfig(DeepSpeedConfigModel):
|
66 |
+
""" Sets parameters for MoE """
|
67 |
+
|
68 |
+
enabled: bool = True
|
69 |
+
ep_size: int = 1
|
70 |
+
"""
|
71 |
+
The expert-parallelism size which is used for partitioning the experts
|
72 |
+
across the GPUs in the expert-parallel group.
|
73 |
+
"""
|
74 |
+
|
75 |
+
moe_experts: list = Field([1], alias="num_experts")
|
76 |
+
""" The global number of experts used in an MoE layer. """
|
77 |
+
|
78 |
+
type: MoETypeEnum = MoETypeEnum.standard
|
79 |
+
"""
|
80 |
+
Specify the type of MoE layer. We have two types of MoE layer: 'Standard'
|
81 |
+
and 'Residual'.
|
82 |
+
"""
|
83 |
+
|
84 |
+
ep_mp_group: object = None
|
85 |
+
ep_group: object = Field(None, alias="expert_group")
|
86 |
+
|
87 |
+
|
88 |
+
class QuantTypeEnum(str, Enum):
|
89 |
+
asym = "asymmetric"
|
90 |
+
sym = "symmetric"
|
91 |
+
|
92 |
+
|
93 |
+
class BaseQuantConfig(DeepSpeedConfigModel):
|
94 |
+
enabled = True
|
95 |
+
num_bits = 8
|
96 |
+
q_type: QuantTypeEnum = QuantTypeEnum.sym
|
97 |
+
q_groups: int = 1
|
98 |
+
|
99 |
+
|
100 |
+
class WeightQuantConfig(BaseQuantConfig):
|
101 |
+
enabled = True
|
102 |
+
quantized_initialization: Dict = {}
|
103 |
+
post_init_quant: Dict = {}
|
104 |
+
|
105 |
+
|
106 |
+
class ActivationQuantConfig(BaseQuantConfig):
|
107 |
+
enabled = True
|
108 |
+
|
109 |
+
|
110 |
+
class QKVQuantConfig(DeepSpeedConfigModel):
|
111 |
+
enabled = True
|
112 |
+
|
113 |
+
|
114 |
+
class QuantizationConfig(DeepSpeedConfigModel):
|
115 |
+
enabled: bool = True
|
116 |
+
activation: ActivationQuantConfig = ActivationQuantConfig()
|
117 |
+
weight: WeightQuantConfig = WeightQuantConfig()
|
118 |
+
qkv: QKVQuantConfig = QKVQuantConfig()
|
119 |
+
|
120 |
+
|
121 |
+
# todo: brainstorm on how to do ckpt loading for DS inference
|
122 |
+
class InferenceCheckpointConfig(DeepSpeedConfigModel):
|
123 |
+
checkpoint_dir: str = None
|
124 |
+
save_mp_checkpoint_path: str = None
|
125 |
+
base_dir: str = None
|
126 |
+
|
127 |
+
|
128 |
+
class DeepSpeedInferenceConfig(DeepSpeedConfigModel):
|
129 |
+
""" Sets parameters for DeepSpeed Inference Engine. """
|
130 |
+
|
131 |
+
replace_with_kernel_inject: bool = Field(False, alias="kernel_inject")
|
132 |
+
"""
|
133 |
+
Set to true to inject inference kernels for models such as, Bert, GPT2,
|
134 |
+
GPT-Neo and GPT-J. Otherwise, the injection_dict provides the names of two
|
135 |
+
linear layers as a tuple:
|
136 |
+
`(attention_output projection, transformer output projection)`
|
137 |
+
"""
|
138 |
+
|
139 |
+
dtype: DtypeEnum = torch.float16
|
140 |
+
"""
|
141 |
+
Desired model data type, will convert model to this type.
|
142 |
+
Supported target types: `torch.half`, `torch.int8`, `torch.float`
|
143 |
+
"""
|
144 |
+
|
145 |
+
tensor_parallel: DeepSpeedTPConfig = Field({}, alias="tp")
|
146 |
+
"""
|
147 |
+
Configuration for tensor parallelism used to split the model across several
|
148 |
+
GPUs. Expects a dictionary containing values for :any:`DeepSpeedTPConfig`.
|
149 |
+
"""
|
150 |
+
|
151 |
+
enable_cuda_graph: bool = False
|
152 |
+
"""
|
153 |
+
Use this flag for capturing the CUDA-Graph of the inference ops, so that it
|
154 |
+
can run faster using the graph replay method.
|
155 |
+
"""
|
156 |
+
|
157 |
+
use_triton: bool = False
|
158 |
+
"""
|
159 |
+
Use this flag to use triton kernels for inference ops.
|
160 |
+
"""
|
161 |
+
|
162 |
+
triton_autotune: bool = False
|
163 |
+
"""
|
164 |
+
Use this flag to enable triton autotuning.
|
165 |
+
Turning it on is better for performance but increase the 1st runtime for
|
166 |
+
autotuning.
|
167 |
+
"""
|
168 |
+
|
169 |
+
zero: DeepSpeedZeroConfig = {}
|
170 |
+
"""
|
171 |
+
ZeRO configuration to use with the Inference Engine. Expects a dictionary
|
172 |
+
containing values for :any:`DeepSpeedZeroConfig`.
|
173 |
+
"""
|
174 |
+
|
175 |
+
triangular_masking: bool = Field(True, alias="tm")
|
176 |
+
"""
|
177 |
+
Controls the type of masking for attention scores in transformer layer.
|
178 |
+
Note that the masking is application specific.
|
179 |
+
"""
|
180 |
+
|
181 |
+
moe: Union[bool, DeepSpeedMoEConfig] = {}
|
182 |
+
"""
|
183 |
+
Specify if the type of Transformer is MoE. Expects a dictionary containing
|
184 |
+
values for :any:`DeepSpeedMoEConfig`.
|
185 |
+
"""
|
186 |
+
|
187 |
+
quant: QuantizationConfig = {}
|
188 |
+
"""
|
189 |
+
NOTE: only works for int8 dtype.
|
190 |
+
Quantization settings used for quantizing your model using the MoQ. The
|
191 |
+
setting can be one element or a tuple. If one value is passed in, we
|
192 |
+
consider it as the number of groups used in quantization. A tuple is passed
|
193 |
+
in if we want to mention that there is extra-grouping for the MLP part of a
|
194 |
+
Transformer layer (e.g. (True, 8) shows we quantize the model using 8
|
195 |
+
groups for all the network except the MLP part that we use 8 extra
|
196 |
+
grouping). Expects a dictionary containing values for
|
197 |
+
:any:`QuantizationConfig`.
|
198 |
+
"""
|
199 |
+
|
200 |
+
#todo: refactor the following 3 into the new checkpoint_config
|
201 |
+
checkpoint: Union[str, Dict] = None
|
202 |
+
"""
|
203 |
+
Path to deepspeed compatible checkpoint or path to JSON with load policy.
|
204 |
+
"""
|
205 |
+
|
206 |
+
base_dir: str = ""
|
207 |
+
"""
|
208 |
+
This shows the root directory under which all the checkpoint files exists.
|
209 |
+
This can be passed through the json config too.
|
210 |
+
"""
|
211 |
+
|
212 |
+
set_empty_params: bool = False
|
213 |
+
"""
|
214 |
+
specifying whether the inference-module is created with empty or real Tensor
|
215 |
+
"""
|
216 |
+
|
217 |
+
save_mp_checkpoint_path: str = None
|
218 |
+
"""
|
219 |
+
The path for which we want to save the loaded model with a checkpoint. This
|
220 |
+
feature is used for adjusting the parallelism degree to help alleviate the
|
221 |
+
model loading overhead. It does not save any new checkpoint if no path is
|
222 |
+
passed.
|
223 |
+
"""
|
224 |
+
|
225 |
+
checkpoint_config: InferenceCheckpointConfig = Field({}, alias="ckpt_config")
|
226 |
+
"""
|
227 |
+
TODO: Add docs. Expects a dictionary containing values for
|
228 |
+
:any:`InferenceCheckpointConfig`.
|
229 |
+
"""
|
230 |
+
|
231 |
+
return_tuple: bool = True
|
232 |
+
"""
|
233 |
+
Specify whether or not the transformer layers need to return a tuple or a
|
234 |
+
Tensor.
|
235 |
+
"""
|
236 |
+
|
237 |
+
training_mp_size: int = 1
|
238 |
+
"""
|
239 |
+
If loading a checkpoint this is the mp size that it was trained with, it
|
240 |
+
may be different than what the mp size that you want to use during
|
241 |
+
inference.
|
242 |
+
"""
|
243 |
+
|
244 |
+
replace_method: str = Field(
|
245 |
+
"auto",
|
246 |
+
deprecated=True,
|
247 |
+
deprecated_msg="This parameter is no longer needed, please remove from your call to DeepSpeed-inference")
|
248 |
+
|
249 |
+
injection_policy: Dict = Field(None, alias="injection_dict")
|
250 |
+
"""
|
251 |
+
Dictionary mapping a client nn.Module to its corresponding injection
|
252 |
+
policy. e.g., `{BertLayer : deepspeed.inference.HFBertLayerPolicy}`
|
253 |
+
"""
|
254 |
+
|
255 |
+
injection_policy_tuple: tuple = None
|
256 |
+
""" TODO: Add docs """
|
257 |
+
|
258 |
+
config: Dict = Field(None, alias="args") # todo: really no need for this field if we can refactor
|
259 |
+
|
260 |
+
max_out_tokens: int = Field(1024, alias="max_tokens")
|
261 |
+
"""
|
262 |
+
This argument shows the maximum number of tokens inference-engine can work
|
263 |
+
with, including the input and output tokens. Please consider increasing it
|
264 |
+
to the required token-length required for your use-case.
|
265 |
+
"""
|
266 |
+
|
267 |
+
min_out_tokens: int = Field(1, alias="min_tokens")
|
268 |
+
"""
|
269 |
+
This argument communicates to the runtime the minimum number of tokens you
|
270 |
+
expect you will need to generate. This will cause the runtime to error
|
271 |
+
if it unable to provide this and provide context on the memory pressure
|
272 |
+
rather than seg-faulting or providing corrupted output.
|
273 |
+
"""
|
274 |
+
|
275 |
+
transposed_mode: bool = Field(False, alias="transposed_mode")
|
276 |
+
|
277 |
+
mp_size: int = Field(1, deprecated=True, new_param="tensor_parallel.tp_size")
|
278 |
+
"""
|
279 |
+
Desired model parallel size, default is 1 meaning no model parallelism.
|
280 |
+
Deprecated, please use the ``tensor_parallel` config to control model
|
281 |
+
parallelism.
|
282 |
+
"""
|
283 |
+
mpu: object = Field(None, deprecated=True, new_param="tensor_parallel.mpu")
|
284 |
+
ep_size: int = Field(1, deprecated=True, new_param="moe.ep_size")
|
285 |
+
ep_group: object = Field(None, alias="expert_group", deprecated=True, new_param="moe.ep_group")
|
286 |
+
ep_mp_group: object = Field(None, alias="expert_mp_group", deprecated=True, new_param="moe.ep_mp_group")
|
287 |
+
moe_experts: list = Field([1], deprecated=True, new_param="moe.moe_experts")
|
288 |
+
moe_type: MoETypeEnum = Field(MoETypeEnum.standard, deprecated=True, new_param="moe.type")
|
289 |
+
|
290 |
+
@validator("moe")
|
291 |
+
def moe_backward_compat(cls, field_value, values):
|
292 |
+
if isinstance(field_value, bool):
|
293 |
+
return DeepSpeedMoEConfig(moe=field_value)
|
294 |
+
return field_value
|
295 |
+
|
296 |
+
@validator("use_triton")
|
297 |
+
def has_triton(cls, field_value, values):
|
298 |
+
if field_value and not deepspeed.HAS_TRITON:
|
299 |
+
raise ValueError('Triton needs to be installed to use deepspeed with triton kernels')
|
300 |
+
return field_value
|
301 |
+
|
302 |
+
class Config:
|
303 |
+
# Get the str representation of the datatype for serialization
|
304 |
+
json_encoders = {torch.dtype: lambda x: str(x)}
|
venv/lib/python3.10/site-packages/deepspeed/inference/engine.py
ADDED
@@ -0,0 +1,636 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import time
|
8 |
+
import os
|
9 |
+
from deepspeed import comm as dist
|
10 |
+
from deepspeed.utils.logging import log_dist
|
11 |
+
|
12 |
+
from torch.nn.modules import Module
|
13 |
+
from packaging import version as pkg_version
|
14 |
+
from deepspeed.runtime.checkpoint_engine.torch_checkpoint_engine import TorchCheckpointEngine
|
15 |
+
from deepspeed.utils.timer import SynchronizedWallClockTimer
|
16 |
+
|
17 |
+
from ..runtime.state_dict_factory import SDLoaderFactory
|
18 |
+
from ..runtime.weight_quantizer import WeightQuantization
|
19 |
+
from ..module_inject import replace_transformer_layer, generic_injection
|
20 |
+
from ..comm.comm import init_distributed
|
21 |
+
from ..pipe import PipelineModule
|
22 |
+
from ..moe.utils import has_moe_layers
|
23 |
+
from ..module_inject import LinearAllreduce, LinearLayer, Normalize, ReplaceWithTensorSlicing
|
24 |
+
from deepspeed.accelerator import get_accelerator
|
25 |
+
from ..module_inject.policy import TransformerPolicy
|
26 |
+
from ..module_inject.auto_tp import AutoTP
|
27 |
+
|
28 |
+
from ..module_inject.replace_policy import generic_policies
|
29 |
+
from ..module_inject.auto_tp_model_utils import build_bloom_alibi_tensor, build_mpt_atten_bias_tensor, build_mpt_alibi_tensor, get_alibi_mask
|
30 |
+
from ..ops.transformer.inference.ds_attention import DeepSpeedSelfAttention
|
31 |
+
from ..model_implementations.transformers.ds_transformer import DeepSpeedTransformerInference
|
32 |
+
|
33 |
+
DS_INFERENCE_ENABLED = False
|
34 |
+
from torch import nn
|
35 |
+
|
36 |
+
INFERENCE_MODEL_TIMER = "model-forward-inference"
|
37 |
+
|
38 |
+
|
39 |
+
class InferenceEngine(Module):
|
40 |
+
inference_mp_group = None
|
41 |
+
inference_ep_group = None
|
42 |
+
expert_mp_group = None
|
43 |
+
|
44 |
+
def __init__(self, model, config):
|
45 |
+
"""
|
46 |
+
Args:
|
47 |
+
model: torch.nn.Module
|
48 |
+
config: DeepSpeedInferenceConfig
|
49 |
+
"""
|
50 |
+
global DS_INFERENCE_ENABLED
|
51 |
+
DS_INFERENCE_ENABLED = True
|
52 |
+
|
53 |
+
super().__init__()
|
54 |
+
|
55 |
+
# Have to import here because inference_module is a global, but python
|
56 |
+
# globals only work at the module level and will not be updated unless
|
57 |
+
# we import it each time we init a new inference engine.
|
58 |
+
from ..model_implementations.transformers.ds_transformer import inference_module
|
59 |
+
if inference_module is not None:
|
60 |
+
self.destroy()
|
61 |
+
|
62 |
+
self.module = model
|
63 |
+
self._config = config
|
64 |
+
|
65 |
+
self._get_model_config_generate(config) # keep for weird backward compatibility
|
66 |
+
|
67 |
+
# patch model generate with ours if model uses it
|
68 |
+
if hasattr(self.module, "generate"):
|
69 |
+
self.generate = self._generate
|
70 |
+
|
71 |
+
if hasattr(self.module, "config"):
|
72 |
+
TransformerPolicy.hf_model_config = self.module.config
|
73 |
+
|
74 |
+
if config.dtype == torch.half and not get_accelerator().is_fp16_supported():
|
75 |
+
raise ValueError("Type fp16 is not supported.")
|
76 |
+
|
77 |
+
# todo: keep this self.injection_dict because we don't use to change config.injection_policy API
|
78 |
+
# todo: this will get changed when Molly's PR on auto injection dict is merged
|
79 |
+
self.injection_dict = config.injection_policy
|
80 |
+
|
81 |
+
# todo: refactor the mp_group and mp_size related in the next refactor
|
82 |
+
self.mp_group = config.tensor_parallel.tp_group
|
83 |
+
self.mpu = config.tensor_parallel.mpu
|
84 |
+
|
85 |
+
#self._validate_args(self.mpu, config.replace_with_kernel_inject)
|
86 |
+
self.quantize_merge_count = 1
|
87 |
+
self.quantization_scales = None
|
88 |
+
|
89 |
+
# these are not needed in the config as we are creating them ourselves in the inference engine
|
90 |
+
self.ep_group = None # config.moe.ep_group
|
91 |
+
self.expert_mp_group = None # config.moe.ep_mp_group
|
92 |
+
|
93 |
+
self.cuda_graph_created = False
|
94 |
+
self.checkpoint_engine = TorchCheckpointEngine()
|
95 |
+
quantization_setting = None
|
96 |
+
self._init_quantization_setting(
|
97 |
+
quantization_setting) # todo: update with the new quant config for weight quant
|
98 |
+
self.model_profile_enabled = False
|
99 |
+
self._model_times = []
|
100 |
+
|
101 |
+
if not self.injection_dict and config.replace_with_kernel_inject:
|
102 |
+
# This is a hack to remove the prepare_mask function on HF side for BLOOM architecture
|
103 |
+
self.remove_mask_prepare_for_bloom()
|
104 |
+
|
105 |
+
if self.injection_dict or not config.replace_with_kernel_inject:
|
106 |
+
# This is a hack to redefine the alibi func due to TP
|
107 |
+
if config.tensor_parallel.tp_size > 1:
|
108 |
+
self.build_alibi_tensor()
|
109 |
+
self.build_attn_bias()
|
110 |
+
|
111 |
+
if get_accelerator().device_name() == 'cuda' and config.enable_cuda_graph:
|
112 |
+
assert pkg_version.parse(torch.__version__) >= pkg_version.parse("1.10"), \
|
113 |
+
"If you want to use cuda graph, please upgrade torch to at least v1.10"
|
114 |
+
|
115 |
+
# convert model to intended dtype
|
116 |
+
if config.dtype:
|
117 |
+
self._convert_to_dtype(config)
|
118 |
+
|
119 |
+
if self.mpu:
|
120 |
+
config.tensor_parallel.tp_size = dist.get_world_size(group=self.mpu.get_model_parallel_group())
|
121 |
+
self.mp_group = self.mpu.get_model_parallel_group()
|
122 |
+
elif config.tensor_parallel.tp_size > 1:
|
123 |
+
self._create_model_parallel_group(config)
|
124 |
+
config.tensor_parallel.tp_group = self.mp_group
|
125 |
+
|
126 |
+
if isinstance(self.module, torch.nn.Module):
|
127 |
+
moe, _ = has_moe_layers(self.module)
|
128 |
+
else:
|
129 |
+
moe = False
|
130 |
+
|
131 |
+
if moe and dist.get_world_size() > 1:
|
132 |
+
self._create_ep_parallel_group(config.moe.moe_experts)
|
133 |
+
|
134 |
+
# We only support three modes: 1) user specified policy for tensor-parallelism, 2) kernel injection (replace_with_kernel_inject), and 3) automatic tensor parallelism if tp_size > 1.
|
135 |
+
if self.injection_dict:
|
136 |
+
# 1. User specified Tensor Parallelism
|
137 |
+
assert not config.replace_with_kernel_inject, "Cannot use both user specified injection policy and kernel injection"
|
138 |
+
for client_module, injection_policy in self.injection_dict.items():
|
139 |
+
|
140 |
+
assert issubclass(client_module,
|
141 |
+
torch.nn.Module), f"{client_module} is not a subclass of torch.nn.Module"
|
142 |
+
|
143 |
+
# construct the tuple and pass that instead of a string or dict.
|
144 |
+
if isinstance(injection_policy, str):
|
145 |
+
config.injection_policy_tuple = (injection_policy, )
|
146 |
+
else:
|
147 |
+
config.injection_policy_tuple = injection_policy
|
148 |
+
|
149 |
+
layer_names = [name for name, _ in self.module.named_modules()]
|
150 |
+
for policy in config.injection_policy_tuple:
|
151 |
+
if not any(name.endswith(policy) for name in layer_names):
|
152 |
+
raise ValueError(f"Injection policy layer'{policy}' not valid.")
|
153 |
+
|
154 |
+
self._apply_injection_policy(config, client_module)
|
155 |
+
else:
|
156 |
+
if config.replace_with_kernel_inject:
|
157 |
+
# 2. DeepSpeed Kernel Injection
|
158 |
+
self._apply_injection_policy(config)
|
159 |
+
elif config.tensor_parallel.tp_size > 1:
|
160 |
+
# 3. Automatic Tensor Parallelism
|
161 |
+
parser_dict = AutoTP.tp_parser(model)
|
162 |
+
print("AutoTP: ", parser_dict)
|
163 |
+
for client_module, injection_policy in parser_dict:
|
164 |
+
if isinstance(injection_policy, str):
|
165 |
+
config.injection_policy_tuple = (injection_policy, )
|
166 |
+
else:
|
167 |
+
config.injection_policy_tuple = injection_policy
|
168 |
+
self._apply_injection_policy(config, client_module)
|
169 |
+
|
170 |
+
device = get_accelerator().current_device_name()
|
171 |
+
# NOTE: This check assumes a Hugging Face hierarchy for the device type i.e. module.device.type
|
172 |
+
is_meta_device = hasattr(self.module, "device") and self.module.device.type == 'meta'
|
173 |
+
if is_meta_device:
|
174 |
+
self.module.to_empty(device=device)
|
175 |
+
else:
|
176 |
+
self.module.to(device)
|
177 |
+
|
178 |
+
if config.tensor_parallel.tp_size > 1:
|
179 |
+
_rng_state = get_accelerator().get_rng_state().to(get_accelerator().current_device_name())
|
180 |
+
dist.broadcast(_rng_state, 0)
|
181 |
+
get_accelerator().set_rng_state(_rng_state.cpu())
|
182 |
+
|
183 |
+
if config.tensor_parallel.tp_size > 1:
|
184 |
+
assert not config.enable_cuda_graph, "Cuda graph is not supported for model parallelism"
|
185 |
+
|
186 |
+
# Check if local CUDA graphs can be created in replacement modules
|
187 |
+
self.local_cuda_graph = self._local_cuda_graph_used(self.module)
|
188 |
+
|
189 |
+
def destroy(self):
|
190 |
+
# Have to import here because inference_module is a global, but python
|
191 |
+
# globals only work at the module level and will not be updated unless
|
192 |
+
# we import it each time we init a new inference engine.
|
193 |
+
from ..model_implementations.transformers.ds_transformer import inference_module
|
194 |
+
DeepSpeedTransformerInference.layer_id = 0
|
195 |
+
DeepSpeedSelfAttention.num_layers = 0
|
196 |
+
if inference_module is not None:
|
197 |
+
inference_module.release_workspace()
|
198 |
+
inference_module = None
|
199 |
+
|
200 |
+
def profile_model_time(self, use_cuda_events=True):
|
201 |
+
if not self.model_profile_enabled and not self._config.enable_cuda_graph:
|
202 |
+
self.module.register_forward_pre_hook(self._pre_forward_hook)
|
203 |
+
self.module.register_forward_hook(self._post_forward_hook)
|
204 |
+
self.model_profile_enabled = True
|
205 |
+
self.use_cuda_events = use_cuda_events
|
206 |
+
if self.use_cuda_events:
|
207 |
+
self.timers = SynchronizedWallClockTimer()
|
208 |
+
|
209 |
+
# todo: remove this once all the config dicts are centralized from top level pydantic config
|
210 |
+
def _get_model_config_generate(self, config):
|
211 |
+
# this is being passed to replace_transformer_layer(config=self.user_model_config_dict)
|
212 |
+
self.config = getattr(self.module, 'config', None) if config.config is None else config.config
|
213 |
+
|
214 |
+
def remove_mask_prepare_for_bloom(self):
|
215 |
+
if hasattr(self.module, 'transformer'):
|
216 |
+
if hasattr(self.module.transformer, '_prepare_attn_mask'):
|
217 |
+
self.module.transformer._prepare_attn_mask = lambda attention_mask, *args, **kwargs: attention_mask
|
218 |
+
|
219 |
+
def build_alibi_tensor(self):
|
220 |
+
if hasattr(self.module, 'transformer'):
|
221 |
+
if hasattr(self.module.transformer, 'build_alibi_tensor'):
|
222 |
+
self.module.transformer.build_alibi_tensor = build_bloom_alibi_tensor
|
223 |
+
if hasattr(self.module.transformer, 'build_mpt_alibi_tensor'):
|
224 |
+
self.module.transformer.build_mpt_alibi_tensor_orig = self.module.transformer.build_mpt_alibi_tensor
|
225 |
+
self.module.transformer.__class__.build_mpt_alibi_tensor = build_mpt_alibi_tensor
|
226 |
+
if hasattr(self.module, 'model'):
|
227 |
+
if hasattr(self.module.model, 'get_alibi_mask'):
|
228 |
+
self.module.model.get_alibi_mask_orig = self.module.model.get_alibi_mask
|
229 |
+
self.module.model.__class__.get_alibi_mask = get_alibi_mask
|
230 |
+
|
231 |
+
def build_attn_bias(self):
|
232 |
+
if hasattr(self.module, 'transformer'):
|
233 |
+
if hasattr(self.module.transformer, '_attn_bias'):
|
234 |
+
self.module.transformer._attn_bias_orig = self.module.transformer._attn_bias
|
235 |
+
self.module.transformer.__class__._attn_bias = build_mpt_atten_bias_tensor
|
236 |
+
|
237 |
+
def _pre_forward_hook(self, module, *inputs, **kwargs):
|
238 |
+
if self.use_cuda_events:
|
239 |
+
self.timers(INFERENCE_MODEL_TIMER).start()
|
240 |
+
else:
|
241 |
+
get_accelerator().synchronize()
|
242 |
+
self._start = time.time()
|
243 |
+
|
244 |
+
def _post_forward_hook(self, module, input, output):
|
245 |
+
if self.use_cuda_events:
|
246 |
+
self.timers(INFERENCE_MODEL_TIMER).stop()
|
247 |
+
elapsed_time = self.timers(INFERENCE_MODEL_TIMER).elapsed(reset=True)
|
248 |
+
else:
|
249 |
+
get_accelerator().synchronize()
|
250 |
+
self._end = time.time()
|
251 |
+
elapsed_time = (self._end - self._start) * 1e3 # convert seconds to ms
|
252 |
+
self._model_times.append(elapsed_time)
|
253 |
+
|
254 |
+
def _create_model_parallel_group(self, config):
|
255 |
+
# Call the init process
|
256 |
+
if InferenceEngine.inference_mp_group is None:
|
257 |
+
init_distributed()
|
258 |
+
local_rank = int(os.getenv('LOCAL_RANK', '0'))
|
259 |
+
get_accelerator().set_device(local_rank)
|
260 |
+
|
261 |
+
ranks = [i for i in range(config.tensor_parallel.tp_size)]
|
262 |
+
self.mp_group = dist.new_group(ranks)
|
263 |
+
InferenceEngine.inference_mp_group = self.mp_group
|
264 |
+
else:
|
265 |
+
self.mp_group = InferenceEngine.inference_mp_group
|
266 |
+
|
267 |
+
def _create_ep_parallel_group(self, moe_experts):
|
268 |
+
# Call the init process
|
269 |
+
self.ep_group = {}
|
270 |
+
self.expert_mp_group = {}
|
271 |
+
moe_experts = moe_experts if type(moe_experts) is list else [moe_experts]
|
272 |
+
for e in moe_experts:
|
273 |
+
self.ep_group.update({e: None})
|
274 |
+
self.expert_mp_group.update({e: None})
|
275 |
+
for moe_ep_size in self.ep_group.keys():
|
276 |
+
num_ep_groups = dist.get_world_size() // moe_ep_size
|
277 |
+
for i in range(num_ep_groups):
|
278 |
+
ep_cnt = i * moe_ep_size
|
279 |
+
size = dist.get_world_size() if moe_ep_size > dist.get_world_size() else moe_ep_size
|
280 |
+
ranks = list(range(ep_cnt, ep_cnt + size))
|
281 |
+
_ep_group = dist.new_group(ranks)
|
282 |
+
if dist.get_rank() in ranks:
|
283 |
+
self.ep_group.update({moe_ep_size: _ep_group})
|
284 |
+
|
285 |
+
if dist.get_world_size() > moe_ep_size:
|
286 |
+
num_expert_mp_groups = dist.get_world_size() // num_ep_groups
|
287 |
+
expert_mp_size = dist.get_world_size() // moe_ep_size
|
288 |
+
for i in range(num_expert_mp_groups):
|
289 |
+
expert_mp_comm_ranks = [i + nr * moe_ep_size for nr in range(expert_mp_size)]
|
290 |
+
_expert_mp_group = dist.new_group(expert_mp_comm_ranks)
|
291 |
+
if dist.get_rank() in expert_mp_comm_ranks:
|
292 |
+
self.expert_mp_group.update({moe_ep_size: _expert_mp_group})
|
293 |
+
|
294 |
+
def _init_quantization_setting(self, quantization_setting):
|
295 |
+
self.quantize_bits = 8
|
296 |
+
self.mlp_extra_grouping = False
|
297 |
+
self.quantize_groups = 1
|
298 |
+
if type(quantization_setting) is tuple:
|
299 |
+
self.mlp_extra_grouping, \
|
300 |
+
self.quantize_groups = quantization_setting
|
301 |
+
elif quantization_setting is not None:
|
302 |
+
self.quantize_groups = quantization_setting
|
303 |
+
log_dist(
|
304 |
+
f"quantize_bits = {self.quantize_bits} "
|
305 |
+
f"mlp_extra_grouping = {self.mlp_extra_grouping}, "
|
306 |
+
f"quantize_groups = {self.quantize_groups}", [0])
|
307 |
+
|
308 |
+
# TODO: remove this function and add this functionality to pydantic config checking
|
309 |
+
def _validate_args(self, mpu, replace_with_kernel_inject):
|
310 |
+
# TODO: to support SD pipeline we need to avoid this check for now
|
311 |
+
if replace_with_kernel_inject and not isinstance(self.module, Module):
|
312 |
+
raise ValueError(f"model must be a torch.nn.Module, got {type(self.module)}")
|
313 |
+
if not isinstance(self._config.tensor_parallel.tp_size, int) or self._config.tensor_parallel.tp_size < 1:
|
314 |
+
raise ValueError(f"mp_size must be an int >= 1, got {self._config.tensor_parallel.tp_size}")
|
315 |
+
|
316 |
+
if mpu:
|
317 |
+
methods = ["get_model_parallel_group", "get_data_parallel_group"]
|
318 |
+
for method in methods:
|
319 |
+
if not hasattr(mpu, method):
|
320 |
+
raise ValueError(f"mpu is missing {method}")
|
321 |
+
if self._config.checkpoint is not None and not isinstance(self._config.checkpoint, (str, dict)):
|
322 |
+
raise ValueError(f"checkpoint must be None, str or dict, got {type(self._config.checkpoint)}")
|
323 |
+
|
324 |
+
supported_dtypes = [None, torch.half, torch.int8, torch.float]
|
325 |
+
if self._config.dtype not in supported_dtypes:
|
326 |
+
raise ValueError(f"{self._config.dtype} not supported, valid dtype: {supported_dtypes}")
|
327 |
+
|
328 |
+
if self.injection_dict is not None and not isinstance(self.injection_dict, dict):
|
329 |
+
raise ValueError(f"injection_dict must be None or a dict, got: {self.injection_dict}")
|
330 |
+
|
331 |
+
def load_model_with_checkpoint(self, r_module):
|
332 |
+
self.mp_replace = ReplaceWithTensorSlicing(
|
333 |
+
mp_group=self.mp_group, mp_size=self._config.tensor_parallel.tp_size) #, out_dim=0, in_dim=1)
|
334 |
+
error_msgs = []
|
335 |
+
|
336 |
+
def load(module, state_dict, prefix):
|
337 |
+
args = (state_dict, prefix, {}, True, [], [], error_msgs)
|
338 |
+
if hasattr(module, 'weight'):
|
339 |
+
if module.weight.data.is_meta:
|
340 |
+
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
|
341 |
+
module.weight = torch.nn.parameter.Parameter(data=torch.empty_like(module.weight.data,
|
342 |
+
device="cpu"),
|
343 |
+
requires_grad=module.weight.data.requires_grad)
|
344 |
+
if 'query_key_value' in prefix:
|
345 |
+
module.weight = self.mp_replace.strided_copy(module.weight.data,
|
346 |
+
state_dict[prefix + 'weight'],
|
347 |
+
num_splits=3)
|
348 |
+
else:
|
349 |
+
module.weight = self.mp_replace.copy(module.weight.data, state_dict[prefix + 'weight'])
|
350 |
+
else:
|
351 |
+
if module.norm.weight.data.is_meta:
|
352 |
+
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
|
353 |
+
module.norm.weight = torch.nn.parameter.Parameter(
|
354 |
+
data=torch.empty_like(module.norm.weight.data, device="cpu"),
|
355 |
+
requires_grad=module.norm.weight.data.requires_grad)
|
356 |
+
module.norm.weight = self.mp_replace.copy(module.norm.weight.data, state_dict[prefix + 'weight'])
|
357 |
+
if prefix + 'bias' in self.key_list:
|
358 |
+
if hasattr(module, 'norm'):
|
359 |
+
if module.norm.bias.data.is_meta:
|
360 |
+
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
|
361 |
+
module.norm.bias = torch.nn.parameter.Parameter(
|
362 |
+
data=torch.empty_like(module.norm.bias.data, device="cpu"),
|
363 |
+
requires_grad=module.norm.bias.data.requires_grad)
|
364 |
+
module.norm.bias = self.mp_replace.copy(module.norm.bias, state_dict[prefix + 'bias'])
|
365 |
+
else:
|
366 |
+
if module.bias.data.is_meta:
|
367 |
+
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
|
368 |
+
module.bias = torch.nn.parameter.Parameter(data=torch.empty_like(module.bias.data,
|
369 |
+
device="cpu"),
|
370 |
+
requires_grad=module.bias.data.requires_grad)
|
371 |
+
data = state_dict[prefix + 'bias']
|
372 |
+
data = data.to(get_accelerator().current_device_name())
|
373 |
+
module.bias = self.mp_replace.copy(module.bias, data)
|
374 |
+
|
375 |
+
layer_policies = {
|
376 |
+
nn.Linear: load,
|
377 |
+
nn.Embedding: load,
|
378 |
+
nn.LayerNorm: load,
|
379 |
+
LinearLayer: load,
|
380 |
+
LinearAllreduce: load
|
381 |
+
}
|
382 |
+
|
383 |
+
def load_module_recursive(module, prefix='', level=0):
|
384 |
+
for name, child in module.named_children():
|
385 |
+
if child.__class__ in layer_policies:
|
386 |
+
checking_key = prefix + name + '.'
|
387 |
+
if not any(checking_key in item for item in self.key_list):
|
388 |
+
continue
|
389 |
+
if len(list(child.parameters())) > 0 and list(child.parameters())[0].numel() == 0:
|
390 |
+
if len(child.weight.ds_shape) == 1:
|
391 |
+
child = Normalize(dim=child.weight.ds_shape[-1], dtype=child.weight.dtype, eps=child.eps)
|
392 |
+
setattr(module, name, child)
|
393 |
+
load(child, self.sd, prefix + name + '.')
|
394 |
+
else:
|
395 |
+
load_module_recursive(child, prefix if level == 0 else prefix + name + '.', level + 1)
|
396 |
+
|
397 |
+
load_module_recursive(r_module)
|
398 |
+
|
399 |
+
embedding_weight = None
|
400 |
+
|
401 |
+
for n, p in r_module.named_parameters():
|
402 |
+
if "word_embeddings." in n or "embed_tokens." in n or "wte." in n:
|
403 |
+
embedding_weight = p
|
404 |
+
if embedding_weight is not None and hasattr(r_module, "lm_head") and hasattr(
|
405 |
+
r_module.lm_head, "weight") and r_module.lm_head.weight.is_meta:
|
406 |
+
r_module.lm_head.weight = embedding_weight
|
407 |
+
|
408 |
+
def _apply_injection_policy(self, config, client_module=None):
|
409 |
+
# client_module is only passed when using the injection_dict method.
|
410 |
+
checkpoint_dir = config.checkpoint
|
411 |
+
checkpoint = SDLoaderFactory.get_sd_loader_json(checkpoint_dir,
|
412 |
+
self.checkpoint_engine) if checkpoint_dir is not None else None
|
413 |
+
|
414 |
+
generic_injection(self.module, dtype=config.dtype, enable_cuda_graph=config.enable_cuda_graph)
|
415 |
+
|
416 |
+
if isinstance(self.module, torch.nn.Module):
|
417 |
+
# config is our DeepSpeedInferenceConfig and self.config is the HF model config
|
418 |
+
replace_transformer_layer(client_module, self.module, checkpoint, config, self.config)
|
419 |
+
|
420 |
+
def _get_all_ckpt_names(self, checkpoints_path, tag):
|
421 |
+
ckpt_file_pattern = self._get_ckpt_name(checkpoints_path, tag, mp_placeholder="*")
|
422 |
+
import glob
|
423 |
+
|
424 |
+
ckpt_files = glob.glob(ckpt_file_pattern)
|
425 |
+
ckpt_files.sort()
|
426 |
+
return ckpt_files
|
427 |
+
|
428 |
+
def _get_ckpt_name(self, checkpoints_path, tag, mp_placeholder=None):
|
429 |
+
if mp_placeholder is not None:
|
430 |
+
mp_rank_str = mp_placeholder
|
431 |
+
else:
|
432 |
+
mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
|
433 |
+
mp_rank_str = "{:02d}".format(mp_rank)
|
434 |
+
|
435 |
+
ckpt_name = os.path.join(
|
436 |
+
checkpoints_path,
|
437 |
+
"mp_rank_" + mp_rank_str + "_model_states.pt",
|
438 |
+
)
|
439 |
+
return ckpt_name
|
440 |
+
|
441 |
+
def _load_checkpoint(self, load_dir, load_module_strict=True, tag=None):
|
442 |
+
is_pipe_parallel = isinstance(self.module, PipelineModule)
|
443 |
+
if is_pipe_parallel:
|
444 |
+
raise RuntimeError('pipeline parallelism is currently not supported in inference.')
|
445 |
+
if not isinstance(load_dir, dict) and os.path.isdir(load_dir):
|
446 |
+
if tag is None:
|
447 |
+
latest_path = os.path.join(load_dir, "latest")
|
448 |
+
if os.path.isfile(latest_path):
|
449 |
+
with open(latest_path, "r") as fd:
|
450 |
+
tag = fd.read().strip()
|
451 |
+
|
452 |
+
ckpt_list = self._get_all_ckpt_names(load_dir, tag)
|
453 |
+
sd_loader = SDLoaderFactory.get_sd_loader(ckpt_list, self.checkpoint_engine)
|
454 |
+
else:
|
455 |
+
sd_loader = SDLoaderFactory.get_sd_loader_json(load_dir, self.checkpoint_engine)
|
456 |
+
|
457 |
+
checkpoint = sd_loader['checkpoints']
|
458 |
+
|
459 |
+
if type(checkpoint) is list:
|
460 |
+
self.sd = torch.load(checkpoint[0], map_location='cpu')
|
461 |
+
self.key_list = list(self.sd.keys())
|
462 |
+
|
463 |
+
self.load_model_with_checkpoint(self.module)
|
464 |
+
|
465 |
+
for i in range(1, len(checkpoint)):
|
466 |
+
if not dist.is_initialized() or dist.get_rank() == 0:
|
467 |
+
print(f"loading checkpoint ({i})")
|
468 |
+
self.sd = torch.load(checkpoint[i], map_location=get_accelerator().device_name())
|
469 |
+
self.key_list = list(self.sd.keys())
|
470 |
+
self.load_model_with_checkpoint(self.module)
|
471 |
+
else:
|
472 |
+
mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
|
473 |
+
|
474 |
+
load_path, checkpoint, quantize_config = sd_loader.load(self._config.tensor_parallel.tp_size,
|
475 |
+
mp_rank,
|
476 |
+
is_pipe_parallel=is_pipe_parallel,
|
477 |
+
quantize=(self._config.dtype is torch.int8),
|
478 |
+
quantize_groups=self.quantize_groups,
|
479 |
+
mlp_extra_grouping=self.mlp_extra_grouping)
|
480 |
+
|
481 |
+
self.quantization_scales, self.quantize_merge_count = quantize_config
|
482 |
+
|
483 |
+
moe, _ = has_moe_layers(self.module)
|
484 |
+
if moe:
|
485 |
+
from deepspeed.runtime.engine import DeepSpeedEngine
|
486 |
+
old_moe_load = False
|
487 |
+
if not isinstance(checkpoint['num_experts'], list):
|
488 |
+
old_moe_load = True
|
489 |
+
DeepSpeedEngine.load_moe_state_dict(load_dir,
|
490 |
+
tag,
|
491 |
+
state_dict=checkpoint[self._choose_module_key(checkpoint)],
|
492 |
+
old_moe_load=old_moe_load,
|
493 |
+
model=self.module,
|
494 |
+
mpu=self.mpu,
|
495 |
+
checkpoint_engine=self.checkpoint_engine)
|
496 |
+
|
497 |
+
self.module.load_state_dict(state_dict=checkpoint[self._choose_module_key(checkpoint)],
|
498 |
+
strict=load_module_strict)
|
499 |
+
|
500 |
+
def _choose_module_key(self, sd):
|
501 |
+
assert not ('module' in sd
|
502 |
+
and 'model' in sd), "checkpoint has both 'model' and 'module' keys, not sure how to proceed"
|
503 |
+
assert 'module' in sd or 'model' in sd, "checkpoint contains neither 'model' or 'module' keys, not sure how to proceed"
|
504 |
+
if 'module' in sd:
|
505 |
+
return 'module'
|
506 |
+
elif 'model' in sd:
|
507 |
+
return 'model'
|
508 |
+
|
509 |
+
def _convert_to_dtype(self, config):
|
510 |
+
if not isinstance(self.module, torch.nn.Module):
|
511 |
+
return
|
512 |
+
|
513 |
+
if False: #config.dtype is torch.int8 and self.quantization_scales is None:
|
514 |
+
quantizer = WeightQuantization(mlp_extra_grouping=self.mlp_extra_grouping)
|
515 |
+
model, self.quantization_scales = quantizer.model_quantize(self.module, self.injection_dict,
|
516 |
+
self.quantize_bits, self.quantize_groups)
|
517 |
+
elif config.dtype == torch.half:
|
518 |
+
self.module.half()
|
519 |
+
elif config.dtype == torch.bfloat16:
|
520 |
+
self.module.bfloat16()
|
521 |
+
elif config.dtype == torch.float:
|
522 |
+
self.module.float()
|
523 |
+
|
524 |
+
def _create_cuda_graph(self, *inputs, **kwargs):
|
525 |
+
# warmup to create the workspace and cublas handle
|
526 |
+
cuda_stream = get_accelerator().Stream()
|
527 |
+
cuda_stream.wait_stream(get_accelerator().current_stream())
|
528 |
+
with get_accelerator().stream(cuda_stream):
|
529 |
+
for i in range(3):
|
530 |
+
ret = self.module(*inputs, **kwargs)
|
531 |
+
get_accelerator().current_stream().wait_stream(cuda_stream)
|
532 |
+
|
533 |
+
# create cuda_graph and assign static_inputs and static_outputs
|
534 |
+
self._cuda_graphs = get_accelerator().create_graph()
|
535 |
+
self.static_inputs = inputs
|
536 |
+
self.static_kwargs = kwargs
|
537 |
+
|
538 |
+
with get_accelerator().capture_to_graph(self._cuda_graphs):
|
539 |
+
self.static_output = self.module(*self.static_inputs, **self.static_kwargs)
|
540 |
+
|
541 |
+
self.cuda_graph_created = True
|
542 |
+
|
543 |
+
def _graph_replay(self, *inputs, **kwargs):
|
544 |
+
for i in range(len(inputs)):
|
545 |
+
if torch.is_tensor(inputs[i]):
|
546 |
+
self.static_inputs[i].copy_(inputs[i])
|
547 |
+
for k in kwargs:
|
548 |
+
if torch.is_tensor(kwargs[k]):
|
549 |
+
self.static_kwargs[k].copy_(kwargs[k])
|
550 |
+
get_accelerator().replay_graph(self._cuda_graphs)
|
551 |
+
return self.static_output
|
552 |
+
|
553 |
+
def model_times(self):
|
554 |
+
assert self.model_profile_enabled, "model profiling is not enabled"
|
555 |
+
model_times = self._model_times
|
556 |
+
if self._config.enable_cuda_graph and len(self._model_times) == 0:
|
557 |
+
raise ValueError("Model times are empty and cuda graph is enabled. If "
|
558 |
+
"this is a GPT-style model this combo is not supported. If this is a "
|
559 |
+
"BERT-style model this is a bug, please report it. "
|
560 |
+
f"Model type is: {type(self.module)}")
|
561 |
+
self._model_times = []
|
562 |
+
return model_times
|
563 |
+
|
564 |
+
def _module_match(self, module):
|
565 |
+
for policy in generic_policies:
|
566 |
+
policy = policy()
|
567 |
+
if policy.match_replaced(module):
|
568 |
+
return True
|
569 |
+
return False
|
570 |
+
|
571 |
+
def _local_cuda_graph_used(self, module):
|
572 |
+
if isinstance(module, torch.nn.Module):
|
573 |
+
return False
|
574 |
+
else:
|
575 |
+
sub_module_cuda_graph = False
|
576 |
+
for name in module.__dict__.keys():
|
577 |
+
sub_module = getattr(module, name)
|
578 |
+
|
579 |
+
if self._module_match(sub_module) and hasattr(sub_module, "enable_cuda_graph"):
|
580 |
+
sub_module_cuda_graph = True
|
581 |
+
|
582 |
+
return sub_module_cuda_graph
|
583 |
+
|
584 |
+
def forward(self, *inputs, **kwargs):
|
585 |
+
"""Execute forward propagation
|
586 |
+
|
587 |
+
Arguments:
|
588 |
+
*inputs: Variable length input list
|
589 |
+
**kwargs: variable length keyword arguments
|
590 |
+
"""
|
591 |
+
start = None
|
592 |
+
if self.model_profile_enabled and get_accelerator().device_name() == 'cuda' and self._config.enable_cuda_graph:
|
593 |
+
get_accelerator().synchronize()
|
594 |
+
start = time.time()
|
595 |
+
|
596 |
+
if get_accelerator().device_name() == 'cuda' and self._config.enable_cuda_graph and not self.local_cuda_graph:
|
597 |
+
if self.cuda_graph_created:
|
598 |
+
outputs = self._graph_replay(*inputs, **kwargs)
|
599 |
+
else:
|
600 |
+
self._create_cuda_graph(*inputs, **kwargs)
|
601 |
+
outputs = self._graph_replay(*inputs, **kwargs)
|
602 |
+
|
603 |
+
else:
|
604 |
+
outputs = self.module(*inputs, **kwargs)
|
605 |
+
|
606 |
+
if self.model_profile_enabled and self._config.enable_cuda_graph:
|
607 |
+
get_accelerator().synchronize()
|
608 |
+
duration = (time.time() - start) * 1e3 # convert seconds to ms
|
609 |
+
self._model_times.append(duration)
|
610 |
+
|
611 |
+
return outputs
|
612 |
+
|
613 |
+
def _generate(self, *inputs, **kwargs):
|
614 |
+
# Reset KV-cache at the beginning of generate
|
615 |
+
if hasattr(self.module, 'reset_cache'):
|
616 |
+
self.module.reset_cache()
|
617 |
+
num_beams = 1
|
618 |
+
if "generation_config" in kwargs:
|
619 |
+
gen_config = kwargs["generation_config"]
|
620 |
+
num_beams = getattr(gen_config, "num_beams", 1)
|
621 |
+
if "num_beams" in kwargs:
|
622 |
+
num_beams = kwargs["num_beams"]
|
623 |
+
|
624 |
+
if num_beams > 1:
|
625 |
+
raise NotImplementedError("DeepSpeed does not support `num_beams` > 1, if this is important to you please "
|
626 |
+
"add your request to: https://github.com/microsoft/DeepSpeed/issues/2506")
|
627 |
+
|
628 |
+
if ("input_ids" in kwargs) and (kwargs["input_ids"].dim() == 2):
|
629 |
+
for input_tensor in kwargs["input_ids"]:
|
630 |
+
tensor_length = input_tensor.shape[-1]
|
631 |
+
if tensor_length > self._config.max_out_tokens:
|
632 |
+
raise RuntimeError(
|
633 |
+
f"Input with size {tensor_length} exceeds maximum length of {self._config.max_out_tokens}. Please increase `max_tokens` in the DeepSpeed Inference Config."
|
634 |
+
)
|
635 |
+
|
636 |
+
return self.module.generate(*inputs, **kwargs)
|
venv/lib/python3.10/site-packages/deepspeed/inference/quantization/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
venv/lib/python3.10/site-packages/deepspeed/inference/quantization/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (200 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/quantization/__pycache__/layers.cpython-310.pyc
ADDED
Binary file (3.61 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/quantization/__pycache__/quantization.cpython-310.pyc
ADDED
Binary file (3.16 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/quantization/__pycache__/quantization_context.cpython-310.pyc
ADDED
Binary file (835 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/quantization/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (9.19 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/quantization/layers.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from torch import nn
|
9 |
+
from torch import Tensor
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from .utils import Quantizer, DeQuantizer, concat_to_compat_param
|
12 |
+
from typing import Tuple, Callable, Dict
|
13 |
+
from deepspeed.runtime.zero import register_external_parameter
|
14 |
+
|
15 |
+
quantized_weight_registry = {}
|
16 |
+
is_zero3_enabled = False
|
17 |
+
|
18 |
+
|
19 |
+
# deal with weight sharing
|
20 |
+
def get_quantized_weight_wrapper(model, pre_quant_weight: nn.Parameter, quantize_weight_fn: Callable) -> nn.Parameter:
|
21 |
+
if id(pre_quant_weight) in quantized_weight_registry:
|
22 |
+
compat_tensor = quantized_weight_registry[id(pre_quant_weight)]
|
23 |
+
if is_zero3_enabled:
|
24 |
+
register_external_parameter(model, compat_tensor)
|
25 |
+
|
26 |
+
return quantized_weight_registry[id(pre_quant_weight)]
|
27 |
+
else:
|
28 |
+
quantized_weights, quant_scale, quant_min = quantize_weight_fn()
|
29 |
+
quantized_weight_registry[id(pre_quant_weight)] = concat_to_compat_param(quantized_weights, quant_scale,
|
30 |
+
quant_min)
|
31 |
+
return quantized_weight_registry[id(pre_quant_weight)]
|
32 |
+
|
33 |
+
|
34 |
+
def get_quantize_weight_fn(quantizer: Quantizer, pre_quant_weight: nn.Parameter) -> Callable:
|
35 |
+
|
36 |
+
def func() -> Tuple[nn.Parameter, Tensor, Tensor]:
|
37 |
+
quantized_weights, quant_scale, quant_min = quantizer.quantize(pre_quant_weight.data)
|
38 |
+
# A temporary hack as zero Zero3 assume all model weights has the same type. in all_gather_coalesced.get_only_unique_item
|
39 |
+
quantized_weights = quantized_weights.view(pre_quant_weight.dtype)
|
40 |
+
quant_scale = quant_scale.type(pre_quant_weight.dtype)
|
41 |
+
quant_min = quant_min.type(pre_quant_weight.dtype)
|
42 |
+
return quantized_weights, quant_scale, quant_min
|
43 |
+
|
44 |
+
return func
|
45 |
+
|
46 |
+
|
47 |
+
class QuantizedLinear(nn.Linear):
|
48 |
+
|
49 |
+
def __init__(self, config: Dict, pre_quant_layer: nn.Linear) -> None:
|
50 |
+
super(QuantizedLinear, self).__init__(in_features=pre_quant_layer.in_features,
|
51 |
+
out_features=pre_quant_layer.out_features,
|
52 |
+
bias=pre_quant_layer.bias is not None,
|
53 |
+
device=pre_quant_layer.weight.device,
|
54 |
+
dtype=pre_quant_layer.weight.dtype)
|
55 |
+
self.config = config
|
56 |
+
|
57 |
+
self.quantizer = Quantizer(config=config)
|
58 |
+
self.bias = pre_quant_layer.bias
|
59 |
+
self.weight = get_quantized_weight_wrapper(self, pre_quant_layer.weight,
|
60 |
+
get_quantize_weight_fn(self.quantizer, pre_quant_layer.weight))
|
61 |
+
|
62 |
+
self.weight.dequantizer = DeQuantizer(config, pre_quant_layer.weight.dtype)
|
63 |
+
|
64 |
+
def forward(self, input: Tensor) -> Tensor:
|
65 |
+
quantized_weight, quant_scale, quant_min = self.weight.deconcat(self.weight)
|
66 |
+
temp_dequantized_weight = self.weight.dequantizer.dequantize(quantized_weight.view(torch.uint8), quant_scale,
|
67 |
+
quant_min)
|
68 |
+
|
69 |
+
# !!! Do not use torch.functional.linear(input, temp_dequantized_weight, self.bias) here as in zero3 torch.functional.linear is
|
70 |
+
# replaced by LinearFunctionForZeroStage3. Which assume weight is non-temporary.
|
71 |
+
# If weight is temp buffer there will be memory leak.
|
72 |
+
return torch._C._nn.linear(input, temp_dequantized_weight, self.bias)
|
73 |
+
|
74 |
+
|
75 |
+
class QuantizedEmbedding(nn.Embedding):
|
76 |
+
|
77 |
+
def __init__(self, config: Dict, pre_quant_layer: nn.Embedding) -> None:
|
78 |
+
super(QuantizedEmbedding, self).__init__(num_embeddings=pre_quant_layer.num_embeddings,
|
79 |
+
embedding_dim=pre_quant_layer.embedding_dim,
|
80 |
+
padding_idx=pre_quant_layer.padding_idx,
|
81 |
+
max_norm=pre_quant_layer.max_norm,
|
82 |
+
norm_type=pre_quant_layer.norm_type,
|
83 |
+
scale_grad_by_freq=pre_quant_layer.scale_grad_by_freq,
|
84 |
+
sparse=pre_quant_layer.sparse,
|
85 |
+
_weight=pre_quant_layer.weight,
|
86 |
+
device=pre_quant_layer.weight.device,
|
87 |
+
dtype=pre_quant_layer.weight.dtype)
|
88 |
+
|
89 |
+
assert pre_quant_layer.max_norm is None, 'Not supported'
|
90 |
+
assert pre_quant_layer.norm_type == 2, 'Not supported'
|
91 |
+
assert pre_quant_layer.scale_grad_by_freq == False, 'Not supported'
|
92 |
+
assert pre_quant_layer.sparse == False, 'Not supported'
|
93 |
+
|
94 |
+
self.config = config
|
95 |
+
quantizer = Quantizer(config=config)
|
96 |
+
|
97 |
+
self.weight = get_quantized_weight_wrapper(self, pre_quant_layer.weight,
|
98 |
+
get_quantize_weight_fn(quantizer, pre_quant_layer.weight))
|
99 |
+
|
100 |
+
self.weight.dequantizer = DeQuantizer(config, pre_quant_layer.weight.dtype)
|
101 |
+
|
102 |
+
def forward(self, input: Tensor) -> Tensor:
|
103 |
+
quantized_weight, quant_scale, quant_min = self.weight.deconcat(self.weight)
|
104 |
+
temp_dequantized_weight = self.weight.dequantizer.dequantize(quantized_weight.view(torch.uint8), quant_scale,
|
105 |
+
quant_min)
|
106 |
+
|
107 |
+
return F.embedding(input, temp_dequantized_weight, self.padding_idx, self.max_norm, self.norm_type,
|
108 |
+
self.scale_grad_by_freq, self.sparse)
|
109 |
+
|
110 |
+
|
111 |
+
QUANTIZATION_LAYER_MAPPINGS = {
|
112 |
+
nn.Linear: QuantizedLinear,
|
113 |
+
nn.Embedding: QuantizedEmbedding,
|
114 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/quantization/quantization.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from typing import Dict
|
9 |
+
import gc
|
10 |
+
from deepspeed.inference.quantization import layers
|
11 |
+
from .layers import QUANTIZATION_LAYER_MAPPINGS
|
12 |
+
from .utils import get_AsyncPartitionedParameterSwapper, recursive_setattr
|
13 |
+
from deepspeed.utils.logging import logger
|
14 |
+
from collections import deque
|
15 |
+
from transformers.utils.generic import ContextManagers
|
16 |
+
from .quantization_context import QuantizationContext
|
17 |
+
import contextlib
|
18 |
+
|
19 |
+
|
20 |
+
def _init_group_wise_weight_quantization(model: nn.Module, ds_config: Dict) -> nn.Module:
|
21 |
+
"""[Experimental] Apply group-wise weight quantization to model. Replace layers module according to config_list
|
22 |
+
|
23 |
+
Args:
|
24 |
+
model (nn.Module): A nn.Module
|
25 |
+
ds_config (Dict, optional): The ds_config dictionary. use None for non-deepspeed managed model.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
nn.Module: Quantized nn.Module
|
29 |
+
"""
|
30 |
+
|
31 |
+
# global quantized_weight_registry
|
32 |
+
|
33 |
+
matched_module_list_by_key = {}
|
34 |
+
matched_module_count = 0
|
35 |
+
|
36 |
+
assert 'weight_quantization' in ds_config, 'Please provide quantization config in ds_config'
|
37 |
+
quantization_config = ds_config['weight_quantization']['post_init_quant']
|
38 |
+
|
39 |
+
# Return nvme swapper if exists, else return None.
|
40 |
+
# For nvme offloading we must use the same swapper here as model initialized.
|
41 |
+
nvme_swapper = get_AsyncPartitionedParameterSwapper(model)
|
42 |
+
is_zero3_enabled = 'zero_optimization' in ds_config and \
|
43 |
+
'stage' in ds_config['zero_optimization'] and \
|
44 |
+
ds_config['zero_optimization']['stage'] == 3
|
45 |
+
is_offloading_enabled = 'zero_optimization' in ds_config and \
|
46 |
+
'offload_param' in ds_config['zero_optimization']
|
47 |
+
|
48 |
+
layers.is_zero3_enabled = is_zero3_enabled
|
49 |
+
|
50 |
+
context_mgr = ContextManagers([QuantizationContext(config_dict_or_path=ds_config, param_swapper=nvme_swapper)]) \
|
51 |
+
if is_zero3_enabled else contextlib.suppress()
|
52 |
+
with context_mgr:
|
53 |
+
module_list = list(
|
54 |
+
filter(lambda named_module: type(named_module[1]) in QUANTIZATION_LAYER_MAPPINGS, model.named_modules()))
|
55 |
+
|
56 |
+
# Quantize small weight first then large.
|
57 |
+
if not is_offloading_enabled:
|
58 |
+
module_list.sort(key=lambda named_module: named_module[1].weight.ds_tensor.numel()
|
59 |
+
if is_zero3_enabled else named_module[1].weight.numel())
|
60 |
+
module_list = deque(module_list)
|
61 |
+
|
62 |
+
while len(module_list) > 0:
|
63 |
+
# Use popleft to timely release module's memory of replaced module after each loop iteration
|
64 |
+
module_name, module = module_list.popleft()
|
65 |
+
|
66 |
+
matched_key = None
|
67 |
+
matched_quantization_config = None
|
68 |
+
|
69 |
+
for key, config in quantization_config.items():
|
70 |
+
if key in module_name:
|
71 |
+
assert matched_key is None, f'{module_name} matched multiple quantization key word {matched_key} and {key}'
|
72 |
+
matched_key = key
|
73 |
+
matched_quantization_config = config
|
74 |
+
|
75 |
+
if matched_key is None:
|
76 |
+
continue
|
77 |
+
|
78 |
+
if is_zero3_enabled:
|
79 |
+
module.weight.all_gather()
|
80 |
+
|
81 |
+
assert module.weight.dtype == torch.float16, 'Model weight is expected in half.'
|
82 |
+
|
83 |
+
new_module = QUANTIZATION_LAYER_MAPPINGS[type(module)](matched_quantization_config, module)
|
84 |
+
|
85 |
+
if is_zero3_enabled:
|
86 |
+
module.weight.partition()
|
87 |
+
|
88 |
+
recursive_setattr(model, module_name, new_module)
|
89 |
+
|
90 |
+
if matched_key not in matched_module_list_by_key:
|
91 |
+
matched_module_list_by_key[matched_key] = []
|
92 |
+
matched_module_list_by_key[matched_key].append(module_name)
|
93 |
+
matched_module_count += 1
|
94 |
+
|
95 |
+
# Timely recycle memory to prevent OOM on large models
|
96 |
+
gc.collect()
|
97 |
+
|
98 |
+
# Clear registry after model construction.
|
99 |
+
layers.quantized_weight_registry.clear()
|
100 |
+
|
101 |
+
logger.info(
|
102 |
+
f'Group-wise weight quantization summary: convert {matched_module_count} node(s) to quantized implementation')
|
103 |
+
summary_str = '\n'
|
104 |
+
|
105 |
+
for key, module_list in matched_module_list_by_key.items():
|
106 |
+
summary_str += f'Key: {key}, matched modules:\n'
|
107 |
+
for module_name in module_list:
|
108 |
+
summary_str += f'\t{module_name}\n'
|
109 |
+
logger.info(summary_str)
|
110 |
+
|
111 |
+
return model
|
venv/lib/python3.10/site-packages/deepspeed/inference/quantization/quantization_context.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from deepspeed.runtime.zero import partition_parameters
|
7 |
+
from deepspeed.runtime.swap_tensor.partitioned_param_swapper import AsyncPartitionedParameterSwapper
|
8 |
+
|
9 |
+
|
10 |
+
class QuantizationContext(partition_parameters.Init):
|
11 |
+
|
12 |
+
def __init__(self, config_dict_or_path, param_swapper: AsyncPartitionedParameterSwapper = None) -> None:
|
13 |
+
super().__init__(config_dict_or_path=config_dict_or_path, param_swapper=param_swapper)
|
venv/lib/python3.10/site-packages/deepspeed/inference/quantization/utils.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import deepspeed
|
8 |
+
from torch import Tensor
|
9 |
+
from typing import Tuple
|
10 |
+
import torch.nn as nn
|
11 |
+
from typing import Dict, Callable, Union
|
12 |
+
from deepspeed.accelerator import get_accelerator
|
13 |
+
import functools
|
14 |
+
|
15 |
+
device = get_accelerator().device_name() if get_accelerator().is_available() else 'cpu'
|
16 |
+
|
17 |
+
quantizer_cuda_module = None
|
18 |
+
|
19 |
+
|
20 |
+
def get_quantizer_cuda_module():
|
21 |
+
global quantizer_cuda_module
|
22 |
+
if quantizer_cuda_module is None:
|
23 |
+
quantizer_cuda_module = deepspeed.ops.op_builder.QuantizerBuilder().load()
|
24 |
+
return quantizer_cuda_module
|
25 |
+
|
26 |
+
|
27 |
+
def tensor_clamp(tensor: Tensor, min, max) -> Tensor:
|
28 |
+
if tensor.device.type == 'cpu' and tensor.dtype == torch.float16:
|
29 |
+
# CPU does not support FP16 clamp
|
30 |
+
return tensor.to(dtype=torch.float32).clamp_(min, max).to(dtype=torch.float16)
|
31 |
+
else:
|
32 |
+
return tensor.clamp_(min, max)
|
33 |
+
|
34 |
+
|
35 |
+
def tensor_round(tensor: Tensor) -> Tensor:
|
36 |
+
if tensor.device.type == 'cpu' and tensor.dtype == torch.float16:
|
37 |
+
# CPU does not support FP16 round
|
38 |
+
return tensor.to(dtype=torch.float32).round_().to(dtype=torch.float16)
|
39 |
+
else:
|
40 |
+
return tensor.round_()
|
41 |
+
|
42 |
+
|
43 |
+
class Quantizer:
|
44 |
+
|
45 |
+
def __init__(self, config: Dict) -> None:
|
46 |
+
self.config = config
|
47 |
+
assert self.config['num_bits'] == 4 or self.config[
|
48 |
+
'num_bits'] == 8, 'Only INT4 and INT8 quantization is supported.'
|
49 |
+
assert self.config['symmetric'] == False, 'Only asymmetric quantization is supported at this moment.'
|
50 |
+
|
51 |
+
def quantize(self, tensor: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
|
52 |
+
assert tensor.shape[self.config['group_dim']] % self.config['group_size'] == 0 \
|
53 |
+
, f'Tensor shape: {tensor.shape} quantization config {self.config}'
|
54 |
+
|
55 |
+
tensor = torch.clone(tensor)
|
56 |
+
|
57 |
+
shape = tensor.shape
|
58 |
+
num_groups = shape[self.config['group_dim']] // self.config['group_size']
|
59 |
+
new_shape = (shape[:self.config['group_dim']] + (num_groups, self.config['group_size']) +
|
60 |
+
shape[self.config['group_dim'] + 1:])
|
61 |
+
tensor = tensor.view(new_shape)
|
62 |
+
|
63 |
+
quantized_tensor, scale, min_value = self._quantize_int8(tensor)
|
64 |
+
quantized_tensor = quantized_tensor.view(shape)
|
65 |
+
|
66 |
+
if self.config['num_bits'] == 4:
|
67 |
+
return self._compress_uint8_to_uint4(quantized_tensor), scale, min_value
|
68 |
+
if self.config['num_bits'] == 8:
|
69 |
+
return quantized_tensor, scale, min_value
|
70 |
+
|
71 |
+
assert False, 'Unsupported quantization bits {}'.format(self.config['num_bits'])
|
72 |
+
|
73 |
+
def _quantize_int8(self, tensor: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
|
74 |
+
q_range = 2**self.config['num_bits'] - 1
|
75 |
+
min_value = tensor.amin(dim=self.config['group_dim'] + 1, keepdim=True)
|
76 |
+
max_value = tensor.amax(dim=self.config['group_dim'] + 1, keepdim=True)
|
77 |
+
|
78 |
+
scale = q_range / (max_value - min_value)
|
79 |
+
|
80 |
+
tensor = tensor.sub_(min_value).mul_(scale)
|
81 |
+
tensor = tensor_round(tensor_clamp(tensor, 0, q_range)).to(torch.uint8)
|
82 |
+
return tensor, scale, min_value
|
83 |
+
|
84 |
+
def _compress_uint8_to_uint4(self, tensor: Tensor) -> Tensor:
|
85 |
+
assert tensor.shape[-1] % 2 == 0
|
86 |
+
|
87 |
+
new_data_shape = list(tensor.shape)
|
88 |
+
new_data_shape[-1] = new_data_shape[-1] // 2
|
89 |
+
|
90 |
+
data = torch.empty(new_data_shape, dtype=torch.uint8, device=tensor.device)
|
91 |
+
data = torch.bitwise_or(tensor[..., 0::2].bitwise_left_shift(4), tensor[..., 1::2])
|
92 |
+
|
93 |
+
return data
|
94 |
+
|
95 |
+
|
96 |
+
class DeQuantizer:
|
97 |
+
|
98 |
+
def __init__(self, config: Dict, dtype: torch.dtype) -> None:
|
99 |
+
self.config = config
|
100 |
+
self.dtype = dtype
|
101 |
+
assert self.config['num_bits'] == 4 or self.config[
|
102 |
+
'num_bits'] == 8, 'Only INT4 and INT8 quantization is supported.'
|
103 |
+
assert self.config['symmetric'] == False, 'Only asymmetric quantization is supported at this moment.'
|
104 |
+
|
105 |
+
def dequantize(self, tensor: Tensor, quant_scale: Tensor, quant_min: Tensor) -> Tensor:
|
106 |
+
# Use customized CUDA quantization kernel if possible.
|
107 |
+
if self.config['group_size'] % 8 == 0 and \
|
108 |
+
(self.config['num_bits'] == 4 or self.config['num_bits'] == 8) and \
|
109 |
+
self.config['group_dim'] == len(tensor.shape) - 1 and \
|
110 |
+
self.dtype == torch.float16 and device == 'cuda':
|
111 |
+
|
112 |
+
last_dimension_size = self.config['group_size']
|
113 |
+
if self.config['num_bits'] == 4:
|
114 |
+
last_dimension_size = last_dimension_size // 2
|
115 |
+
quantized_tensor = get_quantizer_cuda_module().dequantize_int4_to_half_experimental(
|
116 |
+
tensor.reshape(-1, last_dimension_size), quant_scale, quant_min,
|
117 |
+
tensor.numel() // last_dimension_size, self.config['group_size'])
|
118 |
+
shape = list(tensor.shape)
|
119 |
+
shape[-1] = shape[-1] * 2
|
120 |
+
elif self.config['num_bits'] == 8:
|
121 |
+
# last_dimension_size = last_dimension_size // 2
|
122 |
+
quantized_tensor = get_quantizer_cuda_module().dequantize_int8_to_half_experimental(
|
123 |
+
tensor.reshape(-1, last_dimension_size), quant_scale, quant_min,
|
124 |
+
tensor.numel() // last_dimension_size, self.config['group_size'])
|
125 |
+
shape = list(tensor.shape)
|
126 |
+
|
127 |
+
return quantized_tensor.reshape(shape)
|
128 |
+
|
129 |
+
if self.config['num_bits'] == 4:
|
130 |
+
tensor = self._decompress_uint4_to_uint8(tensor)
|
131 |
+
elif self.config['num_bits'] != 8:
|
132 |
+
assert False, 'Unsupported quantization bits {}'.format(self.config['num_bits'])
|
133 |
+
|
134 |
+
shape = tensor.shape
|
135 |
+
num_groups = shape[self.config['group_dim']] // self.config['group_size']
|
136 |
+
new_shape = (shape[:self.config['group_dim']] + (num_groups, self.config['group_size']) +
|
137 |
+
shape[self.config['group_dim'] + 1:])
|
138 |
+
tensor = tensor.view(new_shape)
|
139 |
+
|
140 |
+
dequantized_tensor = self._dequantize_int8(tensor, quant_scale, quant_min).view(shape)
|
141 |
+
return dequantized_tensor
|
142 |
+
|
143 |
+
def _dequantize_int8(self, tensor: Tensor, quant_scale: Tensor, quant_min: Tensor) -> Tensor:
|
144 |
+
assert tensor.dtype == torch.uint8
|
145 |
+
data = torch.zeros_like(tensor, dtype=self.dtype, device=tensor.device)
|
146 |
+
data = data.copy_(tensor)
|
147 |
+
data = data.div_(quant_scale).add_(quant_min)
|
148 |
+
|
149 |
+
return data
|
150 |
+
|
151 |
+
def _decompress_uint4_to_uint8(self, tensor: Tensor) -> Tensor:
|
152 |
+
new_data_shape = list(tensor.shape)
|
153 |
+
new_data_shape[-1] = new_data_shape[-1] * 2
|
154 |
+
data = torch.empty(new_data_shape, dtype=torch.uint8, device=tensor.device)
|
155 |
+
data[..., 0::2] = tensor.bitwise_right_shift(4)
|
156 |
+
data[..., 1::2] = tensor.bitwise_and(0xF)
|
157 |
+
|
158 |
+
return data
|
159 |
+
|
160 |
+
|
161 |
+
def get_AsyncPartitionedParameterSwapper(model: nn.Module):
|
162 |
+
for param_name, param in model.named_parameters():
|
163 |
+
if hasattr(param, 'nvme_swapper') and param.nvme_swapper is not None:
|
164 |
+
return param.nvme_swapper
|
165 |
+
return None
|
166 |
+
|
167 |
+
|
168 |
+
def recursive_setattr(model, module_name, module):
|
169 |
+
"""
|
170 |
+
Recursively set the attribute of a module.
|
171 |
+
Args:
|
172 |
+
model (`torch.nn.Module`)
|
173 |
+
The model to set the attribute in.
|
174 |
+
module_name (`str`)
|
175 |
+
The name of the module to set the attribute in.
|
176 |
+
module (`torch.nn.Module`)
|
177 |
+
The module to set the attribute to.
|
178 |
+
"""
|
179 |
+
split_list = module_name.split('.')
|
180 |
+
output = model
|
181 |
+
for name in split_list[:-1]:
|
182 |
+
output = getattr(output, name)
|
183 |
+
output.__setattr__(split_list[-1], module)
|
184 |
+
|
185 |
+
|
186 |
+
def concat_to_compat_param(quantized_weight: Tensor,
|
187 |
+
quant_scale: Tensor,
|
188 |
+
quant_min: Tensor,
|
189 |
+
return_param: bool = True) -> Union[nn.Parameter, Tensor]:
|
190 |
+
shape_wieght = quantized_weight.shape
|
191 |
+
shape_scale = quant_scale.shape
|
192 |
+
shape_min = quant_min.shape
|
193 |
+
|
194 |
+
quantized_weight = torch.flatten(quantized_weight)
|
195 |
+
quant_scale = torch.flatten(quant_scale)
|
196 |
+
quant_min = torch.flatten(quant_min)
|
197 |
+
|
198 |
+
def deconcat_individual_tensors(shape_wieght: torch.Size, shape_scale: torch.Size,
|
199 |
+
shape_min: torch.Size) -> Callable:
|
200 |
+
|
201 |
+
def fn(compat_tensor: nn.Parameter) -> Tuple[Tensor, Tensor, Tensor]:
|
202 |
+
weight = torch.narrow(compat_tensor, 0, 0, shape_wieght.numel()).view(shape_wieght)
|
203 |
+
scale = torch.narrow(compat_tensor, 0, shape_wieght.numel(), shape_scale.numel()).view(shape_scale)
|
204 |
+
min_val = torch.narrow(compat_tensor, 0,
|
205 |
+
shape_wieght.numel() + shape_scale.numel(), shape_min.numel()).view(shape_min)
|
206 |
+
|
207 |
+
return weight, scale, min_val
|
208 |
+
|
209 |
+
return fn
|
210 |
+
|
211 |
+
compat_tensor = torch.concat([quantized_weight, quant_scale, quant_min])
|
212 |
+
if return_param:
|
213 |
+
compat_tensor = nn.Parameter(compat_tensor, requires_grad=False)
|
214 |
+
compat_tensor.deconcat = deconcat_individual_tensors(shape_wieght, shape_scale, shape_min)
|
215 |
+
|
216 |
+
return compat_tensor
|
217 |
+
|
218 |
+
|
219 |
+
def _quantize_param(param: nn.Parameter, quant_config: Dict):
|
220 |
+
assert not hasattr(param, 'weight_quantized'), 'Parameter has already been quantized.'
|
221 |
+
quantizer = Quantizer(quant_config)
|
222 |
+
dequantizer = DeQuantizer(quant_config, param.dtype)
|
223 |
+
|
224 |
+
quantized_weight, quant_scale, quant_min = quantizer.quantize(param.data)
|
225 |
+
|
226 |
+
quantized_weight = quantized_weight.view(param.dtype)
|
227 |
+
quant_scale = quant_scale.view(param.dtype)
|
228 |
+
quant_min = quant_min.view(param.dtype)
|
229 |
+
|
230 |
+
quantized_compat_tensor = concat_to_compat_param(quantized_weight, quant_scale, quant_min)
|
231 |
+
param.data = quantized_compat_tensor
|
232 |
+
param.deconcat = quantized_compat_tensor.deconcat
|
233 |
+
|
234 |
+
param.quantizer = quantizer
|
235 |
+
param.dequantizer = dequantizer
|
236 |
+
setattr(param, 'weight_quantized', True)
|
237 |
+
|
238 |
+
|
239 |
+
def wrap_quantized_functional(f):
|
240 |
+
|
241 |
+
@functools.wraps(f)
|
242 |
+
def wrapper(input: Tensor, weight: nn.Parameter, *args, **kwargs) -> Tensor:
|
243 |
+
if hasattr(weight, 'weight_quantized') and getattr(weight, 'weight_quantized'):
|
244 |
+
quantized_weight, quant_scale, quant_min = weight.deconcat(weight)
|
245 |
+
temp_dequantized_weight = weight.dequantizer.dequantize(quantized_weight.view(torch.uint8), quant_scale,
|
246 |
+
quant_min)
|
247 |
+
return f(input, temp_dequantized_weight, *args, **kwargs)
|
248 |
+
else:
|
249 |
+
return f(input, weight, *args, **kwargs)
|
250 |
+
|
251 |
+
return wrapper
|
252 |
+
|
253 |
+
|
254 |
+
def wrap_load_from_state_dict(f):
|
255 |
+
|
256 |
+
@functools.wraps(f)
|
257 |
+
def wrapper(model, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
258 |
+
replaced_old_value = None
|
259 |
+
key = None
|
260 |
+
# We may have nested wrappers if we launch multiple initialization context.
|
261 |
+
# Use state_dict_quantized flag to quantize state_dict only once
|
262 |
+
if hasattr(model.weight, 'weight_quantized') and getattr(
|
263 |
+
model.weight, 'weight_quantized') and not hasattr(model.weight, 'state_dict_quantized'):
|
264 |
+
setattr(model.weight, 'state_dict_quantized', True)
|
265 |
+
key = prefix + 'weight'
|
266 |
+
if key in state_dict:
|
267 |
+
quantized_weight, quant_scale, quant_min = model.weight.quantizer.quantize(state_dict[key])
|
268 |
+
quantized_weight = quantized_weight.view(model.weight.dtype)
|
269 |
+
quant_scale = quant_scale.view(model.weight.dtype)
|
270 |
+
quant_min = quant_min.view(model.weight.dtype)
|
271 |
+
|
272 |
+
replaced_old_value = state_dict[key]
|
273 |
+
|
274 |
+
state_dict[key] = concat_to_compat_param(quantized_weight, quant_scale, quant_min)
|
275 |
+
|
276 |
+
f(model, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
277 |
+
|
278 |
+
if replaced_old_value is not None:
|
279 |
+
state_dict[key] = replaced_old_value
|
280 |
+
delattr(model.weight, 'state_dict_quantized')
|
281 |
+
|
282 |
+
return wrapper
|
283 |
+
|
284 |
+
|
285 |
+
WEIGHT_QUANTIZATION_LAYERS = (
|
286 |
+
nn.Linear,
|
287 |
+
nn.Embedding,
|
288 |
+
)
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
from .config_v2 import RaggedInferenceEngineConfig, DeepSpeedTPConfig
|
6 |
+
from .engine_v2 import InferenceEngineV2
|
7 |
+
from .engine_factory import build_hf_engine, build_engine_from_ds_checkpoint
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (426 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/allocator.cpython-310.pyc
ADDED
Binary file (1.61 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/config_v2.cpython-310.pyc
ADDED
Binary file (1.31 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/engine_factory.cpython-310.pyc
ADDED
Binary file (4.05 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/engine_v2.cpython-310.pyc
ADDED
Binary file (8.93 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/inference_parameter.cpython-310.pyc
ADDED
Binary file (2.82 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/inference_utils.cpython-310.pyc
ADDED
Binary file (2.87 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/logging.cpython-310.pyc
ADDED
Binary file (889 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/__pycache__/scheduling_utils.cpython-310.pyc
ADDED
Binary file (1.09 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/allocator.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from functools import reduce
|
7 |
+
from typing import Iterable
|
8 |
+
from collections import defaultdict
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from deepspeed.accelerator import get_accelerator
|
12 |
+
|
13 |
+
|
14 |
+
class Allocator:
|
15 |
+
cache = defaultdict(dict)
|
16 |
+
|
17 |
+
def empty_from(tensor: torch.Tensor, shape: Iterable[int]) -> torch.Tensor:
|
18 |
+
try:
|
19 |
+
return Allocator.cache[tensor][shape]
|
20 |
+
except KeyError:
|
21 |
+
shape_size = reduce(lambda x, y: x * y, shape)
|
22 |
+
if shape_size == 0:
|
23 |
+
raise ValueError("Cannot create empty tensor with size 0")
|
24 |
+
Allocator.cache[tensor][shape] = tensor.flatten()[:shape_size].view(shape)
|
25 |
+
return Allocator.cache[tensor][shape]
|
26 |
+
|
27 |
+
|
28 |
+
empty_from = Allocator.empty_from
|
29 |
+
|
30 |
+
|
31 |
+
def on_device(method) -> torch.Tensor:
|
32 |
+
"""
|
33 |
+
Wraps a method to ensure the returned tensor is on the current device.
|
34 |
+
"""
|
35 |
+
|
36 |
+
def wrapped(self, *args, **kwargs):
|
37 |
+
tensor = method(self, *args, **kwargs)
|
38 |
+
if isinstance(tensor, torch.Tensor):
|
39 |
+
return tensor.to(get_accelerator().current_device())
|
40 |
+
return tensor
|
41 |
+
|
42 |
+
return wrapped
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/config_v2.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from typing import Optional
|
7 |
+
from deepspeed.pydantic_v1 import Field
|
8 |
+
from deepspeed.runtime.config_utils import DeepSpeedConfigModel
|
9 |
+
from .ragged import DSStateManagerConfig
|
10 |
+
|
11 |
+
|
12 |
+
class DeepSpeedTPConfig(DeepSpeedConfigModel):
|
13 |
+
""" Configure tensor parallelism settings """
|
14 |
+
|
15 |
+
tp_size: int = 1
|
16 |
+
""" Number of devices to split the model across using tensor parallelism. """
|
17 |
+
|
18 |
+
|
19 |
+
class QuantizationConfig(DeepSpeedConfigModel):
|
20 |
+
""" Configure tensor parallelism settings """
|
21 |
+
|
22 |
+
quantization_mode: Optional[str] = None
|
23 |
+
""" The quantization mode in string format. The supported modes are as follows:
|
24 |
+
- 'wf6af16', weight-only quantization with FP6 weight and FP16 activation.
|
25 |
+
"""
|
26 |
+
# TODO: may reuse the constants in deepspeed/compression/constants.py
|
27 |
+
|
28 |
+
|
29 |
+
class RaggedInferenceEngineConfig(DeepSpeedConfigModel):
|
30 |
+
""" Sets parameters for DeepSpeed Inference Engine. """
|
31 |
+
|
32 |
+
tensor_parallel: DeepSpeedTPConfig = Field({}, alias="tp")
|
33 |
+
"""
|
34 |
+
Configuration for tensor parallelism used to split the model across several
|
35 |
+
GPUs. Expects a dictionary containing values for :any:`DeepSpeedTPConfig`.
|
36 |
+
"""
|
37 |
+
|
38 |
+
state_manager: DSStateManagerConfig = Field({}, alias="manager")
|
39 |
+
"""
|
40 |
+
Configuration for managing persistent state
|
41 |
+
"""
|
42 |
+
|
43 |
+
quantization: QuantizationConfig = {}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/engine_factory.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import json
|
7 |
+
import logging
|
8 |
+
import os
|
9 |
+
import pickle
|
10 |
+
from packaging import version
|
11 |
+
|
12 |
+
from .engine_v2 import InferenceEngineV2
|
13 |
+
from .config_v2 import RaggedInferenceEngineConfig
|
14 |
+
from .checkpoint import HuggingFaceCheckpointEngine
|
15 |
+
from .logging import inference_logger
|
16 |
+
from .model_implementations import (
|
17 |
+
OPTPolicy,
|
18 |
+
Llama2Policy,
|
19 |
+
MistralPolicy,
|
20 |
+
MixtralPolicy,
|
21 |
+
FalconPolicy,
|
22 |
+
PhiPolicy,
|
23 |
+
QwenPolicy,
|
24 |
+
Qwen2Policy,
|
25 |
+
)
|
26 |
+
from .model_implementations.inference_policy_base import POLICIES, InferenceV2Policy
|
27 |
+
from .model_implementations.flat_model_helpers import make_metadata_filename, ModelMetadata
|
28 |
+
|
29 |
+
|
30 |
+
def build_engine_from_ds_checkpoint(path: str,
|
31 |
+
engine_config: RaggedInferenceEngineConfig,
|
32 |
+
debug_level: int = logging.INFO) -> InferenceEngineV2:
|
33 |
+
"""
|
34 |
+
Creates an engine from a checkpoint saved by ``InferenceEngineV2``.
|
35 |
+
|
36 |
+
Arguments:
|
37 |
+
path: Path to the checkpoint. This does not need to point to any files in particular,
|
38 |
+
just the directory containing the checkpoint.
|
39 |
+
engine_config: Engine configuration. See ``RaggedInferenceEngineConfig`` for details.
|
40 |
+
debug_level: Logging level to use. Unless you are actively seeing issues, the recommended
|
41 |
+
value is ``logging.INFO``.
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
Fully initialized inference engine ready to serve queries.
|
45 |
+
"""
|
46 |
+
|
47 |
+
inference_logger(level=debug_level)
|
48 |
+
# Load metadata, for grabbing the policy name we'll have all ranks just check for
|
49 |
+
# rank 0.
|
50 |
+
metadata_filename = make_metadata_filename(path, 0, engine_config.tensor_parallel.tp_size)
|
51 |
+
metadata = json.load(open(metadata_filename, "r"))
|
52 |
+
metadata = ModelMetadata.parse_raw(metadata)
|
53 |
+
|
54 |
+
# Get the policy
|
55 |
+
try:
|
56 |
+
policy_cls: InferenceV2Policy = POLICIES[metadata.policy]
|
57 |
+
except KeyError:
|
58 |
+
raise ValueError(f"Unknown policy {metadata.policy} for model {path}")
|
59 |
+
|
60 |
+
# Load the model config
|
61 |
+
model_config = pickle.load(open(os.path.join(path, "ds_model_config.pkl"), "rb"))
|
62 |
+
policy = policy_cls(model_config, inf_checkpoint_path=path)
|
63 |
+
|
64 |
+
return InferenceEngineV2(policy, engine_config)
|
65 |
+
|
66 |
+
|
67 |
+
def build_hf_engine(path: str,
|
68 |
+
engine_config: RaggedInferenceEngineConfig,
|
69 |
+
debug_level: int = logging.INFO) -> InferenceEngineV2:
|
70 |
+
"""
|
71 |
+
Build an InferenceV2 engine for HuggingFace models. This can accept both a HuggingFace
|
72 |
+
model name or a path to an Inference-V2 checkpoint.
|
73 |
+
|
74 |
+
Arguments:
|
75 |
+
path: Path to the checkpoint. This does not need to point to any files in particular,
|
76 |
+
just the directory containing the checkpoint.
|
77 |
+
engine_config: Engine configuration. See ``RaggedInferenceEngineConfig`` for details.
|
78 |
+
debug_level: Logging level to use. Unless you are actively seeing issues, the recommended
|
79 |
+
value is ``logging.INFO``.
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
Fully initialized inference engine ready to serve queries.
|
83 |
+
"""
|
84 |
+
|
85 |
+
if os.path.exists(os.path.join(path, "ds_model_config.pkl")):
|
86 |
+
return build_engine_from_ds_checkpoint(path, engine_config, debug_level=debug_level)
|
87 |
+
else:
|
88 |
+
# Set up logging
|
89 |
+
inference_logger(level=debug_level)
|
90 |
+
# get HF checkpoint engine
|
91 |
+
checkpoint_engine = HuggingFaceCheckpointEngine(path)
|
92 |
+
|
93 |
+
# get model config from HF AutoConfig
|
94 |
+
model_config = checkpoint_engine.model_config
|
95 |
+
|
96 |
+
# get the policy
|
97 |
+
# TODO: generalize this to other models
|
98 |
+
if model_config.model_type == "opt":
|
99 |
+
if not model_config.do_layer_norm_before:
|
100 |
+
raise ValueError(
|
101 |
+
"Detected OPT-350m model. This model is not currently supported. If this is not the 350m model, please open an issue: https://github.com/microsoft/DeepSpeed-MII/issues"
|
102 |
+
)
|
103 |
+
policy = OPTPolicy(model_config, checkpoint_engine=checkpoint_engine)
|
104 |
+
elif model_config.model_type == "llama":
|
105 |
+
policy = Llama2Policy(model_config, checkpoint_engine=checkpoint_engine)
|
106 |
+
elif model_config.model_type == "mistral":
|
107 |
+
# Ensure we're using the correct version of transformers for mistral
|
108 |
+
import transformers
|
109 |
+
assert version.parse(transformers.__version__) >= version.parse("4.34.0"), \
|
110 |
+
f"Mistral requires transformers >= 4.34.0, you have version {transformers.__version__}"
|
111 |
+
policy = MistralPolicy(model_config, checkpoint_engine=checkpoint_engine)
|
112 |
+
elif model_config.model_type == "mixtral":
|
113 |
+
# Ensure we're using the correct version of transformers for mistral
|
114 |
+
import transformers
|
115 |
+
assert version.parse(transformers.__version__) >= version.parse("4.36.1"), \
|
116 |
+
f"Mistral requires transformers >= 4.36.1, you have version {transformers.__version__}"
|
117 |
+
policy = MixtralPolicy(model_config, checkpoint_engine=checkpoint_engine)
|
118 |
+
elif model_config.model_type == "falcon":
|
119 |
+
policy = FalconPolicy(model_config, checkpoint_engine=checkpoint_engine)
|
120 |
+
elif model_config.model_type == "phi":
|
121 |
+
policy = PhiPolicy(model_config, checkpoint_engine=checkpoint_engine)
|
122 |
+
elif model_config.model_type == "qwen":
|
123 |
+
policy = QwenPolicy(model_config, checkpoint_engine=checkpoint_engine)
|
124 |
+
elif model_config.model_type == "qwen2":
|
125 |
+
policy = Qwen2Policy(model_config, checkpoint_engine=checkpoint_engine)
|
126 |
+
else:
|
127 |
+
raise ValueError(f"Unsupported model type {model_config.model_type}")
|
128 |
+
|
129 |
+
return InferenceEngineV2(policy, engine_config)
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/engine_v2.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
import pickle
|
9 |
+
from typing import Iterable, Tuple
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
import deepspeed.comm as dist
|
14 |
+
|
15 |
+
from deepspeed.accelerator import get_accelerator
|
16 |
+
from deepspeed.comm.comm import init_distributed
|
17 |
+
|
18 |
+
from .model_implementations import InferenceV2Policy
|
19 |
+
from .logging import inference_logger
|
20 |
+
from .ragged import DSStateManager, RaggedBatchWrapper, PlaceholderSequenceDescriptor
|
21 |
+
from .scheduling_utils import SchedulingError, SchedulingResult
|
22 |
+
from .model_implementations.flat_model_helpers import make_param_filename, make_metadata_filename
|
23 |
+
from .model_implementations.inference_model_base import DSInferenceModelBase
|
24 |
+
|
25 |
+
from .config_v2 import RaggedInferenceEngineConfig
|
26 |
+
|
27 |
+
INFERENCE_MODEL_TIMER = "model-forward-inference"
|
28 |
+
|
29 |
+
|
30 |
+
class InferenceEngineV2:
|
31 |
+
|
32 |
+
_config: RaggedInferenceEngineConfig
|
33 |
+
"""
|
34 |
+
Configuration of the inference engine.
|
35 |
+
"""
|
36 |
+
|
37 |
+
_model: DSInferenceModelBase
|
38 |
+
"""
|
39 |
+
Inference model supporting ragged inference.
|
40 |
+
"""
|
41 |
+
|
42 |
+
_state_manager: DSStateManager
|
43 |
+
"""
|
44 |
+
Persistent state manager for sequences and KV-cache.
|
45 |
+
"""
|
46 |
+
|
47 |
+
@property
|
48 |
+
def free_blocks(self) -> torch.Tensor:
|
49 |
+
"""
|
50 |
+
Number of free KV blocks. This is a tensor of shape [n_kv_cache_groups] where each
|
51 |
+
element is the number of free blocks in the corresponding KV cache group.
|
52 |
+
"""
|
53 |
+
return self._state_manager.free_blocks
|
54 |
+
|
55 |
+
@property
|
56 |
+
def n_kv_cache_groups(self) -> int:
|
57 |
+
"""
|
58 |
+
Number of KV cache groups.
|
59 |
+
"""
|
60 |
+
return self._state_manager.n_kv_cache_groups
|
61 |
+
|
62 |
+
def model(self) -> DSInferenceModelBase:
|
63 |
+
"""
|
64 |
+
The model implementation.
|
65 |
+
"""
|
66 |
+
return self._model
|
67 |
+
|
68 |
+
def __init__(self, policy: InferenceV2Policy, engine_config: RaggedInferenceEngineConfig) -> None:
|
69 |
+
"""
|
70 |
+
Create the Inference V2 engine.
|
71 |
+
|
72 |
+
Arguments:
|
73 |
+
policy (InferenceV2Policy): Policy for the model implementation. This policy object
|
74 |
+
will be used to build the model and load the checkpoint associated with it.
|
75 |
+
engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine.
|
76 |
+
"""
|
77 |
+
self._config = engine_config
|
78 |
+
self._policy = policy
|
79 |
+
self._base_mp_group = self._initialize_tp_group()
|
80 |
+
|
81 |
+
# Build model from policy
|
82 |
+
inference_logger().info("Building model...")
|
83 |
+
self._model = self._policy.build_model(self._config, self._base_mp_group)
|
84 |
+
inference_logger().info("Model built.")
|
85 |
+
|
86 |
+
# Create state manager
|
87 |
+
self._batch = RaggedBatchWrapper(self._config.state_manager)
|
88 |
+
self._state_manager = DSStateManager(self._config.state_manager,
|
89 |
+
self._model.kv_cache_config(),
|
90 |
+
base_mp_group=self._base_mp_group)
|
91 |
+
self._model.set_state_manager(self._state_manager)
|
92 |
+
|
93 |
+
def _initialize_tp_group(self):
|
94 |
+
"""
|
95 |
+
Implementation of our TP group initialization.
|
96 |
+
"""
|
97 |
+
init_distributed()
|
98 |
+
local_rank = int(os.getenv("LOCAL_RANK", 0))
|
99 |
+
get_accelerator().set_device(local_rank)
|
100 |
+
|
101 |
+
if local_rank >= self._config.tensor_parallel.tp_size:
|
102 |
+
raise RuntimeError("Local rank is greater than TP size, ensure that the TP config is correct.")
|
103 |
+
|
104 |
+
ranks = list(range(self._config.tensor_parallel.tp_size))
|
105 |
+
return dist.new_group(ranks=ranks)
|
106 |
+
|
107 |
+
def put(self,
|
108 |
+
batch_uids: Iterable[int],
|
109 |
+
batch_tokens: Iterable[torch.Tensor],
|
110 |
+
do_checks: bool = True) -> torch.Tensor:
|
111 |
+
"""
|
112 |
+
Put a ragged batch onto the inference engine. This will perform one forward and return
|
113 |
+
a Tensor of the shape [len(batch_uids), *output_shape]. Logits for the non-final tokens
|
114 |
+
are not calculated.
|
115 |
+
|
116 |
+
Arguments:
|
117 |
+
batch_uids: Iterable of uids for the batch on the host
|
118 |
+
batch_tokens: Iterable of token tensors for the batch on the host
|
119 |
+
do_checks: Check schedulability when it is set to True. You can skip this check for better performance when it has already been completed.
|
120 |
+
"""
|
121 |
+
|
122 |
+
if do_checks:
|
123 |
+
token_lens = [len(tokens) for tokens in batch_tokens]
|
124 |
+
schedule_check = self.can_schedule(batch_uids, token_lens)
|
125 |
+
if schedule_check != SchedulingResult.Success:
|
126 |
+
raise SchedulingError(schedule_check)
|
127 |
+
|
128 |
+
self._batch.clear()
|
129 |
+
for uid, tokens in zip(batch_uids, batch_tokens):
|
130 |
+
|
131 |
+
host_seq_desc = self._state_manager.get_or_create_sequence(uid)
|
132 |
+
self._model.maybe_allocate_kv(host_seq_desc, tokens.numel())
|
133 |
+
host_seq_desc.pre_forward(tokens.numel())
|
134 |
+
|
135 |
+
# We can disable checks since we already validated schedulability.
|
136 |
+
self._batch.insert_sequence(host_seq_desc, tokens, do_checks=do_checks)
|
137 |
+
|
138 |
+
# Send all metadata to the device
|
139 |
+
self._batch.finalize()
|
140 |
+
|
141 |
+
# Prep all data structures for the actual forward (in anticipation of CG in the future)
|
142 |
+
# and also to amortize some of the costs in a more straightforward way.
|
143 |
+
self._model.prepare_batch(self._batch)
|
144 |
+
|
145 |
+
# Model implementation will pick up in the forward.
|
146 |
+
logits = self._model.forward(self._batch)
|
147 |
+
|
148 |
+
# We return one set of logits per sequence in the batch (saves cost on unembedding)
|
149 |
+
assert logits.shape[0] == self._batch.current_sequences
|
150 |
+
|
151 |
+
for uid in batch_uids:
|
152 |
+
host_seq_desc = self._state_manager.get_sequence(uid)
|
153 |
+
host_seq_desc.post_forward() # Updates sequence metadata.
|
154 |
+
self._model.maybe_free_kv(host_seq_desc)
|
155 |
+
|
156 |
+
return logits
|
157 |
+
|
158 |
+
def query(self, uid: int, max_request_tokens: int, max_request_blocks) -> Tuple[int, torch.Tensor]:
|
159 |
+
"""
|
160 |
+
Determine the number of tokens and KV blocks to reserve for a given request. Given a UID
|
161 |
+
(this UID may not be recognized by the model yet), this will return the number of tokens
|
162 |
+
and blocks to reserve for the request.
|
163 |
+
|
164 |
+
Arguments:
|
165 |
+
uid (int): The UID of the sequence (as tracked by the scheduling entity). If
|
166 |
+
this is a new sequence (with a UID unknown to the inference engine), then
|
167 |
+
an empty placeholder is created to pass to the occupancy logic.
|
168 |
+
n_tokens (int): The number of tokens to hypothetically send.
|
169 |
+
|
170 |
+
Returns:
|
171 |
+
Tuple[int, Optional[int]]: Tuple of free kv blocks and the number of blocks
|
172 |
+
required to schedule the sequence.
|
173 |
+
"""
|
174 |
+
seq_desc = self._state_manager.get_sequence(uid)
|
175 |
+
if seq_desc is None:
|
176 |
+
if (self._state_manager.n_tracked_sequences == self._config.state_manager.max_tracked_sequences):
|
177 |
+
return (0, 0)
|
178 |
+
seq_desc = PlaceholderSequenceDescriptor()
|
179 |
+
|
180 |
+
req_tokens, req_blocks = self._model.get_kv_requirements(seq_desc, max_request_tokens, max_request_blocks)
|
181 |
+
|
182 |
+
return (req_tokens, req_blocks)
|
183 |
+
|
184 |
+
def can_schedule(self, uids: Iterable[int], lengths: Iterable[int]) -> SchedulingResult:
|
185 |
+
"""
|
186 |
+
Dry run a batch to determine if it can be scheduled. Placeholder sequences will be
|
187 |
+
created for any UIDs that are unknown to the inference engine.
|
188 |
+
|
189 |
+
Arguments:
|
190 |
+
uids (Iterable[int]): Iterable of UIDs for the batch
|
191 |
+
lengths (Iterable[int]): Iterable of lengths for each sequence of the batch. This lengths
|
192 |
+
corresponds to the number of tokens to send in the hypothetical forward; history
|
193 |
+
tokens will be determined via UID lookup and future tokens are disregarded.
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
bool: True if the batch can be scheduled, False otherwise.
|
197 |
+
"""
|
198 |
+
|
199 |
+
cur_seqs = self._state_manager.n_tracked_sequences
|
200 |
+
free_blocks = self._state_manager.free_blocks
|
201 |
+
req_blocks = 0
|
202 |
+
batch_len = 0
|
203 |
+
|
204 |
+
if len(uids) > self._config.state_manager.max_ragged_sequence_count:
|
205 |
+
# Can only compose a batch from a limited number of sequences
|
206 |
+
return SchedulingResult.BatchSequenceLimitExceeded
|
207 |
+
|
208 |
+
for uid, length in zip(uids, lengths):
|
209 |
+
seq_desc = self._state_manager.get_sequence(uid)
|
210 |
+
if seq_desc is None:
|
211 |
+
cur_seqs += 1
|
212 |
+
seq_desc = PlaceholderSequenceDescriptor()
|
213 |
+
|
214 |
+
sched_len, sched_blocks = self._model.get_kv_requirements(seq_desc, length, free_blocks)
|
215 |
+
|
216 |
+
if sched_len != length:
|
217 |
+
# We ran out of KV cache
|
218 |
+
return SchedulingResult.KVCacheLimitExceeded
|
219 |
+
|
220 |
+
batch_len += length
|
221 |
+
free_blocks -= sched_blocks
|
222 |
+
|
223 |
+
if cur_seqs > self._config.state_manager.max_tracked_sequences:
|
224 |
+
# Would run out of tracking metadata
|
225 |
+
return SchedulingResult.EngineSequenceLimitExceeded
|
226 |
+
|
227 |
+
if batch_len > self._config.state_manager.max_ragged_batch_size:
|
228 |
+
# Would exceed the maximum batch size
|
229 |
+
return SchedulingResult.BatchTokenLimitExceeded
|
230 |
+
|
231 |
+
return SchedulingResult.Success
|
232 |
+
|
233 |
+
def get_remaining_block_capacity(self, uid: int) -> int:
|
234 |
+
"""
|
235 |
+
Get the remaining capacity of the last block already allocated.
|
236 |
+
"""
|
237 |
+
seq_desc = self._state_manager.get_sequence(uid)
|
238 |
+
if seq_desc is None:
|
239 |
+
return 0
|
240 |
+
return self._model.get_remaining_block_capacity(seq_desc)
|
241 |
+
|
242 |
+
def flush(self, uid: int) -> None:
|
243 |
+
"""
|
244 |
+
Remove all state associated with a sequence from the inference engine.
|
245 |
+
|
246 |
+
Arguments:
|
247 |
+
uid (int): The UID of the sequence to flush.
|
248 |
+
"""
|
249 |
+
self._state_manager.flush_sequence(uid)
|
250 |
+
|
251 |
+
def serialize(self, save_path: str) -> None:
|
252 |
+
"""
|
253 |
+
Serialize the model to a file.
|
254 |
+
|
255 |
+
Arguments:
|
256 |
+
path (str): Path to the file to serialize to.
|
257 |
+
"""
|
258 |
+
param_file_name = make_param_filename(save_path, self._model.tp_rank, self._model.tp_size)
|
259 |
+
metadata_file_name = make_metadata_filename(save_path, self._model.tp_rank, self._model.tp_size)
|
260 |
+
|
261 |
+
# Save the flattened parameters
|
262 |
+
|
263 |
+
torch.save(self._model.flattened_params, param_file_name)
|
264 |
+
|
265 |
+
json.dump(self._model.flattened_param_metadata.json(), open(metadata_file_name, "w"))
|
266 |
+
|
267 |
+
if self._model.tp_rank == 0:
|
268 |
+
pickle.dump(self._model._config, open(os.path.join(save_path, "ds_model_config.pkl"), "wb"))
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/inference_parameter.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from typing import Dict
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
CORE_PARAM = "_ds_core_param_key"
|
11 |
+
|
12 |
+
STR_TO_DTYPE = {
|
13 |
+
"torch.float32": torch.float32,
|
14 |
+
"torch.float64": torch.float64,
|
15 |
+
"torch.float16": torch.float16,
|
16 |
+
"torch.bfloat16": torch.bfloat16,
|
17 |
+
"torch.int64": torch.int64,
|
18 |
+
"torch.int32": torch.int32,
|
19 |
+
"torch.int16": torch.int16,
|
20 |
+
"torch.int8": torch.int8,
|
21 |
+
"torch.uint8": torch.uint8,
|
22 |
+
"torch.bool": torch.bool,
|
23 |
+
}
|
24 |
+
|
25 |
+
|
26 |
+
class InferenceParameter(torch.Tensor):
|
27 |
+
"""
|
28 |
+
An extension of the torch.Tensor class to support our inference focused features. One important
|
29 |
+
thing to note here is that an InferenceParam can be used a torch.Tensor, but outputs of
|
30 |
+
torch.Tensor operations will not be InferenceParams.
|
31 |
+
"""
|
32 |
+
|
33 |
+
@staticmethod
|
34 |
+
def __new__(cls, tensor, *args, **kwargs):
|
35 |
+
new_tensor = super().__new__(cls, tensor, *args, **kwargs)
|
36 |
+
if hasattr(tensor, "_aux_attrs"):
|
37 |
+
setattr(new_tensor, "_aux_attrs", tensor.aux_attrs)
|
38 |
+
return new_tensor
|
39 |
+
|
40 |
+
def to(self, *args, **kwargs):
|
41 |
+
new_tensor = super().to(*args, **kwargs)
|
42 |
+
if hasattr(self, "_aux_attrs"):
|
43 |
+
setattr(new_tensor, "_aux_attrs", self.aux_attrs)
|
44 |
+
try:
|
45 |
+
_ = torch.device(args[0])
|
46 |
+
for name, attr in new_tensor.aux_attrs.items():
|
47 |
+
new_attr = attr.to(*args, **kwargs)
|
48 |
+
setattr(new_tensor, name, new_attr)
|
49 |
+
new_tensor.aux_attrs[name] = new_attr
|
50 |
+
except:
|
51 |
+
pass
|
52 |
+
|
53 |
+
return new_tensor
|
54 |
+
|
55 |
+
@classmethod
|
56 |
+
def initialize(cls, core_param: torch.Tensor, **kwargs) -> 'InferenceParameter':
|
57 |
+
"""
|
58 |
+
Create the inference parameter.
|
59 |
+
"""
|
60 |
+
param = InferenceParameter(core_param)
|
61 |
+
setattr(param, "_aux_attrs", kwargs)
|
62 |
+
|
63 |
+
for attr_name, attr in kwargs.items():
|
64 |
+
if hasattr(param, attr_name):
|
65 |
+
raise ValueError(f"Attribute {attr_name} already exists on param.")
|
66 |
+
|
67 |
+
if not isinstance(attr, torch.Tensor):
|
68 |
+
raise ValueError(f"Attribute {attr_name} must be a tensor.")
|
69 |
+
|
70 |
+
setattr(param, attr_name, attr)
|
71 |
+
|
72 |
+
return param
|
73 |
+
|
74 |
+
@classmethod
|
75 |
+
def initialize_raw(self, **kwargs) -> 'InferenceParameter':
|
76 |
+
"""
|
77 |
+
All kwargs must be torch.Tensors and must include the core parameter.
|
78 |
+
"""
|
79 |
+
if CORE_PARAM not in kwargs:
|
80 |
+
raise ValueError(f"Must provide core parameter, with key {CORE_PARAM}.")
|
81 |
+
|
82 |
+
return InferenceParameter.initialize(kwargs[CORE_PARAM], **kwargs)
|
83 |
+
|
84 |
+
@property
|
85 |
+
def aux_attrs(self) -> Dict[str, torch.Tensor]:
|
86 |
+
"""
|
87 |
+
Dictionary of auxiliary attributes.
|
88 |
+
"""
|
89 |
+
return self._aux_attrs
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/inference_utils.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from typing import Dict
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from enum import Enum, IntEnum
|
11 |
+
|
12 |
+
|
13 |
+
class NormTypeEnum(Enum):
|
14 |
+
LayerNorm: str = "layer_norm"
|
15 |
+
RMSNorm: str = "rms_norm"
|
16 |
+
|
17 |
+
|
18 |
+
class DtypeEnum(Enum):
|
19 |
+
# The torch dtype must always be the first value (so we return torch.dtype)
|
20 |
+
fp16 = torch.float16, "torch.float16", "fp16", "float16", "half"
|
21 |
+
fp32 = torch.float32, "torch.float32", "fp32", "float32", "float"
|
22 |
+
bf16 = torch.bfloat16, "torch.bfloat16", "bf16", "bfloat16", "bfloat"
|
23 |
+
int8 = torch.int8, "torch.int8", "int8"
|
24 |
+
|
25 |
+
# Copied from https://stackoverflow.com/a/43210118
|
26 |
+
# Allows us to use multiple values for each Enum index and returns first
|
27 |
+
# listed value when Enum is called
|
28 |
+
def __new__(cls, *values):
|
29 |
+
obj = object.__new__(cls)
|
30 |
+
# first value is canonical value
|
31 |
+
obj._value_ = values[0]
|
32 |
+
for other_value in values[1:]:
|
33 |
+
cls._value2member_map_[other_value] = obj
|
34 |
+
obj._all_values = values
|
35 |
+
return obj
|
36 |
+
|
37 |
+
def __repr__(self):
|
38 |
+
return "<%s.%s: %s>" % (
|
39 |
+
self.__class__.__name__,
|
40 |
+
self._name_,
|
41 |
+
", ".join([repr(v) for v in self._all_values]),
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
ELEM_SIZES: Dict[torch.dtype, int] = {
|
46 |
+
torch.float16: 2,
|
47 |
+
torch.bfloat16: 2,
|
48 |
+
torch.float32: 4,
|
49 |
+
torch.float64: 8,
|
50 |
+
torch.int8: 1,
|
51 |
+
torch.uint8: 1,
|
52 |
+
torch.int16: 2,
|
53 |
+
torch.int32: 4,
|
54 |
+
torch.int64: 8,
|
55 |
+
torch.bool: 1,
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
class ActivationType(IntEnum):
|
60 |
+
"""
|
61 |
+
Types of activations supported by DS-Inference
|
62 |
+
"""
|
63 |
+
|
64 |
+
GELU = 0
|
65 |
+
|
66 |
+
RELU = 1
|
67 |
+
|
68 |
+
SILU = 2
|
69 |
+
|
70 |
+
GEGLU = 3
|
71 |
+
|
72 |
+
ReGLU = 4
|
73 |
+
|
74 |
+
SiGLU = 5
|
75 |
+
|
76 |
+
IDENTITY = 6
|
77 |
+
|
78 |
+
InvalidType = -1
|
79 |
+
|
80 |
+
|
81 |
+
def is_gated(act_fn: ActivationType) -> bool:
|
82 |
+
"""
|
83 |
+
Return True if the given activation function is gated.
|
84 |
+
"""
|
85 |
+
if not isinstance(act_fn, ActivationType):
|
86 |
+
act_fn = ActivationType(act_fn)
|
87 |
+
|
88 |
+
return act_fn in [ActivationType.GEGLU, ActivationType.ReGLU, ActivationType.SiGLU]
|
89 |
+
|
90 |
+
|
91 |
+
def elem_size(dtype: torch.dtype) -> int:
|
92 |
+
"""
|
93 |
+
Return size in bytes of the given dtype.
|
94 |
+
"""
|
95 |
+
try:
|
96 |
+
return ELEM_SIZES[dtype]
|
97 |
+
except KeyError:
|
98 |
+
raise ValueError("Unknown dtype size for {}".format(dtype))
|
99 |
+
|
100 |
+
|
101 |
+
def ceil_div(a: int, b: int) -> int:
|
102 |
+
"""
|
103 |
+
Return ceil(a / b).
|
104 |
+
"""
|
105 |
+
return -(-a // b)
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/logging.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import logging
|
7 |
+
|
8 |
+
from deepspeed.utils.logging import LoggerFactory
|
9 |
+
|
10 |
+
inf_logger = None
|
11 |
+
|
12 |
+
|
13 |
+
def inference_logger(level: int = logging.INFO) -> logging.Logger:
|
14 |
+
"""
|
15 |
+
Create the inference logger. NOTE: Logging is not cost free. On a 3960X,
|
16 |
+
there is a cost of about 6 us per call to a no-op logger, so this should
|
17 |
+
be used during setup only and not during the inference loop.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
level (int, optional): The logging level. Defaults to logging.INFO.
|
21 |
+
"""
|
22 |
+
global inf_logger
|
23 |
+
if inf_logger is None:
|
24 |
+
inf_logger = LoggerFactory.create_logger(name="DS-Inference", level=level)
|
25 |
+
inf_logger.debug("Inference logger created.")
|
26 |
+
return inf_logger
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from . import implementations
|
7 |
+
from . import interfaces
|
8 |
+
from .module_registry import ConfigBundle
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/__init__.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .attention_configs import (
|
7 |
+
DSSelfAttentionConfig,
|
8 |
+
PositionalEmbeddingType,
|
9 |
+
MaskingType,
|
10 |
+
RotateHalfConfig,
|
11 |
+
)
|
12 |
+
from .embedding_config import DSEmbeddingsConfig
|
13 |
+
from .linear_config import DSLinearConfig
|
14 |
+
from .moe_config import DSMoEConfig
|
15 |
+
from .norm_config import DSNormConfig, NormTypeEnum
|
16 |
+
from .unembed_config import DSUnembedConfig
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/__pycache__/attention_configs.cpython-310.pyc
ADDED
Binary file (1.93 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/__pycache__/embedding_config.cpython-310.pyc
ADDED
Binary file (914 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/__pycache__/linear_config.cpython-310.pyc
ADDED
Binary file (778 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/__pycache__/norm_config.cpython-310.pyc
ADDED
Binary file (790 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/attention_configs.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from enum import Enum
|
7 |
+
from typing import Dict, Optional
|
8 |
+
|
9 |
+
from ...inference_utils import DtypeEnum
|
10 |
+
from ...modules.ds_module import DSModuleConfig
|
11 |
+
from deepspeed.runtime.config_utils import DeepSpeedConfigModel
|
12 |
+
|
13 |
+
|
14 |
+
class PositionalEmbeddingType(Enum):
|
15 |
+
|
16 |
+
# No positional embeddings
|
17 |
+
none = "none"
|
18 |
+
|
19 |
+
# Rotary positional embeddings - every half
|
20 |
+
rotate_half = "rotate_half"
|
21 |
+
|
22 |
+
# Rotary positional embeddings - every other
|
23 |
+
rotate_every_other = "rotate_every_other"
|
24 |
+
|
25 |
+
# Alibi
|
26 |
+
alibi = "alibi"
|
27 |
+
|
28 |
+
|
29 |
+
class RotateHalfConfig(DeepSpeedConfigModel):
|
30 |
+
|
31 |
+
use_trained_freqs: bool = False
|
32 |
+
"""
|
33 |
+
Whether to use a passed `trained_freqs` tensor for the attention implementation
|
34 |
+
or to use default synthesized frequencies.
|
35 |
+
"""
|
36 |
+
|
37 |
+
theta_base: float = 10_000.0
|
38 |
+
"""
|
39 |
+
Base for theta. This will only be used if `use_trained_freqs` is False.
|
40 |
+
"""
|
41 |
+
|
42 |
+
rotate_dim: Optional[int] = None
|
43 |
+
"""
|
44 |
+
How many neurons to rotate. If None, then all neurons will be rotated. Many external configs
|
45 |
+
will set this number to half the head dimension and then internally multiply by 2. To make it
|
46 |
+
more clear to understand what is happening (rotate_dim < head_dim -> then only partial rotation),
|
47 |
+
we do not do this multiplication internally.
|
48 |
+
"""
|
49 |
+
|
50 |
+
|
51 |
+
class MaskingType(Enum):
|
52 |
+
|
53 |
+
# No masking
|
54 |
+
none = "none"
|
55 |
+
|
56 |
+
# Causal masking
|
57 |
+
causal = "causal"
|
58 |
+
|
59 |
+
# Local masking
|
60 |
+
local = "local"
|
61 |
+
|
62 |
+
# Symmetric masking (this is a 1D tensor mask)
|
63 |
+
symmetric = "symmetric"
|
64 |
+
|
65 |
+
# Arbitrary masking (this would correspond to a 2D tensor mask)
|
66 |
+
asymmetric = "asymmetric"
|
67 |
+
|
68 |
+
|
69 |
+
class DSSelfAttentionConfig(DSModuleConfig):
|
70 |
+
"""
|
71 |
+
Config class for attention.
|
72 |
+
"""
|
73 |
+
|
74 |
+
# Number of query attention heads on this shard
|
75 |
+
n_heads_q: int
|
76 |
+
|
77 |
+
# Number of KV attention heads on this shard
|
78 |
+
n_heads_kv: int
|
79 |
+
|
80 |
+
# Size of each attention head
|
81 |
+
head_size: int
|
82 |
+
|
83 |
+
# Max number of sequences that may compose a ragged batch
|
84 |
+
max_sequences: int
|
85 |
+
|
86 |
+
# Scale factor for attention scores
|
87 |
+
scale_factor: float = 1.0
|
88 |
+
|
89 |
+
# Input data type
|
90 |
+
input_dtype: DtypeEnum = DtypeEnum.fp16
|
91 |
+
|
92 |
+
# Output data type
|
93 |
+
output_dtype: DtypeEnum = DtypeEnum.fp16
|
94 |
+
|
95 |
+
# Masking type
|
96 |
+
masking_type: MaskingType = MaskingType.causal
|
97 |
+
|
98 |
+
# Masking args
|
99 |
+
masking_args: Dict = {}
|
100 |
+
|
101 |
+
# Positional embedding type
|
102 |
+
positional_embedding_type: PositionalEmbeddingType = PositionalEmbeddingType.none
|
103 |
+
|
104 |
+
# Positional embedding args
|
105 |
+
positional_embedding_config: Optional[RotateHalfConfig] = None
|
106 |
+
"""
|
107 |
+
To extend this for the other positional embedding types, we would need to add
|
108 |
+
new configs for each type (as necessary) and annotate this with the
|
109 |
+
Union[RotateHalfConfig, OtherConfig, ...] type.
|
110 |
+
"""
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/embedding_config.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
from ...inference_utils import DtypeEnum, NormTypeEnum
|
9 |
+
from ...modules.ds_module import DSModuleConfig
|
10 |
+
"""
|
11 |
+
Trying to define the space we need to support here right now:
|
12 |
+
|
13 |
+
Types of embeddings I've found so far:
|
14 |
+
1. Token embedding
|
15 |
+
2. Position embedding
|
16 |
+
3. Token type embedding
|
17 |
+
4. LN
|
18 |
+
|
19 |
+
GPTNeo: 1, 2, 3 (shared with 1)
|
20 |
+
GPTNeoX: 1
|
21 |
+
GPTJ: 1, 3
|
22 |
+
LLaMA: 1
|
23 |
+
BERT: 1, 2, 3, 4
|
24 |
+
GPT2: 1, 2, 3 (shared with 1)
|
25 |
+
|
26 |
+
Sidebar for OPT:
|
27 |
+
OPT: 1, 2
|
28 |
+
1 may not actually project to the actual hidden dimension according to the raw
|
29 |
+
code, but for the model configs we care about it does.
|
30 |
+
2 has a weird offset associated with it that the others do not.
|
31 |
+
"""
|
32 |
+
|
33 |
+
|
34 |
+
class DSEmbeddingsConfig(DSModuleConfig):
|
35 |
+
"""
|
36 |
+
Config class for DSEmbeddings.
|
37 |
+
"""
|
38 |
+
|
39 |
+
residual_dtype: DtypeEnum = DtypeEnum.fp16
|
40 |
+
"""
|
41 |
+
Data type the module should use for its output.
|
42 |
+
"""
|
43 |
+
|
44 |
+
embedding_dim: int
|
45 |
+
"""
|
46 |
+
Dimensionality of the embedding projections.
|
47 |
+
"""
|
48 |
+
|
49 |
+
positional_embedding: bool = False
|
50 |
+
"""
|
51 |
+
Whether the module should expect a positional embedding matrix. The shape of this
|
52 |
+
matrix should be of shape [max_seq_len + positional_offset, embedding_dim]
|
53 |
+
"""
|
54 |
+
|
55 |
+
positional_offset: int = 0
|
56 |
+
"""
|
57 |
+
Whether the linearized token IDs should be offset by a certain amount. For an example
|
58 |
+
of this, see the OPT model implementation.
|
59 |
+
"""
|
60 |
+
|
61 |
+
use_token_type: bool = False
|
62 |
+
"""
|
63 |
+
Whether the module should expect a token type embedding matrix.
|
64 |
+
"""
|
65 |
+
|
66 |
+
output_normalization: Optional[NormTypeEnum] = None
|
67 |
+
"""
|
68 |
+
If a the output of the embedding module should be normalized, specify here. See
|
69 |
+
``inference.inference_utils.NormTypeEnum`` for supported values.
|
70 |
+
"""
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/linear_config.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from ...inference_utils import ActivationType, DtypeEnum
|
7 |
+
from ...modules.ds_module import DSModuleConfig
|
8 |
+
|
9 |
+
|
10 |
+
class DSLinearConfig(DSModuleConfig):
|
11 |
+
"""
|
12 |
+
Config class for DSLinearBase.
|
13 |
+
"""
|
14 |
+
|
15 |
+
in_channels: int
|
16 |
+
"""
|
17 |
+
Number of input channels
|
18 |
+
"""
|
19 |
+
|
20 |
+
out_channels: int
|
21 |
+
"""
|
22 |
+
Number of output channels. NOTE: If this linear layer is using a gated activation function,
|
23 |
+
the value for ``out_channels`` passed here should refer to the number of channels after
|
24 |
+
gating (i.e., the expected weight shape before transformations will be ``[out_channels * 2, in_channels]``).
|
25 |
+
"""
|
26 |
+
|
27 |
+
activation: ActivationType = ActivationType.IDENTITY
|
28 |
+
"""
|
29 |
+
The activation function for this layer. See :class:`deepspeed.inference.inference_utils.ActivationType` for
|
30 |
+
supported activation functions.
|
31 |
+
"""
|
32 |
+
|
33 |
+
input_dtype: DtypeEnum = DtypeEnum.fp16
|
34 |
+
"""
|
35 |
+
The data type of the input tensor. See :class:`deepspeed.inference.inference_utils.DtypeEnum` for supported
|
36 |
+
data types.
|
37 |
+
"""
|
38 |
+
|
39 |
+
output_dtype: DtypeEnum = DtypeEnum.fp16
|
40 |
+
"""
|
41 |
+
The data type of the output tensor. See :class:`deepspeed.inference.inference_utils.DtypeEnum` for supported
|
42 |
+
data types.
|
43 |
+
"""
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/modules/configs/moe_config.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from ...inference_utils import ActivationType, DtypeEnum
|
7 |
+
from ...modules.ds_module import DSModuleConfig
|
8 |
+
|
9 |
+
|
10 |
+
class DSMoEConfig(DSModuleConfig):
|
11 |
+
"""
|
12 |
+
Config class for DSMoEBase
|
13 |
+
"""
|
14 |
+
|
15 |
+
model_dim: int
|
16 |
+
"""
|
17 |
+
Size of input activation.
|
18 |
+
"""
|
19 |
+
|
20 |
+
intermediate_features: int
|
21 |
+
"""
|
22 |
+
Size of intermediate activation. Specifically, this is the number of input features
|
23 |
+
in the second linear layer. Depending on the activation function, the output of the first
|
24 |
+
linear layer may have increased dimensionality.
|
25 |
+
"""
|
26 |
+
|
27 |
+
n_experts: int
|
28 |
+
"""
|
29 |
+
Number of experts.
|
30 |
+
"""
|
31 |
+
|
32 |
+
top_k: int = 1
|
33 |
+
"""
|
34 |
+
top-k gating function (like top-1 or top-2)
|
35 |
+
"""
|
36 |
+
|
37 |
+
input_dtype: DtypeEnum = DtypeEnum.fp16
|
38 |
+
"""
|
39 |
+
Data type for the input activations.
|
40 |
+
"""
|
41 |
+
|
42 |
+
output_dtype: DtypeEnum = DtypeEnum.fp16
|
43 |
+
"""
|
44 |
+
Data type for the output activations.
|
45 |
+
"""
|
46 |
+
|
47 |
+
activation: ActivationType = ActivationType.IDENTITY
|
48 |
+
"""
|
49 |
+
Activation function of the first MLP1
|
50 |
+
"""
|
51 |
+
|
52 |
+
normalize_scores: bool = False
|
53 |
+
"""
|
54 |
+
Whether normalization is applied to the selected scores. If true, the module
|
55 |
+
should rescale the scores such that their sum is 1.0.
|
56 |
+
"""
|