Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/14.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/14.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/__init__.py +52 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/__pycache__/_base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/__pycache__/_fastica.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/__pycache__/_nmf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/__pycache__/_truncated_svd.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/_base.py +193 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/_cdnmf_fast.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/_dict_learning.py +2301 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/_factor_analysis.py +458 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/_fastica.py +795 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/_incremental_pca.py +409 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/_kernel_pca.py +572 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/_lda.py +929 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/_nmf.py +2443 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/_online_lda_fast.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/_pca.py +747 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/_sparse_pca.py +551 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/_truncated_svd.py +319 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_dict_learning.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_factor_analysis.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_fastica.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_incremental_pca.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_kernel_pca.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_nmf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_online_lda.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_pca.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_sparse_pca.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_truncated_svd.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_factor_analysis.py +116 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_fastica.py +451 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_incremental_pca.py +452 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_kernel_pca.py +566 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_nmf.py +1062 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_online_lda.py +477 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_pca.py +987 -0
- venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_truncated_svd.py +212 -0
- venv/lib/python3.10/site-packages/sklearn/ensemble/__init__.py +44 -0
- venv/lib/python3.10/site-packages/sklearn/ensemble/_bagging.py +1242 -0
- venv/lib/python3.10/site-packages/sklearn/ensemble/_base.py +301 -0
- venv/lib/python3.10/site-packages/sklearn/ensemble/_forest.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/ensemble/_gb.py +2168 -0
- venv/lib/python3.10/site-packages/sklearn/ensemble/_gradient_boosting.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/ensemble/_hist_gradient_boosting/__init__.py +5 -0
- venv/lib/python3.10/site-packages/sklearn/ensemble/_hist_gradient_boosting/_binning.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/ensemble/_hist_gradient_boosting/_bitset.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/ensemble/_hist_gradient_boosting/_predictor.cpython-310-x86_64-linux-gnu.so +0 -0
ckpts/universal/global_step40/zero/14.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa0433a7a7c158702a1b2b176fec02c78490e6c9b78b7d112ad9b6f86cdf7a36
|
3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/14.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c02430b06b5f09af241a4e5cee182e9e1d5715c08acdd027be18ffa44f13abc
|
3 |
+
size 33555627
|
venv/lib/python3.10/site-packages/sklearn/decomposition/__init__.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The :mod:`sklearn.decomposition` module includes matrix decomposition
|
3 |
+
algorithms, including among others PCA, NMF or ICA. Most of the algorithms of
|
4 |
+
this module can be regarded as dimensionality reduction techniques.
|
5 |
+
"""
|
6 |
+
|
7 |
+
|
8 |
+
from ..utils.extmath import randomized_svd
|
9 |
+
from ._dict_learning import (
|
10 |
+
DictionaryLearning,
|
11 |
+
MiniBatchDictionaryLearning,
|
12 |
+
SparseCoder,
|
13 |
+
dict_learning,
|
14 |
+
dict_learning_online,
|
15 |
+
sparse_encode,
|
16 |
+
)
|
17 |
+
from ._factor_analysis import FactorAnalysis
|
18 |
+
from ._fastica import FastICA, fastica
|
19 |
+
from ._incremental_pca import IncrementalPCA
|
20 |
+
from ._kernel_pca import KernelPCA
|
21 |
+
from ._lda import LatentDirichletAllocation
|
22 |
+
from ._nmf import (
|
23 |
+
NMF,
|
24 |
+
MiniBatchNMF,
|
25 |
+
non_negative_factorization,
|
26 |
+
)
|
27 |
+
from ._pca import PCA
|
28 |
+
from ._sparse_pca import MiniBatchSparsePCA, SparsePCA
|
29 |
+
from ._truncated_svd import TruncatedSVD
|
30 |
+
|
31 |
+
__all__ = [
|
32 |
+
"DictionaryLearning",
|
33 |
+
"FastICA",
|
34 |
+
"IncrementalPCA",
|
35 |
+
"KernelPCA",
|
36 |
+
"MiniBatchDictionaryLearning",
|
37 |
+
"MiniBatchNMF",
|
38 |
+
"MiniBatchSparsePCA",
|
39 |
+
"NMF",
|
40 |
+
"PCA",
|
41 |
+
"SparseCoder",
|
42 |
+
"SparsePCA",
|
43 |
+
"dict_learning",
|
44 |
+
"dict_learning_online",
|
45 |
+
"fastica",
|
46 |
+
"non_negative_factorization",
|
47 |
+
"randomized_svd",
|
48 |
+
"sparse_encode",
|
49 |
+
"FactorAnalysis",
|
50 |
+
"TruncatedSVD",
|
51 |
+
"LatentDirichletAllocation",
|
52 |
+
]
|
venv/lib/python3.10/site-packages/sklearn/decomposition/__pycache__/_base.cpython-310.pyc
ADDED
Binary file (5.75 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/__pycache__/_fastica.cpython-310.pyc
ADDED
Binary file (23.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/__pycache__/_nmf.cpython-310.pyc
ADDED
Binary file (64.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/__pycache__/_truncated_svd.cpython-310.pyc
ADDED
Binary file (10.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/_base.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Principal Component Analysis Base Classes"""
|
2 |
+
|
3 |
+
# Author: Alexandre Gramfort <[email protected]>
|
4 |
+
# Olivier Grisel <[email protected]>
|
5 |
+
# Mathieu Blondel <[email protected]>
|
6 |
+
# Denis A. Engemann <[email protected]>
|
7 |
+
# Kyle Kastner <[email protected]>
|
8 |
+
#
|
9 |
+
# License: BSD 3 clause
|
10 |
+
|
11 |
+
from abc import ABCMeta, abstractmethod
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
from scipy import linalg
|
15 |
+
from scipy.sparse import issparse
|
16 |
+
|
17 |
+
from ..base import BaseEstimator, ClassNamePrefixFeaturesOutMixin, TransformerMixin
|
18 |
+
from ..utils._array_api import _add_to_diagonal, device, get_namespace
|
19 |
+
from ..utils.sparsefuncs import _implicit_column_offset
|
20 |
+
from ..utils.validation import check_is_fitted
|
21 |
+
|
22 |
+
|
23 |
+
class _BasePCA(
|
24 |
+
ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator, metaclass=ABCMeta
|
25 |
+
):
|
26 |
+
"""Base class for PCA methods.
|
27 |
+
|
28 |
+
Warning: This class should not be used directly.
|
29 |
+
Use derived classes instead.
|
30 |
+
"""
|
31 |
+
|
32 |
+
def get_covariance(self):
|
33 |
+
"""Compute data covariance with the generative model.
|
34 |
+
|
35 |
+
``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)``
|
36 |
+
where S**2 contains the explained variances, and sigma2 contains the
|
37 |
+
noise variances.
|
38 |
+
|
39 |
+
Returns
|
40 |
+
-------
|
41 |
+
cov : array of shape=(n_features, n_features)
|
42 |
+
Estimated covariance of data.
|
43 |
+
"""
|
44 |
+
xp, _ = get_namespace(self.components_)
|
45 |
+
|
46 |
+
components_ = self.components_
|
47 |
+
exp_var = self.explained_variance_
|
48 |
+
if self.whiten:
|
49 |
+
components_ = components_ * xp.sqrt(exp_var[:, np.newaxis])
|
50 |
+
exp_var_diff = exp_var - self.noise_variance_
|
51 |
+
exp_var_diff = xp.where(
|
52 |
+
exp_var > self.noise_variance_,
|
53 |
+
exp_var_diff,
|
54 |
+
xp.asarray(0.0, device=device(exp_var)),
|
55 |
+
)
|
56 |
+
cov = (components_.T * exp_var_diff) @ components_
|
57 |
+
_add_to_diagonal(cov, self.noise_variance_, xp)
|
58 |
+
return cov
|
59 |
+
|
60 |
+
def get_precision(self):
|
61 |
+
"""Compute data precision matrix with the generative model.
|
62 |
+
|
63 |
+
Equals the inverse of the covariance but computed with
|
64 |
+
the matrix inversion lemma for efficiency.
|
65 |
+
|
66 |
+
Returns
|
67 |
+
-------
|
68 |
+
precision : array, shape=(n_features, n_features)
|
69 |
+
Estimated precision of data.
|
70 |
+
"""
|
71 |
+
xp, is_array_api_compliant = get_namespace(self.components_)
|
72 |
+
|
73 |
+
n_features = self.components_.shape[1]
|
74 |
+
|
75 |
+
# handle corner cases first
|
76 |
+
if self.n_components_ == 0:
|
77 |
+
return xp.eye(n_features) / self.noise_variance_
|
78 |
+
|
79 |
+
if is_array_api_compliant:
|
80 |
+
linalg_inv = xp.linalg.inv
|
81 |
+
else:
|
82 |
+
linalg_inv = linalg.inv
|
83 |
+
|
84 |
+
if self.noise_variance_ == 0.0:
|
85 |
+
return linalg_inv(self.get_covariance())
|
86 |
+
|
87 |
+
# Get precision using matrix inversion lemma
|
88 |
+
components_ = self.components_
|
89 |
+
exp_var = self.explained_variance_
|
90 |
+
if self.whiten:
|
91 |
+
components_ = components_ * xp.sqrt(exp_var[:, np.newaxis])
|
92 |
+
exp_var_diff = exp_var - self.noise_variance_
|
93 |
+
exp_var_diff = xp.where(
|
94 |
+
exp_var > self.noise_variance_,
|
95 |
+
exp_var_diff,
|
96 |
+
xp.asarray(0.0, device=device(exp_var)),
|
97 |
+
)
|
98 |
+
precision = components_ @ components_.T / self.noise_variance_
|
99 |
+
_add_to_diagonal(precision, 1.0 / exp_var_diff, xp)
|
100 |
+
precision = components_.T @ linalg_inv(precision) @ components_
|
101 |
+
precision /= -(self.noise_variance_**2)
|
102 |
+
_add_to_diagonal(precision, 1.0 / self.noise_variance_, xp)
|
103 |
+
return precision
|
104 |
+
|
105 |
+
@abstractmethod
|
106 |
+
def fit(self, X, y=None):
|
107 |
+
"""Placeholder for fit. Subclasses should implement this method!
|
108 |
+
|
109 |
+
Fit the model with X.
|
110 |
+
|
111 |
+
Parameters
|
112 |
+
----------
|
113 |
+
X : array-like of shape (n_samples, n_features)
|
114 |
+
Training data, where `n_samples` is the number of samples and
|
115 |
+
`n_features` is the number of features.
|
116 |
+
|
117 |
+
Returns
|
118 |
+
-------
|
119 |
+
self : object
|
120 |
+
Returns the instance itself.
|
121 |
+
"""
|
122 |
+
|
123 |
+
def transform(self, X):
|
124 |
+
"""Apply dimensionality reduction to X.
|
125 |
+
|
126 |
+
X is projected on the first principal components previously extracted
|
127 |
+
from a training set.
|
128 |
+
|
129 |
+
Parameters
|
130 |
+
----------
|
131 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
132 |
+
New data, where `n_samples` is the number of samples
|
133 |
+
and `n_features` is the number of features.
|
134 |
+
|
135 |
+
Returns
|
136 |
+
-------
|
137 |
+
X_new : array-like of shape (n_samples, n_components)
|
138 |
+
Projection of X in the first principal components, where `n_samples`
|
139 |
+
is the number of samples and `n_components` is the number of the components.
|
140 |
+
"""
|
141 |
+
xp, _ = get_namespace(X)
|
142 |
+
|
143 |
+
check_is_fitted(self)
|
144 |
+
|
145 |
+
X = self._validate_data(
|
146 |
+
X, accept_sparse=("csr", "csc"), dtype=[xp.float64, xp.float32], reset=False
|
147 |
+
)
|
148 |
+
if self.mean_ is not None:
|
149 |
+
if issparse(X):
|
150 |
+
X = _implicit_column_offset(X, self.mean_)
|
151 |
+
else:
|
152 |
+
X = X - self.mean_
|
153 |
+
X_transformed = X @ self.components_.T
|
154 |
+
if self.whiten:
|
155 |
+
X_transformed /= xp.sqrt(self.explained_variance_)
|
156 |
+
return X_transformed
|
157 |
+
|
158 |
+
def inverse_transform(self, X):
|
159 |
+
"""Transform data back to its original space.
|
160 |
+
|
161 |
+
In other words, return an input `X_original` whose transform would be X.
|
162 |
+
|
163 |
+
Parameters
|
164 |
+
----------
|
165 |
+
X : array-like of shape (n_samples, n_components)
|
166 |
+
New data, where `n_samples` is the number of samples
|
167 |
+
and `n_components` is the number of components.
|
168 |
+
|
169 |
+
Returns
|
170 |
+
-------
|
171 |
+
X_original array-like of shape (n_samples, n_features)
|
172 |
+
Original data, where `n_samples` is the number of samples
|
173 |
+
and `n_features` is the number of features.
|
174 |
+
|
175 |
+
Notes
|
176 |
+
-----
|
177 |
+
If whitening is enabled, inverse_transform will compute the
|
178 |
+
exact inverse operation, which includes reversing whitening.
|
179 |
+
"""
|
180 |
+
xp, _ = get_namespace(X)
|
181 |
+
|
182 |
+
if self.whiten:
|
183 |
+
scaled_components = (
|
184 |
+
xp.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_
|
185 |
+
)
|
186 |
+
return X @ scaled_components + self.mean_
|
187 |
+
else:
|
188 |
+
return X @ self.components_ + self.mean_
|
189 |
+
|
190 |
+
@property
|
191 |
+
def _n_features_out(self):
|
192 |
+
"""Number of transformed output features."""
|
193 |
+
return self.components_.shape[0]
|
venv/lib/python3.10/site-packages/sklearn/decomposition/_cdnmf_fast.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (246 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/_dict_learning.py
ADDED
@@ -0,0 +1,2301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Dictionary learning.
|
2 |
+
"""
|
3 |
+
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort
|
4 |
+
# License: BSD 3 clause
|
5 |
+
|
6 |
+
import itertools
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
from numbers import Integral, Real
|
10 |
+
from warnings import warn
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from joblib import effective_n_jobs
|
14 |
+
from scipy import linalg
|
15 |
+
|
16 |
+
from ..base import (
|
17 |
+
BaseEstimator,
|
18 |
+
ClassNamePrefixFeaturesOutMixin,
|
19 |
+
TransformerMixin,
|
20 |
+
_fit_context,
|
21 |
+
)
|
22 |
+
from ..linear_model import Lars, Lasso, LassoLars, orthogonal_mp_gram
|
23 |
+
from ..utils import check_array, check_random_state, gen_batches, gen_even_slices
|
24 |
+
from ..utils._param_validation import Hidden, Interval, StrOptions, validate_params
|
25 |
+
from ..utils.extmath import randomized_svd, row_norms, svd_flip
|
26 |
+
from ..utils.parallel import Parallel, delayed
|
27 |
+
from ..utils.validation import check_is_fitted
|
28 |
+
|
29 |
+
|
30 |
+
def _check_positive_coding(method, positive):
|
31 |
+
if positive and method in ["omp", "lars"]:
|
32 |
+
raise ValueError(
|
33 |
+
"Positive constraint not supported for '{}' coding method.".format(method)
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def _sparse_encode_precomputed(
|
38 |
+
X,
|
39 |
+
dictionary,
|
40 |
+
*,
|
41 |
+
gram=None,
|
42 |
+
cov=None,
|
43 |
+
algorithm="lasso_lars",
|
44 |
+
regularization=None,
|
45 |
+
copy_cov=True,
|
46 |
+
init=None,
|
47 |
+
max_iter=1000,
|
48 |
+
verbose=0,
|
49 |
+
positive=False,
|
50 |
+
):
|
51 |
+
"""Generic sparse coding with precomputed Gram and/or covariance matrices.
|
52 |
+
|
53 |
+
Each row of the result is the solution to a Lasso problem.
|
54 |
+
|
55 |
+
Parameters
|
56 |
+
----------
|
57 |
+
X : ndarray of shape (n_samples, n_features)
|
58 |
+
Data matrix.
|
59 |
+
|
60 |
+
dictionary : ndarray of shape (n_components, n_features)
|
61 |
+
The dictionary matrix against which to solve the sparse coding of
|
62 |
+
the data. Some of the algorithms assume normalized rows.
|
63 |
+
|
64 |
+
gram : ndarray of shape (n_components, n_components), default=None
|
65 |
+
Precomputed Gram matrix, `dictionary * dictionary'`
|
66 |
+
gram can be `None` if method is 'threshold'.
|
67 |
+
|
68 |
+
cov : ndarray of shape (n_components, n_samples), default=None
|
69 |
+
Precomputed covariance, `dictionary * X'`.
|
70 |
+
|
71 |
+
algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'}, \
|
72 |
+
default='lasso_lars'
|
73 |
+
The algorithm used:
|
74 |
+
|
75 |
+
* `'lars'`: uses the least angle regression method
|
76 |
+
(`linear_model.lars_path`);
|
77 |
+
* `'lasso_lars'`: uses Lars to compute the Lasso solution;
|
78 |
+
* `'lasso_cd'`: uses the coordinate descent method to compute the
|
79 |
+
Lasso solution (`linear_model.Lasso`). lasso_lars will be faster if
|
80 |
+
the estimated components are sparse;
|
81 |
+
* `'omp'`: uses orthogonal matching pursuit to estimate the sparse
|
82 |
+
solution;
|
83 |
+
* `'threshold'`: squashes to zero all coefficients less than
|
84 |
+
regularization from the projection `dictionary * data'`.
|
85 |
+
|
86 |
+
regularization : int or float, default=None
|
87 |
+
The regularization parameter. It corresponds to alpha when
|
88 |
+
algorithm is `'lasso_lars'`, `'lasso_cd'` or `'threshold'`.
|
89 |
+
Otherwise it corresponds to `n_nonzero_coefs`.
|
90 |
+
|
91 |
+
init : ndarray of shape (n_samples, n_components), default=None
|
92 |
+
Initialization value of the sparse code. Only used if
|
93 |
+
`algorithm='lasso_cd'`.
|
94 |
+
|
95 |
+
max_iter : int, default=1000
|
96 |
+
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
|
97 |
+
`'lasso_lars'`.
|
98 |
+
|
99 |
+
copy_cov : bool, default=True
|
100 |
+
Whether to copy the precomputed covariance matrix; if `False`, it may
|
101 |
+
be overwritten.
|
102 |
+
|
103 |
+
verbose : int, default=0
|
104 |
+
Controls the verbosity; the higher, the more messages.
|
105 |
+
|
106 |
+
positive: bool, default=False
|
107 |
+
Whether to enforce a positivity constraint on the sparse code.
|
108 |
+
|
109 |
+
.. versionadded:: 0.20
|
110 |
+
|
111 |
+
Returns
|
112 |
+
-------
|
113 |
+
code : ndarray of shape (n_components, n_features)
|
114 |
+
The sparse codes.
|
115 |
+
"""
|
116 |
+
n_samples, n_features = X.shape
|
117 |
+
n_components = dictionary.shape[0]
|
118 |
+
|
119 |
+
if algorithm == "lasso_lars":
|
120 |
+
alpha = float(regularization) / n_features # account for scaling
|
121 |
+
try:
|
122 |
+
err_mgt = np.seterr(all="ignore")
|
123 |
+
|
124 |
+
# Not passing in verbose=max(0, verbose-1) because Lars.fit already
|
125 |
+
# corrects the verbosity level.
|
126 |
+
lasso_lars = LassoLars(
|
127 |
+
alpha=alpha,
|
128 |
+
fit_intercept=False,
|
129 |
+
verbose=verbose,
|
130 |
+
precompute=gram,
|
131 |
+
fit_path=False,
|
132 |
+
positive=positive,
|
133 |
+
max_iter=max_iter,
|
134 |
+
)
|
135 |
+
lasso_lars.fit(dictionary.T, X.T, Xy=cov)
|
136 |
+
new_code = lasso_lars.coef_
|
137 |
+
finally:
|
138 |
+
np.seterr(**err_mgt)
|
139 |
+
|
140 |
+
elif algorithm == "lasso_cd":
|
141 |
+
alpha = float(regularization) / n_features # account for scaling
|
142 |
+
|
143 |
+
# TODO: Make verbosity argument for Lasso?
|
144 |
+
# sklearn.linear_model.coordinate_descent.enet_path has a verbosity
|
145 |
+
# argument that we could pass in from Lasso.
|
146 |
+
clf = Lasso(
|
147 |
+
alpha=alpha,
|
148 |
+
fit_intercept=False,
|
149 |
+
precompute=gram,
|
150 |
+
max_iter=max_iter,
|
151 |
+
warm_start=True,
|
152 |
+
positive=positive,
|
153 |
+
)
|
154 |
+
|
155 |
+
if init is not None:
|
156 |
+
# In some workflows using coordinate descent algorithms:
|
157 |
+
# - users might provide NumPy arrays with read-only buffers
|
158 |
+
# - `joblib` might memmap arrays making their buffer read-only
|
159 |
+
# TODO: move this handling (which is currently too broad)
|
160 |
+
# closer to the actual private function which need buffers to be writable.
|
161 |
+
if not init.flags["WRITEABLE"]:
|
162 |
+
init = np.array(init)
|
163 |
+
clf.coef_ = init
|
164 |
+
|
165 |
+
clf.fit(dictionary.T, X.T, check_input=False)
|
166 |
+
new_code = clf.coef_
|
167 |
+
|
168 |
+
elif algorithm == "lars":
|
169 |
+
try:
|
170 |
+
err_mgt = np.seterr(all="ignore")
|
171 |
+
|
172 |
+
# Not passing in verbose=max(0, verbose-1) because Lars.fit already
|
173 |
+
# corrects the verbosity level.
|
174 |
+
lars = Lars(
|
175 |
+
fit_intercept=False,
|
176 |
+
verbose=verbose,
|
177 |
+
precompute=gram,
|
178 |
+
n_nonzero_coefs=int(regularization),
|
179 |
+
fit_path=False,
|
180 |
+
)
|
181 |
+
lars.fit(dictionary.T, X.T, Xy=cov)
|
182 |
+
new_code = lars.coef_
|
183 |
+
finally:
|
184 |
+
np.seterr(**err_mgt)
|
185 |
+
|
186 |
+
elif algorithm == "threshold":
|
187 |
+
new_code = (np.sign(cov) * np.maximum(np.abs(cov) - regularization, 0)).T
|
188 |
+
if positive:
|
189 |
+
np.clip(new_code, 0, None, out=new_code)
|
190 |
+
|
191 |
+
elif algorithm == "omp":
|
192 |
+
new_code = orthogonal_mp_gram(
|
193 |
+
Gram=gram,
|
194 |
+
Xy=cov,
|
195 |
+
n_nonzero_coefs=int(regularization),
|
196 |
+
tol=None,
|
197 |
+
norms_squared=row_norms(X, squared=True),
|
198 |
+
copy_Xy=copy_cov,
|
199 |
+
).T
|
200 |
+
|
201 |
+
return new_code.reshape(n_samples, n_components)
|
202 |
+
|
203 |
+
|
204 |
+
@validate_params(
|
205 |
+
{
|
206 |
+
"X": ["array-like"],
|
207 |
+
"dictionary": ["array-like"],
|
208 |
+
"gram": ["array-like", None],
|
209 |
+
"cov": ["array-like", None],
|
210 |
+
"algorithm": [
|
211 |
+
StrOptions({"lasso_lars", "lasso_cd", "lars", "omp", "threshold"})
|
212 |
+
],
|
213 |
+
"n_nonzero_coefs": [Interval(Integral, 1, None, closed="left"), None],
|
214 |
+
"alpha": [Interval(Real, 0, None, closed="left"), None],
|
215 |
+
"copy_cov": ["boolean"],
|
216 |
+
"init": ["array-like", None],
|
217 |
+
"max_iter": [Interval(Integral, 0, None, closed="left")],
|
218 |
+
"n_jobs": [Integral, None],
|
219 |
+
"check_input": ["boolean"],
|
220 |
+
"verbose": ["verbose"],
|
221 |
+
"positive": ["boolean"],
|
222 |
+
},
|
223 |
+
prefer_skip_nested_validation=True,
|
224 |
+
)
|
225 |
+
# XXX : could be moved to the linear_model module
|
226 |
+
def sparse_encode(
|
227 |
+
X,
|
228 |
+
dictionary,
|
229 |
+
*,
|
230 |
+
gram=None,
|
231 |
+
cov=None,
|
232 |
+
algorithm="lasso_lars",
|
233 |
+
n_nonzero_coefs=None,
|
234 |
+
alpha=None,
|
235 |
+
copy_cov=True,
|
236 |
+
init=None,
|
237 |
+
max_iter=1000,
|
238 |
+
n_jobs=None,
|
239 |
+
check_input=True,
|
240 |
+
verbose=0,
|
241 |
+
positive=False,
|
242 |
+
):
|
243 |
+
"""Sparse coding.
|
244 |
+
|
245 |
+
Each row of the result is the solution to a sparse coding problem.
|
246 |
+
The goal is to find a sparse array `code` such that::
|
247 |
+
|
248 |
+
X ~= code * dictionary
|
249 |
+
|
250 |
+
Read more in the :ref:`User Guide <SparseCoder>`.
|
251 |
+
|
252 |
+
Parameters
|
253 |
+
----------
|
254 |
+
X : array-like of shape (n_samples, n_features)
|
255 |
+
Data matrix.
|
256 |
+
|
257 |
+
dictionary : array-like of shape (n_components, n_features)
|
258 |
+
The dictionary matrix against which to solve the sparse coding of
|
259 |
+
the data. Some of the algorithms assume normalized rows for meaningful
|
260 |
+
output.
|
261 |
+
|
262 |
+
gram : array-like of shape (n_components, n_components), default=None
|
263 |
+
Precomputed Gram matrix, `dictionary * dictionary'`.
|
264 |
+
|
265 |
+
cov : array-like of shape (n_components, n_samples), default=None
|
266 |
+
Precomputed covariance, `dictionary' * X`.
|
267 |
+
|
268 |
+
algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'}, \
|
269 |
+
default='lasso_lars'
|
270 |
+
The algorithm used:
|
271 |
+
|
272 |
+
* `'lars'`: uses the least angle regression method
|
273 |
+
(`linear_model.lars_path`);
|
274 |
+
* `'lasso_lars'`: uses Lars to compute the Lasso solution;
|
275 |
+
* `'lasso_cd'`: uses the coordinate descent method to compute the
|
276 |
+
Lasso solution (`linear_model.Lasso`). lasso_lars will be faster if
|
277 |
+
the estimated components are sparse;
|
278 |
+
* `'omp'`: uses orthogonal matching pursuit to estimate the sparse
|
279 |
+
solution;
|
280 |
+
* `'threshold'`: squashes to zero all coefficients less than
|
281 |
+
regularization from the projection `dictionary * data'`.
|
282 |
+
|
283 |
+
n_nonzero_coefs : int, default=None
|
284 |
+
Number of nonzero coefficients to target in each column of the
|
285 |
+
solution. This is only used by `algorithm='lars'` and `algorithm='omp'`
|
286 |
+
and is overridden by `alpha` in the `omp` case. If `None`, then
|
287 |
+
`n_nonzero_coefs=int(n_features / 10)`.
|
288 |
+
|
289 |
+
alpha : float, default=None
|
290 |
+
If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
|
291 |
+
penalty applied to the L1 norm.
|
292 |
+
If `algorithm='threshold'`, `alpha` is the absolute value of the
|
293 |
+
threshold below which coefficients will be squashed to zero.
|
294 |
+
If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of
|
295 |
+
the reconstruction error targeted. In this case, it overrides
|
296 |
+
`n_nonzero_coefs`.
|
297 |
+
If `None`, default to 1.
|
298 |
+
|
299 |
+
copy_cov : bool, default=True
|
300 |
+
Whether to copy the precomputed covariance matrix; if `False`, it may
|
301 |
+
be overwritten.
|
302 |
+
|
303 |
+
init : ndarray of shape (n_samples, n_components), default=None
|
304 |
+
Initialization value of the sparse codes. Only used if
|
305 |
+
`algorithm='lasso_cd'`.
|
306 |
+
|
307 |
+
max_iter : int, default=1000
|
308 |
+
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
|
309 |
+
`'lasso_lars'`.
|
310 |
+
|
311 |
+
n_jobs : int, default=None
|
312 |
+
Number of parallel jobs to run.
|
313 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
314 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
315 |
+
for more details.
|
316 |
+
|
317 |
+
check_input : bool, default=True
|
318 |
+
If `False`, the input arrays X and dictionary will not be checked.
|
319 |
+
|
320 |
+
verbose : int, default=0
|
321 |
+
Controls the verbosity; the higher, the more messages.
|
322 |
+
|
323 |
+
positive : bool, default=False
|
324 |
+
Whether to enforce positivity when finding the encoding.
|
325 |
+
|
326 |
+
.. versionadded:: 0.20
|
327 |
+
|
328 |
+
Returns
|
329 |
+
-------
|
330 |
+
code : ndarray of shape (n_samples, n_components)
|
331 |
+
The sparse codes.
|
332 |
+
|
333 |
+
See Also
|
334 |
+
--------
|
335 |
+
sklearn.linear_model.lars_path : Compute Least Angle Regression or Lasso
|
336 |
+
path using LARS algorithm.
|
337 |
+
sklearn.linear_model.orthogonal_mp : Solves Orthogonal Matching Pursuit problems.
|
338 |
+
sklearn.linear_model.Lasso : Train Linear Model with L1 prior as regularizer.
|
339 |
+
SparseCoder : Find a sparse representation of data from a fixed precomputed
|
340 |
+
dictionary.
|
341 |
+
|
342 |
+
Examples
|
343 |
+
--------
|
344 |
+
>>> import numpy as np
|
345 |
+
>>> from sklearn.decomposition import sparse_encode
|
346 |
+
>>> X = np.array([[-1, -1, -1], [0, 0, 3]])
|
347 |
+
>>> dictionary = np.array(
|
348 |
+
... [[0, 1, 0],
|
349 |
+
... [-1, -1, 2],
|
350 |
+
... [1, 1, 1],
|
351 |
+
... [0, 1, 1],
|
352 |
+
... [0, 2, 1]],
|
353 |
+
... dtype=np.float64
|
354 |
+
... )
|
355 |
+
>>> sparse_encode(X, dictionary, alpha=1e-10)
|
356 |
+
array([[ 0., 0., -1., 0., 0.],
|
357 |
+
[ 0., 1., 1., 0., 0.]])
|
358 |
+
"""
|
359 |
+
if check_input:
|
360 |
+
if algorithm == "lasso_cd":
|
361 |
+
dictionary = check_array(
|
362 |
+
dictionary, order="C", dtype=[np.float64, np.float32]
|
363 |
+
)
|
364 |
+
X = check_array(X, order="C", dtype=[np.float64, np.float32])
|
365 |
+
else:
|
366 |
+
dictionary = check_array(dictionary)
|
367 |
+
X = check_array(X)
|
368 |
+
|
369 |
+
if dictionary.shape[1] != X.shape[1]:
|
370 |
+
raise ValueError(
|
371 |
+
"Dictionary and X have different numbers of features:"
|
372 |
+
"dictionary.shape: {} X.shape{}".format(dictionary.shape, X.shape)
|
373 |
+
)
|
374 |
+
|
375 |
+
_check_positive_coding(algorithm, positive)
|
376 |
+
|
377 |
+
return _sparse_encode(
|
378 |
+
X,
|
379 |
+
dictionary,
|
380 |
+
gram=gram,
|
381 |
+
cov=cov,
|
382 |
+
algorithm=algorithm,
|
383 |
+
n_nonzero_coefs=n_nonzero_coefs,
|
384 |
+
alpha=alpha,
|
385 |
+
copy_cov=copy_cov,
|
386 |
+
init=init,
|
387 |
+
max_iter=max_iter,
|
388 |
+
n_jobs=n_jobs,
|
389 |
+
verbose=verbose,
|
390 |
+
positive=positive,
|
391 |
+
)
|
392 |
+
|
393 |
+
|
394 |
+
def _sparse_encode(
|
395 |
+
X,
|
396 |
+
dictionary,
|
397 |
+
*,
|
398 |
+
gram=None,
|
399 |
+
cov=None,
|
400 |
+
algorithm="lasso_lars",
|
401 |
+
n_nonzero_coefs=None,
|
402 |
+
alpha=None,
|
403 |
+
copy_cov=True,
|
404 |
+
init=None,
|
405 |
+
max_iter=1000,
|
406 |
+
n_jobs=None,
|
407 |
+
verbose=0,
|
408 |
+
positive=False,
|
409 |
+
):
|
410 |
+
"""Sparse coding without input/parameter validation."""
|
411 |
+
|
412 |
+
n_samples, n_features = X.shape
|
413 |
+
n_components = dictionary.shape[0]
|
414 |
+
|
415 |
+
if algorithm in ("lars", "omp"):
|
416 |
+
regularization = n_nonzero_coefs
|
417 |
+
if regularization is None:
|
418 |
+
regularization = min(max(n_features / 10, 1), n_components)
|
419 |
+
else:
|
420 |
+
regularization = alpha
|
421 |
+
if regularization is None:
|
422 |
+
regularization = 1.0
|
423 |
+
|
424 |
+
if gram is None and algorithm != "threshold":
|
425 |
+
gram = np.dot(dictionary, dictionary.T)
|
426 |
+
|
427 |
+
if cov is None and algorithm != "lasso_cd":
|
428 |
+
copy_cov = False
|
429 |
+
cov = np.dot(dictionary, X.T)
|
430 |
+
|
431 |
+
if effective_n_jobs(n_jobs) == 1 or algorithm == "threshold":
|
432 |
+
code = _sparse_encode_precomputed(
|
433 |
+
X,
|
434 |
+
dictionary,
|
435 |
+
gram=gram,
|
436 |
+
cov=cov,
|
437 |
+
algorithm=algorithm,
|
438 |
+
regularization=regularization,
|
439 |
+
copy_cov=copy_cov,
|
440 |
+
init=init,
|
441 |
+
max_iter=max_iter,
|
442 |
+
verbose=verbose,
|
443 |
+
positive=positive,
|
444 |
+
)
|
445 |
+
return code
|
446 |
+
|
447 |
+
# Enter parallel code block
|
448 |
+
n_samples = X.shape[0]
|
449 |
+
n_components = dictionary.shape[0]
|
450 |
+
code = np.empty((n_samples, n_components))
|
451 |
+
slices = list(gen_even_slices(n_samples, effective_n_jobs(n_jobs)))
|
452 |
+
|
453 |
+
code_views = Parallel(n_jobs=n_jobs, verbose=verbose)(
|
454 |
+
delayed(_sparse_encode_precomputed)(
|
455 |
+
X[this_slice],
|
456 |
+
dictionary,
|
457 |
+
gram=gram,
|
458 |
+
cov=cov[:, this_slice] if cov is not None else None,
|
459 |
+
algorithm=algorithm,
|
460 |
+
regularization=regularization,
|
461 |
+
copy_cov=copy_cov,
|
462 |
+
init=init[this_slice] if init is not None else None,
|
463 |
+
max_iter=max_iter,
|
464 |
+
verbose=verbose,
|
465 |
+
positive=positive,
|
466 |
+
)
|
467 |
+
for this_slice in slices
|
468 |
+
)
|
469 |
+
for this_slice, this_view in zip(slices, code_views):
|
470 |
+
code[this_slice] = this_view
|
471 |
+
return code
|
472 |
+
|
473 |
+
|
474 |
+
def _update_dict(
|
475 |
+
dictionary,
|
476 |
+
Y,
|
477 |
+
code,
|
478 |
+
A=None,
|
479 |
+
B=None,
|
480 |
+
verbose=False,
|
481 |
+
random_state=None,
|
482 |
+
positive=False,
|
483 |
+
):
|
484 |
+
"""Update the dense dictionary factor in place.
|
485 |
+
|
486 |
+
Parameters
|
487 |
+
----------
|
488 |
+
dictionary : ndarray of shape (n_components, n_features)
|
489 |
+
Value of the dictionary at the previous iteration.
|
490 |
+
|
491 |
+
Y : ndarray of shape (n_samples, n_features)
|
492 |
+
Data matrix.
|
493 |
+
|
494 |
+
code : ndarray of shape (n_samples, n_components)
|
495 |
+
Sparse coding of the data against which to optimize the dictionary.
|
496 |
+
|
497 |
+
A : ndarray of shape (n_components, n_components), default=None
|
498 |
+
Together with `B`, sufficient stats of the online model to update the
|
499 |
+
dictionary.
|
500 |
+
|
501 |
+
B : ndarray of shape (n_features, n_components), default=None
|
502 |
+
Together with `A`, sufficient stats of the online model to update the
|
503 |
+
dictionary.
|
504 |
+
|
505 |
+
verbose: bool, default=False
|
506 |
+
Degree of output the procedure will print.
|
507 |
+
|
508 |
+
random_state : int, RandomState instance or None, default=None
|
509 |
+
Used for randomly initializing the dictionary. Pass an int for
|
510 |
+
reproducible results across multiple function calls.
|
511 |
+
See :term:`Glossary <random_state>`.
|
512 |
+
|
513 |
+
positive : bool, default=False
|
514 |
+
Whether to enforce positivity when finding the dictionary.
|
515 |
+
|
516 |
+
.. versionadded:: 0.20
|
517 |
+
"""
|
518 |
+
n_samples, n_components = code.shape
|
519 |
+
random_state = check_random_state(random_state)
|
520 |
+
|
521 |
+
if A is None:
|
522 |
+
A = code.T @ code
|
523 |
+
if B is None:
|
524 |
+
B = Y.T @ code
|
525 |
+
|
526 |
+
n_unused = 0
|
527 |
+
|
528 |
+
for k in range(n_components):
|
529 |
+
if A[k, k] > 1e-6:
|
530 |
+
# 1e-6 is arbitrary but consistent with the spams implementation
|
531 |
+
dictionary[k] += (B[:, k] - A[k] @ dictionary) / A[k, k]
|
532 |
+
else:
|
533 |
+
# kth atom is almost never used -> sample a new one from the data
|
534 |
+
newd = Y[random_state.choice(n_samples)]
|
535 |
+
|
536 |
+
# add small noise to avoid making the sparse coding ill conditioned
|
537 |
+
noise_level = 0.01 * (newd.std() or 1) # avoid 0 std
|
538 |
+
noise = random_state.normal(0, noise_level, size=len(newd))
|
539 |
+
|
540 |
+
dictionary[k] = newd + noise
|
541 |
+
code[:, k] = 0
|
542 |
+
n_unused += 1
|
543 |
+
|
544 |
+
if positive:
|
545 |
+
np.clip(dictionary[k], 0, None, out=dictionary[k])
|
546 |
+
|
547 |
+
# Projection on the constraint set ||V_k|| <= 1
|
548 |
+
dictionary[k] /= max(linalg.norm(dictionary[k]), 1)
|
549 |
+
|
550 |
+
if verbose and n_unused > 0:
|
551 |
+
print(f"{n_unused} unused atoms resampled.")
|
552 |
+
|
553 |
+
|
554 |
+
def _dict_learning(
|
555 |
+
X,
|
556 |
+
n_components,
|
557 |
+
*,
|
558 |
+
alpha,
|
559 |
+
max_iter,
|
560 |
+
tol,
|
561 |
+
method,
|
562 |
+
n_jobs,
|
563 |
+
dict_init,
|
564 |
+
code_init,
|
565 |
+
callback,
|
566 |
+
verbose,
|
567 |
+
random_state,
|
568 |
+
return_n_iter,
|
569 |
+
positive_dict,
|
570 |
+
positive_code,
|
571 |
+
method_max_iter,
|
572 |
+
):
|
573 |
+
"""Main dictionary learning algorithm"""
|
574 |
+
t0 = time.time()
|
575 |
+
# Init the code and the dictionary with SVD of Y
|
576 |
+
if code_init is not None and dict_init is not None:
|
577 |
+
code = np.array(code_init, order="F")
|
578 |
+
# Don't copy V, it will happen below
|
579 |
+
dictionary = dict_init
|
580 |
+
else:
|
581 |
+
code, S, dictionary = linalg.svd(X, full_matrices=False)
|
582 |
+
# flip the initial code's sign to enforce deterministic output
|
583 |
+
code, dictionary = svd_flip(code, dictionary)
|
584 |
+
dictionary = S[:, np.newaxis] * dictionary
|
585 |
+
r = len(dictionary)
|
586 |
+
if n_components <= r: # True even if n_components=None
|
587 |
+
code = code[:, :n_components]
|
588 |
+
dictionary = dictionary[:n_components, :]
|
589 |
+
else:
|
590 |
+
code = np.c_[code, np.zeros((len(code), n_components - r))]
|
591 |
+
dictionary = np.r_[
|
592 |
+
dictionary, np.zeros((n_components - r, dictionary.shape[1]))
|
593 |
+
]
|
594 |
+
|
595 |
+
# Fortran-order dict better suited for the sparse coding which is the
|
596 |
+
# bottleneck of this algorithm.
|
597 |
+
dictionary = np.asfortranarray(dictionary)
|
598 |
+
|
599 |
+
errors = []
|
600 |
+
current_cost = np.nan
|
601 |
+
|
602 |
+
if verbose == 1:
|
603 |
+
print("[dict_learning]", end=" ")
|
604 |
+
|
605 |
+
# If max_iter is 0, number of iterations returned should be zero
|
606 |
+
ii = -1
|
607 |
+
|
608 |
+
for ii in range(max_iter):
|
609 |
+
dt = time.time() - t0
|
610 |
+
if verbose == 1:
|
611 |
+
sys.stdout.write(".")
|
612 |
+
sys.stdout.flush()
|
613 |
+
elif verbose:
|
614 |
+
print(
|
615 |
+
"Iteration % 3i (elapsed time: % 3is, % 4.1fmn, current cost % 7.3f)"
|
616 |
+
% (ii, dt, dt / 60, current_cost)
|
617 |
+
)
|
618 |
+
|
619 |
+
# Update code
|
620 |
+
code = sparse_encode(
|
621 |
+
X,
|
622 |
+
dictionary,
|
623 |
+
algorithm=method,
|
624 |
+
alpha=alpha,
|
625 |
+
init=code,
|
626 |
+
n_jobs=n_jobs,
|
627 |
+
positive=positive_code,
|
628 |
+
max_iter=method_max_iter,
|
629 |
+
verbose=verbose,
|
630 |
+
)
|
631 |
+
|
632 |
+
# Update dictionary in place
|
633 |
+
_update_dict(
|
634 |
+
dictionary,
|
635 |
+
X,
|
636 |
+
code,
|
637 |
+
verbose=verbose,
|
638 |
+
random_state=random_state,
|
639 |
+
positive=positive_dict,
|
640 |
+
)
|
641 |
+
|
642 |
+
# Cost function
|
643 |
+
current_cost = 0.5 * np.sum((X - code @ dictionary) ** 2) + alpha * np.sum(
|
644 |
+
np.abs(code)
|
645 |
+
)
|
646 |
+
errors.append(current_cost)
|
647 |
+
|
648 |
+
if ii > 0:
|
649 |
+
dE = errors[-2] - errors[-1]
|
650 |
+
# assert(dE >= -tol * errors[-1])
|
651 |
+
if dE < tol * errors[-1]:
|
652 |
+
if verbose == 1:
|
653 |
+
# A line return
|
654 |
+
print("")
|
655 |
+
elif verbose:
|
656 |
+
print("--- Convergence reached after %d iterations" % ii)
|
657 |
+
break
|
658 |
+
if ii % 5 == 0 and callback is not None:
|
659 |
+
callback(locals())
|
660 |
+
|
661 |
+
if return_n_iter:
|
662 |
+
return code, dictionary, errors, ii + 1
|
663 |
+
else:
|
664 |
+
return code, dictionary, errors
|
665 |
+
|
666 |
+
|
667 |
+
def dict_learning_online(
|
668 |
+
X,
|
669 |
+
n_components=2,
|
670 |
+
*,
|
671 |
+
alpha=1,
|
672 |
+
max_iter=100,
|
673 |
+
return_code=True,
|
674 |
+
dict_init=None,
|
675 |
+
callback=None,
|
676 |
+
batch_size=256,
|
677 |
+
verbose=False,
|
678 |
+
shuffle=True,
|
679 |
+
n_jobs=None,
|
680 |
+
method="lars",
|
681 |
+
random_state=None,
|
682 |
+
positive_dict=False,
|
683 |
+
positive_code=False,
|
684 |
+
method_max_iter=1000,
|
685 |
+
tol=1e-3,
|
686 |
+
max_no_improvement=10,
|
687 |
+
):
|
688 |
+
"""Solve a dictionary learning matrix factorization problem online.
|
689 |
+
|
690 |
+
Finds the best dictionary and the corresponding sparse code for
|
691 |
+
approximating the data matrix X by solving::
|
692 |
+
|
693 |
+
(U^*, V^*) = argmin 0.5 || X - U V ||_Fro^2 + alpha * || U ||_1,1
|
694 |
+
(U,V)
|
695 |
+
with || V_k ||_2 = 1 for all 0 <= k < n_components
|
696 |
+
|
697 |
+
where V is the dictionary and U is the sparse code. ||.||_Fro stands for
|
698 |
+
the Frobenius norm and ||.||_1,1 stands for the entry-wise matrix norm
|
699 |
+
which is the sum of the absolute values of all the entries in the matrix.
|
700 |
+
This is accomplished by repeatedly iterating over mini-batches by slicing
|
701 |
+
the input data.
|
702 |
+
|
703 |
+
Read more in the :ref:`User Guide <DictionaryLearning>`.
|
704 |
+
|
705 |
+
Parameters
|
706 |
+
----------
|
707 |
+
X : ndarray of shape (n_samples, n_features)
|
708 |
+
Data matrix.
|
709 |
+
|
710 |
+
n_components : int or None, default=2
|
711 |
+
Number of dictionary atoms to extract. If None, then ``n_components``
|
712 |
+
is set to ``n_features``.
|
713 |
+
|
714 |
+
alpha : float, default=1
|
715 |
+
Sparsity controlling parameter.
|
716 |
+
|
717 |
+
max_iter : int, default=100
|
718 |
+
Maximum number of iterations over the complete dataset before
|
719 |
+
stopping independently of any early stopping criterion heuristics.
|
720 |
+
|
721 |
+
.. versionadded:: 1.1
|
722 |
+
|
723 |
+
.. deprecated:: 1.4
|
724 |
+
`max_iter=None` is deprecated in 1.4 and will be removed in 1.6.
|
725 |
+
Use the default value (i.e. `100`) instead.
|
726 |
+
|
727 |
+
return_code : bool, default=True
|
728 |
+
Whether to also return the code U or just the dictionary `V`.
|
729 |
+
|
730 |
+
dict_init : ndarray of shape (n_components, n_features), default=None
|
731 |
+
Initial values for the dictionary for warm restart scenarios.
|
732 |
+
If `None`, the initial values for the dictionary are created
|
733 |
+
with an SVD decomposition of the data via
|
734 |
+
:func:`~sklearn.utils.extmath.randomized_svd`.
|
735 |
+
|
736 |
+
callback : callable, default=None
|
737 |
+
A callable that gets invoked at the end of each iteration.
|
738 |
+
|
739 |
+
batch_size : int, default=256
|
740 |
+
The number of samples to take in each batch.
|
741 |
+
|
742 |
+
.. versionchanged:: 1.3
|
743 |
+
The default value of `batch_size` changed from 3 to 256 in version 1.3.
|
744 |
+
|
745 |
+
verbose : bool, default=False
|
746 |
+
To control the verbosity of the procedure.
|
747 |
+
|
748 |
+
shuffle : bool, default=True
|
749 |
+
Whether to shuffle the data before splitting it in batches.
|
750 |
+
|
751 |
+
n_jobs : int, default=None
|
752 |
+
Number of parallel jobs to run.
|
753 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
754 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
755 |
+
for more details.
|
756 |
+
|
757 |
+
method : {'lars', 'cd'}, default='lars'
|
758 |
+
* `'lars'`: uses the least angle regression method to solve the lasso
|
759 |
+
problem (`linear_model.lars_path`);
|
760 |
+
* `'cd'`: uses the coordinate descent method to compute the
|
761 |
+
Lasso solution (`linear_model.Lasso`). Lars will be faster if
|
762 |
+
the estimated components are sparse.
|
763 |
+
|
764 |
+
random_state : int, RandomState instance or None, default=None
|
765 |
+
Used for initializing the dictionary when ``dict_init`` is not
|
766 |
+
specified, randomly shuffling the data when ``shuffle`` is set to
|
767 |
+
``True``, and updating the dictionary. Pass an int for reproducible
|
768 |
+
results across multiple function calls.
|
769 |
+
See :term:`Glossary <random_state>`.
|
770 |
+
|
771 |
+
positive_dict : bool, default=False
|
772 |
+
Whether to enforce positivity when finding the dictionary.
|
773 |
+
|
774 |
+
.. versionadded:: 0.20
|
775 |
+
|
776 |
+
positive_code : bool, default=False
|
777 |
+
Whether to enforce positivity when finding the code.
|
778 |
+
|
779 |
+
.. versionadded:: 0.20
|
780 |
+
|
781 |
+
method_max_iter : int, default=1000
|
782 |
+
Maximum number of iterations to perform when solving the lasso problem.
|
783 |
+
|
784 |
+
.. versionadded:: 0.22
|
785 |
+
|
786 |
+
tol : float, default=1e-3
|
787 |
+
Control early stopping based on the norm of the differences in the
|
788 |
+
dictionary between 2 steps.
|
789 |
+
|
790 |
+
To disable early stopping based on changes in the dictionary, set
|
791 |
+
`tol` to 0.0.
|
792 |
+
|
793 |
+
.. versionadded:: 1.1
|
794 |
+
|
795 |
+
max_no_improvement : int, default=10
|
796 |
+
Control early stopping based on the consecutive number of mini batches
|
797 |
+
that does not yield an improvement on the smoothed cost function.
|
798 |
+
|
799 |
+
To disable convergence detection based on cost function, set
|
800 |
+
`max_no_improvement` to None.
|
801 |
+
|
802 |
+
.. versionadded:: 1.1
|
803 |
+
|
804 |
+
Returns
|
805 |
+
-------
|
806 |
+
code : ndarray of shape (n_samples, n_components),
|
807 |
+
The sparse code (only returned if `return_code=True`).
|
808 |
+
|
809 |
+
dictionary : ndarray of shape (n_components, n_features),
|
810 |
+
The solutions to the dictionary learning problem.
|
811 |
+
|
812 |
+
n_iter : int
|
813 |
+
Number of iterations run. Returned only if `return_n_iter` is
|
814 |
+
set to `True`.
|
815 |
+
|
816 |
+
See Also
|
817 |
+
--------
|
818 |
+
dict_learning : Solve a dictionary learning matrix factorization problem.
|
819 |
+
DictionaryLearning : Find a dictionary that sparsely encodes data.
|
820 |
+
MiniBatchDictionaryLearning : A faster, less accurate, version of the dictionary
|
821 |
+
learning algorithm.
|
822 |
+
SparsePCA : Sparse Principal Components Analysis.
|
823 |
+
MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
|
824 |
+
|
825 |
+
Examples
|
826 |
+
--------
|
827 |
+
>>> import numpy as np
|
828 |
+
>>> from sklearn.datasets import make_sparse_coded_signal
|
829 |
+
>>> from sklearn.decomposition import dict_learning_online
|
830 |
+
>>> X, _, _ = make_sparse_coded_signal(
|
831 |
+
... n_samples=30, n_components=15, n_features=20, n_nonzero_coefs=10,
|
832 |
+
... random_state=42,
|
833 |
+
... )
|
834 |
+
>>> U, V = dict_learning_online(
|
835 |
+
... X, n_components=15, alpha=0.2, max_iter=20, batch_size=3, random_state=42
|
836 |
+
... )
|
837 |
+
|
838 |
+
We can check the level of sparsity of `U`:
|
839 |
+
|
840 |
+
>>> np.mean(U == 0)
|
841 |
+
0.53...
|
842 |
+
|
843 |
+
We can compare the average squared euclidean norm of the reconstruction
|
844 |
+
error of the sparse coded signal relative to the squared euclidean norm of
|
845 |
+
the original signal:
|
846 |
+
|
847 |
+
>>> X_hat = U @ V
|
848 |
+
>>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1))
|
849 |
+
0.05...
|
850 |
+
"""
|
851 |
+
# TODO(1.6): remove in 1.6
|
852 |
+
if max_iter is None:
|
853 |
+
warn(
|
854 |
+
(
|
855 |
+
"`max_iter=None` is deprecated in version 1.4 and will be removed in "
|
856 |
+
"version 1.6. Use the default value (i.e. `100`) instead."
|
857 |
+
),
|
858 |
+
FutureWarning,
|
859 |
+
)
|
860 |
+
max_iter = 100
|
861 |
+
|
862 |
+
transform_algorithm = "lasso_" + method
|
863 |
+
|
864 |
+
est = MiniBatchDictionaryLearning(
|
865 |
+
n_components=n_components,
|
866 |
+
alpha=alpha,
|
867 |
+
max_iter=max_iter,
|
868 |
+
n_jobs=n_jobs,
|
869 |
+
fit_algorithm=method,
|
870 |
+
batch_size=batch_size,
|
871 |
+
shuffle=shuffle,
|
872 |
+
dict_init=dict_init,
|
873 |
+
random_state=random_state,
|
874 |
+
transform_algorithm=transform_algorithm,
|
875 |
+
transform_alpha=alpha,
|
876 |
+
positive_code=positive_code,
|
877 |
+
positive_dict=positive_dict,
|
878 |
+
transform_max_iter=method_max_iter,
|
879 |
+
verbose=verbose,
|
880 |
+
callback=callback,
|
881 |
+
tol=tol,
|
882 |
+
max_no_improvement=max_no_improvement,
|
883 |
+
).fit(X)
|
884 |
+
|
885 |
+
if not return_code:
|
886 |
+
return est.components_
|
887 |
+
else:
|
888 |
+
code = est.transform(X)
|
889 |
+
return code, est.components_
|
890 |
+
|
891 |
+
|
892 |
+
@validate_params(
|
893 |
+
{
|
894 |
+
"X": ["array-like"],
|
895 |
+
"method": [StrOptions({"lars", "cd"})],
|
896 |
+
"return_n_iter": ["boolean"],
|
897 |
+
"method_max_iter": [Interval(Integral, 0, None, closed="left")],
|
898 |
+
},
|
899 |
+
prefer_skip_nested_validation=False,
|
900 |
+
)
|
901 |
+
def dict_learning(
|
902 |
+
X,
|
903 |
+
n_components,
|
904 |
+
*,
|
905 |
+
alpha,
|
906 |
+
max_iter=100,
|
907 |
+
tol=1e-8,
|
908 |
+
method="lars",
|
909 |
+
n_jobs=None,
|
910 |
+
dict_init=None,
|
911 |
+
code_init=None,
|
912 |
+
callback=None,
|
913 |
+
verbose=False,
|
914 |
+
random_state=None,
|
915 |
+
return_n_iter=False,
|
916 |
+
positive_dict=False,
|
917 |
+
positive_code=False,
|
918 |
+
method_max_iter=1000,
|
919 |
+
):
|
920 |
+
"""Solve a dictionary learning matrix factorization problem.
|
921 |
+
|
922 |
+
Finds the best dictionary and the corresponding sparse code for
|
923 |
+
approximating the data matrix X by solving::
|
924 |
+
|
925 |
+
(U^*, V^*) = argmin 0.5 || X - U V ||_Fro^2 + alpha * || U ||_1,1
|
926 |
+
(U,V)
|
927 |
+
with || V_k ||_2 = 1 for all 0 <= k < n_components
|
928 |
+
|
929 |
+
where V is the dictionary and U is the sparse code. ||.||_Fro stands for
|
930 |
+
the Frobenius norm and ||.||_1,1 stands for the entry-wise matrix norm
|
931 |
+
which is the sum of the absolute values of all the entries in the matrix.
|
932 |
+
|
933 |
+
Read more in the :ref:`User Guide <DictionaryLearning>`.
|
934 |
+
|
935 |
+
Parameters
|
936 |
+
----------
|
937 |
+
X : array-like of shape (n_samples, n_features)
|
938 |
+
Data matrix.
|
939 |
+
|
940 |
+
n_components : int
|
941 |
+
Number of dictionary atoms to extract.
|
942 |
+
|
943 |
+
alpha : int or float
|
944 |
+
Sparsity controlling parameter.
|
945 |
+
|
946 |
+
max_iter : int, default=100
|
947 |
+
Maximum number of iterations to perform.
|
948 |
+
|
949 |
+
tol : float, default=1e-8
|
950 |
+
Tolerance for the stopping condition.
|
951 |
+
|
952 |
+
method : {'lars', 'cd'}, default='lars'
|
953 |
+
The method used:
|
954 |
+
|
955 |
+
* `'lars'`: uses the least angle regression method to solve the lasso
|
956 |
+
problem (`linear_model.lars_path`);
|
957 |
+
* `'cd'`: uses the coordinate descent method to compute the
|
958 |
+
Lasso solution (`linear_model.Lasso`). Lars will be faster if
|
959 |
+
the estimated components are sparse.
|
960 |
+
|
961 |
+
n_jobs : int, default=None
|
962 |
+
Number of parallel jobs to run.
|
963 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
964 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
965 |
+
for more details.
|
966 |
+
|
967 |
+
dict_init : ndarray of shape (n_components, n_features), default=None
|
968 |
+
Initial value for the dictionary for warm restart scenarios. Only used
|
969 |
+
if `code_init` and `dict_init` are not None.
|
970 |
+
|
971 |
+
code_init : ndarray of shape (n_samples, n_components), default=None
|
972 |
+
Initial value for the sparse code for warm restart scenarios. Only used
|
973 |
+
if `code_init` and `dict_init` are not None.
|
974 |
+
|
975 |
+
callback : callable, default=None
|
976 |
+
Callable that gets invoked every five iterations.
|
977 |
+
|
978 |
+
verbose : bool, default=False
|
979 |
+
To control the verbosity of the procedure.
|
980 |
+
|
981 |
+
random_state : int, RandomState instance or None, default=None
|
982 |
+
Used for randomly initializing the dictionary. Pass an int for
|
983 |
+
reproducible results across multiple function calls.
|
984 |
+
See :term:`Glossary <random_state>`.
|
985 |
+
|
986 |
+
return_n_iter : bool, default=False
|
987 |
+
Whether or not to return the number of iterations.
|
988 |
+
|
989 |
+
positive_dict : bool, default=False
|
990 |
+
Whether to enforce positivity when finding the dictionary.
|
991 |
+
|
992 |
+
.. versionadded:: 0.20
|
993 |
+
|
994 |
+
positive_code : bool, default=False
|
995 |
+
Whether to enforce positivity when finding the code.
|
996 |
+
|
997 |
+
.. versionadded:: 0.20
|
998 |
+
|
999 |
+
method_max_iter : int, default=1000
|
1000 |
+
Maximum number of iterations to perform.
|
1001 |
+
|
1002 |
+
.. versionadded:: 0.22
|
1003 |
+
|
1004 |
+
Returns
|
1005 |
+
-------
|
1006 |
+
code : ndarray of shape (n_samples, n_components)
|
1007 |
+
The sparse code factor in the matrix factorization.
|
1008 |
+
|
1009 |
+
dictionary : ndarray of shape (n_components, n_features),
|
1010 |
+
The dictionary factor in the matrix factorization.
|
1011 |
+
|
1012 |
+
errors : array
|
1013 |
+
Vector of errors at each iteration.
|
1014 |
+
|
1015 |
+
n_iter : int
|
1016 |
+
Number of iterations run. Returned only if `return_n_iter` is
|
1017 |
+
set to True.
|
1018 |
+
|
1019 |
+
See Also
|
1020 |
+
--------
|
1021 |
+
dict_learning_online : Solve a dictionary learning matrix factorization
|
1022 |
+
problem online.
|
1023 |
+
DictionaryLearning : Find a dictionary that sparsely encodes data.
|
1024 |
+
MiniBatchDictionaryLearning : A faster, less accurate version
|
1025 |
+
of the dictionary learning algorithm.
|
1026 |
+
SparsePCA : Sparse Principal Components Analysis.
|
1027 |
+
MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
|
1028 |
+
|
1029 |
+
Examples
|
1030 |
+
--------
|
1031 |
+
>>> import numpy as np
|
1032 |
+
>>> from sklearn.datasets import make_sparse_coded_signal
|
1033 |
+
>>> from sklearn.decomposition import dict_learning
|
1034 |
+
>>> X, _, _ = make_sparse_coded_signal(
|
1035 |
+
... n_samples=30, n_components=15, n_features=20, n_nonzero_coefs=10,
|
1036 |
+
... random_state=42,
|
1037 |
+
... )
|
1038 |
+
>>> U, V, errors = dict_learning(X, n_components=15, alpha=0.1, random_state=42)
|
1039 |
+
|
1040 |
+
We can check the level of sparsity of `U`:
|
1041 |
+
|
1042 |
+
>>> np.mean(U == 0)
|
1043 |
+
0.6...
|
1044 |
+
|
1045 |
+
We can compare the average squared euclidean norm of the reconstruction
|
1046 |
+
error of the sparse coded signal relative to the squared euclidean norm of
|
1047 |
+
the original signal:
|
1048 |
+
|
1049 |
+
>>> X_hat = U @ V
|
1050 |
+
>>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1))
|
1051 |
+
0.01...
|
1052 |
+
"""
|
1053 |
+
estimator = DictionaryLearning(
|
1054 |
+
n_components=n_components,
|
1055 |
+
alpha=alpha,
|
1056 |
+
max_iter=max_iter,
|
1057 |
+
tol=tol,
|
1058 |
+
fit_algorithm=method,
|
1059 |
+
n_jobs=n_jobs,
|
1060 |
+
dict_init=dict_init,
|
1061 |
+
callback=callback,
|
1062 |
+
code_init=code_init,
|
1063 |
+
verbose=verbose,
|
1064 |
+
random_state=random_state,
|
1065 |
+
positive_code=positive_code,
|
1066 |
+
positive_dict=positive_dict,
|
1067 |
+
transform_max_iter=method_max_iter,
|
1068 |
+
).set_output(transform="default")
|
1069 |
+
code = estimator.fit_transform(X)
|
1070 |
+
if return_n_iter:
|
1071 |
+
return (
|
1072 |
+
code,
|
1073 |
+
estimator.components_,
|
1074 |
+
estimator.error_,
|
1075 |
+
estimator.n_iter_,
|
1076 |
+
)
|
1077 |
+
return code, estimator.components_, estimator.error_
|
1078 |
+
|
1079 |
+
|
1080 |
+
class _BaseSparseCoding(ClassNamePrefixFeaturesOutMixin, TransformerMixin):
|
1081 |
+
"""Base class from SparseCoder and DictionaryLearning algorithms."""
|
1082 |
+
|
1083 |
+
def __init__(
|
1084 |
+
self,
|
1085 |
+
transform_algorithm,
|
1086 |
+
transform_n_nonzero_coefs,
|
1087 |
+
transform_alpha,
|
1088 |
+
split_sign,
|
1089 |
+
n_jobs,
|
1090 |
+
positive_code,
|
1091 |
+
transform_max_iter,
|
1092 |
+
):
|
1093 |
+
self.transform_algorithm = transform_algorithm
|
1094 |
+
self.transform_n_nonzero_coefs = transform_n_nonzero_coefs
|
1095 |
+
self.transform_alpha = transform_alpha
|
1096 |
+
self.transform_max_iter = transform_max_iter
|
1097 |
+
self.split_sign = split_sign
|
1098 |
+
self.n_jobs = n_jobs
|
1099 |
+
self.positive_code = positive_code
|
1100 |
+
|
1101 |
+
def _transform(self, X, dictionary):
|
1102 |
+
"""Private method allowing to accommodate both DictionaryLearning and
|
1103 |
+
SparseCoder."""
|
1104 |
+
X = self._validate_data(X, reset=False)
|
1105 |
+
|
1106 |
+
if hasattr(self, "alpha") and self.transform_alpha is None:
|
1107 |
+
transform_alpha = self.alpha
|
1108 |
+
else:
|
1109 |
+
transform_alpha = self.transform_alpha
|
1110 |
+
|
1111 |
+
code = sparse_encode(
|
1112 |
+
X,
|
1113 |
+
dictionary,
|
1114 |
+
algorithm=self.transform_algorithm,
|
1115 |
+
n_nonzero_coefs=self.transform_n_nonzero_coefs,
|
1116 |
+
alpha=transform_alpha,
|
1117 |
+
max_iter=self.transform_max_iter,
|
1118 |
+
n_jobs=self.n_jobs,
|
1119 |
+
positive=self.positive_code,
|
1120 |
+
)
|
1121 |
+
|
1122 |
+
if self.split_sign:
|
1123 |
+
# feature vector is split into a positive and negative side
|
1124 |
+
n_samples, n_features = code.shape
|
1125 |
+
split_code = np.empty((n_samples, 2 * n_features))
|
1126 |
+
split_code[:, :n_features] = np.maximum(code, 0)
|
1127 |
+
split_code[:, n_features:] = -np.minimum(code, 0)
|
1128 |
+
code = split_code
|
1129 |
+
|
1130 |
+
return code
|
1131 |
+
|
1132 |
+
def transform(self, X):
|
1133 |
+
"""Encode the data as a sparse combination of the dictionary atoms.
|
1134 |
+
|
1135 |
+
Coding method is determined by the object parameter
|
1136 |
+
`transform_algorithm`.
|
1137 |
+
|
1138 |
+
Parameters
|
1139 |
+
----------
|
1140 |
+
X : ndarray of shape (n_samples, n_features)
|
1141 |
+
Test data to be transformed, must have the same number of
|
1142 |
+
features as the data used to train the model.
|
1143 |
+
|
1144 |
+
Returns
|
1145 |
+
-------
|
1146 |
+
X_new : ndarray of shape (n_samples, n_components)
|
1147 |
+
Transformed data.
|
1148 |
+
"""
|
1149 |
+
check_is_fitted(self)
|
1150 |
+
return self._transform(X, self.components_)
|
1151 |
+
|
1152 |
+
|
1153 |
+
class SparseCoder(_BaseSparseCoding, BaseEstimator):
|
1154 |
+
"""Sparse coding.
|
1155 |
+
|
1156 |
+
Finds a sparse representation of data against a fixed, precomputed
|
1157 |
+
dictionary.
|
1158 |
+
|
1159 |
+
Each row of the result is the solution to a sparse coding problem.
|
1160 |
+
The goal is to find a sparse array `code` such that::
|
1161 |
+
|
1162 |
+
X ~= code * dictionary
|
1163 |
+
|
1164 |
+
Read more in the :ref:`User Guide <SparseCoder>`.
|
1165 |
+
|
1166 |
+
Parameters
|
1167 |
+
----------
|
1168 |
+
dictionary : ndarray of shape (n_components, n_features)
|
1169 |
+
The dictionary atoms used for sparse coding. Lines are assumed to be
|
1170 |
+
normalized to unit norm.
|
1171 |
+
|
1172 |
+
transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \
|
1173 |
+
'threshold'}, default='omp'
|
1174 |
+
Algorithm used to transform the data:
|
1175 |
+
|
1176 |
+
- `'lars'`: uses the least angle regression method
|
1177 |
+
(`linear_model.lars_path`);
|
1178 |
+
- `'lasso_lars'`: uses Lars to compute the Lasso solution;
|
1179 |
+
- `'lasso_cd'`: uses the coordinate descent method to compute the
|
1180 |
+
Lasso solution (linear_model.Lasso). `'lasso_lars'` will be faster if
|
1181 |
+
the estimated components are sparse;
|
1182 |
+
- `'omp'`: uses orthogonal matching pursuit to estimate the sparse
|
1183 |
+
solution;
|
1184 |
+
- `'threshold'`: squashes to zero all coefficients less than alpha from
|
1185 |
+
the projection ``dictionary * X'``.
|
1186 |
+
|
1187 |
+
transform_n_nonzero_coefs : int, default=None
|
1188 |
+
Number of nonzero coefficients to target in each column of the
|
1189 |
+
solution. This is only used by `algorithm='lars'` and `algorithm='omp'`
|
1190 |
+
and is overridden by `alpha` in the `omp` case. If `None`, then
|
1191 |
+
`transform_n_nonzero_coefs=int(n_features / 10)`.
|
1192 |
+
|
1193 |
+
transform_alpha : float, default=None
|
1194 |
+
If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
|
1195 |
+
penalty applied to the L1 norm.
|
1196 |
+
If `algorithm='threshold'`, `alpha` is the absolute value of the
|
1197 |
+
threshold below which coefficients will be squashed to zero.
|
1198 |
+
If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of
|
1199 |
+
the reconstruction error targeted. In this case, it overrides
|
1200 |
+
`n_nonzero_coefs`.
|
1201 |
+
If `None`, default to 1.
|
1202 |
+
|
1203 |
+
split_sign : bool, default=False
|
1204 |
+
Whether to split the sparse feature vector into the concatenation of
|
1205 |
+
its negative part and its positive part. This can improve the
|
1206 |
+
performance of downstream classifiers.
|
1207 |
+
|
1208 |
+
n_jobs : int, default=None
|
1209 |
+
Number of parallel jobs to run.
|
1210 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
1211 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
1212 |
+
for more details.
|
1213 |
+
|
1214 |
+
positive_code : bool, default=False
|
1215 |
+
Whether to enforce positivity when finding the code.
|
1216 |
+
|
1217 |
+
.. versionadded:: 0.20
|
1218 |
+
|
1219 |
+
transform_max_iter : int, default=1000
|
1220 |
+
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
|
1221 |
+
`lasso_lars`.
|
1222 |
+
|
1223 |
+
.. versionadded:: 0.22
|
1224 |
+
|
1225 |
+
Attributes
|
1226 |
+
----------
|
1227 |
+
n_components_ : int
|
1228 |
+
Number of atoms.
|
1229 |
+
|
1230 |
+
n_features_in_ : int
|
1231 |
+
Number of features seen during :term:`fit`.
|
1232 |
+
|
1233 |
+
.. versionadded:: 0.24
|
1234 |
+
|
1235 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1236 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1237 |
+
has feature names that are all strings.
|
1238 |
+
|
1239 |
+
.. versionadded:: 1.0
|
1240 |
+
|
1241 |
+
See Also
|
1242 |
+
--------
|
1243 |
+
DictionaryLearning : Find a dictionary that sparsely encodes data.
|
1244 |
+
MiniBatchDictionaryLearning : A faster, less accurate, version of the
|
1245 |
+
dictionary learning algorithm.
|
1246 |
+
MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
|
1247 |
+
SparsePCA : Sparse Principal Components Analysis.
|
1248 |
+
sparse_encode : Sparse coding where each row of the result is the solution
|
1249 |
+
to a sparse coding problem.
|
1250 |
+
|
1251 |
+
Examples
|
1252 |
+
--------
|
1253 |
+
>>> import numpy as np
|
1254 |
+
>>> from sklearn.decomposition import SparseCoder
|
1255 |
+
>>> X = np.array([[-1, -1, -1], [0, 0, 3]])
|
1256 |
+
>>> dictionary = np.array(
|
1257 |
+
... [[0, 1, 0],
|
1258 |
+
... [-1, -1, 2],
|
1259 |
+
... [1, 1, 1],
|
1260 |
+
... [0, 1, 1],
|
1261 |
+
... [0, 2, 1]],
|
1262 |
+
... dtype=np.float64
|
1263 |
+
... )
|
1264 |
+
>>> coder = SparseCoder(
|
1265 |
+
... dictionary=dictionary, transform_algorithm='lasso_lars',
|
1266 |
+
... transform_alpha=1e-10,
|
1267 |
+
... )
|
1268 |
+
>>> coder.transform(X)
|
1269 |
+
array([[ 0., 0., -1., 0., 0.],
|
1270 |
+
[ 0., 1., 1., 0., 0.]])
|
1271 |
+
"""
|
1272 |
+
|
1273 |
+
_required_parameters = ["dictionary"]
|
1274 |
+
|
1275 |
+
def __init__(
|
1276 |
+
self,
|
1277 |
+
dictionary,
|
1278 |
+
*,
|
1279 |
+
transform_algorithm="omp",
|
1280 |
+
transform_n_nonzero_coefs=None,
|
1281 |
+
transform_alpha=None,
|
1282 |
+
split_sign=False,
|
1283 |
+
n_jobs=None,
|
1284 |
+
positive_code=False,
|
1285 |
+
transform_max_iter=1000,
|
1286 |
+
):
|
1287 |
+
super().__init__(
|
1288 |
+
transform_algorithm,
|
1289 |
+
transform_n_nonzero_coefs,
|
1290 |
+
transform_alpha,
|
1291 |
+
split_sign,
|
1292 |
+
n_jobs,
|
1293 |
+
positive_code,
|
1294 |
+
transform_max_iter,
|
1295 |
+
)
|
1296 |
+
self.dictionary = dictionary
|
1297 |
+
|
1298 |
+
def fit(self, X, y=None):
|
1299 |
+
"""Do nothing and return the estimator unchanged.
|
1300 |
+
|
1301 |
+
This method is just there to implement the usual API and hence
|
1302 |
+
work in pipelines.
|
1303 |
+
|
1304 |
+
Parameters
|
1305 |
+
----------
|
1306 |
+
X : Ignored
|
1307 |
+
Not used, present for API consistency by convention.
|
1308 |
+
|
1309 |
+
y : Ignored
|
1310 |
+
Not used, present for API consistency by convention.
|
1311 |
+
|
1312 |
+
Returns
|
1313 |
+
-------
|
1314 |
+
self : object
|
1315 |
+
Returns the instance itself.
|
1316 |
+
"""
|
1317 |
+
return self
|
1318 |
+
|
1319 |
+
def transform(self, X, y=None):
|
1320 |
+
"""Encode the data as a sparse combination of the dictionary atoms.
|
1321 |
+
|
1322 |
+
Coding method is determined by the object parameter
|
1323 |
+
`transform_algorithm`.
|
1324 |
+
|
1325 |
+
Parameters
|
1326 |
+
----------
|
1327 |
+
X : ndarray of shape (n_samples, n_features)
|
1328 |
+
Training vector, where `n_samples` is the number of samples
|
1329 |
+
and `n_features` is the number of features.
|
1330 |
+
|
1331 |
+
y : Ignored
|
1332 |
+
Not used, present for API consistency by convention.
|
1333 |
+
|
1334 |
+
Returns
|
1335 |
+
-------
|
1336 |
+
X_new : ndarray of shape (n_samples, n_components)
|
1337 |
+
Transformed data.
|
1338 |
+
"""
|
1339 |
+
return super()._transform(X, self.dictionary)
|
1340 |
+
|
1341 |
+
def _more_tags(self):
|
1342 |
+
return {
|
1343 |
+
"requires_fit": False,
|
1344 |
+
"preserves_dtype": [np.float64, np.float32],
|
1345 |
+
}
|
1346 |
+
|
1347 |
+
@property
|
1348 |
+
def n_components_(self):
|
1349 |
+
"""Number of atoms."""
|
1350 |
+
return self.dictionary.shape[0]
|
1351 |
+
|
1352 |
+
@property
|
1353 |
+
def n_features_in_(self):
|
1354 |
+
"""Number of features seen during `fit`."""
|
1355 |
+
return self.dictionary.shape[1]
|
1356 |
+
|
1357 |
+
@property
|
1358 |
+
def _n_features_out(self):
|
1359 |
+
"""Number of transformed output features."""
|
1360 |
+
return self.n_components_
|
1361 |
+
|
1362 |
+
|
1363 |
+
class DictionaryLearning(_BaseSparseCoding, BaseEstimator):
|
1364 |
+
"""Dictionary learning.
|
1365 |
+
|
1366 |
+
Finds a dictionary (a set of atoms) that performs well at sparsely
|
1367 |
+
encoding the fitted data.
|
1368 |
+
|
1369 |
+
Solves the optimization problem::
|
1370 |
+
|
1371 |
+
(U^*,V^*) = argmin 0.5 || X - U V ||_Fro^2 + alpha * || U ||_1,1
|
1372 |
+
(U,V)
|
1373 |
+
with || V_k ||_2 <= 1 for all 0 <= k < n_components
|
1374 |
+
|
1375 |
+
||.||_Fro stands for the Frobenius norm and ||.||_1,1 stands for
|
1376 |
+
the entry-wise matrix norm which is the sum of the absolute values
|
1377 |
+
of all the entries in the matrix.
|
1378 |
+
|
1379 |
+
Read more in the :ref:`User Guide <DictionaryLearning>`.
|
1380 |
+
|
1381 |
+
Parameters
|
1382 |
+
----------
|
1383 |
+
n_components : int, default=None
|
1384 |
+
Number of dictionary elements to extract. If None, then ``n_components``
|
1385 |
+
is set to ``n_features``.
|
1386 |
+
|
1387 |
+
alpha : float, default=1.0
|
1388 |
+
Sparsity controlling parameter.
|
1389 |
+
|
1390 |
+
max_iter : int, default=1000
|
1391 |
+
Maximum number of iterations to perform.
|
1392 |
+
|
1393 |
+
tol : float, default=1e-8
|
1394 |
+
Tolerance for numerical error.
|
1395 |
+
|
1396 |
+
fit_algorithm : {'lars', 'cd'}, default='lars'
|
1397 |
+
* `'lars'`: uses the least angle regression method to solve the lasso
|
1398 |
+
problem (:func:`~sklearn.linear_model.lars_path`);
|
1399 |
+
* `'cd'`: uses the coordinate descent method to compute the
|
1400 |
+
Lasso solution (:class:`~sklearn.linear_model.Lasso`). Lars will be
|
1401 |
+
faster if the estimated components are sparse.
|
1402 |
+
|
1403 |
+
.. versionadded:: 0.17
|
1404 |
+
*cd* coordinate descent method to improve speed.
|
1405 |
+
|
1406 |
+
transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \
|
1407 |
+
'threshold'}, default='omp'
|
1408 |
+
Algorithm used to transform the data:
|
1409 |
+
|
1410 |
+
- `'lars'`: uses the least angle regression method
|
1411 |
+
(:func:`~sklearn.linear_model.lars_path`);
|
1412 |
+
- `'lasso_lars'`: uses Lars to compute the Lasso solution.
|
1413 |
+
- `'lasso_cd'`: uses the coordinate descent method to compute the
|
1414 |
+
Lasso solution (:class:`~sklearn.linear_model.Lasso`). `'lasso_lars'`
|
1415 |
+
will be faster if the estimated components are sparse.
|
1416 |
+
- `'omp'`: uses orthogonal matching pursuit to estimate the sparse
|
1417 |
+
solution.
|
1418 |
+
- `'threshold'`: squashes to zero all coefficients less than alpha from
|
1419 |
+
the projection ``dictionary * X'``.
|
1420 |
+
|
1421 |
+
.. versionadded:: 0.17
|
1422 |
+
*lasso_cd* coordinate descent method to improve speed.
|
1423 |
+
|
1424 |
+
transform_n_nonzero_coefs : int, default=None
|
1425 |
+
Number of nonzero coefficients to target in each column of the
|
1426 |
+
solution. This is only used by `algorithm='lars'` and
|
1427 |
+
`algorithm='omp'`. If `None`, then
|
1428 |
+
`transform_n_nonzero_coefs=int(n_features / 10)`.
|
1429 |
+
|
1430 |
+
transform_alpha : float, default=None
|
1431 |
+
If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
|
1432 |
+
penalty applied to the L1 norm.
|
1433 |
+
If `algorithm='threshold'`, `alpha` is the absolute value of the
|
1434 |
+
threshold below which coefficients will be squashed to zero.
|
1435 |
+
If `None`, defaults to `alpha`.
|
1436 |
+
|
1437 |
+
.. versionchanged:: 1.2
|
1438 |
+
When None, default value changed from 1.0 to `alpha`.
|
1439 |
+
|
1440 |
+
n_jobs : int or None, default=None
|
1441 |
+
Number of parallel jobs to run.
|
1442 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
1443 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
1444 |
+
for more details.
|
1445 |
+
|
1446 |
+
code_init : ndarray of shape (n_samples, n_components), default=None
|
1447 |
+
Initial value for the code, for warm restart. Only used if `code_init`
|
1448 |
+
and `dict_init` are not None.
|
1449 |
+
|
1450 |
+
dict_init : ndarray of shape (n_components, n_features), default=None
|
1451 |
+
Initial values for the dictionary, for warm restart. Only used if
|
1452 |
+
`code_init` and `dict_init` are not None.
|
1453 |
+
|
1454 |
+
callback : callable, default=None
|
1455 |
+
Callable that gets invoked every five iterations.
|
1456 |
+
|
1457 |
+
.. versionadded:: 1.3
|
1458 |
+
|
1459 |
+
verbose : bool, default=False
|
1460 |
+
To control the verbosity of the procedure.
|
1461 |
+
|
1462 |
+
split_sign : bool, default=False
|
1463 |
+
Whether to split the sparse feature vector into the concatenation of
|
1464 |
+
its negative part and its positive part. This can improve the
|
1465 |
+
performance of downstream classifiers.
|
1466 |
+
|
1467 |
+
random_state : int, RandomState instance or None, default=None
|
1468 |
+
Used for initializing the dictionary when ``dict_init`` is not
|
1469 |
+
specified, randomly shuffling the data when ``shuffle`` is set to
|
1470 |
+
``True``, and updating the dictionary. Pass an int for reproducible
|
1471 |
+
results across multiple function calls.
|
1472 |
+
See :term:`Glossary <random_state>`.
|
1473 |
+
|
1474 |
+
positive_code : bool, default=False
|
1475 |
+
Whether to enforce positivity when finding the code.
|
1476 |
+
|
1477 |
+
.. versionadded:: 0.20
|
1478 |
+
|
1479 |
+
positive_dict : bool, default=False
|
1480 |
+
Whether to enforce positivity when finding the dictionary.
|
1481 |
+
|
1482 |
+
.. versionadded:: 0.20
|
1483 |
+
|
1484 |
+
transform_max_iter : int, default=1000
|
1485 |
+
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
|
1486 |
+
`'lasso_lars'`.
|
1487 |
+
|
1488 |
+
.. versionadded:: 0.22
|
1489 |
+
|
1490 |
+
Attributes
|
1491 |
+
----------
|
1492 |
+
components_ : ndarray of shape (n_components, n_features)
|
1493 |
+
dictionary atoms extracted from the data
|
1494 |
+
|
1495 |
+
error_ : array
|
1496 |
+
vector of errors at each iteration
|
1497 |
+
|
1498 |
+
n_features_in_ : int
|
1499 |
+
Number of features seen during :term:`fit`.
|
1500 |
+
|
1501 |
+
.. versionadded:: 0.24
|
1502 |
+
|
1503 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1504 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1505 |
+
has feature names that are all strings.
|
1506 |
+
|
1507 |
+
.. versionadded:: 1.0
|
1508 |
+
|
1509 |
+
n_iter_ : int
|
1510 |
+
Number of iterations run.
|
1511 |
+
|
1512 |
+
See Also
|
1513 |
+
--------
|
1514 |
+
MiniBatchDictionaryLearning: A faster, less accurate, version of the
|
1515 |
+
dictionary learning algorithm.
|
1516 |
+
MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
|
1517 |
+
SparseCoder : Find a sparse representation of data from a fixed,
|
1518 |
+
precomputed dictionary.
|
1519 |
+
SparsePCA : Sparse Principal Components Analysis.
|
1520 |
+
|
1521 |
+
References
|
1522 |
+
----------
|
1523 |
+
|
1524 |
+
J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning
|
1525 |
+
for sparse coding (https://www.di.ens.fr/sierra/pdfs/icml09.pdf)
|
1526 |
+
|
1527 |
+
Examples
|
1528 |
+
--------
|
1529 |
+
>>> import numpy as np
|
1530 |
+
>>> from sklearn.datasets import make_sparse_coded_signal
|
1531 |
+
>>> from sklearn.decomposition import DictionaryLearning
|
1532 |
+
>>> X, dictionary, code = make_sparse_coded_signal(
|
1533 |
+
... n_samples=30, n_components=15, n_features=20, n_nonzero_coefs=10,
|
1534 |
+
... random_state=42,
|
1535 |
+
... )
|
1536 |
+
>>> dict_learner = DictionaryLearning(
|
1537 |
+
... n_components=15, transform_algorithm='lasso_lars', transform_alpha=0.1,
|
1538 |
+
... random_state=42,
|
1539 |
+
... )
|
1540 |
+
>>> X_transformed = dict_learner.fit(X).transform(X)
|
1541 |
+
|
1542 |
+
We can check the level of sparsity of `X_transformed`:
|
1543 |
+
|
1544 |
+
>>> np.mean(X_transformed == 0)
|
1545 |
+
0.52...
|
1546 |
+
|
1547 |
+
We can compare the average squared euclidean norm of the reconstruction
|
1548 |
+
error of the sparse coded signal relative to the squared euclidean norm of
|
1549 |
+
the original signal:
|
1550 |
+
|
1551 |
+
>>> X_hat = X_transformed @ dict_learner.components_
|
1552 |
+
>>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1))
|
1553 |
+
0.05...
|
1554 |
+
"""
|
1555 |
+
|
1556 |
+
_parameter_constraints: dict = {
|
1557 |
+
"n_components": [Interval(Integral, 1, None, closed="left"), None],
|
1558 |
+
"alpha": [Interval(Real, 0, None, closed="left")],
|
1559 |
+
"max_iter": [Interval(Integral, 0, None, closed="left")],
|
1560 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
1561 |
+
"fit_algorithm": [StrOptions({"lars", "cd"})],
|
1562 |
+
"transform_algorithm": [
|
1563 |
+
StrOptions({"lasso_lars", "lasso_cd", "lars", "omp", "threshold"})
|
1564 |
+
],
|
1565 |
+
"transform_n_nonzero_coefs": [Interval(Integral, 1, None, closed="left"), None],
|
1566 |
+
"transform_alpha": [Interval(Real, 0, None, closed="left"), None],
|
1567 |
+
"n_jobs": [Integral, None],
|
1568 |
+
"code_init": [np.ndarray, None],
|
1569 |
+
"dict_init": [np.ndarray, None],
|
1570 |
+
"callback": [callable, None],
|
1571 |
+
"verbose": ["verbose"],
|
1572 |
+
"split_sign": ["boolean"],
|
1573 |
+
"random_state": ["random_state"],
|
1574 |
+
"positive_code": ["boolean"],
|
1575 |
+
"positive_dict": ["boolean"],
|
1576 |
+
"transform_max_iter": [Interval(Integral, 0, None, closed="left")],
|
1577 |
+
}
|
1578 |
+
|
1579 |
+
def __init__(
|
1580 |
+
self,
|
1581 |
+
n_components=None,
|
1582 |
+
*,
|
1583 |
+
alpha=1,
|
1584 |
+
max_iter=1000,
|
1585 |
+
tol=1e-8,
|
1586 |
+
fit_algorithm="lars",
|
1587 |
+
transform_algorithm="omp",
|
1588 |
+
transform_n_nonzero_coefs=None,
|
1589 |
+
transform_alpha=None,
|
1590 |
+
n_jobs=None,
|
1591 |
+
code_init=None,
|
1592 |
+
dict_init=None,
|
1593 |
+
callback=None,
|
1594 |
+
verbose=False,
|
1595 |
+
split_sign=False,
|
1596 |
+
random_state=None,
|
1597 |
+
positive_code=False,
|
1598 |
+
positive_dict=False,
|
1599 |
+
transform_max_iter=1000,
|
1600 |
+
):
|
1601 |
+
super().__init__(
|
1602 |
+
transform_algorithm,
|
1603 |
+
transform_n_nonzero_coefs,
|
1604 |
+
transform_alpha,
|
1605 |
+
split_sign,
|
1606 |
+
n_jobs,
|
1607 |
+
positive_code,
|
1608 |
+
transform_max_iter,
|
1609 |
+
)
|
1610 |
+
self.n_components = n_components
|
1611 |
+
self.alpha = alpha
|
1612 |
+
self.max_iter = max_iter
|
1613 |
+
self.tol = tol
|
1614 |
+
self.fit_algorithm = fit_algorithm
|
1615 |
+
self.code_init = code_init
|
1616 |
+
self.dict_init = dict_init
|
1617 |
+
self.callback = callback
|
1618 |
+
self.verbose = verbose
|
1619 |
+
self.random_state = random_state
|
1620 |
+
self.positive_dict = positive_dict
|
1621 |
+
|
1622 |
+
def fit(self, X, y=None):
|
1623 |
+
"""Fit the model from data in X.
|
1624 |
+
|
1625 |
+
Parameters
|
1626 |
+
----------
|
1627 |
+
X : array-like of shape (n_samples, n_features)
|
1628 |
+
Training vector, where `n_samples` is the number of samples
|
1629 |
+
and `n_features` is the number of features.
|
1630 |
+
|
1631 |
+
y : Ignored
|
1632 |
+
Not used, present for API consistency by convention.
|
1633 |
+
|
1634 |
+
Returns
|
1635 |
+
-------
|
1636 |
+
self : object
|
1637 |
+
Returns the instance itself.
|
1638 |
+
"""
|
1639 |
+
self.fit_transform(X)
|
1640 |
+
return self
|
1641 |
+
|
1642 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
1643 |
+
def fit_transform(self, X, y=None):
|
1644 |
+
"""Fit the model from data in X and return the transformed data.
|
1645 |
+
|
1646 |
+
Parameters
|
1647 |
+
----------
|
1648 |
+
X : array-like of shape (n_samples, n_features)
|
1649 |
+
Training vector, where `n_samples` is the number of samples
|
1650 |
+
and `n_features` is the number of features.
|
1651 |
+
|
1652 |
+
y : Ignored
|
1653 |
+
Not used, present for API consistency by convention.
|
1654 |
+
|
1655 |
+
Returns
|
1656 |
+
-------
|
1657 |
+
V : ndarray of shape (n_samples, n_components)
|
1658 |
+
Transformed data.
|
1659 |
+
"""
|
1660 |
+
_check_positive_coding(method=self.fit_algorithm, positive=self.positive_code)
|
1661 |
+
|
1662 |
+
method = "lasso_" + self.fit_algorithm
|
1663 |
+
|
1664 |
+
random_state = check_random_state(self.random_state)
|
1665 |
+
X = self._validate_data(X)
|
1666 |
+
|
1667 |
+
if self.n_components is None:
|
1668 |
+
n_components = X.shape[1]
|
1669 |
+
else:
|
1670 |
+
n_components = self.n_components
|
1671 |
+
|
1672 |
+
V, U, E, self.n_iter_ = _dict_learning(
|
1673 |
+
X,
|
1674 |
+
n_components,
|
1675 |
+
alpha=self.alpha,
|
1676 |
+
tol=self.tol,
|
1677 |
+
max_iter=self.max_iter,
|
1678 |
+
method=method,
|
1679 |
+
method_max_iter=self.transform_max_iter,
|
1680 |
+
n_jobs=self.n_jobs,
|
1681 |
+
code_init=self.code_init,
|
1682 |
+
dict_init=self.dict_init,
|
1683 |
+
callback=self.callback,
|
1684 |
+
verbose=self.verbose,
|
1685 |
+
random_state=random_state,
|
1686 |
+
return_n_iter=True,
|
1687 |
+
positive_dict=self.positive_dict,
|
1688 |
+
positive_code=self.positive_code,
|
1689 |
+
)
|
1690 |
+
self.components_ = U
|
1691 |
+
self.error_ = E
|
1692 |
+
|
1693 |
+
return V
|
1694 |
+
|
1695 |
+
@property
|
1696 |
+
def _n_features_out(self):
|
1697 |
+
"""Number of transformed output features."""
|
1698 |
+
return self.components_.shape[0]
|
1699 |
+
|
1700 |
+
def _more_tags(self):
|
1701 |
+
return {
|
1702 |
+
"preserves_dtype": [np.float64, np.float32],
|
1703 |
+
}
|
1704 |
+
|
1705 |
+
|
1706 |
+
class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):
|
1707 |
+
"""Mini-batch dictionary learning.
|
1708 |
+
|
1709 |
+
Finds a dictionary (a set of atoms) that performs well at sparsely
|
1710 |
+
encoding the fitted data.
|
1711 |
+
|
1712 |
+
Solves the optimization problem::
|
1713 |
+
|
1714 |
+
(U^*,V^*) = argmin 0.5 || X - U V ||_Fro^2 + alpha * || U ||_1,1
|
1715 |
+
(U,V)
|
1716 |
+
with || V_k ||_2 <= 1 for all 0 <= k < n_components
|
1717 |
+
|
1718 |
+
||.||_Fro stands for the Frobenius norm and ||.||_1,1 stands for
|
1719 |
+
the entry-wise matrix norm which is the sum of the absolute values
|
1720 |
+
of all the entries in the matrix.
|
1721 |
+
|
1722 |
+
Read more in the :ref:`User Guide <DictionaryLearning>`.
|
1723 |
+
|
1724 |
+
Parameters
|
1725 |
+
----------
|
1726 |
+
n_components : int, default=None
|
1727 |
+
Number of dictionary elements to extract.
|
1728 |
+
|
1729 |
+
alpha : float, default=1
|
1730 |
+
Sparsity controlling parameter.
|
1731 |
+
|
1732 |
+
max_iter : int, default=1_000
|
1733 |
+
Maximum number of iterations over the complete dataset before
|
1734 |
+
stopping independently of any early stopping criterion heuristics.
|
1735 |
+
|
1736 |
+
.. versionadded:: 1.1
|
1737 |
+
|
1738 |
+
.. deprecated:: 1.4
|
1739 |
+
`max_iter=None` is deprecated in 1.4 and will be removed in 1.6.
|
1740 |
+
Use the default value (i.e. `1_000`) instead.
|
1741 |
+
|
1742 |
+
fit_algorithm : {'lars', 'cd'}, default='lars'
|
1743 |
+
The algorithm used:
|
1744 |
+
|
1745 |
+
- `'lars'`: uses the least angle regression method to solve the lasso
|
1746 |
+
problem (`linear_model.lars_path`)
|
1747 |
+
- `'cd'`: uses the coordinate descent method to compute the
|
1748 |
+
Lasso solution (`linear_model.Lasso`). Lars will be faster if
|
1749 |
+
the estimated components are sparse.
|
1750 |
+
|
1751 |
+
n_jobs : int, default=None
|
1752 |
+
Number of parallel jobs to run.
|
1753 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
1754 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
1755 |
+
for more details.
|
1756 |
+
|
1757 |
+
batch_size : int, default=256
|
1758 |
+
Number of samples in each mini-batch.
|
1759 |
+
|
1760 |
+
.. versionchanged:: 1.3
|
1761 |
+
The default value of `batch_size` changed from 3 to 256 in version 1.3.
|
1762 |
+
|
1763 |
+
shuffle : bool, default=True
|
1764 |
+
Whether to shuffle the samples before forming batches.
|
1765 |
+
|
1766 |
+
dict_init : ndarray of shape (n_components, n_features), default=None
|
1767 |
+
Initial value of the dictionary for warm restart scenarios.
|
1768 |
+
|
1769 |
+
transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \
|
1770 |
+
'threshold'}, default='omp'
|
1771 |
+
Algorithm used to transform the data:
|
1772 |
+
|
1773 |
+
- `'lars'`: uses the least angle regression method
|
1774 |
+
(`linear_model.lars_path`);
|
1775 |
+
- `'lasso_lars'`: uses Lars to compute the Lasso solution.
|
1776 |
+
- `'lasso_cd'`: uses the coordinate descent method to compute the
|
1777 |
+
Lasso solution (`linear_model.Lasso`). `'lasso_lars'` will be faster
|
1778 |
+
if the estimated components are sparse.
|
1779 |
+
- `'omp'`: uses orthogonal matching pursuit to estimate the sparse
|
1780 |
+
solution.
|
1781 |
+
- `'threshold'`: squashes to zero all coefficients less than alpha from
|
1782 |
+
the projection ``dictionary * X'``.
|
1783 |
+
|
1784 |
+
transform_n_nonzero_coefs : int, default=None
|
1785 |
+
Number of nonzero coefficients to target in each column of the
|
1786 |
+
solution. This is only used by `algorithm='lars'` and
|
1787 |
+
`algorithm='omp'`. If `None`, then
|
1788 |
+
`transform_n_nonzero_coefs=int(n_features / 10)`.
|
1789 |
+
|
1790 |
+
transform_alpha : float, default=None
|
1791 |
+
If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
|
1792 |
+
penalty applied to the L1 norm.
|
1793 |
+
If `algorithm='threshold'`, `alpha` is the absolute value of the
|
1794 |
+
threshold below which coefficients will be squashed to zero.
|
1795 |
+
If `None`, defaults to `alpha`.
|
1796 |
+
|
1797 |
+
.. versionchanged:: 1.2
|
1798 |
+
When None, default value changed from 1.0 to `alpha`.
|
1799 |
+
|
1800 |
+
verbose : bool or int, default=False
|
1801 |
+
To control the verbosity of the procedure.
|
1802 |
+
|
1803 |
+
split_sign : bool, default=False
|
1804 |
+
Whether to split the sparse feature vector into the concatenation of
|
1805 |
+
its negative part and its positive part. This can improve the
|
1806 |
+
performance of downstream classifiers.
|
1807 |
+
|
1808 |
+
random_state : int, RandomState instance or None, default=None
|
1809 |
+
Used for initializing the dictionary when ``dict_init`` is not
|
1810 |
+
specified, randomly shuffling the data when ``shuffle`` is set to
|
1811 |
+
``True``, and updating the dictionary. Pass an int for reproducible
|
1812 |
+
results across multiple function calls.
|
1813 |
+
See :term:`Glossary <random_state>`.
|
1814 |
+
|
1815 |
+
positive_code : bool, default=False
|
1816 |
+
Whether to enforce positivity when finding the code.
|
1817 |
+
|
1818 |
+
.. versionadded:: 0.20
|
1819 |
+
|
1820 |
+
positive_dict : bool, default=False
|
1821 |
+
Whether to enforce positivity when finding the dictionary.
|
1822 |
+
|
1823 |
+
.. versionadded:: 0.20
|
1824 |
+
|
1825 |
+
transform_max_iter : int, default=1000
|
1826 |
+
Maximum number of iterations to perform if `algorithm='lasso_cd'` or
|
1827 |
+
`'lasso_lars'`.
|
1828 |
+
|
1829 |
+
.. versionadded:: 0.22
|
1830 |
+
|
1831 |
+
callback : callable, default=None
|
1832 |
+
A callable that gets invoked at the end of each iteration.
|
1833 |
+
|
1834 |
+
.. versionadded:: 1.1
|
1835 |
+
|
1836 |
+
tol : float, default=1e-3
|
1837 |
+
Control early stopping based on the norm of the differences in the
|
1838 |
+
dictionary between 2 steps.
|
1839 |
+
|
1840 |
+
To disable early stopping based on changes in the dictionary, set
|
1841 |
+
`tol` to 0.0.
|
1842 |
+
|
1843 |
+
.. versionadded:: 1.1
|
1844 |
+
|
1845 |
+
max_no_improvement : int, default=10
|
1846 |
+
Control early stopping based on the consecutive number of mini batches
|
1847 |
+
that does not yield an improvement on the smoothed cost function.
|
1848 |
+
|
1849 |
+
To disable convergence detection based on cost function, set
|
1850 |
+
`max_no_improvement` to None.
|
1851 |
+
|
1852 |
+
.. versionadded:: 1.1
|
1853 |
+
|
1854 |
+
Attributes
|
1855 |
+
----------
|
1856 |
+
components_ : ndarray of shape (n_components, n_features)
|
1857 |
+
Components extracted from the data.
|
1858 |
+
|
1859 |
+
n_features_in_ : int
|
1860 |
+
Number of features seen during :term:`fit`.
|
1861 |
+
|
1862 |
+
.. versionadded:: 0.24
|
1863 |
+
|
1864 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1865 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1866 |
+
has feature names that are all strings.
|
1867 |
+
|
1868 |
+
.. versionadded:: 1.0
|
1869 |
+
|
1870 |
+
n_iter_ : int
|
1871 |
+
Number of iterations over the full dataset.
|
1872 |
+
|
1873 |
+
n_steps_ : int
|
1874 |
+
Number of mini-batches processed.
|
1875 |
+
|
1876 |
+
.. versionadded:: 1.1
|
1877 |
+
|
1878 |
+
See Also
|
1879 |
+
--------
|
1880 |
+
DictionaryLearning : Find a dictionary that sparsely encodes data.
|
1881 |
+
MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
|
1882 |
+
SparseCoder : Find a sparse representation of data from a fixed,
|
1883 |
+
precomputed dictionary.
|
1884 |
+
SparsePCA : Sparse Principal Components Analysis.
|
1885 |
+
|
1886 |
+
References
|
1887 |
+
----------
|
1888 |
+
|
1889 |
+
J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning
|
1890 |
+
for sparse coding (https://www.di.ens.fr/sierra/pdfs/icml09.pdf)
|
1891 |
+
|
1892 |
+
Examples
|
1893 |
+
--------
|
1894 |
+
>>> import numpy as np
|
1895 |
+
>>> from sklearn.datasets import make_sparse_coded_signal
|
1896 |
+
>>> from sklearn.decomposition import MiniBatchDictionaryLearning
|
1897 |
+
>>> X, dictionary, code = make_sparse_coded_signal(
|
1898 |
+
... n_samples=30, n_components=15, n_features=20, n_nonzero_coefs=10,
|
1899 |
+
... random_state=42)
|
1900 |
+
>>> dict_learner = MiniBatchDictionaryLearning(
|
1901 |
+
... n_components=15, batch_size=3, transform_algorithm='lasso_lars',
|
1902 |
+
... transform_alpha=0.1, max_iter=20, random_state=42)
|
1903 |
+
>>> X_transformed = dict_learner.fit_transform(X)
|
1904 |
+
|
1905 |
+
We can check the level of sparsity of `X_transformed`:
|
1906 |
+
|
1907 |
+
>>> np.mean(X_transformed == 0) > 0.5
|
1908 |
+
True
|
1909 |
+
|
1910 |
+
We can compare the average squared euclidean norm of the reconstruction
|
1911 |
+
error of the sparse coded signal relative to the squared euclidean norm of
|
1912 |
+
the original signal:
|
1913 |
+
|
1914 |
+
>>> X_hat = X_transformed @ dict_learner.components_
|
1915 |
+
>>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1))
|
1916 |
+
0.052...
|
1917 |
+
"""
|
1918 |
+
|
1919 |
+
_parameter_constraints: dict = {
|
1920 |
+
"n_components": [Interval(Integral, 1, None, closed="left"), None],
|
1921 |
+
"alpha": [Interval(Real, 0, None, closed="left")],
|
1922 |
+
"max_iter": [Interval(Integral, 0, None, closed="left"), Hidden(None)],
|
1923 |
+
"fit_algorithm": [StrOptions({"cd", "lars"})],
|
1924 |
+
"n_jobs": [None, Integral],
|
1925 |
+
"batch_size": [Interval(Integral, 1, None, closed="left")],
|
1926 |
+
"shuffle": ["boolean"],
|
1927 |
+
"dict_init": [None, np.ndarray],
|
1928 |
+
"transform_algorithm": [
|
1929 |
+
StrOptions({"lasso_lars", "lasso_cd", "lars", "omp", "threshold"})
|
1930 |
+
],
|
1931 |
+
"transform_n_nonzero_coefs": [Interval(Integral, 1, None, closed="left"), None],
|
1932 |
+
"transform_alpha": [Interval(Real, 0, None, closed="left"), None],
|
1933 |
+
"verbose": ["verbose"],
|
1934 |
+
"split_sign": ["boolean"],
|
1935 |
+
"random_state": ["random_state"],
|
1936 |
+
"positive_code": ["boolean"],
|
1937 |
+
"positive_dict": ["boolean"],
|
1938 |
+
"transform_max_iter": [Interval(Integral, 0, None, closed="left")],
|
1939 |
+
"callback": [None, callable],
|
1940 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
1941 |
+
"max_no_improvement": [Interval(Integral, 0, None, closed="left"), None],
|
1942 |
+
}
|
1943 |
+
|
1944 |
+
def __init__(
|
1945 |
+
self,
|
1946 |
+
n_components=None,
|
1947 |
+
*,
|
1948 |
+
alpha=1,
|
1949 |
+
max_iter=1_000,
|
1950 |
+
fit_algorithm="lars",
|
1951 |
+
n_jobs=None,
|
1952 |
+
batch_size=256,
|
1953 |
+
shuffle=True,
|
1954 |
+
dict_init=None,
|
1955 |
+
transform_algorithm="omp",
|
1956 |
+
transform_n_nonzero_coefs=None,
|
1957 |
+
transform_alpha=None,
|
1958 |
+
verbose=False,
|
1959 |
+
split_sign=False,
|
1960 |
+
random_state=None,
|
1961 |
+
positive_code=False,
|
1962 |
+
positive_dict=False,
|
1963 |
+
transform_max_iter=1000,
|
1964 |
+
callback=None,
|
1965 |
+
tol=1e-3,
|
1966 |
+
max_no_improvement=10,
|
1967 |
+
):
|
1968 |
+
super().__init__(
|
1969 |
+
transform_algorithm,
|
1970 |
+
transform_n_nonzero_coefs,
|
1971 |
+
transform_alpha,
|
1972 |
+
split_sign,
|
1973 |
+
n_jobs,
|
1974 |
+
positive_code,
|
1975 |
+
transform_max_iter,
|
1976 |
+
)
|
1977 |
+
self.n_components = n_components
|
1978 |
+
self.alpha = alpha
|
1979 |
+
self.max_iter = max_iter
|
1980 |
+
self.fit_algorithm = fit_algorithm
|
1981 |
+
self.dict_init = dict_init
|
1982 |
+
self.verbose = verbose
|
1983 |
+
self.shuffle = shuffle
|
1984 |
+
self.batch_size = batch_size
|
1985 |
+
self.split_sign = split_sign
|
1986 |
+
self.random_state = random_state
|
1987 |
+
self.positive_dict = positive_dict
|
1988 |
+
self.callback = callback
|
1989 |
+
self.max_no_improvement = max_no_improvement
|
1990 |
+
self.tol = tol
|
1991 |
+
|
1992 |
+
def _check_params(self, X):
|
1993 |
+
# n_components
|
1994 |
+
self._n_components = self.n_components
|
1995 |
+
if self._n_components is None:
|
1996 |
+
self._n_components = X.shape[1]
|
1997 |
+
|
1998 |
+
# fit_algorithm
|
1999 |
+
_check_positive_coding(self.fit_algorithm, self.positive_code)
|
2000 |
+
self._fit_algorithm = "lasso_" + self.fit_algorithm
|
2001 |
+
|
2002 |
+
# batch_size
|
2003 |
+
self._batch_size = min(self.batch_size, X.shape[0])
|
2004 |
+
|
2005 |
+
def _initialize_dict(self, X, random_state):
|
2006 |
+
"""Initialization of the dictionary."""
|
2007 |
+
if self.dict_init is not None:
|
2008 |
+
dictionary = self.dict_init
|
2009 |
+
else:
|
2010 |
+
# Init V with SVD of X
|
2011 |
+
_, S, dictionary = randomized_svd(
|
2012 |
+
X, self._n_components, random_state=random_state
|
2013 |
+
)
|
2014 |
+
dictionary = S[:, np.newaxis] * dictionary
|
2015 |
+
|
2016 |
+
if self._n_components <= len(dictionary):
|
2017 |
+
dictionary = dictionary[: self._n_components, :]
|
2018 |
+
else:
|
2019 |
+
dictionary = np.concatenate(
|
2020 |
+
(
|
2021 |
+
dictionary,
|
2022 |
+
np.zeros(
|
2023 |
+
(self._n_components - len(dictionary), dictionary.shape[1]),
|
2024 |
+
dtype=dictionary.dtype,
|
2025 |
+
),
|
2026 |
+
)
|
2027 |
+
)
|
2028 |
+
|
2029 |
+
dictionary = check_array(dictionary, order="F", dtype=X.dtype, copy=False)
|
2030 |
+
dictionary = np.require(dictionary, requirements="W")
|
2031 |
+
|
2032 |
+
return dictionary
|
2033 |
+
|
2034 |
+
def _update_inner_stats(self, X, code, batch_size, step):
|
2035 |
+
"""Update the inner stats inplace."""
|
2036 |
+
if step < batch_size - 1:
|
2037 |
+
theta = (step + 1) * batch_size
|
2038 |
+
else:
|
2039 |
+
theta = batch_size**2 + step + 1 - batch_size
|
2040 |
+
beta = (theta + 1 - batch_size) / (theta + 1)
|
2041 |
+
|
2042 |
+
self._A *= beta
|
2043 |
+
self._A += code.T @ code / batch_size
|
2044 |
+
self._B *= beta
|
2045 |
+
self._B += X.T @ code / batch_size
|
2046 |
+
|
2047 |
+
def _minibatch_step(self, X, dictionary, random_state, step):
|
2048 |
+
"""Perform the update on the dictionary for one minibatch."""
|
2049 |
+
batch_size = X.shape[0]
|
2050 |
+
|
2051 |
+
# Compute code for this batch
|
2052 |
+
code = _sparse_encode(
|
2053 |
+
X,
|
2054 |
+
dictionary,
|
2055 |
+
algorithm=self._fit_algorithm,
|
2056 |
+
alpha=self.alpha,
|
2057 |
+
n_jobs=self.n_jobs,
|
2058 |
+
positive=self.positive_code,
|
2059 |
+
max_iter=self.transform_max_iter,
|
2060 |
+
verbose=self.verbose,
|
2061 |
+
)
|
2062 |
+
|
2063 |
+
batch_cost = (
|
2064 |
+
0.5 * ((X - code @ dictionary) ** 2).sum()
|
2065 |
+
+ self.alpha * np.sum(np.abs(code))
|
2066 |
+
) / batch_size
|
2067 |
+
|
2068 |
+
# Update inner stats
|
2069 |
+
self._update_inner_stats(X, code, batch_size, step)
|
2070 |
+
|
2071 |
+
# Update dictionary
|
2072 |
+
_update_dict(
|
2073 |
+
dictionary,
|
2074 |
+
X,
|
2075 |
+
code,
|
2076 |
+
self._A,
|
2077 |
+
self._B,
|
2078 |
+
verbose=self.verbose,
|
2079 |
+
random_state=random_state,
|
2080 |
+
positive=self.positive_dict,
|
2081 |
+
)
|
2082 |
+
|
2083 |
+
return batch_cost
|
2084 |
+
|
2085 |
+
def _check_convergence(
|
2086 |
+
self, X, batch_cost, new_dict, old_dict, n_samples, step, n_steps
|
2087 |
+
):
|
2088 |
+
"""Helper function to encapsulate the early stopping logic.
|
2089 |
+
|
2090 |
+
Early stopping is based on two factors:
|
2091 |
+
- A small change of the dictionary between two minibatch updates. This is
|
2092 |
+
controlled by the tol parameter.
|
2093 |
+
- No more improvement on a smoothed estimate of the objective function for a
|
2094 |
+
a certain number of consecutive minibatch updates. This is controlled by
|
2095 |
+
the max_no_improvement parameter.
|
2096 |
+
"""
|
2097 |
+
batch_size = X.shape[0]
|
2098 |
+
|
2099 |
+
# counts steps starting from 1 for user friendly verbose mode.
|
2100 |
+
step = step + 1
|
2101 |
+
|
2102 |
+
# Ignore 100 first steps or 1 epoch to avoid initializing the ewa_cost with a
|
2103 |
+
# too bad value
|
2104 |
+
if step <= min(100, n_samples / batch_size):
|
2105 |
+
if self.verbose:
|
2106 |
+
print(f"Minibatch step {step}/{n_steps}: mean batch cost: {batch_cost}")
|
2107 |
+
return False
|
2108 |
+
|
2109 |
+
# Compute an Exponentially Weighted Average of the cost function to
|
2110 |
+
# monitor the convergence while discarding minibatch-local stochastic
|
2111 |
+
# variability: https://en.wikipedia.org/wiki/Moving_average
|
2112 |
+
if self._ewa_cost is None:
|
2113 |
+
self._ewa_cost = batch_cost
|
2114 |
+
else:
|
2115 |
+
alpha = batch_size / (n_samples + 1)
|
2116 |
+
alpha = min(alpha, 1)
|
2117 |
+
self._ewa_cost = self._ewa_cost * (1 - alpha) + batch_cost * alpha
|
2118 |
+
|
2119 |
+
if self.verbose:
|
2120 |
+
print(
|
2121 |
+
f"Minibatch step {step}/{n_steps}: mean batch cost: "
|
2122 |
+
f"{batch_cost}, ewa cost: {self._ewa_cost}"
|
2123 |
+
)
|
2124 |
+
|
2125 |
+
# Early stopping based on change of dictionary
|
2126 |
+
dict_diff = linalg.norm(new_dict - old_dict) / self._n_components
|
2127 |
+
if self.tol > 0 and dict_diff <= self.tol:
|
2128 |
+
if self.verbose:
|
2129 |
+
print(f"Converged (small dictionary change) at step {step}/{n_steps}")
|
2130 |
+
return True
|
2131 |
+
|
2132 |
+
# Early stopping heuristic due to lack of improvement on smoothed
|
2133 |
+
# cost function
|
2134 |
+
if self._ewa_cost_min is None or self._ewa_cost < self._ewa_cost_min:
|
2135 |
+
self._no_improvement = 0
|
2136 |
+
self._ewa_cost_min = self._ewa_cost
|
2137 |
+
else:
|
2138 |
+
self._no_improvement += 1
|
2139 |
+
|
2140 |
+
if (
|
2141 |
+
self.max_no_improvement is not None
|
2142 |
+
and self._no_improvement >= self.max_no_improvement
|
2143 |
+
):
|
2144 |
+
if self.verbose:
|
2145 |
+
print(
|
2146 |
+
"Converged (lack of improvement in objective function) "
|
2147 |
+
f"at step {step}/{n_steps}"
|
2148 |
+
)
|
2149 |
+
return True
|
2150 |
+
|
2151 |
+
return False
|
2152 |
+
|
2153 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
2154 |
+
def fit(self, X, y=None):
|
2155 |
+
"""Fit the model from data in X.
|
2156 |
+
|
2157 |
+
Parameters
|
2158 |
+
----------
|
2159 |
+
X : array-like of shape (n_samples, n_features)
|
2160 |
+
Training vector, where `n_samples` is the number of samples
|
2161 |
+
and `n_features` is the number of features.
|
2162 |
+
|
2163 |
+
y : Ignored
|
2164 |
+
Not used, present for API consistency by convention.
|
2165 |
+
|
2166 |
+
Returns
|
2167 |
+
-------
|
2168 |
+
self : object
|
2169 |
+
Returns the instance itself.
|
2170 |
+
"""
|
2171 |
+
X = self._validate_data(
|
2172 |
+
X, dtype=[np.float64, np.float32], order="C", copy=False
|
2173 |
+
)
|
2174 |
+
|
2175 |
+
self._check_params(X)
|
2176 |
+
self._random_state = check_random_state(self.random_state)
|
2177 |
+
|
2178 |
+
dictionary = self._initialize_dict(X, self._random_state)
|
2179 |
+
old_dict = dictionary.copy()
|
2180 |
+
|
2181 |
+
if self.shuffle:
|
2182 |
+
X_train = X.copy()
|
2183 |
+
self._random_state.shuffle(X_train)
|
2184 |
+
else:
|
2185 |
+
X_train = X
|
2186 |
+
|
2187 |
+
n_samples, n_features = X_train.shape
|
2188 |
+
|
2189 |
+
if self.verbose:
|
2190 |
+
print("[dict_learning]")
|
2191 |
+
|
2192 |
+
# Inner stats
|
2193 |
+
self._A = np.zeros(
|
2194 |
+
(self._n_components, self._n_components), dtype=X_train.dtype
|
2195 |
+
)
|
2196 |
+
self._B = np.zeros((n_features, self._n_components), dtype=X_train.dtype)
|
2197 |
+
|
2198 |
+
# TODO(1.6): remove in 1.6
|
2199 |
+
if self.max_iter is None:
|
2200 |
+
warn(
|
2201 |
+
(
|
2202 |
+
"`max_iter=None` is deprecated in version 1.4 and will be removed"
|
2203 |
+
" in version 1.6. Use the default value (i.e. `1_000`) instead."
|
2204 |
+
),
|
2205 |
+
FutureWarning,
|
2206 |
+
)
|
2207 |
+
max_iter = 1_000
|
2208 |
+
else:
|
2209 |
+
max_iter = self.max_iter
|
2210 |
+
|
2211 |
+
# Attributes to monitor the convergence
|
2212 |
+
self._ewa_cost = None
|
2213 |
+
self._ewa_cost_min = None
|
2214 |
+
self._no_improvement = 0
|
2215 |
+
|
2216 |
+
batches = gen_batches(n_samples, self._batch_size)
|
2217 |
+
batches = itertools.cycle(batches)
|
2218 |
+
n_steps_per_iter = int(np.ceil(n_samples / self._batch_size))
|
2219 |
+
n_steps = max_iter * n_steps_per_iter
|
2220 |
+
|
2221 |
+
i = -1 # to allow max_iter = 0
|
2222 |
+
|
2223 |
+
for i, batch in zip(range(n_steps), batches):
|
2224 |
+
X_batch = X_train[batch]
|
2225 |
+
|
2226 |
+
batch_cost = self._minibatch_step(
|
2227 |
+
X_batch, dictionary, self._random_state, i
|
2228 |
+
)
|
2229 |
+
|
2230 |
+
if self._check_convergence(
|
2231 |
+
X_batch, batch_cost, dictionary, old_dict, n_samples, i, n_steps
|
2232 |
+
):
|
2233 |
+
break
|
2234 |
+
|
2235 |
+
# XXX callback param added for backward compat in #18975 but a common
|
2236 |
+
# unified callback API should be preferred
|
2237 |
+
if self.callback is not None:
|
2238 |
+
self.callback(locals())
|
2239 |
+
|
2240 |
+
old_dict[:] = dictionary
|
2241 |
+
|
2242 |
+
self.n_steps_ = i + 1
|
2243 |
+
self.n_iter_ = np.ceil(self.n_steps_ / n_steps_per_iter)
|
2244 |
+
self.components_ = dictionary
|
2245 |
+
|
2246 |
+
return self
|
2247 |
+
|
2248 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
2249 |
+
def partial_fit(self, X, y=None):
|
2250 |
+
"""Update the model using the data in X as a mini-batch.
|
2251 |
+
|
2252 |
+
Parameters
|
2253 |
+
----------
|
2254 |
+
X : array-like of shape (n_samples, n_features)
|
2255 |
+
Training vector, where `n_samples` is the number of samples
|
2256 |
+
and `n_features` is the number of features.
|
2257 |
+
|
2258 |
+
y : Ignored
|
2259 |
+
Not used, present for API consistency by convention.
|
2260 |
+
|
2261 |
+
Returns
|
2262 |
+
-------
|
2263 |
+
self : object
|
2264 |
+
Return the instance itself.
|
2265 |
+
"""
|
2266 |
+
has_components = hasattr(self, "components_")
|
2267 |
+
|
2268 |
+
X = self._validate_data(
|
2269 |
+
X, dtype=[np.float64, np.float32], order="C", reset=not has_components
|
2270 |
+
)
|
2271 |
+
|
2272 |
+
if not has_components:
|
2273 |
+
# This instance has not been fitted yet (fit or partial_fit)
|
2274 |
+
self._check_params(X)
|
2275 |
+
self._random_state = check_random_state(self.random_state)
|
2276 |
+
|
2277 |
+
dictionary = self._initialize_dict(X, self._random_state)
|
2278 |
+
|
2279 |
+
self.n_steps_ = 0
|
2280 |
+
|
2281 |
+
self._A = np.zeros((self._n_components, self._n_components), dtype=X.dtype)
|
2282 |
+
self._B = np.zeros((X.shape[1], self._n_components), dtype=X.dtype)
|
2283 |
+
else:
|
2284 |
+
dictionary = self.components_
|
2285 |
+
|
2286 |
+
self._minibatch_step(X, dictionary, self._random_state, self.n_steps_)
|
2287 |
+
|
2288 |
+
self.components_ = dictionary
|
2289 |
+
self.n_steps_ += 1
|
2290 |
+
|
2291 |
+
return self
|
2292 |
+
|
2293 |
+
@property
|
2294 |
+
def _n_features_out(self):
|
2295 |
+
"""Number of transformed output features."""
|
2296 |
+
return self.components_.shape[0]
|
2297 |
+
|
2298 |
+
def _more_tags(self):
|
2299 |
+
return {
|
2300 |
+
"preserves_dtype": [np.float64, np.float32],
|
2301 |
+
}
|
venv/lib/python3.10/site-packages/sklearn/decomposition/_factor_analysis.py
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Factor Analysis.
|
2 |
+
|
3 |
+
A latent linear variable model.
|
4 |
+
|
5 |
+
FactorAnalysis is similar to probabilistic PCA implemented by PCA.score
|
6 |
+
While PCA assumes Gaussian noise with the same variance for each
|
7 |
+
feature, the FactorAnalysis model assumes different variances for
|
8 |
+
each of them.
|
9 |
+
|
10 |
+
This implementation is based on David Barber's Book,
|
11 |
+
Bayesian Reasoning and Machine Learning,
|
12 |
+
http://www.cs.ucl.ac.uk/staff/d.barber/brml,
|
13 |
+
Algorithm 21.1
|
14 |
+
"""
|
15 |
+
|
16 |
+
# Author: Christian Osendorfer <[email protected]>
|
17 |
+
# Alexandre Gramfort <[email protected]>
|
18 |
+
# Denis A. Engemann <[email protected]>
|
19 |
+
|
20 |
+
# License: BSD3
|
21 |
+
|
22 |
+
import warnings
|
23 |
+
from math import log, sqrt
|
24 |
+
from numbers import Integral, Real
|
25 |
+
|
26 |
+
import numpy as np
|
27 |
+
from scipy import linalg
|
28 |
+
|
29 |
+
from ..base import (
|
30 |
+
BaseEstimator,
|
31 |
+
ClassNamePrefixFeaturesOutMixin,
|
32 |
+
TransformerMixin,
|
33 |
+
_fit_context,
|
34 |
+
)
|
35 |
+
from ..exceptions import ConvergenceWarning
|
36 |
+
from ..utils import check_random_state
|
37 |
+
from ..utils._param_validation import Interval, StrOptions
|
38 |
+
from ..utils.extmath import fast_logdet, randomized_svd, squared_norm
|
39 |
+
from ..utils.validation import check_is_fitted
|
40 |
+
|
41 |
+
|
42 |
+
class FactorAnalysis(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
43 |
+
"""Factor Analysis (FA).
|
44 |
+
|
45 |
+
A simple linear generative model with Gaussian latent variables.
|
46 |
+
|
47 |
+
The observations are assumed to be caused by a linear transformation of
|
48 |
+
lower dimensional latent factors and added Gaussian noise.
|
49 |
+
Without loss of generality the factors are distributed according to a
|
50 |
+
Gaussian with zero mean and unit covariance. The noise is also zero mean
|
51 |
+
and has an arbitrary diagonal covariance matrix.
|
52 |
+
|
53 |
+
If we would restrict the model further, by assuming that the Gaussian
|
54 |
+
noise is even isotropic (all diagonal entries are the same) we would obtain
|
55 |
+
:class:`PCA`.
|
56 |
+
|
57 |
+
FactorAnalysis performs a maximum likelihood estimate of the so-called
|
58 |
+
`loading` matrix, the transformation of the latent variables to the
|
59 |
+
observed ones, using SVD based approach.
|
60 |
+
|
61 |
+
Read more in the :ref:`User Guide <FA>`.
|
62 |
+
|
63 |
+
.. versionadded:: 0.13
|
64 |
+
|
65 |
+
Parameters
|
66 |
+
----------
|
67 |
+
n_components : int, default=None
|
68 |
+
Dimensionality of latent space, the number of components
|
69 |
+
of ``X`` that are obtained after ``transform``.
|
70 |
+
If None, n_components is set to the number of features.
|
71 |
+
|
72 |
+
tol : float, default=1e-2
|
73 |
+
Stopping tolerance for log-likelihood increase.
|
74 |
+
|
75 |
+
copy : bool, default=True
|
76 |
+
Whether to make a copy of X. If ``False``, the input X gets overwritten
|
77 |
+
during fitting.
|
78 |
+
|
79 |
+
max_iter : int, default=1000
|
80 |
+
Maximum number of iterations.
|
81 |
+
|
82 |
+
noise_variance_init : array-like of shape (n_features,), default=None
|
83 |
+
The initial guess of the noise variance for each feature.
|
84 |
+
If None, it defaults to np.ones(n_features).
|
85 |
+
|
86 |
+
svd_method : {'lapack', 'randomized'}, default='randomized'
|
87 |
+
Which SVD method to use. If 'lapack' use standard SVD from
|
88 |
+
scipy.linalg, if 'randomized' use fast ``randomized_svd`` function.
|
89 |
+
Defaults to 'randomized'. For most applications 'randomized' will
|
90 |
+
be sufficiently precise while providing significant speed gains.
|
91 |
+
Accuracy can also be improved by setting higher values for
|
92 |
+
`iterated_power`. If this is not sufficient, for maximum precision
|
93 |
+
you should choose 'lapack'.
|
94 |
+
|
95 |
+
iterated_power : int, default=3
|
96 |
+
Number of iterations for the power method. 3 by default. Only used
|
97 |
+
if ``svd_method`` equals 'randomized'.
|
98 |
+
|
99 |
+
rotation : {'varimax', 'quartimax'}, default=None
|
100 |
+
If not None, apply the indicated rotation. Currently, varimax and
|
101 |
+
quartimax are implemented. See
|
102 |
+
`"The varimax criterion for analytic rotation in factor analysis"
|
103 |
+
<https://link.springer.com/article/10.1007%2FBF02289233>`_
|
104 |
+
H. F. Kaiser, 1958.
|
105 |
+
|
106 |
+
.. versionadded:: 0.24
|
107 |
+
|
108 |
+
random_state : int or RandomState instance, default=0
|
109 |
+
Only used when ``svd_method`` equals 'randomized'. Pass an int for
|
110 |
+
reproducible results across multiple function calls.
|
111 |
+
See :term:`Glossary <random_state>`.
|
112 |
+
|
113 |
+
Attributes
|
114 |
+
----------
|
115 |
+
components_ : ndarray of shape (n_components, n_features)
|
116 |
+
Components with maximum variance.
|
117 |
+
|
118 |
+
loglike_ : list of shape (n_iterations,)
|
119 |
+
The log likelihood at each iteration.
|
120 |
+
|
121 |
+
noise_variance_ : ndarray of shape (n_features,)
|
122 |
+
The estimated noise variance for each feature.
|
123 |
+
|
124 |
+
n_iter_ : int
|
125 |
+
Number of iterations run.
|
126 |
+
|
127 |
+
mean_ : ndarray of shape (n_features,)
|
128 |
+
Per-feature empirical mean, estimated from the training set.
|
129 |
+
|
130 |
+
n_features_in_ : int
|
131 |
+
Number of features seen during :term:`fit`.
|
132 |
+
|
133 |
+
.. versionadded:: 0.24
|
134 |
+
|
135 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
136 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
137 |
+
has feature names that are all strings.
|
138 |
+
|
139 |
+
.. versionadded:: 1.0
|
140 |
+
|
141 |
+
See Also
|
142 |
+
--------
|
143 |
+
PCA: Principal component analysis is also a latent linear variable model
|
144 |
+
which however assumes equal noise variance for each feature.
|
145 |
+
This extra assumption makes probabilistic PCA faster as it can be
|
146 |
+
computed in closed form.
|
147 |
+
FastICA: Independent component analysis, a latent variable model with
|
148 |
+
non-Gaussian latent variables.
|
149 |
+
|
150 |
+
References
|
151 |
+
----------
|
152 |
+
- David Barber, Bayesian Reasoning and Machine Learning,
|
153 |
+
Algorithm 21.1.
|
154 |
+
|
155 |
+
- Christopher M. Bishop: Pattern Recognition and Machine Learning,
|
156 |
+
Chapter 12.2.4.
|
157 |
+
|
158 |
+
Examples
|
159 |
+
--------
|
160 |
+
>>> from sklearn.datasets import load_digits
|
161 |
+
>>> from sklearn.decomposition import FactorAnalysis
|
162 |
+
>>> X, _ = load_digits(return_X_y=True)
|
163 |
+
>>> transformer = FactorAnalysis(n_components=7, random_state=0)
|
164 |
+
>>> X_transformed = transformer.fit_transform(X)
|
165 |
+
>>> X_transformed.shape
|
166 |
+
(1797, 7)
|
167 |
+
"""
|
168 |
+
|
169 |
+
_parameter_constraints: dict = {
|
170 |
+
"n_components": [Interval(Integral, 0, None, closed="left"), None],
|
171 |
+
"tol": [Interval(Real, 0.0, None, closed="left")],
|
172 |
+
"copy": ["boolean"],
|
173 |
+
"max_iter": [Interval(Integral, 1, None, closed="left")],
|
174 |
+
"noise_variance_init": ["array-like", None],
|
175 |
+
"svd_method": [StrOptions({"randomized", "lapack"})],
|
176 |
+
"iterated_power": [Interval(Integral, 0, None, closed="left")],
|
177 |
+
"rotation": [StrOptions({"varimax", "quartimax"}), None],
|
178 |
+
"random_state": ["random_state"],
|
179 |
+
}
|
180 |
+
|
181 |
+
def __init__(
|
182 |
+
self,
|
183 |
+
n_components=None,
|
184 |
+
*,
|
185 |
+
tol=1e-2,
|
186 |
+
copy=True,
|
187 |
+
max_iter=1000,
|
188 |
+
noise_variance_init=None,
|
189 |
+
svd_method="randomized",
|
190 |
+
iterated_power=3,
|
191 |
+
rotation=None,
|
192 |
+
random_state=0,
|
193 |
+
):
|
194 |
+
self.n_components = n_components
|
195 |
+
self.copy = copy
|
196 |
+
self.tol = tol
|
197 |
+
self.max_iter = max_iter
|
198 |
+
self.svd_method = svd_method
|
199 |
+
|
200 |
+
self.noise_variance_init = noise_variance_init
|
201 |
+
self.iterated_power = iterated_power
|
202 |
+
self.random_state = random_state
|
203 |
+
self.rotation = rotation
|
204 |
+
|
205 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
206 |
+
def fit(self, X, y=None):
|
207 |
+
"""Fit the FactorAnalysis model to X using SVD based approach.
|
208 |
+
|
209 |
+
Parameters
|
210 |
+
----------
|
211 |
+
X : array-like of shape (n_samples, n_features)
|
212 |
+
Training data.
|
213 |
+
|
214 |
+
y : Ignored
|
215 |
+
Ignored parameter.
|
216 |
+
|
217 |
+
Returns
|
218 |
+
-------
|
219 |
+
self : object
|
220 |
+
FactorAnalysis class instance.
|
221 |
+
"""
|
222 |
+
X = self._validate_data(X, copy=self.copy, dtype=np.float64)
|
223 |
+
|
224 |
+
n_samples, n_features = X.shape
|
225 |
+
n_components = self.n_components
|
226 |
+
if n_components is None:
|
227 |
+
n_components = n_features
|
228 |
+
|
229 |
+
self.mean_ = np.mean(X, axis=0)
|
230 |
+
X -= self.mean_
|
231 |
+
|
232 |
+
# some constant terms
|
233 |
+
nsqrt = sqrt(n_samples)
|
234 |
+
llconst = n_features * log(2.0 * np.pi) + n_components
|
235 |
+
var = np.var(X, axis=0)
|
236 |
+
|
237 |
+
if self.noise_variance_init is None:
|
238 |
+
psi = np.ones(n_features, dtype=X.dtype)
|
239 |
+
else:
|
240 |
+
if len(self.noise_variance_init) != n_features:
|
241 |
+
raise ValueError(
|
242 |
+
"noise_variance_init dimension does not "
|
243 |
+
"with number of features : %d != %d"
|
244 |
+
% (len(self.noise_variance_init), n_features)
|
245 |
+
)
|
246 |
+
psi = np.array(self.noise_variance_init)
|
247 |
+
|
248 |
+
loglike = []
|
249 |
+
old_ll = -np.inf
|
250 |
+
SMALL = 1e-12
|
251 |
+
|
252 |
+
# we'll modify svd outputs to return unexplained variance
|
253 |
+
# to allow for unified computation of loglikelihood
|
254 |
+
if self.svd_method == "lapack":
|
255 |
+
|
256 |
+
def my_svd(X):
|
257 |
+
_, s, Vt = linalg.svd(X, full_matrices=False, check_finite=False)
|
258 |
+
return (
|
259 |
+
s[:n_components],
|
260 |
+
Vt[:n_components],
|
261 |
+
squared_norm(s[n_components:]),
|
262 |
+
)
|
263 |
+
|
264 |
+
else: # svd_method == "randomized"
|
265 |
+
random_state = check_random_state(self.random_state)
|
266 |
+
|
267 |
+
def my_svd(X):
|
268 |
+
_, s, Vt = randomized_svd(
|
269 |
+
X,
|
270 |
+
n_components,
|
271 |
+
random_state=random_state,
|
272 |
+
n_iter=self.iterated_power,
|
273 |
+
)
|
274 |
+
return s, Vt, squared_norm(X) - squared_norm(s)
|
275 |
+
|
276 |
+
for i in range(self.max_iter):
|
277 |
+
# SMALL helps numerics
|
278 |
+
sqrt_psi = np.sqrt(psi) + SMALL
|
279 |
+
s, Vt, unexp_var = my_svd(X / (sqrt_psi * nsqrt))
|
280 |
+
s **= 2
|
281 |
+
# Use 'maximum' here to avoid sqrt problems.
|
282 |
+
W = np.sqrt(np.maximum(s - 1.0, 0.0))[:, np.newaxis] * Vt
|
283 |
+
del Vt
|
284 |
+
W *= sqrt_psi
|
285 |
+
|
286 |
+
# loglikelihood
|
287 |
+
ll = llconst + np.sum(np.log(s))
|
288 |
+
ll += unexp_var + np.sum(np.log(psi))
|
289 |
+
ll *= -n_samples / 2.0
|
290 |
+
loglike.append(ll)
|
291 |
+
if (ll - old_ll) < self.tol:
|
292 |
+
break
|
293 |
+
old_ll = ll
|
294 |
+
|
295 |
+
psi = np.maximum(var - np.sum(W**2, axis=0), SMALL)
|
296 |
+
else:
|
297 |
+
warnings.warn(
|
298 |
+
"FactorAnalysis did not converge."
|
299 |
+
+ " You might want"
|
300 |
+
+ " to increase the number of iterations.",
|
301 |
+
ConvergenceWarning,
|
302 |
+
)
|
303 |
+
|
304 |
+
self.components_ = W
|
305 |
+
if self.rotation is not None:
|
306 |
+
self.components_ = self._rotate(W)
|
307 |
+
self.noise_variance_ = psi
|
308 |
+
self.loglike_ = loglike
|
309 |
+
self.n_iter_ = i + 1
|
310 |
+
return self
|
311 |
+
|
312 |
+
def transform(self, X):
|
313 |
+
"""Apply dimensionality reduction to X using the model.
|
314 |
+
|
315 |
+
Compute the expected mean of the latent variables.
|
316 |
+
See Barber, 21.2.33 (or Bishop, 12.66).
|
317 |
+
|
318 |
+
Parameters
|
319 |
+
----------
|
320 |
+
X : array-like of shape (n_samples, n_features)
|
321 |
+
Training data.
|
322 |
+
|
323 |
+
Returns
|
324 |
+
-------
|
325 |
+
X_new : ndarray of shape (n_samples, n_components)
|
326 |
+
The latent variables of X.
|
327 |
+
"""
|
328 |
+
check_is_fitted(self)
|
329 |
+
|
330 |
+
X = self._validate_data(X, reset=False)
|
331 |
+
Ih = np.eye(len(self.components_))
|
332 |
+
|
333 |
+
X_transformed = X - self.mean_
|
334 |
+
|
335 |
+
Wpsi = self.components_ / self.noise_variance_
|
336 |
+
cov_z = linalg.inv(Ih + np.dot(Wpsi, self.components_.T))
|
337 |
+
tmp = np.dot(X_transformed, Wpsi.T)
|
338 |
+
X_transformed = np.dot(tmp, cov_z)
|
339 |
+
|
340 |
+
return X_transformed
|
341 |
+
|
342 |
+
def get_covariance(self):
|
343 |
+
"""Compute data covariance with the FactorAnalysis model.
|
344 |
+
|
345 |
+
``cov = components_.T * components_ + diag(noise_variance)``
|
346 |
+
|
347 |
+
Returns
|
348 |
+
-------
|
349 |
+
cov : ndarray of shape (n_features, n_features)
|
350 |
+
Estimated covariance of data.
|
351 |
+
"""
|
352 |
+
check_is_fitted(self)
|
353 |
+
|
354 |
+
cov = np.dot(self.components_.T, self.components_)
|
355 |
+
cov.flat[:: len(cov) + 1] += self.noise_variance_ # modify diag inplace
|
356 |
+
return cov
|
357 |
+
|
358 |
+
def get_precision(self):
|
359 |
+
"""Compute data precision matrix with the FactorAnalysis model.
|
360 |
+
|
361 |
+
Returns
|
362 |
+
-------
|
363 |
+
precision : ndarray of shape (n_features, n_features)
|
364 |
+
Estimated precision of data.
|
365 |
+
"""
|
366 |
+
check_is_fitted(self)
|
367 |
+
|
368 |
+
n_features = self.components_.shape[1]
|
369 |
+
|
370 |
+
# handle corner cases first
|
371 |
+
if self.n_components == 0:
|
372 |
+
return np.diag(1.0 / self.noise_variance_)
|
373 |
+
if self.n_components == n_features:
|
374 |
+
return linalg.inv(self.get_covariance())
|
375 |
+
|
376 |
+
# Get precision using matrix inversion lemma
|
377 |
+
components_ = self.components_
|
378 |
+
precision = np.dot(components_ / self.noise_variance_, components_.T)
|
379 |
+
precision.flat[:: len(precision) + 1] += 1.0
|
380 |
+
precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_))
|
381 |
+
precision /= self.noise_variance_[:, np.newaxis]
|
382 |
+
precision /= -self.noise_variance_[np.newaxis, :]
|
383 |
+
precision.flat[:: len(precision) + 1] += 1.0 / self.noise_variance_
|
384 |
+
return precision
|
385 |
+
|
386 |
+
def score_samples(self, X):
|
387 |
+
"""Compute the log-likelihood of each sample.
|
388 |
+
|
389 |
+
Parameters
|
390 |
+
----------
|
391 |
+
X : ndarray of shape (n_samples, n_features)
|
392 |
+
The data.
|
393 |
+
|
394 |
+
Returns
|
395 |
+
-------
|
396 |
+
ll : ndarray of shape (n_samples,)
|
397 |
+
Log-likelihood of each sample under the current model.
|
398 |
+
"""
|
399 |
+
check_is_fitted(self)
|
400 |
+
X = self._validate_data(X, reset=False)
|
401 |
+
Xr = X - self.mean_
|
402 |
+
precision = self.get_precision()
|
403 |
+
n_features = X.shape[1]
|
404 |
+
log_like = -0.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1)
|
405 |
+
log_like -= 0.5 * (n_features * log(2.0 * np.pi) - fast_logdet(precision))
|
406 |
+
return log_like
|
407 |
+
|
408 |
+
def score(self, X, y=None):
|
409 |
+
"""Compute the average log-likelihood of the samples.
|
410 |
+
|
411 |
+
Parameters
|
412 |
+
----------
|
413 |
+
X : ndarray of shape (n_samples, n_features)
|
414 |
+
The data.
|
415 |
+
|
416 |
+
y : Ignored
|
417 |
+
Ignored parameter.
|
418 |
+
|
419 |
+
Returns
|
420 |
+
-------
|
421 |
+
ll : float
|
422 |
+
Average log-likelihood of the samples under the current model.
|
423 |
+
"""
|
424 |
+
return np.mean(self.score_samples(X))
|
425 |
+
|
426 |
+
def _rotate(self, components, n_components=None, tol=1e-6):
|
427 |
+
"Rotate the factor analysis solution."
|
428 |
+
# note that tol is not exposed
|
429 |
+
return _ortho_rotation(components.T, method=self.rotation, tol=tol)[
|
430 |
+
: self.n_components
|
431 |
+
]
|
432 |
+
|
433 |
+
@property
|
434 |
+
def _n_features_out(self):
|
435 |
+
"""Number of transformed output features."""
|
436 |
+
return self.components_.shape[0]
|
437 |
+
|
438 |
+
|
439 |
+
def _ortho_rotation(components, method="varimax", tol=1e-6, max_iter=100):
|
440 |
+
"""Return rotated components."""
|
441 |
+
nrow, ncol = components.shape
|
442 |
+
rotation_matrix = np.eye(ncol)
|
443 |
+
var = 0
|
444 |
+
|
445 |
+
for _ in range(max_iter):
|
446 |
+
comp_rot = np.dot(components, rotation_matrix)
|
447 |
+
if method == "varimax":
|
448 |
+
tmp = comp_rot * np.transpose((comp_rot**2).sum(axis=0) / nrow)
|
449 |
+
elif method == "quartimax":
|
450 |
+
tmp = 0
|
451 |
+
u, s, v = np.linalg.svd(np.dot(components.T, comp_rot**3 - tmp))
|
452 |
+
rotation_matrix = np.dot(u, v)
|
453 |
+
var_new = np.sum(s)
|
454 |
+
if var != 0 and var_new < var * (1 + tol):
|
455 |
+
break
|
456 |
+
var = var_new
|
457 |
+
|
458 |
+
return np.dot(components, rotation_matrix).T
|
venv/lib/python3.10/site-packages/sklearn/decomposition/_fastica.py
ADDED
@@ -0,0 +1,795 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Python implementation of the fast ICA algorithms.
|
3 |
+
|
4 |
+
Reference: Tables 8.3 and 8.4 page 196 in the book:
|
5 |
+
Independent Component Analysis, by Hyvarinen et al.
|
6 |
+
"""
|
7 |
+
|
8 |
+
# Authors: Pierre Lafaye de Micheaux, Stefan van der Walt, Gael Varoquaux,
|
9 |
+
# Bertrand Thirion, Alexandre Gramfort, Denis A. Engemann
|
10 |
+
# License: BSD 3 clause
|
11 |
+
|
12 |
+
import warnings
|
13 |
+
from numbers import Integral, Real
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
from scipy import linalg
|
17 |
+
|
18 |
+
from ..base import (
|
19 |
+
BaseEstimator,
|
20 |
+
ClassNamePrefixFeaturesOutMixin,
|
21 |
+
TransformerMixin,
|
22 |
+
_fit_context,
|
23 |
+
)
|
24 |
+
from ..exceptions import ConvergenceWarning
|
25 |
+
from ..utils import as_float_array, check_array, check_random_state
|
26 |
+
from ..utils._param_validation import Interval, Options, StrOptions, validate_params
|
27 |
+
from ..utils.validation import check_is_fitted
|
28 |
+
|
29 |
+
__all__ = ["fastica", "FastICA"]
|
30 |
+
|
31 |
+
|
32 |
+
def _gs_decorrelation(w, W, j):
|
33 |
+
"""
|
34 |
+
Orthonormalize w wrt the first j rows of W.
|
35 |
+
|
36 |
+
Parameters
|
37 |
+
----------
|
38 |
+
w : ndarray of shape (n,)
|
39 |
+
Array to be orthogonalized
|
40 |
+
|
41 |
+
W : ndarray of shape (p, n)
|
42 |
+
Null space definition
|
43 |
+
|
44 |
+
j : int < p
|
45 |
+
The no of (from the first) rows of Null space W wrt which w is
|
46 |
+
orthogonalized.
|
47 |
+
|
48 |
+
Notes
|
49 |
+
-----
|
50 |
+
Assumes that W is orthogonal
|
51 |
+
w changed in place
|
52 |
+
"""
|
53 |
+
w -= np.linalg.multi_dot([w, W[:j].T, W[:j]])
|
54 |
+
return w
|
55 |
+
|
56 |
+
|
57 |
+
def _sym_decorrelation(W):
|
58 |
+
"""Symmetric decorrelation
|
59 |
+
i.e. W <- (W * W.T) ^{-1/2} * W
|
60 |
+
"""
|
61 |
+
s, u = linalg.eigh(np.dot(W, W.T))
|
62 |
+
# Avoid sqrt of negative values because of rounding errors. Note that
|
63 |
+
# np.sqrt(tiny) is larger than tiny and therefore this clipping also
|
64 |
+
# prevents division by zero in the next step.
|
65 |
+
s = np.clip(s, a_min=np.finfo(W.dtype).tiny, a_max=None)
|
66 |
+
|
67 |
+
# u (resp. s) contains the eigenvectors (resp. square roots of
|
68 |
+
# the eigenvalues) of W * W.T
|
69 |
+
return np.linalg.multi_dot([u * (1.0 / np.sqrt(s)), u.T, W])
|
70 |
+
|
71 |
+
|
72 |
+
def _ica_def(X, tol, g, fun_args, max_iter, w_init):
|
73 |
+
"""Deflationary FastICA using fun approx to neg-entropy function
|
74 |
+
|
75 |
+
Used internally by FastICA.
|
76 |
+
"""
|
77 |
+
|
78 |
+
n_components = w_init.shape[0]
|
79 |
+
W = np.zeros((n_components, n_components), dtype=X.dtype)
|
80 |
+
n_iter = []
|
81 |
+
|
82 |
+
# j is the index of the extracted component
|
83 |
+
for j in range(n_components):
|
84 |
+
w = w_init[j, :].copy()
|
85 |
+
w /= np.sqrt((w**2).sum())
|
86 |
+
|
87 |
+
for i in range(max_iter):
|
88 |
+
gwtx, g_wtx = g(np.dot(w.T, X), fun_args)
|
89 |
+
|
90 |
+
w1 = (X * gwtx).mean(axis=1) - g_wtx.mean() * w
|
91 |
+
|
92 |
+
_gs_decorrelation(w1, W, j)
|
93 |
+
|
94 |
+
w1 /= np.sqrt((w1**2).sum())
|
95 |
+
|
96 |
+
lim = np.abs(np.abs((w1 * w).sum()) - 1)
|
97 |
+
w = w1
|
98 |
+
if lim < tol:
|
99 |
+
break
|
100 |
+
|
101 |
+
n_iter.append(i + 1)
|
102 |
+
W[j, :] = w
|
103 |
+
|
104 |
+
return W, max(n_iter)
|
105 |
+
|
106 |
+
|
107 |
+
def _ica_par(X, tol, g, fun_args, max_iter, w_init):
|
108 |
+
"""Parallel FastICA.
|
109 |
+
|
110 |
+
Used internally by FastICA --main loop
|
111 |
+
|
112 |
+
"""
|
113 |
+
W = _sym_decorrelation(w_init)
|
114 |
+
del w_init
|
115 |
+
p_ = float(X.shape[1])
|
116 |
+
for ii in range(max_iter):
|
117 |
+
gwtx, g_wtx = g(np.dot(W, X), fun_args)
|
118 |
+
W1 = _sym_decorrelation(np.dot(gwtx, X.T) / p_ - g_wtx[:, np.newaxis] * W)
|
119 |
+
del gwtx, g_wtx
|
120 |
+
# builtin max, abs are faster than numpy counter parts.
|
121 |
+
# np.einsum allows having the lowest memory footprint.
|
122 |
+
# It is faster than np.diag(np.dot(W1, W.T)).
|
123 |
+
lim = max(abs(abs(np.einsum("ij,ij->i", W1, W)) - 1))
|
124 |
+
W = W1
|
125 |
+
if lim < tol:
|
126 |
+
break
|
127 |
+
else:
|
128 |
+
warnings.warn(
|
129 |
+
(
|
130 |
+
"FastICA did not converge. Consider increasing "
|
131 |
+
"tolerance or the maximum number of iterations."
|
132 |
+
),
|
133 |
+
ConvergenceWarning,
|
134 |
+
)
|
135 |
+
|
136 |
+
return W, ii + 1
|
137 |
+
|
138 |
+
|
139 |
+
# Some standard non-linear functions.
|
140 |
+
# XXX: these should be optimized, as they can be a bottleneck.
|
141 |
+
def _logcosh(x, fun_args=None):
|
142 |
+
alpha = fun_args.get("alpha", 1.0) # comment it out?
|
143 |
+
|
144 |
+
x *= alpha
|
145 |
+
gx = np.tanh(x, x) # apply the tanh inplace
|
146 |
+
g_x = np.empty(x.shape[0], dtype=x.dtype)
|
147 |
+
# XXX compute in chunks to avoid extra allocation
|
148 |
+
for i, gx_i in enumerate(gx): # please don't vectorize.
|
149 |
+
g_x[i] = (alpha * (1 - gx_i**2)).mean()
|
150 |
+
return gx, g_x
|
151 |
+
|
152 |
+
|
153 |
+
def _exp(x, fun_args):
|
154 |
+
exp = np.exp(-(x**2) / 2)
|
155 |
+
gx = x * exp
|
156 |
+
g_x = (1 - x**2) * exp
|
157 |
+
return gx, g_x.mean(axis=-1)
|
158 |
+
|
159 |
+
|
160 |
+
def _cube(x, fun_args):
|
161 |
+
return x**3, (3 * x**2).mean(axis=-1)
|
162 |
+
|
163 |
+
|
164 |
+
@validate_params(
|
165 |
+
{
|
166 |
+
"X": ["array-like"],
|
167 |
+
"return_X_mean": ["boolean"],
|
168 |
+
"compute_sources": ["boolean"],
|
169 |
+
"return_n_iter": ["boolean"],
|
170 |
+
},
|
171 |
+
prefer_skip_nested_validation=False,
|
172 |
+
)
|
173 |
+
def fastica(
|
174 |
+
X,
|
175 |
+
n_components=None,
|
176 |
+
*,
|
177 |
+
algorithm="parallel",
|
178 |
+
whiten="unit-variance",
|
179 |
+
fun="logcosh",
|
180 |
+
fun_args=None,
|
181 |
+
max_iter=200,
|
182 |
+
tol=1e-04,
|
183 |
+
w_init=None,
|
184 |
+
whiten_solver="svd",
|
185 |
+
random_state=None,
|
186 |
+
return_X_mean=False,
|
187 |
+
compute_sources=True,
|
188 |
+
return_n_iter=False,
|
189 |
+
):
|
190 |
+
"""Perform Fast Independent Component Analysis.
|
191 |
+
|
192 |
+
The implementation is based on [1]_.
|
193 |
+
|
194 |
+
Read more in the :ref:`User Guide <ICA>`.
|
195 |
+
|
196 |
+
Parameters
|
197 |
+
----------
|
198 |
+
X : array-like of shape (n_samples, n_features)
|
199 |
+
Training vector, where `n_samples` is the number of samples and
|
200 |
+
`n_features` is the number of features.
|
201 |
+
|
202 |
+
n_components : int, default=None
|
203 |
+
Number of components to use. If None is passed, all are used.
|
204 |
+
|
205 |
+
algorithm : {'parallel', 'deflation'}, default='parallel'
|
206 |
+
Specify which algorithm to use for FastICA.
|
207 |
+
|
208 |
+
whiten : str or bool, default='unit-variance'
|
209 |
+
Specify the whitening strategy to use.
|
210 |
+
|
211 |
+
- If 'arbitrary-variance', a whitening with variance
|
212 |
+
arbitrary is used.
|
213 |
+
- If 'unit-variance', the whitening matrix is rescaled to ensure that
|
214 |
+
each recovered source has unit variance.
|
215 |
+
- If False, the data is already considered to be whitened, and no
|
216 |
+
whitening is performed.
|
217 |
+
|
218 |
+
.. versionchanged:: 1.3
|
219 |
+
The default value of `whiten` changed to 'unit-variance' in 1.3.
|
220 |
+
|
221 |
+
fun : {'logcosh', 'exp', 'cube'} or callable, default='logcosh'
|
222 |
+
The functional form of the G function used in the
|
223 |
+
approximation to neg-entropy. Could be either 'logcosh', 'exp',
|
224 |
+
or 'cube'.
|
225 |
+
You can also provide your own function. It should return a tuple
|
226 |
+
containing the value of the function, and of its derivative, in the
|
227 |
+
point. The derivative should be averaged along its last dimension.
|
228 |
+
Example::
|
229 |
+
|
230 |
+
def my_g(x):
|
231 |
+
return x ** 3, (3 * x ** 2).mean(axis=-1)
|
232 |
+
|
233 |
+
fun_args : dict, default=None
|
234 |
+
Arguments to send to the functional form.
|
235 |
+
If empty or None and if fun='logcosh', fun_args will take value
|
236 |
+
{'alpha' : 1.0}.
|
237 |
+
|
238 |
+
max_iter : int, default=200
|
239 |
+
Maximum number of iterations to perform.
|
240 |
+
|
241 |
+
tol : float, default=1e-4
|
242 |
+
A positive scalar giving the tolerance at which the
|
243 |
+
un-mixing matrix is considered to have converged.
|
244 |
+
|
245 |
+
w_init : ndarray of shape (n_components, n_components), default=None
|
246 |
+
Initial un-mixing array. If `w_init=None`, then an array of values
|
247 |
+
drawn from a normal distribution is used.
|
248 |
+
|
249 |
+
whiten_solver : {"eigh", "svd"}, default="svd"
|
250 |
+
The solver to use for whitening.
|
251 |
+
|
252 |
+
- "svd" is more stable numerically if the problem is degenerate, and
|
253 |
+
often faster when `n_samples <= n_features`.
|
254 |
+
|
255 |
+
- "eigh" is generally more memory efficient when
|
256 |
+
`n_samples >= n_features`, and can be faster when
|
257 |
+
`n_samples >= 50 * n_features`.
|
258 |
+
|
259 |
+
.. versionadded:: 1.2
|
260 |
+
|
261 |
+
random_state : int, RandomState instance or None, default=None
|
262 |
+
Used to initialize ``w_init`` when not specified, with a
|
263 |
+
normal distribution. Pass an int, for reproducible results
|
264 |
+
across multiple function calls.
|
265 |
+
See :term:`Glossary <random_state>`.
|
266 |
+
|
267 |
+
return_X_mean : bool, default=False
|
268 |
+
If True, X_mean is returned too.
|
269 |
+
|
270 |
+
compute_sources : bool, default=True
|
271 |
+
If False, sources are not computed, but only the rotation matrix.
|
272 |
+
This can save memory when working with big data. Defaults to True.
|
273 |
+
|
274 |
+
return_n_iter : bool, default=False
|
275 |
+
Whether or not to return the number of iterations.
|
276 |
+
|
277 |
+
Returns
|
278 |
+
-------
|
279 |
+
K : ndarray of shape (n_components, n_features) or None
|
280 |
+
If whiten is 'True', K is the pre-whitening matrix that projects data
|
281 |
+
onto the first n_components principal components. If whiten is 'False',
|
282 |
+
K is 'None'.
|
283 |
+
|
284 |
+
W : ndarray of shape (n_components, n_components)
|
285 |
+
The square matrix that unmixes the data after whitening.
|
286 |
+
The mixing matrix is the pseudo-inverse of matrix ``W K``
|
287 |
+
if K is not None, else it is the inverse of W.
|
288 |
+
|
289 |
+
S : ndarray of shape (n_samples, n_components) or None
|
290 |
+
Estimated source matrix.
|
291 |
+
|
292 |
+
X_mean : ndarray of shape (n_features,)
|
293 |
+
The mean over features. Returned only if return_X_mean is True.
|
294 |
+
|
295 |
+
n_iter : int
|
296 |
+
If the algorithm is "deflation", n_iter is the
|
297 |
+
maximum number of iterations run across all components. Else
|
298 |
+
they are just the number of iterations taken to converge. This is
|
299 |
+
returned only when return_n_iter is set to `True`.
|
300 |
+
|
301 |
+
Notes
|
302 |
+
-----
|
303 |
+
The data matrix X is considered to be a linear combination of
|
304 |
+
non-Gaussian (independent) components i.e. X = AS where columns of S
|
305 |
+
contain the independent components and A is a linear mixing
|
306 |
+
matrix. In short ICA attempts to `un-mix' the data by estimating an
|
307 |
+
un-mixing matrix W where ``S = W K X.``
|
308 |
+
While FastICA was proposed to estimate as many sources
|
309 |
+
as features, it is possible to estimate less by setting
|
310 |
+
n_components < n_features. It this case K is not a square matrix
|
311 |
+
and the estimated A is the pseudo-inverse of ``W K``.
|
312 |
+
|
313 |
+
This implementation was originally made for data of shape
|
314 |
+
[n_features, n_samples]. Now the input is transposed
|
315 |
+
before the algorithm is applied. This makes it slightly
|
316 |
+
faster for Fortran-ordered input.
|
317 |
+
|
318 |
+
References
|
319 |
+
----------
|
320 |
+
.. [1] A. Hyvarinen and E. Oja, "Fast Independent Component Analysis",
|
321 |
+
Algorithms and Applications, Neural Networks, 13(4-5), 2000,
|
322 |
+
pp. 411-430.
|
323 |
+
|
324 |
+
Examples
|
325 |
+
--------
|
326 |
+
>>> from sklearn.datasets import load_digits
|
327 |
+
>>> from sklearn.decomposition import fastica
|
328 |
+
>>> X, _ = load_digits(return_X_y=True)
|
329 |
+
>>> K, W, S = fastica(X, n_components=7, random_state=0, whiten='unit-variance')
|
330 |
+
>>> K.shape
|
331 |
+
(7, 64)
|
332 |
+
>>> W.shape
|
333 |
+
(7, 7)
|
334 |
+
>>> S.shape
|
335 |
+
(1797, 7)
|
336 |
+
"""
|
337 |
+
est = FastICA(
|
338 |
+
n_components=n_components,
|
339 |
+
algorithm=algorithm,
|
340 |
+
whiten=whiten,
|
341 |
+
fun=fun,
|
342 |
+
fun_args=fun_args,
|
343 |
+
max_iter=max_iter,
|
344 |
+
tol=tol,
|
345 |
+
w_init=w_init,
|
346 |
+
whiten_solver=whiten_solver,
|
347 |
+
random_state=random_state,
|
348 |
+
)
|
349 |
+
est._validate_params()
|
350 |
+
S = est._fit_transform(X, compute_sources=compute_sources)
|
351 |
+
|
352 |
+
if est.whiten in ["unit-variance", "arbitrary-variance"]:
|
353 |
+
K = est.whitening_
|
354 |
+
X_mean = est.mean_
|
355 |
+
else:
|
356 |
+
K = None
|
357 |
+
X_mean = None
|
358 |
+
|
359 |
+
returned_values = [K, est._unmixing, S]
|
360 |
+
if return_X_mean:
|
361 |
+
returned_values.append(X_mean)
|
362 |
+
if return_n_iter:
|
363 |
+
returned_values.append(est.n_iter_)
|
364 |
+
|
365 |
+
return returned_values
|
366 |
+
|
367 |
+
|
368 |
+
class FastICA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
369 |
+
"""FastICA: a fast algorithm for Independent Component Analysis.
|
370 |
+
|
371 |
+
The implementation is based on [1]_.
|
372 |
+
|
373 |
+
Read more in the :ref:`User Guide <ICA>`.
|
374 |
+
|
375 |
+
Parameters
|
376 |
+
----------
|
377 |
+
n_components : int, default=None
|
378 |
+
Number of components to use. If None is passed, all are used.
|
379 |
+
|
380 |
+
algorithm : {'parallel', 'deflation'}, default='parallel'
|
381 |
+
Specify which algorithm to use for FastICA.
|
382 |
+
|
383 |
+
whiten : str or bool, default='unit-variance'
|
384 |
+
Specify the whitening strategy to use.
|
385 |
+
|
386 |
+
- If 'arbitrary-variance', a whitening with variance
|
387 |
+
arbitrary is used.
|
388 |
+
- If 'unit-variance', the whitening matrix is rescaled to ensure that
|
389 |
+
each recovered source has unit variance.
|
390 |
+
- If False, the data is already considered to be whitened, and no
|
391 |
+
whitening is performed.
|
392 |
+
|
393 |
+
.. versionchanged:: 1.3
|
394 |
+
The default value of `whiten` changed to 'unit-variance' in 1.3.
|
395 |
+
|
396 |
+
fun : {'logcosh', 'exp', 'cube'} or callable, default='logcosh'
|
397 |
+
The functional form of the G function used in the
|
398 |
+
approximation to neg-entropy. Could be either 'logcosh', 'exp',
|
399 |
+
or 'cube'.
|
400 |
+
You can also provide your own function. It should return a tuple
|
401 |
+
containing the value of the function, and of its derivative, in the
|
402 |
+
point. The derivative should be averaged along its last dimension.
|
403 |
+
Example::
|
404 |
+
|
405 |
+
def my_g(x):
|
406 |
+
return x ** 3, (3 * x ** 2).mean(axis=-1)
|
407 |
+
|
408 |
+
fun_args : dict, default=None
|
409 |
+
Arguments to send to the functional form.
|
410 |
+
If empty or None and if fun='logcosh', fun_args will take value
|
411 |
+
{'alpha' : 1.0}.
|
412 |
+
|
413 |
+
max_iter : int, default=200
|
414 |
+
Maximum number of iterations during fit.
|
415 |
+
|
416 |
+
tol : float, default=1e-4
|
417 |
+
A positive scalar giving the tolerance at which the
|
418 |
+
un-mixing matrix is considered to have converged.
|
419 |
+
|
420 |
+
w_init : array-like of shape (n_components, n_components), default=None
|
421 |
+
Initial un-mixing array. If `w_init=None`, then an array of values
|
422 |
+
drawn from a normal distribution is used.
|
423 |
+
|
424 |
+
whiten_solver : {"eigh", "svd"}, default="svd"
|
425 |
+
The solver to use for whitening.
|
426 |
+
|
427 |
+
- "svd" is more stable numerically if the problem is degenerate, and
|
428 |
+
often faster when `n_samples <= n_features`.
|
429 |
+
|
430 |
+
- "eigh" is generally more memory efficient when
|
431 |
+
`n_samples >= n_features`, and can be faster when
|
432 |
+
`n_samples >= 50 * n_features`.
|
433 |
+
|
434 |
+
.. versionadded:: 1.2
|
435 |
+
|
436 |
+
random_state : int, RandomState instance or None, default=None
|
437 |
+
Used to initialize ``w_init`` when not specified, with a
|
438 |
+
normal distribution. Pass an int, for reproducible results
|
439 |
+
across multiple function calls.
|
440 |
+
See :term:`Glossary <random_state>`.
|
441 |
+
|
442 |
+
Attributes
|
443 |
+
----------
|
444 |
+
components_ : ndarray of shape (n_components, n_features)
|
445 |
+
The linear operator to apply to the data to get the independent
|
446 |
+
sources. This is equal to the unmixing matrix when ``whiten`` is
|
447 |
+
False, and equal to ``np.dot(unmixing_matrix, self.whitening_)`` when
|
448 |
+
``whiten`` is True.
|
449 |
+
|
450 |
+
mixing_ : ndarray of shape (n_features, n_components)
|
451 |
+
The pseudo-inverse of ``components_``. It is the linear operator
|
452 |
+
that maps independent sources to the data.
|
453 |
+
|
454 |
+
mean_ : ndarray of shape(n_features,)
|
455 |
+
The mean over features. Only set if `self.whiten` is True.
|
456 |
+
|
457 |
+
n_features_in_ : int
|
458 |
+
Number of features seen during :term:`fit`.
|
459 |
+
|
460 |
+
.. versionadded:: 0.24
|
461 |
+
|
462 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
463 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
464 |
+
has feature names that are all strings.
|
465 |
+
|
466 |
+
.. versionadded:: 1.0
|
467 |
+
|
468 |
+
n_iter_ : int
|
469 |
+
If the algorithm is "deflation", n_iter is the
|
470 |
+
maximum number of iterations run across all components. Else
|
471 |
+
they are just the number of iterations taken to converge.
|
472 |
+
|
473 |
+
whitening_ : ndarray of shape (n_components, n_features)
|
474 |
+
Only set if whiten is 'True'. This is the pre-whitening matrix
|
475 |
+
that projects data onto the first `n_components` principal components.
|
476 |
+
|
477 |
+
See Also
|
478 |
+
--------
|
479 |
+
PCA : Principal component analysis (PCA).
|
480 |
+
IncrementalPCA : Incremental principal components analysis (IPCA).
|
481 |
+
KernelPCA : Kernel Principal component analysis (KPCA).
|
482 |
+
MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
|
483 |
+
SparsePCA : Sparse Principal Components Analysis (SparsePCA).
|
484 |
+
|
485 |
+
References
|
486 |
+
----------
|
487 |
+
.. [1] A. Hyvarinen and E. Oja, Independent Component Analysis:
|
488 |
+
Algorithms and Applications, Neural Networks, 13(4-5), 2000,
|
489 |
+
pp. 411-430.
|
490 |
+
|
491 |
+
Examples
|
492 |
+
--------
|
493 |
+
>>> from sklearn.datasets import load_digits
|
494 |
+
>>> from sklearn.decomposition import FastICA
|
495 |
+
>>> X, _ = load_digits(return_X_y=True)
|
496 |
+
>>> transformer = FastICA(n_components=7,
|
497 |
+
... random_state=0,
|
498 |
+
... whiten='unit-variance')
|
499 |
+
>>> X_transformed = transformer.fit_transform(X)
|
500 |
+
>>> X_transformed.shape
|
501 |
+
(1797, 7)
|
502 |
+
"""
|
503 |
+
|
504 |
+
_parameter_constraints: dict = {
|
505 |
+
"n_components": [Interval(Integral, 1, None, closed="left"), None],
|
506 |
+
"algorithm": [StrOptions({"parallel", "deflation"})],
|
507 |
+
"whiten": [
|
508 |
+
StrOptions({"arbitrary-variance", "unit-variance"}),
|
509 |
+
Options(bool, {False}),
|
510 |
+
],
|
511 |
+
"fun": [StrOptions({"logcosh", "exp", "cube"}), callable],
|
512 |
+
"fun_args": [dict, None],
|
513 |
+
"max_iter": [Interval(Integral, 1, None, closed="left")],
|
514 |
+
"tol": [Interval(Real, 0.0, None, closed="left")],
|
515 |
+
"w_init": ["array-like", None],
|
516 |
+
"whiten_solver": [StrOptions({"eigh", "svd"})],
|
517 |
+
"random_state": ["random_state"],
|
518 |
+
}
|
519 |
+
|
520 |
+
def __init__(
|
521 |
+
self,
|
522 |
+
n_components=None,
|
523 |
+
*,
|
524 |
+
algorithm="parallel",
|
525 |
+
whiten="unit-variance",
|
526 |
+
fun="logcosh",
|
527 |
+
fun_args=None,
|
528 |
+
max_iter=200,
|
529 |
+
tol=1e-4,
|
530 |
+
w_init=None,
|
531 |
+
whiten_solver="svd",
|
532 |
+
random_state=None,
|
533 |
+
):
|
534 |
+
super().__init__()
|
535 |
+
self.n_components = n_components
|
536 |
+
self.algorithm = algorithm
|
537 |
+
self.whiten = whiten
|
538 |
+
self.fun = fun
|
539 |
+
self.fun_args = fun_args
|
540 |
+
self.max_iter = max_iter
|
541 |
+
self.tol = tol
|
542 |
+
self.w_init = w_init
|
543 |
+
self.whiten_solver = whiten_solver
|
544 |
+
self.random_state = random_state
|
545 |
+
|
546 |
+
def _fit_transform(self, X, compute_sources=False):
|
547 |
+
"""Fit the model.
|
548 |
+
|
549 |
+
Parameters
|
550 |
+
----------
|
551 |
+
X : array-like of shape (n_samples, n_features)
|
552 |
+
Training data, where `n_samples` is the number of samples
|
553 |
+
and `n_features` is the number of features.
|
554 |
+
|
555 |
+
compute_sources : bool, default=False
|
556 |
+
If False, sources are not computes but only the rotation matrix.
|
557 |
+
This can save memory when working with big data. Defaults to False.
|
558 |
+
|
559 |
+
Returns
|
560 |
+
-------
|
561 |
+
S : ndarray of shape (n_samples, n_components) or None
|
562 |
+
Sources matrix. `None` if `compute_sources` is `False`.
|
563 |
+
"""
|
564 |
+
XT = self._validate_data(
|
565 |
+
X, copy=self.whiten, dtype=[np.float64, np.float32], ensure_min_samples=2
|
566 |
+
).T
|
567 |
+
fun_args = {} if self.fun_args is None else self.fun_args
|
568 |
+
random_state = check_random_state(self.random_state)
|
569 |
+
|
570 |
+
alpha = fun_args.get("alpha", 1.0)
|
571 |
+
if not 1 <= alpha <= 2:
|
572 |
+
raise ValueError("alpha must be in [1,2]")
|
573 |
+
|
574 |
+
if self.fun == "logcosh":
|
575 |
+
g = _logcosh
|
576 |
+
elif self.fun == "exp":
|
577 |
+
g = _exp
|
578 |
+
elif self.fun == "cube":
|
579 |
+
g = _cube
|
580 |
+
elif callable(self.fun):
|
581 |
+
|
582 |
+
def g(x, fun_args):
|
583 |
+
return self.fun(x, **fun_args)
|
584 |
+
|
585 |
+
n_features, n_samples = XT.shape
|
586 |
+
n_components = self.n_components
|
587 |
+
if not self.whiten and n_components is not None:
|
588 |
+
n_components = None
|
589 |
+
warnings.warn("Ignoring n_components with whiten=False.")
|
590 |
+
|
591 |
+
if n_components is None:
|
592 |
+
n_components = min(n_samples, n_features)
|
593 |
+
if n_components > min(n_samples, n_features):
|
594 |
+
n_components = min(n_samples, n_features)
|
595 |
+
warnings.warn(
|
596 |
+
"n_components is too large: it will be set to %s" % n_components
|
597 |
+
)
|
598 |
+
|
599 |
+
if self.whiten:
|
600 |
+
# Centering the features of X
|
601 |
+
X_mean = XT.mean(axis=-1)
|
602 |
+
XT -= X_mean[:, np.newaxis]
|
603 |
+
|
604 |
+
# Whitening and preprocessing by PCA
|
605 |
+
if self.whiten_solver == "eigh":
|
606 |
+
# Faster when num_samples >> n_features
|
607 |
+
d, u = linalg.eigh(XT.dot(X))
|
608 |
+
sort_indices = np.argsort(d)[::-1]
|
609 |
+
eps = np.finfo(d.dtype).eps
|
610 |
+
degenerate_idx = d < eps
|
611 |
+
if np.any(degenerate_idx):
|
612 |
+
warnings.warn(
|
613 |
+
"There are some small singular values, using "
|
614 |
+
"whiten_solver = 'svd' might lead to more "
|
615 |
+
"accurate results."
|
616 |
+
)
|
617 |
+
d[degenerate_idx] = eps # For numerical issues
|
618 |
+
np.sqrt(d, out=d)
|
619 |
+
d, u = d[sort_indices], u[:, sort_indices]
|
620 |
+
elif self.whiten_solver == "svd":
|
621 |
+
u, d = linalg.svd(XT, full_matrices=False, check_finite=False)[:2]
|
622 |
+
|
623 |
+
# Give consistent eigenvectors for both svd solvers
|
624 |
+
u *= np.sign(u[0])
|
625 |
+
|
626 |
+
K = (u / d).T[:n_components] # see (6.33) p.140
|
627 |
+
del u, d
|
628 |
+
X1 = np.dot(K, XT)
|
629 |
+
# see (13.6) p.267 Here X1 is white and data
|
630 |
+
# in X has been projected onto a subspace by PCA
|
631 |
+
X1 *= np.sqrt(n_samples)
|
632 |
+
else:
|
633 |
+
# X must be casted to floats to avoid typing issues with numpy
|
634 |
+
# 2.0 and the line below
|
635 |
+
X1 = as_float_array(XT, copy=False) # copy has been taken care of
|
636 |
+
|
637 |
+
w_init = self.w_init
|
638 |
+
if w_init is None:
|
639 |
+
w_init = np.asarray(
|
640 |
+
random_state.normal(size=(n_components, n_components)), dtype=X1.dtype
|
641 |
+
)
|
642 |
+
|
643 |
+
else:
|
644 |
+
w_init = np.asarray(w_init)
|
645 |
+
if w_init.shape != (n_components, n_components):
|
646 |
+
raise ValueError(
|
647 |
+
"w_init has invalid shape -- should be %(shape)s"
|
648 |
+
% {"shape": (n_components, n_components)}
|
649 |
+
)
|
650 |
+
|
651 |
+
kwargs = {
|
652 |
+
"tol": self.tol,
|
653 |
+
"g": g,
|
654 |
+
"fun_args": fun_args,
|
655 |
+
"max_iter": self.max_iter,
|
656 |
+
"w_init": w_init,
|
657 |
+
}
|
658 |
+
|
659 |
+
if self.algorithm == "parallel":
|
660 |
+
W, n_iter = _ica_par(X1, **kwargs)
|
661 |
+
elif self.algorithm == "deflation":
|
662 |
+
W, n_iter = _ica_def(X1, **kwargs)
|
663 |
+
del X1
|
664 |
+
|
665 |
+
self.n_iter_ = n_iter
|
666 |
+
|
667 |
+
if compute_sources:
|
668 |
+
if self.whiten:
|
669 |
+
S = np.linalg.multi_dot([W, K, XT]).T
|
670 |
+
else:
|
671 |
+
S = np.dot(W, XT).T
|
672 |
+
else:
|
673 |
+
S = None
|
674 |
+
|
675 |
+
if self.whiten:
|
676 |
+
if self.whiten == "unit-variance":
|
677 |
+
if not compute_sources:
|
678 |
+
S = np.linalg.multi_dot([W, K, XT]).T
|
679 |
+
S_std = np.std(S, axis=0, keepdims=True)
|
680 |
+
S /= S_std
|
681 |
+
W /= S_std.T
|
682 |
+
|
683 |
+
self.components_ = np.dot(W, K)
|
684 |
+
self.mean_ = X_mean
|
685 |
+
self.whitening_ = K
|
686 |
+
else:
|
687 |
+
self.components_ = W
|
688 |
+
|
689 |
+
self.mixing_ = linalg.pinv(self.components_, check_finite=False)
|
690 |
+
self._unmixing = W
|
691 |
+
|
692 |
+
return S
|
693 |
+
|
694 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
695 |
+
def fit_transform(self, X, y=None):
|
696 |
+
"""Fit the model and recover the sources from X.
|
697 |
+
|
698 |
+
Parameters
|
699 |
+
----------
|
700 |
+
X : array-like of shape (n_samples, n_features)
|
701 |
+
Training data, where `n_samples` is the number of samples
|
702 |
+
and `n_features` is the number of features.
|
703 |
+
|
704 |
+
y : Ignored
|
705 |
+
Not used, present for API consistency by convention.
|
706 |
+
|
707 |
+
Returns
|
708 |
+
-------
|
709 |
+
X_new : ndarray of shape (n_samples, n_components)
|
710 |
+
Estimated sources obtained by transforming the data with the
|
711 |
+
estimated unmixing matrix.
|
712 |
+
"""
|
713 |
+
return self._fit_transform(X, compute_sources=True)
|
714 |
+
|
715 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
716 |
+
def fit(self, X, y=None):
|
717 |
+
"""Fit the model to X.
|
718 |
+
|
719 |
+
Parameters
|
720 |
+
----------
|
721 |
+
X : array-like of shape (n_samples, n_features)
|
722 |
+
Training data, where `n_samples` is the number of samples
|
723 |
+
and `n_features` is the number of features.
|
724 |
+
|
725 |
+
y : Ignored
|
726 |
+
Not used, present for API consistency by convention.
|
727 |
+
|
728 |
+
Returns
|
729 |
+
-------
|
730 |
+
self : object
|
731 |
+
Returns the instance itself.
|
732 |
+
"""
|
733 |
+
self._fit_transform(X, compute_sources=False)
|
734 |
+
return self
|
735 |
+
|
736 |
+
def transform(self, X, copy=True):
|
737 |
+
"""Recover the sources from X (apply the unmixing matrix).
|
738 |
+
|
739 |
+
Parameters
|
740 |
+
----------
|
741 |
+
X : array-like of shape (n_samples, n_features)
|
742 |
+
Data to transform, where `n_samples` is the number of samples
|
743 |
+
and `n_features` is the number of features.
|
744 |
+
|
745 |
+
copy : bool, default=True
|
746 |
+
If False, data passed to fit can be overwritten. Defaults to True.
|
747 |
+
|
748 |
+
Returns
|
749 |
+
-------
|
750 |
+
X_new : ndarray of shape (n_samples, n_components)
|
751 |
+
Estimated sources obtained by transforming the data with the
|
752 |
+
estimated unmixing matrix.
|
753 |
+
"""
|
754 |
+
check_is_fitted(self)
|
755 |
+
|
756 |
+
X = self._validate_data(
|
757 |
+
X, copy=(copy and self.whiten), dtype=[np.float64, np.float32], reset=False
|
758 |
+
)
|
759 |
+
if self.whiten:
|
760 |
+
X -= self.mean_
|
761 |
+
|
762 |
+
return np.dot(X, self.components_.T)
|
763 |
+
|
764 |
+
def inverse_transform(self, X, copy=True):
|
765 |
+
"""Transform the sources back to the mixed data (apply mixing matrix).
|
766 |
+
|
767 |
+
Parameters
|
768 |
+
----------
|
769 |
+
X : array-like of shape (n_samples, n_components)
|
770 |
+
Sources, where `n_samples` is the number of samples
|
771 |
+
and `n_components` is the number of components.
|
772 |
+
copy : bool, default=True
|
773 |
+
If False, data passed to fit are overwritten. Defaults to True.
|
774 |
+
|
775 |
+
Returns
|
776 |
+
-------
|
777 |
+
X_new : ndarray of shape (n_samples, n_features)
|
778 |
+
Reconstructed data obtained with the mixing matrix.
|
779 |
+
"""
|
780 |
+
check_is_fitted(self)
|
781 |
+
|
782 |
+
X = check_array(X, copy=(copy and self.whiten), dtype=[np.float64, np.float32])
|
783 |
+
X = np.dot(X, self.mixing_.T)
|
784 |
+
if self.whiten:
|
785 |
+
X += self.mean_
|
786 |
+
|
787 |
+
return X
|
788 |
+
|
789 |
+
@property
|
790 |
+
def _n_features_out(self):
|
791 |
+
"""Number of transformed output features."""
|
792 |
+
return self.components_.shape[0]
|
793 |
+
|
794 |
+
def _more_tags(self):
|
795 |
+
return {"preserves_dtype": [np.float32, np.float64]}
|
venv/lib/python3.10/site-packages/sklearn/decomposition/_incremental_pca.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Incremental Principal Components Analysis."""
|
2 |
+
|
3 |
+
# Author: Kyle Kastner <[email protected]>
|
4 |
+
# Giorgio Patrini
|
5 |
+
# License: BSD 3 clause
|
6 |
+
|
7 |
+
from numbers import Integral
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from scipy import linalg, sparse
|
11 |
+
|
12 |
+
from ..base import _fit_context
|
13 |
+
from ..utils import gen_batches
|
14 |
+
from ..utils._param_validation import Interval
|
15 |
+
from ..utils.extmath import _incremental_mean_and_var, svd_flip
|
16 |
+
from ._base import _BasePCA
|
17 |
+
|
18 |
+
|
19 |
+
class IncrementalPCA(_BasePCA):
|
20 |
+
"""Incremental principal components analysis (IPCA).
|
21 |
+
|
22 |
+
Linear dimensionality reduction using Singular Value Decomposition of
|
23 |
+
the data, keeping only the most significant singular vectors to
|
24 |
+
project the data to a lower dimensional space. The input data is centered
|
25 |
+
but not scaled for each feature before applying the SVD.
|
26 |
+
|
27 |
+
Depending on the size of the input data, this algorithm can be much more
|
28 |
+
memory efficient than a PCA, and allows sparse input.
|
29 |
+
|
30 |
+
This algorithm has constant memory complexity, on the order
|
31 |
+
of ``batch_size * n_features``, enabling use of np.memmap files without
|
32 |
+
loading the entire file into memory. For sparse matrices, the input
|
33 |
+
is converted to dense in batches (in order to be able to subtract the
|
34 |
+
mean) which avoids storing the entire dense matrix at any one time.
|
35 |
+
|
36 |
+
The computational overhead of each SVD is
|
37 |
+
``O(batch_size * n_features ** 2)``, but only 2 * batch_size samples
|
38 |
+
remain in memory at a time. There will be ``n_samples / batch_size`` SVD
|
39 |
+
computations to get the principal components, versus 1 large SVD of
|
40 |
+
complexity ``O(n_samples * n_features ** 2)`` for PCA.
|
41 |
+
|
42 |
+
For a usage example, see
|
43 |
+
:ref:`sphx_glr_auto_examples_decomposition_plot_incremental_pca.py`.
|
44 |
+
|
45 |
+
Read more in the :ref:`User Guide <IncrementalPCA>`.
|
46 |
+
|
47 |
+
.. versionadded:: 0.16
|
48 |
+
|
49 |
+
Parameters
|
50 |
+
----------
|
51 |
+
n_components : int, default=None
|
52 |
+
Number of components to keep. If ``n_components`` is ``None``,
|
53 |
+
then ``n_components`` is set to ``min(n_samples, n_features)``.
|
54 |
+
|
55 |
+
whiten : bool, default=False
|
56 |
+
When True (False by default) the ``components_`` vectors are divided
|
57 |
+
by ``n_samples`` times ``components_`` to ensure uncorrelated outputs
|
58 |
+
with unit component-wise variances.
|
59 |
+
|
60 |
+
Whitening will remove some information from the transformed signal
|
61 |
+
(the relative variance scales of the components) but can sometimes
|
62 |
+
improve the predictive accuracy of the downstream estimators by
|
63 |
+
making data respect some hard-wired assumptions.
|
64 |
+
|
65 |
+
copy : bool, default=True
|
66 |
+
If False, X will be overwritten. ``copy=False`` can be used to
|
67 |
+
save memory but is unsafe for general use.
|
68 |
+
|
69 |
+
batch_size : int, default=None
|
70 |
+
The number of samples to use for each batch. Only used when calling
|
71 |
+
``fit``. If ``batch_size`` is ``None``, then ``batch_size``
|
72 |
+
is inferred from the data and set to ``5 * n_features``, to provide a
|
73 |
+
balance between approximation accuracy and memory consumption.
|
74 |
+
|
75 |
+
Attributes
|
76 |
+
----------
|
77 |
+
components_ : ndarray of shape (n_components, n_features)
|
78 |
+
Principal axes in feature space, representing the directions of
|
79 |
+
maximum variance in the data. Equivalently, the right singular
|
80 |
+
vectors of the centered input data, parallel to its eigenvectors.
|
81 |
+
The components are sorted by decreasing ``explained_variance_``.
|
82 |
+
|
83 |
+
explained_variance_ : ndarray of shape (n_components,)
|
84 |
+
Variance explained by each of the selected components.
|
85 |
+
|
86 |
+
explained_variance_ratio_ : ndarray of shape (n_components,)
|
87 |
+
Percentage of variance explained by each of the selected components.
|
88 |
+
If all components are stored, the sum of explained variances is equal
|
89 |
+
to 1.0.
|
90 |
+
|
91 |
+
singular_values_ : ndarray of shape (n_components,)
|
92 |
+
The singular values corresponding to each of the selected components.
|
93 |
+
The singular values are equal to the 2-norms of the ``n_components``
|
94 |
+
variables in the lower-dimensional space.
|
95 |
+
|
96 |
+
mean_ : ndarray of shape (n_features,)
|
97 |
+
Per-feature empirical mean, aggregate over calls to ``partial_fit``.
|
98 |
+
|
99 |
+
var_ : ndarray of shape (n_features,)
|
100 |
+
Per-feature empirical variance, aggregate over calls to
|
101 |
+
``partial_fit``.
|
102 |
+
|
103 |
+
noise_variance_ : float
|
104 |
+
The estimated noise covariance following the Probabilistic PCA model
|
105 |
+
from Tipping and Bishop 1999. See "Pattern Recognition and
|
106 |
+
Machine Learning" by C. Bishop, 12.2.1 p. 574 or
|
107 |
+
http://www.miketipping.com/papers/met-mppca.pdf.
|
108 |
+
|
109 |
+
n_components_ : int
|
110 |
+
The estimated number of components. Relevant when
|
111 |
+
``n_components=None``.
|
112 |
+
|
113 |
+
n_samples_seen_ : int
|
114 |
+
The number of samples processed by the estimator. Will be reset on
|
115 |
+
new calls to fit, but increments across ``partial_fit`` calls.
|
116 |
+
|
117 |
+
batch_size_ : int
|
118 |
+
Inferred batch size from ``batch_size``.
|
119 |
+
|
120 |
+
n_features_in_ : int
|
121 |
+
Number of features seen during :term:`fit`.
|
122 |
+
|
123 |
+
.. versionadded:: 0.24
|
124 |
+
|
125 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
126 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
127 |
+
has feature names that are all strings.
|
128 |
+
|
129 |
+
.. versionadded:: 1.0
|
130 |
+
|
131 |
+
See Also
|
132 |
+
--------
|
133 |
+
PCA : Principal component analysis (PCA).
|
134 |
+
KernelPCA : Kernel Principal component analysis (KPCA).
|
135 |
+
SparsePCA : Sparse Principal Components Analysis (SparsePCA).
|
136 |
+
TruncatedSVD : Dimensionality reduction using truncated SVD.
|
137 |
+
|
138 |
+
Notes
|
139 |
+
-----
|
140 |
+
Implements the incremental PCA model from:
|
141 |
+
*D. Ross, J. Lim, R. Lin, M. Yang, Incremental Learning for Robust Visual
|
142 |
+
Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3,
|
143 |
+
pp. 125-141, May 2008.*
|
144 |
+
See https://www.cs.toronto.edu/~dross/ivt/RossLimLinYang_ijcv.pdf
|
145 |
+
|
146 |
+
This model is an extension of the Sequential Karhunen-Loeve Transform from:
|
147 |
+
:doi:`A. Levy and M. Lindenbaum, Sequential Karhunen-Loeve Basis Extraction and
|
148 |
+
its Application to Images, IEEE Transactions on Image Processing, Volume 9,
|
149 |
+
Number 8, pp. 1371-1374, August 2000. <10.1109/83.855432>`
|
150 |
+
|
151 |
+
We have specifically abstained from an optimization used by authors of both
|
152 |
+
papers, a QR decomposition used in specific situations to reduce the
|
153 |
+
algorithmic complexity of the SVD. The source for this technique is
|
154 |
+
*Matrix Computations, Third Edition, G. Holub and C. Van Loan, Chapter 5,
|
155 |
+
section 5.4.4, pp 252-253.*. This technique has been omitted because it is
|
156 |
+
advantageous only when decomposing a matrix with ``n_samples`` (rows)
|
157 |
+
>= 5/3 * ``n_features`` (columns), and hurts the readability of the
|
158 |
+
implemented algorithm. This would be a good opportunity for future
|
159 |
+
optimization, if it is deemed necessary.
|
160 |
+
|
161 |
+
References
|
162 |
+
----------
|
163 |
+
D. Ross, J. Lim, R. Lin, M. Yang. Incremental Learning for Robust Visual
|
164 |
+
Tracking, International Journal of Computer Vision, Volume 77,
|
165 |
+
Issue 1-3, pp. 125-141, May 2008.
|
166 |
+
|
167 |
+
G. Golub and C. Van Loan. Matrix Computations, Third Edition, Chapter 5,
|
168 |
+
Section 5.4.4, pp. 252-253.
|
169 |
+
|
170 |
+
Examples
|
171 |
+
--------
|
172 |
+
>>> from sklearn.datasets import load_digits
|
173 |
+
>>> from sklearn.decomposition import IncrementalPCA
|
174 |
+
>>> from scipy import sparse
|
175 |
+
>>> X, _ = load_digits(return_X_y=True)
|
176 |
+
>>> transformer = IncrementalPCA(n_components=7, batch_size=200)
|
177 |
+
>>> # either partially fit on smaller batches of data
|
178 |
+
>>> transformer.partial_fit(X[:100, :])
|
179 |
+
IncrementalPCA(batch_size=200, n_components=7)
|
180 |
+
>>> # or let the fit function itself divide the data into batches
|
181 |
+
>>> X_sparse = sparse.csr_matrix(X)
|
182 |
+
>>> X_transformed = transformer.fit_transform(X_sparse)
|
183 |
+
>>> X_transformed.shape
|
184 |
+
(1797, 7)
|
185 |
+
"""
|
186 |
+
|
187 |
+
_parameter_constraints: dict = {
|
188 |
+
"n_components": [Interval(Integral, 1, None, closed="left"), None],
|
189 |
+
"whiten": ["boolean"],
|
190 |
+
"copy": ["boolean"],
|
191 |
+
"batch_size": [Interval(Integral, 1, None, closed="left"), None],
|
192 |
+
}
|
193 |
+
|
194 |
+
def __init__(self, n_components=None, *, whiten=False, copy=True, batch_size=None):
|
195 |
+
self.n_components = n_components
|
196 |
+
self.whiten = whiten
|
197 |
+
self.copy = copy
|
198 |
+
self.batch_size = batch_size
|
199 |
+
|
200 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
201 |
+
def fit(self, X, y=None):
|
202 |
+
"""Fit the model with X, using minibatches of size batch_size.
|
203 |
+
|
204 |
+
Parameters
|
205 |
+
----------
|
206 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
207 |
+
Training data, where `n_samples` is the number of samples and
|
208 |
+
`n_features` is the number of features.
|
209 |
+
|
210 |
+
y : Ignored
|
211 |
+
Not used, present for API consistency by convention.
|
212 |
+
|
213 |
+
Returns
|
214 |
+
-------
|
215 |
+
self : object
|
216 |
+
Returns the instance itself.
|
217 |
+
"""
|
218 |
+
self.components_ = None
|
219 |
+
self.n_samples_seen_ = 0
|
220 |
+
self.mean_ = 0.0
|
221 |
+
self.var_ = 0.0
|
222 |
+
self.singular_values_ = None
|
223 |
+
self.explained_variance_ = None
|
224 |
+
self.explained_variance_ratio_ = None
|
225 |
+
self.noise_variance_ = None
|
226 |
+
|
227 |
+
X = self._validate_data(
|
228 |
+
X,
|
229 |
+
accept_sparse=["csr", "csc", "lil"],
|
230 |
+
copy=self.copy,
|
231 |
+
dtype=[np.float64, np.float32],
|
232 |
+
)
|
233 |
+
n_samples, n_features = X.shape
|
234 |
+
|
235 |
+
if self.batch_size is None:
|
236 |
+
self.batch_size_ = 5 * n_features
|
237 |
+
else:
|
238 |
+
self.batch_size_ = self.batch_size
|
239 |
+
|
240 |
+
for batch in gen_batches(
|
241 |
+
n_samples, self.batch_size_, min_batch_size=self.n_components or 0
|
242 |
+
):
|
243 |
+
X_batch = X[batch]
|
244 |
+
if sparse.issparse(X_batch):
|
245 |
+
X_batch = X_batch.toarray()
|
246 |
+
self.partial_fit(X_batch, check_input=False)
|
247 |
+
|
248 |
+
return self
|
249 |
+
|
250 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
251 |
+
def partial_fit(self, X, y=None, check_input=True):
|
252 |
+
"""Incremental fit with X. All of X is processed as a single batch.
|
253 |
+
|
254 |
+
Parameters
|
255 |
+
----------
|
256 |
+
X : array-like of shape (n_samples, n_features)
|
257 |
+
Training data, where `n_samples` is the number of samples and
|
258 |
+
`n_features` is the number of features.
|
259 |
+
|
260 |
+
y : Ignored
|
261 |
+
Not used, present for API consistency by convention.
|
262 |
+
|
263 |
+
check_input : bool, default=True
|
264 |
+
Run check_array on X.
|
265 |
+
|
266 |
+
Returns
|
267 |
+
-------
|
268 |
+
self : object
|
269 |
+
Returns the instance itself.
|
270 |
+
"""
|
271 |
+
first_pass = not hasattr(self, "components_")
|
272 |
+
|
273 |
+
if check_input:
|
274 |
+
if sparse.issparse(X):
|
275 |
+
raise TypeError(
|
276 |
+
"IncrementalPCA.partial_fit does not support "
|
277 |
+
"sparse input. Either convert data to dense "
|
278 |
+
"or use IncrementalPCA.fit to do so in batches."
|
279 |
+
)
|
280 |
+
X = self._validate_data(
|
281 |
+
X, copy=self.copy, dtype=[np.float64, np.float32], reset=first_pass
|
282 |
+
)
|
283 |
+
n_samples, n_features = X.shape
|
284 |
+
if first_pass:
|
285 |
+
self.components_ = None
|
286 |
+
|
287 |
+
if self.n_components is None:
|
288 |
+
if self.components_ is None:
|
289 |
+
self.n_components_ = min(n_samples, n_features)
|
290 |
+
else:
|
291 |
+
self.n_components_ = self.components_.shape[0]
|
292 |
+
elif not self.n_components <= n_features:
|
293 |
+
raise ValueError(
|
294 |
+
"n_components=%r invalid for n_features=%d, need "
|
295 |
+
"more rows than columns for IncrementalPCA "
|
296 |
+
"processing" % (self.n_components, n_features)
|
297 |
+
)
|
298 |
+
elif not self.n_components <= n_samples:
|
299 |
+
raise ValueError(
|
300 |
+
"n_components=%r must be less or equal to "
|
301 |
+
"the batch number of samples "
|
302 |
+
"%d." % (self.n_components, n_samples)
|
303 |
+
)
|
304 |
+
else:
|
305 |
+
self.n_components_ = self.n_components
|
306 |
+
|
307 |
+
if (self.components_ is not None) and (
|
308 |
+
self.components_.shape[0] != self.n_components_
|
309 |
+
):
|
310 |
+
raise ValueError(
|
311 |
+
"Number of input features has changed from %i "
|
312 |
+
"to %i between calls to partial_fit! Try "
|
313 |
+
"setting n_components to a fixed value."
|
314 |
+
% (self.components_.shape[0], self.n_components_)
|
315 |
+
)
|
316 |
+
|
317 |
+
# This is the first partial_fit
|
318 |
+
if not hasattr(self, "n_samples_seen_"):
|
319 |
+
self.n_samples_seen_ = 0
|
320 |
+
self.mean_ = 0.0
|
321 |
+
self.var_ = 0.0
|
322 |
+
|
323 |
+
# Update stats - they are 0 if this is the first step
|
324 |
+
col_mean, col_var, n_total_samples = _incremental_mean_and_var(
|
325 |
+
X,
|
326 |
+
last_mean=self.mean_,
|
327 |
+
last_variance=self.var_,
|
328 |
+
last_sample_count=np.repeat(self.n_samples_seen_, X.shape[1]),
|
329 |
+
)
|
330 |
+
n_total_samples = n_total_samples[0]
|
331 |
+
|
332 |
+
# Whitening
|
333 |
+
if self.n_samples_seen_ == 0:
|
334 |
+
# If it is the first step, simply whiten X
|
335 |
+
X -= col_mean
|
336 |
+
else:
|
337 |
+
col_batch_mean = np.mean(X, axis=0)
|
338 |
+
X -= col_batch_mean
|
339 |
+
# Build matrix of combined previous basis and new data
|
340 |
+
mean_correction = np.sqrt(
|
341 |
+
(self.n_samples_seen_ / n_total_samples) * n_samples
|
342 |
+
) * (self.mean_ - col_batch_mean)
|
343 |
+
X = np.vstack(
|
344 |
+
(
|
345 |
+
self.singular_values_.reshape((-1, 1)) * self.components_,
|
346 |
+
X,
|
347 |
+
mean_correction,
|
348 |
+
)
|
349 |
+
)
|
350 |
+
|
351 |
+
U, S, Vt = linalg.svd(X, full_matrices=False, check_finite=False)
|
352 |
+
U, Vt = svd_flip(U, Vt, u_based_decision=False)
|
353 |
+
explained_variance = S**2 / (n_total_samples - 1)
|
354 |
+
explained_variance_ratio = S**2 / np.sum(col_var * n_total_samples)
|
355 |
+
|
356 |
+
self.n_samples_seen_ = n_total_samples
|
357 |
+
self.components_ = Vt[: self.n_components_]
|
358 |
+
self.singular_values_ = S[: self.n_components_]
|
359 |
+
self.mean_ = col_mean
|
360 |
+
self.var_ = col_var
|
361 |
+
self.explained_variance_ = explained_variance[: self.n_components_]
|
362 |
+
self.explained_variance_ratio_ = explained_variance_ratio[: self.n_components_]
|
363 |
+
# we already checked `self.n_components <= n_samples` above
|
364 |
+
if self.n_components_ not in (n_samples, n_features):
|
365 |
+
self.noise_variance_ = explained_variance[self.n_components_ :].mean()
|
366 |
+
else:
|
367 |
+
self.noise_variance_ = 0.0
|
368 |
+
return self
|
369 |
+
|
370 |
+
def transform(self, X):
|
371 |
+
"""Apply dimensionality reduction to X.
|
372 |
+
|
373 |
+
X is projected on the first principal components previously extracted
|
374 |
+
from a training set, using minibatches of size batch_size if X is
|
375 |
+
sparse.
|
376 |
+
|
377 |
+
Parameters
|
378 |
+
----------
|
379 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
380 |
+
New data, where `n_samples` is the number of samples
|
381 |
+
and `n_features` is the number of features.
|
382 |
+
|
383 |
+
Returns
|
384 |
+
-------
|
385 |
+
X_new : ndarray of shape (n_samples, n_components)
|
386 |
+
Projection of X in the first principal components.
|
387 |
+
|
388 |
+
Examples
|
389 |
+
--------
|
390 |
+
|
391 |
+
>>> import numpy as np
|
392 |
+
>>> from sklearn.decomposition import IncrementalPCA
|
393 |
+
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2],
|
394 |
+
... [1, 1], [2, 1], [3, 2]])
|
395 |
+
>>> ipca = IncrementalPCA(n_components=2, batch_size=3)
|
396 |
+
>>> ipca.fit(X)
|
397 |
+
IncrementalPCA(batch_size=3, n_components=2)
|
398 |
+
>>> ipca.transform(X) # doctest: +SKIP
|
399 |
+
"""
|
400 |
+
if sparse.issparse(X):
|
401 |
+
n_samples = X.shape[0]
|
402 |
+
output = []
|
403 |
+
for batch in gen_batches(
|
404 |
+
n_samples, self.batch_size_, min_batch_size=self.n_components or 0
|
405 |
+
):
|
406 |
+
output.append(super().transform(X[batch].toarray()))
|
407 |
+
return np.vstack(output)
|
408 |
+
else:
|
409 |
+
return super().transform(X)
|
venv/lib/python3.10/site-packages/sklearn/decomposition/_kernel_pca.py
ADDED
@@ -0,0 +1,572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Kernel Principal Components Analysis."""
|
2 |
+
|
3 |
+
# Author: Mathieu Blondel <[email protected]>
|
4 |
+
# Sylvain Marie <[email protected]>
|
5 |
+
# License: BSD 3 clause
|
6 |
+
|
7 |
+
from numbers import Integral, Real
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from scipy import linalg
|
11 |
+
from scipy.linalg import eigh
|
12 |
+
from scipy.sparse.linalg import eigsh
|
13 |
+
|
14 |
+
from ..base import (
|
15 |
+
BaseEstimator,
|
16 |
+
ClassNamePrefixFeaturesOutMixin,
|
17 |
+
TransformerMixin,
|
18 |
+
_fit_context,
|
19 |
+
)
|
20 |
+
from ..exceptions import NotFittedError
|
21 |
+
from ..metrics.pairwise import pairwise_kernels
|
22 |
+
from ..preprocessing import KernelCenterer
|
23 |
+
from ..utils._arpack import _init_arpack_v0
|
24 |
+
from ..utils._param_validation import Interval, StrOptions
|
25 |
+
from ..utils.extmath import _randomized_eigsh, svd_flip
|
26 |
+
from ..utils.validation import (
|
27 |
+
_check_psd_eigenvalues,
|
28 |
+
check_is_fitted,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
class KernelPCA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
33 |
+
"""Kernel Principal component analysis (KPCA) [1]_.
|
34 |
+
|
35 |
+
Non-linear dimensionality reduction through the use of kernels (see
|
36 |
+
:ref:`metrics`).
|
37 |
+
|
38 |
+
It uses the :func:`scipy.linalg.eigh` LAPACK implementation of the full SVD
|
39 |
+
or the :func:`scipy.sparse.linalg.eigsh` ARPACK implementation of the
|
40 |
+
truncated SVD, depending on the shape of the input data and the number of
|
41 |
+
components to extract. It can also use a randomized truncated SVD by the
|
42 |
+
method proposed in [3]_, see `eigen_solver`.
|
43 |
+
|
44 |
+
For a usage example, see
|
45 |
+
:ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`.
|
46 |
+
|
47 |
+
Read more in the :ref:`User Guide <kernel_PCA>`.
|
48 |
+
|
49 |
+
Parameters
|
50 |
+
----------
|
51 |
+
n_components : int, default=None
|
52 |
+
Number of components. If None, all non-zero components are kept.
|
53 |
+
|
54 |
+
kernel : {'linear', 'poly', 'rbf', 'sigmoid', 'cosine', 'precomputed'} \
|
55 |
+
or callable, default='linear'
|
56 |
+
Kernel used for PCA.
|
57 |
+
|
58 |
+
gamma : float, default=None
|
59 |
+
Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other
|
60 |
+
kernels. If ``gamma`` is ``None``, then it is set to ``1/n_features``.
|
61 |
+
|
62 |
+
degree : float, default=3
|
63 |
+
Degree for poly kernels. Ignored by other kernels.
|
64 |
+
|
65 |
+
coef0 : float, default=1
|
66 |
+
Independent term in poly and sigmoid kernels.
|
67 |
+
Ignored by other kernels.
|
68 |
+
|
69 |
+
kernel_params : dict, default=None
|
70 |
+
Parameters (keyword arguments) and
|
71 |
+
values for kernel passed as callable object.
|
72 |
+
Ignored by other kernels.
|
73 |
+
|
74 |
+
alpha : float, default=1.0
|
75 |
+
Hyperparameter of the ridge regression that learns the
|
76 |
+
inverse transform (when fit_inverse_transform=True).
|
77 |
+
|
78 |
+
fit_inverse_transform : bool, default=False
|
79 |
+
Learn the inverse transform for non-precomputed kernels
|
80 |
+
(i.e. learn to find the pre-image of a point). This method is based
|
81 |
+
on [2]_.
|
82 |
+
|
83 |
+
eigen_solver : {'auto', 'dense', 'arpack', 'randomized'}, \
|
84 |
+
default='auto'
|
85 |
+
Select eigensolver to use. If `n_components` is much
|
86 |
+
less than the number of training samples, randomized (or arpack to a
|
87 |
+
smaller extent) may be more efficient than the dense eigensolver.
|
88 |
+
Randomized SVD is performed according to the method of Halko et al
|
89 |
+
[3]_.
|
90 |
+
|
91 |
+
auto :
|
92 |
+
the solver is selected by a default policy based on n_samples
|
93 |
+
(the number of training samples) and `n_components`:
|
94 |
+
if the number of components to extract is less than 10 (strict) and
|
95 |
+
the number of samples is more than 200 (strict), the 'arpack'
|
96 |
+
method is enabled. Otherwise the exact full eigenvalue
|
97 |
+
decomposition is computed and optionally truncated afterwards
|
98 |
+
('dense' method).
|
99 |
+
dense :
|
100 |
+
run exact full eigenvalue decomposition calling the standard
|
101 |
+
LAPACK solver via `scipy.linalg.eigh`, and select the components
|
102 |
+
by postprocessing
|
103 |
+
arpack :
|
104 |
+
run SVD truncated to n_components calling ARPACK solver using
|
105 |
+
`scipy.sparse.linalg.eigsh`. It requires strictly
|
106 |
+
0 < n_components < n_samples
|
107 |
+
randomized :
|
108 |
+
run randomized SVD by the method of Halko et al. [3]_. The current
|
109 |
+
implementation selects eigenvalues based on their module; therefore
|
110 |
+
using this method can lead to unexpected results if the kernel is
|
111 |
+
not positive semi-definite. See also [4]_.
|
112 |
+
|
113 |
+
.. versionchanged:: 1.0
|
114 |
+
`'randomized'` was added.
|
115 |
+
|
116 |
+
tol : float, default=0
|
117 |
+
Convergence tolerance for arpack.
|
118 |
+
If 0, optimal value will be chosen by arpack.
|
119 |
+
|
120 |
+
max_iter : int, default=None
|
121 |
+
Maximum number of iterations for arpack.
|
122 |
+
If None, optimal value will be chosen by arpack.
|
123 |
+
|
124 |
+
iterated_power : int >= 0, or 'auto', default='auto'
|
125 |
+
Number of iterations for the power method computed by
|
126 |
+
svd_solver == 'randomized'. When 'auto', it is set to 7 when
|
127 |
+
`n_components < 0.1 * min(X.shape)`, other it is set to 4.
|
128 |
+
|
129 |
+
.. versionadded:: 1.0
|
130 |
+
|
131 |
+
remove_zero_eig : bool, default=False
|
132 |
+
If True, then all components with zero eigenvalues are removed, so
|
133 |
+
that the number of components in the output may be < n_components
|
134 |
+
(and sometimes even zero due to numerical instability).
|
135 |
+
When n_components is None, this parameter is ignored and components
|
136 |
+
with zero eigenvalues are removed regardless.
|
137 |
+
|
138 |
+
random_state : int, RandomState instance or None, default=None
|
139 |
+
Used when ``eigen_solver`` == 'arpack' or 'randomized'. Pass an int
|
140 |
+
for reproducible results across multiple function calls.
|
141 |
+
See :term:`Glossary <random_state>`.
|
142 |
+
|
143 |
+
.. versionadded:: 0.18
|
144 |
+
|
145 |
+
copy_X : bool, default=True
|
146 |
+
If True, input X is copied and stored by the model in the `X_fit_`
|
147 |
+
attribute. If no further changes will be done to X, setting
|
148 |
+
`copy_X=False` saves memory by storing a reference.
|
149 |
+
|
150 |
+
.. versionadded:: 0.18
|
151 |
+
|
152 |
+
n_jobs : int, default=None
|
153 |
+
The number of parallel jobs to run.
|
154 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
155 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
156 |
+
for more details.
|
157 |
+
|
158 |
+
.. versionadded:: 0.18
|
159 |
+
|
160 |
+
Attributes
|
161 |
+
----------
|
162 |
+
eigenvalues_ : ndarray of shape (n_components,)
|
163 |
+
Eigenvalues of the centered kernel matrix in decreasing order.
|
164 |
+
If `n_components` and `remove_zero_eig` are not set,
|
165 |
+
then all values are stored.
|
166 |
+
|
167 |
+
eigenvectors_ : ndarray of shape (n_samples, n_components)
|
168 |
+
Eigenvectors of the centered kernel matrix. If `n_components` and
|
169 |
+
`remove_zero_eig` are not set, then all components are stored.
|
170 |
+
|
171 |
+
dual_coef_ : ndarray of shape (n_samples, n_features)
|
172 |
+
Inverse transform matrix. Only available when
|
173 |
+
``fit_inverse_transform`` is True.
|
174 |
+
|
175 |
+
X_transformed_fit_ : ndarray of shape (n_samples, n_components)
|
176 |
+
Projection of the fitted data on the kernel principal components.
|
177 |
+
Only available when ``fit_inverse_transform`` is True.
|
178 |
+
|
179 |
+
X_fit_ : ndarray of shape (n_samples, n_features)
|
180 |
+
The data used to fit the model. If `copy_X=False`, then `X_fit_` is
|
181 |
+
a reference. This attribute is used for the calls to transform.
|
182 |
+
|
183 |
+
n_features_in_ : int
|
184 |
+
Number of features seen during :term:`fit`.
|
185 |
+
|
186 |
+
.. versionadded:: 0.24
|
187 |
+
|
188 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
189 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
190 |
+
has feature names that are all strings.
|
191 |
+
|
192 |
+
.. versionadded:: 1.0
|
193 |
+
|
194 |
+
gamma_ : float
|
195 |
+
Kernel coefficient for rbf, poly and sigmoid kernels. When `gamma`
|
196 |
+
is explicitly provided, this is just the same as `gamma`. When `gamma`
|
197 |
+
is `None`, this is the actual value of kernel coefficient.
|
198 |
+
|
199 |
+
.. versionadded:: 1.3
|
200 |
+
|
201 |
+
See Also
|
202 |
+
--------
|
203 |
+
FastICA : A fast algorithm for Independent Component Analysis.
|
204 |
+
IncrementalPCA : Incremental Principal Component Analysis.
|
205 |
+
NMF : Non-Negative Matrix Factorization.
|
206 |
+
PCA : Principal Component Analysis.
|
207 |
+
SparsePCA : Sparse Principal Component Analysis.
|
208 |
+
TruncatedSVD : Dimensionality reduction using truncated SVD.
|
209 |
+
|
210 |
+
References
|
211 |
+
----------
|
212 |
+
.. [1] `Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller.
|
213 |
+
"Kernel principal component analysis."
|
214 |
+
International conference on artificial neural networks.
|
215 |
+
Springer, Berlin, Heidelberg, 1997.
|
216 |
+
<https://people.eecs.berkeley.edu/~wainwrig/stat241b/scholkopf_kernel.pdf>`_
|
217 |
+
|
218 |
+
.. [2] `Bakır, Gökhan H., Jason Weston, and Bernhard Schölkopf.
|
219 |
+
"Learning to find pre-images."
|
220 |
+
Advances in neural information processing systems 16 (2004): 449-456.
|
221 |
+
<https://papers.nips.cc/paper/2003/file/ac1ad983e08ad3304a97e147f522747e-Paper.pdf>`_
|
222 |
+
|
223 |
+
.. [3] :arxiv:`Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp.
|
224 |
+
"Finding structure with randomness: Probabilistic algorithms for
|
225 |
+
constructing approximate matrix decompositions."
|
226 |
+
SIAM review 53.2 (2011): 217-288. <0909.4061>`
|
227 |
+
|
228 |
+
.. [4] `Martinsson, Per-Gunnar, Vladimir Rokhlin, and Mark Tygert.
|
229 |
+
"A randomized algorithm for the decomposition of matrices."
|
230 |
+
Applied and Computational Harmonic Analysis 30.1 (2011): 47-68.
|
231 |
+
<https://www.sciencedirect.com/science/article/pii/S1063520310000242>`_
|
232 |
+
|
233 |
+
Examples
|
234 |
+
--------
|
235 |
+
>>> from sklearn.datasets import load_digits
|
236 |
+
>>> from sklearn.decomposition import KernelPCA
|
237 |
+
>>> X, _ = load_digits(return_X_y=True)
|
238 |
+
>>> transformer = KernelPCA(n_components=7, kernel='linear')
|
239 |
+
>>> X_transformed = transformer.fit_transform(X)
|
240 |
+
>>> X_transformed.shape
|
241 |
+
(1797, 7)
|
242 |
+
"""
|
243 |
+
|
244 |
+
_parameter_constraints: dict = {
|
245 |
+
"n_components": [
|
246 |
+
Interval(Integral, 1, None, closed="left"),
|
247 |
+
None,
|
248 |
+
],
|
249 |
+
"kernel": [
|
250 |
+
StrOptions({"linear", "poly", "rbf", "sigmoid", "cosine", "precomputed"}),
|
251 |
+
callable,
|
252 |
+
],
|
253 |
+
"gamma": [
|
254 |
+
Interval(Real, 0, None, closed="left"),
|
255 |
+
None,
|
256 |
+
],
|
257 |
+
"degree": [Interval(Real, 0, None, closed="left")],
|
258 |
+
"coef0": [Interval(Real, None, None, closed="neither")],
|
259 |
+
"kernel_params": [dict, None],
|
260 |
+
"alpha": [Interval(Real, 0, None, closed="left")],
|
261 |
+
"fit_inverse_transform": ["boolean"],
|
262 |
+
"eigen_solver": [StrOptions({"auto", "dense", "arpack", "randomized"})],
|
263 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
264 |
+
"max_iter": [
|
265 |
+
Interval(Integral, 1, None, closed="left"),
|
266 |
+
None,
|
267 |
+
],
|
268 |
+
"iterated_power": [
|
269 |
+
Interval(Integral, 0, None, closed="left"),
|
270 |
+
StrOptions({"auto"}),
|
271 |
+
],
|
272 |
+
"remove_zero_eig": ["boolean"],
|
273 |
+
"random_state": ["random_state"],
|
274 |
+
"copy_X": ["boolean"],
|
275 |
+
"n_jobs": [None, Integral],
|
276 |
+
}
|
277 |
+
|
278 |
+
def __init__(
|
279 |
+
self,
|
280 |
+
n_components=None,
|
281 |
+
*,
|
282 |
+
kernel="linear",
|
283 |
+
gamma=None,
|
284 |
+
degree=3,
|
285 |
+
coef0=1,
|
286 |
+
kernel_params=None,
|
287 |
+
alpha=1.0,
|
288 |
+
fit_inverse_transform=False,
|
289 |
+
eigen_solver="auto",
|
290 |
+
tol=0,
|
291 |
+
max_iter=None,
|
292 |
+
iterated_power="auto",
|
293 |
+
remove_zero_eig=False,
|
294 |
+
random_state=None,
|
295 |
+
copy_X=True,
|
296 |
+
n_jobs=None,
|
297 |
+
):
|
298 |
+
self.n_components = n_components
|
299 |
+
self.kernel = kernel
|
300 |
+
self.kernel_params = kernel_params
|
301 |
+
self.gamma = gamma
|
302 |
+
self.degree = degree
|
303 |
+
self.coef0 = coef0
|
304 |
+
self.alpha = alpha
|
305 |
+
self.fit_inverse_transform = fit_inverse_transform
|
306 |
+
self.eigen_solver = eigen_solver
|
307 |
+
self.tol = tol
|
308 |
+
self.max_iter = max_iter
|
309 |
+
self.iterated_power = iterated_power
|
310 |
+
self.remove_zero_eig = remove_zero_eig
|
311 |
+
self.random_state = random_state
|
312 |
+
self.n_jobs = n_jobs
|
313 |
+
self.copy_X = copy_X
|
314 |
+
|
315 |
+
def _get_kernel(self, X, Y=None):
|
316 |
+
if callable(self.kernel):
|
317 |
+
params = self.kernel_params or {}
|
318 |
+
else:
|
319 |
+
params = {"gamma": self.gamma_, "degree": self.degree, "coef0": self.coef0}
|
320 |
+
return pairwise_kernels(
|
321 |
+
X, Y, metric=self.kernel, filter_params=True, n_jobs=self.n_jobs, **params
|
322 |
+
)
|
323 |
+
|
324 |
+
def _fit_transform(self, K):
|
325 |
+
"""Fit's using kernel K"""
|
326 |
+
# center kernel
|
327 |
+
K = self._centerer.fit_transform(K)
|
328 |
+
|
329 |
+
# adjust n_components according to user inputs
|
330 |
+
if self.n_components is None:
|
331 |
+
n_components = K.shape[0] # use all dimensions
|
332 |
+
else:
|
333 |
+
n_components = min(K.shape[0], self.n_components)
|
334 |
+
|
335 |
+
# compute eigenvectors
|
336 |
+
if self.eigen_solver == "auto":
|
337 |
+
if K.shape[0] > 200 and n_components < 10:
|
338 |
+
eigen_solver = "arpack"
|
339 |
+
else:
|
340 |
+
eigen_solver = "dense"
|
341 |
+
else:
|
342 |
+
eigen_solver = self.eigen_solver
|
343 |
+
|
344 |
+
if eigen_solver == "dense":
|
345 |
+
# Note: subset_by_index specifies the indices of smallest/largest to return
|
346 |
+
self.eigenvalues_, self.eigenvectors_ = eigh(
|
347 |
+
K, subset_by_index=(K.shape[0] - n_components, K.shape[0] - 1)
|
348 |
+
)
|
349 |
+
elif eigen_solver == "arpack":
|
350 |
+
v0 = _init_arpack_v0(K.shape[0], self.random_state)
|
351 |
+
self.eigenvalues_, self.eigenvectors_ = eigsh(
|
352 |
+
K, n_components, which="LA", tol=self.tol, maxiter=self.max_iter, v0=v0
|
353 |
+
)
|
354 |
+
elif eigen_solver == "randomized":
|
355 |
+
self.eigenvalues_, self.eigenvectors_ = _randomized_eigsh(
|
356 |
+
K,
|
357 |
+
n_components=n_components,
|
358 |
+
n_iter=self.iterated_power,
|
359 |
+
random_state=self.random_state,
|
360 |
+
selection="module",
|
361 |
+
)
|
362 |
+
|
363 |
+
# make sure that the eigenvalues are ok and fix numerical issues
|
364 |
+
self.eigenvalues_ = _check_psd_eigenvalues(
|
365 |
+
self.eigenvalues_, enable_warnings=False
|
366 |
+
)
|
367 |
+
|
368 |
+
# flip eigenvectors' sign to enforce deterministic output
|
369 |
+
self.eigenvectors_, _ = svd_flip(
|
370 |
+
self.eigenvectors_, np.zeros_like(self.eigenvectors_).T
|
371 |
+
)
|
372 |
+
|
373 |
+
# sort eigenvectors in descending order
|
374 |
+
indices = self.eigenvalues_.argsort()[::-1]
|
375 |
+
self.eigenvalues_ = self.eigenvalues_[indices]
|
376 |
+
self.eigenvectors_ = self.eigenvectors_[:, indices]
|
377 |
+
|
378 |
+
# remove eigenvectors with a zero eigenvalue (null space) if required
|
379 |
+
if self.remove_zero_eig or self.n_components is None:
|
380 |
+
self.eigenvectors_ = self.eigenvectors_[:, self.eigenvalues_ > 0]
|
381 |
+
self.eigenvalues_ = self.eigenvalues_[self.eigenvalues_ > 0]
|
382 |
+
|
383 |
+
# Maintenance note on Eigenvectors normalization
|
384 |
+
# ----------------------------------------------
|
385 |
+
# there is a link between
|
386 |
+
# the eigenvectors of K=Phi(X)'Phi(X) and the ones of Phi(X)Phi(X)'
|
387 |
+
# if v is an eigenvector of K
|
388 |
+
# then Phi(X)v is an eigenvector of Phi(X)Phi(X)'
|
389 |
+
# if u is an eigenvector of Phi(X)Phi(X)'
|
390 |
+
# then Phi(X)'u is an eigenvector of Phi(X)'Phi(X)
|
391 |
+
#
|
392 |
+
# At this stage our self.eigenvectors_ (the v) have norm 1, we need to scale
|
393 |
+
# them so that eigenvectors in kernel feature space (the u) have norm=1
|
394 |
+
# instead
|
395 |
+
#
|
396 |
+
# We COULD scale them here:
|
397 |
+
# self.eigenvectors_ = self.eigenvectors_ / np.sqrt(self.eigenvalues_)
|
398 |
+
#
|
399 |
+
# But choose to perform that LATER when needed, in `fit()` and in
|
400 |
+
# `transform()`.
|
401 |
+
|
402 |
+
return K
|
403 |
+
|
404 |
+
def _fit_inverse_transform(self, X_transformed, X):
|
405 |
+
if hasattr(X, "tocsr"):
|
406 |
+
raise NotImplementedError(
|
407 |
+
"Inverse transform not implemented for sparse matrices!"
|
408 |
+
)
|
409 |
+
|
410 |
+
n_samples = X_transformed.shape[0]
|
411 |
+
K = self._get_kernel(X_transformed)
|
412 |
+
K.flat[:: n_samples + 1] += self.alpha
|
413 |
+
self.dual_coef_ = linalg.solve(K, X, assume_a="pos", overwrite_a=True)
|
414 |
+
self.X_transformed_fit_ = X_transformed
|
415 |
+
|
416 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
417 |
+
def fit(self, X, y=None):
|
418 |
+
"""Fit the model from data in X.
|
419 |
+
|
420 |
+
Parameters
|
421 |
+
----------
|
422 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
423 |
+
Training vector, where `n_samples` is the number of samples
|
424 |
+
and `n_features` is the number of features.
|
425 |
+
|
426 |
+
y : Ignored
|
427 |
+
Not used, present for API consistency by convention.
|
428 |
+
|
429 |
+
Returns
|
430 |
+
-------
|
431 |
+
self : object
|
432 |
+
Returns the instance itself.
|
433 |
+
"""
|
434 |
+
if self.fit_inverse_transform and self.kernel == "precomputed":
|
435 |
+
raise ValueError("Cannot fit_inverse_transform with a precomputed kernel.")
|
436 |
+
X = self._validate_data(X, accept_sparse="csr", copy=self.copy_X)
|
437 |
+
self.gamma_ = 1 / X.shape[1] if self.gamma is None else self.gamma
|
438 |
+
self._centerer = KernelCenterer().set_output(transform="default")
|
439 |
+
K = self._get_kernel(X)
|
440 |
+
self._fit_transform(K)
|
441 |
+
|
442 |
+
if self.fit_inverse_transform:
|
443 |
+
# no need to use the kernel to transform X, use shortcut expression
|
444 |
+
X_transformed = self.eigenvectors_ * np.sqrt(self.eigenvalues_)
|
445 |
+
|
446 |
+
self._fit_inverse_transform(X_transformed, X)
|
447 |
+
|
448 |
+
self.X_fit_ = X
|
449 |
+
return self
|
450 |
+
|
451 |
+
def fit_transform(self, X, y=None, **params):
|
452 |
+
"""Fit the model from data in X and transform X.
|
453 |
+
|
454 |
+
Parameters
|
455 |
+
----------
|
456 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
457 |
+
Training vector, where `n_samples` is the number of samples
|
458 |
+
and `n_features` is the number of features.
|
459 |
+
|
460 |
+
y : Ignored
|
461 |
+
Not used, present for API consistency by convention.
|
462 |
+
|
463 |
+
**params : kwargs
|
464 |
+
Parameters (keyword arguments) and values passed to
|
465 |
+
the fit_transform instance.
|
466 |
+
|
467 |
+
Returns
|
468 |
+
-------
|
469 |
+
X_new : ndarray of shape (n_samples, n_components)
|
470 |
+
Returns the instance itself.
|
471 |
+
"""
|
472 |
+
self.fit(X, **params)
|
473 |
+
|
474 |
+
# no need to use the kernel to transform X, use shortcut expression
|
475 |
+
X_transformed = self.eigenvectors_ * np.sqrt(self.eigenvalues_)
|
476 |
+
|
477 |
+
if self.fit_inverse_transform:
|
478 |
+
self._fit_inverse_transform(X_transformed, X)
|
479 |
+
|
480 |
+
return X_transformed
|
481 |
+
|
482 |
+
def transform(self, X):
|
483 |
+
"""Transform X.
|
484 |
+
|
485 |
+
Parameters
|
486 |
+
----------
|
487 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
488 |
+
Training vector, where `n_samples` is the number of samples
|
489 |
+
and `n_features` is the number of features.
|
490 |
+
|
491 |
+
Returns
|
492 |
+
-------
|
493 |
+
X_new : ndarray of shape (n_samples, n_components)
|
494 |
+
Returns the instance itself.
|
495 |
+
"""
|
496 |
+
check_is_fitted(self)
|
497 |
+
X = self._validate_data(X, accept_sparse="csr", reset=False)
|
498 |
+
|
499 |
+
# Compute centered gram matrix between X and training data X_fit_
|
500 |
+
K = self._centerer.transform(self._get_kernel(X, self.X_fit_))
|
501 |
+
|
502 |
+
# scale eigenvectors (properly account for null-space for dot product)
|
503 |
+
non_zeros = np.flatnonzero(self.eigenvalues_)
|
504 |
+
scaled_alphas = np.zeros_like(self.eigenvectors_)
|
505 |
+
scaled_alphas[:, non_zeros] = self.eigenvectors_[:, non_zeros] / np.sqrt(
|
506 |
+
self.eigenvalues_[non_zeros]
|
507 |
+
)
|
508 |
+
|
509 |
+
# Project with a scalar product between K and the scaled eigenvectors
|
510 |
+
return np.dot(K, scaled_alphas)
|
511 |
+
|
512 |
+
def inverse_transform(self, X):
|
513 |
+
"""Transform X back to original space.
|
514 |
+
|
515 |
+
``inverse_transform`` approximates the inverse transformation using
|
516 |
+
a learned pre-image. The pre-image is learned by kernel ridge
|
517 |
+
regression of the original data on their low-dimensional representation
|
518 |
+
vectors.
|
519 |
+
|
520 |
+
.. note:
|
521 |
+
:meth:`~sklearn.decomposition.fit` internally uses a centered
|
522 |
+
kernel. As the centered kernel no longer contains the information
|
523 |
+
of the mean of kernel features, such information is not taken into
|
524 |
+
account in reconstruction.
|
525 |
+
|
526 |
+
.. note::
|
527 |
+
When users want to compute inverse transformation for 'linear'
|
528 |
+
kernel, it is recommended that they use
|
529 |
+
:class:`~sklearn.decomposition.PCA` instead. Unlike
|
530 |
+
:class:`~sklearn.decomposition.PCA`,
|
531 |
+
:class:`~sklearn.decomposition.KernelPCA`'s ``inverse_transform``
|
532 |
+
does not reconstruct the mean of data when 'linear' kernel is used
|
533 |
+
due to the use of centered kernel.
|
534 |
+
|
535 |
+
Parameters
|
536 |
+
----------
|
537 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_components)
|
538 |
+
Training vector, where `n_samples` is the number of samples
|
539 |
+
and `n_features` is the number of features.
|
540 |
+
|
541 |
+
Returns
|
542 |
+
-------
|
543 |
+
X_new : ndarray of shape (n_samples, n_features)
|
544 |
+
Returns the instance itself.
|
545 |
+
|
546 |
+
References
|
547 |
+
----------
|
548 |
+
`Bakır, Gökhan H., Jason Weston, and Bernhard Schölkopf.
|
549 |
+
"Learning to find pre-images."
|
550 |
+
Advances in neural information processing systems 16 (2004): 449-456.
|
551 |
+
<https://papers.nips.cc/paper/2003/file/ac1ad983e08ad3304a97e147f522747e-Paper.pdf>`_
|
552 |
+
"""
|
553 |
+
if not self.fit_inverse_transform:
|
554 |
+
raise NotFittedError(
|
555 |
+
"The fit_inverse_transform parameter was not"
|
556 |
+
" set to True when instantiating and hence "
|
557 |
+
"the inverse transform is not available."
|
558 |
+
)
|
559 |
+
|
560 |
+
K = self._get_kernel(X, self.X_transformed_fit_)
|
561 |
+
return np.dot(K, self.dual_coef_)
|
562 |
+
|
563 |
+
def _more_tags(self):
|
564 |
+
return {
|
565 |
+
"preserves_dtype": [np.float64, np.float32],
|
566 |
+
"pairwise": self.kernel == "precomputed",
|
567 |
+
}
|
568 |
+
|
569 |
+
@property
|
570 |
+
def _n_features_out(self):
|
571 |
+
"""Number of transformed output features."""
|
572 |
+
return self.eigenvalues_.shape[0]
|
venv/lib/python3.10/site-packages/sklearn/decomposition/_lda.py
ADDED
@@ -0,0 +1,929 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
=============================================================
|
4 |
+
Online Latent Dirichlet Allocation with variational inference
|
5 |
+
=============================================================
|
6 |
+
|
7 |
+
This implementation is modified from Matthew D. Hoffman's onlineldavb code
|
8 |
+
Link: https://github.com/blei-lab/onlineldavb
|
9 |
+
"""
|
10 |
+
|
11 |
+
# Author: Chyi-Kwei Yau
|
12 |
+
# Author: Matthew D. Hoffman (original onlineldavb implementation)
|
13 |
+
from numbers import Integral, Real
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import scipy.sparse as sp
|
17 |
+
from joblib import effective_n_jobs
|
18 |
+
from scipy.special import gammaln, logsumexp
|
19 |
+
|
20 |
+
from ..base import (
|
21 |
+
BaseEstimator,
|
22 |
+
ClassNamePrefixFeaturesOutMixin,
|
23 |
+
TransformerMixin,
|
24 |
+
_fit_context,
|
25 |
+
)
|
26 |
+
from ..utils import check_random_state, gen_batches, gen_even_slices
|
27 |
+
from ..utils._param_validation import Interval, StrOptions
|
28 |
+
from ..utils.parallel import Parallel, delayed
|
29 |
+
from ..utils.validation import check_is_fitted, check_non_negative
|
30 |
+
from ._online_lda_fast import (
|
31 |
+
_dirichlet_expectation_1d as cy_dirichlet_expectation_1d,
|
32 |
+
)
|
33 |
+
from ._online_lda_fast import (
|
34 |
+
_dirichlet_expectation_2d,
|
35 |
+
)
|
36 |
+
from ._online_lda_fast import (
|
37 |
+
mean_change as cy_mean_change,
|
38 |
+
)
|
39 |
+
|
40 |
+
EPS = np.finfo(float).eps
|
41 |
+
|
42 |
+
|
43 |
+
def _update_doc_distribution(
|
44 |
+
X,
|
45 |
+
exp_topic_word_distr,
|
46 |
+
doc_topic_prior,
|
47 |
+
max_doc_update_iter,
|
48 |
+
mean_change_tol,
|
49 |
+
cal_sstats,
|
50 |
+
random_state,
|
51 |
+
):
|
52 |
+
"""E-step: update document-topic distribution.
|
53 |
+
|
54 |
+
Parameters
|
55 |
+
----------
|
56 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
57 |
+
Document word matrix.
|
58 |
+
|
59 |
+
exp_topic_word_distr : ndarray of shape (n_topics, n_features)
|
60 |
+
Exponential value of expectation of log topic word distribution.
|
61 |
+
In the literature, this is `exp(E[log(beta)])`.
|
62 |
+
|
63 |
+
doc_topic_prior : float
|
64 |
+
Prior of document topic distribution `theta`.
|
65 |
+
|
66 |
+
max_doc_update_iter : int
|
67 |
+
Max number of iterations for updating document topic distribution in
|
68 |
+
the E-step.
|
69 |
+
|
70 |
+
mean_change_tol : float
|
71 |
+
Stopping tolerance for updating document topic distribution in E-step.
|
72 |
+
|
73 |
+
cal_sstats : bool
|
74 |
+
Parameter that indicate to calculate sufficient statistics or not.
|
75 |
+
Set `cal_sstats` to `True` when we need to run M-step.
|
76 |
+
|
77 |
+
random_state : RandomState instance or None
|
78 |
+
Parameter that indicate how to initialize document topic distribution.
|
79 |
+
Set `random_state` to None will initialize document topic distribution
|
80 |
+
to a constant number.
|
81 |
+
|
82 |
+
Returns
|
83 |
+
-------
|
84 |
+
(doc_topic_distr, suff_stats) :
|
85 |
+
`doc_topic_distr` is unnormalized topic distribution for each document.
|
86 |
+
In the literature, this is `gamma`. we can calculate `E[log(theta)]`
|
87 |
+
from it.
|
88 |
+
`suff_stats` is expected sufficient statistics for the M-step.
|
89 |
+
When `cal_sstats == False`, this will be None.
|
90 |
+
|
91 |
+
"""
|
92 |
+
is_sparse_x = sp.issparse(X)
|
93 |
+
n_samples, n_features = X.shape
|
94 |
+
n_topics = exp_topic_word_distr.shape[0]
|
95 |
+
|
96 |
+
if random_state:
|
97 |
+
doc_topic_distr = random_state.gamma(100.0, 0.01, (n_samples, n_topics)).astype(
|
98 |
+
X.dtype, copy=False
|
99 |
+
)
|
100 |
+
else:
|
101 |
+
doc_topic_distr = np.ones((n_samples, n_topics), dtype=X.dtype)
|
102 |
+
|
103 |
+
# In the literature, this is `exp(E[log(theta)])`
|
104 |
+
exp_doc_topic = np.exp(_dirichlet_expectation_2d(doc_topic_distr))
|
105 |
+
|
106 |
+
# diff on `component_` (only calculate it when `cal_diff` is True)
|
107 |
+
suff_stats = (
|
108 |
+
np.zeros(exp_topic_word_distr.shape, dtype=X.dtype) if cal_sstats else None
|
109 |
+
)
|
110 |
+
|
111 |
+
if is_sparse_x:
|
112 |
+
X_data = X.data
|
113 |
+
X_indices = X.indices
|
114 |
+
X_indptr = X.indptr
|
115 |
+
|
116 |
+
# These cython functions are called in a nested loop on usually very small arrays
|
117 |
+
# (length=n_topics). In that case, finding the appropriate signature of the
|
118 |
+
# fused-typed function can be more costly than its execution, hence the dispatch
|
119 |
+
# is done outside of the loop.
|
120 |
+
ctype = "float" if X.dtype == np.float32 else "double"
|
121 |
+
mean_change = cy_mean_change[ctype]
|
122 |
+
dirichlet_expectation_1d = cy_dirichlet_expectation_1d[ctype]
|
123 |
+
eps = np.finfo(X.dtype).eps
|
124 |
+
|
125 |
+
for idx_d in range(n_samples):
|
126 |
+
if is_sparse_x:
|
127 |
+
ids = X_indices[X_indptr[idx_d] : X_indptr[idx_d + 1]]
|
128 |
+
cnts = X_data[X_indptr[idx_d] : X_indptr[idx_d + 1]]
|
129 |
+
else:
|
130 |
+
ids = np.nonzero(X[idx_d, :])[0]
|
131 |
+
cnts = X[idx_d, ids]
|
132 |
+
|
133 |
+
doc_topic_d = doc_topic_distr[idx_d, :]
|
134 |
+
# The next one is a copy, since the inner loop overwrites it.
|
135 |
+
exp_doc_topic_d = exp_doc_topic[idx_d, :].copy()
|
136 |
+
exp_topic_word_d = exp_topic_word_distr[:, ids]
|
137 |
+
|
138 |
+
# Iterate between `doc_topic_d` and `norm_phi` until convergence
|
139 |
+
for _ in range(0, max_doc_update_iter):
|
140 |
+
last_d = doc_topic_d
|
141 |
+
|
142 |
+
# The optimal phi_{dwk} is proportional to
|
143 |
+
# exp(E[log(theta_{dk})]) * exp(E[log(beta_{dw})]).
|
144 |
+
norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + eps
|
145 |
+
|
146 |
+
doc_topic_d = exp_doc_topic_d * np.dot(cnts / norm_phi, exp_topic_word_d.T)
|
147 |
+
# Note: adds doc_topic_prior to doc_topic_d, in-place.
|
148 |
+
dirichlet_expectation_1d(doc_topic_d, doc_topic_prior, exp_doc_topic_d)
|
149 |
+
|
150 |
+
if mean_change(last_d, doc_topic_d) < mean_change_tol:
|
151 |
+
break
|
152 |
+
doc_topic_distr[idx_d, :] = doc_topic_d
|
153 |
+
|
154 |
+
# Contribution of document d to the expected sufficient
|
155 |
+
# statistics for the M step.
|
156 |
+
if cal_sstats:
|
157 |
+
norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + eps
|
158 |
+
suff_stats[:, ids] += np.outer(exp_doc_topic_d, cnts / norm_phi)
|
159 |
+
|
160 |
+
return (doc_topic_distr, suff_stats)
|
161 |
+
|
162 |
+
|
163 |
+
class LatentDirichletAllocation(
|
164 |
+
ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator
|
165 |
+
):
|
166 |
+
"""Latent Dirichlet Allocation with online variational Bayes algorithm.
|
167 |
+
|
168 |
+
The implementation is based on [1]_ and [2]_.
|
169 |
+
|
170 |
+
.. versionadded:: 0.17
|
171 |
+
|
172 |
+
Read more in the :ref:`User Guide <LatentDirichletAllocation>`.
|
173 |
+
|
174 |
+
Parameters
|
175 |
+
----------
|
176 |
+
n_components : int, default=10
|
177 |
+
Number of topics.
|
178 |
+
|
179 |
+
.. versionchanged:: 0.19
|
180 |
+
``n_topics`` was renamed to ``n_components``
|
181 |
+
|
182 |
+
doc_topic_prior : float, default=None
|
183 |
+
Prior of document topic distribution `theta`. If the value is None,
|
184 |
+
defaults to `1 / n_components`.
|
185 |
+
In [1]_, this is called `alpha`.
|
186 |
+
|
187 |
+
topic_word_prior : float, default=None
|
188 |
+
Prior of topic word distribution `beta`. If the value is None, defaults
|
189 |
+
to `1 / n_components`.
|
190 |
+
In [1]_, this is called `eta`.
|
191 |
+
|
192 |
+
learning_method : {'batch', 'online'}, default='batch'
|
193 |
+
Method used to update `_component`. Only used in :meth:`fit` method.
|
194 |
+
In general, if the data size is large, the online update will be much
|
195 |
+
faster than the batch update.
|
196 |
+
|
197 |
+
Valid options::
|
198 |
+
|
199 |
+
'batch': Batch variational Bayes method. Use all training data in
|
200 |
+
each EM update.
|
201 |
+
Old `components_` will be overwritten in each iteration.
|
202 |
+
'online': Online variational Bayes method. In each EM update, use
|
203 |
+
mini-batch of training data to update the ``components_``
|
204 |
+
variable incrementally. The learning rate is controlled by the
|
205 |
+
``learning_decay`` and the ``learning_offset`` parameters.
|
206 |
+
|
207 |
+
.. versionchanged:: 0.20
|
208 |
+
The default learning method is now ``"batch"``.
|
209 |
+
|
210 |
+
learning_decay : float, default=0.7
|
211 |
+
It is a parameter that control learning rate in the online learning
|
212 |
+
method. The value should be set between (0.5, 1.0] to guarantee
|
213 |
+
asymptotic convergence. When the value is 0.0 and batch_size is
|
214 |
+
``n_samples``, the update method is same as batch learning. In the
|
215 |
+
literature, this is called kappa.
|
216 |
+
|
217 |
+
learning_offset : float, default=10.0
|
218 |
+
A (positive) parameter that downweights early iterations in online
|
219 |
+
learning. It should be greater than 1.0. In the literature, this is
|
220 |
+
called tau_0.
|
221 |
+
|
222 |
+
max_iter : int, default=10
|
223 |
+
The maximum number of passes over the training data (aka epochs).
|
224 |
+
It only impacts the behavior in the :meth:`fit` method, and not the
|
225 |
+
:meth:`partial_fit` method.
|
226 |
+
|
227 |
+
batch_size : int, default=128
|
228 |
+
Number of documents to use in each EM iteration. Only used in online
|
229 |
+
learning.
|
230 |
+
|
231 |
+
evaluate_every : int, default=-1
|
232 |
+
How often to evaluate perplexity. Only used in `fit` method.
|
233 |
+
set it to 0 or negative number to not evaluate perplexity in
|
234 |
+
training at all. Evaluating perplexity can help you check convergence
|
235 |
+
in training process, but it will also increase total training time.
|
236 |
+
Evaluating perplexity in every iteration might increase training time
|
237 |
+
up to two-fold.
|
238 |
+
|
239 |
+
total_samples : int, default=1e6
|
240 |
+
Total number of documents. Only used in the :meth:`partial_fit` method.
|
241 |
+
|
242 |
+
perp_tol : float, default=1e-1
|
243 |
+
Perplexity tolerance in batch learning. Only used when
|
244 |
+
``evaluate_every`` is greater than 0.
|
245 |
+
|
246 |
+
mean_change_tol : float, default=1e-3
|
247 |
+
Stopping tolerance for updating document topic distribution in E-step.
|
248 |
+
|
249 |
+
max_doc_update_iter : int, default=100
|
250 |
+
Max number of iterations for updating document topic distribution in
|
251 |
+
the E-step.
|
252 |
+
|
253 |
+
n_jobs : int, default=None
|
254 |
+
The number of jobs to use in the E-step.
|
255 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
256 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
257 |
+
for more details.
|
258 |
+
|
259 |
+
verbose : int, default=0
|
260 |
+
Verbosity level.
|
261 |
+
|
262 |
+
random_state : int, RandomState instance or None, default=None
|
263 |
+
Pass an int for reproducible results across multiple function calls.
|
264 |
+
See :term:`Glossary <random_state>`.
|
265 |
+
|
266 |
+
Attributes
|
267 |
+
----------
|
268 |
+
components_ : ndarray of shape (n_components, n_features)
|
269 |
+
Variational parameters for topic word distribution. Since the complete
|
270 |
+
conditional for topic word distribution is a Dirichlet,
|
271 |
+
``components_[i, j]`` can be viewed as pseudocount that represents the
|
272 |
+
number of times word `j` was assigned to topic `i`.
|
273 |
+
It can also be viewed as distribution over the words for each topic
|
274 |
+
after normalization:
|
275 |
+
``model.components_ / model.components_.sum(axis=1)[:, np.newaxis]``.
|
276 |
+
|
277 |
+
exp_dirichlet_component_ : ndarray of shape (n_components, n_features)
|
278 |
+
Exponential value of expectation of log topic word distribution.
|
279 |
+
In the literature, this is `exp(E[log(beta)])`.
|
280 |
+
|
281 |
+
n_batch_iter_ : int
|
282 |
+
Number of iterations of the EM step.
|
283 |
+
|
284 |
+
n_features_in_ : int
|
285 |
+
Number of features seen during :term:`fit`.
|
286 |
+
|
287 |
+
.. versionadded:: 0.24
|
288 |
+
|
289 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
290 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
291 |
+
has feature names that are all strings.
|
292 |
+
|
293 |
+
.. versionadded:: 1.0
|
294 |
+
|
295 |
+
n_iter_ : int
|
296 |
+
Number of passes over the dataset.
|
297 |
+
|
298 |
+
bound_ : float
|
299 |
+
Final perplexity score on training set.
|
300 |
+
|
301 |
+
doc_topic_prior_ : float
|
302 |
+
Prior of document topic distribution `theta`. If the value is None,
|
303 |
+
it is `1 / n_components`.
|
304 |
+
|
305 |
+
random_state_ : RandomState instance
|
306 |
+
RandomState instance that is generated either from a seed, the random
|
307 |
+
number generator or by `np.random`.
|
308 |
+
|
309 |
+
topic_word_prior_ : float
|
310 |
+
Prior of topic word distribution `beta`. If the value is None, it is
|
311 |
+
`1 / n_components`.
|
312 |
+
|
313 |
+
See Also
|
314 |
+
--------
|
315 |
+
sklearn.discriminant_analysis.LinearDiscriminantAnalysis:
|
316 |
+
A classifier with a linear decision boundary, generated by fitting
|
317 |
+
class conditional densities to the data and using Bayes' rule.
|
318 |
+
|
319 |
+
References
|
320 |
+
----------
|
321 |
+
.. [1] "Online Learning for Latent Dirichlet Allocation", Matthew D.
|
322 |
+
Hoffman, David M. Blei, Francis Bach, 2010
|
323 |
+
https://github.com/blei-lab/onlineldavb
|
324 |
+
|
325 |
+
.. [2] "Stochastic Variational Inference", Matthew D. Hoffman,
|
326 |
+
David M. Blei, Chong Wang, John Paisley, 2013
|
327 |
+
|
328 |
+
Examples
|
329 |
+
--------
|
330 |
+
>>> from sklearn.decomposition import LatentDirichletAllocation
|
331 |
+
>>> from sklearn.datasets import make_multilabel_classification
|
332 |
+
>>> # This produces a feature matrix of token counts, similar to what
|
333 |
+
>>> # CountVectorizer would produce on text.
|
334 |
+
>>> X, _ = make_multilabel_classification(random_state=0)
|
335 |
+
>>> lda = LatentDirichletAllocation(n_components=5,
|
336 |
+
... random_state=0)
|
337 |
+
>>> lda.fit(X)
|
338 |
+
LatentDirichletAllocation(...)
|
339 |
+
>>> # get topics for some given samples:
|
340 |
+
>>> lda.transform(X[-2:])
|
341 |
+
array([[0.00360392, 0.25499205, 0.0036211 , 0.64236448, 0.09541846],
|
342 |
+
[0.15297572, 0.00362644, 0.44412786, 0.39568399, 0.003586 ]])
|
343 |
+
"""
|
344 |
+
|
345 |
+
_parameter_constraints: dict = {
|
346 |
+
"n_components": [Interval(Integral, 0, None, closed="neither")],
|
347 |
+
"doc_topic_prior": [None, Interval(Real, 0, 1, closed="both")],
|
348 |
+
"topic_word_prior": [None, Interval(Real, 0, 1, closed="both")],
|
349 |
+
"learning_method": [StrOptions({"batch", "online"})],
|
350 |
+
"learning_decay": [Interval(Real, 0, 1, closed="both")],
|
351 |
+
"learning_offset": [Interval(Real, 1.0, None, closed="left")],
|
352 |
+
"max_iter": [Interval(Integral, 0, None, closed="left")],
|
353 |
+
"batch_size": [Interval(Integral, 0, None, closed="neither")],
|
354 |
+
"evaluate_every": [Interval(Integral, None, None, closed="neither")],
|
355 |
+
"total_samples": [Interval(Real, 0, None, closed="neither")],
|
356 |
+
"perp_tol": [Interval(Real, 0, None, closed="left")],
|
357 |
+
"mean_change_tol": [Interval(Real, 0, None, closed="left")],
|
358 |
+
"max_doc_update_iter": [Interval(Integral, 0, None, closed="left")],
|
359 |
+
"n_jobs": [None, Integral],
|
360 |
+
"verbose": ["verbose"],
|
361 |
+
"random_state": ["random_state"],
|
362 |
+
}
|
363 |
+
|
364 |
+
def __init__(
|
365 |
+
self,
|
366 |
+
n_components=10,
|
367 |
+
*,
|
368 |
+
doc_topic_prior=None,
|
369 |
+
topic_word_prior=None,
|
370 |
+
learning_method="batch",
|
371 |
+
learning_decay=0.7,
|
372 |
+
learning_offset=10.0,
|
373 |
+
max_iter=10,
|
374 |
+
batch_size=128,
|
375 |
+
evaluate_every=-1,
|
376 |
+
total_samples=1e6,
|
377 |
+
perp_tol=1e-1,
|
378 |
+
mean_change_tol=1e-3,
|
379 |
+
max_doc_update_iter=100,
|
380 |
+
n_jobs=None,
|
381 |
+
verbose=0,
|
382 |
+
random_state=None,
|
383 |
+
):
|
384 |
+
self.n_components = n_components
|
385 |
+
self.doc_topic_prior = doc_topic_prior
|
386 |
+
self.topic_word_prior = topic_word_prior
|
387 |
+
self.learning_method = learning_method
|
388 |
+
self.learning_decay = learning_decay
|
389 |
+
self.learning_offset = learning_offset
|
390 |
+
self.max_iter = max_iter
|
391 |
+
self.batch_size = batch_size
|
392 |
+
self.evaluate_every = evaluate_every
|
393 |
+
self.total_samples = total_samples
|
394 |
+
self.perp_tol = perp_tol
|
395 |
+
self.mean_change_tol = mean_change_tol
|
396 |
+
self.max_doc_update_iter = max_doc_update_iter
|
397 |
+
self.n_jobs = n_jobs
|
398 |
+
self.verbose = verbose
|
399 |
+
self.random_state = random_state
|
400 |
+
|
401 |
+
def _init_latent_vars(self, n_features, dtype=np.float64):
|
402 |
+
"""Initialize latent variables."""
|
403 |
+
|
404 |
+
self.random_state_ = check_random_state(self.random_state)
|
405 |
+
self.n_batch_iter_ = 1
|
406 |
+
self.n_iter_ = 0
|
407 |
+
|
408 |
+
if self.doc_topic_prior is None:
|
409 |
+
self.doc_topic_prior_ = 1.0 / self.n_components
|
410 |
+
else:
|
411 |
+
self.doc_topic_prior_ = self.doc_topic_prior
|
412 |
+
|
413 |
+
if self.topic_word_prior is None:
|
414 |
+
self.topic_word_prior_ = 1.0 / self.n_components
|
415 |
+
else:
|
416 |
+
self.topic_word_prior_ = self.topic_word_prior
|
417 |
+
|
418 |
+
init_gamma = 100.0
|
419 |
+
init_var = 1.0 / init_gamma
|
420 |
+
# In the literature, this is called `lambda`
|
421 |
+
self.components_ = self.random_state_.gamma(
|
422 |
+
init_gamma, init_var, (self.n_components, n_features)
|
423 |
+
).astype(dtype, copy=False)
|
424 |
+
|
425 |
+
# In the literature, this is `exp(E[log(beta)])`
|
426 |
+
self.exp_dirichlet_component_ = np.exp(
|
427 |
+
_dirichlet_expectation_2d(self.components_)
|
428 |
+
)
|
429 |
+
|
430 |
+
def _e_step(self, X, cal_sstats, random_init, parallel=None):
|
431 |
+
"""E-step in EM update.
|
432 |
+
|
433 |
+
Parameters
|
434 |
+
----------
|
435 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
436 |
+
Document word matrix.
|
437 |
+
|
438 |
+
cal_sstats : bool
|
439 |
+
Parameter that indicate whether to calculate sufficient statistics
|
440 |
+
or not. Set ``cal_sstats`` to True when we need to run M-step.
|
441 |
+
|
442 |
+
random_init : bool
|
443 |
+
Parameter that indicate whether to initialize document topic
|
444 |
+
distribution randomly in the E-step. Set it to True in training
|
445 |
+
steps.
|
446 |
+
|
447 |
+
parallel : joblib.Parallel, default=None
|
448 |
+
Pre-initialized instance of joblib.Parallel.
|
449 |
+
|
450 |
+
Returns
|
451 |
+
-------
|
452 |
+
(doc_topic_distr, suff_stats) :
|
453 |
+
`doc_topic_distr` is unnormalized topic distribution for each
|
454 |
+
document. In the literature, this is called `gamma`.
|
455 |
+
`suff_stats` is expected sufficient statistics for the M-step.
|
456 |
+
When `cal_sstats == False`, it will be None.
|
457 |
+
|
458 |
+
"""
|
459 |
+
|
460 |
+
# Run e-step in parallel
|
461 |
+
random_state = self.random_state_ if random_init else None
|
462 |
+
|
463 |
+
# TODO: make Parallel._effective_n_jobs public instead?
|
464 |
+
n_jobs = effective_n_jobs(self.n_jobs)
|
465 |
+
if parallel is None:
|
466 |
+
parallel = Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1))
|
467 |
+
results = parallel(
|
468 |
+
delayed(_update_doc_distribution)(
|
469 |
+
X[idx_slice, :],
|
470 |
+
self.exp_dirichlet_component_,
|
471 |
+
self.doc_topic_prior_,
|
472 |
+
self.max_doc_update_iter,
|
473 |
+
self.mean_change_tol,
|
474 |
+
cal_sstats,
|
475 |
+
random_state,
|
476 |
+
)
|
477 |
+
for idx_slice in gen_even_slices(X.shape[0], n_jobs)
|
478 |
+
)
|
479 |
+
|
480 |
+
# merge result
|
481 |
+
doc_topics, sstats_list = zip(*results)
|
482 |
+
doc_topic_distr = np.vstack(doc_topics)
|
483 |
+
|
484 |
+
if cal_sstats:
|
485 |
+
# This step finishes computing the sufficient statistics for the
|
486 |
+
# M-step.
|
487 |
+
suff_stats = np.zeros(self.components_.shape, dtype=self.components_.dtype)
|
488 |
+
for sstats in sstats_list:
|
489 |
+
suff_stats += sstats
|
490 |
+
suff_stats *= self.exp_dirichlet_component_
|
491 |
+
else:
|
492 |
+
suff_stats = None
|
493 |
+
|
494 |
+
return (doc_topic_distr, suff_stats)
|
495 |
+
|
496 |
+
def _em_step(self, X, total_samples, batch_update, parallel=None):
|
497 |
+
"""EM update for 1 iteration.
|
498 |
+
|
499 |
+
update `_component` by batch VB or online VB.
|
500 |
+
|
501 |
+
Parameters
|
502 |
+
----------
|
503 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
504 |
+
Document word matrix.
|
505 |
+
|
506 |
+
total_samples : int
|
507 |
+
Total number of documents. It is only used when
|
508 |
+
batch_update is `False`.
|
509 |
+
|
510 |
+
batch_update : bool
|
511 |
+
Parameter that controls updating method.
|
512 |
+
`True` for batch learning, `False` for online learning.
|
513 |
+
|
514 |
+
parallel : joblib.Parallel, default=None
|
515 |
+
Pre-initialized instance of joblib.Parallel
|
516 |
+
|
517 |
+
Returns
|
518 |
+
-------
|
519 |
+
doc_topic_distr : ndarray of shape (n_samples, n_components)
|
520 |
+
Unnormalized document topic distribution.
|
521 |
+
"""
|
522 |
+
|
523 |
+
# E-step
|
524 |
+
_, suff_stats = self._e_step(
|
525 |
+
X, cal_sstats=True, random_init=True, parallel=parallel
|
526 |
+
)
|
527 |
+
|
528 |
+
# M-step
|
529 |
+
if batch_update:
|
530 |
+
self.components_ = self.topic_word_prior_ + suff_stats
|
531 |
+
else:
|
532 |
+
# online update
|
533 |
+
# In the literature, the weight is `rho`
|
534 |
+
weight = np.power(
|
535 |
+
self.learning_offset + self.n_batch_iter_, -self.learning_decay
|
536 |
+
)
|
537 |
+
doc_ratio = float(total_samples) / X.shape[0]
|
538 |
+
self.components_ *= 1 - weight
|
539 |
+
self.components_ += weight * (
|
540 |
+
self.topic_word_prior_ + doc_ratio * suff_stats
|
541 |
+
)
|
542 |
+
|
543 |
+
# update `component_` related variables
|
544 |
+
self.exp_dirichlet_component_ = np.exp(
|
545 |
+
_dirichlet_expectation_2d(self.components_)
|
546 |
+
)
|
547 |
+
self.n_batch_iter_ += 1
|
548 |
+
return
|
549 |
+
|
550 |
+
def _more_tags(self):
|
551 |
+
return {
|
552 |
+
"preserves_dtype": [np.float64, np.float32],
|
553 |
+
"requires_positive_X": True,
|
554 |
+
}
|
555 |
+
|
556 |
+
def _check_non_neg_array(self, X, reset_n_features, whom):
|
557 |
+
"""check X format
|
558 |
+
|
559 |
+
check X format and make sure no negative value in X.
|
560 |
+
|
561 |
+
Parameters
|
562 |
+
----------
|
563 |
+
X : array-like or sparse matrix
|
564 |
+
|
565 |
+
"""
|
566 |
+
dtype = [np.float64, np.float32] if reset_n_features else self.components_.dtype
|
567 |
+
|
568 |
+
X = self._validate_data(
|
569 |
+
X,
|
570 |
+
reset=reset_n_features,
|
571 |
+
accept_sparse="csr",
|
572 |
+
dtype=dtype,
|
573 |
+
)
|
574 |
+
check_non_negative(X, whom)
|
575 |
+
|
576 |
+
return X
|
577 |
+
|
578 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
579 |
+
def partial_fit(self, X, y=None):
|
580 |
+
"""Online VB with Mini-Batch update.
|
581 |
+
|
582 |
+
Parameters
|
583 |
+
----------
|
584 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
585 |
+
Document word matrix.
|
586 |
+
|
587 |
+
y : Ignored
|
588 |
+
Not used, present here for API consistency by convention.
|
589 |
+
|
590 |
+
Returns
|
591 |
+
-------
|
592 |
+
self
|
593 |
+
Partially fitted estimator.
|
594 |
+
"""
|
595 |
+
first_time = not hasattr(self, "components_")
|
596 |
+
|
597 |
+
X = self._check_non_neg_array(
|
598 |
+
X, reset_n_features=first_time, whom="LatentDirichletAllocation.partial_fit"
|
599 |
+
)
|
600 |
+
n_samples, n_features = X.shape
|
601 |
+
batch_size = self.batch_size
|
602 |
+
|
603 |
+
# initialize parameters or check
|
604 |
+
if first_time:
|
605 |
+
self._init_latent_vars(n_features, dtype=X.dtype)
|
606 |
+
|
607 |
+
if n_features != self.components_.shape[1]:
|
608 |
+
raise ValueError(
|
609 |
+
"The provided data has %d dimensions while "
|
610 |
+
"the model was trained with feature size %d."
|
611 |
+
% (n_features, self.components_.shape[1])
|
612 |
+
)
|
613 |
+
|
614 |
+
n_jobs = effective_n_jobs(self.n_jobs)
|
615 |
+
with Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1)) as parallel:
|
616 |
+
for idx_slice in gen_batches(n_samples, batch_size):
|
617 |
+
self._em_step(
|
618 |
+
X[idx_slice, :],
|
619 |
+
total_samples=self.total_samples,
|
620 |
+
batch_update=False,
|
621 |
+
parallel=parallel,
|
622 |
+
)
|
623 |
+
|
624 |
+
return self
|
625 |
+
|
626 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
627 |
+
def fit(self, X, y=None):
|
628 |
+
"""Learn model for the data X with variational Bayes method.
|
629 |
+
|
630 |
+
When `learning_method` is 'online', use mini-batch update.
|
631 |
+
Otherwise, use batch update.
|
632 |
+
|
633 |
+
Parameters
|
634 |
+
----------
|
635 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
636 |
+
Document word matrix.
|
637 |
+
|
638 |
+
y : Ignored
|
639 |
+
Not used, present here for API consistency by convention.
|
640 |
+
|
641 |
+
Returns
|
642 |
+
-------
|
643 |
+
self
|
644 |
+
Fitted estimator.
|
645 |
+
"""
|
646 |
+
X = self._check_non_neg_array(
|
647 |
+
X, reset_n_features=True, whom="LatentDirichletAllocation.fit"
|
648 |
+
)
|
649 |
+
n_samples, n_features = X.shape
|
650 |
+
max_iter = self.max_iter
|
651 |
+
evaluate_every = self.evaluate_every
|
652 |
+
learning_method = self.learning_method
|
653 |
+
|
654 |
+
batch_size = self.batch_size
|
655 |
+
|
656 |
+
# initialize parameters
|
657 |
+
self._init_latent_vars(n_features, dtype=X.dtype)
|
658 |
+
# change to perplexity later
|
659 |
+
last_bound = None
|
660 |
+
n_jobs = effective_n_jobs(self.n_jobs)
|
661 |
+
with Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1)) as parallel:
|
662 |
+
for i in range(max_iter):
|
663 |
+
if learning_method == "online":
|
664 |
+
for idx_slice in gen_batches(n_samples, batch_size):
|
665 |
+
self._em_step(
|
666 |
+
X[idx_slice, :],
|
667 |
+
total_samples=n_samples,
|
668 |
+
batch_update=False,
|
669 |
+
parallel=parallel,
|
670 |
+
)
|
671 |
+
else:
|
672 |
+
# batch update
|
673 |
+
self._em_step(
|
674 |
+
X, total_samples=n_samples, batch_update=True, parallel=parallel
|
675 |
+
)
|
676 |
+
|
677 |
+
# check perplexity
|
678 |
+
if evaluate_every > 0 and (i + 1) % evaluate_every == 0:
|
679 |
+
doc_topics_distr, _ = self._e_step(
|
680 |
+
X, cal_sstats=False, random_init=False, parallel=parallel
|
681 |
+
)
|
682 |
+
bound = self._perplexity_precomp_distr(
|
683 |
+
X, doc_topics_distr, sub_sampling=False
|
684 |
+
)
|
685 |
+
if self.verbose:
|
686 |
+
print(
|
687 |
+
"iteration: %d of max_iter: %d, perplexity: %.4f"
|
688 |
+
% (i + 1, max_iter, bound)
|
689 |
+
)
|
690 |
+
|
691 |
+
if last_bound and abs(last_bound - bound) < self.perp_tol:
|
692 |
+
break
|
693 |
+
last_bound = bound
|
694 |
+
|
695 |
+
elif self.verbose:
|
696 |
+
print("iteration: %d of max_iter: %d" % (i + 1, max_iter))
|
697 |
+
self.n_iter_ += 1
|
698 |
+
|
699 |
+
# calculate final perplexity value on train set
|
700 |
+
doc_topics_distr, _ = self._e_step(
|
701 |
+
X, cal_sstats=False, random_init=False, parallel=parallel
|
702 |
+
)
|
703 |
+
self.bound_ = self._perplexity_precomp_distr(
|
704 |
+
X, doc_topics_distr, sub_sampling=False
|
705 |
+
)
|
706 |
+
|
707 |
+
return self
|
708 |
+
|
709 |
+
def _unnormalized_transform(self, X):
|
710 |
+
"""Transform data X according to fitted model.
|
711 |
+
|
712 |
+
Parameters
|
713 |
+
----------
|
714 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
715 |
+
Document word matrix.
|
716 |
+
|
717 |
+
Returns
|
718 |
+
-------
|
719 |
+
doc_topic_distr : ndarray of shape (n_samples, n_components)
|
720 |
+
Document topic distribution for X.
|
721 |
+
"""
|
722 |
+
doc_topic_distr, _ = self._e_step(X, cal_sstats=False, random_init=False)
|
723 |
+
|
724 |
+
return doc_topic_distr
|
725 |
+
|
726 |
+
def transform(self, X):
|
727 |
+
"""Transform data X according to the fitted model.
|
728 |
+
|
729 |
+
.. versionchanged:: 0.18
|
730 |
+
*doc_topic_distr* is now normalized
|
731 |
+
|
732 |
+
Parameters
|
733 |
+
----------
|
734 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
735 |
+
Document word matrix.
|
736 |
+
|
737 |
+
Returns
|
738 |
+
-------
|
739 |
+
doc_topic_distr : ndarray of shape (n_samples, n_components)
|
740 |
+
Document topic distribution for X.
|
741 |
+
"""
|
742 |
+
check_is_fitted(self)
|
743 |
+
X = self._check_non_neg_array(
|
744 |
+
X, reset_n_features=False, whom="LatentDirichletAllocation.transform"
|
745 |
+
)
|
746 |
+
doc_topic_distr = self._unnormalized_transform(X)
|
747 |
+
doc_topic_distr /= doc_topic_distr.sum(axis=1)[:, np.newaxis]
|
748 |
+
return doc_topic_distr
|
749 |
+
|
750 |
+
def _approx_bound(self, X, doc_topic_distr, sub_sampling):
|
751 |
+
"""Estimate the variational bound.
|
752 |
+
|
753 |
+
Estimate the variational bound over "all documents" using only the
|
754 |
+
documents passed in as X. Since log-likelihood of each word cannot
|
755 |
+
be computed directly, we use this bound to estimate it.
|
756 |
+
|
757 |
+
Parameters
|
758 |
+
----------
|
759 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
760 |
+
Document word matrix.
|
761 |
+
|
762 |
+
doc_topic_distr : ndarray of shape (n_samples, n_components)
|
763 |
+
Document topic distribution. In the literature, this is called
|
764 |
+
gamma.
|
765 |
+
|
766 |
+
sub_sampling : bool, default=False
|
767 |
+
Compensate for subsampling of documents.
|
768 |
+
It is used in calculate bound in online learning.
|
769 |
+
|
770 |
+
Returns
|
771 |
+
-------
|
772 |
+
score : float
|
773 |
+
|
774 |
+
"""
|
775 |
+
|
776 |
+
def _loglikelihood(prior, distr, dirichlet_distr, size):
|
777 |
+
# calculate log-likelihood
|
778 |
+
score = np.sum((prior - distr) * dirichlet_distr)
|
779 |
+
score += np.sum(gammaln(distr) - gammaln(prior))
|
780 |
+
score += np.sum(gammaln(prior * size) - gammaln(np.sum(distr, 1)))
|
781 |
+
return score
|
782 |
+
|
783 |
+
is_sparse_x = sp.issparse(X)
|
784 |
+
n_samples, n_components = doc_topic_distr.shape
|
785 |
+
n_features = self.components_.shape[1]
|
786 |
+
score = 0
|
787 |
+
|
788 |
+
dirichlet_doc_topic = _dirichlet_expectation_2d(doc_topic_distr)
|
789 |
+
dirichlet_component_ = _dirichlet_expectation_2d(self.components_)
|
790 |
+
doc_topic_prior = self.doc_topic_prior_
|
791 |
+
topic_word_prior = self.topic_word_prior_
|
792 |
+
|
793 |
+
if is_sparse_x:
|
794 |
+
X_data = X.data
|
795 |
+
X_indices = X.indices
|
796 |
+
X_indptr = X.indptr
|
797 |
+
|
798 |
+
# E[log p(docs | theta, beta)]
|
799 |
+
for idx_d in range(0, n_samples):
|
800 |
+
if is_sparse_x:
|
801 |
+
ids = X_indices[X_indptr[idx_d] : X_indptr[idx_d + 1]]
|
802 |
+
cnts = X_data[X_indptr[idx_d] : X_indptr[idx_d + 1]]
|
803 |
+
else:
|
804 |
+
ids = np.nonzero(X[idx_d, :])[0]
|
805 |
+
cnts = X[idx_d, ids]
|
806 |
+
temp = (
|
807 |
+
dirichlet_doc_topic[idx_d, :, np.newaxis] + dirichlet_component_[:, ids]
|
808 |
+
)
|
809 |
+
norm_phi = logsumexp(temp, axis=0)
|
810 |
+
score += np.dot(cnts, norm_phi)
|
811 |
+
|
812 |
+
# compute E[log p(theta | alpha) - log q(theta | gamma)]
|
813 |
+
score += _loglikelihood(
|
814 |
+
doc_topic_prior, doc_topic_distr, dirichlet_doc_topic, self.n_components
|
815 |
+
)
|
816 |
+
|
817 |
+
# Compensate for the subsampling of the population of documents
|
818 |
+
if sub_sampling:
|
819 |
+
doc_ratio = float(self.total_samples) / n_samples
|
820 |
+
score *= doc_ratio
|
821 |
+
|
822 |
+
# E[log p(beta | eta) - log q (beta | lambda)]
|
823 |
+
score += _loglikelihood(
|
824 |
+
topic_word_prior, self.components_, dirichlet_component_, n_features
|
825 |
+
)
|
826 |
+
|
827 |
+
return score
|
828 |
+
|
829 |
+
def score(self, X, y=None):
|
830 |
+
"""Calculate approximate log-likelihood as score.
|
831 |
+
|
832 |
+
Parameters
|
833 |
+
----------
|
834 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
835 |
+
Document word matrix.
|
836 |
+
|
837 |
+
y : Ignored
|
838 |
+
Not used, present here for API consistency by convention.
|
839 |
+
|
840 |
+
Returns
|
841 |
+
-------
|
842 |
+
score : float
|
843 |
+
Use approximate bound as score.
|
844 |
+
"""
|
845 |
+
check_is_fitted(self)
|
846 |
+
X = self._check_non_neg_array(
|
847 |
+
X, reset_n_features=False, whom="LatentDirichletAllocation.score"
|
848 |
+
)
|
849 |
+
|
850 |
+
doc_topic_distr = self._unnormalized_transform(X)
|
851 |
+
score = self._approx_bound(X, doc_topic_distr, sub_sampling=False)
|
852 |
+
return score
|
853 |
+
|
854 |
+
def _perplexity_precomp_distr(self, X, doc_topic_distr=None, sub_sampling=False):
|
855 |
+
"""Calculate approximate perplexity for data X with ability to accept
|
856 |
+
precomputed doc_topic_distr
|
857 |
+
|
858 |
+
Perplexity is defined as exp(-1. * log-likelihood per word)
|
859 |
+
|
860 |
+
Parameters
|
861 |
+
----------
|
862 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
863 |
+
Document word matrix.
|
864 |
+
|
865 |
+
doc_topic_distr : ndarray of shape (n_samples, n_components), \
|
866 |
+
default=None
|
867 |
+
Document topic distribution.
|
868 |
+
If it is None, it will be generated by applying transform on X.
|
869 |
+
|
870 |
+
Returns
|
871 |
+
-------
|
872 |
+
score : float
|
873 |
+
Perplexity score.
|
874 |
+
"""
|
875 |
+
if doc_topic_distr is None:
|
876 |
+
doc_topic_distr = self._unnormalized_transform(X)
|
877 |
+
else:
|
878 |
+
n_samples, n_components = doc_topic_distr.shape
|
879 |
+
if n_samples != X.shape[0]:
|
880 |
+
raise ValueError(
|
881 |
+
"Number of samples in X and doc_topic_distr do not match."
|
882 |
+
)
|
883 |
+
|
884 |
+
if n_components != self.n_components:
|
885 |
+
raise ValueError("Number of topics does not match.")
|
886 |
+
|
887 |
+
current_samples = X.shape[0]
|
888 |
+
bound = self._approx_bound(X, doc_topic_distr, sub_sampling)
|
889 |
+
|
890 |
+
if sub_sampling:
|
891 |
+
word_cnt = X.sum() * (float(self.total_samples) / current_samples)
|
892 |
+
else:
|
893 |
+
word_cnt = X.sum()
|
894 |
+
perword_bound = bound / word_cnt
|
895 |
+
|
896 |
+
return np.exp(-1.0 * perword_bound)
|
897 |
+
|
898 |
+
def perplexity(self, X, sub_sampling=False):
|
899 |
+
"""Calculate approximate perplexity for data X.
|
900 |
+
|
901 |
+
Perplexity is defined as exp(-1. * log-likelihood per word)
|
902 |
+
|
903 |
+
.. versionchanged:: 0.19
|
904 |
+
*doc_topic_distr* argument has been deprecated and is ignored
|
905 |
+
because user no longer has access to unnormalized distribution
|
906 |
+
|
907 |
+
Parameters
|
908 |
+
----------
|
909 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
910 |
+
Document word matrix.
|
911 |
+
|
912 |
+
sub_sampling : bool
|
913 |
+
Do sub-sampling or not.
|
914 |
+
|
915 |
+
Returns
|
916 |
+
-------
|
917 |
+
score : float
|
918 |
+
Perplexity score.
|
919 |
+
"""
|
920 |
+
check_is_fitted(self)
|
921 |
+
X = self._check_non_neg_array(
|
922 |
+
X, reset_n_features=True, whom="LatentDirichletAllocation.perplexity"
|
923 |
+
)
|
924 |
+
return self._perplexity_precomp_distr(X, sub_sampling=sub_sampling)
|
925 |
+
|
926 |
+
@property
|
927 |
+
def _n_features_out(self):
|
928 |
+
"""Number of transformed output features."""
|
929 |
+
return self.components_.shape[0]
|
venv/lib/python3.10/site-packages/sklearn/decomposition/_nmf.py
ADDED
@@ -0,0 +1,2443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Non-negative matrix factorization.
|
2 |
+
"""
|
3 |
+
# Author: Vlad Niculae
|
4 |
+
# Lars Buitinck
|
5 |
+
# Mathieu Blondel <[email protected]>
|
6 |
+
# Tom Dupre la Tour
|
7 |
+
# License: BSD 3 clause
|
8 |
+
|
9 |
+
import itertools
|
10 |
+
import time
|
11 |
+
import warnings
|
12 |
+
from abc import ABC
|
13 |
+
from math import sqrt
|
14 |
+
from numbers import Integral, Real
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import scipy.sparse as sp
|
18 |
+
from scipy import linalg
|
19 |
+
|
20 |
+
from .._config import config_context
|
21 |
+
from ..base import (
|
22 |
+
BaseEstimator,
|
23 |
+
ClassNamePrefixFeaturesOutMixin,
|
24 |
+
TransformerMixin,
|
25 |
+
_fit_context,
|
26 |
+
)
|
27 |
+
from ..exceptions import ConvergenceWarning
|
28 |
+
from ..utils import check_array, check_random_state, gen_batches, metadata_routing
|
29 |
+
from ..utils._param_validation import (
|
30 |
+
Hidden,
|
31 |
+
Interval,
|
32 |
+
StrOptions,
|
33 |
+
validate_params,
|
34 |
+
)
|
35 |
+
from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm
|
36 |
+
from ..utils.validation import (
|
37 |
+
check_is_fitted,
|
38 |
+
check_non_negative,
|
39 |
+
)
|
40 |
+
from ._cdnmf_fast import _update_cdnmf_fast
|
41 |
+
|
42 |
+
EPSILON = np.finfo(np.float32).eps
|
43 |
+
|
44 |
+
|
45 |
+
def norm(x):
|
46 |
+
"""Dot product-based Euclidean norm implementation.
|
47 |
+
|
48 |
+
See: http://fa.bianp.net/blog/2011/computing-the-vector-norm/
|
49 |
+
|
50 |
+
Parameters
|
51 |
+
----------
|
52 |
+
x : array-like
|
53 |
+
Vector for which to compute the norm.
|
54 |
+
"""
|
55 |
+
return sqrt(squared_norm(x))
|
56 |
+
|
57 |
+
|
58 |
+
def trace_dot(X, Y):
|
59 |
+
"""Trace of np.dot(X, Y.T).
|
60 |
+
|
61 |
+
Parameters
|
62 |
+
----------
|
63 |
+
X : array-like
|
64 |
+
First matrix.
|
65 |
+
Y : array-like
|
66 |
+
Second matrix.
|
67 |
+
"""
|
68 |
+
return np.dot(X.ravel(), Y.ravel())
|
69 |
+
|
70 |
+
|
71 |
+
def _check_init(A, shape, whom):
|
72 |
+
A = check_array(A)
|
73 |
+
if shape[0] != "auto" and A.shape[0] != shape[0]:
|
74 |
+
raise ValueError(
|
75 |
+
f"Array with wrong first dimension passed to {whom}. Expected {shape[0]}, "
|
76 |
+
f"but got {A.shape[0]}."
|
77 |
+
)
|
78 |
+
if shape[1] != "auto" and A.shape[1] != shape[1]:
|
79 |
+
raise ValueError(
|
80 |
+
f"Array with wrong second dimension passed to {whom}. Expected {shape[1]}, "
|
81 |
+
f"but got {A.shape[1]}."
|
82 |
+
)
|
83 |
+
check_non_negative(A, whom)
|
84 |
+
if np.max(A) == 0:
|
85 |
+
raise ValueError(f"Array passed to {whom} is full of zeros.")
|
86 |
+
|
87 |
+
|
88 |
+
def _beta_divergence(X, W, H, beta, square_root=False):
|
89 |
+
"""Compute the beta-divergence of X and dot(W, H).
|
90 |
+
|
91 |
+
Parameters
|
92 |
+
----------
|
93 |
+
X : float or array-like of shape (n_samples, n_features)
|
94 |
+
|
95 |
+
W : float or array-like of shape (n_samples, n_components)
|
96 |
+
|
97 |
+
H : float or array-like of shape (n_components, n_features)
|
98 |
+
|
99 |
+
beta : float or {'frobenius', 'kullback-leibler', 'itakura-saito'}
|
100 |
+
Parameter of the beta-divergence.
|
101 |
+
If beta == 2, this is half the Frobenius *squared* norm.
|
102 |
+
If beta == 1, this is the generalized Kullback-Leibler divergence.
|
103 |
+
If beta == 0, this is the Itakura-Saito divergence.
|
104 |
+
Else, this is the general beta-divergence.
|
105 |
+
|
106 |
+
square_root : bool, default=False
|
107 |
+
If True, return np.sqrt(2 * res)
|
108 |
+
For beta == 2, it corresponds to the Frobenius norm.
|
109 |
+
|
110 |
+
Returns
|
111 |
+
-------
|
112 |
+
res : float
|
113 |
+
Beta divergence of X and np.dot(X, H).
|
114 |
+
"""
|
115 |
+
beta = _beta_loss_to_float(beta)
|
116 |
+
|
117 |
+
# The method can be called with scalars
|
118 |
+
if not sp.issparse(X):
|
119 |
+
X = np.atleast_2d(X)
|
120 |
+
W = np.atleast_2d(W)
|
121 |
+
H = np.atleast_2d(H)
|
122 |
+
|
123 |
+
# Frobenius norm
|
124 |
+
if beta == 2:
|
125 |
+
# Avoid the creation of the dense np.dot(W, H) if X is sparse.
|
126 |
+
if sp.issparse(X):
|
127 |
+
norm_X = np.dot(X.data, X.data)
|
128 |
+
norm_WH = trace_dot(np.linalg.multi_dot([W.T, W, H]), H)
|
129 |
+
cross_prod = trace_dot((X @ H.T), W)
|
130 |
+
res = (norm_X + norm_WH - 2.0 * cross_prod) / 2.0
|
131 |
+
else:
|
132 |
+
res = squared_norm(X - np.dot(W, H)) / 2.0
|
133 |
+
|
134 |
+
if square_root:
|
135 |
+
return np.sqrt(res * 2)
|
136 |
+
else:
|
137 |
+
return res
|
138 |
+
|
139 |
+
if sp.issparse(X):
|
140 |
+
# compute np.dot(W, H) only where X is nonzero
|
141 |
+
WH_data = _special_sparse_dot(W, H, X).data
|
142 |
+
X_data = X.data
|
143 |
+
else:
|
144 |
+
WH = np.dot(W, H)
|
145 |
+
WH_data = WH.ravel()
|
146 |
+
X_data = X.ravel()
|
147 |
+
|
148 |
+
# do not affect the zeros: here 0 ** (-1) = 0 and not infinity
|
149 |
+
indices = X_data > EPSILON
|
150 |
+
WH_data = WH_data[indices]
|
151 |
+
X_data = X_data[indices]
|
152 |
+
|
153 |
+
# used to avoid division by zero
|
154 |
+
WH_data[WH_data < EPSILON] = EPSILON
|
155 |
+
|
156 |
+
# generalized Kullback-Leibler divergence
|
157 |
+
if beta == 1:
|
158 |
+
# fast and memory efficient computation of np.sum(np.dot(W, H))
|
159 |
+
sum_WH = np.dot(np.sum(W, axis=0), np.sum(H, axis=1))
|
160 |
+
# computes np.sum(X * log(X / WH)) only where X is nonzero
|
161 |
+
div = X_data / WH_data
|
162 |
+
res = np.dot(X_data, np.log(div))
|
163 |
+
# add full np.sum(np.dot(W, H)) - np.sum(X)
|
164 |
+
res += sum_WH - X_data.sum()
|
165 |
+
|
166 |
+
# Itakura-Saito divergence
|
167 |
+
elif beta == 0:
|
168 |
+
div = X_data / WH_data
|
169 |
+
res = np.sum(div) - np.prod(X.shape) - np.sum(np.log(div))
|
170 |
+
|
171 |
+
# beta-divergence, beta not in (0, 1, 2)
|
172 |
+
else:
|
173 |
+
if sp.issparse(X):
|
174 |
+
# slow loop, but memory efficient computation of :
|
175 |
+
# np.sum(np.dot(W, H) ** beta)
|
176 |
+
sum_WH_beta = 0
|
177 |
+
for i in range(X.shape[1]):
|
178 |
+
sum_WH_beta += np.sum(np.dot(W, H[:, i]) ** beta)
|
179 |
+
|
180 |
+
else:
|
181 |
+
sum_WH_beta = np.sum(WH**beta)
|
182 |
+
|
183 |
+
sum_X_WH = np.dot(X_data, WH_data ** (beta - 1))
|
184 |
+
res = (X_data**beta).sum() - beta * sum_X_WH
|
185 |
+
res += sum_WH_beta * (beta - 1)
|
186 |
+
res /= beta * (beta - 1)
|
187 |
+
|
188 |
+
if square_root:
|
189 |
+
res = max(res, 0) # avoid negative number due to rounding errors
|
190 |
+
return np.sqrt(2 * res)
|
191 |
+
else:
|
192 |
+
return res
|
193 |
+
|
194 |
+
|
195 |
+
def _special_sparse_dot(W, H, X):
|
196 |
+
"""Computes np.dot(W, H), only where X is non zero."""
|
197 |
+
if sp.issparse(X):
|
198 |
+
ii, jj = X.nonzero()
|
199 |
+
n_vals = ii.shape[0]
|
200 |
+
dot_vals = np.empty(n_vals)
|
201 |
+
n_components = W.shape[1]
|
202 |
+
|
203 |
+
batch_size = max(n_components, n_vals // n_components)
|
204 |
+
for start in range(0, n_vals, batch_size):
|
205 |
+
batch = slice(start, start + batch_size)
|
206 |
+
dot_vals[batch] = np.multiply(W[ii[batch], :], H.T[jj[batch], :]).sum(
|
207 |
+
axis=1
|
208 |
+
)
|
209 |
+
|
210 |
+
WH = sp.coo_matrix((dot_vals, (ii, jj)), shape=X.shape)
|
211 |
+
return WH.tocsr()
|
212 |
+
else:
|
213 |
+
return np.dot(W, H)
|
214 |
+
|
215 |
+
|
216 |
+
def _beta_loss_to_float(beta_loss):
|
217 |
+
"""Convert string beta_loss to float."""
|
218 |
+
beta_loss_map = {"frobenius": 2, "kullback-leibler": 1, "itakura-saito": 0}
|
219 |
+
if isinstance(beta_loss, str):
|
220 |
+
beta_loss = beta_loss_map[beta_loss]
|
221 |
+
return beta_loss
|
222 |
+
|
223 |
+
|
224 |
+
def _initialize_nmf(X, n_components, init=None, eps=1e-6, random_state=None):
|
225 |
+
"""Algorithms for NMF initialization.
|
226 |
+
|
227 |
+
Computes an initial guess for the non-negative
|
228 |
+
rank k matrix approximation for X: X = WH.
|
229 |
+
|
230 |
+
Parameters
|
231 |
+
----------
|
232 |
+
X : array-like of shape (n_samples, n_features)
|
233 |
+
The data matrix to be decomposed.
|
234 |
+
|
235 |
+
n_components : int
|
236 |
+
The number of components desired in the approximation.
|
237 |
+
|
238 |
+
init : {'random', 'nndsvd', 'nndsvda', 'nndsvdar'}, default=None
|
239 |
+
Method used to initialize the procedure.
|
240 |
+
Valid options:
|
241 |
+
|
242 |
+
- None: 'nndsvda' if n_components <= min(n_samples, n_features),
|
243 |
+
otherwise 'random'.
|
244 |
+
|
245 |
+
- 'random': non-negative random matrices, scaled with:
|
246 |
+
sqrt(X.mean() / n_components)
|
247 |
+
|
248 |
+
- 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
|
249 |
+
initialization (better for sparseness)
|
250 |
+
|
251 |
+
- 'nndsvda': NNDSVD with zeros filled with the average of X
|
252 |
+
(better when sparsity is not desired)
|
253 |
+
|
254 |
+
- 'nndsvdar': NNDSVD with zeros filled with small random values
|
255 |
+
(generally faster, less accurate alternative to NNDSVDa
|
256 |
+
for when sparsity is not desired)
|
257 |
+
|
258 |
+
- 'custom': use custom matrices W and H
|
259 |
+
|
260 |
+
.. versionchanged:: 1.1
|
261 |
+
When `init=None` and n_components is less than n_samples and n_features
|
262 |
+
defaults to `nndsvda` instead of `nndsvd`.
|
263 |
+
|
264 |
+
eps : float, default=1e-6
|
265 |
+
Truncate all values less then this in output to zero.
|
266 |
+
|
267 |
+
random_state : int, RandomState instance or None, default=None
|
268 |
+
Used when ``init`` == 'nndsvdar' or 'random'. Pass an int for
|
269 |
+
reproducible results across multiple function calls.
|
270 |
+
See :term:`Glossary <random_state>`.
|
271 |
+
|
272 |
+
Returns
|
273 |
+
-------
|
274 |
+
W : array-like of shape (n_samples, n_components)
|
275 |
+
Initial guesses for solving X ~= WH.
|
276 |
+
|
277 |
+
H : array-like of shape (n_components, n_features)
|
278 |
+
Initial guesses for solving X ~= WH.
|
279 |
+
|
280 |
+
References
|
281 |
+
----------
|
282 |
+
C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for
|
283 |
+
nonnegative matrix factorization - Pattern Recognition, 2008
|
284 |
+
http://tinyurl.com/nndsvd
|
285 |
+
"""
|
286 |
+
check_non_negative(X, "NMF initialization")
|
287 |
+
n_samples, n_features = X.shape
|
288 |
+
|
289 |
+
if (
|
290 |
+
init is not None
|
291 |
+
and init != "random"
|
292 |
+
and n_components > min(n_samples, n_features)
|
293 |
+
):
|
294 |
+
raise ValueError(
|
295 |
+
"init = '{}' can only be used when "
|
296 |
+
"n_components <= min(n_samples, n_features)".format(init)
|
297 |
+
)
|
298 |
+
|
299 |
+
if init is None:
|
300 |
+
if n_components <= min(n_samples, n_features):
|
301 |
+
init = "nndsvda"
|
302 |
+
else:
|
303 |
+
init = "random"
|
304 |
+
|
305 |
+
# Random initialization
|
306 |
+
if init == "random":
|
307 |
+
avg = np.sqrt(X.mean() / n_components)
|
308 |
+
rng = check_random_state(random_state)
|
309 |
+
H = avg * rng.standard_normal(size=(n_components, n_features)).astype(
|
310 |
+
X.dtype, copy=False
|
311 |
+
)
|
312 |
+
W = avg * rng.standard_normal(size=(n_samples, n_components)).astype(
|
313 |
+
X.dtype, copy=False
|
314 |
+
)
|
315 |
+
np.abs(H, out=H)
|
316 |
+
np.abs(W, out=W)
|
317 |
+
return W, H
|
318 |
+
|
319 |
+
# NNDSVD initialization
|
320 |
+
U, S, V = randomized_svd(X, n_components, random_state=random_state)
|
321 |
+
W = np.zeros_like(U)
|
322 |
+
H = np.zeros_like(V)
|
323 |
+
|
324 |
+
# The leading singular triplet is non-negative
|
325 |
+
# so it can be used as is for initialization.
|
326 |
+
W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0])
|
327 |
+
H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :])
|
328 |
+
|
329 |
+
for j in range(1, n_components):
|
330 |
+
x, y = U[:, j], V[j, :]
|
331 |
+
|
332 |
+
# extract positive and negative parts of column vectors
|
333 |
+
x_p, y_p = np.maximum(x, 0), np.maximum(y, 0)
|
334 |
+
x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0))
|
335 |
+
|
336 |
+
# and their norms
|
337 |
+
x_p_nrm, y_p_nrm = norm(x_p), norm(y_p)
|
338 |
+
x_n_nrm, y_n_nrm = norm(x_n), norm(y_n)
|
339 |
+
|
340 |
+
m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm
|
341 |
+
|
342 |
+
# choose update
|
343 |
+
if m_p > m_n:
|
344 |
+
u = x_p / x_p_nrm
|
345 |
+
v = y_p / y_p_nrm
|
346 |
+
sigma = m_p
|
347 |
+
else:
|
348 |
+
u = x_n / x_n_nrm
|
349 |
+
v = y_n / y_n_nrm
|
350 |
+
sigma = m_n
|
351 |
+
|
352 |
+
lbd = np.sqrt(S[j] * sigma)
|
353 |
+
W[:, j] = lbd * u
|
354 |
+
H[j, :] = lbd * v
|
355 |
+
|
356 |
+
W[W < eps] = 0
|
357 |
+
H[H < eps] = 0
|
358 |
+
|
359 |
+
if init == "nndsvd":
|
360 |
+
pass
|
361 |
+
elif init == "nndsvda":
|
362 |
+
avg = X.mean()
|
363 |
+
W[W == 0] = avg
|
364 |
+
H[H == 0] = avg
|
365 |
+
elif init == "nndsvdar":
|
366 |
+
rng = check_random_state(random_state)
|
367 |
+
avg = X.mean()
|
368 |
+
W[W == 0] = abs(avg * rng.standard_normal(size=len(W[W == 0])) / 100)
|
369 |
+
H[H == 0] = abs(avg * rng.standard_normal(size=len(H[H == 0])) / 100)
|
370 |
+
else:
|
371 |
+
raise ValueError(
|
372 |
+
"Invalid init parameter: got %r instead of one of %r"
|
373 |
+
% (init, (None, "random", "nndsvd", "nndsvda", "nndsvdar"))
|
374 |
+
)
|
375 |
+
|
376 |
+
return W, H
|
377 |
+
|
378 |
+
|
379 |
+
def _update_coordinate_descent(X, W, Ht, l1_reg, l2_reg, shuffle, random_state):
|
380 |
+
"""Helper function for _fit_coordinate_descent.
|
381 |
+
|
382 |
+
Update W to minimize the objective function, iterating once over all
|
383 |
+
coordinates. By symmetry, to update H, one can call
|
384 |
+
_update_coordinate_descent(X.T, Ht, W, ...).
|
385 |
+
|
386 |
+
"""
|
387 |
+
n_components = Ht.shape[1]
|
388 |
+
|
389 |
+
HHt = np.dot(Ht.T, Ht)
|
390 |
+
XHt = safe_sparse_dot(X, Ht)
|
391 |
+
|
392 |
+
# L2 regularization corresponds to increase of the diagonal of HHt
|
393 |
+
if l2_reg != 0.0:
|
394 |
+
# adds l2_reg only on the diagonal
|
395 |
+
HHt.flat[:: n_components + 1] += l2_reg
|
396 |
+
# L1 regularization corresponds to decrease of each element of XHt
|
397 |
+
if l1_reg != 0.0:
|
398 |
+
XHt -= l1_reg
|
399 |
+
|
400 |
+
if shuffle:
|
401 |
+
permutation = random_state.permutation(n_components)
|
402 |
+
else:
|
403 |
+
permutation = np.arange(n_components)
|
404 |
+
# The following seems to be required on 64-bit Windows w/ Python 3.5.
|
405 |
+
permutation = np.asarray(permutation, dtype=np.intp)
|
406 |
+
return _update_cdnmf_fast(W, HHt, XHt, permutation)
|
407 |
+
|
408 |
+
|
409 |
+
def _fit_coordinate_descent(
|
410 |
+
X,
|
411 |
+
W,
|
412 |
+
H,
|
413 |
+
tol=1e-4,
|
414 |
+
max_iter=200,
|
415 |
+
l1_reg_W=0,
|
416 |
+
l1_reg_H=0,
|
417 |
+
l2_reg_W=0,
|
418 |
+
l2_reg_H=0,
|
419 |
+
update_H=True,
|
420 |
+
verbose=0,
|
421 |
+
shuffle=False,
|
422 |
+
random_state=None,
|
423 |
+
):
|
424 |
+
"""Compute Non-negative Matrix Factorization (NMF) with Coordinate Descent
|
425 |
+
|
426 |
+
The objective function is minimized with an alternating minimization of W
|
427 |
+
and H. Each minimization is done with a cyclic (up to a permutation of the
|
428 |
+
features) Coordinate Descent.
|
429 |
+
|
430 |
+
Parameters
|
431 |
+
----------
|
432 |
+
X : array-like of shape (n_samples, n_features)
|
433 |
+
Constant matrix.
|
434 |
+
|
435 |
+
W : array-like of shape (n_samples, n_components)
|
436 |
+
Initial guess for the solution.
|
437 |
+
|
438 |
+
H : array-like of shape (n_components, n_features)
|
439 |
+
Initial guess for the solution.
|
440 |
+
|
441 |
+
tol : float, default=1e-4
|
442 |
+
Tolerance of the stopping condition.
|
443 |
+
|
444 |
+
max_iter : int, default=200
|
445 |
+
Maximum number of iterations before timing out.
|
446 |
+
|
447 |
+
l1_reg_W : float, default=0.
|
448 |
+
L1 regularization parameter for W.
|
449 |
+
|
450 |
+
l1_reg_H : float, default=0.
|
451 |
+
L1 regularization parameter for H.
|
452 |
+
|
453 |
+
l2_reg_W : float, default=0.
|
454 |
+
L2 regularization parameter for W.
|
455 |
+
|
456 |
+
l2_reg_H : float, default=0.
|
457 |
+
L2 regularization parameter for H.
|
458 |
+
|
459 |
+
update_H : bool, default=True
|
460 |
+
Set to True, both W and H will be estimated from initial guesses.
|
461 |
+
Set to False, only W will be estimated.
|
462 |
+
|
463 |
+
verbose : int, default=0
|
464 |
+
The verbosity level.
|
465 |
+
|
466 |
+
shuffle : bool, default=False
|
467 |
+
If true, randomize the order of coordinates in the CD solver.
|
468 |
+
|
469 |
+
random_state : int, RandomState instance or None, default=None
|
470 |
+
Used to randomize the coordinates in the CD solver, when
|
471 |
+
``shuffle`` is set to ``True``. Pass an int for reproducible
|
472 |
+
results across multiple function calls.
|
473 |
+
See :term:`Glossary <random_state>`.
|
474 |
+
|
475 |
+
Returns
|
476 |
+
-------
|
477 |
+
W : ndarray of shape (n_samples, n_components)
|
478 |
+
Solution to the non-negative least squares problem.
|
479 |
+
|
480 |
+
H : ndarray of shape (n_components, n_features)
|
481 |
+
Solution to the non-negative least squares problem.
|
482 |
+
|
483 |
+
n_iter : int
|
484 |
+
The number of iterations done by the algorithm.
|
485 |
+
|
486 |
+
References
|
487 |
+
----------
|
488 |
+
.. [1] :doi:`"Fast local algorithms for large scale nonnegative matrix and tensor
|
489 |
+
factorizations" <10.1587/transfun.E92.A.708>`
|
490 |
+
Cichocki, Andrzej, and P. H. A. N. Anh-Huy. IEICE transactions on fundamentals
|
491 |
+
of electronics, communications and computer sciences 92.3: 708-721, 2009.
|
492 |
+
"""
|
493 |
+
# so W and Ht are both in C order in memory
|
494 |
+
Ht = check_array(H.T, order="C")
|
495 |
+
X = check_array(X, accept_sparse="csr")
|
496 |
+
|
497 |
+
rng = check_random_state(random_state)
|
498 |
+
|
499 |
+
for n_iter in range(1, max_iter + 1):
|
500 |
+
violation = 0.0
|
501 |
+
|
502 |
+
# Update W
|
503 |
+
violation += _update_coordinate_descent(
|
504 |
+
X, W, Ht, l1_reg_W, l2_reg_W, shuffle, rng
|
505 |
+
)
|
506 |
+
# Update H
|
507 |
+
if update_H:
|
508 |
+
violation += _update_coordinate_descent(
|
509 |
+
X.T, Ht, W, l1_reg_H, l2_reg_H, shuffle, rng
|
510 |
+
)
|
511 |
+
|
512 |
+
if n_iter == 1:
|
513 |
+
violation_init = violation
|
514 |
+
|
515 |
+
if violation_init == 0:
|
516 |
+
break
|
517 |
+
|
518 |
+
if verbose:
|
519 |
+
print("violation:", violation / violation_init)
|
520 |
+
|
521 |
+
if violation / violation_init <= tol:
|
522 |
+
if verbose:
|
523 |
+
print("Converged at iteration", n_iter + 1)
|
524 |
+
break
|
525 |
+
|
526 |
+
return W, Ht.T, n_iter
|
527 |
+
|
528 |
+
|
529 |
+
def _multiplicative_update_w(
|
530 |
+
X,
|
531 |
+
W,
|
532 |
+
H,
|
533 |
+
beta_loss,
|
534 |
+
l1_reg_W,
|
535 |
+
l2_reg_W,
|
536 |
+
gamma,
|
537 |
+
H_sum=None,
|
538 |
+
HHt=None,
|
539 |
+
XHt=None,
|
540 |
+
update_H=True,
|
541 |
+
):
|
542 |
+
"""Update W in Multiplicative Update NMF."""
|
543 |
+
if beta_loss == 2:
|
544 |
+
# Numerator
|
545 |
+
if XHt is None:
|
546 |
+
XHt = safe_sparse_dot(X, H.T)
|
547 |
+
if update_H:
|
548 |
+
# avoid a copy of XHt, which will be re-computed (update_H=True)
|
549 |
+
numerator = XHt
|
550 |
+
else:
|
551 |
+
# preserve the XHt, which is not re-computed (update_H=False)
|
552 |
+
numerator = XHt.copy()
|
553 |
+
|
554 |
+
# Denominator
|
555 |
+
if HHt is None:
|
556 |
+
HHt = np.dot(H, H.T)
|
557 |
+
denominator = np.dot(W, HHt)
|
558 |
+
|
559 |
+
else:
|
560 |
+
# Numerator
|
561 |
+
# if X is sparse, compute WH only where X is non zero
|
562 |
+
WH_safe_X = _special_sparse_dot(W, H, X)
|
563 |
+
if sp.issparse(X):
|
564 |
+
WH_safe_X_data = WH_safe_X.data
|
565 |
+
X_data = X.data
|
566 |
+
else:
|
567 |
+
WH_safe_X_data = WH_safe_X
|
568 |
+
X_data = X
|
569 |
+
# copy used in the Denominator
|
570 |
+
WH = WH_safe_X.copy()
|
571 |
+
if beta_loss - 1.0 < 0:
|
572 |
+
WH[WH < EPSILON] = EPSILON
|
573 |
+
|
574 |
+
# to avoid taking a negative power of zero
|
575 |
+
if beta_loss - 2.0 < 0:
|
576 |
+
WH_safe_X_data[WH_safe_X_data < EPSILON] = EPSILON
|
577 |
+
|
578 |
+
if beta_loss == 1:
|
579 |
+
np.divide(X_data, WH_safe_X_data, out=WH_safe_X_data)
|
580 |
+
elif beta_loss == 0:
|
581 |
+
# speeds up computation time
|
582 |
+
# refer to /numpy/numpy/issues/9363
|
583 |
+
WH_safe_X_data **= -1
|
584 |
+
WH_safe_X_data **= 2
|
585 |
+
# element-wise multiplication
|
586 |
+
WH_safe_X_data *= X_data
|
587 |
+
else:
|
588 |
+
WH_safe_X_data **= beta_loss - 2
|
589 |
+
# element-wise multiplication
|
590 |
+
WH_safe_X_data *= X_data
|
591 |
+
|
592 |
+
# here numerator = dot(X * (dot(W, H) ** (beta_loss - 2)), H.T)
|
593 |
+
numerator = safe_sparse_dot(WH_safe_X, H.T)
|
594 |
+
|
595 |
+
# Denominator
|
596 |
+
if beta_loss == 1:
|
597 |
+
if H_sum is None:
|
598 |
+
H_sum = np.sum(H, axis=1) # shape(n_components, )
|
599 |
+
denominator = H_sum[np.newaxis, :]
|
600 |
+
|
601 |
+
else:
|
602 |
+
# computation of WHHt = dot(dot(W, H) ** beta_loss - 1, H.T)
|
603 |
+
if sp.issparse(X):
|
604 |
+
# memory efficient computation
|
605 |
+
# (compute row by row, avoiding the dense matrix WH)
|
606 |
+
WHHt = np.empty(W.shape)
|
607 |
+
for i in range(X.shape[0]):
|
608 |
+
WHi = np.dot(W[i, :], H)
|
609 |
+
if beta_loss - 1 < 0:
|
610 |
+
WHi[WHi < EPSILON] = EPSILON
|
611 |
+
WHi **= beta_loss - 1
|
612 |
+
WHHt[i, :] = np.dot(WHi, H.T)
|
613 |
+
else:
|
614 |
+
WH **= beta_loss - 1
|
615 |
+
WHHt = np.dot(WH, H.T)
|
616 |
+
denominator = WHHt
|
617 |
+
|
618 |
+
# Add L1 and L2 regularization
|
619 |
+
if l1_reg_W > 0:
|
620 |
+
denominator += l1_reg_W
|
621 |
+
if l2_reg_W > 0:
|
622 |
+
denominator = denominator + l2_reg_W * W
|
623 |
+
denominator[denominator == 0] = EPSILON
|
624 |
+
|
625 |
+
numerator /= denominator
|
626 |
+
delta_W = numerator
|
627 |
+
|
628 |
+
# gamma is in ]0, 1]
|
629 |
+
if gamma != 1:
|
630 |
+
delta_W **= gamma
|
631 |
+
|
632 |
+
W *= delta_W
|
633 |
+
|
634 |
+
return W, H_sum, HHt, XHt
|
635 |
+
|
636 |
+
|
637 |
+
def _multiplicative_update_h(
|
638 |
+
X, W, H, beta_loss, l1_reg_H, l2_reg_H, gamma, A=None, B=None, rho=None
|
639 |
+
):
|
640 |
+
"""update H in Multiplicative Update NMF."""
|
641 |
+
if beta_loss == 2:
|
642 |
+
numerator = safe_sparse_dot(W.T, X)
|
643 |
+
denominator = np.linalg.multi_dot([W.T, W, H])
|
644 |
+
|
645 |
+
else:
|
646 |
+
# Numerator
|
647 |
+
WH_safe_X = _special_sparse_dot(W, H, X)
|
648 |
+
if sp.issparse(X):
|
649 |
+
WH_safe_X_data = WH_safe_X.data
|
650 |
+
X_data = X.data
|
651 |
+
else:
|
652 |
+
WH_safe_X_data = WH_safe_X
|
653 |
+
X_data = X
|
654 |
+
# copy used in the Denominator
|
655 |
+
WH = WH_safe_X.copy()
|
656 |
+
if beta_loss - 1.0 < 0:
|
657 |
+
WH[WH < EPSILON] = EPSILON
|
658 |
+
|
659 |
+
# to avoid division by zero
|
660 |
+
if beta_loss - 2.0 < 0:
|
661 |
+
WH_safe_X_data[WH_safe_X_data < EPSILON] = EPSILON
|
662 |
+
|
663 |
+
if beta_loss == 1:
|
664 |
+
np.divide(X_data, WH_safe_X_data, out=WH_safe_X_data)
|
665 |
+
elif beta_loss == 0:
|
666 |
+
# speeds up computation time
|
667 |
+
# refer to /numpy/numpy/issues/9363
|
668 |
+
WH_safe_X_data **= -1
|
669 |
+
WH_safe_X_data **= 2
|
670 |
+
# element-wise multiplication
|
671 |
+
WH_safe_X_data *= X_data
|
672 |
+
else:
|
673 |
+
WH_safe_X_data **= beta_loss - 2
|
674 |
+
# element-wise multiplication
|
675 |
+
WH_safe_X_data *= X_data
|
676 |
+
|
677 |
+
# here numerator = dot(W.T, (dot(W, H) ** (beta_loss - 2)) * X)
|
678 |
+
numerator = safe_sparse_dot(W.T, WH_safe_X)
|
679 |
+
|
680 |
+
# Denominator
|
681 |
+
if beta_loss == 1:
|
682 |
+
W_sum = np.sum(W, axis=0) # shape(n_components, )
|
683 |
+
W_sum[W_sum == 0] = 1.0
|
684 |
+
denominator = W_sum[:, np.newaxis]
|
685 |
+
|
686 |
+
# beta_loss not in (1, 2)
|
687 |
+
else:
|
688 |
+
# computation of WtWH = dot(W.T, dot(W, H) ** beta_loss - 1)
|
689 |
+
if sp.issparse(X):
|
690 |
+
# memory efficient computation
|
691 |
+
# (compute column by column, avoiding the dense matrix WH)
|
692 |
+
WtWH = np.empty(H.shape)
|
693 |
+
for i in range(X.shape[1]):
|
694 |
+
WHi = np.dot(W, H[:, i])
|
695 |
+
if beta_loss - 1 < 0:
|
696 |
+
WHi[WHi < EPSILON] = EPSILON
|
697 |
+
WHi **= beta_loss - 1
|
698 |
+
WtWH[:, i] = np.dot(W.T, WHi)
|
699 |
+
else:
|
700 |
+
WH **= beta_loss - 1
|
701 |
+
WtWH = np.dot(W.T, WH)
|
702 |
+
denominator = WtWH
|
703 |
+
|
704 |
+
# Add L1 and L2 regularization
|
705 |
+
if l1_reg_H > 0:
|
706 |
+
denominator += l1_reg_H
|
707 |
+
if l2_reg_H > 0:
|
708 |
+
denominator = denominator + l2_reg_H * H
|
709 |
+
denominator[denominator == 0] = EPSILON
|
710 |
+
|
711 |
+
if A is not None and B is not None:
|
712 |
+
# Updates for the online nmf
|
713 |
+
if gamma != 1:
|
714 |
+
H **= 1 / gamma
|
715 |
+
numerator *= H
|
716 |
+
A *= rho
|
717 |
+
B *= rho
|
718 |
+
A += numerator
|
719 |
+
B += denominator
|
720 |
+
H = A / B
|
721 |
+
|
722 |
+
if gamma != 1:
|
723 |
+
H **= gamma
|
724 |
+
else:
|
725 |
+
delta_H = numerator
|
726 |
+
delta_H /= denominator
|
727 |
+
if gamma != 1:
|
728 |
+
delta_H **= gamma
|
729 |
+
H *= delta_H
|
730 |
+
|
731 |
+
return H
|
732 |
+
|
733 |
+
|
734 |
+
def _fit_multiplicative_update(
|
735 |
+
X,
|
736 |
+
W,
|
737 |
+
H,
|
738 |
+
beta_loss="frobenius",
|
739 |
+
max_iter=200,
|
740 |
+
tol=1e-4,
|
741 |
+
l1_reg_W=0,
|
742 |
+
l1_reg_H=0,
|
743 |
+
l2_reg_W=0,
|
744 |
+
l2_reg_H=0,
|
745 |
+
update_H=True,
|
746 |
+
verbose=0,
|
747 |
+
):
|
748 |
+
"""Compute Non-negative Matrix Factorization with Multiplicative Update.
|
749 |
+
|
750 |
+
The objective function is _beta_divergence(X, WH) and is minimized with an
|
751 |
+
alternating minimization of W and H. Each minimization is done with a
|
752 |
+
Multiplicative Update.
|
753 |
+
|
754 |
+
Parameters
|
755 |
+
----------
|
756 |
+
X : array-like of shape (n_samples, n_features)
|
757 |
+
Constant input matrix.
|
758 |
+
|
759 |
+
W : array-like of shape (n_samples, n_components)
|
760 |
+
Initial guess for the solution.
|
761 |
+
|
762 |
+
H : array-like of shape (n_components, n_features)
|
763 |
+
Initial guess for the solution.
|
764 |
+
|
765 |
+
beta_loss : float or {'frobenius', 'kullback-leibler', \
|
766 |
+
'itakura-saito'}, default='frobenius'
|
767 |
+
String must be in {'frobenius', 'kullback-leibler', 'itakura-saito'}.
|
768 |
+
Beta divergence to be minimized, measuring the distance between X
|
769 |
+
and the dot product WH. Note that values different from 'frobenius'
|
770 |
+
(or 2) and 'kullback-leibler' (or 1) lead to significantly slower
|
771 |
+
fits. Note that for beta_loss <= 0 (or 'itakura-saito'), the input
|
772 |
+
matrix X cannot contain zeros.
|
773 |
+
|
774 |
+
max_iter : int, default=200
|
775 |
+
Number of iterations.
|
776 |
+
|
777 |
+
tol : float, default=1e-4
|
778 |
+
Tolerance of the stopping condition.
|
779 |
+
|
780 |
+
l1_reg_W : float, default=0.
|
781 |
+
L1 regularization parameter for W.
|
782 |
+
|
783 |
+
l1_reg_H : float, default=0.
|
784 |
+
L1 regularization parameter for H.
|
785 |
+
|
786 |
+
l2_reg_W : float, default=0.
|
787 |
+
L2 regularization parameter for W.
|
788 |
+
|
789 |
+
l2_reg_H : float, default=0.
|
790 |
+
L2 regularization parameter for H.
|
791 |
+
|
792 |
+
update_H : bool, default=True
|
793 |
+
Set to True, both W and H will be estimated from initial guesses.
|
794 |
+
Set to False, only W will be estimated.
|
795 |
+
|
796 |
+
verbose : int, default=0
|
797 |
+
The verbosity level.
|
798 |
+
|
799 |
+
Returns
|
800 |
+
-------
|
801 |
+
W : ndarray of shape (n_samples, n_components)
|
802 |
+
Solution to the non-negative least squares problem.
|
803 |
+
|
804 |
+
H : ndarray of shape (n_components, n_features)
|
805 |
+
Solution to the non-negative least squares problem.
|
806 |
+
|
807 |
+
n_iter : int
|
808 |
+
The number of iterations done by the algorithm.
|
809 |
+
|
810 |
+
References
|
811 |
+
----------
|
812 |
+
Lee, D. D., & Seung, H., S. (2001). Algorithms for Non-negative Matrix
|
813 |
+
Factorization. Adv. Neural Inform. Process. Syst.. 13.
|
814 |
+
Fevotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix
|
815 |
+
factorization with the beta-divergence. Neural Computation, 23(9).
|
816 |
+
"""
|
817 |
+
start_time = time.time()
|
818 |
+
|
819 |
+
beta_loss = _beta_loss_to_float(beta_loss)
|
820 |
+
|
821 |
+
# gamma for Maximization-Minimization (MM) algorithm [Fevotte 2011]
|
822 |
+
if beta_loss < 1:
|
823 |
+
gamma = 1.0 / (2.0 - beta_loss)
|
824 |
+
elif beta_loss > 2:
|
825 |
+
gamma = 1.0 / (beta_loss - 1.0)
|
826 |
+
else:
|
827 |
+
gamma = 1.0
|
828 |
+
|
829 |
+
# used for the convergence criterion
|
830 |
+
error_at_init = _beta_divergence(X, W, H, beta_loss, square_root=True)
|
831 |
+
previous_error = error_at_init
|
832 |
+
|
833 |
+
H_sum, HHt, XHt = None, None, None
|
834 |
+
for n_iter in range(1, max_iter + 1):
|
835 |
+
# update W
|
836 |
+
# H_sum, HHt and XHt are saved and reused if not update_H
|
837 |
+
W, H_sum, HHt, XHt = _multiplicative_update_w(
|
838 |
+
X,
|
839 |
+
W,
|
840 |
+
H,
|
841 |
+
beta_loss=beta_loss,
|
842 |
+
l1_reg_W=l1_reg_W,
|
843 |
+
l2_reg_W=l2_reg_W,
|
844 |
+
gamma=gamma,
|
845 |
+
H_sum=H_sum,
|
846 |
+
HHt=HHt,
|
847 |
+
XHt=XHt,
|
848 |
+
update_H=update_H,
|
849 |
+
)
|
850 |
+
|
851 |
+
# necessary for stability with beta_loss < 1
|
852 |
+
if beta_loss < 1:
|
853 |
+
W[W < np.finfo(np.float64).eps] = 0.0
|
854 |
+
|
855 |
+
# update H (only at fit or fit_transform)
|
856 |
+
if update_H:
|
857 |
+
H = _multiplicative_update_h(
|
858 |
+
X,
|
859 |
+
W,
|
860 |
+
H,
|
861 |
+
beta_loss=beta_loss,
|
862 |
+
l1_reg_H=l1_reg_H,
|
863 |
+
l2_reg_H=l2_reg_H,
|
864 |
+
gamma=gamma,
|
865 |
+
)
|
866 |
+
|
867 |
+
# These values will be recomputed since H changed
|
868 |
+
H_sum, HHt, XHt = None, None, None
|
869 |
+
|
870 |
+
# necessary for stability with beta_loss < 1
|
871 |
+
if beta_loss <= 1:
|
872 |
+
H[H < np.finfo(np.float64).eps] = 0.0
|
873 |
+
|
874 |
+
# test convergence criterion every 10 iterations
|
875 |
+
if tol > 0 and n_iter % 10 == 0:
|
876 |
+
error = _beta_divergence(X, W, H, beta_loss, square_root=True)
|
877 |
+
|
878 |
+
if verbose:
|
879 |
+
iter_time = time.time()
|
880 |
+
print(
|
881 |
+
"Epoch %02d reached after %.3f seconds, error: %f"
|
882 |
+
% (n_iter, iter_time - start_time, error)
|
883 |
+
)
|
884 |
+
|
885 |
+
if (previous_error - error) / error_at_init < tol:
|
886 |
+
break
|
887 |
+
previous_error = error
|
888 |
+
|
889 |
+
# do not print if we have already printed in the convergence test
|
890 |
+
if verbose and (tol == 0 or n_iter % 10 != 0):
|
891 |
+
end_time = time.time()
|
892 |
+
print(
|
893 |
+
"Epoch %02d reached after %.3f seconds." % (n_iter, end_time - start_time)
|
894 |
+
)
|
895 |
+
|
896 |
+
return W, H, n_iter
|
897 |
+
|
898 |
+
|
899 |
+
@validate_params(
|
900 |
+
{
|
901 |
+
"X": ["array-like", "sparse matrix"],
|
902 |
+
"W": ["array-like", None],
|
903 |
+
"H": ["array-like", None],
|
904 |
+
"update_H": ["boolean"],
|
905 |
+
},
|
906 |
+
prefer_skip_nested_validation=False,
|
907 |
+
)
|
908 |
+
def non_negative_factorization(
|
909 |
+
X,
|
910 |
+
W=None,
|
911 |
+
H=None,
|
912 |
+
n_components="warn",
|
913 |
+
*,
|
914 |
+
init=None,
|
915 |
+
update_H=True,
|
916 |
+
solver="cd",
|
917 |
+
beta_loss="frobenius",
|
918 |
+
tol=1e-4,
|
919 |
+
max_iter=200,
|
920 |
+
alpha_W=0.0,
|
921 |
+
alpha_H="same",
|
922 |
+
l1_ratio=0.0,
|
923 |
+
random_state=None,
|
924 |
+
verbose=0,
|
925 |
+
shuffle=False,
|
926 |
+
):
|
927 |
+
"""Compute Non-negative Matrix Factorization (NMF).
|
928 |
+
|
929 |
+
Find two non-negative matrices (W, H) whose product approximates the non-
|
930 |
+
negative matrix X. This factorization can be used for example for
|
931 |
+
dimensionality reduction, source separation or topic extraction.
|
932 |
+
|
933 |
+
The objective function is:
|
934 |
+
|
935 |
+
.. math::
|
936 |
+
|
937 |
+
L(W, H) &= 0.5 * ||X - WH||_{loss}^2
|
938 |
+
|
939 |
+
&+ alpha\\_W * l1\\_ratio * n\\_features * ||vec(W)||_1
|
940 |
+
|
941 |
+
&+ alpha\\_H * l1\\_ratio * n\\_samples * ||vec(H)||_1
|
942 |
+
|
943 |
+
&+ 0.5 * alpha\\_W * (1 - l1\\_ratio) * n\\_features * ||W||_{Fro}^2
|
944 |
+
|
945 |
+
&+ 0.5 * alpha\\_H * (1 - l1\\_ratio) * n\\_samples * ||H||_{Fro}^2
|
946 |
+
|
947 |
+
Where:
|
948 |
+
|
949 |
+
:math:`||A||_{Fro}^2 = \\sum_{i,j} A_{ij}^2` (Frobenius norm)
|
950 |
+
|
951 |
+
:math:`||vec(A)||_1 = \\sum_{i,j} abs(A_{ij})` (Elementwise L1 norm)
|
952 |
+
|
953 |
+
The generic norm :math:`||X - WH||_{loss}^2` may represent
|
954 |
+
the Frobenius norm or another supported beta-divergence loss.
|
955 |
+
The choice between options is controlled by the `beta_loss` parameter.
|
956 |
+
|
957 |
+
The regularization terms are scaled by `n_features` for `W` and by `n_samples` for
|
958 |
+
`H` to keep their impact balanced with respect to one another and to the data fit
|
959 |
+
term as independent as possible of the size `n_samples` of the training set.
|
960 |
+
|
961 |
+
The objective function is minimized with an alternating minimization of W
|
962 |
+
and H. If H is given and update_H=False, it solves for W only.
|
963 |
+
|
964 |
+
Note that the transformed data is named W and the components matrix is named H. In
|
965 |
+
the NMF literature, the naming convention is usually the opposite since the data
|
966 |
+
matrix X is transposed.
|
967 |
+
|
968 |
+
Parameters
|
969 |
+
----------
|
970 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
971 |
+
Constant matrix.
|
972 |
+
|
973 |
+
W : array-like of shape (n_samples, n_components), default=None
|
974 |
+
If `init='custom'`, it is used as initial guess for the solution.
|
975 |
+
If `update_H=False`, it is initialised as an array of zeros, unless
|
976 |
+
`solver='mu'`, then it is filled with values calculated by
|
977 |
+
`np.sqrt(X.mean() / self._n_components)`.
|
978 |
+
If `None`, uses the initialisation method specified in `init`.
|
979 |
+
|
980 |
+
H : array-like of shape (n_components, n_features), default=None
|
981 |
+
If `init='custom'`, it is used as initial guess for the solution.
|
982 |
+
If `update_H=False`, it is used as a constant, to solve for W only.
|
983 |
+
If `None`, uses the initialisation method specified in `init`.
|
984 |
+
|
985 |
+
n_components : int or {'auto'} or None, default=None
|
986 |
+
Number of components, if n_components is not set all features
|
987 |
+
are kept.
|
988 |
+
If `n_components='auto'`, the number of components is automatically inferred
|
989 |
+
from `W` or `H` shapes.
|
990 |
+
|
991 |
+
.. versionchanged:: 1.4
|
992 |
+
Added `'auto'` value.
|
993 |
+
|
994 |
+
init : {'random', 'nndsvd', 'nndsvda', 'nndsvdar', 'custom'}, default=None
|
995 |
+
Method used to initialize the procedure.
|
996 |
+
|
997 |
+
Valid options:
|
998 |
+
|
999 |
+
- None: 'nndsvda' if n_components < n_features, otherwise 'random'.
|
1000 |
+
- 'random': non-negative random matrices, scaled with:
|
1001 |
+
`sqrt(X.mean() / n_components)`
|
1002 |
+
- 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
|
1003 |
+
initialization (better for sparseness)
|
1004 |
+
- 'nndsvda': NNDSVD with zeros filled with the average of X
|
1005 |
+
(better when sparsity is not desired)
|
1006 |
+
- 'nndsvdar': NNDSVD with zeros filled with small random values
|
1007 |
+
(generally faster, less accurate alternative to NNDSVDa
|
1008 |
+
for when sparsity is not desired)
|
1009 |
+
- 'custom': If `update_H=True`, use custom matrices W and H which must both
|
1010 |
+
be provided. If `update_H=False`, then only custom matrix H is used.
|
1011 |
+
|
1012 |
+
.. versionchanged:: 0.23
|
1013 |
+
The default value of `init` changed from 'random' to None in 0.23.
|
1014 |
+
|
1015 |
+
.. versionchanged:: 1.1
|
1016 |
+
When `init=None` and n_components is less than n_samples and n_features
|
1017 |
+
defaults to `nndsvda` instead of `nndsvd`.
|
1018 |
+
|
1019 |
+
update_H : bool, default=True
|
1020 |
+
Set to True, both W and H will be estimated from initial guesses.
|
1021 |
+
Set to False, only W will be estimated.
|
1022 |
+
|
1023 |
+
solver : {'cd', 'mu'}, default='cd'
|
1024 |
+
Numerical solver to use:
|
1025 |
+
|
1026 |
+
- 'cd' is a Coordinate Descent solver that uses Fast Hierarchical
|
1027 |
+
Alternating Least Squares (Fast HALS).
|
1028 |
+
- 'mu' is a Multiplicative Update solver.
|
1029 |
+
|
1030 |
+
.. versionadded:: 0.17
|
1031 |
+
Coordinate Descent solver.
|
1032 |
+
|
1033 |
+
.. versionadded:: 0.19
|
1034 |
+
Multiplicative Update solver.
|
1035 |
+
|
1036 |
+
beta_loss : float or {'frobenius', 'kullback-leibler', \
|
1037 |
+
'itakura-saito'}, default='frobenius'
|
1038 |
+
Beta divergence to be minimized, measuring the distance between X
|
1039 |
+
and the dot product WH. Note that values different from 'frobenius'
|
1040 |
+
(or 2) and 'kullback-leibler' (or 1) lead to significantly slower
|
1041 |
+
fits. Note that for beta_loss <= 0 (or 'itakura-saito'), the input
|
1042 |
+
matrix X cannot contain zeros. Used only in 'mu' solver.
|
1043 |
+
|
1044 |
+
.. versionadded:: 0.19
|
1045 |
+
|
1046 |
+
tol : float, default=1e-4
|
1047 |
+
Tolerance of the stopping condition.
|
1048 |
+
|
1049 |
+
max_iter : int, default=200
|
1050 |
+
Maximum number of iterations before timing out.
|
1051 |
+
|
1052 |
+
alpha_W : float, default=0.0
|
1053 |
+
Constant that multiplies the regularization terms of `W`. Set it to zero
|
1054 |
+
(default) to have no regularization on `W`.
|
1055 |
+
|
1056 |
+
.. versionadded:: 1.0
|
1057 |
+
|
1058 |
+
alpha_H : float or "same", default="same"
|
1059 |
+
Constant that multiplies the regularization terms of `H`. Set it to zero to
|
1060 |
+
have no regularization on `H`. If "same" (default), it takes the same value as
|
1061 |
+
`alpha_W`.
|
1062 |
+
|
1063 |
+
.. versionadded:: 1.0
|
1064 |
+
|
1065 |
+
l1_ratio : float, default=0.0
|
1066 |
+
The regularization mixing parameter, with 0 <= l1_ratio <= 1.
|
1067 |
+
For l1_ratio = 0 the penalty is an elementwise L2 penalty
|
1068 |
+
(aka Frobenius Norm).
|
1069 |
+
For l1_ratio = 1 it is an elementwise L1 penalty.
|
1070 |
+
For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.
|
1071 |
+
|
1072 |
+
random_state : int, RandomState instance or None, default=None
|
1073 |
+
Used for NMF initialisation (when ``init`` == 'nndsvdar' or
|
1074 |
+
'random'), and in Coordinate Descent. Pass an int for reproducible
|
1075 |
+
results across multiple function calls.
|
1076 |
+
See :term:`Glossary <random_state>`.
|
1077 |
+
|
1078 |
+
verbose : int, default=0
|
1079 |
+
The verbosity level.
|
1080 |
+
|
1081 |
+
shuffle : bool, default=False
|
1082 |
+
If true, randomize the order of coordinates in the CD solver.
|
1083 |
+
|
1084 |
+
Returns
|
1085 |
+
-------
|
1086 |
+
W : ndarray of shape (n_samples, n_components)
|
1087 |
+
Solution to the non-negative least squares problem.
|
1088 |
+
|
1089 |
+
H : ndarray of shape (n_components, n_features)
|
1090 |
+
Solution to the non-negative least squares problem.
|
1091 |
+
|
1092 |
+
n_iter : int
|
1093 |
+
Actual number of iterations.
|
1094 |
+
|
1095 |
+
References
|
1096 |
+
----------
|
1097 |
+
.. [1] :doi:`"Fast local algorithms for large scale nonnegative matrix and tensor
|
1098 |
+
factorizations" <10.1587/transfun.E92.A.708>`
|
1099 |
+
Cichocki, Andrzej, and P. H. A. N. Anh-Huy. IEICE transactions on fundamentals
|
1100 |
+
of electronics, communications and computer sciences 92.3: 708-721, 2009.
|
1101 |
+
|
1102 |
+
.. [2] :doi:`"Algorithms for nonnegative matrix factorization with the
|
1103 |
+
beta-divergence" <10.1162/NECO_a_00168>`
|
1104 |
+
Fevotte, C., & Idier, J. (2011). Neural Computation, 23(9).
|
1105 |
+
|
1106 |
+
Examples
|
1107 |
+
--------
|
1108 |
+
>>> import numpy as np
|
1109 |
+
>>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
|
1110 |
+
>>> from sklearn.decomposition import non_negative_factorization
|
1111 |
+
>>> W, H, n_iter = non_negative_factorization(
|
1112 |
+
... X, n_components=2, init='random', random_state=0)
|
1113 |
+
"""
|
1114 |
+
est = NMF(
|
1115 |
+
n_components=n_components,
|
1116 |
+
init=init,
|
1117 |
+
solver=solver,
|
1118 |
+
beta_loss=beta_loss,
|
1119 |
+
tol=tol,
|
1120 |
+
max_iter=max_iter,
|
1121 |
+
random_state=random_state,
|
1122 |
+
alpha_W=alpha_W,
|
1123 |
+
alpha_H=alpha_H,
|
1124 |
+
l1_ratio=l1_ratio,
|
1125 |
+
verbose=verbose,
|
1126 |
+
shuffle=shuffle,
|
1127 |
+
)
|
1128 |
+
est._validate_params()
|
1129 |
+
|
1130 |
+
X = check_array(X, accept_sparse=("csr", "csc"), dtype=[np.float64, np.float32])
|
1131 |
+
|
1132 |
+
with config_context(assume_finite=True):
|
1133 |
+
W, H, n_iter = est._fit_transform(X, W=W, H=H, update_H=update_H)
|
1134 |
+
|
1135 |
+
return W, H, n_iter
|
1136 |
+
|
1137 |
+
|
1138 |
+
class _BaseNMF(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator, ABC):
|
1139 |
+
"""Base class for NMF and MiniBatchNMF."""
|
1140 |
+
|
1141 |
+
# This prevents ``set_split_inverse_transform`` to be generated for the
|
1142 |
+
# non-standard ``W`` arg on ``inverse_transform``.
|
1143 |
+
# TODO: remove when W is removed in v1.5 for inverse_transform
|
1144 |
+
__metadata_request__inverse_transform = {"W": metadata_routing.UNUSED}
|
1145 |
+
|
1146 |
+
_parameter_constraints: dict = {
|
1147 |
+
"n_components": [
|
1148 |
+
Interval(Integral, 1, None, closed="left"),
|
1149 |
+
None,
|
1150 |
+
StrOptions({"auto"}),
|
1151 |
+
Hidden(StrOptions({"warn"})),
|
1152 |
+
],
|
1153 |
+
"init": [
|
1154 |
+
StrOptions({"random", "nndsvd", "nndsvda", "nndsvdar", "custom"}),
|
1155 |
+
None,
|
1156 |
+
],
|
1157 |
+
"beta_loss": [
|
1158 |
+
StrOptions({"frobenius", "kullback-leibler", "itakura-saito"}),
|
1159 |
+
Real,
|
1160 |
+
],
|
1161 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
1162 |
+
"max_iter": [Interval(Integral, 1, None, closed="left")],
|
1163 |
+
"random_state": ["random_state"],
|
1164 |
+
"alpha_W": [Interval(Real, 0, None, closed="left")],
|
1165 |
+
"alpha_H": [Interval(Real, 0, None, closed="left"), StrOptions({"same"})],
|
1166 |
+
"l1_ratio": [Interval(Real, 0, 1, closed="both")],
|
1167 |
+
"verbose": ["verbose"],
|
1168 |
+
}
|
1169 |
+
|
1170 |
+
def __init__(
|
1171 |
+
self,
|
1172 |
+
n_components="warn",
|
1173 |
+
*,
|
1174 |
+
init=None,
|
1175 |
+
beta_loss="frobenius",
|
1176 |
+
tol=1e-4,
|
1177 |
+
max_iter=200,
|
1178 |
+
random_state=None,
|
1179 |
+
alpha_W=0.0,
|
1180 |
+
alpha_H="same",
|
1181 |
+
l1_ratio=0.0,
|
1182 |
+
verbose=0,
|
1183 |
+
):
|
1184 |
+
self.n_components = n_components
|
1185 |
+
self.init = init
|
1186 |
+
self.beta_loss = beta_loss
|
1187 |
+
self.tol = tol
|
1188 |
+
self.max_iter = max_iter
|
1189 |
+
self.random_state = random_state
|
1190 |
+
self.alpha_W = alpha_W
|
1191 |
+
self.alpha_H = alpha_H
|
1192 |
+
self.l1_ratio = l1_ratio
|
1193 |
+
self.verbose = verbose
|
1194 |
+
|
1195 |
+
def _check_params(self, X):
|
1196 |
+
# n_components
|
1197 |
+
self._n_components = self.n_components
|
1198 |
+
if self.n_components == "warn":
|
1199 |
+
warnings.warn(
|
1200 |
+
(
|
1201 |
+
"The default value of `n_components` will change from `None` to"
|
1202 |
+
" `'auto'` in 1.6. Set the value of `n_components` to `None`"
|
1203 |
+
" explicitly to suppress the warning."
|
1204 |
+
),
|
1205 |
+
FutureWarning,
|
1206 |
+
)
|
1207 |
+
self._n_components = None # Keeping the old default value
|
1208 |
+
if self._n_components is None:
|
1209 |
+
self._n_components = X.shape[1]
|
1210 |
+
|
1211 |
+
# beta_loss
|
1212 |
+
self._beta_loss = _beta_loss_to_float(self.beta_loss)
|
1213 |
+
|
1214 |
+
def _check_w_h(self, X, W, H, update_H):
|
1215 |
+
"""Check W and H, or initialize them."""
|
1216 |
+
n_samples, n_features = X.shape
|
1217 |
+
|
1218 |
+
if self.init == "custom" and update_H:
|
1219 |
+
_check_init(H, (self._n_components, n_features), "NMF (input H)")
|
1220 |
+
_check_init(W, (n_samples, self._n_components), "NMF (input W)")
|
1221 |
+
if self._n_components == "auto":
|
1222 |
+
self._n_components = H.shape[0]
|
1223 |
+
|
1224 |
+
if H.dtype != X.dtype or W.dtype != X.dtype:
|
1225 |
+
raise TypeError(
|
1226 |
+
"H and W should have the same dtype as X. Got "
|
1227 |
+
"H.dtype = {} and W.dtype = {}.".format(H.dtype, W.dtype)
|
1228 |
+
)
|
1229 |
+
|
1230 |
+
elif not update_H:
|
1231 |
+
if W is not None:
|
1232 |
+
warnings.warn(
|
1233 |
+
"When update_H=False, the provided initial W is not used.",
|
1234 |
+
RuntimeWarning,
|
1235 |
+
)
|
1236 |
+
|
1237 |
+
_check_init(H, (self._n_components, n_features), "NMF (input H)")
|
1238 |
+
if self._n_components == "auto":
|
1239 |
+
self._n_components = H.shape[0]
|
1240 |
+
|
1241 |
+
if H.dtype != X.dtype:
|
1242 |
+
raise TypeError(
|
1243 |
+
"H should have the same dtype as X. Got H.dtype = {}.".format(
|
1244 |
+
H.dtype
|
1245 |
+
)
|
1246 |
+
)
|
1247 |
+
|
1248 |
+
# 'mu' solver should not be initialized by zeros
|
1249 |
+
if self.solver == "mu":
|
1250 |
+
avg = np.sqrt(X.mean() / self._n_components)
|
1251 |
+
W = np.full((n_samples, self._n_components), avg, dtype=X.dtype)
|
1252 |
+
else:
|
1253 |
+
W = np.zeros((n_samples, self._n_components), dtype=X.dtype)
|
1254 |
+
|
1255 |
+
else:
|
1256 |
+
if W is not None or H is not None:
|
1257 |
+
warnings.warn(
|
1258 |
+
(
|
1259 |
+
"When init!='custom', provided W or H are ignored. Set "
|
1260 |
+
" init='custom' to use them as initialization."
|
1261 |
+
),
|
1262 |
+
RuntimeWarning,
|
1263 |
+
)
|
1264 |
+
|
1265 |
+
if self._n_components == "auto":
|
1266 |
+
self._n_components = X.shape[1]
|
1267 |
+
|
1268 |
+
W, H = _initialize_nmf(
|
1269 |
+
X, self._n_components, init=self.init, random_state=self.random_state
|
1270 |
+
)
|
1271 |
+
|
1272 |
+
return W, H
|
1273 |
+
|
1274 |
+
def _compute_regularization(self, X):
|
1275 |
+
"""Compute scaled regularization terms."""
|
1276 |
+
n_samples, n_features = X.shape
|
1277 |
+
alpha_W = self.alpha_W
|
1278 |
+
alpha_H = self.alpha_W if self.alpha_H == "same" else self.alpha_H
|
1279 |
+
|
1280 |
+
l1_reg_W = n_features * alpha_W * self.l1_ratio
|
1281 |
+
l1_reg_H = n_samples * alpha_H * self.l1_ratio
|
1282 |
+
l2_reg_W = n_features * alpha_W * (1.0 - self.l1_ratio)
|
1283 |
+
l2_reg_H = n_samples * alpha_H * (1.0 - self.l1_ratio)
|
1284 |
+
|
1285 |
+
return l1_reg_W, l1_reg_H, l2_reg_W, l2_reg_H
|
1286 |
+
|
1287 |
+
def fit(self, X, y=None, **params):
|
1288 |
+
"""Learn a NMF model for the data X.
|
1289 |
+
|
1290 |
+
Parameters
|
1291 |
+
----------
|
1292 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1293 |
+
Training vector, where `n_samples` is the number of samples
|
1294 |
+
and `n_features` is the number of features.
|
1295 |
+
|
1296 |
+
y : Ignored
|
1297 |
+
Not used, present for API consistency by convention.
|
1298 |
+
|
1299 |
+
**params : kwargs
|
1300 |
+
Parameters (keyword arguments) and values passed to
|
1301 |
+
the fit_transform instance.
|
1302 |
+
|
1303 |
+
Returns
|
1304 |
+
-------
|
1305 |
+
self : object
|
1306 |
+
Returns the instance itself.
|
1307 |
+
"""
|
1308 |
+
# param validation is done in fit_transform
|
1309 |
+
|
1310 |
+
self.fit_transform(X, **params)
|
1311 |
+
return self
|
1312 |
+
|
1313 |
+
def inverse_transform(self, Xt=None, W=None):
|
1314 |
+
"""Transform data back to its original space.
|
1315 |
+
|
1316 |
+
.. versionadded:: 0.18
|
1317 |
+
|
1318 |
+
Parameters
|
1319 |
+
----------
|
1320 |
+
Xt : {ndarray, sparse matrix} of shape (n_samples, n_components)
|
1321 |
+
Transformed data matrix.
|
1322 |
+
|
1323 |
+
W : deprecated
|
1324 |
+
Use `Xt` instead.
|
1325 |
+
|
1326 |
+
.. deprecated:: 1.3
|
1327 |
+
|
1328 |
+
Returns
|
1329 |
+
-------
|
1330 |
+
X : ndarray of shape (n_samples, n_features)
|
1331 |
+
Returns a data matrix of the original shape.
|
1332 |
+
"""
|
1333 |
+
if Xt is None and W is None:
|
1334 |
+
raise TypeError("Missing required positional argument: Xt")
|
1335 |
+
|
1336 |
+
if W is not None and Xt is not None:
|
1337 |
+
raise ValueError("Please provide only `Xt`, and not `W`.")
|
1338 |
+
|
1339 |
+
if W is not None:
|
1340 |
+
warnings.warn(
|
1341 |
+
(
|
1342 |
+
"Input argument `W` was renamed to `Xt` in v1.3 and will be removed"
|
1343 |
+
" in v1.5."
|
1344 |
+
),
|
1345 |
+
FutureWarning,
|
1346 |
+
)
|
1347 |
+
Xt = W
|
1348 |
+
|
1349 |
+
check_is_fitted(self)
|
1350 |
+
return Xt @ self.components_
|
1351 |
+
|
1352 |
+
@property
|
1353 |
+
def _n_features_out(self):
|
1354 |
+
"""Number of transformed output features."""
|
1355 |
+
return self.components_.shape[0]
|
1356 |
+
|
1357 |
+
def _more_tags(self):
|
1358 |
+
return {
|
1359 |
+
"requires_positive_X": True,
|
1360 |
+
"preserves_dtype": [np.float64, np.float32],
|
1361 |
+
}
|
1362 |
+
|
1363 |
+
|
1364 |
+
class NMF(_BaseNMF):
|
1365 |
+
"""Non-Negative Matrix Factorization (NMF).
|
1366 |
+
|
1367 |
+
Find two non-negative matrices, i.e. matrices with all non-negative elements, (W, H)
|
1368 |
+
whose product approximates the non-negative matrix X. This factorization can be used
|
1369 |
+
for example for dimensionality reduction, source separation or topic extraction.
|
1370 |
+
|
1371 |
+
The objective function is:
|
1372 |
+
|
1373 |
+
.. math::
|
1374 |
+
|
1375 |
+
L(W, H) &= 0.5 * ||X - WH||_{loss}^2
|
1376 |
+
|
1377 |
+
&+ alpha\\_W * l1\\_ratio * n\\_features * ||vec(W)||_1
|
1378 |
+
|
1379 |
+
&+ alpha\\_H * l1\\_ratio * n\\_samples * ||vec(H)||_1
|
1380 |
+
|
1381 |
+
&+ 0.5 * alpha\\_W * (1 - l1\\_ratio) * n\\_features * ||W||_{Fro}^2
|
1382 |
+
|
1383 |
+
&+ 0.5 * alpha\\_H * (1 - l1\\_ratio) * n\\_samples * ||H||_{Fro}^2
|
1384 |
+
|
1385 |
+
Where:
|
1386 |
+
|
1387 |
+
:math:`||A||_{Fro}^2 = \\sum_{i,j} A_{ij}^2` (Frobenius norm)
|
1388 |
+
|
1389 |
+
:math:`||vec(A)||_1 = \\sum_{i,j} abs(A_{ij})` (Elementwise L1 norm)
|
1390 |
+
|
1391 |
+
The generic norm :math:`||X - WH||_{loss}` may represent
|
1392 |
+
the Frobenius norm or another supported beta-divergence loss.
|
1393 |
+
The choice between options is controlled by the `beta_loss` parameter.
|
1394 |
+
|
1395 |
+
The regularization terms are scaled by `n_features` for `W` and by `n_samples` for
|
1396 |
+
`H` to keep their impact balanced with respect to one another and to the data fit
|
1397 |
+
term as independent as possible of the size `n_samples` of the training set.
|
1398 |
+
|
1399 |
+
The objective function is minimized with an alternating minimization of W
|
1400 |
+
and H.
|
1401 |
+
|
1402 |
+
Note that the transformed data is named W and the components matrix is named H. In
|
1403 |
+
the NMF literature, the naming convention is usually the opposite since the data
|
1404 |
+
matrix X is transposed.
|
1405 |
+
|
1406 |
+
Read more in the :ref:`User Guide <NMF>`.
|
1407 |
+
|
1408 |
+
Parameters
|
1409 |
+
----------
|
1410 |
+
n_components : int or {'auto'} or None, default=None
|
1411 |
+
Number of components, if n_components is not set all features
|
1412 |
+
are kept.
|
1413 |
+
If `n_components='auto'`, the number of components is automatically inferred
|
1414 |
+
from W or H shapes.
|
1415 |
+
|
1416 |
+
.. versionchanged:: 1.4
|
1417 |
+
Added `'auto'` value.
|
1418 |
+
|
1419 |
+
init : {'random', 'nndsvd', 'nndsvda', 'nndsvdar', 'custom'}, default=None
|
1420 |
+
Method used to initialize the procedure.
|
1421 |
+
Valid options:
|
1422 |
+
|
1423 |
+
- `None`: 'nndsvda' if n_components <= min(n_samples, n_features),
|
1424 |
+
otherwise random.
|
1425 |
+
|
1426 |
+
- `'random'`: non-negative random matrices, scaled with:
|
1427 |
+
`sqrt(X.mean() / n_components)`
|
1428 |
+
|
1429 |
+
- `'nndsvd'`: Nonnegative Double Singular Value Decomposition (NNDSVD)
|
1430 |
+
initialization (better for sparseness)
|
1431 |
+
|
1432 |
+
- `'nndsvda'`: NNDSVD with zeros filled with the average of X
|
1433 |
+
(better when sparsity is not desired)
|
1434 |
+
|
1435 |
+
- `'nndsvdar'` NNDSVD with zeros filled with small random values
|
1436 |
+
(generally faster, less accurate alternative to NNDSVDa
|
1437 |
+
for when sparsity is not desired)
|
1438 |
+
|
1439 |
+
- `'custom'`: Use custom matrices `W` and `H` which must both be provided.
|
1440 |
+
|
1441 |
+
.. versionchanged:: 1.1
|
1442 |
+
When `init=None` and n_components is less than n_samples and n_features
|
1443 |
+
defaults to `nndsvda` instead of `nndsvd`.
|
1444 |
+
|
1445 |
+
solver : {'cd', 'mu'}, default='cd'
|
1446 |
+
Numerical solver to use:
|
1447 |
+
|
1448 |
+
- 'cd' is a Coordinate Descent solver.
|
1449 |
+
- 'mu' is a Multiplicative Update solver.
|
1450 |
+
|
1451 |
+
.. versionadded:: 0.17
|
1452 |
+
Coordinate Descent solver.
|
1453 |
+
|
1454 |
+
.. versionadded:: 0.19
|
1455 |
+
Multiplicative Update solver.
|
1456 |
+
|
1457 |
+
beta_loss : float or {'frobenius', 'kullback-leibler', \
|
1458 |
+
'itakura-saito'}, default='frobenius'
|
1459 |
+
Beta divergence to be minimized, measuring the distance between X
|
1460 |
+
and the dot product WH. Note that values different from 'frobenius'
|
1461 |
+
(or 2) and 'kullback-leibler' (or 1) lead to significantly slower
|
1462 |
+
fits. Note that for beta_loss <= 0 (or 'itakura-saito'), the input
|
1463 |
+
matrix X cannot contain zeros. Used only in 'mu' solver.
|
1464 |
+
|
1465 |
+
.. versionadded:: 0.19
|
1466 |
+
|
1467 |
+
tol : float, default=1e-4
|
1468 |
+
Tolerance of the stopping condition.
|
1469 |
+
|
1470 |
+
max_iter : int, default=200
|
1471 |
+
Maximum number of iterations before timing out.
|
1472 |
+
|
1473 |
+
random_state : int, RandomState instance or None, default=None
|
1474 |
+
Used for initialisation (when ``init`` == 'nndsvdar' or
|
1475 |
+
'random'), and in Coordinate Descent. Pass an int for reproducible
|
1476 |
+
results across multiple function calls.
|
1477 |
+
See :term:`Glossary <random_state>`.
|
1478 |
+
|
1479 |
+
alpha_W : float, default=0.0
|
1480 |
+
Constant that multiplies the regularization terms of `W`. Set it to zero
|
1481 |
+
(default) to have no regularization on `W`.
|
1482 |
+
|
1483 |
+
.. versionadded:: 1.0
|
1484 |
+
|
1485 |
+
alpha_H : float or "same", default="same"
|
1486 |
+
Constant that multiplies the regularization terms of `H`. Set it to zero to
|
1487 |
+
have no regularization on `H`. If "same" (default), it takes the same value as
|
1488 |
+
`alpha_W`.
|
1489 |
+
|
1490 |
+
.. versionadded:: 1.0
|
1491 |
+
|
1492 |
+
l1_ratio : float, default=0.0
|
1493 |
+
The regularization mixing parameter, with 0 <= l1_ratio <= 1.
|
1494 |
+
For l1_ratio = 0 the penalty is an elementwise L2 penalty
|
1495 |
+
(aka Frobenius Norm).
|
1496 |
+
For l1_ratio = 1 it is an elementwise L1 penalty.
|
1497 |
+
For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.
|
1498 |
+
|
1499 |
+
.. versionadded:: 0.17
|
1500 |
+
Regularization parameter *l1_ratio* used in the Coordinate Descent
|
1501 |
+
solver.
|
1502 |
+
|
1503 |
+
verbose : int, default=0
|
1504 |
+
Whether to be verbose.
|
1505 |
+
|
1506 |
+
shuffle : bool, default=False
|
1507 |
+
If true, randomize the order of coordinates in the CD solver.
|
1508 |
+
|
1509 |
+
.. versionadded:: 0.17
|
1510 |
+
*shuffle* parameter used in the Coordinate Descent solver.
|
1511 |
+
|
1512 |
+
Attributes
|
1513 |
+
----------
|
1514 |
+
components_ : ndarray of shape (n_components, n_features)
|
1515 |
+
Factorization matrix, sometimes called 'dictionary'.
|
1516 |
+
|
1517 |
+
n_components_ : int
|
1518 |
+
The number of components. It is same as the `n_components` parameter
|
1519 |
+
if it was given. Otherwise, it will be same as the number of
|
1520 |
+
features.
|
1521 |
+
|
1522 |
+
reconstruction_err_ : float
|
1523 |
+
Frobenius norm of the matrix difference, or beta-divergence, between
|
1524 |
+
the training data ``X`` and the reconstructed data ``WH`` from
|
1525 |
+
the fitted model.
|
1526 |
+
|
1527 |
+
n_iter_ : int
|
1528 |
+
Actual number of iterations.
|
1529 |
+
|
1530 |
+
n_features_in_ : int
|
1531 |
+
Number of features seen during :term:`fit`.
|
1532 |
+
|
1533 |
+
.. versionadded:: 0.24
|
1534 |
+
|
1535 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1536 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1537 |
+
has feature names that are all strings.
|
1538 |
+
|
1539 |
+
.. versionadded:: 1.0
|
1540 |
+
|
1541 |
+
See Also
|
1542 |
+
--------
|
1543 |
+
DictionaryLearning : Find a dictionary that sparsely encodes data.
|
1544 |
+
MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
|
1545 |
+
PCA : Principal component analysis.
|
1546 |
+
SparseCoder : Find a sparse representation of data from a fixed,
|
1547 |
+
precomputed dictionary.
|
1548 |
+
SparsePCA : Sparse Principal Components Analysis.
|
1549 |
+
TruncatedSVD : Dimensionality reduction using truncated SVD.
|
1550 |
+
|
1551 |
+
References
|
1552 |
+
----------
|
1553 |
+
.. [1] :doi:`"Fast local algorithms for large scale nonnegative matrix and tensor
|
1554 |
+
factorizations" <10.1587/transfun.E92.A.708>`
|
1555 |
+
Cichocki, Andrzej, and P. H. A. N. Anh-Huy. IEICE transactions on fundamentals
|
1556 |
+
of electronics, communications and computer sciences 92.3: 708-721, 2009.
|
1557 |
+
|
1558 |
+
.. [2] :doi:`"Algorithms for nonnegative matrix factorization with the
|
1559 |
+
beta-divergence" <10.1162/NECO_a_00168>`
|
1560 |
+
Fevotte, C., & Idier, J. (2011). Neural Computation, 23(9).
|
1561 |
+
|
1562 |
+
Examples
|
1563 |
+
--------
|
1564 |
+
>>> import numpy as np
|
1565 |
+
>>> X = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
|
1566 |
+
>>> from sklearn.decomposition import NMF
|
1567 |
+
>>> model = NMF(n_components=2, init='random', random_state=0)
|
1568 |
+
>>> W = model.fit_transform(X)
|
1569 |
+
>>> H = model.components_
|
1570 |
+
"""
|
1571 |
+
|
1572 |
+
_parameter_constraints: dict = {
|
1573 |
+
**_BaseNMF._parameter_constraints,
|
1574 |
+
"solver": [StrOptions({"mu", "cd"})],
|
1575 |
+
"shuffle": ["boolean"],
|
1576 |
+
}
|
1577 |
+
|
1578 |
+
def __init__(
|
1579 |
+
self,
|
1580 |
+
n_components="warn",
|
1581 |
+
*,
|
1582 |
+
init=None,
|
1583 |
+
solver="cd",
|
1584 |
+
beta_loss="frobenius",
|
1585 |
+
tol=1e-4,
|
1586 |
+
max_iter=200,
|
1587 |
+
random_state=None,
|
1588 |
+
alpha_W=0.0,
|
1589 |
+
alpha_H="same",
|
1590 |
+
l1_ratio=0.0,
|
1591 |
+
verbose=0,
|
1592 |
+
shuffle=False,
|
1593 |
+
):
|
1594 |
+
super().__init__(
|
1595 |
+
n_components=n_components,
|
1596 |
+
init=init,
|
1597 |
+
beta_loss=beta_loss,
|
1598 |
+
tol=tol,
|
1599 |
+
max_iter=max_iter,
|
1600 |
+
random_state=random_state,
|
1601 |
+
alpha_W=alpha_W,
|
1602 |
+
alpha_H=alpha_H,
|
1603 |
+
l1_ratio=l1_ratio,
|
1604 |
+
verbose=verbose,
|
1605 |
+
)
|
1606 |
+
|
1607 |
+
self.solver = solver
|
1608 |
+
self.shuffle = shuffle
|
1609 |
+
|
1610 |
+
def _check_params(self, X):
|
1611 |
+
super()._check_params(X)
|
1612 |
+
|
1613 |
+
# solver
|
1614 |
+
if self.solver != "mu" and self.beta_loss not in (2, "frobenius"):
|
1615 |
+
# 'mu' is the only solver that handles other beta losses than 'frobenius'
|
1616 |
+
raise ValueError(
|
1617 |
+
f"Invalid beta_loss parameter: solver {self.solver!r} does not handle "
|
1618 |
+
f"beta_loss = {self.beta_loss!r}"
|
1619 |
+
)
|
1620 |
+
if self.solver == "mu" and self.init == "nndsvd":
|
1621 |
+
warnings.warn(
|
1622 |
+
(
|
1623 |
+
"The multiplicative update ('mu') solver cannot update "
|
1624 |
+
"zeros present in the initialization, and so leads to "
|
1625 |
+
"poorer results when used jointly with init='nndsvd'. "
|
1626 |
+
"You may try init='nndsvda' or init='nndsvdar' instead."
|
1627 |
+
),
|
1628 |
+
UserWarning,
|
1629 |
+
)
|
1630 |
+
|
1631 |
+
return self
|
1632 |
+
|
1633 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
1634 |
+
def fit_transform(self, X, y=None, W=None, H=None):
|
1635 |
+
"""Learn a NMF model for the data X and returns the transformed data.
|
1636 |
+
|
1637 |
+
This is more efficient than calling fit followed by transform.
|
1638 |
+
|
1639 |
+
Parameters
|
1640 |
+
----------
|
1641 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1642 |
+
Training vector, where `n_samples` is the number of samples
|
1643 |
+
and `n_features` is the number of features.
|
1644 |
+
|
1645 |
+
y : Ignored
|
1646 |
+
Not used, present for API consistency by convention.
|
1647 |
+
|
1648 |
+
W : array-like of shape (n_samples, n_components), default=None
|
1649 |
+
If `init='custom'`, it is used as initial guess for the solution.
|
1650 |
+
If `None`, uses the initialisation method specified in `init`.
|
1651 |
+
|
1652 |
+
H : array-like of shape (n_components, n_features), default=None
|
1653 |
+
If `init='custom'`, it is used as initial guess for the solution.
|
1654 |
+
If `None`, uses the initialisation method specified in `init`.
|
1655 |
+
|
1656 |
+
Returns
|
1657 |
+
-------
|
1658 |
+
W : ndarray of shape (n_samples, n_components)
|
1659 |
+
Transformed data.
|
1660 |
+
"""
|
1661 |
+
X = self._validate_data(
|
1662 |
+
X, accept_sparse=("csr", "csc"), dtype=[np.float64, np.float32]
|
1663 |
+
)
|
1664 |
+
|
1665 |
+
with config_context(assume_finite=True):
|
1666 |
+
W, H, n_iter = self._fit_transform(X, W=W, H=H)
|
1667 |
+
|
1668 |
+
self.reconstruction_err_ = _beta_divergence(
|
1669 |
+
X, W, H, self._beta_loss, square_root=True
|
1670 |
+
)
|
1671 |
+
|
1672 |
+
self.n_components_ = H.shape[0]
|
1673 |
+
self.components_ = H
|
1674 |
+
self.n_iter_ = n_iter
|
1675 |
+
|
1676 |
+
return W
|
1677 |
+
|
1678 |
+
def _fit_transform(self, X, y=None, W=None, H=None, update_H=True):
|
1679 |
+
"""Learn a NMF model for the data X and returns the transformed data.
|
1680 |
+
|
1681 |
+
Parameters
|
1682 |
+
----------
|
1683 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1684 |
+
Data matrix to be decomposed
|
1685 |
+
|
1686 |
+
y : Ignored
|
1687 |
+
|
1688 |
+
W : array-like of shape (n_samples, n_components), default=None
|
1689 |
+
If `init='custom'`, it is used as initial guess for the solution.
|
1690 |
+
If `update_H=False`, it is initialised as an array of zeros, unless
|
1691 |
+
`solver='mu'`, then it is filled with values calculated by
|
1692 |
+
`np.sqrt(X.mean() / self._n_components)`.
|
1693 |
+
If `None`, uses the initialisation method specified in `init`.
|
1694 |
+
|
1695 |
+
H : array-like of shape (n_components, n_features), default=None
|
1696 |
+
If `init='custom'`, it is used as initial guess for the solution.
|
1697 |
+
If `update_H=False`, it is used as a constant, to solve for W only.
|
1698 |
+
If `None`, uses the initialisation method specified in `init`.
|
1699 |
+
|
1700 |
+
update_H : bool, default=True
|
1701 |
+
If True, both W and H will be estimated from initial guesses,
|
1702 |
+
this corresponds to a call to the 'fit_transform' method.
|
1703 |
+
If False, only W will be estimated, this corresponds to a call
|
1704 |
+
to the 'transform' method.
|
1705 |
+
|
1706 |
+
Returns
|
1707 |
+
-------
|
1708 |
+
W : ndarray of shape (n_samples, n_components)
|
1709 |
+
Transformed data.
|
1710 |
+
|
1711 |
+
H : ndarray of shape (n_components, n_features)
|
1712 |
+
Factorization matrix, sometimes called 'dictionary'.
|
1713 |
+
|
1714 |
+
n_iter_ : int
|
1715 |
+
Actual number of iterations.
|
1716 |
+
"""
|
1717 |
+
check_non_negative(X, "NMF (input X)")
|
1718 |
+
|
1719 |
+
# check parameters
|
1720 |
+
self._check_params(X)
|
1721 |
+
|
1722 |
+
if X.min() == 0 and self._beta_loss <= 0:
|
1723 |
+
raise ValueError(
|
1724 |
+
"When beta_loss <= 0 and X contains zeros, "
|
1725 |
+
"the solver may diverge. Please add small values "
|
1726 |
+
"to X, or use a positive beta_loss."
|
1727 |
+
)
|
1728 |
+
|
1729 |
+
# initialize or check W and H
|
1730 |
+
W, H = self._check_w_h(X, W, H, update_H)
|
1731 |
+
|
1732 |
+
# scale the regularization terms
|
1733 |
+
l1_reg_W, l1_reg_H, l2_reg_W, l2_reg_H = self._compute_regularization(X)
|
1734 |
+
|
1735 |
+
if self.solver == "cd":
|
1736 |
+
W, H, n_iter = _fit_coordinate_descent(
|
1737 |
+
X,
|
1738 |
+
W,
|
1739 |
+
H,
|
1740 |
+
self.tol,
|
1741 |
+
self.max_iter,
|
1742 |
+
l1_reg_W,
|
1743 |
+
l1_reg_H,
|
1744 |
+
l2_reg_W,
|
1745 |
+
l2_reg_H,
|
1746 |
+
update_H=update_H,
|
1747 |
+
verbose=self.verbose,
|
1748 |
+
shuffle=self.shuffle,
|
1749 |
+
random_state=self.random_state,
|
1750 |
+
)
|
1751 |
+
elif self.solver == "mu":
|
1752 |
+
W, H, n_iter, *_ = _fit_multiplicative_update(
|
1753 |
+
X,
|
1754 |
+
W,
|
1755 |
+
H,
|
1756 |
+
self._beta_loss,
|
1757 |
+
self.max_iter,
|
1758 |
+
self.tol,
|
1759 |
+
l1_reg_W,
|
1760 |
+
l1_reg_H,
|
1761 |
+
l2_reg_W,
|
1762 |
+
l2_reg_H,
|
1763 |
+
update_H,
|
1764 |
+
self.verbose,
|
1765 |
+
)
|
1766 |
+
else:
|
1767 |
+
raise ValueError("Invalid solver parameter '%s'." % self.solver)
|
1768 |
+
|
1769 |
+
if n_iter == self.max_iter and self.tol > 0:
|
1770 |
+
warnings.warn(
|
1771 |
+
"Maximum number of iterations %d reached. Increase "
|
1772 |
+
"it to improve convergence."
|
1773 |
+
% self.max_iter,
|
1774 |
+
ConvergenceWarning,
|
1775 |
+
)
|
1776 |
+
|
1777 |
+
return W, H, n_iter
|
1778 |
+
|
1779 |
+
def transform(self, X):
|
1780 |
+
"""Transform the data X according to the fitted NMF model.
|
1781 |
+
|
1782 |
+
Parameters
|
1783 |
+
----------
|
1784 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1785 |
+
Training vector, where `n_samples` is the number of samples
|
1786 |
+
and `n_features` is the number of features.
|
1787 |
+
|
1788 |
+
Returns
|
1789 |
+
-------
|
1790 |
+
W : ndarray of shape (n_samples, n_components)
|
1791 |
+
Transformed data.
|
1792 |
+
"""
|
1793 |
+
check_is_fitted(self)
|
1794 |
+
X = self._validate_data(
|
1795 |
+
X, accept_sparse=("csr", "csc"), dtype=[np.float64, np.float32], reset=False
|
1796 |
+
)
|
1797 |
+
|
1798 |
+
with config_context(assume_finite=True):
|
1799 |
+
W, *_ = self._fit_transform(X, H=self.components_, update_H=False)
|
1800 |
+
|
1801 |
+
return W
|
1802 |
+
|
1803 |
+
|
1804 |
+
class MiniBatchNMF(_BaseNMF):
|
1805 |
+
"""Mini-Batch Non-Negative Matrix Factorization (NMF).
|
1806 |
+
|
1807 |
+
.. versionadded:: 1.1
|
1808 |
+
|
1809 |
+
Find two non-negative matrices, i.e. matrices with all non-negative elements,
|
1810 |
+
(`W`, `H`) whose product approximates the non-negative matrix `X`. This
|
1811 |
+
factorization can be used for example for dimensionality reduction, source
|
1812 |
+
separation or topic extraction.
|
1813 |
+
|
1814 |
+
The objective function is:
|
1815 |
+
|
1816 |
+
.. math::
|
1817 |
+
|
1818 |
+
L(W, H) &= 0.5 * ||X - WH||_{loss}^2
|
1819 |
+
|
1820 |
+
&+ alpha\\_W * l1\\_ratio * n\\_features * ||vec(W)||_1
|
1821 |
+
|
1822 |
+
&+ alpha\\_H * l1\\_ratio * n\\_samples * ||vec(H)||_1
|
1823 |
+
|
1824 |
+
&+ 0.5 * alpha\\_W * (1 - l1\\_ratio) * n\\_features * ||W||_{Fro}^2
|
1825 |
+
|
1826 |
+
&+ 0.5 * alpha\\_H * (1 - l1\\_ratio) * n\\_samples * ||H||_{Fro}^2
|
1827 |
+
|
1828 |
+
Where:
|
1829 |
+
|
1830 |
+
:math:`||A||_{Fro}^2 = \\sum_{i,j} A_{ij}^2` (Frobenius norm)
|
1831 |
+
|
1832 |
+
:math:`||vec(A)||_1 = \\sum_{i,j} abs(A_{ij})` (Elementwise L1 norm)
|
1833 |
+
|
1834 |
+
The generic norm :math:`||X - WH||_{loss}^2` may represent
|
1835 |
+
the Frobenius norm or another supported beta-divergence loss.
|
1836 |
+
The choice between options is controlled by the `beta_loss` parameter.
|
1837 |
+
|
1838 |
+
The objective function is minimized with an alternating minimization of `W`
|
1839 |
+
and `H`.
|
1840 |
+
|
1841 |
+
Note that the transformed data is named `W` and the components matrix is
|
1842 |
+
named `H`. In the NMF literature, the naming convention is usually the opposite
|
1843 |
+
since the data matrix `X` is transposed.
|
1844 |
+
|
1845 |
+
Read more in the :ref:`User Guide <MiniBatchNMF>`.
|
1846 |
+
|
1847 |
+
Parameters
|
1848 |
+
----------
|
1849 |
+
n_components : int or {'auto'} or None, default=None
|
1850 |
+
Number of components, if `n_components` is not set all features
|
1851 |
+
are kept.
|
1852 |
+
If `n_components='auto'`, the number of components is automatically inferred
|
1853 |
+
from W or H shapes.
|
1854 |
+
|
1855 |
+
.. versionchanged:: 1.4
|
1856 |
+
Added `'auto'` value.
|
1857 |
+
|
1858 |
+
init : {'random', 'nndsvd', 'nndsvda', 'nndsvdar', 'custom'}, default=None
|
1859 |
+
Method used to initialize the procedure.
|
1860 |
+
Valid options:
|
1861 |
+
|
1862 |
+
- `None`: 'nndsvda' if `n_components <= min(n_samples, n_features)`,
|
1863 |
+
otherwise random.
|
1864 |
+
|
1865 |
+
- `'random'`: non-negative random matrices, scaled with:
|
1866 |
+
`sqrt(X.mean() / n_components)`
|
1867 |
+
|
1868 |
+
- `'nndsvd'`: Nonnegative Double Singular Value Decomposition (NNDSVD)
|
1869 |
+
initialization (better for sparseness).
|
1870 |
+
|
1871 |
+
- `'nndsvda'`: NNDSVD with zeros filled with the average of X
|
1872 |
+
(better when sparsity is not desired).
|
1873 |
+
|
1874 |
+
- `'nndsvdar'` NNDSVD with zeros filled with small random values
|
1875 |
+
(generally faster, less accurate alternative to NNDSVDa
|
1876 |
+
for when sparsity is not desired).
|
1877 |
+
|
1878 |
+
- `'custom'`: Use custom matrices `W` and `H` which must both be provided.
|
1879 |
+
|
1880 |
+
batch_size : int, default=1024
|
1881 |
+
Number of samples in each mini-batch. Large batch sizes
|
1882 |
+
give better long-term convergence at the cost of a slower start.
|
1883 |
+
|
1884 |
+
beta_loss : float or {'frobenius', 'kullback-leibler', \
|
1885 |
+
'itakura-saito'}, default='frobenius'
|
1886 |
+
Beta divergence to be minimized, measuring the distance between `X`
|
1887 |
+
and the dot product `WH`. Note that values different from 'frobenius'
|
1888 |
+
(or 2) and 'kullback-leibler' (or 1) lead to significantly slower
|
1889 |
+
fits. Note that for `beta_loss <= 0` (or 'itakura-saito'), the input
|
1890 |
+
matrix `X` cannot contain zeros.
|
1891 |
+
|
1892 |
+
tol : float, default=1e-4
|
1893 |
+
Control early stopping based on the norm of the differences in `H`
|
1894 |
+
between 2 steps. To disable early stopping based on changes in `H`, set
|
1895 |
+
`tol` to 0.0.
|
1896 |
+
|
1897 |
+
max_no_improvement : int, default=10
|
1898 |
+
Control early stopping based on the consecutive number of mini batches
|
1899 |
+
that does not yield an improvement on the smoothed cost function.
|
1900 |
+
To disable convergence detection based on cost function, set
|
1901 |
+
`max_no_improvement` to None.
|
1902 |
+
|
1903 |
+
max_iter : int, default=200
|
1904 |
+
Maximum number of iterations over the complete dataset before
|
1905 |
+
timing out.
|
1906 |
+
|
1907 |
+
alpha_W : float, default=0.0
|
1908 |
+
Constant that multiplies the regularization terms of `W`. Set it to zero
|
1909 |
+
(default) to have no regularization on `W`.
|
1910 |
+
|
1911 |
+
alpha_H : float or "same", default="same"
|
1912 |
+
Constant that multiplies the regularization terms of `H`. Set it to zero to
|
1913 |
+
have no regularization on `H`. If "same" (default), it takes the same value as
|
1914 |
+
`alpha_W`.
|
1915 |
+
|
1916 |
+
l1_ratio : float, default=0.0
|
1917 |
+
The regularization mixing parameter, with 0 <= l1_ratio <= 1.
|
1918 |
+
For l1_ratio = 0 the penalty is an elementwise L2 penalty
|
1919 |
+
(aka Frobenius Norm).
|
1920 |
+
For l1_ratio = 1 it is an elementwise L1 penalty.
|
1921 |
+
For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.
|
1922 |
+
|
1923 |
+
forget_factor : float, default=0.7
|
1924 |
+
Amount of rescaling of past information. Its value could be 1 with
|
1925 |
+
finite datasets. Choosing values < 1 is recommended with online
|
1926 |
+
learning as more recent batches will weight more than past batches.
|
1927 |
+
|
1928 |
+
fresh_restarts : bool, default=False
|
1929 |
+
Whether to completely solve for W at each step. Doing fresh restarts will likely
|
1930 |
+
lead to a better solution for a same number of iterations but it is much slower.
|
1931 |
+
|
1932 |
+
fresh_restarts_max_iter : int, default=30
|
1933 |
+
Maximum number of iterations when solving for W at each step. Only used when
|
1934 |
+
doing fresh restarts. These iterations may be stopped early based on a small
|
1935 |
+
change of W controlled by `tol`.
|
1936 |
+
|
1937 |
+
transform_max_iter : int, default=None
|
1938 |
+
Maximum number of iterations when solving for W at transform time.
|
1939 |
+
If None, it defaults to `max_iter`.
|
1940 |
+
|
1941 |
+
random_state : int, RandomState instance or None, default=None
|
1942 |
+
Used for initialisation (when ``init`` == 'nndsvdar' or
|
1943 |
+
'random'), and in Coordinate Descent. Pass an int for reproducible
|
1944 |
+
results across multiple function calls.
|
1945 |
+
See :term:`Glossary <random_state>`.
|
1946 |
+
|
1947 |
+
verbose : bool, default=False
|
1948 |
+
Whether to be verbose.
|
1949 |
+
|
1950 |
+
Attributes
|
1951 |
+
----------
|
1952 |
+
components_ : ndarray of shape (n_components, n_features)
|
1953 |
+
Factorization matrix, sometimes called 'dictionary'.
|
1954 |
+
|
1955 |
+
n_components_ : int
|
1956 |
+
The number of components. It is same as the `n_components` parameter
|
1957 |
+
if it was given. Otherwise, it will be same as the number of
|
1958 |
+
features.
|
1959 |
+
|
1960 |
+
reconstruction_err_ : float
|
1961 |
+
Frobenius norm of the matrix difference, or beta-divergence, between
|
1962 |
+
the training data `X` and the reconstructed data `WH` from
|
1963 |
+
the fitted model.
|
1964 |
+
|
1965 |
+
n_iter_ : int
|
1966 |
+
Actual number of started iterations over the whole dataset.
|
1967 |
+
|
1968 |
+
n_steps_ : int
|
1969 |
+
Number of mini-batches processed.
|
1970 |
+
|
1971 |
+
n_features_in_ : int
|
1972 |
+
Number of features seen during :term:`fit`.
|
1973 |
+
|
1974 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1975 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1976 |
+
has feature names that are all strings.
|
1977 |
+
|
1978 |
+
See Also
|
1979 |
+
--------
|
1980 |
+
NMF : Non-negative matrix factorization.
|
1981 |
+
MiniBatchDictionaryLearning : Finds a dictionary that can best be used to represent
|
1982 |
+
data using a sparse code.
|
1983 |
+
|
1984 |
+
References
|
1985 |
+
----------
|
1986 |
+
.. [1] :doi:`"Fast local algorithms for large scale nonnegative matrix and tensor
|
1987 |
+
factorizations" <10.1587/transfun.E92.A.708>`
|
1988 |
+
Cichocki, Andrzej, and P. H. A. N. Anh-Huy. IEICE transactions on fundamentals
|
1989 |
+
of electronics, communications and computer sciences 92.3: 708-721, 2009.
|
1990 |
+
|
1991 |
+
.. [2] :doi:`"Algorithms for nonnegative matrix factorization with the
|
1992 |
+
beta-divergence" <10.1162/NECO_a_00168>`
|
1993 |
+
Fevotte, C., & Idier, J. (2011). Neural Computation, 23(9).
|
1994 |
+
|
1995 |
+
.. [3] :doi:`"Online algorithms for nonnegative matrix factorization with the
|
1996 |
+
Itakura-Saito divergence" <10.1109/ASPAA.2011.6082314>`
|
1997 |
+
Lefevre, A., Bach, F., Fevotte, C. (2011). WASPA.
|
1998 |
+
|
1999 |
+
Examples
|
2000 |
+
--------
|
2001 |
+
>>> import numpy as np
|
2002 |
+
>>> X = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
|
2003 |
+
>>> from sklearn.decomposition import MiniBatchNMF
|
2004 |
+
>>> model = MiniBatchNMF(n_components=2, init='random', random_state=0)
|
2005 |
+
>>> W = model.fit_transform(X)
|
2006 |
+
>>> H = model.components_
|
2007 |
+
"""
|
2008 |
+
|
2009 |
+
_parameter_constraints: dict = {
|
2010 |
+
**_BaseNMF._parameter_constraints,
|
2011 |
+
"max_no_improvement": [Interval(Integral, 1, None, closed="left"), None],
|
2012 |
+
"batch_size": [Interval(Integral, 1, None, closed="left")],
|
2013 |
+
"forget_factor": [Interval(Real, 0, 1, closed="both")],
|
2014 |
+
"fresh_restarts": ["boolean"],
|
2015 |
+
"fresh_restarts_max_iter": [Interval(Integral, 1, None, closed="left")],
|
2016 |
+
"transform_max_iter": [Interval(Integral, 1, None, closed="left"), None],
|
2017 |
+
}
|
2018 |
+
|
2019 |
+
def __init__(
|
2020 |
+
self,
|
2021 |
+
n_components="warn",
|
2022 |
+
*,
|
2023 |
+
init=None,
|
2024 |
+
batch_size=1024,
|
2025 |
+
beta_loss="frobenius",
|
2026 |
+
tol=1e-4,
|
2027 |
+
max_no_improvement=10,
|
2028 |
+
max_iter=200,
|
2029 |
+
alpha_W=0.0,
|
2030 |
+
alpha_H="same",
|
2031 |
+
l1_ratio=0.0,
|
2032 |
+
forget_factor=0.7,
|
2033 |
+
fresh_restarts=False,
|
2034 |
+
fresh_restarts_max_iter=30,
|
2035 |
+
transform_max_iter=None,
|
2036 |
+
random_state=None,
|
2037 |
+
verbose=0,
|
2038 |
+
):
|
2039 |
+
super().__init__(
|
2040 |
+
n_components=n_components,
|
2041 |
+
init=init,
|
2042 |
+
beta_loss=beta_loss,
|
2043 |
+
tol=tol,
|
2044 |
+
max_iter=max_iter,
|
2045 |
+
random_state=random_state,
|
2046 |
+
alpha_W=alpha_W,
|
2047 |
+
alpha_H=alpha_H,
|
2048 |
+
l1_ratio=l1_ratio,
|
2049 |
+
verbose=verbose,
|
2050 |
+
)
|
2051 |
+
|
2052 |
+
self.max_no_improvement = max_no_improvement
|
2053 |
+
self.batch_size = batch_size
|
2054 |
+
self.forget_factor = forget_factor
|
2055 |
+
self.fresh_restarts = fresh_restarts
|
2056 |
+
self.fresh_restarts_max_iter = fresh_restarts_max_iter
|
2057 |
+
self.transform_max_iter = transform_max_iter
|
2058 |
+
|
2059 |
+
def _check_params(self, X):
|
2060 |
+
super()._check_params(X)
|
2061 |
+
|
2062 |
+
# batch_size
|
2063 |
+
self._batch_size = min(self.batch_size, X.shape[0])
|
2064 |
+
|
2065 |
+
# forget_factor
|
2066 |
+
self._rho = self.forget_factor ** (self._batch_size / X.shape[0])
|
2067 |
+
|
2068 |
+
# gamma for Maximization-Minimization (MM) algorithm [Fevotte 2011]
|
2069 |
+
if self._beta_loss < 1:
|
2070 |
+
self._gamma = 1.0 / (2.0 - self._beta_loss)
|
2071 |
+
elif self._beta_loss > 2:
|
2072 |
+
self._gamma = 1.0 / (self._beta_loss - 1.0)
|
2073 |
+
else:
|
2074 |
+
self._gamma = 1.0
|
2075 |
+
|
2076 |
+
# transform_max_iter
|
2077 |
+
self._transform_max_iter = (
|
2078 |
+
self.max_iter
|
2079 |
+
if self.transform_max_iter is None
|
2080 |
+
else self.transform_max_iter
|
2081 |
+
)
|
2082 |
+
|
2083 |
+
return self
|
2084 |
+
|
2085 |
+
def _solve_W(self, X, H, max_iter):
|
2086 |
+
"""Minimize the objective function w.r.t W.
|
2087 |
+
|
2088 |
+
Update W with H being fixed, until convergence. This is the heart
|
2089 |
+
of `transform` but it's also used during `fit` when doing fresh restarts.
|
2090 |
+
"""
|
2091 |
+
avg = np.sqrt(X.mean() / self._n_components)
|
2092 |
+
W = np.full((X.shape[0], self._n_components), avg, dtype=X.dtype)
|
2093 |
+
W_buffer = W.copy()
|
2094 |
+
|
2095 |
+
# Get scaled regularization terms. Done for each minibatch to take into account
|
2096 |
+
# variable sizes of minibatches.
|
2097 |
+
l1_reg_W, _, l2_reg_W, _ = self._compute_regularization(X)
|
2098 |
+
|
2099 |
+
for _ in range(max_iter):
|
2100 |
+
W, *_ = _multiplicative_update_w(
|
2101 |
+
X, W, H, self._beta_loss, l1_reg_W, l2_reg_W, self._gamma
|
2102 |
+
)
|
2103 |
+
|
2104 |
+
W_diff = linalg.norm(W - W_buffer) / linalg.norm(W)
|
2105 |
+
if self.tol > 0 and W_diff <= self.tol:
|
2106 |
+
break
|
2107 |
+
|
2108 |
+
W_buffer[:] = W
|
2109 |
+
|
2110 |
+
return W
|
2111 |
+
|
2112 |
+
def _minibatch_step(self, X, W, H, update_H):
|
2113 |
+
"""Perform the update of W and H for one minibatch."""
|
2114 |
+
batch_size = X.shape[0]
|
2115 |
+
|
2116 |
+
# get scaled regularization terms. Done for each minibatch to take into account
|
2117 |
+
# variable sizes of minibatches.
|
2118 |
+
l1_reg_W, l1_reg_H, l2_reg_W, l2_reg_H = self._compute_regularization(X)
|
2119 |
+
|
2120 |
+
# update W
|
2121 |
+
if self.fresh_restarts or W is None:
|
2122 |
+
W = self._solve_W(X, H, self.fresh_restarts_max_iter)
|
2123 |
+
else:
|
2124 |
+
W, *_ = _multiplicative_update_w(
|
2125 |
+
X, W, H, self._beta_loss, l1_reg_W, l2_reg_W, self._gamma
|
2126 |
+
)
|
2127 |
+
|
2128 |
+
# necessary for stability with beta_loss < 1
|
2129 |
+
if self._beta_loss < 1:
|
2130 |
+
W[W < np.finfo(np.float64).eps] = 0.0
|
2131 |
+
|
2132 |
+
batch_cost = (
|
2133 |
+
_beta_divergence(X, W, H, self._beta_loss)
|
2134 |
+
+ l1_reg_W * W.sum()
|
2135 |
+
+ l1_reg_H * H.sum()
|
2136 |
+
+ l2_reg_W * (W**2).sum()
|
2137 |
+
+ l2_reg_H * (H**2).sum()
|
2138 |
+
) / batch_size
|
2139 |
+
|
2140 |
+
# update H (only at fit or fit_transform)
|
2141 |
+
if update_H:
|
2142 |
+
H[:] = _multiplicative_update_h(
|
2143 |
+
X,
|
2144 |
+
W,
|
2145 |
+
H,
|
2146 |
+
beta_loss=self._beta_loss,
|
2147 |
+
l1_reg_H=l1_reg_H,
|
2148 |
+
l2_reg_H=l2_reg_H,
|
2149 |
+
gamma=self._gamma,
|
2150 |
+
A=self._components_numerator,
|
2151 |
+
B=self._components_denominator,
|
2152 |
+
rho=self._rho,
|
2153 |
+
)
|
2154 |
+
|
2155 |
+
# necessary for stability with beta_loss < 1
|
2156 |
+
if self._beta_loss <= 1:
|
2157 |
+
H[H < np.finfo(np.float64).eps] = 0.0
|
2158 |
+
|
2159 |
+
return batch_cost
|
2160 |
+
|
2161 |
+
def _minibatch_convergence(
|
2162 |
+
self, X, batch_cost, H, H_buffer, n_samples, step, n_steps
|
2163 |
+
):
|
2164 |
+
"""Helper function to encapsulate the early stopping logic"""
|
2165 |
+
batch_size = X.shape[0]
|
2166 |
+
|
2167 |
+
# counts steps starting from 1 for user friendly verbose mode.
|
2168 |
+
step = step + 1
|
2169 |
+
|
2170 |
+
# Ignore first iteration because H is not updated yet.
|
2171 |
+
if step == 1:
|
2172 |
+
if self.verbose:
|
2173 |
+
print(f"Minibatch step {step}/{n_steps}: mean batch cost: {batch_cost}")
|
2174 |
+
return False
|
2175 |
+
|
2176 |
+
# Compute an Exponentially Weighted Average of the cost function to
|
2177 |
+
# monitor the convergence while discarding minibatch-local stochastic
|
2178 |
+
# variability: https://en.wikipedia.org/wiki/Moving_average
|
2179 |
+
if self._ewa_cost is None:
|
2180 |
+
self._ewa_cost = batch_cost
|
2181 |
+
else:
|
2182 |
+
alpha = batch_size / (n_samples + 1)
|
2183 |
+
alpha = min(alpha, 1)
|
2184 |
+
self._ewa_cost = self._ewa_cost * (1 - alpha) + batch_cost * alpha
|
2185 |
+
|
2186 |
+
# Log progress to be able to monitor convergence
|
2187 |
+
if self.verbose:
|
2188 |
+
print(
|
2189 |
+
f"Minibatch step {step}/{n_steps}: mean batch cost: "
|
2190 |
+
f"{batch_cost}, ewa cost: {self._ewa_cost}"
|
2191 |
+
)
|
2192 |
+
|
2193 |
+
# Early stopping based on change of H
|
2194 |
+
H_diff = linalg.norm(H - H_buffer) / linalg.norm(H)
|
2195 |
+
if self.tol > 0 and H_diff <= self.tol:
|
2196 |
+
if self.verbose:
|
2197 |
+
print(f"Converged (small H change) at step {step}/{n_steps}")
|
2198 |
+
return True
|
2199 |
+
|
2200 |
+
# Early stopping heuristic due to lack of improvement on smoothed
|
2201 |
+
# cost function
|
2202 |
+
if self._ewa_cost_min is None or self._ewa_cost < self._ewa_cost_min:
|
2203 |
+
self._no_improvement = 0
|
2204 |
+
self._ewa_cost_min = self._ewa_cost
|
2205 |
+
else:
|
2206 |
+
self._no_improvement += 1
|
2207 |
+
|
2208 |
+
if (
|
2209 |
+
self.max_no_improvement is not None
|
2210 |
+
and self._no_improvement >= self.max_no_improvement
|
2211 |
+
):
|
2212 |
+
if self.verbose:
|
2213 |
+
print(
|
2214 |
+
"Converged (lack of improvement in objective function) "
|
2215 |
+
f"at step {step}/{n_steps}"
|
2216 |
+
)
|
2217 |
+
return True
|
2218 |
+
|
2219 |
+
return False
|
2220 |
+
|
2221 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
2222 |
+
def fit_transform(self, X, y=None, W=None, H=None):
|
2223 |
+
"""Learn a NMF model for the data X and returns the transformed data.
|
2224 |
+
|
2225 |
+
This is more efficient than calling fit followed by transform.
|
2226 |
+
|
2227 |
+
Parameters
|
2228 |
+
----------
|
2229 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
2230 |
+
Data matrix to be decomposed.
|
2231 |
+
|
2232 |
+
y : Ignored
|
2233 |
+
Not used, present here for API consistency by convention.
|
2234 |
+
|
2235 |
+
W : array-like of shape (n_samples, n_components), default=None
|
2236 |
+
If `init='custom'`, it is used as initial guess for the solution.
|
2237 |
+
If `None`, uses the initialisation method specified in `init`.
|
2238 |
+
|
2239 |
+
H : array-like of shape (n_components, n_features), default=None
|
2240 |
+
If `init='custom'`, it is used as initial guess for the solution.
|
2241 |
+
If `None`, uses the initialisation method specified in `init`.
|
2242 |
+
|
2243 |
+
Returns
|
2244 |
+
-------
|
2245 |
+
W : ndarray of shape (n_samples, n_components)
|
2246 |
+
Transformed data.
|
2247 |
+
"""
|
2248 |
+
X = self._validate_data(
|
2249 |
+
X, accept_sparse=("csr", "csc"), dtype=[np.float64, np.float32]
|
2250 |
+
)
|
2251 |
+
|
2252 |
+
with config_context(assume_finite=True):
|
2253 |
+
W, H, n_iter, n_steps = self._fit_transform(X, W=W, H=H)
|
2254 |
+
|
2255 |
+
self.reconstruction_err_ = _beta_divergence(
|
2256 |
+
X, W, H, self._beta_loss, square_root=True
|
2257 |
+
)
|
2258 |
+
|
2259 |
+
self.n_components_ = H.shape[0]
|
2260 |
+
self.components_ = H
|
2261 |
+
self.n_iter_ = n_iter
|
2262 |
+
self.n_steps_ = n_steps
|
2263 |
+
|
2264 |
+
return W
|
2265 |
+
|
2266 |
+
def _fit_transform(self, X, W=None, H=None, update_H=True):
|
2267 |
+
"""Learn a NMF model for the data X and returns the transformed data.
|
2268 |
+
|
2269 |
+
Parameters
|
2270 |
+
----------
|
2271 |
+
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
2272 |
+
Data matrix to be decomposed.
|
2273 |
+
|
2274 |
+
W : array-like of shape (n_samples, n_components), default=None
|
2275 |
+
If `init='custom'`, it is used as initial guess for the solution.
|
2276 |
+
If `update_H=False`, it is initialised as an array of zeros, unless
|
2277 |
+
`solver='mu'`, then it is filled with values calculated by
|
2278 |
+
`np.sqrt(X.mean() / self._n_components)`.
|
2279 |
+
If `None`, uses the initialisation method specified in `init`.
|
2280 |
+
|
2281 |
+
H : array-like of shape (n_components, n_features), default=None
|
2282 |
+
If `init='custom'`, it is used as initial guess for the solution.
|
2283 |
+
If `update_H=False`, it is used as a constant, to solve for W only.
|
2284 |
+
If `None`, uses the initialisation method specified in `init`.
|
2285 |
+
|
2286 |
+
update_H : bool, default=True
|
2287 |
+
If True, both W and H will be estimated from initial guesses,
|
2288 |
+
this corresponds to a call to the `fit_transform` method.
|
2289 |
+
If False, only W will be estimated, this corresponds to a call
|
2290 |
+
to the `transform` method.
|
2291 |
+
|
2292 |
+
Returns
|
2293 |
+
-------
|
2294 |
+
W : ndarray of shape (n_samples, n_components)
|
2295 |
+
Transformed data.
|
2296 |
+
|
2297 |
+
H : ndarray of shape (n_components, n_features)
|
2298 |
+
Factorization matrix, sometimes called 'dictionary'.
|
2299 |
+
|
2300 |
+
n_iter : int
|
2301 |
+
Actual number of started iterations over the whole dataset.
|
2302 |
+
|
2303 |
+
n_steps : int
|
2304 |
+
Number of mini-batches processed.
|
2305 |
+
"""
|
2306 |
+
check_non_negative(X, "MiniBatchNMF (input X)")
|
2307 |
+
self._check_params(X)
|
2308 |
+
|
2309 |
+
if X.min() == 0 and self._beta_loss <= 0:
|
2310 |
+
raise ValueError(
|
2311 |
+
"When beta_loss <= 0 and X contains zeros, "
|
2312 |
+
"the solver may diverge. Please add small values "
|
2313 |
+
"to X, or use a positive beta_loss."
|
2314 |
+
)
|
2315 |
+
|
2316 |
+
n_samples = X.shape[0]
|
2317 |
+
|
2318 |
+
# initialize or check W and H
|
2319 |
+
W, H = self._check_w_h(X, W, H, update_H)
|
2320 |
+
H_buffer = H.copy()
|
2321 |
+
|
2322 |
+
# Initialize auxiliary matrices
|
2323 |
+
self._components_numerator = H.copy()
|
2324 |
+
self._components_denominator = np.ones(H.shape, dtype=H.dtype)
|
2325 |
+
|
2326 |
+
# Attributes to monitor the convergence
|
2327 |
+
self._ewa_cost = None
|
2328 |
+
self._ewa_cost_min = None
|
2329 |
+
self._no_improvement = 0
|
2330 |
+
|
2331 |
+
batches = gen_batches(n_samples, self._batch_size)
|
2332 |
+
batches = itertools.cycle(batches)
|
2333 |
+
n_steps_per_iter = int(np.ceil(n_samples / self._batch_size))
|
2334 |
+
n_steps = self.max_iter * n_steps_per_iter
|
2335 |
+
|
2336 |
+
for i, batch in zip(range(n_steps), batches):
|
2337 |
+
batch_cost = self._minibatch_step(X[batch], W[batch], H, update_H)
|
2338 |
+
|
2339 |
+
if update_H and self._minibatch_convergence(
|
2340 |
+
X[batch], batch_cost, H, H_buffer, n_samples, i, n_steps
|
2341 |
+
):
|
2342 |
+
break
|
2343 |
+
|
2344 |
+
H_buffer[:] = H
|
2345 |
+
|
2346 |
+
if self.fresh_restarts:
|
2347 |
+
W = self._solve_W(X, H, self._transform_max_iter)
|
2348 |
+
|
2349 |
+
n_steps = i + 1
|
2350 |
+
n_iter = int(np.ceil(n_steps / n_steps_per_iter))
|
2351 |
+
|
2352 |
+
if n_iter == self.max_iter and self.tol > 0:
|
2353 |
+
warnings.warn(
|
2354 |
+
(
|
2355 |
+
f"Maximum number of iterations {self.max_iter} reached. "
|
2356 |
+
"Increase it to improve convergence."
|
2357 |
+
),
|
2358 |
+
ConvergenceWarning,
|
2359 |
+
)
|
2360 |
+
|
2361 |
+
return W, H, n_iter, n_steps
|
2362 |
+
|
2363 |
+
def transform(self, X):
|
2364 |
+
"""Transform the data X according to the fitted MiniBatchNMF model.
|
2365 |
+
|
2366 |
+
Parameters
|
2367 |
+
----------
|
2368 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
2369 |
+
Data matrix to be transformed by the model.
|
2370 |
+
|
2371 |
+
Returns
|
2372 |
+
-------
|
2373 |
+
W : ndarray of shape (n_samples, n_components)
|
2374 |
+
Transformed data.
|
2375 |
+
"""
|
2376 |
+
check_is_fitted(self)
|
2377 |
+
X = self._validate_data(
|
2378 |
+
X, accept_sparse=("csr", "csc"), dtype=[np.float64, np.float32], reset=False
|
2379 |
+
)
|
2380 |
+
|
2381 |
+
W = self._solve_W(X, self.components_, self._transform_max_iter)
|
2382 |
+
|
2383 |
+
return W
|
2384 |
+
|
2385 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
2386 |
+
def partial_fit(self, X, y=None, W=None, H=None):
|
2387 |
+
"""Update the model using the data in `X` as a mini-batch.
|
2388 |
+
|
2389 |
+
This method is expected to be called several times consecutively
|
2390 |
+
on different chunks of a dataset so as to implement out-of-core
|
2391 |
+
or online learning.
|
2392 |
+
|
2393 |
+
This is especially useful when the whole dataset is too big to fit in
|
2394 |
+
memory at once (see :ref:`scaling_strategies`).
|
2395 |
+
|
2396 |
+
Parameters
|
2397 |
+
----------
|
2398 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
2399 |
+
Data matrix to be decomposed.
|
2400 |
+
|
2401 |
+
y : Ignored
|
2402 |
+
Not used, present here for API consistency by convention.
|
2403 |
+
|
2404 |
+
W : array-like of shape (n_samples, n_components), default=None
|
2405 |
+
If `init='custom'`, it is used as initial guess for the solution.
|
2406 |
+
Only used for the first call to `partial_fit`.
|
2407 |
+
|
2408 |
+
H : array-like of shape (n_components, n_features), default=None
|
2409 |
+
If `init='custom'`, it is used as initial guess for the solution.
|
2410 |
+
Only used for the first call to `partial_fit`.
|
2411 |
+
|
2412 |
+
Returns
|
2413 |
+
-------
|
2414 |
+
self
|
2415 |
+
Returns the instance itself.
|
2416 |
+
"""
|
2417 |
+
has_components = hasattr(self, "components_")
|
2418 |
+
|
2419 |
+
X = self._validate_data(
|
2420 |
+
X,
|
2421 |
+
accept_sparse=("csr", "csc"),
|
2422 |
+
dtype=[np.float64, np.float32],
|
2423 |
+
reset=not has_components,
|
2424 |
+
)
|
2425 |
+
|
2426 |
+
if not has_components:
|
2427 |
+
# This instance has not been fitted yet (fit or partial_fit)
|
2428 |
+
self._check_params(X)
|
2429 |
+
_, H = self._check_w_h(X, W=W, H=H, update_H=True)
|
2430 |
+
|
2431 |
+
self._components_numerator = H.copy()
|
2432 |
+
self._components_denominator = np.ones(H.shape, dtype=H.dtype)
|
2433 |
+
self.n_steps_ = 0
|
2434 |
+
else:
|
2435 |
+
H = self.components_
|
2436 |
+
|
2437 |
+
self._minibatch_step(X, None, H, update_H=True)
|
2438 |
+
|
2439 |
+
self.n_components_ = H.shape[0]
|
2440 |
+
self.components_ = H
|
2441 |
+
self.n_steps_ += 1
|
2442 |
+
|
2443 |
+
return self
|
venv/lib/python3.10/site-packages/sklearn/decomposition/_online_lda_fast.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (307 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/_pca.py
ADDED
@@ -0,0 +1,747 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Principal Component Analysis.
|
2 |
+
"""
|
3 |
+
|
4 |
+
# Author: Alexandre Gramfort <[email protected]>
|
5 |
+
# Olivier Grisel <[email protected]>
|
6 |
+
# Mathieu Blondel <[email protected]>
|
7 |
+
# Denis A. Engemann <[email protected]>
|
8 |
+
# Michael Eickenberg <[email protected]>
|
9 |
+
# Giorgio Patrini <[email protected]>
|
10 |
+
#
|
11 |
+
# License: BSD 3 clause
|
12 |
+
|
13 |
+
from math import log, sqrt
|
14 |
+
from numbers import Integral, Real
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
from scipy import linalg
|
18 |
+
from scipy.sparse import issparse
|
19 |
+
from scipy.sparse.linalg import svds
|
20 |
+
from scipy.special import gammaln
|
21 |
+
|
22 |
+
from ..base import _fit_context
|
23 |
+
from ..utils import check_random_state
|
24 |
+
from ..utils._arpack import _init_arpack_v0
|
25 |
+
from ..utils._array_api import _convert_to_numpy, get_namespace
|
26 |
+
from ..utils._param_validation import Interval, RealNotInt, StrOptions
|
27 |
+
from ..utils.extmath import fast_logdet, randomized_svd, stable_cumsum, svd_flip
|
28 |
+
from ..utils.sparsefuncs import _implicit_column_offset, mean_variance_axis
|
29 |
+
from ..utils.validation import check_is_fitted
|
30 |
+
from ._base import _BasePCA
|
31 |
+
|
32 |
+
|
33 |
+
def _assess_dimension(spectrum, rank, n_samples):
|
34 |
+
"""Compute the log-likelihood of a rank ``rank`` dataset.
|
35 |
+
|
36 |
+
The dataset is assumed to be embedded in gaussian noise of shape(n,
|
37 |
+
dimf) having spectrum ``spectrum``. This implements the method of
|
38 |
+
T. P. Minka.
|
39 |
+
|
40 |
+
Parameters
|
41 |
+
----------
|
42 |
+
spectrum : ndarray of shape (n_features,)
|
43 |
+
Data spectrum.
|
44 |
+
rank : int
|
45 |
+
Tested rank value. It should be strictly lower than n_features,
|
46 |
+
otherwise the method isn't specified (division by zero in equation
|
47 |
+
(31) from the paper).
|
48 |
+
n_samples : int
|
49 |
+
Number of samples.
|
50 |
+
|
51 |
+
Returns
|
52 |
+
-------
|
53 |
+
ll : float
|
54 |
+
The log-likelihood.
|
55 |
+
|
56 |
+
References
|
57 |
+
----------
|
58 |
+
This implements the method of `Thomas P. Minka:
|
59 |
+
Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604
|
60 |
+
<https://proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf>`_
|
61 |
+
"""
|
62 |
+
xp, _ = get_namespace(spectrum)
|
63 |
+
|
64 |
+
n_features = spectrum.shape[0]
|
65 |
+
if not 1 <= rank < n_features:
|
66 |
+
raise ValueError("the tested rank should be in [1, n_features - 1]")
|
67 |
+
|
68 |
+
eps = 1e-15
|
69 |
+
|
70 |
+
if spectrum[rank - 1] < eps:
|
71 |
+
# When the tested rank is associated with a small eigenvalue, there's
|
72 |
+
# no point in computing the log-likelihood: it's going to be very
|
73 |
+
# small and won't be the max anyway. Also, it can lead to numerical
|
74 |
+
# issues below when computing pa, in particular in log((spectrum[i] -
|
75 |
+
# spectrum[j]) because this will take the log of something very small.
|
76 |
+
return -xp.inf
|
77 |
+
|
78 |
+
pu = -rank * log(2.0)
|
79 |
+
for i in range(1, rank + 1):
|
80 |
+
pu += (
|
81 |
+
gammaln((n_features - i + 1) / 2.0)
|
82 |
+
- log(xp.pi) * (n_features - i + 1) / 2.0
|
83 |
+
)
|
84 |
+
|
85 |
+
pl = xp.sum(xp.log(spectrum[:rank]))
|
86 |
+
pl = -pl * n_samples / 2.0
|
87 |
+
|
88 |
+
v = max(eps, xp.sum(spectrum[rank:]) / (n_features - rank))
|
89 |
+
pv = -log(v) * n_samples * (n_features - rank) / 2.0
|
90 |
+
|
91 |
+
m = n_features * rank - rank * (rank + 1.0) / 2.0
|
92 |
+
pp = log(2.0 * xp.pi) * (m + rank) / 2.0
|
93 |
+
|
94 |
+
pa = 0.0
|
95 |
+
spectrum_ = xp.asarray(spectrum, copy=True)
|
96 |
+
spectrum_[rank:n_features] = v
|
97 |
+
for i in range(rank):
|
98 |
+
for j in range(i + 1, spectrum.shape[0]):
|
99 |
+
pa += log(
|
100 |
+
(spectrum[i] - spectrum[j]) * (1.0 / spectrum_[j] - 1.0 / spectrum_[i])
|
101 |
+
) + log(n_samples)
|
102 |
+
|
103 |
+
ll = pu + pl + pv + pp - pa / 2.0 - rank * log(n_samples) / 2.0
|
104 |
+
|
105 |
+
return ll
|
106 |
+
|
107 |
+
|
108 |
+
def _infer_dimension(spectrum, n_samples):
|
109 |
+
"""Infers the dimension of a dataset with a given spectrum.
|
110 |
+
|
111 |
+
The returned value will be in [1, n_features - 1].
|
112 |
+
"""
|
113 |
+
xp, _ = get_namespace(spectrum)
|
114 |
+
|
115 |
+
ll = xp.empty_like(spectrum)
|
116 |
+
ll[0] = -xp.inf # we don't want to return n_components = 0
|
117 |
+
for rank in range(1, spectrum.shape[0]):
|
118 |
+
ll[rank] = _assess_dimension(spectrum, rank, n_samples)
|
119 |
+
return xp.argmax(ll)
|
120 |
+
|
121 |
+
|
122 |
+
class PCA(_BasePCA):
|
123 |
+
"""Principal component analysis (PCA).
|
124 |
+
|
125 |
+
Linear dimensionality reduction using Singular Value Decomposition of the
|
126 |
+
data to project it to a lower dimensional space. The input data is centered
|
127 |
+
but not scaled for each feature before applying the SVD.
|
128 |
+
|
129 |
+
It uses the LAPACK implementation of the full SVD or a randomized truncated
|
130 |
+
SVD by the method of Halko et al. 2009, depending on the shape of the input
|
131 |
+
data and the number of components to extract.
|
132 |
+
|
133 |
+
It can also use the scipy.sparse.linalg ARPACK implementation of the
|
134 |
+
truncated SVD.
|
135 |
+
|
136 |
+
Notice that this class does not support sparse input. See
|
137 |
+
:class:`TruncatedSVD` for an alternative with sparse data.
|
138 |
+
|
139 |
+
For a usage example, see
|
140 |
+
:ref:`sphx_glr_auto_examples_decomposition_plot_pca_iris.py`
|
141 |
+
|
142 |
+
Read more in the :ref:`User Guide <PCA>`.
|
143 |
+
|
144 |
+
Parameters
|
145 |
+
----------
|
146 |
+
n_components : int, float or 'mle', default=None
|
147 |
+
Number of components to keep.
|
148 |
+
if n_components is not set all components are kept::
|
149 |
+
|
150 |
+
n_components == min(n_samples, n_features)
|
151 |
+
|
152 |
+
If ``n_components == 'mle'`` and ``svd_solver == 'full'``, Minka's
|
153 |
+
MLE is used to guess the dimension. Use of ``n_components == 'mle'``
|
154 |
+
will interpret ``svd_solver == 'auto'`` as ``svd_solver == 'full'``.
|
155 |
+
|
156 |
+
If ``0 < n_components < 1`` and ``svd_solver == 'full'``, select the
|
157 |
+
number of components such that the amount of variance that needs to be
|
158 |
+
explained is greater than the percentage specified by n_components.
|
159 |
+
|
160 |
+
If ``svd_solver == 'arpack'``, the number of components must be
|
161 |
+
strictly less than the minimum of n_features and n_samples.
|
162 |
+
|
163 |
+
Hence, the None case results in::
|
164 |
+
|
165 |
+
n_components == min(n_samples, n_features) - 1
|
166 |
+
|
167 |
+
copy : bool, default=True
|
168 |
+
If False, data passed to fit are overwritten and running
|
169 |
+
fit(X).transform(X) will not yield the expected results,
|
170 |
+
use fit_transform(X) instead.
|
171 |
+
|
172 |
+
whiten : bool, default=False
|
173 |
+
When True (False by default) the `components_` vectors are multiplied
|
174 |
+
by the square root of n_samples and then divided by the singular values
|
175 |
+
to ensure uncorrelated outputs with unit component-wise variances.
|
176 |
+
|
177 |
+
Whitening will remove some information from the transformed signal
|
178 |
+
(the relative variance scales of the components) but can sometime
|
179 |
+
improve the predictive accuracy of the downstream estimators by
|
180 |
+
making their data respect some hard-wired assumptions.
|
181 |
+
|
182 |
+
svd_solver : {'auto', 'full', 'arpack', 'randomized'}, default='auto'
|
183 |
+
If auto :
|
184 |
+
The solver is selected by a default policy based on `X.shape` and
|
185 |
+
`n_components`: if the input data is larger than 500x500 and the
|
186 |
+
number of components to extract is lower than 80% of the smallest
|
187 |
+
dimension of the data, then the more efficient 'randomized'
|
188 |
+
method is enabled. Otherwise the exact full SVD is computed and
|
189 |
+
optionally truncated afterwards.
|
190 |
+
If full :
|
191 |
+
run exact full SVD calling the standard LAPACK solver via
|
192 |
+
`scipy.linalg.svd` and select the components by postprocessing
|
193 |
+
If arpack :
|
194 |
+
run SVD truncated to n_components calling ARPACK solver via
|
195 |
+
`scipy.sparse.linalg.svds`. It requires strictly
|
196 |
+
0 < n_components < min(X.shape)
|
197 |
+
If randomized :
|
198 |
+
run randomized SVD by the method of Halko et al.
|
199 |
+
|
200 |
+
.. versionadded:: 0.18.0
|
201 |
+
|
202 |
+
tol : float, default=0.0
|
203 |
+
Tolerance for singular values computed by svd_solver == 'arpack'.
|
204 |
+
Must be of range [0.0, infinity).
|
205 |
+
|
206 |
+
.. versionadded:: 0.18.0
|
207 |
+
|
208 |
+
iterated_power : int or 'auto', default='auto'
|
209 |
+
Number of iterations for the power method computed by
|
210 |
+
svd_solver == 'randomized'.
|
211 |
+
Must be of range [0, infinity).
|
212 |
+
|
213 |
+
.. versionadded:: 0.18.0
|
214 |
+
|
215 |
+
n_oversamples : int, default=10
|
216 |
+
This parameter is only relevant when `svd_solver="randomized"`.
|
217 |
+
It corresponds to the additional number of random vectors to sample the
|
218 |
+
range of `X` so as to ensure proper conditioning. See
|
219 |
+
:func:`~sklearn.utils.extmath.randomized_svd` for more details.
|
220 |
+
|
221 |
+
.. versionadded:: 1.1
|
222 |
+
|
223 |
+
power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto'
|
224 |
+
Power iteration normalizer for randomized SVD solver.
|
225 |
+
Not used by ARPACK. See :func:`~sklearn.utils.extmath.randomized_svd`
|
226 |
+
for more details.
|
227 |
+
|
228 |
+
.. versionadded:: 1.1
|
229 |
+
|
230 |
+
random_state : int, RandomState instance or None, default=None
|
231 |
+
Used when the 'arpack' or 'randomized' solvers are used. Pass an int
|
232 |
+
for reproducible results across multiple function calls.
|
233 |
+
See :term:`Glossary <random_state>`.
|
234 |
+
|
235 |
+
.. versionadded:: 0.18.0
|
236 |
+
|
237 |
+
Attributes
|
238 |
+
----------
|
239 |
+
components_ : ndarray of shape (n_components, n_features)
|
240 |
+
Principal axes in feature space, representing the directions of
|
241 |
+
maximum variance in the data. Equivalently, the right singular
|
242 |
+
vectors of the centered input data, parallel to its eigenvectors.
|
243 |
+
The components are sorted by decreasing ``explained_variance_``.
|
244 |
+
|
245 |
+
explained_variance_ : ndarray of shape (n_components,)
|
246 |
+
The amount of variance explained by each of the selected components.
|
247 |
+
The variance estimation uses `n_samples - 1` degrees of freedom.
|
248 |
+
|
249 |
+
Equal to n_components largest eigenvalues
|
250 |
+
of the covariance matrix of X.
|
251 |
+
|
252 |
+
.. versionadded:: 0.18
|
253 |
+
|
254 |
+
explained_variance_ratio_ : ndarray of shape (n_components,)
|
255 |
+
Percentage of variance explained by each of the selected components.
|
256 |
+
|
257 |
+
If ``n_components`` is not set then all components are stored and the
|
258 |
+
sum of the ratios is equal to 1.0.
|
259 |
+
|
260 |
+
singular_values_ : ndarray of shape (n_components,)
|
261 |
+
The singular values corresponding to each of the selected components.
|
262 |
+
The singular values are equal to the 2-norms of the ``n_components``
|
263 |
+
variables in the lower-dimensional space.
|
264 |
+
|
265 |
+
.. versionadded:: 0.19
|
266 |
+
|
267 |
+
mean_ : ndarray of shape (n_features,)
|
268 |
+
Per-feature empirical mean, estimated from the training set.
|
269 |
+
|
270 |
+
Equal to `X.mean(axis=0)`.
|
271 |
+
|
272 |
+
n_components_ : int
|
273 |
+
The estimated number of components. When n_components is set
|
274 |
+
to 'mle' or a number between 0 and 1 (with svd_solver == 'full') this
|
275 |
+
number is estimated from input data. Otherwise it equals the parameter
|
276 |
+
n_components, or the lesser value of n_features and n_samples
|
277 |
+
if n_components is None.
|
278 |
+
|
279 |
+
n_samples_ : int
|
280 |
+
Number of samples in the training data.
|
281 |
+
|
282 |
+
noise_variance_ : float
|
283 |
+
The estimated noise covariance following the Probabilistic PCA model
|
284 |
+
from Tipping and Bishop 1999. See "Pattern Recognition and
|
285 |
+
Machine Learning" by C. Bishop, 12.2.1 p. 574 or
|
286 |
+
http://www.miketipping.com/papers/met-mppca.pdf. It is required to
|
287 |
+
compute the estimated data covariance and score samples.
|
288 |
+
|
289 |
+
Equal to the average of (min(n_features, n_samples) - n_components)
|
290 |
+
smallest eigenvalues of the covariance matrix of X.
|
291 |
+
|
292 |
+
n_features_in_ : int
|
293 |
+
Number of features seen during :term:`fit`.
|
294 |
+
|
295 |
+
.. versionadded:: 0.24
|
296 |
+
|
297 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
298 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
299 |
+
has feature names that are all strings.
|
300 |
+
|
301 |
+
.. versionadded:: 1.0
|
302 |
+
|
303 |
+
See Also
|
304 |
+
--------
|
305 |
+
KernelPCA : Kernel Principal Component Analysis.
|
306 |
+
SparsePCA : Sparse Principal Component Analysis.
|
307 |
+
TruncatedSVD : Dimensionality reduction using truncated SVD.
|
308 |
+
IncrementalPCA : Incremental Principal Component Analysis.
|
309 |
+
|
310 |
+
References
|
311 |
+
----------
|
312 |
+
For n_components == 'mle', this class uses the method from:
|
313 |
+
`Minka, T. P.. "Automatic choice of dimensionality for PCA".
|
314 |
+
In NIPS, pp. 598-604 <https://tminka.github.io/papers/pca/minka-pca.pdf>`_
|
315 |
+
|
316 |
+
Implements the probabilistic PCA model from:
|
317 |
+
`Tipping, M. E., and Bishop, C. M. (1999). "Probabilistic principal
|
318 |
+
component analysis". Journal of the Royal Statistical Society:
|
319 |
+
Series B (Statistical Methodology), 61(3), 611-622.
|
320 |
+
<http://www.miketipping.com/papers/met-mppca.pdf>`_
|
321 |
+
via the score and score_samples methods.
|
322 |
+
|
323 |
+
For svd_solver == 'arpack', refer to `scipy.sparse.linalg.svds`.
|
324 |
+
|
325 |
+
For svd_solver == 'randomized', see:
|
326 |
+
:doi:`Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).
|
327 |
+
"Finding structure with randomness: Probabilistic algorithms for
|
328 |
+
constructing approximate matrix decompositions".
|
329 |
+
SIAM review, 53(2), 217-288.
|
330 |
+
<10.1137/090771806>`
|
331 |
+
and also
|
332 |
+
:doi:`Martinsson, P. G., Rokhlin, V., and Tygert, M. (2011).
|
333 |
+
"A randomized algorithm for the decomposition of matrices".
|
334 |
+
Applied and Computational Harmonic Analysis, 30(1), 47-68.
|
335 |
+
<10.1016/j.acha.2010.02.003>`
|
336 |
+
|
337 |
+
Examples
|
338 |
+
--------
|
339 |
+
>>> import numpy as np
|
340 |
+
>>> from sklearn.decomposition import PCA
|
341 |
+
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
|
342 |
+
>>> pca = PCA(n_components=2)
|
343 |
+
>>> pca.fit(X)
|
344 |
+
PCA(n_components=2)
|
345 |
+
>>> print(pca.explained_variance_ratio_)
|
346 |
+
[0.9924... 0.0075...]
|
347 |
+
>>> print(pca.singular_values_)
|
348 |
+
[6.30061... 0.54980...]
|
349 |
+
|
350 |
+
>>> pca = PCA(n_components=2, svd_solver='full')
|
351 |
+
>>> pca.fit(X)
|
352 |
+
PCA(n_components=2, svd_solver='full')
|
353 |
+
>>> print(pca.explained_variance_ratio_)
|
354 |
+
[0.9924... 0.00755...]
|
355 |
+
>>> print(pca.singular_values_)
|
356 |
+
[6.30061... 0.54980...]
|
357 |
+
|
358 |
+
>>> pca = PCA(n_components=1, svd_solver='arpack')
|
359 |
+
>>> pca.fit(X)
|
360 |
+
PCA(n_components=1, svd_solver='arpack')
|
361 |
+
>>> print(pca.explained_variance_ratio_)
|
362 |
+
[0.99244...]
|
363 |
+
>>> print(pca.singular_values_)
|
364 |
+
[6.30061...]
|
365 |
+
"""
|
366 |
+
|
367 |
+
_parameter_constraints: dict = {
|
368 |
+
"n_components": [
|
369 |
+
Interval(Integral, 0, None, closed="left"),
|
370 |
+
Interval(RealNotInt, 0, 1, closed="neither"),
|
371 |
+
StrOptions({"mle"}),
|
372 |
+
None,
|
373 |
+
],
|
374 |
+
"copy": ["boolean"],
|
375 |
+
"whiten": ["boolean"],
|
376 |
+
"svd_solver": [StrOptions({"auto", "full", "arpack", "randomized"})],
|
377 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
378 |
+
"iterated_power": [
|
379 |
+
StrOptions({"auto"}),
|
380 |
+
Interval(Integral, 0, None, closed="left"),
|
381 |
+
],
|
382 |
+
"n_oversamples": [Interval(Integral, 1, None, closed="left")],
|
383 |
+
"power_iteration_normalizer": [StrOptions({"auto", "QR", "LU", "none"})],
|
384 |
+
"random_state": ["random_state"],
|
385 |
+
}
|
386 |
+
|
387 |
+
def __init__(
|
388 |
+
self,
|
389 |
+
n_components=None,
|
390 |
+
*,
|
391 |
+
copy=True,
|
392 |
+
whiten=False,
|
393 |
+
svd_solver="auto",
|
394 |
+
tol=0.0,
|
395 |
+
iterated_power="auto",
|
396 |
+
n_oversamples=10,
|
397 |
+
power_iteration_normalizer="auto",
|
398 |
+
random_state=None,
|
399 |
+
):
|
400 |
+
self.n_components = n_components
|
401 |
+
self.copy = copy
|
402 |
+
self.whiten = whiten
|
403 |
+
self.svd_solver = svd_solver
|
404 |
+
self.tol = tol
|
405 |
+
self.iterated_power = iterated_power
|
406 |
+
self.n_oversamples = n_oversamples
|
407 |
+
self.power_iteration_normalizer = power_iteration_normalizer
|
408 |
+
self.random_state = random_state
|
409 |
+
|
410 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
411 |
+
def fit(self, X, y=None):
|
412 |
+
"""Fit the model with X.
|
413 |
+
|
414 |
+
Parameters
|
415 |
+
----------
|
416 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
417 |
+
Training data, where `n_samples` is the number of samples
|
418 |
+
and `n_features` is the number of features.
|
419 |
+
|
420 |
+
y : Ignored
|
421 |
+
Ignored.
|
422 |
+
|
423 |
+
Returns
|
424 |
+
-------
|
425 |
+
self : object
|
426 |
+
Returns the instance itself.
|
427 |
+
"""
|
428 |
+
self._fit(X)
|
429 |
+
return self
|
430 |
+
|
431 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
432 |
+
def fit_transform(self, X, y=None):
|
433 |
+
"""Fit the model with X and apply the dimensionality reduction on X.
|
434 |
+
|
435 |
+
Parameters
|
436 |
+
----------
|
437 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
438 |
+
Training data, where `n_samples` is the number of samples
|
439 |
+
and `n_features` is the number of features.
|
440 |
+
|
441 |
+
y : Ignored
|
442 |
+
Ignored.
|
443 |
+
|
444 |
+
Returns
|
445 |
+
-------
|
446 |
+
X_new : ndarray of shape (n_samples, n_components)
|
447 |
+
Transformed values.
|
448 |
+
|
449 |
+
Notes
|
450 |
+
-----
|
451 |
+
This method returns a Fortran-ordered array. To convert it to a
|
452 |
+
C-ordered array, use 'np.ascontiguousarray'.
|
453 |
+
"""
|
454 |
+
U, S, Vt = self._fit(X)
|
455 |
+
U = U[:, : self.n_components_]
|
456 |
+
|
457 |
+
if self.whiten:
|
458 |
+
# X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples)
|
459 |
+
U *= sqrt(X.shape[0] - 1)
|
460 |
+
else:
|
461 |
+
# X_new = X * V = U * S * Vt * V = U * S
|
462 |
+
U *= S[: self.n_components_]
|
463 |
+
|
464 |
+
return U
|
465 |
+
|
466 |
+
def _fit(self, X):
|
467 |
+
"""Dispatch to the right submethod depending on the chosen solver."""
|
468 |
+
xp, is_array_api_compliant = get_namespace(X)
|
469 |
+
|
470 |
+
# Raise an error for sparse input and unsupported svd_solver
|
471 |
+
if issparse(X) and self.svd_solver != "arpack":
|
472 |
+
raise TypeError(
|
473 |
+
'PCA only support sparse inputs with the "arpack" solver, while '
|
474 |
+
f'"{self.svd_solver}" was passed. See TruncatedSVD for a possible'
|
475 |
+
" alternative."
|
476 |
+
)
|
477 |
+
# Raise an error for non-Numpy input and arpack solver.
|
478 |
+
if self.svd_solver == "arpack" and is_array_api_compliant:
|
479 |
+
raise ValueError(
|
480 |
+
"PCA with svd_solver='arpack' is not supported for Array API inputs."
|
481 |
+
)
|
482 |
+
|
483 |
+
X = self._validate_data(
|
484 |
+
X,
|
485 |
+
dtype=[xp.float64, xp.float32],
|
486 |
+
accept_sparse=("csr", "csc"),
|
487 |
+
ensure_2d=True,
|
488 |
+
copy=self.copy,
|
489 |
+
)
|
490 |
+
|
491 |
+
# Handle n_components==None
|
492 |
+
if self.n_components is None:
|
493 |
+
if self.svd_solver != "arpack":
|
494 |
+
n_components = min(X.shape)
|
495 |
+
else:
|
496 |
+
n_components = min(X.shape) - 1
|
497 |
+
else:
|
498 |
+
n_components = self.n_components
|
499 |
+
|
500 |
+
# Handle svd_solver
|
501 |
+
self._fit_svd_solver = self.svd_solver
|
502 |
+
if self._fit_svd_solver == "auto":
|
503 |
+
# Small problem or n_components == 'mle', just call full PCA
|
504 |
+
if max(X.shape) <= 500 or n_components == "mle":
|
505 |
+
self._fit_svd_solver = "full"
|
506 |
+
elif 1 <= n_components < 0.8 * min(X.shape):
|
507 |
+
self._fit_svd_solver = "randomized"
|
508 |
+
# This is also the case of n_components in (0,1)
|
509 |
+
else:
|
510 |
+
self._fit_svd_solver = "full"
|
511 |
+
|
512 |
+
# Call different fits for either full or truncated SVD
|
513 |
+
if self._fit_svd_solver == "full":
|
514 |
+
return self._fit_full(X, n_components)
|
515 |
+
elif self._fit_svd_solver in ["arpack", "randomized"]:
|
516 |
+
return self._fit_truncated(X, n_components, self._fit_svd_solver)
|
517 |
+
|
518 |
+
def _fit_full(self, X, n_components):
|
519 |
+
"""Fit the model by computing full SVD on X."""
|
520 |
+
xp, is_array_api_compliant = get_namespace(X)
|
521 |
+
|
522 |
+
n_samples, n_features = X.shape
|
523 |
+
|
524 |
+
if n_components == "mle":
|
525 |
+
if n_samples < n_features:
|
526 |
+
raise ValueError(
|
527 |
+
"n_components='mle' is only supported if n_samples >= n_features"
|
528 |
+
)
|
529 |
+
elif not 0 <= n_components <= min(n_samples, n_features):
|
530 |
+
raise ValueError(
|
531 |
+
"n_components=%r must be between 0 and "
|
532 |
+
"min(n_samples, n_features)=%r with "
|
533 |
+
"svd_solver='full'" % (n_components, min(n_samples, n_features))
|
534 |
+
)
|
535 |
+
|
536 |
+
# Center data
|
537 |
+
self.mean_ = xp.mean(X, axis=0)
|
538 |
+
X -= self.mean_
|
539 |
+
|
540 |
+
if not is_array_api_compliant:
|
541 |
+
# Use scipy.linalg with NumPy/SciPy inputs for the sake of not
|
542 |
+
# introducing unanticipated behavior changes. In the long run we
|
543 |
+
# could instead decide to always use xp.linalg.svd for all inputs,
|
544 |
+
# but that would make this code rely on numpy's SVD instead of
|
545 |
+
# scipy's. It's not 100% clear whether they use the same LAPACK
|
546 |
+
# solver by default though (assuming both are built against the
|
547 |
+
# same BLAS).
|
548 |
+
U, S, Vt = linalg.svd(X, full_matrices=False)
|
549 |
+
else:
|
550 |
+
U, S, Vt = xp.linalg.svd(X, full_matrices=False)
|
551 |
+
# flip eigenvectors' sign to enforce deterministic output
|
552 |
+
U, Vt = svd_flip(U, Vt)
|
553 |
+
|
554 |
+
components_ = Vt
|
555 |
+
|
556 |
+
# Get variance explained by singular values
|
557 |
+
explained_variance_ = (S**2) / (n_samples - 1)
|
558 |
+
total_var = xp.sum(explained_variance_)
|
559 |
+
explained_variance_ratio_ = explained_variance_ / total_var
|
560 |
+
singular_values_ = xp.asarray(S, copy=True) # Store the singular values.
|
561 |
+
|
562 |
+
# Postprocess the number of components required
|
563 |
+
if n_components == "mle":
|
564 |
+
n_components = _infer_dimension(explained_variance_, n_samples)
|
565 |
+
elif 0 < n_components < 1.0:
|
566 |
+
# number of components for which the cumulated explained
|
567 |
+
# variance percentage is superior to the desired threshold
|
568 |
+
# side='right' ensures that number of features selected
|
569 |
+
# their variance is always greater than n_components float
|
570 |
+
# passed. More discussion in issue: #15669
|
571 |
+
if is_array_api_compliant:
|
572 |
+
# Convert to numpy as xp.cumsum and xp.searchsorted are not
|
573 |
+
# part of the Array API standard yet:
|
574 |
+
#
|
575 |
+
# https://github.com/data-apis/array-api/issues/597
|
576 |
+
# https://github.com/data-apis/array-api/issues/688
|
577 |
+
#
|
578 |
+
# Furthermore, it's not always safe to call them for namespaces
|
579 |
+
# that already implement them: for instance as
|
580 |
+
# cupy.searchsorted does not accept a float as second argument.
|
581 |
+
explained_variance_ratio_np = _convert_to_numpy(
|
582 |
+
explained_variance_ratio_, xp=xp
|
583 |
+
)
|
584 |
+
else:
|
585 |
+
explained_variance_ratio_np = explained_variance_ratio_
|
586 |
+
ratio_cumsum = stable_cumsum(explained_variance_ratio_np)
|
587 |
+
n_components = np.searchsorted(ratio_cumsum, n_components, side="right") + 1
|
588 |
+
|
589 |
+
# Compute noise covariance using Probabilistic PCA model
|
590 |
+
# The sigma2 maximum likelihood (cf. eq. 12.46)
|
591 |
+
if n_components < min(n_features, n_samples):
|
592 |
+
self.noise_variance_ = xp.mean(explained_variance_[n_components:])
|
593 |
+
else:
|
594 |
+
self.noise_variance_ = 0.0
|
595 |
+
|
596 |
+
self.n_samples_ = n_samples
|
597 |
+
self.components_ = components_[:n_components, :]
|
598 |
+
self.n_components_ = n_components
|
599 |
+
self.explained_variance_ = explained_variance_[:n_components]
|
600 |
+
self.explained_variance_ratio_ = explained_variance_ratio_[:n_components]
|
601 |
+
self.singular_values_ = singular_values_[:n_components]
|
602 |
+
|
603 |
+
return U, S, Vt
|
604 |
+
|
605 |
+
def _fit_truncated(self, X, n_components, svd_solver):
|
606 |
+
"""Fit the model by computing truncated SVD (by ARPACK or randomized)
|
607 |
+
on X.
|
608 |
+
"""
|
609 |
+
xp, _ = get_namespace(X)
|
610 |
+
|
611 |
+
n_samples, n_features = X.shape
|
612 |
+
|
613 |
+
if isinstance(n_components, str):
|
614 |
+
raise ValueError(
|
615 |
+
"n_components=%r cannot be a string with svd_solver='%s'"
|
616 |
+
% (n_components, svd_solver)
|
617 |
+
)
|
618 |
+
elif not 1 <= n_components <= min(n_samples, n_features):
|
619 |
+
raise ValueError(
|
620 |
+
"n_components=%r must be between 1 and "
|
621 |
+
"min(n_samples, n_features)=%r with "
|
622 |
+
"svd_solver='%s'"
|
623 |
+
% (n_components, min(n_samples, n_features), svd_solver)
|
624 |
+
)
|
625 |
+
elif svd_solver == "arpack" and n_components == min(n_samples, n_features):
|
626 |
+
raise ValueError(
|
627 |
+
"n_components=%r must be strictly less than "
|
628 |
+
"min(n_samples, n_features)=%r with "
|
629 |
+
"svd_solver='%s'"
|
630 |
+
% (n_components, min(n_samples, n_features), svd_solver)
|
631 |
+
)
|
632 |
+
|
633 |
+
random_state = check_random_state(self.random_state)
|
634 |
+
|
635 |
+
# Center data
|
636 |
+
total_var = None
|
637 |
+
if issparse(X):
|
638 |
+
self.mean_, var = mean_variance_axis(X, axis=0)
|
639 |
+
total_var = var.sum() * n_samples / (n_samples - 1) # ddof=1
|
640 |
+
X = _implicit_column_offset(X, self.mean_)
|
641 |
+
else:
|
642 |
+
self.mean_ = xp.mean(X, axis=0)
|
643 |
+
X -= self.mean_
|
644 |
+
|
645 |
+
if svd_solver == "arpack":
|
646 |
+
v0 = _init_arpack_v0(min(X.shape), random_state)
|
647 |
+
U, S, Vt = svds(X, k=n_components, tol=self.tol, v0=v0)
|
648 |
+
# svds doesn't abide by scipy.linalg.svd/randomized_svd
|
649 |
+
# conventions, so reverse its outputs.
|
650 |
+
S = S[::-1]
|
651 |
+
# flip eigenvectors' sign to enforce deterministic output
|
652 |
+
U, Vt = svd_flip(U[:, ::-1], Vt[::-1])
|
653 |
+
|
654 |
+
elif svd_solver == "randomized":
|
655 |
+
# sign flipping is done inside
|
656 |
+
U, S, Vt = randomized_svd(
|
657 |
+
X,
|
658 |
+
n_components=n_components,
|
659 |
+
n_oversamples=self.n_oversamples,
|
660 |
+
n_iter=self.iterated_power,
|
661 |
+
power_iteration_normalizer=self.power_iteration_normalizer,
|
662 |
+
flip_sign=True,
|
663 |
+
random_state=random_state,
|
664 |
+
)
|
665 |
+
|
666 |
+
self.n_samples_ = n_samples
|
667 |
+
self.components_ = Vt
|
668 |
+
self.n_components_ = n_components
|
669 |
+
|
670 |
+
# Get variance explained by singular values
|
671 |
+
self.explained_variance_ = (S**2) / (n_samples - 1)
|
672 |
+
|
673 |
+
# Workaround in-place variance calculation since at the time numpy
|
674 |
+
# did not have a way to calculate variance in-place.
|
675 |
+
#
|
676 |
+
# TODO: update this code to either:
|
677 |
+
# * Use the array-api variance calculation, unless memory usage suffers
|
678 |
+
# * Update sklearn.utils.extmath._incremental_mean_and_var to support array-api
|
679 |
+
# See: https://github.com/scikit-learn/scikit-learn/pull/18689#discussion_r1335540991
|
680 |
+
if total_var is None:
|
681 |
+
N = X.shape[0] - 1
|
682 |
+
X **= 2
|
683 |
+
total_var = xp.sum(X) / N
|
684 |
+
|
685 |
+
self.explained_variance_ratio_ = self.explained_variance_ / total_var
|
686 |
+
self.singular_values_ = xp.asarray(S, copy=True) # Store the singular values.
|
687 |
+
|
688 |
+
if self.n_components_ < min(n_features, n_samples):
|
689 |
+
self.noise_variance_ = total_var - xp.sum(self.explained_variance_)
|
690 |
+
self.noise_variance_ /= min(n_features, n_samples) - n_components
|
691 |
+
else:
|
692 |
+
self.noise_variance_ = 0.0
|
693 |
+
|
694 |
+
return U, S, Vt
|
695 |
+
|
696 |
+
def score_samples(self, X):
|
697 |
+
"""Return the log-likelihood of each sample.
|
698 |
+
|
699 |
+
See. "Pattern Recognition and Machine Learning"
|
700 |
+
by C. Bishop, 12.2.1 p. 574
|
701 |
+
or http://www.miketipping.com/papers/met-mppca.pdf
|
702 |
+
|
703 |
+
Parameters
|
704 |
+
----------
|
705 |
+
X : array-like of shape (n_samples, n_features)
|
706 |
+
The data.
|
707 |
+
|
708 |
+
Returns
|
709 |
+
-------
|
710 |
+
ll : ndarray of shape (n_samples,)
|
711 |
+
Log-likelihood of each sample under the current model.
|
712 |
+
"""
|
713 |
+
check_is_fitted(self)
|
714 |
+
xp, _ = get_namespace(X)
|
715 |
+
X = self._validate_data(X, dtype=[xp.float64, xp.float32], reset=False)
|
716 |
+
Xr = X - self.mean_
|
717 |
+
n_features = X.shape[1]
|
718 |
+
precision = self.get_precision()
|
719 |
+
log_like = -0.5 * xp.sum(Xr * (Xr @ precision), axis=1)
|
720 |
+
log_like -= 0.5 * (n_features * log(2.0 * np.pi) - fast_logdet(precision))
|
721 |
+
return log_like
|
722 |
+
|
723 |
+
def score(self, X, y=None):
|
724 |
+
"""Return the average log-likelihood of all samples.
|
725 |
+
|
726 |
+
See. "Pattern Recognition and Machine Learning"
|
727 |
+
by C. Bishop, 12.2.1 p. 574
|
728 |
+
or http://www.miketipping.com/papers/met-mppca.pdf
|
729 |
+
|
730 |
+
Parameters
|
731 |
+
----------
|
732 |
+
X : array-like of shape (n_samples, n_features)
|
733 |
+
The data.
|
734 |
+
|
735 |
+
y : Ignored
|
736 |
+
Ignored.
|
737 |
+
|
738 |
+
Returns
|
739 |
+
-------
|
740 |
+
ll : float
|
741 |
+
Average log-likelihood of the samples under the current model.
|
742 |
+
"""
|
743 |
+
xp, _ = get_namespace(X)
|
744 |
+
return float(xp.mean(self.score_samples(X)))
|
745 |
+
|
746 |
+
def _more_tags(self):
|
747 |
+
return {"preserves_dtype": [np.float64, np.float32], "array_api_support": True}
|
venv/lib/python3.10/site-packages/sklearn/decomposition/_sparse_pca.py
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Matrix factorization with Sparse PCA."""
|
2 |
+
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort
|
3 |
+
# License: BSD 3 clause
|
4 |
+
|
5 |
+
from numbers import Integral, Real
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from ..base import (
|
10 |
+
BaseEstimator,
|
11 |
+
ClassNamePrefixFeaturesOutMixin,
|
12 |
+
TransformerMixin,
|
13 |
+
_fit_context,
|
14 |
+
)
|
15 |
+
from ..linear_model import ridge_regression
|
16 |
+
from ..utils import check_random_state
|
17 |
+
from ..utils._param_validation import Hidden, Interval, StrOptions
|
18 |
+
from ..utils.extmath import svd_flip
|
19 |
+
from ..utils.validation import check_array, check_is_fitted
|
20 |
+
from ._dict_learning import MiniBatchDictionaryLearning, dict_learning
|
21 |
+
|
22 |
+
|
23 |
+
class _BaseSparsePCA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
24 |
+
"""Base class for SparsePCA and MiniBatchSparsePCA"""
|
25 |
+
|
26 |
+
_parameter_constraints: dict = {
|
27 |
+
"n_components": [None, Interval(Integral, 1, None, closed="left")],
|
28 |
+
"alpha": [Interval(Real, 0.0, None, closed="left")],
|
29 |
+
"ridge_alpha": [Interval(Real, 0.0, None, closed="left")],
|
30 |
+
"max_iter": [Interval(Integral, 0, None, closed="left")],
|
31 |
+
"tol": [Interval(Real, 0.0, None, closed="left")],
|
32 |
+
"method": [StrOptions({"lars", "cd"})],
|
33 |
+
"n_jobs": [Integral, None],
|
34 |
+
"verbose": ["verbose"],
|
35 |
+
"random_state": ["random_state"],
|
36 |
+
}
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
n_components=None,
|
41 |
+
*,
|
42 |
+
alpha=1,
|
43 |
+
ridge_alpha=0.01,
|
44 |
+
max_iter=1000,
|
45 |
+
tol=1e-8,
|
46 |
+
method="lars",
|
47 |
+
n_jobs=None,
|
48 |
+
verbose=False,
|
49 |
+
random_state=None,
|
50 |
+
):
|
51 |
+
self.n_components = n_components
|
52 |
+
self.alpha = alpha
|
53 |
+
self.ridge_alpha = ridge_alpha
|
54 |
+
self.max_iter = max_iter
|
55 |
+
self.tol = tol
|
56 |
+
self.method = method
|
57 |
+
self.n_jobs = n_jobs
|
58 |
+
self.verbose = verbose
|
59 |
+
self.random_state = random_state
|
60 |
+
|
61 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
62 |
+
def fit(self, X, y=None):
|
63 |
+
"""Fit the model from data in X.
|
64 |
+
|
65 |
+
Parameters
|
66 |
+
----------
|
67 |
+
X : array-like of shape (n_samples, n_features)
|
68 |
+
Training vector, where `n_samples` is the number of samples
|
69 |
+
and `n_features` is the number of features.
|
70 |
+
|
71 |
+
y : Ignored
|
72 |
+
Not used, present here for API consistency by convention.
|
73 |
+
|
74 |
+
Returns
|
75 |
+
-------
|
76 |
+
self : object
|
77 |
+
Returns the instance itself.
|
78 |
+
"""
|
79 |
+
random_state = check_random_state(self.random_state)
|
80 |
+
X = self._validate_data(X)
|
81 |
+
|
82 |
+
self.mean_ = X.mean(axis=0)
|
83 |
+
X = X - self.mean_
|
84 |
+
|
85 |
+
if self.n_components is None:
|
86 |
+
n_components = X.shape[1]
|
87 |
+
else:
|
88 |
+
n_components = self.n_components
|
89 |
+
|
90 |
+
return self._fit(X, n_components, random_state)
|
91 |
+
|
92 |
+
def transform(self, X):
|
93 |
+
"""Least Squares projection of the data onto the sparse components.
|
94 |
+
|
95 |
+
To avoid instability issues in case the system is under-determined,
|
96 |
+
regularization can be applied (Ridge regression) via the
|
97 |
+
`ridge_alpha` parameter.
|
98 |
+
|
99 |
+
Note that Sparse PCA components orthogonality is not enforced as in PCA
|
100 |
+
hence one cannot use a simple linear projection.
|
101 |
+
|
102 |
+
Parameters
|
103 |
+
----------
|
104 |
+
X : ndarray of shape (n_samples, n_features)
|
105 |
+
Test data to be transformed, must have the same number of
|
106 |
+
features as the data used to train the model.
|
107 |
+
|
108 |
+
Returns
|
109 |
+
-------
|
110 |
+
X_new : ndarray of shape (n_samples, n_components)
|
111 |
+
Transformed data.
|
112 |
+
"""
|
113 |
+
check_is_fitted(self)
|
114 |
+
|
115 |
+
X = self._validate_data(X, reset=False)
|
116 |
+
X = X - self.mean_
|
117 |
+
|
118 |
+
U = ridge_regression(
|
119 |
+
self.components_.T, X.T, self.ridge_alpha, solver="cholesky"
|
120 |
+
)
|
121 |
+
|
122 |
+
return U
|
123 |
+
|
124 |
+
def inverse_transform(self, X):
|
125 |
+
"""Transform data from the latent space to the original space.
|
126 |
+
|
127 |
+
This inversion is an approximation due to the loss of information
|
128 |
+
induced by the forward decomposition.
|
129 |
+
|
130 |
+
.. versionadded:: 1.2
|
131 |
+
|
132 |
+
Parameters
|
133 |
+
----------
|
134 |
+
X : ndarray of shape (n_samples, n_components)
|
135 |
+
Data in the latent space.
|
136 |
+
|
137 |
+
Returns
|
138 |
+
-------
|
139 |
+
X_original : ndarray of shape (n_samples, n_features)
|
140 |
+
Reconstructed data in the original space.
|
141 |
+
"""
|
142 |
+
check_is_fitted(self)
|
143 |
+
X = check_array(X)
|
144 |
+
|
145 |
+
return (X @ self.components_) + self.mean_
|
146 |
+
|
147 |
+
@property
|
148 |
+
def _n_features_out(self):
|
149 |
+
"""Number of transformed output features."""
|
150 |
+
return self.components_.shape[0]
|
151 |
+
|
152 |
+
def _more_tags(self):
|
153 |
+
return {
|
154 |
+
"preserves_dtype": [np.float64, np.float32],
|
155 |
+
}
|
156 |
+
|
157 |
+
|
158 |
+
class SparsePCA(_BaseSparsePCA):
|
159 |
+
"""Sparse Principal Components Analysis (SparsePCA).
|
160 |
+
|
161 |
+
Finds the set of sparse components that can optimally reconstruct
|
162 |
+
the data. The amount of sparseness is controllable by the coefficient
|
163 |
+
of the L1 penalty, given by the parameter alpha.
|
164 |
+
|
165 |
+
Read more in the :ref:`User Guide <SparsePCA>`.
|
166 |
+
|
167 |
+
Parameters
|
168 |
+
----------
|
169 |
+
n_components : int, default=None
|
170 |
+
Number of sparse atoms to extract. If None, then ``n_components``
|
171 |
+
is set to ``n_features``.
|
172 |
+
|
173 |
+
alpha : float, default=1
|
174 |
+
Sparsity controlling parameter. Higher values lead to sparser
|
175 |
+
components.
|
176 |
+
|
177 |
+
ridge_alpha : float, default=0.01
|
178 |
+
Amount of ridge shrinkage to apply in order to improve
|
179 |
+
conditioning when calling the transform method.
|
180 |
+
|
181 |
+
max_iter : int, default=1000
|
182 |
+
Maximum number of iterations to perform.
|
183 |
+
|
184 |
+
tol : float, default=1e-8
|
185 |
+
Tolerance for the stopping condition.
|
186 |
+
|
187 |
+
method : {'lars', 'cd'}, default='lars'
|
188 |
+
Method to be used for optimization.
|
189 |
+
lars: uses the least angle regression method to solve the lasso problem
|
190 |
+
(linear_model.lars_path)
|
191 |
+
cd: uses the coordinate descent method to compute the
|
192 |
+
Lasso solution (linear_model.Lasso). Lars will be faster if
|
193 |
+
the estimated components are sparse.
|
194 |
+
|
195 |
+
n_jobs : int, default=None
|
196 |
+
Number of parallel jobs to run.
|
197 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
198 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
199 |
+
for more details.
|
200 |
+
|
201 |
+
U_init : ndarray of shape (n_samples, n_components), default=None
|
202 |
+
Initial values for the loadings for warm restart scenarios. Only used
|
203 |
+
if `U_init` and `V_init` are not None.
|
204 |
+
|
205 |
+
V_init : ndarray of shape (n_components, n_features), default=None
|
206 |
+
Initial values for the components for warm restart scenarios. Only used
|
207 |
+
if `U_init` and `V_init` are not None.
|
208 |
+
|
209 |
+
verbose : int or bool, default=False
|
210 |
+
Controls the verbosity; the higher, the more messages. Defaults to 0.
|
211 |
+
|
212 |
+
random_state : int, RandomState instance or None, default=None
|
213 |
+
Used during dictionary learning. Pass an int for reproducible results
|
214 |
+
across multiple function calls.
|
215 |
+
See :term:`Glossary <random_state>`.
|
216 |
+
|
217 |
+
Attributes
|
218 |
+
----------
|
219 |
+
components_ : ndarray of shape (n_components, n_features)
|
220 |
+
Sparse components extracted from the data.
|
221 |
+
|
222 |
+
error_ : ndarray
|
223 |
+
Vector of errors at each iteration.
|
224 |
+
|
225 |
+
n_components_ : int
|
226 |
+
Estimated number of components.
|
227 |
+
|
228 |
+
.. versionadded:: 0.23
|
229 |
+
|
230 |
+
n_iter_ : int
|
231 |
+
Number of iterations run.
|
232 |
+
|
233 |
+
mean_ : ndarray of shape (n_features,)
|
234 |
+
Per-feature empirical mean, estimated from the training set.
|
235 |
+
Equal to ``X.mean(axis=0)``.
|
236 |
+
|
237 |
+
n_features_in_ : int
|
238 |
+
Number of features seen during :term:`fit`.
|
239 |
+
|
240 |
+
.. versionadded:: 0.24
|
241 |
+
|
242 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
243 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
244 |
+
has feature names that are all strings.
|
245 |
+
|
246 |
+
.. versionadded:: 1.0
|
247 |
+
|
248 |
+
See Also
|
249 |
+
--------
|
250 |
+
PCA : Principal Component Analysis implementation.
|
251 |
+
MiniBatchSparsePCA : Mini batch variant of `SparsePCA` that is faster but less
|
252 |
+
accurate.
|
253 |
+
DictionaryLearning : Generic dictionary learning problem using a sparse code.
|
254 |
+
|
255 |
+
Examples
|
256 |
+
--------
|
257 |
+
>>> import numpy as np
|
258 |
+
>>> from sklearn.datasets import make_friedman1
|
259 |
+
>>> from sklearn.decomposition import SparsePCA
|
260 |
+
>>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
|
261 |
+
>>> transformer = SparsePCA(n_components=5, random_state=0)
|
262 |
+
>>> transformer.fit(X)
|
263 |
+
SparsePCA(...)
|
264 |
+
>>> X_transformed = transformer.transform(X)
|
265 |
+
>>> X_transformed.shape
|
266 |
+
(200, 5)
|
267 |
+
>>> # most values in the components_ are zero (sparsity)
|
268 |
+
>>> np.mean(transformer.components_ == 0)
|
269 |
+
0.9666...
|
270 |
+
"""
|
271 |
+
|
272 |
+
_parameter_constraints: dict = {
|
273 |
+
**_BaseSparsePCA._parameter_constraints,
|
274 |
+
"U_init": [None, np.ndarray],
|
275 |
+
"V_init": [None, np.ndarray],
|
276 |
+
}
|
277 |
+
|
278 |
+
def __init__(
|
279 |
+
self,
|
280 |
+
n_components=None,
|
281 |
+
*,
|
282 |
+
alpha=1,
|
283 |
+
ridge_alpha=0.01,
|
284 |
+
max_iter=1000,
|
285 |
+
tol=1e-8,
|
286 |
+
method="lars",
|
287 |
+
n_jobs=None,
|
288 |
+
U_init=None,
|
289 |
+
V_init=None,
|
290 |
+
verbose=False,
|
291 |
+
random_state=None,
|
292 |
+
):
|
293 |
+
super().__init__(
|
294 |
+
n_components=n_components,
|
295 |
+
alpha=alpha,
|
296 |
+
ridge_alpha=ridge_alpha,
|
297 |
+
max_iter=max_iter,
|
298 |
+
tol=tol,
|
299 |
+
method=method,
|
300 |
+
n_jobs=n_jobs,
|
301 |
+
verbose=verbose,
|
302 |
+
random_state=random_state,
|
303 |
+
)
|
304 |
+
self.U_init = U_init
|
305 |
+
self.V_init = V_init
|
306 |
+
|
307 |
+
def _fit(self, X, n_components, random_state):
|
308 |
+
"""Specialized `fit` for SparsePCA."""
|
309 |
+
|
310 |
+
code_init = self.V_init.T if self.V_init is not None else None
|
311 |
+
dict_init = self.U_init.T if self.U_init is not None else None
|
312 |
+
code, dictionary, E, self.n_iter_ = dict_learning(
|
313 |
+
X.T,
|
314 |
+
n_components,
|
315 |
+
alpha=self.alpha,
|
316 |
+
tol=self.tol,
|
317 |
+
max_iter=self.max_iter,
|
318 |
+
method=self.method,
|
319 |
+
n_jobs=self.n_jobs,
|
320 |
+
verbose=self.verbose,
|
321 |
+
random_state=random_state,
|
322 |
+
code_init=code_init,
|
323 |
+
dict_init=dict_init,
|
324 |
+
return_n_iter=True,
|
325 |
+
)
|
326 |
+
# flip eigenvectors' sign to enforce deterministic output
|
327 |
+
code, dictionary = svd_flip(code, dictionary, u_based_decision=False)
|
328 |
+
self.components_ = code.T
|
329 |
+
components_norm = np.linalg.norm(self.components_, axis=1)[:, np.newaxis]
|
330 |
+
components_norm[components_norm == 0] = 1
|
331 |
+
self.components_ /= components_norm
|
332 |
+
self.n_components_ = len(self.components_)
|
333 |
+
|
334 |
+
self.error_ = E
|
335 |
+
return self
|
336 |
+
|
337 |
+
|
338 |
+
class MiniBatchSparsePCA(_BaseSparsePCA):
|
339 |
+
"""Mini-batch Sparse Principal Components Analysis.
|
340 |
+
|
341 |
+
Finds the set of sparse components that can optimally reconstruct
|
342 |
+
the data. The amount of sparseness is controllable by the coefficient
|
343 |
+
of the L1 penalty, given by the parameter alpha.
|
344 |
+
|
345 |
+
For an example comparing sparse PCA to PCA, see
|
346 |
+
:ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py`
|
347 |
+
|
348 |
+
Read more in the :ref:`User Guide <SparsePCA>`.
|
349 |
+
|
350 |
+
Parameters
|
351 |
+
----------
|
352 |
+
n_components : int, default=None
|
353 |
+
Number of sparse atoms to extract. If None, then ``n_components``
|
354 |
+
is set to ``n_features``.
|
355 |
+
|
356 |
+
alpha : int, default=1
|
357 |
+
Sparsity controlling parameter. Higher values lead to sparser
|
358 |
+
components.
|
359 |
+
|
360 |
+
ridge_alpha : float, default=0.01
|
361 |
+
Amount of ridge shrinkage to apply in order to improve
|
362 |
+
conditioning when calling the transform method.
|
363 |
+
|
364 |
+
max_iter : int, default=1_000
|
365 |
+
Maximum number of iterations over the complete dataset before
|
366 |
+
stopping independently of any early stopping criterion heuristics.
|
367 |
+
|
368 |
+
.. versionadded:: 1.2
|
369 |
+
|
370 |
+
.. deprecated:: 1.4
|
371 |
+
`max_iter=None` is deprecated in 1.4 and will be removed in 1.6.
|
372 |
+
Use the default value (i.e. `100`) instead.
|
373 |
+
|
374 |
+
callback : callable, default=None
|
375 |
+
Callable that gets invoked every five iterations.
|
376 |
+
|
377 |
+
batch_size : int, default=3
|
378 |
+
The number of features to take in each mini batch.
|
379 |
+
|
380 |
+
verbose : int or bool, default=False
|
381 |
+
Controls the verbosity; the higher, the more messages. Defaults to 0.
|
382 |
+
|
383 |
+
shuffle : bool, default=True
|
384 |
+
Whether to shuffle the data before splitting it in batches.
|
385 |
+
|
386 |
+
n_jobs : int, default=None
|
387 |
+
Number of parallel jobs to run.
|
388 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
389 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
390 |
+
for more details.
|
391 |
+
|
392 |
+
method : {'lars', 'cd'}, default='lars'
|
393 |
+
Method to be used for optimization.
|
394 |
+
lars: uses the least angle regression method to solve the lasso problem
|
395 |
+
(linear_model.lars_path)
|
396 |
+
cd: uses the coordinate descent method to compute the
|
397 |
+
Lasso solution (linear_model.Lasso). Lars will be faster if
|
398 |
+
the estimated components are sparse.
|
399 |
+
|
400 |
+
random_state : int, RandomState instance or None, default=None
|
401 |
+
Used for random shuffling when ``shuffle`` is set to ``True``,
|
402 |
+
during online dictionary learning. Pass an int for reproducible results
|
403 |
+
across multiple function calls.
|
404 |
+
See :term:`Glossary <random_state>`.
|
405 |
+
|
406 |
+
tol : float, default=1e-3
|
407 |
+
Control early stopping based on the norm of the differences in the
|
408 |
+
dictionary between 2 steps.
|
409 |
+
|
410 |
+
To disable early stopping based on changes in the dictionary, set
|
411 |
+
`tol` to 0.0.
|
412 |
+
|
413 |
+
.. versionadded:: 1.1
|
414 |
+
|
415 |
+
max_no_improvement : int or None, default=10
|
416 |
+
Control early stopping based on the consecutive number of mini batches
|
417 |
+
that does not yield an improvement on the smoothed cost function.
|
418 |
+
|
419 |
+
To disable convergence detection based on cost function, set
|
420 |
+
`max_no_improvement` to `None`.
|
421 |
+
|
422 |
+
.. versionadded:: 1.1
|
423 |
+
|
424 |
+
Attributes
|
425 |
+
----------
|
426 |
+
components_ : ndarray of shape (n_components, n_features)
|
427 |
+
Sparse components extracted from the data.
|
428 |
+
|
429 |
+
n_components_ : int
|
430 |
+
Estimated number of components.
|
431 |
+
|
432 |
+
.. versionadded:: 0.23
|
433 |
+
|
434 |
+
n_iter_ : int
|
435 |
+
Number of iterations run.
|
436 |
+
|
437 |
+
mean_ : ndarray of shape (n_features,)
|
438 |
+
Per-feature empirical mean, estimated from the training set.
|
439 |
+
Equal to ``X.mean(axis=0)``.
|
440 |
+
|
441 |
+
n_features_in_ : int
|
442 |
+
Number of features seen during :term:`fit`.
|
443 |
+
|
444 |
+
.. versionadded:: 0.24
|
445 |
+
|
446 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
447 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
448 |
+
has feature names that are all strings.
|
449 |
+
|
450 |
+
.. versionadded:: 1.0
|
451 |
+
|
452 |
+
See Also
|
453 |
+
--------
|
454 |
+
DictionaryLearning : Find a dictionary that sparsely encodes data.
|
455 |
+
IncrementalPCA : Incremental principal components analysis.
|
456 |
+
PCA : Principal component analysis.
|
457 |
+
SparsePCA : Sparse Principal Components Analysis.
|
458 |
+
TruncatedSVD : Dimensionality reduction using truncated SVD.
|
459 |
+
|
460 |
+
Examples
|
461 |
+
--------
|
462 |
+
>>> import numpy as np
|
463 |
+
>>> from sklearn.datasets import make_friedman1
|
464 |
+
>>> from sklearn.decomposition import MiniBatchSparsePCA
|
465 |
+
>>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
|
466 |
+
>>> transformer = MiniBatchSparsePCA(n_components=5, batch_size=50,
|
467 |
+
... max_iter=10, random_state=0)
|
468 |
+
>>> transformer.fit(X)
|
469 |
+
MiniBatchSparsePCA(...)
|
470 |
+
>>> X_transformed = transformer.transform(X)
|
471 |
+
>>> X_transformed.shape
|
472 |
+
(200, 5)
|
473 |
+
>>> # most values in the components_ are zero (sparsity)
|
474 |
+
>>> np.mean(transformer.components_ == 0)
|
475 |
+
0.9...
|
476 |
+
"""
|
477 |
+
|
478 |
+
_parameter_constraints: dict = {
|
479 |
+
**_BaseSparsePCA._parameter_constraints,
|
480 |
+
"max_iter": [Interval(Integral, 0, None, closed="left"), Hidden(None)],
|
481 |
+
"callback": [None, callable],
|
482 |
+
"batch_size": [Interval(Integral, 1, None, closed="left")],
|
483 |
+
"shuffle": ["boolean"],
|
484 |
+
"max_no_improvement": [Interval(Integral, 0, None, closed="left"), None],
|
485 |
+
}
|
486 |
+
|
487 |
+
def __init__(
|
488 |
+
self,
|
489 |
+
n_components=None,
|
490 |
+
*,
|
491 |
+
alpha=1,
|
492 |
+
ridge_alpha=0.01,
|
493 |
+
max_iter=1_000,
|
494 |
+
callback=None,
|
495 |
+
batch_size=3,
|
496 |
+
verbose=False,
|
497 |
+
shuffle=True,
|
498 |
+
n_jobs=None,
|
499 |
+
method="lars",
|
500 |
+
random_state=None,
|
501 |
+
tol=1e-3,
|
502 |
+
max_no_improvement=10,
|
503 |
+
):
|
504 |
+
super().__init__(
|
505 |
+
n_components=n_components,
|
506 |
+
alpha=alpha,
|
507 |
+
ridge_alpha=ridge_alpha,
|
508 |
+
max_iter=max_iter,
|
509 |
+
tol=tol,
|
510 |
+
method=method,
|
511 |
+
n_jobs=n_jobs,
|
512 |
+
verbose=verbose,
|
513 |
+
random_state=random_state,
|
514 |
+
)
|
515 |
+
self.callback = callback
|
516 |
+
self.batch_size = batch_size
|
517 |
+
self.shuffle = shuffle
|
518 |
+
self.max_no_improvement = max_no_improvement
|
519 |
+
|
520 |
+
def _fit(self, X, n_components, random_state):
|
521 |
+
"""Specialized `fit` for MiniBatchSparsePCA."""
|
522 |
+
|
523 |
+
transform_algorithm = "lasso_" + self.method
|
524 |
+
est = MiniBatchDictionaryLearning(
|
525 |
+
n_components=n_components,
|
526 |
+
alpha=self.alpha,
|
527 |
+
max_iter=self.max_iter,
|
528 |
+
dict_init=None,
|
529 |
+
batch_size=self.batch_size,
|
530 |
+
shuffle=self.shuffle,
|
531 |
+
n_jobs=self.n_jobs,
|
532 |
+
fit_algorithm=self.method,
|
533 |
+
random_state=random_state,
|
534 |
+
transform_algorithm=transform_algorithm,
|
535 |
+
transform_alpha=self.alpha,
|
536 |
+
verbose=self.verbose,
|
537 |
+
callback=self.callback,
|
538 |
+
tol=self.tol,
|
539 |
+
max_no_improvement=self.max_no_improvement,
|
540 |
+
)
|
541 |
+
est.set_output(transform="default")
|
542 |
+
est.fit(X.T)
|
543 |
+
|
544 |
+
self.components_, self.n_iter_ = est.transform(X.T).T, est.n_iter_
|
545 |
+
|
546 |
+
components_norm = np.linalg.norm(self.components_, axis=1)[:, np.newaxis]
|
547 |
+
components_norm[components_norm == 0] = 1
|
548 |
+
self.components_ /= components_norm
|
549 |
+
self.n_components_ = len(self.components_)
|
550 |
+
|
551 |
+
return self
|
venv/lib/python3.10/site-packages/sklearn/decomposition/_truncated_svd.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Truncated SVD for sparse matrices, aka latent semantic analysis (LSA).
|
2 |
+
"""
|
3 |
+
|
4 |
+
# Author: Lars Buitinck
|
5 |
+
# Olivier Grisel <[email protected]>
|
6 |
+
# Michael Becker <[email protected]>
|
7 |
+
# License: 3-clause BSD.
|
8 |
+
|
9 |
+
from numbers import Integral, Real
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import scipy.sparse as sp
|
13 |
+
from scipy.sparse.linalg import svds
|
14 |
+
|
15 |
+
from ..base import (
|
16 |
+
BaseEstimator,
|
17 |
+
ClassNamePrefixFeaturesOutMixin,
|
18 |
+
TransformerMixin,
|
19 |
+
_fit_context,
|
20 |
+
)
|
21 |
+
from ..utils import check_array, check_random_state
|
22 |
+
from ..utils._arpack import _init_arpack_v0
|
23 |
+
from ..utils._param_validation import Interval, StrOptions
|
24 |
+
from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip
|
25 |
+
from ..utils.sparsefuncs import mean_variance_axis
|
26 |
+
from ..utils.validation import check_is_fitted
|
27 |
+
|
28 |
+
__all__ = ["TruncatedSVD"]
|
29 |
+
|
30 |
+
|
31 |
+
class TruncatedSVD(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
32 |
+
"""Dimensionality reduction using truncated SVD (aka LSA).
|
33 |
+
|
34 |
+
This transformer performs linear dimensionality reduction by means of
|
35 |
+
truncated singular value decomposition (SVD). Contrary to PCA, this
|
36 |
+
estimator does not center the data before computing the singular value
|
37 |
+
decomposition. This means it can work with sparse matrices
|
38 |
+
efficiently.
|
39 |
+
|
40 |
+
In particular, truncated SVD works on term count/tf-idf matrices as
|
41 |
+
returned by the vectorizers in :mod:`sklearn.feature_extraction.text`. In
|
42 |
+
that context, it is known as latent semantic analysis (LSA).
|
43 |
+
|
44 |
+
This estimator supports two algorithms: a fast randomized SVD solver, and
|
45 |
+
a "naive" algorithm that uses ARPACK as an eigensolver on `X * X.T` or
|
46 |
+
`X.T * X`, whichever is more efficient.
|
47 |
+
|
48 |
+
Read more in the :ref:`User Guide <LSA>`.
|
49 |
+
|
50 |
+
Parameters
|
51 |
+
----------
|
52 |
+
n_components : int, default=2
|
53 |
+
Desired dimensionality of output data.
|
54 |
+
If algorithm='arpack', must be strictly less than the number of features.
|
55 |
+
If algorithm='randomized', must be less than or equal to the number of features.
|
56 |
+
The default value is useful for visualisation. For LSA, a value of
|
57 |
+
100 is recommended.
|
58 |
+
|
59 |
+
algorithm : {'arpack', 'randomized'}, default='randomized'
|
60 |
+
SVD solver to use. Either "arpack" for the ARPACK wrapper in SciPy
|
61 |
+
(scipy.sparse.linalg.svds), or "randomized" for the randomized
|
62 |
+
algorithm due to Halko (2009).
|
63 |
+
|
64 |
+
n_iter : int, default=5
|
65 |
+
Number of iterations for randomized SVD solver. Not used by ARPACK. The
|
66 |
+
default is larger than the default in
|
67 |
+
:func:`~sklearn.utils.extmath.randomized_svd` to handle sparse
|
68 |
+
matrices that may have large slowly decaying spectrum.
|
69 |
+
|
70 |
+
n_oversamples : int, default=10
|
71 |
+
Number of oversamples for randomized SVD solver. Not used by ARPACK.
|
72 |
+
See :func:`~sklearn.utils.extmath.randomized_svd` for a complete
|
73 |
+
description.
|
74 |
+
|
75 |
+
.. versionadded:: 1.1
|
76 |
+
|
77 |
+
power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto'
|
78 |
+
Power iteration normalizer for randomized SVD solver.
|
79 |
+
Not used by ARPACK. See :func:`~sklearn.utils.extmath.randomized_svd`
|
80 |
+
for more details.
|
81 |
+
|
82 |
+
.. versionadded:: 1.1
|
83 |
+
|
84 |
+
random_state : int, RandomState instance or None, default=None
|
85 |
+
Used during randomized svd. Pass an int for reproducible results across
|
86 |
+
multiple function calls.
|
87 |
+
See :term:`Glossary <random_state>`.
|
88 |
+
|
89 |
+
tol : float, default=0.0
|
90 |
+
Tolerance for ARPACK. 0 means machine precision. Ignored by randomized
|
91 |
+
SVD solver.
|
92 |
+
|
93 |
+
Attributes
|
94 |
+
----------
|
95 |
+
components_ : ndarray of shape (n_components, n_features)
|
96 |
+
The right singular vectors of the input data.
|
97 |
+
|
98 |
+
explained_variance_ : ndarray of shape (n_components,)
|
99 |
+
The variance of the training samples transformed by a projection to
|
100 |
+
each component.
|
101 |
+
|
102 |
+
explained_variance_ratio_ : ndarray of shape (n_components,)
|
103 |
+
Percentage of variance explained by each of the selected components.
|
104 |
+
|
105 |
+
singular_values_ : ndarray of shape (n_components,)
|
106 |
+
The singular values corresponding to each of the selected components.
|
107 |
+
The singular values are equal to the 2-norms of the ``n_components``
|
108 |
+
variables in the lower-dimensional space.
|
109 |
+
|
110 |
+
n_features_in_ : int
|
111 |
+
Number of features seen during :term:`fit`.
|
112 |
+
|
113 |
+
.. versionadded:: 0.24
|
114 |
+
|
115 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
116 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
117 |
+
has feature names that are all strings.
|
118 |
+
|
119 |
+
.. versionadded:: 1.0
|
120 |
+
|
121 |
+
See Also
|
122 |
+
--------
|
123 |
+
DictionaryLearning : Find a dictionary that sparsely encodes data.
|
124 |
+
FactorAnalysis : A simple linear generative model with
|
125 |
+
Gaussian latent variables.
|
126 |
+
IncrementalPCA : Incremental principal components analysis.
|
127 |
+
KernelPCA : Kernel Principal component analysis.
|
128 |
+
NMF : Non-Negative Matrix Factorization.
|
129 |
+
PCA : Principal component analysis.
|
130 |
+
|
131 |
+
Notes
|
132 |
+
-----
|
133 |
+
SVD suffers from a problem called "sign indeterminacy", which means the
|
134 |
+
sign of the ``components_`` and the output from transform depend on the
|
135 |
+
algorithm and random state. To work around this, fit instances of this
|
136 |
+
class to data once, then keep the instance around to do transformations.
|
137 |
+
|
138 |
+
References
|
139 |
+
----------
|
140 |
+
:arxiv:`Halko, et al. (2009). "Finding structure with randomness:
|
141 |
+
Stochastic algorithms for constructing approximate matrix decompositions"
|
142 |
+
<0909.4061>`
|
143 |
+
|
144 |
+
Examples
|
145 |
+
--------
|
146 |
+
>>> from sklearn.decomposition import TruncatedSVD
|
147 |
+
>>> from scipy.sparse import csr_matrix
|
148 |
+
>>> import numpy as np
|
149 |
+
>>> np.random.seed(0)
|
150 |
+
>>> X_dense = np.random.rand(100, 100)
|
151 |
+
>>> X_dense[:, 2 * np.arange(50)] = 0
|
152 |
+
>>> X = csr_matrix(X_dense)
|
153 |
+
>>> svd = TruncatedSVD(n_components=5, n_iter=7, random_state=42)
|
154 |
+
>>> svd.fit(X)
|
155 |
+
TruncatedSVD(n_components=5, n_iter=7, random_state=42)
|
156 |
+
>>> print(svd.explained_variance_ratio_)
|
157 |
+
[0.0157... 0.0512... 0.0499... 0.0479... 0.0453...]
|
158 |
+
>>> print(svd.explained_variance_ratio_.sum())
|
159 |
+
0.2102...
|
160 |
+
>>> print(svd.singular_values_)
|
161 |
+
[35.2410... 4.5981... 4.5420... 4.4486... 4.3288...]
|
162 |
+
"""
|
163 |
+
|
164 |
+
_parameter_constraints: dict = {
|
165 |
+
"n_components": [Interval(Integral, 1, None, closed="left")],
|
166 |
+
"algorithm": [StrOptions({"arpack", "randomized"})],
|
167 |
+
"n_iter": [Interval(Integral, 0, None, closed="left")],
|
168 |
+
"n_oversamples": [Interval(Integral, 1, None, closed="left")],
|
169 |
+
"power_iteration_normalizer": [StrOptions({"auto", "OR", "LU", "none"})],
|
170 |
+
"random_state": ["random_state"],
|
171 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
172 |
+
}
|
173 |
+
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
n_components=2,
|
177 |
+
*,
|
178 |
+
algorithm="randomized",
|
179 |
+
n_iter=5,
|
180 |
+
n_oversamples=10,
|
181 |
+
power_iteration_normalizer="auto",
|
182 |
+
random_state=None,
|
183 |
+
tol=0.0,
|
184 |
+
):
|
185 |
+
self.algorithm = algorithm
|
186 |
+
self.n_components = n_components
|
187 |
+
self.n_iter = n_iter
|
188 |
+
self.n_oversamples = n_oversamples
|
189 |
+
self.power_iteration_normalizer = power_iteration_normalizer
|
190 |
+
self.random_state = random_state
|
191 |
+
self.tol = tol
|
192 |
+
|
193 |
+
def fit(self, X, y=None):
|
194 |
+
"""Fit model on training data X.
|
195 |
+
|
196 |
+
Parameters
|
197 |
+
----------
|
198 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
199 |
+
Training data.
|
200 |
+
|
201 |
+
y : Ignored
|
202 |
+
Not used, present here for API consistency by convention.
|
203 |
+
|
204 |
+
Returns
|
205 |
+
-------
|
206 |
+
self : object
|
207 |
+
Returns the transformer object.
|
208 |
+
"""
|
209 |
+
self.fit_transform(X)
|
210 |
+
return self
|
211 |
+
|
212 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
213 |
+
def fit_transform(self, X, y=None):
|
214 |
+
"""Fit model to X and perform dimensionality reduction on X.
|
215 |
+
|
216 |
+
Parameters
|
217 |
+
----------
|
218 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
219 |
+
Training data.
|
220 |
+
|
221 |
+
y : Ignored
|
222 |
+
Not used, present here for API consistency by convention.
|
223 |
+
|
224 |
+
Returns
|
225 |
+
-------
|
226 |
+
X_new : ndarray of shape (n_samples, n_components)
|
227 |
+
Reduced version of X. This will always be a dense array.
|
228 |
+
"""
|
229 |
+
X = self._validate_data(X, accept_sparse=["csr", "csc"], ensure_min_features=2)
|
230 |
+
random_state = check_random_state(self.random_state)
|
231 |
+
|
232 |
+
if self.algorithm == "arpack":
|
233 |
+
v0 = _init_arpack_v0(min(X.shape), random_state)
|
234 |
+
U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol, v0=v0)
|
235 |
+
# svds doesn't abide by scipy.linalg.svd/randomized_svd
|
236 |
+
# conventions, so reverse its outputs.
|
237 |
+
Sigma = Sigma[::-1]
|
238 |
+
U, VT = svd_flip(U[:, ::-1], VT[::-1])
|
239 |
+
|
240 |
+
elif self.algorithm == "randomized":
|
241 |
+
if self.n_components > X.shape[1]:
|
242 |
+
raise ValueError(
|
243 |
+
f"n_components({self.n_components}) must be <="
|
244 |
+
f" n_features({X.shape[1]})."
|
245 |
+
)
|
246 |
+
U, Sigma, VT = randomized_svd(
|
247 |
+
X,
|
248 |
+
self.n_components,
|
249 |
+
n_iter=self.n_iter,
|
250 |
+
n_oversamples=self.n_oversamples,
|
251 |
+
power_iteration_normalizer=self.power_iteration_normalizer,
|
252 |
+
random_state=random_state,
|
253 |
+
)
|
254 |
+
|
255 |
+
self.components_ = VT
|
256 |
+
|
257 |
+
# As a result of the SVD approximation error on X ~ U @ Sigma @ V.T,
|
258 |
+
# X @ V is not the same as U @ Sigma
|
259 |
+
if self.algorithm == "randomized" or (
|
260 |
+
self.algorithm == "arpack" and self.tol > 0
|
261 |
+
):
|
262 |
+
X_transformed = safe_sparse_dot(X, self.components_.T)
|
263 |
+
else:
|
264 |
+
X_transformed = U * Sigma
|
265 |
+
|
266 |
+
# Calculate explained variance & explained variance ratio
|
267 |
+
self.explained_variance_ = exp_var = np.var(X_transformed, axis=0)
|
268 |
+
if sp.issparse(X):
|
269 |
+
_, full_var = mean_variance_axis(X, axis=0)
|
270 |
+
full_var = full_var.sum()
|
271 |
+
else:
|
272 |
+
full_var = np.var(X, axis=0).sum()
|
273 |
+
self.explained_variance_ratio_ = exp_var / full_var
|
274 |
+
self.singular_values_ = Sigma # Store the singular values.
|
275 |
+
|
276 |
+
return X_transformed
|
277 |
+
|
278 |
+
def transform(self, X):
|
279 |
+
"""Perform dimensionality reduction on X.
|
280 |
+
|
281 |
+
Parameters
|
282 |
+
----------
|
283 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
284 |
+
New data.
|
285 |
+
|
286 |
+
Returns
|
287 |
+
-------
|
288 |
+
X_new : ndarray of shape (n_samples, n_components)
|
289 |
+
Reduced version of X. This will always be a dense array.
|
290 |
+
"""
|
291 |
+
check_is_fitted(self)
|
292 |
+
X = self._validate_data(X, accept_sparse=["csr", "csc"], reset=False)
|
293 |
+
return safe_sparse_dot(X, self.components_.T)
|
294 |
+
|
295 |
+
def inverse_transform(self, X):
|
296 |
+
"""Transform X back to its original space.
|
297 |
+
|
298 |
+
Returns an array X_original whose transform would be X.
|
299 |
+
|
300 |
+
Parameters
|
301 |
+
----------
|
302 |
+
X : array-like of shape (n_samples, n_components)
|
303 |
+
New data.
|
304 |
+
|
305 |
+
Returns
|
306 |
+
-------
|
307 |
+
X_original : ndarray of shape (n_samples, n_features)
|
308 |
+
Note that this is always a dense array.
|
309 |
+
"""
|
310 |
+
X = check_array(X)
|
311 |
+
return np.dot(X, self.components_)
|
312 |
+
|
313 |
+
def _more_tags(self):
|
314 |
+
return {"preserves_dtype": [np.float64, np.float32]}
|
315 |
+
|
316 |
+
@property
|
317 |
+
def _n_features_out(self):
|
318 |
+
"""Number of transformed output features."""
|
319 |
+
return self.components_.shape[0]
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (195 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_dict_learning.cpython-310.pyc
ADDED
Binary file (22.6 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_factor_analysis.cpython-310.pyc
ADDED
Binary file (2.95 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_fastica.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_incremental_pca.cpython-310.pyc
ADDED
Binary file (11.3 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_kernel_pca.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_nmf.cpython-310.pyc
ADDED
Binary file (24.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_online_lda.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_pca.cpython-310.pyc
ADDED
Binary file (24.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_sparse_pca.cpython-310.pyc
ADDED
Binary file (10.3 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/__pycache__/test_truncated_svd.cpython-310.pyc
ADDED
Binary file (5.92 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_factor_analysis.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Author: Christian Osendorfer <[email protected]>
|
2 |
+
# Alexandre Gramfort <[email protected]>
|
3 |
+
# License: BSD3
|
4 |
+
|
5 |
+
from itertools import combinations
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pytest
|
9 |
+
|
10 |
+
from sklearn.decomposition import FactorAnalysis
|
11 |
+
from sklearn.decomposition._factor_analysis import _ortho_rotation
|
12 |
+
from sklearn.exceptions import ConvergenceWarning
|
13 |
+
from sklearn.utils._testing import (
|
14 |
+
assert_almost_equal,
|
15 |
+
assert_array_almost_equal,
|
16 |
+
ignore_warnings,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
# Ignore warnings from switching to more power iterations in randomized_svd
|
21 |
+
@ignore_warnings
|
22 |
+
def test_factor_analysis():
|
23 |
+
# Test FactorAnalysis ability to recover the data covariance structure
|
24 |
+
rng = np.random.RandomState(0)
|
25 |
+
n_samples, n_features, n_components = 20, 5, 3
|
26 |
+
|
27 |
+
# Some random settings for the generative model
|
28 |
+
W = rng.randn(n_components, n_features)
|
29 |
+
# latent variable of dim 3, 20 of it
|
30 |
+
h = rng.randn(n_samples, n_components)
|
31 |
+
# using gamma to model different noise variance
|
32 |
+
# per component
|
33 |
+
noise = rng.gamma(1, size=n_features) * rng.randn(n_samples, n_features)
|
34 |
+
|
35 |
+
# generate observations
|
36 |
+
# wlog, mean is 0
|
37 |
+
X = np.dot(h, W) + noise
|
38 |
+
|
39 |
+
fas = []
|
40 |
+
for method in ["randomized", "lapack"]:
|
41 |
+
fa = FactorAnalysis(n_components=n_components, svd_method=method)
|
42 |
+
fa.fit(X)
|
43 |
+
fas.append(fa)
|
44 |
+
|
45 |
+
X_t = fa.transform(X)
|
46 |
+
assert X_t.shape == (n_samples, n_components)
|
47 |
+
|
48 |
+
assert_almost_equal(fa.loglike_[-1], fa.score_samples(X).sum())
|
49 |
+
assert_almost_equal(fa.score_samples(X).mean(), fa.score(X))
|
50 |
+
|
51 |
+
diff = np.all(np.diff(fa.loglike_))
|
52 |
+
assert diff > 0.0, "Log likelihood dif not increase"
|
53 |
+
|
54 |
+
# Sample Covariance
|
55 |
+
scov = np.cov(X, rowvar=0.0, bias=1.0)
|
56 |
+
|
57 |
+
# Model Covariance
|
58 |
+
mcov = fa.get_covariance()
|
59 |
+
diff = np.sum(np.abs(scov - mcov)) / W.size
|
60 |
+
assert diff < 0.1, "Mean absolute difference is %f" % diff
|
61 |
+
fa = FactorAnalysis(
|
62 |
+
n_components=n_components, noise_variance_init=np.ones(n_features)
|
63 |
+
)
|
64 |
+
with pytest.raises(ValueError):
|
65 |
+
fa.fit(X[:, :2])
|
66 |
+
|
67 |
+
def f(x, y):
|
68 |
+
return np.abs(getattr(x, y)) # sign will not be equal
|
69 |
+
|
70 |
+
fa1, fa2 = fas
|
71 |
+
for attr in ["loglike_", "components_", "noise_variance_"]:
|
72 |
+
assert_almost_equal(f(fa1, attr), f(fa2, attr))
|
73 |
+
|
74 |
+
fa1.max_iter = 1
|
75 |
+
fa1.verbose = True
|
76 |
+
with pytest.warns(ConvergenceWarning):
|
77 |
+
fa1.fit(X)
|
78 |
+
|
79 |
+
# Test get_covariance and get_precision with n_components == n_features
|
80 |
+
# with n_components < n_features and with n_components == 0
|
81 |
+
for n_components in [0, 2, X.shape[1]]:
|
82 |
+
fa.n_components = n_components
|
83 |
+
fa.fit(X)
|
84 |
+
cov = fa.get_covariance()
|
85 |
+
precision = fa.get_precision()
|
86 |
+
assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12)
|
87 |
+
|
88 |
+
# test rotation
|
89 |
+
n_components = 2
|
90 |
+
|
91 |
+
results, projections = {}, {}
|
92 |
+
for method in (None, "varimax", "quartimax"):
|
93 |
+
fa_var = FactorAnalysis(n_components=n_components, rotation=method)
|
94 |
+
results[method] = fa_var.fit_transform(X)
|
95 |
+
projections[method] = fa_var.get_covariance()
|
96 |
+
for rot1, rot2 in combinations([None, "varimax", "quartimax"], 2):
|
97 |
+
assert not np.allclose(results[rot1], results[rot2])
|
98 |
+
assert np.allclose(projections[rot1], projections[rot2], atol=3)
|
99 |
+
|
100 |
+
# test against R's psych::principal with rotate="varimax"
|
101 |
+
# (i.e., the values below stem from rotating the components in R)
|
102 |
+
# R's factor analysis returns quite different values; therefore, we only
|
103 |
+
# test the rotation itself
|
104 |
+
factors = np.array(
|
105 |
+
[
|
106 |
+
[0.89421016, -0.35854928, -0.27770122, 0.03773647],
|
107 |
+
[-0.45081822, -0.89132754, 0.0932195, -0.01787973],
|
108 |
+
[0.99500666, -0.02031465, 0.05426497, -0.11539407],
|
109 |
+
[0.96822861, -0.06299656, 0.24411001, 0.07540887],
|
110 |
+
]
|
111 |
+
)
|
112 |
+
r_solution = np.array(
|
113 |
+
[[0.962, 0.052], [-0.141, 0.989], [0.949, -0.300], [0.937, -0.251]]
|
114 |
+
)
|
115 |
+
rotated = _ortho_rotation(factors[:, :n_components], method="varimax").T
|
116 |
+
assert_array_almost_equal(np.abs(rotated), np.abs(r_solution), decimal=3)
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_fastica.py
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Test the fastica algorithm.
|
3 |
+
"""
|
4 |
+
import itertools
|
5 |
+
import os
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pytest
|
10 |
+
from scipy import stats
|
11 |
+
|
12 |
+
from sklearn.decomposition import PCA, FastICA, fastica
|
13 |
+
from sklearn.decomposition._fastica import _gs_decorrelation
|
14 |
+
from sklearn.exceptions import ConvergenceWarning
|
15 |
+
from sklearn.utils._testing import assert_allclose
|
16 |
+
|
17 |
+
|
18 |
+
def center_and_norm(x, axis=-1):
|
19 |
+
"""Centers and norms x **in place**
|
20 |
+
|
21 |
+
Parameters
|
22 |
+
-----------
|
23 |
+
x: ndarray
|
24 |
+
Array with an axis of observations (statistical units) measured on
|
25 |
+
random variables.
|
26 |
+
axis: int, optional
|
27 |
+
Axis along which the mean and variance are calculated.
|
28 |
+
"""
|
29 |
+
x = np.rollaxis(x, axis)
|
30 |
+
x -= x.mean(axis=0)
|
31 |
+
x /= x.std(axis=0)
|
32 |
+
|
33 |
+
|
34 |
+
def test_gs():
|
35 |
+
# Test gram schmidt orthonormalization
|
36 |
+
# generate a random orthogonal matrix
|
37 |
+
rng = np.random.RandomState(0)
|
38 |
+
W, _, _ = np.linalg.svd(rng.randn(10, 10))
|
39 |
+
w = rng.randn(10)
|
40 |
+
_gs_decorrelation(w, W, 10)
|
41 |
+
assert (w**2).sum() < 1.0e-10
|
42 |
+
w = rng.randn(10)
|
43 |
+
u = _gs_decorrelation(w, W, 5)
|
44 |
+
tmp = np.dot(u, W.T)
|
45 |
+
assert (tmp[:5] ** 2).sum() < 1.0e-10
|
46 |
+
|
47 |
+
|
48 |
+
def test_fastica_attributes_dtypes(global_dtype):
|
49 |
+
rng = np.random.RandomState(0)
|
50 |
+
X = rng.random_sample((100, 10)).astype(global_dtype, copy=False)
|
51 |
+
fica = FastICA(
|
52 |
+
n_components=5, max_iter=1000, whiten="unit-variance", random_state=0
|
53 |
+
).fit(X)
|
54 |
+
assert fica.components_.dtype == global_dtype
|
55 |
+
assert fica.mixing_.dtype == global_dtype
|
56 |
+
assert fica.mean_.dtype == global_dtype
|
57 |
+
assert fica.whitening_.dtype == global_dtype
|
58 |
+
|
59 |
+
|
60 |
+
def test_fastica_return_dtypes(global_dtype):
|
61 |
+
rng = np.random.RandomState(0)
|
62 |
+
X = rng.random_sample((100, 10)).astype(global_dtype, copy=False)
|
63 |
+
k_, mixing_, s_ = fastica(
|
64 |
+
X, max_iter=1000, whiten="unit-variance", random_state=rng
|
65 |
+
)
|
66 |
+
assert k_.dtype == global_dtype
|
67 |
+
assert mixing_.dtype == global_dtype
|
68 |
+
assert s_.dtype == global_dtype
|
69 |
+
|
70 |
+
|
71 |
+
@pytest.mark.parametrize("add_noise", [True, False])
|
72 |
+
def test_fastica_simple(add_noise, global_random_seed, global_dtype):
|
73 |
+
if (
|
74 |
+
global_random_seed == 20
|
75 |
+
and global_dtype == np.float32
|
76 |
+
and not add_noise
|
77 |
+
and os.getenv("DISTRIB") == "ubuntu"
|
78 |
+
):
|
79 |
+
pytest.xfail(
|
80 |
+
"FastICA instability with Ubuntu Atlas build with float32 "
|
81 |
+
"global_dtype. For more details, see "
|
82 |
+
"https://github.com/scikit-learn/scikit-learn/issues/24131#issuecomment-1208091119" # noqa
|
83 |
+
)
|
84 |
+
|
85 |
+
# Test the FastICA algorithm on very simple data.
|
86 |
+
rng = np.random.RandomState(global_random_seed)
|
87 |
+
n_samples = 1000
|
88 |
+
# Generate two sources:
|
89 |
+
s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1
|
90 |
+
s2 = stats.t.rvs(1, size=n_samples, random_state=global_random_seed)
|
91 |
+
s = np.c_[s1, s2].T
|
92 |
+
center_and_norm(s)
|
93 |
+
s = s.astype(global_dtype)
|
94 |
+
s1, s2 = s
|
95 |
+
|
96 |
+
# Mixing angle
|
97 |
+
phi = 0.6
|
98 |
+
mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]])
|
99 |
+
mixing = mixing.astype(global_dtype)
|
100 |
+
m = np.dot(mixing, s)
|
101 |
+
|
102 |
+
if add_noise:
|
103 |
+
m += 0.1 * rng.randn(2, 1000)
|
104 |
+
|
105 |
+
center_and_norm(m)
|
106 |
+
|
107 |
+
# function as fun arg
|
108 |
+
def g_test(x):
|
109 |
+
return x**3, (3 * x**2).mean(axis=-1)
|
110 |
+
|
111 |
+
algos = ["parallel", "deflation"]
|
112 |
+
nls = ["logcosh", "exp", "cube", g_test]
|
113 |
+
whitening = ["arbitrary-variance", "unit-variance", False]
|
114 |
+
for algo, nl, whiten in itertools.product(algos, nls, whitening):
|
115 |
+
if whiten:
|
116 |
+
k_, mixing_, s_ = fastica(
|
117 |
+
m.T, fun=nl, whiten=whiten, algorithm=algo, random_state=rng
|
118 |
+
)
|
119 |
+
with pytest.raises(ValueError):
|
120 |
+
fastica(m.T, fun=np.tanh, whiten=whiten, algorithm=algo)
|
121 |
+
else:
|
122 |
+
pca = PCA(n_components=2, whiten=True, random_state=rng)
|
123 |
+
X = pca.fit_transform(m.T)
|
124 |
+
k_, mixing_, s_ = fastica(
|
125 |
+
X, fun=nl, algorithm=algo, whiten=False, random_state=rng
|
126 |
+
)
|
127 |
+
with pytest.raises(ValueError):
|
128 |
+
fastica(X, fun=np.tanh, algorithm=algo)
|
129 |
+
s_ = s_.T
|
130 |
+
# Check that the mixing model described in the docstring holds:
|
131 |
+
if whiten:
|
132 |
+
# XXX: exact reconstruction to standard relative tolerance is not
|
133 |
+
# possible. This is probably expected when add_noise is True but we
|
134 |
+
# also need a non-trivial atol in float32 when add_noise is False.
|
135 |
+
#
|
136 |
+
# Note that the 2 sources are non-Gaussian in this test.
|
137 |
+
atol = 1e-5 if global_dtype == np.float32 else 0
|
138 |
+
assert_allclose(np.dot(np.dot(mixing_, k_), m), s_, atol=atol)
|
139 |
+
|
140 |
+
center_and_norm(s_)
|
141 |
+
s1_, s2_ = s_
|
142 |
+
# Check to see if the sources have been estimated
|
143 |
+
# in the wrong order
|
144 |
+
if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
|
145 |
+
s2_, s1_ = s_
|
146 |
+
s1_ *= np.sign(np.dot(s1_, s1))
|
147 |
+
s2_ *= np.sign(np.dot(s2_, s2))
|
148 |
+
|
149 |
+
# Check that we have estimated the original sources
|
150 |
+
if not add_noise:
|
151 |
+
assert_allclose(np.dot(s1_, s1) / n_samples, 1, atol=1e-2)
|
152 |
+
assert_allclose(np.dot(s2_, s2) / n_samples, 1, atol=1e-2)
|
153 |
+
else:
|
154 |
+
assert_allclose(np.dot(s1_, s1) / n_samples, 1, atol=1e-1)
|
155 |
+
assert_allclose(np.dot(s2_, s2) / n_samples, 1, atol=1e-1)
|
156 |
+
|
157 |
+
# Test FastICA class
|
158 |
+
_, _, sources_fun = fastica(
|
159 |
+
m.T, fun=nl, algorithm=algo, random_state=global_random_seed
|
160 |
+
)
|
161 |
+
ica = FastICA(fun=nl, algorithm=algo, random_state=global_random_seed)
|
162 |
+
sources = ica.fit_transform(m.T)
|
163 |
+
assert ica.components_.shape == (2, 2)
|
164 |
+
assert sources.shape == (1000, 2)
|
165 |
+
|
166 |
+
assert_allclose(sources_fun, sources)
|
167 |
+
# Set atol to account for the different magnitudes of the elements in sources
|
168 |
+
# (from 1e-4 to 1e1).
|
169 |
+
atol = np.max(np.abs(sources)) * (1e-5 if global_dtype == np.float32 else 1e-7)
|
170 |
+
assert_allclose(sources, ica.transform(m.T), atol=atol)
|
171 |
+
|
172 |
+
assert ica.mixing_.shape == (2, 2)
|
173 |
+
|
174 |
+
ica = FastICA(fun=np.tanh, algorithm=algo)
|
175 |
+
with pytest.raises(ValueError):
|
176 |
+
ica.fit(m.T)
|
177 |
+
|
178 |
+
|
179 |
+
def test_fastica_nowhiten():
|
180 |
+
m = [[0, 1], [1, 0]]
|
181 |
+
|
182 |
+
# test for issue #697
|
183 |
+
ica = FastICA(n_components=1, whiten=False, random_state=0)
|
184 |
+
warn_msg = "Ignoring n_components with whiten=False."
|
185 |
+
with pytest.warns(UserWarning, match=warn_msg):
|
186 |
+
ica.fit(m)
|
187 |
+
assert hasattr(ica, "mixing_")
|
188 |
+
|
189 |
+
|
190 |
+
def test_fastica_convergence_fail():
|
191 |
+
# Test the FastICA algorithm on very simple data
|
192 |
+
# (see test_non_square_fastica).
|
193 |
+
# Ensure a ConvergenceWarning raised if the tolerance is sufficiently low.
|
194 |
+
rng = np.random.RandomState(0)
|
195 |
+
|
196 |
+
n_samples = 1000
|
197 |
+
# Generate two sources:
|
198 |
+
t = np.linspace(0, 100, n_samples)
|
199 |
+
s1 = np.sin(t)
|
200 |
+
s2 = np.ceil(np.sin(np.pi * t))
|
201 |
+
s = np.c_[s1, s2].T
|
202 |
+
center_and_norm(s)
|
203 |
+
|
204 |
+
# Mixing matrix
|
205 |
+
mixing = rng.randn(6, 2)
|
206 |
+
m = np.dot(mixing, s)
|
207 |
+
|
208 |
+
# Do fastICA with tolerance 0. to ensure failing convergence
|
209 |
+
warn_msg = (
|
210 |
+
"FastICA did not converge. Consider increasing tolerance "
|
211 |
+
"or the maximum number of iterations."
|
212 |
+
)
|
213 |
+
with pytest.warns(ConvergenceWarning, match=warn_msg):
|
214 |
+
ica = FastICA(
|
215 |
+
algorithm="parallel", n_components=2, random_state=rng, max_iter=2, tol=0.0
|
216 |
+
)
|
217 |
+
ica.fit(m.T)
|
218 |
+
|
219 |
+
|
220 |
+
@pytest.mark.parametrize("add_noise", [True, False])
|
221 |
+
def test_non_square_fastica(add_noise):
|
222 |
+
# Test the FastICA algorithm on very simple data.
|
223 |
+
rng = np.random.RandomState(0)
|
224 |
+
|
225 |
+
n_samples = 1000
|
226 |
+
# Generate two sources:
|
227 |
+
t = np.linspace(0, 100, n_samples)
|
228 |
+
s1 = np.sin(t)
|
229 |
+
s2 = np.ceil(np.sin(np.pi * t))
|
230 |
+
s = np.c_[s1, s2].T
|
231 |
+
center_and_norm(s)
|
232 |
+
s1, s2 = s
|
233 |
+
|
234 |
+
# Mixing matrix
|
235 |
+
mixing = rng.randn(6, 2)
|
236 |
+
m = np.dot(mixing, s)
|
237 |
+
|
238 |
+
if add_noise:
|
239 |
+
m += 0.1 * rng.randn(6, n_samples)
|
240 |
+
|
241 |
+
center_and_norm(m)
|
242 |
+
|
243 |
+
k_, mixing_, s_ = fastica(
|
244 |
+
m.T, n_components=2, whiten="unit-variance", random_state=rng
|
245 |
+
)
|
246 |
+
s_ = s_.T
|
247 |
+
|
248 |
+
# Check that the mixing model described in the docstring holds:
|
249 |
+
assert_allclose(s_, np.dot(np.dot(mixing_, k_), m))
|
250 |
+
|
251 |
+
center_and_norm(s_)
|
252 |
+
s1_, s2_ = s_
|
253 |
+
# Check to see if the sources have been estimated
|
254 |
+
# in the wrong order
|
255 |
+
if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
|
256 |
+
s2_, s1_ = s_
|
257 |
+
s1_ *= np.sign(np.dot(s1_, s1))
|
258 |
+
s2_ *= np.sign(np.dot(s2_, s2))
|
259 |
+
|
260 |
+
# Check that we have estimated the original sources
|
261 |
+
if not add_noise:
|
262 |
+
assert_allclose(np.dot(s1_, s1) / n_samples, 1, atol=1e-3)
|
263 |
+
assert_allclose(np.dot(s2_, s2) / n_samples, 1, atol=1e-3)
|
264 |
+
|
265 |
+
|
266 |
+
def test_fit_transform(global_random_seed, global_dtype):
|
267 |
+
"""Test unit variance of transformed data using FastICA algorithm.
|
268 |
+
|
269 |
+
Check that `fit_transform` gives the same result as applying
|
270 |
+
`fit` and then `transform`.
|
271 |
+
|
272 |
+
Bug #13056
|
273 |
+
"""
|
274 |
+
# multivariate uniform data in [0, 1]
|
275 |
+
rng = np.random.RandomState(global_random_seed)
|
276 |
+
X = rng.random_sample((100, 10)).astype(global_dtype)
|
277 |
+
max_iter = 300
|
278 |
+
for whiten, n_components in [["unit-variance", 5], [False, None]]:
|
279 |
+
n_components_ = n_components if n_components is not None else X.shape[1]
|
280 |
+
|
281 |
+
ica = FastICA(
|
282 |
+
n_components=n_components, max_iter=max_iter, whiten=whiten, random_state=0
|
283 |
+
)
|
284 |
+
with warnings.catch_warnings():
|
285 |
+
# make sure that numerical errors do not cause sqrt of negative
|
286 |
+
# values
|
287 |
+
warnings.simplefilter("error", RuntimeWarning)
|
288 |
+
# XXX: for some seeds, the model does not converge.
|
289 |
+
# However this is not what we test here.
|
290 |
+
warnings.simplefilter("ignore", ConvergenceWarning)
|
291 |
+
Xt = ica.fit_transform(X)
|
292 |
+
assert ica.components_.shape == (n_components_, 10)
|
293 |
+
assert Xt.shape == (X.shape[0], n_components_)
|
294 |
+
|
295 |
+
ica2 = FastICA(
|
296 |
+
n_components=n_components, max_iter=max_iter, whiten=whiten, random_state=0
|
297 |
+
)
|
298 |
+
with warnings.catch_warnings():
|
299 |
+
# make sure that numerical errors do not cause sqrt of negative
|
300 |
+
# values
|
301 |
+
warnings.simplefilter("error", RuntimeWarning)
|
302 |
+
warnings.simplefilter("ignore", ConvergenceWarning)
|
303 |
+
ica2.fit(X)
|
304 |
+
assert ica2.components_.shape == (n_components_, 10)
|
305 |
+
Xt2 = ica2.transform(X)
|
306 |
+
|
307 |
+
# XXX: we have to set atol for this test to pass for all seeds when
|
308 |
+
# fitting with float32 data. Is this revealing a bug?
|
309 |
+
if global_dtype:
|
310 |
+
atol = np.abs(Xt2).mean() / 1e6
|
311 |
+
else:
|
312 |
+
atol = 0.0 # the default rtol is enough for float64 data
|
313 |
+
assert_allclose(Xt, Xt2, atol=atol)
|
314 |
+
|
315 |
+
|
316 |
+
@pytest.mark.filterwarnings("ignore:Ignoring n_components with whiten=False.")
|
317 |
+
@pytest.mark.parametrize(
|
318 |
+
"whiten, n_components, expected_mixing_shape",
|
319 |
+
[
|
320 |
+
("arbitrary-variance", 5, (10, 5)),
|
321 |
+
("arbitrary-variance", 10, (10, 10)),
|
322 |
+
("unit-variance", 5, (10, 5)),
|
323 |
+
("unit-variance", 10, (10, 10)),
|
324 |
+
(False, 5, (10, 10)),
|
325 |
+
(False, 10, (10, 10)),
|
326 |
+
],
|
327 |
+
)
|
328 |
+
def test_inverse_transform(
|
329 |
+
whiten, n_components, expected_mixing_shape, global_random_seed, global_dtype
|
330 |
+
):
|
331 |
+
# Test FastICA.inverse_transform
|
332 |
+
n_samples = 100
|
333 |
+
rng = np.random.RandomState(global_random_seed)
|
334 |
+
X = rng.random_sample((n_samples, 10)).astype(global_dtype)
|
335 |
+
|
336 |
+
ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten)
|
337 |
+
with warnings.catch_warnings():
|
338 |
+
# For some dataset (depending on the value of global_dtype) the model
|
339 |
+
# can fail to converge but this should not impact the definition of
|
340 |
+
# a valid inverse transform.
|
341 |
+
warnings.simplefilter("ignore", ConvergenceWarning)
|
342 |
+
Xt = ica.fit_transform(X)
|
343 |
+
assert ica.mixing_.shape == expected_mixing_shape
|
344 |
+
X2 = ica.inverse_transform(Xt)
|
345 |
+
assert X.shape == X2.shape
|
346 |
+
|
347 |
+
# reversibility test in non-reduction case
|
348 |
+
if n_components == X.shape[1]:
|
349 |
+
# XXX: we have to set atol for this test to pass for all seeds when
|
350 |
+
# fitting with float32 data. Is this revealing a bug?
|
351 |
+
if global_dtype:
|
352 |
+
# XXX: dividing by a smaller number makes
|
353 |
+
# tests fail for some seeds.
|
354 |
+
atol = np.abs(X2).mean() / 1e5
|
355 |
+
else:
|
356 |
+
atol = 0.0 # the default rtol is enough for float64 data
|
357 |
+
assert_allclose(X, X2, atol=atol)
|
358 |
+
|
359 |
+
|
360 |
+
def test_fastica_errors():
|
361 |
+
n_features = 3
|
362 |
+
n_samples = 10
|
363 |
+
rng = np.random.RandomState(0)
|
364 |
+
X = rng.random_sample((n_samples, n_features))
|
365 |
+
w_init = rng.randn(n_features + 1, n_features + 1)
|
366 |
+
with pytest.raises(ValueError, match=r"alpha must be in \[1,2\]"):
|
367 |
+
fastica(X, fun_args={"alpha": 0})
|
368 |
+
with pytest.raises(
|
369 |
+
ValueError, match="w_init has invalid shape.+" r"should be \(3L?, 3L?\)"
|
370 |
+
):
|
371 |
+
fastica(X, w_init=w_init)
|
372 |
+
|
373 |
+
|
374 |
+
def test_fastica_whiten_unit_variance():
|
375 |
+
"""Test unit variance of transformed data using FastICA algorithm.
|
376 |
+
|
377 |
+
Bug #13056
|
378 |
+
"""
|
379 |
+
rng = np.random.RandomState(0)
|
380 |
+
X = rng.random_sample((100, 10))
|
381 |
+
n_components = X.shape[1]
|
382 |
+
ica = FastICA(n_components=n_components, whiten="unit-variance", random_state=0)
|
383 |
+
Xt = ica.fit_transform(X)
|
384 |
+
|
385 |
+
assert np.var(Xt) == pytest.approx(1.0)
|
386 |
+
|
387 |
+
|
388 |
+
@pytest.mark.parametrize("whiten", ["arbitrary-variance", "unit-variance", False])
|
389 |
+
@pytest.mark.parametrize("return_X_mean", [True, False])
|
390 |
+
@pytest.mark.parametrize("return_n_iter", [True, False])
|
391 |
+
def test_fastica_output_shape(whiten, return_X_mean, return_n_iter):
|
392 |
+
n_features = 3
|
393 |
+
n_samples = 10
|
394 |
+
rng = np.random.RandomState(0)
|
395 |
+
X = rng.random_sample((n_samples, n_features))
|
396 |
+
|
397 |
+
expected_len = 3 + return_X_mean + return_n_iter
|
398 |
+
|
399 |
+
out = fastica(
|
400 |
+
X, whiten=whiten, return_n_iter=return_n_iter, return_X_mean=return_X_mean
|
401 |
+
)
|
402 |
+
|
403 |
+
assert len(out) == expected_len
|
404 |
+
if not whiten:
|
405 |
+
assert out[0] is None
|
406 |
+
|
407 |
+
|
408 |
+
@pytest.mark.parametrize("add_noise", [True, False])
|
409 |
+
def test_fastica_simple_different_solvers(add_noise, global_random_seed):
|
410 |
+
"""Test FastICA is consistent between whiten_solvers."""
|
411 |
+
rng = np.random.RandomState(global_random_seed)
|
412 |
+
n_samples = 1000
|
413 |
+
# Generate two sources:
|
414 |
+
s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1
|
415 |
+
s2 = stats.t.rvs(1, size=n_samples, random_state=rng)
|
416 |
+
s = np.c_[s1, s2].T
|
417 |
+
center_and_norm(s)
|
418 |
+
s1, s2 = s
|
419 |
+
|
420 |
+
# Mixing angle
|
421 |
+
phi = rng.rand() * 2 * np.pi
|
422 |
+
mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]])
|
423 |
+
m = np.dot(mixing, s)
|
424 |
+
|
425 |
+
if add_noise:
|
426 |
+
m += 0.1 * rng.randn(2, 1000)
|
427 |
+
|
428 |
+
center_and_norm(m)
|
429 |
+
|
430 |
+
outs = {}
|
431 |
+
for solver in ("svd", "eigh"):
|
432 |
+
ica = FastICA(random_state=0, whiten="unit-variance", whiten_solver=solver)
|
433 |
+
sources = ica.fit_transform(m.T)
|
434 |
+
outs[solver] = sources
|
435 |
+
assert ica.components_.shape == (2, 2)
|
436 |
+
assert sources.shape == (1000, 2)
|
437 |
+
|
438 |
+
# compared numbers are not all on the same magnitude. Using a small atol to
|
439 |
+
# make the test less brittle
|
440 |
+
assert_allclose(outs["eigh"], outs["svd"], atol=1e-12)
|
441 |
+
|
442 |
+
|
443 |
+
def test_fastica_eigh_low_rank_warning(global_random_seed):
|
444 |
+
"""Test FastICA eigh solver raises warning for low-rank data."""
|
445 |
+
rng = np.random.RandomState(global_random_seed)
|
446 |
+
A = rng.randn(10, 2)
|
447 |
+
X = A @ A.T
|
448 |
+
ica = FastICA(random_state=0, whiten="unit-variance", whiten_solver="eigh")
|
449 |
+
msg = "There are some small singular values"
|
450 |
+
with pytest.warns(UserWarning, match=msg):
|
451 |
+
ica.fit(X)
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_incremental_pca.py
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for Incremental PCA."""
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
from numpy.testing import assert_array_equal
|
7 |
+
|
8 |
+
from sklearn import datasets
|
9 |
+
from sklearn.decomposition import PCA, IncrementalPCA
|
10 |
+
from sklearn.utils._testing import (
|
11 |
+
assert_allclose_dense_sparse,
|
12 |
+
assert_almost_equal,
|
13 |
+
assert_array_almost_equal,
|
14 |
+
)
|
15 |
+
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS, LIL_CONTAINERS
|
16 |
+
|
17 |
+
iris = datasets.load_iris()
|
18 |
+
|
19 |
+
|
20 |
+
def test_incremental_pca():
|
21 |
+
# Incremental PCA on dense arrays.
|
22 |
+
X = iris.data
|
23 |
+
batch_size = X.shape[0] // 3
|
24 |
+
ipca = IncrementalPCA(n_components=2, batch_size=batch_size)
|
25 |
+
pca = PCA(n_components=2)
|
26 |
+
pca.fit_transform(X)
|
27 |
+
|
28 |
+
X_transformed = ipca.fit_transform(X)
|
29 |
+
|
30 |
+
assert X_transformed.shape == (X.shape[0], 2)
|
31 |
+
np.testing.assert_allclose(
|
32 |
+
ipca.explained_variance_ratio_.sum(),
|
33 |
+
pca.explained_variance_ratio_.sum(),
|
34 |
+
rtol=1e-3,
|
35 |
+
)
|
36 |
+
|
37 |
+
for n_components in [1, 2, X.shape[1]]:
|
38 |
+
ipca = IncrementalPCA(n_components, batch_size=batch_size)
|
39 |
+
ipca.fit(X)
|
40 |
+
cov = ipca.get_covariance()
|
41 |
+
precision = ipca.get_precision()
|
42 |
+
np.testing.assert_allclose(
|
43 |
+
np.dot(cov, precision), np.eye(X.shape[1]), atol=1e-13
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
@pytest.mark.parametrize(
|
48 |
+
"sparse_container", CSC_CONTAINERS + CSR_CONTAINERS + LIL_CONTAINERS
|
49 |
+
)
|
50 |
+
def test_incremental_pca_sparse(sparse_container):
|
51 |
+
# Incremental PCA on sparse arrays.
|
52 |
+
X = iris.data
|
53 |
+
pca = PCA(n_components=2)
|
54 |
+
pca.fit_transform(X)
|
55 |
+
X_sparse = sparse_container(X)
|
56 |
+
batch_size = X_sparse.shape[0] // 3
|
57 |
+
ipca = IncrementalPCA(n_components=2, batch_size=batch_size)
|
58 |
+
|
59 |
+
X_transformed = ipca.fit_transform(X_sparse)
|
60 |
+
|
61 |
+
assert X_transformed.shape == (X_sparse.shape[0], 2)
|
62 |
+
np.testing.assert_allclose(
|
63 |
+
ipca.explained_variance_ratio_.sum(),
|
64 |
+
pca.explained_variance_ratio_.sum(),
|
65 |
+
rtol=1e-3,
|
66 |
+
)
|
67 |
+
|
68 |
+
for n_components in [1, 2, X.shape[1]]:
|
69 |
+
ipca = IncrementalPCA(n_components, batch_size=batch_size)
|
70 |
+
ipca.fit(X_sparse)
|
71 |
+
cov = ipca.get_covariance()
|
72 |
+
precision = ipca.get_precision()
|
73 |
+
np.testing.assert_allclose(
|
74 |
+
np.dot(cov, precision), np.eye(X_sparse.shape[1]), atol=1e-13
|
75 |
+
)
|
76 |
+
|
77 |
+
with pytest.raises(
|
78 |
+
TypeError,
|
79 |
+
match=(
|
80 |
+
"IncrementalPCA.partial_fit does not support "
|
81 |
+
"sparse input. Either convert data to dense "
|
82 |
+
"or use IncrementalPCA.fit to do so in batches."
|
83 |
+
),
|
84 |
+
):
|
85 |
+
ipca.partial_fit(X_sparse)
|
86 |
+
|
87 |
+
|
88 |
+
def test_incremental_pca_check_projection():
|
89 |
+
# Test that the projection of data is correct.
|
90 |
+
rng = np.random.RandomState(1999)
|
91 |
+
n, p = 100, 3
|
92 |
+
X = rng.randn(n, p) * 0.1
|
93 |
+
X[:10] += np.array([3, 4, 5])
|
94 |
+
Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5])
|
95 |
+
|
96 |
+
# Get the reconstruction of the generated data X
|
97 |
+
# Note that Xt has the same "components" as X, just separated
|
98 |
+
# This is what we want to ensure is recreated correctly
|
99 |
+
Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt)
|
100 |
+
|
101 |
+
# Normalize
|
102 |
+
Yt /= np.sqrt((Yt**2).sum())
|
103 |
+
|
104 |
+
# Make sure that the first element of Yt is ~1, this means
|
105 |
+
# the reconstruction worked as expected
|
106 |
+
assert_almost_equal(np.abs(Yt[0][0]), 1.0, 1)
|
107 |
+
|
108 |
+
|
109 |
+
def test_incremental_pca_inverse():
|
110 |
+
# Test that the projection of data can be inverted.
|
111 |
+
rng = np.random.RandomState(1999)
|
112 |
+
n, p = 50, 3
|
113 |
+
X = rng.randn(n, p) # spherical data
|
114 |
+
X[:, 1] *= 0.00001 # make middle component relatively small
|
115 |
+
X += [5, 4, 3] # make a large mean
|
116 |
+
|
117 |
+
# same check that we can find the original data from the transformed
|
118 |
+
# signal (since the data is almost of rank n_components)
|
119 |
+
ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X)
|
120 |
+
Y = ipca.transform(X)
|
121 |
+
Y_inverse = ipca.inverse_transform(Y)
|
122 |
+
assert_almost_equal(X, Y_inverse, decimal=3)
|
123 |
+
|
124 |
+
|
125 |
+
def test_incremental_pca_validation():
|
126 |
+
# Test that n_components is <= n_features.
|
127 |
+
X = np.array([[0, 1, 0], [1, 0, 0]])
|
128 |
+
n_samples, n_features = X.shape
|
129 |
+
n_components = 4
|
130 |
+
with pytest.raises(
|
131 |
+
ValueError,
|
132 |
+
match=(
|
133 |
+
"n_components={} invalid"
|
134 |
+
" for n_features={}, need more rows than"
|
135 |
+
" columns for IncrementalPCA"
|
136 |
+
" processing".format(n_components, n_features)
|
137 |
+
),
|
138 |
+
):
|
139 |
+
IncrementalPCA(n_components, batch_size=10).fit(X)
|
140 |
+
|
141 |
+
# Tests that n_components is also <= n_samples.
|
142 |
+
n_components = 3
|
143 |
+
with pytest.raises(
|
144 |
+
ValueError,
|
145 |
+
match=(
|
146 |
+
"n_components={} must be"
|
147 |
+
" less or equal to the batch number of"
|
148 |
+
" samples {}".format(n_components, n_samples)
|
149 |
+
),
|
150 |
+
):
|
151 |
+
IncrementalPCA(n_components=n_components).partial_fit(X)
|
152 |
+
|
153 |
+
|
154 |
+
def test_n_samples_equal_n_components():
|
155 |
+
# Ensures no warning is raised when n_samples==n_components
|
156 |
+
# Non-regression test for gh-19050
|
157 |
+
ipca = IncrementalPCA(n_components=5)
|
158 |
+
with warnings.catch_warnings():
|
159 |
+
warnings.simplefilter("error", RuntimeWarning)
|
160 |
+
ipca.partial_fit(np.random.randn(5, 7))
|
161 |
+
with warnings.catch_warnings():
|
162 |
+
warnings.simplefilter("error", RuntimeWarning)
|
163 |
+
ipca.fit(np.random.randn(5, 7))
|
164 |
+
|
165 |
+
|
166 |
+
def test_n_components_none():
|
167 |
+
# Ensures that n_components == None is handled correctly
|
168 |
+
rng = np.random.RandomState(1999)
|
169 |
+
for n_samples, n_features in [(50, 10), (10, 50)]:
|
170 |
+
X = rng.rand(n_samples, n_features)
|
171 |
+
ipca = IncrementalPCA(n_components=None)
|
172 |
+
|
173 |
+
# First partial_fit call, ipca.n_components_ is inferred from
|
174 |
+
# min(X.shape)
|
175 |
+
ipca.partial_fit(X)
|
176 |
+
assert ipca.n_components_ == min(X.shape)
|
177 |
+
|
178 |
+
# Second partial_fit call, ipca.n_components_ is inferred from
|
179 |
+
# ipca.components_ computed from the first partial_fit call
|
180 |
+
ipca.partial_fit(X)
|
181 |
+
assert ipca.n_components_ == ipca.components_.shape[0]
|
182 |
+
|
183 |
+
|
184 |
+
def test_incremental_pca_set_params():
|
185 |
+
# Test that components_ sign is stable over batch sizes.
|
186 |
+
rng = np.random.RandomState(1999)
|
187 |
+
n_samples = 100
|
188 |
+
n_features = 20
|
189 |
+
X = rng.randn(n_samples, n_features)
|
190 |
+
X2 = rng.randn(n_samples, n_features)
|
191 |
+
X3 = rng.randn(n_samples, n_features)
|
192 |
+
ipca = IncrementalPCA(n_components=20)
|
193 |
+
ipca.fit(X)
|
194 |
+
# Decreasing number of components
|
195 |
+
ipca.set_params(n_components=10)
|
196 |
+
with pytest.raises(ValueError):
|
197 |
+
ipca.partial_fit(X2)
|
198 |
+
# Increasing number of components
|
199 |
+
ipca.set_params(n_components=15)
|
200 |
+
with pytest.raises(ValueError):
|
201 |
+
ipca.partial_fit(X3)
|
202 |
+
# Returning to original setting
|
203 |
+
ipca.set_params(n_components=20)
|
204 |
+
ipca.partial_fit(X)
|
205 |
+
|
206 |
+
|
207 |
+
def test_incremental_pca_num_features_change():
|
208 |
+
# Test that changing n_components will raise an error.
|
209 |
+
rng = np.random.RandomState(1999)
|
210 |
+
n_samples = 100
|
211 |
+
X = rng.randn(n_samples, 20)
|
212 |
+
X2 = rng.randn(n_samples, 50)
|
213 |
+
ipca = IncrementalPCA(n_components=None)
|
214 |
+
ipca.fit(X)
|
215 |
+
with pytest.raises(ValueError):
|
216 |
+
ipca.partial_fit(X2)
|
217 |
+
|
218 |
+
|
219 |
+
def test_incremental_pca_batch_signs():
|
220 |
+
# Test that components_ sign is stable over batch sizes.
|
221 |
+
rng = np.random.RandomState(1999)
|
222 |
+
n_samples = 100
|
223 |
+
n_features = 3
|
224 |
+
X = rng.randn(n_samples, n_features)
|
225 |
+
all_components = []
|
226 |
+
batch_sizes = np.arange(10, 20)
|
227 |
+
for batch_size in batch_sizes:
|
228 |
+
ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X)
|
229 |
+
all_components.append(ipca.components_)
|
230 |
+
|
231 |
+
for i, j in zip(all_components[:-1], all_components[1:]):
|
232 |
+
assert_almost_equal(np.sign(i), np.sign(j), decimal=6)
|
233 |
+
|
234 |
+
|
235 |
+
def test_incremental_pca_batch_values():
|
236 |
+
# Test that components_ values are stable over batch sizes.
|
237 |
+
rng = np.random.RandomState(1999)
|
238 |
+
n_samples = 100
|
239 |
+
n_features = 3
|
240 |
+
X = rng.randn(n_samples, n_features)
|
241 |
+
all_components = []
|
242 |
+
batch_sizes = np.arange(20, 40, 3)
|
243 |
+
for batch_size in batch_sizes:
|
244 |
+
ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X)
|
245 |
+
all_components.append(ipca.components_)
|
246 |
+
|
247 |
+
for i, j in zip(all_components[:-1], all_components[1:]):
|
248 |
+
assert_almost_equal(i, j, decimal=1)
|
249 |
+
|
250 |
+
|
251 |
+
def test_incremental_pca_batch_rank():
|
252 |
+
# Test sample size in each batch is always larger or equal to n_components
|
253 |
+
rng = np.random.RandomState(1999)
|
254 |
+
n_samples = 100
|
255 |
+
n_features = 20
|
256 |
+
X = rng.randn(n_samples, n_features)
|
257 |
+
all_components = []
|
258 |
+
batch_sizes = np.arange(20, 90, 3)
|
259 |
+
for batch_size in batch_sizes:
|
260 |
+
ipca = IncrementalPCA(n_components=20, batch_size=batch_size).fit(X)
|
261 |
+
all_components.append(ipca.components_)
|
262 |
+
|
263 |
+
for components_i, components_j in zip(all_components[:-1], all_components[1:]):
|
264 |
+
assert_allclose_dense_sparse(components_i, components_j)
|
265 |
+
|
266 |
+
|
267 |
+
def test_incremental_pca_partial_fit():
|
268 |
+
# Test that fit and partial_fit get equivalent results.
|
269 |
+
rng = np.random.RandomState(1999)
|
270 |
+
n, p = 50, 3
|
271 |
+
X = rng.randn(n, p) # spherical data
|
272 |
+
X[:, 1] *= 0.00001 # make middle component relatively small
|
273 |
+
X += [5, 4, 3] # make a large mean
|
274 |
+
|
275 |
+
# same check that we can find the original data from the transformed
|
276 |
+
# signal (since the data is almost of rank n_components)
|
277 |
+
batch_size = 10
|
278 |
+
ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X)
|
279 |
+
pipca = IncrementalPCA(n_components=2, batch_size=batch_size)
|
280 |
+
# Add one to make sure endpoint is included
|
281 |
+
batch_itr = np.arange(0, n + 1, batch_size)
|
282 |
+
for i, j in zip(batch_itr[:-1], batch_itr[1:]):
|
283 |
+
pipca.partial_fit(X[i:j, :])
|
284 |
+
assert_almost_equal(ipca.components_, pipca.components_, decimal=3)
|
285 |
+
|
286 |
+
|
287 |
+
def test_incremental_pca_against_pca_iris():
|
288 |
+
# Test that IncrementalPCA and PCA are approximate (to a sign flip).
|
289 |
+
X = iris.data
|
290 |
+
|
291 |
+
Y_pca = PCA(n_components=2).fit_transform(X)
|
292 |
+
Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X)
|
293 |
+
|
294 |
+
assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1)
|
295 |
+
|
296 |
+
|
297 |
+
def test_incremental_pca_against_pca_random_data():
|
298 |
+
# Test that IncrementalPCA and PCA are approximate (to a sign flip).
|
299 |
+
rng = np.random.RandomState(1999)
|
300 |
+
n_samples = 100
|
301 |
+
n_features = 3
|
302 |
+
X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features)
|
303 |
+
|
304 |
+
Y_pca = PCA(n_components=3).fit_transform(X)
|
305 |
+
Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X)
|
306 |
+
|
307 |
+
assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1)
|
308 |
+
|
309 |
+
|
310 |
+
def test_explained_variances():
|
311 |
+
# Test that PCA and IncrementalPCA calculations match
|
312 |
+
X = datasets.make_low_rank_matrix(
|
313 |
+
1000, 100, tail_strength=0.0, effective_rank=10, random_state=1999
|
314 |
+
)
|
315 |
+
prec = 3
|
316 |
+
n_samples, n_features = X.shape
|
317 |
+
for nc in [None, 99]:
|
318 |
+
pca = PCA(n_components=nc).fit(X)
|
319 |
+
ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X)
|
320 |
+
assert_almost_equal(
|
321 |
+
pca.explained_variance_, ipca.explained_variance_, decimal=prec
|
322 |
+
)
|
323 |
+
assert_almost_equal(
|
324 |
+
pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec
|
325 |
+
)
|
326 |
+
assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec)
|
327 |
+
|
328 |
+
|
329 |
+
def test_singular_values():
|
330 |
+
# Check that the IncrementalPCA output has the correct singular values
|
331 |
+
|
332 |
+
rng = np.random.RandomState(0)
|
333 |
+
n_samples = 1000
|
334 |
+
n_features = 100
|
335 |
+
|
336 |
+
X = datasets.make_low_rank_matrix(
|
337 |
+
n_samples, n_features, tail_strength=0.0, effective_rank=10, random_state=rng
|
338 |
+
)
|
339 |
+
|
340 |
+
pca = PCA(n_components=10, svd_solver="full", random_state=rng).fit(X)
|
341 |
+
ipca = IncrementalPCA(n_components=10, batch_size=100).fit(X)
|
342 |
+
assert_array_almost_equal(pca.singular_values_, ipca.singular_values_, 2)
|
343 |
+
|
344 |
+
# Compare to the Frobenius norm
|
345 |
+
X_pca = pca.transform(X)
|
346 |
+
X_ipca = ipca.transform(X)
|
347 |
+
assert_array_almost_equal(
|
348 |
+
np.sum(pca.singular_values_**2.0), np.linalg.norm(X_pca, "fro") ** 2.0, 12
|
349 |
+
)
|
350 |
+
assert_array_almost_equal(
|
351 |
+
np.sum(ipca.singular_values_**2.0), np.linalg.norm(X_ipca, "fro") ** 2.0, 2
|
352 |
+
)
|
353 |
+
|
354 |
+
# Compare to the 2-norms of the score vectors
|
355 |
+
assert_array_almost_equal(
|
356 |
+
pca.singular_values_, np.sqrt(np.sum(X_pca**2.0, axis=0)), 12
|
357 |
+
)
|
358 |
+
assert_array_almost_equal(
|
359 |
+
ipca.singular_values_, np.sqrt(np.sum(X_ipca**2.0, axis=0)), 2
|
360 |
+
)
|
361 |
+
|
362 |
+
# Set the singular values and see what we get back
|
363 |
+
rng = np.random.RandomState(0)
|
364 |
+
n_samples = 100
|
365 |
+
n_features = 110
|
366 |
+
|
367 |
+
X = datasets.make_low_rank_matrix(
|
368 |
+
n_samples, n_features, tail_strength=0.0, effective_rank=3, random_state=rng
|
369 |
+
)
|
370 |
+
|
371 |
+
pca = PCA(n_components=3, svd_solver="full", random_state=rng)
|
372 |
+
ipca = IncrementalPCA(n_components=3, batch_size=100)
|
373 |
+
|
374 |
+
X_pca = pca.fit_transform(X)
|
375 |
+
X_pca /= np.sqrt(np.sum(X_pca**2.0, axis=0))
|
376 |
+
X_pca[:, 0] *= 3.142
|
377 |
+
X_pca[:, 1] *= 2.718
|
378 |
+
|
379 |
+
X_hat = np.dot(X_pca, pca.components_)
|
380 |
+
pca.fit(X_hat)
|
381 |
+
ipca.fit(X_hat)
|
382 |
+
assert_array_almost_equal(pca.singular_values_, [3.142, 2.718, 1.0], 14)
|
383 |
+
assert_array_almost_equal(ipca.singular_values_, [3.142, 2.718, 1.0], 14)
|
384 |
+
|
385 |
+
|
386 |
+
def test_whitening():
|
387 |
+
# Test that PCA and IncrementalPCA transforms match to sign flip.
|
388 |
+
X = datasets.make_low_rank_matrix(
|
389 |
+
1000, 10, tail_strength=0.0, effective_rank=2, random_state=1999
|
390 |
+
)
|
391 |
+
prec = 3
|
392 |
+
n_samples, n_features = X.shape
|
393 |
+
for nc in [None, 9]:
|
394 |
+
pca = PCA(whiten=True, n_components=nc).fit(X)
|
395 |
+
ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X)
|
396 |
+
|
397 |
+
Xt_pca = pca.transform(X)
|
398 |
+
Xt_ipca = ipca.transform(X)
|
399 |
+
assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec)
|
400 |
+
Xinv_ipca = ipca.inverse_transform(Xt_ipca)
|
401 |
+
Xinv_pca = pca.inverse_transform(Xt_pca)
|
402 |
+
assert_almost_equal(X, Xinv_ipca, decimal=prec)
|
403 |
+
assert_almost_equal(X, Xinv_pca, decimal=prec)
|
404 |
+
assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
|
405 |
+
|
406 |
+
|
407 |
+
def test_incremental_pca_partial_fit_float_division():
|
408 |
+
# Test to ensure float division is used in all versions of Python
|
409 |
+
# (non-regression test for issue #9489)
|
410 |
+
|
411 |
+
rng = np.random.RandomState(0)
|
412 |
+
A = rng.randn(5, 3) + 2
|
413 |
+
B = rng.randn(7, 3) + 5
|
414 |
+
|
415 |
+
pca = IncrementalPCA(n_components=2)
|
416 |
+
pca.partial_fit(A)
|
417 |
+
# Set n_samples_seen_ to be a floating point number instead of an int
|
418 |
+
pca.n_samples_seen_ = float(pca.n_samples_seen_)
|
419 |
+
pca.partial_fit(B)
|
420 |
+
singular_vals_float_samples_seen = pca.singular_values_
|
421 |
+
|
422 |
+
pca2 = IncrementalPCA(n_components=2)
|
423 |
+
pca2.partial_fit(A)
|
424 |
+
pca2.partial_fit(B)
|
425 |
+
singular_vals_int_samples_seen = pca2.singular_values_
|
426 |
+
|
427 |
+
np.testing.assert_allclose(
|
428 |
+
singular_vals_float_samples_seen, singular_vals_int_samples_seen
|
429 |
+
)
|
430 |
+
|
431 |
+
|
432 |
+
def test_incremental_pca_fit_overflow_error():
|
433 |
+
# Test for overflow error on Windows OS
|
434 |
+
# (non-regression test for issue #17693)
|
435 |
+
rng = np.random.RandomState(0)
|
436 |
+
A = rng.rand(500000, 2)
|
437 |
+
|
438 |
+
ipca = IncrementalPCA(n_components=2, batch_size=10000)
|
439 |
+
ipca.fit(A)
|
440 |
+
|
441 |
+
pca = PCA(n_components=2)
|
442 |
+
pca.fit(A)
|
443 |
+
|
444 |
+
np.testing.assert_allclose(ipca.singular_values_, pca.singular_values_)
|
445 |
+
|
446 |
+
|
447 |
+
def test_incremental_pca_feature_names_out():
|
448 |
+
"""Check feature names out for IncrementalPCA."""
|
449 |
+
ipca = IncrementalPCA(n_components=2).fit(iris.data)
|
450 |
+
|
451 |
+
names = ipca.get_feature_names_out()
|
452 |
+
assert_array_equal([f"incrementalpca{i}" for i in range(2)], names)
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_kernel_pca.py
ADDED
@@ -0,0 +1,566 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import sklearn
|
7 |
+
from sklearn.datasets import load_iris, make_blobs, make_circles
|
8 |
+
from sklearn.decomposition import PCA, KernelPCA
|
9 |
+
from sklearn.exceptions import NotFittedError
|
10 |
+
from sklearn.linear_model import Perceptron
|
11 |
+
from sklearn.metrics.pairwise import rbf_kernel
|
12 |
+
from sklearn.model_selection import GridSearchCV
|
13 |
+
from sklearn.pipeline import Pipeline
|
14 |
+
from sklearn.preprocessing import StandardScaler
|
15 |
+
from sklearn.utils._testing import (
|
16 |
+
assert_allclose,
|
17 |
+
assert_array_almost_equal,
|
18 |
+
assert_array_equal,
|
19 |
+
)
|
20 |
+
from sklearn.utils.fixes import CSR_CONTAINERS
|
21 |
+
from sklearn.utils.validation import _check_psd_eigenvalues
|
22 |
+
|
23 |
+
|
24 |
+
def test_kernel_pca():
|
25 |
+
"""Nominal test for all solvers and all known kernels + a custom one
|
26 |
+
|
27 |
+
It tests
|
28 |
+
- that fit_transform is equivalent to fit+transform
|
29 |
+
- that the shapes of transforms and inverse transforms are correct
|
30 |
+
"""
|
31 |
+
rng = np.random.RandomState(0)
|
32 |
+
X_fit = rng.random_sample((5, 4))
|
33 |
+
X_pred = rng.random_sample((2, 4))
|
34 |
+
|
35 |
+
def histogram(x, y, **kwargs):
|
36 |
+
# Histogram kernel implemented as a callable.
|
37 |
+
assert kwargs == {} # no kernel_params that we didn't ask for
|
38 |
+
return np.minimum(x, y).sum()
|
39 |
+
|
40 |
+
for eigen_solver in ("auto", "dense", "arpack", "randomized"):
|
41 |
+
for kernel in ("linear", "rbf", "poly", histogram):
|
42 |
+
# histogram kernel produces singular matrix inside linalg.solve
|
43 |
+
# XXX use a least-squares approximation?
|
44 |
+
inv = not callable(kernel)
|
45 |
+
|
46 |
+
# transform fit data
|
47 |
+
kpca = KernelPCA(
|
48 |
+
4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=inv
|
49 |
+
)
|
50 |
+
X_fit_transformed = kpca.fit_transform(X_fit)
|
51 |
+
X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit)
|
52 |
+
assert_array_almost_equal(
|
53 |
+
np.abs(X_fit_transformed), np.abs(X_fit_transformed2)
|
54 |
+
)
|
55 |
+
|
56 |
+
# non-regression test: previously, gamma would be 0 by default,
|
57 |
+
# forcing all eigenvalues to 0 under the poly kernel
|
58 |
+
assert X_fit_transformed.size != 0
|
59 |
+
|
60 |
+
# transform new data
|
61 |
+
X_pred_transformed = kpca.transform(X_pred)
|
62 |
+
assert X_pred_transformed.shape[1] == X_fit_transformed.shape[1]
|
63 |
+
|
64 |
+
# inverse transform
|
65 |
+
if inv:
|
66 |
+
X_pred2 = kpca.inverse_transform(X_pred_transformed)
|
67 |
+
assert X_pred2.shape == X_pred.shape
|
68 |
+
|
69 |
+
|
70 |
+
def test_kernel_pca_invalid_parameters():
|
71 |
+
"""Check that kPCA raises an error if the parameters are invalid
|
72 |
+
|
73 |
+
Tests fitting inverse transform with a precomputed kernel raises a
|
74 |
+
ValueError.
|
75 |
+
"""
|
76 |
+
estimator = KernelPCA(
|
77 |
+
n_components=10, fit_inverse_transform=True, kernel="precomputed"
|
78 |
+
)
|
79 |
+
err_ms = "Cannot fit_inverse_transform with a precomputed kernel"
|
80 |
+
with pytest.raises(ValueError, match=err_ms):
|
81 |
+
estimator.fit(np.random.randn(10, 10))
|
82 |
+
|
83 |
+
|
84 |
+
def test_kernel_pca_consistent_transform():
|
85 |
+
"""Check robustness to mutations in the original training array
|
86 |
+
|
87 |
+
Test that after fitting a kPCA model, it stays independent of any
|
88 |
+
mutation of the values of the original data object by relying on an
|
89 |
+
internal copy.
|
90 |
+
"""
|
91 |
+
# X_fit_ needs to retain the old, unmodified copy of X
|
92 |
+
state = np.random.RandomState(0)
|
93 |
+
X = state.rand(10, 10)
|
94 |
+
kpca = KernelPCA(random_state=state).fit(X)
|
95 |
+
transformed1 = kpca.transform(X)
|
96 |
+
|
97 |
+
X_copy = X.copy()
|
98 |
+
X[:, 0] = 666
|
99 |
+
transformed2 = kpca.transform(X_copy)
|
100 |
+
assert_array_almost_equal(transformed1, transformed2)
|
101 |
+
|
102 |
+
|
103 |
+
def test_kernel_pca_deterministic_output():
|
104 |
+
"""Test that Kernel PCA produces deterministic output
|
105 |
+
|
106 |
+
Tests that the same inputs and random state produce the same output.
|
107 |
+
"""
|
108 |
+
rng = np.random.RandomState(0)
|
109 |
+
X = rng.rand(10, 10)
|
110 |
+
eigen_solver = ("arpack", "dense")
|
111 |
+
|
112 |
+
for solver in eigen_solver:
|
113 |
+
transformed_X = np.zeros((20, 2))
|
114 |
+
for i in range(20):
|
115 |
+
kpca = KernelPCA(n_components=2, eigen_solver=solver, random_state=rng)
|
116 |
+
transformed_X[i, :] = kpca.fit_transform(X)[0]
|
117 |
+
assert_allclose(transformed_X, np.tile(transformed_X[0, :], 20).reshape(20, 2))
|
118 |
+
|
119 |
+
|
120 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
121 |
+
def test_kernel_pca_sparse(csr_container):
|
122 |
+
"""Test that kPCA works on a sparse data input.
|
123 |
+
|
124 |
+
Same test as ``test_kernel_pca except inverse_transform`` since it's not
|
125 |
+
implemented for sparse matrices.
|
126 |
+
"""
|
127 |
+
rng = np.random.RandomState(0)
|
128 |
+
X_fit = csr_container(rng.random_sample((5, 4)))
|
129 |
+
X_pred = csr_container(rng.random_sample((2, 4)))
|
130 |
+
|
131 |
+
for eigen_solver in ("auto", "arpack", "randomized"):
|
132 |
+
for kernel in ("linear", "rbf", "poly"):
|
133 |
+
# transform fit data
|
134 |
+
kpca = KernelPCA(
|
135 |
+
4,
|
136 |
+
kernel=kernel,
|
137 |
+
eigen_solver=eigen_solver,
|
138 |
+
fit_inverse_transform=False,
|
139 |
+
random_state=0,
|
140 |
+
)
|
141 |
+
X_fit_transformed = kpca.fit_transform(X_fit)
|
142 |
+
X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit)
|
143 |
+
assert_array_almost_equal(
|
144 |
+
np.abs(X_fit_transformed), np.abs(X_fit_transformed2)
|
145 |
+
)
|
146 |
+
|
147 |
+
# transform new data
|
148 |
+
X_pred_transformed = kpca.transform(X_pred)
|
149 |
+
assert X_pred_transformed.shape[1] == X_fit_transformed.shape[1]
|
150 |
+
|
151 |
+
# inverse transform: not available for sparse matrices
|
152 |
+
# XXX: should we raise another exception type here? For instance:
|
153 |
+
# NotImplementedError.
|
154 |
+
with pytest.raises(NotFittedError):
|
155 |
+
kpca.inverse_transform(X_pred_transformed)
|
156 |
+
|
157 |
+
|
158 |
+
@pytest.mark.parametrize("solver", ["auto", "dense", "arpack", "randomized"])
|
159 |
+
@pytest.mark.parametrize("n_features", [4, 10])
|
160 |
+
def test_kernel_pca_linear_kernel(solver, n_features):
|
161 |
+
"""Test that kPCA with linear kernel is equivalent to PCA for all solvers.
|
162 |
+
|
163 |
+
KernelPCA with linear kernel should produce the same output as PCA.
|
164 |
+
"""
|
165 |
+
rng = np.random.RandomState(0)
|
166 |
+
X_fit = rng.random_sample((5, n_features))
|
167 |
+
X_pred = rng.random_sample((2, n_features))
|
168 |
+
|
169 |
+
# for a linear kernel, kernel PCA should find the same projection as PCA
|
170 |
+
# modulo the sign (direction)
|
171 |
+
# fit only the first four components: fifth is near zero eigenvalue, so
|
172 |
+
# can be trimmed due to roundoff error
|
173 |
+
n_comps = 3 if solver == "arpack" else 4
|
174 |
+
assert_array_almost_equal(
|
175 |
+
np.abs(KernelPCA(n_comps, eigen_solver=solver).fit(X_fit).transform(X_pred)),
|
176 |
+
np.abs(
|
177 |
+
PCA(n_comps, svd_solver=solver if solver != "dense" else "full")
|
178 |
+
.fit(X_fit)
|
179 |
+
.transform(X_pred)
|
180 |
+
),
|
181 |
+
)
|
182 |
+
|
183 |
+
|
184 |
+
def test_kernel_pca_n_components():
|
185 |
+
"""Test that `n_components` is correctly taken into account for projections
|
186 |
+
|
187 |
+
For all solvers this tests that the output has the correct shape depending
|
188 |
+
on the selected number of components.
|
189 |
+
"""
|
190 |
+
rng = np.random.RandomState(0)
|
191 |
+
X_fit = rng.random_sample((5, 4))
|
192 |
+
X_pred = rng.random_sample((2, 4))
|
193 |
+
|
194 |
+
for eigen_solver in ("dense", "arpack", "randomized"):
|
195 |
+
for c in [1, 2, 4]:
|
196 |
+
kpca = KernelPCA(n_components=c, eigen_solver=eigen_solver)
|
197 |
+
shape = kpca.fit(X_fit).transform(X_pred).shape
|
198 |
+
|
199 |
+
assert shape == (2, c)
|
200 |
+
|
201 |
+
|
202 |
+
def test_remove_zero_eig():
|
203 |
+
"""Check that the ``remove_zero_eig`` parameter works correctly.
|
204 |
+
|
205 |
+
Tests that the null-space (Zero) eigenvalues are removed when
|
206 |
+
remove_zero_eig=True, whereas they are not by default.
|
207 |
+
"""
|
208 |
+
X = np.array([[1 - 1e-30, 1], [1, 1], [1, 1 - 1e-20]])
|
209 |
+
|
210 |
+
# n_components=None (default) => remove_zero_eig is True
|
211 |
+
kpca = KernelPCA()
|
212 |
+
Xt = kpca.fit_transform(X)
|
213 |
+
assert Xt.shape == (3, 0)
|
214 |
+
|
215 |
+
kpca = KernelPCA(n_components=2)
|
216 |
+
Xt = kpca.fit_transform(X)
|
217 |
+
assert Xt.shape == (3, 2)
|
218 |
+
|
219 |
+
kpca = KernelPCA(n_components=2, remove_zero_eig=True)
|
220 |
+
Xt = kpca.fit_transform(X)
|
221 |
+
assert Xt.shape == (3, 0)
|
222 |
+
|
223 |
+
|
224 |
+
def test_leave_zero_eig():
|
225 |
+
"""Non-regression test for issue #12141 (PR #12143)
|
226 |
+
|
227 |
+
This test checks that fit().transform() returns the same result as
|
228 |
+
fit_transform() in case of non-removed zero eigenvalue.
|
229 |
+
"""
|
230 |
+
X_fit = np.array([[1, 1], [0, 0]])
|
231 |
+
|
232 |
+
# Assert that even with all np warnings on, there is no div by zero warning
|
233 |
+
with warnings.catch_warnings():
|
234 |
+
# There might be warnings about the kernel being badly conditioned,
|
235 |
+
# but there should not be warnings about division by zero.
|
236 |
+
# (Numpy division by zero warning can have many message variants, but
|
237 |
+
# at least we know that it is a RuntimeWarning so lets check only this)
|
238 |
+
warnings.simplefilter("error", RuntimeWarning)
|
239 |
+
with np.errstate(all="warn"):
|
240 |
+
k = KernelPCA(n_components=2, remove_zero_eig=False, eigen_solver="dense")
|
241 |
+
# Fit, then transform
|
242 |
+
A = k.fit(X_fit).transform(X_fit)
|
243 |
+
# Do both at once
|
244 |
+
B = k.fit_transform(X_fit)
|
245 |
+
# Compare
|
246 |
+
assert_array_almost_equal(np.abs(A), np.abs(B))
|
247 |
+
|
248 |
+
|
249 |
+
def test_kernel_pca_precomputed():
|
250 |
+
"""Test that kPCA works with a precomputed kernel, for all solvers"""
|
251 |
+
rng = np.random.RandomState(0)
|
252 |
+
X_fit = rng.random_sample((5, 4))
|
253 |
+
X_pred = rng.random_sample((2, 4))
|
254 |
+
|
255 |
+
for eigen_solver in ("dense", "arpack", "randomized"):
|
256 |
+
X_kpca = (
|
257 |
+
KernelPCA(4, eigen_solver=eigen_solver, random_state=0)
|
258 |
+
.fit(X_fit)
|
259 |
+
.transform(X_pred)
|
260 |
+
)
|
261 |
+
|
262 |
+
X_kpca2 = (
|
263 |
+
KernelPCA(
|
264 |
+
4, eigen_solver=eigen_solver, kernel="precomputed", random_state=0
|
265 |
+
)
|
266 |
+
.fit(np.dot(X_fit, X_fit.T))
|
267 |
+
.transform(np.dot(X_pred, X_fit.T))
|
268 |
+
)
|
269 |
+
|
270 |
+
X_kpca_train = KernelPCA(
|
271 |
+
4, eigen_solver=eigen_solver, kernel="precomputed", random_state=0
|
272 |
+
).fit_transform(np.dot(X_fit, X_fit.T))
|
273 |
+
|
274 |
+
X_kpca_train2 = (
|
275 |
+
KernelPCA(
|
276 |
+
4, eigen_solver=eigen_solver, kernel="precomputed", random_state=0
|
277 |
+
)
|
278 |
+
.fit(np.dot(X_fit, X_fit.T))
|
279 |
+
.transform(np.dot(X_fit, X_fit.T))
|
280 |
+
)
|
281 |
+
|
282 |
+
assert_array_almost_equal(np.abs(X_kpca), np.abs(X_kpca2))
|
283 |
+
|
284 |
+
assert_array_almost_equal(np.abs(X_kpca_train), np.abs(X_kpca_train2))
|
285 |
+
|
286 |
+
|
287 |
+
@pytest.mark.parametrize("solver", ["auto", "dense", "arpack", "randomized"])
|
288 |
+
def test_kernel_pca_precomputed_non_symmetric(solver):
|
289 |
+
"""Check that the kernel centerer works.
|
290 |
+
|
291 |
+
Tests that a non symmetric precomputed kernel is actually accepted
|
292 |
+
because the kernel centerer does its job correctly.
|
293 |
+
"""
|
294 |
+
|
295 |
+
# a non symmetric gram matrix
|
296 |
+
K = [[1, 2], [3, 40]]
|
297 |
+
kpca = KernelPCA(
|
298 |
+
kernel="precomputed", eigen_solver=solver, n_components=1, random_state=0
|
299 |
+
)
|
300 |
+
kpca.fit(K) # no error
|
301 |
+
|
302 |
+
# same test with centered kernel
|
303 |
+
Kc = [[9, -9], [-9, 9]]
|
304 |
+
kpca_c = KernelPCA(
|
305 |
+
kernel="precomputed", eigen_solver=solver, n_components=1, random_state=0
|
306 |
+
)
|
307 |
+
kpca_c.fit(Kc)
|
308 |
+
|
309 |
+
# comparison between the non-centered and centered versions
|
310 |
+
assert_array_equal(kpca.eigenvectors_, kpca_c.eigenvectors_)
|
311 |
+
assert_array_equal(kpca.eigenvalues_, kpca_c.eigenvalues_)
|
312 |
+
|
313 |
+
|
314 |
+
def test_gridsearch_pipeline():
|
315 |
+
"""Check that kPCA works as expected in a grid search pipeline
|
316 |
+
|
317 |
+
Test if we can do a grid-search to find parameters to separate
|
318 |
+
circles with a perceptron model.
|
319 |
+
"""
|
320 |
+
X, y = make_circles(n_samples=400, factor=0.3, noise=0.05, random_state=0)
|
321 |
+
kpca = KernelPCA(kernel="rbf", n_components=2)
|
322 |
+
pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron(max_iter=5))])
|
323 |
+
param_grid = dict(kernel_pca__gamma=2.0 ** np.arange(-2, 2))
|
324 |
+
grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid)
|
325 |
+
grid_search.fit(X, y)
|
326 |
+
assert grid_search.best_score_ == 1
|
327 |
+
|
328 |
+
|
329 |
+
def test_gridsearch_pipeline_precomputed():
|
330 |
+
"""Check that kPCA works as expected in a grid search pipeline (2)
|
331 |
+
|
332 |
+
Test if we can do a grid-search to find parameters to separate
|
333 |
+
circles with a perceptron model. This test uses a precomputed kernel.
|
334 |
+
"""
|
335 |
+
X, y = make_circles(n_samples=400, factor=0.3, noise=0.05, random_state=0)
|
336 |
+
kpca = KernelPCA(kernel="precomputed", n_components=2)
|
337 |
+
pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron(max_iter=5))])
|
338 |
+
param_grid = dict(Perceptron__max_iter=np.arange(1, 5))
|
339 |
+
grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid)
|
340 |
+
X_kernel = rbf_kernel(X, gamma=2.0)
|
341 |
+
grid_search.fit(X_kernel, y)
|
342 |
+
assert grid_search.best_score_ == 1
|
343 |
+
|
344 |
+
|
345 |
+
def test_nested_circles():
|
346 |
+
"""Check that kPCA projects in a space where nested circles are separable
|
347 |
+
|
348 |
+
Tests that 2D nested circles become separable with a perceptron when
|
349 |
+
projected in the first 2 kPCA using an RBF kernel, while raw samples
|
350 |
+
are not directly separable in the original space.
|
351 |
+
"""
|
352 |
+
X, y = make_circles(n_samples=400, factor=0.3, noise=0.05, random_state=0)
|
353 |
+
|
354 |
+
# 2D nested circles are not linearly separable
|
355 |
+
train_score = Perceptron(max_iter=5).fit(X, y).score(X, y)
|
356 |
+
assert train_score < 0.8
|
357 |
+
|
358 |
+
# Project the circles data into the first 2 components of a RBF Kernel
|
359 |
+
# PCA model.
|
360 |
+
# Note that the gamma value is data dependent. If this test breaks
|
361 |
+
# and the gamma value has to be updated, the Kernel PCA example will
|
362 |
+
# have to be updated too.
|
363 |
+
kpca = KernelPCA(
|
364 |
+
kernel="rbf", n_components=2, fit_inverse_transform=True, gamma=2.0
|
365 |
+
)
|
366 |
+
X_kpca = kpca.fit_transform(X)
|
367 |
+
|
368 |
+
# The data is perfectly linearly separable in that space
|
369 |
+
train_score = Perceptron(max_iter=5).fit(X_kpca, y).score(X_kpca, y)
|
370 |
+
assert train_score == 1.0
|
371 |
+
|
372 |
+
|
373 |
+
def test_kernel_conditioning():
|
374 |
+
"""Check that ``_check_psd_eigenvalues`` is correctly called in kPCA
|
375 |
+
|
376 |
+
Non-regression test for issue #12140 (PR #12145).
|
377 |
+
"""
|
378 |
+
|
379 |
+
# create a pathological X leading to small non-zero eigenvalue
|
380 |
+
X = [[5, 1], [5 + 1e-8, 1e-8], [5 + 1e-8, 0]]
|
381 |
+
kpca = KernelPCA(kernel="linear", n_components=2, fit_inverse_transform=True)
|
382 |
+
kpca.fit(X)
|
383 |
+
|
384 |
+
# check that the small non-zero eigenvalue was correctly set to zero
|
385 |
+
assert kpca.eigenvalues_.min() == 0
|
386 |
+
assert np.all(kpca.eigenvalues_ == _check_psd_eigenvalues(kpca.eigenvalues_))
|
387 |
+
|
388 |
+
|
389 |
+
@pytest.mark.parametrize("solver", ["auto", "dense", "arpack", "randomized"])
|
390 |
+
def test_precomputed_kernel_not_psd(solver):
|
391 |
+
"""Check how KernelPCA works with non-PSD kernels depending on n_components
|
392 |
+
|
393 |
+
Tests for all methods what happens with a non PSD gram matrix (this
|
394 |
+
can happen in an isomap scenario, or with custom kernel functions, or
|
395 |
+
maybe with ill-posed datasets).
|
396 |
+
|
397 |
+
When ``n_component`` is large enough to capture a negative eigenvalue, an
|
398 |
+
error should be raised. Otherwise, KernelPCA should run without error
|
399 |
+
since the negative eigenvalues are not selected.
|
400 |
+
"""
|
401 |
+
|
402 |
+
# a non PSD kernel with large eigenvalues, already centered
|
403 |
+
# it was captured from an isomap call and multiplied by 100 for compacity
|
404 |
+
K = [
|
405 |
+
[4.48, -1.0, 8.07, 2.33, 2.33, 2.33, -5.76, -12.78],
|
406 |
+
[-1.0, -6.48, 4.5, -1.24, -1.24, -1.24, -0.81, 7.49],
|
407 |
+
[8.07, 4.5, 15.48, 2.09, 2.09, 2.09, -11.1, -23.23],
|
408 |
+
[2.33, -1.24, 2.09, 4.0, -3.65, -3.65, 1.02, -0.9],
|
409 |
+
[2.33, -1.24, 2.09, -3.65, 4.0, -3.65, 1.02, -0.9],
|
410 |
+
[2.33, -1.24, 2.09, -3.65, -3.65, 4.0, 1.02, -0.9],
|
411 |
+
[-5.76, -0.81, -11.1, 1.02, 1.02, 1.02, 4.86, 9.75],
|
412 |
+
[-12.78, 7.49, -23.23, -0.9, -0.9, -0.9, 9.75, 21.46],
|
413 |
+
]
|
414 |
+
# this gram matrix has 5 positive eigenvalues and 3 negative ones
|
415 |
+
# [ 52.72, 7.65, 7.65, 5.02, 0. , -0. , -6.13, -15.11]
|
416 |
+
|
417 |
+
# 1. ask for enough components to get a significant negative one
|
418 |
+
kpca = KernelPCA(kernel="precomputed", eigen_solver=solver, n_components=7)
|
419 |
+
# make sure that the appropriate error is raised
|
420 |
+
with pytest.raises(ValueError, match="There are significant negative eigenvalues"):
|
421 |
+
kpca.fit(K)
|
422 |
+
|
423 |
+
# 2. ask for a small enough n_components to get only positive ones
|
424 |
+
kpca = KernelPCA(kernel="precomputed", eigen_solver=solver, n_components=2)
|
425 |
+
if solver == "randomized":
|
426 |
+
# the randomized method is still inconsistent with the others on this
|
427 |
+
# since it selects the eigenvalues based on the largest 2 modules, not
|
428 |
+
# on the largest 2 values.
|
429 |
+
#
|
430 |
+
# At least we can ensure that we return an error instead of returning
|
431 |
+
# the wrong eigenvalues
|
432 |
+
with pytest.raises(
|
433 |
+
ValueError, match="There are significant negative eigenvalues"
|
434 |
+
):
|
435 |
+
kpca.fit(K)
|
436 |
+
else:
|
437 |
+
# general case: make sure that it works
|
438 |
+
kpca.fit(K)
|
439 |
+
|
440 |
+
|
441 |
+
@pytest.mark.parametrize("n_components", [4, 10, 20])
|
442 |
+
def test_kernel_pca_solvers_equivalence(n_components):
|
443 |
+
"""Check that 'dense' 'arpack' & 'randomized' solvers give similar results"""
|
444 |
+
|
445 |
+
# Generate random data
|
446 |
+
n_train, n_test = 1_000, 100
|
447 |
+
X, _ = make_circles(
|
448 |
+
n_samples=(n_train + n_test), factor=0.3, noise=0.05, random_state=0
|
449 |
+
)
|
450 |
+
X_fit, X_pred = X[:n_train, :], X[n_train:, :]
|
451 |
+
|
452 |
+
# reference (full)
|
453 |
+
ref_pred = (
|
454 |
+
KernelPCA(n_components, eigen_solver="dense", random_state=0)
|
455 |
+
.fit(X_fit)
|
456 |
+
.transform(X_pred)
|
457 |
+
)
|
458 |
+
|
459 |
+
# arpack
|
460 |
+
a_pred = (
|
461 |
+
KernelPCA(n_components, eigen_solver="arpack", random_state=0)
|
462 |
+
.fit(X_fit)
|
463 |
+
.transform(X_pred)
|
464 |
+
)
|
465 |
+
# check that the result is still correct despite the approx
|
466 |
+
assert_array_almost_equal(np.abs(a_pred), np.abs(ref_pred))
|
467 |
+
|
468 |
+
# randomized
|
469 |
+
r_pred = (
|
470 |
+
KernelPCA(n_components, eigen_solver="randomized", random_state=0)
|
471 |
+
.fit(X_fit)
|
472 |
+
.transform(X_pred)
|
473 |
+
)
|
474 |
+
# check that the result is still correct despite the approximation
|
475 |
+
assert_array_almost_equal(np.abs(r_pred), np.abs(ref_pred))
|
476 |
+
|
477 |
+
|
478 |
+
def test_kernel_pca_inverse_transform_reconstruction():
|
479 |
+
"""Test if the reconstruction is a good approximation.
|
480 |
+
|
481 |
+
Note that in general it is not possible to get an arbitrarily good
|
482 |
+
reconstruction because of kernel centering that does not
|
483 |
+
preserve all the information of the original data.
|
484 |
+
"""
|
485 |
+
X, *_ = make_blobs(n_samples=100, n_features=4, random_state=0)
|
486 |
+
|
487 |
+
kpca = KernelPCA(
|
488 |
+
n_components=20, kernel="rbf", fit_inverse_transform=True, alpha=1e-3
|
489 |
+
)
|
490 |
+
X_trans = kpca.fit_transform(X)
|
491 |
+
X_reconst = kpca.inverse_transform(X_trans)
|
492 |
+
assert np.linalg.norm(X - X_reconst) / np.linalg.norm(X) < 1e-1
|
493 |
+
|
494 |
+
|
495 |
+
def test_kernel_pca_raise_not_fitted_error():
|
496 |
+
X = np.random.randn(15).reshape(5, 3)
|
497 |
+
kpca = KernelPCA()
|
498 |
+
kpca.fit(X)
|
499 |
+
with pytest.raises(NotFittedError):
|
500 |
+
kpca.inverse_transform(X)
|
501 |
+
|
502 |
+
|
503 |
+
def test_32_64_decomposition_shape():
|
504 |
+
"""Test that the decomposition is similar for 32 and 64 bits data
|
505 |
+
|
506 |
+
Non regression test for
|
507 |
+
https://github.com/scikit-learn/scikit-learn/issues/18146
|
508 |
+
"""
|
509 |
+
X, y = make_blobs(
|
510 |
+
n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, cluster_std=0.1
|
511 |
+
)
|
512 |
+
X = StandardScaler().fit_transform(X)
|
513 |
+
X -= X.min()
|
514 |
+
|
515 |
+
# Compare the shapes (corresponds to the number of non-zero eigenvalues)
|
516 |
+
kpca = KernelPCA()
|
517 |
+
assert kpca.fit_transform(X).shape == kpca.fit_transform(X.astype(np.float32)).shape
|
518 |
+
|
519 |
+
|
520 |
+
def test_kernel_pca_feature_names_out():
|
521 |
+
"""Check feature names out for KernelPCA."""
|
522 |
+
X, *_ = make_blobs(n_samples=100, n_features=4, random_state=0)
|
523 |
+
kpca = KernelPCA(n_components=2).fit(X)
|
524 |
+
|
525 |
+
names = kpca.get_feature_names_out()
|
526 |
+
assert_array_equal([f"kernelpca{i}" for i in range(2)], names)
|
527 |
+
|
528 |
+
|
529 |
+
def test_kernel_pca_inverse_correct_gamma():
|
530 |
+
"""Check that gamma is set correctly when not provided.
|
531 |
+
|
532 |
+
Non-regression test for #26280
|
533 |
+
"""
|
534 |
+
rng = np.random.RandomState(0)
|
535 |
+
X = rng.random_sample((5, 4))
|
536 |
+
|
537 |
+
kwargs = {
|
538 |
+
"n_components": 2,
|
539 |
+
"random_state": rng,
|
540 |
+
"fit_inverse_transform": True,
|
541 |
+
"kernel": "rbf",
|
542 |
+
}
|
543 |
+
|
544 |
+
expected_gamma = 1 / X.shape[1]
|
545 |
+
kpca1 = KernelPCA(gamma=None, **kwargs).fit(X)
|
546 |
+
kpca2 = KernelPCA(gamma=expected_gamma, **kwargs).fit(X)
|
547 |
+
|
548 |
+
assert kpca1.gamma_ == expected_gamma
|
549 |
+
assert kpca2.gamma_ == expected_gamma
|
550 |
+
|
551 |
+
X1_recon = kpca1.inverse_transform(kpca1.transform(X))
|
552 |
+
X2_recon = kpca2.inverse_transform(kpca1.transform(X))
|
553 |
+
|
554 |
+
assert_allclose(X1_recon, X2_recon)
|
555 |
+
|
556 |
+
|
557 |
+
def test_kernel_pca_pandas_output():
|
558 |
+
"""Check that KernelPCA works with pandas output when the solver is arpack.
|
559 |
+
|
560 |
+
Non-regression test for:
|
561 |
+
https://github.com/scikit-learn/scikit-learn/issues/27579
|
562 |
+
"""
|
563 |
+
pytest.importorskip("pandas")
|
564 |
+
X, _ = load_iris(as_frame=True, return_X_y=True)
|
565 |
+
with sklearn.config_context(transform_output="pandas"):
|
566 |
+
KernelPCA(n_components=2, eigen_solver="arpack").fit_transform(X)
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_nmf.py
ADDED
@@ -0,0 +1,1062 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import sys
|
3 |
+
import warnings
|
4 |
+
from io import StringIO
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pytest
|
8 |
+
from scipy import linalg
|
9 |
+
|
10 |
+
from sklearn.base import clone
|
11 |
+
from sklearn.decomposition import NMF, MiniBatchNMF, non_negative_factorization
|
12 |
+
from sklearn.decomposition import _nmf as nmf # For testing internals
|
13 |
+
from sklearn.exceptions import ConvergenceWarning
|
14 |
+
from sklearn.utils._testing import (
|
15 |
+
assert_allclose,
|
16 |
+
assert_almost_equal,
|
17 |
+
assert_array_almost_equal,
|
18 |
+
assert_array_equal,
|
19 |
+
ignore_warnings,
|
20 |
+
)
|
21 |
+
from sklearn.utils.extmath import squared_norm
|
22 |
+
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS
|
23 |
+
|
24 |
+
|
25 |
+
@pytest.mark.parametrize(
|
26 |
+
["Estimator", "solver"],
|
27 |
+
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
|
28 |
+
)
|
29 |
+
def test_convergence_warning(Estimator, solver):
|
30 |
+
convergence_warning = (
|
31 |
+
"Maximum number of iterations 1 reached. Increase it to improve convergence."
|
32 |
+
)
|
33 |
+
A = np.ones((2, 2))
|
34 |
+
with pytest.warns(ConvergenceWarning, match=convergence_warning):
|
35 |
+
Estimator(max_iter=1, n_components="auto", **solver).fit(A)
|
36 |
+
|
37 |
+
|
38 |
+
def test_initialize_nn_output():
|
39 |
+
# Test that initialization does not return negative values
|
40 |
+
rng = np.random.mtrand.RandomState(42)
|
41 |
+
data = np.abs(rng.randn(10, 10))
|
42 |
+
for init in ("random", "nndsvd", "nndsvda", "nndsvdar"):
|
43 |
+
W, H = nmf._initialize_nmf(data, 10, init=init, random_state=0)
|
44 |
+
assert not ((W < 0).any() or (H < 0).any())
|
45 |
+
|
46 |
+
|
47 |
+
# TODO(1.6): remove the warning filter for `n_components`
|
48 |
+
@pytest.mark.filterwarnings(
|
49 |
+
r"ignore:The multiplicative update \('mu'\) solver cannot update zeros present in"
|
50 |
+
r" the initialization",
|
51 |
+
"ignore:The default value of `n_components` will change",
|
52 |
+
)
|
53 |
+
def test_parameter_checking():
|
54 |
+
# Here we only check for invalid parameter values that are not already
|
55 |
+
# automatically tested in the common tests.
|
56 |
+
|
57 |
+
A = np.ones((2, 2))
|
58 |
+
|
59 |
+
msg = "Invalid beta_loss parameter: solver 'cd' does not handle beta_loss = 1.0"
|
60 |
+
with pytest.raises(ValueError, match=msg):
|
61 |
+
NMF(solver="cd", beta_loss=1.0).fit(A)
|
62 |
+
msg = "Negative values in data passed to"
|
63 |
+
with pytest.raises(ValueError, match=msg):
|
64 |
+
NMF().fit(-A)
|
65 |
+
clf = NMF(2, tol=0.1).fit(A)
|
66 |
+
with pytest.raises(ValueError, match=msg):
|
67 |
+
clf.transform(-A)
|
68 |
+
with pytest.raises(ValueError, match=msg):
|
69 |
+
nmf._initialize_nmf(-A, 2, "nndsvd")
|
70 |
+
|
71 |
+
for init in ["nndsvd", "nndsvda", "nndsvdar"]:
|
72 |
+
msg = re.escape(
|
73 |
+
"init = '{}' can only be used when "
|
74 |
+
"n_components <= min(n_samples, n_features)".format(init)
|
75 |
+
)
|
76 |
+
with pytest.raises(ValueError, match=msg):
|
77 |
+
NMF(3, init=init).fit(A)
|
78 |
+
with pytest.raises(ValueError, match=msg):
|
79 |
+
MiniBatchNMF(3, init=init).fit(A)
|
80 |
+
with pytest.raises(ValueError, match=msg):
|
81 |
+
nmf._initialize_nmf(A, 3, init)
|
82 |
+
|
83 |
+
|
84 |
+
def test_initialize_close():
|
85 |
+
# Test NNDSVD error
|
86 |
+
# Test that _initialize_nmf error is less than the standard deviation of
|
87 |
+
# the entries in the matrix.
|
88 |
+
rng = np.random.mtrand.RandomState(42)
|
89 |
+
A = np.abs(rng.randn(10, 10))
|
90 |
+
W, H = nmf._initialize_nmf(A, 10, init="nndsvd")
|
91 |
+
error = linalg.norm(np.dot(W, H) - A)
|
92 |
+
sdev = linalg.norm(A - A.mean())
|
93 |
+
assert error <= sdev
|
94 |
+
|
95 |
+
|
96 |
+
def test_initialize_variants():
|
97 |
+
# Test NNDSVD variants correctness
|
98 |
+
# Test that the variants 'nndsvda' and 'nndsvdar' differ from basic
|
99 |
+
# 'nndsvd' only where the basic version has zeros.
|
100 |
+
rng = np.random.mtrand.RandomState(42)
|
101 |
+
data = np.abs(rng.randn(10, 10))
|
102 |
+
W0, H0 = nmf._initialize_nmf(data, 10, init="nndsvd")
|
103 |
+
Wa, Ha = nmf._initialize_nmf(data, 10, init="nndsvda")
|
104 |
+
War, Har = nmf._initialize_nmf(data, 10, init="nndsvdar", random_state=0)
|
105 |
+
|
106 |
+
for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)):
|
107 |
+
assert_almost_equal(evl[ref != 0], ref[ref != 0])
|
108 |
+
|
109 |
+
|
110 |
+
# ignore UserWarning raised when both solver='mu' and init='nndsvd'
|
111 |
+
@ignore_warnings(category=UserWarning)
|
112 |
+
@pytest.mark.parametrize(
|
113 |
+
["Estimator", "solver"],
|
114 |
+
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
|
115 |
+
)
|
116 |
+
@pytest.mark.parametrize("init", (None, "nndsvd", "nndsvda", "nndsvdar", "random"))
|
117 |
+
@pytest.mark.parametrize("alpha_W", (0.0, 1.0))
|
118 |
+
@pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same"))
|
119 |
+
def test_nmf_fit_nn_output(Estimator, solver, init, alpha_W, alpha_H):
|
120 |
+
# Test that the decomposition does not contain negative values
|
121 |
+
A = np.c_[5.0 - np.arange(1, 6), 5.0 + np.arange(1, 6)]
|
122 |
+
model = Estimator(
|
123 |
+
n_components=2,
|
124 |
+
init=init,
|
125 |
+
alpha_W=alpha_W,
|
126 |
+
alpha_H=alpha_H,
|
127 |
+
random_state=0,
|
128 |
+
**solver,
|
129 |
+
)
|
130 |
+
transf = model.fit_transform(A)
|
131 |
+
assert not ((model.components_ < 0).any() or (transf < 0).any())
|
132 |
+
|
133 |
+
|
134 |
+
@pytest.mark.parametrize(
|
135 |
+
["Estimator", "solver"],
|
136 |
+
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
|
137 |
+
)
|
138 |
+
def test_nmf_fit_close(Estimator, solver):
|
139 |
+
rng = np.random.mtrand.RandomState(42)
|
140 |
+
# Test that the fit is not too far away
|
141 |
+
pnmf = Estimator(
|
142 |
+
5,
|
143 |
+
init="nndsvdar",
|
144 |
+
random_state=0,
|
145 |
+
max_iter=600,
|
146 |
+
**solver,
|
147 |
+
)
|
148 |
+
X = np.abs(rng.randn(6, 5))
|
149 |
+
assert pnmf.fit(X).reconstruction_err_ < 0.1
|
150 |
+
|
151 |
+
|
152 |
+
def test_nmf_true_reconstruction():
|
153 |
+
# Test that the fit is not too far away from an exact solution
|
154 |
+
# (by construction)
|
155 |
+
n_samples = 15
|
156 |
+
n_features = 10
|
157 |
+
n_components = 5
|
158 |
+
beta_loss = 1
|
159 |
+
batch_size = 3
|
160 |
+
max_iter = 1000
|
161 |
+
|
162 |
+
rng = np.random.mtrand.RandomState(42)
|
163 |
+
W_true = np.zeros([n_samples, n_components])
|
164 |
+
W_array = np.abs(rng.randn(n_samples))
|
165 |
+
for j in range(n_components):
|
166 |
+
W_true[j % n_samples, j] = W_array[j % n_samples]
|
167 |
+
H_true = np.zeros([n_components, n_features])
|
168 |
+
H_array = np.abs(rng.randn(n_components))
|
169 |
+
for j in range(n_features):
|
170 |
+
H_true[j % n_components, j] = H_array[j % n_components]
|
171 |
+
X = np.dot(W_true, H_true)
|
172 |
+
|
173 |
+
model = NMF(
|
174 |
+
n_components=n_components,
|
175 |
+
solver="mu",
|
176 |
+
beta_loss=beta_loss,
|
177 |
+
max_iter=max_iter,
|
178 |
+
random_state=0,
|
179 |
+
)
|
180 |
+
transf = model.fit_transform(X)
|
181 |
+
X_calc = np.dot(transf, model.components_)
|
182 |
+
|
183 |
+
assert model.reconstruction_err_ < 0.1
|
184 |
+
assert_allclose(X, X_calc)
|
185 |
+
|
186 |
+
mbmodel = MiniBatchNMF(
|
187 |
+
n_components=n_components,
|
188 |
+
beta_loss=beta_loss,
|
189 |
+
batch_size=batch_size,
|
190 |
+
random_state=0,
|
191 |
+
max_iter=max_iter,
|
192 |
+
)
|
193 |
+
transf = mbmodel.fit_transform(X)
|
194 |
+
X_calc = np.dot(transf, mbmodel.components_)
|
195 |
+
|
196 |
+
assert mbmodel.reconstruction_err_ < 0.1
|
197 |
+
assert_allclose(X, X_calc, atol=1)
|
198 |
+
|
199 |
+
|
200 |
+
@pytest.mark.parametrize("solver", ["cd", "mu"])
|
201 |
+
def test_nmf_transform(solver):
|
202 |
+
# Test that fit_transform is equivalent to fit.transform for NMF
|
203 |
+
# Test that NMF.transform returns close values
|
204 |
+
rng = np.random.mtrand.RandomState(42)
|
205 |
+
A = np.abs(rng.randn(6, 5))
|
206 |
+
m = NMF(
|
207 |
+
solver=solver,
|
208 |
+
n_components=3,
|
209 |
+
init="random",
|
210 |
+
random_state=0,
|
211 |
+
tol=1e-6,
|
212 |
+
)
|
213 |
+
ft = m.fit_transform(A)
|
214 |
+
t = m.transform(A)
|
215 |
+
assert_allclose(ft, t, atol=1e-1)
|
216 |
+
|
217 |
+
|
218 |
+
def test_minibatch_nmf_transform():
|
219 |
+
# Test that fit_transform is equivalent to fit.transform for MiniBatchNMF
|
220 |
+
# Only guaranteed with fresh restarts
|
221 |
+
rng = np.random.mtrand.RandomState(42)
|
222 |
+
A = np.abs(rng.randn(6, 5))
|
223 |
+
m = MiniBatchNMF(
|
224 |
+
n_components=3,
|
225 |
+
random_state=0,
|
226 |
+
tol=1e-3,
|
227 |
+
fresh_restarts=True,
|
228 |
+
)
|
229 |
+
ft = m.fit_transform(A)
|
230 |
+
t = m.transform(A)
|
231 |
+
assert_allclose(ft, t)
|
232 |
+
|
233 |
+
|
234 |
+
@pytest.mark.parametrize(
|
235 |
+
["Estimator", "solver"],
|
236 |
+
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
|
237 |
+
)
|
238 |
+
def test_nmf_transform_custom_init(Estimator, solver):
|
239 |
+
# Smoke test that checks if NMF.transform works with custom initialization
|
240 |
+
random_state = np.random.RandomState(0)
|
241 |
+
A = np.abs(random_state.randn(6, 5))
|
242 |
+
n_components = 4
|
243 |
+
avg = np.sqrt(A.mean() / n_components)
|
244 |
+
H_init = np.abs(avg * random_state.randn(n_components, 5))
|
245 |
+
W_init = np.abs(avg * random_state.randn(6, n_components))
|
246 |
+
|
247 |
+
m = Estimator(
|
248 |
+
n_components=n_components, init="custom", random_state=0, tol=1e-3, **solver
|
249 |
+
)
|
250 |
+
m.fit_transform(A, W=W_init, H=H_init)
|
251 |
+
m.transform(A)
|
252 |
+
|
253 |
+
|
254 |
+
@pytest.mark.parametrize("solver", ("cd", "mu"))
|
255 |
+
def test_nmf_inverse_transform(solver):
|
256 |
+
# Test that NMF.inverse_transform returns close values
|
257 |
+
random_state = np.random.RandomState(0)
|
258 |
+
A = np.abs(random_state.randn(6, 4))
|
259 |
+
m = NMF(
|
260 |
+
solver=solver,
|
261 |
+
n_components=4,
|
262 |
+
init="random",
|
263 |
+
random_state=0,
|
264 |
+
max_iter=1000,
|
265 |
+
)
|
266 |
+
ft = m.fit_transform(A)
|
267 |
+
A_new = m.inverse_transform(ft)
|
268 |
+
assert_array_almost_equal(A, A_new, decimal=2)
|
269 |
+
|
270 |
+
|
271 |
+
# TODO(1.6): remove the warning filter
|
272 |
+
@pytest.mark.filterwarnings("ignore:The default value of `n_components` will change")
|
273 |
+
def test_mbnmf_inverse_transform():
|
274 |
+
# Test that MiniBatchNMF.transform followed by MiniBatchNMF.inverse_transform
|
275 |
+
# is close to the identity
|
276 |
+
rng = np.random.RandomState(0)
|
277 |
+
A = np.abs(rng.randn(6, 4))
|
278 |
+
nmf = MiniBatchNMF(
|
279 |
+
random_state=rng,
|
280 |
+
max_iter=500,
|
281 |
+
init="nndsvdar",
|
282 |
+
fresh_restarts=True,
|
283 |
+
)
|
284 |
+
ft = nmf.fit_transform(A)
|
285 |
+
A_new = nmf.inverse_transform(ft)
|
286 |
+
assert_allclose(A, A_new, rtol=1e-3, atol=1e-2)
|
287 |
+
|
288 |
+
|
289 |
+
@pytest.mark.parametrize("Estimator", [NMF, MiniBatchNMF])
|
290 |
+
def test_n_components_greater_n_features(Estimator):
|
291 |
+
# Smoke test for the case of more components than features.
|
292 |
+
rng = np.random.mtrand.RandomState(42)
|
293 |
+
A = np.abs(rng.randn(30, 10))
|
294 |
+
Estimator(n_components=15, random_state=0, tol=1e-2).fit(A)
|
295 |
+
|
296 |
+
|
297 |
+
@pytest.mark.parametrize(
|
298 |
+
["Estimator", "solver"],
|
299 |
+
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
|
300 |
+
)
|
301 |
+
@pytest.mark.parametrize("sparse_container", CSC_CONTAINERS + CSR_CONTAINERS)
|
302 |
+
@pytest.mark.parametrize("alpha_W", (0.0, 1.0))
|
303 |
+
@pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same"))
|
304 |
+
def test_nmf_sparse_input(Estimator, solver, sparse_container, alpha_W, alpha_H):
|
305 |
+
# Test that sparse matrices are accepted as input
|
306 |
+
rng = np.random.mtrand.RandomState(42)
|
307 |
+
A = np.abs(rng.randn(10, 10))
|
308 |
+
A[:, 2 * np.arange(5)] = 0
|
309 |
+
A_sparse = sparse_container(A)
|
310 |
+
|
311 |
+
est1 = Estimator(
|
312 |
+
n_components=5,
|
313 |
+
init="random",
|
314 |
+
alpha_W=alpha_W,
|
315 |
+
alpha_H=alpha_H,
|
316 |
+
random_state=0,
|
317 |
+
tol=0,
|
318 |
+
max_iter=100,
|
319 |
+
**solver,
|
320 |
+
)
|
321 |
+
est2 = clone(est1)
|
322 |
+
|
323 |
+
W1 = est1.fit_transform(A)
|
324 |
+
W2 = est2.fit_transform(A_sparse)
|
325 |
+
H1 = est1.components_
|
326 |
+
H2 = est2.components_
|
327 |
+
|
328 |
+
assert_allclose(W1, W2)
|
329 |
+
assert_allclose(H1, H2)
|
330 |
+
|
331 |
+
|
332 |
+
@pytest.mark.parametrize(
|
333 |
+
["Estimator", "solver"],
|
334 |
+
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
|
335 |
+
)
|
336 |
+
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
|
337 |
+
def test_nmf_sparse_transform(Estimator, solver, csc_container):
|
338 |
+
# Test that transform works on sparse data. Issue #2124
|
339 |
+
rng = np.random.mtrand.RandomState(42)
|
340 |
+
A = np.abs(rng.randn(3, 2))
|
341 |
+
A[1, 1] = 0
|
342 |
+
A = csc_container(A)
|
343 |
+
|
344 |
+
model = Estimator(random_state=0, n_components=2, max_iter=400, **solver)
|
345 |
+
A_fit_tr = model.fit_transform(A)
|
346 |
+
A_tr = model.transform(A)
|
347 |
+
assert_allclose(A_fit_tr, A_tr, atol=1e-1)
|
348 |
+
|
349 |
+
|
350 |
+
# TODO(1.6): remove the warning filter
|
351 |
+
@pytest.mark.filterwarnings("ignore:The default value of `n_components` will change")
|
352 |
+
@pytest.mark.parametrize("init", ["random", "nndsvd"])
|
353 |
+
@pytest.mark.parametrize("solver", ("cd", "mu"))
|
354 |
+
@pytest.mark.parametrize("alpha_W", (0.0, 1.0))
|
355 |
+
@pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same"))
|
356 |
+
def test_non_negative_factorization_consistency(init, solver, alpha_W, alpha_H):
|
357 |
+
# Test that the function is called in the same way, either directly
|
358 |
+
# or through the NMF class
|
359 |
+
max_iter = 500
|
360 |
+
rng = np.random.mtrand.RandomState(42)
|
361 |
+
A = np.abs(rng.randn(10, 10))
|
362 |
+
A[:, 2 * np.arange(5)] = 0
|
363 |
+
|
364 |
+
W_nmf, H, _ = non_negative_factorization(
|
365 |
+
A,
|
366 |
+
init=init,
|
367 |
+
solver=solver,
|
368 |
+
max_iter=max_iter,
|
369 |
+
alpha_W=alpha_W,
|
370 |
+
alpha_H=alpha_H,
|
371 |
+
random_state=1,
|
372 |
+
tol=1e-2,
|
373 |
+
)
|
374 |
+
W_nmf_2, H, _ = non_negative_factorization(
|
375 |
+
A,
|
376 |
+
H=H,
|
377 |
+
update_H=False,
|
378 |
+
init=init,
|
379 |
+
solver=solver,
|
380 |
+
max_iter=max_iter,
|
381 |
+
alpha_W=alpha_W,
|
382 |
+
alpha_H=alpha_H,
|
383 |
+
random_state=1,
|
384 |
+
tol=1e-2,
|
385 |
+
)
|
386 |
+
|
387 |
+
model_class = NMF(
|
388 |
+
init=init,
|
389 |
+
solver=solver,
|
390 |
+
max_iter=max_iter,
|
391 |
+
alpha_W=alpha_W,
|
392 |
+
alpha_H=alpha_H,
|
393 |
+
random_state=1,
|
394 |
+
tol=1e-2,
|
395 |
+
)
|
396 |
+
W_cls = model_class.fit_transform(A)
|
397 |
+
W_cls_2 = model_class.transform(A)
|
398 |
+
|
399 |
+
assert_allclose(W_nmf, W_cls)
|
400 |
+
assert_allclose(W_nmf_2, W_cls_2)
|
401 |
+
|
402 |
+
|
403 |
+
def test_non_negative_factorization_checking():
|
404 |
+
# Note that the validity of parameter types and range of possible values
|
405 |
+
# for scalar numerical or str parameters is already checked in the common
|
406 |
+
# tests. Here we only check for problems that cannot be captured by simple
|
407 |
+
# declarative constraints on the valid parameter values.
|
408 |
+
|
409 |
+
A = np.ones((2, 2))
|
410 |
+
# Test parameters checking in public function
|
411 |
+
nnmf = non_negative_factorization
|
412 |
+
msg = re.escape("Negative values in data passed to NMF (input H)")
|
413 |
+
with pytest.raises(ValueError, match=msg):
|
414 |
+
nnmf(A, A, -A, 2, init="custom")
|
415 |
+
msg = re.escape("Negative values in data passed to NMF (input W)")
|
416 |
+
with pytest.raises(ValueError, match=msg):
|
417 |
+
nnmf(A, -A, A, 2, init="custom")
|
418 |
+
msg = re.escape("Array passed to NMF (input H) is full of zeros")
|
419 |
+
with pytest.raises(ValueError, match=msg):
|
420 |
+
nnmf(A, A, 0 * A, 2, init="custom")
|
421 |
+
|
422 |
+
|
423 |
+
def _beta_divergence_dense(X, W, H, beta):
|
424 |
+
"""Compute the beta-divergence of X and W.H for dense array only.
|
425 |
+
|
426 |
+
Used as a reference for testing nmf._beta_divergence.
|
427 |
+
"""
|
428 |
+
WH = np.dot(W, H)
|
429 |
+
|
430 |
+
if beta == 2:
|
431 |
+
return squared_norm(X - WH) / 2
|
432 |
+
|
433 |
+
WH_Xnonzero = WH[X != 0]
|
434 |
+
X_nonzero = X[X != 0]
|
435 |
+
np.maximum(WH_Xnonzero, 1e-9, out=WH_Xnonzero)
|
436 |
+
|
437 |
+
if beta == 1:
|
438 |
+
res = np.sum(X_nonzero * np.log(X_nonzero / WH_Xnonzero))
|
439 |
+
res += WH.sum() - X.sum()
|
440 |
+
|
441 |
+
elif beta == 0:
|
442 |
+
div = X_nonzero / WH_Xnonzero
|
443 |
+
res = np.sum(div) - X.size - np.sum(np.log(div))
|
444 |
+
else:
|
445 |
+
res = (X_nonzero**beta).sum()
|
446 |
+
res += (beta - 1) * (WH**beta).sum()
|
447 |
+
res -= beta * (X_nonzero * (WH_Xnonzero ** (beta - 1))).sum()
|
448 |
+
res /= beta * (beta - 1)
|
449 |
+
|
450 |
+
return res
|
451 |
+
|
452 |
+
|
453 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
454 |
+
def test_beta_divergence(csr_container):
|
455 |
+
# Compare _beta_divergence with the reference _beta_divergence_dense
|
456 |
+
n_samples = 20
|
457 |
+
n_features = 10
|
458 |
+
n_components = 5
|
459 |
+
beta_losses = [0.0, 0.5, 1.0, 1.5, 2.0, 3.0]
|
460 |
+
|
461 |
+
# initialization
|
462 |
+
rng = np.random.mtrand.RandomState(42)
|
463 |
+
X = rng.randn(n_samples, n_features)
|
464 |
+
np.clip(X, 0, None, out=X)
|
465 |
+
X_csr = csr_container(X)
|
466 |
+
W, H = nmf._initialize_nmf(X, n_components, init="random", random_state=42)
|
467 |
+
|
468 |
+
for beta in beta_losses:
|
469 |
+
ref = _beta_divergence_dense(X, W, H, beta)
|
470 |
+
loss = nmf._beta_divergence(X, W, H, beta)
|
471 |
+
loss_csr = nmf._beta_divergence(X_csr, W, H, beta)
|
472 |
+
|
473 |
+
assert_almost_equal(ref, loss, decimal=7)
|
474 |
+
assert_almost_equal(ref, loss_csr, decimal=7)
|
475 |
+
|
476 |
+
|
477 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
478 |
+
def test_special_sparse_dot(csr_container):
|
479 |
+
# Test the function that computes np.dot(W, H), only where X is non zero.
|
480 |
+
n_samples = 10
|
481 |
+
n_features = 5
|
482 |
+
n_components = 3
|
483 |
+
rng = np.random.mtrand.RandomState(42)
|
484 |
+
X = rng.randn(n_samples, n_features)
|
485 |
+
np.clip(X, 0, None, out=X)
|
486 |
+
X_csr = csr_container(X)
|
487 |
+
|
488 |
+
W = np.abs(rng.randn(n_samples, n_components))
|
489 |
+
H = np.abs(rng.randn(n_components, n_features))
|
490 |
+
|
491 |
+
WH_safe = nmf._special_sparse_dot(W, H, X_csr)
|
492 |
+
WH = nmf._special_sparse_dot(W, H, X)
|
493 |
+
|
494 |
+
# test that both results have same values, in X_csr nonzero elements
|
495 |
+
ii, jj = X_csr.nonzero()
|
496 |
+
WH_safe_data = np.asarray(WH_safe[ii, jj]).ravel()
|
497 |
+
assert_array_almost_equal(WH_safe_data, WH[ii, jj], decimal=10)
|
498 |
+
|
499 |
+
# test that WH_safe and X_csr have the same sparse structure
|
500 |
+
assert_array_equal(WH_safe.indices, X_csr.indices)
|
501 |
+
assert_array_equal(WH_safe.indptr, X_csr.indptr)
|
502 |
+
assert_array_equal(WH_safe.shape, X_csr.shape)
|
503 |
+
|
504 |
+
|
505 |
+
@ignore_warnings(category=ConvergenceWarning)
|
506 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
507 |
+
def test_nmf_multiplicative_update_sparse(csr_container):
|
508 |
+
# Compare sparse and dense input in multiplicative update NMF
|
509 |
+
# Also test continuity of the results with respect to beta_loss parameter
|
510 |
+
n_samples = 20
|
511 |
+
n_features = 10
|
512 |
+
n_components = 5
|
513 |
+
alpha = 0.1
|
514 |
+
l1_ratio = 0.5
|
515 |
+
n_iter = 20
|
516 |
+
|
517 |
+
# initialization
|
518 |
+
rng = np.random.mtrand.RandomState(1337)
|
519 |
+
X = rng.randn(n_samples, n_features)
|
520 |
+
X = np.abs(X)
|
521 |
+
X_csr = csr_container(X)
|
522 |
+
W0, H0 = nmf._initialize_nmf(X, n_components, init="random", random_state=42)
|
523 |
+
|
524 |
+
for beta_loss in (-1.2, 0, 0.2, 1.0, 2.0, 2.5):
|
525 |
+
# Reference with dense array X
|
526 |
+
W, H = W0.copy(), H0.copy()
|
527 |
+
W1, H1, _ = non_negative_factorization(
|
528 |
+
X,
|
529 |
+
W,
|
530 |
+
H,
|
531 |
+
n_components,
|
532 |
+
init="custom",
|
533 |
+
update_H=True,
|
534 |
+
solver="mu",
|
535 |
+
beta_loss=beta_loss,
|
536 |
+
max_iter=n_iter,
|
537 |
+
alpha_W=alpha,
|
538 |
+
l1_ratio=l1_ratio,
|
539 |
+
random_state=42,
|
540 |
+
)
|
541 |
+
|
542 |
+
# Compare with sparse X
|
543 |
+
W, H = W0.copy(), H0.copy()
|
544 |
+
W2, H2, _ = non_negative_factorization(
|
545 |
+
X_csr,
|
546 |
+
W,
|
547 |
+
H,
|
548 |
+
n_components,
|
549 |
+
init="custom",
|
550 |
+
update_H=True,
|
551 |
+
solver="mu",
|
552 |
+
beta_loss=beta_loss,
|
553 |
+
max_iter=n_iter,
|
554 |
+
alpha_W=alpha,
|
555 |
+
l1_ratio=l1_ratio,
|
556 |
+
random_state=42,
|
557 |
+
)
|
558 |
+
|
559 |
+
assert_allclose(W1, W2, atol=1e-7)
|
560 |
+
assert_allclose(H1, H2, atol=1e-7)
|
561 |
+
|
562 |
+
# Compare with almost same beta_loss, since some values have a specific
|
563 |
+
# behavior, but the results should be continuous w.r.t beta_loss
|
564 |
+
beta_loss -= 1.0e-5
|
565 |
+
W, H = W0.copy(), H0.copy()
|
566 |
+
W3, H3, _ = non_negative_factorization(
|
567 |
+
X_csr,
|
568 |
+
W,
|
569 |
+
H,
|
570 |
+
n_components,
|
571 |
+
init="custom",
|
572 |
+
update_H=True,
|
573 |
+
solver="mu",
|
574 |
+
beta_loss=beta_loss,
|
575 |
+
max_iter=n_iter,
|
576 |
+
alpha_W=alpha,
|
577 |
+
l1_ratio=l1_ratio,
|
578 |
+
random_state=42,
|
579 |
+
)
|
580 |
+
|
581 |
+
assert_allclose(W1, W3, atol=1e-4)
|
582 |
+
assert_allclose(H1, H3, atol=1e-4)
|
583 |
+
|
584 |
+
|
585 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
586 |
+
def test_nmf_negative_beta_loss(csr_container):
|
587 |
+
# Test that an error is raised if beta_loss < 0 and X contains zeros.
|
588 |
+
# Test that the output has not NaN values when the input contains zeros.
|
589 |
+
n_samples = 6
|
590 |
+
n_features = 5
|
591 |
+
n_components = 3
|
592 |
+
|
593 |
+
rng = np.random.mtrand.RandomState(42)
|
594 |
+
X = rng.randn(n_samples, n_features)
|
595 |
+
np.clip(X, 0, None, out=X)
|
596 |
+
X_csr = csr_container(X)
|
597 |
+
|
598 |
+
def _assert_nmf_no_nan(X, beta_loss):
|
599 |
+
W, H, _ = non_negative_factorization(
|
600 |
+
X,
|
601 |
+
init="random",
|
602 |
+
n_components=n_components,
|
603 |
+
solver="mu",
|
604 |
+
beta_loss=beta_loss,
|
605 |
+
random_state=0,
|
606 |
+
max_iter=1000,
|
607 |
+
)
|
608 |
+
assert not np.any(np.isnan(W))
|
609 |
+
assert not np.any(np.isnan(H))
|
610 |
+
|
611 |
+
msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge."
|
612 |
+
for beta_loss in (-0.6, 0.0):
|
613 |
+
with pytest.raises(ValueError, match=msg):
|
614 |
+
_assert_nmf_no_nan(X, beta_loss)
|
615 |
+
_assert_nmf_no_nan(X + 1e-9, beta_loss)
|
616 |
+
|
617 |
+
for beta_loss in (0.2, 1.0, 1.2, 2.0, 2.5):
|
618 |
+
_assert_nmf_no_nan(X, beta_loss)
|
619 |
+
_assert_nmf_no_nan(X_csr, beta_loss)
|
620 |
+
|
621 |
+
|
622 |
+
# TODO(1.6): remove the warning filter
|
623 |
+
@pytest.mark.filterwarnings("ignore:The default value of `n_components` will change")
|
624 |
+
@pytest.mark.parametrize("beta_loss", [-0.5, 0.0])
|
625 |
+
def test_minibatch_nmf_negative_beta_loss(beta_loss):
|
626 |
+
"""Check that an error is raised if beta_loss < 0 and X contains zeros."""
|
627 |
+
rng = np.random.RandomState(0)
|
628 |
+
X = rng.normal(size=(6, 5))
|
629 |
+
X[X < 0] = 0
|
630 |
+
|
631 |
+
nmf = MiniBatchNMF(beta_loss=beta_loss, random_state=0)
|
632 |
+
|
633 |
+
msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge."
|
634 |
+
with pytest.raises(ValueError, match=msg):
|
635 |
+
nmf.fit(X)
|
636 |
+
|
637 |
+
|
638 |
+
@pytest.mark.parametrize(
|
639 |
+
["Estimator", "solver"],
|
640 |
+
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
|
641 |
+
)
|
642 |
+
def test_nmf_regularization(Estimator, solver):
|
643 |
+
# Test the effect of L1 and L2 regularizations
|
644 |
+
n_samples = 6
|
645 |
+
n_features = 5
|
646 |
+
n_components = 3
|
647 |
+
rng = np.random.mtrand.RandomState(42)
|
648 |
+
X = np.abs(rng.randn(n_samples, n_features))
|
649 |
+
|
650 |
+
# L1 regularization should increase the number of zeros
|
651 |
+
l1_ratio = 1.0
|
652 |
+
regul = Estimator(
|
653 |
+
n_components=n_components,
|
654 |
+
alpha_W=0.5,
|
655 |
+
l1_ratio=l1_ratio,
|
656 |
+
random_state=42,
|
657 |
+
**solver,
|
658 |
+
)
|
659 |
+
model = Estimator(
|
660 |
+
n_components=n_components,
|
661 |
+
alpha_W=0.0,
|
662 |
+
l1_ratio=l1_ratio,
|
663 |
+
random_state=42,
|
664 |
+
**solver,
|
665 |
+
)
|
666 |
+
|
667 |
+
W_regul = regul.fit_transform(X)
|
668 |
+
W_model = model.fit_transform(X)
|
669 |
+
|
670 |
+
H_regul = regul.components_
|
671 |
+
H_model = model.components_
|
672 |
+
|
673 |
+
eps = np.finfo(np.float64).eps
|
674 |
+
W_regul_n_zeros = W_regul[W_regul <= eps].size
|
675 |
+
W_model_n_zeros = W_model[W_model <= eps].size
|
676 |
+
H_regul_n_zeros = H_regul[H_regul <= eps].size
|
677 |
+
H_model_n_zeros = H_model[H_model <= eps].size
|
678 |
+
|
679 |
+
assert W_regul_n_zeros > W_model_n_zeros
|
680 |
+
assert H_regul_n_zeros > H_model_n_zeros
|
681 |
+
|
682 |
+
# L2 regularization should decrease the sum of the squared norm
|
683 |
+
# of the matrices W and H
|
684 |
+
l1_ratio = 0.0
|
685 |
+
regul = Estimator(
|
686 |
+
n_components=n_components,
|
687 |
+
alpha_W=0.5,
|
688 |
+
l1_ratio=l1_ratio,
|
689 |
+
random_state=42,
|
690 |
+
**solver,
|
691 |
+
)
|
692 |
+
model = Estimator(
|
693 |
+
n_components=n_components,
|
694 |
+
alpha_W=0.0,
|
695 |
+
l1_ratio=l1_ratio,
|
696 |
+
random_state=42,
|
697 |
+
**solver,
|
698 |
+
)
|
699 |
+
|
700 |
+
W_regul = regul.fit_transform(X)
|
701 |
+
W_model = model.fit_transform(X)
|
702 |
+
|
703 |
+
H_regul = regul.components_
|
704 |
+
H_model = model.components_
|
705 |
+
|
706 |
+
assert (linalg.norm(W_model)) ** 2.0 + (linalg.norm(H_model)) ** 2.0 > (
|
707 |
+
linalg.norm(W_regul)
|
708 |
+
) ** 2.0 + (linalg.norm(H_regul)) ** 2.0
|
709 |
+
|
710 |
+
|
711 |
+
@ignore_warnings(category=ConvergenceWarning)
|
712 |
+
@pytest.mark.parametrize("solver", ("cd", "mu"))
|
713 |
+
def test_nmf_decreasing(solver):
|
714 |
+
# test that the objective function is decreasing at each iteration
|
715 |
+
n_samples = 20
|
716 |
+
n_features = 15
|
717 |
+
n_components = 10
|
718 |
+
alpha = 0.1
|
719 |
+
l1_ratio = 0.5
|
720 |
+
tol = 0.0
|
721 |
+
|
722 |
+
# initialization
|
723 |
+
rng = np.random.mtrand.RandomState(42)
|
724 |
+
X = rng.randn(n_samples, n_features)
|
725 |
+
np.abs(X, X)
|
726 |
+
W0, H0 = nmf._initialize_nmf(X, n_components, init="random", random_state=42)
|
727 |
+
|
728 |
+
for beta_loss in (-1.2, 0, 0.2, 1.0, 2.0, 2.5):
|
729 |
+
if solver != "mu" and beta_loss != 2:
|
730 |
+
# not implemented
|
731 |
+
continue
|
732 |
+
W, H = W0.copy(), H0.copy()
|
733 |
+
previous_loss = None
|
734 |
+
for _ in range(30):
|
735 |
+
# one more iteration starting from the previous results
|
736 |
+
W, H, _ = non_negative_factorization(
|
737 |
+
X,
|
738 |
+
W,
|
739 |
+
H,
|
740 |
+
beta_loss=beta_loss,
|
741 |
+
init="custom",
|
742 |
+
n_components=n_components,
|
743 |
+
max_iter=1,
|
744 |
+
alpha_W=alpha,
|
745 |
+
solver=solver,
|
746 |
+
tol=tol,
|
747 |
+
l1_ratio=l1_ratio,
|
748 |
+
verbose=0,
|
749 |
+
random_state=0,
|
750 |
+
update_H=True,
|
751 |
+
)
|
752 |
+
|
753 |
+
loss = (
|
754 |
+
nmf._beta_divergence(X, W, H, beta_loss)
|
755 |
+
+ alpha * l1_ratio * n_features * W.sum()
|
756 |
+
+ alpha * l1_ratio * n_samples * H.sum()
|
757 |
+
+ alpha * (1 - l1_ratio) * n_features * (W**2).sum()
|
758 |
+
+ alpha * (1 - l1_ratio) * n_samples * (H**2).sum()
|
759 |
+
)
|
760 |
+
if previous_loss is not None:
|
761 |
+
assert previous_loss > loss
|
762 |
+
previous_loss = loss
|
763 |
+
|
764 |
+
|
765 |
+
def test_nmf_underflow():
|
766 |
+
# Regression test for an underflow issue in _beta_divergence
|
767 |
+
rng = np.random.RandomState(0)
|
768 |
+
n_samples, n_features, n_components = 10, 2, 2
|
769 |
+
X = np.abs(rng.randn(n_samples, n_features)) * 10
|
770 |
+
W = np.abs(rng.randn(n_samples, n_components)) * 10
|
771 |
+
H = np.abs(rng.randn(n_components, n_features))
|
772 |
+
|
773 |
+
X[0, 0] = 0
|
774 |
+
ref = nmf._beta_divergence(X, W, H, beta=1.0)
|
775 |
+
X[0, 0] = 1e-323
|
776 |
+
res = nmf._beta_divergence(X, W, H, beta=1.0)
|
777 |
+
assert_almost_equal(res, ref)
|
778 |
+
|
779 |
+
|
780 |
+
# TODO(1.6): remove the warning filter
|
781 |
+
@pytest.mark.filterwarnings("ignore:The default value of `n_components` will change")
|
782 |
+
@pytest.mark.parametrize(
|
783 |
+
"dtype_in, dtype_out",
|
784 |
+
[
|
785 |
+
(np.float32, np.float32),
|
786 |
+
(np.float64, np.float64),
|
787 |
+
(np.int32, np.float64),
|
788 |
+
(np.int64, np.float64),
|
789 |
+
],
|
790 |
+
)
|
791 |
+
@pytest.mark.parametrize(
|
792 |
+
["Estimator", "solver"],
|
793 |
+
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
|
794 |
+
)
|
795 |
+
def test_nmf_dtype_match(Estimator, solver, dtype_in, dtype_out):
|
796 |
+
# Check that NMF preserves dtype (float32 and float64)
|
797 |
+
X = np.random.RandomState(0).randn(20, 15).astype(dtype_in, copy=False)
|
798 |
+
np.abs(X, out=X)
|
799 |
+
|
800 |
+
nmf = Estimator(
|
801 |
+
alpha_W=1.0,
|
802 |
+
alpha_H=1.0,
|
803 |
+
tol=1e-2,
|
804 |
+
random_state=0,
|
805 |
+
**solver,
|
806 |
+
)
|
807 |
+
|
808 |
+
assert nmf.fit(X).transform(X).dtype == dtype_out
|
809 |
+
assert nmf.fit_transform(X).dtype == dtype_out
|
810 |
+
assert nmf.components_.dtype == dtype_out
|
811 |
+
|
812 |
+
|
813 |
+
# TODO(1.6): remove the warning filter
|
814 |
+
@pytest.mark.filterwarnings("ignore:The default value of `n_components` will change")
|
815 |
+
@pytest.mark.parametrize(
|
816 |
+
["Estimator", "solver"],
|
817 |
+
[[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]],
|
818 |
+
)
|
819 |
+
def test_nmf_float32_float64_consistency(Estimator, solver):
|
820 |
+
# Check that the result of NMF is the same between float32 and float64
|
821 |
+
X = np.random.RandomState(0).randn(50, 7)
|
822 |
+
np.abs(X, out=X)
|
823 |
+
nmf32 = Estimator(random_state=0, tol=1e-3, **solver)
|
824 |
+
W32 = nmf32.fit_transform(X.astype(np.float32))
|
825 |
+
nmf64 = Estimator(random_state=0, tol=1e-3, **solver)
|
826 |
+
W64 = nmf64.fit_transform(X)
|
827 |
+
|
828 |
+
assert_allclose(W32, W64, atol=1e-5)
|
829 |
+
|
830 |
+
|
831 |
+
# TODO(1.6): remove the warning filter
|
832 |
+
@pytest.mark.filterwarnings("ignore:The default value of `n_components` will change")
|
833 |
+
@pytest.mark.parametrize("Estimator", [NMF, MiniBatchNMF])
|
834 |
+
def test_nmf_custom_init_dtype_error(Estimator):
|
835 |
+
# Check that an error is raise if custom H and/or W don't have the same
|
836 |
+
# dtype as X.
|
837 |
+
rng = np.random.RandomState(0)
|
838 |
+
X = rng.random_sample((20, 15))
|
839 |
+
H = rng.random_sample((15, 15)).astype(np.float32)
|
840 |
+
W = rng.random_sample((20, 15))
|
841 |
+
|
842 |
+
with pytest.raises(TypeError, match="should have the same dtype as X"):
|
843 |
+
Estimator(init="custom").fit(X, H=H, W=W)
|
844 |
+
|
845 |
+
with pytest.raises(TypeError, match="should have the same dtype as X"):
|
846 |
+
non_negative_factorization(X, H=H, update_H=False)
|
847 |
+
|
848 |
+
|
849 |
+
@pytest.mark.parametrize("beta_loss", [-0.5, 0, 0.5, 1, 1.5, 2, 2.5])
|
850 |
+
def test_nmf_minibatchnmf_equivalence(beta_loss):
|
851 |
+
# Test that MiniBatchNMF is equivalent to NMF when batch_size = n_samples and
|
852 |
+
# forget_factor 0.0 (stopping criterion put aside)
|
853 |
+
rng = np.random.mtrand.RandomState(42)
|
854 |
+
X = np.abs(rng.randn(48, 5))
|
855 |
+
|
856 |
+
nmf = NMF(
|
857 |
+
n_components=5,
|
858 |
+
beta_loss=beta_loss,
|
859 |
+
solver="mu",
|
860 |
+
random_state=0,
|
861 |
+
tol=0,
|
862 |
+
)
|
863 |
+
mbnmf = MiniBatchNMF(
|
864 |
+
n_components=5,
|
865 |
+
beta_loss=beta_loss,
|
866 |
+
random_state=0,
|
867 |
+
tol=0,
|
868 |
+
max_no_improvement=None,
|
869 |
+
batch_size=X.shape[0],
|
870 |
+
forget_factor=0.0,
|
871 |
+
)
|
872 |
+
W = nmf.fit_transform(X)
|
873 |
+
mbW = mbnmf.fit_transform(X)
|
874 |
+
assert_allclose(W, mbW)
|
875 |
+
|
876 |
+
|
877 |
+
def test_minibatch_nmf_partial_fit():
|
878 |
+
# Check fit / partial_fit equivalence. Applicable only with fresh restarts.
|
879 |
+
rng = np.random.mtrand.RandomState(42)
|
880 |
+
X = np.abs(rng.randn(100, 5))
|
881 |
+
|
882 |
+
n_components = 5
|
883 |
+
batch_size = 10
|
884 |
+
max_iter = 2
|
885 |
+
|
886 |
+
mbnmf1 = MiniBatchNMF(
|
887 |
+
n_components=n_components,
|
888 |
+
init="custom",
|
889 |
+
random_state=0,
|
890 |
+
max_iter=max_iter,
|
891 |
+
batch_size=batch_size,
|
892 |
+
tol=0,
|
893 |
+
max_no_improvement=None,
|
894 |
+
fresh_restarts=False,
|
895 |
+
)
|
896 |
+
mbnmf2 = MiniBatchNMF(n_components=n_components, init="custom", random_state=0)
|
897 |
+
|
898 |
+
# Force the same init of H (W is recomputed anyway) to be able to compare results.
|
899 |
+
W, H = nmf._initialize_nmf(
|
900 |
+
X, n_components=n_components, init="random", random_state=0
|
901 |
+
)
|
902 |
+
|
903 |
+
mbnmf1.fit(X, W=W, H=H)
|
904 |
+
for i in range(max_iter):
|
905 |
+
for j in range(batch_size):
|
906 |
+
mbnmf2.partial_fit(X[j : j + batch_size], W=W[:batch_size], H=H)
|
907 |
+
|
908 |
+
assert mbnmf1.n_steps_ == mbnmf2.n_steps_
|
909 |
+
assert_allclose(mbnmf1.components_, mbnmf2.components_)
|
910 |
+
|
911 |
+
|
912 |
+
def test_feature_names_out():
|
913 |
+
"""Check feature names out for NMF."""
|
914 |
+
random_state = np.random.RandomState(0)
|
915 |
+
X = np.abs(random_state.randn(10, 4))
|
916 |
+
nmf = NMF(n_components=3).fit(X)
|
917 |
+
|
918 |
+
names = nmf.get_feature_names_out()
|
919 |
+
assert_array_equal([f"nmf{i}" for i in range(3)], names)
|
920 |
+
|
921 |
+
|
922 |
+
# TODO(1.6): remove the warning filter
|
923 |
+
@pytest.mark.filterwarnings("ignore:The default value of `n_components` will change")
|
924 |
+
def test_minibatch_nmf_verbose():
|
925 |
+
# Check verbose mode of MiniBatchNMF for better coverage.
|
926 |
+
A = np.random.RandomState(0).random_sample((100, 10))
|
927 |
+
nmf = MiniBatchNMF(tol=1e-2, random_state=0, verbose=1)
|
928 |
+
old_stdout = sys.stdout
|
929 |
+
sys.stdout = StringIO()
|
930 |
+
try:
|
931 |
+
nmf.fit(A)
|
932 |
+
finally:
|
933 |
+
sys.stdout = old_stdout
|
934 |
+
|
935 |
+
|
936 |
+
# TODO(1.5): remove this test
|
937 |
+
def test_NMF_inverse_transform_W_deprecation():
|
938 |
+
rng = np.random.mtrand.RandomState(42)
|
939 |
+
A = np.abs(rng.randn(6, 5))
|
940 |
+
est = NMF(
|
941 |
+
n_components=3,
|
942 |
+
init="random",
|
943 |
+
random_state=0,
|
944 |
+
tol=1e-6,
|
945 |
+
)
|
946 |
+
Xt = est.fit_transform(A)
|
947 |
+
|
948 |
+
with pytest.raises(TypeError, match="Missing required positional argument"):
|
949 |
+
est.inverse_transform()
|
950 |
+
|
951 |
+
with pytest.raises(ValueError, match="Please provide only"):
|
952 |
+
est.inverse_transform(Xt=Xt, W=Xt)
|
953 |
+
|
954 |
+
with warnings.catch_warnings(record=True):
|
955 |
+
warnings.simplefilter("error")
|
956 |
+
est.inverse_transform(Xt)
|
957 |
+
|
958 |
+
with pytest.warns(FutureWarning, match="Input argument `W` was renamed to `Xt`"):
|
959 |
+
est.inverse_transform(W=Xt)
|
960 |
+
|
961 |
+
|
962 |
+
@pytest.mark.parametrize("Estimator", [NMF, MiniBatchNMF])
|
963 |
+
def test_nmf_n_components_auto(Estimator):
|
964 |
+
# Check that n_components is correctly inferred
|
965 |
+
# from the provided custom initialization.
|
966 |
+
rng = np.random.RandomState(0)
|
967 |
+
X = rng.random_sample((6, 5))
|
968 |
+
W = rng.random_sample((6, 2))
|
969 |
+
H = rng.random_sample((2, 5))
|
970 |
+
est = Estimator(
|
971 |
+
n_components="auto",
|
972 |
+
init="custom",
|
973 |
+
random_state=0,
|
974 |
+
tol=1e-6,
|
975 |
+
)
|
976 |
+
est.fit_transform(X, W=W, H=H)
|
977 |
+
assert est._n_components == H.shape[0]
|
978 |
+
|
979 |
+
|
980 |
+
def test_nmf_non_negative_factorization_n_components_auto():
|
981 |
+
# Check that n_components is correctly inferred from the provided
|
982 |
+
# custom initialization.
|
983 |
+
rng = np.random.RandomState(0)
|
984 |
+
X = rng.random_sample((6, 5))
|
985 |
+
W_init = rng.random_sample((6, 2))
|
986 |
+
H_init = rng.random_sample((2, 5))
|
987 |
+
W, H, _ = non_negative_factorization(
|
988 |
+
X, W=W_init, H=H_init, init="custom", n_components="auto"
|
989 |
+
)
|
990 |
+
assert H.shape == H_init.shape
|
991 |
+
assert W.shape == W_init.shape
|
992 |
+
|
993 |
+
|
994 |
+
# TODO(1.6): remove
|
995 |
+
def test_nmf_n_components_default_value_warning():
|
996 |
+
rng = np.random.RandomState(0)
|
997 |
+
X = rng.random_sample((6, 5))
|
998 |
+
H = rng.random_sample((2, 5))
|
999 |
+
with pytest.warns(
|
1000 |
+
FutureWarning, match="The default value of `n_components` will change from"
|
1001 |
+
):
|
1002 |
+
non_negative_factorization(X, H=H)
|
1003 |
+
|
1004 |
+
|
1005 |
+
def test_nmf_n_components_auto_no_h_update():
|
1006 |
+
# Tests that non_negative_factorization does not fail when setting
|
1007 |
+
# n_components="auto" also tests that the inferred n_component
|
1008 |
+
# value is the right one.
|
1009 |
+
rng = np.random.RandomState(0)
|
1010 |
+
X = rng.random_sample((6, 5))
|
1011 |
+
H_true = rng.random_sample((2, 5))
|
1012 |
+
W, H, _ = non_negative_factorization(
|
1013 |
+
X, H=H_true, n_components="auto", update_H=False
|
1014 |
+
) # should not fail
|
1015 |
+
assert_allclose(H, H_true)
|
1016 |
+
assert W.shape == (X.shape[0], H_true.shape[0])
|
1017 |
+
|
1018 |
+
|
1019 |
+
def test_nmf_w_h_not_used_warning():
|
1020 |
+
# Check that warnings are raised if user provided W and H are not used
|
1021 |
+
# and initialization overrides value of W or H
|
1022 |
+
rng = np.random.RandomState(0)
|
1023 |
+
X = rng.random_sample((6, 5))
|
1024 |
+
W_init = rng.random_sample((6, 2))
|
1025 |
+
H_init = rng.random_sample((2, 5))
|
1026 |
+
with pytest.warns(
|
1027 |
+
RuntimeWarning,
|
1028 |
+
match="When init!='custom', provided W or H are ignored",
|
1029 |
+
):
|
1030 |
+
non_negative_factorization(X, H=H_init, update_H=True, n_components="auto")
|
1031 |
+
|
1032 |
+
with pytest.warns(
|
1033 |
+
RuntimeWarning,
|
1034 |
+
match="When init!='custom', provided W or H are ignored",
|
1035 |
+
):
|
1036 |
+
non_negative_factorization(
|
1037 |
+
X, W=W_init, H=H_init, update_H=True, n_components="auto"
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
with pytest.warns(
|
1041 |
+
RuntimeWarning, match="When update_H=False, the provided initial W is not used."
|
1042 |
+
):
|
1043 |
+
# When update_H is False, W is ignored regardless of init
|
1044 |
+
# TODO: use the provided W when init="custom".
|
1045 |
+
non_negative_factorization(
|
1046 |
+
X, W=W_init, H=H_init, update_H=False, n_components="auto"
|
1047 |
+
)
|
1048 |
+
|
1049 |
+
|
1050 |
+
def test_nmf_custom_init_shape_error():
|
1051 |
+
# Check that an informative error is raised when custom initialization does not
|
1052 |
+
# have the right shape
|
1053 |
+
rng = np.random.RandomState(0)
|
1054 |
+
X = rng.random_sample((6, 5))
|
1055 |
+
H = rng.random_sample((2, 5))
|
1056 |
+
nmf = NMF(n_components=2, init="custom", random_state=0)
|
1057 |
+
|
1058 |
+
with pytest.raises(ValueError, match="Array with wrong first dimension passed"):
|
1059 |
+
nmf.fit(X, H=H, W=rng.random_sample((5, 2)))
|
1060 |
+
|
1061 |
+
with pytest.raises(ValueError, match="Array with wrong second dimension passed"):
|
1062 |
+
nmf.fit(X, H=H, W=rng.random_sample((6, 3)))
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_online_lda.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from io import StringIO
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
from numpy.testing import assert_array_equal
|
7 |
+
from scipy.linalg import block_diag
|
8 |
+
from scipy.special import psi
|
9 |
+
|
10 |
+
from sklearn.decomposition import LatentDirichletAllocation
|
11 |
+
from sklearn.decomposition._online_lda_fast import (
|
12 |
+
_dirichlet_expectation_1d,
|
13 |
+
_dirichlet_expectation_2d,
|
14 |
+
)
|
15 |
+
from sklearn.exceptions import NotFittedError
|
16 |
+
from sklearn.utils._testing import (
|
17 |
+
assert_allclose,
|
18 |
+
assert_almost_equal,
|
19 |
+
assert_array_almost_equal,
|
20 |
+
if_safe_multiprocessing_with_blas,
|
21 |
+
)
|
22 |
+
from sklearn.utils.fixes import CSR_CONTAINERS
|
23 |
+
|
24 |
+
|
25 |
+
def _build_sparse_array(csr_container):
|
26 |
+
# Create 3 topics and each topic has 3 distinct words.
|
27 |
+
# (Each word only belongs to a single topic.)
|
28 |
+
n_components = 3
|
29 |
+
block = np.full((3, 3), n_components, dtype=int)
|
30 |
+
blocks = [block] * n_components
|
31 |
+
X = block_diag(*blocks)
|
32 |
+
X = csr_container(X)
|
33 |
+
return (n_components, X)
|
34 |
+
|
35 |
+
|
36 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
37 |
+
def test_lda_default_prior_params(csr_container):
|
38 |
+
# default prior parameter should be `1 / topics`
|
39 |
+
# and verbose params should not affect result
|
40 |
+
n_components, X = _build_sparse_array(csr_container)
|
41 |
+
prior = 1.0 / n_components
|
42 |
+
lda_1 = LatentDirichletAllocation(
|
43 |
+
n_components=n_components,
|
44 |
+
doc_topic_prior=prior,
|
45 |
+
topic_word_prior=prior,
|
46 |
+
random_state=0,
|
47 |
+
)
|
48 |
+
lda_2 = LatentDirichletAllocation(n_components=n_components, random_state=0)
|
49 |
+
topic_distr_1 = lda_1.fit_transform(X)
|
50 |
+
topic_distr_2 = lda_2.fit_transform(X)
|
51 |
+
assert_almost_equal(topic_distr_1, topic_distr_2)
|
52 |
+
|
53 |
+
|
54 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
55 |
+
def test_lda_fit_batch(csr_container):
|
56 |
+
# Test LDA batch learning_offset (`fit` method with 'batch' learning)
|
57 |
+
rng = np.random.RandomState(0)
|
58 |
+
n_components, X = _build_sparse_array(csr_container)
|
59 |
+
lda = LatentDirichletAllocation(
|
60 |
+
n_components=n_components,
|
61 |
+
evaluate_every=1,
|
62 |
+
learning_method="batch",
|
63 |
+
random_state=rng,
|
64 |
+
)
|
65 |
+
lda.fit(X)
|
66 |
+
|
67 |
+
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
68 |
+
for component in lda.components_:
|
69 |
+
# Find top 3 words in each LDA component
|
70 |
+
top_idx = set(component.argsort()[-3:][::-1])
|
71 |
+
assert tuple(sorted(top_idx)) in correct_idx_grps
|
72 |
+
|
73 |
+
|
74 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
75 |
+
def test_lda_fit_online(csr_container):
|
76 |
+
# Test LDA online learning (`fit` method with 'online' learning)
|
77 |
+
rng = np.random.RandomState(0)
|
78 |
+
n_components, X = _build_sparse_array(csr_container)
|
79 |
+
lda = LatentDirichletAllocation(
|
80 |
+
n_components=n_components,
|
81 |
+
learning_offset=10.0,
|
82 |
+
evaluate_every=1,
|
83 |
+
learning_method="online",
|
84 |
+
random_state=rng,
|
85 |
+
)
|
86 |
+
lda.fit(X)
|
87 |
+
|
88 |
+
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
89 |
+
for component in lda.components_:
|
90 |
+
# Find top 3 words in each LDA component
|
91 |
+
top_idx = set(component.argsort()[-3:][::-1])
|
92 |
+
assert tuple(sorted(top_idx)) in correct_idx_grps
|
93 |
+
|
94 |
+
|
95 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
96 |
+
def test_lda_partial_fit(csr_container):
|
97 |
+
# Test LDA online learning (`partial_fit` method)
|
98 |
+
# (same as test_lda_batch)
|
99 |
+
rng = np.random.RandomState(0)
|
100 |
+
n_components, X = _build_sparse_array(csr_container)
|
101 |
+
lda = LatentDirichletAllocation(
|
102 |
+
n_components=n_components,
|
103 |
+
learning_offset=10.0,
|
104 |
+
total_samples=100,
|
105 |
+
random_state=rng,
|
106 |
+
)
|
107 |
+
for i in range(3):
|
108 |
+
lda.partial_fit(X)
|
109 |
+
|
110 |
+
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
111 |
+
for c in lda.components_:
|
112 |
+
top_idx = set(c.argsort()[-3:][::-1])
|
113 |
+
assert tuple(sorted(top_idx)) in correct_idx_grps
|
114 |
+
|
115 |
+
|
116 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
117 |
+
def test_lda_dense_input(csr_container):
|
118 |
+
# Test LDA with dense input.
|
119 |
+
rng = np.random.RandomState(0)
|
120 |
+
n_components, X = _build_sparse_array(csr_container)
|
121 |
+
lda = LatentDirichletAllocation(
|
122 |
+
n_components=n_components, learning_method="batch", random_state=rng
|
123 |
+
)
|
124 |
+
lda.fit(X.toarray())
|
125 |
+
|
126 |
+
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
127 |
+
for component in lda.components_:
|
128 |
+
# Find top 3 words in each LDA component
|
129 |
+
top_idx = set(component.argsort()[-3:][::-1])
|
130 |
+
assert tuple(sorted(top_idx)) in correct_idx_grps
|
131 |
+
|
132 |
+
|
133 |
+
def test_lda_transform():
|
134 |
+
# Test LDA transform.
|
135 |
+
# Transform result cannot be negative and should be normalized
|
136 |
+
rng = np.random.RandomState(0)
|
137 |
+
X = rng.randint(5, size=(20, 10))
|
138 |
+
n_components = 3
|
139 |
+
lda = LatentDirichletAllocation(n_components=n_components, random_state=rng)
|
140 |
+
X_trans = lda.fit_transform(X)
|
141 |
+
assert (X_trans > 0.0).any()
|
142 |
+
assert_array_almost_equal(np.sum(X_trans, axis=1), np.ones(X_trans.shape[0]))
|
143 |
+
|
144 |
+
|
145 |
+
@pytest.mark.parametrize("method", ("online", "batch"))
|
146 |
+
def test_lda_fit_transform(method):
|
147 |
+
# Test LDA fit_transform & transform
|
148 |
+
# fit_transform and transform result should be the same
|
149 |
+
rng = np.random.RandomState(0)
|
150 |
+
X = rng.randint(10, size=(50, 20))
|
151 |
+
lda = LatentDirichletAllocation(
|
152 |
+
n_components=5, learning_method=method, random_state=rng
|
153 |
+
)
|
154 |
+
X_fit = lda.fit_transform(X)
|
155 |
+
X_trans = lda.transform(X)
|
156 |
+
assert_array_almost_equal(X_fit, X_trans, 4)
|
157 |
+
|
158 |
+
|
159 |
+
def test_lda_negative_input():
|
160 |
+
# test pass dense matrix with sparse negative input.
|
161 |
+
X = np.full((5, 10), -1.0)
|
162 |
+
lda = LatentDirichletAllocation()
|
163 |
+
regex = r"^Negative values in data passed"
|
164 |
+
with pytest.raises(ValueError, match=regex):
|
165 |
+
lda.fit(X)
|
166 |
+
|
167 |
+
|
168 |
+
def test_lda_no_component_error():
|
169 |
+
# test `perplexity` before `fit`
|
170 |
+
rng = np.random.RandomState(0)
|
171 |
+
X = rng.randint(4, size=(20, 10))
|
172 |
+
lda = LatentDirichletAllocation()
|
173 |
+
regex = (
|
174 |
+
"This LatentDirichletAllocation instance is not fitted yet. "
|
175 |
+
"Call 'fit' with appropriate arguments before using this "
|
176 |
+
"estimator."
|
177 |
+
)
|
178 |
+
with pytest.raises(NotFittedError, match=regex):
|
179 |
+
lda.perplexity(X)
|
180 |
+
|
181 |
+
|
182 |
+
@if_safe_multiprocessing_with_blas
|
183 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
184 |
+
@pytest.mark.parametrize("method", ("online", "batch"))
|
185 |
+
def test_lda_multi_jobs(method, csr_container):
|
186 |
+
n_components, X = _build_sparse_array(csr_container)
|
187 |
+
# Test LDA batch training with multi CPU
|
188 |
+
rng = np.random.RandomState(0)
|
189 |
+
lda = LatentDirichletAllocation(
|
190 |
+
n_components=n_components,
|
191 |
+
n_jobs=2,
|
192 |
+
learning_method=method,
|
193 |
+
evaluate_every=1,
|
194 |
+
random_state=rng,
|
195 |
+
)
|
196 |
+
lda.fit(X)
|
197 |
+
|
198 |
+
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
199 |
+
for c in lda.components_:
|
200 |
+
top_idx = set(c.argsort()[-3:][::-1])
|
201 |
+
assert tuple(sorted(top_idx)) in correct_idx_grps
|
202 |
+
|
203 |
+
|
204 |
+
@if_safe_multiprocessing_with_blas
|
205 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
206 |
+
def test_lda_partial_fit_multi_jobs(csr_container):
|
207 |
+
# Test LDA online training with multi CPU
|
208 |
+
rng = np.random.RandomState(0)
|
209 |
+
n_components, X = _build_sparse_array(csr_container)
|
210 |
+
lda = LatentDirichletAllocation(
|
211 |
+
n_components=n_components,
|
212 |
+
n_jobs=2,
|
213 |
+
learning_offset=5.0,
|
214 |
+
total_samples=30,
|
215 |
+
random_state=rng,
|
216 |
+
)
|
217 |
+
for i in range(2):
|
218 |
+
lda.partial_fit(X)
|
219 |
+
|
220 |
+
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
221 |
+
for c in lda.components_:
|
222 |
+
top_idx = set(c.argsort()[-3:][::-1])
|
223 |
+
assert tuple(sorted(top_idx)) in correct_idx_grps
|
224 |
+
|
225 |
+
|
226 |
+
def test_lda_preplexity_mismatch():
|
227 |
+
# test dimension mismatch in `perplexity` method
|
228 |
+
rng = np.random.RandomState(0)
|
229 |
+
n_components = rng.randint(3, 6)
|
230 |
+
n_samples = rng.randint(6, 10)
|
231 |
+
X = np.random.randint(4, size=(n_samples, 10))
|
232 |
+
lda = LatentDirichletAllocation(
|
233 |
+
n_components=n_components,
|
234 |
+
learning_offset=5.0,
|
235 |
+
total_samples=20,
|
236 |
+
random_state=rng,
|
237 |
+
)
|
238 |
+
lda.fit(X)
|
239 |
+
# invalid samples
|
240 |
+
invalid_n_samples = rng.randint(4, size=(n_samples + 1, n_components))
|
241 |
+
with pytest.raises(ValueError, match=r"Number of samples"):
|
242 |
+
lda._perplexity_precomp_distr(X, invalid_n_samples)
|
243 |
+
# invalid topic number
|
244 |
+
invalid_n_components = rng.randint(4, size=(n_samples, n_components + 1))
|
245 |
+
with pytest.raises(ValueError, match=r"Number of topics"):
|
246 |
+
lda._perplexity_precomp_distr(X, invalid_n_components)
|
247 |
+
|
248 |
+
|
249 |
+
@pytest.mark.parametrize("method", ("online", "batch"))
|
250 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
251 |
+
def test_lda_perplexity(method, csr_container):
|
252 |
+
# Test LDA perplexity for batch training
|
253 |
+
# perplexity should be lower after each iteration
|
254 |
+
n_components, X = _build_sparse_array(csr_container)
|
255 |
+
lda_1 = LatentDirichletAllocation(
|
256 |
+
n_components=n_components,
|
257 |
+
max_iter=1,
|
258 |
+
learning_method=method,
|
259 |
+
total_samples=100,
|
260 |
+
random_state=0,
|
261 |
+
)
|
262 |
+
lda_2 = LatentDirichletAllocation(
|
263 |
+
n_components=n_components,
|
264 |
+
max_iter=10,
|
265 |
+
learning_method=method,
|
266 |
+
total_samples=100,
|
267 |
+
random_state=0,
|
268 |
+
)
|
269 |
+
lda_1.fit(X)
|
270 |
+
perp_1 = lda_1.perplexity(X, sub_sampling=False)
|
271 |
+
|
272 |
+
lda_2.fit(X)
|
273 |
+
perp_2 = lda_2.perplexity(X, sub_sampling=False)
|
274 |
+
assert perp_1 >= perp_2
|
275 |
+
|
276 |
+
perp_1_subsampling = lda_1.perplexity(X, sub_sampling=True)
|
277 |
+
perp_2_subsampling = lda_2.perplexity(X, sub_sampling=True)
|
278 |
+
assert perp_1_subsampling >= perp_2_subsampling
|
279 |
+
|
280 |
+
|
281 |
+
@pytest.mark.parametrize("method", ("online", "batch"))
|
282 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
283 |
+
def test_lda_score(method, csr_container):
|
284 |
+
# Test LDA score for batch training
|
285 |
+
# score should be higher after each iteration
|
286 |
+
n_components, X = _build_sparse_array(csr_container)
|
287 |
+
lda_1 = LatentDirichletAllocation(
|
288 |
+
n_components=n_components,
|
289 |
+
max_iter=1,
|
290 |
+
learning_method=method,
|
291 |
+
total_samples=100,
|
292 |
+
random_state=0,
|
293 |
+
)
|
294 |
+
lda_2 = LatentDirichletAllocation(
|
295 |
+
n_components=n_components,
|
296 |
+
max_iter=10,
|
297 |
+
learning_method=method,
|
298 |
+
total_samples=100,
|
299 |
+
random_state=0,
|
300 |
+
)
|
301 |
+
lda_1.fit_transform(X)
|
302 |
+
score_1 = lda_1.score(X)
|
303 |
+
|
304 |
+
lda_2.fit_transform(X)
|
305 |
+
score_2 = lda_2.score(X)
|
306 |
+
assert score_2 >= score_1
|
307 |
+
|
308 |
+
|
309 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
310 |
+
def test_perplexity_input_format(csr_container):
|
311 |
+
# Test LDA perplexity for sparse and dense input
|
312 |
+
# score should be the same for both dense and sparse input
|
313 |
+
n_components, X = _build_sparse_array(csr_container)
|
314 |
+
lda = LatentDirichletAllocation(
|
315 |
+
n_components=n_components,
|
316 |
+
max_iter=1,
|
317 |
+
learning_method="batch",
|
318 |
+
total_samples=100,
|
319 |
+
random_state=0,
|
320 |
+
)
|
321 |
+
lda.fit(X)
|
322 |
+
perp_1 = lda.perplexity(X)
|
323 |
+
perp_2 = lda.perplexity(X.toarray())
|
324 |
+
assert_almost_equal(perp_1, perp_2)
|
325 |
+
|
326 |
+
|
327 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
328 |
+
def test_lda_score_perplexity(csr_container):
|
329 |
+
# Test the relationship between LDA score and perplexity
|
330 |
+
n_components, X = _build_sparse_array(csr_container)
|
331 |
+
lda = LatentDirichletAllocation(
|
332 |
+
n_components=n_components, max_iter=10, random_state=0
|
333 |
+
)
|
334 |
+
lda.fit(X)
|
335 |
+
perplexity_1 = lda.perplexity(X, sub_sampling=False)
|
336 |
+
|
337 |
+
score = lda.score(X)
|
338 |
+
perplexity_2 = np.exp(-1.0 * (score / np.sum(X.data)))
|
339 |
+
assert_almost_equal(perplexity_1, perplexity_2)
|
340 |
+
|
341 |
+
|
342 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
343 |
+
def test_lda_fit_perplexity(csr_container):
|
344 |
+
# Test that the perplexity computed during fit is consistent with what is
|
345 |
+
# returned by the perplexity method
|
346 |
+
n_components, X = _build_sparse_array(csr_container)
|
347 |
+
lda = LatentDirichletAllocation(
|
348 |
+
n_components=n_components,
|
349 |
+
max_iter=1,
|
350 |
+
learning_method="batch",
|
351 |
+
random_state=0,
|
352 |
+
evaluate_every=1,
|
353 |
+
)
|
354 |
+
lda.fit(X)
|
355 |
+
|
356 |
+
# Perplexity computed at end of fit method
|
357 |
+
perplexity1 = lda.bound_
|
358 |
+
|
359 |
+
# Result of perplexity method on the train set
|
360 |
+
perplexity2 = lda.perplexity(X)
|
361 |
+
|
362 |
+
assert_almost_equal(perplexity1, perplexity2)
|
363 |
+
|
364 |
+
|
365 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
366 |
+
def test_lda_empty_docs(csr_container):
|
367 |
+
"""Test LDA on empty document (all-zero rows)."""
|
368 |
+
Z = np.zeros((5, 4))
|
369 |
+
for X in [Z, csr_container(Z)]:
|
370 |
+
lda = LatentDirichletAllocation(max_iter=750).fit(X)
|
371 |
+
assert_almost_equal(
|
372 |
+
lda.components_.sum(axis=0), np.ones(lda.components_.shape[1])
|
373 |
+
)
|
374 |
+
|
375 |
+
|
376 |
+
def test_dirichlet_expectation():
|
377 |
+
"""Test Cython version of Dirichlet expectation calculation."""
|
378 |
+
x = np.logspace(-100, 10, 10000)
|
379 |
+
expectation = np.empty_like(x)
|
380 |
+
_dirichlet_expectation_1d(x, 0, expectation)
|
381 |
+
assert_allclose(expectation, np.exp(psi(x) - psi(np.sum(x))), atol=1e-19)
|
382 |
+
|
383 |
+
x = x.reshape(100, 100)
|
384 |
+
assert_allclose(
|
385 |
+
_dirichlet_expectation_2d(x),
|
386 |
+
psi(x) - psi(np.sum(x, axis=1)[:, np.newaxis]),
|
387 |
+
rtol=1e-11,
|
388 |
+
atol=3e-9,
|
389 |
+
)
|
390 |
+
|
391 |
+
|
392 |
+
def check_verbosity(
|
393 |
+
verbose, evaluate_every, expected_lines, expected_perplexities, csr_container
|
394 |
+
):
|
395 |
+
n_components, X = _build_sparse_array(csr_container)
|
396 |
+
lda = LatentDirichletAllocation(
|
397 |
+
n_components=n_components,
|
398 |
+
max_iter=3,
|
399 |
+
learning_method="batch",
|
400 |
+
verbose=verbose,
|
401 |
+
evaluate_every=evaluate_every,
|
402 |
+
random_state=0,
|
403 |
+
)
|
404 |
+
out = StringIO()
|
405 |
+
old_out, sys.stdout = sys.stdout, out
|
406 |
+
try:
|
407 |
+
lda.fit(X)
|
408 |
+
finally:
|
409 |
+
sys.stdout = old_out
|
410 |
+
|
411 |
+
n_lines = out.getvalue().count("\n")
|
412 |
+
n_perplexity = out.getvalue().count("perplexity")
|
413 |
+
assert expected_lines == n_lines
|
414 |
+
assert expected_perplexities == n_perplexity
|
415 |
+
|
416 |
+
|
417 |
+
@pytest.mark.parametrize(
|
418 |
+
"verbose,evaluate_every,expected_lines,expected_perplexities",
|
419 |
+
[
|
420 |
+
(False, 1, 0, 0),
|
421 |
+
(False, 0, 0, 0),
|
422 |
+
(True, 0, 3, 0),
|
423 |
+
(True, 1, 3, 3),
|
424 |
+
(True, 2, 3, 1),
|
425 |
+
],
|
426 |
+
)
|
427 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
428 |
+
def test_verbosity(
|
429 |
+
verbose, evaluate_every, expected_lines, expected_perplexities, csr_container
|
430 |
+
):
|
431 |
+
check_verbosity(
|
432 |
+
verbose, evaluate_every, expected_lines, expected_perplexities, csr_container
|
433 |
+
)
|
434 |
+
|
435 |
+
|
436 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
437 |
+
def test_lda_feature_names_out(csr_container):
|
438 |
+
"""Check feature names out for LatentDirichletAllocation."""
|
439 |
+
n_components, X = _build_sparse_array(csr_container)
|
440 |
+
lda = LatentDirichletAllocation(n_components=n_components).fit(X)
|
441 |
+
|
442 |
+
names = lda.get_feature_names_out()
|
443 |
+
assert_array_equal(
|
444 |
+
[f"latentdirichletallocation{i}" for i in range(n_components)], names
|
445 |
+
)
|
446 |
+
|
447 |
+
|
448 |
+
@pytest.mark.parametrize("learning_method", ("batch", "online"))
|
449 |
+
def test_lda_dtype_match(learning_method, global_dtype):
|
450 |
+
"""Check data type preservation of fitted attributes."""
|
451 |
+
rng = np.random.RandomState(0)
|
452 |
+
X = rng.uniform(size=(20, 10)).astype(global_dtype, copy=False)
|
453 |
+
|
454 |
+
lda = LatentDirichletAllocation(
|
455 |
+
n_components=5, random_state=0, learning_method=learning_method
|
456 |
+
)
|
457 |
+
lda.fit(X)
|
458 |
+
assert lda.components_.dtype == global_dtype
|
459 |
+
assert lda.exp_dirichlet_component_.dtype == global_dtype
|
460 |
+
|
461 |
+
|
462 |
+
@pytest.mark.parametrize("learning_method", ("batch", "online"))
|
463 |
+
def test_lda_numerical_consistency(learning_method, global_random_seed):
|
464 |
+
"""Check numerical consistency between np.float32 and np.float64."""
|
465 |
+
rng = np.random.RandomState(global_random_seed)
|
466 |
+
X64 = rng.uniform(size=(20, 10))
|
467 |
+
X32 = X64.astype(np.float32)
|
468 |
+
|
469 |
+
lda_64 = LatentDirichletAllocation(
|
470 |
+
n_components=5, random_state=global_random_seed, learning_method=learning_method
|
471 |
+
).fit(X64)
|
472 |
+
lda_32 = LatentDirichletAllocation(
|
473 |
+
n_components=5, random_state=global_random_seed, learning_method=learning_method
|
474 |
+
).fit(X32)
|
475 |
+
|
476 |
+
assert_allclose(lda_32.components_, lda_64.components_)
|
477 |
+
assert_allclose(lda_32.transform(X32), lda_64.transform(X64))
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_pca.py
ADDED
@@ -0,0 +1,987 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
import scipy as sp
|
7 |
+
from numpy.testing import assert_array_equal
|
8 |
+
|
9 |
+
from sklearn import config_context, datasets
|
10 |
+
from sklearn.base import clone
|
11 |
+
from sklearn.datasets import load_iris, make_classification
|
12 |
+
from sklearn.decomposition import PCA
|
13 |
+
from sklearn.decomposition._pca import _assess_dimension, _infer_dimension
|
14 |
+
from sklearn.utils._array_api import (
|
15 |
+
_atol_for_type,
|
16 |
+
_convert_to_numpy,
|
17 |
+
yield_namespace_device_dtype_combinations,
|
18 |
+
)
|
19 |
+
from sklearn.utils._array_api import device as array_device
|
20 |
+
from sklearn.utils._testing import _array_api_for_tests, assert_allclose
|
21 |
+
from sklearn.utils.estimator_checks import (
|
22 |
+
_get_check_estimator_ids,
|
23 |
+
check_array_api_input_and_values,
|
24 |
+
)
|
25 |
+
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS
|
26 |
+
|
27 |
+
iris = datasets.load_iris()
|
28 |
+
PCA_SOLVERS = ["full", "arpack", "randomized", "auto"]
|
29 |
+
|
30 |
+
# `SPARSE_M` and `SPARSE_N` could be larger, but be aware:
|
31 |
+
# * SciPy's generation of random sparse matrix can be costly
|
32 |
+
# * A (SPARSE_M, SPARSE_N) dense array is allocated to compare against
|
33 |
+
SPARSE_M, SPARSE_N = 1000, 300 # arbitrary
|
34 |
+
SPARSE_MAX_COMPONENTS = min(SPARSE_M, SPARSE_N)
|
35 |
+
|
36 |
+
|
37 |
+
def _check_fitted_pca_close(pca1, pca2, rtol):
|
38 |
+
assert_allclose(pca1.components_, pca2.components_, rtol=rtol)
|
39 |
+
assert_allclose(pca1.explained_variance_, pca2.explained_variance_, rtol=rtol)
|
40 |
+
assert_allclose(pca1.singular_values_, pca2.singular_values_, rtol=rtol)
|
41 |
+
assert_allclose(pca1.mean_, pca2.mean_, rtol=rtol)
|
42 |
+
assert_allclose(pca1.n_components_, pca2.n_components_, rtol=rtol)
|
43 |
+
assert_allclose(pca1.n_samples_, pca2.n_samples_, rtol=rtol)
|
44 |
+
assert_allclose(pca1.noise_variance_, pca2.noise_variance_, rtol=rtol)
|
45 |
+
assert_allclose(pca1.n_features_in_, pca2.n_features_in_, rtol=rtol)
|
46 |
+
|
47 |
+
|
48 |
+
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
49 |
+
@pytest.mark.parametrize("n_components", range(1, iris.data.shape[1]))
|
50 |
+
def test_pca(svd_solver, n_components):
|
51 |
+
X = iris.data
|
52 |
+
pca = PCA(n_components=n_components, svd_solver=svd_solver)
|
53 |
+
|
54 |
+
# check the shape of fit.transform
|
55 |
+
X_r = pca.fit(X).transform(X)
|
56 |
+
assert X_r.shape[1] == n_components
|
57 |
+
|
58 |
+
# check the equivalence of fit.transform and fit_transform
|
59 |
+
X_r2 = pca.fit_transform(X)
|
60 |
+
assert_allclose(X_r, X_r2)
|
61 |
+
X_r = pca.transform(X)
|
62 |
+
assert_allclose(X_r, X_r2)
|
63 |
+
|
64 |
+
# Test get_covariance and get_precision
|
65 |
+
cov = pca.get_covariance()
|
66 |
+
precision = pca.get_precision()
|
67 |
+
assert_allclose(np.dot(cov, precision), np.eye(X.shape[1]), atol=1e-12)
|
68 |
+
|
69 |
+
|
70 |
+
@pytest.mark.parametrize("density", [0.01, 0.1, 0.30])
|
71 |
+
@pytest.mark.parametrize("n_components", [1, 2, 10])
|
72 |
+
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
|
73 |
+
@pytest.mark.parametrize("svd_solver", ["arpack"])
|
74 |
+
@pytest.mark.parametrize("scale", [1, 10, 100])
|
75 |
+
def test_pca_sparse(
|
76 |
+
global_random_seed, svd_solver, sparse_container, n_components, density, scale
|
77 |
+
):
|
78 |
+
# Make sure any tolerance changes pass with SKLEARN_TESTS_GLOBAL_RANDOM_SEED="all"
|
79 |
+
rtol = 5e-07
|
80 |
+
transform_rtol = 3e-05
|
81 |
+
|
82 |
+
random_state = np.random.default_rng(global_random_seed)
|
83 |
+
X = sparse_container(
|
84 |
+
sp.sparse.random(
|
85 |
+
SPARSE_M,
|
86 |
+
SPARSE_N,
|
87 |
+
random_state=random_state,
|
88 |
+
density=density,
|
89 |
+
)
|
90 |
+
)
|
91 |
+
# Scale the data + vary the column means
|
92 |
+
scale_vector = random_state.random(X.shape[1]) * scale
|
93 |
+
X = X.multiply(scale_vector)
|
94 |
+
|
95 |
+
pca = PCA(
|
96 |
+
n_components=n_components,
|
97 |
+
svd_solver=svd_solver,
|
98 |
+
random_state=global_random_seed,
|
99 |
+
)
|
100 |
+
pca.fit(X)
|
101 |
+
|
102 |
+
Xd = X.toarray()
|
103 |
+
pcad = PCA(
|
104 |
+
n_components=n_components,
|
105 |
+
svd_solver=svd_solver,
|
106 |
+
random_state=global_random_seed,
|
107 |
+
)
|
108 |
+
pcad.fit(Xd)
|
109 |
+
|
110 |
+
# Fitted attributes equality
|
111 |
+
_check_fitted_pca_close(pca, pcad, rtol=rtol)
|
112 |
+
|
113 |
+
# Test transform
|
114 |
+
X2 = sparse_container(
|
115 |
+
sp.sparse.random(
|
116 |
+
SPARSE_M,
|
117 |
+
SPARSE_N,
|
118 |
+
random_state=random_state,
|
119 |
+
density=density,
|
120 |
+
)
|
121 |
+
)
|
122 |
+
X2d = X2.toarray()
|
123 |
+
|
124 |
+
assert_allclose(pca.transform(X2), pca.transform(X2d), rtol=transform_rtol)
|
125 |
+
assert_allclose(pca.transform(X2), pcad.transform(X2d), rtol=transform_rtol)
|
126 |
+
|
127 |
+
|
128 |
+
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
|
129 |
+
def test_pca_sparse_fit_transform(global_random_seed, sparse_container):
|
130 |
+
random_state = np.random.default_rng(global_random_seed)
|
131 |
+
X = sparse_container(
|
132 |
+
sp.sparse.random(
|
133 |
+
SPARSE_M,
|
134 |
+
SPARSE_N,
|
135 |
+
random_state=random_state,
|
136 |
+
density=0.01,
|
137 |
+
)
|
138 |
+
)
|
139 |
+
X2 = sparse_container(
|
140 |
+
sp.sparse.random(
|
141 |
+
SPARSE_M,
|
142 |
+
SPARSE_N,
|
143 |
+
random_state=random_state,
|
144 |
+
density=0.01,
|
145 |
+
)
|
146 |
+
)
|
147 |
+
|
148 |
+
pca_fit = PCA(n_components=10, svd_solver="arpack", random_state=global_random_seed)
|
149 |
+
pca_fit_transform = PCA(
|
150 |
+
n_components=10, svd_solver="arpack", random_state=global_random_seed
|
151 |
+
)
|
152 |
+
|
153 |
+
pca_fit.fit(X)
|
154 |
+
transformed_X = pca_fit_transform.fit_transform(X)
|
155 |
+
|
156 |
+
_check_fitted_pca_close(pca_fit, pca_fit_transform, rtol=1e-10)
|
157 |
+
assert_allclose(transformed_X, pca_fit_transform.transform(X), rtol=2e-9)
|
158 |
+
assert_allclose(transformed_X, pca_fit.transform(X), rtol=2e-9)
|
159 |
+
assert_allclose(pca_fit.transform(X2), pca_fit_transform.transform(X2), rtol=2e-9)
|
160 |
+
|
161 |
+
|
162 |
+
@pytest.mark.parametrize("svd_solver", ["randomized", "full", "auto"])
|
163 |
+
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
|
164 |
+
def test_sparse_pca_solver_error(global_random_seed, svd_solver, sparse_container):
|
165 |
+
random_state = np.random.RandomState(global_random_seed)
|
166 |
+
X = sparse_container(
|
167 |
+
sp.sparse.random(
|
168 |
+
SPARSE_M,
|
169 |
+
SPARSE_N,
|
170 |
+
random_state=random_state,
|
171 |
+
)
|
172 |
+
)
|
173 |
+
pca = PCA(n_components=30, svd_solver=svd_solver)
|
174 |
+
error_msg_pattern = (
|
175 |
+
f'PCA only support sparse inputs with the "arpack" solver, while "{svd_solver}"'
|
176 |
+
" was passed"
|
177 |
+
)
|
178 |
+
with pytest.raises(TypeError, match=error_msg_pattern):
|
179 |
+
pca.fit(X)
|
180 |
+
|
181 |
+
|
182 |
+
def test_no_empty_slice_warning():
|
183 |
+
# test if we avoid numpy warnings for computing over empty arrays
|
184 |
+
n_components = 10
|
185 |
+
n_features = n_components + 2 # anything > n_comps triggered it in 0.16
|
186 |
+
X = np.random.uniform(-1, 1, size=(n_components, n_features))
|
187 |
+
pca = PCA(n_components=n_components)
|
188 |
+
with warnings.catch_warnings():
|
189 |
+
warnings.simplefilter("error", RuntimeWarning)
|
190 |
+
pca.fit(X)
|
191 |
+
|
192 |
+
|
193 |
+
@pytest.mark.parametrize("copy", [True, False])
|
194 |
+
@pytest.mark.parametrize("solver", PCA_SOLVERS)
|
195 |
+
def test_whitening(solver, copy):
|
196 |
+
# Check that PCA output has unit-variance
|
197 |
+
rng = np.random.RandomState(0)
|
198 |
+
n_samples = 100
|
199 |
+
n_features = 80
|
200 |
+
n_components = 30
|
201 |
+
rank = 50
|
202 |
+
|
203 |
+
# some low rank data with correlated features
|
204 |
+
X = np.dot(
|
205 |
+
rng.randn(n_samples, rank),
|
206 |
+
np.dot(np.diag(np.linspace(10.0, 1.0, rank)), rng.randn(rank, n_features)),
|
207 |
+
)
|
208 |
+
# the component-wise variance of the first 50 features is 3 times the
|
209 |
+
# mean component-wise variance of the remaining 30 features
|
210 |
+
X[:, :50] *= 3
|
211 |
+
|
212 |
+
assert X.shape == (n_samples, n_features)
|
213 |
+
|
214 |
+
# the component-wise variance is thus highly varying:
|
215 |
+
assert X.std(axis=0).std() > 43.8
|
216 |
+
|
217 |
+
# whiten the data while projecting to the lower dim subspace
|
218 |
+
X_ = X.copy() # make sure we keep an original across iterations.
|
219 |
+
pca = PCA(
|
220 |
+
n_components=n_components,
|
221 |
+
whiten=True,
|
222 |
+
copy=copy,
|
223 |
+
svd_solver=solver,
|
224 |
+
random_state=0,
|
225 |
+
iterated_power=7,
|
226 |
+
)
|
227 |
+
# test fit_transform
|
228 |
+
X_whitened = pca.fit_transform(X_.copy())
|
229 |
+
assert X_whitened.shape == (n_samples, n_components)
|
230 |
+
X_whitened2 = pca.transform(X_)
|
231 |
+
assert_allclose(X_whitened, X_whitened2, rtol=5e-4)
|
232 |
+
|
233 |
+
assert_allclose(X_whitened.std(ddof=1, axis=0), np.ones(n_components))
|
234 |
+
assert_allclose(X_whitened.mean(axis=0), np.zeros(n_components), atol=1e-12)
|
235 |
+
|
236 |
+
X_ = X.copy()
|
237 |
+
pca = PCA(
|
238 |
+
n_components=n_components, whiten=False, copy=copy, svd_solver=solver
|
239 |
+
).fit(X_.copy())
|
240 |
+
X_unwhitened = pca.transform(X_)
|
241 |
+
assert X_unwhitened.shape == (n_samples, n_components)
|
242 |
+
|
243 |
+
# in that case the output components still have varying variances
|
244 |
+
assert X_unwhitened.std(axis=0).std() == pytest.approx(74.1, rel=1e-1)
|
245 |
+
# we always center, so no test for non-centering.
|
246 |
+
|
247 |
+
|
248 |
+
@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
|
249 |
+
def test_pca_explained_variance_equivalence_solver(svd_solver):
|
250 |
+
rng = np.random.RandomState(0)
|
251 |
+
n_samples, n_features = 100, 80
|
252 |
+
X = rng.randn(n_samples, n_features)
|
253 |
+
|
254 |
+
pca_full = PCA(n_components=2, svd_solver="full")
|
255 |
+
pca_other = PCA(n_components=2, svd_solver=svd_solver, random_state=0)
|
256 |
+
|
257 |
+
pca_full.fit(X)
|
258 |
+
pca_other.fit(X)
|
259 |
+
|
260 |
+
assert_allclose(
|
261 |
+
pca_full.explained_variance_, pca_other.explained_variance_, rtol=5e-2
|
262 |
+
)
|
263 |
+
assert_allclose(
|
264 |
+
pca_full.explained_variance_ratio_,
|
265 |
+
pca_other.explained_variance_ratio_,
|
266 |
+
rtol=5e-2,
|
267 |
+
)
|
268 |
+
|
269 |
+
|
270 |
+
@pytest.mark.parametrize(
|
271 |
+
"X",
|
272 |
+
[
|
273 |
+
np.random.RandomState(0).randn(100, 80),
|
274 |
+
datasets.make_classification(100, 80, n_informative=78, random_state=0)[0],
|
275 |
+
],
|
276 |
+
ids=["random-data", "correlated-data"],
|
277 |
+
)
|
278 |
+
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
279 |
+
def test_pca_explained_variance_empirical(X, svd_solver):
|
280 |
+
pca = PCA(n_components=2, svd_solver=svd_solver, random_state=0)
|
281 |
+
X_pca = pca.fit_transform(X)
|
282 |
+
assert_allclose(pca.explained_variance_, np.var(X_pca, ddof=1, axis=0))
|
283 |
+
|
284 |
+
expected_result = np.linalg.eig(np.cov(X, rowvar=False))[0]
|
285 |
+
expected_result = sorted(expected_result, reverse=True)[:2]
|
286 |
+
assert_allclose(pca.explained_variance_, expected_result, rtol=5e-3)
|
287 |
+
|
288 |
+
|
289 |
+
@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
|
290 |
+
def test_pca_singular_values_consistency(svd_solver):
|
291 |
+
rng = np.random.RandomState(0)
|
292 |
+
n_samples, n_features = 100, 80
|
293 |
+
X = rng.randn(n_samples, n_features)
|
294 |
+
|
295 |
+
pca_full = PCA(n_components=2, svd_solver="full", random_state=rng)
|
296 |
+
pca_other = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
|
297 |
+
|
298 |
+
pca_full.fit(X)
|
299 |
+
pca_other.fit(X)
|
300 |
+
|
301 |
+
assert_allclose(pca_full.singular_values_, pca_other.singular_values_, rtol=5e-3)
|
302 |
+
|
303 |
+
|
304 |
+
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
305 |
+
def test_pca_singular_values(svd_solver):
|
306 |
+
rng = np.random.RandomState(0)
|
307 |
+
n_samples, n_features = 100, 80
|
308 |
+
X = rng.randn(n_samples, n_features)
|
309 |
+
|
310 |
+
pca = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
|
311 |
+
X_trans = pca.fit_transform(X)
|
312 |
+
|
313 |
+
# compare to the Frobenius norm
|
314 |
+
assert_allclose(
|
315 |
+
np.sum(pca.singular_values_**2), np.linalg.norm(X_trans, "fro") ** 2
|
316 |
+
)
|
317 |
+
# Compare to the 2-norms of the score vectors
|
318 |
+
assert_allclose(pca.singular_values_, np.sqrt(np.sum(X_trans**2, axis=0)))
|
319 |
+
|
320 |
+
# set the singular values and see what er get back
|
321 |
+
n_samples, n_features = 100, 110
|
322 |
+
X = rng.randn(n_samples, n_features)
|
323 |
+
|
324 |
+
pca = PCA(n_components=3, svd_solver=svd_solver, random_state=rng)
|
325 |
+
X_trans = pca.fit_transform(X)
|
326 |
+
X_trans /= np.sqrt(np.sum(X_trans**2, axis=0))
|
327 |
+
X_trans[:, 0] *= 3.142
|
328 |
+
X_trans[:, 1] *= 2.718
|
329 |
+
X_hat = np.dot(X_trans, pca.components_)
|
330 |
+
pca.fit(X_hat)
|
331 |
+
assert_allclose(pca.singular_values_, [3.142, 2.718, 1.0])
|
332 |
+
|
333 |
+
|
334 |
+
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
335 |
+
def test_pca_check_projection(svd_solver):
|
336 |
+
# Test that the projection of data is correct
|
337 |
+
rng = np.random.RandomState(0)
|
338 |
+
n, p = 100, 3
|
339 |
+
X = rng.randn(n, p) * 0.1
|
340 |
+
X[:10] += np.array([3, 4, 5])
|
341 |
+
Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5])
|
342 |
+
|
343 |
+
Yt = PCA(n_components=2, svd_solver=svd_solver).fit(X).transform(Xt)
|
344 |
+
Yt /= np.sqrt((Yt**2).sum())
|
345 |
+
|
346 |
+
assert_allclose(np.abs(Yt[0][0]), 1.0, rtol=5e-3)
|
347 |
+
|
348 |
+
|
349 |
+
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
350 |
+
def test_pca_check_projection_list(svd_solver):
|
351 |
+
# Test that the projection of data is correct
|
352 |
+
X = [[1.0, 0.0], [0.0, 1.0]]
|
353 |
+
pca = PCA(n_components=1, svd_solver=svd_solver, random_state=0)
|
354 |
+
X_trans = pca.fit_transform(X)
|
355 |
+
assert X_trans.shape, (2, 1)
|
356 |
+
assert_allclose(X_trans.mean(), 0.00, atol=1e-12)
|
357 |
+
assert_allclose(X_trans.std(), 0.71, rtol=5e-3)
|
358 |
+
|
359 |
+
|
360 |
+
@pytest.mark.parametrize("svd_solver", ["full", "arpack", "randomized"])
|
361 |
+
@pytest.mark.parametrize("whiten", [False, True])
|
362 |
+
def test_pca_inverse(svd_solver, whiten):
|
363 |
+
# Test that the projection of data can be inverted
|
364 |
+
rng = np.random.RandomState(0)
|
365 |
+
n, p = 50, 3
|
366 |
+
X = rng.randn(n, p) # spherical data
|
367 |
+
X[:, 1] *= 0.00001 # make middle component relatively small
|
368 |
+
X += [5, 4, 3] # make a large mean
|
369 |
+
|
370 |
+
# same check that we can find the original data from the transformed
|
371 |
+
# signal (since the data is almost of rank n_components)
|
372 |
+
pca = PCA(n_components=2, svd_solver=svd_solver, whiten=whiten).fit(X)
|
373 |
+
Y = pca.transform(X)
|
374 |
+
Y_inverse = pca.inverse_transform(Y)
|
375 |
+
assert_allclose(X, Y_inverse, rtol=5e-6)
|
376 |
+
|
377 |
+
|
378 |
+
@pytest.mark.parametrize(
|
379 |
+
"data", [np.array([[0, 1, 0], [1, 0, 0]]), np.array([[0, 1, 0], [1, 0, 0]]).T]
|
380 |
+
)
|
381 |
+
@pytest.mark.parametrize(
|
382 |
+
"svd_solver, n_components, err_msg",
|
383 |
+
[
|
384 |
+
("arpack", 0, r"must be between 1 and min\(n_samples, n_features\)"),
|
385 |
+
("randomized", 0, r"must be between 1 and min\(n_samples, n_features\)"),
|
386 |
+
("arpack", 2, r"must be strictly less than min"),
|
387 |
+
(
|
388 |
+
"auto",
|
389 |
+
3,
|
390 |
+
(
|
391 |
+
r"n_components=3 must be between 0 and min\(n_samples, "
|
392 |
+
r"n_features\)=2 with svd_solver='full'"
|
393 |
+
),
|
394 |
+
),
|
395 |
+
],
|
396 |
+
)
|
397 |
+
def test_pca_validation(svd_solver, data, n_components, err_msg):
|
398 |
+
# Ensures that solver-specific extreme inputs for the n_components
|
399 |
+
# parameter raise errors
|
400 |
+
smallest_d = 2 # The smallest dimension
|
401 |
+
pca_fitted = PCA(n_components, svd_solver=svd_solver)
|
402 |
+
|
403 |
+
with pytest.raises(ValueError, match=err_msg):
|
404 |
+
pca_fitted.fit(data)
|
405 |
+
|
406 |
+
# Additional case for arpack
|
407 |
+
if svd_solver == "arpack":
|
408 |
+
n_components = smallest_d
|
409 |
+
|
410 |
+
err_msg = (
|
411 |
+
"n_components={}L? must be strictly less than "
|
412 |
+
r"min\(n_samples, n_features\)={}L? with "
|
413 |
+
"svd_solver='arpack'".format(n_components, smallest_d)
|
414 |
+
)
|
415 |
+
with pytest.raises(ValueError, match=err_msg):
|
416 |
+
PCA(n_components, svd_solver=svd_solver).fit(data)
|
417 |
+
|
418 |
+
|
419 |
+
@pytest.mark.parametrize(
|
420 |
+
"solver, n_components_",
|
421 |
+
[
|
422 |
+
("full", min(iris.data.shape)),
|
423 |
+
("arpack", min(iris.data.shape) - 1),
|
424 |
+
("randomized", min(iris.data.shape)),
|
425 |
+
],
|
426 |
+
)
|
427 |
+
@pytest.mark.parametrize("data", [iris.data, iris.data.T])
|
428 |
+
def test_n_components_none(data, solver, n_components_):
|
429 |
+
pca = PCA(svd_solver=solver)
|
430 |
+
pca.fit(data)
|
431 |
+
assert pca.n_components_ == n_components_
|
432 |
+
|
433 |
+
|
434 |
+
@pytest.mark.parametrize("svd_solver", ["auto", "full"])
|
435 |
+
def test_n_components_mle(svd_solver):
|
436 |
+
# Ensure that n_components == 'mle' doesn't raise error for auto/full
|
437 |
+
rng = np.random.RandomState(0)
|
438 |
+
n_samples, n_features = 600, 10
|
439 |
+
X = rng.randn(n_samples, n_features)
|
440 |
+
pca = PCA(n_components="mle", svd_solver=svd_solver)
|
441 |
+
pca.fit(X)
|
442 |
+
assert pca.n_components_ == 1
|
443 |
+
|
444 |
+
|
445 |
+
@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
|
446 |
+
def test_n_components_mle_error(svd_solver):
|
447 |
+
# Ensure that n_components == 'mle' will raise an error for unsupported
|
448 |
+
# solvers
|
449 |
+
rng = np.random.RandomState(0)
|
450 |
+
n_samples, n_features = 600, 10
|
451 |
+
X = rng.randn(n_samples, n_features)
|
452 |
+
pca = PCA(n_components="mle", svd_solver=svd_solver)
|
453 |
+
err_msg = "n_components='mle' cannot be a string with svd_solver='{}'".format(
|
454 |
+
svd_solver
|
455 |
+
)
|
456 |
+
with pytest.raises(ValueError, match=err_msg):
|
457 |
+
pca.fit(X)
|
458 |
+
|
459 |
+
|
460 |
+
def test_pca_dim():
|
461 |
+
# Check automated dimensionality setting
|
462 |
+
rng = np.random.RandomState(0)
|
463 |
+
n, p = 100, 5
|
464 |
+
X = rng.randn(n, p) * 0.1
|
465 |
+
X[:10] += np.array([3, 4, 5, 1, 2])
|
466 |
+
pca = PCA(n_components="mle", svd_solver="full").fit(X)
|
467 |
+
assert pca.n_components == "mle"
|
468 |
+
assert pca.n_components_ == 1
|
469 |
+
|
470 |
+
|
471 |
+
def test_infer_dim_1():
|
472 |
+
# TODO: explain what this is testing
|
473 |
+
# Or at least use explicit variable names...
|
474 |
+
n, p = 1000, 5
|
475 |
+
rng = np.random.RandomState(0)
|
476 |
+
X = (
|
477 |
+
rng.randn(n, p) * 0.1
|
478 |
+
+ rng.randn(n, 1) * np.array([3, 4, 5, 1, 2])
|
479 |
+
+ np.array([1, 0, 7, 4, 6])
|
480 |
+
)
|
481 |
+
pca = PCA(n_components=p, svd_solver="full")
|
482 |
+
pca.fit(X)
|
483 |
+
spect = pca.explained_variance_
|
484 |
+
ll = np.array([_assess_dimension(spect, k, n) for k in range(1, p)])
|
485 |
+
assert ll[1] > ll.max() - 0.01 * n
|
486 |
+
|
487 |
+
|
488 |
+
def test_infer_dim_2():
|
489 |
+
# TODO: explain what this is testing
|
490 |
+
# Or at least use explicit variable names...
|
491 |
+
n, p = 1000, 5
|
492 |
+
rng = np.random.RandomState(0)
|
493 |
+
X = rng.randn(n, p) * 0.1
|
494 |
+
X[:10] += np.array([3, 4, 5, 1, 2])
|
495 |
+
X[10:20] += np.array([6, 0, 7, 2, -1])
|
496 |
+
pca = PCA(n_components=p, svd_solver="full")
|
497 |
+
pca.fit(X)
|
498 |
+
spect = pca.explained_variance_
|
499 |
+
assert _infer_dimension(spect, n) > 1
|
500 |
+
|
501 |
+
|
502 |
+
def test_infer_dim_3():
|
503 |
+
n, p = 100, 5
|
504 |
+
rng = np.random.RandomState(0)
|
505 |
+
X = rng.randn(n, p) * 0.1
|
506 |
+
X[:10] += np.array([3, 4, 5, 1, 2])
|
507 |
+
X[10:20] += np.array([6, 0, 7, 2, -1])
|
508 |
+
X[30:40] += 2 * np.array([-1, 1, -1, 1, -1])
|
509 |
+
pca = PCA(n_components=p, svd_solver="full")
|
510 |
+
pca.fit(X)
|
511 |
+
spect = pca.explained_variance_
|
512 |
+
assert _infer_dimension(spect, n) > 2
|
513 |
+
|
514 |
+
|
515 |
+
@pytest.mark.parametrize(
|
516 |
+
"X, n_components, n_components_validated",
|
517 |
+
[
|
518 |
+
(iris.data, 0.95, 2), # row > col
|
519 |
+
(iris.data, 0.01, 1), # row > col
|
520 |
+
(np.random.RandomState(0).rand(5, 20), 0.5, 2),
|
521 |
+
], # row < col
|
522 |
+
)
|
523 |
+
def test_infer_dim_by_explained_variance(X, n_components, n_components_validated):
|
524 |
+
pca = PCA(n_components=n_components, svd_solver="full")
|
525 |
+
pca.fit(X)
|
526 |
+
assert pca.n_components == pytest.approx(n_components)
|
527 |
+
assert pca.n_components_ == n_components_validated
|
528 |
+
|
529 |
+
|
530 |
+
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
531 |
+
def test_pca_score(svd_solver):
|
532 |
+
# Test that probabilistic PCA scoring yields a reasonable score
|
533 |
+
n, p = 1000, 3
|
534 |
+
rng = np.random.RandomState(0)
|
535 |
+
X = rng.randn(n, p) * 0.1 + np.array([3, 4, 5])
|
536 |
+
pca = PCA(n_components=2, svd_solver=svd_solver)
|
537 |
+
pca.fit(X)
|
538 |
+
|
539 |
+
ll1 = pca.score(X)
|
540 |
+
h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1**2) * p
|
541 |
+
assert_allclose(ll1 / h, 1, rtol=5e-2)
|
542 |
+
|
543 |
+
ll2 = pca.score(rng.randn(n, p) * 0.2 + np.array([3, 4, 5]))
|
544 |
+
assert ll1 > ll2
|
545 |
+
|
546 |
+
pca = PCA(n_components=2, whiten=True, svd_solver=svd_solver)
|
547 |
+
pca.fit(X)
|
548 |
+
ll2 = pca.score(X)
|
549 |
+
assert ll1 > ll2
|
550 |
+
|
551 |
+
|
552 |
+
def test_pca_score3():
|
553 |
+
# Check that probabilistic PCA selects the right model
|
554 |
+
n, p = 200, 3
|
555 |
+
rng = np.random.RandomState(0)
|
556 |
+
Xl = rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])
|
557 |
+
Xt = rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])
|
558 |
+
ll = np.zeros(p)
|
559 |
+
for k in range(p):
|
560 |
+
pca = PCA(n_components=k, svd_solver="full")
|
561 |
+
pca.fit(Xl)
|
562 |
+
ll[k] = pca.score(Xt)
|
563 |
+
|
564 |
+
assert ll.argmax() == 1
|
565 |
+
|
566 |
+
|
567 |
+
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
568 |
+
def test_pca_sanity_noise_variance(svd_solver):
|
569 |
+
# Sanity check for the noise_variance_. For more details see
|
570 |
+
# https://github.com/scikit-learn/scikit-learn/issues/7568
|
571 |
+
# https://github.com/scikit-learn/scikit-learn/issues/8541
|
572 |
+
# https://github.com/scikit-learn/scikit-learn/issues/8544
|
573 |
+
X, _ = datasets.load_digits(return_X_y=True)
|
574 |
+
pca = PCA(n_components=30, svd_solver=svd_solver, random_state=0)
|
575 |
+
pca.fit(X)
|
576 |
+
assert np.all((pca.explained_variance_ - pca.noise_variance_) >= 0)
|
577 |
+
|
578 |
+
|
579 |
+
@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
|
580 |
+
def test_pca_score_consistency_solvers(svd_solver):
|
581 |
+
# Check the consistency of score between solvers
|
582 |
+
X, _ = datasets.load_digits(return_X_y=True)
|
583 |
+
pca_full = PCA(n_components=30, svd_solver="full", random_state=0)
|
584 |
+
pca_other = PCA(n_components=30, svd_solver=svd_solver, random_state=0)
|
585 |
+
pca_full.fit(X)
|
586 |
+
pca_other.fit(X)
|
587 |
+
assert_allclose(pca_full.score(X), pca_other.score(X), rtol=5e-6)
|
588 |
+
|
589 |
+
|
590 |
+
# arpack raises ValueError for n_components == min(n_samples, n_features)
|
591 |
+
@pytest.mark.parametrize("svd_solver", ["full", "randomized"])
|
592 |
+
def test_pca_zero_noise_variance_edge_cases(svd_solver):
|
593 |
+
# ensure that noise_variance_ is 0 in edge cases
|
594 |
+
# when n_components == min(n_samples, n_features)
|
595 |
+
n, p = 100, 3
|
596 |
+
rng = np.random.RandomState(0)
|
597 |
+
X = rng.randn(n, p) * 0.1 + np.array([3, 4, 5])
|
598 |
+
|
599 |
+
pca = PCA(n_components=p, svd_solver=svd_solver)
|
600 |
+
pca.fit(X)
|
601 |
+
assert pca.noise_variance_ == 0
|
602 |
+
# Non-regression test for gh-12489
|
603 |
+
# ensure no divide-by-zero error for n_components == n_features < n_samples
|
604 |
+
pca.score(X)
|
605 |
+
|
606 |
+
pca.fit(X.T)
|
607 |
+
assert pca.noise_variance_ == 0
|
608 |
+
# Non-regression test for gh-12489
|
609 |
+
# ensure no divide-by-zero error for n_components == n_samples < n_features
|
610 |
+
pca.score(X.T)
|
611 |
+
|
612 |
+
|
613 |
+
@pytest.mark.parametrize(
|
614 |
+
"data, n_components, expected_solver",
|
615 |
+
[ # case: n_components in (0,1) => 'full'
|
616 |
+
(np.random.RandomState(0).uniform(size=(1000, 50)), 0.5, "full"),
|
617 |
+
# case: max(X.shape) <= 500 => 'full'
|
618 |
+
(np.random.RandomState(0).uniform(size=(10, 50)), 5, "full"),
|
619 |
+
# case: n_components >= .8 * min(X.shape) => 'full'
|
620 |
+
(np.random.RandomState(0).uniform(size=(1000, 50)), 50, "full"),
|
621 |
+
# n_components >= 1 and n_components < .8*min(X.shape) => 'randomized'
|
622 |
+
(np.random.RandomState(0).uniform(size=(1000, 50)), 10, "randomized"),
|
623 |
+
],
|
624 |
+
)
|
625 |
+
def test_pca_svd_solver_auto(data, n_components, expected_solver):
|
626 |
+
pca_auto = PCA(n_components=n_components, random_state=0)
|
627 |
+
pca_test = PCA(
|
628 |
+
n_components=n_components, svd_solver=expected_solver, random_state=0
|
629 |
+
)
|
630 |
+
pca_auto.fit(data)
|
631 |
+
pca_test.fit(data)
|
632 |
+
assert_allclose(pca_auto.components_, pca_test.components_)
|
633 |
+
|
634 |
+
|
635 |
+
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
636 |
+
def test_pca_deterministic_output(svd_solver):
|
637 |
+
rng = np.random.RandomState(0)
|
638 |
+
X = rng.rand(10, 10)
|
639 |
+
|
640 |
+
transformed_X = np.zeros((20, 2))
|
641 |
+
for i in range(20):
|
642 |
+
pca = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
|
643 |
+
transformed_X[i, :] = pca.fit_transform(X)[0]
|
644 |
+
assert_allclose(transformed_X, np.tile(transformed_X[0, :], 20).reshape(20, 2))
|
645 |
+
|
646 |
+
|
647 |
+
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
648 |
+
def test_pca_dtype_preservation(svd_solver):
|
649 |
+
check_pca_float_dtype_preservation(svd_solver)
|
650 |
+
check_pca_int_dtype_upcast_to_double(svd_solver)
|
651 |
+
|
652 |
+
|
653 |
+
def check_pca_float_dtype_preservation(svd_solver):
|
654 |
+
# Ensure that PCA does not upscale the dtype when input is float32
|
655 |
+
X_64 = np.random.RandomState(0).rand(1000, 4).astype(np.float64, copy=False)
|
656 |
+
X_32 = X_64.astype(np.float32)
|
657 |
+
|
658 |
+
pca_64 = PCA(n_components=3, svd_solver=svd_solver, random_state=0).fit(X_64)
|
659 |
+
pca_32 = PCA(n_components=3, svd_solver=svd_solver, random_state=0).fit(X_32)
|
660 |
+
|
661 |
+
assert pca_64.components_.dtype == np.float64
|
662 |
+
assert pca_32.components_.dtype == np.float32
|
663 |
+
assert pca_64.transform(X_64).dtype == np.float64
|
664 |
+
assert pca_32.transform(X_32).dtype == np.float32
|
665 |
+
|
666 |
+
# the rtol is set such that the test passes on all platforms tested on
|
667 |
+
# conda-forge: PR#15775
|
668 |
+
# see: https://github.com/conda-forge/scikit-learn-feedstock/pull/113
|
669 |
+
assert_allclose(pca_64.components_, pca_32.components_, rtol=2e-4)
|
670 |
+
|
671 |
+
|
672 |
+
def check_pca_int_dtype_upcast_to_double(svd_solver):
|
673 |
+
# Ensure that all int types will be upcast to float64
|
674 |
+
X_i64 = np.random.RandomState(0).randint(0, 1000, (1000, 4))
|
675 |
+
X_i64 = X_i64.astype(np.int64, copy=False)
|
676 |
+
X_i32 = X_i64.astype(np.int32, copy=False)
|
677 |
+
|
678 |
+
pca_64 = PCA(n_components=3, svd_solver=svd_solver, random_state=0).fit(X_i64)
|
679 |
+
pca_32 = PCA(n_components=3, svd_solver=svd_solver, random_state=0).fit(X_i32)
|
680 |
+
|
681 |
+
assert pca_64.components_.dtype == np.float64
|
682 |
+
assert pca_32.components_.dtype == np.float64
|
683 |
+
assert pca_64.transform(X_i64).dtype == np.float64
|
684 |
+
assert pca_32.transform(X_i32).dtype == np.float64
|
685 |
+
|
686 |
+
assert_allclose(pca_64.components_, pca_32.components_, rtol=1e-4)
|
687 |
+
|
688 |
+
|
689 |
+
def test_pca_n_components_mostly_explained_variance_ratio():
|
690 |
+
# when n_components is the second highest cumulative sum of the
|
691 |
+
# explained_variance_ratio_, then n_components_ should equal the
|
692 |
+
# number of features in the dataset #15669
|
693 |
+
X, y = load_iris(return_X_y=True)
|
694 |
+
pca1 = PCA().fit(X, y)
|
695 |
+
|
696 |
+
n_components = pca1.explained_variance_ratio_.cumsum()[-2]
|
697 |
+
pca2 = PCA(n_components=n_components).fit(X, y)
|
698 |
+
assert pca2.n_components_ == X.shape[1]
|
699 |
+
|
700 |
+
|
701 |
+
def test_assess_dimension_bad_rank():
|
702 |
+
# Test error when tested rank not in [1, n_features - 1]
|
703 |
+
spectrum = np.array([1, 1e-30, 1e-30, 1e-30])
|
704 |
+
n_samples = 10
|
705 |
+
for rank in (0, 5):
|
706 |
+
with pytest.raises(ValueError, match=r"should be in \[1, n_features - 1\]"):
|
707 |
+
_assess_dimension(spectrum, rank, n_samples)
|
708 |
+
|
709 |
+
|
710 |
+
def test_small_eigenvalues_mle():
|
711 |
+
# Test rank associated with tiny eigenvalues are given a log-likelihood of
|
712 |
+
# -inf. The inferred rank will be 1
|
713 |
+
spectrum = np.array([1, 1e-30, 1e-30, 1e-30])
|
714 |
+
|
715 |
+
assert _assess_dimension(spectrum, rank=1, n_samples=10) > -np.inf
|
716 |
+
|
717 |
+
for rank in (2, 3):
|
718 |
+
assert _assess_dimension(spectrum, rank, 10) == -np.inf
|
719 |
+
|
720 |
+
assert _infer_dimension(spectrum, 10) == 1
|
721 |
+
|
722 |
+
|
723 |
+
def test_mle_redundant_data():
|
724 |
+
# Test 'mle' with pathological X: only one relevant feature should give a
|
725 |
+
# rank of 1
|
726 |
+
X, _ = datasets.make_classification(
|
727 |
+
n_features=20,
|
728 |
+
n_informative=1,
|
729 |
+
n_repeated=18,
|
730 |
+
n_redundant=1,
|
731 |
+
n_clusters_per_class=1,
|
732 |
+
random_state=42,
|
733 |
+
)
|
734 |
+
pca = PCA(n_components="mle").fit(X)
|
735 |
+
assert pca.n_components_ == 1
|
736 |
+
|
737 |
+
|
738 |
+
def test_fit_mle_too_few_samples():
|
739 |
+
# Tests that an error is raised when the number of samples is smaller
|
740 |
+
# than the number of features during an mle fit
|
741 |
+
X, _ = datasets.make_classification(n_samples=20, n_features=21, random_state=42)
|
742 |
+
|
743 |
+
pca = PCA(n_components="mle", svd_solver="full")
|
744 |
+
with pytest.raises(
|
745 |
+
ValueError,
|
746 |
+
match="n_components='mle' is only supported if n_samples >= n_features",
|
747 |
+
):
|
748 |
+
pca.fit(X)
|
749 |
+
|
750 |
+
|
751 |
+
def test_mle_simple_case():
|
752 |
+
# non-regression test for issue
|
753 |
+
# https://github.com/scikit-learn/scikit-learn/issues/16730
|
754 |
+
n_samples, n_dim = 1000, 10
|
755 |
+
X = np.random.RandomState(0).randn(n_samples, n_dim)
|
756 |
+
X[:, -1] = np.mean(X[:, :-1], axis=-1) # true X dim is ndim - 1
|
757 |
+
pca_skl = PCA("mle", svd_solver="full")
|
758 |
+
pca_skl.fit(X)
|
759 |
+
assert pca_skl.n_components_ == n_dim - 1
|
760 |
+
|
761 |
+
|
762 |
+
def test_assess_dimesion_rank_one():
|
763 |
+
# Make sure assess_dimension works properly on a matrix of rank 1
|
764 |
+
n_samples, n_features = 9, 6
|
765 |
+
X = np.ones((n_samples, n_features)) # rank 1 matrix
|
766 |
+
_, s, _ = np.linalg.svd(X, full_matrices=True)
|
767 |
+
# except for rank 1, all eigenvalues are 0 resp. close to 0 (FP)
|
768 |
+
assert_allclose(s[1:], np.zeros(n_features - 1), atol=1e-12)
|
769 |
+
|
770 |
+
assert np.isfinite(_assess_dimension(s, rank=1, n_samples=n_samples))
|
771 |
+
for rank in range(2, n_features):
|
772 |
+
assert _assess_dimension(s, rank, n_samples) == -np.inf
|
773 |
+
|
774 |
+
|
775 |
+
def test_pca_randomized_svd_n_oversamples():
|
776 |
+
"""Check that exposing and setting `n_oversamples` will provide accurate results
|
777 |
+
even when `X` as a large number of features.
|
778 |
+
|
779 |
+
Non-regression test for:
|
780 |
+
https://github.com/scikit-learn/scikit-learn/issues/20589
|
781 |
+
"""
|
782 |
+
rng = np.random.RandomState(0)
|
783 |
+
n_features = 100
|
784 |
+
X = rng.randn(1_000, n_features)
|
785 |
+
|
786 |
+
# The default value of `n_oversamples` will lead to inaccurate results
|
787 |
+
# We force it to the number of features.
|
788 |
+
pca_randomized = PCA(
|
789 |
+
n_components=1,
|
790 |
+
svd_solver="randomized",
|
791 |
+
n_oversamples=n_features,
|
792 |
+
random_state=0,
|
793 |
+
).fit(X)
|
794 |
+
pca_full = PCA(n_components=1, svd_solver="full").fit(X)
|
795 |
+
pca_arpack = PCA(n_components=1, svd_solver="arpack", random_state=0).fit(X)
|
796 |
+
|
797 |
+
assert_allclose(np.abs(pca_full.components_), np.abs(pca_arpack.components_))
|
798 |
+
assert_allclose(np.abs(pca_randomized.components_), np.abs(pca_arpack.components_))
|
799 |
+
|
800 |
+
|
801 |
+
def test_feature_names_out():
|
802 |
+
"""Check feature names out for PCA."""
|
803 |
+
pca = PCA(n_components=2).fit(iris.data)
|
804 |
+
|
805 |
+
names = pca.get_feature_names_out()
|
806 |
+
assert_array_equal([f"pca{i}" for i in range(2)], names)
|
807 |
+
|
808 |
+
|
809 |
+
@pytest.mark.parametrize("copy", [True, False])
|
810 |
+
def test_variance_correctness(copy):
|
811 |
+
"""Check the accuracy of PCA's internal variance calculation"""
|
812 |
+
rng = np.random.RandomState(0)
|
813 |
+
X = rng.randn(1000, 200)
|
814 |
+
pca = PCA().fit(X)
|
815 |
+
pca_var = pca.explained_variance_ / pca.explained_variance_ratio_
|
816 |
+
true_var = np.var(X, ddof=1, axis=0).sum()
|
817 |
+
np.testing.assert_allclose(pca_var, true_var)
|
818 |
+
|
819 |
+
|
820 |
+
def check_array_api_get_precision(name, estimator, array_namespace, device, dtype_name):
|
821 |
+
xp = _array_api_for_tests(array_namespace, device)
|
822 |
+
iris_np = iris.data.astype(dtype_name)
|
823 |
+
iris_xp = xp.asarray(iris_np, device=device)
|
824 |
+
|
825 |
+
estimator.fit(iris_np)
|
826 |
+
precision_np = estimator.get_precision()
|
827 |
+
covariance_np = estimator.get_covariance()
|
828 |
+
|
829 |
+
with config_context(array_api_dispatch=True):
|
830 |
+
estimator_xp = clone(estimator).fit(iris_xp)
|
831 |
+
precision_xp = estimator_xp.get_precision()
|
832 |
+
assert precision_xp.shape == (4, 4)
|
833 |
+
assert precision_xp.dtype == iris_xp.dtype
|
834 |
+
|
835 |
+
assert_allclose(
|
836 |
+
_convert_to_numpy(precision_xp, xp=xp),
|
837 |
+
precision_np,
|
838 |
+
atol=_atol_for_type(dtype_name),
|
839 |
+
)
|
840 |
+
covariance_xp = estimator_xp.get_covariance()
|
841 |
+
assert covariance_xp.shape == (4, 4)
|
842 |
+
assert covariance_xp.dtype == iris_xp.dtype
|
843 |
+
|
844 |
+
assert_allclose(
|
845 |
+
_convert_to_numpy(covariance_xp, xp=xp),
|
846 |
+
covariance_np,
|
847 |
+
atol=_atol_for_type(dtype_name),
|
848 |
+
)
|
849 |
+
|
850 |
+
|
851 |
+
@pytest.mark.parametrize(
|
852 |
+
"array_namespace, device, dtype_name", yield_namespace_device_dtype_combinations()
|
853 |
+
)
|
854 |
+
@pytest.mark.parametrize(
|
855 |
+
"check",
|
856 |
+
[check_array_api_input_and_values, check_array_api_get_precision],
|
857 |
+
ids=_get_check_estimator_ids,
|
858 |
+
)
|
859 |
+
@pytest.mark.parametrize(
|
860 |
+
"estimator",
|
861 |
+
[
|
862 |
+
PCA(n_components=2, svd_solver="full"),
|
863 |
+
PCA(n_components=0.1, svd_solver="full", whiten=True),
|
864 |
+
PCA(
|
865 |
+
n_components=2,
|
866 |
+
svd_solver="randomized",
|
867 |
+
power_iteration_normalizer="QR",
|
868 |
+
random_state=0, # how to use global_random_seed here?
|
869 |
+
),
|
870 |
+
],
|
871 |
+
ids=_get_check_estimator_ids,
|
872 |
+
)
|
873 |
+
def test_pca_array_api_compliance(
|
874 |
+
estimator, check, array_namespace, device, dtype_name
|
875 |
+
):
|
876 |
+
name = estimator.__class__.__name__
|
877 |
+
check(name, estimator, array_namespace, device=device, dtype_name=dtype_name)
|
878 |
+
|
879 |
+
|
880 |
+
@pytest.mark.parametrize(
|
881 |
+
"array_namespace, device, dtype_name", yield_namespace_device_dtype_combinations()
|
882 |
+
)
|
883 |
+
@pytest.mark.parametrize(
|
884 |
+
"check",
|
885 |
+
[check_array_api_get_precision],
|
886 |
+
ids=_get_check_estimator_ids,
|
887 |
+
)
|
888 |
+
@pytest.mark.parametrize(
|
889 |
+
"estimator",
|
890 |
+
[
|
891 |
+
# PCA with mle cannot use check_array_api_input_and_values because of
|
892 |
+
# rounding errors in the noisy (low variance) components. Even checking
|
893 |
+
# the shape of the `components_` is problematic because the number of
|
894 |
+
# components depends on trimming threshold of the mle algorithm which
|
895 |
+
# can depend on device-specific rounding errors.
|
896 |
+
PCA(n_components="mle", svd_solver="full"),
|
897 |
+
],
|
898 |
+
ids=_get_check_estimator_ids,
|
899 |
+
)
|
900 |
+
def test_pca_mle_array_api_compliance(
|
901 |
+
estimator, check, array_namespace, device, dtype_name
|
902 |
+
):
|
903 |
+
name = estimator.__class__.__name__
|
904 |
+
check(name, estimator, array_namespace, device=device, dtype_name=dtype_name)
|
905 |
+
|
906 |
+
# Simpler variant of the generic check_array_api_input checker tailored for
|
907 |
+
# the specific case of PCA with mle-trimmed components.
|
908 |
+
xp = _array_api_for_tests(array_namespace, device)
|
909 |
+
|
910 |
+
X, y = make_classification(random_state=42)
|
911 |
+
X = X.astype(dtype_name, copy=False)
|
912 |
+
atol = _atol_for_type(X.dtype)
|
913 |
+
|
914 |
+
est = clone(estimator)
|
915 |
+
|
916 |
+
X_xp = xp.asarray(X, device=device)
|
917 |
+
y_xp = xp.asarray(y, device=device)
|
918 |
+
|
919 |
+
est.fit(X, y)
|
920 |
+
|
921 |
+
components_np = est.components_
|
922 |
+
explained_variance_np = est.explained_variance_
|
923 |
+
|
924 |
+
est_xp = clone(est)
|
925 |
+
with config_context(array_api_dispatch=True):
|
926 |
+
est_xp.fit(X_xp, y_xp)
|
927 |
+
components_xp = est_xp.components_
|
928 |
+
assert array_device(components_xp) == array_device(X_xp)
|
929 |
+
components_xp_np = _convert_to_numpy(components_xp, xp=xp)
|
930 |
+
|
931 |
+
explained_variance_xp = est_xp.explained_variance_
|
932 |
+
assert array_device(explained_variance_xp) == array_device(X_xp)
|
933 |
+
explained_variance_xp_np = _convert_to_numpy(explained_variance_xp, xp=xp)
|
934 |
+
|
935 |
+
assert components_xp_np.dtype == components_np.dtype
|
936 |
+
assert components_xp_np.shape[1] == components_np.shape[1]
|
937 |
+
assert explained_variance_xp_np.dtype == explained_variance_np.dtype
|
938 |
+
|
939 |
+
# Check that the explained variance values match for the
|
940 |
+
# common components:
|
941 |
+
min_components = min(components_xp_np.shape[0], components_np.shape[0])
|
942 |
+
assert_allclose(
|
943 |
+
explained_variance_xp_np[:min_components],
|
944 |
+
explained_variance_np[:min_components],
|
945 |
+
atol=atol,
|
946 |
+
)
|
947 |
+
|
948 |
+
# If the number of components differ, check that the explained variance of
|
949 |
+
# the trimmed components is very small.
|
950 |
+
if components_xp_np.shape[0] != components_np.shape[0]:
|
951 |
+
reference_variance = explained_variance_np[-1]
|
952 |
+
extra_variance_np = explained_variance_np[min_components:]
|
953 |
+
extra_variance_xp_np = explained_variance_xp_np[min_components:]
|
954 |
+
assert all(np.abs(extra_variance_np - reference_variance) < atol)
|
955 |
+
assert all(np.abs(extra_variance_xp_np - reference_variance) < atol)
|
956 |
+
|
957 |
+
|
958 |
+
def test_array_api_error_and_warnings_on_unsupported_params():
|
959 |
+
pytest.importorskip("array_api_compat")
|
960 |
+
xp = pytest.importorskip("numpy.array_api")
|
961 |
+
iris_xp = xp.asarray(iris.data)
|
962 |
+
|
963 |
+
pca = PCA(n_components=2, svd_solver="arpack", random_state=0)
|
964 |
+
expected_msg = re.escape(
|
965 |
+
"PCA with svd_solver='arpack' is not supported for Array API inputs."
|
966 |
+
)
|
967 |
+
with pytest.raises(ValueError, match=expected_msg):
|
968 |
+
with config_context(array_api_dispatch=True):
|
969 |
+
pca.fit(iris_xp)
|
970 |
+
|
971 |
+
pca.set_params(svd_solver="randomized", power_iteration_normalizer="LU")
|
972 |
+
expected_msg = re.escape(
|
973 |
+
"Array API does not support LU factorization. Set"
|
974 |
+
" `power_iteration_normalizer='QR'` instead."
|
975 |
+
)
|
976 |
+
with pytest.raises(ValueError, match=expected_msg):
|
977 |
+
with config_context(array_api_dispatch=True):
|
978 |
+
pca.fit(iris_xp)
|
979 |
+
|
980 |
+
pca.set_params(svd_solver="randomized", power_iteration_normalizer="auto")
|
981 |
+
expected_msg = re.escape(
|
982 |
+
"Array API does not support LU factorization, falling back to QR instead. Set"
|
983 |
+
" `power_iteration_normalizer='QR'` explicitly to silence this warning."
|
984 |
+
)
|
985 |
+
with pytest.warns(UserWarning, match=expected_msg):
|
986 |
+
with config_context(array_api_dispatch=True):
|
987 |
+
pca.fit(iris_xp)
|
venv/lib/python3.10/site-packages/sklearn/decomposition/tests/test_truncated_svd.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Test truncated SVD transformer."""
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
import scipy.sparse as sp
|
6 |
+
|
7 |
+
from sklearn.decomposition import PCA, TruncatedSVD
|
8 |
+
from sklearn.utils import check_random_state
|
9 |
+
from sklearn.utils._testing import assert_allclose, assert_array_less
|
10 |
+
|
11 |
+
SVD_SOLVERS = ["arpack", "randomized"]
|
12 |
+
|
13 |
+
|
14 |
+
@pytest.fixture(scope="module")
|
15 |
+
def X_sparse():
|
16 |
+
# Make an X that looks somewhat like a small tf-idf matrix.
|
17 |
+
rng = check_random_state(42)
|
18 |
+
X = sp.random(60, 55, density=0.2, format="csr", random_state=rng)
|
19 |
+
X.data[:] = 1 + np.log(X.data)
|
20 |
+
return X
|
21 |
+
|
22 |
+
|
23 |
+
@pytest.mark.parametrize("solver", ["randomized"])
|
24 |
+
@pytest.mark.parametrize("kind", ("dense", "sparse"))
|
25 |
+
def test_solvers(X_sparse, solver, kind):
|
26 |
+
X = X_sparse if kind == "sparse" else X_sparse.toarray()
|
27 |
+
svd_a = TruncatedSVD(30, algorithm="arpack")
|
28 |
+
svd = TruncatedSVD(30, algorithm=solver, random_state=42, n_oversamples=100)
|
29 |
+
|
30 |
+
Xa = svd_a.fit_transform(X)[:, :6]
|
31 |
+
Xr = svd.fit_transform(X)[:, :6]
|
32 |
+
assert_allclose(Xa, Xr, rtol=2e-3)
|
33 |
+
|
34 |
+
comp_a = np.abs(svd_a.components_)
|
35 |
+
comp = np.abs(svd.components_)
|
36 |
+
# All elements are equal, but some elements are more equal than others.
|
37 |
+
assert_allclose(comp_a[:9], comp[:9], rtol=1e-3)
|
38 |
+
assert_allclose(comp_a[9:], comp[9:], atol=1e-2)
|
39 |
+
|
40 |
+
|
41 |
+
@pytest.mark.parametrize("n_components", (10, 25, 41, 55))
|
42 |
+
def test_attributes(n_components, X_sparse):
|
43 |
+
n_features = X_sparse.shape[1]
|
44 |
+
tsvd = TruncatedSVD(n_components).fit(X_sparse)
|
45 |
+
assert tsvd.n_components == n_components
|
46 |
+
assert tsvd.components_.shape == (n_components, n_features)
|
47 |
+
|
48 |
+
|
49 |
+
@pytest.mark.parametrize(
|
50 |
+
"algorithm, n_components",
|
51 |
+
[
|
52 |
+
("arpack", 55),
|
53 |
+
("arpack", 56),
|
54 |
+
("randomized", 56),
|
55 |
+
],
|
56 |
+
)
|
57 |
+
def test_too_many_components(X_sparse, algorithm, n_components):
|
58 |
+
tsvd = TruncatedSVD(n_components=n_components, algorithm=algorithm)
|
59 |
+
with pytest.raises(ValueError):
|
60 |
+
tsvd.fit(X_sparse)
|
61 |
+
|
62 |
+
|
63 |
+
@pytest.mark.parametrize("fmt", ("array", "csr", "csc", "coo", "lil"))
|
64 |
+
def test_sparse_formats(fmt, X_sparse):
|
65 |
+
n_samples = X_sparse.shape[0]
|
66 |
+
Xfmt = X_sparse.toarray() if fmt == "dense" else getattr(X_sparse, "to" + fmt)()
|
67 |
+
tsvd = TruncatedSVD(n_components=11)
|
68 |
+
Xtrans = tsvd.fit_transform(Xfmt)
|
69 |
+
assert Xtrans.shape == (n_samples, 11)
|
70 |
+
Xtrans = tsvd.transform(Xfmt)
|
71 |
+
assert Xtrans.shape == (n_samples, 11)
|
72 |
+
|
73 |
+
|
74 |
+
@pytest.mark.parametrize("algo", SVD_SOLVERS)
|
75 |
+
def test_inverse_transform(algo, X_sparse):
|
76 |
+
# We need a lot of components for the reconstruction to be "almost
|
77 |
+
# equal" in all positions. XXX Test means or sums instead?
|
78 |
+
tsvd = TruncatedSVD(n_components=52, random_state=42, algorithm=algo)
|
79 |
+
Xt = tsvd.fit_transform(X_sparse)
|
80 |
+
Xinv = tsvd.inverse_transform(Xt)
|
81 |
+
assert_allclose(Xinv, X_sparse.toarray(), rtol=1e-1, atol=2e-1)
|
82 |
+
|
83 |
+
|
84 |
+
def test_integers(X_sparse):
|
85 |
+
n_samples = X_sparse.shape[0]
|
86 |
+
Xint = X_sparse.astype(np.int64)
|
87 |
+
tsvd = TruncatedSVD(n_components=6)
|
88 |
+
Xtrans = tsvd.fit_transform(Xint)
|
89 |
+
assert Xtrans.shape == (n_samples, tsvd.n_components)
|
90 |
+
|
91 |
+
|
92 |
+
@pytest.mark.parametrize("kind", ("dense", "sparse"))
|
93 |
+
@pytest.mark.parametrize("n_components", [10, 20])
|
94 |
+
@pytest.mark.parametrize("solver", SVD_SOLVERS)
|
95 |
+
def test_explained_variance(X_sparse, kind, n_components, solver):
|
96 |
+
X = X_sparse if kind == "sparse" else X_sparse.toarray()
|
97 |
+
svd = TruncatedSVD(n_components, algorithm=solver)
|
98 |
+
X_tr = svd.fit_transform(X)
|
99 |
+
# Assert that all the values are greater than 0
|
100 |
+
assert_array_less(0.0, svd.explained_variance_ratio_)
|
101 |
+
|
102 |
+
# Assert that total explained variance is less than 1
|
103 |
+
assert_array_less(svd.explained_variance_ratio_.sum(), 1.0)
|
104 |
+
|
105 |
+
# Test that explained_variance is correct
|
106 |
+
total_variance = np.var(X_sparse.toarray(), axis=0).sum()
|
107 |
+
variances = np.var(X_tr, axis=0)
|
108 |
+
true_explained_variance_ratio = variances / total_variance
|
109 |
+
|
110 |
+
assert_allclose(
|
111 |
+
svd.explained_variance_ratio_,
|
112 |
+
true_explained_variance_ratio,
|
113 |
+
)
|
114 |
+
|
115 |
+
|
116 |
+
@pytest.mark.parametrize("kind", ("dense", "sparse"))
|
117 |
+
@pytest.mark.parametrize("solver", SVD_SOLVERS)
|
118 |
+
def test_explained_variance_components_10_20(X_sparse, kind, solver):
|
119 |
+
X = X_sparse if kind == "sparse" else X_sparse.toarray()
|
120 |
+
svd_10 = TruncatedSVD(10, algorithm=solver, n_iter=10).fit(X)
|
121 |
+
svd_20 = TruncatedSVD(20, algorithm=solver, n_iter=10).fit(X)
|
122 |
+
|
123 |
+
# Assert the 1st component is equal
|
124 |
+
assert_allclose(
|
125 |
+
svd_10.explained_variance_ratio_,
|
126 |
+
svd_20.explained_variance_ratio_[:10],
|
127 |
+
rtol=5e-3,
|
128 |
+
)
|
129 |
+
|
130 |
+
# Assert that 20 components has higher explained variance than 10
|
131 |
+
assert (
|
132 |
+
svd_20.explained_variance_ratio_.sum() > svd_10.explained_variance_ratio_.sum()
|
133 |
+
)
|
134 |
+
|
135 |
+
|
136 |
+
@pytest.mark.parametrize("solver", SVD_SOLVERS)
|
137 |
+
def test_singular_values_consistency(solver):
|
138 |
+
# Check that the TruncatedSVD output has the correct singular values
|
139 |
+
rng = np.random.RandomState(0)
|
140 |
+
n_samples, n_features = 100, 80
|
141 |
+
X = rng.randn(n_samples, n_features)
|
142 |
+
|
143 |
+
pca = TruncatedSVD(n_components=2, algorithm=solver, random_state=rng).fit(X)
|
144 |
+
|
145 |
+
# Compare to the Frobenius norm
|
146 |
+
X_pca = pca.transform(X)
|
147 |
+
assert_allclose(
|
148 |
+
np.sum(pca.singular_values_**2.0),
|
149 |
+
np.linalg.norm(X_pca, "fro") ** 2.0,
|
150 |
+
rtol=1e-2,
|
151 |
+
)
|
152 |
+
|
153 |
+
# Compare to the 2-norms of the score vectors
|
154 |
+
assert_allclose(
|
155 |
+
pca.singular_values_, np.sqrt(np.sum(X_pca**2.0, axis=0)), rtol=1e-2
|
156 |
+
)
|
157 |
+
|
158 |
+
|
159 |
+
@pytest.mark.parametrize("solver", SVD_SOLVERS)
|
160 |
+
def test_singular_values_expected(solver):
|
161 |
+
# Set the singular values and see what we get back
|
162 |
+
rng = np.random.RandomState(0)
|
163 |
+
n_samples = 100
|
164 |
+
n_features = 110
|
165 |
+
|
166 |
+
X = rng.randn(n_samples, n_features)
|
167 |
+
|
168 |
+
pca = TruncatedSVD(n_components=3, algorithm=solver, random_state=rng)
|
169 |
+
X_pca = pca.fit_transform(X)
|
170 |
+
|
171 |
+
X_pca /= np.sqrt(np.sum(X_pca**2.0, axis=0))
|
172 |
+
X_pca[:, 0] *= 3.142
|
173 |
+
X_pca[:, 1] *= 2.718
|
174 |
+
|
175 |
+
X_hat_pca = np.dot(X_pca, pca.components_)
|
176 |
+
pca.fit(X_hat_pca)
|
177 |
+
assert_allclose(pca.singular_values_, [3.142, 2.718, 1.0], rtol=1e-14)
|
178 |
+
|
179 |
+
|
180 |
+
def test_truncated_svd_eq_pca(X_sparse):
|
181 |
+
# TruncatedSVD should be equal to PCA on centered data
|
182 |
+
|
183 |
+
X_dense = X_sparse.toarray()
|
184 |
+
|
185 |
+
X_c = X_dense - X_dense.mean(axis=0)
|
186 |
+
|
187 |
+
params = dict(n_components=10, random_state=42)
|
188 |
+
|
189 |
+
svd = TruncatedSVD(algorithm="arpack", **params)
|
190 |
+
pca = PCA(svd_solver="arpack", **params)
|
191 |
+
|
192 |
+
Xt_svd = svd.fit_transform(X_c)
|
193 |
+
Xt_pca = pca.fit_transform(X_c)
|
194 |
+
|
195 |
+
assert_allclose(Xt_svd, Xt_pca, rtol=1e-9)
|
196 |
+
assert_allclose(pca.mean_, 0, atol=1e-9)
|
197 |
+
assert_allclose(svd.components_, pca.components_)
|
198 |
+
|
199 |
+
|
200 |
+
@pytest.mark.parametrize(
|
201 |
+
"algorithm, tol", [("randomized", 0.0), ("arpack", 1e-6), ("arpack", 0.0)]
|
202 |
+
)
|
203 |
+
@pytest.mark.parametrize("kind", ("dense", "sparse"))
|
204 |
+
def test_fit_transform(X_sparse, algorithm, tol, kind):
|
205 |
+
# fit_transform(X) should equal fit(X).transform(X)
|
206 |
+
X = X_sparse if kind == "sparse" else X_sparse.toarray()
|
207 |
+
svd = TruncatedSVD(
|
208 |
+
n_components=5, n_iter=7, random_state=42, algorithm=algorithm, tol=tol
|
209 |
+
)
|
210 |
+
X_transformed_1 = svd.fit_transform(X)
|
211 |
+
X_transformed_2 = svd.fit(X).transform(X)
|
212 |
+
assert_allclose(X_transformed_1, X_transformed_2)
|
venv/lib/python3.10/site-packages/sklearn/ensemble/__init__.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The :mod:`sklearn.ensemble` module includes ensemble-based methods for
|
3 |
+
classification, regression and anomaly detection.
|
4 |
+
"""
|
5 |
+
from ._bagging import BaggingClassifier, BaggingRegressor
|
6 |
+
from ._base import BaseEnsemble
|
7 |
+
from ._forest import (
|
8 |
+
ExtraTreesClassifier,
|
9 |
+
ExtraTreesRegressor,
|
10 |
+
RandomForestClassifier,
|
11 |
+
RandomForestRegressor,
|
12 |
+
RandomTreesEmbedding,
|
13 |
+
)
|
14 |
+
from ._gb import GradientBoostingClassifier, GradientBoostingRegressor
|
15 |
+
from ._hist_gradient_boosting.gradient_boosting import (
|
16 |
+
HistGradientBoostingClassifier,
|
17 |
+
HistGradientBoostingRegressor,
|
18 |
+
)
|
19 |
+
from ._iforest import IsolationForest
|
20 |
+
from ._stacking import StackingClassifier, StackingRegressor
|
21 |
+
from ._voting import VotingClassifier, VotingRegressor
|
22 |
+
from ._weight_boosting import AdaBoostClassifier, AdaBoostRegressor
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
"BaseEnsemble",
|
26 |
+
"RandomForestClassifier",
|
27 |
+
"RandomForestRegressor",
|
28 |
+
"RandomTreesEmbedding",
|
29 |
+
"ExtraTreesClassifier",
|
30 |
+
"ExtraTreesRegressor",
|
31 |
+
"BaggingClassifier",
|
32 |
+
"BaggingRegressor",
|
33 |
+
"IsolationForest",
|
34 |
+
"GradientBoostingClassifier",
|
35 |
+
"GradientBoostingRegressor",
|
36 |
+
"AdaBoostClassifier",
|
37 |
+
"AdaBoostRegressor",
|
38 |
+
"VotingClassifier",
|
39 |
+
"VotingRegressor",
|
40 |
+
"StackingClassifier",
|
41 |
+
"StackingRegressor",
|
42 |
+
"HistGradientBoostingClassifier",
|
43 |
+
"HistGradientBoostingRegressor",
|
44 |
+
]
|
venv/lib/python3.10/site-packages/sklearn/ensemble/_bagging.py
ADDED
@@ -0,0 +1,1242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Bagging meta-estimator."""
|
2 |
+
|
3 |
+
# Author: Gilles Louppe <[email protected]>
|
4 |
+
# License: BSD 3 clause
|
5 |
+
|
6 |
+
|
7 |
+
import itertools
|
8 |
+
import numbers
|
9 |
+
from abc import ABCMeta, abstractmethod
|
10 |
+
from functools import partial
|
11 |
+
from numbers import Integral
|
12 |
+
from warnings import warn
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
from ..base import ClassifierMixin, RegressorMixin, _fit_context
|
17 |
+
from ..metrics import accuracy_score, r2_score
|
18 |
+
from ..tree import DecisionTreeClassifier, DecisionTreeRegressor
|
19 |
+
from ..utils import check_random_state, column_or_1d, indices_to_mask
|
20 |
+
from ..utils._param_validation import HasMethods, Interval, RealNotInt
|
21 |
+
from ..utils._tags import _safe_tags
|
22 |
+
from ..utils.metadata_routing import (
|
23 |
+
_raise_for_unsupported_routing,
|
24 |
+
_RoutingNotSupportedMixin,
|
25 |
+
)
|
26 |
+
from ..utils.metaestimators import available_if
|
27 |
+
from ..utils.multiclass import check_classification_targets
|
28 |
+
from ..utils.parallel import Parallel, delayed
|
29 |
+
from ..utils.random import sample_without_replacement
|
30 |
+
from ..utils.validation import _check_sample_weight, check_is_fitted, has_fit_parameter
|
31 |
+
from ._base import BaseEnsemble, _partition_estimators
|
32 |
+
|
33 |
+
__all__ = ["BaggingClassifier", "BaggingRegressor"]
|
34 |
+
|
35 |
+
MAX_INT = np.iinfo(np.int32).max
|
36 |
+
|
37 |
+
|
38 |
+
def _generate_indices(random_state, bootstrap, n_population, n_samples):
|
39 |
+
"""Draw randomly sampled indices."""
|
40 |
+
# Draw sample indices
|
41 |
+
if bootstrap:
|
42 |
+
indices = random_state.randint(0, n_population, n_samples)
|
43 |
+
else:
|
44 |
+
indices = sample_without_replacement(
|
45 |
+
n_population, n_samples, random_state=random_state
|
46 |
+
)
|
47 |
+
|
48 |
+
return indices
|
49 |
+
|
50 |
+
|
51 |
+
def _generate_bagging_indices(
|
52 |
+
random_state,
|
53 |
+
bootstrap_features,
|
54 |
+
bootstrap_samples,
|
55 |
+
n_features,
|
56 |
+
n_samples,
|
57 |
+
max_features,
|
58 |
+
max_samples,
|
59 |
+
):
|
60 |
+
"""Randomly draw feature and sample indices."""
|
61 |
+
# Get valid random state
|
62 |
+
random_state = check_random_state(random_state)
|
63 |
+
|
64 |
+
# Draw indices
|
65 |
+
feature_indices = _generate_indices(
|
66 |
+
random_state, bootstrap_features, n_features, max_features
|
67 |
+
)
|
68 |
+
sample_indices = _generate_indices(
|
69 |
+
random_state, bootstrap_samples, n_samples, max_samples
|
70 |
+
)
|
71 |
+
|
72 |
+
return feature_indices, sample_indices
|
73 |
+
|
74 |
+
|
75 |
+
def _parallel_build_estimators(
|
76 |
+
n_estimators,
|
77 |
+
ensemble,
|
78 |
+
X,
|
79 |
+
y,
|
80 |
+
sample_weight,
|
81 |
+
seeds,
|
82 |
+
total_n_estimators,
|
83 |
+
verbose,
|
84 |
+
check_input,
|
85 |
+
):
|
86 |
+
"""Private function used to build a batch of estimators within a job."""
|
87 |
+
# Retrieve settings
|
88 |
+
n_samples, n_features = X.shape
|
89 |
+
max_features = ensemble._max_features
|
90 |
+
max_samples = ensemble._max_samples
|
91 |
+
bootstrap = ensemble.bootstrap
|
92 |
+
bootstrap_features = ensemble.bootstrap_features
|
93 |
+
support_sample_weight = has_fit_parameter(ensemble.estimator_, "sample_weight")
|
94 |
+
has_check_input = has_fit_parameter(ensemble.estimator_, "check_input")
|
95 |
+
requires_feature_indexing = bootstrap_features or max_features != n_features
|
96 |
+
|
97 |
+
if not support_sample_weight and sample_weight is not None:
|
98 |
+
raise ValueError("The base estimator doesn't support sample weight")
|
99 |
+
|
100 |
+
# Build estimators
|
101 |
+
estimators = []
|
102 |
+
estimators_features = []
|
103 |
+
|
104 |
+
for i in range(n_estimators):
|
105 |
+
if verbose > 1:
|
106 |
+
print(
|
107 |
+
"Building estimator %d of %d for this parallel run (total %d)..."
|
108 |
+
% (i + 1, n_estimators, total_n_estimators)
|
109 |
+
)
|
110 |
+
|
111 |
+
random_state = seeds[i]
|
112 |
+
estimator = ensemble._make_estimator(append=False, random_state=random_state)
|
113 |
+
|
114 |
+
if has_check_input:
|
115 |
+
estimator_fit = partial(estimator.fit, check_input=check_input)
|
116 |
+
else:
|
117 |
+
estimator_fit = estimator.fit
|
118 |
+
|
119 |
+
# Draw random feature, sample indices
|
120 |
+
features, indices = _generate_bagging_indices(
|
121 |
+
random_state,
|
122 |
+
bootstrap_features,
|
123 |
+
bootstrap,
|
124 |
+
n_features,
|
125 |
+
n_samples,
|
126 |
+
max_features,
|
127 |
+
max_samples,
|
128 |
+
)
|
129 |
+
|
130 |
+
# Draw samples, using sample weights, and then fit
|
131 |
+
if support_sample_weight:
|
132 |
+
if sample_weight is None:
|
133 |
+
curr_sample_weight = np.ones((n_samples,))
|
134 |
+
else:
|
135 |
+
curr_sample_weight = sample_weight.copy()
|
136 |
+
|
137 |
+
if bootstrap:
|
138 |
+
sample_counts = np.bincount(indices, minlength=n_samples)
|
139 |
+
curr_sample_weight *= sample_counts
|
140 |
+
else:
|
141 |
+
not_indices_mask = ~indices_to_mask(indices, n_samples)
|
142 |
+
curr_sample_weight[not_indices_mask] = 0
|
143 |
+
|
144 |
+
X_ = X[:, features] if requires_feature_indexing else X
|
145 |
+
estimator_fit(X_, y, sample_weight=curr_sample_weight)
|
146 |
+
else:
|
147 |
+
X_ = X[indices][:, features] if requires_feature_indexing else X[indices]
|
148 |
+
estimator_fit(X_, y[indices])
|
149 |
+
|
150 |
+
estimators.append(estimator)
|
151 |
+
estimators_features.append(features)
|
152 |
+
|
153 |
+
return estimators, estimators_features
|
154 |
+
|
155 |
+
|
156 |
+
def _parallel_predict_proba(estimators, estimators_features, X, n_classes):
|
157 |
+
"""Private function used to compute (proba-)predictions within a job."""
|
158 |
+
n_samples = X.shape[0]
|
159 |
+
proba = np.zeros((n_samples, n_classes))
|
160 |
+
|
161 |
+
for estimator, features in zip(estimators, estimators_features):
|
162 |
+
if hasattr(estimator, "predict_proba"):
|
163 |
+
proba_estimator = estimator.predict_proba(X[:, features])
|
164 |
+
|
165 |
+
if n_classes == len(estimator.classes_):
|
166 |
+
proba += proba_estimator
|
167 |
+
|
168 |
+
else:
|
169 |
+
proba[:, estimator.classes_] += proba_estimator[
|
170 |
+
:, range(len(estimator.classes_))
|
171 |
+
]
|
172 |
+
|
173 |
+
else:
|
174 |
+
# Resort to voting
|
175 |
+
predictions = estimator.predict(X[:, features])
|
176 |
+
|
177 |
+
for i in range(n_samples):
|
178 |
+
proba[i, predictions[i]] += 1
|
179 |
+
|
180 |
+
return proba
|
181 |
+
|
182 |
+
|
183 |
+
def _parallel_predict_log_proba(estimators, estimators_features, X, n_classes):
|
184 |
+
"""Private function used to compute log probabilities within a job."""
|
185 |
+
n_samples = X.shape[0]
|
186 |
+
log_proba = np.empty((n_samples, n_classes))
|
187 |
+
log_proba.fill(-np.inf)
|
188 |
+
all_classes = np.arange(n_classes, dtype=int)
|
189 |
+
|
190 |
+
for estimator, features in zip(estimators, estimators_features):
|
191 |
+
log_proba_estimator = estimator.predict_log_proba(X[:, features])
|
192 |
+
|
193 |
+
if n_classes == len(estimator.classes_):
|
194 |
+
log_proba = np.logaddexp(log_proba, log_proba_estimator)
|
195 |
+
|
196 |
+
else:
|
197 |
+
log_proba[:, estimator.classes_] = np.logaddexp(
|
198 |
+
log_proba[:, estimator.classes_],
|
199 |
+
log_proba_estimator[:, range(len(estimator.classes_))],
|
200 |
+
)
|
201 |
+
|
202 |
+
missing = np.setdiff1d(all_classes, estimator.classes_)
|
203 |
+
log_proba[:, missing] = np.logaddexp(log_proba[:, missing], -np.inf)
|
204 |
+
|
205 |
+
return log_proba
|
206 |
+
|
207 |
+
|
208 |
+
def _parallel_decision_function(estimators, estimators_features, X):
|
209 |
+
"""Private function used to compute decisions within a job."""
|
210 |
+
return sum(
|
211 |
+
estimator.decision_function(X[:, features])
|
212 |
+
for estimator, features in zip(estimators, estimators_features)
|
213 |
+
)
|
214 |
+
|
215 |
+
|
216 |
+
def _parallel_predict_regression(estimators, estimators_features, X):
|
217 |
+
"""Private function used to compute predictions within a job."""
|
218 |
+
return sum(
|
219 |
+
estimator.predict(X[:, features])
|
220 |
+
for estimator, features in zip(estimators, estimators_features)
|
221 |
+
)
|
222 |
+
|
223 |
+
|
224 |
+
def _estimator_has(attr):
|
225 |
+
"""Check if we can delegate a method to the underlying estimator.
|
226 |
+
|
227 |
+
First, we check the first fitted estimator if available, otherwise we
|
228 |
+
check the estimator attribute.
|
229 |
+
"""
|
230 |
+
|
231 |
+
def check(self):
|
232 |
+
if hasattr(self, "estimators_"):
|
233 |
+
return hasattr(self.estimators_[0], attr)
|
234 |
+
else: # self.estimator is not None
|
235 |
+
return hasattr(self.estimator, attr)
|
236 |
+
|
237 |
+
return check
|
238 |
+
|
239 |
+
|
240 |
+
class BaseBagging(BaseEnsemble, metaclass=ABCMeta):
|
241 |
+
"""Base class for Bagging meta-estimator.
|
242 |
+
|
243 |
+
Warning: This class should not be used directly. Use derived classes
|
244 |
+
instead.
|
245 |
+
"""
|
246 |
+
|
247 |
+
_parameter_constraints: dict = {
|
248 |
+
"estimator": [HasMethods(["fit", "predict"]), None],
|
249 |
+
"n_estimators": [Interval(Integral, 1, None, closed="left")],
|
250 |
+
"max_samples": [
|
251 |
+
Interval(Integral, 1, None, closed="left"),
|
252 |
+
Interval(RealNotInt, 0, 1, closed="right"),
|
253 |
+
],
|
254 |
+
"max_features": [
|
255 |
+
Interval(Integral, 1, None, closed="left"),
|
256 |
+
Interval(RealNotInt, 0, 1, closed="right"),
|
257 |
+
],
|
258 |
+
"bootstrap": ["boolean"],
|
259 |
+
"bootstrap_features": ["boolean"],
|
260 |
+
"oob_score": ["boolean"],
|
261 |
+
"warm_start": ["boolean"],
|
262 |
+
"n_jobs": [None, Integral],
|
263 |
+
"random_state": ["random_state"],
|
264 |
+
"verbose": ["verbose"],
|
265 |
+
}
|
266 |
+
|
267 |
+
@abstractmethod
|
268 |
+
def __init__(
|
269 |
+
self,
|
270 |
+
estimator=None,
|
271 |
+
n_estimators=10,
|
272 |
+
*,
|
273 |
+
max_samples=1.0,
|
274 |
+
max_features=1.0,
|
275 |
+
bootstrap=True,
|
276 |
+
bootstrap_features=False,
|
277 |
+
oob_score=False,
|
278 |
+
warm_start=False,
|
279 |
+
n_jobs=None,
|
280 |
+
random_state=None,
|
281 |
+
verbose=0,
|
282 |
+
):
|
283 |
+
super().__init__(
|
284 |
+
estimator=estimator,
|
285 |
+
n_estimators=n_estimators,
|
286 |
+
)
|
287 |
+
self.max_samples = max_samples
|
288 |
+
self.max_features = max_features
|
289 |
+
self.bootstrap = bootstrap
|
290 |
+
self.bootstrap_features = bootstrap_features
|
291 |
+
self.oob_score = oob_score
|
292 |
+
self.warm_start = warm_start
|
293 |
+
self.n_jobs = n_jobs
|
294 |
+
self.random_state = random_state
|
295 |
+
self.verbose = verbose
|
296 |
+
|
297 |
+
@_fit_context(
|
298 |
+
# BaseBagging.estimator is not validated yet
|
299 |
+
prefer_skip_nested_validation=False
|
300 |
+
)
|
301 |
+
def fit(self, X, y, sample_weight=None):
|
302 |
+
"""Build a Bagging ensemble of estimators from the training set (X, y).
|
303 |
+
|
304 |
+
Parameters
|
305 |
+
----------
|
306 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
307 |
+
The training input samples. Sparse matrices are accepted only if
|
308 |
+
they are supported by the base estimator.
|
309 |
+
|
310 |
+
y : array-like of shape (n_samples,)
|
311 |
+
The target values (class labels in classification, real numbers in
|
312 |
+
regression).
|
313 |
+
|
314 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
315 |
+
Sample weights. If None, then samples are equally weighted.
|
316 |
+
Note that this is supported only if the base estimator supports
|
317 |
+
sample weighting.
|
318 |
+
|
319 |
+
Returns
|
320 |
+
-------
|
321 |
+
self : object
|
322 |
+
Fitted estimator.
|
323 |
+
"""
|
324 |
+
_raise_for_unsupported_routing(self, "fit", sample_weight=sample_weight)
|
325 |
+
# Convert data (X is required to be 2d and indexable)
|
326 |
+
X, y = self._validate_data(
|
327 |
+
X,
|
328 |
+
y,
|
329 |
+
accept_sparse=["csr", "csc"],
|
330 |
+
dtype=None,
|
331 |
+
force_all_finite=False,
|
332 |
+
multi_output=True,
|
333 |
+
)
|
334 |
+
return self._fit(X, y, self.max_samples, sample_weight=sample_weight)
|
335 |
+
|
336 |
+
def _parallel_args(self):
|
337 |
+
return {}
|
338 |
+
|
339 |
+
def _fit(
|
340 |
+
self,
|
341 |
+
X,
|
342 |
+
y,
|
343 |
+
max_samples=None,
|
344 |
+
max_depth=None,
|
345 |
+
sample_weight=None,
|
346 |
+
check_input=True,
|
347 |
+
):
|
348 |
+
"""Build a Bagging ensemble of estimators from the training
|
349 |
+
set (X, y).
|
350 |
+
|
351 |
+
Parameters
|
352 |
+
----------
|
353 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
354 |
+
The training input samples. Sparse matrices are accepted only if
|
355 |
+
they are supported by the base estimator.
|
356 |
+
|
357 |
+
y : array-like of shape (n_samples,)
|
358 |
+
The target values (class labels in classification, real numbers in
|
359 |
+
regression).
|
360 |
+
|
361 |
+
max_samples : int or float, default=None
|
362 |
+
Argument to use instead of self.max_samples.
|
363 |
+
|
364 |
+
max_depth : int, default=None
|
365 |
+
Override value used when constructing base estimator. Only
|
366 |
+
supported if the base estimator has a max_depth parameter.
|
367 |
+
|
368 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
369 |
+
Sample weights. If None, then samples are equally weighted.
|
370 |
+
Note that this is supported only if the base estimator supports
|
371 |
+
sample weighting.
|
372 |
+
|
373 |
+
check_input : bool, default=True
|
374 |
+
Override value used when fitting base estimator. Only supported
|
375 |
+
if the base estimator has a check_input parameter for fit function.
|
376 |
+
|
377 |
+
Returns
|
378 |
+
-------
|
379 |
+
self : object
|
380 |
+
Fitted estimator.
|
381 |
+
"""
|
382 |
+
random_state = check_random_state(self.random_state)
|
383 |
+
|
384 |
+
if sample_weight is not None:
|
385 |
+
sample_weight = _check_sample_weight(sample_weight, X, dtype=None)
|
386 |
+
|
387 |
+
# Remap output
|
388 |
+
n_samples = X.shape[0]
|
389 |
+
self._n_samples = n_samples
|
390 |
+
y = self._validate_y(y)
|
391 |
+
|
392 |
+
# Check parameters
|
393 |
+
self._validate_estimator()
|
394 |
+
|
395 |
+
if max_depth is not None:
|
396 |
+
self.estimator_.max_depth = max_depth
|
397 |
+
|
398 |
+
# Validate max_samples
|
399 |
+
if max_samples is None:
|
400 |
+
max_samples = self.max_samples
|
401 |
+
elif not isinstance(max_samples, numbers.Integral):
|
402 |
+
max_samples = int(max_samples * X.shape[0])
|
403 |
+
|
404 |
+
if max_samples > X.shape[0]:
|
405 |
+
raise ValueError("max_samples must be <= n_samples")
|
406 |
+
|
407 |
+
# Store validated integer row sampling value
|
408 |
+
self._max_samples = max_samples
|
409 |
+
|
410 |
+
# Validate max_features
|
411 |
+
if isinstance(self.max_features, numbers.Integral):
|
412 |
+
max_features = self.max_features
|
413 |
+
elif isinstance(self.max_features, float):
|
414 |
+
max_features = int(self.max_features * self.n_features_in_)
|
415 |
+
|
416 |
+
if max_features > self.n_features_in_:
|
417 |
+
raise ValueError("max_features must be <= n_features")
|
418 |
+
|
419 |
+
max_features = max(1, int(max_features))
|
420 |
+
|
421 |
+
# Store validated integer feature sampling value
|
422 |
+
self._max_features = max_features
|
423 |
+
|
424 |
+
# Other checks
|
425 |
+
if not self.bootstrap and self.oob_score:
|
426 |
+
raise ValueError("Out of bag estimation only available if bootstrap=True")
|
427 |
+
|
428 |
+
if self.warm_start and self.oob_score:
|
429 |
+
raise ValueError("Out of bag estimate only available if warm_start=False")
|
430 |
+
|
431 |
+
if hasattr(self, "oob_score_") and self.warm_start:
|
432 |
+
del self.oob_score_
|
433 |
+
|
434 |
+
if not self.warm_start or not hasattr(self, "estimators_"):
|
435 |
+
# Free allocated memory, if any
|
436 |
+
self.estimators_ = []
|
437 |
+
self.estimators_features_ = []
|
438 |
+
|
439 |
+
n_more_estimators = self.n_estimators - len(self.estimators_)
|
440 |
+
|
441 |
+
if n_more_estimators < 0:
|
442 |
+
raise ValueError(
|
443 |
+
"n_estimators=%d must be larger or equal to "
|
444 |
+
"len(estimators_)=%d when warm_start==True"
|
445 |
+
% (self.n_estimators, len(self.estimators_))
|
446 |
+
)
|
447 |
+
|
448 |
+
elif n_more_estimators == 0:
|
449 |
+
warn(
|
450 |
+
"Warm-start fitting without increasing n_estimators does not "
|
451 |
+
"fit new trees."
|
452 |
+
)
|
453 |
+
return self
|
454 |
+
|
455 |
+
# Parallel loop
|
456 |
+
n_jobs, n_estimators, starts = _partition_estimators(
|
457 |
+
n_more_estimators, self.n_jobs
|
458 |
+
)
|
459 |
+
total_n_estimators = sum(n_estimators)
|
460 |
+
|
461 |
+
# Advance random state to state after training
|
462 |
+
# the first n_estimators
|
463 |
+
if self.warm_start and len(self.estimators_) > 0:
|
464 |
+
random_state.randint(MAX_INT, size=len(self.estimators_))
|
465 |
+
|
466 |
+
seeds = random_state.randint(MAX_INT, size=n_more_estimators)
|
467 |
+
self._seeds = seeds
|
468 |
+
|
469 |
+
all_results = Parallel(
|
470 |
+
n_jobs=n_jobs, verbose=self.verbose, **self._parallel_args()
|
471 |
+
)(
|
472 |
+
delayed(_parallel_build_estimators)(
|
473 |
+
n_estimators[i],
|
474 |
+
self,
|
475 |
+
X,
|
476 |
+
y,
|
477 |
+
sample_weight,
|
478 |
+
seeds[starts[i] : starts[i + 1]],
|
479 |
+
total_n_estimators,
|
480 |
+
verbose=self.verbose,
|
481 |
+
check_input=check_input,
|
482 |
+
)
|
483 |
+
for i in range(n_jobs)
|
484 |
+
)
|
485 |
+
|
486 |
+
# Reduce
|
487 |
+
self.estimators_ += list(
|
488 |
+
itertools.chain.from_iterable(t[0] for t in all_results)
|
489 |
+
)
|
490 |
+
self.estimators_features_ += list(
|
491 |
+
itertools.chain.from_iterable(t[1] for t in all_results)
|
492 |
+
)
|
493 |
+
|
494 |
+
if self.oob_score:
|
495 |
+
self._set_oob_score(X, y)
|
496 |
+
|
497 |
+
return self
|
498 |
+
|
499 |
+
@abstractmethod
|
500 |
+
def _set_oob_score(self, X, y):
|
501 |
+
"""Calculate out of bag predictions and score."""
|
502 |
+
|
503 |
+
def _validate_y(self, y):
|
504 |
+
if len(y.shape) == 1 or y.shape[1] == 1:
|
505 |
+
return column_or_1d(y, warn=True)
|
506 |
+
return y
|
507 |
+
|
508 |
+
def _get_estimators_indices(self):
|
509 |
+
# Get drawn indices along both sample and feature axes
|
510 |
+
for seed in self._seeds:
|
511 |
+
# Operations accessing random_state must be performed identically
|
512 |
+
# to those in `_parallel_build_estimators()`
|
513 |
+
feature_indices, sample_indices = _generate_bagging_indices(
|
514 |
+
seed,
|
515 |
+
self.bootstrap_features,
|
516 |
+
self.bootstrap,
|
517 |
+
self.n_features_in_,
|
518 |
+
self._n_samples,
|
519 |
+
self._max_features,
|
520 |
+
self._max_samples,
|
521 |
+
)
|
522 |
+
|
523 |
+
yield feature_indices, sample_indices
|
524 |
+
|
525 |
+
@property
|
526 |
+
def estimators_samples_(self):
|
527 |
+
"""
|
528 |
+
The subset of drawn samples for each base estimator.
|
529 |
+
|
530 |
+
Returns a dynamically generated list of indices identifying
|
531 |
+
the samples used for fitting each member of the ensemble, i.e.,
|
532 |
+
the in-bag samples.
|
533 |
+
|
534 |
+
Note: the list is re-created at each call to the property in order
|
535 |
+
to reduce the object memory footprint by not storing the sampling
|
536 |
+
data. Thus fetching the property may be slower than expected.
|
537 |
+
"""
|
538 |
+
return [sample_indices for _, sample_indices in self._get_estimators_indices()]
|
539 |
+
|
540 |
+
|
541 |
+
class BaggingClassifier(_RoutingNotSupportedMixin, ClassifierMixin, BaseBagging):
|
542 |
+
"""A Bagging classifier.
|
543 |
+
|
544 |
+
A Bagging classifier is an ensemble meta-estimator that fits base
|
545 |
+
classifiers each on random subsets of the original dataset and then
|
546 |
+
aggregate their individual predictions (either by voting or by averaging)
|
547 |
+
to form a final prediction. Such a meta-estimator can typically be used as
|
548 |
+
a way to reduce the variance of a black-box estimator (e.g., a decision
|
549 |
+
tree), by introducing randomization into its construction procedure and
|
550 |
+
then making an ensemble out of it.
|
551 |
+
|
552 |
+
This algorithm encompasses several works from the literature. When random
|
553 |
+
subsets of the dataset are drawn as random subsets of the samples, then
|
554 |
+
this algorithm is known as Pasting [1]_. If samples are drawn with
|
555 |
+
replacement, then the method is known as Bagging [2]_. When random subsets
|
556 |
+
of the dataset are drawn as random subsets of the features, then the method
|
557 |
+
is known as Random Subspaces [3]_. Finally, when base estimators are built
|
558 |
+
on subsets of both samples and features, then the method is known as
|
559 |
+
Random Patches [4]_.
|
560 |
+
|
561 |
+
Read more in the :ref:`User Guide <bagging>`.
|
562 |
+
|
563 |
+
.. versionadded:: 0.15
|
564 |
+
|
565 |
+
Parameters
|
566 |
+
----------
|
567 |
+
estimator : object, default=None
|
568 |
+
The base estimator to fit on random subsets of the dataset.
|
569 |
+
If None, then the base estimator is a
|
570 |
+
:class:`~sklearn.tree.DecisionTreeClassifier`.
|
571 |
+
|
572 |
+
.. versionadded:: 1.2
|
573 |
+
`base_estimator` was renamed to `estimator`.
|
574 |
+
|
575 |
+
n_estimators : int, default=10
|
576 |
+
The number of base estimators in the ensemble.
|
577 |
+
|
578 |
+
max_samples : int or float, default=1.0
|
579 |
+
The number of samples to draw from X to train each base estimator (with
|
580 |
+
replacement by default, see `bootstrap` for more details).
|
581 |
+
|
582 |
+
- If int, then draw `max_samples` samples.
|
583 |
+
- If float, then draw `max_samples * X.shape[0]` samples.
|
584 |
+
|
585 |
+
max_features : int or float, default=1.0
|
586 |
+
The number of features to draw from X to train each base estimator (
|
587 |
+
without replacement by default, see `bootstrap_features` for more
|
588 |
+
details).
|
589 |
+
|
590 |
+
- If int, then draw `max_features` features.
|
591 |
+
- If float, then draw `max(1, int(max_features * n_features_in_))` features.
|
592 |
+
|
593 |
+
bootstrap : bool, default=True
|
594 |
+
Whether samples are drawn with replacement. If False, sampling
|
595 |
+
without replacement is performed.
|
596 |
+
|
597 |
+
bootstrap_features : bool, default=False
|
598 |
+
Whether features are drawn with replacement.
|
599 |
+
|
600 |
+
oob_score : bool, default=False
|
601 |
+
Whether to use out-of-bag samples to estimate
|
602 |
+
the generalization error. Only available if bootstrap=True.
|
603 |
+
|
604 |
+
warm_start : bool, default=False
|
605 |
+
When set to True, reuse the solution of the previous call to fit
|
606 |
+
and add more estimators to the ensemble, otherwise, just fit
|
607 |
+
a whole new ensemble. See :term:`the Glossary <warm_start>`.
|
608 |
+
|
609 |
+
.. versionadded:: 0.17
|
610 |
+
*warm_start* constructor parameter.
|
611 |
+
|
612 |
+
n_jobs : int, default=None
|
613 |
+
The number of jobs to run in parallel for both :meth:`fit` and
|
614 |
+
:meth:`predict`. ``None`` means 1 unless in a
|
615 |
+
:obj:`joblib.parallel_backend` context. ``-1`` means using all
|
616 |
+
processors. See :term:`Glossary <n_jobs>` for more details.
|
617 |
+
|
618 |
+
random_state : int, RandomState instance or None, default=None
|
619 |
+
Controls the random resampling of the original dataset
|
620 |
+
(sample wise and feature wise).
|
621 |
+
If the base estimator accepts a `random_state` attribute, a different
|
622 |
+
seed is generated for each instance in the ensemble.
|
623 |
+
Pass an int for reproducible output across multiple function calls.
|
624 |
+
See :term:`Glossary <random_state>`.
|
625 |
+
|
626 |
+
verbose : int, default=0
|
627 |
+
Controls the verbosity when fitting and predicting.
|
628 |
+
|
629 |
+
Attributes
|
630 |
+
----------
|
631 |
+
estimator_ : estimator
|
632 |
+
The base estimator from which the ensemble is grown.
|
633 |
+
|
634 |
+
.. versionadded:: 1.2
|
635 |
+
`base_estimator_` was renamed to `estimator_`.
|
636 |
+
|
637 |
+
n_features_in_ : int
|
638 |
+
Number of features seen during :term:`fit`.
|
639 |
+
|
640 |
+
.. versionadded:: 0.24
|
641 |
+
|
642 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
643 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
644 |
+
has feature names that are all strings.
|
645 |
+
|
646 |
+
.. versionadded:: 1.0
|
647 |
+
|
648 |
+
estimators_ : list of estimators
|
649 |
+
The collection of fitted base estimators.
|
650 |
+
|
651 |
+
estimators_samples_ : list of arrays
|
652 |
+
The subset of drawn samples (i.e., the in-bag samples) for each base
|
653 |
+
estimator. Each subset is defined by an array of the indices selected.
|
654 |
+
|
655 |
+
estimators_features_ : list of arrays
|
656 |
+
The subset of drawn features for each base estimator.
|
657 |
+
|
658 |
+
classes_ : ndarray of shape (n_classes,)
|
659 |
+
The classes labels.
|
660 |
+
|
661 |
+
n_classes_ : int or list
|
662 |
+
The number of classes.
|
663 |
+
|
664 |
+
oob_score_ : float
|
665 |
+
Score of the training dataset obtained using an out-of-bag estimate.
|
666 |
+
This attribute exists only when ``oob_score`` is True.
|
667 |
+
|
668 |
+
oob_decision_function_ : ndarray of shape (n_samples, n_classes)
|
669 |
+
Decision function computed with out-of-bag estimate on the training
|
670 |
+
set. If n_estimators is small it might be possible that a data point
|
671 |
+
was never left out during the bootstrap. In this case,
|
672 |
+
`oob_decision_function_` might contain NaN. This attribute exists
|
673 |
+
only when ``oob_score`` is True.
|
674 |
+
|
675 |
+
See Also
|
676 |
+
--------
|
677 |
+
BaggingRegressor : A Bagging regressor.
|
678 |
+
|
679 |
+
References
|
680 |
+
----------
|
681 |
+
|
682 |
+
.. [1] L. Breiman, "Pasting small votes for classification in large
|
683 |
+
databases and on-line", Machine Learning, 36(1), 85-103, 1999.
|
684 |
+
|
685 |
+
.. [2] L. Breiman, "Bagging predictors", Machine Learning, 24(2), 123-140,
|
686 |
+
1996.
|
687 |
+
|
688 |
+
.. [3] T. Ho, "The random subspace method for constructing decision
|
689 |
+
forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844,
|
690 |
+
1998.
|
691 |
+
|
692 |
+
.. [4] G. Louppe and P. Geurts, "Ensembles on Random Patches", Machine
|
693 |
+
Learning and Knowledge Discovery in Databases, 346-361, 2012.
|
694 |
+
|
695 |
+
Examples
|
696 |
+
--------
|
697 |
+
>>> from sklearn.svm import SVC
|
698 |
+
>>> from sklearn.ensemble import BaggingClassifier
|
699 |
+
>>> from sklearn.datasets import make_classification
|
700 |
+
>>> X, y = make_classification(n_samples=100, n_features=4,
|
701 |
+
... n_informative=2, n_redundant=0,
|
702 |
+
... random_state=0, shuffle=False)
|
703 |
+
>>> clf = BaggingClassifier(estimator=SVC(),
|
704 |
+
... n_estimators=10, random_state=0).fit(X, y)
|
705 |
+
>>> clf.predict([[0, 0, 0, 0]])
|
706 |
+
array([1])
|
707 |
+
"""
|
708 |
+
|
709 |
+
def __init__(
|
710 |
+
self,
|
711 |
+
estimator=None,
|
712 |
+
n_estimators=10,
|
713 |
+
*,
|
714 |
+
max_samples=1.0,
|
715 |
+
max_features=1.0,
|
716 |
+
bootstrap=True,
|
717 |
+
bootstrap_features=False,
|
718 |
+
oob_score=False,
|
719 |
+
warm_start=False,
|
720 |
+
n_jobs=None,
|
721 |
+
random_state=None,
|
722 |
+
verbose=0,
|
723 |
+
):
|
724 |
+
super().__init__(
|
725 |
+
estimator=estimator,
|
726 |
+
n_estimators=n_estimators,
|
727 |
+
max_samples=max_samples,
|
728 |
+
max_features=max_features,
|
729 |
+
bootstrap=bootstrap,
|
730 |
+
bootstrap_features=bootstrap_features,
|
731 |
+
oob_score=oob_score,
|
732 |
+
warm_start=warm_start,
|
733 |
+
n_jobs=n_jobs,
|
734 |
+
random_state=random_state,
|
735 |
+
verbose=verbose,
|
736 |
+
)
|
737 |
+
|
738 |
+
def _validate_estimator(self):
|
739 |
+
"""Check the estimator and set the estimator_ attribute."""
|
740 |
+
super()._validate_estimator(default=DecisionTreeClassifier())
|
741 |
+
|
742 |
+
def _set_oob_score(self, X, y):
|
743 |
+
n_samples = y.shape[0]
|
744 |
+
n_classes_ = self.n_classes_
|
745 |
+
|
746 |
+
predictions = np.zeros((n_samples, n_classes_))
|
747 |
+
|
748 |
+
for estimator, samples, features in zip(
|
749 |
+
self.estimators_, self.estimators_samples_, self.estimators_features_
|
750 |
+
):
|
751 |
+
# Create mask for OOB samples
|
752 |
+
mask = ~indices_to_mask(samples, n_samples)
|
753 |
+
|
754 |
+
if hasattr(estimator, "predict_proba"):
|
755 |
+
predictions[mask, :] += estimator.predict_proba(
|
756 |
+
(X[mask, :])[:, features]
|
757 |
+
)
|
758 |
+
|
759 |
+
else:
|
760 |
+
p = estimator.predict((X[mask, :])[:, features])
|
761 |
+
j = 0
|
762 |
+
|
763 |
+
for i in range(n_samples):
|
764 |
+
if mask[i]:
|
765 |
+
predictions[i, p[j]] += 1
|
766 |
+
j += 1
|
767 |
+
|
768 |
+
if (predictions.sum(axis=1) == 0).any():
|
769 |
+
warn(
|
770 |
+
"Some inputs do not have OOB scores. "
|
771 |
+
"This probably means too few estimators were used "
|
772 |
+
"to compute any reliable oob estimates."
|
773 |
+
)
|
774 |
+
|
775 |
+
oob_decision_function = predictions / predictions.sum(axis=1)[:, np.newaxis]
|
776 |
+
oob_score = accuracy_score(y, np.argmax(predictions, axis=1))
|
777 |
+
|
778 |
+
self.oob_decision_function_ = oob_decision_function
|
779 |
+
self.oob_score_ = oob_score
|
780 |
+
|
781 |
+
def _validate_y(self, y):
|
782 |
+
y = column_or_1d(y, warn=True)
|
783 |
+
check_classification_targets(y)
|
784 |
+
self.classes_, y = np.unique(y, return_inverse=True)
|
785 |
+
self.n_classes_ = len(self.classes_)
|
786 |
+
|
787 |
+
return y
|
788 |
+
|
789 |
+
def predict(self, X):
|
790 |
+
"""Predict class for X.
|
791 |
+
|
792 |
+
The predicted class of an input sample is computed as the class with
|
793 |
+
the highest mean predicted probability. If base estimators do not
|
794 |
+
implement a ``predict_proba`` method, then it resorts to voting.
|
795 |
+
|
796 |
+
Parameters
|
797 |
+
----------
|
798 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
799 |
+
The training input samples. Sparse matrices are accepted only if
|
800 |
+
they are supported by the base estimator.
|
801 |
+
|
802 |
+
Returns
|
803 |
+
-------
|
804 |
+
y : ndarray of shape (n_samples,)
|
805 |
+
The predicted classes.
|
806 |
+
"""
|
807 |
+
predicted_probabilitiy = self.predict_proba(X)
|
808 |
+
return self.classes_.take((np.argmax(predicted_probabilitiy, axis=1)), axis=0)
|
809 |
+
|
810 |
+
def predict_proba(self, X):
|
811 |
+
"""Predict class probabilities for X.
|
812 |
+
|
813 |
+
The predicted class probabilities of an input sample is computed as
|
814 |
+
the mean predicted class probabilities of the base estimators in the
|
815 |
+
ensemble. If base estimators do not implement a ``predict_proba``
|
816 |
+
method, then it resorts to voting and the predicted class probabilities
|
817 |
+
of an input sample represents the proportion of estimators predicting
|
818 |
+
each class.
|
819 |
+
|
820 |
+
Parameters
|
821 |
+
----------
|
822 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
823 |
+
The training input samples. Sparse matrices are accepted only if
|
824 |
+
they are supported by the base estimator.
|
825 |
+
|
826 |
+
Returns
|
827 |
+
-------
|
828 |
+
p : ndarray of shape (n_samples, n_classes)
|
829 |
+
The class probabilities of the input samples. The order of the
|
830 |
+
classes corresponds to that in the attribute :term:`classes_`.
|
831 |
+
"""
|
832 |
+
check_is_fitted(self)
|
833 |
+
# Check data
|
834 |
+
X = self._validate_data(
|
835 |
+
X,
|
836 |
+
accept_sparse=["csr", "csc"],
|
837 |
+
dtype=None,
|
838 |
+
force_all_finite=False,
|
839 |
+
reset=False,
|
840 |
+
)
|
841 |
+
|
842 |
+
# Parallel loop
|
843 |
+
n_jobs, _, starts = _partition_estimators(self.n_estimators, self.n_jobs)
|
844 |
+
|
845 |
+
all_proba = Parallel(
|
846 |
+
n_jobs=n_jobs, verbose=self.verbose, **self._parallel_args()
|
847 |
+
)(
|
848 |
+
delayed(_parallel_predict_proba)(
|
849 |
+
self.estimators_[starts[i] : starts[i + 1]],
|
850 |
+
self.estimators_features_[starts[i] : starts[i + 1]],
|
851 |
+
X,
|
852 |
+
self.n_classes_,
|
853 |
+
)
|
854 |
+
for i in range(n_jobs)
|
855 |
+
)
|
856 |
+
|
857 |
+
# Reduce
|
858 |
+
proba = sum(all_proba) / self.n_estimators
|
859 |
+
|
860 |
+
return proba
|
861 |
+
|
862 |
+
def predict_log_proba(self, X):
|
863 |
+
"""Predict class log-probabilities for X.
|
864 |
+
|
865 |
+
The predicted class log-probabilities of an input sample is computed as
|
866 |
+
the log of the mean predicted class probabilities of the base
|
867 |
+
estimators in the ensemble.
|
868 |
+
|
869 |
+
Parameters
|
870 |
+
----------
|
871 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
872 |
+
The training input samples. Sparse matrices are accepted only if
|
873 |
+
they are supported by the base estimator.
|
874 |
+
|
875 |
+
Returns
|
876 |
+
-------
|
877 |
+
p : ndarray of shape (n_samples, n_classes)
|
878 |
+
The class log-probabilities of the input samples. The order of the
|
879 |
+
classes corresponds to that in the attribute :term:`classes_`.
|
880 |
+
"""
|
881 |
+
check_is_fitted(self)
|
882 |
+
if hasattr(self.estimator_, "predict_log_proba"):
|
883 |
+
# Check data
|
884 |
+
X = self._validate_data(
|
885 |
+
X,
|
886 |
+
accept_sparse=["csr", "csc"],
|
887 |
+
dtype=None,
|
888 |
+
force_all_finite=False,
|
889 |
+
reset=False,
|
890 |
+
)
|
891 |
+
|
892 |
+
# Parallel loop
|
893 |
+
n_jobs, _, starts = _partition_estimators(self.n_estimators, self.n_jobs)
|
894 |
+
|
895 |
+
all_log_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
|
896 |
+
delayed(_parallel_predict_log_proba)(
|
897 |
+
self.estimators_[starts[i] : starts[i + 1]],
|
898 |
+
self.estimators_features_[starts[i] : starts[i + 1]],
|
899 |
+
X,
|
900 |
+
self.n_classes_,
|
901 |
+
)
|
902 |
+
for i in range(n_jobs)
|
903 |
+
)
|
904 |
+
|
905 |
+
# Reduce
|
906 |
+
log_proba = all_log_proba[0]
|
907 |
+
|
908 |
+
for j in range(1, len(all_log_proba)):
|
909 |
+
log_proba = np.logaddexp(log_proba, all_log_proba[j])
|
910 |
+
|
911 |
+
log_proba -= np.log(self.n_estimators)
|
912 |
+
|
913 |
+
else:
|
914 |
+
log_proba = np.log(self.predict_proba(X))
|
915 |
+
|
916 |
+
return log_proba
|
917 |
+
|
918 |
+
@available_if(_estimator_has("decision_function"))
|
919 |
+
def decision_function(self, X):
|
920 |
+
"""Average of the decision functions of the base classifiers.
|
921 |
+
|
922 |
+
Parameters
|
923 |
+
----------
|
924 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
925 |
+
The training input samples. Sparse matrices are accepted only if
|
926 |
+
they are supported by the base estimator.
|
927 |
+
|
928 |
+
Returns
|
929 |
+
-------
|
930 |
+
score : ndarray of shape (n_samples, k)
|
931 |
+
The decision function of the input samples. The columns correspond
|
932 |
+
to the classes in sorted order, as they appear in the attribute
|
933 |
+
``classes_``. Regression and binary classification are special
|
934 |
+
cases with ``k == 1``, otherwise ``k==n_classes``.
|
935 |
+
"""
|
936 |
+
check_is_fitted(self)
|
937 |
+
|
938 |
+
# Check data
|
939 |
+
X = self._validate_data(
|
940 |
+
X,
|
941 |
+
accept_sparse=["csr", "csc"],
|
942 |
+
dtype=None,
|
943 |
+
force_all_finite=False,
|
944 |
+
reset=False,
|
945 |
+
)
|
946 |
+
|
947 |
+
# Parallel loop
|
948 |
+
n_jobs, _, starts = _partition_estimators(self.n_estimators, self.n_jobs)
|
949 |
+
|
950 |
+
all_decisions = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
|
951 |
+
delayed(_parallel_decision_function)(
|
952 |
+
self.estimators_[starts[i] : starts[i + 1]],
|
953 |
+
self.estimators_features_[starts[i] : starts[i + 1]],
|
954 |
+
X,
|
955 |
+
)
|
956 |
+
for i in range(n_jobs)
|
957 |
+
)
|
958 |
+
|
959 |
+
# Reduce
|
960 |
+
decisions = sum(all_decisions) / self.n_estimators
|
961 |
+
|
962 |
+
return decisions
|
963 |
+
|
964 |
+
def _more_tags(self):
|
965 |
+
if self.estimator is None:
|
966 |
+
estimator = DecisionTreeClassifier()
|
967 |
+
else:
|
968 |
+
estimator = self.estimator
|
969 |
+
|
970 |
+
return {"allow_nan": _safe_tags(estimator, "allow_nan")}
|
971 |
+
|
972 |
+
|
973 |
+
class BaggingRegressor(_RoutingNotSupportedMixin, RegressorMixin, BaseBagging):
|
974 |
+
"""A Bagging regressor.
|
975 |
+
|
976 |
+
A Bagging regressor is an ensemble meta-estimator that fits base
|
977 |
+
regressors each on random subsets of the original dataset and then
|
978 |
+
aggregate their individual predictions (either by voting or by averaging)
|
979 |
+
to form a final prediction. Such a meta-estimator can typically be used as
|
980 |
+
a way to reduce the variance of a black-box estimator (e.g., a decision
|
981 |
+
tree), by introducing randomization into its construction procedure and
|
982 |
+
then making an ensemble out of it.
|
983 |
+
|
984 |
+
This algorithm encompasses several works from the literature. When random
|
985 |
+
subsets of the dataset are drawn as random subsets of the samples, then
|
986 |
+
this algorithm is known as Pasting [1]_. If samples are drawn with
|
987 |
+
replacement, then the method is known as Bagging [2]_. When random subsets
|
988 |
+
of the dataset are drawn as random subsets of the features, then the method
|
989 |
+
is known as Random Subspaces [3]_. Finally, when base estimators are built
|
990 |
+
on subsets of both samples and features, then the method is known as
|
991 |
+
Random Patches [4]_.
|
992 |
+
|
993 |
+
Read more in the :ref:`User Guide <bagging>`.
|
994 |
+
|
995 |
+
.. versionadded:: 0.15
|
996 |
+
|
997 |
+
Parameters
|
998 |
+
----------
|
999 |
+
estimator : object, default=None
|
1000 |
+
The base estimator to fit on random subsets of the dataset.
|
1001 |
+
If None, then the base estimator is a
|
1002 |
+
:class:`~sklearn.tree.DecisionTreeRegressor`.
|
1003 |
+
|
1004 |
+
.. versionadded:: 1.2
|
1005 |
+
`base_estimator` was renamed to `estimator`.
|
1006 |
+
|
1007 |
+
n_estimators : int, default=10
|
1008 |
+
The number of base estimators in the ensemble.
|
1009 |
+
|
1010 |
+
max_samples : int or float, default=1.0
|
1011 |
+
The number of samples to draw from X to train each base estimator (with
|
1012 |
+
replacement by default, see `bootstrap` for more details).
|
1013 |
+
|
1014 |
+
- If int, then draw `max_samples` samples.
|
1015 |
+
- If float, then draw `max_samples * X.shape[0]` samples.
|
1016 |
+
|
1017 |
+
max_features : int or float, default=1.0
|
1018 |
+
The number of features to draw from X to train each base estimator (
|
1019 |
+
without replacement by default, see `bootstrap_features` for more
|
1020 |
+
details).
|
1021 |
+
|
1022 |
+
- If int, then draw `max_features` features.
|
1023 |
+
- If float, then draw `max(1, int(max_features * n_features_in_))` features.
|
1024 |
+
|
1025 |
+
bootstrap : bool, default=True
|
1026 |
+
Whether samples are drawn with replacement. If False, sampling
|
1027 |
+
without replacement is performed.
|
1028 |
+
|
1029 |
+
bootstrap_features : bool, default=False
|
1030 |
+
Whether features are drawn with replacement.
|
1031 |
+
|
1032 |
+
oob_score : bool, default=False
|
1033 |
+
Whether to use out-of-bag samples to estimate
|
1034 |
+
the generalization error. Only available if bootstrap=True.
|
1035 |
+
|
1036 |
+
warm_start : bool, default=False
|
1037 |
+
When set to True, reuse the solution of the previous call to fit
|
1038 |
+
and add more estimators to the ensemble, otherwise, just fit
|
1039 |
+
a whole new ensemble. See :term:`the Glossary <warm_start>`.
|
1040 |
+
|
1041 |
+
n_jobs : int, default=None
|
1042 |
+
The number of jobs to run in parallel for both :meth:`fit` and
|
1043 |
+
:meth:`predict`. ``None`` means 1 unless in a
|
1044 |
+
:obj:`joblib.parallel_backend` context. ``-1`` means using all
|
1045 |
+
processors. See :term:`Glossary <n_jobs>` for more details.
|
1046 |
+
|
1047 |
+
random_state : int, RandomState instance or None, default=None
|
1048 |
+
Controls the random resampling of the original dataset
|
1049 |
+
(sample wise and feature wise).
|
1050 |
+
If the base estimator accepts a `random_state` attribute, a different
|
1051 |
+
seed is generated for each instance in the ensemble.
|
1052 |
+
Pass an int for reproducible output across multiple function calls.
|
1053 |
+
See :term:`Glossary <random_state>`.
|
1054 |
+
|
1055 |
+
verbose : int, default=0
|
1056 |
+
Controls the verbosity when fitting and predicting.
|
1057 |
+
|
1058 |
+
Attributes
|
1059 |
+
----------
|
1060 |
+
estimator_ : estimator
|
1061 |
+
The base estimator from which the ensemble is grown.
|
1062 |
+
|
1063 |
+
.. versionadded:: 1.2
|
1064 |
+
`base_estimator_` was renamed to `estimator_`.
|
1065 |
+
|
1066 |
+
n_features_in_ : int
|
1067 |
+
Number of features seen during :term:`fit`.
|
1068 |
+
|
1069 |
+
.. versionadded:: 0.24
|
1070 |
+
|
1071 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1072 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1073 |
+
has feature names that are all strings.
|
1074 |
+
|
1075 |
+
.. versionadded:: 1.0
|
1076 |
+
|
1077 |
+
estimators_ : list of estimators
|
1078 |
+
The collection of fitted sub-estimators.
|
1079 |
+
|
1080 |
+
estimators_samples_ : list of arrays
|
1081 |
+
The subset of drawn samples (i.e., the in-bag samples) for each base
|
1082 |
+
estimator. Each subset is defined by an array of the indices selected.
|
1083 |
+
|
1084 |
+
estimators_features_ : list of arrays
|
1085 |
+
The subset of drawn features for each base estimator.
|
1086 |
+
|
1087 |
+
oob_score_ : float
|
1088 |
+
Score of the training dataset obtained using an out-of-bag estimate.
|
1089 |
+
This attribute exists only when ``oob_score`` is True.
|
1090 |
+
|
1091 |
+
oob_prediction_ : ndarray of shape (n_samples,)
|
1092 |
+
Prediction computed with out-of-bag estimate on the training
|
1093 |
+
set. If n_estimators is small it might be possible that a data point
|
1094 |
+
was never left out during the bootstrap. In this case,
|
1095 |
+
`oob_prediction_` might contain NaN. This attribute exists only
|
1096 |
+
when ``oob_score`` is True.
|
1097 |
+
|
1098 |
+
See Also
|
1099 |
+
--------
|
1100 |
+
BaggingClassifier : A Bagging classifier.
|
1101 |
+
|
1102 |
+
References
|
1103 |
+
----------
|
1104 |
+
|
1105 |
+
.. [1] L. Breiman, "Pasting small votes for classification in large
|
1106 |
+
databases and on-line", Machine Learning, 36(1), 85-103, 1999.
|
1107 |
+
|
1108 |
+
.. [2] L. Breiman, "Bagging predictors", Machine Learning, 24(2), 123-140,
|
1109 |
+
1996.
|
1110 |
+
|
1111 |
+
.. [3] T. Ho, "The random subspace method for constructing decision
|
1112 |
+
forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844,
|
1113 |
+
1998.
|
1114 |
+
|
1115 |
+
.. [4] G. Louppe and P. Geurts, "Ensembles on Random Patches", Machine
|
1116 |
+
Learning and Knowledge Discovery in Databases, 346-361, 2012.
|
1117 |
+
|
1118 |
+
Examples
|
1119 |
+
--------
|
1120 |
+
>>> from sklearn.svm import SVR
|
1121 |
+
>>> from sklearn.ensemble import BaggingRegressor
|
1122 |
+
>>> from sklearn.datasets import make_regression
|
1123 |
+
>>> X, y = make_regression(n_samples=100, n_features=4,
|
1124 |
+
... n_informative=2, n_targets=1,
|
1125 |
+
... random_state=0, shuffle=False)
|
1126 |
+
>>> regr = BaggingRegressor(estimator=SVR(),
|
1127 |
+
... n_estimators=10, random_state=0).fit(X, y)
|
1128 |
+
>>> regr.predict([[0, 0, 0, 0]])
|
1129 |
+
array([-2.8720...])
|
1130 |
+
"""
|
1131 |
+
|
1132 |
+
def __init__(
|
1133 |
+
self,
|
1134 |
+
estimator=None,
|
1135 |
+
n_estimators=10,
|
1136 |
+
*,
|
1137 |
+
max_samples=1.0,
|
1138 |
+
max_features=1.0,
|
1139 |
+
bootstrap=True,
|
1140 |
+
bootstrap_features=False,
|
1141 |
+
oob_score=False,
|
1142 |
+
warm_start=False,
|
1143 |
+
n_jobs=None,
|
1144 |
+
random_state=None,
|
1145 |
+
verbose=0,
|
1146 |
+
):
|
1147 |
+
super().__init__(
|
1148 |
+
estimator=estimator,
|
1149 |
+
n_estimators=n_estimators,
|
1150 |
+
max_samples=max_samples,
|
1151 |
+
max_features=max_features,
|
1152 |
+
bootstrap=bootstrap,
|
1153 |
+
bootstrap_features=bootstrap_features,
|
1154 |
+
oob_score=oob_score,
|
1155 |
+
warm_start=warm_start,
|
1156 |
+
n_jobs=n_jobs,
|
1157 |
+
random_state=random_state,
|
1158 |
+
verbose=verbose,
|
1159 |
+
)
|
1160 |
+
|
1161 |
+
def predict(self, X):
|
1162 |
+
"""Predict regression target for X.
|
1163 |
+
|
1164 |
+
The predicted regression target of an input sample is computed as the
|
1165 |
+
mean predicted regression targets of the estimators in the ensemble.
|
1166 |
+
|
1167 |
+
Parameters
|
1168 |
+
----------
|
1169 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1170 |
+
The training input samples. Sparse matrices are accepted only if
|
1171 |
+
they are supported by the base estimator.
|
1172 |
+
|
1173 |
+
Returns
|
1174 |
+
-------
|
1175 |
+
y : ndarray of shape (n_samples,)
|
1176 |
+
The predicted values.
|
1177 |
+
"""
|
1178 |
+
check_is_fitted(self)
|
1179 |
+
# Check data
|
1180 |
+
X = self._validate_data(
|
1181 |
+
X,
|
1182 |
+
accept_sparse=["csr", "csc"],
|
1183 |
+
dtype=None,
|
1184 |
+
force_all_finite=False,
|
1185 |
+
reset=False,
|
1186 |
+
)
|
1187 |
+
|
1188 |
+
# Parallel loop
|
1189 |
+
n_jobs, _, starts = _partition_estimators(self.n_estimators, self.n_jobs)
|
1190 |
+
|
1191 |
+
all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
|
1192 |
+
delayed(_parallel_predict_regression)(
|
1193 |
+
self.estimators_[starts[i] : starts[i + 1]],
|
1194 |
+
self.estimators_features_[starts[i] : starts[i + 1]],
|
1195 |
+
X,
|
1196 |
+
)
|
1197 |
+
for i in range(n_jobs)
|
1198 |
+
)
|
1199 |
+
|
1200 |
+
# Reduce
|
1201 |
+
y_hat = sum(all_y_hat) / self.n_estimators
|
1202 |
+
|
1203 |
+
return y_hat
|
1204 |
+
|
1205 |
+
def _validate_estimator(self):
|
1206 |
+
"""Check the estimator and set the estimator_ attribute."""
|
1207 |
+
super()._validate_estimator(default=DecisionTreeRegressor())
|
1208 |
+
|
1209 |
+
def _set_oob_score(self, X, y):
|
1210 |
+
n_samples = y.shape[0]
|
1211 |
+
|
1212 |
+
predictions = np.zeros((n_samples,))
|
1213 |
+
n_predictions = np.zeros((n_samples,))
|
1214 |
+
|
1215 |
+
for estimator, samples, features in zip(
|
1216 |
+
self.estimators_, self.estimators_samples_, self.estimators_features_
|
1217 |
+
):
|
1218 |
+
# Create mask for OOB samples
|
1219 |
+
mask = ~indices_to_mask(samples, n_samples)
|
1220 |
+
|
1221 |
+
predictions[mask] += estimator.predict((X[mask, :])[:, features])
|
1222 |
+
n_predictions[mask] += 1
|
1223 |
+
|
1224 |
+
if (n_predictions == 0).any():
|
1225 |
+
warn(
|
1226 |
+
"Some inputs do not have OOB scores. "
|
1227 |
+
"This probably means too few estimators were used "
|
1228 |
+
"to compute any reliable oob estimates."
|
1229 |
+
)
|
1230 |
+
n_predictions[n_predictions == 0] = 1
|
1231 |
+
|
1232 |
+
predictions /= n_predictions
|
1233 |
+
|
1234 |
+
self.oob_prediction_ = predictions
|
1235 |
+
self.oob_score_ = r2_score(y, predictions)
|
1236 |
+
|
1237 |
+
def _more_tags(self):
|
1238 |
+
if self.estimator is None:
|
1239 |
+
estimator = DecisionTreeRegressor()
|
1240 |
+
else:
|
1241 |
+
estimator = self.estimator
|
1242 |
+
return {"allow_nan": _safe_tags(estimator, "allow_nan")}
|
venv/lib/python3.10/site-packages/sklearn/ensemble/_base.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Base class for ensemble-based estimators."""
|
2 |
+
|
3 |
+
# Authors: Gilles Louppe
|
4 |
+
# License: BSD 3 clause
|
5 |
+
|
6 |
+
from abc import ABCMeta, abstractmethod
|
7 |
+
from typing import List
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from joblib import effective_n_jobs
|
11 |
+
|
12 |
+
from ..base import BaseEstimator, MetaEstimatorMixin, clone, is_classifier, is_regressor
|
13 |
+
from ..utils import Bunch, _print_elapsed_time, check_random_state
|
14 |
+
from ..utils._tags import _safe_tags
|
15 |
+
from ..utils.metaestimators import _BaseComposition
|
16 |
+
|
17 |
+
|
18 |
+
def _fit_single_estimator(
|
19 |
+
estimator, X, y, sample_weight=None, message_clsname=None, message=None
|
20 |
+
):
|
21 |
+
"""Private function used to fit an estimator within a job."""
|
22 |
+
if sample_weight is not None:
|
23 |
+
try:
|
24 |
+
with _print_elapsed_time(message_clsname, message):
|
25 |
+
estimator.fit(X, y, sample_weight=sample_weight)
|
26 |
+
except TypeError as exc:
|
27 |
+
if "unexpected keyword argument 'sample_weight'" in str(exc):
|
28 |
+
raise TypeError(
|
29 |
+
"Underlying estimator {} does not support sample weights.".format(
|
30 |
+
estimator.__class__.__name__
|
31 |
+
)
|
32 |
+
) from exc
|
33 |
+
raise
|
34 |
+
else:
|
35 |
+
with _print_elapsed_time(message_clsname, message):
|
36 |
+
estimator.fit(X, y)
|
37 |
+
return estimator
|
38 |
+
|
39 |
+
|
40 |
+
def _set_random_states(estimator, random_state=None):
|
41 |
+
"""Set fixed random_state parameters for an estimator.
|
42 |
+
|
43 |
+
Finds all parameters ending ``random_state`` and sets them to integers
|
44 |
+
derived from ``random_state``.
|
45 |
+
|
46 |
+
Parameters
|
47 |
+
----------
|
48 |
+
estimator : estimator supporting get/set_params
|
49 |
+
Estimator with potential randomness managed by random_state
|
50 |
+
parameters.
|
51 |
+
|
52 |
+
random_state : int, RandomState instance or None, default=None
|
53 |
+
Pseudo-random number generator to control the generation of the random
|
54 |
+
integers. Pass an int for reproducible output across multiple function
|
55 |
+
calls.
|
56 |
+
See :term:`Glossary <random_state>`.
|
57 |
+
|
58 |
+
Notes
|
59 |
+
-----
|
60 |
+
This does not necessarily set *all* ``random_state`` attributes that
|
61 |
+
control an estimator's randomness, only those accessible through
|
62 |
+
``estimator.get_params()``. ``random_state``s not controlled include
|
63 |
+
those belonging to:
|
64 |
+
|
65 |
+
* cross-validation splitters
|
66 |
+
* ``scipy.stats`` rvs
|
67 |
+
"""
|
68 |
+
random_state = check_random_state(random_state)
|
69 |
+
to_set = {}
|
70 |
+
for key in sorted(estimator.get_params(deep=True)):
|
71 |
+
if key == "random_state" or key.endswith("__random_state"):
|
72 |
+
to_set[key] = random_state.randint(np.iinfo(np.int32).max)
|
73 |
+
|
74 |
+
if to_set:
|
75 |
+
estimator.set_params(**to_set)
|
76 |
+
|
77 |
+
|
78 |
+
class BaseEnsemble(MetaEstimatorMixin, BaseEstimator, metaclass=ABCMeta):
|
79 |
+
"""Base class for all ensemble classes.
|
80 |
+
|
81 |
+
Warning: This class should not be used directly. Use derived classes
|
82 |
+
instead.
|
83 |
+
|
84 |
+
Parameters
|
85 |
+
----------
|
86 |
+
estimator : object
|
87 |
+
The base estimator from which the ensemble is built.
|
88 |
+
|
89 |
+
n_estimators : int, default=10
|
90 |
+
The number of estimators in the ensemble.
|
91 |
+
|
92 |
+
estimator_params : list of str, default=tuple()
|
93 |
+
The list of attributes to use as parameters when instantiating a
|
94 |
+
new base estimator. If none are given, default parameters are used.
|
95 |
+
|
96 |
+
Attributes
|
97 |
+
----------
|
98 |
+
estimator_ : estimator
|
99 |
+
The base estimator from which the ensemble is grown.
|
100 |
+
|
101 |
+
estimators_ : list of estimators
|
102 |
+
The collection of fitted base estimators.
|
103 |
+
"""
|
104 |
+
|
105 |
+
# overwrite _required_parameters from MetaEstimatorMixin
|
106 |
+
_required_parameters: List[str] = []
|
107 |
+
|
108 |
+
@abstractmethod
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
estimator=None,
|
112 |
+
*,
|
113 |
+
n_estimators=10,
|
114 |
+
estimator_params=tuple(),
|
115 |
+
):
|
116 |
+
# Set parameters
|
117 |
+
self.estimator = estimator
|
118 |
+
self.n_estimators = n_estimators
|
119 |
+
self.estimator_params = estimator_params
|
120 |
+
|
121 |
+
# Don't instantiate estimators now! Parameters of estimator might
|
122 |
+
# still change. Eg., when grid-searching with the nested object syntax.
|
123 |
+
# self.estimators_ needs to be filled by the derived classes in fit.
|
124 |
+
|
125 |
+
def _validate_estimator(self, default=None):
|
126 |
+
"""Check the base estimator.
|
127 |
+
|
128 |
+
Sets the `estimator_` attributes.
|
129 |
+
"""
|
130 |
+
if self.estimator is not None:
|
131 |
+
self.estimator_ = self.estimator
|
132 |
+
else:
|
133 |
+
self.estimator_ = default
|
134 |
+
|
135 |
+
def _make_estimator(self, append=True, random_state=None):
|
136 |
+
"""Make and configure a copy of the `estimator_` attribute.
|
137 |
+
|
138 |
+
Warning: This method should be used to properly instantiate new
|
139 |
+
sub-estimators.
|
140 |
+
"""
|
141 |
+
estimator = clone(self.estimator_)
|
142 |
+
estimator.set_params(**{p: getattr(self, p) for p in self.estimator_params})
|
143 |
+
|
144 |
+
if random_state is not None:
|
145 |
+
_set_random_states(estimator, random_state)
|
146 |
+
|
147 |
+
if append:
|
148 |
+
self.estimators_.append(estimator)
|
149 |
+
|
150 |
+
return estimator
|
151 |
+
|
152 |
+
def __len__(self):
|
153 |
+
"""Return the number of estimators in the ensemble."""
|
154 |
+
return len(self.estimators_)
|
155 |
+
|
156 |
+
def __getitem__(self, index):
|
157 |
+
"""Return the index'th estimator in the ensemble."""
|
158 |
+
return self.estimators_[index]
|
159 |
+
|
160 |
+
def __iter__(self):
|
161 |
+
"""Return iterator over estimators in the ensemble."""
|
162 |
+
return iter(self.estimators_)
|
163 |
+
|
164 |
+
|
165 |
+
def _partition_estimators(n_estimators, n_jobs):
|
166 |
+
"""Private function used to partition estimators between jobs."""
|
167 |
+
# Compute the number of jobs
|
168 |
+
n_jobs = min(effective_n_jobs(n_jobs), n_estimators)
|
169 |
+
|
170 |
+
# Partition estimators between jobs
|
171 |
+
n_estimators_per_job = np.full(n_jobs, n_estimators // n_jobs, dtype=int)
|
172 |
+
n_estimators_per_job[: n_estimators % n_jobs] += 1
|
173 |
+
starts = np.cumsum(n_estimators_per_job)
|
174 |
+
|
175 |
+
return n_jobs, n_estimators_per_job.tolist(), [0] + starts.tolist()
|
176 |
+
|
177 |
+
|
178 |
+
class _BaseHeterogeneousEnsemble(
|
179 |
+
MetaEstimatorMixin, _BaseComposition, metaclass=ABCMeta
|
180 |
+
):
|
181 |
+
"""Base class for heterogeneous ensemble of learners.
|
182 |
+
|
183 |
+
Parameters
|
184 |
+
----------
|
185 |
+
estimators : list of (str, estimator) tuples
|
186 |
+
The ensemble of estimators to use in the ensemble. Each element of the
|
187 |
+
list is defined as a tuple of string (i.e. name of the estimator) and
|
188 |
+
an estimator instance. An estimator can be set to `'drop'` using
|
189 |
+
`set_params`.
|
190 |
+
|
191 |
+
Attributes
|
192 |
+
----------
|
193 |
+
estimators_ : list of estimators
|
194 |
+
The elements of the estimators parameter, having been fitted on the
|
195 |
+
training data. If an estimator has been set to `'drop'`, it will not
|
196 |
+
appear in `estimators_`.
|
197 |
+
"""
|
198 |
+
|
199 |
+
_required_parameters = ["estimators"]
|
200 |
+
|
201 |
+
@property
|
202 |
+
def named_estimators(self):
|
203 |
+
"""Dictionary to access any fitted sub-estimators by name.
|
204 |
+
|
205 |
+
Returns
|
206 |
+
-------
|
207 |
+
:class:`~sklearn.utils.Bunch`
|
208 |
+
"""
|
209 |
+
return Bunch(**dict(self.estimators))
|
210 |
+
|
211 |
+
@abstractmethod
|
212 |
+
def __init__(self, estimators):
|
213 |
+
self.estimators = estimators
|
214 |
+
|
215 |
+
def _validate_estimators(self):
|
216 |
+
if len(self.estimators) == 0:
|
217 |
+
raise ValueError(
|
218 |
+
"Invalid 'estimators' attribute, 'estimators' should be a "
|
219 |
+
"non-empty list of (string, estimator) tuples."
|
220 |
+
)
|
221 |
+
names, estimators = zip(*self.estimators)
|
222 |
+
# defined by MetaEstimatorMixin
|
223 |
+
self._validate_names(names)
|
224 |
+
|
225 |
+
has_estimator = any(est != "drop" for est in estimators)
|
226 |
+
if not has_estimator:
|
227 |
+
raise ValueError(
|
228 |
+
"All estimators are dropped. At least one is required "
|
229 |
+
"to be an estimator."
|
230 |
+
)
|
231 |
+
|
232 |
+
is_estimator_type = is_classifier if is_classifier(self) else is_regressor
|
233 |
+
|
234 |
+
for est in estimators:
|
235 |
+
if est != "drop" and not is_estimator_type(est):
|
236 |
+
raise ValueError(
|
237 |
+
"The estimator {} should be a {}.".format(
|
238 |
+
est.__class__.__name__, is_estimator_type.__name__[3:]
|
239 |
+
)
|
240 |
+
)
|
241 |
+
|
242 |
+
return names, estimators
|
243 |
+
|
244 |
+
def set_params(self, **params):
|
245 |
+
"""
|
246 |
+
Set the parameters of an estimator from the ensemble.
|
247 |
+
|
248 |
+
Valid parameter keys can be listed with `get_params()`. Note that you
|
249 |
+
can directly set the parameters of the estimators contained in
|
250 |
+
`estimators`.
|
251 |
+
|
252 |
+
Parameters
|
253 |
+
----------
|
254 |
+
**params : keyword arguments
|
255 |
+
Specific parameters using e.g.
|
256 |
+
`set_params(parameter_name=new_value)`. In addition, to setting the
|
257 |
+
parameters of the estimator, the individual estimator of the
|
258 |
+
estimators can also be set, or can be removed by setting them to
|
259 |
+
'drop'.
|
260 |
+
|
261 |
+
Returns
|
262 |
+
-------
|
263 |
+
self : object
|
264 |
+
Estimator instance.
|
265 |
+
"""
|
266 |
+
super()._set_params("estimators", **params)
|
267 |
+
return self
|
268 |
+
|
269 |
+
def get_params(self, deep=True):
|
270 |
+
"""
|
271 |
+
Get the parameters of an estimator from the ensemble.
|
272 |
+
|
273 |
+
Returns the parameters given in the constructor as well as the
|
274 |
+
estimators contained within the `estimators` parameter.
|
275 |
+
|
276 |
+
Parameters
|
277 |
+
----------
|
278 |
+
deep : bool, default=True
|
279 |
+
Setting it to True gets the various estimators and the parameters
|
280 |
+
of the estimators as well.
|
281 |
+
|
282 |
+
Returns
|
283 |
+
-------
|
284 |
+
params : dict
|
285 |
+
Parameter and estimator names mapped to their values or parameter
|
286 |
+
names mapped to their values.
|
287 |
+
"""
|
288 |
+
return super()._get_params("estimators", deep=deep)
|
289 |
+
|
290 |
+
def _more_tags(self):
|
291 |
+
try:
|
292 |
+
allow_nan = all(
|
293 |
+
_safe_tags(est[1])["allow_nan"] if est[1] != "drop" else True
|
294 |
+
for est in self.estimators
|
295 |
+
)
|
296 |
+
except Exception:
|
297 |
+
# If `estimators` does not comply with our API (list of tuples) then it will
|
298 |
+
# fail. In this case, we assume that `allow_nan` is False but the parameter
|
299 |
+
# validation will raise an error during `fit`.
|
300 |
+
allow_nan = False
|
301 |
+
return {"preserves_dtype": [], "allow_nan": allow_nan}
|
venv/lib/python3.10/site-packages/sklearn/ensemble/_forest.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/sklearn/ensemble/_gb.py
ADDED
@@ -0,0 +1,2168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Gradient Boosted Regression Trees.
|
2 |
+
|
3 |
+
This module contains methods for fitting gradient boosted regression trees for
|
4 |
+
both classification and regression.
|
5 |
+
|
6 |
+
The module structure is the following:
|
7 |
+
|
8 |
+
- The ``BaseGradientBoosting`` base class implements a common ``fit`` method
|
9 |
+
for all the estimators in the module. Regression and classification
|
10 |
+
only differ in the concrete ``LossFunction`` used.
|
11 |
+
|
12 |
+
- ``GradientBoostingClassifier`` implements gradient boosting for
|
13 |
+
classification problems.
|
14 |
+
|
15 |
+
- ``GradientBoostingRegressor`` implements gradient boosting for
|
16 |
+
regression problems.
|
17 |
+
"""
|
18 |
+
|
19 |
+
# Authors: Peter Prettenhofer, Scott White, Gilles Louppe, Emanuele Olivetti,
|
20 |
+
# Arnaud Joly, Jacob Schreiber
|
21 |
+
# License: BSD 3 clause
|
22 |
+
|
23 |
+
import math
|
24 |
+
import warnings
|
25 |
+
from abc import ABCMeta, abstractmethod
|
26 |
+
from numbers import Integral, Real
|
27 |
+
from time import time
|
28 |
+
|
29 |
+
import numpy as np
|
30 |
+
from scipy.sparse import csc_matrix, csr_matrix, issparse
|
31 |
+
|
32 |
+
from .._loss.loss import (
|
33 |
+
_LOSSES,
|
34 |
+
AbsoluteError,
|
35 |
+
ExponentialLoss,
|
36 |
+
HalfBinomialLoss,
|
37 |
+
HalfMultinomialLoss,
|
38 |
+
HalfSquaredError,
|
39 |
+
HuberLoss,
|
40 |
+
PinballLoss,
|
41 |
+
)
|
42 |
+
from ..base import ClassifierMixin, RegressorMixin, _fit_context, is_classifier
|
43 |
+
from ..dummy import DummyClassifier, DummyRegressor
|
44 |
+
from ..exceptions import NotFittedError
|
45 |
+
from ..model_selection import train_test_split
|
46 |
+
from ..preprocessing import LabelEncoder
|
47 |
+
from ..tree import DecisionTreeRegressor
|
48 |
+
from ..tree._tree import DOUBLE, DTYPE, TREE_LEAF
|
49 |
+
from ..utils import check_array, check_random_state, column_or_1d
|
50 |
+
from ..utils._param_validation import HasMethods, Interval, StrOptions
|
51 |
+
from ..utils.multiclass import check_classification_targets
|
52 |
+
from ..utils.stats import _weighted_percentile
|
53 |
+
from ..utils.validation import _check_sample_weight, check_is_fitted
|
54 |
+
from ._base import BaseEnsemble
|
55 |
+
from ._gradient_boosting import _random_sample_mask, predict_stage, predict_stages
|
56 |
+
|
57 |
+
_LOSSES = _LOSSES.copy()
|
58 |
+
_LOSSES.update(
|
59 |
+
{
|
60 |
+
"quantile": PinballLoss,
|
61 |
+
"huber": HuberLoss,
|
62 |
+
}
|
63 |
+
)
|
64 |
+
|
65 |
+
|
66 |
+
def _safe_divide(numerator, denominator):
|
67 |
+
"""Prevents overflow and division by zero."""
|
68 |
+
# This is used for classifiers where the denominator might become zero exatly.
|
69 |
+
# For instance for log loss, HalfBinomialLoss, if proba=0 or proba=1 exactly, then
|
70 |
+
# denominator = hessian = 0, and we should set the node value in the line search to
|
71 |
+
# zero as there is no improvement of the loss possible.
|
72 |
+
# For numerical safety, we do this already for extremely tiny values.
|
73 |
+
if abs(denominator) < 1e-150:
|
74 |
+
return 0.0
|
75 |
+
else:
|
76 |
+
# Cast to Python float to trigger Python errors, e.g. ZeroDivisionError,
|
77 |
+
# without relying on `np.errstate` that is not supported by Pyodide.
|
78 |
+
result = float(numerator) / float(denominator)
|
79 |
+
# Cast to Python float to trigger a ZeroDivisionError without relying
|
80 |
+
# on `np.errstate` that is not supported by Pyodide.
|
81 |
+
result = float(numerator) / float(denominator)
|
82 |
+
if math.isinf(result):
|
83 |
+
warnings.warn("overflow encountered in _safe_divide", RuntimeWarning)
|
84 |
+
return result
|
85 |
+
|
86 |
+
|
87 |
+
def _init_raw_predictions(X, estimator, loss, use_predict_proba):
|
88 |
+
"""Return the initial raw predictions.
|
89 |
+
|
90 |
+
Parameters
|
91 |
+
----------
|
92 |
+
X : ndarray of shape (n_samples, n_features)
|
93 |
+
The data array.
|
94 |
+
estimator : object
|
95 |
+
The estimator to use to compute the predictions.
|
96 |
+
loss : BaseLoss
|
97 |
+
An instance of a loss function class.
|
98 |
+
use_predict_proba : bool
|
99 |
+
Whether estimator.predict_proba is used instead of estimator.predict.
|
100 |
+
|
101 |
+
Returns
|
102 |
+
-------
|
103 |
+
raw_predictions : ndarray of shape (n_samples, K)
|
104 |
+
The initial raw predictions. K is equal to 1 for binary
|
105 |
+
classification and regression, and equal to the number of classes
|
106 |
+
for multiclass classification. ``raw_predictions`` is casted
|
107 |
+
into float64.
|
108 |
+
"""
|
109 |
+
# TODO: Use loss.fit_intercept_only where appropriate instead of
|
110 |
+
# DummyRegressor which is the default given by the `init` parameter,
|
111 |
+
# see also _init_state.
|
112 |
+
if use_predict_proba:
|
113 |
+
# Our parameter validation, set via _fit_context and _parameter_constraints
|
114 |
+
# already guarantees that estimator has a predict_proba method.
|
115 |
+
predictions = estimator.predict_proba(X)
|
116 |
+
if not loss.is_multiclass:
|
117 |
+
predictions = predictions[:, 1] # probability of positive class
|
118 |
+
eps = np.finfo(np.float32).eps # FIXME: This is quite large!
|
119 |
+
predictions = np.clip(predictions, eps, 1 - eps, dtype=np.float64)
|
120 |
+
else:
|
121 |
+
predictions = estimator.predict(X).astype(np.float64)
|
122 |
+
|
123 |
+
if predictions.ndim == 1:
|
124 |
+
return loss.link.link(predictions).reshape(-1, 1)
|
125 |
+
else:
|
126 |
+
return loss.link.link(predictions)
|
127 |
+
|
128 |
+
|
129 |
+
def _update_terminal_regions(
|
130 |
+
loss,
|
131 |
+
tree,
|
132 |
+
X,
|
133 |
+
y,
|
134 |
+
neg_gradient,
|
135 |
+
raw_prediction,
|
136 |
+
sample_weight,
|
137 |
+
sample_mask,
|
138 |
+
learning_rate=0.1,
|
139 |
+
k=0,
|
140 |
+
):
|
141 |
+
"""Update the leaf values to be predicted by the tree and raw_prediction.
|
142 |
+
|
143 |
+
The current raw predictions of the model (of this stage) are updated.
|
144 |
+
|
145 |
+
Additionally, the terminal regions (=leaves) of the given tree are updated as well.
|
146 |
+
This corresponds to the line search step in "Greedy Function Approximation" by
|
147 |
+
Friedman, Algorithm 1 step 5.
|
148 |
+
|
149 |
+
Update equals:
|
150 |
+
argmin_{x} loss(y_true, raw_prediction_old + x * tree.value)
|
151 |
+
|
152 |
+
For non-trivial cases like the Binomial loss, the update has no closed formula and
|
153 |
+
is an approximation, again, see the Friedman paper.
|
154 |
+
|
155 |
+
Also note that the update formula for the SquaredError is the identity. Therefore,
|
156 |
+
in this case, the leaf values don't need an update and only the raw_predictions are
|
157 |
+
updated (with the learning rate included).
|
158 |
+
|
159 |
+
Parameters
|
160 |
+
----------
|
161 |
+
loss : BaseLoss
|
162 |
+
tree : tree.Tree
|
163 |
+
The tree object.
|
164 |
+
X : ndarray of shape (n_samples, n_features)
|
165 |
+
The data array.
|
166 |
+
y : ndarray of shape (n_samples,)
|
167 |
+
The target labels.
|
168 |
+
neg_gradient : ndarray of shape (n_samples,)
|
169 |
+
The negative gradient.
|
170 |
+
raw_prediction : ndarray of shape (n_samples, n_trees_per_iteration)
|
171 |
+
The raw predictions (i.e. values from the tree leaves) of the
|
172 |
+
tree ensemble at iteration ``i - 1``.
|
173 |
+
sample_weight : ndarray of shape (n_samples,)
|
174 |
+
The weight of each sample.
|
175 |
+
sample_mask : ndarray of shape (n_samples,)
|
176 |
+
The sample mask to be used.
|
177 |
+
learning_rate : float, default=0.1
|
178 |
+
Learning rate shrinks the contribution of each tree by
|
179 |
+
``learning_rate``.
|
180 |
+
k : int, default=0
|
181 |
+
The index of the estimator being updated.
|
182 |
+
"""
|
183 |
+
# compute leaf for each sample in ``X``.
|
184 |
+
terminal_regions = tree.apply(X)
|
185 |
+
|
186 |
+
if not isinstance(loss, HalfSquaredError):
|
187 |
+
# mask all which are not in sample mask.
|
188 |
+
masked_terminal_regions = terminal_regions.copy()
|
189 |
+
masked_terminal_regions[~sample_mask] = -1
|
190 |
+
|
191 |
+
if isinstance(loss, HalfBinomialLoss):
|
192 |
+
|
193 |
+
def compute_update(y_, indices, neg_gradient, raw_prediction, k):
|
194 |
+
# Make a single Newton-Raphson step, see "Additive Logistic Regression:
|
195 |
+
# A Statistical View of Boosting" FHT00 and note that we use a slightly
|
196 |
+
# different version (factor 2) of "F" with proba=expit(raw_prediction).
|
197 |
+
# Our node estimate is given by:
|
198 |
+
# sum(w * (y - prob)) / sum(w * prob * (1 - prob))
|
199 |
+
# we take advantage that: y - prob = neg_gradient
|
200 |
+
neg_g = neg_gradient.take(indices, axis=0)
|
201 |
+
prob = y_ - neg_g
|
202 |
+
# numerator = negative gradient = y - prob
|
203 |
+
numerator = np.average(neg_g, weights=sw)
|
204 |
+
# denominator = hessian = prob * (1 - prob)
|
205 |
+
denominator = np.average(prob * (1 - prob), weights=sw)
|
206 |
+
return _safe_divide(numerator, denominator)
|
207 |
+
|
208 |
+
elif isinstance(loss, HalfMultinomialLoss):
|
209 |
+
|
210 |
+
def compute_update(y_, indices, neg_gradient, raw_prediction, k):
|
211 |
+
# we take advantage that: y - prob = neg_gradient
|
212 |
+
neg_g = neg_gradient.take(indices, axis=0)
|
213 |
+
prob = y_ - neg_g
|
214 |
+
K = loss.n_classes
|
215 |
+
# numerator = negative gradient * (k - 1) / k
|
216 |
+
# Note: The factor (k - 1)/k appears in the original papers "Greedy
|
217 |
+
# Function Approximation" by Friedman and "Additive Logistic
|
218 |
+
# Regression" by Friedman, Hastie, Tibshirani. This factor is, however,
|
219 |
+
# wrong or at least arbitrary as it directly multiplies the
|
220 |
+
# learning_rate. We keep it for backward compatibility.
|
221 |
+
numerator = np.average(neg_g, weights=sw)
|
222 |
+
numerator *= (K - 1) / K
|
223 |
+
# denominator = (diagonal) hessian = prob * (1 - prob)
|
224 |
+
denominator = np.average(prob * (1 - prob), weights=sw)
|
225 |
+
return _safe_divide(numerator, denominator)
|
226 |
+
|
227 |
+
elif isinstance(loss, ExponentialLoss):
|
228 |
+
|
229 |
+
def compute_update(y_, indices, neg_gradient, raw_prediction, k):
|
230 |
+
neg_g = neg_gradient.take(indices, axis=0)
|
231 |
+
# numerator = negative gradient = y * exp(-raw) - (1-y) * exp(raw)
|
232 |
+
numerator = np.average(neg_g, weights=sw)
|
233 |
+
# denominator = hessian = y * exp(-raw) + (1-y) * exp(raw)
|
234 |
+
# if y=0: hessian = exp(raw) = -neg_g
|
235 |
+
# y=1: hessian = exp(-raw) = neg_g
|
236 |
+
hessian = neg_g.copy()
|
237 |
+
hessian[y_ == 0] *= -1
|
238 |
+
denominator = np.average(hessian, weights=sw)
|
239 |
+
return _safe_divide(numerator, denominator)
|
240 |
+
|
241 |
+
else:
|
242 |
+
|
243 |
+
def compute_update(y_, indices, neg_gradient, raw_prediction, k):
|
244 |
+
return loss.fit_intercept_only(
|
245 |
+
y_true=y_ - raw_prediction[indices, k],
|
246 |
+
sample_weight=sw,
|
247 |
+
)
|
248 |
+
|
249 |
+
# update each leaf (= perform line search)
|
250 |
+
for leaf in np.nonzero(tree.children_left == TREE_LEAF)[0]:
|
251 |
+
indices = np.nonzero(masked_terminal_regions == leaf)[
|
252 |
+
0
|
253 |
+
] # of terminal regions
|
254 |
+
y_ = y.take(indices, axis=0)
|
255 |
+
sw = None if sample_weight is None else sample_weight[indices]
|
256 |
+
update = compute_update(y_, indices, neg_gradient, raw_prediction, k)
|
257 |
+
|
258 |
+
# TODO: Multiply here by learning rate instead of everywhere else.
|
259 |
+
tree.value[leaf, 0, 0] = update
|
260 |
+
|
261 |
+
# update predictions (both in-bag and out-of-bag)
|
262 |
+
raw_prediction[:, k] += learning_rate * tree.value[:, 0, 0].take(
|
263 |
+
terminal_regions, axis=0
|
264 |
+
)
|
265 |
+
|
266 |
+
|
267 |
+
def set_huber_delta(loss, y_true, raw_prediction, sample_weight=None):
|
268 |
+
"""Calculate and set self.closs.delta based on self.quantile."""
|
269 |
+
abserr = np.abs(y_true - raw_prediction.squeeze())
|
270 |
+
# sample_weight is always a ndarray, never None.
|
271 |
+
delta = _weighted_percentile(abserr, sample_weight, 100 * loss.quantile)
|
272 |
+
loss.closs.delta = float(delta)
|
273 |
+
|
274 |
+
|
275 |
+
class VerboseReporter:
|
276 |
+
"""Reports verbose output to stdout.
|
277 |
+
|
278 |
+
Parameters
|
279 |
+
----------
|
280 |
+
verbose : int
|
281 |
+
Verbosity level. If ``verbose==1`` output is printed once in a while
|
282 |
+
(when iteration mod verbose_mod is zero).; if larger than 1 then output
|
283 |
+
is printed for each update.
|
284 |
+
"""
|
285 |
+
|
286 |
+
def __init__(self, verbose):
|
287 |
+
self.verbose = verbose
|
288 |
+
|
289 |
+
def init(self, est, begin_at_stage=0):
|
290 |
+
"""Initialize reporter
|
291 |
+
|
292 |
+
Parameters
|
293 |
+
----------
|
294 |
+
est : Estimator
|
295 |
+
The estimator
|
296 |
+
|
297 |
+
begin_at_stage : int, default=0
|
298 |
+
stage at which to begin reporting
|
299 |
+
"""
|
300 |
+
# header fields and line format str
|
301 |
+
header_fields = ["Iter", "Train Loss"]
|
302 |
+
verbose_fmt = ["{iter:>10d}", "{train_score:>16.4f}"]
|
303 |
+
# do oob?
|
304 |
+
if est.subsample < 1:
|
305 |
+
header_fields.append("OOB Improve")
|
306 |
+
verbose_fmt.append("{oob_impr:>16.4f}")
|
307 |
+
header_fields.append("Remaining Time")
|
308 |
+
verbose_fmt.append("{remaining_time:>16s}")
|
309 |
+
|
310 |
+
# print the header line
|
311 |
+
print(("%10s " + "%16s " * (len(header_fields) - 1)) % tuple(header_fields))
|
312 |
+
|
313 |
+
self.verbose_fmt = " ".join(verbose_fmt)
|
314 |
+
# plot verbose info each time i % verbose_mod == 0
|
315 |
+
self.verbose_mod = 1
|
316 |
+
self.start_time = time()
|
317 |
+
self.begin_at_stage = begin_at_stage
|
318 |
+
|
319 |
+
def update(self, j, est):
|
320 |
+
"""Update reporter with new iteration.
|
321 |
+
|
322 |
+
Parameters
|
323 |
+
----------
|
324 |
+
j : int
|
325 |
+
The new iteration.
|
326 |
+
est : Estimator
|
327 |
+
The estimator.
|
328 |
+
"""
|
329 |
+
do_oob = est.subsample < 1
|
330 |
+
# we need to take into account if we fit additional estimators.
|
331 |
+
i = j - self.begin_at_stage # iteration relative to the start iter
|
332 |
+
if (i + 1) % self.verbose_mod == 0:
|
333 |
+
oob_impr = est.oob_improvement_[j] if do_oob else 0
|
334 |
+
remaining_time = (
|
335 |
+
(est.n_estimators - (j + 1)) * (time() - self.start_time) / float(i + 1)
|
336 |
+
)
|
337 |
+
if remaining_time > 60:
|
338 |
+
remaining_time = "{0:.2f}m".format(remaining_time / 60.0)
|
339 |
+
else:
|
340 |
+
remaining_time = "{0:.2f}s".format(remaining_time)
|
341 |
+
print(
|
342 |
+
self.verbose_fmt.format(
|
343 |
+
iter=j + 1,
|
344 |
+
train_score=est.train_score_[j],
|
345 |
+
oob_impr=oob_impr,
|
346 |
+
remaining_time=remaining_time,
|
347 |
+
)
|
348 |
+
)
|
349 |
+
if self.verbose == 1 and ((i + 1) // (self.verbose_mod * 10) > 0):
|
350 |
+
# adjust verbose frequency (powers of 10)
|
351 |
+
self.verbose_mod *= 10
|
352 |
+
|
353 |
+
|
354 |
+
class BaseGradientBoosting(BaseEnsemble, metaclass=ABCMeta):
|
355 |
+
"""Abstract base class for Gradient Boosting."""
|
356 |
+
|
357 |
+
_parameter_constraints: dict = {
|
358 |
+
**DecisionTreeRegressor._parameter_constraints,
|
359 |
+
"learning_rate": [Interval(Real, 0.0, None, closed="left")],
|
360 |
+
"n_estimators": [Interval(Integral, 1, None, closed="left")],
|
361 |
+
"criterion": [StrOptions({"friedman_mse", "squared_error"})],
|
362 |
+
"subsample": [Interval(Real, 0.0, 1.0, closed="right")],
|
363 |
+
"verbose": ["verbose"],
|
364 |
+
"warm_start": ["boolean"],
|
365 |
+
"validation_fraction": [Interval(Real, 0.0, 1.0, closed="neither")],
|
366 |
+
"n_iter_no_change": [Interval(Integral, 1, None, closed="left"), None],
|
367 |
+
"tol": [Interval(Real, 0.0, None, closed="left")],
|
368 |
+
}
|
369 |
+
_parameter_constraints.pop("splitter")
|
370 |
+
_parameter_constraints.pop("monotonic_cst")
|
371 |
+
|
372 |
+
@abstractmethod
|
373 |
+
def __init__(
|
374 |
+
self,
|
375 |
+
*,
|
376 |
+
loss,
|
377 |
+
learning_rate,
|
378 |
+
n_estimators,
|
379 |
+
criterion,
|
380 |
+
min_samples_split,
|
381 |
+
min_samples_leaf,
|
382 |
+
min_weight_fraction_leaf,
|
383 |
+
max_depth,
|
384 |
+
min_impurity_decrease,
|
385 |
+
init,
|
386 |
+
subsample,
|
387 |
+
max_features,
|
388 |
+
ccp_alpha,
|
389 |
+
random_state,
|
390 |
+
alpha=0.9,
|
391 |
+
verbose=0,
|
392 |
+
max_leaf_nodes=None,
|
393 |
+
warm_start=False,
|
394 |
+
validation_fraction=0.1,
|
395 |
+
n_iter_no_change=None,
|
396 |
+
tol=1e-4,
|
397 |
+
):
|
398 |
+
self.n_estimators = n_estimators
|
399 |
+
self.learning_rate = learning_rate
|
400 |
+
self.loss = loss
|
401 |
+
self.criterion = criterion
|
402 |
+
self.min_samples_split = min_samples_split
|
403 |
+
self.min_samples_leaf = min_samples_leaf
|
404 |
+
self.min_weight_fraction_leaf = min_weight_fraction_leaf
|
405 |
+
self.subsample = subsample
|
406 |
+
self.max_features = max_features
|
407 |
+
self.max_depth = max_depth
|
408 |
+
self.min_impurity_decrease = min_impurity_decrease
|
409 |
+
self.ccp_alpha = ccp_alpha
|
410 |
+
self.init = init
|
411 |
+
self.random_state = random_state
|
412 |
+
self.alpha = alpha
|
413 |
+
self.verbose = verbose
|
414 |
+
self.max_leaf_nodes = max_leaf_nodes
|
415 |
+
self.warm_start = warm_start
|
416 |
+
self.validation_fraction = validation_fraction
|
417 |
+
self.n_iter_no_change = n_iter_no_change
|
418 |
+
self.tol = tol
|
419 |
+
|
420 |
+
@abstractmethod
|
421 |
+
def _encode_y(self, y=None, sample_weight=None):
|
422 |
+
"""Called by fit to validate and encode y."""
|
423 |
+
|
424 |
+
@abstractmethod
|
425 |
+
def _get_loss(self, sample_weight):
|
426 |
+
"""Get loss object from sklearn._loss.loss."""
|
427 |
+
|
428 |
+
def _fit_stage(
|
429 |
+
self,
|
430 |
+
i,
|
431 |
+
X,
|
432 |
+
y,
|
433 |
+
raw_predictions,
|
434 |
+
sample_weight,
|
435 |
+
sample_mask,
|
436 |
+
random_state,
|
437 |
+
X_csc=None,
|
438 |
+
X_csr=None,
|
439 |
+
):
|
440 |
+
"""Fit another stage of ``n_trees_per_iteration_`` trees."""
|
441 |
+
original_y = y
|
442 |
+
|
443 |
+
if isinstance(self._loss, HuberLoss):
|
444 |
+
set_huber_delta(
|
445 |
+
loss=self._loss,
|
446 |
+
y_true=y,
|
447 |
+
raw_prediction=raw_predictions,
|
448 |
+
sample_weight=sample_weight,
|
449 |
+
)
|
450 |
+
# TODO: Without oob, i.e. with self.subsample = 1.0, we could call
|
451 |
+
# self._loss.loss_gradient and use it to set train_score_.
|
452 |
+
# But note that train_score_[i] is the score AFTER fitting the i-th tree.
|
453 |
+
# Note: We need the negative gradient!
|
454 |
+
neg_gradient = -self._loss.gradient(
|
455 |
+
y_true=y,
|
456 |
+
raw_prediction=raw_predictions,
|
457 |
+
sample_weight=None, # We pass sample_weights to the tree directly.
|
458 |
+
)
|
459 |
+
# 2-d views of shape (n_samples, n_trees_per_iteration_) or (n_samples, 1)
|
460 |
+
# on neg_gradient to simplify the loop over n_trees_per_iteration_.
|
461 |
+
if neg_gradient.ndim == 1:
|
462 |
+
neg_g_view = neg_gradient.reshape((-1, 1))
|
463 |
+
else:
|
464 |
+
neg_g_view = neg_gradient
|
465 |
+
|
466 |
+
for k in range(self.n_trees_per_iteration_):
|
467 |
+
if self._loss.is_multiclass:
|
468 |
+
y = np.array(original_y == k, dtype=np.float64)
|
469 |
+
|
470 |
+
# induce regression tree on the negative gradient
|
471 |
+
tree = DecisionTreeRegressor(
|
472 |
+
criterion=self.criterion,
|
473 |
+
splitter="best",
|
474 |
+
max_depth=self.max_depth,
|
475 |
+
min_samples_split=self.min_samples_split,
|
476 |
+
min_samples_leaf=self.min_samples_leaf,
|
477 |
+
min_weight_fraction_leaf=self.min_weight_fraction_leaf,
|
478 |
+
min_impurity_decrease=self.min_impurity_decrease,
|
479 |
+
max_features=self.max_features,
|
480 |
+
max_leaf_nodes=self.max_leaf_nodes,
|
481 |
+
random_state=random_state,
|
482 |
+
ccp_alpha=self.ccp_alpha,
|
483 |
+
)
|
484 |
+
|
485 |
+
if self.subsample < 1.0:
|
486 |
+
# no inplace multiplication!
|
487 |
+
sample_weight = sample_weight * sample_mask.astype(np.float64)
|
488 |
+
|
489 |
+
X = X_csc if X_csc is not None else X
|
490 |
+
tree.fit(
|
491 |
+
X, neg_g_view[:, k], sample_weight=sample_weight, check_input=False
|
492 |
+
)
|
493 |
+
|
494 |
+
# update tree leaves
|
495 |
+
X_for_tree_update = X_csr if X_csr is not None else X
|
496 |
+
_update_terminal_regions(
|
497 |
+
self._loss,
|
498 |
+
tree.tree_,
|
499 |
+
X_for_tree_update,
|
500 |
+
y,
|
501 |
+
neg_g_view[:, k],
|
502 |
+
raw_predictions,
|
503 |
+
sample_weight,
|
504 |
+
sample_mask,
|
505 |
+
learning_rate=self.learning_rate,
|
506 |
+
k=k,
|
507 |
+
)
|
508 |
+
|
509 |
+
# add tree to ensemble
|
510 |
+
self.estimators_[i, k] = tree
|
511 |
+
|
512 |
+
return raw_predictions
|
513 |
+
|
514 |
+
def _set_max_features(self):
|
515 |
+
"""Set self.max_features_."""
|
516 |
+
if isinstance(self.max_features, str):
|
517 |
+
if self.max_features == "auto":
|
518 |
+
if is_classifier(self):
|
519 |
+
max_features = max(1, int(np.sqrt(self.n_features_in_)))
|
520 |
+
else:
|
521 |
+
max_features = self.n_features_in_
|
522 |
+
elif self.max_features == "sqrt":
|
523 |
+
max_features = max(1, int(np.sqrt(self.n_features_in_)))
|
524 |
+
else: # self.max_features == "log2"
|
525 |
+
max_features = max(1, int(np.log2(self.n_features_in_)))
|
526 |
+
elif self.max_features is None:
|
527 |
+
max_features = self.n_features_in_
|
528 |
+
elif isinstance(self.max_features, Integral):
|
529 |
+
max_features = self.max_features
|
530 |
+
else: # float
|
531 |
+
max_features = max(1, int(self.max_features * self.n_features_in_))
|
532 |
+
|
533 |
+
self.max_features_ = max_features
|
534 |
+
|
535 |
+
def _init_state(self):
|
536 |
+
"""Initialize model state and allocate model state data structures."""
|
537 |
+
|
538 |
+
self.init_ = self.init
|
539 |
+
if self.init_ is None:
|
540 |
+
if is_classifier(self):
|
541 |
+
self.init_ = DummyClassifier(strategy="prior")
|
542 |
+
elif isinstance(self._loss, (AbsoluteError, HuberLoss)):
|
543 |
+
self.init_ = DummyRegressor(strategy="quantile", quantile=0.5)
|
544 |
+
elif isinstance(self._loss, PinballLoss):
|
545 |
+
self.init_ = DummyRegressor(strategy="quantile", quantile=self.alpha)
|
546 |
+
else:
|
547 |
+
self.init_ = DummyRegressor(strategy="mean")
|
548 |
+
|
549 |
+
self.estimators_ = np.empty(
|
550 |
+
(self.n_estimators, self.n_trees_per_iteration_), dtype=object
|
551 |
+
)
|
552 |
+
self.train_score_ = np.zeros((self.n_estimators,), dtype=np.float64)
|
553 |
+
# do oob?
|
554 |
+
if self.subsample < 1.0:
|
555 |
+
self.oob_improvement_ = np.zeros((self.n_estimators), dtype=np.float64)
|
556 |
+
self.oob_scores_ = np.zeros((self.n_estimators), dtype=np.float64)
|
557 |
+
self.oob_score_ = np.nan
|
558 |
+
|
559 |
+
def _clear_state(self):
|
560 |
+
"""Clear the state of the gradient boosting model."""
|
561 |
+
if hasattr(self, "estimators_"):
|
562 |
+
self.estimators_ = np.empty((0, 0), dtype=object)
|
563 |
+
if hasattr(self, "train_score_"):
|
564 |
+
del self.train_score_
|
565 |
+
if hasattr(self, "oob_improvement_"):
|
566 |
+
del self.oob_improvement_
|
567 |
+
if hasattr(self, "oob_scores_"):
|
568 |
+
del self.oob_scores_
|
569 |
+
if hasattr(self, "oob_score_"):
|
570 |
+
del self.oob_score_
|
571 |
+
if hasattr(self, "init_"):
|
572 |
+
del self.init_
|
573 |
+
if hasattr(self, "_rng"):
|
574 |
+
del self._rng
|
575 |
+
|
576 |
+
def _resize_state(self):
|
577 |
+
"""Add additional ``n_estimators`` entries to all attributes."""
|
578 |
+
# self.n_estimators is the number of additional est to fit
|
579 |
+
total_n_estimators = self.n_estimators
|
580 |
+
if total_n_estimators < self.estimators_.shape[0]:
|
581 |
+
raise ValueError(
|
582 |
+
"resize with smaller n_estimators %d < %d"
|
583 |
+
% (total_n_estimators, self.estimators_[0])
|
584 |
+
)
|
585 |
+
|
586 |
+
self.estimators_ = np.resize(
|
587 |
+
self.estimators_, (total_n_estimators, self.n_trees_per_iteration_)
|
588 |
+
)
|
589 |
+
self.train_score_ = np.resize(self.train_score_, total_n_estimators)
|
590 |
+
if self.subsample < 1 or hasattr(self, "oob_improvement_"):
|
591 |
+
# if do oob resize arrays or create new if not available
|
592 |
+
if hasattr(self, "oob_improvement_"):
|
593 |
+
self.oob_improvement_ = np.resize(
|
594 |
+
self.oob_improvement_, total_n_estimators
|
595 |
+
)
|
596 |
+
self.oob_scores_ = np.resize(self.oob_scores_, total_n_estimators)
|
597 |
+
self.oob_score_ = np.nan
|
598 |
+
else:
|
599 |
+
self.oob_improvement_ = np.zeros(
|
600 |
+
(total_n_estimators,), dtype=np.float64
|
601 |
+
)
|
602 |
+
self.oob_scores_ = np.zeros((total_n_estimators,), dtype=np.float64)
|
603 |
+
self.oob_score_ = np.nan
|
604 |
+
|
605 |
+
def _is_fitted(self):
|
606 |
+
return len(getattr(self, "estimators_", [])) > 0
|
607 |
+
|
608 |
+
def _check_initialized(self):
|
609 |
+
"""Check that the estimator is initialized, raising an error if not."""
|
610 |
+
check_is_fitted(self)
|
611 |
+
|
612 |
+
@_fit_context(
|
613 |
+
# GradientBoosting*.init is not validated yet
|
614 |
+
prefer_skip_nested_validation=False
|
615 |
+
)
|
616 |
+
def fit(self, X, y, sample_weight=None, monitor=None):
|
617 |
+
"""Fit the gradient boosting model.
|
618 |
+
|
619 |
+
Parameters
|
620 |
+
----------
|
621 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
622 |
+
The input samples. Internally, it will be converted to
|
623 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
624 |
+
to a sparse ``csr_matrix``.
|
625 |
+
|
626 |
+
y : array-like of shape (n_samples,)
|
627 |
+
Target values (strings or integers in classification, real numbers
|
628 |
+
in regression)
|
629 |
+
For classification, labels must correspond to classes.
|
630 |
+
|
631 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
632 |
+
Sample weights. If None, then samples are equally weighted. Splits
|
633 |
+
that would create child nodes with net zero or negative weight are
|
634 |
+
ignored while searching for a split in each node. In the case of
|
635 |
+
classification, splits are also ignored if they would result in any
|
636 |
+
single class carrying a negative weight in either child node.
|
637 |
+
|
638 |
+
monitor : callable, default=None
|
639 |
+
The monitor is called after each iteration with the current
|
640 |
+
iteration, a reference to the estimator and the local variables of
|
641 |
+
``_fit_stages`` as keyword arguments ``callable(i, self,
|
642 |
+
locals())``. If the callable returns ``True`` the fitting procedure
|
643 |
+
is stopped. The monitor can be used for various things such as
|
644 |
+
computing held-out estimates, early stopping, model introspect, and
|
645 |
+
snapshotting.
|
646 |
+
|
647 |
+
Returns
|
648 |
+
-------
|
649 |
+
self : object
|
650 |
+
Fitted estimator.
|
651 |
+
"""
|
652 |
+
if not self.warm_start:
|
653 |
+
self._clear_state()
|
654 |
+
|
655 |
+
# Check input
|
656 |
+
# Since check_array converts both X and y to the same dtype, but the
|
657 |
+
# trees use different types for X and y, checking them separately.
|
658 |
+
|
659 |
+
X, y = self._validate_data(
|
660 |
+
X, y, accept_sparse=["csr", "csc", "coo"], dtype=DTYPE, multi_output=True
|
661 |
+
)
|
662 |
+
sample_weight_is_none = sample_weight is None
|
663 |
+
sample_weight = _check_sample_weight(sample_weight, X)
|
664 |
+
if sample_weight_is_none:
|
665 |
+
y = self._encode_y(y=y, sample_weight=None)
|
666 |
+
else:
|
667 |
+
y = self._encode_y(y=y, sample_weight=sample_weight)
|
668 |
+
y = column_or_1d(y, warn=True) # TODO: Is this still required?
|
669 |
+
|
670 |
+
self._set_max_features()
|
671 |
+
|
672 |
+
# self.loss is guaranteed to be a string
|
673 |
+
self._loss = self._get_loss(sample_weight=sample_weight)
|
674 |
+
|
675 |
+
if self.n_iter_no_change is not None:
|
676 |
+
stratify = y if is_classifier(self) else None
|
677 |
+
(
|
678 |
+
X_train,
|
679 |
+
X_val,
|
680 |
+
y_train,
|
681 |
+
y_val,
|
682 |
+
sample_weight_train,
|
683 |
+
sample_weight_val,
|
684 |
+
) = train_test_split(
|
685 |
+
X,
|
686 |
+
y,
|
687 |
+
sample_weight,
|
688 |
+
random_state=self.random_state,
|
689 |
+
test_size=self.validation_fraction,
|
690 |
+
stratify=stratify,
|
691 |
+
)
|
692 |
+
if is_classifier(self):
|
693 |
+
if self.n_classes_ != np.unique(y_train).shape[0]:
|
694 |
+
# We choose to error here. The problem is that the init
|
695 |
+
# estimator would be trained on y, which has some missing
|
696 |
+
# classes now, so its predictions would not have the
|
697 |
+
# correct shape.
|
698 |
+
raise ValueError(
|
699 |
+
"The training data after the early stopping split "
|
700 |
+
"is missing some classes. Try using another random "
|
701 |
+
"seed."
|
702 |
+
)
|
703 |
+
else:
|
704 |
+
X_train, y_train, sample_weight_train = X, y, sample_weight
|
705 |
+
X_val = y_val = sample_weight_val = None
|
706 |
+
|
707 |
+
n_samples = X_train.shape[0]
|
708 |
+
|
709 |
+
# First time calling fit.
|
710 |
+
if not self._is_fitted():
|
711 |
+
# init state
|
712 |
+
self._init_state()
|
713 |
+
|
714 |
+
# fit initial model and initialize raw predictions
|
715 |
+
if self.init_ == "zero":
|
716 |
+
raw_predictions = np.zeros(
|
717 |
+
shape=(n_samples, self.n_trees_per_iteration_),
|
718 |
+
dtype=np.float64,
|
719 |
+
)
|
720 |
+
else:
|
721 |
+
# XXX clean this once we have a support_sample_weight tag
|
722 |
+
if sample_weight_is_none:
|
723 |
+
self.init_.fit(X_train, y_train)
|
724 |
+
else:
|
725 |
+
msg = (
|
726 |
+
"The initial estimator {} does not support sample "
|
727 |
+
"weights.".format(self.init_.__class__.__name__)
|
728 |
+
)
|
729 |
+
try:
|
730 |
+
self.init_.fit(
|
731 |
+
X_train, y_train, sample_weight=sample_weight_train
|
732 |
+
)
|
733 |
+
except TypeError as e:
|
734 |
+
if "unexpected keyword argument 'sample_weight'" in str(e):
|
735 |
+
# regular estimator without SW support
|
736 |
+
raise ValueError(msg) from e
|
737 |
+
else: # regular estimator whose input checking failed
|
738 |
+
raise
|
739 |
+
except ValueError as e:
|
740 |
+
if (
|
741 |
+
"pass parameters to specific steps of "
|
742 |
+
"your pipeline using the "
|
743 |
+
"stepname__parameter"
|
744 |
+
in str(e)
|
745 |
+
): # pipeline
|
746 |
+
raise ValueError(msg) from e
|
747 |
+
else: # regular estimator whose input checking failed
|
748 |
+
raise
|
749 |
+
|
750 |
+
raw_predictions = _init_raw_predictions(
|
751 |
+
X_train, self.init_, self._loss, is_classifier(self)
|
752 |
+
)
|
753 |
+
|
754 |
+
begin_at_stage = 0
|
755 |
+
|
756 |
+
# The rng state must be preserved if warm_start is True
|
757 |
+
self._rng = check_random_state(self.random_state)
|
758 |
+
|
759 |
+
# warm start: this is not the first time fit was called
|
760 |
+
else:
|
761 |
+
# add more estimators to fitted model
|
762 |
+
# invariant: warm_start = True
|
763 |
+
if self.n_estimators < self.estimators_.shape[0]:
|
764 |
+
raise ValueError(
|
765 |
+
"n_estimators=%d must be larger or equal to "
|
766 |
+
"estimators_.shape[0]=%d when "
|
767 |
+
"warm_start==True" % (self.n_estimators, self.estimators_.shape[0])
|
768 |
+
)
|
769 |
+
begin_at_stage = self.estimators_.shape[0]
|
770 |
+
# The requirements of _raw_predict
|
771 |
+
# are more constrained than fit. It accepts only CSR
|
772 |
+
# matrices. Finite values have already been checked in _validate_data.
|
773 |
+
X_train = check_array(
|
774 |
+
X_train,
|
775 |
+
dtype=DTYPE,
|
776 |
+
order="C",
|
777 |
+
accept_sparse="csr",
|
778 |
+
force_all_finite=False,
|
779 |
+
)
|
780 |
+
raw_predictions = self._raw_predict(X_train)
|
781 |
+
self._resize_state()
|
782 |
+
|
783 |
+
# fit the boosting stages
|
784 |
+
n_stages = self._fit_stages(
|
785 |
+
X_train,
|
786 |
+
y_train,
|
787 |
+
raw_predictions,
|
788 |
+
sample_weight_train,
|
789 |
+
self._rng,
|
790 |
+
X_val,
|
791 |
+
y_val,
|
792 |
+
sample_weight_val,
|
793 |
+
begin_at_stage,
|
794 |
+
monitor,
|
795 |
+
)
|
796 |
+
|
797 |
+
# change shape of arrays after fit (early-stopping or additional ests)
|
798 |
+
if n_stages != self.estimators_.shape[0]:
|
799 |
+
self.estimators_ = self.estimators_[:n_stages]
|
800 |
+
self.train_score_ = self.train_score_[:n_stages]
|
801 |
+
if hasattr(self, "oob_improvement_"):
|
802 |
+
# OOB scores were computed
|
803 |
+
self.oob_improvement_ = self.oob_improvement_[:n_stages]
|
804 |
+
self.oob_scores_ = self.oob_scores_[:n_stages]
|
805 |
+
self.oob_score_ = self.oob_scores_[-1]
|
806 |
+
self.n_estimators_ = n_stages
|
807 |
+
return self
|
808 |
+
|
809 |
+
def _fit_stages(
|
810 |
+
self,
|
811 |
+
X,
|
812 |
+
y,
|
813 |
+
raw_predictions,
|
814 |
+
sample_weight,
|
815 |
+
random_state,
|
816 |
+
X_val,
|
817 |
+
y_val,
|
818 |
+
sample_weight_val,
|
819 |
+
begin_at_stage=0,
|
820 |
+
monitor=None,
|
821 |
+
):
|
822 |
+
"""Iteratively fits the stages.
|
823 |
+
|
824 |
+
For each stage it computes the progress (OOB, train score)
|
825 |
+
and delegates to ``_fit_stage``.
|
826 |
+
Returns the number of stages fit; might differ from ``n_estimators``
|
827 |
+
due to early stopping.
|
828 |
+
"""
|
829 |
+
n_samples = X.shape[0]
|
830 |
+
do_oob = self.subsample < 1.0
|
831 |
+
sample_mask = np.ones((n_samples,), dtype=bool)
|
832 |
+
n_inbag = max(1, int(self.subsample * n_samples))
|
833 |
+
|
834 |
+
if self.verbose:
|
835 |
+
verbose_reporter = VerboseReporter(verbose=self.verbose)
|
836 |
+
verbose_reporter.init(self, begin_at_stage)
|
837 |
+
|
838 |
+
X_csc = csc_matrix(X) if issparse(X) else None
|
839 |
+
X_csr = csr_matrix(X) if issparse(X) else None
|
840 |
+
|
841 |
+
if self.n_iter_no_change is not None:
|
842 |
+
loss_history = np.full(self.n_iter_no_change, np.inf)
|
843 |
+
# We create a generator to get the predictions for X_val after
|
844 |
+
# the addition of each successive stage
|
845 |
+
y_val_pred_iter = self._staged_raw_predict(X_val, check_input=False)
|
846 |
+
|
847 |
+
# Older versions of GBT had its own loss functions. With the new common
|
848 |
+
# private loss function submodule _loss, we often are a factor of 2
|
849 |
+
# away from the old version. Here we keep backward compatibility for
|
850 |
+
# oob_scores_ and oob_improvement_, even if the old way is quite
|
851 |
+
# inconsistent (sometimes the gradient is half the gradient, sometimes
|
852 |
+
# not).
|
853 |
+
if isinstance(
|
854 |
+
self._loss,
|
855 |
+
(
|
856 |
+
HalfSquaredError,
|
857 |
+
HalfBinomialLoss,
|
858 |
+
),
|
859 |
+
):
|
860 |
+
factor = 2
|
861 |
+
else:
|
862 |
+
factor = 1
|
863 |
+
|
864 |
+
# perform boosting iterations
|
865 |
+
i = begin_at_stage
|
866 |
+
for i in range(begin_at_stage, self.n_estimators):
|
867 |
+
# subsampling
|
868 |
+
if do_oob:
|
869 |
+
sample_mask = _random_sample_mask(n_samples, n_inbag, random_state)
|
870 |
+
y_oob_masked = y[~sample_mask]
|
871 |
+
sample_weight_oob_masked = sample_weight[~sample_mask]
|
872 |
+
if i == 0: # store the initial loss to compute the OOB score
|
873 |
+
initial_loss = factor * self._loss(
|
874 |
+
y_true=y_oob_masked,
|
875 |
+
raw_prediction=raw_predictions[~sample_mask],
|
876 |
+
sample_weight=sample_weight_oob_masked,
|
877 |
+
)
|
878 |
+
|
879 |
+
# fit next stage of trees
|
880 |
+
raw_predictions = self._fit_stage(
|
881 |
+
i,
|
882 |
+
X,
|
883 |
+
y,
|
884 |
+
raw_predictions,
|
885 |
+
sample_weight,
|
886 |
+
sample_mask,
|
887 |
+
random_state,
|
888 |
+
X_csc=X_csc,
|
889 |
+
X_csr=X_csr,
|
890 |
+
)
|
891 |
+
|
892 |
+
# track loss
|
893 |
+
if do_oob:
|
894 |
+
self.train_score_[i] = factor * self._loss(
|
895 |
+
y_true=y[sample_mask],
|
896 |
+
raw_prediction=raw_predictions[sample_mask],
|
897 |
+
sample_weight=sample_weight[sample_mask],
|
898 |
+
)
|
899 |
+
self.oob_scores_[i] = factor * self._loss(
|
900 |
+
y_true=y_oob_masked,
|
901 |
+
raw_prediction=raw_predictions[~sample_mask],
|
902 |
+
sample_weight=sample_weight_oob_masked,
|
903 |
+
)
|
904 |
+
previous_loss = initial_loss if i == 0 else self.oob_scores_[i - 1]
|
905 |
+
self.oob_improvement_[i] = previous_loss - self.oob_scores_[i]
|
906 |
+
self.oob_score_ = self.oob_scores_[-1]
|
907 |
+
else:
|
908 |
+
# no need to fancy index w/ no subsampling
|
909 |
+
self.train_score_[i] = factor * self._loss(
|
910 |
+
y_true=y,
|
911 |
+
raw_prediction=raw_predictions,
|
912 |
+
sample_weight=sample_weight,
|
913 |
+
)
|
914 |
+
|
915 |
+
if self.verbose > 0:
|
916 |
+
verbose_reporter.update(i, self)
|
917 |
+
|
918 |
+
if monitor is not None:
|
919 |
+
early_stopping = monitor(i, self, locals())
|
920 |
+
if early_stopping:
|
921 |
+
break
|
922 |
+
|
923 |
+
# We also provide an early stopping based on the score from
|
924 |
+
# validation set (X_val, y_val), if n_iter_no_change is set
|
925 |
+
if self.n_iter_no_change is not None:
|
926 |
+
# By calling next(y_val_pred_iter), we get the predictions
|
927 |
+
# for X_val after the addition of the current stage
|
928 |
+
validation_loss = factor * self._loss(
|
929 |
+
y_val, next(y_val_pred_iter), sample_weight_val
|
930 |
+
)
|
931 |
+
|
932 |
+
# Require validation_score to be better (less) than at least
|
933 |
+
# one of the last n_iter_no_change evaluations
|
934 |
+
if np.any(validation_loss + self.tol < loss_history):
|
935 |
+
loss_history[i % len(loss_history)] = validation_loss
|
936 |
+
else:
|
937 |
+
break
|
938 |
+
|
939 |
+
return i + 1
|
940 |
+
|
941 |
+
def _make_estimator(self, append=True):
|
942 |
+
# we don't need _make_estimator
|
943 |
+
raise NotImplementedError()
|
944 |
+
|
945 |
+
def _raw_predict_init(self, X):
|
946 |
+
"""Check input and compute raw predictions of the init estimator."""
|
947 |
+
self._check_initialized()
|
948 |
+
X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True)
|
949 |
+
if self.init_ == "zero":
|
950 |
+
raw_predictions = np.zeros(
|
951 |
+
shape=(X.shape[0], self.n_trees_per_iteration_), dtype=np.float64
|
952 |
+
)
|
953 |
+
else:
|
954 |
+
raw_predictions = _init_raw_predictions(
|
955 |
+
X, self.init_, self._loss, is_classifier(self)
|
956 |
+
)
|
957 |
+
return raw_predictions
|
958 |
+
|
959 |
+
def _raw_predict(self, X):
|
960 |
+
"""Return the sum of the trees raw predictions (+ init estimator)."""
|
961 |
+
check_is_fitted(self)
|
962 |
+
raw_predictions = self._raw_predict_init(X)
|
963 |
+
predict_stages(self.estimators_, X, self.learning_rate, raw_predictions)
|
964 |
+
return raw_predictions
|
965 |
+
|
966 |
+
def _staged_raw_predict(self, X, check_input=True):
|
967 |
+
"""Compute raw predictions of ``X`` for each iteration.
|
968 |
+
|
969 |
+
This method allows monitoring (i.e. determine error on testing set)
|
970 |
+
after each stage.
|
971 |
+
|
972 |
+
Parameters
|
973 |
+
----------
|
974 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
975 |
+
The input samples. Internally, it will be converted to
|
976 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
977 |
+
to a sparse ``csr_matrix``.
|
978 |
+
|
979 |
+
check_input : bool, default=True
|
980 |
+
If False, the input arrays X will not be checked.
|
981 |
+
|
982 |
+
Returns
|
983 |
+
-------
|
984 |
+
raw_predictions : generator of ndarray of shape (n_samples, k)
|
985 |
+
The raw predictions of the input samples. The order of the
|
986 |
+
classes corresponds to that in the attribute :term:`classes_`.
|
987 |
+
Regression and binary classification are special cases with
|
988 |
+
``k == 1``, otherwise ``k==n_classes``.
|
989 |
+
"""
|
990 |
+
if check_input:
|
991 |
+
X = self._validate_data(
|
992 |
+
X, dtype=DTYPE, order="C", accept_sparse="csr", reset=False
|
993 |
+
)
|
994 |
+
raw_predictions = self._raw_predict_init(X)
|
995 |
+
for i in range(self.estimators_.shape[0]):
|
996 |
+
predict_stage(self.estimators_, i, X, self.learning_rate, raw_predictions)
|
997 |
+
yield raw_predictions.copy()
|
998 |
+
|
999 |
+
@property
|
1000 |
+
def feature_importances_(self):
|
1001 |
+
"""The impurity-based feature importances.
|
1002 |
+
|
1003 |
+
The higher, the more important the feature.
|
1004 |
+
The importance of a feature is computed as the (normalized)
|
1005 |
+
total reduction of the criterion brought by that feature. It is also
|
1006 |
+
known as the Gini importance.
|
1007 |
+
|
1008 |
+
Warning: impurity-based feature importances can be misleading for
|
1009 |
+
high cardinality features (many unique values). See
|
1010 |
+
:func:`sklearn.inspection.permutation_importance` as an alternative.
|
1011 |
+
|
1012 |
+
Returns
|
1013 |
+
-------
|
1014 |
+
feature_importances_ : ndarray of shape (n_features,)
|
1015 |
+
The values of this array sum to 1, unless all trees are single node
|
1016 |
+
trees consisting of only the root node, in which case it will be an
|
1017 |
+
array of zeros.
|
1018 |
+
"""
|
1019 |
+
self._check_initialized()
|
1020 |
+
|
1021 |
+
relevant_trees = [
|
1022 |
+
tree
|
1023 |
+
for stage in self.estimators_
|
1024 |
+
for tree in stage
|
1025 |
+
if tree.tree_.node_count > 1
|
1026 |
+
]
|
1027 |
+
if not relevant_trees:
|
1028 |
+
# degenerate case where all trees have only one node
|
1029 |
+
return np.zeros(shape=self.n_features_in_, dtype=np.float64)
|
1030 |
+
|
1031 |
+
relevant_feature_importances = [
|
1032 |
+
tree.tree_.compute_feature_importances(normalize=False)
|
1033 |
+
for tree in relevant_trees
|
1034 |
+
]
|
1035 |
+
avg_feature_importances = np.mean(
|
1036 |
+
relevant_feature_importances, axis=0, dtype=np.float64
|
1037 |
+
)
|
1038 |
+
return avg_feature_importances / np.sum(avg_feature_importances)
|
1039 |
+
|
1040 |
+
def _compute_partial_dependence_recursion(self, grid, target_features):
|
1041 |
+
"""Fast partial dependence computation.
|
1042 |
+
|
1043 |
+
Parameters
|
1044 |
+
----------
|
1045 |
+
grid : ndarray of shape (n_samples, n_target_features)
|
1046 |
+
The grid points on which the partial dependence should be
|
1047 |
+
evaluated.
|
1048 |
+
target_features : ndarray of shape (n_target_features,)
|
1049 |
+
The set of target features for which the partial dependence
|
1050 |
+
should be evaluated.
|
1051 |
+
|
1052 |
+
Returns
|
1053 |
+
-------
|
1054 |
+
averaged_predictions : ndarray of shape \
|
1055 |
+
(n_trees_per_iteration_, n_samples)
|
1056 |
+
The value of the partial dependence function on each grid point.
|
1057 |
+
"""
|
1058 |
+
if self.init is not None:
|
1059 |
+
warnings.warn(
|
1060 |
+
"Using recursion method with a non-constant init predictor "
|
1061 |
+
"will lead to incorrect partial dependence values. "
|
1062 |
+
"Got init=%s."
|
1063 |
+
% self.init,
|
1064 |
+
UserWarning,
|
1065 |
+
)
|
1066 |
+
grid = np.asarray(grid, dtype=DTYPE, order="C")
|
1067 |
+
n_estimators, n_trees_per_stage = self.estimators_.shape
|
1068 |
+
averaged_predictions = np.zeros(
|
1069 |
+
(n_trees_per_stage, grid.shape[0]), dtype=np.float64, order="C"
|
1070 |
+
)
|
1071 |
+
for stage in range(n_estimators):
|
1072 |
+
for k in range(n_trees_per_stage):
|
1073 |
+
tree = self.estimators_[stage, k].tree_
|
1074 |
+
tree.compute_partial_dependence(
|
1075 |
+
grid, target_features, averaged_predictions[k]
|
1076 |
+
)
|
1077 |
+
averaged_predictions *= self.learning_rate
|
1078 |
+
|
1079 |
+
return averaged_predictions
|
1080 |
+
|
1081 |
+
def apply(self, X):
|
1082 |
+
"""Apply trees in the ensemble to X, return leaf indices.
|
1083 |
+
|
1084 |
+
.. versionadded:: 0.17
|
1085 |
+
|
1086 |
+
Parameters
|
1087 |
+
----------
|
1088 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1089 |
+
The input samples. Internally, its dtype will be converted to
|
1090 |
+
``dtype=np.float32``. If a sparse matrix is provided, it will
|
1091 |
+
be converted to a sparse ``csr_matrix``.
|
1092 |
+
|
1093 |
+
Returns
|
1094 |
+
-------
|
1095 |
+
X_leaves : array-like of shape (n_samples, n_estimators, n_classes)
|
1096 |
+
For each datapoint x in X and for each tree in the ensemble,
|
1097 |
+
return the index of the leaf x ends up in each estimator.
|
1098 |
+
In the case of binary classification n_classes is 1.
|
1099 |
+
"""
|
1100 |
+
|
1101 |
+
self._check_initialized()
|
1102 |
+
X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True)
|
1103 |
+
|
1104 |
+
# n_classes will be equal to 1 in the binary classification or the
|
1105 |
+
# regression case.
|
1106 |
+
n_estimators, n_classes = self.estimators_.shape
|
1107 |
+
leaves = np.zeros((X.shape[0], n_estimators, n_classes))
|
1108 |
+
|
1109 |
+
for i in range(n_estimators):
|
1110 |
+
for j in range(n_classes):
|
1111 |
+
estimator = self.estimators_[i, j]
|
1112 |
+
leaves[:, i, j] = estimator.apply(X, check_input=False)
|
1113 |
+
|
1114 |
+
return leaves
|
1115 |
+
|
1116 |
+
|
1117 |
+
class GradientBoostingClassifier(ClassifierMixin, BaseGradientBoosting):
|
1118 |
+
"""Gradient Boosting for classification.
|
1119 |
+
|
1120 |
+
This algorithm builds an additive model in a forward stage-wise fashion; it
|
1121 |
+
allows for the optimization of arbitrary differentiable loss functions. In
|
1122 |
+
each stage ``n_classes_`` regression trees are fit on the negative gradient
|
1123 |
+
of the loss function, e.g. binary or multiclass log loss. Binary
|
1124 |
+
classification is a special case where only a single regression tree is
|
1125 |
+
induced.
|
1126 |
+
|
1127 |
+
:class:`sklearn.ensemble.HistGradientBoostingClassifier` is a much faster
|
1128 |
+
variant of this algorithm for intermediate datasets (`n_samples >= 10_000`).
|
1129 |
+
|
1130 |
+
Read more in the :ref:`User Guide <gradient_boosting>`.
|
1131 |
+
|
1132 |
+
Parameters
|
1133 |
+
----------
|
1134 |
+
loss : {'log_loss', 'exponential'}, default='log_loss'
|
1135 |
+
The loss function to be optimized. 'log_loss' refers to binomial and
|
1136 |
+
multinomial deviance, the same as used in logistic regression.
|
1137 |
+
It is a good choice for classification with probabilistic outputs.
|
1138 |
+
For loss 'exponential', gradient boosting recovers the AdaBoost algorithm.
|
1139 |
+
|
1140 |
+
learning_rate : float, default=0.1
|
1141 |
+
Learning rate shrinks the contribution of each tree by `learning_rate`.
|
1142 |
+
There is a trade-off between learning_rate and n_estimators.
|
1143 |
+
Values must be in the range `[0.0, inf)`.
|
1144 |
+
|
1145 |
+
n_estimators : int, default=100
|
1146 |
+
The number of boosting stages to perform. Gradient boosting
|
1147 |
+
is fairly robust to over-fitting so a large number usually
|
1148 |
+
results in better performance.
|
1149 |
+
Values must be in the range `[1, inf)`.
|
1150 |
+
|
1151 |
+
subsample : float, default=1.0
|
1152 |
+
The fraction of samples to be used for fitting the individual base
|
1153 |
+
learners. If smaller than 1.0 this results in Stochastic Gradient
|
1154 |
+
Boosting. `subsample` interacts with the parameter `n_estimators`.
|
1155 |
+
Choosing `subsample < 1.0` leads to a reduction of variance
|
1156 |
+
and an increase in bias.
|
1157 |
+
Values must be in the range `(0.0, 1.0]`.
|
1158 |
+
|
1159 |
+
criterion : {'friedman_mse', 'squared_error'}, default='friedman_mse'
|
1160 |
+
The function to measure the quality of a split. Supported criteria are
|
1161 |
+
'friedman_mse' for the mean squared error with improvement score by
|
1162 |
+
Friedman, 'squared_error' for mean squared error. The default value of
|
1163 |
+
'friedman_mse' is generally the best as it can provide a better
|
1164 |
+
approximation in some cases.
|
1165 |
+
|
1166 |
+
.. versionadded:: 0.18
|
1167 |
+
|
1168 |
+
min_samples_split : int or float, default=2
|
1169 |
+
The minimum number of samples required to split an internal node:
|
1170 |
+
|
1171 |
+
- If int, values must be in the range `[2, inf)`.
|
1172 |
+
- If float, values must be in the range `(0.0, 1.0]` and `min_samples_split`
|
1173 |
+
will be `ceil(min_samples_split * n_samples)`.
|
1174 |
+
|
1175 |
+
.. versionchanged:: 0.18
|
1176 |
+
Added float values for fractions.
|
1177 |
+
|
1178 |
+
min_samples_leaf : int or float, default=1
|
1179 |
+
The minimum number of samples required to be at a leaf node.
|
1180 |
+
A split point at any depth will only be considered if it leaves at
|
1181 |
+
least ``min_samples_leaf`` training samples in each of the left and
|
1182 |
+
right branches. This may have the effect of smoothing the model,
|
1183 |
+
especially in regression.
|
1184 |
+
|
1185 |
+
- If int, values must be in the range `[1, inf)`.
|
1186 |
+
- If float, values must be in the range `(0.0, 1.0)` and `min_samples_leaf`
|
1187 |
+
will be `ceil(min_samples_leaf * n_samples)`.
|
1188 |
+
|
1189 |
+
.. versionchanged:: 0.18
|
1190 |
+
Added float values for fractions.
|
1191 |
+
|
1192 |
+
min_weight_fraction_leaf : float, default=0.0
|
1193 |
+
The minimum weighted fraction of the sum total of weights (of all
|
1194 |
+
the input samples) required to be at a leaf node. Samples have
|
1195 |
+
equal weight when sample_weight is not provided.
|
1196 |
+
Values must be in the range `[0.0, 0.5]`.
|
1197 |
+
|
1198 |
+
max_depth : int or None, default=3
|
1199 |
+
Maximum depth of the individual regression estimators. The maximum
|
1200 |
+
depth limits the number of nodes in the tree. Tune this parameter
|
1201 |
+
for best performance; the best value depends on the interaction
|
1202 |
+
of the input variables. If None, then nodes are expanded until
|
1203 |
+
all leaves are pure or until all leaves contain less than
|
1204 |
+
min_samples_split samples.
|
1205 |
+
If int, values must be in the range `[1, inf)`.
|
1206 |
+
|
1207 |
+
min_impurity_decrease : float, default=0.0
|
1208 |
+
A node will be split if this split induces a decrease of the impurity
|
1209 |
+
greater than or equal to this value.
|
1210 |
+
Values must be in the range `[0.0, inf)`.
|
1211 |
+
|
1212 |
+
The weighted impurity decrease equation is the following::
|
1213 |
+
|
1214 |
+
N_t / N * (impurity - N_t_R / N_t * right_impurity
|
1215 |
+
- N_t_L / N_t * left_impurity)
|
1216 |
+
|
1217 |
+
where ``N`` is the total number of samples, ``N_t`` is the number of
|
1218 |
+
samples at the current node, ``N_t_L`` is the number of samples in the
|
1219 |
+
left child, and ``N_t_R`` is the number of samples in the right child.
|
1220 |
+
|
1221 |
+
``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
|
1222 |
+
if ``sample_weight`` is passed.
|
1223 |
+
|
1224 |
+
.. versionadded:: 0.19
|
1225 |
+
|
1226 |
+
init : estimator or 'zero', default=None
|
1227 |
+
An estimator object that is used to compute the initial predictions.
|
1228 |
+
``init`` has to provide :term:`fit` and :term:`predict_proba`. If
|
1229 |
+
'zero', the initial raw predictions are set to zero. By default, a
|
1230 |
+
``DummyEstimator`` predicting the classes priors is used.
|
1231 |
+
|
1232 |
+
random_state : int, RandomState instance or None, default=None
|
1233 |
+
Controls the random seed given to each Tree estimator at each
|
1234 |
+
boosting iteration.
|
1235 |
+
In addition, it controls the random permutation of the features at
|
1236 |
+
each split (see Notes for more details).
|
1237 |
+
It also controls the random splitting of the training data to obtain a
|
1238 |
+
validation set if `n_iter_no_change` is not None.
|
1239 |
+
Pass an int for reproducible output across multiple function calls.
|
1240 |
+
See :term:`Glossary <random_state>`.
|
1241 |
+
|
1242 |
+
max_features : {'sqrt', 'log2'}, int or float, default=None
|
1243 |
+
The number of features to consider when looking for the best split:
|
1244 |
+
|
1245 |
+
- If int, values must be in the range `[1, inf)`.
|
1246 |
+
- If float, values must be in the range `(0.0, 1.0]` and the features
|
1247 |
+
considered at each split will be `max(1, int(max_features * n_features_in_))`.
|
1248 |
+
- If 'sqrt', then `max_features=sqrt(n_features)`.
|
1249 |
+
- If 'log2', then `max_features=log2(n_features)`.
|
1250 |
+
- If None, then `max_features=n_features`.
|
1251 |
+
|
1252 |
+
Choosing `max_features < n_features` leads to a reduction of variance
|
1253 |
+
and an increase in bias.
|
1254 |
+
|
1255 |
+
Note: the search for a split does not stop until at least one
|
1256 |
+
valid partition of the node samples is found, even if it requires to
|
1257 |
+
effectively inspect more than ``max_features`` features.
|
1258 |
+
|
1259 |
+
verbose : int, default=0
|
1260 |
+
Enable verbose output. If 1 then it prints progress and performance
|
1261 |
+
once in a while (the more trees the lower the frequency). If greater
|
1262 |
+
than 1 then it prints progress and performance for every tree.
|
1263 |
+
Values must be in the range `[0, inf)`.
|
1264 |
+
|
1265 |
+
max_leaf_nodes : int, default=None
|
1266 |
+
Grow trees with ``max_leaf_nodes`` in best-first fashion.
|
1267 |
+
Best nodes are defined as relative reduction in impurity.
|
1268 |
+
Values must be in the range `[2, inf)`.
|
1269 |
+
If `None`, then unlimited number of leaf nodes.
|
1270 |
+
|
1271 |
+
warm_start : bool, default=False
|
1272 |
+
When set to ``True``, reuse the solution of the previous call to fit
|
1273 |
+
and add more estimators to the ensemble, otherwise, just erase the
|
1274 |
+
previous solution. See :term:`the Glossary <warm_start>`.
|
1275 |
+
|
1276 |
+
validation_fraction : float, default=0.1
|
1277 |
+
The proportion of training data to set aside as validation set for
|
1278 |
+
early stopping. Values must be in the range `(0.0, 1.0)`.
|
1279 |
+
Only used if ``n_iter_no_change`` is set to an integer.
|
1280 |
+
|
1281 |
+
.. versionadded:: 0.20
|
1282 |
+
|
1283 |
+
n_iter_no_change : int, default=None
|
1284 |
+
``n_iter_no_change`` is used to decide if early stopping will be used
|
1285 |
+
to terminate training when validation score is not improving. By
|
1286 |
+
default it is set to None to disable early stopping. If set to a
|
1287 |
+
number, it will set aside ``validation_fraction`` size of the training
|
1288 |
+
data as validation and terminate training when validation score is not
|
1289 |
+
improving in all of the previous ``n_iter_no_change`` numbers of
|
1290 |
+
iterations. The split is stratified.
|
1291 |
+
Values must be in the range `[1, inf)`.
|
1292 |
+
See
|
1293 |
+
:ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_early_stopping.py`.
|
1294 |
+
|
1295 |
+
.. versionadded:: 0.20
|
1296 |
+
|
1297 |
+
tol : float, default=1e-4
|
1298 |
+
Tolerance for the early stopping. When the loss is not improving
|
1299 |
+
by at least tol for ``n_iter_no_change`` iterations (if set to a
|
1300 |
+
number), the training stops.
|
1301 |
+
Values must be in the range `[0.0, inf)`.
|
1302 |
+
|
1303 |
+
.. versionadded:: 0.20
|
1304 |
+
|
1305 |
+
ccp_alpha : non-negative float, default=0.0
|
1306 |
+
Complexity parameter used for Minimal Cost-Complexity Pruning. The
|
1307 |
+
subtree with the largest cost complexity that is smaller than
|
1308 |
+
``ccp_alpha`` will be chosen. By default, no pruning is performed.
|
1309 |
+
Values must be in the range `[0.0, inf)`.
|
1310 |
+
See :ref:`minimal_cost_complexity_pruning` for details.
|
1311 |
+
|
1312 |
+
.. versionadded:: 0.22
|
1313 |
+
|
1314 |
+
Attributes
|
1315 |
+
----------
|
1316 |
+
n_estimators_ : int
|
1317 |
+
The number of estimators as selected by early stopping (if
|
1318 |
+
``n_iter_no_change`` is specified). Otherwise it is set to
|
1319 |
+
``n_estimators``.
|
1320 |
+
|
1321 |
+
.. versionadded:: 0.20
|
1322 |
+
|
1323 |
+
n_trees_per_iteration_ : int
|
1324 |
+
The number of trees that are built at each iteration. For binary classifiers,
|
1325 |
+
this is always 1.
|
1326 |
+
|
1327 |
+
.. versionadded:: 1.4.0
|
1328 |
+
|
1329 |
+
feature_importances_ : ndarray of shape (n_features,)
|
1330 |
+
The impurity-based feature importances.
|
1331 |
+
The higher, the more important the feature.
|
1332 |
+
The importance of a feature is computed as the (normalized)
|
1333 |
+
total reduction of the criterion brought by that feature. It is also
|
1334 |
+
known as the Gini importance.
|
1335 |
+
|
1336 |
+
Warning: impurity-based feature importances can be misleading for
|
1337 |
+
high cardinality features (many unique values). See
|
1338 |
+
:func:`sklearn.inspection.permutation_importance` as an alternative.
|
1339 |
+
|
1340 |
+
oob_improvement_ : ndarray of shape (n_estimators,)
|
1341 |
+
The improvement in loss on the out-of-bag samples
|
1342 |
+
relative to the previous iteration.
|
1343 |
+
``oob_improvement_[0]`` is the improvement in
|
1344 |
+
loss of the first stage over the ``init`` estimator.
|
1345 |
+
Only available if ``subsample < 1.0``.
|
1346 |
+
|
1347 |
+
oob_scores_ : ndarray of shape (n_estimators,)
|
1348 |
+
The full history of the loss values on the out-of-bag
|
1349 |
+
samples. Only available if `subsample < 1.0`.
|
1350 |
+
|
1351 |
+
.. versionadded:: 1.3
|
1352 |
+
|
1353 |
+
oob_score_ : float
|
1354 |
+
The last value of the loss on the out-of-bag samples. It is
|
1355 |
+
the same as `oob_scores_[-1]`. Only available if `subsample < 1.0`.
|
1356 |
+
|
1357 |
+
.. versionadded:: 1.3
|
1358 |
+
|
1359 |
+
train_score_ : ndarray of shape (n_estimators,)
|
1360 |
+
The i-th score ``train_score_[i]`` is the loss of the
|
1361 |
+
model at iteration ``i`` on the in-bag sample.
|
1362 |
+
If ``subsample == 1`` this is the loss on the training data.
|
1363 |
+
|
1364 |
+
init_ : estimator
|
1365 |
+
The estimator that provides the initial predictions. Set via the ``init``
|
1366 |
+
argument.
|
1367 |
+
|
1368 |
+
estimators_ : ndarray of DecisionTreeRegressor of \
|
1369 |
+
shape (n_estimators, ``n_trees_per_iteration_``)
|
1370 |
+
The collection of fitted sub-estimators. ``n_trees_per_iteration_`` is 1 for
|
1371 |
+
binary classification, otherwise ``n_classes``.
|
1372 |
+
|
1373 |
+
classes_ : ndarray of shape (n_classes,)
|
1374 |
+
The classes labels.
|
1375 |
+
|
1376 |
+
n_features_in_ : int
|
1377 |
+
Number of features seen during :term:`fit`.
|
1378 |
+
|
1379 |
+
.. versionadded:: 0.24
|
1380 |
+
|
1381 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1382 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1383 |
+
has feature names that are all strings.
|
1384 |
+
|
1385 |
+
.. versionadded:: 1.0
|
1386 |
+
|
1387 |
+
n_classes_ : int
|
1388 |
+
The number of classes.
|
1389 |
+
|
1390 |
+
max_features_ : int
|
1391 |
+
The inferred value of max_features.
|
1392 |
+
|
1393 |
+
See Also
|
1394 |
+
--------
|
1395 |
+
HistGradientBoostingClassifier : Histogram-based Gradient Boosting
|
1396 |
+
Classification Tree.
|
1397 |
+
sklearn.tree.DecisionTreeClassifier : A decision tree classifier.
|
1398 |
+
RandomForestClassifier : A meta-estimator that fits a number of decision
|
1399 |
+
tree classifiers on various sub-samples of the dataset and uses
|
1400 |
+
averaging to improve the predictive accuracy and control over-fitting.
|
1401 |
+
AdaBoostClassifier : A meta-estimator that begins by fitting a classifier
|
1402 |
+
on the original dataset and then fits additional copies of the
|
1403 |
+
classifier on the same dataset where the weights of incorrectly
|
1404 |
+
classified instances are adjusted such that subsequent classifiers
|
1405 |
+
focus more on difficult cases.
|
1406 |
+
|
1407 |
+
Notes
|
1408 |
+
-----
|
1409 |
+
The features are always randomly permuted at each split. Therefore,
|
1410 |
+
the best found split may vary, even with the same training data and
|
1411 |
+
``max_features=n_features``, if the improvement of the criterion is
|
1412 |
+
identical for several splits enumerated during the search of the best
|
1413 |
+
split. To obtain a deterministic behaviour during fitting,
|
1414 |
+
``random_state`` has to be fixed.
|
1415 |
+
|
1416 |
+
References
|
1417 |
+
----------
|
1418 |
+
J. Friedman, Greedy Function Approximation: A Gradient Boosting
|
1419 |
+
Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.
|
1420 |
+
|
1421 |
+
J. Friedman, Stochastic Gradient Boosting, 1999
|
1422 |
+
|
1423 |
+
T. Hastie, R. Tibshirani and J. Friedman.
|
1424 |
+
Elements of Statistical Learning Ed. 2, Springer, 2009.
|
1425 |
+
|
1426 |
+
Examples
|
1427 |
+
--------
|
1428 |
+
The following example shows how to fit a gradient boosting classifier with
|
1429 |
+
100 decision stumps as weak learners.
|
1430 |
+
|
1431 |
+
>>> from sklearn.datasets import make_hastie_10_2
|
1432 |
+
>>> from sklearn.ensemble import GradientBoostingClassifier
|
1433 |
+
|
1434 |
+
>>> X, y = make_hastie_10_2(random_state=0)
|
1435 |
+
>>> X_train, X_test = X[:2000], X[2000:]
|
1436 |
+
>>> y_train, y_test = y[:2000], y[2000:]
|
1437 |
+
|
1438 |
+
>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
|
1439 |
+
... max_depth=1, random_state=0).fit(X_train, y_train)
|
1440 |
+
>>> clf.score(X_test, y_test)
|
1441 |
+
0.913...
|
1442 |
+
"""
|
1443 |
+
|
1444 |
+
_parameter_constraints: dict = {
|
1445 |
+
**BaseGradientBoosting._parameter_constraints,
|
1446 |
+
"loss": [StrOptions({"log_loss", "exponential"})],
|
1447 |
+
"init": [StrOptions({"zero"}), None, HasMethods(["fit", "predict_proba"])],
|
1448 |
+
}
|
1449 |
+
|
1450 |
+
def __init__(
|
1451 |
+
self,
|
1452 |
+
*,
|
1453 |
+
loss="log_loss",
|
1454 |
+
learning_rate=0.1,
|
1455 |
+
n_estimators=100,
|
1456 |
+
subsample=1.0,
|
1457 |
+
criterion="friedman_mse",
|
1458 |
+
min_samples_split=2,
|
1459 |
+
min_samples_leaf=1,
|
1460 |
+
min_weight_fraction_leaf=0.0,
|
1461 |
+
max_depth=3,
|
1462 |
+
min_impurity_decrease=0.0,
|
1463 |
+
init=None,
|
1464 |
+
random_state=None,
|
1465 |
+
max_features=None,
|
1466 |
+
verbose=0,
|
1467 |
+
max_leaf_nodes=None,
|
1468 |
+
warm_start=False,
|
1469 |
+
validation_fraction=0.1,
|
1470 |
+
n_iter_no_change=None,
|
1471 |
+
tol=1e-4,
|
1472 |
+
ccp_alpha=0.0,
|
1473 |
+
):
|
1474 |
+
super().__init__(
|
1475 |
+
loss=loss,
|
1476 |
+
learning_rate=learning_rate,
|
1477 |
+
n_estimators=n_estimators,
|
1478 |
+
criterion=criterion,
|
1479 |
+
min_samples_split=min_samples_split,
|
1480 |
+
min_samples_leaf=min_samples_leaf,
|
1481 |
+
min_weight_fraction_leaf=min_weight_fraction_leaf,
|
1482 |
+
max_depth=max_depth,
|
1483 |
+
init=init,
|
1484 |
+
subsample=subsample,
|
1485 |
+
max_features=max_features,
|
1486 |
+
random_state=random_state,
|
1487 |
+
verbose=verbose,
|
1488 |
+
max_leaf_nodes=max_leaf_nodes,
|
1489 |
+
min_impurity_decrease=min_impurity_decrease,
|
1490 |
+
warm_start=warm_start,
|
1491 |
+
validation_fraction=validation_fraction,
|
1492 |
+
n_iter_no_change=n_iter_no_change,
|
1493 |
+
tol=tol,
|
1494 |
+
ccp_alpha=ccp_alpha,
|
1495 |
+
)
|
1496 |
+
|
1497 |
+
def _encode_y(self, y, sample_weight):
|
1498 |
+
# encode classes into 0 ... n_classes - 1 and sets attributes classes_
|
1499 |
+
# and n_trees_per_iteration_
|
1500 |
+
check_classification_targets(y)
|
1501 |
+
|
1502 |
+
label_encoder = LabelEncoder()
|
1503 |
+
encoded_y_int = label_encoder.fit_transform(y)
|
1504 |
+
self.classes_ = label_encoder.classes_
|
1505 |
+
n_classes = self.classes_.shape[0]
|
1506 |
+
# only 1 tree for binary classification. For multiclass classification,
|
1507 |
+
# we build 1 tree per class.
|
1508 |
+
self.n_trees_per_iteration_ = 1 if n_classes <= 2 else n_classes
|
1509 |
+
encoded_y = encoded_y_int.astype(float, copy=False)
|
1510 |
+
|
1511 |
+
# From here on, it is additional to the HGBT case.
|
1512 |
+
# expose n_classes_ attribute
|
1513 |
+
self.n_classes_ = n_classes
|
1514 |
+
if sample_weight is None:
|
1515 |
+
n_trim_classes = n_classes
|
1516 |
+
else:
|
1517 |
+
n_trim_classes = np.count_nonzero(np.bincount(encoded_y_int, sample_weight))
|
1518 |
+
|
1519 |
+
if n_trim_classes < 2:
|
1520 |
+
raise ValueError(
|
1521 |
+
"y contains %d class after sample_weight "
|
1522 |
+
"trimmed classes with zero weights, while a "
|
1523 |
+
"minimum of 2 classes are required." % n_trim_classes
|
1524 |
+
)
|
1525 |
+
return encoded_y
|
1526 |
+
|
1527 |
+
def _get_loss(self, sample_weight):
|
1528 |
+
if self.loss == "log_loss":
|
1529 |
+
if self.n_classes_ == 2:
|
1530 |
+
return HalfBinomialLoss(sample_weight=sample_weight)
|
1531 |
+
else:
|
1532 |
+
return HalfMultinomialLoss(
|
1533 |
+
sample_weight=sample_weight, n_classes=self.n_classes_
|
1534 |
+
)
|
1535 |
+
elif self.loss == "exponential":
|
1536 |
+
if self.n_classes_ > 2:
|
1537 |
+
raise ValueError(
|
1538 |
+
f"loss='{self.loss}' is only suitable for a binary classification "
|
1539 |
+
f"problem, you have n_classes={self.n_classes_}. "
|
1540 |
+
"Please use loss='log_loss' instead."
|
1541 |
+
)
|
1542 |
+
else:
|
1543 |
+
return ExponentialLoss(sample_weight=sample_weight)
|
1544 |
+
|
1545 |
+
def decision_function(self, X):
|
1546 |
+
"""Compute the decision function of ``X``.
|
1547 |
+
|
1548 |
+
Parameters
|
1549 |
+
----------
|
1550 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1551 |
+
The input samples. Internally, it will be converted to
|
1552 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
1553 |
+
to a sparse ``csr_matrix``.
|
1554 |
+
|
1555 |
+
Returns
|
1556 |
+
-------
|
1557 |
+
score : ndarray of shape (n_samples, n_classes) or (n_samples,)
|
1558 |
+
The decision function of the input samples, which corresponds to
|
1559 |
+
the raw values predicted from the trees of the ensemble . The
|
1560 |
+
order of the classes corresponds to that in the attribute
|
1561 |
+
:term:`classes_`. Regression and binary classification produce an
|
1562 |
+
array of shape (n_samples,).
|
1563 |
+
"""
|
1564 |
+
X = self._validate_data(
|
1565 |
+
X, dtype=DTYPE, order="C", accept_sparse="csr", reset=False
|
1566 |
+
)
|
1567 |
+
raw_predictions = self._raw_predict(X)
|
1568 |
+
if raw_predictions.shape[1] == 1:
|
1569 |
+
return raw_predictions.ravel()
|
1570 |
+
return raw_predictions
|
1571 |
+
|
1572 |
+
def staged_decision_function(self, X):
|
1573 |
+
"""Compute decision function of ``X`` for each iteration.
|
1574 |
+
|
1575 |
+
This method allows monitoring (i.e. determine error on testing set)
|
1576 |
+
after each stage.
|
1577 |
+
|
1578 |
+
Parameters
|
1579 |
+
----------
|
1580 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1581 |
+
The input samples. Internally, it will be converted to
|
1582 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
1583 |
+
to a sparse ``csr_matrix``.
|
1584 |
+
|
1585 |
+
Yields
|
1586 |
+
------
|
1587 |
+
score : generator of ndarray of shape (n_samples, k)
|
1588 |
+
The decision function of the input samples, which corresponds to
|
1589 |
+
the raw values predicted from the trees of the ensemble . The
|
1590 |
+
classes corresponds to that in the attribute :term:`classes_`.
|
1591 |
+
Regression and binary classification are special cases with
|
1592 |
+
``k == 1``, otherwise ``k==n_classes``.
|
1593 |
+
"""
|
1594 |
+
yield from self._staged_raw_predict(X)
|
1595 |
+
|
1596 |
+
def predict(self, X):
|
1597 |
+
"""Predict class for X.
|
1598 |
+
|
1599 |
+
Parameters
|
1600 |
+
----------
|
1601 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1602 |
+
The input samples. Internally, it will be converted to
|
1603 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
1604 |
+
to a sparse ``csr_matrix``.
|
1605 |
+
|
1606 |
+
Returns
|
1607 |
+
-------
|
1608 |
+
y : ndarray of shape (n_samples,)
|
1609 |
+
The predicted values.
|
1610 |
+
"""
|
1611 |
+
raw_predictions = self.decision_function(X)
|
1612 |
+
if raw_predictions.ndim == 1: # decision_function already squeezed it
|
1613 |
+
encoded_classes = (raw_predictions >= 0).astype(int)
|
1614 |
+
else:
|
1615 |
+
encoded_classes = np.argmax(raw_predictions, axis=1)
|
1616 |
+
return self.classes_[encoded_classes]
|
1617 |
+
|
1618 |
+
def staged_predict(self, X):
|
1619 |
+
"""Predict class at each stage for X.
|
1620 |
+
|
1621 |
+
This method allows monitoring (i.e. determine error on testing set)
|
1622 |
+
after each stage.
|
1623 |
+
|
1624 |
+
Parameters
|
1625 |
+
----------
|
1626 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1627 |
+
The input samples. Internally, it will be converted to
|
1628 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
1629 |
+
to a sparse ``csr_matrix``.
|
1630 |
+
|
1631 |
+
Yields
|
1632 |
+
------
|
1633 |
+
y : generator of ndarray of shape (n_samples,)
|
1634 |
+
The predicted value of the input samples.
|
1635 |
+
"""
|
1636 |
+
if self.n_classes_ == 2: # n_trees_per_iteration_ = 1
|
1637 |
+
for raw_predictions in self._staged_raw_predict(X):
|
1638 |
+
encoded_classes = (raw_predictions.squeeze() >= 0).astype(int)
|
1639 |
+
yield self.classes_.take(encoded_classes, axis=0)
|
1640 |
+
else:
|
1641 |
+
for raw_predictions in self._staged_raw_predict(X):
|
1642 |
+
encoded_classes = np.argmax(raw_predictions, axis=1)
|
1643 |
+
yield self.classes_.take(encoded_classes, axis=0)
|
1644 |
+
|
1645 |
+
def predict_proba(self, X):
|
1646 |
+
"""Predict class probabilities for X.
|
1647 |
+
|
1648 |
+
Parameters
|
1649 |
+
----------
|
1650 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1651 |
+
The input samples. Internally, it will be converted to
|
1652 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
1653 |
+
to a sparse ``csr_matrix``.
|
1654 |
+
|
1655 |
+
Returns
|
1656 |
+
-------
|
1657 |
+
p : ndarray of shape (n_samples, n_classes)
|
1658 |
+
The class probabilities of the input samples. The order of the
|
1659 |
+
classes corresponds to that in the attribute :term:`classes_`.
|
1660 |
+
|
1661 |
+
Raises
|
1662 |
+
------
|
1663 |
+
AttributeError
|
1664 |
+
If the ``loss`` does not support probabilities.
|
1665 |
+
"""
|
1666 |
+
raw_predictions = self.decision_function(X)
|
1667 |
+
return self._loss.predict_proba(raw_predictions)
|
1668 |
+
|
1669 |
+
def predict_log_proba(self, X):
|
1670 |
+
"""Predict class log-probabilities for X.
|
1671 |
+
|
1672 |
+
Parameters
|
1673 |
+
----------
|
1674 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1675 |
+
The input samples. Internally, it will be converted to
|
1676 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
1677 |
+
to a sparse ``csr_matrix``.
|
1678 |
+
|
1679 |
+
Returns
|
1680 |
+
-------
|
1681 |
+
p : ndarray of shape (n_samples, n_classes)
|
1682 |
+
The class log-probabilities of the input samples. The order of the
|
1683 |
+
classes corresponds to that in the attribute :term:`classes_`.
|
1684 |
+
|
1685 |
+
Raises
|
1686 |
+
------
|
1687 |
+
AttributeError
|
1688 |
+
If the ``loss`` does not support probabilities.
|
1689 |
+
"""
|
1690 |
+
proba = self.predict_proba(X)
|
1691 |
+
return np.log(proba)
|
1692 |
+
|
1693 |
+
def staged_predict_proba(self, X):
|
1694 |
+
"""Predict class probabilities at each stage for X.
|
1695 |
+
|
1696 |
+
This method allows monitoring (i.e. determine error on testing set)
|
1697 |
+
after each stage.
|
1698 |
+
|
1699 |
+
Parameters
|
1700 |
+
----------
|
1701 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1702 |
+
The input samples. Internally, it will be converted to
|
1703 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
1704 |
+
to a sparse ``csr_matrix``.
|
1705 |
+
|
1706 |
+
Yields
|
1707 |
+
------
|
1708 |
+
y : generator of ndarray of shape (n_samples,)
|
1709 |
+
The predicted value of the input samples.
|
1710 |
+
"""
|
1711 |
+
try:
|
1712 |
+
for raw_predictions in self._staged_raw_predict(X):
|
1713 |
+
yield self._loss.predict_proba(raw_predictions)
|
1714 |
+
except NotFittedError:
|
1715 |
+
raise
|
1716 |
+
except AttributeError as e:
|
1717 |
+
raise AttributeError(
|
1718 |
+
"loss=%r does not support predict_proba" % self.loss
|
1719 |
+
) from e
|
1720 |
+
|
1721 |
+
|
1722 |
+
class GradientBoostingRegressor(RegressorMixin, BaseGradientBoosting):
|
1723 |
+
"""Gradient Boosting for regression.
|
1724 |
+
|
1725 |
+
This estimator builds an additive model in a forward stage-wise fashion; it
|
1726 |
+
allows for the optimization of arbitrary differentiable loss functions. In
|
1727 |
+
each stage a regression tree is fit on the negative gradient of the given
|
1728 |
+
loss function.
|
1729 |
+
|
1730 |
+
:class:`sklearn.ensemble.HistGradientBoostingRegressor` is a much faster
|
1731 |
+
variant of this algorithm for intermediate datasets (`n_samples >= 10_000`).
|
1732 |
+
|
1733 |
+
Read more in the :ref:`User Guide <gradient_boosting>`.
|
1734 |
+
|
1735 |
+
Parameters
|
1736 |
+
----------
|
1737 |
+
loss : {'squared_error', 'absolute_error', 'huber', 'quantile'}, \
|
1738 |
+
default='squared_error'
|
1739 |
+
Loss function to be optimized. 'squared_error' refers to the squared
|
1740 |
+
error for regression. 'absolute_error' refers to the absolute error of
|
1741 |
+
regression and is a robust loss function. 'huber' is a
|
1742 |
+
combination of the two. 'quantile' allows quantile regression (use
|
1743 |
+
`alpha` to specify the quantile).
|
1744 |
+
|
1745 |
+
learning_rate : float, default=0.1
|
1746 |
+
Learning rate shrinks the contribution of each tree by `learning_rate`.
|
1747 |
+
There is a trade-off between learning_rate and n_estimators.
|
1748 |
+
Values must be in the range `[0.0, inf)`.
|
1749 |
+
|
1750 |
+
n_estimators : int, default=100
|
1751 |
+
The number of boosting stages to perform. Gradient boosting
|
1752 |
+
is fairly robust to over-fitting so a large number usually
|
1753 |
+
results in better performance.
|
1754 |
+
Values must be in the range `[1, inf)`.
|
1755 |
+
|
1756 |
+
subsample : float, default=1.0
|
1757 |
+
The fraction of samples to be used for fitting the individual base
|
1758 |
+
learners. If smaller than 1.0 this results in Stochastic Gradient
|
1759 |
+
Boosting. `subsample` interacts with the parameter `n_estimators`.
|
1760 |
+
Choosing `subsample < 1.0` leads to a reduction of variance
|
1761 |
+
and an increase in bias.
|
1762 |
+
Values must be in the range `(0.0, 1.0]`.
|
1763 |
+
|
1764 |
+
criterion : {'friedman_mse', 'squared_error'}, default='friedman_mse'
|
1765 |
+
The function to measure the quality of a split. Supported criteria are
|
1766 |
+
"friedman_mse" for the mean squared error with improvement score by
|
1767 |
+
Friedman, "squared_error" for mean squared error. The default value of
|
1768 |
+
"friedman_mse" is generally the best as it can provide a better
|
1769 |
+
approximation in some cases.
|
1770 |
+
|
1771 |
+
.. versionadded:: 0.18
|
1772 |
+
|
1773 |
+
min_samples_split : int or float, default=2
|
1774 |
+
The minimum number of samples required to split an internal node:
|
1775 |
+
|
1776 |
+
- If int, values must be in the range `[2, inf)`.
|
1777 |
+
- If float, values must be in the range `(0.0, 1.0]` and `min_samples_split`
|
1778 |
+
will be `ceil(min_samples_split * n_samples)`.
|
1779 |
+
|
1780 |
+
.. versionchanged:: 0.18
|
1781 |
+
Added float values for fractions.
|
1782 |
+
|
1783 |
+
min_samples_leaf : int or float, default=1
|
1784 |
+
The minimum number of samples required to be at a leaf node.
|
1785 |
+
A split point at any depth will only be considered if it leaves at
|
1786 |
+
least ``min_samples_leaf`` training samples in each of the left and
|
1787 |
+
right branches. This may have the effect of smoothing the model,
|
1788 |
+
especially in regression.
|
1789 |
+
|
1790 |
+
- If int, values must be in the range `[1, inf)`.
|
1791 |
+
- If float, values must be in the range `(0.0, 1.0)` and `min_samples_leaf`
|
1792 |
+
will be `ceil(min_samples_leaf * n_samples)`.
|
1793 |
+
|
1794 |
+
.. versionchanged:: 0.18
|
1795 |
+
Added float values for fractions.
|
1796 |
+
|
1797 |
+
min_weight_fraction_leaf : float, default=0.0
|
1798 |
+
The minimum weighted fraction of the sum total of weights (of all
|
1799 |
+
the input samples) required to be at a leaf node. Samples have
|
1800 |
+
equal weight when sample_weight is not provided.
|
1801 |
+
Values must be in the range `[0.0, 0.5]`.
|
1802 |
+
|
1803 |
+
max_depth : int or None, default=3
|
1804 |
+
Maximum depth of the individual regression estimators. The maximum
|
1805 |
+
depth limits the number of nodes in the tree. Tune this parameter
|
1806 |
+
for best performance; the best value depends on the interaction
|
1807 |
+
of the input variables. If None, then nodes are expanded until
|
1808 |
+
all leaves are pure or until all leaves contain less than
|
1809 |
+
min_samples_split samples.
|
1810 |
+
If int, values must be in the range `[1, inf)`.
|
1811 |
+
|
1812 |
+
min_impurity_decrease : float, default=0.0
|
1813 |
+
A node will be split if this split induces a decrease of the impurity
|
1814 |
+
greater than or equal to this value.
|
1815 |
+
Values must be in the range `[0.0, inf)`.
|
1816 |
+
|
1817 |
+
The weighted impurity decrease equation is the following::
|
1818 |
+
|
1819 |
+
N_t / N * (impurity - N_t_R / N_t * right_impurity
|
1820 |
+
- N_t_L / N_t * left_impurity)
|
1821 |
+
|
1822 |
+
where ``N`` is the total number of samples, ``N_t`` is the number of
|
1823 |
+
samples at the current node, ``N_t_L`` is the number of samples in the
|
1824 |
+
left child, and ``N_t_R`` is the number of samples in the right child.
|
1825 |
+
|
1826 |
+
``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
|
1827 |
+
if ``sample_weight`` is passed.
|
1828 |
+
|
1829 |
+
.. versionadded:: 0.19
|
1830 |
+
|
1831 |
+
init : estimator or 'zero', default=None
|
1832 |
+
An estimator object that is used to compute the initial predictions.
|
1833 |
+
``init`` has to provide :term:`fit` and :term:`predict`. If 'zero', the
|
1834 |
+
initial raw predictions are set to zero. By default a
|
1835 |
+
``DummyEstimator`` is used, predicting either the average target value
|
1836 |
+
(for loss='squared_error'), or a quantile for the other losses.
|
1837 |
+
|
1838 |
+
random_state : int, RandomState instance or None, default=None
|
1839 |
+
Controls the random seed given to each Tree estimator at each
|
1840 |
+
boosting iteration.
|
1841 |
+
In addition, it controls the random permutation of the features at
|
1842 |
+
each split (see Notes for more details).
|
1843 |
+
It also controls the random splitting of the training data to obtain a
|
1844 |
+
validation set if `n_iter_no_change` is not None.
|
1845 |
+
Pass an int for reproducible output across multiple function calls.
|
1846 |
+
See :term:`Glossary <random_state>`.
|
1847 |
+
|
1848 |
+
max_features : {'sqrt', 'log2'}, int or float, default=None
|
1849 |
+
The number of features to consider when looking for the best split:
|
1850 |
+
|
1851 |
+
- If int, values must be in the range `[1, inf)`.
|
1852 |
+
- If float, values must be in the range `(0.0, 1.0]` and the features
|
1853 |
+
considered at each split will be `max(1, int(max_features * n_features_in_))`.
|
1854 |
+
- If "sqrt", then `max_features=sqrt(n_features)`.
|
1855 |
+
- If "log2", then `max_features=log2(n_features)`.
|
1856 |
+
- If None, then `max_features=n_features`.
|
1857 |
+
|
1858 |
+
Choosing `max_features < n_features` leads to a reduction of variance
|
1859 |
+
and an increase in bias.
|
1860 |
+
|
1861 |
+
Note: the search for a split does not stop until at least one
|
1862 |
+
valid partition of the node samples is found, even if it requires to
|
1863 |
+
effectively inspect more than ``max_features`` features.
|
1864 |
+
|
1865 |
+
alpha : float, default=0.9
|
1866 |
+
The alpha-quantile of the huber loss function and the quantile
|
1867 |
+
loss function. Only if ``loss='huber'`` or ``loss='quantile'``.
|
1868 |
+
Values must be in the range `(0.0, 1.0)`.
|
1869 |
+
|
1870 |
+
verbose : int, default=0
|
1871 |
+
Enable verbose output. If 1 then it prints progress and performance
|
1872 |
+
once in a while (the more trees the lower the frequency). If greater
|
1873 |
+
than 1 then it prints progress and performance for every tree.
|
1874 |
+
Values must be in the range `[0, inf)`.
|
1875 |
+
|
1876 |
+
max_leaf_nodes : int, default=None
|
1877 |
+
Grow trees with ``max_leaf_nodes`` in best-first fashion.
|
1878 |
+
Best nodes are defined as relative reduction in impurity.
|
1879 |
+
Values must be in the range `[2, inf)`.
|
1880 |
+
If None, then unlimited number of leaf nodes.
|
1881 |
+
|
1882 |
+
warm_start : bool, default=False
|
1883 |
+
When set to ``True``, reuse the solution of the previous call to fit
|
1884 |
+
and add more estimators to the ensemble, otherwise, just erase the
|
1885 |
+
previous solution. See :term:`the Glossary <warm_start>`.
|
1886 |
+
|
1887 |
+
validation_fraction : float, default=0.1
|
1888 |
+
The proportion of training data to set aside as validation set for
|
1889 |
+
early stopping. Values must be in the range `(0.0, 1.0)`.
|
1890 |
+
Only used if ``n_iter_no_change`` is set to an integer.
|
1891 |
+
|
1892 |
+
.. versionadded:: 0.20
|
1893 |
+
|
1894 |
+
n_iter_no_change : int, default=None
|
1895 |
+
``n_iter_no_change`` is used to decide if early stopping will be used
|
1896 |
+
to terminate training when validation score is not improving. By
|
1897 |
+
default it is set to None to disable early stopping. If set to a
|
1898 |
+
number, it will set aside ``validation_fraction`` size of the training
|
1899 |
+
data as validation and terminate training when validation score is not
|
1900 |
+
improving in all of the previous ``n_iter_no_change`` numbers of
|
1901 |
+
iterations.
|
1902 |
+
Values must be in the range `[1, inf)`.
|
1903 |
+
See
|
1904 |
+
:ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_early_stopping.py`.
|
1905 |
+
|
1906 |
+
.. versionadded:: 0.20
|
1907 |
+
|
1908 |
+
tol : float, default=1e-4
|
1909 |
+
Tolerance for the early stopping. When the loss is not improving
|
1910 |
+
by at least tol for ``n_iter_no_change`` iterations (if set to a
|
1911 |
+
number), the training stops.
|
1912 |
+
Values must be in the range `[0.0, inf)`.
|
1913 |
+
|
1914 |
+
.. versionadded:: 0.20
|
1915 |
+
|
1916 |
+
ccp_alpha : non-negative float, default=0.0
|
1917 |
+
Complexity parameter used for Minimal Cost-Complexity Pruning. The
|
1918 |
+
subtree with the largest cost complexity that is smaller than
|
1919 |
+
``ccp_alpha`` will be chosen. By default, no pruning is performed.
|
1920 |
+
Values must be in the range `[0.0, inf)`.
|
1921 |
+
See :ref:`minimal_cost_complexity_pruning` for details.
|
1922 |
+
|
1923 |
+
.. versionadded:: 0.22
|
1924 |
+
|
1925 |
+
Attributes
|
1926 |
+
----------
|
1927 |
+
n_estimators_ : int
|
1928 |
+
The number of estimators as selected by early stopping (if
|
1929 |
+
``n_iter_no_change`` is specified). Otherwise it is set to
|
1930 |
+
``n_estimators``.
|
1931 |
+
|
1932 |
+
n_trees_per_iteration_ : int
|
1933 |
+
The number of trees that are built at each iteration. For regressors, this is
|
1934 |
+
always 1.
|
1935 |
+
|
1936 |
+
.. versionadded:: 1.4.0
|
1937 |
+
|
1938 |
+
feature_importances_ : ndarray of shape (n_features,)
|
1939 |
+
The impurity-based feature importances.
|
1940 |
+
The higher, the more important the feature.
|
1941 |
+
The importance of a feature is computed as the (normalized)
|
1942 |
+
total reduction of the criterion brought by that feature. It is also
|
1943 |
+
known as the Gini importance.
|
1944 |
+
|
1945 |
+
Warning: impurity-based feature importances can be misleading for
|
1946 |
+
high cardinality features (many unique values). See
|
1947 |
+
:func:`sklearn.inspection.permutation_importance` as an alternative.
|
1948 |
+
|
1949 |
+
oob_improvement_ : ndarray of shape (n_estimators,)
|
1950 |
+
The improvement in loss on the out-of-bag samples
|
1951 |
+
relative to the previous iteration.
|
1952 |
+
``oob_improvement_[0]`` is the improvement in
|
1953 |
+
loss of the first stage over the ``init`` estimator.
|
1954 |
+
Only available if ``subsample < 1.0``.
|
1955 |
+
|
1956 |
+
oob_scores_ : ndarray of shape (n_estimators,)
|
1957 |
+
The full history of the loss values on the out-of-bag
|
1958 |
+
samples. Only available if `subsample < 1.0`.
|
1959 |
+
|
1960 |
+
.. versionadded:: 1.3
|
1961 |
+
|
1962 |
+
oob_score_ : float
|
1963 |
+
The last value of the loss on the out-of-bag samples. It is
|
1964 |
+
the same as `oob_scores_[-1]`. Only available if `subsample < 1.0`.
|
1965 |
+
|
1966 |
+
.. versionadded:: 1.3
|
1967 |
+
|
1968 |
+
train_score_ : ndarray of shape (n_estimators,)
|
1969 |
+
The i-th score ``train_score_[i]`` is the loss of the
|
1970 |
+
model at iteration ``i`` on the in-bag sample.
|
1971 |
+
If ``subsample == 1`` this is the loss on the training data.
|
1972 |
+
|
1973 |
+
init_ : estimator
|
1974 |
+
The estimator that provides the initial predictions. Set via the ``init``
|
1975 |
+
argument.
|
1976 |
+
|
1977 |
+
estimators_ : ndarray of DecisionTreeRegressor of shape (n_estimators, 1)
|
1978 |
+
The collection of fitted sub-estimators.
|
1979 |
+
|
1980 |
+
n_features_in_ : int
|
1981 |
+
Number of features seen during :term:`fit`.
|
1982 |
+
|
1983 |
+
.. versionadded:: 0.24
|
1984 |
+
|
1985 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1986 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1987 |
+
has feature names that are all strings.
|
1988 |
+
|
1989 |
+
.. versionadded:: 1.0
|
1990 |
+
|
1991 |
+
max_features_ : int
|
1992 |
+
The inferred value of max_features.
|
1993 |
+
|
1994 |
+
See Also
|
1995 |
+
--------
|
1996 |
+
HistGradientBoostingRegressor : Histogram-based Gradient Boosting
|
1997 |
+
Classification Tree.
|
1998 |
+
sklearn.tree.DecisionTreeRegressor : A decision tree regressor.
|
1999 |
+
sklearn.ensemble.RandomForestRegressor : A random forest regressor.
|
2000 |
+
|
2001 |
+
Notes
|
2002 |
+
-----
|
2003 |
+
The features are always randomly permuted at each split. Therefore,
|
2004 |
+
the best found split may vary, even with the same training data and
|
2005 |
+
``max_features=n_features``, if the improvement of the criterion is
|
2006 |
+
identical for several splits enumerated during the search of the best
|
2007 |
+
split. To obtain a deterministic behaviour during fitting,
|
2008 |
+
``random_state`` has to be fixed.
|
2009 |
+
|
2010 |
+
References
|
2011 |
+
----------
|
2012 |
+
J. Friedman, Greedy Function Approximation: A Gradient Boosting
|
2013 |
+
Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.
|
2014 |
+
|
2015 |
+
J. Friedman, Stochastic Gradient Boosting, 1999
|
2016 |
+
|
2017 |
+
T. Hastie, R. Tibshirani and J. Friedman.
|
2018 |
+
Elements of Statistical Learning Ed. 2, Springer, 2009.
|
2019 |
+
|
2020 |
+
Examples
|
2021 |
+
--------
|
2022 |
+
>>> from sklearn.datasets import make_regression
|
2023 |
+
>>> from sklearn.ensemble import GradientBoostingRegressor
|
2024 |
+
>>> from sklearn.model_selection import train_test_split
|
2025 |
+
>>> X, y = make_regression(random_state=0)
|
2026 |
+
>>> X_train, X_test, y_train, y_test = train_test_split(
|
2027 |
+
... X, y, random_state=0)
|
2028 |
+
>>> reg = GradientBoostingRegressor(random_state=0)
|
2029 |
+
>>> reg.fit(X_train, y_train)
|
2030 |
+
GradientBoostingRegressor(random_state=0)
|
2031 |
+
>>> reg.predict(X_test[1:2])
|
2032 |
+
array([-61...])
|
2033 |
+
>>> reg.score(X_test, y_test)
|
2034 |
+
0.4...
|
2035 |
+
"""
|
2036 |
+
|
2037 |
+
_parameter_constraints: dict = {
|
2038 |
+
**BaseGradientBoosting._parameter_constraints,
|
2039 |
+
"loss": [StrOptions({"squared_error", "absolute_error", "huber", "quantile"})],
|
2040 |
+
"init": [StrOptions({"zero"}), None, HasMethods(["fit", "predict"])],
|
2041 |
+
"alpha": [Interval(Real, 0.0, 1.0, closed="neither")],
|
2042 |
+
}
|
2043 |
+
|
2044 |
+
def __init__(
|
2045 |
+
self,
|
2046 |
+
*,
|
2047 |
+
loss="squared_error",
|
2048 |
+
learning_rate=0.1,
|
2049 |
+
n_estimators=100,
|
2050 |
+
subsample=1.0,
|
2051 |
+
criterion="friedman_mse",
|
2052 |
+
min_samples_split=2,
|
2053 |
+
min_samples_leaf=1,
|
2054 |
+
min_weight_fraction_leaf=0.0,
|
2055 |
+
max_depth=3,
|
2056 |
+
min_impurity_decrease=0.0,
|
2057 |
+
init=None,
|
2058 |
+
random_state=None,
|
2059 |
+
max_features=None,
|
2060 |
+
alpha=0.9,
|
2061 |
+
verbose=0,
|
2062 |
+
max_leaf_nodes=None,
|
2063 |
+
warm_start=False,
|
2064 |
+
validation_fraction=0.1,
|
2065 |
+
n_iter_no_change=None,
|
2066 |
+
tol=1e-4,
|
2067 |
+
ccp_alpha=0.0,
|
2068 |
+
):
|
2069 |
+
super().__init__(
|
2070 |
+
loss=loss,
|
2071 |
+
learning_rate=learning_rate,
|
2072 |
+
n_estimators=n_estimators,
|
2073 |
+
criterion=criterion,
|
2074 |
+
min_samples_split=min_samples_split,
|
2075 |
+
min_samples_leaf=min_samples_leaf,
|
2076 |
+
min_weight_fraction_leaf=min_weight_fraction_leaf,
|
2077 |
+
max_depth=max_depth,
|
2078 |
+
init=init,
|
2079 |
+
subsample=subsample,
|
2080 |
+
max_features=max_features,
|
2081 |
+
min_impurity_decrease=min_impurity_decrease,
|
2082 |
+
random_state=random_state,
|
2083 |
+
alpha=alpha,
|
2084 |
+
verbose=verbose,
|
2085 |
+
max_leaf_nodes=max_leaf_nodes,
|
2086 |
+
warm_start=warm_start,
|
2087 |
+
validation_fraction=validation_fraction,
|
2088 |
+
n_iter_no_change=n_iter_no_change,
|
2089 |
+
tol=tol,
|
2090 |
+
ccp_alpha=ccp_alpha,
|
2091 |
+
)
|
2092 |
+
|
2093 |
+
def _encode_y(self, y=None, sample_weight=None):
|
2094 |
+
# Just convert y to the expected dtype
|
2095 |
+
self.n_trees_per_iteration_ = 1
|
2096 |
+
y = y.astype(DOUBLE, copy=False)
|
2097 |
+
return y
|
2098 |
+
|
2099 |
+
def _get_loss(self, sample_weight):
|
2100 |
+
if self.loss in ("quantile", "huber"):
|
2101 |
+
return _LOSSES[self.loss](sample_weight=sample_weight, quantile=self.alpha)
|
2102 |
+
else:
|
2103 |
+
return _LOSSES[self.loss](sample_weight=sample_weight)
|
2104 |
+
|
2105 |
+
def predict(self, X):
|
2106 |
+
"""Predict regression target for X.
|
2107 |
+
|
2108 |
+
Parameters
|
2109 |
+
----------
|
2110 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
2111 |
+
The input samples. Internally, it will be converted to
|
2112 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
2113 |
+
to a sparse ``csr_matrix``.
|
2114 |
+
|
2115 |
+
Returns
|
2116 |
+
-------
|
2117 |
+
y : ndarray of shape (n_samples,)
|
2118 |
+
The predicted values.
|
2119 |
+
"""
|
2120 |
+
X = self._validate_data(
|
2121 |
+
X, dtype=DTYPE, order="C", accept_sparse="csr", reset=False
|
2122 |
+
)
|
2123 |
+
# In regression we can directly return the raw value from the trees.
|
2124 |
+
return self._raw_predict(X).ravel()
|
2125 |
+
|
2126 |
+
def staged_predict(self, X):
|
2127 |
+
"""Predict regression target at each stage for X.
|
2128 |
+
|
2129 |
+
This method allows monitoring (i.e. determine error on testing set)
|
2130 |
+
after each stage.
|
2131 |
+
|
2132 |
+
Parameters
|
2133 |
+
----------
|
2134 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
2135 |
+
The input samples. Internally, it will be converted to
|
2136 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
2137 |
+
to a sparse ``csr_matrix``.
|
2138 |
+
|
2139 |
+
Yields
|
2140 |
+
------
|
2141 |
+
y : generator of ndarray of shape (n_samples,)
|
2142 |
+
The predicted value of the input samples.
|
2143 |
+
"""
|
2144 |
+
for raw_predictions in self._staged_raw_predict(X):
|
2145 |
+
yield raw_predictions.ravel()
|
2146 |
+
|
2147 |
+
def apply(self, X):
|
2148 |
+
"""Apply trees in the ensemble to X, return leaf indices.
|
2149 |
+
|
2150 |
+
.. versionadded:: 0.17
|
2151 |
+
|
2152 |
+
Parameters
|
2153 |
+
----------
|
2154 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
2155 |
+
The input samples. Internally, its dtype will be converted to
|
2156 |
+
``dtype=np.float32``. If a sparse matrix is provided, it will
|
2157 |
+
be converted to a sparse ``csr_matrix``.
|
2158 |
+
|
2159 |
+
Returns
|
2160 |
+
-------
|
2161 |
+
X_leaves : array-like of shape (n_samples, n_estimators)
|
2162 |
+
For each datapoint x in X and for each tree in the ensemble,
|
2163 |
+
return the index of the leaf x ends up in each estimator.
|
2164 |
+
"""
|
2165 |
+
|
2166 |
+
leaves = super().apply(X)
|
2167 |
+
leaves = leaves.reshape(X.shape[0], self.estimators_.shape[0])
|
2168 |
+
return leaves
|
venv/lib/python3.10/site-packages/sklearn/ensemble/_gradient_boosting.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (254 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/ensemble/_hist_gradient_boosting/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This module implements histogram-based gradient boosting estimators.
|
2 |
+
|
3 |
+
The implementation is a port from pygbm which is itself strongly inspired
|
4 |
+
from LightGBM.
|
5 |
+
"""
|
venv/lib/python3.10/site-packages/sklearn/ensemble/_hist_gradient_boosting/_binning.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (221 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/ensemble/_hist_gradient_boosting/_bitset.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (221 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/ensemble/_hist_gradient_boosting/_predictor.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (250 kB). View file
|
|