applied-ai-018 commited on
Commit
27c0e04
·
verified ·
1 Parent(s): 28fb145

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step20/zero/10.attention.query_key_value.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step20/zero/7.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
  3. ckpts/universal/global_step20/zero/7.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
  4. venv/lib/python3.10/site-packages/torch/include/ATen/ATen.h +37 -0
  5. venv/lib/python3.10/site-packages/torch/include/ATen/AccumulateType.h +153 -0
  6. venv/lib/python3.10/site-packages/torch/include/ATen/Backend.h +2 -0
  7. venv/lib/python3.10/site-packages/torch/include/ATen/CPUApplyUtils.h +343 -0
  8. venv/lib/python3.10/site-packages/torch/include/ATen/CPUFixedAllocator.h +33 -0
  9. venv/lib/python3.10/site-packages/torch/include/ATen/CUDAFunctions.h +29 -0
  10. venv/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradFunctions_inl.h +542 -0
  11. venv/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradNonFunctionalFunctions_inl.h +323 -0
  12. venv/lib/python3.10/site-packages/torch/include/ATen/Config.h +22 -0
  13. venv/lib/python3.10/site-packages/torch/include/ATen/DeviceAccelerator.h +27 -0
  14. venv/lib/python3.10/site-packages/torch/include/ATen/DeviceGuard.h +41 -0
  15. venv/lib/python3.10/site-packages/torch/include/ATen/DimVector.h +2 -0
  16. venv/lib/python3.10/site-packages/torch/include/ATen/Dimname.h +1 -0
  17. venv/lib/python3.10/site-packages/torch/include/ATen/DynamicLibrary.h +34 -0
  18. venv/lib/python3.10/site-packages/torch/include/ATen/EmptyTensor.h +160 -0
  19. venv/lib/python3.10/site-packages/torch/include/ATen/ExpandUtils.h +527 -0
  20. venv/lib/python3.10/site-packages/torch/include/ATen/Formatting.h +1 -0
  21. venv/lib/python3.10/site-packages/torch/include/ATen/FunctionalTensorWrapper.h +408 -0
  22. venv/lib/python3.10/site-packages/torch/include/ATen/InitialTensorOptions.h +15 -0
  23. venv/lib/python3.10/site-packages/torch/include/ATen/Layout.h +2 -0
  24. venv/lib/python3.10/site-packages/torch/include/ATen/MapAllocator.h +139 -0
  25. venv/lib/python3.10/site-packages/torch/include/ATen/MatrixRef.h +109 -0
  26. venv/lib/python3.10/site-packages/torch/include/ATen/MemoryOverlap.h +42 -0
  27. venv/lib/python3.10/site-packages/torch/include/ATen/MetaFunctions.h +29 -0
  28. venv/lib/python3.10/site-packages/torch/include/ATen/MethodOperators.h +443 -0
  29. venv/lib/python3.10/site-packages/torch/include/ATen/NamedTensor.h +1 -0
  30. venv/lib/python3.10/site-packages/torch/include/ATen/NestedTensorImpl.h +283 -0
  31. venv/lib/python3.10/site-packages/torch/include/ATen/OpMathType.h +69 -0
  32. venv/lib/python3.10/site-packages/torch/include/ATen/OpaqueTensorImpl.h +187 -0
  33. venv/lib/python3.10/site-packages/torch/include/ATen/Operators.h +1358 -0
  34. venv/lib/python3.10/site-packages/torch/include/ATen/Parallel.h +160 -0
  35. venv/lib/python3.10/site-packages/torch/include/ATen/ParallelNative.h +19 -0
  36. venv/lib/python3.10/site-packages/torch/include/ATen/ParallelOpenMP.h +54 -0
  37. venv/lib/python3.10/site-packages/torch/include/ATen/PythonTorchFunctionTLS.h +34 -0
  38. venv/lib/python3.10/site-packages/torch/include/ATen/RegistrationDeclarations.h +0 -0
  39. venv/lib/python3.10/site-packages/torch/include/ATen/ScalarType.h +4 -0
  40. venv/lib/python3.10/site-packages/torch/include/ATen/SequenceNumber.h +13 -0
  41. venv/lib/python3.10/site-packages/torch/include/ATen/SparseCsrTensorUtils.h +411 -0
  42. venv/lib/python3.10/site-packages/torch/include/ATen/Storage.h +2 -0
  43. venv/lib/python3.10/site-packages/torch/include/ATen/Tensor.h +3 -0
  44. venv/lib/python3.10/site-packages/torch/include/ATen/TensorAccessor.h +2 -0
  45. venv/lib/python3.10/site-packages/torch/include/ATen/TensorGeometry.h +144 -0
  46. venv/lib/python3.10/site-packages/torch/include/ATen/TensorMeta.h +137 -0
  47. venv/lib/python3.10/site-packages/torch/include/ATen/ThreadLocalState.h +113 -0
  48. venv/lib/python3.10/site-packages/torch/include/ATen/Utils.h +138 -0
  49. venv/lib/python3.10/site-packages/torch/include/ATen/ceil_div.h +24 -0
  50. venv/lib/python3.10/site-packages/torch/include/ATen/code_template.h +243 -0
ckpts/universal/global_step20/zero/10.attention.query_key_value.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41dec19e41e01e697ba09437d7a19d3b6ced65f1bcf710af3d3ab2eb1aed5f70
3
+ size 50332828
ckpts/universal/global_step20/zero/7.mlp.dense_4h_to_h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e896fd7e1e34ab0d6fed56670fcd8268239dc24e787e38f5b7d2366b0e9e09f
3
+ size 33555612
ckpts/universal/global_step20/zero/7.mlp.dense_4h_to_h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8889a8cf12e2e8c498b8ede4eb6c879a6e49eba3d7eb7bfcf62cbbbac59d5018
3
+ size 33555533
venv/lib/python3.10/site-packages/torch/include/ATen/ATen.h ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #if !defined(_MSC_VER) && __cplusplus < 201703L
4
+ #error C++17 or later compatible compiler is required to use ATen.
5
+ #endif
6
+
7
+ #include <ATen/Context.h>
8
+ #include <ATen/Device.h>
9
+ #include <ATen/DeviceGuard.h>
10
+ #include <ATen/DimVector.h>
11
+ #include <ATen/Dispatch.h>
12
+ #include <ATen/Formatting.h>
13
+ #include <ATen/Functions.h>
14
+ #include <ATen/NamedTensor.h>
15
+ #include <ATen/ScalarOps.h>
16
+ #include <ATen/Tensor.h>
17
+ #include <ATen/TensorGeometry.h>
18
+ #include <ATen/TensorIndexing.h>
19
+ #include <ATen/TensorOperators.h>
20
+ #include <ATen/Version.h>
21
+ #include <ATen/core/ATenGeneral.h>
22
+ #include <ATen/core/Generator.h>
23
+ #include <ATen/core/Reduction.h>
24
+ #include <ATen/core/Scalar.h>
25
+ #include <ATen/core/UnsafeFromTH.h>
26
+ #include <ATen/core/ivalue.h>
27
+ #include <ATen/core/jit_type.h>
28
+ #include <c10/core/Allocator.h>
29
+ #include <c10/core/InferenceMode.h>
30
+ #include <c10/core/Layout.h>
31
+ #include <c10/core/Storage.h>
32
+ #include <c10/core/TensorOptions.h>
33
+ #include <c10/util/Exception.h>
34
+
35
+ // TODO: try to remove this
36
+ // There is some back story, see https://github.com/pytorch/pytorch/issues/48684
37
+ #include <ATen/NativeFunctions.h>
venv/lib/python3.10/site-packages/torch/include/ATen/AccumulateType.h ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <ATen/Config.h>
3
+ #include <c10/core/DeviceType.h>
4
+ #include <c10/core/ScalarType.h>
5
+ #include <c10/util/BFloat16.h>
6
+ #include <c10/util/Float8_e4m3fn.h>
7
+ #include <c10/util/Float8_e4m3fnuz.h>
8
+ #include <c10/util/Float8_e5m2.h>
9
+ #include <c10/util/Float8_e5m2fnuz.h>
10
+ #include <c10/util/Half.h>
11
+
12
+ // Defines the accumulation type for a scalar type.
13
+ // Example:
14
+ // using accscalar_t = acc_type<scalar_t, /*is_cuda*/true>;
15
+ //
16
+ // Accumulation types are an important concept in numeric computing
17
+ // because you frequently want to perform intermediate computations
18
+ // at a higher precision than the input and output precision, to avoid
19
+ // compounding internal rounding errors. Accumulation is the most
20
+ // well-known intermediate computation (it is of great importance for
21
+ // sum reduction and matrix multiply, for example), but in PyTorch
22
+ // acc_type ends up getting used for all sorts of other intermediate
23
+ // computations, so it perhaps would be more accurately (ahem) called an
24
+ // "accurate" type. acc_type is especially important for reduced
25
+ // precision operations like float16 and bfloat16, where relatively
26
+ // benign looking inputs can easily end up overflowing/underflowing.
27
+ //
28
+ // acc_type is parametrized by whether or not you are running on CUDA
29
+ // or not, because on CUDA double precision operations are expensive
30
+ // and so by default, we don't actually want to use double as an
31
+ // acc_type on CUDA. A lot of things are typed out below, but
32
+ // basically, the table is generated by a few rules:
33
+ //
34
+ // If bool:
35
+ // Use 'bool' as acc_type.
36
+ // If floating point:
37
+ // If CUDA, use 'float' as acc_type (unless scalar_t is double),
38
+ // otherwise (CPU) use 'double'
39
+ // If integral:
40
+ // Use 'int64_t' as acc_type
41
+ //
42
+ // You're not forced to use this template; if you happen to know
43
+ // something specific about your use case, you can specify your own
44
+ // desired behavior. This template, however, will give you a reasonable
45
+ // default that will work for all dtypes supported in PyTorch.
46
+
47
+ #if defined(__CUDACC__)
48
+ #include <cuda.h>
49
+ #include <cuda_fp16.h>
50
+ #elif defined(__HIPCC__)
51
+ #include <hip/hip_fp16.h>
52
+ #include <hip/hip_runtime.h>
53
+ #endif
54
+
55
+ namespace at {
56
+
57
+ template <typename T, c10::DeviceType D>
58
+ struct AccumulateTypeDevice {};
59
+
60
+ template <typename T, bool>
61
+ struct AccumulateType {};
62
+
63
+ template <typename T>
64
+ struct AccumulateType<T, false> {
65
+ using type = typename AccumulateTypeDevice<T, c10::DeviceType::CPU>::type;
66
+ };
67
+
68
+ template <typename T>
69
+ struct AccumulateType<T, true> {
70
+ using type = typename AccumulateTypeDevice<T, c10::DeviceType::CUDA>::type;
71
+ };
72
+
73
+ template <typename T, c10::DeviceType device>
74
+ using acc_type_device = typename AccumulateTypeDevice<T, device>::type;
75
+
76
+ template <typename T, bool is_cuda>
77
+ using acc_type = typename AccumulateType<T, is_cuda>::type;
78
+
79
+ #define ACC_TYPE(t, acc_t, device_type) \
80
+ template <> \
81
+ struct AccumulateTypeDevice<t, device_type> { \
82
+ using type = acc_t; \
83
+ };
84
+ #define MPS_ACC_TYPE(t, acc_t) ACC_TYPE(t, acc_t, c10::DeviceType::MPS)
85
+ #define CUDA_ACC_TYPE(t, acc_t) ACC_TYPE(t, acc_t, c10::DeviceType::CUDA)
86
+ #define CPU_ACC_TYPE(t, acc_t) ACC_TYPE(t, acc_t, c10::DeviceType::CPU)
87
+
88
+ MPS_ACC_TYPE(BFloat16, float);
89
+ MPS_ACC_TYPE(Half, float);
90
+ MPS_ACC_TYPE(Float8_e5m2, float);
91
+ MPS_ACC_TYPE(Float8_e4m3fn, float);
92
+ MPS_ACC_TYPE(Float8_e5m2fnuz, float);
93
+ MPS_ACC_TYPE(Float8_e4m3fnuz, float);
94
+ MPS_ACC_TYPE(float, float);
95
+ MPS_ACC_TYPE(double, float);
96
+ MPS_ACC_TYPE(int8_t, int64_t);
97
+ MPS_ACC_TYPE(uint8_t, int64_t);
98
+ MPS_ACC_TYPE(char, int64_t);
99
+ MPS_ACC_TYPE(int16_t, int64_t);
100
+ MPS_ACC_TYPE(int32_t, int64_t);
101
+ MPS_ACC_TYPE(int64_t, int64_t);
102
+ MPS_ACC_TYPE(bool, bool);
103
+ MPS_ACC_TYPE(c10::complex<Half>, c10::complex<float>);
104
+ MPS_ACC_TYPE(c10::complex<float>, c10::complex<float>);
105
+ MPS_ACC_TYPE(c10::complex<double>, c10::complex<float>);
106
+
107
+ #if defined(__CUDACC__) || defined(__HIPCC__)
108
+ CUDA_ACC_TYPE(half, float);
109
+ #endif
110
+ CUDA_ACC_TYPE(BFloat16, float);
111
+ CUDA_ACC_TYPE(Half, float);
112
+ CUDA_ACC_TYPE(Float8_e5m2, float);
113
+ CUDA_ACC_TYPE(Float8_e4m3fn, float);
114
+ CUDA_ACC_TYPE(Float8_e5m2fnuz, float);
115
+ CUDA_ACC_TYPE(Float8_e4m3fnuz, float);
116
+ CUDA_ACC_TYPE(float, float);
117
+ CUDA_ACC_TYPE(double, double);
118
+ CUDA_ACC_TYPE(int8_t, int64_t);
119
+ CUDA_ACC_TYPE(uint8_t, int64_t);
120
+ CUDA_ACC_TYPE(char, int64_t);
121
+ CUDA_ACC_TYPE(int16_t, int64_t);
122
+ CUDA_ACC_TYPE(int32_t, int64_t);
123
+ CUDA_ACC_TYPE(int64_t, int64_t);
124
+ CUDA_ACC_TYPE(bool, bool);
125
+ CUDA_ACC_TYPE(c10::complex<Half>, c10::complex<float>);
126
+ CUDA_ACC_TYPE(c10::complex<float>, c10::complex<float>);
127
+ CUDA_ACC_TYPE(c10::complex<double>, c10::complex<double>);
128
+
129
+ CPU_ACC_TYPE(BFloat16, float);
130
+ CPU_ACC_TYPE(Half, float);
131
+ CPU_ACC_TYPE(Float8_e5m2, float);
132
+ CPU_ACC_TYPE(Float8_e4m3fn, float);
133
+ CPU_ACC_TYPE(Float8_e5m2fnuz, float);
134
+ CPU_ACC_TYPE(Float8_e4m3fnuz, float);
135
+ CPU_ACC_TYPE(float, double);
136
+ CPU_ACC_TYPE(double, double);
137
+ CPU_ACC_TYPE(int8_t, int64_t);
138
+ CPU_ACC_TYPE(uint8_t, int64_t);
139
+ CPU_ACC_TYPE(char, int64_t);
140
+ CPU_ACC_TYPE(int16_t, int64_t);
141
+ CPU_ACC_TYPE(int32_t, int64_t);
142
+ CPU_ACC_TYPE(int64_t, int64_t);
143
+ CPU_ACC_TYPE(bool, bool);
144
+ CPU_ACC_TYPE(c10::complex<Half>, c10::complex<float>);
145
+ CPU_ACC_TYPE(c10::complex<float>, c10::complex<double>);
146
+ CPU_ACC_TYPE(c10::complex<double>, c10::complex<double>);
147
+
148
+ TORCH_API c10::ScalarType toAccumulateType(
149
+ c10::ScalarType type,
150
+ c10::DeviceType device);
151
+ TORCH_API c10::ScalarType toAccumulateType(c10::ScalarType type, bool is_cuda);
152
+
153
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/Backend.h ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #pragma once
2
+ #include <c10/core/Backend.h>
venv/lib/python3.10/site-packages/torch/include/ATen/CPUApplyUtils.h ADDED
@@ -0,0 +1,343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/CollapseDims.h>
4
+ #include <ATen/Parallel.h>
5
+ #include <ATen/TensorUtils.h>
6
+ #include <c10/util/irange.h>
7
+ #include <cstring>
8
+ #include <limits>
9
+
10
+ namespace at {
11
+
12
+ /*
13
+ * The basic strategy for apply is as follows:
14
+ *
15
+ * 1. Starting with the outermost index, loop until we reach a dimension where
16
+ * the data is no longer contiguous, i.e. the stride at that dimension is not
17
+ * equal to the size of the tensor defined by the outer dimensions. Let's call
18
+ * this outer (contiguous) tensor A. Note that if the Tensor is contiguous, then
19
+ * A is equal to the entire Tensor. Let's call the inner tensor B.
20
+ *
21
+ * 2. We loop through the indices in B, starting at its outermost dimension. For
22
+ * example, if B is a 2x2 matrix, then we do:
23
+ *
24
+ * B[0][0]
25
+ * B[0][1]
26
+ * B[1][0]
27
+ * B[1][1]
28
+ *
29
+ * We set the offset into the underlying storage as (storageOffset + stride_B *
30
+ * index_B), i.e. basically we compute the offset into the storage as we would
31
+ * normally for a Tensor. But because we are guaranteed the subsequent data is
32
+ * contiguous in memory, we can simply loop for sizeof(A) iterations and perform
33
+ * the operation, without having to follow the order described by the strides of
34
+ * A.
35
+ *
36
+ * 3. As an optimization, we merge dimensions of A that are contiguous in
37
+ * memory. For example, if A is a 3x3x3x3 tensor narrowed from a 3x3x4x3 tensor,
38
+ * then the first two dimensions can be merged for the purposes of APPLY,
39
+ * reducing the number of nested loops.
40
+ */
41
+
42
+ inline Tensor sort_strides(Tensor& tensor_) {
43
+ IntArrayRef strides = tensor_.strides();
44
+ std::vector<int64_t> indices;
45
+ indices.reserve(tensor_.ndimension());
46
+ for (const auto i : c10::irange(tensor_.ndimension())) {
47
+ indices.push_back(i);
48
+ }
49
+ std::sort(indices.begin(), indices.end(), [&strides](int64_t i1, int64_t i2) {
50
+ return strides[i1] > strides[i2];
51
+ });
52
+ Tensor tensor = tensor_.permute(indices);
53
+ return tensor;
54
+ }
55
+
56
+ template <typename T, int N>
57
+ struct strided_tensor_iter_fixed {
58
+ public:
59
+ T* data_ = NULL;
60
+ int64_t dim_ = 0;
61
+
62
+ int64_t counter_[N] = {0};
63
+ int64_t sizes_[N] = {0};
64
+ int64_t strides_[N] = {0};
65
+
66
+ strided_tensor_iter_fixed(strided_tensor_iter_fixed const&) = delete;
67
+ void operator=(strided_tensor_iter_fixed const& x) = delete;
68
+ strided_tensor_iter_fixed(strided_tensor_iter_fixed&&) = default;
69
+ strided_tensor_iter_fixed(
70
+ Tensor& tensor,
71
+ C10_UNUSED bool sort_strides = false)
72
+ : data_(tensor.data_ptr<T>()) {
73
+ std::memset(counter_, 0, sizeof(int64_t) * N);
74
+ if (tensor.dim() > 0) {
75
+ std::memcpy(
76
+ sizes_, tensor.sizes().data(), tensor.dim() * sizeof(int64_t));
77
+ std::memcpy(
78
+ strides_, tensor.strides().data(), tensor.dim() * sizeof(int64_t));
79
+ }
80
+ dim_ = std::get<1>(collapse_dims(sizes_, strides_, tensor.ndimension()));
81
+ }
82
+ };
83
+
84
+ template <typename T>
85
+ struct strided_tensor_iter {
86
+ private:
87
+ public:
88
+ T* data_ = NULL;
89
+ int64_t dim_;
90
+
91
+ std::vector<int64_t> counter_;
92
+ std::vector<int64_t> sizes_;
93
+ std::vector<int64_t> strides_;
94
+
95
+ strided_tensor_iter(strided_tensor_iter const&) = delete;
96
+ void operator=(strided_tensor_iter const& x) = delete;
97
+ strided_tensor_iter(strided_tensor_iter&&) = default;
98
+ strided_tensor_iter(Tensor& tensor)
99
+ : data_(tensor.data_ptr<T>()),
100
+ dim_(tensor.ndimension()),
101
+ counter_(dim_, 0),
102
+ sizes_(tensor.sizes().vec()),
103
+ strides_(tensor.strides().vec()) {
104
+ dim_ = std::get<1>(collapse_dims(sizes_.data(), strides_.data(), dim_));
105
+ }
106
+ };
107
+
108
+ inline bool _all_equal_numel(at::ArrayRef<Tensor> tensors) {
109
+ if (tensors.empty())
110
+ return true;
111
+ int64_t all_numel = tensors[0].numel();
112
+ for (const auto i : c10::irange(1, tensors.size())) {
113
+ if (tensors[i].numel() != all_numel)
114
+ return false;
115
+ }
116
+ return true;
117
+ }
118
+
119
+ inline std::string _all_equal_numel_error(at::ArrayRef<Tensor> tensors) {
120
+ std::ostringstream oss;
121
+ oss << "inconsistent tensor size, expected ";
122
+ for (size_t i = 0; i < tensors.size() - 1; i++) {
123
+ oss << tensors[i].sizes() << ", ";
124
+ }
125
+ oss << "and " << tensors[tensors.size() - 1].sizes()
126
+ << " to have the same number of elements, but got ";
127
+ for (size_t i = 0; i < tensors.size() - 1; i++) {
128
+ oss << tensors[i].numel() << ", ";
129
+ }
130
+ oss << "and " << tensors[tensors.size() - 1].numel()
131
+ << " elements respectively";
132
+ return oss.str();
133
+ }
134
+
135
+ inline bool _apply_preamble(ArrayRef<Tensor> tensors) {
136
+ checkDeviceType("CPU_tensor_apply", tensors, kCPU);
137
+ checkLayout("CPU_tensor_apply", tensors, kStrided);
138
+ if (!_all_equal_numel(tensors))
139
+ AT_ERROR(_all_equal_numel_error(tensors));
140
+ // An empty tensor has no elements
141
+ for (auto& t : tensors)
142
+ if (t.numel() == 0)
143
+ return false;
144
+ return true;
145
+ }
146
+
147
+ inline int64_t _max_dim_tensors(ArrayRef<Tensor> tensors) {
148
+ int64_t dim = 0;
149
+ for (auto& t : tensors)
150
+ dim = std::max(dim, t.ndimension());
151
+ return dim;
152
+ }
153
+
154
+ inline void iterate(int64_t /*size*/){};
155
+
156
+ template <typename Arg, typename... Args>
157
+ inline void iterate(int64_t size, Arg& iter, Args&... iter_tail) {
158
+ iter.counter_[iter.dim_ - 1] += size;
159
+ iter.data_ = iter.data_ + size * iter.strides_[iter.dim_ - 1];
160
+ iterate(size, iter_tail...);
161
+ }
162
+
163
+ inline bool iterate_continue() {
164
+ return true;
165
+ };
166
+
167
+ template <typename Arg, typename... Args>
168
+ inline bool iterate_continue(Arg& iter, Args&... iter_tail) {
169
+ return iter.counter_[iter.dim_ - 1] < iter.sizes_[iter.dim_ - 1] &&
170
+ iterate_continue(iter_tail...);
171
+ }
172
+
173
+ inline int64_t max_iterate_size() {
174
+ return std::numeric_limits<int64_t>::max();
175
+ };
176
+
177
+ template <typename Arg, typename... Args>
178
+ inline int64_t max_iterate_size(Arg& iter, Args&... iter_tail) {
179
+ return std::min(
180
+ (iter.sizes_[iter.dim_ - 1] - iter.counter_[iter.dim_ - 1]),
181
+ max_iterate_size(iter_tail...));
182
+ }
183
+
184
+ inline void iterate_overflow(){};
185
+
186
+ template <typename Arg, typename... Args>
187
+ inline void iterate_overflow(Arg& iter, Args&... iter_tail) {
188
+ if (iter.counter_[iter.dim_ - 1] == iter.sizes_[iter.dim_ - 1]) {
189
+ for (int64_t i = iter.dim_ - 1; i > 0; i--) {
190
+ if (iter.counter_[i] == iter.sizes_[i]) {
191
+ iter.counter_[i] = 0;
192
+ iter.counter_[i - 1]++;
193
+ iter.data_ = iter.data_ - (iter.sizes_[i] * iter.strides_[i]) +
194
+ iter.strides_[i - 1];
195
+ }
196
+ }
197
+ }
198
+ iterate_overflow(iter_tail...);
199
+ }
200
+
201
+ inline void forward(int64_t /*offset*/){};
202
+
203
+ template <typename Arg, typename... Args>
204
+ inline void forward(int64_t offset, Arg& iter, Args&... iter_tail) {
205
+ int64_t multi = offset;
206
+ for (int64_t i = iter.dim_ - 1; i >= 0; i--) {
207
+ int64_t inc = multi % iter.sizes_[i];
208
+ multi = multi / iter.sizes_[i];
209
+ iter.data_ = iter.data_ + inc * iter.strides_[i];
210
+ iter.counter_[i] += inc;
211
+ }
212
+ forward(offset, iter_tail...);
213
+ }
214
+
215
+ inline int64_t max_dim() {
216
+ return 0;
217
+ }
218
+
219
+ template <typename Arg, typename... Args>
220
+ inline int64_t max_dim(Arg& iter, Args&... iter_tail) {
221
+ return std::max(iter.dim_, max_dim(iter_tail...));
222
+ }
223
+
224
+ inline void apply_op(){};
225
+
226
+ template <typename Op, typename... Args>
227
+ inline void apply_op(
228
+ int64_t numel,
229
+ int64_t offset,
230
+ const Op& op,
231
+ Args... iters) {
232
+ // For 0-dim tensors
233
+ if (numel == 1 && max_dim(iters...) == 0) {
234
+ op(*iters.data_...);
235
+ return;
236
+ }
237
+ if (offset > 0)
238
+ forward(offset, iters...);
239
+ // Splitting this into chunks helps the compiler create faster assembly
240
+ for (int64_t i = 0; i < numel;) {
241
+ for (; iterate_continue(iters...) && i < numel;) {
242
+ op(*iters.data_...);
243
+ iterate(1, iters...);
244
+ i++;
245
+ }
246
+ iterate_overflow(iters...);
247
+ }
248
+ }
249
+
250
+ /*
251
+ Apply a pointwise operator to sequence of tensors
252
+
253
+ The calling convention for op is a function/functor that takes the same
254
+ number of pointers of type scalar as the number of given tensors. For example,
255
+ to compute a = b * c, op would be of the form:
256
+ [](scalar* a_val, const scalar* b_val, const scalar* c_val) { a_val[0] =
257
+ b_val[0] * c_val[0]; };
258
+ */
259
+
260
+ template <typename scalar1, typename scalar2, typename Op>
261
+ inline void CPU_tensor_apply2(Tensor tensor1, Tensor tensor2, const Op op) {
262
+ if (!_apply_preamble({tensor1, tensor2}))
263
+ return;
264
+ if (_max_dim_tensors({tensor1, tensor2}) <= 8) {
265
+ apply_op(
266
+ tensor1.numel(),
267
+ 0,
268
+ op,
269
+ strided_tensor_iter_fixed<scalar1, 8>(tensor1),
270
+ strided_tensor_iter_fixed<scalar2, 8>(tensor2));
271
+ } else {
272
+ apply_op(
273
+ tensor1.numel(),
274
+ 0,
275
+ op,
276
+ strided_tensor_iter<scalar1>(tensor1),
277
+ strided_tensor_iter<scalar2>(tensor2));
278
+ }
279
+ }
280
+
281
+ template <typename scalar1, typename scalar2, typename scalar3, typename Op>
282
+ inline void CPU_tensor_apply3(
283
+ Tensor tensor1,
284
+ Tensor tensor2,
285
+ Tensor tensor3,
286
+ const Op op) {
287
+ if (!_apply_preamble({tensor1, tensor2, tensor3}))
288
+ return;
289
+ if (_max_dim_tensors({tensor1, tensor2, tensor3}) <= 8) {
290
+ apply_op(
291
+ tensor1.numel(),
292
+ 0,
293
+ op,
294
+ strided_tensor_iter_fixed<scalar1, 8>(tensor1),
295
+ strided_tensor_iter_fixed<scalar2, 8>(tensor2),
296
+ strided_tensor_iter_fixed<scalar3, 8>(tensor3));
297
+ } else {
298
+ apply_op(
299
+ tensor1.numel(),
300
+ 0,
301
+ op,
302
+ strided_tensor_iter<scalar1>(tensor1),
303
+ strided_tensor_iter<scalar2>(tensor2),
304
+ strided_tensor_iter<scalar3>(tensor3));
305
+ }
306
+ }
307
+
308
+ template <
309
+ typename scalar1,
310
+ typename scalar2,
311
+ typename scalar3,
312
+ typename scalar4,
313
+ typename Op>
314
+ inline void CPU_tensor_apply4(
315
+ Tensor tensor1,
316
+ Tensor tensor2,
317
+ Tensor tensor3,
318
+ Tensor tensor4,
319
+ const Op op) {
320
+ if (!_apply_preamble({tensor1, tensor2, tensor3, tensor4}))
321
+ return;
322
+ if (_max_dim_tensors({tensor1, tensor2, tensor3, tensor4}) <= 8) {
323
+ apply_op(
324
+ tensor1.numel(),
325
+ 0,
326
+ op,
327
+ strided_tensor_iter_fixed<scalar1, 8>(tensor1),
328
+ strided_tensor_iter_fixed<scalar2, 8>(tensor2),
329
+ strided_tensor_iter_fixed<scalar3, 8>(tensor3),
330
+ strided_tensor_iter_fixed<scalar4, 8>(tensor4));
331
+ } else {
332
+ apply_op(
333
+ tensor1.numel(),
334
+ 0,
335
+ op,
336
+ strided_tensor_iter<scalar1>(tensor1),
337
+ strided_tensor_iter<scalar2>(tensor2),
338
+ strided_tensor_iter<scalar3>(tensor3),
339
+ strided_tensor_iter<scalar4>(tensor4));
340
+ }
341
+ }
342
+
343
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/CPUFixedAllocator.h ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/core/Allocator.h>
4
+ #include <c10/util/Exception.h>
5
+
6
+ // This file creates a fake allocator that just throws exceptions if
7
+ // it is actually used.
8
+
9
+ // state passed to the allocator is the std::function<void(void*)> called
10
+ // when the blob is release by ATen
11
+
12
+ namespace at {
13
+
14
+ static cpu_fixed_malloc(void*, ptrdiff_t) {
15
+ AT_ERROR("attempting to resize a tensor view of an external blob");
16
+ }
17
+
18
+ static cpu_fixed_realloc(void*, void*, ptrdiff_t) {
19
+ AT_ERROR("attempting to resize a tensor view of an external blob");
20
+ }
21
+
22
+ static cpu_fixed_free(void* state, void* allocation) {
23
+ auto on_release = static_cast<std::function<void(void*)>*>(state);
24
+ (*on_release)(allocation);
25
+ delete on_release;
26
+ }
27
+
28
+ static Allocator CPU_fixed_allocator = {
29
+ cpu_fixed_malloc,
30
+ cpu_fixed_realloc,
31
+ cpu_fixed_free};
32
+
33
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/CUDAFunctions.h ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/core/TensorBody.h>
2
+
3
+ // TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
4
+ // Code introduced to avoid cyclic dependency in static dispatch is no longer
5
+ // needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
6
+ // to Operators.cpp for supporting multiple backends with multiple kernels.
7
+ //
8
+ // Note [Avoiding Include Cycles In Static Dispatch]
9
+ // In order to avoid #include cycles in the static dispatch build, we've carefully split out
10
+ // the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
11
+ //
12
+ // Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
13
+ // - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
14
+ // all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
15
+ // directly inlined into TensorBody.h.
16
+ // - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
17
+ // which include functions that have defaultable optional<Tensor> arguments.
18
+ // That requires knowing the full Tensor class definition.
19
+ //
20
+ // We break the cycle by doing the following:
21
+ // - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
22
+ // - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
23
+ // - CPUFunctions_inl.h includes everything else
24
+ // - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
25
+ // and then it includes CPUFunctions_inl.h.
26
+ // - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
27
+ // - This also means that static dispatch build, CPUFunctions.h only needs to
28
+ // #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
29
+ #include <ATen/CUDAFunctions_inl.h>
venv/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradFunctions_inl.h ADDED
@@ -0,0 +1,542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunctions_inl.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ #if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
12
+ #error This change adds a dependency on all pytorch operators, meaning the \
13
+ file will need to be re-compiled every time an operator is changed or added. \
14
+ Consider including a specific operator from \
15
+ <ATen/ops/{my_operator}_compositeexplicitautograd_dispatch.h>. \
16
+ See NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
17
+ #endif
18
+
19
+ #include <ATen/ops/_adaptive_avg_pool2d_compositeexplicitautograd_dispatch.h>
20
+ #include <ATen/ops/_adaptive_avg_pool2d_backward_compositeexplicitautograd_dispatch.h>
21
+ #include <ATen/ops/_adaptive_avg_pool3d_compositeexplicitautograd_dispatch.h>
22
+ #include <ATen/ops/_adaptive_avg_pool3d_backward_compositeexplicitautograd_dispatch.h>
23
+ #include <ATen/ops/_add_relu_compositeexplicitautograd_dispatch.h>
24
+ #include <ATen/ops/_aminmax_compositeexplicitautograd_dispatch.h>
25
+ #include <ATen/ops/_amp_foreach_non_finite_check_and_unscale_compositeexplicitautograd_dispatch.h>
26
+ #include <ATen/ops/_amp_update_scale_compositeexplicitautograd_dispatch.h>
27
+ #include <ATen/ops/_assert_scalar_compositeexplicitautograd_dispatch.h>
28
+ #include <ATen/ops/_cdist_backward_compositeexplicitautograd_dispatch.h>
29
+ #include <ATen/ops/_cdist_forward_compositeexplicitautograd_dispatch.h>
30
+ #include <ATen/ops/_cholesky_solve_helper_compositeexplicitautograd_dispatch.h>
31
+ #include <ATen/ops/_chunk_cat_compositeexplicitautograd_dispatch.h>
32
+ #include <ATen/ops/_coalesce_compositeexplicitautograd_dispatch.h>
33
+ #include <ATen/ops/_coalesced_compositeexplicitautograd_dispatch.h>
34
+ #include <ATen/ops/_conj_compositeexplicitautograd_dispatch.h>
35
+ #include <ATen/ops/_conj_copy_compositeexplicitautograd_dispatch.h>
36
+ #include <ATen/ops/_conj_physical_compositeexplicitautograd_dispatch.h>
37
+ #include <ATen/ops/_convolution_compositeexplicitautograd_dispatch.h>
38
+ #include <ATen/ops/_copy_from_compositeexplicitautograd_dispatch.h>
39
+ #include <ATen/ops/_copy_from_and_resize_compositeexplicitautograd_dispatch.h>
40
+ #include <ATen/ops/_ctc_loss_compositeexplicitautograd_dispatch.h>
41
+ #include <ATen/ops/_ctc_loss_backward_compositeexplicitautograd_dispatch.h>
42
+ #include <ATen/ops/_cudnn_ctc_loss_compositeexplicitautograd_dispatch.h>
43
+ #include <ATen/ops/_cudnn_init_dropout_state_compositeexplicitautograd_dispatch.h>
44
+ #include <ATen/ops/_cudnn_rnn_compositeexplicitautograd_dispatch.h>
45
+ #include <ATen/ops/_cudnn_rnn_backward_compositeexplicitautograd_dispatch.h>
46
+ #include <ATen/ops/_cudnn_rnn_flatten_weight_compositeexplicitautograd_dispatch.h>
47
+ #include <ATen/ops/_dirichlet_grad_compositeexplicitautograd_dispatch.h>
48
+ #include <ATen/ops/_efficientzerotensor_compositeexplicitautograd_dispatch.h>
49
+ #include <ATen/ops/_embedding_bag_compositeexplicitautograd_dispatch.h>
50
+ #include <ATen/ops/_embedding_bag_dense_backward_compositeexplicitautograd_dispatch.h>
51
+ #include <ATen/ops/_embedding_bag_forward_only_compositeexplicitautograd_dispatch.h>
52
+ #include <ATen/ops/_embedding_bag_per_sample_weights_backward_compositeexplicitautograd_dispatch.h>
53
+ #include <ATen/ops/_empty_affine_quantized_compositeexplicitautograd_dispatch.h>
54
+ #include <ATen/ops/_empty_per_channel_affine_quantized_compositeexplicitautograd_dispatch.h>
55
+ #include <ATen/ops/_euclidean_dist_compositeexplicitautograd_dispatch.h>
56
+ #include <ATen/ops/_fake_quantize_learnable_per_channel_affine_compositeexplicitautograd_dispatch.h>
57
+ #include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_compositeexplicitautograd_dispatch.h>
58
+ #include <ATen/ops/_fake_quantize_per_tensor_affine_cachemask_tensor_qparams_compositeexplicitautograd_dispatch.h>
59
+ #include <ATen/ops/_foobar_compositeexplicitautograd_dispatch.h>
60
+ #include <ATen/ops/_foreach_abs_compositeexplicitautograd_dispatch.h>
61
+ #include <ATen/ops/_foreach_acos_compositeexplicitautograd_dispatch.h>
62
+ #include <ATen/ops/_foreach_add_compositeexplicitautograd_dispatch.h>
63
+ #include <ATen/ops/_foreach_addcdiv_compositeexplicitautograd_dispatch.h>
64
+ #include <ATen/ops/_foreach_addcmul_compositeexplicitautograd_dispatch.h>
65
+ #include <ATen/ops/_foreach_asin_compositeexplicitautograd_dispatch.h>
66
+ #include <ATen/ops/_foreach_atan_compositeexplicitautograd_dispatch.h>
67
+ #include <ATen/ops/_foreach_ceil_compositeexplicitautograd_dispatch.h>
68
+ #include <ATen/ops/_foreach_clamp_max_compositeexplicitautograd_dispatch.h>
69
+ #include <ATen/ops/_foreach_clamp_min_compositeexplicitautograd_dispatch.h>
70
+ #include <ATen/ops/_foreach_copy_compositeexplicitautograd_dispatch.h>
71
+ #include <ATen/ops/_foreach_cos_compositeexplicitautograd_dispatch.h>
72
+ #include <ATen/ops/_foreach_cosh_compositeexplicitautograd_dispatch.h>
73
+ #include <ATen/ops/_foreach_div_compositeexplicitautograd_dispatch.h>
74
+ #include <ATen/ops/_foreach_erf_compositeexplicitautograd_dispatch.h>
75
+ #include <ATen/ops/_foreach_erfc_compositeexplicitautograd_dispatch.h>
76
+ #include <ATen/ops/_foreach_exp_compositeexplicitautograd_dispatch.h>
77
+ #include <ATen/ops/_foreach_expm1_compositeexplicitautograd_dispatch.h>
78
+ #include <ATen/ops/_foreach_floor_compositeexplicitautograd_dispatch.h>
79
+ #include <ATen/ops/_foreach_frac_compositeexplicitautograd_dispatch.h>
80
+ #include <ATen/ops/_foreach_lerp_compositeexplicitautograd_dispatch.h>
81
+ #include <ATen/ops/_foreach_lgamma_compositeexplicitautograd_dispatch.h>
82
+ #include <ATen/ops/_foreach_log_compositeexplicitautograd_dispatch.h>
83
+ #include <ATen/ops/_foreach_log10_compositeexplicitautograd_dispatch.h>
84
+ #include <ATen/ops/_foreach_log1p_compositeexplicitautograd_dispatch.h>
85
+ #include <ATen/ops/_foreach_log2_compositeexplicitautograd_dispatch.h>
86
+ #include <ATen/ops/_foreach_maximum_compositeexplicitautograd_dispatch.h>
87
+ #include <ATen/ops/_foreach_minimum_compositeexplicitautograd_dispatch.h>
88
+ #include <ATen/ops/_foreach_mul_compositeexplicitautograd_dispatch.h>
89
+ #include <ATen/ops/_foreach_neg_compositeexplicitautograd_dispatch.h>
90
+ #include <ATen/ops/_foreach_norm_compositeexplicitautograd_dispatch.h>
91
+ #include <ATen/ops/_foreach_pow_compositeexplicitautograd_dispatch.h>
92
+ #include <ATen/ops/_foreach_reciprocal_compositeexplicitautograd_dispatch.h>
93
+ #include <ATen/ops/_foreach_round_compositeexplicitautograd_dispatch.h>
94
+ #include <ATen/ops/_foreach_sigmoid_compositeexplicitautograd_dispatch.h>
95
+ #include <ATen/ops/_foreach_sign_compositeexplicitautograd_dispatch.h>
96
+ #include <ATen/ops/_foreach_sin_compositeexplicitautograd_dispatch.h>
97
+ #include <ATen/ops/_foreach_sinh_compositeexplicitautograd_dispatch.h>
98
+ #include <ATen/ops/_foreach_sqrt_compositeexplicitautograd_dispatch.h>
99
+ #include <ATen/ops/_foreach_sub_compositeexplicitautograd_dispatch.h>
100
+ #include <ATen/ops/_foreach_tan_compositeexplicitautograd_dispatch.h>
101
+ #include <ATen/ops/_foreach_tanh_compositeexplicitautograd_dispatch.h>
102
+ #include <ATen/ops/_foreach_trunc_compositeexplicitautograd_dispatch.h>
103
+ #include <ATen/ops/_foreach_zero_compositeexplicitautograd_dispatch.h>
104
+ #include <ATen/ops/_functional_assert_scalar_compositeexplicitautograd_dispatch.h>
105
+ #include <ATen/ops/_functional_sym_constrain_range_compositeexplicitautograd_dispatch.h>
106
+ #include <ATen/ops/_functional_sym_constrain_range_for_size_compositeexplicitautograd_dispatch.h>
107
+ #include <ATen/ops/_fused_adam_compositeexplicitautograd_dispatch.h>
108
+ #include <ATen/ops/_fused_adamw_compositeexplicitautograd_dispatch.h>
109
+ #include <ATen/ops/_fused_dropout_compositeexplicitautograd_dispatch.h>
110
+ #include <ATen/ops/_fused_moving_avg_obs_fq_helper_compositeexplicitautograd_dispatch.h>
111
+ #include <ATen/ops/_fused_sgd_compositeexplicitautograd_dispatch.h>
112
+ #include <ATen/ops/_fw_primal_compositeexplicitautograd_dispatch.h>
113
+ #include <ATen/ops/_fw_primal_copy_compositeexplicitautograd_dispatch.h>
114
+ #include <ATen/ops/_grid_sampler_2d_cpu_fallback_compositeexplicitautograd_dispatch.h>
115
+ #include <ATen/ops/_has_same_storage_numel_compositeexplicitautograd_dispatch.h>
116
+ #include <ATen/ops/_histogramdd_bin_edges_compositeexplicitautograd_dispatch.h>
117
+ #include <ATen/ops/_histogramdd_from_bin_cts_compositeexplicitautograd_dispatch.h>
118
+ #include <ATen/ops/_histogramdd_from_bin_tensors_compositeexplicitautograd_dispatch.h>
119
+ #include <ATen/ops/_index_put_impl_compositeexplicitautograd_dispatch.h>
120
+ #include <ATen/ops/_indices_copy_compositeexplicitautograd_dispatch.h>
121
+ #include <ATen/ops/_is_all_true_compositeexplicitautograd_dispatch.h>
122
+ #include <ATen/ops/_is_any_true_compositeexplicitautograd_dispatch.h>
123
+ #include <ATen/ops/_lazy_clone_compositeexplicitautograd_dispatch.h>
124
+ #include <ATen/ops/_linalg_check_errors_compositeexplicitautograd_dispatch.h>
125
+ #include <ATen/ops/_lstm_mps_compositeexplicitautograd_dispatch.h>
126
+ #include <ATen/ops/_make_dual_compositeexplicitautograd_dispatch.h>
127
+ #include <ATen/ops/_make_dual_copy_compositeexplicitautograd_dispatch.h>
128
+ #include <ATen/ops/_make_per_channel_quantized_tensor_compositeexplicitautograd_dispatch.h>
129
+ #include <ATen/ops/_make_per_tensor_quantized_tensor_compositeexplicitautograd_dispatch.h>
130
+ #include <ATen/ops/_masked_scale_compositeexplicitautograd_dispatch.h>
131
+ #include <ATen/ops/_masked_softmax_compositeexplicitautograd_dispatch.h>
132
+ #include <ATen/ops/_masked_softmax_backward_compositeexplicitautograd_dispatch.h>
133
+ #include <ATen/ops/_mkldnn_reshape_compositeexplicitautograd_dispatch.h>
134
+ #include <ATen/ops/_mkldnn_transpose_compositeexplicitautograd_dispatch.h>
135
+ #include <ATen/ops/_mps_convolution_compositeexplicitautograd_dispatch.h>
136
+ #include <ATen/ops/_mps_convolution_transpose_compositeexplicitautograd_dispatch.h>
137
+ #include <ATen/ops/_native_batch_norm_legit_compositeexplicitautograd_dispatch.h>
138
+ #include <ATen/ops/_native_batch_norm_legit_no_training_compositeexplicitautograd_dispatch.h>
139
+ #include <ATen/ops/_native_multi_head_attention_compositeexplicitautograd_dispatch.h>
140
+ #include <ATen/ops/_neg_view_compositeexplicitautograd_dispatch.h>
141
+ #include <ATen/ops/_neg_view_copy_compositeexplicitautograd_dispatch.h>
142
+ #include <ATen/ops/_nested_from_padded_compositeexplicitautograd_dispatch.h>
143
+ #include <ATen/ops/_nested_from_padded_and_nested_example_compositeexplicitautograd_dispatch.h>
144
+ #include <ATen/ops/_nested_get_values_copy_compositeexplicitautograd_dispatch.h>
145
+ #include <ATen/ops/_nested_tensor_from_mask_compositeexplicitautograd_dispatch.h>
146
+ #include <ATen/ops/_nested_tensor_from_tensor_list_compositeexplicitautograd_dispatch.h>
147
+ #include <ATen/ops/_nested_tensor_size_compositeexplicitautograd_dispatch.h>
148
+ #include <ATen/ops/_nested_tensor_storage_offsets_compositeexplicitautograd_dispatch.h>
149
+ #include <ATen/ops/_nested_tensor_strides_compositeexplicitautograd_dispatch.h>
150
+ #include <ATen/ops/_nested_view_from_buffer_copy_compositeexplicitautograd_dispatch.h>
151
+ #include <ATen/ops/_nested_view_from_jagged_copy_compositeexplicitautograd_dispatch.h>
152
+ #include <ATen/ops/_new_zeros_with_same_feature_meta_compositeexplicitautograd_dispatch.h>
153
+ #include <ATen/ops/_nnpack_spatial_convolution_compositeexplicitautograd_dispatch.h>
154
+ #include <ATen/ops/_pack_padded_sequence_compositeexplicitautograd_dispatch.h>
155
+ #include <ATen/ops/_pdist_backward_compositeexplicitautograd_dispatch.h>
156
+ #include <ATen/ops/_pdist_forward_compositeexplicitautograd_dispatch.h>
157
+ #include <ATen/ops/_pin_memory_compositeexplicitautograd_dispatch.h>
158
+ #include <ATen/ops/_print_compositeexplicitautograd_dispatch.h>
159
+ #include <ATen/ops/_reshape_alias_copy_compositeexplicitautograd_dispatch.h>
160
+ #include <ATen/ops/_reshape_copy_compositeexplicitautograd_dispatch.h>
161
+ #include <ATen/ops/_resize_output_compositeexplicitautograd_dispatch.h>
162
+ #include <ATen/ops/_sample_dirichlet_compositeexplicitautograd_dispatch.h>
163
+ #include <ATen/ops/_segment_reduce_backward_compositeexplicitautograd_dispatch.h>
164
+ #include <ATen/ops/_slow_conv2d_backward_compositeexplicitautograd_dispatch.h>
165
+ #include <ATen/ops/_sparse_addmm_compositeexplicitautograd_dispatch.h>
166
+ #include <ATen/ops/_sparse_broadcast_to_copy_compositeexplicitautograd_dispatch.h>
167
+ #include <ATen/ops/_sparse_coo_tensor_with_dims_compositeexplicitautograd_dispatch.h>
168
+ #include <ATen/ops/_sparse_coo_tensor_with_dims_and_tensors_compositeexplicitautograd_dispatch.h>
169
+ #include <ATen/ops/_sparse_csr_prod_compositeexplicitautograd_dispatch.h>
170
+ #include <ATen/ops/_sparse_csr_sum_compositeexplicitautograd_dispatch.h>
171
+ #include <ATen/ops/_sparse_log_softmax_compositeexplicitautograd_dispatch.h>
172
+ #include <ATen/ops/_sparse_log_softmax_backward_data_compositeexplicitautograd_dispatch.h>
173
+ #include <ATen/ops/_sparse_mask_projection_compositeexplicitautograd_dispatch.h>
174
+ #include <ATen/ops/_sparse_softmax_compositeexplicitautograd_dispatch.h>
175
+ #include <ATen/ops/_sparse_softmax_backward_data_compositeexplicitautograd_dispatch.h>
176
+ #include <ATen/ops/_sparse_sparse_matmul_compositeexplicitautograd_dispatch.h>
177
+ #include <ATen/ops/_sparse_sum_compositeexplicitautograd_dispatch.h>
178
+ #include <ATen/ops/_sparse_sum_backward_compositeexplicitautograd_dispatch.h>
179
+ #include <ATen/ops/_spdiags_compositeexplicitautograd_dispatch.h>
180
+ #include <ATen/ops/_stack_compositeexplicitautograd_dispatch.h>
181
+ #include <ATen/ops/_standard_gamma_compositeexplicitautograd_dispatch.h>
182
+ #include <ATen/ops/_standard_gamma_grad_compositeexplicitautograd_dispatch.h>
183
+ #include <ATen/ops/_test_autograd_multiple_dispatch_compositeexplicitautograd_dispatch.h>
184
+ #include <ATen/ops/_test_autograd_multiple_dispatch_view_compositeexplicitautograd_dispatch.h>
185
+ #include <ATen/ops/_test_autograd_multiple_dispatch_view_copy_compositeexplicitautograd_dispatch.h>
186
+ #include <ATen/ops/_test_functorch_fallback_compositeexplicitautograd_dispatch.h>
187
+ #include <ATen/ops/_test_optional_filled_intlist_compositeexplicitautograd_dispatch.h>
188
+ #include <ATen/ops/_test_optional_floatlist_compositeexplicitautograd_dispatch.h>
189
+ #include <ATen/ops/_test_optional_intlist_compositeexplicitautograd_dispatch.h>
190
+ #include <ATen/ops/_test_parallel_materialize_compositeexplicitautograd_dispatch.h>
191
+ #include <ATen/ops/_test_warn_in_autograd_compositeexplicitautograd_dispatch.h>
192
+ #include <ATen/ops/_thnn_fused_gru_cell_compositeexplicitautograd_dispatch.h>
193
+ #include <ATen/ops/_thnn_fused_gru_cell_backward_compositeexplicitautograd_dispatch.h>
194
+ #include <ATen/ops/_thnn_fused_lstm_cell_compositeexplicitautograd_dispatch.h>
195
+ #include <ATen/ops/_thnn_fused_lstm_cell_backward_impl_compositeexplicitautograd_dispatch.h>
196
+ #include <ATen/ops/_to_copy_compositeexplicitautograd_dispatch.h>
197
+ #include <ATen/ops/_to_dense_compositeexplicitautograd_dispatch.h>
198
+ #include <ATen/ops/_to_sparse_compositeexplicitautograd_dispatch.h>
199
+ #include <ATen/ops/_to_sparse_bsc_compositeexplicitautograd_dispatch.h>
200
+ #include <ATen/ops/_to_sparse_bsr_compositeexplicitautograd_dispatch.h>
201
+ #include <ATen/ops/_to_sparse_csc_compositeexplicitautograd_dispatch.h>
202
+ #include <ATen/ops/_to_sparse_csr_compositeexplicitautograd_dispatch.h>
203
+ #include <ATen/ops/_transform_bias_rescale_qkv_compositeexplicitautograd_dispatch.h>
204
+ #include <ATen/ops/_transformer_encoder_layer_fwd_compositeexplicitautograd_dispatch.h>
205
+ #include <ATen/ops/_trilinear_compositeexplicitautograd_dispatch.h>
206
+ #include <ATen/ops/_triton_multi_head_attention_compositeexplicitautograd_dispatch.h>
207
+ #include <ATen/ops/_triton_scaled_dot_attention_compositeexplicitautograd_dispatch.h>
208
+ #include <ATen/ops/_unique_compositeexplicitautograd_dispatch.h>
209
+ #include <ATen/ops/_unique2_compositeexplicitautograd_dispatch.h>
210
+ #include <ATen/ops/_unsafe_index_compositeexplicitautograd_dispatch.h>
211
+ #include <ATen/ops/_unsafe_index_put_compositeexplicitautograd_dispatch.h>
212
+ #include <ATen/ops/_unsafe_view_compositeexplicitautograd_dispatch.h>
213
+ #include <ATen/ops/_values_copy_compositeexplicitautograd_dispatch.h>
214
+ #include <ATen/ops/_weight_norm_interface_compositeexplicitautograd_dispatch.h>
215
+ #include <ATen/ops/_weight_norm_interface_backward_compositeexplicitautograd_dispatch.h>
216
+ #include <ATen/ops/abs_compositeexplicitautograd_dispatch.h>
217
+ #include <ATen/ops/add_compositeexplicitautograd_dispatch.h>
218
+ #include <ATen/ops/addr_compositeexplicitautograd_dispatch.h>
219
+ #include <ATen/ops/affine_grid_generator_compositeexplicitautograd_dispatch.h>
220
+ #include <ATen/ops/alias_compositeexplicitautograd_dispatch.h>
221
+ #include <ATen/ops/alias_copy_compositeexplicitautograd_dispatch.h>
222
+ #include <ATen/ops/all_compositeexplicitautograd_dispatch.h>
223
+ #include <ATen/ops/allclose_compositeexplicitautograd_dispatch.h>
224
+ #include <ATen/ops/any_compositeexplicitautograd_dispatch.h>
225
+ #include <ATen/ops/arange_compositeexplicitautograd_dispatch.h>
226
+ #include <ATen/ops/argsort_compositeexplicitautograd_dispatch.h>
227
+ #include <ATen/ops/as_strided_copy_compositeexplicitautograd_dispatch.h>
228
+ #include <ATen/ops/as_strided_scatter_compositeexplicitautograd_dispatch.h>
229
+ #include <ATen/ops/bartlett_window_compositeexplicitautograd_dispatch.h>
230
+ #include <ATen/ops/batch_norm_backward_elemt_compositeexplicitautograd_dispatch.h>
231
+ #include <ATen/ops/batch_norm_backward_reduce_compositeexplicitautograd_dispatch.h>
232
+ #include <ATen/ops/batch_norm_gather_stats_compositeexplicitautograd_dispatch.h>
233
+ #include <ATen/ops/batch_norm_gather_stats_with_counts_compositeexplicitautograd_dispatch.h>
234
+ #include <ATen/ops/batch_norm_stats_compositeexplicitautograd_dispatch.h>
235
+ #include <ATen/ops/batch_norm_update_stats_compositeexplicitautograd_dispatch.h>
236
+ #include <ATen/ops/bernoulli_compositeexplicitautograd_dispatch.h>
237
+ #include <ATen/ops/binary_cross_entropy_with_logits_compositeexplicitautograd_dispatch.h>
238
+ #include <ATen/ops/bincount_compositeexplicitautograd_dispatch.h>
239
+ #include <ATen/ops/binomial_compositeexplicitautograd_dispatch.h>
240
+ #include <ATen/ops/bitwise_and_compositeexplicitautograd_dispatch.h>
241
+ #include <ATen/ops/bitwise_left_shift_compositeexplicitautograd_dispatch.h>
242
+ #include <ATen/ops/bitwise_or_compositeexplicitautograd_dispatch.h>
243
+ #include <ATen/ops/bitwise_right_shift_compositeexplicitautograd_dispatch.h>
244
+ #include <ATen/ops/bitwise_xor_compositeexplicitautograd_dispatch.h>
245
+ #include <ATen/ops/blackman_window_compositeexplicitautograd_dispatch.h>
246
+ #include <ATen/ops/block_diag_compositeexplicitautograd_dispatch.h>
247
+ #include <ATen/ops/bucketize_compositeexplicitautograd_dispatch.h>
248
+ #include <ATen/ops/cauchy_compositeexplicitautograd_dispatch.h>
249
+ #include <ATen/ops/ccol_indices_compositeexplicitautograd_dispatch.h>
250
+ #include <ATen/ops/ccol_indices_copy_compositeexplicitautograd_dispatch.h>
251
+ #include <ATen/ops/celu_compositeexplicitautograd_dispatch.h>
252
+ #include <ATen/ops/channel_shuffle_compositeexplicitautograd_dispatch.h>
253
+ #include <ATen/ops/cholesky_solve_compositeexplicitautograd_dispatch.h>
254
+ #include <ATen/ops/clone_compositeexplicitautograd_dispatch.h>
255
+ #include <ATen/ops/col_indices_compositeexplicitautograd_dispatch.h>
256
+ #include <ATen/ops/col_indices_copy_compositeexplicitautograd_dispatch.h>
257
+ #include <ATen/ops/complex_compositeexplicitautograd_dispatch.h>
258
+ #include <ATen/ops/conj_physical_compositeexplicitautograd_dispatch.h>
259
+ #include <ATen/ops/constant_pad_nd_compositeexplicitautograd_dispatch.h>
260
+ #include <ATen/ops/conv_depthwise3d_compositeexplicitautograd_dispatch.h>
261
+ #include <ATen/ops/conv_tbc_compositeexplicitautograd_dispatch.h>
262
+ #include <ATen/ops/convolution_compositeexplicitautograd_dispatch.h>
263
+ #include <ATen/ops/convolution_backward_compositeexplicitautograd_dispatch.h>
264
+ #include <ATen/ops/convolution_backward_overrideable_compositeexplicitautograd_dispatch.h>
265
+ #include <ATen/ops/convolution_overrideable_compositeexplicitautograd_dispatch.h>
266
+ #include <ATen/ops/copy_compositeexplicitautograd_dispatch.h>
267
+ #include <ATen/ops/copy_sparse_to_sparse_compositeexplicitautograd_dispatch.h>
268
+ #include <ATen/ops/copysign_compositeexplicitautograd_dispatch.h>
269
+ #include <ATen/ops/count_nonzero_compositeexplicitautograd_dispatch.h>
270
+ #include <ATen/ops/crow_indices_compositeexplicitautograd_dispatch.h>
271
+ #include <ATen/ops/crow_indices_copy_compositeexplicitautograd_dispatch.h>
272
+ #include <ATen/ops/cudnn_affine_grid_generator_compositeexplicitautograd_dispatch.h>
273
+ #include <ATen/ops/cudnn_affine_grid_generator_backward_compositeexplicitautograd_dispatch.h>
274
+ #include <ATen/ops/cudnn_batch_norm_compositeexplicitautograd_dispatch.h>
275
+ #include <ATen/ops/cudnn_batch_norm_backward_compositeexplicitautograd_dispatch.h>
276
+ #include <ATen/ops/cudnn_convolution_add_relu_compositeexplicitautograd_dispatch.h>
277
+ #include <ATen/ops/cudnn_convolution_relu_compositeexplicitautograd_dispatch.h>
278
+ #include <ATen/ops/cudnn_convolution_transpose_compositeexplicitautograd_dispatch.h>
279
+ #include <ATen/ops/cudnn_grid_sampler_compositeexplicitautograd_dispatch.h>
280
+ #include <ATen/ops/cudnn_grid_sampler_backward_compositeexplicitautograd_dispatch.h>
281
+ #include <ATen/ops/cummax_compositeexplicitautograd_dispatch.h>
282
+ #include <ATen/ops/cummin_compositeexplicitautograd_dispatch.h>
283
+ #include <ATen/ops/deg2rad_compositeexplicitautograd_dispatch.h>
284
+ #include <ATen/ops/dequantize_compositeexplicitautograd_dispatch.h>
285
+ #include <ATen/ops/detach_compositeexplicitautograd_dispatch.h>
286
+ #include <ATen/ops/detach_copy_compositeexplicitautograd_dispatch.h>
287
+ #include <ATen/ops/diag_embed_compositeexplicitautograd_dispatch.h>
288
+ #include <ATen/ops/diagonal_compositeexplicitautograd_dispatch.h>
289
+ #include <ATen/ops/diagonal_backward_compositeexplicitautograd_dispatch.h>
290
+ #include <ATen/ops/diagonal_copy_compositeexplicitautograd_dispatch.h>
291
+ #include <ATen/ops/diagonal_scatter_compositeexplicitautograd_dispatch.h>
292
+ #include <ATen/ops/dist_compositeexplicitautograd_dispatch.h>
293
+ #include <ATen/ops/div_compositeexplicitautograd_dispatch.h>
294
+ #include <ATen/ops/dot_compositeexplicitautograd_dispatch.h>
295
+ #include <ATen/ops/embedding_compositeexplicitautograd_dispatch.h>
296
+ #include <ATen/ops/embedding_dense_backward_compositeexplicitautograd_dispatch.h>
297
+ #include <ATen/ops/embedding_renorm_compositeexplicitautograd_dispatch.h>
298
+ #include <ATen/ops/empty_compositeexplicitautograd_dispatch.h>
299
+ #include <ATen/ops/empty_like_compositeexplicitautograd_dispatch.h>
300
+ #include <ATen/ops/empty_permuted_compositeexplicitautograd_dispatch.h>
301
+ #include <ATen/ops/empty_quantized_compositeexplicitautograd_dispatch.h>
302
+ #include <ATen/ops/empty_strided_compositeexplicitautograd_dispatch.h>
303
+ #include <ATen/ops/expand_compositeexplicitautograd_dispatch.h>
304
+ #include <ATen/ops/expand_copy_compositeexplicitautograd_dispatch.h>
305
+ #include <ATen/ops/exponential_compositeexplicitautograd_dispatch.h>
306
+ #include <ATen/ops/eye_compositeexplicitautograd_dispatch.h>
307
+ #include <ATen/ops/fake_quantize_per_channel_affine_cachemask_compositeexplicitautograd_dispatch.h>
308
+ #include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_compositeexplicitautograd_dispatch.h>
309
+ #include <ATen/ops/fft_fftfreq_compositeexplicitautograd_dispatch.h>
310
+ #include <ATen/ops/fft_rfftfreq_compositeexplicitautograd_dispatch.h>
311
+ #include <ATen/ops/fill_compositeexplicitautograd_dispatch.h>
312
+ #include <ATen/ops/flip_compositeexplicitautograd_dispatch.h>
313
+ #include <ATen/ops/floor_divide_compositeexplicitautograd_dispatch.h>
314
+ #include <ATen/ops/fmod_compositeexplicitautograd_dispatch.h>
315
+ #include <ATen/ops/frexp_compositeexplicitautograd_dispatch.h>
316
+ #include <ATen/ops/from_file_compositeexplicitautograd_dispatch.h>
317
+ #include <ATen/ops/full_compositeexplicitautograd_dispatch.h>
318
+ #include <ATen/ops/full_like_compositeexplicitautograd_dispatch.h>
319
+ #include <ATen/ops/geometric_compositeexplicitautograd_dispatch.h>
320
+ #include <ATen/ops/glu_backward_jvp_compositeexplicitautograd_dispatch.h>
321
+ #include <ATen/ops/glu_jvp_compositeexplicitautograd_dispatch.h>
322
+ #include <ATen/ops/grid_sampler_2d_compositeexplicitautograd_dispatch.h>
323
+ #include <ATen/ops/grid_sampler_2d_backward_compositeexplicitautograd_dispatch.h>
324
+ #include <ATen/ops/grid_sampler_3d_compositeexplicitautograd_dispatch.h>
325
+ #include <ATen/ops/grid_sampler_3d_backward_compositeexplicitautograd_dispatch.h>
326
+ #include <ATen/ops/hamming_window_compositeexplicitautograd_dispatch.h>
327
+ #include <ATen/ops/hann_window_compositeexplicitautograd_dispatch.h>
328
+ #include <ATen/ops/hardswish_backward_compositeexplicitautograd_dispatch.h>
329
+ #include <ATen/ops/huber_loss_backward_compositeexplicitautograd_dispatch.h>
330
+ #include <ATen/ops/index_fill_compositeexplicitautograd_dispatch.h>
331
+ #include <ATen/ops/index_put_compositeexplicitautograd_dispatch.h>
332
+ #include <ATen/ops/indices_compositeexplicitautograd_dispatch.h>
333
+ #include <ATen/ops/indices_copy_compositeexplicitautograd_dispatch.h>
334
+ #include <ATen/ops/int_repr_compositeexplicitautograd_dispatch.h>
335
+ #include <ATen/ops/is_coalesced_compositeexplicitautograd_dispatch.h>
336
+ #include <ATen/ops/is_pinned_compositeexplicitautograd_dispatch.h>
337
+ #include <ATen/ops/is_same_size_compositeexplicitautograd_dispatch.h>
338
+ #include <ATen/ops/isinf_compositeexplicitautograd_dispatch.h>
339
+ #include <ATen/ops/isnan_compositeexplicitautograd_dispatch.h>
340
+ #include <ATen/ops/kaiser_window_compositeexplicitautograd_dispatch.h>
341
+ #include <ATen/ops/kthvalue_compositeexplicitautograd_dispatch.h>
342
+ #include <ATen/ops/lift_compositeexplicitautograd_dispatch.h>
343
+ #include <ATen/ops/lift_fresh_compositeexplicitautograd_dispatch.h>
344
+ #include <ATen/ops/lift_fresh_copy_compositeexplicitautograd_dispatch.h>
345
+ #include <ATen/ops/linalg_lstsq_compositeexplicitautograd_dispatch.h>
346
+ #include <ATen/ops/linalg_matrix_exp_compositeexplicitautograd_dispatch.h>
347
+ #include <ATen/ops/linalg_pinv_compositeexplicitautograd_dispatch.h>
348
+ #include <ATen/ops/linear_compositeexplicitautograd_dispatch.h>
349
+ #include <ATen/ops/linear_backward_compositeexplicitautograd_dispatch.h>
350
+ #include <ATen/ops/linspace_compositeexplicitautograd_dispatch.h>
351
+ #include <ATen/ops/log_normal_compositeexplicitautograd_dispatch.h>
352
+ #include <ATen/ops/log_softmax_compositeexplicitautograd_dispatch.h>
353
+ #include <ATen/ops/logcumsumexp_compositeexplicitautograd_dispatch.h>
354
+ #include <ATen/ops/logical_and_compositeexplicitautograd_dispatch.h>
355
+ #include <ATen/ops/logical_not_compositeexplicitautograd_dispatch.h>
356
+ #include <ATen/ops/logical_or_compositeexplicitautograd_dispatch.h>
357
+ #include <ATen/ops/logical_xor_compositeexplicitautograd_dispatch.h>
358
+ #include <ATen/ops/logspace_compositeexplicitautograd_dispatch.h>
359
+ #include <ATen/ops/logsumexp_compositeexplicitautograd_dispatch.h>
360
+ #include <ATen/ops/lshift_compositeexplicitautograd_dispatch.h>
361
+ #include <ATen/ops/lstm_mps_backward_compositeexplicitautograd_dispatch.h>
362
+ #include <ATen/ops/masked_fill_compositeexplicitautograd_dispatch.h>
363
+ #include <ATen/ops/masked_scatter_compositeexplicitautograd_dispatch.h>
364
+ #include <ATen/ops/masked_scatter_backward_compositeexplicitautograd_dispatch.h>
365
+ #include <ATen/ops/matmul_backward_compositeexplicitautograd_dispatch.h>
366
+ #include <ATen/ops/max_pool2d_backward_compositeexplicitautograd_dispatch.h>
367
+ #include <ATen/ops/mean_compositeexplicitautograd_dispatch.h>
368
+ #include <ATen/ops/median_compositeexplicitautograd_dispatch.h>
369
+ #include <ATen/ops/miopen_batch_norm_compositeexplicitautograd_dispatch.h>
370
+ #include <ATen/ops/miopen_batch_norm_backward_compositeexplicitautograd_dispatch.h>
371
+ #include <ATen/ops/miopen_convolution_compositeexplicitautograd_dispatch.h>
372
+ #include <ATen/ops/miopen_convolution_transpose_compositeexplicitautograd_dispatch.h>
373
+ #include <ATen/ops/miopen_depthwise_convolution_compositeexplicitautograd_dispatch.h>
374
+ #include <ATen/ops/miopen_rnn_compositeexplicitautograd_dispatch.h>
375
+ #include <ATen/ops/miopen_rnn_backward_compositeexplicitautograd_dispatch.h>
376
+ #include <ATen/ops/mkldnn_adaptive_avg_pool2d_backward_compositeexplicitautograd_dispatch.h>
377
+ #include <ATen/ops/mkldnn_convolution_compositeexplicitautograd_dispatch.h>
378
+ #include <ATen/ops/mkldnn_linear_compositeexplicitautograd_dispatch.h>
379
+ #include <ATen/ops/mkldnn_linear_backward_compositeexplicitautograd_dispatch.h>
380
+ #include <ATen/ops/mkldnn_linear_backward_input_compositeexplicitautograd_dispatch.h>
381
+ #include <ATen/ops/mkldnn_linear_backward_weights_compositeexplicitautograd_dispatch.h>
382
+ #include <ATen/ops/mkldnn_max_pool2d_compositeexplicitautograd_dispatch.h>
383
+ #include <ATen/ops/mkldnn_max_pool2d_backward_compositeexplicitautograd_dispatch.h>
384
+ #include <ATen/ops/mkldnn_max_pool3d_compositeexplicitautograd_dispatch.h>
385
+ #include <ATen/ops/mkldnn_max_pool3d_backward_compositeexplicitautograd_dispatch.h>
386
+ #include <ATen/ops/mkldnn_reorder_conv2d_weight_compositeexplicitautograd_dispatch.h>
387
+ #include <ATen/ops/mkldnn_reorder_conv3d_weight_compositeexplicitautograd_dispatch.h>
388
+ #include <ATen/ops/mkldnn_rnn_layer_compositeexplicitautograd_dispatch.h>
389
+ #include <ATen/ops/mkldnn_rnn_layer_backward_compositeexplicitautograd_dispatch.h>
390
+ #include <ATen/ops/mode_compositeexplicitautograd_dispatch.h>
391
+ #include <ATen/ops/mps_convolution_backward_compositeexplicitautograd_dispatch.h>
392
+ #include <ATen/ops/mps_convolution_transpose_backward_compositeexplicitautograd_dispatch.h>
393
+ #include <ATen/ops/mul_compositeexplicitautograd_dispatch.h>
394
+ #include <ATen/ops/mv_compositeexplicitautograd_dispatch.h>
395
+ #include <ATen/ops/mvlgamma_compositeexplicitautograd_dispatch.h>
396
+ #include <ATen/ops/nan_to_num_compositeexplicitautograd_dispatch.h>
397
+ #include <ATen/ops/nanmedian_compositeexplicitautograd_dispatch.h>
398
+ #include <ATen/ops/native_batch_norm_backward_compositeexplicitautograd_dispatch.h>
399
+ #include <ATen/ops/native_dropout_compositeexplicitautograd_dispatch.h>
400
+ #include <ATen/ops/native_dropout_backward_compositeexplicitautograd_dispatch.h>
401
+ #include <ATen/ops/native_group_norm_compositeexplicitautograd_dispatch.h>
402
+ #include <ATen/ops/native_group_norm_backward_compositeexplicitautograd_dispatch.h>
403
+ #include <ATen/ops/native_layer_norm_compositeexplicitautograd_dispatch.h>
404
+ #include <ATen/ops/native_layer_norm_backward_compositeexplicitautograd_dispatch.h>
405
+ #include <ATen/ops/native_norm_compositeexplicitautograd_dispatch.h>
406
+ #include <ATen/ops/new_empty_compositeexplicitautograd_dispatch.h>
407
+ #include <ATen/ops/new_empty_strided_compositeexplicitautograd_dispatch.h>
408
+ #include <ATen/ops/new_full_compositeexplicitautograd_dispatch.h>
409
+ #include <ATen/ops/new_ones_compositeexplicitautograd_dispatch.h>
410
+ #include <ATen/ops/new_zeros_compositeexplicitautograd_dispatch.h>
411
+ #include <ATen/ops/norm_compositeexplicitautograd_dispatch.h>
412
+ #include <ATen/ops/normal_compositeexplicitautograd_dispatch.h>
413
+ #include <ATen/ops/ones_compositeexplicitautograd_dispatch.h>
414
+ #include <ATen/ops/ones_like_compositeexplicitautograd_dispatch.h>
415
+ #include <ATen/ops/permute_compositeexplicitautograd_dispatch.h>
416
+ #include <ATen/ops/permute_copy_compositeexplicitautograd_dispatch.h>
417
+ #include <ATen/ops/pixel_shuffle_compositeexplicitautograd_dispatch.h>
418
+ #include <ATen/ops/pixel_unshuffle_compositeexplicitautograd_dispatch.h>
419
+ #include <ATen/ops/poisson_compositeexplicitautograd_dispatch.h>
420
+ #include <ATen/ops/polar_compositeexplicitautograd_dispatch.h>
421
+ #include <ATen/ops/polygamma_compositeexplicitautograd_dispatch.h>
422
+ #include <ATen/ops/prod_compositeexplicitautograd_dispatch.h>
423
+ #include <ATen/ops/put_compositeexplicitautograd_dispatch.h>
424
+ #include <ATen/ops/q_per_channel_scales_compositeexplicitautograd_dispatch.h>
425
+ #include <ATen/ops/q_per_channel_zero_points_compositeexplicitautograd_dispatch.h>
426
+ #include <ATen/ops/quantize_per_channel_compositeexplicitautograd_dispatch.h>
427
+ #include <ATen/ops/quantize_per_tensor_compositeexplicitautograd_dispatch.h>
428
+ #include <ATen/ops/quantize_per_tensor_dynamic_compositeexplicitautograd_dispatch.h>
429
+ #include <ATen/ops/quantized_batch_norm_compositeexplicitautograd_dispatch.h>
430
+ #include <ATen/ops/quantized_max_pool1d_compositeexplicitautograd_dispatch.h>
431
+ #include <ATen/ops/quantized_max_pool2d_compositeexplicitautograd_dispatch.h>
432
+ #include <ATen/ops/quantized_max_pool3d_compositeexplicitautograd_dispatch.h>
433
+ #include <ATen/ops/rad2deg_compositeexplicitautograd_dispatch.h>
434
+ #include <ATen/ops/rand_compositeexplicitautograd_dispatch.h>
435
+ #include <ATen/ops/rand_like_compositeexplicitautograd_dispatch.h>
436
+ #include <ATen/ops/randint_compositeexplicitautograd_dispatch.h>
437
+ #include <ATen/ops/randint_like_compositeexplicitautograd_dispatch.h>
438
+ #include <ATen/ops/randn_compositeexplicitautograd_dispatch.h>
439
+ #include <ATen/ops/randn_like_compositeexplicitautograd_dispatch.h>
440
+ #include <ATen/ops/random_compositeexplicitautograd_dispatch.h>
441
+ #include <ATen/ops/randperm_compositeexplicitautograd_dispatch.h>
442
+ #include <ATen/ops/range_compositeexplicitautograd_dispatch.h>
443
+ #include <ATen/ops/relu_compositeexplicitautograd_dispatch.h>
444
+ #include <ATen/ops/remainder_compositeexplicitautograd_dispatch.h>
445
+ #include <ATen/ops/repeat_compositeexplicitautograd_dispatch.h>
446
+ #include <ATen/ops/repeat_interleave_compositeexplicitautograd_dispatch.h>
447
+ #include <ATen/ops/resize_compositeexplicitautograd_dispatch.h>
448
+ #include <ATen/ops/resize_as_compositeexplicitautograd_dispatch.h>
449
+ #include <ATen/ops/resize_as_sparse_compositeexplicitautograd_dispatch.h>
450
+ #include <ATen/ops/roll_compositeexplicitautograd_dispatch.h>
451
+ #include <ATen/ops/rot90_compositeexplicitautograd_dispatch.h>
452
+ #include <ATen/ops/row_indices_compositeexplicitautograd_dispatch.h>
453
+ #include <ATen/ops/row_indices_copy_compositeexplicitautograd_dispatch.h>
454
+ #include <ATen/ops/rrelu_with_noise_backward_compositeexplicitautograd_dispatch.h>
455
+ #include <ATen/ops/rshift_compositeexplicitautograd_dispatch.h>
456
+ #include <ATen/ops/rsub_compositeexplicitautograd_dispatch.h>
457
+ #include <ATen/ops/scalar_tensor_compositeexplicitautograd_dispatch.h>
458
+ #include <ATen/ops/segment_reduce_compositeexplicitautograd_dispatch.h>
459
+ #include <ATen/ops/select_compositeexplicitautograd_dispatch.h>
460
+ #include <ATen/ops/select_backward_compositeexplicitautograd_dispatch.h>
461
+ #include <ATen/ops/select_copy_compositeexplicitautograd_dispatch.h>
462
+ #include <ATen/ops/select_scatter_compositeexplicitautograd_dispatch.h>
463
+ #include <ATen/ops/set_compositeexplicitautograd_dispatch.h>
464
+ #include <ATen/ops/slice_compositeexplicitautograd_dispatch.h>
465
+ #include <ATen/ops/slice_backward_compositeexplicitautograd_dispatch.h>
466
+ #include <ATen/ops/slice_copy_compositeexplicitautograd_dispatch.h>
467
+ #include <ATen/ops/slice_inverse_compositeexplicitautograd_dispatch.h>
468
+ #include <ATen/ops/slice_scatter_compositeexplicitautograd_dispatch.h>
469
+ #include <ATen/ops/slow_conv_dilated2d_compositeexplicitautograd_dispatch.h>
470
+ #include <ATen/ops/slow_conv_dilated3d_compositeexplicitautograd_dispatch.h>
471
+ #include <ATen/ops/smooth_l1_loss_backward_compositeexplicitautograd_dispatch.h>
472
+ #include <ATen/ops/soft_margin_loss_compositeexplicitautograd_dispatch.h>
473
+ #include <ATen/ops/soft_margin_loss_backward_compositeexplicitautograd_dispatch.h>
474
+ #include <ATen/ops/softmax_compositeexplicitautograd_dispatch.h>
475
+ #include <ATen/ops/sort_compositeexplicitautograd_dispatch.h>
476
+ #include <ATen/ops/sparse_compressed_tensor_compositeexplicitautograd_dispatch.h>
477
+ #include <ATen/ops/sparse_coo_tensor_compositeexplicitautograd_dispatch.h>
478
+ #include <ATen/ops/sparse_mask_compositeexplicitautograd_dispatch.h>
479
+ #include <ATen/ops/sparse_resize_compositeexplicitautograd_dispatch.h>
480
+ #include <ATen/ops/sparse_resize_and_clear_compositeexplicitautograd_dispatch.h>
481
+ #include <ATen/ops/special_chebyshev_polynomial_t_compositeexplicitautograd_dispatch.h>
482
+ #include <ATen/ops/special_chebyshev_polynomial_u_compositeexplicitautograd_dispatch.h>
483
+ #include <ATen/ops/special_chebyshev_polynomial_v_compositeexplicitautograd_dispatch.h>
484
+ #include <ATen/ops/special_chebyshev_polynomial_w_compositeexplicitautograd_dispatch.h>
485
+ #include <ATen/ops/special_hermite_polynomial_h_compositeexplicitautograd_dispatch.h>
486
+ #include <ATen/ops/special_hermite_polynomial_he_compositeexplicitautograd_dispatch.h>
487
+ #include <ATen/ops/special_laguerre_polynomial_l_compositeexplicitautograd_dispatch.h>
488
+ #include <ATen/ops/special_legendre_polynomial_p_compositeexplicitautograd_dispatch.h>
489
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_t_compositeexplicitautograd_dispatch.h>
490
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_u_compositeexplicitautograd_dispatch.h>
491
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_v_compositeexplicitautograd_dispatch.h>
492
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_w_compositeexplicitautograd_dispatch.h>
493
+ #include <ATen/ops/special_xlog1py_compositeexplicitautograd_dispatch.h>
494
+ #include <ATen/ops/special_zeta_compositeexplicitautograd_dispatch.h>
495
+ #include <ATen/ops/split_compositeexplicitautograd_dispatch.h>
496
+ #include <ATen/ops/split_copy_compositeexplicitautograd_dispatch.h>
497
+ #include <ATen/ops/split_with_sizes_compositeexplicitautograd_dispatch.h>
498
+ #include <ATen/ops/split_with_sizes_copy_compositeexplicitautograd_dispatch.h>
499
+ #include <ATen/ops/squeeze_compositeexplicitautograd_dispatch.h>
500
+ #include <ATen/ops/squeeze_copy_compositeexplicitautograd_dispatch.h>
501
+ #include <ATen/ops/stack_compositeexplicitautograd_dispatch.h>
502
+ #include <ATen/ops/std_mean_compositeexplicitautograd_dispatch.h>
503
+ #include <ATen/ops/sub_compositeexplicitautograd_dispatch.h>
504
+ #include <ATen/ops/sum_compositeexplicitautograd_dispatch.h>
505
+ #include <ATen/ops/sym_constrain_range_compositeexplicitautograd_dispatch.h>
506
+ #include <ATen/ops/sym_constrain_range_for_size_compositeexplicitautograd_dispatch.h>
507
+ #include <ATen/ops/t_compositeexplicitautograd_dispatch.h>
508
+ #include <ATen/ops/t_copy_compositeexplicitautograd_dispatch.h>
509
+ #include <ATen/ops/to_mkldnn_compositeexplicitautograd_dispatch.h>
510
+ #include <ATen/ops/to_padded_tensor_compositeexplicitautograd_dispatch.h>
511
+ #include <ATen/ops/trace_compositeexplicitautograd_dispatch.h>
512
+ #include <ATen/ops/transpose_compositeexplicitautograd_dispatch.h>
513
+ #include <ATen/ops/transpose_copy_compositeexplicitautograd_dispatch.h>
514
+ #include <ATen/ops/tril_indices_compositeexplicitautograd_dispatch.h>
515
+ #include <ATen/ops/triu_indices_compositeexplicitautograd_dispatch.h>
516
+ #include <ATen/ops/unbind_compositeexplicitautograd_dispatch.h>
517
+ #include <ATen/ops/unbind_copy_compositeexplicitautograd_dispatch.h>
518
+ #include <ATen/ops/unfold_backward_compositeexplicitautograd_dispatch.h>
519
+ #include <ATen/ops/unfold_copy_compositeexplicitautograd_dispatch.h>
520
+ #include <ATen/ops/uniform_compositeexplicitautograd_dispatch.h>
521
+ #include <ATen/ops/unique_consecutive_compositeexplicitautograd_dispatch.h>
522
+ #include <ATen/ops/unique_dim_compositeexplicitautograd_dispatch.h>
523
+ #include <ATen/ops/unique_dim_consecutive_compositeexplicitautograd_dispatch.h>
524
+ #include <ATen/ops/unsafe_split_compositeexplicitautograd_dispatch.h>
525
+ #include <ATen/ops/unsafe_split_with_sizes_compositeexplicitautograd_dispatch.h>
526
+ #include <ATen/ops/unsqueeze_compositeexplicitautograd_dispatch.h>
527
+ #include <ATen/ops/unsqueeze_copy_compositeexplicitautograd_dispatch.h>
528
+ #include <ATen/ops/values_compositeexplicitautograd_dispatch.h>
529
+ #include <ATen/ops/values_copy_compositeexplicitautograd_dispatch.h>
530
+ #include <ATen/ops/var_mean_compositeexplicitautograd_dispatch.h>
531
+ #include <ATen/ops/vdot_compositeexplicitautograd_dispatch.h>
532
+ #include <ATen/ops/view_compositeexplicitautograd_dispatch.h>
533
+ #include <ATen/ops/view_as_complex_copy_compositeexplicitautograd_dispatch.h>
534
+ #include <ATen/ops/view_as_real_copy_compositeexplicitautograd_dispatch.h>
535
+ #include <ATen/ops/view_copy_compositeexplicitautograd_dispatch.h>
536
+ #include <ATen/ops/xlogy_compositeexplicitautograd_dispatch.h>
537
+ #include <ATen/ops/zero_compositeexplicitautograd_dispatch.h>
538
+ #include <ATen/ops/zeros_compositeexplicitautograd_dispatch.h>
539
+ #include <ATen/ops/zeros_like_compositeexplicitautograd_dispatch.h>
540
+
541
+
542
+
venv/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradNonFunctionalFunctions_inl.h ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunctions_inl.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ #if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
12
+ #error This change adds a dependency on all pytorch operators, meaning the \
13
+ file will need to be re-compiled every time an operator is changed or added. \
14
+ Consider including a specific operator from \
15
+ <ATen/ops/{my_operator}_compositeexplicitautogradnonfunctional_dispatch.h>. \
16
+ See NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
17
+ #endif
18
+
19
+ #include <ATen/ops/_addmm_activation_compositeexplicitautogradnonfunctional_dispatch.h>
20
+ #include <ATen/ops/_conj_copy_compositeexplicitautogradnonfunctional_dispatch.h>
21
+ #include <ATen/ops/_convert_indices_from_coo_to_csr_compositeexplicitautogradnonfunctional_dispatch.h>
22
+ #include <ATen/ops/_convert_indices_from_csr_to_coo_compositeexplicitautogradnonfunctional_dispatch.h>
23
+ #include <ATen/ops/_fw_primal_copy_compositeexplicitautogradnonfunctional_dispatch.h>
24
+ #include <ATen/ops/_indices_copy_compositeexplicitautogradnonfunctional_dispatch.h>
25
+ #include <ATen/ops/_linalg_det_compositeexplicitautogradnonfunctional_dispatch.h>
26
+ #include <ATen/ops/_linalg_eigh_compositeexplicitautogradnonfunctional_dispatch.h>
27
+ #include <ATen/ops/_linalg_slogdet_compositeexplicitautogradnonfunctional_dispatch.h>
28
+ #include <ATen/ops/_linalg_solve_ex_compositeexplicitautogradnonfunctional_dispatch.h>
29
+ #include <ATen/ops/_linalg_svd_compositeexplicitautogradnonfunctional_dispatch.h>
30
+ #include <ATen/ops/_log_softmax_compositeexplicitautogradnonfunctional_dispatch.h>
31
+ #include <ATen/ops/_log_softmax_backward_data_compositeexplicitautogradnonfunctional_dispatch.h>
32
+ #include <ATen/ops/_make_dual_copy_compositeexplicitautogradnonfunctional_dispatch.h>
33
+ #include <ATen/ops/_neg_view_copy_compositeexplicitautogradnonfunctional_dispatch.h>
34
+ #include <ATen/ops/_nested_get_values_copy_compositeexplicitautogradnonfunctional_dispatch.h>
35
+ #include <ATen/ops/_nested_view_from_buffer_copy_compositeexplicitautogradnonfunctional_dispatch.h>
36
+ #include <ATen/ops/_nested_view_from_jagged_copy_compositeexplicitautogradnonfunctional_dispatch.h>
37
+ #include <ATen/ops/_reshape_alias_copy_compositeexplicitautogradnonfunctional_dispatch.h>
38
+ #include <ATen/ops/_softmax_compositeexplicitautogradnonfunctional_dispatch.h>
39
+ #include <ATen/ops/_softmax_backward_data_compositeexplicitautogradnonfunctional_dispatch.h>
40
+ #include <ATen/ops/_sparse_broadcast_to_copy_compositeexplicitautogradnonfunctional_dispatch.h>
41
+ #include <ATen/ops/_test_autograd_multiple_dispatch_view_copy_compositeexplicitautogradnonfunctional_dispatch.h>
42
+ #include <ATen/ops/_trilinear_compositeexplicitautogradnonfunctional_dispatch.h>
43
+ #include <ATen/ops/_upsample_bicubic2d_aa_compositeexplicitautogradnonfunctional_dispatch.h>
44
+ #include <ATen/ops/_upsample_bicubic2d_aa_backward_compositeexplicitautogradnonfunctional_dispatch.h>
45
+ #include <ATen/ops/_upsample_bilinear2d_aa_compositeexplicitautogradnonfunctional_dispatch.h>
46
+ #include <ATen/ops/_upsample_bilinear2d_aa_backward_compositeexplicitautogradnonfunctional_dispatch.h>
47
+ #include <ATen/ops/_upsample_nearest_exact1d_compositeexplicitautogradnonfunctional_dispatch.h>
48
+ #include <ATen/ops/_upsample_nearest_exact1d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
49
+ #include <ATen/ops/_upsample_nearest_exact2d_compositeexplicitautogradnonfunctional_dispatch.h>
50
+ #include <ATen/ops/_upsample_nearest_exact2d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
51
+ #include <ATen/ops/_upsample_nearest_exact3d_compositeexplicitautogradnonfunctional_dispatch.h>
52
+ #include <ATen/ops/_upsample_nearest_exact3d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
53
+ #include <ATen/ops/_values_copy_compositeexplicitautogradnonfunctional_dispatch.h>
54
+ #include <ATen/ops/acos_compositeexplicitautogradnonfunctional_dispatch.h>
55
+ #include <ATen/ops/acosh_compositeexplicitautogradnonfunctional_dispatch.h>
56
+ #include <ATen/ops/adaptive_max_pool2d_compositeexplicitautogradnonfunctional_dispatch.h>
57
+ #include <ATen/ops/adaptive_max_pool2d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
58
+ #include <ATen/ops/adaptive_max_pool3d_compositeexplicitautogradnonfunctional_dispatch.h>
59
+ #include <ATen/ops/adaptive_max_pool3d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
60
+ #include <ATen/ops/add_compositeexplicitautogradnonfunctional_dispatch.h>
61
+ #include <ATen/ops/addcdiv_compositeexplicitautogradnonfunctional_dispatch.h>
62
+ #include <ATen/ops/addcmul_compositeexplicitautogradnonfunctional_dispatch.h>
63
+ #include <ATen/ops/addmm_compositeexplicitautogradnonfunctional_dispatch.h>
64
+ #include <ATen/ops/addmv_compositeexplicitautogradnonfunctional_dispatch.h>
65
+ #include <ATen/ops/alias_copy_compositeexplicitautogradnonfunctional_dispatch.h>
66
+ #include <ATen/ops/all_compositeexplicitautogradnonfunctional_dispatch.h>
67
+ #include <ATen/ops/amax_compositeexplicitautogradnonfunctional_dispatch.h>
68
+ #include <ATen/ops/amin_compositeexplicitautogradnonfunctional_dispatch.h>
69
+ #include <ATen/ops/aminmax_compositeexplicitautogradnonfunctional_dispatch.h>
70
+ #include <ATen/ops/any_compositeexplicitautogradnonfunctional_dispatch.h>
71
+ #include <ATen/ops/argmax_compositeexplicitautogradnonfunctional_dispatch.h>
72
+ #include <ATen/ops/argmin_compositeexplicitautogradnonfunctional_dispatch.h>
73
+ #include <ATen/ops/as_strided_compositeexplicitautogradnonfunctional_dispatch.h>
74
+ #include <ATen/ops/as_strided_copy_compositeexplicitautogradnonfunctional_dispatch.h>
75
+ #include <ATen/ops/as_strided_scatter_compositeexplicitautogradnonfunctional_dispatch.h>
76
+ #include <ATen/ops/asin_compositeexplicitautogradnonfunctional_dispatch.h>
77
+ #include <ATen/ops/asinh_compositeexplicitautogradnonfunctional_dispatch.h>
78
+ #include <ATen/ops/atan_compositeexplicitautogradnonfunctional_dispatch.h>
79
+ #include <ATen/ops/atan2_compositeexplicitautogradnonfunctional_dispatch.h>
80
+ #include <ATen/ops/atanh_compositeexplicitautogradnonfunctional_dispatch.h>
81
+ #include <ATen/ops/avg_pool2d_compositeexplicitautogradnonfunctional_dispatch.h>
82
+ #include <ATen/ops/avg_pool2d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
83
+ #include <ATen/ops/avg_pool3d_compositeexplicitautogradnonfunctional_dispatch.h>
84
+ #include <ATen/ops/avg_pool3d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
85
+ #include <ATen/ops/baddbmm_compositeexplicitautogradnonfunctional_dispatch.h>
86
+ #include <ATen/ops/bernoulli_compositeexplicitautogradnonfunctional_dispatch.h>
87
+ #include <ATen/ops/bitwise_and_compositeexplicitautogradnonfunctional_dispatch.h>
88
+ #include <ATen/ops/bitwise_left_shift_compositeexplicitautogradnonfunctional_dispatch.h>
89
+ #include <ATen/ops/bitwise_not_compositeexplicitautogradnonfunctional_dispatch.h>
90
+ #include <ATen/ops/bitwise_or_compositeexplicitautogradnonfunctional_dispatch.h>
91
+ #include <ATen/ops/bitwise_right_shift_compositeexplicitautogradnonfunctional_dispatch.h>
92
+ #include <ATen/ops/bitwise_xor_compositeexplicitautogradnonfunctional_dispatch.h>
93
+ #include <ATen/ops/bmm_compositeexplicitautogradnonfunctional_dispatch.h>
94
+ #include <ATen/ops/cat_compositeexplicitautogradnonfunctional_dispatch.h>
95
+ #include <ATen/ops/ccol_indices_copy_compositeexplicitautogradnonfunctional_dispatch.h>
96
+ #include <ATen/ops/ceil_compositeexplicitautogradnonfunctional_dispatch.h>
97
+ #include <ATen/ops/clamp_compositeexplicitautogradnonfunctional_dispatch.h>
98
+ #include <ATen/ops/clamp_max_compositeexplicitautogradnonfunctional_dispatch.h>
99
+ #include <ATen/ops/clamp_min_compositeexplicitautogradnonfunctional_dispatch.h>
100
+ #include <ATen/ops/col_indices_copy_compositeexplicitautogradnonfunctional_dispatch.h>
101
+ #include <ATen/ops/copy_compositeexplicitautogradnonfunctional_dispatch.h>
102
+ #include <ATen/ops/copysign_compositeexplicitautogradnonfunctional_dispatch.h>
103
+ #include <ATen/ops/cos_compositeexplicitautogradnonfunctional_dispatch.h>
104
+ #include <ATen/ops/cosh_compositeexplicitautogradnonfunctional_dispatch.h>
105
+ #include <ATen/ops/crow_indices_copy_compositeexplicitautogradnonfunctional_dispatch.h>
106
+ #include <ATen/ops/cumprod_compositeexplicitautogradnonfunctional_dispatch.h>
107
+ #include <ATen/ops/cumsum_compositeexplicitautogradnonfunctional_dispatch.h>
108
+ #include <ATen/ops/detach_copy_compositeexplicitautogradnonfunctional_dispatch.h>
109
+ #include <ATen/ops/diag_embed_compositeexplicitautogradnonfunctional_dispatch.h>
110
+ #include <ATen/ops/diagonal_copy_compositeexplicitautogradnonfunctional_dispatch.h>
111
+ #include <ATen/ops/diagonal_scatter_compositeexplicitautogradnonfunctional_dispatch.h>
112
+ #include <ATen/ops/digamma_compositeexplicitautogradnonfunctional_dispatch.h>
113
+ #include <ATen/ops/div_compositeexplicitautogradnonfunctional_dispatch.h>
114
+ #include <ATen/ops/elu_compositeexplicitautogradnonfunctional_dispatch.h>
115
+ #include <ATen/ops/elu_backward_compositeexplicitautogradnonfunctional_dispatch.h>
116
+ #include <ATen/ops/eq_compositeexplicitautogradnonfunctional_dispatch.h>
117
+ #include <ATen/ops/erf_compositeexplicitautogradnonfunctional_dispatch.h>
118
+ #include <ATen/ops/erfc_compositeexplicitautogradnonfunctional_dispatch.h>
119
+ #include <ATen/ops/erfinv_compositeexplicitautogradnonfunctional_dispatch.h>
120
+ #include <ATen/ops/exp_compositeexplicitautogradnonfunctional_dispatch.h>
121
+ #include <ATen/ops/exp2_compositeexplicitautogradnonfunctional_dispatch.h>
122
+ #include <ATen/ops/expand_copy_compositeexplicitautogradnonfunctional_dispatch.h>
123
+ #include <ATen/ops/expm1_compositeexplicitautogradnonfunctional_dispatch.h>
124
+ #include <ATen/ops/floor_compositeexplicitautogradnonfunctional_dispatch.h>
125
+ #include <ATen/ops/fmax_compositeexplicitautogradnonfunctional_dispatch.h>
126
+ #include <ATen/ops/fmin_compositeexplicitautogradnonfunctional_dispatch.h>
127
+ #include <ATen/ops/fmod_compositeexplicitautogradnonfunctional_dispatch.h>
128
+ #include <ATen/ops/frac_compositeexplicitautogradnonfunctional_dispatch.h>
129
+ #include <ATen/ops/fractional_max_pool2d_compositeexplicitautogradnonfunctional_dispatch.h>
130
+ #include <ATen/ops/fractional_max_pool2d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
131
+ #include <ATen/ops/fractional_max_pool3d_compositeexplicitautogradnonfunctional_dispatch.h>
132
+ #include <ATen/ops/gather_compositeexplicitautogradnonfunctional_dispatch.h>
133
+ #include <ATen/ops/gcd_compositeexplicitautogradnonfunctional_dispatch.h>
134
+ #include <ATen/ops/ge_compositeexplicitautogradnonfunctional_dispatch.h>
135
+ #include <ATen/ops/gelu_compositeexplicitautogradnonfunctional_dispatch.h>
136
+ #include <ATen/ops/gelu_backward_compositeexplicitautogradnonfunctional_dispatch.h>
137
+ #include <ATen/ops/glu_compositeexplicitautogradnonfunctional_dispatch.h>
138
+ #include <ATen/ops/gt_compositeexplicitautogradnonfunctional_dispatch.h>
139
+ #include <ATen/ops/hardshrink_compositeexplicitautogradnonfunctional_dispatch.h>
140
+ #include <ATen/ops/hardshrink_backward_compositeexplicitautogradnonfunctional_dispatch.h>
141
+ #include <ATen/ops/hardsigmoid_compositeexplicitautogradnonfunctional_dispatch.h>
142
+ #include <ATen/ops/hardsigmoid_backward_compositeexplicitautogradnonfunctional_dispatch.h>
143
+ #include <ATen/ops/heaviside_compositeexplicitautogradnonfunctional_dispatch.h>
144
+ #include <ATen/ops/hypot_compositeexplicitautogradnonfunctional_dispatch.h>
145
+ #include <ATen/ops/i0_compositeexplicitautogradnonfunctional_dispatch.h>
146
+ #include <ATen/ops/igamma_compositeexplicitautogradnonfunctional_dispatch.h>
147
+ #include <ATen/ops/igammac_compositeexplicitautogradnonfunctional_dispatch.h>
148
+ #include <ATen/ops/index_compositeexplicitautogradnonfunctional_dispatch.h>
149
+ #include <ATen/ops/index_add_compositeexplicitautogradnonfunctional_dispatch.h>
150
+ #include <ATen/ops/index_copy_compositeexplicitautogradnonfunctional_dispatch.h>
151
+ #include <ATen/ops/index_reduce_compositeexplicitautogradnonfunctional_dispatch.h>
152
+ #include <ATen/ops/indices_copy_compositeexplicitautogradnonfunctional_dispatch.h>
153
+ #include <ATen/ops/isin_compositeexplicitautogradnonfunctional_dispatch.h>
154
+ #include <ATen/ops/isneginf_compositeexplicitautogradnonfunctional_dispatch.h>
155
+ #include <ATen/ops/isposinf_compositeexplicitautogradnonfunctional_dispatch.h>
156
+ #include <ATen/ops/lcm_compositeexplicitautogradnonfunctional_dispatch.h>
157
+ #include <ATen/ops/le_compositeexplicitautogradnonfunctional_dispatch.h>
158
+ #include <ATen/ops/leaky_relu_compositeexplicitautogradnonfunctional_dispatch.h>
159
+ #include <ATen/ops/leaky_relu_backward_compositeexplicitautogradnonfunctional_dispatch.h>
160
+ #include <ATen/ops/lerp_compositeexplicitautogradnonfunctional_dispatch.h>
161
+ #include <ATen/ops/lgamma_compositeexplicitautogradnonfunctional_dispatch.h>
162
+ #include <ATen/ops/lift_fresh_copy_compositeexplicitautogradnonfunctional_dispatch.h>
163
+ #include <ATen/ops/linalg_cholesky_ex_compositeexplicitautogradnonfunctional_dispatch.h>
164
+ #include <ATen/ops/linalg_cross_compositeexplicitautogradnonfunctional_dispatch.h>
165
+ #include <ATen/ops/linalg_inv_ex_compositeexplicitautogradnonfunctional_dispatch.h>
166
+ #include <ATen/ops/linalg_ldl_factor_ex_compositeexplicitautogradnonfunctional_dispatch.h>
167
+ #include <ATen/ops/linalg_ldl_solve_compositeexplicitautogradnonfunctional_dispatch.h>
168
+ #include <ATen/ops/linalg_lu_compositeexplicitautogradnonfunctional_dispatch.h>
169
+ #include <ATen/ops/linalg_lu_factor_ex_compositeexplicitautogradnonfunctional_dispatch.h>
170
+ #include <ATen/ops/linalg_lu_solve_compositeexplicitautogradnonfunctional_dispatch.h>
171
+ #include <ATen/ops/linalg_pinv_compositeexplicitautogradnonfunctional_dispatch.h>
172
+ #include <ATen/ops/linalg_qr_compositeexplicitautogradnonfunctional_dispatch.h>
173
+ #include <ATen/ops/linalg_vector_norm_compositeexplicitautogradnonfunctional_dispatch.h>
174
+ #include <ATen/ops/log_compositeexplicitautogradnonfunctional_dispatch.h>
175
+ #include <ATen/ops/log10_compositeexplicitautogradnonfunctional_dispatch.h>
176
+ #include <ATen/ops/log1p_compositeexplicitautogradnonfunctional_dispatch.h>
177
+ #include <ATen/ops/log2_compositeexplicitautogradnonfunctional_dispatch.h>
178
+ #include <ATen/ops/logaddexp_compositeexplicitautogradnonfunctional_dispatch.h>
179
+ #include <ATen/ops/logaddexp2_compositeexplicitautogradnonfunctional_dispatch.h>
180
+ #include <ATen/ops/logit_backward_compositeexplicitautogradnonfunctional_dispatch.h>
181
+ #include <ATen/ops/logsumexp_compositeexplicitautogradnonfunctional_dispatch.h>
182
+ #include <ATen/ops/lt_compositeexplicitautogradnonfunctional_dispatch.h>
183
+ #include <ATen/ops/lu_unpack_compositeexplicitautogradnonfunctional_dispatch.h>
184
+ #include <ATen/ops/max_compositeexplicitautogradnonfunctional_dispatch.h>
185
+ #include <ATen/ops/max_pool2d_with_indices_compositeexplicitautogradnonfunctional_dispatch.h>
186
+ #include <ATen/ops/max_pool2d_with_indices_backward_compositeexplicitautogradnonfunctional_dispatch.h>
187
+ #include <ATen/ops/maximum_compositeexplicitautogradnonfunctional_dispatch.h>
188
+ #include <ATen/ops/mean_compositeexplicitautogradnonfunctional_dispatch.h>
189
+ #include <ATen/ops/min_compositeexplicitautogradnonfunctional_dispatch.h>
190
+ #include <ATen/ops/minimum_compositeexplicitautogradnonfunctional_dispatch.h>
191
+ #include <ATen/ops/mish_compositeexplicitautogradnonfunctional_dispatch.h>
192
+ #include <ATen/ops/mm_compositeexplicitautogradnonfunctional_dispatch.h>
193
+ #include <ATen/ops/mse_loss_compositeexplicitautogradnonfunctional_dispatch.h>
194
+ #include <ATen/ops/mul_compositeexplicitautogradnonfunctional_dispatch.h>
195
+ #include <ATen/ops/narrow_copy_compositeexplicitautogradnonfunctional_dispatch.h>
196
+ #include <ATen/ops/ne_compositeexplicitautogradnonfunctional_dispatch.h>
197
+ #include <ATen/ops/neg_compositeexplicitautogradnonfunctional_dispatch.h>
198
+ #include <ATen/ops/new_empty_strided_compositeexplicitautogradnonfunctional_dispatch.h>
199
+ #include <ATen/ops/nextafter_compositeexplicitautogradnonfunctional_dispatch.h>
200
+ #include <ATen/ops/nll_loss_backward_compositeexplicitautogradnonfunctional_dispatch.h>
201
+ #include <ATen/ops/nll_loss_forward_compositeexplicitautogradnonfunctional_dispatch.h>
202
+ #include <ATen/ops/norm_compositeexplicitautogradnonfunctional_dispatch.h>
203
+ #include <ATen/ops/permute_copy_compositeexplicitautogradnonfunctional_dispatch.h>
204
+ #include <ATen/ops/pixel_shuffle_compositeexplicitautogradnonfunctional_dispatch.h>
205
+ #include <ATen/ops/pixel_unshuffle_compositeexplicitautogradnonfunctional_dispatch.h>
206
+ #include <ATen/ops/polygamma_compositeexplicitautogradnonfunctional_dispatch.h>
207
+ #include <ATen/ops/pow_compositeexplicitautogradnonfunctional_dispatch.h>
208
+ #include <ATen/ops/prod_compositeexplicitautogradnonfunctional_dispatch.h>
209
+ #include <ATen/ops/reciprocal_compositeexplicitautogradnonfunctional_dispatch.h>
210
+ #include <ATen/ops/reflection_pad1d_compositeexplicitautogradnonfunctional_dispatch.h>
211
+ #include <ATen/ops/reflection_pad1d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
212
+ #include <ATen/ops/reflection_pad3d_compositeexplicitautogradnonfunctional_dispatch.h>
213
+ #include <ATen/ops/reflection_pad3d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
214
+ #include <ATen/ops/remainder_compositeexplicitautogradnonfunctional_dispatch.h>
215
+ #include <ATen/ops/renorm_compositeexplicitautogradnonfunctional_dispatch.h>
216
+ #include <ATen/ops/replication_pad1d_compositeexplicitautogradnonfunctional_dispatch.h>
217
+ #include <ATen/ops/replication_pad1d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
218
+ #include <ATen/ops/replication_pad2d_compositeexplicitautogradnonfunctional_dispatch.h>
219
+ #include <ATen/ops/replication_pad3d_compositeexplicitautogradnonfunctional_dispatch.h>
220
+ #include <ATen/ops/round_compositeexplicitautogradnonfunctional_dispatch.h>
221
+ #include <ATen/ops/row_indices_copy_compositeexplicitautogradnonfunctional_dispatch.h>
222
+ #include <ATen/ops/rsqrt_compositeexplicitautogradnonfunctional_dispatch.h>
223
+ #include <ATen/ops/scatter_compositeexplicitautogradnonfunctional_dispatch.h>
224
+ #include <ATen/ops/scatter_add_compositeexplicitautogradnonfunctional_dispatch.h>
225
+ #include <ATen/ops/scatter_reduce_compositeexplicitautogradnonfunctional_dispatch.h>
226
+ #include <ATen/ops/select_backward_compositeexplicitautogradnonfunctional_dispatch.h>
227
+ #include <ATen/ops/select_copy_compositeexplicitautogradnonfunctional_dispatch.h>
228
+ #include <ATen/ops/select_scatter_compositeexplicitautogradnonfunctional_dispatch.h>
229
+ #include <ATen/ops/sgn_compositeexplicitautogradnonfunctional_dispatch.h>
230
+ #include <ATen/ops/sigmoid_compositeexplicitautogradnonfunctional_dispatch.h>
231
+ #include <ATen/ops/sigmoid_backward_compositeexplicitautogradnonfunctional_dispatch.h>
232
+ #include <ATen/ops/sign_compositeexplicitautogradnonfunctional_dispatch.h>
233
+ #include <ATen/ops/signbit_compositeexplicitautogradnonfunctional_dispatch.h>
234
+ #include <ATen/ops/silu_compositeexplicitautogradnonfunctional_dispatch.h>
235
+ #include <ATen/ops/silu_backward_compositeexplicitautogradnonfunctional_dispatch.h>
236
+ #include <ATen/ops/sin_compositeexplicitautogradnonfunctional_dispatch.h>
237
+ #include <ATen/ops/sinc_compositeexplicitautogradnonfunctional_dispatch.h>
238
+ #include <ATen/ops/sinh_compositeexplicitautogradnonfunctional_dispatch.h>
239
+ #include <ATen/ops/slice_copy_compositeexplicitautogradnonfunctional_dispatch.h>
240
+ #include <ATen/ops/slice_scatter_compositeexplicitautogradnonfunctional_dispatch.h>
241
+ #include <ATen/ops/slow_conv_transpose2d_compositeexplicitautogradnonfunctional_dispatch.h>
242
+ #include <ATen/ops/smooth_l1_loss_compositeexplicitautogradnonfunctional_dispatch.h>
243
+ #include <ATen/ops/softplus_compositeexplicitautogradnonfunctional_dispatch.h>
244
+ #include <ATen/ops/softplus_backward_compositeexplicitautogradnonfunctional_dispatch.h>
245
+ #include <ATen/ops/softshrink_compositeexplicitautogradnonfunctional_dispatch.h>
246
+ #include <ATen/ops/softshrink_backward_compositeexplicitautogradnonfunctional_dispatch.h>
247
+ #include <ATen/ops/sort_compositeexplicitautogradnonfunctional_dispatch.h>
248
+ #include <ATen/ops/special_airy_ai_compositeexplicitautogradnonfunctional_dispatch.h>
249
+ #include <ATen/ops/special_bessel_j0_compositeexplicitautogradnonfunctional_dispatch.h>
250
+ #include <ATen/ops/special_bessel_j1_compositeexplicitautogradnonfunctional_dispatch.h>
251
+ #include <ATen/ops/special_bessel_y0_compositeexplicitautogradnonfunctional_dispatch.h>
252
+ #include <ATen/ops/special_bessel_y1_compositeexplicitautogradnonfunctional_dispatch.h>
253
+ #include <ATen/ops/special_chebyshev_polynomial_t_compositeexplicitautogradnonfunctional_dispatch.h>
254
+ #include <ATen/ops/special_chebyshev_polynomial_u_compositeexplicitautogradnonfunctional_dispatch.h>
255
+ #include <ATen/ops/special_chebyshev_polynomial_v_compositeexplicitautogradnonfunctional_dispatch.h>
256
+ #include <ATen/ops/special_chebyshev_polynomial_w_compositeexplicitautogradnonfunctional_dispatch.h>
257
+ #include <ATen/ops/special_entr_compositeexplicitautogradnonfunctional_dispatch.h>
258
+ #include <ATen/ops/special_erfcx_compositeexplicitautogradnonfunctional_dispatch.h>
259
+ #include <ATen/ops/special_hermite_polynomial_h_compositeexplicitautogradnonfunctional_dispatch.h>
260
+ #include <ATen/ops/special_hermite_polynomial_he_compositeexplicitautogradnonfunctional_dispatch.h>
261
+ #include <ATen/ops/special_i0e_compositeexplicitautogradnonfunctional_dispatch.h>
262
+ #include <ATen/ops/special_i1_compositeexplicitautogradnonfunctional_dispatch.h>
263
+ #include <ATen/ops/special_i1e_compositeexplicitautogradnonfunctional_dispatch.h>
264
+ #include <ATen/ops/special_laguerre_polynomial_l_compositeexplicitautogradnonfunctional_dispatch.h>
265
+ #include <ATen/ops/special_legendre_polynomial_p_compositeexplicitautogradnonfunctional_dispatch.h>
266
+ #include <ATen/ops/special_log_ndtr_compositeexplicitautogradnonfunctional_dispatch.h>
267
+ #include <ATen/ops/special_modified_bessel_i0_compositeexplicitautogradnonfunctional_dispatch.h>
268
+ #include <ATen/ops/special_modified_bessel_i1_compositeexplicitautogradnonfunctional_dispatch.h>
269
+ #include <ATen/ops/special_modified_bessel_k0_compositeexplicitautogradnonfunctional_dispatch.h>
270
+ #include <ATen/ops/special_modified_bessel_k1_compositeexplicitautogradnonfunctional_dispatch.h>
271
+ #include <ATen/ops/special_ndtri_compositeexplicitautogradnonfunctional_dispatch.h>
272
+ #include <ATen/ops/special_scaled_modified_bessel_k0_compositeexplicitautogradnonfunctional_dispatch.h>
273
+ #include <ATen/ops/special_scaled_modified_bessel_k1_compositeexplicitautogradnonfunctional_dispatch.h>
274
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_t_compositeexplicitautogradnonfunctional_dispatch.h>
275
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_u_compositeexplicitautogradnonfunctional_dispatch.h>
276
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_v_compositeexplicitautogradnonfunctional_dispatch.h>
277
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_w_compositeexplicitautogradnonfunctional_dispatch.h>
278
+ #include <ATen/ops/special_spherical_bessel_j0_compositeexplicitautogradnonfunctional_dispatch.h>
279
+ #include <ATen/ops/special_xlog1py_compositeexplicitautogradnonfunctional_dispatch.h>
280
+ #include <ATen/ops/special_zeta_compositeexplicitautogradnonfunctional_dispatch.h>
281
+ #include <ATen/ops/split_copy_compositeexplicitautogradnonfunctional_dispatch.h>
282
+ #include <ATen/ops/split_with_sizes_copy_compositeexplicitautogradnonfunctional_dispatch.h>
283
+ #include <ATen/ops/sqrt_compositeexplicitautogradnonfunctional_dispatch.h>
284
+ #include <ATen/ops/squeeze_copy_compositeexplicitautogradnonfunctional_dispatch.h>
285
+ #include <ATen/ops/sub_compositeexplicitautogradnonfunctional_dispatch.h>
286
+ #include <ATen/ops/sum_compositeexplicitautogradnonfunctional_dispatch.h>
287
+ #include <ATen/ops/t_copy_compositeexplicitautogradnonfunctional_dispatch.h>
288
+ #include <ATen/ops/tan_compositeexplicitautogradnonfunctional_dispatch.h>
289
+ #include <ATen/ops/tanh_compositeexplicitautogradnonfunctional_dispatch.h>
290
+ #include <ATen/ops/tanh_backward_compositeexplicitautogradnonfunctional_dispatch.h>
291
+ #include <ATen/ops/threshold_compositeexplicitautogradnonfunctional_dispatch.h>
292
+ #include <ATen/ops/threshold_backward_compositeexplicitautogradnonfunctional_dispatch.h>
293
+ #include <ATen/ops/topk_compositeexplicitautogradnonfunctional_dispatch.h>
294
+ #include <ATen/ops/transpose_copy_compositeexplicitautogradnonfunctional_dispatch.h>
295
+ #include <ATen/ops/triangular_solve_compositeexplicitautogradnonfunctional_dispatch.h>
296
+ #include <ATen/ops/tril_compositeexplicitautogradnonfunctional_dispatch.h>
297
+ #include <ATen/ops/triu_compositeexplicitautogradnonfunctional_dispatch.h>
298
+ #include <ATen/ops/trunc_compositeexplicitautogradnonfunctional_dispatch.h>
299
+ #include <ATen/ops/unbind_copy_compositeexplicitautogradnonfunctional_dispatch.h>
300
+ #include <ATen/ops/unfold_copy_compositeexplicitautogradnonfunctional_dispatch.h>
301
+ #include <ATen/ops/unsqueeze_copy_compositeexplicitautogradnonfunctional_dispatch.h>
302
+ #include <ATen/ops/upsample_bicubic2d_compositeexplicitautogradnonfunctional_dispatch.h>
303
+ #include <ATen/ops/upsample_bicubic2d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
304
+ #include <ATen/ops/upsample_bilinear2d_compositeexplicitautogradnonfunctional_dispatch.h>
305
+ #include <ATen/ops/upsample_bilinear2d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
306
+ #include <ATen/ops/upsample_linear1d_compositeexplicitautogradnonfunctional_dispatch.h>
307
+ #include <ATen/ops/upsample_linear1d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
308
+ #include <ATen/ops/upsample_nearest1d_compositeexplicitautogradnonfunctional_dispatch.h>
309
+ #include <ATen/ops/upsample_nearest1d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
310
+ #include <ATen/ops/upsample_nearest2d_compositeexplicitautogradnonfunctional_dispatch.h>
311
+ #include <ATen/ops/upsample_nearest2d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
312
+ #include <ATen/ops/upsample_nearest3d_compositeexplicitautogradnonfunctional_dispatch.h>
313
+ #include <ATen/ops/upsample_nearest3d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
314
+ #include <ATen/ops/upsample_trilinear3d_compositeexplicitautogradnonfunctional_dispatch.h>
315
+ #include <ATen/ops/upsample_trilinear3d_backward_compositeexplicitautogradnonfunctional_dispatch.h>
316
+ #include <ATen/ops/values_copy_compositeexplicitautogradnonfunctional_dispatch.h>
317
+ #include <ATen/ops/view_as_complex_copy_compositeexplicitautogradnonfunctional_dispatch.h>
318
+ #include <ATen/ops/view_as_real_copy_compositeexplicitautogradnonfunctional_dispatch.h>
319
+ #include <ATen/ops/view_copy_compositeexplicitautogradnonfunctional_dispatch.h>
320
+ #include <ATen/ops/xlogy_compositeexplicitautogradnonfunctional_dispatch.h>
321
+
322
+
323
+
venv/lib/python3.10/site-packages/torch/include/ATen/Config.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // Test these using #if AT_MKL_ENABLED(), not #ifdef, so that it's
4
+ // obvious if you forgot to include Config.h
5
+ // c.f. https://stackoverflow.com/questions/33759787/generating-an-error-if-checked-boolean-macro-is-not-defined
6
+ //
7
+ // DO NOT put the macros for CUDA libraries in this file; they belong in cuda/CUDAConfig.h
8
+
9
+ #define AT_MKLDNN_ENABLED() 1
10
+ #define AT_MKLDNN_ACL_ENABLED() 0
11
+ #define AT_MKL_ENABLED() 1
12
+ #define AT_MKL_SEQUENTIAL() 0
13
+ #define AT_POCKETFFT_ENABLED() 0
14
+ #define AT_NNPACK_ENABLED() 1
15
+ #define CAFFE2_STATIC_LINK_CUDA() 0
16
+ #define AT_BUILD_WITH_BLAS() 1
17
+ #define AT_BUILD_WITH_LAPACK() 1
18
+ #define AT_PARALLEL_OPENMP 1
19
+ #define AT_PARALLEL_NATIVE 0
20
+ #define AT_PARALLEL_NATIVE_TBB 0
21
+ #define AT_BLAS_F2C() 0
22
+ #define AT_BLAS_USE_CBLAS_DOT() 0
venv/lib/python3.10/site-packages/torch/include/ATen/DeviceAccelerator.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/core/DeviceType.h>
4
+ #include <c10/macros/Macros.h>
5
+
6
+ #include <ATen/detail/MTIAHooksInterface.h>
7
+ #include <optional>
8
+
9
+ // This file defines the top level Accelerator concept for PyTorch.
10
+ // A device is an accelerator per the definition here if:
11
+ // - It is mutually exclusive with all other accelerators
12
+ // - It performs asynchronous compute via a Stream/Event system
13
+ // - It provides a set of common APIs as defined by AcceleratorHooksInterface
14
+ //
15
+ // As of today, accelerator devices are (in no particular order):
16
+ // CUDA, MTIA, PrivateUse1
17
+ // We want to add once all the proper APIs are supported and tested:
18
+ // HIP, MPS, XPU
19
+
20
+ namespace at {
21
+
22
+ // Ensures that only one accelerator is available (at
23
+ // compile time if possible) and return it.
24
+ // When checked is true, the returned optional always has a value.
25
+ TORCH_API std::optional<c10::DeviceType> getAccelerator(bool checked = false);
26
+
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/DeviceGuard.h ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/IListRef.h>
4
+ #include <ATen/core/Tensor.h>
5
+ #include <c10/core/DeviceGuard.h>
6
+ #include <c10/core/ScalarType.h> // TensorList whyyyyy
7
+
8
+ namespace at {
9
+
10
+ // Are you here because you're wondering why DeviceGuard(tensor) no
11
+ // longer works? For code organization reasons, we have temporarily(?)
12
+ // removed this constructor from DeviceGuard. The new way to
13
+ // spell it is:
14
+ //
15
+ // OptionalDeviceGuard guard(device_of(tensor));
16
+
17
+ /// Return the Device of a Tensor, if the Tensor is defined.
18
+ inline c10::optional<Device> device_of(const Tensor& t) {
19
+ if (t.defined()) {
20
+ return c10::make_optional(t.device());
21
+ } else {
22
+ return c10::nullopt;
23
+ }
24
+ }
25
+
26
+ inline c10::optional<Device> device_of(const c10::optional<Tensor>& t) {
27
+ return t.has_value() ? device_of(t.value()) : c10::nullopt;
28
+ }
29
+
30
+ /// Return the Device of a TensorList, if the list is non-empty and
31
+ /// the first Tensor is defined. (This function implicitly assumes
32
+ /// that all tensors in the list have the same device.)
33
+ inline c10::optional<Device> device_of(ITensorListRef t) {
34
+ if (!t.empty()) {
35
+ return device_of(t.front());
36
+ } else {
37
+ return c10::nullopt;
38
+ }
39
+ }
40
+
41
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/DimVector.h ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #pragma once
2
+ #include <ATen/core/DimVector.h>
venv/lib/python3.10/site-packages/torch/include/ATen/Dimname.h ADDED
@@ -0,0 +1 @@
 
 
1
+ #include <ATen/core/Dimname.h>
venv/lib/python3.10/site-packages/torch/include/ATen/DynamicLibrary.h ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/Utils.h>
4
+ #include <c10/macros/Export.h>
5
+ #include <c10/util/Exception.h>
6
+
7
+ namespace c10 {
8
+
9
+ class DynamicLibraryError : public Error {
10
+ using Error::Error;
11
+ };
12
+
13
+ } // namespace c10
14
+
15
+ namespace at {
16
+
17
+ struct DynamicLibrary {
18
+ AT_DISALLOW_COPY_AND_ASSIGN(DynamicLibrary);
19
+
20
+ TORCH_API DynamicLibrary(
21
+ const char* name,
22
+ const char* alt_name = nullptr,
23
+ bool leak_handle = false);
24
+
25
+ TORCH_API void* sym(const char* name);
26
+
27
+ TORCH_API ~DynamicLibrary();
28
+
29
+ private:
30
+ bool leak_handle;
31
+ void* handle = nullptr;
32
+ };
33
+
34
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/EmptyTensor.h ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <ATen/core/TensorBase.h>
3
+
4
+ namespace at::detail {
5
+
6
+ inline void check_size_nonnegative(ArrayRef<int64_t> size) {
7
+ for (const auto& x : size) {
8
+ TORCH_CHECK(
9
+ x >= 0,
10
+ "Trying to create tensor with negative dimension ",
11
+ x,
12
+ ": ",
13
+ size);
14
+ }
15
+ }
16
+
17
+ inline void check_size_nonnegative(ArrayRef<c10::SymInt> size) {
18
+ for (const auto& x : size) {
19
+ TORCH_CHECK(
20
+ x.expect_size(__FILE__, __LINE__),
21
+ "Trying to create tensor with negative dimension ",
22
+ x,
23
+ ": ",
24
+ size);
25
+ }
26
+ }
27
+
28
+ TORCH_API size_t computeStorageNbytesContiguous(
29
+ IntArrayRef sizes,
30
+ size_t itemsize,
31
+ size_t storage_offset = 0);
32
+ TORCH_API SymInt computeStorageNbytesContiguous(
33
+ SymIntArrayRef sizes,
34
+ const SymInt& itemsize,
35
+ const SymInt& storage_offset = 0);
36
+ TORCH_API size_t computeStorageNbytes(
37
+ IntArrayRef sizes,
38
+ IntArrayRef strides,
39
+ size_t itemsize,
40
+ size_t storage_offset = 0);
41
+ TORCH_API SymInt computeStorageNbytes(
42
+ SymIntArrayRef sizes,
43
+ SymIntArrayRef strides,
44
+ const SymInt& itemsize,
45
+ const SymInt& storage_offset = 0);
46
+
47
+ TORCH_API TensorBase empty_generic(
48
+ IntArrayRef size,
49
+ c10::Allocator* allocator,
50
+ c10::DispatchKeySet ks,
51
+ ScalarType scalar_type,
52
+ c10::optional<c10::MemoryFormat> memory_format_opt);
53
+
54
+ TORCH_API TensorBase empty_strided_generic(
55
+ IntArrayRef size,
56
+ IntArrayRef stride,
57
+ c10::Allocator* allocator,
58
+ c10::DispatchKeySet ks,
59
+ ScalarType scalar_type);
60
+
61
+ TORCH_API TensorBase empty_strided_symint_generic(
62
+ SymIntArrayRef size,
63
+ SymIntArrayRef stride,
64
+ c10::Allocator* allocator,
65
+ c10::DispatchKeySet ks,
66
+ ScalarType scalar_type);
67
+
68
+ TORCH_API TensorBase empty_cpu(
69
+ IntArrayRef size,
70
+ ScalarType dtype,
71
+ bool pin_memory = false,
72
+ c10::optional<c10::MemoryFormat> memory_format_opt = c10::nullopt);
73
+
74
+ TORCH_API TensorBase empty_cpu(
75
+ IntArrayRef size,
76
+ c10::optional<ScalarType> dtype_opt,
77
+ c10::optional<Layout> layout_opt,
78
+ c10::optional<Device> device_opt,
79
+ c10::optional<bool> pin_memory_opt,
80
+ c10::optional<c10::MemoryFormat> memory_format_opt);
81
+
82
+ TORCH_API TensorBase empty_cpu(IntArrayRef size, const TensorOptions& options);
83
+
84
+ TORCH_API TensorBase empty_strided_cpu(
85
+ IntArrayRef size,
86
+ IntArrayRef stride,
87
+ ScalarType dtype,
88
+ bool pin_memory = false);
89
+
90
+ TORCH_API TensorBase empty_strided_cpu(
91
+ IntArrayRef size,
92
+ IntArrayRef stride,
93
+ c10::optional<ScalarType> dtype_opt,
94
+ c10::optional<Layout> layout_opt,
95
+ c10::optional<Device> device_opt,
96
+ c10::optional<bool> pin_memory_opt);
97
+
98
+ TORCH_API TensorBase empty_strided_cpu(
99
+ IntArrayRef size,
100
+ IntArrayRef stride,
101
+ const TensorOptions& options);
102
+
103
+ TORCH_API TensorBase empty_meta(
104
+ IntArrayRef size,
105
+ ScalarType dtype,
106
+ c10::optional<c10::MemoryFormat> memory_format_opt = c10::nullopt);
107
+
108
+ TORCH_API TensorBase empty_meta(
109
+ IntArrayRef size,
110
+ c10::optional<ScalarType> dtype_opt,
111
+ c10::optional<Layout> layout_opt,
112
+ c10::optional<Device> device_opt,
113
+ c10::optional<bool> pin_memory_opt,
114
+ c10::optional<c10::MemoryFormat> memory_format_opt);
115
+
116
+ TORCH_API TensorBase empty_symint_meta(
117
+ SymIntArrayRef size,
118
+ c10::optional<ScalarType> dtype_opt,
119
+ c10::optional<Layout> layout_opt,
120
+ c10::optional<Device> device_opt,
121
+ c10::optional<bool> pin_memory_opt,
122
+ c10::optional<c10::MemoryFormat> memory_format_opt);
123
+
124
+ TORCH_API TensorBase empty_meta(IntArrayRef size, const TensorOptions& options);
125
+
126
+ TORCH_API TensorBase
127
+ empty_strided_meta(IntArrayRef size, IntArrayRef stride, ScalarType dtype);
128
+
129
+ TORCH_API TensorBase empty_strided_meta(
130
+ IntArrayRef size,
131
+ IntArrayRef stride,
132
+ c10::optional<ScalarType> dtype_opt,
133
+ c10::optional<Layout> layout_opt,
134
+ c10::optional<Device> device_opt,
135
+ c10::optional<bool> pin_memory_opt);
136
+
137
+ TORCH_API TensorBase empty_strided_meta(
138
+ IntArrayRef size,
139
+ IntArrayRef stride,
140
+ const TensorOptions& options);
141
+
142
+ TORCH_API TensorBase empty_strided_symint_meta(
143
+ SymIntArrayRef size,
144
+ SymIntArrayRef stride,
145
+ ScalarType dtype);
146
+
147
+ TORCH_API TensorBase empty_strided_symint_meta(
148
+ SymIntArrayRef size,
149
+ SymIntArrayRef stride,
150
+ c10::optional<ScalarType> dtype_opt,
151
+ c10::optional<Layout> layout_opt,
152
+ c10::optional<Device> device_opt,
153
+ c10::optional<bool> pin_memory_opt);
154
+
155
+ TORCH_API TensorBase empty_strided_symint_meta(
156
+ SymIntArrayRef size,
157
+ SymIntArrayRef stride,
158
+ const TensorOptions& options);
159
+
160
+ } // namespace at::detail
venv/lib/python3.10/site-packages/torch/include/ATen/ExpandUtils.h ADDED
@@ -0,0 +1,527 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #ifndef AT_PER_OPERATOR_HEADERS
4
+ #include <ATen/Functions.h>
5
+ #else
6
+ #include <ATen/ops/view.h>
7
+ #include <ATen/ops/view_copy.h>
8
+ #endif
9
+
10
+ #include <ATen/Tensor.h>
11
+ #include <ATen/core/DimVector.h>
12
+ #include <c10/util/Exception.h>
13
+ #include <c10/util/MaybeOwned.h>
14
+ #include <c10/util/irange.h>
15
+
16
+ #include <functional>
17
+ #include <sstream>
18
+ #include <tuple>
19
+ #include <utility>
20
+
21
+ namespace at {
22
+
23
+ TORCH_API std::vector<int64_t> infer_size(IntArrayRef a, IntArrayRef b);
24
+ TORCH_API std::vector<SymInt> infer_size_symint(
25
+ SymIntArrayRef a,
26
+ SymIntArrayRef b);
27
+ TORCH_API DimVector infer_size_dimvector(IntArrayRef a, IntArrayRef b);
28
+ TORCH_API SymDimVector
29
+ infer_size_symdimvector(SymIntArrayRef a, SymIntArrayRef b);
30
+
31
+ // Named type instead of a pair/tuple so that we can be sure to
32
+ // construct the vectors in place and get NRVO.
33
+ template <typename Container>
34
+ struct InferExpandGeometryResult {
35
+ Container sizes;
36
+ Container strides;
37
+ explicit InferExpandGeometryResult(size_t ndim)
38
+ : sizes(ndim), strides(ndim) {}
39
+ explicit InferExpandGeometryResult(IntArrayRef sizes_, size_t ndim)
40
+ : sizes(sizes_.begin(), sizes_.end()), strides(ndim) {}
41
+ };
42
+
43
+ TORCH_API std::tuple<std::vector<int64_t>, std::vector<int64_t>>
44
+ inferExpandGeometry(
45
+ IntArrayRef tensor_sizes,
46
+ IntArrayRef tensor_strides,
47
+ IntArrayRef sizes);
48
+
49
+ TORCH_API InferExpandGeometryResult<DimVector> inferExpandGeometry_dimvector(
50
+ IntArrayRef tensor_sizes,
51
+ IntArrayRef tensor_strides,
52
+ IntArrayRef sizes);
53
+
54
+ TORCH_API std::vector<int64_t> infer_dense_strides(
55
+ IntArrayRef tensor_sizes,
56
+ IntArrayRef tensor_strides);
57
+
58
+ // True if input shapes are expandable
59
+ // NOTE: infer_size did a similar check, please keep them sync if change is
60
+ // needed
61
+ inline bool are_expandable(IntArrayRef shape1, IntArrayRef shape2) {
62
+ size_t ndim1 = shape1.size();
63
+ size_t ndim2 = shape2.size();
64
+ size_t ndim = ndim1 < ndim2 ? ndim1 : ndim2;
65
+
66
+ for (int64_t i = static_cast<int64_t>(ndim) - 1; i >= 0; --i) {
67
+ if (shape1[--ndim1] == shape2[--ndim2] || shape1[ndim1] == 1 ||
68
+ shape2[ndim2] == 1) {
69
+ continue;
70
+ }
71
+ return false;
72
+ }
73
+ return true;
74
+ }
75
+
76
+ // avoid copy-construction of Tensor by using a reference_wrapper.
77
+ inline void check_defined(
78
+ std::initializer_list<std::reference_wrapper<const Tensor>> tensors,
79
+ const char* api_name) {
80
+ for (auto& t : tensors) {
81
+ if (!t.get().defined()) {
82
+ AT_ERROR(api_name, "(...) called with an undefined Tensor");
83
+ }
84
+ }
85
+ }
86
+
87
+ // NOTE [ ExpandUtils Borrowing ]
88
+ //
89
+ // Functions in ExpandUtils return `c10::MaybeOwned<Tensor>` because
90
+ // expansion may not actually be needed, in which case we can improve
91
+ // efficiency by returning
92
+ // `c10::MaybeOwned<Tensor>::borrowed(to_expand)`. However, this means
93
+ // that you need to be careful: the returned `c10::MaybeOwned<Tensor>`
94
+ // must not outlive the original `Tensor` object that `to_expand`
95
+ // referred to! The deleted rvalue reference overloads of these
96
+ // functions help with this by preventing trivial use of a temporary
97
+ // resulting from a function call, but it is still possible to make a
98
+ // mistake.
99
+
100
+ inline c10::MaybeOwned<Tensor> expand_inplace(
101
+ const Tensor& tensor,
102
+ const Tensor& to_expand) {
103
+ if (tensor.sym_sizes().equals(to_expand.sym_sizes())) {
104
+ return c10::MaybeOwned<Tensor>::borrowed(to_expand);
105
+ }
106
+ return c10::MaybeOwned<Tensor>::owned(
107
+ to_expand.expand_symint(tensor.sym_sizes()));
108
+ }
109
+
110
+ inline c10::MaybeOwned<Tensor> expand_inplace(
111
+ const Tensor& tensor,
112
+ Tensor&& to_expand) = delete;
113
+
114
+ inline c10::MaybeOwned<Tensor> expand_inplace(
115
+ const Tensor& tensor,
116
+ const Tensor& to_expand,
117
+ const char* api_name) {
118
+ check_defined({tensor, to_expand}, api_name);
119
+ return expand_inplace(tensor, to_expand);
120
+ }
121
+
122
+ inline c10::MaybeOwned<Tensor> expand_inplace(
123
+ const Tensor& tensor,
124
+ Tensor&& to_expand,
125
+ const char* api_name) = delete;
126
+
127
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
128
+ expand_inplace(
129
+ const Tensor& tensor,
130
+ const Tensor& to_expand1,
131
+ const Tensor& to_expand2) {
132
+ if (tensor.sizes().equals(to_expand1.sizes()) &&
133
+ tensor.sizes().equals((to_expand2.sizes()))) {
134
+ return std::make_tuple(
135
+ c10::MaybeOwned<Tensor>::borrowed(to_expand1),
136
+ c10::MaybeOwned<Tensor>::borrowed(to_expand2));
137
+ }
138
+
139
+ return std::make_tuple(
140
+ c10::MaybeOwned<Tensor>::owned(to_expand1.expand(tensor.sizes())),
141
+ c10::MaybeOwned<Tensor>::owned(to_expand2.expand(tensor.sizes())));
142
+ }
143
+
144
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
145
+ expand_inplace(
146
+ const Tensor& tensor,
147
+ Tensor&& to_expand1,
148
+ const Tensor& to_expand2) = delete;
149
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
150
+ expand_inplace(
151
+ const Tensor& tensor,
152
+ const Tensor& to_expand1,
153
+ Tensor&& to_expand2) = delete;
154
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
155
+ expand_inplace(const Tensor& tensor, Tensor&& to_expand1, Tensor&& to_expand2) =
156
+ delete;
157
+
158
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
159
+ expand_inplace(
160
+ const Tensor& tensor,
161
+ const Tensor& to_expand1,
162
+ const Tensor& to_expand2,
163
+ const char* api_name) {
164
+ check_defined({tensor, to_expand1, to_expand2}, api_name);
165
+ return expand_inplace(tensor, to_expand1, to_expand2);
166
+ }
167
+
168
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
169
+ expand_inplace(
170
+ const Tensor& tensor,
171
+ Tensor&& to_expand1,
172
+ const Tensor& to_expand2,
173
+ const char* api_name) = delete;
174
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
175
+ expand_inplace(
176
+ const Tensor& tensor,
177
+ const Tensor& to_expand1,
178
+ Tensor&& to_expand2,
179
+ const char* api_name) = delete;
180
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
181
+ expand_inplace(
182
+ const Tensor& tensor,
183
+ Tensor&& to_expand1,
184
+ Tensor&& to_expand2,
185
+ const char* api_name) = delete;
186
+
187
+ // See NOTE [ ExpandUtils Borrowing ] above for `MaybeOwned` explanation.
188
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
189
+ expand_outplace(const Tensor& to_expand1, const Tensor& to_expand2) {
190
+ auto s1 = to_expand1.sym_sizes();
191
+ auto s2 = to_expand2.sym_sizes();
192
+ if (s1.equals(s2)) {
193
+ return std::make_tuple(
194
+ c10::MaybeOwned<Tensor>::borrowed(to_expand1),
195
+ c10::MaybeOwned<Tensor>::borrowed(to_expand2));
196
+ }
197
+
198
+ auto expanded_size = infer_size_symdimvector(s1, s2);
199
+ return std::make_tuple(
200
+ c10::MaybeOwned<Tensor>::owned(to_expand1.expand_symint(expanded_size)),
201
+ c10::MaybeOwned<Tensor>::owned(to_expand2.expand_symint(expanded_size)));
202
+ }
203
+
204
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
205
+ expand_outplace(Tensor&& to_expand1, const Tensor& to_expand2) = delete;
206
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
207
+ expand_outplace(const Tensor& to_expand1, Tensor&& to_expand2) = delete;
208
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
209
+ expand_outplace(Tensor&& to_expand1, Tensor&& to_expand2) = delete;
210
+
211
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
212
+ expand_outplace(
213
+ const Tensor& to_expand1,
214
+ const Tensor& to_expand2,
215
+ const char* api_name) {
216
+ check_defined({to_expand1, to_expand2}, api_name);
217
+ return expand_outplace(to_expand1, to_expand2);
218
+ }
219
+
220
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
221
+ expand_outplace(
222
+ Tensor&& to_expand1,
223
+ const Tensor& to_expand2,
224
+ const char* api_name) = delete;
225
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
226
+ expand_outplace(
227
+ const Tensor& to_expand1,
228
+ Tensor&& to_expand2,
229
+ const char* api_name) = delete;
230
+ inline std::tuple<c10::MaybeOwned<Tensor>, c10::MaybeOwned<Tensor>>
231
+ expand_outplace(
232
+ Tensor&& to_expand1,
233
+ Tensor&& to_expand2,
234
+ const char* api_name) = delete;
235
+
236
+ inline std::tuple<
237
+ c10::MaybeOwned<Tensor>,
238
+ c10::MaybeOwned<Tensor>,
239
+ c10::MaybeOwned<Tensor>>
240
+ expand_outplace(
241
+ const Tensor& to_expand1,
242
+ const Tensor& to_expand2,
243
+ const Tensor& to_expand3) {
244
+ if (to_expand1.sizes().equals(to_expand2.sizes()) &&
245
+ to_expand1.sizes().equals(to_expand3.sizes())) {
246
+ return std::make_tuple(
247
+ c10::MaybeOwned<Tensor>::borrowed(to_expand1),
248
+ c10::MaybeOwned<Tensor>::borrowed(to_expand2),
249
+ c10::MaybeOwned<Tensor>::borrowed(to_expand3));
250
+ }
251
+
252
+ auto expanded_size12 =
253
+ infer_size_dimvector(to_expand1.sizes(), to_expand2.sizes());
254
+ auto expanded_size =
255
+ infer_size_dimvector(expanded_size12, to_expand3.sizes());
256
+ return std::make_tuple(
257
+ c10::MaybeOwned<Tensor>::owned(to_expand1.expand(expanded_size)),
258
+ c10::MaybeOwned<Tensor>::owned(to_expand2.expand(expanded_size)),
259
+ c10::MaybeOwned<Tensor>::owned(to_expand3.expand(expanded_size)));
260
+ }
261
+
262
+ inline std::tuple<
263
+ c10::MaybeOwned<Tensor>,
264
+ c10::MaybeOwned<Tensor>,
265
+ c10::MaybeOwned<Tensor>>
266
+ expand_outplace(
267
+ Tensor&& to_expand1,
268
+ const Tensor& to_expand2,
269
+ const Tensor& to_expand3) = delete;
270
+ inline std::tuple<
271
+ c10::MaybeOwned<Tensor>,
272
+ c10::MaybeOwned<Tensor>,
273
+ c10::MaybeOwned<Tensor>>
274
+ expand_outplace(
275
+ const Tensor& to_expand1,
276
+ Tensor&& to_expand2,
277
+ const Tensor& to_expand3) = delete;
278
+ inline std::tuple<
279
+ c10::MaybeOwned<Tensor>,
280
+ c10::MaybeOwned<Tensor>,
281
+ c10::MaybeOwned<Tensor>>
282
+ expand_outplace(
283
+ Tensor&& to_expand1,
284
+ Tensor&& to_expand2,
285
+ const Tensor& to_expand3) = delete;
286
+ inline std::tuple<
287
+ c10::MaybeOwned<Tensor>,
288
+ c10::MaybeOwned<Tensor>,
289
+ c10::MaybeOwned<Tensor>>
290
+ expand_outplace(
291
+ const Tensor& to_expand1,
292
+ const Tensor& to_expand2,
293
+ Tensor&& to_expand3) = delete;
294
+ inline std::tuple<
295
+ c10::MaybeOwned<Tensor>,
296
+ c10::MaybeOwned<Tensor>,
297
+ c10::MaybeOwned<Tensor>>
298
+ expand_outplace(
299
+ Tensor&& to_expand1,
300
+ const Tensor& to_expand2,
301
+ Tensor&& to_expand3) = delete;
302
+ inline std::tuple<
303
+ c10::MaybeOwned<Tensor>,
304
+ c10::MaybeOwned<Tensor>,
305
+ c10::MaybeOwned<Tensor>>
306
+ expand_outplace(
307
+ const Tensor& to_expand1,
308
+ Tensor&& to_expand2,
309
+ Tensor&& to_expand3) = delete;
310
+ inline std::tuple<
311
+ c10::MaybeOwned<Tensor>,
312
+ c10::MaybeOwned<Tensor>,
313
+ c10::MaybeOwned<Tensor>>
314
+ expand_outplace(Tensor&& to_expand1, Tensor&& to_expand2, Tensor&& to_expand3) =
315
+ delete;
316
+
317
+ inline std::tuple<
318
+ c10::MaybeOwned<Tensor>,
319
+ c10::MaybeOwned<Tensor>,
320
+ c10::MaybeOwned<Tensor>>
321
+ expand_outplace(
322
+ const Tensor& to_expand1,
323
+ const Tensor& to_expand2,
324
+ const Tensor& to_expand3,
325
+ const char* api_name) {
326
+ check_defined({to_expand1, to_expand2, to_expand3}, api_name);
327
+ return expand_outplace(to_expand1, to_expand2, to_expand3);
328
+ }
329
+
330
+ inline std::tuple<
331
+ c10::MaybeOwned<Tensor>,
332
+ c10::MaybeOwned<Tensor>,
333
+ c10::MaybeOwned<Tensor>>
334
+ expand_outplace(
335
+ Tensor&& to_expand1,
336
+ const Tensor& to_expand2,
337
+ const Tensor& to_expand3,
338
+ const char* api_name) = delete;
339
+ inline std::tuple<
340
+ c10::MaybeOwned<Tensor>,
341
+ c10::MaybeOwned<Tensor>,
342
+ c10::MaybeOwned<Tensor>>
343
+ expand_outplace(
344
+ const Tensor& to_expand1,
345
+ Tensor&& to_expand2,
346
+ const Tensor& to_expand3,
347
+ const char* api_name) = delete;
348
+ inline std::tuple<
349
+ c10::MaybeOwned<Tensor>,
350
+ c10::MaybeOwned<Tensor>,
351
+ c10::MaybeOwned<Tensor>>
352
+ expand_outplace(
353
+ Tensor&& to_expand1,
354
+ Tensor&& to_expand2,
355
+ const Tensor& to_expand3,
356
+ const char* api_name) = delete;
357
+ inline std::tuple<
358
+ c10::MaybeOwned<Tensor>,
359
+ c10::MaybeOwned<Tensor>,
360
+ c10::MaybeOwned<Tensor>>
361
+ expand_outplace(
362
+ const Tensor& to_expand1,
363
+ const Tensor& to_expand2,
364
+ Tensor&& to_expand3,
365
+ const char* api_name) = delete;
366
+ inline std::tuple<
367
+ c10::MaybeOwned<Tensor>,
368
+ c10::MaybeOwned<Tensor>,
369
+ c10::MaybeOwned<Tensor>>
370
+ expand_outplace(
371
+ Tensor&& to_expand1,
372
+ const Tensor& to_expand2,
373
+ Tensor&& to_expand3,
374
+ const char* api_name) = delete;
375
+ inline std::tuple<
376
+ c10::MaybeOwned<Tensor>,
377
+ c10::MaybeOwned<Tensor>,
378
+ c10::MaybeOwned<Tensor>>
379
+ expand_outplace(
380
+ const Tensor& to_expand1,
381
+ Tensor&& to_expand2,
382
+ Tensor&& to_expand3,
383
+ const char* api_name) = delete;
384
+ inline std::tuple<
385
+ c10::MaybeOwned<Tensor>,
386
+ c10::MaybeOwned<Tensor>,
387
+ c10::MaybeOwned<Tensor>>
388
+ expand_outplace(
389
+ Tensor&& to_expand1,
390
+ Tensor&& to_expand2,
391
+ Tensor&& to_expand3,
392
+ const char* api_name) = delete;
393
+
394
+ inline c10::MaybeOwned<Tensor> expand_size(
395
+ const Tensor& to_expand,
396
+ IntArrayRef sizes) {
397
+ if (to_expand.sizes().equals(sizes)) {
398
+ return c10::MaybeOwned<Tensor>::borrowed(to_expand);
399
+ }
400
+
401
+ return c10::MaybeOwned<Tensor>::owned(to_expand.expand(sizes));
402
+ }
403
+
404
+ inline c10::MaybeOwned<Tensor> expand_size(
405
+ Tensor&& to_expand,
406
+ IntArrayRef sizes) = delete;
407
+
408
+ inline c10::MaybeOwned<Tensor> expand_size(
409
+ const Tensor& to_expand,
410
+ IntArrayRef sizes,
411
+ const char* api_name) {
412
+ check_defined({to_expand}, api_name);
413
+ return expand_size(to_expand, sizes);
414
+ }
415
+
416
+ inline c10::MaybeOwned<Tensor> expand_size(
417
+ Tensor&& to_expand,
418
+ IntArrayRef sizes,
419
+ const char* api_name) = delete;
420
+
421
+ inline std::vector<Tensor> expand_outplace(TensorList to_expand) {
422
+ // expands a list of Tensors; ignores undefined (null) tensors
423
+ bool first = true;
424
+ DimVector sizes;
425
+ for (const auto i : c10::irange(to_expand.size())) {
426
+ if (!to_expand[i].defined()) {
427
+ continue;
428
+ } else if (first) {
429
+ sizes = to_expand[i].sizes();
430
+ first = false;
431
+ } else {
432
+ sizes = infer_size_dimvector(sizes, to_expand[i].sizes());
433
+ }
434
+ }
435
+
436
+ std::vector<Tensor> result(to_expand.size());
437
+ for (const auto i : c10::irange(to_expand.size())) {
438
+ if (!to_expand[i].defined()) {
439
+ continue;
440
+ } else if (to_expand[i].sizes().equals(sizes)) {
441
+ result[i] = to_expand[i];
442
+ } else {
443
+ result[i] = to_expand[i].expand(sizes);
444
+ }
445
+ }
446
+ return result;
447
+ }
448
+
449
+ template <typename T>
450
+ inline Tensor _sum_to(
451
+ Tensor tensor,
452
+ const c10::ArrayRef<T> shape,
453
+ bool always_return_non_view = false) {
454
+ if (shape.size() == 0) {
455
+ return tensor.sum();
456
+ }
457
+
458
+ auto sizes = at::symint::sizes<T>(tensor);
459
+ c10::SmallVector<int64_t, 8> reduce_dims;
460
+ const int64_t leading_dims = sizes.size() - shape.size();
461
+ for (const auto i : c10::irange(leading_dims)) {
462
+ reduce_dims.push_back(i);
463
+ }
464
+ for (int64_t i = leading_dims; i < static_cast<int64_t>(sizes.size()); ++i) {
465
+ if (shape[i - leading_dims] == 1 && sizes[i] != 1) {
466
+ reduce_dims.push_back(i);
467
+ }
468
+ }
469
+
470
+ if (!reduce_dims.empty()) {
471
+ tensor = tensor.sum(reduce_dims, /*keepdim=*/true);
472
+ }
473
+
474
+ if (always_return_non_view) {
475
+ // This is only actually used by the functionalization pass.
476
+ // We want to be able to guarantee that this function doesn't return a view
477
+ // of the input.
478
+ return leading_dims > 0 ? at::symint::view_copy<T>(tensor, shape)
479
+ : tensor.clone();
480
+ } else {
481
+ return leading_dims > 0 ? at::symint::view<T>(tensor, shape) : tensor;
482
+ }
483
+ }
484
+
485
+ inline Tensor sum_to(
486
+ Tensor tensor,
487
+ const c10::SymIntArrayRef shape,
488
+ bool always_return_non_view = false) {
489
+ return _sum_to(std::move(tensor), shape, always_return_non_view);
490
+ }
491
+
492
+ // Sums `tensor` repeatedly to produce a tensor of shape `shape`.
493
+ // Precondition: is_expandable_to(shape, tensor.sizes()) must be true
494
+ inline Tensor sum_to(
495
+ Tensor tensor,
496
+ const IntArrayRef shape,
497
+ bool always_return_non_view = false) {
498
+ return _sum_to(std::move(tensor), shape, always_return_non_view);
499
+ }
500
+
501
+ static inline bool is_expandable_to(
502
+ SymIntArrayRef shape,
503
+ c10::SymIntArrayRef desired) {
504
+ size_t ndim = shape.size();
505
+ size_t target_dim = desired.size();
506
+ if (ndim > target_dim) {
507
+ return false;
508
+ }
509
+ for (const auto i : c10::irange(ndim)) {
510
+ const auto& size = shape[ndim - i - 1];
511
+ const auto& target = desired[target_dim - i - 1];
512
+ if (size != target && size != 1) {
513
+ return false;
514
+ }
515
+ }
516
+ return true;
517
+ }
518
+
519
+ static inline bool is_expandable_to(IntArrayRef shape, IntArrayRef desired) {
520
+ auto sym_shape = c10::SymIntArrayRef(
521
+ reinterpret_cast<const c10::SymInt*>(shape.data()), shape.size());
522
+ auto sym_desired = c10::SymIntArrayRef(
523
+ reinterpret_cast<const c10::SymInt*>(desired.data()), desired.size());
524
+ return is_expandable_to(sym_shape, sym_desired);
525
+ }
526
+
527
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/Formatting.h ADDED
@@ -0,0 +1 @@
 
 
1
+ #include <ATen/core/Formatting.h>
venv/lib/python3.10/site-packages/torch/include/ATen/FunctionalTensorWrapper.h ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #pragma once
3
+
4
+ #include <ATen/ArrayRef.h>
5
+ #include <ATen/FunctionalStorageImpl.h>
6
+ #include <ATen/core/IListRef.h>
7
+ #include <ATen/core/List.h>
8
+ #include <ATen/core/boxing/BoxedKernel.h>
9
+ #include <ATen/core/boxing/impl/boxing.h>
10
+ #include <ATen/core/dispatch/Dispatcher.h>
11
+
12
+ #include <c10/core/DispatchKey.h>
13
+
14
+ namespace at {
15
+
16
+ // Note [Functionalization Pass In Core]
17
+ // The Functionalization pass is used to remove aliasing from a pytorch program.
18
+ //
19
+ // This is useful for backends that don't support aliasing, like XLA and Vulkan.
20
+ // It's also necessary in order to remove mutation from a program, which is
21
+ // needed in Functorch.
22
+ //
23
+ // Consider this program:
24
+ // a = torch.ones(...)
25
+ // b = a.view(...)
26
+ // b.add_(1)
27
+ //
28
+ // In this program, b is meant to alias with a due to the use of view(). At the
29
+ // end of the program, both a and b are full of 2's. However, backends that
30
+ // don't support aliasing aren't able to correctly implement the view()
31
+ // operator. Instead, they can opt into the Functionalization pass, which will
32
+ // sit between the user and the backend, and provide the necessary aliasing
33
+ // logic.
34
+ //
35
+ // The functionalization pass will turn the above program into a slightly
36
+ // different program that has the same semantics, transparently to the user,
37
+ // that backends like XLA/Vulkan are able to implement a = torch.ones(...) b =
38
+ // a.view_copy(...) # view() replaced with view_copy(). Backends like
39
+ // XLA/Vulkan can implement this! b.add_(1) a.add_(1) # Our functionalization
40
+ // pass machinery knows that a and b are aliased - it applies b's mutation to a
41
+ // too.
42
+ //
43
+ // So, how does the functionalization pass keep track of which tensors are
44
+ // aliased? The pass works by wrapping EVERY tensor in the program inside of a
45
+ // FunctionalTensorWrapper, which knows about its alias'd tensors.
46
+ //
47
+ // See Note [Functionalization: Alias Removal] for details on the aliasing
48
+ // machinery. See Note [Functionalization: Mutation Removal] for details on
49
+ // mutation removal.
50
+ struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
51
+ explicit FunctionalTensorWrapper(const Tensor& value);
52
+ // Additional constructor to create a FunctionalTensorWrapper directly from an
53
+ // underlying tensor that was created from a view. For example, the code b =
54
+ // a.view1() will generate a constructor call to FunctionalTensorWrapper(b, a,
55
+ // view1_meta)
56
+ explicit FunctionalTensorWrapper(
57
+ const Tensor& view_value,
58
+ const FunctionalTensorWrapper* base,
59
+ const functionalization::ViewMeta& meta);
60
+
61
+ // Get the underlying, actual tensor, that doesn't know anything about
62
+ // functionalization.
63
+ const Tensor& value() const {
64
+ return value_;
65
+ };
66
+ // The concept of "level" is only ever important to functorch; it's exposed
67
+ // here as more of a hook for functorch to use.
68
+ int64_t level() const {
69
+ return level_;
70
+ };
71
+ void set_level(int64_t level) {
72
+ level_ = level;
73
+ }
74
+ bool has_metadata_mutation() const {
75
+ return has_metadata_mutation_;
76
+ };
77
+
78
+ // Denotes a mutation that's hidden from autograd,
79
+ // e.g. for the purposes of passing a tensor to a triton kernel
80
+ void mark_mutation_hidden_from_autograd() {
81
+ mutation_hidden_from_autograd_counter_++;
82
+ }
83
+ void mark_mutation_during_no_grad_or_inference_mode() {
84
+ mutation_during_no_grad_or_inference_mode_++;
85
+ }
86
+ // Are all the mutations happening to the tensor hidden from autograd
87
+ bool are_all_mutations_hidden_from_autograd() const {
88
+ return mutation_hidden_from_autograd_counter_ == mutation_counter_;
89
+ }
90
+ // Did all mutations happen under no_grad or inference_mode
91
+ // (We also need to ignore mutations fully hidden from autograd here)
92
+ bool are_all_mutations_under_no_grad_or_inference_mode() const {
93
+ return mutation_hidden_from_autograd_counter_ +
94
+ mutation_during_no_grad_or_inference_mode_ ==
95
+ mutation_counter_;
96
+ }
97
+
98
+ // Sync's the underlying tensor with its alias, if it's out of date. This
99
+ // involves two steps: 1) Apply any pending updates/mutations to the alias 2)
100
+ // Replay the views (if any) to regenerate the current tensor off of the
101
+ // updated alias.
102
+ void sync_();
103
+ // Performs step (1) of the sync. This is its own public API because it's
104
+ // needed by view_inplace ops like transpose_. See Note [Functionalization
105
+ // Pass - Inplace View Ops]
106
+ void regenerate_from_base();
107
+ // Performs step (2) of the sync. This is its own public API because it's
108
+ // needed by functorch. functorch wants to make sure that all input tensors to
109
+ // a functionalized program have been properly synced so it can properly
110
+ // propagate mutations to inputs. It can't just call sync_(), because the
111
+ // FunctionalTensorWrapper will look like it has no aliases and sync_ will be
112
+ // a noop. We use the reference count on storage_ to determine if the wrapper
113
+ // is aliased, and by the time functorch is ready to propagate updates to
114
+ // inputs, any intermediate views of the input created by the program will
115
+ // have been deallocated. This function also returns whether or not the base
116
+ // actually had any updates to apply.
117
+ bool apply_updates();
118
+ // Takes the current state of value_ and snapshots it, sending it as a pending
119
+ // update to the alias.
120
+ void commit_update();
121
+ // When any tensor is mutated, the tensor increments its alias's "generation".
122
+ // Separately, each tensor maintains its own "generation" counter, which is
123
+ // used to determine if it's up-to-date with its alias. The act of syncing a
124
+ // tensor will set a tensor's generation equal to its alias's generation.
125
+ bool is_up_to_date() const;
126
+ // Freezes the storage of this tensor, preventing subsequent mutations
127
+ void freeze_storage() const;
128
+ // Every FunctionalTensorWrapper contains a vector<ViewMeta> objects
129
+ // describing the series of view ops that ran to generate the current tensor
130
+ // from the base tensor. This method is used by inplace-view ops like
131
+ // transpose_. It appends a ViewMeta to the existing stack, and refreshes the
132
+ // tensor by replaying the views off of the alias.
133
+ void mutate_view_meta(const at::functionalization::ViewMeta& meta);
134
+
135
+ // Custom implementation of self.set_(src)
136
+ void set__impl(const FunctionalTensorWrapper* other);
137
+
138
+ // Returns whether the current tensor's data was ever mutated
139
+ bool has_data_mutation();
140
+ //
141
+ // Returns whether the current FunctionalTensorWrapper
142
+ // experienced a set_() call.
143
+ bool was_storage_changed() {
144
+ return was_storage_changed_;
145
+ }
146
+
147
+ // The functionalization pass can be used to remove mutations.
148
+ // It does so by replacing any mutation op with it's corresponding
149
+ // out-of-place op, followed by a call to replace_(). e.g:
150
+ //
151
+ // a.add_(1)
152
+ //
153
+ // will turn into:
154
+ //
155
+ // tmp = a.add(1)
156
+ // a.replace_(tmp)
157
+ //
158
+ // replace_() swaps out the wrapped tensor, value_, with tmp.
159
+ void replace_(const Tensor& other);
160
+
161
+ bool is_multi_output_view() {
162
+ return is_multi_output_view_;
163
+ }
164
+
165
+ // See Note[resize_() in functionalization pass]
166
+ void maybe_replace_storage(const Tensor& other);
167
+
168
+ // Replaces the storage with a new functional storage,
169
+ // and clears the view_metas_ stack.
170
+ // WARNING: Calling this function will sever the aliasing relationship between
171
+ // the current FunctionalTensorWrapper and any of its outstanding aliases.
172
+ // Please only call if you know what you're doing.
173
+ void _unsafe_reset_storage();
174
+
175
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
176
+ const c10::VariableVersion& version_counter,
177
+ bool allow_tensor_metadata_change) const override;
178
+
179
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
180
+ c10::VariableVersion&& version_counter,
181
+ bool allow_tensor_metadata_change) const override;
182
+
183
+ ~FunctionalTensorWrapper() override = default;
184
+
185
+ // FunctionalTensorWrapper overrides all custom size/stride function,
186
+ // so that if the inner tensor has a custom implementation
187
+ // we make sure to call that implementation.
188
+ at::IntArrayRef sizes_custom() const override;
189
+ at::IntArrayRef strides_custom() const override;
190
+ int64_t dim_custom() const override;
191
+ int64_t numel_custom() const override;
192
+ bool is_contiguous_custom(at::MemoryFormat memory_format) const override;
193
+ c10::SymIntArrayRef sym_sizes_custom() const override;
194
+ c10::SymInt sym_size_custom(int64_t d) const override;
195
+ c10::SymIntArrayRef sym_strides_custom() const override;
196
+ c10::SymInt sym_storage_offset_custom() const override;
197
+ c10::Device device_custom() const override;
198
+
199
+ private:
200
+ const char* tensorimpl_type_name() const override;
201
+ void set_constructor_metadata();
202
+ functionalization::FunctionalStorageImpl* functional_storage_impl() const;
203
+
204
+ // This is used to re-implement shallow_copy_and_detach for
205
+ // FunctionalTensorWrapper. The implementation is identical, but we just need
206
+ // to return a subclass instead of a plain TensorImpl.
207
+ // TODO: maybe it's possible to arrange for that to happen automatically
208
+ // without an override here?
209
+ template <typename VariableVersion>
210
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach_core(
211
+ VariableVersion&& version_counter,
212
+ bool allow_tensor_metadata_change) const;
213
+
214
+ void shallow_copy_from(const c10::intrusive_ptr<TensorImpl>& impl) override;
215
+ void copy_tensor_metadata_and_refresh(
216
+ const FunctionalTensorWrapper* src_impl,
217
+ FunctionalTensorWrapper* dest_impl,
218
+ const c10::VariableVersion& version_counter,
219
+ bool allow_tensor_metadata_change) const;
220
+
221
+ // Note that value is not taken by reference: internally, the wrapper will
222
+ // change the value tensor that it points to over time.
223
+ Tensor value_;
224
+ int64_t level_{};
225
+ // These two counters are used for identifying
226
+ // whether all the mutations on a given tensor are hidden from autograd or
227
+ // not. If we have an input mutation that is hidden from autograd, then once
228
+ // we convert the input mutation to a copy_() we know it will be safe to hide
229
+ // the copy_() from autograd as well.
230
+ uint64_t mutation_counter_ = 0;
231
+ uint64_t mutation_hidden_from_autograd_counter_ = 0;
232
+ uint64_t mutation_during_no_grad_or_inference_mode_ = 0;
233
+ bool has_metadata_mutation_ = false;
234
+ bool is_multi_output_view_ = false;
235
+ // Did the tensor experience a set_() call.
236
+ bool was_storage_changed_ = false;
237
+
238
+ size_t generation_ = 0;
239
+ std::vector<at::functionalization::ViewMeta> view_metas_;
240
+
241
+ protected:
242
+ static void copy_tensor_metadata(
243
+ const FunctionalTensorWrapper* src_impl,
244
+ FunctionalTensorWrapper* dest_impl,
245
+ const c10::VariableVersion& version_counter,
246
+ bool allow_tensor_metadata_change);
247
+ };
248
+
249
+ // Utility functions for the functionalization pass.
250
+
251
+ namespace functionalization {
252
+ namespace impl {
253
+
254
+ TORCH_API inline FunctionalTensorWrapper* unsafeGetFunctionalWrapper(
255
+ const Tensor& tensor) {
256
+ auto functional_impl =
257
+ static_cast<FunctionalTensorWrapper*>(tensor.unsafeGetTensorImpl());
258
+ TORCH_INTERNAL_ASSERT_DEBUG_ONLY(functional_impl != nullptr);
259
+ return functional_impl;
260
+ }
261
+
262
+ TORCH_API bool isFunctionalTensor(const at::Tensor& tensor);
263
+ TORCH_API bool isFunctionalTensor(const c10::optional<Tensor>& t);
264
+ TORCH_API bool isFunctionalTensor(
265
+ const c10::List<c10::optional<Tensor>>& t_list);
266
+ TORCH_API bool isFunctionalTensor(ITensorListRef list);
267
+
268
+ TORCH_API Tensor to_functional_tensor(const Tensor& tensor);
269
+ TORCH_API c10::optional<Tensor> to_functional_tensor(
270
+ const c10::optional<Tensor>& tensor);
271
+ TORCH_API c10::List<c10::optional<Tensor>> to_functional_tensor(
272
+ const c10::List<c10::optional<Tensor>>& t_list);
273
+ TORCH_API std::vector<Tensor> to_functional_tensor(ITensorListRef t_list);
274
+
275
+ TORCH_API void freeze_functional_tensor(const Tensor& tensor);
276
+
277
+ TORCH_API Tensor
278
+ from_functional_tensor(const Tensor& tensor, bool assert_functional = true);
279
+ TORCH_API c10::optional<Tensor> from_functional_tensor(
280
+ const c10::optional<Tensor>& t,
281
+ bool assert_functional = true);
282
+ TORCH_API c10::List<c10::optional<Tensor>> from_functional_tensor(
283
+ const c10::List<c10::optional<Tensor>>& t_list);
284
+ TORCH_API std::vector<Tensor> from_functional_tensor(ITensorListRef t_list);
285
+
286
+ TORCH_API void sync(const at::Tensor& t);
287
+ TORCH_API void sync(const c10::optional<Tensor>& t);
288
+ TORCH_API void sync(const c10::List<c10::optional<Tensor>>& t_list);
289
+ TORCH_API void sync(ITensorListRef t_list);
290
+
291
+ TORCH_API void replace_(const Tensor& functional_tensor, const Tensor& other);
292
+ TORCH_API void replace_(
293
+ const ITensorListRef functional_tensor,
294
+ ITensorListRef other);
295
+
296
+ TORCH_API void commit_update(const Tensor& functional_tensor);
297
+ TORCH_API void commit_update(ITensorListRef functional_tensor);
298
+
299
+ TORCH_API void unsafe_reset_storage(const Tensor& functional_tensor);
300
+
301
+ TORCH_API void mark_mutation_hidden_from_autograd(
302
+ const Tensor& functional_tensor);
303
+
304
+ TORCH_API bool are_all_mutations_hidden_from_autograd(
305
+ const Tensor& functional_tensor);
306
+
307
+ TORCH_API bool are_all_mutations_under_no_grad_or_inference_mode(
308
+ const Tensor& functional_tensor);
309
+
310
+ // These two methods are XLA-specific logic and are no-ops
311
+ // for the normal functionalization flow.
312
+ TORCH_API void propagate_xla_data(
313
+ const Tensor& functional_tensor,
314
+ const Tensor& other);
315
+ TORCH_API void propagate_xla_data(
316
+ const ITensorListRef functional_tensor,
317
+ ITensorListRef other);
318
+
319
+ Tensor create_functional_tensor_with_view_meta(
320
+ const Tensor& view_to_wrap,
321
+ const Tensor& base,
322
+ functionalization::ViewMeta meta,
323
+ int64_t out_idx = 0);
324
+ std::vector<Tensor> create_functional_tensor_with_view_meta(
325
+ ITensorListRef view_to_wrap,
326
+ const Tensor& base,
327
+ const functionalization::ViewMeta& meta);
328
+
329
+ void mutate_view_meta(
330
+ const Tensor& self,
331
+ const functionalization::ViewMeta& meta);
332
+
333
+ void set_sizes_strides_offset(const Tensor& out, const Tensor& meta_out);
334
+ void set_sizes_strides_offset(
335
+ const std::vector<Tensor>& outs,
336
+ const std::vector<Tensor>& meta_outs);
337
+
338
+ // ~~~~~ TLS used in functionalization ~~~~~
339
+
340
+ TORCH_API bool getFunctionalizationReapplyViewsTLS();
341
+ TORCH_API void setFunctionalizationReapplyViewsTLS(bool reapply_views);
342
+
343
+ class TORCH_API FunctionalizationReapplyViewsGuard {
344
+ public:
345
+ FunctionalizationReapplyViewsGuard(bool reapply_views)
346
+ : prev_(getFunctionalizationReapplyViewsTLS()) {
347
+ setFunctionalizationReapplyViewsTLS(reapply_views);
348
+ }
349
+
350
+ ~FunctionalizationReapplyViewsGuard() {
351
+ setFunctionalizationReapplyViewsTLS(prev_);
352
+ }
353
+
354
+ FunctionalizationReapplyViewsGuard(
355
+ const FunctionalizationReapplyViewsGuard&) = delete;
356
+ FunctionalizationReapplyViewsGuard operator=(
357
+ const FunctionalizationReapplyViewsGuard&) = delete;
358
+ FunctionalizationReapplyViewsGuard(FunctionalizationReapplyViewsGuard&&) =
359
+ delete;
360
+ FunctionalizationReapplyViewsGuard operator=(
361
+ FunctionalizationReapplyViewsGuard&&) = delete;
362
+
363
+ private:
364
+ bool prev_;
365
+ };
366
+
367
+ } // namespace impl
368
+
369
+ // Helper function to call an out-of-place composite aten kernel that may use
370
+ // mutations / views internally, and functionalize them.
371
+ TORCH_API void functionalize_op_helper(
372
+ const c10::OperatorHandle& op,
373
+ torch::jit::Stack* stack);
374
+
375
+ template <class Op, bool symint, class ReturnType, class... ParameterTypes>
376
+ struct _functionalize_aten_op final {};
377
+
378
+ template <class Op, bool symint, class ReturnType, class... ParameterTypes>
379
+ struct _functionalize_aten_op<Op, symint, ReturnType(ParameterTypes...)> final {
380
+ static ReturnType call(
381
+ typename c10::maybe_keep_symint<symint, ParameterTypes>::type... args) {
382
+ using FuncType = ReturnType(
383
+ typename c10::maybe_keep_symint<symint, ParameterTypes>::type...);
384
+ auto op = c10::Dispatcher::singleton()
385
+ .findSchemaOrThrow(
386
+ (const char*)Op::name, (const char*)Op::overload_name)
387
+ .typed<FuncType>();
388
+
389
+ return c10::impl::BoxedKernelWrapper<FuncType>::call(
390
+ c10::BoxedKernel::makeFromFunction<functionalize_op_helper>(),
391
+ op,
392
+ // BoxedKernelWrapper knows to ignore this keyset argument,
393
+ // because functionalize_op_helper doesn't take in a DispatchKeySet
394
+ c10::DispatchKeySet(),
395
+ args...);
396
+ }
397
+ };
398
+
399
+ template <class Op>
400
+ using functionalize_aten_op =
401
+ _functionalize_aten_op<Op, false, typename Op::schema>;
402
+
403
+ template <class Op>
404
+ using functionalize_aten_op_symint =
405
+ _functionalize_aten_op<Op, true, typename Op::schema>;
406
+
407
+ } // namespace functionalization
408
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/InitialTensorOptions.h ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/core/TensorOptions.h>
4
+
5
+ namespace at {
6
+
7
+ // Represents the initial TensorOptions, before the "defaults" are ever changed.
8
+ // This is designed to be used in library code, where the explicit devices,
9
+ // dtypes, etc. are known. NOTE: this is not a stable API.
10
+ inline TensorOptions initialTensorOptions() {
11
+ return TensorOptions(kCPU).dtype(kFloat).layout(kStrided).requires_grad(
12
+ false);
13
+ }
14
+
15
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/Layout.h ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #pragma once
2
+ #include <c10/core/Layout.h>
venv/lib/python3.10/site-packages/torch/include/ATen/MapAllocator.h ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/core/Allocator.h>
4
+ #include <c10/util/string_view.h>
5
+
6
+ namespace at {
7
+
8
+ enum MappedAllocatorModes {
9
+ ALLOCATOR_MAPPED_SHARED = 1,
10
+ ALLOCATOR_MAPPED_SHAREDMEM = 2,
11
+ ALLOCATOR_MAPPED_EXCLUSIVE = 4,
12
+ ALLOCATOR_MAPPED_NOCREATE = 8,
13
+ ALLOCATOR_MAPPED_KEEPFD = 16,
14
+ ALLOCATOR_MAPPED_FROMFD = 32,
15
+ ALLOCATOR_MAPPED_UNLINK = 64
16
+ };
17
+
18
+ // Sentinel value/type to help distinguish the file descriptor constructor from
19
+ // the non-file descriptor constructor
20
+ enum WithFd { WITH_FD };
21
+
22
+ TORCH_API std::string NewProcessWideShmHandle();
23
+
24
+ class TORCH_API MapAllocator {
25
+ public:
26
+ MapAllocator(c10::string_view filename, int flags, size_t size);
27
+ MapAllocator(
28
+ WithFd,
29
+ c10::string_view filename,
30
+ int fd,
31
+ int flags,
32
+ size_t size);
33
+ MapAllocator(const MapAllocator&) = delete;
34
+ MapAllocator& operator=(const MapAllocator&) = delete;
35
+ MapAllocator(MapAllocator&&) = delete;
36
+ MapAllocator& operator=(MapAllocator&&) = delete;
37
+
38
+ const char* filename() const {
39
+ return filename_.c_str();
40
+ }
41
+ int fd() const {
42
+ #ifdef _WIN32
43
+ TORCH_CHECK(false, "MapAllocator::fd() is unsupported on Windows");
44
+ #else
45
+ return fd_;
46
+ #endif
47
+ }
48
+ ptrdiff_t size() const {
49
+ return size_;
50
+ }
51
+ // Return a pointer to the actual data for this allocator
52
+ // (in the case of the refcounted allocator, this is offset
53
+ // from the base pointer.)
54
+ virtual void* data() const {
55
+ return base_ptr_;
56
+ }
57
+
58
+ static MapAllocator* fromDataPtr(const at::DataPtr&);
59
+ static at::DataPtr makeDataPtr(
60
+ c10::string_view filename,
61
+ int flags,
62
+ size_t size,
63
+ size_t* actual_size_out);
64
+ static at::DataPtr makeDataPtr(
65
+ WithFd,
66
+ const char* filename,
67
+ int fd,
68
+ int flags,
69
+ size_t size,
70
+ size_t* actual_size_out);
71
+
72
+ // Closes the data. Helps us avoid destructor shenanigans
73
+ virtual void close();
74
+
75
+ // This is very dangerous. You have to redefine this destructor for each
76
+ // subclass
77
+ virtual ~MapAllocator();
78
+
79
+ protected:
80
+ bool closed_ = false;
81
+ std::string filename_;
82
+ int flags_ = 0;
83
+ ptrdiff_t size_; /* mapped size */
84
+ #ifdef _WIN32
85
+ void* handle_;
86
+ void* event_;
87
+ std::string eventname_;
88
+ #else
89
+ int fd_ = -1;
90
+ #endif
91
+ void* base_ptr_ = nullptr;
92
+ };
93
+
94
+ // Base-from-member idiom
95
+ struct TORCH_API RefcountedMapAllocatorArgCheck {
96
+ RefcountedMapAllocatorArgCheck(int flags);
97
+ };
98
+
99
+ class TORCH_API RefcountedMapAllocator : private RefcountedMapAllocatorArgCheck,
100
+ public MapAllocator {
101
+ public:
102
+ RefcountedMapAllocator(const char* filename, int flags, size_t size);
103
+ RefcountedMapAllocator(
104
+ WithFd,
105
+ const char* filename,
106
+ int fd,
107
+ int flags,
108
+ size_t size);
109
+
110
+ static RefcountedMapAllocator* fromDataPtr(const at::DataPtr&);
111
+ static at::DataPtr makeDataPtr(
112
+ const char* filename,
113
+ int flags,
114
+ size_t size,
115
+ size_t* actual_size_out);
116
+ static at::DataPtr makeDataPtr(
117
+ WithFd,
118
+ const char* filename,
119
+ int fd,
120
+ int flags,
121
+ size_t size,
122
+ size_t* actual_size_out);
123
+
124
+ void* data() const override;
125
+
126
+ void incref();
127
+ int decref();
128
+ void close() override;
129
+
130
+ ~RefcountedMapAllocator() override {
131
+ RefcountedMapAllocator::close();
132
+ }
133
+
134
+ protected:
135
+ void checkFlags();
136
+ void initializeAlloc();
137
+ };
138
+
139
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/MatrixRef.h ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <ATen/Utils.h>
3
+ #include <c10/util/ArrayRef.h>
4
+
5
+ #include <vector>
6
+
7
+ namespace at {
8
+ /// MatrixRef - Like an ArrayRef, but with an extra recorded strides so that
9
+ /// we can easily view it as a multidimensional array.
10
+ ///
11
+ /// Like ArrayRef, this class does not own the underlying data, it is expected
12
+ /// to be used in situations where the data resides in some other buffer.
13
+ ///
14
+ /// This is intended to be trivially copyable, so it should be passed by
15
+ /// value.
16
+ ///
17
+ /// For now, 2D only (so the copies are actually cheap, without having
18
+ /// to write a SmallVector class) and contiguous only (so we can
19
+ /// return non-strided ArrayRef on index).
20
+ ///
21
+ /// P.S. dimension 0 indexes rows, dimension 1 indexes columns
22
+ template <typename T>
23
+ class MatrixRef {
24
+ public:
25
+ typedef size_t size_type;
26
+
27
+ private:
28
+ /// Underlying ArrayRef
29
+ ArrayRef<T> arr;
30
+
31
+ /// Stride of dim 0 (outer dimension)
32
+ size_type stride0;
33
+
34
+ // Stride of dim 1 is assumed to be 1
35
+
36
+ public:
37
+ /// Construct an empty Matrixref.
38
+ /*implicit*/ MatrixRef() : arr(nullptr), stride0(0) {}
39
+
40
+ /// Construct an MatrixRef from an ArrayRef and outer stride.
41
+ /*implicit*/ MatrixRef(ArrayRef<T> arr, size_type stride0)
42
+ : arr(arr), stride0(stride0) {
43
+ TORCH_CHECK(
44
+ arr.size() % stride0 == 0,
45
+ "MatrixRef: ArrayRef size ",
46
+ arr.size(),
47
+ " not divisible by stride ",
48
+ stride0)
49
+ }
50
+
51
+ /// @}
52
+ /// @name Simple Operations
53
+ /// @{
54
+
55
+ /// empty - Check if the matrix is empty.
56
+ bool empty() const {
57
+ return arr.empty();
58
+ }
59
+
60
+ const T* data() const {
61
+ return arr.data();
62
+ }
63
+
64
+ /// size - Get size a dimension
65
+ size_t size(size_t dim) const {
66
+ if (dim == 0) {
67
+ return arr.size() / stride0;
68
+ } else if (dim == 1) {
69
+ return stride0;
70
+ } else {
71
+ TORCH_CHECK(
72
+ 0, "MatrixRef: out of bounds dimension ", dim, "; expected 0 or 1");
73
+ }
74
+ }
75
+
76
+ size_t numel() const {
77
+ return arr.size();
78
+ }
79
+
80
+ /// equals - Check for element-wise equality.
81
+ bool equals(MatrixRef RHS) const {
82
+ return stride0 == RHS.stride0 && arr.equals(RHS.arr);
83
+ }
84
+
85
+ /// @}
86
+ /// @name Operator Overloads
87
+ /// @{
88
+ ArrayRef<T> operator[](size_t Index) const {
89
+ return arr.slice(Index * stride0, stride0);
90
+ }
91
+
92
+ /// Disallow accidental assignment from a temporary.
93
+ ///
94
+ /// The declaration here is extra complicated so that "arrayRef = {}"
95
+ /// continues to select the move assignment operator.
96
+ template <typename U>
97
+ std::enable_if_t<std::is_same_v<U, T>, MatrixRef<T>>& operator=(
98
+ U&& Temporary) = delete;
99
+
100
+ /// Disallow accidental assignment from a temporary.
101
+ ///
102
+ /// The declaration here is extra complicated so that "arrayRef = {}"
103
+ /// continues to select the move assignment operator.
104
+ template <typename U>
105
+ std::enable_if_t<std::is_same_v<U, T>, MatrixRef<T>>& operator=(
106
+ std::initializer_list<U>) = delete;
107
+ };
108
+
109
+ } // end namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/MemoryOverlap.h ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/macros/Export.h>
4
+
5
+ namespace c10 {
6
+ struct TensorImpl;
7
+ }
8
+
9
+ namespace at {
10
+ class TensorBase;
11
+
12
+ // MemOverlap: Whether or not there is memory overlap
13
+ //
14
+ // No: Absolutely no memory overlap
15
+ // Yes: Absolutely yes memory overlap
16
+ // TooHard: There might be memory overlap, but it was too expensive to compute.
17
+ //
18
+ // NB: Please update the python test for these if you renumber them.
19
+ enum class MemOverlap { No, Yes, TooHard };
20
+
21
+ enum class MemOverlapStatus { Full, Partial, No, TooHard };
22
+
23
+ TORCH_API MemOverlap has_internal_overlap(const TensorBase& t);
24
+ TORCH_API MemOverlap has_internal_overlap(c10::TensorImpl* t);
25
+
26
+ TORCH_API void assert_no_internal_overlap(const TensorBase& t);
27
+ TORCH_API void assert_no_internal_overlap(c10::TensorImpl* t);
28
+
29
+ TORCH_API MemOverlapStatus
30
+ get_overlap_status(const TensorBase& a, const TensorBase& b);
31
+ TORCH_API MemOverlapStatus
32
+ get_overlap_status(const c10::TensorImpl* a, const c10::TensorImpl* b);
33
+
34
+ TORCH_API void assert_no_partial_overlap(
35
+ const TensorBase& a,
36
+ const TensorBase& b);
37
+ void assert_no_partial_overlap(c10::TensorImpl* a, c10::TensorImpl* b);
38
+
39
+ TORCH_API void assert_no_overlap(const TensorBase& a, const TensorBase& b);
40
+ TORCH_API void assert_no_overlap(c10::TensorImpl* a, c10::TensorImpl* b);
41
+
42
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/MetaFunctions.h ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/core/TensorBody.h>
2
+
3
+ // TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
4
+ // Code introduced to avoid cyclic dependency in static dispatch is no longer
5
+ // needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
6
+ // to Operators.cpp for supporting multiple backends with multiple kernels.
7
+ //
8
+ // Note [Avoiding Include Cycles In Static Dispatch]
9
+ // In order to avoid #include cycles in the static dispatch build, we've carefully split out
10
+ // the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
11
+ //
12
+ // Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
13
+ // - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
14
+ // all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
15
+ // directly inlined into TensorBody.h.
16
+ // - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
17
+ // which include functions that have defaultable optional<Tensor> arguments.
18
+ // That requires knowing the full Tensor class definition.
19
+ //
20
+ // We break the cycle by doing the following:
21
+ // - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
22
+ // - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
23
+ // - CPUFunctions_inl.h includes everything else
24
+ // - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
25
+ // and then it includes CPUFunctions_inl.h.
26
+ // - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
27
+ // - This also means that static dispatch build, CPUFunctions.h only needs to
28
+ // #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
29
+ #include <ATen/MetaFunctions_inl.h>
venv/lib/python3.10/site-packages/torch/include/ATen/MethodOperators.h ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from MethodOperators.h
4
+
5
+ #ifdef TORCH_ASSERT_NO_OPERATORS
6
+ #error This change adds a dependency on native_functions.yaml, \
7
+ meaning the file will need to be re-compiled every time an operator \
8
+ is changed or added. Consider if your change would be better placed in \
9
+ another file, or if a more specific header might achieve the same goal. \
10
+ See NOTE: [Tensor vs. TensorBase]
11
+ #endif
12
+
13
+ // Forward declarations of any types needed in the operator signatures.
14
+ // We can't directly include these classes because it will cause circular include dependencies.
15
+ // This file is included by TensorBody.h, which defines the Tensor class.
16
+ #include <ATen/core/ATen_fwd.h>
17
+
18
+ #include <ATen/ops/_addmm_activation_ops.h>
19
+ #include <ATen/ops/_autocast_to_full_precision_ops.h>
20
+ #include <ATen/ops/_autocast_to_reduced_precision_ops.h>
21
+ #include <ATen/ops/_backward_ops.h>
22
+ #include <ATen/ops/_coalesced_ops.h>
23
+ #include <ATen/ops/_conj_ops.h>
24
+ #include <ATen/ops/_conj_physical_ops.h>
25
+ #include <ATen/ops/_dimI_ops.h>
26
+ #include <ATen/ops/_dimV_ops.h>
27
+ #include <ATen/ops/_fw_primal_ops.h>
28
+ #include <ATen/ops/_indices_ops.h>
29
+ #include <ATen/ops/_is_all_true_ops.h>
30
+ #include <ATen/ops/_is_any_true_ops.h>
31
+ #include <ATen/ops/_is_zerotensor_ops.h>
32
+ #include <ATen/ops/_lazy_clone_ops.h>
33
+ #include <ATen/ops/_neg_view_ops.h>
34
+ #include <ATen/ops/_nested_tensor_size_ops.h>
35
+ #include <ATen/ops/_nested_tensor_storage_offsets_ops.h>
36
+ #include <ATen/ops/_nested_tensor_strides_ops.h>
37
+ #include <ATen/ops/_nnz_ops.h>
38
+ #include <ATen/ops/_reshape_alias_ops.h>
39
+ #include <ATen/ops/_sparse_mask_projection_ops.h>
40
+ #include <ATen/ops/_to_dense_ops.h>
41
+ #include <ATen/ops/_to_sparse_bsc_ops.h>
42
+ #include <ATen/ops/_to_sparse_bsr_ops.h>
43
+ #include <ATen/ops/_to_sparse_csc_ops.h>
44
+ #include <ATen/ops/_to_sparse_csr_ops.h>
45
+ #include <ATen/ops/_to_sparse_ops.h>
46
+ #include <ATen/ops/_values_ops.h>
47
+ #include <ATen/ops/_version_ops.h>
48
+ #include <ATen/ops/abs_ops.h>
49
+ #include <ATen/ops/absolute_ops.h>
50
+ #include <ATen/ops/acos_ops.h>
51
+ #include <ATen/ops/acosh_ops.h>
52
+ #include <ATen/ops/add_ops.h>
53
+ #include <ATen/ops/addbmm_ops.h>
54
+ #include <ATen/ops/addcdiv_ops.h>
55
+ #include <ATen/ops/addcmul_ops.h>
56
+ #include <ATen/ops/addmm_ops.h>
57
+ #include <ATen/ops/addmv_ops.h>
58
+ #include <ATen/ops/addr_ops.h>
59
+ #include <ATen/ops/adjoint_ops.h>
60
+ #include <ATen/ops/alias_ops.h>
61
+ #include <ATen/ops/align_as_ops.h>
62
+ #include <ATen/ops/align_to_ops.h>
63
+ #include <ATen/ops/all_ops.h>
64
+ #include <ATen/ops/allclose_ops.h>
65
+ #include <ATen/ops/amax_ops.h>
66
+ #include <ATen/ops/amin_ops.h>
67
+ #include <ATen/ops/aminmax_ops.h>
68
+ #include <ATen/ops/and_ops.h>
69
+ #include <ATen/ops/angle_ops.h>
70
+ #include <ATen/ops/any_ops.h>
71
+ #include <ATen/ops/arccos_ops.h>
72
+ #include <ATen/ops/arccosh_ops.h>
73
+ #include <ATen/ops/arcsin_ops.h>
74
+ #include <ATen/ops/arcsinh_ops.h>
75
+ #include <ATen/ops/arctan2_ops.h>
76
+ #include <ATen/ops/arctan_ops.h>
77
+ #include <ATen/ops/arctanh_ops.h>
78
+ #include <ATen/ops/argmax_ops.h>
79
+ #include <ATen/ops/argmin_ops.h>
80
+ #include <ATen/ops/argsort_ops.h>
81
+ #include <ATen/ops/argwhere_ops.h>
82
+ #include <ATen/ops/as_strided_ops.h>
83
+ #include <ATen/ops/as_strided_scatter_ops.h>
84
+ #include <ATen/ops/asin_ops.h>
85
+ #include <ATen/ops/asinh_ops.h>
86
+ #include <ATen/ops/atan2_ops.h>
87
+ #include <ATen/ops/atan_ops.h>
88
+ #include <ATen/ops/atanh_ops.h>
89
+ #include <ATen/ops/baddbmm_ops.h>
90
+ #include <ATen/ops/bernoulli_ops.h>
91
+ #include <ATen/ops/bincount_ops.h>
92
+ #include <ATen/ops/bitwise_and_ops.h>
93
+ #include <ATen/ops/bitwise_left_shift_ops.h>
94
+ #include <ATen/ops/bitwise_not_ops.h>
95
+ #include <ATen/ops/bitwise_or_ops.h>
96
+ #include <ATen/ops/bitwise_right_shift_ops.h>
97
+ #include <ATen/ops/bitwise_xor_ops.h>
98
+ #include <ATen/ops/bmm_ops.h>
99
+ #include <ATen/ops/broadcast_to_ops.h>
100
+ #include <ATen/ops/cauchy_ops.h>
101
+ #include <ATen/ops/ccol_indices_ops.h>
102
+ #include <ATen/ops/ceil_ops.h>
103
+ #include <ATen/ops/chalf_ops.h>
104
+ #include <ATen/ops/cholesky_inverse_ops.h>
105
+ #include <ATen/ops/cholesky_ops.h>
106
+ #include <ATen/ops/cholesky_solve_ops.h>
107
+ #include <ATen/ops/chunk_ops.h>
108
+ #include <ATen/ops/clamp_max_ops.h>
109
+ #include <ATen/ops/clamp_min_ops.h>
110
+ #include <ATen/ops/clamp_ops.h>
111
+ #include <ATen/ops/clip_ops.h>
112
+ #include <ATen/ops/clone_ops.h>
113
+ #include <ATen/ops/coalesce_ops.h>
114
+ #include <ATen/ops/col_indices_ops.h>
115
+ #include <ATen/ops/conj_ops.h>
116
+ #include <ATen/ops/conj_physical_ops.h>
117
+ #include <ATen/ops/contiguous_ops.h>
118
+ #include <ATen/ops/copy_ops.h>
119
+ #include <ATen/ops/copysign_ops.h>
120
+ #include <ATen/ops/corrcoef_ops.h>
121
+ #include <ATen/ops/cos_ops.h>
122
+ #include <ATen/ops/cosh_ops.h>
123
+ #include <ATen/ops/count_nonzero_ops.h>
124
+ #include <ATen/ops/cov_ops.h>
125
+ #include <ATen/ops/cross_ops.h>
126
+ #include <ATen/ops/crow_indices_ops.h>
127
+ #include <ATen/ops/cummax_ops.h>
128
+ #include <ATen/ops/cummin_ops.h>
129
+ #include <ATen/ops/cumprod_ops.h>
130
+ #include <ATen/ops/cumsum_ops.h>
131
+ #include <ATen/ops/data_ops.h>
132
+ #include <ATen/ops/deg2rad_ops.h>
133
+ #include <ATen/ops/dense_dim_ops.h>
134
+ #include <ATen/ops/dequantize_ops.h>
135
+ #include <ATen/ops/det_ops.h>
136
+ #include <ATen/ops/detach_ops.h>
137
+ #include <ATen/ops/diag_embed_ops.h>
138
+ #include <ATen/ops/diag_ops.h>
139
+ #include <ATen/ops/diagflat_ops.h>
140
+ #include <ATen/ops/diagonal_ops.h>
141
+ #include <ATen/ops/diagonal_scatter_ops.h>
142
+ #include <ATen/ops/diff_ops.h>
143
+ #include <ATen/ops/digamma_ops.h>
144
+ #include <ATen/ops/dist_ops.h>
145
+ #include <ATen/ops/div_ops.h>
146
+ #include <ATen/ops/divide_ops.h>
147
+ #include <ATen/ops/dot_ops.h>
148
+ #include <ATen/ops/dsplit_ops.h>
149
+ #include <ATen/ops/eq_ops.h>
150
+ #include <ATen/ops/equal_ops.h>
151
+ #include <ATen/ops/erf_ops.h>
152
+ #include <ATen/ops/erfc_ops.h>
153
+ #include <ATen/ops/erfinv_ops.h>
154
+ #include <ATen/ops/exp2_ops.h>
155
+ #include <ATen/ops/exp_ops.h>
156
+ #include <ATen/ops/expand_as_ops.h>
157
+ #include <ATen/ops/expand_ops.h>
158
+ #include <ATen/ops/expm1_ops.h>
159
+ #include <ATen/ops/exponential_ops.h>
160
+ #include <ATen/ops/fill_diagonal_ops.h>
161
+ #include <ATen/ops/fill_ops.h>
162
+ #include <ATen/ops/fix_ops.h>
163
+ #include <ATen/ops/flatten_ops.h>
164
+ #include <ATen/ops/flip_ops.h>
165
+ #include <ATen/ops/fliplr_ops.h>
166
+ #include <ATen/ops/flipud_ops.h>
167
+ #include <ATen/ops/float_power_ops.h>
168
+ #include <ATen/ops/floor_divide_ops.h>
169
+ #include <ATen/ops/floor_ops.h>
170
+ #include <ATen/ops/fmax_ops.h>
171
+ #include <ATen/ops/fmin_ops.h>
172
+ #include <ATen/ops/fmod_ops.h>
173
+ #include <ATen/ops/frac_ops.h>
174
+ #include <ATen/ops/frexp_ops.h>
175
+ #include <ATen/ops/gather_ops.h>
176
+ #include <ATen/ops/gcd_ops.h>
177
+ #include <ATen/ops/ge_ops.h>
178
+ #include <ATen/ops/geometric_ops.h>
179
+ #include <ATen/ops/geqrf_ops.h>
180
+ #include <ATen/ops/ger_ops.h>
181
+ #include <ATen/ops/greater_equal_ops.h>
182
+ #include <ATen/ops/greater_ops.h>
183
+ #include <ATen/ops/gt_ops.h>
184
+ #include <ATen/ops/hardshrink_backward_ops.h>
185
+ #include <ATen/ops/hardshrink_ops.h>
186
+ #include <ATen/ops/heaviside_ops.h>
187
+ #include <ATen/ops/histc_ops.h>
188
+ #include <ATen/ops/histogram_ops.h>
189
+ #include <ATen/ops/hsplit_ops.h>
190
+ #include <ATen/ops/hypot_ops.h>
191
+ #include <ATen/ops/i0_ops.h>
192
+ #include <ATen/ops/igamma_ops.h>
193
+ #include <ATen/ops/igammac_ops.h>
194
+ #include <ATen/ops/index_add_ops.h>
195
+ #include <ATen/ops/index_copy_ops.h>
196
+ #include <ATen/ops/index_fill_ops.h>
197
+ #include <ATen/ops/index_ops.h>
198
+ #include <ATen/ops/index_put_ops.h>
199
+ #include <ATen/ops/index_reduce_ops.h>
200
+ #include <ATen/ops/index_select_ops.h>
201
+ #include <ATen/ops/indices_ops.h>
202
+ #include <ATen/ops/inner_ops.h>
203
+ #include <ATen/ops/int_repr_ops.h>
204
+ #include <ATen/ops/inverse_ops.h>
205
+ #include <ATen/ops/is_coalesced_ops.h>
206
+ #include <ATen/ops/is_complex_ops.h>
207
+ #include <ATen/ops/is_conj_ops.h>
208
+ #include <ATen/ops/is_distributed_ops.h>
209
+ #include <ATen/ops/is_floating_point_ops.h>
210
+ #include <ATen/ops/is_inference_ops.h>
211
+ #include <ATen/ops/is_leaf_ops.h>
212
+ #include <ATen/ops/is_neg_ops.h>
213
+ #include <ATen/ops/is_nonzero_ops.h>
214
+ #include <ATen/ops/is_pinned_ops.h>
215
+ #include <ATen/ops/is_same_size_ops.h>
216
+ #include <ATen/ops/is_set_to_ops.h>
217
+ #include <ATen/ops/is_signed_ops.h>
218
+ #include <ATen/ops/isclose_ops.h>
219
+ #include <ATen/ops/isfinite_ops.h>
220
+ #include <ATen/ops/isinf_ops.h>
221
+ #include <ATen/ops/isnan_ops.h>
222
+ #include <ATen/ops/isneginf_ops.h>
223
+ #include <ATen/ops/isposinf_ops.h>
224
+ #include <ATen/ops/isreal_ops.h>
225
+ #include <ATen/ops/istft_ops.h>
226
+ #include <ATen/ops/item_ops.h>
227
+ #include <ATen/ops/kron_ops.h>
228
+ #include <ATen/ops/kthvalue_ops.h>
229
+ #include <ATen/ops/lcm_ops.h>
230
+ #include <ATen/ops/ldexp_ops.h>
231
+ #include <ATen/ops/le_ops.h>
232
+ #include <ATen/ops/lerp_ops.h>
233
+ #include <ATen/ops/less_equal_ops.h>
234
+ #include <ATen/ops/less_ops.h>
235
+ #include <ATen/ops/lgamma_ops.h>
236
+ #include <ATen/ops/log10_ops.h>
237
+ #include <ATen/ops/log1p_ops.h>
238
+ #include <ATen/ops/log2_ops.h>
239
+ #include <ATen/ops/log_normal_ops.h>
240
+ #include <ATen/ops/log_ops.h>
241
+ #include <ATen/ops/log_softmax_ops.h>
242
+ #include <ATen/ops/logaddexp2_ops.h>
243
+ #include <ATen/ops/logaddexp_ops.h>
244
+ #include <ATen/ops/logcumsumexp_ops.h>
245
+ #include <ATen/ops/logdet_ops.h>
246
+ #include <ATen/ops/logical_and_ops.h>
247
+ #include <ATen/ops/logical_not_ops.h>
248
+ #include <ATen/ops/logical_or_ops.h>
249
+ #include <ATen/ops/logical_xor_ops.h>
250
+ #include <ATen/ops/logit_ops.h>
251
+ #include <ATen/ops/logsumexp_ops.h>
252
+ #include <ATen/ops/lshift_ops.h>
253
+ #include <ATen/ops/lt_ops.h>
254
+ #include <ATen/ops/lu_solve_ops.h>
255
+ #include <ATen/ops/mH_ops.h>
256
+ #include <ATen/ops/mT_ops.h>
257
+ #include <ATen/ops/masked_fill_ops.h>
258
+ #include <ATen/ops/masked_scatter_ops.h>
259
+ #include <ATen/ops/masked_select_ops.h>
260
+ #include <ATen/ops/matmul_ops.h>
261
+ #include <ATen/ops/matrix_H_ops.h>
262
+ #include <ATen/ops/matrix_exp_ops.h>
263
+ #include <ATen/ops/matrix_power_ops.h>
264
+ #include <ATen/ops/max_ops.h>
265
+ #include <ATen/ops/maximum_ops.h>
266
+ #include <ATen/ops/mean_ops.h>
267
+ #include <ATen/ops/median_ops.h>
268
+ #include <ATen/ops/min_ops.h>
269
+ #include <ATen/ops/minimum_ops.h>
270
+ #include <ATen/ops/mm_ops.h>
271
+ #include <ATen/ops/mode_ops.h>
272
+ #include <ATen/ops/moveaxis_ops.h>
273
+ #include <ATen/ops/movedim_ops.h>
274
+ #include <ATen/ops/msort_ops.h>
275
+ #include <ATen/ops/mul_ops.h>
276
+ #include <ATen/ops/multinomial_ops.h>
277
+ #include <ATen/ops/multiply_ops.h>
278
+ #include <ATen/ops/mv_ops.h>
279
+ #include <ATen/ops/mvlgamma_ops.h>
280
+ #include <ATen/ops/nan_to_num_ops.h>
281
+ #include <ATen/ops/nanmean_ops.h>
282
+ #include <ATen/ops/nanmedian_ops.h>
283
+ #include <ATen/ops/nanquantile_ops.h>
284
+ #include <ATen/ops/nansum_ops.h>
285
+ #include <ATen/ops/narrow_copy_ops.h>
286
+ #include <ATen/ops/narrow_ops.h>
287
+ #include <ATen/ops/ne_ops.h>
288
+ #include <ATen/ops/neg_ops.h>
289
+ #include <ATen/ops/negative_ops.h>
290
+ #include <ATen/ops/new_empty_ops.h>
291
+ #include <ATen/ops/new_empty_strided_ops.h>
292
+ #include <ATen/ops/new_full_ops.h>
293
+ #include <ATen/ops/new_ones_ops.h>
294
+ #include <ATen/ops/new_zeros_ops.h>
295
+ #include <ATen/ops/nextafter_ops.h>
296
+ #include <ATen/ops/nonzero_numpy_ops.h>
297
+ #include <ATen/ops/nonzero_ops.h>
298
+ #include <ATen/ops/nonzero_static_ops.h>
299
+ #include <ATen/ops/norm_ops.h>
300
+ #include <ATen/ops/normal_ops.h>
301
+ #include <ATen/ops/not_equal_ops.h>
302
+ #include <ATen/ops/numpy_T_ops.h>
303
+ #include <ATen/ops/or_ops.h>
304
+ #include <ATen/ops/orgqr_ops.h>
305
+ #include <ATen/ops/ormqr_ops.h>
306
+ #include <ATen/ops/outer_ops.h>
307
+ #include <ATen/ops/output_nr_ops.h>
308
+ #include <ATen/ops/permute_ops.h>
309
+ #include <ATen/ops/pin_memory_ops.h>
310
+ #include <ATen/ops/pinverse_ops.h>
311
+ #include <ATen/ops/polygamma_ops.h>
312
+ #include <ATen/ops/positive_ops.h>
313
+ #include <ATen/ops/pow_ops.h>
314
+ #include <ATen/ops/prelu_ops.h>
315
+ #include <ATen/ops/prod_ops.h>
316
+ #include <ATen/ops/put_ops.h>
317
+ #include <ATen/ops/q_per_channel_axis_ops.h>
318
+ #include <ATen/ops/q_per_channel_scales_ops.h>
319
+ #include <ATen/ops/q_per_channel_zero_points_ops.h>
320
+ #include <ATen/ops/q_scale_ops.h>
321
+ #include <ATen/ops/q_zero_point_ops.h>
322
+ #include <ATen/ops/qr_ops.h>
323
+ #include <ATen/ops/qscheme_ops.h>
324
+ #include <ATen/ops/quantile_ops.h>
325
+ #include <ATen/ops/rad2deg_ops.h>
326
+ #include <ATen/ops/random_ops.h>
327
+ #include <ATen/ops/ravel_ops.h>
328
+ #include <ATen/ops/reciprocal_ops.h>
329
+ #include <ATen/ops/record_stream_ops.h>
330
+ #include <ATen/ops/refine_names_ops.h>
331
+ #include <ATen/ops/relu_ops.h>
332
+ #include <ATen/ops/remainder_ops.h>
333
+ #include <ATen/ops/rename_ops.h>
334
+ #include <ATen/ops/renorm_ops.h>
335
+ #include <ATen/ops/repeat_interleave_ops.h>
336
+ #include <ATen/ops/repeat_ops.h>
337
+ #include <ATen/ops/requires_grad_ops.h>
338
+ #include <ATen/ops/reshape_as_ops.h>
339
+ #include <ATen/ops/reshape_ops.h>
340
+ #include <ATen/ops/resize_as_ops.h>
341
+ #include <ATen/ops/resize_as_sparse_ops.h>
342
+ #include <ATen/ops/resize_ops.h>
343
+ #include <ATen/ops/resolve_conj_ops.h>
344
+ #include <ATen/ops/resolve_neg_ops.h>
345
+ #include <ATen/ops/retain_grad_ops.h>
346
+ #include <ATen/ops/retains_grad_ops.h>
347
+ #include <ATen/ops/roll_ops.h>
348
+ #include <ATen/ops/rot90_ops.h>
349
+ #include <ATen/ops/round_ops.h>
350
+ #include <ATen/ops/row_indices_ops.h>
351
+ #include <ATen/ops/rshift_ops.h>
352
+ #include <ATen/ops/rsqrt_ops.h>
353
+ #include <ATen/ops/scatter_add_ops.h>
354
+ #include <ATen/ops/scatter_ops.h>
355
+ #include <ATen/ops/scatter_reduce_ops.h>
356
+ #include <ATen/ops/select_ops.h>
357
+ #include <ATen/ops/select_scatter_ops.h>
358
+ #include <ATen/ops/set_data_ops.h>
359
+ #include <ATen/ops/set_ops.h>
360
+ #include <ATen/ops/sgn_ops.h>
361
+ #include <ATen/ops/sigmoid_ops.h>
362
+ #include <ATen/ops/sign_ops.h>
363
+ #include <ATen/ops/signbit_ops.h>
364
+ #include <ATen/ops/sin_ops.h>
365
+ #include <ATen/ops/sinc_ops.h>
366
+ #include <ATen/ops/sinh_ops.h>
367
+ #include <ATen/ops/size_ops.h>
368
+ #include <ATen/ops/slice_inverse_ops.h>
369
+ #include <ATen/ops/slice_ops.h>
370
+ #include <ATen/ops/slice_scatter_ops.h>
371
+ #include <ATen/ops/slogdet_ops.h>
372
+ #include <ATen/ops/smm_ops.h>
373
+ #include <ATen/ops/softmax_ops.h>
374
+ #include <ATen/ops/sort_ops.h>
375
+ #include <ATen/ops/sparse_dim_ops.h>
376
+ #include <ATen/ops/sparse_mask_ops.h>
377
+ #include <ATen/ops/sparse_resize_and_clear_ops.h>
378
+ #include <ATen/ops/sparse_resize_ops.h>
379
+ #include <ATen/ops/split_ops.h>
380
+ #include <ATen/ops/split_with_sizes_ops.h>
381
+ #include <ATen/ops/sqrt_ops.h>
382
+ #include <ATen/ops/square_ops.h>
383
+ #include <ATen/ops/squeeze_ops.h>
384
+ #include <ATen/ops/sspaddmm_ops.h>
385
+ #include <ATen/ops/std_ops.h>
386
+ #include <ATen/ops/stft_ops.h>
387
+ #include <ATen/ops/stride_ops.h>
388
+ #include <ATen/ops/sub_ops.h>
389
+ #include <ATen/ops/subtract_ops.h>
390
+ #include <ATen/ops/sum_ops.h>
391
+ #include <ATen/ops/sum_to_size_ops.h>
392
+ #include <ATen/ops/svd_ops.h>
393
+ #include <ATen/ops/swapaxes_ops.h>
394
+ #include <ATen/ops/swapdims_ops.h>
395
+ #include <ATen/ops/t_ops.h>
396
+ #include <ATen/ops/take_along_dim_ops.h>
397
+ #include <ATen/ops/take_ops.h>
398
+ #include <ATen/ops/tan_ops.h>
399
+ #include <ATen/ops/tanh_ops.h>
400
+ #include <ATen/ops/tensor_split_ops.h>
401
+ #include <ATen/ops/tile_ops.h>
402
+ #include <ATen/ops/to_dense_ops.h>
403
+ #include <ATen/ops/to_mkldnn_ops.h>
404
+ #include <ATen/ops/to_ops.h>
405
+ #include <ATen/ops/to_padded_tensor_ops.h>
406
+ #include <ATen/ops/to_sparse_bsc_ops.h>
407
+ #include <ATen/ops/to_sparse_bsr_ops.h>
408
+ #include <ATen/ops/to_sparse_csc_ops.h>
409
+ #include <ATen/ops/to_sparse_csr_ops.h>
410
+ #include <ATen/ops/to_sparse_ops.h>
411
+ #include <ATen/ops/topk_ops.h>
412
+ #include <ATen/ops/trace_ops.h>
413
+ #include <ATen/ops/transpose_ops.h>
414
+ #include <ATen/ops/triangular_solve_ops.h>
415
+ #include <ATen/ops/tril_ops.h>
416
+ #include <ATen/ops/triu_ops.h>
417
+ #include <ATen/ops/true_divide_ops.h>
418
+ #include <ATen/ops/trunc_ops.h>
419
+ #include <ATen/ops/type_as_ops.h>
420
+ #include <ATen/ops/unbind_ops.h>
421
+ #include <ATen/ops/unflatten_ops.h>
422
+ #include <ATen/ops/unfold_ops.h>
423
+ #include <ATen/ops/uniform_ops.h>
424
+ #include <ATen/ops/unsafe_chunk_ops.h>
425
+ #include <ATen/ops/unsafe_split_ops.h>
426
+ #include <ATen/ops/unsafe_split_with_sizes_ops.h>
427
+ #include <ATen/ops/unsqueeze_ops.h>
428
+ #include <ATen/ops/values_ops.h>
429
+ #include <ATen/ops/var_ops.h>
430
+ #include <ATen/ops/vdot_ops.h>
431
+ #include <ATen/ops/view_as_ops.h>
432
+ #include <ATen/ops/view_ops.h>
433
+ #include <ATen/ops/vsplit_ops.h>
434
+ #include <ATen/ops/where_ops.h>
435
+ #include <ATen/ops/xlogy_ops.h>
436
+ #include <ATen/ops/xor_ops.h>
437
+ #include <ATen/ops/zero_ops.h>
438
+
439
+ namespace at {
440
+ namespace _ops {
441
+
442
+ } // namespace _ops
443
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/NamedTensor.h ADDED
@@ -0,0 +1 @@
 
 
1
+ #include <ATen/core/NamedTensor.h>
venv/lib/python3.10/site-packages/torch/include/ATen/NestedTensorImpl.h ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <ATen/MemoryOverlap.h>
3
+ #include <ATen/Tensor.h>
4
+ #include <c10/core/DispatchKey.h>
5
+ #include <c10/core/DispatchKeySet.h>
6
+ #include <c10/core/MemoryFormat.h>
7
+ #include <c10/core/TensorImpl.h>
8
+ #include <c10/util/ArrayRef.h>
9
+ #include <c10/util/Exception.h>
10
+ #include <c10/util/Metaprogramming.h>
11
+ #include <c10/util/irange.h>
12
+
13
+ namespace at::native {
14
+ struct NestedTensorImpl;
15
+ inline bool nested_tensor_impl_is_contiguous(const NestedTensorImpl* nt);
16
+ int64_t get_numel_from_nested_size_tensor(const at::Tensor& tensor);
17
+
18
+ struct TORCH_API NestedTensorImpl : public c10::TensorImpl {
19
+ explicit NestedTensorImpl(
20
+ Storage storage,
21
+ c10::DispatchKeySet key_set,
22
+ const caffe2::TypeMeta data_type,
23
+ at::Tensor nested_sizes,
24
+ at::Tensor nested_strides,
25
+ at::Tensor storage_offsets);
26
+
27
+ explicit NestedTensorImpl(
28
+ const at::Tensor& buffer,
29
+ at::Tensor nested_sizes,
30
+ at::Tensor nested_strides,
31
+ at::Tensor storage_offsets);
32
+ // assume contiguous, `nested_strides` and `offsets`
33
+ // can be infered from `nested_sizes`
34
+ explicit NestedTensorImpl(
35
+ const at::Tensor& buffer,
36
+ const at::Tensor& nested_sizes);
37
+
38
+ // This constructor is used creating view tensors from nested tensors
39
+ explicit NestedTensorImpl(
40
+ c10::TensorImpl::ImplType impl_type,
41
+ const at::Tensor& base_tensor,
42
+ at::Tensor nested_sizes,
43
+ at::Tensor nested_strides,
44
+ at::Tensor storage_offsets);
45
+
46
+ // TODO: don't expose private implementation details like this; in
47
+ // particular, resizing this tensor will mess up our dim() and
48
+ // callers cannot fix it.
49
+ const Tensor& get_nested_sizes() const {
50
+ return nested_sizes_;
51
+ }
52
+ // TODO: don't expose private implementation details like this
53
+ const Tensor& get_nested_strides() const {
54
+ return nested_strides_;
55
+ }
56
+ const Tensor& get_storage_offsets() const {
57
+ return storage_offsets_;
58
+ }
59
+ // Returns nullopt if the ith dimension is irregular. The ith dimension
60
+ // of a NestedTensor is regular if the unbound tensors match in
61
+ // size at the (i-1)th dimension.
62
+ c10::optional<int64_t> opt_size(int64_t d) const;
63
+
64
+ int64_t size(int64_t d) const {
65
+ c10::optional<int64_t> optional_size = this->opt_size(d);
66
+ TORCH_CHECK(
67
+ optional_size.has_value(),
68
+ "Given dimension ",
69
+ d,
70
+ " is irregular and does not have a size.");
71
+ return *optional_size;
72
+ }
73
+ /**
74
+ * Return a view of the nested tensor as a 1 dimensional contiguous tensor.
75
+ *
76
+ * The buffer tensor created by this function shares the same storage_impl as
77
+ * the original nested tensor, and therefore can be seen as a view.
78
+ *
79
+ * @return A newly constructed view tensor
80
+ */
81
+ at::Tensor get_buffer() const {
82
+ TORCH_CHECK(
83
+ nested_tensor_impl_is_contiguous(this),
84
+ "NestedTensor must be contiguous to get buffer.");
85
+ return get_unsafe_storage_as_tensor();
86
+ }
87
+ /**
88
+ * If possible use get_buffer() instead. This function returns the storage
89
+ * as a tensor directly, which is not safe to use in general. If using this
90
+ * function, The caller must ensure to account for nested_sizes,
91
+ * nested_strides and storage_offsets.
92
+ *
93
+ * @return A newly constructed view tensor
94
+ */
95
+ at::Tensor get_unsafe_storage_as_tensor() const {
96
+ auto buffer_key_set_ = generate_buffer_key_set();
97
+ const auto buffer_size = get_buffer_size();
98
+ auto buffer_tensor_impl = c10::make_intrusive<TensorImpl>(
99
+ c10::TensorImpl::VIEW, Storage(storage_), buffer_key_set_, data_type_);
100
+ buffer_tensor_impl->set_sizes_contiguous(
101
+ c10::makeArrayRef(static_cast<int64_t>(buffer_size)));
102
+ return Tensor(buffer_tensor_impl);
103
+ }
104
+
105
+ size_t get_buffer_size() const {
106
+ return storage_.nbytes() / data_type_.itemsize();
107
+ }
108
+
109
+ protected:
110
+ const char* tensorimpl_type_name() const override;
111
+
112
+ // TODO: numel_custom and is_contiguous_custom can be profitably overridden
113
+ // with real implementations
114
+ int64_t numel_custom() const override;
115
+ c10::SymInt sym_numel_custom() const override;
116
+ bool is_contiguous_custom(MemoryFormat) const override;
117
+ int64_t size_custom(int64_t d) const override {
118
+ return this->size(d);
119
+ }
120
+ c10::SymInt sym_size_custom(int64_t d) const override {
121
+ return c10::SymInt{this->size(d)};
122
+ }
123
+ IntArrayRef sizes_custom() const override;
124
+ c10::SymIntArrayRef sym_sizes_custom() const override;
125
+ IntArrayRef strides_custom() const override;
126
+ c10::SymIntArrayRef sym_strides_custom() const override;
127
+
128
+ // this one is real
129
+ int64_t dim_custom() const override;
130
+
131
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
132
+ const c10::VariableVersion& version_counter,
133
+ bool allow_tensor_metadata_change) const override;
134
+
135
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
136
+ c10::VariableVersion&& version_counter,
137
+ bool allow_tensor_metadata_change) const override;
138
+
139
+ void shallow_copy_from(const c10::intrusive_ptr<TensorImpl>& impl) override {
140
+ copy_tensor_metadata(
141
+ /*src_impl=*/impl.get(),
142
+ /*dest_impl=*/this,
143
+ /*version_counter=*/version_counter(),
144
+ /*allow_tensor_metadata_change=*/allow_tensor_metadata_change());
145
+ }
146
+
147
+ private:
148
+ // Must be called after any changes to our dim() to sync the state
149
+ // to TensorImpl.
150
+ void refresh_dim();
151
+
152
+ // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
153
+ const at::Tensor nested_sizes_, nested_strides_;
154
+ // The starting positions of the underlying tensors in contiguous buffer
155
+ // i.e. the buffer memory offsets to get the underlying tensors
156
+ // The reason to keep this metadata is that, without strong enough constraint
157
+ // it cannot be derived from `nested_sizes_`
158
+ // and `nested_strides_`:
159
+ // 1. when buffer has blanks, e.g. [tensor1, blank, tensor2]
160
+ // this can happen e.g. after slicing a nested tensor
161
+ // 2. when multiple tensors share a same memory
162
+ // 3. when the nesting ordering is changed, e.g. [tensor1, tensor3, tensor2]
163
+ // Some strong enough constraints are:
164
+ // 1. every underlying tensor is contiguous in memory
165
+ // && nesting in ascending order
166
+ // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
167
+ const at::Tensor storage_offsets_;
168
+ // NOTE: -1 here means the size is missing
169
+ // Optional to allow it to be computed lazily from nested.
170
+ // TODO: maybe we can remove this metadata since
171
+ // we can compute it from `nested_sizes_`
172
+ mutable c10::optional<std::vector<int64_t>> opt_sizes_;
173
+
174
+ template <typename VariableVersion>
175
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach_core(
176
+ VariableVersion&& version_counter,
177
+ bool allow_tensor_metadata_change) const;
178
+
179
+ /**
180
+ * Generates a non-nested key_set from a nested tensor.
181
+ *
182
+ * For many nested tensor kernel implementations a buffer tensor
183
+ * is generated and redispatched to a non-nested kernel this function
184
+ * generates the key set used by that buffer tensor
185
+ *
186
+ * @return Appropriate key set for non-nested tensor
187
+ */
188
+ inline c10::DispatchKeySet generate_buffer_key_set() const {
189
+ auto buffer_key_set = this->key_set();
190
+ const bool Autograd = buffer_key_set.has_any(c10::autograd_dispatch_keyset);
191
+ // Remove nested tensor specific keys
192
+ buffer_key_set = buffer_key_set -
193
+ c10::DispatchKeySet{
194
+ c10::DispatchKey::NestedTensor,
195
+ c10::DispatchKey::AutogradNestedTensor};
196
+
197
+ // Add dense tensor specific keys
198
+ buffer_key_set =
199
+ buffer_key_set | c10::DispatchKeySet{c10::DispatchKey::Dense};
200
+ buffer_key_set = Autograd
201
+ ? c10::DispatchKeySet{c10::DispatchKey::Autograd} | buffer_key_set
202
+ : buffer_key_set;
203
+
204
+ return buffer_key_set;
205
+ }
206
+ };
207
+
208
+ inline NestedTensorImpl* get_nested_tensor_impl_or_null(
209
+ const at::Tensor& tensor) {
210
+ if (tensor.is_nested()) {
211
+ return static_cast<NestedTensorImpl*>(tensor.unsafeGetTensorImpl());
212
+ }
213
+ return nullptr;
214
+ }
215
+
216
+ inline NestedTensorImpl* get_nested_tensor_impl(const at::Tensor& tensor) {
217
+ TORCH_CHECK(
218
+ tensor.is_nested(), "get_nested_tensor_impl requires a NestedTensor.");
219
+ return static_cast<NestedTensorImpl*>(tensor.unsafeGetTensorImpl());
220
+ }
221
+
222
+ inline bool nested_tensor_impl_is_contiguous(const NestedTensorImpl* nt) {
223
+ int64_t ntensors = nt->size(0);
224
+ if (ntensors == 0) {
225
+ return true;
226
+ }
227
+ const Tensor &sizemat = nt->get_nested_sizes(),
228
+ &stridemat = nt->get_nested_strides();
229
+ int64_t* offsets_ptr = nt->get_storage_offsets().data_ptr<int64_t>();
230
+ int64_t orig_dim = sizemat.size(1);
231
+ // nesting scalars
232
+ if (orig_dim == 0) {
233
+ // each scalar must be contiguous
234
+ // if there is blank memory between underlying scalars
235
+ for (int64_t i = 0; i < ntensors; i++) {
236
+ if (offsets_ptr[i] != i) {
237
+ return false;
238
+ }
239
+ }
240
+ }
241
+ // nesting tensors
242
+ else {
243
+ // if any underlying tensor is non-contiguous
244
+ const int64_t *sizemat_ptr = sizemat.data_ptr<int64_t>(),
245
+ *stridemat_ptr = stridemat.data_ptr<int64_t>();
246
+ for (int64_t i = 0; i < ntensors; i++) {
247
+ if (stridemat_ptr[orig_dim - 1] != 1) {
248
+ return false;
249
+ }
250
+ int64_t product = sizemat_ptr[orig_dim - 1];
251
+ for (int64_t j = orig_dim - 2; j >= 0; j--) {
252
+ if (stridemat_ptr[j] != product) {
253
+ return false;
254
+ }
255
+ product *= sizemat_ptr[j];
256
+ }
257
+ sizemat_ptr += orig_dim;
258
+ stridemat_ptr += orig_dim;
259
+ }
260
+ // if there is blank memory between underlying tensors
261
+ if (offsets_ptr[0] != 0) {
262
+ return false;
263
+ }
264
+ sizemat_ptr = sizemat.data_ptr<int64_t>();
265
+ stridemat_ptr = stridemat.data_ptr<int64_t>();
266
+ for (int64_t i = 1; i < ntensors; i++) {
267
+ if (offsets_ptr[i] !=
268
+ offsets_ptr[i - 1] + *sizemat_ptr * *stridemat_ptr) {
269
+ return false;
270
+ }
271
+ sizemat_ptr += orig_dim;
272
+ stridemat_ptr += orig_dim;
273
+ }
274
+ }
275
+ // everything is fine
276
+ return true;
277
+ }
278
+
279
+ inline const at::Tensor& get_nested_sizes(const at::Tensor& tensor) {
280
+ return get_nested_tensor_impl(tensor)->get_nested_sizes();
281
+ }
282
+
283
+ } // namespace at::native
venv/lib/python3.10/site-packages/torch/include/ATen/OpMathType.h ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/core/ScalarType.h>
4
+ #include <c10/util/BFloat16.h>
5
+ #include <c10/util/Exception.h>
6
+ #include <c10/util/Float8_e4m3fn.h>
7
+ #include <c10/util/Float8_e4m3fnuz.h>
8
+ #include <c10/util/Float8_e5m2.h>
9
+ #include <c10/util/Float8_e5m2fnuz.h>
10
+ #include <c10/util/Half.h>
11
+
12
+ namespace at {
13
+
14
+ // For FP16 or BFloat16 inputs, ops should perform internal math in FP32.
15
+ template <typename scalar_t>
16
+ struct OpMathType {
17
+ using type = scalar_t;
18
+ };
19
+ template <>
20
+ struct OpMathType<at::Half> {
21
+ using type = float;
22
+ };
23
+ template <>
24
+ struct OpMathType<at::BFloat16> {
25
+ using type = float;
26
+ };
27
+ template <>
28
+ struct OpMathType<at::Float8_e5m2> {
29
+ using type = float;
30
+ };
31
+ template <>
32
+ struct OpMathType<at::Float8_e4m3fn> {
33
+ using type = float;
34
+ };
35
+ template <>
36
+ struct OpMathType<at::Float8_e5m2fnuz> {
37
+ using type = float;
38
+ };
39
+ template <>
40
+ struct OpMathType<at::Float8_e4m3fnuz> {
41
+ using type = float;
42
+ };
43
+ template <>
44
+ struct OpMathType<c10::complex<Half>> {
45
+ using type = c10::complex<float>;
46
+ };
47
+
48
+ template <typename T>
49
+ using opmath_type = typename OpMathType<T>::type;
50
+
51
+ namespace {
52
+
53
+ inline c10::ScalarType toOpMathType(const c10::ScalarType type) {
54
+ switch (type) {
55
+ #define DEFINE_CASE(scalar_t, TypeNum) \
56
+ case ScalarType::TypeNum: \
57
+ return CppTypeToScalarType<at::opmath_type<scalar_t>>::value;
58
+
59
+ AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_CASE)
60
+ #undef DEFINE_CASE
61
+
62
+ default:
63
+ TORCH_INTERNAL_ASSERT(false, "Unrecognized ScalarType: ", type);
64
+ }
65
+ }
66
+
67
+ } // namespace
68
+
69
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/OpaqueTensorImpl.h ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/core/MemoryFormat.h>
4
+ #include <c10/core/SymIntArrayRef.h>
5
+ #include <c10/core/TensorImpl.h>
6
+ #include <c10/util/Exception.h>
7
+
8
+ namespace at {
9
+
10
+ // An "Opaque" TensorImpl -- there are no strides and (for now)
11
+ // even data() is not supported (thus no pointer arithmetic).
12
+
13
+ // NOTE: We could allow data() in the future, but would have to ensure pointer
14
+ // arithmetic code is properly guarded.
15
+ //
16
+ // NOTE: This does not support resize_ (and other metadata-changing ops) because
17
+ // of `shallow_copy_and_detach`. We would need to define an interface to
18
+ // "shallow copy" in order to add support.
19
+
20
+ template <typename OpaqueHandle>
21
+ struct TORCH_API OpaqueTensorImpl : public TensorImpl {
22
+ // public constructor for now...
23
+ OpaqueTensorImpl(
24
+ at::DispatchKeySet key_set,
25
+ const caffe2::TypeMeta data_type,
26
+ c10::Device device,
27
+ OpaqueHandle opaque_handle,
28
+ c10::IntArrayRef sizes,
29
+ bool is_non_overlapping_and_dense = true)
30
+ : TensorImpl(key_set, data_type, device),
31
+ opaque_handle_(std::move(opaque_handle)) {
32
+ set_storage_access_should_throw();
33
+ set_custom_sizes_strides(SizesStridesPolicy::CustomStrides);
34
+ sizes_and_strides_.set_sizes(sizes);
35
+ refresh_numel();
36
+ // NOLINTNEXTLINE(cppcoreguidelines-prefer-member-initializer)
37
+ is_non_overlapping_and_dense_ = is_non_overlapping_and_dense;
38
+ }
39
+
40
+ // Destructor doesn't call release_resources because it's
41
+ // unnecessary; don't forget to change that if needed!
42
+ void release_resources() override {
43
+ TensorImpl::release_resources();
44
+ opaque_handle_ = {};
45
+ }
46
+
47
+ void set_size(int64_t dim, int64_t new_size) override {
48
+ AT_ERROR("opaque tensors do not have set_size");
49
+ }
50
+
51
+ void set_stride(int64_t dim, int64_t new_stride) override {
52
+ AT_ERROR("opaque tensors do not have set_stride");
53
+ }
54
+
55
+ void set_storage_offset(int64_t storage_offset) override {
56
+ AT_ERROR("opaque tensors do not have set_storage_offset");
57
+ }
58
+
59
+ #ifdef DEBUG
60
+ bool has_storage() const override {
61
+ TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
62
+ !storage_, "OpaqueTensorImpl assumes that storage_ is never set");
63
+ return false;
64
+ }
65
+ #endif
66
+
67
+ /**
68
+ * Return a TensorImpl that is a shallow-copy of this TensorImpl.
69
+ *
70
+ * For usage of `version_counter` and `allow_tensor_metadata_change`,
71
+ * see NOTE [ TensorImpl Shallow-Copying ].
72
+ */
73
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
74
+ const c10::VariableVersion& version_counter,
75
+ bool allow_tensor_metadata_change) const override {
76
+ auto impl = c10::make_intrusive<OpaqueTensorImpl<OpaqueHandle>>(
77
+ key_set(),
78
+ dtype(),
79
+ device(),
80
+ opaque_handle_,
81
+ sizes_and_strides_.sizes_arrayref());
82
+ copy_tensor_metadata(
83
+ /*src_opaque_impl=*/this,
84
+ /*dest_opaque_impl=*/impl.get(),
85
+ /*version_counter=*/version_counter,
86
+ /*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
87
+ impl->refresh_numel();
88
+ return impl;
89
+ }
90
+
91
+ /**
92
+ * Return a TensorImpl that is a shallow-copy of this TensorImpl.
93
+ *
94
+ * For usage of `version_counter` and `allow_tensor_metadata_change`,
95
+ * see NOTE [ TensorImpl Shallow-Copying ].
96
+ */
97
+ c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
98
+ c10::VariableVersion&& version_counter,
99
+ bool allow_tensor_metadata_change) const override {
100
+ auto impl = c10::make_intrusive<OpaqueTensorImpl<OpaqueHandle>>(
101
+ key_set(),
102
+ dtype(),
103
+ device(),
104
+ opaque_handle_,
105
+ sizes_and_strides_.sizes_arrayref());
106
+ copy_tensor_metadata(
107
+ /*src_opaque_impl=*/this,
108
+ /*dest_opaque_impl=*/impl.get(),
109
+ /*version_counter=*/std::move(version_counter),
110
+ /*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
111
+ impl->refresh_numel();
112
+ return impl;
113
+ }
114
+
115
+ /**
116
+ * Shallow-copies data from another TensorImpl into this TensorImpl.
117
+ *
118
+ * For why this function doesn't check this TensorImpl's
119
+ * `allow_tensor_metadata_change_`, see NOTE [ TensorImpl Shallow-Copying ].
120
+ */
121
+ void shallow_copy_from(const c10::intrusive_ptr<TensorImpl>& impl) override {
122
+ AT_ASSERT(has_compatible_shallow_copy_type(impl->key_set()));
123
+ auto opaque_impl =
124
+ static_cast<const OpaqueTensorImpl<OpaqueHandle>*>(impl.get());
125
+ copy_tensor_metadata(
126
+ /*src_impl=*/opaque_impl,
127
+ /*dest_impl=*/this,
128
+ /*version_counter=*/version_counter(),
129
+ /*allow_tensor_metadata_change=*/allow_tensor_metadata_change());
130
+ refresh_numel();
131
+ }
132
+
133
+ const OpaqueHandle& opaque_handle() const {
134
+ return opaque_handle_;
135
+ }
136
+
137
+ OpaqueHandle& unsafe_opaque_handle() {
138
+ return opaque_handle_;
139
+ }
140
+
141
+ protected:
142
+ /**
143
+ * Copy the tensor metadata fields (e.g. sizes / strides / storage pointer /
144
+ * storage_offset) from one TensorImpl to another TensorImpl.
145
+ *
146
+ * For usage of `version_counter` and `allow_tensor_metadata_change`, see NOTE
147
+ * [ TensorImpl Shallow-Copying ].
148
+ */
149
+ static void copy_tensor_metadata(
150
+ const OpaqueTensorImpl<OpaqueHandle>* src_opaque_impl,
151
+ OpaqueTensorImpl<OpaqueHandle>* dest_opaque_impl,
152
+ const c10::VariableVersion& version_counter,
153
+ bool allow_tensor_metadata_change) {
154
+ TensorImpl::copy_tensor_metadata(
155
+ src_opaque_impl,
156
+ dest_opaque_impl,
157
+ version_counter,
158
+ allow_tensor_metadata_change);
159
+
160
+ // OpaqueTensorImpl-specific fields.
161
+ dest_opaque_impl->opaque_handle_ = src_opaque_impl->opaque_handle_;
162
+ }
163
+
164
+ static void copy_tensor_metadata(
165
+ const OpaqueTensorImpl<OpaqueHandle>* src_opaque_impl,
166
+ OpaqueTensorImpl<OpaqueHandle>* dest_opaque_impl,
167
+ c10::VariableVersion&& version_counter,
168
+ bool allow_tensor_metadata_change) {
169
+ TensorImpl::copy_tensor_metadata(
170
+ src_opaque_impl,
171
+ dest_opaque_impl,
172
+ std::move(version_counter),
173
+ allow_tensor_metadata_change);
174
+
175
+ // OpaqueTensorImpl-specific fields.
176
+ dest_opaque_impl->opaque_handle_ = src_opaque_impl->opaque_handle_;
177
+ }
178
+
179
+ private:
180
+ const char* tensorimpl_type_name() const override {
181
+ return "OpaqueTensorImpl";
182
+ }
183
+
184
+ OpaqueHandle opaque_handle_;
185
+ };
186
+
187
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/Operators.h ADDED
@@ -0,0 +1,1358 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operators.h
4
+
5
+ #ifdef TORCH_ASSERT_NO_OPERATORS
6
+ #error This change adds a dependency on native_functions.yaml, \
7
+ meaning the file will need to be re-compiled every time an operator \
8
+ is changed or added. Consider if your change would be better placed in \
9
+ another file, or if a more specific header might achieve the same goal. \
10
+ See NOTE: [Tensor vs. TensorBase]
11
+ #endif
12
+
13
+ #if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
14
+ #error This change adds a dependency on all pytorch operators, meaning the \
15
+ file will need to be re-compiled every time an operator is changed or added. \
16
+ Consider including a specific operator from <ATen/ops/{my_operator}_ops.h> \
17
+ and see NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
18
+ #endif
19
+
20
+ #include <c10/core/SymInt.h>
21
+ #include <c10/core/SymIntArrayRef.h>
22
+ #include <c10/core/Scalar.h>
23
+ #include <c10/core/TensorOptions.h>
24
+ #include <c10/core/QScheme.h>
25
+ #include <c10/util/OptionalArrayRef.h>
26
+ #include <tuple>
27
+ #include <vector>
28
+
29
+ #include <ATen/ops/_adaptive_avg_pool2d_ops.h>
30
+ #include <ATen/ops/_adaptive_avg_pool2d_backward_ops.h>
31
+ #include <ATen/ops/_adaptive_avg_pool3d_ops.h>
32
+ #include <ATen/ops/_adaptive_avg_pool3d_backward_ops.h>
33
+ #include <ATen/ops/_add_batch_dim_ops.h>
34
+ #include <ATen/ops/_add_relu_ops.h>
35
+ #include <ATen/ops/_addmm_activation_ops.h>
36
+ #include <ATen/ops/_aminmax_ops.h>
37
+ #include <ATen/ops/_amp_foreach_non_finite_check_and_unscale_ops.h>
38
+ #include <ATen/ops/_amp_update_scale_ops.h>
39
+ #include <ATen/ops/_assert_async_ops.h>
40
+ #include <ATen/ops/_assert_scalar_ops.h>
41
+ #include <ATen/ops/_assert_tensor_metadata_ops.h>
42
+ #include <ATen/ops/_autocast_to_full_precision_ops.h>
43
+ #include <ATen/ops/_autocast_to_reduced_precision_ops.h>
44
+ #include <ATen/ops/_backward_ops.h>
45
+ #include <ATen/ops/_batch_norm_impl_index_ops.h>
46
+ #include <ATen/ops/_batch_norm_impl_index_backward_ops.h>
47
+ #include <ATen/ops/_cast_Byte_ops.h>
48
+ #include <ATen/ops/_cast_Char_ops.h>
49
+ #include <ATen/ops/_cast_Double_ops.h>
50
+ #include <ATen/ops/_cast_Float_ops.h>
51
+ #include <ATen/ops/_cast_Half_ops.h>
52
+ #include <ATen/ops/_cast_Int_ops.h>
53
+ #include <ATen/ops/_cast_Long_ops.h>
54
+ #include <ATen/ops/_cast_Short_ops.h>
55
+ #include <ATen/ops/_cdist_backward_ops.h>
56
+ #include <ATen/ops/_cdist_forward_ops.h>
57
+ #include <ATen/ops/_cholesky_solve_helper_ops.h>
58
+ #include <ATen/ops/_choose_qparams_per_tensor_ops.h>
59
+ #include <ATen/ops/_chunk_cat_ops.h>
60
+ #include <ATen/ops/_coalesce_ops.h>
61
+ #include <ATen/ops/_coalesced_ops.h>
62
+ #include <ATen/ops/_compute_linear_combination_ops.h>
63
+ #include <ATen/ops/_conj_ops.h>
64
+ #include <ATen/ops/_conj_copy_ops.h>
65
+ #include <ATen/ops/_conj_physical_ops.h>
66
+ #include <ATen/ops/_conv_depthwise2d_ops.h>
67
+ #include <ATen/ops/_convert_indices_from_coo_to_csr_ops.h>
68
+ #include <ATen/ops/_convert_indices_from_csr_to_coo_ops.h>
69
+ #include <ATen/ops/_convert_weight_to_int4pack_ops.h>
70
+ #include <ATen/ops/_convolution_ops.h>
71
+ #include <ATen/ops/_convolution_double_backward_ops.h>
72
+ #include <ATen/ops/_convolution_mode_ops.h>
73
+ #include <ATen/ops/_copy_from_ops.h>
74
+ #include <ATen/ops/_copy_from_and_resize_ops.h>
75
+ #include <ATen/ops/_cslt_compress_ops.h>
76
+ #include <ATen/ops/_cslt_sparse_mm_ops.h>
77
+ #include <ATen/ops/_cslt_sparse_mm_search_ops.h>
78
+ #include <ATen/ops/_ctc_loss_ops.h>
79
+ #include <ATen/ops/_ctc_loss_backward_ops.h>
80
+ #include <ATen/ops/_cudnn_ctc_loss_ops.h>
81
+ #include <ATen/ops/_cudnn_init_dropout_state_ops.h>
82
+ #include <ATen/ops/_cudnn_rnn_ops.h>
83
+ #include <ATen/ops/_cudnn_rnn_backward_ops.h>
84
+ #include <ATen/ops/_cudnn_rnn_flatten_weight_ops.h>
85
+ #include <ATen/ops/_cufft_clear_plan_cache_ops.h>
86
+ #include <ATen/ops/_cufft_get_plan_cache_max_size_ops.h>
87
+ #include <ATen/ops/_cufft_get_plan_cache_size_ops.h>
88
+ #include <ATen/ops/_cufft_set_plan_cache_max_size_ops.h>
89
+ #include <ATen/ops/_cummax_helper_ops.h>
90
+ #include <ATen/ops/_cummin_helper_ops.h>
91
+ #include <ATen/ops/_debug_has_internal_overlap_ops.h>
92
+ #include <ATen/ops/_dimI_ops.h>
93
+ #include <ATen/ops/_dimV_ops.h>
94
+ #include <ATen/ops/_dim_arange_ops.h>
95
+ #include <ATen/ops/_dirichlet_grad_ops.h>
96
+ #include <ATen/ops/_efficient_attention_backward_ops.h>
97
+ #include <ATen/ops/_efficient_attention_forward_ops.h>
98
+ #include <ATen/ops/_efficientzerotensor_ops.h>
99
+ #include <ATen/ops/_embedding_bag_ops.h>
100
+ #include <ATen/ops/_embedding_bag_backward_ops.h>
101
+ #include <ATen/ops/_embedding_bag_dense_backward_ops.h>
102
+ #include <ATen/ops/_embedding_bag_forward_only_ops.h>
103
+ #include <ATen/ops/_embedding_bag_per_sample_weights_backward_ops.h>
104
+ #include <ATen/ops/_embedding_bag_sparse_backward_ops.h>
105
+ #include <ATen/ops/_empty_affine_quantized_ops.h>
106
+ #include <ATen/ops/_empty_per_channel_affine_quantized_ops.h>
107
+ #include <ATen/ops/_euclidean_dist_ops.h>
108
+ #include <ATen/ops/_fake_quantize_learnable_per_channel_affine_ops.h>
109
+ #include <ATen/ops/_fake_quantize_learnable_per_channel_affine_backward_ops.h>
110
+ #include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_ops.h>
111
+ #include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_backward_ops.h>
112
+ #include <ATen/ops/_fake_quantize_per_tensor_affine_cachemask_tensor_qparams_ops.h>
113
+ #include <ATen/ops/_fft_c2c_ops.h>
114
+ #include <ATen/ops/_fft_c2r_ops.h>
115
+ #include <ATen/ops/_fft_r2c_ops.h>
116
+ #include <ATen/ops/_fill_mem_eff_dropout_mask_ops.h>
117
+ #include <ATen/ops/_flash_attention_backward_ops.h>
118
+ #include <ATen/ops/_flash_attention_forward_ops.h>
119
+ #include <ATen/ops/_foobar_ops.h>
120
+ #include <ATen/ops/_foreach_abs_ops.h>
121
+ #include <ATen/ops/_foreach_acos_ops.h>
122
+ #include <ATen/ops/_foreach_add_ops.h>
123
+ #include <ATen/ops/_foreach_addcdiv_ops.h>
124
+ #include <ATen/ops/_foreach_addcmul_ops.h>
125
+ #include <ATen/ops/_foreach_asin_ops.h>
126
+ #include <ATen/ops/_foreach_atan_ops.h>
127
+ #include <ATen/ops/_foreach_ceil_ops.h>
128
+ #include <ATen/ops/_foreach_clamp_max_ops.h>
129
+ #include <ATen/ops/_foreach_clamp_min_ops.h>
130
+ #include <ATen/ops/_foreach_copy_ops.h>
131
+ #include <ATen/ops/_foreach_cos_ops.h>
132
+ #include <ATen/ops/_foreach_cosh_ops.h>
133
+ #include <ATen/ops/_foreach_div_ops.h>
134
+ #include <ATen/ops/_foreach_erf_ops.h>
135
+ #include <ATen/ops/_foreach_erfc_ops.h>
136
+ #include <ATen/ops/_foreach_exp_ops.h>
137
+ #include <ATen/ops/_foreach_expm1_ops.h>
138
+ #include <ATen/ops/_foreach_floor_ops.h>
139
+ #include <ATen/ops/_foreach_frac_ops.h>
140
+ #include <ATen/ops/_foreach_lerp_ops.h>
141
+ #include <ATen/ops/_foreach_lgamma_ops.h>
142
+ #include <ATen/ops/_foreach_log_ops.h>
143
+ #include <ATen/ops/_foreach_log10_ops.h>
144
+ #include <ATen/ops/_foreach_log1p_ops.h>
145
+ #include <ATen/ops/_foreach_log2_ops.h>
146
+ #include <ATen/ops/_foreach_maximum_ops.h>
147
+ #include <ATen/ops/_foreach_minimum_ops.h>
148
+ #include <ATen/ops/_foreach_mul_ops.h>
149
+ #include <ATen/ops/_foreach_neg_ops.h>
150
+ #include <ATen/ops/_foreach_norm_ops.h>
151
+ #include <ATen/ops/_foreach_pow_ops.h>
152
+ #include <ATen/ops/_foreach_reciprocal_ops.h>
153
+ #include <ATen/ops/_foreach_round_ops.h>
154
+ #include <ATen/ops/_foreach_sigmoid_ops.h>
155
+ #include <ATen/ops/_foreach_sign_ops.h>
156
+ #include <ATen/ops/_foreach_sin_ops.h>
157
+ #include <ATen/ops/_foreach_sinh_ops.h>
158
+ #include <ATen/ops/_foreach_sqrt_ops.h>
159
+ #include <ATen/ops/_foreach_sub_ops.h>
160
+ #include <ATen/ops/_foreach_tan_ops.h>
161
+ #include <ATen/ops/_foreach_tanh_ops.h>
162
+ #include <ATen/ops/_foreach_trunc_ops.h>
163
+ #include <ATen/ops/_foreach_zero_ops.h>
164
+ #include <ATen/ops/_functional_assert_async_ops.h>
165
+ #include <ATen/ops/_functional_assert_scalar_ops.h>
166
+ #include <ATen/ops/_functional_sym_constrain_range_ops.h>
167
+ #include <ATen/ops/_functional_sym_constrain_range_for_size_ops.h>
168
+ #include <ATen/ops/_fused_adam_ops.h>
169
+ #include <ATen/ops/_fused_adamw_ops.h>
170
+ #include <ATen/ops/_fused_dropout_ops.h>
171
+ #include <ATen/ops/_fused_moving_avg_obs_fq_helper_ops.h>
172
+ #include <ATen/ops/_fused_sdp_choice_ops.h>
173
+ #include <ATen/ops/_fused_sgd_ops.h>
174
+ #include <ATen/ops/_fw_primal_ops.h>
175
+ #include <ATen/ops/_fw_primal_copy_ops.h>
176
+ #include <ATen/ops/_gather_sparse_backward_ops.h>
177
+ #include <ATen/ops/_grid_sampler_2d_cpu_fallback_ops.h>
178
+ #include <ATen/ops/_grid_sampler_2d_cpu_fallback_backward_ops.h>
179
+ #include <ATen/ops/_has_compatible_shallow_copy_type_ops.h>
180
+ #include <ATen/ops/_has_same_storage_numel_ops.h>
181
+ #include <ATen/ops/_histogramdd_bin_edges_ops.h>
182
+ #include <ATen/ops/_histogramdd_from_bin_cts_ops.h>
183
+ #include <ATen/ops/_histogramdd_from_bin_tensors_ops.h>
184
+ #include <ATen/ops/_index_put_impl_ops.h>
185
+ #include <ATen/ops/_indices_ops.h>
186
+ #include <ATen/ops/_indices_copy_ops.h>
187
+ #include <ATen/ops/_int_mm_ops.h>
188
+ #include <ATen/ops/_is_all_true_ops.h>
189
+ #include <ATen/ops/_is_any_true_ops.h>
190
+ #include <ATen/ops/_is_zerotensor_ops.h>
191
+ #include <ATen/ops/_lazy_clone_ops.h>
192
+ #include <ATen/ops/_linalg_check_errors_ops.h>
193
+ #include <ATen/ops/_linalg_det_ops.h>
194
+ #include <ATen/ops/_linalg_eigh_ops.h>
195
+ #include <ATen/ops/_linalg_eigvals_ops.h>
196
+ #include <ATen/ops/_linalg_slogdet_ops.h>
197
+ #include <ATen/ops/_linalg_solve_ex_ops.h>
198
+ #include <ATen/ops/_linalg_svd_ops.h>
199
+ #include <ATen/ops/_local_scalar_dense_ops.h>
200
+ #include <ATen/ops/_log_softmax_ops.h>
201
+ #include <ATen/ops/_log_softmax_backward_data_ops.h>
202
+ #include <ATen/ops/_logcumsumexp_ops.h>
203
+ #include <ATen/ops/_lstm_mps_ops.h>
204
+ #include <ATen/ops/_lu_with_info_ops.h>
205
+ #include <ATen/ops/_make_dep_token_ops.h>
206
+ #include <ATen/ops/_make_dual_ops.h>
207
+ #include <ATen/ops/_make_dual_copy_ops.h>
208
+ #include <ATen/ops/_make_per_channel_quantized_tensor_ops.h>
209
+ #include <ATen/ops/_make_per_tensor_quantized_tensor_ops.h>
210
+ #include <ATen/ops/_masked_scale_ops.h>
211
+ #include <ATen/ops/_masked_softmax_ops.h>
212
+ #include <ATen/ops/_masked_softmax_backward_ops.h>
213
+ #include <ATen/ops/_mixed_dtypes_linear_ops.h>
214
+ #include <ATen/ops/_mkldnn_reshape_ops.h>
215
+ #include <ATen/ops/_mkldnn_transpose_ops.h>
216
+ #include <ATen/ops/_mps_convolution_ops.h>
217
+ #include <ATen/ops/_mps_convolution_transpose_ops.h>
218
+ #include <ATen/ops/_native_batch_norm_legit_ops.h>
219
+ #include <ATen/ops/_native_batch_norm_legit_no_training_ops.h>
220
+ #include <ATen/ops/_native_multi_head_attention_ops.h>
221
+ #include <ATen/ops/_neg_view_ops.h>
222
+ #include <ATen/ops/_neg_view_copy_ops.h>
223
+ #include <ATen/ops/_nested_from_padded_ops.h>
224
+ #include <ATen/ops/_nested_from_padded_and_nested_example_ops.h>
225
+ #include <ATen/ops/_nested_get_jagged_dummy_ops.h>
226
+ #include <ATen/ops/_nested_get_lengths_ops.h>
227
+ #include <ATen/ops/_nested_get_offsets_ops.h>
228
+ #include <ATen/ops/_nested_get_ragged_idx_ops.h>
229
+ #include <ATen/ops/_nested_get_values_ops.h>
230
+ #include <ATen/ops/_nested_get_values_copy_ops.h>
231
+ #include <ATen/ops/_nested_select_backward_ops.h>
232
+ #include <ATen/ops/_nested_sum_backward_ops.h>
233
+ #include <ATen/ops/_nested_tensor_from_mask_ops.h>
234
+ #include <ATen/ops/_nested_tensor_from_mask_left_aligned_ops.h>
235
+ #include <ATen/ops/_nested_tensor_from_tensor_list_ops.h>
236
+ #include <ATen/ops/_nested_tensor_size_ops.h>
237
+ #include <ATen/ops/_nested_tensor_softmax_with_shape_ops.h>
238
+ #include <ATen/ops/_nested_tensor_storage_offsets_ops.h>
239
+ #include <ATen/ops/_nested_tensor_strides_ops.h>
240
+ #include <ATen/ops/_nested_view_from_buffer_ops.h>
241
+ #include <ATen/ops/_nested_view_from_buffer_copy_ops.h>
242
+ #include <ATen/ops/_nested_view_from_jagged_ops.h>
243
+ #include <ATen/ops/_nested_view_from_jagged_copy_ops.h>
244
+ #include <ATen/ops/_new_zeros_with_same_feature_meta_ops.h>
245
+ #include <ATen/ops/_nnpack_available_ops.h>
246
+ #include <ATen/ops/_nnpack_spatial_convolution_ops.h>
247
+ #include <ATen/ops/_nnz_ops.h>
248
+ #include <ATen/ops/_pack_padded_sequence_ops.h>
249
+ #include <ATen/ops/_pack_padded_sequence_backward_ops.h>
250
+ #include <ATen/ops/_pad_circular_ops.h>
251
+ #include <ATen/ops/_pad_enum_ops.h>
252
+ #include <ATen/ops/_pad_packed_sequence_ops.h>
253
+ #include <ATen/ops/_pdist_backward_ops.h>
254
+ #include <ATen/ops/_pdist_forward_ops.h>
255
+ #include <ATen/ops/_pin_memory_ops.h>
256
+ #include <ATen/ops/_prelu_kernel_ops.h>
257
+ #include <ATen/ops/_prelu_kernel_backward_ops.h>
258
+ #include <ATen/ops/_print_ops.h>
259
+ #include <ATen/ops/_propagate_xla_data_ops.h>
260
+ #include <ATen/ops/_remove_batch_dim_ops.h>
261
+ #include <ATen/ops/_reshape_alias_ops.h>
262
+ #include <ATen/ops/_reshape_alias_copy_ops.h>
263
+ #include <ATen/ops/_reshape_copy_ops.h>
264
+ #include <ATen/ops/_reshape_from_tensor_ops.h>
265
+ #include <ATen/ops/_resize_output_ops.h>
266
+ #include <ATen/ops/_rowwise_prune_ops.h>
267
+ #include <ATen/ops/_sample_dirichlet_ops.h>
268
+ #include <ATen/ops/_saturate_weight_to_fp16_ops.h>
269
+ #include <ATen/ops/_scaled_dot_product_attention_math_ops.h>
270
+ #include <ATen/ops/_scaled_dot_product_cudnn_attention_ops.h>
271
+ #include <ATen/ops/_scaled_dot_product_efficient_attention_ops.h>
272
+ #include <ATen/ops/_scaled_dot_product_efficient_attention_backward_ops.h>
273
+ #include <ATen/ops/_scaled_dot_product_flash_attention_ops.h>
274
+ #include <ATen/ops/_scaled_dot_product_flash_attention_backward_ops.h>
275
+ #include <ATen/ops/_scaled_dot_product_flash_attention_for_cpu_ops.h>
276
+ #include <ATen/ops/_scaled_dot_product_flash_attention_for_cpu_backward_ops.h>
277
+ #include <ATen/ops/_scaled_mm_ops.h>
278
+ #include <ATen/ops/_segment_reduce_backward_ops.h>
279
+ #include <ATen/ops/_shape_as_tensor_ops.h>
280
+ #include <ATen/ops/_slow_conv2d_backward_ops.h>
281
+ #include <ATen/ops/_slow_conv2d_forward_ops.h>
282
+ #include <ATen/ops/_sobol_engine_draw_ops.h>
283
+ #include <ATen/ops/_sobol_engine_ff_ops.h>
284
+ #include <ATen/ops/_sobol_engine_initialize_state_ops.h>
285
+ #include <ATen/ops/_sobol_engine_scramble_ops.h>
286
+ #include <ATen/ops/_softmax_ops.h>
287
+ #include <ATen/ops/_softmax_backward_data_ops.h>
288
+ #include <ATen/ops/_sparse_addmm_ops.h>
289
+ #include <ATen/ops/_sparse_broadcast_to_ops.h>
290
+ #include <ATen/ops/_sparse_broadcast_to_copy_ops.h>
291
+ #include <ATen/ops/_sparse_bsc_tensor_unsafe_ops.h>
292
+ #include <ATen/ops/_sparse_bsr_tensor_unsafe_ops.h>
293
+ #include <ATen/ops/_sparse_compressed_tensor_unsafe_ops.h>
294
+ #include <ATen/ops/_sparse_coo_tensor_unsafe_ops.h>
295
+ #include <ATen/ops/_sparse_coo_tensor_with_dims_ops.h>
296
+ #include <ATen/ops/_sparse_coo_tensor_with_dims_and_tensors_ops.h>
297
+ #include <ATen/ops/_sparse_csc_tensor_unsafe_ops.h>
298
+ #include <ATen/ops/_sparse_csr_prod_ops.h>
299
+ #include <ATen/ops/_sparse_csr_sum_ops.h>
300
+ #include <ATen/ops/_sparse_csr_tensor_unsafe_ops.h>
301
+ #include <ATen/ops/_sparse_log_softmax_ops.h>
302
+ #include <ATen/ops/_sparse_log_softmax_backward_data_ops.h>
303
+ #include <ATen/ops/_sparse_mask_projection_ops.h>
304
+ #include <ATen/ops/_sparse_mm_ops.h>
305
+ #include <ATen/ops/_sparse_mm_reduce_impl_ops.h>
306
+ #include <ATen/ops/_sparse_mm_reduce_impl_backward_ops.h>
307
+ #include <ATen/ops/_sparse_semi_structured_linear_ops.h>
308
+ #include <ATen/ops/_sparse_softmax_ops.h>
309
+ #include <ATen/ops/_sparse_softmax_backward_data_ops.h>
310
+ #include <ATen/ops/_sparse_sparse_matmul_ops.h>
311
+ #include <ATen/ops/_sparse_sum_ops.h>
312
+ #include <ATen/ops/_sparse_sum_backward_ops.h>
313
+ #include <ATen/ops/_spdiags_ops.h>
314
+ #include <ATen/ops/_stack_ops.h>
315
+ #include <ATen/ops/_standard_gamma_ops.h>
316
+ #include <ATen/ops/_standard_gamma_grad_ops.h>
317
+ #include <ATen/ops/_test_ambiguous_defaults_ops.h>
318
+ #include <ATen/ops/_test_autograd_multiple_dispatch_ops.h>
319
+ #include <ATen/ops/_test_autograd_multiple_dispatch_view_ops.h>
320
+ #include <ATen/ops/_test_autograd_multiple_dispatch_view_copy_ops.h>
321
+ #include <ATen/ops/_test_check_tensor_ops.h>
322
+ #include <ATen/ops/_test_functorch_fallback_ops.h>
323
+ #include <ATen/ops/_test_optional_filled_intlist_ops.h>
324
+ #include <ATen/ops/_test_optional_floatlist_ops.h>
325
+ #include <ATen/ops/_test_optional_intlist_ops.h>
326
+ #include <ATen/ops/_test_parallel_materialize_ops.h>
327
+ #include <ATen/ops/_test_serialization_subcmul_ops.h>
328
+ #include <ATen/ops/_test_string_default_ops.h>
329
+ #include <ATen/ops/_test_warn_in_autograd_ops.h>
330
+ #include <ATen/ops/_thnn_differentiable_gru_cell_backward_ops.h>
331
+ #include <ATen/ops/_thnn_differentiable_lstm_cell_backward_ops.h>
332
+ #include <ATen/ops/_thnn_fused_gru_cell_ops.h>
333
+ #include <ATen/ops/_thnn_fused_gru_cell_backward_ops.h>
334
+ #include <ATen/ops/_thnn_fused_lstm_cell_ops.h>
335
+ #include <ATen/ops/_thnn_fused_lstm_cell_backward_ops.h>
336
+ #include <ATen/ops/_thnn_fused_lstm_cell_backward_impl_ops.h>
337
+ #include <ATen/ops/_to_copy_ops.h>
338
+ #include <ATen/ops/_to_cpu_ops.h>
339
+ #include <ATen/ops/_to_dense_ops.h>
340
+ #include <ATen/ops/_to_sparse_ops.h>
341
+ #include <ATen/ops/_to_sparse_bsc_ops.h>
342
+ #include <ATen/ops/_to_sparse_bsr_ops.h>
343
+ #include <ATen/ops/_to_sparse_csc_ops.h>
344
+ #include <ATen/ops/_to_sparse_csr_ops.h>
345
+ #include <ATen/ops/_to_sparse_semi_structured_ops.h>
346
+ #include <ATen/ops/_transform_bias_rescale_qkv_ops.h>
347
+ #include <ATen/ops/_transformer_encoder_layer_fwd_ops.h>
348
+ #include <ATen/ops/_trilinear_ops.h>
349
+ #include <ATen/ops/_triton_multi_head_attention_ops.h>
350
+ #include <ATen/ops/_triton_scaled_dot_attention_ops.h>
351
+ #include <ATen/ops/_unique_ops.h>
352
+ #include <ATen/ops/_unique2_ops.h>
353
+ #include <ATen/ops/_unpack_dual_ops.h>
354
+ #include <ATen/ops/_unsafe_index_ops.h>
355
+ #include <ATen/ops/_unsafe_index_put_ops.h>
356
+ #include <ATen/ops/_unsafe_view_ops.h>
357
+ #include <ATen/ops/_upsample_bicubic2d_aa_ops.h>
358
+ #include <ATen/ops/_upsample_bicubic2d_aa_backward_ops.h>
359
+ #include <ATen/ops/_upsample_bilinear2d_aa_ops.h>
360
+ #include <ATen/ops/_upsample_bilinear2d_aa_backward_ops.h>
361
+ #include <ATen/ops/_upsample_nearest_exact1d_ops.h>
362
+ #include <ATen/ops/_upsample_nearest_exact1d_backward_ops.h>
363
+ #include <ATen/ops/_upsample_nearest_exact2d_ops.h>
364
+ #include <ATen/ops/_upsample_nearest_exact2d_backward_ops.h>
365
+ #include <ATen/ops/_upsample_nearest_exact3d_ops.h>
366
+ #include <ATen/ops/_upsample_nearest_exact3d_backward_ops.h>
367
+ #include <ATen/ops/_use_cudnn_ctc_loss_ops.h>
368
+ #include <ATen/ops/_use_cudnn_rnn_flatten_weight_ops.h>
369
+ #include <ATen/ops/_validate_compressed_sparse_indices_ops.h>
370
+ #include <ATen/ops/_validate_sparse_bsc_tensor_args_ops.h>
371
+ #include <ATen/ops/_validate_sparse_bsr_tensor_args_ops.h>
372
+ #include <ATen/ops/_validate_sparse_compressed_tensor_args_ops.h>
373
+ #include <ATen/ops/_validate_sparse_coo_tensor_args_ops.h>
374
+ #include <ATen/ops/_validate_sparse_csc_tensor_args_ops.h>
375
+ #include <ATen/ops/_validate_sparse_csr_tensor_args_ops.h>
376
+ #include <ATen/ops/_values_ops.h>
377
+ #include <ATen/ops/_values_copy_ops.h>
378
+ #include <ATen/ops/_version_ops.h>
379
+ #include <ATen/ops/_weight_int4pack_mm_ops.h>
380
+ #include <ATen/ops/_weight_int8pack_mm_ops.h>
381
+ #include <ATen/ops/_weight_norm_ops.h>
382
+ #include <ATen/ops/_weight_norm_differentiable_backward_ops.h>
383
+ #include <ATen/ops/_weight_norm_interface_ops.h>
384
+ #include <ATen/ops/_weight_norm_interface_backward_ops.h>
385
+ #include <ATen/ops/abs_ops.h>
386
+ #include <ATen/ops/absolute_ops.h>
387
+ #include <ATen/ops/acos_ops.h>
388
+ #include <ATen/ops/acosh_ops.h>
389
+ #include <ATen/ops/adaptive_avg_pool1d_ops.h>
390
+ #include <ATen/ops/adaptive_avg_pool2d_ops.h>
391
+ #include <ATen/ops/adaptive_avg_pool3d_ops.h>
392
+ #include <ATen/ops/adaptive_avg_pool3d_backward_ops.h>
393
+ #include <ATen/ops/adaptive_max_pool1d_ops.h>
394
+ #include <ATen/ops/adaptive_max_pool2d_ops.h>
395
+ #include <ATen/ops/adaptive_max_pool2d_backward_ops.h>
396
+ #include <ATen/ops/adaptive_max_pool3d_ops.h>
397
+ #include <ATen/ops/adaptive_max_pool3d_backward_ops.h>
398
+ #include <ATen/ops/add_ops.h>
399
+ #include <ATen/ops/addbmm_ops.h>
400
+ #include <ATen/ops/addcdiv_ops.h>
401
+ #include <ATen/ops/addcmul_ops.h>
402
+ #include <ATen/ops/addmm_ops.h>
403
+ #include <ATen/ops/addmv_ops.h>
404
+ #include <ATen/ops/addr_ops.h>
405
+ #include <ATen/ops/adjoint_ops.h>
406
+ #include <ATen/ops/affine_grid_generator_ops.h>
407
+ #include <ATen/ops/affine_grid_generator_backward_ops.h>
408
+ #include <ATen/ops/alias_ops.h>
409
+ #include <ATen/ops/alias_copy_ops.h>
410
+ #include <ATen/ops/align_as_ops.h>
411
+ #include <ATen/ops/align_tensors_ops.h>
412
+ #include <ATen/ops/align_to_ops.h>
413
+ #include <ATen/ops/all_ops.h>
414
+ #include <ATen/ops/allclose_ops.h>
415
+ #include <ATen/ops/alpha_dropout_ops.h>
416
+ #include <ATen/ops/amax_ops.h>
417
+ #include <ATen/ops/amin_ops.h>
418
+ #include <ATen/ops/aminmax_ops.h>
419
+ #include <ATen/ops/and_ops.h>
420
+ #include <ATen/ops/angle_ops.h>
421
+ #include <ATen/ops/any_ops.h>
422
+ #include <ATen/ops/arange_ops.h>
423
+ #include <ATen/ops/arccos_ops.h>
424
+ #include <ATen/ops/arccosh_ops.h>
425
+ #include <ATen/ops/arcsin_ops.h>
426
+ #include <ATen/ops/arcsinh_ops.h>
427
+ #include <ATen/ops/arctan_ops.h>
428
+ #include <ATen/ops/arctan2_ops.h>
429
+ #include <ATen/ops/arctanh_ops.h>
430
+ #include <ATen/ops/argmax_ops.h>
431
+ #include <ATen/ops/argmin_ops.h>
432
+ #include <ATen/ops/argsort_ops.h>
433
+ #include <ATen/ops/argwhere_ops.h>
434
+ #include <ATen/ops/as_strided_ops.h>
435
+ #include <ATen/ops/as_strided_copy_ops.h>
436
+ #include <ATen/ops/as_strided_scatter_ops.h>
437
+ #include <ATen/ops/asin_ops.h>
438
+ #include <ATen/ops/asinh_ops.h>
439
+ #include <ATen/ops/atan_ops.h>
440
+ #include <ATen/ops/atan2_ops.h>
441
+ #include <ATen/ops/atanh_ops.h>
442
+ #include <ATen/ops/atleast_1d_ops.h>
443
+ #include <ATen/ops/atleast_2d_ops.h>
444
+ #include <ATen/ops/atleast_3d_ops.h>
445
+ #include <ATen/ops/avg_pool1d_ops.h>
446
+ #include <ATen/ops/avg_pool2d_ops.h>
447
+ #include <ATen/ops/avg_pool2d_backward_ops.h>
448
+ #include <ATen/ops/avg_pool3d_ops.h>
449
+ #include <ATen/ops/avg_pool3d_backward_ops.h>
450
+ #include <ATen/ops/baddbmm_ops.h>
451
+ #include <ATen/ops/bartlett_window_ops.h>
452
+ #include <ATen/ops/batch_norm_ops.h>
453
+ #include <ATen/ops/batch_norm_backward_elemt_ops.h>
454
+ #include <ATen/ops/batch_norm_backward_reduce_ops.h>
455
+ #include <ATen/ops/batch_norm_elemt_ops.h>
456
+ #include <ATen/ops/batch_norm_gather_stats_ops.h>
457
+ #include <ATen/ops/batch_norm_gather_stats_with_counts_ops.h>
458
+ #include <ATen/ops/batch_norm_stats_ops.h>
459
+ #include <ATen/ops/batch_norm_update_stats_ops.h>
460
+ #include <ATen/ops/bernoulli_ops.h>
461
+ #include <ATen/ops/bilinear_ops.h>
462
+ #include <ATen/ops/binary_cross_entropy_ops.h>
463
+ #include <ATen/ops/binary_cross_entropy_backward_ops.h>
464
+ #include <ATen/ops/binary_cross_entropy_with_logits_ops.h>
465
+ #include <ATen/ops/bincount_ops.h>
466
+ #include <ATen/ops/binomial_ops.h>
467
+ #include <ATen/ops/bitwise_and_ops.h>
468
+ #include <ATen/ops/bitwise_left_shift_ops.h>
469
+ #include <ATen/ops/bitwise_not_ops.h>
470
+ #include <ATen/ops/bitwise_or_ops.h>
471
+ #include <ATen/ops/bitwise_right_shift_ops.h>
472
+ #include <ATen/ops/bitwise_xor_ops.h>
473
+ #include <ATen/ops/blackman_window_ops.h>
474
+ #include <ATen/ops/block_diag_ops.h>
475
+ #include <ATen/ops/bmm_ops.h>
476
+ #include <ATen/ops/broadcast_tensors_ops.h>
477
+ #include <ATen/ops/broadcast_to_ops.h>
478
+ #include <ATen/ops/bucketize_ops.h>
479
+ #include <ATen/ops/can_cast_ops.h>
480
+ #include <ATen/ops/cartesian_prod_ops.h>
481
+ #include <ATen/ops/cat_ops.h>
482
+ #include <ATen/ops/cauchy_ops.h>
483
+ #include <ATen/ops/ccol_indices_ops.h>
484
+ #include <ATen/ops/ccol_indices_copy_ops.h>
485
+ #include <ATen/ops/cdist_ops.h>
486
+ #include <ATen/ops/ceil_ops.h>
487
+ #include <ATen/ops/celu_ops.h>
488
+ #include <ATen/ops/chain_matmul_ops.h>
489
+ #include <ATen/ops/chalf_ops.h>
490
+ #include <ATen/ops/channel_shuffle_ops.h>
491
+ #include <ATen/ops/cholesky_ops.h>
492
+ #include <ATen/ops/cholesky_inverse_ops.h>
493
+ #include <ATen/ops/cholesky_solve_ops.h>
494
+ #include <ATen/ops/choose_qparams_optimized_ops.h>
495
+ #include <ATen/ops/chunk_ops.h>
496
+ #include <ATen/ops/clamp_ops.h>
497
+ #include <ATen/ops/clamp_max_ops.h>
498
+ #include <ATen/ops/clamp_min_ops.h>
499
+ #include <ATen/ops/clip_ops.h>
500
+ #include <ATen/ops/clone_ops.h>
501
+ #include <ATen/ops/coalesce_ops.h>
502
+ #include <ATen/ops/col2im_ops.h>
503
+ #include <ATen/ops/col_indices_ops.h>
504
+ #include <ATen/ops/col_indices_copy_ops.h>
505
+ #include <ATen/ops/column_stack_ops.h>
506
+ #include <ATen/ops/combinations_ops.h>
507
+ #include <ATen/ops/complex_ops.h>
508
+ #include <ATen/ops/concat_ops.h>
509
+ #include <ATen/ops/concatenate_ops.h>
510
+ #include <ATen/ops/conj_ops.h>
511
+ #include <ATen/ops/conj_physical_ops.h>
512
+ #include <ATen/ops/constant_pad_nd_ops.h>
513
+ #include <ATen/ops/contiguous_ops.h>
514
+ #include <ATen/ops/conv1d_ops.h>
515
+ #include <ATen/ops/conv2d_ops.h>
516
+ #include <ATen/ops/conv3d_ops.h>
517
+ #include <ATen/ops/conv_depthwise3d_ops.h>
518
+ #include <ATen/ops/conv_tbc_ops.h>
519
+ #include <ATen/ops/conv_tbc_backward_ops.h>
520
+ #include <ATen/ops/conv_transpose1d_ops.h>
521
+ #include <ATen/ops/conv_transpose2d_ops.h>
522
+ #include <ATen/ops/conv_transpose3d_ops.h>
523
+ #include <ATen/ops/convolution_ops.h>
524
+ #include <ATen/ops/convolution_backward_ops.h>
525
+ #include <ATen/ops/convolution_backward_overrideable_ops.h>
526
+ #include <ATen/ops/convolution_overrideable_ops.h>
527
+ #include <ATen/ops/copy_ops.h>
528
+ #include <ATen/ops/copy_sparse_to_sparse_ops.h>
529
+ #include <ATen/ops/copysign_ops.h>
530
+ #include <ATen/ops/corrcoef_ops.h>
531
+ #include <ATen/ops/cos_ops.h>
532
+ #include <ATen/ops/cosh_ops.h>
533
+ #include <ATen/ops/cosine_embedding_loss_ops.h>
534
+ #include <ATen/ops/cosine_similarity_ops.h>
535
+ #include <ATen/ops/count_nonzero_ops.h>
536
+ #include <ATen/ops/cov_ops.h>
537
+ #include <ATen/ops/cross_ops.h>
538
+ #include <ATen/ops/cross_entropy_loss_ops.h>
539
+ #include <ATen/ops/crow_indices_ops.h>
540
+ #include <ATen/ops/crow_indices_copy_ops.h>
541
+ #include <ATen/ops/ctc_loss_ops.h>
542
+ #include <ATen/ops/cudnn_affine_grid_generator_ops.h>
543
+ #include <ATen/ops/cudnn_affine_grid_generator_backward_ops.h>
544
+ #include <ATen/ops/cudnn_batch_norm_ops.h>
545
+ #include <ATen/ops/cudnn_batch_norm_backward_ops.h>
546
+ #include <ATen/ops/cudnn_convolution_ops.h>
547
+ #include <ATen/ops/cudnn_convolution_add_relu_ops.h>
548
+ #include <ATen/ops/cudnn_convolution_relu_ops.h>
549
+ #include <ATen/ops/cudnn_convolution_transpose_ops.h>
550
+ #include <ATen/ops/cudnn_grid_sampler_ops.h>
551
+ #include <ATen/ops/cudnn_grid_sampler_backward_ops.h>
552
+ #include <ATen/ops/cudnn_is_acceptable_ops.h>
553
+ #include <ATen/ops/cummax_ops.h>
554
+ #include <ATen/ops/cummaxmin_backward_ops.h>
555
+ #include <ATen/ops/cummin_ops.h>
556
+ #include <ATen/ops/cumprod_ops.h>
557
+ #include <ATen/ops/cumprod_backward_ops.h>
558
+ #include <ATen/ops/cumsum_ops.h>
559
+ #include <ATen/ops/cumulative_trapezoid_ops.h>
560
+ #include <ATen/ops/data_ops.h>
561
+ #include <ATen/ops/deg2rad_ops.h>
562
+ #include <ATen/ops/dense_dim_ops.h>
563
+ #include <ATen/ops/dequantize_ops.h>
564
+ #include <ATen/ops/det_ops.h>
565
+ #include <ATen/ops/detach_ops.h>
566
+ #include <ATen/ops/detach_copy_ops.h>
567
+ #include <ATen/ops/diag_ops.h>
568
+ #include <ATen/ops/diag_embed_ops.h>
569
+ #include <ATen/ops/diagflat_ops.h>
570
+ #include <ATen/ops/diagonal_ops.h>
571
+ #include <ATen/ops/diagonal_backward_ops.h>
572
+ #include <ATen/ops/diagonal_copy_ops.h>
573
+ #include <ATen/ops/diagonal_scatter_ops.h>
574
+ #include <ATen/ops/diff_ops.h>
575
+ #include <ATen/ops/digamma_ops.h>
576
+ #include <ATen/ops/dist_ops.h>
577
+ #include <ATen/ops/div_ops.h>
578
+ #include <ATen/ops/divide_ops.h>
579
+ #include <ATen/ops/dot_ops.h>
580
+ #include <ATen/ops/dropout_ops.h>
581
+ #include <ATen/ops/dsplit_ops.h>
582
+ #include <ATen/ops/dstack_ops.h>
583
+ #include <ATen/ops/einsum_ops.h>
584
+ #include <ATen/ops/elu_ops.h>
585
+ #include <ATen/ops/elu_backward_ops.h>
586
+ #include <ATen/ops/embedding_ops.h>
587
+ #include <ATen/ops/embedding_backward_ops.h>
588
+ #include <ATen/ops/embedding_bag_ops.h>
589
+ #include <ATen/ops/embedding_dense_backward_ops.h>
590
+ #include <ATen/ops/embedding_renorm_ops.h>
591
+ #include <ATen/ops/embedding_sparse_backward_ops.h>
592
+ #include <ATen/ops/empty_ops.h>
593
+ #include <ATen/ops/empty_like_ops.h>
594
+ #include <ATen/ops/empty_permuted_ops.h>
595
+ #include <ATen/ops/empty_quantized_ops.h>
596
+ #include <ATen/ops/empty_strided_ops.h>
597
+ #include <ATen/ops/eq_ops.h>
598
+ #include <ATen/ops/equal_ops.h>
599
+ #include <ATen/ops/erf_ops.h>
600
+ #include <ATen/ops/erfc_ops.h>
601
+ #include <ATen/ops/erfinv_ops.h>
602
+ #include <ATen/ops/exp_ops.h>
603
+ #include <ATen/ops/exp2_ops.h>
604
+ #include <ATen/ops/expand_ops.h>
605
+ #include <ATen/ops/expand_as_ops.h>
606
+ #include <ATen/ops/expand_copy_ops.h>
607
+ #include <ATen/ops/expm1_ops.h>
608
+ #include <ATen/ops/exponential_ops.h>
609
+ #include <ATen/ops/eye_ops.h>
610
+ #include <ATen/ops/fake_quantize_per_channel_affine_ops.h>
611
+ #include <ATen/ops/fake_quantize_per_channel_affine_cachemask_ops.h>
612
+ #include <ATen/ops/fake_quantize_per_channel_affine_cachemask_backward_ops.h>
613
+ #include <ATen/ops/fake_quantize_per_tensor_affine_ops.h>
614
+ #include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_ops.h>
615
+ #include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_backward_ops.h>
616
+ #include <ATen/ops/fbgemm_linear_fp16_weight_ops.h>
617
+ #include <ATen/ops/fbgemm_linear_fp16_weight_fp32_activation_ops.h>
618
+ #include <ATen/ops/fbgemm_linear_int8_weight_ops.h>
619
+ #include <ATen/ops/fbgemm_linear_int8_weight_fp32_activation_ops.h>
620
+ #include <ATen/ops/fbgemm_linear_quantize_weight_ops.h>
621
+ #include <ATen/ops/fbgemm_pack_gemm_matrix_fp16_ops.h>
622
+ #include <ATen/ops/fbgemm_pack_quantized_matrix_ops.h>
623
+ #include <ATen/ops/feature_alpha_dropout_ops.h>
624
+ #include <ATen/ops/feature_dropout_ops.h>
625
+ #include <ATen/ops/fft_fft_ops.h>
626
+ #include <ATen/ops/fft_fft2_ops.h>
627
+ #include <ATen/ops/fft_fftfreq_ops.h>
628
+ #include <ATen/ops/fft_fftn_ops.h>
629
+ #include <ATen/ops/fft_fftshift_ops.h>
630
+ #include <ATen/ops/fft_hfft_ops.h>
631
+ #include <ATen/ops/fft_hfft2_ops.h>
632
+ #include <ATen/ops/fft_hfftn_ops.h>
633
+ #include <ATen/ops/fft_ifft_ops.h>
634
+ #include <ATen/ops/fft_ifft2_ops.h>
635
+ #include <ATen/ops/fft_ifftn_ops.h>
636
+ #include <ATen/ops/fft_ifftshift_ops.h>
637
+ #include <ATen/ops/fft_ihfft_ops.h>
638
+ #include <ATen/ops/fft_ihfft2_ops.h>
639
+ #include <ATen/ops/fft_ihfftn_ops.h>
640
+ #include <ATen/ops/fft_irfft_ops.h>
641
+ #include <ATen/ops/fft_irfft2_ops.h>
642
+ #include <ATen/ops/fft_irfftn_ops.h>
643
+ #include <ATen/ops/fft_rfft_ops.h>
644
+ #include <ATen/ops/fft_rfft2_ops.h>
645
+ #include <ATen/ops/fft_rfftfreq_ops.h>
646
+ #include <ATen/ops/fft_rfftn_ops.h>
647
+ #include <ATen/ops/fill_ops.h>
648
+ #include <ATen/ops/fill_diagonal_ops.h>
649
+ #include <ATen/ops/fix_ops.h>
650
+ #include <ATen/ops/flatten_ops.h>
651
+ #include <ATen/ops/flatten_dense_tensors_ops.h>
652
+ #include <ATen/ops/flip_ops.h>
653
+ #include <ATen/ops/fliplr_ops.h>
654
+ #include <ATen/ops/flipud_ops.h>
655
+ #include <ATen/ops/float_power_ops.h>
656
+ #include <ATen/ops/floor_ops.h>
657
+ #include <ATen/ops/floor_divide_ops.h>
658
+ #include <ATen/ops/fmax_ops.h>
659
+ #include <ATen/ops/fmin_ops.h>
660
+ #include <ATen/ops/fmod_ops.h>
661
+ #include <ATen/ops/frac_ops.h>
662
+ #include <ATen/ops/fractional_max_pool2d_ops.h>
663
+ #include <ATen/ops/fractional_max_pool2d_backward_ops.h>
664
+ #include <ATen/ops/fractional_max_pool3d_ops.h>
665
+ #include <ATen/ops/fractional_max_pool3d_backward_ops.h>
666
+ #include <ATen/ops/frexp_ops.h>
667
+ #include <ATen/ops/frobenius_norm_ops.h>
668
+ #include <ATen/ops/from_file_ops.h>
669
+ #include <ATen/ops/full_ops.h>
670
+ #include <ATen/ops/full_like_ops.h>
671
+ #include <ATen/ops/fused_moving_avg_obs_fake_quant_ops.h>
672
+ #include <ATen/ops/gather_ops.h>
673
+ #include <ATen/ops/gather_backward_ops.h>
674
+ #include <ATen/ops/gcd_ops.h>
675
+ #include <ATen/ops/ge_ops.h>
676
+ #include <ATen/ops/gelu_ops.h>
677
+ #include <ATen/ops/gelu_backward_ops.h>
678
+ #include <ATen/ops/geometric_ops.h>
679
+ #include <ATen/ops/geqrf_ops.h>
680
+ #include <ATen/ops/ger_ops.h>
681
+ #include <ATen/ops/glu_ops.h>
682
+ #include <ATen/ops/glu_backward_ops.h>
683
+ #include <ATen/ops/glu_backward_jvp_ops.h>
684
+ #include <ATen/ops/glu_jvp_ops.h>
685
+ #include <ATen/ops/gradient_ops.h>
686
+ #include <ATen/ops/greater_ops.h>
687
+ #include <ATen/ops/greater_equal_ops.h>
688
+ #include <ATen/ops/grid_sampler_ops.h>
689
+ #include <ATen/ops/grid_sampler_2d_ops.h>
690
+ #include <ATen/ops/grid_sampler_2d_backward_ops.h>
691
+ #include <ATen/ops/grid_sampler_3d_ops.h>
692
+ #include <ATen/ops/grid_sampler_3d_backward_ops.h>
693
+ #include <ATen/ops/group_norm_ops.h>
694
+ #include <ATen/ops/gru_ops.h>
695
+ #include <ATen/ops/gru_cell_ops.h>
696
+ #include <ATen/ops/gt_ops.h>
697
+ #include <ATen/ops/hamming_window_ops.h>
698
+ #include <ATen/ops/hann_window_ops.h>
699
+ #include <ATen/ops/hardshrink_ops.h>
700
+ #include <ATen/ops/hardshrink_backward_ops.h>
701
+ #include <ATen/ops/hardsigmoid_ops.h>
702
+ #include <ATen/ops/hardsigmoid_backward_ops.h>
703
+ #include <ATen/ops/hardswish_ops.h>
704
+ #include <ATen/ops/hardswish_backward_ops.h>
705
+ #include <ATen/ops/hardtanh_ops.h>
706
+ #include <ATen/ops/hardtanh_backward_ops.h>
707
+ #include <ATen/ops/heaviside_ops.h>
708
+ #include <ATen/ops/hinge_embedding_loss_ops.h>
709
+ #include <ATen/ops/histc_ops.h>
710
+ #include <ATen/ops/histogram_ops.h>
711
+ #include <ATen/ops/histogramdd_ops.h>
712
+ #include <ATen/ops/hsplit_ops.h>
713
+ #include <ATen/ops/hspmm_ops.h>
714
+ #include <ATen/ops/hstack_ops.h>
715
+ #include <ATen/ops/huber_loss_ops.h>
716
+ #include <ATen/ops/huber_loss_backward_ops.h>
717
+ #include <ATen/ops/hypot_ops.h>
718
+ #include <ATen/ops/i0_ops.h>
719
+ #include <ATen/ops/igamma_ops.h>
720
+ #include <ATen/ops/igammac_ops.h>
721
+ #include <ATen/ops/im2col_ops.h>
722
+ #include <ATen/ops/imag_ops.h>
723
+ #include <ATen/ops/index_ops.h>
724
+ #include <ATen/ops/index_add_ops.h>
725
+ #include <ATen/ops/index_copy_ops.h>
726
+ #include <ATen/ops/index_fill_ops.h>
727
+ #include <ATen/ops/index_put_ops.h>
728
+ #include <ATen/ops/index_reduce_ops.h>
729
+ #include <ATen/ops/index_select_ops.h>
730
+ #include <ATen/ops/index_select_backward_ops.h>
731
+ #include <ATen/ops/indices_ops.h>
732
+ #include <ATen/ops/indices_copy_ops.h>
733
+ #include <ATen/ops/infinitely_differentiable_gelu_backward_ops.h>
734
+ #include <ATen/ops/inner_ops.h>
735
+ #include <ATen/ops/instance_norm_ops.h>
736
+ #include <ATen/ops/int_repr_ops.h>
737
+ #include <ATen/ops/inverse_ops.h>
738
+ #include <ATen/ops/is_coalesced_ops.h>
739
+ #include <ATen/ops/is_complex_ops.h>
740
+ #include <ATen/ops/is_conj_ops.h>
741
+ #include <ATen/ops/is_distributed_ops.h>
742
+ #include <ATen/ops/is_floating_point_ops.h>
743
+ #include <ATen/ops/is_inference_ops.h>
744
+ #include <ATen/ops/is_leaf_ops.h>
745
+ #include <ATen/ops/is_neg_ops.h>
746
+ #include <ATen/ops/is_nonzero_ops.h>
747
+ #include <ATen/ops/is_pinned_ops.h>
748
+ #include <ATen/ops/is_same_size_ops.h>
749
+ #include <ATen/ops/is_set_to_ops.h>
750
+ #include <ATen/ops/is_signed_ops.h>
751
+ #include <ATen/ops/is_vulkan_available_ops.h>
752
+ #include <ATen/ops/isclose_ops.h>
753
+ #include <ATen/ops/isfinite_ops.h>
754
+ #include <ATen/ops/isin_ops.h>
755
+ #include <ATen/ops/isinf_ops.h>
756
+ #include <ATen/ops/isnan_ops.h>
757
+ #include <ATen/ops/isneginf_ops.h>
758
+ #include <ATen/ops/isposinf_ops.h>
759
+ #include <ATen/ops/isreal_ops.h>
760
+ #include <ATen/ops/istft_ops.h>
761
+ #include <ATen/ops/item_ops.h>
762
+ #include <ATen/ops/kaiser_window_ops.h>
763
+ #include <ATen/ops/kl_div_ops.h>
764
+ #include <ATen/ops/kron_ops.h>
765
+ #include <ATen/ops/kthvalue_ops.h>
766
+ #include <ATen/ops/l1_loss_ops.h>
767
+ #include <ATen/ops/layer_norm_ops.h>
768
+ #include <ATen/ops/lcm_ops.h>
769
+ #include <ATen/ops/ldexp_ops.h>
770
+ #include <ATen/ops/le_ops.h>
771
+ #include <ATen/ops/leaky_relu_ops.h>
772
+ #include <ATen/ops/leaky_relu_backward_ops.h>
773
+ #include <ATen/ops/lerp_ops.h>
774
+ #include <ATen/ops/less_ops.h>
775
+ #include <ATen/ops/less_equal_ops.h>
776
+ #include <ATen/ops/lgamma_ops.h>
777
+ #include <ATen/ops/lift_ops.h>
778
+ #include <ATen/ops/lift_fresh_ops.h>
779
+ #include <ATen/ops/lift_fresh_copy_ops.h>
780
+ #include <ATen/ops/linalg_cholesky_ops.h>
781
+ #include <ATen/ops/linalg_cholesky_ex_ops.h>
782
+ #include <ATen/ops/linalg_cond_ops.h>
783
+ #include <ATen/ops/linalg_cross_ops.h>
784
+ #include <ATen/ops/linalg_det_ops.h>
785
+ #include <ATen/ops/linalg_diagonal_ops.h>
786
+ #include <ATen/ops/linalg_eig_ops.h>
787
+ #include <ATen/ops/linalg_eigh_ops.h>
788
+ #include <ATen/ops/linalg_eigvals_ops.h>
789
+ #include <ATen/ops/linalg_eigvalsh_ops.h>
790
+ #include <ATen/ops/linalg_householder_product_ops.h>
791
+ #include <ATen/ops/linalg_inv_ops.h>
792
+ #include <ATen/ops/linalg_inv_ex_ops.h>
793
+ #include <ATen/ops/linalg_ldl_factor_ops.h>
794
+ #include <ATen/ops/linalg_ldl_factor_ex_ops.h>
795
+ #include <ATen/ops/linalg_ldl_solve_ops.h>
796
+ #include <ATen/ops/linalg_lstsq_ops.h>
797
+ #include <ATen/ops/linalg_lu_ops.h>
798
+ #include <ATen/ops/linalg_lu_factor_ops.h>
799
+ #include <ATen/ops/linalg_lu_factor_ex_ops.h>
800
+ #include <ATen/ops/linalg_lu_solve_ops.h>
801
+ #include <ATen/ops/linalg_matmul_ops.h>
802
+ #include <ATen/ops/linalg_matrix_exp_ops.h>
803
+ #include <ATen/ops/linalg_matrix_norm_ops.h>
804
+ #include <ATen/ops/linalg_matrix_power_ops.h>
805
+ #include <ATen/ops/linalg_matrix_rank_ops.h>
806
+ #include <ATen/ops/linalg_multi_dot_ops.h>
807
+ #include <ATen/ops/linalg_norm_ops.h>
808
+ #include <ATen/ops/linalg_pinv_ops.h>
809
+ #include <ATen/ops/linalg_qr_ops.h>
810
+ #include <ATen/ops/linalg_slogdet_ops.h>
811
+ #include <ATen/ops/linalg_solve_ops.h>
812
+ #include <ATen/ops/linalg_solve_ex_ops.h>
813
+ #include <ATen/ops/linalg_solve_triangular_ops.h>
814
+ #include <ATen/ops/linalg_svd_ops.h>
815
+ #include <ATen/ops/linalg_svdvals_ops.h>
816
+ #include <ATen/ops/linalg_tensorinv_ops.h>
817
+ #include <ATen/ops/linalg_tensorsolve_ops.h>
818
+ #include <ATen/ops/linalg_vander_ops.h>
819
+ #include <ATen/ops/linalg_vecdot_ops.h>
820
+ #include <ATen/ops/linalg_vector_norm_ops.h>
821
+ #include <ATen/ops/linear_ops.h>
822
+ #include <ATen/ops/linear_backward_ops.h>
823
+ #include <ATen/ops/linspace_ops.h>
824
+ #include <ATen/ops/log_ops.h>
825
+ #include <ATen/ops/log10_ops.h>
826
+ #include <ATen/ops/log1p_ops.h>
827
+ #include <ATen/ops/log2_ops.h>
828
+ #include <ATen/ops/log_normal_ops.h>
829
+ #include <ATen/ops/log_sigmoid_ops.h>
830
+ #include <ATen/ops/log_sigmoid_backward_ops.h>
831
+ #include <ATen/ops/log_sigmoid_forward_ops.h>
832
+ #include <ATen/ops/log_softmax_ops.h>
833
+ #include <ATen/ops/logaddexp_ops.h>
834
+ #include <ATen/ops/logaddexp2_ops.h>
835
+ #include <ATen/ops/logcumsumexp_ops.h>
836
+ #include <ATen/ops/logdet_ops.h>
837
+ #include <ATen/ops/logical_and_ops.h>
838
+ #include <ATen/ops/logical_not_ops.h>
839
+ #include <ATen/ops/logical_or_ops.h>
840
+ #include <ATen/ops/logical_xor_ops.h>
841
+ #include <ATen/ops/logit_ops.h>
842
+ #include <ATen/ops/logit_backward_ops.h>
843
+ #include <ATen/ops/logspace_ops.h>
844
+ #include <ATen/ops/logsumexp_ops.h>
845
+ #include <ATen/ops/lshift_ops.h>
846
+ #include <ATen/ops/lstm_ops.h>
847
+ #include <ATen/ops/lstm_cell_ops.h>
848
+ #include <ATen/ops/lstm_mps_backward_ops.h>
849
+ #include <ATen/ops/lt_ops.h>
850
+ #include <ATen/ops/lu_solve_ops.h>
851
+ #include <ATen/ops/lu_unpack_ops.h>
852
+ #include <ATen/ops/mH_ops.h>
853
+ #include <ATen/ops/mT_ops.h>
854
+ #include <ATen/ops/margin_ranking_loss_ops.h>
855
+ #include <ATen/ops/masked_fill_ops.h>
856
+ #include <ATen/ops/masked_scatter_ops.h>
857
+ #include <ATen/ops/masked_scatter_backward_ops.h>
858
+ #include <ATen/ops/masked_select_ops.h>
859
+ #include <ATen/ops/masked_select_backward_ops.h>
860
+ #include <ATen/ops/matmul_ops.h>
861
+ #include <ATen/ops/matmul_backward_ops.h>
862
+ #include <ATen/ops/matrix_H_ops.h>
863
+ #include <ATen/ops/matrix_exp_ops.h>
864
+ #include <ATen/ops/matrix_exp_backward_ops.h>
865
+ #include <ATen/ops/matrix_power_ops.h>
866
+ #include <ATen/ops/max_ops.h>
867
+ #include <ATen/ops/max_pool1d_ops.h>
868
+ #include <ATen/ops/max_pool1d_with_indices_ops.h>
869
+ #include <ATen/ops/max_pool2d_ops.h>
870
+ #include <ATen/ops/max_pool2d_backward_ops.h>
871
+ #include <ATen/ops/max_pool2d_with_indices_ops.h>
872
+ #include <ATen/ops/max_pool2d_with_indices_backward_ops.h>
873
+ #include <ATen/ops/max_pool3d_ops.h>
874
+ #include <ATen/ops/max_pool3d_with_indices_ops.h>
875
+ #include <ATen/ops/max_pool3d_with_indices_backward_ops.h>
876
+ #include <ATen/ops/max_unpool2d_ops.h>
877
+ #include <ATen/ops/max_unpool3d_ops.h>
878
+ #include <ATen/ops/maximum_ops.h>
879
+ #include <ATen/ops/mean_ops.h>
880
+ #include <ATen/ops/median_ops.h>
881
+ #include <ATen/ops/meshgrid_ops.h>
882
+ #include <ATen/ops/min_ops.h>
883
+ #include <ATen/ops/minimum_ops.h>
884
+ #include <ATen/ops/miopen_batch_norm_ops.h>
885
+ #include <ATen/ops/miopen_batch_norm_backward_ops.h>
886
+ #include <ATen/ops/miopen_convolution_ops.h>
887
+ #include <ATen/ops/miopen_convolution_add_relu_ops.h>
888
+ #include <ATen/ops/miopen_convolution_relu_ops.h>
889
+ #include <ATen/ops/miopen_convolution_transpose_ops.h>
890
+ #include <ATen/ops/miopen_depthwise_convolution_ops.h>
891
+ #include <ATen/ops/miopen_rnn_ops.h>
892
+ #include <ATen/ops/miopen_rnn_backward_ops.h>
893
+ #include <ATen/ops/mish_ops.h>
894
+ #include <ATen/ops/mish_backward_ops.h>
895
+ #include <ATen/ops/mkldnn_adaptive_avg_pool2d_ops.h>
896
+ #include <ATen/ops/mkldnn_adaptive_avg_pool2d_backward_ops.h>
897
+ #include <ATen/ops/mkldnn_convolution_ops.h>
898
+ #include <ATen/ops/mkldnn_linear_ops.h>
899
+ #include <ATen/ops/mkldnn_linear_backward_ops.h>
900
+ #include <ATen/ops/mkldnn_linear_backward_input_ops.h>
901
+ #include <ATen/ops/mkldnn_linear_backward_weights_ops.h>
902
+ #include <ATen/ops/mkldnn_max_pool2d_ops.h>
903
+ #include <ATen/ops/mkldnn_max_pool2d_backward_ops.h>
904
+ #include <ATen/ops/mkldnn_max_pool3d_ops.h>
905
+ #include <ATen/ops/mkldnn_max_pool3d_backward_ops.h>
906
+ #include <ATen/ops/mkldnn_reorder_conv2d_weight_ops.h>
907
+ #include <ATen/ops/mkldnn_reorder_conv3d_weight_ops.h>
908
+ #include <ATen/ops/mkldnn_rnn_layer_ops.h>
909
+ #include <ATen/ops/mkldnn_rnn_layer_backward_ops.h>
910
+ #include <ATen/ops/mm_ops.h>
911
+ #include <ATen/ops/mode_ops.h>
912
+ #include <ATen/ops/moveaxis_ops.h>
913
+ #include <ATen/ops/movedim_ops.h>
914
+ #include <ATen/ops/mps_convolution_backward_ops.h>
915
+ #include <ATen/ops/mps_convolution_transpose_backward_ops.h>
916
+ #include <ATen/ops/mse_loss_ops.h>
917
+ #include <ATen/ops/mse_loss_backward_ops.h>
918
+ #include <ATen/ops/msort_ops.h>
919
+ #include <ATen/ops/mul_ops.h>
920
+ #include <ATen/ops/multi_margin_loss_ops.h>
921
+ #include <ATen/ops/multi_margin_loss_backward_ops.h>
922
+ #include <ATen/ops/multilabel_margin_loss_ops.h>
923
+ #include <ATen/ops/multilabel_margin_loss_backward_ops.h>
924
+ #include <ATen/ops/multilabel_margin_loss_forward_ops.h>
925
+ #include <ATen/ops/multinomial_ops.h>
926
+ #include <ATen/ops/multiply_ops.h>
927
+ #include <ATen/ops/mv_ops.h>
928
+ #include <ATen/ops/mvlgamma_ops.h>
929
+ #include <ATen/ops/nan_to_num_ops.h>
930
+ #include <ATen/ops/nanmean_ops.h>
931
+ #include <ATen/ops/nanmedian_ops.h>
932
+ #include <ATen/ops/nanquantile_ops.h>
933
+ #include <ATen/ops/nansum_ops.h>
934
+ #include <ATen/ops/narrow_ops.h>
935
+ #include <ATen/ops/narrow_copy_ops.h>
936
+ #include <ATen/ops/native_batch_norm_ops.h>
937
+ #include <ATen/ops/native_batch_norm_backward_ops.h>
938
+ #include <ATen/ops/native_channel_shuffle_ops.h>
939
+ #include <ATen/ops/native_dropout_ops.h>
940
+ #include <ATen/ops/native_dropout_backward_ops.h>
941
+ #include <ATen/ops/native_group_norm_ops.h>
942
+ #include <ATen/ops/native_group_norm_backward_ops.h>
943
+ #include <ATen/ops/native_layer_norm_ops.h>
944
+ #include <ATen/ops/native_layer_norm_backward_ops.h>
945
+ #include <ATen/ops/native_norm_ops.h>
946
+ #include <ATen/ops/ne_ops.h>
947
+ #include <ATen/ops/neg_ops.h>
948
+ #include <ATen/ops/negative_ops.h>
949
+ #include <ATen/ops/nested_to_padded_tensor_ops.h>
950
+ #include <ATen/ops/new_empty_ops.h>
951
+ #include <ATen/ops/new_empty_strided_ops.h>
952
+ #include <ATen/ops/new_full_ops.h>
953
+ #include <ATen/ops/new_ones_ops.h>
954
+ #include <ATen/ops/new_zeros_ops.h>
955
+ #include <ATen/ops/nextafter_ops.h>
956
+ #include <ATen/ops/nll_loss_ops.h>
957
+ #include <ATen/ops/nll_loss2d_ops.h>
958
+ #include <ATen/ops/nll_loss2d_backward_ops.h>
959
+ #include <ATen/ops/nll_loss2d_forward_ops.h>
960
+ #include <ATen/ops/nll_loss_backward_ops.h>
961
+ #include <ATen/ops/nll_loss_forward_ops.h>
962
+ #include <ATen/ops/nll_loss_nd_ops.h>
963
+ #include <ATen/ops/nonzero_ops.h>
964
+ #include <ATen/ops/nonzero_numpy_ops.h>
965
+ #include <ATen/ops/nonzero_static_ops.h>
966
+ #include <ATen/ops/norm_ops.h>
967
+ #include <ATen/ops/norm_except_dim_ops.h>
968
+ #include <ATen/ops/normal_ops.h>
969
+ #include <ATen/ops/not_equal_ops.h>
970
+ #include <ATen/ops/nuclear_norm_ops.h>
971
+ #include <ATen/ops/numpy_T_ops.h>
972
+ #include <ATen/ops/one_hot_ops.h>
973
+ #include <ATen/ops/ones_ops.h>
974
+ #include <ATen/ops/ones_like_ops.h>
975
+ #include <ATen/ops/or_ops.h>
976
+ #include <ATen/ops/orgqr_ops.h>
977
+ #include <ATen/ops/ormqr_ops.h>
978
+ #include <ATen/ops/outer_ops.h>
979
+ #include <ATen/ops/output_nr_ops.h>
980
+ #include <ATen/ops/pad_ops.h>
981
+ #include <ATen/ops/pad_sequence_ops.h>
982
+ #include <ATen/ops/pairwise_distance_ops.h>
983
+ #include <ATen/ops/pdist_ops.h>
984
+ #include <ATen/ops/permute_ops.h>
985
+ #include <ATen/ops/permute_copy_ops.h>
986
+ #include <ATen/ops/pin_memory_ops.h>
987
+ #include <ATen/ops/pinverse_ops.h>
988
+ #include <ATen/ops/pixel_shuffle_ops.h>
989
+ #include <ATen/ops/pixel_unshuffle_ops.h>
990
+ #include <ATen/ops/poisson_ops.h>
991
+ #include <ATen/ops/poisson_nll_loss_ops.h>
992
+ #include <ATen/ops/polar_ops.h>
993
+ #include <ATen/ops/polygamma_ops.h>
994
+ #include <ATen/ops/positive_ops.h>
995
+ #include <ATen/ops/pow_ops.h>
996
+ #include <ATen/ops/prelu_ops.h>
997
+ #include <ATen/ops/prod_ops.h>
998
+ #include <ATen/ops/promote_types_ops.h>
999
+ #include <ATen/ops/put_ops.h>
1000
+ #include <ATen/ops/q_per_channel_axis_ops.h>
1001
+ #include <ATen/ops/q_per_channel_scales_ops.h>
1002
+ #include <ATen/ops/q_per_channel_zero_points_ops.h>
1003
+ #include <ATen/ops/q_scale_ops.h>
1004
+ #include <ATen/ops/q_zero_point_ops.h>
1005
+ #include <ATen/ops/qr_ops.h>
1006
+ #include <ATen/ops/qscheme_ops.h>
1007
+ #include <ATen/ops/quantile_ops.h>
1008
+ #include <ATen/ops/quantize_per_channel_ops.h>
1009
+ #include <ATen/ops/quantize_per_tensor_ops.h>
1010
+ #include <ATen/ops/quantize_per_tensor_dynamic_ops.h>
1011
+ #include <ATen/ops/quantized_batch_norm_ops.h>
1012
+ #include <ATen/ops/quantized_gru_cell_ops.h>
1013
+ #include <ATen/ops/quantized_lstm_cell_ops.h>
1014
+ #include <ATen/ops/quantized_max_pool1d_ops.h>
1015
+ #include <ATen/ops/quantized_max_pool2d_ops.h>
1016
+ #include <ATen/ops/quantized_max_pool3d_ops.h>
1017
+ #include <ATen/ops/quantized_rnn_relu_cell_ops.h>
1018
+ #include <ATen/ops/quantized_rnn_tanh_cell_ops.h>
1019
+ #include <ATen/ops/rad2deg_ops.h>
1020
+ #include <ATen/ops/rand_ops.h>
1021
+ #include <ATen/ops/rand_like_ops.h>
1022
+ #include <ATen/ops/randint_ops.h>
1023
+ #include <ATen/ops/randint_like_ops.h>
1024
+ #include <ATen/ops/randn_ops.h>
1025
+ #include <ATen/ops/randn_like_ops.h>
1026
+ #include <ATen/ops/random_ops.h>
1027
+ #include <ATen/ops/randperm_ops.h>
1028
+ #include <ATen/ops/range_ops.h>
1029
+ #include <ATen/ops/ravel_ops.h>
1030
+ #include <ATen/ops/real_ops.h>
1031
+ #include <ATen/ops/reciprocal_ops.h>
1032
+ #include <ATen/ops/record_stream_ops.h>
1033
+ #include <ATen/ops/refine_names_ops.h>
1034
+ #include <ATen/ops/reflection_pad1d_ops.h>
1035
+ #include <ATen/ops/reflection_pad1d_backward_ops.h>
1036
+ #include <ATen/ops/reflection_pad2d_ops.h>
1037
+ #include <ATen/ops/reflection_pad2d_backward_ops.h>
1038
+ #include <ATen/ops/reflection_pad3d_ops.h>
1039
+ #include <ATen/ops/reflection_pad3d_backward_ops.h>
1040
+ #include <ATen/ops/relu_ops.h>
1041
+ #include <ATen/ops/relu6_ops.h>
1042
+ #include <ATen/ops/remainder_ops.h>
1043
+ #include <ATen/ops/rename_ops.h>
1044
+ #include <ATen/ops/renorm_ops.h>
1045
+ #include <ATen/ops/repeat_ops.h>
1046
+ #include <ATen/ops/repeat_interleave_ops.h>
1047
+ #include <ATen/ops/replication_pad1d_ops.h>
1048
+ #include <ATen/ops/replication_pad1d_backward_ops.h>
1049
+ #include <ATen/ops/replication_pad2d_ops.h>
1050
+ #include <ATen/ops/replication_pad2d_backward_ops.h>
1051
+ #include <ATen/ops/replication_pad3d_ops.h>
1052
+ #include <ATen/ops/replication_pad3d_backward_ops.h>
1053
+ #include <ATen/ops/requires_grad_ops.h>
1054
+ #include <ATen/ops/reshape_ops.h>
1055
+ #include <ATen/ops/reshape_as_ops.h>
1056
+ #include <ATen/ops/resize_ops.h>
1057
+ #include <ATen/ops/resize_as_ops.h>
1058
+ #include <ATen/ops/resize_as_sparse_ops.h>
1059
+ #include <ATen/ops/resolve_conj_ops.h>
1060
+ #include <ATen/ops/resolve_neg_ops.h>
1061
+ #include <ATen/ops/result_type_ops.h>
1062
+ #include <ATen/ops/retain_grad_ops.h>
1063
+ #include <ATen/ops/retains_grad_ops.h>
1064
+ #include <ATen/ops/rnn_relu_ops.h>
1065
+ #include <ATen/ops/rnn_relu_cell_ops.h>
1066
+ #include <ATen/ops/rnn_tanh_ops.h>
1067
+ #include <ATen/ops/rnn_tanh_cell_ops.h>
1068
+ #include <ATen/ops/roll_ops.h>
1069
+ #include <ATen/ops/rot90_ops.h>
1070
+ #include <ATen/ops/round_ops.h>
1071
+ #include <ATen/ops/row_indices_ops.h>
1072
+ #include <ATen/ops/row_indices_copy_ops.h>
1073
+ #include <ATen/ops/row_stack_ops.h>
1074
+ #include <ATen/ops/rrelu_ops.h>
1075
+ #include <ATen/ops/rrelu_with_noise_ops.h>
1076
+ #include <ATen/ops/rrelu_with_noise_backward_ops.h>
1077
+ #include <ATen/ops/rshift_ops.h>
1078
+ #include <ATen/ops/rsqrt_ops.h>
1079
+ #include <ATen/ops/rsub_ops.h>
1080
+ #include <ATen/ops/scalar_tensor_ops.h>
1081
+ #include <ATen/ops/scaled_dot_product_attention_ops.h>
1082
+ #include <ATen/ops/scatter_ops.h>
1083
+ #include <ATen/ops/scatter_add_ops.h>
1084
+ #include <ATen/ops/scatter_reduce_ops.h>
1085
+ #include <ATen/ops/searchsorted_ops.h>
1086
+ #include <ATen/ops/segment_reduce_ops.h>
1087
+ #include <ATen/ops/select_ops.h>
1088
+ #include <ATen/ops/select_backward_ops.h>
1089
+ #include <ATen/ops/select_copy_ops.h>
1090
+ #include <ATen/ops/select_scatter_ops.h>
1091
+ #include <ATen/ops/selu_ops.h>
1092
+ #include <ATen/ops/set_ops.h>
1093
+ #include <ATen/ops/set_data_ops.h>
1094
+ #include <ATen/ops/sgn_ops.h>
1095
+ #include <ATen/ops/sigmoid_ops.h>
1096
+ #include <ATen/ops/sigmoid_backward_ops.h>
1097
+ #include <ATen/ops/sign_ops.h>
1098
+ #include <ATen/ops/signbit_ops.h>
1099
+ #include <ATen/ops/silu_ops.h>
1100
+ #include <ATen/ops/silu_backward_ops.h>
1101
+ #include <ATen/ops/sin_ops.h>
1102
+ #include <ATen/ops/sinc_ops.h>
1103
+ #include <ATen/ops/sinh_ops.h>
1104
+ #include <ATen/ops/size_ops.h>
1105
+ #include <ATen/ops/slice_ops.h>
1106
+ #include <ATen/ops/slice_backward_ops.h>
1107
+ #include <ATen/ops/slice_copy_ops.h>
1108
+ #include <ATen/ops/slice_inverse_ops.h>
1109
+ #include <ATen/ops/slice_scatter_ops.h>
1110
+ #include <ATen/ops/slogdet_ops.h>
1111
+ #include <ATen/ops/slow_conv3d_ops.h>
1112
+ #include <ATen/ops/slow_conv3d_forward_ops.h>
1113
+ #include <ATen/ops/slow_conv_dilated2d_ops.h>
1114
+ #include <ATen/ops/slow_conv_dilated3d_ops.h>
1115
+ #include <ATen/ops/slow_conv_transpose2d_ops.h>
1116
+ #include <ATen/ops/slow_conv_transpose3d_ops.h>
1117
+ #include <ATen/ops/smm_ops.h>
1118
+ #include <ATen/ops/smooth_l1_loss_ops.h>
1119
+ #include <ATen/ops/smooth_l1_loss_backward_ops.h>
1120
+ #include <ATen/ops/soft_margin_loss_ops.h>
1121
+ #include <ATen/ops/soft_margin_loss_backward_ops.h>
1122
+ #include <ATen/ops/softmax_ops.h>
1123
+ #include <ATen/ops/softplus_ops.h>
1124
+ #include <ATen/ops/softplus_backward_ops.h>
1125
+ #include <ATen/ops/softshrink_ops.h>
1126
+ #include <ATen/ops/softshrink_backward_ops.h>
1127
+ #include <ATen/ops/sort_ops.h>
1128
+ #include <ATen/ops/sparse_bsc_tensor_ops.h>
1129
+ #include <ATen/ops/sparse_bsr_tensor_ops.h>
1130
+ #include <ATen/ops/sparse_compressed_tensor_ops.h>
1131
+ #include <ATen/ops/sparse_coo_tensor_ops.h>
1132
+ #include <ATen/ops/sparse_csc_tensor_ops.h>
1133
+ #include <ATen/ops/sparse_csr_tensor_ops.h>
1134
+ #include <ATen/ops/sparse_dim_ops.h>
1135
+ #include <ATen/ops/sparse_mask_ops.h>
1136
+ #include <ATen/ops/sparse_resize_ops.h>
1137
+ #include <ATen/ops/sparse_resize_and_clear_ops.h>
1138
+ #include <ATen/ops/sparse_sampled_addmm_ops.h>
1139
+ #include <ATen/ops/special_airy_ai_ops.h>
1140
+ #include <ATen/ops/special_bessel_j0_ops.h>
1141
+ #include <ATen/ops/special_bessel_j1_ops.h>
1142
+ #include <ATen/ops/special_bessel_y0_ops.h>
1143
+ #include <ATen/ops/special_bessel_y1_ops.h>
1144
+ #include <ATen/ops/special_chebyshev_polynomial_t_ops.h>
1145
+ #include <ATen/ops/special_chebyshev_polynomial_u_ops.h>
1146
+ #include <ATen/ops/special_chebyshev_polynomial_v_ops.h>
1147
+ #include <ATen/ops/special_chebyshev_polynomial_w_ops.h>
1148
+ #include <ATen/ops/special_digamma_ops.h>
1149
+ #include <ATen/ops/special_entr_ops.h>
1150
+ #include <ATen/ops/special_erf_ops.h>
1151
+ #include <ATen/ops/special_erfc_ops.h>
1152
+ #include <ATen/ops/special_erfcx_ops.h>
1153
+ #include <ATen/ops/special_erfinv_ops.h>
1154
+ #include <ATen/ops/special_exp2_ops.h>
1155
+ #include <ATen/ops/special_expit_ops.h>
1156
+ #include <ATen/ops/special_expm1_ops.h>
1157
+ #include <ATen/ops/special_gammainc_ops.h>
1158
+ #include <ATen/ops/special_gammaincc_ops.h>
1159
+ #include <ATen/ops/special_gammaln_ops.h>
1160
+ #include <ATen/ops/special_hermite_polynomial_h_ops.h>
1161
+ #include <ATen/ops/special_hermite_polynomial_he_ops.h>
1162
+ #include <ATen/ops/special_i0_ops.h>
1163
+ #include <ATen/ops/special_i0e_ops.h>
1164
+ #include <ATen/ops/special_i1_ops.h>
1165
+ #include <ATen/ops/special_i1e_ops.h>
1166
+ #include <ATen/ops/special_laguerre_polynomial_l_ops.h>
1167
+ #include <ATen/ops/special_legendre_polynomial_p_ops.h>
1168
+ #include <ATen/ops/special_log1p_ops.h>
1169
+ #include <ATen/ops/special_log_ndtr_ops.h>
1170
+ #include <ATen/ops/special_log_softmax_ops.h>
1171
+ #include <ATen/ops/special_logit_ops.h>
1172
+ #include <ATen/ops/special_logsumexp_ops.h>
1173
+ #include <ATen/ops/special_modified_bessel_i0_ops.h>
1174
+ #include <ATen/ops/special_modified_bessel_i1_ops.h>
1175
+ #include <ATen/ops/special_modified_bessel_k0_ops.h>
1176
+ #include <ATen/ops/special_modified_bessel_k1_ops.h>
1177
+ #include <ATen/ops/special_multigammaln_ops.h>
1178
+ #include <ATen/ops/special_ndtr_ops.h>
1179
+ #include <ATen/ops/special_ndtri_ops.h>
1180
+ #include <ATen/ops/special_polygamma_ops.h>
1181
+ #include <ATen/ops/special_psi_ops.h>
1182
+ #include <ATen/ops/special_round_ops.h>
1183
+ #include <ATen/ops/special_scaled_modified_bessel_k0_ops.h>
1184
+ #include <ATen/ops/special_scaled_modified_bessel_k1_ops.h>
1185
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_t_ops.h>
1186
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_u_ops.h>
1187
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_v_ops.h>
1188
+ #include <ATen/ops/special_shifted_chebyshev_polynomial_w_ops.h>
1189
+ #include <ATen/ops/special_sinc_ops.h>
1190
+ #include <ATen/ops/special_softmax_ops.h>
1191
+ #include <ATen/ops/special_spherical_bessel_j0_ops.h>
1192
+ #include <ATen/ops/special_xlog1py_ops.h>
1193
+ #include <ATen/ops/special_xlogy_ops.h>
1194
+ #include <ATen/ops/special_zeta_ops.h>
1195
+ #include <ATen/ops/split_ops.h>
1196
+ #include <ATen/ops/split_copy_ops.h>
1197
+ #include <ATen/ops/split_with_sizes_ops.h>
1198
+ #include <ATen/ops/split_with_sizes_copy_ops.h>
1199
+ #include <ATen/ops/sqrt_ops.h>
1200
+ #include <ATen/ops/square_ops.h>
1201
+ #include <ATen/ops/squeeze_ops.h>
1202
+ #include <ATen/ops/squeeze_copy_ops.h>
1203
+ #include <ATen/ops/sspaddmm_ops.h>
1204
+ #include <ATen/ops/stack_ops.h>
1205
+ #include <ATen/ops/std_ops.h>
1206
+ #include <ATen/ops/std_mean_ops.h>
1207
+ #include <ATen/ops/stft_ops.h>
1208
+ #include <ATen/ops/stride_ops.h>
1209
+ #include <ATen/ops/sub_ops.h>
1210
+ #include <ATen/ops/subtract_ops.h>
1211
+ #include <ATen/ops/sum_ops.h>
1212
+ #include <ATen/ops/sum_to_size_ops.h>
1213
+ #include <ATen/ops/svd_ops.h>
1214
+ #include <ATen/ops/swapaxes_ops.h>
1215
+ #include <ATen/ops/swapdims_ops.h>
1216
+ #include <ATen/ops/sym_constrain_range_ops.h>
1217
+ #include <ATen/ops/sym_constrain_range_for_size_ops.h>
1218
+ #include <ATen/ops/sym_numel_ops.h>
1219
+ #include <ATen/ops/sym_size_ops.h>
1220
+ #include <ATen/ops/sym_storage_offset_ops.h>
1221
+ #include <ATen/ops/sym_stride_ops.h>
1222
+ #include <ATen/ops/t_ops.h>
1223
+ #include <ATen/ops/t_copy_ops.h>
1224
+ #include <ATen/ops/take_ops.h>
1225
+ #include <ATen/ops/take_along_dim_ops.h>
1226
+ #include <ATen/ops/tan_ops.h>
1227
+ #include <ATen/ops/tanh_ops.h>
1228
+ #include <ATen/ops/tanh_backward_ops.h>
1229
+ #include <ATen/ops/tensor_split_ops.h>
1230
+ #include <ATen/ops/tensordot_ops.h>
1231
+ #include <ATen/ops/thnn_conv2d_ops.h>
1232
+ #include <ATen/ops/threshold_ops.h>
1233
+ #include <ATen/ops/threshold_backward_ops.h>
1234
+ #include <ATen/ops/tile_ops.h>
1235
+ #include <ATen/ops/to_ops.h>
1236
+ #include <ATen/ops/to_dense_ops.h>
1237
+ #include <ATen/ops/to_dense_backward_ops.h>
1238
+ #include <ATen/ops/to_mkldnn_ops.h>
1239
+ #include <ATen/ops/to_mkldnn_backward_ops.h>
1240
+ #include <ATen/ops/to_padded_tensor_ops.h>
1241
+ #include <ATen/ops/to_sparse_ops.h>
1242
+ #include <ATen/ops/to_sparse_bsc_ops.h>
1243
+ #include <ATen/ops/to_sparse_bsr_ops.h>
1244
+ #include <ATen/ops/to_sparse_csc_ops.h>
1245
+ #include <ATen/ops/to_sparse_csr_ops.h>
1246
+ #include <ATen/ops/topk_ops.h>
1247
+ #include <ATen/ops/trace_ops.h>
1248
+ #include <ATen/ops/trace_backward_ops.h>
1249
+ #include <ATen/ops/transpose_ops.h>
1250
+ #include <ATen/ops/transpose_copy_ops.h>
1251
+ #include <ATen/ops/trapezoid_ops.h>
1252
+ #include <ATen/ops/trapz_ops.h>
1253
+ #include <ATen/ops/triangular_solve_ops.h>
1254
+ #include <ATen/ops/tril_ops.h>
1255
+ #include <ATen/ops/tril_indices_ops.h>
1256
+ #include <ATen/ops/triplet_margin_loss_ops.h>
1257
+ #include <ATen/ops/triu_ops.h>
1258
+ #include <ATen/ops/triu_indices_ops.h>
1259
+ #include <ATen/ops/true_divide_ops.h>
1260
+ #include <ATen/ops/trunc_ops.h>
1261
+ #include <ATen/ops/type_as_ops.h>
1262
+ #include <ATen/ops/unbind_ops.h>
1263
+ #include <ATen/ops/unbind_copy_ops.h>
1264
+ #include <ATen/ops/unflatten_ops.h>
1265
+ #include <ATen/ops/unflatten_dense_tensors_ops.h>
1266
+ #include <ATen/ops/unfold_ops.h>
1267
+ #include <ATen/ops/unfold_backward_ops.h>
1268
+ #include <ATen/ops/unfold_copy_ops.h>
1269
+ #include <ATen/ops/uniform_ops.h>
1270
+ #include <ATen/ops/unique_consecutive_ops.h>
1271
+ #include <ATen/ops/unique_dim_ops.h>
1272
+ #include <ATen/ops/unique_dim_consecutive_ops.h>
1273
+ #include <ATen/ops/unsafe_chunk_ops.h>
1274
+ #include <ATen/ops/unsafe_split_ops.h>
1275
+ #include <ATen/ops/unsafe_split_with_sizes_ops.h>
1276
+ #include <ATen/ops/unsqueeze_ops.h>
1277
+ #include <ATen/ops/unsqueeze_copy_ops.h>
1278
+ #include <ATen/ops/upsample_bicubic2d_ops.h>
1279
+ #include <ATen/ops/upsample_bicubic2d_backward_ops.h>
1280
+ #include <ATen/ops/upsample_bilinear2d_ops.h>
1281
+ #include <ATen/ops/upsample_bilinear2d_backward_ops.h>
1282
+ #include <ATen/ops/upsample_linear1d_ops.h>
1283
+ #include <ATen/ops/upsample_linear1d_backward_ops.h>
1284
+ #include <ATen/ops/upsample_nearest1d_ops.h>
1285
+ #include <ATen/ops/upsample_nearest1d_backward_ops.h>
1286
+ #include <ATen/ops/upsample_nearest2d_ops.h>
1287
+ #include <ATen/ops/upsample_nearest2d_backward_ops.h>
1288
+ #include <ATen/ops/upsample_nearest3d_ops.h>
1289
+ #include <ATen/ops/upsample_nearest3d_backward_ops.h>
1290
+ #include <ATen/ops/upsample_trilinear3d_ops.h>
1291
+ #include <ATen/ops/upsample_trilinear3d_backward_ops.h>
1292
+ #include <ATen/ops/value_selecting_reduction_backward_ops.h>
1293
+ #include <ATen/ops/values_ops.h>
1294
+ #include <ATen/ops/values_copy_ops.h>
1295
+ #include <ATen/ops/vander_ops.h>
1296
+ #include <ATen/ops/var_ops.h>
1297
+ #include <ATen/ops/var_mean_ops.h>
1298
+ #include <ATen/ops/vdot_ops.h>
1299
+ #include <ATen/ops/view_ops.h>
1300
+ #include <ATen/ops/view_as_ops.h>
1301
+ #include <ATen/ops/view_as_complex_ops.h>
1302
+ #include <ATen/ops/view_as_complex_copy_ops.h>
1303
+ #include <ATen/ops/view_as_real_ops.h>
1304
+ #include <ATen/ops/view_as_real_copy_ops.h>
1305
+ #include <ATen/ops/view_copy_ops.h>
1306
+ #include <ATen/ops/vsplit_ops.h>
1307
+ #include <ATen/ops/vstack_ops.h>
1308
+ #include <ATen/ops/where_ops.h>
1309
+ #include <ATen/ops/xlogy_ops.h>
1310
+ #include <ATen/ops/xor_ops.h>
1311
+ #include <ATen/ops/zero_ops.h>
1312
+ #include <ATen/ops/zeros_ops.h>
1313
+ #include <ATen/ops/zeros_like_ops.h>
1314
+
1315
+ // Extension writers: do you write wrapper functions? Are you frustrated with
1316
+ // resolving overloads of operators? Are you frustrated with dealing with
1317
+ // pointer-to-methods and resolving overloads of pointer-to-methods?? Look no
1318
+ // further, this is the utility for you.
1319
+ //
1320
+ // Given an operator schema: aten::op.overload(...
1321
+ //
1322
+ // Use ATEN_FN2(op, overload) to get a *function* version of the operator
1323
+ // that is guaranteed to not be overloaded. This means that you can safely
1324
+ // decltype(&ATEN_FN2(op, overload)) it. NB: the 2 means this macro takes 2 args.
1325
+ //
1326
+ // Given an operator schema without an overload name: aten::op(...
1327
+ //
1328
+ // Use ATEN_FN(op) to get an unambiguous *function* version of the operator.
1329
+ //
1330
+ // There is some interesting behavior for out= operations.
1331
+ // ATEN_FN2(sin, out) gives a function that is *faithful* to the schema;
1332
+ // that is, the order of arguments is exactly what it looks like in the schema.
1333
+
1334
+ #define ATEN_FN2(op_name, overload) at::_ops::op_name##_##overload::call
1335
+ #define ATEN_FN(op_name) at::_ops::op_name::call
1336
+
1337
+ // Separately, ATEN_OP(op) and ATEN_OP2(op, overload) define a class containing compile-time
1338
+ // metadata about a given aten operator.
1339
+ // Notable data on the class includes:
1340
+ // - ATEN_OP2(add, Tensor)::name // returns the string name: "add"
1341
+ // - ATEN_OP2(add, Tensor)::overload_name // returns the string overload name: "Tensor"
1342
+ // - ATEN_OP2(add, Tensor)::schema // returns the C++ schema type: at::Tensor (const at::Tensor &, const at::Tensor &, const at::Scalar &)
1343
+ // - ATEN_OP2(add, Tensor)::schema_str // returns the string jit type: "add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor"
1344
+
1345
+ #define ATEN_OP2(op_name, overload) at::_ops::op_name##_##overload
1346
+ #define ATEN_OP(op_name) at::_ops::op_name
1347
+
1348
+ // WARNING: Please do not call any of the ops in the _ops namespace directly.
1349
+ // Use the ATEN_FN macros. We do not guarantee stability of the naming
1350
+ // scheme for the functions in at::_ops
1351
+
1352
+ // See Note [The ATen Operators API] for details of the at::_ops namespace
1353
+
1354
+ namespace at {
1355
+ namespace _ops {
1356
+
1357
+ } // namespace _ops
1358
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/Parallel.h ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <ATen/Config.h>
3
+ #include <c10/macros/Macros.h>
4
+ #include <functional>
5
+ #include <string>
6
+
7
+ namespace at {
8
+
9
+ inline int64_t divup(int64_t x, int64_t y) {
10
+ return (x + y - 1) / y;
11
+ }
12
+
13
+ // Called during new thread initialization
14
+ TORCH_API void init_num_threads();
15
+
16
+ // Sets the number of threads to be used in parallel region
17
+ TORCH_API void set_num_threads(int);
18
+
19
+ // Returns the maximum number of threads that may be used in a parallel region
20
+ TORCH_API int get_num_threads();
21
+
22
+ // Returns the current thread number (starting from 0)
23
+ // in the current parallel region, or 0 in the sequential region
24
+ TORCH_API int get_thread_num();
25
+
26
+ // Checks whether the code runs in parallel region
27
+ TORCH_API bool in_parallel_region();
28
+
29
+ namespace internal {
30
+
31
+ // Initialise num_threads lazily at first parallel call
32
+ inline void lazy_init_num_threads() {
33
+ thread_local bool init = false;
34
+ if (C10_UNLIKELY(!init)) {
35
+ at::init_num_threads();
36
+ init = true;
37
+ }
38
+ }
39
+
40
+ TORCH_API void set_thread_num(int);
41
+
42
+ class TORCH_API ThreadIdGuard {
43
+ public:
44
+ ThreadIdGuard(int new_id) : old_id_(at::get_thread_num()) {
45
+ set_thread_num(new_id);
46
+ }
47
+
48
+ ~ThreadIdGuard() {
49
+ set_thread_num(old_id_);
50
+ }
51
+
52
+ private:
53
+ int old_id_;
54
+ };
55
+
56
+ } // namespace internal
57
+
58
+ /*
59
+ parallel_for
60
+
61
+ begin: index at which to start applying user function
62
+
63
+ end: index at which to stop applying user function
64
+
65
+ grain_size: number of elements per chunk. impacts the degree of parallelization
66
+
67
+ f: user function applied in parallel to the chunks, signature:
68
+ void f(int64_t begin, int64_t end)
69
+
70
+ Warning: parallel_for does NOT copy thread local
71
+ states from the current thread to the worker threads.
72
+ This means for example that Tensor operations CANNOT be used in the
73
+ body of your function, only data pointers.
74
+ */
75
+ template <class F>
76
+ inline void parallel_for(
77
+ const int64_t begin,
78
+ const int64_t end,
79
+ const int64_t grain_size,
80
+ const F& f);
81
+
82
+ /*
83
+ parallel_reduce
84
+
85
+ begin: index at which to start applying reduction
86
+
87
+ end: index at which to stop applying reduction
88
+
89
+ grain_size: number of elements per chunk. impacts number of elements in
90
+ intermediate results tensor and degree of parallelization.
91
+
92
+ ident: identity for binary combination function sf. sf(ident, x) needs to return
93
+ x.
94
+
95
+ f: function for reduction over a chunk. f needs to be of signature scalar_t
96
+ f(int64_t partial_begin, int64_t partial_end, scalar_t identifiy)
97
+
98
+ sf: function to combine two partial results. sf needs to be of signature
99
+ scalar_t sf(scalar_t x, scalar_t y)
100
+
101
+ For example, you might have a tensor of 10000 entires and want to sum together
102
+ all the elements. Parallel_reduce with a grain_size of 2500 will then allocate
103
+ an intermediate result tensor with 4 elements. Then it will execute the function
104
+ "f" you provide and pass the beginning and end index of these chunks, so
105
+ 0-2499, 2500-4999, etc. and the combination identity. It will then write out
106
+ the result from each of these chunks into the intermediate result tensor. After
107
+ that it'll reduce the partial results from each chunk into a single number using
108
+ the combination function sf and the identity ident. For a total summation this
109
+ would be "+" and 0 respectively. This is similar to tbb's approach [1], where
110
+ you need to provide a function to accumulate a subrange, a function to combine
111
+ two partial results and an identity.
112
+
113
+ Warning: parallel_reduce does NOT copy thread local
114
+ states from the current thread to the worker threads.
115
+ This means for example that Tensor operations CANNOT be used in the
116
+ body of your function, only data pointers.
117
+
118
+ [1] https://software.intel.com/en-us/node/506154
119
+ */
120
+ template <class scalar_t, class F, class SF>
121
+ inline scalar_t parallel_reduce(
122
+ const int64_t begin,
123
+ const int64_t end,
124
+ const int64_t grain_size,
125
+ const scalar_t ident,
126
+ const F& f,
127
+ const SF& sf);
128
+
129
+ // Returns a detailed string describing parallelization settings
130
+ TORCH_API std::string get_parallel_info();
131
+
132
+ // Sets number of threads used for inter-op parallelism
133
+ TORCH_API void set_num_interop_threads(int);
134
+
135
+ // Returns the number of threads used for inter-op parallelism
136
+ TORCH_API int get_num_interop_threads();
137
+
138
+ // Launches inter-op parallel task
139
+ TORCH_API void launch(std::function<void()> func);
140
+ namespace internal {
141
+ void launch_no_thread_state(std::function<void()> fn);
142
+ } // namespace internal
143
+
144
+ // Launches intra-op parallel task
145
+ TORCH_API void intraop_launch(std::function<void()> func);
146
+
147
+ // Returns number of intra-op threads used by default
148
+ TORCH_API int intraop_default_num_threads();
149
+
150
+ } // namespace at
151
+
152
+ #if AT_PARALLEL_OPENMP
153
+ #include <ATen/ParallelOpenMP.h> // IWYU pragma: keep
154
+ #elif AT_PARALLEL_NATIVE
155
+ #include <ATen/ParallelNative.h> // IWYU pragma: keep
156
+ #elif AT_PARALLEL_NATIVE_TBB
157
+ #include <ATen/ParallelNativeTBB.h> // IWYU pragma: keep
158
+ #endif
159
+
160
+ #include <ATen/Parallel-inl.h> // IWYU pragma: keep
venv/lib/python3.10/site-packages/torch/include/ATen/ParallelNative.h ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <algorithm>
4
+ #include <cstddef>
5
+ #include <exception>
6
+
7
+ #include <c10/util/Exception.h>
8
+
9
+ #define INTRA_OP_PARALLEL
10
+
11
+ namespace at::internal {
12
+
13
+ TORCH_API void invoke_parallel(
14
+ const int64_t begin,
15
+ const int64_t end,
16
+ const int64_t grain_size,
17
+ const std::function<void(int64_t, int64_t)>& f);
18
+
19
+ } // namespace at::internal
venv/lib/python3.10/site-packages/torch/include/ATen/ParallelOpenMP.h ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <algorithm>
4
+ #include <atomic>
5
+ #include <cstddef>
6
+ #include <exception>
7
+
8
+ #ifdef _OPENMP
9
+ #define INTRA_OP_PARALLEL
10
+
11
+ #include <omp.h>
12
+ #endif
13
+
14
+ #ifdef _OPENMP
15
+ namespace at::internal {
16
+ template <typename F>
17
+ inline void invoke_parallel(
18
+ int64_t begin,
19
+ int64_t end,
20
+ int64_t grain_size,
21
+ const F& f) {
22
+ std::atomic_flag err_flag = ATOMIC_FLAG_INIT;
23
+ std::exception_ptr eptr;
24
+
25
+ #pragma omp parallel
26
+ {
27
+ // choose number of tasks based on grain size and number of threads
28
+ // can't use num_threads clause due to bugs in GOMP's thread pool (See
29
+ // #32008)
30
+ int64_t num_threads = omp_get_num_threads();
31
+ if (grain_size > 0) {
32
+ num_threads = std::min(num_threads, divup((end - begin), grain_size));
33
+ }
34
+
35
+ int64_t tid = omp_get_thread_num();
36
+ int64_t chunk_size = divup((end - begin), num_threads);
37
+ int64_t begin_tid = begin + tid * chunk_size;
38
+ if (begin_tid < end) {
39
+ try {
40
+ internal::ThreadIdGuard tid_guard(tid);
41
+ f(begin_tid, std::min(end, chunk_size + begin_tid));
42
+ } catch (...) {
43
+ if (!err_flag.test_and_set()) {
44
+ eptr = std::current_exception();
45
+ }
46
+ }
47
+ }
48
+ }
49
+ if (eptr) {
50
+ std::rethrow_exception(eptr);
51
+ }
52
+ }
53
+ } // namespace at::internal
54
+ #endif // _OPENMP
venv/lib/python3.10/site-packages/torch/include/ATen/PythonTorchFunctionTLS.h ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/core/SafePyObject.h>
4
+ #include <c10/macros/Macros.h>
5
+
6
+ namespace at::impl {
7
+
8
+ enum TorchFunctionDisabledState { ENABLED, SUBCLASSES_DISABLED, ALL_DISABLED };
9
+
10
+ struct TORCH_API PythonTorchFunctionTLS {
11
+ static void set_disabled_state(TorchFunctionDisabledState disabled_state_);
12
+ static TorchFunctionDisabledState get_disabled_state();
13
+
14
+ static void push_onto_stack(std::shared_ptr<SafePyObject> mode);
15
+ static const std::shared_ptr<SafePyObject> pop_stack();
16
+ static const std::shared_ptr<SafePyObject>& get_stack_at(int64_t idx);
17
+ static int64_t stack_len();
18
+
19
+ static const PythonTorchFunctionTLS& get_state();
20
+ static void set_state(const PythonTorchFunctionTLS& state);
21
+
22
+ private:
23
+ // The mode TLS is split into
24
+ // - disabled_state, which says which part of torch function are disabled
25
+ // - stack_, which is a vector of modes representing the stack of user
26
+ // defined modes
27
+ TorchFunctionDisabledState disabled_state_ =
28
+ TorchFunctionDisabledState::ENABLED;
29
+ std::vector<std::shared_ptr<c10::SafePyObject>> stack_;
30
+ };
31
+
32
+ TORCH_API bool torch_function_mode_enabled();
33
+
34
+ } // namespace at::impl
venv/lib/python3.10/site-packages/torch/include/ATen/RegistrationDeclarations.h ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/torch/include/ATen/ScalarType.h ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ #pragma once
2
+ #include <ATen/core/ATenGeneral.h> // for BC reasons
3
+ #include <c10/core/Backend.h>
4
+ #include <c10/core/ScalarType.h>
venv/lib/python3.10/site-packages/torch/include/ATen/SequenceNumber.h ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/macros/Export.h>
4
+ #include <cstdint>
5
+
6
+ // A simple thread local enumeration, used to link forward and backward pass
7
+ // ops and is used by autograd and observers framework
8
+ namespace at::sequence_number {
9
+
10
+ TORCH_API uint64_t peek();
11
+ TORCH_API uint64_t get_and_increment();
12
+
13
+ } // namespace at::sequence_number
venv/lib/python3.10/site-packages/torch/include/ATen/SparseCsrTensorUtils.h ADDED
@@ -0,0 +1,411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/SparseCsrTensorImpl.h>
4
+ #include <ATen/SparseTensorImpl.h>
5
+ #include <ATen/core/Tensor.h>
6
+
7
+ #ifndef AT_PER_OPERATOR_HEADERS
8
+ #include <ATen/Functions.h>
9
+ #include <ATen/NativeFunctions.h>
10
+ #include <ATen/Operators.h>
11
+ #else
12
+ #include <ATen/ops/_sparse_compressed_tensor_unsafe.h>
13
+ #include <ATen/ops/resize_as_sparse_native.h>
14
+ #endif
15
+
16
+ #define AT_DISPATCH_ALL_SPARSE_COMPRESSED_LAYOUTS(LAYOUT, NAME, ...) \
17
+ [&] { \
18
+ const auto& the_layout = LAYOUT; \
19
+ switch (the_layout) { \
20
+ case kSparseCsr: \
21
+ case kSparseCsc: \
22
+ case kSparseBsr: \
23
+ case kSparseBsc: \
24
+ return __VA_ARGS__(); \
25
+ default: \
26
+ AT_ERROR( \
27
+ NAME, \
28
+ " expected sparse compressed tensor layout but got ", \
29
+ the_layout); \
30
+ } \
31
+ }()
32
+
33
+ #define AT_DISPATCH_ROW_SPARSE_COMPRESSED_LAYOUTS( \
34
+ LAYOUT, NAME, ROW_DIM_ACTION, COLUMN_DIM_ACTION) \
35
+ [&]() { \
36
+ const auto& the_layout = LAYOUT; \
37
+ switch (the_layout) { \
38
+ case kSparseCsr: \
39
+ case kSparseBsr: \
40
+ return (ROW_DIM_ACTION)(); \
41
+ case kSparseCsc: \
42
+ case kSparseBsc: \
43
+ return (COLUMN_DIM_ACTION)(); \
44
+ default: \
45
+ AT_ERROR( \
46
+ NAME, \
47
+ " expected sparse compressed tensor layout but got ", \
48
+ the_layout); \
49
+ } \
50
+ }()
51
+
52
+ #define AT_DISPATCH_PLAIN_SPARSE_COMPRESSED_LAYOUTS( \
53
+ LAYOUT, NAME, NO_BLOCK_ACTION, BLOCK_ACTION) \
54
+ [&]() { \
55
+ const auto& the_layout = LAYOUT; \
56
+ switch (the_layout) { \
57
+ case kSparseCsr: \
58
+ case kSparseCsc: \
59
+ return (NO_BLOCK_ACTION)(); \
60
+ case kSparseBsr: \
61
+ case kSparseBsc: \
62
+ return (BLOCK_ACTION)(); \
63
+ default: \
64
+ AT_ERROR( \
65
+ NAME, \
66
+ " expected sparse compressed tensor layout but got ", \
67
+ the_layout); \
68
+ } \
69
+ }()
70
+
71
+ #define AT_DISPATCH_SPARSE_ROW_COMPRESSED_LAYOUTS( \
72
+ LAYOUT, NAME, ROW_DIM_ACTION) \
73
+ [&]() { \
74
+ const auto& the_layout = LAYOUT; \
75
+ switch (the_layout) { \
76
+ case kSparseCsr: \
77
+ case kSparseBsr: \
78
+ return (ROW_DIM_ACTION)(); \
79
+ default: \
80
+ AT_ERROR( \
81
+ NAME, \
82
+ " expected sparse row compressed tensor layout but got ", \
83
+ the_layout); \
84
+ } \
85
+ }()
86
+
87
+ #define AT_DISPATCH_SPARSE_COL_COMPRESSED_LAYOUTS( \
88
+ LAYOUT, NAME, COL_DIM_ACTION) \
89
+ [&]() { \
90
+ const auto& the_layout = LAYOUT; \
91
+ switch (the_layout) { \
92
+ case kSparseCsc: \
93
+ case kSparseBsc: \
94
+ return (COL_DIM_ACTION)(); \
95
+ default: \
96
+ AT_ERROR( \
97
+ NAME, \
98
+ " expected sparse column compressed tensor layout but got ", \
99
+ the_layout); \
100
+ } \
101
+ }()
102
+
103
+ #define AT_DISPATCH_SPARSE_COMPRESSED_NONBLOCK_LAYOUTS(LAYOUT, NAME, ACTION) \
104
+ [&]() { \
105
+ const auto& the_layout = LAYOUT; \
106
+ switch (the_layout) { \
107
+ case kSparseCsr: \
108
+ case kSparseCsc: \
109
+ return (ACTION)(); \
110
+ default: \
111
+ AT_ERROR( \
112
+ NAME, \
113
+ " expected sparse compressed (non-block) tensor layout but got ", \
114
+ the_layout); \
115
+ } \
116
+ }()
117
+
118
+ #define AT_DISPATCH_SPARSE_COMPRESSED_BLOCK_LAYOUTS(LAYOUT, NAME, ACTION) \
119
+ [&]() { \
120
+ const auto& the_layout = LAYOUT; \
121
+ switch (the_layout) { \
122
+ case kSparseBsr: \
123
+ case kSparseBsc: \
124
+ return (ACTION)(); \
125
+ default: \
126
+ AT_ERROR( \
127
+ NAME, \
128
+ " expected sparse compressed block tensor layout but got ", \
129
+ the_layout); \
130
+ } \
131
+ }()
132
+
133
+ #define AT_DISPATCH_SPARSE_VALUE_TYPES(TYPE, NAME, ...) \
134
+ AT_DISPATCH_SWITCH( \
135
+ TYPE, \
136
+ NAME, \
137
+ AT_DISPATCH_CASE_ALL_TYPES_AND_COMPLEX_AND4( \
138
+ kComplexHalf, kHalf, kBool, kBFloat16, __VA_ARGS__))
139
+
140
+ namespace at::sparse_csr {
141
+
142
+ using SparseCsrTensor = Tensor;
143
+
144
+ inline bool is_sparse_compressed(const Layout& layout) {
145
+ switch (layout) {
146
+ case kSparseCsr:
147
+ case kSparseCsc:
148
+ case kSparseBsr:
149
+ case kSparseBsc:
150
+ return true;
151
+ default:;
152
+ }
153
+ return false;
154
+ }
155
+
156
+ inline bool is_sparse_compressed(const Tensor& self) {
157
+ return is_sparse_compressed(self.layout());
158
+ }
159
+
160
+ inline SparseCsrTensorImpl* get_sparse_csr_impl(const SparseCsrTensor& self) {
161
+ AT_DISPATCH_ALL_SPARSE_COMPRESSED_LAYOUTS(
162
+ self.layout(), "get_sparse_csr_impl", [&] {});
163
+ return static_cast<SparseCsrTensorImpl*>(self.unsafeGetTensorImpl());
164
+ }
165
+
166
+ inline std::string layoutToString(
167
+ Layout layout,
168
+ bool upper = false,
169
+ bool lower = false) {
170
+ switch (layout) {
171
+ case kSparseCsr:
172
+ return (upper ? "CSR" : (lower ? "csr" : "Csr"));
173
+ case kSparseCsc:
174
+ return (upper ? "CSC" : (lower ? "csc" : "Csc"));
175
+ case kSparseBsr:
176
+ return (upper ? "BSR" : (lower ? "bsr" : "Bsr"));
177
+ case kSparseBsc:
178
+ return (upper ? "BSC" : (lower ? "bsc" : "Bsc"));
179
+ default:
180
+ TORCH_CHECK(false, "Not a sparse compressed layout:", layout);
181
+ return "";
182
+ }
183
+ }
184
+
185
+ inline bool isCompressedRow(Layout layout) {
186
+ return AT_DISPATCH_ROW_SPARSE_COMPRESSED_LAYOUTS(
187
+ layout, "isCompressedRow", [&] { return true; }, [&] { return false; });
188
+ }
189
+
190
+ inline bool isCompressedColumn(Layout layout) {
191
+ return AT_DISPATCH_ROW_SPARSE_COMPRESSED_LAYOUTS(
192
+ layout,
193
+ "isCompressedColumn",
194
+ [&] { return false; },
195
+ [&] { return true; });
196
+ }
197
+
198
+ inline std::string compressedIndicesName(Layout layout) {
199
+ return AT_DISPATCH_ROW_SPARSE_COMPRESSED_LAYOUTS(
200
+ layout,
201
+ "compressedIndicesName",
202
+ [&] { return "crow_indices"; },
203
+ [&] { return "ccol_indices"; });
204
+ }
205
+
206
+ inline std::string plainIndicesName(Layout layout) {
207
+ return AT_DISPATCH_ROW_SPARSE_COMPRESSED_LAYOUTS(
208
+ layout,
209
+ "plainIndicesName",
210
+ [&] { return "col_indices"; },
211
+ [&] { return "row_indices"; });
212
+ }
213
+
214
+ inline std::string compressedDimName(Layout layout) {
215
+ switch (layout) {
216
+ case kSparseCsr:
217
+ return "row";
218
+ case kSparseCsc:
219
+ return "column";
220
+ case kSparseBsr:
221
+ return "row block";
222
+ case kSparseBsc:
223
+ return "column block";
224
+ default:
225
+ TORCH_CHECK(false, "Not a sparse compressed layout:", layout);
226
+ return "";
227
+ }
228
+ }
229
+
230
+ inline std::string plainDimName(Layout layout) {
231
+ switch (layout) {
232
+ case kSparseCsr:
233
+ return "column";
234
+ case kSparseCsc:
235
+ return "row";
236
+ case kSparseBsr:
237
+ return "column block";
238
+ case kSparseBsc:
239
+ return "row block";
240
+ default:
241
+ TORCH_CHECK(false, "Not a sparse compressed layout:", layout);
242
+ return "";
243
+ }
244
+ }
245
+
246
+ inline size_t rowDimension(Layout layout, IntArrayRef size) {
247
+ return size.size() - (isCompressedRow(layout) ? 2 : 1);
248
+ }
249
+
250
+ inline size_t columnDimension(Layout layout, IntArrayRef size) {
251
+ return size.size() - (isCompressedColumn(layout) ? 2 : 1);
252
+ }
253
+
254
+ inline size_t compressedDimension(
255
+ Layout layout,
256
+ IntArrayRef size,
257
+ size_t dense_ndim = 0) {
258
+ return size.size() - dense_ndim - (isCompressedRow(layout) ? 2 : 1);
259
+ }
260
+
261
+ inline size_t plainDimension(
262
+ Layout layout,
263
+ IntArrayRef size,
264
+ size_t dense_ndim = 0) {
265
+ return size.size() - dense_ndim - (isCompressedRow(layout) ? 1 : 2);
266
+ }
267
+
268
+ inline int64_t numBatchDimensions(Tensor const& self) {
269
+ return AT_DISPATCH_ROW_SPARSE_COMPRESSED_LAYOUTS(
270
+ self.layout(),
271
+ "numBatchDimensions",
272
+ [&self] { return self.crow_indices().dim() - 1; },
273
+ [&self] { return self.ccol_indices().dim() - 1; });
274
+ }
275
+
276
+ inline std::pair<Tensor, Tensor> getCompressedPlainIndices(Tensor const& self) {
277
+ return AT_DISPATCH_ROW_SPARSE_COMPRESSED_LAYOUTS(
278
+ self.layout(),
279
+ "getCompressedPlainIndices",
280
+ [&self] {
281
+ return std::make_pair(self.crow_indices(), self.col_indices());
282
+ },
283
+ [&self] {
284
+ return std::make_pair(self.ccol_indices(), self.row_indices());
285
+ });
286
+ }
287
+
288
+ inline Layout flip_compressed_layout(Layout layout) {
289
+ switch (layout) {
290
+ case kSparseCsr:
291
+ return kSparseCsc;
292
+ case kSparseCsc:
293
+ return kSparseCsr;
294
+ case kSparseBsr:
295
+ return kSparseBsc;
296
+ case kSparseBsc:
297
+ return kSparseBsr;
298
+ default:
299
+ TORCH_CHECK(false, "Not a sparse compressed layout:", layout);
300
+ return kSparseCsr;
301
+ }
302
+ }
303
+
304
+ inline DimVector getBlockSize(Tensor const& self) {
305
+ int64_t n_batch = numBatchDimensions(self);
306
+ return at::DimVector(self.values().sizes().slice(n_batch + 1, 2));
307
+ }
308
+
309
+ inline at::OptionalArray<at::SymInt> getSymIntBlockSize(Tensor const& self) {
310
+ if (self.layout() == at::kSparseBsr || self.layout() == at::kSparseBsc) {
311
+ int64_t n_batch = numBatchDimensions(self);
312
+ return self.values().sym_sizes().slice(n_batch + 1, 2).vec();
313
+ } else {
314
+ return {};
315
+ }
316
+ }
317
+
318
+ template <typename binary_op_t, typename binary_op_out_t>
319
+ inline bool only_sparse_compressed_binary_op_trivial_cases(
320
+ const Tensor& self,
321
+ const Tensor& other,
322
+ const Scalar& alpha,
323
+ Tensor& out,
324
+ const binary_op_t& binary_op,
325
+ const binary_op_out_t& binary_op_out) {
326
+ // Only sparse compressed! Just like the name says :)
327
+ TORCH_INTERNAL_ASSERT(at::sparse_csr::is_sparse_compressed(self));
328
+ TORCH_INTERNAL_ASSERT(at::sparse_csr::is_sparse_compressed(other));
329
+ TORCH_INTERNAL_ASSERT(at::sparse_csr::is_sparse_compressed(out));
330
+
331
+ // Bypass BLAS if there are matches in (self, other, out)
332
+ if (self.is_same(out) && self.is_same(other)) {
333
+ binary_op_out(self.values(), other.values(), alpha);
334
+ return true;
335
+ }
336
+ if (self.is_same(other)) {
337
+ auto [compressed_indices, plain_indices] =
338
+ at::sparse_csr::getCompressedPlainIndices(self);
339
+ static_cast<SparseCsrTensorImpl*>(out.unsafeGetTensorImpl())
340
+ ->set_member_tensors(
341
+ compressed_indices,
342
+ plain_indices,
343
+ binary_op(self.values(), other.values(), alpha),
344
+ self.sizes());
345
+ return true;
346
+ }
347
+ return false;
348
+ }
349
+
350
+ inline bool only_sparse_compressed_add_trivial_cases(
351
+ const Tensor& self,
352
+ const Tensor& other,
353
+ const Scalar& alpha,
354
+ Tensor& out) {
355
+ return only_sparse_compressed_binary_op_trivial_cases(
356
+ self,
357
+ other,
358
+ alpha,
359
+ out,
360
+ [](const Tensor& v1, const Tensor& v2, const Scalar& alpha) {
361
+ return v1.add(v2, alpha);
362
+ },
363
+ [](const Tensor& v1, const Tensor& v2, const Scalar& alpha) {
364
+ return v1.add_(v2, alpha);
365
+ });
366
+ }
367
+
368
+ inline Tensor to_type(const Tensor& input, ScalarType dtype) {
369
+ auto [compressed_indices, plain_indices] =
370
+ at::sparse_csr::getCompressedPlainIndices(input);
371
+ return at::_sparse_compressed_tensor_unsafe(
372
+ compressed_indices,
373
+ plain_indices,
374
+ std::move(input.values()).to(dtype),
375
+ input.sizes(),
376
+ dtype,
377
+ input.layout(),
378
+ input.device(),
379
+ input.options().pinned_memory_opt());
380
+ }
381
+
382
+ template <typename acc_t, typename scalar_t>
383
+ inline std::tuple<Tensor, Tensor> create_acc_buffer(
384
+ TensorOptions option,
385
+ ScalarType type,
386
+ int64_t nnz = -1) {
387
+ Tensor new_values, new_values_acc;
388
+ constexpr bool need_acc = !std::is_same_v<scalar_t, acc_t>;
389
+ bool is_integral = at::isIntegralType(type, /*includeBool=*/true);
390
+ if constexpr (need_acc) {
391
+ auto acc_dtype = CppTypeToScalarType<acc_t>::value;
392
+ new_values_acc = at::empty({}, option.dtype(acc_dtype));
393
+ new_values = is_integral ? new_values_acc : at::empty({}, option);
394
+ } else {
395
+ new_values = new_values_acc = at::empty({}, option);
396
+ }
397
+ if (nnz != -1) {
398
+ return std::make_tuple(
399
+ new_values.resize_(nnz), new_values_acc.resize_(nnz));
400
+ } else {
401
+ return std::make_tuple(new_values, new_values_acc);
402
+ }
403
+ }
404
+
405
+ inline void copy_from_acc_buffer(Tensor& new_values, Tensor& new_values_acc) {
406
+ if (!new_values_acc.is_same(new_values)) {
407
+ new_values.copy_(new_values_acc);
408
+ }
409
+ }
410
+
411
+ } // namespace at::sparse_csr
venv/lib/python3.10/site-packages/torch/include/ATen/Storage.h ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #pragma once
2
+ #include <c10/core/Storage.h>
venv/lib/python3.10/site-packages/torch/include/ATen/Tensor.h ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
venv/lib/python3.10/site-packages/torch/include/ATen/TensorAccessor.h ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #pragma once
2
+ #include <ATen/core/TensorAccessor.h>
venv/lib/python3.10/site-packages/torch/include/ATen/TensorGeometry.h ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/TensorBase.h>
4
+ #include <c10/core/WrapDimMinimal.h>
5
+
6
+ namespace at {
7
+
8
+ // Return if the tensor geometry represented by `sizes` and `strides` is
9
+ // contiguous Although we cache is_contiguous in tensor now, this is till useful
10
+ // because it allows checking if a particular geometry is contiguous without
11
+ // explicitly constructing a tensor, e.g., when you want to choose a kernel
12
+ // strategy based on whether a subgeometry is contiguous.
13
+ TORCH_API bool geometry_is_contiguous(IntArrayRef sizes, IntArrayRef strides);
14
+
15
+ struct TORCH_API TensorGeometry {
16
+ TensorGeometry() = default;
17
+
18
+ explicit TensorGeometry(c10::SymIntArrayRef sizes)
19
+ : sizes_(sizes.vec()),
20
+ strides_(sizes.size()),
21
+ has_symbolic_sizes_strides_(
22
+ !c10::asIntArrayRefSlowOpt(sizes).has_value()) {
23
+ int64_t dim = static_cast<int64_t>(sizes.size());
24
+ c10::SymInt expected_stride = 1;
25
+ for (int64_t i = dim - 1; i >= 0; i--) {
26
+ strides_[i] = expected_stride;
27
+ expected_stride *= sizes_[i];
28
+ }
29
+ numel_ = expected_stride;
30
+ }
31
+
32
+ explicit TensorGeometry(const TensorBase& t)
33
+ : sizes_(t.sym_sizes().vec()),
34
+ strides_(t.sym_strides().vec()),
35
+ storage_offset_(t.sym_storage_offset()),
36
+ numel_(t.sym_numel()),
37
+ has_symbolic_sizes_strides_(
38
+ t.unsafeGetTensorImpl()->has_symbolic_sizes_strides()) {}
39
+
40
+ // true if the tensor is contiguous
41
+ bool is_contiguous() const;
42
+
43
+ int64_t dim() const {
44
+ return static_cast<int64_t>(sizes_.size());
45
+ }
46
+
47
+ int64_t size(int64_t dim) const {
48
+ TORCH_INTERNAL_ASSERT(!has_symbolic_sizes_strides_);
49
+ dim = c10::maybe_wrap_dim(dim, this->dim());
50
+ return sizes_.at(static_cast<size_t>(dim)).as_int_unchecked();
51
+ }
52
+ c10::IntArrayRef sizes() const {
53
+ TORCH_INTERNAL_ASSERT(!has_symbolic_sizes_strides_);
54
+ return c10::asIntArrayRefUnchecked(sizes_);
55
+ }
56
+ int64_t stride(int64_t dim) const {
57
+ TORCH_INTERNAL_ASSERT(!has_symbolic_sizes_strides_);
58
+ dim = c10::maybe_wrap_dim(dim, this->dim());
59
+ return strides_.at(static_cast<size_t>(dim)).as_int_unchecked();
60
+ }
61
+ c10::IntArrayRef strides() const {
62
+ TORCH_INTERNAL_ASSERT(!has_symbolic_sizes_strides_);
63
+ return c10::asIntArrayRefUnchecked(strides_);
64
+ }
65
+ int64_t storage_offset() const {
66
+ TORCH_INTERNAL_ASSERT(!has_symbolic_sizes_strides_);
67
+ return storage_offset_.as_int_unchecked();
68
+ }
69
+ int64_t numel() const {
70
+ TORCH_INTERNAL_ASSERT(!has_symbolic_sizes_strides_);
71
+ return numel_.as_int_unchecked();
72
+ }
73
+
74
+ c10::SymInt sym_size(int64_t dim) const {
75
+ dim = c10::maybe_wrap_dim(dim, this->dim());
76
+ return sizes_.at(static_cast<size_t>(dim));
77
+ }
78
+ c10::SymIntArrayRef sym_sizes() const {
79
+ return sizes_;
80
+ }
81
+ c10::SymInt sym_stride(int64_t dim) const {
82
+ dim = c10::maybe_wrap_dim(dim, this->dim());
83
+ return strides_.at(static_cast<size_t>(dim));
84
+ }
85
+ c10::SymIntArrayRef sym_strides() const {
86
+ return strides_;
87
+ }
88
+ c10::SymInt sym_storage_offset() const {
89
+ return storage_offset_;
90
+ }
91
+ c10::SymInt sym_numel() const {
92
+ return numel_;
93
+ }
94
+
95
+ TensorGeometry transpose(int64_t dim0, int64_t dim1) {
96
+ TensorGeometry r = *this; // copy
97
+ TORCH_CHECK(
98
+ dim0 < dim(),
99
+ "transpose: dim0=",
100
+ dim0,
101
+ " out of range (dim=",
102
+ dim(),
103
+ ")")
104
+ TORCH_CHECK(
105
+ dim1 < dim(),
106
+ "transpose: dim1=",
107
+ dim1,
108
+ " out of range (dim=",
109
+ dim(),
110
+ ")")
111
+ std::swap(r.sizes_[dim0], r.sizes_[dim1]);
112
+ std::swap(r.strides_[dim0], r.strides_[dim1]);
113
+ return r;
114
+ }
115
+
116
+ std::vector<c10::SymInt>& mutable_sizes() {
117
+ return sizes_;
118
+ }
119
+ std::vector<c10::SymInt>& mutable_strides() {
120
+ return strides_;
121
+ }
122
+ c10::SymInt& mutable_storage_offset() {
123
+ return storage_offset_;
124
+ }
125
+ void recompute() {
126
+ // recalculate numel after a change
127
+ c10::SymInt numel = 1;
128
+ for (const auto& i : sizes_) {
129
+ numel = numel * i;
130
+ }
131
+ numel_ = std::move(numel);
132
+ has_symbolic_sizes_strides_ =
133
+ !c10::asIntArrayRefSlowOpt(sizes_).has_value();
134
+ }
135
+
136
+ private:
137
+ std::vector<c10::SymInt> sizes_;
138
+ std::vector<c10::SymInt> strides_;
139
+ c10::SymInt storage_offset_;
140
+ c10::SymInt numel_;
141
+ bool has_symbolic_sizes_strides_{false};
142
+ };
143
+
144
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/TensorMeta.h ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/DimVector.h>
4
+ #include <ATen/core/Dimname.h>
5
+ #include <c10/core/TensorOptions.h>
6
+ #include <c10/util/strides.h>
7
+
8
+ namespace at {
9
+
10
+ class Tensor;
11
+
12
+ namespace impl {
13
+
14
+ // Use this to define the prototype for a meta function. There are two
15
+ // versions; one that takes one argument (just the operator name), or FUNC2
16
+ // variant that takes two arguments (operator name and overload name).
17
+ //
18
+ // Example usage:
19
+ //
20
+ // TORCH_META_FUNC2(add, Tensor) (
21
+ // const Tensor& self, const Tensor& other
22
+ // ) {
23
+ // ... compute sizes and options ...
24
+ // set_output(sizes, options);
25
+ // }
26
+ //
27
+ #define TORCH_META_FUNC(name) void structured_##name::meta
28
+ #define TORCH_META_FUNC2(name, overload) \
29
+ void structured_##name##_##overload::meta
30
+
31
+ // These are versions of TORCH_META_FUNC(2) that include a precompute_out struct
32
+ // as a return value. They should be used when the kernel in question has
33
+ // precomputed values declared in native_functions.yaml and the corresponding
34
+ // implementation should return an instance of the aforementioned struct.
35
+ #define TORCH_PRECOMPUTE_META_FUNC(name) \
36
+ structured_##name::meta_return_ty structured_##name::meta
37
+ #define TORCH_PRECOMPUTE_META_FUNC2(name, overload) \
38
+ structured_##name##_##overload::meta_return_ty \
39
+ structured_##name##_##overload::meta
40
+
41
+ // Use this to create a precompute struct in a meta function.
42
+ #define TORCH_PRECOMPUTE_STRUCT(name) structured_##name::precompute_out<>
43
+ #define TORCH_PRECOMPUTE_STRUCT2(name, overload) \
44
+ structured_##name##_##overload::precompute_out<>
45
+
46
+ // Use this to define the prototype for an implementation. This takes only
47
+ // one argument, which is the name of the dispatch key entry you're
48
+ // implementing.
49
+ //
50
+ // Example usage:
51
+ //
52
+ // TORCH_IMPL_FUNC(add_cpu) (
53
+ // Tensor& result, const Tensor& self, const Tensor& other
54
+ // ) {
55
+ // ... do the actual implementation ...
56
+ // }
57
+ //
58
+ #define TORCH_IMPL_FUNC(name) void structured_##name::impl
59
+
60
+ // Base class for all structured kernel classes. The set_output virtual
61
+ // method is varied depending whether or not the operator is
62
+ // functional/out/inplace, and could also be specialized for CPU/CUDA/etc
63
+ // (although presently it isn't).
64
+ //
65
+ // A notable subclass of this interface is TensorIteratorBase.
66
+ struct TORCH_API MetaBase {
67
+ MetaBase() = default;
68
+ MetaBase(const MetaBase&) = default;
69
+ MetaBase& operator=(const MetaBase&) = default;
70
+ MetaBase(MetaBase&&) noexcept = default;
71
+ MetaBase& operator=(MetaBase&&) noexcept = default;
72
+ virtual const Tensor& maybe_get_output(int64_t output_idx) = 0;
73
+
74
+ // Note: [set_output_*]
75
+ // See: https://github.com/pytorch/pytorch/issues/69813
76
+ // Whenever defining the output properties in the META function of a
77
+ // structured kernel (what was usually done with `set_output`), use one of
78
+ // these 3 variants, instead. In order to decide which variant to use, check
79
+ // the following decision tree:
80
+ //
81
+ // - Can the kernel you are going to implement support output tensors
82
+ // with arbitrary strides?
83
+ // |
84
+ // -- YES: `set_output_raw_strided`
85
+ // |
86
+ // -- NO: Should the output tensor strides be contiguous?
87
+ // |
88
+ // -- YES: `set_output_contiguous`
89
+ // |
90
+ // -- NO: `set_output_strided`
91
+ //
92
+ // Use this function whenever the kernel requires specific strides for the
93
+ // output. If `strides` does not match the given output strides, proxy outputs
94
+ // will be created and passed to the IMPL function.
95
+ virtual void set_output_strided(
96
+ int64_t output_idx,
97
+ IntArrayRef sizes,
98
+ IntArrayRef strides,
99
+ TensorOptions options,
100
+ DimnameList names = {}) {
101
+ TORCH_INTERNAL_ASSERT(false, "set_output_strided not implemented.");
102
+ }
103
+
104
+ // Use this function whenever the kernel knows how to handle arbitrary strided
105
+ // outputs. This function has the same behavior as the old `set_output`: it
106
+ // will only re-stride if the given output was resized.
107
+ virtual void set_output_raw_strided(
108
+ int64_t output_idx,
109
+ IntArrayRef sizes,
110
+ IntArrayRef strides_hint,
111
+ TensorOptions options,
112
+ DimnameList names = {}) {
113
+ TORCH_INTERNAL_ASSERT(false, "set_output_strided not implemented.");
114
+ }
115
+
116
+ // Use this function if the kernel requires contiguous strides.
117
+ // Alias for `set_output_strided`, but with contiguous strides.
118
+ void set_output_contiguous(
119
+ int64_t output_idx,
120
+ IntArrayRef sizes,
121
+ TensorOptions options,
122
+ DimnameList names = {}) {
123
+ auto strides = c10::contiguous_strides(sizes);
124
+ set_output_strided(output_idx, sizes, strides, options, names);
125
+ }
126
+
127
+ // Returns a reference to an undefined tensor if there is no presupplied
128
+ // output
129
+ const Tensor& maybe_get_output() {
130
+ return maybe_get_output(0);
131
+ }
132
+ virtual ~MetaBase() = default;
133
+ };
134
+
135
+ } // namespace impl
136
+
137
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ThreadLocalState.h ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/core/InferenceMode.h>
4
+ #include <c10/core/impl/LocalDispatchKeySet.h>
5
+ #include <c10/util/Exception.h>
6
+ #include <c10/util/ThreadLocalDebugInfo.h>
7
+
8
+ #include <ATen/FuncTorchTLS.h>
9
+ #include <ATen/PythonTorchFunctionTLS.h>
10
+ #include <ATen/SavedTensorHooks.h>
11
+ #include <ATen/ThreadLocalPythonObjects.h>
12
+ #include <ATen/record_function.h>
13
+ #include <c10/core/impl/PythonDispatcherTLS.h>
14
+ #include <c10/core/impl/TorchDispatchModeTLS.h>
15
+
16
+ namespace at {
17
+
18
+ // Thread local state contains values that are preserved across
19
+ // thread boundaries (e.g. at::launch/JIT fork, autograd).
20
+ // Note at::parallel_for doesn't preserve TLS across thread boundaries.
21
+ class TORCH_API ThreadLocalState {
22
+ public:
23
+ // Saves the thread local variables' values and
24
+ // returns them as a ThreadLocalState
25
+ ThreadLocalState();
26
+
27
+ // set_grad_mode - force the value of the grad mode TLS in
28
+ // the current state object. This is used for example in the
29
+ // autograd engine.
30
+ void set_grad_mode(bool enabled);
31
+
32
+ // set_multithreading_enabled - force the value of the multithreadinmaximum
33
+ // threads TLS in
34
+ // the current state object. This is used for example in the
35
+ // autograd engine.
36
+ void set_multithreading_enabled(bool enabled);
37
+
38
+ // Sets thread local variables in the current thread,
39
+ // according to the thread boundary specified
40
+ static void setThreadLocalState(const ThreadLocalState& state);
41
+
42
+ private:
43
+ c10::impl::LocalDispatchKeySet dispatch_key_;
44
+
45
+ // ThreadLocalDebugInfo does not change after being created
46
+ // with DebugInfoGuard
47
+ std::shared_ptr<c10::ThreadLocalDebugInfo> debug_info_;
48
+
49
+ // RecordFunction TLS
50
+ RecordFunctionTLS rf_tls_;
51
+
52
+ // TLS for out-of-tree functorch
53
+ // See NOTE [functorch TLS in pytorch/pytorch] for why this needs to be a
54
+ // pointer (spoiler alert: it's due to the indirection)
55
+ // This needs to be a shared_ptr instead of a unique_ptr because
56
+ // ThreadLocalState is copy-able and does indeed get copied. Maybe we can
57
+ // consider adding an explicit copy constructor for ThreadLocalState in the
58
+ // future but I didn't want to add one just for this.
59
+ std::shared_ptr<const functorch::FuncTorchTLSBase> functorch_tls_;
60
+
61
+ // TLS for AutogradModes
62
+ AutogradState autograd_tls_;
63
+
64
+ // TLS for enable_torch_dispatch_mode
65
+ c10::impl::TorchDispatchModeTLS torch_dispatch_mode_state_;
66
+
67
+ // TLS for enable_python_dispatcher
68
+ c10::impl::PyInterpreter* python_dispatcher_state_;
69
+
70
+ // TLS for __torch_function__ (mode and disable_torch_function)
71
+ at::impl::PythonTorchFunctionTLS python_torch_function_state_;
72
+
73
+ // TLS for saved tensors default hooks
74
+ at::impl::SavedTensorDefaultHooksTLS saved_tensors_default_hooks_state_;
75
+
76
+ bool functionalization_reapply_views_state_;
77
+
78
+ // TLS for arbitrary python objects that is registered via hooks
79
+ at::impl::ThreadLocalPythonObjects saved_objects_;
80
+
81
+ friend class ThreadLocalStateGuard;
82
+ };
83
+
84
+ // Guard to set and reset the thread local state
85
+ class TORCH_API ThreadLocalStateGuard {
86
+ public:
87
+ explicit ThreadLocalStateGuard(const ThreadLocalState& state)
88
+ : prev_state_(ThreadLocalState()) {
89
+ // set the given state across the thread boundary
90
+ ThreadLocalState::setThreadLocalState(state);
91
+ }
92
+
93
+ ~ThreadLocalStateGuard() {
94
+ // restore previously set variables
95
+ ThreadLocalState::setThreadLocalState(prev_state_);
96
+ }
97
+
98
+ private:
99
+ // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
100
+ const ThreadLocalState prev_state_;
101
+ };
102
+
103
+ template <typename T>
104
+ auto wrapPropagateTLSState(T callback) {
105
+ return [tls_state = ThreadLocalState(),
106
+ callback = std::move(callback)](auto&&... args) {
107
+ ThreadLocalStateGuard g(tls_state);
108
+ // Propagate value returned by callback().
109
+ return callback(std::forward<decltype(args)>(args)...);
110
+ };
111
+ }
112
+
113
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/Utils.h ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/EmptyTensor.h>
4
+ #include <ATen/Formatting.h>
5
+ #include <ATen/core/ATenGeneral.h>
6
+ #include <ATen/core/Generator.h>
7
+ #include <c10/core/ScalarType.h>
8
+ #include <c10/core/StorageImpl.h>
9
+ #include <c10/core/UndefinedTensorImpl.h>
10
+ #include <c10/util/ArrayRef.h>
11
+ #include <c10/util/Exception.h>
12
+ #include <c10/util/accumulate.h>
13
+ #include <c10/util/irange.h>
14
+
15
+ #include <algorithm>
16
+ #include <memory>
17
+ #include <numeric>
18
+ #include <sstream>
19
+ #include <typeinfo>
20
+
21
+ #define AT_DISALLOW_COPY_AND_ASSIGN(TypeName) \
22
+ TypeName(const TypeName&) = delete; \
23
+ void operator=(const TypeName&) = delete
24
+
25
+ namespace at {
26
+
27
+ TORCH_API int _crash_if_asan(int);
28
+
29
+ // Converts a TensorList (i.e. ArrayRef<Tensor> to vector of TensorImpl*)
30
+ // NB: This is ONLY used by legacy TH bindings, and ONLY used by cat.
31
+ // Once cat is ported entirely to ATen this can be deleted!
32
+ static inline std::vector<TensorImpl*> checked_dense_tensor_list_unwrap(
33
+ ArrayRef<Tensor> tensors,
34
+ const char* name,
35
+ int pos,
36
+ c10::DeviceType device_type,
37
+ ScalarType scalar_type) {
38
+ std::vector<TensorImpl*> unwrapped;
39
+ unwrapped.reserve(tensors.size());
40
+ for (const auto i : c10::irange(tensors.size())) {
41
+ const auto& expr = tensors[i];
42
+ if (expr.layout() != Layout::Strided) {
43
+ AT_ERROR(
44
+ "Expected dense tensor but got ",
45
+ expr.layout(),
46
+ " for sequence element ",
47
+ i,
48
+ " in sequence argument at position #",
49
+ pos,
50
+ " '",
51
+ name,
52
+ "'");
53
+ }
54
+ if (expr.device().type() != device_type) {
55
+ AT_ERROR(
56
+ "Expected object of device type ",
57
+ device_type,
58
+ " but got device type ",
59
+ expr.device().type(),
60
+ " for sequence element ",
61
+ i,
62
+ " in sequence argument at position #",
63
+ pos,
64
+ " '",
65
+ name,
66
+ "'");
67
+ }
68
+ if (expr.scalar_type() != scalar_type) {
69
+ AT_ERROR(
70
+ "Expected object of scalar type ",
71
+ scalar_type,
72
+ " but got scalar type ",
73
+ expr.scalar_type(),
74
+ " for sequence element ",
75
+ i,
76
+ " in sequence argument at position #",
77
+ pos,
78
+ " '",
79
+ name,
80
+ "'");
81
+ }
82
+ unwrapped.emplace_back(expr.unsafeGetTensorImpl());
83
+ }
84
+ return unwrapped;
85
+ }
86
+
87
+ template <size_t N>
88
+ std::array<int64_t, N> check_intlist(
89
+ ArrayRef<int64_t> list,
90
+ const char* name,
91
+ int pos) {
92
+ if (list.empty()) {
93
+ // TODO: is this necessary? We used to treat nullptr-vs-not in IntList
94
+ // differently with strides as a way of faking optional.
95
+ list = {};
96
+ }
97
+ auto res = std::array<int64_t, N>();
98
+ if (list.size() == 1 && N > 1) {
99
+ res.fill(list[0]);
100
+ return res;
101
+ }
102
+ if (list.size() != N) {
103
+ AT_ERROR(
104
+ "Expected a list of ",
105
+ N,
106
+ " ints but got ",
107
+ list.size(),
108
+ " for argument #",
109
+ pos,
110
+ " '",
111
+ name,
112
+ "'");
113
+ }
114
+ std::copy_n(list.begin(), N, res.begin());
115
+ return res;
116
+ }
117
+
118
+ using at::detail::check_size_nonnegative;
119
+
120
+ namespace detail {
121
+
122
+ template <typename T>
123
+ TORCH_API Tensor tensor_cpu(ArrayRef<T> values, const TensorOptions& options);
124
+
125
+ template <typename T>
126
+ TORCH_API Tensor
127
+ tensor_backend(ArrayRef<T> values, const TensorOptions& options);
128
+
129
+ template <typename T>
130
+ TORCH_API Tensor
131
+ tensor_complex_cpu(ArrayRef<T> values, const TensorOptions& options);
132
+
133
+ template <typename T>
134
+ TORCH_API Tensor
135
+ tensor_complex_backend(ArrayRef<T> values, const TensorOptions& options);
136
+ } // namespace detail
137
+
138
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ceil_div.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <c10/macros/Macros.h>
3
+ #include <type_traits>
4
+
5
+ namespace at {
6
+
7
+ /**
8
+ Computes ceil(a / b)
9
+ */
10
+ template <typename T, typename = std::enable_if_t<std::is_integral_v<T>>>
11
+ C10_ALWAYS_INLINE C10_HOST_DEVICE T ceil_div(T a, T b) {
12
+ return (a + b - 1) / b;
13
+ }
14
+
15
+ /**
16
+ Computes ceil(a / b) * b; i.e., rounds up `a` to the next highest
17
+ multiple of b
18
+ */
19
+ template <typename T>
20
+ C10_ALWAYS_INLINE C10_HOST_DEVICE T round_up(T a, T b) {
21
+ return ceil_div(a, b) * b;
22
+ }
23
+
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/code_template.h ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/util/irange.h>
4
+
5
+ #include <sstream>
6
+ #include <string>
7
+ #include <unordered_map>
8
+ #include <vector>
9
+
10
+ namespace at::jit {
11
+
12
+ // A template environment is a mapping from template variable names, e.g.,
13
+ // identifier (corresponding to $identifier) to their expansions.
14
+ //
15
+ // This template environment supports storing strings, numbers and lists
16
+ // of strings, and can be chained together (so that lookup proceeds in
17
+ // in the top level environment, and then recurses into a parent
18
+ // environment if the key is not found.)
19
+ struct TemplateEnv {
20
+ TemplateEnv() = default;
21
+ TemplateEnv(TemplateEnv& parent) : parent(&parent) {}
22
+
23
+ using string_list = std::vector<std::string>;
24
+
25
+ // Add a string 'v' to the map at key 'k'.
26
+ void s(const std::string& k, const std::string& v) {
27
+ strings_[k] = v;
28
+ lists_.erase(k);
29
+ }
30
+
31
+ // Add a number 'v' to the map at key 'k'
32
+ template <typename T>
33
+ void d(const std::string& k, const T& v) {
34
+ strings_[k] = c10::to_string(v);
35
+ lists_.erase(k);
36
+ }
37
+
38
+ // Retrieve the string representation of the value stored at 'k' from the map.
39
+ // Raises an exception if the key is not found.
40
+ const std::string& s(const std::string& k) const {
41
+ if (strings_.count(k) == 0) {
42
+ if (parent) {
43
+ return parent->s(k);
44
+ }
45
+ notFound(k);
46
+ }
47
+ return strings_.at(k);
48
+ }
49
+
50
+ // Store a list of strings 'v' in the map at 'k'.
51
+ void v(const std::string& k, const string_list& v) {
52
+ lists_[k] = v;
53
+ strings_.erase(k);
54
+ }
55
+
56
+ // Retrieve a list of strings stored at 'k' from the map.
57
+ // Raises an exception if the key is not found.
58
+ const string_list& v(const std::string& k) const {
59
+ if (lists_.count(k) == 0) {
60
+ if (parent) {
61
+ return parent->v(k);
62
+ }
63
+ notFound(k);
64
+ }
65
+ return lists_.at(k);
66
+ }
67
+
68
+ // Test if a string 'k' is a string (as opposed to a list.)
69
+ bool keyIsString(const std::string& k) const {
70
+ if (strings_.count(k) > 0)
71
+ return true;
72
+ if (lists_.count(k) > 0)
73
+ return false;
74
+ if (parent)
75
+ return parent->keyIsString(k);
76
+ notFound(k);
77
+ }
78
+
79
+ private:
80
+ [[noreturn]] void notFound(const std::string& k) const {
81
+ std::stringstream ss;
82
+ ss << "key not found: " << k;
83
+ throw std::logic_error(ss.str());
84
+ }
85
+
86
+ std::unordered_map<std::string, std::string> strings_;
87
+ std::unordered_map<std::string, string_list> lists_;
88
+ TemplateEnv* parent{nullptr};
89
+ };
90
+
91
+ /*
92
+ # Match $identifier or ${identifier} and replace with the value in env.
93
+ # If this identifier is at the beginning of whitespace on a line
94
+ # and its value is a list then it is treated as
95
+ # block substitution by indenting all lines of all elements.
96
+ # If the identifier is on a line starting with non-whitespace and a list
97
+ # then it is comma separated. ${,foo} will insert a comma before the list
98
+ # if this list is not empty and ${foo,} will insert one after.
99
+ */
100
+ struct CodeTemplate {
101
+ /* implicit */ CodeTemplate(std::string t) : template_text(std::move(t)) {}
102
+
103
+ std::string format(const TemplateEnv& env) const {
104
+ std::stringstream out;
105
+ size_t pos = 0;
106
+ size_t indent = 0;
107
+ bool all_whitespace = true;
108
+ while (pos < template_text.size()) {
109
+ char c = template_text[pos];
110
+ if (c == '$') {
111
+ std::stringstream kss;
112
+ // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
113
+ bool comma_before;
114
+ // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
115
+ bool comma_after;
116
+ size_t new_pos = parseKey(pos, kss, comma_before, comma_after);
117
+ std::string k = kss.str();
118
+ bool is_string = env.keyIsString(k);
119
+ if (all_whitespace) {
120
+ if (is_string)
121
+ emitStringWithIndents(out, indent, env.s(k));
122
+ else
123
+ emitLinesIndented(out, indent, env.v(k));
124
+ } else {
125
+ if (is_string)
126
+ out << env.s(k);
127
+ else
128
+ emitCommaSeparatedList(out, env.v(k), comma_before, comma_after);
129
+ }
130
+ all_whitespace = false;
131
+ pos = new_pos;
132
+ } else {
133
+ out << c;
134
+ if (!isspace(c))
135
+ all_whitespace = false;
136
+ indent++;
137
+ if (c == '\n') {
138
+ indent = 0;
139
+ all_whitespace = true;
140
+ }
141
+ pos++;
142
+ }
143
+ }
144
+ return out.str();
145
+ }
146
+
147
+ private:
148
+ using string_list = std::vector<std::string>;
149
+ char charAt(size_t p) const {
150
+ if (p >= template_text.size())
151
+ throw std::logic_error("EOS found in key");
152
+ return template_text[p];
153
+ }
154
+ size_t parseKey(
155
+ size_t pos,
156
+ std::ostream& k,
157
+ bool& comma_before,
158
+ bool& comma_after) const {
159
+ comma_before = false;
160
+ comma_after = false;
161
+ pos++;
162
+ if (charAt(pos) == '{') {
163
+ pos++;
164
+ if (charAt(pos) == ',') {
165
+ comma_before = true;
166
+ pos++;
167
+ }
168
+ pos = parseIdent(pos, k);
169
+ if (charAt(pos) == ',') {
170
+ comma_after = true;
171
+ pos++;
172
+ }
173
+ if (charAt(pos) != '}')
174
+ throw std::logic_error("missing terminating '}'");
175
+ pos++;
176
+ return pos;
177
+ } else {
178
+ return parseIdent(pos, k);
179
+ }
180
+ }
181
+ size_t parseIdent(size_t pos, std::ostream& k) const {
182
+ while (pos < template_text.size() &&
183
+ (isalnum(template_text[pos]) || template_text[pos] == '_')) {
184
+ k << template_text[pos];
185
+ pos++;
186
+ }
187
+ return pos;
188
+ }
189
+ void emitCommaSeparatedList(
190
+ std::ostream& out,
191
+ const string_list& strings,
192
+ bool comma_before,
193
+ bool comma_after) const {
194
+ if (comma_before && !strings.empty())
195
+ out << ", ";
196
+ for (const auto i : c10::irange(strings.size())) {
197
+ if (i > 0)
198
+ out << ", ";
199
+ out << strings[i];
200
+ }
201
+ if (comma_after && !strings.empty())
202
+ out << ", ";
203
+ }
204
+ // These indentation functions follow the convention that they never emit
205
+ // leading or trailing newlines when the input string does not have leading
206
+ // or trailing newlines. It's the responsibility of the calling function
207
+ // to indent correctly in the context.
208
+ void emitIndent(std::ostream& out, size_t indent) const {
209
+ for (C10_UNUSED const auto i : c10::irange(indent)) {
210
+ out << " ";
211
+ }
212
+ }
213
+ void emitStringWithIndents(
214
+ std::ostream& out,
215
+ size_t indent,
216
+ const std::string& str) const {
217
+ for (auto c : str) {
218
+ out << c;
219
+ if (c == '\n') {
220
+ emitIndent(out, indent);
221
+ }
222
+ }
223
+ }
224
+ void emitLinesIndented(
225
+ std::stringstream& out,
226
+ size_t indent,
227
+ const string_list& strings) const {
228
+ for (const auto i : c10::irange(strings.size())) {
229
+ if (i > 0)
230
+ emitIndent(out, indent);
231
+ emitStringWithIndents(out, indent, strings[i]);
232
+ if (i + 1 != strings.size())
233
+ out << "\n";
234
+ }
235
+ }
236
+ std::string template_text;
237
+ };
238
+
239
+ static inline std::string format(const std::string& fmt, TemplateEnv& env) {
240
+ return CodeTemplate(fmt).format(env);
241
+ }
242
+
243
+ } // namespace at::jit