Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step80/zero/10.input_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/10.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/10.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/4.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/4.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/sympy/categories/__init__.py +33 -0
- venv/lib/python3.10/site-packages/sympy/categories/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/categories/__pycache__/baseclasses.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/categories/__pycache__/diagram_drawing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/categories/baseclasses.py +979 -0
- venv/lib/python3.10/site-packages/sympy/categories/diagram_drawing.py +2591 -0
- venv/lib/python3.10/site-packages/sympy/categories/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/test_baseclasses.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/test_drawing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/categories/tests/test_baseclasses.py +209 -0
- venv/lib/python3.10/site-packages/sympy/categories/tests/test_drawing.py +919 -0
- venv/lib/python3.10/site-packages/sympy/crypto/__init__.py +35 -0
- venv/lib/python3.10/site-packages/sympy/crypto/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/crypto/__pycache__/crypto.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/crypto/crypto.py +3360 -0
- venv/lib/python3.10/site-packages/sympy/crypto/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/crypto/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/crypto/tests/__pycache__/test_crypto.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/crypto/tests/test_crypto.py +562 -0
- venv/lib/python3.10/site-packages/sympy/sets/__init__.py +36 -0
- venv/lib/python3.10/site-packages/sympy/sets/conditionset.py +246 -0
- venv/lib/python3.10/site-packages/sympy/sets/contains.py +48 -0
- venv/lib/python3.10/site-packages/sympy/sets/fancysets.py +1521 -0
- venv/lib/python3.10/site-packages/sympy/sets/ordinals.py +282 -0
- venv/lib/python3.10/site-packages/sympy/sets/powerset.py +119 -0
- venv/lib/python3.10/site-packages/sympy/sets/setexpr.py +97 -0
- venv/lib/python3.10/site-packages/sympy/sets/sets.py +2749 -0
- venv/lib/python3.10/site-packages/sympy/sets/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_contains.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_fancysets.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_ordinals.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_powerset.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_setexpr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/sets/tests/test_conditionset.py +294 -0
- venv/lib/python3.10/site-packages/sympy/sets/tests/test_contains.py +50 -0
- venv/lib/python3.10/site-packages/sympy/sets/tests/test_fancysets.py +1306 -0
- venv/lib/python3.10/site-packages/sympy/sets/tests/test_ordinals.py +67 -0
- venv/lib/python3.10/site-packages/sympy/sets/tests/test_powerset.py +141 -0
- venv/lib/python3.10/site-packages/sympy/sets/tests/test_setexpr.py +317 -0
- venv/lib/python3.10/site-packages/sympy/sets/tests/test_sets.py +1704 -0
- venv/lib/python3.10/site-packages/sympy/strategies/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/strategies/__pycache__/core.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/strategies/__pycache__/rl.cpython-310.pyc +0 -0
ckpts/universal/global_step80/zero/10.input_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28b2410b821ecaec32f84fe711b707a5cd6db344a277459a19d5db00e6dabc94
|
3 |
+
size 9372
|
ckpts/universal/global_step80/zero/10.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:276d5066ec41a8cf779a325cfca46f3cbaad7b8ea51079ea88d11a95d54563ef
|
3 |
+
size 33555612
|
ckpts/universal/global_step80/zero/10.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8ebb79abd1ef3af3975d7e9d97544fc24a1bbb1c14e7814ab7e570a16afdb80
|
3 |
+
size 33555533
|
ckpts/universal/global_step80/zero/4.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:102228ffa9de4758a8292602e71dd63f6176c68c2f15fb33583d2b9e1c32c24f
|
3 |
+
size 33555612
|
ckpts/universal/global_step80/zero/4.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50a9cf2ec21a0f1a0f0c46a3dd235e09d66fdc1158005ed8a24076d3e7c08abb
|
3 |
+
size 33555627
|
venv/lib/python3.10/site-packages/sympy/categories/__init__.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Category Theory module.
|
3 |
+
|
4 |
+
Provides some of the fundamental category-theory-related classes,
|
5 |
+
including categories, morphisms, diagrams. Functors are not
|
6 |
+
implemented yet.
|
7 |
+
|
8 |
+
The general reference work this module tries to follow is
|
9 |
+
|
10 |
+
[JoyOfCats] J. Adamek, H. Herrlich. G. E. Strecker: Abstract and
|
11 |
+
Concrete Categories. The Joy of Cats.
|
12 |
+
|
13 |
+
The latest version of this book should be available for free download
|
14 |
+
from
|
15 |
+
|
16 |
+
katmat.math.uni-bremen.de/acc/acc.pdf
|
17 |
+
|
18 |
+
"""
|
19 |
+
|
20 |
+
from .baseclasses import (Object, Morphism, IdentityMorphism,
|
21 |
+
NamedMorphism, CompositeMorphism, Category,
|
22 |
+
Diagram)
|
23 |
+
|
24 |
+
from .diagram_drawing import (DiagramGrid, XypicDiagramDrawer,
|
25 |
+
xypic_draw_diagram, preview_diagram)
|
26 |
+
|
27 |
+
__all__ = [
|
28 |
+
'Object', 'Morphism', 'IdentityMorphism', 'NamedMorphism',
|
29 |
+
'CompositeMorphism', 'Category', 'Diagram',
|
30 |
+
|
31 |
+
'DiagramGrid', 'XypicDiagramDrawer', 'xypic_draw_diagram',
|
32 |
+
'preview_diagram',
|
33 |
+
]
|
venv/lib/python3.10/site-packages/sympy/categories/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.06 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/categories/__pycache__/baseclasses.cpython-310.pyc
ADDED
Binary file (28.3 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/categories/__pycache__/diagram_drawing.cpython-310.pyc
ADDED
Binary file (65.4 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/categories/baseclasses.py
ADDED
@@ -0,0 +1,979 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S, Basic, Dict, Symbol, Tuple, sympify
|
2 |
+
from sympy.core.symbol import Str
|
3 |
+
from sympy.sets import Set, FiniteSet, EmptySet
|
4 |
+
from sympy.utilities.iterables import iterable
|
5 |
+
|
6 |
+
|
7 |
+
class Class(Set):
|
8 |
+
r"""
|
9 |
+
The base class for any kind of class in the set-theoretic sense.
|
10 |
+
|
11 |
+
Explanation
|
12 |
+
===========
|
13 |
+
|
14 |
+
In axiomatic set theories, everything is a class. A class which
|
15 |
+
can be a member of another class is a set. A class which is not a
|
16 |
+
member of another class is a proper class. The class `\{1, 2\}`
|
17 |
+
is a set; the class of all sets is a proper class.
|
18 |
+
|
19 |
+
This class is essentially a synonym for :class:`sympy.core.Set`.
|
20 |
+
The goal of this class is to assure easier migration to the
|
21 |
+
eventual proper implementation of set theory.
|
22 |
+
"""
|
23 |
+
is_proper = False
|
24 |
+
|
25 |
+
|
26 |
+
class Object(Symbol):
|
27 |
+
"""
|
28 |
+
The base class for any kind of object in an abstract category.
|
29 |
+
|
30 |
+
Explanation
|
31 |
+
===========
|
32 |
+
|
33 |
+
While technically any instance of :class:`~.Basic` will do, this
|
34 |
+
class is the recommended way to create abstract objects in
|
35 |
+
abstract categories.
|
36 |
+
"""
|
37 |
+
|
38 |
+
|
39 |
+
class Morphism(Basic):
|
40 |
+
"""
|
41 |
+
The base class for any morphism in an abstract category.
|
42 |
+
|
43 |
+
Explanation
|
44 |
+
===========
|
45 |
+
|
46 |
+
In abstract categories, a morphism is an arrow between two
|
47 |
+
category objects. The object where the arrow starts is called the
|
48 |
+
domain, while the object where the arrow ends is called the
|
49 |
+
codomain.
|
50 |
+
|
51 |
+
Two morphisms between the same pair of objects are considered to
|
52 |
+
be the same morphisms. To distinguish between morphisms between
|
53 |
+
the same objects use :class:`NamedMorphism`.
|
54 |
+
|
55 |
+
It is prohibited to instantiate this class. Use one of the
|
56 |
+
derived classes instead.
|
57 |
+
|
58 |
+
See Also
|
59 |
+
========
|
60 |
+
|
61 |
+
IdentityMorphism, NamedMorphism, CompositeMorphism
|
62 |
+
"""
|
63 |
+
def __new__(cls, domain, codomain):
|
64 |
+
raise(NotImplementedError(
|
65 |
+
"Cannot instantiate Morphism. Use derived classes instead."))
|
66 |
+
|
67 |
+
@property
|
68 |
+
def domain(self):
|
69 |
+
"""
|
70 |
+
Returns the domain of the morphism.
|
71 |
+
|
72 |
+
Examples
|
73 |
+
========
|
74 |
+
|
75 |
+
>>> from sympy.categories import Object, NamedMorphism
|
76 |
+
>>> A = Object("A")
|
77 |
+
>>> B = Object("B")
|
78 |
+
>>> f = NamedMorphism(A, B, "f")
|
79 |
+
>>> f.domain
|
80 |
+
Object("A")
|
81 |
+
|
82 |
+
"""
|
83 |
+
return self.args[0]
|
84 |
+
|
85 |
+
@property
|
86 |
+
def codomain(self):
|
87 |
+
"""
|
88 |
+
Returns the codomain of the morphism.
|
89 |
+
|
90 |
+
Examples
|
91 |
+
========
|
92 |
+
|
93 |
+
>>> from sympy.categories import Object, NamedMorphism
|
94 |
+
>>> A = Object("A")
|
95 |
+
>>> B = Object("B")
|
96 |
+
>>> f = NamedMorphism(A, B, "f")
|
97 |
+
>>> f.codomain
|
98 |
+
Object("B")
|
99 |
+
|
100 |
+
"""
|
101 |
+
return self.args[1]
|
102 |
+
|
103 |
+
def compose(self, other):
|
104 |
+
r"""
|
105 |
+
Composes self with the supplied morphism.
|
106 |
+
|
107 |
+
The order of elements in the composition is the usual order,
|
108 |
+
i.e., to construct `g\circ f` use ``g.compose(f)``.
|
109 |
+
|
110 |
+
Examples
|
111 |
+
========
|
112 |
+
|
113 |
+
>>> from sympy.categories import Object, NamedMorphism
|
114 |
+
>>> A = Object("A")
|
115 |
+
>>> B = Object("B")
|
116 |
+
>>> C = Object("C")
|
117 |
+
>>> f = NamedMorphism(A, B, "f")
|
118 |
+
>>> g = NamedMorphism(B, C, "g")
|
119 |
+
>>> g * f
|
120 |
+
CompositeMorphism((NamedMorphism(Object("A"), Object("B"), "f"),
|
121 |
+
NamedMorphism(Object("B"), Object("C"), "g")))
|
122 |
+
>>> (g * f).domain
|
123 |
+
Object("A")
|
124 |
+
>>> (g * f).codomain
|
125 |
+
Object("C")
|
126 |
+
|
127 |
+
"""
|
128 |
+
return CompositeMorphism(other, self)
|
129 |
+
|
130 |
+
def __mul__(self, other):
|
131 |
+
r"""
|
132 |
+
Composes self with the supplied morphism.
|
133 |
+
|
134 |
+
The semantics of this operation is given by the following
|
135 |
+
equation: ``g * f == g.compose(f)`` for composable morphisms
|
136 |
+
``g`` and ``f``.
|
137 |
+
|
138 |
+
See Also
|
139 |
+
========
|
140 |
+
|
141 |
+
compose
|
142 |
+
"""
|
143 |
+
return self.compose(other)
|
144 |
+
|
145 |
+
|
146 |
+
class IdentityMorphism(Morphism):
|
147 |
+
"""
|
148 |
+
Represents an identity morphism.
|
149 |
+
|
150 |
+
Explanation
|
151 |
+
===========
|
152 |
+
|
153 |
+
An identity morphism is a morphism with equal domain and codomain,
|
154 |
+
which acts as an identity with respect to composition.
|
155 |
+
|
156 |
+
Examples
|
157 |
+
========
|
158 |
+
|
159 |
+
>>> from sympy.categories import Object, NamedMorphism, IdentityMorphism
|
160 |
+
>>> A = Object("A")
|
161 |
+
>>> B = Object("B")
|
162 |
+
>>> f = NamedMorphism(A, B, "f")
|
163 |
+
>>> id_A = IdentityMorphism(A)
|
164 |
+
>>> id_B = IdentityMorphism(B)
|
165 |
+
>>> f * id_A == f
|
166 |
+
True
|
167 |
+
>>> id_B * f == f
|
168 |
+
True
|
169 |
+
|
170 |
+
See Also
|
171 |
+
========
|
172 |
+
|
173 |
+
Morphism
|
174 |
+
"""
|
175 |
+
def __new__(cls, domain):
|
176 |
+
return Basic.__new__(cls, domain)
|
177 |
+
|
178 |
+
@property
|
179 |
+
def codomain(self):
|
180 |
+
return self.domain
|
181 |
+
|
182 |
+
|
183 |
+
class NamedMorphism(Morphism):
|
184 |
+
"""
|
185 |
+
Represents a morphism which has a name.
|
186 |
+
|
187 |
+
Explanation
|
188 |
+
===========
|
189 |
+
|
190 |
+
Names are used to distinguish between morphisms which have the
|
191 |
+
same domain and codomain: two named morphisms are equal if they
|
192 |
+
have the same domains, codomains, and names.
|
193 |
+
|
194 |
+
Examples
|
195 |
+
========
|
196 |
+
|
197 |
+
>>> from sympy.categories import Object, NamedMorphism
|
198 |
+
>>> A = Object("A")
|
199 |
+
>>> B = Object("B")
|
200 |
+
>>> f = NamedMorphism(A, B, "f")
|
201 |
+
>>> f
|
202 |
+
NamedMorphism(Object("A"), Object("B"), "f")
|
203 |
+
>>> f.name
|
204 |
+
'f'
|
205 |
+
|
206 |
+
See Also
|
207 |
+
========
|
208 |
+
|
209 |
+
Morphism
|
210 |
+
"""
|
211 |
+
def __new__(cls, domain, codomain, name):
|
212 |
+
if not name:
|
213 |
+
raise ValueError("Empty morphism names not allowed.")
|
214 |
+
|
215 |
+
if not isinstance(name, Str):
|
216 |
+
name = Str(name)
|
217 |
+
|
218 |
+
return Basic.__new__(cls, domain, codomain, name)
|
219 |
+
|
220 |
+
@property
|
221 |
+
def name(self):
|
222 |
+
"""
|
223 |
+
Returns the name of the morphism.
|
224 |
+
|
225 |
+
Examples
|
226 |
+
========
|
227 |
+
|
228 |
+
>>> from sympy.categories import Object, NamedMorphism
|
229 |
+
>>> A = Object("A")
|
230 |
+
>>> B = Object("B")
|
231 |
+
>>> f = NamedMorphism(A, B, "f")
|
232 |
+
>>> f.name
|
233 |
+
'f'
|
234 |
+
|
235 |
+
"""
|
236 |
+
return self.args[2].name
|
237 |
+
|
238 |
+
|
239 |
+
class CompositeMorphism(Morphism):
|
240 |
+
r"""
|
241 |
+
Represents a morphism which is a composition of other morphisms.
|
242 |
+
|
243 |
+
Explanation
|
244 |
+
===========
|
245 |
+
|
246 |
+
Two composite morphisms are equal if the morphisms they were
|
247 |
+
obtained from (components) are the same and were listed in the
|
248 |
+
same order.
|
249 |
+
|
250 |
+
The arguments to the constructor for this class should be listed
|
251 |
+
in diagram order: to obtain the composition `g\circ f` from the
|
252 |
+
instances of :class:`Morphism` ``g`` and ``f`` use
|
253 |
+
``CompositeMorphism(f, g)``.
|
254 |
+
|
255 |
+
Examples
|
256 |
+
========
|
257 |
+
|
258 |
+
>>> from sympy.categories import Object, NamedMorphism, CompositeMorphism
|
259 |
+
>>> A = Object("A")
|
260 |
+
>>> B = Object("B")
|
261 |
+
>>> C = Object("C")
|
262 |
+
>>> f = NamedMorphism(A, B, "f")
|
263 |
+
>>> g = NamedMorphism(B, C, "g")
|
264 |
+
>>> g * f
|
265 |
+
CompositeMorphism((NamedMorphism(Object("A"), Object("B"), "f"),
|
266 |
+
NamedMorphism(Object("B"), Object("C"), "g")))
|
267 |
+
>>> CompositeMorphism(f, g) == g * f
|
268 |
+
True
|
269 |
+
|
270 |
+
"""
|
271 |
+
@staticmethod
|
272 |
+
def _add_morphism(t, morphism):
|
273 |
+
"""
|
274 |
+
Intelligently adds ``morphism`` to tuple ``t``.
|
275 |
+
|
276 |
+
Explanation
|
277 |
+
===========
|
278 |
+
|
279 |
+
If ``morphism`` is a composite morphism, its components are
|
280 |
+
added to the tuple. If ``morphism`` is an identity, nothing
|
281 |
+
is added to the tuple.
|
282 |
+
|
283 |
+
No composability checks are performed.
|
284 |
+
"""
|
285 |
+
if isinstance(morphism, CompositeMorphism):
|
286 |
+
# ``morphism`` is a composite morphism; we have to
|
287 |
+
# denest its components.
|
288 |
+
return t + morphism.components
|
289 |
+
elif isinstance(morphism, IdentityMorphism):
|
290 |
+
# ``morphism`` is an identity. Nothing happens.
|
291 |
+
return t
|
292 |
+
else:
|
293 |
+
return t + Tuple(morphism)
|
294 |
+
|
295 |
+
def __new__(cls, *components):
|
296 |
+
if components and not isinstance(components[0], Morphism):
|
297 |
+
# Maybe the user has explicitly supplied a list of
|
298 |
+
# morphisms.
|
299 |
+
return CompositeMorphism.__new__(cls, *components[0])
|
300 |
+
|
301 |
+
normalised_components = Tuple()
|
302 |
+
|
303 |
+
for current, following in zip(components, components[1:]):
|
304 |
+
if not isinstance(current, Morphism) or \
|
305 |
+
not isinstance(following, Morphism):
|
306 |
+
raise TypeError("All components must be morphisms.")
|
307 |
+
|
308 |
+
if current.codomain != following.domain:
|
309 |
+
raise ValueError("Uncomposable morphisms.")
|
310 |
+
|
311 |
+
normalised_components = CompositeMorphism._add_morphism(
|
312 |
+
normalised_components, current)
|
313 |
+
|
314 |
+
# We haven't added the last morphism to the list of normalised
|
315 |
+
# components. Add it now.
|
316 |
+
normalised_components = CompositeMorphism._add_morphism(
|
317 |
+
normalised_components, components[-1])
|
318 |
+
|
319 |
+
if not normalised_components:
|
320 |
+
# If ``normalised_components`` is empty, only identities
|
321 |
+
# were supplied. Since they all were composable, they are
|
322 |
+
# all the same identities.
|
323 |
+
return components[0]
|
324 |
+
elif len(normalised_components) == 1:
|
325 |
+
# No sense to construct a whole CompositeMorphism.
|
326 |
+
return normalised_components[0]
|
327 |
+
|
328 |
+
return Basic.__new__(cls, normalised_components)
|
329 |
+
|
330 |
+
@property
|
331 |
+
def components(self):
|
332 |
+
"""
|
333 |
+
Returns the components of this composite morphism.
|
334 |
+
|
335 |
+
Examples
|
336 |
+
========
|
337 |
+
|
338 |
+
>>> from sympy.categories import Object, NamedMorphism
|
339 |
+
>>> A = Object("A")
|
340 |
+
>>> B = Object("B")
|
341 |
+
>>> C = Object("C")
|
342 |
+
>>> f = NamedMorphism(A, B, "f")
|
343 |
+
>>> g = NamedMorphism(B, C, "g")
|
344 |
+
>>> (g * f).components
|
345 |
+
(NamedMorphism(Object("A"), Object("B"), "f"),
|
346 |
+
NamedMorphism(Object("B"), Object("C"), "g"))
|
347 |
+
|
348 |
+
"""
|
349 |
+
return self.args[0]
|
350 |
+
|
351 |
+
@property
|
352 |
+
def domain(self):
|
353 |
+
"""
|
354 |
+
Returns the domain of this composite morphism.
|
355 |
+
|
356 |
+
The domain of the composite morphism is the domain of its
|
357 |
+
first component.
|
358 |
+
|
359 |
+
Examples
|
360 |
+
========
|
361 |
+
|
362 |
+
>>> from sympy.categories import Object, NamedMorphism
|
363 |
+
>>> A = Object("A")
|
364 |
+
>>> B = Object("B")
|
365 |
+
>>> C = Object("C")
|
366 |
+
>>> f = NamedMorphism(A, B, "f")
|
367 |
+
>>> g = NamedMorphism(B, C, "g")
|
368 |
+
>>> (g * f).domain
|
369 |
+
Object("A")
|
370 |
+
|
371 |
+
"""
|
372 |
+
return self.components[0].domain
|
373 |
+
|
374 |
+
@property
|
375 |
+
def codomain(self):
|
376 |
+
"""
|
377 |
+
Returns the codomain of this composite morphism.
|
378 |
+
|
379 |
+
The codomain of the composite morphism is the codomain of its
|
380 |
+
last component.
|
381 |
+
|
382 |
+
Examples
|
383 |
+
========
|
384 |
+
|
385 |
+
>>> from sympy.categories import Object, NamedMorphism
|
386 |
+
>>> A = Object("A")
|
387 |
+
>>> B = Object("B")
|
388 |
+
>>> C = Object("C")
|
389 |
+
>>> f = NamedMorphism(A, B, "f")
|
390 |
+
>>> g = NamedMorphism(B, C, "g")
|
391 |
+
>>> (g * f).codomain
|
392 |
+
Object("C")
|
393 |
+
|
394 |
+
"""
|
395 |
+
return self.components[-1].codomain
|
396 |
+
|
397 |
+
def flatten(self, new_name):
|
398 |
+
"""
|
399 |
+
Forgets the composite structure of this morphism.
|
400 |
+
|
401 |
+
Explanation
|
402 |
+
===========
|
403 |
+
|
404 |
+
If ``new_name`` is not empty, returns a :class:`NamedMorphism`
|
405 |
+
with the supplied name, otherwise returns a :class:`Morphism`.
|
406 |
+
In both cases the domain of the new morphism is the domain of
|
407 |
+
this composite morphism and the codomain of the new morphism
|
408 |
+
is the codomain of this composite morphism.
|
409 |
+
|
410 |
+
Examples
|
411 |
+
========
|
412 |
+
|
413 |
+
>>> from sympy.categories import Object, NamedMorphism
|
414 |
+
>>> A = Object("A")
|
415 |
+
>>> B = Object("B")
|
416 |
+
>>> C = Object("C")
|
417 |
+
>>> f = NamedMorphism(A, B, "f")
|
418 |
+
>>> g = NamedMorphism(B, C, "g")
|
419 |
+
>>> (g * f).flatten("h")
|
420 |
+
NamedMorphism(Object("A"), Object("C"), "h")
|
421 |
+
|
422 |
+
"""
|
423 |
+
return NamedMorphism(self.domain, self.codomain, new_name)
|
424 |
+
|
425 |
+
|
426 |
+
class Category(Basic):
|
427 |
+
r"""
|
428 |
+
An (abstract) category.
|
429 |
+
|
430 |
+
Explanation
|
431 |
+
===========
|
432 |
+
|
433 |
+
A category [JoyOfCats] is a quadruple `\mbox{K} = (O, \hom, id,
|
434 |
+
\circ)` consisting of
|
435 |
+
|
436 |
+
* a (set-theoretical) class `O`, whose members are called
|
437 |
+
`K`-objects,
|
438 |
+
|
439 |
+
* for each pair `(A, B)` of `K`-objects, a set `\hom(A, B)` whose
|
440 |
+
members are called `K`-morphisms from `A` to `B`,
|
441 |
+
|
442 |
+
* for a each `K`-object `A`, a morphism `id:A\rightarrow A`,
|
443 |
+
called the `K`-identity of `A`,
|
444 |
+
|
445 |
+
* a composition law `\circ` associating with every `K`-morphisms
|
446 |
+
`f:A\rightarrow B` and `g:B\rightarrow C` a `K`-morphism `g\circ
|
447 |
+
f:A\rightarrow C`, called the composite of `f` and `g`.
|
448 |
+
|
449 |
+
Composition is associative, `K`-identities are identities with
|
450 |
+
respect to composition, and the sets `\hom(A, B)` are pairwise
|
451 |
+
disjoint.
|
452 |
+
|
453 |
+
This class knows nothing about its objects and morphisms.
|
454 |
+
Concrete cases of (abstract) categories should be implemented as
|
455 |
+
classes derived from this one.
|
456 |
+
|
457 |
+
Certain instances of :class:`Diagram` can be asserted to be
|
458 |
+
commutative in a :class:`Category` by supplying the argument
|
459 |
+
``commutative_diagrams`` in the constructor.
|
460 |
+
|
461 |
+
Examples
|
462 |
+
========
|
463 |
+
|
464 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram, Category
|
465 |
+
>>> from sympy import FiniteSet
|
466 |
+
>>> A = Object("A")
|
467 |
+
>>> B = Object("B")
|
468 |
+
>>> C = Object("C")
|
469 |
+
>>> f = NamedMorphism(A, B, "f")
|
470 |
+
>>> g = NamedMorphism(B, C, "g")
|
471 |
+
>>> d = Diagram([f, g])
|
472 |
+
>>> K = Category("K", commutative_diagrams=[d])
|
473 |
+
>>> K.commutative_diagrams == FiniteSet(d)
|
474 |
+
True
|
475 |
+
|
476 |
+
See Also
|
477 |
+
========
|
478 |
+
|
479 |
+
Diagram
|
480 |
+
"""
|
481 |
+
def __new__(cls, name, objects=EmptySet, commutative_diagrams=EmptySet):
|
482 |
+
if not name:
|
483 |
+
raise ValueError("A Category cannot have an empty name.")
|
484 |
+
|
485 |
+
if not isinstance(name, Str):
|
486 |
+
name = Str(name)
|
487 |
+
|
488 |
+
if not isinstance(objects, Class):
|
489 |
+
objects = Class(objects)
|
490 |
+
|
491 |
+
new_category = Basic.__new__(cls, name, objects,
|
492 |
+
FiniteSet(*commutative_diagrams))
|
493 |
+
return new_category
|
494 |
+
|
495 |
+
@property
|
496 |
+
def name(self):
|
497 |
+
"""
|
498 |
+
Returns the name of this category.
|
499 |
+
|
500 |
+
Examples
|
501 |
+
========
|
502 |
+
|
503 |
+
>>> from sympy.categories import Category
|
504 |
+
>>> K = Category("K")
|
505 |
+
>>> K.name
|
506 |
+
'K'
|
507 |
+
|
508 |
+
"""
|
509 |
+
return self.args[0].name
|
510 |
+
|
511 |
+
@property
|
512 |
+
def objects(self):
|
513 |
+
"""
|
514 |
+
Returns the class of objects of this category.
|
515 |
+
|
516 |
+
Examples
|
517 |
+
========
|
518 |
+
|
519 |
+
>>> from sympy.categories import Object, Category
|
520 |
+
>>> from sympy import FiniteSet
|
521 |
+
>>> A = Object("A")
|
522 |
+
>>> B = Object("B")
|
523 |
+
>>> K = Category("K", FiniteSet(A, B))
|
524 |
+
>>> K.objects
|
525 |
+
Class({Object("A"), Object("B")})
|
526 |
+
|
527 |
+
"""
|
528 |
+
return self.args[1]
|
529 |
+
|
530 |
+
@property
|
531 |
+
def commutative_diagrams(self):
|
532 |
+
"""
|
533 |
+
Returns the :class:`~.FiniteSet` of diagrams which are known to
|
534 |
+
be commutative in this category.
|
535 |
+
|
536 |
+
Examples
|
537 |
+
========
|
538 |
+
|
539 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram, Category
|
540 |
+
>>> from sympy import FiniteSet
|
541 |
+
>>> A = Object("A")
|
542 |
+
>>> B = Object("B")
|
543 |
+
>>> C = Object("C")
|
544 |
+
>>> f = NamedMorphism(A, B, "f")
|
545 |
+
>>> g = NamedMorphism(B, C, "g")
|
546 |
+
>>> d = Diagram([f, g])
|
547 |
+
>>> K = Category("K", commutative_diagrams=[d])
|
548 |
+
>>> K.commutative_diagrams == FiniteSet(d)
|
549 |
+
True
|
550 |
+
|
551 |
+
"""
|
552 |
+
return self.args[2]
|
553 |
+
|
554 |
+
def hom(self, A, B):
|
555 |
+
raise NotImplementedError(
|
556 |
+
"hom-sets are not implemented in Category.")
|
557 |
+
|
558 |
+
def all_morphisms(self):
|
559 |
+
raise NotImplementedError(
|
560 |
+
"Obtaining the class of morphisms is not implemented in Category.")
|
561 |
+
|
562 |
+
|
563 |
+
class Diagram(Basic):
|
564 |
+
r"""
|
565 |
+
Represents a diagram in a certain category.
|
566 |
+
|
567 |
+
Explanation
|
568 |
+
===========
|
569 |
+
|
570 |
+
Informally, a diagram is a collection of objects of a category and
|
571 |
+
certain morphisms between them. A diagram is still a monoid with
|
572 |
+
respect to morphism composition; i.e., identity morphisms, as well
|
573 |
+
as all composites of morphisms included in the diagram belong to
|
574 |
+
the diagram. For a more formal approach to this notion see
|
575 |
+
[Pare1970].
|
576 |
+
|
577 |
+
The components of composite morphisms are also added to the
|
578 |
+
diagram. No properties are assigned to such morphisms by default.
|
579 |
+
|
580 |
+
A commutative diagram is often accompanied by a statement of the
|
581 |
+
following kind: "if such morphisms with such properties exist,
|
582 |
+
then such morphisms which such properties exist and the diagram is
|
583 |
+
commutative". To represent this, an instance of :class:`Diagram`
|
584 |
+
includes a collection of morphisms which are the premises and
|
585 |
+
another collection of conclusions. ``premises`` and
|
586 |
+
``conclusions`` associate morphisms belonging to the corresponding
|
587 |
+
categories with the :class:`~.FiniteSet`'s of their properties.
|
588 |
+
|
589 |
+
The set of properties of a composite morphism is the intersection
|
590 |
+
of the sets of properties of its components. The domain and
|
591 |
+
codomain of a conclusion morphism should be among the domains and
|
592 |
+
codomains of the morphisms listed as the premises of a diagram.
|
593 |
+
|
594 |
+
No checks are carried out of whether the supplied object and
|
595 |
+
morphisms do belong to one and the same category.
|
596 |
+
|
597 |
+
Examples
|
598 |
+
========
|
599 |
+
|
600 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
601 |
+
>>> from sympy import pprint, default_sort_key
|
602 |
+
>>> A = Object("A")
|
603 |
+
>>> B = Object("B")
|
604 |
+
>>> C = Object("C")
|
605 |
+
>>> f = NamedMorphism(A, B, "f")
|
606 |
+
>>> g = NamedMorphism(B, C, "g")
|
607 |
+
>>> d = Diagram([f, g])
|
608 |
+
>>> premises_keys = sorted(d.premises.keys(), key=default_sort_key)
|
609 |
+
>>> pprint(premises_keys, use_unicode=False)
|
610 |
+
[g*f:A-->C, id:A-->A, id:B-->B, id:C-->C, f:A-->B, g:B-->C]
|
611 |
+
>>> pprint(d.premises, use_unicode=False)
|
612 |
+
{g*f:A-->C: EmptySet, id:A-->A: EmptySet, id:B-->B: EmptySet, id:C-->C: EmptyS
|
613 |
+
et, f:A-->B: EmptySet, g:B-->C: EmptySet}
|
614 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
615 |
+
>>> pprint(d.conclusions,use_unicode=False)
|
616 |
+
{g*f:A-->C: {unique}}
|
617 |
+
|
618 |
+
References
|
619 |
+
==========
|
620 |
+
|
621 |
+
[Pare1970] B. Pareigis: Categories and functors. Academic Press, 1970.
|
622 |
+
|
623 |
+
"""
|
624 |
+
@staticmethod
|
625 |
+
def _set_dict_union(dictionary, key, value):
|
626 |
+
"""
|
627 |
+
If ``key`` is in ``dictionary``, set the new value of ``key``
|
628 |
+
to be the union between the old value and ``value``.
|
629 |
+
Otherwise, set the value of ``key`` to ``value.
|
630 |
+
|
631 |
+
Returns ``True`` if the key already was in the dictionary and
|
632 |
+
``False`` otherwise.
|
633 |
+
"""
|
634 |
+
if key in dictionary:
|
635 |
+
dictionary[key] = dictionary[key] | value
|
636 |
+
return True
|
637 |
+
else:
|
638 |
+
dictionary[key] = value
|
639 |
+
return False
|
640 |
+
|
641 |
+
@staticmethod
|
642 |
+
def _add_morphism_closure(morphisms, morphism, props, add_identities=True,
|
643 |
+
recurse_composites=True):
|
644 |
+
"""
|
645 |
+
Adds a morphism and its attributes to the supplied dictionary
|
646 |
+
``morphisms``. If ``add_identities`` is True, also adds the
|
647 |
+
identity morphisms for the domain and the codomain of
|
648 |
+
``morphism``.
|
649 |
+
"""
|
650 |
+
if not Diagram._set_dict_union(morphisms, morphism, props):
|
651 |
+
# We have just added a new morphism.
|
652 |
+
|
653 |
+
if isinstance(morphism, IdentityMorphism):
|
654 |
+
if props:
|
655 |
+
# Properties for identity morphisms don't really
|
656 |
+
# make sense, because very much is known about
|
657 |
+
# identity morphisms already, so much that they
|
658 |
+
# are trivial. Having properties for identity
|
659 |
+
# morphisms would only be confusing.
|
660 |
+
raise ValueError(
|
661 |
+
"Instances of IdentityMorphism cannot have properties.")
|
662 |
+
return
|
663 |
+
|
664 |
+
if add_identities:
|
665 |
+
empty = EmptySet
|
666 |
+
|
667 |
+
id_dom = IdentityMorphism(morphism.domain)
|
668 |
+
id_cod = IdentityMorphism(morphism.codomain)
|
669 |
+
|
670 |
+
Diagram._set_dict_union(morphisms, id_dom, empty)
|
671 |
+
Diagram._set_dict_union(morphisms, id_cod, empty)
|
672 |
+
|
673 |
+
for existing_morphism, existing_props in list(morphisms.items()):
|
674 |
+
new_props = existing_props & props
|
675 |
+
if morphism.domain == existing_morphism.codomain:
|
676 |
+
left = morphism * existing_morphism
|
677 |
+
Diagram._set_dict_union(morphisms, left, new_props)
|
678 |
+
if morphism.codomain == existing_morphism.domain:
|
679 |
+
right = existing_morphism * morphism
|
680 |
+
Diagram._set_dict_union(morphisms, right, new_props)
|
681 |
+
|
682 |
+
if isinstance(morphism, CompositeMorphism) and recurse_composites:
|
683 |
+
# This is a composite morphism, add its components as
|
684 |
+
# well.
|
685 |
+
empty = EmptySet
|
686 |
+
for component in morphism.components:
|
687 |
+
Diagram._add_morphism_closure(morphisms, component, empty,
|
688 |
+
add_identities)
|
689 |
+
|
690 |
+
def __new__(cls, *args):
|
691 |
+
"""
|
692 |
+
Construct a new instance of Diagram.
|
693 |
+
|
694 |
+
Explanation
|
695 |
+
===========
|
696 |
+
|
697 |
+
If no arguments are supplied, an empty diagram is created.
|
698 |
+
|
699 |
+
If at least an argument is supplied, ``args[0]`` is
|
700 |
+
interpreted as the premises of the diagram. If ``args[0]`` is
|
701 |
+
a list, it is interpreted as a list of :class:`Morphism`'s, in
|
702 |
+
which each :class:`Morphism` has an empty set of properties.
|
703 |
+
If ``args[0]`` is a Python dictionary or a :class:`Dict`, it
|
704 |
+
is interpreted as a dictionary associating to some
|
705 |
+
:class:`Morphism`'s some properties.
|
706 |
+
|
707 |
+
If at least two arguments are supplied ``args[1]`` is
|
708 |
+
interpreted as the conclusions of the diagram. The type of
|
709 |
+
``args[1]`` is interpreted in exactly the same way as the type
|
710 |
+
of ``args[0]``. If only one argument is supplied, the diagram
|
711 |
+
has no conclusions.
|
712 |
+
|
713 |
+
Examples
|
714 |
+
========
|
715 |
+
|
716 |
+
>>> from sympy.categories import Object, NamedMorphism
|
717 |
+
>>> from sympy.categories import IdentityMorphism, Diagram
|
718 |
+
>>> A = Object("A")
|
719 |
+
>>> B = Object("B")
|
720 |
+
>>> C = Object("C")
|
721 |
+
>>> f = NamedMorphism(A, B, "f")
|
722 |
+
>>> g = NamedMorphism(B, C, "g")
|
723 |
+
>>> d = Diagram([f, g])
|
724 |
+
>>> IdentityMorphism(A) in d.premises.keys()
|
725 |
+
True
|
726 |
+
>>> g * f in d.premises.keys()
|
727 |
+
True
|
728 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
729 |
+
>>> d.conclusions[g * f]
|
730 |
+
{unique}
|
731 |
+
|
732 |
+
"""
|
733 |
+
premises = {}
|
734 |
+
conclusions = {}
|
735 |
+
|
736 |
+
# Here we will keep track of the objects which appear in the
|
737 |
+
# premises.
|
738 |
+
objects = EmptySet
|
739 |
+
|
740 |
+
if len(args) >= 1:
|
741 |
+
# We've got some premises in the arguments.
|
742 |
+
premises_arg = args[0]
|
743 |
+
|
744 |
+
if isinstance(premises_arg, list):
|
745 |
+
# The user has supplied a list of morphisms, none of
|
746 |
+
# which have any attributes.
|
747 |
+
empty = EmptySet
|
748 |
+
|
749 |
+
for morphism in premises_arg:
|
750 |
+
objects |= FiniteSet(morphism.domain, morphism.codomain)
|
751 |
+
Diagram._add_morphism_closure(premises, morphism, empty)
|
752 |
+
elif isinstance(premises_arg, (dict, Dict)):
|
753 |
+
# The user has supplied a dictionary of morphisms and
|
754 |
+
# their properties.
|
755 |
+
for morphism, props in premises_arg.items():
|
756 |
+
objects |= FiniteSet(morphism.domain, morphism.codomain)
|
757 |
+
Diagram._add_morphism_closure(
|
758 |
+
premises, morphism, FiniteSet(*props) if iterable(props) else FiniteSet(props))
|
759 |
+
|
760 |
+
if len(args) >= 2:
|
761 |
+
# We also have some conclusions.
|
762 |
+
conclusions_arg = args[1]
|
763 |
+
|
764 |
+
if isinstance(conclusions_arg, list):
|
765 |
+
# The user has supplied a list of morphisms, none of
|
766 |
+
# which have any attributes.
|
767 |
+
empty = EmptySet
|
768 |
+
|
769 |
+
for morphism in conclusions_arg:
|
770 |
+
# Check that no new objects appear in conclusions.
|
771 |
+
if ((sympify(objects.contains(morphism.domain)) is S.true) and
|
772 |
+
(sympify(objects.contains(morphism.codomain)) is S.true)):
|
773 |
+
# No need to add identities and recurse
|
774 |
+
# composites this time.
|
775 |
+
Diagram._add_morphism_closure(
|
776 |
+
conclusions, morphism, empty, add_identities=False,
|
777 |
+
recurse_composites=False)
|
778 |
+
elif isinstance(conclusions_arg, dict) or \
|
779 |
+
isinstance(conclusions_arg, Dict):
|
780 |
+
# The user has supplied a dictionary of morphisms and
|
781 |
+
# their properties.
|
782 |
+
for morphism, props in conclusions_arg.items():
|
783 |
+
# Check that no new objects appear in conclusions.
|
784 |
+
if (morphism.domain in objects) and \
|
785 |
+
(morphism.codomain in objects):
|
786 |
+
# No need to add identities and recurse
|
787 |
+
# composites this time.
|
788 |
+
Diagram._add_morphism_closure(
|
789 |
+
conclusions, morphism, FiniteSet(*props) if iterable(props) else FiniteSet(props),
|
790 |
+
add_identities=False, recurse_composites=False)
|
791 |
+
|
792 |
+
return Basic.__new__(cls, Dict(premises), Dict(conclusions), objects)
|
793 |
+
|
794 |
+
@property
|
795 |
+
def premises(self):
|
796 |
+
"""
|
797 |
+
Returns the premises of this diagram.
|
798 |
+
|
799 |
+
Examples
|
800 |
+
========
|
801 |
+
|
802 |
+
>>> from sympy.categories import Object, NamedMorphism
|
803 |
+
>>> from sympy.categories import IdentityMorphism, Diagram
|
804 |
+
>>> from sympy import pretty
|
805 |
+
>>> A = Object("A")
|
806 |
+
>>> B = Object("B")
|
807 |
+
>>> f = NamedMorphism(A, B, "f")
|
808 |
+
>>> id_A = IdentityMorphism(A)
|
809 |
+
>>> id_B = IdentityMorphism(B)
|
810 |
+
>>> d = Diagram([f])
|
811 |
+
>>> print(pretty(d.premises, use_unicode=False))
|
812 |
+
{id:A-->A: EmptySet, id:B-->B: EmptySet, f:A-->B: EmptySet}
|
813 |
+
|
814 |
+
"""
|
815 |
+
return self.args[0]
|
816 |
+
|
817 |
+
@property
|
818 |
+
def conclusions(self):
|
819 |
+
"""
|
820 |
+
Returns the conclusions of this diagram.
|
821 |
+
|
822 |
+
Examples
|
823 |
+
========
|
824 |
+
|
825 |
+
>>> from sympy.categories import Object, NamedMorphism
|
826 |
+
>>> from sympy.categories import IdentityMorphism, Diagram
|
827 |
+
>>> from sympy import FiniteSet
|
828 |
+
>>> A = Object("A")
|
829 |
+
>>> B = Object("B")
|
830 |
+
>>> C = Object("C")
|
831 |
+
>>> f = NamedMorphism(A, B, "f")
|
832 |
+
>>> g = NamedMorphism(B, C, "g")
|
833 |
+
>>> d = Diagram([f, g])
|
834 |
+
>>> IdentityMorphism(A) in d.premises.keys()
|
835 |
+
True
|
836 |
+
>>> g * f in d.premises.keys()
|
837 |
+
True
|
838 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
839 |
+
>>> d.conclusions[g * f] == FiniteSet("unique")
|
840 |
+
True
|
841 |
+
|
842 |
+
"""
|
843 |
+
return self.args[1]
|
844 |
+
|
845 |
+
@property
|
846 |
+
def objects(self):
|
847 |
+
"""
|
848 |
+
Returns the :class:`~.FiniteSet` of objects that appear in this
|
849 |
+
diagram.
|
850 |
+
|
851 |
+
Examples
|
852 |
+
========
|
853 |
+
|
854 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
855 |
+
>>> A = Object("A")
|
856 |
+
>>> B = Object("B")
|
857 |
+
>>> C = Object("C")
|
858 |
+
>>> f = NamedMorphism(A, B, "f")
|
859 |
+
>>> g = NamedMorphism(B, C, "g")
|
860 |
+
>>> d = Diagram([f, g])
|
861 |
+
>>> d.objects
|
862 |
+
{Object("A"), Object("B"), Object("C")}
|
863 |
+
|
864 |
+
"""
|
865 |
+
return self.args[2]
|
866 |
+
|
867 |
+
def hom(self, A, B):
|
868 |
+
"""
|
869 |
+
Returns a 2-tuple of sets of morphisms between objects ``A`` and
|
870 |
+
``B``: one set of morphisms listed as premises, and the other set
|
871 |
+
of morphisms listed as conclusions.
|
872 |
+
|
873 |
+
Examples
|
874 |
+
========
|
875 |
+
|
876 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
877 |
+
>>> from sympy import pretty
|
878 |
+
>>> A = Object("A")
|
879 |
+
>>> B = Object("B")
|
880 |
+
>>> C = Object("C")
|
881 |
+
>>> f = NamedMorphism(A, B, "f")
|
882 |
+
>>> g = NamedMorphism(B, C, "g")
|
883 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
884 |
+
>>> print(pretty(d.hom(A, C), use_unicode=False))
|
885 |
+
({g*f:A-->C}, {g*f:A-->C})
|
886 |
+
|
887 |
+
See Also
|
888 |
+
========
|
889 |
+
Object, Morphism
|
890 |
+
"""
|
891 |
+
premises = EmptySet
|
892 |
+
conclusions = EmptySet
|
893 |
+
|
894 |
+
for morphism in self.premises.keys():
|
895 |
+
if (morphism.domain == A) and (morphism.codomain == B):
|
896 |
+
premises |= FiniteSet(morphism)
|
897 |
+
for morphism in self.conclusions.keys():
|
898 |
+
if (morphism.domain == A) and (morphism.codomain == B):
|
899 |
+
conclusions |= FiniteSet(morphism)
|
900 |
+
|
901 |
+
return (premises, conclusions)
|
902 |
+
|
903 |
+
def is_subdiagram(self, diagram):
|
904 |
+
"""
|
905 |
+
Checks whether ``diagram`` is a subdiagram of ``self``.
|
906 |
+
Diagram `D'` is a subdiagram of `D` if all premises
|
907 |
+
(conclusions) of `D'` are contained in the premises
|
908 |
+
(conclusions) of `D`. The morphisms contained
|
909 |
+
both in `D'` and `D` should have the same properties for `D'`
|
910 |
+
to be a subdiagram of `D`.
|
911 |
+
|
912 |
+
Examples
|
913 |
+
========
|
914 |
+
|
915 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
916 |
+
>>> A = Object("A")
|
917 |
+
>>> B = Object("B")
|
918 |
+
>>> C = Object("C")
|
919 |
+
>>> f = NamedMorphism(A, B, "f")
|
920 |
+
>>> g = NamedMorphism(B, C, "g")
|
921 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
922 |
+
>>> d1 = Diagram([f])
|
923 |
+
>>> d.is_subdiagram(d1)
|
924 |
+
True
|
925 |
+
>>> d1.is_subdiagram(d)
|
926 |
+
False
|
927 |
+
"""
|
928 |
+
premises = all((m in self.premises) and
|
929 |
+
(diagram.premises[m] == self.premises[m])
|
930 |
+
for m in diagram.premises)
|
931 |
+
if not premises:
|
932 |
+
return False
|
933 |
+
|
934 |
+
conclusions = all((m in self.conclusions) and
|
935 |
+
(diagram.conclusions[m] == self.conclusions[m])
|
936 |
+
for m in diagram.conclusions)
|
937 |
+
|
938 |
+
# Premises is surely ``True`` here.
|
939 |
+
return conclusions
|
940 |
+
|
941 |
+
def subdiagram_from_objects(self, objects):
|
942 |
+
"""
|
943 |
+
If ``objects`` is a subset of the objects of ``self``, returns
|
944 |
+
a diagram which has as premises all those premises of ``self``
|
945 |
+
which have a domains and codomains in ``objects``, likewise
|
946 |
+
for conclusions. Properties are preserved.
|
947 |
+
|
948 |
+
Examples
|
949 |
+
========
|
950 |
+
|
951 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
952 |
+
>>> from sympy import FiniteSet
|
953 |
+
>>> A = Object("A")
|
954 |
+
>>> B = Object("B")
|
955 |
+
>>> C = Object("C")
|
956 |
+
>>> f = NamedMorphism(A, B, "f")
|
957 |
+
>>> g = NamedMorphism(B, C, "g")
|
958 |
+
>>> d = Diagram([f, g], {f: "unique", g*f: "veryunique"})
|
959 |
+
>>> d1 = d.subdiagram_from_objects(FiniteSet(A, B))
|
960 |
+
>>> d1 == Diagram([f], {f: "unique"})
|
961 |
+
True
|
962 |
+
"""
|
963 |
+
if not objects.is_subset(self.objects):
|
964 |
+
raise ValueError(
|
965 |
+
"Supplied objects should all belong to the diagram.")
|
966 |
+
|
967 |
+
new_premises = {}
|
968 |
+
for morphism, props in self.premises.items():
|
969 |
+
if ((sympify(objects.contains(morphism.domain)) is S.true) and
|
970 |
+
(sympify(objects.contains(morphism.codomain)) is S.true)):
|
971 |
+
new_premises[morphism] = props
|
972 |
+
|
973 |
+
new_conclusions = {}
|
974 |
+
for morphism, props in self.conclusions.items():
|
975 |
+
if ((sympify(objects.contains(morphism.domain)) is S.true) and
|
976 |
+
(sympify(objects.contains(morphism.codomain)) is S.true)):
|
977 |
+
new_conclusions[morphism] = props
|
978 |
+
|
979 |
+
return Diagram(new_premises, new_conclusions)
|
venv/lib/python3.10/site-packages/sympy/categories/diagram_drawing.py
ADDED
@@ -0,0 +1,2591 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
This module contains the functionality to arrange the nodes of a
|
3 |
+
diagram on an abstract grid, and then to produce a graphical
|
4 |
+
representation of the grid.
|
5 |
+
|
6 |
+
The currently supported back-ends are Xy-pic [Xypic].
|
7 |
+
|
8 |
+
Layout Algorithm
|
9 |
+
================
|
10 |
+
|
11 |
+
This section provides an overview of the algorithms implemented in
|
12 |
+
:class:`DiagramGrid` to lay out diagrams.
|
13 |
+
|
14 |
+
The first step of the algorithm is the removal composite and identity
|
15 |
+
morphisms which do not have properties in the supplied diagram. The
|
16 |
+
premises and conclusions of the diagram are then merged.
|
17 |
+
|
18 |
+
The generic layout algorithm begins with the construction of the
|
19 |
+
"skeleton" of the diagram. The skeleton is an undirected graph which
|
20 |
+
has the objects of the diagram as vertices and has an (undirected)
|
21 |
+
edge between each pair of objects between which there exist morphisms.
|
22 |
+
The direction of the morphisms does not matter at this stage. The
|
23 |
+
skeleton also includes an edge between each pair of vertices `A` and
|
24 |
+
`C` such that there exists an object `B` which is connected via
|
25 |
+
a morphism to `A`, and via a morphism to `C`.
|
26 |
+
|
27 |
+
The skeleton constructed in this way has the property that every
|
28 |
+
object is a vertex of a triangle formed by three edges of the
|
29 |
+
skeleton. This property lies at the base of the generic layout
|
30 |
+
algorithm.
|
31 |
+
|
32 |
+
After the skeleton has been constructed, the algorithm lists all
|
33 |
+
triangles which can be formed. Note that some triangles will not have
|
34 |
+
all edges corresponding to morphisms which will actually be drawn.
|
35 |
+
Triangles which have only one edge or less which will actually be
|
36 |
+
drawn are immediately discarded.
|
37 |
+
|
38 |
+
The list of triangles is sorted according to the number of edges which
|
39 |
+
correspond to morphisms, then the triangle with the least number of such
|
40 |
+
edges is selected. One of such edges is picked and the corresponding
|
41 |
+
objects are placed horizontally, on a grid. This edge is recorded to
|
42 |
+
be in the fringe. The algorithm then finds a "welding" of a triangle
|
43 |
+
to the fringe. A welding is an edge in the fringe where a triangle
|
44 |
+
could be attached. If the algorithm succeeds in finding such a
|
45 |
+
welding, it adds to the grid that vertex of the triangle which was not
|
46 |
+
yet included in any edge in the fringe and records the two new edges in
|
47 |
+
the fringe. This process continues iteratively until all objects of
|
48 |
+
the diagram has been placed or until no more weldings can be found.
|
49 |
+
|
50 |
+
An edge is only removed from the fringe when a welding to this edge
|
51 |
+
has been found, and there is no room around this edge to place
|
52 |
+
another vertex.
|
53 |
+
|
54 |
+
When no more weldings can be found, but there are still triangles
|
55 |
+
left, the algorithm searches for a possibility of attaching one of the
|
56 |
+
remaining triangles to the existing structure by a vertex. If such a
|
57 |
+
possibility is found, the corresponding edge of the found triangle is
|
58 |
+
placed in the found space and the iterative process of welding
|
59 |
+
triangles restarts.
|
60 |
+
|
61 |
+
When logical groups are supplied, each of these groups is laid out
|
62 |
+
independently. Then a diagram is constructed in which groups are
|
63 |
+
objects and any two logical groups between which there exist morphisms
|
64 |
+
are connected via a morphism. This diagram is laid out. Finally,
|
65 |
+
the grid which includes all objects of the initial diagram is
|
66 |
+
constructed by replacing the cells which contain logical groups with
|
67 |
+
the corresponding laid out grids, and by correspondingly expanding the
|
68 |
+
rows and columns.
|
69 |
+
|
70 |
+
The sequential layout algorithm begins by constructing the
|
71 |
+
underlying undirected graph defined by the morphisms obtained after
|
72 |
+
simplifying premises and conclusions and merging them (see above).
|
73 |
+
The vertex with the minimal degree is then picked up and depth-first
|
74 |
+
search is started from it. All objects which are located at distance
|
75 |
+
`n` from the root in the depth-first search tree, are positioned in
|
76 |
+
the `n`-th column of the resulting grid. The sequential layout will
|
77 |
+
therefore attempt to lay the objects out along a line.
|
78 |
+
|
79 |
+
References
|
80 |
+
==========
|
81 |
+
|
82 |
+
.. [Xypic] https://xy-pic.sourceforge.net/
|
83 |
+
|
84 |
+
"""
|
85 |
+
from sympy.categories import (CompositeMorphism, IdentityMorphism,
|
86 |
+
NamedMorphism, Diagram)
|
87 |
+
from sympy.core import Dict, Symbol, default_sort_key
|
88 |
+
from sympy.printing.latex import latex
|
89 |
+
from sympy.sets import FiniteSet
|
90 |
+
from sympy.utilities.iterables import iterable
|
91 |
+
from sympy.utilities.decorator import doctest_depends_on
|
92 |
+
|
93 |
+
from itertools import chain
|
94 |
+
|
95 |
+
|
96 |
+
__doctest_requires__ = {('preview_diagram',): 'pyglet'}
|
97 |
+
|
98 |
+
|
99 |
+
class _GrowableGrid:
|
100 |
+
"""
|
101 |
+
Holds a growable grid of objects.
|
102 |
+
|
103 |
+
Explanation
|
104 |
+
===========
|
105 |
+
|
106 |
+
It is possible to append or prepend a row or a column to the grid
|
107 |
+
using the corresponding methods. Prepending rows or columns has
|
108 |
+
the effect of changing the coordinates of the already existing
|
109 |
+
elements.
|
110 |
+
|
111 |
+
This class currently represents a naive implementation of the
|
112 |
+
functionality with little attempt at optimisation.
|
113 |
+
"""
|
114 |
+
def __init__(self, width, height):
|
115 |
+
self._width = width
|
116 |
+
self._height = height
|
117 |
+
|
118 |
+
self._array = [[None for j in range(width)] for i in range(height)]
|
119 |
+
|
120 |
+
@property
|
121 |
+
def width(self):
|
122 |
+
return self._width
|
123 |
+
|
124 |
+
@property
|
125 |
+
def height(self):
|
126 |
+
return self._height
|
127 |
+
|
128 |
+
def __getitem__(self, i_j):
|
129 |
+
"""
|
130 |
+
Returns the element located at in the i-th line and j-th
|
131 |
+
column.
|
132 |
+
"""
|
133 |
+
i, j = i_j
|
134 |
+
return self._array[i][j]
|
135 |
+
|
136 |
+
def __setitem__(self, i_j, newvalue):
|
137 |
+
"""
|
138 |
+
Sets the element located at in the i-th line and j-th
|
139 |
+
column.
|
140 |
+
"""
|
141 |
+
i, j = i_j
|
142 |
+
self._array[i][j] = newvalue
|
143 |
+
|
144 |
+
def append_row(self):
|
145 |
+
"""
|
146 |
+
Appends an empty row to the grid.
|
147 |
+
"""
|
148 |
+
self._height += 1
|
149 |
+
self._array.append([None for j in range(self._width)])
|
150 |
+
|
151 |
+
def append_column(self):
|
152 |
+
"""
|
153 |
+
Appends an empty column to the grid.
|
154 |
+
"""
|
155 |
+
self._width += 1
|
156 |
+
for i in range(self._height):
|
157 |
+
self._array[i].append(None)
|
158 |
+
|
159 |
+
def prepend_row(self):
|
160 |
+
"""
|
161 |
+
Prepends the grid with an empty row.
|
162 |
+
"""
|
163 |
+
self._height += 1
|
164 |
+
self._array.insert(0, [None for j in range(self._width)])
|
165 |
+
|
166 |
+
def prepend_column(self):
|
167 |
+
"""
|
168 |
+
Prepends the grid with an empty column.
|
169 |
+
"""
|
170 |
+
self._width += 1
|
171 |
+
for i in range(self._height):
|
172 |
+
self._array[i].insert(0, None)
|
173 |
+
|
174 |
+
|
175 |
+
class DiagramGrid:
|
176 |
+
r"""
|
177 |
+
Constructs and holds the fitting of the diagram into a grid.
|
178 |
+
|
179 |
+
Explanation
|
180 |
+
===========
|
181 |
+
|
182 |
+
The mission of this class is to analyse the structure of the
|
183 |
+
supplied diagram and to place its objects on a grid such that,
|
184 |
+
when the objects and the morphisms are actually drawn, the diagram
|
185 |
+
would be "readable", in the sense that there will not be many
|
186 |
+
intersections of moprhisms. This class does not perform any
|
187 |
+
actual drawing. It does strive nevertheless to offer sufficient
|
188 |
+
metadata to draw a diagram.
|
189 |
+
|
190 |
+
Consider the following simple diagram.
|
191 |
+
|
192 |
+
>>> from sympy.categories import Object, NamedMorphism
|
193 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
194 |
+
>>> from sympy import pprint
|
195 |
+
>>> A = Object("A")
|
196 |
+
>>> B = Object("B")
|
197 |
+
>>> C = Object("C")
|
198 |
+
>>> f = NamedMorphism(A, B, "f")
|
199 |
+
>>> g = NamedMorphism(B, C, "g")
|
200 |
+
>>> diagram = Diagram([f, g])
|
201 |
+
|
202 |
+
The simplest way to have a diagram laid out is the following:
|
203 |
+
|
204 |
+
>>> grid = DiagramGrid(diagram)
|
205 |
+
>>> (grid.width, grid.height)
|
206 |
+
(2, 2)
|
207 |
+
>>> pprint(grid)
|
208 |
+
A B
|
209 |
+
<BLANKLINE>
|
210 |
+
C
|
211 |
+
|
212 |
+
Sometimes one sees the diagram as consisting of logical groups.
|
213 |
+
One can advise ``DiagramGrid`` as to such groups by employing the
|
214 |
+
``groups`` keyword argument.
|
215 |
+
|
216 |
+
Consider the following diagram:
|
217 |
+
|
218 |
+
>>> D = Object("D")
|
219 |
+
>>> f = NamedMorphism(A, B, "f")
|
220 |
+
>>> g = NamedMorphism(B, C, "g")
|
221 |
+
>>> h = NamedMorphism(D, A, "h")
|
222 |
+
>>> k = NamedMorphism(D, B, "k")
|
223 |
+
>>> diagram = Diagram([f, g, h, k])
|
224 |
+
|
225 |
+
Lay it out with generic layout:
|
226 |
+
|
227 |
+
>>> grid = DiagramGrid(diagram)
|
228 |
+
>>> pprint(grid)
|
229 |
+
A B D
|
230 |
+
<BLANKLINE>
|
231 |
+
C
|
232 |
+
|
233 |
+
Now, we can group the objects `A` and `D` to have them near one
|
234 |
+
another:
|
235 |
+
|
236 |
+
>>> grid = DiagramGrid(diagram, groups=[[A, D], B, C])
|
237 |
+
>>> pprint(grid)
|
238 |
+
B C
|
239 |
+
<BLANKLINE>
|
240 |
+
A D
|
241 |
+
|
242 |
+
Note how the positioning of the other objects changes.
|
243 |
+
|
244 |
+
Further indications can be supplied to the constructor of
|
245 |
+
:class:`DiagramGrid` using keyword arguments. The currently
|
246 |
+
supported hints are explained in the following paragraphs.
|
247 |
+
|
248 |
+
:class:`DiagramGrid` does not automatically guess which layout
|
249 |
+
would suit the supplied diagram better. Consider, for example,
|
250 |
+
the following linear diagram:
|
251 |
+
|
252 |
+
>>> E = Object("E")
|
253 |
+
>>> f = NamedMorphism(A, B, "f")
|
254 |
+
>>> g = NamedMorphism(B, C, "g")
|
255 |
+
>>> h = NamedMorphism(C, D, "h")
|
256 |
+
>>> i = NamedMorphism(D, E, "i")
|
257 |
+
>>> diagram = Diagram([f, g, h, i])
|
258 |
+
|
259 |
+
When laid out with the generic layout, it does not get to look
|
260 |
+
linear:
|
261 |
+
|
262 |
+
>>> grid = DiagramGrid(diagram)
|
263 |
+
>>> pprint(grid)
|
264 |
+
A B
|
265 |
+
<BLANKLINE>
|
266 |
+
C D
|
267 |
+
<BLANKLINE>
|
268 |
+
E
|
269 |
+
|
270 |
+
To get it laid out in a line, use ``layout="sequential"``:
|
271 |
+
|
272 |
+
>>> grid = DiagramGrid(diagram, layout="sequential")
|
273 |
+
>>> pprint(grid)
|
274 |
+
A B C D E
|
275 |
+
|
276 |
+
One may sometimes need to transpose the resulting layout. While
|
277 |
+
this can always be done by hand, :class:`DiagramGrid` provides a
|
278 |
+
hint for that purpose:
|
279 |
+
|
280 |
+
>>> grid = DiagramGrid(diagram, layout="sequential", transpose=True)
|
281 |
+
>>> pprint(grid)
|
282 |
+
A
|
283 |
+
<BLANKLINE>
|
284 |
+
B
|
285 |
+
<BLANKLINE>
|
286 |
+
C
|
287 |
+
<BLANKLINE>
|
288 |
+
D
|
289 |
+
<BLANKLINE>
|
290 |
+
E
|
291 |
+
|
292 |
+
Separate hints can also be provided for each group. For an
|
293 |
+
example, refer to ``tests/test_drawing.py``, and see the different
|
294 |
+
ways in which the five lemma [FiveLemma] can be laid out.
|
295 |
+
|
296 |
+
See Also
|
297 |
+
========
|
298 |
+
|
299 |
+
Diagram
|
300 |
+
|
301 |
+
References
|
302 |
+
==========
|
303 |
+
|
304 |
+
.. [FiveLemma] https://en.wikipedia.org/wiki/Five_lemma
|
305 |
+
"""
|
306 |
+
@staticmethod
|
307 |
+
def _simplify_morphisms(morphisms):
|
308 |
+
"""
|
309 |
+
Given a dictionary mapping morphisms to their properties,
|
310 |
+
returns a new dictionary in which there are no morphisms which
|
311 |
+
do not have properties, and which are compositions of other
|
312 |
+
morphisms included in the dictionary. Identities are dropped
|
313 |
+
as well.
|
314 |
+
"""
|
315 |
+
newmorphisms = {}
|
316 |
+
for morphism, props in morphisms.items():
|
317 |
+
if isinstance(morphism, CompositeMorphism) and not props:
|
318 |
+
continue
|
319 |
+
elif isinstance(morphism, IdentityMorphism):
|
320 |
+
continue
|
321 |
+
else:
|
322 |
+
newmorphisms[morphism] = props
|
323 |
+
return newmorphisms
|
324 |
+
|
325 |
+
@staticmethod
|
326 |
+
def _merge_premises_conclusions(premises, conclusions):
|
327 |
+
"""
|
328 |
+
Given two dictionaries of morphisms and their properties,
|
329 |
+
produces a single dictionary which includes elements from both
|
330 |
+
dictionaries. If a morphism has some properties in premises
|
331 |
+
and also in conclusions, the properties in conclusions take
|
332 |
+
priority.
|
333 |
+
"""
|
334 |
+
return dict(chain(premises.items(), conclusions.items()))
|
335 |
+
|
336 |
+
@staticmethod
|
337 |
+
def _juxtapose_edges(edge1, edge2):
|
338 |
+
"""
|
339 |
+
If ``edge1`` and ``edge2`` have precisely one common endpoint,
|
340 |
+
returns an edge which would form a triangle with ``edge1`` and
|
341 |
+
``edge2``.
|
342 |
+
|
343 |
+
If ``edge1`` and ``edge2`` do not have a common endpoint,
|
344 |
+
returns ``None``.
|
345 |
+
|
346 |
+
If ``edge1`` and ``edge`` are the same edge, returns ``None``.
|
347 |
+
"""
|
348 |
+
intersection = edge1 & edge2
|
349 |
+
if len(intersection) != 1:
|
350 |
+
# The edges either have no common points or are equal.
|
351 |
+
return None
|
352 |
+
|
353 |
+
# The edges have a common endpoint. Extract the different
|
354 |
+
# endpoints and set up the new edge.
|
355 |
+
return (edge1 - intersection) | (edge2 - intersection)
|
356 |
+
|
357 |
+
@staticmethod
|
358 |
+
def _add_edge_append(dictionary, edge, elem):
|
359 |
+
"""
|
360 |
+
If ``edge`` is not in ``dictionary``, adds ``edge`` to the
|
361 |
+
dictionary and sets its value to ``[elem]``. Otherwise
|
362 |
+
appends ``elem`` to the value of existing entry.
|
363 |
+
|
364 |
+
Note that edges are undirected, thus `(A, B) = (B, A)`.
|
365 |
+
"""
|
366 |
+
if edge in dictionary:
|
367 |
+
dictionary[edge].append(elem)
|
368 |
+
else:
|
369 |
+
dictionary[edge] = [elem]
|
370 |
+
|
371 |
+
@staticmethod
|
372 |
+
def _build_skeleton(morphisms):
|
373 |
+
"""
|
374 |
+
Creates a dictionary which maps edges to corresponding
|
375 |
+
morphisms. Thus for a morphism `f:A\rightarrow B`, the edge
|
376 |
+
`(A, B)` will be associated with `f`. This function also adds
|
377 |
+
to the list those edges which are formed by juxtaposition of
|
378 |
+
two edges already in the list. These new edges are not
|
379 |
+
associated with any morphism and are only added to assure that
|
380 |
+
the diagram can be decomposed into triangles.
|
381 |
+
"""
|
382 |
+
edges = {}
|
383 |
+
# Create edges for morphisms.
|
384 |
+
for morphism in morphisms:
|
385 |
+
DiagramGrid._add_edge_append(
|
386 |
+
edges, frozenset([morphism.domain, morphism.codomain]), morphism)
|
387 |
+
|
388 |
+
# Create new edges by juxtaposing existing edges.
|
389 |
+
edges1 = dict(edges)
|
390 |
+
for w in edges1:
|
391 |
+
for v in edges1:
|
392 |
+
wv = DiagramGrid._juxtapose_edges(w, v)
|
393 |
+
if wv and wv not in edges:
|
394 |
+
edges[wv] = []
|
395 |
+
|
396 |
+
return edges
|
397 |
+
|
398 |
+
@staticmethod
|
399 |
+
def _list_triangles(edges):
|
400 |
+
"""
|
401 |
+
Builds the set of triangles formed by the supplied edges. The
|
402 |
+
triangles are arbitrary and need not be commutative. A
|
403 |
+
triangle is a set that contains all three of its sides.
|
404 |
+
"""
|
405 |
+
triangles = set()
|
406 |
+
|
407 |
+
for w in edges:
|
408 |
+
for v in edges:
|
409 |
+
wv = DiagramGrid._juxtapose_edges(w, v)
|
410 |
+
if wv and wv in edges:
|
411 |
+
triangles.add(frozenset([w, v, wv]))
|
412 |
+
|
413 |
+
return triangles
|
414 |
+
|
415 |
+
@staticmethod
|
416 |
+
def _drop_redundant_triangles(triangles, skeleton):
|
417 |
+
"""
|
418 |
+
Returns a list which contains only those triangles who have
|
419 |
+
morphisms associated with at least two edges.
|
420 |
+
"""
|
421 |
+
return [tri for tri in triangles
|
422 |
+
if len([e for e in tri if skeleton[e]]) >= 2]
|
423 |
+
|
424 |
+
@staticmethod
|
425 |
+
def _morphism_length(morphism):
|
426 |
+
"""
|
427 |
+
Returns the length of a morphism. The length of a morphism is
|
428 |
+
the number of components it consists of. A non-composite
|
429 |
+
morphism is of length 1.
|
430 |
+
"""
|
431 |
+
if isinstance(morphism, CompositeMorphism):
|
432 |
+
return len(morphism.components)
|
433 |
+
else:
|
434 |
+
return 1
|
435 |
+
|
436 |
+
@staticmethod
|
437 |
+
def _compute_triangle_min_sizes(triangles, edges):
|
438 |
+
r"""
|
439 |
+
Returns a dictionary mapping triangles to their minimal sizes.
|
440 |
+
The minimal size of a triangle is the sum of maximal lengths
|
441 |
+
of morphisms associated to the sides of the triangle. The
|
442 |
+
length of a morphism is the number of components it consists
|
443 |
+
of. A non-composite morphism is of length 1.
|
444 |
+
|
445 |
+
Sorting triangles by this metric attempts to address two
|
446 |
+
aspects of layout. For triangles with only simple morphisms
|
447 |
+
in the edge, this assures that triangles with all three edges
|
448 |
+
visible will get typeset after triangles with less visible
|
449 |
+
edges, which sometimes minimizes the necessity in diagonal
|
450 |
+
arrows. For triangles with composite morphisms in the edges,
|
451 |
+
this assures that objects connected with shorter morphisms
|
452 |
+
will be laid out first, resulting the visual proximity of
|
453 |
+
those objects which are connected by shorter morphisms.
|
454 |
+
"""
|
455 |
+
triangle_sizes = {}
|
456 |
+
for triangle in triangles:
|
457 |
+
size = 0
|
458 |
+
for e in triangle:
|
459 |
+
morphisms = edges[e]
|
460 |
+
if morphisms:
|
461 |
+
size += max(DiagramGrid._morphism_length(m)
|
462 |
+
for m in morphisms)
|
463 |
+
triangle_sizes[triangle] = size
|
464 |
+
return triangle_sizes
|
465 |
+
|
466 |
+
@staticmethod
|
467 |
+
def _triangle_objects(triangle):
|
468 |
+
"""
|
469 |
+
Given a triangle, returns the objects included in it.
|
470 |
+
"""
|
471 |
+
# A triangle is a frozenset of three two-element frozensets
|
472 |
+
# (the edges). This chains the three edges together and
|
473 |
+
# creates a frozenset from the iterator, thus producing a
|
474 |
+
# frozenset of objects of the triangle.
|
475 |
+
return frozenset(chain(*tuple(triangle)))
|
476 |
+
|
477 |
+
@staticmethod
|
478 |
+
def _other_vertex(triangle, edge):
|
479 |
+
"""
|
480 |
+
Given a triangle and an edge of it, returns the vertex which
|
481 |
+
opposes the edge.
|
482 |
+
"""
|
483 |
+
# This gets the set of objects of the triangle and then
|
484 |
+
# subtracts the set of objects employed in ``edge`` to get the
|
485 |
+
# vertex opposite to ``edge``.
|
486 |
+
return list(DiagramGrid._triangle_objects(triangle) - set(edge))[0]
|
487 |
+
|
488 |
+
@staticmethod
|
489 |
+
def _empty_point(pt, grid):
|
490 |
+
"""
|
491 |
+
Checks if the cell at coordinates ``pt`` is either empty or
|
492 |
+
out of the bounds of the grid.
|
493 |
+
"""
|
494 |
+
if (pt[0] < 0) or (pt[1] < 0) or \
|
495 |
+
(pt[0] >= grid.height) or (pt[1] >= grid.width):
|
496 |
+
return True
|
497 |
+
return grid[pt] is None
|
498 |
+
|
499 |
+
@staticmethod
|
500 |
+
def _put_object(coords, obj, grid, fringe):
|
501 |
+
"""
|
502 |
+
Places an object at the coordinate ``cords`` in ``grid``,
|
503 |
+
growing the grid and updating ``fringe``, if necessary.
|
504 |
+
Returns (0, 0) if no row or column has been prepended, (1, 0)
|
505 |
+
if a row was prepended, (0, 1) if a column was prepended and
|
506 |
+
(1, 1) if both a column and a row were prepended.
|
507 |
+
"""
|
508 |
+
(i, j) = coords
|
509 |
+
offset = (0, 0)
|
510 |
+
if i == -1:
|
511 |
+
grid.prepend_row()
|
512 |
+
i = 0
|
513 |
+
offset = (1, 0)
|
514 |
+
for k in range(len(fringe)):
|
515 |
+
((i1, j1), (i2, j2)) = fringe[k]
|
516 |
+
fringe[k] = ((i1 + 1, j1), (i2 + 1, j2))
|
517 |
+
elif i == grid.height:
|
518 |
+
grid.append_row()
|
519 |
+
|
520 |
+
if j == -1:
|
521 |
+
j = 0
|
522 |
+
offset = (offset[0], 1)
|
523 |
+
grid.prepend_column()
|
524 |
+
for k in range(len(fringe)):
|
525 |
+
((i1, j1), (i2, j2)) = fringe[k]
|
526 |
+
fringe[k] = ((i1, j1 + 1), (i2, j2 + 1))
|
527 |
+
elif j == grid.width:
|
528 |
+
grid.append_column()
|
529 |
+
|
530 |
+
grid[i, j] = obj
|
531 |
+
return offset
|
532 |
+
|
533 |
+
@staticmethod
|
534 |
+
def _choose_target_cell(pt1, pt2, edge, obj, skeleton, grid):
|
535 |
+
"""
|
536 |
+
Given two points, ``pt1`` and ``pt2``, and the welding edge
|
537 |
+
``edge``, chooses one of the two points to place the opposing
|
538 |
+
vertex ``obj`` of the triangle. If neither of this points
|
539 |
+
fits, returns ``None``.
|
540 |
+
"""
|
541 |
+
pt1_empty = DiagramGrid._empty_point(pt1, grid)
|
542 |
+
pt2_empty = DiagramGrid._empty_point(pt2, grid)
|
543 |
+
|
544 |
+
if pt1_empty and pt2_empty:
|
545 |
+
# Both cells are empty. Of these two, choose that cell
|
546 |
+
# which will assure that a visible edge of the triangle
|
547 |
+
# will be drawn perpendicularly to the current welding
|
548 |
+
# edge.
|
549 |
+
|
550 |
+
A = grid[edge[0]]
|
551 |
+
|
552 |
+
if skeleton.get(frozenset([A, obj])):
|
553 |
+
return pt1
|
554 |
+
else:
|
555 |
+
return pt2
|
556 |
+
if pt1_empty:
|
557 |
+
return pt1
|
558 |
+
elif pt2_empty:
|
559 |
+
return pt2
|
560 |
+
else:
|
561 |
+
return None
|
562 |
+
|
563 |
+
@staticmethod
|
564 |
+
def _find_triangle_to_weld(triangles, fringe, grid):
|
565 |
+
"""
|
566 |
+
Finds, if possible, a triangle and an edge in the ``fringe`` to
|
567 |
+
which the triangle could be attached. Returns the tuple
|
568 |
+
containing the triangle and the index of the corresponding
|
569 |
+
edge in the ``fringe``.
|
570 |
+
|
571 |
+
This function relies on the fact that objects are unique in
|
572 |
+
the diagram.
|
573 |
+
"""
|
574 |
+
for triangle in triangles:
|
575 |
+
for (a, b) in fringe:
|
576 |
+
if frozenset([grid[a], grid[b]]) in triangle:
|
577 |
+
return (triangle, (a, b))
|
578 |
+
return None
|
579 |
+
|
580 |
+
@staticmethod
|
581 |
+
def _weld_triangle(tri, welding_edge, fringe, grid, skeleton):
|
582 |
+
"""
|
583 |
+
If possible, welds the triangle ``tri`` to ``fringe`` and
|
584 |
+
returns ``False``. If this method encounters a degenerate
|
585 |
+
situation in the fringe and corrects it such that a restart of
|
586 |
+
the search is required, it returns ``True`` (which means that
|
587 |
+
a restart in finding triangle weldings is required).
|
588 |
+
|
589 |
+
A degenerate situation is a situation when an edge listed in
|
590 |
+
the fringe does not belong to the visual boundary of the
|
591 |
+
diagram.
|
592 |
+
"""
|
593 |
+
a, b = welding_edge
|
594 |
+
target_cell = None
|
595 |
+
|
596 |
+
obj = DiagramGrid._other_vertex(tri, (grid[a], grid[b]))
|
597 |
+
|
598 |
+
# We now have a triangle and an edge where it can be welded to
|
599 |
+
# the fringe. Decide where to place the other vertex of the
|
600 |
+
# triangle and check for degenerate situations en route.
|
601 |
+
|
602 |
+
if (abs(a[0] - b[0]) == 1) and (abs(a[1] - b[1]) == 1):
|
603 |
+
# A diagonal edge.
|
604 |
+
target_cell = (a[0], b[1])
|
605 |
+
if grid[target_cell]:
|
606 |
+
# That cell is already occupied.
|
607 |
+
target_cell = (b[0], a[1])
|
608 |
+
|
609 |
+
if grid[target_cell]:
|
610 |
+
# Degenerate situation, this edge is not
|
611 |
+
# on the actual fringe. Correct the
|
612 |
+
# fringe and go on.
|
613 |
+
fringe.remove((a, b))
|
614 |
+
return True
|
615 |
+
elif a[0] == b[0]:
|
616 |
+
# A horizontal edge. We first attempt to build the
|
617 |
+
# triangle in the downward direction.
|
618 |
+
|
619 |
+
down_left = a[0] + 1, a[1]
|
620 |
+
down_right = a[0] + 1, b[1]
|
621 |
+
|
622 |
+
target_cell = DiagramGrid._choose_target_cell(
|
623 |
+
down_left, down_right, (a, b), obj, skeleton, grid)
|
624 |
+
|
625 |
+
if not target_cell:
|
626 |
+
# No room below this edge. Check above.
|
627 |
+
up_left = a[0] - 1, a[1]
|
628 |
+
up_right = a[0] - 1, b[1]
|
629 |
+
|
630 |
+
target_cell = DiagramGrid._choose_target_cell(
|
631 |
+
up_left, up_right, (a, b), obj, skeleton, grid)
|
632 |
+
|
633 |
+
if not target_cell:
|
634 |
+
# This edge is not in the fringe, remove it
|
635 |
+
# and restart.
|
636 |
+
fringe.remove((a, b))
|
637 |
+
return True
|
638 |
+
elif a[1] == b[1]:
|
639 |
+
# A vertical edge. We will attempt to place the other
|
640 |
+
# vertex of the triangle to the right of this edge.
|
641 |
+
right_up = a[0], a[1] + 1
|
642 |
+
right_down = b[0], a[1] + 1
|
643 |
+
|
644 |
+
target_cell = DiagramGrid._choose_target_cell(
|
645 |
+
right_up, right_down, (a, b), obj, skeleton, grid)
|
646 |
+
|
647 |
+
if not target_cell:
|
648 |
+
# No room to the left. See what's to the right.
|
649 |
+
left_up = a[0], a[1] - 1
|
650 |
+
left_down = b[0], a[1] - 1
|
651 |
+
|
652 |
+
target_cell = DiagramGrid._choose_target_cell(
|
653 |
+
left_up, left_down, (a, b), obj, skeleton, grid)
|
654 |
+
|
655 |
+
if not target_cell:
|
656 |
+
# This edge is not in the fringe, remove it
|
657 |
+
# and restart.
|
658 |
+
fringe.remove((a, b))
|
659 |
+
return True
|
660 |
+
|
661 |
+
# We now know where to place the other vertex of the
|
662 |
+
# triangle.
|
663 |
+
offset = DiagramGrid._put_object(target_cell, obj, grid, fringe)
|
664 |
+
|
665 |
+
# Take care of the displacement of coordinates if a row or
|
666 |
+
# a column was prepended.
|
667 |
+
target_cell = (target_cell[0] + offset[0],
|
668 |
+
target_cell[1] + offset[1])
|
669 |
+
a = (a[0] + offset[0], a[1] + offset[1])
|
670 |
+
b = (b[0] + offset[0], b[1] + offset[1])
|
671 |
+
|
672 |
+
fringe.extend([(a, target_cell), (b, target_cell)])
|
673 |
+
|
674 |
+
# No restart is required.
|
675 |
+
return False
|
676 |
+
|
677 |
+
@staticmethod
|
678 |
+
def _triangle_key(tri, triangle_sizes):
|
679 |
+
"""
|
680 |
+
Returns a key for the supplied triangle. It should be the
|
681 |
+
same independently of the hash randomisation.
|
682 |
+
"""
|
683 |
+
objects = sorted(
|
684 |
+
DiagramGrid._triangle_objects(tri), key=default_sort_key)
|
685 |
+
return (triangle_sizes[tri], default_sort_key(objects))
|
686 |
+
|
687 |
+
@staticmethod
|
688 |
+
def _pick_root_edge(tri, skeleton):
|
689 |
+
"""
|
690 |
+
For a given triangle always picks the same root edge. The
|
691 |
+
root edge is the edge that will be placed first on the grid.
|
692 |
+
"""
|
693 |
+
candidates = [sorted(e, key=default_sort_key)
|
694 |
+
for e in tri if skeleton[e]]
|
695 |
+
sorted_candidates = sorted(candidates, key=default_sort_key)
|
696 |
+
# Don't forget to assure the proper ordering of the vertices
|
697 |
+
# in this edge.
|
698 |
+
return tuple(sorted(sorted_candidates[0], key=default_sort_key))
|
699 |
+
|
700 |
+
@staticmethod
|
701 |
+
def _drop_irrelevant_triangles(triangles, placed_objects):
|
702 |
+
"""
|
703 |
+
Returns only those triangles whose set of objects is not
|
704 |
+
completely included in ``placed_objects``.
|
705 |
+
"""
|
706 |
+
return [tri for tri in triangles if not placed_objects.issuperset(
|
707 |
+
DiagramGrid._triangle_objects(tri))]
|
708 |
+
|
709 |
+
@staticmethod
|
710 |
+
def _grow_pseudopod(triangles, fringe, grid, skeleton, placed_objects):
|
711 |
+
"""
|
712 |
+
Starting from an object in the existing structure on the ``grid``,
|
713 |
+
adds an edge to which a triangle from ``triangles`` could be
|
714 |
+
welded. If this method has found a way to do so, it returns
|
715 |
+
the object it has just added.
|
716 |
+
|
717 |
+
This method should be applied when ``_weld_triangle`` cannot
|
718 |
+
find weldings any more.
|
719 |
+
"""
|
720 |
+
for i in range(grid.height):
|
721 |
+
for j in range(grid.width):
|
722 |
+
obj = grid[i, j]
|
723 |
+
if not obj:
|
724 |
+
continue
|
725 |
+
|
726 |
+
# Here we need to choose a triangle which has only
|
727 |
+
# ``obj`` in common with the existing structure. The
|
728 |
+
# situations when this is not possible should be
|
729 |
+
# handled elsewhere.
|
730 |
+
|
731 |
+
def good_triangle(tri):
|
732 |
+
objs = DiagramGrid._triangle_objects(tri)
|
733 |
+
return obj in objs and \
|
734 |
+
placed_objects & (objs - {obj}) == set()
|
735 |
+
|
736 |
+
tris = [tri for tri in triangles if good_triangle(tri)]
|
737 |
+
if not tris:
|
738 |
+
# This object is not interesting.
|
739 |
+
continue
|
740 |
+
|
741 |
+
# Pick the "simplest" of the triangles which could be
|
742 |
+
# attached. Remember that the list of triangles is
|
743 |
+
# sorted according to their "simplicity" (see
|
744 |
+
# _compute_triangle_min_sizes for the metric).
|
745 |
+
#
|
746 |
+
# Note that ``tris`` are sequentially built from
|
747 |
+
# ``triangles``, so we don't have to worry about hash
|
748 |
+
# randomisation.
|
749 |
+
tri = tris[0]
|
750 |
+
|
751 |
+
# We have found a triangle which could be attached to
|
752 |
+
# the existing structure by a vertex.
|
753 |
+
|
754 |
+
candidates = sorted([e for e in tri if skeleton[e]],
|
755 |
+
key=lambda e: FiniteSet(*e).sort_key())
|
756 |
+
edges = [e for e in candidates if obj in e]
|
757 |
+
|
758 |
+
# Note that a meaningful edge (i.e., and edge that is
|
759 |
+
# associated with a morphism) containing ``obj``
|
760 |
+
# always exists. That's because all triangles are
|
761 |
+
# guaranteed to have at least two meaningful edges.
|
762 |
+
# See _drop_redundant_triangles.
|
763 |
+
|
764 |
+
# Get the object at the other end of the edge.
|
765 |
+
edge = edges[0]
|
766 |
+
other_obj = tuple(edge - frozenset([obj]))[0]
|
767 |
+
|
768 |
+
# Now check for free directions. When checking for
|
769 |
+
# free directions, prefer the horizontal and vertical
|
770 |
+
# directions.
|
771 |
+
neighbours = [(i - 1, j), (i, j + 1), (i + 1, j), (i, j - 1),
|
772 |
+
(i - 1, j - 1), (i - 1, j + 1), (i + 1, j - 1), (i + 1, j + 1)]
|
773 |
+
|
774 |
+
for pt in neighbours:
|
775 |
+
if DiagramGrid._empty_point(pt, grid):
|
776 |
+
# We have a found a place to grow the
|
777 |
+
# pseudopod into.
|
778 |
+
offset = DiagramGrid._put_object(
|
779 |
+
pt, other_obj, grid, fringe)
|
780 |
+
|
781 |
+
i += offset[0]
|
782 |
+
j += offset[1]
|
783 |
+
pt = (pt[0] + offset[0], pt[1] + offset[1])
|
784 |
+
fringe.append(((i, j), pt))
|
785 |
+
|
786 |
+
return other_obj
|
787 |
+
|
788 |
+
# This diagram is actually cooler that I can handle. Fail cowardly.
|
789 |
+
return None
|
790 |
+
|
791 |
+
@staticmethod
|
792 |
+
def _handle_groups(diagram, groups, merged_morphisms, hints):
|
793 |
+
"""
|
794 |
+
Given the slightly preprocessed morphisms of the diagram,
|
795 |
+
produces a grid laid out according to ``groups``.
|
796 |
+
|
797 |
+
If a group has hints, it is laid out with those hints only,
|
798 |
+
without any influence from ``hints``. Otherwise, it is laid
|
799 |
+
out with ``hints``.
|
800 |
+
"""
|
801 |
+
def lay_out_group(group, local_hints):
|
802 |
+
"""
|
803 |
+
If ``group`` is a set of objects, uses a ``DiagramGrid``
|
804 |
+
to lay it out and returns the grid. Otherwise returns the
|
805 |
+
object (i.e., ``group``). If ``local_hints`` is not
|
806 |
+
empty, it is supplied to ``DiagramGrid`` as the dictionary
|
807 |
+
of hints. Otherwise, the ``hints`` argument of
|
808 |
+
``_handle_groups`` is used.
|
809 |
+
"""
|
810 |
+
if isinstance(group, FiniteSet):
|
811 |
+
# Set up the corresponding object-to-group
|
812 |
+
# mappings.
|
813 |
+
for obj in group:
|
814 |
+
obj_groups[obj] = group
|
815 |
+
|
816 |
+
# Lay out the current group.
|
817 |
+
if local_hints:
|
818 |
+
groups_grids[group] = DiagramGrid(
|
819 |
+
diagram.subdiagram_from_objects(group), **local_hints)
|
820 |
+
else:
|
821 |
+
groups_grids[group] = DiagramGrid(
|
822 |
+
diagram.subdiagram_from_objects(group), **hints)
|
823 |
+
else:
|
824 |
+
obj_groups[group] = group
|
825 |
+
|
826 |
+
def group_to_finiteset(group):
|
827 |
+
"""
|
828 |
+
Converts ``group`` to a :class:``FiniteSet`` if it is an
|
829 |
+
iterable.
|
830 |
+
"""
|
831 |
+
if iterable(group):
|
832 |
+
return FiniteSet(*group)
|
833 |
+
else:
|
834 |
+
return group
|
835 |
+
|
836 |
+
obj_groups = {}
|
837 |
+
groups_grids = {}
|
838 |
+
|
839 |
+
# We would like to support various containers to represent
|
840 |
+
# groups. To achieve that, before laying each group out, it
|
841 |
+
# should be converted to a FiniteSet, because that is what the
|
842 |
+
# following code expects.
|
843 |
+
|
844 |
+
if isinstance(groups, (dict, Dict)):
|
845 |
+
finiteset_groups = {}
|
846 |
+
for group, local_hints in groups.items():
|
847 |
+
finiteset_group = group_to_finiteset(group)
|
848 |
+
finiteset_groups[finiteset_group] = local_hints
|
849 |
+
lay_out_group(group, local_hints)
|
850 |
+
groups = finiteset_groups
|
851 |
+
else:
|
852 |
+
finiteset_groups = []
|
853 |
+
for group in groups:
|
854 |
+
finiteset_group = group_to_finiteset(group)
|
855 |
+
finiteset_groups.append(finiteset_group)
|
856 |
+
lay_out_group(finiteset_group, None)
|
857 |
+
groups = finiteset_groups
|
858 |
+
|
859 |
+
new_morphisms = []
|
860 |
+
for morphism in merged_morphisms:
|
861 |
+
dom = obj_groups[morphism.domain]
|
862 |
+
cod = obj_groups[morphism.codomain]
|
863 |
+
# Note that we are not really interested in morphisms
|
864 |
+
# which do not employ two different groups, because
|
865 |
+
# these do not influence the layout.
|
866 |
+
if dom != cod:
|
867 |
+
# These are essentially unnamed morphisms; they are
|
868 |
+
# not going to mess in the final layout. By giving
|
869 |
+
# them the same names, we avoid unnecessary
|
870 |
+
# duplicates.
|
871 |
+
new_morphisms.append(NamedMorphism(dom, cod, "dummy"))
|
872 |
+
|
873 |
+
# Lay out the new diagram. Since these are dummy morphisms,
|
874 |
+
# properties and conclusions are irrelevant.
|
875 |
+
top_grid = DiagramGrid(Diagram(new_morphisms))
|
876 |
+
|
877 |
+
# We now have to substitute the groups with the corresponding
|
878 |
+
# grids, laid out at the beginning of this function. Compute
|
879 |
+
# the size of each row and column in the grid, so that all
|
880 |
+
# nested grids fit.
|
881 |
+
|
882 |
+
def group_size(group):
|
883 |
+
"""
|
884 |
+
For the supplied group (or object, eventually), returns
|
885 |
+
the size of the cell that will hold this group (object).
|
886 |
+
"""
|
887 |
+
if group in groups_grids:
|
888 |
+
grid = groups_grids[group]
|
889 |
+
return (grid.height, grid.width)
|
890 |
+
else:
|
891 |
+
return (1, 1)
|
892 |
+
|
893 |
+
row_heights = [max(group_size(top_grid[i, j])[0]
|
894 |
+
for j in range(top_grid.width))
|
895 |
+
for i in range(top_grid.height)]
|
896 |
+
|
897 |
+
column_widths = [max(group_size(top_grid[i, j])[1]
|
898 |
+
for i in range(top_grid.height))
|
899 |
+
for j in range(top_grid.width)]
|
900 |
+
|
901 |
+
grid = _GrowableGrid(sum(column_widths), sum(row_heights))
|
902 |
+
|
903 |
+
real_row = 0
|
904 |
+
real_column = 0
|
905 |
+
for logical_row in range(top_grid.height):
|
906 |
+
for logical_column in range(top_grid.width):
|
907 |
+
obj = top_grid[logical_row, logical_column]
|
908 |
+
|
909 |
+
if obj in groups_grids:
|
910 |
+
# This is a group. Copy the corresponding grid in
|
911 |
+
# place.
|
912 |
+
local_grid = groups_grids[obj]
|
913 |
+
for i in range(local_grid.height):
|
914 |
+
for j in range(local_grid.width):
|
915 |
+
grid[real_row + i,
|
916 |
+
real_column + j] = local_grid[i, j]
|
917 |
+
else:
|
918 |
+
# This is an object. Just put it there.
|
919 |
+
grid[real_row, real_column] = obj
|
920 |
+
|
921 |
+
real_column += column_widths[logical_column]
|
922 |
+
real_column = 0
|
923 |
+
real_row += row_heights[logical_row]
|
924 |
+
|
925 |
+
return grid
|
926 |
+
|
927 |
+
@staticmethod
|
928 |
+
def _generic_layout(diagram, merged_morphisms):
|
929 |
+
"""
|
930 |
+
Produces the generic layout for the supplied diagram.
|
931 |
+
"""
|
932 |
+
all_objects = set(diagram.objects)
|
933 |
+
if len(all_objects) == 1:
|
934 |
+
# There only one object in the diagram, just put in on 1x1
|
935 |
+
# grid.
|
936 |
+
grid = _GrowableGrid(1, 1)
|
937 |
+
grid[0, 0] = tuple(all_objects)[0]
|
938 |
+
return grid
|
939 |
+
|
940 |
+
skeleton = DiagramGrid._build_skeleton(merged_morphisms)
|
941 |
+
|
942 |
+
grid = _GrowableGrid(2, 1)
|
943 |
+
|
944 |
+
if len(skeleton) == 1:
|
945 |
+
# This diagram contains only one morphism. Draw it
|
946 |
+
# horizontally.
|
947 |
+
objects = sorted(all_objects, key=default_sort_key)
|
948 |
+
grid[0, 0] = objects[0]
|
949 |
+
grid[0, 1] = objects[1]
|
950 |
+
|
951 |
+
return grid
|
952 |
+
|
953 |
+
triangles = DiagramGrid._list_triangles(skeleton)
|
954 |
+
triangles = DiagramGrid._drop_redundant_triangles(triangles, skeleton)
|
955 |
+
triangle_sizes = DiagramGrid._compute_triangle_min_sizes(
|
956 |
+
triangles, skeleton)
|
957 |
+
|
958 |
+
triangles = sorted(triangles, key=lambda tri:
|
959 |
+
DiagramGrid._triangle_key(tri, triangle_sizes))
|
960 |
+
|
961 |
+
# Place the first edge on the grid.
|
962 |
+
root_edge = DiagramGrid._pick_root_edge(triangles[0], skeleton)
|
963 |
+
grid[0, 0], grid[0, 1] = root_edge
|
964 |
+
fringe = [((0, 0), (0, 1))]
|
965 |
+
|
966 |
+
# Record which objects we now have on the grid.
|
967 |
+
placed_objects = set(root_edge)
|
968 |
+
|
969 |
+
while placed_objects != all_objects:
|
970 |
+
welding = DiagramGrid._find_triangle_to_weld(
|
971 |
+
triangles, fringe, grid)
|
972 |
+
|
973 |
+
if welding:
|
974 |
+
(triangle, welding_edge) = welding
|
975 |
+
|
976 |
+
restart_required = DiagramGrid._weld_triangle(
|
977 |
+
triangle, welding_edge, fringe, grid, skeleton)
|
978 |
+
if restart_required:
|
979 |
+
continue
|
980 |
+
|
981 |
+
placed_objects.update(
|
982 |
+
DiagramGrid._triangle_objects(triangle))
|
983 |
+
else:
|
984 |
+
# No more weldings found. Try to attach triangles by
|
985 |
+
# vertices.
|
986 |
+
new_obj = DiagramGrid._grow_pseudopod(
|
987 |
+
triangles, fringe, grid, skeleton, placed_objects)
|
988 |
+
|
989 |
+
if not new_obj:
|
990 |
+
# No more triangles can be attached, not even by
|
991 |
+
# the edge. We will set up a new diagram out of
|
992 |
+
# what has been left, laid it out independently,
|
993 |
+
# and then attach it to this one.
|
994 |
+
|
995 |
+
remaining_objects = all_objects - placed_objects
|
996 |
+
|
997 |
+
remaining_diagram = diagram.subdiagram_from_objects(
|
998 |
+
FiniteSet(*remaining_objects))
|
999 |
+
remaining_grid = DiagramGrid(remaining_diagram)
|
1000 |
+
|
1001 |
+
# Now, let's glue ``remaining_grid`` to ``grid``.
|
1002 |
+
final_width = grid.width + remaining_grid.width
|
1003 |
+
final_height = max(grid.height, remaining_grid.height)
|
1004 |
+
final_grid = _GrowableGrid(final_width, final_height)
|
1005 |
+
|
1006 |
+
for i in range(grid.width):
|
1007 |
+
for j in range(grid.height):
|
1008 |
+
final_grid[i, j] = grid[i, j]
|
1009 |
+
|
1010 |
+
start_j = grid.width
|
1011 |
+
for i in range(remaining_grid.height):
|
1012 |
+
for j in range(remaining_grid.width):
|
1013 |
+
final_grid[i, start_j + j] = remaining_grid[i, j]
|
1014 |
+
|
1015 |
+
return final_grid
|
1016 |
+
|
1017 |
+
placed_objects.add(new_obj)
|
1018 |
+
|
1019 |
+
triangles = DiagramGrid._drop_irrelevant_triangles(
|
1020 |
+
triangles, placed_objects)
|
1021 |
+
|
1022 |
+
return grid
|
1023 |
+
|
1024 |
+
@staticmethod
|
1025 |
+
def _get_undirected_graph(objects, merged_morphisms):
|
1026 |
+
"""
|
1027 |
+
Given the objects and the relevant morphisms of a diagram,
|
1028 |
+
returns the adjacency lists of the underlying undirected
|
1029 |
+
graph.
|
1030 |
+
"""
|
1031 |
+
adjlists = {}
|
1032 |
+
for obj in objects:
|
1033 |
+
adjlists[obj] = []
|
1034 |
+
|
1035 |
+
for morphism in merged_morphisms:
|
1036 |
+
adjlists[morphism.domain].append(morphism.codomain)
|
1037 |
+
adjlists[morphism.codomain].append(morphism.domain)
|
1038 |
+
|
1039 |
+
# Assure that the objects in the adjacency list are always in
|
1040 |
+
# the same order.
|
1041 |
+
for obj in adjlists.keys():
|
1042 |
+
adjlists[obj].sort(key=default_sort_key)
|
1043 |
+
|
1044 |
+
return adjlists
|
1045 |
+
|
1046 |
+
@staticmethod
|
1047 |
+
def _sequential_layout(diagram, merged_morphisms):
|
1048 |
+
r"""
|
1049 |
+
Lays out the diagram in "sequential" layout. This method
|
1050 |
+
will attempt to produce a result as close to a line as
|
1051 |
+
possible. For linear diagrams, the result will actually be a
|
1052 |
+
line.
|
1053 |
+
"""
|
1054 |
+
objects = diagram.objects
|
1055 |
+
sorted_objects = sorted(objects, key=default_sort_key)
|
1056 |
+
|
1057 |
+
# Set up the adjacency lists of the underlying undirected
|
1058 |
+
# graph of ``merged_morphisms``.
|
1059 |
+
adjlists = DiagramGrid._get_undirected_graph(objects, merged_morphisms)
|
1060 |
+
|
1061 |
+
# Find an object with the minimal degree. This is going to be
|
1062 |
+
# the root.
|
1063 |
+
root = sorted_objects[0]
|
1064 |
+
mindegree = len(adjlists[root])
|
1065 |
+
for obj in sorted_objects:
|
1066 |
+
current_degree = len(adjlists[obj])
|
1067 |
+
if current_degree < mindegree:
|
1068 |
+
root = obj
|
1069 |
+
mindegree = current_degree
|
1070 |
+
|
1071 |
+
grid = _GrowableGrid(1, 1)
|
1072 |
+
grid[0, 0] = root
|
1073 |
+
|
1074 |
+
placed_objects = {root}
|
1075 |
+
|
1076 |
+
def place_objects(pt, placed_objects):
|
1077 |
+
"""
|
1078 |
+
Does depth-first search in the underlying graph of the
|
1079 |
+
diagram and places the objects en route.
|
1080 |
+
"""
|
1081 |
+
# We will start placing new objects from here.
|
1082 |
+
new_pt = (pt[0], pt[1] + 1)
|
1083 |
+
|
1084 |
+
for adjacent_obj in adjlists[grid[pt]]:
|
1085 |
+
if adjacent_obj in placed_objects:
|
1086 |
+
# This object has already been placed.
|
1087 |
+
continue
|
1088 |
+
|
1089 |
+
DiagramGrid._put_object(new_pt, adjacent_obj, grid, [])
|
1090 |
+
placed_objects.add(adjacent_obj)
|
1091 |
+
placed_objects.update(place_objects(new_pt, placed_objects))
|
1092 |
+
|
1093 |
+
new_pt = (new_pt[0] + 1, new_pt[1])
|
1094 |
+
|
1095 |
+
return placed_objects
|
1096 |
+
|
1097 |
+
place_objects((0, 0), placed_objects)
|
1098 |
+
|
1099 |
+
return grid
|
1100 |
+
|
1101 |
+
@staticmethod
|
1102 |
+
def _drop_inessential_morphisms(merged_morphisms):
|
1103 |
+
r"""
|
1104 |
+
Removes those morphisms which should appear in the diagram,
|
1105 |
+
but which have no relevance to object layout.
|
1106 |
+
|
1107 |
+
Currently this removes "loop" morphisms: the non-identity
|
1108 |
+
morphisms with the same domains and codomains.
|
1109 |
+
"""
|
1110 |
+
morphisms = [m for m in merged_morphisms if m.domain != m.codomain]
|
1111 |
+
return morphisms
|
1112 |
+
|
1113 |
+
@staticmethod
|
1114 |
+
def _get_connected_components(objects, merged_morphisms):
|
1115 |
+
"""
|
1116 |
+
Given a container of morphisms, returns a list of connected
|
1117 |
+
components formed by these morphisms. A connected component
|
1118 |
+
is represented by a diagram consisting of the corresponding
|
1119 |
+
morphisms.
|
1120 |
+
"""
|
1121 |
+
component_index = {}
|
1122 |
+
for o in objects:
|
1123 |
+
component_index[o] = None
|
1124 |
+
|
1125 |
+
# Get the underlying undirected graph of the diagram.
|
1126 |
+
adjlist = DiagramGrid._get_undirected_graph(objects, merged_morphisms)
|
1127 |
+
|
1128 |
+
def traverse_component(object, current_index):
|
1129 |
+
"""
|
1130 |
+
Does a depth-first search traversal of the component
|
1131 |
+
containing ``object``.
|
1132 |
+
"""
|
1133 |
+
component_index[object] = current_index
|
1134 |
+
for o in adjlist[object]:
|
1135 |
+
if component_index[o] is None:
|
1136 |
+
traverse_component(o, current_index)
|
1137 |
+
|
1138 |
+
# Traverse all components.
|
1139 |
+
current_index = 0
|
1140 |
+
for o in adjlist:
|
1141 |
+
if component_index[o] is None:
|
1142 |
+
traverse_component(o, current_index)
|
1143 |
+
current_index += 1
|
1144 |
+
|
1145 |
+
# List the objects of the components.
|
1146 |
+
component_objects = [[] for i in range(current_index)]
|
1147 |
+
for o, idx in component_index.items():
|
1148 |
+
component_objects[idx].append(o)
|
1149 |
+
|
1150 |
+
# Finally, list the morphisms belonging to each component.
|
1151 |
+
#
|
1152 |
+
# Note: If some objects are isolated, they will not get any
|
1153 |
+
# morphisms at this stage, and since the layout algorithm
|
1154 |
+
# relies, we are essentially going to lose this object.
|
1155 |
+
# Therefore, check if there are isolated objects and, for each
|
1156 |
+
# of them, provide the trivial identity morphism. It will get
|
1157 |
+
# discarded later, but the object will be there.
|
1158 |
+
|
1159 |
+
component_morphisms = []
|
1160 |
+
for component in component_objects:
|
1161 |
+
current_morphisms = {}
|
1162 |
+
for m in merged_morphisms:
|
1163 |
+
if (m.domain in component) and (m.codomain in component):
|
1164 |
+
current_morphisms[m] = merged_morphisms[m]
|
1165 |
+
|
1166 |
+
if len(component) == 1:
|
1167 |
+
# Let's add an identity morphism, for the sake of
|
1168 |
+
# surely having morphisms in this component.
|
1169 |
+
current_morphisms[IdentityMorphism(component[0])] = FiniteSet()
|
1170 |
+
|
1171 |
+
component_morphisms.append(Diagram(current_morphisms))
|
1172 |
+
|
1173 |
+
return component_morphisms
|
1174 |
+
|
1175 |
+
def __init__(self, diagram, groups=None, **hints):
|
1176 |
+
premises = DiagramGrid._simplify_morphisms(diagram.premises)
|
1177 |
+
conclusions = DiagramGrid._simplify_morphisms(diagram.conclusions)
|
1178 |
+
all_merged_morphisms = DiagramGrid._merge_premises_conclusions(
|
1179 |
+
premises, conclusions)
|
1180 |
+
merged_morphisms = DiagramGrid._drop_inessential_morphisms(
|
1181 |
+
all_merged_morphisms)
|
1182 |
+
|
1183 |
+
# Store the merged morphisms for later use.
|
1184 |
+
self._morphisms = all_merged_morphisms
|
1185 |
+
|
1186 |
+
components = DiagramGrid._get_connected_components(
|
1187 |
+
diagram.objects, all_merged_morphisms)
|
1188 |
+
|
1189 |
+
if groups and (groups != diagram.objects):
|
1190 |
+
# Lay out the diagram according to the groups.
|
1191 |
+
self._grid = DiagramGrid._handle_groups(
|
1192 |
+
diagram, groups, merged_morphisms, hints)
|
1193 |
+
elif len(components) > 1:
|
1194 |
+
# Note that we check for connectedness _before_ checking
|
1195 |
+
# the layout hints because the layout strategies don't
|
1196 |
+
# know how to deal with disconnected diagrams.
|
1197 |
+
|
1198 |
+
# The diagram is disconnected. Lay out the components
|
1199 |
+
# independently.
|
1200 |
+
grids = []
|
1201 |
+
|
1202 |
+
# Sort the components to eventually get the grids arranged
|
1203 |
+
# in a fixed, hash-independent order.
|
1204 |
+
components = sorted(components, key=default_sort_key)
|
1205 |
+
|
1206 |
+
for component in components:
|
1207 |
+
grid = DiagramGrid(component, **hints)
|
1208 |
+
grids.append(grid)
|
1209 |
+
|
1210 |
+
# Throw the grids together, in a line.
|
1211 |
+
total_width = sum(g.width for g in grids)
|
1212 |
+
total_height = max(g.height for g in grids)
|
1213 |
+
|
1214 |
+
grid = _GrowableGrid(total_width, total_height)
|
1215 |
+
start_j = 0
|
1216 |
+
for g in grids:
|
1217 |
+
for i in range(g.height):
|
1218 |
+
for j in range(g.width):
|
1219 |
+
grid[i, start_j + j] = g[i, j]
|
1220 |
+
|
1221 |
+
start_j += g.width
|
1222 |
+
|
1223 |
+
self._grid = grid
|
1224 |
+
elif "layout" in hints:
|
1225 |
+
if hints["layout"] == "sequential":
|
1226 |
+
self._grid = DiagramGrid._sequential_layout(
|
1227 |
+
diagram, merged_morphisms)
|
1228 |
+
else:
|
1229 |
+
self._grid = DiagramGrid._generic_layout(diagram, merged_morphisms)
|
1230 |
+
|
1231 |
+
if hints.get("transpose"):
|
1232 |
+
# Transpose the resulting grid.
|
1233 |
+
grid = _GrowableGrid(self._grid.height, self._grid.width)
|
1234 |
+
for i in range(self._grid.height):
|
1235 |
+
for j in range(self._grid.width):
|
1236 |
+
grid[j, i] = self._grid[i, j]
|
1237 |
+
self._grid = grid
|
1238 |
+
|
1239 |
+
@property
|
1240 |
+
def width(self):
|
1241 |
+
"""
|
1242 |
+
Returns the number of columns in this diagram layout.
|
1243 |
+
|
1244 |
+
Examples
|
1245 |
+
========
|
1246 |
+
|
1247 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1248 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1249 |
+
>>> A = Object("A")
|
1250 |
+
>>> B = Object("B")
|
1251 |
+
>>> C = Object("C")
|
1252 |
+
>>> f = NamedMorphism(A, B, "f")
|
1253 |
+
>>> g = NamedMorphism(B, C, "g")
|
1254 |
+
>>> diagram = Diagram([f, g])
|
1255 |
+
>>> grid = DiagramGrid(diagram)
|
1256 |
+
>>> grid.width
|
1257 |
+
2
|
1258 |
+
|
1259 |
+
"""
|
1260 |
+
return self._grid.width
|
1261 |
+
|
1262 |
+
@property
|
1263 |
+
def height(self):
|
1264 |
+
"""
|
1265 |
+
Returns the number of rows in this diagram layout.
|
1266 |
+
|
1267 |
+
Examples
|
1268 |
+
========
|
1269 |
+
|
1270 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1271 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1272 |
+
>>> A = Object("A")
|
1273 |
+
>>> B = Object("B")
|
1274 |
+
>>> C = Object("C")
|
1275 |
+
>>> f = NamedMorphism(A, B, "f")
|
1276 |
+
>>> g = NamedMorphism(B, C, "g")
|
1277 |
+
>>> diagram = Diagram([f, g])
|
1278 |
+
>>> grid = DiagramGrid(diagram)
|
1279 |
+
>>> grid.height
|
1280 |
+
2
|
1281 |
+
|
1282 |
+
"""
|
1283 |
+
return self._grid.height
|
1284 |
+
|
1285 |
+
def __getitem__(self, i_j):
|
1286 |
+
"""
|
1287 |
+
Returns the object placed in the row ``i`` and column ``j``.
|
1288 |
+
The indices are 0-based.
|
1289 |
+
|
1290 |
+
Examples
|
1291 |
+
========
|
1292 |
+
|
1293 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1294 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1295 |
+
>>> A = Object("A")
|
1296 |
+
>>> B = Object("B")
|
1297 |
+
>>> C = Object("C")
|
1298 |
+
>>> f = NamedMorphism(A, B, "f")
|
1299 |
+
>>> g = NamedMorphism(B, C, "g")
|
1300 |
+
>>> diagram = Diagram([f, g])
|
1301 |
+
>>> grid = DiagramGrid(diagram)
|
1302 |
+
>>> (grid[0, 0], grid[0, 1])
|
1303 |
+
(Object("A"), Object("B"))
|
1304 |
+
>>> (grid[1, 0], grid[1, 1])
|
1305 |
+
(None, Object("C"))
|
1306 |
+
|
1307 |
+
"""
|
1308 |
+
i, j = i_j
|
1309 |
+
return self._grid[i, j]
|
1310 |
+
|
1311 |
+
@property
|
1312 |
+
def morphisms(self):
|
1313 |
+
"""
|
1314 |
+
Returns those morphisms (and their properties) which are
|
1315 |
+
sufficiently meaningful to be drawn.
|
1316 |
+
|
1317 |
+
Examples
|
1318 |
+
========
|
1319 |
+
|
1320 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1321 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1322 |
+
>>> A = Object("A")
|
1323 |
+
>>> B = Object("B")
|
1324 |
+
>>> C = Object("C")
|
1325 |
+
>>> f = NamedMorphism(A, B, "f")
|
1326 |
+
>>> g = NamedMorphism(B, C, "g")
|
1327 |
+
>>> diagram = Diagram([f, g])
|
1328 |
+
>>> grid = DiagramGrid(diagram)
|
1329 |
+
>>> grid.morphisms
|
1330 |
+
{NamedMorphism(Object("A"), Object("B"), "f"): EmptySet,
|
1331 |
+
NamedMorphism(Object("B"), Object("C"), "g"): EmptySet}
|
1332 |
+
|
1333 |
+
"""
|
1334 |
+
return self._morphisms
|
1335 |
+
|
1336 |
+
def __str__(self):
|
1337 |
+
"""
|
1338 |
+
Produces a string representation of this class.
|
1339 |
+
|
1340 |
+
This method returns a string representation of the underlying
|
1341 |
+
list of lists of objects.
|
1342 |
+
|
1343 |
+
Examples
|
1344 |
+
========
|
1345 |
+
|
1346 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1347 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1348 |
+
>>> A = Object("A")
|
1349 |
+
>>> B = Object("B")
|
1350 |
+
>>> C = Object("C")
|
1351 |
+
>>> f = NamedMorphism(A, B, "f")
|
1352 |
+
>>> g = NamedMorphism(B, C, "g")
|
1353 |
+
>>> diagram = Diagram([f, g])
|
1354 |
+
>>> grid = DiagramGrid(diagram)
|
1355 |
+
>>> print(grid)
|
1356 |
+
[[Object("A"), Object("B")],
|
1357 |
+
[None, Object("C")]]
|
1358 |
+
|
1359 |
+
"""
|
1360 |
+
return repr(self._grid._array)
|
1361 |
+
|
1362 |
+
|
1363 |
+
class ArrowStringDescription:
|
1364 |
+
r"""
|
1365 |
+
Stores the information necessary for producing an Xy-pic
|
1366 |
+
description of an arrow.
|
1367 |
+
|
1368 |
+
The principal goal of this class is to abstract away the string
|
1369 |
+
representation of an arrow and to also provide the functionality
|
1370 |
+
to produce the actual Xy-pic string.
|
1371 |
+
|
1372 |
+
``unit`` sets the unit which will be used to specify the amount of
|
1373 |
+
curving and other distances. ``horizontal_direction`` should be a
|
1374 |
+
string of ``"r"`` or ``"l"`` specifying the horizontal offset of the
|
1375 |
+
target cell of the arrow relatively to the current one.
|
1376 |
+
``vertical_direction`` should specify the vertical offset using a
|
1377 |
+
series of either ``"d"`` or ``"u"``. ``label_position`` should be
|
1378 |
+
either ``"^"``, ``"_"``, or ``"|"`` to specify that the label should
|
1379 |
+
be positioned above the arrow, below the arrow or just over the arrow,
|
1380 |
+
in a break. Note that the notions "above" and "below" are relative
|
1381 |
+
to arrow direction. ``label`` stores the morphism label.
|
1382 |
+
|
1383 |
+
This works as follows (disregard the yet unexplained arguments):
|
1384 |
+
|
1385 |
+
>>> from sympy.categories.diagram_drawing import ArrowStringDescription
|
1386 |
+
>>> astr = ArrowStringDescription(
|
1387 |
+
... unit="mm", curving=None, curving_amount=None,
|
1388 |
+
... looping_start=None, looping_end=None, horizontal_direction="d",
|
1389 |
+
... vertical_direction="r", label_position="_", label="f")
|
1390 |
+
>>> print(str(astr))
|
1391 |
+
\ar[dr]_{f}
|
1392 |
+
|
1393 |
+
``curving`` should be one of ``"^"``, ``"_"`` to specify in which
|
1394 |
+
direction the arrow is going to curve. ``curving_amount`` is a number
|
1395 |
+
describing how many ``unit``'s the morphism is going to curve:
|
1396 |
+
|
1397 |
+
>>> astr = ArrowStringDescription(
|
1398 |
+
... unit="mm", curving="^", curving_amount=12,
|
1399 |
+
... looping_start=None, looping_end=None, horizontal_direction="d",
|
1400 |
+
... vertical_direction="r", label_position="_", label="f")
|
1401 |
+
>>> print(str(astr))
|
1402 |
+
\ar@/^12mm/[dr]_{f}
|
1403 |
+
|
1404 |
+
``looping_start`` and ``looping_end`` are currently only used for
|
1405 |
+
loop morphisms, those which have the same domain and codomain.
|
1406 |
+
These two attributes should store a valid Xy-pic direction and
|
1407 |
+
specify, correspondingly, the direction the arrow gets out into
|
1408 |
+
and the direction the arrow gets back from:
|
1409 |
+
|
1410 |
+
>>> astr = ArrowStringDescription(
|
1411 |
+
... unit="mm", curving=None, curving_amount=None,
|
1412 |
+
... looping_start="u", looping_end="l", horizontal_direction="",
|
1413 |
+
... vertical_direction="", label_position="_", label="f")
|
1414 |
+
>>> print(str(astr))
|
1415 |
+
\ar@(u,l)[]_{f}
|
1416 |
+
|
1417 |
+
``label_displacement`` controls how far the arrow label is from
|
1418 |
+
the ends of the arrow. For example, to position the arrow label
|
1419 |
+
near the arrow head, use ">":
|
1420 |
+
|
1421 |
+
>>> astr = ArrowStringDescription(
|
1422 |
+
... unit="mm", curving="^", curving_amount=12,
|
1423 |
+
... looping_start=None, looping_end=None, horizontal_direction="d",
|
1424 |
+
... vertical_direction="r", label_position="_", label="f")
|
1425 |
+
>>> astr.label_displacement = ">"
|
1426 |
+
>>> print(str(astr))
|
1427 |
+
\ar@/^12mm/[dr]_>{f}
|
1428 |
+
|
1429 |
+
Finally, ``arrow_style`` is used to specify the arrow style. To
|
1430 |
+
get a dashed arrow, for example, use "{-->}" as arrow style:
|
1431 |
+
|
1432 |
+
>>> astr = ArrowStringDescription(
|
1433 |
+
... unit="mm", curving="^", curving_amount=12,
|
1434 |
+
... looping_start=None, looping_end=None, horizontal_direction="d",
|
1435 |
+
... vertical_direction="r", label_position="_", label="f")
|
1436 |
+
>>> astr.arrow_style = "{-->}"
|
1437 |
+
>>> print(str(astr))
|
1438 |
+
\ar@/^12mm/@{-->}[dr]_{f}
|
1439 |
+
|
1440 |
+
Notes
|
1441 |
+
=====
|
1442 |
+
|
1443 |
+
Instances of :class:`ArrowStringDescription` will be constructed
|
1444 |
+
by :class:`XypicDiagramDrawer` and provided for further use in
|
1445 |
+
formatters. The user is not expected to construct instances of
|
1446 |
+
:class:`ArrowStringDescription` themselves.
|
1447 |
+
|
1448 |
+
To be able to properly utilise this class, the reader is encouraged
|
1449 |
+
to checkout the Xy-pic user guide, available at [Xypic].
|
1450 |
+
|
1451 |
+
See Also
|
1452 |
+
========
|
1453 |
+
|
1454 |
+
XypicDiagramDrawer
|
1455 |
+
|
1456 |
+
References
|
1457 |
+
==========
|
1458 |
+
|
1459 |
+
.. [Xypic] https://xy-pic.sourceforge.net/
|
1460 |
+
"""
|
1461 |
+
def __init__(self, unit, curving, curving_amount, looping_start,
|
1462 |
+
looping_end, horizontal_direction, vertical_direction,
|
1463 |
+
label_position, label):
|
1464 |
+
self.unit = unit
|
1465 |
+
self.curving = curving
|
1466 |
+
self.curving_amount = curving_amount
|
1467 |
+
self.looping_start = looping_start
|
1468 |
+
self.looping_end = looping_end
|
1469 |
+
self.horizontal_direction = horizontal_direction
|
1470 |
+
self.vertical_direction = vertical_direction
|
1471 |
+
self.label_position = label_position
|
1472 |
+
self.label = label
|
1473 |
+
|
1474 |
+
self.label_displacement = ""
|
1475 |
+
self.arrow_style = ""
|
1476 |
+
|
1477 |
+
# This flag shows that the position of the label of this
|
1478 |
+
# morphism was set while typesetting a curved morphism and
|
1479 |
+
# should not be modified later.
|
1480 |
+
self.forced_label_position = False
|
1481 |
+
|
1482 |
+
def __str__(self):
|
1483 |
+
if self.curving:
|
1484 |
+
curving_str = "@/%s%d%s/" % (self.curving, self.curving_amount,
|
1485 |
+
self.unit)
|
1486 |
+
else:
|
1487 |
+
curving_str = ""
|
1488 |
+
|
1489 |
+
if self.looping_start and self.looping_end:
|
1490 |
+
looping_str = "@(%s,%s)" % (self.looping_start, self.looping_end)
|
1491 |
+
else:
|
1492 |
+
looping_str = ""
|
1493 |
+
|
1494 |
+
if self.arrow_style:
|
1495 |
+
|
1496 |
+
style_str = "@" + self.arrow_style
|
1497 |
+
else:
|
1498 |
+
style_str = ""
|
1499 |
+
|
1500 |
+
return "\\ar%s%s%s[%s%s]%s%s{%s}" % \
|
1501 |
+
(curving_str, looping_str, style_str, self.horizontal_direction,
|
1502 |
+
self.vertical_direction, self.label_position,
|
1503 |
+
self.label_displacement, self.label)
|
1504 |
+
|
1505 |
+
|
1506 |
+
class XypicDiagramDrawer:
|
1507 |
+
r"""
|
1508 |
+
Given a :class:`~.Diagram` and the corresponding
|
1509 |
+
:class:`DiagramGrid`, produces the Xy-pic representation of the
|
1510 |
+
diagram.
|
1511 |
+
|
1512 |
+
The most important method in this class is ``draw``. Consider the
|
1513 |
+
following triangle diagram:
|
1514 |
+
|
1515 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
1516 |
+
>>> from sympy.categories import DiagramGrid, XypicDiagramDrawer
|
1517 |
+
>>> A = Object("A")
|
1518 |
+
>>> B = Object("B")
|
1519 |
+
>>> C = Object("C")
|
1520 |
+
>>> f = NamedMorphism(A, B, "f")
|
1521 |
+
>>> g = NamedMorphism(B, C, "g")
|
1522 |
+
>>> diagram = Diagram([f, g], {g * f: "unique"})
|
1523 |
+
|
1524 |
+
To draw this diagram, its objects need to be laid out with a
|
1525 |
+
:class:`DiagramGrid`::
|
1526 |
+
|
1527 |
+
>>> grid = DiagramGrid(diagram)
|
1528 |
+
|
1529 |
+
Finally, the drawing:
|
1530 |
+
|
1531 |
+
>>> drawer = XypicDiagramDrawer()
|
1532 |
+
>>> print(drawer.draw(diagram, grid))
|
1533 |
+
\xymatrix{
|
1534 |
+
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
1535 |
+
C &
|
1536 |
+
}
|
1537 |
+
|
1538 |
+
For further details see the docstring of this method.
|
1539 |
+
|
1540 |
+
To control the appearance of the arrows, formatters are used. The
|
1541 |
+
dictionary ``arrow_formatters`` maps morphisms to formatter
|
1542 |
+
functions. A formatter is accepts an
|
1543 |
+
:class:`ArrowStringDescription` and is allowed to modify any of
|
1544 |
+
the arrow properties exposed thereby. For example, to have all
|
1545 |
+
morphisms with the property ``unique`` appear as dashed arrows,
|
1546 |
+
and to have their names prepended with `\exists !`, the following
|
1547 |
+
should be done:
|
1548 |
+
|
1549 |
+
>>> def formatter(astr):
|
1550 |
+
... astr.label = r"\exists !" + astr.label
|
1551 |
+
... astr.arrow_style = "{-->}"
|
1552 |
+
>>> drawer.arrow_formatters["unique"] = formatter
|
1553 |
+
>>> print(drawer.draw(diagram, grid))
|
1554 |
+
\xymatrix{
|
1555 |
+
A \ar@{-->}[d]_{\exists !g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
1556 |
+
C &
|
1557 |
+
}
|
1558 |
+
|
1559 |
+
To modify the appearance of all arrows in the diagram, set
|
1560 |
+
``default_arrow_formatter``. For example, to place all morphism
|
1561 |
+
labels a little bit farther from the arrow head so that they look
|
1562 |
+
more centred, do as follows:
|
1563 |
+
|
1564 |
+
>>> def default_formatter(astr):
|
1565 |
+
... astr.label_displacement = "(0.45)"
|
1566 |
+
>>> drawer.default_arrow_formatter = default_formatter
|
1567 |
+
>>> print(drawer.draw(diagram, grid))
|
1568 |
+
\xymatrix{
|
1569 |
+
A \ar@{-->}[d]_(0.45){\exists !g\circ f} \ar[r]^(0.45){f} & B \ar[ld]^(0.45){g} \\
|
1570 |
+
C &
|
1571 |
+
}
|
1572 |
+
|
1573 |
+
In some diagrams some morphisms are drawn as curved arrows.
|
1574 |
+
Consider the following diagram:
|
1575 |
+
|
1576 |
+
>>> D = Object("D")
|
1577 |
+
>>> E = Object("E")
|
1578 |
+
>>> h = NamedMorphism(D, A, "h")
|
1579 |
+
>>> k = NamedMorphism(D, B, "k")
|
1580 |
+
>>> diagram = Diagram([f, g, h, k])
|
1581 |
+
>>> grid = DiagramGrid(diagram)
|
1582 |
+
>>> drawer = XypicDiagramDrawer()
|
1583 |
+
>>> print(drawer.draw(diagram, grid))
|
1584 |
+
\xymatrix{
|
1585 |
+
A \ar[r]_{f} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_3mm/[ll]_{h} \\
|
1586 |
+
& C &
|
1587 |
+
}
|
1588 |
+
|
1589 |
+
To control how far the morphisms are curved by default, one can
|
1590 |
+
use the ``unit`` and ``default_curving_amount`` attributes:
|
1591 |
+
|
1592 |
+
>>> drawer.unit = "cm"
|
1593 |
+
>>> drawer.default_curving_amount = 1
|
1594 |
+
>>> print(drawer.draw(diagram, grid))
|
1595 |
+
\xymatrix{
|
1596 |
+
A \ar[r]_{f} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_1cm/[ll]_{h} \\
|
1597 |
+
& C &
|
1598 |
+
}
|
1599 |
+
|
1600 |
+
In some diagrams, there are multiple curved morphisms between the
|
1601 |
+
same two objects. To control by how much the curving changes
|
1602 |
+
between two such successive morphisms, use
|
1603 |
+
``default_curving_step``:
|
1604 |
+
|
1605 |
+
>>> drawer.default_curving_step = 1
|
1606 |
+
>>> h1 = NamedMorphism(A, D, "h1")
|
1607 |
+
>>> diagram = Diagram([f, g, h, k, h1])
|
1608 |
+
>>> grid = DiagramGrid(diagram)
|
1609 |
+
>>> print(drawer.draw(diagram, grid))
|
1610 |
+
\xymatrix{
|
1611 |
+
A \ar[r]_{f} \ar@/^1cm/[rr]^{h_{1}} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_2cm/[ll]_{h} \\
|
1612 |
+
& C &
|
1613 |
+
}
|
1614 |
+
|
1615 |
+
The default value of ``default_curving_step`` is 4 units.
|
1616 |
+
|
1617 |
+
See Also
|
1618 |
+
========
|
1619 |
+
|
1620 |
+
draw, ArrowStringDescription
|
1621 |
+
"""
|
1622 |
+
def __init__(self):
|
1623 |
+
self.unit = "mm"
|
1624 |
+
self.default_curving_amount = 3
|
1625 |
+
self.default_curving_step = 4
|
1626 |
+
|
1627 |
+
# This dictionary maps properties to the corresponding arrow
|
1628 |
+
# formatters.
|
1629 |
+
self.arrow_formatters = {}
|
1630 |
+
|
1631 |
+
# This is the default arrow formatter which will be applied to
|
1632 |
+
# each arrow independently of its properties.
|
1633 |
+
self.default_arrow_formatter = None
|
1634 |
+
|
1635 |
+
@staticmethod
|
1636 |
+
def _process_loop_morphism(i, j, grid, morphisms_str_info, object_coords):
|
1637 |
+
"""
|
1638 |
+
Produces the information required for constructing the string
|
1639 |
+
representation of a loop morphism. This function is invoked
|
1640 |
+
from ``_process_morphism``.
|
1641 |
+
|
1642 |
+
See Also
|
1643 |
+
========
|
1644 |
+
|
1645 |
+
_process_morphism
|
1646 |
+
"""
|
1647 |
+
curving = ""
|
1648 |
+
label_pos = "^"
|
1649 |
+
looping_start = ""
|
1650 |
+
looping_end = ""
|
1651 |
+
|
1652 |
+
# This is a loop morphism. Count how many morphisms stick
|
1653 |
+
# in each of the four quadrants. Note that straight
|
1654 |
+
# vertical and horizontal morphisms count in two quadrants
|
1655 |
+
# at the same time (i.e., a morphism going up counts both
|
1656 |
+
# in the first and the second quadrants).
|
1657 |
+
|
1658 |
+
# The usual numbering (counterclockwise) of quadrants
|
1659 |
+
# applies.
|
1660 |
+
quadrant = [0, 0, 0, 0]
|
1661 |
+
|
1662 |
+
obj = grid[i, j]
|
1663 |
+
|
1664 |
+
for m, m_str_info in morphisms_str_info.items():
|
1665 |
+
if (m.domain == obj) and (m.codomain == obj):
|
1666 |
+
# That's another loop morphism. Check how it
|
1667 |
+
# loops and mark the corresponding quadrants as
|
1668 |
+
# busy.
|
1669 |
+
(l_s, l_e) = (m_str_info.looping_start, m_str_info.looping_end)
|
1670 |
+
|
1671 |
+
if (l_s, l_e) == ("r", "u"):
|
1672 |
+
quadrant[0] += 1
|
1673 |
+
elif (l_s, l_e) == ("u", "l"):
|
1674 |
+
quadrant[1] += 1
|
1675 |
+
elif (l_s, l_e) == ("l", "d"):
|
1676 |
+
quadrant[2] += 1
|
1677 |
+
elif (l_s, l_e) == ("d", "r"):
|
1678 |
+
quadrant[3] += 1
|
1679 |
+
|
1680 |
+
continue
|
1681 |
+
if m.domain == obj:
|
1682 |
+
(end_i, end_j) = object_coords[m.codomain]
|
1683 |
+
goes_out = True
|
1684 |
+
elif m.codomain == obj:
|
1685 |
+
(end_i, end_j) = object_coords[m.domain]
|
1686 |
+
goes_out = False
|
1687 |
+
else:
|
1688 |
+
continue
|
1689 |
+
|
1690 |
+
d_i = end_i - i
|
1691 |
+
d_j = end_j - j
|
1692 |
+
m_curving = m_str_info.curving
|
1693 |
+
|
1694 |
+
if (d_i != 0) and (d_j != 0):
|
1695 |
+
# This is really a diagonal morphism. Detect the
|
1696 |
+
# quadrant.
|
1697 |
+
if (d_i > 0) and (d_j > 0):
|
1698 |
+
quadrant[0] += 1
|
1699 |
+
elif (d_i > 0) and (d_j < 0):
|
1700 |
+
quadrant[1] += 1
|
1701 |
+
elif (d_i < 0) and (d_j < 0):
|
1702 |
+
quadrant[2] += 1
|
1703 |
+
elif (d_i < 0) and (d_j > 0):
|
1704 |
+
quadrant[3] += 1
|
1705 |
+
elif d_i == 0:
|
1706 |
+
# Knowing where the other end of the morphism is
|
1707 |
+
# and which way it goes, we now have to decide
|
1708 |
+
# which quadrant is now the upper one and which is
|
1709 |
+
# the lower one.
|
1710 |
+
if d_j > 0:
|
1711 |
+
if goes_out:
|
1712 |
+
upper_quadrant = 0
|
1713 |
+
lower_quadrant = 3
|
1714 |
+
else:
|
1715 |
+
upper_quadrant = 3
|
1716 |
+
lower_quadrant = 0
|
1717 |
+
else:
|
1718 |
+
if goes_out:
|
1719 |
+
upper_quadrant = 2
|
1720 |
+
lower_quadrant = 1
|
1721 |
+
else:
|
1722 |
+
upper_quadrant = 1
|
1723 |
+
lower_quadrant = 2
|
1724 |
+
|
1725 |
+
if m_curving:
|
1726 |
+
if m_curving == "^":
|
1727 |
+
quadrant[upper_quadrant] += 1
|
1728 |
+
elif m_curving == "_":
|
1729 |
+
quadrant[lower_quadrant] += 1
|
1730 |
+
else:
|
1731 |
+
# This morphism counts in both upper and lower
|
1732 |
+
# quadrants.
|
1733 |
+
quadrant[upper_quadrant] += 1
|
1734 |
+
quadrant[lower_quadrant] += 1
|
1735 |
+
elif d_j == 0:
|
1736 |
+
# Knowing where the other end of the morphism is
|
1737 |
+
# and which way it goes, we now have to decide
|
1738 |
+
# which quadrant is now the left one and which is
|
1739 |
+
# the right one.
|
1740 |
+
if d_i < 0:
|
1741 |
+
if goes_out:
|
1742 |
+
left_quadrant = 1
|
1743 |
+
right_quadrant = 0
|
1744 |
+
else:
|
1745 |
+
left_quadrant = 0
|
1746 |
+
right_quadrant = 1
|
1747 |
+
else:
|
1748 |
+
if goes_out:
|
1749 |
+
left_quadrant = 3
|
1750 |
+
right_quadrant = 2
|
1751 |
+
else:
|
1752 |
+
left_quadrant = 2
|
1753 |
+
right_quadrant = 3
|
1754 |
+
|
1755 |
+
if m_curving:
|
1756 |
+
if m_curving == "^":
|
1757 |
+
quadrant[left_quadrant] += 1
|
1758 |
+
elif m_curving == "_":
|
1759 |
+
quadrant[right_quadrant] += 1
|
1760 |
+
else:
|
1761 |
+
# This morphism counts in both upper and lower
|
1762 |
+
# quadrants.
|
1763 |
+
quadrant[left_quadrant] += 1
|
1764 |
+
quadrant[right_quadrant] += 1
|
1765 |
+
|
1766 |
+
# Pick the freest quadrant to curve our morphism into.
|
1767 |
+
freest_quadrant = 0
|
1768 |
+
for i in range(4):
|
1769 |
+
if quadrant[i] < quadrant[freest_quadrant]:
|
1770 |
+
freest_quadrant = i
|
1771 |
+
|
1772 |
+
# Now set up proper looping.
|
1773 |
+
(looping_start, looping_end) = [("r", "u"), ("u", "l"), ("l", "d"),
|
1774 |
+
("d", "r")][freest_quadrant]
|
1775 |
+
|
1776 |
+
return (curving, label_pos, looping_start, looping_end)
|
1777 |
+
|
1778 |
+
@staticmethod
|
1779 |
+
def _process_horizontal_morphism(i, j, target_j, grid, morphisms_str_info,
|
1780 |
+
object_coords):
|
1781 |
+
"""
|
1782 |
+
Produces the information required for constructing the string
|
1783 |
+
representation of a horizontal morphism. This function is
|
1784 |
+
invoked from ``_process_morphism``.
|
1785 |
+
|
1786 |
+
See Also
|
1787 |
+
========
|
1788 |
+
|
1789 |
+
_process_morphism
|
1790 |
+
"""
|
1791 |
+
# The arrow is horizontal. Check if it goes from left to
|
1792 |
+
# right (``backwards == False``) or from right to left
|
1793 |
+
# (``backwards == True``).
|
1794 |
+
backwards = False
|
1795 |
+
start = j
|
1796 |
+
end = target_j
|
1797 |
+
if end < start:
|
1798 |
+
(start, end) = (end, start)
|
1799 |
+
backwards = True
|
1800 |
+
|
1801 |
+
# Let's see which objects are there between ``start`` and
|
1802 |
+
# ``end``, and then count how many morphisms stick out
|
1803 |
+
# upwards, and how many stick out downwards.
|
1804 |
+
#
|
1805 |
+
# For example, consider the situation:
|
1806 |
+
#
|
1807 |
+
# B1 C1
|
1808 |
+
# | |
|
1809 |
+
# A--B--C--D
|
1810 |
+
# |
|
1811 |
+
# B2
|
1812 |
+
#
|
1813 |
+
# Between the objects `A` and `D` there are two objects:
|
1814 |
+
# `B` and `C`. Further, there are two morphisms which
|
1815 |
+
# stick out upward (the ones between `B1` and `B` and
|
1816 |
+
# between `C` and `C1`) and one morphism which sticks out
|
1817 |
+
# downward (the one between `B and `B2`).
|
1818 |
+
#
|
1819 |
+
# We need this information to decide how to curve the
|
1820 |
+
# arrow between `A` and `D`. First of all, since there
|
1821 |
+
# are two objects between `A` and `D``, we must curve the
|
1822 |
+
# arrow. Then, we will have it curve downward, because
|
1823 |
+
# there is more space (less morphisms stick out downward
|
1824 |
+
# than upward).
|
1825 |
+
up = []
|
1826 |
+
down = []
|
1827 |
+
straight_horizontal = []
|
1828 |
+
for k in range(start + 1, end):
|
1829 |
+
obj = grid[i, k]
|
1830 |
+
if not obj:
|
1831 |
+
continue
|
1832 |
+
|
1833 |
+
for m in morphisms_str_info:
|
1834 |
+
if m.domain == obj:
|
1835 |
+
(end_i, end_j) = object_coords[m.codomain]
|
1836 |
+
elif m.codomain == obj:
|
1837 |
+
(end_i, end_j) = object_coords[m.domain]
|
1838 |
+
else:
|
1839 |
+
continue
|
1840 |
+
|
1841 |
+
if end_i > i:
|
1842 |
+
down.append(m)
|
1843 |
+
elif end_i < i:
|
1844 |
+
up.append(m)
|
1845 |
+
elif not morphisms_str_info[m].curving:
|
1846 |
+
# This is a straight horizontal morphism,
|
1847 |
+
# because it has no curving.
|
1848 |
+
straight_horizontal.append(m)
|
1849 |
+
|
1850 |
+
if len(up) < len(down):
|
1851 |
+
# More morphisms stick out downward than upward, let's
|
1852 |
+
# curve the morphism up.
|
1853 |
+
if backwards:
|
1854 |
+
curving = "_"
|
1855 |
+
label_pos = "_"
|
1856 |
+
else:
|
1857 |
+
curving = "^"
|
1858 |
+
label_pos = "^"
|
1859 |
+
|
1860 |
+
# Assure that the straight horizontal morphisms have
|
1861 |
+
# their labels on the lower side of the arrow.
|
1862 |
+
for m in straight_horizontal:
|
1863 |
+
(i1, j1) = object_coords[m.domain]
|
1864 |
+
(i2, j2) = object_coords[m.codomain]
|
1865 |
+
|
1866 |
+
m_str_info = morphisms_str_info[m]
|
1867 |
+
if j1 < j2:
|
1868 |
+
m_str_info.label_position = "_"
|
1869 |
+
else:
|
1870 |
+
m_str_info.label_position = "^"
|
1871 |
+
|
1872 |
+
# Don't allow any further modifications of the
|
1873 |
+
# position of this label.
|
1874 |
+
m_str_info.forced_label_position = True
|
1875 |
+
else:
|
1876 |
+
# More morphisms stick out downward than upward, let's
|
1877 |
+
# curve the morphism up.
|
1878 |
+
if backwards:
|
1879 |
+
curving = "^"
|
1880 |
+
label_pos = "^"
|
1881 |
+
else:
|
1882 |
+
curving = "_"
|
1883 |
+
label_pos = "_"
|
1884 |
+
|
1885 |
+
# Assure that the straight horizontal morphisms have
|
1886 |
+
# their labels on the upper side of the arrow.
|
1887 |
+
for m in straight_horizontal:
|
1888 |
+
(i1, j1) = object_coords[m.domain]
|
1889 |
+
(i2, j2) = object_coords[m.codomain]
|
1890 |
+
|
1891 |
+
m_str_info = morphisms_str_info[m]
|
1892 |
+
if j1 < j2:
|
1893 |
+
m_str_info.label_position = "^"
|
1894 |
+
else:
|
1895 |
+
m_str_info.label_position = "_"
|
1896 |
+
|
1897 |
+
# Don't allow any further modifications of the
|
1898 |
+
# position of this label.
|
1899 |
+
m_str_info.forced_label_position = True
|
1900 |
+
|
1901 |
+
return (curving, label_pos)
|
1902 |
+
|
1903 |
+
@staticmethod
|
1904 |
+
def _process_vertical_morphism(i, j, target_i, grid, morphisms_str_info,
|
1905 |
+
object_coords):
|
1906 |
+
"""
|
1907 |
+
Produces the information required for constructing the string
|
1908 |
+
representation of a vertical morphism. This function is
|
1909 |
+
invoked from ``_process_morphism``.
|
1910 |
+
|
1911 |
+
See Also
|
1912 |
+
========
|
1913 |
+
|
1914 |
+
_process_morphism
|
1915 |
+
"""
|
1916 |
+
# This arrow is vertical. Check if it goes from top to
|
1917 |
+
# bottom (``backwards == False``) or from bottom to top
|
1918 |
+
# (``backwards == True``).
|
1919 |
+
backwards = False
|
1920 |
+
start = i
|
1921 |
+
end = target_i
|
1922 |
+
if end < start:
|
1923 |
+
(start, end) = (end, start)
|
1924 |
+
backwards = True
|
1925 |
+
|
1926 |
+
# Let's see which objects are there between ``start`` and
|
1927 |
+
# ``end``, and then count how many morphisms stick out to
|
1928 |
+
# the left, and how many stick out to the right.
|
1929 |
+
#
|
1930 |
+
# See the corresponding comment in the previous branch of
|
1931 |
+
# this if-statement for more details.
|
1932 |
+
left = []
|
1933 |
+
right = []
|
1934 |
+
straight_vertical = []
|
1935 |
+
for k in range(start + 1, end):
|
1936 |
+
obj = grid[k, j]
|
1937 |
+
if not obj:
|
1938 |
+
continue
|
1939 |
+
|
1940 |
+
for m in morphisms_str_info:
|
1941 |
+
if m.domain == obj:
|
1942 |
+
(end_i, end_j) = object_coords[m.codomain]
|
1943 |
+
elif m.codomain == obj:
|
1944 |
+
(end_i, end_j) = object_coords[m.domain]
|
1945 |
+
else:
|
1946 |
+
continue
|
1947 |
+
|
1948 |
+
if end_j > j:
|
1949 |
+
right.append(m)
|
1950 |
+
elif end_j < j:
|
1951 |
+
left.append(m)
|
1952 |
+
elif not morphisms_str_info[m].curving:
|
1953 |
+
# This is a straight vertical morphism,
|
1954 |
+
# because it has no curving.
|
1955 |
+
straight_vertical.append(m)
|
1956 |
+
|
1957 |
+
if len(left) < len(right):
|
1958 |
+
# More morphisms stick out to the left than to the
|
1959 |
+
# right, let's curve the morphism to the right.
|
1960 |
+
if backwards:
|
1961 |
+
curving = "^"
|
1962 |
+
label_pos = "^"
|
1963 |
+
else:
|
1964 |
+
curving = "_"
|
1965 |
+
label_pos = "_"
|
1966 |
+
|
1967 |
+
# Assure that the straight vertical morphisms have
|
1968 |
+
# their labels on the left side of the arrow.
|
1969 |
+
for m in straight_vertical:
|
1970 |
+
(i1, j1) = object_coords[m.domain]
|
1971 |
+
(i2, j2) = object_coords[m.codomain]
|
1972 |
+
|
1973 |
+
m_str_info = morphisms_str_info[m]
|
1974 |
+
if i1 < i2:
|
1975 |
+
m_str_info.label_position = "^"
|
1976 |
+
else:
|
1977 |
+
m_str_info.label_position = "_"
|
1978 |
+
|
1979 |
+
# Don't allow any further modifications of the
|
1980 |
+
# position of this label.
|
1981 |
+
m_str_info.forced_label_position = True
|
1982 |
+
else:
|
1983 |
+
# More morphisms stick out to the right than to the
|
1984 |
+
# left, let's curve the morphism to the left.
|
1985 |
+
if backwards:
|
1986 |
+
curving = "_"
|
1987 |
+
label_pos = "_"
|
1988 |
+
else:
|
1989 |
+
curving = "^"
|
1990 |
+
label_pos = "^"
|
1991 |
+
|
1992 |
+
# Assure that the straight vertical morphisms have
|
1993 |
+
# their labels on the right side of the arrow.
|
1994 |
+
for m in straight_vertical:
|
1995 |
+
(i1, j1) = object_coords[m.domain]
|
1996 |
+
(i2, j2) = object_coords[m.codomain]
|
1997 |
+
|
1998 |
+
m_str_info = morphisms_str_info[m]
|
1999 |
+
if i1 < i2:
|
2000 |
+
m_str_info.label_position = "_"
|
2001 |
+
else:
|
2002 |
+
m_str_info.label_position = "^"
|
2003 |
+
|
2004 |
+
# Don't allow any further modifications of the
|
2005 |
+
# position of this label.
|
2006 |
+
m_str_info.forced_label_position = True
|
2007 |
+
|
2008 |
+
return (curving, label_pos)
|
2009 |
+
|
2010 |
+
def _process_morphism(self, diagram, grid, morphism, object_coords,
|
2011 |
+
morphisms, morphisms_str_info):
|
2012 |
+
"""
|
2013 |
+
Given the required information, produces the string
|
2014 |
+
representation of ``morphism``.
|
2015 |
+
"""
|
2016 |
+
def repeat_string_cond(times, str_gt, str_lt):
|
2017 |
+
"""
|
2018 |
+
If ``times > 0``, repeats ``str_gt`` ``times`` times.
|
2019 |
+
Otherwise, repeats ``str_lt`` ``-times`` times.
|
2020 |
+
"""
|
2021 |
+
if times > 0:
|
2022 |
+
return str_gt * times
|
2023 |
+
else:
|
2024 |
+
return str_lt * (-times)
|
2025 |
+
|
2026 |
+
def count_morphisms_undirected(A, B):
|
2027 |
+
"""
|
2028 |
+
Counts how many processed morphisms there are between the
|
2029 |
+
two supplied objects.
|
2030 |
+
"""
|
2031 |
+
return len([m for m in morphisms_str_info
|
2032 |
+
if {m.domain, m.codomain} == {A, B}])
|
2033 |
+
|
2034 |
+
def count_morphisms_filtered(dom, cod, curving):
|
2035 |
+
"""
|
2036 |
+
Counts the processed morphisms which go out of ``dom``
|
2037 |
+
into ``cod`` with curving ``curving``.
|
2038 |
+
"""
|
2039 |
+
return len([m for m, m_str_info in morphisms_str_info.items()
|
2040 |
+
if (m.domain, m.codomain) == (dom, cod) and
|
2041 |
+
(m_str_info.curving == curving)])
|
2042 |
+
|
2043 |
+
(i, j) = object_coords[morphism.domain]
|
2044 |
+
(target_i, target_j) = object_coords[morphism.codomain]
|
2045 |
+
|
2046 |
+
# We now need to determine the direction of
|
2047 |
+
# the arrow.
|
2048 |
+
delta_i = target_i - i
|
2049 |
+
delta_j = target_j - j
|
2050 |
+
vertical_direction = repeat_string_cond(delta_i,
|
2051 |
+
"d", "u")
|
2052 |
+
horizontal_direction = repeat_string_cond(delta_j,
|
2053 |
+
"r", "l")
|
2054 |
+
|
2055 |
+
curving = ""
|
2056 |
+
label_pos = "^"
|
2057 |
+
looping_start = ""
|
2058 |
+
looping_end = ""
|
2059 |
+
|
2060 |
+
if (delta_i == 0) and (delta_j == 0):
|
2061 |
+
# This is a loop morphism.
|
2062 |
+
(curving, label_pos, looping_start,
|
2063 |
+
looping_end) = XypicDiagramDrawer._process_loop_morphism(
|
2064 |
+
i, j, grid, morphisms_str_info, object_coords)
|
2065 |
+
elif (delta_i == 0) and (abs(j - target_j) > 1):
|
2066 |
+
# This is a horizontal morphism.
|
2067 |
+
(curving, label_pos) = XypicDiagramDrawer._process_horizontal_morphism(
|
2068 |
+
i, j, target_j, grid, morphisms_str_info, object_coords)
|
2069 |
+
elif (delta_j == 0) and (abs(i - target_i) > 1):
|
2070 |
+
# This is a vertical morphism.
|
2071 |
+
(curving, label_pos) = XypicDiagramDrawer._process_vertical_morphism(
|
2072 |
+
i, j, target_i, grid, morphisms_str_info, object_coords)
|
2073 |
+
|
2074 |
+
count = count_morphisms_undirected(morphism.domain, morphism.codomain)
|
2075 |
+
curving_amount = ""
|
2076 |
+
if curving:
|
2077 |
+
# This morphisms should be curved anyway.
|
2078 |
+
curving_amount = self.default_curving_amount + count * \
|
2079 |
+
self.default_curving_step
|
2080 |
+
elif count:
|
2081 |
+
# There are no objects between the domain and codomain of
|
2082 |
+
# the current morphism, but this is not there already are
|
2083 |
+
# some morphisms with the same domain and codomain, so we
|
2084 |
+
# have to curve this one.
|
2085 |
+
curving = "^"
|
2086 |
+
filtered_morphisms = count_morphisms_filtered(
|
2087 |
+
morphism.domain, morphism.codomain, curving)
|
2088 |
+
curving_amount = self.default_curving_amount + \
|
2089 |
+
filtered_morphisms * \
|
2090 |
+
self.default_curving_step
|
2091 |
+
|
2092 |
+
# Let's now get the name of the morphism.
|
2093 |
+
morphism_name = ""
|
2094 |
+
if isinstance(morphism, IdentityMorphism):
|
2095 |
+
morphism_name = "id_{%s}" + latex(grid[i, j])
|
2096 |
+
elif isinstance(morphism, CompositeMorphism):
|
2097 |
+
component_names = [latex(Symbol(component.name)) for
|
2098 |
+
component in morphism.components]
|
2099 |
+
component_names.reverse()
|
2100 |
+
morphism_name = "\\circ ".join(component_names)
|
2101 |
+
elif isinstance(morphism, NamedMorphism):
|
2102 |
+
morphism_name = latex(Symbol(morphism.name))
|
2103 |
+
|
2104 |
+
return ArrowStringDescription(
|
2105 |
+
self.unit, curving, curving_amount, looping_start,
|
2106 |
+
looping_end, horizontal_direction, vertical_direction,
|
2107 |
+
label_pos, morphism_name)
|
2108 |
+
|
2109 |
+
@staticmethod
|
2110 |
+
def _check_free_space_horizontal(dom_i, dom_j, cod_j, grid):
|
2111 |
+
"""
|
2112 |
+
For a horizontal morphism, checks whether there is free space
|
2113 |
+
(i.e., space not occupied by any objects) above the morphism
|
2114 |
+
or below it.
|
2115 |
+
"""
|
2116 |
+
if dom_j < cod_j:
|
2117 |
+
(start, end) = (dom_j, cod_j)
|
2118 |
+
backwards = False
|
2119 |
+
else:
|
2120 |
+
(start, end) = (cod_j, dom_j)
|
2121 |
+
backwards = True
|
2122 |
+
|
2123 |
+
# Check for free space above.
|
2124 |
+
if dom_i == 0:
|
2125 |
+
free_up = True
|
2126 |
+
else:
|
2127 |
+
free_up = all(grid[dom_i - 1, j] for j in
|
2128 |
+
range(start, end + 1))
|
2129 |
+
|
2130 |
+
# Check for free space below.
|
2131 |
+
if dom_i == grid.height - 1:
|
2132 |
+
free_down = True
|
2133 |
+
else:
|
2134 |
+
free_down = not any(grid[dom_i + 1, j] for j in
|
2135 |
+
range(start, end + 1))
|
2136 |
+
|
2137 |
+
return (free_up, free_down, backwards)
|
2138 |
+
|
2139 |
+
@staticmethod
|
2140 |
+
def _check_free_space_vertical(dom_i, cod_i, dom_j, grid):
|
2141 |
+
"""
|
2142 |
+
For a vertical morphism, checks whether there is free space
|
2143 |
+
(i.e., space not occupied by any objects) to the left of the
|
2144 |
+
morphism or to the right of it.
|
2145 |
+
"""
|
2146 |
+
if dom_i < cod_i:
|
2147 |
+
(start, end) = (dom_i, cod_i)
|
2148 |
+
backwards = False
|
2149 |
+
else:
|
2150 |
+
(start, end) = (cod_i, dom_i)
|
2151 |
+
backwards = True
|
2152 |
+
|
2153 |
+
# Check if there's space to the left.
|
2154 |
+
if dom_j == 0:
|
2155 |
+
free_left = True
|
2156 |
+
else:
|
2157 |
+
free_left = not any(grid[i, dom_j - 1] for i in
|
2158 |
+
range(start, end + 1))
|
2159 |
+
|
2160 |
+
if dom_j == grid.width - 1:
|
2161 |
+
free_right = True
|
2162 |
+
else:
|
2163 |
+
free_right = not any(grid[i, dom_j + 1] for i in
|
2164 |
+
range(start, end + 1))
|
2165 |
+
|
2166 |
+
return (free_left, free_right, backwards)
|
2167 |
+
|
2168 |
+
@staticmethod
|
2169 |
+
def _check_free_space_diagonal(dom_i, cod_i, dom_j, cod_j, grid):
|
2170 |
+
"""
|
2171 |
+
For a diagonal morphism, checks whether there is free space
|
2172 |
+
(i.e., space not occupied by any objects) above the morphism
|
2173 |
+
or below it.
|
2174 |
+
"""
|
2175 |
+
def abs_xrange(start, end):
|
2176 |
+
if start < end:
|
2177 |
+
return range(start, end + 1)
|
2178 |
+
else:
|
2179 |
+
return range(end, start + 1)
|
2180 |
+
|
2181 |
+
if dom_i < cod_i and dom_j < cod_j:
|
2182 |
+
# This morphism goes from top-left to
|
2183 |
+
# bottom-right.
|
2184 |
+
(start_i, start_j) = (dom_i, dom_j)
|
2185 |
+
(end_i, end_j) = (cod_i, cod_j)
|
2186 |
+
backwards = False
|
2187 |
+
elif dom_i > cod_i and dom_j > cod_j:
|
2188 |
+
# This morphism goes from bottom-right to
|
2189 |
+
# top-left.
|
2190 |
+
(start_i, start_j) = (cod_i, cod_j)
|
2191 |
+
(end_i, end_j) = (dom_i, dom_j)
|
2192 |
+
backwards = True
|
2193 |
+
if dom_i < cod_i and dom_j > cod_j:
|
2194 |
+
# This morphism goes from top-right to
|
2195 |
+
# bottom-left.
|
2196 |
+
(start_i, start_j) = (dom_i, dom_j)
|
2197 |
+
(end_i, end_j) = (cod_i, cod_j)
|
2198 |
+
backwards = True
|
2199 |
+
elif dom_i > cod_i and dom_j < cod_j:
|
2200 |
+
# This morphism goes from bottom-left to
|
2201 |
+
# top-right.
|
2202 |
+
(start_i, start_j) = (cod_i, cod_j)
|
2203 |
+
(end_i, end_j) = (dom_i, dom_j)
|
2204 |
+
backwards = False
|
2205 |
+
|
2206 |
+
# This is an attempt at a fast and furious strategy to
|
2207 |
+
# decide where there is free space on the two sides of
|
2208 |
+
# a diagonal morphism. For a diagonal morphism
|
2209 |
+
# starting at ``(start_i, start_j)`` and ending at
|
2210 |
+
# ``(end_i, end_j)`` the rectangle defined by these
|
2211 |
+
# two points is considered. The slope of the diagonal
|
2212 |
+
# ``alpha`` is then computed. Then, for every cell
|
2213 |
+
# ``(i, j)`` within the rectangle, the slope
|
2214 |
+
# ``alpha1`` of the line through ``(start_i,
|
2215 |
+
# start_j)`` and ``(i, j)`` is considered. If
|
2216 |
+
# ``alpha1`` is between 0 and ``alpha``, the point
|
2217 |
+
# ``(i, j)`` is above the diagonal, if ``alpha1`` is
|
2218 |
+
# between ``alpha`` and infinity, the point is below
|
2219 |
+
# the diagonal. Also note that, with some beforehand
|
2220 |
+
# precautions, this trick works for both the main and
|
2221 |
+
# the secondary diagonals of the rectangle.
|
2222 |
+
|
2223 |
+
# I have considered the possibility to only follow the
|
2224 |
+
# shorter diagonals immediately above and below the
|
2225 |
+
# main (or secondary) diagonal. This, however,
|
2226 |
+
# wouldn't have resulted in much performance gain or
|
2227 |
+
# better detection of outer edges, because of
|
2228 |
+
# relatively small sizes of diagram grids, while the
|
2229 |
+
# code would have become harder to understand.
|
2230 |
+
|
2231 |
+
alpha = float(end_i - start_i)/(end_j - start_j)
|
2232 |
+
free_up = True
|
2233 |
+
free_down = True
|
2234 |
+
for i in abs_xrange(start_i, end_i):
|
2235 |
+
if not free_up and not free_down:
|
2236 |
+
break
|
2237 |
+
|
2238 |
+
for j in abs_xrange(start_j, end_j):
|
2239 |
+
if not free_up and not free_down:
|
2240 |
+
break
|
2241 |
+
|
2242 |
+
if (i, j) == (start_i, start_j):
|
2243 |
+
continue
|
2244 |
+
|
2245 |
+
if j == start_j:
|
2246 |
+
alpha1 = "inf"
|
2247 |
+
else:
|
2248 |
+
alpha1 = float(i - start_i)/(j - start_j)
|
2249 |
+
|
2250 |
+
if grid[i, j]:
|
2251 |
+
if (alpha1 == "inf") or (abs(alpha1) > abs(alpha)):
|
2252 |
+
free_down = False
|
2253 |
+
elif abs(alpha1) < abs(alpha):
|
2254 |
+
free_up = False
|
2255 |
+
|
2256 |
+
return (free_up, free_down, backwards)
|
2257 |
+
|
2258 |
+
def _push_labels_out(self, morphisms_str_info, grid, object_coords):
|
2259 |
+
"""
|
2260 |
+
For all straight morphisms which form the visual boundary of
|
2261 |
+
the laid out diagram, puts their labels on their outer sides.
|
2262 |
+
"""
|
2263 |
+
def set_label_position(free1, free2, pos1, pos2, backwards, m_str_info):
|
2264 |
+
"""
|
2265 |
+
Given the information about room available to one side and
|
2266 |
+
to the other side of a morphism (``free1`` and ``free2``),
|
2267 |
+
sets the position of the morphism label in such a way that
|
2268 |
+
it is on the freer side. This latter operations involves
|
2269 |
+
choice between ``pos1`` and ``pos2``, taking ``backwards``
|
2270 |
+
in consideration.
|
2271 |
+
|
2272 |
+
Thus this function will do nothing if either both ``free1
|
2273 |
+
== True`` and ``free2 == True`` or both ``free1 == False``
|
2274 |
+
and ``free2 == False``. In either case, choosing one side
|
2275 |
+
over the other presents no advantage.
|
2276 |
+
"""
|
2277 |
+
if backwards:
|
2278 |
+
(pos1, pos2) = (pos2, pos1)
|
2279 |
+
|
2280 |
+
if free1 and not free2:
|
2281 |
+
m_str_info.label_position = pos1
|
2282 |
+
elif free2 and not free1:
|
2283 |
+
m_str_info.label_position = pos2
|
2284 |
+
|
2285 |
+
for m, m_str_info in morphisms_str_info.items():
|
2286 |
+
if m_str_info.curving or m_str_info.forced_label_position:
|
2287 |
+
# This is either a curved morphism, and curved
|
2288 |
+
# morphisms have other magic, or the position of this
|
2289 |
+
# label has already been fixed.
|
2290 |
+
continue
|
2291 |
+
|
2292 |
+
if m.domain == m.codomain:
|
2293 |
+
# This is a loop morphism, their labels, again have a
|
2294 |
+
# different magic.
|
2295 |
+
continue
|
2296 |
+
|
2297 |
+
(dom_i, dom_j) = object_coords[m.domain]
|
2298 |
+
(cod_i, cod_j) = object_coords[m.codomain]
|
2299 |
+
|
2300 |
+
if dom_i == cod_i:
|
2301 |
+
# Horizontal morphism.
|
2302 |
+
(free_up, free_down,
|
2303 |
+
backwards) = XypicDiagramDrawer._check_free_space_horizontal(
|
2304 |
+
dom_i, dom_j, cod_j, grid)
|
2305 |
+
|
2306 |
+
set_label_position(free_up, free_down, "^", "_",
|
2307 |
+
backwards, m_str_info)
|
2308 |
+
elif dom_j == cod_j:
|
2309 |
+
# Vertical morphism.
|
2310 |
+
(free_left, free_right,
|
2311 |
+
backwards) = XypicDiagramDrawer._check_free_space_vertical(
|
2312 |
+
dom_i, cod_i, dom_j, grid)
|
2313 |
+
|
2314 |
+
set_label_position(free_left, free_right, "_", "^",
|
2315 |
+
backwards, m_str_info)
|
2316 |
+
else:
|
2317 |
+
# A diagonal morphism.
|
2318 |
+
(free_up, free_down,
|
2319 |
+
backwards) = XypicDiagramDrawer._check_free_space_diagonal(
|
2320 |
+
dom_i, cod_i, dom_j, cod_j, grid)
|
2321 |
+
|
2322 |
+
set_label_position(free_up, free_down, "^", "_",
|
2323 |
+
backwards, m_str_info)
|
2324 |
+
|
2325 |
+
@staticmethod
|
2326 |
+
def _morphism_sort_key(morphism, object_coords):
|
2327 |
+
"""
|
2328 |
+
Provides a morphism sorting key such that horizontal or
|
2329 |
+
vertical morphisms between neighbouring objects come
|
2330 |
+
first, then horizontal or vertical morphisms between more
|
2331 |
+
far away objects, and finally, all other morphisms.
|
2332 |
+
"""
|
2333 |
+
(i, j) = object_coords[morphism.domain]
|
2334 |
+
(target_i, target_j) = object_coords[morphism.codomain]
|
2335 |
+
|
2336 |
+
if morphism.domain == morphism.codomain:
|
2337 |
+
# Loop morphisms should get after diagonal morphisms
|
2338 |
+
# so that the proper direction in which to curve the
|
2339 |
+
# loop can be determined.
|
2340 |
+
return (3, 0, default_sort_key(morphism))
|
2341 |
+
|
2342 |
+
if target_i == i:
|
2343 |
+
return (1, abs(target_j - j), default_sort_key(morphism))
|
2344 |
+
|
2345 |
+
if target_j == j:
|
2346 |
+
return (1, abs(target_i - i), default_sort_key(morphism))
|
2347 |
+
|
2348 |
+
# Diagonal morphism.
|
2349 |
+
return (2, 0, default_sort_key(morphism))
|
2350 |
+
|
2351 |
+
@staticmethod
|
2352 |
+
def _build_xypic_string(diagram, grid, morphisms,
|
2353 |
+
morphisms_str_info, diagram_format):
|
2354 |
+
"""
|
2355 |
+
Given a collection of :class:`ArrowStringDescription`
|
2356 |
+
describing the morphisms of a diagram and the object layout
|
2357 |
+
information of a diagram, produces the final Xy-pic picture.
|
2358 |
+
"""
|
2359 |
+
# Build the mapping between objects and morphisms which have
|
2360 |
+
# them as domains.
|
2361 |
+
object_morphisms = {}
|
2362 |
+
for obj in diagram.objects:
|
2363 |
+
object_morphisms[obj] = []
|
2364 |
+
for morphism in morphisms:
|
2365 |
+
object_morphisms[morphism.domain].append(morphism)
|
2366 |
+
|
2367 |
+
result = "\\xymatrix%s{\n" % diagram_format
|
2368 |
+
|
2369 |
+
for i in range(grid.height):
|
2370 |
+
for j in range(grid.width):
|
2371 |
+
obj = grid[i, j]
|
2372 |
+
if obj:
|
2373 |
+
result += latex(obj) + " "
|
2374 |
+
|
2375 |
+
morphisms_to_draw = object_morphisms[obj]
|
2376 |
+
for morphism in morphisms_to_draw:
|
2377 |
+
result += str(morphisms_str_info[morphism]) + " "
|
2378 |
+
|
2379 |
+
# Don't put the & after the last column.
|
2380 |
+
if j < grid.width - 1:
|
2381 |
+
result += "& "
|
2382 |
+
|
2383 |
+
# Don't put the line break after the last row.
|
2384 |
+
if i < grid.height - 1:
|
2385 |
+
result += "\\\\"
|
2386 |
+
result += "\n"
|
2387 |
+
|
2388 |
+
result += "}\n"
|
2389 |
+
|
2390 |
+
return result
|
2391 |
+
|
2392 |
+
def draw(self, diagram, grid, masked=None, diagram_format=""):
|
2393 |
+
r"""
|
2394 |
+
Returns the Xy-pic representation of ``diagram`` laid out in
|
2395 |
+
``grid``.
|
2396 |
+
|
2397 |
+
Consider the following simple triangle diagram.
|
2398 |
+
|
2399 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
2400 |
+
>>> from sympy.categories import DiagramGrid, XypicDiagramDrawer
|
2401 |
+
>>> A = Object("A")
|
2402 |
+
>>> B = Object("B")
|
2403 |
+
>>> C = Object("C")
|
2404 |
+
>>> f = NamedMorphism(A, B, "f")
|
2405 |
+
>>> g = NamedMorphism(B, C, "g")
|
2406 |
+
>>> diagram = Diagram([f, g], {g * f: "unique"})
|
2407 |
+
|
2408 |
+
To draw this diagram, its objects need to be laid out with a
|
2409 |
+
:class:`DiagramGrid`::
|
2410 |
+
|
2411 |
+
>>> grid = DiagramGrid(diagram)
|
2412 |
+
|
2413 |
+
Finally, the drawing:
|
2414 |
+
|
2415 |
+
>>> drawer = XypicDiagramDrawer()
|
2416 |
+
>>> print(drawer.draw(diagram, grid))
|
2417 |
+
\xymatrix{
|
2418 |
+
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
2419 |
+
C &
|
2420 |
+
}
|
2421 |
+
|
2422 |
+
The argument ``masked`` can be used to skip morphisms in the
|
2423 |
+
presentation of the diagram:
|
2424 |
+
|
2425 |
+
>>> print(drawer.draw(diagram, grid, masked=[g * f]))
|
2426 |
+
\xymatrix{
|
2427 |
+
A \ar[r]^{f} & B \ar[ld]^{g} \\
|
2428 |
+
C &
|
2429 |
+
}
|
2430 |
+
|
2431 |
+
Finally, the ``diagram_format`` argument can be used to
|
2432 |
+
specify the format string of the diagram. For example, to
|
2433 |
+
increase the spacing by 1 cm, proceeding as follows:
|
2434 |
+
|
2435 |
+
>>> print(drawer.draw(diagram, grid, diagram_format="@+1cm"))
|
2436 |
+
\xymatrix@+1cm{
|
2437 |
+
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
2438 |
+
C &
|
2439 |
+
}
|
2440 |
+
|
2441 |
+
"""
|
2442 |
+
# This method works in several steps. It starts by removing
|
2443 |
+
# the masked morphisms, if necessary, and then maps objects to
|
2444 |
+
# their positions in the grid (coordinate tuples). Remember
|
2445 |
+
# that objects are unique in ``Diagram`` and in the layout
|
2446 |
+
# produced by ``DiagramGrid``, so every object is mapped to a
|
2447 |
+
# single coordinate pair.
|
2448 |
+
#
|
2449 |
+
# The next step is the central step and is concerned with
|
2450 |
+
# analysing the morphisms of the diagram and deciding how to
|
2451 |
+
# draw them. For example, how to curve the arrows is decided
|
2452 |
+
# at this step. The bulk of the analysis is implemented in
|
2453 |
+
# ``_process_morphism``, to the result of which the
|
2454 |
+
# appropriate formatters are applied.
|
2455 |
+
#
|
2456 |
+
# The result of the previous step is a list of
|
2457 |
+
# ``ArrowStringDescription``. After the analysis and
|
2458 |
+
# application of formatters, some extra logic tries to assure
|
2459 |
+
# better positioning of morphism labels (for example, an
|
2460 |
+
# attempt is made to avoid the situations when arrows cross
|
2461 |
+
# labels). This functionality constitutes the next step and
|
2462 |
+
# is implemented in ``_push_labels_out``. Note that label
|
2463 |
+
# positions which have been set via a formatter are not
|
2464 |
+
# affected in this step.
|
2465 |
+
#
|
2466 |
+
# Finally, at the closing step, the array of
|
2467 |
+
# ``ArrowStringDescription`` and the layout information
|
2468 |
+
# incorporated in ``DiagramGrid`` are combined to produce the
|
2469 |
+
# resulting Xy-pic picture. This part of code lies in
|
2470 |
+
# ``_build_xypic_string``.
|
2471 |
+
|
2472 |
+
if not masked:
|
2473 |
+
morphisms_props = grid.morphisms
|
2474 |
+
else:
|
2475 |
+
morphisms_props = {}
|
2476 |
+
for m, props in grid.morphisms.items():
|
2477 |
+
if m in masked:
|
2478 |
+
continue
|
2479 |
+
morphisms_props[m] = props
|
2480 |
+
|
2481 |
+
# Build the mapping between objects and their position in the
|
2482 |
+
# grid.
|
2483 |
+
object_coords = {}
|
2484 |
+
for i in range(grid.height):
|
2485 |
+
for j in range(grid.width):
|
2486 |
+
if grid[i, j]:
|
2487 |
+
object_coords[grid[i, j]] = (i, j)
|
2488 |
+
|
2489 |
+
morphisms = sorted(morphisms_props,
|
2490 |
+
key=lambda m: XypicDiagramDrawer._morphism_sort_key(
|
2491 |
+
m, object_coords))
|
2492 |
+
|
2493 |
+
# Build the tuples defining the string representations of
|
2494 |
+
# morphisms.
|
2495 |
+
morphisms_str_info = {}
|
2496 |
+
for morphism in morphisms:
|
2497 |
+
string_description = self._process_morphism(
|
2498 |
+
diagram, grid, morphism, object_coords, morphisms,
|
2499 |
+
morphisms_str_info)
|
2500 |
+
|
2501 |
+
if self.default_arrow_formatter:
|
2502 |
+
self.default_arrow_formatter(string_description)
|
2503 |
+
|
2504 |
+
for prop in morphisms_props[morphism]:
|
2505 |
+
# prop is a Symbol. TODO: Find out why.
|
2506 |
+
if prop.name in self.arrow_formatters:
|
2507 |
+
formatter = self.arrow_formatters[prop.name]
|
2508 |
+
formatter(string_description)
|
2509 |
+
|
2510 |
+
morphisms_str_info[morphism] = string_description
|
2511 |
+
|
2512 |
+
# Reposition the labels a bit.
|
2513 |
+
self._push_labels_out(morphisms_str_info, grid, object_coords)
|
2514 |
+
|
2515 |
+
return XypicDiagramDrawer._build_xypic_string(
|
2516 |
+
diagram, grid, morphisms, morphisms_str_info, diagram_format)
|
2517 |
+
|
2518 |
+
|
2519 |
+
def xypic_draw_diagram(diagram, masked=None, diagram_format="",
|
2520 |
+
groups=None, **hints):
|
2521 |
+
r"""
|
2522 |
+
Provides a shortcut combining :class:`DiagramGrid` and
|
2523 |
+
:class:`XypicDiagramDrawer`. Returns an Xy-pic presentation of
|
2524 |
+
``diagram``. The argument ``masked`` is a list of morphisms which
|
2525 |
+
will be not be drawn. The argument ``diagram_format`` is the
|
2526 |
+
format string inserted after "\xymatrix". ``groups`` should be a
|
2527 |
+
set of logical groups. The ``hints`` will be passed directly to
|
2528 |
+
the constructor of :class:`DiagramGrid`.
|
2529 |
+
|
2530 |
+
For more information about the arguments, see the docstrings of
|
2531 |
+
:class:`DiagramGrid` and ``XypicDiagramDrawer.draw``.
|
2532 |
+
|
2533 |
+
Examples
|
2534 |
+
========
|
2535 |
+
|
2536 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
2537 |
+
>>> from sympy.categories import xypic_draw_diagram
|
2538 |
+
>>> A = Object("A")
|
2539 |
+
>>> B = Object("B")
|
2540 |
+
>>> C = Object("C")
|
2541 |
+
>>> f = NamedMorphism(A, B, "f")
|
2542 |
+
>>> g = NamedMorphism(B, C, "g")
|
2543 |
+
>>> diagram = Diagram([f, g], {g * f: "unique"})
|
2544 |
+
>>> print(xypic_draw_diagram(diagram))
|
2545 |
+
\xymatrix{
|
2546 |
+
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
2547 |
+
C &
|
2548 |
+
}
|
2549 |
+
|
2550 |
+
See Also
|
2551 |
+
========
|
2552 |
+
|
2553 |
+
XypicDiagramDrawer, DiagramGrid
|
2554 |
+
"""
|
2555 |
+
grid = DiagramGrid(diagram, groups, **hints)
|
2556 |
+
drawer = XypicDiagramDrawer()
|
2557 |
+
return drawer.draw(diagram, grid, masked, diagram_format)
|
2558 |
+
|
2559 |
+
|
2560 |
+
@doctest_depends_on(exe=('latex', 'dvipng'), modules=('pyglet',))
|
2561 |
+
def preview_diagram(diagram, masked=None, diagram_format="", groups=None,
|
2562 |
+
output='png', viewer=None, euler=True, **hints):
|
2563 |
+
"""
|
2564 |
+
Combines the functionality of ``xypic_draw_diagram`` and
|
2565 |
+
``sympy.printing.preview``. The arguments ``masked``,
|
2566 |
+
``diagram_format``, ``groups``, and ``hints`` are passed to
|
2567 |
+
``xypic_draw_diagram``, while ``output``, ``viewer, and ``euler``
|
2568 |
+
are passed to ``preview``.
|
2569 |
+
|
2570 |
+
Examples
|
2571 |
+
========
|
2572 |
+
|
2573 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
2574 |
+
>>> from sympy.categories import preview_diagram
|
2575 |
+
>>> A = Object("A")
|
2576 |
+
>>> B = Object("B")
|
2577 |
+
>>> C = Object("C")
|
2578 |
+
>>> f = NamedMorphism(A, B, "f")
|
2579 |
+
>>> g = NamedMorphism(B, C, "g")
|
2580 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
2581 |
+
>>> preview_diagram(d)
|
2582 |
+
|
2583 |
+
See Also
|
2584 |
+
========
|
2585 |
+
|
2586 |
+
XypicDiagramDrawer
|
2587 |
+
"""
|
2588 |
+
from sympy.printing import preview
|
2589 |
+
latex_output = xypic_draw_diagram(diagram, masked, diagram_format,
|
2590 |
+
groups, **hints)
|
2591 |
+
preview(latex_output, output, viewer, euler, ("xypic",))
|
venv/lib/python3.10/site-packages/sympy/categories/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (190 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/test_baseclasses.cpython-310.pyc
ADDED
Binary file (4.99 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/test_drawing.cpython-310.pyc
ADDED
Binary file (17.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/categories/tests/test_baseclasses.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.categories import (Object, Morphism, IdentityMorphism,
|
2 |
+
NamedMorphism, CompositeMorphism,
|
3 |
+
Diagram, Category)
|
4 |
+
from sympy.categories.baseclasses import Class
|
5 |
+
from sympy.testing.pytest import raises
|
6 |
+
from sympy.core.containers import (Dict, Tuple)
|
7 |
+
from sympy.sets import EmptySet
|
8 |
+
from sympy.sets.sets import FiniteSet
|
9 |
+
|
10 |
+
|
11 |
+
def test_morphisms():
|
12 |
+
A = Object("A")
|
13 |
+
B = Object("B")
|
14 |
+
C = Object("C")
|
15 |
+
D = Object("D")
|
16 |
+
|
17 |
+
# Test the base morphism.
|
18 |
+
f = NamedMorphism(A, B, "f")
|
19 |
+
assert f.domain == A
|
20 |
+
assert f.codomain == B
|
21 |
+
assert f == NamedMorphism(A, B, "f")
|
22 |
+
|
23 |
+
# Test identities.
|
24 |
+
id_A = IdentityMorphism(A)
|
25 |
+
id_B = IdentityMorphism(B)
|
26 |
+
assert id_A.domain == A
|
27 |
+
assert id_A.codomain == A
|
28 |
+
assert id_A == IdentityMorphism(A)
|
29 |
+
assert id_A != id_B
|
30 |
+
|
31 |
+
# Test named morphisms.
|
32 |
+
g = NamedMorphism(B, C, "g")
|
33 |
+
assert g.name == "g"
|
34 |
+
assert g != f
|
35 |
+
assert g == NamedMorphism(B, C, "g")
|
36 |
+
assert g != NamedMorphism(B, C, "f")
|
37 |
+
|
38 |
+
# Test composite morphisms.
|
39 |
+
assert f == CompositeMorphism(f)
|
40 |
+
|
41 |
+
k = g.compose(f)
|
42 |
+
assert k.domain == A
|
43 |
+
assert k.codomain == C
|
44 |
+
assert k.components == Tuple(f, g)
|
45 |
+
assert g * f == k
|
46 |
+
assert CompositeMorphism(f, g) == k
|
47 |
+
|
48 |
+
assert CompositeMorphism(g * f) == g * f
|
49 |
+
|
50 |
+
# Test the associativity of composition.
|
51 |
+
h = NamedMorphism(C, D, "h")
|
52 |
+
|
53 |
+
p = h * g
|
54 |
+
u = h * g * f
|
55 |
+
|
56 |
+
assert h * k == u
|
57 |
+
assert p * f == u
|
58 |
+
assert CompositeMorphism(f, g, h) == u
|
59 |
+
|
60 |
+
# Test flattening.
|
61 |
+
u2 = u.flatten("u")
|
62 |
+
assert isinstance(u2, NamedMorphism)
|
63 |
+
assert u2.name == "u"
|
64 |
+
assert u2.domain == A
|
65 |
+
assert u2.codomain == D
|
66 |
+
|
67 |
+
# Test identities.
|
68 |
+
assert f * id_A == f
|
69 |
+
assert id_B * f == f
|
70 |
+
assert id_A * id_A == id_A
|
71 |
+
assert CompositeMorphism(id_A) == id_A
|
72 |
+
|
73 |
+
# Test bad compositions.
|
74 |
+
raises(ValueError, lambda: f * g)
|
75 |
+
|
76 |
+
raises(TypeError, lambda: f.compose(None))
|
77 |
+
raises(TypeError, lambda: id_A.compose(None))
|
78 |
+
raises(TypeError, lambda: f * None)
|
79 |
+
raises(TypeError, lambda: id_A * None)
|
80 |
+
|
81 |
+
raises(TypeError, lambda: CompositeMorphism(f, None, 1))
|
82 |
+
|
83 |
+
raises(ValueError, lambda: NamedMorphism(A, B, ""))
|
84 |
+
raises(NotImplementedError, lambda: Morphism(A, B))
|
85 |
+
|
86 |
+
|
87 |
+
def test_diagram():
|
88 |
+
A = Object("A")
|
89 |
+
B = Object("B")
|
90 |
+
C = Object("C")
|
91 |
+
|
92 |
+
f = NamedMorphism(A, B, "f")
|
93 |
+
g = NamedMorphism(B, C, "g")
|
94 |
+
id_A = IdentityMorphism(A)
|
95 |
+
id_B = IdentityMorphism(B)
|
96 |
+
|
97 |
+
empty = EmptySet
|
98 |
+
|
99 |
+
# Test the addition of identities.
|
100 |
+
d1 = Diagram([f])
|
101 |
+
|
102 |
+
assert d1.objects == FiniteSet(A, B)
|
103 |
+
assert d1.hom(A, B) == (FiniteSet(f), empty)
|
104 |
+
assert d1.hom(A, A) == (FiniteSet(id_A), empty)
|
105 |
+
assert d1.hom(B, B) == (FiniteSet(id_B), empty)
|
106 |
+
|
107 |
+
assert d1 == Diagram([id_A, f])
|
108 |
+
assert d1 == Diagram([f, f])
|
109 |
+
|
110 |
+
# Test the addition of composites.
|
111 |
+
d2 = Diagram([f, g])
|
112 |
+
homAC = d2.hom(A, C)[0]
|
113 |
+
|
114 |
+
assert d2.objects == FiniteSet(A, B, C)
|
115 |
+
assert g * f in d2.premises.keys()
|
116 |
+
assert homAC == FiniteSet(g * f)
|
117 |
+
|
118 |
+
# Test equality, inequality and hash.
|
119 |
+
d11 = Diagram([f])
|
120 |
+
|
121 |
+
assert d1 == d11
|
122 |
+
assert d1 != d2
|
123 |
+
assert hash(d1) == hash(d11)
|
124 |
+
|
125 |
+
d11 = Diagram({f: "unique"})
|
126 |
+
assert d1 != d11
|
127 |
+
|
128 |
+
# Make sure that (re-)adding composites (with new properties)
|
129 |
+
# works as expected.
|
130 |
+
d = Diagram([f, g], {g * f: "unique"})
|
131 |
+
assert d.conclusions == Dict({g * f: FiniteSet("unique")})
|
132 |
+
|
133 |
+
# Check the hom-sets when there are premises and conclusions.
|
134 |
+
assert d.hom(A, C) == (FiniteSet(g * f), FiniteSet(g * f))
|
135 |
+
d = Diagram([f, g], [g * f])
|
136 |
+
assert d.hom(A, C) == (FiniteSet(g * f), FiniteSet(g * f))
|
137 |
+
|
138 |
+
# Check how the properties of composite morphisms are computed.
|
139 |
+
d = Diagram({f: ["unique", "isomorphism"], g: "unique"})
|
140 |
+
assert d.premises[g * f] == FiniteSet("unique")
|
141 |
+
|
142 |
+
# Check that conclusion morphisms with new objects are not allowed.
|
143 |
+
d = Diagram([f], [g])
|
144 |
+
assert d.conclusions == Dict({})
|
145 |
+
|
146 |
+
# Test an empty diagram.
|
147 |
+
d = Diagram()
|
148 |
+
assert d.premises == Dict({})
|
149 |
+
assert d.conclusions == Dict({})
|
150 |
+
assert d.objects == empty
|
151 |
+
|
152 |
+
# Check a SymPy Dict object.
|
153 |
+
d = Diagram(Dict({f: FiniteSet("unique", "isomorphism"), g: "unique"}))
|
154 |
+
assert d.premises[g * f] == FiniteSet("unique")
|
155 |
+
|
156 |
+
# Check the addition of components of composite morphisms.
|
157 |
+
d = Diagram([g * f])
|
158 |
+
assert f in d.premises
|
159 |
+
assert g in d.premises
|
160 |
+
|
161 |
+
# Check subdiagrams.
|
162 |
+
d = Diagram([f, g], {g * f: "unique"})
|
163 |
+
|
164 |
+
d1 = Diagram([f])
|
165 |
+
assert d.is_subdiagram(d1)
|
166 |
+
assert not d1.is_subdiagram(d)
|
167 |
+
|
168 |
+
d = Diagram([NamedMorphism(B, A, "f'")])
|
169 |
+
assert not d.is_subdiagram(d1)
|
170 |
+
assert not d1.is_subdiagram(d)
|
171 |
+
|
172 |
+
d1 = Diagram([f, g], {g * f: ["unique", "something"]})
|
173 |
+
assert not d.is_subdiagram(d1)
|
174 |
+
assert not d1.is_subdiagram(d)
|
175 |
+
|
176 |
+
d = Diagram({f: "blooh"})
|
177 |
+
d1 = Diagram({f: "bleeh"})
|
178 |
+
assert not d.is_subdiagram(d1)
|
179 |
+
assert not d1.is_subdiagram(d)
|
180 |
+
|
181 |
+
d = Diagram([f, g], {f: "unique", g * f: "veryunique"})
|
182 |
+
d1 = d.subdiagram_from_objects(FiniteSet(A, B))
|
183 |
+
assert d1 == Diagram([f], {f: "unique"})
|
184 |
+
raises(ValueError, lambda: d.subdiagram_from_objects(FiniteSet(A,
|
185 |
+
Object("D"))))
|
186 |
+
|
187 |
+
raises(ValueError, lambda: Diagram({IdentityMorphism(A): "unique"}))
|
188 |
+
|
189 |
+
|
190 |
+
def test_category():
|
191 |
+
A = Object("A")
|
192 |
+
B = Object("B")
|
193 |
+
C = Object("C")
|
194 |
+
|
195 |
+
f = NamedMorphism(A, B, "f")
|
196 |
+
g = NamedMorphism(B, C, "g")
|
197 |
+
|
198 |
+
d1 = Diagram([f, g])
|
199 |
+
d2 = Diagram([f])
|
200 |
+
|
201 |
+
objects = d1.objects | d2.objects
|
202 |
+
|
203 |
+
K = Category("K", objects, commutative_diagrams=[d1, d2])
|
204 |
+
|
205 |
+
assert K.name == "K"
|
206 |
+
assert K.objects == Class(objects)
|
207 |
+
assert K.commutative_diagrams == FiniteSet(d1, d2)
|
208 |
+
|
209 |
+
raises(ValueError, lambda: Category(""))
|
venv/lib/python3.10/site-packages/sympy/categories/tests/test_drawing.py
ADDED
@@ -0,0 +1,919 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.categories.diagram_drawing import _GrowableGrid, ArrowStringDescription
|
2 |
+
from sympy.categories import (DiagramGrid, Object, NamedMorphism,
|
3 |
+
Diagram, XypicDiagramDrawer, xypic_draw_diagram)
|
4 |
+
from sympy.sets.sets import FiniteSet
|
5 |
+
|
6 |
+
|
7 |
+
def test_GrowableGrid():
|
8 |
+
grid = _GrowableGrid(1, 2)
|
9 |
+
|
10 |
+
# Check dimensions.
|
11 |
+
assert grid.width == 1
|
12 |
+
assert grid.height == 2
|
13 |
+
|
14 |
+
# Check initialization of elements.
|
15 |
+
assert grid[0, 0] is None
|
16 |
+
assert grid[1, 0] is None
|
17 |
+
|
18 |
+
# Check assignment to elements.
|
19 |
+
grid[0, 0] = 1
|
20 |
+
grid[1, 0] = "two"
|
21 |
+
|
22 |
+
assert grid[0, 0] == 1
|
23 |
+
assert grid[1, 0] == "two"
|
24 |
+
|
25 |
+
# Check appending a row.
|
26 |
+
grid.append_row()
|
27 |
+
|
28 |
+
assert grid.width == 1
|
29 |
+
assert grid.height == 3
|
30 |
+
|
31 |
+
assert grid[0, 0] == 1
|
32 |
+
assert grid[1, 0] == "two"
|
33 |
+
assert grid[2, 0] is None
|
34 |
+
|
35 |
+
# Check appending a column.
|
36 |
+
grid.append_column()
|
37 |
+
assert grid.width == 2
|
38 |
+
assert grid.height == 3
|
39 |
+
|
40 |
+
assert grid[0, 0] == 1
|
41 |
+
assert grid[1, 0] == "two"
|
42 |
+
assert grid[2, 0] is None
|
43 |
+
|
44 |
+
assert grid[0, 1] is None
|
45 |
+
assert grid[1, 1] is None
|
46 |
+
assert grid[2, 1] is None
|
47 |
+
|
48 |
+
grid = _GrowableGrid(1, 2)
|
49 |
+
grid[0, 0] = 1
|
50 |
+
grid[1, 0] = "two"
|
51 |
+
|
52 |
+
# Check prepending a row.
|
53 |
+
grid.prepend_row()
|
54 |
+
assert grid.width == 1
|
55 |
+
assert grid.height == 3
|
56 |
+
|
57 |
+
assert grid[0, 0] is None
|
58 |
+
assert grid[1, 0] == 1
|
59 |
+
assert grid[2, 0] == "two"
|
60 |
+
|
61 |
+
# Check prepending a column.
|
62 |
+
grid.prepend_column()
|
63 |
+
assert grid.width == 2
|
64 |
+
assert grid.height == 3
|
65 |
+
|
66 |
+
assert grid[0, 0] is None
|
67 |
+
assert grid[1, 0] is None
|
68 |
+
assert grid[2, 0] is None
|
69 |
+
|
70 |
+
assert grid[0, 1] is None
|
71 |
+
assert grid[1, 1] == 1
|
72 |
+
assert grid[2, 1] == "two"
|
73 |
+
|
74 |
+
|
75 |
+
def test_DiagramGrid():
|
76 |
+
# Set up some objects and morphisms.
|
77 |
+
A = Object("A")
|
78 |
+
B = Object("B")
|
79 |
+
C = Object("C")
|
80 |
+
D = Object("D")
|
81 |
+
E = Object("E")
|
82 |
+
|
83 |
+
f = NamedMorphism(A, B, "f")
|
84 |
+
g = NamedMorphism(B, C, "g")
|
85 |
+
h = NamedMorphism(D, A, "h")
|
86 |
+
k = NamedMorphism(D, B, "k")
|
87 |
+
|
88 |
+
# A one-morphism diagram.
|
89 |
+
d = Diagram([f])
|
90 |
+
grid = DiagramGrid(d)
|
91 |
+
|
92 |
+
assert grid.width == 2
|
93 |
+
assert grid.height == 1
|
94 |
+
assert grid[0, 0] == A
|
95 |
+
assert grid[0, 1] == B
|
96 |
+
assert grid.morphisms == {f: FiniteSet()}
|
97 |
+
|
98 |
+
# A triangle.
|
99 |
+
d = Diagram([f, g], {g * f: "unique"})
|
100 |
+
grid = DiagramGrid(d)
|
101 |
+
|
102 |
+
assert grid.width == 2
|
103 |
+
assert grid.height == 2
|
104 |
+
assert grid[0, 0] == A
|
105 |
+
assert grid[0, 1] == B
|
106 |
+
assert grid[1, 0] == C
|
107 |
+
assert grid[1, 1] is None
|
108 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(),
|
109 |
+
g * f: FiniteSet("unique")}
|
110 |
+
|
111 |
+
# A triangle with a "loop" morphism.
|
112 |
+
l_A = NamedMorphism(A, A, "l_A")
|
113 |
+
d = Diagram([f, g, l_A])
|
114 |
+
grid = DiagramGrid(d)
|
115 |
+
|
116 |
+
assert grid.width == 2
|
117 |
+
assert grid.height == 2
|
118 |
+
assert grid[0, 0] == A
|
119 |
+
assert grid[0, 1] == B
|
120 |
+
assert grid[1, 0] is None
|
121 |
+
assert grid[1, 1] == C
|
122 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), l_A: FiniteSet()}
|
123 |
+
|
124 |
+
# A simple diagram.
|
125 |
+
d = Diagram([f, g, h, k])
|
126 |
+
grid = DiagramGrid(d)
|
127 |
+
|
128 |
+
assert grid.width == 3
|
129 |
+
assert grid.height == 2
|
130 |
+
assert grid[0, 0] == A
|
131 |
+
assert grid[0, 1] == B
|
132 |
+
assert grid[0, 2] == D
|
133 |
+
assert grid[1, 0] is None
|
134 |
+
assert grid[1, 1] == C
|
135 |
+
assert grid[1, 2] is None
|
136 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
137 |
+
k: FiniteSet()}
|
138 |
+
|
139 |
+
assert str(grid) == '[[Object("A"), Object("B"), Object("D")], ' \
|
140 |
+
'[None, Object("C"), None]]'
|
141 |
+
|
142 |
+
# A chain of morphisms.
|
143 |
+
f = NamedMorphism(A, B, "f")
|
144 |
+
g = NamedMorphism(B, C, "g")
|
145 |
+
h = NamedMorphism(C, D, "h")
|
146 |
+
k = NamedMorphism(D, E, "k")
|
147 |
+
d = Diagram([f, g, h, k])
|
148 |
+
grid = DiagramGrid(d)
|
149 |
+
|
150 |
+
assert grid.width == 3
|
151 |
+
assert grid.height == 3
|
152 |
+
assert grid[0, 0] == A
|
153 |
+
assert grid[0, 1] == B
|
154 |
+
assert grid[0, 2] is None
|
155 |
+
assert grid[1, 0] is None
|
156 |
+
assert grid[1, 1] == C
|
157 |
+
assert grid[1, 2] == D
|
158 |
+
assert grid[2, 0] is None
|
159 |
+
assert grid[2, 1] is None
|
160 |
+
assert grid[2, 2] == E
|
161 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
162 |
+
k: FiniteSet()}
|
163 |
+
|
164 |
+
# A square.
|
165 |
+
f = NamedMorphism(A, B, "f")
|
166 |
+
g = NamedMorphism(B, D, "g")
|
167 |
+
h = NamedMorphism(A, C, "h")
|
168 |
+
k = NamedMorphism(C, D, "k")
|
169 |
+
d = Diagram([f, g, h, k])
|
170 |
+
grid = DiagramGrid(d)
|
171 |
+
|
172 |
+
assert grid.width == 2
|
173 |
+
assert grid.height == 2
|
174 |
+
assert grid[0, 0] == A
|
175 |
+
assert grid[0, 1] == B
|
176 |
+
assert grid[1, 0] == C
|
177 |
+
assert grid[1, 1] == D
|
178 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
179 |
+
k: FiniteSet()}
|
180 |
+
|
181 |
+
# A strange diagram which resulted from a typo when creating a
|
182 |
+
# test for five lemma, but which allowed to stop one extra problem
|
183 |
+
# in the algorithm.
|
184 |
+
A = Object("A")
|
185 |
+
B = Object("B")
|
186 |
+
C = Object("C")
|
187 |
+
D = Object("D")
|
188 |
+
E = Object("E")
|
189 |
+
A_ = Object("A'")
|
190 |
+
B_ = Object("B'")
|
191 |
+
C_ = Object("C'")
|
192 |
+
D_ = Object("D'")
|
193 |
+
E_ = Object("E'")
|
194 |
+
|
195 |
+
f = NamedMorphism(A, B, "f")
|
196 |
+
g = NamedMorphism(B, C, "g")
|
197 |
+
h = NamedMorphism(C, D, "h")
|
198 |
+
i = NamedMorphism(D, E, "i")
|
199 |
+
|
200 |
+
# These 4 morphisms should be between primed objects.
|
201 |
+
j = NamedMorphism(A, B, "j")
|
202 |
+
k = NamedMorphism(B, C, "k")
|
203 |
+
l = NamedMorphism(C, D, "l")
|
204 |
+
m = NamedMorphism(D, E, "m")
|
205 |
+
|
206 |
+
o = NamedMorphism(A, A_, "o")
|
207 |
+
p = NamedMorphism(B, B_, "p")
|
208 |
+
q = NamedMorphism(C, C_, "q")
|
209 |
+
r = NamedMorphism(D, D_, "r")
|
210 |
+
s = NamedMorphism(E, E_, "s")
|
211 |
+
|
212 |
+
d = Diagram([f, g, h, i, j, k, l, m, o, p, q, r, s])
|
213 |
+
grid = DiagramGrid(d)
|
214 |
+
|
215 |
+
assert grid.width == 3
|
216 |
+
assert grid.height == 4
|
217 |
+
assert grid[0, 0] is None
|
218 |
+
assert grid[0, 1] == A
|
219 |
+
assert grid[0, 2] == A_
|
220 |
+
assert grid[1, 0] == C
|
221 |
+
assert grid[1, 1] == B
|
222 |
+
assert grid[1, 2] == B_
|
223 |
+
assert grid[2, 0] == C_
|
224 |
+
assert grid[2, 1] == D
|
225 |
+
assert grid[2, 2] == D_
|
226 |
+
assert grid[3, 0] is None
|
227 |
+
assert grid[3, 1] == E
|
228 |
+
assert grid[3, 2] == E_
|
229 |
+
|
230 |
+
morphisms = {}
|
231 |
+
for m in [f, g, h, i, j, k, l, m, o, p, q, r, s]:
|
232 |
+
morphisms[m] = FiniteSet()
|
233 |
+
assert grid.morphisms == morphisms
|
234 |
+
|
235 |
+
# A cube.
|
236 |
+
A1 = Object("A1")
|
237 |
+
A2 = Object("A2")
|
238 |
+
A3 = Object("A3")
|
239 |
+
A4 = Object("A4")
|
240 |
+
A5 = Object("A5")
|
241 |
+
A6 = Object("A6")
|
242 |
+
A7 = Object("A7")
|
243 |
+
A8 = Object("A8")
|
244 |
+
|
245 |
+
# The top face of the cube.
|
246 |
+
f1 = NamedMorphism(A1, A2, "f1")
|
247 |
+
f2 = NamedMorphism(A1, A3, "f2")
|
248 |
+
f3 = NamedMorphism(A2, A4, "f3")
|
249 |
+
f4 = NamedMorphism(A3, A4, "f3")
|
250 |
+
|
251 |
+
# The bottom face of the cube.
|
252 |
+
f5 = NamedMorphism(A5, A6, "f5")
|
253 |
+
f6 = NamedMorphism(A5, A7, "f6")
|
254 |
+
f7 = NamedMorphism(A6, A8, "f7")
|
255 |
+
f8 = NamedMorphism(A7, A8, "f8")
|
256 |
+
|
257 |
+
# The remaining morphisms.
|
258 |
+
f9 = NamedMorphism(A1, A5, "f9")
|
259 |
+
f10 = NamedMorphism(A2, A6, "f10")
|
260 |
+
f11 = NamedMorphism(A3, A7, "f11")
|
261 |
+
f12 = NamedMorphism(A4, A8, "f11")
|
262 |
+
|
263 |
+
d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12])
|
264 |
+
grid = DiagramGrid(d)
|
265 |
+
|
266 |
+
assert grid.width == 4
|
267 |
+
assert grid.height == 3
|
268 |
+
assert grid[0, 0] is None
|
269 |
+
assert grid[0, 1] == A5
|
270 |
+
assert grid[0, 2] == A6
|
271 |
+
assert grid[0, 3] is None
|
272 |
+
assert grid[1, 0] is None
|
273 |
+
assert grid[1, 1] == A1
|
274 |
+
assert grid[1, 2] == A2
|
275 |
+
assert grid[1, 3] is None
|
276 |
+
assert grid[2, 0] == A7
|
277 |
+
assert grid[2, 1] == A3
|
278 |
+
assert grid[2, 2] == A4
|
279 |
+
assert grid[2, 3] == A8
|
280 |
+
|
281 |
+
morphisms = {}
|
282 |
+
for m in [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12]:
|
283 |
+
morphisms[m] = FiniteSet()
|
284 |
+
assert grid.morphisms == morphisms
|
285 |
+
|
286 |
+
# A line diagram.
|
287 |
+
A = Object("A")
|
288 |
+
B = Object("B")
|
289 |
+
C = Object("C")
|
290 |
+
D = Object("D")
|
291 |
+
E = Object("E")
|
292 |
+
|
293 |
+
f = NamedMorphism(A, B, "f")
|
294 |
+
g = NamedMorphism(B, C, "g")
|
295 |
+
h = NamedMorphism(C, D, "h")
|
296 |
+
i = NamedMorphism(D, E, "i")
|
297 |
+
d = Diagram([f, g, h, i])
|
298 |
+
grid = DiagramGrid(d, layout="sequential")
|
299 |
+
|
300 |
+
assert grid.width == 5
|
301 |
+
assert grid.height == 1
|
302 |
+
assert grid[0, 0] == A
|
303 |
+
assert grid[0, 1] == B
|
304 |
+
assert grid[0, 2] == C
|
305 |
+
assert grid[0, 3] == D
|
306 |
+
assert grid[0, 4] == E
|
307 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
308 |
+
i: FiniteSet()}
|
309 |
+
|
310 |
+
# Test the transposed version.
|
311 |
+
grid = DiagramGrid(d, layout="sequential", transpose=True)
|
312 |
+
|
313 |
+
assert grid.width == 1
|
314 |
+
assert grid.height == 5
|
315 |
+
assert grid[0, 0] == A
|
316 |
+
assert grid[1, 0] == B
|
317 |
+
assert grid[2, 0] == C
|
318 |
+
assert grid[3, 0] == D
|
319 |
+
assert grid[4, 0] == E
|
320 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
321 |
+
i: FiniteSet()}
|
322 |
+
|
323 |
+
# A pullback.
|
324 |
+
m1 = NamedMorphism(A, B, "m1")
|
325 |
+
m2 = NamedMorphism(A, C, "m2")
|
326 |
+
s1 = NamedMorphism(B, D, "s1")
|
327 |
+
s2 = NamedMorphism(C, D, "s2")
|
328 |
+
f1 = NamedMorphism(E, B, "f1")
|
329 |
+
f2 = NamedMorphism(E, C, "f2")
|
330 |
+
g = NamedMorphism(E, A, "g")
|
331 |
+
|
332 |
+
d = Diagram([m1, m2, s1, s2, f1, f2], {g: "unique"})
|
333 |
+
grid = DiagramGrid(d)
|
334 |
+
|
335 |
+
assert grid.width == 3
|
336 |
+
assert grid.height == 2
|
337 |
+
assert grid[0, 0] == A
|
338 |
+
assert grid[0, 1] == B
|
339 |
+
assert grid[0, 2] == E
|
340 |
+
assert grid[1, 0] == C
|
341 |
+
assert grid[1, 1] == D
|
342 |
+
assert grid[1, 2] is None
|
343 |
+
|
344 |
+
morphisms = {g: FiniteSet("unique")}
|
345 |
+
for m in [m1, m2, s1, s2, f1, f2]:
|
346 |
+
morphisms[m] = FiniteSet()
|
347 |
+
assert grid.morphisms == morphisms
|
348 |
+
|
349 |
+
# Test the pullback with sequential layout, just for stress
|
350 |
+
# testing.
|
351 |
+
grid = DiagramGrid(d, layout="sequential")
|
352 |
+
|
353 |
+
assert grid.width == 5
|
354 |
+
assert grid.height == 1
|
355 |
+
assert grid[0, 0] == D
|
356 |
+
assert grid[0, 1] == B
|
357 |
+
assert grid[0, 2] == A
|
358 |
+
assert grid[0, 3] == C
|
359 |
+
assert grid[0, 4] == E
|
360 |
+
assert grid.morphisms == morphisms
|
361 |
+
|
362 |
+
# Test a pullback with object grouping.
|
363 |
+
grid = DiagramGrid(d, groups=FiniteSet(E, FiniteSet(A, B, C, D)))
|
364 |
+
|
365 |
+
assert grid.width == 3
|
366 |
+
assert grid.height == 2
|
367 |
+
assert grid[0, 0] == E
|
368 |
+
assert grid[0, 1] == A
|
369 |
+
assert grid[0, 2] == B
|
370 |
+
assert grid[1, 0] is None
|
371 |
+
assert grid[1, 1] == C
|
372 |
+
assert grid[1, 2] == D
|
373 |
+
assert grid.morphisms == morphisms
|
374 |
+
|
375 |
+
# Five lemma, actually.
|
376 |
+
A = Object("A")
|
377 |
+
B = Object("B")
|
378 |
+
C = Object("C")
|
379 |
+
D = Object("D")
|
380 |
+
E = Object("E")
|
381 |
+
A_ = Object("A'")
|
382 |
+
B_ = Object("B'")
|
383 |
+
C_ = Object("C'")
|
384 |
+
D_ = Object("D'")
|
385 |
+
E_ = Object("E'")
|
386 |
+
|
387 |
+
f = NamedMorphism(A, B, "f")
|
388 |
+
g = NamedMorphism(B, C, "g")
|
389 |
+
h = NamedMorphism(C, D, "h")
|
390 |
+
i = NamedMorphism(D, E, "i")
|
391 |
+
|
392 |
+
j = NamedMorphism(A_, B_, "j")
|
393 |
+
k = NamedMorphism(B_, C_, "k")
|
394 |
+
l = NamedMorphism(C_, D_, "l")
|
395 |
+
m = NamedMorphism(D_, E_, "m")
|
396 |
+
|
397 |
+
o = NamedMorphism(A, A_, "o")
|
398 |
+
p = NamedMorphism(B, B_, "p")
|
399 |
+
q = NamedMorphism(C, C_, "q")
|
400 |
+
r = NamedMorphism(D, D_, "r")
|
401 |
+
s = NamedMorphism(E, E_, "s")
|
402 |
+
|
403 |
+
d = Diagram([f, g, h, i, j, k, l, m, o, p, q, r, s])
|
404 |
+
grid = DiagramGrid(d)
|
405 |
+
|
406 |
+
assert grid.width == 5
|
407 |
+
assert grid.height == 3
|
408 |
+
assert grid[0, 0] is None
|
409 |
+
assert grid[0, 1] == A
|
410 |
+
assert grid[0, 2] == A_
|
411 |
+
assert grid[0, 3] is None
|
412 |
+
assert grid[0, 4] is None
|
413 |
+
assert grid[1, 0] == C
|
414 |
+
assert grid[1, 1] == B
|
415 |
+
assert grid[1, 2] == B_
|
416 |
+
assert grid[1, 3] == C_
|
417 |
+
assert grid[1, 4] is None
|
418 |
+
assert grid[2, 0] == D
|
419 |
+
assert grid[2, 1] == E
|
420 |
+
assert grid[2, 2] is None
|
421 |
+
assert grid[2, 3] == D_
|
422 |
+
assert grid[2, 4] == E_
|
423 |
+
|
424 |
+
morphisms = {}
|
425 |
+
for m in [f, g, h, i, j, k, l, m, o, p, q, r, s]:
|
426 |
+
morphisms[m] = FiniteSet()
|
427 |
+
assert grid.morphisms == morphisms
|
428 |
+
|
429 |
+
# Test the five lemma with object grouping.
|
430 |
+
grid = DiagramGrid(d, FiniteSet(
|
431 |
+
FiniteSet(A, B, C, D, E), FiniteSet(A_, B_, C_, D_, E_)))
|
432 |
+
|
433 |
+
assert grid.width == 6
|
434 |
+
assert grid.height == 3
|
435 |
+
assert grid[0, 0] == A
|
436 |
+
assert grid[0, 1] == B
|
437 |
+
assert grid[0, 2] is None
|
438 |
+
assert grid[0, 3] == A_
|
439 |
+
assert grid[0, 4] == B_
|
440 |
+
assert grid[0, 5] is None
|
441 |
+
assert grid[1, 0] is None
|
442 |
+
assert grid[1, 1] == C
|
443 |
+
assert grid[1, 2] == D
|
444 |
+
assert grid[1, 3] is None
|
445 |
+
assert grid[1, 4] == C_
|
446 |
+
assert grid[1, 5] == D_
|
447 |
+
assert grid[2, 0] is None
|
448 |
+
assert grid[2, 1] is None
|
449 |
+
assert grid[2, 2] == E
|
450 |
+
assert grid[2, 3] is None
|
451 |
+
assert grid[2, 4] is None
|
452 |
+
assert grid[2, 5] == E_
|
453 |
+
assert grid.morphisms == morphisms
|
454 |
+
|
455 |
+
# Test the five lemma with object grouping, but mixing containers
|
456 |
+
# to represent groups.
|
457 |
+
grid = DiagramGrid(d, [(A, B, C, D, E), {A_, B_, C_, D_, E_}])
|
458 |
+
|
459 |
+
assert grid.width == 6
|
460 |
+
assert grid.height == 3
|
461 |
+
assert grid[0, 0] == A
|
462 |
+
assert grid[0, 1] == B
|
463 |
+
assert grid[0, 2] is None
|
464 |
+
assert grid[0, 3] == A_
|
465 |
+
assert grid[0, 4] == B_
|
466 |
+
assert grid[0, 5] is None
|
467 |
+
assert grid[1, 0] is None
|
468 |
+
assert grid[1, 1] == C
|
469 |
+
assert grid[1, 2] == D
|
470 |
+
assert grid[1, 3] is None
|
471 |
+
assert grid[1, 4] == C_
|
472 |
+
assert grid[1, 5] == D_
|
473 |
+
assert grid[2, 0] is None
|
474 |
+
assert grid[2, 1] is None
|
475 |
+
assert grid[2, 2] == E
|
476 |
+
assert grid[2, 3] is None
|
477 |
+
assert grid[2, 4] is None
|
478 |
+
assert grid[2, 5] == E_
|
479 |
+
assert grid.morphisms == morphisms
|
480 |
+
|
481 |
+
# Test the five lemma with object grouping and hints.
|
482 |
+
grid = DiagramGrid(d, {
|
483 |
+
FiniteSet(A, B, C, D, E): {"layout": "sequential",
|
484 |
+
"transpose": True},
|
485 |
+
FiniteSet(A_, B_, C_, D_, E_): {"layout": "sequential",
|
486 |
+
"transpose": True}},
|
487 |
+
transpose=True)
|
488 |
+
|
489 |
+
assert grid.width == 5
|
490 |
+
assert grid.height == 2
|
491 |
+
assert grid[0, 0] == A
|
492 |
+
assert grid[0, 1] == B
|
493 |
+
assert grid[0, 2] == C
|
494 |
+
assert grid[0, 3] == D
|
495 |
+
assert grid[0, 4] == E
|
496 |
+
assert grid[1, 0] == A_
|
497 |
+
assert grid[1, 1] == B_
|
498 |
+
assert grid[1, 2] == C_
|
499 |
+
assert grid[1, 3] == D_
|
500 |
+
assert grid[1, 4] == E_
|
501 |
+
assert grid.morphisms == morphisms
|
502 |
+
|
503 |
+
# A two-triangle disconnected diagram.
|
504 |
+
f = NamedMorphism(A, B, "f")
|
505 |
+
g = NamedMorphism(B, C, "g")
|
506 |
+
f_ = NamedMorphism(A_, B_, "f")
|
507 |
+
g_ = NamedMorphism(B_, C_, "g")
|
508 |
+
d = Diagram([f, g, f_, g_], {g * f: "unique", g_ * f_: "unique"})
|
509 |
+
grid = DiagramGrid(d)
|
510 |
+
|
511 |
+
assert grid.width == 4
|
512 |
+
assert grid.height == 2
|
513 |
+
assert grid[0, 0] == A
|
514 |
+
assert grid[0, 1] == B
|
515 |
+
assert grid[0, 2] == A_
|
516 |
+
assert grid[0, 3] == B_
|
517 |
+
assert grid[1, 0] == C
|
518 |
+
assert grid[1, 1] is None
|
519 |
+
assert grid[1, 2] == C_
|
520 |
+
assert grid[1, 3] is None
|
521 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), f_: FiniteSet(),
|
522 |
+
g_: FiniteSet(), g * f: FiniteSet("unique"),
|
523 |
+
g_ * f_: FiniteSet("unique")}
|
524 |
+
|
525 |
+
# A two-morphism disconnected diagram.
|
526 |
+
f = NamedMorphism(A, B, "f")
|
527 |
+
g = NamedMorphism(C, D, "g")
|
528 |
+
d = Diagram([f, g])
|
529 |
+
grid = DiagramGrid(d)
|
530 |
+
|
531 |
+
assert grid.width == 4
|
532 |
+
assert grid.height == 1
|
533 |
+
assert grid[0, 0] == A
|
534 |
+
assert grid[0, 1] == B
|
535 |
+
assert grid[0, 2] == C
|
536 |
+
assert grid[0, 3] == D
|
537 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet()}
|
538 |
+
|
539 |
+
# Test a one-object diagram.
|
540 |
+
f = NamedMorphism(A, A, "f")
|
541 |
+
d = Diagram([f])
|
542 |
+
grid = DiagramGrid(d)
|
543 |
+
|
544 |
+
assert grid.width == 1
|
545 |
+
assert grid.height == 1
|
546 |
+
assert grid[0, 0] == A
|
547 |
+
|
548 |
+
# Test a two-object disconnected diagram.
|
549 |
+
g = NamedMorphism(B, B, "g")
|
550 |
+
d = Diagram([f, g])
|
551 |
+
grid = DiagramGrid(d)
|
552 |
+
|
553 |
+
assert grid.width == 2
|
554 |
+
assert grid.height == 1
|
555 |
+
assert grid[0, 0] == A
|
556 |
+
assert grid[0, 1] == B
|
557 |
+
|
558 |
+
|
559 |
+
def test_DiagramGrid_pseudopod():
|
560 |
+
# Test a diagram in which even growing a pseudopod does not
|
561 |
+
# eventually help.
|
562 |
+
A = Object("A")
|
563 |
+
B = Object("B")
|
564 |
+
C = Object("C")
|
565 |
+
D = Object("D")
|
566 |
+
E = Object("E")
|
567 |
+
F = Object("F")
|
568 |
+
A_ = Object("A'")
|
569 |
+
B_ = Object("B'")
|
570 |
+
C_ = Object("C'")
|
571 |
+
D_ = Object("D'")
|
572 |
+
E_ = Object("E'")
|
573 |
+
|
574 |
+
f1 = NamedMorphism(A, B, "f1")
|
575 |
+
f2 = NamedMorphism(A, C, "f2")
|
576 |
+
f3 = NamedMorphism(A, D, "f3")
|
577 |
+
f4 = NamedMorphism(A, E, "f4")
|
578 |
+
f5 = NamedMorphism(A, A_, "f5")
|
579 |
+
f6 = NamedMorphism(A, B_, "f6")
|
580 |
+
f7 = NamedMorphism(A, C_, "f7")
|
581 |
+
f8 = NamedMorphism(A, D_, "f8")
|
582 |
+
f9 = NamedMorphism(A, E_, "f9")
|
583 |
+
f10 = NamedMorphism(A, F, "f10")
|
584 |
+
d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10])
|
585 |
+
grid = DiagramGrid(d)
|
586 |
+
|
587 |
+
assert grid.width == 5
|
588 |
+
assert grid.height == 3
|
589 |
+
assert grid[0, 0] == E
|
590 |
+
assert grid[0, 1] == C
|
591 |
+
assert grid[0, 2] == C_
|
592 |
+
assert grid[0, 3] == E_
|
593 |
+
assert grid[0, 4] == F
|
594 |
+
assert grid[1, 0] == D
|
595 |
+
assert grid[1, 1] == A
|
596 |
+
assert grid[1, 2] == A_
|
597 |
+
assert grid[1, 3] is None
|
598 |
+
assert grid[1, 4] is None
|
599 |
+
assert grid[2, 0] == D_
|
600 |
+
assert grid[2, 1] == B
|
601 |
+
assert grid[2, 2] == B_
|
602 |
+
assert grid[2, 3] is None
|
603 |
+
assert grid[2, 4] is None
|
604 |
+
|
605 |
+
morphisms = {}
|
606 |
+
for f in [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10]:
|
607 |
+
morphisms[f] = FiniteSet()
|
608 |
+
assert grid.morphisms == morphisms
|
609 |
+
|
610 |
+
|
611 |
+
def test_ArrowStringDescription():
|
612 |
+
astr = ArrowStringDescription("cm", "", None, "", "", "d", "r", "_", "f")
|
613 |
+
assert str(astr) == "\\ar[dr]_{f}"
|
614 |
+
|
615 |
+
astr = ArrowStringDescription("cm", "", 12, "", "", "d", "r", "_", "f")
|
616 |
+
assert str(astr) == "\\ar[dr]_{f}"
|
617 |
+
|
618 |
+
astr = ArrowStringDescription("cm", "^", 12, "", "", "d", "r", "_", "f")
|
619 |
+
assert str(astr) == "\\ar@/^12cm/[dr]_{f}"
|
620 |
+
|
621 |
+
astr = ArrowStringDescription("cm", "", 12, "r", "", "d", "r", "_", "f")
|
622 |
+
assert str(astr) == "\\ar[dr]_{f}"
|
623 |
+
|
624 |
+
astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f")
|
625 |
+
assert str(astr) == "\\ar@(r,u)[dr]_{f}"
|
626 |
+
|
627 |
+
astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f")
|
628 |
+
assert str(astr) == "\\ar@(r,u)[dr]_{f}"
|
629 |
+
|
630 |
+
astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f")
|
631 |
+
astr.arrow_style = "{-->}"
|
632 |
+
assert str(astr) == "\\ar@(r,u)@{-->}[dr]_{f}"
|
633 |
+
|
634 |
+
astr = ArrowStringDescription("cm", "_", 12, "", "", "d", "r", "_", "f")
|
635 |
+
astr.arrow_style = "{-->}"
|
636 |
+
assert str(astr) == "\\ar@/_12cm/@{-->}[dr]_{f}"
|
637 |
+
|
638 |
+
|
639 |
+
def test_XypicDiagramDrawer_line():
|
640 |
+
# A linear diagram.
|
641 |
+
A = Object("A")
|
642 |
+
B = Object("B")
|
643 |
+
C = Object("C")
|
644 |
+
D = Object("D")
|
645 |
+
E = Object("E")
|
646 |
+
|
647 |
+
f = NamedMorphism(A, B, "f")
|
648 |
+
g = NamedMorphism(B, C, "g")
|
649 |
+
h = NamedMorphism(C, D, "h")
|
650 |
+
i = NamedMorphism(D, E, "i")
|
651 |
+
d = Diagram([f, g, h, i])
|
652 |
+
grid = DiagramGrid(d, layout="sequential")
|
653 |
+
drawer = XypicDiagramDrawer()
|
654 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
655 |
+
"A \\ar[r]^{f} & B \\ar[r]^{g} & C \\ar[r]^{h} & D \\ar[r]^{i} & E \n" \
|
656 |
+
"}\n"
|
657 |
+
|
658 |
+
# The same diagram, transposed.
|
659 |
+
grid = DiagramGrid(d, layout="sequential", transpose=True)
|
660 |
+
drawer = XypicDiagramDrawer()
|
661 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
662 |
+
"A \\ar[d]^{f} \\\\\n" \
|
663 |
+
"B \\ar[d]^{g} \\\\\n" \
|
664 |
+
"C \\ar[d]^{h} \\\\\n" \
|
665 |
+
"D \\ar[d]^{i} \\\\\n" \
|
666 |
+
"E \n" \
|
667 |
+
"}\n"
|
668 |
+
|
669 |
+
|
670 |
+
def test_XypicDiagramDrawer_triangle():
|
671 |
+
# A triangle diagram.
|
672 |
+
A = Object("A")
|
673 |
+
B = Object("B")
|
674 |
+
C = Object("C")
|
675 |
+
f = NamedMorphism(A, B, "f")
|
676 |
+
g = NamedMorphism(B, C, "g")
|
677 |
+
|
678 |
+
d = Diagram([f, g], {g * f: "unique"})
|
679 |
+
grid = DiagramGrid(d)
|
680 |
+
drawer = XypicDiagramDrawer()
|
681 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
682 |
+
"A \\ar[d]_{g\\circ f} \\ar[r]^{f} & B \\ar[ld]^{g} \\\\\n" \
|
683 |
+
"C & \n" \
|
684 |
+
"}\n"
|
685 |
+
|
686 |
+
# The same diagram, transposed.
|
687 |
+
grid = DiagramGrid(d, transpose=True)
|
688 |
+
drawer = XypicDiagramDrawer()
|
689 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
690 |
+
"A \\ar[r]^{g\\circ f} \\ar[d]_{f} & C \\\\\n" \
|
691 |
+
"B \\ar[ru]_{g} & \n" \
|
692 |
+
"}\n"
|
693 |
+
|
694 |
+
# The same diagram, with a masked morphism.
|
695 |
+
assert drawer.draw(d, grid, masked=[g]) == "\\xymatrix{\n" \
|
696 |
+
"A \\ar[r]^{g\\circ f} \\ar[d]_{f} & C \\\\\n" \
|
697 |
+
"B & \n" \
|
698 |
+
"}\n"
|
699 |
+
|
700 |
+
# The same diagram with a formatter for "unique".
|
701 |
+
def formatter(astr):
|
702 |
+
astr.label = "\\exists !" + astr.label
|
703 |
+
astr.arrow_style = "{-->}"
|
704 |
+
|
705 |
+
drawer.arrow_formatters["unique"] = formatter
|
706 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
707 |
+
"A \\ar@{-->}[r]^{\\exists !g\\circ f} \\ar[d]_{f} & C \\\\\n" \
|
708 |
+
"B \\ar[ru]_{g} & \n" \
|
709 |
+
"}\n"
|
710 |
+
|
711 |
+
# The same diagram with a default formatter.
|
712 |
+
def default_formatter(astr):
|
713 |
+
astr.label_displacement = "(0.45)"
|
714 |
+
|
715 |
+
drawer.default_arrow_formatter = default_formatter
|
716 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
717 |
+
"A \\ar@{-->}[r]^(0.45){\\exists !g\\circ f} \\ar[d]_(0.45){f} & C \\\\\n" \
|
718 |
+
"B \\ar[ru]_(0.45){g} & \n" \
|
719 |
+
"}\n"
|
720 |
+
|
721 |
+
# A triangle diagram with a lot of morphisms between the same
|
722 |
+
# objects.
|
723 |
+
f1 = NamedMorphism(B, A, "f1")
|
724 |
+
f2 = NamedMorphism(A, B, "f2")
|
725 |
+
g1 = NamedMorphism(C, B, "g1")
|
726 |
+
g2 = NamedMorphism(B, C, "g2")
|
727 |
+
d = Diagram([f, f1, f2, g, g1, g2], {f1 * g1: "unique", g2 * f2: "unique"})
|
728 |
+
|
729 |
+
grid = DiagramGrid(d, transpose=True)
|
730 |
+
drawer = XypicDiagramDrawer()
|
731 |
+
assert drawer.draw(d, grid, masked=[f1*g1*g2*f2, g2*f2*f1*g1]) == \
|
732 |
+
"\\xymatrix{\n" \
|
733 |
+
"A \\ar[r]^{g_{2}\\circ f_{2}} \\ar[d]_{f} \\ar@/^3mm/[d]^{f_{2}} " \
|
734 |
+
"& C \\ar@/^3mm/[l]^{f_{1}\\circ g_{1}} \\ar@/^3mm/[ld]^{g_{1}} \\\\\n" \
|
735 |
+
"B \\ar@/^3mm/[u]^{f_{1}} \\ar[ru]_{g} \\ar@/^3mm/[ru]^{g_{2}} & \n" \
|
736 |
+
"}\n"
|
737 |
+
|
738 |
+
|
739 |
+
def test_XypicDiagramDrawer_cube():
|
740 |
+
# A cube diagram.
|
741 |
+
A1 = Object("A1")
|
742 |
+
A2 = Object("A2")
|
743 |
+
A3 = Object("A3")
|
744 |
+
A4 = Object("A4")
|
745 |
+
A5 = Object("A5")
|
746 |
+
A6 = Object("A6")
|
747 |
+
A7 = Object("A7")
|
748 |
+
A8 = Object("A8")
|
749 |
+
|
750 |
+
# The top face of the cube.
|
751 |
+
f1 = NamedMorphism(A1, A2, "f1")
|
752 |
+
f2 = NamedMorphism(A1, A3, "f2")
|
753 |
+
f3 = NamedMorphism(A2, A4, "f3")
|
754 |
+
f4 = NamedMorphism(A3, A4, "f3")
|
755 |
+
|
756 |
+
# The bottom face of the cube.
|
757 |
+
f5 = NamedMorphism(A5, A6, "f5")
|
758 |
+
f6 = NamedMorphism(A5, A7, "f6")
|
759 |
+
f7 = NamedMorphism(A6, A8, "f7")
|
760 |
+
f8 = NamedMorphism(A7, A8, "f8")
|
761 |
+
|
762 |
+
# The remaining morphisms.
|
763 |
+
f9 = NamedMorphism(A1, A5, "f9")
|
764 |
+
f10 = NamedMorphism(A2, A6, "f10")
|
765 |
+
f11 = NamedMorphism(A3, A7, "f11")
|
766 |
+
f12 = NamedMorphism(A4, A8, "f11")
|
767 |
+
|
768 |
+
d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12])
|
769 |
+
grid = DiagramGrid(d)
|
770 |
+
drawer = XypicDiagramDrawer()
|
771 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
772 |
+
"& A_{5} \\ar[r]^{f_{5}} \\ar[ldd]_{f_{6}} & A_{6} \\ar[rdd]^{f_{7}} " \
|
773 |
+
"& \\\\\n" \
|
774 |
+
"& A_{1} \\ar[r]^{f_{1}} \\ar[d]^{f_{2}} \\ar[u]^{f_{9}} & A_{2} " \
|
775 |
+
"\\ar[d]^{f_{3}} \\ar[u]_{f_{10}} & \\\\\n" \
|
776 |
+
"A_{7} \\ar@/_3mm/[rrr]_{f_{8}} & A_{3} \\ar[r]^{f_{3}} \\ar[l]_{f_{11}} " \
|
777 |
+
"& A_{4} \\ar[r]^{f_{11}} & A_{8} \n" \
|
778 |
+
"}\n"
|
779 |
+
|
780 |
+
# The same diagram, transposed.
|
781 |
+
grid = DiagramGrid(d, transpose=True)
|
782 |
+
drawer = XypicDiagramDrawer()
|
783 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
784 |
+
"& & A_{7} \\ar@/^3mm/[ddd]^{f_{8}} \\\\\n" \
|
785 |
+
"A_{5} \\ar[d]_{f_{5}} \\ar[rru]^{f_{6}} & A_{1} \\ar[d]^{f_{1}} " \
|
786 |
+
"\\ar[r]^{f_{2}} \\ar[l]^{f_{9}} & A_{3} \\ar[d]_{f_{3}} " \
|
787 |
+
"\\ar[u]^{f_{11}} \\\\\n" \
|
788 |
+
"A_{6} \\ar[rrd]_{f_{7}} & A_{2} \\ar[r]^{f_{3}} \\ar[l]^{f_{10}} " \
|
789 |
+
"& A_{4} \\ar[d]_{f_{11}} \\\\\n" \
|
790 |
+
"& & A_{8} \n" \
|
791 |
+
"}\n"
|
792 |
+
|
793 |
+
|
794 |
+
def test_XypicDiagramDrawer_curved_and_loops():
|
795 |
+
# A simple diagram, with a curved arrow.
|
796 |
+
A = Object("A")
|
797 |
+
B = Object("B")
|
798 |
+
C = Object("C")
|
799 |
+
D = Object("D")
|
800 |
+
|
801 |
+
f = NamedMorphism(A, B, "f")
|
802 |
+
g = NamedMorphism(B, C, "g")
|
803 |
+
h = NamedMorphism(D, A, "h")
|
804 |
+
k = NamedMorphism(D, B, "k")
|
805 |
+
d = Diagram([f, g, h, k])
|
806 |
+
grid = DiagramGrid(d)
|
807 |
+
drawer = XypicDiagramDrawer()
|
808 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
809 |
+
"A \\ar[r]_{f} & B \\ar[d]^{g} & D \\ar[l]^{k} \\ar@/_3mm/[ll]_{h} \\\\\n" \
|
810 |
+
"& C & \n" \
|
811 |
+
"}\n"
|
812 |
+
|
813 |
+
# The same diagram, transposed.
|
814 |
+
grid = DiagramGrid(d, transpose=True)
|
815 |
+
drawer = XypicDiagramDrawer()
|
816 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
817 |
+
"A \\ar[d]^{f} & \\\\\n" \
|
818 |
+
"B \\ar[r]^{g} & C \\\\\n" \
|
819 |
+
"D \\ar[u]_{k} \\ar@/^3mm/[uu]^{h} & \n" \
|
820 |
+
"}\n"
|
821 |
+
|
822 |
+
# The same diagram, larger and rotated.
|
823 |
+
assert drawer.draw(d, grid, diagram_format="@+1cm@dr") == \
|
824 |
+
"\\xymatrix@+1cm@dr{\n" \
|
825 |
+
"A \\ar[d]^{f} & \\\\\n" \
|
826 |
+
"B \\ar[r]^{g} & C \\\\\n" \
|
827 |
+
"D \\ar[u]_{k} \\ar@/^3mm/[uu]^{h} & \n" \
|
828 |
+
"}\n"
|
829 |
+
|
830 |
+
# A simple diagram with three curved arrows.
|
831 |
+
h1 = NamedMorphism(D, A, "h1")
|
832 |
+
h2 = NamedMorphism(A, D, "h2")
|
833 |
+
k = NamedMorphism(D, B, "k")
|
834 |
+
d = Diagram([f, g, h, k, h1, h2])
|
835 |
+
grid = DiagramGrid(d)
|
836 |
+
drawer = XypicDiagramDrawer()
|
837 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
838 |
+
"A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} & B \\ar[d]^{g} & D \\ar[l]^{k} " \
|
839 |
+
"\\ar@/_7mm/[ll]_{h} \\ar@/_11mm/[ll]_{h_{1}} \\\\\n" \
|
840 |
+
"& C & \n" \
|
841 |
+
"}\n"
|
842 |
+
|
843 |
+
# The same diagram, transposed.
|
844 |
+
grid = DiagramGrid(d, transpose=True)
|
845 |
+
drawer = XypicDiagramDrawer()
|
846 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
847 |
+
"A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} & \\\\\n" \
|
848 |
+
"B \\ar[r]^{g} & C \\\\\n" \
|
849 |
+
"D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} & \n" \
|
850 |
+
"}\n"
|
851 |
+
|
852 |
+
# The same diagram, with "loop" morphisms.
|
853 |
+
l_A = NamedMorphism(A, A, "l_A")
|
854 |
+
l_D = NamedMorphism(D, D, "l_D")
|
855 |
+
l_C = NamedMorphism(C, C, "l_C")
|
856 |
+
d = Diagram([f, g, h, k, h1, h2, l_A, l_D, l_C])
|
857 |
+
grid = DiagramGrid(d)
|
858 |
+
drawer = XypicDiagramDrawer()
|
859 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
860 |
+
"A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} \\ar@(u,l)[]^{l_{A}} " \
|
861 |
+
"& B \\ar[d]^{g} & D \\ar[l]^{k} \\ar@/_7mm/[ll]_{h} " \
|
862 |
+
"\\ar@/_11mm/[ll]_{h_{1}} \\ar@(r,u)[]^{l_{D}} \\\\\n" \
|
863 |
+
"& C \\ar@(l,d)[]^{l_{C}} & \n" \
|
864 |
+
"}\n"
|
865 |
+
|
866 |
+
# The same diagram with "loop" morphisms, transposed.
|
867 |
+
grid = DiagramGrid(d, transpose=True)
|
868 |
+
drawer = XypicDiagramDrawer()
|
869 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
870 |
+
"A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} \\ar@(r,u)[]^{l_{A}} & \\\\\n" \
|
871 |
+
"B \\ar[r]^{g} & C \\ar@(r,u)[]^{l_{C}} \\\\\n" \
|
872 |
+
"D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} " \
|
873 |
+
"\\ar@(l,d)[]^{l_{D}} & \n" \
|
874 |
+
"}\n"
|
875 |
+
|
876 |
+
# The same diagram with two "loop" morphisms per object.
|
877 |
+
l_A_ = NamedMorphism(A, A, "n_A")
|
878 |
+
l_D_ = NamedMorphism(D, D, "n_D")
|
879 |
+
l_C_ = NamedMorphism(C, C, "n_C")
|
880 |
+
d = Diagram([f, g, h, k, h1, h2, l_A, l_D, l_C, l_A_, l_D_, l_C_])
|
881 |
+
grid = DiagramGrid(d)
|
882 |
+
drawer = XypicDiagramDrawer()
|
883 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
884 |
+
"A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} \\ar@(u,l)[]^{l_{A}} " \
|
885 |
+
"\\ar@/^3mm/@(l,d)[]^{n_{A}} & B \\ar[d]^{g} & D \\ar[l]^{k} " \
|
886 |
+
"\\ar@/_7mm/[ll]_{h} \\ar@/_11mm/[ll]_{h_{1}} \\ar@(r,u)[]^{l_{D}} " \
|
887 |
+
"\\ar@/^3mm/@(d,r)[]^{n_{D}} \\\\\n" \
|
888 |
+
"& C \\ar@(l,d)[]^{l_{C}} \\ar@/^3mm/@(d,r)[]^{n_{C}} & \n" \
|
889 |
+
"}\n"
|
890 |
+
|
891 |
+
# The same diagram with two "loop" morphisms per object, transposed.
|
892 |
+
grid = DiagramGrid(d, transpose=True)
|
893 |
+
drawer = XypicDiagramDrawer()
|
894 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
895 |
+
"A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} \\ar@(r,u)[]^{l_{A}} " \
|
896 |
+
"\\ar@/^3mm/@(u,l)[]^{n_{A}} & \\\\\n" \
|
897 |
+
"B \\ar[r]^{g} & C \\ar@(r,u)[]^{l_{C}} \\ar@/^3mm/@(d,r)[]^{n_{C}} \\\\\n" \
|
898 |
+
"D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} " \
|
899 |
+
"\\ar@(l,d)[]^{l_{D}} \\ar@/^3mm/@(d,r)[]^{n_{D}} & \n" \
|
900 |
+
"}\n"
|
901 |
+
|
902 |
+
|
903 |
+
def test_xypic_draw_diagram():
|
904 |
+
# A linear diagram.
|
905 |
+
A = Object("A")
|
906 |
+
B = Object("B")
|
907 |
+
C = Object("C")
|
908 |
+
D = Object("D")
|
909 |
+
E = Object("E")
|
910 |
+
|
911 |
+
f = NamedMorphism(A, B, "f")
|
912 |
+
g = NamedMorphism(B, C, "g")
|
913 |
+
h = NamedMorphism(C, D, "h")
|
914 |
+
i = NamedMorphism(D, E, "i")
|
915 |
+
d = Diagram([f, g, h, i])
|
916 |
+
|
917 |
+
grid = DiagramGrid(d, layout="sequential")
|
918 |
+
drawer = XypicDiagramDrawer()
|
919 |
+
assert drawer.draw(d, grid) == xypic_draw_diagram(d, layout="sequential")
|
venv/lib/python3.10/site-packages/sympy/crypto/__init__.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.crypto.crypto import (cycle_list,
|
2 |
+
encipher_shift, encipher_affine, encipher_substitution,
|
3 |
+
check_and_join, encipher_vigenere, decipher_vigenere, bifid5_square,
|
4 |
+
bifid6_square, encipher_hill, decipher_hill,
|
5 |
+
encipher_bifid5, encipher_bifid6, decipher_bifid5,
|
6 |
+
decipher_bifid6, encipher_kid_rsa, decipher_kid_rsa,
|
7 |
+
kid_rsa_private_key, kid_rsa_public_key, decipher_rsa, rsa_private_key,
|
8 |
+
rsa_public_key, encipher_rsa, lfsr_connection_polynomial,
|
9 |
+
lfsr_autocorrelation, lfsr_sequence, encode_morse, decode_morse,
|
10 |
+
elgamal_private_key, elgamal_public_key, decipher_elgamal,
|
11 |
+
encipher_elgamal, dh_private_key, dh_public_key, dh_shared_key,
|
12 |
+
padded_key, encipher_bifid, decipher_bifid, bifid_square, bifid5,
|
13 |
+
bifid6, bifid10, decipher_gm, encipher_gm, gm_public_key,
|
14 |
+
gm_private_key, bg_private_key, bg_public_key, encipher_bg, decipher_bg,
|
15 |
+
encipher_rot13, decipher_rot13, encipher_atbash, decipher_atbash,
|
16 |
+
encipher_railfence, decipher_railfence)
|
17 |
+
|
18 |
+
__all__ = [
|
19 |
+
'cycle_list', 'encipher_shift', 'encipher_affine',
|
20 |
+
'encipher_substitution', 'check_and_join', 'encipher_vigenere',
|
21 |
+
'decipher_vigenere', 'bifid5_square', 'bifid6_square', 'encipher_hill',
|
22 |
+
'decipher_hill', 'encipher_bifid5', 'encipher_bifid6', 'decipher_bifid5',
|
23 |
+
'decipher_bifid6', 'encipher_kid_rsa', 'decipher_kid_rsa',
|
24 |
+
'kid_rsa_private_key', 'kid_rsa_public_key', 'decipher_rsa',
|
25 |
+
'rsa_private_key', 'rsa_public_key', 'encipher_rsa',
|
26 |
+
'lfsr_connection_polynomial', 'lfsr_autocorrelation', 'lfsr_sequence',
|
27 |
+
'encode_morse', 'decode_morse', 'elgamal_private_key',
|
28 |
+
'elgamal_public_key', 'decipher_elgamal', 'encipher_elgamal',
|
29 |
+
'dh_private_key', 'dh_public_key', 'dh_shared_key', 'padded_key',
|
30 |
+
'encipher_bifid', 'decipher_bifid', 'bifid_square', 'bifid5', 'bifid6',
|
31 |
+
'bifid10', 'decipher_gm', 'encipher_gm', 'gm_public_key',
|
32 |
+
'gm_private_key', 'bg_private_key', 'bg_public_key', 'encipher_bg',
|
33 |
+
'decipher_bg', 'encipher_rot13', 'decipher_rot13', 'encipher_atbash',
|
34 |
+
'decipher_atbash', 'encipher_railfence', 'decipher_railfence',
|
35 |
+
]
|
venv/lib/python3.10/site-packages/sympy/crypto/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.64 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/crypto/__pycache__/crypto.cpython-310.pyc
ADDED
Binary file (93.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/crypto/crypto.py
ADDED
@@ -0,0 +1,3360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file contains some classical ciphers and routines
|
3 |
+
implementing a linear-feedback shift register (LFSR)
|
4 |
+
and the Diffie-Hellman key exchange.
|
5 |
+
|
6 |
+
.. warning::
|
7 |
+
|
8 |
+
This module is intended for educational purposes only. Do not use the
|
9 |
+
functions in this module for real cryptographic applications. If you wish
|
10 |
+
to encrypt real data, we recommend using something like the `cryptography
|
11 |
+
<https://cryptography.io/en/latest/>`_ module.
|
12 |
+
|
13 |
+
"""
|
14 |
+
|
15 |
+
from string import whitespace, ascii_uppercase as uppercase, printable
|
16 |
+
from functools import reduce
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from itertools import cycle
|
20 |
+
|
21 |
+
from sympy.core import Symbol
|
22 |
+
from sympy.core.numbers import igcdex, mod_inverse, igcd, Rational
|
23 |
+
from sympy.core.random import _randrange, _randint
|
24 |
+
from sympy.matrices import Matrix
|
25 |
+
from sympy.ntheory import isprime, primitive_root, factorint
|
26 |
+
from sympy.ntheory import totient as _euler
|
27 |
+
from sympy.ntheory import reduced_totient as _carmichael
|
28 |
+
from sympy.ntheory.generate import nextprime
|
29 |
+
from sympy.ntheory.modular import crt
|
30 |
+
from sympy.polys.domains import FF
|
31 |
+
from sympy.polys.polytools import gcd, Poly
|
32 |
+
from sympy.utilities.misc import as_int, filldedent, translate
|
33 |
+
from sympy.utilities.iterables import uniq, multiset
|
34 |
+
|
35 |
+
|
36 |
+
class NonInvertibleCipherWarning(RuntimeWarning):
|
37 |
+
"""A warning raised if the cipher is not invertible."""
|
38 |
+
def __init__(self, msg):
|
39 |
+
self.fullMessage = msg
|
40 |
+
|
41 |
+
def __str__(self):
|
42 |
+
return '\n\t' + self.fullMessage
|
43 |
+
|
44 |
+
def warn(self, stacklevel=3):
|
45 |
+
warnings.warn(self, stacklevel=stacklevel)
|
46 |
+
|
47 |
+
|
48 |
+
def AZ(s=None):
|
49 |
+
"""Return the letters of ``s`` in uppercase. In case more than
|
50 |
+
one string is passed, each of them will be processed and a list
|
51 |
+
of upper case strings will be returned.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
========
|
55 |
+
|
56 |
+
>>> from sympy.crypto.crypto import AZ
|
57 |
+
>>> AZ('Hello, world!')
|
58 |
+
'HELLOWORLD'
|
59 |
+
>>> AZ('Hello, world!'.split())
|
60 |
+
['HELLO', 'WORLD']
|
61 |
+
|
62 |
+
See Also
|
63 |
+
========
|
64 |
+
|
65 |
+
check_and_join
|
66 |
+
|
67 |
+
"""
|
68 |
+
if not s:
|
69 |
+
return uppercase
|
70 |
+
t = isinstance(s, str)
|
71 |
+
if t:
|
72 |
+
s = [s]
|
73 |
+
rv = [check_and_join(i.upper().split(), uppercase, filter=True)
|
74 |
+
for i in s]
|
75 |
+
if t:
|
76 |
+
return rv[0]
|
77 |
+
return rv
|
78 |
+
|
79 |
+
bifid5 = AZ().replace('J', '')
|
80 |
+
bifid6 = AZ() + '0123456789'
|
81 |
+
bifid10 = printable
|
82 |
+
|
83 |
+
|
84 |
+
def padded_key(key, symbols):
|
85 |
+
"""Return a string of the distinct characters of ``symbols`` with
|
86 |
+
those of ``key`` appearing first. A ValueError is raised if
|
87 |
+
a) there are duplicate characters in ``symbols`` or
|
88 |
+
b) there are characters in ``key`` that are not in ``symbols``.
|
89 |
+
|
90 |
+
Examples
|
91 |
+
========
|
92 |
+
|
93 |
+
>>> from sympy.crypto.crypto import padded_key
|
94 |
+
>>> padded_key('PUPPY', 'OPQRSTUVWXY')
|
95 |
+
'PUYOQRSTVWX'
|
96 |
+
>>> padded_key('RSA', 'ARTIST')
|
97 |
+
Traceback (most recent call last):
|
98 |
+
...
|
99 |
+
ValueError: duplicate characters in symbols: T
|
100 |
+
|
101 |
+
"""
|
102 |
+
syms = list(uniq(symbols))
|
103 |
+
if len(syms) != len(symbols):
|
104 |
+
extra = ''.join(sorted({
|
105 |
+
i for i in symbols if symbols.count(i) > 1}))
|
106 |
+
raise ValueError('duplicate characters in symbols: %s' % extra)
|
107 |
+
extra = set(key) - set(syms)
|
108 |
+
if extra:
|
109 |
+
raise ValueError(
|
110 |
+
'characters in key but not symbols: %s' % ''.join(
|
111 |
+
sorted(extra)))
|
112 |
+
key0 = ''.join(list(uniq(key)))
|
113 |
+
# remove from syms characters in key0
|
114 |
+
return key0 + translate(''.join(syms), None, key0)
|
115 |
+
|
116 |
+
|
117 |
+
def check_and_join(phrase, symbols=None, filter=None):
|
118 |
+
"""
|
119 |
+
Joins characters of ``phrase`` and if ``symbols`` is given, raises
|
120 |
+
an error if any character in ``phrase`` is not in ``symbols``.
|
121 |
+
|
122 |
+
Parameters
|
123 |
+
==========
|
124 |
+
|
125 |
+
phrase
|
126 |
+
String or list of strings to be returned as a string.
|
127 |
+
|
128 |
+
symbols
|
129 |
+
Iterable of characters allowed in ``phrase``.
|
130 |
+
|
131 |
+
If ``symbols`` is ``None``, no checking is performed.
|
132 |
+
|
133 |
+
Examples
|
134 |
+
========
|
135 |
+
|
136 |
+
>>> from sympy.crypto.crypto import check_and_join
|
137 |
+
>>> check_and_join('a phrase')
|
138 |
+
'a phrase'
|
139 |
+
>>> check_and_join('a phrase'.upper().split())
|
140 |
+
'APHRASE'
|
141 |
+
>>> check_and_join('a phrase!'.upper().split(), 'ARE', filter=True)
|
142 |
+
'ARAE'
|
143 |
+
>>> check_and_join('a phrase!'.upper().split(), 'ARE')
|
144 |
+
Traceback (most recent call last):
|
145 |
+
...
|
146 |
+
ValueError: characters in phrase but not symbols: "!HPS"
|
147 |
+
|
148 |
+
"""
|
149 |
+
rv = ''.join(''.join(phrase))
|
150 |
+
if symbols is not None:
|
151 |
+
symbols = check_and_join(symbols)
|
152 |
+
missing = ''.join(sorted(set(rv) - set(symbols)))
|
153 |
+
if missing:
|
154 |
+
if not filter:
|
155 |
+
raise ValueError(
|
156 |
+
'characters in phrase but not symbols: "%s"' % missing)
|
157 |
+
rv = translate(rv, None, missing)
|
158 |
+
return rv
|
159 |
+
|
160 |
+
|
161 |
+
def _prep(msg, key, alp, default=None):
|
162 |
+
if not alp:
|
163 |
+
if not default:
|
164 |
+
alp = AZ()
|
165 |
+
msg = AZ(msg)
|
166 |
+
key = AZ(key)
|
167 |
+
else:
|
168 |
+
alp = default
|
169 |
+
else:
|
170 |
+
alp = ''.join(alp)
|
171 |
+
key = check_and_join(key, alp, filter=True)
|
172 |
+
msg = check_and_join(msg, alp, filter=True)
|
173 |
+
return msg, key, alp
|
174 |
+
|
175 |
+
|
176 |
+
def cycle_list(k, n):
|
177 |
+
"""
|
178 |
+
Returns the elements of the list ``range(n)`` shifted to the
|
179 |
+
left by ``k`` (so the list starts with ``k`` (mod ``n``)).
|
180 |
+
|
181 |
+
Examples
|
182 |
+
========
|
183 |
+
|
184 |
+
>>> from sympy.crypto.crypto import cycle_list
|
185 |
+
>>> cycle_list(3, 10)
|
186 |
+
[3, 4, 5, 6, 7, 8, 9, 0, 1, 2]
|
187 |
+
|
188 |
+
"""
|
189 |
+
k = k % n
|
190 |
+
return list(range(k, n)) + list(range(k))
|
191 |
+
|
192 |
+
|
193 |
+
######## shift cipher examples ############
|
194 |
+
|
195 |
+
|
196 |
+
def encipher_shift(msg, key, symbols=None):
|
197 |
+
"""
|
198 |
+
Performs shift cipher encryption on plaintext msg, and returns the
|
199 |
+
ciphertext.
|
200 |
+
|
201 |
+
Parameters
|
202 |
+
==========
|
203 |
+
|
204 |
+
key : int
|
205 |
+
The secret key.
|
206 |
+
|
207 |
+
msg : str
|
208 |
+
Plaintext of upper-case letters.
|
209 |
+
|
210 |
+
Returns
|
211 |
+
=======
|
212 |
+
|
213 |
+
str
|
214 |
+
Ciphertext of upper-case letters.
|
215 |
+
|
216 |
+
Examples
|
217 |
+
========
|
218 |
+
|
219 |
+
>>> from sympy.crypto.crypto import encipher_shift, decipher_shift
|
220 |
+
>>> msg = "GONAVYBEATARMY"
|
221 |
+
>>> ct = encipher_shift(msg, 1); ct
|
222 |
+
'HPOBWZCFBUBSNZ'
|
223 |
+
|
224 |
+
To decipher the shifted text, change the sign of the key:
|
225 |
+
|
226 |
+
>>> encipher_shift(ct, -1)
|
227 |
+
'GONAVYBEATARMY'
|
228 |
+
|
229 |
+
There is also a convenience function that does this with the
|
230 |
+
original key:
|
231 |
+
|
232 |
+
>>> decipher_shift(ct, 1)
|
233 |
+
'GONAVYBEATARMY'
|
234 |
+
|
235 |
+
Notes
|
236 |
+
=====
|
237 |
+
|
238 |
+
ALGORITHM:
|
239 |
+
|
240 |
+
STEPS:
|
241 |
+
0. Number the letters of the alphabet from 0, ..., N
|
242 |
+
1. Compute from the string ``msg`` a list ``L1`` of
|
243 |
+
corresponding integers.
|
244 |
+
2. Compute from the list ``L1`` a new list ``L2``, given by
|
245 |
+
adding ``(k mod 26)`` to each element in ``L1``.
|
246 |
+
3. Compute from the list ``L2`` a string ``ct`` of
|
247 |
+
corresponding letters.
|
248 |
+
|
249 |
+
The shift cipher is also called the Caesar cipher, after
|
250 |
+
Julius Caesar, who, according to Suetonius, used it with a
|
251 |
+
shift of three to protect messages of military significance.
|
252 |
+
Caesar's nephew Augustus reportedly used a similar cipher, but
|
253 |
+
with a right shift of 1.
|
254 |
+
|
255 |
+
References
|
256 |
+
==========
|
257 |
+
|
258 |
+
.. [1] https://en.wikipedia.org/wiki/Caesar_cipher
|
259 |
+
.. [2] https://mathworld.wolfram.com/CaesarsMethod.html
|
260 |
+
|
261 |
+
See Also
|
262 |
+
========
|
263 |
+
|
264 |
+
decipher_shift
|
265 |
+
|
266 |
+
"""
|
267 |
+
msg, _, A = _prep(msg, '', symbols)
|
268 |
+
shift = len(A) - key % len(A)
|
269 |
+
key = A[shift:] + A[:shift]
|
270 |
+
return translate(msg, key, A)
|
271 |
+
|
272 |
+
|
273 |
+
def decipher_shift(msg, key, symbols=None):
|
274 |
+
"""
|
275 |
+
Return the text by shifting the characters of ``msg`` to the
|
276 |
+
left by the amount given by ``key``.
|
277 |
+
|
278 |
+
Examples
|
279 |
+
========
|
280 |
+
|
281 |
+
>>> from sympy.crypto.crypto import encipher_shift, decipher_shift
|
282 |
+
>>> msg = "GONAVYBEATARMY"
|
283 |
+
>>> ct = encipher_shift(msg, 1); ct
|
284 |
+
'HPOBWZCFBUBSNZ'
|
285 |
+
|
286 |
+
To decipher the shifted text, change the sign of the key:
|
287 |
+
|
288 |
+
>>> encipher_shift(ct, -1)
|
289 |
+
'GONAVYBEATARMY'
|
290 |
+
|
291 |
+
Or use this function with the original key:
|
292 |
+
|
293 |
+
>>> decipher_shift(ct, 1)
|
294 |
+
'GONAVYBEATARMY'
|
295 |
+
|
296 |
+
"""
|
297 |
+
return encipher_shift(msg, -key, symbols)
|
298 |
+
|
299 |
+
def encipher_rot13(msg, symbols=None):
|
300 |
+
"""
|
301 |
+
Performs the ROT13 encryption on a given plaintext ``msg``.
|
302 |
+
|
303 |
+
Explanation
|
304 |
+
===========
|
305 |
+
|
306 |
+
ROT13 is a substitution cipher which substitutes each letter
|
307 |
+
in the plaintext message for the letter furthest away from it
|
308 |
+
in the English alphabet.
|
309 |
+
|
310 |
+
Equivalently, it is just a Caeser (shift) cipher with a shift
|
311 |
+
key of 13 (midway point of the alphabet).
|
312 |
+
|
313 |
+
References
|
314 |
+
==========
|
315 |
+
|
316 |
+
.. [1] https://en.wikipedia.org/wiki/ROT13
|
317 |
+
|
318 |
+
See Also
|
319 |
+
========
|
320 |
+
|
321 |
+
decipher_rot13
|
322 |
+
encipher_shift
|
323 |
+
|
324 |
+
"""
|
325 |
+
return encipher_shift(msg, 13, symbols)
|
326 |
+
|
327 |
+
def decipher_rot13(msg, symbols=None):
|
328 |
+
"""
|
329 |
+
Performs the ROT13 decryption on a given plaintext ``msg``.
|
330 |
+
|
331 |
+
Explanation
|
332 |
+
============
|
333 |
+
|
334 |
+
``decipher_rot13`` is equivalent to ``encipher_rot13`` as both
|
335 |
+
``decipher_shift`` with a key of 13 and ``encipher_shift`` key with a
|
336 |
+
key of 13 will return the same results. Nonetheless,
|
337 |
+
``decipher_rot13`` has nonetheless been explicitly defined here for
|
338 |
+
consistency.
|
339 |
+
|
340 |
+
Examples
|
341 |
+
========
|
342 |
+
|
343 |
+
>>> from sympy.crypto.crypto import encipher_rot13, decipher_rot13
|
344 |
+
>>> msg = 'GONAVYBEATARMY'
|
345 |
+
>>> ciphertext = encipher_rot13(msg);ciphertext
|
346 |
+
'TBANILORNGNEZL'
|
347 |
+
>>> decipher_rot13(ciphertext)
|
348 |
+
'GONAVYBEATARMY'
|
349 |
+
>>> encipher_rot13(msg) == decipher_rot13(msg)
|
350 |
+
True
|
351 |
+
>>> msg == decipher_rot13(ciphertext)
|
352 |
+
True
|
353 |
+
|
354 |
+
"""
|
355 |
+
return decipher_shift(msg, 13, symbols)
|
356 |
+
|
357 |
+
######## affine cipher examples ############
|
358 |
+
|
359 |
+
|
360 |
+
def encipher_affine(msg, key, symbols=None, _inverse=False):
|
361 |
+
r"""
|
362 |
+
Performs the affine cipher encryption on plaintext ``msg``, and
|
363 |
+
returns the ciphertext.
|
364 |
+
|
365 |
+
Explanation
|
366 |
+
===========
|
367 |
+
|
368 |
+
Encryption is based on the map `x \rightarrow ax+b` (mod `N`)
|
369 |
+
where ``N`` is the number of characters in the alphabet.
|
370 |
+
Decryption is based on the map `x \rightarrow cx+d` (mod `N`),
|
371 |
+
where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`).
|
372 |
+
In particular, for the map to be invertible, we need
|
373 |
+
`\mathrm{gcd}(a, N) = 1` and an error will be raised if this is
|
374 |
+
not true.
|
375 |
+
|
376 |
+
Parameters
|
377 |
+
==========
|
378 |
+
|
379 |
+
msg : str
|
380 |
+
Characters that appear in ``symbols``.
|
381 |
+
|
382 |
+
a, b : int, int
|
383 |
+
A pair integers, with ``gcd(a, N) = 1`` (the secret key).
|
384 |
+
|
385 |
+
symbols
|
386 |
+
String of characters (default = uppercase letters).
|
387 |
+
|
388 |
+
When no symbols are given, ``msg`` is converted to upper case
|
389 |
+
letters and all other characters are ignored.
|
390 |
+
|
391 |
+
Returns
|
392 |
+
=======
|
393 |
+
|
394 |
+
ct
|
395 |
+
String of characters (the ciphertext message)
|
396 |
+
|
397 |
+
Notes
|
398 |
+
=====
|
399 |
+
|
400 |
+
ALGORITHM:
|
401 |
+
|
402 |
+
STEPS:
|
403 |
+
0. Number the letters of the alphabet from 0, ..., N
|
404 |
+
1. Compute from the string ``msg`` a list ``L1`` of
|
405 |
+
corresponding integers.
|
406 |
+
2. Compute from the list ``L1`` a new list ``L2``, given by
|
407 |
+
replacing ``x`` by ``a*x + b (mod N)``, for each element
|
408 |
+
``x`` in ``L1``.
|
409 |
+
3. Compute from the list ``L2`` a string ``ct`` of
|
410 |
+
corresponding letters.
|
411 |
+
|
412 |
+
This is a straightforward generalization of the shift cipher with
|
413 |
+
the added complexity of requiring 2 characters to be deciphered in
|
414 |
+
order to recover the key.
|
415 |
+
|
416 |
+
References
|
417 |
+
==========
|
418 |
+
|
419 |
+
.. [1] https://en.wikipedia.org/wiki/Affine_cipher
|
420 |
+
|
421 |
+
See Also
|
422 |
+
========
|
423 |
+
|
424 |
+
decipher_affine
|
425 |
+
|
426 |
+
"""
|
427 |
+
msg, _, A = _prep(msg, '', symbols)
|
428 |
+
N = len(A)
|
429 |
+
a, b = key
|
430 |
+
assert gcd(a, N) == 1
|
431 |
+
if _inverse:
|
432 |
+
c = mod_inverse(a, N)
|
433 |
+
d = -b*c
|
434 |
+
a, b = c, d
|
435 |
+
B = ''.join([A[(a*i + b) % N] for i in range(N)])
|
436 |
+
return translate(msg, A, B)
|
437 |
+
|
438 |
+
|
439 |
+
def decipher_affine(msg, key, symbols=None):
|
440 |
+
r"""
|
441 |
+
Return the deciphered text that was made from the mapping,
|
442 |
+
`x \rightarrow ax+b` (mod `N`), where ``N`` is the
|
443 |
+
number of characters in the alphabet. Deciphering is done by
|
444 |
+
reciphering with a new key: `x \rightarrow cx+d` (mod `N`),
|
445 |
+
where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`).
|
446 |
+
|
447 |
+
Examples
|
448 |
+
========
|
449 |
+
|
450 |
+
>>> from sympy.crypto.crypto import encipher_affine, decipher_affine
|
451 |
+
>>> msg = "GO NAVY BEAT ARMY"
|
452 |
+
>>> key = (3, 1)
|
453 |
+
>>> encipher_affine(msg, key)
|
454 |
+
'TROBMVENBGBALV'
|
455 |
+
>>> decipher_affine(_, key)
|
456 |
+
'GONAVYBEATARMY'
|
457 |
+
|
458 |
+
See Also
|
459 |
+
========
|
460 |
+
|
461 |
+
encipher_affine
|
462 |
+
|
463 |
+
"""
|
464 |
+
return encipher_affine(msg, key, symbols, _inverse=True)
|
465 |
+
|
466 |
+
|
467 |
+
def encipher_atbash(msg, symbols=None):
|
468 |
+
r"""
|
469 |
+
Enciphers a given ``msg`` into its Atbash ciphertext and returns it.
|
470 |
+
|
471 |
+
Explanation
|
472 |
+
===========
|
473 |
+
|
474 |
+
Atbash is a substitution cipher originally used to encrypt the Hebrew
|
475 |
+
alphabet. Atbash works on the principle of mapping each alphabet to its
|
476 |
+
reverse / counterpart (i.e. a would map to z, b to y etc.)
|
477 |
+
|
478 |
+
Atbash is functionally equivalent to the affine cipher with ``a = 25``
|
479 |
+
and ``b = 25``
|
480 |
+
|
481 |
+
See Also
|
482 |
+
========
|
483 |
+
|
484 |
+
decipher_atbash
|
485 |
+
|
486 |
+
"""
|
487 |
+
return encipher_affine(msg, (25, 25), symbols)
|
488 |
+
|
489 |
+
|
490 |
+
def decipher_atbash(msg, symbols=None):
|
491 |
+
r"""
|
492 |
+
Deciphers a given ``msg`` using Atbash cipher and returns it.
|
493 |
+
|
494 |
+
Explanation
|
495 |
+
===========
|
496 |
+
|
497 |
+
``decipher_atbash`` is functionally equivalent to ``encipher_atbash``.
|
498 |
+
However, it has still been added as a separate function to maintain
|
499 |
+
consistency.
|
500 |
+
|
501 |
+
Examples
|
502 |
+
========
|
503 |
+
|
504 |
+
>>> from sympy.crypto.crypto import encipher_atbash, decipher_atbash
|
505 |
+
>>> msg = 'GONAVYBEATARMY'
|
506 |
+
>>> encipher_atbash(msg)
|
507 |
+
'TLMZEBYVZGZINB'
|
508 |
+
>>> decipher_atbash(msg)
|
509 |
+
'TLMZEBYVZGZINB'
|
510 |
+
>>> encipher_atbash(msg) == decipher_atbash(msg)
|
511 |
+
True
|
512 |
+
>>> msg == encipher_atbash(encipher_atbash(msg))
|
513 |
+
True
|
514 |
+
|
515 |
+
References
|
516 |
+
==========
|
517 |
+
|
518 |
+
.. [1] https://en.wikipedia.org/wiki/Atbash
|
519 |
+
|
520 |
+
See Also
|
521 |
+
========
|
522 |
+
|
523 |
+
encipher_atbash
|
524 |
+
|
525 |
+
"""
|
526 |
+
return decipher_affine(msg, (25, 25), symbols)
|
527 |
+
|
528 |
+
#################### substitution cipher ###########################
|
529 |
+
|
530 |
+
|
531 |
+
def encipher_substitution(msg, old, new=None):
|
532 |
+
r"""
|
533 |
+
Returns the ciphertext obtained by replacing each character that
|
534 |
+
appears in ``old`` with the corresponding character in ``new``.
|
535 |
+
If ``old`` is a mapping, then new is ignored and the replacements
|
536 |
+
defined by ``old`` are used.
|
537 |
+
|
538 |
+
Explanation
|
539 |
+
===========
|
540 |
+
|
541 |
+
This is a more general than the affine cipher in that the key can
|
542 |
+
only be recovered by determining the mapping for each symbol.
|
543 |
+
Though in practice, once a few symbols are recognized the mappings
|
544 |
+
for other characters can be quickly guessed.
|
545 |
+
|
546 |
+
Examples
|
547 |
+
========
|
548 |
+
|
549 |
+
>>> from sympy.crypto.crypto import encipher_substitution, AZ
|
550 |
+
>>> old = 'OEYAG'
|
551 |
+
>>> new = '034^6'
|
552 |
+
>>> msg = AZ("go navy! beat army!")
|
553 |
+
>>> ct = encipher_substitution(msg, old, new); ct
|
554 |
+
'60N^V4B3^T^RM4'
|
555 |
+
|
556 |
+
To decrypt a substitution, reverse the last two arguments:
|
557 |
+
|
558 |
+
>>> encipher_substitution(ct, new, old)
|
559 |
+
'GONAVYBEATARMY'
|
560 |
+
|
561 |
+
In the special case where ``old`` and ``new`` are a permutation of
|
562 |
+
order 2 (representing a transposition of characters) their order
|
563 |
+
is immaterial:
|
564 |
+
|
565 |
+
>>> old = 'NAVY'
|
566 |
+
>>> new = 'ANYV'
|
567 |
+
>>> encipher = lambda x: encipher_substitution(x, old, new)
|
568 |
+
>>> encipher('NAVY')
|
569 |
+
'ANYV'
|
570 |
+
>>> encipher(_)
|
571 |
+
'NAVY'
|
572 |
+
|
573 |
+
The substitution cipher, in general, is a method
|
574 |
+
whereby "units" (not necessarily single characters) of plaintext
|
575 |
+
are replaced with ciphertext according to a regular system.
|
576 |
+
|
577 |
+
>>> ords = dict(zip('abc', ['\\%i' % ord(i) for i in 'abc']))
|
578 |
+
>>> print(encipher_substitution('abc', ords))
|
579 |
+
\97\98\99
|
580 |
+
|
581 |
+
References
|
582 |
+
==========
|
583 |
+
|
584 |
+
.. [1] https://en.wikipedia.org/wiki/Substitution_cipher
|
585 |
+
|
586 |
+
"""
|
587 |
+
return translate(msg, old, new)
|
588 |
+
|
589 |
+
|
590 |
+
######################################################################
|
591 |
+
#################### Vigenere cipher examples ########################
|
592 |
+
######################################################################
|
593 |
+
|
594 |
+
def encipher_vigenere(msg, key, symbols=None):
|
595 |
+
"""
|
596 |
+
Performs the Vigenere cipher encryption on plaintext ``msg``, and
|
597 |
+
returns the ciphertext.
|
598 |
+
|
599 |
+
Examples
|
600 |
+
========
|
601 |
+
|
602 |
+
>>> from sympy.crypto.crypto import encipher_vigenere, AZ
|
603 |
+
>>> key = "encrypt"
|
604 |
+
>>> msg = "meet me on monday"
|
605 |
+
>>> encipher_vigenere(msg, key)
|
606 |
+
'QRGKKTHRZQEBPR'
|
607 |
+
|
608 |
+
Section 1 of the Kryptos sculpture at the CIA headquarters
|
609 |
+
uses this cipher and also changes the order of the
|
610 |
+
alphabet [2]_. Here is the first line of that section of
|
611 |
+
the sculpture:
|
612 |
+
|
613 |
+
>>> from sympy.crypto.crypto import decipher_vigenere, padded_key
|
614 |
+
>>> alp = padded_key('KRYPTOS', AZ())
|
615 |
+
>>> key = 'PALIMPSEST'
|
616 |
+
>>> msg = 'EMUFPHZLRFAXYUSDJKZLDKRNSHGNFIVJ'
|
617 |
+
>>> decipher_vigenere(msg, key, alp)
|
618 |
+
'BETWEENSUBTLESHADINGANDTHEABSENC'
|
619 |
+
|
620 |
+
Explanation
|
621 |
+
===========
|
622 |
+
|
623 |
+
The Vigenere cipher is named after Blaise de Vigenere, a sixteenth
|
624 |
+
century diplomat and cryptographer, by a historical accident.
|
625 |
+
Vigenere actually invented a different and more complicated cipher.
|
626 |
+
The so-called *Vigenere cipher* was actually invented
|
627 |
+
by Giovan Batista Belaso in 1553.
|
628 |
+
|
629 |
+
This cipher was used in the 1800's, for example, during the American
|
630 |
+
Civil War. The Confederacy used a brass cipher disk to implement the
|
631 |
+
Vigenere cipher (now on display in the NSA Museum in Fort
|
632 |
+
Meade) [1]_.
|
633 |
+
|
634 |
+
The Vigenere cipher is a generalization of the shift cipher.
|
635 |
+
Whereas the shift cipher shifts each letter by the same amount
|
636 |
+
(that amount being the key of the shift cipher) the Vigenere
|
637 |
+
cipher shifts a letter by an amount determined by the key (which is
|
638 |
+
a word or phrase known only to the sender and receiver).
|
639 |
+
|
640 |
+
For example, if the key was a single letter, such as "C", then the
|
641 |
+
so-called Vigenere cipher is actually a shift cipher with a
|
642 |
+
shift of `2` (since "C" is the 2nd letter of the alphabet, if
|
643 |
+
you start counting at `0`). If the key was a word with two
|
644 |
+
letters, such as "CA", then the so-called Vigenere cipher will
|
645 |
+
shift letters in even positions by `2` and letters in odd positions
|
646 |
+
are left alone (shifted by `0`, since "A" is the 0th letter, if
|
647 |
+
you start counting at `0`).
|
648 |
+
|
649 |
+
|
650 |
+
ALGORITHM:
|
651 |
+
|
652 |
+
INPUT:
|
653 |
+
|
654 |
+
``msg``: string of characters that appear in ``symbols``
|
655 |
+
(the plaintext)
|
656 |
+
|
657 |
+
``key``: a string of characters that appear in ``symbols``
|
658 |
+
(the secret key)
|
659 |
+
|
660 |
+
``symbols``: a string of letters defining the alphabet
|
661 |
+
|
662 |
+
|
663 |
+
OUTPUT:
|
664 |
+
|
665 |
+
``ct``: string of characters (the ciphertext message)
|
666 |
+
|
667 |
+
STEPS:
|
668 |
+
0. Number the letters of the alphabet from 0, ..., N
|
669 |
+
1. Compute from the string ``key`` a list ``L1`` of
|
670 |
+
corresponding integers. Let ``n1 = len(L1)``.
|
671 |
+
2. Compute from the string ``msg`` a list ``L2`` of
|
672 |
+
corresponding integers. Let ``n2 = len(L2)``.
|
673 |
+
3. Break ``L2`` up sequentially into sublists of size
|
674 |
+
``n1``; the last sublist may be smaller than ``n1``
|
675 |
+
4. For each of these sublists ``L`` of ``L2``, compute a
|
676 |
+
new list ``C`` given by ``C[i] = L[i] + L1[i] (mod N)``
|
677 |
+
to the ``i``-th element in the sublist, for each ``i``.
|
678 |
+
5. Assemble these lists ``C`` by concatenation into a new
|
679 |
+
list of length ``n2``.
|
680 |
+
6. Compute from the new list a string ``ct`` of
|
681 |
+
corresponding letters.
|
682 |
+
|
683 |
+
Once it is known that the key is, say, `n` characters long,
|
684 |
+
frequency analysis can be applied to every `n`-th letter of
|
685 |
+
the ciphertext to determine the plaintext. This method is
|
686 |
+
called *Kasiski examination* (although it was first discovered
|
687 |
+
by Babbage). If they key is as long as the message and is
|
688 |
+
comprised of randomly selected characters -- a one-time pad -- the
|
689 |
+
message is theoretically unbreakable.
|
690 |
+
|
691 |
+
The cipher Vigenere actually discovered is an "auto-key" cipher
|
692 |
+
described as follows.
|
693 |
+
|
694 |
+
ALGORITHM:
|
695 |
+
|
696 |
+
INPUT:
|
697 |
+
|
698 |
+
``key``: a string of letters (the secret key)
|
699 |
+
|
700 |
+
``msg``: string of letters (the plaintext message)
|
701 |
+
|
702 |
+
OUTPUT:
|
703 |
+
|
704 |
+
``ct``: string of upper-case letters (the ciphertext message)
|
705 |
+
|
706 |
+
STEPS:
|
707 |
+
0. Number the letters of the alphabet from 0, ..., N
|
708 |
+
1. Compute from the string ``msg`` a list ``L2`` of
|
709 |
+
corresponding integers. Let ``n2 = len(L2)``.
|
710 |
+
2. Let ``n1`` be the length of the key. Append to the
|
711 |
+
string ``key`` the first ``n2 - n1`` characters of
|
712 |
+
the plaintext message. Compute from this string (also of
|
713 |
+
length ``n2``) a list ``L1`` of integers corresponding
|
714 |
+
to the letter numbers in the first step.
|
715 |
+
3. Compute a new list ``C`` given by
|
716 |
+
``C[i] = L1[i] + L2[i] (mod N)``.
|
717 |
+
4. Compute from the new list a string ``ct`` of letters
|
718 |
+
corresponding to the new integers.
|
719 |
+
|
720 |
+
To decipher the auto-key ciphertext, the key is used to decipher
|
721 |
+
the first ``n1`` characters and then those characters become the
|
722 |
+
key to decipher the next ``n1`` characters, etc...:
|
723 |
+
|
724 |
+
>>> m = AZ('go navy, beat army! yes you can'); m
|
725 |
+
'GONAVYBEATARMYYESYOUCAN'
|
726 |
+
>>> key = AZ('gold bug'); n1 = len(key); n2 = len(m)
|
727 |
+
>>> auto_key = key + m[:n2 - n1]; auto_key
|
728 |
+
'GOLDBUGGONAVYBEATARMYYE'
|
729 |
+
>>> ct = encipher_vigenere(m, auto_key); ct
|
730 |
+
'MCYDWSHKOGAMKZCELYFGAYR'
|
731 |
+
>>> n1 = len(key)
|
732 |
+
>>> pt = []
|
733 |
+
>>> while ct:
|
734 |
+
... part, ct = ct[:n1], ct[n1:]
|
735 |
+
... pt.append(decipher_vigenere(part, key))
|
736 |
+
... key = pt[-1]
|
737 |
+
...
|
738 |
+
>>> ''.join(pt) == m
|
739 |
+
True
|
740 |
+
|
741 |
+
References
|
742 |
+
==========
|
743 |
+
|
744 |
+
.. [1] https://en.wikipedia.org/wiki/Vigenere_cipher
|
745 |
+
.. [2] https://web.archive.org/web/20071116100808/https://filebox.vt.edu/users/batman/kryptos.html
|
746 |
+
(short URL: https://goo.gl/ijr22d)
|
747 |
+
|
748 |
+
"""
|
749 |
+
msg, key, A = _prep(msg, key, symbols)
|
750 |
+
map = {c: i for i, c in enumerate(A)}
|
751 |
+
key = [map[c] for c in key]
|
752 |
+
N = len(map)
|
753 |
+
k = len(key)
|
754 |
+
rv = []
|
755 |
+
for i, m in enumerate(msg):
|
756 |
+
rv.append(A[(map[m] + key[i % k]) % N])
|
757 |
+
rv = ''.join(rv)
|
758 |
+
return rv
|
759 |
+
|
760 |
+
|
761 |
+
def decipher_vigenere(msg, key, symbols=None):
|
762 |
+
"""
|
763 |
+
Decode using the Vigenere cipher.
|
764 |
+
|
765 |
+
Examples
|
766 |
+
========
|
767 |
+
|
768 |
+
>>> from sympy.crypto.crypto import decipher_vigenere
|
769 |
+
>>> key = "encrypt"
|
770 |
+
>>> ct = "QRGK kt HRZQE BPR"
|
771 |
+
>>> decipher_vigenere(ct, key)
|
772 |
+
'MEETMEONMONDAY'
|
773 |
+
|
774 |
+
"""
|
775 |
+
msg, key, A = _prep(msg, key, symbols)
|
776 |
+
map = {c: i for i, c in enumerate(A)}
|
777 |
+
N = len(A) # normally, 26
|
778 |
+
K = [map[c] for c in key]
|
779 |
+
n = len(K)
|
780 |
+
C = [map[c] for c in msg]
|
781 |
+
rv = ''.join([A[(-K[i % n] + c) % N] for i, c in enumerate(C)])
|
782 |
+
return rv
|
783 |
+
|
784 |
+
|
785 |
+
#################### Hill cipher ########################
|
786 |
+
|
787 |
+
|
788 |
+
def encipher_hill(msg, key, symbols=None, pad="Q"):
|
789 |
+
r"""
|
790 |
+
Return the Hill cipher encryption of ``msg``.
|
791 |
+
|
792 |
+
Explanation
|
793 |
+
===========
|
794 |
+
|
795 |
+
The Hill cipher [1]_, invented by Lester S. Hill in the 1920's [2]_,
|
796 |
+
was the first polygraphic cipher in which it was practical
|
797 |
+
(though barely) to operate on more than three symbols at once.
|
798 |
+
The following discussion assumes an elementary knowledge of
|
799 |
+
matrices.
|
800 |
+
|
801 |
+
First, each letter is first encoded as a number starting with 0.
|
802 |
+
Suppose your message `msg` consists of `n` capital letters, with no
|
803 |
+
spaces. This may be regarded an `n`-tuple M of elements of
|
804 |
+
`Z_{26}` (if the letters are those of the English alphabet). A key
|
805 |
+
in the Hill cipher is a `k x k` matrix `K`, all of whose entries
|
806 |
+
are in `Z_{26}`, such that the matrix `K` is invertible (i.e., the
|
807 |
+
linear transformation `K: Z_{N}^k \rightarrow Z_{N}^k`
|
808 |
+
is one-to-one).
|
809 |
+
|
810 |
+
|
811 |
+
Parameters
|
812 |
+
==========
|
813 |
+
|
814 |
+
msg
|
815 |
+
Plaintext message of `n` upper-case letters.
|
816 |
+
|
817 |
+
key
|
818 |
+
A `k \times k` invertible matrix `K`, all of whose entries are
|
819 |
+
in `Z_{26}` (or whatever number of symbols are being used).
|
820 |
+
|
821 |
+
pad
|
822 |
+
Character (default "Q") to use to make length of text be a
|
823 |
+
multiple of ``k``.
|
824 |
+
|
825 |
+
Returns
|
826 |
+
=======
|
827 |
+
|
828 |
+
ct
|
829 |
+
Ciphertext of upper-case letters.
|
830 |
+
|
831 |
+
Notes
|
832 |
+
=====
|
833 |
+
|
834 |
+
ALGORITHM:
|
835 |
+
|
836 |
+
STEPS:
|
837 |
+
0. Number the letters of the alphabet from 0, ..., N
|
838 |
+
1. Compute from the string ``msg`` a list ``L`` of
|
839 |
+
corresponding integers. Let ``n = len(L)``.
|
840 |
+
2. Break the list ``L`` up into ``t = ceiling(n/k)``
|
841 |
+
sublists ``L_1``, ..., ``L_t`` of size ``k`` (with
|
842 |
+
the last list "padded" to ensure its size is
|
843 |
+
``k``).
|
844 |
+
3. Compute new list ``C_1``, ..., ``C_t`` given by
|
845 |
+
``C[i] = K*L_i`` (arithmetic is done mod N), for each
|
846 |
+
``i``.
|
847 |
+
4. Concatenate these into a list ``C = C_1 + ... + C_t``.
|
848 |
+
5. Compute from ``C`` a string ``ct`` of corresponding
|
849 |
+
letters. This has length ``k*t``.
|
850 |
+
|
851 |
+
References
|
852 |
+
==========
|
853 |
+
|
854 |
+
.. [1] https://en.wikipedia.org/wiki/Hill_cipher
|
855 |
+
.. [2] Lester S. Hill, Cryptography in an Algebraic Alphabet,
|
856 |
+
The American Mathematical Monthly Vol.36, June-July 1929,
|
857 |
+
pp.306-312.
|
858 |
+
|
859 |
+
See Also
|
860 |
+
========
|
861 |
+
|
862 |
+
decipher_hill
|
863 |
+
|
864 |
+
"""
|
865 |
+
assert key.is_square
|
866 |
+
assert len(pad) == 1
|
867 |
+
msg, pad, A = _prep(msg, pad, symbols)
|
868 |
+
map = {c: i for i, c in enumerate(A)}
|
869 |
+
P = [map[c] for c in msg]
|
870 |
+
N = len(A)
|
871 |
+
k = key.cols
|
872 |
+
n = len(P)
|
873 |
+
m, r = divmod(n, k)
|
874 |
+
if r:
|
875 |
+
P = P + [map[pad]]*(k - r)
|
876 |
+
m += 1
|
877 |
+
rv = ''.join([A[c % N] for j in range(m) for c in
|
878 |
+
list(key*Matrix(k, 1, [P[i]
|
879 |
+
for i in range(k*j, k*(j + 1))]))])
|
880 |
+
return rv
|
881 |
+
|
882 |
+
|
883 |
+
def decipher_hill(msg, key, symbols=None):
|
884 |
+
"""
|
885 |
+
Deciphering is the same as enciphering but using the inverse of the
|
886 |
+
key matrix.
|
887 |
+
|
888 |
+
Examples
|
889 |
+
========
|
890 |
+
|
891 |
+
>>> from sympy.crypto.crypto import encipher_hill, decipher_hill
|
892 |
+
>>> from sympy import Matrix
|
893 |
+
|
894 |
+
>>> key = Matrix([[1, 2], [3, 5]])
|
895 |
+
>>> encipher_hill("meet me on monday", key)
|
896 |
+
'UEQDUEODOCTCWQ'
|
897 |
+
>>> decipher_hill(_, key)
|
898 |
+
'MEETMEONMONDAY'
|
899 |
+
|
900 |
+
When the length of the plaintext (stripped of invalid characters)
|
901 |
+
is not a multiple of the key dimension, extra characters will
|
902 |
+
appear at the end of the enciphered and deciphered text. In order to
|
903 |
+
decipher the text, those characters must be included in the text to
|
904 |
+
be deciphered. In the following, the key has a dimension of 4 but
|
905 |
+
the text is 2 short of being a multiple of 4 so two characters will
|
906 |
+
be added.
|
907 |
+
|
908 |
+
>>> key = Matrix([[1, 1, 1, 2], [0, 1, 1, 0],
|
909 |
+
... [2, 2, 3, 4], [1, 1, 0, 1]])
|
910 |
+
>>> msg = "ST"
|
911 |
+
>>> encipher_hill(msg, key)
|
912 |
+
'HJEB'
|
913 |
+
>>> decipher_hill(_, key)
|
914 |
+
'STQQ'
|
915 |
+
>>> encipher_hill(msg, key, pad="Z")
|
916 |
+
'ISPK'
|
917 |
+
>>> decipher_hill(_, key)
|
918 |
+
'STZZ'
|
919 |
+
|
920 |
+
If the last two characters of the ciphertext were ignored in
|
921 |
+
either case, the wrong plaintext would be recovered:
|
922 |
+
|
923 |
+
>>> decipher_hill("HD", key)
|
924 |
+
'ORMV'
|
925 |
+
>>> decipher_hill("IS", key)
|
926 |
+
'UIKY'
|
927 |
+
|
928 |
+
See Also
|
929 |
+
========
|
930 |
+
|
931 |
+
encipher_hill
|
932 |
+
|
933 |
+
"""
|
934 |
+
assert key.is_square
|
935 |
+
msg, _, A = _prep(msg, '', symbols)
|
936 |
+
map = {c: i for i, c in enumerate(A)}
|
937 |
+
C = [map[c] for c in msg]
|
938 |
+
N = len(A)
|
939 |
+
k = key.cols
|
940 |
+
n = len(C)
|
941 |
+
m, r = divmod(n, k)
|
942 |
+
if r:
|
943 |
+
C = C + [0]*(k - r)
|
944 |
+
m += 1
|
945 |
+
key_inv = key.inv_mod(N)
|
946 |
+
rv = ''.join([A[p % N] for j in range(m) for p in
|
947 |
+
list(key_inv*Matrix(
|
948 |
+
k, 1, [C[i] for i in range(k*j, k*(j + 1))]))])
|
949 |
+
return rv
|
950 |
+
|
951 |
+
|
952 |
+
#################### Bifid cipher ########################
|
953 |
+
|
954 |
+
|
955 |
+
def encipher_bifid(msg, key, symbols=None):
|
956 |
+
r"""
|
957 |
+
Performs the Bifid cipher encryption on plaintext ``msg``, and
|
958 |
+
returns the ciphertext.
|
959 |
+
|
960 |
+
This is the version of the Bifid cipher that uses an `n \times n`
|
961 |
+
Polybius square.
|
962 |
+
|
963 |
+
Parameters
|
964 |
+
==========
|
965 |
+
|
966 |
+
msg
|
967 |
+
Plaintext string.
|
968 |
+
|
969 |
+
key
|
970 |
+
Short string for key.
|
971 |
+
|
972 |
+
Duplicate characters are ignored and then it is padded with the
|
973 |
+
characters in ``symbols`` that were not in the short key.
|
974 |
+
|
975 |
+
symbols
|
976 |
+
`n \times n` characters defining the alphabet.
|
977 |
+
|
978 |
+
(default is string.printable)
|
979 |
+
|
980 |
+
Returns
|
981 |
+
=======
|
982 |
+
|
983 |
+
ciphertext
|
984 |
+
Ciphertext using Bifid5 cipher without spaces.
|
985 |
+
|
986 |
+
See Also
|
987 |
+
========
|
988 |
+
|
989 |
+
decipher_bifid, encipher_bifid5, encipher_bifid6
|
990 |
+
|
991 |
+
References
|
992 |
+
==========
|
993 |
+
|
994 |
+
.. [1] https://en.wikipedia.org/wiki/Bifid_cipher
|
995 |
+
|
996 |
+
"""
|
997 |
+
msg, key, A = _prep(msg, key, symbols, bifid10)
|
998 |
+
long_key = ''.join(uniq(key)) or A
|
999 |
+
|
1000 |
+
n = len(A)**.5
|
1001 |
+
if n != int(n):
|
1002 |
+
raise ValueError(
|
1003 |
+
'Length of alphabet (%s) is not a square number.' % len(A))
|
1004 |
+
N = int(n)
|
1005 |
+
if len(long_key) < N**2:
|
1006 |
+
long_key = list(long_key) + [x for x in A if x not in long_key]
|
1007 |
+
|
1008 |
+
# the fractionalization
|
1009 |
+
row_col = {ch: divmod(i, N) for i, ch in enumerate(long_key)}
|
1010 |
+
r, c = zip(*[row_col[x] for x in msg])
|
1011 |
+
rc = r + c
|
1012 |
+
ch = {i: ch for ch, i in row_col.items()}
|
1013 |
+
rv = ''.join(ch[i] for i in zip(rc[::2], rc[1::2]))
|
1014 |
+
return rv
|
1015 |
+
|
1016 |
+
|
1017 |
+
def decipher_bifid(msg, key, symbols=None):
|
1018 |
+
r"""
|
1019 |
+
Performs the Bifid cipher decryption on ciphertext ``msg``, and
|
1020 |
+
returns the plaintext.
|
1021 |
+
|
1022 |
+
This is the version of the Bifid cipher that uses the `n \times n`
|
1023 |
+
Polybius square.
|
1024 |
+
|
1025 |
+
Parameters
|
1026 |
+
==========
|
1027 |
+
|
1028 |
+
msg
|
1029 |
+
Ciphertext string.
|
1030 |
+
|
1031 |
+
key
|
1032 |
+
Short string for key.
|
1033 |
+
|
1034 |
+
Duplicate characters are ignored and then it is padded with the
|
1035 |
+
characters in symbols that were not in the short key.
|
1036 |
+
|
1037 |
+
symbols
|
1038 |
+
`n \times n` characters defining the alphabet.
|
1039 |
+
|
1040 |
+
(default=string.printable, a `10 \times 10` matrix)
|
1041 |
+
|
1042 |
+
Returns
|
1043 |
+
=======
|
1044 |
+
|
1045 |
+
deciphered
|
1046 |
+
Deciphered text.
|
1047 |
+
|
1048 |
+
Examples
|
1049 |
+
========
|
1050 |
+
|
1051 |
+
>>> from sympy.crypto.crypto import (
|
1052 |
+
... encipher_bifid, decipher_bifid, AZ)
|
1053 |
+
|
1054 |
+
Do an encryption using the bifid5 alphabet:
|
1055 |
+
|
1056 |
+
>>> alp = AZ().replace('J', '')
|
1057 |
+
>>> ct = AZ("meet me on monday!")
|
1058 |
+
>>> key = AZ("gold bug")
|
1059 |
+
>>> encipher_bifid(ct, key, alp)
|
1060 |
+
'IEILHHFSTSFQYE'
|
1061 |
+
|
1062 |
+
When entering the text or ciphertext, spaces are ignored so it
|
1063 |
+
can be formatted as desired. Re-entering the ciphertext from the
|
1064 |
+
preceding, putting 4 characters per line and padding with an extra
|
1065 |
+
J, does not cause problems for the deciphering:
|
1066 |
+
|
1067 |
+
>>> decipher_bifid('''
|
1068 |
+
... IEILH
|
1069 |
+
... HFSTS
|
1070 |
+
... FQYEJ''', key, alp)
|
1071 |
+
'MEETMEONMONDAY'
|
1072 |
+
|
1073 |
+
When no alphabet is given, all 100 printable characters will be
|
1074 |
+
used:
|
1075 |
+
|
1076 |
+
>>> key = ''
|
1077 |
+
>>> encipher_bifid('hello world!', key)
|
1078 |
+
'bmtwmg-bIo*w'
|
1079 |
+
>>> decipher_bifid(_, key)
|
1080 |
+
'hello world!'
|
1081 |
+
|
1082 |
+
If the key is changed, a different encryption is obtained:
|
1083 |
+
|
1084 |
+
>>> key = 'gold bug'
|
1085 |
+
>>> encipher_bifid('hello world!', 'gold_bug')
|
1086 |
+
'hg2sfuei7t}w'
|
1087 |
+
|
1088 |
+
And if the key used to decrypt the message is not exact, the
|
1089 |
+
original text will not be perfectly obtained:
|
1090 |
+
|
1091 |
+
>>> decipher_bifid(_, 'gold pug')
|
1092 |
+
'heldo~wor6d!'
|
1093 |
+
|
1094 |
+
"""
|
1095 |
+
msg, _, A = _prep(msg, '', symbols, bifid10)
|
1096 |
+
long_key = ''.join(uniq(key)) or A
|
1097 |
+
|
1098 |
+
n = len(A)**.5
|
1099 |
+
if n != int(n):
|
1100 |
+
raise ValueError(
|
1101 |
+
'Length of alphabet (%s) is not a square number.' % len(A))
|
1102 |
+
N = int(n)
|
1103 |
+
if len(long_key) < N**2:
|
1104 |
+
long_key = list(long_key) + [x for x in A if x not in long_key]
|
1105 |
+
|
1106 |
+
# the reverse fractionalization
|
1107 |
+
row_col = {
|
1108 |
+
ch: divmod(i, N) for i, ch in enumerate(long_key)}
|
1109 |
+
rc = [i for c in msg for i in row_col[c]]
|
1110 |
+
n = len(msg)
|
1111 |
+
rc = zip(*(rc[:n], rc[n:]))
|
1112 |
+
ch = {i: ch for ch, i in row_col.items()}
|
1113 |
+
rv = ''.join(ch[i] for i in rc)
|
1114 |
+
return rv
|
1115 |
+
|
1116 |
+
|
1117 |
+
def bifid_square(key):
|
1118 |
+
"""Return characters of ``key`` arranged in a square.
|
1119 |
+
|
1120 |
+
Examples
|
1121 |
+
========
|
1122 |
+
|
1123 |
+
>>> from sympy.crypto.crypto import (
|
1124 |
+
... bifid_square, AZ, padded_key, bifid5)
|
1125 |
+
>>> bifid_square(AZ().replace('J', ''))
|
1126 |
+
Matrix([
|
1127 |
+
[A, B, C, D, E],
|
1128 |
+
[F, G, H, I, K],
|
1129 |
+
[L, M, N, O, P],
|
1130 |
+
[Q, R, S, T, U],
|
1131 |
+
[V, W, X, Y, Z]])
|
1132 |
+
|
1133 |
+
>>> bifid_square(padded_key(AZ('gold bug!'), bifid5))
|
1134 |
+
Matrix([
|
1135 |
+
[G, O, L, D, B],
|
1136 |
+
[U, A, C, E, F],
|
1137 |
+
[H, I, K, M, N],
|
1138 |
+
[P, Q, R, S, T],
|
1139 |
+
[V, W, X, Y, Z]])
|
1140 |
+
|
1141 |
+
See Also
|
1142 |
+
========
|
1143 |
+
|
1144 |
+
padded_key
|
1145 |
+
|
1146 |
+
"""
|
1147 |
+
A = ''.join(uniq(''.join(key)))
|
1148 |
+
n = len(A)**.5
|
1149 |
+
if n != int(n):
|
1150 |
+
raise ValueError(
|
1151 |
+
'Length of alphabet (%s) is not a square number.' % len(A))
|
1152 |
+
n = int(n)
|
1153 |
+
f = lambda i, j: Symbol(A[n*i + j])
|
1154 |
+
rv = Matrix(n, n, f)
|
1155 |
+
return rv
|
1156 |
+
|
1157 |
+
|
1158 |
+
def encipher_bifid5(msg, key):
|
1159 |
+
r"""
|
1160 |
+
Performs the Bifid cipher encryption on plaintext ``msg``, and
|
1161 |
+
returns the ciphertext.
|
1162 |
+
|
1163 |
+
Explanation
|
1164 |
+
===========
|
1165 |
+
|
1166 |
+
This is the version of the Bifid cipher that uses the `5 \times 5`
|
1167 |
+
Polybius square. The letter "J" is ignored so it must be replaced
|
1168 |
+
with something else (traditionally an "I") before encryption.
|
1169 |
+
|
1170 |
+
ALGORITHM: (5x5 case)
|
1171 |
+
|
1172 |
+
STEPS:
|
1173 |
+
0. Create the `5 \times 5` Polybius square ``S`` associated
|
1174 |
+
to ``key`` as follows:
|
1175 |
+
|
1176 |
+
a) moving from left-to-right, top-to-bottom,
|
1177 |
+
place the letters of the key into a `5 \times 5`
|
1178 |
+
matrix,
|
1179 |
+
b) if the key has less than 25 letters, add the
|
1180 |
+
letters of the alphabet not in the key until the
|
1181 |
+
`5 \times 5` square is filled.
|
1182 |
+
|
1183 |
+
1. Create a list ``P`` of pairs of numbers which are the
|
1184 |
+
coordinates in the Polybius square of the letters in
|
1185 |
+
``msg``.
|
1186 |
+
2. Let ``L1`` be the list of all first coordinates of ``P``
|
1187 |
+
(length of ``L1 = n``), let ``L2`` be the list of all
|
1188 |
+
second coordinates of ``P`` (so the length of ``L2``
|
1189 |
+
is also ``n``).
|
1190 |
+
3. Let ``L`` be the concatenation of ``L1`` and ``L2``
|
1191 |
+
(length ``L = 2*n``), except that consecutive numbers
|
1192 |
+
are paired ``(L[2*i], L[2*i + 1])``. You can regard
|
1193 |
+
``L`` as a list of pairs of length ``n``.
|
1194 |
+
4. Let ``C`` be the list of all letters which are of the
|
1195 |
+
form ``S[i, j]``, for all ``(i, j)`` in ``L``. As a
|
1196 |
+
string, this is the ciphertext of ``msg``.
|
1197 |
+
|
1198 |
+
Parameters
|
1199 |
+
==========
|
1200 |
+
|
1201 |
+
msg : str
|
1202 |
+
Plaintext string.
|
1203 |
+
|
1204 |
+
Converted to upper case and filtered of anything but all letters
|
1205 |
+
except J.
|
1206 |
+
|
1207 |
+
key
|
1208 |
+
Short string for key; non-alphabetic letters, J and duplicated
|
1209 |
+
characters are ignored and then, if the length is less than 25
|
1210 |
+
characters, it is padded with other letters of the alphabet
|
1211 |
+
(in alphabetical order).
|
1212 |
+
|
1213 |
+
Returns
|
1214 |
+
=======
|
1215 |
+
|
1216 |
+
ct
|
1217 |
+
Ciphertext (all caps, no spaces).
|
1218 |
+
|
1219 |
+
Examples
|
1220 |
+
========
|
1221 |
+
|
1222 |
+
>>> from sympy.crypto.crypto import (
|
1223 |
+
... encipher_bifid5, decipher_bifid5)
|
1224 |
+
|
1225 |
+
"J" will be omitted unless it is replaced with something else:
|
1226 |
+
|
1227 |
+
>>> round_trip = lambda m, k: \
|
1228 |
+
... decipher_bifid5(encipher_bifid5(m, k), k)
|
1229 |
+
>>> key = 'a'
|
1230 |
+
>>> msg = "JOSIE"
|
1231 |
+
>>> round_trip(msg, key)
|
1232 |
+
'OSIE'
|
1233 |
+
>>> round_trip(msg.replace("J", "I"), key)
|
1234 |
+
'IOSIE'
|
1235 |
+
>>> j = "QIQ"
|
1236 |
+
>>> round_trip(msg.replace("J", j), key).replace(j, "J")
|
1237 |
+
'JOSIE'
|
1238 |
+
|
1239 |
+
|
1240 |
+
Notes
|
1241 |
+
=====
|
1242 |
+
|
1243 |
+
The Bifid cipher was invented around 1901 by Felix Delastelle.
|
1244 |
+
It is a *fractional substitution* cipher, where letters are
|
1245 |
+
replaced by pairs of symbols from a smaller alphabet. The
|
1246 |
+
cipher uses a `5 \times 5` square filled with some ordering of the
|
1247 |
+
alphabet, except that "J" is replaced with "I" (this is a so-called
|
1248 |
+
Polybius square; there is a `6 \times 6` analog if you add back in
|
1249 |
+
"J" and also append onto the usual 26 letter alphabet, the digits
|
1250 |
+
0, 1, ..., 9).
|
1251 |
+
According to Helen Gaines' book *Cryptanalysis*, this type of cipher
|
1252 |
+
was used in the field by the German Army during World War I.
|
1253 |
+
|
1254 |
+
See Also
|
1255 |
+
========
|
1256 |
+
|
1257 |
+
decipher_bifid5, encipher_bifid
|
1258 |
+
|
1259 |
+
"""
|
1260 |
+
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5)
|
1261 |
+
key = padded_key(key, bifid5)
|
1262 |
+
return encipher_bifid(msg, '', key)
|
1263 |
+
|
1264 |
+
|
1265 |
+
def decipher_bifid5(msg, key):
|
1266 |
+
r"""
|
1267 |
+
Return the Bifid cipher decryption of ``msg``.
|
1268 |
+
|
1269 |
+
Explanation
|
1270 |
+
===========
|
1271 |
+
|
1272 |
+
This is the version of the Bifid cipher that uses the `5 \times 5`
|
1273 |
+
Polybius square; the letter "J" is ignored unless a ``key`` of
|
1274 |
+
length 25 is used.
|
1275 |
+
|
1276 |
+
Parameters
|
1277 |
+
==========
|
1278 |
+
|
1279 |
+
msg
|
1280 |
+
Ciphertext string.
|
1281 |
+
|
1282 |
+
key
|
1283 |
+
Short string for key; duplicated characters are ignored and if
|
1284 |
+
the length is less then 25 characters, it will be padded with
|
1285 |
+
other letters from the alphabet omitting "J".
|
1286 |
+
Non-alphabetic characters are ignored.
|
1287 |
+
|
1288 |
+
Returns
|
1289 |
+
=======
|
1290 |
+
|
1291 |
+
plaintext
|
1292 |
+
Plaintext from Bifid5 cipher (all caps, no spaces).
|
1293 |
+
|
1294 |
+
Examples
|
1295 |
+
========
|
1296 |
+
|
1297 |
+
>>> from sympy.crypto.crypto import encipher_bifid5, decipher_bifid5
|
1298 |
+
>>> key = "gold bug"
|
1299 |
+
>>> encipher_bifid5('meet me on friday', key)
|
1300 |
+
'IEILEHFSTSFXEE'
|
1301 |
+
>>> encipher_bifid5('meet me on monday', key)
|
1302 |
+
'IEILHHFSTSFQYE'
|
1303 |
+
>>> decipher_bifid5(_, key)
|
1304 |
+
'MEETMEONMONDAY'
|
1305 |
+
|
1306 |
+
"""
|
1307 |
+
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5)
|
1308 |
+
key = padded_key(key, bifid5)
|
1309 |
+
return decipher_bifid(msg, '', key)
|
1310 |
+
|
1311 |
+
|
1312 |
+
def bifid5_square(key=None):
|
1313 |
+
r"""
|
1314 |
+
5x5 Polybius square.
|
1315 |
+
|
1316 |
+
Produce the Polybius square for the `5 \times 5` Bifid cipher.
|
1317 |
+
|
1318 |
+
Examples
|
1319 |
+
========
|
1320 |
+
|
1321 |
+
>>> from sympy.crypto.crypto import bifid5_square
|
1322 |
+
>>> bifid5_square("gold bug")
|
1323 |
+
Matrix([
|
1324 |
+
[G, O, L, D, B],
|
1325 |
+
[U, A, C, E, F],
|
1326 |
+
[H, I, K, M, N],
|
1327 |
+
[P, Q, R, S, T],
|
1328 |
+
[V, W, X, Y, Z]])
|
1329 |
+
|
1330 |
+
"""
|
1331 |
+
if not key:
|
1332 |
+
key = bifid5
|
1333 |
+
else:
|
1334 |
+
_, key, _ = _prep('', key.upper(), None, bifid5)
|
1335 |
+
key = padded_key(key, bifid5)
|
1336 |
+
return bifid_square(key)
|
1337 |
+
|
1338 |
+
|
1339 |
+
def encipher_bifid6(msg, key):
|
1340 |
+
r"""
|
1341 |
+
Performs the Bifid cipher encryption on plaintext ``msg``, and
|
1342 |
+
returns the ciphertext.
|
1343 |
+
|
1344 |
+
This is the version of the Bifid cipher that uses the `6 \times 6`
|
1345 |
+
Polybius square.
|
1346 |
+
|
1347 |
+
Parameters
|
1348 |
+
==========
|
1349 |
+
|
1350 |
+
msg
|
1351 |
+
Plaintext string (digits okay).
|
1352 |
+
|
1353 |
+
key
|
1354 |
+
Short string for key (digits okay).
|
1355 |
+
|
1356 |
+
If ``key`` is less than 36 characters long, the square will be
|
1357 |
+
filled with letters A through Z and digits 0 through 9.
|
1358 |
+
|
1359 |
+
Returns
|
1360 |
+
=======
|
1361 |
+
|
1362 |
+
ciphertext
|
1363 |
+
Ciphertext from Bifid cipher (all caps, no spaces).
|
1364 |
+
|
1365 |
+
See Also
|
1366 |
+
========
|
1367 |
+
|
1368 |
+
decipher_bifid6, encipher_bifid
|
1369 |
+
|
1370 |
+
"""
|
1371 |
+
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6)
|
1372 |
+
key = padded_key(key, bifid6)
|
1373 |
+
return encipher_bifid(msg, '', key)
|
1374 |
+
|
1375 |
+
|
1376 |
+
def decipher_bifid6(msg, key):
|
1377 |
+
r"""
|
1378 |
+
Performs the Bifid cipher decryption on ciphertext ``msg``, and
|
1379 |
+
returns the plaintext.
|
1380 |
+
|
1381 |
+
This is the version of the Bifid cipher that uses the `6 \times 6`
|
1382 |
+
Polybius square.
|
1383 |
+
|
1384 |
+
Parameters
|
1385 |
+
==========
|
1386 |
+
|
1387 |
+
msg
|
1388 |
+
Ciphertext string (digits okay); converted to upper case
|
1389 |
+
|
1390 |
+
key
|
1391 |
+
Short string for key (digits okay).
|
1392 |
+
|
1393 |
+
If ``key`` is less than 36 characters long, the square will be
|
1394 |
+
filled with letters A through Z and digits 0 through 9.
|
1395 |
+
All letters are converted to uppercase.
|
1396 |
+
|
1397 |
+
Returns
|
1398 |
+
=======
|
1399 |
+
|
1400 |
+
plaintext
|
1401 |
+
Plaintext from Bifid cipher (all caps, no spaces).
|
1402 |
+
|
1403 |
+
Examples
|
1404 |
+
========
|
1405 |
+
|
1406 |
+
>>> from sympy.crypto.crypto import encipher_bifid6, decipher_bifid6
|
1407 |
+
>>> key = "gold bug"
|
1408 |
+
>>> encipher_bifid6('meet me on monday at 8am', key)
|
1409 |
+
'KFKLJJHF5MMMKTFRGPL'
|
1410 |
+
>>> decipher_bifid6(_, key)
|
1411 |
+
'MEETMEONMONDAYAT8AM'
|
1412 |
+
|
1413 |
+
"""
|
1414 |
+
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6)
|
1415 |
+
key = padded_key(key, bifid6)
|
1416 |
+
return decipher_bifid(msg, '', key)
|
1417 |
+
|
1418 |
+
|
1419 |
+
def bifid6_square(key=None):
|
1420 |
+
r"""
|
1421 |
+
6x6 Polybius square.
|
1422 |
+
|
1423 |
+
Produces the Polybius square for the `6 \times 6` Bifid cipher.
|
1424 |
+
Assumes alphabet of symbols is "A", ..., "Z", "0", ..., "9".
|
1425 |
+
|
1426 |
+
Examples
|
1427 |
+
========
|
1428 |
+
|
1429 |
+
>>> from sympy.crypto.crypto import bifid6_square
|
1430 |
+
>>> key = "gold bug"
|
1431 |
+
>>> bifid6_square(key)
|
1432 |
+
Matrix([
|
1433 |
+
[G, O, L, D, B, U],
|
1434 |
+
[A, C, E, F, H, I],
|
1435 |
+
[J, K, M, N, P, Q],
|
1436 |
+
[R, S, T, V, W, X],
|
1437 |
+
[Y, Z, 0, 1, 2, 3],
|
1438 |
+
[4, 5, 6, 7, 8, 9]])
|
1439 |
+
|
1440 |
+
"""
|
1441 |
+
if not key:
|
1442 |
+
key = bifid6
|
1443 |
+
else:
|
1444 |
+
_, key, _ = _prep('', key.upper(), None, bifid6)
|
1445 |
+
key = padded_key(key, bifid6)
|
1446 |
+
return bifid_square(key)
|
1447 |
+
|
1448 |
+
|
1449 |
+
#################### RSA #############################
|
1450 |
+
|
1451 |
+
def _decipher_rsa_crt(i, d, factors):
|
1452 |
+
"""Decipher RSA using chinese remainder theorem from the information
|
1453 |
+
of the relatively-prime factors of the modulus.
|
1454 |
+
|
1455 |
+
Parameters
|
1456 |
+
==========
|
1457 |
+
|
1458 |
+
i : integer
|
1459 |
+
Ciphertext
|
1460 |
+
|
1461 |
+
d : integer
|
1462 |
+
The exponent component.
|
1463 |
+
|
1464 |
+
factors : list of relatively-prime integers
|
1465 |
+
The integers given must be coprime and the product must equal
|
1466 |
+
the modulus component of the original RSA key.
|
1467 |
+
|
1468 |
+
Examples
|
1469 |
+
========
|
1470 |
+
|
1471 |
+
How to decrypt RSA with CRT:
|
1472 |
+
|
1473 |
+
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
|
1474 |
+
>>> primes = [61, 53]
|
1475 |
+
>>> e = 17
|
1476 |
+
>>> args = primes + [e]
|
1477 |
+
>>> puk = rsa_public_key(*args)
|
1478 |
+
>>> prk = rsa_private_key(*args)
|
1479 |
+
|
1480 |
+
>>> from sympy.crypto.crypto import encipher_rsa, _decipher_rsa_crt
|
1481 |
+
>>> msg = 65
|
1482 |
+
>>> crt_primes = primes
|
1483 |
+
>>> encrypted = encipher_rsa(msg, puk)
|
1484 |
+
>>> decrypted = _decipher_rsa_crt(encrypted, prk[1], primes)
|
1485 |
+
>>> decrypted
|
1486 |
+
65
|
1487 |
+
"""
|
1488 |
+
moduluses = [pow(i, d, p) for p in factors]
|
1489 |
+
|
1490 |
+
result = crt(factors, moduluses)
|
1491 |
+
if not result:
|
1492 |
+
raise ValueError("CRT failed")
|
1493 |
+
return result[0]
|
1494 |
+
|
1495 |
+
|
1496 |
+
def _rsa_key(*args, public=True, private=True, totient='Euler', index=None, multipower=None):
|
1497 |
+
r"""A private subroutine to generate RSA key
|
1498 |
+
|
1499 |
+
Parameters
|
1500 |
+
==========
|
1501 |
+
|
1502 |
+
public, private : bool, optional
|
1503 |
+
Flag to generate either a public key, a private key.
|
1504 |
+
|
1505 |
+
totient : 'Euler' or 'Carmichael'
|
1506 |
+
Different notation used for totient.
|
1507 |
+
|
1508 |
+
multipower : bool, optional
|
1509 |
+
Flag to bypass warning for multipower RSA.
|
1510 |
+
"""
|
1511 |
+
|
1512 |
+
if len(args) < 2:
|
1513 |
+
return False
|
1514 |
+
|
1515 |
+
if totient not in ('Euler', 'Carmichael'):
|
1516 |
+
raise ValueError(
|
1517 |
+
"The argument totient={} should either be " \
|
1518 |
+
"'Euler', 'Carmichalel'." \
|
1519 |
+
.format(totient))
|
1520 |
+
|
1521 |
+
if totient == 'Euler':
|
1522 |
+
_totient = _euler
|
1523 |
+
else:
|
1524 |
+
_totient = _carmichael
|
1525 |
+
|
1526 |
+
if index is not None:
|
1527 |
+
index = as_int(index)
|
1528 |
+
if totient != 'Carmichael':
|
1529 |
+
raise ValueError(
|
1530 |
+
"Setting the 'index' keyword argument requires totient"
|
1531 |
+
"notation to be specified as 'Carmichael'.")
|
1532 |
+
|
1533 |
+
primes, e = args[:-1], args[-1]
|
1534 |
+
|
1535 |
+
if not all(isprime(p) for p in primes):
|
1536 |
+
new_primes = []
|
1537 |
+
for i in primes:
|
1538 |
+
new_primes.extend(factorint(i, multiple=True))
|
1539 |
+
primes = new_primes
|
1540 |
+
|
1541 |
+
n = reduce(lambda i, j: i*j, primes)
|
1542 |
+
|
1543 |
+
tally = multiset(primes)
|
1544 |
+
if all(v == 1 for v in tally.values()):
|
1545 |
+
multiple = list(tally.keys())
|
1546 |
+
phi = _totient._from_distinct_primes(*multiple)
|
1547 |
+
|
1548 |
+
else:
|
1549 |
+
if not multipower:
|
1550 |
+
NonInvertibleCipherWarning(
|
1551 |
+
'Non-distinctive primes found in the factors {}. '
|
1552 |
+
'The cipher may not be decryptable for some numbers '
|
1553 |
+
'in the complete residue system Z[{}], but the cipher '
|
1554 |
+
'can still be valid if you restrict the domain to be '
|
1555 |
+
'the reduced residue system Z*[{}]. You can pass '
|
1556 |
+
'the flag multipower=True if you want to suppress this '
|
1557 |
+
'warning.'
|
1558 |
+
.format(primes, n, n)
|
1559 |
+
# stacklevel=4 because most users will call a function that
|
1560 |
+
# calls this function
|
1561 |
+
).warn(stacklevel=4)
|
1562 |
+
phi = _totient._from_factors(tally)
|
1563 |
+
|
1564 |
+
if igcd(e, phi) == 1:
|
1565 |
+
if public and not private:
|
1566 |
+
if isinstance(index, int):
|
1567 |
+
e = e % phi
|
1568 |
+
e += index * phi
|
1569 |
+
return n, e
|
1570 |
+
|
1571 |
+
if private and not public:
|
1572 |
+
d = mod_inverse(e, phi)
|
1573 |
+
if isinstance(index, int):
|
1574 |
+
d += index * phi
|
1575 |
+
return n, d
|
1576 |
+
|
1577 |
+
return False
|
1578 |
+
|
1579 |
+
|
1580 |
+
def rsa_public_key(*args, **kwargs):
|
1581 |
+
r"""Return the RSA *public key* pair, `(n, e)`
|
1582 |
+
|
1583 |
+
Parameters
|
1584 |
+
==========
|
1585 |
+
|
1586 |
+
args : naturals
|
1587 |
+
If specified as `p, q, e` where `p` and `q` are distinct primes
|
1588 |
+
and `e` is a desired public exponent of the RSA, `n = p q` and
|
1589 |
+
`e` will be verified against the totient
|
1590 |
+
`\phi(n)` (Euler totient) or `\lambda(n)` (Carmichael totient)
|
1591 |
+
to be `\gcd(e, \phi(n)) = 1` or `\gcd(e, \lambda(n)) = 1`.
|
1592 |
+
|
1593 |
+
If specified as `p_1, p_2, \dots, p_n, e` where
|
1594 |
+
`p_1, p_2, \dots, p_n` are specified as primes,
|
1595 |
+
and `e` is specified as a desired public exponent of the RSA,
|
1596 |
+
it will be able to form a multi-prime RSA, which is a more
|
1597 |
+
generalized form of the popular 2-prime RSA.
|
1598 |
+
|
1599 |
+
It can also be possible to form a single-prime RSA by specifying
|
1600 |
+
the argument as `p, e`, which can be considered a trivial case
|
1601 |
+
of a multiprime RSA.
|
1602 |
+
|
1603 |
+
Furthermore, it can be possible to form a multi-power RSA by
|
1604 |
+
specifying two or more pairs of the primes to be same.
|
1605 |
+
However, unlike the two-distinct prime RSA or multi-prime
|
1606 |
+
RSA, not every numbers in the complete residue system
|
1607 |
+
(`\mathbb{Z}_n`) will be decryptable since the mapping
|
1608 |
+
`\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}`
|
1609 |
+
will not be bijective.
|
1610 |
+
(Only except for the trivial case when
|
1611 |
+
`e = 1`
|
1612 |
+
or more generally,
|
1613 |
+
|
1614 |
+
.. math::
|
1615 |
+
e \in \left \{ 1 + k \lambda(n)
|
1616 |
+
\mid k \in \mathbb{Z} \land k \geq 0 \right \}
|
1617 |
+
|
1618 |
+
when RSA reduces to the identity.)
|
1619 |
+
However, the RSA can still be decryptable for the numbers in the
|
1620 |
+
reduced residue system (`\mathbb{Z}_n^{\times}`), since the
|
1621 |
+
mapping
|
1622 |
+
`\mathbb{Z}_{n}^{\times} \rightarrow \mathbb{Z}_{n}^{\times}`
|
1623 |
+
can still be bijective.
|
1624 |
+
|
1625 |
+
If you pass a non-prime integer to the arguments
|
1626 |
+
`p_1, p_2, \dots, p_n`, the particular number will be
|
1627 |
+
prime-factored and it will become either a multi-prime RSA or a
|
1628 |
+
multi-power RSA in its canonical form, depending on whether the
|
1629 |
+
product equals its radical or not.
|
1630 |
+
`p_1 p_2 \dots p_n = \text{rad}(p_1 p_2 \dots p_n)`
|
1631 |
+
|
1632 |
+
totient : bool, optional
|
1633 |
+
If ``'Euler'``, it uses Euler's totient `\phi(n)` which is
|
1634 |
+
:meth:`sympy.ntheory.factor_.totient` in SymPy.
|
1635 |
+
|
1636 |
+
If ``'Carmichael'``, it uses Carmichael's totient `\lambda(n)`
|
1637 |
+
which is :meth:`sympy.ntheory.factor_.reduced_totient` in SymPy.
|
1638 |
+
|
1639 |
+
Unlike private key generation, this is a trivial keyword for
|
1640 |
+
public key generation because
|
1641 |
+
`\gcd(e, \phi(n)) = 1 \iff \gcd(e, \lambda(n)) = 1`.
|
1642 |
+
|
1643 |
+
index : nonnegative integer, optional
|
1644 |
+
Returns an arbitrary solution of a RSA public key at the index
|
1645 |
+
specified at `0, 1, 2, \dots`. This parameter needs to be
|
1646 |
+
specified along with ``totient='Carmichael'``.
|
1647 |
+
|
1648 |
+
Similarly to the non-uniquenss of a RSA private key as described
|
1649 |
+
in the ``index`` parameter documentation in
|
1650 |
+
:meth:`rsa_private_key`, RSA public key is also not unique and
|
1651 |
+
there is an infinite number of RSA public exponents which
|
1652 |
+
can behave in the same manner.
|
1653 |
+
|
1654 |
+
From any given RSA public exponent `e`, there are can be an
|
1655 |
+
another RSA public exponent `e + k \lambda(n)` where `k` is an
|
1656 |
+
integer, `\lambda` is a Carmichael's totient function.
|
1657 |
+
|
1658 |
+
However, considering only the positive cases, there can be
|
1659 |
+
a principal solution of a RSA public exponent `e_0` in
|
1660 |
+
`0 < e_0 < \lambda(n)`, and all the other solutions
|
1661 |
+
can be canonicalzed in a form of `e_0 + k \lambda(n)`.
|
1662 |
+
|
1663 |
+
``index`` specifies the `k` notation to yield any possible value
|
1664 |
+
an RSA public key can have.
|
1665 |
+
|
1666 |
+
An example of computing any arbitrary RSA public key:
|
1667 |
+
|
1668 |
+
>>> from sympy.crypto.crypto import rsa_public_key
|
1669 |
+
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=0)
|
1670 |
+
(3233, 17)
|
1671 |
+
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=1)
|
1672 |
+
(3233, 797)
|
1673 |
+
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=2)
|
1674 |
+
(3233, 1577)
|
1675 |
+
|
1676 |
+
multipower : bool, optional
|
1677 |
+
Any pair of non-distinct primes found in the RSA specification
|
1678 |
+
will restrict the domain of the cryptosystem, as noted in the
|
1679 |
+
explanation of the parameter ``args``.
|
1680 |
+
|
1681 |
+
SymPy RSA key generator may give a warning before dispatching it
|
1682 |
+
as a multi-power RSA, however, you can disable the warning if
|
1683 |
+
you pass ``True`` to this keyword.
|
1684 |
+
|
1685 |
+
Returns
|
1686 |
+
=======
|
1687 |
+
|
1688 |
+
(n, e) : int, int
|
1689 |
+
`n` is a product of any arbitrary number of primes given as
|
1690 |
+
the argument.
|
1691 |
+
|
1692 |
+
`e` is relatively prime (coprime) to the Euler totient
|
1693 |
+
`\phi(n)`.
|
1694 |
+
|
1695 |
+
False
|
1696 |
+
Returned if less than two arguments are given, or `e` is
|
1697 |
+
not relatively prime to the modulus.
|
1698 |
+
|
1699 |
+
Examples
|
1700 |
+
========
|
1701 |
+
|
1702 |
+
>>> from sympy.crypto.crypto import rsa_public_key
|
1703 |
+
|
1704 |
+
A public key of a two-prime RSA:
|
1705 |
+
|
1706 |
+
>>> p, q, e = 3, 5, 7
|
1707 |
+
>>> rsa_public_key(p, q, e)
|
1708 |
+
(15, 7)
|
1709 |
+
>>> rsa_public_key(p, q, 30)
|
1710 |
+
False
|
1711 |
+
|
1712 |
+
A public key of a multiprime RSA:
|
1713 |
+
|
1714 |
+
>>> primes = [2, 3, 5, 7, 11, 13]
|
1715 |
+
>>> e = 7
|
1716 |
+
>>> args = primes + [e]
|
1717 |
+
>>> rsa_public_key(*args)
|
1718 |
+
(30030, 7)
|
1719 |
+
|
1720 |
+
Notes
|
1721 |
+
=====
|
1722 |
+
|
1723 |
+
Although the RSA can be generalized over any modulus `n`, using
|
1724 |
+
two large primes had became the most popular specification because a
|
1725 |
+
product of two large primes is usually the hardest to factor
|
1726 |
+
relatively to the digits of `n` can have.
|
1727 |
+
|
1728 |
+
However, it may need further understanding of the time complexities
|
1729 |
+
of each prime-factoring algorithms to verify the claim.
|
1730 |
+
|
1731 |
+
See Also
|
1732 |
+
========
|
1733 |
+
|
1734 |
+
rsa_private_key
|
1735 |
+
encipher_rsa
|
1736 |
+
decipher_rsa
|
1737 |
+
|
1738 |
+
References
|
1739 |
+
==========
|
1740 |
+
|
1741 |
+
.. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
|
1742 |
+
|
1743 |
+
.. [2] https://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
|
1744 |
+
|
1745 |
+
.. [3] https://link.springer.com/content/pdf/10.1007/BFb0055738.pdf
|
1746 |
+
|
1747 |
+
.. [4] https://www.itiis.org/digital-library/manuscript/1381
|
1748 |
+
"""
|
1749 |
+
return _rsa_key(*args, public=True, private=False, **kwargs)
|
1750 |
+
|
1751 |
+
|
1752 |
+
def rsa_private_key(*args, **kwargs):
|
1753 |
+
r"""Return the RSA *private key* pair, `(n, d)`
|
1754 |
+
|
1755 |
+
Parameters
|
1756 |
+
==========
|
1757 |
+
|
1758 |
+
args : naturals
|
1759 |
+
The keyword is identical to the ``args`` in
|
1760 |
+
:meth:`rsa_public_key`.
|
1761 |
+
|
1762 |
+
totient : bool, optional
|
1763 |
+
If ``'Euler'``, it uses Euler's totient convention `\phi(n)`
|
1764 |
+
which is :meth:`sympy.ntheory.factor_.totient` in SymPy.
|
1765 |
+
|
1766 |
+
If ``'Carmichael'``, it uses Carmichael's totient convention
|
1767 |
+
`\lambda(n)` which is
|
1768 |
+
:meth:`sympy.ntheory.factor_.reduced_totient` in SymPy.
|
1769 |
+
|
1770 |
+
There can be some output differences for private key generation
|
1771 |
+
as examples below.
|
1772 |
+
|
1773 |
+
Example using Euler's totient:
|
1774 |
+
|
1775 |
+
>>> from sympy.crypto.crypto import rsa_private_key
|
1776 |
+
>>> rsa_private_key(61, 53, 17, totient='Euler')
|
1777 |
+
(3233, 2753)
|
1778 |
+
|
1779 |
+
Example using Carmichael's totient:
|
1780 |
+
|
1781 |
+
>>> from sympy.crypto.crypto import rsa_private_key
|
1782 |
+
>>> rsa_private_key(61, 53, 17, totient='Carmichael')
|
1783 |
+
(3233, 413)
|
1784 |
+
|
1785 |
+
index : nonnegative integer, optional
|
1786 |
+
Returns an arbitrary solution of a RSA private key at the index
|
1787 |
+
specified at `0, 1, 2, \dots`. This parameter needs to be
|
1788 |
+
specified along with ``totient='Carmichael'``.
|
1789 |
+
|
1790 |
+
RSA private exponent is a non-unique solution of
|
1791 |
+
`e d \mod \lambda(n) = 1` and it is possible in any form of
|
1792 |
+
`d + k \lambda(n)`, where `d` is an another
|
1793 |
+
already-computed private exponent, and `\lambda` is a
|
1794 |
+
Carmichael's totient function, and `k` is any integer.
|
1795 |
+
|
1796 |
+
However, considering only the positive cases, there can be
|
1797 |
+
a principal solution of a RSA private exponent `d_0` in
|
1798 |
+
`0 < d_0 < \lambda(n)`, and all the other solutions
|
1799 |
+
can be canonicalzed in a form of `d_0 + k \lambda(n)`.
|
1800 |
+
|
1801 |
+
``index`` specifies the `k` notation to yield any possible value
|
1802 |
+
an RSA private key can have.
|
1803 |
+
|
1804 |
+
An example of computing any arbitrary RSA private key:
|
1805 |
+
|
1806 |
+
>>> from sympy.crypto.crypto import rsa_private_key
|
1807 |
+
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=0)
|
1808 |
+
(3233, 413)
|
1809 |
+
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=1)
|
1810 |
+
(3233, 1193)
|
1811 |
+
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=2)
|
1812 |
+
(3233, 1973)
|
1813 |
+
|
1814 |
+
multipower : bool, optional
|
1815 |
+
The keyword is identical to the ``multipower`` in
|
1816 |
+
:meth:`rsa_public_key`.
|
1817 |
+
|
1818 |
+
Returns
|
1819 |
+
=======
|
1820 |
+
|
1821 |
+
(n, d) : int, int
|
1822 |
+
`n` is a product of any arbitrary number of primes given as
|
1823 |
+
the argument.
|
1824 |
+
|
1825 |
+
`d` is the inverse of `e` (mod `\phi(n)`) where `e` is the
|
1826 |
+
exponent given, and `\phi` is a Euler totient.
|
1827 |
+
|
1828 |
+
False
|
1829 |
+
Returned if less than two arguments are given, or `e` is
|
1830 |
+
not relatively prime to the totient of the modulus.
|
1831 |
+
|
1832 |
+
Examples
|
1833 |
+
========
|
1834 |
+
|
1835 |
+
>>> from sympy.crypto.crypto import rsa_private_key
|
1836 |
+
|
1837 |
+
A private key of a two-prime RSA:
|
1838 |
+
|
1839 |
+
>>> p, q, e = 3, 5, 7
|
1840 |
+
>>> rsa_private_key(p, q, e)
|
1841 |
+
(15, 7)
|
1842 |
+
>>> rsa_private_key(p, q, 30)
|
1843 |
+
False
|
1844 |
+
|
1845 |
+
A private key of a multiprime RSA:
|
1846 |
+
|
1847 |
+
>>> primes = [2, 3, 5, 7, 11, 13]
|
1848 |
+
>>> e = 7
|
1849 |
+
>>> args = primes + [e]
|
1850 |
+
>>> rsa_private_key(*args)
|
1851 |
+
(30030, 823)
|
1852 |
+
|
1853 |
+
See Also
|
1854 |
+
========
|
1855 |
+
|
1856 |
+
rsa_public_key
|
1857 |
+
encipher_rsa
|
1858 |
+
decipher_rsa
|
1859 |
+
|
1860 |
+
References
|
1861 |
+
==========
|
1862 |
+
|
1863 |
+
.. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
|
1864 |
+
|
1865 |
+
.. [2] https://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
|
1866 |
+
|
1867 |
+
.. [3] https://link.springer.com/content/pdf/10.1007/BFb0055738.pdf
|
1868 |
+
|
1869 |
+
.. [4] https://www.itiis.org/digital-library/manuscript/1381
|
1870 |
+
"""
|
1871 |
+
return _rsa_key(*args, public=False, private=True, **kwargs)
|
1872 |
+
|
1873 |
+
|
1874 |
+
def _encipher_decipher_rsa(i, key, factors=None):
|
1875 |
+
n, d = key
|
1876 |
+
if not factors:
|
1877 |
+
return pow(i, d, n)
|
1878 |
+
|
1879 |
+
def _is_coprime_set(l):
|
1880 |
+
is_coprime_set = True
|
1881 |
+
for i in range(len(l)):
|
1882 |
+
for j in range(i+1, len(l)):
|
1883 |
+
if igcd(l[i], l[j]) != 1:
|
1884 |
+
is_coprime_set = False
|
1885 |
+
break
|
1886 |
+
return is_coprime_set
|
1887 |
+
|
1888 |
+
prod = reduce(lambda i, j: i*j, factors)
|
1889 |
+
if prod == n and _is_coprime_set(factors):
|
1890 |
+
return _decipher_rsa_crt(i, d, factors)
|
1891 |
+
return _encipher_decipher_rsa(i, key, factors=None)
|
1892 |
+
|
1893 |
+
|
1894 |
+
def encipher_rsa(i, key, factors=None):
|
1895 |
+
r"""Encrypt the plaintext with RSA.
|
1896 |
+
|
1897 |
+
Parameters
|
1898 |
+
==========
|
1899 |
+
|
1900 |
+
i : integer
|
1901 |
+
The plaintext to be encrypted for.
|
1902 |
+
|
1903 |
+
key : (n, e) where n, e are integers
|
1904 |
+
`n` is the modulus of the key and `e` is the exponent of the
|
1905 |
+
key. The encryption is computed by `i^e \bmod n`.
|
1906 |
+
|
1907 |
+
The key can either be a public key or a private key, however,
|
1908 |
+
the message encrypted by a public key can only be decrypted by
|
1909 |
+
a private key, and vice versa, as RSA is an asymmetric
|
1910 |
+
cryptography system.
|
1911 |
+
|
1912 |
+
factors : list of coprime integers
|
1913 |
+
This is identical to the keyword ``factors`` in
|
1914 |
+
:meth:`decipher_rsa`.
|
1915 |
+
|
1916 |
+
Notes
|
1917 |
+
=====
|
1918 |
+
|
1919 |
+
Some specifications may make the RSA not cryptographically
|
1920 |
+
meaningful.
|
1921 |
+
|
1922 |
+
For example, `0`, `1` will remain always same after taking any
|
1923 |
+
number of exponentiation, thus, should be avoided.
|
1924 |
+
|
1925 |
+
Furthermore, if `i^e < n`, `i` may easily be figured out by taking
|
1926 |
+
`e` th root.
|
1927 |
+
|
1928 |
+
And also, specifying the exponent as `1` or in more generalized form
|
1929 |
+
as `1 + k \lambda(n)` where `k` is an nonnegative integer,
|
1930 |
+
`\lambda` is a carmichael totient, the RSA becomes an identity
|
1931 |
+
mapping.
|
1932 |
+
|
1933 |
+
Examples
|
1934 |
+
========
|
1935 |
+
|
1936 |
+
>>> from sympy.crypto.crypto import encipher_rsa
|
1937 |
+
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
|
1938 |
+
|
1939 |
+
Public Key Encryption:
|
1940 |
+
|
1941 |
+
>>> p, q, e = 3, 5, 7
|
1942 |
+
>>> puk = rsa_public_key(p, q, e)
|
1943 |
+
>>> msg = 12
|
1944 |
+
>>> encipher_rsa(msg, puk)
|
1945 |
+
3
|
1946 |
+
|
1947 |
+
Private Key Encryption:
|
1948 |
+
|
1949 |
+
>>> p, q, e = 3, 5, 7
|
1950 |
+
>>> prk = rsa_private_key(p, q, e)
|
1951 |
+
>>> msg = 12
|
1952 |
+
>>> encipher_rsa(msg, prk)
|
1953 |
+
3
|
1954 |
+
|
1955 |
+
Encryption using chinese remainder theorem:
|
1956 |
+
|
1957 |
+
>>> encipher_rsa(msg, prk, factors=[p, q])
|
1958 |
+
3
|
1959 |
+
"""
|
1960 |
+
return _encipher_decipher_rsa(i, key, factors=factors)
|
1961 |
+
|
1962 |
+
|
1963 |
+
def decipher_rsa(i, key, factors=None):
|
1964 |
+
r"""Decrypt the ciphertext with RSA.
|
1965 |
+
|
1966 |
+
Parameters
|
1967 |
+
==========
|
1968 |
+
|
1969 |
+
i : integer
|
1970 |
+
The ciphertext to be decrypted for.
|
1971 |
+
|
1972 |
+
key : (n, d) where n, d are integers
|
1973 |
+
`n` is the modulus of the key and `d` is the exponent of the
|
1974 |
+
key. The decryption is computed by `i^d \bmod n`.
|
1975 |
+
|
1976 |
+
The key can either be a public key or a private key, however,
|
1977 |
+
the message encrypted by a public key can only be decrypted by
|
1978 |
+
a private key, and vice versa, as RSA is an asymmetric
|
1979 |
+
cryptography system.
|
1980 |
+
|
1981 |
+
factors : list of coprime integers
|
1982 |
+
As the modulus `n` created from RSA key generation is composed
|
1983 |
+
of arbitrary prime factors
|
1984 |
+
`n = {p_1}^{k_1}{p_2}^{k_2}\dots{p_n}^{k_n}` where
|
1985 |
+
`p_1, p_2, \dots, p_n` are distinct primes and
|
1986 |
+
`k_1, k_2, \dots, k_n` are positive integers, chinese remainder
|
1987 |
+
theorem can be used to compute `i^d \bmod n` from the
|
1988 |
+
fragmented modulo operations like
|
1989 |
+
|
1990 |
+
.. math::
|
1991 |
+
i^d \bmod {p_1}^{k_1}, i^d \bmod {p_2}^{k_2}, \dots,
|
1992 |
+
i^d \bmod {p_n}^{k_n}
|
1993 |
+
|
1994 |
+
or like
|
1995 |
+
|
1996 |
+
.. math::
|
1997 |
+
i^d \bmod {p_1}^{k_1}{p_2}^{k_2},
|
1998 |
+
i^d \bmod {p_3}^{k_3}, \dots ,
|
1999 |
+
i^d \bmod {p_n}^{k_n}
|
2000 |
+
|
2001 |
+
as long as every moduli does not share any common divisor each
|
2002 |
+
other.
|
2003 |
+
|
2004 |
+
The raw primes used in generating the RSA key pair can be a good
|
2005 |
+
option.
|
2006 |
+
|
2007 |
+
Note that the speed advantage of using this is only viable for
|
2008 |
+
very large cases (Like 2048-bit RSA keys) since the
|
2009 |
+
overhead of using pure Python implementation of
|
2010 |
+
:meth:`sympy.ntheory.modular.crt` may overcompensate the
|
2011 |
+
theoretical speed advantage.
|
2012 |
+
|
2013 |
+
Notes
|
2014 |
+
=====
|
2015 |
+
|
2016 |
+
See the ``Notes`` section in the documentation of
|
2017 |
+
:meth:`encipher_rsa`
|
2018 |
+
|
2019 |
+
Examples
|
2020 |
+
========
|
2021 |
+
|
2022 |
+
>>> from sympy.crypto.crypto import decipher_rsa, encipher_rsa
|
2023 |
+
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
|
2024 |
+
|
2025 |
+
Public Key Encryption and Decryption:
|
2026 |
+
|
2027 |
+
>>> p, q, e = 3, 5, 7
|
2028 |
+
>>> prk = rsa_private_key(p, q, e)
|
2029 |
+
>>> puk = rsa_public_key(p, q, e)
|
2030 |
+
>>> msg = 12
|
2031 |
+
>>> new_msg = encipher_rsa(msg, prk)
|
2032 |
+
>>> new_msg
|
2033 |
+
3
|
2034 |
+
>>> decipher_rsa(new_msg, puk)
|
2035 |
+
12
|
2036 |
+
|
2037 |
+
Private Key Encryption and Decryption:
|
2038 |
+
|
2039 |
+
>>> p, q, e = 3, 5, 7
|
2040 |
+
>>> prk = rsa_private_key(p, q, e)
|
2041 |
+
>>> puk = rsa_public_key(p, q, e)
|
2042 |
+
>>> msg = 12
|
2043 |
+
>>> new_msg = encipher_rsa(msg, puk)
|
2044 |
+
>>> new_msg
|
2045 |
+
3
|
2046 |
+
>>> decipher_rsa(new_msg, prk)
|
2047 |
+
12
|
2048 |
+
|
2049 |
+
Decryption using chinese remainder theorem:
|
2050 |
+
|
2051 |
+
>>> decipher_rsa(new_msg, prk, factors=[p, q])
|
2052 |
+
12
|
2053 |
+
|
2054 |
+
See Also
|
2055 |
+
========
|
2056 |
+
|
2057 |
+
encipher_rsa
|
2058 |
+
"""
|
2059 |
+
return _encipher_decipher_rsa(i, key, factors=factors)
|
2060 |
+
|
2061 |
+
|
2062 |
+
#################### kid krypto (kid RSA) #############################
|
2063 |
+
|
2064 |
+
|
2065 |
+
def kid_rsa_public_key(a, b, A, B):
|
2066 |
+
r"""
|
2067 |
+
Kid RSA is a version of RSA useful to teach grade school children
|
2068 |
+
since it does not involve exponentiation.
|
2069 |
+
|
2070 |
+
Explanation
|
2071 |
+
===========
|
2072 |
+
|
2073 |
+
Alice wants to talk to Bob. Bob generates keys as follows.
|
2074 |
+
Key generation:
|
2075 |
+
|
2076 |
+
* Select positive integers `a, b, A, B` at random.
|
2077 |
+
* Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`,
|
2078 |
+
`n = (e d - 1)//M`.
|
2079 |
+
* The *public key* is `(n, e)`. Bob sends these to Alice.
|
2080 |
+
* The *private key* is `(n, d)`, which Bob keeps secret.
|
2081 |
+
|
2082 |
+
Encryption: If `p` is the plaintext message then the
|
2083 |
+
ciphertext is `c = p e \pmod n`.
|
2084 |
+
|
2085 |
+
Decryption: If `c` is the ciphertext message then the
|
2086 |
+
plaintext is `p = c d \pmod n`.
|
2087 |
+
|
2088 |
+
Examples
|
2089 |
+
========
|
2090 |
+
|
2091 |
+
>>> from sympy.crypto.crypto import kid_rsa_public_key
|
2092 |
+
>>> a, b, A, B = 3, 4, 5, 6
|
2093 |
+
>>> kid_rsa_public_key(a, b, A, B)
|
2094 |
+
(369, 58)
|
2095 |
+
|
2096 |
+
"""
|
2097 |
+
M = a*b - 1
|
2098 |
+
e = A*M + a
|
2099 |
+
d = B*M + b
|
2100 |
+
n = (e*d - 1)//M
|
2101 |
+
return n, e
|
2102 |
+
|
2103 |
+
|
2104 |
+
def kid_rsa_private_key(a, b, A, B):
|
2105 |
+
"""
|
2106 |
+
Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`,
|
2107 |
+
`n = (e d - 1) / M`. The *private key* is `d`, which Bob
|
2108 |
+
keeps secret.
|
2109 |
+
|
2110 |
+
Examples
|
2111 |
+
========
|
2112 |
+
|
2113 |
+
>>> from sympy.crypto.crypto import kid_rsa_private_key
|
2114 |
+
>>> a, b, A, B = 3, 4, 5, 6
|
2115 |
+
>>> kid_rsa_private_key(a, b, A, B)
|
2116 |
+
(369, 70)
|
2117 |
+
|
2118 |
+
"""
|
2119 |
+
M = a*b - 1
|
2120 |
+
e = A*M + a
|
2121 |
+
d = B*M + b
|
2122 |
+
n = (e*d - 1)//M
|
2123 |
+
return n, d
|
2124 |
+
|
2125 |
+
|
2126 |
+
def encipher_kid_rsa(msg, key):
|
2127 |
+
"""
|
2128 |
+
Here ``msg`` is the plaintext and ``key`` is the public key.
|
2129 |
+
|
2130 |
+
Examples
|
2131 |
+
========
|
2132 |
+
|
2133 |
+
>>> from sympy.crypto.crypto import (
|
2134 |
+
... encipher_kid_rsa, kid_rsa_public_key)
|
2135 |
+
>>> msg = 200
|
2136 |
+
>>> a, b, A, B = 3, 4, 5, 6
|
2137 |
+
>>> key = kid_rsa_public_key(a, b, A, B)
|
2138 |
+
>>> encipher_kid_rsa(msg, key)
|
2139 |
+
161
|
2140 |
+
|
2141 |
+
"""
|
2142 |
+
n, e = key
|
2143 |
+
return (msg*e) % n
|
2144 |
+
|
2145 |
+
|
2146 |
+
def decipher_kid_rsa(msg, key):
|
2147 |
+
"""
|
2148 |
+
Here ``msg`` is the plaintext and ``key`` is the private key.
|
2149 |
+
|
2150 |
+
Examples
|
2151 |
+
========
|
2152 |
+
|
2153 |
+
>>> from sympy.crypto.crypto import (
|
2154 |
+
... kid_rsa_public_key, kid_rsa_private_key,
|
2155 |
+
... decipher_kid_rsa, encipher_kid_rsa)
|
2156 |
+
>>> a, b, A, B = 3, 4, 5, 6
|
2157 |
+
>>> d = kid_rsa_private_key(a, b, A, B)
|
2158 |
+
>>> msg = 200
|
2159 |
+
>>> pub = kid_rsa_public_key(a, b, A, B)
|
2160 |
+
>>> pri = kid_rsa_private_key(a, b, A, B)
|
2161 |
+
>>> ct = encipher_kid_rsa(msg, pub)
|
2162 |
+
>>> decipher_kid_rsa(ct, pri)
|
2163 |
+
200
|
2164 |
+
|
2165 |
+
"""
|
2166 |
+
n, d = key
|
2167 |
+
return (msg*d) % n
|
2168 |
+
|
2169 |
+
|
2170 |
+
#################### Morse Code ######################################
|
2171 |
+
|
2172 |
+
morse_char = {
|
2173 |
+
".-": "A", "-...": "B",
|
2174 |
+
"-.-.": "C", "-..": "D",
|
2175 |
+
".": "E", "..-.": "F",
|
2176 |
+
"--.": "G", "....": "H",
|
2177 |
+
"..": "I", ".---": "J",
|
2178 |
+
"-.-": "K", ".-..": "L",
|
2179 |
+
"--": "M", "-.": "N",
|
2180 |
+
"---": "O", ".--.": "P",
|
2181 |
+
"--.-": "Q", ".-.": "R",
|
2182 |
+
"...": "S", "-": "T",
|
2183 |
+
"..-": "U", "...-": "V",
|
2184 |
+
".--": "W", "-..-": "X",
|
2185 |
+
"-.--": "Y", "--..": "Z",
|
2186 |
+
"-----": "0", ".----": "1",
|
2187 |
+
"..---": "2", "...--": "3",
|
2188 |
+
"....-": "4", ".....": "5",
|
2189 |
+
"-....": "6", "--...": "7",
|
2190 |
+
"---..": "8", "----.": "9",
|
2191 |
+
".-.-.-": ".", "--..--": ",",
|
2192 |
+
"---...": ":", "-.-.-.": ";",
|
2193 |
+
"..--..": "?", "-....-": "-",
|
2194 |
+
"..--.-": "_", "-.--.": "(",
|
2195 |
+
"-.--.-": ")", ".----.": "'",
|
2196 |
+
"-...-": "=", ".-.-.": "+",
|
2197 |
+
"-..-.": "/", ".--.-.": "@",
|
2198 |
+
"...-..-": "$", "-.-.--": "!"}
|
2199 |
+
char_morse = {v: k for k, v in morse_char.items()}
|
2200 |
+
|
2201 |
+
|
2202 |
+
def encode_morse(msg, sep='|', mapping=None):
|
2203 |
+
"""
|
2204 |
+
Encodes a plaintext into popular Morse Code with letters
|
2205 |
+
separated by ``sep`` and words by a double ``sep``.
|
2206 |
+
|
2207 |
+
Examples
|
2208 |
+
========
|
2209 |
+
|
2210 |
+
>>> from sympy.crypto.crypto import encode_morse
|
2211 |
+
>>> msg = 'ATTACK RIGHT FLANK'
|
2212 |
+
>>> encode_morse(msg)
|
2213 |
+
'.-|-|-|.-|-.-.|-.-||.-.|..|--.|....|-||..-.|.-..|.-|-.|-.-'
|
2214 |
+
|
2215 |
+
References
|
2216 |
+
==========
|
2217 |
+
|
2218 |
+
.. [1] https://en.wikipedia.org/wiki/Morse_code
|
2219 |
+
|
2220 |
+
"""
|
2221 |
+
|
2222 |
+
mapping = mapping or char_morse
|
2223 |
+
assert sep not in mapping
|
2224 |
+
word_sep = 2*sep
|
2225 |
+
mapping[" "] = word_sep
|
2226 |
+
suffix = msg and msg[-1] in whitespace
|
2227 |
+
|
2228 |
+
# normalize whitespace
|
2229 |
+
msg = (' ' if word_sep else '').join(msg.split())
|
2230 |
+
# omit unmapped chars
|
2231 |
+
chars = set(''.join(msg.split()))
|
2232 |
+
ok = set(mapping.keys())
|
2233 |
+
msg = translate(msg, None, ''.join(chars - ok))
|
2234 |
+
|
2235 |
+
morsestring = []
|
2236 |
+
words = msg.split()
|
2237 |
+
for word in words:
|
2238 |
+
morseword = []
|
2239 |
+
for letter in word:
|
2240 |
+
morseletter = mapping[letter]
|
2241 |
+
morseword.append(morseletter)
|
2242 |
+
|
2243 |
+
word = sep.join(morseword)
|
2244 |
+
morsestring.append(word)
|
2245 |
+
|
2246 |
+
return word_sep.join(morsestring) + (word_sep if suffix else '')
|
2247 |
+
|
2248 |
+
|
2249 |
+
def decode_morse(msg, sep='|', mapping=None):
|
2250 |
+
"""
|
2251 |
+
Decodes a Morse Code with letters separated by ``sep``
|
2252 |
+
(default is '|') and words by `word_sep` (default is '||)
|
2253 |
+
into plaintext.
|
2254 |
+
|
2255 |
+
Examples
|
2256 |
+
========
|
2257 |
+
|
2258 |
+
>>> from sympy.crypto.crypto import decode_morse
|
2259 |
+
>>> mc = '--|---|...-|.||.|.-|...|-'
|
2260 |
+
>>> decode_morse(mc)
|
2261 |
+
'MOVE EAST'
|
2262 |
+
|
2263 |
+
References
|
2264 |
+
==========
|
2265 |
+
|
2266 |
+
.. [1] https://en.wikipedia.org/wiki/Morse_code
|
2267 |
+
|
2268 |
+
"""
|
2269 |
+
|
2270 |
+
mapping = mapping or morse_char
|
2271 |
+
word_sep = 2*sep
|
2272 |
+
characterstring = []
|
2273 |
+
words = msg.strip(word_sep).split(word_sep)
|
2274 |
+
for word in words:
|
2275 |
+
letters = word.split(sep)
|
2276 |
+
chars = [mapping[c] for c in letters]
|
2277 |
+
word = ''.join(chars)
|
2278 |
+
characterstring.append(word)
|
2279 |
+
rv = " ".join(characterstring)
|
2280 |
+
return rv
|
2281 |
+
|
2282 |
+
|
2283 |
+
#################### LFSRs ##########################################
|
2284 |
+
|
2285 |
+
|
2286 |
+
def lfsr_sequence(key, fill, n):
|
2287 |
+
r"""
|
2288 |
+
This function creates an LFSR sequence.
|
2289 |
+
|
2290 |
+
Parameters
|
2291 |
+
==========
|
2292 |
+
|
2293 |
+
key : list
|
2294 |
+
A list of finite field elements, `[c_0, c_1, \ldots, c_k].`
|
2295 |
+
|
2296 |
+
fill : list
|
2297 |
+
The list of the initial terms of the LFSR sequence,
|
2298 |
+
`[x_0, x_1, \ldots, x_k].`
|
2299 |
+
|
2300 |
+
n
|
2301 |
+
Number of terms of the sequence that the function returns.
|
2302 |
+
|
2303 |
+
Returns
|
2304 |
+
=======
|
2305 |
+
|
2306 |
+
L
|
2307 |
+
The LFSR sequence defined by
|
2308 |
+
`x_{n+1} = c_k x_n + \ldots + c_0 x_{n-k}`, for
|
2309 |
+
`n \leq k`.
|
2310 |
+
|
2311 |
+
Notes
|
2312 |
+
=====
|
2313 |
+
|
2314 |
+
S. Golomb [G]_ gives a list of three statistical properties a
|
2315 |
+
sequence of numbers `a = \{a_n\}_{n=1}^\infty`,
|
2316 |
+
`a_n \in \{0,1\}`, should display to be considered
|
2317 |
+
"random". Define the autocorrelation of `a` to be
|
2318 |
+
|
2319 |
+
.. math::
|
2320 |
+
|
2321 |
+
C(k) = C(k,a) = \lim_{N\rightarrow \infty} {1\over N}\sum_{n=1}^N (-1)^{a_n + a_{n+k}}.
|
2322 |
+
|
2323 |
+
In the case where `a` is periodic with period
|
2324 |
+
`P` then this reduces to
|
2325 |
+
|
2326 |
+
.. math::
|
2327 |
+
|
2328 |
+
C(k) = {1\over P}\sum_{n=1}^P (-1)^{a_n + a_{n+k}}.
|
2329 |
+
|
2330 |
+
Assume `a` is periodic with period `P`.
|
2331 |
+
|
2332 |
+
- balance:
|
2333 |
+
|
2334 |
+
.. math::
|
2335 |
+
|
2336 |
+
\left|\sum_{n=1}^P(-1)^{a_n}\right| \leq 1.
|
2337 |
+
|
2338 |
+
- low autocorrelation:
|
2339 |
+
|
2340 |
+
.. math::
|
2341 |
+
|
2342 |
+
C(k) = \left\{ \begin{array}{cc} 1,& k = 0,\\ \epsilon, & k \ne 0. \end{array} \right.
|
2343 |
+
|
2344 |
+
(For sequences satisfying these first two properties, it is known
|
2345 |
+
that `\epsilon = -1/P` must hold.)
|
2346 |
+
|
2347 |
+
- proportional runs property: In each period, half the runs have
|
2348 |
+
length `1`, one-fourth have length `2`, etc.
|
2349 |
+
Moreover, there are as many runs of `1`'s as there are of
|
2350 |
+
`0`'s.
|
2351 |
+
|
2352 |
+
Examples
|
2353 |
+
========
|
2354 |
+
|
2355 |
+
>>> from sympy.crypto.crypto import lfsr_sequence
|
2356 |
+
>>> from sympy.polys.domains import FF
|
2357 |
+
>>> F = FF(2)
|
2358 |
+
>>> fill = [F(1), F(1), F(0), F(1)]
|
2359 |
+
>>> key = [F(1), F(0), F(0), F(1)]
|
2360 |
+
>>> lfsr_sequence(key, fill, 10)
|
2361 |
+
[1 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 0 mod 2,
|
2362 |
+
1 mod 2, 1 mod 2, 0 mod 2, 0 mod 2, 1 mod 2]
|
2363 |
+
|
2364 |
+
References
|
2365 |
+
==========
|
2366 |
+
|
2367 |
+
.. [G] Solomon Golomb, Shift register sequences, Aegean Park Press,
|
2368 |
+
Laguna Hills, Ca, 1967
|
2369 |
+
|
2370 |
+
"""
|
2371 |
+
if not isinstance(key, list):
|
2372 |
+
raise TypeError("key must be a list")
|
2373 |
+
if not isinstance(fill, list):
|
2374 |
+
raise TypeError("fill must be a list")
|
2375 |
+
p = key[0].mod
|
2376 |
+
F = FF(p)
|
2377 |
+
s = fill
|
2378 |
+
k = len(fill)
|
2379 |
+
L = []
|
2380 |
+
for i in range(n):
|
2381 |
+
s0 = s[:]
|
2382 |
+
L.append(s[0])
|
2383 |
+
s = s[1:k]
|
2384 |
+
x = sum([int(key[i]*s0[i]) for i in range(k)])
|
2385 |
+
s.append(F(x))
|
2386 |
+
return L # use [x.to_int() for x in L] for int version
|
2387 |
+
|
2388 |
+
|
2389 |
+
def lfsr_autocorrelation(L, P, k):
|
2390 |
+
"""
|
2391 |
+
This function computes the LFSR autocorrelation function.
|
2392 |
+
|
2393 |
+
Parameters
|
2394 |
+
==========
|
2395 |
+
|
2396 |
+
L
|
2397 |
+
A periodic sequence of elements of `GF(2)`.
|
2398 |
+
L must have length larger than P.
|
2399 |
+
|
2400 |
+
P
|
2401 |
+
The period of L.
|
2402 |
+
|
2403 |
+
k : int
|
2404 |
+
An integer `k` (`0 < k < P`).
|
2405 |
+
|
2406 |
+
Returns
|
2407 |
+
=======
|
2408 |
+
|
2409 |
+
autocorrelation
|
2410 |
+
The k-th value of the autocorrelation of the LFSR L.
|
2411 |
+
|
2412 |
+
Examples
|
2413 |
+
========
|
2414 |
+
|
2415 |
+
>>> from sympy.crypto.crypto import (
|
2416 |
+
... lfsr_sequence, lfsr_autocorrelation)
|
2417 |
+
>>> from sympy.polys.domains import FF
|
2418 |
+
>>> F = FF(2)
|
2419 |
+
>>> fill = [F(1), F(1), F(0), F(1)]
|
2420 |
+
>>> key = [F(1), F(0), F(0), F(1)]
|
2421 |
+
>>> s = lfsr_sequence(key, fill, 20)
|
2422 |
+
>>> lfsr_autocorrelation(s, 15, 7)
|
2423 |
+
-1/15
|
2424 |
+
>>> lfsr_autocorrelation(s, 15, 0)
|
2425 |
+
1
|
2426 |
+
|
2427 |
+
"""
|
2428 |
+
if not isinstance(L, list):
|
2429 |
+
raise TypeError("L (=%s) must be a list" % L)
|
2430 |
+
P = int(P)
|
2431 |
+
k = int(k)
|
2432 |
+
L0 = L[:P] # slices makes a copy
|
2433 |
+
L1 = L0 + L0[:k]
|
2434 |
+
L2 = [(-1)**(L1[i].to_int() + L1[i + k].to_int()) for i in range(P)]
|
2435 |
+
tot = sum(L2)
|
2436 |
+
return Rational(tot, P)
|
2437 |
+
|
2438 |
+
|
2439 |
+
def lfsr_connection_polynomial(s):
|
2440 |
+
"""
|
2441 |
+
This function computes the LFSR connection polynomial.
|
2442 |
+
|
2443 |
+
Parameters
|
2444 |
+
==========
|
2445 |
+
|
2446 |
+
s
|
2447 |
+
A sequence of elements of even length, with entries in a finite
|
2448 |
+
field.
|
2449 |
+
|
2450 |
+
Returns
|
2451 |
+
=======
|
2452 |
+
|
2453 |
+
C(x)
|
2454 |
+
The connection polynomial of a minimal LFSR yielding s.
|
2455 |
+
|
2456 |
+
This implements the algorithm in section 3 of J. L. Massey's
|
2457 |
+
article [M]_.
|
2458 |
+
|
2459 |
+
Examples
|
2460 |
+
========
|
2461 |
+
|
2462 |
+
>>> from sympy.crypto.crypto import (
|
2463 |
+
... lfsr_sequence, lfsr_connection_polynomial)
|
2464 |
+
>>> from sympy.polys.domains import FF
|
2465 |
+
>>> F = FF(2)
|
2466 |
+
>>> fill = [F(1), F(1), F(0), F(1)]
|
2467 |
+
>>> key = [F(1), F(0), F(0), F(1)]
|
2468 |
+
>>> s = lfsr_sequence(key, fill, 20)
|
2469 |
+
>>> lfsr_connection_polynomial(s)
|
2470 |
+
x**4 + x + 1
|
2471 |
+
>>> fill = [F(1), F(0), F(0), F(1)]
|
2472 |
+
>>> key = [F(1), F(1), F(0), F(1)]
|
2473 |
+
>>> s = lfsr_sequence(key, fill, 20)
|
2474 |
+
>>> lfsr_connection_polynomial(s)
|
2475 |
+
x**3 + 1
|
2476 |
+
>>> fill = [F(1), F(0), F(1)]
|
2477 |
+
>>> key = [F(1), F(1), F(0)]
|
2478 |
+
>>> s = lfsr_sequence(key, fill, 20)
|
2479 |
+
>>> lfsr_connection_polynomial(s)
|
2480 |
+
x**3 + x**2 + 1
|
2481 |
+
>>> fill = [F(1), F(0), F(1)]
|
2482 |
+
>>> key = [F(1), F(0), F(1)]
|
2483 |
+
>>> s = lfsr_sequence(key, fill, 20)
|
2484 |
+
>>> lfsr_connection_polynomial(s)
|
2485 |
+
x**3 + x + 1
|
2486 |
+
|
2487 |
+
References
|
2488 |
+
==========
|
2489 |
+
|
2490 |
+
.. [M] James L. Massey, "Shift-Register Synthesis and BCH Decoding."
|
2491 |
+
IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127,
|
2492 |
+
Jan 1969.
|
2493 |
+
|
2494 |
+
"""
|
2495 |
+
# Initialization:
|
2496 |
+
p = s[0].mod
|
2497 |
+
x = Symbol("x")
|
2498 |
+
C = 1*x**0
|
2499 |
+
B = 1*x**0
|
2500 |
+
m = 1
|
2501 |
+
b = 1*x**0
|
2502 |
+
L = 0
|
2503 |
+
N = 0
|
2504 |
+
while N < len(s):
|
2505 |
+
if L > 0:
|
2506 |
+
dC = Poly(C).degree()
|
2507 |
+
r = min(L + 1, dC + 1)
|
2508 |
+
coeffsC = [C.subs(x, 0)] + [C.coeff(x**i)
|
2509 |
+
for i in range(1, dC + 1)]
|
2510 |
+
d = (s[N].to_int() + sum([coeffsC[i]*s[N - i].to_int()
|
2511 |
+
for i in range(1, r)])) % p
|
2512 |
+
if L == 0:
|
2513 |
+
d = s[N].to_int()*x**0
|
2514 |
+
if d == 0:
|
2515 |
+
m += 1
|
2516 |
+
N += 1
|
2517 |
+
if d > 0:
|
2518 |
+
if 2*L > N:
|
2519 |
+
C = (C - d*((b**(p - 2)) % p)*x**m*B).expand()
|
2520 |
+
m += 1
|
2521 |
+
N += 1
|
2522 |
+
else:
|
2523 |
+
T = C
|
2524 |
+
C = (C - d*((b**(p - 2)) % p)*x**m*B).expand()
|
2525 |
+
L = N + 1 - L
|
2526 |
+
m = 1
|
2527 |
+
b = d
|
2528 |
+
B = T
|
2529 |
+
N += 1
|
2530 |
+
dC = Poly(C).degree()
|
2531 |
+
coeffsC = [C.subs(x, 0)] + [C.coeff(x**i) for i in range(1, dC + 1)]
|
2532 |
+
return sum([coeffsC[i] % p*x**i for i in range(dC + 1)
|
2533 |
+
if coeffsC[i] is not None])
|
2534 |
+
|
2535 |
+
|
2536 |
+
#################### ElGamal #############################
|
2537 |
+
|
2538 |
+
|
2539 |
+
def elgamal_private_key(digit=10, seed=None):
|
2540 |
+
r"""
|
2541 |
+
Return three number tuple as private key.
|
2542 |
+
|
2543 |
+
Explanation
|
2544 |
+
===========
|
2545 |
+
|
2546 |
+
Elgamal encryption is based on the mathematical problem
|
2547 |
+
called the Discrete Logarithm Problem (DLP). For example,
|
2548 |
+
|
2549 |
+
`a^{b} \equiv c \pmod p`
|
2550 |
+
|
2551 |
+
In general, if ``a`` and ``b`` are known, ``ct`` is easily
|
2552 |
+
calculated. If ``b`` is unknown, it is hard to use
|
2553 |
+
``a`` and ``ct`` to get ``b``.
|
2554 |
+
|
2555 |
+
Parameters
|
2556 |
+
==========
|
2557 |
+
|
2558 |
+
digit : int
|
2559 |
+
Minimum number of binary digits for key.
|
2560 |
+
|
2561 |
+
Returns
|
2562 |
+
=======
|
2563 |
+
|
2564 |
+
tuple : (p, r, d)
|
2565 |
+
p = prime number.
|
2566 |
+
|
2567 |
+
r = primitive root.
|
2568 |
+
|
2569 |
+
d = random number.
|
2570 |
+
|
2571 |
+
Notes
|
2572 |
+
=====
|
2573 |
+
|
2574 |
+
For testing purposes, the ``seed`` parameter may be set to control
|
2575 |
+
the output of this routine. See sympy.core.random._randrange.
|
2576 |
+
|
2577 |
+
Examples
|
2578 |
+
========
|
2579 |
+
|
2580 |
+
>>> from sympy.crypto.crypto import elgamal_private_key
|
2581 |
+
>>> from sympy.ntheory import is_primitive_root, isprime
|
2582 |
+
>>> a, b, _ = elgamal_private_key()
|
2583 |
+
>>> isprime(a)
|
2584 |
+
True
|
2585 |
+
>>> is_primitive_root(b, a)
|
2586 |
+
True
|
2587 |
+
|
2588 |
+
"""
|
2589 |
+
randrange = _randrange(seed)
|
2590 |
+
p = nextprime(2**digit)
|
2591 |
+
return p, primitive_root(p), randrange(2, p)
|
2592 |
+
|
2593 |
+
|
2594 |
+
def elgamal_public_key(key):
|
2595 |
+
r"""
|
2596 |
+
Return three number tuple as public key.
|
2597 |
+
|
2598 |
+
Parameters
|
2599 |
+
==========
|
2600 |
+
|
2601 |
+
key : (p, r, e)
|
2602 |
+
Tuple generated by ``elgamal_private_key``.
|
2603 |
+
|
2604 |
+
Returns
|
2605 |
+
=======
|
2606 |
+
|
2607 |
+
tuple : (p, r, e)
|
2608 |
+
`e = r**d \bmod p`
|
2609 |
+
|
2610 |
+
`d` is a random number in private key.
|
2611 |
+
|
2612 |
+
Examples
|
2613 |
+
========
|
2614 |
+
|
2615 |
+
>>> from sympy.crypto.crypto import elgamal_public_key
|
2616 |
+
>>> elgamal_public_key((1031, 14, 636))
|
2617 |
+
(1031, 14, 212)
|
2618 |
+
|
2619 |
+
"""
|
2620 |
+
p, r, e = key
|
2621 |
+
return p, r, pow(r, e, p)
|
2622 |
+
|
2623 |
+
|
2624 |
+
def encipher_elgamal(i, key, seed=None):
|
2625 |
+
r"""
|
2626 |
+
Encrypt message with public key.
|
2627 |
+
|
2628 |
+
Explanation
|
2629 |
+
===========
|
2630 |
+
|
2631 |
+
``i`` is a plaintext message expressed as an integer.
|
2632 |
+
``key`` is public key (p, r, e). In order to encrypt
|
2633 |
+
a message, a random number ``a`` in ``range(2, p)``
|
2634 |
+
is generated and the encryped message is returned as
|
2635 |
+
`c_{1}` and `c_{2}` where:
|
2636 |
+
|
2637 |
+
`c_{1} \equiv r^{a} \pmod p`
|
2638 |
+
|
2639 |
+
`c_{2} \equiv m e^{a} \pmod p`
|
2640 |
+
|
2641 |
+
Parameters
|
2642 |
+
==========
|
2643 |
+
|
2644 |
+
msg
|
2645 |
+
int of encoded message.
|
2646 |
+
|
2647 |
+
key
|
2648 |
+
Public key.
|
2649 |
+
|
2650 |
+
Returns
|
2651 |
+
=======
|
2652 |
+
|
2653 |
+
tuple : (c1, c2)
|
2654 |
+
Encipher into two number.
|
2655 |
+
|
2656 |
+
Notes
|
2657 |
+
=====
|
2658 |
+
|
2659 |
+
For testing purposes, the ``seed`` parameter may be set to control
|
2660 |
+
the output of this routine. See sympy.core.random._randrange.
|
2661 |
+
|
2662 |
+
Examples
|
2663 |
+
========
|
2664 |
+
|
2665 |
+
>>> from sympy.crypto.crypto import encipher_elgamal, elgamal_private_key, elgamal_public_key
|
2666 |
+
>>> pri = elgamal_private_key(5, seed=[3]); pri
|
2667 |
+
(37, 2, 3)
|
2668 |
+
>>> pub = elgamal_public_key(pri); pub
|
2669 |
+
(37, 2, 8)
|
2670 |
+
>>> msg = 36
|
2671 |
+
>>> encipher_elgamal(msg, pub, seed=[3])
|
2672 |
+
(8, 6)
|
2673 |
+
|
2674 |
+
"""
|
2675 |
+
p, r, e = key
|
2676 |
+
if i < 0 or i >= p:
|
2677 |
+
raise ValueError(
|
2678 |
+
'Message (%s) should be in range(%s)' % (i, p))
|
2679 |
+
randrange = _randrange(seed)
|
2680 |
+
a = randrange(2, p)
|
2681 |
+
return pow(r, a, p), i*pow(e, a, p) % p
|
2682 |
+
|
2683 |
+
|
2684 |
+
def decipher_elgamal(msg, key):
|
2685 |
+
r"""
|
2686 |
+
Decrypt message with private key.
|
2687 |
+
|
2688 |
+
`msg = (c_{1}, c_{2})`
|
2689 |
+
|
2690 |
+
`key = (p, r, d)`
|
2691 |
+
|
2692 |
+
According to extended Eucliden theorem,
|
2693 |
+
`u c_{1}^{d} + p n = 1`
|
2694 |
+
|
2695 |
+
`u \equiv 1/{{c_{1}}^d} \pmod p`
|
2696 |
+
|
2697 |
+
`u c_{2} \equiv \frac{1}{c_{1}^d} c_{2} \equiv \frac{1}{r^{ad}} c_{2} \pmod p`
|
2698 |
+
|
2699 |
+
`\frac{1}{r^{ad}} m e^a \equiv \frac{1}{r^{ad}} m {r^{d a}} \equiv m \pmod p`
|
2700 |
+
|
2701 |
+
Examples
|
2702 |
+
========
|
2703 |
+
|
2704 |
+
>>> from sympy.crypto.crypto import decipher_elgamal
|
2705 |
+
>>> from sympy.crypto.crypto import encipher_elgamal
|
2706 |
+
>>> from sympy.crypto.crypto import elgamal_private_key
|
2707 |
+
>>> from sympy.crypto.crypto import elgamal_public_key
|
2708 |
+
|
2709 |
+
>>> pri = elgamal_private_key(5, seed=[3])
|
2710 |
+
>>> pub = elgamal_public_key(pri); pub
|
2711 |
+
(37, 2, 8)
|
2712 |
+
>>> msg = 17
|
2713 |
+
>>> decipher_elgamal(encipher_elgamal(msg, pub), pri) == msg
|
2714 |
+
True
|
2715 |
+
|
2716 |
+
"""
|
2717 |
+
p, _, d = key
|
2718 |
+
c1, c2 = msg
|
2719 |
+
u = igcdex(c1**d, p)[0]
|
2720 |
+
return u * c2 % p
|
2721 |
+
|
2722 |
+
|
2723 |
+
################ Diffie-Hellman Key Exchange #########################
|
2724 |
+
|
2725 |
+
def dh_private_key(digit=10, seed=None):
|
2726 |
+
r"""
|
2727 |
+
Return three integer tuple as private key.
|
2728 |
+
|
2729 |
+
Explanation
|
2730 |
+
===========
|
2731 |
+
|
2732 |
+
Diffie-Hellman key exchange is based on the mathematical problem
|
2733 |
+
called the Discrete Logarithm Problem (see ElGamal).
|
2734 |
+
|
2735 |
+
Diffie-Hellman key exchange is divided into the following steps:
|
2736 |
+
|
2737 |
+
* Alice and Bob agree on a base that consist of a prime ``p``
|
2738 |
+
and a primitive root of ``p`` called ``g``
|
2739 |
+
* Alice choses a number ``a`` and Bob choses a number ``b`` where
|
2740 |
+
``a`` and ``b`` are random numbers in range `[2, p)`. These are
|
2741 |
+
their private keys.
|
2742 |
+
* Alice then publicly sends Bob `g^{a} \pmod p` while Bob sends
|
2743 |
+
Alice `g^{b} \pmod p`
|
2744 |
+
* They both raise the received value to their secretly chosen
|
2745 |
+
number (``a`` or ``b``) and now have both as their shared key
|
2746 |
+
`g^{ab} \pmod p`
|
2747 |
+
|
2748 |
+
Parameters
|
2749 |
+
==========
|
2750 |
+
|
2751 |
+
digit
|
2752 |
+
Minimum number of binary digits required in key.
|
2753 |
+
|
2754 |
+
Returns
|
2755 |
+
=======
|
2756 |
+
|
2757 |
+
tuple : (p, g, a)
|
2758 |
+
p = prime number.
|
2759 |
+
|
2760 |
+
g = primitive root of p.
|
2761 |
+
|
2762 |
+
a = random number from 2 through p - 1.
|
2763 |
+
|
2764 |
+
Notes
|
2765 |
+
=====
|
2766 |
+
|
2767 |
+
For testing purposes, the ``seed`` parameter may be set to control
|
2768 |
+
the output of this routine. See sympy.core.random._randrange.
|
2769 |
+
|
2770 |
+
Examples
|
2771 |
+
========
|
2772 |
+
|
2773 |
+
>>> from sympy.crypto.crypto import dh_private_key
|
2774 |
+
>>> from sympy.ntheory import isprime, is_primitive_root
|
2775 |
+
>>> p, g, _ = dh_private_key()
|
2776 |
+
>>> isprime(p)
|
2777 |
+
True
|
2778 |
+
>>> is_primitive_root(g, p)
|
2779 |
+
True
|
2780 |
+
>>> p, g, _ = dh_private_key(5)
|
2781 |
+
>>> isprime(p)
|
2782 |
+
True
|
2783 |
+
>>> is_primitive_root(g, p)
|
2784 |
+
True
|
2785 |
+
|
2786 |
+
"""
|
2787 |
+
p = nextprime(2**digit)
|
2788 |
+
g = primitive_root(p)
|
2789 |
+
randrange = _randrange(seed)
|
2790 |
+
a = randrange(2, p)
|
2791 |
+
return p, g, a
|
2792 |
+
|
2793 |
+
|
2794 |
+
def dh_public_key(key):
|
2795 |
+
r"""
|
2796 |
+
Return three number tuple as public key.
|
2797 |
+
|
2798 |
+
This is the tuple that Alice sends to Bob.
|
2799 |
+
|
2800 |
+
Parameters
|
2801 |
+
==========
|
2802 |
+
|
2803 |
+
key : (p, g, a)
|
2804 |
+
A tuple generated by ``dh_private_key``.
|
2805 |
+
|
2806 |
+
Returns
|
2807 |
+
=======
|
2808 |
+
|
2809 |
+
tuple : int, int, int
|
2810 |
+
A tuple of `(p, g, g^a \mod p)` with `p`, `g` and `a` given as
|
2811 |
+
parameters.s
|
2812 |
+
|
2813 |
+
Examples
|
2814 |
+
========
|
2815 |
+
|
2816 |
+
>>> from sympy.crypto.crypto import dh_private_key, dh_public_key
|
2817 |
+
>>> p, g, a = dh_private_key();
|
2818 |
+
>>> _p, _g, x = dh_public_key((p, g, a))
|
2819 |
+
>>> p == _p and g == _g
|
2820 |
+
True
|
2821 |
+
>>> x == pow(g, a, p)
|
2822 |
+
True
|
2823 |
+
|
2824 |
+
"""
|
2825 |
+
p, g, a = key
|
2826 |
+
return p, g, pow(g, a, p)
|
2827 |
+
|
2828 |
+
|
2829 |
+
def dh_shared_key(key, b):
|
2830 |
+
"""
|
2831 |
+
Return an integer that is the shared key.
|
2832 |
+
|
2833 |
+
This is what Bob and Alice can both calculate using the public
|
2834 |
+
keys they received from each other and their private keys.
|
2835 |
+
|
2836 |
+
Parameters
|
2837 |
+
==========
|
2838 |
+
|
2839 |
+
key : (p, g, x)
|
2840 |
+
Tuple `(p, g, x)` generated by ``dh_public_key``.
|
2841 |
+
|
2842 |
+
b
|
2843 |
+
Random number in the range of `2` to `p - 1`
|
2844 |
+
(Chosen by second key exchange member (Bob)).
|
2845 |
+
|
2846 |
+
Returns
|
2847 |
+
=======
|
2848 |
+
|
2849 |
+
int
|
2850 |
+
A shared key.
|
2851 |
+
|
2852 |
+
Examples
|
2853 |
+
========
|
2854 |
+
|
2855 |
+
>>> from sympy.crypto.crypto import (
|
2856 |
+
... dh_private_key, dh_public_key, dh_shared_key)
|
2857 |
+
>>> prk = dh_private_key();
|
2858 |
+
>>> p, g, x = dh_public_key(prk);
|
2859 |
+
>>> sk = dh_shared_key((p, g, x), 1000)
|
2860 |
+
>>> sk == pow(x, 1000, p)
|
2861 |
+
True
|
2862 |
+
|
2863 |
+
"""
|
2864 |
+
p, _, x = key
|
2865 |
+
if 1 >= b or b >= p:
|
2866 |
+
raise ValueError(filldedent('''
|
2867 |
+
Value of b should be greater 1 and less
|
2868 |
+
than prime %s.''' % p))
|
2869 |
+
|
2870 |
+
return pow(x, b, p)
|
2871 |
+
|
2872 |
+
|
2873 |
+
################ Goldwasser-Micali Encryption #########################
|
2874 |
+
|
2875 |
+
|
2876 |
+
def _legendre(a, p):
|
2877 |
+
"""
|
2878 |
+
Returns the legendre symbol of a and p
|
2879 |
+
assuming that p is a prime.
|
2880 |
+
|
2881 |
+
i.e. 1 if a is a quadratic residue mod p
|
2882 |
+
-1 if a is not a quadratic residue mod p
|
2883 |
+
0 if a is divisible by p
|
2884 |
+
|
2885 |
+
Parameters
|
2886 |
+
==========
|
2887 |
+
|
2888 |
+
a : int
|
2889 |
+
The number to test.
|
2890 |
+
|
2891 |
+
p : prime
|
2892 |
+
The prime to test ``a`` against.
|
2893 |
+
|
2894 |
+
Returns
|
2895 |
+
=======
|
2896 |
+
|
2897 |
+
int
|
2898 |
+
Legendre symbol (a / p).
|
2899 |
+
|
2900 |
+
"""
|
2901 |
+
sig = pow(a, (p - 1)//2, p)
|
2902 |
+
if sig == 1:
|
2903 |
+
return 1
|
2904 |
+
elif sig == 0:
|
2905 |
+
return 0
|
2906 |
+
else:
|
2907 |
+
return -1
|
2908 |
+
|
2909 |
+
|
2910 |
+
def _random_coprime_stream(n, seed=None):
|
2911 |
+
randrange = _randrange(seed)
|
2912 |
+
while True:
|
2913 |
+
y = randrange(n)
|
2914 |
+
if gcd(y, n) == 1:
|
2915 |
+
yield y
|
2916 |
+
|
2917 |
+
|
2918 |
+
def gm_private_key(p, q, a=None):
|
2919 |
+
r"""
|
2920 |
+
Check if ``p`` and ``q`` can be used as private keys for
|
2921 |
+
the Goldwasser-Micali encryption. The method works
|
2922 |
+
roughly as follows.
|
2923 |
+
|
2924 |
+
Explanation
|
2925 |
+
===========
|
2926 |
+
|
2927 |
+
#. Pick two large primes $p$ and $q$.
|
2928 |
+
#. Call their product $N$.
|
2929 |
+
#. Given a message as an integer $i$, write $i$ in its bit representation $b_0, \dots, b_n$.
|
2930 |
+
#. For each $k$,
|
2931 |
+
|
2932 |
+
if $b_k = 0$:
|
2933 |
+
let $a_k$ be a random square
|
2934 |
+
(quadratic residue) modulo $p q$
|
2935 |
+
such that ``jacobi_symbol(a, p*q) = 1``
|
2936 |
+
if $b_k = 1$:
|
2937 |
+
let $a_k$ be a random non-square
|
2938 |
+
(non-quadratic residue) modulo $p q$
|
2939 |
+
such that ``jacobi_symbol(a, p*q) = 1``
|
2940 |
+
|
2941 |
+
returns $\left[a_1, a_2, \dots\right]$
|
2942 |
+
|
2943 |
+
$b_k$ can be recovered by checking whether or not
|
2944 |
+
$a_k$ is a residue. And from the $b_k$'s, the message
|
2945 |
+
can be reconstructed.
|
2946 |
+
|
2947 |
+
The idea is that, while ``jacobi_symbol(a, p*q)``
|
2948 |
+
can be easily computed (and when it is equal to $-1$ will
|
2949 |
+
tell you that $a$ is not a square mod $p q$), quadratic
|
2950 |
+
residuosity modulo a composite number is hard to compute
|
2951 |
+
without knowing its factorization.
|
2952 |
+
|
2953 |
+
Moreover, approximately half the numbers coprime to $p q$ have
|
2954 |
+
:func:`~.jacobi_symbol` equal to $1$ . And among those, approximately half
|
2955 |
+
are residues and approximately half are not. This maximizes the
|
2956 |
+
entropy of the code.
|
2957 |
+
|
2958 |
+
Parameters
|
2959 |
+
==========
|
2960 |
+
|
2961 |
+
p, q, a
|
2962 |
+
Initialization variables.
|
2963 |
+
|
2964 |
+
Returns
|
2965 |
+
=======
|
2966 |
+
|
2967 |
+
tuple : (p, q)
|
2968 |
+
The input value ``p`` and ``q``.
|
2969 |
+
|
2970 |
+
Raises
|
2971 |
+
======
|
2972 |
+
|
2973 |
+
ValueError
|
2974 |
+
If ``p`` and ``q`` are not distinct odd primes.
|
2975 |
+
|
2976 |
+
"""
|
2977 |
+
if p == q:
|
2978 |
+
raise ValueError("expected distinct primes, "
|
2979 |
+
"got two copies of %i" % p)
|
2980 |
+
elif not isprime(p) or not isprime(q):
|
2981 |
+
raise ValueError("first two arguments must be prime, "
|
2982 |
+
"got %i of %i" % (p, q))
|
2983 |
+
elif p == 2 or q == 2:
|
2984 |
+
raise ValueError("first two arguments must not be even, "
|
2985 |
+
"got %i of %i" % (p, q))
|
2986 |
+
return p, q
|
2987 |
+
|
2988 |
+
|
2989 |
+
def gm_public_key(p, q, a=None, seed=None):
|
2990 |
+
"""
|
2991 |
+
Compute public keys for ``p`` and ``q``.
|
2992 |
+
Note that in Goldwasser-Micali Encryption,
|
2993 |
+
public keys are randomly selected.
|
2994 |
+
|
2995 |
+
Parameters
|
2996 |
+
==========
|
2997 |
+
|
2998 |
+
p, q, a : int, int, int
|
2999 |
+
Initialization variables.
|
3000 |
+
|
3001 |
+
Returns
|
3002 |
+
=======
|
3003 |
+
|
3004 |
+
tuple : (a, N)
|
3005 |
+
``a`` is the input ``a`` if it is not ``None`` otherwise
|
3006 |
+
some random integer coprime to ``p`` and ``q``.
|
3007 |
+
|
3008 |
+
``N`` is the product of ``p`` and ``q``.
|
3009 |
+
|
3010 |
+
"""
|
3011 |
+
|
3012 |
+
p, q = gm_private_key(p, q)
|
3013 |
+
N = p * q
|
3014 |
+
|
3015 |
+
if a is None:
|
3016 |
+
randrange = _randrange(seed)
|
3017 |
+
while True:
|
3018 |
+
a = randrange(N)
|
3019 |
+
if _legendre(a, p) == _legendre(a, q) == -1:
|
3020 |
+
break
|
3021 |
+
else:
|
3022 |
+
if _legendre(a, p) != -1 or _legendre(a, q) != -1:
|
3023 |
+
return False
|
3024 |
+
return (a, N)
|
3025 |
+
|
3026 |
+
|
3027 |
+
def encipher_gm(i, key, seed=None):
|
3028 |
+
"""
|
3029 |
+
Encrypt integer 'i' using public_key 'key'
|
3030 |
+
Note that gm uses random encryption.
|
3031 |
+
|
3032 |
+
Parameters
|
3033 |
+
==========
|
3034 |
+
|
3035 |
+
i : int
|
3036 |
+
The message to encrypt.
|
3037 |
+
|
3038 |
+
key : (a, N)
|
3039 |
+
The public key.
|
3040 |
+
|
3041 |
+
Returns
|
3042 |
+
=======
|
3043 |
+
|
3044 |
+
list : list of int
|
3045 |
+
The randomized encrypted message.
|
3046 |
+
|
3047 |
+
"""
|
3048 |
+
if i < 0:
|
3049 |
+
raise ValueError(
|
3050 |
+
"message must be a non-negative "
|
3051 |
+
"integer: got %d instead" % i)
|
3052 |
+
a, N = key
|
3053 |
+
bits = []
|
3054 |
+
while i > 0:
|
3055 |
+
bits.append(i % 2)
|
3056 |
+
i //= 2
|
3057 |
+
|
3058 |
+
gen = _random_coprime_stream(N, seed)
|
3059 |
+
rev = reversed(bits)
|
3060 |
+
encode = lambda b: next(gen)**2*pow(a, b) % N
|
3061 |
+
return [ encode(b) for b in rev ]
|
3062 |
+
|
3063 |
+
|
3064 |
+
|
3065 |
+
def decipher_gm(message, key):
|
3066 |
+
"""
|
3067 |
+
Decrypt message 'message' using public_key 'key'.
|
3068 |
+
|
3069 |
+
Parameters
|
3070 |
+
==========
|
3071 |
+
|
3072 |
+
message : list of int
|
3073 |
+
The randomized encrypted message.
|
3074 |
+
|
3075 |
+
key : (p, q)
|
3076 |
+
The private key.
|
3077 |
+
|
3078 |
+
Returns
|
3079 |
+
=======
|
3080 |
+
|
3081 |
+
int
|
3082 |
+
The encrypted message.
|
3083 |
+
|
3084 |
+
"""
|
3085 |
+
p, q = key
|
3086 |
+
res = lambda m, p: _legendre(m, p) > 0
|
3087 |
+
bits = [res(m, p) * res(m, q) for m in message]
|
3088 |
+
m = 0
|
3089 |
+
for b in bits:
|
3090 |
+
m <<= 1
|
3091 |
+
m += not b
|
3092 |
+
return m
|
3093 |
+
|
3094 |
+
|
3095 |
+
|
3096 |
+
########### RailFence Cipher #############
|
3097 |
+
|
3098 |
+
def encipher_railfence(message,rails):
|
3099 |
+
"""
|
3100 |
+
Performs Railfence Encryption on plaintext and returns ciphertext
|
3101 |
+
|
3102 |
+
Examples
|
3103 |
+
========
|
3104 |
+
|
3105 |
+
>>> from sympy.crypto.crypto import encipher_railfence
|
3106 |
+
>>> message = "hello world"
|
3107 |
+
>>> encipher_railfence(message,3)
|
3108 |
+
'horel ollwd'
|
3109 |
+
|
3110 |
+
Parameters
|
3111 |
+
==========
|
3112 |
+
|
3113 |
+
message : string, the message to encrypt.
|
3114 |
+
rails : int, the number of rails.
|
3115 |
+
|
3116 |
+
Returns
|
3117 |
+
=======
|
3118 |
+
|
3119 |
+
The Encrypted string message.
|
3120 |
+
|
3121 |
+
References
|
3122 |
+
==========
|
3123 |
+
.. [1] https://en.wikipedia.org/wiki/Rail_fence_cipher
|
3124 |
+
|
3125 |
+
"""
|
3126 |
+
r = list(range(rails))
|
3127 |
+
p = cycle(r + r[-2:0:-1])
|
3128 |
+
return ''.join(sorted(message, key=lambda i: next(p)))
|
3129 |
+
|
3130 |
+
|
3131 |
+
def decipher_railfence(ciphertext,rails):
|
3132 |
+
"""
|
3133 |
+
Decrypt the message using the given rails
|
3134 |
+
|
3135 |
+
Examples
|
3136 |
+
========
|
3137 |
+
|
3138 |
+
>>> from sympy.crypto.crypto import decipher_railfence
|
3139 |
+
>>> decipher_railfence("horel ollwd",3)
|
3140 |
+
'hello world'
|
3141 |
+
|
3142 |
+
Parameters
|
3143 |
+
==========
|
3144 |
+
|
3145 |
+
message : string, the message to encrypt.
|
3146 |
+
rails : int, the number of rails.
|
3147 |
+
|
3148 |
+
Returns
|
3149 |
+
=======
|
3150 |
+
|
3151 |
+
The Decrypted string message.
|
3152 |
+
|
3153 |
+
"""
|
3154 |
+
r = list(range(rails))
|
3155 |
+
p = cycle(r + r[-2:0:-1])
|
3156 |
+
|
3157 |
+
idx = sorted(range(len(ciphertext)), key=lambda i: next(p))
|
3158 |
+
res = [''] * len(ciphertext)
|
3159 |
+
for i, c in zip(idx, ciphertext):
|
3160 |
+
res[i] = c
|
3161 |
+
return ''.join(res)
|
3162 |
+
|
3163 |
+
|
3164 |
+
################ Blum-Goldwasser cryptosystem #########################
|
3165 |
+
|
3166 |
+
def bg_private_key(p, q):
|
3167 |
+
"""
|
3168 |
+
Check if p and q can be used as private keys for
|
3169 |
+
the Blum-Goldwasser cryptosystem.
|
3170 |
+
|
3171 |
+
Explanation
|
3172 |
+
===========
|
3173 |
+
|
3174 |
+
The three necessary checks for p and q to pass
|
3175 |
+
so that they can be used as private keys:
|
3176 |
+
|
3177 |
+
1. p and q must both be prime
|
3178 |
+
2. p and q must be distinct
|
3179 |
+
3. p and q must be congruent to 3 mod 4
|
3180 |
+
|
3181 |
+
Parameters
|
3182 |
+
==========
|
3183 |
+
|
3184 |
+
p, q
|
3185 |
+
The keys to be checked.
|
3186 |
+
|
3187 |
+
Returns
|
3188 |
+
=======
|
3189 |
+
|
3190 |
+
p, q
|
3191 |
+
Input values.
|
3192 |
+
|
3193 |
+
Raises
|
3194 |
+
======
|
3195 |
+
|
3196 |
+
ValueError
|
3197 |
+
If p and q do not pass the above conditions.
|
3198 |
+
|
3199 |
+
"""
|
3200 |
+
|
3201 |
+
if not isprime(p) or not isprime(q):
|
3202 |
+
raise ValueError("the two arguments must be prime, "
|
3203 |
+
"got %i and %i" %(p, q))
|
3204 |
+
elif p == q:
|
3205 |
+
raise ValueError("the two arguments must be distinct, "
|
3206 |
+
"got two copies of %i. " %p)
|
3207 |
+
elif (p - 3) % 4 != 0 or (q - 3) % 4 != 0:
|
3208 |
+
raise ValueError("the two arguments must be congruent to 3 mod 4, "
|
3209 |
+
"got %i and %i" %(p, q))
|
3210 |
+
return p, q
|
3211 |
+
|
3212 |
+
def bg_public_key(p, q):
|
3213 |
+
"""
|
3214 |
+
Calculates public keys from private keys.
|
3215 |
+
|
3216 |
+
Explanation
|
3217 |
+
===========
|
3218 |
+
|
3219 |
+
The function first checks the validity of
|
3220 |
+
private keys passed as arguments and
|
3221 |
+
then returns their product.
|
3222 |
+
|
3223 |
+
Parameters
|
3224 |
+
==========
|
3225 |
+
|
3226 |
+
p, q
|
3227 |
+
The private keys.
|
3228 |
+
|
3229 |
+
Returns
|
3230 |
+
=======
|
3231 |
+
|
3232 |
+
N
|
3233 |
+
The public key.
|
3234 |
+
|
3235 |
+
"""
|
3236 |
+
p, q = bg_private_key(p, q)
|
3237 |
+
N = p * q
|
3238 |
+
return N
|
3239 |
+
|
3240 |
+
def encipher_bg(i, key, seed=None):
|
3241 |
+
"""
|
3242 |
+
Encrypts the message using public key and seed.
|
3243 |
+
|
3244 |
+
Explanation
|
3245 |
+
===========
|
3246 |
+
|
3247 |
+
ALGORITHM:
|
3248 |
+
1. Encodes i as a string of L bits, m.
|
3249 |
+
2. Select a random element r, where 1 < r < key, and computes
|
3250 |
+
x = r^2 mod key.
|
3251 |
+
3. Use BBS pseudo-random number generator to generate L random bits, b,
|
3252 |
+
using the initial seed as x.
|
3253 |
+
4. Encrypted message, c_i = m_i XOR b_i, 1 <= i <= L.
|
3254 |
+
5. x_L = x^(2^L) mod key.
|
3255 |
+
6. Return (c, x_L)
|
3256 |
+
|
3257 |
+
Parameters
|
3258 |
+
==========
|
3259 |
+
|
3260 |
+
i
|
3261 |
+
Message, a non-negative integer
|
3262 |
+
|
3263 |
+
key
|
3264 |
+
The public key
|
3265 |
+
|
3266 |
+
Returns
|
3267 |
+
=======
|
3268 |
+
|
3269 |
+
Tuple
|
3270 |
+
(encrypted_message, x_L)
|
3271 |
+
|
3272 |
+
Raises
|
3273 |
+
======
|
3274 |
+
|
3275 |
+
ValueError
|
3276 |
+
If i is negative.
|
3277 |
+
|
3278 |
+
"""
|
3279 |
+
|
3280 |
+
if i < 0:
|
3281 |
+
raise ValueError(
|
3282 |
+
"message must be a non-negative "
|
3283 |
+
"integer: got %d instead" % i)
|
3284 |
+
|
3285 |
+
enc_msg = []
|
3286 |
+
while i > 0:
|
3287 |
+
enc_msg.append(i % 2)
|
3288 |
+
i //= 2
|
3289 |
+
enc_msg.reverse()
|
3290 |
+
L = len(enc_msg)
|
3291 |
+
|
3292 |
+
r = _randint(seed)(2, key - 1)
|
3293 |
+
x = r**2 % key
|
3294 |
+
x_L = pow(int(x), int(2**L), int(key))
|
3295 |
+
|
3296 |
+
rand_bits = []
|
3297 |
+
for _ in range(L):
|
3298 |
+
rand_bits.append(x % 2)
|
3299 |
+
x = x**2 % key
|
3300 |
+
|
3301 |
+
encrypt_msg = [m ^ b for (m, b) in zip(enc_msg, rand_bits)]
|
3302 |
+
|
3303 |
+
return (encrypt_msg, x_L)
|
3304 |
+
|
3305 |
+
def decipher_bg(message, key):
|
3306 |
+
"""
|
3307 |
+
Decrypts the message using private keys.
|
3308 |
+
|
3309 |
+
Explanation
|
3310 |
+
===========
|
3311 |
+
|
3312 |
+
ALGORITHM:
|
3313 |
+
1. Let, c be the encrypted message, y the second number received,
|
3314 |
+
and p and q be the private keys.
|
3315 |
+
2. Compute, r_p = y^((p+1)/4 ^ L) mod p and
|
3316 |
+
r_q = y^((q+1)/4 ^ L) mod q.
|
3317 |
+
3. Compute x_0 = (q(q^-1 mod p)r_p + p(p^-1 mod q)r_q) mod N.
|
3318 |
+
4. From, recompute the bits using the BBS generator, as in the
|
3319 |
+
encryption algorithm.
|
3320 |
+
5. Compute original message by XORing c and b.
|
3321 |
+
|
3322 |
+
Parameters
|
3323 |
+
==========
|
3324 |
+
|
3325 |
+
message
|
3326 |
+
Tuple of encrypted message and a non-negative integer.
|
3327 |
+
|
3328 |
+
key
|
3329 |
+
Tuple of private keys.
|
3330 |
+
|
3331 |
+
Returns
|
3332 |
+
=======
|
3333 |
+
|
3334 |
+
orig_msg
|
3335 |
+
The original message
|
3336 |
+
|
3337 |
+
"""
|
3338 |
+
|
3339 |
+
p, q = key
|
3340 |
+
encrypt_msg, y = message
|
3341 |
+
public_key = p * q
|
3342 |
+
L = len(encrypt_msg)
|
3343 |
+
p_t = ((p + 1)/4)**L
|
3344 |
+
q_t = ((q + 1)/4)**L
|
3345 |
+
r_p = pow(int(y), int(p_t), int(p))
|
3346 |
+
r_q = pow(int(y), int(q_t), int(q))
|
3347 |
+
|
3348 |
+
x = (q * mod_inverse(q, p) * r_p + p * mod_inverse(p, q) * r_q) % public_key
|
3349 |
+
|
3350 |
+
orig_bits = []
|
3351 |
+
for _ in range(L):
|
3352 |
+
orig_bits.append(x % 2)
|
3353 |
+
x = x**2 % public_key
|
3354 |
+
|
3355 |
+
orig_msg = 0
|
3356 |
+
for (m, b) in zip(encrypt_msg, orig_bits):
|
3357 |
+
orig_msg = orig_msg * 2
|
3358 |
+
orig_msg += (m ^ b)
|
3359 |
+
|
3360 |
+
return orig_msg
|
venv/lib/python3.10/site-packages/sympy/crypto/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/crypto/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/crypto/tests/__pycache__/test_crypto.cpython-310.pyc
ADDED
Binary file (21 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/crypto/tests/test_crypto.py
ADDED
@@ -0,0 +1,562 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import symbols
|
2 |
+
from sympy.crypto.crypto import (cycle_list,
|
3 |
+
encipher_shift, encipher_affine, encipher_substitution,
|
4 |
+
check_and_join, encipher_vigenere, decipher_vigenere,
|
5 |
+
encipher_hill, decipher_hill, encipher_bifid5, encipher_bifid6,
|
6 |
+
bifid5_square, bifid6_square, bifid5, bifid6,
|
7 |
+
decipher_bifid5, decipher_bifid6, encipher_kid_rsa,
|
8 |
+
decipher_kid_rsa, kid_rsa_private_key, kid_rsa_public_key,
|
9 |
+
decipher_rsa, rsa_private_key, rsa_public_key, encipher_rsa,
|
10 |
+
lfsr_connection_polynomial, lfsr_autocorrelation, lfsr_sequence,
|
11 |
+
encode_morse, decode_morse, elgamal_private_key, elgamal_public_key,
|
12 |
+
encipher_elgamal, decipher_elgamal, dh_private_key, dh_public_key,
|
13 |
+
dh_shared_key, decipher_shift, decipher_affine, encipher_bifid,
|
14 |
+
decipher_bifid, bifid_square, padded_key, uniq, decipher_gm,
|
15 |
+
encipher_gm, gm_public_key, gm_private_key, encipher_bg, decipher_bg,
|
16 |
+
bg_private_key, bg_public_key, encipher_rot13, decipher_rot13,
|
17 |
+
encipher_atbash, decipher_atbash, NonInvertibleCipherWarning,
|
18 |
+
encipher_railfence, decipher_railfence)
|
19 |
+
from sympy.matrices import Matrix
|
20 |
+
from sympy.ntheory import isprime, is_primitive_root
|
21 |
+
from sympy.polys.domains import FF
|
22 |
+
|
23 |
+
from sympy.testing.pytest import raises, warns
|
24 |
+
|
25 |
+
from sympy.core.random import randrange
|
26 |
+
|
27 |
+
def test_encipher_railfence():
|
28 |
+
assert encipher_railfence("hello world",2) == "hlowrdel ol"
|
29 |
+
assert encipher_railfence("hello world",3) == "horel ollwd"
|
30 |
+
assert encipher_railfence("hello world",4) == "hwe olordll"
|
31 |
+
|
32 |
+
def test_decipher_railfence():
|
33 |
+
assert decipher_railfence("hlowrdel ol",2) == "hello world"
|
34 |
+
assert decipher_railfence("horel ollwd",3) == "hello world"
|
35 |
+
assert decipher_railfence("hwe olordll",4) == "hello world"
|
36 |
+
|
37 |
+
|
38 |
+
def test_cycle_list():
|
39 |
+
assert cycle_list(3, 4) == [3, 0, 1, 2]
|
40 |
+
assert cycle_list(-1, 4) == [3, 0, 1, 2]
|
41 |
+
assert cycle_list(1, 4) == [1, 2, 3, 0]
|
42 |
+
|
43 |
+
|
44 |
+
def test_encipher_shift():
|
45 |
+
assert encipher_shift("ABC", 0) == "ABC"
|
46 |
+
assert encipher_shift("ABC", 1) == "BCD"
|
47 |
+
assert encipher_shift("ABC", -1) == "ZAB"
|
48 |
+
assert decipher_shift("ZAB", -1) == "ABC"
|
49 |
+
|
50 |
+
def test_encipher_rot13():
|
51 |
+
assert encipher_rot13("ABC") == "NOP"
|
52 |
+
assert encipher_rot13("NOP") == "ABC"
|
53 |
+
assert decipher_rot13("ABC") == "NOP"
|
54 |
+
assert decipher_rot13("NOP") == "ABC"
|
55 |
+
|
56 |
+
|
57 |
+
def test_encipher_affine():
|
58 |
+
assert encipher_affine("ABC", (1, 0)) == "ABC"
|
59 |
+
assert encipher_affine("ABC", (1, 1)) == "BCD"
|
60 |
+
assert encipher_affine("ABC", (-1, 0)) == "AZY"
|
61 |
+
assert encipher_affine("ABC", (-1, 1), symbols="ABCD") == "BAD"
|
62 |
+
assert encipher_affine("123", (-1, 1), symbols="1234") == "214"
|
63 |
+
assert encipher_affine("ABC", (3, 16)) == "QTW"
|
64 |
+
assert decipher_affine("QTW", (3, 16)) == "ABC"
|
65 |
+
|
66 |
+
def test_encipher_atbash():
|
67 |
+
assert encipher_atbash("ABC") == "ZYX"
|
68 |
+
assert encipher_atbash("ZYX") == "ABC"
|
69 |
+
assert decipher_atbash("ABC") == "ZYX"
|
70 |
+
assert decipher_atbash("ZYX") == "ABC"
|
71 |
+
|
72 |
+
def test_encipher_substitution():
|
73 |
+
assert encipher_substitution("ABC", "BAC", "ABC") == "BAC"
|
74 |
+
assert encipher_substitution("123", "1243", "1234") == "124"
|
75 |
+
|
76 |
+
|
77 |
+
def test_check_and_join():
|
78 |
+
assert check_and_join("abc") == "abc"
|
79 |
+
assert check_and_join(uniq("aaabc")) == "abc"
|
80 |
+
assert check_and_join("ab c".split()) == "abc"
|
81 |
+
assert check_and_join("abc", "a", filter=True) == "a"
|
82 |
+
raises(ValueError, lambda: check_and_join('ab', 'a'))
|
83 |
+
|
84 |
+
|
85 |
+
def test_encipher_vigenere():
|
86 |
+
assert encipher_vigenere("ABC", "ABC") == "ACE"
|
87 |
+
assert encipher_vigenere("ABC", "ABC", symbols="ABCD") == "ACA"
|
88 |
+
assert encipher_vigenere("ABC", "AB", symbols="ABCD") == "ACC"
|
89 |
+
assert encipher_vigenere("AB", "ABC", symbols="ABCD") == "AC"
|
90 |
+
assert encipher_vigenere("A", "ABC", symbols="ABCD") == "A"
|
91 |
+
|
92 |
+
|
93 |
+
def test_decipher_vigenere():
|
94 |
+
assert decipher_vigenere("ABC", "ABC") == "AAA"
|
95 |
+
assert decipher_vigenere("ABC", "ABC", symbols="ABCD") == "AAA"
|
96 |
+
assert decipher_vigenere("ABC", "AB", symbols="ABCD") == "AAC"
|
97 |
+
assert decipher_vigenere("AB", "ABC", symbols="ABCD") == "AA"
|
98 |
+
assert decipher_vigenere("A", "ABC", symbols="ABCD") == "A"
|
99 |
+
|
100 |
+
|
101 |
+
def test_encipher_hill():
|
102 |
+
A = Matrix(2, 2, [1, 2, 3, 5])
|
103 |
+
assert encipher_hill("ABCD", A) == "CFIV"
|
104 |
+
A = Matrix(2, 2, [1, 0, 0, 1])
|
105 |
+
assert encipher_hill("ABCD", A) == "ABCD"
|
106 |
+
assert encipher_hill("ABCD", A, symbols="ABCD") == "ABCD"
|
107 |
+
A = Matrix(2, 2, [1, 2, 3, 5])
|
108 |
+
assert encipher_hill("ABCD", A, symbols="ABCD") == "CBAB"
|
109 |
+
assert encipher_hill("AB", A, symbols="ABCD") == "CB"
|
110 |
+
# message length, n, does not need to be a multiple of k;
|
111 |
+
# it is padded
|
112 |
+
assert encipher_hill("ABA", A) == "CFGC"
|
113 |
+
assert encipher_hill("ABA", A, pad="Z") == "CFYV"
|
114 |
+
|
115 |
+
|
116 |
+
def test_decipher_hill():
|
117 |
+
A = Matrix(2, 2, [1, 2, 3, 5])
|
118 |
+
assert decipher_hill("CFIV", A) == "ABCD"
|
119 |
+
A = Matrix(2, 2, [1, 0, 0, 1])
|
120 |
+
assert decipher_hill("ABCD", A) == "ABCD"
|
121 |
+
assert decipher_hill("ABCD", A, symbols="ABCD") == "ABCD"
|
122 |
+
A = Matrix(2, 2, [1, 2, 3, 5])
|
123 |
+
assert decipher_hill("CBAB", A, symbols="ABCD") == "ABCD"
|
124 |
+
assert decipher_hill("CB", A, symbols="ABCD") == "AB"
|
125 |
+
# n does not need to be a multiple of k
|
126 |
+
assert decipher_hill("CFA", A) == "ABAA"
|
127 |
+
|
128 |
+
|
129 |
+
def test_encipher_bifid5():
|
130 |
+
assert encipher_bifid5("AB", "AB") == "AB"
|
131 |
+
assert encipher_bifid5("AB", "CD") == "CO"
|
132 |
+
assert encipher_bifid5("ab", "c") == "CH"
|
133 |
+
assert encipher_bifid5("a bc", "b") == "BAC"
|
134 |
+
|
135 |
+
|
136 |
+
def test_bifid5_square():
|
137 |
+
A = bifid5
|
138 |
+
f = lambda i, j: symbols(A[5*i + j])
|
139 |
+
M = Matrix(5, 5, f)
|
140 |
+
assert bifid5_square("") == M
|
141 |
+
|
142 |
+
|
143 |
+
def test_decipher_bifid5():
|
144 |
+
assert decipher_bifid5("AB", "AB") == "AB"
|
145 |
+
assert decipher_bifid5("CO", "CD") == "AB"
|
146 |
+
assert decipher_bifid5("ch", "c") == "AB"
|
147 |
+
assert decipher_bifid5("b ac", "b") == "ABC"
|
148 |
+
|
149 |
+
|
150 |
+
def test_encipher_bifid6():
|
151 |
+
assert encipher_bifid6("AB", "AB") == "AB"
|
152 |
+
assert encipher_bifid6("AB", "CD") == "CP"
|
153 |
+
assert encipher_bifid6("ab", "c") == "CI"
|
154 |
+
assert encipher_bifid6("a bc", "b") == "BAC"
|
155 |
+
|
156 |
+
|
157 |
+
def test_decipher_bifid6():
|
158 |
+
assert decipher_bifid6("AB", "AB") == "AB"
|
159 |
+
assert decipher_bifid6("CP", "CD") == "AB"
|
160 |
+
assert decipher_bifid6("ci", "c") == "AB"
|
161 |
+
assert decipher_bifid6("b ac", "b") == "ABC"
|
162 |
+
|
163 |
+
|
164 |
+
def test_bifid6_square():
|
165 |
+
A = bifid6
|
166 |
+
f = lambda i, j: symbols(A[6*i + j])
|
167 |
+
M = Matrix(6, 6, f)
|
168 |
+
assert bifid6_square("") == M
|
169 |
+
|
170 |
+
|
171 |
+
def test_rsa_public_key():
|
172 |
+
assert rsa_public_key(2, 3, 1) == (6, 1)
|
173 |
+
assert rsa_public_key(5, 3, 3) == (15, 3)
|
174 |
+
|
175 |
+
with warns(NonInvertibleCipherWarning):
|
176 |
+
assert rsa_public_key(2, 2, 1) == (4, 1)
|
177 |
+
assert rsa_public_key(8, 8, 8) is False
|
178 |
+
|
179 |
+
|
180 |
+
def test_rsa_private_key():
|
181 |
+
assert rsa_private_key(2, 3, 1) == (6, 1)
|
182 |
+
assert rsa_private_key(5, 3, 3) == (15, 3)
|
183 |
+
assert rsa_private_key(23,29,5) == (667,493)
|
184 |
+
|
185 |
+
with warns(NonInvertibleCipherWarning):
|
186 |
+
assert rsa_private_key(2, 2, 1) == (4, 1)
|
187 |
+
assert rsa_private_key(8, 8, 8) is False
|
188 |
+
|
189 |
+
|
190 |
+
def test_rsa_large_key():
|
191 |
+
# Sample from
|
192 |
+
# http://www.herongyang.com/Cryptography/JCE-Public-Key-RSA-Private-Public-Key-Pair-Sample.html
|
193 |
+
p = int('101565610013301240713207239558950144682174355406589305284428666'\
|
194 |
+
'903702505233009')
|
195 |
+
q = int('894687191887545488935455605955948413812376003053143521429242133'\
|
196 |
+
'12069293984003')
|
197 |
+
e = int('65537')
|
198 |
+
d = int('893650581832704239530398858744759129594796235440844479456143566'\
|
199 |
+
'6999402846577625762582824202269399672579058991442587406384754958587'\
|
200 |
+
'400493169361356902030209')
|
201 |
+
assert rsa_public_key(p, q, e) == (p*q, e)
|
202 |
+
assert rsa_private_key(p, q, e) == (p*q, d)
|
203 |
+
|
204 |
+
|
205 |
+
def test_encipher_rsa():
|
206 |
+
puk = rsa_public_key(2, 3, 1)
|
207 |
+
assert encipher_rsa(2, puk) == 2
|
208 |
+
puk = rsa_public_key(5, 3, 3)
|
209 |
+
assert encipher_rsa(2, puk) == 8
|
210 |
+
|
211 |
+
with warns(NonInvertibleCipherWarning):
|
212 |
+
puk = rsa_public_key(2, 2, 1)
|
213 |
+
assert encipher_rsa(2, puk) == 2
|
214 |
+
|
215 |
+
|
216 |
+
def test_decipher_rsa():
|
217 |
+
prk = rsa_private_key(2, 3, 1)
|
218 |
+
assert decipher_rsa(2, prk) == 2
|
219 |
+
prk = rsa_private_key(5, 3, 3)
|
220 |
+
assert decipher_rsa(8, prk) == 2
|
221 |
+
|
222 |
+
with warns(NonInvertibleCipherWarning):
|
223 |
+
prk = rsa_private_key(2, 2, 1)
|
224 |
+
assert decipher_rsa(2, prk) == 2
|
225 |
+
|
226 |
+
|
227 |
+
def test_mutltiprime_rsa_full_example():
|
228 |
+
# Test example from
|
229 |
+
# https://iopscience.iop.org/article/10.1088/1742-6596/995/1/012030
|
230 |
+
puk = rsa_public_key(2, 3, 5, 7, 11, 13, 7)
|
231 |
+
prk = rsa_private_key(2, 3, 5, 7, 11, 13, 7)
|
232 |
+
assert puk == (30030, 7)
|
233 |
+
assert prk == (30030, 823)
|
234 |
+
|
235 |
+
msg = 10
|
236 |
+
encrypted = encipher_rsa(2 * msg - 15, puk)
|
237 |
+
assert encrypted == 18065
|
238 |
+
decrypted = (decipher_rsa(encrypted, prk) + 15) / 2
|
239 |
+
assert decrypted == msg
|
240 |
+
|
241 |
+
# Test example from
|
242 |
+
# https://www.scirp.org/pdf/JCC_2018032215502008.pdf
|
243 |
+
puk1 = rsa_public_key(53, 41, 43, 47, 41)
|
244 |
+
prk1 = rsa_private_key(53, 41, 43, 47, 41)
|
245 |
+
puk2 = rsa_public_key(53, 41, 43, 47, 97)
|
246 |
+
prk2 = rsa_private_key(53, 41, 43, 47, 97)
|
247 |
+
|
248 |
+
assert puk1 == (4391633, 41)
|
249 |
+
assert prk1 == (4391633, 294041)
|
250 |
+
assert puk2 == (4391633, 97)
|
251 |
+
assert prk2 == (4391633, 455713)
|
252 |
+
|
253 |
+
msg = 12321
|
254 |
+
encrypted = encipher_rsa(encipher_rsa(msg, puk1), puk2)
|
255 |
+
assert encrypted == 1081588
|
256 |
+
decrypted = decipher_rsa(decipher_rsa(encrypted, prk2), prk1)
|
257 |
+
assert decrypted == msg
|
258 |
+
|
259 |
+
|
260 |
+
def test_rsa_crt_extreme():
|
261 |
+
p = int(
|
262 |
+
'10177157607154245068023861503693082120906487143725062283406501' \
|
263 |
+
'54082258226204046999838297167140821364638180697194879500245557' \
|
264 |
+
'65445186962893346463841419427008800341257468600224049986260471' \
|
265 |
+
'92257248163014468841725476918639415726709736077813632961290911' \
|
266 |
+
'0256421232977833028677441206049309220354796014376698325101693')
|
267 |
+
|
268 |
+
q = int(
|
269 |
+
'28752342353095132872290181526607275886182793241660805077850801' \
|
270 |
+
'75689512797754286972952273553128181861830576836289738668745250' \
|
271 |
+
'34028199691128870676414118458442900035778874482624765513861643' \
|
272 |
+
'27966696316822188398336199002306588703902894100476186823849595' \
|
273 |
+
'103239410527279605442148285816149368667083114802852804976893')
|
274 |
+
|
275 |
+
r = int(
|
276 |
+
'17698229259868825776879500736350186838850961935956310134378261' \
|
277 |
+
'89771862186717463067541369694816245225291921138038800171125596' \
|
278 |
+
'07315449521981157084370187887650624061033066022458512942411841' \
|
279 |
+
'18747893789972315277160085086164119879536041875335384844820566' \
|
280 |
+
'0287479617671726408053319619892052000850883994343378882717849')
|
281 |
+
|
282 |
+
s = int(
|
283 |
+
'68925428438585431029269182233502611027091755064643742383515623' \
|
284 |
+
'64321310582896893395529367074942808353187138794422745718419645' \
|
285 |
+
'28291231865157212604266903677599180789896916456120289112752835' \
|
286 |
+
'98502265889669730331688206825220074713977607415178738015831030' \
|
287 |
+
'364290585369150502819743827343552098197095520550865360159439'
|
288 |
+
)
|
289 |
+
|
290 |
+
t = int(
|
291 |
+
'69035483433453632820551311892368908779778144568711455301541094' \
|
292 |
+
'31487047642322695357696860925747923189635033183069823820910521' \
|
293 |
+
'71172909106797748883261493224162414050106920442445896819806600' \
|
294 |
+
'15448444826108008217972129130625571421904893252804729877353352' \
|
295 |
+
'739420480574842850202181462656251626522910618936534699566291'
|
296 |
+
)
|
297 |
+
|
298 |
+
e = 65537
|
299 |
+
puk = rsa_public_key(p, q, r, s, t, e)
|
300 |
+
prk = rsa_private_key(p, q, r, s, t, e)
|
301 |
+
|
302 |
+
plaintext = 1000
|
303 |
+
ciphertext_1 = encipher_rsa(plaintext, puk)
|
304 |
+
ciphertext_2 = encipher_rsa(plaintext, puk, [p, q, r, s, t])
|
305 |
+
assert ciphertext_1 == ciphertext_2
|
306 |
+
assert decipher_rsa(ciphertext_1, prk) == \
|
307 |
+
decipher_rsa(ciphertext_1, prk, [p, q, r, s, t])
|
308 |
+
|
309 |
+
|
310 |
+
def test_rsa_exhaustive():
|
311 |
+
p, q = 61, 53
|
312 |
+
e = 17
|
313 |
+
puk = rsa_public_key(p, q, e, totient='Carmichael')
|
314 |
+
prk = rsa_private_key(p, q, e, totient='Carmichael')
|
315 |
+
|
316 |
+
for msg in range(puk[0]):
|
317 |
+
encrypted = encipher_rsa(msg, puk)
|
318 |
+
decrypted = decipher_rsa(encrypted, prk)
|
319 |
+
try:
|
320 |
+
assert decrypted == msg
|
321 |
+
except AssertionError:
|
322 |
+
raise AssertionError(
|
323 |
+
"The RSA is not correctly decrypted " \
|
324 |
+
"(Original : {}, Encrypted : {}, Decrypted : {})" \
|
325 |
+
.format(msg, encrypted, decrypted)
|
326 |
+
)
|
327 |
+
|
328 |
+
|
329 |
+
def test_rsa_multiprime_exhanstive():
|
330 |
+
primes = [3, 5, 7, 11]
|
331 |
+
e = 7
|
332 |
+
args = primes + [e]
|
333 |
+
puk = rsa_public_key(*args, totient='Carmichael')
|
334 |
+
prk = rsa_private_key(*args, totient='Carmichael')
|
335 |
+
n = puk[0]
|
336 |
+
|
337 |
+
for msg in range(n):
|
338 |
+
encrypted = encipher_rsa(msg, puk)
|
339 |
+
decrypted = decipher_rsa(encrypted, prk)
|
340 |
+
try:
|
341 |
+
assert decrypted == msg
|
342 |
+
except AssertionError:
|
343 |
+
raise AssertionError(
|
344 |
+
"The RSA is not correctly decrypted " \
|
345 |
+
"(Original : {}, Encrypted : {}, Decrypted : {})" \
|
346 |
+
.format(msg, encrypted, decrypted)
|
347 |
+
)
|
348 |
+
|
349 |
+
|
350 |
+
def test_rsa_multipower_exhanstive():
|
351 |
+
from sympy.core.numbers import igcd
|
352 |
+
primes = [5, 5, 7]
|
353 |
+
e = 7
|
354 |
+
args = primes + [e]
|
355 |
+
puk = rsa_public_key(*args, multipower=True)
|
356 |
+
prk = rsa_private_key(*args, multipower=True)
|
357 |
+
n = puk[0]
|
358 |
+
|
359 |
+
for msg in range(n):
|
360 |
+
if igcd(msg, n) != 1:
|
361 |
+
continue
|
362 |
+
|
363 |
+
encrypted = encipher_rsa(msg, puk)
|
364 |
+
decrypted = decipher_rsa(encrypted, prk)
|
365 |
+
try:
|
366 |
+
assert decrypted == msg
|
367 |
+
except AssertionError:
|
368 |
+
raise AssertionError(
|
369 |
+
"The RSA is not correctly decrypted " \
|
370 |
+
"(Original : {}, Encrypted : {}, Decrypted : {})" \
|
371 |
+
.format(msg, encrypted, decrypted)
|
372 |
+
)
|
373 |
+
|
374 |
+
|
375 |
+
def test_kid_rsa_public_key():
|
376 |
+
assert kid_rsa_public_key(1, 2, 1, 1) == (5, 2)
|
377 |
+
assert kid_rsa_public_key(1, 2, 2, 1) == (8, 3)
|
378 |
+
assert kid_rsa_public_key(1, 2, 1, 2) == (7, 2)
|
379 |
+
|
380 |
+
|
381 |
+
def test_kid_rsa_private_key():
|
382 |
+
assert kid_rsa_private_key(1, 2, 1, 1) == (5, 3)
|
383 |
+
assert kid_rsa_private_key(1, 2, 2, 1) == (8, 3)
|
384 |
+
assert kid_rsa_private_key(1, 2, 1, 2) == (7, 4)
|
385 |
+
|
386 |
+
|
387 |
+
def test_encipher_kid_rsa():
|
388 |
+
assert encipher_kid_rsa(1, (5, 2)) == 2
|
389 |
+
assert encipher_kid_rsa(1, (8, 3)) == 3
|
390 |
+
assert encipher_kid_rsa(1, (7, 2)) == 2
|
391 |
+
|
392 |
+
|
393 |
+
def test_decipher_kid_rsa():
|
394 |
+
assert decipher_kid_rsa(2, (5, 3)) == 1
|
395 |
+
assert decipher_kid_rsa(3, (8, 3)) == 1
|
396 |
+
assert decipher_kid_rsa(2, (7, 4)) == 1
|
397 |
+
|
398 |
+
|
399 |
+
def test_encode_morse():
|
400 |
+
assert encode_morse('ABC') == '.-|-...|-.-.'
|
401 |
+
assert encode_morse('SMS ') == '...|--|...||'
|
402 |
+
assert encode_morse('SMS\n') == '...|--|...||'
|
403 |
+
assert encode_morse('') == ''
|
404 |
+
assert encode_morse(' ') == '||'
|
405 |
+
assert encode_morse(' ', sep='`') == '``'
|
406 |
+
assert encode_morse(' ', sep='``') == '````'
|
407 |
+
assert encode_morse('!@#$%^&*()_+') == '-.-.--|.--.-.|...-..-|-.--.|-.--.-|..--.-|.-.-.'
|
408 |
+
assert encode_morse('12345') == '.----|..---|...--|....-|.....'
|
409 |
+
assert encode_morse('67890') == '-....|--...|---..|----.|-----'
|
410 |
+
|
411 |
+
|
412 |
+
def test_decode_morse():
|
413 |
+
assert decode_morse('-.-|.|-.--') == 'KEY'
|
414 |
+
assert decode_morse('.-.|..-|-.||') == 'RUN'
|
415 |
+
raises(KeyError, lambda: decode_morse('.....----'))
|
416 |
+
|
417 |
+
|
418 |
+
def test_lfsr_sequence():
|
419 |
+
raises(TypeError, lambda: lfsr_sequence(1, [1], 1))
|
420 |
+
raises(TypeError, lambda: lfsr_sequence([1], 1, 1))
|
421 |
+
F = FF(2)
|
422 |
+
assert lfsr_sequence([F(1)], [F(1)], 2) == [F(1), F(1)]
|
423 |
+
assert lfsr_sequence([F(0)], [F(1)], 2) == [F(1), F(0)]
|
424 |
+
F = FF(3)
|
425 |
+
assert lfsr_sequence([F(1)], [F(1)], 2) == [F(1), F(1)]
|
426 |
+
assert lfsr_sequence([F(0)], [F(2)], 2) == [F(2), F(0)]
|
427 |
+
assert lfsr_sequence([F(1)], [F(2)], 2) == [F(2), F(2)]
|
428 |
+
|
429 |
+
|
430 |
+
def test_lfsr_autocorrelation():
|
431 |
+
raises(TypeError, lambda: lfsr_autocorrelation(1, 2, 3))
|
432 |
+
F = FF(2)
|
433 |
+
s = lfsr_sequence([F(1), F(0)], [F(0), F(1)], 5)
|
434 |
+
assert lfsr_autocorrelation(s, 2, 0) == 1
|
435 |
+
assert lfsr_autocorrelation(s, 2, 1) == -1
|
436 |
+
|
437 |
+
|
438 |
+
def test_lfsr_connection_polynomial():
|
439 |
+
F = FF(2)
|
440 |
+
x = symbols("x")
|
441 |
+
s = lfsr_sequence([F(1), F(0)], [F(0), F(1)], 5)
|
442 |
+
assert lfsr_connection_polynomial(s) == x**2 + 1
|
443 |
+
s = lfsr_sequence([F(1), F(1)], [F(0), F(1)], 5)
|
444 |
+
assert lfsr_connection_polynomial(s) == x**2 + x + 1
|
445 |
+
|
446 |
+
|
447 |
+
def test_elgamal_private_key():
|
448 |
+
a, b, _ = elgamal_private_key(digit=100)
|
449 |
+
assert isprime(a)
|
450 |
+
assert is_primitive_root(b, a)
|
451 |
+
assert len(bin(a)) >= 102
|
452 |
+
|
453 |
+
|
454 |
+
def test_elgamal():
|
455 |
+
dk = elgamal_private_key(5)
|
456 |
+
ek = elgamal_public_key(dk)
|
457 |
+
P = ek[0]
|
458 |
+
assert P - 1 == decipher_elgamal(encipher_elgamal(P - 1, ek), dk)
|
459 |
+
raises(ValueError, lambda: encipher_elgamal(P, dk))
|
460 |
+
raises(ValueError, lambda: encipher_elgamal(-1, dk))
|
461 |
+
|
462 |
+
|
463 |
+
def test_dh_private_key():
|
464 |
+
p, g, _ = dh_private_key(digit = 100)
|
465 |
+
assert isprime(p)
|
466 |
+
assert is_primitive_root(g, p)
|
467 |
+
assert len(bin(p)) >= 102
|
468 |
+
|
469 |
+
|
470 |
+
def test_dh_public_key():
|
471 |
+
p1, g1, a = dh_private_key(digit = 100)
|
472 |
+
p2, g2, ga = dh_public_key((p1, g1, a))
|
473 |
+
assert p1 == p2
|
474 |
+
assert g1 == g2
|
475 |
+
assert ga == pow(g1, a, p1)
|
476 |
+
|
477 |
+
|
478 |
+
def test_dh_shared_key():
|
479 |
+
prk = dh_private_key(digit = 100)
|
480 |
+
p, _, ga = dh_public_key(prk)
|
481 |
+
b = randrange(2, p)
|
482 |
+
sk = dh_shared_key((p, _, ga), b)
|
483 |
+
assert sk == pow(ga, b, p)
|
484 |
+
raises(ValueError, lambda: dh_shared_key((1031, 14, 565), 2000))
|
485 |
+
|
486 |
+
|
487 |
+
def test_padded_key():
|
488 |
+
assert padded_key('b', 'ab') == 'ba'
|
489 |
+
raises(ValueError, lambda: padded_key('ab', 'ace'))
|
490 |
+
raises(ValueError, lambda: padded_key('ab', 'abba'))
|
491 |
+
|
492 |
+
|
493 |
+
def test_bifid():
|
494 |
+
raises(ValueError, lambda: encipher_bifid('abc', 'b', 'abcde'))
|
495 |
+
assert encipher_bifid('abc', 'b', 'abcd') == 'bdb'
|
496 |
+
raises(ValueError, lambda: decipher_bifid('bdb', 'b', 'abcde'))
|
497 |
+
assert encipher_bifid('bdb', 'b', 'abcd') == 'abc'
|
498 |
+
raises(ValueError, lambda: bifid_square('abcde'))
|
499 |
+
assert bifid5_square("B") == \
|
500 |
+
bifid5_square('BACDEFGHIKLMNOPQRSTUVWXYZ')
|
501 |
+
assert bifid6_square('B0') == \
|
502 |
+
bifid6_square('B0ACDEFGHIJKLMNOPQRSTUVWXYZ123456789')
|
503 |
+
|
504 |
+
|
505 |
+
def test_encipher_decipher_gm():
|
506 |
+
ps = [131, 137, 139, 149, 151, 157, 163, 167,
|
507 |
+
173, 179, 181, 191, 193, 197, 199]
|
508 |
+
qs = [89, 97, 101, 103, 107, 109, 113, 127,
|
509 |
+
131, 137, 139, 149, 151, 157, 47]
|
510 |
+
messages = [
|
511 |
+
0, 32855, 34303, 14805, 1280, 75859, 38368,
|
512 |
+
724, 60356, 51675, 76697, 61854, 18661,
|
513 |
+
]
|
514 |
+
for p, q in zip(ps, qs):
|
515 |
+
pri = gm_private_key(p, q)
|
516 |
+
for msg in messages:
|
517 |
+
pub = gm_public_key(p, q)
|
518 |
+
enc = encipher_gm(msg, pub)
|
519 |
+
dec = decipher_gm(enc, pri)
|
520 |
+
assert dec == msg
|
521 |
+
|
522 |
+
|
523 |
+
def test_gm_private_key():
|
524 |
+
raises(ValueError, lambda: gm_public_key(13, 15))
|
525 |
+
raises(ValueError, lambda: gm_public_key(0, 0))
|
526 |
+
raises(ValueError, lambda: gm_public_key(0, 5))
|
527 |
+
assert 17, 19 == gm_public_key(17, 19)
|
528 |
+
|
529 |
+
|
530 |
+
def test_gm_public_key():
|
531 |
+
assert 323 == gm_public_key(17, 19)[1]
|
532 |
+
assert 15 == gm_public_key(3, 5)[1]
|
533 |
+
raises(ValueError, lambda: gm_public_key(15, 19))
|
534 |
+
|
535 |
+
def test_encipher_decipher_bg():
|
536 |
+
ps = [67, 7, 71, 103, 11, 43, 107, 47,
|
537 |
+
79, 19, 83, 23, 59, 127, 31]
|
538 |
+
qs = qs = [7, 71, 103, 11, 43, 107, 47,
|
539 |
+
79, 19, 83, 23, 59, 127, 31, 67]
|
540 |
+
messages = [
|
541 |
+
0, 328, 343, 148, 1280, 758, 383,
|
542 |
+
724, 603, 516, 766, 618, 186,
|
543 |
+
]
|
544 |
+
|
545 |
+
for p, q in zip(ps, qs):
|
546 |
+
pri = bg_private_key(p, q)
|
547 |
+
for msg in messages:
|
548 |
+
pub = bg_public_key(p, q)
|
549 |
+
enc = encipher_bg(msg, pub)
|
550 |
+
dec = decipher_bg(enc, pri)
|
551 |
+
assert dec == msg
|
552 |
+
|
553 |
+
def test_bg_private_key():
|
554 |
+
raises(ValueError, lambda: bg_private_key(8, 16))
|
555 |
+
raises(ValueError, lambda: bg_private_key(8, 8))
|
556 |
+
raises(ValueError, lambda: bg_private_key(13, 17))
|
557 |
+
assert 23, 31 == bg_private_key(23, 31)
|
558 |
+
|
559 |
+
def test_bg_public_key():
|
560 |
+
assert 5293 == bg_public_key(67, 79)
|
561 |
+
assert 713 == bg_public_key(23, 31)
|
562 |
+
raises(ValueError, lambda: bg_private_key(13, 17))
|
venv/lib/python3.10/site-packages/sympy/sets/__init__.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .sets import (Set, Interval, Union, FiniteSet, ProductSet,
|
2 |
+
Intersection, imageset, Complement, SymmetricDifference,
|
3 |
+
DisjointUnion)
|
4 |
+
|
5 |
+
from .fancysets import ImageSet, Range, ComplexRegion
|
6 |
+
from .contains import Contains
|
7 |
+
from .conditionset import ConditionSet
|
8 |
+
from .ordinals import Ordinal, OmegaPower, ord0
|
9 |
+
from .powerset import PowerSet
|
10 |
+
from ..core.singleton import S
|
11 |
+
from .handlers.comparison import _eval_is_eq # noqa:F401
|
12 |
+
Complexes = S.Complexes
|
13 |
+
EmptySet = S.EmptySet
|
14 |
+
Integers = S.Integers
|
15 |
+
Naturals = S.Naturals
|
16 |
+
Naturals0 = S.Naturals0
|
17 |
+
Rationals = S.Rationals
|
18 |
+
Reals = S.Reals
|
19 |
+
UniversalSet = S.UniversalSet
|
20 |
+
|
21 |
+
__all__ = [
|
22 |
+
'Set', 'Interval', 'Union', 'EmptySet', 'FiniteSet', 'ProductSet',
|
23 |
+
'Intersection', 'imageset', 'Complement', 'SymmetricDifference', 'DisjointUnion',
|
24 |
+
|
25 |
+
'ImageSet', 'Range', 'ComplexRegion', 'Reals',
|
26 |
+
|
27 |
+
'Contains',
|
28 |
+
|
29 |
+
'ConditionSet',
|
30 |
+
|
31 |
+
'Ordinal', 'OmegaPower', 'ord0',
|
32 |
+
|
33 |
+
'PowerSet',
|
34 |
+
|
35 |
+
'Reals', 'Naturals', 'Naturals0', 'UniversalSet', 'Integers', 'Rationals',
|
36 |
+
]
|
venv/lib/python3.10/site-packages/sympy/sets/conditionset.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.singleton import S
|
2 |
+
from sympy.core.basic import Basic
|
3 |
+
from sympy.core.containers import Tuple
|
4 |
+
from sympy.core.function import Lambda, BadSignatureError
|
5 |
+
from sympy.core.logic import fuzzy_bool
|
6 |
+
from sympy.core.relational import Eq
|
7 |
+
from sympy.core.symbol import Dummy
|
8 |
+
from sympy.core.sympify import _sympify
|
9 |
+
from sympy.logic.boolalg import And, as_Boolean
|
10 |
+
from sympy.utilities.iterables import sift, flatten, has_dups
|
11 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
12 |
+
from .contains import Contains
|
13 |
+
from .sets import Set, Union, FiniteSet, SetKind
|
14 |
+
|
15 |
+
|
16 |
+
adummy = Dummy('conditionset')
|
17 |
+
|
18 |
+
|
19 |
+
class ConditionSet(Set):
|
20 |
+
r"""
|
21 |
+
Set of elements which satisfies a given condition.
|
22 |
+
|
23 |
+
.. math:: \{x \mid \textrm{condition}(x) = \texttt{True}, x \in S\}
|
24 |
+
|
25 |
+
Examples
|
26 |
+
========
|
27 |
+
|
28 |
+
>>> from sympy import Symbol, S, ConditionSet, pi, Eq, sin, Interval
|
29 |
+
>>> from sympy.abc import x, y, z
|
30 |
+
|
31 |
+
>>> sin_sols = ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi))
|
32 |
+
>>> 2*pi in sin_sols
|
33 |
+
True
|
34 |
+
>>> pi/2 in sin_sols
|
35 |
+
False
|
36 |
+
>>> 3*pi in sin_sols
|
37 |
+
False
|
38 |
+
>>> 5 in ConditionSet(x, x**2 > 4, S.Reals)
|
39 |
+
True
|
40 |
+
|
41 |
+
If the value is not in the base set, the result is false:
|
42 |
+
|
43 |
+
>>> 5 in ConditionSet(x, x**2 > 4, Interval(2, 4))
|
44 |
+
False
|
45 |
+
|
46 |
+
Notes
|
47 |
+
=====
|
48 |
+
|
49 |
+
Symbols with assumptions should be avoided or else the
|
50 |
+
condition may evaluate without consideration of the set:
|
51 |
+
|
52 |
+
>>> n = Symbol('n', negative=True)
|
53 |
+
>>> cond = (n > 0); cond
|
54 |
+
False
|
55 |
+
>>> ConditionSet(n, cond, S.Integers)
|
56 |
+
EmptySet
|
57 |
+
|
58 |
+
Only free symbols can be changed by using `subs`:
|
59 |
+
|
60 |
+
>>> c = ConditionSet(x, x < 1, {x, z})
|
61 |
+
>>> c.subs(x, y)
|
62 |
+
ConditionSet(x, x < 1, {y, z})
|
63 |
+
|
64 |
+
To check if ``pi`` is in ``c`` use:
|
65 |
+
|
66 |
+
>>> pi in c
|
67 |
+
False
|
68 |
+
|
69 |
+
If no base set is specified, the universal set is implied:
|
70 |
+
|
71 |
+
>>> ConditionSet(x, x < 1).base_set
|
72 |
+
UniversalSet
|
73 |
+
|
74 |
+
Only symbols or symbol-like expressions can be used:
|
75 |
+
|
76 |
+
>>> ConditionSet(x + 1, x + 1 < 1, S.Integers)
|
77 |
+
Traceback (most recent call last):
|
78 |
+
...
|
79 |
+
ValueError: non-symbol dummy not recognized in condition
|
80 |
+
|
81 |
+
When the base set is a ConditionSet, the symbols will be
|
82 |
+
unified if possible with preference for the outermost symbols:
|
83 |
+
|
84 |
+
>>> ConditionSet(x, x < y, ConditionSet(z, z + y < 2, S.Integers))
|
85 |
+
ConditionSet(x, (x < y) & (x + y < 2), Integers)
|
86 |
+
|
87 |
+
"""
|
88 |
+
def __new__(cls, sym, condition, base_set=S.UniversalSet):
|
89 |
+
sym = _sympify(sym)
|
90 |
+
flat = flatten([sym])
|
91 |
+
if has_dups(flat):
|
92 |
+
raise BadSignatureError("Duplicate symbols detected")
|
93 |
+
base_set = _sympify(base_set)
|
94 |
+
if not isinstance(base_set, Set):
|
95 |
+
raise TypeError(
|
96 |
+
'base set should be a Set object, not %s' % base_set)
|
97 |
+
condition = _sympify(condition)
|
98 |
+
|
99 |
+
if isinstance(condition, FiniteSet):
|
100 |
+
condition_orig = condition
|
101 |
+
temp = (Eq(lhs, 0) for lhs in condition)
|
102 |
+
condition = And(*temp)
|
103 |
+
sympy_deprecation_warning(
|
104 |
+
f"""
|
105 |
+
Using a set for the condition in ConditionSet is deprecated. Use a boolean
|
106 |
+
instead.
|
107 |
+
|
108 |
+
In this case, replace
|
109 |
+
|
110 |
+
{condition_orig}
|
111 |
+
|
112 |
+
with
|
113 |
+
|
114 |
+
{condition}
|
115 |
+
""",
|
116 |
+
deprecated_since_version='1.5',
|
117 |
+
active_deprecations_target="deprecated-conditionset-set",
|
118 |
+
)
|
119 |
+
|
120 |
+
condition = as_Boolean(condition)
|
121 |
+
|
122 |
+
if condition is S.true:
|
123 |
+
return base_set
|
124 |
+
|
125 |
+
if condition is S.false:
|
126 |
+
return S.EmptySet
|
127 |
+
|
128 |
+
if base_set is S.EmptySet:
|
129 |
+
return S.EmptySet
|
130 |
+
|
131 |
+
# no simple answers, so now check syms
|
132 |
+
for i in flat:
|
133 |
+
if not getattr(i, '_diff_wrt', False):
|
134 |
+
raise ValueError('`%s` is not symbol-like' % i)
|
135 |
+
|
136 |
+
if base_set.contains(sym) is S.false:
|
137 |
+
raise TypeError('sym `%s` is not in base_set `%s`' % (sym, base_set))
|
138 |
+
|
139 |
+
know = None
|
140 |
+
if isinstance(base_set, FiniteSet):
|
141 |
+
sifted = sift(
|
142 |
+
base_set, lambda _: fuzzy_bool(condition.subs(sym, _)))
|
143 |
+
if sifted[None]:
|
144 |
+
know = FiniteSet(*sifted[True])
|
145 |
+
base_set = FiniteSet(*sifted[None])
|
146 |
+
else:
|
147 |
+
return FiniteSet(*sifted[True])
|
148 |
+
|
149 |
+
if isinstance(base_set, cls):
|
150 |
+
s, c, b = base_set.args
|
151 |
+
def sig(s):
|
152 |
+
return cls(s, Eq(adummy, 0)).as_dummy().sym
|
153 |
+
sa, sb = map(sig, (sym, s))
|
154 |
+
if sa != sb:
|
155 |
+
raise BadSignatureError('sym does not match sym of base set')
|
156 |
+
reps = dict(zip(flatten([sym]), flatten([s])))
|
157 |
+
if s == sym:
|
158 |
+
condition = And(condition, c)
|
159 |
+
base_set = b
|
160 |
+
elif not c.free_symbols & sym.free_symbols:
|
161 |
+
reps = {v: k for k, v in reps.items()}
|
162 |
+
condition = And(condition, c.xreplace(reps))
|
163 |
+
base_set = b
|
164 |
+
elif not condition.free_symbols & s.free_symbols:
|
165 |
+
sym = sym.xreplace(reps)
|
166 |
+
condition = And(condition.xreplace(reps), c)
|
167 |
+
base_set = b
|
168 |
+
|
169 |
+
# flatten ConditionSet(Contains(ConditionSet())) expressions
|
170 |
+
if isinstance(condition, Contains) and (sym == condition.args[0]):
|
171 |
+
if isinstance(condition.args[1], Set):
|
172 |
+
return condition.args[1].intersect(base_set)
|
173 |
+
|
174 |
+
rv = Basic.__new__(cls, sym, condition, base_set)
|
175 |
+
return rv if know is None else Union(know, rv)
|
176 |
+
|
177 |
+
sym = property(lambda self: self.args[0])
|
178 |
+
condition = property(lambda self: self.args[1])
|
179 |
+
base_set = property(lambda self: self.args[2])
|
180 |
+
|
181 |
+
@property
|
182 |
+
def free_symbols(self):
|
183 |
+
cond_syms = self.condition.free_symbols - self.sym.free_symbols
|
184 |
+
return cond_syms | self.base_set.free_symbols
|
185 |
+
|
186 |
+
@property
|
187 |
+
def bound_symbols(self):
|
188 |
+
return flatten([self.sym])
|
189 |
+
|
190 |
+
def _contains(self, other):
|
191 |
+
def ok_sig(a, b):
|
192 |
+
tuples = [isinstance(i, Tuple) for i in (a, b)]
|
193 |
+
c = tuples.count(True)
|
194 |
+
if c == 1:
|
195 |
+
return False
|
196 |
+
if c == 0:
|
197 |
+
return True
|
198 |
+
return len(a) == len(b) and all(
|
199 |
+
ok_sig(i, j) for i, j in zip(a, b))
|
200 |
+
if not ok_sig(self.sym, other):
|
201 |
+
return S.false
|
202 |
+
|
203 |
+
# try doing base_cond first and return
|
204 |
+
# False immediately if it is False
|
205 |
+
base_cond = Contains(other, self.base_set)
|
206 |
+
if base_cond is S.false:
|
207 |
+
return S.false
|
208 |
+
|
209 |
+
# Substitute other into condition. This could raise e.g. for
|
210 |
+
# ConditionSet(x, 1/x >= 0, Reals).contains(0)
|
211 |
+
lamda = Lambda((self.sym,), self.condition)
|
212 |
+
try:
|
213 |
+
lambda_cond = lamda(other)
|
214 |
+
except TypeError:
|
215 |
+
return Contains(other, self, evaluate=False)
|
216 |
+
else:
|
217 |
+
return And(base_cond, lambda_cond)
|
218 |
+
|
219 |
+
def as_relational(self, other):
|
220 |
+
f = Lambda(self.sym, self.condition)
|
221 |
+
if isinstance(self.sym, Tuple):
|
222 |
+
f = f(*other)
|
223 |
+
else:
|
224 |
+
f = f(other)
|
225 |
+
return And(f, self.base_set.contains(other))
|
226 |
+
|
227 |
+
def _eval_subs(self, old, new):
|
228 |
+
sym, cond, base = self.args
|
229 |
+
dsym = sym.subs(old, adummy)
|
230 |
+
insym = dsym.has(adummy)
|
231 |
+
# prioritize changing a symbol in the base
|
232 |
+
newbase = base.subs(old, new)
|
233 |
+
if newbase != base:
|
234 |
+
if not insym:
|
235 |
+
cond = cond.subs(old, new)
|
236 |
+
return self.func(sym, cond, newbase)
|
237 |
+
if insym:
|
238 |
+
pass # no change of bound symbols via subs
|
239 |
+
elif getattr(new, '_diff_wrt', False):
|
240 |
+
cond = cond.subs(old, new)
|
241 |
+
else:
|
242 |
+
pass # let error about the symbol raise from __new__
|
243 |
+
return self.func(sym, cond, base)
|
244 |
+
|
245 |
+
def _kind(self):
|
246 |
+
return SetKind(self.sym.kind)
|
venv/lib/python3.10/site-packages/sympy/sets/contains.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S
|
2 |
+
from sympy.core.relational import Eq, Ne
|
3 |
+
from sympy.logic.boolalg import BooleanFunction
|
4 |
+
from sympy.utilities.misc import func_name
|
5 |
+
from .sets import Set
|
6 |
+
|
7 |
+
|
8 |
+
class Contains(BooleanFunction):
|
9 |
+
"""
|
10 |
+
Asserts that x is an element of the set S.
|
11 |
+
|
12 |
+
Examples
|
13 |
+
========
|
14 |
+
|
15 |
+
>>> from sympy import Symbol, Integer, S, Contains
|
16 |
+
>>> Contains(Integer(2), S.Integers)
|
17 |
+
True
|
18 |
+
>>> Contains(Integer(-2), S.Naturals)
|
19 |
+
False
|
20 |
+
>>> i = Symbol('i', integer=True)
|
21 |
+
>>> Contains(i, S.Naturals)
|
22 |
+
Contains(i, Naturals)
|
23 |
+
|
24 |
+
References
|
25 |
+
==========
|
26 |
+
|
27 |
+
.. [1] https://en.wikipedia.org/wiki/Element_%28mathematics%29
|
28 |
+
"""
|
29 |
+
@classmethod
|
30 |
+
def eval(cls, x, s):
|
31 |
+
|
32 |
+
if not isinstance(s, Set):
|
33 |
+
raise TypeError('expecting Set, not %s' % func_name(s))
|
34 |
+
|
35 |
+
ret = s.contains(x)
|
36 |
+
if not isinstance(ret, Contains) and (
|
37 |
+
ret in (S.true, S.false) or isinstance(ret, Set)):
|
38 |
+
return ret
|
39 |
+
|
40 |
+
@property
|
41 |
+
def binary_symbols(self):
|
42 |
+
return set().union(*[i.binary_symbols
|
43 |
+
for i in self.args[1].args
|
44 |
+
if i.is_Boolean or i.is_Symbol or
|
45 |
+
isinstance(i, (Eq, Ne))])
|
46 |
+
|
47 |
+
def as_set(self):
|
48 |
+
return self.args[1]
|
venv/lib/python3.10/site-packages/sympy/sets/fancysets.py
ADDED
@@ -0,0 +1,1521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import reduce
|
2 |
+
from itertools import product
|
3 |
+
|
4 |
+
from sympy.core.basic import Basic
|
5 |
+
from sympy.core.containers import Tuple
|
6 |
+
from sympy.core.expr import Expr
|
7 |
+
from sympy.core.function import Lambda
|
8 |
+
from sympy.core.logic import fuzzy_not, fuzzy_or, fuzzy_and
|
9 |
+
from sympy.core.mod import Mod
|
10 |
+
from sympy.core.numbers import oo, igcd, Rational
|
11 |
+
from sympy.core.relational import Eq, is_eq
|
12 |
+
from sympy.core.kind import NumberKind
|
13 |
+
from sympy.core.singleton import Singleton, S
|
14 |
+
from sympy.core.symbol import Dummy, symbols, Symbol
|
15 |
+
from sympy.core.sympify import _sympify, sympify, _sympy_converter
|
16 |
+
from sympy.functions.elementary.integers import ceiling, floor
|
17 |
+
from sympy.functions.elementary.trigonometric import sin, cos
|
18 |
+
from sympy.logic.boolalg import And, Or
|
19 |
+
from .sets import Set, Interval, Union, FiniteSet, ProductSet, SetKind
|
20 |
+
from sympy.utilities.misc import filldedent
|
21 |
+
|
22 |
+
|
23 |
+
class Rationals(Set, metaclass=Singleton):
|
24 |
+
"""
|
25 |
+
Represents the rational numbers. This set is also available as
|
26 |
+
the singleton ``S.Rationals``.
|
27 |
+
|
28 |
+
Examples
|
29 |
+
========
|
30 |
+
|
31 |
+
>>> from sympy import S
|
32 |
+
>>> S.Half in S.Rationals
|
33 |
+
True
|
34 |
+
>>> iterable = iter(S.Rationals)
|
35 |
+
>>> [next(iterable) for i in range(12)]
|
36 |
+
[0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 3, -1/3, -3, 2/3]
|
37 |
+
"""
|
38 |
+
|
39 |
+
is_iterable = True
|
40 |
+
_inf = S.NegativeInfinity
|
41 |
+
_sup = S.Infinity
|
42 |
+
is_empty = False
|
43 |
+
is_finite_set = False
|
44 |
+
|
45 |
+
def _contains(self, other):
|
46 |
+
if not isinstance(other, Expr):
|
47 |
+
return False
|
48 |
+
return other.is_rational
|
49 |
+
|
50 |
+
def __iter__(self):
|
51 |
+
yield S.Zero
|
52 |
+
yield S.One
|
53 |
+
yield S.NegativeOne
|
54 |
+
d = 2
|
55 |
+
while True:
|
56 |
+
for n in range(d):
|
57 |
+
if igcd(n, d) == 1:
|
58 |
+
yield Rational(n, d)
|
59 |
+
yield Rational(d, n)
|
60 |
+
yield Rational(-n, d)
|
61 |
+
yield Rational(-d, n)
|
62 |
+
d += 1
|
63 |
+
|
64 |
+
@property
|
65 |
+
def _boundary(self):
|
66 |
+
return S.Reals
|
67 |
+
|
68 |
+
def _kind(self):
|
69 |
+
return SetKind(NumberKind)
|
70 |
+
|
71 |
+
|
72 |
+
class Naturals(Set, metaclass=Singleton):
|
73 |
+
"""
|
74 |
+
Represents the natural numbers (or counting numbers) which are all
|
75 |
+
positive integers starting from 1. This set is also available as
|
76 |
+
the singleton ``S.Naturals``.
|
77 |
+
|
78 |
+
Examples
|
79 |
+
========
|
80 |
+
|
81 |
+
>>> from sympy import S, Interval, pprint
|
82 |
+
>>> 5 in S.Naturals
|
83 |
+
True
|
84 |
+
>>> iterable = iter(S.Naturals)
|
85 |
+
>>> next(iterable)
|
86 |
+
1
|
87 |
+
>>> next(iterable)
|
88 |
+
2
|
89 |
+
>>> next(iterable)
|
90 |
+
3
|
91 |
+
>>> pprint(S.Naturals.intersect(Interval(0, 10)))
|
92 |
+
{1, 2, ..., 10}
|
93 |
+
|
94 |
+
See Also
|
95 |
+
========
|
96 |
+
|
97 |
+
Naturals0 : non-negative integers (i.e. includes 0, too)
|
98 |
+
Integers : also includes negative integers
|
99 |
+
"""
|
100 |
+
|
101 |
+
is_iterable = True
|
102 |
+
_inf = S.One
|
103 |
+
_sup = S.Infinity
|
104 |
+
is_empty = False
|
105 |
+
is_finite_set = False
|
106 |
+
|
107 |
+
def _contains(self, other):
|
108 |
+
if not isinstance(other, Expr):
|
109 |
+
return False
|
110 |
+
elif other.is_positive and other.is_integer:
|
111 |
+
return True
|
112 |
+
elif other.is_integer is False or other.is_positive is False:
|
113 |
+
return False
|
114 |
+
|
115 |
+
def _eval_is_subset(self, other):
|
116 |
+
return Range(1, oo).is_subset(other)
|
117 |
+
|
118 |
+
def _eval_is_superset(self, other):
|
119 |
+
return Range(1, oo).is_superset(other)
|
120 |
+
|
121 |
+
def __iter__(self):
|
122 |
+
i = self._inf
|
123 |
+
while True:
|
124 |
+
yield i
|
125 |
+
i = i + 1
|
126 |
+
|
127 |
+
@property
|
128 |
+
def _boundary(self):
|
129 |
+
return self
|
130 |
+
|
131 |
+
def as_relational(self, x):
|
132 |
+
return And(Eq(floor(x), x), x >= self.inf, x < oo)
|
133 |
+
|
134 |
+
def _kind(self):
|
135 |
+
return SetKind(NumberKind)
|
136 |
+
|
137 |
+
|
138 |
+
class Naturals0(Naturals):
|
139 |
+
"""Represents the whole numbers which are all the non-negative integers,
|
140 |
+
inclusive of zero.
|
141 |
+
|
142 |
+
See Also
|
143 |
+
========
|
144 |
+
|
145 |
+
Naturals : positive integers; does not include 0
|
146 |
+
Integers : also includes the negative integers
|
147 |
+
"""
|
148 |
+
_inf = S.Zero
|
149 |
+
|
150 |
+
def _contains(self, other):
|
151 |
+
if not isinstance(other, Expr):
|
152 |
+
return S.false
|
153 |
+
elif other.is_integer and other.is_nonnegative:
|
154 |
+
return S.true
|
155 |
+
elif other.is_integer is False or other.is_nonnegative is False:
|
156 |
+
return S.false
|
157 |
+
|
158 |
+
def _eval_is_subset(self, other):
|
159 |
+
return Range(oo).is_subset(other)
|
160 |
+
|
161 |
+
def _eval_is_superset(self, other):
|
162 |
+
return Range(oo).is_superset(other)
|
163 |
+
|
164 |
+
|
165 |
+
class Integers(Set, metaclass=Singleton):
|
166 |
+
"""
|
167 |
+
Represents all integers: positive, negative and zero. This set is also
|
168 |
+
available as the singleton ``S.Integers``.
|
169 |
+
|
170 |
+
Examples
|
171 |
+
========
|
172 |
+
|
173 |
+
>>> from sympy import S, Interval, pprint
|
174 |
+
>>> 5 in S.Naturals
|
175 |
+
True
|
176 |
+
>>> iterable = iter(S.Integers)
|
177 |
+
>>> next(iterable)
|
178 |
+
0
|
179 |
+
>>> next(iterable)
|
180 |
+
1
|
181 |
+
>>> next(iterable)
|
182 |
+
-1
|
183 |
+
>>> next(iterable)
|
184 |
+
2
|
185 |
+
|
186 |
+
>>> pprint(S.Integers.intersect(Interval(-4, 4)))
|
187 |
+
{-4, -3, ..., 4}
|
188 |
+
|
189 |
+
See Also
|
190 |
+
========
|
191 |
+
|
192 |
+
Naturals0 : non-negative integers
|
193 |
+
Integers : positive and negative integers and zero
|
194 |
+
"""
|
195 |
+
|
196 |
+
is_iterable = True
|
197 |
+
is_empty = False
|
198 |
+
is_finite_set = False
|
199 |
+
|
200 |
+
def _contains(self, other):
|
201 |
+
if not isinstance(other, Expr):
|
202 |
+
return S.false
|
203 |
+
return other.is_integer
|
204 |
+
|
205 |
+
def __iter__(self):
|
206 |
+
yield S.Zero
|
207 |
+
i = S.One
|
208 |
+
while True:
|
209 |
+
yield i
|
210 |
+
yield -i
|
211 |
+
i = i + 1
|
212 |
+
|
213 |
+
@property
|
214 |
+
def _inf(self):
|
215 |
+
return S.NegativeInfinity
|
216 |
+
|
217 |
+
@property
|
218 |
+
def _sup(self):
|
219 |
+
return S.Infinity
|
220 |
+
|
221 |
+
@property
|
222 |
+
def _boundary(self):
|
223 |
+
return self
|
224 |
+
|
225 |
+
def _kind(self):
|
226 |
+
return SetKind(NumberKind)
|
227 |
+
|
228 |
+
def as_relational(self, x):
|
229 |
+
return And(Eq(floor(x), x), -oo < x, x < oo)
|
230 |
+
|
231 |
+
def _eval_is_subset(self, other):
|
232 |
+
return Range(-oo, oo).is_subset(other)
|
233 |
+
|
234 |
+
def _eval_is_superset(self, other):
|
235 |
+
return Range(-oo, oo).is_superset(other)
|
236 |
+
|
237 |
+
|
238 |
+
class Reals(Interval, metaclass=Singleton):
|
239 |
+
"""
|
240 |
+
Represents all real numbers
|
241 |
+
from negative infinity to positive infinity,
|
242 |
+
including all integer, rational and irrational numbers.
|
243 |
+
This set is also available as the singleton ``S.Reals``.
|
244 |
+
|
245 |
+
|
246 |
+
Examples
|
247 |
+
========
|
248 |
+
|
249 |
+
>>> from sympy import S, Rational, pi, I
|
250 |
+
>>> 5 in S.Reals
|
251 |
+
True
|
252 |
+
>>> Rational(-1, 2) in S.Reals
|
253 |
+
True
|
254 |
+
>>> pi in S.Reals
|
255 |
+
True
|
256 |
+
>>> 3*I in S.Reals
|
257 |
+
False
|
258 |
+
>>> S.Reals.contains(pi)
|
259 |
+
True
|
260 |
+
|
261 |
+
|
262 |
+
See Also
|
263 |
+
========
|
264 |
+
|
265 |
+
ComplexRegion
|
266 |
+
"""
|
267 |
+
@property
|
268 |
+
def start(self):
|
269 |
+
return S.NegativeInfinity
|
270 |
+
|
271 |
+
@property
|
272 |
+
def end(self):
|
273 |
+
return S.Infinity
|
274 |
+
|
275 |
+
@property
|
276 |
+
def left_open(self):
|
277 |
+
return True
|
278 |
+
|
279 |
+
@property
|
280 |
+
def right_open(self):
|
281 |
+
return True
|
282 |
+
|
283 |
+
def __eq__(self, other):
|
284 |
+
return other == Interval(S.NegativeInfinity, S.Infinity)
|
285 |
+
|
286 |
+
def __hash__(self):
|
287 |
+
return hash(Interval(S.NegativeInfinity, S.Infinity))
|
288 |
+
|
289 |
+
|
290 |
+
class ImageSet(Set):
|
291 |
+
"""
|
292 |
+
Image of a set under a mathematical function. The transformation
|
293 |
+
must be given as a Lambda function which has as many arguments
|
294 |
+
as the elements of the set upon which it operates, e.g. 1 argument
|
295 |
+
when acting on the set of integers or 2 arguments when acting on
|
296 |
+
a complex region.
|
297 |
+
|
298 |
+
This function is not normally called directly, but is called
|
299 |
+
from ``imageset``.
|
300 |
+
|
301 |
+
|
302 |
+
Examples
|
303 |
+
========
|
304 |
+
|
305 |
+
>>> from sympy import Symbol, S, pi, Dummy, Lambda
|
306 |
+
>>> from sympy import FiniteSet, ImageSet, Interval
|
307 |
+
|
308 |
+
>>> x = Symbol('x')
|
309 |
+
>>> N = S.Naturals
|
310 |
+
>>> squares = ImageSet(Lambda(x, x**2), N) # {x**2 for x in N}
|
311 |
+
>>> 4 in squares
|
312 |
+
True
|
313 |
+
>>> 5 in squares
|
314 |
+
False
|
315 |
+
|
316 |
+
>>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersect(squares)
|
317 |
+
{1, 4, 9}
|
318 |
+
|
319 |
+
>>> square_iterable = iter(squares)
|
320 |
+
>>> for i in range(4):
|
321 |
+
... next(square_iterable)
|
322 |
+
1
|
323 |
+
4
|
324 |
+
9
|
325 |
+
16
|
326 |
+
|
327 |
+
If you want to get value for `x` = 2, 1/2 etc. (Please check whether the
|
328 |
+
`x` value is in ``base_set`` or not before passing it as args)
|
329 |
+
|
330 |
+
>>> squares.lamda(2)
|
331 |
+
4
|
332 |
+
>>> squares.lamda(S(1)/2)
|
333 |
+
1/4
|
334 |
+
|
335 |
+
>>> n = Dummy('n')
|
336 |
+
>>> solutions = ImageSet(Lambda(n, n*pi), S.Integers) # solutions of sin(x) = 0
|
337 |
+
>>> dom = Interval(-1, 1)
|
338 |
+
>>> dom.intersect(solutions)
|
339 |
+
{0}
|
340 |
+
|
341 |
+
See Also
|
342 |
+
========
|
343 |
+
|
344 |
+
sympy.sets.sets.imageset
|
345 |
+
"""
|
346 |
+
def __new__(cls, flambda, *sets):
|
347 |
+
if not isinstance(flambda, Lambda):
|
348 |
+
raise ValueError('First argument must be a Lambda')
|
349 |
+
|
350 |
+
signature = flambda.signature
|
351 |
+
|
352 |
+
if len(signature) != len(sets):
|
353 |
+
raise ValueError('Incompatible signature')
|
354 |
+
|
355 |
+
sets = [_sympify(s) for s in sets]
|
356 |
+
|
357 |
+
if not all(isinstance(s, Set) for s in sets):
|
358 |
+
raise TypeError("Set arguments to ImageSet should of type Set")
|
359 |
+
|
360 |
+
if not all(cls._check_sig(sg, st) for sg, st in zip(signature, sets)):
|
361 |
+
raise ValueError("Signature %s does not match sets %s" % (signature, sets))
|
362 |
+
|
363 |
+
if flambda is S.IdentityFunction and len(sets) == 1:
|
364 |
+
return sets[0]
|
365 |
+
|
366 |
+
if not set(flambda.variables) & flambda.expr.free_symbols:
|
367 |
+
is_empty = fuzzy_or(s.is_empty for s in sets)
|
368 |
+
if is_empty == True:
|
369 |
+
return S.EmptySet
|
370 |
+
elif is_empty == False:
|
371 |
+
return FiniteSet(flambda.expr)
|
372 |
+
|
373 |
+
return Basic.__new__(cls, flambda, *sets)
|
374 |
+
|
375 |
+
lamda = property(lambda self: self.args[0])
|
376 |
+
base_sets = property(lambda self: self.args[1:])
|
377 |
+
|
378 |
+
@property
|
379 |
+
def base_set(self):
|
380 |
+
# XXX: Maybe deprecate this? It is poorly defined in handling
|
381 |
+
# the multivariate case...
|
382 |
+
sets = self.base_sets
|
383 |
+
if len(sets) == 1:
|
384 |
+
return sets[0]
|
385 |
+
else:
|
386 |
+
return ProductSet(*sets).flatten()
|
387 |
+
|
388 |
+
@property
|
389 |
+
def base_pset(self):
|
390 |
+
return ProductSet(*self.base_sets)
|
391 |
+
|
392 |
+
@classmethod
|
393 |
+
def _check_sig(cls, sig_i, set_i):
|
394 |
+
if sig_i.is_symbol:
|
395 |
+
return True
|
396 |
+
elif isinstance(set_i, ProductSet):
|
397 |
+
sets = set_i.sets
|
398 |
+
if len(sig_i) != len(sets):
|
399 |
+
return False
|
400 |
+
# Recurse through the signature for nested tuples:
|
401 |
+
return all(cls._check_sig(ts, ps) for ts, ps in zip(sig_i, sets))
|
402 |
+
else:
|
403 |
+
# XXX: Need a better way of checking whether a set is a set of
|
404 |
+
# Tuples or not. For example a FiniteSet can contain Tuples
|
405 |
+
# but so can an ImageSet or a ConditionSet. Others like
|
406 |
+
# Integers, Reals etc can not contain Tuples. We could just
|
407 |
+
# list the possibilities here... Current code for e.g.
|
408 |
+
# _contains probably only works for ProductSet.
|
409 |
+
return True # Give the benefit of the doubt
|
410 |
+
|
411 |
+
def __iter__(self):
|
412 |
+
already_seen = set()
|
413 |
+
for i in self.base_pset:
|
414 |
+
val = self.lamda(*i)
|
415 |
+
if val in already_seen:
|
416 |
+
continue
|
417 |
+
else:
|
418 |
+
already_seen.add(val)
|
419 |
+
yield val
|
420 |
+
|
421 |
+
def _is_multivariate(self):
|
422 |
+
return len(self.lamda.variables) > 1
|
423 |
+
|
424 |
+
def _contains(self, other):
|
425 |
+
from sympy.solvers.solveset import _solveset_multi
|
426 |
+
|
427 |
+
def get_symsetmap(signature, base_sets):
|
428 |
+
'''Attempt to get a map of symbols to base_sets'''
|
429 |
+
queue = list(zip(signature, base_sets))
|
430 |
+
symsetmap = {}
|
431 |
+
for sig, base_set in queue:
|
432 |
+
if sig.is_symbol:
|
433 |
+
symsetmap[sig] = base_set
|
434 |
+
elif base_set.is_ProductSet:
|
435 |
+
sets = base_set.sets
|
436 |
+
if len(sig) != len(sets):
|
437 |
+
raise ValueError("Incompatible signature")
|
438 |
+
# Recurse
|
439 |
+
queue.extend(zip(sig, sets))
|
440 |
+
else:
|
441 |
+
# If we get here then we have something like sig = (x, y) and
|
442 |
+
# base_set = {(1, 2), (3, 4)}. For now we give up.
|
443 |
+
return None
|
444 |
+
|
445 |
+
return symsetmap
|
446 |
+
|
447 |
+
def get_equations(expr, candidate):
|
448 |
+
'''Find the equations relating symbols in expr and candidate.'''
|
449 |
+
queue = [(expr, candidate)]
|
450 |
+
for e, c in queue:
|
451 |
+
if not isinstance(e, Tuple):
|
452 |
+
yield Eq(e, c)
|
453 |
+
elif not isinstance(c, Tuple) or len(e) != len(c):
|
454 |
+
yield False
|
455 |
+
return
|
456 |
+
else:
|
457 |
+
queue.extend(zip(e, c))
|
458 |
+
|
459 |
+
# Get the basic objects together:
|
460 |
+
other = _sympify(other)
|
461 |
+
expr = self.lamda.expr
|
462 |
+
sig = self.lamda.signature
|
463 |
+
variables = self.lamda.variables
|
464 |
+
base_sets = self.base_sets
|
465 |
+
|
466 |
+
# Use dummy symbols for ImageSet parameters so they don't match
|
467 |
+
# anything in other
|
468 |
+
rep = {v: Dummy(v.name) for v in variables}
|
469 |
+
variables = [v.subs(rep) for v in variables]
|
470 |
+
sig = sig.subs(rep)
|
471 |
+
expr = expr.subs(rep)
|
472 |
+
|
473 |
+
# Map the parts of other to those in the Lambda expr
|
474 |
+
equations = []
|
475 |
+
for eq in get_equations(expr, other):
|
476 |
+
# Unsatisfiable equation?
|
477 |
+
if eq is False:
|
478 |
+
return False
|
479 |
+
equations.append(eq)
|
480 |
+
|
481 |
+
# Map the symbols in the signature to the corresponding domains
|
482 |
+
symsetmap = get_symsetmap(sig, base_sets)
|
483 |
+
if symsetmap is None:
|
484 |
+
# Can't factor the base sets to a ProductSet
|
485 |
+
return None
|
486 |
+
|
487 |
+
# Which of the variables in the Lambda signature need to be solved for?
|
488 |
+
symss = (eq.free_symbols for eq in equations)
|
489 |
+
variables = set(variables) & reduce(set.union, symss, set())
|
490 |
+
|
491 |
+
# Use internal multivariate solveset
|
492 |
+
variables = tuple(variables)
|
493 |
+
base_sets = [symsetmap[v] for v in variables]
|
494 |
+
solnset = _solveset_multi(equations, variables, base_sets)
|
495 |
+
if solnset is None:
|
496 |
+
return None
|
497 |
+
return fuzzy_not(solnset.is_empty)
|
498 |
+
|
499 |
+
@property
|
500 |
+
def is_iterable(self):
|
501 |
+
return all(s.is_iterable for s in self.base_sets)
|
502 |
+
|
503 |
+
def doit(self, **hints):
|
504 |
+
from sympy.sets.setexpr import SetExpr
|
505 |
+
f = self.lamda
|
506 |
+
sig = f.signature
|
507 |
+
if len(sig) == 1 and sig[0].is_symbol and isinstance(f.expr, Expr):
|
508 |
+
base_set = self.base_sets[0]
|
509 |
+
return SetExpr(base_set)._eval_func(f).set
|
510 |
+
if all(s.is_FiniteSet for s in self.base_sets):
|
511 |
+
return FiniteSet(*(f(*a) for a in product(*self.base_sets)))
|
512 |
+
return self
|
513 |
+
|
514 |
+
def _kind(self):
|
515 |
+
return SetKind(self.lamda.expr.kind)
|
516 |
+
|
517 |
+
|
518 |
+
class Range(Set):
|
519 |
+
"""
|
520 |
+
Represents a range of integers. Can be called as ``Range(stop)``,
|
521 |
+
``Range(start, stop)``, or ``Range(start, stop, step)``; when ``step`` is
|
522 |
+
not given it defaults to 1.
|
523 |
+
|
524 |
+
``Range(stop)`` is the same as ``Range(0, stop, 1)`` and the stop value
|
525 |
+
(just as for Python ranges) is not included in the Range values.
|
526 |
+
|
527 |
+
>>> from sympy import Range
|
528 |
+
>>> list(Range(3))
|
529 |
+
[0, 1, 2]
|
530 |
+
|
531 |
+
The step can also be negative:
|
532 |
+
|
533 |
+
>>> list(Range(10, 0, -2))
|
534 |
+
[10, 8, 6, 4, 2]
|
535 |
+
|
536 |
+
The stop value is made canonical so equivalent ranges always
|
537 |
+
have the same args:
|
538 |
+
|
539 |
+
>>> Range(0, 10, 3)
|
540 |
+
Range(0, 12, 3)
|
541 |
+
|
542 |
+
Infinite ranges are allowed. ``oo`` and ``-oo`` are never included in the
|
543 |
+
set (``Range`` is always a subset of ``Integers``). If the starting point
|
544 |
+
is infinite, then the final value is ``stop - step``. To iterate such a
|
545 |
+
range, it needs to be reversed:
|
546 |
+
|
547 |
+
>>> from sympy import oo
|
548 |
+
>>> r = Range(-oo, 1)
|
549 |
+
>>> r[-1]
|
550 |
+
0
|
551 |
+
>>> next(iter(r))
|
552 |
+
Traceback (most recent call last):
|
553 |
+
...
|
554 |
+
TypeError: Cannot iterate over Range with infinite start
|
555 |
+
>>> next(iter(r.reversed))
|
556 |
+
0
|
557 |
+
|
558 |
+
Although ``Range`` is a :class:`Set` (and supports the normal set
|
559 |
+
operations) it maintains the order of the elements and can
|
560 |
+
be used in contexts where ``range`` would be used.
|
561 |
+
|
562 |
+
>>> from sympy import Interval
|
563 |
+
>>> Range(0, 10, 2).intersect(Interval(3, 7))
|
564 |
+
Range(4, 8, 2)
|
565 |
+
>>> list(_)
|
566 |
+
[4, 6]
|
567 |
+
|
568 |
+
Although slicing of a Range will always return a Range -- possibly
|
569 |
+
empty -- an empty set will be returned from any intersection that
|
570 |
+
is empty:
|
571 |
+
|
572 |
+
>>> Range(3)[:0]
|
573 |
+
Range(0, 0, 1)
|
574 |
+
>>> Range(3).intersect(Interval(4, oo))
|
575 |
+
EmptySet
|
576 |
+
>>> Range(3).intersect(Range(4, oo))
|
577 |
+
EmptySet
|
578 |
+
|
579 |
+
Range will accept symbolic arguments but has very limited support
|
580 |
+
for doing anything other than displaying the Range:
|
581 |
+
|
582 |
+
>>> from sympy import Symbol, pprint
|
583 |
+
>>> from sympy.abc import i, j, k
|
584 |
+
>>> Range(i, j, k).start
|
585 |
+
i
|
586 |
+
>>> Range(i, j, k).inf
|
587 |
+
Traceback (most recent call last):
|
588 |
+
...
|
589 |
+
ValueError: invalid method for symbolic range
|
590 |
+
|
591 |
+
Better success will be had when using integer symbols:
|
592 |
+
|
593 |
+
>>> n = Symbol('n', integer=True)
|
594 |
+
>>> r = Range(n, n + 20, 3)
|
595 |
+
>>> r.inf
|
596 |
+
n
|
597 |
+
>>> pprint(r)
|
598 |
+
{n, n + 3, ..., n + 18}
|
599 |
+
"""
|
600 |
+
|
601 |
+
def __new__(cls, *args):
|
602 |
+
if len(args) == 1:
|
603 |
+
if isinstance(args[0], range):
|
604 |
+
raise TypeError(
|
605 |
+
'use sympify(%s) to convert range to Range' % args[0])
|
606 |
+
|
607 |
+
# expand range
|
608 |
+
slc = slice(*args)
|
609 |
+
|
610 |
+
if slc.step == 0:
|
611 |
+
raise ValueError("step cannot be 0")
|
612 |
+
|
613 |
+
start, stop, step = slc.start or 0, slc.stop, slc.step or 1
|
614 |
+
try:
|
615 |
+
ok = []
|
616 |
+
for w in (start, stop, step):
|
617 |
+
w = sympify(w)
|
618 |
+
if w in [S.NegativeInfinity, S.Infinity] or (
|
619 |
+
w.has(Symbol) and w.is_integer != False):
|
620 |
+
ok.append(w)
|
621 |
+
elif not w.is_Integer:
|
622 |
+
if w.is_infinite:
|
623 |
+
raise ValueError('infinite symbols not allowed')
|
624 |
+
raise ValueError
|
625 |
+
else:
|
626 |
+
ok.append(w)
|
627 |
+
except ValueError:
|
628 |
+
raise ValueError(filldedent('''
|
629 |
+
Finite arguments to Range must be integers; `imageset` can define
|
630 |
+
other cases, e.g. use `imageset(i, i/10, Range(3))` to give
|
631 |
+
[0, 1/10, 1/5].'''))
|
632 |
+
start, stop, step = ok
|
633 |
+
|
634 |
+
null = False
|
635 |
+
if any(i.has(Symbol) for i in (start, stop, step)):
|
636 |
+
dif = stop - start
|
637 |
+
n = dif/step
|
638 |
+
if n.is_Rational:
|
639 |
+
if dif == 0:
|
640 |
+
null = True
|
641 |
+
else: # (x, x + 5, 2) or (x, 3*x, x)
|
642 |
+
n = floor(n)
|
643 |
+
end = start + n*step
|
644 |
+
if dif.is_Rational: # (x, x + 5, 2)
|
645 |
+
if (end - stop).is_negative:
|
646 |
+
end += step
|
647 |
+
else: # (x, 3*x, x)
|
648 |
+
if (end/stop - 1).is_negative:
|
649 |
+
end += step
|
650 |
+
elif n.is_extended_negative:
|
651 |
+
null = True
|
652 |
+
else:
|
653 |
+
end = stop # other methods like sup and reversed must fail
|
654 |
+
elif start.is_infinite:
|
655 |
+
span = step*(stop - start)
|
656 |
+
if span is S.NaN or span <= 0:
|
657 |
+
null = True
|
658 |
+
elif step.is_Integer and stop.is_infinite and abs(step) != 1:
|
659 |
+
raise ValueError(filldedent('''
|
660 |
+
Step size must be %s in this case.''' % (1 if step > 0 else -1)))
|
661 |
+
else:
|
662 |
+
end = stop
|
663 |
+
else:
|
664 |
+
oostep = step.is_infinite
|
665 |
+
if oostep:
|
666 |
+
step = S.One if step > 0 else S.NegativeOne
|
667 |
+
n = ceiling((stop - start)/step)
|
668 |
+
if n <= 0:
|
669 |
+
null = True
|
670 |
+
elif oostep:
|
671 |
+
step = S.One # make it canonical
|
672 |
+
end = start + step
|
673 |
+
else:
|
674 |
+
end = start + n*step
|
675 |
+
if null:
|
676 |
+
start = end = S.Zero
|
677 |
+
step = S.One
|
678 |
+
return Basic.__new__(cls, start, end, step)
|
679 |
+
|
680 |
+
start = property(lambda self: self.args[0])
|
681 |
+
stop = property(lambda self: self.args[1])
|
682 |
+
step = property(lambda self: self.args[2])
|
683 |
+
|
684 |
+
@property
|
685 |
+
def reversed(self):
|
686 |
+
"""Return an equivalent Range in the opposite order.
|
687 |
+
|
688 |
+
Examples
|
689 |
+
========
|
690 |
+
|
691 |
+
>>> from sympy import Range
|
692 |
+
>>> Range(10).reversed
|
693 |
+
Range(9, -1, -1)
|
694 |
+
"""
|
695 |
+
if self.has(Symbol):
|
696 |
+
n = (self.stop - self.start)/self.step
|
697 |
+
if not n.is_extended_positive or not all(
|
698 |
+
i.is_integer or i.is_infinite for i in self.args):
|
699 |
+
raise ValueError('invalid method for symbolic range')
|
700 |
+
if self.start == self.stop:
|
701 |
+
return self
|
702 |
+
return self.func(
|
703 |
+
self.stop - self.step, self.start - self.step, -self.step)
|
704 |
+
|
705 |
+
def _kind(self):
|
706 |
+
return SetKind(NumberKind)
|
707 |
+
|
708 |
+
def _contains(self, other):
|
709 |
+
if self.start == self.stop:
|
710 |
+
return S.false
|
711 |
+
if other.is_infinite:
|
712 |
+
return S.false
|
713 |
+
if not other.is_integer:
|
714 |
+
return other.is_integer
|
715 |
+
if self.has(Symbol):
|
716 |
+
n = (self.stop - self.start)/self.step
|
717 |
+
if not n.is_extended_positive or not all(
|
718 |
+
i.is_integer or i.is_infinite for i in self.args):
|
719 |
+
return
|
720 |
+
else:
|
721 |
+
n = self.size
|
722 |
+
if self.start.is_finite:
|
723 |
+
ref = self.start
|
724 |
+
elif self.stop.is_finite:
|
725 |
+
ref = self.stop
|
726 |
+
else: # both infinite; step is +/- 1 (enforced by __new__)
|
727 |
+
return S.true
|
728 |
+
if n == 1:
|
729 |
+
return Eq(other, self[0])
|
730 |
+
res = (ref - other) % self.step
|
731 |
+
if res == S.Zero:
|
732 |
+
if self.has(Symbol):
|
733 |
+
d = Dummy('i')
|
734 |
+
return self.as_relational(d).subs(d, other)
|
735 |
+
return And(other >= self.inf, other <= self.sup)
|
736 |
+
elif res.is_Integer: # off sequence
|
737 |
+
return S.false
|
738 |
+
else: # symbolic/unsimplified residue modulo step
|
739 |
+
return None
|
740 |
+
|
741 |
+
def __iter__(self):
|
742 |
+
n = self.size # validate
|
743 |
+
if not (n.has(S.Infinity) or n.has(S.NegativeInfinity) or n.is_Integer):
|
744 |
+
raise TypeError("Cannot iterate over symbolic Range")
|
745 |
+
if self.start in [S.NegativeInfinity, S.Infinity]:
|
746 |
+
raise TypeError("Cannot iterate over Range with infinite start")
|
747 |
+
elif self.start != self.stop:
|
748 |
+
i = self.start
|
749 |
+
if n.is_infinite:
|
750 |
+
while True:
|
751 |
+
yield i
|
752 |
+
i += self.step
|
753 |
+
else:
|
754 |
+
for _ in range(n):
|
755 |
+
yield i
|
756 |
+
i += self.step
|
757 |
+
|
758 |
+
@property
|
759 |
+
def is_iterable(self):
|
760 |
+
# Check that size can be determined, used by __iter__
|
761 |
+
dif = self.stop - self.start
|
762 |
+
n = dif/self.step
|
763 |
+
if not (n.has(S.Infinity) or n.has(S.NegativeInfinity) or n.is_Integer):
|
764 |
+
return False
|
765 |
+
if self.start in [S.NegativeInfinity, S.Infinity]:
|
766 |
+
return False
|
767 |
+
if not (n.is_extended_nonnegative and all(i.is_integer for i in self.args)):
|
768 |
+
return False
|
769 |
+
return True
|
770 |
+
|
771 |
+
def __len__(self):
|
772 |
+
rv = self.size
|
773 |
+
if rv is S.Infinity:
|
774 |
+
raise ValueError('Use .size to get the length of an infinite Range')
|
775 |
+
return int(rv)
|
776 |
+
|
777 |
+
@property
|
778 |
+
def size(self):
|
779 |
+
if self.start == self.stop:
|
780 |
+
return S.Zero
|
781 |
+
dif = self.stop - self.start
|
782 |
+
n = dif/self.step
|
783 |
+
if n.is_infinite:
|
784 |
+
return S.Infinity
|
785 |
+
if n.is_extended_nonnegative and all(i.is_integer for i in self.args):
|
786 |
+
return abs(floor(n))
|
787 |
+
raise ValueError('Invalid method for symbolic Range')
|
788 |
+
|
789 |
+
@property
|
790 |
+
def is_finite_set(self):
|
791 |
+
if self.start.is_integer and self.stop.is_integer:
|
792 |
+
return True
|
793 |
+
return self.size.is_finite
|
794 |
+
|
795 |
+
@property
|
796 |
+
def is_empty(self):
|
797 |
+
try:
|
798 |
+
return self.size.is_zero
|
799 |
+
except ValueError:
|
800 |
+
return None
|
801 |
+
|
802 |
+
def __bool__(self):
|
803 |
+
# this only distinguishes between definite null range
|
804 |
+
# and non-null/unknown null; getting True doesn't mean
|
805 |
+
# that it actually is not null
|
806 |
+
b = is_eq(self.start, self.stop)
|
807 |
+
if b is None:
|
808 |
+
raise ValueError('cannot tell if Range is null or not')
|
809 |
+
return not bool(b)
|
810 |
+
|
811 |
+
def __getitem__(self, i):
|
812 |
+
ooslice = "cannot slice from the end with an infinite value"
|
813 |
+
zerostep = "slice step cannot be zero"
|
814 |
+
infinite = "slicing not possible on range with infinite start"
|
815 |
+
# if we had to take every other element in the following
|
816 |
+
# oo, ..., 6, 4, 2, 0
|
817 |
+
# we might get oo, ..., 4, 0 or oo, ..., 6, 2
|
818 |
+
ambiguous = "cannot unambiguously re-stride from the end " + \
|
819 |
+
"with an infinite value"
|
820 |
+
if isinstance(i, slice):
|
821 |
+
if self.size.is_finite: # validates, too
|
822 |
+
if self.start == self.stop:
|
823 |
+
return Range(0)
|
824 |
+
start, stop, step = i.indices(self.size)
|
825 |
+
n = ceiling((stop - start)/step)
|
826 |
+
if n <= 0:
|
827 |
+
return Range(0)
|
828 |
+
canonical_stop = start + n*step
|
829 |
+
end = canonical_stop - step
|
830 |
+
ss = step*self.step
|
831 |
+
return Range(self[start], self[end] + ss, ss)
|
832 |
+
else: # infinite Range
|
833 |
+
start = i.start
|
834 |
+
stop = i.stop
|
835 |
+
if i.step == 0:
|
836 |
+
raise ValueError(zerostep)
|
837 |
+
step = i.step or 1
|
838 |
+
ss = step*self.step
|
839 |
+
#---------------------
|
840 |
+
# handle infinite Range
|
841 |
+
# i.e. Range(-oo, oo) or Range(oo, -oo, -1)
|
842 |
+
# --------------------
|
843 |
+
if self.start.is_infinite and self.stop.is_infinite:
|
844 |
+
raise ValueError(infinite)
|
845 |
+
#---------------------
|
846 |
+
# handle infinite on right
|
847 |
+
# e.g. Range(0, oo) or Range(0, -oo, -1)
|
848 |
+
# --------------------
|
849 |
+
if self.stop.is_infinite:
|
850 |
+
# start and stop are not interdependent --
|
851 |
+
# they only depend on step --so we use the
|
852 |
+
# equivalent reversed values
|
853 |
+
return self.reversed[
|
854 |
+
stop if stop is None else -stop + 1:
|
855 |
+
start if start is None else -start:
|
856 |
+
step].reversed
|
857 |
+
#---------------------
|
858 |
+
# handle infinite on the left
|
859 |
+
# e.g. Range(oo, 0, -1) or Range(-oo, 0)
|
860 |
+
# --------------------
|
861 |
+
# consider combinations of
|
862 |
+
# start/stop {== None, < 0, == 0, > 0} and
|
863 |
+
# step {< 0, > 0}
|
864 |
+
if start is None:
|
865 |
+
if stop is None:
|
866 |
+
if step < 0:
|
867 |
+
return Range(self[-1], self.start, ss)
|
868 |
+
elif step > 1:
|
869 |
+
raise ValueError(ambiguous)
|
870 |
+
else: # == 1
|
871 |
+
return self
|
872 |
+
elif stop < 0:
|
873 |
+
if step < 0:
|
874 |
+
return Range(self[-1], self[stop], ss)
|
875 |
+
else: # > 0
|
876 |
+
return Range(self.start, self[stop], ss)
|
877 |
+
elif stop == 0:
|
878 |
+
if step > 0:
|
879 |
+
return Range(0)
|
880 |
+
else: # < 0
|
881 |
+
raise ValueError(ooslice)
|
882 |
+
elif stop == 1:
|
883 |
+
if step > 0:
|
884 |
+
raise ValueError(ooslice) # infinite singleton
|
885 |
+
else: # < 0
|
886 |
+
raise ValueError(ooslice)
|
887 |
+
else: # > 1
|
888 |
+
raise ValueError(ooslice)
|
889 |
+
elif start < 0:
|
890 |
+
if stop is None:
|
891 |
+
if step < 0:
|
892 |
+
return Range(self[start], self.start, ss)
|
893 |
+
else: # > 0
|
894 |
+
return Range(self[start], self.stop, ss)
|
895 |
+
elif stop < 0:
|
896 |
+
return Range(self[start], self[stop], ss)
|
897 |
+
elif stop == 0:
|
898 |
+
if step < 0:
|
899 |
+
raise ValueError(ooslice)
|
900 |
+
else: # > 0
|
901 |
+
return Range(0)
|
902 |
+
elif stop > 0:
|
903 |
+
raise ValueError(ooslice)
|
904 |
+
elif start == 0:
|
905 |
+
if stop is None:
|
906 |
+
if step < 0:
|
907 |
+
raise ValueError(ooslice) # infinite singleton
|
908 |
+
elif step > 1:
|
909 |
+
raise ValueError(ambiguous)
|
910 |
+
else: # == 1
|
911 |
+
return self
|
912 |
+
elif stop < 0:
|
913 |
+
if step > 1:
|
914 |
+
raise ValueError(ambiguous)
|
915 |
+
elif step == 1:
|
916 |
+
return Range(self.start, self[stop], ss)
|
917 |
+
else: # < 0
|
918 |
+
return Range(0)
|
919 |
+
else: # >= 0
|
920 |
+
raise ValueError(ooslice)
|
921 |
+
elif start > 0:
|
922 |
+
raise ValueError(ooslice)
|
923 |
+
else:
|
924 |
+
if self.start == self.stop:
|
925 |
+
raise IndexError('Range index out of range')
|
926 |
+
if not (all(i.is_integer or i.is_infinite
|
927 |
+
for i in self.args) and ((self.stop - self.start)/
|
928 |
+
self.step).is_extended_positive):
|
929 |
+
raise ValueError('Invalid method for symbolic Range')
|
930 |
+
if i == 0:
|
931 |
+
if self.start.is_infinite:
|
932 |
+
raise ValueError(ooslice)
|
933 |
+
return self.start
|
934 |
+
if i == -1:
|
935 |
+
if self.stop.is_infinite:
|
936 |
+
raise ValueError(ooslice)
|
937 |
+
return self.stop - self.step
|
938 |
+
n = self.size # must be known for any other index
|
939 |
+
rv = (self.stop if i < 0 else self.start) + i*self.step
|
940 |
+
if rv.is_infinite:
|
941 |
+
raise ValueError(ooslice)
|
942 |
+
val = (rv - self.start)/self.step
|
943 |
+
rel = fuzzy_or([val.is_infinite,
|
944 |
+
fuzzy_and([val.is_nonnegative, (n-val).is_nonnegative])])
|
945 |
+
if rel:
|
946 |
+
return rv
|
947 |
+
if rel is None:
|
948 |
+
raise ValueError('Invalid method for symbolic Range')
|
949 |
+
raise IndexError("Range index out of range")
|
950 |
+
|
951 |
+
@property
|
952 |
+
def _inf(self):
|
953 |
+
if not self:
|
954 |
+
return S.EmptySet.inf
|
955 |
+
if self.has(Symbol):
|
956 |
+
if all(i.is_integer or i.is_infinite for i in self.args):
|
957 |
+
dif = self.stop - self.start
|
958 |
+
if self.step.is_positive and dif.is_positive:
|
959 |
+
return self.start
|
960 |
+
elif self.step.is_negative and dif.is_negative:
|
961 |
+
return self.stop - self.step
|
962 |
+
raise ValueError('invalid method for symbolic range')
|
963 |
+
if self.step > 0:
|
964 |
+
return self.start
|
965 |
+
else:
|
966 |
+
return self.stop - self.step
|
967 |
+
|
968 |
+
@property
|
969 |
+
def _sup(self):
|
970 |
+
if not self:
|
971 |
+
return S.EmptySet.sup
|
972 |
+
if self.has(Symbol):
|
973 |
+
if all(i.is_integer or i.is_infinite for i in self.args):
|
974 |
+
dif = self.stop - self.start
|
975 |
+
if self.step.is_positive and dif.is_positive:
|
976 |
+
return self.stop - self.step
|
977 |
+
elif self.step.is_negative and dif.is_negative:
|
978 |
+
return self.start
|
979 |
+
raise ValueError('invalid method for symbolic range')
|
980 |
+
if self.step > 0:
|
981 |
+
return self.stop - self.step
|
982 |
+
else:
|
983 |
+
return self.start
|
984 |
+
|
985 |
+
@property
|
986 |
+
def _boundary(self):
|
987 |
+
return self
|
988 |
+
|
989 |
+
def as_relational(self, x):
|
990 |
+
"""Rewrite a Range in terms of equalities and logic operators. """
|
991 |
+
if self.start.is_infinite:
|
992 |
+
assert not self.stop.is_infinite # by instantiation
|
993 |
+
a = self.reversed.start
|
994 |
+
else:
|
995 |
+
a = self.start
|
996 |
+
step = self.step
|
997 |
+
in_seq = Eq(Mod(x - a, step), 0)
|
998 |
+
ints = And(Eq(Mod(a, 1), 0), Eq(Mod(step, 1), 0))
|
999 |
+
n = (self.stop - self.start)/self.step
|
1000 |
+
if n == 0:
|
1001 |
+
return S.EmptySet.as_relational(x)
|
1002 |
+
if n == 1:
|
1003 |
+
return And(Eq(x, a), ints)
|
1004 |
+
try:
|
1005 |
+
a, b = self.inf, self.sup
|
1006 |
+
except ValueError:
|
1007 |
+
a = None
|
1008 |
+
if a is not None:
|
1009 |
+
range_cond = And(
|
1010 |
+
x > a if a.is_infinite else x >= a,
|
1011 |
+
x < b if b.is_infinite else x <= b)
|
1012 |
+
else:
|
1013 |
+
a, b = self.start, self.stop - self.step
|
1014 |
+
range_cond = Or(
|
1015 |
+
And(self.step >= 1, x > a if a.is_infinite else x >= a,
|
1016 |
+
x < b if b.is_infinite else x <= b),
|
1017 |
+
And(self.step <= -1, x < a if a.is_infinite else x <= a,
|
1018 |
+
x > b if b.is_infinite else x >= b))
|
1019 |
+
return And(in_seq, ints, range_cond)
|
1020 |
+
|
1021 |
+
|
1022 |
+
_sympy_converter[range] = lambda r: Range(r.start, r.stop, r.step)
|
1023 |
+
|
1024 |
+
def normalize_theta_set(theta):
|
1025 |
+
r"""
|
1026 |
+
Normalize a Real Set `theta` in the interval `[0, 2\pi)`. It returns
|
1027 |
+
a normalized value of theta in the Set. For Interval, a maximum of
|
1028 |
+
one cycle $[0, 2\pi]$, is returned i.e. for theta equal to $[0, 10\pi]$,
|
1029 |
+
returned normalized value would be $[0, 2\pi)$. As of now intervals
|
1030 |
+
with end points as non-multiples of ``pi`` is not supported.
|
1031 |
+
|
1032 |
+
Raises
|
1033 |
+
======
|
1034 |
+
|
1035 |
+
NotImplementedError
|
1036 |
+
The algorithms for Normalizing theta Set are not yet
|
1037 |
+
implemented.
|
1038 |
+
ValueError
|
1039 |
+
The input is not valid, i.e. the input is not a real set.
|
1040 |
+
RuntimeError
|
1041 |
+
It is a bug, please report to the github issue tracker.
|
1042 |
+
|
1043 |
+
Examples
|
1044 |
+
========
|
1045 |
+
|
1046 |
+
>>> from sympy.sets.fancysets import normalize_theta_set
|
1047 |
+
>>> from sympy import Interval, FiniteSet, pi
|
1048 |
+
>>> normalize_theta_set(Interval(9*pi/2, 5*pi))
|
1049 |
+
Interval(pi/2, pi)
|
1050 |
+
>>> normalize_theta_set(Interval(-3*pi/2, pi/2))
|
1051 |
+
Interval.Ropen(0, 2*pi)
|
1052 |
+
>>> normalize_theta_set(Interval(-pi/2, pi/2))
|
1053 |
+
Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
|
1054 |
+
>>> normalize_theta_set(Interval(-4*pi, 3*pi))
|
1055 |
+
Interval.Ropen(0, 2*pi)
|
1056 |
+
>>> normalize_theta_set(Interval(-3*pi/2, -pi/2))
|
1057 |
+
Interval(pi/2, 3*pi/2)
|
1058 |
+
>>> normalize_theta_set(FiniteSet(0, pi, 3*pi))
|
1059 |
+
{0, pi}
|
1060 |
+
|
1061 |
+
"""
|
1062 |
+
from sympy.functions.elementary.trigonometric import _pi_coeff
|
1063 |
+
|
1064 |
+
if theta.is_Interval:
|
1065 |
+
interval_len = theta.measure
|
1066 |
+
# one complete circle
|
1067 |
+
if interval_len >= 2*S.Pi:
|
1068 |
+
if interval_len == 2*S.Pi and theta.left_open and theta.right_open:
|
1069 |
+
k = _pi_coeff(theta.start)
|
1070 |
+
return Union(Interval(0, k*S.Pi, False, True),
|
1071 |
+
Interval(k*S.Pi, 2*S.Pi, True, True))
|
1072 |
+
return Interval(0, 2*S.Pi, False, True)
|
1073 |
+
|
1074 |
+
k_start, k_end = _pi_coeff(theta.start), _pi_coeff(theta.end)
|
1075 |
+
|
1076 |
+
if k_start is None or k_end is None:
|
1077 |
+
raise NotImplementedError("Normalizing theta without pi as coefficient is "
|
1078 |
+
"not yet implemented")
|
1079 |
+
new_start = k_start*S.Pi
|
1080 |
+
new_end = k_end*S.Pi
|
1081 |
+
|
1082 |
+
if new_start > new_end:
|
1083 |
+
return Union(Interval(S.Zero, new_end, False, theta.right_open),
|
1084 |
+
Interval(new_start, 2*S.Pi, theta.left_open, True))
|
1085 |
+
else:
|
1086 |
+
return Interval(new_start, new_end, theta.left_open, theta.right_open)
|
1087 |
+
|
1088 |
+
elif theta.is_FiniteSet:
|
1089 |
+
new_theta = []
|
1090 |
+
for element in theta:
|
1091 |
+
k = _pi_coeff(element)
|
1092 |
+
if k is None:
|
1093 |
+
raise NotImplementedError('Normalizing theta without pi as '
|
1094 |
+
'coefficient, is not Implemented.')
|
1095 |
+
else:
|
1096 |
+
new_theta.append(k*S.Pi)
|
1097 |
+
return FiniteSet(*new_theta)
|
1098 |
+
|
1099 |
+
elif theta.is_Union:
|
1100 |
+
return Union(*[normalize_theta_set(interval) for interval in theta.args])
|
1101 |
+
|
1102 |
+
elif theta.is_subset(S.Reals):
|
1103 |
+
raise NotImplementedError("Normalizing theta when, it is of type %s is not "
|
1104 |
+
"implemented" % type(theta))
|
1105 |
+
else:
|
1106 |
+
raise ValueError(" %s is not a real set" % (theta))
|
1107 |
+
|
1108 |
+
|
1109 |
+
class ComplexRegion(Set):
|
1110 |
+
r"""
|
1111 |
+
Represents the Set of all Complex Numbers. It can represent a
|
1112 |
+
region of Complex Plane in both the standard forms Polar and
|
1113 |
+
Rectangular coordinates.
|
1114 |
+
|
1115 |
+
* Polar Form
|
1116 |
+
Input is in the form of the ProductSet or Union of ProductSets
|
1117 |
+
of the intervals of ``r`` and ``theta``, and use the flag ``polar=True``.
|
1118 |
+
|
1119 |
+
.. math:: Z = \{z \in \mathbb{C} \mid z = r\times (\cos(\theta) + I\sin(\theta)), r \in [\texttt{r}], \theta \in [\texttt{theta}]\}
|
1120 |
+
|
1121 |
+
* Rectangular Form
|
1122 |
+
Input is in the form of the ProductSet or Union of ProductSets
|
1123 |
+
of interval of x and y, the real and imaginary parts of the Complex numbers in a plane.
|
1124 |
+
Default input type is in rectangular form.
|
1125 |
+
|
1126 |
+
.. math:: Z = \{z \in \mathbb{C} \mid z = x + Iy, x \in [\operatorname{re}(z)], y \in [\operatorname{im}(z)]\}
|
1127 |
+
|
1128 |
+
Examples
|
1129 |
+
========
|
1130 |
+
|
1131 |
+
>>> from sympy import ComplexRegion, Interval, S, I, Union
|
1132 |
+
>>> a = Interval(2, 3)
|
1133 |
+
>>> b = Interval(4, 6)
|
1134 |
+
>>> c1 = ComplexRegion(a*b) # Rectangular Form
|
1135 |
+
>>> c1
|
1136 |
+
CartesianComplexRegion(ProductSet(Interval(2, 3), Interval(4, 6)))
|
1137 |
+
|
1138 |
+
* c1 represents the rectangular region in complex plane
|
1139 |
+
surrounded by the coordinates (2, 4), (3, 4), (3, 6) and
|
1140 |
+
(2, 6), of the four vertices.
|
1141 |
+
|
1142 |
+
>>> c = Interval(1, 8)
|
1143 |
+
>>> c2 = ComplexRegion(Union(a*b, b*c))
|
1144 |
+
>>> c2
|
1145 |
+
CartesianComplexRegion(Union(ProductSet(Interval(2, 3), Interval(4, 6)), ProductSet(Interval(4, 6), Interval(1, 8))))
|
1146 |
+
|
1147 |
+
* c2 represents the Union of two rectangular regions in complex
|
1148 |
+
plane. One of them surrounded by the coordinates of c1 and
|
1149 |
+
other surrounded by the coordinates (4, 1), (6, 1), (6, 8) and
|
1150 |
+
(4, 8).
|
1151 |
+
|
1152 |
+
>>> 2.5 + 4.5*I in c1
|
1153 |
+
True
|
1154 |
+
>>> 2.5 + 6.5*I in c1
|
1155 |
+
False
|
1156 |
+
|
1157 |
+
>>> r = Interval(0, 1)
|
1158 |
+
>>> theta = Interval(0, 2*S.Pi)
|
1159 |
+
>>> c2 = ComplexRegion(r*theta, polar=True) # Polar Form
|
1160 |
+
>>> c2 # unit Disk
|
1161 |
+
PolarComplexRegion(ProductSet(Interval(0, 1), Interval.Ropen(0, 2*pi)))
|
1162 |
+
|
1163 |
+
* c2 represents the region in complex plane inside the
|
1164 |
+
Unit Disk centered at the origin.
|
1165 |
+
|
1166 |
+
>>> 0.5 + 0.5*I in c2
|
1167 |
+
True
|
1168 |
+
>>> 1 + 2*I in c2
|
1169 |
+
False
|
1170 |
+
|
1171 |
+
>>> unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
|
1172 |
+
>>> upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
|
1173 |
+
>>> intersection = unit_disk.intersect(upper_half_unit_disk)
|
1174 |
+
>>> intersection
|
1175 |
+
PolarComplexRegion(ProductSet(Interval(0, 1), Interval(0, pi)))
|
1176 |
+
>>> intersection == upper_half_unit_disk
|
1177 |
+
True
|
1178 |
+
|
1179 |
+
See Also
|
1180 |
+
========
|
1181 |
+
|
1182 |
+
CartesianComplexRegion
|
1183 |
+
PolarComplexRegion
|
1184 |
+
Complexes
|
1185 |
+
|
1186 |
+
"""
|
1187 |
+
is_ComplexRegion = True
|
1188 |
+
|
1189 |
+
def __new__(cls, sets, polar=False):
|
1190 |
+
if polar is False:
|
1191 |
+
return CartesianComplexRegion(sets)
|
1192 |
+
elif polar is True:
|
1193 |
+
return PolarComplexRegion(sets)
|
1194 |
+
else:
|
1195 |
+
raise ValueError("polar should be either True or False")
|
1196 |
+
|
1197 |
+
@property
|
1198 |
+
def sets(self):
|
1199 |
+
"""
|
1200 |
+
Return raw input sets to the self.
|
1201 |
+
|
1202 |
+
Examples
|
1203 |
+
========
|
1204 |
+
|
1205 |
+
>>> from sympy import Interval, ComplexRegion, Union
|
1206 |
+
>>> a = Interval(2, 3)
|
1207 |
+
>>> b = Interval(4, 5)
|
1208 |
+
>>> c = Interval(1, 7)
|
1209 |
+
>>> C1 = ComplexRegion(a*b)
|
1210 |
+
>>> C1.sets
|
1211 |
+
ProductSet(Interval(2, 3), Interval(4, 5))
|
1212 |
+
>>> C2 = ComplexRegion(Union(a*b, b*c))
|
1213 |
+
>>> C2.sets
|
1214 |
+
Union(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
|
1215 |
+
|
1216 |
+
"""
|
1217 |
+
return self.args[0]
|
1218 |
+
|
1219 |
+
@property
|
1220 |
+
def psets(self):
|
1221 |
+
"""
|
1222 |
+
Return a tuple of sets (ProductSets) input of the self.
|
1223 |
+
|
1224 |
+
Examples
|
1225 |
+
========
|
1226 |
+
|
1227 |
+
>>> from sympy import Interval, ComplexRegion, Union
|
1228 |
+
>>> a = Interval(2, 3)
|
1229 |
+
>>> b = Interval(4, 5)
|
1230 |
+
>>> c = Interval(1, 7)
|
1231 |
+
>>> C1 = ComplexRegion(a*b)
|
1232 |
+
>>> C1.psets
|
1233 |
+
(ProductSet(Interval(2, 3), Interval(4, 5)),)
|
1234 |
+
>>> C2 = ComplexRegion(Union(a*b, b*c))
|
1235 |
+
>>> C2.psets
|
1236 |
+
(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
|
1237 |
+
|
1238 |
+
"""
|
1239 |
+
if self.sets.is_ProductSet:
|
1240 |
+
psets = ()
|
1241 |
+
psets = psets + (self.sets, )
|
1242 |
+
else:
|
1243 |
+
psets = self.sets.args
|
1244 |
+
return psets
|
1245 |
+
|
1246 |
+
@property
|
1247 |
+
def a_interval(self):
|
1248 |
+
"""
|
1249 |
+
Return the union of intervals of `x` when, self is in
|
1250 |
+
rectangular form, or the union of intervals of `r` when
|
1251 |
+
self is in polar form.
|
1252 |
+
|
1253 |
+
Examples
|
1254 |
+
========
|
1255 |
+
|
1256 |
+
>>> from sympy import Interval, ComplexRegion, Union
|
1257 |
+
>>> a = Interval(2, 3)
|
1258 |
+
>>> b = Interval(4, 5)
|
1259 |
+
>>> c = Interval(1, 7)
|
1260 |
+
>>> C1 = ComplexRegion(a*b)
|
1261 |
+
>>> C1.a_interval
|
1262 |
+
Interval(2, 3)
|
1263 |
+
>>> C2 = ComplexRegion(Union(a*b, b*c))
|
1264 |
+
>>> C2.a_interval
|
1265 |
+
Union(Interval(2, 3), Interval(4, 5))
|
1266 |
+
|
1267 |
+
"""
|
1268 |
+
a_interval = []
|
1269 |
+
for element in self.psets:
|
1270 |
+
a_interval.append(element.args[0])
|
1271 |
+
|
1272 |
+
a_interval = Union(*a_interval)
|
1273 |
+
return a_interval
|
1274 |
+
|
1275 |
+
@property
|
1276 |
+
def b_interval(self):
|
1277 |
+
"""
|
1278 |
+
Return the union of intervals of `y` when, self is in
|
1279 |
+
rectangular form, or the union of intervals of `theta`
|
1280 |
+
when self is in polar form.
|
1281 |
+
|
1282 |
+
Examples
|
1283 |
+
========
|
1284 |
+
|
1285 |
+
>>> from sympy import Interval, ComplexRegion, Union
|
1286 |
+
>>> a = Interval(2, 3)
|
1287 |
+
>>> b = Interval(4, 5)
|
1288 |
+
>>> c = Interval(1, 7)
|
1289 |
+
>>> C1 = ComplexRegion(a*b)
|
1290 |
+
>>> C1.b_interval
|
1291 |
+
Interval(4, 5)
|
1292 |
+
>>> C2 = ComplexRegion(Union(a*b, b*c))
|
1293 |
+
>>> C2.b_interval
|
1294 |
+
Interval(1, 7)
|
1295 |
+
|
1296 |
+
"""
|
1297 |
+
b_interval = []
|
1298 |
+
for element in self.psets:
|
1299 |
+
b_interval.append(element.args[1])
|
1300 |
+
|
1301 |
+
b_interval = Union(*b_interval)
|
1302 |
+
return b_interval
|
1303 |
+
|
1304 |
+
@property
|
1305 |
+
def _measure(self):
|
1306 |
+
"""
|
1307 |
+
The measure of self.sets.
|
1308 |
+
|
1309 |
+
Examples
|
1310 |
+
========
|
1311 |
+
|
1312 |
+
>>> from sympy import Interval, ComplexRegion, S
|
1313 |
+
>>> a, b = Interval(2, 5), Interval(4, 8)
|
1314 |
+
>>> c = Interval(0, 2*S.Pi)
|
1315 |
+
>>> c1 = ComplexRegion(a*b)
|
1316 |
+
>>> c1.measure
|
1317 |
+
12
|
1318 |
+
>>> c2 = ComplexRegion(a*c, polar=True)
|
1319 |
+
>>> c2.measure
|
1320 |
+
6*pi
|
1321 |
+
|
1322 |
+
"""
|
1323 |
+
return self.sets._measure
|
1324 |
+
|
1325 |
+
def _kind(self):
|
1326 |
+
return self.args[0].kind
|
1327 |
+
|
1328 |
+
@classmethod
|
1329 |
+
def from_real(cls, sets):
|
1330 |
+
"""
|
1331 |
+
Converts given subset of real numbers to a complex region.
|
1332 |
+
|
1333 |
+
Examples
|
1334 |
+
========
|
1335 |
+
|
1336 |
+
>>> from sympy import Interval, ComplexRegion
|
1337 |
+
>>> unit = Interval(0,1)
|
1338 |
+
>>> ComplexRegion.from_real(unit)
|
1339 |
+
CartesianComplexRegion(ProductSet(Interval(0, 1), {0}))
|
1340 |
+
|
1341 |
+
"""
|
1342 |
+
if not sets.is_subset(S.Reals):
|
1343 |
+
raise ValueError("sets must be a subset of the real line")
|
1344 |
+
|
1345 |
+
return CartesianComplexRegion(sets * FiniteSet(0))
|
1346 |
+
|
1347 |
+
def _contains(self, other):
|
1348 |
+
from sympy.functions import arg, Abs
|
1349 |
+
other = sympify(other)
|
1350 |
+
isTuple = isinstance(other, Tuple)
|
1351 |
+
if isTuple and len(other) != 2:
|
1352 |
+
raise ValueError('expecting Tuple of length 2')
|
1353 |
+
|
1354 |
+
# If the other is not an Expression, and neither a Tuple
|
1355 |
+
if not isinstance(other, (Expr, Tuple)):
|
1356 |
+
return S.false
|
1357 |
+
# self in rectangular form
|
1358 |
+
if not self.polar:
|
1359 |
+
re, im = other if isTuple else other.as_real_imag()
|
1360 |
+
return fuzzy_or(fuzzy_and([
|
1361 |
+
pset.args[0]._contains(re),
|
1362 |
+
pset.args[1]._contains(im)])
|
1363 |
+
for pset in self.psets)
|
1364 |
+
|
1365 |
+
# self in polar form
|
1366 |
+
elif self.polar:
|
1367 |
+
if other.is_zero:
|
1368 |
+
# ignore undefined complex argument
|
1369 |
+
return fuzzy_or(pset.args[0]._contains(S.Zero)
|
1370 |
+
for pset in self.psets)
|
1371 |
+
if isTuple:
|
1372 |
+
r, theta = other
|
1373 |
+
else:
|
1374 |
+
r, theta = Abs(other), arg(other)
|
1375 |
+
if theta.is_real and theta.is_number:
|
1376 |
+
# angles in psets are normalized to [0, 2pi)
|
1377 |
+
theta %= 2*S.Pi
|
1378 |
+
return fuzzy_or(fuzzy_and([
|
1379 |
+
pset.args[0]._contains(r),
|
1380 |
+
pset.args[1]._contains(theta)])
|
1381 |
+
for pset in self.psets)
|
1382 |
+
|
1383 |
+
|
1384 |
+
class CartesianComplexRegion(ComplexRegion):
|
1385 |
+
r"""
|
1386 |
+
Set representing a square region of the complex plane.
|
1387 |
+
|
1388 |
+
.. math:: Z = \{z \in \mathbb{C} \mid z = x + Iy, x \in [\operatorname{re}(z)], y \in [\operatorname{im}(z)]\}
|
1389 |
+
|
1390 |
+
Examples
|
1391 |
+
========
|
1392 |
+
|
1393 |
+
>>> from sympy import ComplexRegion, I, Interval
|
1394 |
+
>>> region = ComplexRegion(Interval(1, 3) * Interval(4, 6))
|
1395 |
+
>>> 2 + 5*I in region
|
1396 |
+
True
|
1397 |
+
>>> 5*I in region
|
1398 |
+
False
|
1399 |
+
|
1400 |
+
See also
|
1401 |
+
========
|
1402 |
+
|
1403 |
+
ComplexRegion
|
1404 |
+
PolarComplexRegion
|
1405 |
+
Complexes
|
1406 |
+
"""
|
1407 |
+
|
1408 |
+
polar = False
|
1409 |
+
variables = symbols('x, y', cls=Dummy)
|
1410 |
+
|
1411 |
+
def __new__(cls, sets):
|
1412 |
+
|
1413 |
+
if sets == S.Reals*S.Reals:
|
1414 |
+
return S.Complexes
|
1415 |
+
|
1416 |
+
if all(_a.is_FiniteSet for _a in sets.args) and (len(sets.args) == 2):
|
1417 |
+
|
1418 |
+
# ** ProductSet of FiniteSets in the Complex Plane. **
|
1419 |
+
# For Cases like ComplexRegion({2, 4}*{3}), It
|
1420 |
+
# would return {2 + 3*I, 4 + 3*I}
|
1421 |
+
|
1422 |
+
# FIXME: This should probably be handled with something like:
|
1423 |
+
# return ImageSet(Lambda((x, y), x+I*y), sets).rewrite(FiniteSet)
|
1424 |
+
complex_num = []
|
1425 |
+
for x in sets.args[0]:
|
1426 |
+
for y in sets.args[1]:
|
1427 |
+
complex_num.append(x + S.ImaginaryUnit*y)
|
1428 |
+
return FiniteSet(*complex_num)
|
1429 |
+
else:
|
1430 |
+
return Set.__new__(cls, sets)
|
1431 |
+
|
1432 |
+
@property
|
1433 |
+
def expr(self):
|
1434 |
+
x, y = self.variables
|
1435 |
+
return x + S.ImaginaryUnit*y
|
1436 |
+
|
1437 |
+
|
1438 |
+
class PolarComplexRegion(ComplexRegion):
|
1439 |
+
r"""
|
1440 |
+
Set representing a polar region of the complex plane.
|
1441 |
+
|
1442 |
+
.. math:: Z = \{z \in \mathbb{C} \mid z = r\times (\cos(\theta) + I\sin(\theta)), r \in [\texttt{r}], \theta \in [\texttt{theta}]\}
|
1443 |
+
|
1444 |
+
Examples
|
1445 |
+
========
|
1446 |
+
|
1447 |
+
>>> from sympy import ComplexRegion, Interval, oo, pi, I
|
1448 |
+
>>> rset = Interval(0, oo)
|
1449 |
+
>>> thetaset = Interval(0, pi)
|
1450 |
+
>>> upper_half_plane = ComplexRegion(rset * thetaset, polar=True)
|
1451 |
+
>>> 1 + I in upper_half_plane
|
1452 |
+
True
|
1453 |
+
>>> 1 - I in upper_half_plane
|
1454 |
+
False
|
1455 |
+
|
1456 |
+
See also
|
1457 |
+
========
|
1458 |
+
|
1459 |
+
ComplexRegion
|
1460 |
+
CartesianComplexRegion
|
1461 |
+
Complexes
|
1462 |
+
|
1463 |
+
"""
|
1464 |
+
|
1465 |
+
polar = True
|
1466 |
+
variables = symbols('r, theta', cls=Dummy)
|
1467 |
+
|
1468 |
+
def __new__(cls, sets):
|
1469 |
+
|
1470 |
+
new_sets = []
|
1471 |
+
# sets is Union of ProductSets
|
1472 |
+
if not sets.is_ProductSet:
|
1473 |
+
for k in sets.args:
|
1474 |
+
new_sets.append(k)
|
1475 |
+
# sets is ProductSets
|
1476 |
+
else:
|
1477 |
+
new_sets.append(sets)
|
1478 |
+
# Normalize input theta
|
1479 |
+
for k, v in enumerate(new_sets):
|
1480 |
+
new_sets[k] = ProductSet(v.args[0],
|
1481 |
+
normalize_theta_set(v.args[1]))
|
1482 |
+
sets = Union(*new_sets)
|
1483 |
+
return Set.__new__(cls, sets)
|
1484 |
+
|
1485 |
+
@property
|
1486 |
+
def expr(self):
|
1487 |
+
r, theta = self.variables
|
1488 |
+
return r*(cos(theta) + S.ImaginaryUnit*sin(theta))
|
1489 |
+
|
1490 |
+
|
1491 |
+
class Complexes(CartesianComplexRegion, metaclass=Singleton):
|
1492 |
+
"""
|
1493 |
+
The :class:`Set` of all complex numbers
|
1494 |
+
|
1495 |
+
Examples
|
1496 |
+
========
|
1497 |
+
|
1498 |
+
>>> from sympy import S, I
|
1499 |
+
>>> S.Complexes
|
1500 |
+
Complexes
|
1501 |
+
>>> 1 + I in S.Complexes
|
1502 |
+
True
|
1503 |
+
|
1504 |
+
See also
|
1505 |
+
========
|
1506 |
+
|
1507 |
+
Reals
|
1508 |
+
ComplexRegion
|
1509 |
+
|
1510 |
+
"""
|
1511 |
+
|
1512 |
+
is_empty = False
|
1513 |
+
is_finite_set = False
|
1514 |
+
|
1515 |
+
# Override property from superclass since Complexes has no args
|
1516 |
+
@property
|
1517 |
+
def sets(self):
|
1518 |
+
return ProductSet(S.Reals, S.Reals)
|
1519 |
+
|
1520 |
+
def __new__(cls):
|
1521 |
+
return Set.__new__(cls)
|
venv/lib/python3.10/site-packages/sympy/sets/ordinals.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Basic, Integer
|
2 |
+
import operator
|
3 |
+
|
4 |
+
|
5 |
+
class OmegaPower(Basic):
|
6 |
+
"""
|
7 |
+
Represents ordinal exponential and multiplication terms one of the
|
8 |
+
building blocks of the :class:`Ordinal` class.
|
9 |
+
In ``OmegaPower(a, b)``, ``a`` represents exponent and ``b`` represents multiplicity.
|
10 |
+
"""
|
11 |
+
def __new__(cls, a, b):
|
12 |
+
if isinstance(b, int):
|
13 |
+
b = Integer(b)
|
14 |
+
if not isinstance(b, Integer) or b <= 0:
|
15 |
+
raise TypeError("multiplicity must be a positive integer")
|
16 |
+
|
17 |
+
if not isinstance(a, Ordinal):
|
18 |
+
a = Ordinal.convert(a)
|
19 |
+
|
20 |
+
return Basic.__new__(cls, a, b)
|
21 |
+
|
22 |
+
@property
|
23 |
+
def exp(self):
|
24 |
+
return self.args[0]
|
25 |
+
|
26 |
+
@property
|
27 |
+
def mult(self):
|
28 |
+
return self.args[1]
|
29 |
+
|
30 |
+
def _compare_term(self, other, op):
|
31 |
+
if self.exp == other.exp:
|
32 |
+
return op(self.mult, other.mult)
|
33 |
+
else:
|
34 |
+
return op(self.exp, other.exp)
|
35 |
+
|
36 |
+
def __eq__(self, other):
|
37 |
+
if not isinstance(other, OmegaPower):
|
38 |
+
try:
|
39 |
+
other = OmegaPower(0, other)
|
40 |
+
except TypeError:
|
41 |
+
return NotImplemented
|
42 |
+
return self.args == other.args
|
43 |
+
|
44 |
+
def __hash__(self):
|
45 |
+
return Basic.__hash__(self)
|
46 |
+
|
47 |
+
def __lt__(self, other):
|
48 |
+
if not isinstance(other, OmegaPower):
|
49 |
+
try:
|
50 |
+
other = OmegaPower(0, other)
|
51 |
+
except TypeError:
|
52 |
+
return NotImplemented
|
53 |
+
return self._compare_term(other, operator.lt)
|
54 |
+
|
55 |
+
|
56 |
+
class Ordinal(Basic):
|
57 |
+
"""
|
58 |
+
Represents ordinals in Cantor normal form.
|
59 |
+
|
60 |
+
Internally, this class is just a list of instances of OmegaPower.
|
61 |
+
|
62 |
+
Examples
|
63 |
+
========
|
64 |
+
>>> from sympy import Ordinal, OmegaPower
|
65 |
+
>>> from sympy.sets.ordinals import omega
|
66 |
+
>>> w = omega
|
67 |
+
>>> w.is_limit_ordinal
|
68 |
+
True
|
69 |
+
>>> Ordinal(OmegaPower(w + 1, 1), OmegaPower(3, 2))
|
70 |
+
w**(w + 1) + w**3*2
|
71 |
+
>>> 3 + w
|
72 |
+
w
|
73 |
+
>>> (w + 1) * w
|
74 |
+
w**2
|
75 |
+
|
76 |
+
References
|
77 |
+
==========
|
78 |
+
|
79 |
+
.. [1] https://en.wikipedia.org/wiki/Ordinal_arithmetic
|
80 |
+
"""
|
81 |
+
def __new__(cls, *terms):
|
82 |
+
obj = super().__new__(cls, *terms)
|
83 |
+
powers = [i.exp for i in obj.args]
|
84 |
+
if not all(powers[i] >= powers[i+1] for i in range(len(powers) - 1)):
|
85 |
+
raise ValueError("powers must be in decreasing order")
|
86 |
+
return obj
|
87 |
+
|
88 |
+
@property
|
89 |
+
def terms(self):
|
90 |
+
return self.args
|
91 |
+
|
92 |
+
@property
|
93 |
+
def leading_term(self):
|
94 |
+
if self == ord0:
|
95 |
+
raise ValueError("ordinal zero has no leading term")
|
96 |
+
return self.terms[0]
|
97 |
+
|
98 |
+
@property
|
99 |
+
def trailing_term(self):
|
100 |
+
if self == ord0:
|
101 |
+
raise ValueError("ordinal zero has no trailing term")
|
102 |
+
return self.terms[-1]
|
103 |
+
|
104 |
+
@property
|
105 |
+
def is_successor_ordinal(self):
|
106 |
+
try:
|
107 |
+
return self.trailing_term.exp == ord0
|
108 |
+
except ValueError:
|
109 |
+
return False
|
110 |
+
|
111 |
+
@property
|
112 |
+
def is_limit_ordinal(self):
|
113 |
+
try:
|
114 |
+
return not self.trailing_term.exp == ord0
|
115 |
+
except ValueError:
|
116 |
+
return False
|
117 |
+
|
118 |
+
@property
|
119 |
+
def degree(self):
|
120 |
+
return self.leading_term.exp
|
121 |
+
|
122 |
+
@classmethod
|
123 |
+
def convert(cls, integer_value):
|
124 |
+
if integer_value == 0:
|
125 |
+
return ord0
|
126 |
+
return Ordinal(OmegaPower(0, integer_value))
|
127 |
+
|
128 |
+
def __eq__(self, other):
|
129 |
+
if not isinstance(other, Ordinal):
|
130 |
+
try:
|
131 |
+
other = Ordinal.convert(other)
|
132 |
+
except TypeError:
|
133 |
+
return NotImplemented
|
134 |
+
return self.terms == other.terms
|
135 |
+
|
136 |
+
def __hash__(self):
|
137 |
+
return hash(self.args)
|
138 |
+
|
139 |
+
def __lt__(self, other):
|
140 |
+
if not isinstance(other, Ordinal):
|
141 |
+
try:
|
142 |
+
other = Ordinal.convert(other)
|
143 |
+
except TypeError:
|
144 |
+
return NotImplemented
|
145 |
+
for term_self, term_other in zip(self.terms, other.terms):
|
146 |
+
if term_self != term_other:
|
147 |
+
return term_self < term_other
|
148 |
+
return len(self.terms) < len(other.terms)
|
149 |
+
|
150 |
+
def __le__(self, other):
|
151 |
+
return (self == other or self < other)
|
152 |
+
|
153 |
+
def __gt__(self, other):
|
154 |
+
return not self <= other
|
155 |
+
|
156 |
+
def __ge__(self, other):
|
157 |
+
return not self < other
|
158 |
+
|
159 |
+
def __str__(self):
|
160 |
+
net_str = ""
|
161 |
+
plus_count = 0
|
162 |
+
if self == ord0:
|
163 |
+
return 'ord0'
|
164 |
+
for i in self.terms:
|
165 |
+
if plus_count:
|
166 |
+
net_str += " + "
|
167 |
+
|
168 |
+
if i.exp == ord0:
|
169 |
+
net_str += str(i.mult)
|
170 |
+
elif i.exp == 1:
|
171 |
+
net_str += 'w'
|
172 |
+
elif len(i.exp.terms) > 1 or i.exp.is_limit_ordinal:
|
173 |
+
net_str += 'w**(%s)'%i.exp
|
174 |
+
else:
|
175 |
+
net_str += 'w**%s'%i.exp
|
176 |
+
|
177 |
+
if not i.mult == 1 and not i.exp == ord0:
|
178 |
+
net_str += '*%s'%i.mult
|
179 |
+
|
180 |
+
plus_count += 1
|
181 |
+
return(net_str)
|
182 |
+
|
183 |
+
__repr__ = __str__
|
184 |
+
|
185 |
+
def __add__(self, other):
|
186 |
+
if not isinstance(other, Ordinal):
|
187 |
+
try:
|
188 |
+
other = Ordinal.convert(other)
|
189 |
+
except TypeError:
|
190 |
+
return NotImplemented
|
191 |
+
if other == ord0:
|
192 |
+
return self
|
193 |
+
a_terms = list(self.terms)
|
194 |
+
b_terms = list(other.terms)
|
195 |
+
r = len(a_terms) - 1
|
196 |
+
b_exp = other.degree
|
197 |
+
while r >= 0 and a_terms[r].exp < b_exp:
|
198 |
+
r -= 1
|
199 |
+
if r < 0:
|
200 |
+
terms = b_terms
|
201 |
+
elif a_terms[r].exp == b_exp:
|
202 |
+
sum_term = OmegaPower(b_exp, a_terms[r].mult + other.leading_term.mult)
|
203 |
+
terms = a_terms[:r] + [sum_term] + b_terms[1:]
|
204 |
+
else:
|
205 |
+
terms = a_terms[:r+1] + b_terms
|
206 |
+
return Ordinal(*terms)
|
207 |
+
|
208 |
+
def __radd__(self, other):
|
209 |
+
if not isinstance(other, Ordinal):
|
210 |
+
try:
|
211 |
+
other = Ordinal.convert(other)
|
212 |
+
except TypeError:
|
213 |
+
return NotImplemented
|
214 |
+
return other + self
|
215 |
+
|
216 |
+
def __mul__(self, other):
|
217 |
+
if not isinstance(other, Ordinal):
|
218 |
+
try:
|
219 |
+
other = Ordinal.convert(other)
|
220 |
+
except TypeError:
|
221 |
+
return NotImplemented
|
222 |
+
if ord0 in (self, other):
|
223 |
+
return ord0
|
224 |
+
a_exp = self.degree
|
225 |
+
a_mult = self.leading_term.mult
|
226 |
+
summation = []
|
227 |
+
if other.is_limit_ordinal:
|
228 |
+
for arg in other.terms:
|
229 |
+
summation.append(OmegaPower(a_exp + arg.exp, arg.mult))
|
230 |
+
|
231 |
+
else:
|
232 |
+
for arg in other.terms[:-1]:
|
233 |
+
summation.append(OmegaPower(a_exp + arg.exp, arg.mult))
|
234 |
+
b_mult = other.trailing_term.mult
|
235 |
+
summation.append(OmegaPower(a_exp, a_mult*b_mult))
|
236 |
+
summation += list(self.terms[1:])
|
237 |
+
return Ordinal(*summation)
|
238 |
+
|
239 |
+
def __rmul__(self, other):
|
240 |
+
if not isinstance(other, Ordinal):
|
241 |
+
try:
|
242 |
+
other = Ordinal.convert(other)
|
243 |
+
except TypeError:
|
244 |
+
return NotImplemented
|
245 |
+
return other * self
|
246 |
+
|
247 |
+
def __pow__(self, other):
|
248 |
+
if not self == omega:
|
249 |
+
return NotImplemented
|
250 |
+
return Ordinal(OmegaPower(other, 1))
|
251 |
+
|
252 |
+
|
253 |
+
class OrdinalZero(Ordinal):
|
254 |
+
"""The ordinal zero.
|
255 |
+
|
256 |
+
OrdinalZero can be imported as ``ord0``.
|
257 |
+
"""
|
258 |
+
pass
|
259 |
+
|
260 |
+
|
261 |
+
class OrdinalOmega(Ordinal):
|
262 |
+
"""The ordinal omega which forms the base of all ordinals in cantor normal form.
|
263 |
+
|
264 |
+
OrdinalOmega can be imported as ``omega``.
|
265 |
+
|
266 |
+
Examples
|
267 |
+
========
|
268 |
+
|
269 |
+
>>> from sympy.sets.ordinals import omega
|
270 |
+
>>> omega + omega
|
271 |
+
w*2
|
272 |
+
"""
|
273 |
+
def __new__(cls):
|
274 |
+
return Ordinal.__new__(cls)
|
275 |
+
|
276 |
+
@property
|
277 |
+
def terms(self):
|
278 |
+
return (OmegaPower(1, 1),)
|
279 |
+
|
280 |
+
|
281 |
+
ord0 = OrdinalZero()
|
282 |
+
omega = OrdinalOmega()
|
venv/lib/python3.10/site-packages/sympy/sets/powerset.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.decorators import _sympifyit
|
2 |
+
from sympy.core.parameters import global_parameters
|
3 |
+
from sympy.core.logic import fuzzy_bool
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.core.sympify import _sympify
|
6 |
+
|
7 |
+
from .sets import Set, FiniteSet, SetKind
|
8 |
+
|
9 |
+
|
10 |
+
class PowerSet(Set):
|
11 |
+
r"""A symbolic object representing a power set.
|
12 |
+
|
13 |
+
Parameters
|
14 |
+
==========
|
15 |
+
|
16 |
+
arg : Set
|
17 |
+
The set to take power of.
|
18 |
+
|
19 |
+
evaluate : bool
|
20 |
+
The flag to control evaluation.
|
21 |
+
|
22 |
+
If the evaluation is disabled for finite sets, it can take
|
23 |
+
advantage of using subset test as a membership test.
|
24 |
+
|
25 |
+
Notes
|
26 |
+
=====
|
27 |
+
|
28 |
+
Power set `\mathcal{P}(S)` is defined as a set containing all the
|
29 |
+
subsets of `S`.
|
30 |
+
|
31 |
+
If the set `S` is a finite set, its power set would have
|
32 |
+
`2^{\left| S \right|}` elements, where `\left| S \right|` denotes
|
33 |
+
the cardinality of `S`.
|
34 |
+
|
35 |
+
Examples
|
36 |
+
========
|
37 |
+
|
38 |
+
>>> from sympy import PowerSet, S, FiniteSet
|
39 |
+
|
40 |
+
A power set of a finite set:
|
41 |
+
|
42 |
+
>>> PowerSet(FiniteSet(1, 2, 3))
|
43 |
+
PowerSet({1, 2, 3})
|
44 |
+
|
45 |
+
A power set of an empty set:
|
46 |
+
|
47 |
+
>>> PowerSet(S.EmptySet)
|
48 |
+
PowerSet(EmptySet)
|
49 |
+
>>> PowerSet(PowerSet(S.EmptySet))
|
50 |
+
PowerSet(PowerSet(EmptySet))
|
51 |
+
|
52 |
+
A power set of an infinite set:
|
53 |
+
|
54 |
+
>>> PowerSet(S.Reals)
|
55 |
+
PowerSet(Reals)
|
56 |
+
|
57 |
+
Evaluating the power set of a finite set to its explicit form:
|
58 |
+
|
59 |
+
>>> PowerSet(FiniteSet(1, 2, 3)).rewrite(FiniteSet)
|
60 |
+
FiniteSet(EmptySet, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3})
|
61 |
+
|
62 |
+
References
|
63 |
+
==========
|
64 |
+
|
65 |
+
.. [1] https://en.wikipedia.org/wiki/Power_set
|
66 |
+
|
67 |
+
.. [2] https://en.wikipedia.org/wiki/Axiom_of_power_set
|
68 |
+
"""
|
69 |
+
def __new__(cls, arg, evaluate=None):
|
70 |
+
if evaluate is None:
|
71 |
+
evaluate=global_parameters.evaluate
|
72 |
+
|
73 |
+
arg = _sympify(arg)
|
74 |
+
|
75 |
+
if not isinstance(arg, Set):
|
76 |
+
raise ValueError('{} must be a set.'.format(arg))
|
77 |
+
|
78 |
+
return super().__new__(cls, arg)
|
79 |
+
|
80 |
+
@property
|
81 |
+
def arg(self):
|
82 |
+
return self.args[0]
|
83 |
+
|
84 |
+
def _eval_rewrite_as_FiniteSet(self, *args, **kwargs):
|
85 |
+
arg = self.arg
|
86 |
+
if arg.is_FiniteSet:
|
87 |
+
return arg.powerset()
|
88 |
+
return None
|
89 |
+
|
90 |
+
@_sympifyit('other', NotImplemented)
|
91 |
+
def _contains(self, other):
|
92 |
+
if not isinstance(other, Set):
|
93 |
+
return None
|
94 |
+
|
95 |
+
return fuzzy_bool(self.arg.is_superset(other))
|
96 |
+
|
97 |
+
def _eval_is_subset(self, other):
|
98 |
+
if isinstance(other, PowerSet):
|
99 |
+
return self.arg.is_subset(other.arg)
|
100 |
+
|
101 |
+
def __len__(self):
|
102 |
+
return 2 ** len(self.arg)
|
103 |
+
|
104 |
+
def __iter__(self):
|
105 |
+
found = [S.EmptySet]
|
106 |
+
yield S.EmptySet
|
107 |
+
|
108 |
+
for x in self.arg:
|
109 |
+
temp = []
|
110 |
+
x = FiniteSet(x)
|
111 |
+
for y in found:
|
112 |
+
new = x + y
|
113 |
+
yield new
|
114 |
+
temp.append(new)
|
115 |
+
found.extend(temp)
|
116 |
+
|
117 |
+
@property
|
118 |
+
def kind(self):
|
119 |
+
return SetKind(self.arg.kind)
|
venv/lib/python3.10/site-packages/sympy/sets/setexpr.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Expr
|
2 |
+
from sympy.core.decorators import call_highest_priority, _sympifyit
|
3 |
+
from .fancysets import ImageSet
|
4 |
+
from .sets import set_add, set_sub, set_mul, set_div, set_pow, set_function
|
5 |
+
|
6 |
+
|
7 |
+
class SetExpr(Expr):
|
8 |
+
"""An expression that can take on values of a set.
|
9 |
+
|
10 |
+
Examples
|
11 |
+
========
|
12 |
+
|
13 |
+
>>> from sympy import Interval, FiniteSet
|
14 |
+
>>> from sympy.sets.setexpr import SetExpr
|
15 |
+
|
16 |
+
>>> a = SetExpr(Interval(0, 5))
|
17 |
+
>>> b = SetExpr(FiniteSet(1, 10))
|
18 |
+
>>> (a + b).set
|
19 |
+
Union(Interval(1, 6), Interval(10, 15))
|
20 |
+
>>> (2*a + b).set
|
21 |
+
Interval(1, 20)
|
22 |
+
"""
|
23 |
+
_op_priority = 11.0
|
24 |
+
|
25 |
+
def __new__(cls, setarg):
|
26 |
+
return Expr.__new__(cls, setarg)
|
27 |
+
|
28 |
+
set = property(lambda self: self.args[0])
|
29 |
+
|
30 |
+
def _latex(self, printer):
|
31 |
+
return r"SetExpr\left({}\right)".format(printer._print(self.set))
|
32 |
+
|
33 |
+
@_sympifyit('other', NotImplemented)
|
34 |
+
@call_highest_priority('__radd__')
|
35 |
+
def __add__(self, other):
|
36 |
+
return _setexpr_apply_operation(set_add, self, other)
|
37 |
+
|
38 |
+
@_sympifyit('other', NotImplemented)
|
39 |
+
@call_highest_priority('__add__')
|
40 |
+
def __radd__(self, other):
|
41 |
+
return _setexpr_apply_operation(set_add, other, self)
|
42 |
+
|
43 |
+
@_sympifyit('other', NotImplemented)
|
44 |
+
@call_highest_priority('__rmul__')
|
45 |
+
def __mul__(self, other):
|
46 |
+
return _setexpr_apply_operation(set_mul, self, other)
|
47 |
+
|
48 |
+
@_sympifyit('other', NotImplemented)
|
49 |
+
@call_highest_priority('__mul__')
|
50 |
+
def __rmul__(self, other):
|
51 |
+
return _setexpr_apply_operation(set_mul, other, self)
|
52 |
+
|
53 |
+
@_sympifyit('other', NotImplemented)
|
54 |
+
@call_highest_priority('__rsub__')
|
55 |
+
def __sub__(self, other):
|
56 |
+
return _setexpr_apply_operation(set_sub, self, other)
|
57 |
+
|
58 |
+
@_sympifyit('other', NotImplemented)
|
59 |
+
@call_highest_priority('__sub__')
|
60 |
+
def __rsub__(self, other):
|
61 |
+
return _setexpr_apply_operation(set_sub, other, self)
|
62 |
+
|
63 |
+
@_sympifyit('other', NotImplemented)
|
64 |
+
@call_highest_priority('__rpow__')
|
65 |
+
def __pow__(self, other):
|
66 |
+
return _setexpr_apply_operation(set_pow, self, other)
|
67 |
+
|
68 |
+
@_sympifyit('other', NotImplemented)
|
69 |
+
@call_highest_priority('__pow__')
|
70 |
+
def __rpow__(self, other):
|
71 |
+
return _setexpr_apply_operation(set_pow, other, self)
|
72 |
+
|
73 |
+
@_sympifyit('other', NotImplemented)
|
74 |
+
@call_highest_priority('__rtruediv__')
|
75 |
+
def __truediv__(self, other):
|
76 |
+
return _setexpr_apply_operation(set_div, self, other)
|
77 |
+
|
78 |
+
@_sympifyit('other', NotImplemented)
|
79 |
+
@call_highest_priority('__truediv__')
|
80 |
+
def __rtruediv__(self, other):
|
81 |
+
return _setexpr_apply_operation(set_div, other, self)
|
82 |
+
|
83 |
+
def _eval_func(self, func):
|
84 |
+
# TODO: this could be implemented straight into `imageset`:
|
85 |
+
res = set_function(func, self.set)
|
86 |
+
if res is None:
|
87 |
+
return SetExpr(ImageSet(func, self.set))
|
88 |
+
return SetExpr(res)
|
89 |
+
|
90 |
+
|
91 |
+
def _setexpr_apply_operation(op, x, y):
|
92 |
+
if isinstance(x, SetExpr):
|
93 |
+
x = x.set
|
94 |
+
if isinstance(y, SetExpr):
|
95 |
+
y = y.set
|
96 |
+
out = op(x, y)
|
97 |
+
return SetExpr(out)
|
venv/lib/python3.10/site-packages/sympy/sets/sets.py
ADDED
@@ -0,0 +1,2749 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable
|
2 |
+
from functools import reduce
|
3 |
+
from collections import defaultdict
|
4 |
+
import inspect
|
5 |
+
|
6 |
+
from sympy.core.kind import Kind, UndefinedKind, NumberKind
|
7 |
+
from sympy.core.basic import Basic
|
8 |
+
from sympy.core.containers import Tuple, TupleKind
|
9 |
+
from sympy.core.decorators import sympify_method_args, sympify_return
|
10 |
+
from sympy.core.evalf import EvalfMixin
|
11 |
+
from sympy.core.expr import Expr
|
12 |
+
from sympy.core.function import Lambda
|
13 |
+
from sympy.core.logic import (FuzzyBool, fuzzy_bool, fuzzy_or, fuzzy_and,
|
14 |
+
fuzzy_not)
|
15 |
+
from sympy.core.numbers import Float, Integer
|
16 |
+
from sympy.core.operations import LatticeOp
|
17 |
+
from sympy.core.parameters import global_parameters
|
18 |
+
from sympy.core.relational import Eq, Ne, is_lt
|
19 |
+
from sympy.core.singleton import Singleton, S
|
20 |
+
from sympy.core.sorting import ordered
|
21 |
+
from sympy.core.symbol import symbols, Symbol, Dummy, uniquely_named_symbol
|
22 |
+
from sympy.core.sympify import _sympify, sympify, _sympy_converter
|
23 |
+
from sympy.functions.elementary.exponential import exp, log
|
24 |
+
from sympy.functions.elementary.miscellaneous import Max, Min
|
25 |
+
from sympy.logic.boolalg import And, Or, Not, Xor, true, false
|
26 |
+
from sympy.utilities.decorator import deprecated
|
27 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
28 |
+
from sympy.utilities.iterables import (iproduct, sift, roundrobin, iterable,
|
29 |
+
subsets)
|
30 |
+
from sympy.utilities.misc import func_name, filldedent
|
31 |
+
|
32 |
+
from mpmath import mpi, mpf
|
33 |
+
|
34 |
+
from mpmath.libmp.libmpf import prec_to_dps
|
35 |
+
|
36 |
+
|
37 |
+
tfn = defaultdict(lambda: None, {
|
38 |
+
True: S.true,
|
39 |
+
S.true: S.true,
|
40 |
+
False: S.false,
|
41 |
+
S.false: S.false})
|
42 |
+
|
43 |
+
|
44 |
+
@sympify_method_args
|
45 |
+
class Set(Basic, EvalfMixin):
|
46 |
+
"""
|
47 |
+
The base class for any kind of set.
|
48 |
+
|
49 |
+
Explanation
|
50 |
+
===========
|
51 |
+
|
52 |
+
This is not meant to be used directly as a container of items. It does not
|
53 |
+
behave like the builtin ``set``; see :class:`FiniteSet` for that.
|
54 |
+
|
55 |
+
Real intervals are represented by the :class:`Interval` class and unions of
|
56 |
+
sets by the :class:`Union` class. The empty set is represented by the
|
57 |
+
:class:`EmptySet` class and available as a singleton as ``S.EmptySet``.
|
58 |
+
"""
|
59 |
+
|
60 |
+
__slots__ = ()
|
61 |
+
|
62 |
+
is_number = False
|
63 |
+
is_iterable = False
|
64 |
+
is_interval = False
|
65 |
+
|
66 |
+
is_FiniteSet = False
|
67 |
+
is_Interval = False
|
68 |
+
is_ProductSet = False
|
69 |
+
is_Union = False
|
70 |
+
is_Intersection: FuzzyBool = None
|
71 |
+
is_UniversalSet: FuzzyBool = None
|
72 |
+
is_Complement: FuzzyBool = None
|
73 |
+
is_ComplexRegion = False
|
74 |
+
|
75 |
+
is_empty: FuzzyBool = None
|
76 |
+
is_finite_set: FuzzyBool = None
|
77 |
+
|
78 |
+
@property # type: ignore
|
79 |
+
@deprecated(
|
80 |
+
"""
|
81 |
+
The is_EmptySet attribute of Set objects is deprecated.
|
82 |
+
Use 's is S.EmptySet" or 's.is_empty' instead.
|
83 |
+
""",
|
84 |
+
deprecated_since_version="1.5",
|
85 |
+
active_deprecations_target="deprecated-is-emptyset",
|
86 |
+
)
|
87 |
+
def is_EmptySet(self):
|
88 |
+
return None
|
89 |
+
|
90 |
+
@staticmethod
|
91 |
+
def _infimum_key(expr):
|
92 |
+
"""
|
93 |
+
Return infimum (if possible) else S.Infinity.
|
94 |
+
"""
|
95 |
+
try:
|
96 |
+
infimum = expr.inf
|
97 |
+
assert infimum.is_comparable
|
98 |
+
infimum = infimum.evalf() # issue #18505
|
99 |
+
except (NotImplementedError,
|
100 |
+
AttributeError, AssertionError, ValueError):
|
101 |
+
infimum = S.Infinity
|
102 |
+
return infimum
|
103 |
+
|
104 |
+
def union(self, other):
|
105 |
+
"""
|
106 |
+
Returns the union of ``self`` and ``other``.
|
107 |
+
|
108 |
+
Examples
|
109 |
+
========
|
110 |
+
|
111 |
+
As a shortcut it is possible to use the ``+`` operator:
|
112 |
+
|
113 |
+
>>> from sympy import Interval, FiniteSet
|
114 |
+
>>> Interval(0, 1).union(Interval(2, 3))
|
115 |
+
Union(Interval(0, 1), Interval(2, 3))
|
116 |
+
>>> Interval(0, 1) + Interval(2, 3)
|
117 |
+
Union(Interval(0, 1), Interval(2, 3))
|
118 |
+
>>> Interval(1, 2, True, True) + FiniteSet(2, 3)
|
119 |
+
Union({3}, Interval.Lopen(1, 2))
|
120 |
+
|
121 |
+
Similarly it is possible to use the ``-`` operator for set differences:
|
122 |
+
|
123 |
+
>>> Interval(0, 2) - Interval(0, 1)
|
124 |
+
Interval.Lopen(1, 2)
|
125 |
+
>>> Interval(1, 3) - FiniteSet(2)
|
126 |
+
Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3))
|
127 |
+
|
128 |
+
"""
|
129 |
+
return Union(self, other)
|
130 |
+
|
131 |
+
def intersect(self, other):
|
132 |
+
"""
|
133 |
+
Returns the intersection of 'self' and 'other'.
|
134 |
+
|
135 |
+
Examples
|
136 |
+
========
|
137 |
+
|
138 |
+
>>> from sympy import Interval
|
139 |
+
|
140 |
+
>>> Interval(1, 3).intersect(Interval(1, 2))
|
141 |
+
Interval(1, 2)
|
142 |
+
|
143 |
+
>>> from sympy import imageset, Lambda, symbols, S
|
144 |
+
>>> n, m = symbols('n m')
|
145 |
+
>>> a = imageset(Lambda(n, 2*n), S.Integers)
|
146 |
+
>>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers))
|
147 |
+
EmptySet
|
148 |
+
|
149 |
+
"""
|
150 |
+
return Intersection(self, other)
|
151 |
+
|
152 |
+
def intersection(self, other):
|
153 |
+
"""
|
154 |
+
Alias for :meth:`intersect()`
|
155 |
+
"""
|
156 |
+
return self.intersect(other)
|
157 |
+
|
158 |
+
def is_disjoint(self, other):
|
159 |
+
"""
|
160 |
+
Returns True if ``self`` and ``other`` are disjoint.
|
161 |
+
|
162 |
+
Examples
|
163 |
+
========
|
164 |
+
|
165 |
+
>>> from sympy import Interval
|
166 |
+
>>> Interval(0, 2).is_disjoint(Interval(1, 2))
|
167 |
+
False
|
168 |
+
>>> Interval(0, 2).is_disjoint(Interval(3, 4))
|
169 |
+
True
|
170 |
+
|
171 |
+
References
|
172 |
+
==========
|
173 |
+
|
174 |
+
.. [1] https://en.wikipedia.org/wiki/Disjoint_sets
|
175 |
+
"""
|
176 |
+
return self.intersect(other) == S.EmptySet
|
177 |
+
|
178 |
+
def isdisjoint(self, other):
|
179 |
+
"""
|
180 |
+
Alias for :meth:`is_disjoint()`
|
181 |
+
"""
|
182 |
+
return self.is_disjoint(other)
|
183 |
+
|
184 |
+
def complement(self, universe):
|
185 |
+
r"""
|
186 |
+
The complement of 'self' w.r.t the given universe.
|
187 |
+
|
188 |
+
Examples
|
189 |
+
========
|
190 |
+
|
191 |
+
>>> from sympy import Interval, S
|
192 |
+
>>> Interval(0, 1).complement(S.Reals)
|
193 |
+
Union(Interval.open(-oo, 0), Interval.open(1, oo))
|
194 |
+
|
195 |
+
>>> Interval(0, 1).complement(S.UniversalSet)
|
196 |
+
Complement(UniversalSet, Interval(0, 1))
|
197 |
+
|
198 |
+
"""
|
199 |
+
return Complement(universe, self)
|
200 |
+
|
201 |
+
def _complement(self, other):
|
202 |
+
# this behaves as other - self
|
203 |
+
if isinstance(self, ProductSet) and isinstance(other, ProductSet):
|
204 |
+
# If self and other are disjoint then other - self == self
|
205 |
+
if len(self.sets) != len(other.sets):
|
206 |
+
return other
|
207 |
+
|
208 |
+
# There can be other ways to represent this but this gives:
|
209 |
+
# (A x B) - (C x D) = ((A - C) x B) U (A x (B - D))
|
210 |
+
overlaps = []
|
211 |
+
pairs = list(zip(self.sets, other.sets))
|
212 |
+
for n in range(len(pairs)):
|
213 |
+
sets = (o if i != n else o-s for i, (s, o) in enumerate(pairs))
|
214 |
+
overlaps.append(ProductSet(*sets))
|
215 |
+
return Union(*overlaps)
|
216 |
+
|
217 |
+
elif isinstance(other, Interval):
|
218 |
+
if isinstance(self, (Interval, FiniteSet)):
|
219 |
+
return Intersection(other, self.complement(S.Reals))
|
220 |
+
|
221 |
+
elif isinstance(other, Union):
|
222 |
+
return Union(*(o - self for o in other.args))
|
223 |
+
|
224 |
+
elif isinstance(other, Complement):
|
225 |
+
return Complement(other.args[0], Union(other.args[1], self), evaluate=False)
|
226 |
+
|
227 |
+
elif other is S.EmptySet:
|
228 |
+
return S.EmptySet
|
229 |
+
|
230 |
+
elif isinstance(other, FiniteSet):
|
231 |
+
sifted = sift(other, lambda x: fuzzy_bool(self.contains(x)))
|
232 |
+
# ignore those that are contained in self
|
233 |
+
return Union(FiniteSet(*(sifted[False])),
|
234 |
+
Complement(FiniteSet(*(sifted[None])), self, evaluate=False)
|
235 |
+
if sifted[None] else S.EmptySet)
|
236 |
+
|
237 |
+
def symmetric_difference(self, other):
|
238 |
+
"""
|
239 |
+
Returns symmetric difference of ``self`` and ``other``.
|
240 |
+
|
241 |
+
Examples
|
242 |
+
========
|
243 |
+
|
244 |
+
>>> from sympy import Interval, S
|
245 |
+
>>> Interval(1, 3).symmetric_difference(S.Reals)
|
246 |
+
Union(Interval.open(-oo, 1), Interval.open(3, oo))
|
247 |
+
>>> Interval(1, 10).symmetric_difference(S.Reals)
|
248 |
+
Union(Interval.open(-oo, 1), Interval.open(10, oo))
|
249 |
+
|
250 |
+
>>> from sympy import S, EmptySet
|
251 |
+
>>> S.Reals.symmetric_difference(EmptySet)
|
252 |
+
Reals
|
253 |
+
|
254 |
+
References
|
255 |
+
==========
|
256 |
+
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
|
257 |
+
|
258 |
+
"""
|
259 |
+
return SymmetricDifference(self, other)
|
260 |
+
|
261 |
+
def _symmetric_difference(self, other):
|
262 |
+
return Union(Complement(self, other), Complement(other, self))
|
263 |
+
|
264 |
+
@property
|
265 |
+
def inf(self):
|
266 |
+
"""
|
267 |
+
The infimum of ``self``.
|
268 |
+
|
269 |
+
Examples
|
270 |
+
========
|
271 |
+
|
272 |
+
>>> from sympy import Interval, Union
|
273 |
+
>>> Interval(0, 1).inf
|
274 |
+
0
|
275 |
+
>>> Union(Interval(0, 1), Interval(2, 3)).inf
|
276 |
+
0
|
277 |
+
|
278 |
+
"""
|
279 |
+
return self._inf
|
280 |
+
|
281 |
+
@property
|
282 |
+
def _inf(self):
|
283 |
+
raise NotImplementedError("(%s)._inf" % self)
|
284 |
+
|
285 |
+
@property
|
286 |
+
def sup(self):
|
287 |
+
"""
|
288 |
+
The supremum of ``self``.
|
289 |
+
|
290 |
+
Examples
|
291 |
+
========
|
292 |
+
|
293 |
+
>>> from sympy import Interval, Union
|
294 |
+
>>> Interval(0, 1).sup
|
295 |
+
1
|
296 |
+
>>> Union(Interval(0, 1), Interval(2, 3)).sup
|
297 |
+
3
|
298 |
+
|
299 |
+
"""
|
300 |
+
return self._sup
|
301 |
+
|
302 |
+
@property
|
303 |
+
def _sup(self):
|
304 |
+
raise NotImplementedError("(%s)._sup" % self)
|
305 |
+
|
306 |
+
def contains(self, other):
|
307 |
+
"""
|
308 |
+
Returns a SymPy value indicating whether ``other`` is contained
|
309 |
+
in ``self``: ``true`` if it is, ``false`` if it is not, else
|
310 |
+
an unevaluated ``Contains`` expression (or, as in the case of
|
311 |
+
ConditionSet and a union of FiniteSet/Intervals, an expression
|
312 |
+
indicating the conditions for containment).
|
313 |
+
|
314 |
+
Examples
|
315 |
+
========
|
316 |
+
|
317 |
+
>>> from sympy import Interval, S
|
318 |
+
>>> from sympy.abc import x
|
319 |
+
|
320 |
+
>>> Interval(0, 1).contains(0.5)
|
321 |
+
True
|
322 |
+
|
323 |
+
As a shortcut it is possible to use the ``in`` operator, but that
|
324 |
+
will raise an error unless an affirmative true or false is not
|
325 |
+
obtained.
|
326 |
+
|
327 |
+
>>> Interval(0, 1).contains(x)
|
328 |
+
(0 <= x) & (x <= 1)
|
329 |
+
>>> x in Interval(0, 1)
|
330 |
+
Traceback (most recent call last):
|
331 |
+
...
|
332 |
+
TypeError: did not evaluate to a bool: None
|
333 |
+
|
334 |
+
The result of 'in' is a bool, not a SymPy value
|
335 |
+
|
336 |
+
>>> 1 in Interval(0, 2)
|
337 |
+
True
|
338 |
+
>>> _ is S.true
|
339 |
+
False
|
340 |
+
"""
|
341 |
+
from .contains import Contains
|
342 |
+
other = sympify(other, strict=True)
|
343 |
+
|
344 |
+
c = self._contains(other)
|
345 |
+
if isinstance(c, Contains):
|
346 |
+
return c
|
347 |
+
if c is None:
|
348 |
+
return Contains(other, self, evaluate=False)
|
349 |
+
b = tfn[c]
|
350 |
+
if b is None:
|
351 |
+
return c
|
352 |
+
return b
|
353 |
+
|
354 |
+
def _contains(self, other):
|
355 |
+
raise NotImplementedError(filldedent('''
|
356 |
+
(%s)._contains(%s) is not defined. This method, when
|
357 |
+
defined, will receive a sympified object. The method
|
358 |
+
should return True, False, None or something that
|
359 |
+
expresses what must be true for the containment of that
|
360 |
+
object in self to be evaluated. If None is returned
|
361 |
+
then a generic Contains object will be returned
|
362 |
+
by the ``contains`` method.''' % (self, other)))
|
363 |
+
|
364 |
+
def is_subset(self, other):
|
365 |
+
"""
|
366 |
+
Returns True if ``self`` is a subset of ``other``.
|
367 |
+
|
368 |
+
Examples
|
369 |
+
========
|
370 |
+
|
371 |
+
>>> from sympy import Interval
|
372 |
+
>>> Interval(0, 0.5).is_subset(Interval(0, 1))
|
373 |
+
True
|
374 |
+
>>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True))
|
375 |
+
False
|
376 |
+
|
377 |
+
"""
|
378 |
+
if not isinstance(other, Set):
|
379 |
+
raise ValueError("Unknown argument '%s'" % other)
|
380 |
+
|
381 |
+
# Handle the trivial cases
|
382 |
+
if self == other:
|
383 |
+
return True
|
384 |
+
is_empty = self.is_empty
|
385 |
+
if is_empty is True:
|
386 |
+
return True
|
387 |
+
elif fuzzy_not(is_empty) and other.is_empty:
|
388 |
+
return False
|
389 |
+
if self.is_finite_set is False and other.is_finite_set:
|
390 |
+
return False
|
391 |
+
|
392 |
+
# Dispatch on subclass rules
|
393 |
+
ret = self._eval_is_subset(other)
|
394 |
+
if ret is not None:
|
395 |
+
return ret
|
396 |
+
ret = other._eval_is_superset(self)
|
397 |
+
if ret is not None:
|
398 |
+
return ret
|
399 |
+
|
400 |
+
# Use pairwise rules from multiple dispatch
|
401 |
+
from sympy.sets.handlers.issubset import is_subset_sets
|
402 |
+
ret = is_subset_sets(self, other)
|
403 |
+
if ret is not None:
|
404 |
+
return ret
|
405 |
+
|
406 |
+
# Fall back on computing the intersection
|
407 |
+
# XXX: We shouldn't do this. A query like this should be handled
|
408 |
+
# without evaluating new Set objects. It should be the other way round
|
409 |
+
# so that the intersect method uses is_subset for evaluation.
|
410 |
+
if self.intersect(other) == self:
|
411 |
+
return True
|
412 |
+
|
413 |
+
def _eval_is_subset(self, other):
|
414 |
+
'''Returns a fuzzy bool for whether self is a subset of other.'''
|
415 |
+
return None
|
416 |
+
|
417 |
+
def _eval_is_superset(self, other):
|
418 |
+
'''Returns a fuzzy bool for whether self is a subset of other.'''
|
419 |
+
return None
|
420 |
+
|
421 |
+
# This should be deprecated:
|
422 |
+
def issubset(self, other):
|
423 |
+
"""
|
424 |
+
Alias for :meth:`is_subset()`
|
425 |
+
"""
|
426 |
+
return self.is_subset(other)
|
427 |
+
|
428 |
+
def is_proper_subset(self, other):
|
429 |
+
"""
|
430 |
+
Returns True if ``self`` is a proper subset of ``other``.
|
431 |
+
|
432 |
+
Examples
|
433 |
+
========
|
434 |
+
|
435 |
+
>>> from sympy import Interval
|
436 |
+
>>> Interval(0, 0.5).is_proper_subset(Interval(0, 1))
|
437 |
+
True
|
438 |
+
>>> Interval(0, 1).is_proper_subset(Interval(0, 1))
|
439 |
+
False
|
440 |
+
|
441 |
+
"""
|
442 |
+
if isinstance(other, Set):
|
443 |
+
return self != other and self.is_subset(other)
|
444 |
+
else:
|
445 |
+
raise ValueError("Unknown argument '%s'" % other)
|
446 |
+
|
447 |
+
def is_superset(self, other):
|
448 |
+
"""
|
449 |
+
Returns True if ``self`` is a superset of ``other``.
|
450 |
+
|
451 |
+
Examples
|
452 |
+
========
|
453 |
+
|
454 |
+
>>> from sympy import Interval
|
455 |
+
>>> Interval(0, 0.5).is_superset(Interval(0, 1))
|
456 |
+
False
|
457 |
+
>>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True))
|
458 |
+
True
|
459 |
+
|
460 |
+
"""
|
461 |
+
if isinstance(other, Set):
|
462 |
+
return other.is_subset(self)
|
463 |
+
else:
|
464 |
+
raise ValueError("Unknown argument '%s'" % other)
|
465 |
+
|
466 |
+
# This should be deprecated:
|
467 |
+
def issuperset(self, other):
|
468 |
+
"""
|
469 |
+
Alias for :meth:`is_superset()`
|
470 |
+
"""
|
471 |
+
return self.is_superset(other)
|
472 |
+
|
473 |
+
def is_proper_superset(self, other):
|
474 |
+
"""
|
475 |
+
Returns True if ``self`` is a proper superset of ``other``.
|
476 |
+
|
477 |
+
Examples
|
478 |
+
========
|
479 |
+
|
480 |
+
>>> from sympy import Interval
|
481 |
+
>>> Interval(0, 1).is_proper_superset(Interval(0, 0.5))
|
482 |
+
True
|
483 |
+
>>> Interval(0, 1).is_proper_superset(Interval(0, 1))
|
484 |
+
False
|
485 |
+
|
486 |
+
"""
|
487 |
+
if isinstance(other, Set):
|
488 |
+
return self != other and self.is_superset(other)
|
489 |
+
else:
|
490 |
+
raise ValueError("Unknown argument '%s'" % other)
|
491 |
+
|
492 |
+
def _eval_powerset(self):
|
493 |
+
from .powerset import PowerSet
|
494 |
+
return PowerSet(self)
|
495 |
+
|
496 |
+
def powerset(self):
|
497 |
+
"""
|
498 |
+
Find the Power set of ``self``.
|
499 |
+
|
500 |
+
Examples
|
501 |
+
========
|
502 |
+
|
503 |
+
>>> from sympy import EmptySet, FiniteSet, Interval
|
504 |
+
|
505 |
+
A power set of an empty set:
|
506 |
+
|
507 |
+
>>> A = EmptySet
|
508 |
+
>>> A.powerset()
|
509 |
+
{EmptySet}
|
510 |
+
|
511 |
+
A power set of a finite set:
|
512 |
+
|
513 |
+
>>> A = FiniteSet(1, 2)
|
514 |
+
>>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2)
|
515 |
+
>>> A.powerset() == FiniteSet(a, b, c, EmptySet)
|
516 |
+
True
|
517 |
+
|
518 |
+
A power set of an interval:
|
519 |
+
|
520 |
+
>>> Interval(1, 2).powerset()
|
521 |
+
PowerSet(Interval(1, 2))
|
522 |
+
|
523 |
+
References
|
524 |
+
==========
|
525 |
+
|
526 |
+
.. [1] https://en.wikipedia.org/wiki/Power_set
|
527 |
+
|
528 |
+
"""
|
529 |
+
return self._eval_powerset()
|
530 |
+
|
531 |
+
@property
|
532 |
+
def measure(self):
|
533 |
+
"""
|
534 |
+
The (Lebesgue) measure of ``self``.
|
535 |
+
|
536 |
+
Examples
|
537 |
+
========
|
538 |
+
|
539 |
+
>>> from sympy import Interval, Union
|
540 |
+
>>> Interval(0, 1).measure
|
541 |
+
1
|
542 |
+
>>> Union(Interval(0, 1), Interval(2, 3)).measure
|
543 |
+
2
|
544 |
+
|
545 |
+
"""
|
546 |
+
return self._measure
|
547 |
+
|
548 |
+
@property
|
549 |
+
def kind(self):
|
550 |
+
"""
|
551 |
+
The kind of a Set
|
552 |
+
|
553 |
+
Explanation
|
554 |
+
===========
|
555 |
+
|
556 |
+
Any :class:`Set` will have kind :class:`SetKind` which is
|
557 |
+
parametrised by the kind of the elements of the set. For example
|
558 |
+
most sets are sets of numbers and will have kind
|
559 |
+
``SetKind(NumberKind)``. If elements of sets are different in kind than
|
560 |
+
their kind will ``SetKind(UndefinedKind)``. See
|
561 |
+
:class:`sympy.core.kind.Kind` for an explanation of the kind system.
|
562 |
+
|
563 |
+
Examples
|
564 |
+
========
|
565 |
+
|
566 |
+
>>> from sympy import Interval, Matrix, FiniteSet, EmptySet, ProductSet, PowerSet
|
567 |
+
|
568 |
+
>>> FiniteSet(Matrix([1, 2])).kind
|
569 |
+
SetKind(MatrixKind(NumberKind))
|
570 |
+
|
571 |
+
>>> Interval(1, 2).kind
|
572 |
+
SetKind(NumberKind)
|
573 |
+
|
574 |
+
>>> EmptySet.kind
|
575 |
+
SetKind()
|
576 |
+
|
577 |
+
A :class:`sympy.sets.powerset.PowerSet` is a set of sets:
|
578 |
+
|
579 |
+
>>> PowerSet({1, 2, 3}).kind
|
580 |
+
SetKind(SetKind(NumberKind))
|
581 |
+
|
582 |
+
A :class:`ProductSet` represents the set of tuples of elements of
|
583 |
+
other sets. Its kind is :class:`sympy.core.containers.TupleKind`
|
584 |
+
parametrised by the kinds of the elements of those sets:
|
585 |
+
|
586 |
+
>>> p = ProductSet(FiniteSet(1, 2), FiniteSet(3, 4))
|
587 |
+
>>> list(p)
|
588 |
+
[(1, 3), (2, 3), (1, 4), (2, 4)]
|
589 |
+
>>> p.kind
|
590 |
+
SetKind(TupleKind(NumberKind, NumberKind))
|
591 |
+
|
592 |
+
When all elements of the set do not have same kind, the kind
|
593 |
+
will be returned as ``SetKind(UndefinedKind)``:
|
594 |
+
|
595 |
+
>>> FiniteSet(0, Matrix([1, 2])).kind
|
596 |
+
SetKind(UndefinedKind)
|
597 |
+
|
598 |
+
The kind of the elements of a set are given by the ``element_kind``
|
599 |
+
attribute of ``SetKind``:
|
600 |
+
|
601 |
+
>>> Interval(1, 2).kind.element_kind
|
602 |
+
NumberKind
|
603 |
+
|
604 |
+
See Also
|
605 |
+
========
|
606 |
+
|
607 |
+
NumberKind
|
608 |
+
sympy.core.kind.UndefinedKind
|
609 |
+
sympy.core.containers.TupleKind
|
610 |
+
MatrixKind
|
611 |
+
sympy.matrices.expressions.sets.MatrixSet
|
612 |
+
sympy.sets.conditionset.ConditionSet
|
613 |
+
Rationals
|
614 |
+
Naturals
|
615 |
+
Integers
|
616 |
+
sympy.sets.fancysets.ImageSet
|
617 |
+
sympy.sets.fancysets.Range
|
618 |
+
sympy.sets.fancysets.ComplexRegion
|
619 |
+
sympy.sets.powerset.PowerSet
|
620 |
+
sympy.sets.sets.ProductSet
|
621 |
+
sympy.sets.sets.Interval
|
622 |
+
sympy.sets.sets.Union
|
623 |
+
sympy.sets.sets.Intersection
|
624 |
+
sympy.sets.sets.Complement
|
625 |
+
sympy.sets.sets.EmptySet
|
626 |
+
sympy.sets.sets.UniversalSet
|
627 |
+
sympy.sets.sets.FiniteSet
|
628 |
+
sympy.sets.sets.SymmetricDifference
|
629 |
+
sympy.sets.sets.DisjointUnion
|
630 |
+
"""
|
631 |
+
return self._kind()
|
632 |
+
|
633 |
+
@property
|
634 |
+
def boundary(self):
|
635 |
+
"""
|
636 |
+
The boundary or frontier of a set.
|
637 |
+
|
638 |
+
Explanation
|
639 |
+
===========
|
640 |
+
|
641 |
+
A point x is on the boundary of a set S if
|
642 |
+
|
643 |
+
1. x is in the closure of S.
|
644 |
+
I.e. Every neighborhood of x contains a point in S.
|
645 |
+
2. x is not in the interior of S.
|
646 |
+
I.e. There does not exist an open set centered on x contained
|
647 |
+
entirely within S.
|
648 |
+
|
649 |
+
There are the points on the outer rim of S. If S is open then these
|
650 |
+
points need not actually be contained within S.
|
651 |
+
|
652 |
+
For example, the boundary of an interval is its start and end points.
|
653 |
+
This is true regardless of whether or not the interval is open.
|
654 |
+
|
655 |
+
Examples
|
656 |
+
========
|
657 |
+
|
658 |
+
>>> from sympy import Interval
|
659 |
+
>>> Interval(0, 1).boundary
|
660 |
+
{0, 1}
|
661 |
+
>>> Interval(0, 1, True, False).boundary
|
662 |
+
{0, 1}
|
663 |
+
"""
|
664 |
+
return self._boundary
|
665 |
+
|
666 |
+
@property
|
667 |
+
def is_open(self):
|
668 |
+
"""
|
669 |
+
Property method to check whether a set is open.
|
670 |
+
|
671 |
+
Explanation
|
672 |
+
===========
|
673 |
+
|
674 |
+
A set is open if and only if it has an empty intersection with its
|
675 |
+
boundary. In particular, a subset A of the reals is open if and only
|
676 |
+
if each one of its points is contained in an open interval that is a
|
677 |
+
subset of A.
|
678 |
+
|
679 |
+
Examples
|
680 |
+
========
|
681 |
+
>>> from sympy import S
|
682 |
+
>>> S.Reals.is_open
|
683 |
+
True
|
684 |
+
>>> S.Rationals.is_open
|
685 |
+
False
|
686 |
+
"""
|
687 |
+
return Intersection(self, self.boundary).is_empty
|
688 |
+
|
689 |
+
@property
|
690 |
+
def is_closed(self):
|
691 |
+
"""
|
692 |
+
A property method to check whether a set is closed.
|
693 |
+
|
694 |
+
Explanation
|
695 |
+
===========
|
696 |
+
|
697 |
+
A set is closed if its complement is an open set. The closedness of a
|
698 |
+
subset of the reals is determined with respect to R and its standard
|
699 |
+
topology.
|
700 |
+
|
701 |
+
Examples
|
702 |
+
========
|
703 |
+
>>> from sympy import Interval
|
704 |
+
>>> Interval(0, 1).is_closed
|
705 |
+
True
|
706 |
+
"""
|
707 |
+
return self.boundary.is_subset(self)
|
708 |
+
|
709 |
+
@property
|
710 |
+
def closure(self):
|
711 |
+
"""
|
712 |
+
Property method which returns the closure of a set.
|
713 |
+
The closure is defined as the union of the set itself and its
|
714 |
+
boundary.
|
715 |
+
|
716 |
+
Examples
|
717 |
+
========
|
718 |
+
>>> from sympy import S, Interval
|
719 |
+
>>> S.Reals.closure
|
720 |
+
Reals
|
721 |
+
>>> Interval(0, 1).closure
|
722 |
+
Interval(0, 1)
|
723 |
+
"""
|
724 |
+
return self + self.boundary
|
725 |
+
|
726 |
+
@property
|
727 |
+
def interior(self):
|
728 |
+
"""
|
729 |
+
Property method which returns the interior of a set.
|
730 |
+
The interior of a set S consists all points of S that do not
|
731 |
+
belong to the boundary of S.
|
732 |
+
|
733 |
+
Examples
|
734 |
+
========
|
735 |
+
>>> from sympy import Interval
|
736 |
+
>>> Interval(0, 1).interior
|
737 |
+
Interval.open(0, 1)
|
738 |
+
>>> Interval(0, 1).boundary.interior
|
739 |
+
EmptySet
|
740 |
+
"""
|
741 |
+
return self - self.boundary
|
742 |
+
|
743 |
+
@property
|
744 |
+
def _boundary(self):
|
745 |
+
raise NotImplementedError()
|
746 |
+
|
747 |
+
@property
|
748 |
+
def _measure(self):
|
749 |
+
raise NotImplementedError("(%s)._measure" % self)
|
750 |
+
|
751 |
+
def _kind(self):
|
752 |
+
return SetKind(UndefinedKind)
|
753 |
+
|
754 |
+
def _eval_evalf(self, prec):
|
755 |
+
dps = prec_to_dps(prec)
|
756 |
+
return self.func(*[arg.evalf(n=dps) for arg in self.args])
|
757 |
+
|
758 |
+
@sympify_return([('other', 'Set')], NotImplemented)
|
759 |
+
def __add__(self, other):
|
760 |
+
return self.union(other)
|
761 |
+
|
762 |
+
@sympify_return([('other', 'Set')], NotImplemented)
|
763 |
+
def __or__(self, other):
|
764 |
+
return self.union(other)
|
765 |
+
|
766 |
+
@sympify_return([('other', 'Set')], NotImplemented)
|
767 |
+
def __and__(self, other):
|
768 |
+
return self.intersect(other)
|
769 |
+
|
770 |
+
@sympify_return([('other', 'Set')], NotImplemented)
|
771 |
+
def __mul__(self, other):
|
772 |
+
return ProductSet(self, other)
|
773 |
+
|
774 |
+
@sympify_return([('other', 'Set')], NotImplemented)
|
775 |
+
def __xor__(self, other):
|
776 |
+
return SymmetricDifference(self, other)
|
777 |
+
|
778 |
+
@sympify_return([('exp', Expr)], NotImplemented)
|
779 |
+
def __pow__(self, exp):
|
780 |
+
if not (exp.is_Integer and exp >= 0):
|
781 |
+
raise ValueError("%s: Exponent must be a positive Integer" % exp)
|
782 |
+
return ProductSet(*[self]*exp)
|
783 |
+
|
784 |
+
@sympify_return([('other', 'Set')], NotImplemented)
|
785 |
+
def __sub__(self, other):
|
786 |
+
return Complement(self, other)
|
787 |
+
|
788 |
+
def __contains__(self, other):
|
789 |
+
other = _sympify(other)
|
790 |
+
c = self._contains(other)
|
791 |
+
b = tfn[c]
|
792 |
+
if b is None:
|
793 |
+
# x in y must evaluate to T or F; to entertain a None
|
794 |
+
# result with Set use y.contains(x)
|
795 |
+
raise TypeError('did not evaluate to a bool: %r' % c)
|
796 |
+
return b
|
797 |
+
|
798 |
+
|
799 |
+
class ProductSet(Set):
|
800 |
+
"""
|
801 |
+
Represents a Cartesian Product of Sets.
|
802 |
+
|
803 |
+
Explanation
|
804 |
+
===========
|
805 |
+
|
806 |
+
Returns a Cartesian product given several sets as either an iterable
|
807 |
+
or individual arguments.
|
808 |
+
|
809 |
+
Can use ``*`` operator on any sets for convenient shorthand.
|
810 |
+
|
811 |
+
Examples
|
812 |
+
========
|
813 |
+
|
814 |
+
>>> from sympy import Interval, FiniteSet, ProductSet
|
815 |
+
>>> I = Interval(0, 5); S = FiniteSet(1, 2, 3)
|
816 |
+
>>> ProductSet(I, S)
|
817 |
+
ProductSet(Interval(0, 5), {1, 2, 3})
|
818 |
+
|
819 |
+
>>> (2, 2) in ProductSet(I, S)
|
820 |
+
True
|
821 |
+
|
822 |
+
>>> Interval(0, 1) * Interval(0, 1) # The unit square
|
823 |
+
ProductSet(Interval(0, 1), Interval(0, 1))
|
824 |
+
|
825 |
+
>>> coin = FiniteSet('H', 'T')
|
826 |
+
>>> set(coin**2)
|
827 |
+
{(H, H), (H, T), (T, H), (T, T)}
|
828 |
+
|
829 |
+
The Cartesian product is not commutative or associative e.g.:
|
830 |
+
|
831 |
+
>>> I*S == S*I
|
832 |
+
False
|
833 |
+
>>> (I*I)*I == I*(I*I)
|
834 |
+
False
|
835 |
+
|
836 |
+
Notes
|
837 |
+
=====
|
838 |
+
|
839 |
+
- Passes most operations down to the argument sets
|
840 |
+
|
841 |
+
References
|
842 |
+
==========
|
843 |
+
|
844 |
+
.. [1] https://en.wikipedia.org/wiki/Cartesian_product
|
845 |
+
"""
|
846 |
+
is_ProductSet = True
|
847 |
+
|
848 |
+
def __new__(cls, *sets, **assumptions):
|
849 |
+
if len(sets) == 1 and iterable(sets[0]) and not isinstance(sets[0], (Set, set)):
|
850 |
+
sympy_deprecation_warning(
|
851 |
+
"""
|
852 |
+
ProductSet(iterable) is deprecated. Use ProductSet(*iterable) instead.
|
853 |
+
""",
|
854 |
+
deprecated_since_version="1.5",
|
855 |
+
active_deprecations_target="deprecated-productset-iterable",
|
856 |
+
)
|
857 |
+
sets = tuple(sets[0])
|
858 |
+
|
859 |
+
sets = [sympify(s) for s in sets]
|
860 |
+
|
861 |
+
if not all(isinstance(s, Set) for s in sets):
|
862 |
+
raise TypeError("Arguments to ProductSet should be of type Set")
|
863 |
+
|
864 |
+
# Nullary product of sets is *not* the empty set
|
865 |
+
if len(sets) == 0:
|
866 |
+
return FiniteSet(())
|
867 |
+
|
868 |
+
if S.EmptySet in sets:
|
869 |
+
return S.EmptySet
|
870 |
+
|
871 |
+
return Basic.__new__(cls, *sets, **assumptions)
|
872 |
+
|
873 |
+
@property
|
874 |
+
def sets(self):
|
875 |
+
return self.args
|
876 |
+
|
877 |
+
def flatten(self):
|
878 |
+
def _flatten(sets):
|
879 |
+
for s in sets:
|
880 |
+
if s.is_ProductSet:
|
881 |
+
yield from _flatten(s.sets)
|
882 |
+
else:
|
883 |
+
yield s
|
884 |
+
return ProductSet(*_flatten(self.sets))
|
885 |
+
|
886 |
+
|
887 |
+
|
888 |
+
def _contains(self, element):
|
889 |
+
"""
|
890 |
+
``in`` operator for ProductSets.
|
891 |
+
|
892 |
+
Examples
|
893 |
+
========
|
894 |
+
|
895 |
+
>>> from sympy import Interval
|
896 |
+
>>> (2, 3) in Interval(0, 5) * Interval(0, 5)
|
897 |
+
True
|
898 |
+
|
899 |
+
>>> (10, 10) in Interval(0, 5) * Interval(0, 5)
|
900 |
+
False
|
901 |
+
|
902 |
+
Passes operation on to constituent sets
|
903 |
+
"""
|
904 |
+
if element.is_Symbol:
|
905 |
+
return None
|
906 |
+
|
907 |
+
if not isinstance(element, Tuple) or len(element) != len(self.sets):
|
908 |
+
return False
|
909 |
+
|
910 |
+
return fuzzy_and(s._contains(e) for s, e in zip(self.sets, element))
|
911 |
+
|
912 |
+
def as_relational(self, *symbols):
|
913 |
+
symbols = [_sympify(s) for s in symbols]
|
914 |
+
if len(symbols) != len(self.sets) or not all(
|
915 |
+
i.is_Symbol for i in symbols):
|
916 |
+
raise ValueError(
|
917 |
+
'number of symbols must match the number of sets')
|
918 |
+
return And(*[s.as_relational(i) for s, i in zip(self.sets, symbols)])
|
919 |
+
|
920 |
+
@property
|
921 |
+
def _boundary(self):
|
922 |
+
return Union(*(ProductSet(*(b + b.boundary if i != j else b.boundary
|
923 |
+
for j, b in enumerate(self.sets)))
|
924 |
+
for i, a in enumerate(self.sets)))
|
925 |
+
|
926 |
+
@property
|
927 |
+
def is_iterable(self):
|
928 |
+
"""
|
929 |
+
A property method which tests whether a set is iterable or not.
|
930 |
+
Returns True if set is iterable, otherwise returns False.
|
931 |
+
|
932 |
+
Examples
|
933 |
+
========
|
934 |
+
|
935 |
+
>>> from sympy import FiniteSet, Interval
|
936 |
+
>>> I = Interval(0, 1)
|
937 |
+
>>> A = FiniteSet(1, 2, 3, 4, 5)
|
938 |
+
>>> I.is_iterable
|
939 |
+
False
|
940 |
+
>>> A.is_iterable
|
941 |
+
True
|
942 |
+
|
943 |
+
"""
|
944 |
+
return all(set.is_iterable for set in self.sets)
|
945 |
+
|
946 |
+
def __iter__(self):
|
947 |
+
"""
|
948 |
+
A method which implements is_iterable property method.
|
949 |
+
If self.is_iterable returns True (both constituent sets are iterable),
|
950 |
+
then return the Cartesian Product. Otherwise, raise TypeError.
|
951 |
+
"""
|
952 |
+
return iproduct(*self.sets)
|
953 |
+
|
954 |
+
@property
|
955 |
+
def is_empty(self):
|
956 |
+
return fuzzy_or(s.is_empty for s in self.sets)
|
957 |
+
|
958 |
+
@property
|
959 |
+
def is_finite_set(self):
|
960 |
+
all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
|
961 |
+
return fuzzy_or([self.is_empty, all_finite])
|
962 |
+
|
963 |
+
@property
|
964 |
+
def _measure(self):
|
965 |
+
measure = 1
|
966 |
+
for s in self.sets:
|
967 |
+
measure *= s.measure
|
968 |
+
return measure
|
969 |
+
|
970 |
+
def _kind(self):
|
971 |
+
return SetKind(TupleKind(*(i.kind.element_kind for i in self.args)))
|
972 |
+
|
973 |
+
def __len__(self):
|
974 |
+
return reduce(lambda a, b: a*b, (len(s) for s in self.args))
|
975 |
+
|
976 |
+
def __bool__(self):
|
977 |
+
return all(self.sets)
|
978 |
+
|
979 |
+
|
980 |
+
class Interval(Set):
|
981 |
+
"""
|
982 |
+
Represents a real interval as a Set.
|
983 |
+
|
984 |
+
Usage:
|
985 |
+
Returns an interval with end points ``start`` and ``end``.
|
986 |
+
|
987 |
+
For ``left_open=True`` (default ``left_open`` is ``False``) the interval
|
988 |
+
will be open on the left. Similarly, for ``right_open=True`` the interval
|
989 |
+
will be open on the right.
|
990 |
+
|
991 |
+
Examples
|
992 |
+
========
|
993 |
+
|
994 |
+
>>> from sympy import Symbol, Interval
|
995 |
+
>>> Interval(0, 1)
|
996 |
+
Interval(0, 1)
|
997 |
+
>>> Interval.Ropen(0, 1)
|
998 |
+
Interval.Ropen(0, 1)
|
999 |
+
>>> Interval.Ropen(0, 1)
|
1000 |
+
Interval.Ropen(0, 1)
|
1001 |
+
>>> Interval.Lopen(0, 1)
|
1002 |
+
Interval.Lopen(0, 1)
|
1003 |
+
>>> Interval.open(0, 1)
|
1004 |
+
Interval.open(0, 1)
|
1005 |
+
|
1006 |
+
>>> a = Symbol('a', real=True)
|
1007 |
+
>>> Interval(0, a)
|
1008 |
+
Interval(0, a)
|
1009 |
+
|
1010 |
+
Notes
|
1011 |
+
=====
|
1012 |
+
- Only real end points are supported
|
1013 |
+
- ``Interval(a, b)`` with $a > b$ will return the empty set
|
1014 |
+
- Use the ``evalf()`` method to turn an Interval into an mpmath
|
1015 |
+
``mpi`` interval instance
|
1016 |
+
|
1017 |
+
References
|
1018 |
+
==========
|
1019 |
+
|
1020 |
+
.. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29
|
1021 |
+
"""
|
1022 |
+
is_Interval = True
|
1023 |
+
|
1024 |
+
def __new__(cls, start, end, left_open=False, right_open=False):
|
1025 |
+
|
1026 |
+
start = _sympify(start)
|
1027 |
+
end = _sympify(end)
|
1028 |
+
left_open = _sympify(left_open)
|
1029 |
+
right_open = _sympify(right_open)
|
1030 |
+
|
1031 |
+
if not all(isinstance(a, (type(true), type(false)))
|
1032 |
+
for a in [left_open, right_open]):
|
1033 |
+
raise NotImplementedError(
|
1034 |
+
"left_open and right_open can have only true/false values, "
|
1035 |
+
"got %s and %s" % (left_open, right_open))
|
1036 |
+
|
1037 |
+
# Only allow real intervals
|
1038 |
+
if fuzzy_not(fuzzy_and(i.is_extended_real for i in (start, end, end-start))):
|
1039 |
+
raise ValueError("Non-real intervals are not supported")
|
1040 |
+
|
1041 |
+
# evaluate if possible
|
1042 |
+
if is_lt(end, start):
|
1043 |
+
return S.EmptySet
|
1044 |
+
elif (end - start).is_negative:
|
1045 |
+
return S.EmptySet
|
1046 |
+
|
1047 |
+
if end == start and (left_open or right_open):
|
1048 |
+
return S.EmptySet
|
1049 |
+
if end == start and not (left_open or right_open):
|
1050 |
+
if start is S.Infinity or start is S.NegativeInfinity:
|
1051 |
+
return S.EmptySet
|
1052 |
+
return FiniteSet(end)
|
1053 |
+
|
1054 |
+
# Make sure infinite interval end points are open.
|
1055 |
+
if start is S.NegativeInfinity:
|
1056 |
+
left_open = true
|
1057 |
+
if end is S.Infinity:
|
1058 |
+
right_open = true
|
1059 |
+
if start == S.Infinity or end == S.NegativeInfinity:
|
1060 |
+
return S.EmptySet
|
1061 |
+
|
1062 |
+
return Basic.__new__(cls, start, end, left_open, right_open)
|
1063 |
+
|
1064 |
+
@property
|
1065 |
+
def start(self):
|
1066 |
+
"""
|
1067 |
+
The left end point of the interval.
|
1068 |
+
|
1069 |
+
This property takes the same value as the ``inf`` property.
|
1070 |
+
|
1071 |
+
Examples
|
1072 |
+
========
|
1073 |
+
|
1074 |
+
>>> from sympy import Interval
|
1075 |
+
>>> Interval(0, 1).start
|
1076 |
+
0
|
1077 |
+
|
1078 |
+
"""
|
1079 |
+
return self._args[0]
|
1080 |
+
|
1081 |
+
@property
|
1082 |
+
def end(self):
|
1083 |
+
"""
|
1084 |
+
The right end point of the interval.
|
1085 |
+
|
1086 |
+
This property takes the same value as the ``sup`` property.
|
1087 |
+
|
1088 |
+
Examples
|
1089 |
+
========
|
1090 |
+
|
1091 |
+
>>> from sympy import Interval
|
1092 |
+
>>> Interval(0, 1).end
|
1093 |
+
1
|
1094 |
+
|
1095 |
+
"""
|
1096 |
+
return self._args[1]
|
1097 |
+
|
1098 |
+
@property
|
1099 |
+
def left_open(self):
|
1100 |
+
"""
|
1101 |
+
True if interval is left-open.
|
1102 |
+
|
1103 |
+
Examples
|
1104 |
+
========
|
1105 |
+
|
1106 |
+
>>> from sympy import Interval
|
1107 |
+
>>> Interval(0, 1, left_open=True).left_open
|
1108 |
+
True
|
1109 |
+
>>> Interval(0, 1, left_open=False).left_open
|
1110 |
+
False
|
1111 |
+
|
1112 |
+
"""
|
1113 |
+
return self._args[2]
|
1114 |
+
|
1115 |
+
@property
|
1116 |
+
def right_open(self):
|
1117 |
+
"""
|
1118 |
+
True if interval is right-open.
|
1119 |
+
|
1120 |
+
Examples
|
1121 |
+
========
|
1122 |
+
|
1123 |
+
>>> from sympy import Interval
|
1124 |
+
>>> Interval(0, 1, right_open=True).right_open
|
1125 |
+
True
|
1126 |
+
>>> Interval(0, 1, right_open=False).right_open
|
1127 |
+
False
|
1128 |
+
|
1129 |
+
"""
|
1130 |
+
return self._args[3]
|
1131 |
+
|
1132 |
+
@classmethod
|
1133 |
+
def open(cls, a, b):
|
1134 |
+
"""Return an interval including neither boundary."""
|
1135 |
+
return cls(a, b, True, True)
|
1136 |
+
|
1137 |
+
@classmethod
|
1138 |
+
def Lopen(cls, a, b):
|
1139 |
+
"""Return an interval not including the left boundary."""
|
1140 |
+
return cls(a, b, True, False)
|
1141 |
+
|
1142 |
+
@classmethod
|
1143 |
+
def Ropen(cls, a, b):
|
1144 |
+
"""Return an interval not including the right boundary."""
|
1145 |
+
return cls(a, b, False, True)
|
1146 |
+
|
1147 |
+
@property
|
1148 |
+
def _inf(self):
|
1149 |
+
return self.start
|
1150 |
+
|
1151 |
+
@property
|
1152 |
+
def _sup(self):
|
1153 |
+
return self.end
|
1154 |
+
|
1155 |
+
@property
|
1156 |
+
def left(self):
|
1157 |
+
return self.start
|
1158 |
+
|
1159 |
+
@property
|
1160 |
+
def right(self):
|
1161 |
+
return self.end
|
1162 |
+
|
1163 |
+
@property
|
1164 |
+
def is_empty(self):
|
1165 |
+
if self.left_open or self.right_open:
|
1166 |
+
cond = self.start >= self.end # One/both bounds open
|
1167 |
+
else:
|
1168 |
+
cond = self.start > self.end # Both bounds closed
|
1169 |
+
return fuzzy_bool(cond)
|
1170 |
+
|
1171 |
+
@property
|
1172 |
+
def is_finite_set(self):
|
1173 |
+
return self.measure.is_zero
|
1174 |
+
|
1175 |
+
def _complement(self, other):
|
1176 |
+
if other == S.Reals:
|
1177 |
+
a = Interval(S.NegativeInfinity, self.start,
|
1178 |
+
True, not self.left_open)
|
1179 |
+
b = Interval(self.end, S.Infinity, not self.right_open, True)
|
1180 |
+
return Union(a, b)
|
1181 |
+
|
1182 |
+
if isinstance(other, FiniteSet):
|
1183 |
+
nums = [m for m in other.args if m.is_number]
|
1184 |
+
if nums == []:
|
1185 |
+
return None
|
1186 |
+
|
1187 |
+
return Set._complement(self, other)
|
1188 |
+
|
1189 |
+
@property
|
1190 |
+
def _boundary(self):
|
1191 |
+
finite_points = [p for p in (self.start, self.end)
|
1192 |
+
if abs(p) != S.Infinity]
|
1193 |
+
return FiniteSet(*finite_points)
|
1194 |
+
|
1195 |
+
def _contains(self, other):
|
1196 |
+
if (not isinstance(other, Expr) or other is S.NaN
|
1197 |
+
or other.is_real is False or other.has(S.ComplexInfinity)):
|
1198 |
+
# if an expression has zoo it will be zoo or nan
|
1199 |
+
# and neither of those is real
|
1200 |
+
return false
|
1201 |
+
|
1202 |
+
if self.start is S.NegativeInfinity and self.end is S.Infinity:
|
1203 |
+
if other.is_real is not None:
|
1204 |
+
return other.is_real
|
1205 |
+
|
1206 |
+
d = Dummy()
|
1207 |
+
return self.as_relational(d).subs(d, other)
|
1208 |
+
|
1209 |
+
def as_relational(self, x):
|
1210 |
+
"""Rewrite an interval in terms of inequalities and logic operators."""
|
1211 |
+
x = sympify(x)
|
1212 |
+
if self.right_open:
|
1213 |
+
right = x < self.end
|
1214 |
+
else:
|
1215 |
+
right = x <= self.end
|
1216 |
+
if self.left_open:
|
1217 |
+
left = self.start < x
|
1218 |
+
else:
|
1219 |
+
left = self.start <= x
|
1220 |
+
return And(left, right)
|
1221 |
+
|
1222 |
+
@property
|
1223 |
+
def _measure(self):
|
1224 |
+
return self.end - self.start
|
1225 |
+
|
1226 |
+
def _kind(self):
|
1227 |
+
return SetKind(NumberKind)
|
1228 |
+
|
1229 |
+
def to_mpi(self, prec=53):
|
1230 |
+
return mpi(mpf(self.start._eval_evalf(prec)),
|
1231 |
+
mpf(self.end._eval_evalf(prec)))
|
1232 |
+
|
1233 |
+
def _eval_evalf(self, prec):
|
1234 |
+
return Interval(self.left._evalf(prec), self.right._evalf(prec),
|
1235 |
+
left_open=self.left_open, right_open=self.right_open)
|
1236 |
+
|
1237 |
+
def _is_comparable(self, other):
|
1238 |
+
is_comparable = self.start.is_comparable
|
1239 |
+
is_comparable &= self.end.is_comparable
|
1240 |
+
is_comparable &= other.start.is_comparable
|
1241 |
+
is_comparable &= other.end.is_comparable
|
1242 |
+
|
1243 |
+
return is_comparable
|
1244 |
+
|
1245 |
+
@property
|
1246 |
+
def is_left_unbounded(self):
|
1247 |
+
"""Return ``True`` if the left endpoint is negative infinity. """
|
1248 |
+
return self.left is S.NegativeInfinity or self.left == Float("-inf")
|
1249 |
+
|
1250 |
+
@property
|
1251 |
+
def is_right_unbounded(self):
|
1252 |
+
"""Return ``True`` if the right endpoint is positive infinity. """
|
1253 |
+
return self.right is S.Infinity or self.right == Float("+inf")
|
1254 |
+
|
1255 |
+
def _eval_Eq(self, other):
|
1256 |
+
if not isinstance(other, Interval):
|
1257 |
+
if isinstance(other, FiniteSet):
|
1258 |
+
return false
|
1259 |
+
elif isinstance(other, Set):
|
1260 |
+
return None
|
1261 |
+
return false
|
1262 |
+
|
1263 |
+
|
1264 |
+
class Union(Set, LatticeOp):
|
1265 |
+
"""
|
1266 |
+
Represents a union of sets as a :class:`Set`.
|
1267 |
+
|
1268 |
+
Examples
|
1269 |
+
========
|
1270 |
+
|
1271 |
+
>>> from sympy import Union, Interval
|
1272 |
+
>>> Union(Interval(1, 2), Interval(3, 4))
|
1273 |
+
Union(Interval(1, 2), Interval(3, 4))
|
1274 |
+
|
1275 |
+
The Union constructor will always try to merge overlapping intervals,
|
1276 |
+
if possible. For example:
|
1277 |
+
|
1278 |
+
>>> Union(Interval(1, 2), Interval(2, 3))
|
1279 |
+
Interval(1, 3)
|
1280 |
+
|
1281 |
+
See Also
|
1282 |
+
========
|
1283 |
+
|
1284 |
+
Intersection
|
1285 |
+
|
1286 |
+
References
|
1287 |
+
==========
|
1288 |
+
|
1289 |
+
.. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29
|
1290 |
+
"""
|
1291 |
+
is_Union = True
|
1292 |
+
|
1293 |
+
@property
|
1294 |
+
def identity(self):
|
1295 |
+
return S.EmptySet
|
1296 |
+
|
1297 |
+
@property
|
1298 |
+
def zero(self):
|
1299 |
+
return S.UniversalSet
|
1300 |
+
|
1301 |
+
def __new__(cls, *args, **kwargs):
|
1302 |
+
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
|
1303 |
+
|
1304 |
+
# flatten inputs to merge intersections and iterables
|
1305 |
+
args = _sympify(args)
|
1306 |
+
|
1307 |
+
# Reduce sets using known rules
|
1308 |
+
if evaluate:
|
1309 |
+
args = list(cls._new_args_filter(args))
|
1310 |
+
return simplify_union(args)
|
1311 |
+
|
1312 |
+
args = list(ordered(args, Set._infimum_key))
|
1313 |
+
|
1314 |
+
obj = Basic.__new__(cls, *args)
|
1315 |
+
obj._argset = frozenset(args)
|
1316 |
+
return obj
|
1317 |
+
|
1318 |
+
@property
|
1319 |
+
def args(self):
|
1320 |
+
return self._args
|
1321 |
+
|
1322 |
+
def _complement(self, universe):
|
1323 |
+
# DeMorgan's Law
|
1324 |
+
return Intersection(s.complement(universe) for s in self.args)
|
1325 |
+
|
1326 |
+
@property
|
1327 |
+
def _inf(self):
|
1328 |
+
# We use Min so that sup is meaningful in combination with symbolic
|
1329 |
+
# interval end points.
|
1330 |
+
return Min(*[set.inf for set in self.args])
|
1331 |
+
|
1332 |
+
@property
|
1333 |
+
def _sup(self):
|
1334 |
+
# We use Max so that sup is meaningful in combination with symbolic
|
1335 |
+
# end points.
|
1336 |
+
return Max(*[set.sup for set in self.args])
|
1337 |
+
|
1338 |
+
@property
|
1339 |
+
def is_empty(self):
|
1340 |
+
return fuzzy_and(set.is_empty for set in self.args)
|
1341 |
+
|
1342 |
+
@property
|
1343 |
+
def is_finite_set(self):
|
1344 |
+
return fuzzy_and(set.is_finite_set for set in self.args)
|
1345 |
+
|
1346 |
+
@property
|
1347 |
+
def _measure(self):
|
1348 |
+
# Measure of a union is the sum of the measures of the sets minus
|
1349 |
+
# the sum of their pairwise intersections plus the sum of their
|
1350 |
+
# triple-wise intersections minus ... etc...
|
1351 |
+
|
1352 |
+
# Sets is a collection of intersections and a set of elementary
|
1353 |
+
# sets which made up those intersections (called "sos" for set of sets)
|
1354 |
+
# An example element might of this list might be:
|
1355 |
+
# ( {A,B,C}, A.intersect(B).intersect(C) )
|
1356 |
+
|
1357 |
+
# Start with just elementary sets ( ({A}, A), ({B}, B), ... )
|
1358 |
+
# Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero
|
1359 |
+
sets = [(FiniteSet(s), s) for s in self.args]
|
1360 |
+
measure = 0
|
1361 |
+
parity = 1
|
1362 |
+
while sets:
|
1363 |
+
# Add up the measure of these sets and add or subtract it to total
|
1364 |
+
measure += parity * sum(inter.measure for sos, inter in sets)
|
1365 |
+
|
1366 |
+
# For each intersection in sets, compute the intersection with every
|
1367 |
+
# other set not already part of the intersection.
|
1368 |
+
sets = ((sos + FiniteSet(newset), newset.intersect(intersection))
|
1369 |
+
for sos, intersection in sets for newset in self.args
|
1370 |
+
if newset not in sos)
|
1371 |
+
|
1372 |
+
# Clear out sets with no measure
|
1373 |
+
sets = [(sos, inter) for sos, inter in sets if inter.measure != 0]
|
1374 |
+
|
1375 |
+
# Clear out duplicates
|
1376 |
+
sos_list = []
|
1377 |
+
sets_list = []
|
1378 |
+
for _set in sets:
|
1379 |
+
if _set[0] in sos_list:
|
1380 |
+
continue
|
1381 |
+
else:
|
1382 |
+
sos_list.append(_set[0])
|
1383 |
+
sets_list.append(_set)
|
1384 |
+
sets = sets_list
|
1385 |
+
|
1386 |
+
# Flip Parity - next time subtract/add if we added/subtracted here
|
1387 |
+
parity *= -1
|
1388 |
+
return measure
|
1389 |
+
|
1390 |
+
def _kind(self):
|
1391 |
+
kinds = tuple(arg.kind for arg in self.args if arg is not S.EmptySet)
|
1392 |
+
if not kinds:
|
1393 |
+
return SetKind()
|
1394 |
+
elif all(i == kinds[0] for i in kinds):
|
1395 |
+
return kinds[0]
|
1396 |
+
else:
|
1397 |
+
return SetKind(UndefinedKind)
|
1398 |
+
|
1399 |
+
@property
|
1400 |
+
def _boundary(self):
|
1401 |
+
def boundary_of_set(i):
|
1402 |
+
""" The boundary of set i minus interior of all other sets """
|
1403 |
+
b = self.args[i].boundary
|
1404 |
+
for j, a in enumerate(self.args):
|
1405 |
+
if j != i:
|
1406 |
+
b = b - a.interior
|
1407 |
+
return b
|
1408 |
+
return Union(*map(boundary_of_set, range(len(self.args))))
|
1409 |
+
|
1410 |
+
def _contains(self, other):
|
1411 |
+
return Or(*[s.contains(other) for s in self.args])
|
1412 |
+
|
1413 |
+
def is_subset(self, other):
|
1414 |
+
return fuzzy_and(s.is_subset(other) for s in self.args)
|
1415 |
+
|
1416 |
+
def as_relational(self, symbol):
|
1417 |
+
"""Rewrite a Union in terms of equalities and logic operators. """
|
1418 |
+
if (len(self.args) == 2 and
|
1419 |
+
all(isinstance(i, Interval) for i in self.args)):
|
1420 |
+
# optimization to give 3 args as (x > 1) & (x < 5) & Ne(x, 3)
|
1421 |
+
# instead of as 4, ((1 <= x) & (x < 3)) | ((x <= 5) & (3 < x))
|
1422 |
+
# XXX: This should be ideally be improved to handle any number of
|
1423 |
+
# intervals and also not to assume that the intervals are in any
|
1424 |
+
# particular sorted order.
|
1425 |
+
a, b = self.args
|
1426 |
+
if a.sup == b.inf and a.right_open and b.left_open:
|
1427 |
+
mincond = symbol > a.inf if a.left_open else symbol >= a.inf
|
1428 |
+
maxcond = symbol < b.sup if b.right_open else symbol <= b.sup
|
1429 |
+
necond = Ne(symbol, a.sup)
|
1430 |
+
return And(necond, mincond, maxcond)
|
1431 |
+
return Or(*[i.as_relational(symbol) for i in self.args])
|
1432 |
+
|
1433 |
+
@property
|
1434 |
+
def is_iterable(self):
|
1435 |
+
return all(arg.is_iterable for arg in self.args)
|
1436 |
+
|
1437 |
+
def __iter__(self):
|
1438 |
+
return roundrobin(*(iter(arg) for arg in self.args))
|
1439 |
+
|
1440 |
+
|
1441 |
+
class Intersection(Set, LatticeOp):
|
1442 |
+
"""
|
1443 |
+
Represents an intersection of sets as a :class:`Set`.
|
1444 |
+
|
1445 |
+
Examples
|
1446 |
+
========
|
1447 |
+
|
1448 |
+
>>> from sympy import Intersection, Interval
|
1449 |
+
>>> Intersection(Interval(1, 3), Interval(2, 4))
|
1450 |
+
Interval(2, 3)
|
1451 |
+
|
1452 |
+
We often use the .intersect method
|
1453 |
+
|
1454 |
+
>>> Interval(1,3).intersect(Interval(2,4))
|
1455 |
+
Interval(2, 3)
|
1456 |
+
|
1457 |
+
See Also
|
1458 |
+
========
|
1459 |
+
|
1460 |
+
Union
|
1461 |
+
|
1462 |
+
References
|
1463 |
+
==========
|
1464 |
+
|
1465 |
+
.. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
|
1466 |
+
"""
|
1467 |
+
is_Intersection = True
|
1468 |
+
|
1469 |
+
@property
|
1470 |
+
def identity(self):
|
1471 |
+
return S.UniversalSet
|
1472 |
+
|
1473 |
+
@property
|
1474 |
+
def zero(self):
|
1475 |
+
return S.EmptySet
|
1476 |
+
|
1477 |
+
def __new__(cls, *args, **kwargs):
|
1478 |
+
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
|
1479 |
+
|
1480 |
+
# flatten inputs to merge intersections and iterables
|
1481 |
+
args = list(ordered(set(_sympify(args))))
|
1482 |
+
|
1483 |
+
# Reduce sets using known rules
|
1484 |
+
if evaluate:
|
1485 |
+
args = list(cls._new_args_filter(args))
|
1486 |
+
return simplify_intersection(args)
|
1487 |
+
|
1488 |
+
args = list(ordered(args, Set._infimum_key))
|
1489 |
+
|
1490 |
+
obj = Basic.__new__(cls, *args)
|
1491 |
+
obj._argset = frozenset(args)
|
1492 |
+
return obj
|
1493 |
+
|
1494 |
+
@property
|
1495 |
+
def args(self):
|
1496 |
+
return self._args
|
1497 |
+
|
1498 |
+
@property
|
1499 |
+
def is_iterable(self):
|
1500 |
+
return any(arg.is_iterable for arg in self.args)
|
1501 |
+
|
1502 |
+
@property
|
1503 |
+
def is_finite_set(self):
|
1504 |
+
if fuzzy_or(arg.is_finite_set for arg in self.args):
|
1505 |
+
return True
|
1506 |
+
|
1507 |
+
def _kind(self):
|
1508 |
+
kinds = tuple(arg.kind for arg in self.args if arg is not S.UniversalSet)
|
1509 |
+
if not kinds:
|
1510 |
+
return SetKind(UndefinedKind)
|
1511 |
+
elif all(i == kinds[0] for i in kinds):
|
1512 |
+
return kinds[0]
|
1513 |
+
else:
|
1514 |
+
return SetKind()
|
1515 |
+
|
1516 |
+
@property
|
1517 |
+
def _inf(self):
|
1518 |
+
raise NotImplementedError()
|
1519 |
+
|
1520 |
+
@property
|
1521 |
+
def _sup(self):
|
1522 |
+
raise NotImplementedError()
|
1523 |
+
|
1524 |
+
def _contains(self, other):
|
1525 |
+
return And(*[set.contains(other) for set in self.args])
|
1526 |
+
|
1527 |
+
def __iter__(self):
|
1528 |
+
sets_sift = sift(self.args, lambda x: x.is_iterable)
|
1529 |
+
|
1530 |
+
completed = False
|
1531 |
+
candidates = sets_sift[True] + sets_sift[None]
|
1532 |
+
|
1533 |
+
finite_candidates, others = [], []
|
1534 |
+
for candidate in candidates:
|
1535 |
+
length = None
|
1536 |
+
try:
|
1537 |
+
length = len(candidate)
|
1538 |
+
except TypeError:
|
1539 |
+
others.append(candidate)
|
1540 |
+
|
1541 |
+
if length is not None:
|
1542 |
+
finite_candidates.append(candidate)
|
1543 |
+
finite_candidates.sort(key=len)
|
1544 |
+
|
1545 |
+
for s in finite_candidates + others:
|
1546 |
+
other_sets = set(self.args) - {s}
|
1547 |
+
other = Intersection(*other_sets, evaluate=False)
|
1548 |
+
completed = True
|
1549 |
+
for x in s:
|
1550 |
+
try:
|
1551 |
+
if x in other:
|
1552 |
+
yield x
|
1553 |
+
except TypeError:
|
1554 |
+
completed = False
|
1555 |
+
if completed:
|
1556 |
+
return
|
1557 |
+
|
1558 |
+
if not completed:
|
1559 |
+
if not candidates:
|
1560 |
+
raise TypeError("None of the constituent sets are iterable")
|
1561 |
+
raise TypeError(
|
1562 |
+
"The computation had not completed because of the "
|
1563 |
+
"undecidable set membership is found in every candidates.")
|
1564 |
+
|
1565 |
+
@staticmethod
|
1566 |
+
def _handle_finite_sets(args):
|
1567 |
+
'''Simplify intersection of one or more FiniteSets and other sets'''
|
1568 |
+
|
1569 |
+
# First separate the FiniteSets from the others
|
1570 |
+
fs_args, others = sift(args, lambda x: x.is_FiniteSet, binary=True)
|
1571 |
+
|
1572 |
+
# Let the caller handle intersection of non-FiniteSets
|
1573 |
+
if not fs_args:
|
1574 |
+
return
|
1575 |
+
|
1576 |
+
# Convert to Python sets and build the set of all elements
|
1577 |
+
fs_sets = [set(fs) for fs in fs_args]
|
1578 |
+
all_elements = reduce(lambda a, b: a | b, fs_sets, set())
|
1579 |
+
|
1580 |
+
# Extract elements that are definitely in or definitely not in the
|
1581 |
+
# intersection. Here we check contains for all of args.
|
1582 |
+
definite = set()
|
1583 |
+
for e in all_elements:
|
1584 |
+
inall = fuzzy_and(s.contains(e) for s in args)
|
1585 |
+
if inall is True:
|
1586 |
+
definite.add(e)
|
1587 |
+
if inall is not None:
|
1588 |
+
for s in fs_sets:
|
1589 |
+
s.discard(e)
|
1590 |
+
|
1591 |
+
# At this point all elements in all of fs_sets are possibly in the
|
1592 |
+
# intersection. In some cases this is because they are definitely in
|
1593 |
+
# the intersection of the finite sets but it's not clear if they are
|
1594 |
+
# members of others. We might have {m, n}, {m}, and Reals where we
|
1595 |
+
# don't know if m or n is real. We want to remove n here but it is
|
1596 |
+
# possibly in because it might be equal to m. So what we do now is
|
1597 |
+
# extract the elements that are definitely in the remaining finite
|
1598 |
+
# sets iteratively until we end up with {n}, {}. At that point if we
|
1599 |
+
# get any empty set all remaining elements are discarded.
|
1600 |
+
|
1601 |
+
fs_elements = reduce(lambda a, b: a | b, fs_sets, set())
|
1602 |
+
|
1603 |
+
# Need fuzzy containment testing
|
1604 |
+
fs_symsets = [FiniteSet(*s) for s in fs_sets]
|
1605 |
+
|
1606 |
+
while fs_elements:
|
1607 |
+
for e in fs_elements:
|
1608 |
+
infs = fuzzy_and(s.contains(e) for s in fs_symsets)
|
1609 |
+
if infs is True:
|
1610 |
+
definite.add(e)
|
1611 |
+
if infs is not None:
|
1612 |
+
for n, s in enumerate(fs_sets):
|
1613 |
+
# Update Python set and FiniteSet
|
1614 |
+
if e in s:
|
1615 |
+
s.remove(e)
|
1616 |
+
fs_symsets[n] = FiniteSet(*s)
|
1617 |
+
fs_elements.remove(e)
|
1618 |
+
break
|
1619 |
+
# If we completed the for loop without removing anything we are
|
1620 |
+
# done so quit the outer while loop
|
1621 |
+
else:
|
1622 |
+
break
|
1623 |
+
|
1624 |
+
# If any of the sets of remainder elements is empty then we discard
|
1625 |
+
# all of them for the intersection.
|
1626 |
+
if not all(fs_sets):
|
1627 |
+
fs_sets = [set()]
|
1628 |
+
|
1629 |
+
# Here we fold back the definitely included elements into each fs.
|
1630 |
+
# Since they are definitely included they must have been members of
|
1631 |
+
# each FiniteSet to begin with. We could instead fold these in with a
|
1632 |
+
# Union at the end to get e.g. {3}|({x}&{y}) rather than {3,x}&{3,y}.
|
1633 |
+
if definite:
|
1634 |
+
fs_sets = [fs | definite for fs in fs_sets]
|
1635 |
+
|
1636 |
+
if fs_sets == [set()]:
|
1637 |
+
return S.EmptySet
|
1638 |
+
|
1639 |
+
sets = [FiniteSet(*s) for s in fs_sets]
|
1640 |
+
|
1641 |
+
# Any set in others is redundant if it contains all the elements that
|
1642 |
+
# are in the finite sets so we don't need it in the Intersection
|
1643 |
+
all_elements = reduce(lambda a, b: a | b, fs_sets, set())
|
1644 |
+
is_redundant = lambda o: all(fuzzy_bool(o.contains(e)) for e in all_elements)
|
1645 |
+
others = [o for o in others if not is_redundant(o)]
|
1646 |
+
|
1647 |
+
if others:
|
1648 |
+
rest = Intersection(*others)
|
1649 |
+
# XXX: Maybe this shortcut should be at the beginning. For large
|
1650 |
+
# FiniteSets it could much more efficient to process the other
|
1651 |
+
# sets first...
|
1652 |
+
if rest is S.EmptySet:
|
1653 |
+
return S.EmptySet
|
1654 |
+
# Flatten the Intersection
|
1655 |
+
if rest.is_Intersection:
|
1656 |
+
sets.extend(rest.args)
|
1657 |
+
else:
|
1658 |
+
sets.append(rest)
|
1659 |
+
|
1660 |
+
if len(sets) == 1:
|
1661 |
+
return sets[0]
|
1662 |
+
else:
|
1663 |
+
return Intersection(*sets, evaluate=False)
|
1664 |
+
|
1665 |
+
def as_relational(self, symbol):
|
1666 |
+
"""Rewrite an Intersection in terms of equalities and logic operators"""
|
1667 |
+
return And(*[set.as_relational(symbol) for set in self.args])
|
1668 |
+
|
1669 |
+
|
1670 |
+
class Complement(Set):
|
1671 |
+
r"""Represents the set difference or relative complement of a set with
|
1672 |
+
another set.
|
1673 |
+
|
1674 |
+
$$A - B = \{x \in A \mid x \notin B\}$$
|
1675 |
+
|
1676 |
+
|
1677 |
+
Examples
|
1678 |
+
========
|
1679 |
+
|
1680 |
+
>>> from sympy import Complement, FiniteSet
|
1681 |
+
>>> Complement(FiniteSet(0, 1, 2), FiniteSet(1))
|
1682 |
+
{0, 2}
|
1683 |
+
|
1684 |
+
See Also
|
1685 |
+
=========
|
1686 |
+
|
1687 |
+
Intersection, Union
|
1688 |
+
|
1689 |
+
References
|
1690 |
+
==========
|
1691 |
+
|
1692 |
+
.. [1] https://mathworld.wolfram.com/ComplementSet.html
|
1693 |
+
"""
|
1694 |
+
|
1695 |
+
is_Complement = True
|
1696 |
+
|
1697 |
+
def __new__(cls, a, b, evaluate=True):
|
1698 |
+
a, b = map(_sympify, (a, b))
|
1699 |
+
if evaluate:
|
1700 |
+
return Complement.reduce(a, b)
|
1701 |
+
|
1702 |
+
return Basic.__new__(cls, a, b)
|
1703 |
+
|
1704 |
+
@staticmethod
|
1705 |
+
def reduce(A, B):
|
1706 |
+
"""
|
1707 |
+
Simplify a :class:`Complement`.
|
1708 |
+
|
1709 |
+
"""
|
1710 |
+
if B == S.UniversalSet or A.is_subset(B):
|
1711 |
+
return S.EmptySet
|
1712 |
+
|
1713 |
+
if isinstance(B, Union):
|
1714 |
+
return Intersection(*(s.complement(A) for s in B.args))
|
1715 |
+
|
1716 |
+
result = B._complement(A)
|
1717 |
+
if result is not None:
|
1718 |
+
return result
|
1719 |
+
else:
|
1720 |
+
return Complement(A, B, evaluate=False)
|
1721 |
+
|
1722 |
+
def _contains(self, other):
|
1723 |
+
A = self.args[0]
|
1724 |
+
B = self.args[1]
|
1725 |
+
return And(A.contains(other), Not(B.contains(other)))
|
1726 |
+
|
1727 |
+
def as_relational(self, symbol):
|
1728 |
+
"""Rewrite a complement in terms of equalities and logic
|
1729 |
+
operators"""
|
1730 |
+
A, B = self.args
|
1731 |
+
|
1732 |
+
A_rel = A.as_relational(symbol)
|
1733 |
+
B_rel = Not(B.as_relational(symbol))
|
1734 |
+
|
1735 |
+
return And(A_rel, B_rel)
|
1736 |
+
|
1737 |
+
def _kind(self):
|
1738 |
+
return self.args[0].kind
|
1739 |
+
|
1740 |
+
@property
|
1741 |
+
def is_iterable(self):
|
1742 |
+
if self.args[0].is_iterable:
|
1743 |
+
return True
|
1744 |
+
|
1745 |
+
@property
|
1746 |
+
def is_finite_set(self):
|
1747 |
+
A, B = self.args
|
1748 |
+
a_finite = A.is_finite_set
|
1749 |
+
if a_finite is True:
|
1750 |
+
return True
|
1751 |
+
elif a_finite is False and B.is_finite_set:
|
1752 |
+
return False
|
1753 |
+
|
1754 |
+
def __iter__(self):
|
1755 |
+
A, B = self.args
|
1756 |
+
for a in A:
|
1757 |
+
if a not in B:
|
1758 |
+
yield a
|
1759 |
+
else:
|
1760 |
+
continue
|
1761 |
+
|
1762 |
+
|
1763 |
+
class EmptySet(Set, metaclass=Singleton):
|
1764 |
+
"""
|
1765 |
+
Represents the empty set. The empty set is available as a singleton
|
1766 |
+
as ``S.EmptySet``.
|
1767 |
+
|
1768 |
+
Examples
|
1769 |
+
========
|
1770 |
+
|
1771 |
+
>>> from sympy import S, Interval
|
1772 |
+
>>> S.EmptySet
|
1773 |
+
EmptySet
|
1774 |
+
|
1775 |
+
>>> Interval(1, 2).intersect(S.EmptySet)
|
1776 |
+
EmptySet
|
1777 |
+
|
1778 |
+
See Also
|
1779 |
+
========
|
1780 |
+
|
1781 |
+
UniversalSet
|
1782 |
+
|
1783 |
+
References
|
1784 |
+
==========
|
1785 |
+
|
1786 |
+
.. [1] https://en.wikipedia.org/wiki/Empty_set
|
1787 |
+
"""
|
1788 |
+
is_empty = True
|
1789 |
+
is_finite_set = True
|
1790 |
+
is_FiniteSet = True
|
1791 |
+
|
1792 |
+
@property # type: ignore
|
1793 |
+
@deprecated(
|
1794 |
+
"""
|
1795 |
+
The is_EmptySet attribute of Set objects is deprecated.
|
1796 |
+
Use 's is S.EmptySet" or 's.is_empty' instead.
|
1797 |
+
""",
|
1798 |
+
deprecated_since_version="1.5",
|
1799 |
+
active_deprecations_target="deprecated-is-emptyset",
|
1800 |
+
)
|
1801 |
+
def is_EmptySet(self):
|
1802 |
+
return True
|
1803 |
+
|
1804 |
+
@property
|
1805 |
+
def _measure(self):
|
1806 |
+
return 0
|
1807 |
+
|
1808 |
+
def _contains(self, other):
|
1809 |
+
return false
|
1810 |
+
|
1811 |
+
def as_relational(self, symbol):
|
1812 |
+
return false
|
1813 |
+
|
1814 |
+
def __len__(self):
|
1815 |
+
return 0
|
1816 |
+
|
1817 |
+
def __iter__(self):
|
1818 |
+
return iter([])
|
1819 |
+
|
1820 |
+
def _eval_powerset(self):
|
1821 |
+
return FiniteSet(self)
|
1822 |
+
|
1823 |
+
@property
|
1824 |
+
def _boundary(self):
|
1825 |
+
return self
|
1826 |
+
|
1827 |
+
def _complement(self, other):
|
1828 |
+
return other
|
1829 |
+
|
1830 |
+
def _kind(self):
|
1831 |
+
return SetKind()
|
1832 |
+
|
1833 |
+
def _symmetric_difference(self, other):
|
1834 |
+
return other
|
1835 |
+
|
1836 |
+
|
1837 |
+
class UniversalSet(Set, metaclass=Singleton):
|
1838 |
+
"""
|
1839 |
+
Represents the set of all things.
|
1840 |
+
The universal set is available as a singleton as ``S.UniversalSet``.
|
1841 |
+
|
1842 |
+
Examples
|
1843 |
+
========
|
1844 |
+
|
1845 |
+
>>> from sympy import S, Interval
|
1846 |
+
>>> S.UniversalSet
|
1847 |
+
UniversalSet
|
1848 |
+
|
1849 |
+
>>> Interval(1, 2).intersect(S.UniversalSet)
|
1850 |
+
Interval(1, 2)
|
1851 |
+
|
1852 |
+
See Also
|
1853 |
+
========
|
1854 |
+
|
1855 |
+
EmptySet
|
1856 |
+
|
1857 |
+
References
|
1858 |
+
==========
|
1859 |
+
|
1860 |
+
.. [1] https://en.wikipedia.org/wiki/Universal_set
|
1861 |
+
"""
|
1862 |
+
|
1863 |
+
is_UniversalSet = True
|
1864 |
+
is_empty = False
|
1865 |
+
is_finite_set = False
|
1866 |
+
|
1867 |
+
def _complement(self, other):
|
1868 |
+
return S.EmptySet
|
1869 |
+
|
1870 |
+
def _symmetric_difference(self, other):
|
1871 |
+
return other
|
1872 |
+
|
1873 |
+
@property
|
1874 |
+
def _measure(self):
|
1875 |
+
return S.Infinity
|
1876 |
+
|
1877 |
+
def _kind(self):
|
1878 |
+
return SetKind(UndefinedKind)
|
1879 |
+
|
1880 |
+
def _contains(self, other):
|
1881 |
+
return true
|
1882 |
+
|
1883 |
+
def as_relational(self, symbol):
|
1884 |
+
return true
|
1885 |
+
|
1886 |
+
@property
|
1887 |
+
def _boundary(self):
|
1888 |
+
return S.EmptySet
|
1889 |
+
|
1890 |
+
|
1891 |
+
class FiniteSet(Set):
|
1892 |
+
"""
|
1893 |
+
Represents a finite set of Sympy expressions.
|
1894 |
+
|
1895 |
+
Examples
|
1896 |
+
========
|
1897 |
+
|
1898 |
+
>>> from sympy import FiniteSet, Symbol, Interval, Naturals0
|
1899 |
+
>>> FiniteSet(1, 2, 3, 4)
|
1900 |
+
{1, 2, 3, 4}
|
1901 |
+
>>> 3 in FiniteSet(1, 2, 3, 4)
|
1902 |
+
True
|
1903 |
+
>>> FiniteSet(1, (1, 2), Symbol('x'))
|
1904 |
+
{1, x, (1, 2)}
|
1905 |
+
>>> FiniteSet(Interval(1, 2), Naturals0, {1, 2})
|
1906 |
+
FiniteSet({1, 2}, Interval(1, 2), Naturals0)
|
1907 |
+
>>> members = [1, 2, 3, 4]
|
1908 |
+
>>> f = FiniteSet(*members)
|
1909 |
+
>>> f
|
1910 |
+
{1, 2, 3, 4}
|
1911 |
+
>>> f - FiniteSet(2)
|
1912 |
+
{1, 3, 4}
|
1913 |
+
>>> f + FiniteSet(2, 5)
|
1914 |
+
{1, 2, 3, 4, 5}
|
1915 |
+
|
1916 |
+
References
|
1917 |
+
==========
|
1918 |
+
|
1919 |
+
.. [1] https://en.wikipedia.org/wiki/Finite_set
|
1920 |
+
"""
|
1921 |
+
is_FiniteSet = True
|
1922 |
+
is_iterable = True
|
1923 |
+
is_empty = False
|
1924 |
+
is_finite_set = True
|
1925 |
+
|
1926 |
+
def __new__(cls, *args, **kwargs):
|
1927 |
+
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
|
1928 |
+
if evaluate:
|
1929 |
+
args = list(map(sympify, args))
|
1930 |
+
|
1931 |
+
if len(args) == 0:
|
1932 |
+
return S.EmptySet
|
1933 |
+
else:
|
1934 |
+
args = list(map(sympify, args))
|
1935 |
+
|
1936 |
+
# keep the form of the first canonical arg
|
1937 |
+
dargs = {}
|
1938 |
+
for i in reversed(list(ordered(args))):
|
1939 |
+
if i.is_Symbol:
|
1940 |
+
dargs[i] = i
|
1941 |
+
else:
|
1942 |
+
try:
|
1943 |
+
dargs[i.as_dummy()] = i
|
1944 |
+
except TypeError:
|
1945 |
+
# e.g. i = class without args like `Interval`
|
1946 |
+
dargs[i] = i
|
1947 |
+
_args_set = set(dargs.values())
|
1948 |
+
args = list(ordered(_args_set, Set._infimum_key))
|
1949 |
+
obj = Basic.__new__(cls, *args)
|
1950 |
+
obj._args_set = _args_set
|
1951 |
+
return obj
|
1952 |
+
|
1953 |
+
|
1954 |
+
def __iter__(self):
|
1955 |
+
return iter(self.args)
|
1956 |
+
|
1957 |
+
def _complement(self, other):
|
1958 |
+
if isinstance(other, Interval):
|
1959 |
+
# Splitting in sub-intervals is only done for S.Reals;
|
1960 |
+
# other cases that need splitting will first pass through
|
1961 |
+
# Set._complement().
|
1962 |
+
nums, syms = [], []
|
1963 |
+
for m in self.args:
|
1964 |
+
if m.is_number and m.is_real:
|
1965 |
+
nums.append(m)
|
1966 |
+
elif m.is_real == False:
|
1967 |
+
pass # drop non-reals
|
1968 |
+
else:
|
1969 |
+
syms.append(m) # various symbolic expressions
|
1970 |
+
if other == S.Reals and nums != []:
|
1971 |
+
nums.sort()
|
1972 |
+
intervals = [] # Build up a list of intervals between the elements
|
1973 |
+
intervals += [Interval(S.NegativeInfinity, nums[0], True, True)]
|
1974 |
+
for a, b in zip(nums[:-1], nums[1:]):
|
1975 |
+
intervals.append(Interval(a, b, True, True)) # both open
|
1976 |
+
intervals.append(Interval(nums[-1], S.Infinity, True, True))
|
1977 |
+
if syms != []:
|
1978 |
+
return Complement(Union(*intervals, evaluate=False),
|
1979 |
+
FiniteSet(*syms), evaluate=False)
|
1980 |
+
else:
|
1981 |
+
return Union(*intervals, evaluate=False)
|
1982 |
+
elif nums == []: # no splitting necessary or possible:
|
1983 |
+
if syms:
|
1984 |
+
return Complement(other, FiniteSet(*syms), evaluate=False)
|
1985 |
+
else:
|
1986 |
+
return other
|
1987 |
+
|
1988 |
+
elif isinstance(other, FiniteSet):
|
1989 |
+
unk = []
|
1990 |
+
for i in self:
|
1991 |
+
c = sympify(other.contains(i))
|
1992 |
+
if c is not S.true and c is not S.false:
|
1993 |
+
unk.append(i)
|
1994 |
+
unk = FiniteSet(*unk)
|
1995 |
+
if unk == self:
|
1996 |
+
return
|
1997 |
+
not_true = []
|
1998 |
+
for i in other:
|
1999 |
+
c = sympify(self.contains(i))
|
2000 |
+
if c is not S.true:
|
2001 |
+
not_true.append(i)
|
2002 |
+
return Complement(FiniteSet(*not_true), unk)
|
2003 |
+
|
2004 |
+
return Set._complement(self, other)
|
2005 |
+
|
2006 |
+
def _contains(self, other):
|
2007 |
+
"""
|
2008 |
+
Tests whether an element, other, is in the set.
|
2009 |
+
|
2010 |
+
Explanation
|
2011 |
+
===========
|
2012 |
+
|
2013 |
+
The actual test is for mathematical equality (as opposed to
|
2014 |
+
syntactical equality). In the worst case all elements of the
|
2015 |
+
set must be checked.
|
2016 |
+
|
2017 |
+
Examples
|
2018 |
+
========
|
2019 |
+
|
2020 |
+
>>> from sympy import FiniteSet
|
2021 |
+
>>> 1 in FiniteSet(1, 2)
|
2022 |
+
True
|
2023 |
+
>>> 5 in FiniteSet(1, 2)
|
2024 |
+
False
|
2025 |
+
|
2026 |
+
"""
|
2027 |
+
if other in self._args_set:
|
2028 |
+
return True
|
2029 |
+
else:
|
2030 |
+
# evaluate=True is needed to override evaluate=False context;
|
2031 |
+
# we need Eq to do the evaluation
|
2032 |
+
return fuzzy_or(fuzzy_bool(Eq(e, other, evaluate=True))
|
2033 |
+
for e in self.args)
|
2034 |
+
|
2035 |
+
def _eval_is_subset(self, other):
|
2036 |
+
return fuzzy_and(other._contains(e) for e in self.args)
|
2037 |
+
|
2038 |
+
@property
|
2039 |
+
def _boundary(self):
|
2040 |
+
return self
|
2041 |
+
|
2042 |
+
@property
|
2043 |
+
def _inf(self):
|
2044 |
+
return Min(*self)
|
2045 |
+
|
2046 |
+
@property
|
2047 |
+
def _sup(self):
|
2048 |
+
return Max(*self)
|
2049 |
+
|
2050 |
+
@property
|
2051 |
+
def measure(self):
|
2052 |
+
return 0
|
2053 |
+
|
2054 |
+
def _kind(self):
|
2055 |
+
if not self.args:
|
2056 |
+
return SetKind()
|
2057 |
+
elif all(i.kind == self.args[0].kind for i in self.args):
|
2058 |
+
return SetKind(self.args[0].kind)
|
2059 |
+
else:
|
2060 |
+
return SetKind(UndefinedKind)
|
2061 |
+
|
2062 |
+
def __len__(self):
|
2063 |
+
return len(self.args)
|
2064 |
+
|
2065 |
+
def as_relational(self, symbol):
|
2066 |
+
"""Rewrite a FiniteSet in terms of equalities and logic operators. """
|
2067 |
+
return Or(*[Eq(symbol, elem) for elem in self])
|
2068 |
+
|
2069 |
+
def compare(self, other):
|
2070 |
+
return (hash(self) - hash(other))
|
2071 |
+
|
2072 |
+
def _eval_evalf(self, prec):
|
2073 |
+
dps = prec_to_dps(prec)
|
2074 |
+
return FiniteSet(*[elem.evalf(n=dps) for elem in self])
|
2075 |
+
|
2076 |
+
def _eval_simplify(self, **kwargs):
|
2077 |
+
from sympy.simplify import simplify
|
2078 |
+
return FiniteSet(*[simplify(elem, **kwargs) for elem in self])
|
2079 |
+
|
2080 |
+
@property
|
2081 |
+
def _sorted_args(self):
|
2082 |
+
return self.args
|
2083 |
+
|
2084 |
+
def _eval_powerset(self):
|
2085 |
+
return self.func(*[self.func(*s) for s in subsets(self.args)])
|
2086 |
+
|
2087 |
+
def _eval_rewrite_as_PowerSet(self, *args, **kwargs):
|
2088 |
+
"""Rewriting method for a finite set to a power set."""
|
2089 |
+
from .powerset import PowerSet
|
2090 |
+
|
2091 |
+
is2pow = lambda n: bool(n and not n & (n - 1))
|
2092 |
+
if not is2pow(len(self)):
|
2093 |
+
return None
|
2094 |
+
|
2095 |
+
fs_test = lambda arg: isinstance(arg, Set) and arg.is_FiniteSet
|
2096 |
+
if not all(fs_test(arg) for arg in args):
|
2097 |
+
return None
|
2098 |
+
|
2099 |
+
biggest = max(args, key=len)
|
2100 |
+
for arg in subsets(biggest.args):
|
2101 |
+
arg_set = FiniteSet(*arg)
|
2102 |
+
if arg_set not in args:
|
2103 |
+
return None
|
2104 |
+
return PowerSet(biggest)
|
2105 |
+
|
2106 |
+
def __ge__(self, other):
|
2107 |
+
if not isinstance(other, Set):
|
2108 |
+
raise TypeError("Invalid comparison of set with %s" % func_name(other))
|
2109 |
+
return other.is_subset(self)
|
2110 |
+
|
2111 |
+
def __gt__(self, other):
|
2112 |
+
if not isinstance(other, Set):
|
2113 |
+
raise TypeError("Invalid comparison of set with %s" % func_name(other))
|
2114 |
+
return self.is_proper_superset(other)
|
2115 |
+
|
2116 |
+
def __le__(self, other):
|
2117 |
+
if not isinstance(other, Set):
|
2118 |
+
raise TypeError("Invalid comparison of set with %s" % func_name(other))
|
2119 |
+
return self.is_subset(other)
|
2120 |
+
|
2121 |
+
def __lt__(self, other):
|
2122 |
+
if not isinstance(other, Set):
|
2123 |
+
raise TypeError("Invalid comparison of set with %s" % func_name(other))
|
2124 |
+
return self.is_proper_subset(other)
|
2125 |
+
|
2126 |
+
def __eq__(self, other):
|
2127 |
+
if isinstance(other, (set, frozenset)):
|
2128 |
+
return self._args_set == other
|
2129 |
+
return super().__eq__(other)
|
2130 |
+
|
2131 |
+
__hash__ : Callable[[Basic], Any] = Basic.__hash__
|
2132 |
+
|
2133 |
+
_sympy_converter[set] = lambda x: FiniteSet(*x)
|
2134 |
+
_sympy_converter[frozenset] = lambda x: FiniteSet(*x)
|
2135 |
+
|
2136 |
+
|
2137 |
+
class SymmetricDifference(Set):
|
2138 |
+
"""Represents the set of elements which are in either of the
|
2139 |
+
sets and not in their intersection.
|
2140 |
+
|
2141 |
+
Examples
|
2142 |
+
========
|
2143 |
+
|
2144 |
+
>>> from sympy import SymmetricDifference, FiniteSet
|
2145 |
+
>>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5))
|
2146 |
+
{1, 2, 4, 5}
|
2147 |
+
|
2148 |
+
See Also
|
2149 |
+
========
|
2150 |
+
|
2151 |
+
Complement, Union
|
2152 |
+
|
2153 |
+
References
|
2154 |
+
==========
|
2155 |
+
|
2156 |
+
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
|
2157 |
+
"""
|
2158 |
+
|
2159 |
+
is_SymmetricDifference = True
|
2160 |
+
|
2161 |
+
def __new__(cls, a, b, evaluate=True):
|
2162 |
+
if evaluate:
|
2163 |
+
return SymmetricDifference.reduce(a, b)
|
2164 |
+
|
2165 |
+
return Basic.__new__(cls, a, b)
|
2166 |
+
|
2167 |
+
@staticmethod
|
2168 |
+
def reduce(A, B):
|
2169 |
+
result = B._symmetric_difference(A)
|
2170 |
+
if result is not None:
|
2171 |
+
return result
|
2172 |
+
else:
|
2173 |
+
return SymmetricDifference(A, B, evaluate=False)
|
2174 |
+
|
2175 |
+
def as_relational(self, symbol):
|
2176 |
+
"""Rewrite a symmetric_difference in terms of equalities and
|
2177 |
+
logic operators"""
|
2178 |
+
A, B = self.args
|
2179 |
+
|
2180 |
+
A_rel = A.as_relational(symbol)
|
2181 |
+
B_rel = B.as_relational(symbol)
|
2182 |
+
|
2183 |
+
return Xor(A_rel, B_rel)
|
2184 |
+
|
2185 |
+
@property
|
2186 |
+
def is_iterable(self):
|
2187 |
+
if all(arg.is_iterable for arg in self.args):
|
2188 |
+
return True
|
2189 |
+
|
2190 |
+
def __iter__(self):
|
2191 |
+
|
2192 |
+
args = self.args
|
2193 |
+
union = roundrobin(*(iter(arg) for arg in args))
|
2194 |
+
|
2195 |
+
for item in union:
|
2196 |
+
count = 0
|
2197 |
+
for s in args:
|
2198 |
+
if item in s:
|
2199 |
+
count += 1
|
2200 |
+
|
2201 |
+
if count % 2 == 1:
|
2202 |
+
yield item
|
2203 |
+
|
2204 |
+
|
2205 |
+
|
2206 |
+
class DisjointUnion(Set):
|
2207 |
+
""" Represents the disjoint union (also known as the external disjoint union)
|
2208 |
+
of a finite number of sets.
|
2209 |
+
|
2210 |
+
Examples
|
2211 |
+
========
|
2212 |
+
|
2213 |
+
>>> from sympy import DisjointUnion, FiniteSet, Interval, Union, Symbol
|
2214 |
+
>>> A = FiniteSet(1, 2, 3)
|
2215 |
+
>>> B = Interval(0, 5)
|
2216 |
+
>>> DisjointUnion(A, B)
|
2217 |
+
DisjointUnion({1, 2, 3}, Interval(0, 5))
|
2218 |
+
>>> DisjointUnion(A, B).rewrite(Union)
|
2219 |
+
Union(ProductSet({1, 2, 3}, {0}), ProductSet(Interval(0, 5), {1}))
|
2220 |
+
>>> C = FiniteSet(Symbol('x'), Symbol('y'), Symbol('z'))
|
2221 |
+
>>> DisjointUnion(C, C)
|
2222 |
+
DisjointUnion({x, y, z}, {x, y, z})
|
2223 |
+
>>> DisjointUnion(C, C).rewrite(Union)
|
2224 |
+
ProductSet({x, y, z}, {0, 1})
|
2225 |
+
|
2226 |
+
References
|
2227 |
+
==========
|
2228 |
+
|
2229 |
+
https://en.wikipedia.org/wiki/Disjoint_union
|
2230 |
+
"""
|
2231 |
+
|
2232 |
+
def __new__(cls, *sets):
|
2233 |
+
dj_collection = []
|
2234 |
+
for set_i in sets:
|
2235 |
+
if isinstance(set_i, Set):
|
2236 |
+
dj_collection.append(set_i)
|
2237 |
+
else:
|
2238 |
+
raise TypeError("Invalid input: '%s', input args \
|
2239 |
+
to DisjointUnion must be Sets" % set_i)
|
2240 |
+
obj = Basic.__new__(cls, *dj_collection)
|
2241 |
+
return obj
|
2242 |
+
|
2243 |
+
@property
|
2244 |
+
def sets(self):
|
2245 |
+
return self.args
|
2246 |
+
|
2247 |
+
@property
|
2248 |
+
def is_empty(self):
|
2249 |
+
return fuzzy_and(s.is_empty for s in self.sets)
|
2250 |
+
|
2251 |
+
@property
|
2252 |
+
def is_finite_set(self):
|
2253 |
+
all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
|
2254 |
+
return fuzzy_or([self.is_empty, all_finite])
|
2255 |
+
|
2256 |
+
@property
|
2257 |
+
def is_iterable(self):
|
2258 |
+
if self.is_empty:
|
2259 |
+
return False
|
2260 |
+
iter_flag = True
|
2261 |
+
for set_i in self.sets:
|
2262 |
+
if not set_i.is_empty:
|
2263 |
+
iter_flag = iter_flag and set_i.is_iterable
|
2264 |
+
return iter_flag
|
2265 |
+
|
2266 |
+
def _eval_rewrite_as_Union(self, *sets):
|
2267 |
+
"""
|
2268 |
+
Rewrites the disjoint union as the union of (``set`` x {``i``})
|
2269 |
+
where ``set`` is the element in ``sets`` at index = ``i``
|
2270 |
+
"""
|
2271 |
+
|
2272 |
+
dj_union = S.EmptySet
|
2273 |
+
index = 0
|
2274 |
+
for set_i in sets:
|
2275 |
+
if isinstance(set_i, Set):
|
2276 |
+
cross = ProductSet(set_i, FiniteSet(index))
|
2277 |
+
dj_union = Union(dj_union, cross)
|
2278 |
+
index = index + 1
|
2279 |
+
return dj_union
|
2280 |
+
|
2281 |
+
def _contains(self, element):
|
2282 |
+
"""
|
2283 |
+
``in`` operator for DisjointUnion
|
2284 |
+
|
2285 |
+
Examples
|
2286 |
+
========
|
2287 |
+
|
2288 |
+
>>> from sympy import Interval, DisjointUnion
|
2289 |
+
>>> D = DisjointUnion(Interval(0, 1), Interval(0, 2))
|
2290 |
+
>>> (0.5, 0) in D
|
2291 |
+
True
|
2292 |
+
>>> (0.5, 1) in D
|
2293 |
+
True
|
2294 |
+
>>> (1.5, 0) in D
|
2295 |
+
False
|
2296 |
+
>>> (1.5, 1) in D
|
2297 |
+
True
|
2298 |
+
|
2299 |
+
Passes operation on to constituent sets
|
2300 |
+
"""
|
2301 |
+
if not isinstance(element, Tuple) or len(element) != 2:
|
2302 |
+
return False
|
2303 |
+
|
2304 |
+
if not element[1].is_Integer:
|
2305 |
+
return False
|
2306 |
+
|
2307 |
+
if element[1] >= len(self.sets) or element[1] < 0:
|
2308 |
+
return False
|
2309 |
+
|
2310 |
+
return element[0] in self.sets[element[1]]
|
2311 |
+
|
2312 |
+
def _kind(self):
|
2313 |
+
if not self.args:
|
2314 |
+
return SetKind()
|
2315 |
+
elif all(i.kind == self.args[0].kind for i in self.args):
|
2316 |
+
return self.args[0].kind
|
2317 |
+
else:
|
2318 |
+
return SetKind(UndefinedKind)
|
2319 |
+
|
2320 |
+
def __iter__(self):
|
2321 |
+
if self.is_iterable:
|
2322 |
+
|
2323 |
+
iters = []
|
2324 |
+
for i, s in enumerate(self.sets):
|
2325 |
+
iters.append(iproduct(s, {Integer(i)}))
|
2326 |
+
|
2327 |
+
return iter(roundrobin(*iters))
|
2328 |
+
else:
|
2329 |
+
raise ValueError("'%s' is not iterable." % self)
|
2330 |
+
|
2331 |
+
def __len__(self):
|
2332 |
+
"""
|
2333 |
+
Returns the length of the disjoint union, i.e., the number of elements in the set.
|
2334 |
+
|
2335 |
+
Examples
|
2336 |
+
========
|
2337 |
+
|
2338 |
+
>>> from sympy import FiniteSet, DisjointUnion, EmptySet
|
2339 |
+
>>> D1 = DisjointUnion(FiniteSet(1, 2, 3, 4), EmptySet, FiniteSet(3, 4, 5))
|
2340 |
+
>>> len(D1)
|
2341 |
+
7
|
2342 |
+
>>> D2 = DisjointUnion(FiniteSet(3, 5, 7), EmptySet, FiniteSet(3, 5, 7))
|
2343 |
+
>>> len(D2)
|
2344 |
+
6
|
2345 |
+
>>> D3 = DisjointUnion(EmptySet, EmptySet)
|
2346 |
+
>>> len(D3)
|
2347 |
+
0
|
2348 |
+
|
2349 |
+
Adds up the lengths of the constituent sets.
|
2350 |
+
"""
|
2351 |
+
|
2352 |
+
if self.is_finite_set:
|
2353 |
+
size = 0
|
2354 |
+
for set in self.sets:
|
2355 |
+
size += len(set)
|
2356 |
+
return size
|
2357 |
+
else:
|
2358 |
+
raise ValueError("'%s' is not a finite set." % self)
|
2359 |
+
|
2360 |
+
|
2361 |
+
def imageset(*args):
|
2362 |
+
r"""
|
2363 |
+
Return an image of the set under transformation ``f``.
|
2364 |
+
|
2365 |
+
Explanation
|
2366 |
+
===========
|
2367 |
+
|
2368 |
+
If this function cannot compute the image, it returns an
|
2369 |
+
unevaluated ImageSet object.
|
2370 |
+
|
2371 |
+
.. math::
|
2372 |
+
\{ f(x) \mid x \in \mathrm{self} \}
|
2373 |
+
|
2374 |
+
Examples
|
2375 |
+
========
|
2376 |
+
|
2377 |
+
>>> from sympy import S, Interval, imageset, sin, Lambda
|
2378 |
+
>>> from sympy.abc import x
|
2379 |
+
|
2380 |
+
>>> imageset(x, 2*x, Interval(0, 2))
|
2381 |
+
Interval(0, 4)
|
2382 |
+
|
2383 |
+
>>> imageset(lambda x: 2*x, Interval(0, 2))
|
2384 |
+
Interval(0, 4)
|
2385 |
+
|
2386 |
+
>>> imageset(Lambda(x, sin(x)), Interval(-2, 1))
|
2387 |
+
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
|
2388 |
+
|
2389 |
+
>>> imageset(sin, Interval(-2, 1))
|
2390 |
+
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
|
2391 |
+
>>> imageset(lambda y: x + y, Interval(-2, 1))
|
2392 |
+
ImageSet(Lambda(y, x + y), Interval(-2, 1))
|
2393 |
+
|
2394 |
+
Expressions applied to the set of Integers are simplified
|
2395 |
+
to show as few negatives as possible and linear expressions
|
2396 |
+
are converted to a canonical form. If this is not desirable
|
2397 |
+
then the unevaluated ImageSet should be used.
|
2398 |
+
|
2399 |
+
>>> imageset(x, -2*x + 5, S.Integers)
|
2400 |
+
ImageSet(Lambda(x, 2*x + 1), Integers)
|
2401 |
+
|
2402 |
+
See Also
|
2403 |
+
========
|
2404 |
+
|
2405 |
+
sympy.sets.fancysets.ImageSet
|
2406 |
+
|
2407 |
+
"""
|
2408 |
+
from .fancysets import ImageSet
|
2409 |
+
from .setexpr import set_function
|
2410 |
+
|
2411 |
+
if len(args) < 2:
|
2412 |
+
raise ValueError('imageset expects at least 2 args, got: %s' % len(args))
|
2413 |
+
|
2414 |
+
if isinstance(args[0], (Symbol, tuple)) and len(args) > 2:
|
2415 |
+
f = Lambda(args[0], args[1])
|
2416 |
+
set_list = args[2:]
|
2417 |
+
else:
|
2418 |
+
f = args[0]
|
2419 |
+
set_list = args[1:]
|
2420 |
+
|
2421 |
+
if isinstance(f, Lambda):
|
2422 |
+
pass
|
2423 |
+
elif callable(f):
|
2424 |
+
nargs = getattr(f, 'nargs', {})
|
2425 |
+
if nargs:
|
2426 |
+
if len(nargs) != 1:
|
2427 |
+
raise NotImplementedError(filldedent('''
|
2428 |
+
This function can take more than 1 arg
|
2429 |
+
but the potentially complicated set input
|
2430 |
+
has not been analyzed at this point to
|
2431 |
+
know its dimensions. TODO
|
2432 |
+
'''))
|
2433 |
+
N = nargs.args[0]
|
2434 |
+
if N == 1:
|
2435 |
+
s = 'x'
|
2436 |
+
else:
|
2437 |
+
s = [Symbol('x%i' % i) for i in range(1, N + 1)]
|
2438 |
+
else:
|
2439 |
+
s = inspect.signature(f).parameters
|
2440 |
+
|
2441 |
+
dexpr = _sympify(f(*[Dummy() for i in s]))
|
2442 |
+
var = tuple(uniquely_named_symbol(
|
2443 |
+
Symbol(i), dexpr) for i in s)
|
2444 |
+
f = Lambda(var, f(*var))
|
2445 |
+
else:
|
2446 |
+
raise TypeError(filldedent('''
|
2447 |
+
expecting lambda, Lambda, or FunctionClass,
|
2448 |
+
not \'%s\'.''' % func_name(f)))
|
2449 |
+
|
2450 |
+
if any(not isinstance(s, Set) for s in set_list):
|
2451 |
+
name = [func_name(s) for s in set_list]
|
2452 |
+
raise ValueError(
|
2453 |
+
'arguments after mapping should be sets, not %s' % name)
|
2454 |
+
|
2455 |
+
if len(set_list) == 1:
|
2456 |
+
set = set_list[0]
|
2457 |
+
try:
|
2458 |
+
# TypeError if arg count != set dimensions
|
2459 |
+
r = set_function(f, set)
|
2460 |
+
if r is None:
|
2461 |
+
raise TypeError
|
2462 |
+
if not r:
|
2463 |
+
return r
|
2464 |
+
except TypeError:
|
2465 |
+
r = ImageSet(f, set)
|
2466 |
+
if isinstance(r, ImageSet):
|
2467 |
+
f, set = r.args
|
2468 |
+
|
2469 |
+
if f.variables[0] == f.expr:
|
2470 |
+
return set
|
2471 |
+
|
2472 |
+
if isinstance(set, ImageSet):
|
2473 |
+
# XXX: Maybe this should just be:
|
2474 |
+
# f2 = set.lambda
|
2475 |
+
# fun = Lambda(f2.signature, f(*f2.expr))
|
2476 |
+
# return imageset(fun, *set.base_sets)
|
2477 |
+
if len(set.lamda.variables) == 1 and len(f.variables) == 1:
|
2478 |
+
x = set.lamda.variables[0]
|
2479 |
+
y = f.variables[0]
|
2480 |
+
return imageset(
|
2481 |
+
Lambda(x, f.expr.subs(y, set.lamda.expr)), *set.base_sets)
|
2482 |
+
|
2483 |
+
if r is not None:
|
2484 |
+
return r
|
2485 |
+
|
2486 |
+
return ImageSet(f, *set_list)
|
2487 |
+
|
2488 |
+
|
2489 |
+
def is_function_invertible_in_set(func, setv):
|
2490 |
+
"""
|
2491 |
+
Checks whether function ``func`` is invertible when the domain is
|
2492 |
+
restricted to set ``setv``.
|
2493 |
+
"""
|
2494 |
+
# Functions known to always be invertible:
|
2495 |
+
if func in (exp, log):
|
2496 |
+
return True
|
2497 |
+
u = Dummy("u")
|
2498 |
+
fdiff = func(u).diff(u)
|
2499 |
+
# monotonous functions:
|
2500 |
+
# TODO: check subsets (`func` in `setv`)
|
2501 |
+
if (fdiff > 0) == True or (fdiff < 0) == True:
|
2502 |
+
return True
|
2503 |
+
# TODO: support more
|
2504 |
+
return None
|
2505 |
+
|
2506 |
+
|
2507 |
+
def simplify_union(args):
|
2508 |
+
"""
|
2509 |
+
Simplify a :class:`Union` using known rules.
|
2510 |
+
|
2511 |
+
Explanation
|
2512 |
+
===========
|
2513 |
+
|
2514 |
+
We first start with global rules like 'Merge all FiniteSets'
|
2515 |
+
|
2516 |
+
Then we iterate through all pairs and ask the constituent sets if they
|
2517 |
+
can simplify themselves with any other constituent. This process depends
|
2518 |
+
on ``union_sets(a, b)`` functions.
|
2519 |
+
"""
|
2520 |
+
from sympy.sets.handlers.union import union_sets
|
2521 |
+
|
2522 |
+
# ===== Global Rules =====
|
2523 |
+
if not args:
|
2524 |
+
return S.EmptySet
|
2525 |
+
|
2526 |
+
for arg in args:
|
2527 |
+
if not isinstance(arg, Set):
|
2528 |
+
raise TypeError("Input args to Union must be Sets")
|
2529 |
+
|
2530 |
+
# Merge all finite sets
|
2531 |
+
finite_sets = [x for x in args if x.is_FiniteSet]
|
2532 |
+
if len(finite_sets) > 1:
|
2533 |
+
a = (x for set in finite_sets for x in set)
|
2534 |
+
finite_set = FiniteSet(*a)
|
2535 |
+
args = [finite_set] + [x for x in args if not x.is_FiniteSet]
|
2536 |
+
|
2537 |
+
# ===== Pair-wise Rules =====
|
2538 |
+
# Here we depend on rules built into the constituent sets
|
2539 |
+
args = set(args)
|
2540 |
+
new_args = True
|
2541 |
+
while new_args:
|
2542 |
+
for s in args:
|
2543 |
+
new_args = False
|
2544 |
+
for t in args - {s}:
|
2545 |
+
new_set = union_sets(s, t)
|
2546 |
+
# This returns None if s does not know how to intersect
|
2547 |
+
# with t. Returns the newly intersected set otherwise
|
2548 |
+
if new_set is not None:
|
2549 |
+
if not isinstance(new_set, set):
|
2550 |
+
new_set = {new_set}
|
2551 |
+
new_args = (args - {s, t}).union(new_set)
|
2552 |
+
break
|
2553 |
+
if new_args:
|
2554 |
+
args = new_args
|
2555 |
+
break
|
2556 |
+
|
2557 |
+
if len(args) == 1:
|
2558 |
+
return args.pop()
|
2559 |
+
else:
|
2560 |
+
return Union(*args, evaluate=False)
|
2561 |
+
|
2562 |
+
|
2563 |
+
def simplify_intersection(args):
|
2564 |
+
"""
|
2565 |
+
Simplify an intersection using known rules.
|
2566 |
+
|
2567 |
+
Explanation
|
2568 |
+
===========
|
2569 |
+
|
2570 |
+
We first start with global rules like
|
2571 |
+
'if any empty sets return empty set' and 'distribute any unions'
|
2572 |
+
|
2573 |
+
Then we iterate through all pairs and ask the constituent sets if they
|
2574 |
+
can simplify themselves with any other constituent
|
2575 |
+
"""
|
2576 |
+
|
2577 |
+
# ===== Global Rules =====
|
2578 |
+
if not args:
|
2579 |
+
return S.UniversalSet
|
2580 |
+
|
2581 |
+
for arg in args:
|
2582 |
+
if not isinstance(arg, Set):
|
2583 |
+
raise TypeError("Input args to Union must be Sets")
|
2584 |
+
|
2585 |
+
# If any EmptySets return EmptySet
|
2586 |
+
if S.EmptySet in args:
|
2587 |
+
return S.EmptySet
|
2588 |
+
|
2589 |
+
# Handle Finite sets
|
2590 |
+
rv = Intersection._handle_finite_sets(args)
|
2591 |
+
|
2592 |
+
if rv is not None:
|
2593 |
+
return rv
|
2594 |
+
|
2595 |
+
# If any of the sets are unions, return a Union of Intersections
|
2596 |
+
for s in args:
|
2597 |
+
if s.is_Union:
|
2598 |
+
other_sets = set(args) - {s}
|
2599 |
+
if len(other_sets) > 0:
|
2600 |
+
other = Intersection(*other_sets)
|
2601 |
+
return Union(*(Intersection(arg, other) for arg in s.args))
|
2602 |
+
else:
|
2603 |
+
return Union(*s.args)
|
2604 |
+
|
2605 |
+
for s in args:
|
2606 |
+
if s.is_Complement:
|
2607 |
+
args.remove(s)
|
2608 |
+
other_sets = args + [s.args[0]]
|
2609 |
+
return Complement(Intersection(*other_sets), s.args[1])
|
2610 |
+
|
2611 |
+
from sympy.sets.handlers.intersection import intersection_sets
|
2612 |
+
|
2613 |
+
# At this stage we are guaranteed not to have any
|
2614 |
+
# EmptySets, FiniteSets, or Unions in the intersection
|
2615 |
+
|
2616 |
+
# ===== Pair-wise Rules =====
|
2617 |
+
# Here we depend on rules built into the constituent sets
|
2618 |
+
args = set(args)
|
2619 |
+
new_args = True
|
2620 |
+
while new_args:
|
2621 |
+
for s in args:
|
2622 |
+
new_args = False
|
2623 |
+
for t in args - {s}:
|
2624 |
+
new_set = intersection_sets(s, t)
|
2625 |
+
# This returns None if s does not know how to intersect
|
2626 |
+
# with t. Returns the newly intersected set otherwise
|
2627 |
+
|
2628 |
+
if new_set is not None:
|
2629 |
+
new_args = (args - {s, t}).union({new_set})
|
2630 |
+
break
|
2631 |
+
if new_args:
|
2632 |
+
args = new_args
|
2633 |
+
break
|
2634 |
+
|
2635 |
+
if len(args) == 1:
|
2636 |
+
return args.pop()
|
2637 |
+
else:
|
2638 |
+
return Intersection(*args, evaluate=False)
|
2639 |
+
|
2640 |
+
|
2641 |
+
def _handle_finite_sets(op, x, y, commutative):
|
2642 |
+
# Handle finite sets:
|
2643 |
+
fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True)
|
2644 |
+
if len(fs_args) == 2:
|
2645 |
+
return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]])
|
2646 |
+
elif len(fs_args) == 1:
|
2647 |
+
sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]]
|
2648 |
+
return Union(*sets)
|
2649 |
+
else:
|
2650 |
+
return None
|
2651 |
+
|
2652 |
+
|
2653 |
+
def _apply_operation(op, x, y, commutative):
|
2654 |
+
from .fancysets import ImageSet
|
2655 |
+
d = Dummy('d')
|
2656 |
+
|
2657 |
+
out = _handle_finite_sets(op, x, y, commutative)
|
2658 |
+
if out is None:
|
2659 |
+
out = op(x, y)
|
2660 |
+
|
2661 |
+
if out is None and commutative:
|
2662 |
+
out = op(y, x)
|
2663 |
+
if out is None:
|
2664 |
+
_x, _y = symbols("x y")
|
2665 |
+
if isinstance(x, Set) and not isinstance(y, Set):
|
2666 |
+
out = ImageSet(Lambda(d, op(d, y)), x).doit()
|
2667 |
+
elif not isinstance(x, Set) and isinstance(y, Set):
|
2668 |
+
out = ImageSet(Lambda(d, op(x, d)), y).doit()
|
2669 |
+
else:
|
2670 |
+
out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y)
|
2671 |
+
return out
|
2672 |
+
|
2673 |
+
|
2674 |
+
def set_add(x, y):
|
2675 |
+
from sympy.sets.handlers.add import _set_add
|
2676 |
+
return _apply_operation(_set_add, x, y, commutative=True)
|
2677 |
+
|
2678 |
+
|
2679 |
+
def set_sub(x, y):
|
2680 |
+
from sympy.sets.handlers.add import _set_sub
|
2681 |
+
return _apply_operation(_set_sub, x, y, commutative=False)
|
2682 |
+
|
2683 |
+
|
2684 |
+
def set_mul(x, y):
|
2685 |
+
from sympy.sets.handlers.mul import _set_mul
|
2686 |
+
return _apply_operation(_set_mul, x, y, commutative=True)
|
2687 |
+
|
2688 |
+
|
2689 |
+
def set_div(x, y):
|
2690 |
+
from sympy.sets.handlers.mul import _set_div
|
2691 |
+
return _apply_operation(_set_div, x, y, commutative=False)
|
2692 |
+
|
2693 |
+
|
2694 |
+
def set_pow(x, y):
|
2695 |
+
from sympy.sets.handlers.power import _set_pow
|
2696 |
+
return _apply_operation(_set_pow, x, y, commutative=False)
|
2697 |
+
|
2698 |
+
|
2699 |
+
def set_function(f, x):
|
2700 |
+
from sympy.sets.handlers.functions import _set_function
|
2701 |
+
return _set_function(f, x)
|
2702 |
+
|
2703 |
+
|
2704 |
+
class SetKind(Kind):
|
2705 |
+
"""
|
2706 |
+
SetKind is kind for all Sets
|
2707 |
+
|
2708 |
+
Every instance of Set will have kind ``SetKind`` parametrised by the kind
|
2709 |
+
of the elements of the ``Set``. The kind of the elements might be
|
2710 |
+
``NumberKind``, or ``TupleKind`` or something else. When not all elements
|
2711 |
+
have the same kind then the kind of the elements will be given as
|
2712 |
+
``UndefinedKind``.
|
2713 |
+
|
2714 |
+
Parameters
|
2715 |
+
==========
|
2716 |
+
|
2717 |
+
element_kind: Kind (optional)
|
2718 |
+
The kind of the elements of the set. In a well defined set all elements
|
2719 |
+
will have the same kind. Otherwise the kind should
|
2720 |
+
:class:`sympy.core.kind.UndefinedKind`. The ``element_kind`` argument is optional but
|
2721 |
+
should only be omitted in the case of ``EmptySet`` whose kind is simply
|
2722 |
+
``SetKind()``
|
2723 |
+
|
2724 |
+
Examples
|
2725 |
+
========
|
2726 |
+
|
2727 |
+
>>> from sympy import Interval
|
2728 |
+
>>> Interval(1, 2).kind
|
2729 |
+
SetKind(NumberKind)
|
2730 |
+
>>> Interval(1,2).kind.element_kind
|
2731 |
+
NumberKind
|
2732 |
+
|
2733 |
+
See Also
|
2734 |
+
========
|
2735 |
+
|
2736 |
+
sympy.core.kind.NumberKind
|
2737 |
+
sympy.matrices.common.MatrixKind
|
2738 |
+
sympy.core.containers.TupleKind
|
2739 |
+
"""
|
2740 |
+
def __new__(cls, element_kind=None):
|
2741 |
+
obj = super().__new__(cls, element_kind)
|
2742 |
+
obj.element_kind = element_kind
|
2743 |
+
return obj
|
2744 |
+
|
2745 |
+
def __repr__(self):
|
2746 |
+
if not self.element_kind:
|
2747 |
+
return "SetKind()"
|
2748 |
+
else:
|
2749 |
+
return "SetKind(%s)" % self.element_kind
|
venv/lib/python3.10/site-packages/sympy/sets/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (184 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_contains.cpython-310.pyc
ADDED
Binary file (2.34 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_fancysets.cpython-310.pyc
ADDED
Binary file (50 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_ordinals.cpython-310.pyc
ADDED
Binary file (3.09 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_powerset.cpython-310.pyc
ADDED
Binary file (4.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_setexpr.cpython-310.pyc
ADDED
Binary file (10 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/sets/tests/test_conditionset.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.expr import unchanged
|
2 |
+
from sympy.sets import (ConditionSet, Intersection, FiniteSet,
|
3 |
+
EmptySet, Union, Contains, ImageSet)
|
4 |
+
from sympy.sets.sets import SetKind
|
5 |
+
from sympy.core.function import (Function, Lambda)
|
6 |
+
from sympy.core.mod import Mod
|
7 |
+
from sympy.core.kind import NumberKind
|
8 |
+
from sympy.core.numbers import (oo, pi)
|
9 |
+
from sympy.core.relational import (Eq, Ne)
|
10 |
+
from sympy.core.singleton import S
|
11 |
+
from sympy.core.symbol import (Symbol, symbols)
|
12 |
+
from sympy.functions.elementary.complexes import Abs
|
13 |
+
from sympy.functions.elementary.trigonometric import (asin, sin)
|
14 |
+
from sympy.logic.boolalg import And
|
15 |
+
from sympy.matrices.dense import Matrix
|
16 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
17 |
+
from sympy.sets.sets import Interval
|
18 |
+
from sympy.testing.pytest import raises, warns_deprecated_sympy
|
19 |
+
|
20 |
+
|
21 |
+
w = Symbol('w')
|
22 |
+
x = Symbol('x')
|
23 |
+
y = Symbol('y')
|
24 |
+
z = Symbol('z')
|
25 |
+
f = Function('f')
|
26 |
+
|
27 |
+
|
28 |
+
def test_CondSet():
|
29 |
+
sin_sols_principal = ConditionSet(x, Eq(sin(x), 0),
|
30 |
+
Interval(0, 2*pi, False, True))
|
31 |
+
assert pi in sin_sols_principal
|
32 |
+
assert pi/2 not in sin_sols_principal
|
33 |
+
assert 3*pi not in sin_sols_principal
|
34 |
+
assert oo not in sin_sols_principal
|
35 |
+
assert 5 in ConditionSet(x, x**2 > 4, S.Reals)
|
36 |
+
assert 1 not in ConditionSet(x, x**2 > 4, S.Reals)
|
37 |
+
# in this case, 0 is not part of the base set so
|
38 |
+
# it can't be in any subset selected by the condition
|
39 |
+
assert 0 not in ConditionSet(x, y > 5, Interval(1, 7))
|
40 |
+
# since 'in' requires a true/false, the following raises
|
41 |
+
# an error because the given value provides no information
|
42 |
+
# for the condition to evaluate (since the condition does
|
43 |
+
# not depend on the dummy symbol): the result is `y > 5`.
|
44 |
+
# In this case, ConditionSet is just acting like
|
45 |
+
# Piecewise((Interval(1, 7), y > 5), (S.EmptySet, True)).
|
46 |
+
raises(TypeError, lambda: 6 in ConditionSet(x, y > 5,
|
47 |
+
Interval(1, 7)))
|
48 |
+
|
49 |
+
X = MatrixSymbol('X', 2, 2)
|
50 |
+
matrix_set = ConditionSet(X, Eq(X*Matrix([[1, 1], [1, 1]]), X))
|
51 |
+
Y = Matrix([[0, 0], [0, 0]])
|
52 |
+
assert matrix_set.contains(Y).doit() is S.true
|
53 |
+
Z = Matrix([[1, 2], [3, 4]])
|
54 |
+
assert matrix_set.contains(Z).doit() is S.false
|
55 |
+
|
56 |
+
assert isinstance(ConditionSet(x, x < 1, {x, y}).base_set,
|
57 |
+
FiniteSet)
|
58 |
+
raises(TypeError, lambda: ConditionSet(x, x + 1, {x, y}))
|
59 |
+
raises(TypeError, lambda: ConditionSet(x, x, 1))
|
60 |
+
|
61 |
+
I = S.Integers
|
62 |
+
U = S.UniversalSet
|
63 |
+
C = ConditionSet
|
64 |
+
assert C(x, False, I) is S.EmptySet
|
65 |
+
assert C(x, True, I) is I
|
66 |
+
assert C(x, x < 1, C(x, x < 2, I)
|
67 |
+
) == C(x, (x < 1) & (x < 2), I)
|
68 |
+
assert C(y, y < 1, C(x, y < 2, I)
|
69 |
+
) == C(x, (x < 1) & (y < 2), I), C(y, y < 1, C(x, y < 2, I))
|
70 |
+
assert C(y, y < 1, C(x, x < 2, I)
|
71 |
+
) == C(y, (y < 1) & (y < 2), I)
|
72 |
+
assert C(y, y < 1, C(x, y < x, I)
|
73 |
+
) == C(x, (x < 1) & (y < x), I)
|
74 |
+
assert unchanged(C, y, x < 1, C(x, y < x, I))
|
75 |
+
assert ConditionSet(x, x < 1).base_set is U
|
76 |
+
# arg checking is not done at instantiation but this
|
77 |
+
# will raise an error when containment is tested
|
78 |
+
assert ConditionSet((x,), x < 1).base_set is U
|
79 |
+
|
80 |
+
c = ConditionSet((x, y), x < y, I**2)
|
81 |
+
assert (1, 2) in c
|
82 |
+
assert (1, pi) not in c
|
83 |
+
|
84 |
+
raises(TypeError, lambda: C(x, x > 1, C((x, y), x > 1, I**2)))
|
85 |
+
# signature mismatch since only 3 args are accepted
|
86 |
+
raises(TypeError, lambda: C((x, y), x + y < 2, U, U))
|
87 |
+
|
88 |
+
|
89 |
+
def test_CondSet_intersect():
|
90 |
+
input_conditionset = ConditionSet(x, x**2 > 4, Interval(1, 4, False,
|
91 |
+
False))
|
92 |
+
other_domain = Interval(0, 3, False, False)
|
93 |
+
output_conditionset = ConditionSet(x, x**2 > 4, Interval(
|
94 |
+
1, 3, False, False))
|
95 |
+
assert Intersection(input_conditionset, other_domain
|
96 |
+
) == output_conditionset
|
97 |
+
|
98 |
+
|
99 |
+
def test_issue_9849():
|
100 |
+
assert ConditionSet(x, Eq(x, x), S.Naturals
|
101 |
+
) is S.Naturals
|
102 |
+
assert ConditionSet(x, Eq(Abs(sin(x)), -1), S.Naturals
|
103 |
+
) == S.EmptySet
|
104 |
+
|
105 |
+
|
106 |
+
def test_simplified_FiniteSet_in_CondSet():
|
107 |
+
assert ConditionSet(x, And(x < 1, x > -3), FiniteSet(0, 1, 2)
|
108 |
+
) == FiniteSet(0)
|
109 |
+
assert ConditionSet(x, x < 0, FiniteSet(0, 1, 2)) == EmptySet
|
110 |
+
assert ConditionSet(x, And(x < -3), EmptySet) == EmptySet
|
111 |
+
y = Symbol('y')
|
112 |
+
assert (ConditionSet(x, And(x > 0), FiniteSet(-1, 0, 1, y)) ==
|
113 |
+
Union(FiniteSet(1), ConditionSet(x, And(x > 0), FiniteSet(y))))
|
114 |
+
assert (ConditionSet(x, Eq(Mod(x, 3), 1), FiniteSet(1, 4, 2, y)) ==
|
115 |
+
Union(FiniteSet(1, 4), ConditionSet(x, Eq(Mod(x, 3), 1),
|
116 |
+
FiniteSet(y))))
|
117 |
+
|
118 |
+
|
119 |
+
def test_free_symbols():
|
120 |
+
assert ConditionSet(x, Eq(y, 0), FiniteSet(z)
|
121 |
+
).free_symbols == {y, z}
|
122 |
+
assert ConditionSet(x, Eq(x, 0), FiniteSet(z)
|
123 |
+
).free_symbols == {z}
|
124 |
+
assert ConditionSet(x, Eq(x, 0), FiniteSet(x, z)
|
125 |
+
).free_symbols == {x, z}
|
126 |
+
assert ConditionSet(x, Eq(x, 0), ImageSet(Lambda(y, y**2),
|
127 |
+
S.Integers)).free_symbols == set()
|
128 |
+
|
129 |
+
|
130 |
+
def test_bound_symbols():
|
131 |
+
assert ConditionSet(x, Eq(y, 0), FiniteSet(z)
|
132 |
+
).bound_symbols == [x]
|
133 |
+
assert ConditionSet(x, Eq(x, 0), FiniteSet(x, y)
|
134 |
+
).bound_symbols == [x]
|
135 |
+
assert ConditionSet(x, x < 10, ImageSet(Lambda(y, y**2), S.Integers)
|
136 |
+
).bound_symbols == [x]
|
137 |
+
assert ConditionSet(x, x < 10, ConditionSet(y, y > 1, S.Integers)
|
138 |
+
).bound_symbols == [x]
|
139 |
+
|
140 |
+
|
141 |
+
def test_as_dummy():
|
142 |
+
_0, _1 = symbols('_0 _1')
|
143 |
+
assert ConditionSet(x, x < 1, Interval(y, oo)
|
144 |
+
).as_dummy() == ConditionSet(_0, _0 < 1, Interval(y, oo))
|
145 |
+
assert ConditionSet(x, x < 1, Interval(x, oo)
|
146 |
+
).as_dummy() == ConditionSet(_0, _0 < 1, Interval(x, oo))
|
147 |
+
assert ConditionSet(x, x < 1, ImageSet(Lambda(y, y**2), S.Integers)
|
148 |
+
).as_dummy() == ConditionSet(
|
149 |
+
_0, _0 < 1, ImageSet(Lambda(_0, _0**2), S.Integers))
|
150 |
+
e = ConditionSet((x, y), x <= y, S.Reals**2)
|
151 |
+
assert e.bound_symbols == [x, y]
|
152 |
+
assert e.as_dummy() == ConditionSet((_0, _1), _0 <= _1, S.Reals**2)
|
153 |
+
assert e.as_dummy() == ConditionSet((y, x), y <= x, S.Reals**2
|
154 |
+
).as_dummy()
|
155 |
+
|
156 |
+
|
157 |
+
def test_subs_CondSet():
|
158 |
+
s = FiniteSet(z, y)
|
159 |
+
c = ConditionSet(x, x < 2, s)
|
160 |
+
assert c.subs(x, y) == c
|
161 |
+
assert c.subs(z, y) == ConditionSet(x, x < 2, FiniteSet(y))
|
162 |
+
assert c.xreplace({x: y}) == ConditionSet(y, y < 2, s)
|
163 |
+
|
164 |
+
assert ConditionSet(x, x < y, s
|
165 |
+
).subs(y, w) == ConditionSet(x, x < w, s.subs(y, w))
|
166 |
+
# if the user uses assumptions that cause the condition
|
167 |
+
# to evaluate, that can't be helped from SymPy's end
|
168 |
+
n = Symbol('n', negative=True)
|
169 |
+
assert ConditionSet(n, 0 < n, S.Integers) is S.EmptySet
|
170 |
+
p = Symbol('p', positive=True)
|
171 |
+
assert ConditionSet(n, n < y, S.Integers
|
172 |
+
).subs(n, x) == ConditionSet(n, n < y, S.Integers)
|
173 |
+
raises(ValueError, lambda: ConditionSet(
|
174 |
+
x + 1, x < 1, S.Integers))
|
175 |
+
assert ConditionSet(
|
176 |
+
p, n < x, Interval(-5, 5)).subs(x, p) == Interval(-5, 5), ConditionSet(
|
177 |
+
p, n < x, Interval(-5, 5)).subs(x, p)
|
178 |
+
assert ConditionSet(
|
179 |
+
n, n < x, Interval(-oo, 0)).subs(x, p
|
180 |
+
) == Interval(-oo, 0)
|
181 |
+
|
182 |
+
assert ConditionSet(f(x), f(x) < 1, {w, z}
|
183 |
+
).subs(f(x), y) == ConditionSet(f(x), f(x) < 1, {w, z})
|
184 |
+
|
185 |
+
# issue 17341
|
186 |
+
k = Symbol('k')
|
187 |
+
img1 = ImageSet(Lambda(k, 2*k*pi + asin(y)), S.Integers)
|
188 |
+
img2 = ImageSet(Lambda(k, 2*k*pi + asin(S.One/3)), S.Integers)
|
189 |
+
assert ConditionSet(x, Contains(
|
190 |
+
y, Interval(-1,1)), img1).subs(y, S.One/3).dummy_eq(img2)
|
191 |
+
|
192 |
+
assert (0, 1) in ConditionSet((x, y), x + y < 3, S.Integers**2)
|
193 |
+
|
194 |
+
raises(TypeError, lambda: ConditionSet(n, n < -10, Interval(0, 10)))
|
195 |
+
|
196 |
+
|
197 |
+
def test_subs_CondSet_tebr():
|
198 |
+
with warns_deprecated_sympy():
|
199 |
+
assert ConditionSet((x, y), {x + 1, x + y}, S.Reals**2) == \
|
200 |
+
ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Reals**2)
|
201 |
+
|
202 |
+
|
203 |
+
def test_dummy_eq():
|
204 |
+
C = ConditionSet
|
205 |
+
I = S.Integers
|
206 |
+
c = C(x, x < 1, I)
|
207 |
+
assert c.dummy_eq(C(y, y < 1, I))
|
208 |
+
assert c.dummy_eq(1) == False
|
209 |
+
assert c.dummy_eq(C(x, x < 1, S.Reals)) == False
|
210 |
+
|
211 |
+
c1 = ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Reals**2)
|
212 |
+
c2 = ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Reals**2)
|
213 |
+
c3 = ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Complexes**2)
|
214 |
+
assert c1.dummy_eq(c2)
|
215 |
+
assert c1.dummy_eq(c3) is False
|
216 |
+
assert c.dummy_eq(c1) is False
|
217 |
+
assert c1.dummy_eq(c) is False
|
218 |
+
|
219 |
+
# issue 19496
|
220 |
+
m = Symbol('m')
|
221 |
+
n = Symbol('n')
|
222 |
+
a = Symbol('a')
|
223 |
+
d1 = ImageSet(Lambda(m, m*pi), S.Integers)
|
224 |
+
d2 = ImageSet(Lambda(n, n*pi), S.Integers)
|
225 |
+
c1 = ConditionSet(x, Ne(a, 0), d1)
|
226 |
+
c2 = ConditionSet(x, Ne(a, 0), d2)
|
227 |
+
assert c1.dummy_eq(c2)
|
228 |
+
|
229 |
+
|
230 |
+
def test_contains():
|
231 |
+
assert 6 in ConditionSet(x, x > 5, Interval(1, 7))
|
232 |
+
assert (8 in ConditionSet(x, y > 5, Interval(1, 7))) is False
|
233 |
+
# `in` should give True or False; in this case there is not
|
234 |
+
# enough information for that result
|
235 |
+
raises(TypeError,
|
236 |
+
lambda: 6 in ConditionSet(x, y > 5, Interval(1, 7)))
|
237 |
+
# here, there is enough information but the comparison is
|
238 |
+
# not defined
|
239 |
+
raises(TypeError, lambda: 0 in ConditionSet(x, 1/x >= 0, S.Reals))
|
240 |
+
assert ConditionSet(x, y > 5, Interval(1, 7)
|
241 |
+
).contains(6) == (y > 5)
|
242 |
+
assert ConditionSet(x, y > 5, Interval(1, 7)
|
243 |
+
).contains(8) is S.false
|
244 |
+
assert ConditionSet(x, y > 5, Interval(1, 7)
|
245 |
+
).contains(w) == And(Contains(w, Interval(1, 7)), y > 5)
|
246 |
+
# This returns an unevaluated Contains object
|
247 |
+
# because 1/0 should not be defined for 1 and 0 in the context of
|
248 |
+
# reals.
|
249 |
+
assert ConditionSet(x, 1/x >= 0, S.Reals).contains(0) == \
|
250 |
+
Contains(0, ConditionSet(x, 1/x >= 0, S.Reals), evaluate=False)
|
251 |
+
c = ConditionSet((x, y), x + y > 1, S.Integers**2)
|
252 |
+
assert not c.contains(1)
|
253 |
+
assert c.contains((2, 1))
|
254 |
+
assert not c.contains((0, 1))
|
255 |
+
c = ConditionSet((w, (x, y)), w + x + y > 1, S.Integers*S.Integers**2)
|
256 |
+
assert not c.contains(1)
|
257 |
+
assert not c.contains((1, 2))
|
258 |
+
assert not c.contains(((1, 2), 3))
|
259 |
+
assert not c.contains(((1, 2), (3, 4)))
|
260 |
+
assert c.contains((1, (3, 4)))
|
261 |
+
|
262 |
+
|
263 |
+
def test_as_relational():
|
264 |
+
assert ConditionSet((x, y), x > 1, S.Integers**2).as_relational((x, y)
|
265 |
+
) == (x > 1) & Contains((x, y), S.Integers**2)
|
266 |
+
assert ConditionSet(x, x > 1, S.Integers).as_relational(x
|
267 |
+
) == Contains(x, S.Integers) & (x > 1)
|
268 |
+
|
269 |
+
|
270 |
+
def test_flatten():
|
271 |
+
"""Tests whether there is basic denesting functionality"""
|
272 |
+
inner = ConditionSet(x, sin(x) + x > 0)
|
273 |
+
outer = ConditionSet(x, Contains(x, inner), S.Reals)
|
274 |
+
assert outer == ConditionSet(x, sin(x) + x > 0, S.Reals)
|
275 |
+
|
276 |
+
inner = ConditionSet(y, sin(y) + y > 0)
|
277 |
+
outer = ConditionSet(x, Contains(y, inner), S.Reals)
|
278 |
+
assert outer != ConditionSet(x, sin(x) + x > 0, S.Reals)
|
279 |
+
|
280 |
+
inner = ConditionSet(x, sin(x) + x > 0).intersect(Interval(-1, 1))
|
281 |
+
outer = ConditionSet(x, Contains(x, inner), S.Reals)
|
282 |
+
assert outer == ConditionSet(x, sin(x) + x > 0, Interval(-1, 1))
|
283 |
+
|
284 |
+
|
285 |
+
def test_duplicate():
|
286 |
+
from sympy.core.function import BadSignatureError
|
287 |
+
# test coverage for line 95 in conditionset.py, check for duplicates in symbols
|
288 |
+
dup = symbols('a,a')
|
289 |
+
raises(BadSignatureError, lambda: ConditionSet(dup, x < 0))
|
290 |
+
|
291 |
+
|
292 |
+
def test_SetKind_ConditionSet():
|
293 |
+
assert ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi)).kind is SetKind(NumberKind)
|
294 |
+
assert ConditionSet(x, x < 0).kind is SetKind(NumberKind)
|
venv/lib/python3.10/site-packages/sympy/sets/tests/test_contains.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.expr import unchanged
|
2 |
+
from sympy.core.numbers import oo
|
3 |
+
from sympy.core.relational import Eq
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.core.symbol import Symbol
|
6 |
+
from sympy.sets.contains import Contains
|
7 |
+
from sympy.sets.sets import (FiniteSet, Interval)
|
8 |
+
from sympy.testing.pytest import raises
|
9 |
+
|
10 |
+
def test_contains_basic():
|
11 |
+
raises(TypeError, lambda: Contains(S.Integers, 1))
|
12 |
+
assert Contains(2, S.Integers) is S.true
|
13 |
+
assert Contains(-2, S.Naturals) is S.false
|
14 |
+
|
15 |
+
i = Symbol('i', integer=True)
|
16 |
+
assert Contains(i, S.Naturals) == Contains(i, S.Naturals, evaluate=False)
|
17 |
+
|
18 |
+
|
19 |
+
def test_issue_6194():
|
20 |
+
x = Symbol('x')
|
21 |
+
assert unchanged(Contains, x, Interval(0, 1))
|
22 |
+
assert Interval(0, 1).contains(x) == (S.Zero <= x) & (x <= 1)
|
23 |
+
assert Contains(x, FiniteSet(0)) != S.false
|
24 |
+
assert Contains(x, Interval(1, 1)) != S.false
|
25 |
+
assert Contains(x, S.Integers) != S.false
|
26 |
+
|
27 |
+
|
28 |
+
def test_issue_10326():
|
29 |
+
assert Contains(oo, Interval(-oo, oo)) == False
|
30 |
+
assert Contains(-oo, Interval(-oo, oo)) == False
|
31 |
+
|
32 |
+
|
33 |
+
def test_binary_symbols():
|
34 |
+
x = Symbol('x')
|
35 |
+
y = Symbol('y')
|
36 |
+
z = Symbol('z')
|
37 |
+
assert Contains(x, FiniteSet(y, Eq(z, True))
|
38 |
+
).binary_symbols == {y, z}
|
39 |
+
|
40 |
+
|
41 |
+
def test_as_set():
|
42 |
+
x = Symbol('x')
|
43 |
+
y = Symbol('y')
|
44 |
+
assert Contains(x, FiniteSet(y)).as_set() == FiniteSet(y)
|
45 |
+
assert Contains(x, S.Integers).as_set() == S.Integers
|
46 |
+
assert Contains(x, S.Reals).as_set() == S.Reals
|
47 |
+
|
48 |
+
def test_type_error():
|
49 |
+
# Pass in a parameter not of type "set"
|
50 |
+
raises(TypeError, lambda: Contains(2, None))
|
venv/lib/python3.10/site-packages/sympy/sets/tests/test_fancysets.py
ADDED
@@ -0,0 +1,1306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from sympy.core.expr import unchanged
|
3 |
+
from sympy.sets.contains import Contains
|
4 |
+
from sympy.sets.fancysets import (ImageSet, Range, normalize_theta_set,
|
5 |
+
ComplexRegion)
|
6 |
+
from sympy.sets.sets import (FiniteSet, Interval, Union, imageset,
|
7 |
+
Intersection, ProductSet, SetKind)
|
8 |
+
from sympy.sets.conditionset import ConditionSet
|
9 |
+
from sympy.simplify.simplify import simplify
|
10 |
+
from sympy.core.basic import Basic
|
11 |
+
from sympy.core.containers import Tuple, TupleKind
|
12 |
+
from sympy.core.function import Lambda
|
13 |
+
from sympy.core.kind import NumberKind
|
14 |
+
from sympy.core.numbers import (I, Rational, oo, pi)
|
15 |
+
from sympy.core.relational import Eq
|
16 |
+
from sympy.core.singleton import S
|
17 |
+
from sympy.core.symbol import (Dummy, Symbol, symbols)
|
18 |
+
from sympy.functions.elementary.complexes import Abs
|
19 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
20 |
+
from sympy.functions.elementary.integers import floor
|
21 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
22 |
+
from sympy.functions.elementary.trigonometric import (cos, sin, tan)
|
23 |
+
from sympy.logic.boolalg import And
|
24 |
+
from sympy.matrices.dense import eye
|
25 |
+
from sympy.testing.pytest import XFAIL, raises
|
26 |
+
from sympy.abc import x, y, t, z
|
27 |
+
from sympy.core.mod import Mod
|
28 |
+
|
29 |
+
import itertools
|
30 |
+
|
31 |
+
|
32 |
+
def test_naturals():
|
33 |
+
N = S.Naturals
|
34 |
+
assert 5 in N
|
35 |
+
assert -5 not in N
|
36 |
+
assert 5.5 not in N
|
37 |
+
ni = iter(N)
|
38 |
+
a, b, c, d = next(ni), next(ni), next(ni), next(ni)
|
39 |
+
assert (a, b, c, d) == (1, 2, 3, 4)
|
40 |
+
assert isinstance(a, Basic)
|
41 |
+
|
42 |
+
assert N.intersect(Interval(-5, 5)) == Range(1, 6)
|
43 |
+
assert N.intersect(Interval(-5, 5, True, True)) == Range(1, 5)
|
44 |
+
|
45 |
+
assert N.boundary == N
|
46 |
+
assert N.is_open == False
|
47 |
+
assert N.is_closed == True
|
48 |
+
|
49 |
+
assert N.inf == 1
|
50 |
+
assert N.sup is oo
|
51 |
+
assert not N.contains(oo)
|
52 |
+
for s in (S.Naturals0, S.Naturals):
|
53 |
+
assert s.intersection(S.Reals) is s
|
54 |
+
assert s.is_subset(S.Reals)
|
55 |
+
|
56 |
+
assert N.as_relational(x) == And(Eq(floor(x), x), x >= 1, x < oo)
|
57 |
+
|
58 |
+
|
59 |
+
def test_naturals0():
|
60 |
+
N = S.Naturals0
|
61 |
+
assert 0 in N
|
62 |
+
assert -1 not in N
|
63 |
+
assert next(iter(N)) == 0
|
64 |
+
assert not N.contains(oo)
|
65 |
+
assert N.contains(sin(x)) == Contains(sin(x), N)
|
66 |
+
|
67 |
+
|
68 |
+
def test_integers():
|
69 |
+
Z = S.Integers
|
70 |
+
assert 5 in Z
|
71 |
+
assert -5 in Z
|
72 |
+
assert 5.5 not in Z
|
73 |
+
assert not Z.contains(oo)
|
74 |
+
assert not Z.contains(-oo)
|
75 |
+
|
76 |
+
zi = iter(Z)
|
77 |
+
a, b, c, d = next(zi), next(zi), next(zi), next(zi)
|
78 |
+
assert (a, b, c, d) == (0, 1, -1, 2)
|
79 |
+
assert isinstance(a, Basic)
|
80 |
+
|
81 |
+
assert Z.intersect(Interval(-5, 5)) == Range(-5, 6)
|
82 |
+
assert Z.intersect(Interval(-5, 5, True, True)) == Range(-4, 5)
|
83 |
+
assert Z.intersect(Interval(5, S.Infinity)) == Range(5, S.Infinity)
|
84 |
+
assert Z.intersect(Interval.Lopen(5, S.Infinity)) == Range(6, S.Infinity)
|
85 |
+
|
86 |
+
assert Z.inf is -oo
|
87 |
+
assert Z.sup is oo
|
88 |
+
|
89 |
+
assert Z.boundary == Z
|
90 |
+
assert Z.is_open == False
|
91 |
+
assert Z.is_closed == True
|
92 |
+
|
93 |
+
assert Z.as_relational(x) == And(Eq(floor(x), x), -oo < x, x < oo)
|
94 |
+
|
95 |
+
|
96 |
+
def test_ImageSet():
|
97 |
+
raises(ValueError, lambda: ImageSet(x, S.Integers))
|
98 |
+
assert ImageSet(Lambda(x, 1), S.Integers) == FiniteSet(1)
|
99 |
+
assert ImageSet(Lambda(x, y), S.Integers) == {y}
|
100 |
+
assert ImageSet(Lambda(x, 1), S.EmptySet) == S.EmptySet
|
101 |
+
empty = Intersection(FiniteSet(log(2)/pi), S.Integers)
|
102 |
+
assert unchanged(ImageSet, Lambda(x, 1), empty) # issue #17471
|
103 |
+
squares = ImageSet(Lambda(x, x**2), S.Naturals)
|
104 |
+
assert 4 in squares
|
105 |
+
assert 5 not in squares
|
106 |
+
assert FiniteSet(*range(10)).intersect(squares) == FiniteSet(1, 4, 9)
|
107 |
+
|
108 |
+
assert 16 not in squares.intersect(Interval(0, 10))
|
109 |
+
|
110 |
+
si = iter(squares)
|
111 |
+
a, b, c, d = next(si), next(si), next(si), next(si)
|
112 |
+
assert (a, b, c, d) == (1, 4, 9, 16)
|
113 |
+
|
114 |
+
harmonics = ImageSet(Lambda(x, 1/x), S.Naturals)
|
115 |
+
assert Rational(1, 5) in harmonics
|
116 |
+
assert Rational(.25) in harmonics
|
117 |
+
assert 0.25 not in harmonics
|
118 |
+
assert Rational(.3) not in harmonics
|
119 |
+
assert (1, 2) not in harmonics
|
120 |
+
|
121 |
+
assert harmonics.is_iterable
|
122 |
+
|
123 |
+
assert imageset(x, -x, Interval(0, 1)) == Interval(-1, 0)
|
124 |
+
|
125 |
+
assert ImageSet(Lambda(x, x**2), Interval(0, 2)).doit() == Interval(0, 4)
|
126 |
+
assert ImageSet(Lambda((x, y), 2*x), {4}, {3}).doit() == FiniteSet(8)
|
127 |
+
assert (ImageSet(Lambda((x, y), x+y), {1, 2, 3}, {10, 20, 30}).doit() ==
|
128 |
+
FiniteSet(11, 12, 13, 21, 22, 23, 31, 32, 33))
|
129 |
+
|
130 |
+
c = Interval(1, 3) * Interval(1, 3)
|
131 |
+
assert Tuple(2, 6) in ImageSet(Lambda(((x, y),), (x, 2*y)), c)
|
132 |
+
assert Tuple(2, S.Half) in ImageSet(Lambda(((x, y),), (x, 1/y)), c)
|
133 |
+
assert Tuple(2, -2) not in ImageSet(Lambda(((x, y),), (x, y**2)), c)
|
134 |
+
assert Tuple(2, -2) in ImageSet(Lambda(((x, y),), (x, -2)), c)
|
135 |
+
c3 = ProductSet(Interval(3, 7), Interval(8, 11), Interval(5, 9))
|
136 |
+
assert Tuple(8, 3, 9) in ImageSet(Lambda(((t, y, x),), (y, t, x)), c3)
|
137 |
+
assert Tuple(Rational(1, 8), 3, 9) in ImageSet(Lambda(((t, y, x),), (1/y, t, x)), c3)
|
138 |
+
assert 2/pi not in ImageSet(Lambda(((x, y),), 2/x), c)
|
139 |
+
assert 2/S(100) not in ImageSet(Lambda(((x, y),), 2/x), c)
|
140 |
+
assert Rational(2, 3) in ImageSet(Lambda(((x, y),), 2/x), c)
|
141 |
+
|
142 |
+
S1 = imageset(lambda x, y: x + y, S.Integers, S.Naturals)
|
143 |
+
assert S1.base_pset == ProductSet(S.Integers, S.Naturals)
|
144 |
+
assert S1.base_sets == (S.Integers, S.Naturals)
|
145 |
+
|
146 |
+
# Passing a set instead of a FiniteSet shouldn't raise
|
147 |
+
assert unchanged(ImageSet, Lambda(x, x**2), {1, 2, 3})
|
148 |
+
|
149 |
+
S2 = ImageSet(Lambda(((x, y),), x+y), {(1, 2), (3, 4)})
|
150 |
+
assert 3 in S2.doit()
|
151 |
+
# FIXME: This doesn't yet work:
|
152 |
+
#assert 3 in S2
|
153 |
+
assert S2._contains(3) is None
|
154 |
+
|
155 |
+
raises(TypeError, lambda: ImageSet(Lambda(x, x**2), 1))
|
156 |
+
|
157 |
+
|
158 |
+
def test_image_is_ImageSet():
|
159 |
+
assert isinstance(imageset(x, sqrt(sin(x)), Range(5)), ImageSet)
|
160 |
+
|
161 |
+
|
162 |
+
def test_halfcircle():
|
163 |
+
r, th = symbols('r, theta', real=True)
|
164 |
+
L = Lambda(((r, th),), (r*cos(th), r*sin(th)))
|
165 |
+
halfcircle = ImageSet(L, Interval(0, 1)*Interval(0, pi))
|
166 |
+
|
167 |
+
assert (1, 0) in halfcircle
|
168 |
+
assert (0, -1) not in halfcircle
|
169 |
+
assert (0, 0) in halfcircle
|
170 |
+
assert halfcircle._contains((r, 0)) is None
|
171 |
+
# This one doesn't work:
|
172 |
+
#assert (r, 2*pi) not in halfcircle
|
173 |
+
|
174 |
+
assert not halfcircle.is_iterable
|
175 |
+
|
176 |
+
|
177 |
+
def test_ImageSet_iterator_not_injective():
|
178 |
+
L = Lambda(x, x - x % 2) # produces 0, 2, 2, 4, 4, 6, 6, ...
|
179 |
+
evens = ImageSet(L, S.Naturals)
|
180 |
+
i = iter(evens)
|
181 |
+
# No repeats here
|
182 |
+
assert (next(i), next(i), next(i), next(i)) == (0, 2, 4, 6)
|
183 |
+
|
184 |
+
|
185 |
+
def test_inf_Range_len():
|
186 |
+
raises(ValueError, lambda: len(Range(0, oo, 2)))
|
187 |
+
assert Range(0, oo, 2).size is S.Infinity
|
188 |
+
assert Range(0, -oo, -2).size is S.Infinity
|
189 |
+
assert Range(oo, 0, -2).size is S.Infinity
|
190 |
+
assert Range(-oo, 0, 2).size is S.Infinity
|
191 |
+
|
192 |
+
|
193 |
+
def test_Range_set():
|
194 |
+
empty = Range(0)
|
195 |
+
|
196 |
+
assert Range(5) == Range(0, 5) == Range(0, 5, 1)
|
197 |
+
|
198 |
+
r = Range(10, 20, 2)
|
199 |
+
assert 12 in r
|
200 |
+
assert 8 not in r
|
201 |
+
assert 11 not in r
|
202 |
+
assert 30 not in r
|
203 |
+
|
204 |
+
assert list(Range(0, 5)) == list(range(5))
|
205 |
+
assert list(Range(5, 0, -1)) == list(range(5, 0, -1))
|
206 |
+
|
207 |
+
|
208 |
+
assert Range(5, 15).sup == 14
|
209 |
+
assert Range(5, 15).inf == 5
|
210 |
+
assert Range(15, 5, -1).sup == 15
|
211 |
+
assert Range(15, 5, -1).inf == 6
|
212 |
+
assert Range(10, 67, 10).sup == 60
|
213 |
+
assert Range(60, 7, -10).inf == 10
|
214 |
+
|
215 |
+
assert len(Range(10, 38, 10)) == 3
|
216 |
+
|
217 |
+
assert Range(0, 0, 5) == empty
|
218 |
+
assert Range(oo, oo, 1) == empty
|
219 |
+
assert Range(oo, 1, 1) == empty
|
220 |
+
assert Range(-oo, 1, -1) == empty
|
221 |
+
assert Range(1, oo, -1) == empty
|
222 |
+
assert Range(1, -oo, 1) == empty
|
223 |
+
assert Range(1, -4, oo) == empty
|
224 |
+
ip = symbols('ip', positive=True)
|
225 |
+
assert Range(0, ip, -1) == empty
|
226 |
+
assert Range(0, -ip, 1) == empty
|
227 |
+
assert Range(1, -4, -oo) == Range(1, 2)
|
228 |
+
assert Range(1, 4, oo) == Range(1, 2)
|
229 |
+
assert Range(-oo, oo).size == oo
|
230 |
+
assert Range(oo, -oo, -1).size == oo
|
231 |
+
raises(ValueError, lambda: Range(-oo, oo, 2))
|
232 |
+
raises(ValueError, lambda: Range(x, pi, y))
|
233 |
+
raises(ValueError, lambda: Range(x, y, 0))
|
234 |
+
|
235 |
+
assert 5 in Range(0, oo, 5)
|
236 |
+
assert -5 in Range(-oo, 0, 5)
|
237 |
+
assert oo not in Range(0, oo)
|
238 |
+
ni = symbols('ni', integer=False)
|
239 |
+
assert ni not in Range(oo)
|
240 |
+
u = symbols('u', integer=None)
|
241 |
+
assert Range(oo).contains(u) is not False
|
242 |
+
inf = symbols('inf', infinite=True)
|
243 |
+
assert inf not in Range(-oo, oo)
|
244 |
+
raises(ValueError, lambda: Range(0, oo, 2)[-1])
|
245 |
+
raises(ValueError, lambda: Range(0, -oo, -2)[-1])
|
246 |
+
assert Range(-oo, 1, 1)[-1] is S.Zero
|
247 |
+
assert Range(oo, 1, -1)[-1] == 2
|
248 |
+
assert inf not in Range(oo)
|
249 |
+
assert Range(1, 10, 1)[-1] == 9
|
250 |
+
assert all(i.is_Integer for i in Range(0, -1, 1))
|
251 |
+
it = iter(Range(-oo, 0, 2))
|
252 |
+
raises(TypeError, lambda: next(it))
|
253 |
+
|
254 |
+
assert empty.intersect(S.Integers) == empty
|
255 |
+
assert Range(-1, 10, 1).intersect(S.Complexes) == Range(-1, 10, 1)
|
256 |
+
assert Range(-1, 10, 1).intersect(S.Reals) == Range(-1, 10, 1)
|
257 |
+
assert Range(-1, 10, 1).intersect(S.Rationals) == Range(-1, 10, 1)
|
258 |
+
assert Range(-1, 10, 1).intersect(S.Integers) == Range(-1, 10, 1)
|
259 |
+
assert Range(-1, 10, 1).intersect(S.Naturals) == Range(1, 10, 1)
|
260 |
+
assert Range(-1, 10, 1).intersect(S.Naturals0) == Range(0, 10, 1)
|
261 |
+
|
262 |
+
# test slicing
|
263 |
+
assert Range(1, 10, 1)[5] == 6
|
264 |
+
assert Range(1, 12, 2)[5] == 11
|
265 |
+
assert Range(1, 10, 1)[-1] == 9
|
266 |
+
assert Range(1, 10, 3)[-1] == 7
|
267 |
+
raises(ValueError, lambda: Range(oo,0,-1)[1:3:0])
|
268 |
+
raises(ValueError, lambda: Range(oo,0,-1)[:1])
|
269 |
+
raises(ValueError, lambda: Range(1, oo)[-2])
|
270 |
+
raises(ValueError, lambda: Range(-oo, 1)[2])
|
271 |
+
raises(IndexError, lambda: Range(10)[-20])
|
272 |
+
raises(IndexError, lambda: Range(10)[20])
|
273 |
+
raises(ValueError, lambda: Range(2, -oo, -2)[2:2:0])
|
274 |
+
assert Range(2, -oo, -2)[2:2:2] == empty
|
275 |
+
assert Range(2, -oo, -2)[:2:2] == Range(2, -2, -4)
|
276 |
+
raises(ValueError, lambda: Range(-oo, 4, 2)[:2:2])
|
277 |
+
assert Range(-oo, 4, 2)[::-2] == Range(2, -oo, -4)
|
278 |
+
raises(ValueError, lambda: Range(-oo, 4, 2)[::2])
|
279 |
+
assert Range(oo, 2, -2)[::] == Range(oo, 2, -2)
|
280 |
+
assert Range(-oo, 4, 2)[:-2:-2] == Range(2, 0, -4)
|
281 |
+
assert Range(-oo, 4, 2)[:-2:2] == Range(-oo, 0, 4)
|
282 |
+
raises(ValueError, lambda: Range(-oo, 4, 2)[:0:-2])
|
283 |
+
raises(ValueError, lambda: Range(-oo, 4, 2)[:2:-2])
|
284 |
+
assert Range(-oo, 4, 2)[-2::-2] == Range(0, -oo, -4)
|
285 |
+
raises(ValueError, lambda: Range(-oo, 4, 2)[-2:0:-2])
|
286 |
+
raises(ValueError, lambda: Range(-oo, 4, 2)[0::2])
|
287 |
+
assert Range(oo, 2, -2)[0::] == Range(oo, 2, -2)
|
288 |
+
raises(ValueError, lambda: Range(-oo, 4, 2)[0:-2:2])
|
289 |
+
assert Range(oo, 2, -2)[0:-2:] == Range(oo, 6, -2)
|
290 |
+
raises(ValueError, lambda: Range(oo, 2, -2)[0:2:])
|
291 |
+
raises(ValueError, lambda: Range(-oo, 4, 2)[2::-1])
|
292 |
+
assert Range(-oo, 4, 2)[-2::2] == Range(0, 4, 4)
|
293 |
+
assert Range(oo, 0, -2)[-10:0:2] == empty
|
294 |
+
raises(ValueError, lambda: Range(oo, 0, -2)[0])
|
295 |
+
raises(ValueError, lambda: Range(oo, 0, -2)[-10:10:2])
|
296 |
+
raises(ValueError, lambda: Range(oo, 0, -2)[0::-2])
|
297 |
+
assert Range(oo, 0, -2)[0:-4:-2] == empty
|
298 |
+
assert Range(oo, 0, -2)[:0:2] == empty
|
299 |
+
raises(ValueError, lambda: Range(oo, 0, -2)[:1:-1])
|
300 |
+
|
301 |
+
# test empty Range
|
302 |
+
assert Range(x, x, y) == empty
|
303 |
+
assert empty.reversed == empty
|
304 |
+
assert 0 not in empty
|
305 |
+
assert list(empty) == []
|
306 |
+
assert len(empty) == 0
|
307 |
+
assert empty.size is S.Zero
|
308 |
+
assert empty.intersect(FiniteSet(0)) is S.EmptySet
|
309 |
+
assert bool(empty) is False
|
310 |
+
raises(IndexError, lambda: empty[0])
|
311 |
+
assert empty[:0] == empty
|
312 |
+
raises(NotImplementedError, lambda: empty.inf)
|
313 |
+
raises(NotImplementedError, lambda: empty.sup)
|
314 |
+
assert empty.as_relational(x) is S.false
|
315 |
+
|
316 |
+
AB = [None] + list(range(12))
|
317 |
+
for R in [
|
318 |
+
Range(1, 10),
|
319 |
+
Range(1, 10, 2),
|
320 |
+
]:
|
321 |
+
r = list(R)
|
322 |
+
for a, b, c in itertools.product(AB, AB, [-3, -1, None, 1, 3]):
|
323 |
+
for reverse in range(2):
|
324 |
+
r = list(reversed(r))
|
325 |
+
R = R.reversed
|
326 |
+
result = list(R[a:b:c])
|
327 |
+
ans = r[a:b:c]
|
328 |
+
txt = ('\n%s[%s:%s:%s] = %s -> %s' % (
|
329 |
+
R, a, b, c, result, ans))
|
330 |
+
check = ans == result
|
331 |
+
assert check, txt
|
332 |
+
|
333 |
+
assert Range(1, 10, 1).boundary == Range(1, 10, 1)
|
334 |
+
|
335 |
+
for r in (Range(1, 10, 2), Range(1, oo, 2)):
|
336 |
+
rev = r.reversed
|
337 |
+
assert r.inf == rev.inf and r.sup == rev.sup
|
338 |
+
assert r.step == -rev.step
|
339 |
+
|
340 |
+
builtin_range = range
|
341 |
+
|
342 |
+
raises(TypeError, lambda: Range(builtin_range(1)))
|
343 |
+
assert S(builtin_range(10)) == Range(10)
|
344 |
+
assert S(builtin_range(1000000000000)) == Range(1000000000000)
|
345 |
+
|
346 |
+
# test Range.as_relational
|
347 |
+
assert Range(1, 4).as_relational(x) == (x >= 1) & (x <= 3) & Eq(Mod(x, 1), 0)
|
348 |
+
assert Range(oo, 1, -2).as_relational(x) == (x >= 3) & (x < oo) & Eq(Mod(x + 1, -2), 0)
|
349 |
+
|
350 |
+
|
351 |
+
def test_Range_symbolic():
|
352 |
+
# symbolic Range
|
353 |
+
xr = Range(x, x + 4, 5)
|
354 |
+
sr = Range(x, y, t)
|
355 |
+
i = Symbol('i', integer=True)
|
356 |
+
ip = Symbol('i', integer=True, positive=True)
|
357 |
+
ipr = Range(ip)
|
358 |
+
inr = Range(0, -ip, -1)
|
359 |
+
ir = Range(i, i + 19, 2)
|
360 |
+
ir2 = Range(i, i*8, 3*i)
|
361 |
+
i = Symbol('i', integer=True)
|
362 |
+
inf = symbols('inf', infinite=True)
|
363 |
+
raises(ValueError, lambda: Range(inf))
|
364 |
+
raises(ValueError, lambda: Range(inf, 0, -1))
|
365 |
+
raises(ValueError, lambda: Range(inf, inf, 1))
|
366 |
+
raises(ValueError, lambda: Range(1, 1, inf))
|
367 |
+
# args
|
368 |
+
assert xr.args == (x, x + 5, 5)
|
369 |
+
assert sr.args == (x, y, t)
|
370 |
+
assert ir.args == (i, i + 20, 2)
|
371 |
+
assert ir2.args == (i, 10*i, 3*i)
|
372 |
+
# reversed
|
373 |
+
raises(ValueError, lambda: xr.reversed)
|
374 |
+
raises(ValueError, lambda: sr.reversed)
|
375 |
+
assert ipr.reversed.args == (ip - 1, -1, -1)
|
376 |
+
assert inr.reversed.args == (-ip + 1, 1, 1)
|
377 |
+
assert ir.reversed.args == (i + 18, i - 2, -2)
|
378 |
+
assert ir2.reversed.args == (7*i, -2*i, -3*i)
|
379 |
+
# contains
|
380 |
+
assert inf not in sr
|
381 |
+
assert inf not in ir
|
382 |
+
assert 0 in ipr
|
383 |
+
assert 0 in inr
|
384 |
+
raises(TypeError, lambda: 1 in ipr)
|
385 |
+
raises(TypeError, lambda: -1 in inr)
|
386 |
+
assert .1 not in sr
|
387 |
+
assert .1 not in ir
|
388 |
+
assert i + 1 not in ir
|
389 |
+
assert i + 2 in ir
|
390 |
+
raises(TypeError, lambda: x in xr) # XXX is this what contains is supposed to do?
|
391 |
+
raises(TypeError, lambda: 1 in sr) # XXX is this what contains is supposed to do?
|
392 |
+
# iter
|
393 |
+
raises(ValueError, lambda: next(iter(xr)))
|
394 |
+
raises(ValueError, lambda: next(iter(sr)))
|
395 |
+
assert next(iter(ir)) == i
|
396 |
+
assert next(iter(ir2)) == i
|
397 |
+
assert sr.intersect(S.Integers) == sr
|
398 |
+
assert sr.intersect(FiniteSet(x)) == Intersection({x}, sr)
|
399 |
+
raises(ValueError, lambda: sr[:2])
|
400 |
+
raises(ValueError, lambda: xr[0])
|
401 |
+
raises(ValueError, lambda: sr[0])
|
402 |
+
# len
|
403 |
+
assert len(ir) == ir.size == 10
|
404 |
+
assert len(ir2) == ir2.size == 3
|
405 |
+
raises(ValueError, lambda: len(xr))
|
406 |
+
raises(ValueError, lambda: xr.size)
|
407 |
+
raises(ValueError, lambda: len(sr))
|
408 |
+
raises(ValueError, lambda: sr.size)
|
409 |
+
# bool
|
410 |
+
assert bool(Range(0)) == False
|
411 |
+
assert bool(xr)
|
412 |
+
assert bool(ir)
|
413 |
+
assert bool(ipr)
|
414 |
+
assert bool(inr)
|
415 |
+
raises(ValueError, lambda: bool(sr))
|
416 |
+
raises(ValueError, lambda: bool(ir2))
|
417 |
+
# inf
|
418 |
+
raises(ValueError, lambda: xr.inf)
|
419 |
+
raises(ValueError, lambda: sr.inf)
|
420 |
+
assert ipr.inf == 0
|
421 |
+
assert inr.inf == -ip + 1
|
422 |
+
assert ir.inf == i
|
423 |
+
raises(ValueError, lambda: ir2.inf)
|
424 |
+
# sup
|
425 |
+
raises(ValueError, lambda: xr.sup)
|
426 |
+
raises(ValueError, lambda: sr.sup)
|
427 |
+
assert ipr.sup == ip - 1
|
428 |
+
assert inr.sup == 0
|
429 |
+
assert ir.inf == i
|
430 |
+
raises(ValueError, lambda: ir2.sup)
|
431 |
+
# getitem
|
432 |
+
raises(ValueError, lambda: xr[0])
|
433 |
+
raises(ValueError, lambda: sr[0])
|
434 |
+
raises(ValueError, lambda: sr[-1])
|
435 |
+
raises(ValueError, lambda: sr[:2])
|
436 |
+
assert ir[:2] == Range(i, i + 4, 2)
|
437 |
+
assert ir[0] == i
|
438 |
+
assert ir[-2] == i + 16
|
439 |
+
assert ir[-1] == i + 18
|
440 |
+
assert ir2[:2] == Range(i, 7*i, 3*i)
|
441 |
+
assert ir2[0] == i
|
442 |
+
assert ir2[-2] == 4*i
|
443 |
+
assert ir2[-1] == 7*i
|
444 |
+
raises(ValueError, lambda: Range(i)[-1])
|
445 |
+
assert ipr[0] == ipr.inf == 0
|
446 |
+
assert ipr[-1] == ipr.sup == ip - 1
|
447 |
+
assert inr[0] == inr.sup == 0
|
448 |
+
assert inr[-1] == inr.inf == -ip + 1
|
449 |
+
raises(ValueError, lambda: ipr[-2])
|
450 |
+
assert ir.inf == i
|
451 |
+
assert ir.sup == i + 18
|
452 |
+
raises(ValueError, lambda: Range(i).inf)
|
453 |
+
# as_relational
|
454 |
+
assert ir.as_relational(x) == ((x >= i) & (x <= i + 18) &
|
455 |
+
Eq(Mod(-i + x, 2), 0))
|
456 |
+
assert ir2.as_relational(x) == Eq(
|
457 |
+
Mod(-i + x, 3*i), 0) & (((x >= i) & (x <= 7*i) & (3*i >= 1)) |
|
458 |
+
((x <= i) & (x >= 7*i) & (3*i <= -1)))
|
459 |
+
assert Range(i, i + 1).as_relational(x) == Eq(x, i)
|
460 |
+
assert sr.as_relational(z) == Eq(
|
461 |
+
Mod(t, 1), 0) & Eq(Mod(x, 1), 0) & Eq(Mod(-x + z, t), 0
|
462 |
+
) & (((z >= x) & (z <= -t + y) & (t >= 1)) |
|
463 |
+
((z <= x) & (z >= -t + y) & (t <= -1)))
|
464 |
+
assert xr.as_relational(z) == Eq(z, x) & Eq(Mod(x, 1), 0)
|
465 |
+
# symbols can clash if user wants (but it must be integer)
|
466 |
+
assert xr.as_relational(x) == Eq(Mod(x, 1), 0)
|
467 |
+
# contains() for symbolic values (issue #18146)
|
468 |
+
e = Symbol('e', integer=True, even=True)
|
469 |
+
o = Symbol('o', integer=True, odd=True)
|
470 |
+
assert Range(5).contains(i) == And(i >= 0, i <= 4)
|
471 |
+
assert Range(1).contains(i) == Eq(i, 0)
|
472 |
+
assert Range(-oo, 5, 1).contains(i) == (i <= 4)
|
473 |
+
assert Range(-oo, oo).contains(i) == True
|
474 |
+
assert Range(0, 8, 2).contains(i) == Contains(i, Range(0, 8, 2))
|
475 |
+
assert Range(0, 8, 2).contains(e) == And(e >= 0, e <= 6)
|
476 |
+
assert Range(0, 8, 2).contains(2*i) == And(2*i >= 0, 2*i <= 6)
|
477 |
+
assert Range(0, 8, 2).contains(o) == False
|
478 |
+
assert Range(1, 9, 2).contains(e) == False
|
479 |
+
assert Range(1, 9, 2).contains(o) == And(o >= 1, o <= 7)
|
480 |
+
assert Range(8, 0, -2).contains(o) == False
|
481 |
+
assert Range(9, 1, -2).contains(o) == And(o >= 3, o <= 9)
|
482 |
+
assert Range(-oo, 8, 2).contains(i) == Contains(i, Range(-oo, 8, 2))
|
483 |
+
|
484 |
+
|
485 |
+
def test_range_range_intersection():
|
486 |
+
for a, b, r in [
|
487 |
+
(Range(0), Range(1), S.EmptySet),
|
488 |
+
(Range(3), Range(4, oo), S.EmptySet),
|
489 |
+
(Range(3), Range(-3, -1), S.EmptySet),
|
490 |
+
(Range(1, 3), Range(0, 3), Range(1, 3)),
|
491 |
+
(Range(1, 3), Range(1, 4), Range(1, 3)),
|
492 |
+
(Range(1, oo, 2), Range(2, oo, 2), S.EmptySet),
|
493 |
+
(Range(0, oo, 2), Range(oo), Range(0, oo, 2)),
|
494 |
+
(Range(0, oo, 2), Range(100), Range(0, 100, 2)),
|
495 |
+
(Range(2, oo, 2), Range(oo), Range(2, oo, 2)),
|
496 |
+
(Range(0, oo, 2), Range(5, 6), S.EmptySet),
|
497 |
+
(Range(2, 80, 1), Range(55, 71, 4), Range(55, 71, 4)),
|
498 |
+
(Range(0, 6, 3), Range(-oo, 5, 3), S.EmptySet),
|
499 |
+
(Range(0, oo, 2), Range(5, oo, 3), Range(8, oo, 6)),
|
500 |
+
(Range(4, 6, 2), Range(2, 16, 7), S.EmptySet),]:
|
501 |
+
assert a.intersect(b) == r
|
502 |
+
assert a.intersect(b.reversed) == r
|
503 |
+
assert a.reversed.intersect(b) == r
|
504 |
+
assert a.reversed.intersect(b.reversed) == r
|
505 |
+
a, b = b, a
|
506 |
+
assert a.intersect(b) == r
|
507 |
+
assert a.intersect(b.reversed) == r
|
508 |
+
assert a.reversed.intersect(b) == r
|
509 |
+
assert a.reversed.intersect(b.reversed) == r
|
510 |
+
|
511 |
+
|
512 |
+
def test_range_interval_intersection():
|
513 |
+
p = symbols('p', positive=True)
|
514 |
+
assert isinstance(Range(3).intersect(Interval(p, p + 2)), Intersection)
|
515 |
+
assert Range(4).intersect(Interval(0, 3)) == Range(4)
|
516 |
+
assert Range(4).intersect(Interval(-oo, oo)) == Range(4)
|
517 |
+
assert Range(4).intersect(Interval(1, oo)) == Range(1, 4)
|
518 |
+
assert Range(4).intersect(Interval(1.1, oo)) == Range(2, 4)
|
519 |
+
assert Range(4).intersect(Interval(0.1, 3)) == Range(1, 4)
|
520 |
+
assert Range(4).intersect(Interval(0.1, 3.1)) == Range(1, 4)
|
521 |
+
assert Range(4).intersect(Interval.open(0, 3)) == Range(1, 3)
|
522 |
+
assert Range(4).intersect(Interval.open(0.1, 0.5)) is S.EmptySet
|
523 |
+
assert Interval(-1, 5).intersect(S.Complexes) == Interval(-1, 5)
|
524 |
+
assert Interval(-1, 5).intersect(S.Reals) == Interval(-1, 5)
|
525 |
+
assert Interval(-1, 5).intersect(S.Integers) == Range(-1, 6)
|
526 |
+
assert Interval(-1, 5).intersect(S.Naturals) == Range(1, 6)
|
527 |
+
assert Interval(-1, 5).intersect(S.Naturals0) == Range(0, 6)
|
528 |
+
|
529 |
+
# Null Range intersections
|
530 |
+
assert Range(0).intersect(Interval(0.2, 0.8)) is S.EmptySet
|
531 |
+
assert Range(0).intersect(Interval(-oo, oo)) is S.EmptySet
|
532 |
+
|
533 |
+
|
534 |
+
def test_range_is_finite_set():
|
535 |
+
assert Range(-100, 100).is_finite_set is True
|
536 |
+
assert Range(2, oo).is_finite_set is False
|
537 |
+
assert Range(-oo, 50).is_finite_set is False
|
538 |
+
assert Range(-oo, oo).is_finite_set is False
|
539 |
+
assert Range(oo, -oo).is_finite_set is True
|
540 |
+
assert Range(0, 0).is_finite_set is True
|
541 |
+
assert Range(oo, oo).is_finite_set is True
|
542 |
+
assert Range(-oo, -oo).is_finite_set is True
|
543 |
+
n = Symbol('n', integer=True)
|
544 |
+
m = Symbol('m', integer=True)
|
545 |
+
assert Range(n, n + 49).is_finite_set is True
|
546 |
+
assert Range(n, 0).is_finite_set is True
|
547 |
+
assert Range(-3, n + 7).is_finite_set is True
|
548 |
+
assert Range(n, m).is_finite_set is True
|
549 |
+
assert Range(n + m, m - n).is_finite_set is True
|
550 |
+
assert Range(n, n + m + n).is_finite_set is True
|
551 |
+
assert Range(n, oo).is_finite_set is False
|
552 |
+
assert Range(-oo, n).is_finite_set is False
|
553 |
+
assert Range(n, -oo).is_finite_set is True
|
554 |
+
assert Range(oo, n).is_finite_set is True
|
555 |
+
|
556 |
+
|
557 |
+
def test_Range_is_iterable():
|
558 |
+
assert Range(-100, 100).is_iterable is True
|
559 |
+
assert Range(2, oo).is_iterable is False
|
560 |
+
assert Range(-oo, 50).is_iterable is False
|
561 |
+
assert Range(-oo, oo).is_iterable is False
|
562 |
+
assert Range(oo, -oo).is_iterable is True
|
563 |
+
assert Range(0, 0).is_iterable is True
|
564 |
+
assert Range(oo, oo).is_iterable is True
|
565 |
+
assert Range(-oo, -oo).is_iterable is True
|
566 |
+
n = Symbol('n', integer=True)
|
567 |
+
m = Symbol('m', integer=True)
|
568 |
+
p = Symbol('p', integer=True, positive=True)
|
569 |
+
assert Range(n, n + 49).is_iterable is True
|
570 |
+
assert Range(n, 0).is_iterable is False
|
571 |
+
assert Range(-3, n + 7).is_iterable is False
|
572 |
+
assert Range(-3, p + 7).is_iterable is False # Should work with better __iter__
|
573 |
+
assert Range(n, m).is_iterable is False
|
574 |
+
assert Range(n + m, m - n).is_iterable is False
|
575 |
+
assert Range(n, n + m + n).is_iterable is False
|
576 |
+
assert Range(n, oo).is_iterable is False
|
577 |
+
assert Range(-oo, n).is_iterable is False
|
578 |
+
x = Symbol('x')
|
579 |
+
assert Range(x, x + 49).is_iterable is False
|
580 |
+
assert Range(x, 0).is_iterable is False
|
581 |
+
assert Range(-3, x + 7).is_iterable is False
|
582 |
+
assert Range(x, m).is_iterable is False
|
583 |
+
assert Range(x + m, m - x).is_iterable is False
|
584 |
+
assert Range(x, x + m + x).is_iterable is False
|
585 |
+
assert Range(x, oo).is_iterable is False
|
586 |
+
assert Range(-oo, x).is_iterable is False
|
587 |
+
|
588 |
+
|
589 |
+
def test_Integers_eval_imageset():
|
590 |
+
ans = ImageSet(Lambda(x, 2*x + Rational(3, 7)), S.Integers)
|
591 |
+
im = imageset(Lambda(x, -2*x + Rational(3, 7)), S.Integers)
|
592 |
+
assert im == ans
|
593 |
+
im = imageset(Lambda(x, -2*x - Rational(11, 7)), S.Integers)
|
594 |
+
assert im == ans
|
595 |
+
y = Symbol('y')
|
596 |
+
L = imageset(x, 2*x + y, S.Integers)
|
597 |
+
assert y + 4 in L
|
598 |
+
a, b, c = 0.092, 0.433, 0.341
|
599 |
+
assert a in imageset(x, a + c*x, S.Integers)
|
600 |
+
assert b in imageset(x, b + c*x, S.Integers)
|
601 |
+
|
602 |
+
_x = symbols('x', negative=True)
|
603 |
+
eq = _x**2 - _x + 1
|
604 |
+
assert imageset(_x, eq, S.Integers).lamda.expr == _x**2 + _x + 1
|
605 |
+
eq = 3*_x - 1
|
606 |
+
assert imageset(_x, eq, S.Integers).lamda.expr == 3*_x + 2
|
607 |
+
|
608 |
+
assert imageset(x, (x, 1/x), S.Integers) == \
|
609 |
+
ImageSet(Lambda(x, (x, 1/x)), S.Integers)
|
610 |
+
|
611 |
+
|
612 |
+
def test_Range_eval_imageset():
|
613 |
+
a, b, c = symbols('a b c')
|
614 |
+
assert imageset(x, a*(x + b) + c, Range(3)) == \
|
615 |
+
imageset(x, a*x + a*b + c, Range(3))
|
616 |
+
eq = (x + 1)**2
|
617 |
+
assert imageset(x, eq, Range(3)).lamda.expr == eq
|
618 |
+
eq = a*(x + b) + c
|
619 |
+
r = Range(3, -3, -2)
|
620 |
+
imset = imageset(x, eq, r)
|
621 |
+
assert imset.lamda.expr != eq
|
622 |
+
assert list(imset) == [eq.subs(x, i).expand() for i in list(r)]
|
623 |
+
|
624 |
+
|
625 |
+
def test_fun():
|
626 |
+
assert (FiniteSet(*ImageSet(Lambda(x, sin(pi*x/4)),
|
627 |
+
Range(-10, 11))) == FiniteSet(-1, -sqrt(2)/2, 0, sqrt(2)/2, 1))
|
628 |
+
|
629 |
+
|
630 |
+
def test_Range_is_empty():
|
631 |
+
i = Symbol('i', integer=True)
|
632 |
+
n = Symbol('n', negative=True, integer=True)
|
633 |
+
p = Symbol('p', positive=True, integer=True)
|
634 |
+
|
635 |
+
assert Range(0).is_empty
|
636 |
+
assert not Range(1).is_empty
|
637 |
+
assert Range(1, 0).is_empty
|
638 |
+
assert not Range(-1, 0).is_empty
|
639 |
+
assert Range(i).is_empty is None
|
640 |
+
assert Range(n).is_empty
|
641 |
+
assert Range(p).is_empty is False
|
642 |
+
assert Range(n, 0).is_empty is False
|
643 |
+
assert Range(n, p).is_empty is False
|
644 |
+
assert Range(p, n).is_empty
|
645 |
+
assert Range(n, -1).is_empty is None
|
646 |
+
assert Range(p, n, -1).is_empty is False
|
647 |
+
|
648 |
+
|
649 |
+
def test_Reals():
|
650 |
+
assert 5 in S.Reals
|
651 |
+
assert S.Pi in S.Reals
|
652 |
+
assert -sqrt(2) in S.Reals
|
653 |
+
assert (2, 5) not in S.Reals
|
654 |
+
assert sqrt(-1) not in S.Reals
|
655 |
+
assert S.Reals == Interval(-oo, oo)
|
656 |
+
assert S.Reals != Interval(0, oo)
|
657 |
+
assert S.Reals.is_subset(Interval(-oo, oo))
|
658 |
+
assert S.Reals.intersect(Range(-oo, oo)) == Range(-oo, oo)
|
659 |
+
assert S.ComplexInfinity not in S.Reals
|
660 |
+
assert S.NaN not in S.Reals
|
661 |
+
assert x + S.ComplexInfinity not in S.Reals
|
662 |
+
|
663 |
+
|
664 |
+
def test_Complex():
|
665 |
+
assert 5 in S.Complexes
|
666 |
+
assert 5 + 4*I in S.Complexes
|
667 |
+
assert S.Pi in S.Complexes
|
668 |
+
assert -sqrt(2) in S.Complexes
|
669 |
+
assert -I in S.Complexes
|
670 |
+
assert sqrt(-1) in S.Complexes
|
671 |
+
assert S.Complexes.intersect(S.Reals) == S.Reals
|
672 |
+
assert S.Complexes.union(S.Reals) == S.Complexes
|
673 |
+
assert S.Complexes == ComplexRegion(S.Reals*S.Reals)
|
674 |
+
assert (S.Complexes == ComplexRegion(Interval(1, 2)*Interval(3, 4))) == False
|
675 |
+
assert str(S.Complexes) == "Complexes"
|
676 |
+
assert repr(S.Complexes) == "Complexes"
|
677 |
+
|
678 |
+
|
679 |
+
def take(n, iterable):
|
680 |
+
"Return first n items of the iterable as a list"
|
681 |
+
return list(itertools.islice(iterable, n))
|
682 |
+
|
683 |
+
|
684 |
+
def test_intersections():
|
685 |
+
assert S.Integers.intersect(S.Reals) == S.Integers
|
686 |
+
assert 5 in S.Integers.intersect(S.Reals)
|
687 |
+
assert 5 in S.Integers.intersect(S.Reals)
|
688 |
+
assert -5 not in S.Naturals.intersect(S.Reals)
|
689 |
+
assert 5.5 not in S.Integers.intersect(S.Reals)
|
690 |
+
assert 5 in S.Integers.intersect(Interval(3, oo))
|
691 |
+
assert -5 in S.Integers.intersect(Interval(-oo, 3))
|
692 |
+
assert all(x.is_Integer
|
693 |
+
for x in take(10, S.Integers.intersect(Interval(3, oo)) ))
|
694 |
+
|
695 |
+
|
696 |
+
def test_infinitely_indexed_set_1():
|
697 |
+
from sympy.abc import n, m
|
698 |
+
assert imageset(Lambda(n, n), S.Integers) == imageset(Lambda(m, m), S.Integers)
|
699 |
+
|
700 |
+
assert imageset(Lambda(n, 2*n), S.Integers).intersect(
|
701 |
+
imageset(Lambda(m, 2*m + 1), S.Integers)) is S.EmptySet
|
702 |
+
|
703 |
+
assert imageset(Lambda(n, 2*n), S.Integers).intersect(
|
704 |
+
imageset(Lambda(n, 2*n + 1), S.Integers)) is S.EmptySet
|
705 |
+
|
706 |
+
assert imageset(Lambda(m, 2*m), S.Integers).intersect(
|
707 |
+
imageset(Lambda(n, 3*n), S.Integers)).dummy_eq(
|
708 |
+
ImageSet(Lambda(t, 6*t), S.Integers))
|
709 |
+
|
710 |
+
assert imageset(x, x/2 + Rational(1, 3), S.Integers).intersect(S.Integers) is S.EmptySet
|
711 |
+
assert imageset(x, x/2 + S.Half, S.Integers).intersect(S.Integers) is S.Integers
|
712 |
+
|
713 |
+
# https://github.com/sympy/sympy/issues/17355
|
714 |
+
S53 = ImageSet(Lambda(n, 5*n + 3), S.Integers)
|
715 |
+
assert S53.intersect(S.Integers) == S53
|
716 |
+
|
717 |
+
|
718 |
+
def test_infinitely_indexed_set_2():
|
719 |
+
from sympy.abc import n
|
720 |
+
a = Symbol('a', integer=True)
|
721 |
+
assert imageset(Lambda(n, n), S.Integers) == \
|
722 |
+
imageset(Lambda(n, n + a), S.Integers)
|
723 |
+
assert imageset(Lambda(n, n + pi), S.Integers) == \
|
724 |
+
imageset(Lambda(n, n + a + pi), S.Integers)
|
725 |
+
assert imageset(Lambda(n, n), S.Integers) == \
|
726 |
+
imageset(Lambda(n, -n + a), S.Integers)
|
727 |
+
assert imageset(Lambda(n, -6*n), S.Integers) == \
|
728 |
+
ImageSet(Lambda(n, 6*n), S.Integers)
|
729 |
+
assert imageset(Lambda(n, 2*n + pi), S.Integers) == \
|
730 |
+
ImageSet(Lambda(n, 2*n + pi - 2), S.Integers)
|
731 |
+
|
732 |
+
|
733 |
+
def test_imageset_intersect_real():
|
734 |
+
from sympy.abc import n
|
735 |
+
assert imageset(Lambda(n, n + (n - 1)*(n + 1)*I), S.Integers).intersect(S.Reals) == FiniteSet(-1, 1)
|
736 |
+
im = (n - 1)*(n + S.Half)
|
737 |
+
assert imageset(Lambda(n, n + im*I), S.Integers
|
738 |
+
).intersect(S.Reals) == FiniteSet(1)
|
739 |
+
assert imageset(Lambda(n, n + im*(n + 1)*I), S.Naturals0
|
740 |
+
).intersect(S.Reals) == FiniteSet(1)
|
741 |
+
assert imageset(Lambda(n, n/2 + im.expand()*I), S.Integers
|
742 |
+
).intersect(S.Reals) == ImageSet(Lambda(x, x/2), ConditionSet(
|
743 |
+
n, Eq(n**2 - n/2 - S(1)/2, 0), S.Integers))
|
744 |
+
assert imageset(Lambda(n, n/(1/n - 1) + im*(n + 1)*I), S.Integers
|
745 |
+
).intersect(S.Reals) == FiniteSet(S.Half)
|
746 |
+
assert imageset(Lambda(n, n/(n - 6) +
|
747 |
+
(n - 3)*(n + 1)*I/(2*n + 2)), S.Integers).intersect(
|
748 |
+
S.Reals) == FiniteSet(-1)
|
749 |
+
assert imageset(Lambda(n, n/(n**2 - 9) +
|
750 |
+
(n - 3)*(n + 1)*I/(2*n + 2)), S.Integers).intersect(
|
751 |
+
S.Reals) is S.EmptySet
|
752 |
+
s = ImageSet(
|
753 |
+
Lambda(n, -I*(I*(2*pi*n - pi/4) + log(Abs(sqrt(-I))))),
|
754 |
+
S.Integers)
|
755 |
+
# s is unevaluated, but after intersection the result
|
756 |
+
# should be canonical
|
757 |
+
assert s.intersect(S.Reals) == imageset(
|
758 |
+
Lambda(n, 2*n*pi - pi/4), S.Integers) == ImageSet(
|
759 |
+
Lambda(n, 2*pi*n + pi*Rational(7, 4)), S.Integers)
|
760 |
+
|
761 |
+
|
762 |
+
def test_imageset_intersect_interval():
|
763 |
+
from sympy.abc import n
|
764 |
+
f1 = ImageSet(Lambda(n, n*pi), S.Integers)
|
765 |
+
f2 = ImageSet(Lambda(n, 2*n), Interval(0, pi))
|
766 |
+
f3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers)
|
767 |
+
# complex expressions
|
768 |
+
f4 = ImageSet(Lambda(n, n*I*pi), S.Integers)
|
769 |
+
f5 = ImageSet(Lambda(n, 2*I*n*pi + pi/2), S.Integers)
|
770 |
+
# non-linear expressions
|
771 |
+
f6 = ImageSet(Lambda(n, log(n)), S.Integers)
|
772 |
+
f7 = ImageSet(Lambda(n, n**2), S.Integers)
|
773 |
+
f8 = ImageSet(Lambda(n, Abs(n)), S.Integers)
|
774 |
+
f9 = ImageSet(Lambda(n, exp(n)), S.Naturals0)
|
775 |
+
|
776 |
+
assert f1.intersect(Interval(-1, 1)) == FiniteSet(0)
|
777 |
+
assert f1.intersect(Interval(0, 2*pi, False, True)) == FiniteSet(0, pi)
|
778 |
+
assert f2.intersect(Interval(1, 2)) == Interval(1, 2)
|
779 |
+
assert f3.intersect(Interval(-1, 1)) == S.EmptySet
|
780 |
+
assert f3.intersect(Interval(-5, 5)) == FiniteSet(pi*Rational(-3, 2), pi/2)
|
781 |
+
assert f4.intersect(Interval(-1, 1)) == FiniteSet(0)
|
782 |
+
assert f4.intersect(Interval(1, 2)) == S.EmptySet
|
783 |
+
assert f5.intersect(Interval(0, 1)) == S.EmptySet
|
784 |
+
assert f6.intersect(Interval(0, 1)) == FiniteSet(S.Zero, log(2))
|
785 |
+
assert f7.intersect(Interval(0, 10)) == Intersection(f7, Interval(0, 10))
|
786 |
+
assert f8.intersect(Interval(0, 2)) == Intersection(f8, Interval(0, 2))
|
787 |
+
assert f9.intersect(Interval(1, 2)) == Intersection(f9, Interval(1, 2))
|
788 |
+
|
789 |
+
|
790 |
+
def test_imageset_intersect_diophantine():
|
791 |
+
from sympy.abc import m, n
|
792 |
+
# Check that same lambda variable for both ImageSets is handled correctly
|
793 |
+
img1 = ImageSet(Lambda(n, 2*n + 1), S.Integers)
|
794 |
+
img2 = ImageSet(Lambda(n, 4*n + 1), S.Integers)
|
795 |
+
assert img1.intersect(img2) == img2
|
796 |
+
# Empty solution set returned by diophantine:
|
797 |
+
assert ImageSet(Lambda(n, 2*n), S.Integers).intersect(
|
798 |
+
ImageSet(Lambda(n, 2*n + 1), S.Integers)) == S.EmptySet
|
799 |
+
# Check intersection with S.Integers:
|
800 |
+
assert ImageSet(Lambda(n, 9/n + 20*n/3), S.Integers).intersect(
|
801 |
+
S.Integers) == FiniteSet(-61, -23, 23, 61)
|
802 |
+
# Single solution (2, 3) for diophantine solution:
|
803 |
+
assert ImageSet(Lambda(n, (n - 2)**2), S.Integers).intersect(
|
804 |
+
ImageSet(Lambda(n, -(n - 3)**2), S.Integers)) == FiniteSet(0)
|
805 |
+
# Single parametric solution for diophantine solution:
|
806 |
+
assert ImageSet(Lambda(n, n**2 + 5), S.Integers).intersect(
|
807 |
+
ImageSet(Lambda(m, 2*m), S.Integers)).dummy_eq(ImageSet(
|
808 |
+
Lambda(n, 4*n**2 + 4*n + 6), S.Integers))
|
809 |
+
# 4 non-parametric solution couples for dioph. equation:
|
810 |
+
assert ImageSet(Lambda(n, n**2 - 9), S.Integers).intersect(
|
811 |
+
ImageSet(Lambda(m, -m**2), S.Integers)) == FiniteSet(-9, 0)
|
812 |
+
# Double parametric solution for diophantine solution:
|
813 |
+
assert ImageSet(Lambda(m, m**2 + 40), S.Integers).intersect(
|
814 |
+
ImageSet(Lambda(n, 41*n), S.Integers)).dummy_eq(Intersection(
|
815 |
+
ImageSet(Lambda(m, m**2 + 40), S.Integers),
|
816 |
+
ImageSet(Lambda(n, 41*n), S.Integers)))
|
817 |
+
# Check that diophantine returns *all* (8) solutions (permute=True)
|
818 |
+
assert ImageSet(Lambda(n, n**4 - 2**4), S.Integers).intersect(
|
819 |
+
ImageSet(Lambda(m, -m**4 + 3**4), S.Integers)) == FiniteSet(0, 65)
|
820 |
+
assert ImageSet(Lambda(n, pi/12 + n*5*pi/12), S.Integers).intersect(
|
821 |
+
ImageSet(Lambda(n, 7*pi/12 + n*11*pi/12), S.Integers)).dummy_eq(ImageSet(
|
822 |
+
Lambda(n, 55*pi*n/12 + 17*pi/4), S.Integers))
|
823 |
+
# TypeError raised by diophantine (#18081)
|
824 |
+
assert ImageSet(Lambda(n, n*log(2)), S.Integers).intersection(
|
825 |
+
S.Integers).dummy_eq(Intersection(ImageSet(
|
826 |
+
Lambda(n, n*log(2)), S.Integers), S.Integers))
|
827 |
+
# NotImplementedError raised by diophantine (no solver for cubic_thue)
|
828 |
+
assert ImageSet(Lambda(n, n**3 + 1), S.Integers).intersect(
|
829 |
+
ImageSet(Lambda(n, n**3), S.Integers)).dummy_eq(Intersection(
|
830 |
+
ImageSet(Lambda(n, n**3 + 1), S.Integers),
|
831 |
+
ImageSet(Lambda(n, n**3), S.Integers)))
|
832 |
+
|
833 |
+
|
834 |
+
def test_infinitely_indexed_set_3():
|
835 |
+
from sympy.abc import n, m
|
836 |
+
assert imageset(Lambda(m, 2*pi*m), S.Integers).intersect(
|
837 |
+
imageset(Lambda(n, 3*pi*n), S.Integers)).dummy_eq(
|
838 |
+
ImageSet(Lambda(t, 6*pi*t), S.Integers))
|
839 |
+
assert imageset(Lambda(n, 2*n + 1), S.Integers) == \
|
840 |
+
imageset(Lambda(n, 2*n - 1), S.Integers)
|
841 |
+
assert imageset(Lambda(n, 3*n + 2), S.Integers) == \
|
842 |
+
imageset(Lambda(n, 3*n - 1), S.Integers)
|
843 |
+
|
844 |
+
|
845 |
+
def test_ImageSet_simplification():
|
846 |
+
from sympy.abc import n, m
|
847 |
+
assert imageset(Lambda(n, n), S.Integers) == S.Integers
|
848 |
+
assert imageset(Lambda(n, sin(n)),
|
849 |
+
imageset(Lambda(m, tan(m)), S.Integers)) == \
|
850 |
+
imageset(Lambda(m, sin(tan(m))), S.Integers)
|
851 |
+
assert imageset(n, 1 + 2*n, S.Naturals) == Range(3, oo, 2)
|
852 |
+
assert imageset(n, 1 + 2*n, S.Naturals0) == Range(1, oo, 2)
|
853 |
+
assert imageset(n, 1 - 2*n, S.Naturals) == Range(-1, -oo, -2)
|
854 |
+
|
855 |
+
|
856 |
+
def test_ImageSet_contains():
|
857 |
+
assert (2, S.Half) in imageset(x, (x, 1/x), S.Integers)
|
858 |
+
assert imageset(x, x + I*3, S.Integers).intersection(S.Reals) is S.EmptySet
|
859 |
+
i = Dummy(integer=True)
|
860 |
+
q = imageset(x, x + I*y, S.Integers).intersection(S.Reals)
|
861 |
+
assert q.subs(y, I*i).intersection(S.Integers) is S.Integers
|
862 |
+
q = imageset(x, x + I*y/x, S.Integers).intersection(S.Reals)
|
863 |
+
assert q.subs(y, 0) is S.Integers
|
864 |
+
assert q.subs(y, I*i*x).intersection(S.Integers) is S.Integers
|
865 |
+
z = cos(1)**2 + sin(1)**2 - 1
|
866 |
+
q = imageset(x, x + I*z, S.Integers).intersection(S.Reals)
|
867 |
+
assert q is not S.EmptySet
|
868 |
+
|
869 |
+
|
870 |
+
def test_ComplexRegion_contains():
|
871 |
+
r = Symbol('r', real=True)
|
872 |
+
# contains in ComplexRegion
|
873 |
+
a = Interval(2, 3)
|
874 |
+
b = Interval(4, 6)
|
875 |
+
c = Interval(7, 9)
|
876 |
+
c1 = ComplexRegion(a*b)
|
877 |
+
c2 = ComplexRegion(Union(a*b, c*a))
|
878 |
+
assert 2.5 + 4.5*I in c1
|
879 |
+
assert 2 + 4*I in c1
|
880 |
+
assert 3 + 4*I in c1
|
881 |
+
assert 8 + 2.5*I in c2
|
882 |
+
assert 2.5 + 6.1*I not in c1
|
883 |
+
assert 4.5 + 3.2*I not in c1
|
884 |
+
assert c1.contains(x) == Contains(x, c1, evaluate=False)
|
885 |
+
assert c1.contains(r) == False
|
886 |
+
assert c2.contains(x) == Contains(x, c2, evaluate=False)
|
887 |
+
assert c2.contains(r) == False
|
888 |
+
|
889 |
+
r1 = Interval(0, 1)
|
890 |
+
theta1 = Interval(0, 2*S.Pi)
|
891 |
+
c3 = ComplexRegion(r1*theta1, polar=True)
|
892 |
+
assert (0.5 + I*6/10) in c3
|
893 |
+
assert (S.Half + I*6/10) in c3
|
894 |
+
assert (S.Half + .6*I) in c3
|
895 |
+
assert (0.5 + .6*I) in c3
|
896 |
+
assert I in c3
|
897 |
+
assert 1 in c3
|
898 |
+
assert 0 in c3
|
899 |
+
assert 1 + I not in c3
|
900 |
+
assert 1 - I not in c3
|
901 |
+
assert c3.contains(x) == Contains(x, c3, evaluate=False)
|
902 |
+
assert c3.contains(r + 2*I) == Contains(
|
903 |
+
r + 2*I, c3, evaluate=False) # is in fact False
|
904 |
+
assert c3.contains(1/(1 + r**2)) == Contains(
|
905 |
+
1/(1 + r**2), c3, evaluate=False) # is in fact True
|
906 |
+
|
907 |
+
r2 = Interval(0, 3)
|
908 |
+
theta2 = Interval(pi, 2*pi, left_open=True)
|
909 |
+
c4 = ComplexRegion(r2*theta2, polar=True)
|
910 |
+
assert c4.contains(0) == True
|
911 |
+
assert c4.contains(2 + I) == False
|
912 |
+
assert c4.contains(-2 + I) == False
|
913 |
+
assert c4.contains(-2 - I) == True
|
914 |
+
assert c4.contains(2 - I) == True
|
915 |
+
assert c4.contains(-2) == False
|
916 |
+
assert c4.contains(2) == True
|
917 |
+
assert c4.contains(x) == Contains(x, c4, evaluate=False)
|
918 |
+
assert c4.contains(3/(1 + r**2)) == Contains(
|
919 |
+
3/(1 + r**2), c4, evaluate=False) # is in fact True
|
920 |
+
|
921 |
+
raises(ValueError, lambda: ComplexRegion(r1*theta1, polar=2))
|
922 |
+
|
923 |
+
|
924 |
+
def test_symbolic_Range():
|
925 |
+
n = Symbol('n')
|
926 |
+
raises(ValueError, lambda: Range(n)[0])
|
927 |
+
raises(IndexError, lambda: Range(n, n)[0])
|
928 |
+
raises(ValueError, lambda: Range(n, n+1)[0])
|
929 |
+
raises(ValueError, lambda: Range(n).size)
|
930 |
+
|
931 |
+
n = Symbol('n', integer=True)
|
932 |
+
raises(ValueError, lambda: Range(n)[0])
|
933 |
+
raises(IndexError, lambda: Range(n, n)[0])
|
934 |
+
assert Range(n, n+1)[0] == n
|
935 |
+
raises(ValueError, lambda: Range(n).size)
|
936 |
+
assert Range(n, n+1).size == 1
|
937 |
+
|
938 |
+
n = Symbol('n', integer=True, nonnegative=True)
|
939 |
+
raises(ValueError, lambda: Range(n)[0])
|
940 |
+
raises(IndexError, lambda: Range(n, n)[0])
|
941 |
+
assert Range(n+1)[0] == 0
|
942 |
+
assert Range(n, n+1)[0] == n
|
943 |
+
assert Range(n).size == n
|
944 |
+
assert Range(n+1).size == n+1
|
945 |
+
assert Range(n, n+1).size == 1
|
946 |
+
|
947 |
+
n = Symbol('n', integer=True, positive=True)
|
948 |
+
assert Range(n)[0] == 0
|
949 |
+
assert Range(n, n+1)[0] == n
|
950 |
+
assert Range(n).size == n
|
951 |
+
assert Range(n, n+1).size == 1
|
952 |
+
|
953 |
+
m = Symbol('m', integer=True, positive=True)
|
954 |
+
|
955 |
+
assert Range(n, n+m)[0] == n
|
956 |
+
assert Range(n, n+m).size == m
|
957 |
+
assert Range(n, n+1).size == 1
|
958 |
+
assert Range(n, n+m, 2).size == floor(m/2)
|
959 |
+
|
960 |
+
m = Symbol('m', integer=True, positive=True, even=True)
|
961 |
+
assert Range(n, n+m, 2).size == m/2
|
962 |
+
|
963 |
+
|
964 |
+
def test_issue_18400():
|
965 |
+
n = Symbol('n', integer=True)
|
966 |
+
raises(ValueError, lambda: imageset(lambda x: x*2, Range(n)))
|
967 |
+
|
968 |
+
n = Symbol('n', integer=True, positive=True)
|
969 |
+
# No exception
|
970 |
+
assert imageset(lambda x: x*2, Range(n)) == imageset(lambda x: x*2, Range(n))
|
971 |
+
|
972 |
+
|
973 |
+
def test_ComplexRegion_intersect():
|
974 |
+
# Polar form
|
975 |
+
X_axis = ComplexRegion(Interval(0, oo)*FiniteSet(0, S.Pi), polar=True)
|
976 |
+
|
977 |
+
unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
|
978 |
+
upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
|
979 |
+
upper_half_disk = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi), polar=True)
|
980 |
+
lower_half_disk = ComplexRegion(Interval(0, oo)*Interval(S.Pi, 2*S.Pi), polar=True)
|
981 |
+
right_half_disk = ComplexRegion(Interval(0, oo)*Interval(-S.Pi/2, S.Pi/2), polar=True)
|
982 |
+
first_quad_disk = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi/2), polar=True)
|
983 |
+
|
984 |
+
assert upper_half_disk.intersect(unit_disk) == upper_half_unit_disk
|
985 |
+
assert right_half_disk.intersect(first_quad_disk) == first_quad_disk
|
986 |
+
assert upper_half_disk.intersect(right_half_disk) == first_quad_disk
|
987 |
+
assert upper_half_disk.intersect(lower_half_disk) == X_axis
|
988 |
+
|
989 |
+
c1 = ComplexRegion(Interval(0, 4)*Interval(0, 2*S.Pi), polar=True)
|
990 |
+
assert c1.intersect(Interval(1, 5)) == Interval(1, 4)
|
991 |
+
assert c1.intersect(Interval(4, 9)) == FiniteSet(4)
|
992 |
+
assert c1.intersect(Interval(5, 12)) is S.EmptySet
|
993 |
+
|
994 |
+
# Rectangular form
|
995 |
+
X_axis = ComplexRegion(Interval(-oo, oo)*FiniteSet(0))
|
996 |
+
|
997 |
+
unit_square = ComplexRegion(Interval(-1, 1)*Interval(-1, 1))
|
998 |
+
upper_half_unit_square = ComplexRegion(Interval(-1, 1)*Interval(0, 1))
|
999 |
+
upper_half_plane = ComplexRegion(Interval(-oo, oo)*Interval(0, oo))
|
1000 |
+
lower_half_plane = ComplexRegion(Interval(-oo, oo)*Interval(-oo, 0))
|
1001 |
+
right_half_plane = ComplexRegion(Interval(0, oo)*Interval(-oo, oo))
|
1002 |
+
first_quad_plane = ComplexRegion(Interval(0, oo)*Interval(0, oo))
|
1003 |
+
|
1004 |
+
assert upper_half_plane.intersect(unit_square) == upper_half_unit_square
|
1005 |
+
assert right_half_plane.intersect(first_quad_plane) == first_quad_plane
|
1006 |
+
assert upper_half_plane.intersect(right_half_plane) == first_quad_plane
|
1007 |
+
assert upper_half_plane.intersect(lower_half_plane) == X_axis
|
1008 |
+
|
1009 |
+
c1 = ComplexRegion(Interval(-5, 5)*Interval(-10, 10))
|
1010 |
+
assert c1.intersect(Interval(2, 7)) == Interval(2, 5)
|
1011 |
+
assert c1.intersect(Interval(5, 7)) == FiniteSet(5)
|
1012 |
+
assert c1.intersect(Interval(6, 9)) is S.EmptySet
|
1013 |
+
|
1014 |
+
# unevaluated object
|
1015 |
+
C1 = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
|
1016 |
+
C2 = ComplexRegion(Interval(-1, 1)*Interval(-1, 1))
|
1017 |
+
assert C1.intersect(C2) == Intersection(C1, C2, evaluate=False)
|
1018 |
+
|
1019 |
+
|
1020 |
+
def test_ComplexRegion_union():
|
1021 |
+
# Polar form
|
1022 |
+
c1 = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
|
1023 |
+
c2 = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
|
1024 |
+
c3 = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi), polar=True)
|
1025 |
+
c4 = ComplexRegion(Interval(0, oo)*Interval(S.Pi, 2*S.Pi), polar=True)
|
1026 |
+
|
1027 |
+
p1 = Union(Interval(0, 1)*Interval(0, 2*S.Pi), Interval(0, 1)*Interval(0, S.Pi))
|
1028 |
+
p2 = Union(Interval(0, oo)*Interval(0, S.Pi), Interval(0, oo)*Interval(S.Pi, 2*S.Pi))
|
1029 |
+
|
1030 |
+
assert c1.union(c2) == ComplexRegion(p1, polar=True)
|
1031 |
+
assert c3.union(c4) == ComplexRegion(p2, polar=True)
|
1032 |
+
|
1033 |
+
# Rectangular form
|
1034 |
+
c5 = ComplexRegion(Interval(2, 5)*Interval(6, 9))
|
1035 |
+
c6 = ComplexRegion(Interval(4, 6)*Interval(10, 12))
|
1036 |
+
c7 = ComplexRegion(Interval(0, 10)*Interval(-10, 0))
|
1037 |
+
c8 = ComplexRegion(Interval(12, 16)*Interval(14, 20))
|
1038 |
+
|
1039 |
+
p3 = Union(Interval(2, 5)*Interval(6, 9), Interval(4, 6)*Interval(10, 12))
|
1040 |
+
p4 = Union(Interval(0, 10)*Interval(-10, 0), Interval(12, 16)*Interval(14, 20))
|
1041 |
+
|
1042 |
+
assert c5.union(c6) == ComplexRegion(p3)
|
1043 |
+
assert c7.union(c8) == ComplexRegion(p4)
|
1044 |
+
|
1045 |
+
assert c1.union(Interval(2, 4)) == Union(c1, Interval(2, 4), evaluate=False)
|
1046 |
+
assert c5.union(Interval(2, 4)) == Union(c5, ComplexRegion.from_real(Interval(2, 4)))
|
1047 |
+
|
1048 |
+
|
1049 |
+
def test_ComplexRegion_from_real():
|
1050 |
+
c1 = ComplexRegion(Interval(0, 1) * Interval(0, 2 * S.Pi), polar=True)
|
1051 |
+
|
1052 |
+
raises(ValueError, lambda: c1.from_real(c1))
|
1053 |
+
assert c1.from_real(Interval(-1, 1)) == ComplexRegion(Interval(-1, 1) * FiniteSet(0), False)
|
1054 |
+
|
1055 |
+
|
1056 |
+
def test_ComplexRegion_measure():
|
1057 |
+
a, b = Interval(2, 5), Interval(4, 8)
|
1058 |
+
theta1, theta2 = Interval(0, 2*S.Pi), Interval(0, S.Pi)
|
1059 |
+
c1 = ComplexRegion(a*b)
|
1060 |
+
c2 = ComplexRegion(Union(a*theta1, b*theta2), polar=True)
|
1061 |
+
|
1062 |
+
assert c1.measure == 12
|
1063 |
+
assert c2.measure == 9*pi
|
1064 |
+
|
1065 |
+
|
1066 |
+
def test_normalize_theta_set():
|
1067 |
+
# Interval
|
1068 |
+
assert normalize_theta_set(Interval(pi, 2*pi)) == \
|
1069 |
+
Union(FiniteSet(0), Interval.Ropen(pi, 2*pi))
|
1070 |
+
assert normalize_theta_set(Interval(pi*Rational(9, 2), 5*pi)) == Interval(pi/2, pi)
|
1071 |
+
assert normalize_theta_set(Interval(pi*Rational(-3, 2), pi/2)) == Interval.Ropen(0, 2*pi)
|
1072 |
+
assert normalize_theta_set(Interval.open(pi*Rational(-3, 2), pi/2)) == \
|
1073 |
+
Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi))
|
1074 |
+
assert normalize_theta_set(Interval.open(pi*Rational(-7, 2), pi*Rational(-3, 2))) == \
|
1075 |
+
Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi))
|
1076 |
+
assert normalize_theta_set(Interval(-pi/2, pi/2)) == \
|
1077 |
+
Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
|
1078 |
+
assert normalize_theta_set(Interval.open(-pi/2, pi/2)) == \
|
1079 |
+
Union(Interval.Ropen(0, pi/2), Interval.open(pi*Rational(3, 2), 2*pi))
|
1080 |
+
assert normalize_theta_set(Interval(-4*pi, 3*pi)) == Interval.Ropen(0, 2*pi)
|
1081 |
+
assert normalize_theta_set(Interval(pi*Rational(-3, 2), -pi/2)) == Interval(pi/2, pi*Rational(3, 2))
|
1082 |
+
assert normalize_theta_set(Interval.open(0, 2*pi)) == Interval.open(0, 2*pi)
|
1083 |
+
assert normalize_theta_set(Interval.Ropen(-pi/2, pi/2)) == \
|
1084 |
+
Union(Interval.Ropen(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
|
1085 |
+
assert normalize_theta_set(Interval.Lopen(-pi/2, pi/2)) == \
|
1086 |
+
Union(Interval(0, pi/2), Interval.open(pi*Rational(3, 2), 2*pi))
|
1087 |
+
assert normalize_theta_set(Interval(-pi/2, pi/2)) == \
|
1088 |
+
Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))
|
1089 |
+
assert normalize_theta_set(Interval.open(4*pi, pi*Rational(9, 2))) == Interval.open(0, pi/2)
|
1090 |
+
assert normalize_theta_set(Interval.Lopen(4*pi, pi*Rational(9, 2))) == Interval.Lopen(0, pi/2)
|
1091 |
+
assert normalize_theta_set(Interval.Ropen(4*pi, pi*Rational(9, 2))) == Interval.Ropen(0, pi/2)
|
1092 |
+
assert normalize_theta_set(Interval.open(3*pi, 5*pi)) == \
|
1093 |
+
Union(Interval.Ropen(0, pi), Interval.open(pi, 2*pi))
|
1094 |
+
|
1095 |
+
# FiniteSet
|
1096 |
+
assert normalize_theta_set(FiniteSet(0, pi, 3*pi)) == FiniteSet(0, pi)
|
1097 |
+
assert normalize_theta_set(FiniteSet(0, pi/2, pi, 2*pi)) == FiniteSet(0, pi/2, pi)
|
1098 |
+
assert normalize_theta_set(FiniteSet(0, -pi/2, -pi, -2*pi)) == FiniteSet(0, pi, pi*Rational(3, 2))
|
1099 |
+
assert normalize_theta_set(FiniteSet(pi*Rational(-3, 2), pi/2)) == \
|
1100 |
+
FiniteSet(pi/2)
|
1101 |
+
assert normalize_theta_set(FiniteSet(2*pi)) == FiniteSet(0)
|
1102 |
+
|
1103 |
+
# Unions
|
1104 |
+
assert normalize_theta_set(Union(Interval(0, pi/3), Interval(pi/2, pi))) == \
|
1105 |
+
Union(Interval(0, pi/3), Interval(pi/2, pi))
|
1106 |
+
assert normalize_theta_set(Union(Interval(0, pi), Interval(2*pi, pi*Rational(7, 3)))) == \
|
1107 |
+
Interval(0, pi)
|
1108 |
+
|
1109 |
+
# ValueError for non-real sets
|
1110 |
+
raises(ValueError, lambda: normalize_theta_set(S.Complexes))
|
1111 |
+
|
1112 |
+
# NotImplementedError for subset of reals
|
1113 |
+
raises(NotImplementedError, lambda: normalize_theta_set(Interval(0, 1)))
|
1114 |
+
|
1115 |
+
# NotImplementedError without pi as coefficient
|
1116 |
+
raises(NotImplementedError, lambda: normalize_theta_set(Interval(1, 2*pi)))
|
1117 |
+
raises(NotImplementedError, lambda: normalize_theta_set(Interval(2*pi, 10)))
|
1118 |
+
raises(NotImplementedError, lambda: normalize_theta_set(FiniteSet(0, 3, 3*pi)))
|
1119 |
+
|
1120 |
+
|
1121 |
+
def test_ComplexRegion_FiniteSet():
|
1122 |
+
x, y, z, a, b, c = symbols('x y z a b c')
|
1123 |
+
|
1124 |
+
# Issue #9669
|
1125 |
+
assert ComplexRegion(FiniteSet(a, b, c)*FiniteSet(x, y, z)) == \
|
1126 |
+
FiniteSet(a + I*x, a + I*y, a + I*z, b + I*x, b + I*y,
|
1127 |
+
b + I*z, c + I*x, c + I*y, c + I*z)
|
1128 |
+
assert ComplexRegion(FiniteSet(2)*FiniteSet(3)) == FiniteSet(2 + 3*I)
|
1129 |
+
|
1130 |
+
|
1131 |
+
def test_union_RealSubSet():
|
1132 |
+
assert (S.Complexes).union(Interval(1, 2)) == S.Complexes
|
1133 |
+
assert (S.Complexes).union(S.Integers) == S.Complexes
|
1134 |
+
|
1135 |
+
|
1136 |
+
def test_SetKind_fancySet():
|
1137 |
+
G = lambda *args: ImageSet(Lambda(x, x ** 2), *args)
|
1138 |
+
assert G(Interval(1, 4)).kind is SetKind(NumberKind)
|
1139 |
+
assert G(FiniteSet(1, 4)).kind is SetKind(NumberKind)
|
1140 |
+
assert S.Rationals.kind is SetKind(NumberKind)
|
1141 |
+
assert S.Naturals.kind is SetKind(NumberKind)
|
1142 |
+
assert S.Integers.kind is SetKind(NumberKind)
|
1143 |
+
assert Range(3).kind is SetKind(NumberKind)
|
1144 |
+
a = Interval(2, 3)
|
1145 |
+
b = Interval(4, 6)
|
1146 |
+
c1 = ComplexRegion(a*b)
|
1147 |
+
assert c1.kind is SetKind(TupleKind(NumberKind, NumberKind))
|
1148 |
+
|
1149 |
+
|
1150 |
+
def test_issue_9980():
|
1151 |
+
c1 = ComplexRegion(Interval(1, 2)*Interval(2, 3))
|
1152 |
+
c2 = ComplexRegion(Interval(1, 5)*Interval(1, 3))
|
1153 |
+
R = Union(c1, c2)
|
1154 |
+
assert simplify(R) == ComplexRegion(Union(Interval(1, 2)*Interval(2, 3), \
|
1155 |
+
Interval(1, 5)*Interval(1, 3)), False)
|
1156 |
+
assert c1.func(*c1.args) == c1
|
1157 |
+
assert R.func(*R.args) == R
|
1158 |
+
|
1159 |
+
|
1160 |
+
def test_issue_11732():
|
1161 |
+
interval12 = Interval(1, 2)
|
1162 |
+
finiteset1234 = FiniteSet(1, 2, 3, 4)
|
1163 |
+
pointComplex = Tuple(1, 5)
|
1164 |
+
|
1165 |
+
assert (interval12 in S.Naturals) == False
|
1166 |
+
assert (interval12 in S.Naturals0) == False
|
1167 |
+
assert (interval12 in S.Integers) == False
|
1168 |
+
assert (interval12 in S.Complexes) == False
|
1169 |
+
|
1170 |
+
assert (finiteset1234 in S.Naturals) == False
|
1171 |
+
assert (finiteset1234 in S.Naturals0) == False
|
1172 |
+
assert (finiteset1234 in S.Integers) == False
|
1173 |
+
assert (finiteset1234 in S.Complexes) == False
|
1174 |
+
|
1175 |
+
assert (pointComplex in S.Naturals) == False
|
1176 |
+
assert (pointComplex in S.Naturals0) == False
|
1177 |
+
assert (pointComplex in S.Integers) == False
|
1178 |
+
assert (pointComplex in S.Complexes) == True
|
1179 |
+
|
1180 |
+
|
1181 |
+
def test_issue_11730():
|
1182 |
+
unit = Interval(0, 1)
|
1183 |
+
square = ComplexRegion(unit ** 2)
|
1184 |
+
|
1185 |
+
assert Union(S.Complexes, FiniteSet(oo)) != S.Complexes
|
1186 |
+
assert Union(S.Complexes, FiniteSet(eye(4))) != S.Complexes
|
1187 |
+
assert Union(unit, square) == square
|
1188 |
+
assert Intersection(S.Reals, square) == unit
|
1189 |
+
|
1190 |
+
|
1191 |
+
def test_issue_11938():
|
1192 |
+
unit = Interval(0, 1)
|
1193 |
+
ival = Interval(1, 2)
|
1194 |
+
cr1 = ComplexRegion(ival * unit)
|
1195 |
+
|
1196 |
+
assert Intersection(cr1, S.Reals) == ival
|
1197 |
+
assert Intersection(cr1, unit) == FiniteSet(1)
|
1198 |
+
|
1199 |
+
arg1 = Interval(0, S.Pi)
|
1200 |
+
arg2 = FiniteSet(S.Pi)
|
1201 |
+
arg3 = Interval(S.Pi / 4, 3 * S.Pi / 4)
|
1202 |
+
cp1 = ComplexRegion(unit * arg1, polar=True)
|
1203 |
+
cp2 = ComplexRegion(unit * arg2, polar=True)
|
1204 |
+
cp3 = ComplexRegion(unit * arg3, polar=True)
|
1205 |
+
|
1206 |
+
assert Intersection(cp1, S.Reals) == Interval(-1, 1)
|
1207 |
+
assert Intersection(cp2, S.Reals) == Interval(-1, 0)
|
1208 |
+
assert Intersection(cp3, S.Reals) == FiniteSet(0)
|
1209 |
+
|
1210 |
+
|
1211 |
+
def test_issue_11914():
|
1212 |
+
a, b = Interval(0, 1), Interval(0, pi)
|
1213 |
+
c, d = Interval(2, 3), Interval(pi, 3 * pi / 2)
|
1214 |
+
cp1 = ComplexRegion(a * b, polar=True)
|
1215 |
+
cp2 = ComplexRegion(c * d, polar=True)
|
1216 |
+
|
1217 |
+
assert -3 in cp1.union(cp2)
|
1218 |
+
assert -3 in cp2.union(cp1)
|
1219 |
+
assert -5 not in cp1.union(cp2)
|
1220 |
+
|
1221 |
+
|
1222 |
+
def test_issue_9543():
|
1223 |
+
assert ImageSet(Lambda(x, x**2), S.Naturals).is_subset(S.Reals)
|
1224 |
+
|
1225 |
+
|
1226 |
+
def test_issue_16871():
|
1227 |
+
assert ImageSet(Lambda(x, x), FiniteSet(1)) == {1}
|
1228 |
+
assert ImageSet(Lambda(x, x - 3), S.Integers
|
1229 |
+
).intersection(S.Integers) is S.Integers
|
1230 |
+
|
1231 |
+
|
1232 |
+
@XFAIL
|
1233 |
+
def test_issue_16871b():
|
1234 |
+
assert ImageSet(Lambda(x, x - 3), S.Integers).is_subset(S.Integers)
|
1235 |
+
|
1236 |
+
|
1237 |
+
def test_issue_18050():
|
1238 |
+
assert imageset(Lambda(x, I*x + 1), S.Integers
|
1239 |
+
) == ImageSet(Lambda(x, I*x + 1), S.Integers)
|
1240 |
+
assert imageset(Lambda(x, 3*I*x + 4 + 8*I), S.Integers
|
1241 |
+
) == ImageSet(Lambda(x, 3*I*x + 4 + 2*I), S.Integers)
|
1242 |
+
# no 'Mod' for next 2 tests:
|
1243 |
+
assert imageset(Lambda(x, 2*x + 3*I), S.Integers
|
1244 |
+
) == ImageSet(Lambda(x, 2*x + 3*I), S.Integers)
|
1245 |
+
r = Symbol('r', positive=True)
|
1246 |
+
assert imageset(Lambda(x, r*x + 10), S.Integers
|
1247 |
+
) == ImageSet(Lambda(x, r*x + 10), S.Integers)
|
1248 |
+
# reduce real part:
|
1249 |
+
assert imageset(Lambda(x, 3*x + 8 + 5*I), S.Integers
|
1250 |
+
) == ImageSet(Lambda(x, 3*x + 2 + 5*I), S.Integers)
|
1251 |
+
|
1252 |
+
|
1253 |
+
def test_Rationals():
|
1254 |
+
assert S.Integers.is_subset(S.Rationals)
|
1255 |
+
assert S.Naturals.is_subset(S.Rationals)
|
1256 |
+
assert S.Naturals0.is_subset(S.Rationals)
|
1257 |
+
assert S.Rationals.is_subset(S.Reals)
|
1258 |
+
assert S.Rationals.inf is -oo
|
1259 |
+
assert S.Rationals.sup is oo
|
1260 |
+
it = iter(S.Rationals)
|
1261 |
+
assert [next(it) for i in range(12)] == [
|
1262 |
+
0, 1, -1, S.Half, 2, Rational(-1, 2), -2,
|
1263 |
+
Rational(1, 3), 3, Rational(-1, 3), -3, Rational(2, 3)]
|
1264 |
+
assert Basic() not in S.Rationals
|
1265 |
+
assert S.Half in S.Rationals
|
1266 |
+
assert S.Rationals.contains(0.5) == Contains(0.5, S.Rationals, evaluate=False)
|
1267 |
+
assert 2 in S.Rationals
|
1268 |
+
r = symbols('r', rational=True)
|
1269 |
+
assert r in S.Rationals
|
1270 |
+
raises(TypeError, lambda: x in S.Rationals)
|
1271 |
+
# issue #18134:
|
1272 |
+
assert S.Rationals.boundary == S.Reals
|
1273 |
+
assert S.Rationals.closure == S.Reals
|
1274 |
+
assert S.Rationals.is_open == False
|
1275 |
+
assert S.Rationals.is_closed == False
|
1276 |
+
|
1277 |
+
|
1278 |
+
def test_NZQRC_unions():
|
1279 |
+
# check that all trivial number set unions are simplified:
|
1280 |
+
nbrsets = (S.Naturals, S.Naturals0, S.Integers, S.Rationals,
|
1281 |
+
S.Reals, S.Complexes)
|
1282 |
+
unions = (Union(a, b) for a in nbrsets for b in nbrsets)
|
1283 |
+
assert all(u.is_Union is False for u in unions)
|
1284 |
+
|
1285 |
+
|
1286 |
+
def test_imageset_intersection():
|
1287 |
+
n = Dummy()
|
1288 |
+
s = ImageSet(Lambda(n, -I*(I*(2*pi*n - pi/4) +
|
1289 |
+
log(Abs(sqrt(-I))))), S.Integers)
|
1290 |
+
assert s.intersect(S.Reals) == ImageSet(
|
1291 |
+
Lambda(n, 2*pi*n + pi*Rational(7, 4)), S.Integers)
|
1292 |
+
|
1293 |
+
|
1294 |
+
def test_issue_17858():
|
1295 |
+
assert 1 in Range(-oo, oo)
|
1296 |
+
assert 0 in Range(oo, -oo, -1)
|
1297 |
+
assert oo not in Range(-oo, oo)
|
1298 |
+
assert -oo not in Range(-oo, oo)
|
1299 |
+
|
1300 |
+
def test_issue_17859():
|
1301 |
+
r = Range(-oo,oo)
|
1302 |
+
raises(ValueError,lambda: r[::2])
|
1303 |
+
raises(ValueError, lambda: r[::-2])
|
1304 |
+
r = Range(oo,-oo,-1)
|
1305 |
+
raises(ValueError,lambda: r[::2])
|
1306 |
+
raises(ValueError, lambda: r[::-2])
|
venv/lib/python3.10/site-packages/sympy/sets/tests/test_ordinals.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.sets.ordinals import Ordinal, OmegaPower, ord0, omega
|
2 |
+
from sympy.testing.pytest import raises
|
3 |
+
|
4 |
+
def test_string_ordinals():
|
5 |
+
assert str(omega) == 'w'
|
6 |
+
assert str(Ordinal(OmegaPower(5, 3), OmegaPower(3, 2))) == 'w**5*3 + w**3*2'
|
7 |
+
assert str(Ordinal(OmegaPower(5, 3), OmegaPower(0, 5))) == 'w**5*3 + 5'
|
8 |
+
assert str(Ordinal(OmegaPower(1, 3), OmegaPower(0, 5))) == 'w*3 + 5'
|
9 |
+
assert str(Ordinal(OmegaPower(omega + 1, 1), OmegaPower(3, 2))) == 'w**(w + 1) + w**3*2'
|
10 |
+
|
11 |
+
def test_addition_with_integers():
|
12 |
+
assert 3 + Ordinal(OmegaPower(5, 3)) == Ordinal(OmegaPower(5, 3))
|
13 |
+
assert Ordinal(OmegaPower(5, 3))+3 == Ordinal(OmegaPower(5, 3), OmegaPower(0, 3))
|
14 |
+
assert Ordinal(OmegaPower(5, 3), OmegaPower(0, 2))+3 == \
|
15 |
+
Ordinal(OmegaPower(5, 3), OmegaPower(0, 5))
|
16 |
+
|
17 |
+
|
18 |
+
def test_addition_with_ordinals():
|
19 |
+
assert Ordinal(OmegaPower(5, 3), OmegaPower(3, 2)) + Ordinal(OmegaPower(3, 3)) == \
|
20 |
+
Ordinal(OmegaPower(5, 3), OmegaPower(3, 5))
|
21 |
+
assert Ordinal(OmegaPower(5, 3), OmegaPower(3, 2)) + Ordinal(OmegaPower(4, 2)) == \
|
22 |
+
Ordinal(OmegaPower(5, 3), OmegaPower(4, 2))
|
23 |
+
assert Ordinal(OmegaPower(omega, 2), OmegaPower(3, 2)) + Ordinal(OmegaPower(4, 2)) == \
|
24 |
+
Ordinal(OmegaPower(omega, 2), OmegaPower(4, 2))
|
25 |
+
|
26 |
+
def test_comparison():
|
27 |
+
assert Ordinal(OmegaPower(5, 3)) > Ordinal(OmegaPower(4, 3), OmegaPower(2, 1))
|
28 |
+
assert Ordinal(OmegaPower(5, 3), OmegaPower(3, 2)) < Ordinal(OmegaPower(5, 4))
|
29 |
+
assert Ordinal(OmegaPower(5, 4)) < Ordinal(OmegaPower(5, 5), OmegaPower(4, 1))
|
30 |
+
|
31 |
+
assert Ordinal(OmegaPower(5, 3), OmegaPower(3, 2)) == \
|
32 |
+
Ordinal(OmegaPower(5, 3), OmegaPower(3, 2))
|
33 |
+
assert not Ordinal(OmegaPower(5, 3), OmegaPower(3, 2)) == Ordinal(OmegaPower(5, 3))
|
34 |
+
assert Ordinal(OmegaPower(omega, 3)) > Ordinal(OmegaPower(5, 3))
|
35 |
+
|
36 |
+
def test_multiplication_with_integers():
|
37 |
+
w = omega
|
38 |
+
assert 3*w == w
|
39 |
+
assert w*9 == Ordinal(OmegaPower(1, 9))
|
40 |
+
|
41 |
+
def test_multiplication():
|
42 |
+
w = omega
|
43 |
+
assert w*(w + 1) == w*w + w
|
44 |
+
assert (w + 1)*(w + 1) == w*w + w + 1
|
45 |
+
assert w*1 == w
|
46 |
+
assert 1*w == w
|
47 |
+
assert w*ord0 == ord0
|
48 |
+
assert ord0*w == ord0
|
49 |
+
assert w**w == w * w**w
|
50 |
+
assert (w**w)*w*w == w**(w + 2)
|
51 |
+
|
52 |
+
def test_exponentiation():
|
53 |
+
w = omega
|
54 |
+
assert w**2 == w*w
|
55 |
+
assert w**3 == w*w*w
|
56 |
+
assert w**(w + 1) == Ordinal(OmegaPower(omega + 1, 1))
|
57 |
+
assert (w**w)*(w**w) == w**(w*2)
|
58 |
+
|
59 |
+
def test_comapre_not_instance():
|
60 |
+
w = OmegaPower(omega + 1, 1)
|
61 |
+
assert(not (w == None))
|
62 |
+
assert(not (w < 5))
|
63 |
+
raises(TypeError, lambda: w < 6.66)
|
64 |
+
|
65 |
+
def test_is_successort():
|
66 |
+
w = Ordinal(OmegaPower(5, 1))
|
67 |
+
assert not w.is_successor_ordinal
|
venv/lib/python3.10/site-packages/sympy/sets/tests/test_powerset.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.expr import unchanged
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.symbol import Symbol
|
4 |
+
from sympy.sets.contains import Contains
|
5 |
+
from sympy.sets.fancysets import Interval
|
6 |
+
from sympy.sets.powerset import PowerSet
|
7 |
+
from sympy.sets.sets import FiniteSet
|
8 |
+
from sympy.testing.pytest import raises, XFAIL
|
9 |
+
|
10 |
+
|
11 |
+
def test_powerset_creation():
|
12 |
+
assert unchanged(PowerSet, FiniteSet(1, 2))
|
13 |
+
assert unchanged(PowerSet, S.EmptySet)
|
14 |
+
raises(ValueError, lambda: PowerSet(123))
|
15 |
+
assert unchanged(PowerSet, S.Reals)
|
16 |
+
assert unchanged(PowerSet, S.Integers)
|
17 |
+
|
18 |
+
|
19 |
+
def test_powerset_rewrite_FiniteSet():
|
20 |
+
assert PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet) == \
|
21 |
+
FiniteSet(S.EmptySet, FiniteSet(1), FiniteSet(2), FiniteSet(1, 2))
|
22 |
+
assert PowerSet(S.EmptySet).rewrite(FiniteSet) == FiniteSet(S.EmptySet)
|
23 |
+
assert PowerSet(S.Naturals).rewrite(FiniteSet) == PowerSet(S.Naturals)
|
24 |
+
|
25 |
+
|
26 |
+
def test_finiteset_rewrite_powerset():
|
27 |
+
assert FiniteSet(S.EmptySet).rewrite(PowerSet) == PowerSet(S.EmptySet)
|
28 |
+
assert FiniteSet(
|
29 |
+
S.EmptySet, FiniteSet(1),
|
30 |
+
FiniteSet(2), FiniteSet(1, 2)).rewrite(PowerSet) == \
|
31 |
+
PowerSet(FiniteSet(1, 2))
|
32 |
+
assert FiniteSet(1, 2, 3).rewrite(PowerSet) == FiniteSet(1, 2, 3)
|
33 |
+
|
34 |
+
|
35 |
+
def test_powerset__contains__():
|
36 |
+
subset_series = [
|
37 |
+
S.EmptySet,
|
38 |
+
FiniteSet(1, 2),
|
39 |
+
S.Naturals,
|
40 |
+
S.Naturals0,
|
41 |
+
S.Integers,
|
42 |
+
S.Rationals,
|
43 |
+
S.Reals,
|
44 |
+
S.Complexes]
|
45 |
+
|
46 |
+
l = len(subset_series)
|
47 |
+
for i in range(l):
|
48 |
+
for j in range(l):
|
49 |
+
if i <= j:
|
50 |
+
assert subset_series[i] in \
|
51 |
+
PowerSet(subset_series[j], evaluate=False)
|
52 |
+
else:
|
53 |
+
assert subset_series[i] not in \
|
54 |
+
PowerSet(subset_series[j], evaluate=False)
|
55 |
+
|
56 |
+
|
57 |
+
@XFAIL
|
58 |
+
def test_failing_powerset__contains__():
|
59 |
+
# XXX These are failing when evaluate=True,
|
60 |
+
# but using unevaluated PowerSet works fine.
|
61 |
+
assert FiniteSet(1, 2) not in PowerSet(S.EmptySet).rewrite(FiniteSet)
|
62 |
+
assert S.Naturals not in PowerSet(S.EmptySet).rewrite(FiniteSet)
|
63 |
+
assert S.Naturals not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
|
64 |
+
assert S.Naturals0 not in PowerSet(S.EmptySet).rewrite(FiniteSet)
|
65 |
+
assert S.Naturals0 not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
|
66 |
+
assert S.Integers not in PowerSet(S.EmptySet).rewrite(FiniteSet)
|
67 |
+
assert S.Integers not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
|
68 |
+
assert S.Rationals not in PowerSet(S.EmptySet).rewrite(FiniteSet)
|
69 |
+
assert S.Rationals not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
|
70 |
+
assert S.Reals not in PowerSet(S.EmptySet).rewrite(FiniteSet)
|
71 |
+
assert S.Reals not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
|
72 |
+
assert S.Complexes not in PowerSet(S.EmptySet).rewrite(FiniteSet)
|
73 |
+
assert S.Complexes not in PowerSet(FiniteSet(1, 2)).rewrite(FiniteSet)
|
74 |
+
|
75 |
+
|
76 |
+
def test_powerset__len__():
|
77 |
+
A = PowerSet(S.EmptySet, evaluate=False)
|
78 |
+
assert len(A) == 1
|
79 |
+
A = PowerSet(A, evaluate=False)
|
80 |
+
assert len(A) == 2
|
81 |
+
A = PowerSet(A, evaluate=False)
|
82 |
+
assert len(A) == 4
|
83 |
+
A = PowerSet(A, evaluate=False)
|
84 |
+
assert len(A) == 16
|
85 |
+
|
86 |
+
|
87 |
+
def test_powerset__iter__():
|
88 |
+
a = PowerSet(FiniteSet(1, 2)).__iter__()
|
89 |
+
assert next(a) == S.EmptySet
|
90 |
+
assert next(a) == FiniteSet(1)
|
91 |
+
assert next(a) == FiniteSet(2)
|
92 |
+
assert next(a) == FiniteSet(1, 2)
|
93 |
+
|
94 |
+
a = PowerSet(S.Naturals).__iter__()
|
95 |
+
assert next(a) == S.EmptySet
|
96 |
+
assert next(a) == FiniteSet(1)
|
97 |
+
assert next(a) == FiniteSet(2)
|
98 |
+
assert next(a) == FiniteSet(1, 2)
|
99 |
+
assert next(a) == FiniteSet(3)
|
100 |
+
assert next(a) == FiniteSet(1, 3)
|
101 |
+
assert next(a) == FiniteSet(2, 3)
|
102 |
+
assert next(a) == FiniteSet(1, 2, 3)
|
103 |
+
|
104 |
+
|
105 |
+
def test_powerset_contains():
|
106 |
+
A = PowerSet(FiniteSet(1), evaluate=False)
|
107 |
+
assert A.contains(2) == Contains(2, A)
|
108 |
+
|
109 |
+
x = Symbol('x')
|
110 |
+
|
111 |
+
A = PowerSet(FiniteSet(x), evaluate=False)
|
112 |
+
assert A.contains(FiniteSet(1)) == Contains(FiniteSet(1), A)
|
113 |
+
|
114 |
+
|
115 |
+
def test_powerset_method():
|
116 |
+
# EmptySet
|
117 |
+
A = FiniteSet()
|
118 |
+
pset = A.powerset()
|
119 |
+
assert len(pset) == 1
|
120 |
+
assert pset == FiniteSet(S.EmptySet)
|
121 |
+
|
122 |
+
# FiniteSets
|
123 |
+
A = FiniteSet(1, 2)
|
124 |
+
pset = A.powerset()
|
125 |
+
assert len(pset) == 2**len(A)
|
126 |
+
assert pset == FiniteSet(FiniteSet(), FiniteSet(1),
|
127 |
+
FiniteSet(2), A)
|
128 |
+
# Not finite sets
|
129 |
+
A = Interval(0, 1)
|
130 |
+
assert A.powerset() == PowerSet(A)
|
131 |
+
|
132 |
+
def test_is_subset():
|
133 |
+
# covers line 101-102
|
134 |
+
# initialize powerset(1), which is a subset of powerset(1,2)
|
135 |
+
subset = PowerSet(FiniteSet(1))
|
136 |
+
pset = PowerSet(FiniteSet(1, 2))
|
137 |
+
bad_set = PowerSet(FiniteSet(2, 3))
|
138 |
+
# assert "subset" is subset of pset == True
|
139 |
+
assert subset.is_subset(pset)
|
140 |
+
# assert "bad_set" is subset of pset == False
|
141 |
+
assert not pset.is_subset(bad_set)
|
venv/lib/python3.10/site-packages/sympy/sets/tests/test_setexpr.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.sets.setexpr import SetExpr
|
2 |
+
from sympy.sets import Interval, FiniteSet, Intersection, ImageSet, Union
|
3 |
+
|
4 |
+
from sympy.core.expr import Expr
|
5 |
+
from sympy.core.function import Lambda
|
6 |
+
from sympy.core.numbers import (I, Rational, oo)
|
7 |
+
from sympy.core.singleton import S
|
8 |
+
from sympy.core.symbol import (Dummy, Symbol, symbols)
|
9 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
10 |
+
from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
|
11 |
+
from sympy.functions.elementary.trigonometric import cos
|
12 |
+
from sympy.sets.sets import Set
|
13 |
+
|
14 |
+
|
15 |
+
a, x = symbols("a, x")
|
16 |
+
_d = Dummy("d")
|
17 |
+
|
18 |
+
|
19 |
+
def test_setexpr():
|
20 |
+
se = SetExpr(Interval(0, 1))
|
21 |
+
assert isinstance(se.set, Set)
|
22 |
+
assert isinstance(se, Expr)
|
23 |
+
|
24 |
+
|
25 |
+
def test_scalar_funcs():
|
26 |
+
assert SetExpr(Interval(0, 1)).set == Interval(0, 1)
|
27 |
+
a, b = Symbol('a', real=True), Symbol('b', real=True)
|
28 |
+
a, b = 1, 2
|
29 |
+
# TODO: add support for more functions in the future:
|
30 |
+
for f in [exp, log]:
|
31 |
+
input_se = f(SetExpr(Interval(a, b)))
|
32 |
+
output = input_se.set
|
33 |
+
expected = Interval(Min(f(a), f(b)), Max(f(a), f(b)))
|
34 |
+
assert output == expected
|
35 |
+
|
36 |
+
|
37 |
+
def test_Add_Mul():
|
38 |
+
assert (SetExpr(Interval(0, 1)) + 1).set == Interval(1, 2)
|
39 |
+
assert (SetExpr(Interval(0, 1))*2).set == Interval(0, 2)
|
40 |
+
|
41 |
+
|
42 |
+
def test_Pow():
|
43 |
+
assert (SetExpr(Interval(0, 2))**2).set == Interval(0, 4)
|
44 |
+
|
45 |
+
|
46 |
+
def test_compound():
|
47 |
+
assert (exp(SetExpr(Interval(0, 1))*2 + 1)).set == \
|
48 |
+
Interval(exp(1), exp(3))
|
49 |
+
|
50 |
+
|
51 |
+
def test_Interval_Interval():
|
52 |
+
assert (SetExpr(Interval(1, 2)) + SetExpr(Interval(10, 20))).set == \
|
53 |
+
Interval(11, 22)
|
54 |
+
assert (SetExpr(Interval(1, 2))*SetExpr(Interval(10, 20))).set == \
|
55 |
+
Interval(10, 40)
|
56 |
+
|
57 |
+
|
58 |
+
def test_FiniteSet_FiniteSet():
|
59 |
+
assert (SetExpr(FiniteSet(1, 2, 3)) + SetExpr(FiniteSet(1, 2))).set == \
|
60 |
+
FiniteSet(2, 3, 4, 5)
|
61 |
+
assert (SetExpr(FiniteSet(1, 2, 3))*SetExpr(FiniteSet(1, 2))).set == \
|
62 |
+
FiniteSet(1, 2, 3, 4, 6)
|
63 |
+
|
64 |
+
|
65 |
+
def test_Interval_FiniteSet():
|
66 |
+
assert (SetExpr(FiniteSet(1, 2)) + SetExpr(Interval(0, 10))).set == \
|
67 |
+
Interval(1, 12)
|
68 |
+
|
69 |
+
|
70 |
+
def test_Many_Sets():
|
71 |
+
assert (SetExpr(Interval(0, 1)) +
|
72 |
+
SetExpr(Interval(2, 3)) +
|
73 |
+
SetExpr(FiniteSet(10, 11, 12))).set == Interval(12, 16)
|
74 |
+
|
75 |
+
|
76 |
+
def test_same_setexprs_are_not_identical():
|
77 |
+
a = SetExpr(FiniteSet(0, 1))
|
78 |
+
b = SetExpr(FiniteSet(0, 1))
|
79 |
+
assert (a + b).set == FiniteSet(0, 1, 2)
|
80 |
+
|
81 |
+
# Cannot detect the set being the same:
|
82 |
+
# assert (a + a).set == FiniteSet(0, 2)
|
83 |
+
|
84 |
+
|
85 |
+
def test_Interval_arithmetic():
|
86 |
+
i12cc = SetExpr(Interval(1, 2))
|
87 |
+
i12lo = SetExpr(Interval.Lopen(1, 2))
|
88 |
+
i12ro = SetExpr(Interval.Ropen(1, 2))
|
89 |
+
i12o = SetExpr(Interval.open(1, 2))
|
90 |
+
|
91 |
+
n23cc = SetExpr(Interval(-2, 3))
|
92 |
+
n23lo = SetExpr(Interval.Lopen(-2, 3))
|
93 |
+
n23ro = SetExpr(Interval.Ropen(-2, 3))
|
94 |
+
n23o = SetExpr(Interval.open(-2, 3))
|
95 |
+
|
96 |
+
n3n2cc = SetExpr(Interval(-3, -2))
|
97 |
+
|
98 |
+
assert i12cc + i12cc == SetExpr(Interval(2, 4))
|
99 |
+
assert i12cc - i12cc == SetExpr(Interval(-1, 1))
|
100 |
+
assert i12cc*i12cc == SetExpr(Interval(1, 4))
|
101 |
+
assert i12cc/i12cc == SetExpr(Interval(S.Half, 2))
|
102 |
+
assert i12cc**2 == SetExpr(Interval(1, 4))
|
103 |
+
assert i12cc**3 == SetExpr(Interval(1, 8))
|
104 |
+
|
105 |
+
assert i12lo + i12ro == SetExpr(Interval.open(2, 4))
|
106 |
+
assert i12lo - i12ro == SetExpr(Interval.Lopen(-1, 1))
|
107 |
+
assert i12lo*i12ro == SetExpr(Interval.open(1, 4))
|
108 |
+
assert i12lo/i12ro == SetExpr(Interval.Lopen(S.Half, 2))
|
109 |
+
assert i12lo + i12lo == SetExpr(Interval.Lopen(2, 4))
|
110 |
+
assert i12lo - i12lo == SetExpr(Interval.open(-1, 1))
|
111 |
+
assert i12lo*i12lo == SetExpr(Interval.Lopen(1, 4))
|
112 |
+
assert i12lo/i12lo == SetExpr(Interval.open(S.Half, 2))
|
113 |
+
assert i12lo + i12cc == SetExpr(Interval.Lopen(2, 4))
|
114 |
+
assert i12lo - i12cc == SetExpr(Interval.Lopen(-1, 1))
|
115 |
+
assert i12lo*i12cc == SetExpr(Interval.Lopen(1, 4))
|
116 |
+
assert i12lo/i12cc == SetExpr(Interval.Lopen(S.Half, 2))
|
117 |
+
assert i12lo + i12o == SetExpr(Interval.open(2, 4))
|
118 |
+
assert i12lo - i12o == SetExpr(Interval.open(-1, 1))
|
119 |
+
assert i12lo*i12o == SetExpr(Interval.open(1, 4))
|
120 |
+
assert i12lo/i12o == SetExpr(Interval.open(S.Half, 2))
|
121 |
+
assert i12lo**2 == SetExpr(Interval.Lopen(1, 4))
|
122 |
+
assert i12lo**3 == SetExpr(Interval.Lopen(1, 8))
|
123 |
+
|
124 |
+
assert i12ro + i12ro == SetExpr(Interval.Ropen(2, 4))
|
125 |
+
assert i12ro - i12ro == SetExpr(Interval.open(-1, 1))
|
126 |
+
assert i12ro*i12ro == SetExpr(Interval.Ropen(1, 4))
|
127 |
+
assert i12ro/i12ro == SetExpr(Interval.open(S.Half, 2))
|
128 |
+
assert i12ro + i12cc == SetExpr(Interval.Ropen(2, 4))
|
129 |
+
assert i12ro - i12cc == SetExpr(Interval.Ropen(-1, 1))
|
130 |
+
assert i12ro*i12cc == SetExpr(Interval.Ropen(1, 4))
|
131 |
+
assert i12ro/i12cc == SetExpr(Interval.Ropen(S.Half, 2))
|
132 |
+
assert i12ro + i12o == SetExpr(Interval.open(2, 4))
|
133 |
+
assert i12ro - i12o == SetExpr(Interval.open(-1, 1))
|
134 |
+
assert i12ro*i12o == SetExpr(Interval.open(1, 4))
|
135 |
+
assert i12ro/i12o == SetExpr(Interval.open(S.Half, 2))
|
136 |
+
assert i12ro**2 == SetExpr(Interval.Ropen(1, 4))
|
137 |
+
assert i12ro**3 == SetExpr(Interval.Ropen(1, 8))
|
138 |
+
|
139 |
+
assert i12o + i12lo == SetExpr(Interval.open(2, 4))
|
140 |
+
assert i12o - i12lo == SetExpr(Interval.open(-1, 1))
|
141 |
+
assert i12o*i12lo == SetExpr(Interval.open(1, 4))
|
142 |
+
assert i12o/i12lo == SetExpr(Interval.open(S.Half, 2))
|
143 |
+
assert i12o + i12ro == SetExpr(Interval.open(2, 4))
|
144 |
+
assert i12o - i12ro == SetExpr(Interval.open(-1, 1))
|
145 |
+
assert i12o*i12ro == SetExpr(Interval.open(1, 4))
|
146 |
+
assert i12o/i12ro == SetExpr(Interval.open(S.Half, 2))
|
147 |
+
assert i12o + i12cc == SetExpr(Interval.open(2, 4))
|
148 |
+
assert i12o - i12cc == SetExpr(Interval.open(-1, 1))
|
149 |
+
assert i12o*i12cc == SetExpr(Interval.open(1, 4))
|
150 |
+
assert i12o/i12cc == SetExpr(Interval.open(S.Half, 2))
|
151 |
+
assert i12o**2 == SetExpr(Interval.open(1, 4))
|
152 |
+
assert i12o**3 == SetExpr(Interval.open(1, 8))
|
153 |
+
|
154 |
+
assert n23cc + n23cc == SetExpr(Interval(-4, 6))
|
155 |
+
assert n23cc - n23cc == SetExpr(Interval(-5, 5))
|
156 |
+
assert n23cc*n23cc == SetExpr(Interval(-6, 9))
|
157 |
+
assert n23cc/n23cc == SetExpr(Interval.open(-oo, oo))
|
158 |
+
assert n23cc + n23ro == SetExpr(Interval.Ropen(-4, 6))
|
159 |
+
assert n23cc - n23ro == SetExpr(Interval.Lopen(-5, 5))
|
160 |
+
assert n23cc*n23ro == SetExpr(Interval.Ropen(-6, 9))
|
161 |
+
assert n23cc/n23ro == SetExpr(Interval.Lopen(-oo, oo))
|
162 |
+
assert n23cc + n23lo == SetExpr(Interval.Lopen(-4, 6))
|
163 |
+
assert n23cc - n23lo == SetExpr(Interval.Ropen(-5, 5))
|
164 |
+
assert n23cc*n23lo == SetExpr(Interval(-6, 9))
|
165 |
+
assert n23cc/n23lo == SetExpr(Interval.open(-oo, oo))
|
166 |
+
assert n23cc + n23o == SetExpr(Interval.open(-4, 6))
|
167 |
+
assert n23cc - n23o == SetExpr(Interval.open(-5, 5))
|
168 |
+
assert n23cc*n23o == SetExpr(Interval.open(-6, 9))
|
169 |
+
assert n23cc/n23o == SetExpr(Interval.open(-oo, oo))
|
170 |
+
assert n23cc**2 == SetExpr(Interval(0, 9))
|
171 |
+
assert n23cc**3 == SetExpr(Interval(-8, 27))
|
172 |
+
|
173 |
+
n32cc = SetExpr(Interval(-3, 2))
|
174 |
+
n32lo = SetExpr(Interval.Lopen(-3, 2))
|
175 |
+
n32ro = SetExpr(Interval.Ropen(-3, 2))
|
176 |
+
assert n32cc*n32lo == SetExpr(Interval.Ropen(-6, 9))
|
177 |
+
assert n32cc*n32cc == SetExpr(Interval(-6, 9))
|
178 |
+
assert n32lo*n32cc == SetExpr(Interval.Ropen(-6, 9))
|
179 |
+
assert n32cc*n32ro == SetExpr(Interval(-6, 9))
|
180 |
+
assert n32lo*n32ro == SetExpr(Interval.Ropen(-6, 9))
|
181 |
+
assert n32cc/n32lo == SetExpr(Interval.Ropen(-oo, oo))
|
182 |
+
assert i12cc/n32lo == SetExpr(Interval.Ropen(-oo, oo))
|
183 |
+
|
184 |
+
assert n3n2cc**2 == SetExpr(Interval(4, 9))
|
185 |
+
assert n3n2cc**3 == SetExpr(Interval(-27, -8))
|
186 |
+
|
187 |
+
assert n23cc + i12cc == SetExpr(Interval(-1, 5))
|
188 |
+
assert n23cc - i12cc == SetExpr(Interval(-4, 2))
|
189 |
+
assert n23cc*i12cc == SetExpr(Interval(-4, 6))
|
190 |
+
assert n23cc/i12cc == SetExpr(Interval(-2, 3))
|
191 |
+
|
192 |
+
|
193 |
+
def test_SetExpr_Intersection():
|
194 |
+
x, y, z, w = symbols("x y z w")
|
195 |
+
set1 = Interval(x, y)
|
196 |
+
set2 = Interval(w, z)
|
197 |
+
inter = Intersection(set1, set2)
|
198 |
+
se = SetExpr(inter)
|
199 |
+
assert exp(se).set == Intersection(
|
200 |
+
ImageSet(Lambda(x, exp(x)), set1),
|
201 |
+
ImageSet(Lambda(x, exp(x)), set2))
|
202 |
+
assert cos(se).set == ImageSet(Lambda(x, cos(x)), inter)
|
203 |
+
|
204 |
+
|
205 |
+
def test_SetExpr_Interval_div():
|
206 |
+
# TODO: some expressions cannot be calculated due to bugs (currently
|
207 |
+
# commented):
|
208 |
+
assert SetExpr(Interval(-3, -2))/SetExpr(Interval(-2, 1)) == SetExpr(Interval(-oo, oo))
|
209 |
+
assert SetExpr(Interval(2, 3))/SetExpr(Interval(-2, 2)) == SetExpr(Interval(-oo, oo))
|
210 |
+
|
211 |
+
assert SetExpr(Interval(-3, -2))/SetExpr(Interval(0, 4)) == SetExpr(Interval(-oo, Rational(-1, 2)))
|
212 |
+
assert SetExpr(Interval(2, 4))/SetExpr(Interval(-3, 0)) == SetExpr(Interval(-oo, Rational(-2, 3)))
|
213 |
+
assert SetExpr(Interval(2, 4))/SetExpr(Interval(0, 3)) == SetExpr(Interval(Rational(2, 3), oo))
|
214 |
+
|
215 |
+
# assert SetExpr(Interval(0, 1))/SetExpr(Interval(0, 1)) == SetExpr(Interval(0, oo))
|
216 |
+
# assert SetExpr(Interval(-1, 0))/SetExpr(Interval(0, 1)) == SetExpr(Interval(-oo, 0))
|
217 |
+
assert SetExpr(Interval(-1, 2))/SetExpr(Interval(-2, 2)) == SetExpr(Interval(-oo, oo))
|
218 |
+
|
219 |
+
assert 1/SetExpr(Interval(-1, 2)) == SetExpr(Union(Interval(-oo, -1), Interval(S.Half, oo)))
|
220 |
+
|
221 |
+
assert 1/SetExpr(Interval(0, 2)) == SetExpr(Interval(S.Half, oo))
|
222 |
+
assert (-1)/SetExpr(Interval(0, 2)) == SetExpr(Interval(-oo, Rational(-1, 2)))
|
223 |
+
assert 1/SetExpr(Interval(-oo, 0)) == SetExpr(Interval.open(-oo, 0))
|
224 |
+
assert 1/SetExpr(Interval(-1, 0)) == SetExpr(Interval(-oo, -1))
|
225 |
+
# assert (-2)/SetExpr(Interval(-oo, 0)) == SetExpr(Interval(0, oo))
|
226 |
+
# assert 1/SetExpr(Interval(-oo, -1)) == SetExpr(Interval(-1, 0))
|
227 |
+
|
228 |
+
# assert SetExpr(Interval(1, 2))/a == Mul(SetExpr(Interval(1, 2)), 1/a, evaluate=False)
|
229 |
+
|
230 |
+
# assert SetExpr(Interval(1, 2))/0 == SetExpr(Interval(1, 2))*zoo
|
231 |
+
# assert SetExpr(Interval(1, oo))/oo == SetExpr(Interval(0, oo))
|
232 |
+
# assert SetExpr(Interval(1, oo))/(-oo) == SetExpr(Interval(-oo, 0))
|
233 |
+
# assert SetExpr(Interval(-oo, -1))/oo == SetExpr(Interval(-oo, 0))
|
234 |
+
# assert SetExpr(Interval(-oo, -1))/(-oo) == SetExpr(Interval(0, oo))
|
235 |
+
# assert SetExpr(Interval(-oo, oo))/oo == SetExpr(Interval(-oo, oo))
|
236 |
+
# assert SetExpr(Interval(-oo, oo))/(-oo) == SetExpr(Interval(-oo, oo))
|
237 |
+
# assert SetExpr(Interval(-1, oo))/oo == SetExpr(Interval(0, oo))
|
238 |
+
# assert SetExpr(Interval(-1, oo))/(-oo) == SetExpr(Interval(-oo, 0))
|
239 |
+
# assert SetExpr(Interval(-oo, 1))/oo == SetExpr(Interval(-oo, 0))
|
240 |
+
# assert SetExpr(Interval(-oo, 1))/(-oo) == SetExpr(Interval(0, oo))
|
241 |
+
|
242 |
+
|
243 |
+
def test_SetExpr_Interval_pow():
|
244 |
+
assert SetExpr(Interval(0, 2))**2 == SetExpr(Interval(0, 4))
|
245 |
+
assert SetExpr(Interval(-1, 1))**2 == SetExpr(Interval(0, 1))
|
246 |
+
assert SetExpr(Interval(1, 2))**2 == SetExpr(Interval(1, 4))
|
247 |
+
assert SetExpr(Interval(-1, 2))**3 == SetExpr(Interval(-1, 8))
|
248 |
+
assert SetExpr(Interval(-1, 1))**0 == SetExpr(FiniteSet(1))
|
249 |
+
|
250 |
+
|
251 |
+
assert SetExpr(Interval(1, 2))**Rational(5, 2) == SetExpr(Interval(1, 4*sqrt(2)))
|
252 |
+
#assert SetExpr(Interval(-1, 2))**Rational(1, 3) == SetExpr(Interval(-1, 2**Rational(1, 3)))
|
253 |
+
#assert SetExpr(Interval(0, 2))**S.Half == SetExpr(Interval(0, sqrt(2)))
|
254 |
+
|
255 |
+
#assert SetExpr(Interval(-4, 2))**Rational(2, 3) == SetExpr(Interval(0, 2*2**Rational(1, 3)))
|
256 |
+
|
257 |
+
#assert SetExpr(Interval(-1, 5))**S.Half == SetExpr(Interval(0, sqrt(5)))
|
258 |
+
#assert SetExpr(Interval(-oo, 2))**S.Half == SetExpr(Interval(0, sqrt(2)))
|
259 |
+
#assert SetExpr(Interval(-2, 3))**(Rational(-1, 4)) == SetExpr(Interval(0, oo))
|
260 |
+
|
261 |
+
assert SetExpr(Interval(1, 5))**(-2) == SetExpr(Interval(Rational(1, 25), 1))
|
262 |
+
assert SetExpr(Interval(-1, 3))**(-2) == SetExpr(Interval(0, oo))
|
263 |
+
|
264 |
+
assert SetExpr(Interval(0, 2))**(-2) == SetExpr(Interval(Rational(1, 4), oo))
|
265 |
+
assert SetExpr(Interval(-1, 2))**(-3) == SetExpr(Union(Interval(-oo, -1), Interval(Rational(1, 8), oo)))
|
266 |
+
assert SetExpr(Interval(-3, -2))**(-3) == SetExpr(Interval(Rational(-1, 8), Rational(-1, 27)))
|
267 |
+
assert SetExpr(Interval(-3, -2))**(-2) == SetExpr(Interval(Rational(1, 9), Rational(1, 4)))
|
268 |
+
#assert SetExpr(Interval(0, oo))**S.Half == SetExpr(Interval(0, oo))
|
269 |
+
#assert SetExpr(Interval(-oo, -1))**Rational(1, 3) == SetExpr(Interval(-oo, -1))
|
270 |
+
#assert SetExpr(Interval(-2, 3))**(Rational(-1, 3)) == SetExpr(Interval(-oo, oo))
|
271 |
+
|
272 |
+
assert SetExpr(Interval(-oo, 0))**(-2) == SetExpr(Interval.open(0, oo))
|
273 |
+
assert SetExpr(Interval(-2, 0))**(-2) == SetExpr(Interval(Rational(1, 4), oo))
|
274 |
+
|
275 |
+
assert SetExpr(Interval(Rational(1, 3), S.Half))**oo == SetExpr(FiniteSet(0))
|
276 |
+
assert SetExpr(Interval(0, S.Half))**oo == SetExpr(FiniteSet(0))
|
277 |
+
assert SetExpr(Interval(S.Half, 1))**oo == SetExpr(Interval(0, oo))
|
278 |
+
assert SetExpr(Interval(0, 1))**oo == SetExpr(Interval(0, oo))
|
279 |
+
assert SetExpr(Interval(2, 3))**oo == SetExpr(FiniteSet(oo))
|
280 |
+
assert SetExpr(Interval(1, 2))**oo == SetExpr(Interval(0, oo))
|
281 |
+
assert SetExpr(Interval(S.Half, 3))**oo == SetExpr(Interval(0, oo))
|
282 |
+
assert SetExpr(Interval(Rational(-1, 3), Rational(-1, 4)))**oo == SetExpr(FiniteSet(0))
|
283 |
+
assert SetExpr(Interval(-1, Rational(-1, 2)))**oo == SetExpr(Interval(-oo, oo))
|
284 |
+
assert SetExpr(Interval(-3, -2))**oo == SetExpr(FiniteSet(-oo, oo))
|
285 |
+
assert SetExpr(Interval(-2, -1))**oo == SetExpr(Interval(-oo, oo))
|
286 |
+
assert SetExpr(Interval(-2, Rational(-1, 2)))**oo == SetExpr(Interval(-oo, oo))
|
287 |
+
assert SetExpr(Interval(Rational(-1, 2), S.Half))**oo == SetExpr(FiniteSet(0))
|
288 |
+
assert SetExpr(Interval(Rational(-1, 2), 1))**oo == SetExpr(Interval(0, oo))
|
289 |
+
assert SetExpr(Interval(Rational(-2, 3), 2))**oo == SetExpr(Interval(0, oo))
|
290 |
+
assert SetExpr(Interval(-1, 1))**oo == SetExpr(Interval(-oo, oo))
|
291 |
+
assert SetExpr(Interval(-1, S.Half))**oo == SetExpr(Interval(-oo, oo))
|
292 |
+
assert SetExpr(Interval(-1, 2))**oo == SetExpr(Interval(-oo, oo))
|
293 |
+
assert SetExpr(Interval(-2, S.Half))**oo == SetExpr(Interval(-oo, oo))
|
294 |
+
|
295 |
+
assert (SetExpr(Interval(1, 2))**x).dummy_eq(SetExpr(ImageSet(Lambda(_d, _d**x), Interval(1, 2))))
|
296 |
+
|
297 |
+
assert SetExpr(Interval(2, 3))**(-oo) == SetExpr(FiniteSet(0))
|
298 |
+
assert SetExpr(Interval(0, 2))**(-oo) == SetExpr(Interval(0, oo))
|
299 |
+
assert (SetExpr(Interval(-1, 2))**(-oo)).dummy_eq(SetExpr(ImageSet(Lambda(_d, _d**(-oo)), Interval(-1, 2))))
|
300 |
+
|
301 |
+
|
302 |
+
def test_SetExpr_Integers():
|
303 |
+
assert SetExpr(S.Integers) + 1 == SetExpr(S.Integers)
|
304 |
+
assert (SetExpr(S.Integers) + I).dummy_eq(
|
305 |
+
SetExpr(ImageSet(Lambda(_d, _d + I), S.Integers)))
|
306 |
+
assert SetExpr(S.Integers)*(-1) == SetExpr(S.Integers)
|
307 |
+
assert (SetExpr(S.Integers)*2).dummy_eq(
|
308 |
+
SetExpr(ImageSet(Lambda(_d, 2*_d), S.Integers)))
|
309 |
+
assert (SetExpr(S.Integers)*I).dummy_eq(
|
310 |
+
SetExpr(ImageSet(Lambda(_d, I*_d), S.Integers)))
|
311 |
+
# issue #18050:
|
312 |
+
assert SetExpr(S.Integers)._eval_func(Lambda(x, I*x + 1)).dummy_eq(
|
313 |
+
SetExpr(ImageSet(Lambda(_d, I*_d + 1), S.Integers)))
|
314 |
+
# needs improvement:
|
315 |
+
assert (SetExpr(S.Integers)*I + 1).dummy_eq(
|
316 |
+
SetExpr(ImageSet(Lambda(x, x + 1),
|
317 |
+
ImageSet(Lambda(_d, _d*I), S.Integers))))
|
venv/lib/python3.10/site-packages/sympy/sets/tests/test_sets.py
ADDED
@@ -0,0 +1,1704 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.summations import Sum
|
2 |
+
from sympy.core.add import Add
|
3 |
+
from sympy.core.containers import TupleKind
|
4 |
+
from sympy.core.function import Lambda
|
5 |
+
from sympy.core.kind import NumberKind, UndefinedKind
|
6 |
+
from sympy.core.numbers import (Float, I, Rational, nan, oo, pi, zoo)
|
7 |
+
from sympy.core.power import Pow
|
8 |
+
from sympy.core.singleton import S
|
9 |
+
from sympy.core.symbol import (Symbol, symbols)
|
10 |
+
from sympy.core.sympify import sympify
|
11 |
+
from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
|
12 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
13 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
14 |
+
from sympy.logic.boolalg import (false, true)
|
15 |
+
from sympy.matrices.common import MatrixKind
|
16 |
+
from sympy.matrices.dense import Matrix
|
17 |
+
from sympy.polys.rootoftools import rootof
|
18 |
+
from sympy.sets.contains import Contains
|
19 |
+
from sympy.sets.fancysets import (ImageSet, Range)
|
20 |
+
from sympy.sets.sets import (Complement, DisjointUnion, FiniteSet, Intersection, Interval, ProductSet, Set, SymmetricDifference, Union, imageset, SetKind)
|
21 |
+
from mpmath import mpi
|
22 |
+
|
23 |
+
from sympy.core.expr import unchanged
|
24 |
+
from sympy.core.relational import Eq, Ne, Le, Lt, LessThan
|
25 |
+
from sympy.logic import And, Or, Xor
|
26 |
+
from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy
|
27 |
+
|
28 |
+
from sympy.abc import x, y, z, m, n
|
29 |
+
|
30 |
+
EmptySet = S.EmptySet
|
31 |
+
|
32 |
+
def test_imageset():
|
33 |
+
ints = S.Integers
|
34 |
+
assert imageset(x, x - 1, S.Naturals) is S.Naturals0
|
35 |
+
assert imageset(x, x + 1, S.Naturals0) is S.Naturals
|
36 |
+
assert imageset(x, abs(x), S.Naturals0) is S.Naturals0
|
37 |
+
assert imageset(x, abs(x), S.Naturals) is S.Naturals
|
38 |
+
assert imageset(x, abs(x), S.Integers) is S.Naturals0
|
39 |
+
# issue 16878a
|
40 |
+
r = symbols('r', real=True)
|
41 |
+
assert imageset(x, (x, x), S.Reals)._contains((1, r)) == None
|
42 |
+
assert imageset(x, (x, x), S.Reals)._contains((1, 2)) == False
|
43 |
+
assert (r, r) in imageset(x, (x, x), S.Reals)
|
44 |
+
assert 1 + I in imageset(x, x + I, S.Reals)
|
45 |
+
assert {1} not in imageset(x, (x,), S.Reals)
|
46 |
+
assert (1, 1) not in imageset(x, (x,), S.Reals)
|
47 |
+
raises(TypeError, lambda: imageset(x, ints))
|
48 |
+
raises(ValueError, lambda: imageset(x, y, z, ints))
|
49 |
+
raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y))
|
50 |
+
assert (1, 2) in imageset(Lambda((x, y), (x, y)), ints, ints)
|
51 |
+
raises(ValueError, lambda: imageset(Lambda(x, x), ints, ints))
|
52 |
+
assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints)
|
53 |
+
def f(x):
|
54 |
+
return cos(x)
|
55 |
+
assert imageset(f, ints) == imageset(x, cos(x), ints)
|
56 |
+
f = lambda x: cos(x)
|
57 |
+
assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints)
|
58 |
+
assert imageset(x, 1, ints) == FiniteSet(1)
|
59 |
+
assert imageset(x, y, ints) == {y}
|
60 |
+
assert imageset((x, y), (1, z), ints, S.Reals) == {(1, z)}
|
61 |
+
clash = Symbol('x', integer=true)
|
62 |
+
assert (str(imageset(lambda x: x + clash, Interval(-2, 1)).lamda.expr)
|
63 |
+
in ('x0 + x', 'x + x0'))
|
64 |
+
x1, x2 = symbols("x1, x2")
|
65 |
+
assert imageset(lambda x, y:
|
66 |
+
Add(x, y), Interval(1, 2), Interval(2, 3)).dummy_eq(
|
67 |
+
ImageSet(Lambda((x1, x2), x1 + x2),
|
68 |
+
Interval(1, 2), Interval(2, 3)))
|
69 |
+
|
70 |
+
|
71 |
+
def test_is_empty():
|
72 |
+
for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals,
|
73 |
+
S.UniversalSet]:
|
74 |
+
assert s.is_empty is False
|
75 |
+
|
76 |
+
assert S.EmptySet.is_empty is True
|
77 |
+
|
78 |
+
|
79 |
+
def test_is_finiteset():
|
80 |
+
for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals,
|
81 |
+
S.UniversalSet]:
|
82 |
+
assert s.is_finite_set is False
|
83 |
+
|
84 |
+
assert S.EmptySet.is_finite_set is True
|
85 |
+
|
86 |
+
assert FiniteSet(1, 2).is_finite_set is True
|
87 |
+
assert Interval(1, 2).is_finite_set is False
|
88 |
+
assert Interval(x, y).is_finite_set is None
|
89 |
+
assert ProductSet(FiniteSet(1), FiniteSet(2)).is_finite_set is True
|
90 |
+
assert ProductSet(FiniteSet(1), Interval(1, 2)).is_finite_set is False
|
91 |
+
assert ProductSet(FiniteSet(1), Interval(x, y)).is_finite_set is None
|
92 |
+
assert Union(Interval(0, 1), Interval(2, 3)).is_finite_set is False
|
93 |
+
assert Union(FiniteSet(1), Interval(2, 3)).is_finite_set is False
|
94 |
+
assert Union(FiniteSet(1), FiniteSet(2)).is_finite_set is True
|
95 |
+
assert Union(FiniteSet(1), Interval(x, y)).is_finite_set is None
|
96 |
+
assert Intersection(Interval(x, y), FiniteSet(1)).is_finite_set is True
|
97 |
+
assert Intersection(Interval(x, y), Interval(1, 2)).is_finite_set is None
|
98 |
+
assert Intersection(FiniteSet(x), FiniteSet(y)).is_finite_set is True
|
99 |
+
assert Complement(FiniteSet(1), Interval(x, y)).is_finite_set is True
|
100 |
+
assert Complement(Interval(x, y), FiniteSet(1)).is_finite_set is None
|
101 |
+
assert Complement(Interval(1, 2), FiniteSet(x)).is_finite_set is False
|
102 |
+
assert DisjointUnion(Interval(-5, 3), FiniteSet(x, y)).is_finite_set is False
|
103 |
+
assert DisjointUnion(S.EmptySet, FiniteSet(x, y), S.EmptySet).is_finite_set is True
|
104 |
+
|
105 |
+
|
106 |
+
def test_deprecated_is_EmptySet():
|
107 |
+
with warns_deprecated_sympy():
|
108 |
+
S.EmptySet.is_EmptySet
|
109 |
+
|
110 |
+
with warns_deprecated_sympy():
|
111 |
+
FiniteSet(1).is_EmptySet
|
112 |
+
|
113 |
+
|
114 |
+
def test_interval_arguments():
|
115 |
+
assert Interval(0, oo) == Interval(0, oo, False, True)
|
116 |
+
assert Interval(0, oo).right_open is true
|
117 |
+
assert Interval(-oo, 0) == Interval(-oo, 0, True, False)
|
118 |
+
assert Interval(-oo, 0).left_open is true
|
119 |
+
assert Interval(oo, -oo) == S.EmptySet
|
120 |
+
assert Interval(oo, oo) == S.EmptySet
|
121 |
+
assert Interval(-oo, -oo) == S.EmptySet
|
122 |
+
assert Interval(oo, x) == S.EmptySet
|
123 |
+
assert Interval(oo, oo) == S.EmptySet
|
124 |
+
assert Interval(x, -oo) == S.EmptySet
|
125 |
+
assert Interval(x, x) == {x}
|
126 |
+
|
127 |
+
assert isinstance(Interval(1, 1), FiniteSet)
|
128 |
+
e = Sum(x, (x, 1, 3))
|
129 |
+
assert isinstance(Interval(e, e), FiniteSet)
|
130 |
+
|
131 |
+
assert Interval(1, 0) == S.EmptySet
|
132 |
+
assert Interval(1, 1).measure == 0
|
133 |
+
|
134 |
+
assert Interval(1, 1, False, True) == S.EmptySet
|
135 |
+
assert Interval(1, 1, True, False) == S.EmptySet
|
136 |
+
assert Interval(1, 1, True, True) == S.EmptySet
|
137 |
+
|
138 |
+
|
139 |
+
assert isinstance(Interval(0, Symbol('a')), Interval)
|
140 |
+
assert Interval(Symbol('a', positive=True), 0) == S.EmptySet
|
141 |
+
raises(ValueError, lambda: Interval(0, S.ImaginaryUnit))
|
142 |
+
raises(ValueError, lambda: Interval(0, Symbol('z', extended_real=False)))
|
143 |
+
raises(ValueError, lambda: Interval(x, x + S.ImaginaryUnit))
|
144 |
+
|
145 |
+
raises(NotImplementedError, lambda: Interval(0, 1, And(x, y)))
|
146 |
+
raises(NotImplementedError, lambda: Interval(0, 1, False, And(x, y)))
|
147 |
+
raises(NotImplementedError, lambda: Interval(0, 1, z, And(x, y)))
|
148 |
+
|
149 |
+
|
150 |
+
def test_interval_symbolic_end_points():
|
151 |
+
a = Symbol('a', real=True)
|
152 |
+
|
153 |
+
assert Union(Interval(0, a), Interval(0, 3)).sup == Max(a, 3)
|
154 |
+
assert Union(Interval(a, 0), Interval(-3, 0)).inf == Min(-3, a)
|
155 |
+
|
156 |
+
assert Interval(0, a).contains(1) == LessThan(1, a)
|
157 |
+
|
158 |
+
|
159 |
+
def test_interval_is_empty():
|
160 |
+
x, y = symbols('x, y')
|
161 |
+
r = Symbol('r', real=True)
|
162 |
+
p = Symbol('p', positive=True)
|
163 |
+
n = Symbol('n', negative=True)
|
164 |
+
nn = Symbol('nn', nonnegative=True)
|
165 |
+
assert Interval(1, 2).is_empty == False
|
166 |
+
assert Interval(3, 3).is_empty == False # FiniteSet
|
167 |
+
assert Interval(r, r).is_empty == False # FiniteSet
|
168 |
+
assert Interval(r, r + nn).is_empty == False
|
169 |
+
assert Interval(x, x).is_empty == False
|
170 |
+
assert Interval(1, oo).is_empty == False
|
171 |
+
assert Interval(-oo, oo).is_empty == False
|
172 |
+
assert Interval(-oo, 1).is_empty == False
|
173 |
+
assert Interval(x, y).is_empty == None
|
174 |
+
assert Interval(r, oo).is_empty == False # real implies finite
|
175 |
+
assert Interval(n, 0).is_empty == False
|
176 |
+
assert Interval(n, 0, left_open=True).is_empty == False
|
177 |
+
assert Interval(p, 0).is_empty == True # EmptySet
|
178 |
+
assert Interval(nn, 0).is_empty == None
|
179 |
+
assert Interval(n, p).is_empty == False
|
180 |
+
assert Interval(0, p, left_open=True).is_empty == False
|
181 |
+
assert Interval(0, p, right_open=True).is_empty == False
|
182 |
+
assert Interval(0, nn, left_open=True).is_empty == None
|
183 |
+
assert Interval(0, nn, right_open=True).is_empty == None
|
184 |
+
|
185 |
+
|
186 |
+
def test_union():
|
187 |
+
assert Union(Interval(1, 2), Interval(2, 3)) == Interval(1, 3)
|
188 |
+
assert Union(Interval(1, 2), Interval(2, 3, True)) == Interval(1, 3)
|
189 |
+
assert Union(Interval(1, 3), Interval(2, 4)) == Interval(1, 4)
|
190 |
+
assert Union(Interval(1, 2), Interval(1, 3)) == Interval(1, 3)
|
191 |
+
assert Union(Interval(1, 3), Interval(1, 2)) == Interval(1, 3)
|
192 |
+
assert Union(Interval(1, 3, False, True), Interval(1, 2)) == \
|
193 |
+
Interval(1, 3, False, True)
|
194 |
+
assert Union(Interval(1, 3), Interval(1, 2, False, True)) == Interval(1, 3)
|
195 |
+
assert Union(Interval(1, 2, True), Interval(1, 3)) == Interval(1, 3)
|
196 |
+
assert Union(Interval(1, 2, True), Interval(1, 3, True)) == \
|
197 |
+
Interval(1, 3, True)
|
198 |
+
assert Union(Interval(1, 2, True), Interval(1, 3, True, True)) == \
|
199 |
+
Interval(1, 3, True, True)
|
200 |
+
assert Union(Interval(1, 2, True, True), Interval(1, 3, True)) == \
|
201 |
+
Interval(1, 3, True)
|
202 |
+
assert Union(Interval(1, 3), Interval(2, 3)) == Interval(1, 3)
|
203 |
+
assert Union(Interval(1, 3, False, True), Interval(2, 3)) == \
|
204 |
+
Interval(1, 3)
|
205 |
+
assert Union(Interval(1, 2, False, True), Interval(2, 3, True)) != \
|
206 |
+
Interval(1, 3)
|
207 |
+
assert Union(Interval(1, 2), S.EmptySet) == Interval(1, 2)
|
208 |
+
assert Union(S.EmptySet) == S.EmptySet
|
209 |
+
|
210 |
+
assert Union(Interval(0, 1), *[FiniteSet(1.0/n) for n in range(1, 10)]) == \
|
211 |
+
Interval(0, 1)
|
212 |
+
# issue #18241:
|
213 |
+
x = Symbol('x')
|
214 |
+
assert Union(Interval(0, 1), FiniteSet(1, x)) == Union(
|
215 |
+
Interval(0, 1), FiniteSet(x))
|
216 |
+
assert unchanged(Union, Interval(0, 1), FiniteSet(2, x))
|
217 |
+
|
218 |
+
assert Interval(1, 2).union(Interval(2, 3)) == \
|
219 |
+
Interval(1, 2) + Interval(2, 3)
|
220 |
+
|
221 |
+
assert Interval(1, 2).union(Interval(2, 3)) == Interval(1, 3)
|
222 |
+
|
223 |
+
assert Union(Set()) == Set()
|
224 |
+
|
225 |
+
assert FiniteSet(1) + FiniteSet(2) + FiniteSet(3) == FiniteSet(1, 2, 3)
|
226 |
+
assert FiniteSet('ham') + FiniteSet('eggs') == FiniteSet('ham', 'eggs')
|
227 |
+
assert FiniteSet(1, 2, 3) + S.EmptySet == FiniteSet(1, 2, 3)
|
228 |
+
|
229 |
+
assert FiniteSet(1, 2, 3) & FiniteSet(2, 3, 4) == FiniteSet(2, 3)
|
230 |
+
assert FiniteSet(1, 2, 3) | FiniteSet(2, 3, 4) == FiniteSet(1, 2, 3, 4)
|
231 |
+
|
232 |
+
assert FiniteSet(1, 2, 3) & S.EmptySet == S.EmptySet
|
233 |
+
assert FiniteSet(1, 2, 3) | S.EmptySet == FiniteSet(1, 2, 3)
|
234 |
+
|
235 |
+
x = Symbol("x")
|
236 |
+
y = Symbol("y")
|
237 |
+
z = Symbol("z")
|
238 |
+
assert S.EmptySet | FiniteSet(x, FiniteSet(y, z)) == \
|
239 |
+
FiniteSet(x, FiniteSet(y, z))
|
240 |
+
|
241 |
+
# Test that Intervals and FiniteSets play nicely
|
242 |
+
assert Interval(1, 3) + FiniteSet(2) == Interval(1, 3)
|
243 |
+
assert Interval(1, 3, True, True) + FiniteSet(3) == \
|
244 |
+
Interval(1, 3, True, False)
|
245 |
+
X = Interval(1, 3) + FiniteSet(5)
|
246 |
+
Y = Interval(1, 2) + FiniteSet(3)
|
247 |
+
XandY = X.intersect(Y)
|
248 |
+
assert 2 in X and 3 in X and 3 in XandY
|
249 |
+
assert XandY.is_subset(X) and XandY.is_subset(Y)
|
250 |
+
|
251 |
+
raises(TypeError, lambda: Union(1, 2, 3))
|
252 |
+
|
253 |
+
assert X.is_iterable is False
|
254 |
+
|
255 |
+
# issue 7843
|
256 |
+
assert Union(S.EmptySet, FiniteSet(-sqrt(-I), sqrt(-I))) == \
|
257 |
+
FiniteSet(-sqrt(-I), sqrt(-I))
|
258 |
+
|
259 |
+
assert Union(S.Reals, S.Integers) == S.Reals
|
260 |
+
|
261 |
+
|
262 |
+
def test_union_iter():
|
263 |
+
# Use Range because it is ordered
|
264 |
+
u = Union(Range(3), Range(5), Range(4), evaluate=False)
|
265 |
+
|
266 |
+
# Round robin
|
267 |
+
assert list(u) == [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4]
|
268 |
+
|
269 |
+
|
270 |
+
def test_union_is_empty():
|
271 |
+
assert (Interval(x, y) + FiniteSet(1)).is_empty == False
|
272 |
+
assert (Interval(x, y) + Interval(-x, y)).is_empty == None
|
273 |
+
|
274 |
+
|
275 |
+
def test_difference():
|
276 |
+
assert Interval(1, 3) - Interval(1, 2) == Interval(2, 3, True)
|
277 |
+
assert Interval(1, 3) - Interval(2, 3) == Interval(1, 2, False, True)
|
278 |
+
assert Interval(1, 3, True) - Interval(2, 3) == Interval(1, 2, True, True)
|
279 |
+
assert Interval(1, 3, True) - Interval(2, 3, True) == \
|
280 |
+
Interval(1, 2, True, False)
|
281 |
+
assert Interval(0, 2) - FiniteSet(1) == \
|
282 |
+
Union(Interval(0, 1, False, True), Interval(1, 2, True, False))
|
283 |
+
|
284 |
+
# issue #18119
|
285 |
+
assert S.Reals - FiniteSet(I) == S.Reals
|
286 |
+
assert S.Reals - FiniteSet(-I, I) == S.Reals
|
287 |
+
assert Interval(0, 10) - FiniteSet(-I, I) == Interval(0, 10)
|
288 |
+
assert Interval(0, 10) - FiniteSet(1, I) == Union(
|
289 |
+
Interval.Ropen(0, 1), Interval.Lopen(1, 10))
|
290 |
+
assert S.Reals - FiniteSet(1, 2 + I, x, y**2) == Complement(
|
291 |
+
Union(Interval.open(-oo, 1), Interval.open(1, oo)), FiniteSet(x, y**2),
|
292 |
+
evaluate=False)
|
293 |
+
|
294 |
+
assert FiniteSet(1, 2, 3) - FiniteSet(2) == FiniteSet(1, 3)
|
295 |
+
assert FiniteSet('ham', 'eggs') - FiniteSet('eggs') == FiniteSet('ham')
|
296 |
+
assert FiniteSet(1, 2, 3, 4) - Interval(2, 10, True, False) == \
|
297 |
+
FiniteSet(1, 2)
|
298 |
+
assert FiniteSet(1, 2, 3, 4) - S.EmptySet == FiniteSet(1, 2, 3, 4)
|
299 |
+
assert Union(Interval(0, 2), FiniteSet(2, 3, 4)) - Interval(1, 3) == \
|
300 |
+
Union(Interval(0, 1, False, True), FiniteSet(4))
|
301 |
+
|
302 |
+
assert -1 in S.Reals - S.Naturals
|
303 |
+
|
304 |
+
|
305 |
+
def test_Complement():
|
306 |
+
A = FiniteSet(1, 3, 4)
|
307 |
+
B = FiniteSet(3, 4)
|
308 |
+
C = Interval(1, 3)
|
309 |
+
D = Interval(1, 2)
|
310 |
+
|
311 |
+
assert Complement(A, B, evaluate=False).is_iterable is True
|
312 |
+
assert Complement(A, C, evaluate=False).is_iterable is True
|
313 |
+
assert Complement(C, D, evaluate=False).is_iterable is None
|
314 |
+
|
315 |
+
assert FiniteSet(*Complement(A, B, evaluate=False)) == FiniteSet(1)
|
316 |
+
assert FiniteSet(*Complement(A, C, evaluate=False)) == FiniteSet(4)
|
317 |
+
raises(TypeError, lambda: FiniteSet(*Complement(C, A, evaluate=False)))
|
318 |
+
|
319 |
+
assert Complement(Interval(1, 3), Interval(1, 2)) == Interval(2, 3, True)
|
320 |
+
assert Complement(FiniteSet(1, 3, 4), FiniteSet(3, 4)) == FiniteSet(1)
|
321 |
+
assert Complement(Union(Interval(0, 2), FiniteSet(2, 3, 4)),
|
322 |
+
Interval(1, 3)) == \
|
323 |
+
Union(Interval(0, 1, False, True), FiniteSet(4))
|
324 |
+
|
325 |
+
assert 3 not in Complement(Interval(0, 5), Interval(1, 4), evaluate=False)
|
326 |
+
assert -1 in Complement(S.Reals, S.Naturals, evaluate=False)
|
327 |
+
assert 1 not in Complement(S.Reals, S.Naturals, evaluate=False)
|
328 |
+
|
329 |
+
assert Complement(S.Integers, S.UniversalSet) == EmptySet
|
330 |
+
assert S.UniversalSet.complement(S.Integers) == EmptySet
|
331 |
+
|
332 |
+
assert (0 not in S.Reals.intersect(S.Integers - FiniteSet(0)))
|
333 |
+
|
334 |
+
assert S.EmptySet - S.Integers == S.EmptySet
|
335 |
+
|
336 |
+
assert (S.Integers - FiniteSet(0)) - FiniteSet(1) == S.Integers - FiniteSet(0, 1)
|
337 |
+
|
338 |
+
assert S.Reals - Union(S.Naturals, FiniteSet(pi)) == \
|
339 |
+
Intersection(S.Reals - S.Naturals, S.Reals - FiniteSet(pi))
|
340 |
+
# issue 12712
|
341 |
+
assert Complement(FiniteSet(x, y, 2), Interval(-10, 10)) == \
|
342 |
+
Complement(FiniteSet(x, y), Interval(-10, 10))
|
343 |
+
|
344 |
+
A = FiniteSet(*symbols('a:c'))
|
345 |
+
B = FiniteSet(*symbols('d:f'))
|
346 |
+
assert unchanged(Complement, ProductSet(A, A), B)
|
347 |
+
|
348 |
+
A2 = ProductSet(A, A)
|
349 |
+
B3 = ProductSet(B, B, B)
|
350 |
+
assert A2 - B3 == A2
|
351 |
+
assert B3 - A2 == B3
|
352 |
+
|
353 |
+
|
354 |
+
def test_set_operations_nonsets():
|
355 |
+
'''Tests that e.g. FiniteSet(1) * 2 raises TypeError'''
|
356 |
+
ops = [
|
357 |
+
lambda a, b: a + b,
|
358 |
+
lambda a, b: a - b,
|
359 |
+
lambda a, b: a * b,
|
360 |
+
lambda a, b: a / b,
|
361 |
+
lambda a, b: a // b,
|
362 |
+
lambda a, b: a | b,
|
363 |
+
lambda a, b: a & b,
|
364 |
+
lambda a, b: a ^ b,
|
365 |
+
# FiniteSet(1) ** 2 gives a ProductSet
|
366 |
+
#lambda a, b: a ** b,
|
367 |
+
]
|
368 |
+
Sx = FiniteSet(x)
|
369 |
+
Sy = FiniteSet(y)
|
370 |
+
sets = [
|
371 |
+
{1},
|
372 |
+
FiniteSet(1),
|
373 |
+
Interval(1, 2),
|
374 |
+
Union(Sx, Interval(1, 2)),
|
375 |
+
Intersection(Sx, Sy),
|
376 |
+
Complement(Sx, Sy),
|
377 |
+
ProductSet(Sx, Sy),
|
378 |
+
S.EmptySet,
|
379 |
+
]
|
380 |
+
nums = [0, 1, 2, S(0), S(1), S(2)]
|
381 |
+
|
382 |
+
for si in sets:
|
383 |
+
for ni in nums:
|
384 |
+
for op in ops:
|
385 |
+
raises(TypeError, lambda : op(si, ni))
|
386 |
+
raises(TypeError, lambda : op(ni, si))
|
387 |
+
raises(TypeError, lambda: si ** object())
|
388 |
+
raises(TypeError, lambda: si ** {1})
|
389 |
+
|
390 |
+
|
391 |
+
def test_complement():
|
392 |
+
assert Complement({1, 2}, {1}) == {2}
|
393 |
+
assert Interval(0, 1).complement(S.Reals) == \
|
394 |
+
Union(Interval(-oo, 0, True, True), Interval(1, oo, True, True))
|
395 |
+
assert Interval(0, 1, True, False).complement(S.Reals) == \
|
396 |
+
Union(Interval(-oo, 0, True, False), Interval(1, oo, True, True))
|
397 |
+
assert Interval(0, 1, False, True).complement(S.Reals) == \
|
398 |
+
Union(Interval(-oo, 0, True, True), Interval(1, oo, False, True))
|
399 |
+
assert Interval(0, 1, True, True).complement(S.Reals) == \
|
400 |
+
Union(Interval(-oo, 0, True, False), Interval(1, oo, False, True))
|
401 |
+
|
402 |
+
assert S.UniversalSet.complement(S.EmptySet) == S.EmptySet
|
403 |
+
assert S.UniversalSet.complement(S.Reals) == S.EmptySet
|
404 |
+
assert S.UniversalSet.complement(S.UniversalSet) == S.EmptySet
|
405 |
+
|
406 |
+
assert S.EmptySet.complement(S.Reals) == S.Reals
|
407 |
+
|
408 |
+
assert Union(Interval(0, 1), Interval(2, 3)).complement(S.Reals) == \
|
409 |
+
Union(Interval(-oo, 0, True, True), Interval(1, 2, True, True),
|
410 |
+
Interval(3, oo, True, True))
|
411 |
+
|
412 |
+
assert FiniteSet(0).complement(S.Reals) == \
|
413 |
+
Union(Interval(-oo, 0, True, True), Interval(0, oo, True, True))
|
414 |
+
|
415 |
+
assert (FiniteSet(5) + Interval(S.NegativeInfinity,
|
416 |
+
0)).complement(S.Reals) == \
|
417 |
+
Interval(0, 5, True, True) + Interval(5, S.Infinity, True, True)
|
418 |
+
|
419 |
+
assert FiniteSet(1, 2, 3).complement(S.Reals) == \
|
420 |
+
Interval(S.NegativeInfinity, 1, True, True) + \
|
421 |
+
Interval(1, 2, True, True) + Interval(2, 3, True, True) +\
|
422 |
+
Interval(3, S.Infinity, True, True)
|
423 |
+
|
424 |
+
assert FiniteSet(x).complement(S.Reals) == Complement(S.Reals, FiniteSet(x))
|
425 |
+
|
426 |
+
assert FiniteSet(0, x).complement(S.Reals) == Complement(Interval(-oo, 0, True, True) +
|
427 |
+
Interval(0, oo, True, True)
|
428 |
+
, FiniteSet(x), evaluate=False)
|
429 |
+
|
430 |
+
square = Interval(0, 1) * Interval(0, 1)
|
431 |
+
notsquare = square.complement(S.Reals*S.Reals)
|
432 |
+
|
433 |
+
assert all(pt in square for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
|
434 |
+
assert not any(
|
435 |
+
pt in notsquare for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
|
436 |
+
assert not any(pt in square for pt in [(-1, 0), (1.5, .5), (10, 10)])
|
437 |
+
assert all(pt in notsquare for pt in [(-1, 0), (1.5, .5), (10, 10)])
|
438 |
+
|
439 |
+
|
440 |
+
def test_intersect1():
|
441 |
+
assert all(S.Integers.intersection(i) is i for i in
|
442 |
+
(S.Naturals, S.Naturals0))
|
443 |
+
assert all(i.intersection(S.Integers) is i for i in
|
444 |
+
(S.Naturals, S.Naturals0))
|
445 |
+
s = S.Naturals0
|
446 |
+
assert S.Naturals.intersection(s) is S.Naturals
|
447 |
+
assert s.intersection(S.Naturals) is S.Naturals
|
448 |
+
x = Symbol('x')
|
449 |
+
assert Interval(0, 2).intersect(Interval(1, 2)) == Interval(1, 2)
|
450 |
+
assert Interval(0, 2).intersect(Interval(1, 2, True)) == \
|
451 |
+
Interval(1, 2, True)
|
452 |
+
assert Interval(0, 2, True).intersect(Interval(1, 2)) == \
|
453 |
+
Interval(1, 2, False, False)
|
454 |
+
assert Interval(0, 2, True, True).intersect(Interval(1, 2)) == \
|
455 |
+
Interval(1, 2, False, True)
|
456 |
+
assert Interval(0, 2).intersect(Union(Interval(0, 1), Interval(2, 3))) == \
|
457 |
+
Union(Interval(0, 1), Interval(2, 2))
|
458 |
+
|
459 |
+
assert FiniteSet(1, 2).intersect(FiniteSet(1, 2, 3)) == FiniteSet(1, 2)
|
460 |
+
assert FiniteSet(1, 2, x).intersect(FiniteSet(x)) == FiniteSet(x)
|
461 |
+
assert FiniteSet('ham', 'eggs').intersect(FiniteSet('ham')) == \
|
462 |
+
FiniteSet('ham')
|
463 |
+
assert FiniteSet(1, 2, 3, 4, 5).intersect(S.EmptySet) == S.EmptySet
|
464 |
+
|
465 |
+
assert Interval(0, 5).intersect(FiniteSet(1, 3)) == FiniteSet(1, 3)
|
466 |
+
assert Interval(0, 1, True, True).intersect(FiniteSet(1)) == S.EmptySet
|
467 |
+
|
468 |
+
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2)) == \
|
469 |
+
Union(Interval(1, 1), Interval(2, 2))
|
470 |
+
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(0, 2)) == \
|
471 |
+
Union(Interval(0, 1), Interval(2, 2))
|
472 |
+
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2, True, True)) == \
|
473 |
+
S.EmptySet
|
474 |
+
assert Union(Interval(0, 1), Interval(2, 3)).intersect(S.EmptySet) == \
|
475 |
+
S.EmptySet
|
476 |
+
assert Union(Interval(0, 5), FiniteSet('ham')).intersect(FiniteSet(2, 3, 4, 5, 6)) == \
|
477 |
+
Intersection(FiniteSet(2, 3, 4, 5, 6), Union(FiniteSet('ham'), Interval(0, 5)))
|
478 |
+
assert Intersection(FiniteSet(1, 2, 3), Interval(2, x), Interval(3, y)) == \
|
479 |
+
Intersection(FiniteSet(3), Interval(2, x), Interval(3, y), evaluate=False)
|
480 |
+
assert Intersection(FiniteSet(1, 2), Interval(0, 3), Interval(x, y)) == \
|
481 |
+
Intersection({1, 2}, Interval(x, y), evaluate=False)
|
482 |
+
assert Intersection(FiniteSet(1, 2, 4), Interval(0, 3), Interval(x, y)) == \
|
483 |
+
Intersection({1, 2}, Interval(x, y), evaluate=False)
|
484 |
+
# XXX: Is the real=True necessary here?
|
485 |
+
# https://github.com/sympy/sympy/issues/17532
|
486 |
+
m, n = symbols('m, n', real=True)
|
487 |
+
assert Intersection(FiniteSet(m), FiniteSet(m, n), Interval(m, m+1)) == \
|
488 |
+
FiniteSet(m)
|
489 |
+
|
490 |
+
# issue 8217
|
491 |
+
assert Intersection(FiniteSet(x), FiniteSet(y)) == \
|
492 |
+
Intersection(FiniteSet(x), FiniteSet(y), evaluate=False)
|
493 |
+
assert FiniteSet(x).intersect(S.Reals) == \
|
494 |
+
Intersection(S.Reals, FiniteSet(x), evaluate=False)
|
495 |
+
|
496 |
+
# tests for the intersection alias
|
497 |
+
assert Interval(0, 5).intersection(FiniteSet(1, 3)) == FiniteSet(1, 3)
|
498 |
+
assert Interval(0, 1, True, True).intersection(FiniteSet(1)) == S.EmptySet
|
499 |
+
|
500 |
+
assert Union(Interval(0, 1), Interval(2, 3)).intersection(Interval(1, 2)) == \
|
501 |
+
Union(Interval(1, 1), Interval(2, 2))
|
502 |
+
|
503 |
+
|
504 |
+
def test_intersection():
|
505 |
+
# iterable
|
506 |
+
i = Intersection(FiniteSet(1, 2, 3), Interval(2, 5), evaluate=False)
|
507 |
+
assert i.is_iterable
|
508 |
+
assert set(i) == {S(2), S(3)}
|
509 |
+
|
510 |
+
# challenging intervals
|
511 |
+
x = Symbol('x', real=True)
|
512 |
+
i = Intersection(Interval(0, 3), Interval(x, 6))
|
513 |
+
assert (5 in i) is False
|
514 |
+
raises(TypeError, lambda: 2 in i)
|
515 |
+
|
516 |
+
# Singleton special cases
|
517 |
+
assert Intersection(Interval(0, 1), S.EmptySet) == S.EmptySet
|
518 |
+
assert Intersection(Interval(-oo, oo), Interval(-oo, x)) == Interval(-oo, x)
|
519 |
+
|
520 |
+
# Products
|
521 |
+
line = Interval(0, 5)
|
522 |
+
i = Intersection(line**2, line**3, evaluate=False)
|
523 |
+
assert (2, 2) not in i
|
524 |
+
assert (2, 2, 2) not in i
|
525 |
+
raises(TypeError, lambda: list(i))
|
526 |
+
|
527 |
+
a = Intersection(Intersection(S.Integers, S.Naturals, evaluate=False), S.Reals, evaluate=False)
|
528 |
+
assert a._argset == frozenset([Intersection(S.Naturals, S.Integers, evaluate=False), S.Reals])
|
529 |
+
|
530 |
+
assert Intersection(S.Complexes, FiniteSet(S.ComplexInfinity)) == S.EmptySet
|
531 |
+
|
532 |
+
# issue 12178
|
533 |
+
assert Intersection() == S.UniversalSet
|
534 |
+
|
535 |
+
# issue 16987
|
536 |
+
assert Intersection({1}, {1}, {x}) == Intersection({1}, {x})
|
537 |
+
|
538 |
+
|
539 |
+
def test_issue_9623():
|
540 |
+
n = Symbol('n')
|
541 |
+
|
542 |
+
a = S.Reals
|
543 |
+
b = Interval(0, oo)
|
544 |
+
c = FiniteSet(n)
|
545 |
+
|
546 |
+
assert Intersection(a, b, c) == Intersection(b, c)
|
547 |
+
assert Intersection(Interval(1, 2), Interval(3, 4), FiniteSet(n)) == EmptySet
|
548 |
+
|
549 |
+
|
550 |
+
def test_is_disjoint():
|
551 |
+
assert Interval(0, 2).is_disjoint(Interval(1, 2)) == False
|
552 |
+
assert Interval(0, 2).is_disjoint(Interval(3, 4)) == True
|
553 |
+
|
554 |
+
|
555 |
+
def test_ProductSet__len__():
|
556 |
+
A = FiniteSet(1, 2)
|
557 |
+
B = FiniteSet(1, 2, 3)
|
558 |
+
assert ProductSet(A).__len__() == 2
|
559 |
+
assert ProductSet(A).__len__() is not S(2)
|
560 |
+
assert ProductSet(A, B).__len__() == 6
|
561 |
+
assert ProductSet(A, B).__len__() is not S(6)
|
562 |
+
|
563 |
+
|
564 |
+
def test_ProductSet():
|
565 |
+
# ProductSet is always a set of Tuples
|
566 |
+
assert ProductSet(S.Reals) == S.Reals ** 1
|
567 |
+
assert ProductSet(S.Reals, S.Reals) == S.Reals ** 2
|
568 |
+
assert ProductSet(S.Reals, S.Reals, S.Reals) == S.Reals ** 3
|
569 |
+
|
570 |
+
assert ProductSet(S.Reals) != S.Reals
|
571 |
+
assert ProductSet(S.Reals, S.Reals) == S.Reals * S.Reals
|
572 |
+
assert ProductSet(S.Reals, S.Reals, S.Reals) != S.Reals * S.Reals * S.Reals
|
573 |
+
assert ProductSet(S.Reals, S.Reals, S.Reals) == (S.Reals * S.Reals * S.Reals).flatten()
|
574 |
+
|
575 |
+
assert 1 not in ProductSet(S.Reals)
|
576 |
+
assert (1,) in ProductSet(S.Reals)
|
577 |
+
|
578 |
+
assert 1 not in ProductSet(S.Reals, S.Reals)
|
579 |
+
assert (1, 2) in ProductSet(S.Reals, S.Reals)
|
580 |
+
assert (1, I) not in ProductSet(S.Reals, S.Reals)
|
581 |
+
|
582 |
+
assert (1, 2, 3) in ProductSet(S.Reals, S.Reals, S.Reals)
|
583 |
+
assert (1, 2, 3) in S.Reals ** 3
|
584 |
+
assert (1, 2, 3) not in S.Reals * S.Reals * S.Reals
|
585 |
+
assert ((1, 2), 3) in S.Reals * S.Reals * S.Reals
|
586 |
+
assert (1, (2, 3)) not in S.Reals * S.Reals * S.Reals
|
587 |
+
assert (1, (2, 3)) in S.Reals * (S.Reals * S.Reals)
|
588 |
+
|
589 |
+
assert ProductSet() == FiniteSet(())
|
590 |
+
assert ProductSet(S.Reals, S.EmptySet) == S.EmptySet
|
591 |
+
|
592 |
+
# See GH-17458
|
593 |
+
|
594 |
+
for ni in range(5):
|
595 |
+
Rn = ProductSet(*(S.Reals,) * ni)
|
596 |
+
assert (1,) * ni in Rn
|
597 |
+
assert 1 not in Rn
|
598 |
+
|
599 |
+
assert (S.Reals * S.Reals) * S.Reals != S.Reals * (S.Reals * S.Reals)
|
600 |
+
|
601 |
+
S1 = S.Reals
|
602 |
+
S2 = S.Integers
|
603 |
+
x1 = pi
|
604 |
+
x2 = 3
|
605 |
+
assert x1 in S1
|
606 |
+
assert x2 in S2
|
607 |
+
assert (x1, x2) in S1 * S2
|
608 |
+
S3 = S1 * S2
|
609 |
+
x3 = (x1, x2)
|
610 |
+
assert x3 in S3
|
611 |
+
assert (x3, x3) in S3 * S3
|
612 |
+
assert x3 + x3 not in S3 * S3
|
613 |
+
|
614 |
+
raises(ValueError, lambda: S.Reals**-1)
|
615 |
+
with warns_deprecated_sympy():
|
616 |
+
ProductSet(FiniteSet(s) for s in range(2))
|
617 |
+
raises(TypeError, lambda: ProductSet(None))
|
618 |
+
|
619 |
+
S1 = FiniteSet(1, 2)
|
620 |
+
S2 = FiniteSet(3, 4)
|
621 |
+
S3 = ProductSet(S1, S2)
|
622 |
+
assert (S3.as_relational(x, y)
|
623 |
+
== And(S1.as_relational(x), S2.as_relational(y))
|
624 |
+
== And(Or(Eq(x, 1), Eq(x, 2)), Or(Eq(y, 3), Eq(y, 4))))
|
625 |
+
raises(ValueError, lambda: S3.as_relational(x))
|
626 |
+
raises(ValueError, lambda: S3.as_relational(x, 1))
|
627 |
+
raises(ValueError, lambda: ProductSet(Interval(0, 1)).as_relational(x, y))
|
628 |
+
|
629 |
+
Z2 = ProductSet(S.Integers, S.Integers)
|
630 |
+
assert Z2.contains((1, 2)) is S.true
|
631 |
+
assert Z2.contains((1,)) is S.false
|
632 |
+
assert Z2.contains(x) == Contains(x, Z2, evaluate=False)
|
633 |
+
assert Z2.contains(x).subs(x, 1) is S.false
|
634 |
+
assert Z2.contains((x, 1)).subs(x, 2) is S.true
|
635 |
+
assert Z2.contains((x, y)) == Contains((x, y), Z2, evaluate=False)
|
636 |
+
assert unchanged(Contains, (x, y), Z2)
|
637 |
+
assert Contains((1, 2), Z2) is S.true
|
638 |
+
|
639 |
+
|
640 |
+
def test_ProductSet_of_single_arg_is_not_arg():
|
641 |
+
assert unchanged(ProductSet, Interval(0, 1))
|
642 |
+
assert unchanged(ProductSet, ProductSet(Interval(0, 1)))
|
643 |
+
|
644 |
+
|
645 |
+
def test_ProductSet_is_empty():
|
646 |
+
assert ProductSet(S.Integers, S.Reals).is_empty == False
|
647 |
+
assert ProductSet(Interval(x, 1), S.Reals).is_empty == None
|
648 |
+
|
649 |
+
|
650 |
+
def test_interval_subs():
|
651 |
+
a = Symbol('a', real=True)
|
652 |
+
|
653 |
+
assert Interval(0, a).subs(a, 2) == Interval(0, 2)
|
654 |
+
assert Interval(a, 0).subs(a, 2) == S.EmptySet
|
655 |
+
|
656 |
+
|
657 |
+
def test_interval_to_mpi():
|
658 |
+
assert Interval(0, 1).to_mpi() == mpi(0, 1)
|
659 |
+
assert Interval(0, 1, True, False).to_mpi() == mpi(0, 1)
|
660 |
+
assert type(Interval(0, 1).to_mpi()) == type(mpi(0, 1))
|
661 |
+
|
662 |
+
|
663 |
+
def test_set_evalf():
|
664 |
+
assert Interval(S(11)/64, S.Half).evalf() == Interval(
|
665 |
+
Float('0.171875'), Float('0.5'))
|
666 |
+
assert Interval(x, S.Half, right_open=True).evalf() == Interval(
|
667 |
+
x, Float('0.5'), right_open=True)
|
668 |
+
assert Interval(-oo, S.Half).evalf() == Interval(-oo, Float('0.5'))
|
669 |
+
assert FiniteSet(2, x).evalf() == FiniteSet(Float('2.0'), x)
|
670 |
+
|
671 |
+
|
672 |
+
def test_measure():
|
673 |
+
a = Symbol('a', real=True)
|
674 |
+
|
675 |
+
assert Interval(1, 3).measure == 2
|
676 |
+
assert Interval(0, a).measure == a
|
677 |
+
assert Interval(1, a).measure == a - 1
|
678 |
+
|
679 |
+
assert Union(Interval(1, 2), Interval(3, 4)).measure == 2
|
680 |
+
assert Union(Interval(1, 2), Interval(3, 4), FiniteSet(5, 6, 7)).measure \
|
681 |
+
== 2
|
682 |
+
|
683 |
+
assert FiniteSet(1, 2, oo, a, -oo, -5).measure == 0
|
684 |
+
|
685 |
+
assert S.EmptySet.measure == 0
|
686 |
+
|
687 |
+
square = Interval(0, 10) * Interval(0, 10)
|
688 |
+
offsetsquare = Interval(5, 15) * Interval(5, 15)
|
689 |
+
band = Interval(-oo, oo) * Interval(2, 4)
|
690 |
+
|
691 |
+
assert square.measure == offsetsquare.measure == 100
|
692 |
+
assert (square + offsetsquare).measure == 175 # there is some overlap
|
693 |
+
assert (square - offsetsquare).measure == 75
|
694 |
+
assert (square * FiniteSet(1, 2, 3)).measure == 0
|
695 |
+
assert (square.intersect(band)).measure == 20
|
696 |
+
assert (square + band).measure is oo
|
697 |
+
assert (band * FiniteSet(1, 2, 3)).measure is nan
|
698 |
+
|
699 |
+
|
700 |
+
def test_is_subset():
|
701 |
+
assert Interval(0, 1).is_subset(Interval(0, 2)) is True
|
702 |
+
assert Interval(0, 3).is_subset(Interval(0, 2)) is False
|
703 |
+
assert Interval(0, 1).is_subset(FiniteSet(0, 1)) is False
|
704 |
+
|
705 |
+
assert FiniteSet(1, 2).is_subset(FiniteSet(1, 2, 3, 4))
|
706 |
+
assert FiniteSet(4, 5).is_subset(FiniteSet(1, 2, 3, 4)) is False
|
707 |
+
assert FiniteSet(1).is_subset(Interval(0, 2))
|
708 |
+
assert FiniteSet(1, 2).is_subset(Interval(0, 2, True, True)) is False
|
709 |
+
assert (Interval(1, 2) + FiniteSet(3)).is_subset(
|
710 |
+
Interval(0, 2, False, True) + FiniteSet(2, 3))
|
711 |
+
|
712 |
+
assert Interval(3, 4).is_subset(Union(Interval(0, 1), Interval(2, 5))) is True
|
713 |
+
assert Interval(3, 6).is_subset(Union(Interval(0, 1), Interval(2, 5))) is False
|
714 |
+
|
715 |
+
assert FiniteSet(1, 2, 3, 4).is_subset(Interval(0, 5)) is True
|
716 |
+
assert S.EmptySet.is_subset(FiniteSet(1, 2, 3)) is True
|
717 |
+
|
718 |
+
assert Interval(0, 1).is_subset(S.EmptySet) is False
|
719 |
+
assert S.EmptySet.is_subset(S.EmptySet) is True
|
720 |
+
|
721 |
+
raises(ValueError, lambda: S.EmptySet.is_subset(1))
|
722 |
+
|
723 |
+
# tests for the issubset alias
|
724 |
+
assert FiniteSet(1, 2, 3, 4).issubset(Interval(0, 5)) is True
|
725 |
+
assert S.EmptySet.issubset(FiniteSet(1, 2, 3)) is True
|
726 |
+
|
727 |
+
assert S.Naturals.is_subset(S.Integers)
|
728 |
+
assert S.Naturals0.is_subset(S.Integers)
|
729 |
+
|
730 |
+
assert FiniteSet(x).is_subset(FiniteSet(y)) is None
|
731 |
+
assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x)) is True
|
732 |
+
assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x+1)) is False
|
733 |
+
|
734 |
+
assert Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) is False
|
735 |
+
assert Interval(-2, 3).is_subset(Union(Interval(-oo, -2), Interval(3, oo))) is False
|
736 |
+
|
737 |
+
n = Symbol('n', integer=True)
|
738 |
+
assert Range(-3, 4, 1).is_subset(FiniteSet(-10, 10)) is False
|
739 |
+
assert Range(S(10)**100).is_subset(FiniteSet(0, 1, 2)) is False
|
740 |
+
assert Range(6, 0, -2).is_subset(FiniteSet(2, 4, 6)) is True
|
741 |
+
assert Range(1, oo).is_subset(FiniteSet(1, 2)) is False
|
742 |
+
assert Range(-oo, 1).is_subset(FiniteSet(1)) is False
|
743 |
+
assert Range(3).is_subset(FiniteSet(0, 1, n)) is None
|
744 |
+
assert Range(n, n + 2).is_subset(FiniteSet(n, n + 1)) is True
|
745 |
+
assert Range(5).is_subset(Interval(0, 4, right_open=True)) is False
|
746 |
+
#issue 19513
|
747 |
+
assert imageset(Lambda(n, 1/n), S.Integers).is_subset(S.Reals) is None
|
748 |
+
|
749 |
+
def test_is_proper_subset():
|
750 |
+
assert Interval(0, 1).is_proper_subset(Interval(0, 2)) is True
|
751 |
+
assert Interval(0, 3).is_proper_subset(Interval(0, 2)) is False
|
752 |
+
assert S.EmptySet.is_proper_subset(FiniteSet(1, 2, 3)) is True
|
753 |
+
|
754 |
+
raises(ValueError, lambda: Interval(0, 1).is_proper_subset(0))
|
755 |
+
|
756 |
+
|
757 |
+
def test_is_superset():
|
758 |
+
assert Interval(0, 1).is_superset(Interval(0, 2)) == False
|
759 |
+
assert Interval(0, 3).is_superset(Interval(0, 2))
|
760 |
+
|
761 |
+
assert FiniteSet(1, 2).is_superset(FiniteSet(1, 2, 3, 4)) == False
|
762 |
+
assert FiniteSet(4, 5).is_superset(FiniteSet(1, 2, 3, 4)) == False
|
763 |
+
assert FiniteSet(1).is_superset(Interval(0, 2)) == False
|
764 |
+
assert FiniteSet(1, 2).is_superset(Interval(0, 2, True, True)) == False
|
765 |
+
assert (Interval(1, 2) + FiniteSet(3)).is_superset(
|
766 |
+
Interval(0, 2, False, True) + FiniteSet(2, 3)) == False
|
767 |
+
|
768 |
+
assert Interval(3, 4).is_superset(Union(Interval(0, 1), Interval(2, 5))) == False
|
769 |
+
|
770 |
+
assert FiniteSet(1, 2, 3, 4).is_superset(Interval(0, 5)) == False
|
771 |
+
assert S.EmptySet.is_superset(FiniteSet(1, 2, 3)) == False
|
772 |
+
|
773 |
+
assert Interval(0, 1).is_superset(S.EmptySet) == True
|
774 |
+
assert S.EmptySet.is_superset(S.EmptySet) == True
|
775 |
+
|
776 |
+
raises(ValueError, lambda: S.EmptySet.is_superset(1))
|
777 |
+
|
778 |
+
# tests for the issuperset alias
|
779 |
+
assert Interval(0, 1).issuperset(S.EmptySet) == True
|
780 |
+
assert S.EmptySet.issuperset(S.EmptySet) == True
|
781 |
+
|
782 |
+
|
783 |
+
def test_is_proper_superset():
|
784 |
+
assert Interval(0, 1).is_proper_superset(Interval(0, 2)) is False
|
785 |
+
assert Interval(0, 3).is_proper_superset(Interval(0, 2)) is True
|
786 |
+
assert FiniteSet(1, 2, 3).is_proper_superset(S.EmptySet) is True
|
787 |
+
|
788 |
+
raises(ValueError, lambda: Interval(0, 1).is_proper_superset(0))
|
789 |
+
|
790 |
+
|
791 |
+
def test_contains():
|
792 |
+
assert Interval(0, 2).contains(1) is S.true
|
793 |
+
assert Interval(0, 2).contains(3) is S.false
|
794 |
+
assert Interval(0, 2, True, False).contains(0) is S.false
|
795 |
+
assert Interval(0, 2, True, False).contains(2) is S.true
|
796 |
+
assert Interval(0, 2, False, True).contains(0) is S.true
|
797 |
+
assert Interval(0, 2, False, True).contains(2) is S.false
|
798 |
+
assert Interval(0, 2, True, True).contains(0) is S.false
|
799 |
+
assert Interval(0, 2, True, True).contains(2) is S.false
|
800 |
+
|
801 |
+
assert (Interval(0, 2) in Interval(0, 2)) is False
|
802 |
+
|
803 |
+
assert FiniteSet(1, 2, 3).contains(2) is S.true
|
804 |
+
assert FiniteSet(1, 2, Symbol('x')).contains(Symbol('x')) is S.true
|
805 |
+
|
806 |
+
assert FiniteSet(y)._contains(x) is None
|
807 |
+
raises(TypeError, lambda: x in FiniteSet(y))
|
808 |
+
assert FiniteSet({x, y})._contains({x}) is None
|
809 |
+
assert FiniteSet({x, y}).subs(y, x)._contains({x}) is True
|
810 |
+
assert FiniteSet({x, y}).subs(y, x+1)._contains({x}) is False
|
811 |
+
|
812 |
+
# issue 8197
|
813 |
+
from sympy.abc import a, b
|
814 |
+
assert isinstance(FiniteSet(b).contains(-a), Contains)
|
815 |
+
assert isinstance(FiniteSet(b).contains(a), Contains)
|
816 |
+
assert isinstance(FiniteSet(a).contains(1), Contains)
|
817 |
+
raises(TypeError, lambda: 1 in FiniteSet(a))
|
818 |
+
|
819 |
+
# issue 8209
|
820 |
+
rad1 = Pow(Pow(2, Rational(1, 3)) - 1, Rational(1, 3))
|
821 |
+
rad2 = Pow(Rational(1, 9), Rational(1, 3)) - Pow(Rational(2, 9), Rational(1, 3)) + Pow(Rational(4, 9), Rational(1, 3))
|
822 |
+
s1 = FiniteSet(rad1)
|
823 |
+
s2 = FiniteSet(rad2)
|
824 |
+
assert s1 - s2 == S.EmptySet
|
825 |
+
|
826 |
+
items = [1, 2, S.Infinity, S('ham'), -1.1]
|
827 |
+
fset = FiniteSet(*items)
|
828 |
+
assert all(item in fset for item in items)
|
829 |
+
assert all(fset.contains(item) is S.true for item in items)
|
830 |
+
|
831 |
+
assert Union(Interval(0, 1), Interval(2, 5)).contains(3) is S.true
|
832 |
+
assert Union(Interval(0, 1), Interval(2, 5)).contains(6) is S.false
|
833 |
+
assert Union(Interval(0, 1), FiniteSet(2, 5)).contains(3) is S.false
|
834 |
+
|
835 |
+
assert S.EmptySet.contains(1) is S.false
|
836 |
+
assert FiniteSet(rootof(x**3 + x - 1, 0)).contains(S.Infinity) is S.false
|
837 |
+
|
838 |
+
assert rootof(x**5 + x**3 + 1, 0) in S.Reals
|
839 |
+
assert not rootof(x**5 + x**3 + 1, 1) in S.Reals
|
840 |
+
|
841 |
+
# non-bool results
|
842 |
+
assert Union(Interval(1, 2), Interval(3, 4)).contains(x) == \
|
843 |
+
Or(And(S.One <= x, x <= 2), And(S(3) <= x, x <= 4))
|
844 |
+
assert Intersection(Interval(1, x), Interval(2, 3)).contains(y) == \
|
845 |
+
And(y <= 3, y <= x, S.One <= y, S(2) <= y)
|
846 |
+
|
847 |
+
assert (S.Complexes).contains(S.ComplexInfinity) == S.false
|
848 |
+
|
849 |
+
|
850 |
+
def test_interval_symbolic():
|
851 |
+
x = Symbol('x')
|
852 |
+
e = Interval(0, 1)
|
853 |
+
assert e.contains(x) == And(S.Zero <= x, x <= 1)
|
854 |
+
raises(TypeError, lambda: x in e)
|
855 |
+
e = Interval(0, 1, True, True)
|
856 |
+
assert e.contains(x) == And(S.Zero < x, x < 1)
|
857 |
+
c = Symbol('c', real=False)
|
858 |
+
assert Interval(x, x + 1).contains(c) == False
|
859 |
+
e = Symbol('e', extended_real=True)
|
860 |
+
assert Interval(-oo, oo).contains(e) == And(
|
861 |
+
S.NegativeInfinity < e, e < S.Infinity)
|
862 |
+
|
863 |
+
|
864 |
+
def test_union_contains():
|
865 |
+
x = Symbol('x')
|
866 |
+
i1 = Interval(0, 1)
|
867 |
+
i2 = Interval(2, 3)
|
868 |
+
i3 = Union(i1, i2)
|
869 |
+
assert i3.as_relational(x) == Or(And(S.Zero <= x, x <= 1), And(S(2) <= x, x <= 3))
|
870 |
+
raises(TypeError, lambda: x in i3)
|
871 |
+
e = i3.contains(x)
|
872 |
+
assert e == i3.as_relational(x)
|
873 |
+
assert e.subs(x, -0.5) is false
|
874 |
+
assert e.subs(x, 0.5) is true
|
875 |
+
assert e.subs(x, 1.5) is false
|
876 |
+
assert e.subs(x, 2.5) is true
|
877 |
+
assert e.subs(x, 3.5) is false
|
878 |
+
|
879 |
+
U = Interval(0, 2, True, True) + Interval(10, oo) + FiniteSet(-1, 2, 5, 6)
|
880 |
+
assert all(el not in U for el in [0, 4, -oo])
|
881 |
+
assert all(el in U for el in [2, 5, 10])
|
882 |
+
|
883 |
+
|
884 |
+
def test_is_number():
|
885 |
+
assert Interval(0, 1).is_number is False
|
886 |
+
assert Set().is_number is False
|
887 |
+
|
888 |
+
|
889 |
+
def test_Interval_is_left_unbounded():
|
890 |
+
assert Interval(3, 4).is_left_unbounded is False
|
891 |
+
assert Interval(-oo, 3).is_left_unbounded is True
|
892 |
+
assert Interval(Float("-inf"), 3).is_left_unbounded is True
|
893 |
+
|
894 |
+
|
895 |
+
def test_Interval_is_right_unbounded():
|
896 |
+
assert Interval(3, 4).is_right_unbounded is False
|
897 |
+
assert Interval(3, oo).is_right_unbounded is True
|
898 |
+
assert Interval(3, Float("+inf")).is_right_unbounded is True
|
899 |
+
|
900 |
+
|
901 |
+
def test_Interval_as_relational():
|
902 |
+
x = Symbol('x')
|
903 |
+
|
904 |
+
assert Interval(-1, 2, False, False).as_relational(x) == \
|
905 |
+
And(Le(-1, x), Le(x, 2))
|
906 |
+
assert Interval(-1, 2, True, False).as_relational(x) == \
|
907 |
+
And(Lt(-1, x), Le(x, 2))
|
908 |
+
assert Interval(-1, 2, False, True).as_relational(x) == \
|
909 |
+
And(Le(-1, x), Lt(x, 2))
|
910 |
+
assert Interval(-1, 2, True, True).as_relational(x) == \
|
911 |
+
And(Lt(-1, x), Lt(x, 2))
|
912 |
+
|
913 |
+
assert Interval(-oo, 2, right_open=False).as_relational(x) == And(Lt(-oo, x), Le(x, 2))
|
914 |
+
assert Interval(-oo, 2, right_open=True).as_relational(x) == And(Lt(-oo, x), Lt(x, 2))
|
915 |
+
|
916 |
+
assert Interval(-2, oo, left_open=False).as_relational(x) == And(Le(-2, x), Lt(x, oo))
|
917 |
+
assert Interval(-2, oo, left_open=True).as_relational(x) == And(Lt(-2, x), Lt(x, oo))
|
918 |
+
|
919 |
+
assert Interval(-oo, oo).as_relational(x) == And(Lt(-oo, x), Lt(x, oo))
|
920 |
+
x = Symbol('x', real=True)
|
921 |
+
y = Symbol('y', real=True)
|
922 |
+
assert Interval(x, y).as_relational(x) == (x <= y)
|
923 |
+
assert Interval(y, x).as_relational(x) == (y <= x)
|
924 |
+
|
925 |
+
|
926 |
+
def test_Finite_as_relational():
|
927 |
+
x = Symbol('x')
|
928 |
+
y = Symbol('y')
|
929 |
+
|
930 |
+
assert FiniteSet(1, 2).as_relational(x) == Or(Eq(x, 1), Eq(x, 2))
|
931 |
+
assert FiniteSet(y, -5).as_relational(x) == Or(Eq(x, y), Eq(x, -5))
|
932 |
+
|
933 |
+
|
934 |
+
def test_Union_as_relational():
|
935 |
+
x = Symbol('x')
|
936 |
+
assert (Interval(0, 1) + FiniteSet(2)).as_relational(x) == \
|
937 |
+
Or(And(Le(0, x), Le(x, 1)), Eq(x, 2))
|
938 |
+
assert (Interval(0, 1, True, True) + FiniteSet(1)).as_relational(x) == \
|
939 |
+
And(Lt(0, x), Le(x, 1))
|
940 |
+
assert Or(x < 0, x > 0).as_set().as_relational(x) == \
|
941 |
+
And((x > -oo), (x < oo), Ne(x, 0))
|
942 |
+
assert (Interval.Ropen(1, 3) + Interval.Lopen(3, 5)
|
943 |
+
).as_relational(x) == And(Ne(x,3),(x>=1),(x<=5))
|
944 |
+
|
945 |
+
|
946 |
+
def test_Intersection_as_relational():
|
947 |
+
x = Symbol('x')
|
948 |
+
assert (Intersection(Interval(0, 1), FiniteSet(2),
|
949 |
+
evaluate=False).as_relational(x)
|
950 |
+
== And(And(Le(0, x), Le(x, 1)), Eq(x, 2)))
|
951 |
+
|
952 |
+
|
953 |
+
def test_Complement_as_relational():
|
954 |
+
x = Symbol('x')
|
955 |
+
expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False)
|
956 |
+
assert expr.as_relational(x) == \
|
957 |
+
And(Le(0, x), Le(x, 1), Ne(x, 2))
|
958 |
+
|
959 |
+
|
960 |
+
@XFAIL
|
961 |
+
def test_Complement_as_relational_fail():
|
962 |
+
x = Symbol('x')
|
963 |
+
expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False)
|
964 |
+
# XXX This example fails because 0 <= x changes to x >= 0
|
965 |
+
# during the evaluation.
|
966 |
+
assert expr.as_relational(x) == \
|
967 |
+
(0 <= x) & (x <= 1) & Ne(x, 2)
|
968 |
+
|
969 |
+
|
970 |
+
def test_SymmetricDifference_as_relational():
|
971 |
+
x = Symbol('x')
|
972 |
+
expr = SymmetricDifference(Interval(0, 1), FiniteSet(2), evaluate=False)
|
973 |
+
assert expr.as_relational(x) == Xor(Eq(x, 2), Le(0, x) & Le(x, 1))
|
974 |
+
|
975 |
+
|
976 |
+
def test_EmptySet():
|
977 |
+
assert S.EmptySet.as_relational(Symbol('x')) is S.false
|
978 |
+
assert S.EmptySet.intersect(S.UniversalSet) == S.EmptySet
|
979 |
+
assert S.EmptySet.boundary == S.EmptySet
|
980 |
+
|
981 |
+
|
982 |
+
def test_finite_basic():
|
983 |
+
x = Symbol('x')
|
984 |
+
A = FiniteSet(1, 2, 3)
|
985 |
+
B = FiniteSet(3, 4, 5)
|
986 |
+
AorB = Union(A, B)
|
987 |
+
AandB = A.intersect(B)
|
988 |
+
assert A.is_subset(AorB) and B.is_subset(AorB)
|
989 |
+
assert AandB.is_subset(A)
|
990 |
+
assert AandB == FiniteSet(3)
|
991 |
+
|
992 |
+
assert A.inf == 1 and A.sup == 3
|
993 |
+
assert AorB.inf == 1 and AorB.sup == 5
|
994 |
+
assert FiniteSet(x, 1, 5).sup == Max(x, 5)
|
995 |
+
assert FiniteSet(x, 1, 5).inf == Min(x, 1)
|
996 |
+
|
997 |
+
# issue 7335
|
998 |
+
assert FiniteSet(S.EmptySet) != S.EmptySet
|
999 |
+
assert FiniteSet(FiniteSet(1, 2, 3)) != FiniteSet(1, 2, 3)
|
1000 |
+
assert FiniteSet((1, 2, 3)) != FiniteSet(1, 2, 3)
|
1001 |
+
|
1002 |
+
# Ensure a variety of types can exist in a FiniteSet
|
1003 |
+
assert FiniteSet((1, 2), A, -5, x, 'eggs', x**2)
|
1004 |
+
|
1005 |
+
assert (A > B) is False
|
1006 |
+
assert (A >= B) is False
|
1007 |
+
assert (A < B) is False
|
1008 |
+
assert (A <= B) is False
|
1009 |
+
assert AorB > A and AorB > B
|
1010 |
+
assert AorB >= A and AorB >= B
|
1011 |
+
assert A >= A and A <= A
|
1012 |
+
assert A >= AandB and B >= AandB
|
1013 |
+
assert A > AandB and B > AandB
|
1014 |
+
|
1015 |
+
|
1016 |
+
def test_product_basic():
|
1017 |
+
H, T = 'H', 'T'
|
1018 |
+
unit_line = Interval(0, 1)
|
1019 |
+
d6 = FiniteSet(1, 2, 3, 4, 5, 6)
|
1020 |
+
d4 = FiniteSet(1, 2, 3, 4)
|
1021 |
+
coin = FiniteSet(H, T)
|
1022 |
+
|
1023 |
+
square = unit_line * unit_line
|
1024 |
+
|
1025 |
+
assert (0, 0) in square
|
1026 |
+
assert 0 not in square
|
1027 |
+
assert (H, T) in coin ** 2
|
1028 |
+
assert (.5, .5, .5) in (square * unit_line).flatten()
|
1029 |
+
assert ((.5, .5), .5) in square * unit_line
|
1030 |
+
assert (H, 3, 3) in (coin * d6 * d6).flatten()
|
1031 |
+
assert ((H, 3), 3) in coin * d6 * d6
|
1032 |
+
HH, TT = sympify(H), sympify(T)
|
1033 |
+
assert set(coin**2) == {(HH, HH), (HH, TT), (TT, HH), (TT, TT)}
|
1034 |
+
|
1035 |
+
assert (d4*d4).is_subset(d6*d6)
|
1036 |
+
|
1037 |
+
assert square.complement(Interval(-oo, oo)*Interval(-oo, oo)) == Union(
|
1038 |
+
(Interval(-oo, 0, True, True) +
|
1039 |
+
Interval(1, oo, True, True))*Interval(-oo, oo),
|
1040 |
+
Interval(-oo, oo)*(Interval(-oo, 0, True, True) +
|
1041 |
+
Interval(1, oo, True, True)))
|
1042 |
+
|
1043 |
+
assert (Interval(-5, 5)**3).is_subset(Interval(-10, 10)**3)
|
1044 |
+
assert not (Interval(-10, 10)**3).is_subset(Interval(-5, 5)**3)
|
1045 |
+
assert not (Interval(-5, 5)**2).is_subset(Interval(-10, 10)**3)
|
1046 |
+
|
1047 |
+
assert (Interval(.2, .5)*FiniteSet(.5)).is_subset(square) # segment in square
|
1048 |
+
|
1049 |
+
assert len(coin*coin*coin) == 8
|
1050 |
+
assert len(S.EmptySet*S.EmptySet) == 0
|
1051 |
+
assert len(S.EmptySet*coin) == 0
|
1052 |
+
raises(TypeError, lambda: len(coin*Interval(0, 2)))
|
1053 |
+
|
1054 |
+
|
1055 |
+
def test_real():
|
1056 |
+
x = Symbol('x', real=True)
|
1057 |
+
|
1058 |
+
I = Interval(0, 5)
|
1059 |
+
J = Interval(10, 20)
|
1060 |
+
A = FiniteSet(1, 2, 30, x, S.Pi)
|
1061 |
+
B = FiniteSet(-4, 0)
|
1062 |
+
C = FiniteSet(100)
|
1063 |
+
D = FiniteSet('Ham', 'Eggs')
|
1064 |
+
|
1065 |
+
assert all(s.is_subset(S.Reals) for s in [I, J, A, B, C])
|
1066 |
+
assert not D.is_subset(S.Reals)
|
1067 |
+
assert all((a + b).is_subset(S.Reals) for a in [I, J, A, B, C] for b in [I, J, A, B, C])
|
1068 |
+
assert not any((a + D).is_subset(S.Reals) for a in [I, J, A, B, C, D])
|
1069 |
+
|
1070 |
+
assert not (I + A + D).is_subset(S.Reals)
|
1071 |
+
|
1072 |
+
|
1073 |
+
def test_supinf():
|
1074 |
+
x = Symbol('x', real=True)
|
1075 |
+
y = Symbol('y', real=True)
|
1076 |
+
|
1077 |
+
assert (Interval(0, 1) + FiniteSet(2)).sup == 2
|
1078 |
+
assert (Interval(0, 1) + FiniteSet(2)).inf == 0
|
1079 |
+
assert (Interval(0, 1) + FiniteSet(x)).sup == Max(1, x)
|
1080 |
+
assert (Interval(0, 1) + FiniteSet(x)).inf == Min(0, x)
|
1081 |
+
assert FiniteSet(5, 1, x).sup == Max(5, x)
|
1082 |
+
assert FiniteSet(5, 1, x).inf == Min(1, x)
|
1083 |
+
assert FiniteSet(5, 1, x, y).sup == Max(5, x, y)
|
1084 |
+
assert FiniteSet(5, 1, x, y).inf == Min(1, x, y)
|
1085 |
+
assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).sup == \
|
1086 |
+
S.Infinity
|
1087 |
+
assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).inf == \
|
1088 |
+
S.NegativeInfinity
|
1089 |
+
assert FiniteSet('Ham', 'Eggs').sup == Max('Ham', 'Eggs')
|
1090 |
+
|
1091 |
+
|
1092 |
+
def test_universalset():
|
1093 |
+
U = S.UniversalSet
|
1094 |
+
x = Symbol('x')
|
1095 |
+
assert U.as_relational(x) is S.true
|
1096 |
+
assert U.union(Interval(2, 4)) == U
|
1097 |
+
|
1098 |
+
assert U.intersect(Interval(2, 4)) == Interval(2, 4)
|
1099 |
+
assert U.measure is S.Infinity
|
1100 |
+
assert U.boundary == S.EmptySet
|
1101 |
+
assert U.contains(0) is S.true
|
1102 |
+
|
1103 |
+
|
1104 |
+
def test_Union_of_ProductSets_shares():
|
1105 |
+
line = Interval(0, 2)
|
1106 |
+
points = FiniteSet(0, 1, 2)
|
1107 |
+
assert Union(line * line, line * points) == line * line
|
1108 |
+
|
1109 |
+
|
1110 |
+
def test_Interval_free_symbols():
|
1111 |
+
# issue 6211
|
1112 |
+
assert Interval(0, 1).free_symbols == set()
|
1113 |
+
x = Symbol('x', real=True)
|
1114 |
+
assert Interval(0, x).free_symbols == {x}
|
1115 |
+
|
1116 |
+
|
1117 |
+
def test_image_interval():
|
1118 |
+
x = Symbol('x', real=True)
|
1119 |
+
a = Symbol('a', real=True)
|
1120 |
+
assert imageset(x, 2*x, Interval(-2, 1)) == Interval(-4, 2)
|
1121 |
+
assert imageset(x, 2*x, Interval(-2, 1, True, False)) == \
|
1122 |
+
Interval(-4, 2, True, False)
|
1123 |
+
assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
|
1124 |
+
Interval(0, 4, False, True)
|
1125 |
+
assert imageset(x, x**2, Interval(-2, 1)) == Interval(0, 4)
|
1126 |
+
assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
|
1127 |
+
Interval(0, 4, False, True)
|
1128 |
+
assert imageset(x, x**2, Interval(-2, 1, True, True)) == \
|
1129 |
+
Interval(0, 4, False, True)
|
1130 |
+
assert imageset(x, (x - 2)**2, Interval(1, 3)) == Interval(0, 1)
|
1131 |
+
assert imageset(x, 3*x**4 - 26*x**3 + 78*x**2 - 90*x, Interval(0, 4)) == \
|
1132 |
+
Interval(-35, 0) # Multiple Maxima
|
1133 |
+
assert imageset(x, x + 1/x, Interval(-oo, oo)) == Interval(-oo, -2) \
|
1134 |
+
+ Interval(2, oo) # Single Infinite discontinuity
|
1135 |
+
assert imageset(x, 1/x + 1/(x-1)**2, Interval(0, 2, True, False)) == \
|
1136 |
+
Interval(Rational(3, 2), oo, False) # Multiple Infinite discontinuities
|
1137 |
+
|
1138 |
+
# Test for Python lambda
|
1139 |
+
assert imageset(lambda x: 2*x, Interval(-2, 1)) == Interval(-4, 2)
|
1140 |
+
|
1141 |
+
assert imageset(Lambda(x, a*x), Interval(0, 1)) == \
|
1142 |
+
ImageSet(Lambda(x, a*x), Interval(0, 1))
|
1143 |
+
|
1144 |
+
assert imageset(Lambda(x, sin(cos(x))), Interval(0, 1)) == \
|
1145 |
+
ImageSet(Lambda(x, sin(cos(x))), Interval(0, 1))
|
1146 |
+
|
1147 |
+
|
1148 |
+
def test_image_piecewise():
|
1149 |
+
f = Piecewise((x, x <= -1), (1/x**2, x <= 5), (x**3, True))
|
1150 |
+
f1 = Piecewise((0, x <= 1), (1, x <= 2), (2, True))
|
1151 |
+
assert imageset(x, f, Interval(-5, 5)) == Union(Interval(-5, -1), Interval(Rational(1, 25), oo))
|
1152 |
+
assert imageset(x, f1, Interval(1, 2)) == FiniteSet(0, 1)
|
1153 |
+
|
1154 |
+
|
1155 |
+
@XFAIL # See: https://github.com/sympy/sympy/pull/2723#discussion_r8659826
|
1156 |
+
def test_image_Intersection():
|
1157 |
+
x = Symbol('x', real=True)
|
1158 |
+
y = Symbol('y', real=True)
|
1159 |
+
assert imageset(x, x**2, Interval(-2, 0).intersect(Interval(x, y))) == \
|
1160 |
+
Interval(0, 4).intersect(Interval(Min(x**2, y**2), Max(x**2, y**2)))
|
1161 |
+
|
1162 |
+
|
1163 |
+
def test_image_FiniteSet():
|
1164 |
+
x = Symbol('x', real=True)
|
1165 |
+
assert imageset(x, 2*x, FiniteSet(1, 2, 3)) == FiniteSet(2, 4, 6)
|
1166 |
+
|
1167 |
+
|
1168 |
+
def test_image_Union():
|
1169 |
+
x = Symbol('x', real=True)
|
1170 |
+
assert imageset(x, x**2, Interval(-2, 0) + FiniteSet(1, 2, 3)) == \
|
1171 |
+
(Interval(0, 4) + FiniteSet(9))
|
1172 |
+
|
1173 |
+
|
1174 |
+
def test_image_EmptySet():
|
1175 |
+
x = Symbol('x', real=True)
|
1176 |
+
assert imageset(x, 2*x, S.EmptySet) == S.EmptySet
|
1177 |
+
|
1178 |
+
|
1179 |
+
def test_issue_5724_7680():
|
1180 |
+
assert I not in S.Reals # issue 7680
|
1181 |
+
assert Interval(-oo, oo).contains(I) is S.false
|
1182 |
+
|
1183 |
+
|
1184 |
+
def test_boundary():
|
1185 |
+
assert FiniteSet(1).boundary == FiniteSet(1)
|
1186 |
+
assert all(Interval(0, 1, left_open, right_open).boundary == FiniteSet(0, 1)
|
1187 |
+
for left_open in (true, false) for right_open in (true, false))
|
1188 |
+
|
1189 |
+
|
1190 |
+
def test_boundary_Union():
|
1191 |
+
assert (Interval(0, 1) + Interval(2, 3)).boundary == FiniteSet(0, 1, 2, 3)
|
1192 |
+
assert ((Interval(0, 1, False, True)
|
1193 |
+
+ Interval(1, 2, True, False)).boundary == FiniteSet(0, 1, 2))
|
1194 |
+
|
1195 |
+
assert (Interval(0, 1) + FiniteSet(2)).boundary == FiniteSet(0, 1, 2)
|
1196 |
+
assert Union(Interval(0, 10), Interval(5, 15), evaluate=False).boundary \
|
1197 |
+
== FiniteSet(0, 15)
|
1198 |
+
|
1199 |
+
assert Union(Interval(0, 10), Interval(0, 1), evaluate=False).boundary \
|
1200 |
+
== FiniteSet(0, 10)
|
1201 |
+
assert Union(Interval(0, 10, True, True),
|
1202 |
+
Interval(10, 15, True, True), evaluate=False).boundary \
|
1203 |
+
== FiniteSet(0, 10, 15)
|
1204 |
+
|
1205 |
+
|
1206 |
+
@XFAIL
|
1207 |
+
def test_union_boundary_of_joining_sets():
|
1208 |
+
""" Testing the boundary of unions is a hard problem """
|
1209 |
+
assert Union(Interval(0, 10), Interval(10, 15), evaluate=False).boundary \
|
1210 |
+
== FiniteSet(0, 15)
|
1211 |
+
|
1212 |
+
|
1213 |
+
def test_boundary_ProductSet():
|
1214 |
+
open_square = Interval(0, 1, True, True) ** 2
|
1215 |
+
assert open_square.boundary == (FiniteSet(0, 1) * Interval(0, 1)
|
1216 |
+
+ Interval(0, 1) * FiniteSet(0, 1))
|
1217 |
+
|
1218 |
+
second_square = Interval(1, 2, True, True) * Interval(0, 1, True, True)
|
1219 |
+
assert (open_square + second_square).boundary == (
|
1220 |
+
FiniteSet(0, 1) * Interval(0, 1)
|
1221 |
+
+ FiniteSet(1, 2) * Interval(0, 1)
|
1222 |
+
+ Interval(0, 1) * FiniteSet(0, 1)
|
1223 |
+
+ Interval(1, 2) * FiniteSet(0, 1))
|
1224 |
+
|
1225 |
+
|
1226 |
+
def test_boundary_ProductSet_line():
|
1227 |
+
line_in_r2 = Interval(0, 1) * FiniteSet(0)
|
1228 |
+
assert line_in_r2.boundary == line_in_r2
|
1229 |
+
|
1230 |
+
|
1231 |
+
def test_is_open():
|
1232 |
+
assert Interval(0, 1, False, False).is_open is False
|
1233 |
+
assert Interval(0, 1, True, False).is_open is False
|
1234 |
+
assert Interval(0, 1, True, True).is_open is True
|
1235 |
+
assert FiniteSet(1, 2, 3).is_open is False
|
1236 |
+
|
1237 |
+
|
1238 |
+
def test_is_closed():
|
1239 |
+
assert Interval(0, 1, False, False).is_closed is True
|
1240 |
+
assert Interval(0, 1, True, False).is_closed is False
|
1241 |
+
assert FiniteSet(1, 2, 3).is_closed is True
|
1242 |
+
|
1243 |
+
|
1244 |
+
def test_closure():
|
1245 |
+
assert Interval(0, 1, False, True).closure == Interval(0, 1, False, False)
|
1246 |
+
|
1247 |
+
|
1248 |
+
def test_interior():
|
1249 |
+
assert Interval(0, 1, False, True).interior == Interval(0, 1, True, True)
|
1250 |
+
|
1251 |
+
|
1252 |
+
def test_issue_7841():
|
1253 |
+
raises(TypeError, lambda: x in S.Reals)
|
1254 |
+
|
1255 |
+
|
1256 |
+
def test_Eq():
|
1257 |
+
assert Eq(Interval(0, 1), Interval(0, 1))
|
1258 |
+
assert Eq(Interval(0, 1), Interval(0, 2)) == False
|
1259 |
+
|
1260 |
+
s1 = FiniteSet(0, 1)
|
1261 |
+
s2 = FiniteSet(1, 2)
|
1262 |
+
|
1263 |
+
assert Eq(s1, s1)
|
1264 |
+
assert Eq(s1, s2) == False
|
1265 |
+
|
1266 |
+
assert Eq(s1*s2, s1*s2)
|
1267 |
+
assert Eq(s1*s2, s2*s1) == False
|
1268 |
+
|
1269 |
+
assert unchanged(Eq, FiniteSet({x, y}), FiniteSet({x}))
|
1270 |
+
assert Eq(FiniteSet({x, y}).subs(y, x), FiniteSet({x})) is S.true
|
1271 |
+
assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x) is S.true
|
1272 |
+
assert Eq(FiniteSet({x, y}).subs(y, x+1), FiniteSet({x})) is S.false
|
1273 |
+
assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x+1) is S.false
|
1274 |
+
|
1275 |
+
assert Eq(ProductSet({1}, {2}), Interval(1, 2)) is S.false
|
1276 |
+
assert Eq(ProductSet({1}), ProductSet({1}, {2})) is S.false
|
1277 |
+
|
1278 |
+
assert Eq(FiniteSet(()), FiniteSet(1)) is S.false
|
1279 |
+
assert Eq(ProductSet(), FiniteSet(1)) is S.false
|
1280 |
+
|
1281 |
+
i1 = Interval(0, 1)
|
1282 |
+
i2 = Interval(x, y)
|
1283 |
+
assert unchanged(Eq, ProductSet(i1, i1), ProductSet(i2, i2))
|
1284 |
+
|
1285 |
+
|
1286 |
+
def test_SymmetricDifference():
|
1287 |
+
A = FiniteSet(0, 1, 2, 3, 4, 5)
|
1288 |
+
B = FiniteSet(2, 4, 6, 8, 10)
|
1289 |
+
C = Interval(8, 10)
|
1290 |
+
|
1291 |
+
assert SymmetricDifference(A, B, evaluate=False).is_iterable is True
|
1292 |
+
assert SymmetricDifference(A, C, evaluate=False).is_iterable is None
|
1293 |
+
assert FiniteSet(*SymmetricDifference(A, B, evaluate=False)) == \
|
1294 |
+
FiniteSet(0, 1, 3, 5, 6, 8, 10)
|
1295 |
+
raises(TypeError,
|
1296 |
+
lambda: FiniteSet(*SymmetricDifference(A, C, evaluate=False)))
|
1297 |
+
|
1298 |
+
assert SymmetricDifference(FiniteSet(0, 1, 2, 3, 4, 5), \
|
1299 |
+
FiniteSet(2, 4, 6, 8, 10)) == FiniteSet(0, 1, 3, 5, 6, 8, 10)
|
1300 |
+
assert SymmetricDifference(FiniteSet(2, 3, 4), FiniteSet(2, 3, 4 ,5)) \
|
1301 |
+
== FiniteSet(5)
|
1302 |
+
assert FiniteSet(1, 2, 3, 4, 5) ^ FiniteSet(1, 2, 5, 6) == \
|
1303 |
+
FiniteSet(3, 4, 6)
|
1304 |
+
assert Set(S(1), S(2), S(3)) ^ Set(S(2), S(3), S(4)) == Union(Set(S(1), S(2), S(3)) - Set(S(2), S(3), S(4)), \
|
1305 |
+
Set(S(2), S(3), S(4)) - Set(S(1), S(2), S(3)))
|
1306 |
+
assert Interval(0, 4) ^ Interval(2, 5) == Union(Interval(0, 4) - \
|
1307 |
+
Interval(2, 5), Interval(2, 5) - Interval(0, 4))
|
1308 |
+
|
1309 |
+
|
1310 |
+
def test_issue_9536():
|
1311 |
+
from sympy.functions.elementary.exponential import log
|
1312 |
+
a = Symbol('a', real=True)
|
1313 |
+
assert FiniteSet(log(a)).intersect(S.Reals) == Intersection(S.Reals, FiniteSet(log(a)))
|
1314 |
+
|
1315 |
+
|
1316 |
+
def test_issue_9637():
|
1317 |
+
n = Symbol('n')
|
1318 |
+
a = FiniteSet(n)
|
1319 |
+
b = FiniteSet(2, n)
|
1320 |
+
assert Complement(S.Reals, a) == Complement(S.Reals, a, evaluate=False)
|
1321 |
+
assert Complement(Interval(1, 3), a) == Complement(Interval(1, 3), a, evaluate=False)
|
1322 |
+
assert Complement(Interval(1, 3), b) == \
|
1323 |
+
Complement(Union(Interval(1, 2, False, True), Interval(2, 3, True, False)), a)
|
1324 |
+
assert Complement(a, S.Reals) == Complement(a, S.Reals, evaluate=False)
|
1325 |
+
assert Complement(a, Interval(1, 3)) == Complement(a, Interval(1, 3), evaluate=False)
|
1326 |
+
|
1327 |
+
|
1328 |
+
def test_issue_9808():
|
1329 |
+
# See https://github.com/sympy/sympy/issues/16342
|
1330 |
+
assert Complement(FiniteSet(y), FiniteSet(1)) == Complement(FiniteSet(y), FiniteSet(1), evaluate=False)
|
1331 |
+
assert Complement(FiniteSet(1, 2, x), FiniteSet(x, y, 2, 3)) == \
|
1332 |
+
Complement(FiniteSet(1), FiniteSet(y), evaluate=False)
|
1333 |
+
|
1334 |
+
|
1335 |
+
def test_issue_9956():
|
1336 |
+
assert Union(Interval(-oo, oo), FiniteSet(1)) == Interval(-oo, oo)
|
1337 |
+
assert Interval(-oo, oo).contains(1) is S.true
|
1338 |
+
|
1339 |
+
|
1340 |
+
def test_issue_Symbol_inter():
|
1341 |
+
i = Interval(0, oo)
|
1342 |
+
r = S.Reals
|
1343 |
+
mat = Matrix([0, 0, 0])
|
1344 |
+
assert Intersection(r, i, FiniteSet(m), FiniteSet(m, n)) == \
|
1345 |
+
Intersection(i, FiniteSet(m))
|
1346 |
+
assert Intersection(FiniteSet(1, m, n), FiniteSet(m, n, 2), i) == \
|
1347 |
+
Intersection(i, FiniteSet(m, n))
|
1348 |
+
assert Intersection(FiniteSet(m, n, x), FiniteSet(m, z), r) == \
|
1349 |
+
Intersection(Intersection({m, z}, {m, n, x}), r)
|
1350 |
+
assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, x), r) == \
|
1351 |
+
Intersection(FiniteSet(3, m, n), FiniteSet(m, n, x), r, evaluate=False)
|
1352 |
+
assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, 2, 3), r) == \
|
1353 |
+
Intersection(FiniteSet(3, m, n), r)
|
1354 |
+
assert Intersection(r, FiniteSet(mat, 2, n), FiniteSet(0, mat, n)) == \
|
1355 |
+
Intersection(r, FiniteSet(n))
|
1356 |
+
assert Intersection(FiniteSet(sin(x), cos(x)), FiniteSet(sin(x), cos(x), 1), r) == \
|
1357 |
+
Intersection(r, FiniteSet(sin(x), cos(x)))
|
1358 |
+
assert Intersection(FiniteSet(x**2, 1, sin(x)), FiniteSet(x**2, 2, sin(x)), r) == \
|
1359 |
+
Intersection(r, FiniteSet(x**2, sin(x)))
|
1360 |
+
|
1361 |
+
|
1362 |
+
def test_issue_11827():
|
1363 |
+
assert S.Naturals0**4
|
1364 |
+
|
1365 |
+
|
1366 |
+
def test_issue_10113():
|
1367 |
+
f = x**2/(x**2 - 4)
|
1368 |
+
assert imageset(x, f, S.Reals) == Union(Interval(-oo, 0), Interval(1, oo, True, True))
|
1369 |
+
assert imageset(x, f, Interval(-2, 2)) == Interval(-oo, 0)
|
1370 |
+
assert imageset(x, f, Interval(-2, 3)) == Union(Interval(-oo, 0), Interval(Rational(9, 5), oo))
|
1371 |
+
|
1372 |
+
|
1373 |
+
def test_issue_10248():
|
1374 |
+
raises(
|
1375 |
+
TypeError, lambda: list(Intersection(S.Reals, FiniteSet(x)))
|
1376 |
+
)
|
1377 |
+
A = Symbol('A', real=True)
|
1378 |
+
assert list(Intersection(S.Reals, FiniteSet(A))) == [A]
|
1379 |
+
|
1380 |
+
|
1381 |
+
def test_issue_9447():
|
1382 |
+
a = Interval(0, 1) + Interval(2, 3)
|
1383 |
+
assert Complement(S.UniversalSet, a) == Complement(
|
1384 |
+
S.UniversalSet, Union(Interval(0, 1), Interval(2, 3)), evaluate=False)
|
1385 |
+
assert Complement(S.Naturals, a) == Complement(
|
1386 |
+
S.Naturals, Union(Interval(0, 1), Interval(2, 3)), evaluate=False)
|
1387 |
+
|
1388 |
+
|
1389 |
+
def test_issue_10337():
|
1390 |
+
assert (FiniteSet(2) == 3) is False
|
1391 |
+
assert (FiniteSet(2) != 3) is True
|
1392 |
+
raises(TypeError, lambda: FiniteSet(2) < 3)
|
1393 |
+
raises(TypeError, lambda: FiniteSet(2) <= 3)
|
1394 |
+
raises(TypeError, lambda: FiniteSet(2) > 3)
|
1395 |
+
raises(TypeError, lambda: FiniteSet(2) >= 3)
|
1396 |
+
|
1397 |
+
|
1398 |
+
def test_issue_10326():
|
1399 |
+
bad = [
|
1400 |
+
EmptySet,
|
1401 |
+
FiniteSet(1),
|
1402 |
+
Interval(1, 2),
|
1403 |
+
S.ComplexInfinity,
|
1404 |
+
S.ImaginaryUnit,
|
1405 |
+
S.Infinity,
|
1406 |
+
S.NaN,
|
1407 |
+
S.NegativeInfinity,
|
1408 |
+
]
|
1409 |
+
interval = Interval(0, 5)
|
1410 |
+
for i in bad:
|
1411 |
+
assert i not in interval
|
1412 |
+
|
1413 |
+
x = Symbol('x', real=True)
|
1414 |
+
nr = Symbol('nr', extended_real=False)
|
1415 |
+
assert x + 1 in Interval(x, x + 4)
|
1416 |
+
assert nr not in Interval(x, x + 4)
|
1417 |
+
assert Interval(1, 2) in FiniteSet(Interval(0, 5), Interval(1, 2))
|
1418 |
+
assert Interval(-oo, oo).contains(oo) is S.false
|
1419 |
+
assert Interval(-oo, oo).contains(-oo) is S.false
|
1420 |
+
|
1421 |
+
|
1422 |
+
def test_issue_2799():
|
1423 |
+
U = S.UniversalSet
|
1424 |
+
a = Symbol('a', real=True)
|
1425 |
+
inf_interval = Interval(a, oo)
|
1426 |
+
R = S.Reals
|
1427 |
+
|
1428 |
+
assert U + inf_interval == inf_interval + U
|
1429 |
+
assert U + R == R + U
|
1430 |
+
assert R + inf_interval == inf_interval + R
|
1431 |
+
|
1432 |
+
|
1433 |
+
def test_issue_9706():
|
1434 |
+
assert Interval(-oo, 0).closure == Interval(-oo, 0, True, False)
|
1435 |
+
assert Interval(0, oo).closure == Interval(0, oo, False, True)
|
1436 |
+
assert Interval(-oo, oo).closure == Interval(-oo, oo)
|
1437 |
+
|
1438 |
+
|
1439 |
+
def test_issue_8257():
|
1440 |
+
reals_plus_infinity = Union(Interval(-oo, oo), FiniteSet(oo))
|
1441 |
+
reals_plus_negativeinfinity = Union(Interval(-oo, oo), FiniteSet(-oo))
|
1442 |
+
assert Interval(-oo, oo) + FiniteSet(oo) == reals_plus_infinity
|
1443 |
+
assert FiniteSet(oo) + Interval(-oo, oo) == reals_plus_infinity
|
1444 |
+
assert Interval(-oo, oo) + FiniteSet(-oo) == reals_plus_negativeinfinity
|
1445 |
+
assert FiniteSet(-oo) + Interval(-oo, oo) == reals_plus_negativeinfinity
|
1446 |
+
|
1447 |
+
|
1448 |
+
def test_issue_10931():
|
1449 |
+
assert S.Integers - S.Integers == EmptySet
|
1450 |
+
assert S.Integers - S.Reals == EmptySet
|
1451 |
+
|
1452 |
+
|
1453 |
+
def test_issue_11174():
|
1454 |
+
soln = Intersection(Interval(-oo, oo), FiniteSet(-x), evaluate=False)
|
1455 |
+
assert Intersection(FiniteSet(-x), S.Reals) == soln
|
1456 |
+
|
1457 |
+
soln = Intersection(S.Reals, FiniteSet(x), evaluate=False)
|
1458 |
+
assert Intersection(FiniteSet(x), S.Reals) == soln
|
1459 |
+
|
1460 |
+
|
1461 |
+
def test_issue_18505():
|
1462 |
+
assert ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers).contains(0) == \
|
1463 |
+
Contains(0, ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers))
|
1464 |
+
|
1465 |
+
|
1466 |
+
def test_finite_set_intersection():
|
1467 |
+
# The following should not produce recursion errors
|
1468 |
+
# Note: some of these are not completely correct. See
|
1469 |
+
# https://github.com/sympy/sympy/issues/16342.
|
1470 |
+
assert Intersection(FiniteSet(-oo, x), FiniteSet(x)) == FiniteSet(x)
|
1471 |
+
assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(0, x)]) == FiniteSet(x)
|
1472 |
+
|
1473 |
+
assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(x)]) == FiniteSet(x)
|
1474 |
+
assert Intersection._handle_finite_sets([FiniteSet(2, 3, x, y), FiniteSet(1, 2, x)]) == \
|
1475 |
+
Intersection._handle_finite_sets([FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)]) == \
|
1476 |
+
Intersection(FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)) == \
|
1477 |
+
Intersection(FiniteSet(1, 2, x), FiniteSet(2, x, y))
|
1478 |
+
|
1479 |
+
assert FiniteSet(1+x-y) & FiniteSet(1) == \
|
1480 |
+
FiniteSet(1) & FiniteSet(1+x-y) == \
|
1481 |
+
Intersection(FiniteSet(1+x-y), FiniteSet(1), evaluate=False)
|
1482 |
+
|
1483 |
+
assert FiniteSet(1) & FiniteSet(x) == FiniteSet(x) & FiniteSet(1) == \
|
1484 |
+
Intersection(FiniteSet(1), FiniteSet(x), evaluate=False)
|
1485 |
+
|
1486 |
+
assert FiniteSet({x}) & FiniteSet({x, y}) == \
|
1487 |
+
Intersection(FiniteSet({x}), FiniteSet({x, y}), evaluate=False)
|
1488 |
+
|
1489 |
+
|
1490 |
+
def test_union_intersection_constructor():
|
1491 |
+
# The actual exception does not matter here, so long as these fail
|
1492 |
+
sets = [FiniteSet(1), FiniteSet(2)]
|
1493 |
+
raises(Exception, lambda: Union(sets))
|
1494 |
+
raises(Exception, lambda: Intersection(sets))
|
1495 |
+
raises(Exception, lambda: Union(tuple(sets)))
|
1496 |
+
raises(Exception, lambda: Intersection(tuple(sets)))
|
1497 |
+
raises(Exception, lambda: Union(i for i in sets))
|
1498 |
+
raises(Exception, lambda: Intersection(i for i in sets))
|
1499 |
+
|
1500 |
+
# Python sets are treated the same as FiniteSet
|
1501 |
+
# The union of a single set (of sets) is the set (of sets) itself
|
1502 |
+
assert Union(set(sets)) == FiniteSet(*sets)
|
1503 |
+
assert Intersection(set(sets)) == FiniteSet(*sets)
|
1504 |
+
|
1505 |
+
assert Union({1}, {2}) == FiniteSet(1, 2)
|
1506 |
+
assert Intersection({1, 2}, {2, 3}) == FiniteSet(2)
|
1507 |
+
|
1508 |
+
|
1509 |
+
def test_Union_contains():
|
1510 |
+
assert zoo not in Union(
|
1511 |
+
Interval.open(-oo, 0), Interval.open(0, oo))
|
1512 |
+
|
1513 |
+
|
1514 |
+
@XFAIL
|
1515 |
+
def test_issue_16878b():
|
1516 |
+
# in intersection_sets for (ImageSet, Set) there is no code
|
1517 |
+
# that handles the base_set of S.Reals like there is
|
1518 |
+
# for Integers
|
1519 |
+
assert imageset(x, (x, x), S.Reals).is_subset(S.Reals**2) is True
|
1520 |
+
|
1521 |
+
def test_DisjointUnion():
|
1522 |
+
assert DisjointUnion(FiniteSet(1, 2, 3), FiniteSet(1, 2, 3), FiniteSet(1, 2, 3)).rewrite(Union) == (FiniteSet(1, 2, 3) * FiniteSet(0, 1, 2))
|
1523 |
+
assert DisjointUnion(Interval(1, 3), Interval(2, 4)).rewrite(Union) == Union(Interval(1, 3) * FiniteSet(0), Interval(2, 4) * FiniteSet(1))
|
1524 |
+
assert DisjointUnion(Interval(0, 5), Interval(0, 5)).rewrite(Union) == Union(Interval(0, 5) * FiniteSet(0), Interval(0, 5) * FiniteSet(1))
|
1525 |
+
assert DisjointUnion(Interval(-1, 2), S.EmptySet, S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(0)
|
1526 |
+
assert DisjointUnion(Interval(-1, 2)).rewrite(Union) == Interval(-1, 2) * FiniteSet(0)
|
1527 |
+
assert DisjointUnion(S.EmptySet, Interval(-1, 2), S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(1)
|
1528 |
+
assert DisjointUnion(Interval(-oo, oo)).rewrite(Union) == Interval(-oo, oo) * FiniteSet(0)
|
1529 |
+
assert DisjointUnion(S.EmptySet).rewrite(Union) == S.EmptySet
|
1530 |
+
assert DisjointUnion().rewrite(Union) == S.EmptySet
|
1531 |
+
raises(TypeError, lambda: DisjointUnion(Symbol('n')))
|
1532 |
+
|
1533 |
+
x = Symbol("x")
|
1534 |
+
y = Symbol("y")
|
1535 |
+
z = Symbol("z")
|
1536 |
+
assert DisjointUnion(FiniteSet(x), FiniteSet(y, z)).rewrite(Union) == (FiniteSet(x) * FiniteSet(0)) + (FiniteSet(y, z) * FiniteSet(1))
|
1537 |
+
|
1538 |
+
def test_DisjointUnion_is_empty():
|
1539 |
+
assert DisjointUnion(S.EmptySet).is_empty is True
|
1540 |
+
assert DisjointUnion(S.EmptySet, S.EmptySet).is_empty is True
|
1541 |
+
assert DisjointUnion(S.EmptySet, FiniteSet(1, 2, 3)).is_empty is False
|
1542 |
+
|
1543 |
+
def test_DisjointUnion_is_iterable():
|
1544 |
+
assert DisjointUnion(S.Integers, S.Naturals, S.Rationals).is_iterable is True
|
1545 |
+
assert DisjointUnion(S.EmptySet, S.Reals).is_iterable is False
|
1546 |
+
assert DisjointUnion(FiniteSet(1, 2, 3), S.EmptySet, FiniteSet(x, y)).is_iterable is True
|
1547 |
+
assert DisjointUnion(S.EmptySet, S.EmptySet).is_iterable is False
|
1548 |
+
|
1549 |
+
def test_DisjointUnion_contains():
|
1550 |
+
assert (0, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
|
1551 |
+
assert (0, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
|
1552 |
+
assert (0, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
|
1553 |
+
assert (1, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
|
1554 |
+
assert (1, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
|
1555 |
+
assert (1, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
|
1556 |
+
assert (2, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
|
1557 |
+
assert (2, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
|
1558 |
+
assert (2, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
|
1559 |
+
assert (0, 1, 2) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
|
1560 |
+
assert (0, 0.5) not in DisjointUnion(FiniteSet(0.5))
|
1561 |
+
assert (0, 5) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
|
1562 |
+
assert (x, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
|
1563 |
+
assert (y, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
|
1564 |
+
assert (z, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
|
1565 |
+
assert (y, 2) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
|
1566 |
+
assert (0.5, 0) in DisjointUnion(Interval(0, 1), Interval(0, 2))
|
1567 |
+
assert (0.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2))
|
1568 |
+
assert (1.5, 0) not in DisjointUnion(Interval(0, 1), Interval(0, 2))
|
1569 |
+
assert (1.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2))
|
1570 |
+
|
1571 |
+
def test_DisjointUnion_iter():
|
1572 |
+
D = DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z))
|
1573 |
+
it = iter(D)
|
1574 |
+
L1 = [(x, 1), (y, 1), (z, 1)]
|
1575 |
+
L2 = [(3, 0), (5, 0), (7, 0), (9, 0)]
|
1576 |
+
nxt = next(it)
|
1577 |
+
assert nxt in L2
|
1578 |
+
L2.remove(nxt)
|
1579 |
+
nxt = next(it)
|
1580 |
+
assert nxt in L1
|
1581 |
+
L1.remove(nxt)
|
1582 |
+
nxt = next(it)
|
1583 |
+
assert nxt in L2
|
1584 |
+
L2.remove(nxt)
|
1585 |
+
nxt = next(it)
|
1586 |
+
assert nxt in L1
|
1587 |
+
L1.remove(nxt)
|
1588 |
+
nxt = next(it)
|
1589 |
+
assert nxt in L2
|
1590 |
+
L2.remove(nxt)
|
1591 |
+
nxt = next(it)
|
1592 |
+
assert nxt in L1
|
1593 |
+
L1.remove(nxt)
|
1594 |
+
nxt = next(it)
|
1595 |
+
assert nxt in L2
|
1596 |
+
L2.remove(nxt)
|
1597 |
+
raises(StopIteration, lambda: next(it))
|
1598 |
+
|
1599 |
+
raises(ValueError, lambda: iter(DisjointUnion(Interval(0, 1), S.EmptySet)))
|
1600 |
+
|
1601 |
+
def test_DisjointUnion_len():
|
1602 |
+
assert len(DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z))) == 7
|
1603 |
+
assert len(DisjointUnion(S.EmptySet, S.EmptySet, FiniteSet(x, y, z), S.EmptySet)) == 3
|
1604 |
+
raises(ValueError, lambda: len(DisjointUnion(Interval(0, 1), S.EmptySet)))
|
1605 |
+
|
1606 |
+
def test_SetKind_ProductSet():
|
1607 |
+
p = ProductSet(FiniteSet(Matrix([1, 2])), FiniteSet(Matrix([1, 2])))
|
1608 |
+
mk = MatrixKind(NumberKind)
|
1609 |
+
k = SetKind(TupleKind(mk, mk))
|
1610 |
+
assert p.kind is k
|
1611 |
+
assert ProductSet(Interval(1, 2), FiniteSet(Matrix([1, 2]))).kind is SetKind(TupleKind(NumberKind, mk))
|
1612 |
+
|
1613 |
+
def test_SetKind_Interval():
|
1614 |
+
assert Interval(1, 2).kind is SetKind(NumberKind)
|
1615 |
+
|
1616 |
+
def test_SetKind_EmptySet_UniversalSet():
|
1617 |
+
assert S.UniversalSet.kind is SetKind(UndefinedKind)
|
1618 |
+
assert EmptySet.kind is SetKind()
|
1619 |
+
|
1620 |
+
def test_SetKind_FiniteSet():
|
1621 |
+
assert FiniteSet(1, Matrix([1, 2])).kind is SetKind(UndefinedKind)
|
1622 |
+
assert FiniteSet(1, 2).kind is SetKind(NumberKind)
|
1623 |
+
|
1624 |
+
def test_SetKind_Unions():
|
1625 |
+
assert Union(FiniteSet(Matrix([1, 2])), Interval(1, 2)).kind is SetKind(UndefinedKind)
|
1626 |
+
assert Union(Interval(1, 2), Interval(1, 7)).kind is SetKind(NumberKind)
|
1627 |
+
|
1628 |
+
def test_SetKind_DisjointUnion():
|
1629 |
+
A = FiniteSet(1, 2, 3)
|
1630 |
+
B = Interval(0, 5)
|
1631 |
+
assert DisjointUnion(A, B).kind is SetKind(NumberKind)
|
1632 |
+
|
1633 |
+
def test_SetKind_evaluate_False():
|
1634 |
+
U = lambda *args: Union(*args, evaluate=False)
|
1635 |
+
assert U({1}, EmptySet).kind is SetKind(NumberKind)
|
1636 |
+
assert U(Interval(1, 2), EmptySet).kind is SetKind(NumberKind)
|
1637 |
+
assert U({1}, S.UniversalSet).kind is SetKind(UndefinedKind)
|
1638 |
+
assert U(Interval(1, 2), Interval(4, 5),
|
1639 |
+
FiniteSet(1)).kind is SetKind(NumberKind)
|
1640 |
+
I = lambda *args: Intersection(*args, evaluate=False)
|
1641 |
+
assert I({1}, S.UniversalSet).kind is SetKind(NumberKind)
|
1642 |
+
assert I({1}, EmptySet).kind is SetKind()
|
1643 |
+
C = lambda *args: Complement(*args, evaluate=False)
|
1644 |
+
assert C(S.UniversalSet, {1, 2, 4, 5}).kind is SetKind(UndefinedKind)
|
1645 |
+
assert C({1, 2, 3, 4, 5}, EmptySet).kind is SetKind(NumberKind)
|
1646 |
+
assert C(EmptySet, {1, 2, 3, 4, 5}).kind is SetKind()
|
1647 |
+
|
1648 |
+
def test_SetKind_ImageSet_Special():
|
1649 |
+
f = ImageSet(Lambda(n, n ** 2), Interval(1, 4))
|
1650 |
+
assert (f - FiniteSet(3)).kind is SetKind(NumberKind)
|
1651 |
+
assert (f + Interval(16, 17)).kind is SetKind(NumberKind)
|
1652 |
+
assert (f + FiniteSet(17)).kind is SetKind(NumberKind)
|
1653 |
+
|
1654 |
+
def test_issue_20089():
|
1655 |
+
B = FiniteSet(FiniteSet(1, 2), FiniteSet(1))
|
1656 |
+
assert 1 not in B
|
1657 |
+
assert 1.0 not in B
|
1658 |
+
assert not Eq(1, FiniteSet(1, 2))
|
1659 |
+
assert FiniteSet(1) in B
|
1660 |
+
A = FiniteSet(1, 2)
|
1661 |
+
assert A in B
|
1662 |
+
assert B.issubset(B)
|
1663 |
+
assert not A.issubset(B)
|
1664 |
+
assert 1 in A
|
1665 |
+
C = FiniteSet(FiniteSet(1, 2), FiniteSet(1), 1, 2)
|
1666 |
+
assert A.issubset(C)
|
1667 |
+
assert B.issubset(C)
|
1668 |
+
|
1669 |
+
def test_issue_19378():
|
1670 |
+
a = FiniteSet(1, 2)
|
1671 |
+
b = ProductSet(a, a)
|
1672 |
+
c = FiniteSet((1, 1), (1, 2), (2, 1), (2, 2))
|
1673 |
+
assert b.is_subset(c) is True
|
1674 |
+
d = FiniteSet(1)
|
1675 |
+
assert b.is_subset(d) is False
|
1676 |
+
assert Eq(c, b).simplify() is S.true
|
1677 |
+
assert Eq(a, c).simplify() is S.false
|
1678 |
+
assert Eq({1}, {x}).simplify() == Eq({1}, {x})
|
1679 |
+
|
1680 |
+
def test_intersection_symbolic():
|
1681 |
+
n = Symbol('n')
|
1682 |
+
# These should not throw an error
|
1683 |
+
assert isinstance(Intersection(Range(n), Range(100)), Intersection)
|
1684 |
+
assert isinstance(Intersection(Range(n), Interval(1, 100)), Intersection)
|
1685 |
+
assert isinstance(Intersection(Range(100), Interval(1, n)), Intersection)
|
1686 |
+
|
1687 |
+
|
1688 |
+
@XFAIL
|
1689 |
+
def test_intersection_symbolic_failing():
|
1690 |
+
n = Symbol('n', integer=True, positive=True)
|
1691 |
+
assert Intersection(Range(10, n), Range(4, 500, 5)) == Intersection(
|
1692 |
+
Range(14, n), Range(14, 500, 5))
|
1693 |
+
assert Intersection(Interval(10, n), Range(4, 500, 5)) == Intersection(
|
1694 |
+
Interval(14, n), Range(14, 500, 5))
|
1695 |
+
|
1696 |
+
|
1697 |
+
def test_issue_20379():
|
1698 |
+
#https://github.com/sympy/sympy/issues/20379
|
1699 |
+
x = pi - 3.14159265358979
|
1700 |
+
assert FiniteSet(x).evalf(2) == FiniteSet(Float('3.23108914886517e-15', 2))
|
1701 |
+
|
1702 |
+
def test_finiteset_simplify():
|
1703 |
+
S = FiniteSet(1, cos(1)**2 + sin(1)**2)
|
1704 |
+
assert S.simplify() == {1}
|
venv/lib/python3.10/site-packages/sympy/strategies/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.64 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/strategies/__pycache__/core.cpython-310.pyc
ADDED
Binary file (5.36 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/strategies/__pycache__/rl.cpython-310.pyc
ADDED
Binary file (5.52 kB). View file
|
|