applied-ai-018 commited on
Commit
32ccbe6
·
verified ·
1 Parent(s): 4d1e8c0

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step20/zero/20.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
  2. ckpts/universal/global_step20/zero/20.post_attention_layernorm.weight/fp32.pt +3 -0
  3. ckpts/universal/global_step20/zero/21.input_layernorm.weight/exp_avg.pt +3 -0
  4. ckpts/universal/global_step20/zero/21.input_layernorm.weight/exp_avg_sq.pt +3 -0
  5. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_adaptive_avg_pool2d_backward_native.h +23 -0
  6. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_copy_from_and_resize.h +39 -0
  7. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_copy_from_and_resize_native.h +21 -0
  8. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_efficient_attention_backward.h +47 -0
  9. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_compositeexplicitautograd_dispatch.h +26 -0
  10. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adamw_compositeexplicitautograd_dispatch.h +28 -0
  11. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_eigvals.h +30 -0
  12. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_lstm_mps.h +39 -0
  13. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_masked_softmax_ops.h +39 -0
  14. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_native_batch_norm_legit_native.h +31 -0
  15. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_get_offsets_native.h +20 -0
  16. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_tensor_softmax_with_shape_native.h +22 -0
  17. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_pack_padded_sequence_compositeexplicitautograd_dispatch.h +25 -0
  18. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_rowwise_prune.h +30 -0
  19. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_dot_product_flash_attention_ops.h +28 -0
  20. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_softmax_cuda_dispatch.h +25 -0
  21. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sparse_matmul_compositeexplicitautograd_dispatch.h +24 -0
  22. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_optional_filled_intlist_ops.h +39 -0
  23. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_differentiable_lstm_cell_backward_native.h +21 -0
  24. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_fused_lstm_cell_backward_impl_compositeexplicitautograd_dispatch.h +24 -0
  25. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_copy_compositeexplicitautograd_dispatch.h +26 -0
  26. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_unsafe_index_compositeexplicitautograd_dispatch.h +23 -0
  27. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_meta_dispatch.h +28 -0
  28. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact1d_backward_ops.h +39 -0
  29. venv/lib/python3.10/site-packages/torch/include/ATen/ops/amin_meta.h +27 -0
  30. venv/lib/python3.10/site-packages/torch/include/ATen/ops/arctan.h +44 -0
  31. venv/lib/python3.10/site-packages/torch/include/ATen/ops/argmax_meta.h +27 -0
  32. venv/lib/python3.10/site-packages/torch/include/ATen/ops/bmm_meta.h +27 -0
  33. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cholesky_inverse.h +39 -0
  34. venv/lib/python3.10/site-packages/torch/include/ATen/ops/clamp_min_cuda_dispatch.h +30 -0
  35. venv/lib/python3.10/site-packages/torch/include/ATen/ops/complex_ops.h +39 -0
  36. venv/lib/python3.10/site-packages/torch/include/ATen/ops/expm1_native.h +29 -0
  37. venv/lib/python3.10/site-packages/torch/include/ATen/ops/from_blob.h +167 -0
  38. venv/lib/python3.10/site-packages/torch/include/ATen/ops/gelu_cpu_dispatch.h +26 -0
  39. venv/lib/python3.10/site-packages/torch/include/ATen/ops/hann_window_compositeexplicitautograd_dispatch.h +30 -0
  40. venv/lib/python3.10/site-packages/torch/include/ATen/ops/heaviside_cuda_dispatch.h +26 -0
  41. venv/lib/python3.10/site-packages/torch/include/ATen/ops/indices_copy_compositeexplicitautograd_dispatch.h +24 -0
  42. venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_det_compositeimplicitautograd_dispatch.h +25 -0
  43. venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_eigvalsh_native.h +22 -0
  44. venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_householder_product_cpu_dispatch.h +25 -0
  45. venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_lu_ops.h +39 -0
  46. venv/lib/python3.10/site-packages/torch/include/ATen/ops/logical_or_native.h +23 -0
  47. venv/lib/python3.10/site-packages/torch/include/ATen/ops/lu_solve_ops.h +39 -0
  48. venv/lib/python3.10/site-packages/torch/include/ATen/ops/max_pool2d_backward.h +39 -0
  49. venv/lib/python3.10/site-packages/torch/include/ATen/ops/min_cpu_dispatch.h +28 -0
  50. venv/lib/python3.10/site-packages/torch/include/ATen/ops/min_meta.h +39 -0
ckpts/universal/global_step20/zero/20.post_attention_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fde726355a795beb0fce19907a65dc79203e0849763bdec31a02ee1f2cb42625
3
+ size 9387
ckpts/universal/global_step20/zero/20.post_attention_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:965dc1bcdfb4bae591f0b86e5d366616d998101f92f14b91a9bfc43ee65ee0e9
3
+ size 9293
ckpts/universal/global_step20/zero/21.input_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5507548008ac84a6e7474273dd1c7b82f2dd2255dae9595fe8fb135df22afb6d
3
+ size 9372
ckpts/universal/global_step20/zero/21.input_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecaea9df1b20ebab3b4f7ebe092fba56c44929e92090f206c398bfaaf9f2dac3
3
+ size 9387
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_adaptive_avg_pool2d_backward_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & _adaptive_avg_pool2d_backward_out(const at::Tensor & grad_output, const at::Tensor & self, at::Tensor & out);
20
+ TORCH_API at::Tensor adaptive_avg_pool2d_backward_cpu(const at::Tensor & grad_output, const at::Tensor & self);
21
+ TORCH_API at::Tensor adaptive_avg_pool2d_backward_cuda(const at::Tensor & grad_output, const at::Tensor & self);
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_copy_from_and_resize.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_copy_from_and_resize_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_copy_from_and_resize(Tensor self, Tensor dst) -> Tensor
26
+ inline at::Tensor _copy_from_and_resize(const at::Tensor & self, const at::Tensor & dst) {
27
+ return at::_ops::_copy_from_and_resize::call(self, dst);
28
+ }
29
+
30
+ // aten::_copy_from_and_resize.out(Tensor self, Tensor dst, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & _copy_from_and_resize_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & dst) {
32
+ return at::_ops::_copy_from_and_resize_out::call(self, dst, out);
33
+ }
34
+ // aten::_copy_from_and_resize.out(Tensor self, Tensor dst, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & _copy_from_and_resize_outf(const at::Tensor & self, const at::Tensor & dst, at::Tensor & out) {
36
+ return at::_ops::_copy_from_and_resize_out::call(self, dst, out);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_copy_from_and_resize_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & _copy_from_and_resize_out(const at::Tensor & self, const at::Tensor & dst, at::Tensor & out);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_efficient_attention_backward.h ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_efficient_attention_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_efficient_attention_backward(Tensor grad_out_, Tensor query, Tensor key, Tensor value, Tensor? bias, Tensor out, Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, SymInt max_seqlen_q, SymInt max_seqlen_k, Tensor logsumexp, float dropout_p, Tensor philox_seed, Tensor philox_offset, int custom_mask_type, bool bias_requires_grad, *, float? scale=None, int? num_splits_key=None) -> (Tensor, Tensor, Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> _efficient_attention_backward(const at::Tensor & grad_out_, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & bias, const at::Tensor & out, const c10::optional<at::Tensor> & cu_seqlens_q, const c10::optional<at::Tensor> & cu_seqlens_k, int64_t max_seqlen_q, int64_t max_seqlen_k, const at::Tensor & logsumexp, double dropout_p, const at::Tensor & philox_seed, const at::Tensor & philox_offset, int64_t custom_mask_type, bool bias_requires_grad, c10::optional<double> scale=c10::nullopt, c10::optional<int64_t> num_splits_key=c10::nullopt) {
27
+ return at::_ops::_efficient_attention_backward::call(grad_out_, query, key, value, bias, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, logsumexp, dropout_p, philox_seed, philox_offset, custom_mask_type, bias_requires_grad, scale, num_splits_key);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> _efficient_attention_backward(const at::Tensor & grad_out_, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & bias, const at::Tensor & out, const c10::optional<at::Tensor> & cu_seqlens_q, const c10::optional<at::Tensor> & cu_seqlens_k, int64_t max_seqlen_q, int64_t max_seqlen_k, const at::Tensor & logsumexp, double dropout_p, const at::Tensor & philox_seed, const at::Tensor & philox_offset, int64_t custom_mask_type, bool bias_requires_grad, c10::optional<double> scale=c10::nullopt, c10::optional<int64_t> num_splits_key=c10::nullopt) {
32
+ return at::_ops::_efficient_attention_backward::call(grad_out_, query, key, value, bias, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, logsumexp, dropout_p, philox_seed, philox_offset, custom_mask_type, bias_requires_grad, scale, num_splits_key);
33
+ }
34
+ }
35
+
36
+ // aten::_efficient_attention_backward(Tensor grad_out_, Tensor query, Tensor key, Tensor value, Tensor? bias, Tensor out, Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, SymInt max_seqlen_q, SymInt max_seqlen_k, Tensor logsumexp, float dropout_p, Tensor philox_seed, Tensor philox_offset, int custom_mask_type, bool bias_requires_grad, *, float? scale=None, int? num_splits_key=None) -> (Tensor, Tensor, Tensor, Tensor)
37
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> _efficient_attention_backward_symint(const at::Tensor & grad_out_, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & bias, const at::Tensor & out, const c10::optional<at::Tensor> & cu_seqlens_q, const c10::optional<at::Tensor> & cu_seqlens_k, c10::SymInt max_seqlen_q, c10::SymInt max_seqlen_k, const at::Tensor & logsumexp, double dropout_p, const at::Tensor & philox_seed, const at::Tensor & philox_offset, int64_t custom_mask_type, bool bias_requires_grad, c10::optional<double> scale=c10::nullopt, c10::optional<int64_t> num_splits_key=c10::nullopt) {
38
+ return at::_ops::_efficient_attention_backward::call(grad_out_, query, key, value, bias, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, logsumexp, dropout_p, philox_seed, philox_offset, custom_mask_type, bias_requires_grad, scale, num_splits_key);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> _efficient_attention_backward(const at::Tensor & grad_out_, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & bias, const at::Tensor & out, const c10::optional<at::Tensor> & cu_seqlens_q, const c10::optional<at::Tensor> & cu_seqlens_k, c10::SymInt max_seqlen_q, c10::SymInt max_seqlen_k, const at::Tensor & logsumexp, double dropout_p, const at::Tensor & philox_seed, const at::Tensor & philox_offset, int64_t custom_mask_type, bool bias_requires_grad, c10::optional<double> scale=c10::nullopt, c10::optional<int64_t> num_splits_key=c10::nullopt) {
43
+ return at::_ops::_efficient_attention_backward::call(grad_out_, query, key, value, bias, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, logsumexp, dropout_p, philox_seed, philox_offset, custom_mask_type, bias_requires_grad, scale, num_splits_key);
44
+ }
45
+ }
46
+
47
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & _efficientzerotensor_out(at::Tensor & out, at::IntArrayRef size);
21
+ TORCH_API at::Tensor & _efficientzerotensor_outf(at::IntArrayRef size, at::Tensor & out);
22
+ TORCH_API at::Tensor & _efficientzerotensor_symint_out(at::Tensor & out, c10::SymIntArrayRef size);
23
+ TORCH_API at::Tensor & _efficientzerotensor_symint_outf(c10::SymIntArrayRef size, at::Tensor & out);
24
+
25
+ } // namespace compositeexplicitautograd
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adamw_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> _fused_adamw(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
21
+ TORCH_API void _fused_adamw_out(at::TensorList out, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
22
+ TORCH_API void _fused_adamw_outf(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
23
+ TORCH_API ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> _fused_adamw(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
24
+ TORCH_API void _fused_adamw_out(at::TensorList out, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
25
+ TORCH_API void _fused_adamw_outf(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
26
+
27
+ } // namespace compositeexplicitautograd
28
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_eigvals.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_linalg_eigvals_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_linalg_eigvals(Tensor self) -> Tensor
26
+ inline at::Tensor _linalg_eigvals(const at::Tensor & self) {
27
+ return at::_ops::_linalg_eigvals::call(self);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_lstm_mps.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_lstm_mps_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_lstm_mps(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _lstm_mps(const at::Tensor & input, at::TensorList hx, at::TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
27
+ return at::_ops::_lstm_mps::call(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first);
28
+ }
29
+
30
+ // aten::_lstm_mps.out(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4, Tensor(f!) out5) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!), Tensor(f!))
31
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _lstm_mps_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, at::Tensor & out5, const at::Tensor & input, at::TensorList hx, at::TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
32
+ return at::_ops::_lstm_mps_out::call(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first, out0, out1, out2, out3, out4, out5);
33
+ }
34
+ // aten::_lstm_mps.out(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4, Tensor(f!) out5) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!), Tensor(f!))
35
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _lstm_mps_outf(const at::Tensor & input, at::TensorList hx, at::TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, at::Tensor & out5) {
36
+ return at::_ops::_lstm_mps_out::call(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first, out0, out1, out2, out3, out4, out5);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_masked_softmax_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _masked_softmax {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, c10::optional<int64_t>, c10::optional<int64_t>);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_masked_softmax")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_masked_softmax(Tensor self, Tensor mask, int? dim=None, int? mask_type=None) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & mask, c10::optional<int64_t> dim, c10::optional<int64_t> mask_type);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & mask, c10::optional<int64_t> dim, c10::optional<int64_t> mask_type);
26
+ };
27
+
28
+ struct TORCH_API _masked_softmax_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, c10::optional<int64_t>, c10::optional<int64_t>, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_masked_softmax")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_masked_softmax.out(Tensor self, Tensor mask, int? dim=None, int? mask_type=None, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, const at::Tensor & mask, c10::optional<int64_t> dim, c10::optional<int64_t> mask_type, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & mask, c10::optional<int64_t> dim, c10::optional<int64_t> mask_type, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_native_batch_norm_legit_native.h ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _native_batch_norm_legit_functional(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & running_mean, const at::Tensor & running_var, bool training, double momentum, double eps);
20
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _batch_norm_legit_cpu_out(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, at::Tensor & running_mean, at::Tensor & running_var, bool training, double momentum, double eps, at::Tensor & out, at::Tensor & save_mean, at::Tensor & save_invstd);
21
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _batch_norm_legit_cpu(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, at::Tensor & running_mean, at::Tensor & running_var, bool training, double momentum, double eps);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _batch_norm_legit_cuda_out(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, at::Tensor & running_mean, at::Tensor & running_var, bool training, double momentum, double eps, at::Tensor & out, at::Tensor & save_mean, at::Tensor & save_invstd);
23
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _batch_norm_legit_cuda(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, at::Tensor & running_mean, at::Tensor & running_var, bool training, double momentum, double eps);
24
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _mkldnn_batch_norm_legit(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, at::Tensor & running_mean, at::Tensor & running_var, bool training, double momentum, double eps);
25
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _batch_norm_legit_no_stats_cpu(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, bool training, double momentum, double eps);
26
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _batch_norm_legit_no_stats_cpu_out(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, bool training, double momentum, double eps, at::Tensor & out, at::Tensor & save_mean, at::Tensor & save_invstd);
27
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _batch_norm_legit_no_stats_cuda(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, bool training, double momentum, double eps);
28
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _batch_norm_legit_no_stats_cuda_out(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, bool training, double momentum, double eps, at::Tensor & out, at::Tensor & save_mean, at::Tensor & save_invstd);
29
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _mkldnn_batch_norm_legit_no_stats(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, bool training, double momentum, double eps);
30
+ } // namespace native
31
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_get_offsets_native.h ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ } // namespace native
20
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_tensor_softmax_with_shape_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor NestedTensor_softmax_dropout(const at::Tensor & self, const at::Tensor & query);
20
+ TORCH_API at::Tensor NestedTensor_softmax_dropout_cuda(const at::Tensor & self, const at::Tensor & query);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_pack_padded_sequence_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> _pack_padded_sequence(const at::Tensor & input, const at::Tensor & lengths, bool batch_first);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> _pack_padded_sequence_out(at::Tensor & out0, at::Tensor & out1, const at::Tensor & input, const at::Tensor & lengths, bool batch_first);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> _pack_padded_sequence_outf(const at::Tensor & input, const at::Tensor & lengths, bool batch_first, at::Tensor & out0, at::Tensor & out1);
23
+
24
+ } // namespace compositeexplicitautograd
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_rowwise_prune.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_rowwise_prune_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_rowwise_prune(Tensor weight, Tensor mask, ScalarType compressed_indices_dtype) -> (Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor> _rowwise_prune(const at::Tensor & weight, const at::Tensor & mask, at::ScalarType compressed_indices_dtype) {
27
+ return at::_ops::_rowwise_prune::call(weight, mask, compressed_indices_dtype);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_dot_product_flash_attention_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _scaled_dot_product_flash_attention {
18
+ using schema = ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt,at::Tensor,at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, const at::Tensor &, double, bool, bool, c10::optional<double>);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_scaled_dot_product_flash_attention")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_scaled_dot_product_flash_attention(Tensor query, Tensor key, Tensor value, float dropout_p=0.0, bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask)")
24
+ static ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt,at::Tensor,at::Tensor,at::Tensor> call(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, double dropout_p, bool is_causal, bool return_debug_mask, c10::optional<double> scale);
25
+ static ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt,at::Tensor,at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, double dropout_p, bool is_causal, bool return_debug_mask, c10::optional<double> scale);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_softmax_cuda_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor _softmax(const at::Tensor & self, int64_t dim, bool half_to_float);
21
+ TORCH_API at::Tensor & _softmax_out(at::Tensor & out, const at::Tensor & self, int64_t dim, bool half_to_float);
22
+ TORCH_API at::Tensor & _softmax_outf(const at::Tensor & self, int64_t dim, bool half_to_float, at::Tensor & out);
23
+
24
+ } // namespace cuda
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sparse_matmul_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & _sparse_sparse_matmul_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
21
+ TORCH_API at::Tensor & _sparse_sparse_matmul_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_optional_filled_intlist_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _test_optional_filled_intlist {
18
+ using schema = at::Tensor (const at::Tensor &, at::OptionalIntArrayRef);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_test_optional_filled_intlist")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_test_optional_filled_intlist(Tensor values, int[2]? addends) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & values, at::OptionalIntArrayRef addends);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & values, at::OptionalIntArrayRef addends);
26
+ };
27
+
28
+ struct TORCH_API _test_optional_filled_intlist_out {
29
+ using schema = at::Tensor & (const at::Tensor &, at::OptionalIntArrayRef, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_test_optional_filled_intlist")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_test_optional_filled_intlist.out(Tensor values, int[2]? addends, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & values, at::OptionalIntArrayRef addends, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & values, at::OptionalIntArrayRef addends, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_differentiable_lstm_cell_backward_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _thnn_differentiable_lstm_cell_backward(const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & input_gates, const at::Tensor & hidden_gates, const c10::optional<at::Tensor> & input_bias, const c10::optional<at::Tensor> & hidden_bias, const at::Tensor & cx, const at::Tensor & cy);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_fused_lstm_cell_backward_impl_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _thnn_fused_lstm_cell_backward_impl_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & cx, const at::Tensor & cy, const at::Tensor & workspace, bool has_bias);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _thnn_fused_lstm_cell_backward_impl_outf(const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & cx, const at::Tensor & cy, const at::Tensor & workspace, bool has_bias, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_copy_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor _to_copy(const at::Tensor & self, at::TensorOptions options={}, bool non_blocking=false, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
21
+ TORCH_API at::Tensor _to_copy(const at::Tensor & self, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, bool non_blocking, c10::optional<at::MemoryFormat> memory_format);
22
+ TORCH_API at::Tensor & _to_copy_out(at::Tensor & out, const at::Tensor & self, bool non_blocking=false, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
23
+ TORCH_API at::Tensor & _to_copy_outf(const at::Tensor & self, bool non_blocking, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
24
+
25
+ } // namespace compositeexplicitautograd
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_unsafe_index_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor _unsafe_index(const at::Tensor & self, const c10::List<c10::optional<at::Tensor>> & indices);
21
+
22
+ } // namespace compositeexplicitautograd
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_meta_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor _upsample_bicubic2d_aa(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
21
+ TORCH_API at::Tensor _upsample_bicubic2d_aa_symint(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
22
+ TORCH_API at::Tensor & _upsample_bicubic2d_aa_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
23
+ TORCH_API at::Tensor & _upsample_bicubic2d_aa_outf(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out);
24
+ TORCH_API at::Tensor & _upsample_bicubic2d_aa_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
25
+ TORCH_API at::Tensor & _upsample_bicubic2d_aa_symint_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out);
26
+
27
+ } // namespace meta
28
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact1d_backward_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _upsample_nearest_exact1d_backward_grad_input {
18
+ using schema = at::Tensor & (const at::Tensor &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::optional<double>, at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_upsample_nearest_exact1d_backward")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "grad_input")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_upsample_nearest_exact1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!)")
24
+ static at::Tensor & call(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales, at::Tensor & grad_input);
25
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales, at::Tensor & grad_input);
26
+ };
27
+
28
+ struct TORCH_API _upsample_nearest_exact1d_backward {
29
+ using schema = at::Tensor (const at::Tensor &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::optional<double>);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_upsample_nearest_exact1d_backward")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_upsample_nearest_exact1d_backward(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None) -> Tensor")
35
+ static at::Tensor call(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales);
36
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/amin_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_amin : public at::impl::MetaBase {
21
+
22
+
23
+ void meta(const at::Tensor & self, at::IntArrayRef dim, bool keepdim);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/arctan.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/arctan_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::arctan(Tensor self) -> Tensor
26
+ inline at::Tensor arctan(const at::Tensor & self) {
27
+ return at::_ops::arctan::call(self);
28
+ }
29
+
30
+ // aten::arctan_(Tensor(a!) self) -> Tensor(a!)
31
+ inline at::Tensor & arctan_(at::Tensor & self) {
32
+ return at::_ops::arctan_::call(self);
33
+ }
34
+
35
+ // aten::arctan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
36
+ inline at::Tensor & arctan_out(at::Tensor & out, const at::Tensor & self) {
37
+ return at::_ops::arctan_out::call(self, out);
38
+ }
39
+ // aten::arctan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
40
+ inline at::Tensor & arctan_outf(const at::Tensor & self, at::Tensor & out) {
41
+ return at::_ops::arctan_out::call(self, out);
42
+ }
43
+
44
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/argmax_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_argmax : public at::impl::MetaBase {
21
+
22
+
23
+ void meta(const at::Tensor & self, c10::optional<int64_t> dim, bool keepdim);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/bmm_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_bmm : public at::impl::MetaBase {
21
+
22
+
23
+ void meta(const at::Tensor & self, const at::Tensor & mat2);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cholesky_inverse.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/cholesky_inverse_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::cholesky_inverse(Tensor self, bool upper=False) -> Tensor
26
+ inline at::Tensor cholesky_inverse(const at::Tensor & self, bool upper=false) {
27
+ return at::_ops::cholesky_inverse::call(self, upper);
28
+ }
29
+
30
+ // aten::cholesky_inverse.out(Tensor self, bool upper=False, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & cholesky_inverse_out(at::Tensor & out, const at::Tensor & self, bool upper=false) {
32
+ return at::_ops::cholesky_inverse_out::call(self, upper, out);
33
+ }
34
+ // aten::cholesky_inverse.out(Tensor self, bool upper=False, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & cholesky_inverse_outf(const at::Tensor & self, bool upper, at::Tensor & out) {
36
+ return at::_ops::cholesky_inverse_out::call(self, upper, out);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/clamp_min_cuda_dispatch.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor clamp_min(const at::Tensor & self, const at::Scalar & min);
21
+ TORCH_API at::Tensor & clamp_min_out(at::Tensor & out, const at::Tensor & self, const at::Scalar & min);
22
+ TORCH_API at::Tensor & clamp_min_outf(const at::Tensor & self, const at::Scalar & min, at::Tensor & out);
23
+ TORCH_API at::Tensor & clamp_min_(at::Tensor & self, const at::Scalar & min);
24
+ TORCH_API at::Tensor clamp_min(const at::Tensor & self, const at::Tensor & min);
25
+ TORCH_API at::Tensor & clamp_min_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & min);
26
+ TORCH_API at::Tensor & clamp_min_outf(const at::Tensor & self, const at::Tensor & min, at::Tensor & out);
27
+ TORCH_API at::Tensor & clamp_min_(at::Tensor & self, const at::Tensor & min);
28
+
29
+ } // namespace cuda
30
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/complex_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API complex {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::complex")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "complex(Tensor real, Tensor imag) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & real, const at::Tensor & imag);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & real, const at::Tensor & imag);
26
+ };
27
+
28
+ struct TORCH_API complex_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::complex")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "complex.out(Tensor real, Tensor imag, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & real, const at::Tensor & imag, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & real, const at::Tensor & imag, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/expm1_native.h ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/expm1_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_expm1_out : public at::meta::structured_expm1 {
20
+ void impl(const at::Tensor & self, const at::Tensor & out);
21
+ };
22
+ TORCH_API at::Tensor expm1_sparse(const at::Tensor & self);
23
+ TORCH_API at::Tensor & expm1_sparse_out(const at::Tensor & self, at::Tensor & out);
24
+ TORCH_API at::Tensor & expm1_sparse_(at::Tensor & self);
25
+ TORCH_API at::Tensor expm1_sparse_csr(const at::Tensor & self);
26
+ TORCH_API at::Tensor & expm1_sparse_csr_out(const at::Tensor & self, at::Tensor & out);
27
+ TORCH_API at::Tensor & expm1_sparse_csr_(at::Tensor & self);
28
+ } // namespace native
29
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/from_blob.h ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <ATen/core/Tensor.h>
3
+
4
+ namespace at {
5
+
6
+ namespace detail {
7
+
8
+ TORCH_API inline void noopDelete(void*) {}
9
+
10
+ } // namespace detail
11
+
12
+ /// Provides a fluent API to construct tensors from external data.
13
+ ///
14
+ /// The fluent API can be used instead of `from_blob` functions in case the
15
+ /// required set of parameters does not align with the existing overloads.
16
+ ///
17
+ /// at::Tensor tensor = at::for_blob(data, sizes)
18
+ /// .strides(strides)
19
+ /// .context(context, [](void *ctx) { delete static_cast<Ctx*>(ctx);
20
+ /// }) .options(...) .make_tensor();
21
+ ///
22
+ class TORCH_API TensorMaker {
23
+ friend TensorMaker for_blob(void* data, IntArrayRef sizes) noexcept;
24
+
25
+ public:
26
+ using ContextDeleter = DeleterFnPtr;
27
+
28
+ TensorMaker& strides(OptionalIntArrayRef value) noexcept {
29
+ strides_ = value;
30
+
31
+ return *this;
32
+ }
33
+
34
+ TensorMaker& storage_offset(c10::optional<int64_t> value) noexcept {
35
+ storage_offset_ = value;
36
+
37
+ return *this;
38
+ }
39
+
40
+ TensorMaker& deleter(std::function<void(void*)> value) noexcept {
41
+ deleter_ = std::move(value);
42
+
43
+ return *this;
44
+ }
45
+
46
+ TensorMaker& context(void* value, ContextDeleter deleter = nullptr) noexcept {
47
+ ctx_ = std::unique_ptr<void, ContextDeleter>{
48
+ value, deleter != nullptr ? deleter : detail::noopDelete};
49
+
50
+ return *this;
51
+ }
52
+
53
+ TensorMaker& target_device(c10::optional<Device> value) noexcept {
54
+ device_ = value;
55
+
56
+ return *this;
57
+ }
58
+
59
+ TensorMaker& options(TensorOptions value) noexcept {
60
+ opts_ = value;
61
+
62
+ return *this;
63
+ }
64
+
65
+ TensorMaker& resizeable_storage() noexcept {
66
+ resizeable_ = true;
67
+
68
+ return *this;
69
+ }
70
+
71
+ TensorMaker& allocator(c10::Allocator* allocator) noexcept {
72
+ allocator_ = allocator;
73
+
74
+ return *this;
75
+ }
76
+
77
+ Tensor make_tensor();
78
+
79
+ private:
80
+ explicit TensorMaker(void* data, IntArrayRef sizes) noexcept
81
+ : data_{data}, sizes_{sizes} {}
82
+
83
+ std::size_t computeStorageSize() const noexcept;
84
+
85
+ DataPtr makeDataPtrFromDeleter() noexcept;
86
+
87
+ DataPtr makeDataPtrFromContext() noexcept;
88
+
89
+ IntArrayRef makeTempSizes() const noexcept;
90
+
91
+ void* data_;
92
+ IntArrayRef sizes_;
93
+ OptionalIntArrayRef strides_{};
94
+ c10::optional<int64_t> storage_offset_{};
95
+ std::function<void(void*)> deleter_{};
96
+ std::unique_ptr<void, ContextDeleter> ctx_{nullptr, detail::noopDelete};
97
+ c10::optional<Device> device_{};
98
+ TensorOptions opts_{};
99
+ bool resizeable_{};
100
+ c10::Allocator* allocator_{};
101
+ };
102
+
103
+ inline TensorMaker for_blob(void* data, IntArrayRef sizes) noexcept {
104
+ return TensorMaker{data, sizes};
105
+ }
106
+
107
+ inline Tensor from_blob(
108
+ void* data,
109
+ IntArrayRef sizes,
110
+ IntArrayRef strides,
111
+ const std::function<void(void*)>& deleter,
112
+ const TensorOptions& options = {},
113
+ const c10::optional<Device> target_device = c10::nullopt) {
114
+ return for_blob(data, sizes)
115
+ .strides(strides)
116
+ .deleter(deleter)
117
+ .options(options)
118
+ .target_device(target_device)
119
+ .make_tensor();
120
+ }
121
+
122
+ inline Tensor from_blob(
123
+ void* data,
124
+ IntArrayRef sizes,
125
+ IntArrayRef strides,
126
+ int64_t storage_offset,
127
+ const std::function<void(void*)>& deleter,
128
+ const TensorOptions& options = {},
129
+ const c10::optional<Device> target_device = c10::nullopt) {
130
+ return for_blob(data, sizes)
131
+ .strides(strides)
132
+ .storage_offset(storage_offset)
133
+ .deleter(deleter)
134
+ .options(options)
135
+ .target_device(target_device)
136
+ .make_tensor();
137
+ }
138
+
139
+ inline Tensor from_blob(
140
+ void* data,
141
+ IntArrayRef sizes,
142
+ std::function<void(void*)> deleter,
143
+ const TensorOptions& options = {},
144
+ const c10::optional<Device> target_device = c10::nullopt) {
145
+ return for_blob(data, sizes)
146
+ .deleter(std::move(deleter))
147
+ .options(options)
148
+ .target_device(target_device)
149
+ .make_tensor();
150
+ }
151
+
152
+ inline Tensor from_blob(
153
+ void* data,
154
+ IntArrayRef sizes,
155
+ IntArrayRef strides,
156
+ const TensorOptions& options = {}) {
157
+ return for_blob(data, sizes).strides(strides).options(options).make_tensor();
158
+ }
159
+
160
+ inline Tensor from_blob(
161
+ void* data,
162
+ IntArrayRef sizes,
163
+ const TensorOptions& options = {}) {
164
+ return for_blob(data, sizes).options(options).make_tensor();
165
+ }
166
+
167
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/gelu_cpu_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor gelu(const at::Tensor & self, c10::string_view approximate="none");
21
+ TORCH_API at::Tensor & gelu_out(at::Tensor & out, const at::Tensor & self, c10::string_view approximate="none");
22
+ TORCH_API at::Tensor & gelu_outf(const at::Tensor & self, c10::string_view approximate, at::Tensor & out);
23
+ TORCH_API at::Tensor & gelu_(at::Tensor & self, c10::string_view approximate="none");
24
+
25
+ } // namespace cpu
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/hann_window_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor hann_window(int64_t window_length, at::TensorOptions options={});
21
+ TORCH_API at::Tensor hann_window(int64_t window_length, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
22
+ TORCH_API at::Tensor & hann_window_out(at::Tensor & out, int64_t window_length);
23
+ TORCH_API at::Tensor & hann_window_outf(int64_t window_length, at::Tensor & out);
24
+ TORCH_API at::Tensor hann_window(int64_t window_length, bool periodic, at::TensorOptions options={});
25
+ TORCH_API at::Tensor hann_window(int64_t window_length, bool periodic, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
26
+ TORCH_API at::Tensor & hann_window_out(at::Tensor & out, int64_t window_length, bool periodic);
27
+ TORCH_API at::Tensor & hann_window_outf(int64_t window_length, bool periodic, at::Tensor & out);
28
+
29
+ } // namespace compositeexplicitautograd
30
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/heaviside_cuda_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor heaviside(const at::Tensor & self, const at::Tensor & values);
21
+ TORCH_API at::Tensor & heaviside_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & values);
22
+ TORCH_API at::Tensor & heaviside_outf(const at::Tensor & self, const at::Tensor & values, at::Tensor & out);
23
+ TORCH_API at::Tensor & heaviside_(at::Tensor & self, const at::Tensor & values);
24
+
25
+ } // namespace cuda
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/indices_copy_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & indices_copy_out(at::Tensor & out, const at::Tensor & self);
21
+ TORCH_API at::Tensor & indices_copy_outf(const at::Tensor & self, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_det_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor linalg_det(const at::Tensor & A);
21
+ TORCH_API at::Tensor & linalg_det_out(at::Tensor & out, const at::Tensor & A);
22
+ TORCH_API at::Tensor & linalg_det_outf(const at::Tensor & A, at::Tensor & out);
23
+
24
+ } // namespace compositeimplicitautograd
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_eigvalsh_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor linalg_eigvalsh(const at::Tensor & self, c10::string_view UPLO="L");
20
+ TORCH_API at::Tensor & linalg_eigvalsh_out(const at::Tensor & self, c10::string_view UPLO, at::Tensor & out);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_householder_product_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor linalg_householder_product(const at::Tensor & input, const at::Tensor & tau);
21
+ TORCH_API at::Tensor & linalg_householder_product_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & tau);
22
+ TORCH_API at::Tensor & linalg_householder_product_outf(const at::Tensor & input, const at::Tensor & tau, at::Tensor & out);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_lu_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API linalg_lu {
18
+ using schema = ::std::tuple<at::Tensor,at::Tensor,at::Tensor> (const at::Tensor &, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_lu")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_lu(Tensor A, *, bool pivot=True) -> (Tensor P, Tensor L, Tensor U)")
24
+ static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> call(const at::Tensor & A, bool pivot);
25
+ static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & A, bool pivot);
26
+ };
27
+
28
+ struct TORCH_API linalg_lu_out {
29
+ using schema = ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> (const at::Tensor &, bool, at::Tensor &, at::Tensor &, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_lu")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_lu.out(Tensor A, *, bool pivot=True, Tensor(a!) P, Tensor(b!) L, Tensor(c!) U) -> (Tensor(a!) P, Tensor(b!) L, Tensor(c!) U)")
35
+ static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> call(const at::Tensor & A, bool pivot, at::Tensor & P, at::Tensor & L, at::Tensor & U);
36
+ static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & A, bool pivot, at::Tensor & P, at::Tensor & L, at::Tensor & U);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/logical_or_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor logical_or(const at::Tensor & self, const at::Tensor & other);
20
+ TORCH_API at::Tensor & logical_or_(at::Tensor & self, const at::Tensor & other);
21
+ TORCH_API at::Tensor & logical_or_out(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/lu_solve_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API lu_solve_out {
18
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const at::Tensor &, at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::lu_solve")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "lu_solve.out(Tensor self, Tensor LU_data, Tensor LU_pivots, *, Tensor(a!) out) -> Tensor(a!)")
24
+ static at::Tensor & call(const at::Tensor & self, const at::Tensor & LU_data, const at::Tensor & LU_pivots, at::Tensor & out);
25
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & LU_data, const at::Tensor & LU_pivots, at::Tensor & out);
26
+ };
27
+
28
+ struct TORCH_API lu_solve {
29
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::lu_solve")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "lu_solve(Tensor self, Tensor LU_data, Tensor LU_pivots) -> Tensor")
35
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & LU_data, const at::Tensor & LU_pivots);
36
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & LU_data, const at::Tensor & LU_pivots);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/max_pool2d_backward.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/max_pool2d_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::max_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor
26
+ inline at::Tensor max_pool2d_backward(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride={}, at::IntArrayRef padding=0, at::IntArrayRef dilation=1, bool ceil_mode=false) {
27
+ return at::_ops::max_pool2d_backward::call(grad_output, self, kernel_size, stride, padding, dilation, ceil_mode);
28
+ }
29
+
30
+ // aten::max_pool2d_backward.out(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & max_pool2d_backward_out(at::Tensor & out, const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride={}, at::IntArrayRef padding=0, at::IntArrayRef dilation=1, bool ceil_mode=false) {
32
+ return at::_ops::max_pool2d_backward_out::call(grad_output, self, kernel_size, stride, padding, dilation, ceil_mode, out);
33
+ }
34
+ // aten::max_pool2d_backward.out(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & max_pool2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool ceil_mode, at::Tensor & out) {
36
+ return at::_ops::max_pool2d_backward_out::call(grad_output, self, kernel_size, stride, padding, dilation, ceil_mode, out);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/min_cpu_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> min(const at::Tensor & self, int64_t dim, bool keepdim=false);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> min_out(at::Tensor & min, at::Tensor & min_indices, const at::Tensor & self, int64_t dim, bool keepdim=false);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> min_outf(const at::Tensor & self, int64_t dim, bool keepdim, at::Tensor & min, at::Tensor & min_indices);
23
+ TORCH_API at::Tensor min(const at::Tensor & self);
24
+ TORCH_API at::Tensor & min_out(at::Tensor & out, const at::Tensor & self);
25
+ TORCH_API at::Tensor & min_outf(const at::Tensor & self, at::Tensor & out);
26
+
27
+ } // namespace cpu
28
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/min_meta.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_min_dim : public at::impl::MetaBase {
21
+
22
+ template <bool DIM = false>
23
+ struct TORCH_API precompute_out {
24
+
25
+ precompute_out<true> set_dim(int64_t value) {
26
+ static_assert(DIM == false, "dim already set");
27
+ precompute_out<true> ret;
28
+ ret.dim = value;
29
+ return ret;
30
+ }
31
+
32
+ int64_t dim;
33
+ };
34
+ using meta_return_ty = precompute_out <true>;
35
+ meta_return_ty meta(const at::Tensor & self, int64_t dim, bool keepdim);
36
+ };
37
+
38
+ } // namespace native
39
+ } // namespace at