applied-ai-018 commited on
Commit
33a13ba
·
verified ·
1 Parent(s): 3afca5f

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step20/zero/11.post_attention_layernorm.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step20/zero/11.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
  3. ckpts/universal/global_step20/zero/11.post_attention_layernorm.weight/fp32.pt +3 -0
  4. ckpts/universal/global_step20/zero/20.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
  5. ckpts/universal/global_step20/zero/22.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
  6. ckpts/universal/global_step20/zero/22.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
  7. ckpts/universal/global_step20/zero/3.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
  8. ckpts/universal/global_step20/zero/3.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
  9. venv/lib/python3.10/site-packages/evaluate/__init__.py +51 -0
  10. venv/lib/python3.10/site-packages/evaluate/config.py +192 -0
  11. venv/lib/python3.10/site-packages/evaluate/evaluator/text_classification.py +160 -0
  12. venv/lib/python3.10/site-packages/evaluate/hub.py +133 -0
  13. venv/lib/python3.10/site-packages/evaluate/info.py +157 -0
  14. venv/lib/python3.10/site-packages/evaluate/inspect.py +129 -0
  15. venv/lib/python3.10/site-packages/evaluate/loading.py +771 -0
  16. venv/lib/python3.10/site-packages/evaluate/module.py +1029 -0
  17. venv/lib/python3.10/site-packages/evaluate/naming.py +82 -0
  18. venv/lib/python3.10/site-packages/evaluate/saving.py +73 -0
  19. venv/lib/python3.10/site-packages/evaluate/utils/__init__.py +39 -0
  20. venv/lib/python3.10/site-packages/evaluate/utils/__pycache__/__init__.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/evaluate/utils/__pycache__/file_utils.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/evaluate/utils/__pycache__/gradio.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/evaluate/utils/__pycache__/logging.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/evaluate/utils/file_utils.py +618 -0
  25. venv/lib/python3.10/site-packages/evaluate/utils/gradio.py +131 -0
  26. venv/lib/python3.10/site-packages/evaluate/utils/logging.py +234 -0
  27. venv/lib/python3.10/site-packages/evaluate/visualization.py +230 -0
  28. venv/lib/python3.10/site-packages/tqdm/__init__.py +38 -0
  29. venv/lib/python3.10/site-packages/tqdm/__main__.py +3 -0
  30. venv/lib/python3.10/site-packages/tqdm/__pycache__/__init__.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/tqdm/__pycache__/__main__.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/tqdm/__pycache__/_dist_ver.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/tqdm/__pycache__/_main.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/tqdm/__pycache__/_monitor.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/tqdm/__pycache__/_tqdm.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/tqdm/__pycache__/_tqdm_gui.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/tqdm/__pycache__/_tqdm_notebook.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/tqdm/__pycache__/_tqdm_pandas.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/tqdm/__pycache__/_utils.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/tqdm/__pycache__/asyncio.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/tqdm/__pycache__/auto.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/tqdm/__pycache__/autonotebook.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/tqdm/__pycache__/cli.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/tqdm/__pycache__/dask.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/tqdm/__pycache__/gui.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/tqdm/__pycache__/keras.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/tqdm/__pycache__/notebook.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/tqdm/__pycache__/rich.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/tqdm/__pycache__/std.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/tqdm/__pycache__/tk.cpython-310.pyc +0 -0
ckpts/universal/global_step20/zero/11.post_attention_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b868d2ad639585862ecd0bae7338a78346fee26909257b752da254d623432c7
3
+ size 9372
ckpts/universal/global_step20/zero/11.post_attention_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71ca8977f165bcb8834ba4ea4bdba3ca99cbfa0d49068b1a73040a8d8f32c6cb
3
+ size 9387
ckpts/universal/global_step20/zero/11.post_attention_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:179021d69b745ef2f12bf6114241e7292bf95bc7189b2e1506944ab672bc04be
3
+ size 9293
ckpts/universal/global_step20/zero/20.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b6168a259f29872d21503bb27ef53eb14fea4415cd9bea71b8d352aa969b912
3
+ size 33555627
ckpts/universal/global_step20/zero/22.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ff60894adea3d281d8ff4cdb31c452264d7739dddae11a894441434e2b16c89
3
+ size 33555612
ckpts/universal/global_step20/zero/22.mlp.dense_h_to_4h_swiglu.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b427c672541496909ca540e245108e6836c334c7c39aa8c6c57533535b39f3c
3
+ size 33555533
ckpts/universal/global_step20/zero/3.mlp.dense_4h_to_h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76e5febd800bdaf7d34eaaab38f4d0219cae3e396786f798b5400798400a3652
3
+ size 33555612
ckpts/universal/global_step20/zero/3.mlp.dense_4h_to_h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ff2943709b74322da50098fe814405c855839bb588a80264a2264c0070a43b6
3
+ size 33555533
venv/lib/python3.10/site-packages/evaluate/__init__.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+ # Copyright 2020 The HuggingFace Evaluate Authors and the TensorFlow Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ # pylint: enable=line-too-long
18
+ # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
19
+
20
+ __version__ = "0.4.1"
21
+
22
+ from packaging import version
23
+
24
+
25
+ SCRIPTS_VERSION = "main" if version.parse(__version__).is_devrelease else __version__
26
+
27
+ del version
28
+
29
+ from .evaluation_suite import EvaluationSuite
30
+ from .evaluator import (
31
+ AudioClassificationEvaluator,
32
+ AutomaticSpeechRecognitionEvaluator,
33
+ Evaluator,
34
+ ImageClassificationEvaluator,
35
+ QuestionAnsweringEvaluator,
36
+ SummarizationEvaluator,
37
+ Text2TextGenerationEvaluator,
38
+ TextClassificationEvaluator,
39
+ TextGenerationEvaluator,
40
+ TokenClassificationEvaluator,
41
+ TranslationEvaluator,
42
+ evaluator,
43
+ )
44
+ from .hub import push_to_hub
45
+ from .info import ComparisonInfo, EvaluationModuleInfo, MeasurementInfo, MetricInfo
46
+ from .inspect import inspect_evaluation_module, list_evaluation_modules
47
+ from .loading import load
48
+ from .module import CombinedEvaluations, Comparison, EvaluationModule, Measurement, Metric, combine
49
+ from .saving import save
50
+ from .utils import *
51
+ from .utils import gradio, logging
venv/lib/python3.10/site-packages/evaluate/config.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ import os
3
+ import platform
4
+ from pathlib import Path
5
+
6
+ from packaging import version
7
+
8
+ from .utils.logging import get_logger
9
+
10
+
11
+ logger = get_logger(__name__)
12
+
13
+
14
+ # Metrics
15
+ S3_METRICS_BUCKET_PREFIX = "https://s3.amazonaws.com/datasets.huggingface.co/datasets/metrics"
16
+ CLOUDFRONT_METRICS_DISTRIB_PREFIX = "https://cdn-datasets.huggingface.co/datasets/metric"
17
+ REPO_METRICS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/metrics/{path}/{name}"
18
+ REPO_MEASUREMENTS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/measurements/{path}/{name}"
19
+ REPO_COMPARISONS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/comparisons/{path}/{name}"
20
+
21
+ # Evaluation module types
22
+ EVALUATION_MODULE_TYPES = ["metric", "comparison", "measurement"]
23
+
24
+ # Hub
25
+ HF_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co")
26
+ HF_LIST_ENDPOINT = HF_ENDPOINT + "/api/spaces?filter={type}"
27
+ HUB_EVALUATE_URL = HF_ENDPOINT + "/spaces/{path}/resolve/{revision}/{name}"
28
+ HUB_DEFAULT_VERSION = "main"
29
+
30
+ PY_VERSION = version.parse(platform.python_version())
31
+
32
+ if PY_VERSION < version.parse("3.8"):
33
+ import importlib_metadata
34
+ else:
35
+ import importlib.metadata as importlib_metadata
36
+
37
+ # General environment variables accepted values for booleans
38
+ ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
39
+ ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})
40
+
41
+
42
+ # Imports
43
+ PANDAS_VERSION = version.parse(importlib_metadata.version("pandas"))
44
+ PYARROW_VERSION = version.parse(importlib_metadata.version("pyarrow"))
45
+
46
+ USE_TF = os.environ.get("USE_TF", "AUTO").upper()
47
+ USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
48
+ USE_JAX = os.environ.get("USE_JAX", "AUTO").upper()
49
+
50
+ TORCH_VERSION = "N/A"
51
+ TORCH_AVAILABLE = False
52
+
53
+ if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
54
+ TORCH_AVAILABLE = importlib.util.find_spec("torch") is not None
55
+ if TORCH_AVAILABLE:
56
+ try:
57
+ TORCH_VERSION = version.parse(importlib_metadata.version("torch"))
58
+ logger.info(f"PyTorch version {TORCH_VERSION} available.")
59
+ except importlib_metadata.PackageNotFoundError:
60
+ pass
61
+ else:
62
+ logger.info("Disabling PyTorch because USE_TF is set")
63
+
64
+ TF_VERSION = "N/A"
65
+ TF_AVAILABLE = False
66
+
67
+ if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
68
+ TF_AVAILABLE = importlib.util.find_spec("tensorflow") is not None
69
+ if TF_AVAILABLE:
70
+ # For the metadata, we have to look for both tensorflow and tensorflow-cpu
71
+ for package in [
72
+ "tensorflow",
73
+ "tensorflow-cpu",
74
+ "tensorflow-gpu",
75
+ "tf-nightly",
76
+ "tf-nightly-cpu",
77
+ "tf-nightly-gpu",
78
+ "intel-tensorflow",
79
+ "tensorflow-rocm",
80
+ "tensorflow-macos",
81
+ ]:
82
+ try:
83
+ TF_VERSION = version.parse(importlib_metadata.version(package))
84
+ except importlib_metadata.PackageNotFoundError:
85
+ continue
86
+ else:
87
+ break
88
+ else:
89
+ TF_AVAILABLE = False
90
+ if TF_AVAILABLE:
91
+ if TF_VERSION.major < 2:
92
+ logger.info(f"TensorFlow found but with version {TF_VERSION}. `datasets` requires version 2 minimum.")
93
+ TF_AVAILABLE = False
94
+ else:
95
+ logger.info(f"TensorFlow version {TF_VERSION} available.")
96
+ else:
97
+ logger.info("Disabling Tensorflow because USE_TORCH is set")
98
+
99
+
100
+ JAX_VERSION = "N/A"
101
+ JAX_AVAILABLE = False
102
+
103
+ if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
104
+ JAX_AVAILABLE = importlib.util.find_spec("jax") is not None
105
+ if JAX_AVAILABLE:
106
+ try:
107
+ JAX_VERSION = version.parse(importlib_metadata.version("jax"))
108
+ logger.info(f"JAX version {JAX_VERSION} available.")
109
+ except importlib_metadata.PackageNotFoundError:
110
+ pass
111
+ else:
112
+ logger.info("Disabling JAX because USE_JAX is set to False")
113
+
114
+
115
+ # Cache location
116
+ DEFAULT_XDG_CACHE_HOME = "~/.cache"
117
+ XDG_CACHE_HOME = os.getenv("XDG_CACHE_HOME", DEFAULT_XDG_CACHE_HOME)
118
+ DEFAULT_HF_CACHE_HOME = os.path.join(XDG_CACHE_HOME, "huggingface")
119
+ HF_CACHE_HOME = os.path.expanduser(os.getenv("HF_HOME", DEFAULT_HF_CACHE_HOME))
120
+
121
+ DEFAULT_HF_EVALUATE_CACHE = os.path.join(HF_CACHE_HOME, "evaluate")
122
+ HF_EVALUATE_CACHE = Path(os.getenv("HF_EVALUATE_CACHE", DEFAULT_HF_EVALUATE_CACHE))
123
+
124
+ DEFAULT_HF_METRICS_CACHE = os.path.join(HF_CACHE_HOME, "metrics")
125
+ HF_METRICS_CACHE = Path(os.getenv("HF_METRICS_CACHE", DEFAULT_HF_METRICS_CACHE))
126
+
127
+ DEFAULT_HF_MODULES_CACHE = os.path.join(HF_CACHE_HOME, "modules")
128
+ HF_MODULES_CACHE = Path(os.getenv("HF_MODULES_CACHE", DEFAULT_HF_MODULES_CACHE))
129
+
130
+ DOWNLOADED_DATASETS_DIR = "downloads"
131
+ DEFAULT_DOWNLOADED_EVALUATE_PATH = os.path.join(HF_EVALUATE_CACHE, DOWNLOADED_DATASETS_DIR)
132
+ DOWNLOADED_EVALUATE_PATH = Path(os.getenv("HF_DATASETS_DOWNLOADED_EVALUATE_PATH", DEFAULT_DOWNLOADED_EVALUATE_PATH))
133
+
134
+ EXTRACTED_EVALUATE_DIR = "extracted"
135
+ DEFAULT_EXTRACTED_EVALUATE_PATH = os.path.join(DEFAULT_DOWNLOADED_EVALUATE_PATH, EXTRACTED_EVALUATE_DIR)
136
+ EXTRACTED_EVALUATE_PATH = Path(os.getenv("HF_DATASETS_EXTRACTED_EVALUATE_PATH", DEFAULT_EXTRACTED_EVALUATE_PATH))
137
+
138
+ # Download count for the website
139
+ HF_UPDATE_DOWNLOAD_COUNTS = (
140
+ os.environ.get("HF_UPDATE_DOWNLOAD_COUNTS", "AUTO").upper() in ENV_VARS_TRUE_AND_AUTO_VALUES
141
+ )
142
+
143
+ # Offline mode
144
+ HF_EVALUATE_OFFLINE = os.environ.get("HF_EVALUATE_OFFLINE", "AUTO").upper() in ENV_VARS_TRUE_VALUES
145
+
146
+
147
+ # File names
148
+ LICENSE_FILENAME = "LICENSE"
149
+ METRIC_INFO_FILENAME = "metric_info.json"
150
+ DATASETDICT_JSON_FILENAME = "dataset_dict.json"
151
+
152
+ MODULE_NAME_FOR_DYNAMIC_MODULES = "evaluate_modules"
153
+
154
+ HF_HUB_ALLOWED_TASKS = [
155
+ "image-classification",
156
+ "translation",
157
+ "image-segmentation",
158
+ "fill-mask",
159
+ "automatic-speech-recognition",
160
+ "token-classification",
161
+ "sentence-similarity",
162
+ "audio-classification",
163
+ "question-answering",
164
+ "summarization",
165
+ "zero-shot-classification",
166
+ "table-to-text",
167
+ "feature-extraction",
168
+ "other",
169
+ "multiple-choice",
170
+ "text-classification",
171
+ "text-to-image",
172
+ "text2text-generation",
173
+ "zero-shot-image-classification",
174
+ "tabular-classification",
175
+ "tabular-regression",
176
+ "image-to-image",
177
+ "tabular-to-text",
178
+ "unconditional-image-generation",
179
+ "text-retrieval",
180
+ "text-to-speech",
181
+ "object-detection",
182
+ "audio-to-audio",
183
+ "text-generation",
184
+ "conversational",
185
+ "table-question-answering",
186
+ "visual-question-answering",
187
+ "image-to-text",
188
+ "reinforcement-learning",
189
+ "voice-activity-detection",
190
+ "time-series-forecasting",
191
+ "document-question-answering",
192
+ ]
venv/lib/python3.10/site-packages/evaluate/evaluator/text_classification.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Evaluate Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from numbers import Number
16
+ from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union
17
+
18
+ from datasets import Dataset, load_dataset
19
+ from typing_extensions import Literal
20
+
21
+ from ..module import EvaluationModule
22
+ from ..utils.file_utils import add_end_docstrings, add_start_docstrings
23
+ from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator
24
+ from .utils import DatasetColumnPair
25
+
26
+
27
+ if TYPE_CHECKING:
28
+ from transformers import FeatureExtractionMixin, Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel
29
+
30
+
31
+ TASK_DOCUMENTATION = r"""
32
+ Examples:
33
+ ```python
34
+ >>> from evaluate import evaluator
35
+ >>> from datasets import load_dataset
36
+ >>> task_evaluator = evaluator("text-classification")
37
+ >>> data = load_dataset("imdb", split="test[:2]")
38
+ >>> results = task_evaluator.compute(
39
+ >>> model_or_pipeline="huggingface/prunebert-base-uncased-6-finepruned-w-distil-mnli",
40
+ >>> data=data,
41
+ >>> metric="accuracy",
42
+ >>> label_mapping={"LABEL_0": 0.0, "LABEL_1": 1.0},
43
+ >>> strategy="bootstrap",
44
+ >>> n_resamples=10,
45
+ >>> random_state=0
46
+ >>> )
47
+ ```
48
+ """
49
+
50
+
51
+ class TextClassificationEvaluator(Evaluator):
52
+ """
53
+ Text classification evaluator.
54
+ This text classification evaluator can currently be loaded from [`evaluator`] using the default task name
55
+ `text-classification` or with a `"sentiment-analysis"` alias.
56
+ Methods in this class assume a data format compatible with the [`~transformers.TextClassificationPipeline`] - a single textual
57
+ feature as input and a categorical label as output.
58
+ """
59
+
60
+ PIPELINE_KWARGS = {"truncation": True}
61
+
62
+ def __init__(self, task="text-classification", default_metric_name=None):
63
+ super().__init__(task, default_metric_name=default_metric_name)
64
+
65
+ def prepare_data(self, data: Union[str, Dataset], input_column: str, second_input_column: str, label_column: str):
66
+ if data is None:
67
+ raise ValueError(
68
+ "Please specify a valid `data` object - either a `str` with a name or a `Dataset` object."
69
+ )
70
+
71
+ self.check_required_columns(data, {"input_column": input_column, "label_column": label_column})
72
+
73
+ if second_input_column is not None:
74
+ self.check_required_columns(data, {"second_input_column": second_input_column})
75
+
76
+ data = load_dataset(data) if isinstance(data, str) else data
77
+
78
+ return {"references": data[label_column]}, DatasetColumnPair(
79
+ data, input_column, second_input_column, "text", "text_pair"
80
+ )
81
+
82
+ def predictions_processor(self, predictions, label_mapping):
83
+ predictions = [
84
+ label_mapping[element["label"]] if label_mapping is not None else element["label"]
85
+ for element in predictions
86
+ ]
87
+ return {"predictions": predictions}
88
+
89
+ @add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING)
90
+ @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION)
91
+ def compute(
92
+ self,
93
+ model_or_pipeline: Union[
94
+ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
95
+ ] = None,
96
+ data: Union[str, Dataset] = None,
97
+ subset: Optional[str] = None,
98
+ split: Optional[str] = None,
99
+ metric: Union[str, EvaluationModule] = None,
100
+ tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
101
+ feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821
102
+ strategy: Literal["simple", "bootstrap"] = "simple",
103
+ confidence_level: float = 0.95,
104
+ n_resamples: int = 9999,
105
+ device: int = None,
106
+ random_state: Optional[int] = None,
107
+ input_column: str = "text",
108
+ second_input_column: Optional[str] = None,
109
+ label_column: str = "label",
110
+ label_mapping: Optional[Dict[str, Number]] = None,
111
+ ) -> Tuple[Dict[str, float], Any]:
112
+ """
113
+ input_column (`str`, *optional*, defaults to `"text"`):
114
+ The name of the column containing the text feature in the dataset specified by `data`.
115
+ second_input_column (`str`, *optional*, defaults to `None`):
116
+ The name of the second column containing the text features. This may be useful for classification tasks
117
+ as MNLI, where two columns are used.
118
+ label_column (`str`, defaults to `"label"`):
119
+ The name of the column containing the labels in the dataset specified by `data`.
120
+ label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`):
121
+ We want to map class labels defined by the model in the pipeline to values consistent with those
122
+ defined in the `label_column` of the `data` dataset.
123
+ """
124
+
125
+ result = {}
126
+
127
+ self.check_for_mismatch_in_device_setup(device, model_or_pipeline)
128
+
129
+ # Prepare inputs
130
+ data = self.load_data(data=data, subset=subset, split=split)
131
+ metric_inputs, pipe_inputs = self.prepare_data(
132
+ data=data, input_column=input_column, second_input_column=second_input_column, label_column=label_column
133
+ )
134
+ pipe = self.prepare_pipeline(
135
+ model_or_pipeline=model_or_pipeline,
136
+ tokenizer=tokenizer,
137
+ feature_extractor=feature_extractor,
138
+ device=device,
139
+ )
140
+ metric = self.prepare_metric(metric)
141
+
142
+ # Compute predictions
143
+ predictions, perf_results = self.call_pipeline(pipe, pipe_inputs)
144
+ predictions = self.predictions_processor(predictions, label_mapping)
145
+ metric_inputs.update(predictions)
146
+
147
+ # Compute metrics from references and predictions
148
+ metric_results = self.compute_metric(
149
+ metric=metric,
150
+ metric_inputs=metric_inputs,
151
+ strategy=strategy,
152
+ confidence_level=confidence_level,
153
+ n_resamples=n_resamples,
154
+ random_state=random_state,
155
+ )
156
+
157
+ result.update(metric_results)
158
+ result.update(perf_results)
159
+
160
+ return result
venv/lib/python3.10/site-packages/evaluate/hub.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict
2
+
3
+ import requests
4
+ from huggingface_hub import dataset_info, model_info
5
+ from huggingface_hub.repocard import metadata_update
6
+
7
+ from .config import HF_HUB_ALLOWED_TASKS
8
+ from .utils.logging import get_logger
9
+
10
+
11
+ logger = get_logger(__name__)
12
+
13
+
14
+ def push_to_hub(
15
+ model_id: str,
16
+ task_type: str,
17
+ dataset_type: str,
18
+ dataset_name: str,
19
+ metric_type: str,
20
+ metric_name: str,
21
+ metric_value: float,
22
+ task_name: str = None,
23
+ dataset_config: str = None,
24
+ dataset_split: str = None,
25
+ dataset_revision: str = None,
26
+ dataset_args: Dict[str, int] = None,
27
+ metric_config: str = None,
28
+ metric_args: Dict[str, int] = None,
29
+ overwrite: bool = False,
30
+ ):
31
+ r"""
32
+ Pushes the result of a metric to the metadata of a model repository in the Hub.
33
+
34
+ Args:
35
+ model_id (`str`):
36
+ Model id from https://hf.co/models.
37
+ task_type (`str`):
38
+ Task id, refer to the [Hub allowed tasks](https://github.com/huggingface/evaluate/blob/main/src/evaluate/config.py#L154) for allowed values.
39
+ dataset_type (`str`):
40
+ Dataset id from https://hf.co/datasets.
41
+ dataset_name (`str`):
42
+ Pretty name for the dataset.
43
+ metric_type (`str`):
44
+ Metric id from https://hf.co/metrics.
45
+ metric_name (`str`):
46
+ Pretty name for the metric.
47
+ metric_value (`float`):
48
+ Computed metric value.
49
+ task_name (`str`, *optional*):
50
+ Pretty name for the task.
51
+ dataset_config (`str`, *optional*):
52
+ Dataset configuration used in [`~datasets.load_dataset`].
53
+ See [`~datasets.load_dataset`] for more info.
54
+ dataset_split (`str`, *optional*):
55
+ Name of split used for metric computation.
56
+ dataset_revision (`str`, *optional*):
57
+ Git hash for the specific version of the dataset.
58
+ dataset_args (`dict[str, int]`, *optional*):
59
+ Additional arguments passed to [`~datasets.load_dataset`].
60
+ metric_config (`str`, *optional*):
61
+ Configuration for the metric (e.g. the GLUE metric has a configuration for each subset).
62
+ metric_args (`dict[str, int]`, *optional*):
63
+ Arguments passed during [`~evaluate.EvaluationModule.compute`].
64
+ overwrite (`bool`, *optional*, defaults to `False`):
65
+ If set to `True` an existing metric field can be overwritten, otherwise
66
+ attempting to overwrite any existing fields will cause an error.
67
+
68
+ Example:
69
+
70
+ ```python
71
+ >>> push_to_hub(
72
+ ... model_id="huggingface/gpt2-wikitext2",
73
+ ... metric_value=0.5
74
+ ... metric_type="bleu",
75
+ ... metric_name="BLEU",
76
+ ... dataset_name="WikiText",
77
+ ... dataset_type="wikitext",
78
+ ... dataset_split="test",
79
+ ... task_type="text-generation",
80
+ ... task_name="Text Generation"
81
+ ... )
82
+ ```"""
83
+ if task_type not in HF_HUB_ALLOWED_TASKS:
84
+ raise ValueError(f"Task type not supported. Task has to be one of {HF_HUB_ALLOWED_TASKS}")
85
+
86
+ try:
87
+ dataset_info(dataset_type)
88
+ except requests.exceptions.HTTPError:
89
+ logger.warning(f"Dataset {dataset_type} not found on the Hub at hf.co/datasets/{dataset_type}")
90
+
91
+ try:
92
+ model_info(model_id)
93
+ except requests.exceptions.HTTPError:
94
+ raise ValueError(f"Model {model_id} not found on the Hub at hf.co/{model_id}")
95
+
96
+ result = {
97
+ "task": {
98
+ "type": task_type,
99
+ },
100
+ "dataset": {
101
+ "type": dataset_type,
102
+ "name": dataset_name,
103
+ },
104
+ "metrics": [
105
+ {
106
+ "type": metric_type,
107
+ "value": metric_value,
108
+ },
109
+ ],
110
+ }
111
+
112
+ if dataset_config is not None:
113
+ result["dataset"]["config"] = dataset_config
114
+ if dataset_split is not None:
115
+ result["dataset"]["split"] = dataset_split
116
+ if dataset_revision is not None:
117
+ result["dataset"]["revision"] = dataset_revision
118
+ if dataset_args is not None:
119
+ result["dataset"]["args"] = dataset_args
120
+
121
+ if task_name is not None:
122
+ result["task"]["name"] = task_name
123
+
124
+ if metric_name is not None:
125
+ result["metrics"][0]["name"] = metric_name
126
+ if metric_config is not None:
127
+ result["metrics"][0]["config"] = metric_config
128
+ if metric_args is not None:
129
+ result["metrics"][0]["args"] = metric_args
130
+
131
+ metadata = {"model-index": [{"results": [result]}]}
132
+
133
+ return metadata_update(repo_id=model_id, metadata=metadata, overwrite=overwrite)
venv/lib/python3.10/site-packages/evaluate/info.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Lint as: python3
16
+ """ EvaluationModuleInfo records information we know about a dataset and a metric.
17
+ """
18
+
19
+ import dataclasses
20
+ import json
21
+ import os
22
+ from dataclasses import asdict, dataclass, field
23
+ from typing import List, Optional, Union
24
+
25
+ from datasets.features import Features, Value
26
+
27
+ from . import config
28
+ from .utils.logging import get_logger
29
+
30
+
31
+ logger = get_logger(__name__)
32
+
33
+
34
+ @dataclass
35
+ class EvaluationModuleInfo:
36
+ """Base class to store information about an evaluation used for `MetricInfo`, `ComparisonInfo`,
37
+ and `MeasurementInfo`.
38
+
39
+ `EvaluationModuleInfo` documents an evaluation, including its name, version, and features.
40
+ See the constructor arguments and properties for a full list.
41
+
42
+ Note: Not all fields are known on construction and may be updated later.
43
+ """
44
+
45
+ # Set in the dataset scripts
46
+ description: str
47
+ citation: str
48
+ features: Union[Features, List[Features]]
49
+ inputs_description: str = field(default_factory=str)
50
+ homepage: str = field(default_factory=str)
51
+ license: str = field(default_factory=str)
52
+ codebase_urls: List[str] = field(default_factory=list)
53
+ reference_urls: List[str] = field(default_factory=list)
54
+ streamable: bool = False
55
+ format: Optional[str] = None
56
+ module_type: str = "metric" # deprecate this in the future
57
+
58
+ # Set later by the builder
59
+ module_name: Optional[str] = None
60
+ config_name: Optional[str] = None
61
+ experiment_id: Optional[str] = None
62
+
63
+ def __post_init__(self):
64
+ if self.format is not None:
65
+ for key, value in self.features.items():
66
+ if not isinstance(value, Value):
67
+ raise ValueError(
68
+ f"When using 'numpy' format, all features should be a `datasets.Value` feature. "
69
+ f"Here {key} is an instance of {value.__class__.__name__}"
70
+ )
71
+
72
+ def write_to_directory(self, metric_info_dir):
73
+ """Write `EvaluationModuleInfo` as JSON to `metric_info_dir`.
74
+ Also save the license separately in LICENSE.
75
+
76
+ Args:
77
+ metric_info_dir (`str`):
78
+ The directory to save `metric_info_dir` to.
79
+
80
+ Example:
81
+
82
+ ```py
83
+ >>> my_metric.info.write_to_directory("/path/to/directory/")
84
+ ```
85
+ """
86
+ with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), "w", encoding="utf-8") as f:
87
+ json.dump(asdict(self), f)
88
+
89
+ with open(os.path.join(metric_info_dir, config.LICENSE_FILENAME), "w", encoding="utf-8") as f:
90
+ f.write(self.license)
91
+
92
+ @classmethod
93
+ def from_directory(cls, metric_info_dir) -> "EvaluationModuleInfo":
94
+ """Create `EvaluationModuleInfo` from the JSON file in `metric_info_dir`.
95
+
96
+ Args:
97
+ metric_info_dir (`str`):
98
+ The directory containing the `metric_info` JSON file. This
99
+ should be the root directory of a specific metric version.
100
+
101
+ Example:
102
+
103
+ ```py
104
+ >>> my_metric = EvaluationModuleInfo.from_directory("/path/to/directory/")
105
+ ```
106
+ """
107
+ logger.info(f"Loading Metric info from {metric_info_dir}")
108
+ if not metric_info_dir:
109
+ raise ValueError("Calling EvaluationModuleInfo.from_directory() with undefined metric_info_dir.")
110
+
111
+ with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), encoding="utf-8") as f:
112
+ metric_info_dict = json.load(f)
113
+ return cls.from_dict(metric_info_dict)
114
+
115
+ @classmethod
116
+ def from_dict(cls, metric_info_dict: dict) -> "EvaluationModuleInfo":
117
+ field_names = {f.name for f in dataclasses.fields(cls)}
118
+ return cls(**{k: v for k, v in metric_info_dict.items() if k in field_names})
119
+
120
+
121
+ @dataclass
122
+ class MetricInfo(EvaluationModuleInfo):
123
+ """Information about a metric.
124
+
125
+ `EvaluationModuleInfo` documents a metric, including its name, version, and features.
126
+ See the constructor arguments and properties for a full list.
127
+
128
+ Note: Not all fields are known on construction and may be updated later.
129
+ """
130
+
131
+ module_type: str = "metric"
132
+
133
+
134
+ @dataclass
135
+ class ComparisonInfo(EvaluationModuleInfo):
136
+ """Information about a comparison.
137
+
138
+ `EvaluationModuleInfo` documents a comparison, including its name, version, and features.
139
+ See the constructor arguments and properties for a full list.
140
+
141
+ Note: Not all fields are known on construction and may be updated later.
142
+ """
143
+
144
+ module_type: str = "comparison"
145
+
146
+
147
+ @dataclass
148
+ class MeasurementInfo(EvaluationModuleInfo):
149
+ """Information about a measurement.
150
+
151
+ `EvaluationModuleInfo` documents a measurement, including its name, version, and features.
152
+ See the constructor arguments and properties for a full list.
153
+
154
+ Note: Not all fields are known on construction and may be updated later.
155
+ """
156
+
157
+ module_type: str = "measurement"
venv/lib/python3.10/site-packages/evaluate/inspect.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Evaluate Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Lint as: python3
16
+ """ List and inspect metrics."""
17
+
18
+ from typing import Optional
19
+
20
+ import requests
21
+ from datasets import DownloadConfig
22
+
23
+ from .config import EVALUATION_MODULE_TYPES, HF_LIST_ENDPOINT
24
+ from .loading import evaluation_module_factory
25
+ from .utils.logging import get_logger
26
+
27
+
28
+ logger = get_logger(__name__)
29
+
30
+
31
+ class SplitsNotFoundError(ValueError):
32
+ pass
33
+
34
+
35
+ def list_evaluation_modules(module_type=None, include_community=True, with_details=False):
36
+ """List all evaluation modules available on the Hugging Face Hub.
37
+
38
+ Args:
39
+ module_type (`str`, *optional*, defaults to `None`):
40
+ Type of evaluation modules to list. Has to be one of `'metric'`, `'comparison'`, or `'measurement'`. If `None`, all types are listed.
41
+ include_community (`bool`, *optional*, defaults to `True`):
42
+ Include community modules in the list.
43
+ with_details (`bool`, *optional*, defaults to `False`):
44
+ Return the full details on the metrics instead of only the ID.
45
+
46
+ Returns:
47
+ `List[Union[str, dict]]`
48
+
49
+ Example:
50
+
51
+ ```py
52
+ >>> from evaluate import list_evaluation_modules
53
+ >>> list_evaluation_modules(module_type="metric")
54
+ ```
55
+ """
56
+
57
+ if module_type is None:
58
+ evaluations_list = []
59
+ for module_type in EVALUATION_MODULE_TYPES:
60
+ evaluations_list.extend(
61
+ _list_evaluation_modules_type(
62
+ module_type, include_community=include_community, with_details=with_details
63
+ )
64
+ )
65
+ else:
66
+ if module_type not in EVALUATION_MODULE_TYPES:
67
+ raise ValueError(f"Invalid module type '{module_type}'. Has to be one of {EVALUATION_MODULE_TYPES}.")
68
+ evaluations_list = _list_evaluation_modules_type(
69
+ module_type, include_community=include_community, with_details=with_details
70
+ )
71
+ return evaluations_list
72
+
73
+
74
+ def _list_evaluation_modules_type(module_type, include_community=True, with_details=False):
75
+
76
+ r = requests.get(HF_LIST_ENDPOINT.format(type=module_type))
77
+ r.raise_for_status()
78
+ d = r.json()
79
+
80
+ if not include_community:
81
+ d = [element for element in d if element["id"].split("/")[0] == f"evaluate-{module_type}"]
82
+
83
+ # remove namespace for canonical modules and add community tag
84
+ for element in d:
85
+ if element["id"].split("/")[0] == f"evaluate-{module_type}":
86
+ element["id"] = element["id"].split("/")[1]
87
+ element["community"] = False
88
+ else:
89
+ element["community"] = True
90
+
91
+ if with_details:
92
+ return [
93
+ {
94
+ "name": element["id"],
95
+ "type": module_type,
96
+ "community": element["community"],
97
+ "likes": element.get("likes", 0),
98
+ }
99
+ for element in d
100
+ ]
101
+ else:
102
+ return [element["id"] for element in d]
103
+
104
+
105
+ def inspect_evaluation_module(
106
+ path: str, local_path: str, download_config: Optional[DownloadConfig] = None, **download_kwargs
107
+ ):
108
+ r"""
109
+ Allow inspection/modification of a evaluation script by copying it on local drive at local_path.
110
+
111
+ Args:
112
+ path (``str``): path to the evaluation script. Can be either:
113
+
114
+ - a local path to script or the directory containing the script (if the script has the same name as the directory),
115
+ e.g. ``'./metrics/accuracy'`` or ``'./metrics/accuracy/accuracy.py'``
116
+ - a dataset identifier on the Hugging Face Hub (list all available datasets and ids with ``evaluate.list_evaluation_modules()``)
117
+ e.g. ``'accuracy'``, ``'bleu'`` or ``'word_length'``
118
+ local_path (``str``): path to the local folder to copy the datset script to.
119
+ download_config (Optional ``datasets.DownloadConfig``: specific download configuration parameters.
120
+ **download_kwargs: optional attributes for DownloadConfig() which will override the attributes in download_config if supplied.
121
+ """
122
+ evaluation_module = evaluation_module_factory(
123
+ path, download_config=download_config, force_local_path=local_path, **download_kwargs
124
+ )
125
+ print(
126
+ f"The processing scripts for metric {path} can be inspected at {local_path}. "
127
+ f"The main class is in {evaluation_module.module_path}. "
128
+ f"You can modify this processing scripts and use it with `evaluate.load({local_path})`."
129
+ )
venv/lib/python3.10/site-packages/evaluate/loading.py ADDED
@@ -0,0 +1,771 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Lint as: python3
16
+ """Access datasets."""
17
+ import filecmp
18
+ import importlib
19
+ import inspect
20
+ import json
21
+ import os
22
+ import re
23
+ import shutil
24
+ import time
25
+ from dataclasses import dataclass
26
+ from pathlib import Path
27
+ from typing import List, Optional, Tuple, Type, Union
28
+ from urllib.parse import urlparse
29
+
30
+ from datasets import DownloadConfig, DownloadMode
31
+ from datasets.builder import DatasetBuilder
32
+ from datasets.packaged_modules import _EXTENSION_TO_MODULE, _hash_python_lines
33
+ from datasets.utils.filelock import FileLock
34
+ from datasets.utils.version import Version
35
+
36
+ from . import SCRIPTS_VERSION, config
37
+ from .module import EvaluationModule
38
+ from .utils.file_utils import (
39
+ cached_path,
40
+ head_hf_s3,
41
+ hf_hub_url,
42
+ init_hf_modules,
43
+ is_relative_path,
44
+ relative_to_absolute_path,
45
+ url_or_path_join,
46
+ )
47
+ from .utils.logging import get_logger
48
+
49
+
50
+ logger = get_logger(__name__)
51
+
52
+
53
+ ALL_ALLOWED_EXTENSIONS = list(_EXTENSION_TO_MODULE.keys()) + ["zip"]
54
+
55
+
56
+ def init_dynamic_modules(
57
+ name: str = config.MODULE_NAME_FOR_DYNAMIC_MODULES, hf_modules_cache: Optional[Union[Path, str]] = None
58
+ ):
59
+ """
60
+ Create a module with name `name` in which you can add dynamic modules
61
+ such as metrics or datasets. The module can be imported using its name.
62
+ The module is created in the HF_MODULE_CACHE directory by default (~/.cache/huggingface/modules) but it can
63
+ be overriden by specifying a path to another directory in `hf_modules_cache`.
64
+ """
65
+ hf_modules_cache = init_hf_modules(hf_modules_cache)
66
+ dynamic_modules_path = os.path.join(hf_modules_cache, name)
67
+ os.makedirs(dynamic_modules_path, exist_ok=True)
68
+ if not os.path.exists(os.path.join(dynamic_modules_path, "__init__.py")):
69
+ with open(os.path.join(dynamic_modules_path, "__init__.py"), "w"):
70
+ pass
71
+ return dynamic_modules_path
72
+
73
+
74
+ def import_main_class(module_path) -> Optional[Union[Type[DatasetBuilder], Type[EvaluationModule]]]:
75
+ """Import a module at module_path and return its main class, a Metric by default"""
76
+ module = importlib.import_module(module_path)
77
+ main_cls_type = EvaluationModule
78
+
79
+ # Find the main class in our imported module
80
+ module_main_cls = None
81
+ for name, obj in module.__dict__.items():
82
+ if isinstance(obj, type) and issubclass(obj, main_cls_type):
83
+ if inspect.isabstract(obj):
84
+ continue
85
+ module_main_cls = obj
86
+ break
87
+
88
+ return module_main_cls
89
+
90
+
91
+ def files_to_hash(file_paths: List[str]) -> str:
92
+ """
93
+ Convert a list of scripts or text files provided in file_paths into a hashed filename in a repeatable way.
94
+ """
95
+ # List all python files in directories if directories are supplied as part of external imports
96
+ to_use_files: List[Union[Path, str]] = []
97
+ for file_path in file_paths:
98
+ if os.path.isdir(file_path):
99
+ to_use_files.extend(list(Path(file_path).rglob("*.[pP][yY]")))
100
+ else:
101
+ to_use_files.append(file_path)
102
+
103
+ # Get the code from all these files
104
+ lines = []
105
+ for file_path in to_use_files:
106
+ with open(file_path, encoding="utf-8") as f:
107
+ lines.extend(f.readlines())
108
+ return _hash_python_lines(lines)
109
+
110
+
111
+ def convert_github_url(url_path: str) -> Tuple[str, Optional[str]]:
112
+ """Convert a link to a file on a github repo in a link to the raw github object."""
113
+ parsed = urlparse(url_path)
114
+ sub_directory = None
115
+ if parsed.scheme in ("http", "https", "s3") and parsed.netloc == "github.com":
116
+ if "blob" in url_path:
117
+ if not url_path.endswith(".py"):
118
+ raise ValueError(f"External import from github at {url_path} should point to a file ending with '.py'")
119
+ url_path = url_path.replace("blob", "raw") # Point to the raw file
120
+ else:
121
+ # Parse github url to point to zip
122
+ github_path = parsed.path[1:]
123
+ repo_info, branch = github_path.split("/tree/") if "/tree/" in github_path else (github_path, "master")
124
+ repo_owner, repo_name = repo_info.split("/")
125
+ url_path = f"https://github.com/{repo_owner}/{repo_name}/archive/{branch}.zip"
126
+ sub_directory = f"{repo_name}-{branch}"
127
+ return url_path, sub_directory
128
+
129
+
130
+ def increase_load_count(name: str, resource_type: str):
131
+ """Update the download count of a dataset or metric."""
132
+ if not config.HF_EVALUATE_OFFLINE and config.HF_UPDATE_DOWNLOAD_COUNTS:
133
+ try:
134
+ head_hf_s3(name, filename=name + ".py", dataset=(resource_type == "dataset"))
135
+ except Exception:
136
+ pass
137
+
138
+
139
+ def get_imports(file_path: str) -> Tuple[str, str, str, str]:
140
+ """Find whether we should import or clone additional files for a given processing script.
141
+ And list the import.
142
+
143
+ We allow:
144
+ - library dependencies,
145
+ - local dependencies and
146
+ - external dependencies whose url is specified with a comment starting from "# From:' followed by the raw url to a file, an archive or a github repository.
147
+ external dependencies will be downloaded (and extracted if needed in the dataset folder).
148
+ We also add an `__init__.py` to each sub-folder of a downloaded folder so the user can import from them in the script.
149
+
150
+ Note that only direct import in the dataset processing script will be handled
151
+ We don't recursively explore the additional import to download further files.
152
+
153
+ Example::
154
+
155
+ import tensorflow
156
+ import .c4_utils
157
+ import .clicr.dataset-code.build_json_dataset # From: https://raw.githubusercontent.com/clips/clicr/master/dataset-code/build_json_dataset
158
+ """
159
+ lines = []
160
+ with open(file_path, encoding="utf-8") as f:
161
+ lines.extend(f.readlines())
162
+
163
+ logger.debug(f"Checking {file_path} for additional imports.")
164
+ imports: List[Tuple[str, str, str, Optional[str]]] = []
165
+ is_in_docstring = False
166
+ for line in lines:
167
+ docstr_start_match = re.findall(r'[\s\S]*?"""[\s\S]*?', line)
168
+
169
+ if len(docstr_start_match) == 1:
170
+ # flip True <=> False only if doctstring
171
+ # starts at line without finishing
172
+ is_in_docstring = not is_in_docstring
173
+
174
+ if is_in_docstring:
175
+ # import statements in doctstrings should
176
+ # not be added as required dependencies
177
+ continue
178
+
179
+ match = re.match(r"^import\s+(\.?)([^\s\.]+)[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)", line, flags=re.MULTILINE)
180
+ if match is None:
181
+ match = re.match(
182
+ r"^from\s+(\.?)([^\s\.]+)(?:[^\s]*)\s+import\s+[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)",
183
+ line,
184
+ flags=re.MULTILINE,
185
+ )
186
+ if match is None:
187
+ continue
188
+ if match.group(1):
189
+ # The import starts with a '.', we will download the relevant file
190
+ if any(imp[1] == match.group(2) for imp in imports):
191
+ # We already have this import
192
+ continue
193
+ if match.group(3):
194
+ # The import has a comment with 'From:', we'll retrieve it from the given url
195
+ url_path = match.group(3)
196
+ url_path, sub_directory = convert_github_url(url_path)
197
+ imports.append(("external", match.group(2), url_path, sub_directory))
198
+ elif match.group(2):
199
+ # The import should be at the same place as the file
200
+ imports.append(("internal", match.group(2), match.group(2), None))
201
+ else:
202
+ if match.group(3):
203
+ # The import has a comment with `From: git+https:...`, asks user to pip install from git.
204
+ url_path = match.group(3)
205
+ imports.append(("library", match.group(2), url_path, None))
206
+ else:
207
+ imports.append(("library", match.group(2), match.group(2), None))
208
+
209
+ return imports
210
+
211
+
212
+ def _download_additional_modules(
213
+ name: str, base_path: str, imports: Tuple[str, str, str, str], download_config: Optional[DownloadConfig]
214
+ ) -> List[Tuple[str, str]]:
215
+ """
216
+ Download additional module for a module <name>.py at URL (or local path) <base_path>/<name>.py
217
+ The imports must have been parsed first using ``get_imports``.
218
+
219
+ If some modules need to be installed with pip, an error is raised showing how to install them.
220
+ This function return the list of downloaded modules as tuples (import_name, module_file_path).
221
+
222
+ The downloaded modules can then be moved into an importable directory with ``_copy_script_and_other_resources_in_importable_dir``.
223
+ """
224
+ local_imports = []
225
+ library_imports = []
226
+ download_config = download_config.copy()
227
+ if download_config.download_desc is None:
228
+ download_config.download_desc = "Downloading extra modules"
229
+ for import_type, import_name, import_path, sub_directory in imports:
230
+ if import_type == "library":
231
+ library_imports.append((import_name, import_path)) # Import from a library
232
+ continue
233
+
234
+ if import_name == name:
235
+ raise ValueError(
236
+ f"Error in the {name} script, importing relative {import_name} module "
237
+ f"but {import_name} is the name of the script. "
238
+ f"Please change relative import {import_name} to another name and add a '# From: URL_OR_PATH' "
239
+ f"comment pointing to the original relative import file path."
240
+ )
241
+ if import_type == "internal":
242
+ url_or_filename = url_or_path_join(base_path, import_path + ".py")
243
+ elif import_type == "external":
244
+ url_or_filename = import_path
245
+ else:
246
+ raise ValueError("Wrong import_type")
247
+
248
+ local_import_path = cached_path(
249
+ url_or_filename,
250
+ download_config=download_config,
251
+ )
252
+ if sub_directory is not None:
253
+ local_import_path = os.path.join(local_import_path, sub_directory)
254
+ local_imports.append((import_name, local_import_path))
255
+
256
+ # Check library imports
257
+ needs_to_be_installed = set()
258
+ for library_import_name, library_import_path in library_imports:
259
+ try:
260
+ lib = importlib.import_module(library_import_name) # noqa F841
261
+ except ImportError:
262
+ library_import_name = "scikit-learn" if library_import_name == "sklearn" else library_import_name
263
+ needs_to_be_installed.add((library_import_name, library_import_path))
264
+ if needs_to_be_installed:
265
+ raise ImportError(
266
+ f"To be able to use {name}, you need to install the following dependencies"
267
+ f"{[lib_name for lib_name, lib_path in needs_to_be_installed]} using 'pip install "
268
+ f"{' '.join([lib_path for lib_name, lib_path in needs_to_be_installed])}' for instance'"
269
+ )
270
+ return local_imports
271
+
272
+
273
+ def _copy_script_and_other_resources_in_importable_dir(
274
+ name: str,
275
+ importable_directory_path: str,
276
+ subdirectory_name: str,
277
+ original_local_path: str,
278
+ local_imports: List[Tuple[str, str]],
279
+ additional_files: List[Tuple[str, str]],
280
+ download_mode: Optional[DownloadMode],
281
+ ) -> str:
282
+ """Copy a script and its required imports to an importable directory
283
+
284
+ Args:
285
+ name (str): name of the resource to load
286
+ importable_directory_path (str): path to the loadable folder in the dynamic modules directory
287
+ subdirectory_name (str): name of the subdirectory in importable_directory_path in which to place the script
288
+ original_local_path (str): local path to the resource script
289
+ local_imports (List[Tuple[str, str]]): list of (destination_filename, import_file_to_copy)
290
+ additional_files (List[Tuple[str, str]]): list of (destination_filename, additional_file_to_copy)
291
+ download_mode (Optional[DownloadMode]): download mode
292
+
293
+ Return:
294
+ importable_local_file: path to an importable module with importlib.import_module
295
+ """
296
+
297
+ # Define a directory with a unique name in our dataset or metric folder
298
+ # path is: ./datasets|metrics/dataset|metric_name/hash_from_code/script.py
299
+ # we use a hash as subdirectory_name to be able to have multiple versions of a dataset/metric processing file together
300
+ importable_subdirectory = os.path.join(importable_directory_path, subdirectory_name)
301
+ importable_local_file = os.path.join(importable_subdirectory, name + ".py")
302
+
303
+ # Prevent parallel disk operations
304
+ lock_path = importable_directory_path + ".lock"
305
+ with FileLock(lock_path):
306
+ # Create main dataset/metrics folder if needed
307
+ if download_mode == DownloadMode.FORCE_REDOWNLOAD and os.path.exists(importable_directory_path):
308
+ shutil.rmtree(importable_directory_path)
309
+ os.makedirs(importable_directory_path, exist_ok=True)
310
+
311
+ # add an __init__ file to the main dataset folder if needed
312
+ init_file_path = os.path.join(importable_directory_path, "__init__.py")
313
+ if not os.path.exists(init_file_path):
314
+ with open(init_file_path, "w"):
315
+ pass
316
+
317
+ # Create hash dataset folder if needed
318
+ os.makedirs(importable_subdirectory, exist_ok=True)
319
+ # add an __init__ file to the hash dataset folder if needed
320
+ init_file_path = os.path.join(importable_subdirectory, "__init__.py")
321
+ if not os.path.exists(init_file_path):
322
+ with open(init_file_path, "w"):
323
+ pass
324
+
325
+ # Copy dataset.py file in hash folder if needed
326
+ if not os.path.exists(importable_local_file):
327
+ shutil.copyfile(original_local_path, importable_local_file)
328
+
329
+ # Record metadata associating original dataset path with local unique folder
330
+ meta_path = importable_local_file.split(".py")[0] + ".json"
331
+ if not os.path.exists(meta_path):
332
+ meta = {"original file path": original_local_path, "local file path": importable_local_file}
333
+ # the filename is *.py in our case, so better rename to filenam.json instead of filename.py.json
334
+ with open(meta_path, "w", encoding="utf-8") as meta_file:
335
+ json.dump(meta, meta_file)
336
+
337
+ # Copy all the additional imports
338
+ for import_name, import_path in local_imports:
339
+ if os.path.isfile(import_path):
340
+ full_path_local_import = os.path.join(importable_subdirectory, import_name + ".py")
341
+ if not os.path.exists(full_path_local_import):
342
+ shutil.copyfile(import_path, full_path_local_import)
343
+ elif os.path.isdir(import_path):
344
+ full_path_local_import = os.path.join(importable_subdirectory, import_name)
345
+ if not os.path.exists(full_path_local_import):
346
+ shutil.copytree(import_path, full_path_local_import)
347
+ else:
348
+ raise OSError(f"Error with local import at {import_path}")
349
+
350
+ # Copy aditional files like dataset infos file if needed
351
+ for file_name, original_path in additional_files:
352
+ destination_additional_path = os.path.join(importable_subdirectory, file_name)
353
+ if not os.path.exists(destination_additional_path) or not filecmp.cmp(
354
+ original_path, destination_additional_path
355
+ ):
356
+ shutil.copyfile(original_path, destination_additional_path)
357
+ return importable_local_file
358
+
359
+
360
+ def _create_importable_file(
361
+ local_path: str,
362
+ local_imports: List[Tuple[str, str]],
363
+ additional_files: List[Tuple[str, str]],
364
+ dynamic_modules_path: str,
365
+ module_namespace: str,
366
+ name: str,
367
+ download_mode: DownloadMode,
368
+ ) -> Tuple[str, str]:
369
+ importable_directory_path = os.path.join(dynamic_modules_path, module_namespace, name.replace("/", "--"))
370
+ Path(importable_directory_path).mkdir(parents=True, exist_ok=True)
371
+ (Path(importable_directory_path).parent / "__init__.py").touch(exist_ok=True)
372
+ hash = files_to_hash([local_path] + [loc[1] for loc in local_imports])
373
+ importable_local_file = _copy_script_and_other_resources_in_importable_dir(
374
+ name=name.split("/")[-1],
375
+ importable_directory_path=importable_directory_path,
376
+ subdirectory_name=hash,
377
+ original_local_path=local_path,
378
+ local_imports=local_imports,
379
+ additional_files=additional_files,
380
+ download_mode=download_mode,
381
+ )
382
+ logger.debug(f"Created importable dataset file at {importable_local_file}")
383
+ module_path = ".".join(
384
+ [os.path.basename(dynamic_modules_path), module_namespace, name.replace("/", "--"), hash, name.split("/")[-1]]
385
+ )
386
+ return module_path, hash
387
+
388
+
389
+ @dataclass
390
+ class ImportableModule:
391
+ module_path: str
392
+ hash: str
393
+
394
+
395
+ class _EvaluationModuleFactory:
396
+ def get_module(self) -> ImportableModule:
397
+ raise NotImplementedError
398
+
399
+
400
+ class LocalEvaluationModuleFactory(_EvaluationModuleFactory):
401
+ """Get the module of a local metric. The metric script is loaded from a local script."""
402
+
403
+ def __init__(
404
+ self,
405
+ path: str,
406
+ module_type: str = "metrics",
407
+ download_config: Optional[DownloadConfig] = None,
408
+ download_mode: Optional[DownloadMode] = None,
409
+ dynamic_modules_path: Optional[str] = None,
410
+ ):
411
+ self.path = path
412
+ self.module_type = module_type
413
+ self.name = Path(path).stem
414
+ self.download_config = download_config or DownloadConfig()
415
+ self.download_mode = download_mode
416
+ self.dynamic_modules_path = dynamic_modules_path
417
+
418
+ def get_module(self) -> ImportableModule:
419
+ # get script and other files
420
+ imports = get_imports(self.path)
421
+ local_imports = _download_additional_modules(
422
+ name=self.name,
423
+ base_path=str(Path(self.path).parent),
424
+ imports=imports,
425
+ download_config=self.download_config,
426
+ )
427
+ # copy the script and the files in an importable directory
428
+ dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
429
+ module_path, hash = _create_importable_file(
430
+ local_path=self.path,
431
+ local_imports=local_imports,
432
+ additional_files=[],
433
+ dynamic_modules_path=dynamic_modules_path,
434
+ module_namespace=self.module_type,
435
+ name=self.name,
436
+ download_mode=self.download_mode,
437
+ )
438
+ # make the new module to be noticed by the import system
439
+ importlib.invalidate_caches()
440
+ return ImportableModule(module_path, hash)
441
+
442
+
443
+ class HubEvaluationModuleFactory(_EvaluationModuleFactory):
444
+ """Get the module of a metric from a metric repository on the Hub."""
445
+
446
+ def __init__(
447
+ self,
448
+ name: str,
449
+ module_type: str = "metrics",
450
+ revision: Optional[Union[str, Version]] = None,
451
+ download_config: Optional[DownloadConfig] = None,
452
+ download_mode: Optional[DownloadMode] = None,
453
+ dynamic_modules_path: Optional[str] = None,
454
+ ):
455
+ self.name = name
456
+ self.module_type = module_type
457
+ self.revision = revision
458
+ self.download_config = download_config or DownloadConfig()
459
+ self.download_mode = download_mode
460
+ self.dynamic_modules_path = dynamic_modules_path
461
+ assert self.name.count("/") == 1
462
+ increase_load_count(name, resource_type="metric")
463
+
464
+ def download_loading_script(self, revision) -> str:
465
+ file_path = hf_hub_url(path=self.name, name=self.name.split("/")[1] + ".py", revision=revision)
466
+ download_config = self.download_config.copy()
467
+ if download_config.download_desc is None:
468
+ download_config.download_desc = "Downloading builder script"
469
+ return cached_path(file_path, download_config=download_config)
470
+
471
+ def get_module(self) -> ImportableModule:
472
+ revision = self.revision or os.getenv("HF_SCRIPTS_VERSION", SCRIPTS_VERSION)
473
+
474
+ if re.match(r"\d*\.\d*\.\d*", revision): # revision is version number (three digits separated by full stops)
475
+ revision = "v" + revision # tagging convention on evaluate repository starts with v
476
+
477
+ # get script and other files
478
+ try:
479
+ local_path = self.download_loading_script(revision)
480
+ except FileNotFoundError as err:
481
+ # if there is no file found with current revision tag try to load main
482
+ if self.revision is None and os.getenv("HF_SCRIPTS_VERSION", SCRIPTS_VERSION) != "main":
483
+ revision = "main"
484
+ local_path = self.download_loading_script(revision)
485
+ else:
486
+ raise err
487
+
488
+ imports = get_imports(local_path)
489
+ local_imports = _download_additional_modules(
490
+ name=self.name,
491
+ base_path=hf_hub_url(path=self.name, name="", revision=revision),
492
+ imports=imports,
493
+ download_config=self.download_config,
494
+ )
495
+ # copy the script and the files in an importable directory
496
+ dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
497
+ module_path, hash = _create_importable_file(
498
+ local_path=local_path,
499
+ local_imports=local_imports,
500
+ additional_files=[],
501
+ dynamic_modules_path=dynamic_modules_path,
502
+ module_namespace=self.module_type,
503
+ name=self.name,
504
+ download_mode=self.download_mode,
505
+ )
506
+ # make the new module to be noticed by the import system
507
+ importlib.invalidate_caches()
508
+ return ImportableModule(module_path, hash)
509
+
510
+
511
+ class CachedEvaluationModuleFactory(_EvaluationModuleFactory):
512
+ """
513
+ Get the module of a metric that has been loaded once already and cached.
514
+ The script that is loaded from the cache is the most recent one with a matching name.
515
+ """
516
+
517
+ def __init__(
518
+ self,
519
+ name: str,
520
+ module_type: str = "metrics",
521
+ dynamic_modules_path: Optional[str] = None,
522
+ ):
523
+ self.name = name
524
+ self.module_type = module_type
525
+ self.dynamic_modules_path = dynamic_modules_path
526
+ assert self.name.count("/") == 0
527
+
528
+ def get_module(self) -> ImportableModule:
529
+ dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
530
+ importable_directory_path = os.path.join(dynamic_modules_path, self.module_type, self.name)
531
+ hashes = (
532
+ [h for h in os.listdir(importable_directory_path) if len(h) == 64]
533
+ if os.path.isdir(importable_directory_path)
534
+ else None
535
+ )
536
+ if not hashes:
537
+ raise FileNotFoundError(f"Metric {self.name} is not cached in {dynamic_modules_path}")
538
+ # get most recent
539
+
540
+ def _get_modification_time(module_hash):
541
+ return (
542
+ (Path(importable_directory_path) / module_hash / (self.name.split("--")[-1] + ".py")).stat().st_mtime
543
+ )
544
+
545
+ hash = sorted(hashes, key=_get_modification_time)[-1]
546
+ logger.warning(
547
+ f"Using the latest cached version of the module from {os.path.join(importable_directory_path, hash)} "
548
+ f"(last modified on {time.ctime(_get_modification_time(hash))}) since it "
549
+ f"couldn't be found locally at {self.name}, or remotely on the Hugging Face Hub."
550
+ )
551
+ # make the new module to be noticed by the import system
552
+ module_path = ".".join(
553
+ [os.path.basename(dynamic_modules_path), self.module_type, self.name, hash, self.name.split("--")[-1]]
554
+ )
555
+ importlib.invalidate_caches()
556
+ return ImportableModule(module_path, hash)
557
+
558
+
559
+ def evaluation_module_factory(
560
+ path: str,
561
+ module_type: Optional[str] = None,
562
+ revision: Optional[Union[str, Version]] = None,
563
+ download_config: Optional[DownloadConfig] = None,
564
+ download_mode: Optional[DownloadMode] = None,
565
+ force_local_path: Optional[str] = None,
566
+ dynamic_modules_path: Optional[str] = None,
567
+ **download_kwargs,
568
+ ) -> ImportableModule:
569
+ """
570
+ Download/extract/cache a metric module.
571
+
572
+ Metrics codes are cached inside the the dynamic modules cache to allow easy import (avoid ugly sys.path tweaks).
573
+
574
+ Args:
575
+
576
+ path (str): Path or name of the metric script.
577
+
578
+ - if ``path`` is a local metric script or a directory containing a local metric script (if the script has the same name as the directory):
579
+ -> load the module from the metric script
580
+ e.g. ``'./metrics/accuracy'`` or ``'./metrics/accuracy/accuracy.py'``.
581
+ - if ``path`` is a metric on the Hugging Face Hub (ex: `glue`, `squad`)
582
+ -> load the module from the metric script in the github repository at huggingface/datasets
583
+ e.g. ``'accuracy'`` or ``'rouge'``.
584
+
585
+ revision (Optional ``Union[str, datasets.Version]``):
586
+ If specified, the module will be loaded from the datasets repository at this version.
587
+ By default:
588
+ - it is set to the local version of the lib.
589
+ - it will also try to load it from the master branch if it's not available at the local version of the lib.
590
+ Specifying a version that is different from your local version of the lib might cause compatibility issues.
591
+ download_config (:class:`DownloadConfig`, optional): Specific download configuration parameters.
592
+ download_mode (:class:`DownloadMode`, default ``REUSE_DATASET_IF_EXISTS``): Download/generate mode.
593
+ force_local_path (Optional str): Optional path to a local path to download and prepare the script to.
594
+ Used to inspect or modify the script folder.
595
+ dynamic_modules_path (Optional str, defaults to HF_MODULES_CACHE / "datasets_modules", i.e. ~/.cache/huggingface/modules/datasets_modules):
596
+ Optional path to the directory in which the dynamic modules are saved. It must have been initialized with :obj:`init_dynamic_modules`.
597
+ By default the datasets and metrics are stored inside the `datasets_modules` module.
598
+ download_kwargs: optional attributes for DownloadConfig() which will override the attributes in download_config if supplied.
599
+
600
+ Returns:
601
+ ImportableModule
602
+ """
603
+ if download_config is None:
604
+ download_config = DownloadConfig(**download_kwargs)
605
+ download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
606
+ download_config.extract_compressed_file = True
607
+ download_config.force_extract = True
608
+
609
+ filename = list(filter(lambda x: x, path.replace(os.sep, "/").split("/")))[-1]
610
+ if not filename.endswith(".py"):
611
+ filename = filename + ".py"
612
+ combined_path = os.path.join(path, filename)
613
+ # Try locally
614
+ if path.endswith(filename):
615
+ if os.path.isfile(path):
616
+ return LocalEvaluationModuleFactory(
617
+ path, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path
618
+ ).get_module()
619
+ else:
620
+ raise FileNotFoundError(f"Couldn't find a metric script at {relative_to_absolute_path(path)}")
621
+ elif os.path.isfile(combined_path):
622
+ return LocalEvaluationModuleFactory(
623
+ combined_path, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path
624
+ ).get_module()
625
+ elif is_relative_path(path) and path.count("/") <= 1 and not force_local_path:
626
+ try:
627
+ # load a canonical evaluation module from hub
628
+ if path.count("/") == 0:
629
+ # if no type provided look through all possible modules
630
+ if module_type is None:
631
+ for current_type in ["metric", "comparison", "measurement"]:
632
+ try:
633
+ return HubEvaluationModuleFactory(
634
+ f"evaluate-{current_type}/{path}",
635
+ revision=revision,
636
+ download_config=download_config,
637
+ download_mode=download_mode,
638
+ dynamic_modules_path=dynamic_modules_path,
639
+ ).get_module()
640
+ except ConnectionError:
641
+ pass
642
+ raise FileNotFoundError
643
+ # if module_type provided load specific module_type
644
+ else:
645
+ return HubEvaluationModuleFactory(
646
+ f"evaluate-{module_type}/{path}",
647
+ revision=revision,
648
+ download_config=download_config,
649
+ download_mode=download_mode,
650
+ dynamic_modules_path=dynamic_modules_path,
651
+ ).get_module()
652
+ # load community evaluation module from hub
653
+ elif path.count("/") == 1:
654
+ return HubEvaluationModuleFactory(
655
+ path,
656
+ revision=revision,
657
+ download_config=download_config,
658
+ download_mode=download_mode,
659
+ dynamic_modules_path=dynamic_modules_path,
660
+ ).get_module()
661
+ except Exception as e1: # noqa: all the attempts failed, before raising the error we should check if the module is already cached.
662
+ # if it's a canonical module we need to check if it's any of the types
663
+ if path.count("/") == 0:
664
+ for current_type in ["metric", "comparison", "measurement"]:
665
+ try:
666
+ return CachedEvaluationModuleFactory(
667
+ f"evaluate-{current_type}--{path}", dynamic_modules_path=dynamic_modules_path
668
+ ).get_module()
669
+ except Exception as e2: # noqa: if it's not in the cache, then it doesn't exist.
670
+ pass
671
+ # if it's a community module we just need to check on path
672
+ elif path.count("/") == 1:
673
+ try:
674
+ return CachedEvaluationModuleFactory(
675
+ path.replace("/", "--"), dynamic_modules_path=dynamic_modules_path
676
+ ).get_module()
677
+ except Exception as e2: # noqa: if it's not in the cache, then it doesn't exist.
678
+ pass
679
+ if not isinstance(e1, (ConnectionError, FileNotFoundError)):
680
+ raise e1 from None
681
+ raise FileNotFoundError(
682
+ f"Couldn't find a module script at {relative_to_absolute_path(combined_path)}. "
683
+ f"Module '{path}' doesn't exist on the Hugging Face Hub either."
684
+ ) from None
685
+ else:
686
+ raise FileNotFoundError(f"Couldn't find a module script at {relative_to_absolute_path(combined_path)}.")
687
+
688
+
689
+ def load(
690
+ path: str,
691
+ config_name: Optional[str] = None,
692
+ module_type: Optional[str] = None,
693
+ process_id: int = 0,
694
+ num_process: int = 1,
695
+ cache_dir: Optional[str] = None,
696
+ experiment_id: Optional[str] = None,
697
+ keep_in_memory: bool = False,
698
+ download_config: Optional[DownloadConfig] = None,
699
+ download_mode: Optional[DownloadMode] = None,
700
+ revision: Optional[Union[str, Version]] = None,
701
+ **init_kwargs,
702
+ ) -> EvaluationModule:
703
+ """Load a [`~evaluate.EvaluationModule`].
704
+
705
+ Args:
706
+
707
+ path (`str`):
708
+ Path to the evaluation processing script with the evaluation builder. Can be either:
709
+ - a local path to processing script or the directory containing the script (if the script has the same name as the directory),
710
+ e.g. `'./metrics/rouge'` or `'./metrics/rouge/rouge.py'`
711
+ - a evaluation module identifier on the HuggingFace evaluate repo e.g. `'rouge'` or `'bleu'` that are in either `'metrics/'`,
712
+ `'comparisons/'`, or `'measurements/'` depending on the provided `module_type`
713
+ config_name (`str`, *optional*):
714
+ Selecting a configuration for the metric (e.g. the GLUE metric has a configuration for each subset).
715
+ module_type (`str`, default `'metric'`):
716
+ Type of evaluation module, can be one of `'metric'`, `'comparison'`, or `'measurement'`.
717
+ process_id (`int`, *optional*):
718
+ For distributed evaluation: id of the process.
719
+ num_process (`int`, *optional*):
720
+ For distributed evaluation: total number of processes.
721
+ cache_dir (`str`, *optional*):
722
+ Path to store the temporary predictions and references (default to `~/.cache/huggingface/evaluate/`).
723
+ experiment_id (`str`):
724
+ A specific experiment id. This is used if several distributed evaluations share the same file system.
725
+ This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
726
+ keep_in_memory (`bool`):
727
+ Whether to store the temporary results in memory (defaults to `False`).
728
+ download_config ([`~evaluate.DownloadConfig`], *optional*):
729
+ Specific download configuration parameters.
730
+ download_mode ([`DownloadMode`], defaults to `REUSE_DATASET_IF_EXISTS`):
731
+ Download/generate mode.
732
+ revision (`Union[str, evaluate.Version]`, *optional*):
733
+ If specified, the module will be loaded from the datasets repository
734
+ at this version. By default it is set to the local version of the lib. Specifying a version that is different from
735
+ your local version of the lib might cause compatibility issues.
736
+
737
+ Returns:
738
+ [`evaluate.EvaluationModule`]
739
+
740
+ Example:
741
+
742
+ ```py
743
+ >>> from evaluate import load
744
+ >>> accuracy = evaluate.load("accuracy")
745
+ ```
746
+ """
747
+ download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
748
+ evaluation_module = evaluation_module_factory(
749
+ path, module_type=module_type, revision=revision, download_config=download_config, download_mode=download_mode
750
+ )
751
+ evaluation_cls = import_main_class(evaluation_module.module_path)
752
+ evaluation_instance = evaluation_cls(
753
+ config_name=config_name,
754
+ process_id=process_id,
755
+ num_process=num_process,
756
+ cache_dir=cache_dir,
757
+ keep_in_memory=keep_in_memory,
758
+ experiment_id=experiment_id,
759
+ hash=evaluation_module.hash,
760
+ **init_kwargs,
761
+ )
762
+
763
+ if module_type and module_type != evaluation_instance.module_type:
764
+ raise TypeError(
765
+ f"No module of module type '{module_type}' not found for '{path}' locally, or on the Hugging Face Hub. Found module of module type '{evaluation_instance.module_type}' instead."
766
+ )
767
+
768
+ # Download and prepare resources for the metric
769
+ evaluation_instance.download_and_prepare(download_config=download_config)
770
+
771
+ return evaluation_instance
venv/lib/python3.10/site-packages/evaluate/module.py ADDED
@@ -0,0 +1,1029 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Lint as: python3
16
+ """ EvaluationModule base class."""
17
+ import collections
18
+ import itertools
19
+ import os
20
+ import types
21
+ import uuid
22
+ from typing import Any, Dict, List, Optional, Tuple, Union
23
+
24
+ import numpy as np
25
+ import pyarrow as pa
26
+ from datasets import DatasetInfo, DownloadConfig, DownloadManager
27
+ from datasets.arrow_dataset import Dataset
28
+ from datasets.arrow_reader import ArrowReader
29
+ from datasets.arrow_writer import ArrowWriter
30
+ from datasets.features import Features, Sequence, Value
31
+ from datasets.features.features import _check_non_null_non_empty_recursive
32
+ from datasets.utils.filelock import BaseFileLock, FileLock, Timeout
33
+ from datasets.utils.py_utils import copyfunc, temp_seed, zip_dict
34
+
35
+ from . import config
36
+ from .info import EvaluationModuleInfo
37
+ from .naming import camelcase_to_snakecase
38
+ from .utils.logging import get_logger
39
+
40
+
41
+ logger = get_logger(__name__)
42
+
43
+
44
+ class FileFreeLock(BaseFileLock):
45
+ """Thread lock until a file **cannot** be locked"""
46
+
47
+ def __init__(self, lock_file, *args, **kwargs):
48
+ self.filelock = FileLock(lock_file)
49
+ super().__init__(lock_file, *args, **kwargs)
50
+
51
+ def _acquire(self):
52
+ try:
53
+ self.filelock.acquire(timeout=0.01, poll_intervall=0.02) # Try to lock once
54
+ except Timeout:
55
+ # We couldn't acquire the lock, the file is locked!
56
+ self._lock_file_fd = self.filelock.lock_file
57
+ else:
58
+ # We were able to acquire the lock, the file is not yet locked!
59
+ self.filelock.release()
60
+ self._lock_file_fd = None
61
+
62
+ def _release(self):
63
+ self._lock_file_fd = None
64
+
65
+
66
+ # lists - summarize long lists similarly to NumPy
67
+ # arrays/tensors - let the frameworks control formatting
68
+ def summarize_if_long_list(obj):
69
+ if not type(obj) == list or len(obj) <= 6:
70
+ return f"{obj}"
71
+
72
+ def format_chunk(chunk):
73
+ return ", ".join(repr(x) for x in chunk)
74
+
75
+ return f"[{format_chunk(obj[:3])}, ..., {format_chunk(obj[-3:])}]"
76
+
77
+
78
+ class EvaluationModuleInfoMixin:
79
+ """This base class exposes some attributes of EvaluationModuleInfo
80
+ at the base level of the EvaluationModule for easy access.
81
+ """
82
+
83
+ def __init__(self, info: EvaluationModuleInfo):
84
+ self._module_info = info
85
+
86
+ @property
87
+ def info(self):
88
+ """:class:`evaluate.EvaluationModuleInfo` object containing all the metadata in the evaluation module."""
89
+ return self._module_info
90
+
91
+ @property
92
+ def name(self) -> str:
93
+ return self._module_info.module_name
94
+
95
+ @property
96
+ def experiment_id(self) -> Optional[str]:
97
+ return self._module_info.experiment_id
98
+
99
+ @property
100
+ def description(self) -> str:
101
+ return self._module_info.description
102
+
103
+ @property
104
+ def citation(self) -> str:
105
+ return self._module_info.citation
106
+
107
+ @property
108
+ def features(self) -> Features:
109
+ return self._module_info.features
110
+
111
+ @property
112
+ def inputs_description(self) -> str:
113
+ return self._module_info.inputs_description
114
+
115
+ @property
116
+ def homepage(self) -> Optional[str]:
117
+ return self._module_info.homepage
118
+
119
+ @property
120
+ def license(self) -> str:
121
+ return self._module_info.license
122
+
123
+ @property
124
+ def codebase_urls(self) -> Optional[List[str]]:
125
+ return self._module_info.codebase_urls
126
+
127
+ @property
128
+ def reference_urls(self) -> Optional[List[str]]:
129
+ return self._module_info.reference_urls
130
+
131
+ @property
132
+ def streamable(self) -> bool:
133
+ return self._module_info.streamable
134
+
135
+ @property
136
+ def format(self) -> Optional[str]:
137
+ return self._module_info.format
138
+
139
+ @property
140
+ def module_type(self) -> str:
141
+ return self._module_info.module_type
142
+
143
+
144
+ class EvaluationModule(EvaluationModuleInfoMixin):
145
+ """A `EvaluationModule` is the base class and common API for metrics, comparisons, and measurements.
146
+
147
+ Args:
148
+ config_name (`str`):
149
+ This is used to define a hash specific to a module computation script and prevents the module's data
150
+ to be overridden when the module loading script is modified.
151
+ keep_in_memory (`bool`):
152
+ Keep all predictions and references in memory. Not possible in distributed settings.
153
+ cache_dir (`str`):
154
+ Path to a directory in which temporary prediction/references data will be stored.
155
+ The data directory should be located on a shared file-system in distributed setups.
156
+ num_process (`int`):
157
+ Specify the total number of nodes in a distributed settings.
158
+ This is useful to compute module in distributed setups (in particular non-additive modules like F1).
159
+ process_id (`int`):
160
+ Specify the id of the current process in a distributed setup (between 0 and num_process-1)
161
+ This is useful to compute module in distributed setups (in particular non-additive metrics like F1).
162
+ seed (`int`, optional):
163
+ If specified, this will temporarily set numpy's random seed when [`~evaluate.EvaluationModule.compute`] is run.
164
+ experiment_id (`str`):
165
+ A specific experiment id. This is used if several distributed evaluations share the same file system.
166
+ This is useful to compute module in distributed setups (in particular non-additive metrics like F1).
167
+ hash (`str`):
168
+ Used to identify the evaluation module according to the hashed file contents.
169
+ max_concurrent_cache_files (`int`):
170
+ Max number of concurrent module cache files (default `10000`).
171
+ timeout (`Union[int, float]`):
172
+ Timeout in second for distributed setting synchronization.
173
+ """
174
+
175
+ def __init__(
176
+ self,
177
+ config_name: Optional[str] = None,
178
+ keep_in_memory: bool = False,
179
+ cache_dir: Optional[str] = None,
180
+ num_process: int = 1,
181
+ process_id: int = 0,
182
+ seed: Optional[int] = None,
183
+ experiment_id: Optional[str] = None,
184
+ hash: str = None,
185
+ max_concurrent_cache_files: int = 10000,
186
+ timeout: Union[int, float] = 100,
187
+ **kwargs,
188
+ ):
189
+ # prepare info
190
+ self.config_name = config_name or "default"
191
+ info = self._info()
192
+ info.module_name = camelcase_to_snakecase(self.__class__.__name__)
193
+ info.config_name = self.config_name
194
+ info.experiment_id = experiment_id or "default_experiment"
195
+ EvaluationModuleInfoMixin.__init__(self, info) # For easy access on low level
196
+
197
+ # Safety checks on num_process and process_id
198
+ if not isinstance(process_id, int) or process_id < 0:
199
+ raise ValueError("'process_id' should be a number greater than 0")
200
+ if not isinstance(num_process, int) or num_process <= process_id:
201
+ raise ValueError("'num_process' should be a number greater than process_id")
202
+ if keep_in_memory and num_process != 1:
203
+ raise ValueError("Using 'keep_in_memory' is not possible in distributed setting (num_process > 1).")
204
+
205
+ self.num_process = num_process
206
+ self.process_id = process_id
207
+ self.max_concurrent_cache_files = max_concurrent_cache_files
208
+
209
+ self.keep_in_memory = keep_in_memory
210
+ self._data_dir_root = os.path.expanduser(cache_dir or config.HF_METRICS_CACHE)
211
+ self.data_dir = self._build_data_dir()
212
+ if seed is None:
213
+ _, seed, pos, *_ = np.random.get_state()
214
+ self.seed: int = seed[pos] if pos < 624 else seed[0]
215
+ else:
216
+ self.seed: int = seed
217
+ self.timeout: Union[int, float] = timeout
218
+
219
+ # Update 'compute' and 'add' docstring
220
+ # methods need to be copied otherwise it changes the docstrings of every instance
221
+ self.compute = types.MethodType(copyfunc(self.compute), self)
222
+ self.add_batch = types.MethodType(copyfunc(self.add_batch), self)
223
+ self.add = types.MethodType(copyfunc(self.add), self)
224
+ self.compute.__func__.__doc__ += self.info.inputs_description
225
+ self.add_batch.__func__.__doc__ += self.info.inputs_description
226
+ self.add.__func__.__doc__ += self.info.inputs_description
227
+
228
+ # self.arrow_schema = pa.schema(field for field in self.info.features.type)
229
+ self.selected_feature_format = None
230
+ self.buf_writer = None
231
+ self.writer = None
232
+ self.writer_batch_size = None
233
+ self.data = None
234
+
235
+ # This is the cache file we store our predictions/references in
236
+ # Keep it None for now so we can (cloud)pickle the object
237
+ self.cache_file_name = None
238
+ self.filelock = None
239
+ self.rendez_vous_lock = None
240
+
241
+ # This is all the cache files on which we have a lock when we are in a distributed setting
242
+ self.file_paths = None
243
+ self.filelocks = None
244
+
245
+ # This fingerprints the evaluation module according to the hashed contents of the module code
246
+ self._hash = hash
247
+
248
+ def __len__(self):
249
+ """Return the number of examples (predictions or predictions/references pair)
250
+ currently stored in the evaluation module's cache.
251
+ """
252
+ return 0 if self.writer is None else len(self.writer)
253
+
254
+ def __repr__(self):
255
+ return (
256
+ f'EvaluationModule(name: "{self.name}", module_type: "{self.module_type}", '
257
+ f'features: {self.features}, usage: """{self.inputs_description}""", '
258
+ f"stored examples: {len(self)})"
259
+ )
260
+
261
+ def _build_data_dir(self):
262
+ """Path of this evaluation module in cache_dir:
263
+ Will be:
264
+ self._data_dir_root/self.name/self.config_name/self.hash (if not none)/
265
+ If any of these element is missing or if ``with_version=False`` the corresponding subfolders are dropped.
266
+ """
267
+ builder_data_dir = self._data_dir_root
268
+ builder_data_dir = os.path.join(builder_data_dir, self.name, self.config_name)
269
+ os.makedirs(builder_data_dir, exist_ok=True)
270
+ return builder_data_dir
271
+
272
+ def _create_cache_file(self, timeout=1) -> Tuple[str, FileLock]:
273
+ """Create a new cache file. If the default cache file is used, we generated a new hash."""
274
+ file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{self.process_id}.arrow")
275
+ filelock = None
276
+ for i in range(self.max_concurrent_cache_files):
277
+ filelock = FileLock(file_path + ".lock")
278
+ try:
279
+ filelock.acquire(timeout=timeout)
280
+ except Timeout:
281
+ # If we have reached the max number of attempts or we are not allow to find a free name (distributed setup)
282
+ # We raise an error
283
+ if self.num_process != 1:
284
+ raise ValueError(
285
+ f"Error in _create_cache_file: another evaluation module instance is already using the local cache file at {file_path}. "
286
+ f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision "
287
+ f"between distributed evaluation module instances."
288
+ ) from None
289
+ if i == self.max_concurrent_cache_files - 1:
290
+ raise ValueError(
291
+ f"Cannot acquire lock, too many evaluation module instance are operating concurrently on this file system."
292
+ f"You should set a larger value of max_concurrent_cache_files when creating the evaluation module "
293
+ f"(current value is {self.max_concurrent_cache_files})."
294
+ ) from None
295
+ # In other cases (allow to find new file name + not yet at max num of attempts) we can try to sample a new hashing name.
296
+ file_uuid = str(uuid.uuid4())
297
+ file_path = os.path.join(
298
+ self.data_dir, f"{self.experiment_id}-{file_uuid}-{self.num_process}-{self.process_id}.arrow"
299
+ )
300
+ else:
301
+ break
302
+
303
+ return file_path, filelock
304
+
305
+ def _get_all_cache_files(self) -> Tuple[List[str], List[FileLock]]:
306
+ """Get a lock on all the cache files in a distributed setup.
307
+ We wait for timeout second to let all the distributed node finish their tasks (default is 100 seconds).
308
+ """
309
+ if self.num_process == 1:
310
+ if self.cache_file_name is None:
311
+ raise ValueError(
312
+ "Evaluation module cache file doesn't exist. Please make sure that you call `add` or `add_batch` "
313
+ "at least once before calling `compute`."
314
+ )
315
+ file_paths = [self.cache_file_name]
316
+ else:
317
+ file_paths = [
318
+ os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow")
319
+ for process_id in range(self.num_process)
320
+ ]
321
+
322
+ # Let's acquire a lock on each process files to be sure they are finished writing
323
+ filelocks = []
324
+ for process_id, file_path in enumerate(file_paths):
325
+ if process_id == 0: # process 0 already has its lock file
326
+ filelocks.append(self.filelock)
327
+ else:
328
+ filelock = FileLock(file_path + ".lock")
329
+ try:
330
+ filelock.acquire(timeout=self.timeout)
331
+ except Timeout:
332
+ raise ValueError(
333
+ f"Cannot acquire lock on cached file {file_path} for process {process_id}."
334
+ ) from None
335
+ else:
336
+ filelocks.append(filelock)
337
+
338
+ return file_paths, filelocks
339
+
340
+ def _check_all_processes_locks(self):
341
+ expected_lock_file_names = [
342
+ os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow.lock")
343
+ for process_id in range(self.num_process)
344
+ ]
345
+ for expected_lock_file_name in expected_lock_file_names:
346
+ nofilelock = FileFreeLock(expected_lock_file_name)
347
+ try:
348
+ nofilelock.acquire(timeout=self.timeout)
349
+ except Timeout:
350
+ raise ValueError(
351
+ f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist."
352
+ ) from None
353
+ else:
354
+ nofilelock.release()
355
+
356
+ def _check_rendez_vous(self):
357
+ expected_lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-0.arrow.lock")
358
+ nofilelock = FileFreeLock(expected_lock_file_name)
359
+ try:
360
+ nofilelock.acquire(timeout=self.timeout)
361
+ except Timeout:
362
+ raise ValueError(
363
+ f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist."
364
+ ) from None
365
+ else:
366
+ nofilelock.release()
367
+ lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock")
368
+ rendez_vous_lock = FileLock(lock_file_name)
369
+ try:
370
+ rendez_vous_lock.acquire(timeout=self.timeout)
371
+ except Timeout:
372
+ raise ValueError(f"Couldn't acquire lock on {lock_file_name} from process {self.process_id}.") from None
373
+ else:
374
+ rendez_vous_lock.release()
375
+
376
+ def _finalize(self):
377
+ """Close all the writing process and load/gather the data
378
+ from all the nodes if main node or all_process is True.
379
+ """
380
+ if self.writer is not None:
381
+ self.writer.finalize()
382
+ self.writer = None
383
+ # release the locks of the processes > 0 so that process 0 can lock them to read + delete the data
384
+ if self.filelock is not None and self.process_id > 0:
385
+ self.filelock.release()
386
+
387
+ if self.keep_in_memory:
388
+ # Read the predictions and references
389
+ reader = ArrowReader(path=self.data_dir, info=DatasetInfo(features=self.selected_feature_format))
390
+ self.data = Dataset.from_buffer(self.buf_writer.getvalue())
391
+
392
+ elif self.process_id == 0:
393
+ # Let's acquire a lock on each node files to be sure they are finished writing
394
+ file_paths, filelocks = self._get_all_cache_files()
395
+
396
+ # Read the predictions and references
397
+ try:
398
+ reader = ArrowReader(path="", info=DatasetInfo(features=self.selected_feature_format))
399
+ self.data = Dataset(**reader.read_files([{"filename": f} for f in file_paths]))
400
+ except FileNotFoundError:
401
+ raise ValueError(
402
+ "Error in finalize: another evaluation module instance is already using the local cache file. "
403
+ "Please specify an experiment_id to avoid collision between distributed evaluation module instances."
404
+ ) from None
405
+
406
+ # Store file paths and locks and we will release/delete them after the computation.
407
+ self.file_paths = file_paths
408
+ self.filelocks = filelocks
409
+
410
+ def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]:
411
+ """Compute the evaluation module.
412
+
413
+ Usage of positional arguments is not allowed to prevent mistakes.
414
+
415
+ Args:
416
+ predictions (`list/array/tensor`, *optional*):
417
+ Predictions.
418
+ references (`list/array/tensor`, *optional*):
419
+ References.
420
+ **kwargs (optional):
421
+ Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`]
422
+ method (see details in the docstring).
423
+
424
+ Return:
425
+ `dict` or `None`
426
+
427
+ - Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`).
428
+ - `None` if the evaluation module is not run on the main process (`process_id != 0`).
429
+
430
+ ```py
431
+ >>> import evaluate
432
+ >>> accuracy = evaluate.load("accuracy")
433
+ >>> accuracy.compute(predictions=[0, 1, 1, 0], references=[0, 1, 0, 1])
434
+ ```
435
+ """
436
+ all_kwargs = {"predictions": predictions, "references": references, **kwargs}
437
+ if predictions is None and references is None:
438
+ missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs}
439
+ all_kwargs.update(missing_kwargs)
440
+ else:
441
+ missing_inputs = [k for k in self._feature_names() if k not in all_kwargs]
442
+ if missing_inputs:
443
+ raise ValueError(
444
+ f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}"
445
+ )
446
+ inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()}
447
+ compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()}
448
+
449
+ if any(v is not None for v in inputs.values()):
450
+ self.add_batch(**inputs)
451
+ self._finalize()
452
+
453
+ self.cache_file_name = None
454
+ self.filelock = None
455
+ self.selected_feature_format = None
456
+
457
+ if self.process_id == 0:
458
+ self.data.set_format(type=self.info.format)
459
+
460
+ inputs = {input_name: self.data[input_name] for input_name in self._feature_names()}
461
+ with temp_seed(self.seed):
462
+ output = self._compute(**inputs, **compute_kwargs)
463
+
464
+ if self.buf_writer is not None:
465
+ self.buf_writer = None
466
+ del self.data
467
+ self.data = None
468
+ else:
469
+ # Release locks and delete all the cache files. Process 0 is released last.
470
+ for filelock, file_path in reversed(list(zip(self.filelocks, self.file_paths))):
471
+ logger.info(f"Removing {file_path}")
472
+ del self.data
473
+ self.data = None
474
+ del self.writer
475
+ self.writer = None
476
+ os.remove(file_path)
477
+ filelock.release()
478
+
479
+ return output
480
+ else:
481
+ return None
482
+
483
+ def add_batch(self, *, predictions=None, references=None, **kwargs):
484
+ """Add a batch of predictions and references for the evaluation module's stack.
485
+
486
+ Args:
487
+ predictions (`list/array/tensor`, *optional*):
488
+ Predictions.
489
+ references (`list/array/tensor`, *optional*):
490
+ References.
491
+
492
+ Example:
493
+
494
+ ```py
495
+ >>> import evaluate
496
+ >>> accuracy = evaluate.load("accuracy")
497
+ >>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]):
498
+ ... accuracy.add_batch(references=refs, predictions=preds)
499
+ ```
500
+ """
501
+ bad_inputs = [input_name for input_name in kwargs if input_name not in self._feature_names()]
502
+ if bad_inputs:
503
+ raise ValueError(
504
+ f"Bad inputs for evaluation module: {bad_inputs}. All required inputs are {list(self._feature_names())}"
505
+ )
506
+ batch = {"predictions": predictions, "references": references, **kwargs}
507
+ batch = {input_name: batch[input_name] for input_name in self._feature_names()}
508
+ if self.writer is None:
509
+ self.selected_feature_format = self._infer_feature_from_batch(batch)
510
+ self._init_writer()
511
+ try:
512
+ for key, column in batch.items():
513
+ if len(column) > 0:
514
+ self._enforce_nested_string_type(self.selected_feature_format[key], column[0])
515
+ batch = self.selected_feature_format.encode_batch(batch)
516
+ self.writer.write_batch(batch)
517
+ except (pa.ArrowInvalid, TypeError):
518
+ if any(len(batch[c]) != len(next(iter(batch.values()))) for c in batch):
519
+ col0 = next(iter(batch))
520
+ bad_col = [c for c in batch if len(batch[c]) != len(batch[col0])][0]
521
+ error_msg = (
522
+ f"Mismatch in the number of {col0} ({len(batch[col0])}) and {bad_col} ({len(batch[bad_col])})"
523
+ )
524
+ elif set(self.selected_feature_format) != {"references", "predictions"}:
525
+ error_msg = (
526
+ f"Module inputs don't match the expected format.\n"
527
+ f"Expected format: {self.selected_feature_format },\n"
528
+ )
529
+ error_msg_inputs = ",\n".join(
530
+ f"Input {input_name}: {summarize_if_long_list(batch[input_name])}"
531
+ for input_name in self.selected_feature_format
532
+ )
533
+ error_msg += error_msg_inputs
534
+ else:
535
+ error_msg = (
536
+ f"Predictions and/or references don't match the expected format.\n"
537
+ f"Expected format: {self.selected_feature_format },\n"
538
+ f"Input predictions: {summarize_if_long_list(predictions)},\n"
539
+ f"Input references: {summarize_if_long_list(references)}"
540
+ )
541
+ raise ValueError(error_msg) from None
542
+
543
+ def add(self, *, prediction=None, reference=None, **kwargs):
544
+ """Add one prediction and reference for the evaluation module's stack.
545
+
546
+ Args:
547
+ prediction (`list/array/tensor`, *optional*):
548
+ Predictions.
549
+ reference (`list/array/tensor`, *optional*):
550
+ References.
551
+
552
+ Example:
553
+
554
+ ```py
555
+ >>> import evaluate
556
+ >>> accuracy = evaluate.load("accuracy")
557
+ >>> accuracy.add(references=[0,1], predictions=[1,0])
558
+ ```
559
+ """
560
+ bad_inputs = [input_name for input_name in kwargs if input_name not in self._feature_names()]
561
+ if bad_inputs:
562
+ raise ValueError(
563
+ f"Bad inputs for evaluation module: {bad_inputs}. All required inputs are {list(self._feature_names())}"
564
+ )
565
+ example = {"predictions": prediction, "references": reference, **kwargs}
566
+ example = {input_name: example[input_name] for input_name in self._feature_names()}
567
+ if self.writer is None:
568
+ self.selected_feature_format = self._infer_feature_from_example(example)
569
+ self._init_writer()
570
+ try:
571
+ self._enforce_nested_string_type(self.selected_feature_format, example)
572
+ example = self.selected_feature_format.encode_example(example)
573
+ self.writer.write(example)
574
+ except (pa.ArrowInvalid, TypeError):
575
+ error_msg = (
576
+ f"Evaluation module inputs don't match the expected format.\n"
577
+ f"Expected format: {self.selected_feature_format},\n"
578
+ )
579
+ error_msg_inputs = ",\n".join(
580
+ f"Input {input_name}: {summarize_if_long_list(example[input_name])}"
581
+ for input_name in self.selected_feature_format
582
+ )
583
+ error_msg += error_msg_inputs
584
+ raise ValueError(error_msg) from None
585
+
586
+ def _infer_feature_from_batch(self, batch):
587
+ if isinstance(self.features, Features):
588
+ return self.features
589
+ else:
590
+ example = dict([(k, v[0]) for k, v in batch.items()])
591
+ return self._infer_feature_from_example(example)
592
+
593
+ def _infer_feature_from_example(self, example):
594
+ if isinstance(self.features, Features):
595
+ return self.features
596
+ else:
597
+ for features in self.features:
598
+ try:
599
+ self._enforce_nested_string_type(features, example)
600
+ features.encode_example(example)
601
+ return features
602
+ except (ValueError, TypeError):
603
+ continue
604
+ feature_strings = "\n".join([f"Feature option {i}: {feature}" for i, feature in enumerate(self.features)])
605
+ error_msg = (
606
+ f"Predictions and/or references don't match the expected format.\n"
607
+ f"Expected format:\n{feature_strings},\n"
608
+ f"Input predictions: {summarize_if_long_list(example['predictions'])},\n"
609
+ f"Input references: {summarize_if_long_list(example['references'])}"
610
+ )
611
+ raise ValueError(error_msg) from None
612
+
613
+ def _feature_names(self):
614
+ if isinstance(self.features, list):
615
+ feature_names = list(self.features[0].keys())
616
+ else:
617
+ feature_names = list(self.features.keys())
618
+ return feature_names
619
+
620
+ def _init_writer(self, timeout=1):
621
+ if self.num_process > 1:
622
+ if self.process_id == 0:
623
+ file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock")
624
+ self.rendez_vous_lock = FileLock(file_path)
625
+ try:
626
+ self.rendez_vous_lock.acquire(timeout=timeout)
627
+ except TimeoutError:
628
+ raise ValueError(
629
+ f"Error in _init_writer: another evalution module instance is already using the local cache file at {file_path}. "
630
+ f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision "
631
+ f"between distributed evaluation module instances."
632
+ ) from None
633
+
634
+ if self.keep_in_memory:
635
+ self.buf_writer = pa.BufferOutputStream()
636
+ self.writer = ArrowWriter(
637
+ features=self.selected_feature_format, stream=self.buf_writer, writer_batch_size=self.writer_batch_size
638
+ )
639
+ else:
640
+ self.buf_writer = None
641
+
642
+ # Get cache file name and lock it
643
+ if self.cache_file_name is None or self.filelock is None:
644
+ cache_file_name, filelock = self._create_cache_file() # get ready
645
+ self.cache_file_name = cache_file_name
646
+ self.filelock = filelock
647
+
648
+ self.writer = ArrowWriter(
649
+ features=self.selected_feature_format,
650
+ path=self.cache_file_name,
651
+ writer_batch_size=self.writer_batch_size,
652
+ )
653
+ # Setup rendez-vous here if
654
+ if self.num_process > 1:
655
+ if self.process_id == 0:
656
+ self._check_all_processes_locks() # wait for everyone to be ready
657
+ self.rendez_vous_lock.release() # let everyone go
658
+ else:
659
+ self._check_rendez_vous() # wait for master to be ready and to let everyone go
660
+
661
+ def _info(self) -> EvaluationModuleInfo:
662
+ """Construct the EvaluationModuleInfo object. See `EvaluationModuleInfo` for details.
663
+
664
+ Warning: This function is only called once and the result is cached for all
665
+ following .info() calls.
666
+
667
+ Returns:
668
+ info: (EvaluationModuleInfo) The EvaluationModule information
669
+ """
670
+ raise NotImplementedError
671
+
672
+ def download_and_prepare(
673
+ self,
674
+ download_config: Optional[DownloadConfig] = None,
675
+ dl_manager: Optional[DownloadManager] = None,
676
+ ):
677
+ """Downloads and prepares evaluation module for reading.
678
+
679
+ Args:
680
+ download_config ([`DownloadConfig`], *optional*):
681
+ Specific download configuration parameters.
682
+ dl_manager ([`DownloadManager`], *optional*):
683
+ Specific download manager to use.
684
+
685
+ Example:
686
+
687
+ ```py
688
+ >>> import evaluate
689
+ ```
690
+ """
691
+ if dl_manager is None:
692
+ if download_config is None:
693
+ download_config = DownloadConfig()
694
+ download_config.cache_dir = os.path.join(self.data_dir, "downloads")
695
+ download_config.force_download = False
696
+
697
+ dl_manager = DownloadManager(
698
+ dataset_name=self.name, download_config=download_config, data_dir=self.data_dir
699
+ )
700
+
701
+ self._download_and_prepare(dl_manager)
702
+
703
+ def _download_and_prepare(self, dl_manager):
704
+ """Downloads and prepares resources for the evaluation module.
705
+
706
+ This is the internal implementation to overwrite called when user calls
707
+ `download_and_prepare`. It should download all required resources for the evaluation module.
708
+
709
+ Args:
710
+ dl_manager (:class:`DownloadManager`): `DownloadManager` used to download and cache data.
711
+ """
712
+ return None
713
+
714
+ def _compute(self, *, predictions=None, references=None, **kwargs) -> Dict[str, Any]:
715
+ """This method defines the common API for all the evaluation module in the library"""
716
+ raise NotImplementedError
717
+
718
+ def __del__(self):
719
+ if hasattr(self, "filelock") and self.filelock is not None:
720
+ self.filelock.release()
721
+ if hasattr(self, "rendez_vous_lock") and self.rendez_vous_lock is not None:
722
+ self.rendez_vous_lock.release()
723
+ if hasattr(self, "writer"): # in case it was already deleted
724
+ del self.writer
725
+ if hasattr(self, "data"): # in case it was already deleted
726
+ del self.data
727
+
728
+ def _enforce_nested_string_type(self, schema, obj):
729
+ """
730
+ Recursively checks if there is any Value feature of type string and throws TypeError if corresponding object is not a string.
731
+ Since any Python object can be cast to string this avoids implicitly casting wrong input types (e.g. lists) to string without error.
732
+ """
733
+ # Nested structures: we allow dict, list, tuples, sequences
734
+ if isinstance(schema, dict):
735
+ return [self._enforce_nested_string_type(sub_schema, o) for k, (sub_schema, o) in zip_dict(schema, obj)]
736
+
737
+ elif isinstance(schema, (list, tuple)):
738
+ sub_schema = schema[0]
739
+ return [self._enforce_nested_string_type(sub_schema, o) for o in obj]
740
+ elif isinstance(schema, Sequence):
741
+ # We allow to reverse list of dict => dict of list for compatiblity with tfds
742
+ if isinstance(schema.feature, dict):
743
+ if isinstance(obj, (list, tuple)):
744
+ # obj is a list of dict
745
+ for k, dict_tuples in zip_dict(schema.feature, *obj):
746
+ for sub_obj in dict_tuples[1:]:
747
+ if _check_non_null_non_empty_recursive(sub_obj, dict_tuples[0]):
748
+ self._enforce_nested_string_type(dict_tuples[0], sub_obj)
749
+ break
750
+ return None
751
+ else:
752
+ # obj is a single dict
753
+ for k, (sub_schema, sub_objs) in zip_dict(schema.feature, obj):
754
+ for sub_obj in sub_objs:
755
+ if _check_non_null_non_empty_recursive(sub_obj, sub_schema):
756
+ self._enforce_nested_string_type(sub_schema, sub_obj)
757
+ break
758
+ return None
759
+ # schema.feature is not a dict
760
+ if isinstance(obj, str): # don't interpret a string as a list
761
+ raise ValueError(f"Got a string but expected a list instead: '{obj}'")
762
+ if obj is None:
763
+ return None
764
+ else:
765
+ if len(obj) > 0:
766
+ for first_elmt in obj:
767
+ if _check_non_null_non_empty_recursive(first_elmt, schema.feature):
768
+ break
769
+ if not isinstance(first_elmt, list):
770
+ return self._enforce_nested_string_type(schema.feature, first_elmt)
771
+
772
+ elif isinstance(schema, Value):
773
+ if pa.types.is_string(schema.pa_type) and not isinstance(obj, str):
774
+ raise TypeError(f"Expected type str but got {type(obj)}.")
775
+
776
+
777
+ class Metric(EvaluationModule):
778
+ """A Metric is the base class and common API for all metrics.
779
+
780
+ Args:
781
+ config_name (`str`):
782
+ This is used to define a hash specific to a metric computation script and prevents the metric's data
783
+ to be overridden when the metric loading script is modified.
784
+ keep_in_memory (`bool`):
785
+ Keep all predictions and references in memory. Not possible in distributed settings.
786
+ cache_dir (`str`):
787
+ Path to a directory in which temporary prediction/references data will be stored.
788
+ The data directory should be located on a shared file-system in distributed setups.
789
+ num_process (`int`):
790
+ Specify the total number of nodes in a distributed settings.
791
+ This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
792
+ process_id (`int`):
793
+ Specify the id of the current process in a distributed setup (between 0 and num_process-1)
794
+ This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
795
+ seed (`int`, *optional*):
796
+ If specified, this will temporarily set numpy's random seed when [`~evaluate.Metric.compute`] is run.
797
+ experiment_id (`str`):
798
+ A specific experiment id. This is used if several distributed evaluations share the same file system.
799
+ This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
800
+ max_concurrent_cache_files (`int`):
801
+ Max number of concurrent metric cache files (default `10000`).
802
+ timeout (`Union[int, float]`):
803
+ Timeout in second for distributed setting synchronization.
804
+ """
805
+
806
+
807
+ class Comparison(EvaluationModule):
808
+ """A Comparison is the base class and common API for all comparisons.
809
+
810
+ Args:
811
+ config_name (`str`):
812
+ This is used to define a hash specific to a comparison computation script and prevents the comparison's data
813
+ to be overridden when the comparison loading script is modified.
814
+ keep_in_memory (`bool`):
815
+ Keep all predictions and references in memory. Not possible in distributed settings.
816
+ cache_dir (`str`):
817
+ Path to a directory in which temporary prediction/references data will be stored.
818
+ The data directory should be located on a shared file-system in distributed setups.
819
+ num_process (`int`):
820
+ Specify the total number of nodes in a distributed settings.
821
+ This is useful to compute comparisons in distributed setups (in particular non-additive comparisons).
822
+ process_id (`int`):
823
+ Specify the id of the current process in a distributed setup (between 0 and num_process-1)
824
+ This is useful to compute comparisons in distributed setups (in particular non-additive comparisons).
825
+ seed (`int`, *optional*):
826
+ If specified, this will temporarily set numpy's random seed when [`~evaluate.Comparison.compute`] is run.
827
+ experiment_id (`str`):
828
+ A specific experiment id. This is used if several distributed evaluations share the same file system.
829
+ This is useful to compute comparisons in distributed setups (in particular non-additive comparisons).
830
+ max_concurrent_cache_files (`int`):
831
+ Max number of concurrent comparison cache files (default `10000`).
832
+ timeout (`Union[int, float]`):
833
+ Timeout in second for distributed setting synchronization.
834
+ """
835
+
836
+
837
+ class Measurement(EvaluationModule):
838
+ """A Measurement is the base class and common API for all measurements.
839
+
840
+ Args:
841
+ config_name (`str`):
842
+ This is used to define a hash specific to a measurement computation script and prevents the measurement's data
843
+ to be overridden when the measurement loading script is modified.
844
+ keep_in_memory (`bool`):
845
+ Keep all predictions and references in memory. Not possible in distributed settings.
846
+ cache_dir (`str`):
847
+ Path to a directory in which temporary prediction/references data will be stored.
848
+ The data directory should be located on a shared file-system in distributed setups.
849
+ num_process (`int`):
850
+ Specify the total number of nodes in a distributed settings.
851
+ This is useful to compute measurements in distributed setups (in particular non-additive measurements).
852
+ process_id (`int`):
853
+ Specify the id of the current process in a distributed setup (between 0 and num_process-1)
854
+ This is useful to compute measurements in distributed setups (in particular non-additive measurements).
855
+ seed (`int`, *optional*):
856
+ If specified, this will temporarily set numpy's random seed when [`~evaluate.Measurement.compute`] is run.
857
+ experiment_id (`str`):
858
+ A specific experiment id. This is used if several distributed evaluations share the same file system.
859
+ This is useful to compute measurements in distributed setups (in particular non-additive measurements).
860
+ max_concurrent_cache_files (`int`):
861
+ Max number of concurrent measurement cache files (default `10000`).
862
+ timeout (`Union[int, float]`):
863
+ Timeout in second for distributed setting synchronization.
864
+ """
865
+
866
+
867
+ class CombinedEvaluations:
868
+ def __init__(self, evaluation_modules, force_prefix=False):
869
+ from .loading import load # avoid circular imports
870
+
871
+ self.evaluation_module_names = None
872
+ if isinstance(evaluation_modules, list):
873
+ self.evaluation_modules = evaluation_modules
874
+ elif isinstance(evaluation_modules, dict):
875
+ self.evaluation_modules = list(evaluation_modules.values())
876
+ self.evaluation_module_names = list(evaluation_modules.keys())
877
+ loaded_modules = []
878
+
879
+ for module in self.evaluation_modules:
880
+ if isinstance(module, str):
881
+ module = load(module)
882
+ loaded_modules.append(module)
883
+ self.evaluation_modules = loaded_modules
884
+
885
+ if self.evaluation_module_names is None:
886
+ self.evaluation_module_names = [module.name for module in self.evaluation_modules]
887
+
888
+ self.force_prefix = force_prefix
889
+
890
+ def add(self, prediction=None, reference=None, **kwargs):
891
+ """Add one prediction and reference for each evaluation module's stack.
892
+
893
+ Args:
894
+ predictions (`list/array/tensor`, *optional*):
895
+ Predictions.
896
+ references (`list/array/tensor`, *optional*):
897
+ References.
898
+
899
+ Example:
900
+
901
+ ```py
902
+ >>> import evaluate
903
+ >>> accuracy = evaluate.load("accuracy")
904
+ >>> f1 = evaluate.load("f1")
905
+ >>> clf_metrics = combine(["accuracy", "f1"])
906
+ >>> for ref, pred in zip([0,1,0,1], [1,0,0,1]):
907
+ ... clf_metrics.add(references=ref, predictions=pred)
908
+ ```
909
+ """
910
+ for evaluation_module in self.evaluation_modules:
911
+ batch = {"predictions": prediction, "references": reference, **kwargs}
912
+ batch = {input_name: batch[input_name] for input_name in evaluation_module._feature_names()}
913
+ evaluation_module.add(**batch)
914
+
915
+ def add_batch(self, predictions=None, references=None, **kwargs):
916
+ """Add a batch of predictions and references for each evaluation module's stack.
917
+
918
+ Args:
919
+ predictions (`list/array/tensor`, *optional*):
920
+ Predictions.
921
+ references (`list/array/tensor`, *optional*):
922
+ References.
923
+
924
+ Example:
925
+ ```py
926
+ >>> import evaluate
927
+ >>> accuracy = evaluate.load("accuracy")
928
+ >>> f1 = evaluate.load("f1")
929
+ >>> clf_metrics = combine(["accuracy", "f1"])
930
+ >>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]):
931
+ ... clf_metrics.add(references=refs, predictions=preds)
932
+ ```
933
+ """
934
+ for evaluation_module in self.evaluation_modules:
935
+ batch = {"predictions": predictions, "references": references, **kwargs}
936
+ batch = {input_name: batch[input_name] for input_name in evaluation_module._feature_names()}
937
+ evaluation_module.add_batch(**batch)
938
+
939
+ def compute(self, predictions=None, references=None, **kwargs):
940
+ """Compute each evaluation module.
941
+
942
+ Usage of positional arguments is not allowed to prevent mistakes.
943
+
944
+ Args:
945
+ predictions (`list/array/tensor`, *optional*):
946
+ Predictions.
947
+ references (`list/array/tensor`, *optional*):
948
+ References.
949
+ **kwargs (*optional*):
950
+ Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`]
951
+ method (see details in the docstring).
952
+
953
+ Return:
954
+ `dict` or `None`
955
+
956
+ - Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`).
957
+ - `None` if the evaluation module is not run on the main process (`process_id != 0`).
958
+
959
+ Example:
960
+
961
+ ```py
962
+ >>> import evaluate
963
+ >>> accuracy = evaluate.load("accuracy")
964
+ >>> f1 = evaluate.load("f1")
965
+ >>> clf_metrics = combine(["accuracy", "f1"])
966
+ >>> clf_metrics.compute(predictions=[0,1], references=[1,1])
967
+ {'accuracy': 0.5, 'f1': 0.6666666666666666}
968
+ ```
969
+ """
970
+ results = []
971
+
972
+ for evaluation_module in self.evaluation_modules:
973
+ batch = {"predictions": predictions, "references": references, **kwargs}
974
+ results.append(evaluation_module.compute(**batch))
975
+
976
+ return self._merge_results(results)
977
+
978
+ def _merge_results(self, results):
979
+ merged_results = {}
980
+ results_keys = list(itertools.chain.from_iterable([r.keys() for r in results]))
981
+ duplicate_keys = {item for item, count in collections.Counter(results_keys).items() if count > 1}
982
+
983
+ duplicate_names = [
984
+ item for item, count in collections.Counter(self.evaluation_module_names).items() if count > 1
985
+ ]
986
+ duplicate_counter = {name: 0 for name in duplicate_names}
987
+
988
+ for module_name, result in zip(self.evaluation_module_names, results):
989
+ for k, v in result.items():
990
+ if k not in duplicate_keys and not self.force_prefix:
991
+ merged_results[f"{k}"] = v
992
+ elif module_name in duplicate_counter:
993
+ merged_results[f"{module_name}_{duplicate_counter[module_name]}_{k}"] = v
994
+ else:
995
+ merged_results[f"{module_name}_{k}"] = v
996
+
997
+ if module_name in duplicate_counter:
998
+ duplicate_counter[module_name] += 1
999
+
1000
+ return merged_results
1001
+
1002
+
1003
+ def combine(evaluations, force_prefix=False):
1004
+ """Combines several metrics, comparisons, or measurements into a single `CombinedEvaluations` object that
1005
+ can be used like a single evaluation module.
1006
+
1007
+ If two scores have the same name, then they are prefixed with their module names.
1008
+ And if two modules have the same name, please use a dictionary to give them different names, otherwise an integer id is appended to the prefix.
1009
+
1010
+ Args:
1011
+ evaluations (`Union[list, dict]`):
1012
+ A list or dictionary of evaluation modules. The modules can either be passed
1013
+ as strings or loaded `EvaluationModule`s. If a dictionary is passed its keys are the names used and the values the modules.
1014
+ The names are used as prefix in case there are name overlaps in the returned results of each module or if `force_prefix=True`.
1015
+ force_prefix (`bool`, *optional*, defaults to `False`):
1016
+ If `True` all scores from the modules are prefixed with their name. If
1017
+ a dictionary is passed the keys are used as name otherwise the module's name.
1018
+
1019
+ Examples:
1020
+
1021
+ ```py
1022
+ >>> import evaluate
1023
+ >>> accuracy = evaluate.load("accuracy")
1024
+ >>> f1 = evaluate.load("f1")
1025
+ >>> clf_metrics = combine(["accuracy", "f1"])
1026
+ ```
1027
+ """
1028
+
1029
+ return CombinedEvaluations(evaluations, force_prefix=force_prefix)
venv/lib/python3.10/site-packages/evaluate/naming.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Lint as: python3
16
+ """Utilities for file names."""
17
+
18
+ import itertools
19
+ import os
20
+ import re
21
+
22
+
23
+ _uppercase_uppercase_re = re.compile(r"([A-Z]+)([A-Z][a-z])")
24
+ _lowercase_uppercase_re = re.compile(r"([a-z\d])([A-Z])")
25
+
26
+ _single_underscore_re = re.compile(r"(?<!_)_(?!_)")
27
+ _multiple_underscores_re = re.compile(r"(_{2,})")
28
+
29
+ _split_re = r"^\w+(\.\w+)*$"
30
+
31
+
32
+ def camelcase_to_snakecase(name):
33
+ """Convert camel-case string to snake-case."""
34
+ name = _uppercase_uppercase_re.sub(r"\1_\2", name)
35
+ name = _lowercase_uppercase_re.sub(r"\1_\2", name)
36
+ return name.lower()
37
+
38
+
39
+ def snakecase_to_camelcase(name):
40
+ """Convert snake-case string to camel-case string."""
41
+ name = _single_underscore_re.split(name)
42
+ name = [_multiple_underscores_re.split(n) for n in name]
43
+ return "".join(n.capitalize() for n in itertools.chain.from_iterable(name) if n != "")
44
+
45
+
46
+ def filename_prefix_for_name(name):
47
+ if os.path.basename(name) != name:
48
+ raise ValueError(f"Should be a dataset name, not a path: {name}")
49
+ return camelcase_to_snakecase(name)
50
+
51
+
52
+ def filename_prefix_for_split(name, split):
53
+ if os.path.basename(name) != name:
54
+ raise ValueError(f"Should be a dataset name, not a path: {name}")
55
+ if not re.match(_split_re, split):
56
+ raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'.")
57
+ return f"{filename_prefix_for_name(name)}-{split}"
58
+
59
+
60
+ def filepattern_for_dataset_split(dataset_name, split, data_dir, filetype_suffix=None):
61
+ prefix = filename_prefix_for_split(dataset_name, split)
62
+ if filetype_suffix:
63
+ prefix += f".{filetype_suffix}"
64
+ filepath = os.path.join(data_dir, prefix)
65
+ return f"{filepath}*"
66
+
67
+
68
+ def filename_for_dataset_split(dataset_name, split, filetype_suffix=None):
69
+ prefix = filename_prefix_for_split(dataset_name, split)
70
+ if filetype_suffix:
71
+ prefix += f".{filetype_suffix}"
72
+ return prefix
73
+
74
+
75
+ def filepath_for_dataset_split(dataset_name, split, data_dir, filetype_suffix=None):
76
+ filename = filename_for_dataset_split(
77
+ dataset_name=dataset_name,
78
+ split=split,
79
+ filetype_suffix=filetype_suffix,
80
+ )
81
+ filepath = os.path.join(data_dir, filename)
82
+ return filepath
venv/lib/python3.10/site-packages/evaluate/saving.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import subprocess
4
+ import sys
5
+ from datetime import datetime
6
+ from pathlib import Path
7
+
8
+ from datasets.utils.filelock import FileLock
9
+
10
+ from . import __version__
11
+
12
+
13
+ def save(path_or_file, **data):
14
+ """
15
+ Saves results to a JSON file. Also saves system information such as current time, current commit
16
+ hash if inside a repository, and Python system information.
17
+
18
+ Args:
19
+ path_or_file (`str`):
20
+ Path or file to store the file. If only a folder is provided
21
+ the results file will be saved in the format `"result-%Y_%m_%d-%H_%M_%S.json"`.
22
+
23
+ Example:
24
+ ```py
25
+ >>> import evaluate
26
+ >>> result = {"bleu": 0.7}
27
+ >>> params = {"model": "gpt-2"}
28
+ >>> evaluate.save("./results/", **result, **params)
29
+ ```
30
+ """
31
+ current_time = datetime.now()
32
+
33
+ file_path = _setup_path(path_or_file, current_time)
34
+
35
+ data["_timestamp"] = current_time.isoformat()
36
+ data["_git_commit_hash"] = _git_commit_hash()
37
+ data["_evaluate_version"] = __version__
38
+ data["_python_version"] = sys.version
39
+ data["_interpreter_path"] = sys.executable
40
+
41
+ with FileLock(str(file_path) + ".lock"):
42
+ with open(file_path, "w") as f:
43
+ json.dump(data, f)
44
+
45
+ # cleanup lock file
46
+ try:
47
+ os.remove(str(file_path) + ".lock")
48
+ except FileNotFoundError:
49
+ pass
50
+
51
+ return file_path
52
+
53
+
54
+ def _setup_path(path_or_file, current_time):
55
+ path_or_file = Path(path_or_file)
56
+ is_file = len(path_or_file.suffix) > 0
57
+ if is_file:
58
+ folder = path_or_file.parent
59
+ file_name = path_or_file.name
60
+ else:
61
+ folder = path_or_file
62
+ file_name = "result-" + current_time.strftime("%Y_%m_%d-%H_%M_%S") + ".json"
63
+ folder.mkdir(parents=True, exist_ok=True)
64
+ return folder / file_name
65
+
66
+
67
+ def _git_commit_hash():
68
+ res = subprocess.run("git rev-parse --is-inside-work-tree".split(), cwd="./", stdout=subprocess.PIPE)
69
+ if res.stdout.decode().strip() == "true":
70
+ res = subprocess.run("git rev-parse HEAD".split(), cwd=os.getcwd(), stdout=subprocess.PIPE)
71
+ return res.stdout.decode().strip()
72
+ else:
73
+ return None
venv/lib/python3.10/site-packages/evaluate/utils/__init__.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # flake8: noqa
16
+ # Lint as: python3
17
+ """Util import."""
18
+
19
+ __all__ = [
20
+ "disable_progress_bar",
21
+ "enable_progress_bar",
22
+ "is_progress_bar_enabled",
23
+ "infer_gradio_input_types",
24
+ "json_to_string_type",
25
+ "parse_readme",
26
+ "parse_gradio_data",
27
+ "parse_test_cases",
28
+ "launch_gradio_widget",
29
+ ]
30
+
31
+ from .gradio import (
32
+ infer_gradio_input_types,
33
+ json_to_string_type,
34
+ launch_gradio_widget,
35
+ parse_gradio_data,
36
+ parse_readme,
37
+ parse_test_cases,
38
+ )
39
+ from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
venv/lib/python3.10/site-packages/evaluate/utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (587 Bytes). View file
 
venv/lib/python3.10/site-packages/evaluate/utils/__pycache__/file_utils.cpython-310.pyc ADDED
Binary file (17.8 kB). View file
 
venv/lib/python3.10/site-packages/evaluate/utils/__pycache__/gradio.cpython-310.pyc ADDED
Binary file (4.51 kB). View file
 
venv/lib/python3.10/site-packages/evaluate/utils/__pycache__/logging.cpython-310.pyc ADDED
Binary file (7.24 kB). View file
 
venv/lib/python3.10/site-packages/evaluate/utils/file_utils.py ADDED
@@ -0,0 +1,618 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Utilities for working with the local dataset cache.
3
+ This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
4
+ Copyright by the AllenNLP authors.
5
+ """
6
+
7
+ import copy
8
+ import io
9
+ import json
10
+ import os
11
+ import posixpath
12
+ import re
13
+ import shutil
14
+ import sys
15
+ import tempfile
16
+ import time
17
+ import urllib
18
+ from contextlib import closing, contextmanager
19
+ from functools import partial
20
+ from hashlib import sha256
21
+ from pathlib import Path
22
+ from typing import List, Optional, Type, TypeVar, Union
23
+ from urllib.parse import urljoin, urlparse
24
+
25
+ import requests
26
+ from datasets import DownloadConfig
27
+ from datasets.utils.extract import ExtractManager
28
+ from datasets.utils.filelock import FileLock
29
+
30
+ from .. import __version__, config
31
+ from . import logging
32
+
33
+
34
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
35
+
36
+ INCOMPLETE_SUFFIX = ".incomplete"
37
+
38
+ T = TypeVar("T", str, Path)
39
+
40
+
41
+ def init_hf_modules(hf_modules_cache: Optional[Union[Path, str]] = None) -> str:
42
+ """
43
+ Add hf_modules_cache to the python path.
44
+ By default hf_modules_cache='~/.cache/huggingface/modules'.
45
+ It can also be set with the environment variable HF_MODULES_CACHE.
46
+ This is used to add modules such as `datasets_modules`
47
+ """
48
+ hf_modules_cache = hf_modules_cache if hf_modules_cache is not None else config.HF_MODULES_CACHE
49
+ hf_modules_cache = str(hf_modules_cache)
50
+ if hf_modules_cache not in sys.path:
51
+ sys.path.append(hf_modules_cache)
52
+
53
+ os.makedirs(hf_modules_cache, exist_ok=True)
54
+ if not os.path.exists(os.path.join(hf_modules_cache, "__init__.py")):
55
+ with open(os.path.join(hf_modules_cache, "__init__.py"), "w"):
56
+ pass
57
+ return hf_modules_cache
58
+
59
+
60
+ def is_remote_url(url_or_filename: str) -> bool:
61
+ parsed = urlparse(url_or_filename)
62
+ return parsed.scheme in ("http", "https", "s3", "gs", "hdfs", "ftp")
63
+
64
+
65
+ def is_local_path(url_or_filename: str) -> bool:
66
+ # On unix the scheme of a local path is empty (for both absolute and relative),
67
+ # while on windows the scheme is the drive name (ex: "c") for absolute paths.
68
+ # for details on the windows behavior, see https://bugs.python.org/issue42215
69
+ return urlparse(url_or_filename).scheme == "" or os.path.ismount(urlparse(url_or_filename).scheme + ":/")
70
+
71
+
72
+ def is_relative_path(url_or_filename: str) -> bool:
73
+ return urlparse(url_or_filename).scheme == "" and not os.path.isabs(url_or_filename)
74
+
75
+
76
+ def relative_to_absolute_path(path: T) -> T:
77
+ """Convert relative path to absolute path."""
78
+ abs_path_str = os.path.abspath(os.path.expanduser(os.path.expandvars(str(path))))
79
+ return Path(abs_path_str) if isinstance(path, Path) else abs_path_str
80
+
81
+
82
+ def hf_bucket_url(identifier: str, filename: str, use_cdn=False, dataset=True) -> str:
83
+ if dataset:
84
+ endpoint = config.CLOUDFRONT_DATASETS_DISTRIB_PREFIX if use_cdn else config.S3_DATASETS_BUCKET_PREFIX
85
+ else:
86
+ endpoint = config.CLOUDFRONT_METRICS_DISTRIB_PREFIX if use_cdn else config.S3_METRICS_BUCKET_PREFIX
87
+ return "/".join((endpoint, identifier, filename))
88
+
89
+
90
+ def head_hf_s3(
91
+ identifier: str, filename: str, use_cdn=False, dataset=True, max_retries=0
92
+ ) -> Union[requests.Response, Exception]:
93
+ return http_head(
94
+ hf_bucket_url(identifier=identifier, filename=filename, use_cdn=use_cdn, dataset=dataset),
95
+ max_retries=max_retries,
96
+ )
97
+
98
+
99
+ def hf_hub_url(path: str, name: str, revision: Optional[str] = None) -> str:
100
+ revision = revision or config.HUB_DEFAULT_VERSION
101
+ return config.HUB_EVALUATE_URL.format(path=path, name=name, revision=revision)
102
+
103
+
104
+ def url_or_path_join(base_name: str, *pathnames: str) -> str:
105
+ if is_remote_url(base_name):
106
+ return posixpath.join(base_name, *(str(pathname).replace(os.sep, "/").lstrip("/") for pathname in pathnames))
107
+ else:
108
+ return Path(base_name, *pathnames).as_posix()
109
+
110
+
111
+ def url_or_path_parent(url_or_path: str) -> str:
112
+ if is_remote_url(url_or_path):
113
+ return url_or_path[: url_or_path.rindex("/")]
114
+ else:
115
+ return os.path.dirname(url_or_path)
116
+
117
+
118
+ def hash_url_to_filename(url, etag=None):
119
+ """
120
+ Convert `url` into a hashed filename in a repeatable way.
121
+ If `etag` is specified, append its hash to the url's, delimited
122
+ by a period.
123
+ If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name
124
+ so that TF 2.0 can identify it as a HDF5 file
125
+ (see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380)
126
+ """
127
+ url_bytes = url.encode("utf-8")
128
+ url_hash = sha256(url_bytes)
129
+ filename = url_hash.hexdigest()
130
+
131
+ if etag:
132
+ etag_bytes = etag.encode("utf-8")
133
+ etag_hash = sha256(etag_bytes)
134
+ filename += "." + etag_hash.hexdigest()
135
+
136
+ if url.endswith(".py"):
137
+ filename += ".py"
138
+
139
+ return filename
140
+
141
+
142
+ def cached_path(
143
+ url_or_filename,
144
+ download_config=None,
145
+ **download_kwargs,
146
+ ) -> str:
147
+ """
148
+ Given something that might be a URL (or might be a local path),
149
+ determine which. If it's a URL, download the file and cache it, and
150
+ return the path to the cached file. If it's already a local path,
151
+ make sure the file exists and then return the path.
152
+
153
+ Return:
154
+ Local path (string)
155
+
156
+ Raises:
157
+ FileNotFoundError: in case of non-recoverable file
158
+ (non-existent or no cache on disk)
159
+ ConnectionError: in case of unreachable url
160
+ and no cache on disk
161
+ ValueError: if it couldn't parse the url or filename correctly
162
+ requests.exceptions.ConnectionError: in case of internet connection issue
163
+ """
164
+ if download_config is None:
165
+ download_config = DownloadConfig(**download_kwargs)
166
+
167
+ cache_dir = download_config.cache_dir or config.DOWNLOADED_EVALUATE_PATH
168
+ if isinstance(cache_dir, Path):
169
+ cache_dir = str(cache_dir)
170
+ if isinstance(url_or_filename, Path):
171
+ url_or_filename = str(url_or_filename)
172
+
173
+ if is_remote_url(url_or_filename):
174
+ # URL, so get it from the cache (downloading if necessary)
175
+ output_path = get_from_cache(
176
+ url_or_filename,
177
+ cache_dir=cache_dir,
178
+ force_download=download_config.force_download,
179
+ proxies=download_config.proxies,
180
+ resume_download=download_config.resume_download,
181
+ user_agent=download_config.user_agent,
182
+ local_files_only=download_config.local_files_only,
183
+ use_etag=download_config.use_etag,
184
+ max_retries=download_config.max_retries,
185
+ use_auth_token=download_config.use_auth_token,
186
+ ignore_url_params=download_config.ignore_url_params,
187
+ download_desc=download_config.download_desc,
188
+ )
189
+ elif os.path.exists(url_or_filename):
190
+ # File, and it exists.
191
+ output_path = url_or_filename
192
+ elif is_local_path(url_or_filename):
193
+ # File, but it doesn't exist.
194
+ raise FileNotFoundError(f"Local file {url_or_filename} doesn't exist")
195
+ else:
196
+ # Something unknown
197
+ raise ValueError(f"unable to parse {url_or_filename} as a URL or as a local path")
198
+
199
+ if output_path is None:
200
+ return output_path
201
+
202
+ if download_config.extract_compressed_file:
203
+ output_path = ExtractManager(cache_dir=download_config.cache_dir).extract(
204
+ output_path, force_extract=download_config.force_extract
205
+ )
206
+
207
+ return output_path
208
+
209
+
210
+ def get_datasets_user_agent(user_agent: Optional[Union[str, dict]] = None) -> str:
211
+ ua = f"datasets/{__version__}; python/{config.PY_VERSION}"
212
+ ua += f"; pyarrow/{config.PYARROW_VERSION}"
213
+ if config.TORCH_AVAILABLE:
214
+ ua += f"; torch/{config.TORCH_VERSION}"
215
+ if config.TF_AVAILABLE:
216
+ ua += f"; tensorflow/{config.TF_VERSION}"
217
+ if config.JAX_AVAILABLE:
218
+ ua += f"; jax/{config.JAX_VERSION}"
219
+ if isinstance(user_agent, dict):
220
+ ua += f"; {'; '.join(f'{k}/{v}' for k, v in user_agent.items())}"
221
+ elif isinstance(user_agent, str):
222
+ ua += "; " + user_agent
223
+ return ua
224
+
225
+
226
+ def get_authentication_headers_for_url(url: str, use_auth_token: Optional[Union[str, bool]] = None) -> dict:
227
+ """Handle the HF authentication"""
228
+ headers = {}
229
+ if url.startswith(config.HF_ENDPOINT):
230
+ token = None
231
+ if isinstance(use_auth_token, str):
232
+ token = use_auth_token
233
+ elif bool(use_auth_token):
234
+ from huggingface_hub import hf_api
235
+
236
+ token = hf_api.HfFolder.get_token()
237
+ if token:
238
+ headers["authorization"] = f"Bearer {token}"
239
+ return headers
240
+
241
+
242
+ class OfflineModeIsEnabled(ConnectionError):
243
+ pass
244
+
245
+
246
+ def _raise_if_offline_mode_is_enabled(msg: Optional[str] = None):
247
+ """Raise an OfflineModeIsEnabled error (subclass of ConnectionError) if HF_EVALUATE_OFFLINE is True."""
248
+ if config.HF_EVALUATE_OFFLINE:
249
+ raise OfflineModeIsEnabled(
250
+ "Offline mode is enabled." if msg is None else "Offline mode is enabled. " + str(msg)
251
+ )
252
+
253
+
254
+ def _retry(
255
+ func,
256
+ func_args: Optional[tuple] = None,
257
+ func_kwargs: Optional[dict] = None,
258
+ exceptions: Type[requests.exceptions.RequestException] = requests.exceptions.RequestException,
259
+ status_codes: Optional[List[int]] = None,
260
+ max_retries: int = 0,
261
+ base_wait_time: float = 0.5,
262
+ max_wait_time: float = 2,
263
+ ):
264
+ func_args = func_args or ()
265
+ func_kwargs = func_kwargs or {}
266
+ retry = 0
267
+ while True:
268
+ try:
269
+ return func(*func_args, **func_kwargs)
270
+ except exceptions as err:
271
+ if retry >= max_retries or (status_codes and err.response.status_code not in status_codes):
272
+ raise err
273
+ else:
274
+ sleep_time = min(max_wait_time, base_wait_time * 2**retry) # Exponential backoff
275
+ logger.info(f"{func} timed out, retrying in {sleep_time}s... [{retry/max_retries}]")
276
+ time.sleep(sleep_time)
277
+ retry += 1
278
+
279
+
280
+ def _request_with_retry(
281
+ method: str,
282
+ url: str,
283
+ max_retries: int = 0,
284
+ base_wait_time: float = 0.5,
285
+ max_wait_time: float = 2,
286
+ timeout: float = 10.0,
287
+ **params,
288
+ ) -> requests.Response:
289
+ """Wrapper around requests to retry in case it fails with a ConnectTimeout, with exponential backoff.
290
+
291
+ Note that if the environment variable HF_EVALUATE_OFFLINE is set to 1, then a OfflineModeIsEnabled error is raised.
292
+
293
+ Args:
294
+ method (str): HTTP method, such as 'GET' or 'HEAD'.
295
+ url (str): The URL of the resource to fetch.
296
+ max_retries (int): Maximum number of retries, defaults to 0 (no retries).
297
+ base_wait_time (float): Duration (in seconds) to wait before retrying the first time. Wait time between
298
+ retries then grows exponentially, capped by max_wait_time.
299
+ max_wait_time (float): Maximum amount of time between two retries, in seconds.
300
+ **params: Params to pass to :obj:`requests.request`.
301
+ """
302
+ _raise_if_offline_mode_is_enabled(f"Tried to reach {url}")
303
+ tries, success = 0, False
304
+ while not success:
305
+ tries += 1
306
+ try:
307
+ response = requests.request(method=method.upper(), url=url, timeout=timeout, **params)
308
+ success = True
309
+ except (requests.exceptions.ConnectTimeout, requests.exceptions.ConnectionError) as err:
310
+ if tries > max_retries:
311
+ raise err
312
+ else:
313
+ logger.info(f"{method} request to {url} timed out, retrying... [{tries/max_retries}]")
314
+ sleep_time = min(max_wait_time, base_wait_time * 2 ** (tries - 1)) # Exponential backoff
315
+ time.sleep(sleep_time)
316
+ return response
317
+
318
+
319
+ def ftp_head(url, timeout=10.0):
320
+ _raise_if_offline_mode_is_enabled(f"Tried to reach {url}")
321
+ try:
322
+ with closing(urllib.request.urlopen(url, timeout=timeout)) as r:
323
+ r.read(1)
324
+ except Exception:
325
+ return False
326
+ return True
327
+
328
+
329
+ def ftp_get(url, temp_file, timeout=10.0):
330
+ _raise_if_offline_mode_is_enabled(f"Tried to reach {url}")
331
+ try:
332
+ logger.info(f"Getting through FTP {url} into {temp_file.name}")
333
+ with closing(urllib.request.urlopen(url, timeout=timeout)) as r:
334
+ shutil.copyfileobj(r, temp_file)
335
+ except urllib.error.URLError as e:
336
+ raise ConnectionError(e) from None
337
+
338
+
339
+ def http_get(
340
+ url, temp_file, proxies=None, resume_size=0, headers=None, cookies=None, timeout=100.0, max_retries=0, desc=None
341
+ ):
342
+ headers = copy.deepcopy(headers) or {}
343
+ headers["user-agent"] = get_datasets_user_agent(user_agent=headers.get("user-agent"))
344
+ if resume_size > 0:
345
+ headers["Range"] = f"bytes={resume_size:d}-"
346
+ response = _request_with_retry(
347
+ method="GET",
348
+ url=url,
349
+ stream=True,
350
+ proxies=proxies,
351
+ headers=headers,
352
+ cookies=cookies,
353
+ max_retries=max_retries,
354
+ timeout=timeout,
355
+ )
356
+ if response.status_code == 416: # Range not satisfiable
357
+ return
358
+ content_length = response.headers.get("Content-Length")
359
+ total = resume_size + int(content_length) if content_length is not None else None
360
+ with logging.tqdm(
361
+ unit="B",
362
+ unit_scale=True,
363
+ total=total,
364
+ initial=resume_size,
365
+ desc=desc or "Downloading",
366
+ disable=not logging.is_progress_bar_enabled(),
367
+ ) as progress:
368
+ for chunk in response.iter_content(chunk_size=1024):
369
+ progress.update(len(chunk))
370
+ temp_file.write(chunk)
371
+
372
+
373
+ def http_head(
374
+ url, proxies=None, headers=None, cookies=None, allow_redirects=True, timeout=10.0, max_retries=0
375
+ ) -> requests.Response:
376
+ headers = copy.deepcopy(headers) or {}
377
+ headers["user-agent"] = get_datasets_user_agent(user_agent=headers.get("user-agent"))
378
+ response = _request_with_retry(
379
+ method="HEAD",
380
+ url=url,
381
+ proxies=proxies,
382
+ headers=headers,
383
+ cookies=cookies,
384
+ allow_redirects=allow_redirects,
385
+ timeout=timeout,
386
+ max_retries=max_retries,
387
+ )
388
+ return response
389
+
390
+
391
+ def request_etag(url: str, use_auth_token: Optional[Union[str, bool]] = None) -> Optional[str]:
392
+ headers = get_authentication_headers_for_url(url, use_auth_token=use_auth_token)
393
+ response = http_head(url, headers=headers, max_retries=3)
394
+ response.raise_for_status()
395
+ etag = response.headers.get("ETag") if response.ok else None
396
+ return etag
397
+
398
+
399
+ def get_from_cache(
400
+ url,
401
+ cache_dir=None,
402
+ force_download=False,
403
+ proxies=None,
404
+ etag_timeout=100,
405
+ resume_download=False,
406
+ user_agent=None,
407
+ local_files_only=False,
408
+ use_etag=True,
409
+ max_retries=0,
410
+ use_auth_token=None,
411
+ ignore_url_params=False,
412
+ download_desc=None,
413
+ ) -> str:
414
+ """
415
+ Given a URL, look for the corresponding file in the local cache.
416
+ If it's not there, download it. Then return the path to the cached file.
417
+
418
+ Return:
419
+ Local path (string)
420
+
421
+ Raises:
422
+ FileNotFoundError: in case of non-recoverable file
423
+ (non-existent or no cache on disk)
424
+ ConnectionError: in case of unreachable url
425
+ and no cache on disk
426
+ """
427
+ if cache_dir is None:
428
+ cache_dir = config.HF_EVALUATE_CACHE
429
+ if isinstance(cache_dir, Path):
430
+ cache_dir = str(cache_dir)
431
+
432
+ os.makedirs(cache_dir, exist_ok=True)
433
+
434
+ if ignore_url_params:
435
+ # strip all query parameters and #fragments from the URL
436
+ cached_url = urljoin(url, urlparse(url).path)
437
+ else:
438
+ cached_url = url # additional parameters may be added to the given URL
439
+
440
+ connected = False
441
+ response = None
442
+ cookies = None
443
+ etag = None
444
+ head_error = None
445
+
446
+ # Try a first time to file the file on the local file system without eTag (None)
447
+ # if we don't ask for 'force_download' then we spare a request
448
+ filename = hash_url_to_filename(cached_url, etag=None)
449
+ cache_path = os.path.join(cache_dir, filename)
450
+
451
+ if os.path.exists(cache_path) and not force_download and not use_etag:
452
+ return cache_path
453
+
454
+ # Prepare headers for authentication
455
+ headers = get_authentication_headers_for_url(url, use_auth_token=use_auth_token)
456
+ if user_agent is not None:
457
+ headers["user-agent"] = user_agent
458
+
459
+ # We don't have the file locally or we need an eTag
460
+ if not local_files_only:
461
+ if url.startswith("ftp://"):
462
+ connected = ftp_head(url)
463
+ try:
464
+ response = http_head(
465
+ url,
466
+ allow_redirects=True,
467
+ proxies=proxies,
468
+ timeout=etag_timeout,
469
+ max_retries=max_retries,
470
+ headers=headers,
471
+ )
472
+ if response.status_code == 200: # ok
473
+ etag = response.headers.get("ETag") if use_etag else None
474
+ for k, v in response.cookies.items():
475
+ # In some edge cases, we need to get a confirmation token
476
+ if k.startswith("download_warning") and "drive.google.com" in url:
477
+ url += "&confirm=" + v
478
+ cookies = response.cookies
479
+ connected = True
480
+ # Fix Google Drive URL to avoid Virus scan warning
481
+ if "drive.google.com" in url and "confirm=" not in url:
482
+ url += "&confirm=t"
483
+ # In some edge cases, head request returns 400 but the connection is actually ok
484
+ elif (
485
+ (response.status_code == 400 and "firebasestorage.googleapis.com" in url)
486
+ or (response.status_code == 405 and "drive.google.com" in url)
487
+ or (
488
+ response.status_code == 403
489
+ and (
490
+ re.match(r"^https?://github.com/.*?/.*?/releases/download/.*?/.*?$", url)
491
+ or re.match(r"^https://.*?s3.*?amazonaws.com/.*?$", response.url)
492
+ )
493
+ )
494
+ or (response.status_code == 403 and "ndownloader.figstatic.com" in url)
495
+ ):
496
+ connected = True
497
+ logger.info(f"Couldn't get ETag version for url {url}")
498
+ elif response.status_code == 401 and config.HF_ENDPOINT in url and use_auth_token is None:
499
+ raise ConnectionError(
500
+ f"Unauthorized for URL {url}. Please use the parameter ``use_auth_token=True`` after logging in with ``huggingface-cli login``"
501
+ )
502
+ except (OSError, requests.exceptions.Timeout) as e:
503
+ # not connected
504
+ head_error = e
505
+ pass
506
+
507
+ # connected == False = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
508
+ # try to get the last downloaded one
509
+ if not connected:
510
+ if os.path.exists(cache_path) and not force_download:
511
+ return cache_path
512
+ if local_files_only:
513
+ raise FileNotFoundError(
514
+ f"Cannot find the requested files in the cached path at {cache_path} and outgoing traffic has been"
515
+ " disabled. To enable file online look-ups, set 'local_files_only' to False."
516
+ )
517
+ elif response is not None and response.status_code == 404:
518
+ raise FileNotFoundError(f"Couldn't find file at {url}")
519
+ _raise_if_offline_mode_is_enabled(f"Tried to reach {url}")
520
+ if head_error is not None:
521
+ raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})")
522
+ elif response is not None:
523
+ raise ConnectionError(f"Couldn't reach {url} (error {response.status_code})")
524
+ else:
525
+ raise ConnectionError(f"Couldn't reach {url}")
526
+
527
+ # Try a second time
528
+ filename = hash_url_to_filename(cached_url, etag)
529
+ cache_path = os.path.join(cache_dir, filename)
530
+
531
+ if os.path.exists(cache_path) and not force_download:
532
+ return cache_path
533
+
534
+ # From now on, connected is True.
535
+ # Prevent parallel downloads of the same file with a lock.
536
+ lock_path = cache_path + ".lock"
537
+ with FileLock(lock_path):
538
+
539
+ if resume_download:
540
+ incomplete_path = cache_path + ".incomplete"
541
+
542
+ @contextmanager
543
+ def _resumable_file_manager():
544
+ with open(incomplete_path, "a+b") as f:
545
+ yield f
546
+
547
+ temp_file_manager = _resumable_file_manager
548
+ if os.path.exists(incomplete_path):
549
+ resume_size = os.stat(incomplete_path).st_size
550
+ else:
551
+ resume_size = 0
552
+ else:
553
+ temp_file_manager = partial(tempfile.NamedTemporaryFile, dir=cache_dir, delete=False)
554
+ resume_size = 0
555
+
556
+ # Download to temporary file, then copy to cache dir once finished.
557
+ # Otherwise you get corrupt cache entries if the download gets interrupted.
558
+ with temp_file_manager() as temp_file:
559
+ logger.info(f"{url} not found in cache or force_download set to True, downloading to {temp_file.name}")
560
+
561
+ # GET file object
562
+ if url.startswith("ftp://"):
563
+ ftp_get(url, temp_file)
564
+ else:
565
+ http_get(
566
+ url,
567
+ temp_file,
568
+ proxies=proxies,
569
+ resume_size=resume_size,
570
+ headers=headers,
571
+ cookies=cookies,
572
+ max_retries=max_retries,
573
+ desc=download_desc,
574
+ )
575
+
576
+ logger.info(f"storing {url} in cache at {cache_path}")
577
+ shutil.move(temp_file.name, cache_path)
578
+
579
+ logger.info(f"creating metadata file for {cache_path}")
580
+ meta = {"url": url, "etag": etag}
581
+ meta_path = cache_path + ".json"
582
+ with open(meta_path, "w", encoding="utf-8") as meta_file:
583
+ json.dump(meta, meta_file)
584
+
585
+ return cache_path
586
+
587
+
588
+ def add_start_docstrings(*docstr):
589
+ def docstring_decorator(fn):
590
+ fn.__doc__ = "".join(docstr) + "\n\n" + (fn.__doc__ if fn.__doc__ is not None else "")
591
+ return fn
592
+
593
+ return docstring_decorator
594
+
595
+
596
+ def add_end_docstrings(*docstr):
597
+ def docstring_decorator(fn):
598
+ fn.__doc__ = (fn.__doc__ if fn.__doc__ is not None else "") + "\n\n" + "".join(docstr)
599
+ return fn
600
+
601
+ return docstring_decorator
602
+
603
+
604
+ def estimate_dataset_size(paths):
605
+ return sum(path.stat().st_size for path in paths)
606
+
607
+
608
+ def readline(f: io.RawIOBase):
609
+ # From: https://github.com/python/cpython/blob/d27e2f4d118e7a9909b6a3e5da06c5ff95806a85/Lib/_pyio.py#L525
610
+ res = bytearray()
611
+ while True:
612
+ b = f.read(1)
613
+ if not b:
614
+ break
615
+ res += b
616
+ if res.endswith(b"\n"):
617
+ break
618
+ return bytes(res)
venv/lib/python3.10/site-packages/evaluate/utils/gradio.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import re
4
+ import sys
5
+ from pathlib import Path
6
+
7
+ import numpy as np
8
+ from datasets import Value
9
+
10
+ from .logging import get_logger
11
+
12
+
13
+ logger = get_logger(__name__)
14
+
15
+ REGEX_YAML_BLOCK = re.compile(r"---[\n\r]+([\S\s]*?)[\n\r]+---[\n\r]")
16
+
17
+
18
+ def infer_gradio_input_types(feature_types):
19
+ """
20
+ Maps metric feature types to input types for gradio Dataframes:
21
+ - float/int -> numbers
22
+ - string -> strings
23
+ - any other -> json
24
+ Note that json is not a native gradio type but will be treated as string that
25
+ is then parsed as a json.
26
+ """
27
+ input_types = []
28
+ for feature_type in feature_types:
29
+ input_type = "json"
30
+ if isinstance(feature_type, Value):
31
+ if feature_type.dtype.startswith("int") or feature_type.dtype.startswith("float"):
32
+ input_type = "number"
33
+ elif feature_type.dtype == "string":
34
+ input_type = "str"
35
+ input_types.append(input_type)
36
+ return input_types
37
+
38
+
39
+ def json_to_string_type(input_types):
40
+ """Maps json input type to str."""
41
+ return ["str" if i == "json" else i for i in input_types]
42
+
43
+
44
+ def parse_readme(filepath):
45
+ """Parses a repositories README and removes"""
46
+ if not os.path.exists(filepath):
47
+ return "No README.md found."
48
+ with open(filepath, "r") as f:
49
+ text = f.read()
50
+ match = REGEX_YAML_BLOCK.search(text)
51
+ if match:
52
+ text = text[match.end() :]
53
+ return text
54
+
55
+
56
+ def parse_gradio_data(data, input_types):
57
+ """Parses data from gradio Dataframe for use in metric."""
58
+ metric_inputs = {}
59
+ data.replace("", np.nan, inplace=True)
60
+ data.dropna(inplace=True)
61
+ for feature_name, input_type in zip(data, input_types):
62
+ if input_type == "json":
63
+ metric_inputs[feature_name] = [json.loads(d) for d in data[feature_name].to_list()]
64
+ elif input_type == "str":
65
+ metric_inputs[feature_name] = [d.strip('"') for d in data[feature_name].to_list()]
66
+ else:
67
+ metric_inputs[feature_name] = data[feature_name]
68
+ return metric_inputs
69
+
70
+
71
+ def parse_test_cases(test_cases, feature_names, input_types):
72
+ """
73
+ Parses test cases to be used in gradio Dataframe. Note that an apostrophe is added
74
+ to strings to follow the format in json.
75
+ """
76
+ if len(test_cases) == 0:
77
+ return None
78
+ examples = []
79
+ for test_case in test_cases:
80
+ parsed_cases = []
81
+ for feat, input_type in zip(feature_names, input_types):
82
+ if input_type == "json":
83
+ parsed_cases.append([str(element) for element in test_case[feat]])
84
+ elif input_type == "str":
85
+ parsed_cases.append(['"' + element + '"' for element in test_case[feat]])
86
+ else:
87
+ parsed_cases.append(test_case[feat])
88
+ examples.append([list(i) for i in zip(*parsed_cases)])
89
+ return examples
90
+
91
+
92
+ def launch_gradio_widget(metric):
93
+ """Launches `metric` widget with Gradio."""
94
+
95
+ try:
96
+ import gradio as gr
97
+ except ImportError as error:
98
+ logger.error("To create a metric widget with Gradio make sure gradio is installed.")
99
+ raise error
100
+
101
+ local_path = Path(sys.path[0])
102
+ # if there are several input types, use first as default.
103
+ if isinstance(metric.features, list):
104
+ (feature_names, feature_types) = zip(*metric.features[0].items())
105
+ else:
106
+ (feature_names, feature_types) = zip(*metric.features.items())
107
+ gradio_input_types = infer_gradio_input_types(feature_types)
108
+
109
+ def compute(data):
110
+ return metric.compute(**parse_gradio_data(data, gradio_input_types))
111
+
112
+ iface = gr.Interface(
113
+ fn=compute,
114
+ inputs=gr.inputs.Dataframe(
115
+ headers=feature_names,
116
+ col_count=len(feature_names),
117
+ row_count=1,
118
+ datatype=json_to_string_type(gradio_input_types),
119
+ ),
120
+ outputs=gr.outputs.Textbox(label=metric.name),
121
+ description=(
122
+ metric.info.description + "\nIf this is a text-based metric, make sure to wrap you input in double quotes."
123
+ " Alternatively you can use a JSON-formatted list as input."
124
+ ),
125
+ title=f"Metric: {metric.name}",
126
+ article=parse_readme(local_path / "README.md"),
127
+ # TODO: load test cases and use them to populate examples
128
+ # examples=[parse_test_cases(test_cases, feature_names, gradio_input_types)]
129
+ )
130
+
131
+ iface.launch()
venv/lib/python3.10/site-packages/evaluate/utils/logging.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 Optuna, Hugging Face
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """ Logging utilities. """
15
+
16
+ import logging
17
+ import os
18
+ from logging import CRITICAL # NOQA
19
+ from logging import DEBUG # NOQA
20
+ from logging import ERROR # NOQA
21
+ from logging import FATAL # NOQA
22
+ from logging import INFO # NOQA
23
+ from logging import NOTSET # NOQA
24
+ from logging import WARN # NOQA
25
+ from logging import WARNING # NOQA
26
+ from typing import Optional
27
+
28
+ from tqdm import auto as tqdm_lib
29
+
30
+
31
+ log_levels = {
32
+ "debug": logging.DEBUG,
33
+ "info": logging.INFO,
34
+ "warning": logging.WARNING,
35
+ "error": logging.ERROR,
36
+ "critical": logging.CRITICAL,
37
+ }
38
+
39
+ _default_log_level = logging.WARNING
40
+
41
+
42
+ def _get_default_logging_level():
43
+ """
44
+ If EVALUATE_VERBOSITY env var is set to one of the valid choices return that as the new default level.
45
+ If it is not - fall back to ``_default_log_level``
46
+ """
47
+ env_level_str = os.getenv("EVALUATE_VERBOSITY", None)
48
+ if env_level_str:
49
+ if env_level_str in log_levels:
50
+ return log_levels[env_level_str]
51
+ else:
52
+ logging.getLogger().warning(
53
+ f"Unknown option EVALUATE_VERBOSITY={env_level_str}, "
54
+ f"has to be one of: { ', '.join(log_levels.keys()) }"
55
+ )
56
+ return _default_log_level
57
+
58
+
59
+ def _get_library_name() -> str:
60
+ return __name__.split(".")[0]
61
+
62
+
63
+ def _get_library_root_logger() -> logging.Logger:
64
+ return logging.getLogger(_get_library_name())
65
+
66
+
67
+ def _configure_library_root_logger() -> None:
68
+ # Apply our default configuration to the library root logger.
69
+ library_root_logger = _get_library_root_logger()
70
+ library_root_logger.setLevel(_get_default_logging_level())
71
+
72
+
73
+ def _reset_library_root_logger() -> None:
74
+ library_root_logger = _get_library_root_logger()
75
+ library_root_logger.setLevel(logging.NOTSET)
76
+
77
+
78
+ def get_logger(name: Optional[str] = None) -> logging.Logger:
79
+ """Return a logger with the specified name."""
80
+ if name is None:
81
+ name = _get_library_name()
82
+ return logging.getLogger(name)
83
+
84
+
85
+ def get_verbosity() -> int:
86
+ """Return the current level for the Hugging Face Evaluate library's root logger.
87
+ Returns:
88
+ Logging level, e.g., `evaluate.logging.DEBUG` and `evaluate.logging.INFO`.
89
+
90
+ <Tip>
91
+
92
+ Hugging Face Evaluate library has following logging levels:
93
+ - `evaluate.logging.CRITICAL`, `evaluate.logging.FATAL`
94
+ - `evaluate.logging.ERROR`
95
+ - `evaluate.logging.WARNING`, `evaluate.logging.WARN`
96
+ - `evaluate.logging.INFO`
97
+ - `evaluate.logging.DEBUG`
98
+
99
+ </Tip>
100
+ """
101
+ return _get_library_root_logger().getEffectiveLevel()
102
+
103
+
104
+ def set_verbosity(verbosity: int) -> None:
105
+ """Set the level for the Hugging Face Evaluate library's root logger.
106
+ Args:
107
+ verbosity:
108
+ Logging level, e.g., `evaluate.logging.DEBUG` and `evaluate.logging.INFO`.
109
+ """
110
+ _get_library_root_logger().setLevel(verbosity)
111
+
112
+
113
+ def set_verbosity_info():
114
+ """Set the level for the Hugging Face Evaluate library's root logger to `INFO`.
115
+
116
+ This will display most of the logging information and tqdm bars.
117
+
118
+ Shortcut to `evaluate.logging.set_verbosity(evaluate.logging.INFO)`.
119
+ """
120
+ return set_verbosity(INFO)
121
+
122
+
123
+ def set_verbosity_warning():
124
+ """Set the level for the Hugging Face Evaluate library's root logger to `WARNING`.
125
+
126
+ This will display only the warning and errors logging information and tqdm bars.
127
+
128
+ Shortcut to `evaluate.logging.set_verbosity(evaluate.logging.WARNING)`.
129
+ """
130
+ return set_verbosity(WARNING)
131
+
132
+
133
+ def set_verbosity_debug():
134
+ """Set the level for the Hugging Face Evaluate library's root logger to `DEBUG`.
135
+
136
+ This will display all the logging information and tqdm bars.
137
+
138
+ Shortcut to `evaluate.logging.set_verbosity(evaluate.logging.DEBUG)`.
139
+ """
140
+ return set_verbosity(DEBUG)
141
+
142
+
143
+ def set_verbosity_error():
144
+ """Set the level for the Hugging Face Evaluate library's root logger to `ERROR`.
145
+
146
+ This will display only the errors logging information and tqdm bars.
147
+
148
+ Shortcut to `evaluate.logging.set_verbosity(evaluate.logging.ERROR)`.
149
+ """
150
+ return set_verbosity(ERROR)
151
+
152
+
153
+ def disable_propagation() -> None:
154
+ """Disable propagation of the library log outputs.
155
+ Note that log propagation is disabled by default.
156
+ """
157
+ _get_library_root_logger().propagate = False
158
+
159
+
160
+ def enable_propagation() -> None:
161
+ """Enable propagation of the library log outputs.
162
+ Please disable the Hugging Face Evaluate library's default handler to prevent double logging if the root logger has
163
+ been configured.
164
+ """
165
+ _get_library_root_logger().propagate = True
166
+
167
+
168
+ # Configure the library root logger at the module level (singleton-like)
169
+ _configure_library_root_logger()
170
+
171
+
172
+ class EmptyTqdm:
173
+ """Dummy tqdm which doesn't do anything."""
174
+
175
+ def __init__(self, *args, **kwargs): # pylint: disable=unused-argument
176
+ self._iterator = args[0] if args else None
177
+
178
+ def __iter__(self):
179
+ return iter(self._iterator)
180
+
181
+ def __getattr__(self, _):
182
+ """Return empty function."""
183
+
184
+ def empty_fn(*args, **kwargs): # pylint: disable=unused-argument
185
+ return
186
+
187
+ return empty_fn
188
+
189
+ def __enter__(self):
190
+ return self
191
+
192
+ def __exit__(self, type_, value, traceback):
193
+ return
194
+
195
+
196
+ _tqdm_active = True
197
+
198
+
199
+ class _tqdm_cls:
200
+ def __call__(self, *args, **kwargs):
201
+ if _tqdm_active:
202
+ return tqdm_lib.tqdm(*args, **kwargs)
203
+ else:
204
+ return EmptyTqdm(*args, **kwargs)
205
+
206
+ def set_lock(self, *args, **kwargs):
207
+ self._lock = None
208
+ if _tqdm_active:
209
+ return tqdm_lib.tqdm.set_lock(*args, **kwargs)
210
+
211
+ def get_lock(self):
212
+ if _tqdm_active:
213
+ return tqdm_lib.tqdm.get_lock()
214
+
215
+
216
+ tqdm = _tqdm_cls()
217
+
218
+
219
+ def is_progress_bar_enabled() -> bool:
220
+ """Return a boolean indicating whether tqdm progress bars are enabled."""
221
+ global _tqdm_active
222
+ return bool(_tqdm_active)
223
+
224
+
225
+ def enable_progress_bar():
226
+ """Enable tqdm progress bar."""
227
+ global _tqdm_active
228
+ _tqdm_active = True
229
+
230
+
231
+ def disable_progress_bar():
232
+ """Enable tqdm progress bar."""
233
+ global _tqdm_active
234
+ _tqdm_active = False
venv/lib/python3.10/site-packages/evaluate/visualization.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import textwrap
2
+
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+ import pandas as pd
6
+
7
+
8
+ class ComplexRadar:
9
+ """Create a complex radar chart with different scales for each variable
10
+ Args:
11
+ fig (`matplotlib.figure`) : A matplotlib figure object to add the axes on.
12
+ variables (`list`) : a list of variables to. plot
13
+ ranges (`list` of `tuples`): A list of ranges (min, max) for each variable
14
+ n_ring_levels (`int): Number of ordinate or ring levels to draw.
15
+ Default: 5.
16
+ show_scales (`bool`): Indicates if we the ranges for each variable are plotted.
17
+ Default: True.
18
+ format_cfg (`dict`): A dictionary with formatting configurations.
19
+ Default: None.
20
+ Returns:
21
+ `matplotlib.figure.Figure`: a radar plot.
22
+ """
23
+
24
+ def __init__(self, fig, variables, ranges, n_ring_levels=5, show_scales=True, format_cfg=None):
25
+
26
+ self.format_cfg = format_cfg
27
+
28
+ # Calculate angles and create for each variable an axes
29
+ # Consider here the trick with having the first axes element twice (len+1)
30
+ angles = np.arange(0, 360, 360.0 / len(variables))
31
+ axes = [
32
+ fig.add_axes([0.1, 0.1, 0.9, 0.9], polar=True, label="axes{}".format(i), **self.format_cfg["axes_args"])
33
+ for i in range(len(variables) + 1)
34
+ ]
35
+
36
+ # Ensure clockwise rotation (first variable at the top N)
37
+ for ax in axes:
38
+ ax.set_theta_zero_location("N")
39
+ ax.set_theta_direction(-1)
40
+ ax.set_axisbelow(True)
41
+
42
+ # Writing the ranges on each axes
43
+ for i, ax in enumerate(axes):
44
+
45
+ # Here we do the trick by repeating the first iteration
46
+ j = 0 if (i == 0 or i == 1) else i - 1
47
+ ax.set_ylim(*ranges[j])
48
+ # Set endpoint to True if you like to have values right before the last circle
49
+ grid = np.linspace(*ranges[j], num=n_ring_levels, endpoint=self.format_cfg["incl_endpoint"])
50
+ gridlabel = ["{}".format(round(x, 2)) for x in grid]
51
+ gridlabel[0] = "" # remove values from the center
52
+ lines, labels = ax.set_rgrids(
53
+ grid, labels=gridlabel, angle=angles[j], **self.format_cfg["rgrid_tick_lbls_args"]
54
+ )
55
+
56
+ ax.set_ylim(*ranges[j])
57
+ ax.spines["polar"].set_visible(False)
58
+ ax.grid(visible=False)
59
+
60
+ if show_scales is False:
61
+ ax.set_yticklabels([])
62
+
63
+ # Set all axes except the first one unvisible
64
+ for ax in axes[1:]:
65
+ ax.patch.set_visible(False)
66
+ ax.xaxis.set_visible(False)
67
+
68
+ # Setting the attributes
69
+ self.angle = np.deg2rad(np.r_[angles, angles[0]])
70
+ self.ranges = ranges
71
+ self.ax = axes[0]
72
+ self.ax1 = axes[1]
73
+ self.plot_counter = 0
74
+
75
+ # Draw (inner) circles and lines
76
+ self.ax.yaxis.grid(**self.format_cfg["rad_ln_args"])
77
+ # Draw outer circle
78
+ self.ax.spines["polar"].set(**self.format_cfg["outer_ring"])
79
+ # Draw angle lines
80
+ self.ax.xaxis.grid(**self.format_cfg["angle_ln_args"])
81
+
82
+ # ax1 is the duplicate of axes[0] (self.ax)
83
+ # Remove everything from ax1 except the plot itself
84
+ self.ax1.axis("off")
85
+ self.ax1.set_zorder(9)
86
+
87
+ # Create the outer labels for each variable
88
+ l, text = self.ax.set_thetagrids(angles, labels=variables)
89
+
90
+ # Beautify them
91
+ labels = [t.get_text() for t in self.ax.get_xticklabels()]
92
+ labels = [
93
+ "\n".join(
94
+ textwrap.wrap(
95
+ label,
96
+ self.format_cfg["theta_tick_lbls_txt_wrap"],
97
+ break_long_words=self.format_cfg["theta_tick_lbls_brk_lng_wrds"],
98
+ )
99
+ )
100
+ for label in labels
101
+ ]
102
+ self.ax.set_xticklabels(labels, **self.format_cfg["theta_tick_lbls"])
103
+
104
+ for t, a in zip(self.ax.get_xticklabels(), angles):
105
+ if a == 0:
106
+ t.set_ha("center")
107
+ elif a > 0 and a < 180:
108
+ t.set_ha("left")
109
+ elif a == 180:
110
+ t.set_ha("center")
111
+ else:
112
+ t.set_ha("right")
113
+
114
+ self.ax.tick_params(axis="both", pad=self.format_cfg["theta_tick_lbls_pad"])
115
+
116
+ def _scale_data(self, data, ranges):
117
+ """Scales data[1:] to ranges[0]"""
118
+ for d, (y1, y2) in zip(data[1:], ranges[1:]):
119
+ assert (y1 <= d <= y2) or (y2 <= d <= y1)
120
+ x1, x2 = ranges[0]
121
+ d = data[0]
122
+ sdata = [d]
123
+ for d, (y1, y2) in zip(data[1:], ranges[1:]):
124
+ sdata.append((d - y1) / (y2 - y1) * (x2 - x1) + x1)
125
+ return sdata
126
+
127
+ def plot(self, data, *args, **kwargs):
128
+ """Plots a line"""
129
+ sdata = self._scale_data(data, self.ranges)
130
+ self.ax1.plot(self.angle, np.r_[sdata, sdata[0]], *args, **kwargs)
131
+ self.plot_counter = self.plot_counter + 1
132
+
133
+ def use_legend(self, *args, **kwargs):
134
+ """Shows a legend"""
135
+ self.ax1.legend(*args, **kwargs)
136
+
137
+
138
+ def radar_plot(data, model_names, invert_range=[], config=None, fig=None):
139
+ """Create a complex radar chart with different scales for each variable
140
+ Source: https://towardsdatascience.com/how-to-create-and-visualize-complex-radar-charts-f7764d0f3652
141
+
142
+ Args:
143
+ data (`List[dict]`): the results (list of metric + value pairs).
144
+ E.g. data = [{"accuracy": 0.9, "precision":0.8},{"accuracy": 0.7, "precision":0.6}]
145
+ names (`List[dict]`): model names.
146
+ E.g. names = ["model1", "model 2", ...]
147
+ invert_range (`List[dict]`, optional): the metrics to invert (in cases when smaller is better, e.g. speed)
148
+ E.g. invert_range=["latency_in_seconds"]
149
+ config (`dict`, optional) : a specification of the formatting configurations, namely:
150
+
151
+ - rad_ln_args (`dict`, default `{"visible": True}`): The visibility of the radial (circle) lines.
152
+
153
+ - outer_ring (`dict`, default `{"visible": True}`): The visibility of the outer ring.
154
+
155
+ - angle_ln_args (`dict`, default `{"visible": True}`): The visibility of the angle lines.
156
+
157
+ - rgrid_tick_lbls_args (`dict`, default `{"fontsize": 12}`): The font size of the tick labels on the scales.
158
+
159
+ - theta_tick_lbls (`dict`, default `{"fontsize": 12}`): The font size of the variable labels on the plot.
160
+
161
+ - theta_tick_lbls_pad (`int`, default `3`): The padding of the variable labels on the plot.
162
+
163
+ - theta_tick_lbls_brk_lng_wrds (`bool`, default `True` ): Whether long words in the label are broken up or not.
164
+
165
+ - theta_tick_lbls_txt_wrap (`int`, default `15`): Text wrap for tick labels
166
+
167
+ - incl_endpoint (`bool`, default `False`): Include value endpoints on calse
168
+
169
+ - marker (`str`, default `"o"`): the shape of the marker used in the radar plot.
170
+
171
+ - markersize (`int`, default `3`): the shape of the marker used in the radar plot.
172
+
173
+ - legend_loc (`str`, default `"upper right"`): the location of the legend in the radar plot. Must be one of: 'upper left', 'upper right', 'lower left', 'lower right'.
174
+
175
+ - bbox_to_anchor (`tuple`, default `(2, 1)`: anchor for the legend.
176
+ fig (`matplotlib.figure.Figure`, optional): figure used to plot the radar plot.
177
+
178
+ Returns:
179
+ `matplotlib.figure.Figure`
180
+ """
181
+ data = pd.DataFrame(data)
182
+ data.index = model_names
183
+ variables = data.keys()
184
+ if all(x in variables for x in invert_range) is False:
185
+ raise ValueError("All of the metrics in `invert_range` should be in the data provided.")
186
+ min_max_per_variable = data.describe().T[["min", "max"]]
187
+ min_max_per_variable["min"] = min_max_per_variable["min"] - 0.1 * (
188
+ min_max_per_variable["max"] - min_max_per_variable["min"]
189
+ )
190
+ min_max_per_variable["max"] = min_max_per_variable["max"] + 0.1 * (
191
+ min_max_per_variable["max"] - min_max_per_variable["min"]
192
+ )
193
+
194
+ ranges = list(min_max_per_variable.itertuples(index=False, name=None))
195
+ ranges = [
196
+ (max_value, min_value) if var in invert_range else (min_value, max_value)
197
+ for var, (min_value, max_value) in zip(variables, ranges)
198
+ ]
199
+ format_cfg = {
200
+ "axes_args": {},
201
+ "rad_ln_args": {"visible": True},
202
+ "outer_ring": {"visible": True},
203
+ "angle_ln_args": {"visible": True},
204
+ "rgrid_tick_lbls_args": {"fontsize": 12},
205
+ "theta_tick_lbls": {"fontsize": 12},
206
+ "theta_tick_lbls_pad": 3,
207
+ "theta_tick_lbls_brk_lng_wrds": True,
208
+ "theta_tick_lbls_txt_wrap": 15,
209
+ "incl_endpoint": False,
210
+ "marker": "o",
211
+ "markersize": 3,
212
+ "legend_loc": "upper right",
213
+ "bbox_to_anchor": (2, 1),
214
+ }
215
+ if config is not None:
216
+ format_cfg.update(config)
217
+ if fig is None:
218
+ fig = plt.figure()
219
+ radar = ComplexRadar(
220
+ fig,
221
+ variables,
222
+ ranges,
223
+ n_ring_levels=3,
224
+ show_scales=True,
225
+ format_cfg=format_cfg,
226
+ )
227
+ for g in zip(data.index):
228
+ radar.plot(data.loc[g].values, label=g, marker=format_cfg["marker"], markersize=format_cfg["markersize"])
229
+ radar.use_legend(**{"loc": format_cfg["legend_loc"], "bbox_to_anchor": format_cfg["bbox_to_anchor"]})
230
+ return fig
venv/lib/python3.10/site-packages/tqdm/__init__.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ._monitor import TMonitor, TqdmSynchronisationWarning
2
+ from ._tqdm_pandas import tqdm_pandas
3
+ from .cli import main # TODO: remove in v5.0.0
4
+ from .gui import tqdm as tqdm_gui # TODO: remove in v5.0.0
5
+ from .gui import trange as tgrange # TODO: remove in v5.0.0
6
+ from .std import (
7
+ TqdmDeprecationWarning, TqdmExperimentalWarning, TqdmKeyError, TqdmMonitorWarning,
8
+ TqdmTypeError, TqdmWarning, tqdm, trange)
9
+ from .version import __version__
10
+
11
+ __all__ = ['tqdm', 'tqdm_gui', 'trange', 'tgrange', 'tqdm_pandas',
12
+ 'tqdm_notebook', 'tnrange', 'main', 'TMonitor',
13
+ 'TqdmTypeError', 'TqdmKeyError',
14
+ 'TqdmWarning', 'TqdmDeprecationWarning',
15
+ 'TqdmExperimentalWarning',
16
+ 'TqdmMonitorWarning', 'TqdmSynchronisationWarning',
17
+ '__version__']
18
+
19
+
20
+ def tqdm_notebook(*args, **kwargs): # pragma: no cover
21
+ """See tqdm.notebook.tqdm for full documentation"""
22
+ from warnings import warn
23
+
24
+ from .notebook import tqdm as _tqdm_notebook
25
+ warn("This function will be removed in tqdm==5.0.0\n"
26
+ "Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`",
27
+ TqdmDeprecationWarning, stacklevel=2)
28
+ return _tqdm_notebook(*args, **kwargs)
29
+
30
+
31
+ def tnrange(*args, **kwargs): # pragma: no cover
32
+ """Shortcut for `tqdm.notebook.tqdm(range(*args), **kwargs)`."""
33
+ from warnings import warn
34
+
35
+ from .notebook import trange as _tnrange
36
+ warn("Please use `tqdm.notebook.trange` instead of `tqdm.tnrange`",
37
+ TqdmDeprecationWarning, stacklevel=2)
38
+ return _tnrange(*args, **kwargs)
venv/lib/python3.10/site-packages/tqdm/__main__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .cli import main
2
+
3
+ main()
venv/lib/python3.10/site-packages/tqdm/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.49 kB). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/__main__.cpython-310.pyc ADDED
Binary file (212 Bytes). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/_dist_ver.cpython-310.pyc ADDED
Binary file (195 Bytes). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/_main.cpython-310.pyc ADDED
Binary file (446 Bytes). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/_monitor.cpython-310.pyc ADDED
Binary file (2.81 kB). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/_tqdm.cpython-310.pyc ADDED
Binary file (441 Bytes). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/_tqdm_gui.cpython-310.pyc ADDED
Binary file (454 Bytes). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/_tqdm_notebook.cpython-310.pyc ADDED
Binary file (474 Bytes). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/_tqdm_pandas.cpython-310.pyc ADDED
Binary file (962 Bytes). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/_utils.cpython-310.pyc ADDED
Binary file (827 Bytes). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/asyncio.cpython-310.pyc ADDED
Binary file (3.38 kB). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/auto.cpython-310.pyc ADDED
Binary file (1.12 kB). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/autonotebook.cpython-310.pyc ADDED
Binary file (1.01 kB). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/cli.cpython-310.pyc ADDED
Binary file (8.91 kB). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/dask.cpython-310.pyc ADDED
Binary file (2.07 kB). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/gui.cpython-310.pyc ADDED
Binary file (4.56 kB). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/keras.cpython-310.pyc ADDED
Binary file (4.94 kB). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/notebook.cpython-310.pyc ADDED
Binary file (7.44 kB). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/rich.cpython-310.pyc ADDED
Binary file (5.07 kB). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/std.cpython-310.pyc ADDED
Binary file (45.4 kB). View file
 
venv/lib/python3.10/site-packages/tqdm/__pycache__/tk.cpython-310.pyc ADDED
Binary file (6.18 kB). View file