Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/__init__.py +6 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ds_kernel.py +32 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/__init__.py +13 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/__init__.py +8 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/__pycache__/blocked_kv_rotary.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/__pycache__/blocked_trained_kv_rotary.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/__pycache__/linear_blocked_kv_copy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/blocked_kv_rotary.cpp +195 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/blocked_kv_rotary.cuh +47 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/blocked_kv_rotary.h +65 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/blocked_kv_rotary.py +73 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/blocked_kv_rotary_cuda.cu +385 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/blocked_trained_kv_rotary.py +76 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/linear_blocked_kv_copy.py +74 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/ragged_ops.cpp +48 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/top_k_gating/__init__.py +6 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/top_k_gating/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/top_k_gating/top_k_gating.cpp +61 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/top_k_gating/top_k_gating.cuh +25 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/top_k_gating/top_k_gating.h +21 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/top_k_gating/top_k_gating.py +59 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/top_k_gating/top_k_gating_cuda.cu +125 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/__init__.py +6 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/__pycache__/container.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/container.py +78 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/model.py +209 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/policy.py +31 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/__init__.py +6 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/__pycache__/container.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/__pycache__/model.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/__pycache__/policy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/container.py +77 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/model.py +207 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/policy.py +30 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/__pycache__/container.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/__pycache__/model.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/__pycache__/policy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/attn.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/attn_out.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/embedding.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/mlp.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/qkv.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/types.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/unembed.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/embedding.py +34 -0
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .ds_kernel import DSKernelBase
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ds_kernel.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from abc import ABC, abstractmethod
|
7 |
+
|
8 |
+
|
9 |
+
class DSKernelBase(ABC):
|
10 |
+
|
11 |
+
@abstractmethod
|
12 |
+
def __init__(self, *args, **kwargs):
|
13 |
+
"""
|
14 |
+
If necessary trigger compilation and warmup
|
15 |
+
Autotuning of the kernel would happen at this stage to
|
16 |
+
eliminate any potential hangs that might occur mid-deployment
|
17 |
+
Validate that the desired run configuration is compatible.
|
18 |
+
|
19 |
+
It is not necessary to call super on this method.
|
20 |
+
"""
|
21 |
+
raise NotImplementedError()
|
22 |
+
|
23 |
+
@abstractmethod
|
24 |
+
def __call__(self, *args, **kwargs):
|
25 |
+
"""
|
26 |
+
However the kernel needs to be called, it can be called here. Auto-tuning
|
27 |
+
should never be performed here.
|
28 |
+
|
29 |
+
All inputs/outputs should be passed as arguments to this function. No allocations
|
30 |
+
should be performed here.
|
31 |
+
"""
|
32 |
+
raise NotImplementedError()
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .atom_builder import *
|
7 |
+
from .blocked_flash import *
|
8 |
+
from .embed import *
|
9 |
+
from .linear_blocked_kv_rotary import *
|
10 |
+
from .logits_gather import *
|
11 |
+
from .moe_gather import *
|
12 |
+
from .moe_scatter import *
|
13 |
+
from .top_k_gating import *
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .blocked_kv_rotary import *
|
7 |
+
from .blocked_trained_kv_rotary import *
|
8 |
+
from .linear_blocked_kv_copy import *
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (339 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/__pycache__/blocked_kv_rotary.cpython-310.pyc
ADDED
Binary file (2.91 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/__pycache__/blocked_trained_kv_rotary.cpython-310.pyc
ADDED
Binary file (2.91 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/__pycache__/linear_blocked_kv_copy.cpython-310.pyc
ADDED
Binary file (2.71 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/blocked_kv_rotary.cpp
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "blocked_kv_rotary.h"
|
7 |
+
#include "ragged_kernel_helpers.h"
|
8 |
+
|
9 |
+
#define DISPATCH_KV_ROTARY(T_TYPE, C_TYPE) \
|
10 |
+
if (q.options().dtype() == torch::T_TYPE) { \
|
11 |
+
launch_kv_rotary_kernel<C_TYPE>((C_TYPE*)kv_cache.data_ptr(), \
|
12 |
+
(C_TYPE*)q.data_ptr(), \
|
13 |
+
(C_TYPE*)k.data_ptr(), \
|
14 |
+
(C_TYPE*)v.data_ptr(), \
|
15 |
+
(C_TYPE*)inv_freq_ptr, \
|
16 |
+
rotary_dim, \
|
17 |
+
theta_base, \
|
18 |
+
batch_wrapper, \
|
19 |
+
qkv_stride, \
|
20 |
+
kv_cache_stride, \
|
21 |
+
v_offset, \
|
22 |
+
inv_freq_stride, \
|
23 |
+
q_ratio, \
|
24 |
+
head_size, \
|
25 |
+
n_tokens, \
|
26 |
+
n_q_heads, \
|
27 |
+
at::cuda::getCurrentCUDAStream()); \
|
28 |
+
}
|
29 |
+
|
30 |
+
/*
|
31 |
+
Rotary position embeddings + copy into KV cache. This implementation assumes
|
32 |
+
that the inverse frequencies should be ready from global memory rather than
|
33 |
+
synthesized in the kernel.
|
34 |
+
|
35 |
+
Arguments:
|
36 |
+
kv_cache: [n_blocks, block_size, 2, n_kv_heads, head_size]
|
37 |
+
q: [n_tokens, n_q_heads * head_size]
|
38 |
+
k: [n_tokens, n_kv_heads * head_size]
|
39 |
+
v: [n_tokens, n_kv_heads * head_size]
|
40 |
+
inv_freq: [max_seq_len, head_size // 2]
|
41 |
+
*/
|
42 |
+
void kv_trained_rotary_embeddings(torch::Tensor& kv_cache,
|
43 |
+
torch::Tensor& q,
|
44 |
+
torch::Tensor& k,
|
45 |
+
torch::Tensor& v,
|
46 |
+
torch::Tensor& inv_freq,
|
47 |
+
torch::Tensor& batch_metadata,
|
48 |
+
torch::Tensor& seq_metadata,
|
49 |
+
torch::Tensor& tokens_to_seq,
|
50 |
+
torch::Tensor& kv_ptrs)
|
51 |
+
{
|
52 |
+
const int32_t n_tokens = q.size(0);
|
53 |
+
TORCH_CHECK(n_tokens == k.size(0));
|
54 |
+
TORCH_CHECK(n_tokens == v.size(0));
|
55 |
+
|
56 |
+
const float theta_base = 0.f;
|
57 |
+
const int32_t rotary_dim = inv_freq.size(0) * 2;
|
58 |
+
|
59 |
+
// Dimensions
|
60 |
+
const int32_t block_size = kv_cache.size(1);
|
61 |
+
const int32_t n_kv_heads = kv_cache.size(3);
|
62 |
+
const int32_t head_size = kv_cache.size(4);
|
63 |
+
|
64 |
+
// Strides
|
65 |
+
const int32_t qkv_stride = q.stride(0); // Per token
|
66 |
+
const int32_t kv_cache_stride = kv_cache.stride(1); // Per token
|
67 |
+
const int32_t v_offset = kv_cache.stride(2); // From k_cache to v_cache
|
68 |
+
const int32_t inv_freq_stride = inv_freq.stride(0); // Per token idx
|
69 |
+
|
70 |
+
const int n_q_heads = q.size(1) / head_size;
|
71 |
+
const int q_ratio = n_q_heads / n_kv_heads;
|
72 |
+
|
73 |
+
void* inv_freq_ptr = (void*)inv_freq.data_ptr();
|
74 |
+
|
75 |
+
BatchWrapperCPP batch_wrapper = make_cpp_batch_wrapper(
|
76 |
+
batch_metadata, seq_metadata, tokens_to_seq, kv_ptrs, block_size, kv_cache.size(0));
|
77 |
+
|
78 |
+
DISPATCH_KV_ROTARY(kHalf, __half);
|
79 |
+
|
80 |
+
#ifdef BF16_AVAILABLE
|
81 |
+
DISPATCH_KV_ROTARY(kBFloat16, __nv_bfloat16);
|
82 |
+
#endif
|
83 |
+
}
|
84 |
+
|
85 |
+
/*
|
86 |
+
Rotary position embeddings + copy into KV cache. This implementation assumes
|
87 |
+
that the inverse frequencies should be synthesized in the kernel.
|
88 |
+
|
89 |
+
Arguments:
|
90 |
+
kv_cache: [n_blocks, block_size, 2, n_kv_heads, head_size]
|
91 |
+
q: [n_tokens, n_q_heads * head_size]
|
92 |
+
k: [n_tokens, n_kv_heads * head_size]
|
93 |
+
v: [n_tokens, n_kv_heads * head_size]
|
94 |
+
*/
|
95 |
+
void kv_rotary_embeddings(torch::Tensor& kv_cache,
|
96 |
+
torch::Tensor& q,
|
97 |
+
torch::Tensor& k,
|
98 |
+
torch::Tensor& v,
|
99 |
+
const int32_t rotary_dim,
|
100 |
+
const float theta_base,
|
101 |
+
torch::Tensor& batch_metadata,
|
102 |
+
torch::Tensor& seq_metadata,
|
103 |
+
torch::Tensor& tokens_to_seq,
|
104 |
+
torch::Tensor& kv_ptrs)
|
105 |
+
{
|
106 |
+
const int32_t n_tokens = q.size(0);
|
107 |
+
TORCH_CHECK(n_tokens == k.size(0));
|
108 |
+
TORCH_CHECK(n_tokens == v.size(0));
|
109 |
+
|
110 |
+
// Dimensions
|
111 |
+
const int32_t block_size = kv_cache.size(1);
|
112 |
+
const int32_t n_kv_heads = kv_cache.size(3);
|
113 |
+
const int32_t head_size = kv_cache.size(4);
|
114 |
+
|
115 |
+
// Strides
|
116 |
+
const int32_t qkv_stride = q.stride(0); // Per token
|
117 |
+
const int32_t kv_cache_stride = kv_cache.stride(1); // Per token
|
118 |
+
const int32_t v_offset = kv_cache.stride(2); // From k_cache to v_cache
|
119 |
+
const int32_t inv_freq_stride = 0; // Per token idx
|
120 |
+
|
121 |
+
const int n_q_heads = q.size(1) / head_size;
|
122 |
+
const int q_ratio = n_q_heads / n_kv_heads;
|
123 |
+
|
124 |
+
void* inv_freq_ptr = nullptr;
|
125 |
+
|
126 |
+
BatchWrapperCPP batch_wrapper = make_cpp_batch_wrapper(
|
127 |
+
batch_metadata, seq_metadata, tokens_to_seq, kv_ptrs, block_size, kv_cache.size(0));
|
128 |
+
|
129 |
+
DISPATCH_KV_ROTARY(kHalf, __half);
|
130 |
+
|
131 |
+
#ifdef BF16_AVAILABLE
|
132 |
+
DISPATCH_KV_ROTARY(kBFloat16, __nv_bfloat16);
|
133 |
+
#endif
|
134 |
+
}
|
135 |
+
|
136 |
+
#define DISPATCH_KV_COPY(T_TYPE, C_TYPE) \
|
137 |
+
if (q.options().dtype() == torch::T_TYPE) { \
|
138 |
+
launch_kv_copy_kernel<C_TYPE>((C_TYPE*)kv_cache.data_ptr(), \
|
139 |
+
(C_TYPE*)q.data_ptr(), \
|
140 |
+
(C_TYPE*)k.data_ptr(), \
|
141 |
+
(C_TYPE*)v.data_ptr(), \
|
142 |
+
batch_wrapper, \
|
143 |
+
qkv_stride, \
|
144 |
+
kv_cache_stride, \
|
145 |
+
v_offset, \
|
146 |
+
q_ratio, \
|
147 |
+
head_size, \
|
148 |
+
n_tokens, \
|
149 |
+
n_q_heads, \
|
150 |
+
at::cuda::getCurrentCUDAStream()); \
|
151 |
+
}
|
152 |
+
|
153 |
+
/*
|
154 |
+
Copy into linear KV cache.
|
155 |
+
*/
|
156 |
+
void linear_kv_copy(torch::Tensor& kv_cache,
|
157 |
+
torch::Tensor& q,
|
158 |
+
torch::Tensor& k,
|
159 |
+
torch::Tensor& v,
|
160 |
+
torch::Tensor& batch_metadata,
|
161 |
+
torch::Tensor& seq_metadata,
|
162 |
+
torch::Tensor& tokens_to_seq,
|
163 |
+
torch::Tensor& kv_ptrs)
|
164 |
+
{
|
165 |
+
const int32_t n_tokens = q.size(0);
|
166 |
+
TORCH_CHECK(n_tokens == k.size(0));
|
167 |
+
TORCH_CHECK(n_tokens == v.size(0));
|
168 |
+
|
169 |
+
// Dimensions
|
170 |
+
const int32_t block_size = kv_cache.size(1);
|
171 |
+
const int32_t n_kv_heads = kv_cache.size(3);
|
172 |
+
const int32_t head_size = kv_cache.size(4);
|
173 |
+
|
174 |
+
// Strides
|
175 |
+
const int32_t qkv_stride = q.stride(0); // Per token
|
176 |
+
TORCH_CHECK(qkv_stride == k.stride(0));
|
177 |
+
TORCH_CHECK(qkv_stride == v.stride(0));
|
178 |
+
|
179 |
+
const int32_t kv_cache_stride = kv_cache.stride(1); // Per token
|
180 |
+
const int32_t v_offset = kv_cache.stride(2); // From k_cache to v_cache
|
181 |
+
|
182 |
+
const int n_q_heads = q.size(1) / head_size;
|
183 |
+
|
184 |
+
TORCH_CHECK(n_q_heads % n_kv_heads == 0);
|
185 |
+
const int q_ratio = n_q_heads / n_kv_heads;
|
186 |
+
|
187 |
+
BatchWrapperCPP batch_wrapper = make_cpp_batch_wrapper(
|
188 |
+
batch_metadata, seq_metadata, tokens_to_seq, kv_ptrs, block_size, kv_cache.size(0));
|
189 |
+
|
190 |
+
DISPATCH_KV_COPY(kHalf, __half);
|
191 |
+
|
192 |
+
#ifdef BF16_AVAILABLE
|
193 |
+
DISPATCH_KV_COPY(kBFloat16, __nv_bfloat16);
|
194 |
+
#endif
|
195 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/blocked_kv_rotary.cuh
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include "ds_kernel_utils.h"
|
9 |
+
#include "ragged_dtypes.h"
|
10 |
+
|
11 |
+
#ifdef BF16_AVAILABLE
|
12 |
+
#include <cuda_bf16.h>
|
13 |
+
#endif
|
14 |
+
|
15 |
+
template <typename T>
|
16 |
+
void launch_kv_rotary_kernel(T* kv_cache,
|
17 |
+
T* q,
|
18 |
+
T* k,
|
19 |
+
T* v,
|
20 |
+
T* inv_freq,
|
21 |
+
const int32_t rotary_dim,
|
22 |
+
const float theta_base,
|
23 |
+
const BatchWrapperCPP batch_desc,
|
24 |
+
const int qkv_stride,
|
25 |
+
const int kv_cache_stride,
|
26 |
+
const int v_offset,
|
27 |
+
const int inv_freq_stride,
|
28 |
+
const int q_ratio,
|
29 |
+
const int head_size,
|
30 |
+
const int n_tokens,
|
31 |
+
const int n_q_heads,
|
32 |
+
cudaStream_t stream);
|
33 |
+
|
34 |
+
template <typename T>
|
35 |
+
void launch_kv_copy_kernel(T* kv_cache,
|
36 |
+
T* q,
|
37 |
+
T* k,
|
38 |
+
T* v,
|
39 |
+
const BatchWrapperCPP batch_desc,
|
40 |
+
const int qkv_stride,
|
41 |
+
const int kv_cache_stride,
|
42 |
+
const int v_offset,
|
43 |
+
const int q_ratio,
|
44 |
+
const int head_size,
|
45 |
+
const int n_tokens,
|
46 |
+
const int n_q_heads,
|
47 |
+
cudaStream_t stream);
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/blocked_kv_rotary.h
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <c10/cuda/CUDAStream.h>
|
9 |
+
#include <torch/extension.h>
|
10 |
+
#include "blocked_kv_rotary.cuh"
|
11 |
+
|
12 |
+
/*
|
13 |
+
Rotary position embeddings + copy into KV cache. This implementation assumes
|
14 |
+
that the inverse frequencies should be ready from global memory rather than
|
15 |
+
synthesized in the kernel.
|
16 |
+
|
17 |
+
Arguments:
|
18 |
+
kv_cache: [n_blocks, block_size, 2, n_kv_heads, head_size]
|
19 |
+
q: [n_tokens, n_q_heads * head_size]
|
20 |
+
k: [n_tokens, n_kv_heads * head_size]
|
21 |
+
v: [n_tokens, n_kv_heads * head_size]
|
22 |
+
inv_freq: [max_seq_len, head_size // 2]
|
23 |
+
*/
|
24 |
+
void kv_trained_rotary_embeddings(torch::Tensor& kv_cache,
|
25 |
+
torch::Tensor& q,
|
26 |
+
torch::Tensor& k,
|
27 |
+
torch::Tensor& v,
|
28 |
+
torch::Tensor& inv_freq,
|
29 |
+
torch::Tensor& batch_metadata,
|
30 |
+
torch::Tensor& seq_metadata,
|
31 |
+
torch::Tensor& tokens_to_seq,
|
32 |
+
torch::Tensor& kv_ptrs);
|
33 |
+
|
34 |
+
/*
|
35 |
+
Rotary position embeddings + copy into KV cache. This implementation assumes
|
36 |
+
that the inverse frequencies should be synthesized in the kernel.
|
37 |
+
|
38 |
+
Arguments:
|
39 |
+
kv_cache: [n_blocks, block_size, 2, n_kv_heads, head_size]
|
40 |
+
q: [n_tokens, n_q_heads * head_size]
|
41 |
+
k: [n_tokens, n_kv_heads * head_size]
|
42 |
+
v: [n_tokens, n_kv_heads * head_size]
|
43 |
+
*/
|
44 |
+
void kv_rotary_embeddings(torch::Tensor& kv_cache,
|
45 |
+
torch::Tensor& q,
|
46 |
+
torch::Tensor& k,
|
47 |
+
torch::Tensor& v,
|
48 |
+
const int32_t rotary_dim,
|
49 |
+
const float theta_base,
|
50 |
+
torch::Tensor& batch_metadata,
|
51 |
+
torch::Tensor& seq_metadata,
|
52 |
+
torch::Tensor& tokens_to_seq,
|
53 |
+
torch::Tensor& kv_ptrs);
|
54 |
+
|
55 |
+
/*
|
56 |
+
Copy into linear KV cache.
|
57 |
+
*/
|
58 |
+
void linear_kv_copy(torch::Tensor& kv_cache,
|
59 |
+
torch::Tensor& q,
|
60 |
+
torch::Tensor& k,
|
61 |
+
torch::Tensor& v,
|
62 |
+
torch::Tensor& batch_metadata,
|
63 |
+
torch::Tensor& seq_metadata,
|
64 |
+
torch::Tensor& tokens_to_seq,
|
65 |
+
torch::Tensor& kv_ptrs);
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/blocked_kv_rotary.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from ....inference_utils import DtypeEnum
|
9 |
+
from deepspeed.ops.op_builder import RaggedOpsBuilder
|
10 |
+
from ....ragged import RaggedBatchWrapper
|
11 |
+
from ... import DSKernelBase
|
12 |
+
|
13 |
+
|
14 |
+
class BlockedRotaryEmbeddings(DSKernelBase):
|
15 |
+
"""
|
16 |
+
CUDA Kernel implementation that will perform rotary position embeddings on the queries and keys
|
17 |
+
before copying into a blocked KV cache.
|
18 |
+
"""
|
19 |
+
|
20 |
+
supported_dtypes = [DtypeEnum.fp16, DtypeEnum.bf16]
|
21 |
+
supported_head_sizes = [64, 80, 128]
|
22 |
+
supported_q_ratios = [1, 2, 4, 5, 8, 16, 29, 35, 36, 71]
|
23 |
+
|
24 |
+
def __init__(self, head_size: int, n_q_heads: int, n_kv_heads: int, dtype: torch.dtype, rotary_dim: int,
|
25 |
+
theta_base: float) -> None:
|
26 |
+
"""
|
27 |
+
Args:
|
28 |
+
head_size: The size of the attention head.
|
29 |
+
q_ratio: Ratio of q heads to kv heads (for GQA)
|
30 |
+
dtype: Data type for the input/output. Supported values are torch.float16 and torch.bfloat16.
|
31 |
+
"""
|
32 |
+
|
33 |
+
q_ratio = n_q_heads // n_kv_heads
|
34 |
+
|
35 |
+
if head_size not in BlockedRotaryEmbeddings.supported_head_sizes:
|
36 |
+
raise ValueError("Unsupported head size: {}, supported_head_sizes are {}".format(
|
37 |
+
head_size, BlockedRotaryEmbeddings.supported_head_sizes))
|
38 |
+
|
39 |
+
if q_ratio not in BlockedRotaryEmbeddings.supported_q_ratios:
|
40 |
+
raise ValueError("Unsupported q_ratio: {}, supported_q_ratios are {}".format(
|
41 |
+
q_ratio, BlockedRotaryEmbeddings.supported_q_ratios))
|
42 |
+
|
43 |
+
if not isinstance(dtype, DtypeEnum):
|
44 |
+
dtype = DtypeEnum(dtype)
|
45 |
+
|
46 |
+
if dtype not in BlockedRotaryEmbeddings.supported_dtypes:
|
47 |
+
raise ValueError("Unsupported data type: {}, supported_dtypes are {}".format(
|
48 |
+
dtype, BlockedRotaryEmbeddings.supported_dtypes))
|
49 |
+
|
50 |
+
inf_module = RaggedOpsBuilder().load()
|
51 |
+
self.kernel = inf_module.kv_rotary_embeddings
|
52 |
+
self.head_size = head_size
|
53 |
+
self.n_q_heads = n_q_heads
|
54 |
+
self.n_kv_heads = n_kv_heads
|
55 |
+
self.rotary_dim = rotary_dim
|
56 |
+
self.theta_base = theta_base
|
57 |
+
|
58 |
+
def __call__(self, kv_cache: torch.Tensor, qkv: torch.Tensor, ragged_batch: RaggedBatchWrapper) -> None:
|
59 |
+
"""
|
60 |
+
Perform rotary embeddings on the queries and keys before copying into a blocked KV cache.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
kv_cache (torch.Tensor): Pre-allocated KV cache of [num_blocks, block_size, 2, n_kv_heads, head_size]
|
64 |
+
qkv: Input tensor of shape [num_tokens, head_size * (n_q_heads + 2 * n_kv_heads)]
|
65 |
+
ragged_batch: Wrapper for the ragged batch.
|
66 |
+
"""
|
67 |
+
|
68 |
+
q = qkv[:, :self.head_size * self.n_q_heads]
|
69 |
+
k = qkv[:, self.head_size * self.n_q_heads:self.head_size * (self.n_q_heads + self.n_kv_heads)]
|
70 |
+
v = qkv[:, self.head_size * (self.n_q_heads + self.n_kv_heads):]
|
71 |
+
|
72 |
+
self.kernel(kv_cache, q, k, v, self.rotary_dim, self.theta_base, ragged_batch.batch_metadata_buffer(),
|
73 |
+
ragged_batch.inflight_seq_descriptors(), ragged_batch.tokens_to_seq(), ragged_batch.kv_ptrs())
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/blocked_kv_rotary_cuda.cu
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <cassert>
|
7 |
+
#include "blocked_kv_rotary.cuh"
|
8 |
+
#include "conversion_utils.h"
|
9 |
+
#include "ds_kernel_utils.h"
|
10 |
+
#include "memory_access_utils.h"
|
11 |
+
|
12 |
+
namespace cg = cooperative_groups;
|
13 |
+
|
14 |
+
namespace kv_rot {
|
15 |
+
|
16 |
+
constexpr int granularity = 16;
|
17 |
+
constexpr int threads = 256;
|
18 |
+
|
19 |
+
} // namespace kv_rot
|
20 |
+
|
21 |
+
/*
|
22 |
+
Supports head size 32, 64, 128, 256
|
23 |
+
*/
|
24 |
+
|
25 |
+
template <typename T, int qRatio, int headSize, bool doRotary, int paddedHeadSize>
|
26 |
+
__global__ void kv_rotary_pos_kernel(T* kv_cache,
|
27 |
+
T* q,
|
28 |
+
T* k,
|
29 |
+
T* v,
|
30 |
+
const T* inv_freq,
|
31 |
+
const int32_t rotary_dim,
|
32 |
+
const float theta_base,
|
33 |
+
const BatchWrapperCPP batch_desc,
|
34 |
+
const int qkv_stride,
|
35 |
+
const int kv_cache_stride,
|
36 |
+
const int v_offset,
|
37 |
+
const int inv_freq_stride)
|
38 |
+
{
|
39 |
+
// Derived constexpr
|
40 |
+
constexpr int vector_T = kv_rot::granularity / sizeof(T);
|
41 |
+
constexpr int real_threads_per_head = headSize / vector_T;
|
42 |
+
constexpr int threads_per_head = paddedHeadSize / vector_T;
|
43 |
+
|
44 |
+
constexpr int tokens_per_block = kv_rot::threads / threads_per_head;
|
45 |
+
|
46 |
+
// CG helpers
|
47 |
+
cg::thread_block tb = cg::this_thread_block();
|
48 |
+
cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);
|
49 |
+
cg::thread_block_tile<threads_per_head> head_group = cg::tiled_partition<threads_per_head>(tb);
|
50 |
+
|
51 |
+
// Parallelize on the head dimension for X blocks
|
52 |
+
const int head_idx = blockIdx.x;
|
53 |
+
|
54 |
+
const int block_seq_idx = threadIdx.x / threads_per_head;
|
55 |
+
const int base_neuron_idx = head_group.thread_rank() * vector_T;
|
56 |
+
const int half_rotary_size = rotary_dim / 2;
|
57 |
+
const int half_dim_lanes = half_rotary_size / vector_T;
|
58 |
+
const int half_idx = base_neuron_idx % half_rotary_size;
|
59 |
+
|
60 |
+
// Multiple tokens processed by the same threadblock
|
61 |
+
const int token_idx = blockIdx.y * tokens_per_block + block_seq_idx;
|
62 |
+
const bool valid_token = token_idx < batch_desc.batch_metadata->n_tokens;
|
63 |
+
|
64 |
+
const bool valid_thread = valid_token && (head_group.thread_rank() < real_threads_per_head);
|
65 |
+
const bool load_inv_freq = (inv_freq != nullptr) && valid_thread;
|
66 |
+
|
67 |
+
// If we have GQA, then only one of the Q heads needs to do rotary + copy
|
68 |
+
// for each of the heads in the group.
|
69 |
+
bool need_kv = head_idx % qRatio == 0;
|
70 |
+
// Make sure the following code is warp uniform
|
71 |
+
need_kv = warp.shfl(need_kv, 0);
|
72 |
+
|
73 |
+
const int kv_head_idx = head_idx / qRatio;
|
74 |
+
|
75 |
+
// Ensure we don't access invalid portions of the seq_metadata
|
76 |
+
const int32_t seq_id = (valid_thread) ? batch_desc.tokens_to_seq[token_idx] : 0;
|
77 |
+
const InflightSeqDescriptor seq_desc = batch_desc.seq_metadata[seq_id];
|
78 |
+
// This will give an invalid index if valid_thread is false, but should never affect memory.
|
79 |
+
const int32_t global_token_idx = seq_desc.seen_tokens + (token_idx - seq_desc.start_idx);
|
80 |
+
|
81 |
+
T* q_row = q + token_idx * qkv_stride + head_idx * headSize;
|
82 |
+
T q_reg[vector_T];
|
83 |
+
|
84 |
+
if (need_kv) {
|
85 |
+
// The following logic assumes a linearly blocked KV cache. This means that no sparsity has
|
86 |
+
// been introduced into cache history.
|
87 |
+
const KVCacheDescriptor kv_desc = batch_desc.kv_desc;
|
88 |
+
const int32_t seq_kv_block_idx = global_token_idx / kv_desc.block_size;
|
89 |
+
const int32_t mapped_kv_block_idx =
|
90 |
+
(valid_thread) ? kv_desc.block_lists[seq_id][seq_kv_block_idx] : 0;
|
91 |
+
|
92 |
+
const int32_t kv_block_offset = global_token_idx % kv_desc.block_size;
|
93 |
+
const int32_t kv_offset =
|
94 |
+
(mapped_kv_block_idx * kv_desc.block_size + kv_block_offset) * kv_cache_stride +
|
95 |
+
kv_head_idx * headSize;
|
96 |
+
|
97 |
+
// Load indices from QKV output
|
98 |
+
T* k_row = k + token_idx * qkv_stride + kv_head_idx * headSize;
|
99 |
+
T* v_row = v + token_idx * qkv_stride + kv_head_idx * headSize;
|
100 |
+
|
101 |
+
T k_reg[vector_T], v_reg[vector_T], inv_freq_reg[vector_T];
|
102 |
+
|
103 |
+
mem_access::load_global<kv_rot::granularity>(q_reg, q_row + base_neuron_idx, valid_thread);
|
104 |
+
mem_access::load_global<kv_rot::granularity>(k_reg, k_row + base_neuron_idx, valid_thread);
|
105 |
+
mem_access::load_global<kv_rot::granularity>(v_reg, v_row + base_neuron_idx, valid_thread);
|
106 |
+
mem_access::load_global<kv_rot::granularity>(
|
107 |
+
inv_freq_reg, inv_freq + half_idx, load_inv_freq);
|
108 |
+
if constexpr (doRotary) {
|
109 |
+
#pragma unroll
|
110 |
+
for (int i = 0; i < vector_T; i++) {
|
111 |
+
const int head_neuron_idx = base_neuron_idx + i;
|
112 |
+
|
113 |
+
float inv_freq_flt;
|
114 |
+
if (inv_freq != nullptr) {
|
115 |
+
inv_freq_flt = conversion::to<float>(inv_freq_reg[i]) * (float)global_token_idx;
|
116 |
+
} else {
|
117 |
+
inv_freq_flt =
|
118 |
+
(float)((head_neuron_idx % half_rotary_size) * 2) / (float)rotary_dim;
|
119 |
+
// Conversion to T and back means that both branches of this if statement
|
120 |
+
// will produce the same results if using the same algo for producing the
|
121 |
+
// freqs.
|
122 |
+
T trunc_freq = conversion::to<T>(1.0 / powf(theta_base, inv_freq_flt));
|
123 |
+
inv_freq_flt = conversion::to<float>(trunc_freq) * (float)global_token_idx;
|
124 |
+
}
|
125 |
+
|
126 |
+
float rotary_sign = (head_neuron_idx >= half_rotary_size) ? -1.0f : 1.0f;
|
127 |
+
float q_f = conversion::to<float>(q_reg[i]);
|
128 |
+
float k_f = conversion::to<float>(k_reg[i]);
|
129 |
+
float q_rot = q_f * rotary_sign;
|
130 |
+
float k_rot = k_f * rotary_sign;
|
131 |
+
|
132 |
+
const int target_lane = (head_neuron_idx < half_rotary_size)
|
133 |
+
? head_group.thread_rank() + half_dim_lanes
|
134 |
+
: head_group.thread_rank() - half_dim_lanes;
|
135 |
+
|
136 |
+
const float q_rot_temp = head_group.shfl(q_rot, target_lane);
|
137 |
+
const float k_rot_temp = head_group.shfl(k_rot, target_lane);
|
138 |
+
|
139 |
+
if (base_neuron_idx < rotary_dim) {
|
140 |
+
q_reg[i] = conversion::to<T>(q_f * cosf(inv_freq_flt) +
|
141 |
+
q_rot_temp * sinf(inv_freq_flt));
|
142 |
+
k_reg[i] = conversion::to<T>(k_f * cosf(inv_freq_flt) +
|
143 |
+
k_rot_temp * sinf(inv_freq_flt));
|
144 |
+
}
|
145 |
+
}
|
146 |
+
}
|
147 |
+
|
148 |
+
if (valid_thread) {
|
149 |
+
mem_access::store_global<kv_rot::granularity>(kv_cache + kv_offset + base_neuron_idx,
|
150 |
+
k_reg);
|
151 |
+
mem_access::store_global<kv_rot::granularity>(
|
152 |
+
kv_cache + kv_offset + base_neuron_idx + v_offset, v_reg);
|
153 |
+
}
|
154 |
+
} else {
|
155 |
+
T inv_freq_reg[vector_T];
|
156 |
+
|
157 |
+
mem_access::load_global<kv_rot::granularity>(q_reg, q_row + base_neuron_idx, valid_thread);
|
158 |
+
mem_access::load_global<kv_rot::granularity>(
|
159 |
+
inv_freq_reg, inv_freq + half_idx, load_inv_freq);
|
160 |
+
|
161 |
+
if constexpr (doRotary) {
|
162 |
+
#pragma unroll
|
163 |
+
for (int i = 0; i < vector_T; i++) {
|
164 |
+
const int head_neuron_idx = base_neuron_idx + i;
|
165 |
+
|
166 |
+
float inv_freq_flt;
|
167 |
+
if (inv_freq != nullptr) {
|
168 |
+
inv_freq_flt = conversion::to<float>(inv_freq_reg[i]) * (float)global_token_idx;
|
169 |
+
} else {
|
170 |
+
inv_freq_flt =
|
171 |
+
(float)((head_neuron_idx % half_rotary_size) * 2) / (float)rotary_dim;
|
172 |
+
inv_freq_flt = 1.0 / powf(theta_base, inv_freq_flt) * (float)global_token_idx;
|
173 |
+
}
|
174 |
+
|
175 |
+
float rotary_sign = (head_neuron_idx >= half_rotary_size) ? -1.0f : 1.0f;
|
176 |
+
float q_f = conversion::to<float>(q_reg[i]);
|
177 |
+
float q_rot = q_f * rotary_sign;
|
178 |
+
|
179 |
+
const int target_lane = (head_neuron_idx < half_rotary_size)
|
180 |
+
? head_group.thread_rank() + half_dim_lanes
|
181 |
+
: head_group.thread_rank() - half_dim_lanes;
|
182 |
+
|
183 |
+
const float q_rot_temp = head_group.shfl(q_rot, target_lane);
|
184 |
+
if (base_neuron_idx < rotary_dim)
|
185 |
+
q_reg[i] = conversion::to<T>(q_f * cosf(inv_freq_flt) +
|
186 |
+
q_rot_temp * sinf(inv_freq_flt));
|
187 |
+
}
|
188 |
+
}
|
189 |
+
}
|
190 |
+
|
191 |
+
if (valid_thread && doRotary) {
|
192 |
+
mem_access::store_global<kv_rot::granularity>(q_row + base_neuron_idx, q_reg);
|
193 |
+
}
|
194 |
+
}
|
195 |
+
|
196 |
+
#define DISPATCH_KV_ROTARY_IMPL(Q_RATIO, HEAD_SIZE, PADDED_HEAD_SIZE) \
|
197 |
+
if (q_ratio == Q_RATIO && head_size == HEAD_SIZE) \
|
198 |
+
kv_rotary_pos_kernel<T, Q_RATIO, HEAD_SIZE, true, PADDED_HEAD_SIZE> \
|
199 |
+
<<<grid, block, 0, stream>>>(kv_cache, \
|
200 |
+
q, \
|
201 |
+
k, \
|
202 |
+
v, \
|
203 |
+
inv_freq, \
|
204 |
+
rotary_dim, \
|
205 |
+
theta_base, \
|
206 |
+
batch_desc, \
|
207 |
+
qkv_stride, \
|
208 |
+
kv_cache_stride, \
|
209 |
+
v_offset, \
|
210 |
+
inv_freq_stride);
|
211 |
+
|
212 |
+
#define LAUNCH_KV_ROTARY_FOR_Q_RATIO_HEAD_SIZE(Q_RATIO, HEAD_SIZE) \
|
213 |
+
if (padded_head_size == 64) { \
|
214 |
+
DISPATCH_KV_ROTARY_IMPL(Q_RATIO, HEAD_SIZE, 64); \
|
215 |
+
} else if (padded_head_size == 128) { \
|
216 |
+
DISPATCH_KV_ROTARY_IMPL(Q_RATIO, HEAD_SIZE, 128); \
|
217 |
+
} else { \
|
218 |
+
assert(false); \
|
219 |
+
}
|
220 |
+
|
221 |
+
#define LAUNCH_KV_ROTARY_FOR_Q_RATIO(Q_RATIO) \
|
222 |
+
if (head_size == 64) { \
|
223 |
+
LAUNCH_KV_ROTARY_FOR_Q_RATIO_HEAD_SIZE(Q_RATIO, 64); \
|
224 |
+
} else if (head_size == 80) { \
|
225 |
+
LAUNCH_KV_ROTARY_FOR_Q_RATIO_HEAD_SIZE(Q_RATIO, 80); \
|
226 |
+
} else if (head_size == 128) { \
|
227 |
+
LAUNCH_KV_ROTARY_FOR_Q_RATIO_HEAD_SIZE(Q_RATIO, 128); \
|
228 |
+
} else { \
|
229 |
+
assert(false); \
|
230 |
+
}
|
231 |
+
|
232 |
+
template <typename T>
|
233 |
+
void launch_kv_rotary_kernel(T* kv_cache,
|
234 |
+
T* q,
|
235 |
+
T* k,
|
236 |
+
T* v,
|
237 |
+
T* inv_freq,
|
238 |
+
const int32_t rotary_dim,
|
239 |
+
const float theta_base,
|
240 |
+
const BatchWrapperCPP batch_desc,
|
241 |
+
const int qkv_stride,
|
242 |
+
const int kv_cache_stride,
|
243 |
+
const int v_offset,
|
244 |
+
const int inv_freq_stride,
|
245 |
+
const int q_ratio,
|
246 |
+
const int head_size,
|
247 |
+
const int n_tokens,
|
248 |
+
const int n_q_heads,
|
249 |
+
cudaStream_t stream)
|
250 |
+
{
|
251 |
+
constexpr int vector_T = kv_rot::granularity / sizeof(T);
|
252 |
+
|
253 |
+
const int padded_head_size = next_pow2(head_size);
|
254 |
+
const int threads_per_head = padded_head_size / vector_T;
|
255 |
+
|
256 |
+
const int tokens_per_block = kv_rot::threads / threads_per_head;
|
257 |
+
|
258 |
+
const dim3 block(kv_rot::threads);
|
259 |
+
const int token_blocks = (n_tokens + tokens_per_block - 1) / tokens_per_block;
|
260 |
+
const dim3 grid(n_q_heads, token_blocks);
|
261 |
+
|
262 |
+
LAUNCH_KV_ROTARY_FOR_Q_RATIO(1)
|
263 |
+
LAUNCH_KV_ROTARY_FOR_Q_RATIO(2)
|
264 |
+
LAUNCH_KV_ROTARY_FOR_Q_RATIO(4)
|
265 |
+
LAUNCH_KV_ROTARY_FOR_Q_RATIO(5)
|
266 |
+
LAUNCH_KV_ROTARY_FOR_Q_RATIO(8)
|
267 |
+
LAUNCH_KV_ROTARY_FOR_Q_RATIO(16)
|
268 |
+
LAUNCH_KV_ROTARY_FOR_Q_RATIO(29)
|
269 |
+
LAUNCH_KV_ROTARY_FOR_Q_RATIO(35)
|
270 |
+
LAUNCH_KV_ROTARY_FOR_Q_RATIO(36)
|
271 |
+
LAUNCH_KV_ROTARY_FOR_Q_RATIO(71)
|
272 |
+
}
|
273 |
+
|
274 |
+
#define INSTANTIATE_KV_ROTARY_KERNEL(TYPE) \
|
275 |
+
template void launch_kv_rotary_kernel<TYPE>(TYPE * kv_cache, \
|
276 |
+
TYPE * q, \
|
277 |
+
TYPE * k, \
|
278 |
+
TYPE * v, \
|
279 |
+
TYPE * inv_freq, \
|
280 |
+
const int32_t rotary_dim, \
|
281 |
+
const float theta_base, \
|
282 |
+
const BatchWrapperCPP batch_desc, \
|
283 |
+
const int qkv_stride, \
|
284 |
+
const int kv_cache_stride, \
|
285 |
+
const int v_offset, \
|
286 |
+
const int inv_freq_stride, \
|
287 |
+
const int q_ratio, \
|
288 |
+
const int head_size, \
|
289 |
+
const int n_tokens, \
|
290 |
+
const int n_q_heads, \
|
291 |
+
cudaStream_t stream);
|
292 |
+
|
293 |
+
INSTANTIATE_KV_ROTARY_KERNEL(__half)
|
294 |
+
|
295 |
+
#ifdef BF16_AVAILABLE
|
296 |
+
INSTANTIATE_KV_ROTARY_KERNEL(__nv_bfloat16)
|
297 |
+
#endif
|
298 |
+
|
299 |
+
#define DISPATCH_KV_COPY_IMPL(Q_RATIO, HEAD_SIZE, PADDED_HEAD_SIZE) \
|
300 |
+
if (q_ratio == Q_RATIO && head_size == HEAD_SIZE) \
|
301 |
+
kv_rotary_pos_kernel<T, Q_RATIO, HEAD_SIZE, false, PADDED_HEAD_SIZE> \
|
302 |
+
<<<grid, block, 0, stream>>>(kv_cache, \
|
303 |
+
q, \
|
304 |
+
k, \
|
305 |
+
v, \
|
306 |
+
nullptr, \
|
307 |
+
-1, \
|
308 |
+
0.f, \
|
309 |
+
batch_desc, \
|
310 |
+
qkv_stride, \
|
311 |
+
kv_cache_stride, \
|
312 |
+
v_offset, \
|
313 |
+
0);
|
314 |
+
|
315 |
+
#define LAUNCH_KV_COPY_FOR_Q_RATIO_HEAD_SIZE(Q_RATIO, HEAD_SIZE) \
|
316 |
+
if (padded_head_size == 64) { \
|
317 |
+
DISPATCH_KV_COPY_IMPL(Q_RATIO, HEAD_SIZE, 64); \
|
318 |
+
} else if (padded_head_size == 128) { \
|
319 |
+
DISPATCH_KV_COPY_IMPL(Q_RATIO, HEAD_SIZE, 128); \
|
320 |
+
} else { \
|
321 |
+
assert(false); \
|
322 |
+
}
|
323 |
+
|
324 |
+
#define LAUNCH_KV_COPY_FOR_Q_RATIO(Q_RATIO) \
|
325 |
+
if (head_size == 64) { \
|
326 |
+
LAUNCH_KV_COPY_FOR_Q_RATIO_HEAD_SIZE(Q_RATIO, 64); \
|
327 |
+
} else if (head_size == 80) { \
|
328 |
+
LAUNCH_KV_COPY_FOR_Q_RATIO_HEAD_SIZE(Q_RATIO, 80); \
|
329 |
+
} else if (head_size == 128) { \
|
330 |
+
LAUNCH_KV_COPY_FOR_Q_RATIO_HEAD_SIZE(Q_RATIO, 128); \
|
331 |
+
} else { \
|
332 |
+
assert(false); \
|
333 |
+
}
|
334 |
+
|
335 |
+
template <typename T>
|
336 |
+
void launch_kv_copy_kernel(T* kv_cache,
|
337 |
+
T* q,
|
338 |
+
T* k,
|
339 |
+
T* v,
|
340 |
+
const BatchWrapperCPP batch_desc,
|
341 |
+
const int qkv_stride,
|
342 |
+
const int kv_cache_stride,
|
343 |
+
const int v_offset,
|
344 |
+
const int q_ratio,
|
345 |
+
const int head_size,
|
346 |
+
const int n_tokens,
|
347 |
+
const int n_q_heads,
|
348 |
+
cudaStream_t stream)
|
349 |
+
{
|
350 |
+
constexpr int vector_T = kv_rot::granularity / sizeof(T);
|
351 |
+
const int padded_head_size = next_pow2(head_size);
|
352 |
+
const int threads_per_head = padded_head_size / vector_T;
|
353 |
+
const int tokens_per_block = kv_rot::threads / threads_per_head;
|
354 |
+
|
355 |
+
const dim3 block(kv_rot::threads);
|
356 |
+
const int token_blocks = (n_tokens + tokens_per_block - 1) / tokens_per_block;
|
357 |
+
const dim3 grid(n_q_heads, token_blocks);
|
358 |
+
|
359 |
+
LAUNCH_KV_COPY_FOR_Q_RATIO(1)
|
360 |
+
LAUNCH_KV_COPY_FOR_Q_RATIO(2)
|
361 |
+
LAUNCH_KV_COPY_FOR_Q_RATIO(4)
|
362 |
+
LAUNCH_KV_COPY_FOR_Q_RATIO(5)
|
363 |
+
LAUNCH_KV_COPY_FOR_Q_RATIO(8)
|
364 |
+
}
|
365 |
+
|
366 |
+
#define INSTANTIATE_KV_COPY_KERNEL(TYPE) \
|
367 |
+
template void launch_kv_copy_kernel<TYPE>(TYPE * kv_cache, \
|
368 |
+
TYPE * q, \
|
369 |
+
TYPE * k, \
|
370 |
+
TYPE * v, \
|
371 |
+
const BatchWrapperCPP batch_desc, \
|
372 |
+
const int qkv_stride, \
|
373 |
+
const int kv_cache_stride, \
|
374 |
+
const int v_offset, \
|
375 |
+
const int q_ratio, \
|
376 |
+
const int head_size, \
|
377 |
+
const int n_tokens, \
|
378 |
+
const int n_q_heads, \
|
379 |
+
cudaStream_t stream);
|
380 |
+
|
381 |
+
INSTANTIATE_KV_COPY_KERNEL(__half)
|
382 |
+
|
383 |
+
#ifdef BF16_AVAILABLE
|
384 |
+
INSTANTIATE_KV_COPY_KERNEL(__nv_bfloat16)
|
385 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/blocked_trained_kv_rotary.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
# Copyright (c) Microsoft Corporation.
|
7 |
+
# SPDX-License-Identifier: Apache-2.0
|
8 |
+
|
9 |
+
# DeepSpeed Team
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from ....inference_utils import DtypeEnum
|
14 |
+
from deepspeed.ops.op_builder import RaggedOpsBuilder
|
15 |
+
from ....ragged import RaggedBatchWrapper
|
16 |
+
from ... import DSKernelBase
|
17 |
+
|
18 |
+
|
19 |
+
class BlockedTrainedRotaryEmbeddings(DSKernelBase):
|
20 |
+
"""
|
21 |
+
CUDA Kernel implementation that will perform rotary position embeddings on the queries and keys
|
22 |
+
before copying into a blocked KV cache.
|
23 |
+
"""
|
24 |
+
|
25 |
+
supported_dtypes = [DtypeEnum.fp16, DtypeEnum.bf16]
|
26 |
+
supported_head_sizes = [64, 80, 128]
|
27 |
+
supported_q_ratios = [1, 2, 4, 5, 8]
|
28 |
+
|
29 |
+
def __init__(self, head_size: int, n_q_heads: int, n_kv_heads: int, dtype: torch.dtype) -> None:
|
30 |
+
"""
|
31 |
+
Args:
|
32 |
+
head_size: The size of the attention head.
|
33 |
+
dtype: Data type for the input/output. Supported values are torch.float16 and torch.bfloat16.
|
34 |
+
"""
|
35 |
+
|
36 |
+
q_ratio = n_q_heads // n_kv_heads
|
37 |
+
|
38 |
+
if head_size not in BlockedTrainedRotaryEmbeddings.supported_head_sizes:
|
39 |
+
raise ValueError("Unsupported head size: {}, supported_head_sizes are {}".format(
|
40 |
+
head_size, BlockedTrainedRotaryEmbeddings.supported_head_sizes))
|
41 |
+
|
42 |
+
if q_ratio not in BlockedTrainedRotaryEmbeddings.supported_q_ratios:
|
43 |
+
raise ValueError("Unsupported q_ratio: {}, supported_q_ratios are {}".format(
|
44 |
+
q_ratio, BlockedTrainedRotaryEmbeddings.supported_q_ratios))
|
45 |
+
|
46 |
+
if not isinstance(dtype, DtypeEnum):
|
47 |
+
dtype = DtypeEnum(dtype)
|
48 |
+
|
49 |
+
if dtype not in BlockedTrainedRotaryEmbeddings.supported_dtypes:
|
50 |
+
raise ValueError("Unsupported data type: {}, supported_dtypes are {}".format(
|
51 |
+
dtype, BlockedTrainedRotaryEmbeddings.supported_dtypes))
|
52 |
+
|
53 |
+
inf_module = RaggedOpsBuilder().load()
|
54 |
+
self.kernel = inf_module.kv_trained_rotary_embeddings
|
55 |
+
self.head_size = head_size
|
56 |
+
self.n_q_heads = n_q_heads
|
57 |
+
self.n_kv_heads = n_kv_heads
|
58 |
+
|
59 |
+
def __call__(self, kv_cache: torch.Tensor, qkv: torch.Tensor, ragged_batch: RaggedBatchWrapper,
|
60 |
+
inverse_freqs: torch.Tensor) -> None:
|
61 |
+
"""
|
62 |
+
Perform rotary embeddings on the queries and keys before copying into a blocked KV cache.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
kv_cache (torch.Tensor): Pre-allocated KV cache of [num_blocks, block_size, 2, n_kv_heads, head_size]
|
66 |
+
qkv: Input tensor of shape [num_tokens, head_size * (n_q_heads + 2 * n_kv_heads)]
|
67 |
+
ragged_batch: Wrapper for the ragged batch.
|
68 |
+
inverse_freqs: Inverse frequencies for the rotary embeddings. Shape [max_seq_len, rotary_dim // 2]
|
69 |
+
"""
|
70 |
+
|
71 |
+
q = qkv[:, :self.head_size * self.n_q_heads]
|
72 |
+
k = qkv[:, self.head_size * self.n_q_heads:self.head_size * (self.n_q_heads + self.n_kv_heads)]
|
73 |
+
v = qkv[:, self.head_size * (self.n_q_heads + self.n_kv_heads):]
|
74 |
+
|
75 |
+
self.kernel(kv_cache, q, k, v, inverse_freqs, ragged_batch.batch_metadata_buffer(),
|
76 |
+
ragged_batch.inflight_seq_descriptors(), ragged_batch.tokens_to_seq(), ragged_batch.kv_ptrs())
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/linear_blocked_kv_rotary/linear_blocked_kv_copy.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
# Copyright (c) Microsoft Corporation.
|
7 |
+
# SPDX-License-Identifier: Apache-2.0
|
8 |
+
|
9 |
+
# DeepSpeed Team
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from ....inference_utils import DtypeEnum
|
14 |
+
from ....ragged import RaggedBatchWrapper
|
15 |
+
from deepspeed.ops.op_builder import RaggedOpsBuilder
|
16 |
+
from ... import DSKernelBase
|
17 |
+
|
18 |
+
|
19 |
+
class LinearBlockedKVCopy(DSKernelBase):
|
20 |
+
"""
|
21 |
+
CUDA Kernel implementation that will perform rotary position embeddings on the queries and keys
|
22 |
+
before copying into a blocked KV cache.
|
23 |
+
"""
|
24 |
+
|
25 |
+
supported_dtypes = [DtypeEnum.fp16, DtypeEnum.bf16]
|
26 |
+
supported_head_sizes = [64, 80, 128]
|
27 |
+
supported_q_ratios = [1, 2, 4, 5, 8]
|
28 |
+
|
29 |
+
def __init__(self, head_size: int, n_q_heads: int, n_kv_heads: int, dtype: torch.dtype) -> None:
|
30 |
+
"""
|
31 |
+
Args:
|
32 |
+
head_size: The size of the attention head.
|
33 |
+
dtype: Data type for the input/output. Supported values are torch.float16 and torch.bfloat16.
|
34 |
+
"""
|
35 |
+
|
36 |
+
q_ratio = n_q_heads // n_kv_heads
|
37 |
+
|
38 |
+
if head_size not in LinearBlockedKVCopy.supported_head_sizes:
|
39 |
+
raise ValueError("Unsupported head size: {}, supported_head_sizes are {}".format(
|
40 |
+
head_size, LinearBlockedKVCopy.supported_head_sizes))
|
41 |
+
|
42 |
+
if q_ratio not in LinearBlockedKVCopy.supported_q_ratios:
|
43 |
+
raise ValueError("Unsupported q_ratio: {}, supported_q_ratios are {}".format(
|
44 |
+
q_ratio, LinearBlockedKVCopy.supported_q_ratios))
|
45 |
+
|
46 |
+
if not isinstance(dtype, DtypeEnum):
|
47 |
+
dtype = DtypeEnum(dtype)
|
48 |
+
|
49 |
+
if dtype not in LinearBlockedKVCopy.supported_dtypes:
|
50 |
+
raise ValueError("Unsupported data type: {}, supported_dtypes are {}".format(
|
51 |
+
dtype, LinearBlockedKVCopy.supported_dtypes))
|
52 |
+
|
53 |
+
inf_module = RaggedOpsBuilder().load()
|
54 |
+
self.kernel = inf_module.linear_kv_copy
|
55 |
+
self.head_size = head_size
|
56 |
+
self.n_q_heads = n_q_heads
|
57 |
+
self.n_kv_heads = n_kv_heads
|
58 |
+
|
59 |
+
def __call__(self, kv_cache: torch.Tensor, qkv: torch.Tensor, ragged_batch: RaggedBatchWrapper) -> None:
|
60 |
+
"""
|
61 |
+
Perform rotary embeddings on the queries and keys before copying into a blocked KV cache.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
kv_cache (torch.Tensor): Pre-allocated KV cache of [num_blocks, block_size, 2, n_kv_heads, head_size]
|
65 |
+
qkv: Input tensor of shape [num_tokens, head_size * (n_q_heads + 2 * n_kv_heads)]
|
66 |
+
ragged_batch: Wrapper for the ragged batch.
|
67 |
+
"""
|
68 |
+
|
69 |
+
q = qkv[:, :self.head_size * self.n_q_heads]
|
70 |
+
k = qkv[:, self.head_size * self.n_q_heads:self.head_size * (self.n_q_heads + self.n_kv_heads)]
|
71 |
+
v = qkv[:, self.head_size * (self.n_q_heads + self.n_kv_heads):]
|
72 |
+
|
73 |
+
self.kernel(kv_cache, q, k, v, ragged_batch.batch_metadata_buffer(), ragged_batch.inflight_seq_descriptors(),
|
74 |
+
ragged_batch.tokens_to_seq(), ragged_batch.kv_ptrs())
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/ragged_ops.cpp
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <torch/extension.h>
|
7 |
+
|
8 |
+
#include "atom_builder.h"
|
9 |
+
#include "blocked_flash.h"
|
10 |
+
#include "blocked_kv_rotary.h"
|
11 |
+
#include "embed.h"
|
12 |
+
#include "logits_gather.h"
|
13 |
+
#include "moe_gather.h"
|
14 |
+
#include "moe_scatter.h"
|
15 |
+
#include "top_k_gating.h"
|
16 |
+
|
17 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
18 |
+
{
|
19 |
+
// atom_builder.h
|
20 |
+
m.def("build_atoms", &build_atoms, "Host kernel for building the atoms.");
|
21 |
+
|
22 |
+
// blocked_flash.h
|
23 |
+
m.def("flash_attn_by_atoms",
|
24 |
+
&flash_attn_by_atoms,
|
25 |
+
"Blocked flash attention scheduled with atoms");
|
26 |
+
|
27 |
+
// blocked_kv_rotary.h
|
28 |
+
m.def("kv_rotary_embeddings", &kv_rotary_embeddings, "KV rotary embedding for blocked KV");
|
29 |
+
m.def("kv_trained_rotary_embeddings",
|
30 |
+
&kv_trained_rotary_embeddings,
|
31 |
+
"KV rotary embeddings for blocked KV");
|
32 |
+
m.def("linear_kv_copy", &linear_kv_copy, "Linear copy for blocked KV");
|
33 |
+
|
34 |
+
// embed.h
|
35 |
+
m.def("ragged_embed", &ragged_embed, "Embedding lookup for ragged batch");
|
36 |
+
|
37 |
+
// logits_gather.h
|
38 |
+
m.def("gather_for_logits", &gather_for_logits, "Sparse gather from ragged batch");
|
39 |
+
|
40 |
+
// moe_gather.h
|
41 |
+
m.def("moe_gather", &moe_gather, "MoE gather for top-1-gating.");
|
42 |
+
|
43 |
+
// moe_scatter.h
|
44 |
+
m.def("moe_scatter", &moe_scatter, "MoE scatter for top-1-gating.");
|
45 |
+
|
46 |
+
// top_k_gating.h
|
47 |
+
m.def("top_k_gating", &top_k_gating, "Top-1 gating for MoE with ragged batch awareness.");
|
48 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/top_k_gating/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .top_k_gating import RaggedTopKGating
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/top_k_gating/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (275 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/top_k_gating/top_k_gating.cpp
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "top_k_gating.h"
|
7 |
+
#include <c10/cuda/CUDAStream.h>
|
8 |
+
|
9 |
+
#define DISPATCH_TOP_K_GATING(T_TYPE, C_TYPE) \
|
10 |
+
if (logits.options().dtype() == torch::T_TYPE) { \
|
11 |
+
launch_top_k_gating((int32_t*)expert_counts.data_ptr(), \
|
12 |
+
(float*)scores.data_ptr(), \
|
13 |
+
(int32_t*)assignments.data_ptr(), \
|
14 |
+
(int32_t*)offsets.data_ptr(), \
|
15 |
+
(const C_TYPE*)logits.data_ptr(), \
|
16 |
+
batch_metadata_ptr, \
|
17 |
+
n_tokens, \
|
18 |
+
n_experts, \
|
19 |
+
n_top_k, \
|
20 |
+
at::cuda::getCurrentCUDAStream()); \
|
21 |
+
return; \
|
22 |
+
}
|
23 |
+
|
24 |
+
/*
|
25 |
+
Perform softmax plus atomics in order to do first pass of top_k_gating.
|
26 |
+
*/
|
27 |
+
void top_k_gating(torch::Tensor& expert_counts,
|
28 |
+
torch::Tensor& scores,
|
29 |
+
torch::Tensor& assignments,
|
30 |
+
torch::Tensor& offsets,
|
31 |
+
torch::Tensor& logits,
|
32 |
+
torch::Tensor& batch_metadata)
|
33 |
+
{
|
34 |
+
const int32_t n_tokens = scores.size(0);
|
35 |
+
const int32_t n_top_k = scores.size(1);
|
36 |
+
|
37 |
+
// Should have the same buffer size for scores, offsets, and assignments
|
38 |
+
TORCH_CHECK(n_tokens == offsets.size(0));
|
39 |
+
TORCH_CHECK(n_tokens == logits.size(0));
|
40 |
+
TORCH_CHECK(n_tokens == assignments.size(0));
|
41 |
+
|
42 |
+
TORCH_CHECK(n_top_k == offsets.size(1));
|
43 |
+
TORCH_CHECK(n_top_k == assignments.size(1));
|
44 |
+
|
45 |
+
TORCH_CHECK(expert_counts.scalar_type() == torch::kInt32);
|
46 |
+
TORCH_CHECK(scores.scalar_type() == torch::kFloat);
|
47 |
+
TORCH_CHECK(assignments.scalar_type() == torch::kInt32);
|
48 |
+
TORCH_CHECK(offsets.scalar_type() == torch::kInt32);
|
49 |
+
|
50 |
+
const int32_t n_experts = logits.size(1);
|
51 |
+
const RaggedBatchDescriptor* batch_metadata_ptr =
|
52 |
+
reinterpret_cast<const RaggedBatchDescriptor*>(batch_metadata.data_ptr());
|
53 |
+
|
54 |
+
DISPATCH_TOP_K_GATING(kFloat, float)
|
55 |
+
DISPATCH_TOP_K_GATING(kHalf, __half)
|
56 |
+
#ifdef BF16_AVAILABLE
|
57 |
+
DISPATCH_TOP_K_GATING(kBFloat16, __nv_bfloat16)
|
58 |
+
#endif
|
59 |
+
|
60 |
+
TORCH_CHECK(false, "Unsupported dtype for logits in top_k_gating");
|
61 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/top_k_gating/top_k_gating.cuh
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include "ds_kernel_utils.h"
|
9 |
+
#include "ragged_dtypes.h"
|
10 |
+
|
11 |
+
namespace gating {
|
12 |
+
constexpr int unassigned = -1;
|
13 |
+
} // namespace gating
|
14 |
+
|
15 |
+
template <typename T>
|
16 |
+
void launch_top_k_gating(int32_t* expert_counts,
|
17 |
+
float* scores,
|
18 |
+
int32_t* assignments,
|
19 |
+
int32_t* offsets,
|
20 |
+
const T* logits,
|
21 |
+
const RaggedBatchDescriptor* batch_metadata,
|
22 |
+
const int32_t n_tokens,
|
23 |
+
const int32_t n_experts,
|
24 |
+
const int32_t n_top_k,
|
25 |
+
cudaStream_t stream);
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/top_k_gating/top_k_gating.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <c10/cuda/CUDAStream.h>
|
9 |
+
#include <torch/extension.h>
|
10 |
+
#include "ragged_dtypes.h"
|
11 |
+
#include "top_k_gating.cuh"
|
12 |
+
|
13 |
+
/*
|
14 |
+
Perform softmax plus atomics to get token mapping.
|
15 |
+
*/
|
16 |
+
void top_k_gating(torch::Tensor& expert_counts,
|
17 |
+
torch::Tensor& scores,
|
18 |
+
torch::Tensor& assignments,
|
19 |
+
torch::Tensor& offsets,
|
20 |
+
torch::Tensor& logits,
|
21 |
+
torch::Tensor& batch_metadata);
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/top_k_gating/top_k_gating.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from typing import Tuple
|
9 |
+
|
10 |
+
from ... import DSKernelBase
|
11 |
+
from ....inference_utils import DtypeEnum
|
12 |
+
from ....ragged import RaggedBatchWrapper
|
13 |
+
from deepspeed.ops.op_builder import RaggedOpsBuilder
|
14 |
+
|
15 |
+
|
16 |
+
class RaggedTopKGating(DSKernelBase):
|
17 |
+
"""
|
18 |
+
CUDA implementation of top-1 gating. This will perform a softmax on the logits,
|
19 |
+
and return the scale as well as its idx within that expert's allocation.
|
20 |
+
"""
|
21 |
+
|
22 |
+
supported_logit_dtypes = [DtypeEnum.fp16, DtypeEnum.bf16, DtypeEnum.fp32]
|
23 |
+
|
24 |
+
def __init__(self, logit_dtype: DtypeEnum) -> None:
|
25 |
+
|
26 |
+
if not isinstance(logit_dtype, DtypeEnum):
|
27 |
+
logit_dtype = DtypeEnum(logit_dtype)
|
28 |
+
|
29 |
+
if logit_dtype not in RaggedTopKGating.supported_logit_dtypes:
|
30 |
+
raise RuntimeError(f"Unsupported logit dtype {logit_dtype}")
|
31 |
+
|
32 |
+
inf_module = RaggedOpsBuilder().load()
|
33 |
+
self.kernel = inf_module.top_k_gating
|
34 |
+
|
35 |
+
def __call__(self, expert_counts: torch.Tensor, scores: torch.Tensor, assignments: torch.Tensor,
|
36 |
+
offsets: torch.Tensor, logits: torch.Tensor,
|
37 |
+
batch: RaggedBatchWrapper) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
38 |
+
"""
|
39 |
+
Perform the ragged top_k_gating.
|
40 |
+
|
41 |
+
Arguments:
|
42 |
+
expert_counts (torch.Tensor): Tensor of 0s of shape [n_experts] to be filled with
|
43 |
+
number of tokens assigned to each expert. This must be filled with 0s else
|
44 |
+
the copy kernel will buffer overflow. In order to minimize the zero-fill cost,
|
45 |
+
it is recommended to write to 0 during the MoE output remapping.
|
46 |
+
scores (torch.Tensor): Preallocated output of shape [n_tokens, n_top_k] to place expert scaling
|
47 |
+
value.
|
48 |
+
expert_assignment (torch.Tensor): Preallocated output of shape [n_tokens, n_top_k] to place
|
49 |
+
which expert a token has been assigned to.
|
50 |
+
expert_offset (torch.Tensor): Preallocated output of shape [n_tokens, n_top_k] to place which
|
51 |
+
offset within an experts group a token is.
|
52 |
+
logits (torch.Tensor): Raw logits of gating function.
|
53 |
+
batch (RaggedBatchWrapper): Batch information for ragged tensor.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
tuple of (expert_counts, scores, expert_assignment, expert_offset)
|
57 |
+
"""
|
58 |
+
self.kernel(expert_counts, scores, assignments, offsets, logits, batch.batch_metadata_buffer())
|
59 |
+
return expert_counts, scores, assignments, offsets
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/top_k_gating/top_k_gating_cuda.cu
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "conversion_utils.h"
|
7 |
+
#include "memory_access_utils.h"
|
8 |
+
#include "reduction_utils.h"
|
9 |
+
#include "top_k_gating.cuh"
|
10 |
+
#include "top_k_utils.h"
|
11 |
+
|
12 |
+
using ROp = reduce::ROpType;
|
13 |
+
|
14 |
+
template <typename T, int TOP_K>
|
15 |
+
__global__ void top_k_gating_kernel(int32_t* expert_counts,
|
16 |
+
float* scores,
|
17 |
+
int32_t* assignments,
|
18 |
+
int32_t* offsets,
|
19 |
+
const T* logits,
|
20 |
+
const RaggedBatchDescriptor* batch_metadata,
|
21 |
+
const int32_t n_experts)
|
22 |
+
{
|
23 |
+
const int32_t token_idx = blockIdx.x;
|
24 |
+
const int32_t expert_idx = threadIdx.x;
|
25 |
+
const int32_t max_warps = 1024 / hw_warp_size;
|
26 |
+
|
27 |
+
// CG helpers
|
28 |
+
cg::thread_block tb = cg::this_thread_block();
|
29 |
+
cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);
|
30 |
+
|
31 |
+
// Padding tokens do not require
|
32 |
+
if (token_idx >= batch_metadata->n_tokens) {
|
33 |
+
if (threadIdx.x == 0) {
|
34 |
+
#pragma unroll
|
35 |
+
for (int i = 0; i < TOP_K; i++) {
|
36 |
+
assignments[token_idx * TOP_K + i] = gating::unassigned;
|
37 |
+
offsets[token_idx * TOP_K + i] = gating::unassigned;
|
38 |
+
}
|
39 |
+
}
|
40 |
+
return;
|
41 |
+
}
|
42 |
+
|
43 |
+
const T* token_logits = logits + token_idx * n_experts;
|
44 |
+
|
45 |
+
float logit_val;
|
46 |
+
if (expert_idx < n_experts) {
|
47 |
+
logit_val = conversion::to<float>(token_logits[expert_idx]);
|
48 |
+
} else {
|
49 |
+
reduce::init<ROp::Max>(&logit_val);
|
50 |
+
}
|
51 |
+
float reduce_val = logit_val;
|
52 |
+
|
53 |
+
int32_t local_assigned_experts[TOP_K];
|
54 |
+
float local_assigned_logits[TOP_K];
|
55 |
+
|
56 |
+
// Training code tends to use ``torch.argmax`` to select the expert, which
|
57 |
+
// which has ties broken by the lower index. Since our fused comparison algorithm
|
58 |
+
// breaks ties by the higher index (since it's the lower 32-bits of the 64-bit
|
59 |
+
// comparison), we invert the expert index to break ties by the lower index.
|
60 |
+
int32_t inverted_expert = n_experts - expert_idx - 1;
|
61 |
+
|
62 |
+
// Find the top k logits
|
63 |
+
for (int i = 0; i < TOP_K; ++i) {
|
64 |
+
const reduce::IdxReduceResult res =
|
65 |
+
reduce::idx_reduce<ROp::Max, max_warps>(tb, warp, reduce_val, inverted_expert);
|
66 |
+
local_assigned_experts[i] = n_experts - res.idx - 1;
|
67 |
+
local_assigned_logits[i] = res.val;
|
68 |
+
|
69 |
+
// Set the max logit to -inf so that it is not selected again
|
70 |
+
if (threadIdx.x == n_experts - res.idx - 1) { reduce::init<ROp::Max>(&reduce_val); }
|
71 |
+
}
|
72 |
+
|
73 |
+
const float max_logit = local_assigned_logits[0];
|
74 |
+
float softmax_sum = __expf(logit_val - max_logit);
|
75 |
+
reduce::block<ROp::Add>(tb, warp, softmax_sum);
|
76 |
+
|
77 |
+
for (int i = 0; i < TOP_K; ++i) {
|
78 |
+
const float softmax = __expf(local_assigned_logits[i] - max_logit) / softmax_sum;
|
79 |
+
|
80 |
+
if (threadIdx.x == 0) {
|
81 |
+
scores[token_idx * TOP_K + i] = softmax;
|
82 |
+
assignments[token_idx * TOP_K + i] = local_assigned_experts[i];
|
83 |
+
offsets[token_idx * TOP_K + i] =
|
84 |
+
atomicAdd(expert_counts + local_assigned_experts[i], 1);
|
85 |
+
}
|
86 |
+
}
|
87 |
+
}
|
88 |
+
|
89 |
+
template <typename T>
|
90 |
+
void launch_top_k_gating(int32_t* expert_counts,
|
91 |
+
float* scores,
|
92 |
+
int32_t* assignments,
|
93 |
+
int32_t* offsets,
|
94 |
+
const T* logits,
|
95 |
+
const RaggedBatchDescriptor* batch_metadata,
|
96 |
+
const int32_t n_tokens,
|
97 |
+
const int32_t n_experts,
|
98 |
+
const int32_t n_top_k,
|
99 |
+
cudaStream_t stream)
|
100 |
+
{
|
101 |
+
const dim3 grid(n_tokens);
|
102 |
+
const dim3 block(((n_experts + hw_warp_size - 1) / hw_warp_size) * hw_warp_size);
|
103 |
+
|
104 |
+
TOP_K_SWITCH(n_top_k, [&] {
|
105 |
+
top_k_gating_kernel<T, CONST_TOP_K><<<grid, block, 0, stream>>>(
|
106 |
+
expert_counts, scores, assignments, offsets, logits, batch_metadata, n_experts);
|
107 |
+
});
|
108 |
+
}
|
109 |
+
|
110 |
+
#define INSTANTIATE_top_k_KERNEL(T) \
|
111 |
+
template void launch_top_k_gating<T>(int32_t * expert_counts, \
|
112 |
+
float* scores, \
|
113 |
+
int32_t* assignments, \
|
114 |
+
int32_t* offsets, \
|
115 |
+
const T* logits, \
|
116 |
+
const RaggedBatchDescriptor* batch_metadata, \
|
117 |
+
const int32_t n_tokens, \
|
118 |
+
const int32_t n_experts, \
|
119 |
+
const int32_t n_top_k, \
|
120 |
+
cudaStream_t stream);
|
121 |
+
|
122 |
+
INSTANTIATE_top_k_KERNEL(float) INSTANTIATE_top_k_KERNEL(__half)
|
123 |
+
#ifdef BF16_AVAILABLE
|
124 |
+
INSTANTIATE_top_k_KERNEL(__nv_bfloat16)
|
125 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .policy import Llama2Policy
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/__pycache__/container.cpython-310.pyc
ADDED
Binary file (1.77 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/container.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
# Create a container object to save model-specific tensors using the policy file above.
|
7 |
+
|
8 |
+
from ..common_parameters import *
|
9 |
+
from ..layer_container_base import LayerContainer
|
10 |
+
'''
|
11 |
+
# HF Llama model looks like this:
|
12 |
+
|
13 |
+
LlamaForCausalLM(
|
14 |
+
(model): LlamaModel(
|
15 |
+
(embed_tokens): Embedding(32000, 4096, padding_idx=0)
|
16 |
+
(layers): ModuleList(
|
17 |
+
(0-31): 32 x LlamaDecoderLayer(
|
18 |
+
(self_attn): LlamaAttention(
|
19 |
+
(q_proj): Linear(in_features=4096, out_features=4096, bias=False)
|
20 |
+
(k_proj): Linear(in_features=4096, out_features=4096, bias=False)
|
21 |
+
(v_proj): Linear(in_features=4096, out_features=4096, bias=False)
|
22 |
+
(o_proj): Linear(in_features=4096, out_features=4096, bias=False)
|
23 |
+
(rotary_emb): LlamaRotaryEmbedding()
|
24 |
+
)
|
25 |
+
(mlp): LlamaMLP(
|
26 |
+
(gate_proj): Linear(in_features=4096, out_features=11008, bias=False)
|
27 |
+
(up_proj): Linear(in_features=4096, out_features=11008, bias=False)
|
28 |
+
(down_proj): Linear(in_features=11008, out_features=4096, bias=False)
|
29 |
+
(act_fn): SiLUActivation()
|
30 |
+
)
|
31 |
+
(input_layernorm): LlamaRMSNorm()
|
32 |
+
(post_attention_layernorm): LlamaRMSNorm()
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(norm): LlamaRMSNorm()
|
36 |
+
)
|
37 |
+
(lm_head): Linear(in_features=4096, out_features=32000, bias=False)
|
38 |
+
)
|
39 |
+
'''
|
40 |
+
|
41 |
+
|
42 |
+
class Llama2TransformerContainer(LayerContainer):
|
43 |
+
"""
|
44 |
+
Transformer layer container for the Llama-2 model.
|
45 |
+
"""
|
46 |
+
qkv_w: UnfusedQKVParameter
|
47 |
+
attn_out_w: AttentionOutputParameter
|
48 |
+
mlp_1_w: GatedMLPParameter
|
49 |
+
mlp_2_w: MLP2Parameter
|
50 |
+
attn_norm_gamma: NormParameter
|
51 |
+
mlp_norm_gamma: NormParameter
|
52 |
+
|
53 |
+
PARAM_MAPPING = {
|
54 |
+
"self_attn.q_proj.weight": "qkv_w.q_params",
|
55 |
+
"self_attn.k_proj.weight": "qkv_w.k_params",
|
56 |
+
"self_attn.v_proj.weight": "qkv_w.v_params",
|
57 |
+
"self_attn.o_proj.weight": "attn_out_w.params",
|
58 |
+
"mlp.gate_proj.weight": "mlp_1_w.gate_params",
|
59 |
+
"mlp.up_proj.weight": "mlp_1_w.up_params",
|
60 |
+
"mlp.down_proj.weight": "mlp_2_w.params",
|
61 |
+
"input_layernorm.weight": "attn_norm_gamma.params",
|
62 |
+
"post_attention_layernorm.weight": "mlp_norm_gamma.params",
|
63 |
+
}
|
64 |
+
|
65 |
+
|
66 |
+
class Llama2NonTransformerContainer(LayerContainer):
|
67 |
+
"""
|
68 |
+
Non-Transformer layer container for the Llama-2 model.
|
69 |
+
"""
|
70 |
+
word_emb: EmbeddingParameter
|
71 |
+
word_unembed: UnembedParameter
|
72 |
+
final_norm: NormParameter
|
73 |
+
|
74 |
+
PARAM_MAPPING = {
|
75 |
+
"model.embed_tokens.weight": "word_emb.params",
|
76 |
+
"model.norm.weight": "final_norm.params",
|
77 |
+
"lm_head.weight": "word_unembed.params",
|
78 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/model.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from typing import Iterable, Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
import deepspeed.comm as dist
|
11 |
+
|
12 |
+
from ...allocator import empty_from
|
13 |
+
from ...inference_utils import ActivationType, DtypeEnum
|
14 |
+
from .. import *
|
15 |
+
from ...modules.configs import *
|
16 |
+
from ...modules.interfaces import *
|
17 |
+
from ...ragged import RaggedBatchWrapper
|
18 |
+
|
19 |
+
from .container import Llama2NonTransformerContainer, Llama2TransformerContainer
|
20 |
+
|
21 |
+
|
22 |
+
class Llama2InferenceModel(DSTransformerModelBase):
|
23 |
+
"""
|
24 |
+
Inference model implementation for ragged batching for Llama-2 models.
|
25 |
+
"""
|
26 |
+
|
27 |
+
_non_transformer: Optional[Llama2NonTransformerContainer]
|
28 |
+
"""
|
29 |
+
Embed + unembed container. Specializing the type annotation.
|
30 |
+
"""
|
31 |
+
|
32 |
+
_transformer: Optional[Iterable[Llama2TransformerContainer]]
|
33 |
+
"""
|
34 |
+
Per-layer transformer container. Specializing the type annotation.
|
35 |
+
"""
|
36 |
+
"""
|
37 |
+
Properties ineherited from `DSInferenceModelBase`
|
38 |
+
"""
|
39 |
+
|
40 |
+
@property
|
41 |
+
def max_sequence_length(self) -> int:
|
42 |
+
return self._config.max_seq_length
|
43 |
+
|
44 |
+
"""
|
45 |
+
Properties ineherited from `DSTransformerModelBase`
|
46 |
+
"""
|
47 |
+
|
48 |
+
@property
|
49 |
+
def num_layers(self) -> int:
|
50 |
+
return self._config.num_hidden_layers
|
51 |
+
|
52 |
+
@property
|
53 |
+
def model_dim(self) -> int:
|
54 |
+
return self._config.hidden_size
|
55 |
+
|
56 |
+
@property
|
57 |
+
def vocab_size(self) -> int:
|
58 |
+
return self._config.vocab_size
|
59 |
+
|
60 |
+
@property
|
61 |
+
def head_size(self) -> int:
|
62 |
+
return self.model_dim // self.n_heads
|
63 |
+
|
64 |
+
@property
|
65 |
+
def n_heads(self) -> int:
|
66 |
+
return self._config.num_attention_heads
|
67 |
+
|
68 |
+
@property
|
69 |
+
def intermediate_dim(self) -> int:
|
70 |
+
return self._config.intermediate_size
|
71 |
+
|
72 |
+
@property
|
73 |
+
def n_heads_kv(self) -> int:
|
74 |
+
return self._config.num_key_value_heads
|
75 |
+
|
76 |
+
@property
|
77 |
+
def activation_dtype(self) -> DtypeEnum:
|
78 |
+
if self._config.torch_dtype == torch.float16:
|
79 |
+
return DtypeEnum.fp16
|
80 |
+
elif self._config.torch_dtype == torch.bfloat16:
|
81 |
+
return DtypeEnum.bf16
|
82 |
+
else:
|
83 |
+
raise NotImplementedError("Only fp16 and bf16 are supported")
|
84 |
+
|
85 |
+
@property
|
86 |
+
def mlp_activation_fn(self) -> ActivationType:
|
87 |
+
activation = self._config.hidden_act.lower()
|
88 |
+
# llama model family is special and is always gated so force gated versions of relu, gelu, silu
|
89 |
+
if activation == "gelu":
|
90 |
+
return ActivationType.GEGLU
|
91 |
+
elif activation == "relu":
|
92 |
+
return ActivationType.ReGLU
|
93 |
+
elif activation == "gegelu":
|
94 |
+
return ActivationType.GEGLU
|
95 |
+
elif activation == "silu":
|
96 |
+
return ActivationType.SiGLU
|
97 |
+
else:
|
98 |
+
raise NotImplementedError(f"Activation {activation} not supported")
|
99 |
+
|
100 |
+
@property
|
101 |
+
def norm_type(self) -> NormTypeEnum:
|
102 |
+
return NormTypeEnum.RMSNorm
|
103 |
+
|
104 |
+
@property
|
105 |
+
def positional_embedding_type(self) -> PositionalEmbeddingType:
|
106 |
+
return PositionalEmbeddingType.rotate_half
|
107 |
+
|
108 |
+
@property
|
109 |
+
def positional_embedding_config(self) -> Optional[RotateHalfConfig]:
|
110 |
+
return RotateHalfConfig(theta_base=self._config.rope_theta)
|
111 |
+
|
112 |
+
"""
|
113 |
+
Forward implementations
|
114 |
+
"""
|
115 |
+
|
116 |
+
def _forward_embed(self, ragged_batch: RaggedBatchWrapper) -> torch.Tensor:
|
117 |
+
"""
|
118 |
+
Performs the embedding lookup prior to running the transformer of the model.
|
119 |
+
|
120 |
+
Arguments:
|
121 |
+
ragged_batch (RaggedBatchWrapper): The batch to embed.
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
torch.Tensor: The embedded batch.
|
125 |
+
"""
|
126 |
+
embed = self.embed(ragged_batch, self._non_transformer.word_emb)
|
127 |
+
|
128 |
+
if embed.shape[-1] != self.model_dim:
|
129 |
+
raise ValueError(f"Embedding output shape {embed.shape} does not match model_dim {self.model_dim}")
|
130 |
+
|
131 |
+
return embed
|
132 |
+
|
133 |
+
def _forward_transformer_layer(self, layer_idx: int, residual: torch.Tensor, hidden_states: torch.Tensor,
|
134 |
+
ragged_batch_info: RaggedBatchWrapper) -> Tuple[torch.Tensor, torch.Tensor]:
|
135 |
+
"""
|
136 |
+
Executes one (slightly offset) layer of the transformer. This implementation does a peak-ahead
|
137 |
+
optimization to fuse the layer norm of the next layer into the current layer.
|
138 |
+
|
139 |
+
Arguments:
|
140 |
+
layer_idx (int): The index of the layer to execute.
|
141 |
+
residual (torch.Tensor): The residual tensor from the previous layer.
|
142 |
+
hidden_states (torch.Tensor): The hidden states from the previous layer. This is the
|
143 |
+
hidden states after pre normalization.
|
144 |
+
ragged_batch_info (RaggedBatchWrapper): The batch metadata.
|
145 |
+
"""
|
146 |
+
# TODO(cmikeh2): Distribute ragged_batch_info to all modules
|
147 |
+
|
148 |
+
cur_params = self._transformer[layer_idx]
|
149 |
+
kv_cache = self.state_manager.get_cache(layer_idx)
|
150 |
+
|
151 |
+
hidden_states = self.qkv(hidden_states, cur_params.qkv_w, b=None)
|
152 |
+
hidden_states = self.attn(hidden_states, kv_cache, ragged_batch_info)
|
153 |
+
hidden_states = self.attn_out(hidden_states, cur_params.attn_out_w, b=None)
|
154 |
+
|
155 |
+
if self.tp_size > 1:
|
156 |
+
dist.all_reduce(hidden_states, group=self._base_mp_group)
|
157 |
+
|
158 |
+
residual, hidden_states = self.norm(residual, hidden_states, cur_params.mlp_norm_gamma, beta=None)
|
159 |
+
|
160 |
+
# Should be configurable in the future
|
161 |
+
hidden_states = self.mlp_1(hidden_states, cur_params.mlp_1_w, b=None)
|
162 |
+
hidden_states = self.mlp_2(hidden_states, cur_params.mlp_2_w, b=None)
|
163 |
+
|
164 |
+
if self.tp_size > 1:
|
165 |
+
dist.all_reduce(hidden_states, group=self._base_mp_group)
|
166 |
+
|
167 |
+
if layer_idx != self.num_layers - 1:
|
168 |
+
next_params = self._transformer[layer_idx + 1]
|
169 |
+
residual, hidden_states = self.norm(residual, hidden_states, next_params.attn_norm_gamma, beta=None)
|
170 |
+
else:
|
171 |
+
# On last layer, we just need to perform the residual add. Adding into the residual
|
172 |
+
# here is safe.
|
173 |
+
residual.add_(hidden_states)
|
174 |
+
|
175 |
+
return residual, hidden_states
|
176 |
+
|
177 |
+
def _forward_unembed(self, hidden_states: torch.Tensor, ragged_batch_info: RaggedBatchWrapper) -> torch.Tensor:
|
178 |
+
"""
|
179 |
+
Performs unembedding of the hidden states to logits. This will only sample the final
|
180 |
+
token of each sequence.
|
181 |
+
"""
|
182 |
+
logits = self.unembed(hidden_states,
|
183 |
+
self._non_transformer.word_unembed,
|
184 |
+
ragged_batch_info,
|
185 |
+
gamma=self._non_transformer.final_norm)
|
186 |
+
|
187 |
+
if self.tp_size > 1:
|
188 |
+
comm_buffer = empty_from(self._comm_logits, (self.tp_size, logits.shape[0], logits.shape[1]))
|
189 |
+
full_logits = empty_from(self._return_logits, (logits.shape[0], self.vocab_size))
|
190 |
+
|
191 |
+
dist.all_gather_into_tensor(comm_buffer, logits, group=self._base_mp_group)
|
192 |
+
|
193 |
+
full_logits.copy_(comm_buffer.permute(1, 0, 2).reshape(logits.shape[0], self.vocab_size))
|
194 |
+
|
195 |
+
return full_logits
|
196 |
+
else:
|
197 |
+
return logits
|
198 |
+
|
199 |
+
def forward(self, wrapped_batch: RaggedBatchWrapper) -> torch.Tensor:
|
200 |
+
|
201 |
+
residual = self._forward_embed(wrapped_batch)
|
202 |
+
|
203 |
+
residual, hidden_states = self.norm(residual, None, self._transformer[0].attn_norm_gamma, beta=None)
|
204 |
+
|
205 |
+
for layer_idx in range(self.num_layers):
|
206 |
+
residual, hidden_states = self._forward_transformer_layer(layer_idx, residual, hidden_states,
|
207 |
+
wrapped_batch)
|
208 |
+
|
209 |
+
return self._forward_unembed(residual, wrapped_batch)
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/policy.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from typing import Any
|
7 |
+
|
8 |
+
from ...config_v2 import RaggedInferenceEngineConfig
|
9 |
+
from ..inference_policy_base import ContainerMap, InferenceV2Policy
|
10 |
+
from .container import Llama2NonTransformerContainer, Llama2TransformerContainer
|
11 |
+
from .model import Llama2InferenceModel
|
12 |
+
|
13 |
+
|
14 |
+
class Llama2Policy(InferenceV2Policy):
|
15 |
+
|
16 |
+
def instantiate_model(self, engine_config: RaggedInferenceEngineConfig, mp_group: Any) -> Llama2InferenceModel:
|
17 |
+
return Llama2InferenceModel(config=self._model_config, engine_config=engine_config, base_mp_group=mp_group)
|
18 |
+
|
19 |
+
def build_container_map(self) -> ContainerMap:
|
20 |
+
map = ContainerMap()
|
21 |
+
|
22 |
+
transformer_containers = [Llama2TransformerContainer(self.model) for _ in range(self.model.num_layers)]
|
23 |
+
|
24 |
+
map.set_transformer_params(['model.layers'], transformer_containers)
|
25 |
+
|
26 |
+
map.set_non_transformer_params(Llama2NonTransformerContainer(self.model))
|
27 |
+
|
28 |
+
map.set_unmapped_params(
|
29 |
+
[f'model.layers.{i}.self_attn.rotary_emb.inv_freq' for i in range(self.model.num_layers)])
|
30 |
+
|
31 |
+
return map
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .policy import MistralPolicy
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (264 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/__pycache__/container.cpython-310.pyc
ADDED
Binary file (1.86 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/__pycache__/model.cpython-310.pyc
ADDED
Binary file (6.86 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/__pycache__/policy.cpython-310.pyc
ADDED
Binary file (1.56 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/container.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
# Create a container object to save model-specific tensors using the policy file above.
|
7 |
+
|
8 |
+
from deepspeed.inference.v2.model_implementations.common_parameters import *
|
9 |
+
from deepspeed.inference.v2.model_implementations.layer_container_base import LayerContainer
|
10 |
+
'''
|
11 |
+
# HF Mistral model (mistralai/Mistral-7B-v0.1) looks like this:
|
12 |
+
MistralForCausalLM(
|
13 |
+
(model): MistralModel(
|
14 |
+
(embed_tokens): Embedding(32000, 4096)
|
15 |
+
(layers): ModuleList(
|
16 |
+
(0-31): 32 x MistralDecoderLayer(
|
17 |
+
(self_attn): MistralAttention(
|
18 |
+
(q_proj): Linear(in_features=4096, out_features=4096, bias=False)
|
19 |
+
(k_proj): Linear(in_features=4096, out_features=1024, bias=False)
|
20 |
+
(v_proj): Linear(in_features=4096, out_features=1024, bias=False)
|
21 |
+
(o_proj): Linear(in_features=4096, out_features=4096, bias=False)
|
22 |
+
(rotary_emb): MistralRotaryEmbedding()
|
23 |
+
)
|
24 |
+
(mlp): MistralMLP(
|
25 |
+
(gate_proj): Linear(in_features=4096, out_features=14336, bias=False)
|
26 |
+
(up_proj): Linear(in_features=4096, out_features=14336, bias=False)
|
27 |
+
(down_proj): Linear(in_features=14336, out_features=4096, bias=False)
|
28 |
+
(act_fn): SiLUActivation()
|
29 |
+
)
|
30 |
+
(input_layernorm): MistralRMSNorm()
|
31 |
+
(post_attention_layernorm): MistralRMSNorm()
|
32 |
+
)
|
33 |
+
)
|
34 |
+
(norm): MistralRMSNorm()
|
35 |
+
)
|
36 |
+
(lm_head): Linear(in_features=4096, out_features=32000, bias=False)
|
37 |
+
)
|
38 |
+
'''
|
39 |
+
|
40 |
+
|
41 |
+
class MistralTransformerContainer(LayerContainer):
|
42 |
+
"""
|
43 |
+
Transformer layer container for the Mistral model.
|
44 |
+
"""
|
45 |
+
qkv_w: UnfusedQKVParameter
|
46 |
+
attn_out_w: AttentionOutputParameter
|
47 |
+
mlp_1_w: GatedMLPParameter
|
48 |
+
mlp_2_w: MLP2Parameter
|
49 |
+
attn_norm_gamma: NormParameter
|
50 |
+
mlp_norm_gamma: NormParameter
|
51 |
+
|
52 |
+
PARAM_MAPPING = {
|
53 |
+
"self_attn.q_proj.weight": "qkv_w.q_params",
|
54 |
+
"self_attn.k_proj.weight": "qkv_w.k_params",
|
55 |
+
"self_attn.v_proj.weight": "qkv_w.v_params",
|
56 |
+
"self_attn.o_proj.weight": "attn_out_w.params",
|
57 |
+
"mlp.gate_proj.weight": "mlp_1_w.gate_params",
|
58 |
+
"mlp.up_proj.weight": "mlp_1_w.up_params",
|
59 |
+
"mlp.down_proj.weight": "mlp_2_w.params",
|
60 |
+
"input_layernorm.weight": "attn_norm_gamma.params",
|
61 |
+
"post_attention_layernorm.weight": "mlp_norm_gamma.params",
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
class MistralNonTransformerContainer(LayerContainer):
|
66 |
+
"""
|
67 |
+
Non-Transformer layer container for the Mistral model.
|
68 |
+
"""
|
69 |
+
word_emb: EmbeddingParameter
|
70 |
+
word_unembed: UnembedParameter
|
71 |
+
final_norm: NormParameter
|
72 |
+
|
73 |
+
PARAM_MAPPING = {
|
74 |
+
"model.embed_tokens.weight": "word_emb.params",
|
75 |
+
"model.norm.weight": "final_norm.params",
|
76 |
+
"lm_head.weight": "word_unembed.params",
|
77 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/model.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from typing import Iterable, Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
import deepspeed.comm as dist
|
11 |
+
|
12 |
+
from ...allocator import empty_from
|
13 |
+
from ...inference_utils import ActivationType, DtypeEnum
|
14 |
+
from ...model_implementations import *
|
15 |
+
from ...modules.configs import *
|
16 |
+
from ...modules.interfaces import *
|
17 |
+
from ...ragged import RaggedBatchWrapper
|
18 |
+
|
19 |
+
from .container import MistralNonTransformerContainer, MistralTransformerContainer
|
20 |
+
|
21 |
+
|
22 |
+
class MistralInferenceModel(DSTransformerModelBase):
|
23 |
+
"""
|
24 |
+
Inference model implementation for ragged batching for Mistral models.
|
25 |
+
"""
|
26 |
+
|
27 |
+
_non_transformer: Optional[MistralNonTransformerContainer]
|
28 |
+
"""
|
29 |
+
Embed + unembed container. Specializing the type annotation.
|
30 |
+
"""
|
31 |
+
|
32 |
+
_transformer: Optional[Iterable[MistralTransformerContainer]]
|
33 |
+
"""
|
34 |
+
Per-layer transformer container. Specializing the type annotation.
|
35 |
+
"""
|
36 |
+
"""
|
37 |
+
Properties ineherited from `DSInferenceModelBase`
|
38 |
+
"""
|
39 |
+
|
40 |
+
@property
|
41 |
+
def max_sequence_length(self) -> int:
|
42 |
+
return self._config.max_seq_length
|
43 |
+
|
44 |
+
"""
|
45 |
+
Properties ineherited from `DSTransformerModelBase`
|
46 |
+
"""
|
47 |
+
|
48 |
+
@property
|
49 |
+
def num_layers(self) -> int:
|
50 |
+
return self._config.num_hidden_layers
|
51 |
+
|
52 |
+
@property
|
53 |
+
def model_dim(self) -> int:
|
54 |
+
return self._config.hidden_size
|
55 |
+
|
56 |
+
@property
|
57 |
+
def vocab_size(self) -> int:
|
58 |
+
return self._config.vocab_size
|
59 |
+
|
60 |
+
@property
|
61 |
+
def head_size(self) -> int:
|
62 |
+
return self.model_dim // self.n_heads
|
63 |
+
|
64 |
+
@property
|
65 |
+
def n_heads(self) -> int:
|
66 |
+
return self._config.num_attention_heads
|
67 |
+
|
68 |
+
@property
|
69 |
+
def intermediate_dim(self) -> int:
|
70 |
+
return self._config.intermediate_size
|
71 |
+
|
72 |
+
@property
|
73 |
+
def n_heads_kv(self) -> int:
|
74 |
+
return self._config.num_key_value_heads
|
75 |
+
|
76 |
+
@property
|
77 |
+
def activation_dtype(self) -> DtypeEnum:
|
78 |
+
if self._config.torch_dtype == torch.float16:
|
79 |
+
return DtypeEnum.fp16
|
80 |
+
elif self._config.torch_dtype == torch.bfloat16:
|
81 |
+
return DtypeEnum.bf16
|
82 |
+
else:
|
83 |
+
raise NotImplementedError("Only fp16 and bf16 are supported")
|
84 |
+
|
85 |
+
@property
|
86 |
+
def mlp_activation_fn(self) -> ActivationType:
|
87 |
+
activation = self._config.hidden_act.lower()
|
88 |
+
if activation == "gelu":
|
89 |
+
return ActivationType.GEGLU
|
90 |
+
elif activation == "relu":
|
91 |
+
return ActivationType.ReGLU
|
92 |
+
elif activation == "gegelu":
|
93 |
+
return ActivationType.GEGLU
|
94 |
+
elif activation == "silu":
|
95 |
+
return ActivationType.SiGLU
|
96 |
+
else:
|
97 |
+
raise NotImplementedError(f"Activation {activation} not supported")
|
98 |
+
|
99 |
+
@property
|
100 |
+
def norm_type(self) -> NormTypeEnum:
|
101 |
+
return NormTypeEnum.RMSNorm
|
102 |
+
|
103 |
+
@property
|
104 |
+
def positional_embedding_type(self) -> PositionalEmbeddingType:
|
105 |
+
return PositionalEmbeddingType.rotate_half
|
106 |
+
|
107 |
+
@property
|
108 |
+
def positional_embedding_config(self) -> Optional[RotateHalfConfig]:
|
109 |
+
return RotateHalfConfig(theta_base=self._config.rope_theta)
|
110 |
+
|
111 |
+
"""
|
112 |
+
Forward implementations
|
113 |
+
"""
|
114 |
+
|
115 |
+
def _forward_embed(self, ragged_batch: RaggedBatchWrapper) -> torch.Tensor:
|
116 |
+
"""
|
117 |
+
Performs the embedding lookup prior to running the transformer of the model.
|
118 |
+
|
119 |
+
Arguments:
|
120 |
+
ragged_batch (RaggedBatchWrapper): The batch to embed.
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
torch.Tensor: The embedded batch.
|
124 |
+
"""
|
125 |
+
embed = self.embed(ragged_batch, self._non_transformer.word_emb)
|
126 |
+
|
127 |
+
if embed.shape[-1] != self.model_dim:
|
128 |
+
raise ValueError(f"Embedding output shape {embed.shape} does not match model_dim {self.model_dim}")
|
129 |
+
|
130 |
+
return embed
|
131 |
+
|
132 |
+
def _forward_transformer(self, layer_idx: int, residual: torch.Tensor, hidden_states: torch.Tensor,
|
133 |
+
ragged_batch_info: RaggedBatchWrapper) -> Tuple[torch.Tensor, torch.Tensor]:
|
134 |
+
"""
|
135 |
+
Executes one (slightly offset) layer of the transformer. This implementation does a peak-ahead
|
136 |
+
optimization to fuse the layer norm of the next layer into the current layer.
|
137 |
+
|
138 |
+
Arguments:
|
139 |
+
layer_idx (int): The index of the layer to execute.
|
140 |
+
residual (torch.Tensor): The residual tensor from the previous layer.
|
141 |
+
hidden_states (torch.Tensor): The hidden states from the previous layer. This is the
|
142 |
+
hidden states after pre normalization.
|
143 |
+
ragged_batch_info (RaggedBatchWrapper): The batch metadata.
|
144 |
+
"""
|
145 |
+
# TODO(cmikeh2): Distribute ragged_batch_info to all modules
|
146 |
+
|
147 |
+
cur_params = self._transformer[layer_idx]
|
148 |
+
kv_cache = self.state_manager.get_cache(layer_idx)
|
149 |
+
|
150 |
+
hidden_states = self.qkv(hidden_states, cur_params.qkv_w, b=None)
|
151 |
+
hidden_states = self.attn(hidden_states, kv_cache, ragged_batch_info)
|
152 |
+
hidden_states = self.attn_out(hidden_states, cur_params.attn_out_w, b=None)
|
153 |
+
|
154 |
+
if self.tp_size > 1:
|
155 |
+
dist.all_reduce(hidden_states, group=self._base_mp_group)
|
156 |
+
|
157 |
+
residual, hidden_states = self.norm(residual, hidden_states, cur_params.mlp_norm_gamma, beta=None)
|
158 |
+
|
159 |
+
# Should be configurable in the future
|
160 |
+
hidden_states = self.mlp_1(hidden_states, cur_params.mlp_1_w, b=None)
|
161 |
+
hidden_states = self.mlp_2(hidden_states, cur_params.mlp_2_w, b=None)
|
162 |
+
|
163 |
+
if self.tp_size > 1:
|
164 |
+
dist.all_reduce(hidden_states, group=self._base_mp_group)
|
165 |
+
|
166 |
+
if layer_idx != self.num_layers - 1:
|
167 |
+
next_params = self._transformer[layer_idx + 1]
|
168 |
+
residual, hidden_states = self.norm(residual, hidden_states, next_params.attn_norm_gamma, beta=None)
|
169 |
+
else:
|
170 |
+
# On last layer, we just need to perform the residual add. Adding into the residual
|
171 |
+
# here is safe.
|
172 |
+
residual.add_(hidden_states)
|
173 |
+
|
174 |
+
return residual, hidden_states
|
175 |
+
|
176 |
+
def _forward_unembed(self, hidden_states: torch.Tensor, ragged_batch_info: RaggedBatchWrapper) -> torch.Tensor:
|
177 |
+
"""
|
178 |
+
Performs unembedding of the hidden states to logits. This will only sample the final
|
179 |
+
token of each sequence.
|
180 |
+
"""
|
181 |
+
logits = self.unembed(hidden_states,
|
182 |
+
self._non_transformer.word_unembed,
|
183 |
+
ragged_batch_info,
|
184 |
+
gamma=self._non_transformer.final_norm)
|
185 |
+
|
186 |
+
if self.tp_size > 1:
|
187 |
+
comm_buffer = empty_from(self._comm_logits, (self.tp_size, logits.shape[0], logits.shape[1]))
|
188 |
+
full_logits = empty_from(self._return_logits, (logits.shape[0], self.vocab_size))
|
189 |
+
|
190 |
+
dist.all_gather_into_tensor(comm_buffer, logits, group=self._base_mp_group)
|
191 |
+
|
192 |
+
full_logits.copy_(comm_buffer.permute(1, 0, 2).reshape(logits.shape[0], self.vocab_size))
|
193 |
+
|
194 |
+
return full_logits
|
195 |
+
else:
|
196 |
+
return logits
|
197 |
+
|
198 |
+
def forward(self, wrapped_batch: RaggedBatchWrapper) -> torch.Tensor:
|
199 |
+
|
200 |
+
residual = self._forward_embed(wrapped_batch)
|
201 |
+
|
202 |
+
residual, hidden_states = self.norm(residual, None, self._transformer[0].attn_norm_gamma, beta=None)
|
203 |
+
|
204 |
+
for layer_idx in range(self.num_layers):
|
205 |
+
residual, hidden_states = self._forward_transformer(layer_idx, residual, hidden_states, wrapped_batch)
|
206 |
+
|
207 |
+
return self._forward_unembed(residual, wrapped_batch)
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mistral/policy.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from typing import Any
|
7 |
+
|
8 |
+
from ...config_v2 import RaggedInferenceEngineConfig
|
9 |
+
from ..inference_policy_base import ContainerMap, InferenceV2Policy
|
10 |
+
from .container import MistralNonTransformerContainer, MistralTransformerContainer
|
11 |
+
from .model import MistralInferenceModel
|
12 |
+
|
13 |
+
|
14 |
+
class MistralPolicy(InferenceV2Policy):
|
15 |
+
|
16 |
+
def instantiate_model(self, engine_config: RaggedInferenceEngineConfig, mp_group: Any) -> MistralInferenceModel:
|
17 |
+
return MistralInferenceModel(config=self._model_config, engine_config=engine_config, base_mp_group=mp_group)
|
18 |
+
|
19 |
+
def build_container_map(self) -> ContainerMap:
|
20 |
+
map = ContainerMap()
|
21 |
+
|
22 |
+
transformer_containers = [MistralTransformerContainer(self.model) for _ in range(self.model.num_layers)]
|
23 |
+
|
24 |
+
map.set_transformer_params(['model.layers'], transformer_containers)
|
25 |
+
|
26 |
+
map.set_non_transformer_params(MistralNonTransformerContainer(self.model))
|
27 |
+
|
28 |
+
map.set_unmapped_params([])
|
29 |
+
|
30 |
+
return map
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (256 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/__pycache__/container.cpython-310.pyc
ADDED
Binary file (2.41 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/__pycache__/model.cpython-310.pyc
ADDED
Binary file (6.16 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/__pycache__/policy.cpython-310.pyc
ADDED
Binary file (1.57 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (349 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/attn.cpython-310.pyc
ADDED
Binary file (1.67 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/attn_out.cpython-310.pyc
ADDED
Binary file (2.94 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/embedding.cpython-310.pyc
ADDED
Binary file (1.47 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/mlp.cpython-310.pyc
ADDED
Binary file (2.53 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/qkv.cpython-310.pyc
ADDED
Binary file (4.75 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/types.cpython-310.pyc
ADDED
Binary file (506 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/unembed.cpython-310.pyc
ADDED
Binary file (1.84 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (4.38 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/sharding/embedding.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from .types import ShardingType
|
9 |
+
from .utils import shard_param, get_shard_endpoints
|
10 |
+
|
11 |
+
|
12 |
+
def shard_embedding_param(param: torch.Tensor, shard_rank: int, num_shards: int) -> torch.Tensor:
|
13 |
+
"""
|
14 |
+
Utility method for sharding an embedding parameter.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
param (torch.Tensor): The parameter to shard. Should be of shape [vocab_size, model_dim]
|
18 |
+
shard_rank (int): Which shard of the partitioned tensor to return.
|
19 |
+
num_shards (int): The total number of shards the parameter is distributed across.
|
20 |
+
"""
|
21 |
+
return shard_param(param, ShardingType.INNER_DIMENSION, shard_rank, num_shards)
|
22 |
+
|
23 |
+
|
24 |
+
def sharded_embedding_dim(embedding_size: int, shard_rank: int, num_shards: int) -> int:
|
25 |
+
"""
|
26 |
+
Utility method for getting the size of the embedding dimension of a sharded embedding.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
embedding_size (int): The size of the embedding.
|
30 |
+
shard_rank (int): Which shard of the partitioned tensor to return.
|
31 |
+
num_shards (int): The total number of shards the parameter is distributed across.
|
32 |
+
"""
|
33 |
+
start_idx, end_idx = get_shard_endpoints(embedding_size, shard_rank, num_shards)
|
34 |
+
return end_idx - start_idx
|