applied-ai-018 commited on
Commit
3786b69
·
verified ·
1 Parent(s): fdd9207

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step40/zero/13.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
  2. ckpts/universal/global_step40/zero/19.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
  3. ckpts/universal/global_step40/zero/19.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
  4. ckpts/universal/global_step40/zero/7.post_attention_layernorm.weight/exp_avg.pt +3 -0
  5. ckpts/universal/global_step40/zero/7.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
  6. ckpts/universal/global_step40/zero/7.post_attention_layernorm.weight/fp32.pt +3 -0
  7. venv/lib/python3.10/site-packages/sklearn/inspection/__init__.py +14 -0
  8. venv/lib/python3.10/site-packages/sklearn/inspection/__pycache__/__init__.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/sklearn/inspection/_partial_dependence.py +743 -0
  10. venv/lib/python3.10/site-packages/sklearn/inspection/_pd_utils.py +64 -0
  11. venv/lib/python3.10/site-packages/sklearn/inspection/_permutation_importance.py +317 -0
  12. venv/lib/python3.10/site-packages/sklearn/inspection/_plot/__init__.py +0 -0
  13. venv/lib/python3.10/site-packages/sklearn/inspection/_plot/decision_boundary.py +406 -0
  14. venv/lib/python3.10/site-packages/sklearn/inspection/_plot/partial_dependence.py +1473 -0
  15. venv/lib/python3.10/site-packages/sklearn/inspection/_plot/tests/test_boundary_decision_display.py +609 -0
  16. venv/lib/python3.10/site-packages/sklearn/inspection/_plot/tests/test_plot_partial_dependence.py +1140 -0
  17. venv/lib/python3.10/site-packages/sklearn/inspection/tests/__init__.py +0 -0
  18. venv/lib/python3.10/site-packages/sklearn/inspection/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/sklearn/inspection/tests/__pycache__/test_partial_dependence.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/sklearn/inspection/tests/__pycache__/test_pd_utils.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/sklearn/inspection/tests/__pycache__/test_permutation_importance.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/sklearn/inspection/tests/test_partial_dependence.py +958 -0
  23. venv/lib/python3.10/site-packages/sklearn/inspection/tests/test_pd_utils.py +47 -0
  24. venv/lib/python3.10/site-packages/sklearn/inspection/tests/test_permutation_importance.py +542 -0
  25. venv/lib/python3.10/site-packages/sklearn/metrics/__init__.py +180 -0
  26. venv/lib/python3.10/site-packages/sklearn/metrics/_base.py +199 -0
  27. venv/lib/python3.10/site-packages/sklearn/metrics/_classification.py +0 -0
  28. venv/lib/python3.10/site-packages/sklearn/metrics/_dist_metrics.cpython-310-x86_64-linux-gnu.so +0 -0
  29. venv/lib/python3.10/site-packages/sklearn/metrics/_dist_metrics.pxd +272 -0
  30. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/__init__.py +112 -0
  31. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/__pycache__/__init__.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/__pycache__/_dispatcher.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_argkmin.cpython-310-x86_64-linux-gnu.so +0 -0
  34. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_argkmin.pxd +57 -0
  35. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_argkmin_classmode.cpython-310-x86_64-linux-gnu.so +0 -0
  36. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_base.cpython-310-x86_64-linux-gnu.so +0 -0
  37. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_base.pxd +265 -0
  38. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_classmode.pxd +5 -0
  39. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_datasets_pair.cpython-310-x86_64-linux-gnu.so +0 -0
  40. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_datasets_pair.pxd +106 -0
  41. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_dispatcher.py +764 -0
  42. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_middle_term_computer.cpython-310-x86_64-linux-gnu.so +0 -0
  43. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_middle_term_computer.pxd +396 -0
  44. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_radius_neighbors.cpython-310-x86_64-linux-gnu.so +0 -0
  45. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_radius_neighbors.pxd +150 -0
  46. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_radius_neighbors_classmode.cpython-310-x86_64-linux-gnu.so +0 -0
  47. venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_fast.cpython-310-x86_64-linux-gnu.so +0 -0
  48. venv/lib/python3.10/site-packages/sklearn/metrics/_plot/__init__.py +0 -0
  49. venv/lib/python3.10/site-packages/sklearn/metrics/_plot/__pycache__/__init__.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/sklearn/metrics/_plot/__pycache__/confusion_matrix.cpython-310.pyc +0 -0
ckpts/universal/global_step40/zero/13.attention.query_key_value.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f7c5f90dcc736b10c9a860fee444b18b8a80b0c0e1070f7d4664b26c43b687d
3
+ size 50332843
ckpts/universal/global_step40/zero/19.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bee4537af3d84a16470ecce9a9f4fd1fe0ac6bc730c97111f07370d4f811d2b1
3
+ size 33555612
ckpts/universal/global_step40/zero/19.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39bf520e527c0e2a618541079856e71dd96119a642808df2dd28f35172dcdd4f
3
+ size 33555627
ckpts/universal/global_step40/zero/7.post_attention_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df0904ae0d573f831a319d36df66437abfde9e930925b37b49cc55f33c9121fb
3
+ size 9372
ckpts/universal/global_step40/zero/7.post_attention_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:848b426a17e8a254353595bfa2925cc39bc4e6ac59d7b00e636a81177b08d1bd
3
+ size 9387
ckpts/universal/global_step40/zero/7.post_attention_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9446fed7682f41a6b4b537b5730b03286a34116c71ecf4b2f26b6fcdb4d901fb
3
+ size 9293
venv/lib/python3.10/site-packages/sklearn/inspection/__init__.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """The :mod:`sklearn.inspection` module includes tools for model inspection."""
2
+
3
+
4
+ from ._partial_dependence import partial_dependence
5
+ from ._permutation_importance import permutation_importance
6
+ from ._plot.decision_boundary import DecisionBoundaryDisplay
7
+ from ._plot.partial_dependence import PartialDependenceDisplay
8
+
9
+ __all__ = [
10
+ "partial_dependence",
11
+ "permutation_importance",
12
+ "PartialDependenceDisplay",
13
+ "DecisionBoundaryDisplay",
14
+ ]
venv/lib/python3.10/site-packages/sklearn/inspection/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (593 Bytes). View file
 
venv/lib/python3.10/site-packages/sklearn/inspection/_partial_dependence.py ADDED
@@ -0,0 +1,743 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Partial dependence plots for regression and classification models."""
2
+
3
+ # Authors: Peter Prettenhofer
4
+ # Trevor Stephens
5
+ # Nicolas Hug
6
+ # License: BSD 3 clause
7
+
8
+ from collections.abc import Iterable
9
+
10
+ import numpy as np
11
+ from scipy import sparse
12
+ from scipy.stats.mstats import mquantiles
13
+
14
+ from ..base import is_classifier, is_regressor
15
+ from ..ensemble import RandomForestRegressor
16
+ from ..ensemble._gb import BaseGradientBoosting
17
+ from ..ensemble._hist_gradient_boosting.gradient_boosting import (
18
+ BaseHistGradientBoosting,
19
+ )
20
+ from ..exceptions import NotFittedError
21
+ from ..tree import DecisionTreeRegressor
22
+ from ..utils import (
23
+ Bunch,
24
+ _determine_key_type,
25
+ _get_column_indices,
26
+ _safe_assign,
27
+ _safe_indexing,
28
+ check_array,
29
+ check_matplotlib_support, # noqa
30
+ )
31
+ from ..utils._param_validation import (
32
+ HasMethods,
33
+ Integral,
34
+ Interval,
35
+ StrOptions,
36
+ validate_params,
37
+ )
38
+ from ..utils.extmath import cartesian
39
+ from ..utils.validation import _check_sample_weight, check_is_fitted
40
+ from ._pd_utils import _check_feature_names, _get_feature_index
41
+
42
+ __all__ = [
43
+ "partial_dependence",
44
+ ]
45
+
46
+
47
+ def _grid_from_X(X, percentiles, is_categorical, grid_resolution):
48
+ """Generate a grid of points based on the percentiles of X.
49
+
50
+ The grid is a cartesian product between the columns of ``values``. The
51
+ ith column of ``values`` consists in ``grid_resolution`` equally-spaced
52
+ points between the percentiles of the jth column of X.
53
+
54
+ If ``grid_resolution`` is bigger than the number of unique values in the
55
+ j-th column of X or if the feature is a categorical feature (by inspecting
56
+ `is_categorical`) , then those unique values will be used instead.
57
+
58
+ Parameters
59
+ ----------
60
+ X : array-like of shape (n_samples, n_target_features)
61
+ The data.
62
+
63
+ percentiles : tuple of float
64
+ The percentiles which are used to construct the extreme values of
65
+ the grid. Must be in [0, 1].
66
+
67
+ is_categorical : list of bool
68
+ For each feature, tells whether it is categorical or not. If a feature
69
+ is categorical, then the values used will be the unique ones
70
+ (i.e. categories) instead of the percentiles.
71
+
72
+ grid_resolution : int
73
+ The number of equally spaced points to be placed on the grid for each
74
+ feature.
75
+
76
+ Returns
77
+ -------
78
+ grid : ndarray of shape (n_points, n_target_features)
79
+ A value for each feature at each point in the grid. ``n_points`` is
80
+ always ``<= grid_resolution ** X.shape[1]``.
81
+
82
+ values : list of 1d ndarrays
83
+ The values with which the grid has been created. The size of each
84
+ array ``values[j]`` is either ``grid_resolution``, or the number of
85
+ unique values in ``X[:, j]``, whichever is smaller.
86
+ """
87
+ if not isinstance(percentiles, Iterable) or len(percentiles) != 2:
88
+ raise ValueError("'percentiles' must be a sequence of 2 elements.")
89
+ if not all(0 <= x <= 1 for x in percentiles):
90
+ raise ValueError("'percentiles' values must be in [0, 1].")
91
+ if percentiles[0] >= percentiles[1]:
92
+ raise ValueError("percentiles[0] must be strictly less than percentiles[1].")
93
+
94
+ if grid_resolution <= 1:
95
+ raise ValueError("'grid_resolution' must be strictly greater than 1.")
96
+
97
+ values = []
98
+ # TODO: we should handle missing values (i.e. `np.nan`) specifically and store them
99
+ # in a different Bunch attribute.
100
+ for feature, is_cat in enumerate(is_categorical):
101
+ try:
102
+ uniques = np.unique(_safe_indexing(X, feature, axis=1))
103
+ except TypeError as exc:
104
+ # `np.unique` will fail in the presence of `np.nan` and `str` categories
105
+ # due to sorting. Temporary, we reraise an error explaining the problem.
106
+ raise ValueError(
107
+ f"The column #{feature} contains mixed data types. Finding unique "
108
+ "categories fail due to sorting. It usually means that the column "
109
+ "contains `np.nan` values together with `str` categories. Such use "
110
+ "case is not yet supported in scikit-learn."
111
+ ) from exc
112
+ if is_cat or uniques.shape[0] < grid_resolution:
113
+ # Use the unique values either because:
114
+ # - feature has low resolution use unique values
115
+ # - feature is categorical
116
+ axis = uniques
117
+ else:
118
+ # create axis based on percentiles and grid resolution
119
+ emp_percentiles = mquantiles(
120
+ _safe_indexing(X, feature, axis=1), prob=percentiles, axis=0
121
+ )
122
+ if np.allclose(emp_percentiles[0], emp_percentiles[1]):
123
+ raise ValueError(
124
+ "percentiles are too close to each other, "
125
+ "unable to build the grid. Please choose percentiles "
126
+ "that are further apart."
127
+ )
128
+ axis = np.linspace(
129
+ emp_percentiles[0],
130
+ emp_percentiles[1],
131
+ num=grid_resolution,
132
+ endpoint=True,
133
+ )
134
+ values.append(axis)
135
+
136
+ return cartesian(values), values
137
+
138
+
139
+ def _partial_dependence_recursion(est, grid, features):
140
+ """Calculate partial dependence via the recursion method.
141
+
142
+ The recursion method is in particular enabled for tree-based estimators.
143
+
144
+ For each `grid` value, a weighted tree traversal is performed: if a split node
145
+ involves an input feature of interest, the corresponding left or right branch
146
+ is followed; otherwise both branches are followed, each branch being weighted
147
+ by the fraction of training samples that entered that branch. Finally, the
148
+ partial dependence is given by a weighted average of all the visited leaves
149
+ values.
150
+
151
+ This method is more efficient in terms of speed than the `'brute'` method
152
+ (:func:`~sklearn.inspection._partial_dependence._partial_dependence_brute`).
153
+ However, here, the partial dependence computation is done explicitly with the
154
+ `X` used during training of `est`.
155
+
156
+ Parameters
157
+ ----------
158
+ est : BaseEstimator
159
+ A fitted estimator object implementing :term:`predict` or
160
+ :term:`decision_function`. Multioutput-multiclass classifiers are not
161
+ supported. Note that `'recursion'` is only supported for some tree-based
162
+ estimators (namely
163
+ :class:`~sklearn.ensemble.GradientBoostingClassifier`,
164
+ :class:`~sklearn.ensemble.GradientBoostingRegressor`,
165
+ :class:`~sklearn.ensemble.HistGradientBoostingClassifier`,
166
+ :class:`~sklearn.ensemble.HistGradientBoostingRegressor`,
167
+ :class:`~sklearn.tree.DecisionTreeRegressor`,
168
+ :class:`~sklearn.ensemble.RandomForestRegressor`,
169
+ ).
170
+
171
+ grid : array-like of shape (n_points, n_target_features)
172
+ The grid of feature values for which the partial dependence is calculated.
173
+ Note that `n_points` is the number of points in the grid and `n_target_features`
174
+ is the number of features you are doing partial dependence at.
175
+
176
+ features : array-like of {int, str}
177
+ The feature (e.g. `[0]`) or pair of interacting features
178
+ (e.g. `[(0, 1)]`) for which the partial dependency should be computed.
179
+
180
+ Returns
181
+ -------
182
+ averaged_predictions : array-like of shape (n_targets, n_points)
183
+ The averaged predictions for the given `grid` of features values.
184
+ Note that `n_targets` is the number of targets (e.g. 1 for binary
185
+ classification, `n_tasks` for multi-output regression, and `n_classes` for
186
+ multiclass classification) and `n_points` is the number of points in the `grid`.
187
+ """
188
+ averaged_predictions = est._compute_partial_dependence_recursion(grid, features)
189
+ if averaged_predictions.ndim == 1:
190
+ # reshape to (1, n_points) for consistency with
191
+ # _partial_dependence_brute
192
+ averaged_predictions = averaged_predictions.reshape(1, -1)
193
+
194
+ return averaged_predictions
195
+
196
+
197
+ def _partial_dependence_brute(
198
+ est, grid, features, X, response_method, sample_weight=None
199
+ ):
200
+ """Calculate partial dependence via the brute force method.
201
+
202
+ The brute method explicitly averages the predictions of an estimator over a
203
+ grid of feature values.
204
+
205
+ For each `grid` value, all the samples from `X` have their variables of
206
+ interest replaced by that specific `grid` value. The predictions are then made
207
+ and averaged across the samples.
208
+
209
+ This method is slower than the `'recursion'`
210
+ (:func:`~sklearn.inspection._partial_dependence._partial_dependence_recursion`)
211
+ version for estimators with this second option. However, with the `'brute'`
212
+ force method, the average will be done with the given `X` and not the `X`
213
+ used during training, as it is done in the `'recursion'` version. Therefore
214
+ the average can always accept `sample_weight` (even when the estimator was
215
+ fitted without).
216
+
217
+ Parameters
218
+ ----------
219
+ est : BaseEstimator
220
+ A fitted estimator object implementing :term:`predict`,
221
+ :term:`predict_proba`, or :term:`decision_function`.
222
+ Multioutput-multiclass classifiers are not supported.
223
+
224
+ grid : array-like of shape (n_points, n_target_features)
225
+ The grid of feature values for which the partial dependence is calculated.
226
+ Note that `n_points` is the number of points in the grid and `n_target_features`
227
+ is the number of features you are doing partial dependence at.
228
+
229
+ features : array-like of {int, str}
230
+ The feature (e.g. `[0]`) or pair of interacting features
231
+ (e.g. `[(0, 1)]`) for which the partial dependency should be computed.
232
+
233
+ X : array-like of shape (n_samples, n_features)
234
+ `X` is used to generate values for the complement features. That is, for
235
+ each value in `grid`, the method will average the prediction of each
236
+ sample from `X` having that grid value for `features`.
237
+
238
+ response_method : {'auto', 'predict_proba', 'decision_function'}, \
239
+ default='auto'
240
+ Specifies whether to use :term:`predict_proba` or
241
+ :term:`decision_function` as the target response. For regressors
242
+ this parameter is ignored and the response is always the output of
243
+ :term:`predict`. By default, :term:`predict_proba` is tried first
244
+ and we revert to :term:`decision_function` if it doesn't exist.
245
+
246
+ sample_weight : array-like of shape (n_samples,), default=None
247
+ Sample weights are used to calculate weighted means when averaging the
248
+ model output. If `None`, then samples are equally weighted. Note that
249
+ `sample_weight` does not change the individual predictions.
250
+
251
+ Returns
252
+ -------
253
+ averaged_predictions : array-like of shape (n_targets, n_points)
254
+ The averaged predictions for the given `grid` of features values.
255
+ Note that `n_targets` is the number of targets (e.g. 1 for binary
256
+ classification, `n_tasks` for multi-output regression, and `n_classes` for
257
+ multiclass classification) and `n_points` is the number of points in the `grid`.
258
+
259
+ predictions : array-like
260
+ The predictions for the given `grid` of features values over the samples
261
+ from `X`. For non-multioutput regression and binary classification the
262
+ shape is `(n_instances, n_points)` and for multi-output regression and
263
+ multiclass classification the shape is `(n_targets, n_instances, n_points)`,
264
+ where `n_targets` is the number of targets (`n_tasks` for multi-output
265
+ regression, and `n_classes` for multiclass classification), `n_instances`
266
+ is the number of instances in `X`, and `n_points` is the number of points
267
+ in the `grid`.
268
+ """
269
+ predictions = []
270
+ averaged_predictions = []
271
+
272
+ # define the prediction_method (predict, predict_proba, decision_function).
273
+ if is_regressor(est):
274
+ prediction_method = est.predict
275
+ else:
276
+ predict_proba = getattr(est, "predict_proba", None)
277
+ decision_function = getattr(est, "decision_function", None)
278
+ if response_method == "auto":
279
+ # try predict_proba, then decision_function if it doesn't exist
280
+ prediction_method = predict_proba or decision_function
281
+ else:
282
+ prediction_method = (
283
+ predict_proba
284
+ if response_method == "predict_proba"
285
+ else decision_function
286
+ )
287
+ if prediction_method is None:
288
+ if response_method == "auto":
289
+ raise ValueError(
290
+ "The estimator has no predict_proba and no "
291
+ "decision_function method."
292
+ )
293
+ elif response_method == "predict_proba":
294
+ raise ValueError("The estimator has no predict_proba method.")
295
+ else:
296
+ raise ValueError("The estimator has no decision_function method.")
297
+
298
+ X_eval = X.copy()
299
+ for new_values in grid:
300
+ for i, variable in enumerate(features):
301
+ _safe_assign(X_eval, new_values[i], column_indexer=variable)
302
+
303
+ try:
304
+ # Note: predictions is of shape
305
+ # (n_points,) for non-multioutput regressors
306
+ # (n_points, n_tasks) for multioutput regressors
307
+ # (n_points, 1) for the regressors in cross_decomposition (I think)
308
+ # (n_points, 2) for binary classification
309
+ # (n_points, n_classes) for multiclass classification
310
+ pred = prediction_method(X_eval)
311
+
312
+ predictions.append(pred)
313
+ # average over samples
314
+ averaged_predictions.append(np.average(pred, axis=0, weights=sample_weight))
315
+ except NotFittedError as e:
316
+ raise ValueError("'estimator' parameter must be a fitted estimator") from e
317
+
318
+ n_samples = X.shape[0]
319
+
320
+ # reshape to (n_targets, n_instances, n_points) where n_targets is:
321
+ # - 1 for non-multioutput regression and binary classification (shape is
322
+ # already correct in those cases)
323
+ # - n_tasks for multi-output regression
324
+ # - n_classes for multiclass classification.
325
+ predictions = np.array(predictions).T
326
+ if is_regressor(est) and predictions.ndim == 2:
327
+ # non-multioutput regression, shape is (n_instances, n_points,)
328
+ predictions = predictions.reshape(n_samples, -1)
329
+ elif is_classifier(est) and predictions.shape[0] == 2:
330
+ # Binary classification, shape is (2, n_instances, n_points).
331
+ # we output the effect of **positive** class
332
+ predictions = predictions[1]
333
+ predictions = predictions.reshape(n_samples, -1)
334
+
335
+ # reshape averaged_predictions to (n_targets, n_points) where n_targets is:
336
+ # - 1 for non-multioutput regression and binary classification (shape is
337
+ # already correct in those cases)
338
+ # - n_tasks for multi-output regression
339
+ # - n_classes for multiclass classification.
340
+ averaged_predictions = np.array(averaged_predictions).T
341
+ if is_regressor(est) and averaged_predictions.ndim == 1:
342
+ # non-multioutput regression, shape is (n_points,)
343
+ averaged_predictions = averaged_predictions.reshape(1, -1)
344
+ elif is_classifier(est) and averaged_predictions.shape[0] == 2:
345
+ # Binary classification, shape is (2, n_points).
346
+ # we output the effect of **positive** class
347
+ averaged_predictions = averaged_predictions[1]
348
+ averaged_predictions = averaged_predictions.reshape(1, -1)
349
+
350
+ return averaged_predictions, predictions
351
+
352
+
353
+ @validate_params(
354
+ {
355
+ "estimator": [
356
+ HasMethods(["fit", "predict"]),
357
+ HasMethods(["fit", "predict_proba"]),
358
+ HasMethods(["fit", "decision_function"]),
359
+ ],
360
+ "X": ["array-like", "sparse matrix"],
361
+ "features": ["array-like", Integral, str],
362
+ "sample_weight": ["array-like", None],
363
+ "categorical_features": ["array-like", None],
364
+ "feature_names": ["array-like", None],
365
+ "response_method": [StrOptions({"auto", "predict_proba", "decision_function"})],
366
+ "percentiles": [tuple],
367
+ "grid_resolution": [Interval(Integral, 1, None, closed="left")],
368
+ "method": [StrOptions({"auto", "recursion", "brute"})],
369
+ "kind": [StrOptions({"average", "individual", "both"})],
370
+ },
371
+ prefer_skip_nested_validation=True,
372
+ )
373
+ def partial_dependence(
374
+ estimator,
375
+ X,
376
+ features,
377
+ *,
378
+ sample_weight=None,
379
+ categorical_features=None,
380
+ feature_names=None,
381
+ response_method="auto",
382
+ percentiles=(0.05, 0.95),
383
+ grid_resolution=100,
384
+ method="auto",
385
+ kind="average",
386
+ ):
387
+ """Partial dependence of ``features``.
388
+
389
+ Partial dependence of a feature (or a set of features) corresponds to
390
+ the average response of an estimator for each possible value of the
391
+ feature.
392
+
393
+ Read more in the :ref:`User Guide <partial_dependence>`.
394
+
395
+ .. warning::
396
+
397
+ For :class:`~sklearn.ensemble.GradientBoostingClassifier` and
398
+ :class:`~sklearn.ensemble.GradientBoostingRegressor`, the
399
+ `'recursion'` method (used by default) will not account for the `init`
400
+ predictor of the boosting process. In practice, this will produce
401
+ the same values as `'brute'` up to a constant offset in the target
402
+ response, provided that `init` is a constant estimator (which is the
403
+ default). However, if `init` is not a constant estimator, the
404
+ partial dependence values are incorrect for `'recursion'` because the
405
+ offset will be sample-dependent. It is preferable to use the `'brute'`
406
+ method. Note that this only applies to
407
+ :class:`~sklearn.ensemble.GradientBoostingClassifier` and
408
+ :class:`~sklearn.ensemble.GradientBoostingRegressor`, not to
409
+ :class:`~sklearn.ensemble.HistGradientBoostingClassifier` and
410
+ :class:`~sklearn.ensemble.HistGradientBoostingRegressor`.
411
+
412
+ Parameters
413
+ ----------
414
+ estimator : BaseEstimator
415
+ A fitted estimator object implementing :term:`predict`,
416
+ :term:`predict_proba`, or :term:`decision_function`.
417
+ Multioutput-multiclass classifiers are not supported.
418
+
419
+ X : {array-like, sparse matrix or dataframe} of shape (n_samples, n_features)
420
+ ``X`` is used to generate a grid of values for the target
421
+ ``features`` (where the partial dependence will be evaluated), and
422
+ also to generate values for the complement features when the
423
+ `method` is 'brute'.
424
+
425
+ features : array-like of {int, str, bool} or int or str
426
+ The feature (e.g. `[0]`) or pair of interacting features
427
+ (e.g. `[(0, 1)]`) for which the partial dependency should be computed.
428
+
429
+ sample_weight : array-like of shape (n_samples,), default=None
430
+ Sample weights are used to calculate weighted means when averaging the
431
+ model output. If `None`, then samples are equally weighted. If
432
+ `sample_weight` is not `None`, then `method` will be set to `'brute'`.
433
+ Note that `sample_weight` is ignored for `kind='individual'`.
434
+
435
+ .. versionadded:: 1.3
436
+
437
+ categorical_features : array-like of shape (n_features,) or shape \
438
+ (n_categorical_features,), dtype={bool, int, str}, default=None
439
+ Indicates the categorical features.
440
+
441
+ - `None`: no feature will be considered categorical;
442
+ - boolean array-like: boolean mask of shape `(n_features,)`
443
+ indicating which features are categorical. Thus, this array has
444
+ the same shape has `X.shape[1]`;
445
+ - integer or string array-like: integer indices or strings
446
+ indicating categorical features.
447
+
448
+ .. versionadded:: 1.2
449
+
450
+ feature_names : array-like of shape (n_features,), dtype=str, default=None
451
+ Name of each feature; `feature_names[i]` holds the name of the feature
452
+ with index `i`.
453
+ By default, the name of the feature corresponds to their numerical
454
+ index for NumPy array and their column name for pandas dataframe.
455
+
456
+ .. versionadded:: 1.2
457
+
458
+ response_method : {'auto', 'predict_proba', 'decision_function'}, \
459
+ default='auto'
460
+ Specifies whether to use :term:`predict_proba` or
461
+ :term:`decision_function` as the target response. For regressors
462
+ this parameter is ignored and the response is always the output of
463
+ :term:`predict`. By default, :term:`predict_proba` is tried first
464
+ and we revert to :term:`decision_function` if it doesn't exist. If
465
+ ``method`` is 'recursion', the response is always the output of
466
+ :term:`decision_function`.
467
+
468
+ percentiles : tuple of float, default=(0.05, 0.95)
469
+ The lower and upper percentile used to create the extreme values
470
+ for the grid. Must be in [0, 1].
471
+
472
+ grid_resolution : int, default=100
473
+ The number of equally spaced points on the grid, for each target
474
+ feature.
475
+
476
+ method : {'auto', 'recursion', 'brute'}, default='auto'
477
+ The method used to calculate the averaged predictions:
478
+
479
+ - `'recursion'` is only supported for some tree-based estimators
480
+ (namely
481
+ :class:`~sklearn.ensemble.GradientBoostingClassifier`,
482
+ :class:`~sklearn.ensemble.GradientBoostingRegressor`,
483
+ :class:`~sklearn.ensemble.HistGradientBoostingClassifier`,
484
+ :class:`~sklearn.ensemble.HistGradientBoostingRegressor`,
485
+ :class:`~sklearn.tree.DecisionTreeRegressor`,
486
+ :class:`~sklearn.ensemble.RandomForestRegressor`,
487
+ ) when `kind='average'`.
488
+ This is more efficient in terms of speed.
489
+ With this method, the target response of a
490
+ classifier is always the decision function, not the predicted
491
+ probabilities. Since the `'recursion'` method implicitly computes
492
+ the average of the Individual Conditional Expectation (ICE) by
493
+ design, it is not compatible with ICE and thus `kind` must be
494
+ `'average'`.
495
+
496
+ - `'brute'` is supported for any estimator, but is more
497
+ computationally intensive.
498
+
499
+ - `'auto'`: the `'recursion'` is used for estimators that support it,
500
+ and `'brute'` is used otherwise. If `sample_weight` is not `None`,
501
+ then `'brute'` is used regardless of the estimator.
502
+
503
+ Please see :ref:`this note <pdp_method_differences>` for
504
+ differences between the `'brute'` and `'recursion'` method.
505
+
506
+ kind : {'average', 'individual', 'both'}, default='average'
507
+ Whether to return the partial dependence averaged across all the
508
+ samples in the dataset or one value per sample or both.
509
+ See Returns below.
510
+
511
+ Note that the fast `method='recursion'` option is only available for
512
+ `kind='average'` and `sample_weights=None`. Computing individual
513
+ dependencies and doing weighted averages requires using the slower
514
+ `method='brute'`.
515
+
516
+ .. versionadded:: 0.24
517
+
518
+ Returns
519
+ -------
520
+ predictions : :class:`~sklearn.utils.Bunch`
521
+ Dictionary-like object, with the following attributes.
522
+
523
+ individual : ndarray of shape (n_outputs, n_instances, \
524
+ len(values[0]), len(values[1]), ...)
525
+ The predictions for all the points in the grid for all
526
+ samples in X. This is also known as Individual
527
+ Conditional Expectation (ICE).
528
+ Only available when `kind='individual'` or `kind='both'`.
529
+
530
+ average : ndarray of shape (n_outputs, len(values[0]), \
531
+ len(values[1]), ...)
532
+ The predictions for all the points in the grid, averaged
533
+ over all samples in X (or over the training data if
534
+ `method` is 'recursion').
535
+ Only available when `kind='average'` or `kind='both'`.
536
+
537
+ values : seq of 1d ndarrays
538
+ The values with which the grid has been created.
539
+
540
+ .. deprecated:: 1.3
541
+ The key `values` has been deprecated in 1.3 and will be removed
542
+ in 1.5 in favor of `grid_values`. See `grid_values` for details
543
+ about the `values` attribute.
544
+
545
+ grid_values : seq of 1d ndarrays
546
+ The values with which the grid has been created. The generated
547
+ grid is a cartesian product of the arrays in `grid_values` where
548
+ `len(grid_values) == len(features)`. The size of each array
549
+ `grid_values[j]` is either `grid_resolution`, or the number of
550
+ unique values in `X[:, j]`, whichever is smaller.
551
+
552
+ .. versionadded:: 1.3
553
+
554
+ `n_outputs` corresponds to the number of classes in a multi-class
555
+ setting, or to the number of tasks for multi-output regression.
556
+ For classical regression and binary classification `n_outputs==1`.
557
+ `n_values_feature_j` corresponds to the size `grid_values[j]`.
558
+
559
+ See Also
560
+ --------
561
+ PartialDependenceDisplay.from_estimator : Plot Partial Dependence.
562
+ PartialDependenceDisplay : Partial Dependence visualization.
563
+
564
+ Examples
565
+ --------
566
+ >>> X = [[0, 0, 2], [1, 0, 0]]
567
+ >>> y = [0, 1]
568
+ >>> from sklearn.ensemble import GradientBoostingClassifier
569
+ >>> gb = GradientBoostingClassifier(random_state=0).fit(X, y)
570
+ >>> partial_dependence(gb, features=[0], X=X, percentiles=(0, 1),
571
+ ... grid_resolution=2) # doctest: +SKIP
572
+ (array([[-4.52..., 4.52...]]), [array([ 0., 1.])])
573
+ """
574
+ check_is_fitted(estimator)
575
+
576
+ if not (is_classifier(estimator) or is_regressor(estimator)):
577
+ raise ValueError("'estimator' must be a fitted regressor or classifier.")
578
+
579
+ if is_classifier(estimator) and isinstance(estimator.classes_[0], np.ndarray):
580
+ raise ValueError("Multiclass-multioutput estimators are not supported")
581
+
582
+ # Use check_array only on lists and other non-array-likes / sparse. Do not
583
+ # convert DataFrame into a NumPy array.
584
+ if not (hasattr(X, "__array__") or sparse.issparse(X)):
585
+ X = check_array(X, force_all_finite="allow-nan", dtype=object)
586
+
587
+ if is_regressor(estimator) and response_method != "auto":
588
+ raise ValueError(
589
+ "The response_method parameter is ignored for regressors and "
590
+ "must be 'auto'."
591
+ )
592
+
593
+ if kind != "average":
594
+ if method == "recursion":
595
+ raise ValueError(
596
+ "The 'recursion' method only applies when 'kind' is set to 'average'"
597
+ )
598
+ method = "brute"
599
+
600
+ if method == "recursion" and sample_weight is not None:
601
+ raise ValueError(
602
+ "The 'recursion' method can only be applied when sample_weight is None."
603
+ )
604
+
605
+ if method == "auto":
606
+ if sample_weight is not None:
607
+ method = "brute"
608
+ elif isinstance(estimator, BaseGradientBoosting) and estimator.init is None:
609
+ method = "recursion"
610
+ elif isinstance(
611
+ estimator,
612
+ (BaseHistGradientBoosting, DecisionTreeRegressor, RandomForestRegressor),
613
+ ):
614
+ method = "recursion"
615
+ else:
616
+ method = "brute"
617
+
618
+ if method == "recursion":
619
+ if not isinstance(
620
+ estimator,
621
+ (
622
+ BaseGradientBoosting,
623
+ BaseHistGradientBoosting,
624
+ DecisionTreeRegressor,
625
+ RandomForestRegressor,
626
+ ),
627
+ ):
628
+ supported_classes_recursion = (
629
+ "GradientBoostingClassifier",
630
+ "GradientBoostingRegressor",
631
+ "HistGradientBoostingClassifier",
632
+ "HistGradientBoostingRegressor",
633
+ "HistGradientBoostingRegressor",
634
+ "DecisionTreeRegressor",
635
+ "RandomForestRegressor",
636
+ )
637
+ raise ValueError(
638
+ "Only the following estimators support the 'recursion' "
639
+ "method: {}. Try using method='brute'.".format(
640
+ ", ".join(supported_classes_recursion)
641
+ )
642
+ )
643
+ if response_method == "auto":
644
+ response_method = "decision_function"
645
+
646
+ if response_method != "decision_function":
647
+ raise ValueError(
648
+ "With the 'recursion' method, the response_method must be "
649
+ "'decision_function'. Got {}.".format(response_method)
650
+ )
651
+
652
+ if sample_weight is not None:
653
+ sample_weight = _check_sample_weight(sample_weight, X)
654
+
655
+ if _determine_key_type(features, accept_slice=False) == "int":
656
+ # _get_column_indices() supports negative indexing. Here, we limit
657
+ # the indexing to be positive. The upper bound will be checked
658
+ # by _get_column_indices()
659
+ if np.any(np.less(features, 0)):
660
+ raise ValueError("all features must be in [0, {}]".format(X.shape[1] - 1))
661
+
662
+ features_indices = np.asarray(
663
+ _get_column_indices(X, features), dtype=np.int32, order="C"
664
+ ).ravel()
665
+
666
+ feature_names = _check_feature_names(X, feature_names)
667
+
668
+ n_features = X.shape[1]
669
+ if categorical_features is None:
670
+ is_categorical = [False] * len(features_indices)
671
+ else:
672
+ categorical_features = np.asarray(categorical_features)
673
+ if categorical_features.dtype.kind == "b":
674
+ # categorical features provided as a list of boolean
675
+ if categorical_features.size != n_features:
676
+ raise ValueError(
677
+ "When `categorical_features` is a boolean array-like, "
678
+ "the array should be of shape (n_features,). Got "
679
+ f"{categorical_features.size} elements while `X` contains "
680
+ f"{n_features} features."
681
+ )
682
+ is_categorical = [categorical_features[idx] for idx in features_indices]
683
+ elif categorical_features.dtype.kind in ("i", "O", "U"):
684
+ # categorical features provided as a list of indices or feature names
685
+ categorical_features_idx = [
686
+ _get_feature_index(cat, feature_names=feature_names)
687
+ for cat in categorical_features
688
+ ]
689
+ is_categorical = [
690
+ idx in categorical_features_idx for idx in features_indices
691
+ ]
692
+ else:
693
+ raise ValueError(
694
+ "Expected `categorical_features` to be an array-like of boolean,"
695
+ f" integer, or string. Got {categorical_features.dtype} instead."
696
+ )
697
+
698
+ grid, values = _grid_from_X(
699
+ _safe_indexing(X, features_indices, axis=1),
700
+ percentiles,
701
+ is_categorical,
702
+ grid_resolution,
703
+ )
704
+
705
+ if method == "brute":
706
+ averaged_predictions, predictions = _partial_dependence_brute(
707
+ estimator, grid, features_indices, X, response_method, sample_weight
708
+ )
709
+
710
+ # reshape predictions to
711
+ # (n_outputs, n_instances, n_values_feature_0, n_values_feature_1, ...)
712
+ predictions = predictions.reshape(
713
+ -1, X.shape[0], *[val.shape[0] for val in values]
714
+ )
715
+ else:
716
+ averaged_predictions = _partial_dependence_recursion(
717
+ estimator, grid, features_indices
718
+ )
719
+
720
+ # reshape averaged_predictions to
721
+ # (n_outputs, n_values_feature_0, n_values_feature_1, ...)
722
+ averaged_predictions = averaged_predictions.reshape(
723
+ -1, *[val.shape[0] for val in values]
724
+ )
725
+ pdp_results = Bunch()
726
+
727
+ msg = (
728
+ "Key: 'values', is deprecated in 1.3 and will be removed in 1.5. "
729
+ "Please use 'grid_values' instead."
730
+ )
731
+ pdp_results._set_deprecated(
732
+ values, new_key="grid_values", deprecated_key="values", warning_message=msg
733
+ )
734
+
735
+ if kind == "average":
736
+ pdp_results["average"] = averaged_predictions
737
+ elif kind == "individual":
738
+ pdp_results["individual"] = predictions
739
+ else: # kind='both'
740
+ pdp_results["average"] = averaged_predictions
741
+ pdp_results["individual"] = predictions
742
+
743
+ return pdp_results
venv/lib/python3.10/site-packages/sklearn/inspection/_pd_utils.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def _check_feature_names(X, feature_names=None):
2
+ """Check feature names.
3
+
4
+ Parameters
5
+ ----------
6
+ X : array-like of shape (n_samples, n_features)
7
+ Input data.
8
+
9
+ feature_names : None or array-like of shape (n_names,), dtype=str
10
+ Feature names to check or `None`.
11
+
12
+ Returns
13
+ -------
14
+ feature_names : list of str
15
+ Feature names validated. If `feature_names` is `None`, then a list of
16
+ feature names is provided, i.e. the column names of a pandas dataframe
17
+ or a generic list of feature names (e.g. `["x0", "x1", ...]`) for a
18
+ NumPy array.
19
+ """
20
+ if feature_names is None:
21
+ if hasattr(X, "columns") and hasattr(X.columns, "tolist"):
22
+ # get the column names for a pandas dataframe
23
+ feature_names = X.columns.tolist()
24
+ else:
25
+ # define a list of numbered indices for a numpy array
26
+ feature_names = [f"x{i}" for i in range(X.shape[1])]
27
+ elif hasattr(feature_names, "tolist"):
28
+ # convert numpy array or pandas index to a list
29
+ feature_names = feature_names.tolist()
30
+ if len(set(feature_names)) != len(feature_names):
31
+ raise ValueError("feature_names should not contain duplicates.")
32
+
33
+ return feature_names
34
+
35
+
36
+ def _get_feature_index(fx, feature_names=None):
37
+ """Get feature index.
38
+
39
+ Parameters
40
+ ----------
41
+ fx : int or str
42
+ Feature index or name.
43
+
44
+ feature_names : list of str, default=None
45
+ All feature names from which to search the indices.
46
+
47
+ Returns
48
+ -------
49
+ idx : int
50
+ Feature index.
51
+ """
52
+ if isinstance(fx, str):
53
+ if feature_names is None:
54
+ raise ValueError(
55
+ f"Cannot plot partial dependence for feature {fx!r} since "
56
+ "the list of feature names was not provided, neither as "
57
+ "column names of a pandas data-frame nor via the feature_names "
58
+ "parameter."
59
+ )
60
+ try:
61
+ return feature_names.index(fx)
62
+ except ValueError as e:
63
+ raise ValueError(f"Feature {fx!r} not in feature_names") from e
64
+ return fx
venv/lib/python3.10/site-packages/sklearn/inspection/_permutation_importance.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Permutation importance for estimators."""
2
+
3
+ import numbers
4
+
5
+ import numpy as np
6
+
7
+ from ..ensemble._bagging import _generate_indices
8
+ from ..metrics import check_scoring, get_scorer_names
9
+ from ..metrics._scorer import _check_multimetric_scoring, _MultimetricScorer
10
+ from ..model_selection._validation import _aggregate_score_dicts
11
+ from ..utils import Bunch, _safe_indexing, check_array, check_random_state
12
+ from ..utils._param_validation import (
13
+ HasMethods,
14
+ Integral,
15
+ Interval,
16
+ RealNotInt,
17
+ StrOptions,
18
+ validate_params,
19
+ )
20
+ from ..utils.parallel import Parallel, delayed
21
+
22
+
23
+ def _weights_scorer(scorer, estimator, X, y, sample_weight):
24
+ if sample_weight is not None:
25
+ return scorer(estimator, X, y, sample_weight=sample_weight)
26
+ return scorer(estimator, X, y)
27
+
28
+
29
+ def _calculate_permutation_scores(
30
+ estimator,
31
+ X,
32
+ y,
33
+ sample_weight,
34
+ col_idx,
35
+ random_state,
36
+ n_repeats,
37
+ scorer,
38
+ max_samples,
39
+ ):
40
+ """Calculate score when `col_idx` is permuted."""
41
+ random_state = check_random_state(random_state)
42
+
43
+ # Work on a copy of X to ensure thread-safety in case of threading based
44
+ # parallelism. Furthermore, making a copy is also useful when the joblib
45
+ # backend is 'loky' (default) or the old 'multiprocessing': in those cases,
46
+ # if X is large it will be automatically be backed by a readonly memory map
47
+ # (memmap). X.copy() on the other hand is always guaranteed to return a
48
+ # writable data-structure whose columns can be shuffled inplace.
49
+ if max_samples < X.shape[0]:
50
+ row_indices = _generate_indices(
51
+ random_state=random_state,
52
+ bootstrap=False,
53
+ n_population=X.shape[0],
54
+ n_samples=max_samples,
55
+ )
56
+ X_permuted = _safe_indexing(X, row_indices, axis=0)
57
+ y = _safe_indexing(y, row_indices, axis=0)
58
+ if sample_weight is not None:
59
+ sample_weight = _safe_indexing(sample_weight, row_indices, axis=0)
60
+ else:
61
+ X_permuted = X.copy()
62
+
63
+ scores = []
64
+ shuffling_idx = np.arange(X_permuted.shape[0])
65
+ for _ in range(n_repeats):
66
+ random_state.shuffle(shuffling_idx)
67
+ if hasattr(X_permuted, "iloc"):
68
+ col = X_permuted.iloc[shuffling_idx, col_idx]
69
+ col.index = X_permuted.index
70
+ X_permuted[X_permuted.columns[col_idx]] = col
71
+ else:
72
+ X_permuted[:, col_idx] = X_permuted[shuffling_idx, col_idx]
73
+ scores.append(_weights_scorer(scorer, estimator, X_permuted, y, sample_weight))
74
+
75
+ if isinstance(scores[0], dict):
76
+ scores = _aggregate_score_dicts(scores)
77
+ else:
78
+ scores = np.array(scores)
79
+
80
+ return scores
81
+
82
+
83
+ def _create_importances_bunch(baseline_score, permuted_score):
84
+ """Compute the importances as the decrease in score.
85
+
86
+ Parameters
87
+ ----------
88
+ baseline_score : ndarray of shape (n_features,)
89
+ The baseline score without permutation.
90
+ permuted_score : ndarray of shape (n_features, n_repeats)
91
+ The permuted scores for the `n` repetitions.
92
+
93
+ Returns
94
+ -------
95
+ importances : :class:`~sklearn.utils.Bunch`
96
+ Dictionary-like object, with the following attributes.
97
+ importances_mean : ndarray, shape (n_features, )
98
+ Mean of feature importance over `n_repeats`.
99
+ importances_std : ndarray, shape (n_features, )
100
+ Standard deviation over `n_repeats`.
101
+ importances : ndarray, shape (n_features, n_repeats)
102
+ Raw permutation importance scores.
103
+ """
104
+ importances = baseline_score - permuted_score
105
+ return Bunch(
106
+ importances_mean=np.mean(importances, axis=1),
107
+ importances_std=np.std(importances, axis=1),
108
+ importances=importances,
109
+ )
110
+
111
+
112
+ @validate_params(
113
+ {
114
+ "estimator": [HasMethods(["fit"])],
115
+ "X": ["array-like"],
116
+ "y": ["array-like", None],
117
+ "scoring": [
118
+ StrOptions(set(get_scorer_names())),
119
+ callable,
120
+ list,
121
+ tuple,
122
+ dict,
123
+ None,
124
+ ],
125
+ "n_repeats": [Interval(Integral, 1, None, closed="left")],
126
+ "n_jobs": [Integral, None],
127
+ "random_state": ["random_state"],
128
+ "sample_weight": ["array-like", None],
129
+ "max_samples": [
130
+ Interval(Integral, 1, None, closed="left"),
131
+ Interval(RealNotInt, 0, 1, closed="right"),
132
+ ],
133
+ },
134
+ prefer_skip_nested_validation=True,
135
+ )
136
+ def permutation_importance(
137
+ estimator,
138
+ X,
139
+ y,
140
+ *,
141
+ scoring=None,
142
+ n_repeats=5,
143
+ n_jobs=None,
144
+ random_state=None,
145
+ sample_weight=None,
146
+ max_samples=1.0,
147
+ ):
148
+ """Permutation importance for feature evaluation [BRE]_.
149
+
150
+ The :term:`estimator` is required to be a fitted estimator. `X` can be the
151
+ data set used to train the estimator or a hold-out set. The permutation
152
+ importance of a feature is calculated as follows. First, a baseline metric,
153
+ defined by :term:`scoring`, is evaluated on a (potentially different)
154
+ dataset defined by the `X`. Next, a feature column from the validation set
155
+ is permuted and the metric is evaluated again. The permutation importance
156
+ is defined to be the difference between the baseline metric and metric from
157
+ permutating the feature column.
158
+
159
+ Read more in the :ref:`User Guide <permutation_importance>`.
160
+
161
+ Parameters
162
+ ----------
163
+ estimator : object
164
+ An estimator that has already been :term:`fitted` and is compatible
165
+ with :term:`scorer`.
166
+
167
+ X : ndarray or DataFrame, shape (n_samples, n_features)
168
+ Data on which permutation importance will be computed.
169
+
170
+ y : array-like or None, shape (n_samples, ) or (n_samples, n_classes)
171
+ Targets for supervised or `None` for unsupervised.
172
+
173
+ scoring : str, callable, list, tuple, or dict, default=None
174
+ Scorer to use.
175
+ If `scoring` represents a single score, one can use:
176
+
177
+ - a single string (see :ref:`scoring_parameter`);
178
+ - a callable (see :ref:`scoring`) that returns a single value.
179
+
180
+ If `scoring` represents multiple scores, one can use:
181
+
182
+ - a list or tuple of unique strings;
183
+ - a callable returning a dictionary where the keys are the metric
184
+ names and the values are the metric scores;
185
+ - a dictionary with metric names as keys and callables a values.
186
+
187
+ Passing multiple scores to `scoring` is more efficient than calling
188
+ `permutation_importance` for each of the scores as it reuses
189
+ predictions to avoid redundant computation.
190
+
191
+ If None, the estimator's default scorer is used.
192
+
193
+ n_repeats : int, default=5
194
+ Number of times to permute a feature.
195
+
196
+ n_jobs : int or None, default=None
197
+ Number of jobs to run in parallel. The computation is done by computing
198
+ permutation score for each columns and parallelized over the columns.
199
+ `None` means 1 unless in a :obj:`joblib.parallel_backend` context.
200
+ `-1` means using all processors. See :term:`Glossary <n_jobs>`
201
+ for more details.
202
+
203
+ random_state : int, RandomState instance, default=None
204
+ Pseudo-random number generator to control the permutations of each
205
+ feature.
206
+ Pass an int to get reproducible results across function calls.
207
+ See :term:`Glossary <random_state>`.
208
+
209
+ sample_weight : array-like of shape (n_samples,), default=None
210
+ Sample weights used in scoring.
211
+
212
+ .. versionadded:: 0.24
213
+
214
+ max_samples : int or float, default=1.0
215
+ The number of samples to draw from X to compute feature importance
216
+ in each repeat (without replacement).
217
+
218
+ - If int, then draw `max_samples` samples.
219
+ - If float, then draw `max_samples * X.shape[0]` samples.
220
+ - If `max_samples` is equal to `1.0` or `X.shape[0]`, all samples
221
+ will be used.
222
+
223
+ While using this option may provide less accurate importance estimates,
224
+ it keeps the method tractable when evaluating feature importance on
225
+ large datasets. In combination with `n_repeats`, this allows to control
226
+ the computational speed vs statistical accuracy trade-off of this method.
227
+
228
+ .. versionadded:: 1.0
229
+
230
+ Returns
231
+ -------
232
+ result : :class:`~sklearn.utils.Bunch` or dict of such instances
233
+ Dictionary-like object, with the following attributes.
234
+
235
+ importances_mean : ndarray of shape (n_features, )
236
+ Mean of feature importance over `n_repeats`.
237
+ importances_std : ndarray of shape (n_features, )
238
+ Standard deviation over `n_repeats`.
239
+ importances : ndarray of shape (n_features, n_repeats)
240
+ Raw permutation importance scores.
241
+
242
+ If there are multiple scoring metrics in the scoring parameter
243
+ `result` is a dict with scorer names as keys (e.g. 'roc_auc') and
244
+ `Bunch` objects like above as values.
245
+
246
+ References
247
+ ----------
248
+ .. [BRE] :doi:`L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32,
249
+ 2001. <10.1023/A:1010933404324>`
250
+
251
+ Examples
252
+ --------
253
+ >>> from sklearn.linear_model import LogisticRegression
254
+ >>> from sklearn.inspection import permutation_importance
255
+ >>> X = [[1, 9, 9],[1, 9, 9],[1, 9, 9],
256
+ ... [0, 9, 9],[0, 9, 9],[0, 9, 9]]
257
+ >>> y = [1, 1, 1, 0, 0, 0]
258
+ >>> clf = LogisticRegression().fit(X, y)
259
+ >>> result = permutation_importance(clf, X, y, n_repeats=10,
260
+ ... random_state=0)
261
+ >>> result.importances_mean
262
+ array([0.4666..., 0. , 0. ])
263
+ >>> result.importances_std
264
+ array([0.2211..., 0. , 0. ])
265
+ """
266
+ if not hasattr(X, "iloc"):
267
+ X = check_array(X, force_all_finite="allow-nan", dtype=None)
268
+
269
+ # Precompute random seed from the random state to be used
270
+ # to get a fresh independent RandomState instance for each
271
+ # parallel call to _calculate_permutation_scores, irrespective of
272
+ # the fact that variables are shared or not depending on the active
273
+ # joblib backend (sequential, thread-based or process-based).
274
+ random_state = check_random_state(random_state)
275
+ random_seed = random_state.randint(np.iinfo(np.int32).max + 1)
276
+
277
+ if not isinstance(max_samples, numbers.Integral):
278
+ max_samples = int(max_samples * X.shape[0])
279
+ elif max_samples > X.shape[0]:
280
+ raise ValueError("max_samples must be <= n_samples")
281
+
282
+ if callable(scoring):
283
+ scorer = scoring
284
+ elif scoring is None or isinstance(scoring, str):
285
+ scorer = check_scoring(estimator, scoring=scoring)
286
+ else:
287
+ scorers_dict = _check_multimetric_scoring(estimator, scoring)
288
+ scorer = _MultimetricScorer(scorers=scorers_dict)
289
+
290
+ baseline_score = _weights_scorer(scorer, estimator, X, y, sample_weight)
291
+
292
+ scores = Parallel(n_jobs=n_jobs)(
293
+ delayed(_calculate_permutation_scores)(
294
+ estimator,
295
+ X,
296
+ y,
297
+ sample_weight,
298
+ col_idx,
299
+ random_seed,
300
+ n_repeats,
301
+ scorer,
302
+ max_samples,
303
+ )
304
+ for col_idx in range(X.shape[1])
305
+ )
306
+
307
+ if isinstance(baseline_score, dict):
308
+ return {
309
+ name: _create_importances_bunch(
310
+ baseline_score[name],
311
+ # unpack the permuted scores
312
+ np.array([scores[col_idx][name] for col_idx in range(X.shape[1])]),
313
+ )
314
+ for name in baseline_score
315
+ }
316
+ else:
317
+ return _create_importances_bunch(baseline_score, np.array(scores))
venv/lib/python3.10/site-packages/sklearn/inspection/_plot/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/sklearn/inspection/_plot/decision_boundary.py ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from ...base import is_regressor
4
+ from ...preprocessing import LabelEncoder
5
+ from ...utils import _safe_indexing, check_matplotlib_support
6
+ from ...utils._response import _get_response_values
7
+ from ...utils.validation import (
8
+ _is_arraylike_not_scalar,
9
+ _num_features,
10
+ check_is_fitted,
11
+ )
12
+
13
+
14
+ def _check_boundary_response_method(estimator, response_method, class_of_interest):
15
+ """Validate the response methods to be used with the fitted estimator.
16
+
17
+ Parameters
18
+ ----------
19
+ estimator : object
20
+ Fitted estimator to check.
21
+
22
+ response_method : {'auto', 'predict_proba', 'decision_function', 'predict'}
23
+ Specifies whether to use :term:`predict_proba`,
24
+ :term:`decision_function`, :term:`predict` as the target response.
25
+ If set to 'auto', the response method is tried in the following order:
26
+ :term:`decision_function`, :term:`predict_proba`, :term:`predict`.
27
+
28
+ class_of_interest : int, float, bool, str or None
29
+ The class considered when plotting the decision. If the label is specified, it
30
+ is then possible to plot the decision boundary in multiclass settings.
31
+
32
+ .. versionadded:: 1.4
33
+
34
+ Returns
35
+ -------
36
+ prediction_method : list of str or str
37
+ The name or list of names of the response methods to use.
38
+ """
39
+ has_classes = hasattr(estimator, "classes_")
40
+ if has_classes and _is_arraylike_not_scalar(estimator.classes_[0]):
41
+ msg = "Multi-label and multi-output multi-class classifiers are not supported"
42
+ raise ValueError(msg)
43
+
44
+ if has_classes and len(estimator.classes_) > 2:
45
+ if response_method not in {"auto", "predict"} and class_of_interest is None:
46
+ msg = (
47
+ "Multiclass classifiers are only supported when `response_method` is "
48
+ "'predict' or 'auto'. Else you must provide `class_of_interest` to "
49
+ "plot the decision boundary of a specific class."
50
+ )
51
+ raise ValueError(msg)
52
+ prediction_method = "predict" if response_method == "auto" else response_method
53
+ elif response_method == "auto":
54
+ if is_regressor(estimator):
55
+ prediction_method = "predict"
56
+ else:
57
+ prediction_method = ["decision_function", "predict_proba", "predict"]
58
+ else:
59
+ prediction_method = response_method
60
+
61
+ return prediction_method
62
+
63
+
64
+ class DecisionBoundaryDisplay:
65
+ """Decisions boundary visualization.
66
+
67
+ It is recommended to use
68
+ :func:`~sklearn.inspection.DecisionBoundaryDisplay.from_estimator`
69
+ to create a :class:`DecisionBoundaryDisplay`. All parameters are stored as
70
+ attributes.
71
+
72
+ Read more in the :ref:`User Guide <visualizations>`.
73
+
74
+ .. versionadded:: 1.1
75
+
76
+ Parameters
77
+ ----------
78
+ xx0 : ndarray of shape (grid_resolution, grid_resolution)
79
+ First output of :func:`meshgrid <numpy.meshgrid>`.
80
+
81
+ xx1 : ndarray of shape (grid_resolution, grid_resolution)
82
+ Second output of :func:`meshgrid <numpy.meshgrid>`.
83
+
84
+ response : ndarray of shape (grid_resolution, grid_resolution)
85
+ Values of the response function.
86
+
87
+ xlabel : str, default=None
88
+ Default label to place on x axis.
89
+
90
+ ylabel : str, default=None
91
+ Default label to place on y axis.
92
+
93
+ Attributes
94
+ ----------
95
+ surface_ : matplotlib `QuadContourSet` or `QuadMesh`
96
+ If `plot_method` is 'contour' or 'contourf', `surface_` is a
97
+ :class:`QuadContourSet <matplotlib.contour.QuadContourSet>`. If
98
+ `plot_method` is 'pcolormesh', `surface_` is a
99
+ :class:`QuadMesh <matplotlib.collections.QuadMesh>`.
100
+
101
+ ax_ : matplotlib Axes
102
+ Axes with decision boundary.
103
+
104
+ figure_ : matplotlib Figure
105
+ Figure containing the decision boundary.
106
+
107
+ See Also
108
+ --------
109
+ DecisionBoundaryDisplay.from_estimator : Plot decision boundary given an estimator.
110
+
111
+ Examples
112
+ --------
113
+ >>> import matplotlib.pyplot as plt
114
+ >>> import numpy as np
115
+ >>> from sklearn.datasets import load_iris
116
+ >>> from sklearn.inspection import DecisionBoundaryDisplay
117
+ >>> from sklearn.tree import DecisionTreeClassifier
118
+ >>> iris = load_iris()
119
+ >>> feature_1, feature_2 = np.meshgrid(
120
+ ... np.linspace(iris.data[:, 0].min(), iris.data[:, 0].max()),
121
+ ... np.linspace(iris.data[:, 1].min(), iris.data[:, 1].max())
122
+ ... )
123
+ >>> grid = np.vstack([feature_1.ravel(), feature_2.ravel()]).T
124
+ >>> tree = DecisionTreeClassifier().fit(iris.data[:, :2], iris.target)
125
+ >>> y_pred = np.reshape(tree.predict(grid), feature_1.shape)
126
+ >>> display = DecisionBoundaryDisplay(
127
+ ... xx0=feature_1, xx1=feature_2, response=y_pred
128
+ ... )
129
+ >>> display.plot()
130
+ <...>
131
+ >>> display.ax_.scatter(
132
+ ... iris.data[:, 0], iris.data[:, 1], c=iris.target, edgecolor="black"
133
+ ... )
134
+ <...>
135
+ >>> plt.show()
136
+ """
137
+
138
+ def __init__(self, *, xx0, xx1, response, xlabel=None, ylabel=None):
139
+ self.xx0 = xx0
140
+ self.xx1 = xx1
141
+ self.response = response
142
+ self.xlabel = xlabel
143
+ self.ylabel = ylabel
144
+
145
+ def plot(self, plot_method="contourf", ax=None, xlabel=None, ylabel=None, **kwargs):
146
+ """Plot visualization.
147
+
148
+ Parameters
149
+ ----------
150
+ plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
151
+ Plotting method to call when plotting the response. Please refer
152
+ to the following matplotlib documentation for details:
153
+ :func:`contourf <matplotlib.pyplot.contourf>`,
154
+ :func:`contour <matplotlib.pyplot.contour>`,
155
+ :func:`pcolormesh <matplotlib.pyplot.pcolormesh>`.
156
+
157
+ ax : Matplotlib axes, default=None
158
+ Axes object to plot on. If `None`, a new figure and axes is
159
+ created.
160
+
161
+ xlabel : str, default=None
162
+ Overwrite the x-axis label.
163
+
164
+ ylabel : str, default=None
165
+ Overwrite the y-axis label.
166
+
167
+ **kwargs : dict
168
+ Additional keyword arguments to be passed to the `plot_method`.
169
+
170
+ Returns
171
+ -------
172
+ display: :class:`~sklearn.inspection.DecisionBoundaryDisplay`
173
+ Object that stores computed values.
174
+ """
175
+ check_matplotlib_support("DecisionBoundaryDisplay.plot")
176
+ import matplotlib.pyplot as plt # noqa
177
+
178
+ if plot_method not in ("contourf", "contour", "pcolormesh"):
179
+ raise ValueError(
180
+ "plot_method must be 'contourf', 'contour', or 'pcolormesh'"
181
+ )
182
+
183
+ if ax is None:
184
+ _, ax = plt.subplots()
185
+
186
+ plot_func = getattr(ax, plot_method)
187
+ self.surface_ = plot_func(self.xx0, self.xx1, self.response, **kwargs)
188
+
189
+ if xlabel is not None or not ax.get_xlabel():
190
+ xlabel = self.xlabel if xlabel is None else xlabel
191
+ ax.set_xlabel(xlabel)
192
+ if ylabel is not None or not ax.get_ylabel():
193
+ ylabel = self.ylabel if ylabel is None else ylabel
194
+ ax.set_ylabel(ylabel)
195
+
196
+ self.ax_ = ax
197
+ self.figure_ = ax.figure
198
+ return self
199
+
200
+ @classmethod
201
+ def from_estimator(
202
+ cls,
203
+ estimator,
204
+ X,
205
+ *,
206
+ grid_resolution=100,
207
+ eps=1.0,
208
+ plot_method="contourf",
209
+ response_method="auto",
210
+ class_of_interest=None,
211
+ xlabel=None,
212
+ ylabel=None,
213
+ ax=None,
214
+ **kwargs,
215
+ ):
216
+ """Plot decision boundary given an estimator.
217
+
218
+ Read more in the :ref:`User Guide <visualizations>`.
219
+
220
+ Parameters
221
+ ----------
222
+ estimator : object
223
+ Trained estimator used to plot the decision boundary.
224
+
225
+ X : {array-like, sparse matrix, dataframe} of shape (n_samples, 2)
226
+ Input data that should be only 2-dimensional.
227
+
228
+ grid_resolution : int, default=100
229
+ Number of grid points to use for plotting decision boundary.
230
+ Higher values will make the plot look nicer but be slower to
231
+ render.
232
+
233
+ eps : float, default=1.0
234
+ Extends the minimum and maximum values of X for evaluating the
235
+ response function.
236
+
237
+ plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
238
+ Plotting method to call when plotting the response. Please refer
239
+ to the following matplotlib documentation for details:
240
+ :func:`contourf <matplotlib.pyplot.contourf>`,
241
+ :func:`contour <matplotlib.pyplot.contour>`,
242
+ :func:`pcolormesh <matplotlib.pyplot.pcolormesh>`.
243
+
244
+ response_method : {'auto', 'predict_proba', 'decision_function', \
245
+ 'predict'}, default='auto'
246
+ Specifies whether to use :term:`predict_proba`,
247
+ :term:`decision_function`, :term:`predict` as the target response.
248
+ If set to 'auto', the response method is tried in the following order:
249
+ :term:`decision_function`, :term:`predict_proba`, :term:`predict`.
250
+ For multiclass problems, :term:`predict` is selected when
251
+ `response_method="auto"`.
252
+
253
+ class_of_interest : int, float, bool or str, default=None
254
+ The class considered when plotting the decision. If None,
255
+ `estimator.classes_[1]` is considered as the positive class
256
+ for binary classifiers. For multiclass classifiers, passing
257
+ an explicit value for `class_of_interest` is mandatory.
258
+
259
+ .. versionadded:: 1.4
260
+
261
+ xlabel : str, default=None
262
+ The label used for the x-axis. If `None`, an attempt is made to
263
+ extract a label from `X` if it is a dataframe, otherwise an empty
264
+ string is used.
265
+
266
+ ylabel : str, default=None
267
+ The label used for the y-axis. If `None`, an attempt is made to
268
+ extract a label from `X` if it is a dataframe, otherwise an empty
269
+ string is used.
270
+
271
+ ax : Matplotlib axes, default=None
272
+ Axes object to plot on. If `None`, a new figure and axes is
273
+ created.
274
+
275
+ **kwargs : dict
276
+ Additional keyword arguments to be passed to the
277
+ `plot_method`.
278
+
279
+ Returns
280
+ -------
281
+ display : :class:`~sklearn.inspection.DecisionBoundaryDisplay`
282
+ Object that stores the result.
283
+
284
+ See Also
285
+ --------
286
+ DecisionBoundaryDisplay : Decision boundary visualization.
287
+ sklearn.metrics.ConfusionMatrixDisplay.from_estimator : Plot the
288
+ confusion matrix given an estimator, the data, and the label.
289
+ sklearn.metrics.ConfusionMatrixDisplay.from_predictions : Plot the
290
+ confusion matrix given the true and predicted labels.
291
+
292
+ Examples
293
+ --------
294
+ >>> import matplotlib.pyplot as plt
295
+ >>> from sklearn.datasets import load_iris
296
+ >>> from sklearn.linear_model import LogisticRegression
297
+ >>> from sklearn.inspection import DecisionBoundaryDisplay
298
+ >>> iris = load_iris()
299
+ >>> X = iris.data[:, :2]
300
+ >>> classifier = LogisticRegression().fit(X, iris.target)
301
+ >>> disp = DecisionBoundaryDisplay.from_estimator(
302
+ ... classifier, X, response_method="predict",
303
+ ... xlabel=iris.feature_names[0], ylabel=iris.feature_names[1],
304
+ ... alpha=0.5,
305
+ ... )
306
+ >>> disp.ax_.scatter(X[:, 0], X[:, 1], c=iris.target, edgecolor="k")
307
+ <...>
308
+ >>> plt.show()
309
+ """
310
+ check_matplotlib_support(f"{cls.__name__}.from_estimator")
311
+ check_is_fitted(estimator)
312
+
313
+ if not grid_resolution > 1:
314
+ raise ValueError(
315
+ "grid_resolution must be greater than 1. Got"
316
+ f" {grid_resolution} instead."
317
+ )
318
+
319
+ if not eps >= 0:
320
+ raise ValueError(
321
+ f"eps must be greater than or equal to 0. Got {eps} instead."
322
+ )
323
+
324
+ possible_plot_methods = ("contourf", "contour", "pcolormesh")
325
+ if plot_method not in possible_plot_methods:
326
+ available_methods = ", ".join(possible_plot_methods)
327
+ raise ValueError(
328
+ f"plot_method must be one of {available_methods}. "
329
+ f"Got {plot_method} instead."
330
+ )
331
+
332
+ num_features = _num_features(X)
333
+ if num_features != 2:
334
+ raise ValueError(
335
+ f"n_features must be equal to 2. Got {num_features} instead."
336
+ )
337
+
338
+ x0, x1 = _safe_indexing(X, 0, axis=1), _safe_indexing(X, 1, axis=1)
339
+
340
+ x0_min, x0_max = x0.min() - eps, x0.max() + eps
341
+ x1_min, x1_max = x1.min() - eps, x1.max() + eps
342
+
343
+ xx0, xx1 = np.meshgrid(
344
+ np.linspace(x0_min, x0_max, grid_resolution),
345
+ np.linspace(x1_min, x1_max, grid_resolution),
346
+ )
347
+ if hasattr(X, "iloc"):
348
+ # we need to preserve the feature names and therefore get an empty dataframe
349
+ X_grid = X.iloc[[], :].copy()
350
+ X_grid.iloc[:, 0] = xx0.ravel()
351
+ X_grid.iloc[:, 1] = xx1.ravel()
352
+ else:
353
+ X_grid = np.c_[xx0.ravel(), xx1.ravel()]
354
+
355
+ prediction_method = _check_boundary_response_method(
356
+ estimator, response_method, class_of_interest
357
+ )
358
+ try:
359
+ response, _, response_method_used = _get_response_values(
360
+ estimator,
361
+ X_grid,
362
+ response_method=prediction_method,
363
+ pos_label=class_of_interest,
364
+ return_response_method_used=True,
365
+ )
366
+ except ValueError as exc:
367
+ if "is not a valid label" in str(exc):
368
+ # re-raise a more informative error message since `pos_label` is unknown
369
+ # to our user when interacting with
370
+ # `DecisionBoundaryDisplay.from_estimator`
371
+ raise ValueError(
372
+ f"class_of_interest={class_of_interest} is not a valid label: It "
373
+ f"should be one of {estimator.classes_}"
374
+ ) from exc
375
+ raise
376
+
377
+ # convert classes predictions into integers
378
+ if response_method_used == "predict" and hasattr(estimator, "classes_"):
379
+ encoder = LabelEncoder()
380
+ encoder.classes_ = estimator.classes_
381
+ response = encoder.transform(response)
382
+
383
+ if response.ndim != 1:
384
+ if is_regressor(estimator):
385
+ raise ValueError("Multi-output regressors are not supported")
386
+
387
+ # For the multiclass case, `_get_response_values` returns the response
388
+ # as-is. Thus, we have a column per class and we need to select the column
389
+ # corresponding to the positive class.
390
+ col_idx = np.flatnonzero(estimator.classes_ == class_of_interest)[0]
391
+ response = response[:, col_idx]
392
+
393
+ if xlabel is None:
394
+ xlabel = X.columns[0] if hasattr(X, "columns") else ""
395
+
396
+ if ylabel is None:
397
+ ylabel = X.columns[1] if hasattr(X, "columns") else ""
398
+
399
+ display = cls(
400
+ xx0=xx0,
401
+ xx1=xx1,
402
+ response=response.reshape(xx0.shape),
403
+ xlabel=xlabel,
404
+ ylabel=ylabel,
405
+ )
406
+ return display.plot(ax=ax, plot_method=plot_method, **kwargs)
venv/lib/python3.10/site-packages/sklearn/inspection/_plot/partial_dependence.py ADDED
@@ -0,0 +1,1473 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numbers
2
+ from itertools import chain
3
+ from math import ceil
4
+
5
+ import numpy as np
6
+ from scipy import sparse
7
+ from scipy.stats.mstats import mquantiles
8
+
9
+ from ...base import is_regressor
10
+ from ...utils import (
11
+ Bunch,
12
+ _safe_indexing,
13
+ check_array,
14
+ check_matplotlib_support, # noqa
15
+ check_random_state,
16
+ )
17
+ from ...utils._encode import _unique
18
+ from ...utils.parallel import Parallel, delayed
19
+ from .. import partial_dependence
20
+ from .._pd_utils import _check_feature_names, _get_feature_index
21
+
22
+
23
+ class PartialDependenceDisplay:
24
+ """Partial Dependence Plot (PDP).
25
+
26
+ This can also display individual partial dependencies which are often
27
+ referred to as: Individual Condition Expectation (ICE).
28
+
29
+ It is recommended to use
30
+ :func:`~sklearn.inspection.PartialDependenceDisplay.from_estimator` to create a
31
+ :class:`~sklearn.inspection.PartialDependenceDisplay`. All parameters are
32
+ stored as attributes.
33
+
34
+ Read more in
35
+ :ref:`sphx_glr_auto_examples_miscellaneous_plot_partial_dependence_visualization_api.py`
36
+ and the :ref:`User Guide <partial_dependence>`.
37
+
38
+ .. versionadded:: 0.22
39
+
40
+ Parameters
41
+ ----------
42
+ pd_results : list of Bunch
43
+ Results of :func:`~sklearn.inspection.partial_dependence` for
44
+ ``features``.
45
+
46
+ features : list of (int,) or list of (int, int)
47
+ Indices of features for a given plot. A tuple of one integer will plot
48
+ a partial dependence curve of one feature. A tuple of two integers will
49
+ plot a two-way partial dependence curve as a contour plot.
50
+
51
+ feature_names : list of str
52
+ Feature names corresponding to the indices in ``features``.
53
+
54
+ target_idx : int
55
+
56
+ - In a multiclass setting, specifies the class for which the PDPs
57
+ should be computed. Note that for binary classification, the
58
+ positive class (index 1) is always used.
59
+ - In a multioutput setting, specifies the task for which the PDPs
60
+ should be computed.
61
+
62
+ Ignored in binary classification or classical regression settings.
63
+
64
+ deciles : dict
65
+ Deciles for feature indices in ``features``.
66
+
67
+ kind : {'average', 'individual', 'both'} or list of such str, \
68
+ default='average'
69
+ Whether to plot the partial dependence averaged across all the samples
70
+ in the dataset or one line per sample or both.
71
+
72
+ - ``kind='average'`` results in the traditional PD plot;
73
+ - ``kind='individual'`` results in the ICE plot;
74
+ - ``kind='both'`` results in plotting both the ICE and PD on the same
75
+ plot.
76
+
77
+ A list of such strings can be provided to specify `kind` on a per-plot
78
+ basis. The length of the list should be the same as the number of
79
+ interaction requested in `features`.
80
+
81
+ .. note::
82
+ ICE ('individual' or 'both') is not a valid option for 2-ways
83
+ interactions plot. As a result, an error will be raised.
84
+ 2-ways interaction plots should always be configured to
85
+ use the 'average' kind instead.
86
+
87
+ .. note::
88
+ The fast ``method='recursion'`` option is only available for
89
+ `kind='average'` and `sample_weights=None`. Computing individual
90
+ dependencies and doing weighted averages requires using the slower
91
+ `method='brute'`.
92
+
93
+ .. versionadded:: 0.24
94
+ Add `kind` parameter with `'average'`, `'individual'`, and `'both'`
95
+ options.
96
+
97
+ .. versionadded:: 1.1
98
+ Add the possibility to pass a list of string specifying `kind`
99
+ for each plot.
100
+
101
+ subsample : float, int or None, default=1000
102
+ Sampling for ICE curves when `kind` is 'individual' or 'both'.
103
+ If float, should be between 0.0 and 1.0 and represent the proportion
104
+ of the dataset to be used to plot ICE curves. If int, represents the
105
+ maximum absolute number of samples to use.
106
+
107
+ Note that the full dataset is still used to calculate partial
108
+ dependence when `kind='both'`.
109
+
110
+ .. versionadded:: 0.24
111
+
112
+ random_state : int, RandomState instance or None, default=None
113
+ Controls the randomness of the selected samples when subsamples is not
114
+ `None`. See :term:`Glossary <random_state>` for details.
115
+
116
+ .. versionadded:: 0.24
117
+
118
+ is_categorical : list of (bool,) or list of (bool, bool), default=None
119
+ Whether each target feature in `features` is categorical or not.
120
+ The list should be same size as `features`. If `None`, all features
121
+ are assumed to be continuous.
122
+
123
+ .. versionadded:: 1.2
124
+
125
+ Attributes
126
+ ----------
127
+ bounding_ax_ : matplotlib Axes or None
128
+ If `ax` is an axes or None, the `bounding_ax_` is the axes where the
129
+ grid of partial dependence plots are drawn. If `ax` is a list of axes
130
+ or a numpy array of axes, `bounding_ax_` is None.
131
+
132
+ axes_ : ndarray of matplotlib Axes
133
+ If `ax` is an axes or None, `axes_[i, j]` is the axes on the i-th row
134
+ and j-th column. If `ax` is a list of axes, `axes_[i]` is the i-th item
135
+ in `ax`. Elements that are None correspond to a nonexisting axes in
136
+ that position.
137
+
138
+ lines_ : ndarray of matplotlib Artists
139
+ If `ax` is an axes or None, `lines_[i, j]` is the partial dependence
140
+ curve on the i-th row and j-th column. If `ax` is a list of axes,
141
+ `lines_[i]` is the partial dependence curve corresponding to the i-th
142
+ item in `ax`. Elements that are None correspond to a nonexisting axes
143
+ or an axes that does not include a line plot.
144
+
145
+ deciles_vlines_ : ndarray of matplotlib LineCollection
146
+ If `ax` is an axes or None, `vlines_[i, j]` is the line collection
147
+ representing the x axis deciles of the i-th row and j-th column. If
148
+ `ax` is a list of axes, `vlines_[i]` corresponds to the i-th item in
149
+ `ax`. Elements that are None correspond to a nonexisting axes or an
150
+ axes that does not include a PDP plot.
151
+
152
+ .. versionadded:: 0.23
153
+
154
+ deciles_hlines_ : ndarray of matplotlib LineCollection
155
+ If `ax` is an axes or None, `vlines_[i, j]` is the line collection
156
+ representing the y axis deciles of the i-th row and j-th column. If
157
+ `ax` is a list of axes, `vlines_[i]` corresponds to the i-th item in
158
+ `ax`. Elements that are None correspond to a nonexisting axes or an
159
+ axes that does not include a 2-way plot.
160
+
161
+ .. versionadded:: 0.23
162
+
163
+ contours_ : ndarray of matplotlib Artists
164
+ If `ax` is an axes or None, `contours_[i, j]` is the partial dependence
165
+ plot on the i-th row and j-th column. If `ax` is a list of axes,
166
+ `contours_[i]` is the partial dependence plot corresponding to the i-th
167
+ item in `ax`. Elements that are None correspond to a nonexisting axes
168
+ or an axes that does not include a contour plot.
169
+
170
+ bars_ : ndarray of matplotlib Artists
171
+ If `ax` is an axes or None, `bars_[i, j]` is the partial dependence bar
172
+ plot on the i-th row and j-th column (for a categorical feature).
173
+ If `ax` is a list of axes, `bars_[i]` is the partial dependence bar
174
+ plot corresponding to the i-th item in `ax`. Elements that are None
175
+ correspond to a nonexisting axes or an axes that does not include a
176
+ bar plot.
177
+
178
+ .. versionadded:: 1.2
179
+
180
+ heatmaps_ : ndarray of matplotlib Artists
181
+ If `ax` is an axes or None, `heatmaps_[i, j]` is the partial dependence
182
+ heatmap on the i-th row and j-th column (for a pair of categorical
183
+ features) . If `ax` is a list of axes, `heatmaps_[i]` is the partial
184
+ dependence heatmap corresponding to the i-th item in `ax`. Elements
185
+ that are None correspond to a nonexisting axes or an axes that does not
186
+ include a heatmap.
187
+
188
+ .. versionadded:: 1.2
189
+
190
+ figure_ : matplotlib Figure
191
+ Figure containing partial dependence plots.
192
+
193
+ See Also
194
+ --------
195
+ partial_dependence : Compute Partial Dependence values.
196
+ PartialDependenceDisplay.from_estimator : Plot Partial Dependence.
197
+
198
+ Examples
199
+ --------
200
+ >>> import numpy as np
201
+ >>> import matplotlib.pyplot as plt
202
+ >>> from sklearn.datasets import make_friedman1
203
+ >>> from sklearn.ensemble import GradientBoostingRegressor
204
+ >>> from sklearn.inspection import PartialDependenceDisplay
205
+ >>> from sklearn.inspection import partial_dependence
206
+ >>> X, y = make_friedman1()
207
+ >>> clf = GradientBoostingRegressor(n_estimators=10).fit(X, y)
208
+ >>> features, feature_names = [(0,)], [f"Features #{i}" for i in range(X.shape[1])]
209
+ >>> deciles = {0: np.linspace(0, 1, num=5)}
210
+ >>> pd_results = partial_dependence(
211
+ ... clf, X, features=0, kind="average", grid_resolution=5)
212
+ >>> display = PartialDependenceDisplay(
213
+ ... [pd_results], features=features, feature_names=feature_names,
214
+ ... target_idx=0, deciles=deciles
215
+ ... )
216
+ >>> display.plot(pdp_lim={1: (-1.38, 0.66)})
217
+ <...>
218
+ >>> plt.show()
219
+ """
220
+
221
+ def __init__(
222
+ self,
223
+ pd_results,
224
+ *,
225
+ features,
226
+ feature_names,
227
+ target_idx,
228
+ deciles,
229
+ kind="average",
230
+ subsample=1000,
231
+ random_state=None,
232
+ is_categorical=None,
233
+ ):
234
+ self.pd_results = pd_results
235
+ self.features = features
236
+ self.feature_names = feature_names
237
+ self.target_idx = target_idx
238
+ self.deciles = deciles
239
+ self.kind = kind
240
+ self.subsample = subsample
241
+ self.random_state = random_state
242
+ self.is_categorical = is_categorical
243
+
244
+ @classmethod
245
+ def from_estimator(
246
+ cls,
247
+ estimator,
248
+ X,
249
+ features,
250
+ *,
251
+ sample_weight=None,
252
+ categorical_features=None,
253
+ feature_names=None,
254
+ target=None,
255
+ response_method="auto",
256
+ n_cols=3,
257
+ grid_resolution=100,
258
+ percentiles=(0.05, 0.95),
259
+ method="auto",
260
+ n_jobs=None,
261
+ verbose=0,
262
+ line_kw=None,
263
+ ice_lines_kw=None,
264
+ pd_line_kw=None,
265
+ contour_kw=None,
266
+ ax=None,
267
+ kind="average",
268
+ centered=False,
269
+ subsample=1000,
270
+ random_state=None,
271
+ ):
272
+ """Partial dependence (PD) and individual conditional expectation (ICE) plots.
273
+
274
+ Partial dependence plots, individual conditional expectation plots or an
275
+ overlay of both of them can be plotted by setting the ``kind``
276
+ parameter. The ``len(features)`` plots are arranged in a grid with
277
+ ``n_cols`` columns. Two-way partial dependence plots are plotted as
278
+ contour plots. The deciles of the feature values will be shown with tick
279
+ marks on the x-axes for one-way plots, and on both axes for two-way
280
+ plots.
281
+
282
+ Read more in the :ref:`User Guide <partial_dependence>`.
283
+
284
+ .. note::
285
+
286
+ :func:`PartialDependenceDisplay.from_estimator` does not support using the
287
+ same axes with multiple calls. To plot the partial dependence for
288
+ multiple estimators, please pass the axes created by the first call to the
289
+ second call::
290
+
291
+ >>> from sklearn.inspection import PartialDependenceDisplay
292
+ >>> from sklearn.datasets import make_friedman1
293
+ >>> from sklearn.linear_model import LinearRegression
294
+ >>> from sklearn.ensemble import RandomForestRegressor
295
+ >>> X, y = make_friedman1()
296
+ >>> est1 = LinearRegression().fit(X, y)
297
+ >>> est2 = RandomForestRegressor().fit(X, y)
298
+ >>> disp1 = PartialDependenceDisplay.from_estimator(est1, X,
299
+ ... [1, 2])
300
+ >>> disp2 = PartialDependenceDisplay.from_estimator(est2, X, [1, 2],
301
+ ... ax=disp1.axes_)
302
+
303
+ .. warning::
304
+
305
+ For :class:`~sklearn.ensemble.GradientBoostingClassifier` and
306
+ :class:`~sklearn.ensemble.GradientBoostingRegressor`, the
307
+ `'recursion'` method (used by default) will not account for the `init`
308
+ predictor of the boosting process. In practice, this will produce
309
+ the same values as `'brute'` up to a constant offset in the target
310
+ response, provided that `init` is a constant estimator (which is the
311
+ default). However, if `init` is not a constant estimator, the
312
+ partial dependence values are incorrect for `'recursion'` because the
313
+ offset will be sample-dependent. It is preferable to use the `'brute'`
314
+ method. Note that this only applies to
315
+ :class:`~sklearn.ensemble.GradientBoostingClassifier` and
316
+ :class:`~sklearn.ensemble.GradientBoostingRegressor`, not to
317
+ :class:`~sklearn.ensemble.HistGradientBoostingClassifier` and
318
+ :class:`~sklearn.ensemble.HistGradientBoostingRegressor`.
319
+
320
+ .. versionadded:: 1.0
321
+
322
+ Parameters
323
+ ----------
324
+ estimator : BaseEstimator
325
+ A fitted estimator object implementing :term:`predict`,
326
+ :term:`predict_proba`, or :term:`decision_function`.
327
+ Multioutput-multiclass classifiers are not supported.
328
+
329
+ X : {array-like, dataframe} of shape (n_samples, n_features)
330
+ ``X`` is used to generate a grid of values for the target
331
+ ``features`` (where the partial dependence will be evaluated), and
332
+ also to generate values for the complement features when the
333
+ `method` is `'brute'`.
334
+
335
+ features : list of {int, str, pair of int, pair of str}
336
+ The target features for which to create the PDPs.
337
+ If `features[i]` is an integer or a string, a one-way PDP is created;
338
+ if `features[i]` is a tuple, a two-way PDP is created (only supported
339
+ with `kind='average'`). Each tuple must be of size 2.
340
+ If any entry is a string, then it must be in ``feature_names``.
341
+
342
+ sample_weight : array-like of shape (n_samples,), default=None
343
+ Sample weights are used to calculate weighted means when averaging the
344
+ model output. If `None`, then samples are equally weighted. If
345
+ `sample_weight` is not `None`, then `method` will be set to `'brute'`.
346
+ Note that `sample_weight` is ignored for `kind='individual'`.
347
+
348
+ .. versionadded:: 1.3
349
+
350
+ categorical_features : array-like of shape (n_features,) or shape \
351
+ (n_categorical_features,), dtype={bool, int, str}, default=None
352
+ Indicates the categorical features.
353
+
354
+ - `None`: no feature will be considered categorical;
355
+ - boolean array-like: boolean mask of shape `(n_features,)`
356
+ indicating which features are categorical. Thus, this array has
357
+ the same shape has `X.shape[1]`;
358
+ - integer or string array-like: integer indices or strings
359
+ indicating categorical features.
360
+
361
+ .. versionadded:: 1.2
362
+
363
+ feature_names : array-like of shape (n_features,), dtype=str, default=None
364
+ Name of each feature; `feature_names[i]` holds the name of the feature
365
+ with index `i`.
366
+ By default, the name of the feature corresponds to their numerical
367
+ index for NumPy array and their column name for pandas dataframe.
368
+
369
+ target : int, default=None
370
+ - In a multiclass setting, specifies the class for which the PDPs
371
+ should be computed. Note that for binary classification, the
372
+ positive class (index 1) is always used.
373
+ - In a multioutput setting, specifies the task for which the PDPs
374
+ should be computed.
375
+
376
+ Ignored in binary classification or classical regression settings.
377
+
378
+ response_method : {'auto', 'predict_proba', 'decision_function'}, \
379
+ default='auto'
380
+ Specifies whether to use :term:`predict_proba` or
381
+ :term:`decision_function` as the target response. For regressors
382
+ this parameter is ignored and the response is always the output of
383
+ :term:`predict`. By default, :term:`predict_proba` is tried first
384
+ and we revert to :term:`decision_function` if it doesn't exist. If
385
+ ``method`` is `'recursion'`, the response is always the output of
386
+ :term:`decision_function`.
387
+
388
+ n_cols : int, default=3
389
+ The maximum number of columns in the grid plot. Only active when `ax`
390
+ is a single axis or `None`.
391
+
392
+ grid_resolution : int, default=100
393
+ The number of equally spaced points on the axes of the plots, for each
394
+ target feature.
395
+
396
+ percentiles : tuple of float, default=(0.05, 0.95)
397
+ The lower and upper percentile used to create the extreme values
398
+ for the PDP axes. Must be in [0, 1].
399
+
400
+ method : str, default='auto'
401
+ The method used to calculate the averaged predictions:
402
+
403
+ - `'recursion'` is only supported for some tree-based estimators
404
+ (namely
405
+ :class:`~sklearn.ensemble.GradientBoostingClassifier`,
406
+ :class:`~sklearn.ensemble.GradientBoostingRegressor`,
407
+ :class:`~sklearn.ensemble.HistGradientBoostingClassifier`,
408
+ :class:`~sklearn.ensemble.HistGradientBoostingRegressor`,
409
+ :class:`~sklearn.tree.DecisionTreeRegressor`,
410
+ :class:`~sklearn.ensemble.RandomForestRegressor`
411
+ but is more efficient in terms of speed.
412
+ With this method, the target response of a
413
+ classifier is always the decision function, not the predicted
414
+ probabilities. Since the `'recursion'` method implicitly computes
415
+ the average of the ICEs by design, it is not compatible with ICE and
416
+ thus `kind` must be `'average'`.
417
+
418
+ - `'brute'` is supported for any estimator, but is more
419
+ computationally intensive.
420
+
421
+ - `'auto'`: the `'recursion'` is used for estimators that support it,
422
+ and `'brute'` is used otherwise. If `sample_weight` is not `None`,
423
+ then `'brute'` is used regardless of the estimator.
424
+
425
+ Please see :ref:`this note <pdp_method_differences>` for
426
+ differences between the `'brute'` and `'recursion'` method.
427
+
428
+ n_jobs : int, default=None
429
+ The number of CPUs to use to compute the partial dependences.
430
+ Computation is parallelized over features specified by the `features`
431
+ parameter.
432
+
433
+ ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
434
+ ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
435
+ for more details.
436
+
437
+ verbose : int, default=0
438
+ Verbose output during PD computations.
439
+
440
+ line_kw : dict, default=None
441
+ Dict with keywords passed to the ``matplotlib.pyplot.plot`` call.
442
+ For one-way partial dependence plots. It can be used to define common
443
+ properties for both `ice_lines_kw` and `pdp_line_kw`.
444
+
445
+ ice_lines_kw : dict, default=None
446
+ Dictionary with keywords passed to the `matplotlib.pyplot.plot` call.
447
+ For ICE lines in the one-way partial dependence plots.
448
+ The key value pairs defined in `ice_lines_kw` takes priority over
449
+ `line_kw`.
450
+
451
+ pd_line_kw : dict, default=None
452
+ Dictionary with keywords passed to the `matplotlib.pyplot.plot` call.
453
+ For partial dependence in one-way partial dependence plots.
454
+ The key value pairs defined in `pd_line_kw` takes priority over
455
+ `line_kw`.
456
+
457
+ contour_kw : dict, default=None
458
+ Dict with keywords passed to the ``matplotlib.pyplot.contourf`` call.
459
+ For two-way partial dependence plots.
460
+
461
+ ax : Matplotlib axes or array-like of Matplotlib axes, default=None
462
+ - If a single axis is passed in, it is treated as a bounding axes
463
+ and a grid of partial dependence plots will be drawn within
464
+ these bounds. The `n_cols` parameter controls the number of
465
+ columns in the grid.
466
+ - If an array-like of axes are passed in, the partial dependence
467
+ plots will be drawn directly into these axes.
468
+ - If `None`, a figure and a bounding axes is created and treated
469
+ as the single axes case.
470
+
471
+ kind : {'average', 'individual', 'both'}, default='average'
472
+ Whether to plot the partial dependence averaged across all the samples
473
+ in the dataset or one line per sample or both.
474
+
475
+ - ``kind='average'`` results in the traditional PD plot;
476
+ - ``kind='individual'`` results in the ICE plot.
477
+
478
+ Note that the fast `method='recursion'` option is only available for
479
+ `kind='average'` and `sample_weights=None`. Computing individual
480
+ dependencies and doing weighted averages requires using the slower
481
+ `method='brute'`.
482
+
483
+ centered : bool, default=False
484
+ If `True`, the ICE and PD lines will start at the origin of the
485
+ y-axis. By default, no centering is done.
486
+
487
+ .. versionadded:: 1.1
488
+
489
+ subsample : float, int or None, default=1000
490
+ Sampling for ICE curves when `kind` is 'individual' or 'both'.
491
+ If `float`, should be between 0.0 and 1.0 and represent the proportion
492
+ of the dataset to be used to plot ICE curves. If `int`, represents the
493
+ absolute number samples to use.
494
+
495
+ Note that the full dataset is still used to calculate averaged partial
496
+ dependence when `kind='both'`.
497
+
498
+ random_state : int, RandomState instance or None, default=None
499
+ Controls the randomness of the selected samples when subsamples is not
500
+ `None` and `kind` is either `'both'` or `'individual'`.
501
+ See :term:`Glossary <random_state>` for details.
502
+
503
+ Returns
504
+ -------
505
+ display : :class:`~sklearn.inspection.PartialDependenceDisplay`
506
+
507
+ See Also
508
+ --------
509
+ partial_dependence : Compute Partial Dependence values.
510
+
511
+ Examples
512
+ --------
513
+ >>> import matplotlib.pyplot as plt
514
+ >>> from sklearn.datasets import make_friedman1
515
+ >>> from sklearn.ensemble import GradientBoostingRegressor
516
+ >>> from sklearn.inspection import PartialDependenceDisplay
517
+ >>> X, y = make_friedman1()
518
+ >>> clf = GradientBoostingRegressor(n_estimators=10).fit(X, y)
519
+ >>> PartialDependenceDisplay.from_estimator(clf, X, [0, (0, 1)])
520
+ <...>
521
+ >>> plt.show()
522
+ """
523
+ check_matplotlib_support(f"{cls.__name__}.from_estimator") # noqa
524
+ import matplotlib.pyplot as plt # noqa
525
+
526
+ # set target_idx for multi-class estimators
527
+ if hasattr(estimator, "classes_") and np.size(estimator.classes_) > 2:
528
+ if target is None:
529
+ raise ValueError("target must be specified for multi-class")
530
+ target_idx = np.searchsorted(estimator.classes_, target)
531
+ if (
532
+ not (0 <= target_idx < len(estimator.classes_))
533
+ or estimator.classes_[target_idx] != target
534
+ ):
535
+ raise ValueError("target not in est.classes_, got {}".format(target))
536
+ else:
537
+ # regression and binary classification
538
+ target_idx = 0
539
+
540
+ # Use check_array only on lists and other non-array-likes / sparse. Do not
541
+ # convert DataFrame into a NumPy array.
542
+ if not (hasattr(X, "__array__") or sparse.issparse(X)):
543
+ X = check_array(X, force_all_finite="allow-nan", dtype=object)
544
+ n_features = X.shape[1]
545
+
546
+ feature_names = _check_feature_names(X, feature_names)
547
+ # expand kind to always be a list of str
548
+ kind_ = [kind] * len(features) if isinstance(kind, str) else kind
549
+ if len(kind_) != len(features):
550
+ raise ValueError(
551
+ "When `kind` is provided as a list of strings, it should contain "
552
+ f"as many elements as `features`. `kind` contains {len(kind_)} "
553
+ f"element(s) and `features` contains {len(features)} element(s)."
554
+ )
555
+
556
+ # convert features into a seq of int tuples
557
+ tmp_features, ice_for_two_way_pd = [], []
558
+ for kind_plot, fxs in zip(kind_, features):
559
+ if isinstance(fxs, (numbers.Integral, str)):
560
+ fxs = (fxs,)
561
+ try:
562
+ fxs = tuple(
563
+ _get_feature_index(fx, feature_names=feature_names) for fx in fxs
564
+ )
565
+ except TypeError as e:
566
+ raise ValueError(
567
+ "Each entry in features must be either an int, "
568
+ "a string, or an iterable of size at most 2."
569
+ ) from e
570
+ if not 1 <= np.size(fxs) <= 2:
571
+ raise ValueError(
572
+ "Each entry in features must be either an int, "
573
+ "a string, or an iterable of size at most 2."
574
+ )
575
+ # store the information if 2-way PD was requested with ICE to later
576
+ # raise a ValueError with an exhaustive list of problematic
577
+ # settings.
578
+ ice_for_two_way_pd.append(kind_plot != "average" and np.size(fxs) > 1)
579
+
580
+ tmp_features.append(fxs)
581
+
582
+ if any(ice_for_two_way_pd):
583
+ # raise an error and be specific regarding the parameter values
584
+ # when 1- and 2-way PD were requested
585
+ kind_ = [
586
+ "average" if forcing_average else kind_plot
587
+ for forcing_average, kind_plot in zip(ice_for_two_way_pd, kind_)
588
+ ]
589
+ raise ValueError(
590
+ "ICE plot cannot be rendered for 2-way feature interactions. "
591
+ "2-way feature interactions mandates PD plots using the "
592
+ "'average' kind: "
593
+ f"features={features!r} should be configured to use "
594
+ f"kind={kind_!r} explicitly."
595
+ )
596
+ features = tmp_features
597
+
598
+ if categorical_features is None:
599
+ is_categorical = [
600
+ (False,) if len(fxs) == 1 else (False, False) for fxs in features
601
+ ]
602
+ else:
603
+ # we need to create a boolean indicator of which features are
604
+ # categorical from the categorical_features list.
605
+ categorical_features = np.asarray(categorical_features)
606
+ if categorical_features.dtype.kind == "b":
607
+ # categorical features provided as a list of boolean
608
+ if categorical_features.size != n_features:
609
+ raise ValueError(
610
+ "When `categorical_features` is a boolean array-like, "
611
+ "the array should be of shape (n_features,). Got "
612
+ f"{categorical_features.size} elements while `X` contains "
613
+ f"{n_features} features."
614
+ )
615
+ is_categorical = [
616
+ tuple(categorical_features[fx] for fx in fxs) for fxs in features
617
+ ]
618
+ elif categorical_features.dtype.kind in ("i", "O", "U"):
619
+ # categorical features provided as a list of indices or feature names
620
+ categorical_features_idx = [
621
+ _get_feature_index(cat, feature_names=feature_names)
622
+ for cat in categorical_features
623
+ ]
624
+ is_categorical = [
625
+ tuple([idx in categorical_features_idx for idx in fxs])
626
+ for fxs in features
627
+ ]
628
+ else:
629
+ raise ValueError(
630
+ "Expected `categorical_features` to be an array-like of boolean,"
631
+ f" integer, or string. Got {categorical_features.dtype} instead."
632
+ )
633
+
634
+ for cats in is_categorical:
635
+ if np.size(cats) == 2 and (cats[0] != cats[1]):
636
+ raise ValueError(
637
+ "Two-way partial dependence plots are not supported for pairs"
638
+ " of continuous and categorical features."
639
+ )
640
+
641
+ # collect the indices of the categorical features targeted by the partial
642
+ # dependence computation
643
+ categorical_features_targeted = set(
644
+ [
645
+ fx
646
+ for fxs, cats in zip(features, is_categorical)
647
+ for fx in fxs
648
+ if any(cats)
649
+ ]
650
+ )
651
+ if categorical_features_targeted:
652
+ min_n_cats = min(
653
+ [
654
+ len(_unique(_safe_indexing(X, idx, axis=1)))
655
+ for idx in categorical_features_targeted
656
+ ]
657
+ )
658
+ if grid_resolution < min_n_cats:
659
+ raise ValueError(
660
+ "The resolution of the computed grid is less than the "
661
+ "minimum number of categories in the targeted categorical "
662
+ "features. Expect the `grid_resolution` to be greater than "
663
+ f"{min_n_cats}. Got {grid_resolution} instead."
664
+ )
665
+
666
+ for is_cat, kind_plot in zip(is_categorical, kind_):
667
+ if any(is_cat) and kind_plot != "average":
668
+ raise ValueError(
669
+ "It is not possible to display individual effects for"
670
+ " categorical features."
671
+ )
672
+
673
+ # Early exit if the axes does not have the correct number of axes
674
+ if ax is not None and not isinstance(ax, plt.Axes):
675
+ axes = np.asarray(ax, dtype=object)
676
+ if axes.size != len(features):
677
+ raise ValueError(
678
+ "Expected ax to have {} axes, got {}".format(
679
+ len(features), axes.size
680
+ )
681
+ )
682
+
683
+ for i in chain.from_iterable(features):
684
+ if i >= len(feature_names):
685
+ raise ValueError(
686
+ "All entries of features must be less than "
687
+ "len(feature_names) = {0}, got {1}.".format(len(feature_names), i)
688
+ )
689
+
690
+ if isinstance(subsample, numbers.Integral):
691
+ if subsample <= 0:
692
+ raise ValueError(
693
+ f"When an integer, subsample={subsample} should be positive."
694
+ )
695
+ elif isinstance(subsample, numbers.Real):
696
+ if subsample <= 0 or subsample >= 1:
697
+ raise ValueError(
698
+ f"When a floating-point, subsample={subsample} should be in "
699
+ "the (0, 1) range."
700
+ )
701
+
702
+ # compute predictions and/or averaged predictions
703
+ pd_results = Parallel(n_jobs=n_jobs, verbose=verbose)(
704
+ delayed(partial_dependence)(
705
+ estimator,
706
+ X,
707
+ fxs,
708
+ sample_weight=sample_weight,
709
+ feature_names=feature_names,
710
+ categorical_features=categorical_features,
711
+ response_method=response_method,
712
+ method=method,
713
+ grid_resolution=grid_resolution,
714
+ percentiles=percentiles,
715
+ kind=kind_plot,
716
+ )
717
+ for kind_plot, fxs in zip(kind_, features)
718
+ )
719
+
720
+ # For multioutput regression, we can only check the validity of target
721
+ # now that we have the predictions.
722
+ # Also note: as multiclass-multioutput classifiers are not supported,
723
+ # multiclass and multioutput scenario are mutually exclusive. So there is
724
+ # no risk of overwriting target_idx here.
725
+ pd_result = pd_results[0] # checking the first result is enough
726
+ n_tasks = (
727
+ pd_result.average.shape[0]
728
+ if kind_[0] == "average"
729
+ else pd_result.individual.shape[0]
730
+ )
731
+ if is_regressor(estimator) and n_tasks > 1:
732
+ if target is None:
733
+ raise ValueError("target must be specified for multi-output regressors")
734
+ if not 0 <= target <= n_tasks:
735
+ raise ValueError(
736
+ "target must be in [0, n_tasks], got {}.".format(target)
737
+ )
738
+ target_idx = target
739
+
740
+ deciles = {}
741
+ for fxs, cats in zip(features, is_categorical):
742
+ for fx, cat in zip(fxs, cats):
743
+ if not cat and fx not in deciles:
744
+ X_col = _safe_indexing(X, fx, axis=1)
745
+ deciles[fx] = mquantiles(X_col, prob=np.arange(0.1, 1.0, 0.1))
746
+
747
+ display = cls(
748
+ pd_results=pd_results,
749
+ features=features,
750
+ feature_names=feature_names,
751
+ target_idx=target_idx,
752
+ deciles=deciles,
753
+ kind=kind,
754
+ subsample=subsample,
755
+ random_state=random_state,
756
+ is_categorical=is_categorical,
757
+ )
758
+ return display.plot(
759
+ ax=ax,
760
+ n_cols=n_cols,
761
+ line_kw=line_kw,
762
+ ice_lines_kw=ice_lines_kw,
763
+ pd_line_kw=pd_line_kw,
764
+ contour_kw=contour_kw,
765
+ centered=centered,
766
+ )
767
+
768
+ def _get_sample_count(self, n_samples):
769
+ """Compute the number of samples as an integer."""
770
+ if isinstance(self.subsample, numbers.Integral):
771
+ if self.subsample < n_samples:
772
+ return self.subsample
773
+ return n_samples
774
+ elif isinstance(self.subsample, numbers.Real):
775
+ return ceil(n_samples * self.subsample)
776
+ return n_samples
777
+
778
+ def _plot_ice_lines(
779
+ self,
780
+ preds,
781
+ feature_values,
782
+ n_ice_to_plot,
783
+ ax,
784
+ pd_plot_idx,
785
+ n_total_lines_by_plot,
786
+ individual_line_kw,
787
+ ):
788
+ """Plot the ICE lines.
789
+
790
+ Parameters
791
+ ----------
792
+ preds : ndarray of shape \
793
+ (n_instances, n_grid_points)
794
+ The predictions computed for all points of `feature_values` for a
795
+ given feature for all samples in `X`.
796
+ feature_values : ndarray of shape (n_grid_points,)
797
+ The feature values for which the predictions have been computed.
798
+ n_ice_to_plot : int
799
+ The number of ICE lines to plot.
800
+ ax : Matplotlib axes
801
+ The axis on which to plot the ICE lines.
802
+ pd_plot_idx : int
803
+ The sequential index of the plot. It will be unraveled to find the
804
+ matching 2D position in the grid layout.
805
+ n_total_lines_by_plot : int
806
+ The total number of lines expected to be plot on the axis.
807
+ individual_line_kw : dict
808
+ Dict with keywords passed when plotting the ICE lines.
809
+ """
810
+ rng = check_random_state(self.random_state)
811
+ # subsample ice
812
+ ice_lines_idx = rng.choice(
813
+ preds.shape[0],
814
+ n_ice_to_plot,
815
+ replace=False,
816
+ )
817
+ ice_lines_subsampled = preds[ice_lines_idx, :]
818
+ # plot the subsampled ice
819
+ for ice_idx, ice in enumerate(ice_lines_subsampled):
820
+ line_idx = np.unravel_index(
821
+ pd_plot_idx * n_total_lines_by_plot + ice_idx, self.lines_.shape
822
+ )
823
+ self.lines_[line_idx] = ax.plot(
824
+ feature_values, ice.ravel(), **individual_line_kw
825
+ )[0]
826
+
827
+ def _plot_average_dependence(
828
+ self,
829
+ avg_preds,
830
+ feature_values,
831
+ ax,
832
+ pd_line_idx,
833
+ line_kw,
834
+ categorical,
835
+ bar_kw,
836
+ ):
837
+ """Plot the average partial dependence.
838
+
839
+ Parameters
840
+ ----------
841
+ avg_preds : ndarray of shape (n_grid_points,)
842
+ The average predictions for all points of `feature_values` for a
843
+ given feature for all samples in `X`.
844
+ feature_values : ndarray of shape (n_grid_points,)
845
+ The feature values for which the predictions have been computed.
846
+ ax : Matplotlib axes
847
+ The axis on which to plot the average PD.
848
+ pd_line_idx : int
849
+ The sequential index of the plot. It will be unraveled to find the
850
+ matching 2D position in the grid layout.
851
+ line_kw : dict
852
+ Dict with keywords passed when plotting the PD plot.
853
+ categorical : bool
854
+ Whether feature is categorical.
855
+ bar_kw: dict
856
+ Dict with keywords passed when plotting the PD bars (categorical).
857
+ """
858
+ if categorical:
859
+ bar_idx = np.unravel_index(pd_line_idx, self.bars_.shape)
860
+ self.bars_[bar_idx] = ax.bar(feature_values, avg_preds, **bar_kw)[0]
861
+ ax.tick_params(axis="x", rotation=90)
862
+ else:
863
+ line_idx = np.unravel_index(pd_line_idx, self.lines_.shape)
864
+ self.lines_[line_idx] = ax.plot(
865
+ feature_values,
866
+ avg_preds,
867
+ **line_kw,
868
+ )[0]
869
+
870
+ def _plot_one_way_partial_dependence(
871
+ self,
872
+ kind,
873
+ preds,
874
+ avg_preds,
875
+ feature_values,
876
+ feature_idx,
877
+ n_ice_lines,
878
+ ax,
879
+ n_cols,
880
+ pd_plot_idx,
881
+ n_lines,
882
+ ice_lines_kw,
883
+ pd_line_kw,
884
+ categorical,
885
+ bar_kw,
886
+ pdp_lim,
887
+ ):
888
+ """Plot 1-way partial dependence: ICE and PDP.
889
+
890
+ Parameters
891
+ ----------
892
+ kind : str
893
+ The kind of partial plot to draw.
894
+ preds : ndarray of shape \
895
+ (n_instances, n_grid_points) or None
896
+ The predictions computed for all points of `feature_values` for a
897
+ given feature for all samples in `X`.
898
+ avg_preds : ndarray of shape (n_grid_points,)
899
+ The average predictions for all points of `feature_values` for a
900
+ given feature for all samples in `X`.
901
+ feature_values : ndarray of shape (n_grid_points,)
902
+ The feature values for which the predictions have been computed.
903
+ feature_idx : int
904
+ The index corresponding to the target feature.
905
+ n_ice_lines : int
906
+ The number of ICE lines to plot.
907
+ ax : Matplotlib axes
908
+ The axis on which to plot the ICE and PDP lines.
909
+ n_cols : int or None
910
+ The number of column in the axis.
911
+ pd_plot_idx : int
912
+ The sequential index of the plot. It will be unraveled to find the
913
+ matching 2D position in the grid layout.
914
+ n_lines : int
915
+ The total number of lines expected to be plot on the axis.
916
+ ice_lines_kw : dict
917
+ Dict with keywords passed when plotting the ICE lines.
918
+ pd_line_kw : dict
919
+ Dict with keywords passed when plotting the PD plot.
920
+ categorical : bool
921
+ Whether feature is categorical.
922
+ bar_kw: dict
923
+ Dict with keywords passed when plotting the PD bars (categorical).
924
+ pdp_lim : dict
925
+ Global min and max average predictions, such that all plots will
926
+ have the same scale and y limits. `pdp_lim[1]` is the global min
927
+ and max for single partial dependence curves.
928
+ """
929
+ from matplotlib import transforms # noqa
930
+
931
+ if kind in ("individual", "both"):
932
+ self._plot_ice_lines(
933
+ preds[self.target_idx],
934
+ feature_values,
935
+ n_ice_lines,
936
+ ax,
937
+ pd_plot_idx,
938
+ n_lines,
939
+ ice_lines_kw,
940
+ )
941
+
942
+ if kind in ("average", "both"):
943
+ # the average is stored as the last line
944
+ if kind == "average":
945
+ pd_line_idx = pd_plot_idx
946
+ else:
947
+ pd_line_idx = pd_plot_idx * n_lines + n_ice_lines
948
+ self._plot_average_dependence(
949
+ avg_preds[self.target_idx].ravel(),
950
+ feature_values,
951
+ ax,
952
+ pd_line_idx,
953
+ pd_line_kw,
954
+ categorical,
955
+ bar_kw,
956
+ )
957
+
958
+ trans = transforms.blended_transform_factory(ax.transData, ax.transAxes)
959
+ # create the decile line for the vertical axis
960
+ vlines_idx = np.unravel_index(pd_plot_idx, self.deciles_vlines_.shape)
961
+ if self.deciles.get(feature_idx[0], None) is not None:
962
+ self.deciles_vlines_[vlines_idx] = ax.vlines(
963
+ self.deciles[feature_idx[0]],
964
+ 0,
965
+ 0.05,
966
+ transform=trans,
967
+ color="k",
968
+ )
969
+ # reset ylim which was overwritten by vlines
970
+ min_val = min(val[0] for val in pdp_lim.values())
971
+ max_val = max(val[1] for val in pdp_lim.values())
972
+ ax.set_ylim([min_val, max_val])
973
+
974
+ # Set xlabel if it is not already set
975
+ if not ax.get_xlabel():
976
+ ax.set_xlabel(self.feature_names[feature_idx[0]])
977
+
978
+ if n_cols is None or pd_plot_idx % n_cols == 0:
979
+ if not ax.get_ylabel():
980
+ ax.set_ylabel("Partial dependence")
981
+ else:
982
+ ax.set_yticklabels([])
983
+
984
+ if pd_line_kw.get("label", None) and kind != "individual" and not categorical:
985
+ ax.legend()
986
+
987
+ def _plot_two_way_partial_dependence(
988
+ self,
989
+ avg_preds,
990
+ feature_values,
991
+ feature_idx,
992
+ ax,
993
+ pd_plot_idx,
994
+ Z_level,
995
+ contour_kw,
996
+ categorical,
997
+ heatmap_kw,
998
+ ):
999
+ """Plot 2-way partial dependence.
1000
+
1001
+ Parameters
1002
+ ----------
1003
+ avg_preds : ndarray of shape \
1004
+ (n_instances, n_grid_points, n_grid_points)
1005
+ The average predictions for all points of `feature_values[0]` and
1006
+ `feature_values[1]` for some given features for all samples in `X`.
1007
+ feature_values : seq of 1d array
1008
+ A sequence of array of the feature values for which the predictions
1009
+ have been computed.
1010
+ feature_idx : tuple of int
1011
+ The indices of the target features
1012
+ ax : Matplotlib axes
1013
+ The axis on which to plot the ICE and PDP lines.
1014
+ pd_plot_idx : int
1015
+ The sequential index of the plot. It will be unraveled to find the
1016
+ matching 2D position in the grid layout.
1017
+ Z_level : ndarray of shape (8, 8)
1018
+ The Z-level used to encode the average predictions.
1019
+ contour_kw : dict
1020
+ Dict with keywords passed when plotting the contours.
1021
+ categorical : bool
1022
+ Whether features are categorical.
1023
+ heatmap_kw: dict
1024
+ Dict with keywords passed when plotting the PD heatmap
1025
+ (categorical).
1026
+ """
1027
+ if categorical:
1028
+ import matplotlib.pyplot as plt
1029
+
1030
+ default_im_kw = dict(interpolation="nearest", cmap="viridis")
1031
+ im_kw = {**default_im_kw, **heatmap_kw}
1032
+
1033
+ data = avg_preds[self.target_idx]
1034
+ im = ax.imshow(data, **im_kw)
1035
+ text = None
1036
+ cmap_min, cmap_max = im.cmap(0), im.cmap(1.0)
1037
+
1038
+ text = np.empty_like(data, dtype=object)
1039
+ # print text with appropriate color depending on background
1040
+ thresh = (data.max() + data.min()) / 2.0
1041
+
1042
+ for flat_index in range(data.size):
1043
+ row, col = np.unravel_index(flat_index, data.shape)
1044
+ color = cmap_max if data[row, col] < thresh else cmap_min
1045
+
1046
+ values_format = ".2f"
1047
+ text_data = format(data[row, col], values_format)
1048
+
1049
+ text_kwargs = dict(ha="center", va="center", color=color)
1050
+ text[row, col] = ax.text(col, row, text_data, **text_kwargs)
1051
+
1052
+ fig = ax.figure
1053
+ fig.colorbar(im, ax=ax)
1054
+ ax.set(
1055
+ xticks=np.arange(len(feature_values[1])),
1056
+ yticks=np.arange(len(feature_values[0])),
1057
+ xticklabels=feature_values[1],
1058
+ yticklabels=feature_values[0],
1059
+ xlabel=self.feature_names[feature_idx[1]],
1060
+ ylabel=self.feature_names[feature_idx[0]],
1061
+ )
1062
+
1063
+ plt.setp(ax.get_xticklabels(), rotation="vertical")
1064
+
1065
+ heatmap_idx = np.unravel_index(pd_plot_idx, self.heatmaps_.shape)
1066
+ self.heatmaps_[heatmap_idx] = im
1067
+ else:
1068
+ from matplotlib import transforms # noqa
1069
+
1070
+ XX, YY = np.meshgrid(feature_values[0], feature_values[1])
1071
+ Z = avg_preds[self.target_idx].T
1072
+ CS = ax.contour(XX, YY, Z, levels=Z_level, linewidths=0.5, colors="k")
1073
+ contour_idx = np.unravel_index(pd_plot_idx, self.contours_.shape)
1074
+ self.contours_[contour_idx] = ax.contourf(
1075
+ XX,
1076
+ YY,
1077
+ Z,
1078
+ levels=Z_level,
1079
+ vmax=Z_level[-1],
1080
+ vmin=Z_level[0],
1081
+ **contour_kw,
1082
+ )
1083
+ ax.clabel(CS, fmt="%2.2f", colors="k", fontsize=10, inline=True)
1084
+
1085
+ trans = transforms.blended_transform_factory(ax.transData, ax.transAxes)
1086
+ # create the decile line for the vertical axis
1087
+ xlim, ylim = ax.get_xlim(), ax.get_ylim()
1088
+ vlines_idx = np.unravel_index(pd_plot_idx, self.deciles_vlines_.shape)
1089
+ self.deciles_vlines_[vlines_idx] = ax.vlines(
1090
+ self.deciles[feature_idx[0]],
1091
+ 0,
1092
+ 0.05,
1093
+ transform=trans,
1094
+ color="k",
1095
+ )
1096
+ # create the decile line for the horizontal axis
1097
+ hlines_idx = np.unravel_index(pd_plot_idx, self.deciles_hlines_.shape)
1098
+ self.deciles_hlines_[hlines_idx] = ax.hlines(
1099
+ self.deciles[feature_idx[1]],
1100
+ 0,
1101
+ 0.05,
1102
+ transform=trans,
1103
+ color="k",
1104
+ )
1105
+ # reset xlim and ylim since they are overwritten by hlines and
1106
+ # vlines
1107
+ ax.set_xlim(xlim)
1108
+ ax.set_ylim(ylim)
1109
+
1110
+ # set xlabel if it is not already set
1111
+ if not ax.get_xlabel():
1112
+ ax.set_xlabel(self.feature_names[feature_idx[0]])
1113
+ ax.set_ylabel(self.feature_names[feature_idx[1]])
1114
+
1115
+ def plot(
1116
+ self,
1117
+ *,
1118
+ ax=None,
1119
+ n_cols=3,
1120
+ line_kw=None,
1121
+ ice_lines_kw=None,
1122
+ pd_line_kw=None,
1123
+ contour_kw=None,
1124
+ bar_kw=None,
1125
+ heatmap_kw=None,
1126
+ pdp_lim=None,
1127
+ centered=False,
1128
+ ):
1129
+ """Plot partial dependence plots.
1130
+
1131
+ Parameters
1132
+ ----------
1133
+ ax : Matplotlib axes or array-like of Matplotlib axes, default=None
1134
+ - If a single axis is passed in, it is treated as a bounding axes
1135
+ and a grid of partial dependence plots will be drawn within
1136
+ these bounds. The `n_cols` parameter controls the number of
1137
+ columns in the grid.
1138
+ - If an array-like of axes are passed in, the partial dependence
1139
+ plots will be drawn directly into these axes.
1140
+ - If `None`, a figure and a bounding axes is created and treated
1141
+ as the single axes case.
1142
+
1143
+ n_cols : int, default=3
1144
+ The maximum number of columns in the grid plot. Only active when
1145
+ `ax` is a single axes or `None`.
1146
+
1147
+ line_kw : dict, default=None
1148
+ Dict with keywords passed to the `matplotlib.pyplot.plot` call.
1149
+ For one-way partial dependence plots.
1150
+
1151
+ ice_lines_kw : dict, default=None
1152
+ Dictionary with keywords passed to the `matplotlib.pyplot.plot` call.
1153
+ For ICE lines in the one-way partial dependence plots.
1154
+ The key value pairs defined in `ice_lines_kw` takes priority over
1155
+ `line_kw`.
1156
+
1157
+ .. versionadded:: 1.0
1158
+
1159
+ pd_line_kw : dict, default=None
1160
+ Dictionary with keywords passed to the `matplotlib.pyplot.plot` call.
1161
+ For partial dependence in one-way partial dependence plots.
1162
+ The key value pairs defined in `pd_line_kw` takes priority over
1163
+ `line_kw`.
1164
+
1165
+ .. versionadded:: 1.0
1166
+
1167
+ contour_kw : dict, default=None
1168
+ Dict with keywords passed to the `matplotlib.pyplot.contourf`
1169
+ call for two-way partial dependence plots.
1170
+
1171
+ bar_kw : dict, default=None
1172
+ Dict with keywords passed to the `matplotlib.pyplot.bar`
1173
+ call for one-way categorical partial dependence plots.
1174
+
1175
+ .. versionadded:: 1.2
1176
+
1177
+ heatmap_kw : dict, default=None
1178
+ Dict with keywords passed to the `matplotlib.pyplot.imshow`
1179
+ call for two-way categorical partial dependence plots.
1180
+
1181
+ .. versionadded:: 1.2
1182
+
1183
+ pdp_lim : dict, default=None
1184
+ Global min and max average predictions, such that all plots will have the
1185
+ same scale and y limits. `pdp_lim[1]` is the global min and max for single
1186
+ partial dependence curves. `pdp_lim[2]` is the global min and max for
1187
+ two-way partial dependence curves. If `None` (default), the limit will be
1188
+ inferred from the global minimum and maximum of all predictions.
1189
+
1190
+ .. versionadded:: 1.1
1191
+
1192
+ centered : bool, default=False
1193
+ If `True`, the ICE and PD lines will start at the origin of the
1194
+ y-axis. By default, no centering is done.
1195
+
1196
+ .. versionadded:: 1.1
1197
+
1198
+ Returns
1199
+ -------
1200
+ display : :class:`~sklearn.inspection.PartialDependenceDisplay`
1201
+ Returns a :class:`~sklearn.inspection.PartialDependenceDisplay`
1202
+ object that contains the partial dependence plots.
1203
+ """
1204
+
1205
+ check_matplotlib_support("plot_partial_dependence")
1206
+ import matplotlib.pyplot as plt # noqa
1207
+ from matplotlib.gridspec import GridSpecFromSubplotSpec # noqa
1208
+
1209
+ if isinstance(self.kind, str):
1210
+ kind = [self.kind] * len(self.features)
1211
+ else:
1212
+ kind = self.kind
1213
+
1214
+ if self.is_categorical is None:
1215
+ is_categorical = [
1216
+ (False,) if len(fx) == 1 else (False, False) for fx in self.features
1217
+ ]
1218
+ else:
1219
+ is_categorical = self.is_categorical
1220
+
1221
+ if len(kind) != len(self.features):
1222
+ raise ValueError(
1223
+ "When `kind` is provided as a list of strings, it should "
1224
+ "contain as many elements as `features`. `kind` contains "
1225
+ f"{len(kind)} element(s) and `features` contains "
1226
+ f"{len(self.features)} element(s)."
1227
+ )
1228
+
1229
+ valid_kinds = {"average", "individual", "both"}
1230
+ if any([k not in valid_kinds for k in kind]):
1231
+ raise ValueError(
1232
+ f"Values provided to `kind` must be one of: {valid_kinds!r} or a list"
1233
+ f" of such values. Currently, kind={self.kind!r}"
1234
+ )
1235
+
1236
+ # Center results before plotting
1237
+ if not centered:
1238
+ pd_results_ = self.pd_results
1239
+ else:
1240
+ pd_results_ = []
1241
+ for kind_plot, pd_result in zip(kind, self.pd_results):
1242
+ current_results = {"grid_values": pd_result["grid_values"]}
1243
+
1244
+ if kind_plot in ("individual", "both"):
1245
+ preds = pd_result.individual
1246
+ preds = preds - preds[self.target_idx, :, 0, None]
1247
+ current_results["individual"] = preds
1248
+
1249
+ if kind_plot in ("average", "both"):
1250
+ avg_preds = pd_result.average
1251
+ avg_preds = avg_preds - avg_preds[self.target_idx, 0, None]
1252
+ current_results["average"] = avg_preds
1253
+
1254
+ pd_results_.append(Bunch(**current_results))
1255
+
1256
+ if pdp_lim is None:
1257
+ # get global min and max average predictions of PD grouped by plot type
1258
+ pdp_lim = {}
1259
+ for kind_plot, pdp in zip(kind, pd_results_):
1260
+ values = pdp["grid_values"]
1261
+ preds = pdp.average if kind_plot == "average" else pdp.individual
1262
+ min_pd = preds[self.target_idx].min()
1263
+ max_pd = preds[self.target_idx].max()
1264
+
1265
+ # expand the limits to account so that the plotted lines do not touch
1266
+ # the edges of the plot
1267
+ span = max_pd - min_pd
1268
+ min_pd -= 0.05 * span
1269
+ max_pd += 0.05 * span
1270
+
1271
+ n_fx = len(values)
1272
+ old_min_pd, old_max_pd = pdp_lim.get(n_fx, (min_pd, max_pd))
1273
+ min_pd = min(min_pd, old_min_pd)
1274
+ max_pd = max(max_pd, old_max_pd)
1275
+ pdp_lim[n_fx] = (min_pd, max_pd)
1276
+
1277
+ if line_kw is None:
1278
+ line_kw = {}
1279
+ if ice_lines_kw is None:
1280
+ ice_lines_kw = {}
1281
+ if pd_line_kw is None:
1282
+ pd_line_kw = {}
1283
+ if bar_kw is None:
1284
+ bar_kw = {}
1285
+ if heatmap_kw is None:
1286
+ heatmap_kw = {}
1287
+
1288
+ if ax is None:
1289
+ _, ax = plt.subplots()
1290
+
1291
+ if contour_kw is None:
1292
+ contour_kw = {}
1293
+ default_contour_kws = {"alpha": 0.75}
1294
+ contour_kw = {**default_contour_kws, **contour_kw}
1295
+
1296
+ n_features = len(self.features)
1297
+ is_average_plot = [kind_plot == "average" for kind_plot in kind]
1298
+ if all(is_average_plot):
1299
+ # only average plots are requested
1300
+ n_ice_lines = 0
1301
+ n_lines = 1
1302
+ else:
1303
+ # we need to determine the number of ICE samples computed
1304
+ ice_plot_idx = is_average_plot.index(False)
1305
+ n_ice_lines = self._get_sample_count(
1306
+ len(pd_results_[ice_plot_idx].individual[0])
1307
+ )
1308
+ if any([kind_plot == "both" for kind_plot in kind]):
1309
+ n_lines = n_ice_lines + 1 # account for the average line
1310
+ else:
1311
+ n_lines = n_ice_lines
1312
+
1313
+ if isinstance(ax, plt.Axes):
1314
+ # If ax was set off, it has most likely been set to off
1315
+ # by a previous call to plot.
1316
+ if not ax.axison:
1317
+ raise ValueError(
1318
+ "The ax was already used in another plot "
1319
+ "function, please set ax=display.axes_ "
1320
+ "instead"
1321
+ )
1322
+
1323
+ ax.set_axis_off()
1324
+ self.bounding_ax_ = ax
1325
+ self.figure_ = ax.figure
1326
+
1327
+ n_cols = min(n_cols, n_features)
1328
+ n_rows = int(np.ceil(n_features / float(n_cols)))
1329
+
1330
+ self.axes_ = np.empty((n_rows, n_cols), dtype=object)
1331
+ if all(is_average_plot):
1332
+ self.lines_ = np.empty((n_rows, n_cols), dtype=object)
1333
+ else:
1334
+ self.lines_ = np.empty((n_rows, n_cols, n_lines), dtype=object)
1335
+ self.contours_ = np.empty((n_rows, n_cols), dtype=object)
1336
+ self.bars_ = np.empty((n_rows, n_cols), dtype=object)
1337
+ self.heatmaps_ = np.empty((n_rows, n_cols), dtype=object)
1338
+
1339
+ axes_ravel = self.axes_.ravel()
1340
+
1341
+ gs = GridSpecFromSubplotSpec(
1342
+ n_rows, n_cols, subplot_spec=ax.get_subplotspec()
1343
+ )
1344
+ for i, spec in zip(range(n_features), gs):
1345
+ axes_ravel[i] = self.figure_.add_subplot(spec)
1346
+
1347
+ else: # array-like
1348
+ ax = np.asarray(ax, dtype=object)
1349
+ if ax.size != n_features:
1350
+ raise ValueError(
1351
+ "Expected ax to have {} axes, got {}".format(n_features, ax.size)
1352
+ )
1353
+
1354
+ if ax.ndim == 2:
1355
+ n_cols = ax.shape[1]
1356
+ else:
1357
+ n_cols = None
1358
+
1359
+ self.bounding_ax_ = None
1360
+ self.figure_ = ax.ravel()[0].figure
1361
+ self.axes_ = ax
1362
+ if all(is_average_plot):
1363
+ self.lines_ = np.empty_like(ax, dtype=object)
1364
+ else:
1365
+ self.lines_ = np.empty(ax.shape + (n_lines,), dtype=object)
1366
+ self.contours_ = np.empty_like(ax, dtype=object)
1367
+ self.bars_ = np.empty_like(ax, dtype=object)
1368
+ self.heatmaps_ = np.empty_like(ax, dtype=object)
1369
+
1370
+ # create contour levels for two-way plots
1371
+ if 2 in pdp_lim:
1372
+ Z_level = np.linspace(*pdp_lim[2], num=8)
1373
+
1374
+ self.deciles_vlines_ = np.empty_like(self.axes_, dtype=object)
1375
+ self.deciles_hlines_ = np.empty_like(self.axes_, dtype=object)
1376
+
1377
+ for pd_plot_idx, (axi, feature_idx, cat, pd_result, kind_plot) in enumerate(
1378
+ zip(
1379
+ self.axes_.ravel(),
1380
+ self.features,
1381
+ is_categorical,
1382
+ pd_results_,
1383
+ kind,
1384
+ )
1385
+ ):
1386
+ avg_preds = None
1387
+ preds = None
1388
+ feature_values = pd_result["grid_values"]
1389
+ if kind_plot == "individual":
1390
+ preds = pd_result.individual
1391
+ elif kind_plot == "average":
1392
+ avg_preds = pd_result.average
1393
+ else: # kind_plot == 'both'
1394
+ avg_preds = pd_result.average
1395
+ preds = pd_result.individual
1396
+
1397
+ if len(feature_values) == 1:
1398
+ # define the line-style for the current plot
1399
+ default_line_kws = {
1400
+ "color": "C0",
1401
+ "label": "average" if kind_plot == "both" else None,
1402
+ }
1403
+ if kind_plot == "individual":
1404
+ default_ice_lines_kws = {"alpha": 0.3, "linewidth": 0.5}
1405
+ default_pd_lines_kws = {}
1406
+ elif kind_plot == "both":
1407
+ # by default, we need to distinguish the average line from
1408
+ # the individual lines via color and line style
1409
+ default_ice_lines_kws = {
1410
+ "alpha": 0.3,
1411
+ "linewidth": 0.5,
1412
+ "color": "tab:blue",
1413
+ }
1414
+ default_pd_lines_kws = {
1415
+ "color": "tab:orange",
1416
+ "linestyle": "--",
1417
+ }
1418
+ else:
1419
+ default_ice_lines_kws = {}
1420
+ default_pd_lines_kws = {}
1421
+
1422
+ ice_lines_kw = {
1423
+ **default_line_kws,
1424
+ **default_ice_lines_kws,
1425
+ **line_kw,
1426
+ **ice_lines_kw,
1427
+ }
1428
+ del ice_lines_kw["label"]
1429
+
1430
+ pd_line_kw = {
1431
+ **default_line_kws,
1432
+ **default_pd_lines_kws,
1433
+ **line_kw,
1434
+ **pd_line_kw,
1435
+ }
1436
+
1437
+ default_bar_kws = {"color": "C0"}
1438
+ bar_kw = {**default_bar_kws, **bar_kw}
1439
+
1440
+ default_heatmap_kw = {}
1441
+ heatmap_kw = {**default_heatmap_kw, **heatmap_kw}
1442
+
1443
+ self._plot_one_way_partial_dependence(
1444
+ kind_plot,
1445
+ preds,
1446
+ avg_preds,
1447
+ feature_values[0],
1448
+ feature_idx,
1449
+ n_ice_lines,
1450
+ axi,
1451
+ n_cols,
1452
+ pd_plot_idx,
1453
+ n_lines,
1454
+ ice_lines_kw,
1455
+ pd_line_kw,
1456
+ cat[0],
1457
+ bar_kw,
1458
+ pdp_lim,
1459
+ )
1460
+ else:
1461
+ self._plot_two_way_partial_dependence(
1462
+ avg_preds,
1463
+ feature_values,
1464
+ feature_idx,
1465
+ axi,
1466
+ pd_plot_idx,
1467
+ Z_level,
1468
+ contour_kw,
1469
+ cat[0] and cat[1],
1470
+ heatmap_kw,
1471
+ )
1472
+
1473
+ return self
venv/lib/python3.10/site-packages/sklearn/inspection/_plot/tests/test_boundary_decision_display.py ADDED
@@ -0,0 +1,609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from sklearn.base import BaseEstimator, ClassifierMixin
7
+ from sklearn.datasets import (
8
+ load_diabetes,
9
+ load_iris,
10
+ make_classification,
11
+ make_multilabel_classification,
12
+ )
13
+ from sklearn.ensemble import IsolationForest
14
+ from sklearn.inspection import DecisionBoundaryDisplay
15
+ from sklearn.inspection._plot.decision_boundary import _check_boundary_response_method
16
+ from sklearn.linear_model import LogisticRegression
17
+ from sklearn.preprocessing import scale
18
+ from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
19
+ from sklearn.utils._testing import (
20
+ assert_allclose,
21
+ assert_array_equal,
22
+ )
23
+
24
+ # TODO: Remove when https://github.com/numpy/numpy/issues/14397 is resolved
25
+ pytestmark = pytest.mark.filterwarnings(
26
+ "ignore:In future, it will be an error for 'np.bool_':DeprecationWarning:"
27
+ "matplotlib.*"
28
+ )
29
+
30
+
31
+ X, y = make_classification(
32
+ n_informative=1,
33
+ n_redundant=1,
34
+ n_clusters_per_class=1,
35
+ n_features=2,
36
+ random_state=42,
37
+ )
38
+
39
+
40
+ def load_iris_2d_scaled():
41
+ X, y = load_iris(return_X_y=True)
42
+ X = scale(X)[:, :2]
43
+ return X, y
44
+
45
+
46
+ @pytest.fixture(scope="module")
47
+ def fitted_clf():
48
+ return LogisticRegression().fit(X, y)
49
+
50
+
51
+ def test_input_data_dimension(pyplot):
52
+ """Check that we raise an error when `X` does not have exactly 2 features."""
53
+ X, y = make_classification(n_samples=10, n_features=4, random_state=0)
54
+
55
+ clf = LogisticRegression().fit(X, y)
56
+ msg = "n_features must be equal to 2. Got 4 instead."
57
+ with pytest.raises(ValueError, match=msg):
58
+ DecisionBoundaryDisplay.from_estimator(estimator=clf, X=X)
59
+
60
+
61
+ def test_check_boundary_response_method_error():
62
+ """Check that we raise an error for the cases not supported by
63
+ `_check_boundary_response_method`.
64
+ """
65
+
66
+ class MultiLabelClassifier:
67
+ classes_ = [np.array([0, 1]), np.array([0, 1])]
68
+
69
+ err_msg = "Multi-label and multi-output multi-class classifiers are not supported"
70
+ with pytest.raises(ValueError, match=err_msg):
71
+ _check_boundary_response_method(MultiLabelClassifier(), "predict", None)
72
+
73
+ class MulticlassClassifier:
74
+ classes_ = [0, 1, 2]
75
+
76
+ err_msg = "Multiclass classifiers are only supported when `response_method` is"
77
+ for response_method in ("predict_proba", "decision_function"):
78
+ with pytest.raises(ValueError, match=err_msg):
79
+ _check_boundary_response_method(
80
+ MulticlassClassifier(), response_method, None
81
+ )
82
+
83
+
84
+ @pytest.mark.parametrize(
85
+ "estimator, response_method, class_of_interest, expected_prediction_method",
86
+ [
87
+ (DecisionTreeRegressor(), "predict", None, "predict"),
88
+ (DecisionTreeRegressor(), "auto", None, "predict"),
89
+ (LogisticRegression().fit(*load_iris_2d_scaled()), "predict", None, "predict"),
90
+ (LogisticRegression().fit(*load_iris_2d_scaled()), "auto", None, "predict"),
91
+ (
92
+ LogisticRegression().fit(*load_iris_2d_scaled()),
93
+ "predict_proba",
94
+ 0,
95
+ "predict_proba",
96
+ ),
97
+ (
98
+ LogisticRegression().fit(*load_iris_2d_scaled()),
99
+ "decision_function",
100
+ 0,
101
+ "decision_function",
102
+ ),
103
+ (
104
+ LogisticRegression().fit(X, y),
105
+ "auto",
106
+ None,
107
+ ["decision_function", "predict_proba", "predict"],
108
+ ),
109
+ (LogisticRegression().fit(X, y), "predict", None, "predict"),
110
+ (
111
+ LogisticRegression().fit(X, y),
112
+ ["predict_proba", "decision_function"],
113
+ None,
114
+ ["predict_proba", "decision_function"],
115
+ ),
116
+ ],
117
+ )
118
+ def test_check_boundary_response_method(
119
+ estimator, response_method, class_of_interest, expected_prediction_method
120
+ ):
121
+ """Check the behaviour of `_check_boundary_response_method` for the supported
122
+ cases.
123
+ """
124
+ prediction_method = _check_boundary_response_method(
125
+ estimator, response_method, class_of_interest
126
+ )
127
+ assert prediction_method == expected_prediction_method
128
+
129
+
130
+ @pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"])
131
+ def test_multiclass_error(pyplot, response_method):
132
+ """Check multiclass errors."""
133
+ X, y = make_classification(n_classes=3, n_informative=3, random_state=0)
134
+ X = X[:, [0, 1]]
135
+ lr = LogisticRegression().fit(X, y)
136
+
137
+ msg = (
138
+ "Multiclass classifiers are only supported when `response_method` is 'predict'"
139
+ " or 'auto'"
140
+ )
141
+ with pytest.raises(ValueError, match=msg):
142
+ DecisionBoundaryDisplay.from_estimator(lr, X, response_method=response_method)
143
+
144
+
145
+ @pytest.mark.parametrize("response_method", ["auto", "predict"])
146
+ def test_multiclass(pyplot, response_method):
147
+ """Check multiclass gives expected results."""
148
+ grid_resolution = 10
149
+ eps = 1.0
150
+ X, y = make_classification(n_classes=3, n_informative=3, random_state=0)
151
+ X = X[:, [0, 1]]
152
+ lr = LogisticRegression(random_state=0).fit(X, y)
153
+
154
+ disp = DecisionBoundaryDisplay.from_estimator(
155
+ lr, X, response_method=response_method, grid_resolution=grid_resolution, eps=1.0
156
+ )
157
+
158
+ x0_min, x0_max = X[:, 0].min() - eps, X[:, 0].max() + eps
159
+ x1_min, x1_max = X[:, 1].min() - eps, X[:, 1].max() + eps
160
+ xx0, xx1 = np.meshgrid(
161
+ np.linspace(x0_min, x0_max, grid_resolution),
162
+ np.linspace(x1_min, x1_max, grid_resolution),
163
+ )
164
+ response = lr.predict(np.c_[xx0.ravel(), xx1.ravel()])
165
+ assert_allclose(disp.response, response.reshape(xx0.shape))
166
+ assert_allclose(disp.xx0, xx0)
167
+ assert_allclose(disp.xx1, xx1)
168
+
169
+
170
+ @pytest.mark.parametrize(
171
+ "kwargs, error_msg",
172
+ [
173
+ (
174
+ {"plot_method": "hello_world"},
175
+ r"plot_method must be one of contourf, contour, pcolormesh. Got hello_world"
176
+ r" instead.",
177
+ ),
178
+ (
179
+ {"grid_resolution": 1},
180
+ r"grid_resolution must be greater than 1. Got 1 instead",
181
+ ),
182
+ (
183
+ {"grid_resolution": -1},
184
+ r"grid_resolution must be greater than 1. Got -1 instead",
185
+ ),
186
+ ({"eps": -1.1}, r"eps must be greater than or equal to 0. Got -1.1 instead"),
187
+ ],
188
+ )
189
+ def test_input_validation_errors(pyplot, kwargs, error_msg, fitted_clf):
190
+ """Check input validation from_estimator."""
191
+ with pytest.raises(ValueError, match=error_msg):
192
+ DecisionBoundaryDisplay.from_estimator(fitted_clf, X, **kwargs)
193
+
194
+
195
+ def test_display_plot_input_error(pyplot, fitted_clf):
196
+ """Check input validation for `plot`."""
197
+ disp = DecisionBoundaryDisplay.from_estimator(fitted_clf, X, grid_resolution=5)
198
+
199
+ with pytest.raises(ValueError, match="plot_method must be 'contourf'"):
200
+ disp.plot(plot_method="hello_world")
201
+
202
+
203
+ @pytest.mark.parametrize(
204
+ "response_method", ["auto", "predict", "predict_proba", "decision_function"]
205
+ )
206
+ @pytest.mark.parametrize("plot_method", ["contourf", "contour"])
207
+ def test_decision_boundary_display_classifier(
208
+ pyplot, fitted_clf, response_method, plot_method
209
+ ):
210
+ """Check that decision boundary is correct."""
211
+ fig, ax = pyplot.subplots()
212
+ eps = 2.0
213
+ disp = DecisionBoundaryDisplay.from_estimator(
214
+ fitted_clf,
215
+ X,
216
+ grid_resolution=5,
217
+ response_method=response_method,
218
+ plot_method=plot_method,
219
+ eps=eps,
220
+ ax=ax,
221
+ )
222
+ assert isinstance(disp.surface_, pyplot.matplotlib.contour.QuadContourSet)
223
+ assert disp.ax_ == ax
224
+ assert disp.figure_ == fig
225
+
226
+ x0, x1 = X[:, 0], X[:, 1]
227
+
228
+ x0_min, x0_max = x0.min() - eps, x0.max() + eps
229
+ x1_min, x1_max = x1.min() - eps, x1.max() + eps
230
+
231
+ assert disp.xx0.min() == pytest.approx(x0_min)
232
+ assert disp.xx0.max() == pytest.approx(x0_max)
233
+ assert disp.xx1.min() == pytest.approx(x1_min)
234
+ assert disp.xx1.max() == pytest.approx(x1_max)
235
+
236
+ fig2, ax2 = pyplot.subplots()
237
+ # change plotting method for second plot
238
+ disp.plot(plot_method="pcolormesh", ax=ax2, shading="auto")
239
+ assert isinstance(disp.surface_, pyplot.matplotlib.collections.QuadMesh)
240
+ assert disp.ax_ == ax2
241
+ assert disp.figure_ == fig2
242
+
243
+
244
+ @pytest.mark.parametrize("response_method", ["auto", "predict", "decision_function"])
245
+ @pytest.mark.parametrize("plot_method", ["contourf", "contour"])
246
+ def test_decision_boundary_display_outlier_detector(
247
+ pyplot, response_method, plot_method
248
+ ):
249
+ """Check that decision boundary is correct for outlier detector."""
250
+ fig, ax = pyplot.subplots()
251
+ eps = 2.0
252
+ outlier_detector = IsolationForest(random_state=0).fit(X, y)
253
+ disp = DecisionBoundaryDisplay.from_estimator(
254
+ outlier_detector,
255
+ X,
256
+ grid_resolution=5,
257
+ response_method=response_method,
258
+ plot_method=plot_method,
259
+ eps=eps,
260
+ ax=ax,
261
+ )
262
+ assert isinstance(disp.surface_, pyplot.matplotlib.contour.QuadContourSet)
263
+ assert disp.ax_ == ax
264
+ assert disp.figure_ == fig
265
+
266
+ x0, x1 = X[:, 0], X[:, 1]
267
+
268
+ x0_min, x0_max = x0.min() - eps, x0.max() + eps
269
+ x1_min, x1_max = x1.min() - eps, x1.max() + eps
270
+
271
+ assert disp.xx0.min() == pytest.approx(x0_min)
272
+ assert disp.xx0.max() == pytest.approx(x0_max)
273
+ assert disp.xx1.min() == pytest.approx(x1_min)
274
+ assert disp.xx1.max() == pytest.approx(x1_max)
275
+
276
+
277
+ @pytest.mark.parametrize("response_method", ["auto", "predict"])
278
+ @pytest.mark.parametrize("plot_method", ["contourf", "contour"])
279
+ def test_decision_boundary_display_regressor(pyplot, response_method, plot_method):
280
+ """Check that we can display the decision boundary for a regressor."""
281
+ X, y = load_diabetes(return_X_y=True)
282
+ X = X[:, :2]
283
+ tree = DecisionTreeRegressor().fit(X, y)
284
+ fig, ax = pyplot.subplots()
285
+ eps = 2.0
286
+ disp = DecisionBoundaryDisplay.from_estimator(
287
+ tree,
288
+ X,
289
+ response_method=response_method,
290
+ ax=ax,
291
+ eps=eps,
292
+ plot_method=plot_method,
293
+ )
294
+ assert isinstance(disp.surface_, pyplot.matplotlib.contour.QuadContourSet)
295
+ assert disp.ax_ == ax
296
+ assert disp.figure_ == fig
297
+
298
+ x0, x1 = X[:, 0], X[:, 1]
299
+
300
+ x0_min, x0_max = x0.min() - eps, x0.max() + eps
301
+ x1_min, x1_max = x1.min() - eps, x1.max() + eps
302
+
303
+ assert disp.xx0.min() == pytest.approx(x0_min)
304
+ assert disp.xx0.max() == pytest.approx(x0_max)
305
+ assert disp.xx1.min() == pytest.approx(x1_min)
306
+ assert disp.xx1.max() == pytest.approx(x1_max)
307
+
308
+ fig2, ax2 = pyplot.subplots()
309
+ # change plotting method for second plot
310
+ disp.plot(plot_method="pcolormesh", ax=ax2, shading="auto")
311
+ assert isinstance(disp.surface_, pyplot.matplotlib.collections.QuadMesh)
312
+ assert disp.ax_ == ax2
313
+ assert disp.figure_ == fig2
314
+
315
+
316
+ @pytest.mark.parametrize(
317
+ "response_method, msg",
318
+ [
319
+ (
320
+ "predict_proba",
321
+ "MyClassifier has none of the following attributes: predict_proba",
322
+ ),
323
+ (
324
+ "decision_function",
325
+ "MyClassifier has none of the following attributes: decision_function",
326
+ ),
327
+ (
328
+ "auto",
329
+ (
330
+ "MyClassifier has none of the following attributes: decision_function, "
331
+ "predict_proba, predict"
332
+ ),
333
+ ),
334
+ (
335
+ "bad_method",
336
+ "MyClassifier has none of the following attributes: bad_method",
337
+ ),
338
+ ],
339
+ )
340
+ def test_error_bad_response(pyplot, response_method, msg):
341
+ """Check errors for bad response."""
342
+
343
+ class MyClassifier(BaseEstimator, ClassifierMixin):
344
+ def fit(self, X, y):
345
+ self.fitted_ = True
346
+ self.classes_ = [0, 1]
347
+ return self
348
+
349
+ clf = MyClassifier().fit(X, y)
350
+
351
+ with pytest.raises(AttributeError, match=msg):
352
+ DecisionBoundaryDisplay.from_estimator(clf, X, response_method=response_method)
353
+
354
+
355
+ @pytest.mark.parametrize("response_method", ["auto", "predict", "predict_proba"])
356
+ def test_multilabel_classifier_error(pyplot, response_method):
357
+ """Check that multilabel classifier raises correct error."""
358
+ X, y = make_multilabel_classification(random_state=0)
359
+ X = X[:, :2]
360
+ tree = DecisionTreeClassifier().fit(X, y)
361
+
362
+ msg = "Multi-label and multi-output multi-class classifiers are not supported"
363
+ with pytest.raises(ValueError, match=msg):
364
+ DecisionBoundaryDisplay.from_estimator(
365
+ tree,
366
+ X,
367
+ response_method=response_method,
368
+ )
369
+
370
+
371
+ @pytest.mark.parametrize("response_method", ["auto", "predict", "predict_proba"])
372
+ def test_multi_output_multi_class_classifier_error(pyplot, response_method):
373
+ """Check that multi-output multi-class classifier raises correct error."""
374
+ X = np.asarray([[0, 1], [1, 2]])
375
+ y = np.asarray([["tree", "cat"], ["cat", "tree"]])
376
+ tree = DecisionTreeClassifier().fit(X, y)
377
+
378
+ msg = "Multi-label and multi-output multi-class classifiers are not supported"
379
+ with pytest.raises(ValueError, match=msg):
380
+ DecisionBoundaryDisplay.from_estimator(
381
+ tree,
382
+ X,
383
+ response_method=response_method,
384
+ )
385
+
386
+
387
+ def test_multioutput_regressor_error(pyplot):
388
+ """Check that multioutput regressor raises correct error."""
389
+ X = np.asarray([[0, 1], [1, 2]])
390
+ y = np.asarray([[0, 1], [4, 1]])
391
+ tree = DecisionTreeRegressor().fit(X, y)
392
+ with pytest.raises(ValueError, match="Multi-output regressors are not supported"):
393
+ DecisionBoundaryDisplay.from_estimator(tree, X, response_method="predict")
394
+
395
+
396
+ @pytest.mark.parametrize(
397
+ "response_method",
398
+ ["predict_proba", "decision_function", ["predict_proba", "predict"]],
399
+ )
400
+ def test_regressor_unsupported_response(pyplot, response_method):
401
+ """Check that we can display the decision boundary for a regressor."""
402
+ X, y = load_diabetes(return_X_y=True)
403
+ X = X[:, :2]
404
+ tree = DecisionTreeRegressor().fit(X, y)
405
+ err_msg = "should either be a classifier to be used with response_method"
406
+ with pytest.raises(ValueError, match=err_msg):
407
+ DecisionBoundaryDisplay.from_estimator(tree, X, response_method=response_method)
408
+
409
+
410
+ @pytest.mark.filterwarnings(
411
+ # We expect to raise the following warning because the classifier is fit on a
412
+ # NumPy array
413
+ "ignore:X has feature names, but LogisticRegression was fitted without"
414
+ )
415
+ def test_dataframe_labels_used(pyplot, fitted_clf):
416
+ """Check that column names are used for pandas."""
417
+ pd = pytest.importorskip("pandas")
418
+ df = pd.DataFrame(X, columns=["col_x", "col_y"])
419
+
420
+ # pandas column names are used by default
421
+ _, ax = pyplot.subplots()
422
+ disp = DecisionBoundaryDisplay.from_estimator(fitted_clf, df, ax=ax)
423
+ assert ax.get_xlabel() == "col_x"
424
+ assert ax.get_ylabel() == "col_y"
425
+
426
+ # second call to plot will have the names
427
+ fig, ax = pyplot.subplots()
428
+ disp.plot(ax=ax)
429
+ assert ax.get_xlabel() == "col_x"
430
+ assert ax.get_ylabel() == "col_y"
431
+
432
+ # axes with a label will not get overridden
433
+ fig, ax = pyplot.subplots()
434
+ ax.set(xlabel="hello", ylabel="world")
435
+ disp.plot(ax=ax)
436
+ assert ax.get_xlabel() == "hello"
437
+ assert ax.get_ylabel() == "world"
438
+
439
+ # labels get overridden only if provided to the `plot` method
440
+ disp.plot(ax=ax, xlabel="overwritten_x", ylabel="overwritten_y")
441
+ assert ax.get_xlabel() == "overwritten_x"
442
+ assert ax.get_ylabel() == "overwritten_y"
443
+
444
+ # labels do not get inferred if provided to `from_estimator`
445
+ _, ax = pyplot.subplots()
446
+ disp = DecisionBoundaryDisplay.from_estimator(
447
+ fitted_clf, df, ax=ax, xlabel="overwritten_x", ylabel="overwritten_y"
448
+ )
449
+ assert ax.get_xlabel() == "overwritten_x"
450
+ assert ax.get_ylabel() == "overwritten_y"
451
+
452
+
453
+ def test_string_target(pyplot):
454
+ """Check that decision boundary works with classifiers trained on string labels."""
455
+ iris = load_iris()
456
+ X = iris.data[:, [0, 1]]
457
+
458
+ # Use strings as target
459
+ y = iris.target_names[iris.target]
460
+ log_reg = LogisticRegression().fit(X, y)
461
+
462
+ # Does not raise
463
+ DecisionBoundaryDisplay.from_estimator(
464
+ log_reg,
465
+ X,
466
+ grid_resolution=5,
467
+ response_method="predict",
468
+ )
469
+
470
+
471
+ def test_dataframe_support(pyplot):
472
+ """Check that passing a dataframe at fit and to the Display does not
473
+ raise warnings.
474
+
475
+ Non-regression test for:
476
+ https://github.com/scikit-learn/scikit-learn/issues/23311
477
+ """
478
+ pd = pytest.importorskip("pandas")
479
+ df = pd.DataFrame(X, columns=["col_x", "col_y"])
480
+ estimator = LogisticRegression().fit(df, y)
481
+
482
+ with warnings.catch_warnings():
483
+ # no warnings linked to feature names validation should be raised
484
+ warnings.simplefilter("error", UserWarning)
485
+ DecisionBoundaryDisplay.from_estimator(estimator, df, response_method="predict")
486
+
487
+
488
+ @pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"])
489
+ def test_class_of_interest_binary(pyplot, response_method):
490
+ """Check the behaviour of passing `class_of_interest` for plotting the output of
491
+ `predict_proba` and `decision_function` in the binary case.
492
+ """
493
+ iris = load_iris()
494
+ X = iris.data[:100, :2]
495
+ y = iris.target[:100]
496
+ assert_array_equal(np.unique(y), [0, 1])
497
+
498
+ estimator = LogisticRegression().fit(X, y)
499
+ # We will check that `class_of_interest=None` is equivalent to
500
+ # `class_of_interest=estimator.classes_[1]`
501
+ disp_default = DecisionBoundaryDisplay.from_estimator(
502
+ estimator,
503
+ X,
504
+ response_method=response_method,
505
+ class_of_interest=None,
506
+ )
507
+ disp_class_1 = DecisionBoundaryDisplay.from_estimator(
508
+ estimator,
509
+ X,
510
+ response_method=response_method,
511
+ class_of_interest=estimator.classes_[1],
512
+ )
513
+
514
+ assert_allclose(disp_default.response, disp_class_1.response)
515
+
516
+ # we can check that `_get_response_values` modifies the response when targeting
517
+ # the other class, i.e. 1 - p(y=1|x) for `predict_proba` and -decision_function
518
+ # for `decision_function`.
519
+ disp_class_0 = DecisionBoundaryDisplay.from_estimator(
520
+ estimator,
521
+ X,
522
+ response_method=response_method,
523
+ class_of_interest=estimator.classes_[0],
524
+ )
525
+
526
+ if response_method == "predict_proba":
527
+ assert_allclose(disp_default.response, 1 - disp_class_0.response)
528
+ else:
529
+ assert response_method == "decision_function"
530
+ assert_allclose(disp_default.response, -disp_class_0.response)
531
+
532
+
533
+ @pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"])
534
+ def test_class_of_interest_multiclass(pyplot, response_method):
535
+ """Check the behaviour of passing `class_of_interest` for plotting the output of
536
+ `predict_proba` and `decision_function` in the multiclass case.
537
+ """
538
+ iris = load_iris()
539
+ X = iris.data[:, :2]
540
+ y = iris.target # the target are numerical labels
541
+ class_of_interest_idx = 2
542
+
543
+ estimator = LogisticRegression().fit(X, y)
544
+ disp = DecisionBoundaryDisplay.from_estimator(
545
+ estimator,
546
+ X,
547
+ response_method=response_method,
548
+ class_of_interest=class_of_interest_idx,
549
+ )
550
+
551
+ # we will check that we plot the expected values as response
552
+ grid = np.concatenate([disp.xx0.reshape(-1, 1), disp.xx1.reshape(-1, 1)], axis=1)
553
+ response = getattr(estimator, response_method)(grid)[:, class_of_interest_idx]
554
+ assert_allclose(response.reshape(*disp.response.shape), disp.response)
555
+
556
+ # make the same test but this time using target as strings
557
+ y = iris.target_names[iris.target]
558
+ estimator = LogisticRegression().fit(X, y)
559
+
560
+ disp = DecisionBoundaryDisplay.from_estimator(
561
+ estimator,
562
+ X,
563
+ response_method=response_method,
564
+ class_of_interest=iris.target_names[class_of_interest_idx],
565
+ )
566
+
567
+ grid = np.concatenate([disp.xx0.reshape(-1, 1), disp.xx1.reshape(-1, 1)], axis=1)
568
+ response = getattr(estimator, response_method)(grid)[:, class_of_interest_idx]
569
+ assert_allclose(response.reshape(*disp.response.shape), disp.response)
570
+
571
+ # check that we raise an error for unknown labels
572
+ # this test should already be handled in `_get_response_values` but we can have this
573
+ # test here as well
574
+ err_msg = "class_of_interest=2 is not a valid label: It should be one of"
575
+ with pytest.raises(ValueError, match=err_msg):
576
+ DecisionBoundaryDisplay.from_estimator(
577
+ estimator,
578
+ X,
579
+ response_method=response_method,
580
+ class_of_interest=class_of_interest_idx,
581
+ )
582
+
583
+ # TODO: remove this test when we handle multiclass with class_of_interest=None
584
+ # by showing the max of the decision function or the max of the predicted
585
+ # probabilities.
586
+ err_msg = "Multiclass classifiers are only supported"
587
+ with pytest.raises(ValueError, match=err_msg):
588
+ DecisionBoundaryDisplay.from_estimator(
589
+ estimator,
590
+ X,
591
+ response_method=response_method,
592
+ class_of_interest=None,
593
+ )
594
+
595
+
596
+ def test_subclass_named_constructors_return_type_is_subclass(pyplot):
597
+ """Check that named constructors return the correct type when subclassed.
598
+
599
+ Non-regression test for:
600
+ https://github.com/scikit-learn/scikit-learn/pull/27675
601
+ """
602
+ clf = LogisticRegression().fit(X, y)
603
+
604
+ class SubclassOfDisplay(DecisionBoundaryDisplay):
605
+ pass
606
+
607
+ curve = SubclassOfDisplay.from_estimator(estimator=clf, X=X)
608
+
609
+ assert isinstance(curve, SubclassOfDisplay)
venv/lib/python3.10/site-packages/sklearn/inspection/_plot/tests/test_plot_partial_dependence.py ADDED
@@ -0,0 +1,1140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+ from numpy.testing import assert_allclose
4
+ from scipy.stats.mstats import mquantiles
5
+
6
+ from sklearn.compose import make_column_transformer
7
+ from sklearn.datasets import (
8
+ load_diabetes,
9
+ load_iris,
10
+ make_classification,
11
+ make_regression,
12
+ )
13
+ from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor
14
+ from sklearn.inspection import PartialDependenceDisplay
15
+ from sklearn.linear_model import LinearRegression
16
+ from sklearn.pipeline import make_pipeline
17
+ from sklearn.preprocessing import OneHotEncoder
18
+ from sklearn.utils._testing import _convert_container
19
+
20
+ # TODO: Remove when https://github.com/numpy/numpy/issues/14397 is resolved
21
+ pytestmark = pytest.mark.filterwarnings(
22
+ (
23
+ "ignore:In future, it will be an error for 'np.bool_':DeprecationWarning:"
24
+ "matplotlib.*"
25
+ ),
26
+ )
27
+
28
+
29
+ @pytest.fixture(scope="module")
30
+ def diabetes():
31
+ # diabetes dataset, subsampled for speed
32
+ data = load_diabetes()
33
+ data.data = data.data[:50]
34
+ data.target = data.target[:50]
35
+ return data
36
+
37
+
38
+ @pytest.fixture(scope="module")
39
+ def clf_diabetes(diabetes):
40
+ clf = GradientBoostingRegressor(n_estimators=10, random_state=1)
41
+ clf.fit(diabetes.data, diabetes.target)
42
+ return clf
43
+
44
+
45
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
46
+ @pytest.mark.parametrize("grid_resolution", [10, 20])
47
+ def test_plot_partial_dependence(grid_resolution, pyplot, clf_diabetes, diabetes):
48
+ # Test partial dependence plot function.
49
+ # Use columns 0 & 2 as 1 is not quantitative (sex)
50
+ feature_names = diabetes.feature_names
51
+ disp = PartialDependenceDisplay.from_estimator(
52
+ clf_diabetes,
53
+ diabetes.data,
54
+ [0, 2, (0, 2)],
55
+ grid_resolution=grid_resolution,
56
+ feature_names=feature_names,
57
+ contour_kw={"cmap": "jet"},
58
+ )
59
+ fig = pyplot.gcf()
60
+ axs = fig.get_axes()
61
+ assert disp.figure_ is fig
62
+ assert len(axs) == 4
63
+
64
+ assert disp.bounding_ax_ is not None
65
+ assert disp.axes_.shape == (1, 3)
66
+ assert disp.lines_.shape == (1, 3)
67
+ assert disp.contours_.shape == (1, 3)
68
+ assert disp.deciles_vlines_.shape == (1, 3)
69
+ assert disp.deciles_hlines_.shape == (1, 3)
70
+
71
+ assert disp.lines_[0, 2] is None
72
+ assert disp.contours_[0, 0] is None
73
+ assert disp.contours_[0, 1] is None
74
+
75
+ # deciles lines: always show on xaxis, only show on yaxis if 2-way PDP
76
+ for i in range(3):
77
+ assert disp.deciles_vlines_[0, i] is not None
78
+ assert disp.deciles_hlines_[0, 0] is None
79
+ assert disp.deciles_hlines_[0, 1] is None
80
+ assert disp.deciles_hlines_[0, 2] is not None
81
+
82
+ assert disp.features == [(0,), (2,), (0, 2)]
83
+ assert np.all(disp.feature_names == feature_names)
84
+ assert len(disp.deciles) == 2
85
+ for i in [0, 2]:
86
+ assert_allclose(
87
+ disp.deciles[i],
88
+ mquantiles(diabetes.data[:, i], prob=np.arange(0.1, 1.0, 0.1)),
89
+ )
90
+
91
+ single_feature_positions = [(0, (0, 0)), (2, (0, 1))]
92
+ expected_ylabels = ["Partial dependence", ""]
93
+
94
+ for i, (feat_col, pos) in enumerate(single_feature_positions):
95
+ ax = disp.axes_[pos]
96
+ assert ax.get_ylabel() == expected_ylabels[i]
97
+ assert ax.get_xlabel() == diabetes.feature_names[feat_col]
98
+
99
+ line = disp.lines_[pos]
100
+
101
+ avg_preds = disp.pd_results[i]
102
+ assert avg_preds.average.shape == (1, grid_resolution)
103
+ target_idx = disp.target_idx
104
+
105
+ line_data = line.get_data()
106
+ assert_allclose(line_data[0], avg_preds["grid_values"][0])
107
+ assert_allclose(line_data[1], avg_preds.average[target_idx].ravel())
108
+
109
+ # two feature position
110
+ ax = disp.axes_[0, 2]
111
+ coutour = disp.contours_[0, 2]
112
+ assert coutour.get_cmap().name == "jet"
113
+ assert ax.get_xlabel() == diabetes.feature_names[0]
114
+ assert ax.get_ylabel() == diabetes.feature_names[2]
115
+
116
+
117
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
118
+ @pytest.mark.parametrize(
119
+ "kind, centered, subsample, shape",
120
+ [
121
+ ("average", False, None, (1, 3)),
122
+ ("individual", False, None, (1, 3, 50)),
123
+ ("both", False, None, (1, 3, 51)),
124
+ ("individual", False, 20, (1, 3, 20)),
125
+ ("both", False, 20, (1, 3, 21)),
126
+ ("individual", False, 0.5, (1, 3, 25)),
127
+ ("both", False, 0.5, (1, 3, 26)),
128
+ ("average", True, None, (1, 3)),
129
+ ("individual", True, None, (1, 3, 50)),
130
+ ("both", True, None, (1, 3, 51)),
131
+ ("individual", True, 20, (1, 3, 20)),
132
+ ("both", True, 20, (1, 3, 21)),
133
+ ],
134
+ )
135
+ def test_plot_partial_dependence_kind(
136
+ pyplot,
137
+ kind,
138
+ centered,
139
+ subsample,
140
+ shape,
141
+ clf_diabetes,
142
+ diabetes,
143
+ ):
144
+ disp = PartialDependenceDisplay.from_estimator(
145
+ clf_diabetes,
146
+ diabetes.data,
147
+ [0, 1, 2],
148
+ kind=kind,
149
+ centered=centered,
150
+ subsample=subsample,
151
+ )
152
+
153
+ assert disp.axes_.shape == (1, 3)
154
+ assert disp.lines_.shape == shape
155
+ assert disp.contours_.shape == (1, 3)
156
+
157
+ assert disp.contours_[0, 0] is None
158
+ assert disp.contours_[0, 1] is None
159
+ assert disp.contours_[0, 2] is None
160
+
161
+ if centered:
162
+ assert all([ln._y[0] == 0.0 for ln in disp.lines_.ravel() if ln is not None])
163
+ else:
164
+ assert all([ln._y[0] != 0.0 for ln in disp.lines_.ravel() if ln is not None])
165
+
166
+
167
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
168
+ @pytest.mark.parametrize(
169
+ "input_type, feature_names_type",
170
+ [
171
+ ("dataframe", None),
172
+ ("dataframe", "list"),
173
+ ("list", "list"),
174
+ ("array", "list"),
175
+ ("dataframe", "array"),
176
+ ("list", "array"),
177
+ ("array", "array"),
178
+ ("dataframe", "series"),
179
+ ("list", "series"),
180
+ ("array", "series"),
181
+ ("dataframe", "index"),
182
+ ("list", "index"),
183
+ ("array", "index"),
184
+ ],
185
+ )
186
+ def test_plot_partial_dependence_str_features(
187
+ pyplot,
188
+ clf_diabetes,
189
+ diabetes,
190
+ input_type,
191
+ feature_names_type,
192
+ ):
193
+ if input_type == "dataframe":
194
+ pd = pytest.importorskip("pandas")
195
+ X = pd.DataFrame(diabetes.data, columns=diabetes.feature_names)
196
+ elif input_type == "list":
197
+ X = diabetes.data.tolist()
198
+ else:
199
+ X = diabetes.data
200
+
201
+ if feature_names_type is None:
202
+ feature_names = None
203
+ else:
204
+ feature_names = _convert_container(diabetes.feature_names, feature_names_type)
205
+
206
+ grid_resolution = 25
207
+ # check with str features and array feature names and single column
208
+ disp = PartialDependenceDisplay.from_estimator(
209
+ clf_diabetes,
210
+ X,
211
+ [("age", "bmi"), "bmi"],
212
+ grid_resolution=grid_resolution,
213
+ feature_names=feature_names,
214
+ n_cols=1,
215
+ line_kw={"alpha": 0.8},
216
+ )
217
+ fig = pyplot.gcf()
218
+ axs = fig.get_axes()
219
+ assert len(axs) == 3
220
+
221
+ assert disp.figure_ is fig
222
+ assert disp.axes_.shape == (2, 1)
223
+ assert disp.lines_.shape == (2, 1)
224
+ assert disp.contours_.shape == (2, 1)
225
+ assert disp.deciles_vlines_.shape == (2, 1)
226
+ assert disp.deciles_hlines_.shape == (2, 1)
227
+
228
+ assert disp.lines_[0, 0] is None
229
+ assert disp.deciles_vlines_[0, 0] is not None
230
+ assert disp.deciles_hlines_[0, 0] is not None
231
+ assert disp.contours_[1, 0] is None
232
+ assert disp.deciles_hlines_[1, 0] is None
233
+ assert disp.deciles_vlines_[1, 0] is not None
234
+
235
+ # line
236
+ ax = disp.axes_[1, 0]
237
+ assert ax.get_xlabel() == "bmi"
238
+ assert ax.get_ylabel() == "Partial dependence"
239
+
240
+ line = disp.lines_[1, 0]
241
+ avg_preds = disp.pd_results[1]
242
+ target_idx = disp.target_idx
243
+ assert line.get_alpha() == 0.8
244
+
245
+ line_data = line.get_data()
246
+ assert_allclose(line_data[0], avg_preds["grid_values"][0])
247
+ assert_allclose(line_data[1], avg_preds.average[target_idx].ravel())
248
+
249
+ # contour
250
+ ax = disp.axes_[0, 0]
251
+ assert ax.get_xlabel() == "age"
252
+ assert ax.get_ylabel() == "bmi"
253
+
254
+
255
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
256
+ def test_plot_partial_dependence_custom_axes(pyplot, clf_diabetes, diabetes):
257
+ grid_resolution = 25
258
+ fig, (ax1, ax2) = pyplot.subplots(1, 2)
259
+ disp = PartialDependenceDisplay.from_estimator(
260
+ clf_diabetes,
261
+ diabetes.data,
262
+ ["age", ("age", "bmi")],
263
+ grid_resolution=grid_resolution,
264
+ feature_names=diabetes.feature_names,
265
+ ax=[ax1, ax2],
266
+ )
267
+ assert fig is disp.figure_
268
+ assert disp.bounding_ax_ is None
269
+ assert disp.axes_.shape == (2,)
270
+ assert disp.axes_[0] is ax1
271
+ assert disp.axes_[1] is ax2
272
+
273
+ ax = disp.axes_[0]
274
+ assert ax.get_xlabel() == "age"
275
+ assert ax.get_ylabel() == "Partial dependence"
276
+
277
+ line = disp.lines_[0]
278
+ avg_preds = disp.pd_results[0]
279
+ target_idx = disp.target_idx
280
+
281
+ line_data = line.get_data()
282
+ assert_allclose(line_data[0], avg_preds["grid_values"][0])
283
+ assert_allclose(line_data[1], avg_preds.average[target_idx].ravel())
284
+
285
+ # contour
286
+ ax = disp.axes_[1]
287
+ assert ax.get_xlabel() == "age"
288
+ assert ax.get_ylabel() == "bmi"
289
+
290
+
291
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
292
+ @pytest.mark.parametrize(
293
+ "kind, lines", [("average", 1), ("individual", 50), ("both", 51)]
294
+ )
295
+ def test_plot_partial_dependence_passing_numpy_axes(
296
+ pyplot, clf_diabetes, diabetes, kind, lines
297
+ ):
298
+ grid_resolution = 25
299
+ feature_names = diabetes.feature_names
300
+ disp1 = PartialDependenceDisplay.from_estimator(
301
+ clf_diabetes,
302
+ diabetes.data,
303
+ ["age", "bmi"],
304
+ kind=kind,
305
+ grid_resolution=grid_resolution,
306
+ feature_names=feature_names,
307
+ )
308
+ assert disp1.axes_.shape == (1, 2)
309
+ assert disp1.axes_[0, 0].get_ylabel() == "Partial dependence"
310
+ assert disp1.axes_[0, 1].get_ylabel() == ""
311
+ assert len(disp1.axes_[0, 0].get_lines()) == lines
312
+ assert len(disp1.axes_[0, 1].get_lines()) == lines
313
+
314
+ lr = LinearRegression()
315
+ lr.fit(diabetes.data, diabetes.target)
316
+
317
+ disp2 = PartialDependenceDisplay.from_estimator(
318
+ lr,
319
+ diabetes.data,
320
+ ["age", "bmi"],
321
+ kind=kind,
322
+ grid_resolution=grid_resolution,
323
+ feature_names=feature_names,
324
+ ax=disp1.axes_,
325
+ )
326
+
327
+ assert np.all(disp1.axes_ == disp2.axes_)
328
+ assert len(disp2.axes_[0, 0].get_lines()) == 2 * lines
329
+ assert len(disp2.axes_[0, 1].get_lines()) == 2 * lines
330
+
331
+
332
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
333
+ @pytest.mark.parametrize("nrows, ncols", [(2, 2), (3, 1)])
334
+ def test_plot_partial_dependence_incorrent_num_axes(
335
+ pyplot, clf_diabetes, diabetes, nrows, ncols
336
+ ):
337
+ grid_resolution = 5
338
+ fig, axes = pyplot.subplots(nrows, ncols)
339
+ axes_formats = [list(axes.ravel()), tuple(axes.ravel()), axes]
340
+
341
+ msg = "Expected ax to have 2 axes, got {}".format(nrows * ncols)
342
+
343
+ disp = PartialDependenceDisplay.from_estimator(
344
+ clf_diabetes,
345
+ diabetes.data,
346
+ ["age", "bmi"],
347
+ grid_resolution=grid_resolution,
348
+ feature_names=diabetes.feature_names,
349
+ )
350
+
351
+ for ax_format in axes_formats:
352
+ with pytest.raises(ValueError, match=msg):
353
+ PartialDependenceDisplay.from_estimator(
354
+ clf_diabetes,
355
+ diabetes.data,
356
+ ["age", "bmi"],
357
+ grid_resolution=grid_resolution,
358
+ feature_names=diabetes.feature_names,
359
+ ax=ax_format,
360
+ )
361
+
362
+ # with axes object
363
+ with pytest.raises(ValueError, match=msg):
364
+ disp.plot(ax=ax_format)
365
+
366
+
367
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
368
+ def test_plot_partial_dependence_with_same_axes(pyplot, clf_diabetes, diabetes):
369
+ # The first call to plot_partial_dependence will create two new axes to
370
+ # place in the space of the passed in axes, which results in a total of
371
+ # three axes in the figure.
372
+ # Currently the API does not allow for the second call to
373
+ # plot_partial_dependence to use the same axes again, because it will
374
+ # create two new axes in the space resulting in five axes. To get the
375
+ # expected behavior one needs to pass the generated axes into the second
376
+ # call:
377
+ # disp1 = plot_partial_dependence(...)
378
+ # disp2 = plot_partial_dependence(..., ax=disp1.axes_)
379
+
380
+ grid_resolution = 25
381
+ fig, ax = pyplot.subplots()
382
+ PartialDependenceDisplay.from_estimator(
383
+ clf_diabetes,
384
+ diabetes.data,
385
+ ["age", "bmi"],
386
+ grid_resolution=grid_resolution,
387
+ feature_names=diabetes.feature_names,
388
+ ax=ax,
389
+ )
390
+
391
+ msg = (
392
+ "The ax was already used in another plot function, please set "
393
+ "ax=display.axes_ instead"
394
+ )
395
+
396
+ with pytest.raises(ValueError, match=msg):
397
+ PartialDependenceDisplay.from_estimator(
398
+ clf_diabetes,
399
+ diabetes.data,
400
+ ["age", "bmi"],
401
+ grid_resolution=grid_resolution,
402
+ feature_names=diabetes.feature_names,
403
+ ax=ax,
404
+ )
405
+
406
+
407
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
408
+ def test_plot_partial_dependence_feature_name_reuse(pyplot, clf_diabetes, diabetes):
409
+ # second call to plot does not change the feature names from the first
410
+ # call
411
+
412
+ feature_names = diabetes.feature_names
413
+ disp = PartialDependenceDisplay.from_estimator(
414
+ clf_diabetes,
415
+ diabetes.data,
416
+ [0, 1],
417
+ grid_resolution=10,
418
+ feature_names=feature_names,
419
+ )
420
+
421
+ PartialDependenceDisplay.from_estimator(
422
+ clf_diabetes, diabetes.data, [0, 1], grid_resolution=10, ax=disp.axes_
423
+ )
424
+
425
+ for i, ax in enumerate(disp.axes_.ravel()):
426
+ assert ax.get_xlabel() == feature_names[i]
427
+
428
+
429
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
430
+ def test_plot_partial_dependence_multiclass(pyplot):
431
+ grid_resolution = 25
432
+ clf_int = GradientBoostingClassifier(n_estimators=10, random_state=1)
433
+ iris = load_iris()
434
+
435
+ # Test partial dependence plot function on multi-class input.
436
+ clf_int.fit(iris.data, iris.target)
437
+ disp_target_0 = PartialDependenceDisplay.from_estimator(
438
+ clf_int, iris.data, [0, 3], target=0, grid_resolution=grid_resolution
439
+ )
440
+ assert disp_target_0.figure_ is pyplot.gcf()
441
+ assert disp_target_0.axes_.shape == (1, 2)
442
+ assert disp_target_0.lines_.shape == (1, 2)
443
+ assert disp_target_0.contours_.shape == (1, 2)
444
+ assert disp_target_0.deciles_vlines_.shape == (1, 2)
445
+ assert disp_target_0.deciles_hlines_.shape == (1, 2)
446
+ assert all(c is None for c in disp_target_0.contours_.flat)
447
+ assert disp_target_0.target_idx == 0
448
+
449
+ # now with symbol labels
450
+ target = iris.target_names[iris.target]
451
+ clf_symbol = GradientBoostingClassifier(n_estimators=10, random_state=1)
452
+ clf_symbol.fit(iris.data, target)
453
+ disp_symbol = PartialDependenceDisplay.from_estimator(
454
+ clf_symbol, iris.data, [0, 3], target="setosa", grid_resolution=grid_resolution
455
+ )
456
+ assert disp_symbol.figure_ is pyplot.gcf()
457
+ assert disp_symbol.axes_.shape == (1, 2)
458
+ assert disp_symbol.lines_.shape == (1, 2)
459
+ assert disp_symbol.contours_.shape == (1, 2)
460
+ assert disp_symbol.deciles_vlines_.shape == (1, 2)
461
+ assert disp_symbol.deciles_hlines_.shape == (1, 2)
462
+ assert all(c is None for c in disp_symbol.contours_.flat)
463
+ assert disp_symbol.target_idx == 0
464
+
465
+ for int_result, symbol_result in zip(
466
+ disp_target_0.pd_results, disp_symbol.pd_results
467
+ ):
468
+ assert_allclose(int_result.average, symbol_result.average)
469
+ assert_allclose(int_result["grid_values"], symbol_result["grid_values"])
470
+
471
+ # check that the pd plots are different for another target
472
+ disp_target_1 = PartialDependenceDisplay.from_estimator(
473
+ clf_int, iris.data, [0, 3], target=1, grid_resolution=grid_resolution
474
+ )
475
+ target_0_data_y = disp_target_0.lines_[0, 0].get_data()[1]
476
+ target_1_data_y = disp_target_1.lines_[0, 0].get_data()[1]
477
+ assert any(target_0_data_y != target_1_data_y)
478
+
479
+
480
+ multioutput_regression_data = make_regression(n_samples=50, n_targets=2, random_state=0)
481
+
482
+
483
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
484
+ @pytest.mark.parametrize("target", [0, 1])
485
+ def test_plot_partial_dependence_multioutput(pyplot, target):
486
+ # Test partial dependence plot function on multi-output input.
487
+ X, y = multioutput_regression_data
488
+ clf = LinearRegression().fit(X, y)
489
+
490
+ grid_resolution = 25
491
+ disp = PartialDependenceDisplay.from_estimator(
492
+ clf, X, [0, 1], target=target, grid_resolution=grid_resolution
493
+ )
494
+ fig = pyplot.gcf()
495
+ axs = fig.get_axes()
496
+ assert len(axs) == 3
497
+ assert disp.target_idx == target
498
+ assert disp.bounding_ax_ is not None
499
+
500
+ positions = [(0, 0), (0, 1)]
501
+ expected_label = ["Partial dependence", ""]
502
+
503
+ for i, pos in enumerate(positions):
504
+ ax = disp.axes_[pos]
505
+ assert ax.get_ylabel() == expected_label[i]
506
+ assert ax.get_xlabel() == f"x{i}"
507
+
508
+
509
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
510
+ def test_plot_partial_dependence_dataframe(pyplot, clf_diabetes, diabetes):
511
+ pd = pytest.importorskip("pandas")
512
+ df = pd.DataFrame(diabetes.data, columns=diabetes.feature_names)
513
+
514
+ grid_resolution = 25
515
+
516
+ PartialDependenceDisplay.from_estimator(
517
+ clf_diabetes,
518
+ df,
519
+ ["bp", "s1"],
520
+ grid_resolution=grid_resolution,
521
+ feature_names=df.columns.tolist(),
522
+ )
523
+
524
+
525
+ dummy_classification_data = make_classification(random_state=0)
526
+
527
+
528
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
529
+ @pytest.mark.parametrize(
530
+ "data, params, err_msg",
531
+ [
532
+ (
533
+ multioutput_regression_data,
534
+ {"target": None, "features": [0]},
535
+ "target must be specified for multi-output",
536
+ ),
537
+ (
538
+ multioutput_regression_data,
539
+ {"target": -1, "features": [0]},
540
+ r"target must be in \[0, n_tasks\]",
541
+ ),
542
+ (
543
+ multioutput_regression_data,
544
+ {"target": 100, "features": [0]},
545
+ r"target must be in \[0, n_tasks\]",
546
+ ),
547
+ (
548
+ dummy_classification_data,
549
+ {"features": ["foobar"], "feature_names": None},
550
+ "Feature 'foobar' not in feature_names",
551
+ ),
552
+ (
553
+ dummy_classification_data,
554
+ {"features": ["foobar"], "feature_names": ["abcd", "def"]},
555
+ "Feature 'foobar' not in feature_names",
556
+ ),
557
+ (
558
+ dummy_classification_data,
559
+ {"features": [(1, 2, 3)]},
560
+ "Each entry in features must be either an int, ",
561
+ ),
562
+ (
563
+ dummy_classification_data,
564
+ {"features": [1, {}]},
565
+ "Each entry in features must be either an int, ",
566
+ ),
567
+ (
568
+ dummy_classification_data,
569
+ {"features": [tuple()]},
570
+ "Each entry in features must be either an int, ",
571
+ ),
572
+ (
573
+ dummy_classification_data,
574
+ {"features": [123], "feature_names": ["blahblah"]},
575
+ "All entries of features must be less than ",
576
+ ),
577
+ (
578
+ dummy_classification_data,
579
+ {"features": [0, 1, 2], "feature_names": ["a", "b", "a"]},
580
+ "feature_names should not contain duplicates",
581
+ ),
582
+ (
583
+ dummy_classification_data,
584
+ {"features": [1, 2], "kind": ["both"]},
585
+ "When `kind` is provided as a list of strings, it should contain",
586
+ ),
587
+ (
588
+ dummy_classification_data,
589
+ {"features": [1], "subsample": -1},
590
+ "When an integer, subsample=-1 should be positive.",
591
+ ),
592
+ (
593
+ dummy_classification_data,
594
+ {"features": [1], "subsample": 1.2},
595
+ r"When a floating-point, subsample=1.2 should be in the \(0, 1\) range",
596
+ ),
597
+ (
598
+ dummy_classification_data,
599
+ {"features": [1, 2], "categorical_features": [1.0, 2.0]},
600
+ "Expected `categorical_features` to be an array-like of boolean,",
601
+ ),
602
+ (
603
+ dummy_classification_data,
604
+ {"features": [(1, 2)], "categorical_features": [2]},
605
+ "Two-way partial dependence plots are not supported for pairs",
606
+ ),
607
+ (
608
+ dummy_classification_data,
609
+ {"features": [1], "categorical_features": [1], "kind": "individual"},
610
+ "It is not possible to display individual effects",
611
+ ),
612
+ ],
613
+ )
614
+ def test_plot_partial_dependence_error(pyplot, data, params, err_msg):
615
+ X, y = data
616
+ estimator = LinearRegression().fit(X, y)
617
+
618
+ with pytest.raises(ValueError, match=err_msg):
619
+ PartialDependenceDisplay.from_estimator(estimator, X, **params)
620
+
621
+
622
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
623
+ @pytest.mark.parametrize(
624
+ "params, err_msg",
625
+ [
626
+ ({"target": 4, "features": [0]}, "target not in est.classes_, got 4"),
627
+ ({"target": None, "features": [0]}, "target must be specified for multi-class"),
628
+ (
629
+ {"target": 1, "features": [4.5]},
630
+ "Each entry in features must be either an int,",
631
+ ),
632
+ ],
633
+ )
634
+ def test_plot_partial_dependence_multiclass_error(pyplot, params, err_msg):
635
+ iris = load_iris()
636
+ clf = GradientBoostingClassifier(n_estimators=10, random_state=1)
637
+ clf.fit(iris.data, iris.target)
638
+
639
+ with pytest.raises(ValueError, match=err_msg):
640
+ PartialDependenceDisplay.from_estimator(clf, iris.data, **params)
641
+
642
+
643
+ def test_plot_partial_dependence_does_not_override_ylabel(
644
+ pyplot, clf_diabetes, diabetes
645
+ ):
646
+ # Non-regression test to be sure to not override the ylabel if it has been
647
+ # See https://github.com/scikit-learn/scikit-learn/issues/15772
648
+ _, axes = pyplot.subplots(1, 2)
649
+ axes[0].set_ylabel("Hello world")
650
+ PartialDependenceDisplay.from_estimator(
651
+ clf_diabetes, diabetes.data, [0, 1], ax=axes
652
+ )
653
+
654
+ assert axes[0].get_ylabel() == "Hello world"
655
+ assert axes[1].get_ylabel() == "Partial dependence"
656
+
657
+
658
+ @pytest.mark.parametrize(
659
+ "categorical_features, array_type",
660
+ [
661
+ (["col_A", "col_C"], "dataframe"),
662
+ ([0, 2], "array"),
663
+ ([True, False, True], "array"),
664
+ ],
665
+ )
666
+ def test_plot_partial_dependence_with_categorical(
667
+ pyplot, categorical_features, array_type
668
+ ):
669
+ X = [[1, 1, "A"], [2, 0, "C"], [3, 2, "B"]]
670
+ column_name = ["col_A", "col_B", "col_C"]
671
+ X = _convert_container(X, array_type, columns_name=column_name)
672
+ y = np.array([1.2, 0.5, 0.45]).T
673
+
674
+ preprocessor = make_column_transformer((OneHotEncoder(), categorical_features))
675
+ model = make_pipeline(preprocessor, LinearRegression())
676
+ model.fit(X, y)
677
+
678
+ # single feature
679
+ disp = PartialDependenceDisplay.from_estimator(
680
+ model,
681
+ X,
682
+ features=["col_C"],
683
+ feature_names=column_name,
684
+ categorical_features=categorical_features,
685
+ )
686
+
687
+ assert disp.figure_ is pyplot.gcf()
688
+ assert disp.bars_.shape == (1, 1)
689
+ assert disp.bars_[0][0] is not None
690
+ assert disp.lines_.shape == (1, 1)
691
+ assert disp.lines_[0][0] is None
692
+ assert disp.contours_.shape == (1, 1)
693
+ assert disp.contours_[0][0] is None
694
+ assert disp.deciles_vlines_.shape == (1, 1)
695
+ assert disp.deciles_vlines_[0][0] is None
696
+ assert disp.deciles_hlines_.shape == (1, 1)
697
+ assert disp.deciles_hlines_[0][0] is None
698
+ assert disp.axes_[0, 0].get_legend() is None
699
+
700
+ # interaction between two features
701
+ disp = PartialDependenceDisplay.from_estimator(
702
+ model,
703
+ X,
704
+ features=[("col_A", "col_C")],
705
+ feature_names=column_name,
706
+ categorical_features=categorical_features,
707
+ )
708
+
709
+ assert disp.figure_ is pyplot.gcf()
710
+ assert disp.bars_.shape == (1, 1)
711
+ assert disp.bars_[0][0] is None
712
+ assert disp.lines_.shape == (1, 1)
713
+ assert disp.lines_[0][0] is None
714
+ assert disp.contours_.shape == (1, 1)
715
+ assert disp.contours_[0][0] is None
716
+ assert disp.deciles_vlines_.shape == (1, 1)
717
+ assert disp.deciles_vlines_[0][0] is None
718
+ assert disp.deciles_hlines_.shape == (1, 1)
719
+ assert disp.deciles_hlines_[0][0] is None
720
+ assert disp.axes_[0, 0].get_legend() is None
721
+
722
+
723
+ def test_plot_partial_dependence_legend(pyplot):
724
+ pd = pytest.importorskip("pandas")
725
+ X = pd.DataFrame(
726
+ {
727
+ "col_A": ["A", "B", "C"],
728
+ "col_B": [1, 0, 2],
729
+ "col_C": ["C", "B", "A"],
730
+ }
731
+ )
732
+ y = np.array([1.2, 0.5, 0.45]).T
733
+
734
+ categorical_features = ["col_A", "col_C"]
735
+ preprocessor = make_column_transformer((OneHotEncoder(), categorical_features))
736
+ model = make_pipeline(preprocessor, LinearRegression())
737
+ model.fit(X, y)
738
+
739
+ disp = PartialDependenceDisplay.from_estimator(
740
+ model,
741
+ X,
742
+ features=["col_B", "col_C"],
743
+ categorical_features=categorical_features,
744
+ kind=["both", "average"],
745
+ )
746
+
747
+ legend_text = disp.axes_[0, 0].get_legend().get_texts()
748
+ assert len(legend_text) == 1
749
+ assert legend_text[0].get_text() == "average"
750
+ assert disp.axes_[0, 1].get_legend() is None
751
+
752
+
753
+ @pytest.mark.parametrize(
754
+ "kind, expected_shape",
755
+ [("average", (1, 2)), ("individual", (1, 2, 20)), ("both", (1, 2, 21))],
756
+ )
757
+ def test_plot_partial_dependence_subsampling(
758
+ pyplot, clf_diabetes, diabetes, kind, expected_shape
759
+ ):
760
+ # check that the subsampling is properly working
761
+ # non-regression test for:
762
+ # https://github.com/scikit-learn/scikit-learn/pull/18359
763
+ matplotlib = pytest.importorskip("matplotlib")
764
+ grid_resolution = 25
765
+ feature_names = diabetes.feature_names
766
+
767
+ disp1 = PartialDependenceDisplay.from_estimator(
768
+ clf_diabetes,
769
+ diabetes.data,
770
+ ["age", "bmi"],
771
+ kind=kind,
772
+ grid_resolution=grid_resolution,
773
+ feature_names=feature_names,
774
+ subsample=20,
775
+ random_state=0,
776
+ )
777
+
778
+ assert disp1.lines_.shape == expected_shape
779
+ assert all(
780
+ [isinstance(line, matplotlib.lines.Line2D) for line in disp1.lines_.ravel()]
781
+ )
782
+
783
+
784
+ @pytest.mark.parametrize(
785
+ "kind, line_kw, label",
786
+ [
787
+ ("individual", {}, None),
788
+ ("individual", {"label": "xxx"}, None),
789
+ ("average", {}, None),
790
+ ("average", {"label": "xxx"}, "xxx"),
791
+ ("both", {}, "average"),
792
+ ("both", {"label": "xxx"}, "xxx"),
793
+ ],
794
+ )
795
+ def test_partial_dependence_overwrite_labels(
796
+ pyplot,
797
+ clf_diabetes,
798
+ diabetes,
799
+ kind,
800
+ line_kw,
801
+ label,
802
+ ):
803
+ """Test that make sure that we can overwrite the label of the PDP plot"""
804
+ disp = PartialDependenceDisplay.from_estimator(
805
+ clf_diabetes,
806
+ diabetes.data,
807
+ [0, 2],
808
+ grid_resolution=25,
809
+ feature_names=diabetes.feature_names,
810
+ kind=kind,
811
+ line_kw=line_kw,
812
+ )
813
+
814
+ for ax in disp.axes_.ravel():
815
+ if label is None:
816
+ assert ax.get_legend() is None
817
+ else:
818
+ legend_text = ax.get_legend().get_texts()
819
+ assert len(legend_text) == 1
820
+ assert legend_text[0].get_text() == label
821
+
822
+
823
+ @pytest.mark.parametrize(
824
+ "categorical_features, array_type",
825
+ [
826
+ (["col_A", "col_C"], "dataframe"),
827
+ ([0, 2], "array"),
828
+ ([True, False, True], "array"),
829
+ ],
830
+ )
831
+ def test_grid_resolution_with_categorical(pyplot, categorical_features, array_type):
832
+ """Check that we raise a ValueError when the grid_resolution is too small
833
+ respect to the number of categories in the categorical features targeted.
834
+ """
835
+ X = [["A", 1, "A"], ["B", 0, "C"], ["C", 2, "B"]]
836
+ column_name = ["col_A", "col_B", "col_C"]
837
+ X = _convert_container(X, array_type, columns_name=column_name)
838
+ y = np.array([1.2, 0.5, 0.45]).T
839
+
840
+ preprocessor = make_column_transformer((OneHotEncoder(), categorical_features))
841
+ model = make_pipeline(preprocessor, LinearRegression())
842
+ model.fit(X, y)
843
+
844
+ err_msg = (
845
+ "resolution of the computed grid is less than the minimum number of categories"
846
+ )
847
+ with pytest.raises(ValueError, match=err_msg):
848
+ PartialDependenceDisplay.from_estimator(
849
+ model,
850
+ X,
851
+ features=["col_C"],
852
+ feature_names=column_name,
853
+ categorical_features=categorical_features,
854
+ grid_resolution=2,
855
+ )
856
+
857
+
858
+ @pytest.mark.parametrize("kind", ["individual", "average", "both"])
859
+ @pytest.mark.parametrize("centered", [True, False])
860
+ def test_partial_dependence_plot_limits_one_way(
861
+ pyplot, clf_diabetes, diabetes, kind, centered
862
+ ):
863
+ """Check that the PD limit on the plots are properly set on one-way plots."""
864
+ disp = PartialDependenceDisplay.from_estimator(
865
+ clf_diabetes,
866
+ diabetes.data,
867
+ features=(0, 1),
868
+ kind=kind,
869
+ grid_resolution=25,
870
+ feature_names=diabetes.feature_names,
871
+ )
872
+
873
+ range_pd = np.array([-1, 1], dtype=np.float64)
874
+ for pd in disp.pd_results:
875
+ if "average" in pd:
876
+ pd["average"][...] = range_pd[1]
877
+ pd["average"][0, 0] = range_pd[0]
878
+ if "individual" in pd:
879
+ pd["individual"][...] = range_pd[1]
880
+ pd["individual"][0, 0, 0] = range_pd[0]
881
+
882
+ disp.plot(centered=centered)
883
+ # check that we anchor to zero x-axis when centering
884
+ y_lim = range_pd - range_pd[0] if centered else range_pd
885
+ padding = 0.05 * (y_lim[1] - y_lim[0])
886
+ y_lim[0] -= padding
887
+ y_lim[1] += padding
888
+ for ax in disp.axes_.ravel():
889
+ assert_allclose(ax.get_ylim(), y_lim)
890
+
891
+
892
+ @pytest.mark.parametrize("centered", [True, False])
893
+ def test_partial_dependence_plot_limits_two_way(
894
+ pyplot, clf_diabetes, diabetes, centered
895
+ ):
896
+ """Check that the PD limit on the plots are properly set on two-way plots."""
897
+ disp = PartialDependenceDisplay.from_estimator(
898
+ clf_diabetes,
899
+ diabetes.data,
900
+ features=[(0, 1)],
901
+ kind="average",
902
+ grid_resolution=25,
903
+ feature_names=diabetes.feature_names,
904
+ )
905
+
906
+ range_pd = np.array([-1, 1], dtype=np.float64)
907
+ for pd in disp.pd_results:
908
+ pd["average"][...] = range_pd[1]
909
+ pd["average"][0, 0] = range_pd[0]
910
+
911
+ disp.plot(centered=centered)
912
+ contours = disp.contours_[0, 0]
913
+ levels = range_pd - range_pd[0] if centered else range_pd
914
+
915
+ padding = 0.05 * (levels[1] - levels[0])
916
+ levels[0] -= padding
917
+ levels[1] += padding
918
+ expect_levels = np.linspace(*levels, num=8)
919
+ assert_allclose(contours.levels, expect_levels)
920
+
921
+
922
+ def test_partial_dependence_kind_list(
923
+ pyplot,
924
+ clf_diabetes,
925
+ diabetes,
926
+ ):
927
+ """Check that we can provide a list of strings to kind parameter."""
928
+ matplotlib = pytest.importorskip("matplotlib")
929
+
930
+ disp = PartialDependenceDisplay.from_estimator(
931
+ clf_diabetes,
932
+ diabetes.data,
933
+ features=[0, 2, (1, 2)],
934
+ grid_resolution=20,
935
+ kind=["both", "both", "average"],
936
+ )
937
+
938
+ for idx in [0, 1]:
939
+ assert all(
940
+ [
941
+ isinstance(line, matplotlib.lines.Line2D)
942
+ for line in disp.lines_[0, idx].ravel()
943
+ ]
944
+ )
945
+ assert disp.contours_[0, idx] is None
946
+
947
+ assert disp.contours_[0, 2] is not None
948
+ assert all([line is None for line in disp.lines_[0, 2].ravel()])
949
+
950
+
951
+ @pytest.mark.parametrize(
952
+ "features, kind",
953
+ [
954
+ ([0, 2, (1, 2)], "individual"),
955
+ ([0, 2, (1, 2)], "both"),
956
+ ([(0, 1), (0, 2), (1, 2)], "individual"),
957
+ ([(0, 1), (0, 2), (1, 2)], "both"),
958
+ ([0, 2, (1, 2)], ["individual", "individual", "individual"]),
959
+ ([0, 2, (1, 2)], ["both", "both", "both"]),
960
+ ],
961
+ )
962
+ def test_partial_dependence_kind_error(
963
+ pyplot,
964
+ clf_diabetes,
965
+ diabetes,
966
+ features,
967
+ kind,
968
+ ):
969
+ """Check that we raise an informative error when 2-way PD is requested
970
+ together with 1-way PD/ICE"""
971
+ warn_msg = (
972
+ "ICE plot cannot be rendered for 2-way feature interactions. 2-way "
973
+ "feature interactions mandates PD plots using the 'average' kind"
974
+ )
975
+ with pytest.raises(ValueError, match=warn_msg):
976
+ PartialDependenceDisplay.from_estimator(
977
+ clf_diabetes,
978
+ diabetes.data,
979
+ features=features,
980
+ grid_resolution=20,
981
+ kind=kind,
982
+ )
983
+
984
+
985
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
986
+ @pytest.mark.parametrize(
987
+ "line_kw, pd_line_kw, ice_lines_kw, expected_colors",
988
+ [
989
+ ({"color": "r"}, {"color": "g"}, {"color": "b"}, ("g", "b")),
990
+ (None, {"color": "g"}, {"color": "b"}, ("g", "b")),
991
+ ({"color": "r"}, None, {"color": "b"}, ("r", "b")),
992
+ ({"color": "r"}, {"color": "g"}, None, ("g", "r")),
993
+ ({"color": "r"}, None, None, ("r", "r")),
994
+ ({"color": "r"}, {"linestyle": "--"}, {"linestyle": "-."}, ("r", "r")),
995
+ ],
996
+ )
997
+ def test_plot_partial_dependence_lines_kw(
998
+ pyplot,
999
+ clf_diabetes,
1000
+ diabetes,
1001
+ line_kw,
1002
+ pd_line_kw,
1003
+ ice_lines_kw,
1004
+ expected_colors,
1005
+ ):
1006
+ """Check that passing `pd_line_kw` and `ice_lines_kw` will act on the
1007
+ specific lines in the plot.
1008
+ """
1009
+
1010
+ disp = PartialDependenceDisplay.from_estimator(
1011
+ clf_diabetes,
1012
+ diabetes.data,
1013
+ [0, 2],
1014
+ grid_resolution=20,
1015
+ feature_names=diabetes.feature_names,
1016
+ n_cols=2,
1017
+ kind="both",
1018
+ line_kw=line_kw,
1019
+ pd_line_kw=pd_line_kw,
1020
+ ice_lines_kw=ice_lines_kw,
1021
+ )
1022
+
1023
+ line = disp.lines_[0, 0, -1]
1024
+ assert line.get_color() == expected_colors[0]
1025
+ if pd_line_kw is not None and "linestyle" in pd_line_kw:
1026
+ assert line.get_linestyle() == pd_line_kw["linestyle"]
1027
+ else:
1028
+ assert line.get_linestyle() == "--"
1029
+
1030
+ line = disp.lines_[0, 0, 0]
1031
+ assert line.get_color() == expected_colors[1]
1032
+ if ice_lines_kw is not None and "linestyle" in ice_lines_kw:
1033
+ assert line.get_linestyle() == ice_lines_kw["linestyle"]
1034
+ else:
1035
+ assert line.get_linestyle() == "-"
1036
+
1037
+
1038
+ def test_partial_dependence_display_wrong_len_kind(
1039
+ pyplot,
1040
+ clf_diabetes,
1041
+ diabetes,
1042
+ ):
1043
+ """Check that we raise an error when `kind` is a list with a wrong length.
1044
+
1045
+ This case can only be triggered using the `PartialDependenceDisplay.from_estimator`
1046
+ method.
1047
+ """
1048
+ disp = PartialDependenceDisplay.from_estimator(
1049
+ clf_diabetes,
1050
+ diabetes.data,
1051
+ features=[0, 2],
1052
+ grid_resolution=20,
1053
+ kind="average", # len(kind) != len(features)
1054
+ )
1055
+
1056
+ # alter `kind` to be a list with a length different from length of `features`
1057
+ disp.kind = ["average"]
1058
+ err_msg = (
1059
+ r"When `kind` is provided as a list of strings, it should contain as many"
1060
+ r" elements as `features`. `kind` contains 1 element\(s\) and `features`"
1061
+ r" contains 2 element\(s\)."
1062
+ )
1063
+ with pytest.raises(ValueError, match=err_msg):
1064
+ disp.plot()
1065
+
1066
+
1067
+ @pytest.mark.parametrize(
1068
+ "kind",
1069
+ ["individual", "both", "average", ["average", "both"], ["individual", "both"]],
1070
+ )
1071
+ def test_partial_dependence_display_kind_centered_interaction(
1072
+ pyplot,
1073
+ kind,
1074
+ clf_diabetes,
1075
+ diabetes,
1076
+ ):
1077
+ """Check that we properly center ICE and PD when passing kind as a string and as a
1078
+ list."""
1079
+ disp = PartialDependenceDisplay.from_estimator(
1080
+ clf_diabetes,
1081
+ diabetes.data,
1082
+ [0, 1],
1083
+ kind=kind,
1084
+ centered=True,
1085
+ subsample=5,
1086
+ )
1087
+
1088
+ assert all([ln._y[0] == 0.0 for ln in disp.lines_.ravel() if ln is not None])
1089
+
1090
+
1091
+ def test_partial_dependence_display_with_constant_sample_weight(
1092
+ pyplot,
1093
+ clf_diabetes,
1094
+ diabetes,
1095
+ ):
1096
+ """Check that the utilization of a constant sample weight maintains the
1097
+ standard behavior.
1098
+ """
1099
+ disp = PartialDependenceDisplay.from_estimator(
1100
+ clf_diabetes,
1101
+ diabetes.data,
1102
+ [0, 1],
1103
+ kind="average",
1104
+ method="brute",
1105
+ )
1106
+
1107
+ sample_weight = np.ones_like(diabetes.target)
1108
+ disp_sw = PartialDependenceDisplay.from_estimator(
1109
+ clf_diabetes,
1110
+ diabetes.data,
1111
+ [0, 1],
1112
+ sample_weight=sample_weight,
1113
+ kind="average",
1114
+ method="brute",
1115
+ )
1116
+
1117
+ assert np.array_equal(
1118
+ disp.pd_results[0]["average"], disp_sw.pd_results[0]["average"]
1119
+ )
1120
+
1121
+
1122
+ def test_subclass_named_constructors_return_type_is_subclass(
1123
+ pyplot, diabetes, clf_diabetes
1124
+ ):
1125
+ """Check that named constructors return the correct type when subclassed.
1126
+
1127
+ Non-regression test for:
1128
+ https://github.com/scikit-learn/scikit-learn/pull/27675
1129
+ """
1130
+
1131
+ class SubclassOfDisplay(PartialDependenceDisplay):
1132
+ pass
1133
+
1134
+ curve = SubclassOfDisplay.from_estimator(
1135
+ clf_diabetes,
1136
+ diabetes.data,
1137
+ [0, 2, (0, 2)],
1138
+ )
1139
+
1140
+ assert isinstance(curve, SubclassOfDisplay)
venv/lib/python3.10/site-packages/sklearn/inspection/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/sklearn/inspection/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (192 Bytes). View file
 
venv/lib/python3.10/site-packages/sklearn/inspection/tests/__pycache__/test_partial_dependence.cpython-310.pyc ADDED
Binary file (22.4 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/inspection/tests/__pycache__/test_pd_utils.cpython-310.pyc ADDED
Binary file (1.94 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/inspection/tests/__pycache__/test_permutation_importance.cpython-310.pyc ADDED
Binary file (11.3 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/inspection/tests/test_partial_dependence.py ADDED
@@ -0,0 +1,958 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Testing for the partial dependence module.
3
+ """
4
+ import warnings
5
+
6
+ import numpy as np
7
+ import pytest
8
+
9
+ import sklearn
10
+ from sklearn.base import BaseEstimator, ClassifierMixin, clone, is_regressor
11
+ from sklearn.cluster import KMeans
12
+ from sklearn.compose import make_column_transformer
13
+ from sklearn.datasets import load_iris, make_classification, make_regression
14
+ from sklearn.dummy import DummyClassifier
15
+ from sklearn.ensemble import (
16
+ GradientBoostingClassifier,
17
+ GradientBoostingRegressor,
18
+ HistGradientBoostingClassifier,
19
+ HistGradientBoostingRegressor,
20
+ RandomForestRegressor,
21
+ )
22
+ from sklearn.exceptions import NotFittedError
23
+ from sklearn.inspection import partial_dependence
24
+ from sklearn.inspection._partial_dependence import (
25
+ _grid_from_X,
26
+ _partial_dependence_brute,
27
+ _partial_dependence_recursion,
28
+ )
29
+ from sklearn.linear_model import LinearRegression, LogisticRegression, MultiTaskLasso
30
+ from sklearn.metrics import r2_score
31
+ from sklearn.pipeline import make_pipeline
32
+ from sklearn.preprocessing import (
33
+ PolynomialFeatures,
34
+ RobustScaler,
35
+ StandardScaler,
36
+ scale,
37
+ )
38
+ from sklearn.tree import DecisionTreeRegressor
39
+ from sklearn.tree.tests.test_tree import assert_is_subtree
40
+ from sklearn.utils import _IS_32BIT
41
+ from sklearn.utils._testing import assert_allclose, assert_array_equal
42
+ from sklearn.utils.validation import check_random_state
43
+
44
+ # toy sample
45
+ X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
46
+ y = [-1, -1, -1, 1, 1, 1]
47
+
48
+
49
+ # (X, y), n_targets <-- as expected in the output of partial_dep()
50
+ binary_classification_data = (make_classification(n_samples=50, random_state=0), 1)
51
+ multiclass_classification_data = (
52
+ make_classification(
53
+ n_samples=50, n_classes=3, n_clusters_per_class=1, random_state=0
54
+ ),
55
+ 3,
56
+ )
57
+ regression_data = (make_regression(n_samples=50, random_state=0), 1)
58
+ multioutput_regression_data = (
59
+ make_regression(n_samples=50, n_targets=2, random_state=0),
60
+ 2,
61
+ )
62
+
63
+ # iris
64
+ iris = load_iris()
65
+
66
+
67
+ @pytest.mark.parametrize(
68
+ "Estimator, method, data",
69
+ [
70
+ (GradientBoostingClassifier, "auto", binary_classification_data),
71
+ (GradientBoostingClassifier, "auto", multiclass_classification_data),
72
+ (GradientBoostingClassifier, "brute", binary_classification_data),
73
+ (GradientBoostingClassifier, "brute", multiclass_classification_data),
74
+ (GradientBoostingRegressor, "auto", regression_data),
75
+ (GradientBoostingRegressor, "brute", regression_data),
76
+ (DecisionTreeRegressor, "brute", regression_data),
77
+ (LinearRegression, "brute", regression_data),
78
+ (LinearRegression, "brute", multioutput_regression_data),
79
+ (LogisticRegression, "brute", binary_classification_data),
80
+ (LogisticRegression, "brute", multiclass_classification_data),
81
+ (MultiTaskLasso, "brute", multioutput_regression_data),
82
+ ],
83
+ )
84
+ @pytest.mark.parametrize("grid_resolution", (5, 10))
85
+ @pytest.mark.parametrize("features", ([1], [1, 2]))
86
+ @pytest.mark.parametrize("kind", ("average", "individual", "both"))
87
+ def test_output_shape(Estimator, method, data, grid_resolution, features, kind):
88
+ # Check that partial_dependence has consistent output shape for different
89
+ # kinds of estimators:
90
+ # - classifiers with binary and multiclass settings
91
+ # - regressors
92
+ # - multi-task regressors
93
+
94
+ est = Estimator()
95
+ if hasattr(est, "n_estimators"):
96
+ est.set_params(n_estimators=2) # speed-up computations
97
+
98
+ # n_target corresponds to the number of classes (1 for binary classif) or
99
+ # the number of tasks / outputs in multi task settings. It's equal to 1 for
100
+ # classical regression_data.
101
+ (X, y), n_targets = data
102
+ n_instances = X.shape[0]
103
+
104
+ est.fit(X, y)
105
+ result = partial_dependence(
106
+ est,
107
+ X=X,
108
+ features=features,
109
+ method=method,
110
+ kind=kind,
111
+ grid_resolution=grid_resolution,
112
+ )
113
+ pdp, axes = result, result["grid_values"]
114
+
115
+ expected_pdp_shape = (n_targets, *[grid_resolution for _ in range(len(features))])
116
+ expected_ice_shape = (
117
+ n_targets,
118
+ n_instances,
119
+ *[grid_resolution for _ in range(len(features))],
120
+ )
121
+ if kind == "average":
122
+ assert pdp.average.shape == expected_pdp_shape
123
+ elif kind == "individual":
124
+ assert pdp.individual.shape == expected_ice_shape
125
+ else: # 'both'
126
+ assert pdp.average.shape == expected_pdp_shape
127
+ assert pdp.individual.shape == expected_ice_shape
128
+
129
+ expected_axes_shape = (len(features), grid_resolution)
130
+ assert axes is not None
131
+ assert np.asarray(axes).shape == expected_axes_shape
132
+
133
+
134
+ def test_grid_from_X():
135
+ # tests for _grid_from_X: sanity check for output, and for shapes.
136
+
137
+ # Make sure that the grid is a cartesian product of the input (it will use
138
+ # the unique values instead of the percentiles)
139
+ percentiles = (0.05, 0.95)
140
+ grid_resolution = 100
141
+ is_categorical = [False, False]
142
+ X = np.asarray([[1, 2], [3, 4]])
143
+ grid, axes = _grid_from_X(X, percentiles, is_categorical, grid_resolution)
144
+ assert_array_equal(grid, [[1, 2], [1, 4], [3, 2], [3, 4]])
145
+ assert_array_equal(axes, X.T)
146
+
147
+ # test shapes of returned objects depending on the number of unique values
148
+ # for a feature.
149
+ rng = np.random.RandomState(0)
150
+ grid_resolution = 15
151
+
152
+ # n_unique_values > grid_resolution
153
+ X = rng.normal(size=(20, 2))
154
+ grid, axes = _grid_from_X(
155
+ X, percentiles, is_categorical, grid_resolution=grid_resolution
156
+ )
157
+ assert grid.shape == (grid_resolution * grid_resolution, X.shape[1])
158
+ assert np.asarray(axes).shape == (2, grid_resolution)
159
+
160
+ # n_unique_values < grid_resolution, will use actual values
161
+ n_unique_values = 12
162
+ X[n_unique_values - 1 :, 0] = 12345
163
+ rng.shuffle(X) # just to make sure the order is irrelevant
164
+ grid, axes = _grid_from_X(
165
+ X, percentiles, is_categorical, grid_resolution=grid_resolution
166
+ )
167
+ assert grid.shape == (n_unique_values * grid_resolution, X.shape[1])
168
+ # axes is a list of arrays of different shapes
169
+ assert axes[0].shape == (n_unique_values,)
170
+ assert axes[1].shape == (grid_resolution,)
171
+
172
+
173
+ @pytest.mark.parametrize(
174
+ "grid_resolution",
175
+ [
176
+ 2, # since n_categories > 2, we should not use quantiles resampling
177
+ 100,
178
+ ],
179
+ )
180
+ def test_grid_from_X_with_categorical(grid_resolution):
181
+ """Check that `_grid_from_X` always sample from categories and does not
182
+ depend from the percentiles.
183
+ """
184
+ pd = pytest.importorskip("pandas")
185
+ percentiles = (0.05, 0.95)
186
+ is_categorical = [True]
187
+ X = pd.DataFrame({"cat_feature": ["A", "B", "C", "A", "B", "D", "E"]})
188
+ grid, axes = _grid_from_X(
189
+ X, percentiles, is_categorical, grid_resolution=grid_resolution
190
+ )
191
+ assert grid.shape == (5, X.shape[1])
192
+ assert axes[0].shape == (5,)
193
+
194
+
195
+ @pytest.mark.parametrize("grid_resolution", [3, 100])
196
+ def test_grid_from_X_heterogeneous_type(grid_resolution):
197
+ """Check that `_grid_from_X` always sample from categories and does not
198
+ depend from the percentiles.
199
+ """
200
+ pd = pytest.importorskip("pandas")
201
+ percentiles = (0.05, 0.95)
202
+ is_categorical = [True, False]
203
+ X = pd.DataFrame(
204
+ {
205
+ "cat": ["A", "B", "C", "A", "B", "D", "E", "A", "B", "D"],
206
+ "num": [1, 1, 1, 2, 5, 6, 6, 6, 6, 8],
207
+ }
208
+ )
209
+ nunique = X.nunique()
210
+
211
+ grid, axes = _grid_from_X(
212
+ X, percentiles, is_categorical, grid_resolution=grid_resolution
213
+ )
214
+ if grid_resolution == 3:
215
+ assert grid.shape == (15, 2)
216
+ assert axes[0].shape[0] == nunique["num"]
217
+ assert axes[1].shape[0] == grid_resolution
218
+ else:
219
+ assert grid.shape == (25, 2)
220
+ assert axes[0].shape[0] == nunique["cat"]
221
+ assert axes[1].shape[0] == nunique["cat"]
222
+
223
+
224
+ @pytest.mark.parametrize(
225
+ "grid_resolution, percentiles, err_msg",
226
+ [
227
+ (2, (0, 0.0001), "percentiles are too close"),
228
+ (100, (1, 2, 3, 4), "'percentiles' must be a sequence of 2 elements"),
229
+ (100, 12345, "'percentiles' must be a sequence of 2 elements"),
230
+ (100, (-1, 0.95), r"'percentiles' values must be in \[0, 1\]"),
231
+ (100, (0.05, 2), r"'percentiles' values must be in \[0, 1\]"),
232
+ (100, (0.9, 0.1), r"percentiles\[0\] must be strictly less than"),
233
+ (1, (0.05, 0.95), "'grid_resolution' must be strictly greater than 1"),
234
+ ],
235
+ )
236
+ def test_grid_from_X_error(grid_resolution, percentiles, err_msg):
237
+ X = np.asarray([[1, 2], [3, 4]])
238
+ is_categorical = [False]
239
+ with pytest.raises(ValueError, match=err_msg):
240
+ _grid_from_X(X, percentiles, is_categorical, grid_resolution)
241
+
242
+
243
+ @pytest.mark.parametrize("target_feature", range(5))
244
+ @pytest.mark.parametrize(
245
+ "est, method",
246
+ [
247
+ (LinearRegression(), "brute"),
248
+ (GradientBoostingRegressor(random_state=0), "brute"),
249
+ (GradientBoostingRegressor(random_state=0), "recursion"),
250
+ (HistGradientBoostingRegressor(random_state=0), "brute"),
251
+ (HistGradientBoostingRegressor(random_state=0), "recursion"),
252
+ ],
253
+ )
254
+ def test_partial_dependence_helpers(est, method, target_feature):
255
+ # Check that what is returned by _partial_dependence_brute or
256
+ # _partial_dependence_recursion is equivalent to manually setting a target
257
+ # feature to a given value, and computing the average prediction over all
258
+ # samples.
259
+ # This also checks that the brute and recursion methods give the same
260
+ # output.
261
+ # Note that even on the trainset, the brute and the recursion methods
262
+ # aren't always strictly equivalent, in particular when the slow method
263
+ # generates unrealistic samples that have low mass in the joint
264
+ # distribution of the input features, and when some of the features are
265
+ # dependent. Hence the high tolerance on the checks.
266
+
267
+ X, y = make_regression(random_state=0, n_features=5, n_informative=5)
268
+ # The 'init' estimator for GBDT (here the average prediction) isn't taken
269
+ # into account with the recursion method, for technical reasons. We set
270
+ # the mean to 0 to that this 'bug' doesn't have any effect.
271
+ y = y - y.mean()
272
+ est.fit(X, y)
273
+
274
+ # target feature will be set to .5 and then to 123
275
+ features = np.array([target_feature], dtype=np.int32)
276
+ grid = np.array([[0.5], [123]])
277
+
278
+ if method == "brute":
279
+ pdp, predictions = _partial_dependence_brute(
280
+ est, grid, features, X, response_method="auto"
281
+ )
282
+ else:
283
+ pdp = _partial_dependence_recursion(est, grid, features)
284
+
285
+ mean_predictions = []
286
+ for val in (0.5, 123):
287
+ X_ = X.copy()
288
+ X_[:, target_feature] = val
289
+ mean_predictions.append(est.predict(X_).mean())
290
+
291
+ pdp = pdp[0] # (shape is (1, 2) so make it (2,))
292
+
293
+ # allow for greater margin for error with recursion method
294
+ rtol = 1e-1 if method == "recursion" else 1e-3
295
+ assert np.allclose(pdp, mean_predictions, rtol=rtol)
296
+
297
+
298
+ @pytest.mark.parametrize("seed", range(1))
299
+ def test_recursion_decision_tree_vs_forest_and_gbdt(seed):
300
+ # Make sure that the recursion method gives the same results on a
301
+ # DecisionTreeRegressor and a GradientBoostingRegressor or a
302
+ # RandomForestRegressor with 1 tree and equivalent parameters.
303
+
304
+ rng = np.random.RandomState(seed)
305
+
306
+ # Purely random dataset to avoid correlated features
307
+ n_samples = 1000
308
+ n_features = 5
309
+ X = rng.randn(n_samples, n_features)
310
+ y = rng.randn(n_samples) * 10
311
+
312
+ # The 'init' estimator for GBDT (here the average prediction) isn't taken
313
+ # into account with the recursion method, for technical reasons. We set
314
+ # the mean to 0 to that this 'bug' doesn't have any effect.
315
+ y = y - y.mean()
316
+
317
+ # set max_depth not too high to avoid splits with same gain but different
318
+ # features
319
+ max_depth = 5
320
+
321
+ tree_seed = 0
322
+ forest = RandomForestRegressor(
323
+ n_estimators=1,
324
+ max_features=None,
325
+ bootstrap=False,
326
+ max_depth=max_depth,
327
+ random_state=tree_seed,
328
+ )
329
+ # The forest will use ensemble.base._set_random_states to set the
330
+ # random_state of the tree sub-estimator. We simulate this here to have
331
+ # equivalent estimators.
332
+ equiv_random_state = check_random_state(tree_seed).randint(np.iinfo(np.int32).max)
333
+ gbdt = GradientBoostingRegressor(
334
+ n_estimators=1,
335
+ learning_rate=1,
336
+ criterion="squared_error",
337
+ max_depth=max_depth,
338
+ random_state=equiv_random_state,
339
+ )
340
+ tree = DecisionTreeRegressor(max_depth=max_depth, random_state=equiv_random_state)
341
+
342
+ forest.fit(X, y)
343
+ gbdt.fit(X, y)
344
+ tree.fit(X, y)
345
+
346
+ # sanity check: if the trees aren't the same, the PD values won't be equal
347
+ try:
348
+ assert_is_subtree(tree.tree_, gbdt[0, 0].tree_)
349
+ assert_is_subtree(tree.tree_, forest[0].tree_)
350
+ except AssertionError:
351
+ # For some reason the trees aren't exactly equal on 32bits, so the PDs
352
+ # cannot be equal either. See
353
+ # https://github.com/scikit-learn/scikit-learn/issues/8853
354
+ assert _IS_32BIT, "this should only fail on 32 bit platforms"
355
+ return
356
+
357
+ grid = rng.randn(50).reshape(-1, 1)
358
+ for f in range(n_features):
359
+ features = np.array([f], dtype=np.int32)
360
+
361
+ pdp_forest = _partial_dependence_recursion(forest, grid, features)
362
+ pdp_gbdt = _partial_dependence_recursion(gbdt, grid, features)
363
+ pdp_tree = _partial_dependence_recursion(tree, grid, features)
364
+
365
+ np.testing.assert_allclose(pdp_gbdt, pdp_tree)
366
+ np.testing.assert_allclose(pdp_forest, pdp_tree)
367
+
368
+
369
+ @pytest.mark.parametrize(
370
+ "est",
371
+ (
372
+ GradientBoostingClassifier(random_state=0),
373
+ HistGradientBoostingClassifier(random_state=0),
374
+ ),
375
+ )
376
+ @pytest.mark.parametrize("target_feature", (0, 1, 2, 3, 4, 5))
377
+ def test_recursion_decision_function(est, target_feature):
378
+ # Make sure the recursion method (implicitly uses decision_function) has
379
+ # the same result as using brute method with
380
+ # response_method=decision_function
381
+
382
+ X, y = make_classification(n_classes=2, n_clusters_per_class=1, random_state=1)
383
+ assert np.mean(y) == 0.5 # make sure the init estimator predicts 0 anyway
384
+
385
+ est.fit(X, y)
386
+
387
+ preds_1 = partial_dependence(
388
+ est,
389
+ X,
390
+ [target_feature],
391
+ response_method="decision_function",
392
+ method="recursion",
393
+ kind="average",
394
+ )
395
+ preds_2 = partial_dependence(
396
+ est,
397
+ X,
398
+ [target_feature],
399
+ response_method="decision_function",
400
+ method="brute",
401
+ kind="average",
402
+ )
403
+
404
+ assert_allclose(preds_1["average"], preds_2["average"], atol=1e-7)
405
+
406
+
407
+ @pytest.mark.parametrize(
408
+ "est",
409
+ (
410
+ LinearRegression(),
411
+ GradientBoostingRegressor(random_state=0),
412
+ HistGradientBoostingRegressor(
413
+ random_state=0, min_samples_leaf=1, max_leaf_nodes=None, max_iter=1
414
+ ),
415
+ DecisionTreeRegressor(random_state=0),
416
+ ),
417
+ )
418
+ @pytest.mark.parametrize("power", (1, 2))
419
+ def test_partial_dependence_easy_target(est, power):
420
+ # If the target y only depends on one feature in an obvious way (linear or
421
+ # quadratic) then the partial dependence for that feature should reflect
422
+ # it.
423
+ # We here fit a linear regression_data model (with polynomial features if
424
+ # needed) and compute r_squared to check that the partial dependence
425
+ # correctly reflects the target.
426
+
427
+ rng = np.random.RandomState(0)
428
+ n_samples = 200
429
+ target_variable = 2
430
+ X = rng.normal(size=(n_samples, 5))
431
+ y = X[:, target_variable] ** power
432
+
433
+ est.fit(X, y)
434
+
435
+ pdp = partial_dependence(
436
+ est, features=[target_variable], X=X, grid_resolution=1000, kind="average"
437
+ )
438
+
439
+ new_X = pdp["grid_values"][0].reshape(-1, 1)
440
+ new_y = pdp["average"][0]
441
+ # add polynomial features if needed
442
+ new_X = PolynomialFeatures(degree=power).fit_transform(new_X)
443
+
444
+ lr = LinearRegression().fit(new_X, new_y)
445
+ r2 = r2_score(new_y, lr.predict(new_X))
446
+
447
+ assert r2 > 0.99
448
+
449
+
450
+ @pytest.mark.parametrize(
451
+ "Estimator",
452
+ (
453
+ sklearn.tree.DecisionTreeClassifier,
454
+ sklearn.tree.ExtraTreeClassifier,
455
+ sklearn.ensemble.ExtraTreesClassifier,
456
+ sklearn.neighbors.KNeighborsClassifier,
457
+ sklearn.neighbors.RadiusNeighborsClassifier,
458
+ sklearn.ensemble.RandomForestClassifier,
459
+ ),
460
+ )
461
+ def test_multiclass_multioutput(Estimator):
462
+ # Make sure error is raised for multiclass-multioutput classifiers
463
+
464
+ # make multiclass-multioutput dataset
465
+ X, y = make_classification(n_classes=3, n_clusters_per_class=1, random_state=0)
466
+ y = np.array([y, y]).T
467
+
468
+ est = Estimator()
469
+ est.fit(X, y)
470
+
471
+ with pytest.raises(
472
+ ValueError, match="Multiclass-multioutput estimators are not supported"
473
+ ):
474
+ partial_dependence(est, X, [0])
475
+
476
+
477
+ class NoPredictProbaNoDecisionFunction(ClassifierMixin, BaseEstimator):
478
+ def fit(self, X, y):
479
+ # simulate that we have some classes
480
+ self.classes_ = [0, 1]
481
+ return self
482
+
483
+
484
+ @pytest.mark.filterwarnings("ignore:A Bunch will be returned")
485
+ @pytest.mark.parametrize(
486
+ "estimator, params, err_msg",
487
+ [
488
+ (
489
+ KMeans(random_state=0, n_init="auto"),
490
+ {"features": [0]},
491
+ "'estimator' must be a fitted regressor or classifier",
492
+ ),
493
+ (
494
+ LinearRegression(),
495
+ {"features": [0], "response_method": "predict_proba"},
496
+ "The response_method parameter is ignored for regressors",
497
+ ),
498
+ (
499
+ GradientBoostingClassifier(random_state=0),
500
+ {
501
+ "features": [0],
502
+ "response_method": "predict_proba",
503
+ "method": "recursion",
504
+ },
505
+ "'recursion' method, the response_method must be 'decision_function'",
506
+ ),
507
+ (
508
+ GradientBoostingClassifier(random_state=0),
509
+ {"features": [0], "response_method": "predict_proba", "method": "auto"},
510
+ "'recursion' method, the response_method must be 'decision_function'",
511
+ ),
512
+ (
513
+ LinearRegression(),
514
+ {"features": [0], "method": "recursion", "kind": "individual"},
515
+ "The 'recursion' method only applies when 'kind' is set to 'average'",
516
+ ),
517
+ (
518
+ LinearRegression(),
519
+ {"features": [0], "method": "recursion", "kind": "both"},
520
+ "The 'recursion' method only applies when 'kind' is set to 'average'",
521
+ ),
522
+ (
523
+ LinearRegression(),
524
+ {"features": [0], "method": "recursion"},
525
+ "Only the following estimators support the 'recursion' method:",
526
+ ),
527
+ ],
528
+ )
529
+ def test_partial_dependence_error(estimator, params, err_msg):
530
+ X, y = make_classification(random_state=0)
531
+ estimator.fit(X, y)
532
+
533
+ with pytest.raises(ValueError, match=err_msg):
534
+ partial_dependence(estimator, X, **params)
535
+
536
+
537
+ @pytest.mark.parametrize(
538
+ "estimator", [LinearRegression(), GradientBoostingClassifier(random_state=0)]
539
+ )
540
+ @pytest.mark.parametrize("features", [-1, 10000])
541
+ def test_partial_dependence_unknown_feature_indices(estimator, features):
542
+ X, y = make_classification(random_state=0)
543
+ estimator.fit(X, y)
544
+
545
+ err_msg = "all features must be in"
546
+ with pytest.raises(ValueError, match=err_msg):
547
+ partial_dependence(estimator, X, [features])
548
+
549
+
550
+ @pytest.mark.parametrize(
551
+ "estimator", [LinearRegression(), GradientBoostingClassifier(random_state=0)]
552
+ )
553
+ def test_partial_dependence_unknown_feature_string(estimator):
554
+ pd = pytest.importorskip("pandas")
555
+ X, y = make_classification(random_state=0)
556
+ df = pd.DataFrame(X)
557
+ estimator.fit(df, y)
558
+
559
+ features = ["random"]
560
+ err_msg = "A given column is not a column of the dataframe"
561
+ with pytest.raises(ValueError, match=err_msg):
562
+ partial_dependence(estimator, df, features)
563
+
564
+
565
+ @pytest.mark.parametrize(
566
+ "estimator", [LinearRegression(), GradientBoostingClassifier(random_state=0)]
567
+ )
568
+ def test_partial_dependence_X_list(estimator):
569
+ # check that array-like objects are accepted
570
+ X, y = make_classification(random_state=0)
571
+ estimator.fit(X, y)
572
+ partial_dependence(estimator, list(X), [0], kind="average")
573
+
574
+
575
+ def test_warning_recursion_non_constant_init():
576
+ # make sure that passing a non-constant init parameter to a GBDT and using
577
+ # recursion method yields a warning.
578
+
579
+ gbc = GradientBoostingClassifier(init=DummyClassifier(), random_state=0)
580
+ gbc.fit(X, y)
581
+
582
+ with pytest.warns(
583
+ UserWarning, match="Using recursion method with a non-constant init predictor"
584
+ ):
585
+ partial_dependence(gbc, X, [0], method="recursion", kind="average")
586
+
587
+ with pytest.warns(
588
+ UserWarning, match="Using recursion method with a non-constant init predictor"
589
+ ):
590
+ partial_dependence(gbc, X, [0], method="recursion", kind="average")
591
+
592
+
593
+ def test_partial_dependence_sample_weight_of_fitted_estimator():
594
+ # Test near perfect correlation between partial dependence and diagonal
595
+ # when sample weights emphasize y = x predictions
596
+ # non-regression test for #13193
597
+ # TODO: extend to HistGradientBoosting once sample_weight is supported
598
+ N = 1000
599
+ rng = np.random.RandomState(123456)
600
+ mask = rng.randint(2, size=N, dtype=bool)
601
+
602
+ x = rng.rand(N)
603
+ # set y = x on mask and y = -x outside
604
+ y = x.copy()
605
+ y[~mask] = -y[~mask]
606
+ X = np.c_[mask, x]
607
+ # sample weights to emphasize data points where y = x
608
+ sample_weight = np.ones(N)
609
+ sample_weight[mask] = 1000.0
610
+
611
+ clf = GradientBoostingRegressor(n_estimators=10, random_state=1)
612
+ clf.fit(X, y, sample_weight=sample_weight)
613
+
614
+ pdp = partial_dependence(clf, X, features=[1], kind="average")
615
+
616
+ assert np.corrcoef(pdp["average"], pdp["grid_values"])[0, 1] > 0.99
617
+
618
+
619
+ def test_hist_gbdt_sw_not_supported():
620
+ # TODO: remove/fix when PDP supports HGBT with sample weights
621
+ clf = HistGradientBoostingRegressor(random_state=1)
622
+ clf.fit(X, y, sample_weight=np.ones(len(X)))
623
+
624
+ with pytest.raises(
625
+ NotImplementedError, match="does not support partial dependence"
626
+ ):
627
+ partial_dependence(clf, X, features=[1])
628
+
629
+
630
+ def test_partial_dependence_pipeline():
631
+ # check that the partial dependence support pipeline
632
+ iris = load_iris()
633
+
634
+ scaler = StandardScaler()
635
+ clf = DummyClassifier(random_state=42)
636
+ pipe = make_pipeline(scaler, clf)
637
+
638
+ clf.fit(scaler.fit_transform(iris.data), iris.target)
639
+ pipe.fit(iris.data, iris.target)
640
+
641
+ features = 0
642
+ pdp_pipe = partial_dependence(
643
+ pipe, iris.data, features=[features], grid_resolution=10, kind="average"
644
+ )
645
+ pdp_clf = partial_dependence(
646
+ clf,
647
+ scaler.transform(iris.data),
648
+ features=[features],
649
+ grid_resolution=10,
650
+ kind="average",
651
+ )
652
+ assert_allclose(pdp_pipe["average"], pdp_clf["average"])
653
+ assert_allclose(
654
+ pdp_pipe["grid_values"][0],
655
+ pdp_clf["grid_values"][0] * scaler.scale_[features] + scaler.mean_[features],
656
+ )
657
+
658
+
659
+ @pytest.mark.parametrize(
660
+ "estimator",
661
+ [
662
+ LogisticRegression(max_iter=1000, random_state=0),
663
+ GradientBoostingClassifier(random_state=0, n_estimators=5),
664
+ ],
665
+ ids=["estimator-brute", "estimator-recursion"],
666
+ )
667
+ @pytest.mark.parametrize(
668
+ "preprocessor",
669
+ [
670
+ None,
671
+ make_column_transformer(
672
+ (StandardScaler(), [iris.feature_names[i] for i in (0, 2)]),
673
+ (RobustScaler(), [iris.feature_names[i] for i in (1, 3)]),
674
+ ),
675
+ make_column_transformer(
676
+ (StandardScaler(), [iris.feature_names[i] for i in (0, 2)]),
677
+ remainder="passthrough",
678
+ ),
679
+ ],
680
+ ids=["None", "column-transformer", "column-transformer-passthrough"],
681
+ )
682
+ @pytest.mark.parametrize(
683
+ "features",
684
+ [[0, 2], [iris.feature_names[i] for i in (0, 2)]],
685
+ ids=["features-integer", "features-string"],
686
+ )
687
+ def test_partial_dependence_dataframe(estimator, preprocessor, features):
688
+ # check that the partial dependence support dataframe and pipeline
689
+ # including a column transformer
690
+ pd = pytest.importorskip("pandas")
691
+ df = pd.DataFrame(scale(iris.data), columns=iris.feature_names)
692
+
693
+ pipe = make_pipeline(preprocessor, estimator)
694
+ pipe.fit(df, iris.target)
695
+ pdp_pipe = partial_dependence(
696
+ pipe, df, features=features, grid_resolution=10, kind="average"
697
+ )
698
+
699
+ # the column transformer will reorder the column when transforming
700
+ # we mixed the index to be sure that we are computing the partial
701
+ # dependence of the right columns
702
+ if preprocessor is not None:
703
+ X_proc = clone(preprocessor).fit_transform(df)
704
+ features_clf = [0, 1]
705
+ else:
706
+ X_proc = df
707
+ features_clf = [0, 2]
708
+
709
+ clf = clone(estimator).fit(X_proc, iris.target)
710
+ pdp_clf = partial_dependence(
711
+ clf,
712
+ X_proc,
713
+ features=features_clf,
714
+ method="brute",
715
+ grid_resolution=10,
716
+ kind="average",
717
+ )
718
+
719
+ assert_allclose(pdp_pipe["average"], pdp_clf["average"])
720
+ if preprocessor is not None:
721
+ scaler = preprocessor.named_transformers_["standardscaler"]
722
+ assert_allclose(
723
+ pdp_pipe["grid_values"][1],
724
+ pdp_clf["grid_values"][1] * scaler.scale_[1] + scaler.mean_[1],
725
+ )
726
+ else:
727
+ assert_allclose(pdp_pipe["grid_values"][1], pdp_clf["grid_values"][1])
728
+
729
+
730
+ @pytest.mark.parametrize(
731
+ "features, expected_pd_shape",
732
+ [
733
+ (0, (3, 10)),
734
+ (iris.feature_names[0], (3, 10)),
735
+ ([0, 2], (3, 10, 10)),
736
+ ([iris.feature_names[i] for i in (0, 2)], (3, 10, 10)),
737
+ ([True, False, True, False], (3, 10, 10)),
738
+ ],
739
+ ids=["scalar-int", "scalar-str", "list-int", "list-str", "mask"],
740
+ )
741
+ def test_partial_dependence_feature_type(features, expected_pd_shape):
742
+ # check all possible features type supported in PDP
743
+ pd = pytest.importorskip("pandas")
744
+ df = pd.DataFrame(iris.data, columns=iris.feature_names)
745
+
746
+ preprocessor = make_column_transformer(
747
+ (StandardScaler(), [iris.feature_names[i] for i in (0, 2)]),
748
+ (RobustScaler(), [iris.feature_names[i] for i in (1, 3)]),
749
+ )
750
+ pipe = make_pipeline(
751
+ preprocessor, LogisticRegression(max_iter=1000, random_state=0)
752
+ )
753
+ pipe.fit(df, iris.target)
754
+ pdp_pipe = partial_dependence(
755
+ pipe, df, features=features, grid_resolution=10, kind="average"
756
+ )
757
+ assert pdp_pipe["average"].shape == expected_pd_shape
758
+ assert len(pdp_pipe["grid_values"]) == len(pdp_pipe["average"].shape) - 1
759
+
760
+
761
+ @pytest.mark.parametrize(
762
+ "estimator",
763
+ [
764
+ LinearRegression(),
765
+ LogisticRegression(),
766
+ GradientBoostingRegressor(),
767
+ GradientBoostingClassifier(),
768
+ ],
769
+ )
770
+ def test_partial_dependence_unfitted(estimator):
771
+ X = iris.data
772
+ preprocessor = make_column_transformer(
773
+ (StandardScaler(), [0, 2]), (RobustScaler(), [1, 3])
774
+ )
775
+ pipe = make_pipeline(preprocessor, estimator)
776
+ with pytest.raises(NotFittedError, match="is not fitted yet"):
777
+ partial_dependence(pipe, X, features=[0, 2], grid_resolution=10)
778
+ with pytest.raises(NotFittedError, match="is not fitted yet"):
779
+ partial_dependence(estimator, X, features=[0, 2], grid_resolution=10)
780
+
781
+
782
+ @pytest.mark.parametrize(
783
+ "Estimator, data",
784
+ [
785
+ (LinearRegression, multioutput_regression_data),
786
+ (LogisticRegression, binary_classification_data),
787
+ ],
788
+ )
789
+ def test_kind_average_and_average_of_individual(Estimator, data):
790
+ est = Estimator()
791
+ (X, y), n_targets = data
792
+ est.fit(X, y)
793
+
794
+ pdp_avg = partial_dependence(est, X=X, features=[1, 2], kind="average")
795
+ pdp_ind = partial_dependence(est, X=X, features=[1, 2], kind="individual")
796
+ avg_ind = np.mean(pdp_ind["individual"], axis=1)
797
+ assert_allclose(avg_ind, pdp_avg["average"])
798
+
799
+
800
+ @pytest.mark.parametrize(
801
+ "Estimator, data",
802
+ [
803
+ (LinearRegression, multioutput_regression_data),
804
+ (LogisticRegression, binary_classification_data),
805
+ ],
806
+ )
807
+ def test_partial_dependence_kind_individual_ignores_sample_weight(Estimator, data):
808
+ """Check that `sample_weight` does not have any effect on reported ICE."""
809
+ est = Estimator()
810
+ (X, y), n_targets = data
811
+ sample_weight = np.arange(X.shape[0])
812
+ est.fit(X, y)
813
+
814
+ pdp_nsw = partial_dependence(est, X=X, features=[1, 2], kind="individual")
815
+ pdp_sw = partial_dependence(
816
+ est, X=X, features=[1, 2], kind="individual", sample_weight=sample_weight
817
+ )
818
+ assert_allclose(pdp_nsw["individual"], pdp_sw["individual"])
819
+ assert_allclose(pdp_nsw["grid_values"], pdp_sw["grid_values"])
820
+
821
+
822
+ @pytest.mark.parametrize(
823
+ "estimator",
824
+ [
825
+ LinearRegression(),
826
+ LogisticRegression(),
827
+ RandomForestRegressor(),
828
+ GradientBoostingClassifier(),
829
+ ],
830
+ )
831
+ @pytest.mark.parametrize("non_null_weight_idx", [0, 1, -1])
832
+ def test_partial_dependence_non_null_weight_idx(estimator, non_null_weight_idx):
833
+ """Check that if we pass a `sample_weight` of zeros with only one index with
834
+ sample weight equals one, then the average `partial_dependence` with this
835
+ `sample_weight` is equal to the individual `partial_dependence` of the
836
+ corresponding index.
837
+ """
838
+ X, y = iris.data, iris.target
839
+ preprocessor = make_column_transformer(
840
+ (StandardScaler(), [0, 2]), (RobustScaler(), [1, 3])
841
+ )
842
+ pipe = make_pipeline(preprocessor, estimator).fit(X, y)
843
+
844
+ sample_weight = np.zeros_like(y)
845
+ sample_weight[non_null_weight_idx] = 1
846
+ pdp_sw = partial_dependence(
847
+ pipe,
848
+ X,
849
+ [2, 3],
850
+ kind="average",
851
+ sample_weight=sample_weight,
852
+ grid_resolution=10,
853
+ )
854
+ pdp_ind = partial_dependence(pipe, X, [2, 3], kind="individual", grid_resolution=10)
855
+ output_dim = 1 if is_regressor(pipe) else len(np.unique(y))
856
+ for i in range(output_dim):
857
+ assert_allclose(
858
+ pdp_ind["individual"][i][non_null_weight_idx],
859
+ pdp_sw["average"][i],
860
+ )
861
+
862
+
863
+ @pytest.mark.parametrize(
864
+ "Estimator, data",
865
+ [
866
+ (LinearRegression, multioutput_regression_data),
867
+ (LogisticRegression, binary_classification_data),
868
+ ],
869
+ )
870
+ def test_partial_dependence_equivalence_equal_sample_weight(Estimator, data):
871
+ """Check that `sample_weight=None` is equivalent to having equal weights."""
872
+
873
+ est = Estimator()
874
+ (X, y), n_targets = data
875
+ est.fit(X, y)
876
+
877
+ sample_weight, params = None, {"X": X, "features": [1, 2], "kind": "average"}
878
+ pdp_sw_none = partial_dependence(est, **params, sample_weight=sample_weight)
879
+ sample_weight = np.ones(len(y))
880
+ pdp_sw_unit = partial_dependence(est, **params, sample_weight=sample_weight)
881
+ assert_allclose(pdp_sw_none["average"], pdp_sw_unit["average"])
882
+ sample_weight = 2 * np.ones(len(y))
883
+ pdp_sw_doubling = partial_dependence(est, **params, sample_weight=sample_weight)
884
+ assert_allclose(pdp_sw_none["average"], pdp_sw_doubling["average"])
885
+
886
+
887
+ def test_partial_dependence_sample_weight_size_error():
888
+ """Check that we raise an error when the size of `sample_weight` is not
889
+ consistent with `X` and `y`.
890
+ """
891
+ est = LogisticRegression()
892
+ (X, y), n_targets = binary_classification_data
893
+ sample_weight = np.ones_like(y)
894
+ est.fit(X, y)
895
+
896
+ with pytest.raises(ValueError, match="sample_weight.shape =="):
897
+ partial_dependence(
898
+ est, X, features=[0], sample_weight=sample_weight[1:], grid_resolution=10
899
+ )
900
+
901
+
902
+ def test_partial_dependence_sample_weight_with_recursion():
903
+ """Check that we raise an error when `sample_weight` is provided with
904
+ `"recursion"` method.
905
+ """
906
+ est = RandomForestRegressor()
907
+ (X, y), n_targets = regression_data
908
+ sample_weight = np.ones_like(y)
909
+ est.fit(X, y, sample_weight=sample_weight)
910
+
911
+ with pytest.raises(ValueError, match="'recursion' method can only be applied when"):
912
+ partial_dependence(
913
+ est, X, features=[0], method="recursion", sample_weight=sample_weight
914
+ )
915
+
916
+
917
+ # TODO(1.5): Remove when bunch values is deprecated in 1.5
918
+ def test_partial_dependence_bunch_values_deprecated():
919
+ """Test that deprecation warning is raised when values is accessed."""
920
+
921
+ est = LogisticRegression()
922
+ (X, y), _ = binary_classification_data
923
+ est.fit(X, y)
924
+
925
+ pdp_avg = partial_dependence(est, X=X, features=[1, 2], kind="average")
926
+
927
+ msg = (
928
+ "Key: 'values', is deprecated in 1.3 and will be "
929
+ "removed in 1.5. Please use 'grid_values' instead"
930
+ )
931
+
932
+ with warnings.catch_warnings():
933
+ # Does not raise warnings with "grid_values"
934
+ warnings.simplefilter("error", FutureWarning)
935
+ grid_values = pdp_avg["grid_values"]
936
+
937
+ with pytest.warns(FutureWarning, match=msg):
938
+ # Warns for "values"
939
+ values = pdp_avg["values"]
940
+
941
+ # "values" and "grid_values" are the same object
942
+ assert values is grid_values
943
+
944
+
945
+ def test_mixed_type_categorical():
946
+ """Check that we raise a proper error when a column has mixed types and
947
+ the sorting of `np.unique` will fail."""
948
+ X = np.array(["A", "B", "C", np.nan], dtype=object).reshape(-1, 1)
949
+ y = np.array([0, 1, 0, 1])
950
+
951
+ from sklearn.preprocessing import OrdinalEncoder
952
+
953
+ clf = make_pipeline(
954
+ OrdinalEncoder(encoded_missing_value=-1),
955
+ LogisticRegression(),
956
+ ).fit(X, y)
957
+ with pytest.raises(ValueError, match="The column #0 contains mixed data types"):
958
+ partial_dependence(clf, X, features=[0])
venv/lib/python3.10/site-packages/sklearn/inspection/tests/test_pd_utils.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from sklearn.inspection._pd_utils import _check_feature_names, _get_feature_index
5
+ from sklearn.utils._testing import _convert_container
6
+
7
+
8
+ @pytest.mark.parametrize(
9
+ "feature_names, array_type, expected_feature_names",
10
+ [
11
+ (None, "array", ["x0", "x1", "x2"]),
12
+ (None, "dataframe", ["a", "b", "c"]),
13
+ (np.array(["a", "b", "c"]), "array", ["a", "b", "c"]),
14
+ ],
15
+ )
16
+ def test_check_feature_names(feature_names, array_type, expected_feature_names):
17
+ X = np.random.randn(10, 3)
18
+ column_names = ["a", "b", "c"]
19
+ X = _convert_container(X, constructor_name=array_type, columns_name=column_names)
20
+ feature_names_validated = _check_feature_names(X, feature_names)
21
+ assert feature_names_validated == expected_feature_names
22
+
23
+
24
+ def test_check_feature_names_error():
25
+ X = np.random.randn(10, 3)
26
+ feature_names = ["a", "b", "c", "a"]
27
+ msg = "feature_names should not contain duplicates."
28
+ with pytest.raises(ValueError, match=msg):
29
+ _check_feature_names(X, feature_names)
30
+
31
+
32
+ @pytest.mark.parametrize("fx, idx", [(0, 0), (1, 1), ("a", 0), ("b", 1), ("c", 2)])
33
+ def test_get_feature_index(fx, idx):
34
+ feature_names = ["a", "b", "c"]
35
+ assert _get_feature_index(fx, feature_names) == idx
36
+
37
+
38
+ @pytest.mark.parametrize(
39
+ "fx, feature_names, err_msg",
40
+ [
41
+ ("a", None, "Cannot plot partial dependence for feature 'a'"),
42
+ ("d", ["a", "b", "c"], "Feature 'd' not in feature_names"),
43
+ ],
44
+ )
45
+ def test_get_feature_names_error(fx, feature_names, err_msg):
46
+ with pytest.raises(ValueError, match=err_msg):
47
+ _get_feature_index(fx, feature_names)
venv/lib/python3.10/site-packages/sklearn/inspection/tests/test_permutation_importance.py ADDED
@@ -0,0 +1,542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+ from numpy.testing import assert_allclose
4
+
5
+ from sklearn.compose import ColumnTransformer
6
+ from sklearn.datasets import (
7
+ load_diabetes,
8
+ load_iris,
9
+ make_classification,
10
+ make_regression,
11
+ )
12
+ from sklearn.dummy import DummyClassifier
13
+ from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
14
+ from sklearn.impute import SimpleImputer
15
+ from sklearn.inspection import permutation_importance
16
+ from sklearn.linear_model import LinearRegression, LogisticRegression
17
+ from sklearn.metrics import (
18
+ get_scorer,
19
+ mean_squared_error,
20
+ r2_score,
21
+ )
22
+ from sklearn.model_selection import train_test_split
23
+ from sklearn.pipeline import make_pipeline
24
+ from sklearn.preprocessing import KBinsDiscretizer, OneHotEncoder, StandardScaler, scale
25
+ from sklearn.utils import parallel_backend
26
+ from sklearn.utils._testing import _convert_container
27
+
28
+
29
+ @pytest.mark.parametrize("n_jobs", [1, 2])
30
+ @pytest.mark.parametrize("max_samples", [0.5, 1.0])
31
+ @pytest.mark.parametrize("sample_weight", [None, "ones"])
32
+ def test_permutation_importance_correlated_feature_regression(
33
+ n_jobs, max_samples, sample_weight
34
+ ):
35
+ # Make sure that feature highly correlated to the target have a higher
36
+ # importance
37
+ rng = np.random.RandomState(42)
38
+ n_repeats = 5
39
+
40
+ X, y = load_diabetes(return_X_y=True)
41
+ y_with_little_noise = (y + rng.normal(scale=0.001, size=y.shape[0])).reshape(-1, 1)
42
+
43
+ X = np.hstack([X, y_with_little_noise])
44
+
45
+ weights = np.ones_like(y) if sample_weight == "ones" else sample_weight
46
+ clf = RandomForestRegressor(n_estimators=10, random_state=42)
47
+ clf.fit(X, y)
48
+
49
+ result = permutation_importance(
50
+ clf,
51
+ X,
52
+ y,
53
+ sample_weight=weights,
54
+ n_repeats=n_repeats,
55
+ random_state=rng,
56
+ n_jobs=n_jobs,
57
+ max_samples=max_samples,
58
+ )
59
+
60
+ assert result.importances.shape == (X.shape[1], n_repeats)
61
+
62
+ # the correlated feature with y was added as the last column and should
63
+ # have the highest importance
64
+ assert np.all(result.importances_mean[-1] > result.importances_mean[:-1])
65
+
66
+
67
+ @pytest.mark.parametrize("n_jobs", [1, 2])
68
+ @pytest.mark.parametrize("max_samples", [0.5, 1.0])
69
+ def test_permutation_importance_correlated_feature_regression_pandas(
70
+ n_jobs, max_samples
71
+ ):
72
+ pd = pytest.importorskip("pandas")
73
+
74
+ # Make sure that feature highly correlated to the target have a higher
75
+ # importance
76
+ rng = np.random.RandomState(42)
77
+ n_repeats = 5
78
+
79
+ dataset = load_iris()
80
+ X, y = dataset.data, dataset.target
81
+ y_with_little_noise = (y + rng.normal(scale=0.001, size=y.shape[0])).reshape(-1, 1)
82
+
83
+ # Adds feature correlated with y as the last column
84
+ X = pd.DataFrame(X, columns=dataset.feature_names)
85
+ X["correlated_feature"] = y_with_little_noise
86
+
87
+ clf = RandomForestClassifier(n_estimators=10, random_state=42)
88
+ clf.fit(X, y)
89
+
90
+ result = permutation_importance(
91
+ clf,
92
+ X,
93
+ y,
94
+ n_repeats=n_repeats,
95
+ random_state=rng,
96
+ n_jobs=n_jobs,
97
+ max_samples=max_samples,
98
+ )
99
+
100
+ assert result.importances.shape == (X.shape[1], n_repeats)
101
+
102
+ # the correlated feature with y was added as the last column and should
103
+ # have the highest importance
104
+ assert np.all(result.importances_mean[-1] > result.importances_mean[:-1])
105
+
106
+
107
+ @pytest.mark.parametrize("n_jobs", [1, 2])
108
+ @pytest.mark.parametrize("max_samples", [0.5, 1.0])
109
+ def test_robustness_to_high_cardinality_noisy_feature(n_jobs, max_samples, seed=42):
110
+ # Permutation variable importance should not be affected by the high
111
+ # cardinality bias of traditional feature importances, especially when
112
+ # computed on a held-out test set:
113
+ rng = np.random.RandomState(seed)
114
+ n_repeats = 5
115
+ n_samples = 1000
116
+ n_classes = 5
117
+ n_informative_features = 2
118
+ n_noise_features = 1
119
+ n_features = n_informative_features + n_noise_features
120
+
121
+ # Generate a multiclass classification dataset and a set of informative
122
+ # binary features that can be used to predict some classes of y exactly
123
+ # while leaving some classes unexplained to make the problem harder.
124
+ classes = np.arange(n_classes)
125
+ y = rng.choice(classes, size=n_samples)
126
+ X = np.hstack([(y == c).reshape(-1, 1) for c in classes[:n_informative_features]])
127
+ X = X.astype(np.float32)
128
+
129
+ # Not all target classes are explained by the binary class indicator
130
+ # features:
131
+ assert n_informative_features < n_classes
132
+
133
+ # Add 10 other noisy features with high cardinality (numerical) values
134
+ # that can be used to overfit the training data.
135
+ X = np.concatenate([X, rng.randn(n_samples, n_noise_features)], axis=1)
136
+ assert X.shape == (n_samples, n_features)
137
+
138
+ # Split the dataset to be able to evaluate on a held-out test set. The
139
+ # Test size should be large enough for importance measurements to be
140
+ # stable:
141
+ X_train, X_test, y_train, y_test = train_test_split(
142
+ X, y, test_size=0.5, random_state=rng
143
+ )
144
+ clf = RandomForestClassifier(n_estimators=5, random_state=rng)
145
+ clf.fit(X_train, y_train)
146
+
147
+ # Variable importances computed by impurity decrease on the tree node
148
+ # splits often use the noisy features in splits. This can give misleading
149
+ # impression that high cardinality noisy variables are the most important:
150
+ tree_importances = clf.feature_importances_
151
+ informative_tree_importances = tree_importances[:n_informative_features]
152
+ noisy_tree_importances = tree_importances[n_informative_features:]
153
+ assert informative_tree_importances.max() < noisy_tree_importances.min()
154
+
155
+ # Let's check that permutation-based feature importances do not have this
156
+ # problem.
157
+ r = permutation_importance(
158
+ clf,
159
+ X_test,
160
+ y_test,
161
+ n_repeats=n_repeats,
162
+ random_state=rng,
163
+ n_jobs=n_jobs,
164
+ max_samples=max_samples,
165
+ )
166
+
167
+ assert r.importances.shape == (X.shape[1], n_repeats)
168
+
169
+ # Split the importances between informative and noisy features
170
+ informative_importances = r.importances_mean[:n_informative_features]
171
+ noisy_importances = r.importances_mean[n_informative_features:]
172
+
173
+ # Because we do not have a binary variable explaining each target classes,
174
+ # the RF model will have to use the random variable to make some
175
+ # (overfitting) splits (as max_depth is not set). Therefore the noisy
176
+ # variables will be non-zero but with small values oscillating around
177
+ # zero:
178
+ assert max(np.abs(noisy_importances)) > 1e-7
179
+ assert noisy_importances.max() < 0.05
180
+
181
+ # The binary features correlated with y should have a higher importance
182
+ # than the high cardinality noisy features.
183
+ # The maximum test accuracy is 2 / 5 == 0.4, each informative feature
184
+ # contributing approximately a bit more than 0.2 of accuracy.
185
+ assert informative_importances.min() > 0.15
186
+
187
+
188
+ def test_permutation_importance_mixed_types():
189
+ rng = np.random.RandomState(42)
190
+ n_repeats = 4
191
+
192
+ # Last column is correlated with y
193
+ X = np.array([[1.0, 2.0, 3.0, np.nan], [2, 1, 2, 1]]).T
194
+ y = np.array([0, 1, 0, 1])
195
+
196
+ clf = make_pipeline(SimpleImputer(), LogisticRegression(solver="lbfgs"))
197
+ clf.fit(X, y)
198
+ result = permutation_importance(clf, X, y, n_repeats=n_repeats, random_state=rng)
199
+
200
+ assert result.importances.shape == (X.shape[1], n_repeats)
201
+
202
+ # the correlated feature with y is the last column and should
203
+ # have the highest importance
204
+ assert np.all(result.importances_mean[-1] > result.importances_mean[:-1])
205
+
206
+ # use another random state
207
+ rng = np.random.RandomState(0)
208
+ result2 = permutation_importance(clf, X, y, n_repeats=n_repeats, random_state=rng)
209
+ assert result2.importances.shape == (X.shape[1], n_repeats)
210
+
211
+ assert not np.allclose(result.importances, result2.importances)
212
+
213
+ # the correlated feature with y is the last column and should
214
+ # have the highest importance
215
+ assert np.all(result2.importances_mean[-1] > result2.importances_mean[:-1])
216
+
217
+
218
+ def test_permutation_importance_mixed_types_pandas():
219
+ pd = pytest.importorskip("pandas")
220
+ rng = np.random.RandomState(42)
221
+ n_repeats = 5
222
+
223
+ # Last column is correlated with y
224
+ X = pd.DataFrame({"col1": [1.0, 2.0, 3.0, np.nan], "col2": ["a", "b", "a", "b"]})
225
+ y = np.array([0, 1, 0, 1])
226
+
227
+ num_preprocess = make_pipeline(SimpleImputer(), StandardScaler())
228
+ preprocess = ColumnTransformer(
229
+ [("num", num_preprocess, ["col1"]), ("cat", OneHotEncoder(), ["col2"])]
230
+ )
231
+ clf = make_pipeline(preprocess, LogisticRegression(solver="lbfgs"))
232
+ clf.fit(X, y)
233
+
234
+ result = permutation_importance(clf, X, y, n_repeats=n_repeats, random_state=rng)
235
+
236
+ assert result.importances.shape == (X.shape[1], n_repeats)
237
+ # the correlated feature with y is the last column and should
238
+ # have the highest importance
239
+ assert np.all(result.importances_mean[-1] > result.importances_mean[:-1])
240
+
241
+
242
+ def test_permutation_importance_linear_regresssion():
243
+ X, y = make_regression(n_samples=500, n_features=10, random_state=0)
244
+
245
+ X = scale(X)
246
+ y = scale(y)
247
+
248
+ lr = LinearRegression().fit(X, y)
249
+
250
+ # this relationship can be computed in closed form
251
+ expected_importances = 2 * lr.coef_**2
252
+ results = permutation_importance(
253
+ lr, X, y, n_repeats=50, scoring="neg_mean_squared_error"
254
+ )
255
+ assert_allclose(
256
+ expected_importances, results.importances_mean, rtol=1e-1, atol=1e-6
257
+ )
258
+
259
+
260
+ @pytest.mark.parametrize("max_samples", [500, 1.0])
261
+ def test_permutation_importance_equivalence_sequential_parallel(max_samples):
262
+ # regression test to make sure that sequential and parallel calls will
263
+ # output the same results.
264
+ # Also tests that max_samples equal to number of samples is equivalent to 1.0
265
+ X, y = make_regression(n_samples=500, n_features=10, random_state=0)
266
+ lr = LinearRegression().fit(X, y)
267
+
268
+ importance_sequential = permutation_importance(
269
+ lr, X, y, n_repeats=5, random_state=0, n_jobs=1, max_samples=max_samples
270
+ )
271
+
272
+ # First check that the problem is structured enough and that the model is
273
+ # complex enough to not yield trivial, constant importances:
274
+ imp_min = importance_sequential["importances"].min()
275
+ imp_max = importance_sequential["importances"].max()
276
+ assert imp_max - imp_min > 0.3
277
+
278
+ # The actually check that parallelism does not impact the results
279
+ # either with shared memory (threading) or without isolated memory
280
+ # via process-based parallelism using the default backend
281
+ # ('loky' or 'multiprocessing') depending on the joblib version:
282
+
283
+ # process-based parallelism (by default):
284
+ importance_processes = permutation_importance(
285
+ lr, X, y, n_repeats=5, random_state=0, n_jobs=2
286
+ )
287
+ assert_allclose(
288
+ importance_processes["importances"], importance_sequential["importances"]
289
+ )
290
+
291
+ # thread-based parallelism:
292
+ with parallel_backend("threading"):
293
+ importance_threading = permutation_importance(
294
+ lr, X, y, n_repeats=5, random_state=0, n_jobs=2
295
+ )
296
+ assert_allclose(
297
+ importance_threading["importances"], importance_sequential["importances"]
298
+ )
299
+
300
+
301
+ @pytest.mark.parametrize("n_jobs", [None, 1, 2])
302
+ @pytest.mark.parametrize("max_samples", [0.5, 1.0])
303
+ def test_permutation_importance_equivalence_array_dataframe(n_jobs, max_samples):
304
+ # This test checks that the column shuffling logic has the same behavior
305
+ # both a dataframe and a simple numpy array.
306
+ pd = pytest.importorskip("pandas")
307
+
308
+ # regression test to make sure that sequential and parallel calls will
309
+ # output the same results.
310
+ X, y = make_regression(n_samples=100, n_features=5, random_state=0)
311
+ X_df = pd.DataFrame(X)
312
+
313
+ # Add a categorical feature that is statistically linked to y:
314
+ binner = KBinsDiscretizer(n_bins=3, encode="ordinal")
315
+ cat_column = binner.fit_transform(y.reshape(-1, 1))
316
+
317
+ # Concatenate the extra column to the numpy array: integers will be
318
+ # cast to float values
319
+ X = np.hstack([X, cat_column])
320
+ assert X.dtype.kind == "f"
321
+
322
+ # Insert extra column as a non-numpy-native dtype (while keeping backward
323
+ # compat for old pandas versions):
324
+ if hasattr(pd, "Categorical"):
325
+ cat_column = pd.Categorical(cat_column.ravel())
326
+ else:
327
+ cat_column = cat_column.ravel()
328
+ new_col_idx = len(X_df.columns)
329
+ X_df[new_col_idx] = cat_column
330
+ assert X_df[new_col_idx].dtype == cat_column.dtype
331
+
332
+ # Stich an arbitrary index to the dataframe:
333
+ X_df.index = np.arange(len(X_df)).astype(str)
334
+
335
+ rf = RandomForestRegressor(n_estimators=5, max_depth=3, random_state=0)
336
+ rf.fit(X, y)
337
+
338
+ n_repeats = 3
339
+ importance_array = permutation_importance(
340
+ rf,
341
+ X,
342
+ y,
343
+ n_repeats=n_repeats,
344
+ random_state=0,
345
+ n_jobs=n_jobs,
346
+ max_samples=max_samples,
347
+ )
348
+
349
+ # First check that the problem is structured enough and that the model is
350
+ # complex enough to not yield trivial, constant importances:
351
+ imp_min = importance_array["importances"].min()
352
+ imp_max = importance_array["importances"].max()
353
+ assert imp_max - imp_min > 0.3
354
+
355
+ # Now check that importances computed on dataframe matche the values
356
+ # of those computed on the array with the same data.
357
+ importance_dataframe = permutation_importance(
358
+ rf,
359
+ X_df,
360
+ y,
361
+ n_repeats=n_repeats,
362
+ random_state=0,
363
+ n_jobs=n_jobs,
364
+ max_samples=max_samples,
365
+ )
366
+ assert_allclose(
367
+ importance_array["importances"], importance_dataframe["importances"]
368
+ )
369
+
370
+
371
+ @pytest.mark.parametrize("input_type", ["array", "dataframe"])
372
+ def test_permutation_importance_large_memmaped_data(input_type):
373
+ # Smoke, non-regression test for:
374
+ # https://github.com/scikit-learn/scikit-learn/issues/15810
375
+ n_samples, n_features = int(5e4), 4
376
+ X, y = make_classification(
377
+ n_samples=n_samples, n_features=n_features, random_state=0
378
+ )
379
+ assert X.nbytes > 1e6 # trigger joblib memmaping
380
+
381
+ X = _convert_container(X, input_type)
382
+ clf = DummyClassifier(strategy="prior").fit(X, y)
383
+
384
+ # Actual smoke test: should not raise any error:
385
+ n_repeats = 5
386
+ r = permutation_importance(clf, X, y, n_repeats=n_repeats, n_jobs=2)
387
+
388
+ # Auxiliary check: DummyClassifier is feature independent:
389
+ # permutating feature should not change the predictions
390
+ expected_importances = np.zeros((n_features, n_repeats))
391
+ assert_allclose(expected_importances, r.importances)
392
+
393
+
394
+ def test_permutation_importance_sample_weight():
395
+ # Creating data with 2 features and 1000 samples, where the target
396
+ # variable is a linear combination of the two features, such that
397
+ # in half of the samples the impact of feature 1 is twice the impact of
398
+ # feature 2, and vice versa on the other half of the samples.
399
+ rng = np.random.RandomState(1)
400
+ n_samples = 1000
401
+ n_features = 2
402
+ n_half_samples = n_samples // 2
403
+ x = rng.normal(0.0, 0.001, (n_samples, n_features))
404
+ y = np.zeros(n_samples)
405
+ y[:n_half_samples] = 2 * x[:n_half_samples, 0] + x[:n_half_samples, 1]
406
+ y[n_half_samples:] = x[n_half_samples:, 0] + 2 * x[n_half_samples:, 1]
407
+
408
+ # Fitting linear regression with perfect prediction
409
+ lr = LinearRegression(fit_intercept=False)
410
+ lr.fit(x, y)
411
+
412
+ # When all samples are weighted with the same weights, the ratio of
413
+ # the two features importance should equal to 1 on expectation (when using
414
+ # mean absolutes error as the loss function).
415
+ pi = permutation_importance(
416
+ lr, x, y, random_state=1, scoring="neg_mean_absolute_error", n_repeats=200
417
+ )
418
+ x1_x2_imp_ratio_w_none = pi.importances_mean[0] / pi.importances_mean[1]
419
+ assert x1_x2_imp_ratio_w_none == pytest.approx(1, 0.01)
420
+
421
+ # When passing a vector of ones as the sample_weight, results should be
422
+ # the same as in the case that sample_weight=None.
423
+ w = np.ones(n_samples)
424
+ pi = permutation_importance(
425
+ lr,
426
+ x,
427
+ y,
428
+ random_state=1,
429
+ scoring="neg_mean_absolute_error",
430
+ n_repeats=200,
431
+ sample_weight=w,
432
+ )
433
+ x1_x2_imp_ratio_w_ones = pi.importances_mean[0] / pi.importances_mean[1]
434
+ assert x1_x2_imp_ratio_w_ones == pytest.approx(x1_x2_imp_ratio_w_none, 0.01)
435
+
436
+ # When the ratio between the weights of the first half of the samples and
437
+ # the second half of the samples approaches to infinity, the ratio of
438
+ # the two features importance should equal to 2 on expectation (when using
439
+ # mean absolutes error as the loss function).
440
+ w = np.hstack(
441
+ [np.repeat(10.0**10, n_half_samples), np.repeat(1.0, n_half_samples)]
442
+ )
443
+ lr.fit(x, y, w)
444
+ pi = permutation_importance(
445
+ lr,
446
+ x,
447
+ y,
448
+ random_state=1,
449
+ scoring="neg_mean_absolute_error",
450
+ n_repeats=200,
451
+ sample_weight=w,
452
+ )
453
+ x1_x2_imp_ratio_w = pi.importances_mean[0] / pi.importances_mean[1]
454
+ assert x1_x2_imp_ratio_w / x1_x2_imp_ratio_w_none == pytest.approx(2, 0.01)
455
+
456
+
457
+ def test_permutation_importance_no_weights_scoring_function():
458
+ # Creating a scorer function that does not takes sample_weight
459
+ def my_scorer(estimator, X, y):
460
+ return 1
461
+
462
+ # Creating some data and estimator for the permutation test
463
+ x = np.array([[1, 2], [3, 4]])
464
+ y = np.array([1, 2])
465
+ w = np.array([1, 1])
466
+ lr = LinearRegression()
467
+ lr.fit(x, y)
468
+
469
+ # test that permutation_importance does not return error when
470
+ # sample_weight is None
471
+ try:
472
+ permutation_importance(lr, x, y, random_state=1, scoring=my_scorer, n_repeats=1)
473
+ except TypeError:
474
+ pytest.fail(
475
+ "permutation_test raised an error when using a scorer "
476
+ "function that does not accept sample_weight even though "
477
+ "sample_weight was None"
478
+ )
479
+
480
+ # test that permutation_importance raise exception when sample_weight is
481
+ # not None
482
+ with pytest.raises(TypeError):
483
+ permutation_importance(
484
+ lr, x, y, random_state=1, scoring=my_scorer, n_repeats=1, sample_weight=w
485
+ )
486
+
487
+
488
+ @pytest.mark.parametrize(
489
+ "list_single_scorer, multi_scorer",
490
+ [
491
+ (["r2", "neg_mean_squared_error"], ["r2", "neg_mean_squared_error"]),
492
+ (
493
+ ["r2", "neg_mean_squared_error"],
494
+ {
495
+ "r2": get_scorer("r2"),
496
+ "neg_mean_squared_error": get_scorer("neg_mean_squared_error"),
497
+ },
498
+ ),
499
+ (
500
+ ["r2", "neg_mean_squared_error"],
501
+ lambda estimator, X, y: {
502
+ "r2": r2_score(y, estimator.predict(X)),
503
+ "neg_mean_squared_error": -mean_squared_error(y, estimator.predict(X)),
504
+ },
505
+ ),
506
+ ],
507
+ )
508
+ def test_permutation_importance_multi_metric(list_single_scorer, multi_scorer):
509
+ # Test permutation importance when scoring contains multiple scorers
510
+
511
+ # Creating some data and estimator for the permutation test
512
+ x, y = make_regression(n_samples=500, n_features=10, random_state=0)
513
+ lr = LinearRegression().fit(x, y)
514
+
515
+ multi_importance = permutation_importance(
516
+ lr, x, y, random_state=1, scoring=multi_scorer, n_repeats=2
517
+ )
518
+ assert set(multi_importance.keys()) == set(list_single_scorer)
519
+
520
+ for scorer in list_single_scorer:
521
+ multi_result = multi_importance[scorer]
522
+ single_result = permutation_importance(
523
+ lr, x, y, random_state=1, scoring=scorer, n_repeats=2
524
+ )
525
+
526
+ assert_allclose(multi_result.importances, single_result.importances)
527
+
528
+
529
+ def test_permutation_importance_max_samples_error():
530
+ """Check that a proper error message is raised when `max_samples` is not
531
+ set to a valid input value.
532
+ """
533
+ X = np.array([(1.0, 2.0, 3.0, 4.0)]).T
534
+ y = np.array([0, 1, 0, 1])
535
+
536
+ clf = LogisticRegression()
537
+ clf.fit(X, y)
538
+
539
+ err_msg = r"max_samples must be <= n_samples"
540
+
541
+ with pytest.raises(ValueError, match=err_msg):
542
+ permutation_importance(clf, X, y, max_samples=5)
venv/lib/python3.10/site-packages/sklearn/metrics/__init__.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ The :mod:`sklearn.metrics` module includes score functions, performance metrics
3
+ and pairwise metrics and distance computations.
4
+ """
5
+
6
+
7
+ from . import cluster
8
+ from ._classification import (
9
+ accuracy_score,
10
+ balanced_accuracy_score,
11
+ brier_score_loss,
12
+ class_likelihood_ratios,
13
+ classification_report,
14
+ cohen_kappa_score,
15
+ confusion_matrix,
16
+ f1_score,
17
+ fbeta_score,
18
+ hamming_loss,
19
+ hinge_loss,
20
+ jaccard_score,
21
+ log_loss,
22
+ matthews_corrcoef,
23
+ multilabel_confusion_matrix,
24
+ precision_recall_fscore_support,
25
+ precision_score,
26
+ recall_score,
27
+ zero_one_loss,
28
+ )
29
+ from ._dist_metrics import DistanceMetric
30
+ from ._plot.confusion_matrix import ConfusionMatrixDisplay
31
+ from ._plot.det_curve import DetCurveDisplay
32
+ from ._plot.precision_recall_curve import PrecisionRecallDisplay
33
+ from ._plot.regression import PredictionErrorDisplay
34
+ from ._plot.roc_curve import RocCurveDisplay
35
+ from ._ranking import (
36
+ auc,
37
+ average_precision_score,
38
+ coverage_error,
39
+ dcg_score,
40
+ det_curve,
41
+ label_ranking_average_precision_score,
42
+ label_ranking_loss,
43
+ ndcg_score,
44
+ precision_recall_curve,
45
+ roc_auc_score,
46
+ roc_curve,
47
+ top_k_accuracy_score,
48
+ )
49
+ from ._regression import (
50
+ d2_absolute_error_score,
51
+ d2_pinball_score,
52
+ d2_tweedie_score,
53
+ explained_variance_score,
54
+ max_error,
55
+ mean_absolute_error,
56
+ mean_absolute_percentage_error,
57
+ mean_gamma_deviance,
58
+ mean_pinball_loss,
59
+ mean_poisson_deviance,
60
+ mean_squared_error,
61
+ mean_squared_log_error,
62
+ mean_tweedie_deviance,
63
+ median_absolute_error,
64
+ r2_score,
65
+ root_mean_squared_error,
66
+ root_mean_squared_log_error,
67
+ )
68
+ from ._scorer import check_scoring, get_scorer, get_scorer_names, make_scorer
69
+ from .cluster import (
70
+ adjusted_mutual_info_score,
71
+ adjusted_rand_score,
72
+ calinski_harabasz_score,
73
+ completeness_score,
74
+ consensus_score,
75
+ davies_bouldin_score,
76
+ fowlkes_mallows_score,
77
+ homogeneity_completeness_v_measure,
78
+ homogeneity_score,
79
+ mutual_info_score,
80
+ normalized_mutual_info_score,
81
+ pair_confusion_matrix,
82
+ rand_score,
83
+ silhouette_samples,
84
+ silhouette_score,
85
+ v_measure_score,
86
+ )
87
+ from .pairwise import (
88
+ euclidean_distances,
89
+ nan_euclidean_distances,
90
+ pairwise_distances,
91
+ pairwise_distances_argmin,
92
+ pairwise_distances_argmin_min,
93
+ pairwise_distances_chunked,
94
+ pairwise_kernels,
95
+ )
96
+
97
+ __all__ = [
98
+ "accuracy_score",
99
+ "adjusted_mutual_info_score",
100
+ "adjusted_rand_score",
101
+ "auc",
102
+ "average_precision_score",
103
+ "balanced_accuracy_score",
104
+ "calinski_harabasz_score",
105
+ "check_scoring",
106
+ "class_likelihood_ratios",
107
+ "classification_report",
108
+ "cluster",
109
+ "cohen_kappa_score",
110
+ "completeness_score",
111
+ "ConfusionMatrixDisplay",
112
+ "confusion_matrix",
113
+ "consensus_score",
114
+ "coverage_error",
115
+ "d2_tweedie_score",
116
+ "d2_absolute_error_score",
117
+ "d2_pinball_score",
118
+ "dcg_score",
119
+ "davies_bouldin_score",
120
+ "DetCurveDisplay",
121
+ "det_curve",
122
+ "DistanceMetric",
123
+ "euclidean_distances",
124
+ "explained_variance_score",
125
+ "f1_score",
126
+ "fbeta_score",
127
+ "fowlkes_mallows_score",
128
+ "get_scorer",
129
+ "hamming_loss",
130
+ "hinge_loss",
131
+ "homogeneity_completeness_v_measure",
132
+ "homogeneity_score",
133
+ "jaccard_score",
134
+ "label_ranking_average_precision_score",
135
+ "label_ranking_loss",
136
+ "log_loss",
137
+ "make_scorer",
138
+ "nan_euclidean_distances",
139
+ "matthews_corrcoef",
140
+ "max_error",
141
+ "mean_absolute_error",
142
+ "mean_squared_error",
143
+ "mean_squared_log_error",
144
+ "mean_pinball_loss",
145
+ "mean_poisson_deviance",
146
+ "mean_gamma_deviance",
147
+ "mean_tweedie_deviance",
148
+ "median_absolute_error",
149
+ "mean_absolute_percentage_error",
150
+ "multilabel_confusion_matrix",
151
+ "mutual_info_score",
152
+ "ndcg_score",
153
+ "normalized_mutual_info_score",
154
+ "pair_confusion_matrix",
155
+ "pairwise_distances",
156
+ "pairwise_distances_argmin",
157
+ "pairwise_distances_argmin_min",
158
+ "pairwise_distances_chunked",
159
+ "pairwise_kernels",
160
+ "PrecisionRecallDisplay",
161
+ "precision_recall_curve",
162
+ "precision_recall_fscore_support",
163
+ "precision_score",
164
+ "PredictionErrorDisplay",
165
+ "r2_score",
166
+ "rand_score",
167
+ "recall_score",
168
+ "RocCurveDisplay",
169
+ "roc_auc_score",
170
+ "roc_curve",
171
+ "root_mean_squared_log_error",
172
+ "root_mean_squared_error",
173
+ "get_scorer_names",
174
+ "silhouette_samples",
175
+ "silhouette_score",
176
+ "top_k_accuracy_score",
177
+ "v_measure_score",
178
+ "zero_one_loss",
179
+ "brier_score_loss",
180
+ ]
venv/lib/python3.10/site-packages/sklearn/metrics/_base.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Common code for all metrics.
3
+
4
+ """
5
+ # Authors: Alexandre Gramfort <[email protected]>
6
+ # Mathieu Blondel <[email protected]>
7
+ # Olivier Grisel <[email protected]>
8
+ # Arnaud Joly <[email protected]>
9
+ # Jochen Wersdorfer <[email protected]>
10
+ # Lars Buitinck
11
+ # Joel Nothman <[email protected]>
12
+ # Noel Dawe <[email protected]>
13
+ # License: BSD 3 clause
14
+
15
+ from itertools import combinations
16
+
17
+ import numpy as np
18
+
19
+ from ..utils import check_array, check_consistent_length
20
+ from ..utils.multiclass import type_of_target
21
+
22
+
23
+ def _average_binary_score(binary_metric, y_true, y_score, average, sample_weight=None):
24
+ """Average a binary metric for multilabel classification.
25
+
26
+ Parameters
27
+ ----------
28
+ y_true : array, shape = [n_samples] or [n_samples, n_classes]
29
+ True binary labels in binary label indicators.
30
+
31
+ y_score : array, shape = [n_samples] or [n_samples, n_classes]
32
+ Target scores, can either be probability estimates of the positive
33
+ class, confidence values, or binary decisions.
34
+
35
+ average : {None, 'micro', 'macro', 'samples', 'weighted'}, default='macro'
36
+ If ``None``, the scores for each class are returned. Otherwise,
37
+ this determines the type of averaging performed on the data:
38
+
39
+ ``'micro'``:
40
+ Calculate metrics globally by considering each element of the label
41
+ indicator matrix as a label.
42
+ ``'macro'``:
43
+ Calculate metrics for each label, and find their unweighted
44
+ mean. This does not take label imbalance into account.
45
+ ``'weighted'``:
46
+ Calculate metrics for each label, and find their average, weighted
47
+ by support (the number of true instances for each label).
48
+ ``'samples'``:
49
+ Calculate metrics for each instance, and find their average.
50
+
51
+ Will be ignored when ``y_true`` is binary.
52
+
53
+ sample_weight : array-like of shape (n_samples,), default=None
54
+ Sample weights.
55
+
56
+ binary_metric : callable, returns shape [n_classes]
57
+ The binary metric function to use.
58
+
59
+ Returns
60
+ -------
61
+ score : float or array of shape [n_classes]
62
+ If not ``None``, average the score, else return the score for each
63
+ classes.
64
+
65
+ """
66
+ average_options = (None, "micro", "macro", "weighted", "samples")
67
+ if average not in average_options:
68
+ raise ValueError("average has to be one of {0}".format(average_options))
69
+
70
+ y_type = type_of_target(y_true)
71
+ if y_type not in ("binary", "multilabel-indicator"):
72
+ raise ValueError("{0} format is not supported".format(y_type))
73
+
74
+ if y_type == "binary":
75
+ return binary_metric(y_true, y_score, sample_weight=sample_weight)
76
+
77
+ check_consistent_length(y_true, y_score, sample_weight)
78
+ y_true = check_array(y_true)
79
+ y_score = check_array(y_score)
80
+
81
+ not_average_axis = 1
82
+ score_weight = sample_weight
83
+ average_weight = None
84
+
85
+ if average == "micro":
86
+ if score_weight is not None:
87
+ score_weight = np.repeat(score_weight, y_true.shape[1])
88
+ y_true = y_true.ravel()
89
+ y_score = y_score.ravel()
90
+
91
+ elif average == "weighted":
92
+ if score_weight is not None:
93
+ average_weight = np.sum(
94
+ np.multiply(y_true, np.reshape(score_weight, (-1, 1))), axis=0
95
+ )
96
+ else:
97
+ average_weight = np.sum(y_true, axis=0)
98
+ if np.isclose(average_weight.sum(), 0.0):
99
+ return 0
100
+
101
+ elif average == "samples":
102
+ # swap average_weight <-> score_weight
103
+ average_weight = score_weight
104
+ score_weight = None
105
+ not_average_axis = 0
106
+
107
+ if y_true.ndim == 1:
108
+ y_true = y_true.reshape((-1, 1))
109
+
110
+ if y_score.ndim == 1:
111
+ y_score = y_score.reshape((-1, 1))
112
+
113
+ n_classes = y_score.shape[not_average_axis]
114
+ score = np.zeros((n_classes,))
115
+ for c in range(n_classes):
116
+ y_true_c = y_true.take([c], axis=not_average_axis).ravel()
117
+ y_score_c = y_score.take([c], axis=not_average_axis).ravel()
118
+ score[c] = binary_metric(y_true_c, y_score_c, sample_weight=score_weight)
119
+
120
+ # Average the results
121
+ if average is not None:
122
+ if average_weight is not None:
123
+ # Scores with 0 weights are forced to be 0, preventing the average
124
+ # score from being affected by 0-weighted NaN elements.
125
+ average_weight = np.asarray(average_weight)
126
+ score[average_weight == 0] = 0
127
+ return np.average(score, weights=average_weight)
128
+ else:
129
+ return score
130
+
131
+
132
+ def _average_multiclass_ovo_score(binary_metric, y_true, y_score, average="macro"):
133
+ """Average one-versus-one scores for multiclass classification.
134
+
135
+ Uses the binary metric for one-vs-one multiclass classification,
136
+ where the score is computed according to the Hand & Till (2001) algorithm.
137
+
138
+ Parameters
139
+ ----------
140
+ binary_metric : callable
141
+ The binary metric function to use that accepts the following as input:
142
+ y_true_target : array, shape = [n_samples_target]
143
+ Some sub-array of y_true for a pair of classes designated
144
+ positive and negative in the one-vs-one scheme.
145
+ y_score_target : array, shape = [n_samples_target]
146
+ Scores corresponding to the probability estimates
147
+ of a sample belonging to the designated positive class label
148
+
149
+ y_true : array-like of shape (n_samples,)
150
+ True multiclass labels.
151
+
152
+ y_score : array-like of shape (n_samples, n_classes)
153
+ Target scores corresponding to probability estimates of a sample
154
+ belonging to a particular class.
155
+
156
+ average : {'macro', 'weighted'}, default='macro'
157
+ Determines the type of averaging performed on the pairwise binary
158
+ metric scores:
159
+ ``'macro'``:
160
+ Calculate metrics for each label, and find their unweighted
161
+ mean. This does not take label imbalance into account. Classes
162
+ are assumed to be uniformly distributed.
163
+ ``'weighted'``:
164
+ Calculate metrics for each label, taking into account the
165
+ prevalence of the classes.
166
+
167
+ Returns
168
+ -------
169
+ score : float
170
+ Average of the pairwise binary metric scores.
171
+ """
172
+ check_consistent_length(y_true, y_score)
173
+
174
+ y_true_unique = np.unique(y_true)
175
+ n_classes = y_true_unique.shape[0]
176
+ n_pairs = n_classes * (n_classes - 1) // 2
177
+ pair_scores = np.empty(n_pairs)
178
+
179
+ is_weighted = average == "weighted"
180
+ prevalence = np.empty(n_pairs) if is_weighted else None
181
+
182
+ # Compute scores treating a as positive class and b as negative class,
183
+ # then b as positive class and a as negative class
184
+ for ix, (a, b) in enumerate(combinations(y_true_unique, 2)):
185
+ a_mask = y_true == a
186
+ b_mask = y_true == b
187
+ ab_mask = np.logical_or(a_mask, b_mask)
188
+
189
+ if is_weighted:
190
+ prevalence[ix] = np.average(ab_mask)
191
+
192
+ a_true = a_mask[ab_mask]
193
+ b_true = b_mask[ab_mask]
194
+
195
+ a_true_score = binary_metric(a_true, y_score[ab_mask, a])
196
+ b_true_score = binary_metric(b_true, y_score[ab_mask, b])
197
+ pair_scores[ix] = (a_true_score + b_true_score) / 2
198
+
199
+ return np.average(pair_scores, weights=prevalence)
venv/lib/python3.10/site-packages/sklearn/metrics/_classification.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/sklearn/metrics/_dist_metrics.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (721 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/metrics/_dist_metrics.pxd ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # WARNING: Do not edit this file directly.
2
+ # It is automatically generated from 'sklearn/metrics/_dist_metrics.pxd.tp'.
3
+ # Changes must be made there.
4
+
5
+ from libc.math cimport sqrt, exp
6
+
7
+ from ..utils._typedefs cimport float64_t, float32_t, int32_t, intp_t
8
+
9
+ cdef class DistanceMetric:
10
+ pass
11
+
12
+ ######################################################################
13
+ # Inline distance functions
14
+ #
15
+ # We use these for the default (euclidean) case so that they can be
16
+ # inlined. This leads to faster computation for the most common case
17
+ cdef inline float64_t euclidean_dist64(
18
+ const float64_t* x1,
19
+ const float64_t* x2,
20
+ intp_t size,
21
+ ) except -1 nogil:
22
+ cdef float64_t tmp, d=0
23
+ cdef intp_t j
24
+ for j in range(size):
25
+ tmp = <float64_t> (x1[j] - x2[j])
26
+ d += tmp * tmp
27
+ return sqrt(d)
28
+
29
+
30
+ cdef inline float64_t euclidean_rdist64(
31
+ const float64_t* x1,
32
+ const float64_t* x2,
33
+ intp_t size,
34
+ ) except -1 nogil:
35
+ cdef float64_t tmp, d=0
36
+ cdef intp_t j
37
+ for j in range(size):
38
+ tmp = <float64_t>(x1[j] - x2[j])
39
+ d += tmp * tmp
40
+ return d
41
+
42
+
43
+ cdef inline float64_t euclidean_dist_to_rdist64(const float64_t dist) except -1 nogil:
44
+ return dist * dist
45
+
46
+
47
+ cdef inline float64_t euclidean_rdist_to_dist64(const float64_t dist) except -1 nogil:
48
+ return sqrt(dist)
49
+
50
+
51
+ ######################################################################
52
+ # DistanceMetric64 base class
53
+ cdef class DistanceMetric64(DistanceMetric):
54
+ # The following attributes are required for a few of the subclasses.
55
+ # we must define them here so that cython's limited polymorphism will work.
56
+ # Because we don't expect to instantiate a lot of these objects, the
57
+ # extra memory overhead of this setup should not be an issue.
58
+ cdef float64_t p
59
+ cdef const float64_t[::1] vec
60
+ cdef const float64_t[:, ::1] mat
61
+ cdef intp_t size
62
+ cdef object func
63
+ cdef object kwargs
64
+
65
+ cdef float64_t dist(
66
+ self,
67
+ const float64_t* x1,
68
+ const float64_t* x2,
69
+ intp_t size,
70
+ ) except -1 nogil
71
+
72
+ cdef float64_t rdist(
73
+ self,
74
+ const float64_t* x1,
75
+ const float64_t* x2,
76
+ intp_t size,
77
+ ) except -1 nogil
78
+
79
+ cdef float64_t dist_csr(
80
+ self,
81
+ const float64_t* x1_data,
82
+ const int32_t* x1_indices,
83
+ const float64_t* x2_data,
84
+ const int32_t* x2_indices,
85
+ const int32_t x1_start,
86
+ const int32_t x1_end,
87
+ const int32_t x2_start,
88
+ const int32_t x2_end,
89
+ const intp_t size,
90
+ ) except -1 nogil
91
+
92
+ cdef float64_t rdist_csr(
93
+ self,
94
+ const float64_t* x1_data,
95
+ const int32_t* x1_indices,
96
+ const float64_t* x2_data,
97
+ const int32_t* x2_indices,
98
+ const int32_t x1_start,
99
+ const int32_t x1_end,
100
+ const int32_t x2_start,
101
+ const int32_t x2_end,
102
+ const intp_t size,
103
+ ) except -1 nogil
104
+
105
+ cdef int pdist(
106
+ self,
107
+ const float64_t[:, ::1] X,
108
+ float64_t[:, ::1] D,
109
+ ) except -1
110
+
111
+ cdef int cdist(
112
+ self,
113
+ const float64_t[:, ::1] X,
114
+ const float64_t[:, ::1] Y,
115
+ float64_t[:, ::1] D,
116
+ ) except -1
117
+
118
+ cdef int pdist_csr(
119
+ self,
120
+ const float64_t* x1_data,
121
+ const int32_t[::1] x1_indices,
122
+ const int32_t[::1] x1_indptr,
123
+ const intp_t size,
124
+ float64_t[:, ::1] D,
125
+ ) except -1 nogil
126
+
127
+ cdef int cdist_csr(
128
+ self,
129
+ const float64_t* x1_data,
130
+ const int32_t[::1] x1_indices,
131
+ const int32_t[::1] x1_indptr,
132
+ const float64_t* x2_data,
133
+ const int32_t[::1] x2_indices,
134
+ const int32_t[::1] x2_indptr,
135
+ const intp_t size,
136
+ float64_t[:, ::1] D,
137
+ ) except -1 nogil
138
+
139
+ cdef float64_t _rdist_to_dist(self, float64_t rdist) except -1 nogil
140
+
141
+ cdef float64_t _dist_to_rdist(self, float64_t dist) except -1 nogil
142
+
143
+ ######################################################################
144
+ # Inline distance functions
145
+ #
146
+ # We use these for the default (euclidean) case so that they can be
147
+ # inlined. This leads to faster computation for the most common case
148
+ cdef inline float64_t euclidean_dist32(
149
+ const float32_t* x1,
150
+ const float32_t* x2,
151
+ intp_t size,
152
+ ) except -1 nogil:
153
+ cdef float64_t tmp, d=0
154
+ cdef intp_t j
155
+ for j in range(size):
156
+ tmp = <float64_t> (x1[j] - x2[j])
157
+ d += tmp * tmp
158
+ return sqrt(d)
159
+
160
+
161
+ cdef inline float64_t euclidean_rdist32(
162
+ const float32_t* x1,
163
+ const float32_t* x2,
164
+ intp_t size,
165
+ ) except -1 nogil:
166
+ cdef float64_t tmp, d=0
167
+ cdef intp_t j
168
+ for j in range(size):
169
+ tmp = <float64_t>(x1[j] - x2[j])
170
+ d += tmp * tmp
171
+ return d
172
+
173
+
174
+ cdef inline float64_t euclidean_dist_to_rdist32(const float32_t dist) except -1 nogil:
175
+ return dist * dist
176
+
177
+
178
+ cdef inline float64_t euclidean_rdist_to_dist32(const float32_t dist) except -1 nogil:
179
+ return sqrt(dist)
180
+
181
+
182
+ ######################################################################
183
+ # DistanceMetric32 base class
184
+ cdef class DistanceMetric32(DistanceMetric):
185
+ # The following attributes are required for a few of the subclasses.
186
+ # we must define them here so that cython's limited polymorphism will work.
187
+ # Because we don't expect to instantiate a lot of these objects, the
188
+ # extra memory overhead of this setup should not be an issue.
189
+ cdef float64_t p
190
+ cdef const float64_t[::1] vec
191
+ cdef const float64_t[:, ::1] mat
192
+ cdef intp_t size
193
+ cdef object func
194
+ cdef object kwargs
195
+
196
+ cdef float32_t dist(
197
+ self,
198
+ const float32_t* x1,
199
+ const float32_t* x2,
200
+ intp_t size,
201
+ ) except -1 nogil
202
+
203
+ cdef float32_t rdist(
204
+ self,
205
+ const float32_t* x1,
206
+ const float32_t* x2,
207
+ intp_t size,
208
+ ) except -1 nogil
209
+
210
+ cdef float32_t dist_csr(
211
+ self,
212
+ const float32_t* x1_data,
213
+ const int32_t* x1_indices,
214
+ const float32_t* x2_data,
215
+ const int32_t* x2_indices,
216
+ const int32_t x1_start,
217
+ const int32_t x1_end,
218
+ const int32_t x2_start,
219
+ const int32_t x2_end,
220
+ const intp_t size,
221
+ ) except -1 nogil
222
+
223
+ cdef float32_t rdist_csr(
224
+ self,
225
+ const float32_t* x1_data,
226
+ const int32_t* x1_indices,
227
+ const float32_t* x2_data,
228
+ const int32_t* x2_indices,
229
+ const int32_t x1_start,
230
+ const int32_t x1_end,
231
+ const int32_t x2_start,
232
+ const int32_t x2_end,
233
+ const intp_t size,
234
+ ) except -1 nogil
235
+
236
+ cdef int pdist(
237
+ self,
238
+ const float32_t[:, ::1] X,
239
+ float32_t[:, ::1] D,
240
+ ) except -1
241
+
242
+ cdef int cdist(
243
+ self,
244
+ const float32_t[:, ::1] X,
245
+ const float32_t[:, ::1] Y,
246
+ float32_t[:, ::1] D,
247
+ ) except -1
248
+
249
+ cdef int pdist_csr(
250
+ self,
251
+ const float32_t* x1_data,
252
+ const int32_t[::1] x1_indices,
253
+ const int32_t[::1] x1_indptr,
254
+ const intp_t size,
255
+ float32_t[:, ::1] D,
256
+ ) except -1 nogil
257
+
258
+ cdef int cdist_csr(
259
+ self,
260
+ const float32_t* x1_data,
261
+ const int32_t[::1] x1_indices,
262
+ const int32_t[::1] x1_indptr,
263
+ const float32_t* x2_data,
264
+ const int32_t[::1] x2_indices,
265
+ const int32_t[::1] x2_indptr,
266
+ const intp_t size,
267
+ float32_t[:, ::1] D,
268
+ ) except -1 nogil
269
+
270
+ cdef float32_t _rdist_to_dist(self, float32_t rdist) except -1 nogil
271
+
272
+ cdef float32_t _dist_to_rdist(self, float32_t dist) except -1 nogil
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/__init__.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Pairwise Distances Reductions
3
+ # =============================
4
+ #
5
+ # Authors: The scikit-learn developers.
6
+ # License: BSD 3 clause
7
+ #
8
+ # Overview
9
+ # --------
10
+ #
11
+ # This module provides routines to compute pairwise distances between a set
12
+ # of row vectors of X and another set of row vectors of Y and apply a
13
+ # reduction on top. The canonical example is the brute-force computation
14
+ # of the top k nearest neighbors by leveraging the arg-k-min reduction.
15
+ #
16
+ # The reduction takes a matrix of pairwise distances between rows of X and Y
17
+ # as input and outputs an aggregate data-structure for each row of X. The
18
+ # aggregate values are typically smaller than the number of rows in Y, hence
19
+ # the term reduction.
20
+ #
21
+ # For computational reasons, the reduction are performed on the fly on chunks
22
+ # of rows of X and Y so as to keep intermediate data-structures in CPU cache
23
+ # and avoid unnecessary round trips of large distance arrays with the RAM
24
+ # that would otherwise severely degrade the speed by making the overall
25
+ # processing memory-bound.
26
+ #
27
+ # Finally, the routines follow a generic parallelization template to process
28
+ # chunks of data with OpenMP loops (via Cython prange), either on rows of X
29
+ # or rows of Y depending on their respective sizes.
30
+ #
31
+ #
32
+ # Dispatching to specialized implementations
33
+ # ------------------------------------------
34
+ #
35
+ # Dispatchers are meant to be used in the Python code. Under the hood, a
36
+ # dispatcher must only define the logic to choose at runtime to the correct
37
+ # dtype-specialized :class:`BaseDistancesReductionDispatcher` implementation based
38
+ # on the dtype of X and of Y.
39
+ #
40
+ #
41
+ # High-level diagram
42
+ # ------------------
43
+ #
44
+ # Legend:
45
+ #
46
+ # A ---⊳ B: A inherits from B
47
+ # A ---x B: A dispatches to B
48
+ #
49
+ #
50
+ # (base dispatcher)
51
+ # BaseDistancesReductionDispatcher
52
+ # ∆
53
+ # |
54
+ # |
55
+ # +------------------+---------------+---------------+------------------+
56
+ # | | | |
57
+ # | (dispatcher) (dispatcher) |
58
+ # | ArgKmin RadiusNeighbors |
59
+ # | | | |
60
+ # | | | |
61
+ # | | (float{32,64} implem.) | |
62
+ # | | BaseDistancesReduction{32,64} | |
63
+ # | | ∆ | |
64
+ # (dispatcher) | | | (dispatcher)
65
+ # ArgKminClassMode | | | RadiusNeighborsClassMode
66
+ # | | +----------+----------+ | |
67
+ # | | | | | |
68
+ # | | | | | |
69
+ # | x | | x |
70
+ # | +-------⊳ ArgKmin{32,64} RadiusNeighbors{32,64} ⊲---+ |
71
+ # x | | ∆ ∆ | | x
72
+ # ArgKminClassMode{32,64} | | | | RadiusNeighborsClassMode{32,64}
73
+ # ===================================== Specializations ============================================
74
+ # | | | |
75
+ # | | | |
76
+ # x | | x
77
+ # EuclideanArgKmin{32,64} EuclideanRadiusNeighbors{32,64}
78
+ #
79
+ #
80
+ # For instance :class:`ArgKmin` dispatches to:
81
+ # - :class:`ArgKmin64` if X and Y are two `float64` array-likes
82
+ # - :class:`ArgKmin32` if X and Y are two `float32` array-likes
83
+ #
84
+ # In addition, if the metric parameter is set to "euclidean" or "sqeuclidean",
85
+ # then some direct subclass of `BaseDistancesReduction{32,64}` further dispatches
86
+ # to one of their subclass for euclidean-specialized implementation. For instance,
87
+ # :class:`ArgKmin64` dispatches to :class:`EuclideanArgKmin64`.
88
+ #
89
+ # Those Euclidean-specialized implementations relies on optimal implementations of
90
+ # a decomposition of the squared euclidean distance matrix into a sum of three terms
91
+ # (see :class:`MiddleTermComputer{32,64}`).
92
+ #
93
+
94
+ from ._dispatcher import (
95
+ ArgKmin,
96
+ ArgKminClassMode,
97
+ BaseDistancesReductionDispatcher,
98
+ RadiusNeighbors,
99
+ RadiusNeighborsClassMode,
100
+ sqeuclidean_row_norms,
101
+ )
102
+
103
+ __all__ = [
104
+ "BaseDistancesReductionDispatcher",
105
+ "ArgKmin",
106
+ "RadiusNeighbors",
107
+ "ArgKminClassMode",
108
+ "RadiusNeighborsClassMode",
109
+ "sqeuclidean_row_norms",
110
+ ]
111
+
112
+ # ruff: noqa: E501
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (470 Bytes). View file
 
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/__pycache__/_dispatcher.cpython-310.pyc ADDED
Binary file (25.7 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_argkmin.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (377 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_argkmin.pxd ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # WARNING: Do not edit this file directly.
2
+ # It is automatically generated from 'sklearn/metrics/_pairwise_distances_reduction/_argkmin.pxd.tp'.
3
+ # Changes must be made there.
4
+
5
+ from ...utils._typedefs cimport intp_t, float64_t
6
+
7
+ from ._base cimport BaseDistancesReduction64
8
+ from ._middle_term_computer cimport MiddleTermComputer64
9
+
10
+ cdef class ArgKmin64(BaseDistancesReduction64):
11
+ """float64 implementation of the ArgKmin."""
12
+
13
+ cdef:
14
+ intp_t k
15
+
16
+ intp_t[:, ::1] argkmin_indices
17
+ float64_t[:, ::1] argkmin_distances
18
+
19
+ # Used as array of pointers to private datastructures used in threads.
20
+ float64_t ** heaps_r_distances_chunks
21
+ intp_t ** heaps_indices_chunks
22
+
23
+
24
+ cdef class EuclideanArgKmin64(ArgKmin64):
25
+ """EuclideanDistance-specialisation of ArgKmin64."""
26
+ cdef:
27
+ MiddleTermComputer64 middle_term_computer
28
+ const float64_t[::1] X_norm_squared
29
+ const float64_t[::1] Y_norm_squared
30
+
31
+ bint use_squared_distances
32
+
33
+ from ._base cimport BaseDistancesReduction32
34
+ from ._middle_term_computer cimport MiddleTermComputer32
35
+
36
+ cdef class ArgKmin32(BaseDistancesReduction32):
37
+ """float32 implementation of the ArgKmin."""
38
+
39
+ cdef:
40
+ intp_t k
41
+
42
+ intp_t[:, ::1] argkmin_indices
43
+ float64_t[:, ::1] argkmin_distances
44
+
45
+ # Used as array of pointers to private datastructures used in threads.
46
+ float64_t ** heaps_r_distances_chunks
47
+ intp_t ** heaps_indices_chunks
48
+
49
+
50
+ cdef class EuclideanArgKmin32(ArgKmin32):
51
+ """EuclideanDistance-specialisation of ArgKmin32."""
52
+ cdef:
53
+ MiddleTermComputer32 middle_term_computer
54
+ const float64_t[::1] X_norm_squared
55
+ const float64_t[::1] Y_norm_squared
56
+
57
+ bint use_squared_distances
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_argkmin_classmode.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (283 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_base.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (345 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_base.pxd ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # WARNING: Do not edit this file directly.
2
+ # It is automatically generated from 'sklearn/metrics/_pairwise_distances_reduction/_base.pxd.tp'.
3
+ # Changes must be made there.
4
+
5
+ from cython cimport final
6
+
7
+ from ...utils._typedefs cimport intp_t, float64_t
8
+
9
+ from ._datasets_pair cimport DatasetsPair64
10
+
11
+
12
+ cpdef float64_t[::1] _sqeuclidean_row_norms64(
13
+ X,
14
+ intp_t num_threads,
15
+ )
16
+
17
+ cdef class BaseDistancesReduction64:
18
+ """
19
+ Base float64 implementation template of the pairwise-distances
20
+ reduction backends.
21
+
22
+ Implementations inherit from this template and may override the several
23
+ defined hooks as needed in order to easily extend functionality with
24
+ minimal redundant code.
25
+ """
26
+
27
+ cdef:
28
+ readonly DatasetsPair64 datasets_pair
29
+
30
+ # The number of threads that can be used is stored in effective_n_threads.
31
+ #
32
+ # The number of threads to use in the parallelization strategy
33
+ # (i.e. parallel_on_X or parallel_on_Y) can be smaller than effective_n_threads:
34
+ # for small datasets, fewer threads might be needed to loop over pair of chunks.
35
+ #
36
+ # Hence, the number of threads that _will_ be used for looping over chunks
37
+ # is stored in chunks_n_threads, allowing solely using what we need.
38
+ #
39
+ # Thus, an invariant is:
40
+ #
41
+ # chunks_n_threads <= effective_n_threads
42
+ #
43
+ intp_t effective_n_threads
44
+ intp_t chunks_n_threads
45
+
46
+ intp_t n_samples_chunk, chunk_size
47
+
48
+ intp_t n_samples_X, X_n_samples_chunk, X_n_chunks, X_n_samples_last_chunk
49
+ intp_t n_samples_Y, Y_n_samples_chunk, Y_n_chunks, Y_n_samples_last_chunk
50
+
51
+ bint execute_in_parallel_on_Y
52
+
53
+ @final
54
+ cdef void _parallel_on_X(self) noexcept nogil
55
+
56
+ @final
57
+ cdef void _parallel_on_Y(self) noexcept nogil
58
+
59
+ # Placeholder methods which have to be implemented
60
+
61
+ cdef void _compute_and_reduce_distances_on_chunks(
62
+ self,
63
+ intp_t X_start,
64
+ intp_t X_end,
65
+ intp_t Y_start,
66
+ intp_t Y_end,
67
+ intp_t thread_num,
68
+ ) noexcept nogil
69
+
70
+
71
+ # Placeholder methods which can be implemented
72
+
73
+ cdef void compute_exact_distances(self) noexcept nogil
74
+
75
+ cdef void _parallel_on_X_parallel_init(
76
+ self,
77
+ intp_t thread_num,
78
+ ) noexcept nogil
79
+
80
+ cdef void _parallel_on_X_init_chunk(
81
+ self,
82
+ intp_t thread_num,
83
+ intp_t X_start,
84
+ intp_t X_end,
85
+ ) noexcept nogil
86
+
87
+ cdef void _parallel_on_X_pre_compute_and_reduce_distances_on_chunks(
88
+ self,
89
+ intp_t X_start,
90
+ intp_t X_end,
91
+ intp_t Y_start,
92
+ intp_t Y_end,
93
+ intp_t thread_num,
94
+ ) noexcept nogil
95
+
96
+ cdef void _parallel_on_X_prange_iter_finalize(
97
+ self,
98
+ intp_t thread_num,
99
+ intp_t X_start,
100
+ intp_t X_end,
101
+ ) noexcept nogil
102
+
103
+ cdef void _parallel_on_X_parallel_finalize(
104
+ self,
105
+ intp_t thread_num
106
+ ) noexcept nogil
107
+
108
+ cdef void _parallel_on_Y_init(
109
+ self,
110
+ ) noexcept nogil
111
+
112
+ cdef void _parallel_on_Y_parallel_init(
113
+ self,
114
+ intp_t thread_num,
115
+ intp_t X_start,
116
+ intp_t X_end,
117
+ ) noexcept nogil
118
+
119
+ cdef void _parallel_on_Y_pre_compute_and_reduce_distances_on_chunks(
120
+ self,
121
+ intp_t X_start,
122
+ intp_t X_end,
123
+ intp_t Y_start,
124
+ intp_t Y_end,
125
+ intp_t thread_num,
126
+ ) noexcept nogil
127
+
128
+ cdef void _parallel_on_Y_synchronize(
129
+ self,
130
+ intp_t X_start,
131
+ intp_t X_end,
132
+ ) noexcept nogil
133
+
134
+ cdef void _parallel_on_Y_finalize(
135
+ self,
136
+ ) noexcept nogil
137
+
138
+ from ._datasets_pair cimport DatasetsPair32
139
+
140
+
141
+ cpdef float64_t[::1] _sqeuclidean_row_norms32(
142
+ X,
143
+ intp_t num_threads,
144
+ )
145
+
146
+ cdef class BaseDistancesReduction32:
147
+ """
148
+ Base float32 implementation template of the pairwise-distances
149
+ reduction backends.
150
+
151
+ Implementations inherit from this template and may override the several
152
+ defined hooks as needed in order to easily extend functionality with
153
+ minimal redundant code.
154
+ """
155
+
156
+ cdef:
157
+ readonly DatasetsPair32 datasets_pair
158
+
159
+ # The number of threads that can be used is stored in effective_n_threads.
160
+ #
161
+ # The number of threads to use in the parallelization strategy
162
+ # (i.e. parallel_on_X or parallel_on_Y) can be smaller than effective_n_threads:
163
+ # for small datasets, fewer threads might be needed to loop over pair of chunks.
164
+ #
165
+ # Hence, the number of threads that _will_ be used for looping over chunks
166
+ # is stored in chunks_n_threads, allowing solely using what we need.
167
+ #
168
+ # Thus, an invariant is:
169
+ #
170
+ # chunks_n_threads <= effective_n_threads
171
+ #
172
+ intp_t effective_n_threads
173
+ intp_t chunks_n_threads
174
+
175
+ intp_t n_samples_chunk, chunk_size
176
+
177
+ intp_t n_samples_X, X_n_samples_chunk, X_n_chunks, X_n_samples_last_chunk
178
+ intp_t n_samples_Y, Y_n_samples_chunk, Y_n_chunks, Y_n_samples_last_chunk
179
+
180
+ bint execute_in_parallel_on_Y
181
+
182
+ @final
183
+ cdef void _parallel_on_X(self) noexcept nogil
184
+
185
+ @final
186
+ cdef void _parallel_on_Y(self) noexcept nogil
187
+
188
+ # Placeholder methods which have to be implemented
189
+
190
+ cdef void _compute_and_reduce_distances_on_chunks(
191
+ self,
192
+ intp_t X_start,
193
+ intp_t X_end,
194
+ intp_t Y_start,
195
+ intp_t Y_end,
196
+ intp_t thread_num,
197
+ ) noexcept nogil
198
+
199
+
200
+ # Placeholder methods which can be implemented
201
+
202
+ cdef void compute_exact_distances(self) noexcept nogil
203
+
204
+ cdef void _parallel_on_X_parallel_init(
205
+ self,
206
+ intp_t thread_num,
207
+ ) noexcept nogil
208
+
209
+ cdef void _parallel_on_X_init_chunk(
210
+ self,
211
+ intp_t thread_num,
212
+ intp_t X_start,
213
+ intp_t X_end,
214
+ ) noexcept nogil
215
+
216
+ cdef void _parallel_on_X_pre_compute_and_reduce_distances_on_chunks(
217
+ self,
218
+ intp_t X_start,
219
+ intp_t X_end,
220
+ intp_t Y_start,
221
+ intp_t Y_end,
222
+ intp_t thread_num,
223
+ ) noexcept nogil
224
+
225
+ cdef void _parallel_on_X_prange_iter_finalize(
226
+ self,
227
+ intp_t thread_num,
228
+ intp_t X_start,
229
+ intp_t X_end,
230
+ ) noexcept nogil
231
+
232
+ cdef void _parallel_on_X_parallel_finalize(
233
+ self,
234
+ intp_t thread_num
235
+ ) noexcept nogil
236
+
237
+ cdef void _parallel_on_Y_init(
238
+ self,
239
+ ) noexcept nogil
240
+
241
+ cdef void _parallel_on_Y_parallel_init(
242
+ self,
243
+ intp_t thread_num,
244
+ intp_t X_start,
245
+ intp_t X_end,
246
+ ) noexcept nogil
247
+
248
+ cdef void _parallel_on_Y_pre_compute_and_reduce_distances_on_chunks(
249
+ self,
250
+ intp_t X_start,
251
+ intp_t X_end,
252
+ intp_t Y_start,
253
+ intp_t Y_end,
254
+ intp_t thread_num,
255
+ ) noexcept nogil
256
+
257
+ cdef void _parallel_on_Y_synchronize(
258
+ self,
259
+ intp_t X_start,
260
+ intp_t X_end,
261
+ ) noexcept nogil
262
+
263
+ cdef void _parallel_on_Y_finalize(
264
+ self,
265
+ ) noexcept nogil
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_classmode.pxd ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ cpdef enum WeightingStrategy:
2
+ uniform = 0
3
+ # TODO: Implement the following options in weighted_histogram_mode
4
+ distance = 1
5
+ callable = 2
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_datasets_pair.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (500 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_datasets_pair.pxd ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # WARNING: Do not edit this file directly.
2
+ # It is automatically generated from 'sklearn/metrics/_pairwise_distances_reduction/_datasets_pair.pxd.tp'.
3
+ # Changes must be made there.
4
+
5
+ from ...utils._typedefs cimport float64_t, float32_t, int32_t, intp_t
6
+ from ...metrics._dist_metrics cimport DistanceMetric64, DistanceMetric32, DistanceMetric
7
+
8
+
9
+ cdef class DatasetsPair64:
10
+ cdef:
11
+ DistanceMetric64 distance_metric
12
+ intp_t n_features
13
+
14
+ cdef intp_t n_samples_X(self) noexcept nogil
15
+
16
+ cdef intp_t n_samples_Y(self) noexcept nogil
17
+
18
+ cdef float64_t dist(self, intp_t i, intp_t j) noexcept nogil
19
+
20
+ cdef float64_t surrogate_dist(self, intp_t i, intp_t j) noexcept nogil
21
+
22
+
23
+ cdef class DenseDenseDatasetsPair64(DatasetsPair64):
24
+ cdef:
25
+ const float64_t[:, ::1] X
26
+ const float64_t[:, ::1] Y
27
+
28
+
29
+ cdef class SparseSparseDatasetsPair64(DatasetsPair64):
30
+ cdef:
31
+ const float64_t[:] X_data
32
+ const int32_t[::1] X_indices
33
+ const int32_t[::1] X_indptr
34
+
35
+ const float64_t[:] Y_data
36
+ const int32_t[::1] Y_indices
37
+ const int32_t[::1] Y_indptr
38
+
39
+
40
+ cdef class SparseDenseDatasetsPair64(DatasetsPair64):
41
+ cdef:
42
+ const float64_t[:] X_data
43
+ const int32_t[::1] X_indices
44
+ const int32_t[::1] X_indptr
45
+
46
+ const float64_t[:] Y_data
47
+ const int32_t[::1] Y_indices
48
+ intp_t n_Y
49
+
50
+
51
+ cdef class DenseSparseDatasetsPair64(DatasetsPair64):
52
+ cdef:
53
+ # As distance metrics are commutative, we can simply rely
54
+ # on the implementation of SparseDenseDatasetsPair and
55
+ # swap arguments.
56
+ DatasetsPair64 datasets_pair
57
+
58
+
59
+ cdef class DatasetsPair32:
60
+ cdef:
61
+ DistanceMetric32 distance_metric
62
+ intp_t n_features
63
+
64
+ cdef intp_t n_samples_X(self) noexcept nogil
65
+
66
+ cdef intp_t n_samples_Y(self) noexcept nogil
67
+
68
+ cdef float64_t dist(self, intp_t i, intp_t j) noexcept nogil
69
+
70
+ cdef float64_t surrogate_dist(self, intp_t i, intp_t j) noexcept nogil
71
+
72
+
73
+ cdef class DenseDenseDatasetsPair32(DatasetsPair32):
74
+ cdef:
75
+ const float32_t[:, ::1] X
76
+ const float32_t[:, ::1] Y
77
+
78
+
79
+ cdef class SparseSparseDatasetsPair32(DatasetsPair32):
80
+ cdef:
81
+ const float32_t[:] X_data
82
+ const int32_t[::1] X_indices
83
+ const int32_t[::1] X_indptr
84
+
85
+ const float32_t[:] Y_data
86
+ const int32_t[::1] Y_indices
87
+ const int32_t[::1] Y_indptr
88
+
89
+
90
+ cdef class SparseDenseDatasetsPair32(DatasetsPair32):
91
+ cdef:
92
+ const float32_t[:] X_data
93
+ const int32_t[::1] X_indices
94
+ const int32_t[::1] X_indptr
95
+
96
+ const float32_t[:] Y_data
97
+ const int32_t[::1] Y_indices
98
+ intp_t n_Y
99
+
100
+
101
+ cdef class DenseSparseDatasetsPair32(DatasetsPair32):
102
+ cdef:
103
+ # As distance metrics are commutative, we can simply rely
104
+ # on the implementation of SparseDenseDatasetsPair and
105
+ # swap arguments.
106
+ DatasetsPair32 datasets_pair
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_dispatcher.py ADDED
@@ -0,0 +1,764 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from typing import List
3
+
4
+ import numpy as np
5
+ from scipy.sparse import issparse
6
+
7
+ from ... import get_config
8
+ from .._dist_metrics import (
9
+ BOOL_METRICS,
10
+ METRIC_MAPPING64,
11
+ DistanceMetric,
12
+ )
13
+ from ._argkmin import (
14
+ ArgKmin32,
15
+ ArgKmin64,
16
+ )
17
+ from ._argkmin_classmode import (
18
+ ArgKminClassMode32,
19
+ ArgKminClassMode64,
20
+ )
21
+ from ._base import _sqeuclidean_row_norms32, _sqeuclidean_row_norms64
22
+ from ._radius_neighbors import (
23
+ RadiusNeighbors32,
24
+ RadiusNeighbors64,
25
+ )
26
+ from ._radius_neighbors_classmode import (
27
+ RadiusNeighborsClassMode32,
28
+ RadiusNeighborsClassMode64,
29
+ )
30
+
31
+
32
+ def sqeuclidean_row_norms(X, num_threads):
33
+ """Compute the squared euclidean norm of the rows of X in parallel.
34
+
35
+ Parameters
36
+ ----------
37
+ X : ndarray or CSR matrix of shape (n_samples, n_features)
38
+ Input data. Must be c-contiguous.
39
+
40
+ num_threads : int
41
+ The number of OpenMP threads to use.
42
+
43
+ Returns
44
+ -------
45
+ sqeuclidean_row_norms : ndarray of shape (n_samples,)
46
+ Arrays containing the squared euclidean norm of each row of X.
47
+ """
48
+ if X.dtype == np.float64:
49
+ return np.asarray(_sqeuclidean_row_norms64(X, num_threads))
50
+ if X.dtype == np.float32:
51
+ return np.asarray(_sqeuclidean_row_norms32(X, num_threads))
52
+
53
+ raise ValueError(
54
+ "Only float64 or float32 datasets are supported at this time, "
55
+ f"got: X.dtype={X.dtype}."
56
+ )
57
+
58
+
59
+ class BaseDistancesReductionDispatcher:
60
+ """Abstract base dispatcher for pairwise distance computation & reduction.
61
+
62
+ Each dispatcher extending the base :class:`BaseDistancesReductionDispatcher`
63
+ dispatcher must implement the :meth:`compute` classmethod.
64
+ """
65
+
66
+ @classmethod
67
+ def valid_metrics(cls) -> List[str]:
68
+ excluded = {
69
+ # PyFunc cannot be supported because it necessitates interacting with
70
+ # the CPython interpreter to call user defined functions.
71
+ "pyfunc",
72
+ "mahalanobis", # is numerically unstable
73
+ # In order to support discrete distance metrics, we need to have a
74
+ # stable simultaneous sort which preserves the order of the indices
75
+ # because there generally is a lot of occurrences for a given values
76
+ # of distances in this case.
77
+ # TODO: implement a stable simultaneous_sort.
78
+ "hamming",
79
+ *BOOL_METRICS,
80
+ }
81
+ return sorted(({"sqeuclidean"} | set(METRIC_MAPPING64.keys())) - excluded)
82
+
83
+ @classmethod
84
+ def is_usable_for(cls, X, Y, metric) -> bool:
85
+ """Return True if the dispatcher can be used for the
86
+ given parameters.
87
+
88
+ Parameters
89
+ ----------
90
+ X : {ndarray, sparse matrix} of shape (n_samples_X, n_features)
91
+ Input data.
92
+
93
+ Y : {ndarray, sparse matrix} of shape (n_samples_Y, n_features)
94
+ Input data.
95
+
96
+ metric : str, default='euclidean'
97
+ The distance metric to use.
98
+ For a list of available metrics, see the documentation of
99
+ :class:`~sklearn.metrics.DistanceMetric`.
100
+
101
+ Returns
102
+ -------
103
+ True if the dispatcher can be used, else False.
104
+ """
105
+
106
+ # FIXME: the current Cython implementation is too slow for a large number of
107
+ # features. We temporarily disable it to fallback on SciPy's implementation.
108
+ # See: https://github.com/scikit-learn/scikit-learn/issues/28191
109
+ if (
110
+ issparse(X)
111
+ and issparse(Y)
112
+ and isinstance(metric, str)
113
+ and "euclidean" in metric
114
+ ):
115
+ return False
116
+
117
+ def is_numpy_c_ordered(X):
118
+ return hasattr(X, "flags") and getattr(X.flags, "c_contiguous", False)
119
+
120
+ def is_valid_sparse_matrix(X):
121
+ return (
122
+ issparse(X)
123
+ and X.format == "csr"
124
+ and
125
+ # TODO: support CSR matrices without non-zeros elements
126
+ X.nnz > 0
127
+ and
128
+ # TODO: support CSR matrices with int64 indices and indptr
129
+ # See: https://github.com/scikit-learn/scikit-learn/issues/23653
130
+ X.indices.dtype == X.indptr.dtype == np.int32
131
+ )
132
+
133
+ is_usable = (
134
+ get_config().get("enable_cython_pairwise_dist", True)
135
+ and (is_numpy_c_ordered(X) or is_valid_sparse_matrix(X))
136
+ and (is_numpy_c_ordered(Y) or is_valid_sparse_matrix(Y))
137
+ and X.dtype == Y.dtype
138
+ and X.dtype in (np.float32, np.float64)
139
+ and (metric in cls.valid_metrics() or isinstance(metric, DistanceMetric))
140
+ )
141
+
142
+ return is_usable
143
+
144
+ @classmethod
145
+ @abstractmethod
146
+ def compute(
147
+ cls,
148
+ X,
149
+ Y,
150
+ **kwargs,
151
+ ):
152
+ """Compute the reduction.
153
+
154
+ Parameters
155
+ ----------
156
+ X : ndarray or CSR matrix of shape (n_samples_X, n_features)
157
+ Input data.
158
+
159
+ Y : ndarray or CSR matrix of shape (n_samples_Y, n_features)
160
+ Input data.
161
+
162
+ **kwargs : additional parameters for the reduction
163
+
164
+ Notes
165
+ -----
166
+ This method is an abstract class method: it has to be implemented
167
+ for all subclasses.
168
+ """
169
+
170
+
171
+ class ArgKmin(BaseDistancesReductionDispatcher):
172
+ """Compute the argkmin of row vectors of X on the ones of Y.
173
+
174
+ For each row vector of X, computes the indices of k first the rows
175
+ vectors of Y with the smallest distances.
176
+
177
+ ArgKmin is typically used to perform
178
+ bruteforce k-nearest neighbors queries.
179
+
180
+ This class is not meant to be instantiated, one should only use
181
+ its :meth:`compute` classmethod which handles allocation and
182
+ deallocation consistently.
183
+ """
184
+
185
+ @classmethod
186
+ def compute(
187
+ cls,
188
+ X,
189
+ Y,
190
+ k,
191
+ metric="euclidean",
192
+ chunk_size=None,
193
+ metric_kwargs=None,
194
+ strategy=None,
195
+ return_distance=False,
196
+ ):
197
+ """Compute the argkmin reduction.
198
+
199
+ Parameters
200
+ ----------
201
+ X : ndarray or CSR matrix of shape (n_samples_X, n_features)
202
+ Input data.
203
+
204
+ Y : ndarray or CSR matrix of shape (n_samples_Y, n_features)
205
+ Input data.
206
+
207
+ k : int
208
+ The k for the argkmin reduction.
209
+
210
+ metric : str, default='euclidean'
211
+ The distance metric to use for argkmin.
212
+ For a list of available metrics, see the documentation of
213
+ :class:`~sklearn.metrics.DistanceMetric`.
214
+
215
+ chunk_size : int, default=None,
216
+ The number of vectors per chunk. If None (default) looks-up in
217
+ scikit-learn configuration for `pairwise_dist_chunk_size`,
218
+ and use 256 if it is not set.
219
+
220
+ metric_kwargs : dict, default=None
221
+ Keyword arguments to pass to specified metric function.
222
+
223
+ strategy : str, {'auto', 'parallel_on_X', 'parallel_on_Y'}, default=None
224
+ The chunking strategy defining which dataset parallelization are made on.
225
+
226
+ For both strategies the computations happens with two nested loops,
227
+ respectively on chunks of X and chunks of Y.
228
+ Strategies differs on which loop (outer or inner) is made to run
229
+ in parallel with the Cython `prange` construct:
230
+
231
+ - 'parallel_on_X' dispatches chunks of X uniformly on threads.
232
+ Each thread then iterates on all the chunks of Y. This strategy is
233
+ embarrassingly parallel and comes with no datastructures
234
+ synchronisation.
235
+
236
+ - 'parallel_on_Y' dispatches chunks of Y uniformly on threads.
237
+ Each thread processes all the chunks of X in turn. This strategy is
238
+ a sequence of embarrassingly parallel subtasks (the inner loop on Y
239
+ chunks) with intermediate datastructures synchronisation at each
240
+ iteration of the sequential outer loop on X chunks.
241
+
242
+ - 'auto' relies on a simple heuristic to choose between
243
+ 'parallel_on_X' and 'parallel_on_Y': when `X.shape[0]` is large enough,
244
+ 'parallel_on_X' is usually the most efficient strategy.
245
+ When `X.shape[0]` is small but `Y.shape[0]` is large, 'parallel_on_Y'
246
+ brings more opportunity for parallelism and is therefore more efficient
247
+
248
+ - None (default) looks-up in scikit-learn configuration for
249
+ `pairwise_dist_parallel_strategy`, and use 'auto' if it is not set.
250
+
251
+ return_distance : boolean, default=False
252
+ Return distances between each X vector and its
253
+ argkmin if set to True.
254
+
255
+ Returns
256
+ -------
257
+ If return_distance=False:
258
+ - argkmin_indices : ndarray of shape (n_samples_X, k)
259
+ Indices of the argkmin for each vector in X.
260
+
261
+ If return_distance=True:
262
+ - argkmin_distances : ndarray of shape (n_samples_X, k)
263
+ Distances to the argkmin for each vector in X.
264
+ - argkmin_indices : ndarray of shape (n_samples_X, k)
265
+ Indices of the argkmin for each vector in X.
266
+
267
+ Notes
268
+ -----
269
+ This classmethod inspects the arguments values to dispatch to the
270
+ dtype-specialized implementation of :class:`ArgKmin`.
271
+
272
+ This allows decoupling the API entirely from the implementation details
273
+ whilst maintaining RAII: all temporarily allocated datastructures necessary
274
+ for the concrete implementation are therefore freed when this classmethod
275
+ returns.
276
+ """
277
+ if X.dtype == Y.dtype == np.float64:
278
+ return ArgKmin64.compute(
279
+ X=X,
280
+ Y=Y,
281
+ k=k,
282
+ metric=metric,
283
+ chunk_size=chunk_size,
284
+ metric_kwargs=metric_kwargs,
285
+ strategy=strategy,
286
+ return_distance=return_distance,
287
+ )
288
+
289
+ if X.dtype == Y.dtype == np.float32:
290
+ return ArgKmin32.compute(
291
+ X=X,
292
+ Y=Y,
293
+ k=k,
294
+ metric=metric,
295
+ chunk_size=chunk_size,
296
+ metric_kwargs=metric_kwargs,
297
+ strategy=strategy,
298
+ return_distance=return_distance,
299
+ )
300
+
301
+ raise ValueError(
302
+ "Only float64 or float32 datasets pairs are supported at this time, "
303
+ f"got: X.dtype={X.dtype} and Y.dtype={Y.dtype}."
304
+ )
305
+
306
+
307
+ class RadiusNeighbors(BaseDistancesReductionDispatcher):
308
+ """Compute radius-based neighbors for two sets of vectors.
309
+
310
+ For each row-vector X[i] of the queries X, find all the indices j of
311
+ row-vectors in Y such that:
312
+
313
+ dist(X[i], Y[j]) <= radius
314
+
315
+ The distance function `dist` depends on the values of the `metric`
316
+ and `metric_kwargs` parameters.
317
+
318
+ This class is not meant to be instantiated, one should only use
319
+ its :meth:`compute` classmethod which handles allocation and
320
+ deallocation consistently.
321
+ """
322
+
323
+ @classmethod
324
+ def compute(
325
+ cls,
326
+ X,
327
+ Y,
328
+ radius,
329
+ metric="euclidean",
330
+ chunk_size=None,
331
+ metric_kwargs=None,
332
+ strategy=None,
333
+ return_distance=False,
334
+ sort_results=False,
335
+ ):
336
+ """Return the results of the reduction for the given arguments.
337
+
338
+ Parameters
339
+ ----------
340
+ X : ndarray or CSR matrix of shape (n_samples_X, n_features)
341
+ Input data.
342
+
343
+ Y : ndarray or CSR matrix of shape (n_samples_Y, n_features)
344
+ Input data.
345
+
346
+ radius : float
347
+ The radius defining the neighborhood.
348
+
349
+ metric : str, default='euclidean'
350
+ The distance metric to use.
351
+ For a list of available metrics, see the documentation of
352
+ :class:`~sklearn.metrics.DistanceMetric`.
353
+
354
+ chunk_size : int, default=None,
355
+ The number of vectors per chunk. If None (default) looks-up in
356
+ scikit-learn configuration for `pairwise_dist_chunk_size`,
357
+ and use 256 if it is not set.
358
+
359
+ metric_kwargs : dict, default=None
360
+ Keyword arguments to pass to specified metric function.
361
+
362
+ strategy : str, {'auto', 'parallel_on_X', 'parallel_on_Y'}, default=None
363
+ The chunking strategy defining which dataset parallelization are made on.
364
+
365
+ For both strategies the computations happens with two nested loops,
366
+ respectively on chunks of X and chunks of Y.
367
+ Strategies differs on which loop (outer or inner) is made to run
368
+ in parallel with the Cython `prange` construct:
369
+
370
+ - 'parallel_on_X' dispatches chunks of X uniformly on threads.
371
+ Each thread then iterates on all the chunks of Y. This strategy is
372
+ embarrassingly parallel and comes with no datastructures
373
+ synchronisation.
374
+
375
+ - 'parallel_on_Y' dispatches chunks of Y uniformly on threads.
376
+ Each thread processes all the chunks of X in turn. This strategy is
377
+ a sequence of embarrassingly parallel subtasks (the inner loop on Y
378
+ chunks) with intermediate datastructures synchronisation at each
379
+ iteration of the sequential outer loop on X chunks.
380
+
381
+ - 'auto' relies on a simple heuristic to choose between
382
+ 'parallel_on_X' and 'parallel_on_Y': when `X.shape[0]` is large enough,
383
+ 'parallel_on_X' is usually the most efficient strategy.
384
+ When `X.shape[0]` is small but `Y.shape[0]` is large, 'parallel_on_Y'
385
+ brings more opportunity for parallelism and is therefore more efficient
386
+ despite the synchronization step at each iteration of the outer loop
387
+ on chunks of `X`.
388
+
389
+ - None (default) looks-up in scikit-learn configuration for
390
+ `pairwise_dist_parallel_strategy`, and use 'auto' if it is not set.
391
+
392
+ return_distance : boolean, default=False
393
+ Return distances between each X vector and its neighbors if set to True.
394
+
395
+ sort_results : boolean, default=False
396
+ Sort results with respect to distances between each X vector and its
397
+ neighbors if set to True.
398
+
399
+ Returns
400
+ -------
401
+ If return_distance=False:
402
+ - neighbors_indices : ndarray of n_samples_X ndarray
403
+ Indices of the neighbors for each vector in X.
404
+
405
+ If return_distance=True:
406
+ - neighbors_indices : ndarray of n_samples_X ndarray
407
+ Indices of the neighbors for each vector in X.
408
+ - neighbors_distances : ndarray of n_samples_X ndarray
409
+ Distances to the neighbors for each vector in X.
410
+
411
+ Notes
412
+ -----
413
+ This classmethod inspects the arguments values to dispatch to the
414
+ dtype-specialized implementation of :class:`RadiusNeighbors`.
415
+
416
+ This allows decoupling the API entirely from the implementation details
417
+ whilst maintaining RAII: all temporarily allocated datastructures necessary
418
+ for the concrete implementation are therefore freed when this classmethod
419
+ returns.
420
+ """
421
+ if X.dtype == Y.dtype == np.float64:
422
+ return RadiusNeighbors64.compute(
423
+ X=X,
424
+ Y=Y,
425
+ radius=radius,
426
+ metric=metric,
427
+ chunk_size=chunk_size,
428
+ metric_kwargs=metric_kwargs,
429
+ strategy=strategy,
430
+ sort_results=sort_results,
431
+ return_distance=return_distance,
432
+ )
433
+
434
+ if X.dtype == Y.dtype == np.float32:
435
+ return RadiusNeighbors32.compute(
436
+ X=X,
437
+ Y=Y,
438
+ radius=radius,
439
+ metric=metric,
440
+ chunk_size=chunk_size,
441
+ metric_kwargs=metric_kwargs,
442
+ strategy=strategy,
443
+ sort_results=sort_results,
444
+ return_distance=return_distance,
445
+ )
446
+
447
+ raise ValueError(
448
+ "Only float64 or float32 datasets pairs are supported at this time, "
449
+ f"got: X.dtype={X.dtype} and Y.dtype={Y.dtype}."
450
+ )
451
+
452
+
453
+ class ArgKminClassMode(BaseDistancesReductionDispatcher):
454
+ """Compute the argkmin of row vectors of X on the ones of Y with labels.
455
+
456
+ For each row vector of X, computes the indices of k first the rows
457
+ vectors of Y with the smallest distances. Computes weighted mode of labels.
458
+
459
+ ArgKminClassMode is typically used to perform bruteforce k-nearest neighbors
460
+ queries when the weighted mode of the labels for the k-nearest neighbors
461
+ are required, such as in `predict` methods.
462
+
463
+ This class is not meant to be instantiated, one should only use
464
+ its :meth:`compute` classmethod which handles allocation and
465
+ deallocation consistently.
466
+ """
467
+
468
+ @classmethod
469
+ def valid_metrics(cls) -> List[str]:
470
+ excluded = {
471
+ # Euclidean is technically usable for ArgKminClassMode
472
+ # but its current implementation would not be competitive.
473
+ # TODO: implement Euclidean specialization using GEMM.
474
+ "euclidean",
475
+ "sqeuclidean",
476
+ }
477
+ return list(set(BaseDistancesReductionDispatcher.valid_metrics()) - excluded)
478
+
479
+ @classmethod
480
+ def compute(
481
+ cls,
482
+ X,
483
+ Y,
484
+ k,
485
+ weights,
486
+ Y_labels,
487
+ unique_Y_labels,
488
+ metric="euclidean",
489
+ chunk_size=None,
490
+ metric_kwargs=None,
491
+ strategy=None,
492
+ ):
493
+ """Compute the argkmin reduction.
494
+
495
+ Parameters
496
+ ----------
497
+ X : ndarray of shape (n_samples_X, n_features)
498
+ The input array to be labelled.
499
+
500
+ Y : ndarray of shape (n_samples_Y, n_features)
501
+ The input array whose class membership are provided through the
502
+ `Y_labels` parameter.
503
+
504
+ k : int
505
+ The number of nearest neighbors to consider.
506
+
507
+ weights : ndarray
508
+ The weights applied over the `Y_labels` of `Y` when computing the
509
+ weighted mode of the labels.
510
+
511
+ Y_labels : ndarray
512
+ An array containing the index of the class membership of the
513
+ associated samples in `Y`. This is used in labeling `X`.
514
+
515
+ unique_Y_labels : ndarray
516
+ An array containing all unique indices contained in the
517
+ corresponding `Y_labels` array.
518
+
519
+ metric : str, default='euclidean'
520
+ The distance metric to use. For a list of available metrics, see
521
+ the documentation of :class:`~sklearn.metrics.DistanceMetric`.
522
+ Currently does not support `'precomputed'`.
523
+
524
+ chunk_size : int, default=None,
525
+ The number of vectors per chunk. If None (default) looks-up in
526
+ scikit-learn configuration for `pairwise_dist_chunk_size`,
527
+ and use 256 if it is not set.
528
+
529
+ metric_kwargs : dict, default=None
530
+ Keyword arguments to pass to specified metric function.
531
+
532
+ strategy : str, {'auto', 'parallel_on_X', 'parallel_on_Y'}, default=None
533
+ The chunking strategy defining which dataset parallelization are made on.
534
+
535
+ For both strategies the computations happens with two nested loops,
536
+ respectively on chunks of X and chunks of Y.
537
+ Strategies differs on which loop (outer or inner) is made to run
538
+ in parallel with the Cython `prange` construct:
539
+
540
+ - 'parallel_on_X' dispatches chunks of X uniformly on threads.
541
+ Each thread then iterates on all the chunks of Y. This strategy is
542
+ embarrassingly parallel and comes with no datastructures
543
+ synchronisation.
544
+
545
+ - 'parallel_on_Y' dispatches chunks of Y uniformly on threads.
546
+ Each thread processes all the chunks of X in turn. This strategy is
547
+ a sequence of embarrassingly parallel subtasks (the inner loop on Y
548
+ chunks) with intermediate datastructures synchronisation at each
549
+ iteration of the sequential outer loop on X chunks.
550
+
551
+ - 'auto' relies on a simple heuristic to choose between
552
+ 'parallel_on_X' and 'parallel_on_Y': when `X.shape[0]` is large enough,
553
+ 'parallel_on_X' is usually the most efficient strategy.
554
+ When `X.shape[0]` is small but `Y.shape[0]` is large, 'parallel_on_Y'
555
+ brings more opportunity for parallelism and is therefore more efficient
556
+ despite the synchronization step at each iteration of the outer loop
557
+ on chunks of `X`.
558
+
559
+ - None (default) looks-up in scikit-learn configuration for
560
+ `pairwise_dist_parallel_strategy`, and use 'auto' if it is not set.
561
+
562
+ Returns
563
+ -------
564
+ probabilities : ndarray of shape (n_samples_X, n_classes)
565
+ An array containing the class probabilities for each sample.
566
+
567
+ Notes
568
+ -----
569
+ This classmethod is responsible for introspecting the arguments
570
+ values to dispatch to the most appropriate implementation of
571
+ :class:`PairwiseDistancesArgKmin`.
572
+
573
+ This allows decoupling the API entirely from the implementation details
574
+ whilst maintaining RAII: all temporarily allocated datastructures necessary
575
+ for the concrete implementation are therefore freed when this classmethod
576
+ returns.
577
+ """
578
+ if weights not in {"uniform", "distance"}:
579
+ raise ValueError(
580
+ "Only the 'uniform' or 'distance' weights options are supported"
581
+ f" at this time. Got: {weights=}."
582
+ )
583
+ if X.dtype == Y.dtype == np.float64:
584
+ return ArgKminClassMode64.compute(
585
+ X=X,
586
+ Y=Y,
587
+ k=k,
588
+ weights=weights,
589
+ Y_labels=np.array(Y_labels, dtype=np.intp),
590
+ unique_Y_labels=np.array(unique_Y_labels, dtype=np.intp),
591
+ metric=metric,
592
+ chunk_size=chunk_size,
593
+ metric_kwargs=metric_kwargs,
594
+ strategy=strategy,
595
+ )
596
+
597
+ if X.dtype == Y.dtype == np.float32:
598
+ return ArgKminClassMode32.compute(
599
+ X=X,
600
+ Y=Y,
601
+ k=k,
602
+ weights=weights,
603
+ Y_labels=np.array(Y_labels, dtype=np.intp),
604
+ unique_Y_labels=np.array(unique_Y_labels, dtype=np.intp),
605
+ metric=metric,
606
+ chunk_size=chunk_size,
607
+ metric_kwargs=metric_kwargs,
608
+ strategy=strategy,
609
+ )
610
+
611
+ raise ValueError(
612
+ "Only float64 or float32 datasets pairs are supported at this time, "
613
+ f"got: X.dtype={X.dtype} and Y.dtype={Y.dtype}."
614
+ )
615
+
616
+
617
+ class RadiusNeighborsClassMode(BaseDistancesReductionDispatcher):
618
+ """Compute radius-based class modes of row vectors of X using the
619
+ those of Y.
620
+
621
+ For each row-vector X[i] of the queries X, find all the indices j of
622
+ row-vectors in Y such that:
623
+
624
+ dist(X[i], Y[j]) <= radius
625
+
626
+ RadiusNeighborsClassMode is typically used to perform bruteforce
627
+ radius neighbors queries when the weighted mode of the labels for
628
+ the nearest neighbors within the specified radius are required,
629
+ such as in `predict` methods.
630
+
631
+ This class is not meant to be instantiated, one should only use
632
+ its :meth:`compute` classmethod which handles allocation and
633
+ deallocation consistently.
634
+ """
635
+
636
+ @classmethod
637
+ def valid_metrics(cls) -> List[str]:
638
+ excluded = {
639
+ # Euclidean is technically usable for RadiusNeighborsClassMode
640
+ # but it would not be competitive.
641
+ # TODO: implement Euclidean specialization using GEMM.
642
+ "euclidean",
643
+ "sqeuclidean",
644
+ }
645
+ return sorted(set(BaseDistancesReductionDispatcher.valid_metrics()) - excluded)
646
+
647
+ @classmethod
648
+ def compute(
649
+ cls,
650
+ X,
651
+ Y,
652
+ radius,
653
+ weights,
654
+ Y_labels,
655
+ unique_Y_labels,
656
+ outlier_label,
657
+ metric="euclidean",
658
+ chunk_size=None,
659
+ metric_kwargs=None,
660
+ strategy=None,
661
+ ):
662
+ """Return the results of the reduction for the given arguments.
663
+ Parameters
664
+ ----------
665
+ X : ndarray of shape (n_samples_X, n_features)
666
+ The input array to be labelled.
667
+ Y : ndarray of shape (n_samples_Y, n_features)
668
+ The input array whose class membership is provided through
669
+ the `Y_labels` parameter.
670
+ radius : float
671
+ The radius defining the neighborhood.
672
+ weights : ndarray
673
+ The weights applied to the `Y_labels` when computing the
674
+ weighted mode of the labels.
675
+ Y_labels : ndarray
676
+ An array containing the index of the class membership of the
677
+ associated samples in `Y`. This is used in labeling `X`.
678
+ unique_Y_labels : ndarray
679
+ An array containing all unique class labels.
680
+ outlier_label : int, default=None
681
+ Label for outlier samples (samples with no neighbors in given
682
+ radius). In the default case when the value is None if any
683
+ outlier is detected, a ValueError will be raised. The outlier
684
+ label should be selected from among the unique 'Y' labels. If
685
+ it is specified with a different value a warning will be raised
686
+ and all class probabilities of outliers will be assigned to be 0.
687
+ metric : str, default='euclidean'
688
+ The distance metric to use. For a list of available metrics, see
689
+ the documentation of :class:`~sklearn.metrics.DistanceMetric`.
690
+ Currently does not support `'precomputed'`.
691
+ chunk_size : int, default=None,
692
+ The number of vectors per chunk. If None (default) looks-up in
693
+ scikit-learn configuration for `pairwise_dist_chunk_size`,
694
+ and use 256 if it is not set.
695
+ metric_kwargs : dict, default=None
696
+ Keyword arguments to pass to specified metric function.
697
+ strategy : str, {'auto', 'parallel_on_X', 'parallel_on_Y'}, default=None
698
+ The chunking strategy defining which dataset parallelization are made on.
699
+ For both strategies the computations happens with two nested loops,
700
+ respectively on chunks of X and chunks of Y.
701
+ Strategies differs on which loop (outer or inner) is made to run
702
+ in parallel with the Cython `prange` construct:
703
+ - 'parallel_on_X' dispatches chunks of X uniformly on threads.
704
+ Each thread then iterates on all the chunks of Y. This strategy is
705
+ embarrassingly parallel and comes with no datastructures
706
+ synchronisation.
707
+ - 'parallel_on_Y' dispatches chunks of Y uniformly on threads.
708
+ Each thread processes all the chunks of X in turn. This strategy is
709
+ a sequence of embarrassingly parallel subtasks (the inner loop on Y
710
+ chunks) with intermediate datastructures synchronisation at each
711
+ iteration of the sequential outer loop on X chunks.
712
+ - 'auto' relies on a simple heuristic to choose between
713
+ 'parallel_on_X' and 'parallel_on_Y': when `X.shape[0]` is large enough,
714
+ 'parallel_on_X' is usually the most efficient strategy.
715
+ When `X.shape[0]` is small but `Y.shape[0]` is large, 'parallel_on_Y'
716
+ brings more opportunity for parallelism and is therefore more efficient
717
+ despite the synchronization step at each iteration of the outer loop
718
+ on chunks of `X`.
719
+ - None (default) looks-up in scikit-learn configuration for
720
+ `pairwise_dist_parallel_strategy`, and use 'auto' if it is not set.
721
+ Returns
722
+ -------
723
+ probabilities : ndarray of shape (n_samples_X, n_classes)
724
+ An array containing the class probabilities for each sample.
725
+ """
726
+ if weights not in {"uniform", "distance"}:
727
+ raise ValueError(
728
+ "Only the 'uniform' or 'distance' weights options are supported"
729
+ f" at this time. Got: {weights=}."
730
+ )
731
+ if X.dtype == Y.dtype == np.float64:
732
+ return RadiusNeighborsClassMode64.compute(
733
+ X=X,
734
+ Y=Y,
735
+ radius=radius,
736
+ weights=weights,
737
+ Y_labels=np.array(Y_labels, dtype=np.intp),
738
+ unique_Y_labels=np.array(unique_Y_labels, dtype=np.intp),
739
+ outlier_label=outlier_label,
740
+ metric=metric,
741
+ chunk_size=chunk_size,
742
+ metric_kwargs=metric_kwargs,
743
+ strategy=strategy,
744
+ )
745
+
746
+ if X.dtype == Y.dtype == np.float32:
747
+ return RadiusNeighborsClassMode32.compute(
748
+ X=X,
749
+ Y=Y,
750
+ radius=radius,
751
+ weights=weights,
752
+ Y_labels=np.array(Y_labels, dtype=np.intp),
753
+ unique_Y_labels=np.array(unique_Y_labels, dtype=np.intp),
754
+ outlier_label=outlier_label,
755
+ metric=metric,
756
+ chunk_size=chunk_size,
757
+ metric_kwargs=metric_kwargs,
758
+ strategy=strategy,
759
+ )
760
+
761
+ raise ValueError(
762
+ "Only float64 or float32 datasets pairs are supported at this time, "
763
+ f"got: X.dtype={X.dtype} and Y.dtype={Y.dtype}."
764
+ )
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_middle_term_computer.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (510 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_middle_term_computer.pxd ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # WARNING: Do not edit this file directly.
2
+ # It is automatically generated from 'sklearn/metrics/_pairwise_distances_reduction/_middle_term_computer.pxd.tp'.
3
+ # Changes must be made there.
4
+
5
+ from libcpp.vector cimport vector
6
+
7
+ from ...utils._typedefs cimport float64_t, float32_t, int32_t, intp_t
8
+
9
+
10
+ cdef void _middle_term_sparse_sparse_64(
11
+ const float64_t[:] X_data,
12
+ const int32_t[:] X_indices,
13
+ const int32_t[:] X_indptr,
14
+ intp_t X_start,
15
+ intp_t X_end,
16
+ const float64_t[:] Y_data,
17
+ const int32_t[:] Y_indices,
18
+ const int32_t[:] Y_indptr,
19
+ intp_t Y_start,
20
+ intp_t Y_end,
21
+ float64_t * D,
22
+ ) noexcept nogil
23
+
24
+
25
+
26
+ cdef class MiddleTermComputer64:
27
+ cdef:
28
+ intp_t effective_n_threads
29
+ intp_t chunks_n_threads
30
+ intp_t dist_middle_terms_chunks_size
31
+ intp_t n_features
32
+ intp_t chunk_size
33
+
34
+ # Buffers for the `-2 * X_c @ Y_c.T` term computed via GEMM
35
+ vector[vector[float64_t]] dist_middle_terms_chunks
36
+
37
+ cdef void _parallel_on_X_pre_compute_and_reduce_distances_on_chunks(
38
+ self,
39
+ intp_t X_start,
40
+ intp_t X_end,
41
+ intp_t Y_start,
42
+ intp_t Y_end,
43
+ intp_t thread_num,
44
+ ) noexcept nogil
45
+
46
+ cdef void _parallel_on_X_parallel_init(self, intp_t thread_num) noexcept nogil
47
+
48
+ cdef void _parallel_on_X_init_chunk(
49
+ self,
50
+ intp_t thread_num,
51
+ intp_t X_start,
52
+ intp_t X_end,
53
+ ) noexcept nogil
54
+
55
+ cdef void _parallel_on_Y_init(self) noexcept nogil
56
+
57
+ cdef void _parallel_on_Y_parallel_init(
58
+ self,
59
+ intp_t thread_num,
60
+ intp_t X_start,
61
+ intp_t X_end,
62
+ ) noexcept nogil
63
+
64
+ cdef void _parallel_on_Y_pre_compute_and_reduce_distances_on_chunks(
65
+ self,
66
+ intp_t X_start,
67
+ intp_t X_end,
68
+ intp_t Y_start,
69
+ intp_t Y_end,
70
+ intp_t thread_num
71
+ ) noexcept nogil
72
+
73
+ cdef float64_t * _compute_dist_middle_terms(
74
+ self,
75
+ intp_t X_start,
76
+ intp_t X_end,
77
+ intp_t Y_start,
78
+ intp_t Y_end,
79
+ intp_t thread_num,
80
+ ) noexcept nogil
81
+
82
+
83
+ cdef class DenseDenseMiddleTermComputer64(MiddleTermComputer64):
84
+ cdef:
85
+ const float64_t[:, ::1] X
86
+ const float64_t[:, ::1] Y
87
+
88
+
89
+ cdef void _parallel_on_X_pre_compute_and_reduce_distances_on_chunks(
90
+ self,
91
+ intp_t X_start,
92
+ intp_t X_end,
93
+ intp_t Y_start,
94
+ intp_t Y_end,
95
+ intp_t thread_num,
96
+ ) noexcept nogil
97
+
98
+ cdef void _parallel_on_X_init_chunk(
99
+ self,
100
+ intp_t thread_num,
101
+ intp_t X_start,
102
+ intp_t X_end,
103
+ ) noexcept nogil
104
+
105
+ cdef void _parallel_on_Y_parallel_init(
106
+ self,
107
+ intp_t thread_num,
108
+ intp_t X_start,
109
+ intp_t X_end,
110
+ ) noexcept nogil
111
+
112
+ cdef void _parallel_on_Y_pre_compute_and_reduce_distances_on_chunks(
113
+ self,
114
+ intp_t X_start,
115
+ intp_t X_end,
116
+ intp_t Y_start,
117
+ intp_t Y_end,
118
+ intp_t thread_num
119
+ ) noexcept nogil
120
+
121
+ cdef float64_t * _compute_dist_middle_terms(
122
+ self,
123
+ intp_t X_start,
124
+ intp_t X_end,
125
+ intp_t Y_start,
126
+ intp_t Y_end,
127
+ intp_t thread_num,
128
+ ) noexcept nogil
129
+
130
+
131
+ cdef class SparseSparseMiddleTermComputer64(MiddleTermComputer64):
132
+ cdef:
133
+ const float64_t[:] X_data
134
+ const int32_t[:] X_indices
135
+ const int32_t[:] X_indptr
136
+
137
+ const float64_t[:] Y_data
138
+ const int32_t[:] Y_indices
139
+ const int32_t[:] Y_indptr
140
+
141
+ cdef void _parallel_on_X_pre_compute_and_reduce_distances_on_chunks(
142
+ self,
143
+ intp_t X_start,
144
+ intp_t X_end,
145
+ intp_t Y_start,
146
+ intp_t Y_end,
147
+ intp_t thread_num
148
+ ) noexcept nogil
149
+
150
+ cdef void _parallel_on_Y_pre_compute_and_reduce_distances_on_chunks(
151
+ self,
152
+ intp_t X_start,
153
+ intp_t X_end,
154
+ intp_t Y_start,
155
+ intp_t Y_end,
156
+ intp_t thread_num
157
+ ) noexcept nogil
158
+
159
+ cdef float64_t * _compute_dist_middle_terms(
160
+ self,
161
+ intp_t X_start,
162
+ intp_t X_end,
163
+ intp_t Y_start,
164
+ intp_t Y_end,
165
+ intp_t thread_num,
166
+ ) noexcept nogil
167
+
168
+
169
+ cdef class SparseDenseMiddleTermComputer64(MiddleTermComputer64):
170
+ cdef:
171
+ const float64_t[:] X_data
172
+ const int32_t[:] X_indices
173
+ const int32_t[:] X_indptr
174
+
175
+ const float64_t[:, ::1] Y
176
+
177
+ # We treat the dense-sparse case with the sparse-dense case by simply
178
+ # treating the dist_middle_terms as F-ordered and by swapping arguments.
179
+ # This attribute is meant to encode the case and adapt the logic
180
+ # accordingly.
181
+ bint c_ordered_middle_term
182
+
183
+ cdef void _parallel_on_X_pre_compute_and_reduce_distances_on_chunks(
184
+ self,
185
+ intp_t X_start,
186
+ intp_t X_end,
187
+ intp_t Y_start,
188
+ intp_t Y_end,
189
+ intp_t thread_num
190
+ ) noexcept nogil
191
+
192
+ cdef void _parallel_on_Y_pre_compute_and_reduce_distances_on_chunks(
193
+ self,
194
+ intp_t X_start,
195
+ intp_t X_end,
196
+ intp_t Y_start,
197
+ intp_t Y_end,
198
+ intp_t thread_num
199
+ ) noexcept nogil
200
+
201
+ cdef float64_t * _compute_dist_middle_terms(
202
+ self,
203
+ intp_t X_start,
204
+ intp_t X_end,
205
+ intp_t Y_start,
206
+ intp_t Y_end,
207
+ intp_t thread_num,
208
+ ) noexcept nogil
209
+
210
+
211
+ cdef class MiddleTermComputer32:
212
+ cdef:
213
+ intp_t effective_n_threads
214
+ intp_t chunks_n_threads
215
+ intp_t dist_middle_terms_chunks_size
216
+ intp_t n_features
217
+ intp_t chunk_size
218
+
219
+ # Buffers for the `-2 * X_c @ Y_c.T` term computed via GEMM
220
+ vector[vector[float64_t]] dist_middle_terms_chunks
221
+
222
+ cdef void _parallel_on_X_pre_compute_and_reduce_distances_on_chunks(
223
+ self,
224
+ intp_t X_start,
225
+ intp_t X_end,
226
+ intp_t Y_start,
227
+ intp_t Y_end,
228
+ intp_t thread_num,
229
+ ) noexcept nogil
230
+
231
+ cdef void _parallel_on_X_parallel_init(self, intp_t thread_num) noexcept nogil
232
+
233
+ cdef void _parallel_on_X_init_chunk(
234
+ self,
235
+ intp_t thread_num,
236
+ intp_t X_start,
237
+ intp_t X_end,
238
+ ) noexcept nogil
239
+
240
+ cdef void _parallel_on_Y_init(self) noexcept nogil
241
+
242
+ cdef void _parallel_on_Y_parallel_init(
243
+ self,
244
+ intp_t thread_num,
245
+ intp_t X_start,
246
+ intp_t X_end,
247
+ ) noexcept nogil
248
+
249
+ cdef void _parallel_on_Y_pre_compute_and_reduce_distances_on_chunks(
250
+ self,
251
+ intp_t X_start,
252
+ intp_t X_end,
253
+ intp_t Y_start,
254
+ intp_t Y_end,
255
+ intp_t thread_num
256
+ ) noexcept nogil
257
+
258
+ cdef float64_t * _compute_dist_middle_terms(
259
+ self,
260
+ intp_t X_start,
261
+ intp_t X_end,
262
+ intp_t Y_start,
263
+ intp_t Y_end,
264
+ intp_t thread_num,
265
+ ) noexcept nogil
266
+
267
+
268
+ cdef class DenseDenseMiddleTermComputer32(MiddleTermComputer32):
269
+ cdef:
270
+ const float32_t[:, ::1] X
271
+ const float32_t[:, ::1] Y
272
+
273
+ # Buffers for upcasting chunks of X and Y from 32bit to 64bit
274
+ vector[vector[float64_t]] X_c_upcast
275
+ vector[vector[float64_t]] Y_c_upcast
276
+
277
+ cdef void _parallel_on_X_pre_compute_and_reduce_distances_on_chunks(
278
+ self,
279
+ intp_t X_start,
280
+ intp_t X_end,
281
+ intp_t Y_start,
282
+ intp_t Y_end,
283
+ intp_t thread_num,
284
+ ) noexcept nogil
285
+
286
+ cdef void _parallel_on_X_init_chunk(
287
+ self,
288
+ intp_t thread_num,
289
+ intp_t X_start,
290
+ intp_t X_end,
291
+ ) noexcept nogil
292
+
293
+ cdef void _parallel_on_Y_parallel_init(
294
+ self,
295
+ intp_t thread_num,
296
+ intp_t X_start,
297
+ intp_t X_end,
298
+ ) noexcept nogil
299
+
300
+ cdef void _parallel_on_Y_pre_compute_and_reduce_distances_on_chunks(
301
+ self,
302
+ intp_t X_start,
303
+ intp_t X_end,
304
+ intp_t Y_start,
305
+ intp_t Y_end,
306
+ intp_t thread_num
307
+ ) noexcept nogil
308
+
309
+ cdef float64_t * _compute_dist_middle_terms(
310
+ self,
311
+ intp_t X_start,
312
+ intp_t X_end,
313
+ intp_t Y_start,
314
+ intp_t Y_end,
315
+ intp_t thread_num,
316
+ ) noexcept nogil
317
+
318
+
319
+ cdef class SparseSparseMiddleTermComputer32(MiddleTermComputer32):
320
+ cdef:
321
+ const float64_t[:] X_data
322
+ const int32_t[:] X_indices
323
+ const int32_t[:] X_indptr
324
+
325
+ const float64_t[:] Y_data
326
+ const int32_t[:] Y_indices
327
+ const int32_t[:] Y_indptr
328
+
329
+ cdef void _parallel_on_X_pre_compute_and_reduce_distances_on_chunks(
330
+ self,
331
+ intp_t X_start,
332
+ intp_t X_end,
333
+ intp_t Y_start,
334
+ intp_t Y_end,
335
+ intp_t thread_num
336
+ ) noexcept nogil
337
+
338
+ cdef void _parallel_on_Y_pre_compute_and_reduce_distances_on_chunks(
339
+ self,
340
+ intp_t X_start,
341
+ intp_t X_end,
342
+ intp_t Y_start,
343
+ intp_t Y_end,
344
+ intp_t thread_num
345
+ ) noexcept nogil
346
+
347
+ cdef float64_t * _compute_dist_middle_terms(
348
+ self,
349
+ intp_t X_start,
350
+ intp_t X_end,
351
+ intp_t Y_start,
352
+ intp_t Y_end,
353
+ intp_t thread_num,
354
+ ) noexcept nogil
355
+
356
+
357
+ cdef class SparseDenseMiddleTermComputer32(MiddleTermComputer32):
358
+ cdef:
359
+ const float64_t[:] X_data
360
+ const int32_t[:] X_indices
361
+ const int32_t[:] X_indptr
362
+
363
+ const float32_t[:, ::1] Y
364
+
365
+ # We treat the dense-sparse case with the sparse-dense case by simply
366
+ # treating the dist_middle_terms as F-ordered and by swapping arguments.
367
+ # This attribute is meant to encode the case and adapt the logic
368
+ # accordingly.
369
+ bint c_ordered_middle_term
370
+
371
+ cdef void _parallel_on_X_pre_compute_and_reduce_distances_on_chunks(
372
+ self,
373
+ intp_t X_start,
374
+ intp_t X_end,
375
+ intp_t Y_start,
376
+ intp_t Y_end,
377
+ intp_t thread_num
378
+ ) noexcept nogil
379
+
380
+ cdef void _parallel_on_Y_pre_compute_and_reduce_distances_on_chunks(
381
+ self,
382
+ intp_t X_start,
383
+ intp_t X_end,
384
+ intp_t Y_start,
385
+ intp_t Y_end,
386
+ intp_t thread_num
387
+ ) noexcept nogil
388
+
389
+ cdef float64_t * _compute_dist_middle_terms(
390
+ self,
391
+ intp_t X_start,
392
+ intp_t X_end,
393
+ intp_t Y_start,
394
+ intp_t Y_end,
395
+ intp_t thread_num,
396
+ ) noexcept nogil
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_radius_neighbors.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (393 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_radius_neighbors.pxd ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # WARNING: Do not edit this file directly.
2
+ # It is automatically generated from 'sklearn/metrics/_pairwise_distances_reduction/_radius_neighbors.pxd.tp'.
3
+ # Changes must be made there.
4
+
5
+ cimport numpy as cnp
6
+
7
+ from libcpp.memory cimport shared_ptr
8
+ from libcpp.vector cimport vector
9
+ from cython cimport final
10
+
11
+ from ...utils._typedefs cimport intp_t, float64_t
12
+
13
+ cnp.import_array()
14
+
15
+ ######################
16
+ ## std::vector to np.ndarray coercion
17
+ # As type covariance is not supported for C++ containers via Cython,
18
+ # we need to redefine fused types.
19
+ ctypedef fused vector_double_intp_t:
20
+ vector[intp_t]
21
+ vector[float64_t]
22
+
23
+
24
+ ctypedef fused vector_vector_double_intp_t:
25
+ vector[vector[intp_t]]
26
+ vector[vector[float64_t]]
27
+
28
+ cdef cnp.ndarray[object, ndim=1] coerce_vectors_to_nd_arrays(
29
+ shared_ptr[vector_vector_double_intp_t] vecs
30
+ )
31
+
32
+ #####################
33
+
34
+ from ._base cimport BaseDistancesReduction64
35
+ from ._middle_term_computer cimport MiddleTermComputer64
36
+
37
+ cdef class RadiusNeighbors64(BaseDistancesReduction64):
38
+ """float64 implementation of the RadiusNeighbors."""
39
+
40
+ cdef:
41
+ float64_t radius
42
+
43
+ # DistanceMetric64 compute rank-preserving surrogate distance via rdist
44
+ # which are proxies necessitating less computations.
45
+ # We get the equivalent for the radius to be able to compare it against
46
+ # vectors' rank-preserving surrogate distances.
47
+ float64_t r_radius
48
+
49
+ # Neighbors indices and distances are returned as np.ndarrays of np.ndarrays.
50
+ #
51
+ # For this implementation, we want resizable buffers which we will wrap
52
+ # into numpy arrays at the end. std::vector comes as a handy container
53
+ # for interacting efficiently with resizable buffers.
54
+ #
55
+ # Though it is possible to access their buffer address with
56
+ # std::vector::data, they can't be stolen: buffers lifetime
57
+ # is tied to their std::vector and are deallocated when
58
+ # std::vectors are.
59
+ #
60
+ # To solve this, we dynamically allocate std::vectors and then
61
+ # encapsulate them in a StdVectorSentinel responsible for
62
+ # freeing them when the associated np.ndarray is freed.
63
+ #
64
+ # Shared pointers (defined via shared_ptr) are use for safer memory management.
65
+ # Unique pointers (defined via unique_ptr) can't be used as datastructures
66
+ # are shared across threads for parallel_on_X; see _parallel_on_X_init_chunk.
67
+ shared_ptr[vector[vector[intp_t]]] neigh_indices
68
+ shared_ptr[vector[vector[float64_t]]] neigh_distances
69
+
70
+ # Used as array of pointers to private datastructures used in threads.
71
+ vector[shared_ptr[vector[vector[intp_t]]]] neigh_indices_chunks
72
+ vector[shared_ptr[vector[vector[float64_t]]]] neigh_distances_chunks
73
+
74
+ bint sort_results
75
+
76
+ @final
77
+ cdef void _merge_vectors(
78
+ self,
79
+ intp_t idx,
80
+ intp_t num_threads,
81
+ ) noexcept nogil
82
+
83
+
84
+ cdef class EuclideanRadiusNeighbors64(RadiusNeighbors64):
85
+ """EuclideanDistance-specialisation of RadiusNeighbors64."""
86
+ cdef:
87
+ MiddleTermComputer64 middle_term_computer
88
+ const float64_t[::1] X_norm_squared
89
+ const float64_t[::1] Y_norm_squared
90
+
91
+ bint use_squared_distances
92
+
93
+ from ._base cimport BaseDistancesReduction32
94
+ from ._middle_term_computer cimport MiddleTermComputer32
95
+
96
+ cdef class RadiusNeighbors32(BaseDistancesReduction32):
97
+ """float32 implementation of the RadiusNeighbors."""
98
+
99
+ cdef:
100
+ float64_t radius
101
+
102
+ # DistanceMetric32 compute rank-preserving surrogate distance via rdist
103
+ # which are proxies necessitating less computations.
104
+ # We get the equivalent for the radius to be able to compare it against
105
+ # vectors' rank-preserving surrogate distances.
106
+ float64_t r_radius
107
+
108
+ # Neighbors indices and distances are returned as np.ndarrays of np.ndarrays.
109
+ #
110
+ # For this implementation, we want resizable buffers which we will wrap
111
+ # into numpy arrays at the end. std::vector comes as a handy container
112
+ # for interacting efficiently with resizable buffers.
113
+ #
114
+ # Though it is possible to access their buffer address with
115
+ # std::vector::data, they can't be stolen: buffers lifetime
116
+ # is tied to their std::vector and are deallocated when
117
+ # std::vectors are.
118
+ #
119
+ # To solve this, we dynamically allocate std::vectors and then
120
+ # encapsulate them in a StdVectorSentinel responsible for
121
+ # freeing them when the associated np.ndarray is freed.
122
+ #
123
+ # Shared pointers (defined via shared_ptr) are use for safer memory management.
124
+ # Unique pointers (defined via unique_ptr) can't be used as datastructures
125
+ # are shared across threads for parallel_on_X; see _parallel_on_X_init_chunk.
126
+ shared_ptr[vector[vector[intp_t]]] neigh_indices
127
+ shared_ptr[vector[vector[float64_t]]] neigh_distances
128
+
129
+ # Used as array of pointers to private datastructures used in threads.
130
+ vector[shared_ptr[vector[vector[intp_t]]]] neigh_indices_chunks
131
+ vector[shared_ptr[vector[vector[float64_t]]]] neigh_distances_chunks
132
+
133
+ bint sort_results
134
+
135
+ @final
136
+ cdef void _merge_vectors(
137
+ self,
138
+ intp_t idx,
139
+ intp_t num_threads,
140
+ ) noexcept nogil
141
+
142
+
143
+ cdef class EuclideanRadiusNeighbors32(RadiusNeighbors32):
144
+ """EuclideanDistance-specialisation of RadiusNeighbors32."""
145
+ cdef:
146
+ MiddleTermComputer32 middle_term_computer
147
+ const float64_t[::1] X_norm_squared
148
+ const float64_t[::1] Y_norm_squared
149
+
150
+ bint use_squared_distances
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_distances_reduction/_radius_neighbors_classmode.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (307 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/metrics/_pairwise_fast.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (307 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/metrics/_plot/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/sklearn/metrics/_plot/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (189 Bytes). View file
 
venv/lib/python3.10/site-packages/sklearn/metrics/_plot/__pycache__/confusion_matrix.cpython-310.pyc ADDED
Binary file (14.7 kB). View file