diff --git "a/venv/lib/python3.10/site-packages/sympy/matrices/tests/test_matrices.py" "b/venv/lib/python3.10/site-packages/sympy/matrices/tests/test_matrices.py" new file mode 100644--- /dev/null +++ "b/venv/lib/python3.10/site-packages/sympy/matrices/tests/test_matrices.py" @@ -0,0 +1,3005 @@ +import random +import concurrent.futures +from collections.abc import Hashable + +from sympy.core.add import Add +from sympy.core.function import (Function, diff, expand) +from sympy.core.numbers import (E, Float, I, Integer, Rational, nan, oo, pi) +from sympy.core.power import Pow +from sympy.core.singleton import S +from sympy.core.symbol import (Symbol, symbols) +from sympy.core.sympify import sympify +from sympy.functions.elementary.complexes import Abs +from sympy.functions.elementary.exponential import (exp, log) +from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt) +from sympy.functions.elementary.trigonometric import (cos, sin, tan) +from sympy.integrals.integrals import integrate +from sympy.polys.polytools import (Poly, PurePoly) +from sympy.printing.str import sstr +from sympy.sets.sets import FiniteSet +from sympy.simplify.simplify import (signsimp, simplify) +from sympy.simplify.trigsimp import trigsimp +from sympy.matrices.matrices import (ShapeError, MatrixError, + NonSquareMatrixError, DeferredVector, _find_reasonable_pivot_naive, + _simplify) +from sympy.matrices import ( + GramSchmidt, ImmutableMatrix, ImmutableSparseMatrix, Matrix, + SparseMatrix, casoratian, diag, eye, hessian, + matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2, + rot_axis3, wronskian, zeros, MutableDenseMatrix, ImmutableDenseMatrix, + MatrixSymbol, dotprodsimp, rot_ccw_axis1, rot_ccw_axis2, rot_ccw_axis3) +from sympy.matrices.utilities import _dotprodsimp_state +from sympy.core import Tuple, Wild +from sympy.functions.special.tensor_functions import KroneckerDelta +from sympy.utilities.iterables import flatten, capture, iterable +from sympy.utilities.exceptions import ignore_warnings, SymPyDeprecationWarning +from sympy.testing.pytest import (raises, XFAIL, slow, skip, skip_under_pyodide, + warns_deprecated_sympy, warns) +from sympy.assumptions import Q +from sympy.tensor.array import Array +from sympy.matrices.expressions import MatPow +from sympy.algebras import Quaternion + +from sympy.abc import a, b, c, d, x, y, z, t + + +# don't re-order this list +classes = (Matrix, SparseMatrix, ImmutableMatrix, ImmutableSparseMatrix) + + +def test_args(): + for n, cls in enumerate(classes): + m = cls.zeros(3, 2) + # all should give back the same type of arguments, e.g. ints for shape + assert m.shape == (3, 2) and all(type(i) is int for i in m.shape) + assert m.rows == 3 and type(m.rows) is int + assert m.cols == 2 and type(m.cols) is int + if not n % 2: + assert type(m.flat()) in (list, tuple, Tuple) + else: + assert type(m.todok()) is dict + + +def test_deprecated_mat_smat(): + for cls in Matrix, ImmutableMatrix: + m = cls.zeros(3, 2) + with warns_deprecated_sympy(): + mat = m._mat + assert mat == m.flat() + for cls in SparseMatrix, ImmutableSparseMatrix: + m = cls.zeros(3, 2) + with warns_deprecated_sympy(): + smat = m._smat + assert smat == m.todok() + + +def test_division(): + v = Matrix(1, 2, [x, y]) + assert v/z == Matrix(1, 2, [x/z, y/z]) + + +def test_sum(): + m = Matrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]]) + assert m + m == Matrix([[2, 4, 6], [2*x, 2*y, 2*x], [4*y, -100, 2*z*x]]) + n = Matrix(1, 2, [1, 2]) + raises(ShapeError, lambda: m + n) + +def test_abs(): + m = Matrix(1, 2, [-3, x]) + n = Matrix(1, 2, [3, Abs(x)]) + assert abs(m) == n + +def test_addition(): + a = Matrix(( + (1, 2), + (3, 1), + )) + + b = Matrix(( + (1, 2), + (3, 0), + )) + + assert a + b == a.add(b) == Matrix([[2, 4], [6, 1]]) + + +def test_fancy_index_matrix(): + for M in (Matrix, SparseMatrix): + a = M(3, 3, range(9)) + assert a == a[:, :] + assert a[1, :] == Matrix(1, 3, [3, 4, 5]) + assert a[:, 1] == Matrix([1, 4, 7]) + assert a[[0, 1], :] == Matrix([[0, 1, 2], [3, 4, 5]]) + assert a[[0, 1], 2] == a[[0, 1], [2]] + assert a[2, [0, 1]] == a[[2], [0, 1]] + assert a[:, [0, 1]] == Matrix([[0, 1], [3, 4], [6, 7]]) + assert a[0, 0] == 0 + assert a[0:2, :] == Matrix([[0, 1, 2], [3, 4, 5]]) + assert a[:, 0:2] == Matrix([[0, 1], [3, 4], [6, 7]]) + assert a[::2, 1] == a[[0, 2], 1] + assert a[1, ::2] == a[1, [0, 2]] + a = M(3, 3, range(9)) + assert a[[0, 2, 1, 2, 1], :] == Matrix([ + [0, 1, 2], + [6, 7, 8], + [3, 4, 5], + [6, 7, 8], + [3, 4, 5]]) + assert a[:, [0,2,1,2,1]] == Matrix([ + [0, 2, 1, 2, 1], + [3, 5, 4, 5, 4], + [6, 8, 7, 8, 7]]) + + a = SparseMatrix.zeros(3) + a[1, 2] = 2 + a[0, 1] = 3 + a[2, 0] = 4 + assert a.extract([1, 1], [2]) == Matrix([ + [2], + [2]]) + assert a.extract([1, 0], [2, 2, 2]) == Matrix([ + [2, 2, 2], + [0, 0, 0]]) + assert a.extract([1, 0, 1, 2], [2, 0, 1, 0]) == Matrix([ + [2, 0, 0, 0], + [0, 0, 3, 0], + [2, 0, 0, 0], + [0, 4, 0, 4]]) + + +def test_multiplication(): + a = Matrix(( + (1, 2), + (3, 1), + (0, 6), + )) + + b = Matrix(( + (1, 2), + (3, 0), + )) + + c = a*b + assert c[0, 0] == 7 + assert c[0, 1] == 2 + assert c[1, 0] == 6 + assert c[1, 1] == 6 + assert c[2, 0] == 18 + assert c[2, 1] == 0 + + try: + eval('c = a @ b') + except SyntaxError: + pass + else: + assert c[0, 0] == 7 + assert c[0, 1] == 2 + assert c[1, 0] == 6 + assert c[1, 1] == 6 + assert c[2, 0] == 18 + assert c[2, 1] == 0 + + h = matrix_multiply_elementwise(a, c) + assert h == a.multiply_elementwise(c) + assert h[0, 0] == 7 + assert h[0, 1] == 4 + assert h[1, 0] == 18 + assert h[1, 1] == 6 + assert h[2, 0] == 0 + assert h[2, 1] == 0 + raises(ShapeError, lambda: matrix_multiply_elementwise(a, b)) + + c = b * Symbol("x") + assert isinstance(c, Matrix) + assert c[0, 0] == x + assert c[0, 1] == 2*x + assert c[1, 0] == 3*x + assert c[1, 1] == 0 + + c2 = x * b + assert c == c2 + + c = 5 * b + assert isinstance(c, Matrix) + assert c[0, 0] == 5 + assert c[0, 1] == 2*5 + assert c[1, 0] == 3*5 + assert c[1, 1] == 0 + + try: + eval('c = 5 @ b') + except SyntaxError: + pass + else: + assert isinstance(c, Matrix) + assert c[0, 0] == 5 + assert c[0, 1] == 2*5 + assert c[1, 0] == 3*5 + assert c[1, 1] == 0 + + M = Matrix([[oo, 0], [0, oo]]) + assert M ** 2 == M + + M = Matrix([[oo, oo], [0, 0]]) + assert M ** 2 == Matrix([[nan, nan], [nan, nan]]) + + +def test_power(): + raises(NonSquareMatrixError, lambda: Matrix((1, 2))**2) + + R = Rational + A = Matrix([[2, 3], [4, 5]]) + assert (A**-3)[:] == [R(-269)/8, R(153)/8, R(51)/2, R(-29)/2] + assert (A**5)[:] == [6140, 8097, 10796, 14237] + A = Matrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]]) + assert (A**3)[:] == [290, 262, 251, 448, 440, 368, 702, 954, 433] + assert A**0 == eye(3) + assert A**1 == A + assert (Matrix([[2]]) ** 100)[0, 0] == 2**100 + assert eye(2)**10000000 == eye(2) + assert Matrix([[1, 2], [3, 4]])**Integer(2) == Matrix([[7, 10], [15, 22]]) + + A = Matrix([[33, 24], [48, 57]]) + assert (A**S.Half)[:] == [5, 2, 4, 7] + A = Matrix([[0, 4], [-1, 5]]) + assert (A**S.Half)**2 == A + + assert Matrix([[1, 0], [1, 1]])**S.Half == Matrix([[1, 0], [S.Half, 1]]) + assert Matrix([[1, 0], [1, 1]])**0.5 == Matrix([[1, 0], [0.5, 1]]) + from sympy.abc import n + assert Matrix([[1, a], [0, 1]])**n == Matrix([[1, a*n], [0, 1]]) + assert Matrix([[b, a], [0, b]])**n == Matrix([[b**n, a*b**(n-1)*n], [0, b**n]]) + assert Matrix([ + [a**n, a**(n - 1)*n, (a**n*n**2 - a**n*n)/(2*a**2)], + [ 0, a**n, a**(n - 1)*n], + [ 0, 0, a**n]]) + assert Matrix([[a, 1, 0], [0, a, 0], [0, 0, b]])**n == Matrix([ + [a**n, a**(n-1)*n, 0], + [0, a**n, 0], + [0, 0, b**n]]) + + A = Matrix([[1, 0], [1, 7]]) + assert A._matrix_pow_by_jordan_blocks(S(3)) == A._eval_pow_by_recursion(3) + A = Matrix([[2]]) + assert A**10 == Matrix([[2**10]]) == A._matrix_pow_by_jordan_blocks(S(10)) == \ + A._eval_pow_by_recursion(10) + + # testing a matrix that cannot be jordan blocked issue 11766 + m = Matrix([[3, 0, 0, 0, -3], [0, -3, -3, 0, 3], [0, 3, 0, 3, 0], [0, 0, 3, 0, 3], [3, 0, 0, 3, 0]]) + raises(MatrixError, lambda: m._matrix_pow_by_jordan_blocks(S(10))) + + # test issue 11964 + raises(MatrixError, lambda: Matrix([[1, 1], [3, 3]])._matrix_pow_by_jordan_blocks(S(-10))) + A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 0]]) # Nilpotent jordan block size 3 + assert A**10.0 == Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]]) + raises(ValueError, lambda: A**2.1) + raises(ValueError, lambda: A**Rational(3, 2)) + A = Matrix([[8, 1], [3, 2]]) + assert A**10.0 == Matrix([[1760744107, 272388050], [817164150, 126415807]]) + A = Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) # Nilpotent jordan block size 1 + assert A**10.0 == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) + A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) # Nilpotent jordan block size 2 + assert A**10.0 == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) + n = Symbol('n', integer=True) + assert isinstance(A**n, MatPow) + n = Symbol('n', integer=True, negative=True) + raises(ValueError, lambda: A**n) + n = Symbol('n', integer=True, nonnegative=True) + assert A**n == Matrix([ + [KroneckerDelta(0, n), KroneckerDelta(1, n), -KroneckerDelta(0, n) - KroneckerDelta(1, n) + 1], + [ 0, KroneckerDelta(0, n), 1 - KroneckerDelta(0, n)], + [ 0, 0, 1]]) + assert A**(n + 2) == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) + raises(ValueError, lambda: A**Rational(3, 2)) + A = Matrix([[0, 0, 1], [3, 0, 1], [4, 3, 1]]) + assert A**5.0 == Matrix([[168, 72, 89], [291, 144, 161], [572, 267, 329]]) + assert A**5.0 == A**5 + A = Matrix([[0, 1, 0],[-1, 0, 0],[0, 0, 0]]) + n = Symbol("n") + An = A**n + assert An.subs(n, 2).doit() == A**2 + raises(ValueError, lambda: An.subs(n, -2).doit()) + assert An * An == A**(2*n) + + # concretizing behavior for non-integer and complex powers + A = Matrix([[0,0,0],[0,0,0],[0,0,0]]) + n = Symbol('n', integer=True, positive=True) + assert A**n == A + n = Symbol('n', integer=True, nonnegative=True) + assert A**n == diag(0**n, 0**n, 0**n) + assert (A**n).subs(n, 0) == eye(3) + assert (A**n).subs(n, 1) == zeros(3) + A = Matrix ([[2,0,0],[0,2,0],[0,0,2]]) + assert A**2.1 == diag (2**2.1, 2**2.1, 2**2.1) + assert A**I == diag (2**I, 2**I, 2**I) + A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) + raises(ValueError, lambda: A**2.1) + raises(ValueError, lambda: A**I) + A = Matrix([[S.Half, S.Half], [S.Half, S.Half]]) + assert A**S.Half == A + A = Matrix([[1, 1],[3, 3]]) + assert A**S.Half == Matrix ([[S.Half, S.Half], [3*S.Half, 3*S.Half]]) + + +def test_issue_17247_expression_blowup_1(): + M = Matrix([[1+x, 1-x], [1-x, 1+x]]) + with dotprodsimp(True): + assert M.exp().expand() == Matrix([ + [ (exp(2*x) + exp(2))/2, (-exp(2*x) + exp(2))/2], + [(-exp(2*x) + exp(2))/2, (exp(2*x) + exp(2))/2]]) + +def test_issue_17247_expression_blowup_2(): + M = Matrix([[1+x, 1-x], [1-x, 1+x]]) + with dotprodsimp(True): + P, J = M.jordan_form () + assert P*J*P.inv() + +def test_issue_17247_expression_blowup_3(): + M = Matrix([[1+x, 1-x], [1-x, 1+x]]) + with dotprodsimp(True): + assert M**100 == Matrix([ + [633825300114114700748351602688*x**100 + 633825300114114700748351602688, 633825300114114700748351602688 - 633825300114114700748351602688*x**100], + [633825300114114700748351602688 - 633825300114114700748351602688*x**100, 633825300114114700748351602688*x**100 + 633825300114114700748351602688]]) + +def test_issue_17247_expression_blowup_4(): +# This matrix takes extremely long on current master even with intermediate simplification so an abbreviated version is used. It is left here for test in case of future optimizations. +# M = Matrix(S('''[ +# [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128, 3/64 + 13*I/64, -23/32 - 59*I/256, 15/128 - 3*I/32, 19/256 + 551*I/1024], +# [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024, 119/128 + 143*I/128, -10879/2048 + 4343*I/4096, 129/256 - 549*I/512, 42533/16384 + 29103*I/8192], +# [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128, 3/64 + 13*I/64, -23/32 - 59*I/256], +# [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024, 119/128 + 143*I/128, -10879/2048 + 4343*I/4096], +# [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128], +# [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024], +# [ -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64], +# [ 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512], +# [ -4*I, 27/2 + 6*I, -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64], +# [ 1/4 + 5*I/2, -23/8 - 57*I/16, 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128], +# [ -4, 9 - 5*I, -4*I, 27/2 + 6*I, -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16], +# [ -2*I, 119/8 + 29*I/4, 1/4 + 5*I/2, -23/8 - 57*I/16, 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]''')) +# assert M**10 == Matrix([ +# [ 7*(-221393644768594642173548179825793834595 - 1861633166167425978847110897013541127952*I)/9671406556917033397649408, 15*(31670992489131684885307005100073928751695 + 10329090958303458811115024718207404523808*I)/77371252455336267181195264, 7*(-3710978679372178839237291049477017392703 + 1377706064483132637295566581525806894169*I)/19342813113834066795298816, (9727707023582419994616144751727760051598 - 59261571067013123836477348473611225724433*I)/9671406556917033397649408, (31896723509506857062605551443641668183707 + 54643444538699269118869436271152084599580*I)/38685626227668133590597632, (-2024044860947539028275487595741003997397402 + 130959428791783397562960461903698670485863*I)/309485009821345068724781056, 3*(26190251453797590396533756519358368860907 - 27221191754180839338002754608545400941638*I)/77371252455336267181195264, (1154643595139959842768960128434994698330461 + 3385496216250226964322872072260446072295634*I)/618970019642690137449562112, 3*(-31849347263064464698310044805285774295286 - 11877437776464148281991240541742691164309*I)/77371252455336267181195264, (4661330392283532534549306589669150228040221 - 4171259766019818631067810706563064103956871*I)/1237940039285380274899124224, (9598353794289061833850770474812760144506 + 358027153990999990968244906482319780943983*I)/309485009821345068724781056, (-9755135335127734571547571921702373498554177 - 4837981372692695195747379349593041939686540*I)/2475880078570760549798248448], +# [(-379516731607474268954110071392894274962069 - 422272153179747548473724096872271700878296*I)/77371252455336267181195264, (41324748029613152354787280677832014263339501 - 12715121258662668420833935373453570749288074*I)/1237940039285380274899124224, (-339216903907423793947110742819264306542397 + 494174755147303922029979279454787373566517*I)/77371252455336267181195264, (-18121350839962855576667529908850640619878381 - 37413012454129786092962531597292531089199003*I)/1237940039285380274899124224, (2489661087330511608618880408199633556675926 + 1137821536550153872137379935240732287260863*I)/309485009821345068724781056, (-136644109701594123227587016790354220062972119 + 110130123468183660555391413889600443583585272*I)/4951760157141521099596496896, (1488043981274920070468141664150073426459593 - 9691968079933445130866371609614474474327650*I)/1237940039285380274899124224, 27*(4636797403026872518131756991410164760195942 + 3369103221138229204457272860484005850416533*I)/4951760157141521099596496896, (-8534279107365915284081669381642269800472363 + 2241118846262661434336333368511372725482742*I)/1237940039285380274899124224, (60923350128174260992536531692058086830950875 - 263673488093551053385865699805250505661590126*I)/9903520314283042199192993792, (18520943561240714459282253753348921824172569 + 24846649186468656345966986622110971925703604*I)/4951760157141521099596496896, (-232781130692604829085973604213529649638644431 + 35981505277760667933017117949103953338570617*I)/9903520314283042199192993792], +# [ (8742968295129404279528270438201520488950 + 3061473358639249112126847237482570858327*I)/4835703278458516698824704, (-245657313712011778432792959787098074935273 + 253113767861878869678042729088355086740856*I)/38685626227668133590597632, (1947031161734702327107371192008011621193 - 19462330079296259148177542369999791122762*I)/9671406556917033397649408, (552856485625209001527688949522750288619217 + 392928441196156725372494335248099016686580*I)/77371252455336267181195264, (-44542866621905323121630214897126343414629 + 3265340021421335059323962377647649632959*I)/19342813113834066795298816, (136272594005759723105646069956434264218730 - 330975364731707309489523680957584684763587*I)/38685626227668133590597632, (27392593965554149283318732469825168894401 + 75157071243800133880129376047131061115278*I)/38685626227668133590597632, 7*(-357821652913266734749960136017214096276154 - 45509144466378076475315751988405961498243*I)/309485009821345068724781056, (104485001373574280824835174390219397141149 - 99041000529599568255829489765415726168162*I)/77371252455336267181195264, (1198066993119982409323525798509037696321291 + 4249784165667887866939369628840569844519936*I)/618970019642690137449562112, (-114985392587849953209115599084503853611014 - 52510376847189529234864487459476242883449*I)/77371252455336267181195264, (6094620517051332877965959223269600650951573 - 4683469779240530439185019982269137976201163*I)/1237940039285380274899124224], +# [ (611292255597977285752123848828590587708323 - 216821743518546668382662964473055912169502*I)/77371252455336267181195264, (-1144023204575811464652692396337616594307487 + 12295317806312398617498029126807758490062855*I)/309485009821345068724781056, (-374093027769390002505693378578475235158281 - 573533923565898290299607461660384634333639*I)/77371252455336267181195264, (47405570632186659000138546955372796986832987 - 2837476058950808941605000274055970055096534*I)/1237940039285380274899124224, (-571573207393621076306216726219753090535121 + 533381457185823100878764749236639320783831*I)/77371252455336267181195264, (-7096548151856165056213543560958582513797519 - 24035731898756040059329175131592138642195366*I)/618970019642690137449562112, (2396762128833271142000266170154694033849225 + 1448501087375679588770230529017516492953051*I)/309485009821345068724781056, (-150609293845161968447166237242456473262037053 + 92581148080922977153207018003184520294188436*I)/4951760157141521099596496896, 5*(270278244730804315149356082977618054486347 - 1997830155222496880429743815321662710091562*I)/1237940039285380274899124224, (62978424789588828258068912690172109324360330 + 44803641177219298311493356929537007630129097*I)/2475880078570760549798248448, 19*(-451431106327656743945775812536216598712236 + 114924966793632084379437683991151177407937*I)/1237940039285380274899124224, (63417747628891221594106738815256002143915995 - 261508229397507037136324178612212080871150958*I)/9903520314283042199192993792], +# [ (-2144231934021288786200752920446633703357 + 2305614436009705803670842248131563850246*I)/1208925819614629174706176, (-90720949337459896266067589013987007078153 - 221951119475096403601562347412753844534569*I)/19342813113834066795298816, (11590973613116630788176337262688659880376 + 6514520676308992726483494976339330626159*I)/4835703278458516698824704, 3*(-131776217149000326618649542018343107657237 + 79095042939612668486212006406818285287004*I)/38685626227668133590597632, (10100577916793945997239221374025741184951 - 28631383488085522003281589065994018550748*I)/9671406556917033397649408, 67*(10090295594251078955008130473573667572549 + 10449901522697161049513326446427839676762*I)/77371252455336267181195264, (-54270981296988368730689531355811033930513 - 3413683117592637309471893510944045467443*I)/19342813113834066795298816, (440372322928679910536575560069973699181278 - 736603803202303189048085196176918214409081*I)/77371252455336267181195264, (33220374714789391132887731139763250155295 + 92055083048787219934030779066298919603554*I)/38685626227668133590597632, 5*(-594638554579967244348856981610805281527116 - 82309245323128933521987392165716076704057*I)/309485009821345068724781056, (128056368815300084550013708313312073721955 - 114619107488668120303579745393765245911404*I)/77371252455336267181195264, 21*(59839959255173222962789517794121843393573 + 241507883613676387255359616163487405826334*I)/618970019642690137449562112], +# [ (-13454485022325376674626653802541391955147 + 184471402121905621396582628515905949793486*I)/19342813113834066795298816, (-6158730123400322562149780662133074862437105 - 3416173052604643794120262081623703514107476*I)/154742504910672534362390528, (770558003844914708453618983120686116100419 - 127758381209767638635199674005029818518766*I)/77371252455336267181195264, (-4693005771813492267479835161596671660631703 + 12703585094750991389845384539501921531449948*I)/309485009821345068724781056, (-295028157441149027913545676461260860036601 - 841544569970643160358138082317324743450770*I)/77371252455336267181195264, (56716442796929448856312202561538574275502893 + 7216818824772560379753073185990186711454778*I)/1237940039285380274899124224, 15*(-87061038932753366532685677510172566368387 + 61306141156647596310941396434445461895538*I)/154742504910672534362390528, (-3455315109680781412178133042301025723909347 - 24969329563196972466388460746447646686670670*I)/618970019642690137449562112, (2453418854160886481106557323699250865361849 + 1497886802326243014471854112161398141242514*I)/309485009821345068724781056, (-151343224544252091980004429001205664193082173 + 90471883264187337053549090899816228846836628*I)/4951760157141521099596496896, (1652018205533026103358164026239417416432989 - 9959733619236515024261775397109724431400162*I)/1237940039285380274899124224, 3*(40676374242956907656984876692623172736522006 + 31023357083037817469535762230872667581366205*I)/4951760157141521099596496896], +# [ (-1226990509403328460274658603410696548387 - 4131739423109992672186585941938392788458*I)/1208925819614629174706176, (162392818524418973411975140074368079662703 + 23706194236915374831230612374344230400704*I)/9671406556917033397649408, (-3935678233089814180000602553655565621193 + 2283744757287145199688061892165659502483*I)/1208925819614629174706176, (-2400210250844254483454290806930306285131 - 315571356806370996069052930302295432758205*I)/19342813113834066795298816, (13365917938215281056563183751673390817910 + 15911483133819801118348625831132324863881*I)/4835703278458516698824704, 3*(-215950551370668982657516660700301003897855 + 51684341999223632631602864028309400489378*I)/38685626227668133590597632, (20886089946811765149439844691320027184765 - 30806277083146786592790625980769214361844*I)/9671406556917033397649408, (562180634592713285745940856221105667874855 + 1031543963988260765153550559766662245114916*I)/77371252455336267181195264, (-65820625814810177122941758625652476012867 - 12429918324787060890804395323920477537595*I)/19342813113834066795298816, (319147848192012911298771180196635859221089 - 402403304933906769233365689834404519960394*I)/38685626227668133590597632, (23035615120921026080284733394359587955057 + 115351677687031786114651452775242461310624*I)/38685626227668133590597632, (-3426830634881892756966440108592579264936130 - 1022954961164128745603407283836365128598559*I)/309485009821345068724781056], +# [ (-192574788060137531023716449082856117537757 - 69222967328876859586831013062387845780692*I)/19342813113834066795298816, (2736383768828013152914815341491629299773262 - 2773252698016291897599353862072533475408743*I)/77371252455336267181195264, (-23280005281223837717773057436155921656805 + 214784953368021840006305033048142888879224*I)/19342813113834066795298816, (-3035247484028969580570400133318947903462326 - 2195168903335435855621328554626336958674325*I)/77371252455336267181195264, (984552428291526892214541708637840971548653 - 64006622534521425620714598573494988589378*I)/77371252455336267181195264, (-3070650452470333005276715136041262898509903 + 7286424705750810474140953092161794621989080*I)/154742504910672534362390528, (-147848877109756404594659513386972921139270 - 416306113044186424749331418059456047650861*I)/38685626227668133590597632, (55272118474097814260289392337160619494260781 + 7494019668394781211907115583302403519488058*I)/1237940039285380274899124224, (-581537886583682322424771088996959213068864 + 542191617758465339135308203815256798407429*I)/77371252455336267181195264, (-6422548983676355789975736799494791970390991 - 23524183982209004826464749309156698827737702*I)/618970019642690137449562112, 7*(180747195387024536886923192475064903482083 + 84352527693562434817771649853047924991804*I)/154742504910672534362390528, (-135485179036717001055310712747643466592387031 + 102346575226653028836678855697782273460527608*I)/4951760157141521099596496896], +# [ (3384238362616083147067025892852431152105 + 156724444932584900214919898954874618256*I)/604462909807314587353088, (-59558300950677430189587207338385764871866 + 114427143574375271097298201388331237478857*I)/4835703278458516698824704, (-1356835789870635633517710130971800616227 - 7023484098542340388800213478357340875410*I)/1208925819614629174706176, (234884918567993750975181728413524549575881 + 79757294640629983786895695752733890213506*I)/9671406556917033397649408, (-7632732774935120473359202657160313866419 + 2905452608512927560554702228553291839465*I)/1208925819614629174706176, (52291747908702842344842889809762246649489 - 520996778817151392090736149644507525892649*I)/19342813113834066795298816, (17472406829219127839967951180375981717322 + 23464704213841582137898905375041819568669*I)/4835703278458516698824704, (-911026971811893092350229536132730760943307 + 150799318130900944080399439626714846752360*I)/38685626227668133590597632, (26234457233977042811089020440646443590687 - 45650293039576452023692126463683727692890*I)/9671406556917033397649408, 3*(288348388717468992528382586652654351121357 + 454526517721403048270274049572136109264668*I)/77371252455336267181195264, (-91583492367747094223295011999405657956347 - 12704691128268298435362255538069612411331*I)/19342813113834066795298816, (411208730251327843849027957710164064354221 - 569898526380691606955496789378230959965898*I)/38685626227668133590597632], +# [ (27127513117071487872628354831658811211795 - 37765296987901990355760582016892124833857*I)/4835703278458516698824704, (1741779916057680444272938534338833170625435 + 3083041729779495966997526404685535449810378*I)/77371252455336267181195264, 3*(-60642236251815783728374561836962709533401 - 24630301165439580049891518846174101510744*I)/19342813113834066795298816, 3*(445885207364591681637745678755008757483408 - 350948497734812895032502179455610024541643*I)/38685626227668133590597632, (-47373295621391195484367368282471381775684 + 219122969294089357477027867028071400054973*I)/19342813113834066795298816, (-2801565819673198722993348253876353741520438 - 2250142129822658548391697042460298703335701*I)/77371252455336267181195264, (801448252275607253266997552356128790317119 - 50890367688077858227059515894356594900558*I)/77371252455336267181195264, (-5082187758525931944557763799137987573501207 + 11610432359082071866576699236013484487676124*I)/309485009821345068724781056, (-328925127096560623794883760398247685166830 - 643447969697471610060622160899409680422019*I)/77371252455336267181195264, 15*(2954944669454003684028194956846659916299765 + 33434406416888505837444969347824812608566*I)/1237940039285380274899124224, (-415749104352001509942256567958449835766827 + 479330966144175743357171151440020955412219*I)/77371252455336267181195264, 3*(-4639987285852134369449873547637372282914255 - 11994411888966030153196659207284951579243273*I)/1237940039285380274899124224], +# [ (-478846096206269117345024348666145495601 + 1249092488629201351470551186322814883283*I)/302231454903657293676544, (-17749319421930878799354766626365926894989 - 18264580106418628161818752318217357231971*I)/1208925819614629174706176, (2801110795431528876849623279389579072819 + 363258850073786330770713557775566973248*I)/604462909807314587353088, (-59053496693129013745775512127095650616252 + 78143588734197260279248498898321500167517*I)/4835703278458516698824704, (-283186724922498212468162690097101115349 - 6443437753863179883794497936345437398276*I)/1208925819614629174706176, (188799118826748909206887165661384998787543 + 84274736720556630026311383931055307398820*I)/9671406556917033397649408, (-5482217151670072904078758141270295025989 + 1818284338672191024475557065444481298568*I)/1208925819614629174706176, (56564463395350195513805521309731217952281 - 360208541416798112109946262159695452898431*I)/19342813113834066795298816, 11*(1259539805728870739006416869463689438068 + 1409136581547898074455004171305324917387*I)/4835703278458516698824704, 5*(-123701190701414554945251071190688818343325 + 30997157322590424677294553832111902279712*I)/38685626227668133590597632, (16130917381301373033736295883982414239781 - 32752041297570919727145380131926943374516*I)/9671406556917033397649408, (650301385108223834347093740500375498354925 + 899526407681131828596801223402866051809258*I)/77371252455336267181195264], +# [ (9011388245256140876590294262420614839483 + 8167917972423946282513000869327525382672*I)/1208925819614629174706176, (-426393174084720190126376382194036323028924 + 180692224825757525982858693158209545430621*I)/9671406556917033397649408, (24588556702197802674765733448108154175535 - 45091766022876486566421953254051868331066*I)/4835703278458516698824704, (1872113939365285277373877183750416985089691 + 3030392393733212574744122057679633775773130*I)/77371252455336267181195264, (-222173405538046189185754954524429864167549 - 75193157893478637039381059488387511299116*I)/19342813113834066795298816, (2670821320766222522963689317316937579844558 - 2645837121493554383087981511645435472169191*I)/77371252455336267181195264, 5*(-2100110309556476773796963197283876204940 + 41957457246479840487980315496957337371937*I)/19342813113834066795298816, (-5733743755499084165382383818991531258980593 - 3328949988392698205198574824396695027195732*I)/154742504910672534362390528, (707827994365259025461378911159398206329247 - 265730616623227695108042528694302299777294*I)/77371252455336267181195264, (-1442501604682933002895864804409322823788319 + 11504137805563265043376405214378288793343879*I)/309485009821345068724781056, (-56130472299445561499538726459719629522285 - 61117552419727805035810982426639329818864*I)/9671406556917033397649408, (39053692321126079849054272431599539429908717 - 10209127700342570953247177602860848130710666*I)/1237940039285380274899124224]]) + M = Matrix(S('''[ + [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64], + [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512], + [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64], + [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128], + [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16], + [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]''')) + with dotprodsimp(True): + assert M**10 == Matrix(S('''[ + [ 7369525394972778926719607798014571861/604462909807314587353088 - 229284202061790301477392339912557559*I/151115727451828646838272, -19704281515163975949388435612632058035/1208925819614629174706176 + 14319858347987648723768698170712102887*I/302231454903657293676544, -3623281909451783042932142262164941211/604462909807314587353088 - 6039240602494288615094338643452320495*I/604462909807314587353088, 109260497799140408739847239685705357695/2417851639229258349412352 - 7427566006564572463236368211555511431*I/2417851639229258349412352, -16095803767674394244695716092817006641/2417851639229258349412352 + 10336681897356760057393429626719177583*I/1208925819614629174706176, -42207883340488041844332828574359769743/2417851639229258349412352 - 182332262671671273188016400290188468499*I/4835703278458516698824704], + [50566491050825573392726324995779608259/1208925819614629174706176 - 90047007594468146222002432884052362145*I/2417851639229258349412352, 74273703462900000967697427843983822011/1208925819614629174706176 + 265947522682943571171988741842776095421*I/1208925819614629174706176, -116900341394390200556829767923360888429/2417851639229258349412352 - 53153263356679268823910621474478756845*I/2417851639229258349412352, 195407378023867871243426523048612490249/1208925819614629174706176 - 1242417915995360200584837585002906728929*I/9671406556917033397649408, -863597594389821970177319682495878193/302231454903657293676544 + 476936100741548328800725360758734300481*I/9671406556917033397649408, -3154451590535653853562472176601754835575/19342813113834066795298816 - 232909875490506237386836489998407329215*I/2417851639229258349412352], + [ -1715444997702484578716037230949868543/302231454903657293676544 + 5009695651321306866158517287924120777*I/302231454903657293676544, -30551582497996879620371947949342101301/604462909807314587353088 - 7632518367986526187139161303331519629*I/151115727451828646838272, 312680739924495153190604170938220575/18889465931478580854784 - 108664334509328818765959789219208459*I/75557863725914323419136, -14693696966703036206178521686918865509/604462909807314587353088 + 72345386220900843930147151999899692401*I/1208925819614629174706176, -8218872496728882299722894680635296519/1208925819614629174706176 - 16776782833358893712645864791807664983*I/1208925819614629174706176, 143237839169380078671242929143670635137/2417851639229258349412352 + 2883817094806115974748882735218469447*I/2417851639229258349412352], + [ 3087979417831061365023111800749855987/151115727451828646838272 + 34441942370802869368851419102423997089*I/604462909807314587353088, -148309181940158040917731426845476175667/604462909807314587353088 - 263987151804109387844966835369350904919*I/9671406556917033397649408, 50259518594816377378747711930008883165/1208925819614629174706176 - 95713974916869240305450001443767979653*I/2417851639229258349412352, 153466447023875527996457943521467271119/2417851639229258349412352 + 517285524891117105834922278517084871349*I/2417851639229258349412352, -29184653615412989036678939366291205575/604462909807314587353088 - 27551322282526322041080173287022121083*I/1208925819614629174706176, 196404220110085511863671393922447671649/1208925819614629174706176 - 1204712019400186021982272049902206202145*I/9671406556917033397649408], + [ -2632581805949645784625606590600098779/151115727451828646838272 - 589957435912868015140272627522612771*I/37778931862957161709568, 26727850893953715274702844733506310247/302231454903657293676544 - 10825791956782128799168209600694020481*I/302231454903657293676544, -1036348763702366164044671908440791295/151115727451828646838272 + 3188624571414467767868303105288107375*I/151115727451828646838272, -36814959939970644875593411585393242449/604462909807314587353088 - 18457555789119782404850043842902832647*I/302231454903657293676544, 12454491297984637815063964572803058647/604462909807314587353088 - 340489532842249733975074349495329171*I/302231454903657293676544, -19547211751145597258386735573258916681/604462909807314587353088 + 87299583775782199663414539883938008933*I/1208925819614629174706176], + [ -40281994229560039213253423262678393183/604462909807314587353088 - 2939986850065527327299273003299736641*I/604462909807314587353088, 331940684638052085845743020267462794181/2417851639229258349412352 - 284574901963624403933361315517248458969*I/1208925819614629174706176, 6453843623051745485064693628073010961/302231454903657293676544 + 36062454107479732681350914931391590957*I/604462909807314587353088, -147665869053634695632880753646441962067/604462909807314587353088 - 305987938660447291246597544085345123927*I/9671406556917033397649408, 107821369195275772166593879711259469423/2417851639229258349412352 - 11645185518211204108659001435013326687*I/302231454903657293676544, 64121228424717666402009446088588091619/1208925819614629174706176 + 265557133337095047883844369272389762133*I/1208925819614629174706176]]''')) + +def test_issue_17247_expression_blowup_5(): + M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) + with dotprodsimp(True): + assert M.charpoly('x') == PurePoly(x**6 + (-6 - 6*I)*x**5 + 36*I*x**4, x, domain='EX') + +def test_issue_17247_expression_blowup_6(): + M = Matrix(8, 8, [x+i for i in range (64)]) + with dotprodsimp(True): + assert M.det('bareiss') == 0 + +def test_issue_17247_expression_blowup_7(): + M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) + with dotprodsimp(True): + assert M.det('berkowitz') == 0 + +def test_issue_17247_expression_blowup_8(): + M = Matrix(8, 8, [x+i for i in range (64)]) + with dotprodsimp(True): + assert M.det('lu') == 0 + +def test_issue_17247_expression_blowup_9(): + M = Matrix(8, 8, [x+i for i in range (64)]) + with dotprodsimp(True): + assert M.rref() == (Matrix([ + [1, 0, -1, -2, -3, -4, -5, -6], + [0, 1, 2, 3, 4, 5, 6, 7], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]]), (0, 1)) + +def test_issue_17247_expression_blowup_10(): + M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) + with dotprodsimp(True): + assert M.cofactor(0, 0) == 0 + +def test_issue_17247_expression_blowup_11(): + M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) + with dotprodsimp(True): + assert M.cofactor_matrix() == Matrix(6, 6, [0]*36) + +def test_issue_17247_expression_blowup_12(): + M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) + with dotprodsimp(True): + assert M.eigenvals() == {6: 1, 6*I: 1, 0: 4} + +def test_issue_17247_expression_blowup_13(): + M = Matrix([ + [ 0, 1 - x, x + 1, 1 - x], + [1 - x, x + 1, 0, x + 1], + [ 0, 1 - x, x + 1, 1 - x], + [ 0, 0, 1 - x, 0]]) + + ev = M.eigenvects() + assert ev[0] == (0, 2, [Matrix([0, -1, 0, 1])]) + assert ev[1][0] == x - sqrt(2)*(x - 1) + 1 + assert ev[1][1] == 1 + assert ev[1][2][0].expand(deep=False, numer=True) == Matrix([ + [(-x + sqrt(2)*(x - 1) - 1)/(x - 1)], + [-4*x/(x**2 - 2*x + 1) + (x + 1)*(x - sqrt(2)*(x - 1) + 1)/(x**2 - 2*x + 1)], + [(-x + sqrt(2)*(x - 1) - 1)/(x - 1)], + [1] + ]) + + assert ev[2][0] == x + sqrt(2)*(x - 1) + 1 + assert ev[2][1] == 1 + assert ev[2][2][0].expand(deep=False, numer=True) == Matrix([ + [(-x - sqrt(2)*(x - 1) - 1)/(x - 1)], + [-4*x/(x**2 - 2*x + 1) + (x + 1)*(x + sqrt(2)*(x - 1) + 1)/(x**2 - 2*x + 1)], + [(-x - sqrt(2)*(x - 1) - 1)/(x - 1)], + [1] + ]) + + +def test_issue_17247_expression_blowup_14(): + M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4) + with dotprodsimp(True): + assert M.echelon_form() == Matrix([ + [x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x], + [ 0, 4*x, 0, 4*x, 0, 4*x, 0, 4*x], + [ 0, 0, 0, 0, 0, 0, 0, 0], + [ 0, 0, 0, 0, 0, 0, 0, 0], + [ 0, 0, 0, 0, 0, 0, 0, 0], + [ 0, 0, 0, 0, 0, 0, 0, 0], + [ 0, 0, 0, 0, 0, 0, 0, 0], + [ 0, 0, 0, 0, 0, 0, 0, 0]]) + +def test_issue_17247_expression_blowup_15(): + M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4) + with dotprodsimp(True): + assert M.rowspace() == [Matrix([[x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x]]), Matrix([[0, 4*x, 0, 4*x, 0, 4*x, 0, 4*x]])] + +def test_issue_17247_expression_blowup_16(): + M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4) + with dotprodsimp(True): + assert M.columnspace() == [Matrix([[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x]]), Matrix([[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1]])] + +def test_issue_17247_expression_blowup_17(): + M = Matrix(8, 8, [x+i for i in range (64)]) + with dotprodsimp(True): + assert M.nullspace() == [ + Matrix([[1],[-2],[1],[0],[0],[0],[0],[0]]), + Matrix([[2],[-3],[0],[1],[0],[0],[0],[0]]), + Matrix([[3],[-4],[0],[0],[1],[0],[0],[0]]), + Matrix([[4],[-5],[0],[0],[0],[1],[0],[0]]), + Matrix([[5],[-6],[0],[0],[0],[0],[1],[0]]), + Matrix([[6],[-7],[0],[0],[0],[0],[0],[1]])] + +def test_issue_17247_expression_blowup_18(): + M = Matrix(6, 6, ([1+x, 1-x]*3 + [1-x, 1+x]*3)*3) + with dotprodsimp(True): + assert not M.is_nilpotent() + +def test_issue_17247_expression_blowup_19(): + M = Matrix(S('''[ + [ -3/4, 0, 1/4 + I/2, 0], + [ 0, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], + [ 1/2 - I, 0, 0, 0], + [ 0, 0, 0, -177/128 - 1369*I/128]]''')) + with dotprodsimp(True): + assert not M.is_diagonalizable() + +def test_issue_17247_expression_blowup_20(): + M = Matrix([ + [x + 1, 1 - x, 0, 0], + [1 - x, x + 1, 0, x + 1], + [ 0, 1 - x, x + 1, 0], + [ 0, 0, 0, x + 1]]) + with dotprodsimp(True): + assert M.diagonalize() == (Matrix([ + [1, 1, 0, (x + 1)/(x - 1)], + [1, -1, 0, 0], + [1, 1, 1, 0], + [0, 0, 0, 1]]), + Matrix([ + [2, 0, 0, 0], + [0, 2*x, 0, 0], + [0, 0, x + 1, 0], + [0, 0, 0, x + 1]])) + +def test_issue_17247_expression_blowup_21(): + M = Matrix(S('''[ + [ -3/4, 45/32 - 37*I/16, 0, 0], + [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], + [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], + [ 0, 0, 0, -177/128 - 1369*I/128]]''')) + with dotprodsimp(True): + assert M.inv(method='GE') == Matrix(S('''[ + [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], + [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], + [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], + [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) + +def test_issue_17247_expression_blowup_22(): + M = Matrix(S('''[ + [ -3/4, 45/32 - 37*I/16, 0, 0], + [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], + [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], + [ 0, 0, 0, -177/128 - 1369*I/128]]''')) + with dotprodsimp(True): + assert M.inv(method='LU') == Matrix(S('''[ + [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], + [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], + [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], + [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) + +def test_issue_17247_expression_blowup_23(): + M = Matrix(S('''[ + [ -3/4, 45/32 - 37*I/16, 0, 0], + [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], + [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], + [ 0, 0, 0, -177/128 - 1369*I/128]]''')) + with dotprodsimp(True): + assert M.inv(method='ADJ').expand() == Matrix(S('''[ + [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], + [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], + [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], + [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) + +def test_issue_17247_expression_blowup_24(): + M = SparseMatrix(S('''[ + [ -3/4, 45/32 - 37*I/16, 0, 0], + [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], + [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], + [ 0, 0, 0, -177/128 - 1369*I/128]]''')) + with dotprodsimp(True): + assert M.inv(method='CH') == Matrix(S('''[ + [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], + [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], + [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], + [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) + +def test_issue_17247_expression_blowup_25(): + M = SparseMatrix(S('''[ + [ -3/4, 45/32 - 37*I/16, 0, 0], + [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], + [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], + [ 0, 0, 0, -177/128 - 1369*I/128]]''')) + with dotprodsimp(True): + assert M.inv(method='LDL') == Matrix(S('''[ + [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], + [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], + [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], + [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) + +def test_issue_17247_expression_blowup_26(): + M = Matrix(S('''[ + [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128], + [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024], + [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64], + [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512], + [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64], + [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128], + [ -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16], + [ 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]''')) + with dotprodsimp(True): + assert M.rank() == 4 + +def test_issue_17247_expression_blowup_27(): + M = Matrix([ + [ 0, 1 - x, x + 1, 1 - x], + [1 - x, x + 1, 0, x + 1], + [ 0, 1 - x, x + 1, 1 - x], + [ 0, 0, 1 - x, 0]]) + with dotprodsimp(True): + P, J = M.jordan_form() + assert P.expand() == Matrix(S('''[ + [ 0, 4*x/(x**2 - 2*x + 1), -(-17*x**4 + 12*sqrt(2)*x**4 - 4*sqrt(2)*x**3 + 6*x**3 - 6*x - 4*sqrt(2)*x + 12*sqrt(2) + 17)/(-7*x**4 + 5*sqrt(2)*x**4 - 6*sqrt(2)*x**3 + 8*x**3 - 2*x**2 + 8*x + 6*sqrt(2)*x - 5*sqrt(2) - 7), -(12*sqrt(2)*x**4 + 17*x**4 - 6*x**3 - 4*sqrt(2)*x**3 - 4*sqrt(2)*x + 6*x - 17 + 12*sqrt(2))/(7*x**4 + 5*sqrt(2)*x**4 - 6*sqrt(2)*x**3 - 8*x**3 + 2*x**2 - 8*x + 6*sqrt(2)*x - 5*sqrt(2) + 7)], + [x - 1, x/(x - 1) + 1/(x - 1), (-7*x**3 + 5*sqrt(2)*x**3 - x**2 + sqrt(2)*x**2 - sqrt(2)*x - x - 5*sqrt(2) - 7)/(-3*x**3 + 2*sqrt(2)*x**3 - 2*sqrt(2)*x**2 + 3*x**2 + 2*sqrt(2)*x + 3*x - 3 - 2*sqrt(2)), (7*x**3 + 5*sqrt(2)*x**3 + x**2 + sqrt(2)*x**2 - sqrt(2)*x + x - 5*sqrt(2) + 7)/(2*sqrt(2)*x**3 + 3*x**3 - 3*x**2 - 2*sqrt(2)*x**2 - 3*x + 2*sqrt(2)*x - 2*sqrt(2) + 3)], + [ 0, 1, -(-3*x**2 + 2*sqrt(2)*x**2 + 2*x - 3 - 2*sqrt(2))/(-x**2 + sqrt(2)*x**2 - 2*sqrt(2)*x + 1 + sqrt(2)), -(2*sqrt(2)*x**2 + 3*x**2 - 2*x - 2*sqrt(2) + 3)/(x**2 + sqrt(2)*x**2 - 2*sqrt(2)*x - 1 + sqrt(2))], + [1 - x, 0, 1, 1]]''')).expand() + assert J == Matrix(S('''[ + [0, 1, 0, 0], + [0, 0, 0, 0], + [0, 0, x - sqrt(2)*(x - 1) + 1, 0], + [0, 0, 0, x + sqrt(2)*(x - 1) + 1]]''')) + +def test_issue_17247_expression_blowup_28(): + M = Matrix(S('''[ + [ -3/4, 45/32 - 37*I/16, 0, 0], + [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], + [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], + [ 0, 0, 0, -177/128 - 1369*I/128]]''')) + with dotprodsimp(True): + assert M.singular_values() == S('''[ + sqrt(14609315/131072 + sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) + 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2 + sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2), + sqrt(14609315/131072 - sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) + 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2 + sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2), + sqrt(14609315/131072 - sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2 + sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) - 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2), + sqrt(14609315/131072 - sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2 - sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) - 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2)]''') + + +def test_issue_16823(): + # This still needs to be fixed if not using dotprodsimp. + M = Matrix(S('''[ + [1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I,3/64+13/64*I,-23/32-59/256*I,15/128-3/32*I,19/256+551/1024*I], + [21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I,119/128+143/128*I,-10879/2048+4343/4096*I,129/256-549/512*I,42533/16384+29103/8192*I], + [-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I,3/64+13/64*I,-23/32-59/256*I], + [1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I,119/128+143/128*I,-10879/2048+4343/4096*I], + [-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I], + [1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I], + [-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I], + [-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I], + [0,-6,-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I], + [1,-9/4+3*I,-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I], + [0,-4*I,0,-6,-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I], + [0,1/4+1/2*I,1,-9/4+3*I,-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I]]''')) + with dotprodsimp(True): + assert M.rank() == 8 + + +def test_issue_18531(): + # solve_linear_system still needs fixing but the rref works. + M = Matrix([ + [1, 1, 1, 1, 1, 0, 1, 0, 0], + [1 + sqrt(2), -1 + sqrt(2), 1 - sqrt(2), -sqrt(2) - 1, 1, 1, -1, 1, 1], + [-5 + 2*sqrt(2), -5 - 2*sqrt(2), -5 - 2*sqrt(2), -5 + 2*sqrt(2), -7, 2, -7, -2, 0], + [-3*sqrt(2) - 1, 1 - 3*sqrt(2), -1 + 3*sqrt(2), 1 + 3*sqrt(2), -7, -5, 7, -5, 3], + [7 - 4*sqrt(2), 4*sqrt(2) + 7, 4*sqrt(2) + 7, 7 - 4*sqrt(2), 7, -12, 7, 12, 0], + [-1 + 3*sqrt(2), 1 + 3*sqrt(2), -3*sqrt(2) - 1, 1 - 3*sqrt(2), 7, -5, -7, -5, 3], + [-3 + 2*sqrt(2), -3 - 2*sqrt(2), -3 - 2*sqrt(2), -3 + 2*sqrt(2), -1, 2, -1, -2, 0], + [1 - sqrt(2), -sqrt(2) - 1, 1 + sqrt(2), -1 + sqrt(2), -1, 1, 1, 1, 1] + ]) + with dotprodsimp(True): + assert M.rref() == (Matrix([ + [1, 0, 0, 0, 0, 0, 0, 0, S(1)/2], + [0, 1, 0, 0, 0, 0, 0, 0, -S(1)/2], + [0, 0, 1, 0, 0, 0, 0, 0, S(1)/2], + [0, 0, 0, 1, 0, 0, 0, 0, -S(1)/2], + [0, 0, 0, 0, 1, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0, -S(1)/2], + [0, 0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 1, -S(1)/2]]), (0, 1, 2, 3, 4, 5, 6, 7)) + + +def test_creation(): + raises(ValueError, lambda: Matrix(5, 5, range(20))) + raises(ValueError, lambda: Matrix(5, -1, [])) + raises(IndexError, lambda: Matrix((1, 2))[2]) + with raises(IndexError): + Matrix((1, 2))[3] = 5 + + assert Matrix() == Matrix([]) == Matrix([[]]) == Matrix(0, 0, []) + # anything used to be allowed in a matrix + with warns_deprecated_sympy(): + assert Matrix([[[1], (2,)]]).tolist() == [[[1], (2,)]] + with warns_deprecated_sympy(): + assert Matrix([[[1], (2,)]]).T.tolist() == [[[1]], [(2,)]] + M = Matrix([[0]]) + with warns_deprecated_sympy(): + M[0, 0] = S.EmptySet + + a = Matrix([[x, 0], [0, 0]]) + m = a + assert m.cols == m.rows + assert m.cols == 2 + assert m[:] == [x, 0, 0, 0] + + b = Matrix(2, 2, [x, 0, 0, 0]) + m = b + assert m.cols == m.rows + assert m.cols == 2 + assert m[:] == [x, 0, 0, 0] + + assert a == b + + assert Matrix(b) == b + + c23 = Matrix(2, 3, range(1, 7)) + c13 = Matrix(1, 3, range(7, 10)) + c = Matrix([c23, c13]) + assert c.cols == 3 + assert c.rows == 3 + assert c[:] == [1, 2, 3, 4, 5, 6, 7, 8, 9] + + assert Matrix(eye(2)) == eye(2) + assert ImmutableMatrix(ImmutableMatrix(eye(2))) == ImmutableMatrix(eye(2)) + assert ImmutableMatrix(c) == c.as_immutable() + assert Matrix(ImmutableMatrix(c)) == ImmutableMatrix(c).as_mutable() + + assert c is not Matrix(c) + + dat = [[ones(3,2), ones(3,3)*2], [ones(2,3)*3, ones(2,2)*4]] + M = Matrix(dat) + assert M == Matrix([ + [1, 1, 2, 2, 2], + [1, 1, 2, 2, 2], + [1, 1, 2, 2, 2], + [3, 3, 3, 4, 4], + [3, 3, 3, 4, 4]]) + assert M.tolist() != dat + # keep block form if evaluate=False + assert Matrix(dat, evaluate=False).tolist() == dat + A = MatrixSymbol("A", 2, 2) + dat = [ones(2), A] + assert Matrix(dat) == Matrix([ + [ 1, 1], + [ 1, 1], + [A[0, 0], A[0, 1]], + [A[1, 0], A[1, 1]]]) + with warns_deprecated_sympy(): + assert Matrix(dat, evaluate=False).tolist() == [[i] for i in dat] + + # 0-dim tolerance + assert Matrix([ones(2), ones(0)]) == Matrix([ones(2)]) + raises(ValueError, lambda: Matrix([ones(2), ones(0, 3)])) + raises(ValueError, lambda: Matrix([ones(2), ones(3, 0)])) + + # mix of Matrix and iterable + M = Matrix([[1, 2], [3, 4]]) + M2 = Matrix([M, (5, 6)]) + assert M2 == Matrix([[1, 2], [3, 4], [5, 6]]) + + +def test_irregular_block(): + assert Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3, + ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7) == Matrix([ + [1, 2, 2, 2, 3, 3], + [1, 2, 2, 2, 3, 3], + [4, 2, 2, 2, 5, 5], + [6, 6, 7, 7, 5, 5]]) + + +def test_tolist(): + lst = [[S.One, S.Half, x*y, S.Zero], [x, y, z, x**2], [y, -S.One, z*x, 3]] + m = Matrix(lst) + assert m.tolist() == lst + + +def test_as_mutable(): + assert zeros(0, 3).as_mutable() == zeros(0, 3) + assert zeros(0, 3).as_immutable() == ImmutableMatrix(zeros(0, 3)) + assert zeros(3, 0).as_immutable() == ImmutableMatrix(zeros(3, 0)) + + +def test_slicing(): + m0 = eye(4) + assert m0[:3, :3] == eye(3) + assert m0[2:4, 0:2] == zeros(2) + + m1 = Matrix(3, 3, lambda i, j: i + j) + assert m1[0, :] == Matrix(1, 3, (0, 1, 2)) + assert m1[1:3, 1] == Matrix(2, 1, (2, 3)) + + m2 = Matrix([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]) + assert m2[:, -1] == Matrix(4, 1, [3, 7, 11, 15]) + assert m2[-2:, :] == Matrix([[8, 9, 10, 11], [12, 13, 14, 15]]) + + +def test_submatrix_assignment(): + m = zeros(4) + m[2:4, 2:4] = eye(2) + assert m == Matrix(((0, 0, 0, 0), + (0, 0, 0, 0), + (0, 0, 1, 0), + (0, 0, 0, 1))) + m[:2, :2] = eye(2) + assert m == eye(4) + m[:, 0] = Matrix(4, 1, (1, 2, 3, 4)) + assert m == Matrix(((1, 0, 0, 0), + (2, 1, 0, 0), + (3, 0, 1, 0), + (4, 0, 0, 1))) + m[:, :] = zeros(4) + assert m == zeros(4) + m[:, :] = [(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16)] + assert m == Matrix(((1, 2, 3, 4), + (5, 6, 7, 8), + (9, 10, 11, 12), + (13, 14, 15, 16))) + m[:2, 0] = [0, 0] + assert m == Matrix(((0, 2, 3, 4), + (0, 6, 7, 8), + (9, 10, 11, 12), + (13, 14, 15, 16))) + + +def test_extract(): + m = Matrix(4, 3, lambda i, j: i*3 + j) + assert m.extract([0, 1, 3], [0, 1]) == Matrix(3, 2, [0, 1, 3, 4, 9, 10]) + assert m.extract([0, 3], [0, 0, 2]) == Matrix(2, 3, [0, 0, 2, 9, 9, 11]) + assert m.extract(range(4), range(3)) == m + raises(IndexError, lambda: m.extract([4], [0])) + raises(IndexError, lambda: m.extract([0], [3])) + + +def test_reshape(): + m0 = eye(3) + assert m0.reshape(1, 9) == Matrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1)) + m1 = Matrix(3, 4, lambda i, j: i + j) + assert m1.reshape( + 4, 3) == Matrix(((0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5))) + assert m1.reshape(2, 6) == Matrix(((0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5))) + + +def test_applyfunc(): + m0 = eye(3) + assert m0.applyfunc(lambda x: 2*x) == eye(3)*2 + assert m0.applyfunc(lambda x: 0) == zeros(3) + + +def test_expand(): + m0 = Matrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]]) + # Test if expand() returns a matrix + m1 = m0.expand() + assert m1 == Matrix( + [[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]]) + + a = Symbol('a', real=True) + + assert Matrix([exp(I*a)]).expand(complex=True) == \ + Matrix([cos(a) + I*sin(a)]) + + assert Matrix([[0, 1, 2], [0, 0, -1], [0, 0, 0]]).exp() == Matrix([ + [1, 1, Rational(3, 2)], + [0, 1, -1], + [0, 0, 1]] + ) + +def test_refine(): + m0 = Matrix([[Abs(x)**2, sqrt(x**2)], + [sqrt(x**2)*Abs(y)**2, sqrt(y**2)*Abs(x)**2]]) + m1 = m0.refine(Q.real(x) & Q.real(y)) + assert m1 == Matrix([[x**2, Abs(x)], [y**2*Abs(x), x**2*Abs(y)]]) + + m1 = m0.refine(Q.positive(x) & Q.positive(y)) + assert m1 == Matrix([[x**2, x], [x*y**2, x**2*y]]) + + m1 = m0.refine(Q.negative(x) & Q.negative(y)) + assert m1 == Matrix([[x**2, -x], [-x*y**2, -x**2*y]]) + +def test_random(): + M = randMatrix(3, 3) + M = randMatrix(3, 3, seed=3) + assert M == randMatrix(3, 3, seed=3) + + M = randMatrix(3, 4, 0, 150) + M = randMatrix(3, seed=4, symmetric=True) + assert M == randMatrix(3, seed=4, symmetric=True) + + S = M.copy() + S.simplify() + assert S == M # doesn't fail when elements are Numbers, not int + + rng = random.Random(4) + assert M == randMatrix(3, symmetric=True, prng=rng) + + # Ensure symmetry + for size in (10, 11): # Test odd and even + for percent in (100, 70, 30): + M = randMatrix(size, symmetric=True, percent=percent, prng=rng) + assert M == M.T + + M = randMatrix(10, min=1, percent=70) + zero_count = 0 + for i in range(M.shape[0]): + for j in range(M.shape[1]): + if M[i, j] == 0: + zero_count += 1 + assert zero_count == 30 + +def test_inverse(): + A = eye(4) + assert A.inv() == eye(4) + assert A.inv(method="LU") == eye(4) + assert A.inv(method="ADJ") == eye(4) + assert A.inv(method="CH") == eye(4) + assert A.inv(method="LDL") == eye(4) + assert A.inv(method="QR") == eye(4) + A = Matrix([[2, 3, 5], + [3, 6, 2], + [8, 3, 6]]) + Ainv = A.inv() + assert A*Ainv == eye(3) + assert A.inv(method="LU") == Ainv + assert A.inv(method="ADJ") == Ainv + assert A.inv(method="CH") == Ainv + assert A.inv(method="LDL") == Ainv + assert A.inv(method="QR") == Ainv + + AA = Matrix([[0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0], + [1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0], + [1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1], + [1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0], + [1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0], + [1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1], + [0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0], + [1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1], + [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1], + [1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0], + [1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0], + [0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1], + [1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0], + [0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0], + [1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1], + [0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1], + [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1], + [0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1], + [0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1], + [0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0]]) + assert AA.inv(method="BLOCK") * AA == eye(AA.shape[0]) + # test that immutability is not a problem + cls = ImmutableMatrix + m = cls([[48, 49, 31], + [ 9, 71, 94], + [59, 28, 65]]) + assert all(type(m.inv(s)) is cls for s in 'GE ADJ LU CH LDL QR'.split()) + cls = ImmutableSparseMatrix + m = cls([[48, 49, 31], + [ 9, 71, 94], + [59, 28, 65]]) + assert all(type(m.inv(s)) is cls for s in 'GE ADJ LU CH LDL QR'.split()) + + +def test_matrix_inverse_mod(): + A = Matrix(2, 1, [1, 0]) + raises(NonSquareMatrixError, lambda: A.inv_mod(2)) + A = Matrix(2, 2, [1, 0, 0, 0]) + raises(ValueError, lambda: A.inv_mod(2)) + A = Matrix(2, 2, [1, 2, 3, 4]) + Ai = Matrix(2, 2, [1, 1, 0, 1]) + assert A.inv_mod(3) == Ai + A = Matrix(2, 2, [1, 0, 0, 1]) + assert A.inv_mod(2) == A + A = Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) + raises(ValueError, lambda: A.inv_mod(5)) + A = Matrix(3, 3, [5, 1, 3, 2, 6, 0, 2, 1, 1]) + Ai = Matrix(3, 3, [6, 8, 0, 1, 5, 6, 5, 6, 4]) + assert A.inv_mod(9) == Ai + A = Matrix(3, 3, [1, 6, -3, 4, 1, -5, 3, -5, 5]) + Ai = Matrix(3, 3, [4, 3, 3, 1, 2, 5, 1, 5, 1]) + assert A.inv_mod(6) == Ai + A = Matrix(3, 3, [1, 6, 1, 4, 1, 5, 3, 2, 5]) + Ai = Matrix(3, 3, [6, 0, 3, 6, 6, 4, 1, 6, 1]) + assert A.inv_mod(7) == Ai + + +def test_jacobian_hessian(): + L = Matrix(1, 2, [x**2*y, 2*y**2 + x*y]) + syms = [x, y] + assert L.jacobian(syms) == Matrix([[2*x*y, x**2], [y, 4*y + x]]) + + L = Matrix(1, 2, [x, x**2*y**3]) + assert L.jacobian(syms) == Matrix([[1, 0], [2*x*y**3, x**2*3*y**2]]) + + f = x**2*y + syms = [x, y] + assert hessian(f, syms) == Matrix([[2*y, 2*x], [2*x, 0]]) + + f = x**2*y**3 + assert hessian(f, syms) == \ + Matrix([[2*y**3, 6*x*y**2], [6*x*y**2, 6*x**2*y]]) + + f = z + x*y**2 + g = x**2 + 2*y**3 + ans = Matrix([[0, 2*y], + [2*y, 2*x]]) + assert ans == hessian(f, Matrix([x, y])) + assert ans == hessian(f, Matrix([x, y]).T) + assert hessian(f, (y, x), [g]) == Matrix([ + [ 0, 6*y**2, 2*x], + [6*y**2, 2*x, 2*y], + [ 2*x, 2*y, 0]]) + + +def test_wronskian(): + assert wronskian([cos(x), sin(x)], x) == cos(x)**2 + sin(x)**2 + assert wronskian([exp(x), exp(2*x)], x) == exp(3*x) + assert wronskian([exp(x), x], x) == exp(x) - x*exp(x) + assert wronskian([1, x, x**2], x) == 2 + w1 = -6*exp(x)*sin(x)*x + 6*cos(x)*exp(x)*x**2 - 6*exp(x)*cos(x)*x - \ + exp(x)*cos(x)*x**3 + exp(x)*sin(x)*x**3 + assert wronskian([exp(x), cos(x), x**3], x).expand() == w1 + assert wronskian([exp(x), cos(x), x**3], x, method='berkowitz').expand() \ + == w1 + w2 = -x**3*cos(x)**2 - x**3*sin(x)**2 - 6*x*cos(x)**2 - 6*x*sin(x)**2 + assert wronskian([sin(x), cos(x), x**3], x).expand() == w2 + assert wronskian([sin(x), cos(x), x**3], x, method='berkowitz').expand() \ + == w2 + assert wronskian([], x) == 1 + + +def test_subs(): + assert Matrix([[1, x], [x, 4]]).subs(x, 5) == Matrix([[1, 5], [5, 4]]) + assert Matrix([[x, 2], [x + y, 4]]).subs([[x, -1], [y, -2]]) == \ + Matrix([[-1, 2], [-3, 4]]) + assert Matrix([[x, 2], [x + y, 4]]).subs([(x, -1), (y, -2)]) == \ + Matrix([[-1, 2], [-3, 4]]) + assert Matrix([[x, 2], [x + y, 4]]).subs({x: -1, y: -2}) == \ + Matrix([[-1, 2], [-3, 4]]) + assert Matrix([x*y]).subs({x: y - 1, y: x - 1}, simultaneous=True) == \ + Matrix([(x - 1)*(y - 1)]) + + for cls in classes: + assert Matrix([[2, 0], [0, 2]]) == cls.eye(2).subs(1, 2) + +def test_xreplace(): + assert Matrix([[1, x], [x, 4]]).xreplace({x: 5}) == \ + Matrix([[1, 5], [5, 4]]) + assert Matrix([[x, 2], [x + y, 4]]).xreplace({x: -1, y: -2}) == \ + Matrix([[-1, 2], [-3, 4]]) + for cls in classes: + assert Matrix([[2, 0], [0, 2]]) == cls.eye(2).xreplace({1: 2}) + +def test_simplify(): + n = Symbol('n') + f = Function('f') + + M = Matrix([[ 1/x + 1/y, (x + x*y) / x ], + [ (f(x) + y*f(x))/f(x), 2 * (1/n - cos(n * pi)/n) / pi ]]) + M.simplify() + assert M == Matrix([[ (x + y)/(x * y), 1 + y ], + [ 1 + y, 2*((1 - 1*cos(pi*n))/(pi*n)) ]]) + eq = (1 + x)**2 + M = Matrix([[eq]]) + M.simplify() + assert M == Matrix([[eq]]) + M.simplify(ratio=oo) + assert M == Matrix([[eq.simplify(ratio=oo)]]) + + +def test_transpose(): + M = Matrix([[1, 2, 3, 4, 5, 6, 7, 8, 9, 0], + [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]]) + assert M.T == Matrix( [ [1, 1], + [2, 2], + [3, 3], + [4, 4], + [5, 5], + [6, 6], + [7, 7], + [8, 8], + [9, 9], + [0, 0] ]) + assert M.T.T == M + assert M.T == M.transpose() + + +def test_conjugate(): + M = Matrix([[0, I, 5], + [1, 2, 0]]) + + assert M.T == Matrix([[0, 1], + [I, 2], + [5, 0]]) + + assert M.C == Matrix([[0, -I, 5], + [1, 2, 0]]) + assert M.C == M.conjugate() + + assert M.H == M.T.C + assert M.H == Matrix([[ 0, 1], + [-I, 2], + [ 5, 0]]) + + +def test_conj_dirac(): + raises(AttributeError, lambda: eye(3).D) + + M = Matrix([[1, I, I, I], + [0, 1, I, I], + [0, 0, 1, I], + [0, 0, 0, 1]]) + + assert M.D == Matrix([[ 1, 0, 0, 0], + [-I, 1, 0, 0], + [-I, -I, -1, 0], + [-I, -I, I, -1]]) + + +def test_trace(): + M = Matrix([[1, 0, 0], + [0, 5, 0], + [0, 0, 8]]) + assert M.trace() == 14 + + +def test_shape(): + M = Matrix([[x, 0, 0], + [0, y, 0]]) + assert M.shape == (2, 3) + + +def test_col_row_op(): + M = Matrix([[x, 0, 0], + [0, y, 0]]) + M.row_op(1, lambda r, j: r + j + 1) + assert M == Matrix([[x, 0, 0], + [1, y + 2, 3]]) + + M.col_op(0, lambda c, j: c + y**j) + assert M == Matrix([[x + 1, 0, 0], + [1 + y, y + 2, 3]]) + + # neither row nor slice give copies that allow the original matrix to + # be changed + assert M.row(0) == Matrix([[x + 1, 0, 0]]) + r1 = M.row(0) + r1[0] = 42 + assert M[0, 0] == x + 1 + r1 = M[0, :-1] # also testing negative slice + r1[0] = 42 + assert M[0, 0] == x + 1 + c1 = M.col(0) + assert c1 == Matrix([x + 1, 1 + y]) + c1[0] = 0 + assert M[0, 0] == x + 1 + c1 = M[:, 0] + c1[0] = 42 + assert M[0, 0] == x + 1 + + +def test_zip_row_op(): + for cls in classes[:2]: # XXX: immutable matrices don't support row ops + M = cls.eye(3) + M.zip_row_op(1, 0, lambda v, u: v + 2*u) + assert M == cls([[1, 0, 0], + [2, 1, 0], + [0, 0, 1]]) + + M = cls.eye(3)*2 + M[0, 1] = -1 + M.zip_row_op(1, 0, lambda v, u: v + 2*u); M + assert M == cls([[2, -1, 0], + [4, 0, 0], + [0, 0, 2]]) + +def test_issue_3950(): + m = Matrix([1, 2, 3]) + a = Matrix([1, 2, 3]) + b = Matrix([2, 2, 3]) + assert not (m in []) + assert not (m in [1]) + assert m != 1 + assert m == a + assert m != b + + +def test_issue_3981(): + class Index1: + def __index__(self): + return 1 + + class Index2: + def __index__(self): + return 2 + index1 = Index1() + index2 = Index2() + + m = Matrix([1, 2, 3]) + + assert m[index2] == 3 + + m[index2] = 5 + assert m[2] == 5 + + m = Matrix([[1, 2, 3], [4, 5, 6]]) + assert m[index1, index2] == 6 + assert m[1, index2] == 6 + assert m[index1, 2] == 6 + + m[index1, index2] = 4 + assert m[1, 2] == 4 + m[1, index2] = 6 + assert m[1, 2] == 6 + m[index1, 2] = 8 + assert m[1, 2] == 8 + + +def test_evalf(): + a = Matrix([sqrt(5), 6]) + assert all(a.evalf()[i] == a[i].evalf() for i in range(2)) + assert all(a.evalf(2)[i] == a[i].evalf(2) for i in range(2)) + assert all(a.n(2)[i] == a[i].n(2) for i in range(2)) + + +def test_is_symbolic(): + a = Matrix([[x, x], [x, x]]) + assert a.is_symbolic() is True + a = Matrix([[1, 2, 3, 4], [5, 6, 7, 8]]) + assert a.is_symbolic() is False + a = Matrix([[1, 2, 3, 4], [5, 6, x, 8]]) + assert a.is_symbolic() is True + a = Matrix([[1, x, 3]]) + assert a.is_symbolic() is True + a = Matrix([[1, 2, 3]]) + assert a.is_symbolic() is False + a = Matrix([[1], [x], [3]]) + assert a.is_symbolic() is True + a = Matrix([[1], [2], [3]]) + assert a.is_symbolic() is False + + +def test_is_upper(): + a = Matrix([[1, 2, 3]]) + assert a.is_upper is True + a = Matrix([[1], [2], [3]]) + assert a.is_upper is False + a = zeros(4, 2) + assert a.is_upper is True + + +def test_is_lower(): + a = Matrix([[1, 2, 3]]) + assert a.is_lower is False + a = Matrix([[1], [2], [3]]) + assert a.is_lower is True + + +def test_is_nilpotent(): + a = Matrix(4, 4, [0, 2, 1, 6, 0, 0, 1, 2, 0, 0, 0, 3, 0, 0, 0, 0]) + assert a.is_nilpotent() + a = Matrix([[1, 0], [0, 1]]) + assert not a.is_nilpotent() + a = Matrix([]) + assert a.is_nilpotent() + + +def test_zeros_ones_fill(): + n, m = 3, 5 + + a = zeros(n, m) + a.fill( 5 ) + + b = 5 * ones(n, m) + + assert a == b + assert a.rows == b.rows == 3 + assert a.cols == b.cols == 5 + assert a.shape == b.shape == (3, 5) + assert zeros(2) == zeros(2, 2) + assert ones(2) == ones(2, 2) + assert zeros(2, 3) == Matrix(2, 3, [0]*6) + assert ones(2, 3) == Matrix(2, 3, [1]*6) + + a.fill(0) + assert a == zeros(n, m) + + +def test_empty_zeros(): + a = zeros(0) + assert a == Matrix() + a = zeros(0, 2) + assert a.rows == 0 + assert a.cols == 2 + a = zeros(2, 0) + assert a.rows == 2 + assert a.cols == 0 + + +def test_issue_3749(): + a = Matrix([[x**2, x*y], [x*sin(y), x*cos(y)]]) + assert a.diff(x) == Matrix([[2*x, y], [sin(y), cos(y)]]) + assert Matrix([ + [x, -x, x**2], + [exp(x), 1/x - exp(-x), x + 1/x]]).limit(x, oo) == \ + Matrix([[oo, -oo, oo], [oo, 0, oo]]) + assert Matrix([ + [(exp(x) - 1)/x, 2*x + y*x, x**x ], + [1/x, abs(x), abs(sin(x + 1))]]).limit(x, 0) == \ + Matrix([[1, 0, 1], [oo, 0, sin(1)]]) + assert a.integrate(x) == Matrix([ + [Rational(1, 3)*x**3, y*x**2/2], + [x**2*sin(y)/2, x**2*cos(y)/2]]) + + +def test_inv_iszerofunc(): + A = eye(4) + A.col_swap(0, 1) + for method in "GE", "LU": + assert A.inv(method=method, iszerofunc=lambda x: x == 0) == \ + A.inv(method="ADJ") + + +def test_jacobian_metrics(): + rho, phi = symbols("rho,phi") + X = Matrix([rho*cos(phi), rho*sin(phi)]) + Y = Matrix([rho, phi]) + J = X.jacobian(Y) + assert J == X.jacobian(Y.T) + assert J == (X.T).jacobian(Y) + assert J == (X.T).jacobian(Y.T) + g = J.T*eye(J.shape[0])*J + g = g.applyfunc(trigsimp) + assert g == Matrix([[1, 0], [0, rho**2]]) + + +def test_jacobian2(): + rho, phi = symbols("rho,phi") + X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) + Y = Matrix([rho, phi]) + J = Matrix([ + [cos(phi), -rho*sin(phi)], + [sin(phi), rho*cos(phi)], + [ 2*rho, 0], + ]) + assert X.jacobian(Y) == J + + +def test_issue_4564(): + X = Matrix([exp(x + y + z), exp(x + y + z), exp(x + y + z)]) + Y = Matrix([x, y, z]) + for i in range(1, 3): + for j in range(1, 3): + X_slice = X[:i, :] + Y_slice = Y[:j, :] + J = X_slice.jacobian(Y_slice) + assert J.rows == i + assert J.cols == j + for k in range(j): + assert J[:, k] == X_slice + + +def test_nonvectorJacobian(): + X = Matrix([[exp(x + y + z), exp(x + y + z)], + [exp(x + y + z), exp(x + y + z)]]) + raises(TypeError, lambda: X.jacobian(Matrix([x, y, z]))) + X = X[0, :] + Y = Matrix([[x, y], [x, z]]) + raises(TypeError, lambda: X.jacobian(Y)) + raises(TypeError, lambda: X.jacobian(Matrix([ [x, y], [x, z] ]))) + + +def test_vec(): + m = Matrix([[1, 3], [2, 4]]) + m_vec = m.vec() + assert m_vec.cols == 1 + for i in range(4): + assert m_vec[i] == i + 1 + + +def test_vech(): + m = Matrix([[1, 2], [2, 3]]) + m_vech = m.vech() + assert m_vech.cols == 1 + for i in range(3): + assert m_vech[i] == i + 1 + m_vech = m.vech(diagonal=False) + assert m_vech[0] == 2 + + m = Matrix([[1, x*(x + y)], [y*x + x**2, 1]]) + m_vech = m.vech(diagonal=False) + assert m_vech[0] == y*x + x**2 + + m = Matrix([[1, x*(x + y)], [y*x, 1]]) + m_vech = m.vech(diagonal=False, check_symmetry=False) + assert m_vech[0] == y*x + + raises(ShapeError, lambda: Matrix([[1, 3]]).vech()) + raises(ValueError, lambda: Matrix([[1, 3], [2, 4]]).vech()) + raises(ShapeError, lambda: Matrix([[1, 3]]).vech()) + raises(ValueError, lambda: Matrix([[1, 3], [2, 4]]).vech()) + + +def test_diag(): + # mostly tested in testcommonmatrix.py + assert diag([1, 2, 3]) == Matrix([1, 2, 3]) + m = [1, 2, [3]] + raises(ValueError, lambda: diag(m)) + assert diag(m, strict=False) == Matrix([1, 2, 3]) + + +def test_get_diag_blocks1(): + a = Matrix([[1, 2], [2, 3]]) + b = Matrix([[3, x], [y, 3]]) + c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) + assert a.get_diag_blocks() == [a] + assert b.get_diag_blocks() == [b] + assert c.get_diag_blocks() == [c] + + +def test_get_diag_blocks2(): + a = Matrix([[1, 2], [2, 3]]) + b = Matrix([[3, x], [y, 3]]) + c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) + assert diag(a, b, b).get_diag_blocks() == [a, b, b] + assert diag(a, b, c).get_diag_blocks() == [a, b, c] + assert diag(a, c, b).get_diag_blocks() == [a, c, b] + assert diag(c, c, b).get_diag_blocks() == [c, c, b] + + +def test_inv_block(): + a = Matrix([[1, 2], [2, 3]]) + b = Matrix([[3, x], [y, 3]]) + c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) + A = diag(a, b, b) + assert A.inv(try_block_diag=True) == diag(a.inv(), b.inv(), b.inv()) + A = diag(a, b, c) + assert A.inv(try_block_diag=True) == diag(a.inv(), b.inv(), c.inv()) + A = diag(a, c, b) + assert A.inv(try_block_diag=True) == diag(a.inv(), c.inv(), b.inv()) + A = diag(a, a, b, a, c, a) + assert A.inv(try_block_diag=True) == diag( + a.inv(), a.inv(), b.inv(), a.inv(), c.inv(), a.inv()) + assert A.inv(try_block_diag=True, method="ADJ") == diag( + a.inv(method="ADJ"), a.inv(method="ADJ"), b.inv(method="ADJ"), + a.inv(method="ADJ"), c.inv(method="ADJ"), a.inv(method="ADJ")) + + +def test_creation_args(): + """ + Check that matrix dimensions can be specified using any reasonable type + (see issue 4614). + """ + raises(ValueError, lambda: zeros(3, -1)) + raises(TypeError, lambda: zeros(1, 2, 3, 4)) + assert zeros(int(3)) == zeros(3) + assert zeros(Integer(3)) == zeros(3) + raises(ValueError, lambda: zeros(3.)) + assert eye(int(3)) == eye(3) + assert eye(Integer(3)) == eye(3) + raises(ValueError, lambda: eye(3.)) + assert ones(int(3), Integer(4)) == ones(3, 4) + raises(TypeError, lambda: Matrix(5)) + raises(TypeError, lambda: Matrix(1, 2)) + raises(ValueError, lambda: Matrix([1, [2]])) + + +def test_diagonal_symmetrical(): + m = Matrix(2, 2, [0, 1, 1, 0]) + assert not m.is_diagonal() + assert m.is_symmetric() + assert m.is_symmetric(simplify=False) + + m = Matrix(2, 2, [1, 0, 0, 1]) + assert m.is_diagonal() + + m = diag(1, 2, 3) + assert m.is_diagonal() + assert m.is_symmetric() + + m = Matrix(3, 3, [1, 0, 0, 0, 2, 0, 0, 0, 3]) + assert m == diag(1, 2, 3) + + m = Matrix(2, 3, zeros(2, 3)) + assert not m.is_symmetric() + assert m.is_diagonal() + + m = Matrix(((5, 0), (0, 6), (0, 0))) + assert m.is_diagonal() + + m = Matrix(((5, 0, 0), (0, 6, 0))) + assert m.is_diagonal() + + m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3]) + assert m.is_symmetric() + assert not m.is_symmetric(simplify=False) + assert m.expand().is_symmetric(simplify=False) + + +def test_diagonalization(): + m = Matrix([[1, 2+I], [2-I, 3]]) + assert m.is_diagonalizable() + + m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10]) + assert not m.is_diagonalizable() + assert not m.is_symmetric() + raises(NonSquareMatrixError, lambda: m.diagonalize()) + + # diagonalizable + m = diag(1, 2, 3) + (P, D) = m.diagonalize() + assert P == eye(3) + assert D == m + + m = Matrix(2, 2, [0, 1, 1, 0]) + assert m.is_symmetric() + assert m.is_diagonalizable() + (P, D) = m.diagonalize() + assert P.inv() * m * P == D + + m = Matrix(2, 2, [1, 0, 0, 3]) + assert m.is_symmetric() + assert m.is_diagonalizable() + (P, D) = m.diagonalize() + assert P.inv() * m * P == D + assert P == eye(2) + assert D == m + + m = Matrix(2, 2, [1, 1, 0, 0]) + assert m.is_diagonalizable() + (P, D) = m.diagonalize() + assert P.inv() * m * P == D + + m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) + assert m.is_diagonalizable() + (P, D) = m.diagonalize() + assert P.inv() * m * P == D + for i in P: + assert i.as_numer_denom()[1] == 1 + + m = Matrix(2, 2, [1, 0, 0, 0]) + assert m.is_diagonal() + assert m.is_diagonalizable() + (P, D) = m.diagonalize() + assert P.inv() * m * P == D + assert P == Matrix([[0, 1], [1, 0]]) + + # diagonalizable, complex only + m = Matrix(2, 2, [0, 1, -1, 0]) + assert not m.is_diagonalizable(True) + raises(MatrixError, lambda: m.diagonalize(True)) + assert m.is_diagonalizable() + (P, D) = m.diagonalize() + assert P.inv() * m * P == D + + # not diagonalizable + m = Matrix(2, 2, [0, 1, 0, 0]) + assert not m.is_diagonalizable() + raises(MatrixError, lambda: m.diagonalize()) + + m = Matrix(3, 3, [-3, 1, -3, 20, 3, 10, 2, -2, 4]) + assert not m.is_diagonalizable() + raises(MatrixError, lambda: m.diagonalize()) + + # symbolic + a, b, c, d = symbols('a b c d') + m = Matrix(2, 2, [a, c, c, b]) + assert m.is_symmetric() + assert m.is_diagonalizable() + + +def test_issue_15887(): + # Mutable matrix should not use cache + a = MutableDenseMatrix([[0, 1], [1, 0]]) + assert a.is_diagonalizable() is True + a[1, 0] = 0 + assert a.is_diagonalizable() is False + + a = MutableDenseMatrix([[0, 1], [1, 0]]) + a.diagonalize() + a[1, 0] = 0 + raises(MatrixError, lambda: a.diagonalize()) + + +def test_jordan_form(): + + m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10]) + raises(NonSquareMatrixError, lambda: m.jordan_form()) + + # diagonalizable + m = Matrix(3, 3, [7, -12, 6, 10, -19, 10, 12, -24, 13]) + Jmust = Matrix(3, 3, [-1, 0, 0, 0, 1, 0, 0, 0, 1]) + P, J = m.jordan_form() + assert Jmust == J + assert Jmust == m.diagonalize()[1] + + # m = Matrix(3, 3, [0, 6, 3, 1, 3, 1, -2, 2, 1]) + # m.jordan_form() # very long + # m.jordan_form() # + + # diagonalizable, complex only + + # Jordan cells + # complexity: one of eigenvalues is zero + m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2]) + # The blocks are ordered according to the value of their eigenvalues, + # in order to make the matrix compatible with .diagonalize() + Jmust = Matrix(3, 3, [2, 1, 0, 0, 2, 0, 0, 0, 2]) + P, J = m.jordan_form() + assert Jmust == J + + # complexity: all of eigenvalues are equal + m = Matrix(3, 3, [2, 6, -15, 1, 1, -5, 1, 2, -6]) + # Jmust = Matrix(3, 3, [-1, 0, 0, 0, -1, 1, 0, 0, -1]) + # same here see 1456ff + Jmust = Matrix(3, 3, [-1, 1, 0, 0, -1, 0, 0, 0, -1]) + P, J = m.jordan_form() + assert Jmust == J + + # complexity: two of eigenvalues are zero + m = Matrix(3, 3, [4, -5, 2, 5, -7, 3, 6, -9, 4]) + Jmust = Matrix(3, 3, [0, 1, 0, 0, 0, 0, 0, 0, 1]) + P, J = m.jordan_form() + assert Jmust == J + + m = Matrix(4, 4, [6, 5, -2, -3, -3, -1, 3, 3, 2, 1, -2, -3, -1, 1, 5, 5]) + Jmust = Matrix(4, 4, [2, 1, 0, 0, + 0, 2, 0, 0, + 0, 0, 2, 1, + 0, 0, 0, 2] + ) + P, J = m.jordan_form() + assert Jmust == J + + m = Matrix(4, 4, [6, 2, -8, -6, -3, 2, 9, 6, 2, -2, -8, -6, -1, 0, 3, 4]) + # Jmust = Matrix(4, 4, [2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, -2]) + # same here see 1456ff + Jmust = Matrix(4, 4, [-2, 0, 0, 0, + 0, 2, 1, 0, + 0, 0, 2, 0, + 0, 0, 0, 2]) + P, J = m.jordan_form() + assert Jmust == J + + m = Matrix(4, 4, [5, 4, 2, 1, 0, 1, -1, -1, -1, -1, 3, 0, 1, 1, -1, 2]) + assert not m.is_diagonalizable() + Jmust = Matrix(4, 4, [1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 1, 0, 0, 0, 4]) + P, J = m.jordan_form() + assert Jmust == J + + # checking for maximum precision to remain unchanged + m = Matrix([[Float('1.0', precision=110), Float('2.0', precision=110)], + [Float('3.14159265358979323846264338327', precision=110), Float('4.0', precision=110)]]) + P, J = m.jordan_form() + for term in J.values(): + if isinstance(term, Float): + assert term._prec == 110 + + +def test_jordan_form_complex_issue_9274(): + A = Matrix([[ 2, 4, 1, 0], + [-4, 2, 0, 1], + [ 0, 0, 2, 4], + [ 0, 0, -4, 2]]) + p = 2 - 4*I; + q = 2 + 4*I; + Jmust1 = Matrix([[p, 1, 0, 0], + [0, p, 0, 0], + [0, 0, q, 1], + [0, 0, 0, q]]) + Jmust2 = Matrix([[q, 1, 0, 0], + [0, q, 0, 0], + [0, 0, p, 1], + [0, 0, 0, p]]) + P, J = A.jordan_form() + assert J == Jmust1 or J == Jmust2 + assert simplify(P*J*P.inv()) == A + +def test_issue_10220(): + # two non-orthogonal Jordan blocks with eigenvalue 1 + M = Matrix([[1, 0, 0, 1], + [0, 1, 1, 0], + [0, 0, 1, 1], + [0, 0, 0, 1]]) + P, J = M.jordan_form() + assert P == Matrix([[0, 1, 0, 1], + [1, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0]]) + assert J == Matrix([ + [1, 1, 0, 0], + [0, 1, 1, 0], + [0, 0, 1, 0], + [0, 0, 0, 1]]) + +def test_jordan_form_issue_15858(): + A = Matrix([ + [1, 1, 1, 0], + [-2, -1, 0, -1], + [0, 0, -1, -1], + [0, 0, 2, 1]]) + (P, J) = A.jordan_form() + assert P.expand() == Matrix([ + [ -I, -I/2, I, I/2], + [-1 + I, 0, -1 - I, 0], + [ 0, -S(1)/2 - I/2, 0, -S(1)/2 + I/2], + [ 0, 1, 0, 1]]) + assert J == Matrix([ + [-I, 1, 0, 0], + [0, -I, 0, 0], + [0, 0, I, 1], + [0, 0, 0, I]]) + +def test_Matrix_berkowitz_charpoly(): + UA, K_i, K_w = symbols('UA K_i K_w') + + A = Matrix([[-K_i - UA + K_i**2/(K_i + K_w), K_i*K_w/(K_i + K_w)], + [ K_i*K_w/(K_i + K_w), -K_w + K_w**2/(K_i + K_w)]]) + + charpoly = A.charpoly(x) + + assert charpoly == \ + Poly(x**2 + (K_i*UA + K_w*UA + 2*K_i*K_w)/(K_i + K_w)*x + + K_i*K_w*UA/(K_i + K_w), x, domain='ZZ(K_i,K_w,UA)') + + assert type(charpoly) is PurePoly + + A = Matrix([[1, 3], [2, 0]]) + assert A.charpoly() == A.charpoly(x) == PurePoly(x**2 - x - 6) + + A = Matrix([[1, 2], [x, 0]]) + p = A.charpoly(x) + assert p.gen != x + assert p.as_expr().subs(p.gen, x) == x**2 - 3*x + + +def test_exp_jordan_block(): + l = Symbol('lamda') + + m = Matrix.jordan_block(1, l) + assert m._eval_matrix_exp_jblock() == Matrix([[exp(l)]]) + + m = Matrix.jordan_block(3, l) + assert m._eval_matrix_exp_jblock() == \ + Matrix([ + [exp(l), exp(l), exp(l)/2], + [0, exp(l), exp(l)], + [0, 0, exp(l)]]) + + +def test_exp(): + m = Matrix([[3, 4], [0, -2]]) + m_exp = Matrix([[exp(3), -4*exp(-2)/5 + 4*exp(3)/5], [0, exp(-2)]]) + assert m.exp() == m_exp + assert exp(m) == m_exp + + m = Matrix([[1, 0], [0, 1]]) + assert m.exp() == Matrix([[E, 0], [0, E]]) + assert exp(m) == Matrix([[E, 0], [0, E]]) + + m = Matrix([[1, -1], [1, 1]]) + assert m.exp() == Matrix([[E*cos(1), -E*sin(1)], [E*sin(1), E*cos(1)]]) + + +def test_log(): + l = Symbol('lamda') + + m = Matrix.jordan_block(1, l) + assert m._eval_matrix_log_jblock() == Matrix([[log(l)]]) + + m = Matrix.jordan_block(4, l) + assert m._eval_matrix_log_jblock() == \ + Matrix( + [ + [log(l), 1/l, -1/(2*l**2), 1/(3*l**3)], + [0, log(l), 1/l, -1/(2*l**2)], + [0, 0, log(l), 1/l], + [0, 0, 0, log(l)] + ] + ) + + m = Matrix( + [[0, 0, 1], + [0, 0, 0], + [-1, 0, 0]] + ) + raises(MatrixError, lambda: m.log()) + + +def test_has(): + A = Matrix(((x, y), (2, 3))) + assert A.has(x) + assert not A.has(z) + assert A.has(Symbol) + + A = A.subs(x, 2) + assert not A.has(x) + + +def test_find_reasonable_pivot_naive_finds_guaranteed_nonzero1(): + # Test if matrices._find_reasonable_pivot_naive() + # finds a guaranteed non-zero pivot when the + # some of the candidate pivots are symbolic expressions. + # Keyword argument: simpfunc=None indicates that no simplifications + # should be performed during the search. + x = Symbol('x') + column = Matrix(3, 1, [x, cos(x)**2 + sin(x)**2, S.Half]) + pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ + _find_reasonable_pivot_naive(column) + assert pivot_val == S.Half + +def test_find_reasonable_pivot_naive_finds_guaranteed_nonzero2(): + # Test if matrices._find_reasonable_pivot_naive() + # finds a guaranteed non-zero pivot when the + # some of the candidate pivots are symbolic expressions. + # Keyword argument: simpfunc=_simplify indicates that the search + # should attempt to simplify candidate pivots. + x = Symbol('x') + column = Matrix(3, 1, + [x, + cos(x)**2+sin(x)**2+x**2, + cos(x)**2+sin(x)**2]) + pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ + _find_reasonable_pivot_naive(column, simpfunc=_simplify) + assert pivot_val == 1 + +def test_find_reasonable_pivot_naive_simplifies(): + # Test if matrices._find_reasonable_pivot_naive() + # simplifies candidate pivots, and reports + # their offsets correctly. + x = Symbol('x') + column = Matrix(3, 1, + [x, + cos(x)**2+sin(x)**2+x, + cos(x)**2+sin(x)**2]) + pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ + _find_reasonable_pivot_naive(column, simpfunc=_simplify) + + assert len(simplified) == 2 + assert simplified[0][0] == 1 + assert simplified[0][1] == 1+x + assert simplified[1][0] == 2 + assert simplified[1][1] == 1 + +def test_errors(): + raises(ValueError, lambda: Matrix([[1, 2], [1]])) + raises(IndexError, lambda: Matrix([[1, 2]])[1.2, 5]) + raises(IndexError, lambda: Matrix([[1, 2]])[1, 5.2]) + raises(ValueError, lambda: randMatrix(3, c=4, symmetric=True)) + raises(ValueError, lambda: Matrix([1, 2]).reshape(4, 6)) + raises(ShapeError, + lambda: Matrix([[1, 2], [3, 4]]).copyin_matrix([1, 0], Matrix([1, 2]))) + raises(TypeError, lambda: Matrix([[1, 2], [3, 4]]).copyin_list([0, + 1], set())) + raises(NonSquareMatrixError, lambda: Matrix([[1, 2, 3], [2, 3, 0]]).inv()) + raises(ShapeError, + lambda: Matrix(1, 2, [1, 2]).row_join(Matrix([[1, 2], [3, 4]]))) + raises( + ShapeError, lambda: Matrix([1, 2]).col_join(Matrix([[1, 2], [3, 4]]))) + raises(ShapeError, lambda: Matrix([1]).row_insert(1, Matrix([[1, + 2], [3, 4]]))) + raises(ShapeError, lambda: Matrix([1]).col_insert(1, Matrix([[1, + 2], [3, 4]]))) + raises(NonSquareMatrixError, lambda: Matrix([1, 2]).trace()) + raises(TypeError, lambda: Matrix([1]).applyfunc(1)) + raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).minor(4, 5)) + raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).minor_submatrix(4, 5)) + raises(TypeError, lambda: Matrix([1, 2, 3]).cross(1)) + raises(TypeError, lambda: Matrix([1, 2, 3]).dot(1)) + raises(ShapeError, lambda: Matrix([1, 2, 3]).dot(Matrix([1, 2]))) + raises(ShapeError, lambda: Matrix([1, 2]).dot([])) + raises(TypeError, lambda: Matrix([1, 2]).dot('a')) + raises(ShapeError, lambda: Matrix([1, 2]).dot([1, 2, 3])) + raises(NonSquareMatrixError, lambda: Matrix([1, 2, 3]).exp()) + raises(ShapeError, lambda: Matrix([[1, 2], [3, 4]]).normalized()) + raises(ValueError, lambda: Matrix([1, 2]).inv(method='not a method')) + raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_GE()) + raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inverse_GE()) + raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_ADJ()) + raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inverse_ADJ()) + raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_LU()) + raises(NonSquareMatrixError, lambda: Matrix([1, 2]).is_nilpotent()) + raises(NonSquareMatrixError, lambda: Matrix([1, 2]).det()) + raises(ValueError, + lambda: Matrix([[1, 2], [3, 4]]).det(method='Not a real method')) + raises(ValueError, + lambda: Matrix([[1, 2, 3, 4], [5, 6, 7, 8], + [9, 10, 11, 12], [13, 14, 15, 16]]).det(iszerofunc="Not function")) + raises(ValueError, + lambda: Matrix([[1, 2, 3, 4], [5, 6, 7, 8], + [9, 10, 11, 12], [13, 14, 15, 16]]).det(iszerofunc=False)) + raises(ValueError, + lambda: hessian(Matrix([[1, 2], [3, 4]]), Matrix([[1, 2], [2, 1]]))) + raises(ValueError, lambda: hessian(Matrix([[1, 2], [3, 4]]), [])) + raises(ValueError, lambda: hessian(Symbol('x')**2, 'a')) + raises(IndexError, lambda: eye(3)[5, 2]) + raises(IndexError, lambda: eye(3)[2, 5]) + M = Matrix(((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) + raises(ValueError, lambda: M.det('method=LU_decomposition()')) + V = Matrix([[10, 10, 10]]) + M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) + raises(ValueError, lambda: M.row_insert(4.7, V)) + M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) + raises(ValueError, lambda: M.col_insert(-4.2, V)) + +def test_len(): + assert len(Matrix()) == 0 + assert len(Matrix([[1, 2]])) == len(Matrix([[1], [2]])) == 2 + assert len(Matrix(0, 2, lambda i, j: 0)) == \ + len(Matrix(2, 0, lambda i, j: 0)) == 0 + assert len(Matrix([[0, 1, 2], [3, 4, 5]])) == 6 + assert Matrix([1]) == Matrix([[1]]) + assert not Matrix() + assert Matrix() == Matrix([]) + + +def test_integrate(): + A = Matrix(((1, 4, x), (y, 2, 4), (10, 5, x**2))) + assert A.integrate(x) == \ + Matrix(((x, 4*x, x**2/2), (x*y, 2*x, 4*x), (10*x, 5*x, x**3/3))) + assert A.integrate(y) == \ + Matrix(((y, 4*y, x*y), (y**2/2, 2*y, 4*y), (10*y, 5*y, y*x**2))) + + +def test_limit(): + A = Matrix(((1, 4, sin(x)/x), (y, 2, 4), (10, 5, x**2 + 1))) + assert A.limit(x, 0) == Matrix(((1, 4, 1), (y, 2, 4), (10, 5, 1))) + + +def test_diff(): + A = MutableDenseMatrix(((1, 4, x), (y, 2, 4), (10, 5, x**2 + 1))) + assert isinstance(A.diff(x), type(A)) + assert A.diff(x) == MutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) + assert A.diff(y) == MutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) + + assert diff(A, x) == MutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) + assert diff(A, y) == MutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) + + A_imm = A.as_immutable() + assert isinstance(A_imm.diff(x), type(A_imm)) + assert A_imm.diff(x) == ImmutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) + assert A_imm.diff(y) == ImmutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) + + assert diff(A_imm, x) == ImmutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) + assert diff(A_imm, y) == ImmutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) + + +def test_diff_by_matrix(): + + # Derive matrix by matrix: + + A = MutableDenseMatrix([[x, y], [z, t]]) + assert A.diff(A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) + assert diff(A, A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) + + A_imm = A.as_immutable() + assert A_imm.diff(A_imm) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) + assert diff(A_imm, A_imm) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) + + # Derive a constant matrix: + assert A.diff(a) == MutableDenseMatrix([[0, 0], [0, 0]]) + + B = ImmutableDenseMatrix([a, b]) + assert A.diff(B) == Array.zeros(2, 1, 2, 2) + assert A.diff(A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) + + # Test diff with tuples: + + dB = B.diff([[a, b]]) + assert dB.shape == (2, 2, 1) + assert dB == Array([[[1], [0]], [[0], [1]]]) + + f = Function("f") + fxyz = f(x, y, z) + assert fxyz.diff([[x, y, z]]) == Array([fxyz.diff(x), fxyz.diff(y), fxyz.diff(z)]) + assert fxyz.diff(([x, y, z], 2)) == Array([ + [fxyz.diff(x, 2), fxyz.diff(x, y), fxyz.diff(x, z)], + [fxyz.diff(x, y), fxyz.diff(y, 2), fxyz.diff(y, z)], + [fxyz.diff(x, z), fxyz.diff(z, y), fxyz.diff(z, 2)], + ]) + + expr = sin(x)*exp(y) + assert expr.diff([[x, y]]) == Array([cos(x)*exp(y), sin(x)*exp(y)]) + assert expr.diff(y, ((x, y),)) == Array([cos(x)*exp(y), sin(x)*exp(y)]) + assert expr.diff(x, ((x, y),)) == Array([-sin(x)*exp(y), cos(x)*exp(y)]) + assert expr.diff(((y, x),), [[x, y]]) == Array([[cos(x)*exp(y), -sin(x)*exp(y)], [sin(x)*exp(y), cos(x)*exp(y)]]) + + # Test different notations: + + assert fxyz.diff(x).diff(y).diff(x) == fxyz.diff(((x, y, z),), 3)[0, 1, 0] + assert fxyz.diff(z).diff(y).diff(x) == fxyz.diff(((x, y, z),), 3)[2, 1, 0] + assert fxyz.diff([[x, y, z]], ((z, y, x),)) == Array([[fxyz.diff(i).diff(j) for i in (x, y, z)] for j in (z, y, x)]) + + # Test scalar derived by matrix remains matrix: + res = x.diff(Matrix([[x, y]])) + assert isinstance(res, ImmutableDenseMatrix) + assert res == Matrix([[1, 0]]) + res = (x**3).diff(Matrix([[x, y]])) + assert isinstance(res, ImmutableDenseMatrix) + assert res == Matrix([[3*x**2, 0]]) + + +def test_getattr(): + A = Matrix(((1, 4, x), (y, 2, 4), (10, 5, x**2 + 1))) + raises(AttributeError, lambda: A.nonexistantattribute) + assert getattr(A, 'diff')(x) == Matrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) + + +def test_hessenberg(): + A = Matrix([[3, 4, 1], [2, 4, 5], [0, 1, 2]]) + assert A.is_upper_hessenberg + A = A.T + assert A.is_lower_hessenberg + A[0, -1] = 1 + assert A.is_lower_hessenberg is False + + A = Matrix([[3, 4, 1], [2, 4, 5], [3, 1, 2]]) + assert not A.is_upper_hessenberg + + A = zeros(5, 2) + assert A.is_upper_hessenberg + + +def test_cholesky(): + raises(NonSquareMatrixError, lambda: Matrix((1, 2)).cholesky()) + raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).cholesky()) + raises(ValueError, lambda: Matrix(((5 + I, 0), (0, 1))).cholesky()) + raises(ValueError, lambda: Matrix(((1, 5), (5, 1))).cholesky()) + raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).cholesky(hermitian=False)) + assert Matrix(((5 + I, 0), (0, 1))).cholesky(hermitian=False) == Matrix([ + [sqrt(5 + I), 0], [0, 1]]) + A = Matrix(((1, 5), (5, 1))) + L = A.cholesky(hermitian=False) + assert L == Matrix([[1, 0], [5, 2*sqrt(6)*I]]) + assert L*L.T == A + A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) + L = A.cholesky() + assert L * L.T == A + assert L.is_lower + assert L == Matrix([[5, 0, 0], [3, 3, 0], [-1, 1, 3]]) + A = Matrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11))) + assert A.cholesky().expand() == Matrix(((2, 0, 0), (I, 1, 0), (1 - I, 0, 3))) + + raises(NonSquareMatrixError, lambda: SparseMatrix((1, 2)).cholesky()) + raises(ValueError, lambda: SparseMatrix(((1, 2), (3, 4))).cholesky()) + raises(ValueError, lambda: SparseMatrix(((5 + I, 0), (0, 1))).cholesky()) + raises(ValueError, lambda: SparseMatrix(((1, 5), (5, 1))).cholesky()) + raises(ValueError, lambda: SparseMatrix(((1, 2), (3, 4))).cholesky(hermitian=False)) + assert SparseMatrix(((5 + I, 0), (0, 1))).cholesky(hermitian=False) == Matrix([ + [sqrt(5 + I), 0], [0, 1]]) + A = SparseMatrix(((1, 5), (5, 1))) + L = A.cholesky(hermitian=False) + assert L == Matrix([[1, 0], [5, 2*sqrt(6)*I]]) + assert L*L.T == A + A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) + L = A.cholesky() + assert L * L.T == A + assert L.is_lower + assert L == Matrix([[5, 0, 0], [3, 3, 0], [-1, 1, 3]]) + A = SparseMatrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11))) + assert A.cholesky() == Matrix(((2, 0, 0), (I, 1, 0), (1 - I, 0, 3))) + + +def test_matrix_norm(): + # Vector Tests + # Test columns and symbols + x = Symbol('x', real=True) + v = Matrix([cos(x), sin(x)]) + assert trigsimp(v.norm(2)) == 1 + assert v.norm(10) == Pow(cos(x)**10 + sin(x)**10, Rational(1, 10)) + + # Test Rows + A = Matrix([[5, Rational(3, 2)]]) + assert A.norm() == Pow(25 + Rational(9, 4), S.Half) + assert A.norm(oo) == max(A) + assert A.norm(-oo) == min(A) + + # Matrix Tests + # Intuitive test + A = Matrix([[1, 1], [1, 1]]) + assert A.norm(2) == 2 + assert A.norm(-2) == 0 + assert A.norm('frobenius') == 2 + assert eye(10).norm(2) == eye(10).norm(-2) == 1 + assert A.norm(oo) == 2 + + # Test with Symbols and more complex entries + A = Matrix([[3, y, y], [x, S.Half, -pi]]) + assert (A.norm('fro') + == sqrt(Rational(37, 4) + 2*abs(y)**2 + pi**2 + x**2)) + + # Check non-square + A = Matrix([[1, 2, -3], [4, 5, Rational(13, 2)]]) + assert A.norm(2) == sqrt(Rational(389, 8) + sqrt(78665)/8) + assert A.norm(-2) is S.Zero + assert A.norm('frobenius') == sqrt(389)/2 + + # Test properties of matrix norms + # https://en.wikipedia.org/wiki/Matrix_norm#Definition + # Two matrices + A = Matrix([[1, 2], [3, 4]]) + B = Matrix([[5, 5], [-2, 2]]) + C = Matrix([[0, -I], [I, 0]]) + D = Matrix([[1, 0], [0, -1]]) + L = [A, B, C, D] + alpha = Symbol('alpha', real=True) + + for order in ['fro', 2, -2]: + # Zero Check + assert zeros(3).norm(order) is S.Zero + # Check Triangle Inequality for all Pairs of Matrices + for X in L: + for Y in L: + dif = (X.norm(order) + Y.norm(order) - + (X + Y).norm(order)) + assert (dif >= 0) + # Scalar multiplication linearity + for M in [A, B, C, D]: + dif = simplify((alpha*M).norm(order) - + abs(alpha) * M.norm(order)) + assert dif == 0 + + # Test Properties of Vector Norms + # https://en.wikipedia.org/wiki/Vector_norm + # Two column vectors + a = Matrix([1, 1 - 1*I, -3]) + b = Matrix([S.Half, 1*I, 1]) + c = Matrix([-1, -1, -1]) + d = Matrix([3, 2, I]) + e = Matrix([Integer(1e2), Rational(1, 1e2), 1]) + L = [a, b, c, d, e] + alpha = Symbol('alpha', real=True) + + for order in [1, 2, -1, -2, S.Infinity, S.NegativeInfinity, pi]: + # Zero Check + if order > 0: + assert Matrix([0, 0, 0]).norm(order) is S.Zero + # Triangle inequality on all pairs + if order >= 1: # Triangle InEq holds only for these norms + for X in L: + for Y in L: + dif = (X.norm(order) + Y.norm(order) - + (X + Y).norm(order)) + assert simplify(dif >= 0) is S.true + # Linear to scalar multiplication + if order in [1, 2, -1, -2, S.Infinity, S.NegativeInfinity]: + for X in L: + dif = simplify((alpha*X).norm(order) - + (abs(alpha) * X.norm(order))) + assert dif == 0 + + # ord=1 + M = Matrix(3, 3, [1, 3, 0, -2, -1, 0, 3, 9, 6]) + assert M.norm(1) == 13 + + +def test_condition_number(): + x = Symbol('x', real=True) + A = eye(3) + A[0, 0] = 10 + A[2, 2] = Rational(1, 10) + assert A.condition_number() == 100 + + A[1, 1] = x + assert A.condition_number() == Max(10, Abs(x)) / Min(Rational(1, 10), Abs(x)) + + M = Matrix([[cos(x), sin(x)], [-sin(x), cos(x)]]) + Mc = M.condition_number() + assert all(Float(1.).epsilon_eq(Mc.subs(x, val).evalf()) for val in + [Rational(1, 5), S.Half, Rational(1, 10), pi/2, pi, pi*Rational(7, 4) ]) + + #issue 10782 + assert Matrix([]).condition_number() == 0 + + +def test_equality(): + A = Matrix(((1, 2, 3), (4, 5, 6), (7, 8, 9))) + B = Matrix(((9, 8, 7), (6, 5, 4), (3, 2, 1))) + assert A == A[:, :] + assert not A != A[:, :] + assert not A == B + assert A != B + assert A != 10 + assert not A == 10 + + # A SparseMatrix can be equal to a Matrix + C = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) + D = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) + assert C == D + assert not C != D + + +def test_col_join(): + assert eye(3).col_join(Matrix([[7, 7, 7]])) == \ + Matrix([[1, 0, 0], + [0, 1, 0], + [0, 0, 1], + [7, 7, 7]]) + + +def test_row_insert(): + r4 = Matrix([[4, 4, 4]]) + for i in range(-4, 5): + l = [1, 0, 0] + l.insert(i, 4) + assert flatten(eye(3).row_insert(i, r4).col(0).tolist()) == l + + +def test_col_insert(): + c4 = Matrix([4, 4, 4]) + for i in range(-4, 5): + l = [0, 0, 0] + l.insert(i, 4) + assert flatten(zeros(3).col_insert(i, c4).row(0).tolist()) == l + + +def test_normalized(): + assert Matrix([3, 4]).normalized() == \ + Matrix([Rational(3, 5), Rational(4, 5)]) + + # Zero vector trivial cases + assert Matrix([0, 0, 0]).normalized() == Matrix([0, 0, 0]) + + # Machine precision error truncation trivial cases + m = Matrix([0,0,1.e-100]) + assert m.normalized( + iszerofunc=lambda x: x.evalf(n=10, chop=True).is_zero + ) == Matrix([0, 0, 0]) + + +def test_print_nonzero(): + assert capture(lambda: eye(3).print_nonzero()) == \ + '[X ]\n[ X ]\n[ X]\n' + assert capture(lambda: eye(3).print_nonzero('.')) == \ + '[. ]\n[ . ]\n[ .]\n' + + +def test_zeros_eye(): + assert Matrix.eye(3) == eye(3) + assert Matrix.zeros(3) == zeros(3) + assert ones(3, 4) == Matrix(3, 4, [1]*12) + + i = Matrix([[1, 0], [0, 1]]) + z = Matrix([[0, 0], [0, 0]]) + for cls in classes: + m = cls.eye(2) + assert i == m # but m == i will fail if m is immutable + assert i == eye(2, cls=cls) + assert type(m) == cls + m = cls.zeros(2) + assert z == m + assert z == zeros(2, cls=cls) + assert type(m) == cls + + +def test_is_zero(): + assert Matrix().is_zero_matrix + assert Matrix([[0, 0], [0, 0]]).is_zero_matrix + assert zeros(3, 4).is_zero_matrix + assert not eye(3).is_zero_matrix + assert Matrix([[x, 0], [0, 0]]).is_zero_matrix == None + assert SparseMatrix([[x, 0], [0, 0]]).is_zero_matrix == None + assert ImmutableMatrix([[x, 0], [0, 0]]).is_zero_matrix == None + assert ImmutableSparseMatrix([[x, 0], [0, 0]]).is_zero_matrix == None + assert Matrix([[x, 1], [0, 0]]).is_zero_matrix == False + a = Symbol('a', nonzero=True) + assert Matrix([[a, 0], [0, 0]]).is_zero_matrix == False + + +def test_rotation_matrices(): + # This tests the rotation matrices by rotating about an axis and back. + theta = pi/3 + r3_plus = rot_axis3(theta) + r3_minus = rot_axis3(-theta) + r2_plus = rot_axis2(theta) + r2_minus = rot_axis2(-theta) + r1_plus = rot_axis1(theta) + r1_minus = rot_axis1(-theta) + assert r3_minus*r3_plus*eye(3) == eye(3) + assert r2_minus*r2_plus*eye(3) == eye(3) + assert r1_minus*r1_plus*eye(3) == eye(3) + + # Check the correctness of the trace of the rotation matrix + assert r1_plus.trace() == 1 + 2*cos(theta) + assert r2_plus.trace() == 1 + 2*cos(theta) + assert r3_plus.trace() == 1 + 2*cos(theta) + + # Check that a rotation with zero angle doesn't change anything. + assert rot_axis1(0) == eye(3) + assert rot_axis2(0) == eye(3) + assert rot_axis3(0) == eye(3) + + # Check left-hand convention + # see Issue #24529 + q1 = Quaternion.from_axis_angle([1, 0, 0], pi / 2) + q2 = Quaternion.from_axis_angle([0, 1, 0], pi / 2) + q3 = Quaternion.from_axis_angle([0, 0, 1], pi / 2) + assert rot_axis1(- pi / 2) == q1.to_rotation_matrix() + assert rot_axis2(- pi / 2) == q2.to_rotation_matrix() + assert rot_axis3(- pi / 2) == q3.to_rotation_matrix() + # Check right-hand convention + assert rot_ccw_axis1(+ pi / 2) == q1.to_rotation_matrix() + assert rot_ccw_axis2(+ pi / 2) == q2.to_rotation_matrix() + assert rot_ccw_axis3(+ pi / 2) == q3.to_rotation_matrix() + + +def test_DeferredVector(): + assert str(DeferredVector("vector")[4]) == "vector[4]" + assert sympify(DeferredVector("d")) == DeferredVector("d") + raises(IndexError, lambda: DeferredVector("d")[-1]) + assert str(DeferredVector("d")) == "d" + assert repr(DeferredVector("test")) == "DeferredVector('test')" + +def test_DeferredVector_not_iterable(): + assert not iterable(DeferredVector('X')) + +def test_DeferredVector_Matrix(): + raises(TypeError, lambda: Matrix(DeferredVector("V"))) + +def test_GramSchmidt(): + R = Rational + m1 = Matrix(1, 2, [1, 2]) + m2 = Matrix(1, 2, [2, 3]) + assert GramSchmidt([m1, m2]) == \ + [Matrix(1, 2, [1, 2]), Matrix(1, 2, [R(2)/5, R(-1)/5])] + assert GramSchmidt([m1.T, m2.T]) == \ + [Matrix(2, 1, [1, 2]), Matrix(2, 1, [R(2)/5, R(-1)/5])] + # from wikipedia + assert GramSchmidt([Matrix([3, 1]), Matrix([2, 2])], True) == [ + Matrix([3*sqrt(10)/10, sqrt(10)/10]), + Matrix([-sqrt(10)/10, 3*sqrt(10)/10])] + # https://github.com/sympy/sympy/issues/9488 + L = FiniteSet(Matrix([1])) + assert GramSchmidt(L) == [Matrix([[1]])] + + +def test_casoratian(): + assert casoratian([1, 2, 3, 4], 1) == 0 + assert casoratian([1, 2, 3, 4], 1, zero=False) == 0 + + +def test_zero_dimension_multiply(): + assert (Matrix()*zeros(0, 3)).shape == (0, 3) + assert zeros(3, 0)*zeros(0, 3) == zeros(3, 3) + assert zeros(0, 3)*zeros(3, 0) == Matrix() + + +def test_slice_issue_2884(): + m = Matrix(2, 2, range(4)) + assert m[1, :] == Matrix([[2, 3]]) + assert m[-1, :] == Matrix([[2, 3]]) + assert m[:, 1] == Matrix([[1, 3]]).T + assert m[:, -1] == Matrix([[1, 3]]).T + raises(IndexError, lambda: m[2, :]) + raises(IndexError, lambda: m[2, 2]) + + +def test_slice_issue_3401(): + assert zeros(0, 3)[:, -1].shape == (0, 1) + assert zeros(3, 0)[0, :] == Matrix(1, 0, []) + + +def test_copyin(): + s = zeros(3, 3) + s[3] = 1 + assert s[:, 0] == Matrix([0, 1, 0]) + assert s[3] == 1 + assert s[3: 4] == [1] + s[1, 1] = 42 + assert s[1, 1] == 42 + assert s[1, 1:] == Matrix([[42, 0]]) + s[1, 1:] = Matrix([[5, 6]]) + assert s[1, :] == Matrix([[1, 5, 6]]) + s[1, 1:] = [[42, 43]] + assert s[1, :] == Matrix([[1, 42, 43]]) + s[0, 0] = 17 + assert s[:, :1] == Matrix([17, 1, 0]) + s[0, 0] = [1, 1, 1] + assert s[:, 0] == Matrix([1, 1, 1]) + s[0, 0] = Matrix([1, 1, 1]) + assert s[:, 0] == Matrix([1, 1, 1]) + s[0, 0] = SparseMatrix([1, 1, 1]) + assert s[:, 0] == Matrix([1, 1, 1]) + + +def test_invertible_check(): + # sometimes a singular matrix will have a pivot vector shorter than + # the number of rows in a matrix... + assert Matrix([[1, 2], [1, 2]]).rref() == (Matrix([[1, 2], [0, 0]]), (0,)) + raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inv()) + m = Matrix([ + [-1, -1, 0], + [ x, 1, 1], + [ 1, x, -1], + ]) + assert len(m.rref()[1]) != m.rows + # in addition, unless simplify=True in the call to rref, the identity + # matrix will be returned even though m is not invertible + assert m.rref()[0] != eye(3) + assert m.rref(simplify=signsimp)[0] != eye(3) + raises(ValueError, lambda: m.inv(method="ADJ")) + raises(ValueError, lambda: m.inv(method="GE")) + raises(ValueError, lambda: m.inv(method="LU")) + + +def test_issue_3959(): + x, y = symbols('x, y') + e = x*y + assert e.subs(x, Matrix([3, 5, 3])) == Matrix([3, 5, 3])*y + + +def test_issue_5964(): + assert str(Matrix([[1, 2], [3, 4]])) == 'Matrix([[1, 2], [3, 4]])' + + +def test_issue_7604(): + x, y = symbols("x y") + assert sstr(Matrix([[x, 2*y], [y**2, x + 3]])) == \ + 'Matrix([\n[ x, 2*y],\n[y**2, x + 3]])' + + +def test_is_Identity(): + assert eye(3).is_Identity + assert eye(3).as_immutable().is_Identity + assert not zeros(3).is_Identity + assert not ones(3).is_Identity + # issue 6242 + assert not Matrix([[1, 0, 0]]).is_Identity + # issue 8854 + assert SparseMatrix(3,3, {(0,0):1, (1,1):1, (2,2):1}).is_Identity + assert not SparseMatrix(2,3, range(6)).is_Identity + assert not SparseMatrix(3,3, {(0,0):1, (1,1):1}).is_Identity + assert not SparseMatrix(3,3, {(0,0):1, (1,1):1, (2,2):1, (0,1):2, (0,2):3}).is_Identity + + +def test_dot(): + assert ones(1, 3).dot(ones(3, 1)) == 3 + assert ones(1, 3).dot([1, 1, 1]) == 3 + assert Matrix([1, 2, 3]).dot(Matrix([1, 2, 3])) == 14 + assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I])) == -5 + I + assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=False) == -5 + I + assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=True) == 13 + I + assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=True, conjugate_convention="physics") == 13 - I + assert Matrix([1, 2, 3*I]).dot(Matrix([4, 5*I, 6]), hermitian=True, conjugate_convention="right") == 4 + 8*I + assert Matrix([1, 2, 3*I]).dot(Matrix([4, 5*I, 6]), hermitian=True, conjugate_convention="left") == 4 - 8*I + assert Matrix([I, 2*I]).dot(Matrix([I, 2*I]), hermitian=False, conjugate_convention="left") == -5 + assert Matrix([I, 2*I]).dot(Matrix([I, 2*I]), conjugate_convention="left") == 5 + raises(ValueError, lambda: Matrix([1, 2]).dot(Matrix([3, 4]), hermitian=True, conjugate_convention="test")) + + +def test_dual(): + B_x, B_y, B_z, E_x, E_y, E_z = symbols( + 'B_x B_y B_z E_x E_y E_z', real=True) + F = Matrix(( + ( 0, E_x, E_y, E_z), + (-E_x, 0, B_z, -B_y), + (-E_y, -B_z, 0, B_x), + (-E_z, B_y, -B_x, 0) + )) + Fd = Matrix(( + ( 0, -B_x, -B_y, -B_z), + (B_x, 0, E_z, -E_y), + (B_y, -E_z, 0, E_x), + (B_z, E_y, -E_x, 0) + )) + assert F.dual().equals(Fd) + assert eye(3).dual().equals(zeros(3)) + assert F.dual().dual().equals(-F) + + +def test_anti_symmetric(): + assert Matrix([1, 2]).is_anti_symmetric() is False + m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, -(x + 1)**2, 0, x*y, -y, -x*y, 0]) + assert m.is_anti_symmetric() is True + assert m.is_anti_symmetric(simplify=False) is False + assert m.is_anti_symmetric(simplify=lambda x: x) is False + + # tweak to fail + m[2, 1] = -m[2, 1] + assert m.is_anti_symmetric() is False + # untweak + m[2, 1] = -m[2, 1] + + m = m.expand() + assert m.is_anti_symmetric(simplify=False) is True + m[0, 0] = 1 + assert m.is_anti_symmetric() is False + + +def test_normalize_sort_diogonalization(): + A = Matrix(((1, 2), (2, 1))) + P, Q = A.diagonalize(normalize=True) + assert P*P.T == P.T*P == eye(P.cols) + P, Q = A.diagonalize(normalize=True, sort=True) + assert P*P.T == P.T*P == eye(P.cols) + assert P*Q*P.inv() == A + + +def test_issue_5321(): + raises(ValueError, lambda: Matrix([[1, 2, 3], Matrix(0, 1, [])])) + + +def test_issue_5320(): + assert Matrix.hstack(eye(2), 2*eye(2)) == Matrix([ + [1, 0, 2, 0], + [0, 1, 0, 2] + ]) + assert Matrix.vstack(eye(2), 2*eye(2)) == Matrix([ + [1, 0], + [0, 1], + [2, 0], + [0, 2] + ]) + cls = SparseMatrix + assert cls.hstack(cls(eye(2)), cls(2*eye(2))) == Matrix([ + [1, 0, 2, 0], + [0, 1, 0, 2] + ]) + +def test_issue_11944(): + A = Matrix([[1]]) + AIm = sympify(A) + assert Matrix.hstack(AIm, A) == Matrix([[1, 1]]) + assert Matrix.vstack(AIm, A) == Matrix([[1], [1]]) + +def test_cross(): + a = [1, 2, 3] + b = [3, 4, 5] + col = Matrix([-2, 4, -2]) + row = col.T + + def test(M, ans): + assert ans == M + assert type(M) == cls + for cls in classes: + A = cls(a) + B = cls(b) + test(A.cross(B), col) + test(A.cross(B.T), col) + test(A.T.cross(B.T), row) + test(A.T.cross(B), row) + raises(ShapeError, lambda: + Matrix(1, 2, [1, 1]).cross(Matrix(1, 2, [1, 1]))) + + +def test_hash(): + for cls in classes[-2:]: + s = {cls.eye(1), cls.eye(1)} + assert len(s) == 1 and s.pop() == cls.eye(1) + # issue 3979 + for cls in classes[:2]: + assert not isinstance(cls.eye(1), Hashable) + + +@XFAIL +def test_issue_3979(): + # when this passes, delete this and change the [1:2] + # to [:2] in the test_hash above for issue 3979 + cls = classes[0] + raises(AttributeError, lambda: hash(cls.eye(1))) + + +def test_adjoint(): + dat = [[0, I], [1, 0]] + ans = Matrix([[0, 1], [-I, 0]]) + for cls in classes: + assert ans == cls(dat).adjoint() + +def test_simplify_immutable(): + assert simplify(ImmutableMatrix([[sin(x)**2 + cos(x)**2]])) == \ + ImmutableMatrix([[1]]) + +def test_replace(): + F, G = symbols('F, G', cls=Function) + K = Matrix(2, 2, lambda i, j: G(i+j)) + M = Matrix(2, 2, lambda i, j: F(i+j)) + N = M.replace(F, G) + assert N == K + +def test_replace_map(): + F, G = symbols('F, G', cls=Function) + with warns_deprecated_sympy(): + K = Matrix(2, 2, [(G(0), {F(0): G(0)}), (G(1), {F(1): G(1)}), + (G(1), {F(1): G(1)}), (G(2), {F(2): G(2)})]) + M = Matrix(2, 2, lambda i, j: F(i+j)) + with warns(SymPyDeprecationWarning, test_stacklevel=False): + N = M.replace(F, G, True) + assert N == K + +def test_atoms(): + m = Matrix([[1, 2], [x, 1 - 1/x]]) + assert m.atoms() == {S.One,S(2),S.NegativeOne, x} + assert m.atoms(Symbol) == {x} + + +def test_pinv(): + # Pseudoinverse of an invertible matrix is the inverse. + A1 = Matrix([[a, b], [c, d]]) + assert simplify(A1.pinv(method="RD")) == simplify(A1.inv()) + + # Test the four properties of the pseudoinverse for various matrices. + As = [Matrix([[13, 104], [2212, 3], [-3, 5]]), + Matrix([[1, 7, 9], [11, 17, 19]]), + Matrix([a, b])] + + for A in As: + A_pinv = A.pinv(method="RD") + AAp = A * A_pinv + ApA = A_pinv * A + assert simplify(AAp * A) == A + assert simplify(ApA * A_pinv) == A_pinv + assert AAp.H == AAp + assert ApA.H == ApA + + # XXX Pinv with diagonalization makes expression too complicated. + for A in As: + A_pinv = simplify(A.pinv(method="ED")) + AAp = A * A_pinv + ApA = A_pinv * A + assert simplify(AAp * A) == A + assert simplify(ApA * A_pinv) == A_pinv + assert AAp.H == AAp + assert ApA.H == ApA + + # XXX Computing pinv using diagonalization makes an expression that + # is too complicated to simplify. + # A1 = Matrix([[a, b], [c, d]]) + # assert simplify(A1.pinv(method="ED")) == simplify(A1.inv()) + # so this is tested numerically at a fixed random point + + from sympy.core.numbers import comp + q = A1.pinv(method="ED") + w = A1.inv() + reps = {a: -73633, b: 11362, c: 55486, d: 62570} + assert all( + comp(i.n(), j.n()) + for i, j in zip(q.subs(reps), w.subs(reps)) + ) + + +@slow +@XFAIL +def test_pinv_rank_deficient_when_diagonalization_fails(): + # Test the four properties of the pseudoinverse for matrices when + # diagonalization of A.H*A fails. + As = [ + Matrix([ + [61, 89, 55, 20, 71, 0], + [62, 96, 85, 85, 16, 0], + [69, 56, 17, 4, 54, 0], + [10, 54, 91, 41, 71, 0], + [ 7, 30, 10, 48, 90, 0], + [0, 0, 0, 0, 0, 0]]) + ] + for A in As: + A_pinv = A.pinv(method="ED") + AAp = A * A_pinv + ApA = A_pinv * A + assert AAp.H == AAp + assert ApA.H == ApA + + +def test_issue_7201(): + assert ones(0, 1) + ones(0, 1) == Matrix(0, 1, []) + assert ones(1, 0) + ones(1, 0) == Matrix(1, 0, []) + +def test_free_symbols(): + for M in ImmutableMatrix, ImmutableSparseMatrix, Matrix, SparseMatrix: + assert M([[x], [0]]).free_symbols == {x} + +def test_from_ndarray(): + """See issue 7465.""" + try: + from numpy import array + except ImportError: + skip('NumPy must be available to test creating matrices from ndarrays') + + assert Matrix(array([1, 2, 3])) == Matrix([1, 2, 3]) + assert Matrix(array([[1, 2, 3]])) == Matrix([[1, 2, 3]]) + assert Matrix(array([[1, 2, 3], [4, 5, 6]])) == \ + Matrix([[1, 2, 3], [4, 5, 6]]) + assert Matrix(array([x, y, z])) == Matrix([x, y, z]) + raises(NotImplementedError, + lambda: Matrix(array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]))) + assert Matrix([array([1, 2]), array([3, 4])]) == Matrix([[1, 2], [3, 4]]) + assert Matrix([array([1, 2]), [3, 4]]) == Matrix([[1, 2], [3, 4]]) + assert Matrix([array([]), array([])]) == Matrix([]) + +def test_17522_numpy(): + from sympy.matrices.common import _matrixify + try: + from numpy import array, matrix + except ImportError: + skip('NumPy must be available to test indexing matrixified NumPy ndarrays and matrices') + + m = _matrixify(array([[1, 2], [3, 4]])) + assert m[3] == 4 + assert list(m) == [1, 2, 3, 4] + + with ignore_warnings(PendingDeprecationWarning): + m = _matrixify(matrix([[1, 2], [3, 4]])) + assert m[3] == 4 + assert list(m) == [1, 2, 3, 4] + +def test_17522_mpmath(): + from sympy.matrices.common import _matrixify + try: + from mpmath import matrix + except ImportError: + skip('mpmath must be available to test indexing matrixified mpmath matrices') + + m = _matrixify(matrix([[1, 2], [3, 4]])) + assert m[3] == 4.0 + assert list(m) == [1.0, 2.0, 3.0, 4.0] + +def test_17522_scipy(): + from sympy.matrices.common import _matrixify + try: + from scipy.sparse import csr_matrix + except ImportError: + skip('SciPy must be available to test indexing matrixified SciPy sparse matrices') + + m = _matrixify(csr_matrix([[1, 2], [3, 4]])) + assert m[3] == 4 + assert list(m) == [1, 2, 3, 4] + +def test_hermitian(): + a = Matrix([[1, I], [-I, 1]]) + assert a.is_hermitian + a[0, 0] = 2*I + assert a.is_hermitian is False + a[0, 0] = x + assert a.is_hermitian is None + a[0, 1] = a[1, 0]*I + assert a.is_hermitian is False + +def test_doit(): + a = Matrix([[Add(x,x, evaluate=False)]]) + assert a[0] != 2*x + assert a.doit() == Matrix([[2*x]]) + +def test_issue_9457_9467_9876(): + # for row_del(index) + M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) + M.row_del(1) + assert M == Matrix([[1, 2, 3], [3, 4, 5]]) + N = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) + N.row_del(-2) + assert N == Matrix([[1, 2, 3], [3, 4, 5]]) + O = Matrix([[1, 2, 3], [5, 6, 7], [9, 10, 11]]) + O.row_del(-1) + assert O == Matrix([[1, 2, 3], [5, 6, 7]]) + P = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) + raises(IndexError, lambda: P.row_del(10)) + Q = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) + raises(IndexError, lambda: Q.row_del(-10)) + + # for col_del(index) + M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) + M.col_del(1) + assert M == Matrix([[1, 3], [2, 4], [3, 5]]) + N = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) + N.col_del(-2) + assert N == Matrix([[1, 3], [2, 4], [3, 5]]) + P = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) + raises(IndexError, lambda: P.col_del(10)) + Q = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) + raises(IndexError, lambda: Q.col_del(-10)) + +def test_issue_9422(): + x, y = symbols('x y', commutative=False) + a, b = symbols('a b') + M = eye(2) + M1 = Matrix(2, 2, [x, y, y, z]) + assert y*x*M != x*y*M + assert b*a*M == a*b*M + assert x*M1 != M1*x + assert a*M1 == M1*a + assert y*x*M == Matrix([[y*x, 0], [0, y*x]]) + + +def test_issue_10770(): + M = Matrix([]) + a = ['col_insert', 'row_join'], Matrix([9, 6, 3]) + b = ['row_insert', 'col_join'], a[1].T + c = ['row_insert', 'col_insert'], Matrix([[1, 2], [3, 4]]) + for ops, m in (a, b, c): + for op in ops: + f = getattr(M, op) + new = f(m) if 'join' in op else f(42, m) + assert new == m and id(new) != id(m) + + +def test_issue_10658(): + A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) + assert A.extract([0, 1, 2], [True, True, False]) == \ + Matrix([[1, 2], [4, 5], [7, 8]]) + assert A.extract([0, 1, 2], [True, False, False]) == Matrix([[1], [4], [7]]) + assert A.extract([True, False, False], [0, 1, 2]) == Matrix([[1, 2, 3]]) + assert A.extract([True, False, True], [0, 1, 2]) == \ + Matrix([[1, 2, 3], [7, 8, 9]]) + assert A.extract([0, 1, 2], [False, False, False]) == Matrix(3, 0, []) + assert A.extract([False, False, False], [0, 1, 2]) == Matrix(0, 3, []) + assert A.extract([True, False, True], [False, True, False]) == \ + Matrix([[2], [8]]) + +def test_opportunistic_simplification(): + # this test relates to issue #10718, #9480, #11434 + + # issue #9480 + m = Matrix([[-5 + 5*sqrt(2), -5], [-5*sqrt(2)/2 + 5, -5*sqrt(2)/2]]) + assert m.rank() == 1 + + # issue #10781 + m = Matrix([[3+3*sqrt(3)*I, -9],[4,-3+3*sqrt(3)*I]]) + assert simplify(m.rref()[0] - Matrix([[1, -9/(3 + 3*sqrt(3)*I)], [0, 0]])) == zeros(2, 2) + + # issue #11434 + ax,ay,bx,by,cx,cy,dx,dy,ex,ey,t0,t1 = symbols('a_x a_y b_x b_y c_x c_y d_x d_y e_x e_y t_0 t_1') + m = Matrix([[ax,ay,ax*t0,ay*t0,0],[bx,by,bx*t0,by*t0,0],[cx,cy,cx*t0,cy*t0,1],[dx,dy,dx*t0,dy*t0,1],[ex,ey,2*ex*t1-ex*t0,2*ey*t1-ey*t0,0]]) + assert m.rank() == 4 + +def test_partial_pivoting(): + # example from https://en.wikipedia.org/wiki/Pivot_element + # partial pivoting with back substitution gives a perfect result + # naive pivoting give an error ~1e-13, so anything better than + # 1e-15 is good + mm=Matrix([[0.003, 59.14, 59.17], [5.291, -6.13, 46.78]]) + assert (mm.rref()[0] - Matrix([[1.0, 0, 10.0], + [ 0, 1.0, 1.0]])).norm() < 1e-15 + + # issue #11549 + m_mixed = Matrix([[6e-17, 1.0, 4], + [ -1.0, 0, 8], + [ 0, 0, 1]]) + m_float = Matrix([[6e-17, 1.0, 4.], + [ -1.0, 0., 8.], + [ 0., 0., 1.]]) + m_inv = Matrix([[ 0, -1.0, 8.0], + [1.0, 6.0e-17, -4.0], + [ 0, 0, 1]]) + # this example is numerically unstable and involves a matrix with a norm >= 8, + # this comparing the difference of the results with 1e-15 is numerically sound. + assert (m_mixed.inv() - m_inv).norm() < 1e-15 + assert (m_float.inv() - m_inv).norm() < 1e-15 + +def test_iszero_substitution(): + """ When doing numerical computations, all elements that pass + the iszerofunc test should be set to numerically zero if they + aren't already. """ + + # Matrix from issue #9060 + m = Matrix([[0.9, -0.1, -0.2, 0],[-0.8, 0.9, -0.4, 0],[-0.1, -0.8, 0.6, 0]]) + m_rref = m.rref(iszerofunc=lambda x: abs(x)<6e-15)[0] + m_correct = Matrix([[1.0, 0, -0.301369863013699, 0],[ 0, 1.0, -0.712328767123288, 0],[ 0, 0, 0, 0]]) + m_diff = m_rref - m_correct + assert m_diff.norm() < 1e-15 + # if a zero-substitution wasn't made, this entry will be -1.11022302462516e-16 + assert m_rref[2,2] == 0 + +def test_issue_11238(): + from sympy.geometry.point import Point + xx = 8*tan(pi*Rational(13, 45))/(tan(pi*Rational(13, 45)) + sqrt(3)) + yy = (-8*sqrt(3)*tan(pi*Rational(13, 45))**2 + 24*tan(pi*Rational(13, 45)))/(-3 + tan(pi*Rational(13, 45))**2) + p1 = Point(0, 0) + p2 = Point(1, -sqrt(3)) + p0 = Point(xx,yy) + m1 = Matrix([p1 - simplify(p0), p2 - simplify(p0)]) + m2 = Matrix([p1 - p0, p2 - p0]) + m3 = Matrix([simplify(p1 - p0), simplify(p2 - p0)]) + + # This system has expressions which are zero and + # cannot be easily proved to be such, so without + # numerical testing, these assertions will fail. + Z = lambda x: abs(x.n()) < 1e-20 + assert m1.rank(simplify=True, iszerofunc=Z) == 1 + assert m2.rank(simplify=True, iszerofunc=Z) == 1 + assert m3.rank(simplify=True, iszerofunc=Z) == 1 + +def test_as_real_imag(): + m1 = Matrix(2,2,[1,2,3,4]) + m2 = m1*S.ImaginaryUnit + m3 = m1 + m2 + + for kls in classes: + a,b = kls(m3).as_real_imag() + assert list(a) == list(m1) + assert list(b) == list(m1) + +def test_deprecated(): + # Maintain tests for deprecated functions. We must capture + # the deprecation warnings. When the deprecated functionality is + # removed, the corresponding tests should be removed. + + m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2]) + P, Jcells = m.jordan_cells() + assert Jcells[1] == Matrix(1, 1, [2]) + assert Jcells[0] == Matrix(2, 2, [2, 1, 0, 2]) + + +def test_issue_14489(): + from sympy.core.mod import Mod + A = Matrix([-1, 1, 2]) + B = Matrix([10, 20, -15]) + + assert Mod(A, 3) == Matrix([2, 1, 2]) + assert Mod(B, 4) == Matrix([2, 0, 1]) + +def test_issue_14943(): + # Test that __array__ accepts the optional dtype argument + try: + from numpy import array + except ImportError: + skip('NumPy must be available to test creating matrices from ndarrays') + + M = Matrix([[1,2], [3,4]]) + assert array(M, dtype=float).dtype.name == 'float64' + +def test_case_6913(): + m = MatrixSymbol('m', 1, 1) + a = Symbol("a") + a = m[0, 0]>0 + assert str(a) == 'm[0, 0] > 0' + +def test_issue_11948(): + A = MatrixSymbol('A', 3, 3) + a = Wild('a') + assert A.match(a) == {a: A} + +def test_gramschmidt_conjugate_dot(): + vecs = [Matrix([1, I]), Matrix([1, -I])] + assert Matrix.orthogonalize(*vecs) == \ + [Matrix([[1], [I]]), Matrix([[1], [-I]])] + + vecs = [Matrix([1, I, 0]), Matrix([I, 0, -I])] + assert Matrix.orthogonalize(*vecs) == \ + [Matrix([[1], [I], [0]]), Matrix([[I/2], [S(1)/2], [-I]])] + + mat = Matrix([[1, I], [1, -I]]) + Q, R = mat.QRdecomposition() + assert Q * Q.H == Matrix.eye(2) + +def test_issue_8207(): + a = Matrix(MatrixSymbol('a', 3, 1)) + b = Matrix(MatrixSymbol('b', 3, 1)) + c = a.dot(b) + d = diff(c, a[0, 0]) + e = diff(d, a[0, 0]) + assert d == b[0, 0] + assert e == 0 + +def test_func(): + from sympy.simplify.simplify import nthroot + + A = Matrix([[1, 2],[0, 3]]) + assert A.analytic_func(sin(x*t), x) == Matrix([[sin(t), sin(3*t) - sin(t)], [0, sin(3*t)]]) + + A = Matrix([[2, 1],[1, 2]]) + assert (pi * A / 6).analytic_func(cos(x), x) == Matrix([[sqrt(3)/4, -sqrt(3)/4], [-sqrt(3)/4, sqrt(3)/4]]) + + + raises(ValueError, lambda : zeros(5).analytic_func(log(x), x)) + raises(ValueError, lambda : (A*x).analytic_func(log(x), x)) + + A = Matrix([[0, -1, -2, 3], [0, -1, -2, 3], [0, 1, 0, -1], [0, 0, -1, 1]]) + assert A.analytic_func(exp(x), x) == A.exp() + raises(ValueError, lambda : A.analytic_func(sqrt(x), x)) + + A = Matrix([[41, 12],[12, 34]]) + assert simplify(A.analytic_func(sqrt(x), x)**2) == A + + A = Matrix([[3, -12, 4], [-1, 0, -2], [-1, 5, -1]]) + assert simplify(A.analytic_func(nthroot(x, 3), x)**3) == A + + A = Matrix([[2, 0, 0, 0], [1, 2, 0, 0], [0, 1, 3, 0], [0, 0, 1, 3]]) + assert A.analytic_func(exp(x), x) == A.exp() + + A = Matrix([[0, 2, 1, 6], [0, 0, 1, 2], [0, 0, 0, 3], [0, 0, 0, 0]]) + assert A.analytic_func(exp(x*t), x) == expand(simplify((A*t).exp())) + + +@skip_under_pyodide("Cannot create threads under pyodide.") +def test_issue_19809(): + + def f(): + assert _dotprodsimp_state.state == None + m = Matrix([[1]]) + m = m * m + return True + + with dotprodsimp(True): + with concurrent.futures.ThreadPoolExecutor() as executor: + future = executor.submit(f) + assert future.result() + + +def test_issue_23276(): + M = Matrix([x, y]) + assert integrate(M, (x, 0, 1), (y, 0, 1)) == Matrix([ + [S.Half], + [S.Half]])