Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step80/zero/11.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/11.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/28.final_rmsnorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/28.final_rmsnorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/28.final_rmsnorm.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/__init__.py +3 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/cartan_matrix.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/cartan_type.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/dynkin_diagram.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/root_system.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_a.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_b.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_c.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_d.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_e.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_f.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_g.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/weyl_group.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/cartan_matrix.py +25 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/cartan_type.py +73 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_cartan_matrix.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_cartan_type.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_dynkin_diagram.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_root_system.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_A.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_B.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_C.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_D.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_E.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_F.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_G.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_weyl_group.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_matrix.py +10 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_type.py +12 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_dynkin_diagram.py +9 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_root_system.py +18 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_A.py +17 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_B.py +17 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_C.py +22 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_D.py +19 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_E.py +19 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_F.py +24 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_G.py +16 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_weyl_group.py +35 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/type_b.py +172 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/type_c.py +171 -0
- venv/lib/python3.10/site-packages/sympy/liealgebras/type_d.py +175 -0
ckpts/universal/global_step80/zero/11.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aaa96c7a3d45d98f2333735e41c9892d74e78dbd0640cda0b31f78334e1db866
|
3 |
+
size 33555612
|
ckpts/universal/global_step80/zero/11.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61a7aedfce35c129dbc3f286586b7221f7f2f95322a1bbd29755f54d381efeca
|
3 |
+
size 33555533
|
ckpts/universal/global_step80/zero/28.final_rmsnorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f93d927de1898973cb8449f1dd99431dd02132485aef105585f0985205b0c24
|
3 |
+
size 9372
|
ckpts/universal/global_step80/zero/28.final_rmsnorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d39adbcaf379e1e4475e2f4bb1262bbd91a94b917d584c4e2532dc4e0fb998bc
|
3 |
+
size 9387
|
ckpts/universal/global_step80/zero/28.final_rmsnorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ebbcf3acf60567cdbbf88756e15ad70609d2193ade148e3302ba430fbf15b08
|
3 |
+
size 9293
|
venv/lib/python3.10/site-packages/sympy/liealgebras/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType
|
2 |
+
|
3 |
+
__all__ = ['CartanType']
|
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (271 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/cartan_matrix.cpython-310.pyc
ADDED
Binary file (784 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/cartan_type.cpython-310.pyc
ADDED
Binary file (2.21 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/dynkin_diagram.cpython-310.pyc
ADDED
Binary file (796 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/root_system.cpython-310.pyc
ADDED
Binary file (7.81 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_a.cpython-310.pyc
ADDED
Binary file (5.47 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_b.cpython-310.pyc
ADDED
Binary file (5.45 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_c.cpython-310.pyc
ADDED
Binary file (5.33 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_d.cpython-310.pyc
ADDED
Binary file (5.63 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_e.cpython-310.pyc
ADDED
Binary file (7.12 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_f.cpython-310.pyc
ADDED
Binary file (4.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_g.cpython-310.pyc
ADDED
Binary file (3.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/weyl_group.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/cartan_matrix.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .cartan_type import CartanType
|
2 |
+
|
3 |
+
def CartanMatrix(ct):
|
4 |
+
"""Access the Cartan matrix of a specific Lie algebra
|
5 |
+
|
6 |
+
Examples
|
7 |
+
========
|
8 |
+
|
9 |
+
>>> from sympy.liealgebras.cartan_matrix import CartanMatrix
|
10 |
+
>>> CartanMatrix("A2")
|
11 |
+
Matrix([
|
12 |
+
[ 2, -1],
|
13 |
+
[-1, 2]])
|
14 |
+
|
15 |
+
>>> CartanMatrix(['C', 3])
|
16 |
+
Matrix([
|
17 |
+
[ 2, -1, 0],
|
18 |
+
[-1, 2, -1],
|
19 |
+
[ 0, -2, 2]])
|
20 |
+
|
21 |
+
This method works by returning the Cartan matrix
|
22 |
+
which corresponds to Cartan type t.
|
23 |
+
"""
|
24 |
+
|
25 |
+
return CartanType(ct).cartan_matrix()
|
venv/lib/python3.10/site-packages/sympy/liealgebras/cartan_type.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Atom, Basic
|
2 |
+
|
3 |
+
|
4 |
+
class CartanType_generator():
|
5 |
+
"""
|
6 |
+
Constructor for actually creating things
|
7 |
+
"""
|
8 |
+
def __call__(self, *args):
|
9 |
+
c = args[0]
|
10 |
+
if isinstance(c, list):
|
11 |
+
letter, n = c[0], int(c[1])
|
12 |
+
elif isinstance(c, str):
|
13 |
+
letter, n = c[0], int(c[1:])
|
14 |
+
else:
|
15 |
+
raise TypeError("Argument must be a string (e.g. 'A3') or a list (e.g. ['A', 3])")
|
16 |
+
|
17 |
+
if n < 0:
|
18 |
+
raise ValueError("Lie algebra rank cannot be negative")
|
19 |
+
if letter == "A":
|
20 |
+
from . import type_a
|
21 |
+
return type_a.TypeA(n)
|
22 |
+
if letter == "B":
|
23 |
+
from . import type_b
|
24 |
+
return type_b.TypeB(n)
|
25 |
+
|
26 |
+
if letter == "C":
|
27 |
+
from . import type_c
|
28 |
+
return type_c.TypeC(n)
|
29 |
+
|
30 |
+
if letter == "D":
|
31 |
+
from . import type_d
|
32 |
+
return type_d.TypeD(n)
|
33 |
+
|
34 |
+
if letter == "E":
|
35 |
+
if n >= 6 and n <= 8:
|
36 |
+
from . import type_e
|
37 |
+
return type_e.TypeE(n)
|
38 |
+
|
39 |
+
if letter == "F":
|
40 |
+
if n == 4:
|
41 |
+
from . import type_f
|
42 |
+
return type_f.TypeF(n)
|
43 |
+
|
44 |
+
if letter == "G":
|
45 |
+
if n == 2:
|
46 |
+
from . import type_g
|
47 |
+
return type_g.TypeG(n)
|
48 |
+
|
49 |
+
CartanType = CartanType_generator()
|
50 |
+
|
51 |
+
|
52 |
+
class Standard_Cartan(Atom):
|
53 |
+
"""
|
54 |
+
Concrete base class for Cartan types such as A4, etc
|
55 |
+
"""
|
56 |
+
|
57 |
+
def __new__(cls, series, n):
|
58 |
+
obj = Basic.__new__(cls)
|
59 |
+
obj.n = n
|
60 |
+
obj.series = series
|
61 |
+
return obj
|
62 |
+
|
63 |
+
def rank(self):
|
64 |
+
"""
|
65 |
+
Returns the rank of the Lie algebra
|
66 |
+
"""
|
67 |
+
return self.n
|
68 |
+
|
69 |
+
def series(self):
|
70 |
+
"""
|
71 |
+
Returns the type of the Lie algebra
|
72 |
+
"""
|
73 |
+
return self.series
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (191 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_cartan_matrix.cpython-310.pyc
ADDED
Binary file (615 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_cartan_type.cpython-310.pyc
ADDED
Binary file (593 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_dynkin_diagram.cpython-310.pyc
ADDED
Binary file (518 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_root_system.cpython-310.pyc
ADDED
Binary file (1.37 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_A.cpython-310.pyc
ADDED
Binary file (1.05 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_B.cpython-310.pyc
ADDED
Binary file (1.06 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_C.cpython-310.pyc
ADDED
Binary file (1.52 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_D.cpython-310.pyc
ADDED
Binary file (1.24 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_E.cpython-310.pyc
ADDED
Binary file (1.39 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_F.cpython-310.pyc
ADDED
Binary file (2 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_G.cpython-310.pyc
ADDED
Binary file (916 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_weyl_group.cpython-310.pyc
ADDED
Binary file (1.72 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_matrix.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_matrix import CartanMatrix
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
|
4 |
+
def test_CartanMatrix():
|
5 |
+
c = CartanMatrix("A3")
|
6 |
+
m = Matrix(3, 3, [2, -1, 0, -1, 2, -1, 0, -1, 2])
|
7 |
+
assert c == m
|
8 |
+
a = CartanMatrix(["G",2])
|
9 |
+
mt = Matrix(2, 2, [2, -1, -3, 2])
|
10 |
+
assert a == mt
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_type.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType, Standard_Cartan
|
2 |
+
|
3 |
+
def test_Standard_Cartan():
|
4 |
+
c = CartanType("A4")
|
5 |
+
assert c.rank() == 4
|
6 |
+
assert c.series == "A"
|
7 |
+
m = Standard_Cartan("A", 2)
|
8 |
+
assert m.rank() == 2
|
9 |
+
assert m.series == "A"
|
10 |
+
b = CartanType("B12")
|
11 |
+
assert b.rank() == 12
|
12 |
+
assert b.series == "B"
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_dynkin_diagram.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.dynkin_diagram import DynkinDiagram
|
2 |
+
|
3 |
+
def test_DynkinDiagram():
|
4 |
+
c = DynkinDiagram("A3")
|
5 |
+
diag = "0---0---0\n1 2 3"
|
6 |
+
assert c == diag
|
7 |
+
ct = DynkinDiagram(["B", 3])
|
8 |
+
diag2 = "0---0=>=0\n1 2 3"
|
9 |
+
assert ct == diag2
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_root_system.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.root_system import RootSystem
|
2 |
+
from sympy.liealgebras.type_a import TypeA
|
3 |
+
from sympy.matrices import Matrix
|
4 |
+
|
5 |
+
def test_root_system():
|
6 |
+
c = RootSystem("A3")
|
7 |
+
assert c.cartan_type == TypeA(3)
|
8 |
+
assert c.simple_roots() == {1: [1, -1, 0, 0], 2: [0, 1, -1, 0], 3: [0, 0, 1, -1]}
|
9 |
+
assert c.root_space() == "alpha[1] + alpha[2] + alpha[3]"
|
10 |
+
assert c.cartan_matrix() == Matrix([[ 2, -1, 0], [-1, 2, -1], [ 0, -1, 2]])
|
11 |
+
assert c.dynkin_diagram() == "0---0---0\n1 2 3"
|
12 |
+
assert c.add_simple_roots(1, 2) == [1, 0, -1, 0]
|
13 |
+
assert c.all_roots() == {1: [1, -1, 0, 0], 2: [1, 0, -1, 0],
|
14 |
+
3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1],
|
15 |
+
6: [0, 0, 1, -1], 7: [-1, 1, 0, 0], 8: [-1, 0, 1, 0],
|
16 |
+
9: [-1, 0, 0, 1], 10: [0, -1, 1, 0],
|
17 |
+
11: [0, -1, 0, 1], 12: [0, 0, -1, 1]}
|
18 |
+
assert c.add_as_roots([1, 0, -1, 0], [0, 0, 1, -1]) == [1, 0, 0, -1]
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_A.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
|
4 |
+
def test_type_A():
|
5 |
+
c = CartanType("A3")
|
6 |
+
m = Matrix(3, 3, [2, -1, 0, -1, 2, -1, 0, -1, 2])
|
7 |
+
assert m == c.cartan_matrix()
|
8 |
+
assert c.basis() == 8
|
9 |
+
assert c.roots() == 12
|
10 |
+
assert c.dimension() == 4
|
11 |
+
assert c.simple_root(1) == [1, -1, 0, 0]
|
12 |
+
assert c.highest_root() == [1, 0, 0, -1]
|
13 |
+
assert c.lie_algebra() == "su(4)"
|
14 |
+
diag = "0---0---0\n1 2 3"
|
15 |
+
assert c.dynkin_diagram() == diag
|
16 |
+
assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 0, -1, 0],
|
17 |
+
3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_B.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
|
4 |
+
def test_type_B():
|
5 |
+
c = CartanType("B3")
|
6 |
+
m = Matrix(3, 3, [2, -1, 0, -1, 2, -2, 0, -1, 2])
|
7 |
+
assert m == c.cartan_matrix()
|
8 |
+
assert c.dimension() == 3
|
9 |
+
assert c.roots() == 18
|
10 |
+
assert c.simple_root(3) == [0, 0, 1]
|
11 |
+
assert c.basis() == 3
|
12 |
+
assert c.lie_algebra() == "so(6)"
|
13 |
+
diag = "0---0=>=0\n1 2 3"
|
14 |
+
assert c.dynkin_diagram() == diag
|
15 |
+
assert c.positive_roots() == {1: [1, -1, 0], 2: [1, 1, 0], 3: [1, 0, -1],
|
16 |
+
4: [1, 0, 1], 5: [0, 1, -1], 6: [0, 1, 1], 7: [1, 0, 0],
|
17 |
+
8: [0, 1, 0], 9: [0, 0, 1]}
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_C.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
|
4 |
+
def test_type_C():
|
5 |
+
c = CartanType("C4")
|
6 |
+
m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -2, 2])
|
7 |
+
assert c.cartan_matrix() == m
|
8 |
+
assert c.dimension() == 4
|
9 |
+
assert c.simple_root(4) == [0, 0, 0, 2]
|
10 |
+
assert c.roots() == 32
|
11 |
+
assert c.basis() == 36
|
12 |
+
assert c.lie_algebra() == "sp(8)"
|
13 |
+
t = CartanType(['C', 3])
|
14 |
+
assert t.dimension() == 3
|
15 |
+
diag = "0---0---0=<=0\n1 2 3 4"
|
16 |
+
assert c.dynkin_diagram() == diag
|
17 |
+
assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0],
|
18 |
+
3: [1, 0, -1, 0], 4: [1, 0, 1, 0], 5: [1, 0, 0, -1],
|
19 |
+
6: [1, 0, 0, 1], 7: [0, 1, -1, 0], 8: [0, 1, 1, 0],
|
20 |
+
9: [0, 1, 0, -1], 10: [0, 1, 0, 1], 11: [0, 0, 1, -1],
|
21 |
+
12: [0, 0, 1, 1], 13: [2, 0, 0, 0], 14: [0, 2, 0, 0], 15: [0, 0, 2, 0],
|
22 |
+
16: [0, 0, 0, 2]}
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_D.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
def test_type_D():
|
7 |
+
c = CartanType("D4")
|
8 |
+
m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -1, -1, 0, -1, 2, 0, 0, -1, 0, 2])
|
9 |
+
assert c.cartan_matrix() == m
|
10 |
+
assert c.basis() == 6
|
11 |
+
assert c.lie_algebra() == "so(8)"
|
12 |
+
assert c.roots() == 24
|
13 |
+
assert c.simple_root(3) == [0, 0, 1, -1]
|
14 |
+
diag = " 3\n 0\n |\n |\n0---0---0\n1 2 4"
|
15 |
+
assert diag == c.dynkin_diagram()
|
16 |
+
assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0],
|
17 |
+
3: [1, 0, -1, 0], 4: [1, 0, 1, 0], 5: [1, 0, 0, -1], 6: [1, 0, 0, 1],
|
18 |
+
7: [0, 1, -1, 0], 8: [0, 1, 1, 0], 9: [0, 1, 0, -1], 10: [0, 1, 0, 1],
|
19 |
+
11: [0, 0, 1, -1], 12: [0, 0, 1, 1]}
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_E.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
|
4 |
+
def test_type_E():
|
5 |
+
c = CartanType("E6")
|
6 |
+
m = Matrix(6, 6, [2, 0, -1, 0, 0, 0, 0, 2, 0, -1, 0, 0,
|
7 |
+
-1, 0, 2, -1, 0, 0, 0, -1, -1, 2, -1, 0, 0, 0, 0,
|
8 |
+
-1, 2, -1, 0, 0, 0, 0, -1, 2])
|
9 |
+
assert c.cartan_matrix() == m
|
10 |
+
assert c.dimension() == 8
|
11 |
+
assert c.simple_root(6) == [0, 0, 0, -1, 1, 0, 0, 0]
|
12 |
+
assert c.roots() == 72
|
13 |
+
assert c.basis() == 78
|
14 |
+
diag = " "*8 + "2\n" + " "*8 + "0\n" + " "*8 + "|\n" + " "*8 + "|\n"
|
15 |
+
diag += "---".join("0" for i in range(1, 6))+"\n"
|
16 |
+
diag += "1 " + " ".join(str(i) for i in range(3, 7))
|
17 |
+
assert c.dynkin_diagram() == diag
|
18 |
+
posroots = c.positive_roots()
|
19 |
+
assert posroots[8] == [1, 0, 0, 0, 1, 0, 0, 0]
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_F.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
from sympy.core.backend import S
|
4 |
+
|
5 |
+
def test_type_F():
|
6 |
+
c = CartanType("F4")
|
7 |
+
m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -2, 0, 0, -1, 2, -1, 0, 0, -1, 2])
|
8 |
+
assert c.cartan_matrix() == m
|
9 |
+
assert c.dimension() == 4
|
10 |
+
assert c.simple_root(1) == [1, -1, 0, 0]
|
11 |
+
assert c.simple_root(2) == [0, 1, -1, 0]
|
12 |
+
assert c.simple_root(3) == [0, 0, 0, 1]
|
13 |
+
assert c.simple_root(4) == [-S.Half, -S.Half, -S.Half, -S.Half]
|
14 |
+
assert c.roots() == 48
|
15 |
+
assert c.basis() == 52
|
16 |
+
diag = "0---0=>=0---0\n" + " ".join(str(i) for i in range(1, 5))
|
17 |
+
assert c.dynkin_diagram() == diag
|
18 |
+
assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0], 3: [1, 0, -1, 0],
|
19 |
+
4: [1, 0, 1, 0], 5: [1, 0, 0, -1], 6: [1, 0, 0, 1], 7: [0, 1, -1, 0],
|
20 |
+
8: [0, 1, 1, 0], 9: [0, 1, 0, -1], 10: [0, 1, 0, 1], 11: [0, 0, 1, -1],
|
21 |
+
12: [0, 0, 1, 1], 13: [1, 0, 0, 0], 14: [0, 1, 0, 0], 15: [0, 0, 1, 0],
|
22 |
+
16: [0, 0, 0, 1], 17: [S.Half, S.Half, S.Half, S.Half], 18: [S.Half, -S.Half, S.Half, S.Half],
|
23 |
+
19: [S.Half, S.Half, -S.Half, S.Half], 20: [S.Half, S.Half, S.Half, -S.Half], 21: [S.Half, S.Half, -S.Half, -S.Half],
|
24 |
+
22: [S.Half, -S.Half, S.Half, -S.Half], 23: [S.Half, -S.Half, -S.Half, S.Half], 24: [S.Half, -S.Half, -S.Half, -S.Half]}
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_G.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
from sympy.liealgebras.cartan_type import CartanType
|
3 |
+
from sympy.matrices import Matrix
|
4 |
+
|
5 |
+
def test_type_G():
|
6 |
+
c = CartanType("G2")
|
7 |
+
m = Matrix(2, 2, [2, -1, -3, 2])
|
8 |
+
assert c.cartan_matrix() == m
|
9 |
+
assert c.simple_root(2) == [1, -2, 1]
|
10 |
+
assert c.basis() == 14
|
11 |
+
assert c.roots() == 12
|
12 |
+
assert c.dimension() == 3
|
13 |
+
diag = "0≡<≡0\n1 2"
|
14 |
+
assert diag == c.dynkin_diagram()
|
15 |
+
assert c.positive_roots() == {1: [0, 1, -1], 2: [1, -2, 1], 3: [1, -1, 0],
|
16 |
+
4: [1, 0, 1], 5: [1, 1, -2], 6: [2, -1, -1]}
|
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_weyl_group.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.weyl_group import WeylGroup
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
|
4 |
+
def test_weyl_group():
|
5 |
+
c = WeylGroup("A3")
|
6 |
+
assert c.matrix_form('r1*r2') == Matrix([[0, 0, 1, 0], [1, 0, 0, 0],
|
7 |
+
[0, 1, 0, 0], [0, 0, 0, 1]])
|
8 |
+
assert c.generators() == ['r1', 'r2', 'r3']
|
9 |
+
assert c.group_order() == 24.0
|
10 |
+
assert c.group_name() == "S4: the symmetric group acting on 4 elements."
|
11 |
+
assert c.coxeter_diagram() == "0---0---0\n1 2 3"
|
12 |
+
assert c.element_order('r1*r2*r3') == 4
|
13 |
+
assert c.element_order('r1*r3*r2*r3') == 3
|
14 |
+
d = WeylGroup("B5")
|
15 |
+
assert d.group_order() == 3840
|
16 |
+
assert d.element_order('r1*r2*r4*r5') == 12
|
17 |
+
assert d.matrix_form('r2*r3') == Matrix([[0, 0, 1, 0, 0], [1, 0, 0, 0, 0],
|
18 |
+
[0, 1, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]])
|
19 |
+
assert d.element_order('r1*r2*r1*r3*r5') == 6
|
20 |
+
e = WeylGroup("D5")
|
21 |
+
assert e.element_order('r2*r3*r5') == 4
|
22 |
+
assert e.matrix_form('r2*r3*r5') == Matrix([[1, 0, 0, 0, 0], [0, 0, 0, 0, -1],
|
23 |
+
[0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, -1, 0]])
|
24 |
+
f = WeylGroup("G2")
|
25 |
+
assert f.element_order('r1*r2*r1*r2') == 3
|
26 |
+
assert f.element_order('r2*r1*r1*r2') == 1
|
27 |
+
|
28 |
+
assert f.matrix_form('r1*r2*r1*r2') == Matrix([[0, 1, 0], [0, 0, 1], [1, 0, 0]])
|
29 |
+
g = WeylGroup("F4")
|
30 |
+
assert g.matrix_form('r2*r3') == Matrix([[1, 0, 0, 0], [0, 1, 0, 0],
|
31 |
+
[0, 0, 0, -1], [0, 0, 1, 0]])
|
32 |
+
|
33 |
+
assert g.element_order('r2*r3') == 4
|
34 |
+
h = WeylGroup("E6")
|
35 |
+
assert h.group_order() == 51840
|
venv/lib/python3.10/site-packages/sympy/liealgebras/type_b.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .cartan_type import Standard_Cartan
|
2 |
+
from sympy.core.backend import eye
|
3 |
+
|
4 |
+
class TypeB(Standard_Cartan):
|
5 |
+
|
6 |
+
def __new__(cls, n):
|
7 |
+
if n < 2:
|
8 |
+
raise ValueError("n cannot be less than 2")
|
9 |
+
return Standard_Cartan.__new__(cls, "B", n)
|
10 |
+
|
11 |
+
def dimension(self):
|
12 |
+
"""Dimension of the vector space V underlying the Lie algebra
|
13 |
+
|
14 |
+
Examples
|
15 |
+
========
|
16 |
+
|
17 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
18 |
+
>>> c = CartanType("B3")
|
19 |
+
>>> c.dimension()
|
20 |
+
3
|
21 |
+
"""
|
22 |
+
|
23 |
+
return self.n
|
24 |
+
|
25 |
+
def basic_root(self, i, j):
|
26 |
+
"""
|
27 |
+
This is a method just to generate roots
|
28 |
+
with a 1 iin the ith position and a -1
|
29 |
+
in the jth position.
|
30 |
+
|
31 |
+
"""
|
32 |
+
root = [0]*self.n
|
33 |
+
root[i] = 1
|
34 |
+
root[j] = -1
|
35 |
+
return root
|
36 |
+
|
37 |
+
def simple_root(self, i):
|
38 |
+
"""
|
39 |
+
Every lie algebra has a unique root system.
|
40 |
+
Given a root system Q, there is a subset of the
|
41 |
+
roots such that an element of Q is called a
|
42 |
+
simple root if it cannot be written as the sum
|
43 |
+
of two elements in Q. If we let D denote the
|
44 |
+
set of simple roots, then it is clear that every
|
45 |
+
element of Q can be written as a linear combination
|
46 |
+
of elements of D with all coefficients non-negative.
|
47 |
+
|
48 |
+
In B_n the first n-1 simple roots are the same as the
|
49 |
+
roots in A_(n-1) (a 1 in the ith position, a -1 in
|
50 |
+
the (i+1)th position, and zeroes elsewhere). The n-th
|
51 |
+
simple root is the root with a 1 in the nth position
|
52 |
+
and zeroes elsewhere.
|
53 |
+
|
54 |
+
This method returns the ith simple root for the B series.
|
55 |
+
|
56 |
+
Examples
|
57 |
+
========
|
58 |
+
|
59 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
60 |
+
>>> c = CartanType("B3")
|
61 |
+
>>> c.simple_root(2)
|
62 |
+
[0, 1, -1]
|
63 |
+
|
64 |
+
"""
|
65 |
+
n = self.n
|
66 |
+
if i < n:
|
67 |
+
return self.basic_root(i-1, i)
|
68 |
+
else:
|
69 |
+
root = [0]*self.n
|
70 |
+
root[n-1] = 1
|
71 |
+
return root
|
72 |
+
|
73 |
+
def positive_roots(self):
|
74 |
+
"""
|
75 |
+
This method generates all the positive roots of
|
76 |
+
A_n. This is half of all of the roots of B_n;
|
77 |
+
by multiplying all the positive roots by -1 we
|
78 |
+
get the negative roots.
|
79 |
+
|
80 |
+
Examples
|
81 |
+
========
|
82 |
+
|
83 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
84 |
+
>>> c = CartanType("A3")
|
85 |
+
>>> c.positive_roots()
|
86 |
+
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
|
87 |
+
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
|
88 |
+
"""
|
89 |
+
|
90 |
+
n = self.n
|
91 |
+
posroots = {}
|
92 |
+
k = 0
|
93 |
+
for i in range(0, n-1):
|
94 |
+
for j in range(i+1, n):
|
95 |
+
k += 1
|
96 |
+
posroots[k] = self.basic_root(i, j)
|
97 |
+
k += 1
|
98 |
+
root = self.basic_root(i, j)
|
99 |
+
root[j] = 1
|
100 |
+
posroots[k] = root
|
101 |
+
|
102 |
+
for i in range(0, n):
|
103 |
+
k += 1
|
104 |
+
root = [0]*n
|
105 |
+
root[i] = 1
|
106 |
+
posroots[k] = root
|
107 |
+
|
108 |
+
return posroots
|
109 |
+
|
110 |
+
def roots(self):
|
111 |
+
"""
|
112 |
+
Returns the total number of roots for B_n"
|
113 |
+
"""
|
114 |
+
|
115 |
+
n = self.n
|
116 |
+
return 2*(n**2)
|
117 |
+
|
118 |
+
def cartan_matrix(self):
|
119 |
+
"""
|
120 |
+
Returns the Cartan matrix for B_n.
|
121 |
+
The Cartan matrix matrix for a Lie algebra is
|
122 |
+
generated by assigning an ordering to the simple
|
123 |
+
roots, (alpha[1], ...., alpha[l]). Then the ijth
|
124 |
+
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
|
125 |
+
|
126 |
+
Examples
|
127 |
+
========
|
128 |
+
|
129 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
130 |
+
>>> c = CartanType('B4')
|
131 |
+
>>> c.cartan_matrix()
|
132 |
+
Matrix([
|
133 |
+
[ 2, -1, 0, 0],
|
134 |
+
[-1, 2, -1, 0],
|
135 |
+
[ 0, -1, 2, -2],
|
136 |
+
[ 0, 0, -1, 2]])
|
137 |
+
|
138 |
+
"""
|
139 |
+
|
140 |
+
n = self.n
|
141 |
+
m = 2* eye(n)
|
142 |
+
i = 1
|
143 |
+
while i < n-1:
|
144 |
+
m[i, i+1] = -1
|
145 |
+
m[i, i-1] = -1
|
146 |
+
i += 1
|
147 |
+
m[0, 1] = -1
|
148 |
+
m[n-2, n-1] = -2
|
149 |
+
m[n-1, n-2] = -1
|
150 |
+
return m
|
151 |
+
|
152 |
+
def basis(self):
|
153 |
+
"""
|
154 |
+
Returns the number of independent generators of B_n
|
155 |
+
"""
|
156 |
+
|
157 |
+
n = self.n
|
158 |
+
return (n**2 - n)/2
|
159 |
+
|
160 |
+
def lie_algebra(self):
|
161 |
+
"""
|
162 |
+
Returns the Lie algebra associated with B_n
|
163 |
+
"""
|
164 |
+
|
165 |
+
n = self.n
|
166 |
+
return "so(" + str(2*n) + ")"
|
167 |
+
|
168 |
+
def dynkin_diagram(self):
|
169 |
+
n = self.n
|
170 |
+
diag = "---".join("0" for i in range(1, n)) + "=>=0\n"
|
171 |
+
diag += " ".join(str(i) for i in range(1, n+1))
|
172 |
+
return diag
|
venv/lib/python3.10/site-packages/sympy/liealgebras/type_c.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .cartan_type import Standard_Cartan
|
2 |
+
from sympy.core.backend import eye
|
3 |
+
|
4 |
+
class TypeC(Standard_Cartan):
|
5 |
+
|
6 |
+
def __new__(cls, n):
|
7 |
+
if n < 3:
|
8 |
+
raise ValueError("n cannot be less than 3")
|
9 |
+
return Standard_Cartan.__new__(cls, "C", n)
|
10 |
+
|
11 |
+
|
12 |
+
def dimension(self):
|
13 |
+
"""Dimension of the vector space V underlying the Lie algebra
|
14 |
+
|
15 |
+
Examples
|
16 |
+
========
|
17 |
+
|
18 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
19 |
+
>>> c = CartanType("C3")
|
20 |
+
>>> c.dimension()
|
21 |
+
3
|
22 |
+
"""
|
23 |
+
n = self.n
|
24 |
+
return n
|
25 |
+
|
26 |
+
def basic_root(self, i, j):
|
27 |
+
"""Generate roots with 1 in ith position and a -1 in jth position
|
28 |
+
"""
|
29 |
+
n = self.n
|
30 |
+
root = [0]*n
|
31 |
+
root[i] = 1
|
32 |
+
root[j] = -1
|
33 |
+
return root
|
34 |
+
|
35 |
+
def simple_root(self, i):
|
36 |
+
"""The ith simple root for the C series
|
37 |
+
|
38 |
+
Every lie algebra has a unique root system.
|
39 |
+
Given a root system Q, there is a subset of the
|
40 |
+
roots such that an element of Q is called a
|
41 |
+
simple root if it cannot be written as the sum
|
42 |
+
of two elements in Q. If we let D denote the
|
43 |
+
set of simple roots, then it is clear that every
|
44 |
+
element of Q can be written as a linear combination
|
45 |
+
of elements of D with all coefficients non-negative.
|
46 |
+
|
47 |
+
In C_n, the first n-1 simple roots are the same as
|
48 |
+
the roots in A_(n-1) (a 1 in the ith position, a -1
|
49 |
+
in the (i+1)th position, and zeroes elsewhere). The
|
50 |
+
nth simple root is the root in which there is a 2 in
|
51 |
+
the nth position and zeroes elsewhere.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
========
|
55 |
+
|
56 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
57 |
+
>>> c = CartanType("C3")
|
58 |
+
>>> c.simple_root(2)
|
59 |
+
[0, 1, -1]
|
60 |
+
|
61 |
+
"""
|
62 |
+
|
63 |
+
n = self.n
|
64 |
+
if i < n:
|
65 |
+
return self.basic_root(i-1,i)
|
66 |
+
else:
|
67 |
+
root = [0]*self.n
|
68 |
+
root[n-1] = 2
|
69 |
+
return root
|
70 |
+
|
71 |
+
|
72 |
+
def positive_roots(self):
|
73 |
+
"""Generates all the positive roots of A_n
|
74 |
+
|
75 |
+
This is half of all of the roots of C_n; by multiplying all the
|
76 |
+
positive roots by -1 we get the negative roots.
|
77 |
+
|
78 |
+
Examples
|
79 |
+
========
|
80 |
+
|
81 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
82 |
+
>>> c = CartanType("A3")
|
83 |
+
>>> c.positive_roots()
|
84 |
+
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
|
85 |
+
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
|
86 |
+
|
87 |
+
"""
|
88 |
+
|
89 |
+
n = self.n
|
90 |
+
posroots = {}
|
91 |
+
k = 0
|
92 |
+
for i in range(0, n-1):
|
93 |
+
for j in range(i+1, n):
|
94 |
+
k += 1
|
95 |
+
posroots[k] = self.basic_root(i, j)
|
96 |
+
k += 1
|
97 |
+
root = self.basic_root(i, j)
|
98 |
+
root[j] = 1
|
99 |
+
posroots[k] = root
|
100 |
+
|
101 |
+
for i in range(0, n):
|
102 |
+
k += 1
|
103 |
+
root = [0]*n
|
104 |
+
root[i] = 2
|
105 |
+
posroots[k] = root
|
106 |
+
|
107 |
+
return posroots
|
108 |
+
|
109 |
+
def roots(self):
|
110 |
+
"""
|
111 |
+
Returns the total number of roots for C_n"
|
112 |
+
"""
|
113 |
+
|
114 |
+
n = self.n
|
115 |
+
return 2*(n**2)
|
116 |
+
|
117 |
+
def cartan_matrix(self):
|
118 |
+
"""The Cartan matrix for C_n
|
119 |
+
|
120 |
+
The Cartan matrix matrix for a Lie algebra is
|
121 |
+
generated by assigning an ordering to the simple
|
122 |
+
roots, (alpha[1], ...., alpha[l]). Then the ijth
|
123 |
+
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
|
124 |
+
|
125 |
+
Examples
|
126 |
+
========
|
127 |
+
|
128 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
129 |
+
>>> c = CartanType('C4')
|
130 |
+
>>> c.cartan_matrix()
|
131 |
+
Matrix([
|
132 |
+
[ 2, -1, 0, 0],
|
133 |
+
[-1, 2, -1, 0],
|
134 |
+
[ 0, -1, 2, -1],
|
135 |
+
[ 0, 0, -2, 2]])
|
136 |
+
|
137 |
+
"""
|
138 |
+
|
139 |
+
n = self.n
|
140 |
+
m = 2 * eye(n)
|
141 |
+
i = 1
|
142 |
+
while i < n-1:
|
143 |
+
m[i, i+1] = -1
|
144 |
+
m[i, i-1] = -1
|
145 |
+
i += 1
|
146 |
+
m[0,1] = -1
|
147 |
+
m[n-1, n-2] = -2
|
148 |
+
return m
|
149 |
+
|
150 |
+
|
151 |
+
def basis(self):
|
152 |
+
"""
|
153 |
+
Returns the number of independent generators of C_n
|
154 |
+
"""
|
155 |
+
|
156 |
+
n = self.n
|
157 |
+
return n*(2*n + 1)
|
158 |
+
|
159 |
+
def lie_algebra(self):
|
160 |
+
"""
|
161 |
+
Returns the Lie algebra associated with C_n"
|
162 |
+
"""
|
163 |
+
|
164 |
+
n = self.n
|
165 |
+
return "sp(" + str(2*n) + ")"
|
166 |
+
|
167 |
+
def dynkin_diagram(self):
|
168 |
+
n = self.n
|
169 |
+
diag = "---".join("0" for i in range(1, n)) + "=<=0\n"
|
170 |
+
diag += " ".join(str(i) for i in range(1, n+1))
|
171 |
+
return diag
|
venv/lib/python3.10/site-packages/sympy/liealgebras/type_d.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .cartan_type import Standard_Cartan
|
2 |
+
from sympy.core.backend import eye
|
3 |
+
|
4 |
+
class TypeD(Standard_Cartan):
|
5 |
+
|
6 |
+
def __new__(cls, n):
|
7 |
+
if n < 3:
|
8 |
+
raise ValueError("n cannot be less than 3")
|
9 |
+
return Standard_Cartan.__new__(cls, "D", n)
|
10 |
+
|
11 |
+
|
12 |
+
def dimension(self):
|
13 |
+
"""Dmension of the vector space V underlying the Lie algebra
|
14 |
+
|
15 |
+
Examples
|
16 |
+
========
|
17 |
+
|
18 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
19 |
+
>>> c = CartanType("D4")
|
20 |
+
>>> c.dimension()
|
21 |
+
4
|
22 |
+
"""
|
23 |
+
|
24 |
+
return self.n
|
25 |
+
|
26 |
+
def basic_root(self, i, j):
|
27 |
+
"""
|
28 |
+
This is a method just to generate roots
|
29 |
+
with a 1 iin the ith position and a -1
|
30 |
+
in the jth position.
|
31 |
+
|
32 |
+
"""
|
33 |
+
|
34 |
+
n = self.n
|
35 |
+
root = [0]*n
|
36 |
+
root[i] = 1
|
37 |
+
root[j] = -1
|
38 |
+
return root
|
39 |
+
|
40 |
+
def simple_root(self, i):
|
41 |
+
"""
|
42 |
+
Every lie algebra has a unique root system.
|
43 |
+
Given a root system Q, there is a subset of the
|
44 |
+
roots such that an element of Q is called a
|
45 |
+
simple root if it cannot be written as the sum
|
46 |
+
of two elements in Q. If we let D denote the
|
47 |
+
set of simple roots, then it is clear that every
|
48 |
+
element of Q can be written as a linear combination
|
49 |
+
of elements of D with all coefficients non-negative.
|
50 |
+
|
51 |
+
In D_n, the first n-1 simple roots are the same as
|
52 |
+
the roots in A_(n-1) (a 1 in the ith position, a -1
|
53 |
+
in the (i+1)th position, and zeroes elsewhere).
|
54 |
+
The nth simple root is the root in which there 1s in
|
55 |
+
the nth and (n-1)th positions, and zeroes elsewhere.
|
56 |
+
|
57 |
+
This method returns the ith simple root for the D series.
|
58 |
+
|
59 |
+
Examples
|
60 |
+
========
|
61 |
+
|
62 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
63 |
+
>>> c = CartanType("D4")
|
64 |
+
>>> c.simple_root(2)
|
65 |
+
[0, 1, -1, 0]
|
66 |
+
|
67 |
+
"""
|
68 |
+
|
69 |
+
n = self.n
|
70 |
+
if i < n:
|
71 |
+
return self.basic_root(i-1, i)
|
72 |
+
else:
|
73 |
+
root = [0]*n
|
74 |
+
root[n-2] = 1
|
75 |
+
root[n-1] = 1
|
76 |
+
return root
|
77 |
+
|
78 |
+
|
79 |
+
def positive_roots(self):
|
80 |
+
"""
|
81 |
+
This method generates all the positive roots of
|
82 |
+
A_n. This is half of all of the roots of D_n
|
83 |
+
by multiplying all the positive roots by -1 we
|
84 |
+
get the negative roots.
|
85 |
+
|
86 |
+
Examples
|
87 |
+
========
|
88 |
+
|
89 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
90 |
+
>>> c = CartanType("A3")
|
91 |
+
>>> c.positive_roots()
|
92 |
+
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
|
93 |
+
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
|
94 |
+
"""
|
95 |
+
|
96 |
+
n = self.n
|
97 |
+
posroots = {}
|
98 |
+
k = 0
|
99 |
+
for i in range(0, n-1):
|
100 |
+
for j in range(i+1, n):
|
101 |
+
k += 1
|
102 |
+
posroots[k] = self.basic_root(i, j)
|
103 |
+
k += 1
|
104 |
+
root = self.basic_root(i, j)
|
105 |
+
root[j] = 1
|
106 |
+
posroots[k] = root
|
107 |
+
return posroots
|
108 |
+
|
109 |
+
def roots(self):
|
110 |
+
"""
|
111 |
+
Returns the total number of roots for D_n"
|
112 |
+
"""
|
113 |
+
|
114 |
+
n = self.n
|
115 |
+
return 2*n*(n-1)
|
116 |
+
|
117 |
+
def cartan_matrix(self):
|
118 |
+
"""
|
119 |
+
Returns the Cartan matrix for D_n.
|
120 |
+
The Cartan matrix matrix for a Lie algebra is
|
121 |
+
generated by assigning an ordering to the simple
|
122 |
+
roots, (alpha[1], ...., alpha[l]). Then the ijth
|
123 |
+
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
|
124 |
+
|
125 |
+
Examples
|
126 |
+
========
|
127 |
+
|
128 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
129 |
+
>>> c = CartanType('D4')
|
130 |
+
>>> c.cartan_matrix()
|
131 |
+
Matrix([
|
132 |
+
[ 2, -1, 0, 0],
|
133 |
+
[-1, 2, -1, -1],
|
134 |
+
[ 0, -1, 2, 0],
|
135 |
+
[ 0, -1, 0, 2]])
|
136 |
+
|
137 |
+
"""
|
138 |
+
|
139 |
+
n = self.n
|
140 |
+
m = 2*eye(n)
|
141 |
+
i = 1
|
142 |
+
while i < n-2:
|
143 |
+
m[i,i+1] = -1
|
144 |
+
m[i,i-1] = -1
|
145 |
+
i += 1
|
146 |
+
m[n-2, n-3] = -1
|
147 |
+
m[n-3, n-1] = -1
|
148 |
+
m[n-1, n-3] = -1
|
149 |
+
m[0, 1] = -1
|
150 |
+
return m
|
151 |
+
|
152 |
+
def basis(self):
|
153 |
+
"""
|
154 |
+
Returns the number of independent generators of D_n
|
155 |
+
"""
|
156 |
+
n = self.n
|
157 |
+
return n*(n-1)/2
|
158 |
+
|
159 |
+
def lie_algebra(self):
|
160 |
+
"""
|
161 |
+
Returns the Lie algebra associated with D_n"
|
162 |
+
"""
|
163 |
+
|
164 |
+
n = self.n
|
165 |
+
return "so(" + str(2*n) + ")"
|
166 |
+
|
167 |
+
def dynkin_diagram(self):
|
168 |
+
n = self.n
|
169 |
+
diag = " "*4*(n-3) + str(n-1) + "\n"
|
170 |
+
diag += " "*4*(n-3) + "0\n"
|
171 |
+
diag += " "*4*(n-3) +"|\n"
|
172 |
+
diag += " "*4*(n-3) + "|\n"
|
173 |
+
diag += "---".join("0" for i in range(1,n)) + "\n"
|
174 |
+
diag += " ".join(str(i) for i in range(1, n-1)) + " "+str(n)
|
175 |
+
return diag
|