applied-ai-018 commited on
Commit
43e608a
·
verified ·
1 Parent(s): d35b968

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step80/zero/11.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step80/zero/11.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
  3. ckpts/universal/global_step80/zero/28.final_rmsnorm.weight/exp_avg.pt +3 -0
  4. ckpts/universal/global_step80/zero/28.final_rmsnorm.weight/exp_avg_sq.pt +3 -0
  5. ckpts/universal/global_step80/zero/28.final_rmsnorm.weight/fp32.pt +3 -0
  6. venv/lib/python3.10/site-packages/sympy/liealgebras/__init__.py +3 -0
  7. venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/__init__.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/cartan_matrix.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/cartan_type.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/dynkin_diagram.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/root_system.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_a.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_b.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_c.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_d.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_e.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_f.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_g.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/weyl_group.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/sympy/liealgebras/cartan_matrix.py +25 -0
  21. venv/lib/python3.10/site-packages/sympy/liealgebras/cartan_type.py +73 -0
  22. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__init__.py +0 -0
  23. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_cartan_matrix.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_cartan_type.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_dynkin_diagram.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_root_system.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_A.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_B.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_C.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_D.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_E.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_F.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_G.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_weyl_group.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_matrix.py +10 -0
  37. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_type.py +12 -0
  38. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_dynkin_diagram.py +9 -0
  39. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_root_system.py +18 -0
  40. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_A.py +17 -0
  41. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_B.py +17 -0
  42. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_C.py +22 -0
  43. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_D.py +19 -0
  44. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_E.py +19 -0
  45. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_F.py +24 -0
  46. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_G.py +16 -0
  47. venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_weyl_group.py +35 -0
  48. venv/lib/python3.10/site-packages/sympy/liealgebras/type_b.py +172 -0
  49. venv/lib/python3.10/site-packages/sympy/liealgebras/type_c.py +171 -0
  50. venv/lib/python3.10/site-packages/sympy/liealgebras/type_d.py +175 -0
ckpts/universal/global_step80/zero/11.mlp.dense_h_to_4h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aaa96c7a3d45d98f2333735e41c9892d74e78dbd0640cda0b31f78334e1db866
3
+ size 33555612
ckpts/universal/global_step80/zero/11.mlp.dense_h_to_4h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61a7aedfce35c129dbc3f286586b7221f7f2f95322a1bbd29755f54d381efeca
3
+ size 33555533
ckpts/universal/global_step80/zero/28.final_rmsnorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f93d927de1898973cb8449f1dd99431dd02132485aef105585f0985205b0c24
3
+ size 9372
ckpts/universal/global_step80/zero/28.final_rmsnorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d39adbcaf379e1e4475e2f4bb1262bbd91a94b917d584c4e2532dc4e0fb998bc
3
+ size 9387
ckpts/universal/global_step80/zero/28.final_rmsnorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ebbcf3acf60567cdbbf88756e15ad70609d2193ade148e3302ba430fbf15b08
3
+ size 9293
venv/lib/python3.10/site-packages/sympy/liealgebras/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType
2
+
3
+ __all__ = ['CartanType']
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (271 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/cartan_matrix.cpython-310.pyc ADDED
Binary file (784 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/cartan_type.cpython-310.pyc ADDED
Binary file (2.21 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/dynkin_diagram.cpython-310.pyc ADDED
Binary file (796 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/root_system.cpython-310.pyc ADDED
Binary file (7.81 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_a.cpython-310.pyc ADDED
Binary file (5.47 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_b.cpython-310.pyc ADDED
Binary file (5.45 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_c.cpython-310.pyc ADDED
Binary file (5.33 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_d.cpython-310.pyc ADDED
Binary file (5.63 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_e.cpython-310.pyc ADDED
Binary file (7.12 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_f.cpython-310.pyc ADDED
Binary file (4.9 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_g.cpython-310.pyc ADDED
Binary file (3.8 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/weyl_group.cpython-310.pyc ADDED
Binary file (10.7 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/cartan_matrix.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .cartan_type import CartanType
2
+
3
+ def CartanMatrix(ct):
4
+ """Access the Cartan matrix of a specific Lie algebra
5
+
6
+ Examples
7
+ ========
8
+
9
+ >>> from sympy.liealgebras.cartan_matrix import CartanMatrix
10
+ >>> CartanMatrix("A2")
11
+ Matrix([
12
+ [ 2, -1],
13
+ [-1, 2]])
14
+
15
+ >>> CartanMatrix(['C', 3])
16
+ Matrix([
17
+ [ 2, -1, 0],
18
+ [-1, 2, -1],
19
+ [ 0, -2, 2]])
20
+
21
+ This method works by returning the Cartan matrix
22
+ which corresponds to Cartan type t.
23
+ """
24
+
25
+ return CartanType(ct).cartan_matrix()
venv/lib/python3.10/site-packages/sympy/liealgebras/cartan_type.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Atom, Basic
2
+
3
+
4
+ class CartanType_generator():
5
+ """
6
+ Constructor for actually creating things
7
+ """
8
+ def __call__(self, *args):
9
+ c = args[0]
10
+ if isinstance(c, list):
11
+ letter, n = c[0], int(c[1])
12
+ elif isinstance(c, str):
13
+ letter, n = c[0], int(c[1:])
14
+ else:
15
+ raise TypeError("Argument must be a string (e.g. 'A3') or a list (e.g. ['A', 3])")
16
+
17
+ if n < 0:
18
+ raise ValueError("Lie algebra rank cannot be negative")
19
+ if letter == "A":
20
+ from . import type_a
21
+ return type_a.TypeA(n)
22
+ if letter == "B":
23
+ from . import type_b
24
+ return type_b.TypeB(n)
25
+
26
+ if letter == "C":
27
+ from . import type_c
28
+ return type_c.TypeC(n)
29
+
30
+ if letter == "D":
31
+ from . import type_d
32
+ return type_d.TypeD(n)
33
+
34
+ if letter == "E":
35
+ if n >= 6 and n <= 8:
36
+ from . import type_e
37
+ return type_e.TypeE(n)
38
+
39
+ if letter == "F":
40
+ if n == 4:
41
+ from . import type_f
42
+ return type_f.TypeF(n)
43
+
44
+ if letter == "G":
45
+ if n == 2:
46
+ from . import type_g
47
+ return type_g.TypeG(n)
48
+
49
+ CartanType = CartanType_generator()
50
+
51
+
52
+ class Standard_Cartan(Atom):
53
+ """
54
+ Concrete base class for Cartan types such as A4, etc
55
+ """
56
+
57
+ def __new__(cls, series, n):
58
+ obj = Basic.__new__(cls)
59
+ obj.n = n
60
+ obj.series = series
61
+ return obj
62
+
63
+ def rank(self):
64
+ """
65
+ Returns the rank of the Lie algebra
66
+ """
67
+ return self.n
68
+
69
+ def series(self):
70
+ """
71
+ Returns the type of the Lie algebra
72
+ """
73
+ return self.series
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (191 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_cartan_matrix.cpython-310.pyc ADDED
Binary file (615 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_cartan_type.cpython-310.pyc ADDED
Binary file (593 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_dynkin_diagram.cpython-310.pyc ADDED
Binary file (518 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_root_system.cpython-310.pyc ADDED
Binary file (1.37 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_A.cpython-310.pyc ADDED
Binary file (1.05 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_B.cpython-310.pyc ADDED
Binary file (1.06 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_C.cpython-310.pyc ADDED
Binary file (1.52 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_D.cpython-310.pyc ADDED
Binary file (1.24 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_E.cpython-310.pyc ADDED
Binary file (1.39 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_F.cpython-310.pyc ADDED
Binary file (2 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_G.cpython-310.pyc ADDED
Binary file (916 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_weyl_group.cpython-310.pyc ADDED
Binary file (1.72 kB). View file
 
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_matrix.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_matrix import CartanMatrix
2
+ from sympy.matrices import Matrix
3
+
4
+ def test_CartanMatrix():
5
+ c = CartanMatrix("A3")
6
+ m = Matrix(3, 3, [2, -1, 0, -1, 2, -1, 0, -1, 2])
7
+ assert c == m
8
+ a = CartanMatrix(["G",2])
9
+ mt = Matrix(2, 2, [2, -1, -3, 2])
10
+ assert a == mt
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_type.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType, Standard_Cartan
2
+
3
+ def test_Standard_Cartan():
4
+ c = CartanType("A4")
5
+ assert c.rank() == 4
6
+ assert c.series == "A"
7
+ m = Standard_Cartan("A", 2)
8
+ assert m.rank() == 2
9
+ assert m.series == "A"
10
+ b = CartanType("B12")
11
+ assert b.rank() == 12
12
+ assert b.series == "B"
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_dynkin_diagram.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.dynkin_diagram import DynkinDiagram
2
+
3
+ def test_DynkinDiagram():
4
+ c = DynkinDiagram("A3")
5
+ diag = "0---0---0\n1 2 3"
6
+ assert c == diag
7
+ ct = DynkinDiagram(["B", 3])
8
+ diag2 = "0---0=>=0\n1 2 3"
9
+ assert ct == diag2
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_root_system.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.root_system import RootSystem
2
+ from sympy.liealgebras.type_a import TypeA
3
+ from sympy.matrices import Matrix
4
+
5
+ def test_root_system():
6
+ c = RootSystem("A3")
7
+ assert c.cartan_type == TypeA(3)
8
+ assert c.simple_roots() == {1: [1, -1, 0, 0], 2: [0, 1, -1, 0], 3: [0, 0, 1, -1]}
9
+ assert c.root_space() == "alpha[1] + alpha[2] + alpha[3]"
10
+ assert c.cartan_matrix() == Matrix([[ 2, -1, 0], [-1, 2, -1], [ 0, -1, 2]])
11
+ assert c.dynkin_diagram() == "0---0---0\n1 2 3"
12
+ assert c.add_simple_roots(1, 2) == [1, 0, -1, 0]
13
+ assert c.all_roots() == {1: [1, -1, 0, 0], 2: [1, 0, -1, 0],
14
+ 3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1],
15
+ 6: [0, 0, 1, -1], 7: [-1, 1, 0, 0], 8: [-1, 0, 1, 0],
16
+ 9: [-1, 0, 0, 1], 10: [0, -1, 1, 0],
17
+ 11: [0, -1, 0, 1], 12: [0, 0, -1, 1]}
18
+ assert c.add_as_roots([1, 0, -1, 0], [0, 0, 1, -1]) == [1, 0, 0, -1]
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_A.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType
2
+ from sympy.matrices import Matrix
3
+
4
+ def test_type_A():
5
+ c = CartanType("A3")
6
+ m = Matrix(3, 3, [2, -1, 0, -1, 2, -1, 0, -1, 2])
7
+ assert m == c.cartan_matrix()
8
+ assert c.basis() == 8
9
+ assert c.roots() == 12
10
+ assert c.dimension() == 4
11
+ assert c.simple_root(1) == [1, -1, 0, 0]
12
+ assert c.highest_root() == [1, 0, 0, -1]
13
+ assert c.lie_algebra() == "su(4)"
14
+ diag = "0---0---0\n1 2 3"
15
+ assert c.dynkin_diagram() == diag
16
+ assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 0, -1, 0],
17
+ 3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_B.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType
2
+ from sympy.matrices import Matrix
3
+
4
+ def test_type_B():
5
+ c = CartanType("B3")
6
+ m = Matrix(3, 3, [2, -1, 0, -1, 2, -2, 0, -1, 2])
7
+ assert m == c.cartan_matrix()
8
+ assert c.dimension() == 3
9
+ assert c.roots() == 18
10
+ assert c.simple_root(3) == [0, 0, 1]
11
+ assert c.basis() == 3
12
+ assert c.lie_algebra() == "so(6)"
13
+ diag = "0---0=>=0\n1 2 3"
14
+ assert c.dynkin_diagram() == diag
15
+ assert c.positive_roots() == {1: [1, -1, 0], 2: [1, 1, 0], 3: [1, 0, -1],
16
+ 4: [1, 0, 1], 5: [0, 1, -1], 6: [0, 1, 1], 7: [1, 0, 0],
17
+ 8: [0, 1, 0], 9: [0, 0, 1]}
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_C.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType
2
+ from sympy.matrices import Matrix
3
+
4
+ def test_type_C():
5
+ c = CartanType("C4")
6
+ m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -2, 2])
7
+ assert c.cartan_matrix() == m
8
+ assert c.dimension() == 4
9
+ assert c.simple_root(4) == [0, 0, 0, 2]
10
+ assert c.roots() == 32
11
+ assert c.basis() == 36
12
+ assert c.lie_algebra() == "sp(8)"
13
+ t = CartanType(['C', 3])
14
+ assert t.dimension() == 3
15
+ diag = "0---0---0=<=0\n1 2 3 4"
16
+ assert c.dynkin_diagram() == diag
17
+ assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0],
18
+ 3: [1, 0, -1, 0], 4: [1, 0, 1, 0], 5: [1, 0, 0, -1],
19
+ 6: [1, 0, 0, 1], 7: [0, 1, -1, 0], 8: [0, 1, 1, 0],
20
+ 9: [0, 1, 0, -1], 10: [0, 1, 0, 1], 11: [0, 0, 1, -1],
21
+ 12: [0, 0, 1, 1], 13: [2, 0, 0, 0], 14: [0, 2, 0, 0], 15: [0, 0, 2, 0],
22
+ 16: [0, 0, 0, 2]}
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_D.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType
2
+ from sympy.matrices import Matrix
3
+
4
+
5
+
6
+ def test_type_D():
7
+ c = CartanType("D4")
8
+ m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -1, -1, 0, -1, 2, 0, 0, -1, 0, 2])
9
+ assert c.cartan_matrix() == m
10
+ assert c.basis() == 6
11
+ assert c.lie_algebra() == "so(8)"
12
+ assert c.roots() == 24
13
+ assert c.simple_root(3) == [0, 0, 1, -1]
14
+ diag = " 3\n 0\n |\n |\n0---0---0\n1 2 4"
15
+ assert diag == c.dynkin_diagram()
16
+ assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0],
17
+ 3: [1, 0, -1, 0], 4: [1, 0, 1, 0], 5: [1, 0, 0, -1], 6: [1, 0, 0, 1],
18
+ 7: [0, 1, -1, 0], 8: [0, 1, 1, 0], 9: [0, 1, 0, -1], 10: [0, 1, 0, 1],
19
+ 11: [0, 0, 1, -1], 12: [0, 0, 1, 1]}
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_E.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType
2
+ from sympy.matrices import Matrix
3
+
4
+ def test_type_E():
5
+ c = CartanType("E6")
6
+ m = Matrix(6, 6, [2, 0, -1, 0, 0, 0, 0, 2, 0, -1, 0, 0,
7
+ -1, 0, 2, -1, 0, 0, 0, -1, -1, 2, -1, 0, 0, 0, 0,
8
+ -1, 2, -1, 0, 0, 0, 0, -1, 2])
9
+ assert c.cartan_matrix() == m
10
+ assert c.dimension() == 8
11
+ assert c.simple_root(6) == [0, 0, 0, -1, 1, 0, 0, 0]
12
+ assert c.roots() == 72
13
+ assert c.basis() == 78
14
+ diag = " "*8 + "2\n" + " "*8 + "0\n" + " "*8 + "|\n" + " "*8 + "|\n"
15
+ diag += "---".join("0" for i in range(1, 6))+"\n"
16
+ diag += "1 " + " ".join(str(i) for i in range(3, 7))
17
+ assert c.dynkin_diagram() == diag
18
+ posroots = c.positive_roots()
19
+ assert posroots[8] == [1, 0, 0, 0, 1, 0, 0, 0]
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_F.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType
2
+ from sympy.matrices import Matrix
3
+ from sympy.core.backend import S
4
+
5
+ def test_type_F():
6
+ c = CartanType("F4")
7
+ m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -2, 0, 0, -1, 2, -1, 0, 0, -1, 2])
8
+ assert c.cartan_matrix() == m
9
+ assert c.dimension() == 4
10
+ assert c.simple_root(1) == [1, -1, 0, 0]
11
+ assert c.simple_root(2) == [0, 1, -1, 0]
12
+ assert c.simple_root(3) == [0, 0, 0, 1]
13
+ assert c.simple_root(4) == [-S.Half, -S.Half, -S.Half, -S.Half]
14
+ assert c.roots() == 48
15
+ assert c.basis() == 52
16
+ diag = "0---0=>=0---0\n" + " ".join(str(i) for i in range(1, 5))
17
+ assert c.dynkin_diagram() == diag
18
+ assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0], 3: [1, 0, -1, 0],
19
+ 4: [1, 0, 1, 0], 5: [1, 0, 0, -1], 6: [1, 0, 0, 1], 7: [0, 1, -1, 0],
20
+ 8: [0, 1, 1, 0], 9: [0, 1, 0, -1], 10: [0, 1, 0, 1], 11: [0, 0, 1, -1],
21
+ 12: [0, 0, 1, 1], 13: [1, 0, 0, 0], 14: [0, 1, 0, 0], 15: [0, 0, 1, 0],
22
+ 16: [0, 0, 0, 1], 17: [S.Half, S.Half, S.Half, S.Half], 18: [S.Half, -S.Half, S.Half, S.Half],
23
+ 19: [S.Half, S.Half, -S.Half, S.Half], 20: [S.Half, S.Half, S.Half, -S.Half], 21: [S.Half, S.Half, -S.Half, -S.Half],
24
+ 22: [S.Half, -S.Half, S.Half, -S.Half], 23: [S.Half, -S.Half, -S.Half, S.Half], 24: [S.Half, -S.Half, -S.Half, -S.Half]}
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_G.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ from sympy.liealgebras.cartan_type import CartanType
3
+ from sympy.matrices import Matrix
4
+
5
+ def test_type_G():
6
+ c = CartanType("G2")
7
+ m = Matrix(2, 2, [2, -1, -3, 2])
8
+ assert c.cartan_matrix() == m
9
+ assert c.simple_root(2) == [1, -2, 1]
10
+ assert c.basis() == 14
11
+ assert c.roots() == 12
12
+ assert c.dimension() == 3
13
+ diag = "0≡<≡0\n1 2"
14
+ assert diag == c.dynkin_diagram()
15
+ assert c.positive_roots() == {1: [0, 1, -1], 2: [1, -2, 1], 3: [1, -1, 0],
16
+ 4: [1, 0, 1], 5: [1, 1, -2], 6: [2, -1, -1]}
venv/lib/python3.10/site-packages/sympy/liealgebras/tests/test_weyl_group.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.weyl_group import WeylGroup
2
+ from sympy.matrices import Matrix
3
+
4
+ def test_weyl_group():
5
+ c = WeylGroup("A3")
6
+ assert c.matrix_form('r1*r2') == Matrix([[0, 0, 1, 0], [1, 0, 0, 0],
7
+ [0, 1, 0, 0], [0, 0, 0, 1]])
8
+ assert c.generators() == ['r1', 'r2', 'r3']
9
+ assert c.group_order() == 24.0
10
+ assert c.group_name() == "S4: the symmetric group acting on 4 elements."
11
+ assert c.coxeter_diagram() == "0---0---0\n1 2 3"
12
+ assert c.element_order('r1*r2*r3') == 4
13
+ assert c.element_order('r1*r3*r2*r3') == 3
14
+ d = WeylGroup("B5")
15
+ assert d.group_order() == 3840
16
+ assert d.element_order('r1*r2*r4*r5') == 12
17
+ assert d.matrix_form('r2*r3') == Matrix([[0, 0, 1, 0, 0], [1, 0, 0, 0, 0],
18
+ [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]])
19
+ assert d.element_order('r1*r2*r1*r3*r5') == 6
20
+ e = WeylGroup("D5")
21
+ assert e.element_order('r2*r3*r5') == 4
22
+ assert e.matrix_form('r2*r3*r5') == Matrix([[1, 0, 0, 0, 0], [0, 0, 0, 0, -1],
23
+ [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, -1, 0]])
24
+ f = WeylGroup("G2")
25
+ assert f.element_order('r1*r2*r1*r2') == 3
26
+ assert f.element_order('r2*r1*r1*r2') == 1
27
+
28
+ assert f.matrix_form('r1*r2*r1*r2') == Matrix([[0, 1, 0], [0, 0, 1], [1, 0, 0]])
29
+ g = WeylGroup("F4")
30
+ assert g.matrix_form('r2*r3') == Matrix([[1, 0, 0, 0], [0, 1, 0, 0],
31
+ [0, 0, 0, -1], [0, 0, 1, 0]])
32
+
33
+ assert g.element_order('r2*r3') == 4
34
+ h = WeylGroup("E6")
35
+ assert h.group_order() == 51840
venv/lib/python3.10/site-packages/sympy/liealgebras/type_b.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .cartan_type import Standard_Cartan
2
+ from sympy.core.backend import eye
3
+
4
+ class TypeB(Standard_Cartan):
5
+
6
+ def __new__(cls, n):
7
+ if n < 2:
8
+ raise ValueError("n cannot be less than 2")
9
+ return Standard_Cartan.__new__(cls, "B", n)
10
+
11
+ def dimension(self):
12
+ """Dimension of the vector space V underlying the Lie algebra
13
+
14
+ Examples
15
+ ========
16
+
17
+ >>> from sympy.liealgebras.cartan_type import CartanType
18
+ >>> c = CartanType("B3")
19
+ >>> c.dimension()
20
+ 3
21
+ """
22
+
23
+ return self.n
24
+
25
+ def basic_root(self, i, j):
26
+ """
27
+ This is a method just to generate roots
28
+ with a 1 iin the ith position and a -1
29
+ in the jth position.
30
+
31
+ """
32
+ root = [0]*self.n
33
+ root[i] = 1
34
+ root[j] = -1
35
+ return root
36
+
37
+ def simple_root(self, i):
38
+ """
39
+ Every lie algebra has a unique root system.
40
+ Given a root system Q, there is a subset of the
41
+ roots such that an element of Q is called a
42
+ simple root if it cannot be written as the sum
43
+ of two elements in Q. If we let D denote the
44
+ set of simple roots, then it is clear that every
45
+ element of Q can be written as a linear combination
46
+ of elements of D with all coefficients non-negative.
47
+
48
+ In B_n the first n-1 simple roots are the same as the
49
+ roots in A_(n-1) (a 1 in the ith position, a -1 in
50
+ the (i+1)th position, and zeroes elsewhere). The n-th
51
+ simple root is the root with a 1 in the nth position
52
+ and zeroes elsewhere.
53
+
54
+ This method returns the ith simple root for the B series.
55
+
56
+ Examples
57
+ ========
58
+
59
+ >>> from sympy.liealgebras.cartan_type import CartanType
60
+ >>> c = CartanType("B3")
61
+ >>> c.simple_root(2)
62
+ [0, 1, -1]
63
+
64
+ """
65
+ n = self.n
66
+ if i < n:
67
+ return self.basic_root(i-1, i)
68
+ else:
69
+ root = [0]*self.n
70
+ root[n-1] = 1
71
+ return root
72
+
73
+ def positive_roots(self):
74
+ """
75
+ This method generates all the positive roots of
76
+ A_n. This is half of all of the roots of B_n;
77
+ by multiplying all the positive roots by -1 we
78
+ get the negative roots.
79
+
80
+ Examples
81
+ ========
82
+
83
+ >>> from sympy.liealgebras.cartan_type import CartanType
84
+ >>> c = CartanType("A3")
85
+ >>> c.positive_roots()
86
+ {1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
87
+ 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
88
+ """
89
+
90
+ n = self.n
91
+ posroots = {}
92
+ k = 0
93
+ for i in range(0, n-1):
94
+ for j in range(i+1, n):
95
+ k += 1
96
+ posroots[k] = self.basic_root(i, j)
97
+ k += 1
98
+ root = self.basic_root(i, j)
99
+ root[j] = 1
100
+ posroots[k] = root
101
+
102
+ for i in range(0, n):
103
+ k += 1
104
+ root = [0]*n
105
+ root[i] = 1
106
+ posroots[k] = root
107
+
108
+ return posroots
109
+
110
+ def roots(self):
111
+ """
112
+ Returns the total number of roots for B_n"
113
+ """
114
+
115
+ n = self.n
116
+ return 2*(n**2)
117
+
118
+ def cartan_matrix(self):
119
+ """
120
+ Returns the Cartan matrix for B_n.
121
+ The Cartan matrix matrix for a Lie algebra is
122
+ generated by assigning an ordering to the simple
123
+ roots, (alpha[1], ...., alpha[l]). Then the ijth
124
+ entry of the Cartan matrix is (<alpha[i],alpha[j]>).
125
+
126
+ Examples
127
+ ========
128
+
129
+ >>> from sympy.liealgebras.cartan_type import CartanType
130
+ >>> c = CartanType('B4')
131
+ >>> c.cartan_matrix()
132
+ Matrix([
133
+ [ 2, -1, 0, 0],
134
+ [-1, 2, -1, 0],
135
+ [ 0, -1, 2, -2],
136
+ [ 0, 0, -1, 2]])
137
+
138
+ """
139
+
140
+ n = self.n
141
+ m = 2* eye(n)
142
+ i = 1
143
+ while i < n-1:
144
+ m[i, i+1] = -1
145
+ m[i, i-1] = -1
146
+ i += 1
147
+ m[0, 1] = -1
148
+ m[n-2, n-1] = -2
149
+ m[n-1, n-2] = -1
150
+ return m
151
+
152
+ def basis(self):
153
+ """
154
+ Returns the number of independent generators of B_n
155
+ """
156
+
157
+ n = self.n
158
+ return (n**2 - n)/2
159
+
160
+ def lie_algebra(self):
161
+ """
162
+ Returns the Lie algebra associated with B_n
163
+ """
164
+
165
+ n = self.n
166
+ return "so(" + str(2*n) + ")"
167
+
168
+ def dynkin_diagram(self):
169
+ n = self.n
170
+ diag = "---".join("0" for i in range(1, n)) + "=>=0\n"
171
+ diag += " ".join(str(i) for i in range(1, n+1))
172
+ return diag
venv/lib/python3.10/site-packages/sympy/liealgebras/type_c.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .cartan_type import Standard_Cartan
2
+ from sympy.core.backend import eye
3
+
4
+ class TypeC(Standard_Cartan):
5
+
6
+ def __new__(cls, n):
7
+ if n < 3:
8
+ raise ValueError("n cannot be less than 3")
9
+ return Standard_Cartan.__new__(cls, "C", n)
10
+
11
+
12
+ def dimension(self):
13
+ """Dimension of the vector space V underlying the Lie algebra
14
+
15
+ Examples
16
+ ========
17
+
18
+ >>> from sympy.liealgebras.cartan_type import CartanType
19
+ >>> c = CartanType("C3")
20
+ >>> c.dimension()
21
+ 3
22
+ """
23
+ n = self.n
24
+ return n
25
+
26
+ def basic_root(self, i, j):
27
+ """Generate roots with 1 in ith position and a -1 in jth position
28
+ """
29
+ n = self.n
30
+ root = [0]*n
31
+ root[i] = 1
32
+ root[j] = -1
33
+ return root
34
+
35
+ def simple_root(self, i):
36
+ """The ith simple root for the C series
37
+
38
+ Every lie algebra has a unique root system.
39
+ Given a root system Q, there is a subset of the
40
+ roots such that an element of Q is called a
41
+ simple root if it cannot be written as the sum
42
+ of two elements in Q. If we let D denote the
43
+ set of simple roots, then it is clear that every
44
+ element of Q can be written as a linear combination
45
+ of elements of D with all coefficients non-negative.
46
+
47
+ In C_n, the first n-1 simple roots are the same as
48
+ the roots in A_(n-1) (a 1 in the ith position, a -1
49
+ in the (i+1)th position, and zeroes elsewhere). The
50
+ nth simple root is the root in which there is a 2 in
51
+ the nth position and zeroes elsewhere.
52
+
53
+ Examples
54
+ ========
55
+
56
+ >>> from sympy.liealgebras.cartan_type import CartanType
57
+ >>> c = CartanType("C3")
58
+ >>> c.simple_root(2)
59
+ [0, 1, -1]
60
+
61
+ """
62
+
63
+ n = self.n
64
+ if i < n:
65
+ return self.basic_root(i-1,i)
66
+ else:
67
+ root = [0]*self.n
68
+ root[n-1] = 2
69
+ return root
70
+
71
+
72
+ def positive_roots(self):
73
+ """Generates all the positive roots of A_n
74
+
75
+ This is half of all of the roots of C_n; by multiplying all the
76
+ positive roots by -1 we get the negative roots.
77
+
78
+ Examples
79
+ ========
80
+
81
+ >>> from sympy.liealgebras.cartan_type import CartanType
82
+ >>> c = CartanType("A3")
83
+ >>> c.positive_roots()
84
+ {1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
85
+ 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
86
+
87
+ """
88
+
89
+ n = self.n
90
+ posroots = {}
91
+ k = 0
92
+ for i in range(0, n-1):
93
+ for j in range(i+1, n):
94
+ k += 1
95
+ posroots[k] = self.basic_root(i, j)
96
+ k += 1
97
+ root = self.basic_root(i, j)
98
+ root[j] = 1
99
+ posroots[k] = root
100
+
101
+ for i in range(0, n):
102
+ k += 1
103
+ root = [0]*n
104
+ root[i] = 2
105
+ posroots[k] = root
106
+
107
+ return posroots
108
+
109
+ def roots(self):
110
+ """
111
+ Returns the total number of roots for C_n"
112
+ """
113
+
114
+ n = self.n
115
+ return 2*(n**2)
116
+
117
+ def cartan_matrix(self):
118
+ """The Cartan matrix for C_n
119
+
120
+ The Cartan matrix matrix for a Lie algebra is
121
+ generated by assigning an ordering to the simple
122
+ roots, (alpha[1], ...., alpha[l]). Then the ijth
123
+ entry of the Cartan matrix is (<alpha[i],alpha[j]>).
124
+
125
+ Examples
126
+ ========
127
+
128
+ >>> from sympy.liealgebras.cartan_type import CartanType
129
+ >>> c = CartanType('C4')
130
+ >>> c.cartan_matrix()
131
+ Matrix([
132
+ [ 2, -1, 0, 0],
133
+ [-1, 2, -1, 0],
134
+ [ 0, -1, 2, -1],
135
+ [ 0, 0, -2, 2]])
136
+
137
+ """
138
+
139
+ n = self.n
140
+ m = 2 * eye(n)
141
+ i = 1
142
+ while i < n-1:
143
+ m[i, i+1] = -1
144
+ m[i, i-1] = -1
145
+ i += 1
146
+ m[0,1] = -1
147
+ m[n-1, n-2] = -2
148
+ return m
149
+
150
+
151
+ def basis(self):
152
+ """
153
+ Returns the number of independent generators of C_n
154
+ """
155
+
156
+ n = self.n
157
+ return n*(2*n + 1)
158
+
159
+ def lie_algebra(self):
160
+ """
161
+ Returns the Lie algebra associated with C_n"
162
+ """
163
+
164
+ n = self.n
165
+ return "sp(" + str(2*n) + ")"
166
+
167
+ def dynkin_diagram(self):
168
+ n = self.n
169
+ diag = "---".join("0" for i in range(1, n)) + "=<=0\n"
170
+ diag += " ".join(str(i) for i in range(1, n+1))
171
+ return diag
venv/lib/python3.10/site-packages/sympy/liealgebras/type_d.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .cartan_type import Standard_Cartan
2
+ from sympy.core.backend import eye
3
+
4
+ class TypeD(Standard_Cartan):
5
+
6
+ def __new__(cls, n):
7
+ if n < 3:
8
+ raise ValueError("n cannot be less than 3")
9
+ return Standard_Cartan.__new__(cls, "D", n)
10
+
11
+
12
+ def dimension(self):
13
+ """Dmension of the vector space V underlying the Lie algebra
14
+
15
+ Examples
16
+ ========
17
+
18
+ >>> from sympy.liealgebras.cartan_type import CartanType
19
+ >>> c = CartanType("D4")
20
+ >>> c.dimension()
21
+ 4
22
+ """
23
+
24
+ return self.n
25
+
26
+ def basic_root(self, i, j):
27
+ """
28
+ This is a method just to generate roots
29
+ with a 1 iin the ith position and a -1
30
+ in the jth position.
31
+
32
+ """
33
+
34
+ n = self.n
35
+ root = [0]*n
36
+ root[i] = 1
37
+ root[j] = -1
38
+ return root
39
+
40
+ def simple_root(self, i):
41
+ """
42
+ Every lie algebra has a unique root system.
43
+ Given a root system Q, there is a subset of the
44
+ roots such that an element of Q is called a
45
+ simple root if it cannot be written as the sum
46
+ of two elements in Q. If we let D denote the
47
+ set of simple roots, then it is clear that every
48
+ element of Q can be written as a linear combination
49
+ of elements of D with all coefficients non-negative.
50
+
51
+ In D_n, the first n-1 simple roots are the same as
52
+ the roots in A_(n-1) (a 1 in the ith position, a -1
53
+ in the (i+1)th position, and zeroes elsewhere).
54
+ The nth simple root is the root in which there 1s in
55
+ the nth and (n-1)th positions, and zeroes elsewhere.
56
+
57
+ This method returns the ith simple root for the D series.
58
+
59
+ Examples
60
+ ========
61
+
62
+ >>> from sympy.liealgebras.cartan_type import CartanType
63
+ >>> c = CartanType("D4")
64
+ >>> c.simple_root(2)
65
+ [0, 1, -1, 0]
66
+
67
+ """
68
+
69
+ n = self.n
70
+ if i < n:
71
+ return self.basic_root(i-1, i)
72
+ else:
73
+ root = [0]*n
74
+ root[n-2] = 1
75
+ root[n-1] = 1
76
+ return root
77
+
78
+
79
+ def positive_roots(self):
80
+ """
81
+ This method generates all the positive roots of
82
+ A_n. This is half of all of the roots of D_n
83
+ by multiplying all the positive roots by -1 we
84
+ get the negative roots.
85
+
86
+ Examples
87
+ ========
88
+
89
+ >>> from sympy.liealgebras.cartan_type import CartanType
90
+ >>> c = CartanType("A3")
91
+ >>> c.positive_roots()
92
+ {1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
93
+ 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
94
+ """
95
+
96
+ n = self.n
97
+ posroots = {}
98
+ k = 0
99
+ for i in range(0, n-1):
100
+ for j in range(i+1, n):
101
+ k += 1
102
+ posroots[k] = self.basic_root(i, j)
103
+ k += 1
104
+ root = self.basic_root(i, j)
105
+ root[j] = 1
106
+ posroots[k] = root
107
+ return posroots
108
+
109
+ def roots(self):
110
+ """
111
+ Returns the total number of roots for D_n"
112
+ """
113
+
114
+ n = self.n
115
+ return 2*n*(n-1)
116
+
117
+ def cartan_matrix(self):
118
+ """
119
+ Returns the Cartan matrix for D_n.
120
+ The Cartan matrix matrix for a Lie algebra is
121
+ generated by assigning an ordering to the simple
122
+ roots, (alpha[1], ...., alpha[l]). Then the ijth
123
+ entry of the Cartan matrix is (<alpha[i],alpha[j]>).
124
+
125
+ Examples
126
+ ========
127
+
128
+ >>> from sympy.liealgebras.cartan_type import CartanType
129
+ >>> c = CartanType('D4')
130
+ >>> c.cartan_matrix()
131
+ Matrix([
132
+ [ 2, -1, 0, 0],
133
+ [-1, 2, -1, -1],
134
+ [ 0, -1, 2, 0],
135
+ [ 0, -1, 0, 2]])
136
+
137
+ """
138
+
139
+ n = self.n
140
+ m = 2*eye(n)
141
+ i = 1
142
+ while i < n-2:
143
+ m[i,i+1] = -1
144
+ m[i,i-1] = -1
145
+ i += 1
146
+ m[n-2, n-3] = -1
147
+ m[n-3, n-1] = -1
148
+ m[n-1, n-3] = -1
149
+ m[0, 1] = -1
150
+ return m
151
+
152
+ def basis(self):
153
+ """
154
+ Returns the number of independent generators of D_n
155
+ """
156
+ n = self.n
157
+ return n*(n-1)/2
158
+
159
+ def lie_algebra(self):
160
+ """
161
+ Returns the Lie algebra associated with D_n"
162
+ """
163
+
164
+ n = self.n
165
+ return "so(" + str(2*n) + ")"
166
+
167
+ def dynkin_diagram(self):
168
+ n = self.n
169
+ diag = " "*4*(n-3) + str(n-1) + "\n"
170
+ diag += " "*4*(n-3) + "0\n"
171
+ diag += " "*4*(n-3) +"|\n"
172
+ diag += " "*4*(n-3) + "|\n"
173
+ diag += "---".join("0" for i in range(1,n)) + "\n"
174
+ diag += " ".join(str(i) for i in range(1, n-1)) + " "+str(n)
175
+ return diag