Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/adagrad/cpu_adagrad.cpp +256 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/adam/cpu_adam.cpp +16 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/adam/cpu_adam_impl.cpp +312 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/adam/fused_adam_frontend.cpp +25 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/adam/multi_tensor_adam.cu +203 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/adam/multi_tensor_apply.cuh +132 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/common/deepspeed_aio_common.cpp +342 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/common/deepspeed_aio_common.h +38 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/common/deepspeed_aio_types.cpp +76 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/common/deepspeed_aio_types.h +59 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/common/deepspeed_aio_utils.cpp +126 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/common/deepspeed_aio_utils.h +79 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_aio_thread.cpp +104 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_aio_thread.h +59 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_pin_tensor.cpp +45 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_pin_tensor.h +27 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_py_aio.cpp +125 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_py_aio.h +31 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_py_aio_handle.cpp +298 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_py_aio_handle.h +77 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_py_copy.cpp +135 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_py_copy.h +46 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/py_ds_aio.cpp +46 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_test/single_process_config.json +29 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/cpu/adam/fused_adam.cpp +48 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/cpu/comm/ccl.cpp +344 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/cpu/comm/shm.cpp +686 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/cpu/comm/shm.h +12 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/cpu/comm/shm_interface.cpp +120 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/cpu/lion/fused_lion.cpp +43 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/epilogue/epilogue_grad_bias.h +250 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/epilogue/epilogue_pipelined.h +592 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/epilogue/epilogue_rescale_output.h +251 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/epilogue/epilogue_thread_apply_logsumexp.h +168 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/gemm/custom_mma.h +119 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/gemm/custom_mma_base.h +181 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/gemm/custom_mma_multistage.h +714 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/gemm/custom_mma_pipelined.h +388 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/gemm/find_default_mma.h +191 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/gemm/mma_accum_lambda_iterator.h +347 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/gemm/mma_from_smem.h +1939 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/iterators/epilogue_predicated_tile_iterator.h +691 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/iterators/make_residual_last.h +91 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/iterators/predicated_tile_access_iterator_residual_last.h +1964 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/iterators/predicated_tile_iterator_atomic.h +886 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/iterators/predicated_tile_iterator_residual_last.h +1938 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/iterators/transpose_warp_iterator.h +57 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/iterators/warp_iterator_from_smem.h +269 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/transform/bias_broadcast.h +148 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/transform/tile_smem_loader.h +93 -0
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/adagrad/cpu_adagrad.cpp
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "cpu_adagrad.h"
|
7 |
+
#include <torch/extension.h>
|
8 |
+
#include <iostream>
|
9 |
+
#include <memory>
|
10 |
+
#include <type_traits>
|
11 |
+
#include <unordered_map>
|
12 |
+
#if defined(__ENABLE_CUDA__)
|
13 |
+
#include <cuda_runtime_api.h>
|
14 |
+
#include "cublas_v2.h"
|
15 |
+
#include "cuda.h"
|
16 |
+
#include "curand.h"
|
17 |
+
#include "custom_cuda_layers.h"
|
18 |
+
#endif
|
19 |
+
|
20 |
+
static std::unordered_map<int, std::shared_ptr<void>> s_optimizers;
|
21 |
+
|
22 |
+
// C++ interface
|
23 |
+
|
24 |
+
void Adagrad_Optimizer::Step_1(float* _params,
|
25 |
+
float* grads,
|
26 |
+
float* _exp_avg_sq,
|
27 |
+
size_t _param_size,
|
28 |
+
ds_half_precision_t* dev_params,
|
29 |
+
bool half_precision)
|
30 |
+
{
|
31 |
+
size_t rounded_size = 0;
|
32 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
33 |
+
Step_AVX<1>(
|
34 |
+
&rounded_size, _params, grads, _exp_avg_sq, _param_size, dev_params, half_precision);
|
35 |
+
#endif
|
36 |
+
if (_param_size > rounded_size) {
|
37 |
+
float step_size = -1 * _alpha;
|
38 |
+
ds_half_precision_t* grads_cast_h;
|
39 |
+
ds_half_precision_t* params_cast_h;
|
40 |
+
if (half_precision) {
|
41 |
+
grads_cast_h = reinterpret_cast<ds_half_precision_t*>(grads);
|
42 |
+
params_cast_h = reinterpret_cast<ds_half_precision_t*>(_params);
|
43 |
+
}
|
44 |
+
for (size_t t = rounded_size; t < _param_size; t += TILE) {
|
45 |
+
size_t copy_size = TILE;
|
46 |
+
if ((t + TILE) > _param_size) copy_size = _param_size - t;
|
47 |
+
size_t offset = copy_size + t;
|
48 |
+
#if defined(__ENABLE_CUDA__)
|
49 |
+
if ((t / TILE) >= 2) { cudaStreamSynchronize(_streams[_buf_index]); }
|
50 |
+
#elif defined(__ENABLE_CANN__)
|
51 |
+
if ((t / TILE) >= 2) { aclrtSynchronizeStream(_streams[_buf_index].stream()); }
|
52 |
+
#endif
|
53 |
+
#pragma omp parallel for
|
54 |
+
for (size_t k = t; k < offset; k++) {
|
55 |
+
float grad = half_precision ? (float)grads_cast_h[k] : grads[k];
|
56 |
+
float param = half_precision ? (float)params_cast_h[k] : _params[k];
|
57 |
+
float momentum = grads[k];
|
58 |
+
float variance = _exp_avg_sq[k];
|
59 |
+
if (_weight_decay > 0) { grad = param * _weight_decay + grad; }
|
60 |
+
|
61 |
+
variance += grad * grad;
|
62 |
+
|
63 |
+
grad = sqrt(variance);
|
64 |
+
grad += _eps;
|
65 |
+
grad = momentum / grad;
|
66 |
+
param = grad * step_size + param;
|
67 |
+
#if defined(__ENABLE_CUDA__) or defined(__ENABLE_CANN__)
|
68 |
+
if (dev_params) _doubled_buffer[_buf_index][k - t] = param;
|
69 |
+
#endif
|
70 |
+
if (half_precision)
|
71 |
+
params_cast_h[k] = (ds_half_precision_t)param;
|
72 |
+
else
|
73 |
+
_params[k] = param;
|
74 |
+
// STORE UPDATE TERM TO GRAD'S MEMORY
|
75 |
+
grads[k] = grad * step_size;
|
76 |
+
_exp_avg_sq[k] = variance;
|
77 |
+
}
|
78 |
+
#if defined(__ENABLE_CUDA__)
|
79 |
+
if (dev_params) {
|
80 |
+
launch_param_update(
|
81 |
+
_doubled_buffer[_buf_index], dev_params + t, (copy_size), _streams[_buf_index]);
|
82 |
+
_buf_index = !_buf_index;
|
83 |
+
}
|
84 |
+
#elif defined(__ENABLE_CANN__)
|
85 |
+
if (dev_params) {
|
86 |
+
size_t memcpy_size = copy_size * sizeof(_doubled_buffer[_buf_index][0]);
|
87 |
+
aclrtMemcpy(dev_params + t,
|
88 |
+
memcpy_size,
|
89 |
+
_doubled_buffer[_buf_index],
|
90 |
+
memcpy_size,
|
91 |
+
aclrtMemcpyKind::ACL_MEMCPY_HOST_TO_DEVICE);
|
92 |
+
|
93 |
+
_buf_index = !_buf_index;
|
94 |
+
}
|
95 |
+
#endif
|
96 |
+
}
|
97 |
+
}
|
98 |
+
}
|
99 |
+
|
100 |
+
void Adagrad_Optimizer::Step_4(float* _params,
|
101 |
+
float* grads,
|
102 |
+
float* _exp_avg_sq,
|
103 |
+
size_t _param_size,
|
104 |
+
ds_half_precision_t* dev_params,
|
105 |
+
bool half_precision)
|
106 |
+
{
|
107 |
+
size_t rounded_size = 0;
|
108 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
109 |
+
Step_AVX<4>(
|
110 |
+
&rounded_size, _params, grads, _exp_avg_sq, _param_size, dev_params, half_precision);
|
111 |
+
#endif
|
112 |
+
if (_param_size > rounded_size)
|
113 |
+
Step_1((_params + rounded_size),
|
114 |
+
(grads + rounded_size),
|
115 |
+
(_exp_avg_sq + rounded_size),
|
116 |
+
(_param_size - rounded_size),
|
117 |
+
(dev_params != nullptr ? (dev_params + rounded_size) : dev_params),
|
118 |
+
half_precision);
|
119 |
+
}
|
120 |
+
|
121 |
+
int create_adagrad_optimizer(int optimizer_id,
|
122 |
+
float alpha = 1e-2,
|
123 |
+
float eps = 1e-8,
|
124 |
+
float weight_decay = 0,
|
125 |
+
bool should_log = false)
|
126 |
+
{
|
127 |
+
auto opt = std::make_shared<Adagrad_Optimizer>(alpha, eps, weight_decay);
|
128 |
+
|
129 |
+
s_optimizers[optimizer_id] = opt;
|
130 |
+
|
131 |
+
if (should_log) {
|
132 |
+
std::string avx_type = "";
|
133 |
+
#if defined(__AVX512__)
|
134 |
+
avx_type = "AVX512";
|
135 |
+
#else
|
136 |
+
#if defined(__AVX256__)
|
137 |
+
avx_type = "AVX2";
|
138 |
+
#else
|
139 |
+
avx_type = "scalar";
|
140 |
+
#endif
|
141 |
+
#endif
|
142 |
+
|
143 |
+
printf("Adagrad Optimizer #%d is created with %s arithmetic capability.\n",
|
144 |
+
optimizer_id,
|
145 |
+
avx_type.c_str());
|
146 |
+
printf("Config: alpha=%f, weight_decay=%f\n", alpha, weight_decay);
|
147 |
+
}
|
148 |
+
|
149 |
+
return 0;
|
150 |
+
}
|
151 |
+
|
152 |
+
void Adagrad_Optimizer::Step_8(float* _params,
|
153 |
+
float* grads,
|
154 |
+
float* _exp_avg_sq,
|
155 |
+
size_t _param_size,
|
156 |
+
ds_half_precision_t* dev_params,
|
157 |
+
bool half_precision)
|
158 |
+
{
|
159 |
+
size_t rounded_size = 0;
|
160 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
161 |
+
Step_AVX<8>(
|
162 |
+
&rounded_size, _params, grads, _exp_avg_sq, _param_size, dev_params, half_precision);
|
163 |
+
#endif
|
164 |
+
if (_param_size > rounded_size)
|
165 |
+
Step_4((_params + rounded_size),
|
166 |
+
(grads + rounded_size),
|
167 |
+
(_exp_avg_sq + rounded_size),
|
168 |
+
(_param_size - rounded_size),
|
169 |
+
(dev_params != nullptr ? (dev_params + rounded_size) : dev_params),
|
170 |
+
half_precision);
|
171 |
+
}
|
172 |
+
|
173 |
+
int ds_adagrad_step(int optimizer_id,
|
174 |
+
size_t step,
|
175 |
+
float lr,
|
176 |
+
float epsilon,
|
177 |
+
float weight_decay,
|
178 |
+
torch::Tensor& params,
|
179 |
+
torch::Tensor& grads,
|
180 |
+
torch::Tensor& exp_avg_sq)
|
181 |
+
{
|
182 |
+
auto params_c = params.contiguous();
|
183 |
+
auto grads_c = grads.contiguous();
|
184 |
+
auto exp_avg_sq_c = exp_avg_sq.contiguous();
|
185 |
+
|
186 |
+
float* params_ptr = (float*)params_c.data_ptr();
|
187 |
+
float* grads_ptr = (float*)grads_c.data_ptr();
|
188 |
+
float* exp_avg_sq_ptr = (float*)exp_avg_sq_c.data_ptr();
|
189 |
+
|
190 |
+
std::shared_ptr<Adagrad_Optimizer> opt =
|
191 |
+
std::static_pointer_cast<Adagrad_Optimizer>(s_optimizers[optimizer_id]);
|
192 |
+
opt->IncrementStep(step);
|
193 |
+
opt->update_state(lr, epsilon, weight_decay);
|
194 |
+
opt->Step_8(params_ptr, grads_ptr, exp_avg_sq_ptr, params_c.numel());
|
195 |
+
|
196 |
+
#if defined(__ENABLE_CUDA__) or defined(__ENABLE_CANN__)
|
197 |
+
opt->SynchronizeStreams();
|
198 |
+
#endif
|
199 |
+
return 0;
|
200 |
+
}
|
201 |
+
|
202 |
+
int ds_adagrad_step_plus_copy(int optimizer_id,
|
203 |
+
size_t step,
|
204 |
+
float lr,
|
205 |
+
float epsilon,
|
206 |
+
float weight_decay,
|
207 |
+
torch::Tensor& params,
|
208 |
+
torch::Tensor& grads,
|
209 |
+
torch::Tensor& exp_avg_sq,
|
210 |
+
torch::Tensor& gpu_params)
|
211 |
+
{
|
212 |
+
#if defined(__ENABLE_CUDA__) or defined(__ENABLE_CANN__)
|
213 |
+
auto params_c = params.contiguous();
|
214 |
+
auto gpu_params_c = gpu_params.contiguous();
|
215 |
+
auto exp_avg_sq_c = exp_avg_sq.contiguous();
|
216 |
+
auto grads_c = grads.contiguous();
|
217 |
+
|
218 |
+
float* params_ptr = (float*)params_c.data_ptr();
|
219 |
+
float* grads_ptr = (float*)grads_c.data_ptr();
|
220 |
+
ds_half_precision_t* gpu_params_ptr = (ds_half_precision_t*)gpu_params_c.data_ptr();
|
221 |
+
float* exp_avg_sq_ptr = (float*)exp_avg_sq_c.data_ptr();
|
222 |
+
|
223 |
+
std::shared_ptr<Adagrad_Optimizer> opt =
|
224 |
+
std::static_pointer_cast<Adagrad_Optimizer>(s_optimizers[optimizer_id]);
|
225 |
+
opt->IncrementStep(step);
|
226 |
+
opt->update_state(lr, epsilon, weight_decay);
|
227 |
+
opt->Step_8(params_ptr,
|
228 |
+
grads_ptr,
|
229 |
+
exp_avg_sq_ptr,
|
230 |
+
params_c.numel(),
|
231 |
+
gpu_params_ptr,
|
232 |
+
(params.options().dtype() == at::kHalf));
|
233 |
+
|
234 |
+
opt->SynchronizeStreams();
|
235 |
+
#else
|
236 |
+
assert(false);
|
237 |
+
#endif
|
238 |
+
return 0;
|
239 |
+
}
|
240 |
+
|
241 |
+
int destroy_adagrad_optimizer(int optimizer_id)
|
242 |
+
{
|
243 |
+
s_optimizers.erase(optimizer_id);
|
244 |
+
|
245 |
+
return 0;
|
246 |
+
}
|
247 |
+
|
248 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
249 |
+
{
|
250 |
+
m.def("adagrad_update", &ds_adagrad_step, "DeepSpeed CPU Adagrad update (C++)");
|
251 |
+
m.def("adagrad_update_copy",
|
252 |
+
&ds_adagrad_step_plus_copy,
|
253 |
+
"DeepSpeed CPU Adagrad update and param copy (C++)");
|
254 |
+
m.def("create_adagrad", &create_adagrad_optimizer, "DeepSpeed CPU Adagrad (C++)");
|
255 |
+
m.def("destroy_adagrad", &destroy_adagrad_optimizer, "DeepSpeed CPU Adagrad destroy (C++)");
|
256 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/adam/cpu_adam.cpp
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "cpu_adam.h"
|
7 |
+
|
8 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
9 |
+
{
|
10 |
+
m.def("adam_update", &ds_adam_step, "DeepSpeed CPU Adam update (C++)");
|
11 |
+
m.def("adam_update_copy",
|
12 |
+
&ds_adam_step_plus_copy,
|
13 |
+
"DeepSpeed CPU Adam update and param copy (C++)");
|
14 |
+
m.def("create_adam", &create_adam_optimizer, "DeepSpeed CPU Adam (C++)");
|
15 |
+
m.def("destroy_adam", &destroy_adam_optimizer, "DeepSpeed CPU Adam destroy (C++)");
|
16 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/adam/cpu_adam_impl.cpp
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <torch/extension.h>
|
7 |
+
#include <cassert>
|
8 |
+
#include <iostream>
|
9 |
+
#include <memory>
|
10 |
+
#include <type_traits>
|
11 |
+
#include <unordered_map>
|
12 |
+
#include "cpu_adam.h"
|
13 |
+
|
14 |
+
#if defined(__ENABLE_CUDA__)
|
15 |
+
#include <cuda_runtime_api.h>
|
16 |
+
#include "cublas_v2.h"
|
17 |
+
#include "cuda.h"
|
18 |
+
#include "curand.h"
|
19 |
+
#include "custom_cuda_layers.h"
|
20 |
+
#endif
|
21 |
+
|
22 |
+
static std::unordered_map<int, std::shared_ptr<void>> s_optimizers;
|
23 |
+
|
24 |
+
// C++ interface
|
25 |
+
|
26 |
+
void Adam_Optimizer::Step_1(float* _params,
|
27 |
+
float* grads,
|
28 |
+
float* _exp_avg,
|
29 |
+
float* _exp_avg_sq,
|
30 |
+
size_t _param_size,
|
31 |
+
ds_half_precision_t* dev_params,
|
32 |
+
bool half_precision)
|
33 |
+
{
|
34 |
+
size_t rounded_size = 0;
|
35 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
36 |
+
Step_AVX<1>(&rounded_size,
|
37 |
+
_params,
|
38 |
+
grads,
|
39 |
+
_exp_avg,
|
40 |
+
_exp_avg_sq,
|
41 |
+
_param_size,
|
42 |
+
dev_params,
|
43 |
+
half_precision);
|
44 |
+
#endif
|
45 |
+
if (_param_size > rounded_size) {
|
46 |
+
float betta1_minus1 = 1 - _betta1;
|
47 |
+
float betta2_minus1 = 1 - _betta2;
|
48 |
+
|
49 |
+
float step_size = -1 * _alpha / _bias_correction1;
|
50 |
+
float w_decay = -1 * _alpha * _weight_decay;
|
51 |
+
ds_half_precision_t* grads_cast_h;
|
52 |
+
ds_half_precision_t* params_cast_h;
|
53 |
+
if (half_precision) {
|
54 |
+
grads_cast_h = reinterpret_cast<ds_half_precision_t*>(grads);
|
55 |
+
params_cast_h = reinterpret_cast<ds_half_precision_t*>(_params);
|
56 |
+
}
|
57 |
+
|
58 |
+
for (size_t t = rounded_size; t < _param_size; t += TILE) {
|
59 |
+
size_t copy_size = TILE;
|
60 |
+
if ((t + TILE) > _param_size) copy_size = _param_size - t;
|
61 |
+
size_t offset = copy_size + t;
|
62 |
+
#if defined(__ENABLE_CUDA__)
|
63 |
+
if ((t / TILE) >= 2) { cudaStreamSynchronize(_streams[_buf_index]); }
|
64 |
+
#elif defined(__ENABLE_CANN__)
|
65 |
+
if ((t / TILE) >= 2) { aclrtSynchronizeStream(_streams[_buf_index].stream()); }
|
66 |
+
#endif
|
67 |
+
#pragma omp parallel for
|
68 |
+
for (size_t k = t; k < offset; k++) {
|
69 |
+
float grad = half_precision ? (float)grads_cast_h[k] : grads[k];
|
70 |
+
float param = half_precision ? (float)params_cast_h[k] : _params[k];
|
71 |
+
float momentum = _exp_avg[k];
|
72 |
+
float variance = _exp_avg_sq[k];
|
73 |
+
if (_weight_decay > 0 && !_adamw_mode) { grad = param * _weight_decay + grad; }
|
74 |
+
momentum = momentum * _betta1;
|
75 |
+
momentum = grad * betta1_minus1 + momentum;
|
76 |
+
|
77 |
+
variance = variance * _betta2;
|
78 |
+
grad = grad * grad;
|
79 |
+
variance = grad * betta2_minus1 + variance;
|
80 |
+
|
81 |
+
grad = sqrt(variance);
|
82 |
+
grad = grad * _bias_correction2 + _eps;
|
83 |
+
grad = momentum / grad;
|
84 |
+
if (_weight_decay > 0 && _adamw_mode) { param += w_decay * param; }
|
85 |
+
param = grad * step_size + param;
|
86 |
+
#if defined(__ENABLE_CUDA__) or defined(__ENABLE_CANN__)
|
87 |
+
if (dev_params) _doubled_buffer[_buf_index][k - t] = param;
|
88 |
+
#endif
|
89 |
+
if (half_precision)
|
90 |
+
params_cast_h[k] = (ds_half_precision_t)param;
|
91 |
+
else
|
92 |
+
_params[k] = param;
|
93 |
+
_exp_avg[k] = momentum;
|
94 |
+
_exp_avg_sq[k] = variance;
|
95 |
+
}
|
96 |
+
#if defined(__ENABLE_CUDA__)
|
97 |
+
if (dev_params) {
|
98 |
+
launch_param_update(
|
99 |
+
_doubled_buffer[_buf_index], dev_params + t, (copy_size), _streams[_buf_index]);
|
100 |
+
|
101 |
+
_buf_index = !_buf_index;
|
102 |
+
}
|
103 |
+
#elif defined(__ENABLE_CANN__)
|
104 |
+
if (dev_params) {
|
105 |
+
size_t memcpy_size = copy_size * sizeof(_doubled_buffer[_buf_index][0]);
|
106 |
+
aclrtMemcpy(dev_params + t,
|
107 |
+
memcpy_size,
|
108 |
+
_doubled_buffer[_buf_index],
|
109 |
+
memcpy_size,
|
110 |
+
aclrtMemcpyKind::ACL_MEMCPY_HOST_TO_DEVICE);
|
111 |
+
|
112 |
+
_buf_index = !_buf_index;
|
113 |
+
}
|
114 |
+
#endif
|
115 |
+
}
|
116 |
+
}
|
117 |
+
}
|
118 |
+
|
119 |
+
void Adam_Optimizer::Step_4(float* _params,
|
120 |
+
float* grads,
|
121 |
+
float* _exp_avg,
|
122 |
+
float* _exp_avg_sq,
|
123 |
+
size_t _param_size,
|
124 |
+
ds_half_precision_t* dev_params,
|
125 |
+
bool half_precision)
|
126 |
+
{
|
127 |
+
size_t rounded_size = 0;
|
128 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
129 |
+
Step_AVX<4>(&rounded_size,
|
130 |
+
_params,
|
131 |
+
grads,
|
132 |
+
_exp_avg,
|
133 |
+
_exp_avg_sq,
|
134 |
+
_param_size,
|
135 |
+
dev_params,
|
136 |
+
half_precision);
|
137 |
+
#endif
|
138 |
+
if (_param_size > rounded_size)
|
139 |
+
Step_1((_params + rounded_size),
|
140 |
+
(grads + rounded_size),
|
141 |
+
(_exp_avg + rounded_size),
|
142 |
+
(_exp_avg_sq + rounded_size),
|
143 |
+
(_param_size - rounded_size),
|
144 |
+
(dev_params != nullptr ? (dev_params + rounded_size) : dev_params),
|
145 |
+
half_precision);
|
146 |
+
}
|
147 |
+
|
148 |
+
int create_adam_optimizer(int optimizer_id,
|
149 |
+
float alpha,
|
150 |
+
float betta1,
|
151 |
+
float betta2,
|
152 |
+
float eps,
|
153 |
+
float weight_decay,
|
154 |
+
bool adamw_mode,
|
155 |
+
bool should_log)
|
156 |
+
{
|
157 |
+
auto opt =
|
158 |
+
std::make_shared<Adam_Optimizer>(alpha, betta1, betta2, eps, weight_decay, adamw_mode);
|
159 |
+
|
160 |
+
s_optimizers[optimizer_id] = opt;
|
161 |
+
|
162 |
+
if (should_log) {
|
163 |
+
std::string avx_type = "";
|
164 |
+
#if defined(__AVX512__)
|
165 |
+
avx_type = "AVX512";
|
166 |
+
#else
|
167 |
+
#if defined(__AVX256__)
|
168 |
+
avx_type = "AVX2";
|
169 |
+
#else
|
170 |
+
avx_type = "scalar";
|
171 |
+
#endif
|
172 |
+
#endif
|
173 |
+
|
174 |
+
printf("Adam Optimizer #%d is created with %s arithmetic capability.\n",
|
175 |
+
optimizer_id,
|
176 |
+
avx_type.c_str());
|
177 |
+
printf("Config: alpha=%f, betas=(%f, %f), weight_decay=%f, adam_w=%d\n",
|
178 |
+
alpha,
|
179 |
+
betta1,
|
180 |
+
betta2,
|
181 |
+
weight_decay,
|
182 |
+
(int)adamw_mode);
|
183 |
+
}
|
184 |
+
|
185 |
+
return 0;
|
186 |
+
}
|
187 |
+
|
188 |
+
void Adam_Optimizer::Step_8(float* _params,
|
189 |
+
float* grads,
|
190 |
+
float* _exp_avg,
|
191 |
+
float* _exp_avg_sq,
|
192 |
+
size_t _param_size,
|
193 |
+
ds_half_precision_t* dev_params,
|
194 |
+
bool half_precision)
|
195 |
+
{
|
196 |
+
size_t rounded_size = 0;
|
197 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
198 |
+
Step_AVX<8>(&rounded_size,
|
199 |
+
_params,
|
200 |
+
grads,
|
201 |
+
_exp_avg,
|
202 |
+
_exp_avg_sq,
|
203 |
+
_param_size,
|
204 |
+
dev_params,
|
205 |
+
half_precision);
|
206 |
+
#endif
|
207 |
+
if (_param_size > rounded_size)
|
208 |
+
Step_4((_params + rounded_size),
|
209 |
+
(grads + rounded_size),
|
210 |
+
(_exp_avg + rounded_size),
|
211 |
+
(_exp_avg_sq + rounded_size),
|
212 |
+
(_param_size - rounded_size),
|
213 |
+
(dev_params != nullptr ? (dev_params + rounded_size) : dev_params),
|
214 |
+
half_precision);
|
215 |
+
}
|
216 |
+
|
217 |
+
int ds_adam_step(int optimizer_id,
|
218 |
+
size_t step,
|
219 |
+
float lr,
|
220 |
+
float beta1,
|
221 |
+
float beta2,
|
222 |
+
float epsilon,
|
223 |
+
float weight_decay,
|
224 |
+
bool bias_correction,
|
225 |
+
torch::Tensor& params,
|
226 |
+
torch::Tensor& grads,
|
227 |
+
torch::Tensor& exp_avg,
|
228 |
+
torch::Tensor& exp_avg_sq)
|
229 |
+
{
|
230 |
+
auto params_c = params.contiguous();
|
231 |
+
auto grads_c = grads.contiguous();
|
232 |
+
auto exp_avg_c = exp_avg.contiguous();
|
233 |
+
auto exp_avg_sq_c = exp_avg_sq.contiguous();
|
234 |
+
|
235 |
+
// assert(params.options().dtype() == grads.options().dtype());
|
236 |
+
|
237 |
+
float* params_ptr = (float*)params_c.data_ptr();
|
238 |
+
float* grads_ptr = (float*)grads_c.data_ptr();
|
239 |
+
float* exp_avg_ptr = (float*)exp_avg_c.data_ptr();
|
240 |
+
float* exp_avg_sq_ptr = (float*)exp_avg_sq_c.data_ptr();
|
241 |
+
|
242 |
+
std::shared_ptr<Adam_Optimizer> opt =
|
243 |
+
std::static_pointer_cast<Adam_Optimizer>(s_optimizers[optimizer_id]);
|
244 |
+
opt->IncrementStep(step, beta1, beta2);
|
245 |
+
opt->update_state(lr, epsilon, weight_decay, bias_correction);
|
246 |
+
|
247 |
+
opt->Step_8(params_ptr,
|
248 |
+
grads_ptr,
|
249 |
+
exp_avg_ptr,
|
250 |
+
exp_avg_sq_ptr,
|
251 |
+
params_c.numel(),
|
252 |
+
nullptr,
|
253 |
+
(params.options().dtype() == at::kHalf));
|
254 |
+
|
255 |
+
#if defined(__ENABLE_CUDA__) or defined(__ENABLE_CANN__)
|
256 |
+
opt->SynchronizeStreams();
|
257 |
+
#endif
|
258 |
+
return 0;
|
259 |
+
}
|
260 |
+
|
261 |
+
int ds_adam_step_plus_copy(int optimizer_id,
|
262 |
+
size_t step,
|
263 |
+
float lr,
|
264 |
+
float beta1,
|
265 |
+
float beta2,
|
266 |
+
float epsilon,
|
267 |
+
float weight_decay,
|
268 |
+
bool bias_correction,
|
269 |
+
torch::Tensor& params,
|
270 |
+
torch::Tensor& grads,
|
271 |
+
torch::Tensor& exp_avg,
|
272 |
+
torch::Tensor& exp_avg_sq,
|
273 |
+
torch::Tensor& device_params)
|
274 |
+
{
|
275 |
+
#if defined(__ENABLE_CUDA__) or defined(__ENABLE_CANN__)
|
276 |
+
auto params_c = params.contiguous();
|
277 |
+
auto device_params_c = device_params.contiguous();
|
278 |
+
auto exp_avg_c = exp_avg.contiguous();
|
279 |
+
auto exp_avg_sq_c = exp_avg_sq.contiguous();
|
280 |
+
auto grads_c = grads.contiguous();
|
281 |
+
|
282 |
+
float* params_ptr = (float*)params_c.data_ptr();
|
283 |
+
float* grads_ptr = (float*)grads_c.data_ptr();
|
284 |
+
ds_half_precision_t* device_params_ptr = (ds_half_precision_t*)device_params_c.data_ptr();
|
285 |
+
float* exp_avg_ptr = (float*)exp_avg_c.data_ptr();
|
286 |
+
float* exp_avg_sq_ptr = (float*)exp_avg_sq_c.data_ptr();
|
287 |
+
|
288 |
+
std::shared_ptr<Adam_Optimizer> opt =
|
289 |
+
std::static_pointer_cast<Adam_Optimizer>(s_optimizers[optimizer_id]);
|
290 |
+
opt->IncrementStep(step, beta1, beta2);
|
291 |
+
opt->update_state(lr, epsilon, weight_decay, bias_correction);
|
292 |
+
opt->Step_8(params_ptr,
|
293 |
+
grads_ptr,
|
294 |
+
exp_avg_ptr,
|
295 |
+
exp_avg_sq_ptr,
|
296 |
+
params_c.numel(),
|
297 |
+
device_params_ptr,
|
298 |
+
(params.options().dtype() == at::kHalf));
|
299 |
+
|
300 |
+
opt->SynchronizeStreams();
|
301 |
+
#else
|
302 |
+
assert(false);
|
303 |
+
#endif
|
304 |
+
return 0;
|
305 |
+
}
|
306 |
+
|
307 |
+
int destroy_adam_optimizer(int optimizer_id)
|
308 |
+
{
|
309 |
+
s_optimizers.erase(optimizer_id);
|
310 |
+
|
311 |
+
return 0;
|
312 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/adam/fused_adam_frontend.cpp
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <torch/extension.h>
|
7 |
+
|
8 |
+
void multi_tensor_adam_cuda(int chunk_size,
|
9 |
+
at::Tensor noop_flag,
|
10 |
+
std::vector<std::vector<at::Tensor>> tensor_lists,
|
11 |
+
const float lr,
|
12 |
+
const float beta1,
|
13 |
+
const float beta2,
|
14 |
+
const float epsilon,
|
15 |
+
const int step,
|
16 |
+
const int mode,
|
17 |
+
const int bias_correction,
|
18 |
+
const float weight_decay);
|
19 |
+
|
20 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
21 |
+
{
|
22 |
+
m.def("multi_tensor_adam",
|
23 |
+
&multi_tensor_adam_cuda,
|
24 |
+
"Compute and apply gradient update to parameters for Adam optimizer");
|
25 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/adam/multi_tensor_adam.cu
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Copyright NVIDIA/apex
|
8 |
+
This file is adapted from fused adam in NVIDIA/apex, commit a109f85
|
9 |
+
*/
|
10 |
+
|
11 |
+
#include <ATen/ATen.h>
|
12 |
+
#include <ATen/AccumulateType.h>
|
13 |
+
#include <ATen/cuda/CUDAContext.h>
|
14 |
+
#include <ATen/cuda/Exceptions.h>
|
15 |
+
// Another possibility:
|
16 |
+
// #include <torch/all.h>
|
17 |
+
|
18 |
+
#include <assert.h>
|
19 |
+
|
20 |
+
#include "multi_tensor_apply.cuh"
|
21 |
+
#include "type_shim.h"
|
22 |
+
|
23 |
+
#define BLOCK_SIZE 512
|
24 |
+
#define ILP 4
|
25 |
+
|
26 |
+
typedef enum : int {
|
27 |
+
ADAM_MODE_0 = 0, // L2 regularization mode
|
28 |
+
ADAM_MODE_1 = 1 // Decoupled weight decay mode(AdamW)
|
29 |
+
} adamMode_t;
|
30 |
+
|
31 |
+
using MATH_T = float;
|
32 |
+
|
33 |
+
template <typename T, typename index_t>
|
34 |
+
struct AdamFunctor {
|
35 |
+
__device__ __forceinline__ void operator()(int chunk_size,
|
36 |
+
volatile int* noop_gmem,
|
37 |
+
TensorListMetadata<4>& tl,
|
38 |
+
const float beta1,
|
39 |
+
const float beta2,
|
40 |
+
const float beta1_correction,
|
41 |
+
const float beta2_correction,
|
42 |
+
const float epsilon,
|
43 |
+
const float lr,
|
44 |
+
adamMode_t mode,
|
45 |
+
const float decay)
|
46 |
+
{
|
47 |
+
// I'd like this kernel to propagate infs/nans.
|
48 |
+
// if(*noop_gmem == 1)
|
49 |
+
// return;
|
50 |
+
|
51 |
+
index_t tensor_loc = tl.block_to_tensor[blockIdx.x];
|
52 |
+
|
53 |
+
// potentially use to pass in list of scalar
|
54 |
+
// int tensor_num = tl.start_tensor_this_launch + tensor_loc;
|
55 |
+
|
56 |
+
index_t chunk_idx = tl.block_to_chunk[blockIdx.x];
|
57 |
+
index_t n = tl.sizes[tensor_loc];
|
58 |
+
|
59 |
+
T* g = (T*)tl.addresses[0][tensor_loc];
|
60 |
+
g += chunk_idx * chunk_size;
|
61 |
+
|
62 |
+
T* p = (T*)tl.addresses[1][tensor_loc];
|
63 |
+
p += chunk_idx * chunk_size;
|
64 |
+
|
65 |
+
T* m = (T*)tl.addresses[2][tensor_loc];
|
66 |
+
m += chunk_idx * chunk_size;
|
67 |
+
|
68 |
+
T* v = (T*)tl.addresses[3][tensor_loc];
|
69 |
+
v += chunk_idx * chunk_size;
|
70 |
+
|
71 |
+
n -= chunk_idx * chunk_size;
|
72 |
+
|
73 |
+
// see note in multi_tensor_scale_kernel.cu
|
74 |
+
for (index_t i_start = 0; i_start < n && i_start < chunk_size;
|
75 |
+
i_start += blockDim.x * ILP) {
|
76 |
+
MATH_T r_g[ILP];
|
77 |
+
MATH_T r_p[ILP];
|
78 |
+
MATH_T r_m[ILP];
|
79 |
+
MATH_T r_v[ILP];
|
80 |
+
#pragma unroll
|
81 |
+
for (int ii = 0; ii < ILP; ii++) {
|
82 |
+
int i = i_start + threadIdx.x + ii * blockDim.x;
|
83 |
+
if (i < n && i < chunk_size) {
|
84 |
+
r_g[ii] = g[i];
|
85 |
+
r_p[ii] = p[i];
|
86 |
+
r_m[ii] = m[i];
|
87 |
+
r_v[ii] = v[i];
|
88 |
+
} else {
|
89 |
+
r_g[ii] = MATH_T(0);
|
90 |
+
r_p[ii] = MATH_T(0);
|
91 |
+
r_m[ii] = MATH_T(0);
|
92 |
+
r_v[ii] = MATH_T(0);
|
93 |
+
}
|
94 |
+
}
|
95 |
+
#pragma unroll
|
96 |
+
for (int ii = 0; ii < ILP; ii++) {
|
97 |
+
if (mode == ADAM_MODE_0) { // L2
|
98 |
+
r_g[ii] = r_g[ii] + (decay * r_p[ii]);
|
99 |
+
r_m[ii] = beta1 * r_m[ii] + (1 - beta1) * r_g[ii];
|
100 |
+
r_v[ii] = beta2 * r_v[ii] + (1 - beta2) * r_g[ii] * r_g[ii];
|
101 |
+
MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
|
102 |
+
MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
|
103 |
+
MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
|
104 |
+
MATH_T update = next_m_unbiased / denom;
|
105 |
+
r_p[ii] = r_p[ii] - (lr * update);
|
106 |
+
} else { // weight decay
|
107 |
+
r_m[ii] = beta1 * r_m[ii] + (1 - beta1) * r_g[ii];
|
108 |
+
r_v[ii] = beta2 * r_v[ii] + (1 - beta2) * r_g[ii] * r_g[ii];
|
109 |
+
MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
|
110 |
+
MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
|
111 |
+
MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
|
112 |
+
MATH_T update = (next_m_unbiased / denom) + (decay * r_p[ii]);
|
113 |
+
r_p[ii] = r_p[ii] - (lr * update);
|
114 |
+
}
|
115 |
+
}
|
116 |
+
#pragma unroll
|
117 |
+
for (int ii = 0; ii < ILP; ii++) {
|
118 |
+
int i = i_start + threadIdx.x + ii * blockDim.x;
|
119 |
+
if (i < n && i < chunk_size) {
|
120 |
+
p[i] = r_p[ii];
|
121 |
+
m[i] = r_m[ii];
|
122 |
+
v[i] = r_v[ii];
|
123 |
+
}
|
124 |
+
}
|
125 |
+
}
|
126 |
+
}
|
127 |
+
};
|
128 |
+
|
129 |
+
void multi_tensor_adam_cuda(int chunk_size,
|
130 |
+
at::Tensor noop_flag,
|
131 |
+
std::vector<std::vector<at::Tensor>> tensor_lists,
|
132 |
+
const float lr,
|
133 |
+
const float beta1,
|
134 |
+
const float beta2,
|
135 |
+
const float epsilon,
|
136 |
+
const int step,
|
137 |
+
const int mode,
|
138 |
+
const int bias_correction,
|
139 |
+
const float weight_decay)
|
140 |
+
{
|
141 |
+
using namespace at;
|
142 |
+
|
143 |
+
// Handle bias correction mode
|
144 |
+
float bias_correction1 = 1.0f, bias_correction2 = 1.0f;
|
145 |
+
if (bias_correction == 1) {
|
146 |
+
bias_correction1 = 1 - std::pow(beta1, step);
|
147 |
+
bias_correction2 = 1 - std::pow(beta2, step);
|
148 |
+
}
|
149 |
+
|
150 |
+
size_t max_size = 0;
|
151 |
+
bool requires_64bit_indexing = false;
|
152 |
+
for (auto it = tensor_lists.begin(); it != tensor_lists.end(); it++) {
|
153 |
+
for (auto it2 = it->begin(); it2 != it->end(); it2++) {
|
154 |
+
if (it2->numel() > max_size) {
|
155 |
+
max_size = it2->numel();
|
156 |
+
if (max_size >= INT_MAX) {
|
157 |
+
requires_64bit_indexing = true;
|
158 |
+
break;
|
159 |
+
}
|
160 |
+
}
|
161 |
+
}
|
162 |
+
if (requires_64bit_indexing) { break; }
|
163 |
+
}
|
164 |
+
|
165 |
+
// Assume single type across p,g,m1,m2 now
|
166 |
+
if (requires_64bit_indexing) {
|
167 |
+
DISPATCH_DOUBLE_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(),
|
168 |
+
0,
|
169 |
+
"adam",
|
170 |
+
multi_tensor_apply<4>((int64_t)BLOCK_SIZE,
|
171 |
+
(int64_t)chunk_size,
|
172 |
+
noop_flag,
|
173 |
+
tensor_lists,
|
174 |
+
AdamFunctor<scalar_t_0, int64_t>(),
|
175 |
+
beta1,
|
176 |
+
beta2,
|
177 |
+
bias_correction1,
|
178 |
+
bias_correction2,
|
179 |
+
epsilon,
|
180 |
+
lr,
|
181 |
+
(adamMode_t)mode,
|
182 |
+
weight_decay);)
|
183 |
+
} else {
|
184 |
+
DISPATCH_DOUBLE_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(),
|
185 |
+
0,
|
186 |
+
"adam",
|
187 |
+
multi_tensor_apply<4>(BLOCK_SIZE,
|
188 |
+
chunk_size,
|
189 |
+
noop_flag,
|
190 |
+
tensor_lists,
|
191 |
+
AdamFunctor<scalar_t_0, int32_t>(),
|
192 |
+
beta1,
|
193 |
+
beta2,
|
194 |
+
bias_correction1,
|
195 |
+
bias_correction2,
|
196 |
+
epsilon,
|
197 |
+
lr,
|
198 |
+
(adamMode_t)mode,
|
199 |
+
weight_decay);)
|
200 |
+
}
|
201 |
+
|
202 |
+
AT_CUDA_CHECK(cudaGetLastError());
|
203 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/adam/multi_tensor_apply.cuh
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Copyright NVIDIA/apex
|
8 |
+
This file is adapted from fused adam in NVIDIA/apex, commit a109f85
|
9 |
+
*/
|
10 |
+
|
11 |
+
#include <ATen/ATen.h>
|
12 |
+
#include <ATen/AccumulateType.h>
|
13 |
+
#include <ATen/cuda/CUDAContext.h>
|
14 |
+
#include <ATen/cuda/Exceptions.h>
|
15 |
+
#include <c10/cuda/CUDAGuard.h>
|
16 |
+
#include "compat.h"
|
17 |
+
|
18 |
+
#include <assert.h>
|
19 |
+
|
20 |
+
// #include <iostream>
|
21 |
+
|
22 |
+
// This header is the one-stop shop for all your multi-tensor apply needs.
|
23 |
+
|
24 |
+
// TODO: Kernel arg size limit may be <4KB for some other cards (ie Jetson)
|
25 |
+
constexpr int depth_to_max_tensors[5] = {110, 64, 48, 36, 30};
|
26 |
+
constexpr int depth_to_max_blocks[5] = {320, 320, 320, 320, 320};
|
27 |
+
|
28 |
+
template <int n>
|
29 |
+
struct TensorListMetadata {
|
30 |
+
void* addresses[n][depth_to_max_tensors[n - 1]];
|
31 |
+
int sizes[depth_to_max_tensors[n - 1]];
|
32 |
+
unsigned char block_to_tensor[depth_to_max_blocks[n - 1]];
|
33 |
+
int block_to_chunk[depth_to_max_blocks[n - 1]]; // I fear this needs to be a full int.
|
34 |
+
int start_tensor_this_launch;
|
35 |
+
};
|
36 |
+
|
37 |
+
template <typename T, typename U, typename... ArgTypes>
|
38 |
+
__global__ void multi_tensor_apply_kernel(int64_t chunk_size,
|
39 |
+
volatile int* noop_flag,
|
40 |
+
T tl,
|
41 |
+
U callable,
|
42 |
+
ArgTypes... args)
|
43 |
+
{
|
44 |
+
// Hand the chunk information to the user-supplied functor to process however it likes.
|
45 |
+
callable(chunk_size, noop_flag, tl, args...);
|
46 |
+
}
|
47 |
+
|
48 |
+
template <int depth, typename T, typename... ArgTypes>
|
49 |
+
void multi_tensor_apply(int64_t block_size,
|
50 |
+
int64_t chunk_size,
|
51 |
+
const at::Tensor& noop_flag,
|
52 |
+
const std::vector<std::vector<at::Tensor>>& tensor_lists,
|
53 |
+
T callable,
|
54 |
+
ArgTypes... args)
|
55 |
+
{
|
56 |
+
TORCH_CHECK(tensor_lists.size() == depth, "tensor_lists.size() != depth");
|
57 |
+
int len0 = tensor_lists[0].size();
|
58 |
+
TORCH_CHECK(len0 > 0, "tensor_lists[0].size() is not > 0");
|
59 |
+
auto ref_device = tensor_lists[0][0].device();
|
60 |
+
TORCH_CHECK(ref_device.type() == at::kCUDA, "expected input to be on cuda");
|
61 |
+
for (int l = 0; l < tensor_lists.size(); l++) // No range-based for because I need indices
|
62 |
+
{
|
63 |
+
TORCH_CHECK(tensor_lists[l].size() == len0, "Size mismatch among tensor lists");
|
64 |
+
for (int t = 0; t < tensor_lists[l].size(); t++) {
|
65 |
+
// TODO: Print which tensor fails.
|
66 |
+
bool contiguous_memory = tensor_lists[l][t].is_contiguous();
|
67 |
+
#ifdef VERSION_GE_1_5
|
68 |
+
contiguous_memory = (contiguous_memory ||
|
69 |
+
tensor_lists[l][t].is_contiguous(at::MemoryFormat::ChannelsLast));
|
70 |
+
#endif
|
71 |
+
TORCH_CHECK(contiguous_memory, "A tensor was not contiguous.");
|
72 |
+
TORCH_CHECK(tensor_lists[l][t].device() == ref_device,
|
73 |
+
"A tensor was not on the same device as the first tensor");
|
74 |
+
TORCH_CHECK(tensor_lists[l][t].numel() == tensor_lists[0][t].numel(), "Size mismatch");
|
75 |
+
}
|
76 |
+
}
|
77 |
+
|
78 |
+
int ntensors = tensor_lists[0].size();
|
79 |
+
|
80 |
+
TensorListMetadata<depth> tl;
|
81 |
+
|
82 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(tensor_lists[0][0]));
|
83 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
84 |
+
|
85 |
+
tl.start_tensor_this_launch = 0;
|
86 |
+
int loc_block_info = 0;
|
87 |
+
int loc_tensor_info = 0;
|
88 |
+
for (int t = 0; t < ntensors; t++) {
|
89 |
+
tl.sizes[loc_tensor_info] = tensor_lists[0][t].numel();
|
90 |
+
for (int d = 0; d < depth; d++)
|
91 |
+
tl.addresses[d][loc_tensor_info] = tensor_lists[d][t].data_ptr();
|
92 |
+
loc_tensor_info++;
|
93 |
+
|
94 |
+
auto chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1) / chunk_size;
|
95 |
+
|
96 |
+
for (auto chunk = 0; chunk < chunks_this_tensor; chunk++) {
|
97 |
+
// std::cout << chunks_this_tensor << std::endl;
|
98 |
+
tl.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
|
99 |
+
tl.block_to_chunk[loc_block_info] = chunk;
|
100 |
+
loc_block_info++;
|
101 |
+
|
102 |
+
bool tensors_full = (loc_tensor_info == depth_to_max_tensors[depth - 1] &&
|
103 |
+
chunk == chunks_this_tensor - 1);
|
104 |
+
bool blocks_full = (loc_block_info == depth_to_max_blocks[depth - 1]);
|
105 |
+
bool last_chunk = (t == ntensors - 1 && chunk == chunks_this_tensor - 1);
|
106 |
+
if (tensors_full || blocks_full || last_chunk) {
|
107 |
+
// using accscalar_t = acc_type<scalar_t, true>;
|
108 |
+
multi_tensor_apply_kernel<<<loc_block_info, block_size, 0, stream>>>(
|
109 |
+
chunk_size, noop_flag.DATA_PTR<int>(), tl, callable, args...);
|
110 |
+
|
111 |
+
AT_CUDA_CHECK(cudaGetLastError());
|
112 |
+
|
113 |
+
// Reset. The control flow possibilities here make my brain hurt.
|
114 |
+
loc_block_info = 0;
|
115 |
+
if (chunk == chunks_this_tensor - 1) {
|
116 |
+
// std::cout << "Hit case 1 " << cond1 << " " << cond2 << " " << cond3 <<
|
117 |
+
// std::endl;
|
118 |
+
loc_tensor_info = 0;
|
119 |
+
tl.start_tensor_this_launch = t + 1;
|
120 |
+
} else {
|
121 |
+
// std::cout << "Hit case 2 " << cond1 << " " << cond2 << " " << cond3 <<
|
122 |
+
// std::endl;
|
123 |
+
tl.sizes[0] = tl.sizes[loc_tensor_info - 1];
|
124 |
+
for (int d = 0; d < depth; d++)
|
125 |
+
tl.addresses[d][0] = tl.addresses[d][loc_tensor_info - 1];
|
126 |
+
loc_tensor_info = 1;
|
127 |
+
tl.start_tensor_this_launch = t;
|
128 |
+
}
|
129 |
+
}
|
130 |
+
}
|
131 |
+
}
|
132 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/common/deepspeed_aio_common.cpp
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
8 |
+
*/
|
9 |
+
|
10 |
+
#include <assert.h>
|
11 |
+
#include <stdlib.h>
|
12 |
+
#include <string.h>
|
13 |
+
|
14 |
+
#include <fcntl.h>
|
15 |
+
#include <libaio.h>
|
16 |
+
#include <sys/mman.h>
|
17 |
+
#include <sys/stat.h>
|
18 |
+
#include <sys/types.h>
|
19 |
+
#include <time.h>
|
20 |
+
#include <unistd.h>
|
21 |
+
|
22 |
+
#include <algorithm>
|
23 |
+
#include <chrono>
|
24 |
+
#include <cmath>
|
25 |
+
#include <cstring>
|
26 |
+
#include <fstream>
|
27 |
+
#include <iostream>
|
28 |
+
#include <limits>
|
29 |
+
#include <numeric>
|
30 |
+
#include <string>
|
31 |
+
#include <vector>
|
32 |
+
|
33 |
+
#include "deepspeed_aio_common.h"
|
34 |
+
|
35 |
+
using namespace std;
|
36 |
+
using namespace std::chrono;
|
37 |
+
|
38 |
+
#define DEBUG_DS_AIO_PERF 0
|
39 |
+
#define DEBUG_DS_AIO_SUBMIT_PERF 0
|
40 |
+
|
41 |
+
static const std::string c_library_name = "deepspeed_aio";
|
42 |
+
|
43 |
+
static void _report_aio_statistics(const char* tag,
|
44 |
+
const std::vector<std::chrono::duration<double>>& latencies)
|
45 |
+
__attribute__((unused));
|
46 |
+
|
47 |
+
static void _report_aio_statistics(const char* tag,
|
48 |
+
const std::vector<std::chrono::duration<double>>& latencies)
|
49 |
+
{
|
50 |
+
std::vector<double> lat_usec;
|
51 |
+
for (auto& lat : latencies) { lat_usec.push_back(lat.count() * 1e6); }
|
52 |
+
const auto min_lat = *(std::min_element(lat_usec.begin(), lat_usec.end()));
|
53 |
+
const auto max_lat = *(std::max_element(lat_usec.begin(), lat_usec.end()));
|
54 |
+
const auto avg_lat = std::accumulate(lat_usec.begin(), lat_usec.end(), 0) / lat_usec.size();
|
55 |
+
|
56 |
+
std::cout << c_library_name << ": latency statistics(usec) " << tag
|
57 |
+
<< " min/max/avg = " << min_lat << " " << max_lat << " " << avg_lat << std::endl;
|
58 |
+
}
|
59 |
+
|
60 |
+
static void _get_aio_latencies(std::vector<std::chrono::duration<double>>& raw_latencies,
|
61 |
+
struct deepspeed_aio_latency_t& summary_latencies)
|
62 |
+
{
|
63 |
+
std::vector<double> lat_usec;
|
64 |
+
for (auto& lat : raw_latencies) { lat_usec.push_back(lat.count() * 1e6); }
|
65 |
+
summary_latencies._min_usec = *(std::min_element(lat_usec.begin(), lat_usec.end()));
|
66 |
+
summary_latencies._max_usec = *(std::max_element(lat_usec.begin(), lat_usec.end()));
|
67 |
+
summary_latencies._avg_usec =
|
68 |
+
std::accumulate(lat_usec.begin(), lat_usec.end(), 0) / lat_usec.size();
|
69 |
+
}
|
70 |
+
|
71 |
+
static void _do_io_submit_singles(const long long int n_iocbs,
|
72 |
+
const long long int iocb_index,
|
73 |
+
std::unique_ptr<aio_context>& aio_ctxt,
|
74 |
+
std::vector<std::chrono::duration<double>>& submit_times)
|
75 |
+
{
|
76 |
+
for (auto i = 0; i < n_iocbs; ++i) {
|
77 |
+
const auto st = std::chrono::high_resolution_clock::now();
|
78 |
+
const auto submit_ret = io_submit(aio_ctxt->_io_ctxt, 1, aio_ctxt->_iocbs.data() + i);
|
79 |
+
submit_times.push_back(std::chrono::high_resolution_clock::now() - st);
|
80 |
+
#if DEBUG_DS_AIO_SUBMIT_PERF
|
81 |
+
printf("submit(usec) %f io_index=%lld buf=%p len=%lu off=%llu \n",
|
82 |
+
submit_times.back().count() * 1e6,
|
83 |
+
iocb_index,
|
84 |
+
aio_ctxt->_iocbs[i]->u.c.buf,
|
85 |
+
aio_ctxt->_iocbs[i]->u.c.nbytes,
|
86 |
+
aio_ctxt->_iocbs[i]->u.c.offset);
|
87 |
+
#endif
|
88 |
+
assert(submit_ret > 0);
|
89 |
+
}
|
90 |
+
}
|
91 |
+
|
92 |
+
static void _do_io_submit_block(const long long int n_iocbs,
|
93 |
+
const long long int iocb_index,
|
94 |
+
std::unique_ptr<aio_context>& aio_ctxt,
|
95 |
+
std::vector<std::chrono::duration<double>>& submit_times)
|
96 |
+
{
|
97 |
+
const auto st = std::chrono::high_resolution_clock::now();
|
98 |
+
const auto submit_ret = io_submit(aio_ctxt->_io_ctxt, n_iocbs, aio_ctxt->_iocbs.data());
|
99 |
+
submit_times.push_back(std::chrono::high_resolution_clock::now() - st);
|
100 |
+
#if DEBUG_DS_AIO_SUBMIT_PERF
|
101 |
+
printf("submit(usec) %f io_index=%lld nr=%lld buf=%p len=%lu off=%llu \n",
|
102 |
+
submit_times.back().count() * 1e6,
|
103 |
+
iocb_index,
|
104 |
+
n_iocbs,
|
105 |
+
aio_ctxt->_iocbs[0]->u.c.buf,
|
106 |
+
aio_ctxt->_iocbs[0]->u.c.nbytes,
|
107 |
+
aio_ctxt->_iocbs[0]->u.c.offset);
|
108 |
+
#endif
|
109 |
+
assert(submit_ret > 0);
|
110 |
+
}
|
111 |
+
|
112 |
+
static int _do_io_complete(const long long int min_completes,
|
113 |
+
const long long int max_completes,
|
114 |
+
std::unique_ptr<aio_context>& aio_ctxt,
|
115 |
+
std::vector<std::chrono::duration<double>>& reap_times)
|
116 |
+
{
|
117 |
+
const auto start_time = std::chrono::high_resolution_clock::now();
|
118 |
+
long long int n_completes = io_pgetevents(aio_ctxt->_io_ctxt,
|
119 |
+
min_completes,
|
120 |
+
max_completes,
|
121 |
+
aio_ctxt->_io_events.data(),
|
122 |
+
nullptr,
|
123 |
+
nullptr);
|
124 |
+
reap_times.push_back(std::chrono::high_resolution_clock::now() - start_time);
|
125 |
+
assert(n_completes >= min_completes);
|
126 |
+
return n_completes;
|
127 |
+
}
|
128 |
+
|
129 |
+
void do_aio_operation_sequential(const bool read_op,
|
130 |
+
std::unique_ptr<aio_context>& aio_ctxt,
|
131 |
+
std::unique_ptr<io_xfer_ctxt>& xfer_ctxt,
|
132 |
+
deepspeed_aio_config_t* config,
|
133 |
+
deepspeed_aio_perf_t* perf)
|
134 |
+
{
|
135 |
+
struct io_prep_context prep_ctxt(read_op, xfer_ctxt, aio_ctxt->_block_size, &aio_ctxt->_iocbs);
|
136 |
+
|
137 |
+
const auto num_io_blocks = static_cast<long long int>(
|
138 |
+
ceil(static_cast<double>(xfer_ctxt->_num_bytes) / aio_ctxt->_block_size));
|
139 |
+
#if DEBUG_DS_AIO_PERF
|
140 |
+
const auto io_op_name = std::string(read_op ? "read" : "write");
|
141 |
+
std::cout << c_library_name << ": start " << io_op_name << " " << xfer_ctxt->_num_bytes
|
142 |
+
<< " bytes with " << num_io_blocks << " io blocks" << std::endl;
|
143 |
+
#endif
|
144 |
+
|
145 |
+
std::vector<std::chrono::duration<double>> submit_times;
|
146 |
+
std::vector<std::chrono::duration<double>> reap_times;
|
147 |
+
const auto max_queue_bytes =
|
148 |
+
static_cast<long long int>(aio_ctxt->_queue_depth * aio_ctxt->_block_size);
|
149 |
+
|
150 |
+
auto start = std::chrono::high_resolution_clock::now();
|
151 |
+
for (long long iocb_index = 0; iocb_index < num_io_blocks;
|
152 |
+
iocb_index += aio_ctxt->_queue_depth) {
|
153 |
+
const auto start_offset = iocb_index * aio_ctxt->_block_size;
|
154 |
+
const auto start_buffer = (char*)xfer_ctxt->_mem_buffer + start_offset;
|
155 |
+
const auto n_iocbs =
|
156 |
+
min(static_cast<long long>(aio_ctxt->_queue_depth), (num_io_blocks - iocb_index));
|
157 |
+
const auto num_bytes = min(max_queue_bytes, (xfer_ctxt->_num_bytes - start_offset));
|
158 |
+
prep_ctxt.prep_iocbs(n_iocbs, num_bytes, start_buffer, start_offset);
|
159 |
+
|
160 |
+
if (config->_single_submit) {
|
161 |
+
_do_io_submit_singles(n_iocbs, iocb_index, aio_ctxt, submit_times);
|
162 |
+
} else {
|
163 |
+
_do_io_submit_block(n_iocbs, iocb_index, aio_ctxt, submit_times);
|
164 |
+
}
|
165 |
+
|
166 |
+
_do_io_complete(n_iocbs, n_iocbs, aio_ctxt, reap_times);
|
167 |
+
}
|
168 |
+
const std::chrono::duration<double> elapsed = std::chrono::high_resolution_clock::now() - start;
|
169 |
+
|
170 |
+
if (perf) {
|
171 |
+
_get_aio_latencies(submit_times, perf->_submit);
|
172 |
+
_get_aio_latencies(reap_times, perf->_complete);
|
173 |
+
perf->_e2e_usec = elapsed.count() * 1e6;
|
174 |
+
perf->_e2e_rate_GB = (xfer_ctxt->_num_bytes / elapsed.count() / 1e9);
|
175 |
+
}
|
176 |
+
|
177 |
+
#if DEBUG_DS_AIO_PERF
|
178 |
+
_report_aio_statistics("submit", submit_times);
|
179 |
+
_report_aio_statistics("complete", reap_times);
|
180 |
+
#endif
|
181 |
+
|
182 |
+
#if DEBUG_DS_AIO_PERF
|
183 |
+
std::cout << c_library_name << ": runtime(usec) " << elapsed.count() * 1e6
|
184 |
+
<< " rate(GB/sec) = " << (xfer_ctxt->_num_bytes / elapsed.count() / 1e9) << std::endl;
|
185 |
+
#endif
|
186 |
+
|
187 |
+
#if DEBUG_DS_AIO_PERF
|
188 |
+
std::cout << c_library_name << ": finish " << io_op_name << " " << xfer_ctxt->_num_bytes
|
189 |
+
<< " bytes " << std::endl;
|
190 |
+
#endif
|
191 |
+
}
|
192 |
+
|
193 |
+
void do_aio_operation_overlap(const bool read_op,
|
194 |
+
std::unique_ptr<aio_context>& aio_ctxt,
|
195 |
+
std::unique_ptr<io_xfer_ctxt>& xfer_ctxt,
|
196 |
+
deepspeed_aio_config_t* config,
|
197 |
+
deepspeed_aio_perf_t* perf)
|
198 |
+
{
|
199 |
+
struct io_prep_generator io_gen(read_op, xfer_ctxt, aio_ctxt->_block_size);
|
200 |
+
|
201 |
+
#if DEBUG_DS_AIO_PERF
|
202 |
+
const auto io_op_name = std::string(read_op ? "read" : "write");
|
203 |
+
std::cout << c_library_name << ": start " << io_op_name << " " << xfer_ctxt->_num_bytes
|
204 |
+
<< " bytes with " << io_gen._num_io_blocks << " io blocks" << std::endl;
|
205 |
+
#endif
|
206 |
+
|
207 |
+
std::vector<std::chrono::duration<double>> submit_times;
|
208 |
+
std::vector<std::chrono::duration<double>> reap_times;
|
209 |
+
|
210 |
+
auto request_iocbs = aio_ctxt->_queue_depth;
|
211 |
+
auto n_pending_iocbs = 0;
|
212 |
+
const auto min_completes = 1;
|
213 |
+
auto start = std::chrono::high_resolution_clock::now();
|
214 |
+
while (true) {
|
215 |
+
const auto n_iocbs = io_gen.prep_iocbs(request_iocbs - n_pending_iocbs, &aio_ctxt->_iocbs);
|
216 |
+
if (n_iocbs > 0) {
|
217 |
+
if (config->_single_submit) {
|
218 |
+
_do_io_submit_singles(
|
219 |
+
n_iocbs, (io_gen._next_iocb_index - n_iocbs), aio_ctxt, submit_times);
|
220 |
+
} else {
|
221 |
+
_do_io_submit_block(
|
222 |
+
n_iocbs, (io_gen._next_iocb_index - n_iocbs), aio_ctxt, submit_times);
|
223 |
+
}
|
224 |
+
}
|
225 |
+
|
226 |
+
n_pending_iocbs += n_iocbs;
|
227 |
+
assert(n_pending_iocbs <= aio_ctxt->_queue_depth);
|
228 |
+
|
229 |
+
if (n_pending_iocbs == 0) { break; }
|
230 |
+
|
231 |
+
const auto n_complete =
|
232 |
+
_do_io_complete(min_completes, n_pending_iocbs, aio_ctxt, reap_times);
|
233 |
+
n_pending_iocbs -= n_complete;
|
234 |
+
}
|
235 |
+
|
236 |
+
const std::chrono::duration<double> elapsed = std::chrono::high_resolution_clock::now() - start;
|
237 |
+
|
238 |
+
if (perf) {
|
239 |
+
_get_aio_latencies(submit_times, perf->_submit);
|
240 |
+
_get_aio_latencies(reap_times, perf->_complete);
|
241 |
+
perf->_e2e_usec = elapsed.count() * 1e6;
|
242 |
+
perf->_e2e_rate_GB = (xfer_ctxt->_num_bytes / elapsed.count() / 1e9);
|
243 |
+
}
|
244 |
+
|
245 |
+
#if DEBUG_DS_AIO_PERF
|
246 |
+
_report_aio_statistics("submit", submit_times);
|
247 |
+
_report_aio_statistics("complete", reap_times);
|
248 |
+
#endif
|
249 |
+
|
250 |
+
#if DEBUG_DS_AIO_PERF
|
251 |
+
std::cout << c_library_name << ": runtime(usec) " << elapsed.count() * 1e6
|
252 |
+
<< " rate(GB/sec) = " << (xfer_ctxt->_num_bytes / elapsed.count() / 1e9) << std::endl;
|
253 |
+
#endif
|
254 |
+
|
255 |
+
#if DEBUG_DS_AIO_PERF
|
256 |
+
std::cout << c_library_name << ": finish " << io_op_name << " " << xfer_ctxt->_num_bytes
|
257 |
+
<< " bytes " << std::endl;
|
258 |
+
#endif
|
259 |
+
}
|
260 |
+
|
261 |
+
void report_file_error(const char* filename, const std::string file_op, const int error_code)
|
262 |
+
{
|
263 |
+
std::string err_msg = file_op + std::string(" failed on ") + std::string(filename) +
|
264 |
+
" error = " + std::to_string(error_code);
|
265 |
+
std::cerr << c_library_name << ": " << err_msg << std::endl;
|
266 |
+
}
|
267 |
+
|
268 |
+
int open_file(const char* filename, const bool read_op)
|
269 |
+
{
|
270 |
+
const int flags = read_op ? (O_RDONLY | O_DIRECT) : (O_WRONLY | O_CREAT | O_DIRECT);
|
271 |
+
#if defined(__ENABLE_CANN__)
|
272 |
+
int* flags_ptr = (int*)&flags;
|
273 |
+
*flags_ptr = read_op ? (O_RDONLY) : (O_WRONLY | O_CREAT);
|
274 |
+
#endif
|
275 |
+
const int mode = 0600;
|
276 |
+
const auto fd = open(filename, flags, mode);
|
277 |
+
if (fd == -1) {
|
278 |
+
const auto error_code = errno;
|
279 |
+
const auto error_msg = read_op ? " open for read " : " open for write ";
|
280 |
+
report_file_error(filename, error_msg, error_code);
|
281 |
+
return -1;
|
282 |
+
}
|
283 |
+
return fd;
|
284 |
+
}
|
285 |
+
|
286 |
+
int regular_read(const char* filename, std::vector<char>& buffer)
|
287 |
+
{
|
288 |
+
long long int num_bytes;
|
289 |
+
const auto f_size = get_file_size(filename, num_bytes);
|
290 |
+
assert(f_size != -1);
|
291 |
+
buffer.resize(num_bytes);
|
292 |
+
const auto fd = open(filename, O_RDONLY, 0600);
|
293 |
+
assert(fd != -1);
|
294 |
+
long long int read_bytes = 0;
|
295 |
+
auto r = 0;
|
296 |
+
do {
|
297 |
+
const auto buffer_ptr = buffer.data() + read_bytes;
|
298 |
+
const auto bytes_to_read = num_bytes - read_bytes;
|
299 |
+
r = read(fd, buffer_ptr, bytes_to_read);
|
300 |
+
read_bytes += r;
|
301 |
+
} while (r > 0);
|
302 |
+
|
303 |
+
if (read_bytes != num_bytes) {
|
304 |
+
std::cerr << "read error "
|
305 |
+
<< " read_bytes (read) = " << read_bytes << " num_bytes (fstat) = " << num_bytes
|
306 |
+
<< std::endl;
|
307 |
+
}
|
308 |
+
assert(read_bytes == num_bytes);
|
309 |
+
close(fd);
|
310 |
+
return 0;
|
311 |
+
}
|
312 |
+
|
313 |
+
static bool _validate_buffer(const char* filename, void* aio_buffer, const long long int num_bytes)
|
314 |
+
{
|
315 |
+
std::vector<char> regular_buffer;
|
316 |
+
const auto reg_ret = regular_read(filename, regular_buffer);
|
317 |
+
assert(0 == reg_ret);
|
318 |
+
std::cout << "regular read of " << filename << " returned " << regular_buffer.size() << " bytes"
|
319 |
+
<< std::endl;
|
320 |
+
|
321 |
+
if (static_cast<long long int>(regular_buffer.size()) != num_bytes) { return false; }
|
322 |
+
|
323 |
+
return (0 == memcmp(aio_buffer, regular_buffer.data(), regular_buffer.size()));
|
324 |
+
}
|
325 |
+
|
326 |
+
bool validate_aio_operation(const bool read_op,
|
327 |
+
const char* filename,
|
328 |
+
void* aio_buffer,
|
329 |
+
const long long int num_bytes)
|
330 |
+
{
|
331 |
+
const auto msg_suffix = std::string("deepspeed_aio_") +
|
332 |
+
std::string(read_op ? "read()" : "write()") +
|
333 |
+
std::string("using read()");
|
334 |
+
|
335 |
+
if (false == _validate_buffer(filename, aio_buffer, num_bytes)) {
|
336 |
+
std::cout << "Fail: correctness of " << msg_suffix << std::endl;
|
337 |
+
return false;
|
338 |
+
}
|
339 |
+
|
340 |
+
std::cout << "Pass: correctness of " << msg_suffix << std::endl;
|
341 |
+
return true;
|
342 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/common/deepspeed_aio_common.h
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
8 |
+
*/
|
9 |
+
|
10 |
+
#include <deepspeed_aio_utils.h>
|
11 |
+
#include <stdlib.h>
|
12 |
+
#include <memory>
|
13 |
+
#include <string>
|
14 |
+
|
15 |
+
using namespace std;
|
16 |
+
|
17 |
+
void do_aio_operation_sequential(const bool read_op,
|
18 |
+
std::unique_ptr<aio_context>& aio_ctxt,
|
19 |
+
std::unique_ptr<io_xfer_ctxt>& xfer_ctxt,
|
20 |
+
deepspeed_aio_config_t* config,
|
21 |
+
deepspeed_aio_perf_t* perf);
|
22 |
+
|
23 |
+
void do_aio_operation_overlap(const bool read_op,
|
24 |
+
std::unique_ptr<aio_context>& aio_ctxt,
|
25 |
+
std::unique_ptr<io_xfer_ctxt>& xfer_ctxt,
|
26 |
+
deepspeed_aio_config_t* config,
|
27 |
+
deepspeed_aio_perf_t* perf);
|
28 |
+
|
29 |
+
int open_file(const char* filename, const bool read_op);
|
30 |
+
|
31 |
+
void report_file_error(const char* filename, const std::string file_op, const int error_code);
|
32 |
+
|
33 |
+
int regular_read(const char* filename, std::vector<char>& buffer);
|
34 |
+
|
35 |
+
bool validate_aio_operation(const bool read_op,
|
36 |
+
const char* filename,
|
37 |
+
void* aio_buffer,
|
38 |
+
const long long int num_bytes);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/common/deepspeed_aio_types.cpp
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
8 |
+
*/
|
9 |
+
|
10 |
+
#include <cmath>
|
11 |
+
|
12 |
+
#include "deepspeed_aio_utils.h"
|
13 |
+
|
14 |
+
using namespace std;
|
15 |
+
|
16 |
+
const int c_block_size = 128 * 1024;
|
17 |
+
const int c_io_queue_depth = 8;
|
18 |
+
|
19 |
+
deepspeed_aio_config_t::deepspeed_aio_config_t()
|
20 |
+
: _block_size(c_block_size),
|
21 |
+
_queue_depth(c_io_queue_depth),
|
22 |
+
_single_submit(false),
|
23 |
+
_overlap_events(false),
|
24 |
+
_lock_memory(false)
|
25 |
+
{
|
26 |
+
}
|
27 |
+
|
28 |
+
deepspeed_aio_config_t::deepspeed_aio_config_t(const int block_size,
|
29 |
+
const int queue_depth,
|
30 |
+
const bool single_submit,
|
31 |
+
const bool overlap_events,
|
32 |
+
const bool lock_memory)
|
33 |
+
: _block_size(block_size),
|
34 |
+
_queue_depth(queue_depth),
|
35 |
+
_single_submit(single_submit),
|
36 |
+
_overlap_events(overlap_events),
|
37 |
+
_lock_memory(lock_memory)
|
38 |
+
{
|
39 |
+
}
|
40 |
+
|
41 |
+
void deepspeed_aio_latency_t::dump(const std::string tag)
|
42 |
+
{
|
43 |
+
std::cout << tag << _min_usec << " " << _max_usec << " " << _avg_usec << " " << std::endl;
|
44 |
+
}
|
45 |
+
|
46 |
+
void deepspeed_aio_latency_t::accumulate(const struct deepspeed_aio_latency_t& other)
|
47 |
+
{
|
48 |
+
_min_usec += other._min_usec;
|
49 |
+
_max_usec += other._max_usec;
|
50 |
+
_avg_usec += other._avg_usec;
|
51 |
+
}
|
52 |
+
|
53 |
+
void deepspeed_aio_latency_t::scale(const float scaler)
|
54 |
+
{
|
55 |
+
_min_usec *= scaler;
|
56 |
+
_max_usec *= scaler;
|
57 |
+
_avg_usec *= scaler;
|
58 |
+
}
|
59 |
+
|
60 |
+
aio_context::aio_context(const int block_size, const int queue_depth)
|
61 |
+
{
|
62 |
+
_block_size = block_size;
|
63 |
+
_queue_depth = queue_depth;
|
64 |
+
for (auto i = 0; i < queue_depth; ++i) {
|
65 |
+
_iocbs.push_back((struct iocb*)calloc(1, sizeof(struct iocb)));
|
66 |
+
}
|
67 |
+
_io_events.resize(queue_depth);
|
68 |
+
io_queue_init(queue_depth, &_io_ctxt);
|
69 |
+
}
|
70 |
+
|
71 |
+
aio_context::~aio_context()
|
72 |
+
{
|
73 |
+
for (auto& iocb : _iocbs) { free(iocb); }
|
74 |
+
_io_events.resize(0);
|
75 |
+
io_queue_release(_io_ctxt);
|
76 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/common/deepspeed_aio_types.h
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
8 |
+
*/
|
9 |
+
|
10 |
+
#include <libaio.h>
|
11 |
+
#include <stdlib.h>
|
12 |
+
|
13 |
+
#include <string>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
using namespace std;
|
17 |
+
|
18 |
+
struct deepspeed_aio_latency_t {
|
19 |
+
double _min_usec;
|
20 |
+
double _max_usec;
|
21 |
+
double _avg_usec;
|
22 |
+
|
23 |
+
void dump(const std::string tag);
|
24 |
+
void accumulate(const deepspeed_aio_latency_t&);
|
25 |
+
void scale(const float value);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct deepspeed_aio_perf_t {
|
29 |
+
deepspeed_aio_latency_t _submit;
|
30 |
+
deepspeed_aio_latency_t _complete;
|
31 |
+
double _e2e_usec;
|
32 |
+
double _e2e_rate_GB;
|
33 |
+
};
|
34 |
+
|
35 |
+
struct deepspeed_aio_config_t {
|
36 |
+
const int _block_size;
|
37 |
+
const int _queue_depth;
|
38 |
+
const bool _single_submit;
|
39 |
+
const bool _overlap_events;
|
40 |
+
const bool _lock_memory;
|
41 |
+
|
42 |
+
deepspeed_aio_config_t();
|
43 |
+
deepspeed_aio_config_t(const int block_size,
|
44 |
+
const int queue_depth,
|
45 |
+
const bool single_submit,
|
46 |
+
const bool overlap_events,
|
47 |
+
const bool lock_memory);
|
48 |
+
};
|
49 |
+
|
50 |
+
struct aio_context {
|
51 |
+
io_context_t _io_ctxt;
|
52 |
+
std::vector<struct io_event> _io_events;
|
53 |
+
std::vector<struct iocb*> _iocbs;
|
54 |
+
int _block_size;
|
55 |
+
int _queue_depth;
|
56 |
+
|
57 |
+
aio_context(const int block_size, const int queue_depth);
|
58 |
+
~aio_context();
|
59 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/common/deepspeed_aio_utils.cpp
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
8 |
+
*/
|
9 |
+
|
10 |
+
#include <cmath>
|
11 |
+
#include <iostream>
|
12 |
+
|
13 |
+
#include "deepspeed_aio_utils.h"
|
14 |
+
|
15 |
+
using namespace std;
|
16 |
+
|
17 |
+
const int c_block_size = 128 * 1024;
|
18 |
+
const int c_io_queue_depth = 8;
|
19 |
+
|
20 |
+
io_xfer_ctxt::io_xfer_ctxt(const int fd,
|
21 |
+
const long long int file_offset,
|
22 |
+
const long long int num_bytes,
|
23 |
+
const void* buffer)
|
24 |
+
: _fd(fd), _base_offset(file_offset), _mem_buffer(buffer), _num_bytes(num_bytes)
|
25 |
+
{
|
26 |
+
}
|
27 |
+
|
28 |
+
io_prep_context::io_prep_context(const bool read_op,
|
29 |
+
const std::unique_ptr<io_xfer_ctxt>& xfer_ctxt,
|
30 |
+
const size_t block_size,
|
31 |
+
const std::vector<struct iocb*>* iocbs)
|
32 |
+
: _read_op(read_op), _xfer_ctxt(xfer_ctxt), _block_size(block_size), _iocbs(iocbs)
|
33 |
+
{
|
34 |
+
}
|
35 |
+
|
36 |
+
void io_prep_context::prep_iocbs(const int n_iocbs,
|
37 |
+
const size_t num_bytes,
|
38 |
+
const void* start_buffer,
|
39 |
+
const long long int start_offset)
|
40 |
+
{
|
41 |
+
assert(static_cast<size_t>(n_iocbs) <= _iocbs->size());
|
42 |
+
for (auto i = 0; i < n_iocbs; ++i) {
|
43 |
+
const auto shift = i * _block_size;
|
44 |
+
const auto xfer_buffer = (char*)start_buffer + _xfer_ctxt->_base_offset + shift;
|
45 |
+
const auto xfer_offset = _xfer_ctxt->_base_offset + start_offset + shift;
|
46 |
+
auto byte_count = _block_size;
|
47 |
+
if ((shift + _block_size) > num_bytes) { byte_count = num_bytes - shift; }
|
48 |
+
|
49 |
+
if (_read_op) {
|
50 |
+
io_prep_pread(_iocbs->at(i), _xfer_ctxt->_fd, xfer_buffer, byte_count, xfer_offset);
|
51 |
+
} else {
|
52 |
+
io_prep_pwrite(_iocbs->at(i), _xfer_ctxt->_fd, xfer_buffer, byte_count, xfer_offset);
|
53 |
+
}
|
54 |
+
}
|
55 |
+
}
|
56 |
+
|
57 |
+
io_prep_generator::io_prep_generator(const bool read_op,
|
58 |
+
const std::unique_ptr<io_xfer_ctxt>& xfer_ctxt,
|
59 |
+
const size_t block_size)
|
60 |
+
: _read_op(read_op),
|
61 |
+
_xfer_ctxt(xfer_ctxt),
|
62 |
+
_block_size(block_size),
|
63 |
+
_remaining_bytes(xfer_ctxt->_num_bytes),
|
64 |
+
_next_iocb_index(0)
|
65 |
+
{
|
66 |
+
_num_io_blocks =
|
67 |
+
static_cast<long long int>(ceil(static_cast<double>(xfer_ctxt->_num_bytes) / block_size));
|
68 |
+
_remaining_io_blocks = _num_io_blocks;
|
69 |
+
}
|
70 |
+
|
71 |
+
int io_prep_generator::prep_iocbs(const int n_iocbs, std::vector<struct iocb*>* iocbs)
|
72 |
+
{
|
73 |
+
if ((_remaining_bytes) == 0 || (_remaining_io_blocks == 0)) {
|
74 |
+
assert(static_cast<long long int>(_remaining_bytes) == _remaining_io_blocks);
|
75 |
+
return 0;
|
76 |
+
}
|
77 |
+
|
78 |
+
assert(static_cast<size_t>(n_iocbs) <= iocbs->size());
|
79 |
+
|
80 |
+
auto actual_n_iocbs = min(static_cast<long long int>(n_iocbs), _remaining_io_blocks);
|
81 |
+
for (auto i = 0; i < actual_n_iocbs; ++i, ++_next_iocb_index) {
|
82 |
+
const auto xfer_offset = _xfer_ctxt->_base_offset + (_next_iocb_index * _block_size);
|
83 |
+
const auto xfer_buffer = (char*)_xfer_ctxt->_mem_buffer + xfer_offset;
|
84 |
+
const auto num_bytes = min(static_cast<long long int>(_block_size), _remaining_bytes);
|
85 |
+
|
86 |
+
if (_read_op) {
|
87 |
+
io_prep_pread(iocbs->at(i), _xfer_ctxt->_fd, xfer_buffer, num_bytes, xfer_offset);
|
88 |
+
} else {
|
89 |
+
io_prep_pwrite(iocbs->at(i), _xfer_ctxt->_fd, xfer_buffer, num_bytes, xfer_offset);
|
90 |
+
}
|
91 |
+
_remaining_bytes -= num_bytes;
|
92 |
+
}
|
93 |
+
_remaining_io_blocks -= actual_n_iocbs;
|
94 |
+
|
95 |
+
return actual_n_iocbs;
|
96 |
+
}
|
97 |
+
|
98 |
+
int get_file_size(const char* filename, long long int& size)
|
99 |
+
{
|
100 |
+
struct stat st;
|
101 |
+
if (stat(filename, &st) == -1) { return -1; }
|
102 |
+
size = st.st_size;
|
103 |
+
return 0;
|
104 |
+
}
|
105 |
+
|
106 |
+
void* ds_page_aligned_alloc(const size_t size, const bool lock)
|
107 |
+
{
|
108 |
+
void* ptr;
|
109 |
+
int retval;
|
110 |
+
|
111 |
+
retval = posix_memalign(&ptr, (size_t)sysconf(_SC_PAGESIZE), size);
|
112 |
+
if (retval) { return nullptr; }
|
113 |
+
|
114 |
+
if (lock == false) { return ptr; }
|
115 |
+
|
116 |
+
auto mlock_ret = mlock(ptr, size);
|
117 |
+
if (mlock_ret != 0) {
|
118 |
+
auto mlock_error = errno;
|
119 |
+
std::cerr << "mlock failed to allocate " << size << " bytes with error no " << mlock_error
|
120 |
+
<< " msg " << strerror(mlock_error) << std::endl;
|
121 |
+
free(ptr);
|
122 |
+
return nullptr;
|
123 |
+
}
|
124 |
+
|
125 |
+
return ptr;
|
126 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/common/deepspeed_aio_utils.h
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
8 |
+
*/
|
9 |
+
|
10 |
+
#pragma once
|
11 |
+
|
12 |
+
#include <assert.h>
|
13 |
+
#include <stdlib.h>
|
14 |
+
#include <string.h>
|
15 |
+
|
16 |
+
#include <fcntl.h>
|
17 |
+
#include <libaio.h>
|
18 |
+
#include <sys/mman.h>
|
19 |
+
#include <sys/stat.h>
|
20 |
+
#include <sys/types.h>
|
21 |
+
#include <unistd.h>
|
22 |
+
|
23 |
+
#include <deepspeed_aio_types.h>
|
24 |
+
#include <cstring>
|
25 |
+
#include <fstream>
|
26 |
+
#include <iostream>
|
27 |
+
#include <memory>
|
28 |
+
#include <string>
|
29 |
+
#include <vector>
|
30 |
+
|
31 |
+
struct io_xfer_ctxt {
|
32 |
+
const int _fd;
|
33 |
+
const long long int _base_offset;
|
34 |
+
const void* _mem_buffer;
|
35 |
+
const long long int _num_bytes;
|
36 |
+
|
37 |
+
io_xfer_ctxt(const int fd,
|
38 |
+
const long long int file_offset,
|
39 |
+
const long long int num_bytes,
|
40 |
+
const void* buffer);
|
41 |
+
};
|
42 |
+
|
43 |
+
struct io_prep_context {
|
44 |
+
const bool _read_op;
|
45 |
+
const std::unique_ptr<io_xfer_ctxt>& _xfer_ctxt;
|
46 |
+
const size_t _block_size;
|
47 |
+
const std::vector<struct iocb*>* _iocbs;
|
48 |
+
|
49 |
+
io_prep_context(const bool read_op,
|
50 |
+
const std::unique_ptr<io_xfer_ctxt>& xfer_ctxt,
|
51 |
+
const size_t block_size,
|
52 |
+
const std::vector<struct iocb*>* iocbs);
|
53 |
+
|
54 |
+
void prep_iocbs(const int n_iocbs,
|
55 |
+
const size_t num_bytes,
|
56 |
+
const void* start_buffer,
|
57 |
+
const long long int start_offset);
|
58 |
+
};
|
59 |
+
|
60 |
+
struct io_prep_generator {
|
61 |
+
const bool _read_op;
|
62 |
+
const std::unique_ptr<io_xfer_ctxt>& _xfer_ctxt;
|
63 |
+
const size_t _block_size;
|
64 |
+
|
65 |
+
long long int _remaining_bytes;
|
66 |
+
long long int _num_io_blocks;
|
67 |
+
long long int _remaining_io_blocks;
|
68 |
+
long long int _next_iocb_index;
|
69 |
+
|
70 |
+
io_prep_generator(const bool read_op,
|
71 |
+
const std::unique_ptr<io_xfer_ctxt>& xfer_ctxt,
|
72 |
+
const size_t block_size);
|
73 |
+
|
74 |
+
int prep_iocbs(const int n_iocbs, std::vector<struct iocb*>* iocbs);
|
75 |
+
};
|
76 |
+
|
77 |
+
void* ds_page_aligned_alloc(const size_t size, const bool lock = false);
|
78 |
+
|
79 |
+
int get_file_size(const char* filename, long long int& size);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_aio_thread.cpp
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
8 |
+
*/
|
9 |
+
|
10 |
+
#include "deepspeed_aio_thread.h"
|
11 |
+
|
12 |
+
#if defined(__ENABLE_CANN__)
|
13 |
+
#include "torch_npu/csrc/framework/utils/OpAdapter.h"
|
14 |
+
#include "torch_npu/csrc/framework/utils/UtilForOpAdapter.h"
|
15 |
+
#endif
|
16 |
+
|
17 |
+
using namespace std;
|
18 |
+
|
19 |
+
io_op_desc_t::io_op_desc_t(const bool read_op,
|
20 |
+
const torch::Tensor& buffer,
|
21 |
+
const int fd,
|
22 |
+
const char* filename,
|
23 |
+
const long long int num_bytes,
|
24 |
+
const bool validate)
|
25 |
+
: _read_op(read_op),
|
26 |
+
_buffer(buffer),
|
27 |
+
_fd(fd),
|
28 |
+
_filename(filename),
|
29 |
+
_num_bytes(num_bytes),
|
30 |
+
_validate(validate)
|
31 |
+
{
|
32 |
+
_cpu_buffer = (_buffer.is_cuda() || _buffer.is_xpu()
|
33 |
+
#if defined(__ENABLE_CANN__)
|
34 |
+
|| torch_npu::utils::is_npu(_buffer)
|
35 |
+
#endif
|
36 |
+
)
|
37 |
+
? _buffer.to(torch::kCPU).pin_memory()
|
38 |
+
: _buffer;
|
39 |
+
_contiguous_buffer = _cpu_buffer.contiguous();
|
40 |
+
}
|
41 |
+
|
42 |
+
char* io_op_desc_t::data_ptr() const { return (char*)_contiguous_buffer.data_ptr(); }
|
43 |
+
|
44 |
+
void io_op_desc_t::fini()
|
45 |
+
{
|
46 |
+
if (_read_op && _buffer.is_cuda()) { _buffer.copy_(_cpu_buffer.to(torch::kCUDA)); }
|
47 |
+
if (_read_op && _buffer.is_xpu()) { _buffer.copy_(_cpu_buffer.to(torch::kXPU)); }
|
48 |
+
#if defined(__ENABLE_CANN__)
|
49 |
+
if (_read_op && torch_npu::utils::is_npu(_buffer)) {
|
50 |
+
auto device = at::Device("npu:0");
|
51 |
+
_buffer.copy_(_cpu_buffer.to(device));
|
52 |
+
}
|
53 |
+
#endif
|
54 |
+
}
|
55 |
+
|
56 |
+
deepspeed_aio_thread_t::deepspeed_aio_thread_t(const int tid, deepspeed_aio_config_t& aio_config)
|
57 |
+
: _tid(tid),
|
58 |
+
_aio_config(aio_config),
|
59 |
+
_aio_ctxt(new aio_context(aio_config._block_size, aio_config._queue_depth)),
|
60 |
+
_time_to_exit(false)
|
61 |
+
{
|
62 |
+
}
|
63 |
+
|
64 |
+
deepspeed_aio_thread_t::~deepspeed_aio_thread_t() {}
|
65 |
+
|
66 |
+
void deepspeed_aio_thread_t::run()
|
67 |
+
{
|
68 |
+
while (true) {
|
69 |
+
std::shared_ptr<struct io_op_desc_t> next_io_op = nullptr;
|
70 |
+
|
71 |
+
{
|
72 |
+
std::unique_lock<std::mutex> lock(_work_sync._mutex);
|
73 |
+
_work_sync._cond_var.wait(lock,
|
74 |
+
[this] { return (!_work_queue.empty() || _time_to_exit); });
|
75 |
+
if (!_work_queue.empty()) {
|
76 |
+
next_io_op = _work_queue.front();
|
77 |
+
_work_queue.pop();
|
78 |
+
}
|
79 |
+
}
|
80 |
+
|
81 |
+
if (next_io_op) {
|
82 |
+
const auto base_offset = next_io_op->_num_bytes * _tid;
|
83 |
+
|
84 |
+
std::unique_ptr<io_xfer_ctxt> xfer_ctxt(new io_xfer_ctxt(
|
85 |
+
next_io_op->_fd, base_offset, next_io_op->_num_bytes, next_io_op->data_ptr()));
|
86 |
+
|
87 |
+
if (_aio_config._overlap_events) {
|
88 |
+
do_aio_operation_overlap(
|
89 |
+
next_io_op->_read_op, _aio_ctxt, xfer_ctxt, &_aio_config, nullptr);
|
90 |
+
} else {
|
91 |
+
do_aio_operation_sequential(
|
92 |
+
next_io_op->_read_op, _aio_ctxt, xfer_ctxt, &_aio_config, nullptr);
|
93 |
+
}
|
94 |
+
|
95 |
+
{
|
96 |
+
std::lock_guard<std::mutex> lock(_complete_sync._mutex);
|
97 |
+
_complete_queue.push(next_io_op);
|
98 |
+
}
|
99 |
+
_complete_sync._cond_var.notify_one();
|
100 |
+
}
|
101 |
+
|
102 |
+
if (_time_to_exit) { break; }
|
103 |
+
}
|
104 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_aio_thread.h
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
8 |
+
*/
|
9 |
+
|
10 |
+
#include <condition_variable>
|
11 |
+
#include <memory>
|
12 |
+
#include <queue>
|
13 |
+
#include "deepspeed_py_aio.h"
|
14 |
+
|
15 |
+
struct io_op_desc_t {
|
16 |
+
const bool _read_op;
|
17 |
+
torch::Tensor _buffer;
|
18 |
+
int _fd;
|
19 |
+
const std::string _filename;
|
20 |
+
const long long int _num_bytes;
|
21 |
+
torch::Tensor _cpu_buffer;
|
22 |
+
torch::Tensor _contiguous_buffer;
|
23 |
+
const bool _validate;
|
24 |
+
|
25 |
+
io_op_desc_t(const bool read_op,
|
26 |
+
const torch::Tensor& buffer,
|
27 |
+
const int fd,
|
28 |
+
const char* filename,
|
29 |
+
const long long int num_bytes,
|
30 |
+
const bool validate);
|
31 |
+
|
32 |
+
char* data_ptr() const;
|
33 |
+
void fini();
|
34 |
+
};
|
35 |
+
|
36 |
+
struct thread_sync_t {
|
37 |
+
std::mutex _mutex;
|
38 |
+
std::condition_variable _cond_var;
|
39 |
+
};
|
40 |
+
|
41 |
+
struct deepspeed_aio_thread_t {
|
42 |
+
const int _tid;
|
43 |
+
deepspeed_aio_config_t& _aio_config;
|
44 |
+
|
45 |
+
std::unique_ptr<struct aio_context> _aio_ctxt;
|
46 |
+
std::queue<std::shared_ptr<struct io_op_desc_t>> _work_queue;
|
47 |
+
std::queue<std::shared_ptr<struct io_op_desc_t>> _complete_queue;
|
48 |
+
|
49 |
+
bool _time_to_exit;
|
50 |
+
|
51 |
+
struct thread_sync_t _work_sync;
|
52 |
+
struct thread_sync_t _complete_sync;
|
53 |
+
|
54 |
+
deepspeed_aio_thread_t(const int tid, deepspeed_aio_config_t& aio_config);
|
55 |
+
|
56 |
+
~deepspeed_aio_thread_t();
|
57 |
+
|
58 |
+
void run();
|
59 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_pin_tensor.cpp
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Functionality for managing CPU tensors occupying page-locked memory.
|
8 |
+
*/
|
9 |
+
|
10 |
+
#include "deepspeed_pin_tensor.h"
|
11 |
+
|
12 |
+
using namespace std;
|
13 |
+
|
14 |
+
deepspeed_pin_tensor_t::~deepspeed_pin_tensor_t()
|
15 |
+
{
|
16 |
+
for (auto iter = _locked_tensors.begin(); iter != _locked_tensors.end(); ++iter) {
|
17 |
+
munlock(iter->first, iter->second);
|
18 |
+
}
|
19 |
+
_locked_tensors.clear();
|
20 |
+
}
|
21 |
+
|
22 |
+
torch::Tensor deepspeed_pin_tensor_t::alloc(const size_t num_elem, const at::ScalarType& elem_type)
|
23 |
+
{
|
24 |
+
const auto num_bytes = num_elem * elementSize(elem_type);
|
25 |
+
auto pinned_buffer = ds_page_aligned_alloc(num_bytes, true);
|
26 |
+
assert(nullptr != pinned_buffer);
|
27 |
+
|
28 |
+
_locked_tensors[pinned_buffer] = num_bytes;
|
29 |
+
|
30 |
+
auto options = torch::TensorOptions().dtype(elem_type).device(torch::kCPU);
|
31 |
+
|
32 |
+
return at::from_blob(pinned_buffer, static_cast<long int>(num_bytes), options);
|
33 |
+
}
|
34 |
+
|
35 |
+
bool deepspeed_pin_tensor_t::free(torch::Tensor& locked_tensor)
|
36 |
+
{
|
37 |
+
auto addr = locked_tensor.data_ptr();
|
38 |
+
if (_locked_tensors.find(addr) != _locked_tensors.end()) {
|
39 |
+
munlock(addr, _locked_tensors[addr]);
|
40 |
+
_locked_tensors.erase(addr);
|
41 |
+
return true;
|
42 |
+
}
|
43 |
+
|
44 |
+
return false;
|
45 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_pin_tensor.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Functionality for managing CPU tensors occupying page-locked memory.
|
8 |
+
TODO: Implement a full-featured manager that
|
9 |
+
1. Avoid page-locked memory leaks
|
10 |
+
2. Minimize page-locked memory usage by reducing internal fragmentation
|
11 |
+
Functionality for managing CPU tensors occupying page-locked memory.
|
12 |
+
*/
|
13 |
+
|
14 |
+
#include <map>
|
15 |
+
#include "deepspeed_py_aio.h"
|
16 |
+
|
17 |
+
struct deepspeed_pin_tensor_t {
|
18 |
+
std::map<void*, size_t> _locked_tensors;
|
19 |
+
|
20 |
+
deepspeed_pin_tensor_t() = default;
|
21 |
+
|
22 |
+
~deepspeed_pin_tensor_t();
|
23 |
+
|
24 |
+
torch::Tensor alloc(const size_t num_elem, const at::ScalarType& elem_type);
|
25 |
+
|
26 |
+
bool free(torch::Tensor& locked_tensor);
|
27 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_py_aio.cpp
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Copyright 2020 The Microsoft DeepSpeed Team
|
8 |
+
Licensed under the MIT license.
|
9 |
+
|
10 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
11 |
+
*/
|
12 |
+
|
13 |
+
#include <assert.h>
|
14 |
+
#include <stdlib.h>
|
15 |
+
#include <string.h>
|
16 |
+
|
17 |
+
#include <fcntl.h>
|
18 |
+
#include <sys/mman.h>
|
19 |
+
#include <sys/stat.h>
|
20 |
+
#include <sys/types.h>
|
21 |
+
#include <unistd.h>
|
22 |
+
|
23 |
+
#include <cassert>
|
24 |
+
#include <chrono>
|
25 |
+
#include <cstring>
|
26 |
+
#include <fstream>
|
27 |
+
#include <iostream>
|
28 |
+
#include <memory>
|
29 |
+
#include <string>
|
30 |
+
#include <vector>
|
31 |
+
|
32 |
+
#include "deepspeed_py_aio.h"
|
33 |
+
|
34 |
+
using namespace std;
|
35 |
+
using namespace std::chrono;
|
36 |
+
|
37 |
+
#define DEBUG_DS_AIO_READ 0
|
38 |
+
#define DEBUG_DS_AIO_WRITE 0
|
39 |
+
|
40 |
+
static const std::string c_library_name = "deepspeed_aio";
|
41 |
+
|
42 |
+
int deepspeed_py_aio_write(const torch::Tensor& buffer,
|
43 |
+
const char* filename,
|
44 |
+
const int block_size,
|
45 |
+
const int queue_depth,
|
46 |
+
const bool single_submit,
|
47 |
+
const bool overlap_events,
|
48 |
+
const bool validate)
|
49 |
+
{
|
50 |
+
const auto start_time = std::chrono::high_resolution_clock::now();
|
51 |
+
deepspeed_aio_config_t config(block_size, queue_depth, single_submit, overlap_events, false);
|
52 |
+
|
53 |
+
const auto fd = open_file(filename, false);
|
54 |
+
if (fd == -1) { return -1; }
|
55 |
+
|
56 |
+
auto write_buffer = (char*)buffer.data_ptr();
|
57 |
+
const auto num_write_bytes = static_cast<long long int>(buffer.nbytes());
|
58 |
+
std::unique_ptr<io_xfer_ctxt> xfer_ctxt(new io_xfer_ctxt(fd, 0, num_write_bytes, write_buffer));
|
59 |
+
std::unique_ptr<aio_context> aio_ctxt(new aio_context(config._block_size, config._queue_depth));
|
60 |
+
|
61 |
+
if (config._overlap_events) {
|
62 |
+
do_aio_operation_overlap(false, aio_ctxt, xfer_ctxt, &config, nullptr);
|
63 |
+
} else {
|
64 |
+
do_aio_operation_sequential(false, aio_ctxt, xfer_ctxt, &config, nullptr);
|
65 |
+
}
|
66 |
+
const std::chrono::duration<double> aio_time =
|
67 |
+
std::chrono::high_resolution_clock::now() - start_time;
|
68 |
+
|
69 |
+
close(fd);
|
70 |
+
|
71 |
+
if (validate) { validate_aio_operation(false, filename, write_buffer, num_write_bytes); }
|
72 |
+
|
73 |
+
const std::chrono::duration<double> fn_time =
|
74 |
+
std::chrono::high_resolution_clock::now() - start_time;
|
75 |
+
std::cout << "Elapsed time(usec): "
|
76 |
+
<< "aio = " << aio_time.count() * 1e6 << " call = " << fn_time.count() * 1e6
|
77 |
+
<< std::endl;
|
78 |
+
return 0;
|
79 |
+
}
|
80 |
+
|
81 |
+
int deepspeed_py_aio_read(torch::Tensor& buffer,
|
82 |
+
const char* filename,
|
83 |
+
const int block_size,
|
84 |
+
const int queue_depth,
|
85 |
+
const bool single_submit,
|
86 |
+
const bool overlap_events,
|
87 |
+
const bool validate)
|
88 |
+
{
|
89 |
+
const auto start_time = std::chrono::high_resolution_clock::now();
|
90 |
+
long long num_file_bytes;
|
91 |
+
if (-1 == get_file_size(filename, num_file_bytes)) {
|
92 |
+
const auto error_code = errno;
|
93 |
+
report_file_error(filename, " fstat for read", error_code);
|
94 |
+
return -1;
|
95 |
+
}
|
96 |
+
|
97 |
+
deepspeed_aio_config_t config(block_size, queue_depth, single_submit, overlap_events, false);
|
98 |
+
const auto fd = open_file(filename, true);
|
99 |
+
if (fd == -1) { return -1; }
|
100 |
+
|
101 |
+
auto read_buffer = (char*)buffer.data_ptr();
|
102 |
+
assert(static_cast<long long int>(buffer.nbytes()) == num_file_bytes);
|
103 |
+
|
104 |
+
std::unique_ptr<io_xfer_ctxt> xfer_ctxt(new io_xfer_ctxt(fd, 0, num_file_bytes, read_buffer));
|
105 |
+
std::unique_ptr<aio_context> aio_ctxt(new aio_context(config._block_size, config._queue_depth));
|
106 |
+
|
107 |
+
if (config._overlap_events) {
|
108 |
+
do_aio_operation_overlap(true, aio_ctxt, xfer_ctxt, &config, nullptr);
|
109 |
+
} else {
|
110 |
+
do_aio_operation_sequential(true, aio_ctxt, xfer_ctxt, &config, nullptr);
|
111 |
+
}
|
112 |
+
const std::chrono::duration<double> aio_time =
|
113 |
+
std::chrono::high_resolution_clock::now() - start_time;
|
114 |
+
|
115 |
+
close(fd);
|
116 |
+
|
117 |
+
if (validate) { validate_aio_operation(true, filename, read_buffer, num_file_bytes); }
|
118 |
+
|
119 |
+
const std::chrono::duration<double> fn_time =
|
120 |
+
std::chrono::high_resolution_clock::now() - start_time;
|
121 |
+
std::cout << "Elapsed time(usec): "
|
122 |
+
<< "aio = " << aio_time.count() * 1e6 << " call = " << fn_time.count() * 1e6
|
123 |
+
<< std::endl;
|
124 |
+
return 0;
|
125 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_py_aio.h
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Copyright 2020 The Microsoft DeepSpeed Team
|
8 |
+
Licensed under the MIT license.
|
9 |
+
|
10 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
11 |
+
*/
|
12 |
+
|
13 |
+
#include <deepspeed_aio_common.h>
|
14 |
+
#include <stdlib.h>
|
15 |
+
#include <torch/extension.h>
|
16 |
+
|
17 |
+
int deepspeed_py_aio_write(const torch::Tensor& buffer,
|
18 |
+
const char* filename,
|
19 |
+
const int block_size,
|
20 |
+
const int queue_depth,
|
21 |
+
const bool single_submit,
|
22 |
+
const bool overlap_events,
|
23 |
+
const bool validate);
|
24 |
+
|
25 |
+
int deepspeed_py_aio_read(torch::Tensor& buffer,
|
26 |
+
const char* filename,
|
27 |
+
const int block_size,
|
28 |
+
const int queue_depth,
|
29 |
+
const bool single_submit,
|
30 |
+
const bool overlap_events,
|
31 |
+
const bool validate);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_py_aio_handle.cpp
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Copyright 2020 The Microsoft DeepSpeed Team
|
8 |
+
Licensed under the MIT license.
|
9 |
+
|
10 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
11 |
+
*/
|
12 |
+
|
13 |
+
#include "deepspeed_py_aio_handle.h"
|
14 |
+
|
15 |
+
using namespace std;
|
16 |
+
|
17 |
+
static void _start_aio_thread(std::shared_ptr<struct deepspeed_aio_thread_t> ctxt) { ctxt->run(); }
|
18 |
+
|
19 |
+
deepspeed_aio_handle_t::deepspeed_aio_handle_t(const int block_size,
|
20 |
+
const int queue_depth,
|
21 |
+
const bool single_submit,
|
22 |
+
const bool overlap_events,
|
23 |
+
const int num_threads)
|
24 |
+
: _aio_ctxt(new aio_context(block_size, queue_depth)),
|
25 |
+
_single_submit(single_submit),
|
26 |
+
_overlap_events(overlap_events),
|
27 |
+
_num_threads(num_threads),
|
28 |
+
_aio_config(block_size, queue_depth, single_submit, overlap_events, false),
|
29 |
+
_num_pending_ops(0),
|
30 |
+
_pinned_tensor_mgr(new deepspeed_pin_tensor_t())
|
31 |
+
{
|
32 |
+
for (auto i = 0; i < num_threads; ++i) {
|
33 |
+
_thread_contexts.push_back(std::make_shared<deepspeed_aio_thread_t>(i, _aio_config));
|
34 |
+
}
|
35 |
+
|
36 |
+
for (auto& ctxt : _thread_contexts) {
|
37 |
+
_threads.push_back(std::thread(_start_aio_thread, ctxt));
|
38 |
+
}
|
39 |
+
}
|
40 |
+
|
41 |
+
deepspeed_aio_handle_t::~deepspeed_aio_handle_t()
|
42 |
+
{
|
43 |
+
_stop_threads();
|
44 |
+
for (auto& thr : _threads) { thr.join(); }
|
45 |
+
}
|
46 |
+
|
47 |
+
const int deepspeed_aio_handle_t::get_block_size() const
|
48 |
+
{
|
49 |
+
return _aio_ctxt ? _aio_ctxt->_block_size : -1;
|
50 |
+
}
|
51 |
+
|
52 |
+
const int deepspeed_aio_handle_t::get_queue_depth() const
|
53 |
+
{
|
54 |
+
return _aio_ctxt ? _aio_ctxt->_queue_depth : -1;
|
55 |
+
}
|
56 |
+
|
57 |
+
const bool deepspeed_aio_handle_t::get_single_submit() const { return _single_submit; }
|
58 |
+
|
59 |
+
const bool deepspeed_aio_handle_t::get_overlap_events() const { return _overlap_events; }
|
60 |
+
|
61 |
+
const int deepspeed_aio_handle_t::get_thread_count() const { return _num_threads; }
|
62 |
+
|
63 |
+
int deepspeed_aio_handle_t::read(torch::Tensor& buffer, const char* filename, const bool validate)
|
64 |
+
{
|
65 |
+
const auto start_time = std::chrono::high_resolution_clock::now();
|
66 |
+
|
67 |
+
assert(_aio_ctxt);
|
68 |
+
|
69 |
+
long long num_file_bytes;
|
70 |
+
if (-1 == get_file_size(filename, num_file_bytes)) {
|
71 |
+
const auto error_code = errno;
|
72 |
+
report_file_error(filename, " fstat for read", error_code);
|
73 |
+
return -1;
|
74 |
+
}
|
75 |
+
assert(static_cast<long long int>(buffer.nbytes()) == num_file_bytes);
|
76 |
+
|
77 |
+
const auto fd = open_file(filename, true);
|
78 |
+
if (fd == -1) { return -1; }
|
79 |
+
|
80 |
+
auto read_buffer = (char*)buffer.data_ptr();
|
81 |
+
std::unique_ptr<io_xfer_ctxt> xfer_ctxt(new io_xfer_ctxt(fd, 0, num_file_bytes, read_buffer));
|
82 |
+
|
83 |
+
if (_aio_config._overlap_events) {
|
84 |
+
do_aio_operation_overlap(true, _aio_ctxt, xfer_ctxt, &_aio_config, nullptr);
|
85 |
+
} else {
|
86 |
+
do_aio_operation_sequential(true, _aio_ctxt, xfer_ctxt, &_aio_config, nullptr);
|
87 |
+
}
|
88 |
+
|
89 |
+
close(fd);
|
90 |
+
const std::chrono::duration<double> aio_time =
|
91 |
+
std::chrono::high_resolution_clock::now() - start_time;
|
92 |
+
|
93 |
+
if (validate) { validate_aio_operation(true, filename, read_buffer, num_file_bytes); }
|
94 |
+
const std::chrono::duration<double> fn_time =
|
95 |
+
std::chrono::high_resolution_clock::now() - start_time;
|
96 |
+
std::cout << "Elapsed time(usec): "
|
97 |
+
<< "aio = " << aio_time.count() * 1e6 << " call = " << fn_time.count() * 1e6
|
98 |
+
<< std::endl;
|
99 |
+
return 0;
|
100 |
+
}
|
101 |
+
|
102 |
+
int deepspeed_aio_handle_t::write(const torch::Tensor& buffer,
|
103 |
+
const char* filename,
|
104 |
+
const bool validate)
|
105 |
+
{
|
106 |
+
assert(_aio_ctxt);
|
107 |
+
|
108 |
+
const auto start_time = std::chrono::high_resolution_clock::now();
|
109 |
+
|
110 |
+
const auto fd = open_file(filename, false);
|
111 |
+
if (fd == -1) { return -1; }
|
112 |
+
|
113 |
+
auto write_buffer = (char*)buffer.data_ptr();
|
114 |
+
const auto num_write_bytes = static_cast<long long int>(buffer.nbytes());
|
115 |
+
std::unique_ptr<io_xfer_ctxt> xfer_ctxt(new io_xfer_ctxt(fd, 0, num_write_bytes, write_buffer));
|
116 |
+
|
117 |
+
if (_aio_config._overlap_events) {
|
118 |
+
do_aio_operation_overlap(false, _aio_ctxt, xfer_ctxt, &_aio_config, nullptr);
|
119 |
+
} else {
|
120 |
+
do_aio_operation_sequential(false, _aio_ctxt, xfer_ctxt, &_aio_config, nullptr);
|
121 |
+
}
|
122 |
+
const std::chrono::duration<double> aio_time =
|
123 |
+
std::chrono::high_resolution_clock::now() - start_time;
|
124 |
+
|
125 |
+
close(fd);
|
126 |
+
|
127 |
+
if (validate) { validate_aio_operation(false, filename, write_buffer, num_write_bytes); }
|
128 |
+
|
129 |
+
const std::chrono::duration<double> fn_time =
|
130 |
+
std::chrono::high_resolution_clock::now() - start_time;
|
131 |
+
std::cout << "Elapsed time(usec): "
|
132 |
+
<< "aio = " << aio_time.count() * 1e6 << " call = " << fn_time.count() * 1e6
|
133 |
+
<< std::endl;
|
134 |
+
return 0;
|
135 |
+
}
|
136 |
+
|
137 |
+
void deepspeed_aio_handle_t::_schedule_aio_work(std::shared_ptr<struct io_op_desc_t> scheduled_op)
|
138 |
+
{
|
139 |
+
for (auto& ctxt : _thread_contexts) {
|
140 |
+
{
|
141 |
+
std::lock_guard<std::mutex> lock(ctxt->_work_sync._mutex);
|
142 |
+
ctxt->_work_queue.push(scheduled_op);
|
143 |
+
}
|
144 |
+
ctxt->_work_sync._cond_var.notify_one();
|
145 |
+
}
|
146 |
+
_num_pending_ops++;
|
147 |
+
}
|
148 |
+
|
149 |
+
std::shared_ptr<struct io_op_desc_t> deepspeed_aio_handle_t::_wait_for_aio_work()
|
150 |
+
{
|
151 |
+
std::shared_ptr<struct io_op_desc_t> completed_op = nullptr;
|
152 |
+
for (auto& ctxt : _thread_contexts) {
|
153 |
+
std::unique_lock<std::mutex> lock(ctxt->_complete_sync._mutex);
|
154 |
+
ctxt->_complete_sync._cond_var.wait(lock,
|
155 |
+
[ctxt] { return !ctxt->_complete_queue.empty(); });
|
156 |
+
completed_op = ctxt->_complete_queue.front();
|
157 |
+
ctxt->_complete_queue.pop();
|
158 |
+
}
|
159 |
+
return completed_op;
|
160 |
+
}
|
161 |
+
|
162 |
+
void deepspeed_aio_handle_t::_stop_threads()
|
163 |
+
{
|
164 |
+
assert(0 == _num_pending_ops);
|
165 |
+
for (auto& ctxt : _thread_contexts) {
|
166 |
+
{
|
167 |
+
std::lock_guard<std::mutex> lock(ctxt->_work_sync._mutex);
|
168 |
+
ctxt->_time_to_exit = true;
|
169 |
+
}
|
170 |
+
ctxt->_work_sync._cond_var.notify_one();
|
171 |
+
}
|
172 |
+
}
|
173 |
+
|
174 |
+
int deepspeed_aio_handle_t::wait()
|
175 |
+
{
|
176 |
+
assert(_num_pending_ops > 0);
|
177 |
+
auto num_completed_ops = 0;
|
178 |
+
|
179 |
+
while (_num_pending_ops > 0) {
|
180 |
+
auto completed_op = _wait_for_aio_work();
|
181 |
+
|
182 |
+
completed_op->fini();
|
183 |
+
|
184 |
+
close(completed_op->_fd);
|
185 |
+
|
186 |
+
if (completed_op->_validate) {
|
187 |
+
validate_aio_operation(completed_op->_read_op,
|
188 |
+
completed_op->_filename.c_str(),
|
189 |
+
completed_op->data_ptr(),
|
190 |
+
_num_threads * completed_op->_num_bytes);
|
191 |
+
}
|
192 |
+
--_num_pending_ops;
|
193 |
+
++num_completed_ops;
|
194 |
+
}
|
195 |
+
|
196 |
+
return num_completed_ops;
|
197 |
+
}
|
198 |
+
|
199 |
+
bool deepspeed_aio_handle_t::_is_valid_parallel_aio_op(const bool read_op,
|
200 |
+
const long long int num_bytes)
|
201 |
+
{
|
202 |
+
const auto op_string = read_op ? "Read" : "Write";
|
203 |
+
if (num_bytes % get_thread_count()) {
|
204 |
+
std::cout << "deepspeed_aio failure: parallel " << op_string << " num_bytes = " << num_bytes
|
205 |
+
<< " not divisible by thread count = " << get_thread_count() << std::endl;
|
206 |
+
return false;
|
207 |
+
}
|
208 |
+
|
209 |
+
return true;
|
210 |
+
}
|
211 |
+
|
212 |
+
int deepspeed_aio_handle_t::pread(const torch::Tensor& buffer,
|
213 |
+
const char* filename,
|
214 |
+
const bool validate,
|
215 |
+
const bool async)
|
216 |
+
{
|
217 |
+
long long num_file_bytes;
|
218 |
+
if (-1 == get_file_size(filename, num_file_bytes)) {
|
219 |
+
const auto error_code = errno;
|
220 |
+
report_file_error(filename, " fstat for read", error_code);
|
221 |
+
return -1;
|
222 |
+
}
|
223 |
+
const auto buffer_bytes = static_cast<long long int>(buffer.nbytes());
|
224 |
+
if (buffer_bytes != num_file_bytes) {
|
225 |
+
std::cout << filename << ": buffer nbytes != file bytes " << buffer_bytes
|
226 |
+
<< " != " << num_file_bytes << std::endl;
|
227 |
+
}
|
228 |
+
assert(static_cast<long long int>(buffer.nbytes()) == num_file_bytes);
|
229 |
+
assert((num_file_bytes % _num_threads) == 0);
|
230 |
+
|
231 |
+
if (!_is_valid_parallel_aio_op(true, num_file_bytes)) { return -1; }
|
232 |
+
|
233 |
+
const auto fd = open_file(filename, true);
|
234 |
+
if (fd == -1) { return -1; }
|
235 |
+
|
236 |
+
auto scheduled_op = std::make_shared<io_op_desc_t>(
|
237 |
+
true, buffer, fd, filename, (num_file_bytes / _num_threads), validate);
|
238 |
+
|
239 |
+
_schedule_aio_work(scheduled_op);
|
240 |
+
|
241 |
+
if (async) { return 0; }
|
242 |
+
|
243 |
+
return wait();
|
244 |
+
}
|
245 |
+
|
246 |
+
int deepspeed_aio_handle_t::pwrite(const torch::Tensor& buffer,
|
247 |
+
const char* filename,
|
248 |
+
const bool validate,
|
249 |
+
const bool async)
|
250 |
+
{
|
251 |
+
const auto num_write_bytes = static_cast<long long int>(buffer.nbytes());
|
252 |
+
assert((num_write_bytes % _num_threads) == 0);
|
253 |
+
|
254 |
+
if (!_is_valid_parallel_aio_op(false, num_write_bytes)) { return -1; }
|
255 |
+
|
256 |
+
const auto fd = open_file(filename, false);
|
257 |
+
if (fd == -1) { return -1; }
|
258 |
+
|
259 |
+
auto scheduled_op = std::make_shared<io_op_desc_t>(
|
260 |
+
false, buffer, fd, filename, (num_write_bytes / _num_threads), validate);
|
261 |
+
|
262 |
+
_schedule_aio_work(scheduled_op);
|
263 |
+
|
264 |
+
if (async) { return 0; }
|
265 |
+
|
266 |
+
return wait();
|
267 |
+
}
|
268 |
+
|
269 |
+
int deepspeed_aio_handle_t::sync_pread(torch::Tensor& buffer, const char* filename)
|
270 |
+
{
|
271 |
+
return pread(buffer, filename, false, false);
|
272 |
+
}
|
273 |
+
|
274 |
+
int deepspeed_aio_handle_t::sync_pwrite(const torch::Tensor& buffer, const char* filename)
|
275 |
+
{
|
276 |
+
return pwrite(buffer, filename, false, false);
|
277 |
+
}
|
278 |
+
|
279 |
+
int deepspeed_aio_handle_t::async_pread(torch::Tensor& buffer, const char* filename)
|
280 |
+
{
|
281 |
+
return pread(buffer, filename, false, true);
|
282 |
+
}
|
283 |
+
|
284 |
+
int deepspeed_aio_handle_t::async_pwrite(const torch::Tensor& buffer, const char* filename)
|
285 |
+
{
|
286 |
+
return pwrite(buffer, filename, false, true);
|
287 |
+
}
|
288 |
+
|
289 |
+
at::Tensor deepspeed_aio_handle_t::new_cpu_locked_tensor(const size_t num_elem,
|
290 |
+
const torch::Tensor& example_tensor)
|
291 |
+
{
|
292 |
+
return _pinned_tensor_mgr->alloc(num_elem, example_tensor.scalar_type());
|
293 |
+
}
|
294 |
+
|
295 |
+
bool deepspeed_aio_handle_t::free_cpu_locked_tensor(torch::Tensor& locked_tensor)
|
296 |
+
{
|
297 |
+
return _pinned_tensor_mgr->free(locked_tensor);
|
298 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_py_aio_handle.h
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
8 |
+
*/
|
9 |
+
|
10 |
+
#include <condition_variable>
|
11 |
+
#include <memory>
|
12 |
+
#include "deepspeed_aio_thread.h"
|
13 |
+
#include "deepspeed_pin_tensor.h"
|
14 |
+
|
15 |
+
struct deepspeed_aio_handle_t {
|
16 |
+
std::unique_ptr<struct aio_context> _aio_ctxt;
|
17 |
+
const bool _single_submit;
|
18 |
+
const bool _overlap_events;
|
19 |
+
const int _num_threads;
|
20 |
+
deepspeed_aio_config_t _aio_config;
|
21 |
+
|
22 |
+
std::vector<std::shared_ptr<struct deepspeed_aio_thread_t>> _thread_contexts;
|
23 |
+
std::vector<std::thread> _threads;
|
24 |
+
int _num_pending_ops;
|
25 |
+
std::unique_ptr<struct deepspeed_pin_tensor_t> _pinned_tensor_mgr;
|
26 |
+
|
27 |
+
deepspeed_aio_handle_t(const int block_size,
|
28 |
+
const int queue_depth,
|
29 |
+
const bool single_submit,
|
30 |
+
const bool overlap_events,
|
31 |
+
const int num_threads);
|
32 |
+
|
33 |
+
~deepspeed_aio_handle_t();
|
34 |
+
|
35 |
+
const int get_block_size() const;
|
36 |
+
const int get_queue_depth() const;
|
37 |
+
const bool get_single_submit() const;
|
38 |
+
const bool get_overlap_events() const;
|
39 |
+
const int get_thread_count() const;
|
40 |
+
|
41 |
+
int read(torch::Tensor& buffer, const char* filename, const bool validate);
|
42 |
+
|
43 |
+
int write(const torch::Tensor& buffer, const char* filename, const bool validate);
|
44 |
+
|
45 |
+
int pread(const torch::Tensor& buffer,
|
46 |
+
const char* filename,
|
47 |
+
const bool validate,
|
48 |
+
const bool async);
|
49 |
+
|
50 |
+
int pwrite(const torch::Tensor& buffer,
|
51 |
+
const char* filename,
|
52 |
+
const bool validate,
|
53 |
+
const bool async);
|
54 |
+
|
55 |
+
int sync_pread(torch::Tensor& buffer, const char* filename);
|
56 |
+
|
57 |
+
int sync_pwrite(const torch::Tensor& buffer, const char* filename);
|
58 |
+
|
59 |
+
int async_pread(torch::Tensor& buffer, const char* filename);
|
60 |
+
|
61 |
+
int async_pwrite(const torch::Tensor& buffer, const char* filename);
|
62 |
+
|
63 |
+
// TODO: Make API's args to be shape and dtype.
|
64 |
+
torch::Tensor new_cpu_locked_tensor(const size_t num_elem, const torch::Tensor& example_tensor);
|
65 |
+
|
66 |
+
bool free_cpu_locked_tensor(torch::Tensor&);
|
67 |
+
|
68 |
+
int wait();
|
69 |
+
|
70 |
+
void _stop_threads();
|
71 |
+
|
72 |
+
void _schedule_aio_work(std::shared_ptr<struct io_op_desc_t> scheduled_op);
|
73 |
+
|
74 |
+
std::shared_ptr<struct io_op_desc_t> _wait_for_aio_work();
|
75 |
+
|
76 |
+
bool _is_valid_parallel_aio_op(const bool read_op, const long long int num_bytes);
|
77 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_py_copy.cpp
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
8 |
+
*/
|
9 |
+
|
10 |
+
#include "deepspeed_py_copy.h"
|
11 |
+
#include <omp.h>
|
12 |
+
|
13 |
+
#define ROUND_DOWN(size, step) ((size) & ~((step)-1))
|
14 |
+
|
15 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
16 |
+
union AVX_Data {
|
17 |
+
#if defined(__AVX512__)
|
18 |
+
__m512 data;
|
19 |
+
#else
|
20 |
+
__m256 data;
|
21 |
+
#endif
|
22 |
+
};
|
23 |
+
#endif
|
24 |
+
|
25 |
+
static void helper_memcpy_1(float* dest, float* src, size_t param_size)
|
26 |
+
{
|
27 |
+
size_t rounded_size = 0;
|
28 |
+
|
29 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
30 |
+
|
31 |
+
rounded_size = ROUND_DOWN(param_size, SIMD_WIDTH);
|
32 |
+
|
33 |
+
for (size_t t = 0; t < rounded_size; t += TILE) {
|
34 |
+
size_t copy_size = TILE;
|
35 |
+
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
|
36 |
+
size_t offset = copy_size + t;
|
37 |
+
#pragma omp parallel for
|
38 |
+
for (size_t i = t; i < offset; i += SIMD_WIDTH) {
|
39 |
+
AVX_Data src_4;
|
40 |
+
src_4.data = SIMD_LOAD(src + i);
|
41 |
+
|
42 |
+
SIMD_STORE(dest + i, src_4.data);
|
43 |
+
}
|
44 |
+
}
|
45 |
+
|
46 |
+
#endif
|
47 |
+
|
48 |
+
if (param_size > rounded_size) {
|
49 |
+
#pragma omp parallel for
|
50 |
+
for (size_t k = rounded_size; k < param_size; k++) { dest[k] = src[k]; }
|
51 |
+
}
|
52 |
+
}
|
53 |
+
|
54 |
+
static void helper_memcpy_4(float* dest, float* src, size_t param_size)
|
55 |
+
{
|
56 |
+
size_t rounded_size = 0;
|
57 |
+
|
58 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
59 |
+
|
60 |
+
rounded_size = ROUND_DOWN(param_size, (SIMD_WIDTH << 2));
|
61 |
+
|
62 |
+
for (size_t t = 0; t < rounded_size; t += TILE) {
|
63 |
+
size_t copy_size = TILE;
|
64 |
+
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
|
65 |
+
size_t offset = copy_size + t;
|
66 |
+
#pragma omp parallel for
|
67 |
+
for (size_t i = t; i < offset; i += (SIMD_WIDTH << 2)) {
|
68 |
+
AVX_Data src_4[4];
|
69 |
+
src_4[0].data = SIMD_LOAD(src + i);
|
70 |
+
src_4[1].data = SIMD_LOAD(src + i + SIMD_WIDTH);
|
71 |
+
src_4[2].data = SIMD_LOAD(src + i + (SIMD_WIDTH << 1));
|
72 |
+
src_4[3].data = SIMD_LOAD(src + i + SIMD_WIDTH * 3);
|
73 |
+
|
74 |
+
SIMD_STORE(dest + i, src_4[0].data);
|
75 |
+
SIMD_STORE(dest + i + SIMD_WIDTH, src_4[1].data);
|
76 |
+
SIMD_STORE(dest + i + (SIMD_WIDTH << 1), src_4[2].data);
|
77 |
+
SIMD_STORE(dest + i + SIMD_WIDTH * 3, src_4[3].data);
|
78 |
+
}
|
79 |
+
}
|
80 |
+
#endif
|
81 |
+
if (param_size > rounded_size)
|
82 |
+
helper_memcpy_1((dest + rounded_size), (src + rounded_size), (param_size - rounded_size));
|
83 |
+
}
|
84 |
+
|
85 |
+
static void helper_mempcy_8(float* dest, float* src, size_t param_size)
|
86 |
+
{
|
87 |
+
size_t rounded_size = 0;
|
88 |
+
|
89 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
90 |
+
|
91 |
+
rounded_size = ROUND_DOWN(param_size, (SIMD_WIDTH << 2));
|
92 |
+
|
93 |
+
for (size_t t = 0; t < rounded_size; t += TILE) {
|
94 |
+
size_t copy_size = TILE;
|
95 |
+
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
|
96 |
+
size_t offset = copy_size + t;
|
97 |
+
#pragma omp parallel for
|
98 |
+
for (size_t i = t; i < offset; i += (SIMD_WIDTH << 3)) {
|
99 |
+
AVX_Data src_4[8];
|
100 |
+
src_4[0].data = SIMD_LOAD(src + i);
|
101 |
+
src_4[1].data = SIMD_LOAD(src + i + SIMD_WIDTH);
|
102 |
+
src_4[2].data = SIMD_LOAD(src + i + (SIMD_WIDTH << 1));
|
103 |
+
src_4[3].data = SIMD_LOAD(src + i + SIMD_WIDTH * 3);
|
104 |
+
src_4[4].data = SIMD_LOAD(src + i + (SIMD_WIDTH << 2));
|
105 |
+
src_4[5].data = SIMD_LOAD(src + i + SIMD_WIDTH * 5);
|
106 |
+
src_4[6].data = SIMD_LOAD(src + i + SIMD_WIDTH * 6);
|
107 |
+
src_4[7].data = SIMD_LOAD(src + i + SIMD_WIDTH * 7);
|
108 |
+
|
109 |
+
SIMD_STORE(dest + i, src_4[0].data);
|
110 |
+
SIMD_STORE(dest + i + SIMD_WIDTH, src_4[1].data);
|
111 |
+
SIMD_STORE(dest + i + (SIMD_WIDTH << 1), src_4[2].data);
|
112 |
+
SIMD_STORE(dest + i + SIMD_WIDTH * 3, src_4[3].data);
|
113 |
+
SIMD_STORE(dest + i + (SIMD_WIDTH << 2), src_4[4].data);
|
114 |
+
SIMD_STORE(dest + i + SIMD_WIDTH * 5, src_4[5].data);
|
115 |
+
SIMD_STORE(dest + i + SIMD_WIDTH * 6, src_4[6].data);
|
116 |
+
SIMD_STORE(dest + i + SIMD_WIDTH * 7, src_4[7].data);
|
117 |
+
}
|
118 |
+
}
|
119 |
+
#endif
|
120 |
+
if (param_size > rounded_size)
|
121 |
+
helper_memcpy_4((dest + rounded_size), (src + rounded_size), (param_size - rounded_size));
|
122 |
+
}
|
123 |
+
|
124 |
+
int deepspeed_py_memcpy(torch::Tensor& dest, const torch::Tensor& src)
|
125 |
+
{
|
126 |
+
auto dest_c = dest.contiguous();
|
127 |
+
auto src_c = src.contiguous();
|
128 |
+
|
129 |
+
float* dest_ptr = (float*)dest_c.data_ptr();
|
130 |
+
float* src_ptr = (float*)src_c.data_ptr();
|
131 |
+
|
132 |
+
helper_mempcy_8(dest_ptr, src_ptr, dest_c.size(0));
|
133 |
+
|
134 |
+
return 0;
|
135 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/deepspeed_py_copy.h
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Copyright 2020 The Microsoft DeepSpeed Team
|
8 |
+
Licensed under the MIT license.
|
9 |
+
|
10 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
11 |
+
*/
|
12 |
+
|
13 |
+
#if (__x86_64__ || __i386__)
|
14 |
+
#include <cpuid.h>
|
15 |
+
#include <x86intrin.h>
|
16 |
+
#endif
|
17 |
+
|
18 |
+
#include <deepspeed_aio_common.h>
|
19 |
+
#include <stdlib.h>
|
20 |
+
#include <torch/extension.h>
|
21 |
+
|
22 |
+
#define TILE (1024 * 1024 * 1024)
|
23 |
+
|
24 |
+
#if defined(__AVX512__)
|
25 |
+
#define SIMD_STORE(a, d) _mm512_storeu_ps(a, d)
|
26 |
+
#define SIMD_LOAD(x) _mm512_loadu_ps(x)
|
27 |
+
#define SIMD_SET(x) _mm512_set1_ps(x)
|
28 |
+
#define SIMD_MUL(x, y) _mm512_mul_ps(x, y)
|
29 |
+
#define SIMD_FMA(x, y, c) _mm512_fmadd_ps(x, y, c)
|
30 |
+
#define SIMD_SQRT(x) _mm512_sqrt_ps(x)
|
31 |
+
#define SIMD_DIV(x, y) _mm512_div_ps(x, y)
|
32 |
+
#define SIMD_WIDTH 16
|
33 |
+
#else
|
34 |
+
#if defined(__AVX256__)
|
35 |
+
#define SIMD_STORE(a, d) _mm256_storeu_ps(a, d)
|
36 |
+
#define SIMD_LOAD(x) _mm256_loadu_ps(x)
|
37 |
+
#define SIMD_SET(x) _mm256_set1_ps(x)
|
38 |
+
#define SIMD_MUL(x, y) _mm256_mul_ps(x, y)
|
39 |
+
#define SIMD_FMA(x, y, c) _mm256_fmadd_ps(x, y, c)
|
40 |
+
#define SIMD_SQRT(x) _mm256_sqrt_ps(x)
|
41 |
+
#define SIMD_DIV(x, y) _mm256_div_ps(x, y)
|
42 |
+
#define SIMD_WIDTH 8
|
43 |
+
#endif
|
44 |
+
#endif
|
45 |
+
|
46 |
+
int deepspeed_py_memcpy(torch::Tensor& dest, const torch::Tensor& src);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_lib/py_ds_aio.cpp
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Functionality for swapping optimizer tensors to/from (NVMe) storage devices.
|
8 |
+
*/
|
9 |
+
|
10 |
+
#include <torch/extension.h>
|
11 |
+
#include "deepspeed_py_aio_handle.h"
|
12 |
+
#include "deepspeed_py_copy.h"
|
13 |
+
|
14 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
15 |
+
{
|
16 |
+
m.def("aio_read", &deepspeed_py_aio_read, "DeepSpeed Asynchronous I/O Read");
|
17 |
+
|
18 |
+
m.def("aio_write", &deepspeed_py_aio_write, "DeepSpeed Asynchronous I/O Write");
|
19 |
+
|
20 |
+
m.def("deepspeed_memcpy", &deepspeed_py_memcpy, "DeepSpeed Memory Copy");
|
21 |
+
|
22 |
+
py::class_<deepspeed_aio_handle_t>(m, "aio_handle")
|
23 |
+
.def(py::init<const int, const int, const bool, const bool, const int>())
|
24 |
+
|
25 |
+
.def("get_block_size", &deepspeed_aio_handle_t::get_block_size)
|
26 |
+
.def("get_queue_depth", &deepspeed_aio_handle_t::get_queue_depth)
|
27 |
+
.def("get_single_submit", &deepspeed_aio_handle_t::get_single_submit)
|
28 |
+
.def("get_overlap_events", &deepspeed_aio_handle_t::get_overlap_events)
|
29 |
+
.def("get_thread_count", &deepspeed_aio_handle_t::get_thread_count)
|
30 |
+
|
31 |
+
.def("read", &deepspeed_aio_handle_t::read)
|
32 |
+
.def("write", &deepspeed_aio_handle_t::write)
|
33 |
+
|
34 |
+
.def("pread", &deepspeed_aio_handle_t::pread)
|
35 |
+
.def("pwrite", &deepspeed_aio_handle_t::pwrite)
|
36 |
+
|
37 |
+
.def("sync_pread", &deepspeed_aio_handle_t::sync_pread)
|
38 |
+
.def("sync_pwrite", &deepspeed_aio_handle_t::sync_pwrite)
|
39 |
+
.def("async_pread", &deepspeed_aio_handle_t::async_pread)
|
40 |
+
.def("async_pwrite", &deepspeed_aio_handle_t::async_pwrite)
|
41 |
+
|
42 |
+
.def("new_cpu_locked_tensor", &deepspeed_aio_handle_t::new_cpu_locked_tensor)
|
43 |
+
.def("free_cpu_locked_tensor", &deepspeed_aio_handle_t::free_cpu_locked_tensor)
|
44 |
+
|
45 |
+
.def("wait", &deepspeed_aio_handle_t::wait);
|
46 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/aio/py_test/single_process_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"block_size": [
|
3 |
+
"128K",
|
4 |
+
"256K",
|
5 |
+
"1M"
|
6 |
+
],
|
7 |
+
"queue_depth": [
|
8 |
+
4,
|
9 |
+
16,
|
10 |
+
32
|
11 |
+
],
|
12 |
+
"io_parallel": [
|
13 |
+
1,
|
14 |
+
2,
|
15 |
+
4,
|
16 |
+
8
|
17 |
+
],
|
18 |
+
"single_submit": [
|
19 |
+
true,
|
20 |
+
false
|
21 |
+
],
|
22 |
+
"overlap_events": [
|
23 |
+
true,
|
24 |
+
false
|
25 |
+
],
|
26 |
+
"threads": [
|
27 |
+
1
|
28 |
+
]
|
29 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/cpu/adam/fused_adam.cpp
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "cpu_adam.h"
|
7 |
+
|
8 |
+
// C++ interface
|
9 |
+
|
10 |
+
void multi_tensor_adam(int chunk_size,
|
11 |
+
at::Tensor noop_flag,
|
12 |
+
std::vector<std::vector<at::Tensor>> tensor_lists, /*gpmv*/
|
13 |
+
const float lr,
|
14 |
+
const float beta1,
|
15 |
+
const float beta2,
|
16 |
+
const float epsilon,
|
17 |
+
const int step,
|
18 |
+
const int mode,
|
19 |
+
const int bias_correction,
|
20 |
+
const float weight_decay)
|
21 |
+
{
|
22 |
+
static bool initialized = false;
|
23 |
+
if (!initialized) {
|
24 |
+
create_adam_optimizer(0);
|
25 |
+
initialized = true;
|
26 |
+
}
|
27 |
+
for (int i = 0; i < tensor_lists[0].size(); i++) {
|
28 |
+
ds_adam_step(0,
|
29 |
+
step,
|
30 |
+
lr,
|
31 |
+
beta1,
|
32 |
+
beta2,
|
33 |
+
epsilon,
|
34 |
+
weight_decay,
|
35 |
+
bias_correction,
|
36 |
+
tensor_lists[1][i],
|
37 |
+
tensor_lists[0][i],
|
38 |
+
tensor_lists[2][i],
|
39 |
+
tensor_lists[3][i]);
|
40 |
+
}
|
41 |
+
}
|
42 |
+
|
43 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
44 |
+
{
|
45 |
+
m.def("multi_tensor_adam",
|
46 |
+
&multi_tensor_adam,
|
47 |
+
"Compute and apply gradient update to parameters for Adam optimizer");
|
48 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/cpu/comm/ccl.cpp
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <torch/extension.h>
|
7 |
+
|
8 |
+
#include <oneapi/ccl.hpp>
|
9 |
+
#include "shm.h"
|
10 |
+
|
11 |
+
// #define DO_PROFILE
|
12 |
+
#ifdef DO_PROFILE
|
13 |
+
#include <cfloat>
|
14 |
+
#include <chrono>
|
15 |
+
#endif
|
16 |
+
|
17 |
+
// Communication settings
|
18 |
+
static int world_rank = -1;
|
19 |
+
static int world_size = -1;
|
20 |
+
|
21 |
+
static std::set<int> _comm_ids;
|
22 |
+
static std::set<int> _colors;
|
23 |
+
static std::vector<ccl::communicator> _ccl_comms;
|
24 |
+
static ccl::shared_ptr_class<ccl::kvs> sub_kvs;
|
25 |
+
static std::map<std::vector<int>, int> group_to_comm_id;
|
26 |
+
|
27 |
+
ccl::communicator& _get_comm_from_group() { return _ccl_comms[0]; }
|
28 |
+
ccl::communicator& _get_comm_from_group(py::object group) { return _ccl_comms[0]; }
|
29 |
+
ccl::communicator& _get_comm_from_group(std::vector<int> ranks)
|
30 |
+
{
|
31 |
+
if (group_to_comm_id.find(ranks) != group_to_comm_id.end()) {
|
32 |
+
auto id = group_to_comm_id.find(ranks);
|
33 |
+
return _ccl_comms[id->second];
|
34 |
+
}
|
35 |
+
return _ccl_comms[0];
|
36 |
+
}
|
37 |
+
|
38 |
+
#define CCLCHECK(cmd) \
|
39 |
+
do { \
|
40 |
+
cmd; \
|
41 |
+
} while (0)
|
42 |
+
|
43 |
+
#define KVS_CREATE_SUCCESS 0
|
44 |
+
#define KVS_CREATE_FAILURE -1
|
45 |
+
|
46 |
+
static bool is_initialized = 0;
|
47 |
+
|
48 |
+
static ccl::shared_ptr_class<ccl::kvs> kvs;
|
49 |
+
|
50 |
+
static bool all_ranks_local_p = false;
|
51 |
+
|
52 |
+
void initialize(int size, int rank, torch::Tensor& kvs_data)
|
53 |
+
{
|
54 |
+
if (is_initialized) return;
|
55 |
+
|
56 |
+
// Check whether all ranks is on the same physical machine.
|
57 |
+
// If true, we will use an SHM based low latency allreduce
|
58 |
+
|
59 |
+
auto ls_string = std::getenv("LOCAL_SIZE");
|
60 |
+
int ls = 0;
|
61 |
+
if (ls_string != NULL) { ls = std::stoi(std::getenv("LOCAL_SIZE")); }
|
62 |
+
|
63 |
+
if (size >= 1 && size == ls) { all_ranks_local_p = true; }
|
64 |
+
|
65 |
+
world_size = size;
|
66 |
+
world_rank = rank;
|
67 |
+
is_initialized = 1;
|
68 |
+
|
69 |
+
ccl::kvs::address_type main_addr;
|
70 |
+
|
71 |
+
if (rank != 0) {
|
72 |
+
memcpy(main_addr.data(), kvs_data.data_ptr(), main_addr.size());
|
73 |
+
kvs = ccl::create_kvs(main_addr);
|
74 |
+
}
|
75 |
+
|
76 |
+
_ccl_comms.emplace_back(ccl::create_communicator(size, rank, kvs));
|
77 |
+
|
78 |
+
auto addr_string = std::getenv("MASTER_ADDR");
|
79 |
+
if (addr_string == NULL) { addr_string = ""; }
|
80 |
+
auto port_string = std::getenv("MASTER_PORT");
|
81 |
+
if (port_string == NULL) { port_string = ""; }
|
82 |
+
|
83 |
+
if (all_ranks_local_p) { shm_initialize(size, rank, addr_string, port_string); }
|
84 |
+
}
|
85 |
+
|
86 |
+
/*
|
87 |
+
rank == 0: create main kvs and return its address
|
88 |
+
rank == else: return an empty address
|
89 |
+
*/
|
90 |
+
std::vector<uint8_t> get_kvs_addr(int rank)
|
91 |
+
{
|
92 |
+
if (rank == 0) {
|
93 |
+
kvs = ccl::create_main_kvs();
|
94 |
+
ccl::kvs::address_type main_addr = kvs->get_address();
|
95 |
+
auto ccl_kvs_addr = std::vector<uint8_t>(main_addr.begin(), main_addr.end());
|
96 |
+
return ccl_kvs_addr;
|
97 |
+
} else {
|
98 |
+
ccl::kvs::address_type main_addr;
|
99 |
+
auto ccl_kvs_addr = std::vector<uint8_t>(main_addr.begin(), main_addr.end());
|
100 |
+
return ccl_kvs_addr;
|
101 |
+
}
|
102 |
+
}
|
103 |
+
|
104 |
+
int get_rank(int group = 0) { return world_rank; }
|
105 |
+
|
106 |
+
int get_world_size(int group = 0) { return world_size; }
|
107 |
+
|
108 |
+
// Find the next ordered, unique value to a set. E.g. <0,1,2,7> --> 3
|
109 |
+
int next_unique_val(std::set<int> s)
|
110 |
+
{
|
111 |
+
std::set<int>::iterator itr;
|
112 |
+
// Base case. Add 0 to start of set.
|
113 |
+
if (s.empty() || *s.begin() != 0) {
|
114 |
+
return 0;
|
115 |
+
// second base case where s = {0} (the case of s = {n != 0} is caught above)
|
116 |
+
} else if (s.size() == 1) {
|
117 |
+
return 1;
|
118 |
+
} else {
|
119 |
+
int prev_val = *s.begin();
|
120 |
+
for (itr = std::next(s.begin()); itr != s.end(); itr++) {
|
121 |
+
if (*itr != prev_val + 1) { return prev_val + 1; }
|
122 |
+
prev_val = *itr;
|
123 |
+
}
|
124 |
+
return *(s.end()) + 1;
|
125 |
+
}
|
126 |
+
}
|
127 |
+
|
128 |
+
std::vector<uint8_t> get_sub_kvs_addr(bool first)
|
129 |
+
{
|
130 |
+
if (first) {
|
131 |
+
sub_kvs = ccl::create_main_kvs();
|
132 |
+
ccl::kvs::address_type main_addr = sub_kvs->get_address();
|
133 |
+
auto ccl_kvs_addr = std::vector<uint8_t>(main_addr.begin(), main_addr.end());
|
134 |
+
return ccl_kvs_addr;
|
135 |
+
} else {
|
136 |
+
ccl::kvs::address_type main_addr;
|
137 |
+
auto ccl_kvs_addr = std::vector<uint8_t>(main_addr.begin(), main_addr.end());
|
138 |
+
return ccl_kvs_addr;
|
139 |
+
}
|
140 |
+
}
|
141 |
+
|
142 |
+
void initialize_sub_comm(int size, int rank, torch::Tensor& kvs_data, std::vector<int> ranks)
|
143 |
+
{
|
144 |
+
ccl::kvs::address_type main_addr;
|
145 |
+
if (rank != 0) {
|
146 |
+
memcpy(main_addr.data(), kvs_data.data_ptr(), main_addr.size());
|
147 |
+
sub_kvs = ccl::create_kvs(main_addr);
|
148 |
+
}
|
149 |
+
_ccl_comms.push_back(ccl::create_communicator(size, rank, sub_kvs));
|
150 |
+
group_to_comm_id[ranks] = _ccl_comms.size() - 1;
|
151 |
+
}
|
152 |
+
|
153 |
+
ccl::datatype get_ccl_datatype(c10::ScalarType type)
|
154 |
+
{
|
155 |
+
ccl::datatype ccl_type;
|
156 |
+
switch (type) {
|
157 |
+
case c10::ScalarType::Int: ccl_type = ccl::datatype::int32; break;
|
158 |
+
case c10::ScalarType::Long: ccl_type = ccl::datatype::int64; break;
|
159 |
+
case c10::ScalarType::Float: ccl_type = ccl::datatype::float32; break;
|
160 |
+
case c10::ScalarType::Double: ccl_type = ccl::datatype::float64; break;
|
161 |
+
case c10::ScalarType::BFloat16: ccl_type = ccl::datatype::bfloat16; break;
|
162 |
+
case c10::ScalarType::Half: ccl_type = ccl::datatype::float16; break;
|
163 |
+
default: ccl_type = ccl::datatype::int8;
|
164 |
+
}
|
165 |
+
return ccl_type;
|
166 |
+
}
|
167 |
+
|
168 |
+
ccl::reduction get_ccl_reduce_op(py::object op, at::Tensor& input)
|
169 |
+
{
|
170 |
+
py::object ReduceOp = py::module_::import("deepspeed.comm").attr("ReduceOp");
|
171 |
+
if (!py::isinstance(op, ReduceOp)) {
|
172 |
+
throw std::runtime_error("Error: Op must be of type ReduceOp");
|
173 |
+
}
|
174 |
+
|
175 |
+
int op_val = py::int_(op.attr("value"));
|
176 |
+
ccl::reduction ccl_op;
|
177 |
+
|
178 |
+
if (input.scalar_type() == at::kBool) {
|
179 |
+
if (op_val == (int)py::int_(ReduceOp.attr("SUM").attr("value"))) {
|
180 |
+
// For bool tensors, map sum to max, which both represent a bitwise or.
|
181 |
+
// This is to prevent overflow issues with sum, since we use uint8 to
|
182 |
+
// represent a bool (see cclDataType mapping).
|
183 |
+
ccl_op = ccl::reduction::max;
|
184 |
+
} else if (op_val == (int)py::int_(ReduceOp.attr("AVG").attr("value"))) {
|
185 |
+
throw std::runtime_error("Error: For bool tensors, op must be of type ReduceOp");
|
186 |
+
}
|
187 |
+
}
|
188 |
+
|
189 |
+
if (op_val == (int)py::int_(ReduceOp.attr("SUM").attr("value"))) {
|
190 |
+
ccl_op = ccl::reduction::sum;
|
191 |
+
} else if (op_val == (int)py::int_(ReduceOp.attr("MIN").attr("value"))) {
|
192 |
+
ccl_op = ccl::reduction::min;
|
193 |
+
} else if (op_val == (int)py::int_(ReduceOp.attr("MAX").attr("value"))) {
|
194 |
+
ccl_op = ccl::reduction::max;
|
195 |
+
} else if (op_val == (int)py::int_(ReduceOp.attr("PRODUCT").attr("value"))) {
|
196 |
+
ccl_op = ccl::reduction::prod;
|
197 |
+
} else {
|
198 |
+
throw std::runtime_error("Error: Unrecognized ReduceOp type");
|
199 |
+
}
|
200 |
+
return ccl_op;
|
201 |
+
}
|
202 |
+
|
203 |
+
void broadcast(torch::Tensor& data, int src, std::vector<int> group, bool async_op)
|
204 |
+
{
|
205 |
+
CCLCHECK(ccl::broadcast(data.data_ptr(),
|
206 |
+
data.numel(),
|
207 |
+
get_ccl_datatype(data.scalar_type()),
|
208 |
+
src,
|
209 |
+
_get_comm_from_group(group))
|
210 |
+
.wait());
|
211 |
+
}
|
212 |
+
|
213 |
+
// TODO: implement torch's async_op behavior, document it.
|
214 |
+
void all_reduce(torch::Tensor& data, py::object op, std::vector<int> group, bool async_op)
|
215 |
+
{
|
216 |
+
CCLCHECK(ccl::allreduce(data.data_ptr(),
|
217 |
+
data.data_ptr(),
|
218 |
+
data.numel(),
|
219 |
+
get_ccl_datatype(data.scalar_type()),
|
220 |
+
get_ccl_reduce_op(op, data),
|
221 |
+
_get_comm_from_group(group))
|
222 |
+
.wait());
|
223 |
+
}
|
224 |
+
|
225 |
+
void all_reduce_caching(torch::Tensor& data,
|
226 |
+
py::object op,
|
227 |
+
std::string match_id,
|
228 |
+
std::vector<int> group,
|
229 |
+
bool async_op)
|
230 |
+
{
|
231 |
+
ccl::allreduce_attr attr = ccl::default_allreduce_attr;
|
232 |
+
auto match_str = ccl::v1::string(match_id);
|
233 |
+
attr.template set<ccl::operation_attr_id::to_cache>(true);
|
234 |
+
attr.template set<ccl::operation_attr_id::match_id>(match_str);
|
235 |
+
// To control this, use operation attribute and set true value for to_cache field and unique
|
236 |
+
// string (for example, tensor name) for match_id field. Note that:
|
237 |
+
// match_id should be the same for a specific communication operation across all ranks.
|
238 |
+
// If the same tensor is a part of different communication operations, match_id should have
|
239 |
+
// different values for each of these operations.
|
240 |
+
CCLCHECK(ccl::allreduce(data.data_ptr(),
|
241 |
+
data.data_ptr(),
|
242 |
+
data.numel(),
|
243 |
+
get_ccl_datatype(data.scalar_type()),
|
244 |
+
get_ccl_reduce_op(op, data),
|
245 |
+
_get_comm_from_group(group),
|
246 |
+
attr)
|
247 |
+
.wait());
|
248 |
+
}
|
249 |
+
|
250 |
+
void inference_all_reduce(torch::Tensor& data, py::object op)
|
251 |
+
{
|
252 |
+
#ifdef DO_PROFILE
|
253 |
+
static double total_time = 0.0;
|
254 |
+
static double total_time_sq = 0.0;
|
255 |
+
static int count = -16; // warmup
|
256 |
+
static double max_time = 0.0;
|
257 |
+
static double min_time = DBL_MAX;
|
258 |
+
// make sure all rank reach this point before measuring time
|
259 |
+
// turn on this if you suspect each rank didn't reach here at the same time (stragger)
|
260 |
+
// if (all_ranks_local_p) {
|
261 |
+
// barrier_wait(0, world_size);
|
262 |
+
//}
|
263 |
+
auto start = std::chrono::system_clock::now();
|
264 |
+
#endif
|
265 |
+
|
266 |
+
static py::object ReduceOp = py::module_::import("deepspeed.comm").attr("ReduceOp");
|
267 |
+
static auto ReduceOpSum = (int)py::int_(ReduceOp.attr("SUM").attr("value"));
|
268 |
+
|
269 |
+
assert(py::int_(op.attr("value")) == ReduceOpSum);
|
270 |
+
|
271 |
+
auto numel = data.numel();
|
272 |
+
|
273 |
+
int data_size = 0;
|
274 |
+
bool data_type_fallback = false;
|
275 |
+
|
276 |
+
switch (data.scalar_type()) {
|
277 |
+
case c10::ScalarType::BFloat16: data_size = numel * 2; break;
|
278 |
+
case c10::ScalarType::Float: data_size = numel * 4; break;
|
279 |
+
default: data_type_fallback = true;
|
280 |
+
}
|
281 |
+
|
282 |
+
if (data_type_fallback || !all_ranks_local_p) {
|
283 |
+
// fallback to oneccl allreduce
|
284 |
+
CCLCHECK(ccl::allreduce(data.data_ptr(),
|
285 |
+
data.data_ptr(),
|
286 |
+
data.numel(),
|
287 |
+
get_ccl_datatype(data.scalar_type()),
|
288 |
+
get_ccl_reduce_op(op, data),
|
289 |
+
_get_comm_from_group())
|
290 |
+
.wait());
|
291 |
+
} else {
|
292 |
+
all_reduce_outer_loop(data, numel, data_size);
|
293 |
+
}
|
294 |
+
|
295 |
+
#ifdef DO_PROFILE
|
296 |
+
auto end = std::chrono::system_clock::now();
|
297 |
+
count++;
|
298 |
+
if (count > 0) {
|
299 |
+
double elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start).count();
|
300 |
+
if (elapsed > max_time) { max_time = elapsed; }
|
301 |
+
if (elapsed < min_time) { min_time = elapsed; }
|
302 |
+
total_time += elapsed;
|
303 |
+
total_time_sq += elapsed * elapsed;
|
304 |
+
if (world_rank == 0 && count == 1000) {
|
305 |
+
auto avg = total_time / count;
|
306 |
+
auto sd =
|
307 |
+
sqrt(total_time_sq / count - total_time * total_time / (count * count)) / avg * 100;
|
308 |
+
printf(" C++ kernel\t\t %.2f\t %.2f\t%.2f\t %.2f\n",
|
309 |
+
min_time,
|
310 |
+
max_time,
|
311 |
+
total_time / count,
|
312 |
+
sd);
|
313 |
+
}
|
314 |
+
}
|
315 |
+
#endif
|
316 |
+
}
|
317 |
+
|
318 |
+
void barrier(std::vector<int> group, bool async_op)
|
319 |
+
{
|
320 |
+
CCLCHECK(ccl::barrier(_get_comm_from_group(group)).wait());
|
321 |
+
}
|
322 |
+
|
323 |
+
std::vector<std::string> get_available_coll()
|
324 |
+
{
|
325 |
+
std::vector<std::string> colls{
|
326 |
+
"broadcast", "all_reduce", "inference_all_reduce", "all_reduce_caching", "barrier"};
|
327 |
+
return colls;
|
328 |
+
}
|
329 |
+
|
330 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
331 |
+
{
|
332 |
+
m.def("get_kvs_addr", &get_kvs_addr, "create and get main kvs addr");
|
333 |
+
m.def("initialize", &initialize, "ccl initialize");
|
334 |
+
m.def("get_rank", &get_rank, "get rank");
|
335 |
+
m.def("get_world_size", &get_world_size, "get world size");
|
336 |
+
m.def("broadcast", &broadcast, "ccl broadcast");
|
337 |
+
m.def("all_reduce", &all_reduce, "ccl all_reduce");
|
338 |
+
m.def("inference_all_reduce", &inference_all_reduce, "low latency all_reduce implementation");
|
339 |
+
m.def("all_reduce_caching", &all_reduce_caching, "ccl all_reduce with caching");
|
340 |
+
m.def("barrier", &barrier, "barrier");
|
341 |
+
m.def("initialize_sub_comm", &initialize_sub_comm, "initialize_sub_comm");
|
342 |
+
m.def("get_sub_kvs_addr", &get_sub_kvs_addr, "get_sub_kvs_addr");
|
343 |
+
m.def("get_available_coll", &get_available_coll, "get_available_coll");
|
344 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/cpu/comm/shm.cpp
ADDED
@@ -0,0 +1,686 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <torch/extension.h>
|
7 |
+
|
8 |
+
#include <ATen/ATen.h>
|
9 |
+
#include <fcntl.h>
|
10 |
+
#include <immintrin.h>
|
11 |
+
#include <semaphore.h>
|
12 |
+
#include <sys/mman.h>
|
13 |
+
#include "shm.h"
|
14 |
+
|
15 |
+
// #define DO_PROFILE
|
16 |
+
#ifdef DO_PROFILE
|
17 |
+
#include <cfloat>
|
18 |
+
#include <chrono>
|
19 |
+
#endif
|
20 |
+
|
21 |
+
// states for collectives
|
22 |
+
enum coll_state {
|
23 |
+
coll_begin = 0,
|
24 |
+
coll_allreduce_naive__copy_in_done, // this state is for rank != 0
|
25 |
+
coll_allreduce_naive__reduce_done, // this state is for rank == 0
|
26 |
+
coll_allreduce_naive__copy_out_done, // this state is for rank != 0
|
27 |
+
};
|
28 |
+
|
29 |
+
// SHM building blocks
|
30 |
+
struct SharedData {
|
31 |
+
const char* name;
|
32 |
+
int descriptor;
|
33 |
+
void* bytes;
|
34 |
+
size_t nbytes;
|
35 |
+
};
|
36 |
+
|
37 |
+
void shared_open(SharedData* data, const char* name, size_t nbytes)
|
38 |
+
{
|
39 |
+
int d = shm_open(name, O_RDWR, S_IRUSR | S_IWUSR);
|
40 |
+
if (d != -1) {
|
41 |
+
void* bytes = mmap(NULL, nbytes, PROT_READ | PROT_WRITE, MAP_SHARED, d, 0);
|
42 |
+
data->name = name;
|
43 |
+
data->descriptor = d;
|
44 |
+
data->bytes = bytes;
|
45 |
+
data->nbytes = nbytes;
|
46 |
+
} else {
|
47 |
+
if (errno != ENOENT) {
|
48 |
+
// don't print if shm can not be found because we want to loop over from
|
49 |
+
// caller again until the other ranks created the shm
|
50 |
+
printf("shared_open %s failed, errno=%d\n", name, errno);
|
51 |
+
}
|
52 |
+
data->descriptor = -1;
|
53 |
+
}
|
54 |
+
}
|
55 |
+
|
56 |
+
void shared_create(SharedData* data, const char* name, void* bytes, size_t nbytes)
|
57 |
+
{
|
58 |
+
int d = shm_open(name, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);
|
59 |
+
if (d != -1) {
|
60 |
+
if (nbytes = write(d, bytes, nbytes)) { shared_open(data, name, nbytes); }
|
61 |
+
} else {
|
62 |
+
printf("shared_create %s failed\n", name);
|
63 |
+
}
|
64 |
+
}
|
65 |
+
|
66 |
+
void shared_close(SharedData* data)
|
67 |
+
{
|
68 |
+
if (data->descriptor != -1) {
|
69 |
+
munmap(data->bytes, data->nbytes);
|
70 |
+
shm_unlink(data->name);
|
71 |
+
}
|
72 |
+
}
|
73 |
+
|
74 |
+
// SHM based allreduce helper functions
|
75 |
+
// buffer that holds shm name
|
76 |
+
#define NAME_BUF_SIZE 1000
|
77 |
+
#define MAX_BUF_SIZE 1048576 * 32
|
78 |
+
#define NAIVE_ALLREDUCE_THRESHOLD 1048576
|
79 |
+
#define SHM_BUFFER_NAME "deepspeed_allreduce_buffer"
|
80 |
+
struct allreduce_workspace {
|
81 |
+
enum coll_state state;
|
82 |
+
sem_t mutex;
|
83 |
+
sem_t turnstile1;
|
84 |
+
sem_t turnstile2;
|
85 |
+
int counter;
|
86 |
+
char buffer[MAX_BUF_SIZE];
|
87 |
+
};
|
88 |
+
struct allreduce_workspace** workspace;
|
89 |
+
|
90 |
+
void wait_buffer_state_until(int index, enum coll_state state)
|
91 |
+
{
|
92 |
+
volatile enum coll_state* state_ptr = &(workspace[index]->state);
|
93 |
+
|
94 |
+
while (*state_ptr != state)
|
95 |
+
;
|
96 |
+
}
|
97 |
+
|
98 |
+
void wait_buffer_state_until_range(int index, enum coll_state start, int size)
|
99 |
+
{
|
100 |
+
volatile enum coll_state* state_ptr = &(workspace[index]->state);
|
101 |
+
enum coll_state end = (enum coll_state)(start + size);
|
102 |
+
|
103 |
+
while (1) {
|
104 |
+
volatile enum coll_state cur_state = *state_ptr;
|
105 |
+
if (cur_state >= start and cur_state < end) break;
|
106 |
+
}
|
107 |
+
}
|
108 |
+
|
109 |
+
void wait_buffer_state_until_not(int index, enum coll_state state)
|
110 |
+
{
|
111 |
+
volatile enum coll_state* state_ptr = &(workspace[index]->state);
|
112 |
+
|
113 |
+
while (*state_ptr == state)
|
114 |
+
;
|
115 |
+
}
|
116 |
+
|
117 |
+
void barrier_wait(int root_idx, int num_ranks)
|
118 |
+
{
|
119 |
+
// Phase 1: Wait for all threads to enter the barrier
|
120 |
+
auto shared = workspace[root_idx];
|
121 |
+
sem_wait(&shared->mutex);
|
122 |
+
shared->counter++;
|
123 |
+
if (shared->counter == num_ranks) {
|
124 |
+
for (int i = 0; i < num_ranks; ++i) { sem_post(&shared->turnstile1); }
|
125 |
+
}
|
126 |
+
sem_post(&shared->mutex);
|
127 |
+
sem_wait(&shared->turnstile1);
|
128 |
+
|
129 |
+
// Phase 2: Wait for all threads to exit the barrier
|
130 |
+
sem_wait(&shared->mutex);
|
131 |
+
shared->counter--;
|
132 |
+
if (shared->counter == 0) {
|
133 |
+
for (int i = 0; i < num_ranks; ++i) { sem_post(&shared->turnstile2); }
|
134 |
+
}
|
135 |
+
sem_post(&shared->mutex);
|
136 |
+
sem_wait(&shared->turnstile2);
|
137 |
+
}
|
138 |
+
|
139 |
+
__m512 cvt_bf16_to_fp32(const __m256i src) __attribute__((target("avx512bw")));
|
140 |
+
inline __m512 cvt_bf16_to_fp32(const __m256i src)
|
141 |
+
{
|
142 |
+
auto y = _mm512_cvtepu16_epi32(src);
|
143 |
+
return _mm512_castsi512_ps(_mm512_bslli_epi128(y, 2));
|
144 |
+
}
|
145 |
+
|
146 |
+
inline __m256i cvt_fp32_to_bf16(const __m512 src) __attribute__((target("avx512bw")));
|
147 |
+
inline __m256i cvt_fp32_to_bf16(const __m512 src)
|
148 |
+
{
|
149 |
+
__m512i value = _mm512_castps_si512(src);
|
150 |
+
__m512i nan = _mm512_set1_epi32(0xffff);
|
151 |
+
auto mask_value = _mm512_cmp_ps_mask(src, src, _CMP_ORD_Q);
|
152 |
+
__m512i ones = _mm512_set1_epi32(0x1);
|
153 |
+
__m512i vec_bias = _mm512_set1_epi32(0x7fff);
|
154 |
+
// uint32_t lsb = (input >> 16) & 1;
|
155 |
+
auto t_value = _mm512_and_si512(_mm512_srli_epi32(value, 16), ones);
|
156 |
+
// uint32_t rounding_bias = 0x7fff + lsb;
|
157 |
+
t_value = _mm512_add_epi32(t_value, vec_bias);
|
158 |
+
// input += rounding_bias;
|
159 |
+
t_value = _mm512_add_epi32(t_value, value);
|
160 |
+
// input = input >> 16;
|
161 |
+
t_value = _mm512_srli_epi32(t_value, 16);
|
162 |
+
// Check NaN before converting back to bf16
|
163 |
+
t_value = _mm512_mask_blend_epi32(mask_value, nan, t_value);
|
164 |
+
return _mm512_cvtusepi32_epi16(t_value);
|
165 |
+
}
|
166 |
+
|
167 |
+
void reduce_2_bf16_buffers_iio(int num_elements, void* in0, void* in1, void* out)
|
168 |
+
__attribute__((target("avx512bw")));
|
169 |
+
|
170 |
+
void reduce_bf16_buffers(int start_elements,
|
171 |
+
int num_elements,
|
172 |
+
int num_buffers,
|
173 |
+
int to_buffer_idx,
|
174 |
+
struct allreduce_workspace** workspace)
|
175 |
+
__attribute__((target("avx512bw")));
|
176 |
+
|
177 |
+
void reduce_2_fp32_buffers_iio(int num_elements, void* in0, void* in1, void* out)
|
178 |
+
__attribute__((target("avx512bw")));
|
179 |
+
|
180 |
+
void reduce_fp32_buffers(int start_elements,
|
181 |
+
int num_elements,
|
182 |
+
int num_buffers,
|
183 |
+
int to_buffer_idx,
|
184 |
+
struct allreduce_workspace** workspace)
|
185 |
+
__attribute__((target("avx512bw")));
|
186 |
+
|
187 |
+
// N_REDUCE_LIMIT is the number of buffers that can be reduced together in one shot.
|
188 |
+
// Compared with do N-1 2-reduces which needs 2*(N-1) read and N-1 write,
|
189 |
+
// N-reduce only needs N read and 1 write, this saves 2/3 memory bandwidth.
|
190 |
+
// When increase N_REDUCE_LIMIT to a bigger number, do the following steps
|
191 |
+
// 1. Extend REPEAT_<X> macros list down below
|
192 |
+
// 2. Extend switch cases which call "REPEAT(X, ...)" down below
|
193 |
+
#define N_REDUCE_LIMIT 16
|
194 |
+
|
195 |
+
void reduce_all_buffers(struct allreduce_workspace** workspace,
|
196 |
+
int start_elements,
|
197 |
+
int num_elements,
|
198 |
+
c10::ScalarType scalar_type,
|
199 |
+
int num_buffers,
|
200 |
+
int to_buffer_idx)
|
201 |
+
{
|
202 |
+
switch (scalar_type) {
|
203 |
+
case c10::ScalarType::BFloat16:
|
204 |
+
if (num_buffers > 2 && num_buffers <= N_REDUCE_LIMIT) {
|
205 |
+
reduce_bf16_buffers(
|
206 |
+
start_elements, num_elements, num_buffers, to_buffer_idx, workspace);
|
207 |
+
} else {
|
208 |
+
for (int i = 0; i < num_buffers; i++) {
|
209 |
+
if (i == to_buffer_idx) continue;
|
210 |
+
reduce_2_bf16_buffers_iio(
|
211 |
+
num_elements,
|
212 |
+
workspace[i]->buffer + start_elements * 2,
|
213 |
+
workspace[to_buffer_idx]->buffer + start_elements * 2,
|
214 |
+
workspace[to_buffer_idx]->buffer + start_elements * 2);
|
215 |
+
}
|
216 |
+
}
|
217 |
+
break;
|
218 |
+
case c10::ScalarType::Float:
|
219 |
+
if (num_buffers > 2 && num_buffers <= N_REDUCE_LIMIT) {
|
220 |
+
reduce_fp32_buffers(
|
221 |
+
start_elements, num_elements, num_buffers, to_buffer_idx, workspace);
|
222 |
+
} else {
|
223 |
+
for (int i = 0; i < num_buffers; i++) {
|
224 |
+
if (i == to_buffer_idx) continue;
|
225 |
+
reduce_2_fp32_buffers_iio(
|
226 |
+
num_elements,
|
227 |
+
workspace[i]->buffer + start_elements * 4,
|
228 |
+
workspace[to_buffer_idx]->buffer + start_elements * 4,
|
229 |
+
workspace[to_buffer_idx]->buffer + start_elements * 4);
|
230 |
+
}
|
231 |
+
}
|
232 |
+
break;
|
233 |
+
default: assert(!"Should not get here");
|
234 |
+
}
|
235 |
+
}
|
236 |
+
|
237 |
+
#define REPEAT(N, x) REPEAT_##N(x)
|
238 |
+
#define REPEAT_1(x) x(1)
|
239 |
+
#define REPEAT_2(x) \
|
240 |
+
REPEAT_1(x); \
|
241 |
+
x(2)
|
242 |
+
#define REPEAT_3(x) \
|
243 |
+
REPEAT_2(x); \
|
244 |
+
x(3)
|
245 |
+
#define REPEAT_4(x) \
|
246 |
+
REPEAT_3(x); \
|
247 |
+
x(4)
|
248 |
+
#define REPEAT_5(x) \
|
249 |
+
REPEAT_4(x); \
|
250 |
+
x(5)
|
251 |
+
#define REPEAT_6(x) \
|
252 |
+
REPEAT_5(x); \
|
253 |
+
x(6)
|
254 |
+
#define REPEAT_7(x) \
|
255 |
+
REPEAT_6(x); \
|
256 |
+
x(7)
|
257 |
+
#define REPEAT_8(x) \
|
258 |
+
REPEAT_7(x); \
|
259 |
+
x(8)
|
260 |
+
#define REPEAT_9(x) \
|
261 |
+
REPEAT_8(x); \
|
262 |
+
x(9)
|
263 |
+
#define REPEAT_10(x) \
|
264 |
+
REPEAT_9(x); \
|
265 |
+
x(10)
|
266 |
+
#define REPEAT_11(x) \
|
267 |
+
REPEAT_10(x); \
|
268 |
+
x(11)
|
269 |
+
#define REPEAT_12(x) \
|
270 |
+
REPEAT_11(x); \
|
271 |
+
x(12)
|
272 |
+
#define REPEAT_13(x) \
|
273 |
+
REPEAT_12(x); \
|
274 |
+
x(13)
|
275 |
+
#define REPEAT_14(x) \
|
276 |
+
REPEAT_13(x); \
|
277 |
+
x(14)
|
278 |
+
#define REPEAT_15(x) \
|
279 |
+
REPEAT_14(x); \
|
280 |
+
x(15)
|
281 |
+
|
282 |
+
#define CVT_ADD_BF16(x) \
|
283 |
+
do { \
|
284 |
+
auto in##x##_val = \
|
285 |
+
cvt_bf16_to_fp32(_mm256_loadu_si256((__m256i*)(workspace[x]->buffer + i))); \
|
286 |
+
inout_val = _mm512_add_ps(inout_val, in##x##_val); \
|
287 |
+
} while (0)
|
288 |
+
|
289 |
+
// Reduce functions down below use vectorized algorithm, the number of bytes processed each
|
290 |
+
// iteration depends on vector length. 256bit vector ==> 32 bytes, 512bit vector ==> 64 bytes
|
291 |
+
// If you change implementation of reduce_2_bf16_buffers_iio or reduce_2_fp32_buffers_iio, check
|
292 |
+
// whether this number needs to be changed
|
293 |
+
#define VECTOR_LENGTH_IN_BYTES 32
|
294 |
+
|
295 |
+
void reduce_bf16_buffers(int start_elements,
|
296 |
+
int num_elements,
|
297 |
+
int num_buffers,
|
298 |
+
int to_buffer_idx,
|
299 |
+
struct allreduce_workspace** workspace)
|
300 |
+
{
|
301 |
+
const int element_size = 2;
|
302 |
+
const int vector_length = VECTOR_LENGTH_IN_BYTES / element_size;
|
303 |
+
int main_elements = num_elements - (num_elements % vector_length);
|
304 |
+
int remain_elements = num_elements % vector_length;
|
305 |
+
|
306 |
+
// process aligned part
|
307 |
+
#pragma omp parallel for
|
308 |
+
for (int i = start_elements * element_size; i < (start_elements + main_elements) * element_size;
|
309 |
+
i += VECTOR_LENGTH_IN_BYTES) {
|
310 |
+
auto inout_val = cvt_bf16_to_fp32(_mm256_loadu_si256((__m256i*)(workspace[0]->buffer + i)));
|
311 |
+
switch (num_buffers) {
|
312 |
+
case 16: REPEAT(15, CVT_ADD_BF16); break;
|
313 |
+
case 15: REPEAT(14, CVT_ADD_BF16); break;
|
314 |
+
case 14: REPEAT(13, CVT_ADD_BF16); break;
|
315 |
+
case 13: REPEAT(12, CVT_ADD_BF16); break;
|
316 |
+
case 12: REPEAT(11, CVT_ADD_BF16); break;
|
317 |
+
case 11: REPEAT(10, CVT_ADD_BF16); break;
|
318 |
+
case 10: REPEAT(9, CVT_ADD_BF16); break;
|
319 |
+
case 9: REPEAT(8, CVT_ADD_BF16); break;
|
320 |
+
case 8: REPEAT(7, CVT_ADD_BF16); break;
|
321 |
+
case 7: REPEAT(6, CVT_ADD_BF16); break;
|
322 |
+
case 6: REPEAT(5, CVT_ADD_BF16); break;
|
323 |
+
case 5: REPEAT(4, CVT_ADD_BF16); break;
|
324 |
+
case 4: REPEAT(3, CVT_ADD_BF16); break;
|
325 |
+
case 3: REPEAT(2, CVT_ADD_BF16); break;
|
326 |
+
default: assert(!"Should not get here.");
|
327 |
+
}
|
328 |
+
_mm256_storeu_si256((__m256i*)(workspace[to_buffer_idx]->buffer + i),
|
329 |
+
cvt_fp32_to_bf16(inout_val));
|
330 |
+
}
|
331 |
+
|
332 |
+
// process remaining part
|
333 |
+
int i = (start_elements + main_elements) * element_size;
|
334 |
+
while (remain_elements > 0) {
|
335 |
+
float val = 0.0f;
|
336 |
+
for (int j = 0; j < num_buffers; j++) { val += *(at::BFloat16*)(workspace[j]->buffer + i); }
|
337 |
+
*(at::BFloat16*)(workspace[to_buffer_idx]->buffer + i) = val;
|
338 |
+
remain_elements--;
|
339 |
+
i += element_size;
|
340 |
+
}
|
341 |
+
}
|
342 |
+
|
343 |
+
void reduce_2_bf16_buffers_iio(int num_elements, void* in0, void* in1, void* out)
|
344 |
+
{
|
345 |
+
const int element_size = 2;
|
346 |
+
const int vector_length = VECTOR_LENGTH_IN_BYTES / element_size;
|
347 |
+
int main_elements = num_elements - (num_elements % vector_length);
|
348 |
+
int remain_elements = num_elements % vector_length;
|
349 |
+
|
350 |
+
// process aligned part
|
351 |
+
#pragma omp parallel for
|
352 |
+
for (int i = 0; i < main_elements * element_size; i += VECTOR_LENGTH_IN_BYTES) {
|
353 |
+
auto in0_val = cvt_bf16_to_fp32(_mm256_loadu_si256((__m256i*)((char*)in0 + i)));
|
354 |
+
auto in1_val = cvt_bf16_to_fp32(_mm256_loadu_si256((__m256i*)((char*)in1 + i)));
|
355 |
+
auto out_val = _mm512_add_ps(in0_val, in1_val);
|
356 |
+
_mm256_storeu_si256((__m256i*)((char*)out + i), cvt_fp32_to_bf16(out_val));
|
357 |
+
}
|
358 |
+
|
359 |
+
// process remaining part
|
360 |
+
int i = main_elements * element_size;
|
361 |
+
while (remain_elements > 0) {
|
362 |
+
float in0_val = *((at::BFloat16*)((char*)in0 + i));
|
363 |
+
float in1_val = *((at::BFloat16*)((char*)in1 + i));
|
364 |
+
*((at::BFloat16*)((char*)out + i)) = in0_val + in1_val;
|
365 |
+
remain_elements--;
|
366 |
+
i += element_size;
|
367 |
+
}
|
368 |
+
}
|
369 |
+
|
370 |
+
#define CVT_ADD_F32(x) \
|
371 |
+
do { \
|
372 |
+
auto in##x##_val = _mm256_loadu_ps((float*)(workspace[x]->buffer + i)); \
|
373 |
+
inout_val = _mm256_add_ps(inout_val, in##x##_val); \
|
374 |
+
} while (0)
|
375 |
+
|
376 |
+
void reduce_fp32_buffers(int start_elements,
|
377 |
+
int num_elements,
|
378 |
+
int num_buffers,
|
379 |
+
int to_buffer_idx,
|
380 |
+
struct allreduce_workspace** workspace)
|
381 |
+
{
|
382 |
+
const int element_size = 4;
|
383 |
+
const int vector_length = VECTOR_LENGTH_IN_BYTES / element_size;
|
384 |
+
int main_elements = num_elements - (num_elements % vector_length);
|
385 |
+
int remain_elements = num_elements % vector_length;
|
386 |
+
|
387 |
+
// process aligned part
|
388 |
+
#pragma omp parallel for
|
389 |
+
for (int i = start_elements * element_size; i < (start_elements + main_elements) * element_size;
|
390 |
+
i += VECTOR_LENGTH_IN_BYTES) {
|
391 |
+
auto inout_val = _mm256_loadu_ps((float*)(workspace[0]->buffer + i));
|
392 |
+
switch (num_buffers) {
|
393 |
+
case 16: REPEAT(15, CVT_ADD_F32); break;
|
394 |
+
case 15: REPEAT(14, CVT_ADD_F32); break;
|
395 |
+
case 14: REPEAT(13, CVT_ADD_F32); break;
|
396 |
+
case 13: REPEAT(12, CVT_ADD_F32); break;
|
397 |
+
case 12: REPEAT(11, CVT_ADD_F32); break;
|
398 |
+
case 11: REPEAT(10, CVT_ADD_F32); break;
|
399 |
+
case 10: REPEAT(9, CVT_ADD_F32); break;
|
400 |
+
case 9: REPEAT(8, CVT_ADD_F32); break;
|
401 |
+
case 8: REPEAT(7, CVT_ADD_F32); break;
|
402 |
+
case 7: REPEAT(6, CVT_ADD_F32); break;
|
403 |
+
case 6: REPEAT(5, CVT_ADD_F32); break;
|
404 |
+
case 5: REPEAT(4, CVT_ADD_F32); break;
|
405 |
+
case 4: REPEAT(3, CVT_ADD_F32); break;
|
406 |
+
case 3: REPEAT(2, CVT_ADD_F32); break;
|
407 |
+
default: assert(!"Should not get here.");
|
408 |
+
}
|
409 |
+
_mm256_storeu_ps((float*)(workspace[to_buffer_idx]->buffer + i), inout_val);
|
410 |
+
}
|
411 |
+
|
412 |
+
// process remaining part
|
413 |
+
int i = (start_elements + main_elements) * element_size;
|
414 |
+
while (remain_elements > 0) {
|
415 |
+
float val = 0.0f;
|
416 |
+
for (int j = 0; j < num_buffers; j++) { val += *(float*)(workspace[j]->buffer + i); }
|
417 |
+
*(float*)(workspace[to_buffer_idx]->buffer + i) = val;
|
418 |
+
remain_elements--;
|
419 |
+
i += element_size;
|
420 |
+
}
|
421 |
+
}
|
422 |
+
|
423 |
+
void reduce_2_fp32_buffers_iio(int num_elements, void* in0, void* in1, void* out)
|
424 |
+
{
|
425 |
+
const int element_size = 4;
|
426 |
+
const int vector_length = VECTOR_LENGTH_IN_BYTES / element_size;
|
427 |
+
int main_elements = num_elements - (num_elements % vector_length);
|
428 |
+
int remain_elements = num_elements % vector_length;
|
429 |
+
|
430 |
+
// process aligned part
|
431 |
+
#pragma omp parallel for
|
432 |
+
for (int i = 0; i < main_elements * element_size; i += VECTOR_LENGTH_IN_BYTES) {
|
433 |
+
auto in0_val = _mm256_loadu_ps((float*)((char*)in0 + i));
|
434 |
+
auto in1_val = _mm256_loadu_ps((float*)((char*)in1 + i));
|
435 |
+
auto out_val = _mm256_add_ps(in0_val, in1_val);
|
436 |
+
_mm256_storeu_ps((float*)((char*)out + i), out_val);
|
437 |
+
}
|
438 |
+
|
439 |
+
// process remaining part
|
440 |
+
int i = main_elements * element_size;
|
441 |
+
while (remain_elements > 0) {
|
442 |
+
float in0_val = *((float*)((char*)in0 + i));
|
443 |
+
float in1_val = *((float*)((char*)in1 + i));
|
444 |
+
*((float*)((char*)out + i)) = in0_val + in1_val;
|
445 |
+
remain_elements--;
|
446 |
+
i += element_size;
|
447 |
+
}
|
448 |
+
}
|
449 |
+
|
450 |
+
static bool is_initialized = 0;
|
451 |
+
static int world_size;
|
452 |
+
static int world_rank;
|
453 |
+
|
454 |
+
void shm_initialize(int size, int rank, char* addr_string, char* port_string)
|
455 |
+
{
|
456 |
+
if (is_initialized) return;
|
457 |
+
is_initialized = 1;
|
458 |
+
|
459 |
+
world_size = size;
|
460 |
+
world_rank = rank;
|
461 |
+
|
462 |
+
char shm_name_prefix[NAME_BUF_SIZE];
|
463 |
+
char shm_name[NAME_BUF_SIZE];
|
464 |
+
snprintf(shm_name_prefix,
|
465 |
+
NAME_BUF_SIZE,
|
466 |
+
"%s_%d_%s_%s",
|
467 |
+
SHM_BUFFER_NAME,
|
468 |
+
getuid(),
|
469 |
+
addr_string,
|
470 |
+
port_string);
|
471 |
+
// create shared workspace for SHM based allreduce
|
472 |
+
SharedData allreduce_buffer;
|
473 |
+
// allocate workspace_buf for current rank
|
474 |
+
struct allreduce_workspace* workspace_buf;
|
475 |
+
struct allreduce_workspace* workspace_buf_other;
|
476 |
+
workspace_buf = (struct allreduce_workspace*)malloc(sizeof(struct allreduce_workspace));
|
477 |
+
snprintf(shm_name, NAME_BUF_SIZE, "%s_%d", shm_name_prefix, rank);
|
478 |
+
shared_create(&allreduce_buffer, shm_name, workspace_buf, sizeof(struct allreduce_workspace));
|
479 |
+
workspace_buf = (struct allreduce_workspace*)allreduce_buffer.bytes;
|
480 |
+
workspace_buf->state = coll_begin;
|
481 |
+
|
482 |
+
// create the workspace pointer list
|
483 |
+
workspace = (struct allreduce_workspace**)malloc(size * sizeof(struct allreduce_workspace*));
|
484 |
+
|
485 |
+
// map shm of all ranks
|
486 |
+
for (int i = 0; i < size; i++) {
|
487 |
+
if (i != rank) {
|
488 |
+
snprintf(shm_name, NAME_BUF_SIZE, "%s_%d", shm_name_prefix, i);
|
489 |
+
// printf("open %s, %d\n", shm_name, rank);
|
490 |
+
do {
|
491 |
+
shared_open(&allreduce_buffer, shm_name, sizeof(struct allreduce_workspace));
|
492 |
+
} while (allreduce_buffer.descriptor == -1 && errno == ENOENT);
|
493 |
+
workspace_buf_other = (struct allreduce_workspace*)allreduce_buffer.bytes;
|
494 |
+
workspace[i] = workspace_buf_other;
|
495 |
+
} else {
|
496 |
+
workspace[i] = workspace_buf;
|
497 |
+
workspace_buf->counter = 0;
|
498 |
+
sem_init(&workspace_buf->mutex, 1, 1);
|
499 |
+
sem_init(&workspace_buf->turnstile1, 1, 0);
|
500 |
+
sem_init(&workspace_buf->turnstile2, 1, 0);
|
501 |
+
}
|
502 |
+
}
|
503 |
+
}
|
504 |
+
|
505 |
+
static void parallel_memcpy(void* to, void* from, size_t n_bytes)
|
506 |
+
__attribute__((target("avx512bw")));
|
507 |
+
static void parallel_memcpy(void* to, void* from, size_t n_bytes)
|
508 |
+
{
|
509 |
+
auto aligned_bytes = n_bytes - (n_bytes % VECTOR_LENGTH_IN_BYTES);
|
510 |
+
// process aligned part
|
511 |
+
#pragma omp parallel for
|
512 |
+
for (int i = 0; i < aligned_bytes; i += VECTOR_LENGTH_IN_BYTES) {
|
513 |
+
auto val = _mm256_loadu_si256((__m256i*)((char*)from + i));
|
514 |
+
_mm256_storeu_si256((__m256i*)((char*)to + i), val);
|
515 |
+
}
|
516 |
+
|
517 |
+
// process remaining part
|
518 |
+
for (int i = aligned_bytes; i < n_bytes; i++) { *((char*)to + i) = *((char*)from + i); }
|
519 |
+
}
|
520 |
+
|
521 |
+
#define positive_mod(num, mod) ((((num) % (mod)) + (mod)) % (mod))
|
522 |
+
#define rank_mod(rank) positive_mod(rank, world_size)
|
523 |
+
size_t slice_size(size_t chunk_el, int slice_idx)
|
524 |
+
{
|
525 |
+
size_t slice_size = chunk_el / world_size;
|
526 |
+
return slice_idx == world_size - 1 ? slice_size + (chunk_el % world_size) : slice_size;
|
527 |
+
}
|
528 |
+
|
529 |
+
char* slice_data(char* data_ptr, size_t chunk_el, int el_size, int slice_idx)
|
530 |
+
{
|
531 |
+
size_t slice_size = chunk_el / world_size;
|
532 |
+
size_t el_offset = slice_size * slice_idx;
|
533 |
+
return data_ptr + el_offset * el_size;
|
534 |
+
}
|
535 |
+
|
536 |
+
size_t slice_el_start(size_t chunk_el, int slice_idx)
|
537 |
+
{
|
538 |
+
size_t slice_size = chunk_el / world_size;
|
539 |
+
return slice_size * slice_idx;
|
540 |
+
}
|
541 |
+
|
542 |
+
void naive_all_reduce(char* data_ptr,
|
543 |
+
c10::ScalarType scalar_type,
|
544 |
+
size_t chunk_size,
|
545 |
+
size_t chunk_el)
|
546 |
+
{
|
547 |
+
parallel_memcpy(workspace[world_rank]->buffer, data_ptr, chunk_size);
|
548 |
+
std::atomic_thread_fence(std::memory_order_release);
|
549 |
+
workspace[world_rank]->state = coll_allreduce_naive__copy_in_done;
|
550 |
+
|
551 |
+
if (world_rank == 0) {
|
552 |
+
// compute allreduce result on rank 0
|
553 |
+
for (int i = 1; i < world_size; i++) {
|
554 |
+
// wait until the other rank copy the buffer
|
555 |
+
wait_buffer_state_until(i, coll_allreduce_naive__copy_in_done);
|
556 |
+
}
|
557 |
+
reduce_all_buffers(workspace, 0, chunk_el, scalar_type, world_size, 0);
|
558 |
+
std::atomic_thread_fence(std::memory_order_release);
|
559 |
+
workspace[world_rank]->state = coll_allreduce_naive__reduce_done;
|
560 |
+
parallel_memcpy(data_ptr, workspace[0]->buffer, chunk_size);
|
561 |
+
}
|
562 |
+
if (world_rank != 0) {
|
563 |
+
wait_buffer_state_until(0, coll_allreduce_naive__reduce_done);
|
564 |
+
parallel_memcpy(data_ptr, workspace[0]->buffer, chunk_size);
|
565 |
+
std::atomic_thread_fence(std::memory_order_release);
|
566 |
+
workspace[world_rank]->state = coll_allreduce_naive__copy_out_done;
|
567 |
+
}
|
568 |
+
if (world_rank == 0) {
|
569 |
+
for (int i = 1; i < world_size; i++) {
|
570 |
+
wait_buffer_state_until(i, coll_allreduce_naive__copy_out_done);
|
571 |
+
}
|
572 |
+
std::atomic_thread_fence(std::memory_order_release);
|
573 |
+
workspace[world_rank]->state = coll_begin;
|
574 |
+
}
|
575 |
+
if (world_rank != 0) {
|
576 |
+
// if rank 0 spin too fast it could be in state 1 of next allreduce
|
577 |
+
// in this case wait_buffer_state_until(0, 0) may cause deadlock
|
578 |
+
// what we are certain is when rank 0 finishes the state won't be 2
|
579 |
+
wait_buffer_state_until_not(0, coll_allreduce_naive__reduce_done);
|
580 |
+
workspace[world_rank]->state = coll_begin;
|
581 |
+
}
|
582 |
+
}
|
583 |
+
|
584 |
+
// naive allreduce distributed, each rank do naive reduce on its slice
|
585 |
+
void distributed_naive_reduce(char* data_ptr,
|
586 |
+
c10::ScalarType scalar_type,
|
587 |
+
size_t chunk_size,
|
588 |
+
size_t chunk_el)
|
589 |
+
{
|
590 |
+
#ifdef DO_PROFILE
|
591 |
+
static double total_t1_t0 = 0.0;
|
592 |
+
static double total_t2_t1 = 0.0;
|
593 |
+
static double total_t3_t2 = 0.0;
|
594 |
+
static double total_t4_t3 = 0.0;
|
595 |
+
static double total_t5_t4 = 0.0;
|
596 |
+
static int count = -16; // warmup
|
597 |
+
auto t0 = std::chrono::system_clock::now();
|
598 |
+
#endif
|
599 |
+
|
600 |
+
int data_size = chunk_size / chunk_el;
|
601 |
+
parallel_memcpy(workspace[world_rank]->buffer, data_ptr, chunk_size);
|
602 |
+
std::atomic_thread_fence(std::memory_order_release);
|
603 |
+
workspace[world_rank]->state = coll_allreduce_naive__copy_in_done;
|
604 |
+
|
605 |
+
#ifdef DO_PROFILE
|
606 |
+
auto t1 = std::chrono::system_clock::now();
|
607 |
+
#endif
|
608 |
+
|
609 |
+
for (int i = 0; i < world_size; i++) {
|
610 |
+
// wait until all the other ranks copy the buffer
|
611 |
+
wait_buffer_state_until_range(i, coll_allreduce_naive__copy_in_done, 2);
|
612 |
+
}
|
613 |
+
|
614 |
+
#ifdef DO_PROFILE
|
615 |
+
auto t2 = std::chrono::system_clock::now();
|
616 |
+
#endif
|
617 |
+
|
618 |
+
// reduce scatter
|
619 |
+
reduce_all_buffers(workspace,
|
620 |
+
slice_el_start(chunk_el, world_rank),
|
621 |
+
slice_size(chunk_el, world_rank),
|
622 |
+
scalar_type,
|
623 |
+
world_size,
|
624 |
+
world_rank);
|
625 |
+
std::atomic_thread_fence(std::memory_order_release);
|
626 |
+
workspace[world_rank]->state = coll_allreduce_naive__reduce_done;
|
627 |
+
|
628 |
+
#ifdef DO_PROFILE
|
629 |
+
auto t3 = std::chrono::system_clock::now();
|
630 |
+
#endif
|
631 |
+
|
632 |
+
for (int i = 0; i < world_size; i++) {
|
633 |
+
int rank = (i + world_rank) % world_size;
|
634 |
+
// wait until the other rank reduce the buffer
|
635 |
+
wait_buffer_state_until_range(rank, coll_allreduce_naive__reduce_done, 2);
|
636 |
+
parallel_memcpy(slice_data(data_ptr, chunk_el, data_size, rank),
|
637 |
+
slice_data(workspace[rank]->buffer, chunk_el, chunk_size / chunk_el, rank),
|
638 |
+
slice_size(chunk_el, rank) * data_size);
|
639 |
+
}
|
640 |
+
std::atomic_thread_fence(std::memory_order_release);
|
641 |
+
workspace[world_rank]->state = coll_allreduce_naive__copy_out_done;
|
642 |
+
|
643 |
+
#ifdef DO_PROFILE
|
644 |
+
auto t4 = std::chrono::system_clock::now();
|
645 |
+
#endif
|
646 |
+
|
647 |
+
for (int i = 0; i < world_size; i++) {
|
648 |
+
wait_buffer_state_until_not(i, coll_allreduce_naive__reduce_done);
|
649 |
+
}
|
650 |
+
|
651 |
+
std::atomic_thread_fence(std::memory_order_release);
|
652 |
+
workspace[world_rank]->state = coll_begin;
|
653 |
+
|
654 |
+
#ifdef DO_PROFILE
|
655 |
+
auto t5 = std::chrono::system_clock::now();
|
656 |
+
count++;
|
657 |
+
if (count > 0) {
|
658 |
+
total_t1_t0 += std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count();
|
659 |
+
total_t2_t1 += std::chrono::duration_cast<std::chrono::microseconds>(t2 - t1).count();
|
660 |
+
total_t3_t2 += std::chrono::duration_cast<std::chrono::microseconds>(t3 - t2).count();
|
661 |
+
total_t4_t3 += std::chrono::duration_cast<std::chrono::microseconds>(t4 - t3).count();
|
662 |
+
total_t5_t4 += std::chrono::duration_cast<std::chrono::microseconds>(t5 - t4).count();
|
663 |
+
if (world_rank == 0 && count == 1000) {
|
664 |
+
printf("distributed_naive_reduce time breakdown:\n");
|
665 |
+
printf("\tcopy input buffer: %.2f\n", total_t1_t0 / count);
|
666 |
+
printf("\twait for copy: %.2f\n", total_t2_t1 / count);
|
667 |
+
printf("\treduce: %.2f\n", total_t3_t2 / count);
|
668 |
+
printf("\tcopy buffer to output: %.2f\n", total_t4_t3 / count);
|
669 |
+
printf("\twait finish: %.2f\n", total_t5_t4 / count);
|
670 |
+
}
|
671 |
+
}
|
672 |
+
#endif
|
673 |
+
}
|
674 |
+
|
675 |
+
void all_reduce_outer_loop(torch::Tensor& data, size_t numel, int data_size)
|
676 |
+
{
|
677 |
+
for (int offset = 0; offset < data_size; offset += MAX_BUF_SIZE) {
|
678 |
+
auto data_ptr = ((char*)(data.data_ptr()) + offset);
|
679 |
+
size_t chunk_size = data_size - offset > MAX_BUF_SIZE ? MAX_BUF_SIZE : data_size - offset;
|
680 |
+
size_t chunk_el = chunk_size / (data_size / numel);
|
681 |
+
if (chunk_size < NAIVE_ALLREDUCE_THRESHOLD)
|
682 |
+
naive_all_reduce(data_ptr, data.scalar_type(), chunk_size, chunk_el);
|
683 |
+
else
|
684 |
+
distributed_naive_reduce(data_ptr, data.scalar_type(), chunk_size, chunk_el);
|
685 |
+
}
|
686 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/cpu/comm/shm.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#ifndef __SHM_COLLECTIVES__
|
7 |
+
#define __SHM_COLLECTIVES__
|
8 |
+
#define VECTOR_LENGTH_IN_BYTES 32
|
9 |
+
void shm_initialize(int size, int rank, char* addr_string, char* port_string);
|
10 |
+
void all_reduce_outer_loop(torch::Tensor& data, size_t numel, int data_size);
|
11 |
+
void barrier_wait(int root_idx, int num_ranks);
|
12 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/cpu/comm/shm_interface.cpp
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <torch/extension.h>
|
7 |
+
|
8 |
+
#include "shm.h"
|
9 |
+
|
10 |
+
// #define DO_PROFILE
|
11 |
+
#ifdef DO_PROFILE
|
12 |
+
#include <cfloat>
|
13 |
+
#include <chrono>
|
14 |
+
#endif
|
15 |
+
|
16 |
+
// Communication settings
|
17 |
+
static int world_rank = -1;
|
18 |
+
static int world_size = -1;
|
19 |
+
|
20 |
+
static bool is_initialized = 0;
|
21 |
+
|
22 |
+
static bool all_ranks_local_p = false;
|
23 |
+
|
24 |
+
void initialize(int size, int rank)
|
25 |
+
{
|
26 |
+
if (is_initialized) return;
|
27 |
+
|
28 |
+
// Check whether all ranks is on the same physical machine.
|
29 |
+
// If true, we will use an SHM based low latency allreduce
|
30 |
+
|
31 |
+
auto ls_string = std::getenv("LOCAL_SIZE");
|
32 |
+
int ls = 0;
|
33 |
+
if (ls_string != NULL) { ls = std::stoi(std::getenv("LOCAL_SIZE")); }
|
34 |
+
|
35 |
+
if (size >= 1 && size == ls) { all_ranks_local_p = true; }
|
36 |
+
|
37 |
+
world_size = size;
|
38 |
+
world_rank = rank;
|
39 |
+
is_initialized = 1;
|
40 |
+
|
41 |
+
auto addr_string = std::getenv("MASTER_ADDR");
|
42 |
+
if (addr_string == NULL) { addr_string = ""; }
|
43 |
+
auto port_string = std::getenv("MASTER_PORT");
|
44 |
+
if (port_string == NULL) { port_string = ""; }
|
45 |
+
|
46 |
+
if (all_ranks_local_p) { shm_initialize(size, rank, addr_string, port_string); }
|
47 |
+
}
|
48 |
+
|
49 |
+
int get_rank(int group = 0) { return world_rank; }
|
50 |
+
|
51 |
+
int get_world_size(int group = 0) { return world_size; }
|
52 |
+
|
53 |
+
// Success - return 0
|
54 |
+
// Fail (cannot hornor the request and need to fall back) - return -1
|
55 |
+
int inference_all_reduce(torch::Tensor& data, py::object op)
|
56 |
+
{
|
57 |
+
if (!all_ranks_local_p) return -1;
|
58 |
+
#ifdef DO_PROFILE
|
59 |
+
static double total_time = 0.0;
|
60 |
+
static double total_time_sq = 0.0;
|
61 |
+
static int count = -16; // warmup
|
62 |
+
static double max_time = 0.0;
|
63 |
+
static double min_time = DBL_MAX;
|
64 |
+
// make sure all rank reach this point before measuring time
|
65 |
+
// turn on this if you suspect each rank didn't reach here at the same time (stragger)
|
66 |
+
// if (all_ranks_local_p) { barrier_wait(0, world_size); }
|
67 |
+
auto start = std::chrono::system_clock::now();
|
68 |
+
#endif
|
69 |
+
|
70 |
+
static py::object ReduceOp = py::module_::import("deepspeed.comm").attr("ReduceOp");
|
71 |
+
static auto ReduceOpSum = (int)py::int_(ReduceOp.attr("SUM").attr("value"));
|
72 |
+
|
73 |
+
assert(py::int_(op.attr("value")) == ReduceOpSum);
|
74 |
+
|
75 |
+
auto numel = data.numel();
|
76 |
+
|
77 |
+
int data_size = 0;
|
78 |
+
bool data_type_fallback = false;
|
79 |
+
|
80 |
+
switch (data.scalar_type()) {
|
81 |
+
case c10::ScalarType::BFloat16: data_size = numel * 2; break;
|
82 |
+
case c10::ScalarType::Float: data_size = numel * 4; break;
|
83 |
+
default: data_type_fallback = true;
|
84 |
+
}
|
85 |
+
|
86 |
+
if (data_type_fallback) return -1;
|
87 |
+
|
88 |
+
all_reduce_outer_loop(data, numel, data_size);
|
89 |
+
|
90 |
+
#ifdef DO_PROFILE
|
91 |
+
auto end = std::chrono::system_clock::now();
|
92 |
+
count++;
|
93 |
+
if (count > 0) {
|
94 |
+
double elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start).count();
|
95 |
+
if (elapsed > max_time) { max_time = elapsed; }
|
96 |
+
if (elapsed < min_time) { min_time = elapsed; }
|
97 |
+
total_time += elapsed;
|
98 |
+
total_time_sq += elapsed * elapsed;
|
99 |
+
if (world_rank == 0 && count == 1000) {
|
100 |
+
auto avg = total_time / count;
|
101 |
+
auto sd =
|
102 |
+
sqrt(total_time_sq / count - total_time * total_time / (count * count)) / avg * 100;
|
103 |
+
printf(" C++ kernel\t\t %.2f\t %.2f\t%.2f\t %.2f\n",
|
104 |
+
min_time,
|
105 |
+
max_time,
|
106 |
+
total_time / count,
|
107 |
+
sd);
|
108 |
+
}
|
109 |
+
}
|
110 |
+
#endif
|
111 |
+
return 0;
|
112 |
+
}
|
113 |
+
|
114 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
115 |
+
{
|
116 |
+
m.def("initialize", &initialize, "shm initialize");
|
117 |
+
m.def("get_rank", &get_rank, "get rank");
|
118 |
+
m.def("get_world_size", &get_world_size, "get world size");
|
119 |
+
m.def("inference_all_reduce", &inference_all_reduce, "low latency all_reduce implementation");
|
120 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/cpu/lion/fused_lion.cpp
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "cpu_lion.h"
|
7 |
+
|
8 |
+
// C++ interface
|
9 |
+
|
10 |
+
void multi_tensor_lion(int chunk_size,
|
11 |
+
at::Tensor noop_flag,
|
12 |
+
std::vector<std::vector<at::Tensor>> tensor_lists, /*gpmv*/
|
13 |
+
const float lr,
|
14 |
+
const float beta1,
|
15 |
+
const float beta2,
|
16 |
+
const int step,
|
17 |
+
const int mode,
|
18 |
+
const float weight_decay)
|
19 |
+
{
|
20 |
+
static bool initialized = false;
|
21 |
+
if (!initialized) {
|
22 |
+
create_lion_optimizer(0);
|
23 |
+
initialized = true;
|
24 |
+
}
|
25 |
+
for (int i = 0; i < tensor_lists[0].size(); i++) {
|
26 |
+
ds_lion_step(0,
|
27 |
+
step,
|
28 |
+
lr,
|
29 |
+
beta1,
|
30 |
+
beta2,
|
31 |
+
weight_decay,
|
32 |
+
tensor_lists[1][i],
|
33 |
+
tensor_lists[0][i],
|
34 |
+
tensor_lists[2][i]);
|
35 |
+
}
|
36 |
+
}
|
37 |
+
|
38 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
39 |
+
{
|
40 |
+
m.def("multi_tensor_lion",
|
41 |
+
&multi_tensor_lion,
|
42 |
+
"Compute and apply gradient update to parameters for Lion optimizer");
|
43 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/epilogue/epilogue_grad_bias.h
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
#include <cutlass/epilogue/threadblock/default_epilogue_tensor_op.h>
|
8 |
+
#include <cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h>
|
9 |
+
#include "../iterators/predicated_tile_iterator_atomic.h"
|
10 |
+
#include "cutlass/epilogue/threadblock/epilogue.h"
|
11 |
+
|
12 |
+
namespace cutlass {
|
13 |
+
namespace epilogue {
|
14 |
+
namespace threadblock {
|
15 |
+
template <int Rank,
|
16 |
+
typename Shape_,
|
17 |
+
typename WarpMmaTensorOp_,
|
18 |
+
int PartitionsK,
|
19 |
+
typename OutputOp_,
|
20 |
+
int ElementsPerAccess>
|
21 |
+
struct EpilogueTensorOpAffineRankN : public DefaultEpilogueTensorOpAffineRankN<Rank,
|
22 |
+
Shape_,
|
23 |
+
WarpMmaTensorOp_,
|
24 |
+
PartitionsK,
|
25 |
+
OutputOp_,
|
26 |
+
ElementsPerAccess> {
|
27 |
+
using Base = DefaultEpilogueTensorOpAffineRankN<Rank,
|
28 |
+
Shape_,
|
29 |
+
WarpMmaTensorOp_,
|
30 |
+
PartitionsK,
|
31 |
+
OutputOp_,
|
32 |
+
ElementsPerAccess>;
|
33 |
+
using OutputTileIterator =
|
34 |
+
cutlass::epilogue::threadblock::PredicatedTileIteratorAffineRankNAtomic<
|
35 |
+
typename Base::OutputTileThreadMap,
|
36 |
+
typename Base::ElementOutput,
|
37 |
+
Rank>;
|
38 |
+
|
39 |
+
using Epilogue =
|
40 |
+
cutlass::epilogue::threadblock::Epilogue<typename Base::Shape,
|
41 |
+
typename Base::WarpMmaTensorOp,
|
42 |
+
Base::kPartitionsK,
|
43 |
+
OutputTileIterator,
|
44 |
+
typename Base::AccumulatorFragmentIterator,
|
45 |
+
typename Base::WarpTileIterator,
|
46 |
+
typename Base::SharedLoadIterator,
|
47 |
+
typename Base::OutputOp,
|
48 |
+
typename Base::Padding,
|
49 |
+
Base::kFragmentsPerIteration>;
|
50 |
+
};
|
51 |
+
|
52 |
+
template <int Rank,
|
53 |
+
typename Shape_,
|
54 |
+
typename WarpMmaTensorOp_,
|
55 |
+
int PartitionsK,
|
56 |
+
typename OutputOp_,
|
57 |
+
int ElementsPerAccess>
|
58 |
+
struct EpilogueVoltaTensorOpAffineRankN
|
59 |
+
: public DefaultEpilogueVoltaTensorOpAffineRankN<Rank,
|
60 |
+
Shape_,
|
61 |
+
WarpMmaTensorOp_,
|
62 |
+
PartitionsK,
|
63 |
+
OutputOp_,
|
64 |
+
ElementsPerAccess> {
|
65 |
+
using Base = DefaultEpilogueVoltaTensorOpAffineRankN<Rank,
|
66 |
+
Shape_,
|
67 |
+
WarpMmaTensorOp_,
|
68 |
+
PartitionsK,
|
69 |
+
OutputOp_,
|
70 |
+
ElementsPerAccess>;
|
71 |
+
using OutputTileIterator =
|
72 |
+
cutlass::epilogue::threadblock::PredicatedTileIteratorAffineRankNAtomic<
|
73 |
+
typename Base::OutputTileThreadMap,
|
74 |
+
typename Base::ElementOutput,
|
75 |
+
Rank>;
|
76 |
+
|
77 |
+
using Epilogue =
|
78 |
+
cutlass::epilogue::threadblock::Epilogue<typename Base::Shape,
|
79 |
+
typename Base::WarpMmaTensorOp,
|
80 |
+
Base::kPartitionsK,
|
81 |
+
OutputTileIterator,
|
82 |
+
typename Base::AccumulatorFragmentIterator,
|
83 |
+
typename Base::WarpTileIterator,
|
84 |
+
typename Base::SharedLoadIterator,
|
85 |
+
typename Base::OutputOp,
|
86 |
+
typename Base::Padding>;
|
87 |
+
};
|
88 |
+
|
89 |
+
template <typename Shape_,
|
90 |
+
typename WarpMmaTensorOp_,
|
91 |
+
int PartitionsK,
|
92 |
+
typename OutputOp_,
|
93 |
+
int ElementsPerAccess,
|
94 |
+
bool ScatterD = false,
|
95 |
+
typename PermuteDLayout = layout::NoPermute>
|
96 |
+
struct EpilogueTensorOp : public DefaultEpilogueTensorOp<Shape_,
|
97 |
+
WarpMmaTensorOp_,
|
98 |
+
PartitionsK,
|
99 |
+
OutputOp_,
|
100 |
+
ElementsPerAccess,
|
101 |
+
ScatterD,
|
102 |
+
PermuteDLayout> {
|
103 |
+
using Base = DefaultEpilogueTensorOp<Shape_,
|
104 |
+
WarpMmaTensorOp_,
|
105 |
+
PartitionsK,
|
106 |
+
OutputOp_,
|
107 |
+
ElementsPerAccess,
|
108 |
+
ScatterD,
|
109 |
+
PermuteDLayout>;
|
110 |
+
using OutputTileIterator = cutlass::epilogue::threadblock::PredicatedTileIteratorAtomic<
|
111 |
+
typename Base::OutputTileThreadMap,
|
112 |
+
typename Base::ElementOutput,
|
113 |
+
ScatterD,
|
114 |
+
PermuteDLayout>;
|
115 |
+
using Epilogue =
|
116 |
+
cutlass::epilogue::threadblock::Epilogue<typename Base::Shape,
|
117 |
+
typename Base::WarpMmaTensorOp,
|
118 |
+
Base::kPartitionsK,
|
119 |
+
OutputTileIterator,
|
120 |
+
typename Base::AccumulatorFragmentIterator,
|
121 |
+
typename Base::WarpTileIterator,
|
122 |
+
typename Base::SharedLoadIterator,
|
123 |
+
typename Base::OutputOp,
|
124 |
+
typename Base::Padding,
|
125 |
+
Base::kFragmentsPerIteration>;
|
126 |
+
};
|
127 |
+
|
128 |
+
template <typename Shape_,
|
129 |
+
typename WarpMmaTensorOp_,
|
130 |
+
int PartitionsK,
|
131 |
+
typename OutputOp_,
|
132 |
+
int ElementsPerAccess,
|
133 |
+
bool ScatterD = false,
|
134 |
+
typename PermuteDLayout = layout::NoPermute>
|
135 |
+
struct EpilogueVoltaTensorOp : public DefaultEpilogueVoltaTensorOp<Shape_,
|
136 |
+
WarpMmaTensorOp_,
|
137 |
+
PartitionsK,
|
138 |
+
OutputOp_,
|
139 |
+
ElementsPerAccess,
|
140 |
+
ScatterD,
|
141 |
+
PermuteDLayout> {
|
142 |
+
using Base = DefaultEpilogueVoltaTensorOp<Shape_,
|
143 |
+
WarpMmaTensorOp_,
|
144 |
+
PartitionsK,
|
145 |
+
OutputOp_,
|
146 |
+
ElementsPerAccess,
|
147 |
+
ScatterD,
|
148 |
+
PermuteDLayout>;
|
149 |
+
using OutputTileIterator = cutlass::epilogue::threadblock::PredicatedTileIteratorAtomic<
|
150 |
+
typename Base::OutputTileThreadMap,
|
151 |
+
typename Base::ElementOutput,
|
152 |
+
ScatterD,
|
153 |
+
PermuteDLayout>;
|
154 |
+
using Epilogue =
|
155 |
+
cutlass::epilogue::threadblock::Epilogue<typename Base::Shape,
|
156 |
+
typename Base::WarpMmaTensorOp,
|
157 |
+
Base::kPartitionsK,
|
158 |
+
OutputTileIterator,
|
159 |
+
typename Base::AccumulatorFragmentIterator,
|
160 |
+
typename Base::WarpTileIterator,
|
161 |
+
typename Base::SharedLoadIterator,
|
162 |
+
typename Base::OutputOp,
|
163 |
+
typename Base::Padding>;
|
164 |
+
};
|
165 |
+
} // namespace threadblock
|
166 |
+
} // namespace epilogue
|
167 |
+
} // namespace cutlass
|
168 |
+
|
169 |
+
template <typename Arch_,
|
170 |
+
typename Shape_,
|
171 |
+
typename WarpMmaTensorOp_,
|
172 |
+
int PartitionsK,
|
173 |
+
typename OutputOp_,
|
174 |
+
int ElementsPerAccess,
|
175 |
+
bool ScatterD = false,
|
176 |
+
typename PermuteDLayout = cutlass::layout::NoPermute>
|
177 |
+
struct BiasGradEpilogue {
|
178 |
+
using Epilogue =
|
179 |
+
typename cutlass::epilogue::threadblock::EpilogueTensorOp<Shape_,
|
180 |
+
WarpMmaTensorOp_,
|
181 |
+
PartitionsK,
|
182 |
+
OutputOp_,
|
183 |
+
ElementsPerAccess,
|
184 |
+
ScatterD,
|
185 |
+
PermuteDLayout>::Epilogue;
|
186 |
+
};
|
187 |
+
|
188 |
+
template <typename Shape_,
|
189 |
+
typename WarpMmaTensorOp_,
|
190 |
+
int PartitionsK,
|
191 |
+
typename OutputOp_,
|
192 |
+
int ElementsPerAccess,
|
193 |
+
bool ScatterD,
|
194 |
+
typename PermuteDLayout>
|
195 |
+
struct BiasGradEpilogue<cutlass::arch::Sm70,
|
196 |
+
Shape_,
|
197 |
+
WarpMmaTensorOp_,
|
198 |
+
PartitionsK,
|
199 |
+
OutputOp_,
|
200 |
+
ElementsPerAccess,
|
201 |
+
ScatterD,
|
202 |
+
PermuteDLayout> {
|
203 |
+
using Epilogue =
|
204 |
+
typename cutlass::epilogue::threadblock::EpilogueVoltaTensorOp<Shape_,
|
205 |
+
WarpMmaTensorOp_,
|
206 |
+
PartitionsK,
|
207 |
+
OutputOp_,
|
208 |
+
ElementsPerAccess,
|
209 |
+
ScatterD,
|
210 |
+
PermuteDLayout>::Epilogue;
|
211 |
+
};
|
212 |
+
|
213 |
+
template <typename Arch_,
|
214 |
+
int Rank,
|
215 |
+
typename Shape_,
|
216 |
+
typename WarpMmaTensorOp_,
|
217 |
+
int PartitionsK,
|
218 |
+
typename OutputOp_,
|
219 |
+
int ElementsPerAccess>
|
220 |
+
struct BiasGradEpilogueAffineRankN {
|
221 |
+
using Epilogue = typename cutlass::epilogue::threadblock::EpilogueTensorOpAffineRankN<
|
222 |
+
Rank,
|
223 |
+
Shape_,
|
224 |
+
WarpMmaTensorOp_,
|
225 |
+
PartitionsK,
|
226 |
+
OutputOp_,
|
227 |
+
ElementsPerAccess>::Epilogue;
|
228 |
+
};
|
229 |
+
|
230 |
+
template <int Rank,
|
231 |
+
typename Shape_,
|
232 |
+
typename WarpMmaTensorOp_,
|
233 |
+
int PartitionsK,
|
234 |
+
typename OutputOp_,
|
235 |
+
int ElementsPerAccess>
|
236 |
+
struct BiasGradEpilogueAffineRankN<cutlass::arch::Sm70,
|
237 |
+
Rank,
|
238 |
+
Shape_,
|
239 |
+
WarpMmaTensorOp_,
|
240 |
+
PartitionsK,
|
241 |
+
OutputOp_,
|
242 |
+
ElementsPerAccess> {
|
243 |
+
using Epilogue = typename cutlass::epilogue::threadblock::EpilogueVoltaTensorOpAffineRankN<
|
244 |
+
Rank,
|
245 |
+
Shape_,
|
246 |
+
WarpMmaTensorOp_,
|
247 |
+
PartitionsK,
|
248 |
+
OutputOp_,
|
249 |
+
ElementsPerAccess>::Epilogue;
|
250 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/epilogue/epilogue_pipelined.h
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holdvr nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
|
32 |
+
// Copyright (c) Microsoft Corporation.
|
33 |
+
// SPDX-License-Identifier: Apache-2.0
|
34 |
+
|
35 |
+
// DeepSpeed Team
|
36 |
+
|
37 |
+
/*! \file
|
38 |
+
\brief Epilogue for threadblock scoped GEMMs using Tensor Ops.
|
39 |
+
|
40 |
+
File copied from "cutlass/epilogue/threadblock/epilogue.h"
|
41 |
+
then modified to:
|
42 |
+
(1) load 2 source fragments at the same time (pipelining)
|
43 |
+
(2) support reading from a different dtype
|
44 |
+
(3) pass the row id to the OutputOp if it takes it
|
45 |
+
(see MemoryEfficientAttentionNormalize)
|
46 |
+
Note that in general the fragment passed to the OutputOp could
|
47 |
+
span multiple rows but it does not happen with the configurations we have
|
48 |
+
*/
|
49 |
+
|
50 |
+
#pragma once
|
51 |
+
|
52 |
+
#if defined(__CUDACC_RTC__)
|
53 |
+
#include <cuda/std/cassert>
|
54 |
+
#else
|
55 |
+
#include <assert.h>
|
56 |
+
#endif
|
57 |
+
|
58 |
+
#include "cutlass/aligned_buffer.h"
|
59 |
+
#include "cutlass/array.h"
|
60 |
+
#include "cutlass/cutlass.h"
|
61 |
+
#include "cutlass/functional.h"
|
62 |
+
#include "cutlass/layout/tensor.h"
|
63 |
+
#include "cutlass/layout/vector.h"
|
64 |
+
#include "cutlass/numeric_types.h"
|
65 |
+
#include "cutlass/tensor_coord.h"
|
66 |
+
|
67 |
+
#include "cutlass/gemm/gemm.h"
|
68 |
+
|
69 |
+
#include "cutlass/transform/pitch_linear_thread_map.h"
|
70 |
+
#include "cutlass/transform/threadblock/regular_tile_iterator.h"
|
71 |
+
|
72 |
+
#include "cutlass/epilogue/threadblock/epilogue_base.h"
|
73 |
+
#include "cutlass/epilogue/threadblock/predicated_tile_iterator.h"
|
74 |
+
#include "cutlass/numeric_types.h"
|
75 |
+
|
76 |
+
////////////////////////////////////////////////////////////////////////////////
|
77 |
+
|
78 |
+
namespace cutlass {
|
79 |
+
namespace epilogue {
|
80 |
+
namespace threadblock {
|
81 |
+
|
82 |
+
template <typename Op>
|
83 |
+
struct ApplyEpilogueOp {
|
84 |
+
static CUTLASS_DEVICE typename Op::FragmentOutput apply(
|
85 |
+
Op const& output_op,
|
86 |
+
int row_id,
|
87 |
+
typename Op::FragmentAccumulator const& accum,
|
88 |
+
typename Op::FragmentOutput const& source)
|
89 |
+
{
|
90 |
+
return output_op(accum, source);
|
91 |
+
}
|
92 |
+
static CUTLASS_DEVICE typename Op::FragmentOutput
|
93 |
+
apply(Op const& output_op, int row_id, typename Op::FragmentAccumulator const& accum)
|
94 |
+
{
|
95 |
+
return output_op(accum);
|
96 |
+
}
|
97 |
+
};
|
98 |
+
|
99 |
+
////////////////////////////////////////////////////////////////////////////////
|
100 |
+
|
101 |
+
/// Epilogue operator
|
102 |
+
template <typename Shape_, ///< Shape of threadblock tile (concept: GemmShape)
|
103 |
+
typename WarpMmaOperator_, ///< Warp-level MMA operator (concept:
|
104 |
+
///< gemm::warp::MmaTensorOp)
|
105 |
+
int PartitionsK, ///< Number of partitions of the K dimension
|
106 |
+
typename OutputTileIterator_, ///< Tile iterator writing output tensors
|
107 |
+
typename AccumulatorFragmentIterator_, ///< Fragment iterator selecting
|
108 |
+
///< accumulators
|
109 |
+
typename WarpTileIterator_, ///< Warp-scoped tile iterator writing
|
110 |
+
///< accumulators to SMEM
|
111 |
+
typename SharedLoadIterator_, ///< Threadblock-scoped tile iterator loading
|
112 |
+
///< from SMEM
|
113 |
+
typename OutputOp_, ///< Output operator
|
114 |
+
typename Padding_, ///< Padding added to SMEM allocation to avoid bank
|
115 |
+
///< conflicts (concept: MatrixShape)
|
116 |
+
int FragmentsPerPartition = 1, ///< Used to coarsten the epilogue granularity
|
117 |
+
int IterationsUnroll = ///< Used to reduce binary size when epilogue op is
|
118 |
+
///< large
|
119 |
+
(!IsEpilogueFunctorHeavy<OutputOp_>::value),
|
120 |
+
typename OutputTileSourceIterator_ =
|
121 |
+
OutputTileIterator_ ///< Tile iterator reading tensors
|
122 |
+
>
|
123 |
+
class EpiloguePipelined : public EpilogueBase<Shape_,
|
124 |
+
typename WarpMmaOperator_::Shape,
|
125 |
+
PartitionsK,
|
126 |
+
AccumulatorFragmentIterator_,
|
127 |
+
WarpTileIterator_,
|
128 |
+
Padding_,
|
129 |
+
FragmentsPerPartition> {
|
130 |
+
public:
|
131 |
+
using Base = EpilogueBase<Shape_,
|
132 |
+
typename WarpMmaOperator_::Shape,
|
133 |
+
PartitionsK,
|
134 |
+
AccumulatorFragmentIterator_,
|
135 |
+
WarpTileIterator_,
|
136 |
+
Padding_,
|
137 |
+
FragmentsPerPartition>;
|
138 |
+
|
139 |
+
using Shape = Shape_;
|
140 |
+
using WarpMmaOperator = WarpMmaOperator_;
|
141 |
+
static int const kPartitionsK = PartitionsK;
|
142 |
+
using OutputTileIterator = OutputTileIterator_;
|
143 |
+
using OutputTileSourceIterator = OutputTileSourceIterator_;
|
144 |
+
using AccumulatorFragmentIterator = AccumulatorFragmentIterator_;
|
145 |
+
using WarpTileIterator = WarpTileIterator_;
|
146 |
+
using SharedLoadIterator = SharedLoadIterator_;
|
147 |
+
using OutputOp = OutputOp_;
|
148 |
+
using Padding = Padding_;
|
149 |
+
|
150 |
+
using Layout = layout::RowMajor;
|
151 |
+
using LongIndex = typename Layout::LongIndex;
|
152 |
+
|
153 |
+
/// The complete warp-level accumulator tile
|
154 |
+
using AccumulatorTile = typename Base::AccumulatorTile;
|
155 |
+
|
156 |
+
/// Accumulator element
|
157 |
+
using ElementAccumulator = typename WarpTileIterator::Element;
|
158 |
+
|
159 |
+
/// Output element
|
160 |
+
using ElementOutput = typename OutputTileIterator::Element;
|
161 |
+
using ElementSource = typename OutputTileSourceIterator::Element;
|
162 |
+
|
163 |
+
/// Output access size
|
164 |
+
static int const kElementsPerAccess = OutputTileIterator::kElementsPerAccess;
|
165 |
+
|
166 |
+
/// Tensor reference to destination tensor
|
167 |
+
using TensorRef = typename OutputTileIterator::TensorRef;
|
168 |
+
|
169 |
+
/// Tensor reference to sync tensor
|
170 |
+
using SyncTensorRef = typename cutlass::TensorRef<int, cutlass::layout::PackedVectorLayout>;
|
171 |
+
|
172 |
+
/// Const tensor reference to source tensor
|
173 |
+
using ConstTensorRef = typename OutputTileIterator::ConstTensorRef;
|
174 |
+
|
175 |
+
/// Array type used to output
|
176 |
+
using OutputAccessType =
|
177 |
+
Array<typename OutputTileIterator::Element, OutputTileIterator::kElementsPerAccess>;
|
178 |
+
using SourceAccessType = Array<typename OutputTileSourceIterator::Element,
|
179 |
+
OutputTileSourceIterator::kElementsPerAccess>;
|
180 |
+
|
181 |
+
/// Array type used by output functor
|
182 |
+
using AccumulatorAccessType =
|
183 |
+
Array<typename WarpTileIterator::Element, OutputTileIterator::kElementsPerAccess>;
|
184 |
+
|
185 |
+
/// Number of warps
|
186 |
+
using WarpCount = typename Base::WarpCount;
|
187 |
+
|
188 |
+
static int constexpr kSmemTiles =
|
189 |
+
Base::kFragmentsPerIteration > 1 ? Base::kFragmentsPerIteration : kPartitionsK;
|
190 |
+
static int constexpr kSmemPointerOffset =
|
191 |
+
Base::SharedStorage::StorageShape::kCount / kSmemTiles;
|
192 |
+
|
193 |
+
public:
|
194 |
+
static_assert(OutputTileSourceIterator::Fragment::kElements ==
|
195 |
+
OutputTileIterator::Fragment::kElements,
|
196 |
+
"Mismatch between input tile and output tile iterator (kElements)");
|
197 |
+
static_assert(OutputTileSourceIterator::kIterations == OutputTileIterator::kIterations,
|
198 |
+
"Mismatch between input tile and output tile iterator (kIterations)");
|
199 |
+
static_assert(SharedLoadIterator::Fragment::kElements ==
|
200 |
+
OutputTileIterator::Fragment::kElements,
|
201 |
+
"Mismatch between shared load iterator and output tile iterator.");
|
202 |
+
|
203 |
+
static_assert(OutputTileIterator::kElementsPerAccess,
|
204 |
+
"OutputTileIterator::kElementsPerAccess must not be zero.");
|
205 |
+
|
206 |
+
static_assert(!(OutputTileIterator::Fragment::kElements %
|
207 |
+
OutputTileIterator::kElementsPerAccess),
|
208 |
+
"Divisibility");
|
209 |
+
|
210 |
+
private:
|
211 |
+
/// Loads fragment from shared memory aligned with output tensor
|
212 |
+
SharedLoadIterator shared_load_iterator_;
|
213 |
+
|
214 |
+
public:
|
215 |
+
/// Constructor
|
216 |
+
CUTLASS_DEVICE
|
217 |
+
EpiloguePipelined(typename Base::SharedStorage& shared_storage, ///< Shared storage object
|
218 |
+
int thread_idx, ///< ID of a thread within the threadblock
|
219 |
+
int warp_idx, ///< ID of warp within threadblock
|
220 |
+
int lane_idx ///< Id of thread within warp
|
221 |
+
)
|
222 |
+
: Base(shared_storage, thread_idx, warp_idx, lane_idx),
|
223 |
+
shared_load_iterator_(shared_storage.reference(), thread_idx)
|
224 |
+
{
|
225 |
+
}
|
226 |
+
|
227 |
+
/// Streams the result to global memory
|
228 |
+
CUTLASS_DEVICE
|
229 |
+
void operator()(OutputOp const& output_op, ///< Output operator
|
230 |
+
OutputTileIterator destination_iterator, ///< Tile iterator for destination
|
231 |
+
AccumulatorTile const& accumulators, ///< Complete warp-level accumulator tile
|
232 |
+
OutputTileSourceIterator source_iterator)
|
233 |
+
{ ///< Threadblock tile coordinate in GEMM (in units
|
234 |
+
///< of threadblock tiles)
|
235 |
+
|
236 |
+
if (!output_op.is_source_needed()) {
|
237 |
+
compute_source_not_needed_(output_op, destination_iterator, accumulators);
|
238 |
+
} else {
|
239 |
+
compute_source_needed_(output_op, destination_iterator, accumulators, source_iterator);
|
240 |
+
}
|
241 |
+
}
|
242 |
+
CUTLASS_DEVICE
|
243 |
+
void operator()(OutputOp const& output_op, ///< Output operator
|
244 |
+
OutputTileIterator destination_iterator, ///< Tile iterator for destination
|
245 |
+
AccumulatorTile const& accumulators)
|
246 |
+
{ ///< Complete warp-level accumulator tile
|
247 |
+
compute_source_not_needed_(output_op, destination_iterator, accumulators);
|
248 |
+
}
|
249 |
+
|
250 |
+
private:
|
251 |
+
template <class Seq>
|
252 |
+
struct acc2smem_source_not_needed;
|
253 |
+
|
254 |
+
template <size_t... Seq>
|
255 |
+
struct acc2smem_source_not_needed<cutlass::index_sequence<Seq...>> {
|
256 |
+
template <int Advance>
|
257 |
+
CUTLASS_DEVICE static void helper(AccumulatorFragmentIterator accum_fragment_iterator,
|
258 |
+
WarpTileIterator& warp_tile_iterator)
|
259 |
+
{
|
260 |
+
CUTLASS_PRAGMA_UNROLL
|
261 |
+
for (int i = 0; i < Advance; i++) { ++accum_fragment_iterator; }
|
262 |
+
|
263 |
+
CUTLASS_PRAGMA_UNROLL
|
264 |
+
for (int p = 0; p < Base::kFragmentsPerIteration; ++p) {
|
265 |
+
typename AccumulatorFragmentIterator::Fragment accum_fragment;
|
266 |
+
|
267 |
+
accum_fragment_iterator.load(accum_fragment);
|
268 |
+
++accum_fragment_iterator;
|
269 |
+
|
270 |
+
warp_tile_iterator.store(accum_fragment);
|
271 |
+
if (p < Base::kFragmentsPerIteration - 1) {
|
272 |
+
warp_tile_iterator.add_pointer_offset(kSmemPointerOffset);
|
273 |
+
}
|
274 |
+
}
|
275 |
+
|
276 |
+
if (Base::kFragmentsPerIteration > 1) {
|
277 |
+
warp_tile_iterator.add_pointer_offset(kSmemPointerOffset *
|
278 |
+
(1 - Base::kFragmentsPerIteration));
|
279 |
+
}
|
280 |
+
}
|
281 |
+
|
282 |
+
CUTLASS_DEVICE
|
283 |
+
static void push(size_t pos,
|
284 |
+
AccumulatorFragmentIterator const& iterator_begin,
|
285 |
+
WarpTileIterator& warp_tile_iterator)
|
286 |
+
{
|
287 |
+
int dummy[] = {
|
288 |
+
(pos == (Seq * Base::kFragmentsPerIteration)) &&
|
289 |
+
(helper<Seq * Base::kFragmentsPerIteration>(iterator_begin, warp_tile_iterator),
|
290 |
+
0)...};
|
291 |
+
|
292 |
+
CUTLASS_UNUSED(dummy[0]);
|
293 |
+
}
|
294 |
+
};
|
295 |
+
|
296 |
+
static_assert(kPartitionsK == 1 || Base::kFragmentsPerIteration == 1,
|
297 |
+
"One of these must be exactly 1.");
|
298 |
+
|
299 |
+
/// Streams the result to global memory
|
300 |
+
CUTLASS_DEVICE
|
301 |
+
void compute_source_not_needed_(
|
302 |
+
OutputOp const& output_op, ///< Output operator
|
303 |
+
OutputTileIterator destination_iterator, ///< Tile iterator for destination
|
304 |
+
AccumulatorTile const& accumulators ///< Complete warp-level accumulator tile
|
305 |
+
)
|
306 |
+
{
|
307 |
+
//
|
308 |
+
// Iterator over warp-level accumulator fragment
|
309 |
+
//
|
310 |
+
|
311 |
+
AccumulatorFragmentIterator accum_fragment_iterator(accumulators);
|
312 |
+
|
313 |
+
//
|
314 |
+
// Iterate over accumulator tile
|
315 |
+
//
|
316 |
+
|
317 |
+
#pragma unroll(IterationsUnroll ? OutputTileIterator::kIterations / Base::kFragmentsPerIteration \
|
318 |
+
: 1)
|
319 |
+
for (int iter = 0; iter < OutputTileIterator::kIterations;
|
320 |
+
iter += Base::kFragmentsPerIteration) {
|
321 |
+
//
|
322 |
+
// Convert and store fragment
|
323 |
+
//
|
324 |
+
|
325 |
+
__syncthreads();
|
326 |
+
|
327 |
+
acc2smem_source_not_needed<cutlass::make_index_sequence<
|
328 |
+
OutputTileIterator::kIterations / Base::kFragmentsPerIteration>>::
|
329 |
+
push(iter, accum_fragment_iterator, this->warp_tile_iterator_);
|
330 |
+
|
331 |
+
__syncthreads();
|
332 |
+
|
333 |
+
//
|
334 |
+
// Load fragments from shared memory
|
335 |
+
//
|
336 |
+
|
337 |
+
CUTLASS_PRAGMA_UNROLL
|
338 |
+
for (int p = 0; p < Base::kFragmentsPerIteration; ++p) {
|
339 |
+
typename SharedLoadIterator::Fragment aligned_accum_fragment[kPartitionsK];
|
340 |
+
|
341 |
+
shared_load_iterator_.load(aligned_accum_fragment[0]);
|
342 |
+
|
343 |
+
if (p < Base::kFragmentsPerIteration - 1) {
|
344 |
+
shared_load_iterator_.add_pointer_offset(kSmemPointerOffset);
|
345 |
+
} else if (kPartitionsK > 1) {
|
346 |
+
plus<typename SharedLoadIterator::Fragment> add_fragments;
|
347 |
+
|
348 |
+
CUTLASS_PRAGMA_UNROLL
|
349 |
+
for (int i = 1; i < kPartitionsK; ++i) {
|
350 |
+
shared_load_iterator_.add_pointer_offset(kSmemPointerOffset);
|
351 |
+
shared_load_iterator_.load(aligned_accum_fragment[i]);
|
352 |
+
aligned_accum_fragment[0] =
|
353 |
+
add_fragments(aligned_accum_fragment[0], aligned_accum_fragment[i]);
|
354 |
+
}
|
355 |
+
|
356 |
+
shared_load_iterator_.add_pointer_offset((1 - kPartitionsK) *
|
357 |
+
kSmemPointerOffset);
|
358 |
+
}
|
359 |
+
|
360 |
+
//
|
361 |
+
// Compute the output result
|
362 |
+
//
|
363 |
+
|
364 |
+
typename OutputTileIterator::Fragment output_fragment;
|
365 |
+
|
366 |
+
apply_output_operator_source_not_needed_(destination_iterator.thread_start_row(),
|
367 |
+
output_fragment,
|
368 |
+
output_op,
|
369 |
+
aligned_accum_fragment[0]);
|
370 |
+
|
371 |
+
//
|
372 |
+
// Store the final result
|
373 |
+
//
|
374 |
+
|
375 |
+
destination_iterator.store(output_fragment);
|
376 |
+
++destination_iterator;
|
377 |
+
}
|
378 |
+
|
379 |
+
if (Base::kFragmentsPerIteration > 1) {
|
380 |
+
shared_load_iterator_.add_pointer_offset(kSmemPointerOffset *
|
381 |
+
(1 - Base::kFragmentsPerIteration));
|
382 |
+
}
|
383 |
+
}
|
384 |
+
}
|
385 |
+
|
386 |
+
template <class Seq>
|
387 |
+
struct acc2smem_source_needed;
|
388 |
+
|
389 |
+
template <size_t... Seq>
|
390 |
+
struct acc2smem_source_needed<cutlass::index_sequence<Seq...>> {
|
391 |
+
template <int Advance>
|
392 |
+
CUTLASS_DEVICE static void helper(AccumulatorFragmentIterator accum_fragment_iterator,
|
393 |
+
WarpTileIterator& warp_tile_iterator)
|
394 |
+
{
|
395 |
+
CUTLASS_PRAGMA_UNROLL
|
396 |
+
for (int i = 0; i < Advance; i++) { ++accum_fragment_iterator; }
|
397 |
+
|
398 |
+
typename AccumulatorFragmentIterator::Fragment accum_fragment;
|
399 |
+
accum_fragment_iterator.load(accum_fragment);
|
400 |
+
warp_tile_iterator.store(accum_fragment);
|
401 |
+
}
|
402 |
+
|
403 |
+
CUTLASS_DEVICE
|
404 |
+
static void push(size_t pos,
|
405 |
+
AccumulatorFragmentIterator const& iterator_begin,
|
406 |
+
WarpTileIterator& warp_tile_iterator)
|
407 |
+
{
|
408 |
+
int dummy[] = {(pos == Seq) && (helper<Seq>(iterator_begin, warp_tile_iterator), 0)...};
|
409 |
+
}
|
410 |
+
};
|
411 |
+
|
412 |
+
/// Streams the result to global memory
|
413 |
+
CUTLASS_DEVICE
|
414 |
+
void compute_source_needed_(
|
415 |
+
OutputOp const& output_op, ///< Output operator
|
416 |
+
OutputTileIterator destination_iterator, ///< Tile iterator for destination
|
417 |
+
AccumulatorTile const& accumulators, ///< Complete warp-level accumulator tile
|
418 |
+
OutputTileSourceIterator source_iterator ///< Threadblock tile coordinate in GEMM (in units
|
419 |
+
///< of threadblock tiles)
|
420 |
+
)
|
421 |
+
{
|
422 |
+
typename OutputTileSourceIterator::Fragment source_fragment[2];
|
423 |
+
|
424 |
+
source_fragment[0].clear();
|
425 |
+
source_iterator.load(source_fragment[0]);
|
426 |
+
++source_iterator;
|
427 |
+
source_fragment[1].clear();
|
428 |
+
|
429 |
+
//
|
430 |
+
// Iterator over warp-level accumulator fragment
|
431 |
+
//
|
432 |
+
|
433 |
+
AccumulatorFragmentIterator accum_fragment_iterator(accumulators);
|
434 |
+
|
435 |
+
//
|
436 |
+
// Iterate over accumulator tile
|
437 |
+
//
|
438 |
+
|
439 |
+
#pragma unroll(IterationsUnroll ? OutputTileIterator::kIterations : 1)
|
440 |
+
for (int iter = 0; iter < OutputTileIterator::kIterations; ++iter) {
|
441 |
+
if (iter > 0) { __syncthreads(); }
|
442 |
+
//
|
443 |
+
// Load the source for next iteration (pipelining)
|
444 |
+
//
|
445 |
+
|
446 |
+
if (iter + 1 < OutputTileIterator::kIterations) {
|
447 |
+
source_iterator.load(source_fragment[(iter + 1) % 2]);
|
448 |
+
}
|
449 |
+
++source_iterator;
|
450 |
+
acc2smem_source_needed<cutlass::make_index_sequence<OutputTileIterator::kIterations>>::
|
451 |
+
push(iter, accum_fragment_iterator, this->warp_tile_iterator_);
|
452 |
+
|
453 |
+
__syncthreads();
|
454 |
+
|
455 |
+
//
|
456 |
+
// Load fragments from shared memory
|
457 |
+
//
|
458 |
+
|
459 |
+
typename SharedLoadIterator::Fragment aligned_accum_fragment[kPartitionsK];
|
460 |
+
|
461 |
+
shared_load_iterator_.load(aligned_accum_fragment[0]);
|
462 |
+
|
463 |
+
// If the number of k-slices is > 1 - perform a reduction amongst the
|
464 |
+
// k-slices
|
465 |
+
if (kPartitionsK > 1) {
|
466 |
+
plus<typename SharedLoadIterator::Fragment> add_fragments;
|
467 |
+
|
468 |
+
CUTLASS_PRAGMA_UNROLL
|
469 |
+
for (int i = 1; i < kPartitionsK; ++i) {
|
470 |
+
shared_load_iterator_.add_pointer_offset(kSmemPointerOffset);
|
471 |
+
shared_load_iterator_.load(aligned_accum_fragment[i]);
|
472 |
+
aligned_accum_fragment[0] =
|
473 |
+
add_fragments(aligned_accum_fragment[0], aligned_accum_fragment[i]);
|
474 |
+
}
|
475 |
+
|
476 |
+
shared_load_iterator_.add_pointer_offset((1 - kPartitionsK) * kSmemPointerOffset);
|
477 |
+
}
|
478 |
+
|
479 |
+
//
|
480 |
+
// Compute the output result
|
481 |
+
//
|
482 |
+
|
483 |
+
typename OutputTileIterator::Fragment output_fragment;
|
484 |
+
|
485 |
+
apply_output_operator_(destination_iterator.thread_start_row(),
|
486 |
+
output_fragment,
|
487 |
+
output_op,
|
488 |
+
aligned_accum_fragment[0],
|
489 |
+
source_fragment[iter % 2]);
|
490 |
+
|
491 |
+
//
|
492 |
+
// Store the final result
|
493 |
+
//
|
494 |
+
|
495 |
+
destination_iterator.store(output_fragment);
|
496 |
+
++destination_iterator;
|
497 |
+
}
|
498 |
+
}
|
499 |
+
|
500 |
+
/// Helper to invoke the output functor over each vector of output
|
501 |
+
CUTLASS_DEVICE
|
502 |
+
void apply_output_operator_(int begin_row,
|
503 |
+
typename OutputTileIterator::Fragment& output_fragment,
|
504 |
+
OutputOp const& output_op, ///< Output operator
|
505 |
+
typename SharedLoadIterator::Fragment const& aligned_accum_fragment,
|
506 |
+
typename OutputTileSourceIterator::Fragment const& source_fragment)
|
507 |
+
{
|
508 |
+
OutputAccessType* output_frag_ptr = reinterpret_cast<OutputAccessType*>(&output_fragment);
|
509 |
+
|
510 |
+
AccumulatorAccessType const* compute_frag_ptr =
|
511 |
+
reinterpret_cast<AccumulatorAccessType const*>(&aligned_accum_fragment);
|
512 |
+
|
513 |
+
SourceAccessType const* source_frag_ptr =
|
514 |
+
reinterpret_cast<SourceAccessType const*>(&source_fragment);
|
515 |
+
|
516 |
+
int const kOutputOpIterations =
|
517 |
+
OutputTileIterator::Fragment::kElements / OutputTileIterator::kElementsPerAccess;
|
518 |
+
|
519 |
+
CUTLASS_PRAGMA_UNROLL
|
520 |
+
for (int i = 0; i < kOutputOpIterations; ++i) {
|
521 |
+
// Call the output operator
|
522 |
+
output_frag_ptr[i] = ApplyEpilogueOp<OutputOp>::apply(
|
523 |
+
output_op,
|
524 |
+
begin_row + getRowOffset(i * OutputTileIterator::kElementsPerAccess),
|
525 |
+
compute_frag_ptr[i],
|
526 |
+
source_frag_ptr[i]);
|
527 |
+
}
|
528 |
+
}
|
529 |
+
|
530 |
+
/// Helper to invoke the output functor over each vector of output
|
531 |
+
CUTLASS_DEVICE
|
532 |
+
void apply_output_operator_source_not_needed_(
|
533 |
+
int begin_row,
|
534 |
+
typename OutputTileIterator::Fragment& output_fragment,
|
535 |
+
OutputOp const& output_op, ///< Output operator
|
536 |
+
typename SharedLoadIterator::Fragment const& aligned_accum_fragment)
|
537 |
+
{
|
538 |
+
OutputAccessType* output_frag_ptr = reinterpret_cast<OutputAccessType*>(&output_fragment);
|
539 |
+
|
540 |
+
AccumulatorAccessType const* compute_frag_ptr =
|
541 |
+
reinterpret_cast<AccumulatorAccessType const*>(&aligned_accum_fragment);
|
542 |
+
|
543 |
+
int const kOutputOpIterations =
|
544 |
+
OutputTileIterator::Fragment::kElements / OutputTileIterator::kElementsPerAccess;
|
545 |
+
|
546 |
+
CUTLASS_PRAGMA_UNROLL
|
547 |
+
for (int i = 0; i < kOutputOpIterations; ++i) {
|
548 |
+
// Call the output operator
|
549 |
+
output_frag_ptr[i] = ApplyEpilogueOp<OutputOp>::apply(
|
550 |
+
output_op,
|
551 |
+
begin_row + getRowOffset(i * OutputTileIterator::kElementsPerAccess),
|
552 |
+
compute_frag_ptr[i]);
|
553 |
+
}
|
554 |
+
}
|
555 |
+
|
556 |
+
// This should be constexpr, but it's only supported on c++14
|
557 |
+
static int CUTLASS_HOST_DEVICE getRowOffset(int i)
|
558 |
+
{
|
559 |
+
using ThreadMap = typename OutputTileIterator::ThreadMap;
|
560 |
+
|
561 |
+
CUTLASS_PRAGMA_UNROLL
|
562 |
+
for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) {
|
563 |
+
CUTLASS_PRAGMA_UNROLL
|
564 |
+
for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) {
|
565 |
+
CUTLASS_PRAGMA_UNROLL
|
566 |
+
for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) {
|
567 |
+
int row_offset = row * ThreadMap::Delta::kRow +
|
568 |
+
group * ThreadMap::Delta::kGroup +
|
569 |
+
cluster * ThreadMap::Delta::kCluster;
|
570 |
+
int frag_row_idx =
|
571 |
+
(row + ThreadMap::Iterations::kRow *
|
572 |
+
(group + ThreadMap::Iterations::kGroup * cluster));
|
573 |
+
CUTLASS_PRAGMA_UNROLL
|
574 |
+
for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) {
|
575 |
+
int frag_idx = ThreadMap::kElementsPerAccess *
|
576 |
+
(frag_row_idx * ThreadMap::Iterations::kColumn + column);
|
577 |
+
if (i < frag_idx + ThreadMap::kElementsPerAccess) { return row_offset; }
|
578 |
+
}
|
579 |
+
}
|
580 |
+
}
|
581 |
+
}
|
582 |
+
return -1;
|
583 |
+
}
|
584 |
+
};
|
585 |
+
|
586 |
+
////////////////////////////////////////////////////////////////////////////////
|
587 |
+
|
588 |
+
} // namespace threadblock
|
589 |
+
} // namespace epilogue
|
590 |
+
} // namespace cutlass
|
591 |
+
|
592 |
+
////////////////////////////////////////////////////////////////////////////////
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/epilogue/epilogue_rescale_output.h
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holdvr nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
|
32 |
+
// Copyright (c) Microsoft Corporation.
|
33 |
+
// SPDX-License-Identifier: Apache-2.0
|
34 |
+
|
35 |
+
// DeepSpeed Team
|
36 |
+
|
37 |
+
/*! \file
|
38 |
+
\brief Epilogue for threadblock scoped GEMMs using Tensor Ops.
|
39 |
+
|
40 |
+
The epilogue rearranges the result of a matrix product through shared memory
|
41 |
+
to match canonical tensor layouts in global memory. Epilogues support
|
42 |
+
conversion and reduction operations.
|
43 |
+
|
44 |
+
This is a copy of cutlass/epilogue/threadblock/epilogue.h that can
|
45 |
+
handle "row_id" as a first argument, as uses it to get the corresponding
|
46 |
+
`m_prime` / `s_prime` to rescale the output.
|
47 |
+
*/
|
48 |
+
|
49 |
+
#pragma once
|
50 |
+
|
51 |
+
#if defined(__CUDACC_RTC__)
|
52 |
+
#include <cuda/std/cassert>
|
53 |
+
#else
|
54 |
+
#include <assert.h>
|
55 |
+
#endif
|
56 |
+
|
57 |
+
#include "cutlass/aligned_buffer.h"
|
58 |
+
#include "cutlass/array.h"
|
59 |
+
#include "cutlass/cutlass.h"
|
60 |
+
#include "cutlass/functional.h"
|
61 |
+
#include "cutlass/layout/tensor.h"
|
62 |
+
#include "cutlass/layout/vector.h"
|
63 |
+
#include "cutlass/numeric_types.h"
|
64 |
+
#include "cutlass/tensor_coord.h"
|
65 |
+
|
66 |
+
#include "cutlass/gemm/gemm.h"
|
67 |
+
|
68 |
+
#include "cutlass/transform/pitch_linear_thread_map.h"
|
69 |
+
#include "cutlass/transform/threadblock/regular_tile_iterator.h"
|
70 |
+
|
71 |
+
#include "cutlass/epilogue/threadblock/epilogue_base.h"
|
72 |
+
#include "cutlass/epilogue/threadblock/predicated_tile_iterator.h"
|
73 |
+
#include "cutlass/numeric_types.h"
|
74 |
+
|
75 |
+
#include "cutlass/array.h"
|
76 |
+
#include "cutlass/cutlass.h"
|
77 |
+
#include "cutlass/epilogue/thread/scale_type.h"
|
78 |
+
#include "cutlass/functional.h"
|
79 |
+
#include "cutlass/numeric_conversion.h"
|
80 |
+
#include "cutlass/numeric_types.h"
|
81 |
+
#include "epilogue_pipelined.h"
|
82 |
+
|
83 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
84 |
+
|
85 |
+
namespace cutlass {
|
86 |
+
namespace epilogue {
|
87 |
+
namespace thread {
|
88 |
+
|
89 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
90 |
+
|
91 |
+
/// Applies a linear combination operator to an array of elements.
|
92 |
+
// output <- alpha * accumulator + beta * source
|
93 |
+
// with:
|
94 |
+
// alpha = 1 / s_prime (to normalize when isLast=True, 1 otherwise)
|
95 |
+
// beta = alpha / m_prime (renormalize the output when the max changes)
|
96 |
+
// source is the current output
|
97 |
+
template <typename ElementOutput_, ///< Data type used to store tensors
|
98 |
+
typename ElementSource_, //< Data type for source (usually matches
|
99 |
+
//`ElementOutput`)
|
100 |
+
int Count, ///< Number of elements computed per operation.
|
101 |
+
///< Usually it is 128/sizeof_bits<ElementOutput_>,
|
102 |
+
///< but we use 64 or 32 sometimes when there are not enough data
|
103 |
+
///< to store
|
104 |
+
typename ElementAccumulator_, ///< Accumulator data type
|
105 |
+
typename ElementCompute_, ///< Data type used to compute linear combination
|
106 |
+
bool isFirst,
|
107 |
+
bool isLast,
|
108 |
+
typename FragmentAlphaBeta_,
|
109 |
+
FloatRoundStyle Round = FloatRoundStyle::round_to_nearest>
|
110 |
+
class MemoryEfficientAttentionNormalize {
|
111 |
+
public:
|
112 |
+
using ElementOutput = ElementOutput_;
|
113 |
+
using ElementSource = ElementSource_;
|
114 |
+
using ElementAccumulator = ElementAccumulator_;
|
115 |
+
using ElementCompute = ElementCompute_;
|
116 |
+
|
117 |
+
static int const kCount = Count;
|
118 |
+
|
119 |
+
using FragmentOutput = Array<ElementOutput, kCount>;
|
120 |
+
using FragmentSource = Array<ElementSource, kCount>;
|
121 |
+
using FragmentAccumulator = Array<ElementAccumulator, kCount>;
|
122 |
+
using ComputeFragment = Array<ElementCompute, kCount>;
|
123 |
+
using FragmentAlphaBeta = FragmentAlphaBeta_;
|
124 |
+
|
125 |
+
static FloatRoundStyle const kRound = Round;
|
126 |
+
|
127 |
+
private:
|
128 |
+
//
|
129 |
+
// Data members
|
130 |
+
//
|
131 |
+
|
132 |
+
FragmentAlphaBeta const& s_prime_;
|
133 |
+
FragmentAlphaBeta const& m_prime_;
|
134 |
+
|
135 |
+
public:
|
136 |
+
/// Constructs the function object, possibly loading from pointers in host
|
137 |
+
/// memory
|
138 |
+
CUTLASS_HOST_DEVICE
|
139 |
+
MemoryEfficientAttentionNormalize(FragmentAlphaBeta const& s_prime,
|
140 |
+
FragmentAlphaBeta const& m_prime)
|
141 |
+
: s_prime_(s_prime), m_prime_(m_prime)
|
142 |
+
{
|
143 |
+
}
|
144 |
+
|
145 |
+
/// Returns true if source is needed
|
146 |
+
CUTLASS_HOST_DEVICE
|
147 |
+
bool is_source_needed() const { return !isFirst; }
|
148 |
+
|
149 |
+
/// Functionally required for serial reduction in the epilogue
|
150 |
+
CUTLASS_HOST_DEVICE
|
151 |
+
void set_k_partition(int k_partition, int k_partition_count) {}
|
152 |
+
|
153 |
+
/// Computes linear scaling: D = alpha * accumulator + beta * source
|
154 |
+
CUTLASS_HOST_DEVICE
|
155 |
+
FragmentOutput operator()(int row,
|
156 |
+
FragmentAccumulator const& accumulator,
|
157 |
+
FragmentSource const& source) const
|
158 |
+
{
|
159 |
+
assert(!isFirst);
|
160 |
+
|
161 |
+
// Convert source to internal compute numeric type
|
162 |
+
NumericArrayConverter<ElementCompute, ElementSource, kCount, Round> source_converter;
|
163 |
+
NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round>
|
164 |
+
accumulator_converter;
|
165 |
+
|
166 |
+
// Convert to destination numeric type
|
167 |
+
NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round> destination_converter;
|
168 |
+
|
169 |
+
ComputeFragment converted_source = source_converter(source);
|
170 |
+
ComputeFragment converted_accumulator = accumulator_converter(accumulator);
|
171 |
+
|
172 |
+
// Perform binary operations
|
173 |
+
ComputeFragment intermediate;
|
174 |
+
|
175 |
+
multiplies<ComputeFragment> mul_add_source;
|
176 |
+
multiply_add<ComputeFragment> mul_add_accumulator;
|
177 |
+
|
178 |
+
ElementCompute alpha = isLast ? (1 / s_prime_[row]) : 1;
|
179 |
+
ElementCompute beta = alpha * m_prime_[row];
|
180 |
+
|
181 |
+
intermediate = mul_add_source(beta, converted_source); // X = beta * C
|
182 |
+
|
183 |
+
intermediate = mul_add_accumulator(
|
184 |
+
alpha, converted_accumulator, intermediate); // D = alpha * Accum + X
|
185 |
+
|
186 |
+
return destination_converter(intermediate);
|
187 |
+
}
|
188 |
+
|
189 |
+
/// Computes linear scaling: D = alpha * accumulator
|
190 |
+
CUTLASS_HOST_DEVICE
|
191 |
+
FragmentOutput operator()(int row, FragmentAccumulator const& accumulator) const
|
192 |
+
{
|
193 |
+
assert(isFirst);
|
194 |
+
|
195 |
+
// Convert source to internal compute numeric type
|
196 |
+
NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round>
|
197 |
+
accumulator_converter;
|
198 |
+
|
199 |
+
// Convert to destination numeric type
|
200 |
+
NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round> destination_converter;
|
201 |
+
|
202 |
+
ComputeFragment converted_accumulator = accumulator_converter(accumulator);
|
203 |
+
|
204 |
+
ComputeFragment intermediate;
|
205 |
+
multiplies<ComputeFragment> mul_accumulator;
|
206 |
+
|
207 |
+
ElementCompute alpha = isLast ? (1 / s_prime_[row]) : 1;
|
208 |
+
|
209 |
+
intermediate = mul_accumulator(alpha, converted_accumulator); // X = alpha * C + uniform
|
210 |
+
|
211 |
+
return destination_converter(intermediate);
|
212 |
+
}
|
213 |
+
};
|
214 |
+
|
215 |
+
} // namespace thread
|
216 |
+
|
217 |
+
namespace threadblock {
|
218 |
+
template <typename EO,
|
219 |
+
typename ES,
|
220 |
+
int Count,
|
221 |
+
typename EA,
|
222 |
+
typename EC,
|
223 |
+
bool F,
|
224 |
+
bool L,
|
225 |
+
typename FAB,
|
226 |
+
FloatRoundStyle R>
|
227 |
+
struct ApplyEpilogueOp<
|
228 |
+
thread::MemoryEfficientAttentionNormalize<EO, ES, Count, EA, EC, F, L, FAB, R>> {
|
229 |
+
using Op = thread::MemoryEfficientAttentionNormalize<EO, ES, Count, EA, EC, F, L, FAB, R>;
|
230 |
+
static CUTLASS_DEVICE typename Op::FragmentOutput apply(
|
231 |
+
Op const& output_op,
|
232 |
+
int row_id,
|
233 |
+
typename Op::FragmentAccumulator const& accum,
|
234 |
+
typename Op::FragmentSource const& source)
|
235 |
+
{
|
236 |
+
return output_op(row_id, accum, source);
|
237 |
+
}
|
238 |
+
static CUTLASS_DEVICE typename Op::FragmentOutput
|
239 |
+
apply(Op const& output_op, int row_id, typename Op::FragmentAccumulator const& accum)
|
240 |
+
{
|
241 |
+
return output_op(row_id, accum);
|
242 |
+
}
|
243 |
+
};
|
244 |
+
|
245 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
246 |
+
|
247 |
+
} // namespace threadblock
|
248 |
+
} // namespace epilogue
|
249 |
+
} // namespace cutlass
|
250 |
+
|
251 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/epilogue/epilogue_thread_apply_logsumexp.h
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights
|
3 |
+
*reserved. SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice,
|
9 |
+
*this list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
23 |
+
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
24 |
+
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
25 |
+
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
27 |
+
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
28 |
+
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
29 |
+
*POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
*
|
31 |
+
**************************************************************************************************/
|
32 |
+
|
33 |
+
// Copyright (c) Microsoft Corporation.
|
34 |
+
// SPDX-License-Identifier: Apache-2.0
|
35 |
+
|
36 |
+
// DeepSpeed Team
|
37 |
+
|
38 |
+
/*! \file
|
39 |
+
\brief Functor performing linear combination operations used by epilogues.
|
40 |
+
*/
|
41 |
+
|
42 |
+
#pragma once
|
43 |
+
|
44 |
+
#include <cuda_fp16.h>
|
45 |
+
|
46 |
+
#include "cutlass/array.h"
|
47 |
+
#include "cutlass/cutlass.h"
|
48 |
+
#include "cutlass/epilogue/thread/activation.h"
|
49 |
+
#include "cutlass/functional.h"
|
50 |
+
#include "cutlass/numeric_conversion.h"
|
51 |
+
#include "cutlass/numeric_types.h"
|
52 |
+
|
53 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
54 |
+
|
55 |
+
namespace cutlass {
|
56 |
+
namespace epilogue {
|
57 |
+
namespace thread {
|
58 |
+
|
59 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
60 |
+
|
61 |
+
namespace detail {
|
62 |
+
|
63 |
+
template <typename Element, int ElementsPerAccess>
|
64 |
+
struct ArrayExponential {
|
65 |
+
CUTLASS_HOST_DEVICE
|
66 |
+
Array<Element, ElementsPerAccess> operator()(
|
67 |
+
Array<Element, ElementsPerAccess> const& input) const
|
68 |
+
{
|
69 |
+
Array<Element, ElementsPerAccess> result;
|
70 |
+
|
71 |
+
CUTLASS_PRAGMA_UNROLL
|
72 |
+
for (int i = 0; i < ElementsPerAccess; ++i) { result[i] = expf(input[i]); }
|
73 |
+
|
74 |
+
return result;
|
75 |
+
}
|
76 |
+
};
|
77 |
+
|
78 |
+
template <int ElementsPerAccess>
|
79 |
+
struct ArrayExponential<half_t, ElementsPerAccess> {
|
80 |
+
CUTLASS_DEVICE
|
81 |
+
Array<half_t, ElementsPerAccess> operator()(Array<half_t, ElementsPerAccess> const& input) const
|
82 |
+
{
|
83 |
+
Array<half_t, ElementsPerAccess> result;
|
84 |
+
|
85 |
+
int const kVectorCount = ElementsPerAccess / 2;
|
86 |
+
|
87 |
+
__half2 const* input_ptr = reinterpret_cast<__half2 const*>(input.raw_data());
|
88 |
+
__half2* res_ptr = reinterpret_cast<__half2*>(result.raw_data());
|
89 |
+
|
90 |
+
CUTLASS_PRAGMA_UNROLL
|
91 |
+
for (int i = 0; i < kVectorCount; ++i) { res_ptr[i] = h2exp(input_ptr[i]); }
|
92 |
+
|
93 |
+
return result;
|
94 |
+
}
|
95 |
+
};
|
96 |
+
} // namespace detail
|
97 |
+
|
98 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
99 |
+
|
100 |
+
/// Applies:
|
101 |
+
/// output <- (input - lse).exp()
|
102 |
+
template <typename ElementOutput_, // output
|
103 |
+
typename ElementLSE_, // accumulator from LSE
|
104 |
+
typename ElementAccumulator_, // accumulator from matmul
|
105 |
+
typename ElementCompute_, // intermediate compute (and exp calculation)
|
106 |
+
int ElementsPerAccess>
|
107 |
+
class ApplyLogSumExp {
|
108 |
+
public:
|
109 |
+
using ElementOutput = ElementOutput_;
|
110 |
+
using ElementAccumulator = ElementAccumulator_;
|
111 |
+
using ElementCompute = ElementCompute_;
|
112 |
+
using ElementLSE = ElementLSE_;
|
113 |
+
|
114 |
+
static int const kElementsPerAccess = ElementsPerAccess;
|
115 |
+
static int const kCount = kElementsPerAccess;
|
116 |
+
static const ScaleType::Kind kScale = cutlass::epilogue::thread::ScaleType::NoBetaScaling;
|
117 |
+
|
118 |
+
using FragmentOutput = Array<ElementOutput, kCount>;
|
119 |
+
using FragmentAccumulator = Array<ElementAccumulator, kElementsPerAccess>;
|
120 |
+
using FragmentCompute = Array<ElementCompute, kElementsPerAccess>;
|
121 |
+
using FragmentLSE = Array<ElementLSE, kElementsPerAccess>;
|
122 |
+
using FragmentScaleBias = FragmentLSE; // Used by epilogue_smem_accumulator.h
|
123 |
+
|
124 |
+
public:
|
125 |
+
//
|
126 |
+
// Methods
|
127 |
+
//
|
128 |
+
|
129 |
+
CUTLASS_HOST_DEVICE
|
130 |
+
ApplyLogSumExp() {}
|
131 |
+
|
132 |
+
/// Returns true if source is needed
|
133 |
+
CUTLASS_HOST_DEVICE
|
134 |
+
bool is_source_needed() const { return true; }
|
135 |
+
|
136 |
+
/// Functionally required for serial reduction in the epilogue
|
137 |
+
CUTLASS_HOST_DEVICE
|
138 |
+
void set_k_partition(int k_partition, int k_partition_count) {}
|
139 |
+
|
140 |
+
CUTLASS_HOST_DEVICE
|
141 |
+
FragmentOutput operator()(FragmentAccumulator const& AB,
|
142 |
+
FragmentLSE const& scale_unused,
|
143 |
+
// bias used as LSE
|
144 |
+
FragmentLSE const& bias) const
|
145 |
+
{
|
146 |
+
FragmentCompute frag_AB =
|
147 |
+
NumericArrayConverter<ElementCompute, ElementAccumulator, kElementsPerAccess>()(AB);
|
148 |
+
FragmentCompute frag_lse_compute =
|
149 |
+
NumericArrayConverter<ElementCompute, ElementLSE, kElementsPerAccess>()(bias);
|
150 |
+
FragmentCompute frag_compute;
|
151 |
+
|
152 |
+
minus<FragmentCompute> minus_lse;
|
153 |
+
detail::ArrayExponential<ElementCompute, kElementsPerAccess> apply_exp;
|
154 |
+
frag_compute = minus_lse(frag_AB, frag_lse_compute);
|
155 |
+
frag_compute = apply_exp(frag_compute);
|
156 |
+
|
157 |
+
return NumericArrayConverter<ElementOutput, ElementCompute, kElementsPerAccess>()(
|
158 |
+
frag_compute);
|
159 |
+
}
|
160 |
+
};
|
161 |
+
|
162 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
163 |
+
|
164 |
+
} // namespace thread
|
165 |
+
} // namespace epilogue
|
166 |
+
} // namespace cutlass
|
167 |
+
|
168 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/gemm/custom_mma.h
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holdvr nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
|
32 |
+
// Copyright (c) Microsoft Corporation.
|
33 |
+
// SPDX-License-Identifier: Apache-2.0
|
34 |
+
|
35 |
+
// DeepSpeed Team
|
36 |
+
|
37 |
+
#pragma once
|
38 |
+
|
39 |
+
#include "custom_mma_multistage.h"
|
40 |
+
#include "custom_mma_pipelined.h"
|
41 |
+
#include "cutlass/gemm/threadblock/mma_multistage.h"
|
42 |
+
#include "cutlass/gemm/threadblock/mma_pipelined.h"
|
43 |
+
|
44 |
+
template <typename Mma, int kMaxK>
|
45 |
+
struct MakeCustomMma;
|
46 |
+
|
47 |
+
template <typename Shape,
|
48 |
+
typename IteratorA,
|
49 |
+
typename SmemIteratorA,
|
50 |
+
cutlass::arch::CacheOperation::Kind CacheOpA,
|
51 |
+
typename IteratorB,
|
52 |
+
typename SmemIteratorB,
|
53 |
+
cutlass::arch::CacheOperation::Kind CacheOpB,
|
54 |
+
typename ElementC,
|
55 |
+
typename LayoutC,
|
56 |
+
typename Policy,
|
57 |
+
int Stages,
|
58 |
+
cutlass::gemm::SharedMemoryClearOption SharedMemoryClear,
|
59 |
+
int kMaxK>
|
60 |
+
struct MakeCustomMma<cutlass::gemm::threadblock::MmaMultistage<Shape,
|
61 |
+
IteratorA,
|
62 |
+
SmemIteratorA,
|
63 |
+
CacheOpA,
|
64 |
+
IteratorB,
|
65 |
+
SmemIteratorB,
|
66 |
+
CacheOpB,
|
67 |
+
ElementC,
|
68 |
+
LayoutC,
|
69 |
+
Policy,
|
70 |
+
Stages,
|
71 |
+
SharedMemoryClear>,
|
72 |
+
kMaxK> {
|
73 |
+
// Reduce the number of stages if we don't need that many
|
74 |
+
static int constexpr kStages =
|
75 |
+
kMaxK == cutlass::platform::numeric_limits<int>::max()
|
76 |
+
? Stages
|
77 |
+
: cutlass::const_min(Stages, (kMaxK + int(Shape::kK) - 1) / int(Shape::kK));
|
78 |
+
using Mma = cutlass::gemm::threadblock::CustomMmaMultistage<Shape,
|
79 |
+
IteratorA,
|
80 |
+
SmemIteratorA,
|
81 |
+
CacheOpA,
|
82 |
+
IteratorB,
|
83 |
+
SmemIteratorB,
|
84 |
+
CacheOpB,
|
85 |
+
ElementC,
|
86 |
+
LayoutC,
|
87 |
+
Policy,
|
88 |
+
kStages,
|
89 |
+
SharedMemoryClear,
|
90 |
+
kMaxK>;
|
91 |
+
};
|
92 |
+
|
93 |
+
template <typename Shape,
|
94 |
+
typename IteratorA,
|
95 |
+
typename SmemIteratorA,
|
96 |
+
typename IteratorB,
|
97 |
+
typename SmemIteratorB,
|
98 |
+
typename ElementC,
|
99 |
+
typename LayoutC,
|
100 |
+
typename Policy,
|
101 |
+
int kMaxK>
|
102 |
+
struct MakeCustomMma<cutlass::gemm::threadblock::MmaPipelined<Shape,
|
103 |
+
IteratorA,
|
104 |
+
SmemIteratorA,
|
105 |
+
IteratorB,
|
106 |
+
SmemIteratorB,
|
107 |
+
ElementC,
|
108 |
+
LayoutC,
|
109 |
+
Policy>,
|
110 |
+
kMaxK> {
|
111 |
+
using Mma = cutlass::gemm::threadblock::CustomMmaPipelined<Shape,
|
112 |
+
IteratorA,
|
113 |
+
SmemIteratorA,
|
114 |
+
IteratorB,
|
115 |
+
SmemIteratorB,
|
116 |
+
ElementC,
|
117 |
+
LayoutC,
|
118 |
+
Policy>;
|
119 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/gemm/custom_mma_base.h
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights
|
3 |
+
*reserved. SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice,
|
9 |
+
*this list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
23 |
+
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
24 |
+
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
25 |
+
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
27 |
+
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
28 |
+
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
29 |
+
*POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
*
|
31 |
+
**************************************************************************************************/
|
32 |
+
|
33 |
+
// Copyright (c) Microsoft Corporation.
|
34 |
+
// SPDX-License-Identifier: Apache-2.0
|
35 |
+
|
36 |
+
// DeepSpeed Team
|
37 |
+
|
38 |
+
/*! \file
|
39 |
+
\brief Template for a double-buffered threadblock-scoped GEMM kernel.
|
40 |
+
*/
|
41 |
+
|
42 |
+
#pragma once
|
43 |
+
|
44 |
+
#include "cutlass/aligned_buffer.h"
|
45 |
+
#include "cutlass/arch/memory.h"
|
46 |
+
#include "cutlass/array.h"
|
47 |
+
#include "cutlass/cutlass.h"
|
48 |
+
#include "cutlass/gemm/gemm.h"
|
49 |
+
#include "cutlass/gemm/threadblock/mma_base.h"
|
50 |
+
#include "cutlass/matrix_shape.h"
|
51 |
+
#include "cutlass/numeric_types.h"
|
52 |
+
|
53 |
+
////////////////////////////////////////////////////////////////////////////////
|
54 |
+
|
55 |
+
namespace cutlass {
|
56 |
+
namespace gemm {
|
57 |
+
namespace threadblock {
|
58 |
+
|
59 |
+
////////////////////////////////////////////////////////////////////////////////
|
60 |
+
|
61 |
+
/// Structure to compute the matrix product targeting CUDA cores and SIMT math
|
62 |
+
/// instructions.
|
63 |
+
template <
|
64 |
+
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
65 |
+
typename Shape_,
|
66 |
+
/// Policy describing tuning details (concept: MmaPolicy)
|
67 |
+
typename Policy_,
|
68 |
+
/// Number of stages,
|
69 |
+
int Stages,
|
70 |
+
/// Used for partial specialization
|
71 |
+
typename Enable = bool>
|
72 |
+
class CustomMmaBase {
|
73 |
+
public:
|
74 |
+
///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
75 |
+
using Shape = Shape_;
|
76 |
+
|
77 |
+
///< Policy describing tuning details
|
78 |
+
using Policy = Policy_;
|
79 |
+
|
80 |
+
//
|
81 |
+
// Dependent types
|
82 |
+
//
|
83 |
+
|
84 |
+
/// Warp-level Mma
|
85 |
+
using Operator = typename Policy::Operator;
|
86 |
+
|
87 |
+
/// Shape describing the overall GEMM computed from shared memory
|
88 |
+
/// by each warp.
|
89 |
+
using WarpGemm = typename Policy::Operator::Shape;
|
90 |
+
|
91 |
+
/// Shape describing the number of warps filling the CTA
|
92 |
+
using WarpCount =
|
93 |
+
GemmShape<Shape::kM / WarpGemm::kM, Shape::kN / WarpGemm::kN, Shape::kK / WarpGemm::kK>;
|
94 |
+
|
95 |
+
/// Number of warp-level GEMM oeprations
|
96 |
+
static int const kWarpGemmIterations = (WarpGemm::kK / Operator::Policy::MmaShape::kK);
|
97 |
+
|
98 |
+
/// Number of stages
|
99 |
+
static int const kStages = Stages;
|
100 |
+
|
101 |
+
//
|
102 |
+
// Nested structs
|
103 |
+
//
|
104 |
+
|
105 |
+
/// Shared storage object needed by threadblock-scoped GEMM
|
106 |
+
template <typename Element, typename OperandShape, typename OperandLayout>
|
107 |
+
struct OperandSharedStorage {
|
108 |
+
AlignedBuffer<Element, OperandShape::kCount> buffer;
|
109 |
+
using TensorRef = TensorRef<Element, OperandLayout>;
|
110 |
+
|
111 |
+
CUTLASS_DEVICE
|
112 |
+
static OperandLayout Layout()
|
113 |
+
{
|
114 |
+
return OperandLayout::packed({OperandShape::kRow, OperandShape::kColumn});
|
115 |
+
}
|
116 |
+
|
117 |
+
/// Returns a TensorRef to the operand
|
118 |
+
CUTLASS_HOST_DEVICE
|
119 |
+
TensorRef ref() { return TensorRef{buffer.data(), Layout()}; }
|
120 |
+
};
|
121 |
+
|
122 |
+
/// Shape of the A matrix operand in shared memory
|
123 |
+
using ShapeA = MatrixShape<Shape::kM + Policy::SmemPaddingA::kRow,
|
124 |
+
Shape::kK * kStages + Policy::SmemPaddingA::kColumn>;
|
125 |
+
|
126 |
+
/// Shape of the B matrix operand in shared memory
|
127 |
+
using ShapeB = MatrixShape<Shape::kK * kStages + Policy::SmemPaddingB::kRow,
|
128 |
+
Shape::kN + Policy::SmemPaddingB::kColumn>;
|
129 |
+
|
130 |
+
using SharedStorageA =
|
131 |
+
OperandSharedStorage<typename Operator::ElementA, ShapeA, typename Operator::LayoutA>;
|
132 |
+
using SharedStorageB =
|
133 |
+
OperandSharedStorage<typename Operator::ElementB, ShapeB, typename Operator::LayoutB>;
|
134 |
+
using TensorRefA = typename SharedStorageA::TensorRef;
|
135 |
+
using TensorRefB = typename SharedStorageB::TensorRef;
|
136 |
+
|
137 |
+
struct SharedStorage {
|
138 |
+
/// Buffer for A operand
|
139 |
+
SharedStorageA operand_A;
|
140 |
+
|
141 |
+
/// Buffer for B operand
|
142 |
+
SharedStorageB operand_B;
|
143 |
+
};
|
144 |
+
|
145 |
+
protected:
|
146 |
+
//
|
147 |
+
// Data members
|
148 |
+
//
|
149 |
+
|
150 |
+
/// Iterator to load a warp-scoped tile of A operand from shared memory
|
151 |
+
typename Operator::IteratorA warp_tile_iterator_A_;
|
152 |
+
|
153 |
+
/// Iterator to load a warp-scoped tile of B operand from shared memory
|
154 |
+
typename Operator::IteratorB warp_tile_iterator_B_;
|
155 |
+
|
156 |
+
public:
|
157 |
+
/// Construct from tensor references
|
158 |
+
CUTLASS_DEVICE
|
159 |
+
CustomMmaBase(
|
160 |
+
///< Shared storage needed for internal use by threadblock-scoped GEMM
|
161 |
+
SharedStorageA& shared_storageA,
|
162 |
+
SharedStorageB& shared_storageB,
|
163 |
+
///< ID within the threadblock
|
164 |
+
int thread_idx,
|
165 |
+
///< ID of warp
|
166 |
+
int warp_idx,
|
167 |
+
///< ID of each thread within a warp
|
168 |
+
int lane_idx)
|
169 |
+
: warp_tile_iterator_A_(shared_storageA.ref(), lane_idx),
|
170 |
+
warp_tile_iterator_B_(shared_storageB.ref(), lane_idx)
|
171 |
+
{
|
172 |
+
}
|
173 |
+
};
|
174 |
+
|
175 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
176 |
+
|
177 |
+
} // namespace threadblock
|
178 |
+
} // namespace gemm
|
179 |
+
} // namespace cutlass
|
180 |
+
|
181 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/gemm/custom_mma_multistage.h
ADDED
@@ -0,0 +1,714 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights
|
3 |
+
*reserved. SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice,
|
9 |
+
*this list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
23 |
+
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
24 |
+
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
25 |
+
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
27 |
+
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
28 |
+
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
29 |
+
*POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
*
|
31 |
+
**************************************************************************************************/
|
32 |
+
|
33 |
+
// Copyright (c) Microsoft Corporation.
|
34 |
+
// SPDX-License-Identifier: Apache-2.0
|
35 |
+
|
36 |
+
// DeepSpeed Team
|
37 |
+
|
38 |
+
/*! \file
|
39 |
+
\brief Template for a double-buffered threadblock-scoped GEMM kernel.
|
40 |
+
*/
|
41 |
+
|
42 |
+
#pragma once
|
43 |
+
|
44 |
+
#include "cutlass/aligned_buffer.h"
|
45 |
+
#include "cutlass/arch/cache_operation.h"
|
46 |
+
#include "cutlass/arch/memory.h"
|
47 |
+
#include "cutlass/array.h"
|
48 |
+
#include "cutlass/cutlass.h"
|
49 |
+
#include "cutlass/gemm/gemm.h"
|
50 |
+
#include "cutlass/matrix_shape.h"
|
51 |
+
#include "cutlass/numeric_types.h"
|
52 |
+
|
53 |
+
#include "custom_mma_base.h"
|
54 |
+
|
55 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
56 |
+
|
57 |
+
namespace cutlass {
|
58 |
+
namespace gemm {
|
59 |
+
namespace threadblock {
|
60 |
+
|
61 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
62 |
+
|
63 |
+
/// Structure to compute the matrix product targeting CUDA cores and SIMT math
|
64 |
+
/// instructions.
|
65 |
+
template <
|
66 |
+
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
67 |
+
typename Shape_,
|
68 |
+
/// Iterates over tiles of A operand in global memory
|
69 |
+
// (concept: ReadableTileIterator | ForwardTileIterator |
|
70 |
+
// MaskedTileIterator)
|
71 |
+
typename IteratorA_,
|
72 |
+
/// Iterates over tiles of A operand in shared memory
|
73 |
+
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
74 |
+
typename SmemIteratorA_,
|
75 |
+
/// Cache operation for operand A
|
76 |
+
cutlass::arch::CacheOperation::Kind CacheOpA,
|
77 |
+
/// Iterates over tiles of B operand in global memory
|
78 |
+
// (concept: ReadableTileIterator | ForwardTileIterator |
|
79 |
+
// MaskedTileIterator)
|
80 |
+
typename IteratorB_,
|
81 |
+
/// Iterates over tiles of B operand in shared memory
|
82 |
+
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
83 |
+
typename SmemIteratorB_,
|
84 |
+
/// Cache operation for operand B
|
85 |
+
cutlass::arch::CacheOperation::Kind CacheOpB,
|
86 |
+
/// Data type of accumulator matrix
|
87 |
+
typename ElementC_,
|
88 |
+
/// Data type of accumulator matrix
|
89 |
+
typename LayoutC_,
|
90 |
+
/// Policy describing tuning details (concept: MmaPolicy)
|
91 |
+
typename Policy_,
|
92 |
+
/// Number of stages,
|
93 |
+
int Stages,
|
94 |
+
/// Use zfill or predicate for out-of-bound cp.async
|
95 |
+
SharedMemoryClearOption SharedMemoryClear = SharedMemoryClearOption::kNone,
|
96 |
+
/// Upper boundon the K dimension
|
97 |
+
int kMaxK = cutlass::platform::numeric_limits<int>::max(),
|
98 |
+
/// Used for partial specialization
|
99 |
+
typename Enable = bool>
|
100 |
+
class CustomMmaMultistage : public CustomMmaBase<Shape_, Policy_, Stages> {
|
101 |
+
public:
|
102 |
+
///< Base class
|
103 |
+
using Base = CustomMmaBase<Shape_, Policy_, Stages>;
|
104 |
+
///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
105 |
+
using Shape = Shape_;
|
106 |
+
///< Iterates over tiles of A operand in global memory
|
107 |
+
using IteratorA = IteratorA_;
|
108 |
+
///< Iterates over tiles of B operand in global memory
|
109 |
+
using IteratorB = IteratorB_;
|
110 |
+
///< Data type of accumulator matrix
|
111 |
+
using ElementC = ElementC_;
|
112 |
+
///< Layout of accumulator matrix
|
113 |
+
using LayoutC = LayoutC_;
|
114 |
+
///< Policy describing tuning details
|
115 |
+
using Policy = Policy_;
|
116 |
+
|
117 |
+
using SmemIteratorA = SmemIteratorA_;
|
118 |
+
using SmemIteratorB = SmemIteratorB_;
|
119 |
+
|
120 |
+
static cutlass::arch::CacheOperation::Kind const kCacheOpA = CacheOpA;
|
121 |
+
static cutlass::arch::CacheOperation::Kind const kCacheOpB = CacheOpB;
|
122 |
+
|
123 |
+
//
|
124 |
+
// Dependent types
|
125 |
+
//
|
126 |
+
|
127 |
+
/// Fragment of accumulator tile
|
128 |
+
using FragmentC = typename Policy::Operator::FragmentC;
|
129 |
+
|
130 |
+
/// Warp-level Mma
|
131 |
+
using Operator = typename Policy::Operator;
|
132 |
+
|
133 |
+
/// Minimum architecture is Sm80 to support cp.async
|
134 |
+
using ArchTag = arch::Sm80;
|
135 |
+
|
136 |
+
/// Complex transform on A operand
|
137 |
+
static ComplexTransform const kTransformA = Operator::kTransformA;
|
138 |
+
|
139 |
+
/// Complex transform on B operand
|
140 |
+
static ComplexTransform const kTransformB = Operator::kTransformB;
|
141 |
+
|
142 |
+
/// Internal structure exposed for introspection.
|
143 |
+
struct Detail {
|
144 |
+
static_assert(Base::kWarpGemmIterations > 1,
|
145 |
+
"The pipelined structure requires at least two warp-level "
|
146 |
+
"GEMM operations.");
|
147 |
+
|
148 |
+
/// Number of cp.async instructions to load one stage of operand A
|
149 |
+
static int const AsyncCopyIterationsPerStageA = IteratorA::ThreadMap::Iterations::kCount;
|
150 |
+
|
151 |
+
/// Number of cp.async instructions to load one stage of operand B
|
152 |
+
static int const AsyncCopyIterationsPerStageB = IteratorB::ThreadMap::Iterations::kCount;
|
153 |
+
|
154 |
+
/// Number of stages
|
155 |
+
static int const kStages = Stages;
|
156 |
+
|
157 |
+
/// Number of cp.async instructions to load on group of operand A
|
158 |
+
static int const kAccessesPerGroupA =
|
159 |
+
(AsyncCopyIterationsPerStageA + Base::kWarpGemmIterations - 1) /
|
160 |
+
Base::kWarpGemmIterations;
|
161 |
+
|
162 |
+
/// Number of cp.async instructions to load on group of operand B
|
163 |
+
static int const kAccessesPerGroupB =
|
164 |
+
(AsyncCopyIterationsPerStageB + Base::kWarpGemmIterations - 1) /
|
165 |
+
Base::kWarpGemmIterations;
|
166 |
+
};
|
167 |
+
|
168 |
+
static bool const kSmemContainsEntireMat = kMaxK <= Shape::kK * Stages;
|
169 |
+
static constexpr int kNumStagesConcurrentLoad = kSmemContainsEntireMat ? Stages : Stages - 1;
|
170 |
+
|
171 |
+
private:
|
172 |
+
using WarpLoadedFragmentA = typename Operator::FragmentA;
|
173 |
+
using WarpLoadedFragmentB = typename Operator::FragmentB;
|
174 |
+
using WarpTransformedFragmentA = typename Operator::TransformedFragmentA;
|
175 |
+
using WarpTransformedFragmentB = typename Operator::TransformedFragmentB;
|
176 |
+
|
177 |
+
private:
|
178 |
+
//
|
179 |
+
// Data members
|
180 |
+
//
|
181 |
+
|
182 |
+
/// Iterator to write threadblock-scoped tile of A operand to shared memory
|
183 |
+
SmemIteratorA smem_iterator_A_;
|
184 |
+
|
185 |
+
/// Iterator to write threadblock-scoped tile of B operand to shared memory
|
186 |
+
SmemIteratorB smem_iterator_B_;
|
187 |
+
|
188 |
+
bool prologue_done_;
|
189 |
+
|
190 |
+
// Set to `True` to ensure the accumulator will be zero outside the GEMM
|
191 |
+
// footprint
|
192 |
+
bool zero_outside_bounds_;
|
193 |
+
|
194 |
+
public:
|
195 |
+
/// Construct from tensor references
|
196 |
+
CUTLASS_DEVICE
|
197 |
+
CustomMmaMultistage(
|
198 |
+
///< Shared storage needed for internal use by threadblock-scoped GEMM
|
199 |
+
typename Base::SharedStorageA& shared_storageA,
|
200 |
+
typename Base::SharedStorageB& shared_storageB,
|
201 |
+
///< ID within the threadblock
|
202 |
+
int thread_idx,
|
203 |
+
///< ID of warp
|
204 |
+
int warp_idx,
|
205 |
+
///< ID of each thread within a warp
|
206 |
+
int lane_idx)
|
207 |
+
: Base(shared_storageA, shared_storageB, thread_idx, warp_idx, lane_idx),
|
208 |
+
smem_iterator_A_(shared_storageA.ref(), thread_idx),
|
209 |
+
smem_iterator_B_(shared_storageB.ref(), thread_idx),
|
210 |
+
prologue_done_(false),
|
211 |
+
zero_outside_bounds_(false)
|
212 |
+
{
|
213 |
+
// Compute warp location within threadblock tile by mapping the warp_id to
|
214 |
+
// three coordinates:
|
215 |
+
// _m: the warp's position within the threadblock along the M dimension
|
216 |
+
// _n: the warp's position within the threadblock along the N dimension
|
217 |
+
// _k: the warp's position within the threadblock along the K dimension
|
218 |
+
|
219 |
+
int warp_idx_mn = warp_idx % (Base::WarpCount::kM * Base::WarpCount::kN);
|
220 |
+
int warp_idx_k = warp_idx / (Base::WarpCount::kM * Base::WarpCount::kN);
|
221 |
+
|
222 |
+
int warp_idx_m = warp_idx_mn % Base::WarpCount::kM;
|
223 |
+
int warp_idx_n = warp_idx_mn / Base::WarpCount::kM;
|
224 |
+
|
225 |
+
// Add per-warp offsets in units of warp-level tiles
|
226 |
+
this->warp_tile_iterator_A_.add_tile_offset(
|
227 |
+
{warp_idx_m, Base::kWarpGemmIterations * warp_idx_k});
|
228 |
+
this->warp_tile_iterator_B_.add_tile_offset(
|
229 |
+
{Base::kWarpGemmIterations * warp_idx_k, warp_idx_n});
|
230 |
+
}
|
231 |
+
CUTLASS_DEVICE
|
232 |
+
CustomMmaMultistage(
|
233 |
+
///< Shared storage needed for internal use by threadblock-scoped GEMM
|
234 |
+
typename Base::SharedStorage& st,
|
235 |
+
///< ID within the threadblock
|
236 |
+
int thread_idx,
|
237 |
+
///< ID of warp
|
238 |
+
int warp_idx,
|
239 |
+
///< ID of each thread within a warp
|
240 |
+
int lane_idx)
|
241 |
+
: CustomMmaMultistage(st.operand_A, st.operand_B, thread_idx, warp_idx, lane_idx)
|
242 |
+
{
|
243 |
+
}
|
244 |
+
|
245 |
+
CUTLASS_DEVICE
|
246 |
+
bool set_prologue_done(bool value)
|
247 |
+
{
|
248 |
+
prologue_done_ = value;
|
249 |
+
return true;
|
250 |
+
}
|
251 |
+
|
252 |
+
CUTLASS_DEVICE
|
253 |
+
bool set_zero_outside_bounds(bool value)
|
254 |
+
{
|
255 |
+
zero_outside_bounds_ = value;
|
256 |
+
return true;
|
257 |
+
}
|
258 |
+
|
259 |
+
template <bool kLoadA = true, bool kLoadB = true>
|
260 |
+
CUTLASS_DEVICE static void prologue(typename Base::SharedStorage& shared_storage,
|
261 |
+
///< iterator over A operand in global memory
|
262 |
+
IteratorA iterator_A,
|
263 |
+
///< iterator over B operand in global memory
|
264 |
+
IteratorB iterator_B,
|
265 |
+
int thread_idx,
|
266 |
+
int problem_size_k)
|
267 |
+
{
|
268 |
+
prologue<kLoadA, kLoadB>(shared_storage.operand_A,
|
269 |
+
shared_storage.operand_B,
|
270 |
+
iterator_A,
|
271 |
+
iterator_B,
|
272 |
+
thread_idx,
|
273 |
+
problem_size_k);
|
274 |
+
}
|
275 |
+
|
276 |
+
template <bool kLoadA = true, bool kLoadB = true>
|
277 |
+
CUTLASS_DEVICE static void prologue(typename Base::SharedStorageA& shared_storageA,
|
278 |
+
typename Base::SharedStorageB& shared_storageB,
|
279 |
+
///< iterator over A operand in global memory
|
280 |
+
IteratorA iterator_A,
|
281 |
+
///< iterator over B operand in global memory
|
282 |
+
IteratorB iterator_B,
|
283 |
+
int thread_idx,
|
284 |
+
int problem_size_k)
|
285 |
+
{
|
286 |
+
SmemIteratorA smem_iterator_A(shared_storageA.ref(), thread_idx);
|
287 |
+
SmemIteratorB smem_iterator_B(shared_storageB.ref(), thread_idx);
|
288 |
+
int32_t iter = (problem_size_k + Base::Shape::kK - 1) / Base::Shape::kK;
|
289 |
+
_prologue<kLoadA, kLoadB>(iterator_A, iterator_B, iter, smem_iterator_A, smem_iterator_B);
|
290 |
+
}
|
291 |
+
|
292 |
+
CUTLASS_DEVICE
|
293 |
+
void copy_tiles_and_advance(IteratorA& iterator_A,
|
294 |
+
IteratorB& iterator_B,
|
295 |
+
int group_start_A = 0,
|
296 |
+
int group_start_B = 0)
|
297 |
+
{
|
298 |
+
iterator_A.set_iteration_index(group_start_A * IteratorA::kAccessesPerVector);
|
299 |
+
this->smem_iterator_A_.set_iteration_index(group_start_A);
|
300 |
+
|
301 |
+
// Async Copy for operand A
|
302 |
+
CUTLASS_PRAGMA_UNROLL
|
303 |
+
for (int j = 0; j < Detail::kAccessesPerGroupA; ++j) {
|
304 |
+
if (group_start_A + j < Detail::AsyncCopyIterationsPerStageA) {
|
305 |
+
typename IteratorA::AccessType* dst_ptr =
|
306 |
+
reinterpret_cast<typename IteratorA::AccessType*>(this->smem_iterator_A_.get());
|
307 |
+
|
308 |
+
int const kSrcBytes = sizeof_bits<typename IteratorA::Element>::value *
|
309 |
+
IteratorA::ThreadMap::kElementsPerAccess /
|
310 |
+
IteratorA::kAccessesPerVector / 8;
|
311 |
+
|
312 |
+
CUTLASS_PRAGMA_UNROLL
|
313 |
+
for (int v = 0; v < IteratorA::kAccessesPerVector; ++v) {
|
314 |
+
auto gmem_ptr = iterator_A.get();
|
315 |
+
|
316 |
+
if (zero_outside_bounds_ ||
|
317 |
+
SharedMemoryClear == SharedMemoryClearOption::kZfill) {
|
318 |
+
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpA>(
|
319 |
+
dst_ptr + v, gmem_ptr, iterator_A.valid());
|
320 |
+
} else {
|
321 |
+
cutlass::arch::cp_async<kSrcBytes, kCacheOpA>(
|
322 |
+
dst_ptr + v, gmem_ptr, iterator_A.valid());
|
323 |
+
}
|
324 |
+
|
325 |
+
++iterator_A;
|
326 |
+
}
|
327 |
+
|
328 |
+
++this->smem_iterator_A_;
|
329 |
+
}
|
330 |
+
}
|
331 |
+
|
332 |
+
iterator_B.set_iteration_index(group_start_B * IteratorB::kAccessesPerVector);
|
333 |
+
this->smem_iterator_B_.set_iteration_index(group_start_B);
|
334 |
+
|
335 |
+
// Async Copy for operand B
|
336 |
+
CUTLASS_PRAGMA_UNROLL
|
337 |
+
for (int j = 0; j < Detail::kAccessesPerGroupB; ++j) {
|
338 |
+
if (group_start_B + j < Detail::AsyncCopyIterationsPerStageB) {
|
339 |
+
typename IteratorB::AccessType* dst_ptr =
|
340 |
+
reinterpret_cast<typename IteratorB::AccessType*>(this->smem_iterator_B_.get());
|
341 |
+
|
342 |
+
int const kSrcBytes = sizeof_bits<typename IteratorB::Element>::value *
|
343 |
+
IteratorB::ThreadMap::kElementsPerAccess /
|
344 |
+
IteratorB::kAccessesPerVector / 8;
|
345 |
+
|
346 |
+
CUTLASS_PRAGMA_UNROLL
|
347 |
+
for (int v = 0; v < IteratorB::kAccessesPerVector; ++v) {
|
348 |
+
auto gmem_ptr = iterator_B.get();
|
349 |
+
|
350 |
+
if (zero_outside_bounds_ ||
|
351 |
+
SharedMemoryClear == SharedMemoryClearOption::kZfill) {
|
352 |
+
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB>(
|
353 |
+
dst_ptr + v, gmem_ptr, iterator_B.valid());
|
354 |
+
} else {
|
355 |
+
cutlass::arch::cp_async<kSrcBytes, kCacheOpB>(
|
356 |
+
dst_ptr + v, gmem_ptr, iterator_B.valid());
|
357 |
+
}
|
358 |
+
|
359 |
+
++iterator_B;
|
360 |
+
}
|
361 |
+
++this->smem_iterator_B_;
|
362 |
+
}
|
363 |
+
}
|
364 |
+
}
|
365 |
+
|
366 |
+
template <bool kLoadA = true, bool kLoadB = true>
|
367 |
+
CUTLASS_DEVICE static void _prologue(IteratorA& iterator_A,
|
368 |
+
IteratorB& iterator_B,
|
369 |
+
int32_t& gemm_k_iterations,
|
370 |
+
SmemIteratorA& smem_iterator_A_,
|
371 |
+
SmemIteratorB& smem_iterator_B_)
|
372 |
+
{
|
373 |
+
// Issue several complete stages
|
374 |
+
CUTLASS_PRAGMA_UNROLL
|
375 |
+
for (int stage = 0; stage < kNumStagesConcurrentLoad; ++stage, --gemm_k_iterations) {
|
376 |
+
iterator_A.clear_mask(gemm_k_iterations == 0);
|
377 |
+
iterator_B.clear_mask(gemm_k_iterations == 0);
|
378 |
+
|
379 |
+
iterator_A.set_iteration_index(0);
|
380 |
+
smem_iterator_A_.set_iteration_index(0);
|
381 |
+
|
382 |
+
// Async Copy for operand A
|
383 |
+
CUTLASS_PRAGMA_UNROLL
|
384 |
+
for (int j = 0; j < Detail::AsyncCopyIterationsPerStageA; ++j) {
|
385 |
+
typename IteratorA::AccessType* dst_ptr =
|
386 |
+
reinterpret_cast<typename IteratorA::AccessType*>(smem_iterator_A_.get());
|
387 |
+
|
388 |
+
CUTLASS_PRAGMA_UNROLL
|
389 |
+
for (int v = 0; v < IteratorA::kAccessesPerVector; ++v) {
|
390 |
+
int const kSrcBytes = sizeof_bits<typename IteratorA::Element>::value *
|
391 |
+
IteratorA::ThreadMap::kElementsPerAccess /
|
392 |
+
IteratorA::kAccessesPerVector / 8;
|
393 |
+
|
394 |
+
int src_bytes = (iterator_A.valid() ? kSrcBytes : 0);
|
395 |
+
|
396 |
+
if (kLoadA) {
|
397 |
+
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpA>(
|
398 |
+
dst_ptr + v, iterator_A.get(), iterator_A.valid());
|
399 |
+
}
|
400 |
+
|
401 |
+
++iterator_A;
|
402 |
+
}
|
403 |
+
|
404 |
+
++smem_iterator_A_;
|
405 |
+
}
|
406 |
+
|
407 |
+
iterator_B.set_iteration_index(0);
|
408 |
+
smem_iterator_B_.set_iteration_index(0);
|
409 |
+
|
410 |
+
// Async Copy for operand B
|
411 |
+
CUTLASS_PRAGMA_UNROLL
|
412 |
+
for (int j = 0; j < Detail::AsyncCopyIterationsPerStageB; ++j) {
|
413 |
+
typename IteratorB::AccessType* dst_ptr =
|
414 |
+
reinterpret_cast<typename IteratorB::AccessType*>(smem_iterator_B_.get());
|
415 |
+
|
416 |
+
CUTLASS_PRAGMA_UNROLL
|
417 |
+
for (int v = 0; v < IteratorB::kAccessesPerVector; ++v) {
|
418 |
+
int const kSrcBytes = sizeof_bits<typename IteratorB::Element>::value *
|
419 |
+
IteratorB::ThreadMap::kElementsPerAccess /
|
420 |
+
IteratorB::kAccessesPerVector / 8;
|
421 |
+
|
422 |
+
if (kLoadB) {
|
423 |
+
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB>(
|
424 |
+
dst_ptr + v, iterator_B.get(), iterator_B.valid());
|
425 |
+
}
|
426 |
+
|
427 |
+
++iterator_B;
|
428 |
+
}
|
429 |
+
|
430 |
+
++smem_iterator_B_;
|
431 |
+
}
|
432 |
+
|
433 |
+
// Move to the next stage
|
434 |
+
iterator_A.add_tile_offset({0, 1});
|
435 |
+
iterator_B.add_tile_offset({1, 0});
|
436 |
+
|
437 |
+
smem_iterator_A_.add_tile_offset({0, 1});
|
438 |
+
smem_iterator_B_.add_tile_offset({1, 0});
|
439 |
+
|
440 |
+
// Defines the boundary of a stage of cp.async.
|
441 |
+
cutlass::arch::cp_async_fence();
|
442 |
+
}
|
443 |
+
}
|
444 |
+
|
445 |
+
/// Perform a threadblock-scoped matrix multiply-accumulate
|
446 |
+
CUTLASS_DEVICE
|
447 |
+
void operator()(
|
448 |
+
///< problem size of GEMM
|
449 |
+
int gemm_k_iterations,
|
450 |
+
///< destination accumulator tile
|
451 |
+
FragmentC& accum,
|
452 |
+
///< iterator over A operand in global memory
|
453 |
+
IteratorA iterator_A,
|
454 |
+
///< iterator over B operand in global memory
|
455 |
+
IteratorB iterator_B,
|
456 |
+
///< initial value of accumulator
|
457 |
+
FragmentC const& src_accum)
|
458 |
+
{
|
459 |
+
//
|
460 |
+
// Prologue
|
461 |
+
//
|
462 |
+
|
463 |
+
if (!prologue_done_) {
|
464 |
+
_prologue<true, true>(
|
465 |
+
iterator_A, iterator_B, gemm_k_iterations, smem_iterator_A_, smem_iterator_B_);
|
466 |
+
} else if (!kSmemContainsEntireMat) {
|
467 |
+
_prologue<false, false>(
|
468 |
+
iterator_A, iterator_B, gemm_k_iterations, smem_iterator_A_, smem_iterator_B_);
|
469 |
+
} else {
|
470 |
+
gemm_k_iterations -= kNumStagesConcurrentLoad;
|
471 |
+
}
|
472 |
+
|
473 |
+
// Perform accumulation in the 'd' output operand
|
474 |
+
accum = src_accum;
|
475 |
+
|
476 |
+
//
|
477 |
+
// Clear the remaining tiles of SMEM. This is a functional requirement for
|
478 |
+
// some kernels so that all accumulator elements outside the GEMM footprint
|
479 |
+
// are zero.
|
480 |
+
//
|
481 |
+
|
482 |
+
if (SharedMemoryClear == SharedMemoryClearOption::kClearLastStage) {
|
483 |
+
/// Iterator to write threadblock-scoped tile of A operand to shared
|
484 |
+
/// memory
|
485 |
+
SmemIteratorA last_smem_iterator_A(this->smem_iterator_A_);
|
486 |
+
|
487 |
+
typename IteratorA::AccessType zero_A;
|
488 |
+
zero_A.clear();
|
489 |
+
|
490 |
+
last_smem_iterator_A.set_iteration_index(0);
|
491 |
+
|
492 |
+
// Async Copy for operand A
|
493 |
+
CUTLASS_PRAGMA_UNROLL
|
494 |
+
for (int j = 0; j < Detail::AsyncCopyIterationsPerStageA; ++j) {
|
495 |
+
typename IteratorA::AccessType* dst_ptr =
|
496 |
+
reinterpret_cast<typename IteratorA::AccessType*>(last_smem_iterator_A.get());
|
497 |
+
|
498 |
+
*dst_ptr = zero_A;
|
499 |
+
|
500 |
+
++last_smem_iterator_A;
|
501 |
+
}
|
502 |
+
|
503 |
+
/// Iterator to write threadblock-scoped tile of B operand to shared
|
504 |
+
/// memory
|
505 |
+
SmemIteratorB last_smem_iterator_B(this->smem_iterator_B_);
|
506 |
+
typename IteratorB::AccessType zero_B;
|
507 |
+
|
508 |
+
zero_B.clear();
|
509 |
+
last_smem_iterator_B.set_iteration_index(0);
|
510 |
+
|
511 |
+
// Async Copy for operand B
|
512 |
+
CUTLASS_PRAGMA_UNROLL
|
513 |
+
for (int j = 0; j < Detail::AsyncCopyIterationsPerStageB; ++j) {
|
514 |
+
typename IteratorB::AccessType* dst_ptr =
|
515 |
+
reinterpret_cast<typename IteratorB::AccessType*>(last_smem_iterator_B.get());
|
516 |
+
|
517 |
+
*dst_ptr = zero_B;
|
518 |
+
|
519 |
+
++last_smem_iterator_B;
|
520 |
+
}
|
521 |
+
}
|
522 |
+
|
523 |
+
// Waits until kStages-2 stages have committed.
|
524 |
+
cutlass::arch::cp_async_wait<kNumStagesConcurrentLoad - 1>();
|
525 |
+
__syncthreads();
|
526 |
+
|
527 |
+
// Pair of fragments used to overlap shared memory loads and math
|
528 |
+
// instructions
|
529 |
+
WarpLoadedFragmentA warp_loaded_frag_A[2];
|
530 |
+
WarpLoadedFragmentB warp_loaded_frag_B[2];
|
531 |
+
WarpTransformedFragmentA warp_transformed_frag_A[2];
|
532 |
+
WarpTransformedFragmentB warp_transformed_frag_B[2];
|
533 |
+
|
534 |
+
Operator warp_mma;
|
535 |
+
|
536 |
+
this->warp_tile_iterator_A_.set_kgroup_index(0);
|
537 |
+
this->warp_tile_iterator_B_.set_kgroup_index(0);
|
538 |
+
|
539 |
+
this->warp_tile_iterator_A_.load(warp_loaded_frag_A[0]);
|
540 |
+
this->warp_tile_iterator_B_.load(warp_loaded_frag_B[0]);
|
541 |
+
|
542 |
+
++this->warp_tile_iterator_A_;
|
543 |
+
++this->warp_tile_iterator_B_;
|
544 |
+
|
545 |
+
iterator_A.clear_mask(gemm_k_iterations == 0);
|
546 |
+
iterator_B.clear_mask(gemm_k_iterations == 0);
|
547 |
+
|
548 |
+
int smem_write_stage_idx = Base::kStages - 1;
|
549 |
+
int smem_read_stage_idx = 0;
|
550 |
+
|
551 |
+
warp_mma.transform(warp_transformed_frag_A[0],
|
552 |
+
warp_transformed_frag_B[0],
|
553 |
+
warp_loaded_frag_A[0],
|
554 |
+
warp_loaded_frag_B[0]);
|
555 |
+
|
556 |
+
// tf32x3 kernels use staging accumulation. warp_mma uses a temporary
|
557 |
+
// accumulator and this temporary accumulator is added to the final
|
558 |
+
// accumulator once in every mainloop iteration.
|
559 |
+
plus<FragmentC> plus_accum;
|
560 |
+
|
561 |
+
FragmentC tmp_accum;
|
562 |
+
|
563 |
+
if (platform::is_same<typename Operator::MathOperator, arch::OpMultiplyAddFastF32>::value ||
|
564 |
+
platform::is_same<typename Operator::MathOperator,
|
565 |
+
arch::OpMultiplyAddComplexFastF32>::value) {
|
566 |
+
tmp_accum.clear();
|
567 |
+
}
|
568 |
+
|
569 |
+
//
|
570 |
+
// Mainloop
|
571 |
+
//
|
572 |
+
|
573 |
+
CUTLASS_GEMM_LOOP
|
574 |
+
for (; gemm_k_iterations > (-kNumStagesConcurrentLoad);) {
|
575 |
+
//
|
576 |
+
// Loop over GEMM K dimension
|
577 |
+
//
|
578 |
+
|
579 |
+
// Computes a warp-level GEMM on data held in shared memory
|
580 |
+
// Each "warp_mma_k" refers to a warp-level matrix multiply-accumulate
|
581 |
+
CUTLASS_PRAGMA_UNROLL
|
582 |
+
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations; ++warp_mma_k) {
|
583 |
+
// Load warp-level tiles from shared memory, wrapping to k offset if
|
584 |
+
// this is the last group as the case may be.
|
585 |
+
|
586 |
+
this->warp_tile_iterator_A_.set_kgroup_index((warp_mma_k + 1) %
|
587 |
+
Base::kWarpGemmIterations);
|
588 |
+
this->warp_tile_iterator_B_.set_kgroup_index((warp_mma_k + 1) %
|
589 |
+
Base::kWarpGemmIterations);
|
590 |
+
|
591 |
+
// In case of a non-circular buffer ("kSmemContainsEntireMat")
|
592 |
+
// make sure we don't load out of bounds data.
|
593 |
+
if (!kSmemContainsEntireMat || gemm_k_iterations > (-kNumStagesConcurrentLoad) ||
|
594 |
+
warp_mma_k < Base::kWarpGemmIterations - 1) {
|
595 |
+
this->warp_tile_iterator_A_.load(warp_loaded_frag_A[(warp_mma_k + 1) % 2]);
|
596 |
+
this->warp_tile_iterator_B_.load(warp_loaded_frag_B[(warp_mma_k + 1) % 2]);
|
597 |
+
}
|
598 |
+
|
599 |
+
++this->warp_tile_iterator_A_;
|
600 |
+
++this->warp_tile_iterator_B_;
|
601 |
+
|
602 |
+
if (warp_mma_k > 0)
|
603 |
+
warp_mma.transform(warp_transformed_frag_A[warp_mma_k % 2],
|
604 |
+
warp_transformed_frag_B[warp_mma_k % 2],
|
605 |
+
warp_loaded_frag_A[warp_mma_k % 2],
|
606 |
+
warp_loaded_frag_B[warp_mma_k % 2]);
|
607 |
+
|
608 |
+
if (platform::is_same<typename Operator::MathOperator,
|
609 |
+
arch::OpMultiplyAddFastF32>::value ||
|
610 |
+
platform::is_same<typename Operator::MathOperator,
|
611 |
+
arch::OpMultiplyAddComplexFastF32>::value) {
|
612 |
+
warp_mma(tmp_accum,
|
613 |
+
warp_transformed_frag_A[warp_mma_k % 2],
|
614 |
+
warp_transformed_frag_B[warp_mma_k % 2],
|
615 |
+
tmp_accum);
|
616 |
+
|
617 |
+
if (warp_mma_k == 0) {
|
618 |
+
accum = plus_accum(accum, tmp_accum);
|
619 |
+
tmp_accum.clear();
|
620 |
+
}
|
621 |
+
} else {
|
622 |
+
warp_mma(accum,
|
623 |
+
warp_transformed_frag_A[warp_mma_k % 2],
|
624 |
+
warp_transformed_frag_B[warp_mma_k % 2],
|
625 |
+
accum);
|
626 |
+
}
|
627 |
+
|
628 |
+
// Issue global->shared copies for the this stage
|
629 |
+
if (!kSmemContainsEntireMat && warp_mma_k < Base::kWarpGemmIterations - 1) {
|
630 |
+
int group_start_iteration_A, group_start_iteration_B;
|
631 |
+
|
632 |
+
group_start_iteration_A = warp_mma_k * Detail::kAccessesPerGroupA;
|
633 |
+
group_start_iteration_B = warp_mma_k * Detail::kAccessesPerGroupB;
|
634 |
+
|
635 |
+
copy_tiles_and_advance(
|
636 |
+
iterator_A, iterator_B, group_start_iteration_A, group_start_iteration_B);
|
637 |
+
}
|
638 |
+
|
639 |
+
if (warp_mma_k + 2 == Base::kWarpGemmIterations) {
|
640 |
+
if (!kSmemContainsEntireMat) {
|
641 |
+
int group_start_iteration_A, group_start_iteration_B;
|
642 |
+
group_start_iteration_A = (warp_mma_k + 1) * Detail::kAccessesPerGroupA;
|
643 |
+
group_start_iteration_B = (warp_mma_k + 1) * Detail::kAccessesPerGroupB;
|
644 |
+
|
645 |
+
copy_tiles_and_advance(iterator_A,
|
646 |
+
iterator_B,
|
647 |
+
group_start_iteration_A,
|
648 |
+
group_start_iteration_B);
|
649 |
+
}
|
650 |
+
|
651 |
+
// Inserts a memory fence between stages of cp.async instructions.
|
652 |
+
cutlass::arch::cp_async_fence();
|
653 |
+
|
654 |
+
// Waits until kStages-2 stages have committed.
|
655 |
+
cutlass::arch::cp_async_wait<kNumStagesConcurrentLoad - 1>();
|
656 |
+
__syncthreads();
|
657 |
+
|
658 |
+
// Move to the next stage
|
659 |
+
iterator_A.add_tile_offset({0, 1});
|
660 |
+
iterator_B.add_tile_offset({1, 0});
|
661 |
+
|
662 |
+
this->smem_iterator_A_.add_tile_offset({0, 1});
|
663 |
+
this->smem_iterator_B_.add_tile_offset({1, 0});
|
664 |
+
|
665 |
+
// Add negative offsets to return iterators to the 'start' of the
|
666 |
+
// circular buffer in shared memory
|
667 |
+
if (smem_write_stage_idx == (Base::kStages - 1)) {
|
668 |
+
this->smem_iterator_A_.add_tile_offset({0, -Base::kStages});
|
669 |
+
this->smem_iterator_B_.add_tile_offset({-Base::kStages, 0});
|
670 |
+
smem_write_stage_idx = 0;
|
671 |
+
} else {
|
672 |
+
++smem_write_stage_idx;
|
673 |
+
}
|
674 |
+
|
675 |
+
if (!kSmemContainsEntireMat && smem_read_stage_idx == (Base::kStages - 1)) {
|
676 |
+
this->warp_tile_iterator_A_.add_tile_offset(
|
677 |
+
{0, -Base::kStages * Policy::kPartitionsK * Base::kWarpGemmIterations});
|
678 |
+
this->warp_tile_iterator_B_.add_tile_offset(
|
679 |
+
{-Base::kStages * Policy::kPartitionsK * Base::kWarpGemmIterations, 0});
|
680 |
+
smem_read_stage_idx = 0;
|
681 |
+
} else {
|
682 |
+
++smem_read_stage_idx;
|
683 |
+
}
|
684 |
+
|
685 |
+
--gemm_k_iterations;
|
686 |
+
iterator_A.clear_mask(gemm_k_iterations == 0);
|
687 |
+
iterator_B.clear_mask(gemm_k_iterations == 0);
|
688 |
+
}
|
689 |
+
|
690 |
+
// Do any conversions feeding the first stage at the end of the loop so
|
691 |
+
// we can start right away on mma instructions
|
692 |
+
if (warp_mma_k + 1 == Base::kWarpGemmIterations)
|
693 |
+
warp_mma.transform(warp_transformed_frag_A[(warp_mma_k + 1) % 2],
|
694 |
+
warp_transformed_frag_B[(warp_mma_k + 1) % 2],
|
695 |
+
warp_loaded_frag_A[(warp_mma_k + 1) % 2],
|
696 |
+
warp_loaded_frag_B[(warp_mma_k + 1) % 2]);
|
697 |
+
}
|
698 |
+
}
|
699 |
+
|
700 |
+
if (platform::is_same<typename Operator::MathOperator, arch::OpMultiplyAddFastF32>::value ||
|
701 |
+
platform::is_same<typename Operator::MathOperator,
|
702 |
+
arch::OpMultiplyAddComplexFastF32>::value) {
|
703 |
+
accum = plus_accum(accum, tmp_accum);
|
704 |
+
}
|
705 |
+
}
|
706 |
+
};
|
707 |
+
|
708 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
709 |
+
|
710 |
+
} // namespace threadblock
|
711 |
+
} // namespace gemm
|
712 |
+
} // namespace cutlass
|
713 |
+
|
714 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/gemm/custom_mma_pipelined.h
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights
|
3 |
+
*reserved. SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice,
|
9 |
+
*this list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
23 |
+
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
24 |
+
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
25 |
+
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
27 |
+
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
28 |
+
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
29 |
+
*POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
*
|
31 |
+
**************************************************************************************************/
|
32 |
+
|
33 |
+
// Copyright (c) Microsoft Corporation.
|
34 |
+
// SPDX-License-Identifier: Apache-2.0
|
35 |
+
|
36 |
+
// DeepSpeed Team
|
37 |
+
|
38 |
+
/*! \file
|
39 |
+
\brief Template for a double-buffered threadblock-scoped GEMM kernel.
|
40 |
+
*/
|
41 |
+
|
42 |
+
#pragma once
|
43 |
+
|
44 |
+
#include "cutlass/aligned_buffer.h"
|
45 |
+
#include "cutlass/array.h"
|
46 |
+
#include "cutlass/cutlass.h"
|
47 |
+
#include "cutlass/numeric_conversion.h"
|
48 |
+
|
49 |
+
#include "cutlass/matrix_shape.h"
|
50 |
+
#include "cutlass/numeric_types.h"
|
51 |
+
|
52 |
+
#include "custom_mma_base.h"
|
53 |
+
#include "cutlass/gemm/gemm.h"
|
54 |
+
|
55 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
56 |
+
|
57 |
+
namespace cutlass {
|
58 |
+
namespace gemm {
|
59 |
+
namespace threadblock {
|
60 |
+
|
61 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
62 |
+
|
63 |
+
/// Structure to compute the matrix product targeting CUDA cores and SIMT math
|
64 |
+
/// instructions.
|
65 |
+
template <
|
66 |
+
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
67 |
+
typename Shape_,
|
68 |
+
/// Iterates over tiles of A operand in global memory
|
69 |
+
// (concept: ReadableTileIterator | ForwardTileIterator |
|
70 |
+
// MaskedTileIterator)
|
71 |
+
typename IteratorA_,
|
72 |
+
/// Iterates over tiles of A operand in shared memory
|
73 |
+
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
74 |
+
typename SmemIteratorA_,
|
75 |
+
/// Iterates over tiles of B operand in global memory
|
76 |
+
// (concept: ReadableTileIterator | ForwardTileIterator |
|
77 |
+
// MaskedTileIterator)
|
78 |
+
typename IteratorB_,
|
79 |
+
/// Iterates over tiles of B operand in shared memory
|
80 |
+
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
81 |
+
typename SmemIteratorB_,
|
82 |
+
/// Data type of accumulator matrix
|
83 |
+
typename ElementC_,
|
84 |
+
/// Data type of accumulator matrix
|
85 |
+
typename LayoutC_,
|
86 |
+
/// Policy describing tuning details (concept: MmaPolicy)
|
87 |
+
typename Policy_,
|
88 |
+
/// Transformation applied to A operand
|
89 |
+
typename TransformA_ = NumericArrayConverter<typename SmemIteratorA_::Element,
|
90 |
+
typename IteratorA_::Element,
|
91 |
+
IteratorA_::Fragment::kElements>,
|
92 |
+
///
|
93 |
+
/// Transformation applied to B operand
|
94 |
+
typename TransformB_ = NumericArrayConverter<typename SmemIteratorB_::Element,
|
95 |
+
typename IteratorB_::Element,
|
96 |
+
IteratorB_::Fragment::kElements>,
|
97 |
+
/// Used for partial specialization
|
98 |
+
typename Enable = bool>
|
99 |
+
class CustomMmaPipelined : public CustomMmaBase<Shape_, Policy_, 2> {
|
100 |
+
public:
|
101 |
+
///< Base class
|
102 |
+
using Base = CustomMmaBase<Shape_, Policy_, 2>;
|
103 |
+
|
104 |
+
using Shape = Shape_; ///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
105 |
+
using IteratorA = IteratorA_; ///< Iterates over tiles of A operand in global memory
|
106 |
+
using IteratorB = IteratorB_; ///< Iterates over tiles of B operand in global memory
|
107 |
+
using ElementC = ElementC_; ///< Data type of accumulator matrix
|
108 |
+
using LayoutC = LayoutC_; ///< Layout of accumulator matrix
|
109 |
+
using Policy = Policy_; ///< Policy describing tuning details
|
110 |
+
|
111 |
+
using SmemIteratorA = SmemIteratorA_;
|
112 |
+
using SmemIteratorB = SmemIteratorB_;
|
113 |
+
|
114 |
+
using TransformA = TransformA_;
|
115 |
+
using TransformB = TransformB_;
|
116 |
+
|
117 |
+
//
|
118 |
+
// Dependent types
|
119 |
+
//
|
120 |
+
|
121 |
+
/// Fragment of operand A loaded from global memory
|
122 |
+
using FragmentA = typename IteratorA::Fragment;
|
123 |
+
|
124 |
+
/// Fragment of operand B loaded from global memory
|
125 |
+
using FragmentB = typename IteratorB::Fragment;
|
126 |
+
|
127 |
+
/// Fragment of accumulator tile
|
128 |
+
using FragmentC = typename Policy::Operator::FragmentC;
|
129 |
+
|
130 |
+
/// Warp-level Mma
|
131 |
+
using Operator = typename Policy::Operator;
|
132 |
+
|
133 |
+
/// Obtain the arch tag from the warp-level operator
|
134 |
+
using ArchTag = typename Policy::Operator::ArchTag;
|
135 |
+
|
136 |
+
/// Complex transform on A operand
|
137 |
+
static ComplexTransform const kTransformA = Operator::kTransformA;
|
138 |
+
|
139 |
+
/// Complex transform on B operand
|
140 |
+
static ComplexTransform const kTransformB = Operator::kTransformB;
|
141 |
+
|
142 |
+
// staticaly assert kStages for MmaPipelined is two (Double-buffered pipeline)
|
143 |
+
static_assert((Base::kStages == 2), "MmaPipelined requires kStages set to value 2");
|
144 |
+
|
145 |
+
static bool const kSmemContainsEntireMat = false;
|
146 |
+
|
147 |
+
private:
|
148 |
+
using WarpFragmentA = typename Operator::FragmentA;
|
149 |
+
using WarpFragmentB = typename Operator::FragmentB;
|
150 |
+
|
151 |
+
protected:
|
152 |
+
/// Iterator to write threadblock-scoped tile of A operand to shared memory
|
153 |
+
SmemIteratorA smem_iterator_A_;
|
154 |
+
|
155 |
+
/// Iterator to write threadblock-scoped tile of B operand to shared memory
|
156 |
+
SmemIteratorB smem_iterator_B_;
|
157 |
+
|
158 |
+
public:
|
159 |
+
/// Construct from tensor references
|
160 |
+
CUTLASS_DEVICE
|
161 |
+
CustomMmaPipelined(typename Base::SharedStorageA& shared_storageA,
|
162 |
+
typename Base::SharedStorageB& shared_storageB,
|
163 |
+
int thread_idx, ///< ID within the threadblock
|
164 |
+
int warp_idx, ///< ID of warp
|
165 |
+
int lane_idx ///< ID of each thread within a warp
|
166 |
+
)
|
167 |
+
: Base(shared_storageA, shared_storageB, thread_idx, warp_idx, lane_idx),
|
168 |
+
smem_iterator_A_(shared_storageA.ref(), thread_idx),
|
169 |
+
smem_iterator_B_(shared_storageB.ref(), thread_idx)
|
170 |
+
{
|
171 |
+
// Compute warp location within threadblock tile by mapping the warp_id to
|
172 |
+
// three coordinates:
|
173 |
+
// _m: the warp's position within the threadblock along the M dimension
|
174 |
+
// _n: the warp's position within the threadblock along the N dimension
|
175 |
+
// _k: the warp's position within the threadblock along the K dimension
|
176 |
+
|
177 |
+
int warp_idx_mn = warp_idx % (Base::WarpCount::kM * Base::WarpCount::kN);
|
178 |
+
int warp_idx_k = warp_idx / (Base::WarpCount::kM * Base::WarpCount::kN);
|
179 |
+
|
180 |
+
int warp_idx_m = warp_idx_mn % Base::WarpCount::kM;
|
181 |
+
int warp_idx_n = warp_idx_mn / Base::WarpCount::kM;
|
182 |
+
|
183 |
+
// Add per-warp offsets in units of warp-level tiles
|
184 |
+
this->warp_tile_iterator_A_.add_tile_offset(
|
185 |
+
{warp_idx_m, Base::kWarpGemmIterations * warp_idx_k});
|
186 |
+
this->warp_tile_iterator_B_.add_tile_offset(
|
187 |
+
{Base::kWarpGemmIterations * warp_idx_k, warp_idx_n});
|
188 |
+
}
|
189 |
+
CUTLASS_DEVICE
|
190 |
+
CustomMmaPipelined(
|
191 |
+
///< Shared storage needed for internal use by threadblock-scoped GEMM
|
192 |
+
typename Base::SharedStorage& st,
|
193 |
+
///< ID within the threadblock
|
194 |
+
int thread_idx,
|
195 |
+
///< ID of warp
|
196 |
+
int warp_idx,
|
197 |
+
///< ID of each thread within a warp
|
198 |
+
int lane_idx)
|
199 |
+
: CustomMmaPipelined(st.operand_A, st.operand_B, thread_idx, warp_idx, lane_idx)
|
200 |
+
{
|
201 |
+
}
|
202 |
+
|
203 |
+
CUTLASS_DEVICE
|
204 |
+
bool set_prologue_done(bool value)
|
205 |
+
{
|
206 |
+
// NOT IMPLEMENTED FOR PIPELINED
|
207 |
+
}
|
208 |
+
|
209 |
+
CUTLASS_DEVICE
|
210 |
+
bool set_zero_outside_bounds(bool value)
|
211 |
+
{
|
212 |
+
// NOT NEEDED FOR PIPELINED
|
213 |
+
// shared memory will always be zero-filled
|
214 |
+
}
|
215 |
+
|
216 |
+
template <bool kLoadA = true, bool kLoadB = true>
|
217 |
+
CUTLASS_DEVICE static void prologue(typename Base::SharedStorage& shared_storage,
|
218 |
+
///< iterator over A operand in global memory
|
219 |
+
IteratorA iterator_A,
|
220 |
+
///< iterator over B operand in global memory
|
221 |
+
IteratorB iterator_B,
|
222 |
+
int thread_idx,
|
223 |
+
int problem_size_k)
|
224 |
+
{
|
225 |
+
prologue<kLoadA, kLoadB>(shared_storage.operand_A,
|
226 |
+
shared_storage.operand_B,
|
227 |
+
iterator_A,
|
228 |
+
iterator_B,
|
229 |
+
thread_idx,
|
230 |
+
problem_size_k);
|
231 |
+
}
|
232 |
+
|
233 |
+
template <bool kLoadA = true, bool kLoadB = true>
|
234 |
+
CUTLASS_DEVICE static void prologue(typename Base::SharedStorageA& shared_storageA,
|
235 |
+
typename Base::SharedStorageB& shared_storageB,
|
236 |
+
///< iterator over A operand in global memory
|
237 |
+
IteratorA iterator_A,
|
238 |
+
///< iterator over B operand in global memory
|
239 |
+
IteratorB iterator_B,
|
240 |
+
int thread_idx,
|
241 |
+
int problem_size_k)
|
242 |
+
{
|
243 |
+
// NOT IMPLEMENTED FOR PIPELINED
|
244 |
+
}
|
245 |
+
|
246 |
+
/// Perform a threadblock-scoped matrix multiply-accumulate
|
247 |
+
CUTLASS_DEVICE
|
248 |
+
void operator()(
|
249 |
+
int gemm_k_iterations, ///< number of iterations of the mainloop
|
250 |
+
FragmentC& accum, ///< destination accumulator tile
|
251 |
+
IteratorA iterator_A, ///< iterator over A operand in global memory
|
252 |
+
IteratorB iterator_B, ///< iterator over B operand in global memory
|
253 |
+
FragmentC const& src_accum, ///< source accumulator tile
|
254 |
+
TransformA transform_A = TransformA(), ///< transformation applied to A fragment
|
255 |
+
TransformB transform_B = TransformB())
|
256 |
+
{ ///< transformation applied to B fragment
|
257 |
+
|
258 |
+
//
|
259 |
+
// Prologue
|
260 |
+
//
|
261 |
+
|
262 |
+
// Perform accumulation in the 'd' output operand
|
263 |
+
accum = src_accum;
|
264 |
+
|
265 |
+
FragmentA tb_frag_A;
|
266 |
+
FragmentB tb_frag_B;
|
267 |
+
|
268 |
+
tb_frag_A.clear();
|
269 |
+
tb_frag_B.clear();
|
270 |
+
|
271 |
+
// The last kblock is loaded in the prolog
|
272 |
+
iterator_A.load(tb_frag_A);
|
273 |
+
iterator_B.load(tb_frag_B);
|
274 |
+
|
275 |
+
++iterator_A;
|
276 |
+
++iterator_B;
|
277 |
+
|
278 |
+
this->smem_iterator_A_.store(transform_A(tb_frag_A));
|
279 |
+
this->smem_iterator_B_.store(transform_B(tb_frag_B));
|
280 |
+
|
281 |
+
++this->smem_iterator_A_;
|
282 |
+
++this->smem_iterator_B_;
|
283 |
+
|
284 |
+
__syncthreads();
|
285 |
+
|
286 |
+
// Pair of fragments used to overlap shared memory loads and math
|
287 |
+
// instructions
|
288 |
+
WarpFragmentA warp_frag_A[2];
|
289 |
+
WarpFragmentB warp_frag_B[2];
|
290 |
+
|
291 |
+
this->warp_tile_iterator_A_.set_kgroup_index(0);
|
292 |
+
this->warp_tile_iterator_B_.set_kgroup_index(0);
|
293 |
+
|
294 |
+
this->warp_tile_iterator_A_.load(warp_frag_A[0]);
|
295 |
+
this->warp_tile_iterator_B_.load(warp_frag_B[0]);
|
296 |
+
|
297 |
+
++this->warp_tile_iterator_A_;
|
298 |
+
++this->warp_tile_iterator_B_;
|
299 |
+
|
300 |
+
Operator warp_mma;
|
301 |
+
|
302 |
+
int smem_write_stage_idx = 1;
|
303 |
+
|
304 |
+
// Avoid reading out of bounds
|
305 |
+
iterator_A.clear_mask(gemm_k_iterations <= 1);
|
306 |
+
iterator_B.clear_mask(gemm_k_iterations <= 1);
|
307 |
+
|
308 |
+
// Issue loads during the first warp-level matrix multiply-add *AFTER*
|
309 |
+
// issuing shared memory loads (which have the tightest latency requirement).
|
310 |
+
|
311 |
+
//
|
312 |
+
// Mainloop
|
313 |
+
//
|
314 |
+
|
315 |
+
// Note: The main loop does not support Base::kWarpGemmIterations == 2.
|
316 |
+
CUTLASS_GEMM_LOOP
|
317 |
+
for (; gemm_k_iterations > 0; --gemm_k_iterations) {
|
318 |
+
//
|
319 |
+
// Loop over GEMM K dimension
|
320 |
+
//
|
321 |
+
|
322 |
+
CUTLASS_PRAGMA_UNROLL
|
323 |
+
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations; ++warp_mma_k) {
|
324 |
+
// Load warp-level tiles from shared memory, wrapping to k offset if
|
325 |
+
// this is the last group as the case may be.
|
326 |
+
|
327 |
+
if (warp_mma_k == Base::kWarpGemmIterations - 1) {
|
328 |
+
// Write fragments to shared memory
|
329 |
+
this->smem_iterator_A_.store(transform_A(tb_frag_A));
|
330 |
+
|
331 |
+
this->smem_iterator_B_.store(transform_B(tb_frag_B));
|
332 |
+
|
333 |
+
__syncthreads();
|
334 |
+
|
335 |
+
++this->smem_iterator_A_;
|
336 |
+
++this->smem_iterator_B_;
|
337 |
+
|
338 |
+
// Add negative offsets to return iterators to the 'start' of the
|
339 |
+
// circular buffer in shared memory
|
340 |
+
if (smem_write_stage_idx == 1) {
|
341 |
+
this->smem_iterator_A_.add_tile_offset({0, -Base::kStages});
|
342 |
+
this->smem_iterator_B_.add_tile_offset({-Base::kStages, 0});
|
343 |
+
} else {
|
344 |
+
this->warp_tile_iterator_A_.add_tile_offset(
|
345 |
+
{0, -Base::kStages * Policy::kPartitionsK * Base::kWarpGemmIterations});
|
346 |
+
this->warp_tile_iterator_B_.add_tile_offset(
|
347 |
+
{-Base::kStages * Policy::kPartitionsK * Base::kWarpGemmIterations, 0});
|
348 |
+
}
|
349 |
+
|
350 |
+
smem_write_stage_idx ^= 1;
|
351 |
+
}
|
352 |
+
|
353 |
+
this->warp_tile_iterator_A_.set_kgroup_index((warp_mma_k + 1) %
|
354 |
+
Base::kWarpGemmIterations);
|
355 |
+
this->warp_tile_iterator_B_.set_kgroup_index((warp_mma_k + 1) %
|
356 |
+
Base::kWarpGemmIterations);
|
357 |
+
|
358 |
+
this->warp_tile_iterator_A_.load(warp_frag_A[(warp_mma_k + 1) % 2]);
|
359 |
+
this->warp_tile_iterator_B_.load(warp_frag_B[(warp_mma_k + 1) % 2]);
|
360 |
+
|
361 |
+
++this->warp_tile_iterator_A_;
|
362 |
+
++this->warp_tile_iterator_B_;
|
363 |
+
|
364 |
+
if (warp_mma_k == 0) {
|
365 |
+
iterator_A.load(tb_frag_A);
|
366 |
+
iterator_B.load(tb_frag_B);
|
367 |
+
|
368 |
+
++iterator_A;
|
369 |
+
++iterator_B;
|
370 |
+
|
371 |
+
// Avoid reading out of bounds if this was the last loop iteration
|
372 |
+
iterator_A.clear_mask(gemm_k_iterations <= 2);
|
373 |
+
iterator_B.clear_mask(gemm_k_iterations <= 2);
|
374 |
+
}
|
375 |
+
|
376 |
+
warp_mma(accum, warp_frag_A[warp_mma_k % 2], warp_frag_B[warp_mma_k % 2], accum);
|
377 |
+
}
|
378 |
+
}
|
379 |
+
}
|
380 |
+
};
|
381 |
+
|
382 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
383 |
+
|
384 |
+
} // namespace threadblock
|
385 |
+
} // namespace gemm
|
386 |
+
} // namespace cutlass
|
387 |
+
|
388 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/gemm/find_default_mma.h
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holdvr nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
|
32 |
+
// Copyright (c) Microsoft Corporation.
|
33 |
+
// SPDX-License-Identifier: Apache-2.0
|
34 |
+
|
35 |
+
// DeepSpeed Team
|
36 |
+
|
37 |
+
/*! \file
|
38 |
+
\brief Cutlass provides helper template functions to figure out the right
|
39 |
+
datastructures to instantiate to run a GEMM with various parameters (see
|
40 |
+
`cutlass/gemm/threadblock/default_mma.h`). However, due to template
|
41 |
+
instantiation priority rules, it will only create an MmaMultiStage with
|
42 |
+
kStages=3 (otherwise creates an MmePipelined - which is not compatible with
|
43 |
+
FastF32). kStages=3 uses too much shared memory and we want to use kStages=2,
|
44 |
+
so we just copy-pasted some code from `default_mma.h` and
|
45 |
+
`default_mma_core.h` files and wrapped this template to allow our usecase.
|
46 |
+
|
47 |
+
This is really only for the FastF32 case - aka using TensorCores with fp32.
|
48 |
+
*/
|
49 |
+
|
50 |
+
#pragma once
|
51 |
+
|
52 |
+
#include "cutlass/gemm/threadblock/default_mma.h"
|
53 |
+
#include "cutlass/gemm/threadblock/default_mma_core_simt.h"
|
54 |
+
#include "cutlass/gemm/threadblock/default_mma_core_sm70.h"
|
55 |
+
#include "cutlass/gemm/threadblock/default_mma_core_sm75.h"
|
56 |
+
#include "cutlass/gemm/threadblock/default_mma_core_sm80.h"
|
57 |
+
|
58 |
+
namespace cutlass {
|
59 |
+
namespace gemm {
|
60 |
+
namespace threadblock {
|
61 |
+
|
62 |
+
template <
|
63 |
+
/// Element type for A matrix operand
|
64 |
+
typename ElementA,
|
65 |
+
/// Layout type for A matrix operand
|
66 |
+
typename LayoutA,
|
67 |
+
/// Access granularity of A matrix in units of elements
|
68 |
+
int kAlignmentA,
|
69 |
+
/// Element type for B matrix operand
|
70 |
+
typename ElementB,
|
71 |
+
/// Layout type for B matrix operand
|
72 |
+
typename LayoutB,
|
73 |
+
/// Access granularity of B matrix in units of elements
|
74 |
+
int kAlignmentB,
|
75 |
+
/// Element type for internal accumulation
|
76 |
+
typename ElementAccumulator,
|
77 |
+
/// Layout type for C and D matrix operand
|
78 |
+
typename LayoutC,
|
79 |
+
/// Operator class tag
|
80 |
+
typename OperatorClass,
|
81 |
+
/// Tag indicating architecture to tune for
|
82 |
+
typename ArchTag,
|
83 |
+
/// Threadblock-level tile size (concept: GemmShape)
|
84 |
+
typename ThreadblockShape,
|
85 |
+
/// Warp-level tile size (concept: GemmShape)
|
86 |
+
typename WarpShape,
|
87 |
+
/// Instruction-level tile size (concept: GemmShape)
|
88 |
+
typename InstructionShape,
|
89 |
+
/// Number of stages used in the pipelined mainloop
|
90 |
+
int Stages,
|
91 |
+
/// Operation performed by GEMM
|
92 |
+
typename Operator,
|
93 |
+
typename Enable_ = void>
|
94 |
+
struct FindDefaultMma {
|
95 |
+
static constexpr bool AccumulatorsInRowMajor = false;
|
96 |
+
static constexpr SharedMemoryClearOption SharedMemoryClear = SharedMemoryClearOption::kNone;
|
97 |
+
using DefaultMma = cutlass::gemm::threadblock::DefaultMma<ElementA,
|
98 |
+
LayoutA,
|
99 |
+
kAlignmentA,
|
100 |
+
ElementB,
|
101 |
+
LayoutB,
|
102 |
+
kAlignmentB,
|
103 |
+
ElementAccumulator,
|
104 |
+
LayoutC,
|
105 |
+
OperatorClass,
|
106 |
+
ArchTag,
|
107 |
+
ThreadblockShape,
|
108 |
+
WarpShape,
|
109 |
+
InstructionShape,
|
110 |
+
Stages,
|
111 |
+
Operator,
|
112 |
+
AccumulatorsInRowMajor,
|
113 |
+
SharedMemoryClear>;
|
114 |
+
};
|
115 |
+
|
116 |
+
/// Specialization for sm80 / FastF32 / multistage with kStages=2
|
117 |
+
template <typename ElementA_,
|
118 |
+
/// Layout type for A matrix operand
|
119 |
+
typename LayoutA_,
|
120 |
+
/// Access granularity of A matrix in units of elements
|
121 |
+
int kAlignmentA,
|
122 |
+
typename ElementB_,
|
123 |
+
/// Layout type for B matrix operand
|
124 |
+
typename LayoutB_,
|
125 |
+
/// Access granularity of B matrix in units of elements
|
126 |
+
int kAlignmentB,
|
127 |
+
typename ElementAccumulator,
|
128 |
+
/// Threadblock-level tile size (concept: GemmShape)
|
129 |
+
typename ThreadblockShape,
|
130 |
+
/// Warp-level tile size (concept: GemmShape)
|
131 |
+
typename WarpShape,
|
132 |
+
/// Instruction-level tile size (concept: GemmShape)
|
133 |
+
typename InstructionShape,
|
134 |
+
int kStages,
|
135 |
+
typename Operator>
|
136 |
+
struct FindDefaultMma<ElementA_,
|
137 |
+
LayoutA_,
|
138 |
+
kAlignmentA,
|
139 |
+
ElementB_,
|
140 |
+
LayoutB_,
|
141 |
+
kAlignmentB,
|
142 |
+
ElementAccumulator,
|
143 |
+
layout::RowMajor,
|
144 |
+
arch::OpClassTensorOp,
|
145 |
+
arch::Sm80,
|
146 |
+
ThreadblockShape,
|
147 |
+
WarpShape,
|
148 |
+
InstructionShape,
|
149 |
+
kStages,
|
150 |
+
Operator,
|
151 |
+
typename cutlass::platform::enable_if<(kAlignmentA > 1)>::type> {
|
152 |
+
using LayoutC = layout::RowMajor;
|
153 |
+
using OperatorClass = arch::OpClassTensorOp;
|
154 |
+
using ArchTag = arch::Sm80;
|
155 |
+
|
156 |
+
using DefaultMma_ = cutlass::gemm::threadblock::DefaultMma<ElementA_,
|
157 |
+
LayoutA_,
|
158 |
+
kAlignmentA,
|
159 |
+
ElementB_,
|
160 |
+
LayoutB_,
|
161 |
+
kAlignmentB,
|
162 |
+
ElementAccumulator,
|
163 |
+
LayoutC,
|
164 |
+
OperatorClass,
|
165 |
+
ArchTag,
|
166 |
+
ThreadblockShape,
|
167 |
+
WarpShape,
|
168 |
+
InstructionShape,
|
169 |
+
3,
|
170 |
+
Operator>;
|
171 |
+
struct DefaultMma : DefaultMma_ {
|
172 |
+
using MmaCore_ = typename DefaultMma_::MmaCore;
|
173 |
+
// Define the threadblock-scoped multistage matrix multiply
|
174 |
+
using ThreadblockMma =
|
175 |
+
cutlass::gemm::threadblock::MmaMultistage<typename MmaCore_::Shape,
|
176 |
+
typename DefaultMma_::IteratorA,
|
177 |
+
typename MmaCore_::SmemIteratorA,
|
178 |
+
MmaCore_::kCacheOpA,
|
179 |
+
typename DefaultMma_::IteratorB,
|
180 |
+
typename MmaCore_::SmemIteratorB,
|
181 |
+
MmaCore_::kCacheOpB,
|
182 |
+
ElementAccumulator,
|
183 |
+
LayoutC,
|
184 |
+
typename MmaCore_::MmaPolicy,
|
185 |
+
kStages>;
|
186 |
+
};
|
187 |
+
};
|
188 |
+
|
189 |
+
} // namespace threadblock
|
190 |
+
} // namespace gemm
|
191 |
+
} // namespace cutlass
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/gemm/mma_accum_lambda_iterator.h
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holdvr nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
|
32 |
+
// Copyright (c) Microsoft Corporation.
|
33 |
+
// SPDX-License-Identifier: Apache-2.0
|
34 |
+
|
35 |
+
// DeepSpeed Team
|
36 |
+
|
37 |
+
#pragma once
|
38 |
+
|
39 |
+
#include "cutlass/functional.h"
|
40 |
+
#include "cutlass/gemm/warp/mma_simt_tile_iterator.h"
|
41 |
+
#include "cutlass/gemm/warp/mma_tensor_op_tile_iterator_sm70.h"
|
42 |
+
#include "cutlass/gemm/warp/mma_tensor_op_tile_iterator_sm80.h"
|
43 |
+
#include "cutlass/matrix_shape.h"
|
44 |
+
|
45 |
+
/*
|
46 |
+
TensorCores have different accumulator layouts.
|
47 |
+
This file provides a class to easily map the accumulator
|
48 |
+
i-th element with the corresponding matrix row/col.
|
49 |
+
*/
|
50 |
+
|
51 |
+
template <typename T, typename accum_t, int kWarpSize>
|
52 |
+
struct AccumLambdaIteratorSm80 {
|
53 |
+
static_assert(cutlass::platform::is_same<typename T::Layout, cutlass::layout::RowMajor>::value,
|
54 |
+
"only RowMajor is supported");
|
55 |
+
|
56 |
+
using Policy = typename T::Policy;
|
57 |
+
using InstructionShape = typename T::InstructionShape;
|
58 |
+
using OpDelta = typename T::OpDelta;
|
59 |
+
using Shape = typename T::Shape;
|
60 |
+
static int const kElementsPerAccess = InstructionShape::kN / 4;
|
61 |
+
static int const kRowsPerTile = 8;
|
62 |
+
static int const kAccumulatorRows = InstructionShape::kM / kRowsPerTile;
|
63 |
+
|
64 |
+
static cutlass::MatrixCoord CUTLASS_DEVICE
|
65 |
+
get_lane_offset(int8_t lane_id, int8_t warp_id, typename T::TensorCoord const& tile_offset)
|
66 |
+
{
|
67 |
+
int quad = (lane_id >> 2);
|
68 |
+
int lane_in_quad = (lane_id & 3);
|
69 |
+
return cutlass::MatrixCoord(
|
70 |
+
quad + tile_offset.row() * Shape::kRow,
|
71 |
+
lane_in_quad * kElementsPerAccess + tile_offset.column() * Shape::kColumn);
|
72 |
+
}
|
73 |
+
|
74 |
+
template <typename FA, typename FB, typename FC>
|
75 |
+
CUTLASS_DEVICE static void iterateRows(cutlass::MatrixCoord& lane_offset,
|
76 |
+
FA beginRow,
|
77 |
+
FB op,
|
78 |
+
FC endRow)
|
79 |
+
{
|
80 |
+
// See cutlass/gemm/warp/mma_tensor_op_tile_iterator.h
|
81 |
+
CUTLASS_PRAGMA_UNROLL
|
82 |
+
for (int mma_m = 0; mma_m < Policy::MmaIterations::kRow; ++mma_m) {
|
83 |
+
CUTLASS_PRAGMA_UNROLL
|
84 |
+
for (int row = 0; row < kAccumulatorRows; ++row) {
|
85 |
+
int accum_m = mma_m * InstructionShape::kM * OpDelta::kRow + row * kRowsPerTile +
|
86 |
+
lane_offset.row();
|
87 |
+
beginRow(accum_m);
|
88 |
+
|
89 |
+
CUTLASS_PRAGMA_UNROLL
|
90 |
+
for (int mma_n = 0; mma_n < Policy::MmaIterations::kColumn; ++mma_n) {
|
91 |
+
int mma_accum_start = kAccumulatorRows * kElementsPerAccess *
|
92 |
+
(mma_n * Policy::MmaIterations::kRow + mma_m);
|
93 |
+
CUTLASS_PRAGMA_UNROLL
|
94 |
+
for (int col = 0; col < kElementsPerAccess; ++col) {
|
95 |
+
int accum_n = mma_n * InstructionShape::kN * OpDelta::kColumn + col +
|
96 |
+
lane_offset.column();
|
97 |
+
int idx = mma_accum_start + row * kElementsPerAccess + col;
|
98 |
+
op(accum_m, accum_n, idx);
|
99 |
+
}
|
100 |
+
}
|
101 |
+
|
102 |
+
endRow(accum_m);
|
103 |
+
}
|
104 |
+
}
|
105 |
+
}
|
106 |
+
|
107 |
+
template <typename DT, typename F>
|
108 |
+
CUTLASS_DEVICE static bool reduceSameRow(int lane_id, DT& myValue, F fn)
|
109 |
+
{
|
110 |
+
// In each warp, 4 threads will work on the same row
|
111 |
+
// - the ones with the same `quad`
|
112 |
+
auto otherV = __shfl_xor_sync(0xffffffff, myValue, 1);
|
113 |
+
myValue = fn(myValue, otherV);
|
114 |
+
otherV = __shfl_xor_sync(0xffffffff, myValue, 2);
|
115 |
+
myValue = fn(myValue, otherV);
|
116 |
+
int lane_in_quad = (lane_id & 3);
|
117 |
+
return lane_in_quad == 0;
|
118 |
+
}
|
119 |
+
};
|
120 |
+
|
121 |
+
template <typename T, typename accum_t, int kWarpSize>
|
122 |
+
struct AccumLambdaIteratorSm70 {
|
123 |
+
static_assert(cutlass::platform::is_same<typename T::Layout, cutlass::layout::RowMajor>::value,
|
124 |
+
"only RowMajor is supported");
|
125 |
+
|
126 |
+
using Policy = typename T::Policy;
|
127 |
+
using InstructionShape = typename T::InstructionShape;
|
128 |
+
using OpDelta = typename T::OpDelta;
|
129 |
+
using Shape = typename T::Shape;
|
130 |
+
using Element = accum_t;
|
131 |
+
|
132 |
+
static int const kElementsPerPartial = 4;
|
133 |
+
using EleShapePerPatial =
|
134 |
+
typename cutlass::platform::conditional<cutlass::platform::is_same<Element, float>::value,
|
135 |
+
cutlass::MatrixShape<2, 2>,
|
136 |
+
cutlass::MatrixShape<1, 4>>::type;
|
137 |
+
static int const kElementsPerMma = 8;
|
138 |
+
static int const kAccumulatorPatials = 2;
|
139 |
+
using QuadShapePerPatialMma = cutlass::MatrixShape<4, 4>;
|
140 |
+
|
141 |
+
static cutlass::MatrixCoord CUTLASS_DEVICE
|
142 |
+
get_lane_offset(int8_t lane_id, int8_t warp_id, typename T::TensorCoord const& tile_offset)
|
143 |
+
{
|
144 |
+
int quad = (lane_id >> 2);
|
145 |
+
int lane_in_quad = (lane_id & 3);
|
146 |
+
int accum_m, accum_n;
|
147 |
+
|
148 |
+
if (cutlass::platform::is_same<Element, float>::value) {
|
149 |
+
// (quad[2],quad[0])+lane_in_quad[0]
|
150 |
+
accum_m = (((quad & 0x4) >> 1) + (quad & 0x1)) * 8 + (lane_in_quad & 1);
|
151 |
+
// (quad[1])+lane_in_quad[1]
|
152 |
+
accum_n = ((quad >> 1) & 0x1) * kElementsPerPartial * kAccumulatorPatials +
|
153 |
+
(lane_in_quad & 2);
|
154 |
+
} else {
|
155 |
+
accum_m = (((quad & 0x4) >> 1) + (quad & 0x1)) * 8 + lane_in_quad; // (quad[2],quad[0])
|
156 |
+
accum_n = ((quad >> 1) & 0x1) * kElementsPerPartial * kAccumulatorPatials;
|
157 |
+
}
|
158 |
+
return cutlass::MatrixCoord(accum_m + tile_offset.row() * Shape::kRow,
|
159 |
+
accum_n + tile_offset.column() * Shape::kColumn);
|
160 |
+
}
|
161 |
+
|
162 |
+
template <typename DT, typename F>
|
163 |
+
CUTLASS_DEVICE static bool reduceSameRow(int lane_id, DT& myValue, F fn)
|
164 |
+
{
|
165 |
+
static_assert(cutlass::platform::is_same<Element, float>::value,
|
166 |
+
"update to support non-float accum");
|
167 |
+
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-fragment-mma-884-f16
|
168 |
+
// T0 & T2 share same line within a quad
|
169 |
+
auto otherV = __shfl_xor_sync(0xffffffff, myValue, 1 << 1);
|
170 |
+
myValue = fn(myValue, otherV);
|
171 |
+
// quad 0 and quad 2 are on the same lines
|
172 |
+
otherV = __shfl_xor_sync(0xffffffff, myValue, 1 << 3);
|
173 |
+
myValue = fn(myValue, otherV);
|
174 |
+
return (lane_id & ((1 << 1) | (1 << 3))) == 0;
|
175 |
+
}
|
176 |
+
|
177 |
+
template <typename FA, typename FB, typename FC>
|
178 |
+
CUTLASS_DEVICE static void iterateRows(cutlass::MatrixCoord& lane_offset,
|
179 |
+
FA beginRow,
|
180 |
+
FB op,
|
181 |
+
FC endRow)
|
182 |
+
{
|
183 |
+
CUTLASS_PRAGMA_UNROLL
|
184 |
+
for (int tile_m = 0; tile_m < Policy::TileIterations::kRow; ++tile_m) {
|
185 |
+
CUTLASS_PRAGMA_UNROLL
|
186 |
+
for (int mma_m = 0; mma_m < Policy::MmaIterations::kRow; ++mma_m) {
|
187 |
+
CUTLASS_PRAGMA_UNROLL
|
188 |
+
for (int m = 0; m < EleShapePerPatial::kRow; ++m) {
|
189 |
+
int accum_m = tile_m * Policy::InterleavedTile::kRow +
|
190 |
+
mma_m * QuadShapePerPatialMma::kRow + m * 2 + lane_offset.row();
|
191 |
+
beginRow(accum_m);
|
192 |
+
|
193 |
+
CUTLASS_PRAGMA_UNROLL
|
194 |
+
for (int tile_n = 0; tile_n < Policy::TileIterations::kColumn; ++tile_n) {
|
195 |
+
CUTLASS_PRAGMA_UNROLL
|
196 |
+
for (int mma_n = 0; mma_n < Policy::MmaIterations::kColumn; ++mma_n) {
|
197 |
+
CUTLASS_PRAGMA_UNROLL
|
198 |
+
for (int p = 0; p < kAccumulatorPatials; ++p) {
|
199 |
+
CUTLASS_PRAGMA_UNROLL
|
200 |
+
for (int n = 0; n < EleShapePerPatial::kColumn; ++n) {
|
201 |
+
int mma_accum_start =
|
202 |
+
(((tile_n * Policy::TileIterations::kRow + tile_m) *
|
203 |
+
Policy::MmaIterations::kColumn +
|
204 |
+
mma_n) *
|
205 |
+
Policy::MmaIterations::kRow +
|
206 |
+
mma_m) *
|
207 |
+
kElementsPerMma;
|
208 |
+
int accum_n = tile_n * Policy::InterleavedTile::kColumn +
|
209 |
+
mma_n * QuadShapePerPatialMma::kColumn +
|
210 |
+
p * Policy::InterleavedTile::kColumn / 2 + n +
|
211 |
+
lane_offset.column();
|
212 |
+
int idx = mma_accum_start + p * kElementsPerPartial +
|
213 |
+
m * EleShapePerPatial::kColumn + n;
|
214 |
+
op(accum_m, accum_n, idx);
|
215 |
+
}
|
216 |
+
}
|
217 |
+
}
|
218 |
+
}
|
219 |
+
endRow(accum_m);
|
220 |
+
}
|
221 |
+
}
|
222 |
+
}
|
223 |
+
}
|
224 |
+
};
|
225 |
+
|
226 |
+
template <typename T, typename accum_t, int kWarpSize>
|
227 |
+
struct AccumLambdaIteratorSimt {
|
228 |
+
using Policy = typename T::Policy;
|
229 |
+
using Iterations = typename T::Iterations;
|
230 |
+
using Element = typename T::Element;
|
231 |
+
using Delta = typename T::Delta;
|
232 |
+
using Shape = typename T::Shape;
|
233 |
+
static_assert(cutlass::platform::is_same<typename T::Layout, cutlass::layout::RowMajor>::value,
|
234 |
+
"only RowMajor is supported");
|
235 |
+
|
236 |
+
template <typename DT, typename F>
|
237 |
+
CUTLASS_DEVICE static bool reduceSameRow(int lane_id, DT& myValue, F fn)
|
238 |
+
{
|
239 |
+
CUTLASS_PRAGMA_UNROLL
|
240 |
+
for (int bit = 1; bit < Policy::WarpShape::kColumn; bit *= 2) {
|
241 |
+
auto otherV = __shfl_xor_sync(0xffffffff, myValue, bit);
|
242 |
+
myValue = fn(myValue, otherV);
|
243 |
+
}
|
244 |
+
return (lane_id & (Policy::WarpShape::kColumn - 1)) == 0;
|
245 |
+
}
|
246 |
+
|
247 |
+
template <typename FA, typename FB, typename FC>
|
248 |
+
CUTLASS_DEVICE static void iterateRows(cutlass::MatrixCoord& lane_offset,
|
249 |
+
FA beginRow,
|
250 |
+
FB op,
|
251 |
+
FC endRow)
|
252 |
+
{
|
253 |
+
CUTLASS_PRAGMA_UNROLL
|
254 |
+
for (int mma_m = 0; mma_m < Iterations::kRow; ++mma_m) {
|
255 |
+
CUTLASS_PRAGMA_UNROLL
|
256 |
+
for (int m = 0; m < Policy::LaneMmaShape::kM; ++m) {
|
257 |
+
int accum_m = mma_m * Delta::kRow + m + lane_offset.row();
|
258 |
+
beginRow(accum_m);
|
259 |
+
|
260 |
+
CUTLASS_PRAGMA_UNROLL
|
261 |
+
for (int mma_n = 0; mma_n < Iterations::kColumn; ++mma_n) {
|
262 |
+
int accum_n = mma_n * Policy::WarpShape::kColumn * Policy::LaneMmaShape::kN +
|
263 |
+
lane_offset.column();
|
264 |
+
CUTLASS_PRAGMA_UNROLL
|
265 |
+
for (int n = 0; n < Policy::LaneMmaShape::kN; ++n) {
|
266 |
+
int idx = n + Policy::LaneMmaShape::kN *
|
267 |
+
(mma_n + Iterations::kColumn *
|
268 |
+
(m + mma_m * Policy::LaneMmaShape::kM));
|
269 |
+
op(accum_m, accum_n + n, idx);
|
270 |
+
}
|
271 |
+
}
|
272 |
+
endRow(accum_m);
|
273 |
+
}
|
274 |
+
}
|
275 |
+
}
|
276 |
+
|
277 |
+
static cutlass::MatrixCoord CUTLASS_DEVICE
|
278 |
+
get_lane_offset(int8_t lane_id, int8_t warp_id, typename T::TensorCoord const& tile_offset)
|
279 |
+
{
|
280 |
+
static_assert(cutlass::platform::is_same<typename Policy::LaneLayout,
|
281 |
+
cutlass::layout::RowMajorInterleaved<1>>::value,
|
282 |
+
"");
|
283 |
+
typename Policy::LaneLayout lane_layout = Policy::get_lane_layout();
|
284 |
+
|
285 |
+
cutlass::MatrixCoord lane_offset =
|
286 |
+
lane_layout.inverse(lane_id) *
|
287 |
+
cutlass::MatrixCoord(Policy::LaneMmaShape::kM, Policy::LaneMmaShape::kN);
|
288 |
+
return lane_offset + tile_offset * cutlass::MatrixCoord(Shape::kRow, Shape::kColumn);
|
289 |
+
}
|
290 |
+
};
|
291 |
+
|
292 |
+
template <typename T, typename accum_t, int kWarpSize>
|
293 |
+
struct DefaultMmaAccumLambdaIterator;
|
294 |
+
|
295 |
+
// Simt
|
296 |
+
template <typename S, typename P, typename accum_t, int kWarpSize>
|
297 |
+
struct DefaultMmaAccumLambdaIterator<
|
298 |
+
cutlass::gemm::warp::MmaSimtTileIterator<S,
|
299 |
+
cutlass::gemm::Operand::kC,
|
300 |
+
accum_t,
|
301 |
+
cutlass::layout::RowMajor,
|
302 |
+
P,
|
303 |
+
1,
|
304 |
+
1>,
|
305 |
+
accum_t,
|
306 |
+
kWarpSize> {
|
307 |
+
using WarpIterator =
|
308 |
+
typename cutlass::gemm::warp::MmaSimtTileIterator<S,
|
309 |
+
cutlass::gemm::Operand::kC,
|
310 |
+
accum_t,
|
311 |
+
cutlass::layout::RowMajor,
|
312 |
+
P,
|
313 |
+
1,
|
314 |
+
1>;
|
315 |
+
using Iterator = AccumLambdaIteratorSimt<WarpIterator, accum_t, kWarpSize>;
|
316 |
+
};
|
317 |
+
|
318 |
+
// TensorOp - Volta
|
319 |
+
template <typename S1, typename S2, typename accum_t, int kWarpSize>
|
320 |
+
struct DefaultMmaAccumLambdaIterator<
|
321 |
+
cutlass::gemm::warp::MmaVoltaTensorOpAccumulatorTileIterator<S1,
|
322 |
+
accum_t,
|
323 |
+
cutlass::layout::RowMajor,
|
324 |
+
S2,
|
325 |
+
cutlass::MatrixShape<1, 1>>,
|
326 |
+
accum_t,
|
327 |
+
kWarpSize> {
|
328 |
+
using WarpIterator = typename cutlass::gemm::warp::MmaVoltaTensorOpAccumulatorTileIterator<
|
329 |
+
S1,
|
330 |
+
accum_t,
|
331 |
+
cutlass::layout::RowMajor,
|
332 |
+
S2,
|
333 |
+
cutlass::MatrixShape<1, 1>>;
|
334 |
+
using Iterator = AccumLambdaIteratorSm70<WarpIterator, accum_t, kWarpSize>;
|
335 |
+
};
|
336 |
+
|
337 |
+
// TensorOp - Sm75+
|
338 |
+
template <typename S1, typename S2, typename S3, typename accum_t, int kWarpSize>
|
339 |
+
struct DefaultMmaAccumLambdaIterator<
|
340 |
+
cutlass::gemm::warp::
|
341 |
+
MmaTensorOpAccumulatorTileIterator<S1, accum_t, cutlass::layout::RowMajor, S2, S3>,
|
342 |
+
accum_t,
|
343 |
+
kWarpSize> {
|
344 |
+
using WarpIterator = typename cutlass::gemm::warp::
|
345 |
+
MmaTensorOpAccumulatorTileIterator<S1, accum_t, cutlass::layout::RowMajor, S2, S3>;
|
346 |
+
using Iterator = AccumLambdaIteratorSm80<WarpIterator, accum_t, kWarpSize>;
|
347 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/gemm/mma_from_smem.h
ADDED
@@ -0,0 +1,1939 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights
|
3 |
+
*reserved. SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice,
|
9 |
+
*this list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
23 |
+
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
24 |
+
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
25 |
+
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
27 |
+
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
28 |
+
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
29 |
+
*POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
*
|
31 |
+
**************************************************************************************************/
|
32 |
+
|
33 |
+
// Copyright (c) Microsoft Corporation.
|
34 |
+
// SPDX-License-Identifier: Apache-2.0
|
35 |
+
|
36 |
+
// DeepSpeed Team
|
37 |
+
|
38 |
+
/*! \file
|
39 |
+
\brief Template for a double-buffered threadblock-scoped GEMM kernel.
|
40 |
+
*/
|
41 |
+
|
42 |
+
#pragma once
|
43 |
+
|
44 |
+
#include "cutlass/aligned_buffer.h"
|
45 |
+
#include "cutlass/arch/memory.h"
|
46 |
+
#include "cutlass/array.h"
|
47 |
+
#include "cutlass/cutlass.h"
|
48 |
+
#include "cutlass/epilogue/thread/linear_combination.h"
|
49 |
+
#include "cutlass/epilogue/threadblock/default_epilogue_simt.h"
|
50 |
+
#include "cutlass/epilogue/threadblock/default_epilogue_tensor_op.h"
|
51 |
+
#include "cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h"
|
52 |
+
#include "cutlass/functional.h"
|
53 |
+
#include "cutlass/gemm/gemm.h"
|
54 |
+
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
|
55 |
+
#include "cutlass/matrix_shape.h"
|
56 |
+
#include "cutlass/numeric_conversion.h"
|
57 |
+
#include "cutlass/numeric_types.h"
|
58 |
+
#include "cutlass/platform/platform.h"
|
59 |
+
#include "cutlass/transform/threadblock/vector_iterator.h"
|
60 |
+
|
61 |
+
#include "../epilogue/epilogue_thread_apply_logsumexp.h"
|
62 |
+
#include "../gemm/mma_accum_lambda_iterator.h"
|
63 |
+
#include "../gemm_kernel_utils.h"
|
64 |
+
#include "../iterators/make_residual_last.h"
|
65 |
+
#include "../iterators/transpose_warp_iterator.h"
|
66 |
+
#include "../iterators/warp_iterator_from_smem.h"
|
67 |
+
#include "cutlass/epilogue/threadblock/epilogue_smem_accumulator.h"
|
68 |
+
#include "cutlass/gemm/threadblock/mma_base.h"
|
69 |
+
#include "cutlass/gemm/threadblock/mma_multistage.h"
|
70 |
+
#include "cutlass/gemm/threadblock/mma_pipelined.h"
|
71 |
+
#include "cutlass/gemm/warp/mma_tensor_op_tile_access_iterator.h"
|
72 |
+
|
73 |
+
namespace cutlass {
|
74 |
+
namespace gemm {
|
75 |
+
namespace threadblock {
|
76 |
+
|
77 |
+
/// Shared storage object needed by accumulator
|
78 |
+
/// From 13_two_tensor_op_fusion/threadblock/b2b_mma_base_smem_accumulator.h
|
79 |
+
template <typename Shape_, typename Element_, typename Layout_, typename Padding_>
|
80 |
+
class AccumulatorSharedStorage {
|
81 |
+
public:
|
82 |
+
//
|
83 |
+
// Type definitions
|
84 |
+
//
|
85 |
+
using Shape = Shape_;
|
86 |
+
using Element = Element_;
|
87 |
+
using Layout = Layout_;
|
88 |
+
using Padding = Padding_;
|
89 |
+
|
90 |
+
/// Tensor reference to the accumulator
|
91 |
+
using TensorRefAccum = cutlass::TensorRef<Element, Layout>;
|
92 |
+
|
93 |
+
/// Shape of the accumulator matrix in shared memory
|
94 |
+
using ShapeAccum =
|
95 |
+
cutlass::MatrixShape<Shape::kM + Padding::kRow, Shape::kN + Padding::kColumn>;
|
96 |
+
|
97 |
+
public:
|
98 |
+
//
|
99 |
+
// Data members
|
100 |
+
//
|
101 |
+
|
102 |
+
/// Buffer for accumulator
|
103 |
+
cutlass::AlignedBuffer<Element, ShapeAccum::kCount> accum;
|
104 |
+
|
105 |
+
public:
|
106 |
+
//
|
107 |
+
// Methods
|
108 |
+
//
|
109 |
+
|
110 |
+
/// Returns a layout object for the Accum matrix
|
111 |
+
CUTLASS_DEVICE
|
112 |
+
static Layout LayoutAccum() { return Layout::packed({ShapeAccum::kRow, ShapeAccum::kColumn}); }
|
113 |
+
|
114 |
+
/// Returns a TensorRef to the Accumulator
|
115 |
+
CUTLASS_HOST_DEVICE
|
116 |
+
TensorRefAccum accum_ref() { return TensorRefAccum{accum.data(), LayoutAccum()}; }
|
117 |
+
};
|
118 |
+
|
119 |
+
////////////////////////////////////////////////////////////////////////////////
|
120 |
+
// Taken from
|
121 |
+
// https://github.com/NVIDIA/cutlass/blob/master/examples/13_two_tensor_op_fusion/threadblock/b2b_mma_base_smem_accumulator.h
|
122 |
+
////////////////////////////////////////////////////////////////////////////////
|
123 |
+
|
124 |
+
/// Structure to compute the matrix product targeting CUDA cores and SIMT math
|
125 |
+
/// instructions.
|
126 |
+
template <
|
127 |
+
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
128 |
+
typename Shape_,
|
129 |
+
// Maximum value for K
|
130 |
+
int kMaxK,
|
131 |
+
/// Policy describing tuning details (concept: MmaPolicy)
|
132 |
+
typename Policy_,
|
133 |
+
/// Number of stages,
|
134 |
+
int Stages,
|
135 |
+
/// Used for partial specialization
|
136 |
+
typename Enable = bool>
|
137 |
+
class MmaBaseFromSharedMemory {
|
138 |
+
public:
|
139 |
+
///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
140 |
+
using Shape = Shape_;
|
141 |
+
|
142 |
+
///< Policy describing tuning details
|
143 |
+
using Policy = Policy_;
|
144 |
+
|
145 |
+
//
|
146 |
+
// Dependent types
|
147 |
+
//
|
148 |
+
|
149 |
+
/// Warp-level Mma
|
150 |
+
using Operator = typename Policy::Operator;
|
151 |
+
|
152 |
+
/// Shape describing the overall GEMM computed from shared memory
|
153 |
+
/// by each warp.
|
154 |
+
using WarpGemm = typename Policy::Operator::Shape;
|
155 |
+
|
156 |
+
/// Shape describing the number of warps filling the CTA
|
157 |
+
using WarpCount =
|
158 |
+
GemmShape<Shape::kM / WarpGemm::kM, Shape::kN / WarpGemm::kN, Shape::kK / WarpGemm::kK>;
|
159 |
+
using WarpCount1 = WarpCount;
|
160 |
+
|
161 |
+
/// Number of warp-level GEMM oeprations
|
162 |
+
static int const kWarpGemmIterations = (WarpGemm::kK / Operator::Policy::MmaShape::kK);
|
163 |
+
static int const kWarpGemmIterations1 = kWarpGemmIterations;
|
164 |
+
|
165 |
+
/// Number of stages
|
166 |
+
static int const kStages = Stages;
|
167 |
+
|
168 |
+
/// If this is true, we fill the entire shmem buffer at start
|
169 |
+
/// and don't need to iterate through it in a circular fashion
|
170 |
+
static bool const kSmemContainsEntireB = kMaxK <= Shape::kK * kStages;
|
171 |
+
|
172 |
+
/// Tensor reference to the A operand
|
173 |
+
using TensorRefA = TensorRef<typename Operator::ElementA, typename Operator::LayoutA>;
|
174 |
+
|
175 |
+
/// Tensor reference to the B operand
|
176 |
+
using TensorRefB = TensorRef<typename Operator::ElementB, typename Operator::LayoutB>;
|
177 |
+
|
178 |
+
//
|
179 |
+
// Nested structs
|
180 |
+
//
|
181 |
+
|
182 |
+
/// Shared storage object needed by threadblock-scoped GEMM
|
183 |
+
class SharedStorage {
|
184 |
+
public:
|
185 |
+
//
|
186 |
+
// Type definitions
|
187 |
+
//
|
188 |
+
|
189 |
+
/// Shape of the B matrix operand in shared memory
|
190 |
+
using ShapeB = MatrixShape<Shape::kK * kStages + Policy::SmemPaddingB::kRow,
|
191 |
+
Shape::kN + Policy::SmemPaddingB::kColumn>;
|
192 |
+
|
193 |
+
public:
|
194 |
+
//
|
195 |
+
// Data members
|
196 |
+
//
|
197 |
+
|
198 |
+
/// Buffer for B operand
|
199 |
+
AlignedBuffer<typename Operator::ElementB, ShapeB::kCount> operand_B;
|
200 |
+
|
201 |
+
public:
|
202 |
+
//
|
203 |
+
// Methods
|
204 |
+
//
|
205 |
+
|
206 |
+
/// Returns a layout object for the B matrix
|
207 |
+
CUTLASS_HOST_DEVICE
|
208 |
+
static typename Operator::LayoutB LayoutB()
|
209 |
+
{
|
210 |
+
return Operator::LayoutB::packed({ShapeB::kRow, ShapeB::kColumn});
|
211 |
+
}
|
212 |
+
|
213 |
+
/// Returns a TensorRef to the B operand
|
214 |
+
CUTLASS_HOST_DEVICE
|
215 |
+
TensorRefB operand_B_ref() { return TensorRefB{operand_B.data(), LayoutB()}; }
|
216 |
+
};
|
217 |
+
|
218 |
+
protected:
|
219 |
+
//
|
220 |
+
// Data members
|
221 |
+
//
|
222 |
+
|
223 |
+
// /// Iterator to load a warp-scoped tile of A operand from shared memory
|
224 |
+
// typename Operator::IteratorA warp_tile_iterator_A_;
|
225 |
+
|
226 |
+
/// Iterator to load a warp-scoped tile of B operand from shared memory
|
227 |
+
typename Operator::IteratorB warp_tile_iterator_B_;
|
228 |
+
|
229 |
+
public:
|
230 |
+
/// Construct from tensor references
|
231 |
+
CUTLASS_DEVICE
|
232 |
+
MmaBaseFromSharedMemory(
|
233 |
+
///< Shared storage needed for internal use by threadblock-scoped GEMM
|
234 |
+
SharedStorage& shared_storage,
|
235 |
+
///< ID within the threadblock
|
236 |
+
int thread_idx,
|
237 |
+
///< ID of warp
|
238 |
+
int warp_idx,
|
239 |
+
///< ID of each thread within a warp
|
240 |
+
int lane_idx)
|
241 |
+
: warp_tile_iterator_B_(shared_storage.operand_B_ref(), lane_idx)
|
242 |
+
{
|
243 |
+
}
|
244 |
+
};
|
245 |
+
|
246 |
+
namespace {
|
247 |
+
|
248 |
+
// has necessary trait compliance with WarpIteratorFromSmem but doesn't do
|
249 |
+
// anything, can be default initialized, and uses fragment that takes up
|
250 |
+
// (almost) no space. this warp iterator is selected at compile time when
|
251 |
+
// elementwise on-the-fly scaling for operand A is disabled, in which case
|
252 |
+
// operations related to loading scale factors for operand A get wiped out by
|
253 |
+
// the compiler.
|
254 |
+
template <typename TensorRef>
|
255 |
+
class NoOpWarpIteratorScale {
|
256 |
+
public:
|
257 |
+
// in pipelined+multistage MMA implementations we keep an array of fragments.
|
258 |
+
// if we aren't using scaling we don't want to waste registers on fragments
|
259 |
+
// of scale elements, so ideally this would be sized 0.
|
260 |
+
// Since arrays of zero-sized objects are not allowed, using size as 1.
|
261 |
+
// The compiler will most likely wipe it out anyways.
|
262 |
+
using Fragment = cutlass::Array<char, 1>;
|
263 |
+
|
264 |
+
CUTLASS_HOST_DEVICE
|
265 |
+
NoOpWarpIteratorScale() {}
|
266 |
+
|
267 |
+
CUTLASS_HOST_DEVICE
|
268 |
+
NoOpWarpIteratorScale(TensorRef const&, int) {}
|
269 |
+
|
270 |
+
CUTLASS_HOST_DEVICE
|
271 |
+
NoOpWarpIteratorScale& add_tile_offset(typename TensorRef::TensorCoord const&) { return *this; }
|
272 |
+
|
273 |
+
CUTLASS_HOST_DEVICE
|
274 |
+
NoOpWarpIteratorScale& operator++() { return *this; }
|
275 |
+
|
276 |
+
CUTLASS_DEVICE
|
277 |
+
void load(Fragment&) const {}
|
278 |
+
};
|
279 |
+
|
280 |
+
// if scaling is enabled, performs fragment elementwise multiplication between
|
281 |
+
// fragment and its scaling factor.
|
282 |
+
template <typename Fragment, typename FragmentScale, bool ScalingEnabled>
|
283 |
+
class FragmentElementwiseScaler;
|
284 |
+
|
285 |
+
// specialization for scaling being enabled.
|
286 |
+
template <typename Fragment, typename FragmentScale>
|
287 |
+
class FragmentElementwiseScaler<Fragment, FragmentScale, true> {
|
288 |
+
public:
|
289 |
+
// cast scale_frag to correct type then apply elementwise to fragment
|
290 |
+
CUTLASS_DEVICE
|
291 |
+
static Fragment apply(Fragment frag, FragmentScale const& scale_frag)
|
292 |
+
{
|
293 |
+
Fragment converted_scale_frag =
|
294 |
+
cutlass::NumericArrayConverter<typename Fragment::Element,
|
295 |
+
typename FragmentScale::Element,
|
296 |
+
FragmentScale::kElements>()(scale_frag);
|
297 |
+
return cutlass::multiplies<Fragment>()(frag, converted_scale_frag);
|
298 |
+
}
|
299 |
+
};
|
300 |
+
|
301 |
+
// specialization for scaling being disabled. doesn't do anything and should
|
302 |
+
// just get wiped out by the compiler.
|
303 |
+
template <typename Fragment, typename FragmentScale>
|
304 |
+
class FragmentElementwiseScaler<Fragment, FragmentScale, false> {
|
305 |
+
public:
|
306 |
+
CUTLASS_DEVICE
|
307 |
+
static Fragment apply(Fragment frag, FragmentScale const&) { return frag; }
|
308 |
+
};
|
309 |
+
} // namespace
|
310 |
+
|
311 |
+
////////////////////////////////////////////////////////////////////////////////
|
312 |
+
// Taken from
|
313 |
+
// https://github.com/NVIDIA/cutlass/blob/master/examples/13_two_tensor_op_fusion/threadblock/b2b_mma_pipelined_smem_accumulator.h
|
314 |
+
////////////////////////////////////////////////////////////////////////////////
|
315 |
+
|
316 |
+
/// Structure to compute the matrix product targeting CUDA cores and SIMT math
|
317 |
+
/// instructions.
|
318 |
+
template <
|
319 |
+
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
320 |
+
typename Shape_,
|
321 |
+
// BEGIN smem
|
322 |
+
/// Iterates over the intermediate accumulator tile in shared memory
|
323 |
+
typename WarpIteratorA,
|
324 |
+
/// whether or not to perform elementwise multiplication of A
|
325 |
+
// by another matrix (A_scale) that is also kept in shared memory prior
|
326 |
+
// to matmul A @ B
|
327 |
+
bool ScaleOperandA_,
|
328 |
+
// Accumulator type
|
329 |
+
typename AccumulatorSharedStorage,
|
330 |
+
// END smem
|
331 |
+
/// Iterates over tiles of B operand in global memory
|
332 |
+
// (concept: ReadableTileIterator | ForwardTileIterator |
|
333 |
+
// MaskedTileIterator)
|
334 |
+
typename IteratorB_,
|
335 |
+
/// Iterates over tiles of B operand in shared memory
|
336 |
+
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
337 |
+
typename SmemIteratorB_,
|
338 |
+
/// Data type of accumulator matrix
|
339 |
+
typename ElementC_,
|
340 |
+
/// Data type of accumulator matrix
|
341 |
+
typename LayoutC_,
|
342 |
+
/// Policy describing tuning details (concept: MmaPolicy)
|
343 |
+
typename Policy_,
|
344 |
+
/// Transformation applied to B operand
|
345 |
+
typename TransformB_ = NumericArrayConverter<typename SmemIteratorB_::Element,
|
346 |
+
typename IteratorB_::Element,
|
347 |
+
IteratorB_::Fragment::kElements>,
|
348 |
+
/// Used for partial specialization
|
349 |
+
typename Enable = bool>
|
350 |
+
class MmaPipelinedFromSharedMemory
|
351 |
+
: public MmaBaseFromSharedMemory<Shape_, AccumulatorSharedStorage::Shape::kN, Policy_, 2> {
|
352 |
+
public:
|
353 |
+
///< Base class
|
354 |
+
using Base = MmaBaseFromSharedMemory<Shape_, AccumulatorSharedStorage::Shape::kN, Policy_, 2>;
|
355 |
+
|
356 |
+
using Shape = Shape_; ///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
357 |
+
static constexpr bool ScaleOperandA = ScaleOperandA_;
|
358 |
+
|
359 |
+
///< loads fragments of A_scale from shared memory if operand A scaling is
|
360 |
+
///< enabled. otherwise no-op.
|
361 |
+
using WarpIteratorAScale = typename cutlass::platform::conditional<
|
362 |
+
ScaleOperandA,
|
363 |
+
WarpIteratorA,
|
364 |
+
NoOpWarpIteratorScale<typename WarpIteratorA::TensorRef>>::type;
|
365 |
+
|
366 |
+
using IteratorB = IteratorB_; ///< Iterates over tiles of B operand in global memory
|
367 |
+
using ElementC = ElementC_; ///< Data type of accumulator matrix
|
368 |
+
using LayoutC = LayoutC_; ///< Layout of accumulator matrix
|
369 |
+
using Policy = Policy_; ///< Policy describing tuning details
|
370 |
+
|
371 |
+
using SmemIteratorB = SmemIteratorB_;
|
372 |
+
|
373 |
+
using TransformB = TransformB_;
|
374 |
+
|
375 |
+
//
|
376 |
+
// Dependent types
|
377 |
+
//
|
378 |
+
|
379 |
+
/// Fragment of operand B loaded from global memory
|
380 |
+
using FragmentB = typename IteratorB::Fragment;
|
381 |
+
|
382 |
+
/// Fragment of accumulator tile
|
383 |
+
using FragmentC = typename Policy::Operator::FragmentC;
|
384 |
+
|
385 |
+
/// Warp-level Mma
|
386 |
+
using Operator = typename Policy::Operator;
|
387 |
+
|
388 |
+
/// Obtain the arch tag from the warp-level operator
|
389 |
+
using ArchTag = typename Policy::Operator::ArchTag;
|
390 |
+
|
391 |
+
/// Complex transform on B operand
|
392 |
+
static ComplexTransform const kTransformB = Operator::kTransformB;
|
393 |
+
|
394 |
+
// staticaly assert kStages for MmaPipelined is two (Double-buffered pipeline)
|
395 |
+
static_assert((Base::kStages == 2), "MmaPipelined requires kStages set to value 2");
|
396 |
+
|
397 |
+
private:
|
398 |
+
using WarpFragmentA = typename Operator::FragmentA;
|
399 |
+
|
400 |
+
/// fragment type of OperandA elementwise scaling matrix. (almost) empty
|
401 |
+
/// if operand A scaling is disabled.
|
402 |
+
using WarpFragmentAScale = typename WarpIteratorAScale::Fragment;
|
403 |
+
|
404 |
+
using WarpFragmentB = typename Operator::FragmentB;
|
405 |
+
|
406 |
+
/// applies scaling factor to operand A fragment if operand A scaling is
|
407 |
+
/// enabled. otherwise no-op.
|
408 |
+
using FragmentAScaler =
|
409 |
+
FragmentElementwiseScaler<WarpFragmentA, WarpFragmentAScale, ScaleOperandA>;
|
410 |
+
|
411 |
+
protected:
|
412 |
+
// /// Iterator to write threadblock-scoped tile of A operand to shared memory
|
413 |
+
// SmemIteratorA smem_iterator_A_;
|
414 |
+
|
415 |
+
/// Iterator to write threadblock-scoped tile of B operand to shared memory
|
416 |
+
SmemIteratorB smem_iterator_B_;
|
417 |
+
|
418 |
+
/// Iterator to load a warp-scoped tile of A operand from intermediate
|
419 |
+
/// accumulator tile
|
420 |
+
WarpIteratorA warp_tile_iterator_A_;
|
421 |
+
|
422 |
+
/// Iterator to load a warp-scoped tile of A_scale from intermediate
|
423 |
+
/// accumulator tile (only used if ScaleOperandA_ is true)
|
424 |
+
WarpIteratorAScale warp_tile_iterator_A_scale_;
|
425 |
+
|
426 |
+
public:
|
427 |
+
/// constructor for MMA with operand A scaling enabled.
|
428 |
+
CUTLASS_DEVICE
|
429 |
+
MmaPipelinedFromSharedMemory(
|
430 |
+
// shared storage needed for internal use by threadblock-scoped GEMM
|
431 |
+
typename Base::SharedStorage& shared_storage,
|
432 |
+
// warp iterator over A tile held in shared memory
|
433 |
+
WarpIteratorA warp_iter_a,
|
434 |
+
// warp iterator over A_scale tile held in shared memory
|
435 |
+
WarpIteratorAScale warp_iter_a_scale,
|
436 |
+
int thread_idx,
|
437 |
+
int warp_idx,
|
438 |
+
int lane_idx)
|
439 |
+
: Base(shared_storage, thread_idx, warp_idx, lane_idx),
|
440 |
+
warp_tile_iterator_A_(warp_iter_a),
|
441 |
+
warp_tile_iterator_A_scale_(warp_iter_a_scale),
|
442 |
+
smem_iterator_B_(shared_storage.operand_B_ref(), thread_idx)
|
443 |
+
{
|
444 |
+
// Compute warp location within threadblock tile by mapping the warp_id to
|
445 |
+
// three coordinates:
|
446 |
+
// _m: the warp's position within the threadblock along the M dimension
|
447 |
+
// _n: the warp's position within the threadblock along the N dimension
|
448 |
+
// _k: the warp's position within the threadblock along the K dimension
|
449 |
+
int warp_idx_mn = warp_idx % (Base::WarpCount::kM * Base::WarpCount::kN);
|
450 |
+
int warp_idx_k = warp_idx / (Base::WarpCount::kM * Base::WarpCount::kN);
|
451 |
+
int warp_idx_m = warp_idx_mn % Base::WarpCount::kM;
|
452 |
+
int warp_idx_n = warp_idx_mn / Base::WarpCount::kM;
|
453 |
+
|
454 |
+
// Add per-warp offsets in units of warp-level tiles
|
455 |
+
this->warp_tile_iterator_A_.add_tile_offset(
|
456 |
+
{warp_idx_m, Base::kWarpGemmIterations * warp_idx_k});
|
457 |
+
this->warp_tile_iterator_A_scale_.add_tile_offset(
|
458 |
+
{warp_idx_m, Base::kWarpGemmIterations * warp_idx_k});
|
459 |
+
this->warp_tile_iterator_B_.add_tile_offset(
|
460 |
+
{Base::kWarpGemmIterations * warp_idx_k, warp_idx_n});
|
461 |
+
}
|
462 |
+
|
463 |
+
/// Construct from tensor references
|
464 |
+
CUTLASS_DEVICE
|
465 |
+
MmaPipelinedFromSharedMemory(
|
466 |
+
typename Base::SharedStorage& shared_storage, ///< Shared storage needed for internal use
|
467 |
+
///< by threadblock-scoped GEMM
|
468 |
+
AccumulatorSharedStorage& accumulator_shared_storage,
|
469 |
+
int thread_idx, ///< ID within the threadblock
|
470 |
+
int warp_idx, ///< ID of warp
|
471 |
+
int lane_idx, ///< ID of each thread within a warp
|
472 |
+
int problem_size_0_n)
|
473 |
+
: Base(shared_storage, thread_idx, warp_idx, lane_idx),
|
474 |
+
warp_tile_iterator_A_(accumulator_shared_storage.accum_ref(), lane_idx),
|
475 |
+
smem_iterator_B_(shared_storage.operand_B_ref(), thread_idx)
|
476 |
+
{
|
477 |
+
// Compute warp location within threadblock tile by mapping the warp_id to
|
478 |
+
// three coordinates:
|
479 |
+
// _m: the warp's position within the threadblock along the M dimension
|
480 |
+
// _n: the warp's position within the threadblock along the N dimension
|
481 |
+
// _k: the warp's position within the threadblock along the K dimension
|
482 |
+
|
483 |
+
int warp_idx_mn = warp_idx % (Base::WarpCount::kM * Base::WarpCount::kN);
|
484 |
+
int warp_idx_k = warp_idx / (Base::WarpCount::kM * Base::WarpCount::kN);
|
485 |
+
|
486 |
+
int warp_idx_m = warp_idx_mn % Base::WarpCount::kM;
|
487 |
+
int warp_idx_n = warp_idx_mn / Base::WarpCount::kM;
|
488 |
+
|
489 |
+
// Add per-warp offsets in units of warp-level tiles
|
490 |
+
this->warp_tile_iterator_A_.add_tile_offset(
|
491 |
+
{warp_idx_m, Base::kWarpGemmIterations * warp_idx_k});
|
492 |
+
this->warp_tile_iterator_B_.add_tile_offset(
|
493 |
+
{Base::kWarpGemmIterations * warp_idx_k, warp_idx_n});
|
494 |
+
}
|
495 |
+
|
496 |
+
// For API compatibility with MmaMultistageFromSharedMemory
|
497 |
+
// but not supported as it worsens perf: older gpus < sm80 don't
|
498 |
+
// support async transfers and have to waste registers
|
499 |
+
CUTLASS_DEVICE
|
500 |
+
void set_prologue_done(bool value) {}
|
501 |
+
CUTLASS_DEVICE
|
502 |
+
static void prologue(typename Base::SharedStorage& shared_storage,
|
503 |
+
IteratorB iterator_B1,
|
504 |
+
int thread_idx,
|
505 |
+
int problem_size_0_n)
|
506 |
+
{
|
507 |
+
}
|
508 |
+
|
509 |
+
CUTLASS_DEVICE
|
510 |
+
static void drain_cp_asyncs() {}
|
511 |
+
|
512 |
+
/// Perform a threadblock-scoped matrix multiply-accumulate
|
513 |
+
CUTLASS_DEVICE
|
514 |
+
void operator()(int gemm_k_iterations, ///< number of iterations of the mainloop
|
515 |
+
FragmentC& accum, ///< destination accumulator tile
|
516 |
+
// IteratorA iterator_A, ///< iterator over A
|
517 |
+
// operand in global memory
|
518 |
+
IteratorB iterator_B, ///< iterator over B operand in global memory
|
519 |
+
FragmentC const& src_accum, ///< source accumulator tile
|
520 |
+
// TransformA transform_A = TransformA(), ///< transformation
|
521 |
+
// applied to A fragment
|
522 |
+
TransformB transform_B = TransformB())
|
523 |
+
{ ///< transformation applied to B fragment
|
524 |
+
|
525 |
+
//
|
526 |
+
// Prologue
|
527 |
+
//
|
528 |
+
|
529 |
+
// Perform accumulation in the 'd' output operand
|
530 |
+
accum = src_accum;
|
531 |
+
|
532 |
+
FragmentB tb_frag_B;
|
533 |
+
|
534 |
+
tb_frag_B.clear();
|
535 |
+
|
536 |
+
// The last kblock is loaded in the prolog
|
537 |
+
iterator_B.set_residual_tile(gemm_k_iterations == 1);
|
538 |
+
iterator_B.load(tb_frag_B);
|
539 |
+
|
540 |
+
++iterator_B;
|
541 |
+
|
542 |
+
this->smem_iterator_B_.store(transform_B(tb_frag_B));
|
543 |
+
|
544 |
+
++this->smem_iterator_B_;
|
545 |
+
|
546 |
+
__syncthreads();
|
547 |
+
|
548 |
+
// remember that WarpFragmentAScale and WarpIteratorAScale are empty/no-op
|
549 |
+
// if scaling is disabled.
|
550 |
+
|
551 |
+
// Pair of fragments used to overlap shared memory loads and math
|
552 |
+
// instructions
|
553 |
+
WarpFragmentA warp_frag_A[2];
|
554 |
+
WarpFragmentAScale warp_frag_A_scale[2];
|
555 |
+
WarpFragmentB warp_frag_B[2];
|
556 |
+
warp_frag_A[0].clear();
|
557 |
+
warp_frag_A_scale[0].clear();
|
558 |
+
warp_frag_B[0].clear();
|
559 |
+
|
560 |
+
this->warp_tile_iterator_B_.set_kgroup_index(0);
|
561 |
+
|
562 |
+
this->warp_tile_iterator_A_.load(warp_frag_A[0]);
|
563 |
+
this->warp_tile_iterator_A_scale_.load(warp_frag_A_scale[0]);
|
564 |
+
this->warp_tile_iterator_B_.load(warp_frag_B[0]);
|
565 |
+
|
566 |
+
++this->warp_tile_iterator_A_;
|
567 |
+
++this->warp_tile_iterator_A_scale_;
|
568 |
+
++this->warp_tile_iterator_B_;
|
569 |
+
|
570 |
+
Operator warp_mma;
|
571 |
+
|
572 |
+
int smem_write_stage_idx = 1;
|
573 |
+
|
574 |
+
// Avoid reading out of bounds
|
575 |
+
iterator_B.set_residual_tile(gemm_k_iterations == 2);
|
576 |
+
iterator_B.clear_mask(gemm_k_iterations <= 1);
|
577 |
+
|
578 |
+
// Issue loads during the first warp-level matrix multiply-add *AFTER*
|
579 |
+
// issuing shared memory loads (which have the tightest latency requirement).
|
580 |
+
|
581 |
+
//
|
582 |
+
// Mainloop
|
583 |
+
//
|
584 |
+
|
585 |
+
// Note: The main loop does not support Base::kWarpGemmIterations == 2.
|
586 |
+
CUTLASS_GEMM_LOOP
|
587 |
+
for (; gemm_k_iterations > 0; --gemm_k_iterations) {
|
588 |
+
//
|
589 |
+
// Loop over GEMM K dimension
|
590 |
+
//
|
591 |
+
|
592 |
+
CUTLASS_PRAGMA_UNROLL
|
593 |
+
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations; ++warp_mma_k) {
|
594 |
+
// Load warp-level tiles from shared memory, wrapping to k offset if
|
595 |
+
// this is the last group as the case may be.
|
596 |
+
bool hasNext = true;
|
597 |
+
|
598 |
+
if (warp_mma_k == Base::kWarpGemmIterations - 1) {
|
599 |
+
// Write fragments to shared memory
|
600 |
+
this->smem_iterator_B_.store(transform_B(tb_frag_B));
|
601 |
+
|
602 |
+
__syncthreads();
|
603 |
+
|
604 |
+
++this->smem_iterator_B_;
|
605 |
+
|
606 |
+
// Add negative offsets to return iterators to the 'start' of the
|
607 |
+
// circular buffer in shared memory SMEM: Don't reset iterator A, as
|
608 |
+
// we are continuing our iteration at this point
|
609 |
+
if (smem_write_stage_idx == 1) {
|
610 |
+
this->smem_iterator_B_.add_tile_offset({-Base::kStages, 0});
|
611 |
+
} else {
|
612 |
+
this->warp_tile_iterator_B_.add_tile_offset(
|
613 |
+
{-Base::kStages * Policy::kPartitionsK * Base::kWarpGemmIterations, 0});
|
614 |
+
}
|
615 |
+
|
616 |
+
smem_write_stage_idx ^= 1;
|
617 |
+
hasNext = gemm_k_iterations > 1;
|
618 |
+
}
|
619 |
+
|
620 |
+
// Only read the next if we need to
|
621 |
+
if (hasNext) {
|
622 |
+
this->warp_tile_iterator_B_.set_kgroup_index((warp_mma_k + 1) %
|
623 |
+
Base::kWarpGemmIterations);
|
624 |
+
|
625 |
+
this->warp_tile_iterator_A_.load(warp_frag_A[(warp_mma_k + 1) % 2]);
|
626 |
+
this->warp_tile_iterator_A_scale_.load(warp_frag_A_scale[(warp_mma_k + 1) % 2]);
|
627 |
+
this->warp_tile_iterator_B_.load(warp_frag_B[(warp_mma_k + 1) % 2]);
|
628 |
+
|
629 |
+
++this->warp_tile_iterator_A_;
|
630 |
+
++this->warp_tile_iterator_A_scale_;
|
631 |
+
++this->warp_tile_iterator_B_;
|
632 |
+
|
633 |
+
if (warp_mma_k == 0) {
|
634 |
+
iterator_B.load(tb_frag_B);
|
635 |
+
|
636 |
+
++iterator_B;
|
637 |
+
|
638 |
+
// Avoid reading out of bounds if this was the last loop iteration
|
639 |
+
iterator_B.set_residual_tile(gemm_k_iterations == 3);
|
640 |
+
iterator_B.clear_mask(gemm_k_iterations <= 2);
|
641 |
+
}
|
642 |
+
}
|
643 |
+
|
644 |
+
warp_mma(accum,
|
645 |
+
FragmentAScaler::apply(warp_frag_A[warp_mma_k % 2],
|
646 |
+
warp_frag_A_scale[warp_mma_k % 2]),
|
647 |
+
warp_frag_B[warp_mma_k % 2],
|
648 |
+
accum);
|
649 |
+
}
|
650 |
+
}
|
651 |
+
}
|
652 |
+
};
|
653 |
+
|
654 |
+
////////////////////////////////////////////////////////////////////////////////
|
655 |
+
// Taken from
|
656 |
+
// https://github.com/NVIDIA/cutlass/blob/master/examples/13_two_tensor_op_fusion/threadblock/b2b_mma_multistage_smem_accumulator.h
|
657 |
+
////////////////////////////////////////////////////////////////////////////////
|
658 |
+
|
659 |
+
/// Structure to compute the matrix product targeting CUDA cores and SIMT math
|
660 |
+
/// instructions.
|
661 |
+
template <
|
662 |
+
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
663 |
+
typename Shape1_,
|
664 |
+
/// Iterates over the intermediate accumulator tile in shared memory
|
665 |
+
typename WarpIteratorA1_,
|
666 |
+
/// whether or not to perform elementwise multiplication of A
|
667 |
+
// by another matrix (A_scale) that is also kept in shared memory prior
|
668 |
+
// to matmul A @ B
|
669 |
+
bool ScaleOperandA_,
|
670 |
+
// Accumulator type
|
671 |
+
typename AccumulatorSharedStorage,
|
672 |
+
/// Iterates over tiles of B operand in global memory
|
673 |
+
// (concept: ReadableTileIterator | ForwardTileIterator |
|
674 |
+
// MaskedTileIterator)
|
675 |
+
typename IteratorB1_,
|
676 |
+
/// Iterates over tiles of B operand in shared memory
|
677 |
+
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
678 |
+
typename SmemIteratorB1_,
|
679 |
+
/// Cache operation for operand B
|
680 |
+
cutlass::arch::CacheOperation::Kind CacheOpB1,
|
681 |
+
/// Data type of accumulator matrix
|
682 |
+
typename ElementC_,
|
683 |
+
/// Data type of accumulator matrix
|
684 |
+
typename LayoutC_,
|
685 |
+
/// Policy describing tuning details (concept: MmaPolicy)
|
686 |
+
typename Policy1_,
|
687 |
+
/// Number of stages,
|
688 |
+
int Stages_,
|
689 |
+
int kMaxK_,
|
690 |
+
/// Used for partial specialization
|
691 |
+
typename Enable = bool>
|
692 |
+
class MmaMultistageFromSharedMemory
|
693 |
+
: public MmaBaseFromSharedMemory<Shape1_, kMaxK_, Policy1_, Stages_> {
|
694 |
+
public:
|
695 |
+
///< Base class
|
696 |
+
using Base = MmaBaseFromSharedMemory<Shape1_, kMaxK_, Policy1_, Stages_>;
|
697 |
+
|
698 |
+
///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
699 |
+
using Shape1 = Shape1_;
|
700 |
+
///< Iterates over tiles of B operand in global memory
|
701 |
+
using IteratorB1 = IteratorB1_;
|
702 |
+
using IteratorB = IteratorB1;
|
703 |
+
///< Policy describing tuning details
|
704 |
+
using Policy1 = Policy1_;
|
705 |
+
|
706 |
+
using SmemIteratorB1 = SmemIteratorB1_;
|
707 |
+
using WarpIteratorA1 = WarpIteratorA1_; ///< Iterates over the intermediate
|
708 |
+
///< accumulator tile in shared memory
|
709 |
+
static constexpr bool ScaleOperandA = ScaleOperandA_;
|
710 |
+
|
711 |
+
///< warp level iterator over A_scale matrix tile kept in shared memory.
|
712 |
+
///< if elementwise A scaling is disabled then everything this does is no-op.
|
713 |
+
using WarpIteratorAScale = typename cutlass::platform::conditional<
|
714 |
+
ScaleOperandA,
|
715 |
+
WarpIteratorA1,
|
716 |
+
NoOpWarpIteratorScale<typename WarpIteratorA1::TensorRef>>::type;
|
717 |
+
///< Data type of accumulator matrix
|
718 |
+
using ElementC = ElementC_;
|
719 |
+
///< Layout of accumulator matrix
|
720 |
+
using LayoutC = LayoutC_;
|
721 |
+
|
722 |
+
static cutlass::arch::CacheOperation::Kind const kCacheOpB1 = CacheOpB1;
|
723 |
+
static constexpr bool kSmemContainsEntireB = Base::kSmemContainsEntireB;
|
724 |
+
|
725 |
+
//
|
726 |
+
// Dependent types
|
727 |
+
//
|
728 |
+
|
729 |
+
/// Fragment of accumulator tile
|
730 |
+
using FragmentC1 = typename Policy1::Operator::FragmentC;
|
731 |
+
using FragmentC = FragmentC1;
|
732 |
+
|
733 |
+
/// Warp-level Mma
|
734 |
+
using Operator1 = typename Policy1::Operator;
|
735 |
+
|
736 |
+
/// Minimum architecture is Sm80 to support cp.async
|
737 |
+
using ArchTag = arch::Sm80;
|
738 |
+
|
739 |
+
/// Complex transform on B operand
|
740 |
+
static ComplexTransform const kTransformB1 = Operator1::kTransformB;
|
741 |
+
|
742 |
+
/// Internal structure exposed for introspection.
|
743 |
+
struct Detail {
|
744 |
+
static_assert(Base::kWarpGemmIterations1 > 1,
|
745 |
+
"The pipelined structure requires at least two warp-level "
|
746 |
+
"GEMM operations.");
|
747 |
+
|
748 |
+
/// Number of cp.async instructions to load one stage of operand B
|
749 |
+
static int const TBLoadIterationsB1 = IteratorB1::ThreadMap::Iterations::kCount;
|
750 |
+
|
751 |
+
/// Number of cp.async instructions to load on group of operand B
|
752 |
+
static int const kAccessesPerGroupB1 =
|
753 |
+
(TBLoadIterationsB1 + Base::kWarpGemmIterations1 - 1) / Base::kWarpGemmIterations1;
|
754 |
+
};
|
755 |
+
|
756 |
+
static constexpr int kNumStagesConcurrentLoad = kSmemContainsEntireB ? Base::kStages
|
757 |
+
: Base::kStages - 1;
|
758 |
+
|
759 |
+
private:
|
760 |
+
using WarpLoadedFragmentA1 = typename Operator1::FragmentA;
|
761 |
+
/// fragment of OperandA scale matrix. if operand A scaling is disabled this
|
762 |
+
/// is (almost) empty.
|
763 |
+
using WarpLoadedFragmentA1Scale = typename WarpIteratorAScale::Fragment;
|
764 |
+
using WarpLoadedFragmentB1 = typename Operator1::FragmentB;
|
765 |
+
using WarpTransformedFragmentA1 = typename Operator1::TransformedFragmentA;
|
766 |
+
using WarpTransformedFragmentB1 = typename Operator1::TransformedFragmentB;
|
767 |
+
|
768 |
+
/// applies elementwise scaling to fragment of A. if operand A scaling is
|
769 |
+
/// disabled this is a no-op.
|
770 |
+
using FragmentAScaler =
|
771 |
+
FragmentElementwiseScaler<WarpLoadedFragmentA1, WarpLoadedFragmentA1Scale, ScaleOperandA>;
|
772 |
+
|
773 |
+
private:
|
774 |
+
//
|
775 |
+
// Data members
|
776 |
+
//
|
777 |
+
|
778 |
+
/// Iterator to load a warp-scoped tile of A1 operand from intermediate
|
779 |
+
/// accumulator tile
|
780 |
+
WarpIteratorA1 warp_tile_iterator_A1_;
|
781 |
+
|
782 |
+
/// Iterator to load a warp-scoped tile of A1_scale operand from shared memory
|
783 |
+
/// if operand A scaling is disabled everything this does is a no-op.
|
784 |
+
WarpIteratorAScale warp_tile_iterator_A1_scale_;
|
785 |
+
|
786 |
+
/// Iterator to write threadblock-scoped tile of B operand to shared memory
|
787 |
+
SmemIteratorB1 smem_iterator_B1_;
|
788 |
+
|
789 |
+
bool prologue_done_;
|
790 |
+
|
791 |
+
public:
|
792 |
+
/// constructor for MMA with operand A scaling enabled.
|
793 |
+
CUTLASS_DEVICE
|
794 |
+
MmaMultistageFromSharedMemory(
|
795 |
+
// shared storage needed for internal use by threadblock-scoped GEMM
|
796 |
+
typename Base::SharedStorage& shared_storage,
|
797 |
+
// warp level iterator over operand A tile kept in shared memory
|
798 |
+
WarpIteratorA1 warp_tile_iterator_A1,
|
799 |
+
// warp level iterator over operand A elementwise scale tile kept in
|
800 |
+
// shared memory.
|
801 |
+
WarpIteratorAScale warp_tile_iterator_A1_scale,
|
802 |
+
int thread_idx,
|
803 |
+
int warp_idx,
|
804 |
+
int lane_idx)
|
805 |
+
: Base(shared_storage, thread_idx, warp_idx, lane_idx),
|
806 |
+
warp_tile_iterator_A1_(warp_tile_iterator_A1),
|
807 |
+
warp_tile_iterator_A1_scale_(warp_tile_iterator_A1_scale),
|
808 |
+
smem_iterator_B1_(shared_storage.operand_B_ref(), thread_idx),
|
809 |
+
prologue_done_(false)
|
810 |
+
{
|
811 |
+
// Compute warp location within threadblock tile by mapping the warp_id to
|
812 |
+
// three coordinates:
|
813 |
+
// _m: the warp's position within the threadblock along the M dimension
|
814 |
+
// _n: the warp's position within the threadblock along the N dimension
|
815 |
+
// _k: the warp's position within the threadblock along the K dimension
|
816 |
+
int warp_idx_mn_1 = warp_idx % (Base::WarpCount1::kM * Base::WarpCount1::kN);
|
817 |
+
int warp_idx_k_1 = warp_idx / (Base::WarpCount1::kM * Base::WarpCount1::kN);
|
818 |
+
int warp_idx_m_1 = warp_idx_mn_1 % Base::WarpCount1::kM;
|
819 |
+
int warp_idx_n_1 = warp_idx_mn_1 / Base::WarpCount1::kM;
|
820 |
+
|
821 |
+
// Add per-warp offsets in units of warp-level tiles
|
822 |
+
warp_tile_iterator_A1_.add_tile_offset(
|
823 |
+
{warp_idx_m_1, Base::kWarpGemmIterations1 * warp_idx_k_1});
|
824 |
+
warp_tile_iterator_A1_scale_.add_tile_offset(
|
825 |
+
{warp_idx_m_1, Base::kWarpGemmIterations1 * warp_idx_k_1});
|
826 |
+
this->warp_tile_iterator_B_.add_tile_offset(
|
827 |
+
{Base::kWarpGemmIterations1 * warp_idx_k_1, warp_idx_n_1});
|
828 |
+
}
|
829 |
+
|
830 |
+
/// Construct from tensor references
|
831 |
+
CUTLASS_DEVICE
|
832 |
+
MmaMultistageFromSharedMemory(
|
833 |
+
typename Base::SharedStorage& shared_storage, ///< Shared storage needed for internal use
|
834 |
+
///< by threadblock-scoped GEMM
|
835 |
+
AccumulatorSharedStorage& accumulator_shared_storage,
|
836 |
+
///< ID within the threadblock
|
837 |
+
int thread_idx,
|
838 |
+
///< ID of warp
|
839 |
+
int warp_idx,
|
840 |
+
///< ID of each thread within a warp
|
841 |
+
int lane_idx,
|
842 |
+
///< GEMM0 N is used for accumulator extent
|
843 |
+
int problem_size_0_n)
|
844 |
+
: Base(shared_storage, thread_idx, warp_idx, lane_idx),
|
845 |
+
warp_tile_iterator_A1_(accumulator_shared_storage.accum_ref(), lane_idx),
|
846 |
+
smem_iterator_B1_(shared_storage.operand_B_ref(), thread_idx),
|
847 |
+
prologue_done_(false)
|
848 |
+
{
|
849 |
+
// Compute warp location within threadblock tile by mapping the warp_id to
|
850 |
+
// three coordinates:
|
851 |
+
// _m: the warp's position within the threadblock along the M dimension
|
852 |
+
// _n: the warp's position within the threadblock along the N dimension
|
853 |
+
// _k: the warp's position within the threadblock along the K dimension
|
854 |
+
|
855 |
+
int warp_idx_mn_1 = warp_idx % (Base::WarpCount1::kM * Base::WarpCount1::kN);
|
856 |
+
int warp_idx_k_1 = warp_idx / (Base::WarpCount1::kM * Base::WarpCount1::kN);
|
857 |
+
|
858 |
+
int warp_idx_m_1 = warp_idx_mn_1 % Base::WarpCount1::kM;
|
859 |
+
int warp_idx_n_1 = warp_idx_mn_1 / Base::WarpCount1::kM;
|
860 |
+
|
861 |
+
// Add per-warp offsets in units of warp-level tiles
|
862 |
+
warp_tile_iterator_A1_.add_tile_offset(
|
863 |
+
{warp_idx_m_1, Base::kWarpGemmIterations1 * warp_idx_k_1});
|
864 |
+
this->warp_tile_iterator_B_.add_tile_offset(
|
865 |
+
{Base::kWarpGemmIterations1 * warp_idx_k_1, warp_idx_n_1});
|
866 |
+
}
|
867 |
+
|
868 |
+
CUTLASS_DEVICE
|
869 |
+
void set_prologue_done(bool value) { prologue_done_ = value; }
|
870 |
+
|
871 |
+
CUTLASS_DEVICE
|
872 |
+
static void prologue(typename Base::SharedStorage& shared_storage,
|
873 |
+
IteratorB iterator_B1,
|
874 |
+
int thread_idx,
|
875 |
+
int problem_size_0_n)
|
876 |
+
{
|
877 |
+
SmemIteratorB1 smem_iterator_B1(shared_storage.operand_B_ref(), thread_idx);
|
878 |
+
_prologue(iterator_B1,
|
879 |
+
(problem_size_0_n + Base::Shape::kK - 1) / Base::Shape::kK,
|
880 |
+
smem_iterator_B1);
|
881 |
+
}
|
882 |
+
|
883 |
+
CUTLASS_DEVICE
|
884 |
+
static void drain_cp_asyncs()
|
885 |
+
{
|
886 |
+
// commit and drain all pending and predicated cp.async pnz from the GEMM
|
887 |
+
// mainloop
|
888 |
+
cutlass::arch::cp_async_fence();
|
889 |
+
cutlass::arch::cp_async_wait<0>();
|
890 |
+
__syncthreads();
|
891 |
+
}
|
892 |
+
|
893 |
+
CUTLASS_DEVICE
|
894 |
+
void copy_tiles_and_advance_1(IteratorB1& iterator_B1, int group_start_B1 = 0)
|
895 |
+
{
|
896 |
+
iterator_B1.set_iteration_index(group_start_B1 * IteratorB1::kAccessesPerVector);
|
897 |
+
this->smem_iterator_B1_.set_iteration_index(group_start_B1);
|
898 |
+
|
899 |
+
// Load for operand B
|
900 |
+
CUTLASS_PRAGMA_UNROLL
|
901 |
+
for (int j = 0; j < Detail::kAccessesPerGroupB1; ++j) {
|
902 |
+
if (group_start_B1 + j < Detail::TBLoadIterationsB1) {
|
903 |
+
typename IteratorB1::AccessType* dst_ptr =
|
904 |
+
reinterpret_cast<typename IteratorB1::AccessType*>(
|
905 |
+
this->smem_iterator_B1_.get());
|
906 |
+
|
907 |
+
int const kSrcBytes = sizeof_bits<typename IteratorB1::Element>::value *
|
908 |
+
IteratorB1::ThreadMap::kElementsPerAccess /
|
909 |
+
IteratorB1::kAccessesPerVector / 8;
|
910 |
+
|
911 |
+
CUTLASS_PRAGMA_UNROLL
|
912 |
+
for (int v = 0; v < IteratorB1::kAccessesPerVector; ++v) {
|
913 |
+
auto gmem_ptr = iterator_B1.get();
|
914 |
+
|
915 |
+
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB1>(
|
916 |
+
dst_ptr + v, gmem_ptr, iterator_B1.valid());
|
917 |
+
|
918 |
+
++iterator_B1;
|
919 |
+
}
|
920 |
+
++this->smem_iterator_B1_;
|
921 |
+
}
|
922 |
+
}
|
923 |
+
}
|
924 |
+
|
925 |
+
CUTLASS_DEVICE
|
926 |
+
static void _prologue(IteratorB& iterator_B1,
|
927 |
+
int32_t gemm_k_iterations_1,
|
928 |
+
SmemIteratorB1& smem_iterator_B1_)
|
929 |
+
{
|
930 |
+
// Issue several complete stages
|
931 |
+
CUTLASS_PRAGMA_UNROLL
|
932 |
+
for (int stage = 0; stage < kNumStagesConcurrentLoad; ++stage, --gemm_k_iterations_1) {
|
933 |
+
iterator_B1.set_residual_tile(gemm_k_iterations_1 == 1);
|
934 |
+
iterator_B1.clear_mask(gemm_k_iterations_1 == 0);
|
935 |
+
|
936 |
+
iterator_B1.set_iteration_index(0);
|
937 |
+
smem_iterator_B1_.set_iteration_index(0);
|
938 |
+
|
939 |
+
// Load for operand B
|
940 |
+
CUTLASS_PRAGMA_UNROLL
|
941 |
+
for (int j = 0; j < Detail::TBLoadIterationsB1; ++j) {
|
942 |
+
typename IteratorB1::AccessType* dst_ptr =
|
943 |
+
reinterpret_cast<typename IteratorB1::AccessType*>(smem_iterator_B1_.get());
|
944 |
+
|
945 |
+
CUTLASS_PRAGMA_UNROLL
|
946 |
+
for (int v = 0; v < IteratorB1::kAccessesPerVector; ++v) {
|
947 |
+
int const kSrcBytes = sizeof_bits<typename IteratorB1::Element>::value *
|
948 |
+
IteratorB1::ThreadMap::kElementsPerAccess /
|
949 |
+
IteratorB1::kAccessesPerVector / 8;
|
950 |
+
|
951 |
+
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB1>(
|
952 |
+
dst_ptr + v, iterator_B1.get(), iterator_B1.valid());
|
953 |
+
|
954 |
+
++iterator_B1;
|
955 |
+
}
|
956 |
+
|
957 |
+
++smem_iterator_B1_;
|
958 |
+
}
|
959 |
+
|
960 |
+
// Move to the next stage
|
961 |
+
iterator_B1.add_tile_offset({1, 0});
|
962 |
+
|
963 |
+
smem_iterator_B1_.add_tile_offset({1, 0});
|
964 |
+
|
965 |
+
// Defines the boundary of a stage of cp.async.
|
966 |
+
cutlass::arch::cp_async_fence();
|
967 |
+
}
|
968 |
+
iterator_B1.set_residual_tile(gemm_k_iterations_1 == 1);
|
969 |
+
iterator_B1.clear_mask(gemm_k_iterations_1 == 0);
|
970 |
+
}
|
971 |
+
|
972 |
+
/// Perform a threadblock-scoped matrix multiply-accumulate
|
973 |
+
CUTLASS_DEVICE
|
974 |
+
void operator()(
|
975 |
+
///< problem size of GEMM
|
976 |
+
int gemm_k_iterations_1_,
|
977 |
+
///< destination accumulator tile
|
978 |
+
FragmentC1& accum,
|
979 |
+
///< iterator over B1 operand in global memory
|
980 |
+
IteratorB1 iterator_B1,
|
981 |
+
///< initial value of accumulator
|
982 |
+
FragmentC1 const& src_accum)
|
983 |
+
{
|
984 |
+
// 2nd Gemm
|
985 |
+
|
986 |
+
//
|
987 |
+
// Prologue
|
988 |
+
//
|
989 |
+
// Perform accumulation in the 'd' output operand
|
990 |
+
accum = src_accum;
|
991 |
+
|
992 |
+
if (!prologue_done_) {
|
993 |
+
_prologue(iterator_B1, gemm_k_iterations_1_, smem_iterator_B1_);
|
994 |
+
} else if (!kSmemContainsEntireB) {
|
995 |
+
// Restore the iterators increments
|
996 |
+
|
997 |
+
int gemm_k_iterations_1 = gemm_k_iterations_1_;
|
998 |
+
// Issue several complete stages
|
999 |
+
CUTLASS_PRAGMA_UNROLL
|
1000 |
+
for (int stage = 0; stage < kNumStagesConcurrentLoad; ++stage, --gemm_k_iterations_1) {
|
1001 |
+
iterator_B1.set_iteration_index(0);
|
1002 |
+
this->smem_iterator_B1_.set_iteration_index(0);
|
1003 |
+
|
1004 |
+
// Load for operand B
|
1005 |
+
CUTLASS_PRAGMA_UNROLL
|
1006 |
+
for (int j = 0; j < Detail::TBLoadIterationsB1; ++j) {
|
1007 |
+
CUTLASS_PRAGMA_UNROLL
|
1008 |
+
for (int v = 0; v < IteratorB1::kAccessesPerVector; ++v) { ++iterator_B1; }
|
1009 |
+
++this->smem_iterator_B1_;
|
1010 |
+
}
|
1011 |
+
iterator_B1.add_tile_offset({1, 0});
|
1012 |
+
this->smem_iterator_B1_.add_tile_offset({1, 0});
|
1013 |
+
}
|
1014 |
+
iterator_B1.set_residual_tile(gemm_k_iterations_1 <= 1);
|
1015 |
+
iterator_B1.clear_mask(gemm_k_iterations_1 <= 0);
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
// DEPBAR+SYNC
|
1019 |
+
cutlass::arch::cp_async_wait<kNumStagesConcurrentLoad - 1>();
|
1020 |
+
__syncthreads();
|
1021 |
+
|
1022 |
+
// remember that WarpFragmentAScale and WarpIteratorAScale are no-op/empty
|
1023 |
+
// if scaling is disabled.
|
1024 |
+
|
1025 |
+
// Pair of fragments used to overlap shared memory loads and math
|
1026 |
+
// instructions
|
1027 |
+
WarpLoadedFragmentA1 warp_loaded_frag_A1[2];
|
1028 |
+
WarpLoadedFragmentA1Scale warp_loaded_frag_A1_scale[2];
|
1029 |
+
WarpLoadedFragmentB1 warp_loaded_frag_B1[2];
|
1030 |
+
WarpTransformedFragmentA1 warp_transformed_frag_A1[2];
|
1031 |
+
WarpTransformedFragmentB1 warp_transformed_frag_B1[2];
|
1032 |
+
|
1033 |
+
Operator1 warp_mma1;
|
1034 |
+
|
1035 |
+
warp_tile_iterator_A1_.load(warp_loaded_frag_A1[0]);
|
1036 |
+
++warp_tile_iterator_A1_;
|
1037 |
+
|
1038 |
+
warp_tile_iterator_A1_scale_.load(warp_loaded_frag_A1_scale[0]);
|
1039 |
+
++warp_tile_iterator_A1_scale_;
|
1040 |
+
|
1041 |
+
this->warp_tile_iterator_B_.set_kgroup_index(0);
|
1042 |
+
this->warp_tile_iterator_B_.load(warp_loaded_frag_B1[0]);
|
1043 |
+
++this->warp_tile_iterator_B_;
|
1044 |
+
|
1045 |
+
int smem_write_stage_idx = Base::kStages - 1;
|
1046 |
+
int smem_read_stage_idx = 0;
|
1047 |
+
|
1048 |
+
warp_mma1.transform(
|
1049 |
+
warp_transformed_frag_A1[0],
|
1050 |
+
warp_transformed_frag_B1[0],
|
1051 |
+
FragmentAScaler::apply(warp_loaded_frag_A1[0], warp_loaded_frag_A1_scale[0]),
|
1052 |
+
warp_loaded_frag_B1[0]);
|
1053 |
+
|
1054 |
+
// tf32x3 kernels use staging accumulation. warp_mma uses a temporary
|
1055 |
+
// accumulator and this temporary accumulator is added to the final
|
1056 |
+
// accumulator once in every mainloop iteration.
|
1057 |
+
plus<FragmentC1> plus_accum;
|
1058 |
+
|
1059 |
+
FragmentC1 tmp_accum;
|
1060 |
+
|
1061 |
+
if (platform::is_same<typename Operator1::MathOperator,
|
1062 |
+
arch::OpMultiplyAddFastF32>::value ||
|
1063 |
+
platform::is_same<typename Operator1::MathOperator,
|
1064 |
+
arch::OpMultiplyAddComplexFastF32>::value) {
|
1065 |
+
tmp_accum.clear();
|
1066 |
+
}
|
1067 |
+
|
1068 |
+
//
|
1069 |
+
// Mainloop
|
1070 |
+
//
|
1071 |
+
|
1072 |
+
CUTLASS_PRAGMA_UNROLL
|
1073 |
+
for (int gemm_k_iterations_1 = gemm_k_iterations_1_ - (Base::kStages - 1);
|
1074 |
+
gemm_k_iterations_1 > (-Base::kStages + 1);
|
1075 |
+
gemm_k_iterations_1--) {
|
1076 |
+
//
|
1077 |
+
// Loop over GEMM K dimension
|
1078 |
+
//
|
1079 |
+
|
1080 |
+
// Computes a warp-level GEMM on data held in shared memory
|
1081 |
+
// Each "warp_mma_k" refers to a warp-level matrix multiply-accumulate
|
1082 |
+
CUTLASS_PRAGMA_UNROLL
|
1083 |
+
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations1; ++warp_mma_k) {
|
1084 |
+
// Load warp-level tile from accumulator fragment (A)
|
1085 |
+
// or shared memory (operand B)
|
1086 |
+
this->warp_tile_iterator_B_.set_kgroup_index((warp_mma_k + 1) %
|
1087 |
+
Base::kWarpGemmIterations1);
|
1088 |
+
// skip warp tile loading for the last kgroup (we are out of the buf)
|
1089 |
+
if (gemm_k_iterations_1 > (-Base::kStages + 2) ||
|
1090 |
+
warp_mma_k < Base::kWarpGemmIterations1 - 1) {
|
1091 |
+
warp_tile_iterator_A1_.load(warp_loaded_frag_A1[(warp_mma_k + 1) % 2]);
|
1092 |
+
warp_tile_iterator_A1_scale_.load(
|
1093 |
+
warp_loaded_frag_A1_scale[(warp_mma_k + 1) % 2]);
|
1094 |
+
this->warp_tile_iterator_B_.load(warp_loaded_frag_B1[(warp_mma_k + 1) % 2]);
|
1095 |
+
}
|
1096 |
+
++warp_tile_iterator_A1_;
|
1097 |
+
++warp_tile_iterator_A1_scale_;
|
1098 |
+
++this->warp_tile_iterator_B_;
|
1099 |
+
|
1100 |
+
if (warp_mma_k > 0)
|
1101 |
+
warp_mma1.transform(
|
1102 |
+
warp_transformed_frag_A1[warp_mma_k % 2],
|
1103 |
+
warp_transformed_frag_B1[warp_mma_k % 2],
|
1104 |
+
FragmentAScaler::apply(warp_loaded_frag_A1[warp_mma_k % 2],
|
1105 |
+
warp_loaded_frag_A1_scale[warp_mma_k % 2]),
|
1106 |
+
warp_loaded_frag_B1[warp_mma_k % 2]);
|
1107 |
+
|
1108 |
+
if (platform::is_same<typename Operator1::MathOperator,
|
1109 |
+
arch::OpMultiplyAddFastF32>::value ||
|
1110 |
+
platform::is_same<typename Operator1::MathOperator,
|
1111 |
+
arch::OpMultiplyAddComplexFastF32>::value) {
|
1112 |
+
warp_mma1(tmp_accum,
|
1113 |
+
warp_transformed_frag_A1[warp_mma_k % 2],
|
1114 |
+
warp_transformed_frag_B1[warp_mma_k % 2],
|
1115 |
+
tmp_accum);
|
1116 |
+
|
1117 |
+
if (warp_mma_k == 0) {
|
1118 |
+
accum = plus_accum(accum, tmp_accum);
|
1119 |
+
tmp_accum.clear();
|
1120 |
+
}
|
1121 |
+
} else {
|
1122 |
+
warp_mma1(accum,
|
1123 |
+
warp_transformed_frag_A1[warp_mma_k % 2],
|
1124 |
+
warp_transformed_frag_B1[warp_mma_k % 2],
|
1125 |
+
accum);
|
1126 |
+
}
|
1127 |
+
|
1128 |
+
// Issue global->shared copies for the this stage
|
1129 |
+
if (warp_mma_k < Base::kWarpGemmIterations1 - 1) {
|
1130 |
+
int group_start_iteration_B1;
|
1131 |
+
|
1132 |
+
group_start_iteration_B1 = warp_mma_k * Detail::kAccessesPerGroupB1;
|
1133 |
+
|
1134 |
+
if (!kSmemContainsEntireB) {
|
1135 |
+
copy_tiles_and_advance_1(iterator_B1, group_start_iteration_B1);
|
1136 |
+
}
|
1137 |
+
}
|
1138 |
+
|
1139 |
+
if (warp_mma_k + 2 == Base::kWarpGemmIterations1) {
|
1140 |
+
int group_start_iteration_B1;
|
1141 |
+
group_start_iteration_B1 = (warp_mma_k + 1) * Detail::kAccessesPerGroupB1;
|
1142 |
+
|
1143 |
+
if (!kSmemContainsEntireB) {
|
1144 |
+
copy_tiles_and_advance_1(iterator_B1, group_start_iteration_B1);
|
1145 |
+
}
|
1146 |
+
|
1147 |
+
// Inserts a memory fence between stages of cp.async instructions.
|
1148 |
+
cutlass::arch::cp_async_fence();
|
1149 |
+
|
1150 |
+
// Waits until kStages-2 stages have committed.
|
1151 |
+
arch::cp_async_wait<kNumStagesConcurrentLoad - 1>();
|
1152 |
+
__syncthreads();
|
1153 |
+
|
1154 |
+
// Move to the next stage
|
1155 |
+
iterator_B1.add_tile_offset({1, 0});
|
1156 |
+
|
1157 |
+
this->smem_iterator_B1_.add_tile_offset({1, 0});
|
1158 |
+
|
1159 |
+
// Add negative offsets to return iterators to the 'start' of the
|
1160 |
+
// circular buffer in shared memory
|
1161 |
+
if (!kSmemContainsEntireB) {
|
1162 |
+
if (smem_write_stage_idx == (Base::kStages - 1)) {
|
1163 |
+
this->smem_iterator_B1_.add_tile_offset({-Base::kStages, 0});
|
1164 |
+
smem_write_stage_idx = 0;
|
1165 |
+
} else {
|
1166 |
+
++smem_write_stage_idx;
|
1167 |
+
}
|
1168 |
+
|
1169 |
+
if (smem_read_stage_idx == (Base::kStages - 1)) {
|
1170 |
+
this->warp_tile_iterator_B_.add_tile_offset(
|
1171 |
+
{-Base::kStages * Policy1::kPartitionsK *
|
1172 |
+
Base::kWarpGemmIterations1,
|
1173 |
+
0});
|
1174 |
+
smem_read_stage_idx = 0;
|
1175 |
+
} else {
|
1176 |
+
++smem_read_stage_idx;
|
1177 |
+
}
|
1178 |
+
}
|
1179 |
+
|
1180 |
+
iterator_B1.set_residual_tile(gemm_k_iterations_1 == 2);
|
1181 |
+
iterator_B1.clear_mask(gemm_k_iterations_1 == 1);
|
1182 |
+
}
|
1183 |
+
|
1184 |
+
// Do any conversions feeding the first stage at the end of the loop so
|
1185 |
+
// we can start right away on mma instructions
|
1186 |
+
if (warp_mma_k + 1 == Base::kWarpGemmIterations1)
|
1187 |
+
warp_mma1.transform(
|
1188 |
+
warp_transformed_frag_A1[(warp_mma_k + 1) % 2],
|
1189 |
+
warp_transformed_frag_B1[(warp_mma_k + 1) % 2],
|
1190 |
+
FragmentAScaler::apply(warp_loaded_frag_A1[(warp_mma_k + 1) % 2],
|
1191 |
+
warp_loaded_frag_A1_scale[(warp_mma_k + 1) % 2]),
|
1192 |
+
warp_loaded_frag_B1[(warp_mma_k + 1) % 2]);
|
1193 |
+
}
|
1194 |
+
}
|
1195 |
+
|
1196 |
+
if (platform::is_same<typename Operator1::MathOperator,
|
1197 |
+
arch::OpMultiplyAddFastF32>::value ||
|
1198 |
+
platform::is_same<typename Operator1::MathOperator,
|
1199 |
+
arch::OpMultiplyAddComplexFastF32>::value) {
|
1200 |
+
accum = plus_accum(accum, tmp_accum);
|
1201 |
+
}
|
1202 |
+
}
|
1203 |
+
};
|
1204 |
+
|
1205 |
+
template <typename WarpShape,
|
1206 |
+
typename InstructionShape,
|
1207 |
+
typename RegularWarpIterator,
|
1208 |
+
typename Policy,
|
1209 |
+
typename Enable = void>
|
1210 |
+
struct DefaultWarpIteratorAFromSharedMemory {};
|
1211 |
+
|
1212 |
+
// TensorOp - Ampere half
|
1213 |
+
template <typename RegularWarpIterator, typename Policy>
|
1214 |
+
struct DefaultWarpIteratorAFromSharedMemory<
|
1215 |
+
cutlass::gemm::GemmShape<32, 32, 32>,
|
1216 |
+
cutlass::gemm::GemmShape<16, 8, 8>,
|
1217 |
+
RegularWarpIterator,
|
1218 |
+
Policy,
|
1219 |
+
typename platform::enable_if<(sizeof_bits<typename RegularWarpIterator::Element>::value == 16 &&
|
1220 |
+
Policy::Operator::Policy::OpDelta::kRow == 1)>::type> {
|
1221 |
+
static constexpr auto kWarpSize = 32;
|
1222 |
+
using OpDelta = typename Policy::Operator::Policy::OpDelta;
|
1223 |
+
using WarpShape = cutlass::MatrixShape<32, 32>;
|
1224 |
+
|
1225 |
+
using WarpIterator =
|
1226 |
+
cutlass::gemm::warp::WarpIteratorFromSmem<cutlass::gemm::Operand::kA,
|
1227 |
+
typename RegularWarpIterator::Element>;
|
1228 |
+
};
|
1229 |
+
|
1230 |
+
// TensorOp - Ampere f32
|
1231 |
+
template <typename WarpShape, typename RegularWarpIterator, typename Policy>
|
1232 |
+
struct DefaultWarpIteratorAFromSharedMemory<
|
1233 |
+
WarpShape,
|
1234 |
+
cutlass::gemm::GemmShape<16, 8, 8>,
|
1235 |
+
RegularWarpIterator,
|
1236 |
+
Policy,
|
1237 |
+
typename platform::enable_if<(sizeof_bits<typename RegularWarpIterator::Element>::value != 16 ||
|
1238 |
+
Policy::Operator::Policy::OpDelta::kRow != 1)>::type> {
|
1239 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
1240 |
+
static constexpr auto kWarpSize = 32;
|
1241 |
+
using OpDelta = typename Policy::Operator::Policy::OpDelta;
|
1242 |
+
|
1243 |
+
using WarpIterator = cutlass::gemm::warp::MmaTensorOpMultiplicandTileAccessIterator<
|
1244 |
+
cutlass::MatrixShape<WarpShape::kM, WarpShape::kK>,
|
1245 |
+
cutlass::gemm::Operand::kA,
|
1246 |
+
typename RegularWarpIterator::Element,
|
1247 |
+
cutlass::layout::RowMajor,
|
1248 |
+
cutlass::MatrixShape<InstructionShape::kM, InstructionShape::kK>,
|
1249 |
+
OpDelta::kRow,
|
1250 |
+
kWarpSize>;
|
1251 |
+
};
|
1252 |
+
|
1253 |
+
// TensorOp - Volta
|
1254 |
+
template <typename WarpShape, typename RegularWarpIterator, typename Policy>
|
1255 |
+
struct DefaultWarpIteratorAFromSharedMemory<WarpShape,
|
1256 |
+
cutlass::gemm::GemmShape<16, 16, 4>,
|
1257 |
+
RegularWarpIterator,
|
1258 |
+
Policy> {
|
1259 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 16, 4>;
|
1260 |
+
static constexpr auto kWarpSize = 32;
|
1261 |
+
using OpDelta = typename Policy::Operator::Policy::OpDelta;
|
1262 |
+
|
1263 |
+
using WarpIterator = cutlass::gemm::warp::MmaVoltaTensorOpMultiplicandTileIterator<
|
1264 |
+
cutlass::MatrixShape<32, 32>, // MatrixShape<WarpShape::kM,
|
1265 |
+
// WarpShape::kK>,
|
1266 |
+
cutlass::gemm::Operand::kA,
|
1267 |
+
typename RegularWarpIterator::Element,
|
1268 |
+
cutlass::layout::RowMajorVoltaTensorOpMultiplicandCrosswise<16, 32>,
|
1269 |
+
cutlass::MatrixShape<16, 4>,
|
1270 |
+
OpDelta::kRow,
|
1271 |
+
kWarpSize>;
|
1272 |
+
};
|
1273 |
+
|
1274 |
+
// Simt
|
1275 |
+
template <typename WarpShape, typename RegularWarpIterator, typename Policy>
|
1276 |
+
struct DefaultWarpIteratorAFromSharedMemory<WarpShape,
|
1277 |
+
cutlass::gemm::GemmShape<1, 1, 1>,
|
1278 |
+
RegularWarpIterator,
|
1279 |
+
Policy> {
|
1280 |
+
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 1>;
|
1281 |
+
static constexpr auto kWarpSize = 32;
|
1282 |
+
|
1283 |
+
// We just use the same iterator, as we reproduced the same shared-memory
|
1284 |
+
// schema. Just modify it to handle non-complete tiles.
|
1285 |
+
using WarpIterator = RegularWarpIterator;
|
1286 |
+
};
|
1287 |
+
|
1288 |
+
// Converts a "regular" Mma into their counterpart from shared memory
|
1289 |
+
template <typename Mma_,
|
1290 |
+
typename AccumulatorSharedStorage,
|
1291 |
+
/// whether or not to apply elementwise multiplication of operand A by
|
1292 |
+
/// another matrix in shared memory before usage in A @ B
|
1293 |
+
bool kScaleOperandA,
|
1294 |
+
bool kTransposeA = false>
|
1295 |
+
struct DefaultMmaFromSharedMemory;
|
1296 |
+
|
1297 |
+
// Mma pipelined
|
1298 |
+
template <
|
1299 |
+
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
1300 |
+
typename Shape_,
|
1301 |
+
/// Iterates over tiles of A operand in global memory
|
1302 |
+
// (concept: ReadableTileIterator | ForwardTileIterator |
|
1303 |
+
// MaskedTileIterator)
|
1304 |
+
typename IteratorA_,
|
1305 |
+
/// Iterates over tiles of A operand in shared memory
|
1306 |
+
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
1307 |
+
typename SmemIteratorA_,
|
1308 |
+
/// Iterates over tiles of B operand in global memory
|
1309 |
+
// (concept: ReadableTileIterator | ForwardTileIterator |
|
1310 |
+
// MaskedTileIterator)
|
1311 |
+
typename IteratorB_,
|
1312 |
+
/// Iterates over tiles of B operand in shared memory
|
1313 |
+
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
1314 |
+
typename SmemIteratorB_,
|
1315 |
+
/// Data type of accumulator matrix
|
1316 |
+
typename ElementC_,
|
1317 |
+
/// Data type of accumulator matrix
|
1318 |
+
typename LayoutC_,
|
1319 |
+
/// Policy describing tuning details (concept: MmaPolicy)
|
1320 |
+
typename Policy_,
|
1321 |
+
/// Transformation applied to A operand
|
1322 |
+
typename TransformA_,
|
1323 |
+
/// Transformation applied to B operand
|
1324 |
+
typename TransformB_,
|
1325 |
+
typename AccumulatorSharedStorage_,
|
1326 |
+
/// whether or not to apply elementwise multiplication of operand A by
|
1327 |
+
/// another matrix in shared memory before usage in A @ B
|
1328 |
+
bool kScaleOperandA,
|
1329 |
+
bool kTransposeA>
|
1330 |
+
struct DefaultMmaFromSharedMemory<MmaPipelined<Shape_,
|
1331 |
+
IteratorA_,
|
1332 |
+
SmemIteratorA_,
|
1333 |
+
IteratorB_,
|
1334 |
+
SmemIteratorB_,
|
1335 |
+
ElementC_,
|
1336 |
+
LayoutC_,
|
1337 |
+
Policy_,
|
1338 |
+
TransformA_,
|
1339 |
+
TransformB_>,
|
1340 |
+
AccumulatorSharedStorage_,
|
1341 |
+
kScaleOperandA,
|
1342 |
+
kTransposeA> {
|
1343 |
+
static constexpr int kWarpSize = 32;
|
1344 |
+
using SmemAccumulatorLayout = cutlass::layout::RowMajor;
|
1345 |
+
|
1346 |
+
using RegularMma = MmaPipelined<Shape_,
|
1347 |
+
IteratorA_,
|
1348 |
+
SmemIteratorA_,
|
1349 |
+
IteratorB_,
|
1350 |
+
SmemIteratorB_,
|
1351 |
+
ElementC_,
|
1352 |
+
LayoutC_,
|
1353 |
+
Policy_,
|
1354 |
+
TransformA_,
|
1355 |
+
TransformB_>;
|
1356 |
+
|
1357 |
+
using WarpShape = typename Policy_::Operator::Shape;
|
1358 |
+
using InstructionShape = typename Policy_::Operator::InstructionShape;
|
1359 |
+
using ArchMmaOperator = typename Policy_::Operator;
|
1360 |
+
|
1361 |
+
static constexpr bool kIsTransposedA = false;
|
1362 |
+
using WarpIteratorA =
|
1363 |
+
typename DefaultWarpIteratorAFromSharedMemory<WarpShape,
|
1364 |
+
InstructionShape,
|
1365 |
+
typename RegularMma::Operator::IteratorA,
|
1366 |
+
Policy_>::WarpIterator;
|
1367 |
+
using IteratorB =
|
1368 |
+
typename cutlass::transform::threadblock::MakeIteratorResidualLast<IteratorB_>::Iterator;
|
1369 |
+
|
1370 |
+
using Mma =
|
1371 |
+
typename cutlass::gemm::threadblock::MmaPipelinedFromSharedMemory<Shape_,
|
1372 |
+
WarpIteratorA,
|
1373 |
+
kScaleOperandA,
|
1374 |
+
AccumulatorSharedStorage_,
|
1375 |
+
IteratorB,
|
1376 |
+
SmemIteratorB_,
|
1377 |
+
ElementC_,
|
1378 |
+
LayoutC_,
|
1379 |
+
Policy_>;
|
1380 |
+
};
|
1381 |
+
|
1382 |
+
template <
|
1383 |
+
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
1384 |
+
typename Shape_,
|
1385 |
+
/// Iterates over tiles of A operand in global memory
|
1386 |
+
// (concept: ReadableTileIterator | ForwardTileIterator |
|
1387 |
+
// MaskedTileIterator)
|
1388 |
+
typename IteratorA_,
|
1389 |
+
/// Iterates over tiles of A operand in shared memory
|
1390 |
+
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
1391 |
+
typename SmemIteratorA_,
|
1392 |
+
/// Cache operation for operand A
|
1393 |
+
cutlass::arch::CacheOperation::Kind CacheOpA,
|
1394 |
+
/// Iterates over tiles of B operand in global memory
|
1395 |
+
// (concept: ReadableTileIterator | ForwardTileIterator |
|
1396 |
+
// MaskedTileIterator)
|
1397 |
+
typename IteratorB_,
|
1398 |
+
/// Iterates over tiles of B operand in shared memory
|
1399 |
+
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
1400 |
+
typename SmemIteratorB_,
|
1401 |
+
/// Cache operation for operand B
|
1402 |
+
cutlass::arch::CacheOperation::Kind CacheOpB,
|
1403 |
+
/// Data type of accumulator matrix
|
1404 |
+
typename ElementC_,
|
1405 |
+
/// Data type of accumulator matrix
|
1406 |
+
typename LayoutC_,
|
1407 |
+
/// Policy describing tuning details (concept: MmaPolicy)
|
1408 |
+
typename Policy_,
|
1409 |
+
/// Number of stages,
|
1410 |
+
int Stages,
|
1411 |
+
/// Use zfill or predicate for out-of-bound cp.async
|
1412 |
+
SharedMemoryClearOption SharedMemoryClear,
|
1413 |
+
typename AccumulatorSharedStorage_,
|
1414 |
+
/// whether or not to apply elementwise multiplication of operand A by
|
1415 |
+
/// another matrix in shared memory before usage in A @ B
|
1416 |
+
bool kScaleOperandA,
|
1417 |
+
bool kTransposeA>
|
1418 |
+
struct DefaultMmaFromSharedMemory<MmaMultistage<Shape_,
|
1419 |
+
IteratorA_,
|
1420 |
+
SmemIteratorA_,
|
1421 |
+
CacheOpA,
|
1422 |
+
IteratorB_,
|
1423 |
+
SmemIteratorB_,
|
1424 |
+
CacheOpB,
|
1425 |
+
ElementC_,
|
1426 |
+
LayoutC_,
|
1427 |
+
Policy_,
|
1428 |
+
Stages,
|
1429 |
+
SharedMemoryClear>,
|
1430 |
+
AccumulatorSharedStorage_,
|
1431 |
+
kScaleOperandA,
|
1432 |
+
kTransposeA> {
|
1433 |
+
static constexpr int kWarpSize = 32;
|
1434 |
+
|
1435 |
+
using RegularMma = MmaMultistage<Shape_,
|
1436 |
+
IteratorA_,
|
1437 |
+
SmemIteratorA_,
|
1438 |
+
CacheOpA,
|
1439 |
+
IteratorB_,
|
1440 |
+
SmemIteratorB_,
|
1441 |
+
CacheOpB,
|
1442 |
+
ElementC_,
|
1443 |
+
LayoutC_,
|
1444 |
+
Policy_,
|
1445 |
+
Stages,
|
1446 |
+
SharedMemoryClear>;
|
1447 |
+
|
1448 |
+
using WarpShape = typename Policy_::Operator::Shape;
|
1449 |
+
using InstructionShape = typename Policy_::Operator::InstructionShape;
|
1450 |
+
using WarpIteratorA_ =
|
1451 |
+
typename DefaultWarpIteratorAFromSharedMemory<WarpShape,
|
1452 |
+
InstructionShape,
|
1453 |
+
typename RegularMma::Operator::IteratorA,
|
1454 |
+
Policy_>::WarpIterator;
|
1455 |
+
using WarpIteratorTranspose = TransposeWarpIterator<WarpIteratorA_>;
|
1456 |
+
static constexpr bool kIsTransposedA = WarpIteratorTranspose::kSupportsTranspose && kTransposeA;
|
1457 |
+
using WarpIteratorA = typename platform::
|
1458 |
+
conditional<kIsTransposedA, typename WarpIteratorTranspose::Iterator, WarpIteratorA_>::type;
|
1459 |
+
|
1460 |
+
static int constexpr kMaxK = kIsTransposedA ? AccumulatorSharedStorage_::Shape::kM
|
1461 |
+
: AccumulatorSharedStorage_::Shape::kN;
|
1462 |
+
// Reduce the number of stages if we don't need that many
|
1463 |
+
static int constexpr kStagesMax = (kMaxK + int(Shape_::kK) - 1) / int(Shape_::kK);
|
1464 |
+
static int constexpr kStages = cutlass::const_min(Stages, kStagesMax);
|
1465 |
+
|
1466 |
+
using IteratorB =
|
1467 |
+
typename cutlass::transform::threadblock::MakeIteratorResidualLast<IteratorB_>::Iterator;
|
1468 |
+
using Mma = typename cutlass::gemm::threadblock::MmaMultistageFromSharedMemory<
|
1469 |
+
Shape_,
|
1470 |
+
WarpIteratorA,
|
1471 |
+
kScaleOperandA,
|
1472 |
+
AccumulatorSharedStorage_,
|
1473 |
+
IteratorB,
|
1474 |
+
SmemIteratorB_,
|
1475 |
+
RegularMma::kCacheOpB,
|
1476 |
+
ElementC_,
|
1477 |
+
LayoutC_,
|
1478 |
+
Policy_,
|
1479 |
+
kStages,
|
1480 |
+
kMaxK>;
|
1481 |
+
};
|
1482 |
+
|
1483 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1484 |
+
|
1485 |
+
template <typename IteratorC,
|
1486 |
+
typename Operator,
|
1487 |
+
typename scalar_t,
|
1488 |
+
typename WarpShape_,
|
1489 |
+
typename ThreadblockShape_>
|
1490 |
+
struct B2bGemm;
|
1491 |
+
|
1492 |
+
// Tensor Cores >= Sm75 specialization (Ampere ...)
|
1493 |
+
template < /// Size of the matrix to load (concept: MatrixShape)
|
1494 |
+
typename Shape_,
|
1495 |
+
/// Element type
|
1496 |
+
typename Element_,
|
1497 |
+
/// Layout of operand in memory
|
1498 |
+
typename Layout_,
|
1499 |
+
/// Shape of one matrix product operation (concept: MatrixShape)
|
1500 |
+
typename InstructionShape_,
|
1501 |
+
/// Interval between adjacent *MMA instructions (in units of MMA
|
1502 |
+
/// instructions, concept: MatrixShape)
|
1503 |
+
typename OpDelta_,
|
1504 |
+
typename Operator,
|
1505 |
+
typename scalar_t,
|
1506 |
+
typename WarpShape_,
|
1507 |
+
typename ThreadblockShape_>
|
1508 |
+
struct B2bGemm<
|
1509 |
+
cutlass::gemm::warp::
|
1510 |
+
MmaTensorOpAccumulatorTileIterator<Shape_, Element_, Layout_, InstructionShape_, OpDelta_>,
|
1511 |
+
Operator,
|
1512 |
+
scalar_t,
|
1513 |
+
WarpShape_,
|
1514 |
+
ThreadblockShape_> {
|
1515 |
+
using IteratorC = typename cutlass::gemm::warp::
|
1516 |
+
MmaTensorOpAccumulatorTileIterator<Shape_, Element_, Layout_, InstructionShape_, OpDelta_>;
|
1517 |
+
using FragmentC = typename IteratorC::Fragment;
|
1518 |
+
using InstructionShape = InstructionShape_;
|
1519 |
+
using WarpShape = WarpShape_;
|
1520 |
+
using ThreadblockShape = ThreadblockShape_;
|
1521 |
+
using accum_t = Element_;
|
1522 |
+
using lse_scalar_t = float;
|
1523 |
+
|
1524 |
+
using SmemAccumulatorLayout = cutlass::layout::RowMajor;
|
1525 |
+
|
1526 |
+
// Iterator to load accumulators (results of matmul in registers)
|
1527 |
+
using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp<
|
1528 |
+
WarpShape,
|
1529 |
+
InstructionShape,
|
1530 |
+
accum_t,
|
1531 |
+
typename Operator::Policy::Operator::FragmentC,
|
1532 |
+
cutlass::layout::RowMajor>;
|
1533 |
+
|
1534 |
+
// Iterator to store to shared-memory
|
1535 |
+
using SmemIteratorD0 =
|
1536 |
+
typename cutlass::epilogue::warp::TileIteratorTensorOp<WarpShape,
|
1537 |
+
InstructionShape,
|
1538 |
+
scalar_t, // accum_t,
|
1539 |
+
SmemAccumulatorLayout>;
|
1540 |
+
using AccumulatorSharedStorage =
|
1541 |
+
cutlass::gemm::threadblock::AccumulatorSharedStorage<ThreadblockShape,
|
1542 |
+
typename SmemIteratorD0::Element,
|
1543 |
+
typename SmemIteratorD0::TensorLayout,
|
1544 |
+
typename SmemIteratorD0::Padding>;
|
1545 |
+
// We need to provide an operation for the epilogue. Let's create an
|
1546 |
+
// operation that does nothing (ScaleType::Nothing), just converts
|
1547 |
+
// from accum_t (float) -> scalar_t (can be half)
|
1548 |
+
using OutputOpNoOp = cutlass::epilogue::thread::LinearCombination<
|
1549 |
+
typename SmemIteratorD0::Element, // ElementOutput
|
1550 |
+
FragmentIteratorAccumulator::Fragment::kElements,
|
1551 |
+
accum_t, // ElementAccumulator
|
1552 |
+
typename SmemIteratorD0::Element, // ElementCompute
|
1553 |
+
cutlass::epilogue::thread::ScaleType::Nothing>;
|
1554 |
+
using Epilogue = cutlass::epilogue::threadblock::EpilogueSmemAccumulator<
|
1555 |
+
SmemIteratorD0,
|
1556 |
+
FragmentIteratorAccumulator,
|
1557 |
+
SmemIteratorD0, // ScaleBiasIterator
|
1558 |
+
// - not used
|
1559 |
+
OutputOpNoOp>;
|
1560 |
+
|
1561 |
+
// Epilogue 2: with LSE (for backwards pass)
|
1562 |
+
static int const kElementsPerAccess = 2; // TODO: Why 2?
|
1563 |
+
using IteratorAccumulatorLSE = cutlass::transform::threadblock::VectorIterator<
|
1564 |
+
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
|
1565 |
+
// Shape
|
1566 |
+
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kN>,
|
1567 |
+
// WarpShape
|
1568 |
+
cutlass::MatrixShape<WarpShape::kM, WarpShape::kN>,
|
1569 |
+
lse_scalar_t,
|
1570 |
+
cutlass::layout::RowMajor,
|
1571 |
+
kElementsPerAccess>>;
|
1572 |
+
using EpilogueOpApplyLSE = cutlass::epilogue::thread::ApplyLogSumExp<
|
1573 |
+
scalar_t, // ElementOutput_
|
1574 |
+
lse_scalar_t, // ElementLSE_
|
1575 |
+
accum_t, // ElementAccumulator_
|
1576 |
+
accum_t, // ElementCompute_
|
1577 |
+
128 / cutlass::sizeof_bits<scalar_t>::value
|
1578 |
+
// FragmentIteratorAccumulator::Fragment::kElements
|
1579 |
+
// InstructionShape::kM * InstructionShape::kN / 32
|
1580 |
+
>;
|
1581 |
+
using EpilogueWithLSE =
|
1582 |
+
cutlass::epilogue::threadblock::EpilogueSmemAccumulator<SmemIteratorD0,
|
1583 |
+
FragmentIteratorAccumulator,
|
1584 |
+
IteratorAccumulatorLSE,
|
1585 |
+
EpilogueOpApplyLSE>;
|
1586 |
+
|
1587 |
+
static void CUTLASS_DEVICE accumToSmem(AccumulatorSharedStorage& shared_storage,
|
1588 |
+
FragmentC const& accum,
|
1589 |
+
int lane_id,
|
1590 |
+
cutlass::MatrixCoord const& tile_coords)
|
1591 |
+
{
|
1592 |
+
SmemIteratorD0 smem_iterator_attn(shared_storage.accum_ref(), lane_id);
|
1593 |
+
smem_iterator_attn.add_tile_offset(
|
1594 |
+
tile_coords * cutlass::MatrixCoord{SmemIteratorD0::TileIterations::kRow,
|
1595 |
+
SmemIteratorD0::TileIterations::kColumn});
|
1596 |
+
Epilogue epilogue;
|
1597 |
+
epilogue(OutputOpNoOp({}), smem_iterator_attn, accum);
|
1598 |
+
}
|
1599 |
+
|
1600 |
+
static void CUTLASS_DEVICE accumApplyLSEToSmem(AccumulatorSharedStorage& shared_storage,
|
1601 |
+
FragmentC& accum,
|
1602 |
+
lse_scalar_t const* lse,
|
1603 |
+
int32_t lse_extents,
|
1604 |
+
int thread_id,
|
1605 |
+
int warp_id,
|
1606 |
+
int lane_id,
|
1607 |
+
cutlass::MatrixCoord const& tile_coords)
|
1608 |
+
{
|
1609 |
+
constexpr int32_t kAlignLSE = 32;
|
1610 |
+
IteratorAccumulatorLSE iterator_lse(
|
1611 |
+
lse,
|
1612 |
+
{(int32_t)0, (int32_t)ceil_div(lse_extents, kAlignLSE) * kAlignLSE},
|
1613 |
+
thread_id,
|
1614 |
+
warp_id,
|
1615 |
+
cutlass::MatrixCoord{0, 0} // offset
|
1616 |
+
);
|
1617 |
+
|
1618 |
+
SmemIteratorD0 smem_iterator_attn(shared_storage.accum_ref(), lane_id);
|
1619 |
+
smem_iterator_attn.add_tile_offset(
|
1620 |
+
tile_coords * cutlass::MatrixCoord{SmemIteratorD0::TileIterations::kRow,
|
1621 |
+
SmemIteratorD0::TileIterations::kColumn});
|
1622 |
+
EpilogueWithLSE epilogue;
|
1623 |
+
EpilogueOpApplyLSE minus_lse_exp({});
|
1624 |
+
epilogue(minus_lse_exp,
|
1625 |
+
smem_iterator_attn,
|
1626 |
+
accum,
|
1627 |
+
// scale - unused
|
1628 |
+
iterator_lse,
|
1629 |
+
// bias
|
1630 |
+
iterator_lse);
|
1631 |
+
}
|
1632 |
+
};
|
1633 |
+
|
1634 |
+
// Volta Specialization
|
1635 |
+
// only supported for f16
|
1636 |
+
template <typename Operator, typename WarpShape_, typename ThreadblockShape_>
|
1637 |
+
struct B2bGemm<cutlass::gemm::warp::MmaVoltaTensorOpAccumulatorTileIterator<
|
1638 |
+
cutlass::MatrixShape<32, 32>,
|
1639 |
+
float,
|
1640 |
+
cutlass::layout::RowMajor,
|
1641 |
+
cutlass::gemm::GemmShape<16, 16, 4>,
|
1642 |
+
cutlass::MatrixShape<1, 1>>,
|
1643 |
+
Operator,
|
1644 |
+
cutlass::half_t,
|
1645 |
+
WarpShape_,
|
1646 |
+
ThreadblockShape_> {
|
1647 |
+
using IteratorC = cutlass::gemm::warp::MmaVoltaTensorOpAccumulatorTileIterator<
|
1648 |
+
cutlass::MatrixShape<32, 32>,
|
1649 |
+
float,
|
1650 |
+
cutlass::layout::RowMajor,
|
1651 |
+
cutlass::gemm::GemmShape<16, 16, 4>,
|
1652 |
+
cutlass::MatrixShape<1, 1>>;
|
1653 |
+
using scalar_t = cutlass::half_t;
|
1654 |
+
using accum_t = IteratorC::Element;
|
1655 |
+
using WarpShape = WarpShape_;
|
1656 |
+
using ThreadblockShape = ThreadblockShape_;
|
1657 |
+
using FragmentC = IteratorC::Fragment;
|
1658 |
+
using lse_scalar_t = float;
|
1659 |
+
|
1660 |
+
using SmemAccumulatorLayout = cutlass::layout::RowMajor;
|
1661 |
+
using SmemIteratorD0 =
|
1662 |
+
cutlass::epilogue::warp::TileIteratorVoltaTensorOp<WarpShape,
|
1663 |
+
cutlass::gemm::GemmShape<32, 32, 4>,
|
1664 |
+
scalar_t,
|
1665 |
+
SmemAccumulatorLayout>;
|
1666 |
+
|
1667 |
+
// // Storage in shared-memory for Q.Kt
|
1668 |
+
using AccumulatorSharedStorage = cutlass::gemm::threadblock::AccumulatorSharedStorage<
|
1669 |
+
ThreadblockShape,
|
1670 |
+
scalar_t,
|
1671 |
+
cutlass::layout::RowMajorVoltaTensorOpMultiplicandCrosswise<
|
1672 |
+
16,
|
1673 |
+
32>, // typename SmemIteratorD0::TensorLayout,
|
1674 |
+
cutlass::MatrixShape<0, 0> // Padding
|
1675 |
+
>;
|
1676 |
+
|
1677 |
+
using OutputLayout = cutlass::layout::RowMajorVoltaTensorOpMultiplicandCrosswise<16, 32>;
|
1678 |
+
using TensorRef = cutlass::TensorRef<scalar_t, OutputLayout>;
|
1679 |
+
using Policy = typename IteratorC::Policy;
|
1680 |
+
using Element = accum_t;
|
1681 |
+
// Those are MmaVoltaTensorOpAccumulatorTileIterator private fields
|
1682 |
+
// Let's copy their values
|
1683 |
+
static int const kElementsPerPartial = 4;
|
1684 |
+
using EleShapePerPatial =
|
1685 |
+
typename cutlass::platform::conditional<cutlass::platform::is_same<Element, float>::value,
|
1686 |
+
cutlass::MatrixShape<2, 2>,
|
1687 |
+
cutlass::MatrixShape<1, 4>>::type;
|
1688 |
+
static int const kElementsPerMma = 8;
|
1689 |
+
static int const kAccumulatorPatials = 2;
|
1690 |
+
using QuadShapePerPatialMma = cutlass::MatrixShape<4, 4>;
|
1691 |
+
|
1692 |
+
static void CUTLASS_DEVICE accumToSmem(AccumulatorSharedStorage& shared_storage,
|
1693 |
+
FragmentC const& accum,
|
1694 |
+
int lane_id,
|
1695 |
+
cutlass::MatrixCoord const& tile_coords)
|
1696 |
+
{
|
1697 |
+
// ctor - from MmaVoltaTensorOpAccumulatorTileIterator
|
1698 |
+
TensorRef ref_(shared_storage.accum_ref());
|
1699 |
+
int quad = (lane_id >> 2);
|
1700 |
+
int lane_in_quad = (lane_id & 3);
|
1701 |
+
int accum_m, accum_n;
|
1702 |
+
|
1703 |
+
if (cutlass::platform::is_same<Element, float>::value) {
|
1704 |
+
// (quad[2],quad[0])+lane_in_quad[0]
|
1705 |
+
accum_m = (((quad & 0x4) >> 1) + (quad & 0x1)) * 8 + (lane_in_quad & 1);
|
1706 |
+
// (quad[1])+lane_in_quad[1]
|
1707 |
+
accum_n = ((quad >> 1) & 0x1) * kElementsPerPartial * kAccumulatorPatials +
|
1708 |
+
(lane_in_quad & 2);
|
1709 |
+
} else {
|
1710 |
+
accum_m = (((quad & 0x4) >> 1) + (quad & 0x1)) * 8 + lane_in_quad; // (quad[2],quad[0])
|
1711 |
+
accum_n = ((quad >> 1) & 0x1) * kElementsPerPartial * kAccumulatorPatials;
|
1712 |
+
}
|
1713 |
+
cutlass::MatrixCoord lane_offset(accum_m, accum_n);
|
1714 |
+
|
1715 |
+
// Tile offset
|
1716 |
+
ref_.add_coord_offset(tile_coords * cutlass::MatrixCoord({IteratorC::Shape::kRow,
|
1717 |
+
IteratorC::Shape::kColumn}));
|
1718 |
+
|
1719 |
+
using AccessType = cutlass::Array<scalar_t, EleShapePerPatial::kColumn>;
|
1720 |
+
|
1721 |
+
// store - from MmaVoltaTensorOpAccumulatorTileIterator
|
1722 |
+
CUTLASS_PRAGMA_UNROLL
|
1723 |
+
for (int tile_n = 0; tile_n < Policy::TileIterations::kColumn; ++tile_n) {
|
1724 |
+
CUTLASS_PRAGMA_UNROLL
|
1725 |
+
for (int tile_m = 0; tile_m < Policy::TileIterations::kRow; ++tile_m) {
|
1726 |
+
CUTLASS_PRAGMA_UNROLL
|
1727 |
+
for (int mma_n = 0; mma_n < Policy::MmaIterations::kColumn; ++mma_n) {
|
1728 |
+
CUTLASS_PRAGMA_UNROLL
|
1729 |
+
for (int mma_m = 0; mma_m < Policy::MmaIterations::kRow; ++mma_m) {
|
1730 |
+
int mma_accum_start = (((tile_n * Policy::TileIterations::kRow + tile_m) *
|
1731 |
+
Policy::MmaIterations::kColumn +
|
1732 |
+
mma_n) *
|
1733 |
+
Policy::MmaIterations::kRow +
|
1734 |
+
mma_m) *
|
1735 |
+
kElementsPerMma;
|
1736 |
+
|
1737 |
+
CUTLASS_PRAGMA_UNROLL
|
1738 |
+
for (int p = 0; p < kAccumulatorPatials; ++p) {
|
1739 |
+
CUTLASS_PRAGMA_UNROLL
|
1740 |
+
for (int m = 0; m < EleShapePerPatial::kRow; ++m) {
|
1741 |
+
int accum_m = tile_m * Policy::InterleavedTile::kRow +
|
1742 |
+
mma_m * QuadShapePerPatialMma::kRow + m * 2;
|
1743 |
+
int accum_n = tile_n * Policy::InterleavedTile::kColumn +
|
1744 |
+
mma_n * QuadShapePerPatialMma::kColumn +
|
1745 |
+
p * Policy::InterleavedTile::kColumn / 2;
|
1746 |
+
int r = (accum_m + lane_offset.row());
|
1747 |
+
AccessType to_store;
|
1748 |
+
CUTLASS_PRAGMA_UNROLL
|
1749 |
+
for (int n = 0; n < EleShapePerPatial::kColumn; ++n) {
|
1750 |
+
int idx = mma_accum_start + p * kElementsPerPartial +
|
1751 |
+
m * EleShapePerPatial::kColumn + n;
|
1752 |
+
int c = (accum_n + n + lane_offset.column());
|
1753 |
+
to_store[n] = scalar_t(accum[idx]);
|
1754 |
+
}
|
1755 |
+
int c = (accum_n + lane_offset.column());
|
1756 |
+
assert(r < 32);
|
1757 |
+
assert(c < 32);
|
1758 |
+
*reinterpret_cast<AccessType*>(ref_.data() + ref_.offset({r, c})) =
|
1759 |
+
to_store;
|
1760 |
+
}
|
1761 |
+
}
|
1762 |
+
}
|
1763 |
+
}
|
1764 |
+
}
|
1765 |
+
}
|
1766 |
+
}
|
1767 |
+
|
1768 |
+
static void CUTLASS_DEVICE accumApplyLSEToSmem(AccumulatorSharedStorage& shared_storage,
|
1769 |
+
typename IteratorC::Fragment& accum,
|
1770 |
+
lse_scalar_t const* lse,
|
1771 |
+
int lse_extent,
|
1772 |
+
int thread_id,
|
1773 |
+
int warp_id,
|
1774 |
+
int lane_id,
|
1775 |
+
cutlass::MatrixCoord const& tile_coords)
|
1776 |
+
{
|
1777 |
+
// Non-optimized way to apply LSE to registers
|
1778 |
+
// NOTE: accum is attn.T
|
1779 |
+
// TODO: Optimize for each architecture
|
1780 |
+
static constexpr int WarpSize = 32;
|
1781 |
+
using AccumLambdaIterator =
|
1782 |
+
typename DefaultMmaAccumLambdaIterator<IteratorC, accum_t, WarpSize>::Iterator;
|
1783 |
+
auto lane_offset = AccumLambdaIterator::get_lane_offset(lane_id, warp_id, tile_coords);
|
1784 |
+
|
1785 |
+
cutlass::Array<lse_scalar_t, IteratorC::Fragment::kElements> lse_prefetched;
|
1786 |
+
lse_prefetched.clear();
|
1787 |
+
int rowIdx = 0;
|
1788 |
+
int colIdx = 0;
|
1789 |
+
AccumLambdaIterator::iterateRows(
|
1790 |
+
lane_offset,
|
1791 |
+
[&](int accum_m) {
|
1792 |
+
++rowIdx;
|
1793 |
+
colIdx = 0;
|
1794 |
+
},
|
1795 |
+
[&](int accum_m, int accum_n, int idx) {
|
1796 |
+
if (rowIdx == 1) {
|
1797 |
+
lse_prefetched[colIdx] = accum_n < lse_extent
|
1798 |
+
? lse[accum_n]
|
1799 |
+
: platform::numeric_limits<accum_t>::infinity();
|
1800 |
+
}
|
1801 |
+
accum[idx] = expf(accum[idx] - lse_prefetched[colIdx]);
|
1802 |
+
++colIdx;
|
1803 |
+
},
|
1804 |
+
[&](int accum_m) {});
|
1805 |
+
accumToSmem(shared_storage, accum, lane_id, tile_coords);
|
1806 |
+
}
|
1807 |
+
};
|
1808 |
+
|
1809 |
+
// Simt Specialization
|
1810 |
+
// for f32 on Sm70-Sm75 and f16/f32 below
|
1811 |
+
|
1812 |
+
template <typename Operator,
|
1813 |
+
typename OperatorPolicy,
|
1814 |
+
typename scalar_t,
|
1815 |
+
typename WarpShape_,
|
1816 |
+
typename ThreadblockShape_>
|
1817 |
+
struct B2bGemm<cutlass::gemm::warp::MmaSimtTileIterator<cutlass::MatrixShape<32, 32>,
|
1818 |
+
cutlass::gemm::Operand::kC,
|
1819 |
+
float,
|
1820 |
+
cutlass::layout::RowMajor,
|
1821 |
+
OperatorPolicy,
|
1822 |
+
1,
|
1823 |
+
1>,
|
1824 |
+
Operator,
|
1825 |
+
scalar_t,
|
1826 |
+
WarpShape_,
|
1827 |
+
ThreadblockShape_> {
|
1828 |
+
using IteratorC = cutlass::gemm::warp::MmaSimtTileIterator<cutlass::MatrixShape<32, 32>,
|
1829 |
+
cutlass::gemm::Operand::kC,
|
1830 |
+
float,
|
1831 |
+
cutlass::layout::RowMajor,
|
1832 |
+
OperatorPolicy,
|
1833 |
+
1,
|
1834 |
+
1>;
|
1835 |
+
using accum_t = typename IteratorC::Element;
|
1836 |
+
using WarpShape = WarpShape_;
|
1837 |
+
using ThreadblockShape = ThreadblockShape_;
|
1838 |
+
using FragmentC = typename IteratorC::Fragment;
|
1839 |
+
using lse_scalar_t = float;
|
1840 |
+
|
1841 |
+
// Storage in shared-memory for Q.Kt
|
1842 |
+
using AccumulatorSharedStorage =
|
1843 |
+
cutlass::gemm::threadblock::AccumulatorSharedStorage<ThreadblockShape,
|
1844 |
+
scalar_t,
|
1845 |
+
cutlass::layout::ColumnMajor,
|
1846 |
+
cutlass::MatrixShape<0, 0> // Padding
|
1847 |
+
>;
|
1848 |
+
|
1849 |
+
static void CUTLASS_DEVICE accumToSmem(AccumulatorSharedStorage& shared_storage,
|
1850 |
+
FragmentC const& accum,
|
1851 |
+
int lane_id,
|
1852 |
+
cutlass::MatrixCoord const& tile_coords)
|
1853 |
+
{
|
1854 |
+
using Policy = typename IteratorC::Policy;
|
1855 |
+
using Element = typename IteratorC::Element;
|
1856 |
+
using Iterations = typename IteratorC::Iterations;
|
1857 |
+
using Delta = typename IteratorC::Delta;
|
1858 |
+
|
1859 |
+
auto ref_ = shared_storage.accum_ref();
|
1860 |
+
// ctor - MmaSimtTileIterator
|
1861 |
+
// compute offset based on thread ID and lane layout
|
1862 |
+
typename Policy::LaneLayout lane_layout = Policy::get_lane_layout();
|
1863 |
+
|
1864 |
+
MatrixCoord lane_offset = lane_layout.inverse(lane_id) *
|
1865 |
+
MatrixCoord(Policy::LaneMmaShape::kM, Policy::LaneMmaShape::kN);
|
1866 |
+
|
1867 |
+
ref_.add_coord_offset(lane_offset);
|
1868 |
+
|
1869 |
+
// Tile offset
|
1870 |
+
ref_.add_coord_offset(tile_coords * cutlass::MatrixCoord({IteratorC::Shape::kRow,
|
1871 |
+
IteratorC::Shape::kColumn}));
|
1872 |
+
|
1873 |
+
// store - MmaSimtTileIterator
|
1874 |
+
CUTLASS_PRAGMA_UNROLL
|
1875 |
+
for (int mma_n = 0; mma_n < Iterations::kColumn; ++mma_n) {
|
1876 |
+
CUTLASS_PRAGMA_UNROLL
|
1877 |
+
for (int n = 0; n < Policy::LaneMmaShape::kN; ++n) {
|
1878 |
+
CUTLASS_PRAGMA_UNROLL
|
1879 |
+
for (int mma_m = 0; mma_m < Iterations::kRow; ++mma_m) {
|
1880 |
+
CUTLASS_PRAGMA_UNROLL
|
1881 |
+
for (int m = 0; m < Policy::LaneMmaShape::kM; ++m) {
|
1882 |
+
int r = Policy::LaneMmaShape::kM * (mma_m * Policy::WarpShape::kRow) + m;
|
1883 |
+
int c = mma_n * Delta::kColumn + n;
|
1884 |
+
int idx = n + Policy::LaneMmaShape::kN *
|
1885 |
+
(mma_n + Iterations::kColumn *
|
1886 |
+
(m + mma_m * Policy::LaneMmaShape::kM));
|
1887 |
+
ref_.at({r, c}) = scalar_t(accum[idx]);
|
1888 |
+
}
|
1889 |
+
}
|
1890 |
+
}
|
1891 |
+
}
|
1892 |
+
}
|
1893 |
+
|
1894 |
+
static void CUTLASS_DEVICE accumApplyLSEToSmem(AccumulatorSharedStorage& shared_storage,
|
1895 |
+
typename IteratorC::Fragment& accum,
|
1896 |
+
lse_scalar_t const* lse,
|
1897 |
+
int lse_extent,
|
1898 |
+
int thread_id,
|
1899 |
+
int warp_id,
|
1900 |
+
int lane_id,
|
1901 |
+
cutlass::MatrixCoord const& tile_coords)
|
1902 |
+
{
|
1903 |
+
// Non-optimized way to apply LSE to registers
|
1904 |
+
// NOTE: accum is attn.T
|
1905 |
+
// TODO: Optimize for each architecture
|
1906 |
+
static constexpr int WarpSize = 32;
|
1907 |
+
using AccumLambdaIterator =
|
1908 |
+
typename DefaultMmaAccumLambdaIterator<IteratorC, accum_t, WarpSize>::Iterator;
|
1909 |
+
auto lane_offset = AccumLambdaIterator::get_lane_offset(lane_id, warp_id, tile_coords);
|
1910 |
+
|
1911 |
+
cutlass::Array<lse_scalar_t, IteratorC::Fragment::kElements> lse_prefetched;
|
1912 |
+
lse_prefetched.clear();
|
1913 |
+
int rowIdx = 0;
|
1914 |
+
int colIdx = 0;
|
1915 |
+
AccumLambdaIterator::iterateRows(
|
1916 |
+
lane_offset,
|
1917 |
+
[&](int accum_m) {
|
1918 |
+
++rowIdx;
|
1919 |
+
colIdx = 0;
|
1920 |
+
},
|
1921 |
+
[&](int accum_m, int accum_n, int idx) {
|
1922 |
+
if (rowIdx == 1) {
|
1923 |
+
lse_prefetched[colIdx] = accum_n < lse_extent
|
1924 |
+
? lse[accum_n]
|
1925 |
+
: platform::numeric_limits<accum_t>::infinity();
|
1926 |
+
}
|
1927 |
+
accum[idx] = expf(accum[idx] - lse_prefetched[colIdx]);
|
1928 |
+
++colIdx;
|
1929 |
+
},
|
1930 |
+
[&](int accum_m) {});
|
1931 |
+
accumToSmem(shared_storage, accum, lane_id, tile_coords);
|
1932 |
+
}
|
1933 |
+
};
|
1934 |
+
|
1935 |
+
} // namespace threadblock
|
1936 |
+
} // namespace gemm
|
1937 |
+
} // namespace cutlass
|
1938 |
+
|
1939 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/iterators/epilogue_predicated_tile_iterator.h
ADDED
@@ -0,0 +1,691 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights
|
3 |
+
*reserved. SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice,
|
9 |
+
*this list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
23 |
+
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
24 |
+
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
25 |
+
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
27 |
+
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
28 |
+
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
29 |
+
*POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
*
|
31 |
+
**************************************************************************************************/
|
32 |
+
|
33 |
+
// Copyright (c) Microsoft Corporation.
|
34 |
+
// SPDX-License-Identifier: Apache-2.0
|
35 |
+
|
36 |
+
// DeepSpeed Team
|
37 |
+
|
38 |
+
/*! \file
|
39 |
+
\brief Epilogue iterator that supports prefetching
|
40 |
+
|
41 |
+
Mostly copied from "cutlass/epilogue/threadblock/predicated_tile_iterator.h"
|
42 |
+
*/
|
43 |
+
|
44 |
+
#pragma once
|
45 |
+
|
46 |
+
#include "cutlass/arch/arch.h"
|
47 |
+
#include "cutlass/arch/memory.h"
|
48 |
+
#include "cutlass/array.h"
|
49 |
+
#include "cutlass/cutlass.h"
|
50 |
+
#include "cutlass/epilogue/threadblock/output_tile_thread_map.h"
|
51 |
+
#include "cutlass/epilogue/threadblock/predicated_tile_iterator_params.h"
|
52 |
+
#include "cutlass/layout/matrix.h"
|
53 |
+
#include "cutlass/layout/tensor.h"
|
54 |
+
#include "cutlass/matrix_shape.h"
|
55 |
+
#include "cutlass/numeric_types.h"
|
56 |
+
#include "cutlass/tensor_ref.h"
|
57 |
+
#include "cutlass/transform/pitch_linear_thread_map.h"
|
58 |
+
|
59 |
+
////////////////////////////////////////////////////////////////////////////////
|
60 |
+
|
61 |
+
namespace cutlass {
|
62 |
+
|
63 |
+
////////////////////////////////////////////////////////////////////////////////
|
64 |
+
|
65 |
+
namespace epilogue {
|
66 |
+
namespace threadblock {
|
67 |
+
|
68 |
+
////////////////////////////////////////////////////////////////////////////////
|
69 |
+
|
70 |
+
/// Tile iterator used to load and store output tile from global memory in
|
71 |
+
/// epilogue.
|
72 |
+
///
|
73 |
+
/// Satisfies: ReadableTileIterator | PredicatedTileIterator |
|
74 |
+
/// ForwardTileIterator
|
75 |
+
///
|
76 |
+
template <typename ThreadMap_, ///< Thread map (conept: OutputTileThreadMap)
|
77 |
+
typename Element_, ///< Element data type
|
78 |
+
bool ScatterD = false, ///< Scatter D operand or not
|
79 |
+
bool UseCUDAStore = false>
|
80 |
+
class PredicatedTileIteratorPrefetch {
|
81 |
+
public:
|
82 |
+
using ThreadMap = ThreadMap_;
|
83 |
+
using Shape = typename ThreadMap::Shape;
|
84 |
+
|
85 |
+
using Element = Element_;
|
86 |
+
|
87 |
+
using Layout = layout::RowMajor;
|
88 |
+
using TensorRef = TensorRef<Element, Layout>;
|
89 |
+
using ConstTensorRef = typename TensorRef::ConstTensorRef;
|
90 |
+
|
91 |
+
using Index = typename Layout::Index;
|
92 |
+
using LongIndex = typename Layout::LongIndex;
|
93 |
+
using TensorCoord = MatrixCoord;
|
94 |
+
|
95 |
+
static int const kElementsPerAccess = ThreadMap::kElementsPerAccess;
|
96 |
+
static int const kThreads = ThreadMap::kThreads;
|
97 |
+
static int const kIterations = ThreadMap::Count::kTile;
|
98 |
+
|
99 |
+
static_assert(ThreadMap::Iterations::kRow > 0, "ThreadMap::Iterations::kRow must be > 0");
|
100 |
+
static_assert(ThreadMap::Iterations::kGroup > 0, "ThreadMap::Iterations::kGroup must be > 0");
|
101 |
+
static_assert(ThreadMap::Iterations::kCluster > 0,
|
102 |
+
"ThreadMap::Iterations::kCluster must be > 0");
|
103 |
+
static_assert(ThreadMap::Iterations::kColumn > 0, "ThreadMap::Iterations::kColumn must be > 0");
|
104 |
+
|
105 |
+
/// Fragment object
|
106 |
+
using Fragment = Array<Element,
|
107 |
+
ThreadMap::Iterations::kColumn * ThreadMap::Iterations::kRow *
|
108 |
+
ThreadMap::Iterations::kGroup * ThreadMap::Iterations::kCluster *
|
109 |
+
ThreadMap::kElementsPerAccess>;
|
110 |
+
|
111 |
+
/// Memory access size
|
112 |
+
using AccessType = AlignedArray<Element, ThreadMap::kElementsPerAccess>;
|
113 |
+
|
114 |
+
//
|
115 |
+
// Parameters struct
|
116 |
+
//
|
117 |
+
|
118 |
+
/// Uses a non-template class
|
119 |
+
struct Params : PredicatedTileIteratorParams {
|
120 |
+
using Base = PredicatedTileIteratorParams;
|
121 |
+
|
122 |
+
CUTLASS_HOST_DEVICE
|
123 |
+
Params() {}
|
124 |
+
|
125 |
+
CUTLASS_HOST_DEVICE
|
126 |
+
Params(Layout const& layout)
|
127 |
+
: PredicatedTileIteratorParams(
|
128 |
+
layout.stride(0) * int(sizeof(AccessType)) / kElementsPerAccess,
|
129 |
+
make_OutputTileThreadMapDesc<ThreadMap>())
|
130 |
+
{
|
131 |
+
}
|
132 |
+
|
133 |
+
CUTLASS_HOST_DEVICE
|
134 |
+
Params(Base const& base) : Base(base) {}
|
135 |
+
};
|
136 |
+
|
137 |
+
/// Mask object
|
138 |
+
struct Mask {
|
139 |
+
static int const kCount = ThreadMap::Iterations::kColumn;
|
140 |
+
|
141 |
+
/// Predicate state
|
142 |
+
bool predicates[kCount];
|
143 |
+
|
144 |
+
//
|
145 |
+
// Mask
|
146 |
+
//
|
147 |
+
CUTLASS_HOST_DEVICE
|
148 |
+
Mask() { enable(); }
|
149 |
+
|
150 |
+
///< Efficiently disables all accesses guarded by mask
|
151 |
+
CUTLASS_HOST_DEVICE void clear()
|
152 |
+
{
|
153 |
+
CUTLASS_PRAGMA_UNROLL
|
154 |
+
for (int i = 0; i < kCount; ++i) { predicates[i] = false; }
|
155 |
+
}
|
156 |
+
|
157 |
+
///< CUTLASS_HOST_DEVICE enables all accesses guarded by mask
|
158 |
+
CUTLASS_DEVICE void enable()
|
159 |
+
{
|
160 |
+
CUTLASS_PRAGMA_UNROLL
|
161 |
+
for (int i = 0; i < kCount; ++i) { predicates[i] = true; }
|
162 |
+
}
|
163 |
+
};
|
164 |
+
|
165 |
+
private:
|
166 |
+
//
|
167 |
+
// Data members
|
168 |
+
//
|
169 |
+
|
170 |
+
/// Parameters structure containing reference and precomputed state.
|
171 |
+
PredicatedTileIteratorParams params_;
|
172 |
+
|
173 |
+
/// Byte-level pointer
|
174 |
+
uint8_t* byte_pointer_;
|
175 |
+
|
176 |
+
/// Array of boolean values to contain steady-state predicates
|
177 |
+
Mask mask_;
|
178 |
+
|
179 |
+
/// Extent of the matrix tile in rows
|
180 |
+
Index extent_row_;
|
181 |
+
|
182 |
+
/// Extent of the matrix tile in rows
|
183 |
+
Index extent_column_;
|
184 |
+
|
185 |
+
/// A thread's starting row position (assuming steady-state predicates have
|
186 |
+
/// been computed)
|
187 |
+
Index thread_start_row_;
|
188 |
+
|
189 |
+
/// A thread's starting column
|
190 |
+
Index thread_start_column_;
|
191 |
+
|
192 |
+
/// Internal state counter
|
193 |
+
int state_[3];
|
194 |
+
|
195 |
+
/// Scatter indices
|
196 |
+
int const* indices_;
|
197 |
+
|
198 |
+
//
|
199 |
+
// Static asserts about internal strides
|
200 |
+
//
|
201 |
+
|
202 |
+
static_assert(sizeof(extent_row_) == 4, "Expected 32b extents");
|
203 |
+
static_assert(sizeof(thread_start_row_) == 4, "Expected 32b extents");
|
204 |
+
static_assert(sizeof(PredicatedTileIteratorParams::stride) == 8, "Expected 64b strides");
|
205 |
+
|
206 |
+
private:
|
207 |
+
//
|
208 |
+
// Methods
|
209 |
+
//
|
210 |
+
|
211 |
+
public:
|
212 |
+
//
|
213 |
+
// Methods
|
214 |
+
//
|
215 |
+
|
216 |
+
/// Constructor
|
217 |
+
CUTLASS_DEVICE
|
218 |
+
PredicatedTileIteratorPrefetch(PredicatedTileIteratorParams const& params,
|
219 |
+
Element* pointer,
|
220 |
+
TensorCoord extent,
|
221 |
+
int thread_idx,
|
222 |
+
TensorCoord threadblock_offset = TensorCoord(),
|
223 |
+
int const* indices = nullptr)
|
224 |
+
: params_(params), indices_(indices)
|
225 |
+
{
|
226 |
+
TensorCoord thread_offset = ThreadMap::initial_offset(thread_idx) + threadblock_offset;
|
227 |
+
|
228 |
+
extent_row_ = extent.row();
|
229 |
+
extent_column_ = extent.column();
|
230 |
+
|
231 |
+
thread_start_row_ = thread_offset.row();
|
232 |
+
thread_start_column_ = thread_offset.column();
|
233 |
+
|
234 |
+
// Initialize predicates
|
235 |
+
CUTLASS_PRAGMA_UNROLL
|
236 |
+
for (int c = 0; c < ThreadMap::Iterations::kColumn; ++c) {
|
237 |
+
mask_.predicates[c] =
|
238 |
+
((thread_offset.column() + ThreadMap::Delta::kColumn * c) < extent.column());
|
239 |
+
}
|
240 |
+
|
241 |
+
// Null pointer performs no accesses
|
242 |
+
if (!pointer) { mask_.clear(); }
|
243 |
+
|
244 |
+
if (ScatterD && !indices) { mask_.clear(); }
|
245 |
+
|
246 |
+
// Initialize pointer
|
247 |
+
byte_pointer_ = reinterpret_cast<uint8_t*>(pointer) +
|
248 |
+
LongIndex(thread_offset.row()) * LongIndex(params_.stride) +
|
249 |
+
LongIndex(thread_offset.column()) * sizeof(AccessType) / kElementsPerAccess;
|
250 |
+
|
251 |
+
if (ScatterD) {
|
252 |
+
byte_pointer_ =
|
253 |
+
reinterpret_cast<uint8_t*>(pointer) +
|
254 |
+
LongIndex(thread_offset.column()) * sizeof(AccessType) / kElementsPerAccess;
|
255 |
+
}
|
256 |
+
|
257 |
+
// Initialize internal state counter
|
258 |
+
state_[0] = state_[1] = state_[2] = 0;
|
259 |
+
}
|
260 |
+
|
261 |
+
/// Adds a pointer offset in units of Element
|
262 |
+
CUTLASS_HOST_DEVICE
|
263 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
264 |
+
{
|
265 |
+
byte_pointer_ += pointer_offset * sizeof_bits<Element>::value / 8;
|
266 |
+
}
|
267 |
+
|
268 |
+
CUTLASS_DEVICE
|
269 |
+
void prefetch_all()
|
270 |
+
{
|
271 |
+
CUTLASS_PRAGMA_UNROLL
|
272 |
+
for (int iter = 0; iter < kIterations; ++iter) {
|
273 |
+
prefetch();
|
274 |
+
++(*this);
|
275 |
+
}
|
276 |
+
}
|
277 |
+
|
278 |
+
CUTLASS_DEVICE
|
279 |
+
void prefetch()
|
280 |
+
{
|
281 |
+
uint8_t* byte_pointer = byte_pointer_;
|
282 |
+
|
283 |
+
CUTLASS_PRAGMA_UNROLL
|
284 |
+
for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) {
|
285 |
+
CUTLASS_PRAGMA_UNROLL
|
286 |
+
for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) {
|
287 |
+
CUTLASS_PRAGMA_UNROLL
|
288 |
+
for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) {
|
289 |
+
int row_offset = row * ThreadMap::Delta::kRow +
|
290 |
+
group * ThreadMap::Delta::kGroup +
|
291 |
+
cluster * ThreadMap::Delta::kCluster;
|
292 |
+
|
293 |
+
AccessType* memory_pointer = reinterpret_cast<AccessType*>(byte_pointer);
|
294 |
+
|
295 |
+
CUTLASS_PRAGMA_UNROLL
|
296 |
+
for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) {
|
297 |
+
// on windows using unsigned long here gives the error
|
298 |
+
// error: asm operand type size(4) does not match
|
299 |
+
// type/size implied by constraint 'l'
|
300 |
+
uint64_t addr =
|
301 |
+
(uint64_t)((void*)&memory_pointer[column * ThreadMap::Delta::kColumn /
|
302 |
+
kElementsPerAccess]);
|
303 |
+
asm volatile("prefetch.global.L1 [ %1 ];" : "=l"(addr) : "l"(addr));
|
304 |
+
}
|
305 |
+
|
306 |
+
if (row + 1 < ThreadMap::Iterations::kRow) {
|
307 |
+
if (!ScatterD) { byte_pointer += params_.increment_row; }
|
308 |
+
}
|
309 |
+
}
|
310 |
+
|
311 |
+
if (group + 1 < ThreadMap::Iterations::kGroup) {
|
312 |
+
byte_pointer += params_.increment_group;
|
313 |
+
}
|
314 |
+
}
|
315 |
+
|
316 |
+
if (cluster + 1 < ThreadMap::Iterations::kCluster) {
|
317 |
+
byte_pointer += params_.increment_cluster;
|
318 |
+
}
|
319 |
+
}
|
320 |
+
}
|
321 |
+
|
322 |
+
/// Loads a fragment from memory
|
323 |
+
CUTLASS_DEVICE
|
324 |
+
void load_with_byte_offset(Fragment& frag, int64_t byte_offset) const
|
325 |
+
{
|
326 |
+
uint8_t* byte_pointer = byte_pointer_;
|
327 |
+
AccessType* frag_ptr = reinterpret_cast<AccessType*>(&frag);
|
328 |
+
|
329 |
+
CUTLASS_PRAGMA_UNROLL
|
330 |
+
for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) {
|
331 |
+
CUTLASS_PRAGMA_UNROLL
|
332 |
+
for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) {
|
333 |
+
CUTLASS_PRAGMA_UNROLL
|
334 |
+
for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) {
|
335 |
+
int frag_row_idx =
|
336 |
+
(row + ThreadMap::Iterations::kRow *
|
337 |
+
(group + ThreadMap::Iterations::kGroup * cluster));
|
338 |
+
|
339 |
+
int row_offset = row * ThreadMap::Delta::kRow +
|
340 |
+
group * ThreadMap::Delta::kGroup +
|
341 |
+
cluster * ThreadMap::Delta::kCluster;
|
342 |
+
|
343 |
+
bool row_guard = ((row_offset + thread_start_row_) < extent_row_);
|
344 |
+
|
345 |
+
AccessType* memory_pointer =
|
346 |
+
reinterpret_cast<AccessType*>(byte_pointer + byte_offset);
|
347 |
+
|
348 |
+
if (ScatterD && row_guard) {
|
349 |
+
assert(indices_);
|
350 |
+
|
351 |
+
memory_pointer = reinterpret_cast<AccessType*>(
|
352 |
+
byte_pointer + byte_offset +
|
353 |
+
LongIndex(indices_[row_offset + thread_start_row_]) *
|
354 |
+
LongIndex(params_.stride));
|
355 |
+
}
|
356 |
+
|
357 |
+
CUTLASS_PRAGMA_UNROLL
|
358 |
+
for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) {
|
359 |
+
bool guard = row_guard && mask_.predicates[column];
|
360 |
+
|
361 |
+
cutlass::arch::global_load<AccessType, sizeof(AccessType)>(
|
362 |
+
frag_ptr[frag_row_idx * ThreadMap::Iterations::kColumn + column],
|
363 |
+
(void*)&memory_pointer[column * ThreadMap::Delta::kColumn /
|
364 |
+
kElementsPerAccess],
|
365 |
+
guard);
|
366 |
+
}
|
367 |
+
|
368 |
+
if (row + 1 < ThreadMap::Iterations::kRow) {
|
369 |
+
if (!ScatterD) { byte_pointer += params_.increment_row; }
|
370 |
+
}
|
371 |
+
}
|
372 |
+
|
373 |
+
if (group + 1 < ThreadMap::Iterations::kGroup) {
|
374 |
+
byte_pointer += params_.increment_group;
|
375 |
+
}
|
376 |
+
}
|
377 |
+
|
378 |
+
if (cluster + 1 < ThreadMap::Iterations::kCluster) {
|
379 |
+
byte_pointer += params_.increment_cluster;
|
380 |
+
}
|
381 |
+
}
|
382 |
+
}
|
383 |
+
|
384 |
+
/// Loads a fragment from memory
|
385 |
+
CUTLASS_DEVICE
|
386 |
+
void load(Fragment& frag) const { load_with_byte_offset(frag, 0); }
|
387 |
+
|
388 |
+
/// Stores a fragment to memory
|
389 |
+
CUTLASS_DEVICE
|
390 |
+
void store_with_byte_offset(Fragment const& frag, int64_t byte_offset) const
|
391 |
+
{
|
392 |
+
uint8_t* byte_pointer = byte_pointer_;
|
393 |
+
AccessType const* frag_ptr = reinterpret_cast<AccessType const*>(&frag);
|
394 |
+
|
395 |
+
CUTLASS_PRAGMA_UNROLL
|
396 |
+
for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) {
|
397 |
+
CUTLASS_PRAGMA_UNROLL
|
398 |
+
for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) {
|
399 |
+
CUTLASS_PRAGMA_UNROLL
|
400 |
+
for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) {
|
401 |
+
int frag_row_idx =
|
402 |
+
(row + ThreadMap::Iterations::kRow *
|
403 |
+
(group + ThreadMap::Iterations::kGroup * cluster));
|
404 |
+
|
405 |
+
int row_offset = row * ThreadMap::Delta::kRow +
|
406 |
+
group * ThreadMap::Delta::kGroup +
|
407 |
+
cluster * ThreadMap::Delta::kCluster;
|
408 |
+
|
409 |
+
bool row_guard = ((row_offset + thread_start_row_) < extent_row_);
|
410 |
+
|
411 |
+
AccessType* memory_pointer =
|
412 |
+
reinterpret_cast<AccessType*>(byte_pointer + byte_offset);
|
413 |
+
|
414 |
+
if (ScatterD && row_guard) {
|
415 |
+
assert(indices_);
|
416 |
+
|
417 |
+
memory_pointer = reinterpret_cast<AccessType*>(
|
418 |
+
byte_pointer + byte_offset +
|
419 |
+
LongIndex(indices_[row_offset + thread_start_row_]) *
|
420 |
+
LongIndex(params_.stride));
|
421 |
+
}
|
422 |
+
|
423 |
+
CUTLASS_PRAGMA_UNROLL
|
424 |
+
for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) {
|
425 |
+
bool guard = row_guard && mask_.predicates[column];
|
426 |
+
|
427 |
+
if (UseCUDAStore) {
|
428 |
+
if (guard) {
|
429 |
+
memory_pointer[column * ThreadMap::Delta::kColumn /
|
430 |
+
kElementsPerAccess] =
|
431 |
+
frag_ptr[frag_row_idx * ThreadMap::Iterations::kColumn +
|
432 |
+
column];
|
433 |
+
}
|
434 |
+
} else {
|
435 |
+
cutlass::arch::global_store<AccessType, sizeof(AccessType)>(
|
436 |
+
frag_ptr[frag_row_idx * ThreadMap::Iterations::kColumn + column],
|
437 |
+
(void*)&memory_pointer[column * ThreadMap::Delta::kColumn /
|
438 |
+
kElementsPerAccess],
|
439 |
+
guard);
|
440 |
+
}
|
441 |
+
}
|
442 |
+
|
443 |
+
if (row + 1 < ThreadMap::Iterations::kRow) {
|
444 |
+
if (!ScatterD) { byte_pointer += params_.increment_row; }
|
445 |
+
}
|
446 |
+
}
|
447 |
+
|
448 |
+
if (group + 1 < ThreadMap::Iterations::kGroup) {
|
449 |
+
byte_pointer += params_.increment_group;
|
450 |
+
}
|
451 |
+
}
|
452 |
+
|
453 |
+
if (cluster + 1 < ThreadMap::Iterations::kCluster) {
|
454 |
+
byte_pointer += params_.increment_cluster;
|
455 |
+
}
|
456 |
+
}
|
457 |
+
}
|
458 |
+
|
459 |
+
/// Stores a fragment to memory
|
460 |
+
CUTLASS_DEVICE
|
461 |
+
void store(Fragment const& frag) const { store_with_byte_offset(frag, 0); }
|
462 |
+
|
463 |
+
/// Loads a fragment from memory
|
464 |
+
CUTLASS_DEVICE
|
465 |
+
void downsample_load_with_byte_offset(Fragment& frag,
|
466 |
+
int64_t byte_offset,
|
467 |
+
int convolution_P,
|
468 |
+
int convolution_Q,
|
469 |
+
int add_P,
|
470 |
+
int add_Q,
|
471 |
+
int problem_N) const
|
472 |
+
{
|
473 |
+
uint8_t* byte_pointer = byte_pointer_;
|
474 |
+
AccessType* frag_ptr = reinterpret_cast<AccessType*>(&frag);
|
475 |
+
|
476 |
+
CUTLASS_PRAGMA_UNROLL
|
477 |
+
for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) {
|
478 |
+
CUTLASS_PRAGMA_UNROLL
|
479 |
+
for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) {
|
480 |
+
CUTLASS_PRAGMA_UNROLL
|
481 |
+
for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) {
|
482 |
+
int frag_row_idx =
|
483 |
+
(row + ThreadMap::Iterations::kRow *
|
484 |
+
(group + ThreadMap::Iterations::kGroup * cluster));
|
485 |
+
|
486 |
+
int row_offset = row * ThreadMap::Delta::kRow +
|
487 |
+
group * ThreadMap::Delta::kGroup +
|
488 |
+
cluster * ThreadMap::Delta::kCluster;
|
489 |
+
|
490 |
+
bool row_guard = ((row_offset + thread_start_row_) < extent_row_);
|
491 |
+
|
492 |
+
int output_row = row_offset + thread_start_row_;
|
493 |
+
int output_N = output_row / (convolution_P * convolution_Q);
|
494 |
+
int output_PQ = output_row % (convolution_P * convolution_Q);
|
495 |
+
int output_P = output_PQ / convolution_Q;
|
496 |
+
int output_Q = output_PQ % convolution_Q;
|
497 |
+
|
498 |
+
int input_row = output_N * 2 * convolution_P * 2 * convolution_Q +
|
499 |
+
(2 * output_P + add_P) * 2 * convolution_Q + 2 * output_Q +
|
500 |
+
add_Q;
|
501 |
+
|
502 |
+
int64_t byte_offset = (input_row - output_row) * problem_N * sizeof(float);
|
503 |
+
|
504 |
+
AccessType* memory_pointer =
|
505 |
+
reinterpret_cast<AccessType*>(byte_pointer + byte_offset);
|
506 |
+
|
507 |
+
CUTLASS_PRAGMA_UNROLL
|
508 |
+
for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) {
|
509 |
+
bool guard = row_guard && mask_.predicates[column];
|
510 |
+
|
511 |
+
cutlass::arch::global_load<AccessType, sizeof(AccessType)>(
|
512 |
+
frag_ptr[frag_row_idx * ThreadMap::Iterations::kColumn + column],
|
513 |
+
(void*)&memory_pointer[column * ThreadMap::Delta::kColumn /
|
514 |
+
kElementsPerAccess],
|
515 |
+
guard);
|
516 |
+
}
|
517 |
+
|
518 |
+
if (row + 1 < ThreadMap::Iterations::kRow) {
|
519 |
+
byte_pointer += params_.increment_row;
|
520 |
+
}
|
521 |
+
}
|
522 |
+
|
523 |
+
if (group + 1 < ThreadMap::Iterations::kGroup) {
|
524 |
+
byte_pointer += params_.increment_group;
|
525 |
+
}
|
526 |
+
}
|
527 |
+
|
528 |
+
if (cluster + 1 < ThreadMap::Iterations::kCluster) {
|
529 |
+
byte_pointer += params_.increment_cluster;
|
530 |
+
}
|
531 |
+
}
|
532 |
+
}
|
533 |
+
|
534 |
+
/// Loads a fragment from memory
|
535 |
+
CUTLASS_DEVICE
|
536 |
+
void upsample_load_with_byte_offset(Fragment& frag,
|
537 |
+
int64_t byte_offset,
|
538 |
+
int convolution_P,
|
539 |
+
int convolution_Q,
|
540 |
+
int add_P,
|
541 |
+
int add_Q,
|
542 |
+
int problem_N) const
|
543 |
+
{
|
544 |
+
uint8_t* byte_pointer = byte_pointer_;
|
545 |
+
AccessType* frag_ptr = reinterpret_cast<AccessType*>(&frag);
|
546 |
+
|
547 |
+
CUTLASS_PRAGMA_UNROLL
|
548 |
+
for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) {
|
549 |
+
CUTLASS_PRAGMA_UNROLL
|
550 |
+
for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) {
|
551 |
+
CUTLASS_PRAGMA_UNROLL
|
552 |
+
for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) {
|
553 |
+
int frag_row_idx =
|
554 |
+
(row + ThreadMap::Iterations::kRow *
|
555 |
+
(group + ThreadMap::Iterations::kGroup * cluster));
|
556 |
+
|
557 |
+
int row_offset = row * ThreadMap::Delta::kRow +
|
558 |
+
group * ThreadMap::Delta::kGroup +
|
559 |
+
cluster * ThreadMap::Delta::kCluster;
|
560 |
+
|
561 |
+
bool row_guard = ((row_offset + thread_start_row_) < extent_row_);
|
562 |
+
|
563 |
+
int output_row = row_offset + thread_start_row_;
|
564 |
+
int output_N = output_row / (convolution_P * convolution_Q);
|
565 |
+
int output_PQ = output_row % (convolution_P * convolution_Q);
|
566 |
+
int output_P = output_PQ / convolution_Q;
|
567 |
+
int output_Q = output_PQ % convolution_Q;
|
568 |
+
int row_add_P = add_P;
|
569 |
+
int row_add_Q = add_Q;
|
570 |
+
if (output_P > convolution_P - 2) row_add_P = 0;
|
571 |
+
if (output_Q > convolution_Q - 2) row_add_Q = 0;
|
572 |
+
|
573 |
+
int input_row = output_N * (convolution_P / 2) * (convolution_Q / 2) +
|
574 |
+
((output_P + row_add_P) / 2) * (convolution_Q / 2) +
|
575 |
+
(output_Q + row_add_Q) / 2;
|
576 |
+
|
577 |
+
int64_t byte_offset = (input_row - output_row) * problem_N * sizeof(float);
|
578 |
+
|
579 |
+
AccessType* memory_pointer =
|
580 |
+
reinterpret_cast<AccessType*>(byte_pointer + byte_offset);
|
581 |
+
|
582 |
+
CUTLASS_PRAGMA_UNROLL
|
583 |
+
for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) {
|
584 |
+
bool guard = row_guard && mask_.predicates[column];
|
585 |
+
|
586 |
+
cutlass::arch::global_load<AccessType, sizeof(AccessType)>(
|
587 |
+
frag_ptr[frag_row_idx * ThreadMap::Iterations::kColumn + column],
|
588 |
+
(void*)&memory_pointer[column * ThreadMap::Delta::kColumn /
|
589 |
+
kElementsPerAccess],
|
590 |
+
guard);
|
591 |
+
}
|
592 |
+
|
593 |
+
if (row + 1 < ThreadMap::Iterations::kRow) {
|
594 |
+
byte_pointer += params_.increment_row;
|
595 |
+
}
|
596 |
+
}
|
597 |
+
|
598 |
+
if (group + 1 < ThreadMap::Iterations::kGroup) {
|
599 |
+
byte_pointer += params_.increment_group;
|
600 |
+
}
|
601 |
+
}
|
602 |
+
|
603 |
+
if (cluster + 1 < ThreadMap::Iterations::kCluster) {
|
604 |
+
byte_pointer += params_.increment_cluster;
|
605 |
+
}
|
606 |
+
}
|
607 |
+
}
|
608 |
+
|
609 |
+
CUTLASS_DEVICE
|
610 |
+
MatrixCoord thread_start() const
|
611 |
+
{
|
612 |
+
return MatrixCoord(thread_start_row_, thread_start_column_);
|
613 |
+
}
|
614 |
+
|
615 |
+
/// Need to get the thread start row from the tile iterator
|
616 |
+
CUTLASS_DEVICE
|
617 |
+
int32_t thread_start_row() const { return thread_start_row_; }
|
618 |
+
|
619 |
+
/// Need to get the thread start row from the tile iterator
|
620 |
+
CUTLASS_DEVICE
|
621 |
+
int32_t thread_start_column() const { return thread_start_column_; }
|
622 |
+
|
623 |
+
/// Extent of the matrix in rows
|
624 |
+
CUTLASS_DEVICE
|
625 |
+
Index extent_row() const { return extent_row_; }
|
626 |
+
|
627 |
+
/// Extent of the matrix in columns
|
628 |
+
CUTLASS_DEVICE
|
629 |
+
Index extent_column() const { return extent_column_; }
|
630 |
+
|
631 |
+
/// Advances to the next position to load or store
|
632 |
+
CUTLASS_HOST_DEVICE
|
633 |
+
PredicatedTileIteratorPrefetch& operator++()
|
634 |
+
{
|
635 |
+
++state_[0];
|
636 |
+
|
637 |
+
if (!ScatterD) { byte_pointer_ += params_.advance_row; }
|
638 |
+
|
639 |
+
thread_start_row_ += ThreadMap::Shape::kRow;
|
640 |
+
|
641 |
+
if (state_[0] == ThreadMap::Count::kRow) {
|
642 |
+
state_[0] = 0;
|
643 |
+
++state_[1];
|
644 |
+
byte_pointer_ += params_.advance_group;
|
645 |
+
|
646 |
+
thread_start_row_ +=
|
647 |
+
(ThreadMap::Shape::kGroup - 1) * ThreadMap::Shape::kRow * ThreadMap::Count::kRow;
|
648 |
+
|
649 |
+
if (state_[1] == ThreadMap::Count::kGroup) {
|
650 |
+
state_[1] = 0;
|
651 |
+
++state_[2];
|
652 |
+
byte_pointer_ += params_.advance_cluster;
|
653 |
+
|
654 |
+
thread_start_row_ += ThreadMap::Count::kGroup * ThreadMap::Shape::kGroup *
|
655 |
+
ThreadMap::Count::kRow * ThreadMap::Shape::kRow;
|
656 |
+
|
657 |
+
if (state_[2] == ThreadMap::Count::kCluster) {
|
658 |
+
state_[2] = 0;
|
659 |
+
byte_pointer_ += params_.advance_tile;
|
660 |
+
}
|
661 |
+
}
|
662 |
+
}
|
663 |
+
|
664 |
+
return *this;
|
665 |
+
}
|
666 |
+
|
667 |
+
///< Efficiently disables all accesses guarded by mask
|
668 |
+
CUTLASS_DEVICE void clear_mask() { mask_.clear(); }
|
669 |
+
|
670 |
+
///< Efficiently enables all accesses guarded by mask
|
671 |
+
CUTLASS_DEVICE void enable_mask() { mask_.enable(); }
|
672 |
+
|
673 |
+
///< Sets the mask
|
674 |
+
CUTLASS_DEVICE void get_mask(Mask& mask) const { mask = mask_; }
|
675 |
+
|
676 |
+
///< Sets the mask
|
677 |
+
CUTLASS_DEVICE void set_mask(Mask const& mask) { mask_ = mask; }
|
678 |
+
};
|
679 |
+
|
680 |
+
template <typename IT>
|
681 |
+
struct MakePrefetchableIterator {
|
682 |
+
using Iterator = PredicatedTileIteratorPrefetch<typename IT::ThreadMap, typename IT::Element>;
|
683 |
+
};
|
684 |
+
|
685 |
+
///////////////////////////////////////////////////////////////////////////////
|
686 |
+
|
687 |
+
} // namespace threadblock
|
688 |
+
} // namespace epilogue
|
689 |
+
} // namespace cutlass
|
690 |
+
|
691 |
+
////////////////////////////////////////////////////////////////////////////////
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/iterators/make_residual_last.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holdvr nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
|
32 |
+
// Copyright (c) Microsoft Corporation.
|
33 |
+
// SPDX-License-Identifier: Apache-2.0
|
34 |
+
|
35 |
+
// DeepSpeed Team
|
36 |
+
|
37 |
+
#pragma once
|
38 |
+
|
39 |
+
#include "predicated_tile_access_iterator_residual_last.h"
|
40 |
+
#include "predicated_tile_iterator_residual_last.h"
|
41 |
+
|
42 |
+
namespace cutlass {
|
43 |
+
namespace transform {
|
44 |
+
namespace threadblock {
|
45 |
+
|
46 |
+
template <typename BaseIterator>
|
47 |
+
struct MakeIteratorResidualLast;
|
48 |
+
|
49 |
+
template <typename Shape,
|
50 |
+
typename Element,
|
51 |
+
typename Layout,
|
52 |
+
int AdvanceRank,
|
53 |
+
typename ThreadMap,
|
54 |
+
int AccessSize,
|
55 |
+
bool Gather>
|
56 |
+
struct MakeIteratorResidualLast<
|
57 |
+
PredicatedTileIterator<Shape, Element, Layout, AdvanceRank, ThreadMap, AccessSize, Gather>> {
|
58 |
+
using Iterator = PredicatedTileIteratorResidualLast<Shape,
|
59 |
+
Element,
|
60 |
+
Layout,
|
61 |
+
AdvanceRank,
|
62 |
+
ThreadMap,
|
63 |
+
AccessSize,
|
64 |
+
Gather>;
|
65 |
+
};
|
66 |
+
|
67 |
+
template <typename Shape,
|
68 |
+
typename Element,
|
69 |
+
typename Layout,
|
70 |
+
int AdvanceRank,
|
71 |
+
typename ThreadMap,
|
72 |
+
typename AccessType,
|
73 |
+
bool Gather>
|
74 |
+
struct MakeIteratorResidualLast<PredicatedTileAccessIterator<Shape,
|
75 |
+
Element,
|
76 |
+
Layout,
|
77 |
+
AdvanceRank,
|
78 |
+
ThreadMap,
|
79 |
+
AccessType,
|
80 |
+
Gather>> {
|
81 |
+
using Iterator = PredicatedTileAccessIteratorResidualLast<Shape,
|
82 |
+
Element,
|
83 |
+
Layout,
|
84 |
+
AdvanceRank,
|
85 |
+
ThreadMap,
|
86 |
+
AccessType,
|
87 |
+
Gather>;
|
88 |
+
};
|
89 |
+
} // namespace threadblock
|
90 |
+
} // namespace transform
|
91 |
+
} // namespace cutlass
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/iterators/predicated_tile_access_iterator_residual_last.h
ADDED
@@ -0,0 +1,1964 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights
|
3 |
+
*reserved. SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice,
|
9 |
+
*this list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
23 |
+
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
24 |
+
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
25 |
+
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
27 |
+
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
28 |
+
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
29 |
+
*POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
*
|
31 |
+
**************************************************************************************************/
|
32 |
+
|
33 |
+
// Copyright (c) Microsoft Corporation.
|
34 |
+
// SPDX-License-Identifier: Apache-2.0
|
35 |
+
|
36 |
+
// DeepSpeed Team
|
37 |
+
|
38 |
+
/*! \file
|
39 |
+
\brief Templates calculating the address and predicates to the load of tiles
|
40 |
+
from pitch-linear rank=2 tensors.
|
41 |
+
|
42 |
+
This iterator uses masks to guard out-of-bounds accesses. The first tile
|
43 |
+
this iterator visits maybe partial, then the remaining tiles are complete.
|
44 |
+
So, we only need to compute the predicates twice, once before the first tile
|
45 |
+
and once for the remaining full tiles which can share the same predicates.
|
46 |
+
|
47 |
+
A precomputed "Params" object minimizes the amount of state that must be
|
48 |
+
stored in registers, and integer addition is used to advance the pointer
|
49 |
+
through memory.
|
50 |
+
*/
|
51 |
+
|
52 |
+
#pragma once
|
53 |
+
|
54 |
+
#include "cutlass/array.h"
|
55 |
+
#include "cutlass/coord.h"
|
56 |
+
#include "cutlass/cutlass.h"
|
57 |
+
#include "cutlass/layout/matrix.h"
|
58 |
+
#include "cutlass/layout/pitch_linear.h"
|
59 |
+
#include "cutlass/matrix_shape.h"
|
60 |
+
#include "cutlass/predicate_vector.h"
|
61 |
+
#include "cutlass/tensor_ref.h"
|
62 |
+
#include "cutlass/tensor_view.h"
|
63 |
+
#include "cutlass/transform/threadblock/predicated_tile_access_iterator_params.h"
|
64 |
+
|
65 |
+
////////////////////////////////////////////////////////////////////////////////
|
66 |
+
|
67 |
+
////////////////////////////////////////////////////////////////////////////////
|
68 |
+
|
69 |
+
namespace cutlass {
|
70 |
+
namespace transform {
|
71 |
+
namespace threadblock {
|
72 |
+
|
73 |
+
////////////////////////////////////////////////////////////////////////////////
|
74 |
+
|
75 |
+
/// PredicatedTileAccessIteratorResidualLast
|
76 |
+
///
|
77 |
+
template <typename Shape,
|
78 |
+
typename Element,
|
79 |
+
typename Layout,
|
80 |
+
int AdvanceRank,
|
81 |
+
typename ThreadMap,
|
82 |
+
typename AccessType,
|
83 |
+
bool Gather = false>
|
84 |
+
class PredicatedTileAccessIteratorResidualLast;
|
85 |
+
|
86 |
+
////////////////////////////////////////////////////////////////////////////////
|
87 |
+
|
88 |
+
/// Specialization of PredicatedTileAccessIteratorResidualLast for pitch-linear
|
89 |
+
/// data.
|
90 |
+
///
|
91 |
+
template <typename Shape_,
|
92 |
+
typename Element_,
|
93 |
+
int AdvanceRank,
|
94 |
+
typename ThreadMap_,
|
95 |
+
typename AccessType_,
|
96 |
+
bool Gather>
|
97 |
+
class PredicatedTileAccessIteratorResidualLast<Shape_,
|
98 |
+
Element_,
|
99 |
+
layout::PitchLinear,
|
100 |
+
AdvanceRank,
|
101 |
+
ThreadMap_,
|
102 |
+
AccessType_,
|
103 |
+
Gather> {
|
104 |
+
public:
|
105 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
106 |
+
"Specialization for pitch-linear iterator may along advance along the "
|
107 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
108 |
+
|
109 |
+
using Shape = Shape_;
|
110 |
+
using Element = Element_;
|
111 |
+
using Layout = layout::PitchLinear;
|
112 |
+
static int const kAdvanceRank = AdvanceRank;
|
113 |
+
using ThreadMap = ThreadMap_;
|
114 |
+
using AccessType = AccessType_;
|
115 |
+
|
116 |
+
using Index = typename Layout::Index;
|
117 |
+
using LongIndex = typename Layout::LongIndex;
|
118 |
+
|
119 |
+
using TensorRef = TensorRef<Element, Layout>;
|
120 |
+
using TensorView = TensorView<Element, Layout>;
|
121 |
+
using TensorCoord = typename Layout::TensorCoord;
|
122 |
+
|
123 |
+
using Pointer = Element*;
|
124 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
125 |
+
|
126 |
+
using UnderlyingPredicates = PredicatedTileAccessIteratorPredicates<Shape,
|
127 |
+
Element,
|
128 |
+
Layout,
|
129 |
+
AdvanceRank,
|
130 |
+
ThreadMap,
|
131 |
+
AccessType>;
|
132 |
+
|
133 |
+
static int const kAccessesPerVector = ThreadMap::kElementsPerAccess / AccessType::kElements;
|
134 |
+
|
135 |
+
static_assert(!(ThreadMap::kElementsPerAccess % AccessType::kElements),
|
136 |
+
"Vectors implied by the thread map must be divisible by the access type.");
|
137 |
+
|
138 |
+
using Mask = typename UnderlyingPredicates::Mask;
|
139 |
+
|
140 |
+
/// Uses a non-template class
|
141 |
+
struct Params : PredicatedTileAccessIteratorParams {
|
142 |
+
using Base = PredicatedTileAccessIteratorParams;
|
143 |
+
|
144 |
+
// Default ctor
|
145 |
+
CUTLASS_HOST_DEVICE
|
146 |
+
Params() {}
|
147 |
+
|
148 |
+
/// Construct the Params object given a pitch-linear tensor's layout
|
149 |
+
CUTLASS_HOST_DEVICE
|
150 |
+
Params(Layout const& layout)
|
151 |
+
: Base(layout.stride(0),
|
152 |
+
MakePredicatedTileAccessIteratorDesc<Shape,
|
153 |
+
Element,
|
154 |
+
Layout,
|
155 |
+
kAdvanceRank,
|
156 |
+
ThreadMap>()())
|
157 |
+
{
|
158 |
+
}
|
159 |
+
|
160 |
+
CUTLASS_HOST_DEVICE
|
161 |
+
Params(Base const& base) : Base(base) {}
|
162 |
+
};
|
163 |
+
|
164 |
+
private:
|
165 |
+
/// Internal pointer type permits fast address arithmetic
|
166 |
+
using BytePointer = char*;
|
167 |
+
|
168 |
+
private:
|
169 |
+
//
|
170 |
+
// Data members
|
171 |
+
//
|
172 |
+
|
173 |
+
UnderlyingPredicates the_predicates;
|
174 |
+
Mask residual_tile_mask;
|
175 |
+
|
176 |
+
/// Parameters object with precomputed internal state
|
177 |
+
Params params_;
|
178 |
+
|
179 |
+
/// Internal pointer to first access of tile
|
180 |
+
BytePointer pointer_;
|
181 |
+
|
182 |
+
/// Below is used when Gather is turned on. We need to record strided_offset
|
183 |
+
/// and contiguous_offset separated to compute the offset by using
|
184 |
+
///
|
185 |
+
/// offset = contiguous_offset + indices[strided_offset]
|
186 |
+
///
|
187 |
+
|
188 |
+
/// Gather indices
|
189 |
+
int const* indices_;
|
190 |
+
|
191 |
+
Index gather_offset_strided;
|
192 |
+
|
193 |
+
private:
|
194 |
+
/// Computes predicates based on internally tracked per-thread offset.
|
195 |
+
CUTLASS_DEVICE
|
196 |
+
void compute_predicates_(
|
197 |
+
/// Extent of the matrix window
|
198 |
+
TensorCoord extent,
|
199 |
+
/// optionally, simplify predicate calculation during 'steady state' phase
|
200 |
+
bool is_steady_state = false)
|
201 |
+
{
|
202 |
+
the_predicates.compute_predicates_(extent, is_steady_state);
|
203 |
+
}
|
204 |
+
|
205 |
+
public:
|
206 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
207 |
+
/// and thread ID
|
208 |
+
CUTLASS_HOST_DEVICE
|
209 |
+
PredicatedTileAccessIteratorResidualLast(
|
210 |
+
/// Precomputed parameters object
|
211 |
+
Params const& params,
|
212 |
+
/// Pointer to start of tensor
|
213 |
+
Pointer pointer,
|
214 |
+
/// Extent of tensor
|
215 |
+
TensorCoord extent,
|
216 |
+
/// ID of each participating thread
|
217 |
+
int thread_id,
|
218 |
+
/// Initial offset of threadblock
|
219 |
+
TensorCoord const& threadblock_offset,
|
220 |
+
/// Gather indices
|
221 |
+
int const* indices = nullptr)
|
222 |
+
: params_(params),
|
223 |
+
pointer_(reinterpret_cast<BytePointer>(const_cast<NonConstPointer>(pointer))),
|
224 |
+
the_predicates(extent),
|
225 |
+
indices_(indices)
|
226 |
+
{
|
227 |
+
the_predicates.set_predicates(thread_id, threadblock_offset);
|
228 |
+
the_predicates.get_mask(residual_tile_mask);
|
229 |
+
|
230 |
+
// Working around a weird compiler bug happening on P100 for the backward.
|
231 |
+
// I've seen together: the_predicates.predicates_[0] = 14 (instead of 15)
|
232 |
+
// residual_tile_mask[0] = 15 (correct)
|
233 |
+
//
|
234 |
+
// Adding prints when the value is calculated (in `compute_predicates_`)
|
235 |
+
// sometimes removes the bug. The consequence is that we skip some
|
236 |
+
// element of a tensor, leading to wrong results
|
237 |
+
// Setting `compute_predicates_`'s second argument (`is_steady_state`) to
|
238 |
+
// true also seems to get rid of the bug - at the cost of twice as many
|
239 |
+
// comparisons.
|
240 |
+
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 700)
|
241 |
+
constexpr bool kWorkAroundCompilerBug = false;
|
242 |
+
#else
|
243 |
+
constexpr bool kWorkAroundCompilerBug = true;
|
244 |
+
#endif
|
245 |
+
the_predicates.compute_predicates_(extent, true && !kWorkAroundCompilerBug);
|
246 |
+
|
247 |
+
// update internal pointers
|
248 |
+
Layout layout(params_.stride_);
|
249 |
+
|
250 |
+
if (!Gather) {
|
251 |
+
add_pointer_offset(layout(the_predicates.thread_offset_));
|
252 |
+
} else {
|
253 |
+
gather_offset_strided = the_predicates.thread_offset_.strided();
|
254 |
+
add_pointer_offset(layout(make_Coord(the_predicates.thread_offset_.contiguous(), 0)));
|
255 |
+
}
|
256 |
+
}
|
257 |
+
|
258 |
+
/// Construct a PredicatedTileAccessIteratorResidualLast with zero threadblock
|
259 |
+
/// offset
|
260 |
+
CUTLASS_HOST_DEVICE
|
261 |
+
PredicatedTileAccessIteratorResidualLast(
|
262 |
+
/// Precomputed parameters object
|
263 |
+
Params const& params,
|
264 |
+
/// Pointer to start of tensor
|
265 |
+
Pointer pointer,
|
266 |
+
/// Extent of tensor
|
267 |
+
TensorCoord extent,
|
268 |
+
///< ID of each participating thread
|
269 |
+
int thread_id)
|
270 |
+
: PredicatedTileAccessIteratorResidualLast(params,
|
271 |
+
pointer,
|
272 |
+
extent,
|
273 |
+
thread_id,
|
274 |
+
make_Coord(0, 0))
|
275 |
+
{
|
276 |
+
}
|
277 |
+
|
278 |
+
/// Overrides the internal iteration index
|
279 |
+
CUTLASS_HOST_DEVICE
|
280 |
+
void set_iteration_index(int index) { the_predicates.set_iteration_index(index); }
|
281 |
+
|
282 |
+
CUTLASS_HOST_DEVICE
|
283 |
+
void set_residual_tile(bool is_residual_tile)
|
284 |
+
{
|
285 |
+
if (is_residual_tile) { the_predicates.set_mask(residual_tile_mask); }
|
286 |
+
}
|
287 |
+
|
288 |
+
/// Adds a pointer offset in units of Element
|
289 |
+
CUTLASS_HOST_DEVICE
|
290 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
291 |
+
{
|
292 |
+
pointer_ += sizeof_bits<Element>::value * pointer_offset / 8;
|
293 |
+
}
|
294 |
+
|
295 |
+
/// Advances an iterator along logical dimensions of matrix in units of whole
|
296 |
+
/// tiles
|
297 |
+
CUTLASS_DEVICE
|
298 |
+
void add_tile_offset(TensorCoord const& tile_offset)
|
299 |
+
{
|
300 |
+
if (!Gather) {
|
301 |
+
if (kAdvanceRank) {
|
302 |
+
pointer_ += params_.inc_advance_ * LongIndex(tile_offset.strided());
|
303 |
+
pointer_ += Shape::kContiguous * tile_offset.contiguous();
|
304 |
+
} else {
|
305 |
+
pointer_ += params_.inc_advance_ * LongIndex(tile_offset.contiguous());
|
306 |
+
pointer_ += Shape::kStrided * tile_offset.strided();
|
307 |
+
}
|
308 |
+
} else {
|
309 |
+
add_pointer_offset(Shape::kContiguous * tile_offset.contiguous());
|
310 |
+
gather_offset_strided += Shape::kStrided * tile_offset.strided();
|
311 |
+
}
|
312 |
+
}
|
313 |
+
|
314 |
+
/// Returns a pointer
|
315 |
+
CUTLASS_HOST_DEVICE
|
316 |
+
AccessType* get() const
|
317 |
+
{
|
318 |
+
if (Gather) {
|
319 |
+
assert(indices_);
|
320 |
+
|
321 |
+
if (!valid()) { return nullptr; }
|
322 |
+
|
323 |
+
LongIndex contiguous_offset =
|
324 |
+
the_predicates.iteration_contiguous_ *
|
325 |
+
(ThreadMap::Delta::kContiguous * sizeof_bits<Element>::value / 8) +
|
326 |
+
the_predicates.iteration_vector_;
|
327 |
+
int strided_index = gather_offset_strided +
|
328 |
+
the_predicates.iteration_strided_ * ThreadMap::Delta::kStrided;
|
329 |
+
|
330 |
+
LongIndex strided_offset = indices_[strided_index] * LongIndex(params_.stride_) *
|
331 |
+
sizeof_bits<Element>::value / 8;
|
332 |
+
|
333 |
+
return reinterpret_cast<AccessType*>(pointer_ + contiguous_offset + strided_offset);
|
334 |
+
}
|
335 |
+
|
336 |
+
return reinterpret_cast<AccessType*>(
|
337 |
+
pointer_ + the_predicates.iteration_contiguous_ *
|
338 |
+
(ThreadMap::Delta::kContiguous * sizeof_bits<Element>::value) /
|
339 |
+
8) +
|
340 |
+
the_predicates.iteration_vector_;
|
341 |
+
}
|
342 |
+
|
343 |
+
/// Increment and return an instance to self.
|
344 |
+
CUTLASS_HOST_DEVICE
|
345 |
+
PredicatedTileAccessIteratorResidualLast& operator++()
|
346 |
+
{
|
347 |
+
the_predicates.operator++();
|
348 |
+
|
349 |
+
++the_predicates.iteration_vector_;
|
350 |
+
if (the_predicates.iteration_vector_ < kAccessesPerVector) { return *this; }
|
351 |
+
|
352 |
+
the_predicates.iteration_vector_ = 0;
|
353 |
+
++the_predicates.iteration_contiguous_;
|
354 |
+
|
355 |
+
if (the_predicates.iteration_contiguous_ < ThreadMap::Iterations::kContiguous) {
|
356 |
+
return *this;
|
357 |
+
}
|
358 |
+
|
359 |
+
// Enter here only if (iteration_contiguous_ ==
|
360 |
+
// ThreadMap::Iteration::kContiguous)
|
361 |
+
the_predicates.iteration_contiguous_ = 0;
|
362 |
+
++the_predicates.iteration_strided_;
|
363 |
+
|
364 |
+
if (the_predicates.iteration_strided_ < ThreadMap::Iterations::kStrided) {
|
365 |
+
if (!Gather) { pointer_ += params_.inc_strided_; }
|
366 |
+
|
367 |
+
return *this;
|
368 |
+
}
|
369 |
+
|
370 |
+
// Enter here only if (iteration_stride_ == ThreadMap::Iteration::kStrided)
|
371 |
+
// which means we enter the next tile.
|
372 |
+
the_predicates.iteration_strided_ = 0;
|
373 |
+
|
374 |
+
if (!Gather) {
|
375 |
+
// advance to next tile
|
376 |
+
pointer_ += params_.inc_next_;
|
377 |
+
|
378 |
+
// now return to start tile - if the iterator is subsequently advanced,
|
379 |
+
// this subtraction as well as the subsequent integer addition are both
|
380 |
+
// elided by the compiler.
|
381 |
+
pointer_ -= params_.inc_advance_;
|
382 |
+
}
|
383 |
+
|
384 |
+
return *this;
|
385 |
+
}
|
386 |
+
|
387 |
+
/// Increment and return an instance to self.
|
388 |
+
CUTLASS_HOST_DEVICE
|
389 |
+
PredicatedTileAccessIteratorResidualLast operator++(int)
|
390 |
+
{
|
391 |
+
PredicatedTileAccessIteratorResidualLast self(*this);
|
392 |
+
operator++();
|
393 |
+
return self;
|
394 |
+
}
|
395 |
+
|
396 |
+
/// Clears the predicate set efficiently
|
397 |
+
CUTLASS_HOST_DEVICE
|
398 |
+
void clear_mask(bool enable = true) { the_predicates.clear_mask(enable); }
|
399 |
+
|
400 |
+
/// Clears the predicate set efficiently
|
401 |
+
CUTLASS_HOST_DEVICE
|
402 |
+
void enable_mask() { the_predicates.enable_mask(); }
|
403 |
+
|
404 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
405 |
+
CUTLASS_HOST_DEVICE
|
406 |
+
void set_mask(Mask const& mask) { the_predicates.set_mask(mask); }
|
407 |
+
|
408 |
+
/// Gets the mask
|
409 |
+
CUTLASS_HOST_DEVICE
|
410 |
+
void get_mask(Mask& mask) { the_predicates.get_mask(mask); }
|
411 |
+
|
412 |
+
/// Returns whether access is valid or not
|
413 |
+
CUTLASS_HOST_DEVICE
|
414 |
+
bool valid() const { return the_predicates.valid(); }
|
415 |
+
};
|
416 |
+
|
417 |
+
////////////////////////////////////////////////////////////////////////////////
|
418 |
+
|
419 |
+
/// Specialization of PredicatedTileAccessIteratorResidualLast for column-major
|
420 |
+
/// data.
|
421 |
+
///
|
422 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
423 |
+
/// ReadableContiguousTileIteratorConcept |
|
424 |
+
/// WriteableContiguousTileIteratorConcept |
|
425 |
+
/// MaskedTileIteratorConcept
|
426 |
+
///
|
427 |
+
template <typename Shape_,
|
428 |
+
typename Element_,
|
429 |
+
int AdvanceRank,
|
430 |
+
typename ThreadMap_,
|
431 |
+
typename AccessType_,
|
432 |
+
bool Gather>
|
433 |
+
class PredicatedTileAccessIteratorResidualLast<Shape_,
|
434 |
+
Element_,
|
435 |
+
layout::ColumnMajor,
|
436 |
+
AdvanceRank,
|
437 |
+
ThreadMap_,
|
438 |
+
AccessType_,
|
439 |
+
Gather> {
|
440 |
+
public:
|
441 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
442 |
+
"Specialization for pitch-linear iterator may along advance along the "
|
443 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
444 |
+
|
445 |
+
using Shape = Shape_;
|
446 |
+
using Element = Element_;
|
447 |
+
using Layout = layout::ColumnMajor;
|
448 |
+
static int const kAdvanceRank = AdvanceRank;
|
449 |
+
using ThreadMap = ThreadMap_;
|
450 |
+
using AccessType = AccessType_;
|
451 |
+
|
452 |
+
using Index = typename Layout::Index;
|
453 |
+
using LongIndex = typename Layout::LongIndex;
|
454 |
+
|
455 |
+
using TensorRef = TensorRef<Element, Layout>;
|
456 |
+
using TensorView = TensorView<Element, Layout>;
|
457 |
+
using TensorCoord = typename Layout::TensorCoord;
|
458 |
+
|
459 |
+
using Pointer = Element*;
|
460 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
461 |
+
|
462 |
+
using UnderlyingIterator = PredicatedTileAccessIteratorResidualLast<
|
463 |
+
layout::PitchLinearShape<Shape::kRow, Shape::kColumn>,
|
464 |
+
Element,
|
465 |
+
layout::PitchLinear,
|
466 |
+
(kAdvanceRank == 0 ? 0 : 1),
|
467 |
+
ThreadMap,
|
468 |
+
AccessType,
|
469 |
+
Gather>;
|
470 |
+
|
471 |
+
/// Predicate vector stores mask to guard accesses
|
472 |
+
using Mask = typename UnderlyingIterator::Mask;
|
473 |
+
|
474 |
+
static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector;
|
475 |
+
|
476 |
+
/// Parameters object is precomputed state and is host-constructible
|
477 |
+
class Params {
|
478 |
+
private:
|
479 |
+
friend PredicatedTileAccessIteratorResidualLast;
|
480 |
+
|
481 |
+
/// Parameters object
|
482 |
+
typename UnderlyingIterator::Params params_;
|
483 |
+
|
484 |
+
public:
|
485 |
+
/// Default ctor
|
486 |
+
CUTLASS_HOST_DEVICE
|
487 |
+
Params() {}
|
488 |
+
|
489 |
+
/// Construct the Params object given a pitch-linear tensor's layout
|
490 |
+
CUTLASS_HOST_DEVICE
|
491 |
+
Params(Layout const& layout) : params_(layout::PitchLinear(layout.stride(0))){};
|
492 |
+
|
493 |
+
/// Construct the Params object given a pitch-linear tensor's layout
|
494 |
+
CUTLASS_HOST_DEVICE
|
495 |
+
Params(typename UnderlyingIterator::Params::Base const& base) : params_(base) {}
|
496 |
+
};
|
497 |
+
|
498 |
+
private:
|
499 |
+
//
|
500 |
+
// Data members
|
501 |
+
//
|
502 |
+
|
503 |
+
/// Underlying pitch-linear tile iterator
|
504 |
+
UnderlyingIterator iterator_;
|
505 |
+
|
506 |
+
public:
|
507 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
508 |
+
/// and thread ID
|
509 |
+
CUTLASS_HOST_DEVICE
|
510 |
+
PredicatedTileAccessIteratorResidualLast(
|
511 |
+
///< Precomputed parameters object
|
512 |
+
Params const& params,
|
513 |
+
///< Pointer to start of tensor
|
514 |
+
Pointer pointer,
|
515 |
+
///< Extent of tensor
|
516 |
+
TensorCoord extent,
|
517 |
+
///< ID of each participating thread
|
518 |
+
int thread_id,
|
519 |
+
///< Initial offset of threadblock
|
520 |
+
TensorCoord const& threadblock_offset,
|
521 |
+
int const* indices = nullptr ///< gather/scatter indices, note no support for
|
522 |
+
///< gather/scatter at this specialization
|
523 |
+
)
|
524 |
+
: iterator_(params.params_,
|
525 |
+
pointer,
|
526 |
+
layout::PitchLinearCoord(extent.row(), extent.column()),
|
527 |
+
thread_id,
|
528 |
+
layout::PitchLinearCoord(threadblock_offset.row(), threadblock_offset.column()),
|
529 |
+
indices)
|
530 |
+
{
|
531 |
+
}
|
532 |
+
|
533 |
+
/// Construct a PredicatedTileAccessIteratorResidualLast with zero threadblock
|
534 |
+
/// offset
|
535 |
+
CUTLASS_HOST_DEVICE
|
536 |
+
PredicatedTileAccessIteratorResidualLast(
|
537 |
+
Params const& params, ///< Precomputed parameters object
|
538 |
+
Pointer pointer, ///< Pointer to start of tensor
|
539 |
+
TensorCoord extent, ///< Extent of tensor
|
540 |
+
int thread_id ///< ID of each participating thread
|
541 |
+
)
|
542 |
+
: PredicatedTileAccessIteratorResidualLast(params,
|
543 |
+
pointer,
|
544 |
+
extent,
|
545 |
+
thread_id,
|
546 |
+
make_Coord(0, 0))
|
547 |
+
{
|
548 |
+
}
|
549 |
+
|
550 |
+
/// Overrides the internal iteration index
|
551 |
+
CUTLASS_HOST_DEVICE
|
552 |
+
void set_iteration_index(int index) { iterator_.set_iteration_index(index); }
|
553 |
+
|
554 |
+
CUTLASS_HOST_DEVICE
|
555 |
+
void set_residual_tile(bool enable) { iterator_.set_residual_tile(enable); }
|
556 |
+
|
557 |
+
/// Adds a pointer offset in units of Element
|
558 |
+
CUTLASS_HOST_DEVICE
|
559 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
560 |
+
{
|
561 |
+
iterator_.add_pointer_offset(pointer_offset);
|
562 |
+
}
|
563 |
+
|
564 |
+
/// Advances an iterator along logical dimensions of matrix in units of whole
|
565 |
+
/// tiles
|
566 |
+
CUTLASS_HOST_DEVICE
|
567 |
+
void add_tile_offset(TensorCoord const& tile_offset)
|
568 |
+
{
|
569 |
+
iterator_.add_tile_offset({tile_offset.row(), tile_offset.column()});
|
570 |
+
}
|
571 |
+
|
572 |
+
/// Returns a pointer
|
573 |
+
CUTLASS_HOST_DEVICE
|
574 |
+
AccessType* get() const { return reinterpret_cast<AccessType*>(iterator_.get()); }
|
575 |
+
|
576 |
+
/// Advances to the next tile in memory.
|
577 |
+
///
|
578 |
+
/// The first time this method is called, predicates are updated, and the
|
579 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
580 |
+
/// Subsequent calls are lightweight and must only update the internal
|
581 |
+
/// pointer.
|
582 |
+
CUTLASS_HOST_DEVICE
|
583 |
+
PredicatedTileAccessIteratorResidualLast& operator++()
|
584 |
+
{
|
585 |
+
++iterator_;
|
586 |
+
return *this;
|
587 |
+
}
|
588 |
+
|
589 |
+
/// Advances to the next tile in memory.
|
590 |
+
///
|
591 |
+
/// The first time this method is called, predicates are updated, and the
|
592 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
593 |
+
/// Subsequent calls are lightweight and must only update the internal
|
594 |
+
/// pointer.
|
595 |
+
CUTLASS_HOST_DEVICE
|
596 |
+
PredicatedTileAccessIteratorResidualLast operator++(int)
|
597 |
+
{
|
598 |
+
PredicatedTileAccessIteratorResidualLast self(*this);
|
599 |
+
operator++();
|
600 |
+
return self;
|
601 |
+
}
|
602 |
+
|
603 |
+
/// Clears the predicate set efficiently
|
604 |
+
CUTLASS_HOST_DEVICE
|
605 |
+
void clear_mask(bool enable = true) { iterator_.clear_mask(enable); }
|
606 |
+
|
607 |
+
/// Clears the predicate set efficiently
|
608 |
+
CUTLASS_HOST_DEVICE
|
609 |
+
void enable_mask() { iterator_.enable_mask(); }
|
610 |
+
|
611 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
612 |
+
CUTLASS_HOST_DEVICE
|
613 |
+
void set_mask(Mask const& mask) { iterator_.set_mask(mask); }
|
614 |
+
|
615 |
+
/// Gets the mask
|
616 |
+
CUTLASS_HOST_DEVICE
|
617 |
+
void get_mask(Mask& mask) { iterator_.get_mask(mask); }
|
618 |
+
|
619 |
+
/// Returns whether access is valid or not
|
620 |
+
CUTLASS_HOST_DEVICE
|
621 |
+
bool valid() { return iterator_.valid(); }
|
622 |
+
};
|
623 |
+
|
624 |
+
////////////////////////////////////////////////////////////////////////////////
|
625 |
+
|
626 |
+
/// Specialization of PredicatedTileAccessIteratorResidualLast for row-major
|
627 |
+
/// data.
|
628 |
+
///
|
629 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
630 |
+
/// ReadableContiguousTileIteratorConcept |
|
631 |
+
/// WriteableContiguousTileIteratorConcept |
|
632 |
+
/// MaskedTileIteratorConcept
|
633 |
+
///
|
634 |
+
template <typename Shape_,
|
635 |
+
typename Element_,
|
636 |
+
int AdvanceRank,
|
637 |
+
typename ThreadMap_,
|
638 |
+
typename AccessType_,
|
639 |
+
bool Gather>
|
640 |
+
class PredicatedTileAccessIteratorResidualLast<Shape_,
|
641 |
+
Element_,
|
642 |
+
layout::RowMajor,
|
643 |
+
AdvanceRank,
|
644 |
+
ThreadMap_,
|
645 |
+
AccessType_,
|
646 |
+
Gather> {
|
647 |
+
public:
|
648 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
649 |
+
"Specialization for pitch-linear iterator may along advance along the "
|
650 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
651 |
+
|
652 |
+
using Shape = Shape_;
|
653 |
+
using Element = Element_;
|
654 |
+
using Layout = layout::RowMajor;
|
655 |
+
static int const kAdvanceRank = AdvanceRank;
|
656 |
+
using ThreadMap = ThreadMap_;
|
657 |
+
using AccessType = AccessType_;
|
658 |
+
|
659 |
+
using Index = typename Layout::Index;
|
660 |
+
using LongIndex = typename Layout::LongIndex;
|
661 |
+
|
662 |
+
using TensorRef = TensorRef<Element, Layout>;
|
663 |
+
using TensorView = TensorView<Element, Layout>;
|
664 |
+
using TensorCoord = typename Layout::TensorCoord;
|
665 |
+
|
666 |
+
using Pointer = Element*;
|
667 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
668 |
+
|
669 |
+
using UnderlyingIterator = PredicatedTileAccessIteratorResidualLast<
|
670 |
+
layout::PitchLinearShape<Shape::kColumn, Shape::kRow>,
|
671 |
+
Element,
|
672 |
+
layout::PitchLinear,
|
673 |
+
(kAdvanceRank == 0 ? 1 : 0),
|
674 |
+
ThreadMap,
|
675 |
+
AccessType,
|
676 |
+
Gather>;
|
677 |
+
|
678 |
+
static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector;
|
679 |
+
|
680 |
+
/// Predicate vector stores mask to guard accesses
|
681 |
+
using Mask = typename UnderlyingIterator::Mask;
|
682 |
+
|
683 |
+
/// Parameters object is precomputed state and is host-constructible
|
684 |
+
class Params {
|
685 |
+
private:
|
686 |
+
friend PredicatedTileAccessIteratorResidualLast;
|
687 |
+
|
688 |
+
/// Parameters object
|
689 |
+
typename UnderlyingIterator::Params params_;
|
690 |
+
|
691 |
+
public:
|
692 |
+
/// Default ctor
|
693 |
+
CUTLASS_HOST_DEVICE
|
694 |
+
Params() {}
|
695 |
+
|
696 |
+
/// Construct the Params object given a pitch-linear tensor's layout
|
697 |
+
CUTLASS_HOST_DEVICE
|
698 |
+
Params(Layout const& layout) : params_(layout::PitchLinear(layout.stride(0))){};
|
699 |
+
|
700 |
+
/// Construct the Params object given a pitch-linear tensor's layout
|
701 |
+
CUTLASS_HOST_DEVICE
|
702 |
+
Params(typename UnderlyingIterator::Params::Base const& base) : params_(base) {}
|
703 |
+
};
|
704 |
+
|
705 |
+
private:
|
706 |
+
//
|
707 |
+
// Data members
|
708 |
+
//
|
709 |
+
|
710 |
+
/// Underlying pitch-linear tile iterator
|
711 |
+
UnderlyingIterator iterator_;
|
712 |
+
|
713 |
+
public:
|
714 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
715 |
+
/// and thread ID
|
716 |
+
CUTLASS_HOST_DEVICE
|
717 |
+
PredicatedTileAccessIteratorResidualLast(
|
718 |
+
///< Precomputed parameters object
|
719 |
+
Params const& params,
|
720 |
+
///< Pointer to start of tensor
|
721 |
+
Pointer pointer,
|
722 |
+
///< Extent of tensor
|
723 |
+
TensorCoord extent,
|
724 |
+
///< ID of each participating thread
|
725 |
+
int thread_id,
|
726 |
+
///< Initial offset of threadblock
|
727 |
+
TensorCoord const& threadblock_offset,
|
728 |
+
/// Gather indices
|
729 |
+
int const* indices = nullptr)
|
730 |
+
: iterator_(params.params_,
|
731 |
+
pointer,
|
732 |
+
layout::PitchLinearCoord(extent.column(), extent.row()),
|
733 |
+
thread_id,
|
734 |
+
layout::PitchLinearCoord(threadblock_offset.column(), threadblock_offset.row()),
|
735 |
+
indices)
|
736 |
+
{
|
737 |
+
}
|
738 |
+
|
739 |
+
/// Construct a PredicatedTileAccessIteratorResidualLast with zero threadblock
|
740 |
+
/// offset
|
741 |
+
CUTLASS_HOST_DEVICE
|
742 |
+
PredicatedTileAccessIteratorResidualLast(
|
743 |
+
Params const& params, ///< Precomputed parameters object
|
744 |
+
Pointer pointer, ///< Pointer to start of tensor
|
745 |
+
TensorCoord extent, ///< Extent of tensor
|
746 |
+
int thread_id ///< ID of each participating thread
|
747 |
+
)
|
748 |
+
: PredicatedTileAccessIteratorResidualLast(params,
|
749 |
+
pointer,
|
750 |
+
extent,
|
751 |
+
thread_id,
|
752 |
+
make_Coord(0, 0))
|
753 |
+
{
|
754 |
+
}
|
755 |
+
|
756 |
+
/// Overrides the internal iteration index
|
757 |
+
CUTLASS_HOST_DEVICE
|
758 |
+
void set_iteration_index(int index) { iterator_.set_iteration_index(index); }
|
759 |
+
|
760 |
+
CUTLASS_HOST_DEVICE
|
761 |
+
void set_residual_tile(bool enable) { iterator_.set_residual_tile(enable); }
|
762 |
+
|
763 |
+
/// Adds a pointer offset in units of Element
|
764 |
+
CUTLASS_HOST_DEVICE
|
765 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
766 |
+
{
|
767 |
+
iterator_.add_pointer_offset(pointer_offset);
|
768 |
+
}
|
769 |
+
|
770 |
+
/// Advances an iterator along logical dimensions of matrix in units of whole
|
771 |
+
/// tiles
|
772 |
+
CUTLASS_HOST_DEVICE
|
773 |
+
void add_tile_offset(TensorCoord const& tile_offset)
|
774 |
+
{
|
775 |
+
iterator_.add_tile_offset({tile_offset.column(), tile_offset.row()});
|
776 |
+
}
|
777 |
+
|
778 |
+
/// Returns a pointer
|
779 |
+
CUTLASS_HOST_DEVICE
|
780 |
+
AccessType* get() const { return reinterpret_cast<AccessType*>(iterator_.get()); }
|
781 |
+
|
782 |
+
/// Advances to the next tile in memory.
|
783 |
+
///
|
784 |
+
/// The first time this method is called, predicates are updated, and the
|
785 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
786 |
+
/// Subsequent calls are lightweight and must only update the internal
|
787 |
+
/// pointer.
|
788 |
+
CUTLASS_HOST_DEVICE
|
789 |
+
PredicatedTileAccessIteratorResidualLast& operator++()
|
790 |
+
{
|
791 |
+
++iterator_;
|
792 |
+
return *this;
|
793 |
+
}
|
794 |
+
|
795 |
+
/// Advances to the next tile in memory.
|
796 |
+
///
|
797 |
+
/// The first time this method is called, predicates are updated, and the
|
798 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
799 |
+
/// Subsequent calls are lightweight and must only update the internal
|
800 |
+
/// pointer.
|
801 |
+
CUTLASS_HOST_DEVICE
|
802 |
+
PredicatedTileAccessIteratorResidualLast operator++(int)
|
803 |
+
{
|
804 |
+
PredicatedTileAccessIteratorResidualLast self(*this);
|
805 |
+
operator++();
|
806 |
+
return self;
|
807 |
+
}
|
808 |
+
|
809 |
+
/// Clears the predicate set efficiently
|
810 |
+
CUTLASS_HOST_DEVICE
|
811 |
+
void clear_mask(bool enable = true) { iterator_.clear_mask(enable); }
|
812 |
+
|
813 |
+
/// Clears the predicate set efficiently
|
814 |
+
CUTLASS_HOST_DEVICE
|
815 |
+
void enable_mask() { iterator_.enable_mask(); }
|
816 |
+
|
817 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
818 |
+
CUTLASS_HOST_DEVICE
|
819 |
+
void set_mask(Mask const& mask) { iterator_.set_mask(mask); }
|
820 |
+
|
821 |
+
/// Gets the mask
|
822 |
+
CUTLASS_HOST_DEVICE
|
823 |
+
void get_mask(Mask& mask) { iterator_.get_mask(mask); }
|
824 |
+
|
825 |
+
/// Returns whether access is valid or not
|
826 |
+
CUTLASS_HOST_DEVICE
|
827 |
+
bool valid() { return iterator_.valid(); }
|
828 |
+
};
|
829 |
+
|
830 |
+
////////////////////////////////////////////////////////////////////////////////
|
831 |
+
|
832 |
+
/// Specialization of PredicatedTileAccessIteratorResidualLast for affine rank 2
|
833 |
+
/// data.
|
834 |
+
///
|
835 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
836 |
+
/// ReadableContiguousTileIteratorConcept |
|
837 |
+
/// WriteableContiguousTileIteratorConcept |
|
838 |
+
/// MaskedTileIteratorConcept
|
839 |
+
///
|
840 |
+
template <typename Shape_,
|
841 |
+
typename Element_,
|
842 |
+
int AdvanceRank,
|
843 |
+
typename ThreadMap_,
|
844 |
+
typename AccessType_>
|
845 |
+
class PredicatedTileAccessIteratorResidualLast<Shape_,
|
846 |
+
Element_,
|
847 |
+
layout::AffineRankN<2>,
|
848 |
+
AdvanceRank,
|
849 |
+
ThreadMap_,
|
850 |
+
AccessType_,
|
851 |
+
false> {
|
852 |
+
public:
|
853 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
854 |
+
"Specialization for pitch-linear iterator may along advance along the "
|
855 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
856 |
+
|
857 |
+
using Shape = Shape_;
|
858 |
+
using Element = Element_;
|
859 |
+
using Layout = layout::AffineRankN<2>;
|
860 |
+
static int const kAdvanceRank = AdvanceRank;
|
861 |
+
using ThreadMap = ThreadMap_;
|
862 |
+
using AccessType = AccessType_;
|
863 |
+
|
864 |
+
using Index = typename Layout::Index;
|
865 |
+
using LongIndex = typename Layout::LongIndex;
|
866 |
+
|
867 |
+
using TensorRef = TensorRef<Element, Layout>;
|
868 |
+
using TensorView = TensorView<Element, Layout>;
|
869 |
+
using TensorCoord = typename Layout::TensorCoord;
|
870 |
+
|
871 |
+
using Pointer = Element*;
|
872 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
873 |
+
|
874 |
+
using UnderlyingPredicates = PredicatedTileAccessIteratorPredicates<Shape,
|
875 |
+
Element,
|
876 |
+
layout::PitchLinear,
|
877 |
+
AdvanceRank,
|
878 |
+
ThreadMap,
|
879 |
+
AccessType>;
|
880 |
+
|
881 |
+
static int const kAccessesPerVector = ThreadMap::kElementsPerAccess / AccessType::kElements;
|
882 |
+
|
883 |
+
static_assert(!(ThreadMap::kElementsPerAccess % AccessType::kElements),
|
884 |
+
"Vectors implied by the thread map must be divisible by the access type.");
|
885 |
+
|
886 |
+
/// Predicate vector stores mask to guard accesses
|
887 |
+
using Mask = typename UnderlyingPredicates::Mask;
|
888 |
+
|
889 |
+
/// Parameters object is precomputed state and is host-constructible
|
890 |
+
class Params {
|
891 |
+
public:
|
892 |
+
friend PredicatedTileAccessIteratorResidualLast;
|
893 |
+
|
894 |
+
private:
|
895 |
+
/// stride of pitch-linear layout (units of Element)
|
896 |
+
Coord<Layout::kStrideRank, Layout::LongIndex> stride_;
|
897 |
+
/// amount (in byte) to increment pointer to move to next access along
|
898 |
+
/// contiguous dimension
|
899 |
+
LongIndex inc_contiguous_;
|
900 |
+
/// amount (in byte) to increment pointer from first access of current
|
901 |
+
/// contiguous dimension to first access of next one.
|
902 |
+
LongIndex inc_strided_;
|
903 |
+
/// amount (in byte) to increment pointer from last access of current
|
904 |
+
/// contiguous dimension to first access of next one.
|
905 |
+
LongIndex inc_next_strided_;
|
906 |
+
/// amount (in byte) to increment pointer from last access to first access
|
907 |
+
/// of next tile
|
908 |
+
LongIndex inc_next_;
|
909 |
+
/// amount (in byte) to increment pointer from first access of current tile
|
910 |
+
/// to first access of next tile
|
911 |
+
LongIndex inc_advance_;
|
912 |
+
|
913 |
+
public:
|
914 |
+
// Default ctor
|
915 |
+
CUTLASS_HOST_DEVICE
|
916 |
+
Params() : stride_(0), inc_contiguous_(0), inc_strided_(0), inc_next_(0), inc_advance_(0) {}
|
917 |
+
|
918 |
+
/// Construct the Params object given a pitch-linear tensor's layout
|
919 |
+
CUTLASS_HOST_DEVICE
|
920 |
+
Params(Layout const& layout) : stride_({layout.stride(0), layout.stride(1)})
|
921 |
+
{
|
922 |
+
inc_contiguous_ = (LongIndex(stride_[0]) * ThreadMap::Delta::kContiguous) *
|
923 |
+
sizeof_bits<Element>::value / 8;
|
924 |
+
|
925 |
+
inc_strided_ = (LongIndex(stride_[1]) * ThreadMap::Delta::kStrided) *
|
926 |
+
sizeof_bits<Element>::value / 8;
|
927 |
+
|
928 |
+
inc_next_strided_ =
|
929 |
+
inc_strided_ - LongIndex(ThreadMap::Iterations::kContiguous - 1) * inc_contiguous_;
|
930 |
+
|
931 |
+
if (kAdvanceRank) {
|
932 |
+
// advance along strided dimension
|
933 |
+
inc_advance_ =
|
934 |
+
Shape::kStrided * LongIndex(stride_[1]) * sizeof_bits<Element>::value / 8;
|
935 |
+
} else {
|
936 |
+
// advance along contiguous dimension
|
937 |
+
inc_advance_ = Shape::kContiguous * stride_[0] * sizeof_bits<Element>::value / 8;
|
938 |
+
}
|
939 |
+
|
940 |
+
inc_next_ = inc_advance_ -
|
941 |
+
LongIndex(ThreadMap::Iterations::kContiguous - 1) * inc_contiguous_ -
|
942 |
+
LongIndex(ThreadMap::Iterations::kStrided - 1) * inc_strided_;
|
943 |
+
};
|
944 |
+
};
|
945 |
+
|
946 |
+
private:
|
947 |
+
/// Internal pointer type permits fast address arithmetic
|
948 |
+
using BytePointer = char*;
|
949 |
+
|
950 |
+
//
|
951 |
+
// Data members
|
952 |
+
//
|
953 |
+
|
954 |
+
/// Parameters object with precomputed internal state
|
955 |
+
Params params_;
|
956 |
+
|
957 |
+
/// Internal pointer to first access of tile
|
958 |
+
BytePointer pointer_;
|
959 |
+
|
960 |
+
UnderlyingPredicates the_predicates;
|
961 |
+
Mask residual_tile_mask;
|
962 |
+
|
963 |
+
private:
|
964 |
+
/// Computes predicates based on internally tracked per-thread offset.
|
965 |
+
CUTLASS_DEVICE
|
966 |
+
void compute_predicates_(
|
967 |
+
/// Extent of the matrix window
|
968 |
+
TensorCoord extent,
|
969 |
+
/// optionally, simplify predicate calculation during 'steady state' phase
|
970 |
+
bool is_steady_state = false)
|
971 |
+
{
|
972 |
+
the_predicates.compute_predicates_(extent, is_steady_state);
|
973 |
+
}
|
974 |
+
|
975 |
+
public:
|
976 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
977 |
+
/// and thread ID
|
978 |
+
CUTLASS_HOST_DEVICE
|
979 |
+
PredicatedTileAccessIteratorResidualLast(
|
980 |
+
///< Precomputed parameters object
|
981 |
+
Params const& params,
|
982 |
+
///< Pointer to start of tensor
|
983 |
+
Pointer pointer,
|
984 |
+
///< Extent of tensor
|
985 |
+
TensorCoord extent,
|
986 |
+
///< ID of each participating thread
|
987 |
+
int thread_id,
|
988 |
+
///< Initial offset of threadblock
|
989 |
+
TensorCoord const& threadblock_offset,
|
990 |
+
int const* indices = nullptr ///< gather/scatter indices, note no support for
|
991 |
+
///< gather/scatter at this specialization
|
992 |
+
)
|
993 |
+
: params_(params),
|
994 |
+
pointer_(reinterpret_cast<BytePointer>(const_cast<NonConstPointer>(pointer))),
|
995 |
+
the_predicates(extent)
|
996 |
+
{
|
997 |
+
the_predicates.set_predicates(thread_id, threadblock_offset);
|
998 |
+
|
999 |
+
// update internal pointers
|
1000 |
+
Layout layout(params_.stride_);
|
1001 |
+
add_pointer_offset(layout(the_predicates.thread_offset_));
|
1002 |
+
}
|
1003 |
+
|
1004 |
+
/// Construct a PredicatedTileAccessIteratorResidualLast with zero threadblock
|
1005 |
+
/// offset
|
1006 |
+
CUTLASS_HOST_DEVICE
|
1007 |
+
PredicatedTileAccessIteratorResidualLast(
|
1008 |
+
Params const& params, ///< Precomputed parameters object
|
1009 |
+
Pointer pointer, ///< Pointer to start of tensor
|
1010 |
+
TensorCoord extent, ///< Extent of tensor
|
1011 |
+
int thread_id ///< ID of each participating thread
|
1012 |
+
)
|
1013 |
+
: PredicatedTileAccessIteratorResidualLast(params,
|
1014 |
+
pointer,
|
1015 |
+
extent,
|
1016 |
+
thread_id,
|
1017 |
+
make_Coord(0, 0))
|
1018 |
+
{
|
1019 |
+
}
|
1020 |
+
|
1021 |
+
/// Overrides the internal iteration index
|
1022 |
+
CUTLASS_HOST_DEVICE
|
1023 |
+
void set_iteration_index(int index) { the_predicates.set_iteration_index(index); }
|
1024 |
+
|
1025 |
+
CUTLASS_HOST_DEVICE
|
1026 |
+
void set_residual_tile(bool is_residual_tile)
|
1027 |
+
{
|
1028 |
+
if (is_residual_tile) { the_predicates.set_mask(residual_tile_mask); }
|
1029 |
+
}
|
1030 |
+
|
1031 |
+
/// Adds a pointer offset in units of Element
|
1032 |
+
CUTLASS_HOST_DEVICE
|
1033 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
1034 |
+
{
|
1035 |
+
pointer_ += sizeof_bits<Element>::value * pointer_offset / 8;
|
1036 |
+
}
|
1037 |
+
|
1038 |
+
/// Advances an iterator along logical dimensions of matrix in units of whole
|
1039 |
+
/// tiles
|
1040 |
+
CUTLASS_HOST_DEVICE
|
1041 |
+
void add_tile_offset(TensorCoord const& tile_offset)
|
1042 |
+
{
|
1043 |
+
if (kAdvanceRank) {
|
1044 |
+
pointer_ += params_.inc_advance_ * LongIndex(tile_offset[1]);
|
1045 |
+
pointer_ += Shape::kContiguous * tile_offset[0];
|
1046 |
+
} else {
|
1047 |
+
pointer_ += params_.inc_advance_ * LongIndex(tile_offset[0]);
|
1048 |
+
pointer_ += Shape::kStrided * tile_offset[1];
|
1049 |
+
}
|
1050 |
+
}
|
1051 |
+
|
1052 |
+
/// Returns a pointer
|
1053 |
+
CUTLASS_HOST_DEVICE
|
1054 |
+
AccessType* get() const
|
1055 |
+
{
|
1056 |
+
return reinterpret_cast<AccessType*>(pointer_) + the_predicates.iteration_vector_;
|
1057 |
+
}
|
1058 |
+
|
1059 |
+
/// Advances to the next tile in memory.
|
1060 |
+
///
|
1061 |
+
/// The first time this method is called, predicates are updated, and the
|
1062 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1063 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1064 |
+
/// pointer.
|
1065 |
+
CUTLASS_HOST_DEVICE
|
1066 |
+
PredicatedTileAccessIteratorResidualLast& operator++()
|
1067 |
+
{
|
1068 |
+
the_predicates.operator++();
|
1069 |
+
++the_predicates.iteration_vector_;
|
1070 |
+
if (the_predicates.iteration_vector_ < kAccessesPerVector) { return *this; }
|
1071 |
+
|
1072 |
+
the_predicates.iteration_vector_ = 0;
|
1073 |
+
++the_predicates.iteration_contiguous_;
|
1074 |
+
|
1075 |
+
if (the_predicates.iteration_contiguous_ < ThreadMap::Iterations::kContiguous) {
|
1076 |
+
pointer_ += params_.inc_contiguous_;
|
1077 |
+
return *this;
|
1078 |
+
}
|
1079 |
+
|
1080 |
+
// Enter here only if (iteration_contiguous_ ==
|
1081 |
+
// ThreadMap::Iteration::kContiguous)
|
1082 |
+
the_predicates.iteration_contiguous_ = 0;
|
1083 |
+
++the_predicates.iteration_strided_;
|
1084 |
+
|
1085 |
+
if (the_predicates.iteration_strided_ < ThreadMap::Iterations::kStrided) {
|
1086 |
+
pointer_ += params_.inc_next_strided_;
|
1087 |
+
return *this;
|
1088 |
+
}
|
1089 |
+
|
1090 |
+
// Enter here only if (iteration_stride_ == ThreadMap::Iteration::kStrided)
|
1091 |
+
// which means we enter the next tile.
|
1092 |
+
the_predicates.iteration_strided_ = 0;
|
1093 |
+
|
1094 |
+
// advance to next tile
|
1095 |
+
pointer_ += params_.inc_next_;
|
1096 |
+
|
1097 |
+
// now return to start tile - if the iterator is subsequently advanced, this
|
1098 |
+
// subtraction as well as the subsequent integer addition are both elided by
|
1099 |
+
// the compiler.
|
1100 |
+
pointer_ -= params_.inc_advance_;
|
1101 |
+
|
1102 |
+
return *this;
|
1103 |
+
}
|
1104 |
+
|
1105 |
+
/// Advances to the next tile in memory.
|
1106 |
+
///
|
1107 |
+
/// The first time this method is called, predicates are updated, and the
|
1108 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1109 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1110 |
+
/// pointer.
|
1111 |
+
CUTLASS_HOST_DEVICE
|
1112 |
+
PredicatedTileAccessIteratorResidualLast operator++(int)
|
1113 |
+
{
|
1114 |
+
PredicatedTileAccessIteratorResidualLast self(*this);
|
1115 |
+
operator++();
|
1116 |
+
return self;
|
1117 |
+
}
|
1118 |
+
|
1119 |
+
/// Clears the predicate set efficiently
|
1120 |
+
CUTLASS_HOST_DEVICE
|
1121 |
+
void clear_mask(bool enable = true) { the_predicates.clear_mask(enable); }
|
1122 |
+
|
1123 |
+
/// Clears the predicate set efficiently
|
1124 |
+
CUTLASS_HOST_DEVICE
|
1125 |
+
void enable_mask() { the_predicates.enable_mask(); }
|
1126 |
+
|
1127 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
1128 |
+
CUTLASS_HOST_DEVICE
|
1129 |
+
void set_mask(Mask const& mask) { the_predicates.set_mask(mask); }
|
1130 |
+
|
1131 |
+
/// Gets the mask
|
1132 |
+
CUTLASS_HOST_DEVICE
|
1133 |
+
void get_mask(Mask& mask) { the_predicates.get_mask(mask); }
|
1134 |
+
|
1135 |
+
/// Returns whether access is valid or not
|
1136 |
+
CUTLASS_HOST_DEVICE
|
1137 |
+
bool valid() { return the_predicates.valid(); }
|
1138 |
+
};
|
1139 |
+
|
1140 |
+
////////////////////////////////////////////////////////////////////////////////
|
1141 |
+
|
1142 |
+
/// Specialization of PredicatedTileAccessIteratorResidualLast for affine rank 2
|
1143 |
+
/// column-major data.
|
1144 |
+
///
|
1145 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
1146 |
+
/// ReadableContiguousTileIteratorConcept |
|
1147 |
+
/// WriteableContiguousTileIteratorConcept |
|
1148 |
+
/// MaskedTileIteratorConcept
|
1149 |
+
///
|
1150 |
+
template <typename Shape_,
|
1151 |
+
typename Element_,
|
1152 |
+
int AdvanceRank,
|
1153 |
+
typename ThreadMap_,
|
1154 |
+
typename AccessType_>
|
1155 |
+
class PredicatedTileAccessIteratorResidualLast<Shape_,
|
1156 |
+
Element_,
|
1157 |
+
layout::AffineRank2ColumnMajor,
|
1158 |
+
AdvanceRank,
|
1159 |
+
ThreadMap_,
|
1160 |
+
AccessType_,
|
1161 |
+
false> {
|
1162 |
+
public:
|
1163 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
1164 |
+
"Specialization for pitch-linear iterator may along advance along the "
|
1165 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
1166 |
+
|
1167 |
+
using Shape = Shape_;
|
1168 |
+
using Element = Element_;
|
1169 |
+
using Layout = layout::AffineRank2ColumnMajor;
|
1170 |
+
static int const kAdvanceRank = AdvanceRank;
|
1171 |
+
using ThreadMap = ThreadMap_;
|
1172 |
+
using AccessType = AccessType_;
|
1173 |
+
|
1174 |
+
using Index = typename Layout::Index;
|
1175 |
+
using LongIndex = typename Layout::LongIndex;
|
1176 |
+
|
1177 |
+
using TensorRef = TensorRef<Element, Layout>;
|
1178 |
+
using TensorView = TensorView<Element, Layout>;
|
1179 |
+
using TensorCoord = typename Layout::TensorCoord;
|
1180 |
+
|
1181 |
+
using Pointer = Element*;
|
1182 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
1183 |
+
|
1184 |
+
// Map to the underlying AffineRankN<2> layout
|
1185 |
+
using UnderlyingIterator = PredicatedTileAccessIteratorResidualLast<
|
1186 |
+
layout::PitchLinearShape<Shape::kRow, Shape::kColumn>,
|
1187 |
+
Element,
|
1188 |
+
layout::AffineRankN<2>,
|
1189 |
+
(kAdvanceRank == 0 ? 0 : 1),
|
1190 |
+
ThreadMap,
|
1191 |
+
AccessType>;
|
1192 |
+
|
1193 |
+
static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector;
|
1194 |
+
|
1195 |
+
/// Predicate vector stores mask to guard accesses
|
1196 |
+
using Mask = typename UnderlyingIterator::Mask;
|
1197 |
+
|
1198 |
+
/// Parameters object is precomputed state and is host-constructible
|
1199 |
+
class Params {
|
1200 |
+
private:
|
1201 |
+
friend PredicatedTileAccessIteratorResidualLast;
|
1202 |
+
|
1203 |
+
/// Parameters object
|
1204 |
+
typename UnderlyingIterator::Params params_;
|
1205 |
+
|
1206 |
+
public:
|
1207 |
+
/// Default ctor
|
1208 |
+
CUTLASS_HOST_DEVICE
|
1209 |
+
Params() {}
|
1210 |
+
|
1211 |
+
/// Construct the Params object given an AffineRankN<2> tensor's layout
|
1212 |
+
CUTLASS_HOST_DEVICE
|
1213 |
+
Params(Layout const& layout)
|
1214 |
+
: params_(layout::AffineRankN<2>(layout.stride(0), layout.stride(1))){};
|
1215 |
+
};
|
1216 |
+
|
1217 |
+
private:
|
1218 |
+
//
|
1219 |
+
// Data members
|
1220 |
+
//
|
1221 |
+
|
1222 |
+
/// Underlying AffineRankN<2> tile iterator
|
1223 |
+
UnderlyingIterator iterator_;
|
1224 |
+
|
1225 |
+
public:
|
1226 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
1227 |
+
/// and thread ID
|
1228 |
+
CUTLASS_HOST_DEVICE
|
1229 |
+
PredicatedTileAccessIteratorResidualLast(
|
1230 |
+
///< Precomputed parameters object
|
1231 |
+
Params const& params,
|
1232 |
+
///< Pointer to start of tensor
|
1233 |
+
Pointer pointer,
|
1234 |
+
///< Extent of tensor
|
1235 |
+
TensorCoord extent,
|
1236 |
+
///< ID of each participating thread
|
1237 |
+
int thread_id,
|
1238 |
+
///< Initial offset of threadblock
|
1239 |
+
TensorCoord const& threadblock_offset,
|
1240 |
+
int const* indices = nullptr ///< gather/scatter indices, note no support for
|
1241 |
+
///< gather/scatter at this specialization
|
1242 |
+
)
|
1243 |
+
: iterator_(params.params_,
|
1244 |
+
pointer,
|
1245 |
+
layout::PitchLinearCoord(extent.row(), extent.column()),
|
1246 |
+
thread_id,
|
1247 |
+
layout::PitchLinearCoord(threadblock_offset.row(), threadblock_offset.column()))
|
1248 |
+
{
|
1249 |
+
}
|
1250 |
+
|
1251 |
+
/// Construct a PredicatedTileAccessIteratorResidualLast with zero threadblock
|
1252 |
+
/// offset
|
1253 |
+
CUTLASS_HOST_DEVICE
|
1254 |
+
PredicatedTileAccessIteratorResidualLast(
|
1255 |
+
Params const& params, ///< Precomputed parameters object
|
1256 |
+
Pointer pointer, ///< Pointer to start of tensor
|
1257 |
+
TensorCoord extent, ///< Extent of tensor
|
1258 |
+
int thread_id ///< ID of each participating thread
|
1259 |
+
)
|
1260 |
+
: PredicatedTileAccessIteratorResidualLast(params,
|
1261 |
+
pointer,
|
1262 |
+
extent,
|
1263 |
+
thread_id,
|
1264 |
+
make_Coord(0, 0))
|
1265 |
+
{
|
1266 |
+
}
|
1267 |
+
|
1268 |
+
/// Overrides the internal iteration index
|
1269 |
+
CUTLASS_HOST_DEVICE
|
1270 |
+
void set_iteration_index(int index) { iterator_.set_iteration_index(index); }
|
1271 |
+
|
1272 |
+
CUTLASS_HOST_DEVICE
|
1273 |
+
void set_residual_tile(bool enable) { iterator_.set_residual_tile(enable); }
|
1274 |
+
|
1275 |
+
/// Adds a pointer offset in units of Element
|
1276 |
+
CUTLASS_HOST_DEVICE
|
1277 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
1278 |
+
{
|
1279 |
+
iterator_.add_pointer_offset(pointer_offset);
|
1280 |
+
}
|
1281 |
+
|
1282 |
+
/// Advances an iterator along logical dimensions of matrix in units of whole
|
1283 |
+
/// tiles
|
1284 |
+
CUTLASS_HOST_DEVICE
|
1285 |
+
void add_tile_offset(TensorCoord const& tile_offset)
|
1286 |
+
{
|
1287 |
+
iterator_.add_tile_offset(make_Coord(tile_offset.row(), tile_offset.column()));
|
1288 |
+
}
|
1289 |
+
|
1290 |
+
/// Returns a pointer
|
1291 |
+
CUTLASS_HOST_DEVICE
|
1292 |
+
AccessType* get() const { return reinterpret_cast<AccessType*>(iterator_.get()); }
|
1293 |
+
|
1294 |
+
/// Advances to the next tile in memory.
|
1295 |
+
///
|
1296 |
+
/// The first time this method is called, predicates are updated, and the
|
1297 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1298 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1299 |
+
/// pointer.
|
1300 |
+
CUTLASS_HOST_DEVICE
|
1301 |
+
PredicatedTileAccessIteratorResidualLast& operator++()
|
1302 |
+
{
|
1303 |
+
++iterator_;
|
1304 |
+
return *this;
|
1305 |
+
}
|
1306 |
+
|
1307 |
+
/// Advances to the next tile in memory.
|
1308 |
+
///
|
1309 |
+
/// The first time this method is called, predicates are updated, and the
|
1310 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1311 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1312 |
+
/// pointer.
|
1313 |
+
CUTLASS_HOST_DEVICE
|
1314 |
+
PredicatedTileAccessIteratorResidualLast operator++(int)
|
1315 |
+
{
|
1316 |
+
PredicatedTileAccessIteratorResidualLast self(*this);
|
1317 |
+
operator++();
|
1318 |
+
return self;
|
1319 |
+
}
|
1320 |
+
|
1321 |
+
/// Clears the predicate set efficiently
|
1322 |
+
CUTLASS_HOST_DEVICE
|
1323 |
+
void clear_mask(bool enable = true) { iterator_.clear_mask(enable); }
|
1324 |
+
|
1325 |
+
/// Clears the predicate set efficiently
|
1326 |
+
CUTLASS_HOST_DEVICE
|
1327 |
+
void enable_mask() { iterator_.enable_mask(); }
|
1328 |
+
|
1329 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
1330 |
+
CUTLASS_HOST_DEVICE
|
1331 |
+
void set_mask(Mask const& mask) { iterator_.set_mask(mask); }
|
1332 |
+
|
1333 |
+
/// Gets the mask
|
1334 |
+
CUTLASS_HOST_DEVICE
|
1335 |
+
void get_mask(Mask& mask) { iterator_.get_mask(mask); }
|
1336 |
+
|
1337 |
+
/// Returns whether access is valid or not
|
1338 |
+
CUTLASS_HOST_DEVICE
|
1339 |
+
bool valid() { return iterator_.valid(); }
|
1340 |
+
};
|
1341 |
+
|
1342 |
+
////////////////////////////////////////////////////////////////////////////////
|
1343 |
+
|
1344 |
+
/// Specialization of PredicatedTileAccessIteratorResidualLast for affine rank-2
|
1345 |
+
/// row-major data.
|
1346 |
+
///
|
1347 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
1348 |
+
/// ReadableContiguousTileIteratorConcept |
|
1349 |
+
/// WriteableContiguousTileIteratorConcept |
|
1350 |
+
/// MaskedTileIteratorConcept
|
1351 |
+
///
|
1352 |
+
template <typename Shape_,
|
1353 |
+
typename Element_,
|
1354 |
+
int AdvanceRank,
|
1355 |
+
typename ThreadMap_,
|
1356 |
+
typename AccessType_>
|
1357 |
+
class PredicatedTileAccessIteratorResidualLast<Shape_,
|
1358 |
+
Element_,
|
1359 |
+
layout::AffineRank2RowMajor,
|
1360 |
+
AdvanceRank,
|
1361 |
+
ThreadMap_,
|
1362 |
+
AccessType_,
|
1363 |
+
false> {
|
1364 |
+
public:
|
1365 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
1366 |
+
"Specialization for pitch-linear iterator may along advance along the "
|
1367 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
1368 |
+
|
1369 |
+
using Shape = Shape_;
|
1370 |
+
using Element = Element_;
|
1371 |
+
using Layout = layout::AffineRank2RowMajor;
|
1372 |
+
static int const kAdvanceRank = AdvanceRank;
|
1373 |
+
using ThreadMap = ThreadMap_;
|
1374 |
+
using AccessType = AccessType_;
|
1375 |
+
|
1376 |
+
using Index = typename Layout::Index;
|
1377 |
+
using LongIndex = typename Layout::LongIndex;
|
1378 |
+
|
1379 |
+
using TensorRef = TensorRef<Element, Layout>;
|
1380 |
+
using TensorView = TensorView<Element, Layout>;
|
1381 |
+
using TensorCoord = typename Layout::TensorCoord;
|
1382 |
+
|
1383 |
+
using Pointer = Element*;
|
1384 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
1385 |
+
|
1386 |
+
// Map to the underlying AffineRankN<2> layout
|
1387 |
+
using UnderlyingIterator = PredicatedTileAccessIteratorResidualLast<
|
1388 |
+
layout::PitchLinearShape<Shape::kColumn, Shape::kRow>,
|
1389 |
+
Element,
|
1390 |
+
layout::AffineRankN<2>,
|
1391 |
+
(kAdvanceRank == 0 ? 1 : 0),
|
1392 |
+
ThreadMap,
|
1393 |
+
AccessType>;
|
1394 |
+
|
1395 |
+
static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector;
|
1396 |
+
|
1397 |
+
/// Predicate vector stores mask to guard accesses
|
1398 |
+
using Mask = typename UnderlyingIterator::Mask;
|
1399 |
+
|
1400 |
+
/// Parameters object is precomputed state and is host-constructible
|
1401 |
+
class Params {
|
1402 |
+
private:
|
1403 |
+
friend PredicatedTileAccessIteratorResidualLast;
|
1404 |
+
|
1405 |
+
/// Parameters object
|
1406 |
+
typename UnderlyingIterator::Params params_;
|
1407 |
+
|
1408 |
+
public:
|
1409 |
+
/// Default ctor
|
1410 |
+
CUTLASS_HOST_DEVICE
|
1411 |
+
Params() {}
|
1412 |
+
|
1413 |
+
/// Construct the Params object given an AffineRankN<2> tensor's layout
|
1414 |
+
CUTLASS_HOST_DEVICE
|
1415 |
+
Params(Layout const& layout)
|
1416 |
+
: params_(layout::AffineRankN<2>(layout.stride(1), layout.stride(0))){};
|
1417 |
+
};
|
1418 |
+
|
1419 |
+
private:
|
1420 |
+
//
|
1421 |
+
// Data members
|
1422 |
+
//
|
1423 |
+
|
1424 |
+
/// Underlying AffineRankN<2> tile iterator
|
1425 |
+
UnderlyingIterator iterator_;
|
1426 |
+
|
1427 |
+
public:
|
1428 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
1429 |
+
/// and thread ID
|
1430 |
+
CUTLASS_HOST_DEVICE
|
1431 |
+
PredicatedTileAccessIteratorResidualLast(
|
1432 |
+
///< Precomputed parameters object
|
1433 |
+
Params const& params,
|
1434 |
+
///< Pointer to start of tensor
|
1435 |
+
Pointer pointer,
|
1436 |
+
///< Extent of tensor
|
1437 |
+
TensorCoord extent,
|
1438 |
+
///< ID of each participating thread
|
1439 |
+
int thread_id,
|
1440 |
+
///< Initial offset of threadblock
|
1441 |
+
TensorCoord const& threadblock_offset,
|
1442 |
+
int const* indices = nullptr ///< gather/scatter indices, note no support for
|
1443 |
+
///< gather/scatter at this specialization
|
1444 |
+
)
|
1445 |
+
: iterator_(params.params_,
|
1446 |
+
pointer,
|
1447 |
+
layout::PitchLinearCoord(extent.column(), extent.row()),
|
1448 |
+
thread_id,
|
1449 |
+
layout::PitchLinearCoord(threadblock_offset.column(), threadblock_offset.row()))
|
1450 |
+
{
|
1451 |
+
}
|
1452 |
+
|
1453 |
+
/// Construct a PredicatedTileAccessIteratorResidualLast with zero threadblock
|
1454 |
+
/// offset
|
1455 |
+
CUTLASS_HOST_DEVICE
|
1456 |
+
PredicatedTileAccessIteratorResidualLast(
|
1457 |
+
Params const& params, ///< Precomputed parameters object
|
1458 |
+
Pointer pointer, ///< Pointer to start of tensor
|
1459 |
+
TensorCoord extent, ///< Extent of tensor
|
1460 |
+
int thread_id ///< ID of each participating thread
|
1461 |
+
)
|
1462 |
+
: PredicatedTileAccessIteratorResidualLast(params,
|
1463 |
+
pointer,
|
1464 |
+
extent,
|
1465 |
+
thread_id,
|
1466 |
+
make_Coord(0, 0))
|
1467 |
+
{
|
1468 |
+
}
|
1469 |
+
|
1470 |
+
/// Overrides the internal iteration index
|
1471 |
+
CUTLASS_HOST_DEVICE
|
1472 |
+
void set_iteration_index(int index) { iterator_.set_iteration_index(index); }
|
1473 |
+
|
1474 |
+
CUTLASS_HOST_DEVICE
|
1475 |
+
void set_residual_tile(bool enable) { iterator_.set_residual_tile(enable); }
|
1476 |
+
|
1477 |
+
/// Adds a pointer offset in units of Element
|
1478 |
+
CUTLASS_HOST_DEVICE
|
1479 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
1480 |
+
{
|
1481 |
+
iterator_.add_pointer_offset(pointer_offset);
|
1482 |
+
}
|
1483 |
+
|
1484 |
+
/// Advances an iterator along logical dimensions of matrix in units of whole
|
1485 |
+
/// tiles
|
1486 |
+
CUTLASS_HOST_DEVICE
|
1487 |
+
void add_tile_offset(TensorCoord const& tile_offset)
|
1488 |
+
{
|
1489 |
+
iterator_.add_tile_offset(make_Coord(tile_offset.column(), tile_offset.row()));
|
1490 |
+
}
|
1491 |
+
|
1492 |
+
/// Returns a pointer
|
1493 |
+
CUTLASS_HOST_DEVICE
|
1494 |
+
AccessType* get() const { return reinterpret_cast<AccessType*>(iterator_.get()); }
|
1495 |
+
|
1496 |
+
/// Advances to the next tile in memory.
|
1497 |
+
///
|
1498 |
+
/// The first time this method is called, predicates are updated, and the
|
1499 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1500 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1501 |
+
/// pointer.
|
1502 |
+
CUTLASS_HOST_DEVICE
|
1503 |
+
PredicatedTileAccessIteratorResidualLast& operator++()
|
1504 |
+
{
|
1505 |
+
++iterator_;
|
1506 |
+
return *this;
|
1507 |
+
}
|
1508 |
+
|
1509 |
+
/// Advances to the next tile in memory.
|
1510 |
+
///
|
1511 |
+
/// The first time this method is called, predicates are updated, and the
|
1512 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1513 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1514 |
+
/// pointer.
|
1515 |
+
CUTLASS_HOST_DEVICE
|
1516 |
+
PredicatedTileAccessIteratorResidualLast operator++(int)
|
1517 |
+
{
|
1518 |
+
PredicatedTileAccessIteratorResidualLast self(*this);
|
1519 |
+
operator++();
|
1520 |
+
return self;
|
1521 |
+
}
|
1522 |
+
|
1523 |
+
/// Clears the predicate set efficiently
|
1524 |
+
CUTLASS_HOST_DEVICE
|
1525 |
+
void clear_mask(bool enable = true) { iterator_.clear_mask(enable); }
|
1526 |
+
|
1527 |
+
/// Clears the predicate set efficiently
|
1528 |
+
CUTLASS_HOST_DEVICE
|
1529 |
+
void enable_mask() { iterator_.enable_mask(); }
|
1530 |
+
|
1531 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
1532 |
+
CUTLASS_HOST_DEVICE
|
1533 |
+
void set_mask(Mask const& mask) { iterator_.set_mask(mask); }
|
1534 |
+
|
1535 |
+
/// Gets the mask
|
1536 |
+
CUTLASS_HOST_DEVICE
|
1537 |
+
void get_mask(Mask& mask) { iterator_.get_mask(mask); }
|
1538 |
+
|
1539 |
+
/// Returns whether access is valid or not
|
1540 |
+
CUTLASS_HOST_DEVICE
|
1541 |
+
bool valid() { return iterator_.valid(); }
|
1542 |
+
};
|
1543 |
+
|
1544 |
+
////////////////////////////////////////////////////////////////////////////////
|
1545 |
+
|
1546 |
+
/// Specialization of PredicatedTileAccessIteratorResidualLast for column-major
|
1547 |
+
/// interleaved data. It is mapped to the congruous layout.
|
1548 |
+
///
|
1549 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
1550 |
+
/// ReadableContiguousTileIteratorConcept |
|
1551 |
+
/// WriteableContiguousTileIteratorConcept |
|
1552 |
+
/// MaskedTileIteratorConcept
|
1553 |
+
///
|
1554 |
+
|
1555 |
+
template <typename Shape_,
|
1556 |
+
typename Element_,
|
1557 |
+
int AdvanceRank,
|
1558 |
+
typename ThreadMap_,
|
1559 |
+
typename AccessType_,
|
1560 |
+
int InterleavedK>
|
1561 |
+
class PredicatedTileAccessIteratorResidualLast<Shape_,
|
1562 |
+
Element_,
|
1563 |
+
layout::ColumnMajorInterleaved<InterleavedK>,
|
1564 |
+
AdvanceRank,
|
1565 |
+
ThreadMap_,
|
1566 |
+
AccessType_,
|
1567 |
+
false> {
|
1568 |
+
public:
|
1569 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
1570 |
+
"Specialization for pitch-linear iterator may along advance along the "
|
1571 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
1572 |
+
|
1573 |
+
using Shape = Shape_;
|
1574 |
+
using Element = Element_;
|
1575 |
+
static int const kInterleavedK = InterleavedK;
|
1576 |
+
using Layout = layout::ColumnMajorInterleaved<kInterleavedK>;
|
1577 |
+
static int const kAdvanceRank = AdvanceRank;
|
1578 |
+
using ThreadMap = ThreadMap_;
|
1579 |
+
using AccessType = AccessType_;
|
1580 |
+
|
1581 |
+
using Index = typename Layout::Index;
|
1582 |
+
using LongIndex = typename Layout::LongIndex;
|
1583 |
+
|
1584 |
+
using TensorRef = TensorRef<Element, Layout>;
|
1585 |
+
using TensorView = TensorView<Element, Layout>;
|
1586 |
+
using TensorCoord = typename Layout::TensorCoord;
|
1587 |
+
|
1588 |
+
using Pointer = Element*;
|
1589 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
1590 |
+
|
1591 |
+
using UnderlyingIterator = PredicatedTileAccessIteratorResidualLast<
|
1592 |
+
layout::PitchLinearShape<Shape::kRow * kInterleavedK, Shape::kColumn / kInterleavedK>,
|
1593 |
+
Element,
|
1594 |
+
layout::PitchLinear,
|
1595 |
+
(kAdvanceRank == 0 ? 0 : 1),
|
1596 |
+
ThreadMap,
|
1597 |
+
AccessType>;
|
1598 |
+
|
1599 |
+
static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector;
|
1600 |
+
|
1601 |
+
/// Predicate vector stores mask to guard accesses
|
1602 |
+
using Mask = typename UnderlyingIterator::Mask;
|
1603 |
+
|
1604 |
+
/// Parameters object is precomputed state and is host-constructible
|
1605 |
+
class Params {
|
1606 |
+
private:
|
1607 |
+
friend PredicatedTileAccessIteratorResidualLast;
|
1608 |
+
|
1609 |
+
/// Parameters object
|
1610 |
+
typename UnderlyingIterator::Params params_;
|
1611 |
+
|
1612 |
+
public:
|
1613 |
+
CUTLASS_HOST_DEVICE
|
1614 |
+
Params() {}
|
1615 |
+
|
1616 |
+
/// Construct the Params object given a pitch-linear tensor's layout
|
1617 |
+
CUTLASS_HOST_DEVICE
|
1618 |
+
Params(Layout const& layout) : params_(layout::PitchLinear(layout.stride(0))) {}
|
1619 |
+
|
1620 |
+
CUTLASS_HOST_DEVICE
|
1621 |
+
Params(typename UnderlyingIterator::Params::Base const& base) : params_(base) {}
|
1622 |
+
};
|
1623 |
+
|
1624 |
+
private:
|
1625 |
+
//
|
1626 |
+
// Data members
|
1627 |
+
//
|
1628 |
+
|
1629 |
+
/// Underlying pitch-linear tile iterator
|
1630 |
+
UnderlyingIterator iterator_;
|
1631 |
+
|
1632 |
+
public:
|
1633 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
1634 |
+
/// and thread ID
|
1635 |
+
CUTLASS_HOST_DEVICE
|
1636 |
+
PredicatedTileAccessIteratorResidualLast(
|
1637 |
+
/// Precomputed parameters object
|
1638 |
+
Params const& params,
|
1639 |
+
/// Pointer to start of tensor
|
1640 |
+
Pointer pointer,
|
1641 |
+
/// Extent of tensor
|
1642 |
+
TensorCoord extent,
|
1643 |
+
/// ID of each participating thread
|
1644 |
+
int thread_id,
|
1645 |
+
/// Initial offset of threadblock
|
1646 |
+
TensorCoord const& threadblock_offset,
|
1647 |
+
int const* indices = nullptr ///< gather/scatter indices, note no support for
|
1648 |
+
///< gather/scatter at this specialization
|
1649 |
+
)
|
1650 |
+
: iterator_(params.params_,
|
1651 |
+
pointer,
|
1652 |
+
layout::PitchLinearCoord(extent.row() * kInterleavedK,
|
1653 |
+
extent.column() / kInterleavedK),
|
1654 |
+
thread_id,
|
1655 |
+
layout::PitchLinearCoord(threadblock_offset.row() * kInterleavedK,
|
1656 |
+
threadblock_offset.column() / kInterleavedK))
|
1657 |
+
{
|
1658 |
+
}
|
1659 |
+
|
1660 |
+
/// Construct a PredicatedTileAccessIteratorResidualLast with zero threadblock
|
1661 |
+
/// offset
|
1662 |
+
CUTLASS_HOST_DEVICE
|
1663 |
+
PredicatedTileAccessIteratorResidualLast(
|
1664 |
+
Params const& params, ///< Precomputed parameters object
|
1665 |
+
Pointer pointer, ///< Pointer to start of tensor
|
1666 |
+
TensorCoord extent, ///< Extent of tensor
|
1667 |
+
int thread_id ///< ID of each participating thread
|
1668 |
+
)
|
1669 |
+
: PredicatedTileAccessIteratorResidualLast(params,
|
1670 |
+
pointer,
|
1671 |
+
extent,
|
1672 |
+
thread_id,
|
1673 |
+
make_Coord(0, 0))
|
1674 |
+
{
|
1675 |
+
}
|
1676 |
+
|
1677 |
+
/// Overrides the internal iteration index
|
1678 |
+
CUTLASS_HOST_DEVICE
|
1679 |
+
void set_iteration_index(int index) { iterator_.set_iteration_index(index); }
|
1680 |
+
|
1681 |
+
CUTLASS_HOST_DEVICE
|
1682 |
+
void set_residual_tile(bool enable) { iterator_.set_residual_tile(enable); }
|
1683 |
+
|
1684 |
+
/// Adds a pointer offset in units of Element
|
1685 |
+
CUTLASS_HOST_DEVICE
|
1686 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
1687 |
+
{
|
1688 |
+
iterator_.add_pointer_offset(pointer_offset);
|
1689 |
+
}
|
1690 |
+
|
1691 |
+
/// Advances an iterator along logical dimensions of matrix in units of whole
|
1692 |
+
/// tiles
|
1693 |
+
CUTLASS_HOST_DEVICE
|
1694 |
+
void add_tile_offset(TensorCoord const& tile_offset)
|
1695 |
+
{
|
1696 |
+
iterator_.add_tile_offset({tile_offset.row(), tile_offset.column()});
|
1697 |
+
}
|
1698 |
+
|
1699 |
+
/// Returns a pointer
|
1700 |
+
CUTLASS_HOST_DEVICE
|
1701 |
+
AccessType* get() const { return reinterpret_cast<AccessType*>(iterator_.get()); }
|
1702 |
+
|
1703 |
+
/// Advances to the next tile in memory.
|
1704 |
+
///
|
1705 |
+
/// The first time this method is called, predicates are updated, and the
|
1706 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1707 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1708 |
+
/// pointer.
|
1709 |
+
CUTLASS_HOST_DEVICE
|
1710 |
+
PredicatedTileAccessIteratorResidualLast& operator++()
|
1711 |
+
{
|
1712 |
+
++iterator_;
|
1713 |
+
return *this;
|
1714 |
+
}
|
1715 |
+
|
1716 |
+
/// Advances to the next tile in memory.
|
1717 |
+
///
|
1718 |
+
/// The first time this method is called, predicates are updated, and the
|
1719 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1720 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1721 |
+
/// pointer.
|
1722 |
+
CUTLASS_HOST_DEVICE
|
1723 |
+
PredicatedTileAccessIteratorResidualLast operator++(int)
|
1724 |
+
{
|
1725 |
+
PredicatedTileAccessIteratorResidualLast self(*this);
|
1726 |
+
operator++();
|
1727 |
+
return self;
|
1728 |
+
}
|
1729 |
+
|
1730 |
+
/// Clears the predicate set efficiently
|
1731 |
+
CUTLASS_HOST_DEVICE
|
1732 |
+
void clear_mask(bool enable = true) { iterator_.clear_mask(enable); }
|
1733 |
+
|
1734 |
+
/// Clears the predicate set efficiently
|
1735 |
+
CUTLASS_HOST_DEVICE
|
1736 |
+
void enable_mask() { iterator_.enable_mask(); }
|
1737 |
+
|
1738 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
1739 |
+
CUTLASS_HOST_DEVICE
|
1740 |
+
void set_mask(Mask const& mask) { iterator_.set_mask(mask); }
|
1741 |
+
|
1742 |
+
/// Gets the mask
|
1743 |
+
CUTLASS_HOST_DEVICE
|
1744 |
+
void get_mask(Mask& mask) { iterator_.get_mask(mask); }
|
1745 |
+
|
1746 |
+
/// Returns whether access is valid or not
|
1747 |
+
CUTLASS_HOST_DEVICE
|
1748 |
+
bool valid() { return iterator_.valid(); }
|
1749 |
+
};
|
1750 |
+
|
1751 |
+
////////////////////////////////////////////////////////////////////////////////
|
1752 |
+
|
1753 |
+
/// Specialization of PredicatedTileAccessIteratorResidualLast for row-major
|
1754 |
+
/// interleaved data.
|
1755 |
+
// It is mapped to the congruous layout.
|
1756 |
+
///
|
1757 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
1758 |
+
/// ReadableContiguousTileIteratorConcept |
|
1759 |
+
/// WriteableContiguousTileIteratorConcept |
|
1760 |
+
/// MaskedTileIteratorConcept
|
1761 |
+
///
|
1762 |
+
template <typename Shape_,
|
1763 |
+
typename Element_,
|
1764 |
+
int AdvanceRank,
|
1765 |
+
typename ThreadMap_,
|
1766 |
+
typename AccessType_,
|
1767 |
+
int InterleavedK>
|
1768 |
+
class PredicatedTileAccessIteratorResidualLast<Shape_,
|
1769 |
+
Element_,
|
1770 |
+
layout::RowMajorInterleaved<InterleavedK>,
|
1771 |
+
AdvanceRank,
|
1772 |
+
ThreadMap_,
|
1773 |
+
AccessType_,
|
1774 |
+
false> {
|
1775 |
+
public:
|
1776 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
1777 |
+
"Specialization for pitch-linear iterator may along advance along the "
|
1778 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
1779 |
+
|
1780 |
+
using Shape = Shape_;
|
1781 |
+
using Element = Element_;
|
1782 |
+
static int const kInterleavedK = InterleavedK;
|
1783 |
+
using Layout = layout::RowMajorInterleaved<kInterleavedK>;
|
1784 |
+
static int const kAdvanceRank = AdvanceRank;
|
1785 |
+
using ThreadMap = ThreadMap_;
|
1786 |
+
using AccessType = AccessType_;
|
1787 |
+
|
1788 |
+
using Index = typename Layout::Index;
|
1789 |
+
using LongIndex = typename Layout::LongIndex;
|
1790 |
+
|
1791 |
+
using TensorRef = TensorRef<Element, Layout>;
|
1792 |
+
using TensorView = TensorView<Element, Layout>;
|
1793 |
+
using TensorCoord = typename Layout::TensorCoord;
|
1794 |
+
|
1795 |
+
using Pointer = Element*;
|
1796 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
1797 |
+
|
1798 |
+
using UnderlyingIterator = PredicatedTileAccessIteratorResidualLast<
|
1799 |
+
layout::PitchLinearShape<Shape::kColumn * kInterleavedK, Shape::kRow / kInterleavedK>,
|
1800 |
+
Element,
|
1801 |
+
layout::PitchLinear,
|
1802 |
+
(kAdvanceRank == 0 ? 1 : 0),
|
1803 |
+
ThreadMap,
|
1804 |
+
AccessType>;
|
1805 |
+
|
1806 |
+
static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector;
|
1807 |
+
|
1808 |
+
/// Predicate vector stores mask to guard accesses
|
1809 |
+
using Mask = typename UnderlyingIterator::Mask;
|
1810 |
+
|
1811 |
+
/// Parameters object is precomputed state and is host-constructible
|
1812 |
+
class Params {
|
1813 |
+
private:
|
1814 |
+
friend PredicatedTileAccessIteratorResidualLast;
|
1815 |
+
|
1816 |
+
/// Parameters object
|
1817 |
+
typename UnderlyingIterator::Params params_;
|
1818 |
+
|
1819 |
+
public:
|
1820 |
+
CUTLASS_HOST_DEVICE
|
1821 |
+
Params() {}
|
1822 |
+
|
1823 |
+
/// Construct the Params object given a pitch-linear tensor's layout
|
1824 |
+
CUTLASS_HOST_DEVICE
|
1825 |
+
Params(Layout const& layout) : params_(layout::PitchLinear(layout.stride(0))) {}
|
1826 |
+
|
1827 |
+
CUTLASS_HOST_DEVICE
|
1828 |
+
Params(typename UnderlyingIterator::Params::Base const& base) : params_(base) {}
|
1829 |
+
};
|
1830 |
+
|
1831 |
+
private:
|
1832 |
+
//
|
1833 |
+
// Data members
|
1834 |
+
//
|
1835 |
+
|
1836 |
+
/// Underlying pitch-linear tile iterator
|
1837 |
+
UnderlyingIterator iterator_;
|
1838 |
+
|
1839 |
+
public:
|
1840 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
1841 |
+
/// and thread ID
|
1842 |
+
CUTLASS_HOST_DEVICE
|
1843 |
+
PredicatedTileAccessIteratorResidualLast(
|
1844 |
+
/// Precomputed parameters object
|
1845 |
+
Params const& params,
|
1846 |
+
/// Pointer to start of tensor
|
1847 |
+
Pointer pointer,
|
1848 |
+
/// Extent of tensor
|
1849 |
+
TensorCoord extent,
|
1850 |
+
/// ID of each participating thread
|
1851 |
+
int thread_id,
|
1852 |
+
/// Initial offset of threadblock
|
1853 |
+
TensorCoord const& threadblock_offset,
|
1854 |
+
int const* indices = nullptr ///< gather/scatter indices, note no support for
|
1855 |
+
///< gather/scatter at this specialization
|
1856 |
+
)
|
1857 |
+
: iterator_(params.params_,
|
1858 |
+
pointer,
|
1859 |
+
layout::PitchLinearCoord(extent.column() * kInterleavedK,
|
1860 |
+
extent.row() / kInterleavedK),
|
1861 |
+
thread_id,
|
1862 |
+
layout::PitchLinearCoord(threadblock_offset.column() * kInterleavedK,
|
1863 |
+
threadblock_offset.row() / kInterleavedK))
|
1864 |
+
{
|
1865 |
+
}
|
1866 |
+
|
1867 |
+
/// Construct a PredicatedTileAccessIteratorResidualLast with zero threadblock
|
1868 |
+
/// offset
|
1869 |
+
CUTLASS_HOST_DEVICE
|
1870 |
+
PredicatedTileAccessIteratorResidualLast(
|
1871 |
+
Params const& params, ///< Precomputed parameters object
|
1872 |
+
Pointer pointer, ///< Pointer to start of tensor
|
1873 |
+
TensorCoord extent, ///< Extent of tensor
|
1874 |
+
int thread_id ///< ID of each participating thread
|
1875 |
+
)
|
1876 |
+
: PredicatedTileAccessIteratorResidualLast(params,
|
1877 |
+
pointer,
|
1878 |
+
extent,
|
1879 |
+
thread_id,
|
1880 |
+
make_Coord(0, 0))
|
1881 |
+
{
|
1882 |
+
}
|
1883 |
+
|
1884 |
+
/// Overrides the internal iteration index
|
1885 |
+
CUTLASS_HOST_DEVICE
|
1886 |
+
void set_iteration_index(int index) { iterator_.set_iteration_index(index); }
|
1887 |
+
|
1888 |
+
CUTLASS_HOST_DEVICE
|
1889 |
+
void set_residual_tile(bool enable) { iterator_.set_residual_tile(enable); }
|
1890 |
+
|
1891 |
+
/// Adds a pointer offset in units of Element
|
1892 |
+
CUTLASS_HOST_DEVICE
|
1893 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
1894 |
+
{
|
1895 |
+
iterator_.add_pointer_offset(pointer_offset);
|
1896 |
+
}
|
1897 |
+
|
1898 |
+
/// Advances an iterator along logical dimensions of matrix in units of whole
|
1899 |
+
/// tiles
|
1900 |
+
CUTLASS_HOST_DEVICE
|
1901 |
+
void add_tile_offset(TensorCoord const& tile_offset)
|
1902 |
+
{
|
1903 |
+
iterator_.add_tile_offset({tile_offset.column(), tile_offset.row()});
|
1904 |
+
}
|
1905 |
+
|
1906 |
+
/// Returns a pointer
|
1907 |
+
CUTLASS_HOST_DEVICE
|
1908 |
+
AccessType* get() const { return reinterpret_cast<AccessType*>(iterator_.get()); }
|
1909 |
+
|
1910 |
+
/// Advances to the next tile in memory.
|
1911 |
+
///
|
1912 |
+
/// The first time this method is called, predicates are updated, and the
|
1913 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1914 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1915 |
+
/// pointer.
|
1916 |
+
CUTLASS_HOST_DEVICE
|
1917 |
+
PredicatedTileAccessIteratorResidualLast& operator++()
|
1918 |
+
{
|
1919 |
+
++iterator_;
|
1920 |
+
return *this;
|
1921 |
+
}
|
1922 |
+
|
1923 |
+
/// Advances to the next tile in memory.
|
1924 |
+
///
|
1925 |
+
/// The first time this method is called, predicates are updated, and the
|
1926 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1927 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1928 |
+
/// pointer.
|
1929 |
+
CUTLASS_HOST_DEVICE
|
1930 |
+
PredicatedTileAccessIteratorResidualLast operator++(int)
|
1931 |
+
{
|
1932 |
+
PredicatedTileAccessIteratorResidualLast self(*this);
|
1933 |
+
operator++();
|
1934 |
+
return self;
|
1935 |
+
}
|
1936 |
+
|
1937 |
+
/// Clears the predicate set efficiently
|
1938 |
+
CUTLASS_HOST_DEVICE
|
1939 |
+
void clear_mask(bool enable = true) { iterator_.clear_mask(enable); }
|
1940 |
+
|
1941 |
+
/// Clears the predicate set efficiently
|
1942 |
+
CUTLASS_HOST_DEVICE
|
1943 |
+
void enable_mask() { iterator_.enable_mask(); }
|
1944 |
+
|
1945 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
1946 |
+
CUTLASS_HOST_DEVICE
|
1947 |
+
void set_mask(Mask const& mask) { iterator_.set_mask(mask); }
|
1948 |
+
|
1949 |
+
/// Gets the mask
|
1950 |
+
CUTLASS_HOST_DEVICE
|
1951 |
+
void get_mask(Mask& mask) { iterator_.get_mask(mask); }
|
1952 |
+
|
1953 |
+
/// Returns whether access is valid or not
|
1954 |
+
CUTLASS_HOST_DEVICE
|
1955 |
+
bool valid() { return iterator_.valid(); }
|
1956 |
+
};
|
1957 |
+
|
1958 |
+
////////////////////////////////////////////////////////////////////////////////
|
1959 |
+
|
1960 |
+
} // namespace threadblock
|
1961 |
+
} // namespace transform
|
1962 |
+
} // namespace cutlass
|
1963 |
+
|
1964 |
+
////////////////////////////////////////////////////////////////////////////////
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/iterators/predicated_tile_iterator_atomic.h
ADDED
@@ -0,0 +1,886 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
#include <cutlass/cutlass.h>
|
8 |
+
#include <cutlass/epilogue/threadblock/predicated_tile_iterator.h>
|
9 |
+
#include <cutlass/tensor_coord.h>
|
10 |
+
namespace cutlass {
|
11 |
+
namespace epilogue {
|
12 |
+
namespace threadblock {
|
13 |
+
|
14 |
+
template <class AccessType, class Enable = void>
|
15 |
+
struct atomic_store {};
|
16 |
+
|
17 |
+
template <class AccessType>
|
18 |
+
struct atomic_store<AccessType,
|
19 |
+
typename platform::enable_if<
|
20 |
+
platform::is_same<typename AccessType::Element, half_t>::value>::type> {
|
21 |
+
using Element = typename AccessType::Element;
|
22 |
+
static const int kCount = AccessType::kElements;
|
23 |
+
|
24 |
+
CUTLASS_DEVICE
|
25 |
+
atomic_store(AccessType const& D, void* ptr, bool pred_guard)
|
26 |
+
{
|
27 |
+
static_assert(!(kCount % 2), "kCount must be even");
|
28 |
+
half2* p = reinterpret_cast<half2*>(ptr);
|
29 |
+
uint const* data = reinterpret_cast<uint const*>(&D);
|
30 |
+
asm volatile(
|
31 |
+
"{\n"
|
32 |
+
" .reg .pred p;\n"
|
33 |
+
" setp.ne.b32 p, %0, 0;\n"
|
34 |
+
:
|
35 |
+
: "r"((int)pred_guard));
|
36 |
+
for (int i = 0; i < kCount / 2; i++) {
|
37 |
+
asm volatile(" @p red.relaxed.global.add.noftz.f16x2 [%0], %1;\n"
|
38 |
+
:
|
39 |
+
: "l"(p + i), "r"(data[i]));
|
40 |
+
}
|
41 |
+
asm volatile("}\n" ::);
|
42 |
+
}
|
43 |
+
};
|
44 |
+
|
45 |
+
template <class AccessType>
|
46 |
+
struct atomic_store<AccessType,
|
47 |
+
typename platform::enable_if<
|
48 |
+
platform::is_same<typename AccessType::Element, float>::value>::type> {
|
49 |
+
using Element = typename AccessType::Element;
|
50 |
+
static const int kCount = AccessType::kElements;
|
51 |
+
|
52 |
+
CUTLASS_DEVICE
|
53 |
+
atomic_store(AccessType const& D, void* ptr, bool pred_guard)
|
54 |
+
{
|
55 |
+
Element* p = reinterpret_cast<Element*>(ptr);
|
56 |
+
uint const* data = reinterpret_cast<uint const*>(&D);
|
57 |
+
asm volatile(
|
58 |
+
"{\n"
|
59 |
+
" .reg .pred p;\n"
|
60 |
+
" setp.ne.b32 p, %0, 0;\n"
|
61 |
+
:
|
62 |
+
: "r"((int)pred_guard));
|
63 |
+
for (int i = 0; i < kCount; i++) {
|
64 |
+
asm volatile(" @p red.relaxed.global.add.f32 [%0], %1;\n"
|
65 |
+
:
|
66 |
+
: "l"(p + i), "r"(data[i]));
|
67 |
+
}
|
68 |
+
asm volatile("}\n" ::);
|
69 |
+
}
|
70 |
+
};
|
71 |
+
|
72 |
+
template <typename ThreadMap_, ///< Thread map (conept: OutputTileThreadMap)
|
73 |
+
typename Element_, ///< Element data type
|
74 |
+
int Rank>
|
75 |
+
class PredicatedTileIteratorAffineRankNAtomic {
|
76 |
+
public:
|
77 |
+
using ThreadMap = ThreadMap_;
|
78 |
+
using Shape = typename ThreadMap::Shape;
|
79 |
+
|
80 |
+
using Element = Element_;
|
81 |
+
|
82 |
+
using Layout = layout::AffineRankN<Rank>;
|
83 |
+
using TensorRef = TensorRef<Element, Layout>;
|
84 |
+
using TensorView = TensorView<Element, Layout>;
|
85 |
+
using ConstTensorRef = typename TensorRef::ConstTensorRef;
|
86 |
+
|
87 |
+
using Index = typename Layout::Index;
|
88 |
+
using LongIndex = typename Layout::LongIndex;
|
89 |
+
using TensorCoord = typename Layout::TensorCoord;
|
90 |
+
|
91 |
+
static int const kElementsPerAccess = ThreadMap::kElementsPerAccess;
|
92 |
+
static int const kThreads = ThreadMap::kThreads;
|
93 |
+
static int const kIterations = ThreadMap::Count::kTile;
|
94 |
+
|
95 |
+
static_assert(ThreadMap::Iterations::kRow > 0, "ThreadMap::Iterations::kRow must be > 0");
|
96 |
+
static_assert(ThreadMap::Iterations::kGroup > 0, "ThreadMap::Iterations::kGroup must be > 0");
|
97 |
+
static_assert(ThreadMap::Iterations::kCluster > 0,
|
98 |
+
"ThreadMap::Iterations::kCluster must be > 0");
|
99 |
+
static_assert(ThreadMap::Iterations::kColumn > 0, "ThreadMap::Iterations::kColumn must be > 0");
|
100 |
+
static_assert(!(Layout::kRank % 2),
|
101 |
+
"Layout rank must be even. This assumes the first half of the "
|
102 |
+
"modes correspond to the 'row' "
|
103 |
+
"and the second half of the modes correspond to the 'column'");
|
104 |
+
|
105 |
+
static bool const kBigEndian = false;
|
106 |
+
|
107 |
+
/// Fragment object
|
108 |
+
using Fragment = Array<Element,
|
109 |
+
ThreadMap::Iterations::kColumn * ThreadMap::Iterations::kRow *
|
110 |
+
ThreadMap::Iterations::kGroup * ThreadMap::Iterations::kCluster *
|
111 |
+
ThreadMap::kElementsPerAccess>;
|
112 |
+
|
113 |
+
/// Memory access size
|
114 |
+
using AccessType = AlignedArray<Element, ThreadMap::kElementsPerAccess>;
|
115 |
+
|
116 |
+
//
|
117 |
+
// Parameters struct
|
118 |
+
//
|
119 |
+
|
120 |
+
/// Parameters structure
|
121 |
+
struct Params {
|
122 |
+
//
|
123 |
+
// Data members
|
124 |
+
//
|
125 |
+
|
126 |
+
Layout layout;
|
127 |
+
|
128 |
+
/// Stride in units of bytes along M modes
|
129 |
+
Coord<Layout::kRank / 2, typename Layout::LongIndex> stride_m;
|
130 |
+
|
131 |
+
/// Stride in units of bytes along N modes
|
132 |
+
Coord<Layout::kRank / 2, typename Layout::LongIndex> stride_n;
|
133 |
+
|
134 |
+
/// Fast divmod objects divided by tensor extents
|
135 |
+
FastDivmod divmod_m[(Layout::kRank == 2) ? 1 : (Layout::kRank / 2 - 1)];
|
136 |
+
|
137 |
+
/// Fast divmod objects divided by tensor extents
|
138 |
+
FastDivmod divmod_n[(Layout::kRank == 2) ? 1 : (Layout::kRank / 2 - 1)];
|
139 |
+
|
140 |
+
int64_t rank2_inc_col;
|
141 |
+
int64_t rank2_inc_row;
|
142 |
+
|
143 |
+
//
|
144 |
+
// Methods
|
145 |
+
//
|
146 |
+
CUTLASS_HOST_DEVICE
|
147 |
+
Params() {}
|
148 |
+
|
149 |
+
CUTLASS_HOST_DEVICE
|
150 |
+
Params(TensorCoord const& extent, Layout const& layout_) : layout(layout_)
|
151 |
+
{
|
152 |
+
CUTLASS_PRAGMA_UNROLL
|
153 |
+
for (int i = 0; i < Layout::kRank / 2; ++i) {
|
154 |
+
stride_m[i] = OffsetBytes<Element>(layout_.stride()[i]);
|
155 |
+
stride_n[i] = OffsetBytes<Element>(layout_.stride()[i + Layout::kRank / 2]);
|
156 |
+
}
|
157 |
+
|
158 |
+
if (kBigEndian) {
|
159 |
+
// "Big Endian" scheme
|
160 |
+
CUTLASS_PRAGMA_UNROLL
|
161 |
+
for (int i = 0; i < Layout::kRank / 2 - 1; ++i) {
|
162 |
+
divmod_m[i] = FastDivmod(extent[i + 1]);
|
163 |
+
divmod_n[i] = FastDivmod(extent[i + Layout::kRank / 2 + 1]);
|
164 |
+
}
|
165 |
+
} else {
|
166 |
+
// "Little Endian" scheme
|
167 |
+
CUTLASS_PRAGMA_UNROLL
|
168 |
+
for (int i = 0; i < Layout::kRank / 2 - 1; ++i) {
|
169 |
+
divmod_m[i] = FastDivmod(extent[i]);
|
170 |
+
divmod_n[i] = FastDivmod(extent[i + Layout::kRank / 2]);
|
171 |
+
}
|
172 |
+
}
|
173 |
+
}
|
174 |
+
|
175 |
+
CUTLASS_HOST_DEVICE
|
176 |
+
Params(Layout const& layout_) : layout(layout_)
|
177 |
+
{
|
178 |
+
CUTLASS_PRAGMA_UNROLL
|
179 |
+
for (int i = 0; i < Layout::kRank / 2; ++i) {
|
180 |
+
stride_m[i] = OffsetBytes<Element>(layout_.stride()[i]);
|
181 |
+
stride_n[i] = OffsetBytes<Element>(layout_.stride()[i + Layout::kRank / 2]);
|
182 |
+
}
|
183 |
+
|
184 |
+
rank2_inc_col = ThreadMap::Delta::kColumn * stride_n[0];
|
185 |
+
rank2_inc_row = ThreadMap::Delta::kRow * stride_m[0];
|
186 |
+
}
|
187 |
+
};
|
188 |
+
|
189 |
+
/// Mask object
|
190 |
+
struct Mask {
|
191 |
+
static int const kCount = ThreadMap::Iterations::kColumn;
|
192 |
+
|
193 |
+
/// Predicate state
|
194 |
+
bool predicates[kCount];
|
195 |
+
|
196 |
+
//
|
197 |
+
// Mask
|
198 |
+
//
|
199 |
+
CUTLASS_HOST_DEVICE
|
200 |
+
Mask() { enable(); }
|
201 |
+
|
202 |
+
///< Efficiently disables all accesses guarded by mask
|
203 |
+
CUTLASS_HOST_DEVICE void clear()
|
204 |
+
{
|
205 |
+
CUTLASS_PRAGMA_UNROLL
|
206 |
+
for (int i = 0; i < kCount; ++i) { predicates[i] = false; }
|
207 |
+
}
|
208 |
+
|
209 |
+
///< CUTLASS_HOST_DEVICE enables all accesses guarded by mask
|
210 |
+
CUTLASS_DEVICE void enable()
|
211 |
+
{
|
212 |
+
CUTLASS_PRAGMA_UNROLL
|
213 |
+
for (int i = 0; i < kCount; ++i) { predicates[i] = true; }
|
214 |
+
}
|
215 |
+
};
|
216 |
+
|
217 |
+
private:
|
218 |
+
//
|
219 |
+
// Data members
|
220 |
+
//
|
221 |
+
|
222 |
+
/// Parameters structure containing reference and precomputed state.
|
223 |
+
Params params_;
|
224 |
+
|
225 |
+
/// Byte-level pointer
|
226 |
+
uint8_t* byte_pointer_;
|
227 |
+
|
228 |
+
/// Array of boolean values to contain steady-state predicates
|
229 |
+
Mask mask_;
|
230 |
+
|
231 |
+
/// Extent of the matrix tile in rows
|
232 |
+
Index extent_row_;
|
233 |
+
|
234 |
+
/// Extent of the matrix tile in columns
|
235 |
+
Index extent_col_;
|
236 |
+
|
237 |
+
/// A thread's starting row position (assuming steady-state predicates have
|
238 |
+
/// been computed)
|
239 |
+
Index thread_start_row_;
|
240 |
+
|
241 |
+
/// A thread's starting column position (assuming steady-state predicates have
|
242 |
+
/// been computed)
|
243 |
+
Index thread_start_column_;
|
244 |
+
|
245 |
+
/// Internal state counter
|
246 |
+
int state_[3];
|
247 |
+
|
248 |
+
/// Offsets in columns, cached for performance
|
249 |
+
int64_t offset_modes_n_[ThreadMap::Iterations::kColumn];
|
250 |
+
|
251 |
+
//
|
252 |
+
// Static asserts about internal strides
|
253 |
+
//
|
254 |
+
|
255 |
+
static_assert(sizeof(extent_row_) == 4, "Expected 32b extents");
|
256 |
+
static_assert(sizeof(thread_start_row_) == 4, "Expected 32b extents");
|
257 |
+
|
258 |
+
private:
|
259 |
+
//
|
260 |
+
// Methods
|
261 |
+
//
|
262 |
+
|
263 |
+
public:
|
264 |
+
//
|
265 |
+
// Methods
|
266 |
+
//
|
267 |
+
|
268 |
+
/// Constructor
|
269 |
+
CUTLASS_DEVICE
|
270 |
+
PredicatedTileIteratorAffineRankNAtomic(
|
271 |
+
Params const& params,
|
272 |
+
Element* pointer,
|
273 |
+
MatrixCoord extent,
|
274 |
+
int thread_idx,
|
275 |
+
MatrixCoord threadblock_offset = MatrixCoord(),
|
276 |
+
int const* indices = nullptr ///< gather/scatter indices, note no support for
|
277 |
+
///< gather/scatter at this specialization
|
278 |
+
)
|
279 |
+
: params_(params)
|
280 |
+
{
|
281 |
+
MatrixCoord thread_offset = ThreadMap::initial_offset(thread_idx) + threadblock_offset;
|
282 |
+
|
283 |
+
extent_row_ = extent.row();
|
284 |
+
extent_col_ = extent.column();
|
285 |
+
|
286 |
+
thread_start_row_ = thread_offset.row();
|
287 |
+
thread_start_column_ = thread_offset.column();
|
288 |
+
|
289 |
+
if (Layout::kRank > 2) {
|
290 |
+
// Initialize predicates
|
291 |
+
CUTLASS_PRAGMA_UNROLL
|
292 |
+
for (int c = 0; c < ThreadMap::Iterations::kColumn; ++c) {
|
293 |
+
//
|
294 |
+
// Compute coordinate and decompose into N modes
|
295 |
+
//
|
296 |
+
|
297 |
+
int coord_n = thread_start_column_ + c * ThreadMap::Delta::kColumn;
|
298 |
+
|
299 |
+
mask_.predicates[c] = coord_n < extent.column();
|
300 |
+
|
301 |
+
Coord<Layout::kRank / 2, Index> modes_n;
|
302 |
+
|
303 |
+
int64_t offset_modes_n = 0;
|
304 |
+
|
305 |
+
if (kBigEndian) {
|
306 |
+
modes_n = CoordinateDecomposition<Layout::kRank / 2>(coord_n, params_.divmod_n);
|
307 |
+
|
308 |
+
offset_modes_n = dot(modes_n, params_.stride_n);
|
309 |
+
} else {
|
310 |
+
modes_n = CoordinateDecompositionLittleEndian<Layout::kRank / 2>(
|
311 |
+
coord_n, params_.divmod_n);
|
312 |
+
|
313 |
+
offset_modes_n = dot(modes_n, params_.stride_n);
|
314 |
+
}
|
315 |
+
|
316 |
+
offset_modes_n_[c] = offset_modes_n;
|
317 |
+
}
|
318 |
+
|
319 |
+
if (!pointer) { mask_.clear(); }
|
320 |
+
}
|
321 |
+
|
322 |
+
// Initialize pointer
|
323 |
+
byte_pointer_ = reinterpret_cast<uint8_t*>(pointer);
|
324 |
+
|
325 |
+
// Initialize internal state counter
|
326 |
+
state_[0] = state_[1] = state_[2] = 0;
|
327 |
+
}
|
328 |
+
|
329 |
+
/// Adds a pointer offset in units of Element
|
330 |
+
CUTLASS_HOST_DEVICE
|
331 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
332 |
+
{
|
333 |
+
byte_pointer_ += pointer_offset * sizeof_bits<Element>::value / 8;
|
334 |
+
}
|
335 |
+
|
336 |
+
/// Stores a fragment to memory
|
337 |
+
CUTLASS_DEVICE
|
338 |
+
void store_with_byte_offset(Fragment const& frag, int64_t byte_offset)
|
339 |
+
{
|
340 |
+
uint8_t* byte_pointer = byte_pointer_;
|
341 |
+
AccessType const* frag_ptr = reinterpret_cast<AccessType const*>(&frag);
|
342 |
+
|
343 |
+
CUTLASS_PRAGMA_UNROLL
|
344 |
+
for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) {
|
345 |
+
CUTLASS_PRAGMA_UNROLL
|
346 |
+
for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) {
|
347 |
+
int row_begin = thread_start_row_ + group * ThreadMap::Delta::kGroup +
|
348 |
+
cluster * ThreadMap::Delta::kCluster;
|
349 |
+
int64_t offset_modes_m = row_begin * params_.stride_m[0];
|
350 |
+
|
351 |
+
CUTLASS_PRAGMA_UNROLL
|
352 |
+
for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) {
|
353 |
+
int frag_row_idx =
|
354 |
+
(row + ThreadMap::Iterations::kRow *
|
355 |
+
(group + ThreadMap::Iterations::kGroup * cluster));
|
356 |
+
|
357 |
+
//
|
358 |
+
// Compute coordinate and decompose into M modes
|
359 |
+
//
|
360 |
+
|
361 |
+
int coord_m = row * ThreadMap::Delta::kRow + row_begin;
|
362 |
+
|
363 |
+
Coord<Layout::kRank / 2, Index> modes_m;
|
364 |
+
|
365 |
+
if (Layout::kRank > 2) {
|
366 |
+
if (kBigEndian) {
|
367 |
+
modes_m = CoordinateDecomposition<Layout::kRank / 2>(coord_m,
|
368 |
+
params_.divmod_m);
|
369 |
+
} else {
|
370 |
+
modes_m = CoordinateDecompositionLittleEndian<Layout::kRank / 2>(
|
371 |
+
coord_m, params_.divmod_m);
|
372 |
+
}
|
373 |
+
|
374 |
+
offset_modes_m = dot(modes_m, params_.stride_m);
|
375 |
+
}
|
376 |
+
|
377 |
+
//
|
378 |
+
// Compute the offset due to modes M
|
379 |
+
//
|
380 |
+
|
381 |
+
bool row_guard = (coord_m < extent_row_);
|
382 |
+
int64_t offset_modes_n = thread_start_column_ * params_.stride_n[0];
|
383 |
+
|
384 |
+
CUTLASS_PRAGMA_UNROLL
|
385 |
+
for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) {
|
386 |
+
//
|
387 |
+
// Compute coordinate and decompose into N modes
|
388 |
+
//
|
389 |
+
|
390 |
+
if (Layout::kRank > 2) { offset_modes_n = offset_modes_n_[column]; }
|
391 |
+
|
392 |
+
//
|
393 |
+
// Compute the pointer and access
|
394 |
+
//
|
395 |
+
bool guard;
|
396 |
+
if (Layout::kRank > 2) {
|
397 |
+
guard = row_guard && mask_.predicates[column];
|
398 |
+
} else {
|
399 |
+
guard = (coord_m < extent_row_) &&
|
400 |
+
((thread_start_column_ + ThreadMap::Delta::kColumn * column) <
|
401 |
+
extent_col_);
|
402 |
+
}
|
403 |
+
|
404 |
+
atomic_store<AccessType>(
|
405 |
+
frag_ptr[frag_row_idx * ThreadMap::Iterations::kColumn + column],
|
406 |
+
(void*)(byte_pointer + offset_modes_m + offset_modes_n + byte_offset),
|
407 |
+
guard);
|
408 |
+
|
409 |
+
if (Layout::kRank == 2) { offset_modes_n += params_.rank2_inc_col; }
|
410 |
+
}
|
411 |
+
|
412 |
+
if (Layout::kRank == 2) { offset_modes_m += params_.rank2_inc_row; }
|
413 |
+
}
|
414 |
+
}
|
415 |
+
}
|
416 |
+
}
|
417 |
+
|
418 |
+
/// Stores a fragment to memory
|
419 |
+
CUTLASS_DEVICE
|
420 |
+
void store(Fragment const& frag) { store_with_byte_offset(frag, 0); }
|
421 |
+
|
422 |
+
CUTLASS_DEVICE
|
423 |
+
void load(Fragment& frag) {}
|
424 |
+
|
425 |
+
/// Advances to the next position to load or store
|
426 |
+
CUTLASS_HOST_DEVICE
|
427 |
+
PredicatedTileIteratorAffineRankNAtomic& operator++()
|
428 |
+
{
|
429 |
+
++state_[0];
|
430 |
+
thread_start_row_ += ThreadMap::Shape::kRow;
|
431 |
+
|
432 |
+
if (state_[0] == ThreadMap::Count::kRow) {
|
433 |
+
state_[0] = 0;
|
434 |
+
++state_[1];
|
435 |
+
|
436 |
+
thread_start_row_ +=
|
437 |
+
(ThreadMap::Shape::kGroup - 1) * ThreadMap::Shape::kRow * ThreadMap::Count::kRow;
|
438 |
+
|
439 |
+
if (state_[1] == ThreadMap::Count::kGroup) {
|
440 |
+
state_[1] = 0;
|
441 |
+
++state_[2];
|
442 |
+
|
443 |
+
thread_start_row_ += ThreadMap::Count::kGroup * ThreadMap::Shape::kGroup *
|
444 |
+
ThreadMap::Count::kRow * ThreadMap::Shape::kRow;
|
445 |
+
|
446 |
+
if (state_[2] == ThreadMap::Count::kCluster) { state_[2] = 0; }
|
447 |
+
}
|
448 |
+
}
|
449 |
+
|
450 |
+
return *this;
|
451 |
+
}
|
452 |
+
|
453 |
+
///< Efficiently disables all accesses guarded by mask
|
454 |
+
CUTLASS_DEVICE void clear_mask() { mask_.clear(); }
|
455 |
+
|
456 |
+
///< Efficiently enables all accesses guarded by mask
|
457 |
+
CUTLASS_DEVICE void enable_mask() { mask_.enable(); }
|
458 |
+
|
459 |
+
///< Sets the mask
|
460 |
+
CUTLASS_DEVICE void get_mask(Mask& mask) { mask = mask_; }
|
461 |
+
|
462 |
+
///< Sets the mask
|
463 |
+
CUTLASS_DEVICE void set_mask(Mask const& mask) { mask_ = mask; }
|
464 |
+
};
|
465 |
+
|
466 |
+
template <typename ThreadMap_, ///< Thread map (conept: OutputTileThreadMap)
|
467 |
+
typename Element_, ///< Element data type
|
468 |
+
bool ScatterD = false, ///< Scatter D operand or not
|
469 |
+
typename PermuteDLayout = layout::NoPermute, ///< Permute D operand or not
|
470 |
+
bool UseCUDAStore = false>
|
471 |
+
class PredicatedTileIteratorAtomic {
|
472 |
+
public:
|
473 |
+
using ThreadMap = ThreadMap_;
|
474 |
+
using Shape = typename ThreadMap::Shape;
|
475 |
+
|
476 |
+
using Element = Element_;
|
477 |
+
|
478 |
+
using Layout = layout::RowMajor;
|
479 |
+
using TensorRef = TensorRef<Element, Layout>;
|
480 |
+
using ConstTensorRef = typename TensorRef::ConstTensorRef;
|
481 |
+
|
482 |
+
using Index = typename Layout::Index;
|
483 |
+
using LongIndex = typename Layout::LongIndex;
|
484 |
+
using TensorCoord = MatrixCoord;
|
485 |
+
|
486 |
+
static int const kElementsPerAccess = ThreadMap::kElementsPerAccess;
|
487 |
+
static int const kThreads = ThreadMap::kThreads;
|
488 |
+
static int const kIterations = ThreadMap::Count::kTile;
|
489 |
+
|
490 |
+
static bool constexpr PermuteD = !layout::is_trivial_permute<PermuteDLayout>;
|
491 |
+
|
492 |
+
static_assert(ThreadMap::Iterations::kRow > 0, "ThreadMap::Iterations::kRow must be > 0");
|
493 |
+
static_assert(ThreadMap::Iterations::kGroup > 0, "ThreadMap::Iterations::kGroup must be > 0");
|
494 |
+
static_assert(ThreadMap::Iterations::kCluster > 0,
|
495 |
+
"ThreadMap::Iterations::kCluster must be > 0");
|
496 |
+
static_assert(ThreadMap::Iterations::kColumn > 0, "ThreadMap::Iterations::kColumn must be > 0");
|
497 |
+
|
498 |
+
/// Fragment object
|
499 |
+
using Fragment = Array<Element,
|
500 |
+
ThreadMap::Iterations::kColumn * ThreadMap::Iterations::kRow *
|
501 |
+
ThreadMap::Iterations::kGroup * ThreadMap::Iterations::kCluster *
|
502 |
+
ThreadMap::kElementsPerAccess>;
|
503 |
+
|
504 |
+
/// Memory access size
|
505 |
+
using AccessType = AlignedArray<Element, ThreadMap::kElementsPerAccess>;
|
506 |
+
|
507 |
+
//
|
508 |
+
// Parameters struct
|
509 |
+
//
|
510 |
+
|
511 |
+
/// Uses a non-template class
|
512 |
+
struct Params : PredicatedTileIteratorParams {
|
513 |
+
using Base = PredicatedTileIteratorParams;
|
514 |
+
|
515 |
+
CUTLASS_HOST_DEVICE
|
516 |
+
Params() {}
|
517 |
+
|
518 |
+
CUTLASS_HOST_DEVICE
|
519 |
+
Params(Layout const& layout)
|
520 |
+
: PredicatedTileIteratorParams(
|
521 |
+
layout.stride(0) * int(sizeof(AccessType)) / kElementsPerAccess,
|
522 |
+
make_OutputTileThreadMapDesc<ThreadMap>())
|
523 |
+
{
|
524 |
+
}
|
525 |
+
|
526 |
+
CUTLASS_HOST_DEVICE
|
527 |
+
Params(Base const& base) : Base(base) {}
|
528 |
+
};
|
529 |
+
|
530 |
+
/// Mask object
|
531 |
+
struct Mask {
|
532 |
+
static int const kCount = ThreadMap::Iterations::kColumn;
|
533 |
+
|
534 |
+
/// Predicate state
|
535 |
+
bool predicates[kCount];
|
536 |
+
|
537 |
+
//
|
538 |
+
// Mask
|
539 |
+
//
|
540 |
+
CUTLASS_HOST_DEVICE
|
541 |
+
Mask() { enable(); }
|
542 |
+
|
543 |
+
///< Efficiently disables all accesses guarded by mask
|
544 |
+
CUTLASS_HOST_DEVICE void clear()
|
545 |
+
{
|
546 |
+
CUTLASS_PRAGMA_UNROLL
|
547 |
+
for (int i = 0; i < kCount; ++i) { predicates[i] = false; }
|
548 |
+
}
|
549 |
+
|
550 |
+
///< CUTLASS_HOST_DEVICE enables all accesses guarded by mask
|
551 |
+
CUTLASS_DEVICE void enable()
|
552 |
+
{
|
553 |
+
CUTLASS_PRAGMA_UNROLL
|
554 |
+
for (int i = 0; i < kCount; ++i) { predicates[i] = true; }
|
555 |
+
}
|
556 |
+
};
|
557 |
+
|
558 |
+
private:
|
559 |
+
//
|
560 |
+
// Data members
|
561 |
+
//
|
562 |
+
|
563 |
+
/// Parameters structure containing reference and precomputed state.
|
564 |
+
PredicatedTileIteratorParams params_;
|
565 |
+
|
566 |
+
/// Byte-level pointer. This pointer is usually for both load() and store(),
|
567 |
+
/// unless PermuteD is performed. When having PermuteD, byte_pointer_ is only
|
568 |
+
/// for load().
|
569 |
+
uint8_t* byte_pointer_;
|
570 |
+
|
571 |
+
/// Byte-level pointer for store(). Due to PermuteD Op, store_byte_pointer_
|
572 |
+
/// may be with different address computation compared to byte_pointer_.
|
573 |
+
uint8_t* store_byte_pointer_;
|
574 |
+
|
575 |
+
/// Array of boolean values to contain steady-state predicates
|
576 |
+
Mask mask_;
|
577 |
+
|
578 |
+
/// Extent of the matrix tile in rows
|
579 |
+
Index extent_row_;
|
580 |
+
|
581 |
+
/// Extent of the matrix tile in rows
|
582 |
+
Index extent_column_;
|
583 |
+
|
584 |
+
/// A thread's starting row position (assuming steady-state predicates have
|
585 |
+
/// been computed)
|
586 |
+
Index thread_start_row_;
|
587 |
+
|
588 |
+
/// A thread's starting column
|
589 |
+
Index thread_start_column_;
|
590 |
+
|
591 |
+
/// Internal state counter
|
592 |
+
int state_[3];
|
593 |
+
|
594 |
+
/// Scatter indices
|
595 |
+
int const* indices_;
|
596 |
+
|
597 |
+
/// PermuteDLayout
|
598 |
+
PermuteDLayout permute_layout_;
|
599 |
+
|
600 |
+
//
|
601 |
+
// Static asserts about internal strides
|
602 |
+
//
|
603 |
+
|
604 |
+
static_assert(sizeof(extent_row_) == 4, "Expected 32b extents");
|
605 |
+
static_assert(sizeof(thread_start_row_) == 4, "Expected 32b extents");
|
606 |
+
static_assert(sizeof(PredicatedTileIteratorParams::stride) == 8, "Expected 64b strides");
|
607 |
+
|
608 |
+
private:
|
609 |
+
//
|
610 |
+
// Methods
|
611 |
+
//
|
612 |
+
|
613 |
+
public:
|
614 |
+
//
|
615 |
+
// Methods
|
616 |
+
//
|
617 |
+
|
618 |
+
/// Constructor
|
619 |
+
CUTLASS_DEVICE
|
620 |
+
PredicatedTileIteratorAtomic(PredicatedTileIteratorParams const& params,
|
621 |
+
Element* pointer,
|
622 |
+
TensorCoord extent,
|
623 |
+
int thread_idx,
|
624 |
+
TensorCoord threadblock_offset = TensorCoord(),
|
625 |
+
int const* indices = nullptr)
|
626 |
+
: params_(params),
|
627 |
+
indices_(indices),
|
628 |
+
permute_layout_(PitchLinearCoord(extent.column(), extent.row()),
|
629 |
+
params_.stride * kElementsPerAccess / sizeof(AccessType))
|
630 |
+
{
|
631 |
+
TensorCoord thread_offset = ThreadMap::initial_offset(thread_idx) + threadblock_offset;
|
632 |
+
|
633 |
+
extent_row_ = extent.row();
|
634 |
+
extent_column_ = extent.column();
|
635 |
+
|
636 |
+
thread_start_row_ = thread_offset.row();
|
637 |
+
thread_start_column_ = thread_offset.column();
|
638 |
+
|
639 |
+
// Initialize predicates
|
640 |
+
CUTLASS_PRAGMA_UNROLL
|
641 |
+
for (int c = 0; c < ThreadMap::Iterations::kColumn; ++c) {
|
642 |
+
mask_.predicates[c] =
|
643 |
+
((thread_offset.column() + ThreadMap::Delta::kColumn * c) < extent.column());
|
644 |
+
}
|
645 |
+
|
646 |
+
// Null pointer performs no accesses
|
647 |
+
if (!pointer) { mask_.clear(); }
|
648 |
+
|
649 |
+
if (ScatterD && !indices) { mask_.clear(); }
|
650 |
+
|
651 |
+
// Initialize byte_pointer_
|
652 |
+
byte_pointer_ = reinterpret_cast<uint8_t*>(pointer) +
|
653 |
+
LongIndex(thread_offset.row()) * LongIndex(params_.stride) +
|
654 |
+
LongIndex(thread_offset.column()) * sizeof(AccessType) / kElementsPerAccess;
|
655 |
+
|
656 |
+
if (ScatterD) {
|
657 |
+
byte_pointer_ =
|
658 |
+
reinterpret_cast<uint8_t*>(pointer) +
|
659 |
+
LongIndex(thread_offset.column()) * sizeof(AccessType) / kElementsPerAccess;
|
660 |
+
}
|
661 |
+
|
662 |
+
// store_byte_pointer_ is set to be the same with byte_pointer_ unless
|
663 |
+
// PermuteD is used.
|
664 |
+
store_byte_pointer_ = PermuteD ? reinterpret_cast<uint8_t*>(pointer) : byte_pointer_;
|
665 |
+
|
666 |
+
// Initialize internal state counter
|
667 |
+
state_[0] = state_[1] = state_[2] = 0;
|
668 |
+
}
|
669 |
+
|
670 |
+
/// Adds a pointer offset in units of Element
|
671 |
+
CUTLASS_HOST_DEVICE
|
672 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
673 |
+
{
|
674 |
+
store_byte_pointer_ += pointer_offset * sizeof_bits<Element>::value / 8;
|
675 |
+
byte_pointer_ += pointer_offset * sizeof_bits<Element>::value / 8;
|
676 |
+
}
|
677 |
+
|
678 |
+
/// Stores a fragment to memory
|
679 |
+
CUTLASS_DEVICE
|
680 |
+
void store_with_byte_offset(Fragment const& frag, int64_t byte_offset) const
|
681 |
+
{
|
682 |
+
uint8_t* byte_pointer = store_byte_pointer_;
|
683 |
+
AccessType const* frag_ptr = reinterpret_cast<AccessType const*>(&frag);
|
684 |
+
|
685 |
+
CUTLASS_PRAGMA_UNROLL
|
686 |
+
for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) {
|
687 |
+
CUTLASS_PRAGMA_UNROLL
|
688 |
+
for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) {
|
689 |
+
CUTLASS_PRAGMA_UNROLL
|
690 |
+
for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) {
|
691 |
+
int frag_row_idx =
|
692 |
+
(row + ThreadMap::Iterations::kRow *
|
693 |
+
(group + ThreadMap::Iterations::kGroup * cluster));
|
694 |
+
|
695 |
+
int row_offset = row * ThreadMap::Delta::kRow +
|
696 |
+
group * ThreadMap::Delta::kGroup +
|
697 |
+
cluster * ThreadMap::Delta::kCluster;
|
698 |
+
|
699 |
+
bool row_guard = ((row_offset + thread_start_row_) < extent_row_);
|
700 |
+
|
701 |
+
AccessType* memory_pointer =
|
702 |
+
reinterpret_cast<AccessType*>(byte_pointer + byte_offset);
|
703 |
+
|
704 |
+
if (ScatterD && row_guard) {
|
705 |
+
assert(indices_);
|
706 |
+
|
707 |
+
memory_pointer = reinterpret_cast<AccessType*>(
|
708 |
+
byte_pointer + byte_offset +
|
709 |
+
LongIndex(indices_[row_offset + thread_start_row_]) *
|
710 |
+
LongIndex(params_.stride));
|
711 |
+
}
|
712 |
+
|
713 |
+
CUTLASS_PRAGMA_UNROLL
|
714 |
+
for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) {
|
715 |
+
bool guard = row_guard && mask_.predicates[column];
|
716 |
+
|
717 |
+
if (PermuteD) {
|
718 |
+
int col_offset = column * ThreadMap::Delta::kColumn;
|
719 |
+
|
720 |
+
int col = col_offset + thread_start_column_;
|
721 |
+
int row = row_offset + thread_start_row_;
|
722 |
+
|
723 |
+
// Locate memory_pointer
|
724 |
+
memory_pointer = reinterpret_cast<AccessType*>(
|
725 |
+
byte_pointer + byte_offset +
|
726 |
+
permute_layout_(PitchLinearCoord(col, row)) * sizeof(AccessType) /
|
727 |
+
kElementsPerAccess);
|
728 |
+
}
|
729 |
+
atomic_store<AccessType>(
|
730 |
+
frag_ptr[frag_row_idx * ThreadMap::Iterations::kColumn + column],
|
731 |
+
(void*)&memory_pointer[0],
|
732 |
+
guard);
|
733 |
+
|
734 |
+
if (!PermuteD) {
|
735 |
+
memory_pointer += (ThreadMap::Delta::kColumn / kElementsPerAccess);
|
736 |
+
}
|
737 |
+
}
|
738 |
+
|
739 |
+
if (row + 1 < ThreadMap::Iterations::kRow) {
|
740 |
+
if (!ScatterD && !PermuteD) { byte_pointer += params_.increment_row; }
|
741 |
+
}
|
742 |
+
}
|
743 |
+
|
744 |
+
if (group + 1 < ThreadMap::Iterations::kGroup) {
|
745 |
+
byte_pointer += params_.increment_group;
|
746 |
+
}
|
747 |
+
}
|
748 |
+
|
749 |
+
if (cluster + 1 < ThreadMap::Iterations::kCluster) {
|
750 |
+
byte_pointer += params_.increment_cluster;
|
751 |
+
}
|
752 |
+
}
|
753 |
+
}
|
754 |
+
|
755 |
+
/// Stores a fragment to memory
|
756 |
+
CUTLASS_DEVICE
|
757 |
+
void store(Fragment const& frag) const { store_with_byte_offset(frag, 0); }
|
758 |
+
|
759 |
+
CUTLASS_DEVICE
|
760 |
+
void load(Fragment& frag) {}
|
761 |
+
|
762 |
+
CUTLASS_DEVICE
|
763 |
+
MatrixCoord thread_start() const
|
764 |
+
{
|
765 |
+
return MatrixCoord(thread_start_row_, thread_start_column_);
|
766 |
+
}
|
767 |
+
|
768 |
+
/// Need to get the thread start row from the tile iterator
|
769 |
+
CUTLASS_DEVICE
|
770 |
+
int32_t thread_start_row() const { return thread_start_row_; }
|
771 |
+
|
772 |
+
/// Need to get the thread start row from the tile iterator
|
773 |
+
CUTLASS_DEVICE
|
774 |
+
int32_t thread_start_column() const { return thread_start_column_; }
|
775 |
+
|
776 |
+
/// Extent of the matrix in rows
|
777 |
+
CUTLASS_DEVICE
|
778 |
+
Index extent_row() const { return extent_row_; }
|
779 |
+
|
780 |
+
/// Extent of the matrix in columns
|
781 |
+
CUTLASS_DEVICE
|
782 |
+
Index extent_column() const { return extent_column_; }
|
783 |
+
|
784 |
+
/// Advances to the next position to load or store
|
785 |
+
CUTLASS_HOST_DEVICE
|
786 |
+
PredicatedTileIteratorAtomic& operator++()
|
787 |
+
{
|
788 |
+
++state_[0];
|
789 |
+
|
790 |
+
if (!ScatterD && !PermuteD) { store_byte_pointer_ += params_.advance_row; }
|
791 |
+
|
792 |
+
if (!ScatterD) { byte_pointer_ += params_.advance_row; }
|
793 |
+
|
794 |
+
thread_start_row_ += ThreadMap::Shape::kRow;
|
795 |
+
|
796 |
+
if (state_[0] == ThreadMap::Count::kRow) {
|
797 |
+
state_[0] = 0;
|
798 |
+
++state_[1];
|
799 |
+
byte_pointer_ += params_.advance_group;
|
800 |
+
store_byte_pointer_ += params_.advance_group;
|
801 |
+
|
802 |
+
thread_start_row_ +=
|
803 |
+
(ThreadMap::Shape::kGroup - 1) * ThreadMap::Shape::kRow * ThreadMap::Count::kRow;
|
804 |
+
|
805 |
+
if (state_[1] == ThreadMap::Count::kGroup) {
|
806 |
+
state_[1] = 0;
|
807 |
+
++state_[2];
|
808 |
+
byte_pointer_ += params_.advance_cluster;
|
809 |
+
store_byte_pointer_ += params_.advance_cluster;
|
810 |
+
|
811 |
+
thread_start_row_ += ThreadMap::Count::kGroup * ThreadMap::Shape::kGroup *
|
812 |
+
ThreadMap::Count::kRow * ThreadMap::Shape::kRow;
|
813 |
+
|
814 |
+
if (state_[2] == ThreadMap::Count::kCluster) {
|
815 |
+
state_[2] = 0;
|
816 |
+
byte_pointer_ += params_.advance_tile;
|
817 |
+
store_byte_pointer_ += params_.advance_tile;
|
818 |
+
|
819 |
+
thread_start_row_ += ThreadMap::Shape::kGroup * ThreadMap::Shape::kRow *
|
820 |
+
ThreadMap::Shape::kCluster * ThreadMap::Shape::kTile;
|
821 |
+
}
|
822 |
+
}
|
823 |
+
}
|
824 |
+
|
825 |
+
return *this;
|
826 |
+
}
|
827 |
+
|
828 |
+
/// Advances a number of positions to load or store
|
829 |
+
CUTLASS_HOST_DEVICE
|
830 |
+
PredicatedTileIteratorAtomic& operator+=(int increment)
|
831 |
+
{
|
832 |
+
// Row
|
833 |
+
state_[0] += increment;
|
834 |
+
int increment_row = state_[0] / ThreadMap::Count::kRow;
|
835 |
+
state_[0] = state_[0] % ThreadMap::Count::kRow;
|
836 |
+
|
837 |
+
byte_pointer_ += (params_.advance_row * increment);
|
838 |
+
store_byte_pointer_ += (params_.advance_row * increment);
|
839 |
+
thread_start_row_ += (ThreadMap::Shape::kRow * increment);
|
840 |
+
|
841 |
+
// Group
|
842 |
+
state_[1] += increment_row;
|
843 |
+
int increment_group = state_[1] / ThreadMap::Count::kGroup;
|
844 |
+
state_[1] = state_[1] % ThreadMap::Count::kGroup;
|
845 |
+
|
846 |
+
byte_pointer_ += (params_.advance_group * increment_row);
|
847 |
+
store_byte_pointer_ += (params_.advance_group * increment_row);
|
848 |
+
thread_start_row_ += (ThreadMap::Shape::kGroup - 1) * ThreadMap::Shape::kRow *
|
849 |
+
ThreadMap::Count::kRow * increment_row;
|
850 |
+
|
851 |
+
// Cluster
|
852 |
+
state_[2] += increment_group;
|
853 |
+
int increment_cluster = state_[2] / ThreadMap::Count::kCluster;
|
854 |
+
state_[2] = state_[2] % ThreadMap::Count::kCluster;
|
855 |
+
|
856 |
+
byte_pointer_ += (params_.advance_cluster * increment_group);
|
857 |
+
store_byte_pointer_ += (params_.advance_cluster * increment_group);
|
858 |
+
thread_start_row_ += ThreadMap::Count::kGroup * ThreadMap::Shape::kGroup *
|
859 |
+
ThreadMap::Count::kRow * ThreadMap::Shape::kRow * increment_group;
|
860 |
+
|
861 |
+
// Tile
|
862 |
+
byte_pointer_ += (params_.advance_tile * increment_cluster);
|
863 |
+
store_byte_pointer_ += (params_.advance_tile * increment_cluster);
|
864 |
+
thread_start_row_ += ThreadMap::Shape::kGroup * ThreadMap::Shape::kRow *
|
865 |
+
ThreadMap::Shape::kCluster * ThreadMap::Shape::kTile *
|
866 |
+
increment_cluster;
|
867 |
+
|
868 |
+
return *this;
|
869 |
+
}
|
870 |
+
|
871 |
+
///< Efficiently disables all accesses guarded by mask
|
872 |
+
CUTLASS_DEVICE void clear_mask() { mask_.clear(); }
|
873 |
+
|
874 |
+
///< Efficiently enables all accesses guarded by mask
|
875 |
+
CUTLASS_DEVICE void enable_mask() { mask_.enable(); }
|
876 |
+
|
877 |
+
///< Sets the mask
|
878 |
+
CUTLASS_DEVICE void get_mask(Mask& mask) const { mask = mask_; }
|
879 |
+
|
880 |
+
///< Sets the mask
|
881 |
+
CUTLASS_DEVICE void set_mask(Mask const& mask) { mask_ = mask; }
|
882 |
+
};
|
883 |
+
|
884 |
+
} // namespace threadblock
|
885 |
+
} // namespace epilogue
|
886 |
+
} // namespace cutlass
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/iterators/predicated_tile_iterator_residual_last.h
ADDED
@@ -0,0 +1,1938 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights
|
3 |
+
*reserved. SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice,
|
9 |
+
*this list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
23 |
+
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
24 |
+
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
25 |
+
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
27 |
+
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
28 |
+
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
29 |
+
*POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
*
|
31 |
+
**************************************************************************************************/
|
32 |
+
|
33 |
+
// Copyright (c) Microsoft Corporation.
|
34 |
+
// SPDX-License-Identifier: Apache-2.0
|
35 |
+
|
36 |
+
// DeepSpeed Team
|
37 |
+
|
38 |
+
/*! \file
|
39 |
+
\brief Templates implementing loading of tiles from pitch-linear rank=2
|
40 |
+
tensors.
|
41 |
+
|
42 |
+
This iterator uses masks to guard out-of-bounds accesses. The first tile
|
43 |
+
this iterator visits maybe partial, then the remaining tiles are complete.
|
44 |
+
So, we only need to compute the predicates twice, once before the first tile
|
45 |
+
and once for the remaining full tiles which can share the same predicates.
|
46 |
+
|
47 |
+
A precomputed "Params" object minimizes the amount of state that must be
|
48 |
+
stored in registers, and integer addition is used to advance the pointer
|
49 |
+
through memory.
|
50 |
+
*/
|
51 |
+
|
52 |
+
#pragma once
|
53 |
+
|
54 |
+
#include "cutlass/arch/memory.h"
|
55 |
+
#include "cutlass/transform/threadblock/predicated_tile_access_iterator.h"
|
56 |
+
|
57 |
+
////////////////////////////////////////////////////////////////////////////////
|
58 |
+
|
59 |
+
namespace cutlass {
|
60 |
+
namespace transform {
|
61 |
+
namespace threadblock {
|
62 |
+
|
63 |
+
////////////////////////////////////////////////////////////////////////////////
|
64 |
+
|
65 |
+
/// PredicatedTileIteratorResidualLast
|
66 |
+
///
|
67 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
68 |
+
/// ReadableContiguousTileIteratorConcept |
|
69 |
+
/// WriteableContiguousTileIteratorConcept |
|
70 |
+
/// MaskedTileIteratorConcept
|
71 |
+
///
|
72 |
+
/// Regular tile iterator using a precomputed control structure to minimize
|
73 |
+
/// register liveness and integer arithmetic.
|
74 |
+
///
|
75 |
+
/// Layout is assumed to be invariant at the time the precomputed "Params"
|
76 |
+
/// object is constructed.
|
77 |
+
///
|
78 |
+
/// Base pointer and tensor extents may be specified at the time the iterator is
|
79 |
+
/// constructed. Subsequently, they are assumed to be immutable.
|
80 |
+
///
|
81 |
+
/// Adding a logical coordinate offset may be performed at the time the iterator
|
82 |
+
/// is constructed. Subsequent additions to logical coordinate offset may be
|
83 |
+
/// performed but are relatively expensive.
|
84 |
+
///
|
85 |
+
/// Visitation order is intended to first visit a "residual" tile that may be
|
86 |
+
/// partially full in both the advance dimension and the steady-state dimension.
|
87 |
+
/// This is assumed to be the last tile in the iteration sequence. Advancing an
|
88 |
+
/// iterator that has just been constructed moves to the first tile that is full
|
89 |
+
/// in the advance dimension and recomputes predicates. Subsequent accesses may
|
90 |
+
/// be performed without updating internal predicates and are efficient in terms
|
91 |
+
/// of live register state and pointer arithmetic instructions.
|
92 |
+
///
|
93 |
+
/// To be efficient, this assumes the iterator will be dereferenced and advanced
|
94 |
+
/// at least once outside any looping structure to minimize integer arithmetic.
|
95 |
+
///
|
96 |
+
/// Accesses out of bounds are safe so long as `clear_mask()` is called prior to
|
97 |
+
/// dereferencing the iterator.
|
98 |
+
///
|
99 |
+
///
|
100 |
+
/// Example:
|
101 |
+
///
|
102 |
+
/// An efficient pipeline structure may be constructed as follows:
|
103 |
+
///
|
104 |
+
// template <typename Iterator>
|
105 |
+
// __global__ void kernel(
|
106 |
+
// typename Iterator::Params params,
|
107 |
+
// typename Iterator::Element *ptr,
|
108 |
+
// TensorCoord extent) {
|
109 |
+
//
|
110 |
+
// typename Iterator::Fragment fragment;
|
111 |
+
//
|
112 |
+
// TensorCoord threadblock_offset(0, 0);
|
113 |
+
//
|
114 |
+
// Iterator iter(params, ptr, extent, threadIdx.x, threadblock_offsets);
|
115 |
+
//
|
116 |
+
//
|
117 |
+
// fragment = *iter; // load "residue" tile first
|
118 |
+
// ++iter; // advance to first "steady state" tile and update
|
119 |
+
// internal masks
|
120 |
+
//
|
121 |
+
//
|
122 |
+
// #pragma unroll
|
123 |
+
// for (int i = Remaining - 1; i >= 0; --i) {
|
124 |
+
//
|
125 |
+
// f(fragment);
|
126 |
+
//
|
127 |
+
// if (!i) {
|
128 |
+
// iter.clear_mask(); // light-weight operation to clear masks -
|
129 |
+
// subsequent loads become NO-OPs.
|
130 |
+
// }
|
131 |
+
//
|
132 |
+
// fragment = *iter; // load tile during "steady state" phase
|
133 |
+
// ++iter; // advance to next tile - lightweight due to
|
134 |
+
// steady-state masks
|
135 |
+
// }
|
136 |
+
// }
|
137 |
+
//
|
138 |
+
// void host(TensorView<Element, 2, layout::PitchLinear> view) {
|
139 |
+
//
|
140 |
+
// using Iterator =
|
141 |
+
// transform::threadblock::PredicatedTileIteratorResidualLast;
|
142 |
+
//
|
143 |
+
// typename Iterator::Params params(view.layout());
|
144 |
+
//
|
145 |
+
// kernel<Iterator>(params, view.data());
|
146 |
+
// }
|
147 |
+
///
|
148 |
+
///
|
149 |
+
template <typename Shape,
|
150 |
+
typename Element,
|
151 |
+
typename Layout,
|
152 |
+
int AdvanceRank,
|
153 |
+
typename ThreadMap,
|
154 |
+
int AccessSize = ThreadMap::kElementsPerAccess,
|
155 |
+
bool Gather = false>
|
156 |
+
class PredicatedTileIteratorResidualLast;
|
157 |
+
|
158 |
+
////////////////////////////////////////////////////////////////////////////////
|
159 |
+
|
160 |
+
/// Specialization of PredicatedTileIteratorResidualLast for pitch-linear data.
|
161 |
+
///
|
162 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
163 |
+
/// ReadableContiguousTileIteratorConcept |
|
164 |
+
/// WriteableContiguousTileIteratorConcept |
|
165 |
+
/// MaskedTileIteratorConcept
|
166 |
+
///
|
167 |
+
template <typename Shape_,
|
168 |
+
typename Element_,
|
169 |
+
int AdvanceRank,
|
170 |
+
typename ThreadMap_,
|
171 |
+
int AccessSize,
|
172 |
+
bool Gather>
|
173 |
+
class PredicatedTileIteratorResidualLast<Shape_,
|
174 |
+
Element_,
|
175 |
+
layout::PitchLinear,
|
176 |
+
AdvanceRank,
|
177 |
+
ThreadMap_,
|
178 |
+
AccessSize,
|
179 |
+
Gather> {
|
180 |
+
public:
|
181 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
182 |
+
"Specialization for pitch-linear iterator may advance along the "
|
183 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
184 |
+
|
185 |
+
using Shape = Shape_;
|
186 |
+
using Element = Element_;
|
187 |
+
using Layout = layout::PitchLinear;
|
188 |
+
static int const kAdvanceRank = AdvanceRank;
|
189 |
+
using ThreadMap = ThreadMap_;
|
190 |
+
|
191 |
+
using Index = typename Layout::Index;
|
192 |
+
using LongIndex = typename Layout::LongIndex;
|
193 |
+
|
194 |
+
using TensorRef = TensorRef<Element, Layout>;
|
195 |
+
using TensorView = TensorView<Element, Layout>;
|
196 |
+
using TensorCoord = typename Layout::TensorCoord;
|
197 |
+
|
198 |
+
using Pointer = Element*;
|
199 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
200 |
+
|
201 |
+
/// Type used for internal memory accesses
|
202 |
+
using AccessType =
|
203 |
+
AlignedArray<Element, AccessSize, (AccessSize * sizeof_bits<Element>::value / 8)>;
|
204 |
+
|
205 |
+
/// Underlying iterator to compute the addresses
|
206 |
+
using TileAccessIterator = PredicatedTileAccessIteratorResidualLast<Shape,
|
207 |
+
Element,
|
208 |
+
Layout,
|
209 |
+
kAdvanceRank,
|
210 |
+
ThreadMap,
|
211 |
+
AccessType,
|
212 |
+
Gather>;
|
213 |
+
|
214 |
+
static int const kAccessesPerVector = TileAccessIterator::kAccessesPerVector;
|
215 |
+
|
216 |
+
/// Fragment object to be loaded or stored
|
217 |
+
using Fragment =
|
218 |
+
cutlass::Array<Element, ThreadMap::Iterations::kCount * ThreadMap::kElementsPerAccess>;
|
219 |
+
|
220 |
+
/// Predicate vector stores mask to guard accesses
|
221 |
+
using Mask = typename TileAccessIterator::Mask;
|
222 |
+
|
223 |
+
/// Parameters object is precomputed state and is host-constructible
|
224 |
+
class Params {
|
225 |
+
public:
|
226 |
+
using Base = typename TileAccessIterator::Params::Base;
|
227 |
+
|
228 |
+
friend PredicatedTileIteratorResidualLast;
|
229 |
+
|
230 |
+
private:
|
231 |
+
/// Parameters object
|
232 |
+
typename TileAccessIterator::Params params_;
|
233 |
+
|
234 |
+
public:
|
235 |
+
/// Construct the Params object given a pitch-linear tensor's layout
|
236 |
+
CUTLASS_HOST_DEVICE
|
237 |
+
Params(Layout const& layout) : params_(layout) {}
|
238 |
+
|
239 |
+
CUTLASS_HOST_DEVICE
|
240 |
+
Params() {}
|
241 |
+
|
242 |
+
CUTLASS_HOST_DEVICE
|
243 |
+
Params(Base const& base) : params_(base) {}
|
244 |
+
};
|
245 |
+
|
246 |
+
private:
|
247 |
+
/// Internal pointer type permits fast address arithmetic
|
248 |
+
using BytePointer = char*;
|
249 |
+
|
250 |
+
private:
|
251 |
+
//
|
252 |
+
// Data members
|
253 |
+
//
|
254 |
+
|
255 |
+
/// Data member to the tile access iterator
|
256 |
+
TileAccessIterator address_iterator_;
|
257 |
+
|
258 |
+
public:
|
259 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
260 |
+
/// and thread ID
|
261 |
+
CUTLASS_HOST_DEVICE
|
262 |
+
PredicatedTileIteratorResidualLast(
|
263 |
+
/// Precomputed parameters object
|
264 |
+
Params const& params,
|
265 |
+
/// Pointer to start of tensor
|
266 |
+
Pointer pointer,
|
267 |
+
/// Extent of tensor
|
268 |
+
TensorCoord extent,
|
269 |
+
/// ID of each participating thread
|
270 |
+
int thread_id,
|
271 |
+
/// Initial offset of threadblock
|
272 |
+
TensorCoord const& threadblock_offset,
|
273 |
+
/// Gather indices
|
274 |
+
int const* indices = nullptr)
|
275 |
+
: address_iterator_(params.params_, pointer, extent, thread_id, threadblock_offset, indices)
|
276 |
+
{
|
277 |
+
}
|
278 |
+
|
279 |
+
/// Construct a PredicatedTileIteratorResidualLast with zero threadblock
|
280 |
+
/// offset
|
281 |
+
CUTLASS_HOST_DEVICE
|
282 |
+
PredicatedTileIteratorResidualLast(Params const& params, ///< Precomputed parameters object
|
283 |
+
Pointer pointer, ///< Pointer to start of tensor
|
284 |
+
TensorCoord extent, ///< Extent of tensor
|
285 |
+
int thread_id ///< ID of each participating thread
|
286 |
+
)
|
287 |
+
: PredicatedTileIteratorResidualLast(params, pointer, extent, thread_id, make_Coord(0, 0))
|
288 |
+
{
|
289 |
+
}
|
290 |
+
|
291 |
+
/// Adds a pointer offset in units of Element
|
292 |
+
CUTLASS_HOST_DEVICE
|
293 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
294 |
+
{
|
295 |
+
address_iterator_.add_pointer_offset(pointer_offset);
|
296 |
+
}
|
297 |
+
|
298 |
+
/// Advances to the next tile in memory.
|
299 |
+
///
|
300 |
+
/// The first time this method is called, predicates are updated, and the
|
301 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
302 |
+
/// Subsequent calls are lightweight and must only update the internal
|
303 |
+
/// pointer.
|
304 |
+
CUTLASS_HOST_DEVICE
|
305 |
+
PredicatedTileIteratorResidualLast& operator++()
|
306 |
+
{
|
307 |
+
if (kAdvanceRank)
|
308 |
+
address_iterator_.add_tile_offset({0, 1});
|
309 |
+
else
|
310 |
+
address_iterator_.add_tile_offset({1, 0});
|
311 |
+
|
312 |
+
return *this;
|
313 |
+
}
|
314 |
+
|
315 |
+
/// Advances to the next tile in memory.
|
316 |
+
///
|
317 |
+
/// The first time this method is called, predicates are updated, and the
|
318 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
319 |
+
/// Subsequent calls are lightweight and must only update the internal
|
320 |
+
/// pointer.
|
321 |
+
CUTLASS_HOST_DEVICE
|
322 |
+
PredicatedTileIteratorResidualLast operator++(int)
|
323 |
+
{
|
324 |
+
PredicatedTileIteratorResidualLast self(*this);
|
325 |
+
operator++();
|
326 |
+
return self;
|
327 |
+
}
|
328 |
+
|
329 |
+
/// Clears the predicate set efficiently
|
330 |
+
CUTLASS_HOST_DEVICE
|
331 |
+
void clear_mask(bool enable = true) { address_iterator_.clear_mask(enable); }
|
332 |
+
|
333 |
+
CUTLASS_HOST_DEVICE
|
334 |
+
void set_residual_tile(bool enable) { address_iterator_.set_residual_tile(enable); }
|
335 |
+
|
336 |
+
/// Clears the predicate set efficiently
|
337 |
+
CUTLASS_HOST_DEVICE
|
338 |
+
void enable_mask() { address_iterator_.enable_mask(); }
|
339 |
+
|
340 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
341 |
+
CUTLASS_HOST_DEVICE
|
342 |
+
void set_mask(Mask const& mask) { address_iterator_.set_mask(mask); }
|
343 |
+
|
344 |
+
/// Gets the mask
|
345 |
+
CUTLASS_HOST_DEVICE
|
346 |
+
void get_mask(Mask& mask) { address_iterator_.get_mask(mask); }
|
347 |
+
|
348 |
+
CUTLASS_DEVICE
|
349 |
+
void load_with_pointer_offset(Fragment& frag, Index pointer_offset)
|
350 |
+
{
|
351 |
+
load_with_byte_offset(frag, pointer_offset * sizeof_bits<Element>::value / 8);
|
352 |
+
}
|
353 |
+
|
354 |
+
CUTLASS_DEVICE
|
355 |
+
void load_with_byte_offset(Fragment& frag, LongIndex byte_offset)
|
356 |
+
{
|
357 |
+
AccessType* frag_ptr = reinterpret_cast<AccessType*>(&frag);
|
358 |
+
|
359 |
+
CUTLASS_PRAGMA_UNROLL
|
360 |
+
for (int s = 0; s < ThreadMap::Iterations::kStrided; ++s) {
|
361 |
+
CUTLASS_PRAGMA_UNROLL
|
362 |
+
for (int c = 0; c < ThreadMap::Iterations::kContiguous; ++c) {
|
363 |
+
CUTLASS_PRAGMA_UNROLL
|
364 |
+
for (int v = 0; v < kAccessesPerVector; ++v) {
|
365 |
+
int idx = v + kAccessesPerVector * (c + s * ThreadMap::Iterations::kContiguous);
|
366 |
+
|
367 |
+
address_iterator_.set_iteration_index(idx);
|
368 |
+
char const* byte_ptr =
|
369 |
+
reinterpret_cast<char const*>(address_iterator_.get()) + byte_offset;
|
370 |
+
|
371 |
+
AccessType const* access_ptr = reinterpret_cast<AccessType const*>(byte_ptr);
|
372 |
+
|
373 |
+
cutlass::arch::global_load<AccessType, sizeof(AccessType)>(
|
374 |
+
frag_ptr[idx], access_ptr, address_iterator_.valid());
|
375 |
+
|
376 |
+
++address_iterator_;
|
377 |
+
}
|
378 |
+
}
|
379 |
+
}
|
380 |
+
}
|
381 |
+
|
382 |
+
/// Loads a fragment from memory
|
383 |
+
CUTLASS_DEVICE
|
384 |
+
void load(Fragment& frag) { load_with_byte_offset(frag, 0); }
|
385 |
+
|
386 |
+
/// Store a fragment to memory
|
387 |
+
CUTLASS_DEVICE
|
388 |
+
void store_with_pointer_offset(Fragment const& frag, Index pointer_offset)
|
389 |
+
{
|
390 |
+
store_with_byte_offset(frag, pointer_offset * sizeof_bits<Element>::value / 8);
|
391 |
+
}
|
392 |
+
|
393 |
+
/// Store a fragment to memory
|
394 |
+
CUTLASS_DEVICE
|
395 |
+
void store_with_byte_offset(Fragment const& frag, LongIndex byte_offset)
|
396 |
+
{
|
397 |
+
address_iterator_.set_iteration_index(0);
|
398 |
+
AccessType const* frag_ptr = reinterpret_cast<AccessType const*>(&frag);
|
399 |
+
|
400 |
+
CUTLASS_PRAGMA_UNROLL
|
401 |
+
for (int s = 0; s < ThreadMap::Iterations::kStrided; ++s) {
|
402 |
+
CUTLASS_PRAGMA_UNROLL
|
403 |
+
for (int c = 0; c < ThreadMap::Iterations::kContiguous; ++c) {
|
404 |
+
CUTLASS_PRAGMA_UNROLL
|
405 |
+
for (int v = 0; v < kAccessesPerVector; ++v) {
|
406 |
+
int idx = v + kAccessesPerVector * (c + s * ThreadMap::Iterations::kContiguous);
|
407 |
+
|
408 |
+
char* byte_ptr = reinterpret_cast<char*>(address_iterator_.get()) + byte_offset;
|
409 |
+
AccessType* access_ptr = reinterpret_cast<AccessType*>(byte_ptr);
|
410 |
+
|
411 |
+
if (address_iterator_.valid()) { *access_ptr = frag_ptr[idx]; }
|
412 |
+
++address_iterator_;
|
413 |
+
}
|
414 |
+
}
|
415 |
+
}
|
416 |
+
}
|
417 |
+
|
418 |
+
/// Store a fragment to memory
|
419 |
+
CUTLASS_DEVICE
|
420 |
+
void store(Fragment const& frag) { store_with_byte_offset(frag, 0); }
|
421 |
+
};
|
422 |
+
|
423 |
+
////////////////////////////////////////////////////////////////////////////////
|
424 |
+
|
425 |
+
/// Specialization of PredicatedTileIteratorResidualLast for pitch-linear data.
|
426 |
+
///
|
427 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
428 |
+
/// ReadableContiguousTileIteratorConcept |
|
429 |
+
/// WriteableContiguousTileIteratorConcept |
|
430 |
+
/// MaskedTileIteratorConcept
|
431 |
+
///
|
432 |
+
template <typename Shape_,
|
433 |
+
typename Element_,
|
434 |
+
int AdvanceRank,
|
435 |
+
typename ThreadMap_,
|
436 |
+
int AccessSize,
|
437 |
+
bool Gather>
|
438 |
+
class PredicatedTileIteratorResidualLast<Shape_,
|
439 |
+
Element_,
|
440 |
+
layout::ColumnMajor,
|
441 |
+
AdvanceRank,
|
442 |
+
ThreadMap_,
|
443 |
+
AccessSize,
|
444 |
+
Gather> {
|
445 |
+
public:
|
446 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
447 |
+
"Specialization for pitch-linear iterator may along advance along the "
|
448 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
449 |
+
|
450 |
+
using Shape = Shape_;
|
451 |
+
using Element = Element_;
|
452 |
+
using Layout = layout::ColumnMajor;
|
453 |
+
static int const kAdvanceRank = AdvanceRank;
|
454 |
+
using ThreadMap = ThreadMap_;
|
455 |
+
|
456 |
+
using Index = typename Layout::Index;
|
457 |
+
using LongIndex = typename Layout::LongIndex;
|
458 |
+
|
459 |
+
using TensorRef = TensorRef<Element, Layout>;
|
460 |
+
using TensorView = TensorView<Element, Layout>;
|
461 |
+
using TensorCoord = typename Layout::TensorCoord;
|
462 |
+
|
463 |
+
using Pointer = Element*;
|
464 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
465 |
+
|
466 |
+
using UnderlyingIterator =
|
467 |
+
PredicatedTileIteratorResidualLast<layout::PitchLinearShape<Shape::kRow, Shape::kColumn>,
|
468 |
+
Element,
|
469 |
+
layout::PitchLinear,
|
470 |
+
(kAdvanceRank == 0 ? 0 : 1),
|
471 |
+
ThreadMap,
|
472 |
+
AccessSize,
|
473 |
+
Gather>;
|
474 |
+
|
475 |
+
using AccessType = typename UnderlyingIterator::AccessType;
|
476 |
+
|
477 |
+
/// Fragment object to be loaded or stored
|
478 |
+
using Fragment =
|
479 |
+
cutlass::Array<Element, ThreadMap::Iterations::kCount * ThreadMap::kElementsPerAccess>;
|
480 |
+
|
481 |
+
/// Predicate vector stores mask to guard accesses
|
482 |
+
using Mask = typename UnderlyingIterator::Mask;
|
483 |
+
|
484 |
+
/// Parameters object is precomputed state and is host-constructible
|
485 |
+
class Params {
|
486 |
+
private:
|
487 |
+
friend PredicatedTileIteratorResidualLast;
|
488 |
+
|
489 |
+
/// Parameters object
|
490 |
+
typename UnderlyingIterator::Params params_;
|
491 |
+
|
492 |
+
public:
|
493 |
+
CUTLASS_HOST_DEVICE
|
494 |
+
Params() {}
|
495 |
+
|
496 |
+
/// Construct the Params object given a pitch-linear tensor's layout
|
497 |
+
CUTLASS_HOST_DEVICE
|
498 |
+
Params(Layout const& layout) : params_(layout::PitchLinear(layout.stride(0))) {}
|
499 |
+
|
500 |
+
CUTLASS_HOST_DEVICE
|
501 |
+
Params(typename UnderlyingIterator::Params::Base const& base) : params_(base) {}
|
502 |
+
};
|
503 |
+
|
504 |
+
private:
|
505 |
+
//
|
506 |
+
// Data members
|
507 |
+
//
|
508 |
+
|
509 |
+
/// Underlying pitch-linear tile iterator
|
510 |
+
UnderlyingIterator iterator_;
|
511 |
+
|
512 |
+
public:
|
513 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
514 |
+
/// and thread ID
|
515 |
+
CUTLASS_HOST_DEVICE
|
516 |
+
PredicatedTileIteratorResidualLast(
|
517 |
+
Params const& params, ///< Precomputed parameters object
|
518 |
+
Pointer pointer, ///< Pointer to start of tensor
|
519 |
+
TensorCoord extent, ///< Extent of tensor
|
520 |
+
int thread_id, ///< ID of each participating thread
|
521 |
+
TensorCoord const& threadblock_offset, ///< Initial offset of threadblock
|
522 |
+
int const* indices = nullptr ///< gather/scatter indices, note no support for
|
523 |
+
///< gather/scatter at this specialization
|
524 |
+
)
|
525 |
+
: iterator_(params.params_,
|
526 |
+
pointer,
|
527 |
+
layout::PitchLinearCoord(extent.row(), extent.column()),
|
528 |
+
thread_id,
|
529 |
+
layout::PitchLinearCoord(threadblock_offset.row(), threadblock_offset.column()),
|
530 |
+
indices)
|
531 |
+
{
|
532 |
+
}
|
533 |
+
|
534 |
+
/// Construct a PredicatedTileIteratorResidualLast with zero threadblock
|
535 |
+
/// offset
|
536 |
+
CUTLASS_HOST_DEVICE
|
537 |
+
PredicatedTileIteratorResidualLast(Params const& params, ///< Precomputed parameters object
|
538 |
+
Pointer pointer, ///< Pointer to start of tensor
|
539 |
+
TensorCoord extent, ///< Extent of tensor
|
540 |
+
int thread_id ///< ID of each participating thread
|
541 |
+
)
|
542 |
+
: PredicatedTileIteratorResidualLast(params, pointer, extent, thread_id, make_Coord(0, 0))
|
543 |
+
{
|
544 |
+
}
|
545 |
+
|
546 |
+
/// Adds a pointer offset in units of Element
|
547 |
+
CUTLASS_HOST_DEVICE
|
548 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
549 |
+
{
|
550 |
+
iterator_.add_pointer_offset(pointer_offset);
|
551 |
+
}
|
552 |
+
|
553 |
+
/// Advances to the next tile in memory.
|
554 |
+
///
|
555 |
+
/// The first time this method is called, predicates are updated, and the
|
556 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
557 |
+
/// Subsequent calls are lightweight and must only update the internal
|
558 |
+
/// pointer.
|
559 |
+
CUTLASS_HOST_DEVICE
|
560 |
+
PredicatedTileIteratorResidualLast& operator++()
|
561 |
+
{
|
562 |
+
++iterator_;
|
563 |
+
return *this;
|
564 |
+
}
|
565 |
+
|
566 |
+
/// Advances to the next tile in memory.
|
567 |
+
///
|
568 |
+
/// The first time this method is called, predicates are updated, and the
|
569 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
570 |
+
/// Subsequent calls are lightweight and must only update the internal
|
571 |
+
/// pointer.
|
572 |
+
CUTLASS_HOST_DEVICE
|
573 |
+
PredicatedTileIteratorResidualLast operator++(int)
|
574 |
+
{
|
575 |
+
PredicatedTileIteratorResidualLast self(*this);
|
576 |
+
operator++();
|
577 |
+
return self;
|
578 |
+
}
|
579 |
+
|
580 |
+
/// Clears the predicate set efficiently
|
581 |
+
CUTLASS_HOST_DEVICE
|
582 |
+
void clear_mask(bool enable = true) { iterator_.clear_mask(enable); }
|
583 |
+
|
584 |
+
CUTLASS_HOST_DEVICE
|
585 |
+
void set_residual_tile(bool enable) { iterator_.set_residual_tile(enable); }
|
586 |
+
|
587 |
+
/// Clears the predicate set efficiently
|
588 |
+
CUTLASS_HOST_DEVICE
|
589 |
+
void enable_mask() { iterator_.enable_mask(); }
|
590 |
+
|
591 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
592 |
+
CUTLASS_HOST_DEVICE
|
593 |
+
void set_mask(Mask const& mask) { iterator_.set_mask(mask); }
|
594 |
+
|
595 |
+
/// Gets the mask
|
596 |
+
CUTLASS_HOST_DEVICE
|
597 |
+
void get_mask(Mask& mask) { iterator_.get_mask(mask); }
|
598 |
+
|
599 |
+
/// Loads a fragment from memory
|
600 |
+
CUTLASS_DEVICE
|
601 |
+
void load_with_pointer_offset(Fragment& frag, Index pointer_offset)
|
602 |
+
{
|
603 |
+
iterator_.load_with_pointer_offset(frag, pointer_offset);
|
604 |
+
}
|
605 |
+
|
606 |
+
/// Loads a fragment from memory
|
607 |
+
CUTLASS_DEVICE
|
608 |
+
void load_with_byte_offset(Fragment& frag, LongIndex byte_offset)
|
609 |
+
{
|
610 |
+
iterator_.load_with_byte_offset(frag, byte_offset);
|
611 |
+
}
|
612 |
+
|
613 |
+
/// Loads a fragment from memory
|
614 |
+
CUTLASS_DEVICE
|
615 |
+
void load(Fragment& frag) { load_with_pointer_offset(frag, 0); }
|
616 |
+
|
617 |
+
/// Store a fragment to memory
|
618 |
+
CUTLASS_DEVICE
|
619 |
+
void store_with_pointer_offset(Fragment const& frag, Index pointer_offset)
|
620 |
+
{
|
621 |
+
iterator_.store_with_pointer_offset(frag, pointer_offset);
|
622 |
+
}
|
623 |
+
|
624 |
+
/// Store a fragment to memory
|
625 |
+
CUTLASS_DEVICE
|
626 |
+
void store_with_byte_offset(Fragment const& frag, LongIndex byte_offset)
|
627 |
+
{
|
628 |
+
iterator_.store_with_byte_offset(frag, byte_offset);
|
629 |
+
}
|
630 |
+
|
631 |
+
/// Store a fragment to memory
|
632 |
+
CUTLASS_DEVICE
|
633 |
+
void store(Fragment const& frag) { store_with_pointer_offset(frag, 0); }
|
634 |
+
};
|
635 |
+
|
636 |
+
////////////////////////////////////////////////////////////////////////////////
|
637 |
+
|
638 |
+
/// Specialization of PredicatedTileIteratorResidualLast for pitch-linear data.
|
639 |
+
///
|
640 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
641 |
+
/// ReadableContiguousTileIteratorConcept |
|
642 |
+
/// WriteableContiguousTileIteratorConcept |
|
643 |
+
/// MaskedTileIteratorConcept
|
644 |
+
///
|
645 |
+
template <typename Shape_,
|
646 |
+
typename Element_,
|
647 |
+
int AdvanceRank,
|
648 |
+
typename ThreadMap_,
|
649 |
+
int AccessSize,
|
650 |
+
bool Gather>
|
651 |
+
class PredicatedTileIteratorResidualLast<Shape_,
|
652 |
+
Element_,
|
653 |
+
layout::RowMajor,
|
654 |
+
AdvanceRank,
|
655 |
+
ThreadMap_,
|
656 |
+
AccessSize,
|
657 |
+
Gather> {
|
658 |
+
public:
|
659 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
660 |
+
"Specialization for pitch-linear iterator may along advance along the "
|
661 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
662 |
+
|
663 |
+
using Shape = Shape_;
|
664 |
+
using Element = Element_;
|
665 |
+
using Layout = layout::RowMajor;
|
666 |
+
static int const kAdvanceRank = AdvanceRank;
|
667 |
+
using ThreadMap = ThreadMap_;
|
668 |
+
|
669 |
+
using Index = typename Layout::Index;
|
670 |
+
using LongIndex = typename Layout::LongIndex;
|
671 |
+
|
672 |
+
using TensorRef = TensorRef<Element, Layout>;
|
673 |
+
using TensorView = TensorView<Element, Layout>;
|
674 |
+
using TensorCoord = typename Layout::TensorCoord;
|
675 |
+
|
676 |
+
using Pointer = Element*;
|
677 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
678 |
+
|
679 |
+
using UnderlyingIterator =
|
680 |
+
PredicatedTileIteratorResidualLast<layout::PitchLinearShape<Shape::kColumn, Shape::kRow>,
|
681 |
+
Element,
|
682 |
+
layout::PitchLinear,
|
683 |
+
(kAdvanceRank == 0 ? 1 : 0),
|
684 |
+
ThreadMap,
|
685 |
+
AccessSize,
|
686 |
+
Gather>;
|
687 |
+
|
688 |
+
using AccessType = typename UnderlyingIterator::AccessType;
|
689 |
+
|
690 |
+
/// Fragment object to be loaded or stored
|
691 |
+
using Fragment =
|
692 |
+
cutlass::Array<Element, ThreadMap::Iterations::kCount * ThreadMap::kElementsPerAccess>;
|
693 |
+
|
694 |
+
/// Predicate vector stores mask to guard accesses
|
695 |
+
using Mask = typename UnderlyingIterator::Mask;
|
696 |
+
|
697 |
+
/// Parameters object is precomputed state and is host-constructible
|
698 |
+
class Params {
|
699 |
+
private:
|
700 |
+
friend PredicatedTileIteratorResidualLast;
|
701 |
+
|
702 |
+
/// Parameters object
|
703 |
+
typename UnderlyingIterator::Params params_;
|
704 |
+
|
705 |
+
public:
|
706 |
+
CUTLASS_HOST_DEVICE
|
707 |
+
Params() {}
|
708 |
+
|
709 |
+
/// Construct the Params object given a pitch-linear tensor's layout
|
710 |
+
CUTLASS_HOST_DEVICE
|
711 |
+
Params(Layout const& layout) : params_(layout::PitchLinear(layout.stride(0))) {}
|
712 |
+
|
713 |
+
CUTLASS_HOST_DEVICE
|
714 |
+
Params(typename UnderlyingIterator::Params::Base const& base) : params_(base) {}
|
715 |
+
};
|
716 |
+
|
717 |
+
private:
|
718 |
+
//
|
719 |
+
// Data members
|
720 |
+
//
|
721 |
+
|
722 |
+
/// Underlying pitch-linear tile iterator
|
723 |
+
UnderlyingIterator iterator_;
|
724 |
+
|
725 |
+
public:
|
726 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
727 |
+
/// and thread ID
|
728 |
+
CUTLASS_HOST_DEVICE
|
729 |
+
PredicatedTileIteratorResidualLast(
|
730 |
+
Params const& params, ///< Precomputed parameters object
|
731 |
+
Pointer pointer, ///< Pointer to start of tensor
|
732 |
+
TensorCoord extent, ///< Extent of tensor
|
733 |
+
int thread_id, ///< ID of each participating thread
|
734 |
+
TensorCoord const& threadblock_offset, ///< Initial offset of threadblock
|
735 |
+
int const* indices = nullptr ///< Gather indices
|
736 |
+
)
|
737 |
+
: iterator_(params.params_,
|
738 |
+
pointer,
|
739 |
+
layout::PitchLinearCoord(extent.column(), extent.row()),
|
740 |
+
thread_id,
|
741 |
+
layout::PitchLinearCoord(threadblock_offset.column(), threadblock_offset.row()),
|
742 |
+
indices)
|
743 |
+
{
|
744 |
+
}
|
745 |
+
|
746 |
+
/// Construct a PredicatedTileIteratorResidualLast with zero threadblock
|
747 |
+
/// offset
|
748 |
+
CUTLASS_HOST_DEVICE
|
749 |
+
PredicatedTileIteratorResidualLast(Params const& params, ///< Precomputed parameters object
|
750 |
+
Pointer pointer, ///< Pointer to start of tensor
|
751 |
+
TensorCoord extent, ///< Extent of tensor
|
752 |
+
int thread_id ///< ID of each participating thread
|
753 |
+
)
|
754 |
+
: PredicatedTileIteratorResidualLast(params, pointer, extent, thread_id, make_Coord(0, 0))
|
755 |
+
{
|
756 |
+
}
|
757 |
+
|
758 |
+
/// Adds a pointer offset in units of Element
|
759 |
+
CUTLASS_HOST_DEVICE
|
760 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
761 |
+
{
|
762 |
+
iterator_.add_pointer_offset(pointer_offset);
|
763 |
+
}
|
764 |
+
|
765 |
+
/// Advances to the next tile in memory.
|
766 |
+
///
|
767 |
+
/// The first time this method is called, predicates are updated, and the
|
768 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
769 |
+
/// Subsequent calls are lightweight and must only update the internal
|
770 |
+
/// pointer.
|
771 |
+
CUTLASS_HOST_DEVICE
|
772 |
+
PredicatedTileIteratorResidualLast& operator++()
|
773 |
+
{
|
774 |
+
++iterator_;
|
775 |
+
return *this;
|
776 |
+
}
|
777 |
+
|
778 |
+
/// Advances to the next tile in memory.
|
779 |
+
///
|
780 |
+
/// The first time this method is called, predicates are updated, and the
|
781 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
782 |
+
/// Subsequent calls are lightweight and must only update the internal
|
783 |
+
/// pointer.
|
784 |
+
CUTLASS_HOST_DEVICE
|
785 |
+
PredicatedTileIteratorResidualLast operator++(int)
|
786 |
+
{
|
787 |
+
PredicatedTileIteratorResidualLast self(*this);
|
788 |
+
operator++();
|
789 |
+
return self;
|
790 |
+
}
|
791 |
+
|
792 |
+
/// Clears the predicate set efficiently
|
793 |
+
CUTLASS_HOST_DEVICE
|
794 |
+
void clear_mask(bool enable = true) { iterator_.clear_mask(enable); }
|
795 |
+
|
796 |
+
CUTLASS_HOST_DEVICE
|
797 |
+
void set_residual_tile(bool enable) { iterator_.set_residual_tile(enable); }
|
798 |
+
|
799 |
+
/// Clears the predicate set efficiently
|
800 |
+
CUTLASS_HOST_DEVICE
|
801 |
+
void enable_mask() { iterator_.enable_mask(); }
|
802 |
+
|
803 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
804 |
+
CUTLASS_HOST_DEVICE
|
805 |
+
void set_mask(Mask const& mask) { iterator_.set_mask(mask); }
|
806 |
+
|
807 |
+
/// Gets the mask
|
808 |
+
CUTLASS_HOST_DEVICE
|
809 |
+
void get_mask(Mask& mask) { iterator_.get_mask(mask); }
|
810 |
+
|
811 |
+
/// Loads a fragment from memory
|
812 |
+
CUTLASS_DEVICE
|
813 |
+
void load_with_pointer_offset(Fragment& frag, Index pointer_offset)
|
814 |
+
{
|
815 |
+
iterator_.load_with_pointer_offset(frag, pointer_offset);
|
816 |
+
}
|
817 |
+
|
818 |
+
/// Loads a fragment from memory
|
819 |
+
CUTLASS_DEVICE
|
820 |
+
void load_with_byte_offset(Fragment& frag, LongIndex byte_offset)
|
821 |
+
{
|
822 |
+
iterator_.load_with_byte_offset(frag, byte_offset);
|
823 |
+
}
|
824 |
+
|
825 |
+
/// Loads a fragment from memory
|
826 |
+
CUTLASS_DEVICE
|
827 |
+
void load(Fragment& frag) { load_with_pointer_offset(frag, 0); }
|
828 |
+
|
829 |
+
/// Store a fragment to memory
|
830 |
+
CUTLASS_DEVICE
|
831 |
+
void store_with_pointer_offset(Fragment const& frag, Index pointer_offset)
|
832 |
+
{
|
833 |
+
iterator_.store_with_pointer_offset(frag, pointer_offset);
|
834 |
+
}
|
835 |
+
|
836 |
+
/// Store a fragment to memory
|
837 |
+
CUTLASS_DEVICE
|
838 |
+
void store_with_byte_offset(Fragment const& frag, LongIndex byte_offset)
|
839 |
+
{
|
840 |
+
iterator_.store_with_byte_offset(frag, byte_offset);
|
841 |
+
}
|
842 |
+
|
843 |
+
/// Store a fragment to memory
|
844 |
+
CUTLASS_DEVICE
|
845 |
+
void store(Fragment const& frag) { store_with_pointer_offset(frag, 0); }
|
846 |
+
};
|
847 |
+
|
848 |
+
////////////////////////////////////////////////////////////////////////////////
|
849 |
+
|
850 |
+
/// Specialization of PredicatedTileIteratorResidualLast for affine rank-2 data.
|
851 |
+
///
|
852 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
853 |
+
/// ReadableContiguousTileIteratorConcept |
|
854 |
+
/// WriteableContiguousTileIteratorConcept |
|
855 |
+
/// MaskedTileIteratorConcept
|
856 |
+
///
|
857 |
+
template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, int AccessSize>
|
858 |
+
class PredicatedTileIteratorResidualLast<Shape_,
|
859 |
+
Element_,
|
860 |
+
layout::AffineRankN<2>,
|
861 |
+
AdvanceRank,
|
862 |
+
ThreadMap_,
|
863 |
+
AccessSize,
|
864 |
+
false> {
|
865 |
+
public:
|
866 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
867 |
+
"Specialization for pitch-linear iterator may advance along the "
|
868 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
869 |
+
|
870 |
+
using Shape = Shape_;
|
871 |
+
using Element = Element_;
|
872 |
+
using Layout = layout::AffineRankN<2>;
|
873 |
+
static int const kAdvanceRank = AdvanceRank;
|
874 |
+
using ThreadMap = ThreadMap_;
|
875 |
+
|
876 |
+
using Index = typename Layout::Index;
|
877 |
+
using LongIndex = typename Layout::LongIndex;
|
878 |
+
|
879 |
+
using TensorRef = TensorRef<Element, Layout>;
|
880 |
+
using TensorView = TensorView<Element, Layout>;
|
881 |
+
using TensorCoord = typename Layout::TensorCoord;
|
882 |
+
|
883 |
+
using Pointer = Element*;
|
884 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
885 |
+
|
886 |
+
/// Type used for internal memory accesses
|
887 |
+
using AccessType =
|
888 |
+
AlignedArray<Element, AccessSize, (AccessSize * sizeof_bits<Element>::value / 8)>;
|
889 |
+
|
890 |
+
/// Underlying iterator to compute the addresses
|
891 |
+
using TileAccessIterator = PredicatedTileAccessIteratorResidualLast<Shape,
|
892 |
+
Element,
|
893 |
+
Layout,
|
894 |
+
kAdvanceRank,
|
895 |
+
ThreadMap,
|
896 |
+
AccessType>;
|
897 |
+
|
898 |
+
static int const kAccessesPerVector = TileAccessIterator::kAccessesPerVector;
|
899 |
+
|
900 |
+
/// Fragment object to be loaded or stored
|
901 |
+
using Fragment =
|
902 |
+
cutlass::Array<Element, ThreadMap::Iterations::kCount * ThreadMap::kElementsPerAccess>;
|
903 |
+
|
904 |
+
/// Predicate vector stores mask to guard accesses
|
905 |
+
using Mask = typename TileAccessIterator::Mask;
|
906 |
+
|
907 |
+
/// Parameters object is precomputed state and is host-constructible
|
908 |
+
class Params {
|
909 |
+
public:
|
910 |
+
friend PredicatedTileIteratorResidualLast;
|
911 |
+
|
912 |
+
private:
|
913 |
+
/// Parameters object
|
914 |
+
typename TileAccessIterator::Params params_;
|
915 |
+
|
916 |
+
public:
|
917 |
+
/// Construct the Params object given a pitch-linear tensor's layout
|
918 |
+
CUTLASS_HOST_DEVICE
|
919 |
+
Params(Layout const& layout) : params_(layout) {}
|
920 |
+
|
921 |
+
CUTLASS_HOST_DEVICE
|
922 |
+
Params() {}
|
923 |
+
};
|
924 |
+
|
925 |
+
private:
|
926 |
+
/// Internal pointer type permits fast address arithmetic
|
927 |
+
using BytePointer = char*;
|
928 |
+
|
929 |
+
private:
|
930 |
+
//
|
931 |
+
// Data members
|
932 |
+
//
|
933 |
+
|
934 |
+
/// Data member to the tile access iterator
|
935 |
+
TileAccessIterator address_iterator_;
|
936 |
+
|
937 |
+
public:
|
938 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
939 |
+
/// and thread ID
|
940 |
+
CUTLASS_HOST_DEVICE
|
941 |
+
PredicatedTileIteratorResidualLast(
|
942 |
+
/// Precomputed parameters object
|
943 |
+
Params const& params,
|
944 |
+
/// Pointer to start of tensor
|
945 |
+
Pointer pointer,
|
946 |
+
/// Extent of tensor
|
947 |
+
TensorCoord extent,
|
948 |
+
/// ID of each participating thread
|
949 |
+
int thread_id,
|
950 |
+
/// Initial offset of threadblock
|
951 |
+
TensorCoord const& threadblock_offset,
|
952 |
+
int const* indices = nullptr ///< gather/scatter indices, note no support for
|
953 |
+
///< gather/scatter at this specialization
|
954 |
+
)
|
955 |
+
: address_iterator_(params.params_, pointer, extent, thread_id, threadblock_offset)
|
956 |
+
{
|
957 |
+
}
|
958 |
+
|
959 |
+
/// Construct a PredicatedTileIteratorResidualLast with zero threadblock
|
960 |
+
/// offset
|
961 |
+
CUTLASS_HOST_DEVICE
|
962 |
+
PredicatedTileIteratorResidualLast(Params const& params, ///< Precomputed parameters object
|
963 |
+
Pointer pointer, ///< Pointer to start of tensor
|
964 |
+
TensorCoord extent, ///< Extent of tensor
|
965 |
+
int thread_id ///< ID of each participating thread
|
966 |
+
)
|
967 |
+
: PredicatedTileIteratorResidualLast(params, pointer, extent, thread_id, make_Coord(0, 0))
|
968 |
+
{
|
969 |
+
}
|
970 |
+
|
971 |
+
/// Adds a pointer offset in units of Element
|
972 |
+
CUTLASS_HOST_DEVICE
|
973 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
974 |
+
{
|
975 |
+
address_iterator_.add_pointer_offset(pointer_offset);
|
976 |
+
}
|
977 |
+
|
978 |
+
/// Advances to the next tile in memory.
|
979 |
+
///
|
980 |
+
/// The first time this method is called, predicates are updated, and the
|
981 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
982 |
+
/// Subsequent calls are lightweight and must only update the internal
|
983 |
+
/// pointer.
|
984 |
+
CUTLASS_HOST_DEVICE
|
985 |
+
PredicatedTileIteratorResidualLast& operator++()
|
986 |
+
{
|
987 |
+
if (kAdvanceRank)
|
988 |
+
address_iterator_.add_tile_offset(make_Coord(0, 1));
|
989 |
+
else
|
990 |
+
address_iterator_.add_tile_offset(make_Coord(1, 0));
|
991 |
+
|
992 |
+
return *this;
|
993 |
+
}
|
994 |
+
|
995 |
+
/// Advances to the next tile in memory.
|
996 |
+
///
|
997 |
+
/// The first time this method is called, predicates are updated, and the
|
998 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
999 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1000 |
+
/// pointer.
|
1001 |
+
CUTLASS_HOST_DEVICE
|
1002 |
+
PredicatedTileIteratorResidualLast operator++(int)
|
1003 |
+
{
|
1004 |
+
PredicatedTileIteratorResidualLast self(*this);
|
1005 |
+
operator++();
|
1006 |
+
return self;
|
1007 |
+
}
|
1008 |
+
|
1009 |
+
/// Clears the predicate set efficiently
|
1010 |
+
CUTLASS_HOST_DEVICE
|
1011 |
+
void clear_mask(bool enable = true) { address_iterator_.clear_mask(enable); }
|
1012 |
+
|
1013 |
+
CUTLASS_HOST_DEVICE
|
1014 |
+
void set_residual_tile(bool enable) { address_iterator_.set_residual_tile(enable); }
|
1015 |
+
|
1016 |
+
/// Clears the predicate set efficiently
|
1017 |
+
CUTLASS_HOST_DEVICE
|
1018 |
+
void enable_mask() { address_iterator_.enable_mask(); }
|
1019 |
+
|
1020 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
1021 |
+
CUTLASS_HOST_DEVICE
|
1022 |
+
void set_mask(Mask const& mask) { address_iterator_.set_mask(mask); }
|
1023 |
+
|
1024 |
+
/// Gets the mask
|
1025 |
+
CUTLASS_HOST_DEVICE
|
1026 |
+
void get_mask(Mask& mask) { address_iterator_.get_mask(mask); }
|
1027 |
+
|
1028 |
+
CUTLASS_DEVICE
|
1029 |
+
void load_with_pointer_offset(Fragment& frag, Index pointer_offset)
|
1030 |
+
{
|
1031 |
+
load_with_byte_offset(frag, pointer_offset * sizeof_bits<Element>::value / 8);
|
1032 |
+
}
|
1033 |
+
|
1034 |
+
CUTLASS_DEVICE
|
1035 |
+
void load_with_byte_offset(Fragment& frag, LongIndex byte_offset)
|
1036 |
+
{
|
1037 |
+
AccessType* frag_ptr = reinterpret_cast<AccessType*>(&frag);
|
1038 |
+
|
1039 |
+
CUTLASS_PRAGMA_UNROLL
|
1040 |
+
for (int s = 0; s < ThreadMap::Iterations::kStrided; ++s) {
|
1041 |
+
CUTLASS_PRAGMA_UNROLL
|
1042 |
+
for (int c = 0; c < ThreadMap::Iterations::kContiguous; ++c) {
|
1043 |
+
CUTLASS_PRAGMA_UNROLL
|
1044 |
+
for (int v = 0; v < kAccessesPerVector; ++v) {
|
1045 |
+
int idx = v + kAccessesPerVector * (c + s * ThreadMap::Iterations::kContiguous);
|
1046 |
+
|
1047 |
+
address_iterator_.set_iteration_index(idx);
|
1048 |
+
char const* byte_ptr =
|
1049 |
+
reinterpret_cast<char const*>(address_iterator_.get()) + byte_offset;
|
1050 |
+
|
1051 |
+
AccessType const* access_ptr = reinterpret_cast<AccessType const*>(byte_ptr);
|
1052 |
+
|
1053 |
+
cutlass::arch::global_load<AccessType, sizeof(AccessType)>(
|
1054 |
+
frag_ptr[idx], access_ptr, address_iterator_.valid());
|
1055 |
+
|
1056 |
+
++address_iterator_;
|
1057 |
+
}
|
1058 |
+
}
|
1059 |
+
}
|
1060 |
+
}
|
1061 |
+
|
1062 |
+
/// Loads a fragment from memory
|
1063 |
+
CUTLASS_DEVICE
|
1064 |
+
void load(Fragment& frag) { load_with_byte_offset(frag, 0); }
|
1065 |
+
|
1066 |
+
/// Store a fragment to memory
|
1067 |
+
CUTLASS_DEVICE
|
1068 |
+
void store_with_pointer_offset(Fragment const& frag, Index pointer_offset)
|
1069 |
+
{
|
1070 |
+
store_with_byte_offset(frag, pointer_offset * sizeof_bits<Element>::value / 8);
|
1071 |
+
}
|
1072 |
+
|
1073 |
+
/// Store a fragment to memory
|
1074 |
+
CUTLASS_DEVICE
|
1075 |
+
void store_with_byte_offset(Fragment const& frag, LongIndex byte_offset)
|
1076 |
+
{
|
1077 |
+
address_iterator_.set_iteration_index(0);
|
1078 |
+
AccessType const* frag_ptr = reinterpret_cast<AccessType const*>(&frag);
|
1079 |
+
|
1080 |
+
CUTLASS_PRAGMA_UNROLL
|
1081 |
+
for (int s = 0; s < ThreadMap::Iterations::kStrided; ++s) {
|
1082 |
+
CUTLASS_PRAGMA_UNROLL
|
1083 |
+
for (int c = 0; c < ThreadMap::Iterations::kContiguous; ++c) {
|
1084 |
+
CUTLASS_PRAGMA_UNROLL
|
1085 |
+
for (int v = 0; v < kAccessesPerVector; ++v) {
|
1086 |
+
int idx = v + kAccessesPerVector * (c + s * ThreadMap::Iterations::kContiguous);
|
1087 |
+
|
1088 |
+
char* byte_ptr = reinterpret_cast<char*>(address_iterator_.get()) + byte_offset;
|
1089 |
+
AccessType* access_ptr = reinterpret_cast<AccessType*>(byte_ptr);
|
1090 |
+
|
1091 |
+
if (address_iterator_.valid()) { *access_ptr = frag_ptr[idx]; }
|
1092 |
+
++address_iterator_;
|
1093 |
+
}
|
1094 |
+
}
|
1095 |
+
}
|
1096 |
+
}
|
1097 |
+
|
1098 |
+
/// Store a fragment to memory
|
1099 |
+
CUTLASS_DEVICE
|
1100 |
+
void store(Fragment const& frag) { store_with_byte_offset(frag, 0); }
|
1101 |
+
};
|
1102 |
+
|
1103 |
+
////////////////////////////////////////////////////////////////////////////////
|
1104 |
+
|
1105 |
+
/// Specialization of PredicatedTileIteratorResidualLast for affine rank 2
|
1106 |
+
/// column-major data.
|
1107 |
+
///
|
1108 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
1109 |
+
/// ReadableContiguousTileIteratorConcept |
|
1110 |
+
/// WriteableContiguousTileIteratorConcept |
|
1111 |
+
/// MaskedTileIteratorConcept
|
1112 |
+
///
|
1113 |
+
template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, int AccessSize>
|
1114 |
+
class PredicatedTileIteratorResidualLast<Shape_,
|
1115 |
+
Element_,
|
1116 |
+
layout::AffineRank2ColumnMajor,
|
1117 |
+
AdvanceRank,
|
1118 |
+
ThreadMap_,
|
1119 |
+
AccessSize,
|
1120 |
+
false> {
|
1121 |
+
public:
|
1122 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
1123 |
+
"Specialization for pitch-linear iterator may along advance along the "
|
1124 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
1125 |
+
|
1126 |
+
using Shape = Shape_;
|
1127 |
+
using Element = Element_;
|
1128 |
+
using Layout = layout::AffineRank2ColumnMajor;
|
1129 |
+
static int const kAdvanceRank = AdvanceRank;
|
1130 |
+
using ThreadMap = ThreadMap_;
|
1131 |
+
|
1132 |
+
using Index = typename Layout::Index;
|
1133 |
+
using LongIndex = typename Layout::LongIndex;
|
1134 |
+
|
1135 |
+
using TensorRef = TensorRef<Element, Layout>;
|
1136 |
+
using TensorView = TensorView<Element, Layout>;
|
1137 |
+
using TensorCoord = typename Layout::TensorCoord;
|
1138 |
+
|
1139 |
+
using Pointer = Element*;
|
1140 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
1141 |
+
|
1142 |
+
// Map to the underlying AffineRankN<2> layout
|
1143 |
+
using UnderlyingIterator =
|
1144 |
+
PredicatedTileIteratorResidualLast<layout::PitchLinearShape<Shape::kRow, Shape::kColumn>,
|
1145 |
+
Element,
|
1146 |
+
layout::AffineRankN<2>,
|
1147 |
+
(kAdvanceRank == 0 ? 0 : 1),
|
1148 |
+
ThreadMap,
|
1149 |
+
AccessSize>;
|
1150 |
+
|
1151 |
+
using AccessType = typename UnderlyingIterator::AccessType;
|
1152 |
+
|
1153 |
+
/// Fragment object to be loaded or stored
|
1154 |
+
using Fragment =
|
1155 |
+
cutlass::Array<Element, ThreadMap::Iterations::kCount * ThreadMap::kElementsPerAccess>;
|
1156 |
+
|
1157 |
+
/// Predicate vector stores mask to guard accesses
|
1158 |
+
using Mask = typename UnderlyingIterator::Mask;
|
1159 |
+
|
1160 |
+
/// Parameters object is precomputed state and is host-constructible
|
1161 |
+
class Params {
|
1162 |
+
private:
|
1163 |
+
friend PredicatedTileIteratorResidualLast;
|
1164 |
+
|
1165 |
+
/// Parameters object
|
1166 |
+
typename UnderlyingIterator::Params params_;
|
1167 |
+
|
1168 |
+
public:
|
1169 |
+
CUTLASS_HOST_DEVICE
|
1170 |
+
Params() {}
|
1171 |
+
|
1172 |
+
/// Construct the Params object given an AffineRankN<2> tensor's layout
|
1173 |
+
CUTLASS_HOST_DEVICE
|
1174 |
+
Params(Layout const& layout)
|
1175 |
+
: params_(layout::AffineRankN<2>(layout.stride(0), layout.stride(1)))
|
1176 |
+
{
|
1177 |
+
}
|
1178 |
+
};
|
1179 |
+
|
1180 |
+
private:
|
1181 |
+
//
|
1182 |
+
// Data members
|
1183 |
+
//
|
1184 |
+
|
1185 |
+
/// Underlying AffineRankN<2> tile iterator
|
1186 |
+
UnderlyingIterator iterator_;
|
1187 |
+
|
1188 |
+
public:
|
1189 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
1190 |
+
/// and thread ID
|
1191 |
+
CUTLASS_HOST_DEVICE
|
1192 |
+
PredicatedTileIteratorResidualLast(
|
1193 |
+
Params const& params, ///< Precomputed parameters object
|
1194 |
+
Pointer pointer, ///< Pointer to start of tensor
|
1195 |
+
TensorCoord extent, ///< Extent of tensor
|
1196 |
+
int thread_id, ///< ID of each participating thread
|
1197 |
+
TensorCoord const& threadblock_offset, ///< Initial offset of threadblock
|
1198 |
+
int const* indices = nullptr ///< gather/scatter indices, note no support for
|
1199 |
+
///< gather/scatter at this specialization
|
1200 |
+
)
|
1201 |
+
: iterator_(params.params_,
|
1202 |
+
pointer,
|
1203 |
+
layout::PitchLinearCoord(extent.row(), extent.column()),
|
1204 |
+
thread_id,
|
1205 |
+
layout::PitchLinearCoord(threadblock_offset.row(), threadblock_offset.column()))
|
1206 |
+
{
|
1207 |
+
}
|
1208 |
+
|
1209 |
+
/// Construct a PredicatedTileIteratorResidualLast with zero threadblock
|
1210 |
+
/// offset
|
1211 |
+
CUTLASS_HOST_DEVICE
|
1212 |
+
PredicatedTileIteratorResidualLast(Params const& params, ///< Precomputed parameters object
|
1213 |
+
Pointer pointer, ///< Pointer to start of tensor
|
1214 |
+
TensorCoord extent, ///< Extent of tensor
|
1215 |
+
int thread_id ///< ID of each participating thread
|
1216 |
+
)
|
1217 |
+
: PredicatedTileIteratorResidualLast(params, pointer, extent, thread_id, make_Coord(0, 0))
|
1218 |
+
{
|
1219 |
+
}
|
1220 |
+
|
1221 |
+
/// Adds a pointer offset in units of Element
|
1222 |
+
CUTLASS_HOST_DEVICE
|
1223 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
1224 |
+
{
|
1225 |
+
iterator_.add_pointer_offset(pointer_offset);
|
1226 |
+
}
|
1227 |
+
|
1228 |
+
/// Advances to the next tile in memory.
|
1229 |
+
///
|
1230 |
+
/// The first time this method is called, predicates are updated, and the
|
1231 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1232 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1233 |
+
/// pointer.
|
1234 |
+
CUTLASS_HOST_DEVICE
|
1235 |
+
PredicatedTileIteratorResidualLast& operator++()
|
1236 |
+
{
|
1237 |
+
++iterator_;
|
1238 |
+
return *this;
|
1239 |
+
}
|
1240 |
+
|
1241 |
+
/// Advances to the next tile in memory.
|
1242 |
+
///
|
1243 |
+
/// The first time this method is called, predicates are updated, and the
|
1244 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1245 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1246 |
+
/// pointer.
|
1247 |
+
CUTLASS_HOST_DEVICE
|
1248 |
+
PredicatedTileIteratorResidualLast operator++(int)
|
1249 |
+
{
|
1250 |
+
PredicatedTileIteratorResidualLast self(*this);
|
1251 |
+
operator++();
|
1252 |
+
return self;
|
1253 |
+
}
|
1254 |
+
|
1255 |
+
/// Clears the predicate set efficiently
|
1256 |
+
CUTLASS_HOST_DEVICE
|
1257 |
+
void clear_mask(bool enable = true) { iterator_.clear_mask(enable); }
|
1258 |
+
|
1259 |
+
CUTLASS_HOST_DEVICE
|
1260 |
+
void set_residual_tile(bool enable) { iterator_.set_residual_tile(enable); }
|
1261 |
+
|
1262 |
+
/// Clears the predicate set efficiently
|
1263 |
+
CUTLASS_HOST_DEVICE
|
1264 |
+
void enable_mask() { iterator_.enable_mask(); }
|
1265 |
+
|
1266 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
1267 |
+
CUTLASS_HOST_DEVICE
|
1268 |
+
void set_mask(Mask const& mask) { iterator_.set_mask(mask); }
|
1269 |
+
|
1270 |
+
/// Gets the mask
|
1271 |
+
CUTLASS_HOST_DEVICE
|
1272 |
+
void get_mask(Mask& mask) { iterator_.get_mask(mask); }
|
1273 |
+
|
1274 |
+
/// Loads a fragment from memory
|
1275 |
+
CUTLASS_DEVICE
|
1276 |
+
void load_with_pointer_offset(Fragment& frag, Index pointer_offset)
|
1277 |
+
{
|
1278 |
+
iterator_.load_with_pointer_offset(frag, pointer_offset);
|
1279 |
+
}
|
1280 |
+
|
1281 |
+
/// Loads a fragment from memory
|
1282 |
+
CUTLASS_DEVICE
|
1283 |
+
void load_with_byte_offset(Fragment& frag, LongIndex byte_offset)
|
1284 |
+
{
|
1285 |
+
iterator_.load_with_byte_offset(frag, byte_offset);
|
1286 |
+
}
|
1287 |
+
|
1288 |
+
/// Loads a fragment from memory
|
1289 |
+
CUTLASS_DEVICE
|
1290 |
+
void load(Fragment& frag) { load_with_pointer_offset(frag, 0); }
|
1291 |
+
|
1292 |
+
/// Store a fragment to memory
|
1293 |
+
CUTLASS_DEVICE
|
1294 |
+
void store_with_pointer_offset(Fragment const& frag, Index pointer_offset)
|
1295 |
+
{
|
1296 |
+
iterator_.store_with_pointer_offset(frag, pointer_offset);
|
1297 |
+
}
|
1298 |
+
|
1299 |
+
/// Store a fragment to memory
|
1300 |
+
CUTLASS_DEVICE
|
1301 |
+
void store_with_byte_offset(Fragment const& frag, LongIndex byte_offset)
|
1302 |
+
{
|
1303 |
+
iterator_.store_with_byte_offset(frag, byte_offset);
|
1304 |
+
}
|
1305 |
+
|
1306 |
+
/// Store a fragment to memory
|
1307 |
+
CUTLASS_DEVICE
|
1308 |
+
void store(Fragment const& frag) { store_with_pointer_offset(frag, 0); }
|
1309 |
+
};
|
1310 |
+
|
1311 |
+
////////////////////////////////////////////////////////////////////////////////
|
1312 |
+
|
1313 |
+
/// Specialization of PredicatedTileIteratorResidualLast for affine rank 2
|
1314 |
+
/// row-major data.
|
1315 |
+
///
|
1316 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
1317 |
+
/// ReadableContiguousTileIteratorConcept |
|
1318 |
+
/// WriteableContiguousTileIteratorConcept |
|
1319 |
+
/// MaskedTileIteratorConcept
|
1320 |
+
///
|
1321 |
+
template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, int AccessSize>
|
1322 |
+
class PredicatedTileIteratorResidualLast<Shape_,
|
1323 |
+
Element_,
|
1324 |
+
layout::AffineRank2RowMajor,
|
1325 |
+
AdvanceRank,
|
1326 |
+
ThreadMap_,
|
1327 |
+
AccessSize,
|
1328 |
+
false> {
|
1329 |
+
public:
|
1330 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
1331 |
+
"Specialization for pitch-linear iterator may along advance along the "
|
1332 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
1333 |
+
|
1334 |
+
using Shape = Shape_;
|
1335 |
+
using Element = Element_;
|
1336 |
+
using Layout = layout::AffineRank2RowMajor;
|
1337 |
+
static int const kAdvanceRank = AdvanceRank;
|
1338 |
+
using ThreadMap = ThreadMap_;
|
1339 |
+
|
1340 |
+
using Index = typename Layout::Index;
|
1341 |
+
using LongIndex = typename Layout::LongIndex;
|
1342 |
+
|
1343 |
+
using TensorRef = TensorRef<Element, Layout>;
|
1344 |
+
using TensorView = TensorView<Element, Layout>;
|
1345 |
+
using TensorCoord = typename Layout::TensorCoord;
|
1346 |
+
|
1347 |
+
using Pointer = Element*;
|
1348 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
1349 |
+
|
1350 |
+
// Map to the underlying AffineRankN<2> layout
|
1351 |
+
using UnderlyingIterator =
|
1352 |
+
PredicatedTileIteratorResidualLast<layout::PitchLinearShape<Shape::kColumn, Shape::kRow>,
|
1353 |
+
Element,
|
1354 |
+
layout::AffineRankN<2>,
|
1355 |
+
(kAdvanceRank == 0 ? 1 : 0),
|
1356 |
+
ThreadMap,
|
1357 |
+
AccessSize>;
|
1358 |
+
|
1359 |
+
using AccessType = typename UnderlyingIterator::AccessType;
|
1360 |
+
|
1361 |
+
/// Fragment object to be loaded or stored
|
1362 |
+
using Fragment =
|
1363 |
+
cutlass::Array<Element, ThreadMap::Iterations::kCount * ThreadMap::kElementsPerAccess>;
|
1364 |
+
|
1365 |
+
/// Predicate vector stores mask to guard accesses
|
1366 |
+
using Mask = typename UnderlyingIterator::Mask;
|
1367 |
+
|
1368 |
+
/// Parameters object is precomputed state and is host-constructible
|
1369 |
+
class Params {
|
1370 |
+
private:
|
1371 |
+
friend PredicatedTileIteratorResidualLast;
|
1372 |
+
|
1373 |
+
/// Parameters object
|
1374 |
+
typename UnderlyingIterator::Params params_;
|
1375 |
+
|
1376 |
+
public:
|
1377 |
+
CUTLASS_HOST_DEVICE
|
1378 |
+
Params() {}
|
1379 |
+
|
1380 |
+
/// Construct the Params object given an AffineRankN<2> tensor's layout
|
1381 |
+
CUTLASS_HOST_DEVICE
|
1382 |
+
Params(Layout const& layout)
|
1383 |
+
: params_(layout::AffineRankN<2>(layout.stride(1), layout.stride(0)))
|
1384 |
+
{
|
1385 |
+
}
|
1386 |
+
};
|
1387 |
+
|
1388 |
+
private:
|
1389 |
+
//
|
1390 |
+
// Data members
|
1391 |
+
//
|
1392 |
+
|
1393 |
+
/// Underlying AffineRankN<2> tile iterator
|
1394 |
+
UnderlyingIterator iterator_;
|
1395 |
+
|
1396 |
+
public:
|
1397 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
1398 |
+
/// and thread ID
|
1399 |
+
CUTLASS_HOST_DEVICE
|
1400 |
+
PredicatedTileIteratorResidualLast(
|
1401 |
+
Params const& params, ///< Precomputed parameters object
|
1402 |
+
Pointer pointer, ///< Pointer to start of tensor
|
1403 |
+
TensorCoord extent, ///< Extent of tensor
|
1404 |
+
int thread_id, ///< ID of each participating thread
|
1405 |
+
TensorCoord const& threadblock_offset, ///< Initial offset of threadblock
|
1406 |
+
int const* indices = nullptr ///< gather/scatter indices, note no support for
|
1407 |
+
///< gather/scatter at this specialization
|
1408 |
+
)
|
1409 |
+
: iterator_(params.params_,
|
1410 |
+
pointer,
|
1411 |
+
layout::PitchLinearCoord(extent.column(), extent.row()),
|
1412 |
+
thread_id,
|
1413 |
+
layout::PitchLinearCoord(threadblock_offset.column(), threadblock_offset.row()))
|
1414 |
+
{
|
1415 |
+
}
|
1416 |
+
|
1417 |
+
/// Construct a PredicatedTileIteratorResidualLast with zero threadblock
|
1418 |
+
/// offset
|
1419 |
+
CUTLASS_HOST_DEVICE
|
1420 |
+
PredicatedTileIteratorResidualLast(Params const& params, ///< Precomputed parameters object
|
1421 |
+
Pointer pointer, ///< Pointer to start of tensor
|
1422 |
+
TensorCoord extent, ///< Extent of tensor
|
1423 |
+
int thread_id ///< ID of each participating thread
|
1424 |
+
)
|
1425 |
+
: PredicatedTileIteratorResidualLast(params, pointer, extent, thread_id, make_Coord(0, 0))
|
1426 |
+
{
|
1427 |
+
}
|
1428 |
+
|
1429 |
+
/// Adds a pointer offset in units of Element
|
1430 |
+
CUTLASS_HOST_DEVICE
|
1431 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
1432 |
+
{
|
1433 |
+
iterator_.add_pointer_offset(pointer_offset);
|
1434 |
+
}
|
1435 |
+
|
1436 |
+
/// Advances to the next tile in memory.
|
1437 |
+
///
|
1438 |
+
/// The first time this method is called, predicates are updated, and the
|
1439 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1440 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1441 |
+
/// pointer.
|
1442 |
+
CUTLASS_HOST_DEVICE
|
1443 |
+
PredicatedTileIteratorResidualLast& operator++()
|
1444 |
+
{
|
1445 |
+
++iterator_;
|
1446 |
+
return *this;
|
1447 |
+
}
|
1448 |
+
|
1449 |
+
/// Advances to the next tile in memory.
|
1450 |
+
///
|
1451 |
+
/// The first time this method is called, predicates are updated, and the
|
1452 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1453 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1454 |
+
/// pointer.
|
1455 |
+
CUTLASS_HOST_DEVICE
|
1456 |
+
PredicatedTileIteratorResidualLast operator++(int)
|
1457 |
+
{
|
1458 |
+
PredicatedTileIteratorResidualLast self(*this);
|
1459 |
+
operator++();
|
1460 |
+
return self;
|
1461 |
+
}
|
1462 |
+
|
1463 |
+
/// Clears the predicate set efficiently
|
1464 |
+
CUTLASS_HOST_DEVICE
|
1465 |
+
void clear_mask(bool enable = true) { iterator_.clear_mask(enable); }
|
1466 |
+
|
1467 |
+
CUTLASS_HOST_DEVICE
|
1468 |
+
void set_residual_tile(bool enable) { iterator_.set_residual_tile(enable); }
|
1469 |
+
|
1470 |
+
/// Clears the predicate set efficiently
|
1471 |
+
CUTLASS_HOST_DEVICE
|
1472 |
+
void enable_mask() { iterator_.enable_mask(); }
|
1473 |
+
|
1474 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
1475 |
+
CUTLASS_HOST_DEVICE
|
1476 |
+
void set_mask(Mask const& mask) { iterator_.set_mask(mask); }
|
1477 |
+
|
1478 |
+
/// Gets the mask
|
1479 |
+
CUTLASS_HOST_DEVICE
|
1480 |
+
void get_mask(Mask& mask) { iterator_.get_mask(mask); }
|
1481 |
+
|
1482 |
+
/// Loads a fragment from memory
|
1483 |
+
CUTLASS_DEVICE
|
1484 |
+
void load_with_pointer_offset(Fragment& frag, Index pointer_offset)
|
1485 |
+
{
|
1486 |
+
iterator_.load_with_pointer_offset(frag, pointer_offset);
|
1487 |
+
}
|
1488 |
+
|
1489 |
+
/// Loads a fragment from memory
|
1490 |
+
CUTLASS_DEVICE
|
1491 |
+
void load_with_byte_offset(Fragment& frag, LongIndex byte_offset)
|
1492 |
+
{
|
1493 |
+
iterator_.load_with_byte_offset(frag, byte_offset);
|
1494 |
+
}
|
1495 |
+
|
1496 |
+
/// Loads a fragment from memory
|
1497 |
+
CUTLASS_DEVICE
|
1498 |
+
void load(Fragment& frag) { load_with_pointer_offset(frag, 0); }
|
1499 |
+
|
1500 |
+
/// Store a fragment to memory
|
1501 |
+
CUTLASS_DEVICE
|
1502 |
+
void store_with_pointer_offset(Fragment const& frag, Index pointer_offset)
|
1503 |
+
{
|
1504 |
+
iterator_.store_with_pointer_offset(frag, pointer_offset);
|
1505 |
+
}
|
1506 |
+
|
1507 |
+
/// Store a fragment to memory
|
1508 |
+
CUTLASS_DEVICE
|
1509 |
+
void store_with_byte_offset(Fragment const& frag, LongIndex byte_offset)
|
1510 |
+
{
|
1511 |
+
iterator_.store_with_byte_offset(frag, byte_offset);
|
1512 |
+
}
|
1513 |
+
|
1514 |
+
/// Store a fragment to memory
|
1515 |
+
CUTLASS_DEVICE
|
1516 |
+
void store(Fragment const& frag) { store_with_pointer_offset(frag, 0); }
|
1517 |
+
};
|
1518 |
+
|
1519 |
+
////////////////////////////////////////////////////////////////////////////////
|
1520 |
+
|
1521 |
+
/// Specialization of PredicatedTileIteratorResidualLast for interleaved data.
|
1522 |
+
/// It is mapped to the congruous layout.
|
1523 |
+
///
|
1524 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
1525 |
+
/// ReadableContiguousTileIteratorConcept |
|
1526 |
+
/// WriteableContiguousTileIteratorConcept |
|
1527 |
+
/// MaskedTileIteratorConcept
|
1528 |
+
///
|
1529 |
+
|
1530 |
+
template <typename Shape_,
|
1531 |
+
typename Element_,
|
1532 |
+
int AdvanceRank,
|
1533 |
+
typename ThreadMap_,
|
1534 |
+
int AccessSize,
|
1535 |
+
int InterleavedK>
|
1536 |
+
class PredicatedTileIteratorResidualLast<Shape_,
|
1537 |
+
Element_,
|
1538 |
+
layout::ColumnMajorInterleaved<InterleavedK>,
|
1539 |
+
AdvanceRank,
|
1540 |
+
ThreadMap_,
|
1541 |
+
AccessSize,
|
1542 |
+
false> {
|
1543 |
+
public:
|
1544 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
1545 |
+
"Specialization for pitch-linear iterator may along advance along the "
|
1546 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
1547 |
+
|
1548 |
+
using Shape = Shape_;
|
1549 |
+
using Element = Element_;
|
1550 |
+
static int const kInterleavedK = InterleavedK;
|
1551 |
+
using Layout = layout::ColumnMajorInterleaved<kInterleavedK>;
|
1552 |
+
static int const kAdvanceRank = AdvanceRank;
|
1553 |
+
using ThreadMap = ThreadMap_;
|
1554 |
+
|
1555 |
+
using Index = typename Layout::Index;
|
1556 |
+
using LongIndex = typename Layout::LongIndex;
|
1557 |
+
|
1558 |
+
using TensorRef = TensorRef<Element, Layout>;
|
1559 |
+
using TensorView = TensorView<Element, Layout>;
|
1560 |
+
using TensorCoord = typename Layout::TensorCoord;
|
1561 |
+
|
1562 |
+
using Pointer = Element*;
|
1563 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
1564 |
+
|
1565 |
+
using UnderlyingIterator = PredicatedTileIteratorResidualLast<
|
1566 |
+
layout::PitchLinearShape<Shape::kRow * kInterleavedK, Shape::kColumn / kInterleavedK>,
|
1567 |
+
Element,
|
1568 |
+
layout::PitchLinear,
|
1569 |
+
(kAdvanceRank == 0 ? 0 : 1),
|
1570 |
+
ThreadMap,
|
1571 |
+
AccessSize>;
|
1572 |
+
|
1573 |
+
using AccessType = typename UnderlyingIterator::AccessType;
|
1574 |
+
|
1575 |
+
/// Fragment object to be loaded or stored
|
1576 |
+
using Fragment =
|
1577 |
+
cutlass::Array<Element, ThreadMap::Iterations::kCount * ThreadMap::kElementsPerAccess>;
|
1578 |
+
|
1579 |
+
/// Predicate vector stores mask to guard accesses
|
1580 |
+
using Mask = typename UnderlyingIterator::Mask;
|
1581 |
+
|
1582 |
+
/// Parameters object is precomputed state and is host-constructible
|
1583 |
+
class Params {
|
1584 |
+
private:
|
1585 |
+
friend PredicatedTileIteratorResidualLast;
|
1586 |
+
|
1587 |
+
/// Parameters object
|
1588 |
+
typename UnderlyingIterator::Params params_;
|
1589 |
+
|
1590 |
+
public:
|
1591 |
+
CUTLASS_HOST_DEVICE
|
1592 |
+
Params() {}
|
1593 |
+
|
1594 |
+
/// Construct the Params object given a pitch-linear tensor's layout
|
1595 |
+
CUTLASS_HOST_DEVICE
|
1596 |
+
Params(Layout const& layout) : params_(layout::PitchLinear(layout.stride(0))) {}
|
1597 |
+
|
1598 |
+
CUTLASS_HOST_DEVICE
|
1599 |
+
Params(typename UnderlyingIterator::Params::Base const& base) : params_(base) {}
|
1600 |
+
};
|
1601 |
+
|
1602 |
+
private:
|
1603 |
+
//
|
1604 |
+
// Data members
|
1605 |
+
//
|
1606 |
+
|
1607 |
+
/// Underlying pitch-linear tile iterator
|
1608 |
+
UnderlyingIterator iterator_;
|
1609 |
+
|
1610 |
+
public:
|
1611 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
1612 |
+
/// and thread ID
|
1613 |
+
CUTLASS_HOST_DEVICE
|
1614 |
+
PredicatedTileIteratorResidualLast(
|
1615 |
+
/// Precomputed parameters object
|
1616 |
+
Params const& params,
|
1617 |
+
/// Pointer to start of tensor
|
1618 |
+
Pointer pointer,
|
1619 |
+
/// Extent of tensor
|
1620 |
+
TensorCoord extent,
|
1621 |
+
/// ID of each participating thread
|
1622 |
+
int thread_id,
|
1623 |
+
/// Initial offset of threadblock
|
1624 |
+
TensorCoord const& threadblock_offset,
|
1625 |
+
int const* indices = nullptr ///< gather/scatter indices, note no support for
|
1626 |
+
///< gather/scatter at this specialization
|
1627 |
+
)
|
1628 |
+
: iterator_(params.params_,
|
1629 |
+
pointer,
|
1630 |
+
layout::PitchLinearCoord(extent.row() * kInterleavedK,
|
1631 |
+
extent.column() / kInterleavedK),
|
1632 |
+
thread_id,
|
1633 |
+
layout::PitchLinearCoord(threadblock_offset.row() * kInterleavedK,
|
1634 |
+
threadblock_offset.column() / kInterleavedK))
|
1635 |
+
{
|
1636 |
+
}
|
1637 |
+
|
1638 |
+
/// Construct a PredicatedTileIteratorResidualLast with zero threadblock
|
1639 |
+
/// offset
|
1640 |
+
CUTLASS_HOST_DEVICE
|
1641 |
+
PredicatedTileIteratorResidualLast(Params const& params, ///< Precomputed parameters object
|
1642 |
+
Pointer pointer, ///< Pointer to start of tensor
|
1643 |
+
TensorCoord extent, ///< Extent of tensor
|
1644 |
+
int thread_id ///< ID of each participating thread
|
1645 |
+
)
|
1646 |
+
: PredicatedTileIteratorResidualLast(params, pointer, extent, thread_id, make_Coord(0, 0))
|
1647 |
+
{
|
1648 |
+
}
|
1649 |
+
|
1650 |
+
/// Adds a pointer offset in units of Element
|
1651 |
+
CUTLASS_HOST_DEVICE
|
1652 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
1653 |
+
{
|
1654 |
+
iterator_.add_pointer_offset(pointer_offset);
|
1655 |
+
}
|
1656 |
+
|
1657 |
+
/// Advances to the next tile in memory.
|
1658 |
+
///
|
1659 |
+
/// The first time this method is called, predicates are updated, and the
|
1660 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1661 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1662 |
+
/// pointer.
|
1663 |
+
CUTLASS_HOST_DEVICE
|
1664 |
+
PredicatedTileIteratorResidualLast& operator++()
|
1665 |
+
{
|
1666 |
+
++iterator_;
|
1667 |
+
return *this;
|
1668 |
+
}
|
1669 |
+
|
1670 |
+
/// Advances to the next tile in memory.
|
1671 |
+
///
|
1672 |
+
/// The first time this method is called, predicates are updated, and the
|
1673 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1674 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1675 |
+
/// pointer.
|
1676 |
+
CUTLASS_HOST_DEVICE
|
1677 |
+
PredicatedTileIteratorResidualLast operator++(int)
|
1678 |
+
{
|
1679 |
+
PredicatedTileIteratorResidualLast self(*this);
|
1680 |
+
operator++();
|
1681 |
+
return self;
|
1682 |
+
}
|
1683 |
+
|
1684 |
+
/// Clears the predicate set efficiently
|
1685 |
+
CUTLASS_HOST_DEVICE
|
1686 |
+
void clear_mask(bool enable = true) { iterator_.clear_mask(enable); }
|
1687 |
+
|
1688 |
+
CUTLASS_HOST_DEVICE
|
1689 |
+
void set_residual_tile(bool enable) { iterator_.set_residual_tile(enable); }
|
1690 |
+
|
1691 |
+
/// Clears the predicate set efficiently
|
1692 |
+
CUTLASS_HOST_DEVICE
|
1693 |
+
void enable_mask() { iterator_.enable_mask(); }
|
1694 |
+
|
1695 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
1696 |
+
CUTLASS_HOST_DEVICE
|
1697 |
+
void set_mask(Mask const& mask) { iterator_.set_mask(mask); }
|
1698 |
+
|
1699 |
+
/// Gets the mask
|
1700 |
+
CUTLASS_HOST_DEVICE
|
1701 |
+
void get_mask(Mask& mask) { iterator_.get_mask(mask); }
|
1702 |
+
|
1703 |
+
/// Loads a fragment from memory
|
1704 |
+
CUTLASS_DEVICE
|
1705 |
+
void load_with_pointer_offset(Fragment& frag, Index pointer_offset)
|
1706 |
+
{
|
1707 |
+
iterator_.load_with_pointer_offset(frag, pointer_offset);
|
1708 |
+
}
|
1709 |
+
|
1710 |
+
/// Loads a fragment from memory
|
1711 |
+
CUTLASS_DEVICE
|
1712 |
+
void load(Fragment& frag) { load_with_pointer_offset(frag, 0); }
|
1713 |
+
|
1714 |
+
/// Store a fragment to memory
|
1715 |
+
CUTLASS_DEVICE
|
1716 |
+
void store_with_pointer_offset(Fragment const& frag, Index pointer_offset)
|
1717 |
+
{
|
1718 |
+
iterator_.store_with_pointer_offset(frag, pointer_offset);
|
1719 |
+
}
|
1720 |
+
|
1721 |
+
/// Store a fragment to memory
|
1722 |
+
CUTLASS_DEVICE
|
1723 |
+
void store(Fragment const& frag) { store_with_pointer_offset(frag, 0); }
|
1724 |
+
};
|
1725 |
+
|
1726 |
+
////////////////////////////////////////////////////////////////////////////////
|
1727 |
+
|
1728 |
+
/// Specialization of PredicatedTileIteratorResidualLast for interleaved-32
|
1729 |
+
/// data. It is mapped to the congruous layout.
|
1730 |
+
///
|
1731 |
+
/// Satisfies: ForwardTileIteratorConcept |
|
1732 |
+
/// ReadableContiguousTileIteratorConcept |
|
1733 |
+
/// WriteableContiguousTileIteratorConcept |
|
1734 |
+
/// MaskedTileIteratorConcept
|
1735 |
+
///
|
1736 |
+
template <typename Shape_,
|
1737 |
+
typename Element_,
|
1738 |
+
int AdvanceRank,
|
1739 |
+
typename ThreadMap_,
|
1740 |
+
int AccessSize,
|
1741 |
+
int InterleavedK>
|
1742 |
+
class PredicatedTileIteratorResidualLast<Shape_,
|
1743 |
+
Element_,
|
1744 |
+
layout::RowMajorInterleaved<InterleavedK>,
|
1745 |
+
AdvanceRank,
|
1746 |
+
ThreadMap_,
|
1747 |
+
AccessSize,
|
1748 |
+
false> {
|
1749 |
+
public:
|
1750 |
+
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
|
1751 |
+
"Specialization for pitch-linear iterator may along advance along the "
|
1752 |
+
"contiguous(rank=0) or strided(rank=1) dimension.");
|
1753 |
+
|
1754 |
+
using Shape = Shape_;
|
1755 |
+
using Element = Element_;
|
1756 |
+
static int const kInterleavedK = InterleavedK;
|
1757 |
+
using Layout = layout::RowMajorInterleaved<kInterleavedK>;
|
1758 |
+
static int const kAdvanceRank = AdvanceRank;
|
1759 |
+
using ThreadMap = ThreadMap_;
|
1760 |
+
|
1761 |
+
using Index = typename Layout::Index;
|
1762 |
+
using LongIndex = typename Layout::LongIndex;
|
1763 |
+
|
1764 |
+
using TensorRef = TensorRef<Element, Layout>;
|
1765 |
+
using TensorView = TensorView<Element, Layout>;
|
1766 |
+
using TensorCoord = typename Layout::TensorCoord;
|
1767 |
+
|
1768 |
+
using Pointer = Element*;
|
1769 |
+
using NonConstPointer = typename platform::remove_const<Element>::type*;
|
1770 |
+
|
1771 |
+
using UnderlyingIterator = PredicatedTileIteratorResidualLast<
|
1772 |
+
layout::PitchLinearShape<Shape::kColumn * kInterleavedK, Shape::kRow / kInterleavedK>,
|
1773 |
+
Element,
|
1774 |
+
layout::PitchLinear,
|
1775 |
+
(kAdvanceRank == 0 ? 1 : 0),
|
1776 |
+
ThreadMap,
|
1777 |
+
AccessSize>;
|
1778 |
+
|
1779 |
+
using AccessType = typename UnderlyingIterator::AccessType;
|
1780 |
+
|
1781 |
+
/// Fragment object to be loaded or stored
|
1782 |
+
using Fragment =
|
1783 |
+
cutlass::Array<Element, ThreadMap::Iterations::kCount * ThreadMap::kElementsPerAccess>;
|
1784 |
+
|
1785 |
+
/// Predicate vector stores mask to guard accesses
|
1786 |
+
using Mask = typename UnderlyingIterator::Mask;
|
1787 |
+
|
1788 |
+
/// Parameters object is precomputed state and is host-constructible
|
1789 |
+
class Params {
|
1790 |
+
private:
|
1791 |
+
friend PredicatedTileIteratorResidualLast;
|
1792 |
+
|
1793 |
+
/// Parameters object
|
1794 |
+
typename UnderlyingIterator::Params params_;
|
1795 |
+
|
1796 |
+
public:
|
1797 |
+
CUTLASS_HOST_DEVICE
|
1798 |
+
Params() {}
|
1799 |
+
|
1800 |
+
/// Construct the Params object given a pitch-linear tensor's layout
|
1801 |
+
CUTLASS_HOST_DEVICE
|
1802 |
+
Params(Layout const& layout) : params_(layout::PitchLinear(layout.stride(0))) {}
|
1803 |
+
|
1804 |
+
CUTLASS_HOST_DEVICE
|
1805 |
+
Params(typename UnderlyingIterator::Params::Base const& base) : params_(base) {}
|
1806 |
+
};
|
1807 |
+
|
1808 |
+
private:
|
1809 |
+
//
|
1810 |
+
// Data members
|
1811 |
+
//
|
1812 |
+
|
1813 |
+
/// Underlying pitch-linear tile iterator
|
1814 |
+
UnderlyingIterator iterator_;
|
1815 |
+
|
1816 |
+
public:
|
1817 |
+
/// Constructs a TileIterator from its precomputed state, threadblock offset,
|
1818 |
+
/// and thread ID
|
1819 |
+
CUTLASS_HOST_DEVICE
|
1820 |
+
PredicatedTileIteratorResidualLast(
|
1821 |
+
/// Precomputed parameters object
|
1822 |
+
Params const& params,
|
1823 |
+
/// Pointer to start of tensor
|
1824 |
+
Pointer pointer,
|
1825 |
+
/// Extent of tensor
|
1826 |
+
TensorCoord extent,
|
1827 |
+
/// ID of each participating thread
|
1828 |
+
int thread_id,
|
1829 |
+
/// Initial offset of threadblock
|
1830 |
+
TensorCoord const& threadblock_offset,
|
1831 |
+
int const* indices = nullptr ///< gather/scatter indices, note no support for
|
1832 |
+
///< gather/scatter at this specialization
|
1833 |
+
)
|
1834 |
+
: iterator_(params.params_,
|
1835 |
+
pointer,
|
1836 |
+
layout::PitchLinearCoord(extent.column() * kInterleavedK,
|
1837 |
+
extent.row() / kInterleavedK),
|
1838 |
+
thread_id,
|
1839 |
+
layout::PitchLinearCoord(threadblock_offset.column() * kInterleavedK,
|
1840 |
+
threadblock_offset.row() / kInterleavedK))
|
1841 |
+
{
|
1842 |
+
}
|
1843 |
+
|
1844 |
+
/// Construct a PredicatedTileIteratorResidualLast with zero threadblock
|
1845 |
+
/// offset
|
1846 |
+
CUTLASS_HOST_DEVICE
|
1847 |
+
PredicatedTileIteratorResidualLast(Params const& params, ///< Precomputed parameters object
|
1848 |
+
Pointer pointer, ///< Pointer to start of tensor
|
1849 |
+
TensorCoord extent, ///< Extent of tensor
|
1850 |
+
int thread_id ///< ID of each participating thread
|
1851 |
+
)
|
1852 |
+
: PredicatedTileIteratorResidualLast(params, pointer, extent, thread_id, make_Coord(0, 0))
|
1853 |
+
{
|
1854 |
+
}
|
1855 |
+
|
1856 |
+
/// Adds a pointer offset in units of Element
|
1857 |
+
CUTLASS_HOST_DEVICE
|
1858 |
+
void add_pointer_offset(LongIndex pointer_offset)
|
1859 |
+
{
|
1860 |
+
iterator_.add_pointer_offset(pointer_offset);
|
1861 |
+
}
|
1862 |
+
|
1863 |
+
/// Advances to the next tile in memory.
|
1864 |
+
///
|
1865 |
+
/// The first time this method is called, predicates are updated, and the
|
1866 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1867 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1868 |
+
/// pointer.
|
1869 |
+
CUTLASS_HOST_DEVICE
|
1870 |
+
PredicatedTileIteratorResidualLast& operator++()
|
1871 |
+
{
|
1872 |
+
++iterator_;
|
1873 |
+
return *this;
|
1874 |
+
}
|
1875 |
+
|
1876 |
+
/// Advances to the next tile in memory.
|
1877 |
+
///
|
1878 |
+
/// The first time this method is called, predicates are updated, and the
|
1879 |
+
/// iterator's internal pointer is reverted to the first "steady state" tile.
|
1880 |
+
/// Subsequent calls are lightweight and must only update the internal
|
1881 |
+
/// pointer.
|
1882 |
+
CUTLASS_HOST_DEVICE
|
1883 |
+
PredicatedTileIteratorResidualLast operator++(int)
|
1884 |
+
{
|
1885 |
+
PredicatedTileIteratorResidualLast self(*this);
|
1886 |
+
operator++();
|
1887 |
+
return self;
|
1888 |
+
}
|
1889 |
+
|
1890 |
+
/// Clears the predicate set efficiently
|
1891 |
+
CUTLASS_HOST_DEVICE
|
1892 |
+
void clear_mask(bool enable = true) { iterator_.clear_mask(enable); }
|
1893 |
+
|
1894 |
+
CUTLASS_HOST_DEVICE
|
1895 |
+
void set_residual_tile(bool enable) { iterator_.set_residual_tile(enable); }
|
1896 |
+
|
1897 |
+
/// Clears the predicate set efficiently
|
1898 |
+
CUTLASS_HOST_DEVICE
|
1899 |
+
void enable_mask() { iterator_.enable_mask(); }
|
1900 |
+
|
1901 |
+
/// Sets the predicate mask, overriding value stored in predicate iterator
|
1902 |
+
CUTLASS_HOST_DEVICE
|
1903 |
+
void set_mask(Mask const& mask) { iterator_.set_mask(mask); }
|
1904 |
+
|
1905 |
+
/// Gets the mask
|
1906 |
+
CUTLASS_HOST_DEVICE
|
1907 |
+
void get_mask(Mask& mask) { iterator_.get_mask(mask); }
|
1908 |
+
|
1909 |
+
/// Loads a fragment from memory
|
1910 |
+
CUTLASS_DEVICE
|
1911 |
+
void load_with_pointer_offset(Fragment& frag, Index pointer_offset)
|
1912 |
+
{
|
1913 |
+
iterator_.load_with_pointer_offset(frag, pointer_offset);
|
1914 |
+
}
|
1915 |
+
|
1916 |
+
/// Loads a fragment from memory
|
1917 |
+
CUTLASS_DEVICE
|
1918 |
+
void load(Fragment& frag) { load_with_pointer_offset(frag, 0); }
|
1919 |
+
|
1920 |
+
/// Store a fragment to memory
|
1921 |
+
CUTLASS_DEVICE
|
1922 |
+
void store_with_pointer_offset(Fragment const& frag, Index pointer_offset)
|
1923 |
+
{
|
1924 |
+
iterator_.store_with_pointer_offset(frag, pointer_offset);
|
1925 |
+
}
|
1926 |
+
|
1927 |
+
/// Store a fragment to memory
|
1928 |
+
CUTLASS_DEVICE
|
1929 |
+
void store(Fragment const& frag) { store_with_pointer_offset(frag, 0); }
|
1930 |
+
};
|
1931 |
+
|
1932 |
+
////////////////////////////////////////////////////////////////////////////////
|
1933 |
+
|
1934 |
+
} // namespace threadblock
|
1935 |
+
} // namespace transform
|
1936 |
+
} // namespace cutlass
|
1937 |
+
|
1938 |
+
////////////////////////////////////////////////////////////////////////////////
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/iterators/transpose_warp_iterator.h
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holdvr nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
|
32 |
+
// Copyright (c) Microsoft Corporation.
|
33 |
+
// SPDX-License-Identifier: Apache-2.0
|
34 |
+
|
35 |
+
// DeepSpeed Team
|
36 |
+
|
37 |
+
#pragma once
|
38 |
+
|
39 |
+
#include "warp_iterator_from_smem.h"
|
40 |
+
|
41 |
+
template <typename WarpIterator>
|
42 |
+
struct TransposeWarpIterator {
|
43 |
+
using Iterator = char;
|
44 |
+
static bool constexpr kSupportsTranspose = false;
|
45 |
+
};
|
46 |
+
|
47 |
+
template <
|
48 |
+
/// Operand identity
|
49 |
+
cutlass::gemm::Operand Operand,
|
50 |
+
/// Data type of A elements
|
51 |
+
typename Element,
|
52 |
+
bool kTranspose>
|
53 |
+
struct TransposeWarpIterator<
|
54 |
+
cutlass::gemm::warp::WarpIteratorFromSmem<Operand, Element, kTranspose>> {
|
55 |
+
using Iterator = cutlass::gemm::warp::WarpIteratorFromSmem<Operand, Element, !kTranspose>;
|
56 |
+
static bool constexpr kSupportsTranspose = true;
|
57 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/iterators/warp_iterator_from_smem.h
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights
|
3 |
+
*reserved. SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice,
|
9 |
+
*this list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
23 |
+
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
24 |
+
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
25 |
+
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
27 |
+
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
28 |
+
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
29 |
+
*POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
*
|
31 |
+
**************************************************************************************************/
|
32 |
+
|
33 |
+
// Copyright (c) Microsoft Corporation.
|
34 |
+
// SPDX-License-Identifier: Apache-2.0
|
35 |
+
|
36 |
+
// DeepSpeed Team
|
37 |
+
|
38 |
+
/*! \file
|
39 |
+
\brief Inspired from
|
40 |
+
"cutlass/gemm/warp/mma_tensor_op_tile_access_iterator.h" Loads tiles of GEMM
|
41 |
+
operands from a RowMajor shared-memory layout into registers to use by A100
|
42 |
+
TensorCores.
|
43 |
+
|
44 |
+
The difference with "mma_tensor_op_tile_access_iterator.h" is that:
|
45 |
+
(1) We use "ldmatrix" to load tiles, rather than manual loads (slightly
|
46 |
+
faster) (2) We support to transpose the operand (eg read `A.transpose()` when
|
47 |
+
the shared memory holds `A`)
|
48 |
+
|
49 |
+
This is only implemented for the specific shapes.
|
50 |
+
*/
|
51 |
+
#pragma once
|
52 |
+
|
53 |
+
#include <cutlass/gemm/gemm.h>
|
54 |
+
|
55 |
+
////////////////////////////////////////////////////////////////////////////////
|
56 |
+
namespace cutlass {
|
57 |
+
namespace gemm {
|
58 |
+
namespace warp {
|
59 |
+
|
60 |
+
template <
|
61 |
+
/// Operand identity
|
62 |
+
Operand Operand_,
|
63 |
+
/// Data type of A elements
|
64 |
+
typename Element_,
|
65 |
+
bool kTranspose = false>
|
66 |
+
class WarpIteratorFromSmem {
|
67 |
+
public:
|
68 |
+
/// Shape of tile to load (concept: MatrixShape)
|
69 |
+
using Shape = cutlass::MatrixShape<32, 32>;
|
70 |
+
|
71 |
+
/// Operand tag
|
72 |
+
static Operand const kOperand = Operand_;
|
73 |
+
|
74 |
+
/// Basic check
|
75 |
+
static_assert(
|
76 |
+
kOperand == Operand::kA || kOperand == Operand::kB,
|
77 |
+
"WarpIteratorFromSmem may only be instantiated for A or B operands to warp-level Mma.");
|
78 |
+
|
79 |
+
/// Element type
|
80 |
+
using Element = Element_;
|
81 |
+
static_assert(sizeof_bits<Element>::value == 16, "Only supported for half");
|
82 |
+
|
83 |
+
/// Layout of source tile
|
84 |
+
using Layout = cutlass::layout::RowMajor;
|
85 |
+
|
86 |
+
/// Shape of one matrix product operation (concept: MatrixShape)
|
87 |
+
using InstructionShape = cutlass::MatrixShape<16, 8>;
|
88 |
+
|
89 |
+
/// Delta between *MMA operations (in units of *MMA operations, concept:
|
90 |
+
/// MatrixShape)
|
91 |
+
static int const kOpDelta = 1;
|
92 |
+
|
93 |
+
/// Number of participating threads
|
94 |
+
static int const kThreads = 32;
|
95 |
+
|
96 |
+
/// TensorRef type for loading element from a tensor
|
97 |
+
using TensorRef = TensorRef<Element, Layout>;
|
98 |
+
|
99 |
+
/// Index type
|
100 |
+
using Index = typename TensorRef::Index;
|
101 |
+
|
102 |
+
/// Long Index type
|
103 |
+
using LongIndex = typename TensorRef::LongIndex;
|
104 |
+
|
105 |
+
/// Coordinate for an element in the tensor
|
106 |
+
using TensorCoord = typename TensorRef::TensorCoord;
|
107 |
+
|
108 |
+
/// Number of elements accessed per Shared Memory load
|
109 |
+
static int const kElementsPerAccess =
|
110 |
+
(sizeof_bits<Element>::value >= 32 ? 1 : 32 / sizeof_bits<Element>::value);
|
111 |
+
|
112 |
+
using InstructionCount = MatrixShape<Shape::kRow / InstructionShape::kRow,
|
113 |
+
Shape::kColumn / InstructionShape::kColumn>;
|
114 |
+
|
115 |
+
static int const kIterations = (kOperand == Operand::kA) ? InstructionCount::kColumn
|
116 |
+
: InstructionCount::kRow;
|
117 |
+
|
118 |
+
public:
|
119 |
+
//
|
120 |
+
// Derived quantities
|
121 |
+
//
|
122 |
+
|
123 |
+
/// Fragment object holding a thread's part of a tile
|
124 |
+
using Fragment =
|
125 |
+
Array<Element,
|
126 |
+
(kOperand == Operand::kA) ? (Shape::kRow* InstructionShape::kColumn / kThreads)
|
127 |
+
: (Shape::kColumn* InstructionShape::kRow / kThreads)>;
|
128 |
+
|
129 |
+
/// Memory access type
|
130 |
+
// using AccessType = AlignedArray<Element, kElementsPerAccess>;
|
131 |
+
using AccessType = Array<unsigned, 4>;
|
132 |
+
|
133 |
+
static int constexpr kWarpShapeDivisibleInner =
|
134 |
+
(kOperand == Operand::kA ? InstructionShape::kColumn : InstructionShape::kRow);
|
135 |
+
static int constexpr kAccessesInner = (kWarpShapeDivisibleInner / kElementsPerAccess) / 4;
|
136 |
+
static int const kTilesPerInstruction = InstructionShape::kRow / 8;
|
137 |
+
|
138 |
+
private:
|
139 |
+
/// Underlying tensor reference
|
140 |
+
TensorRef ref_;
|
141 |
+
|
142 |
+
/// Origin
|
143 |
+
MatrixCoord origin_;
|
144 |
+
|
145 |
+
/// Iterations in a tile
|
146 |
+
int iterations_;
|
147 |
+
|
148 |
+
public:
|
149 |
+
/// Constructor from TensorRef
|
150 |
+
CUTLASS_HOST_DEVICE
|
151 |
+
WarpIteratorFromSmem(TensorRef const& ref, int lane_id)
|
152 |
+
: WarpIteratorFromSmem(ref, {Shape::kRow, Shape::kColumn}, lane_id)
|
153 |
+
{
|
154 |
+
}
|
155 |
+
CUTLASS_HOST_DEVICE
|
156 |
+
WarpIteratorFromSmem(TensorRef const& ref, TensorCoord extent, int lane_id)
|
157 |
+
: ref_(ref), iterations_(0)
|
158 |
+
{
|
159 |
+
int ldsm_vec_num = (lane_id >> 3);
|
160 |
+
if (kOperand == Operand::kA) {
|
161 |
+
origin_ = MatrixCoord(lane_id % 8, 0);
|
162 |
+
static_assert(InstructionCount::kRow * kAccessesInner * kTilesPerInstruction == 4, "");
|
163 |
+
CUTLASS_PRAGMA_UNROLL
|
164 |
+
for (int inst_m_idx = 0; inst_m_idx < InstructionCount::kRow; ++inst_m_idx) {
|
165 |
+
CUTLASS_PRAGMA_UNROLL
|
166 |
+
for (int inner_idx = 0; inner_idx < kAccessesInner; ++inner_idx) {
|
167 |
+
CUTLASS_PRAGMA_UNROLL
|
168 |
+
for (int access_m_idx = 0; access_m_idx < kTilesPerInstruction;
|
169 |
+
++access_m_idx) {
|
170 |
+
int access_idx =
|
171 |
+
access_m_idx +
|
172 |
+
kTilesPerInstruction * (inner_idx + kAccessesInner * inst_m_idx);
|
173 |
+
|
174 |
+
MatrixCoord offset(access_m_idx * 8 + inst_m_idx * InstructionShape::kRow,
|
175 |
+
inner_idx * 4 * kElementsPerAccess);
|
176 |
+
|
177 |
+
if (access_idx == ldsm_vec_num) {
|
178 |
+
if (kTranspose) { offset = MatrixCoord(offset.column(), offset.row()); }
|
179 |
+
origin_ += offset;
|
180 |
+
}
|
181 |
+
}
|
182 |
+
}
|
183 |
+
}
|
184 |
+
} else {
|
185 |
+
origin_ = MatrixCoord(0, lane_id % 8);
|
186 |
+
static_assert(InstructionCount::kColumn * kAccessesInner == 4, "");
|
187 |
+
CUTLASS_PRAGMA_UNROLL
|
188 |
+
for (int inst_n_idx = 0; inst_n_idx < InstructionCount::kColumn; ++inst_n_idx) {
|
189 |
+
CUTLASS_PRAGMA_UNROLL
|
190 |
+
for (int inner_idx = 0; inner_idx < kAccessesInner; ++inner_idx) {
|
191 |
+
int access_idx = inner_idx + kAccessesInner * inst_n_idx;
|
192 |
+
|
193 |
+
MatrixCoord offset(inner_idx * 4 * kElementsPerAccess, inst_n_idx * 8);
|
194 |
+
|
195 |
+
if (access_idx == ldsm_vec_num) {
|
196 |
+
if (kTranspose) { offset = MatrixCoord(offset.column(), offset.row()); }
|
197 |
+
origin_ += offset;
|
198 |
+
}
|
199 |
+
}
|
200 |
+
}
|
201 |
+
}
|
202 |
+
|
203 |
+
ref_.add_coord_offset(origin_);
|
204 |
+
}
|
205 |
+
|
206 |
+
/// Advances an iterator along logical dimensions of matrix in units of whole
|
207 |
+
/// tiles
|
208 |
+
CUTLASS_HOST_DEVICE
|
209 |
+
WarpIteratorFromSmem& add_tile_offset(TensorCoord const& tile_offset)
|
210 |
+
{
|
211 |
+
TensorCoord coord_offset(tile_offset.row() * Shape::kRow,
|
212 |
+
tile_offset.column() * Shape::kColumn);
|
213 |
+
if (kTranspose) { coord_offset = TensorCoord{coord_offset.column(), coord_offset.row()}; }
|
214 |
+
origin_ += coord_offset;
|
215 |
+
|
216 |
+
ref_.add_coord_offset(coord_offset);
|
217 |
+
|
218 |
+
return *this;
|
219 |
+
}
|
220 |
+
|
221 |
+
/// Advances the iterator along the advance dimension
|
222 |
+
CUTLASS_DEVICE
|
223 |
+
void advance()
|
224 |
+
{
|
225 |
+
if (kOperand == Operand::kA) {
|
226 |
+
add_tile_offset({0, 1});
|
227 |
+
} else {
|
228 |
+
add_tile_offset({1, 0});
|
229 |
+
}
|
230 |
+
|
231 |
+
iterations_ = 0;
|
232 |
+
}
|
233 |
+
|
234 |
+
/// increase iterations in a tile
|
235 |
+
CUTLASS_HOST_DEVICE
|
236 |
+
WarpIteratorFromSmem& operator++()
|
237 |
+
{
|
238 |
+
iterations_++;
|
239 |
+
|
240 |
+
if (iterations_ >= kIterations) advance();
|
241 |
+
|
242 |
+
return *this;
|
243 |
+
}
|
244 |
+
|
245 |
+
/// Loads a fragment from memory at the location pointed to by the iterator.
|
246 |
+
CUTLASS_DEVICE
|
247 |
+
void load(Fragment& frag) const
|
248 |
+
{
|
249 |
+
AccessType* access_ptr = reinterpret_cast<AccessType*>(&frag);
|
250 |
+
using LoadLayout =
|
251 |
+
typename platform::conditional<kTranspose, layout::ColumnMajor, layout::RowMajor>::type;
|
252 |
+
|
253 |
+
MatrixCoord offset;
|
254 |
+
if (kOperand == Operand::kA) {
|
255 |
+
offset = MatrixCoord(0, iterations_ * InstructionShape::kColumn);
|
256 |
+
} else {
|
257 |
+
offset = MatrixCoord(iterations_ * InstructionShape::kRow, 0);
|
258 |
+
}
|
259 |
+
if (kTranspose) { offset = MatrixCoord(offset.column(), offset.row()); }
|
260 |
+
cutlass::arch::ldsm<LoadLayout, 4>(access_ptr[0], ref_.data() + ref_.offset(offset));
|
261 |
+
}
|
262 |
+
};
|
263 |
+
|
264 |
+
////////////////////////////////////////////////////////////////////////////////
|
265 |
+
|
266 |
+
} // namespace warp
|
267 |
+
} // namespace gemm
|
268 |
+
} // namespace cutlass
|
269 |
+
////////////////////////////////////////////////////////////////////////////////
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/transform/bias_broadcast.h
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
// This does nothing.
|
9 |
+
template <typename ThreadMap, typename Shape, typename scalar_t>
|
10 |
+
struct BroadcastNoLoad {
|
11 |
+
using Fragment =
|
12 |
+
cutlass::Array<scalar_t, ThreadMap::Iterations::kCount * ThreadMap::kElementsPerAccess>;
|
13 |
+
static const bool kEnable = false;
|
14 |
+
CUTLASS_DEVICE static void load(Fragment& frag,
|
15 |
+
scalar_t* ptr,
|
16 |
+
int thread_id,
|
17 |
+
const cutlass::MatrixCoord& extent,
|
18 |
+
int stride)
|
19 |
+
{
|
20 |
+
}
|
21 |
+
CUTLASS_DEVICE static scalar_t*
|
22 |
+
advance(scalar_t* ptr, int B_id, int N_id, int H_id, int strideB, int strideN, int strideH)
|
23 |
+
{
|
24 |
+
return ptr;
|
25 |
+
}
|
26 |
+
};
|
27 |
+
|
28 |
+
// This is to load the bias matrix from the global memory with on-the-fly
|
29 |
+
// broadcast. The shape in global memory is [B, N, 1, 1, L]. Each time we load
|
30 |
+
// the last dimension as a L row vector, and we further broadcast the L vector
|
31 |
+
// to a tile of size [L, L] by repeating the L vector L times
|
32 |
+
template <typename ThreadMap, typename Shape, typename scalar_t>
|
33 |
+
struct BroadcastA : public BroadcastNoLoad<ThreadMap, Shape, scalar_t> {
|
34 |
+
using Base = BroadcastNoLoad<ThreadMap, Shape, scalar_t>;
|
35 |
+
static const bool kEnable = true;
|
36 |
+
using layout = cutlass::layout::AffineRank2RowMajor;
|
37 |
+
|
38 |
+
using GmemTileIterator = cutlass::transform::threadblock::
|
39 |
+
PredicatedTileIterator<Shape, scalar_t, layout, 0, ThreadMap>;
|
40 |
+
using Fragment = typename GmemTileIterator::Fragment;
|
41 |
+
|
42 |
+
CUTLASS_DEVICE static void load(Fragment& frag,
|
43 |
+
scalar_t* ptr,
|
44 |
+
int thread_id,
|
45 |
+
const cutlass::MatrixCoord& extent,
|
46 |
+
int stride)
|
47 |
+
{
|
48 |
+
GmemTileIterator iter({layout(0, 1)}, ptr, extent, thread_id);
|
49 |
+
iter.load(frag);
|
50 |
+
}
|
51 |
+
|
52 |
+
CUTLASS_DEVICE static scalar_t*
|
53 |
+
advance(scalar_t* ptr, int B_id, int N_id, int H_id, int strideB, int strideN, int strideH)
|
54 |
+
{
|
55 |
+
return ptr + B_id * strideB + N_id * strideN;
|
56 |
+
}
|
57 |
+
};
|
58 |
+
|
59 |
+
// This is to load the bias matrix from the global memory with on-the-fly
|
60 |
+
// broadcast. The shape in global memory is [B, 1, H, L, L]. Each time we load
|
61 |
+
// a [L, L] matrix. Different N use the same bias matrix when B and H are the
|
62 |
+
// same.
|
63 |
+
template <typename ThreadMap, typename Shape, typename scalar_t>
|
64 |
+
struct BroadcastB : public BroadcastNoLoad<ThreadMap, Shape, scalar_t> {
|
65 |
+
using Base = BroadcastNoLoad<ThreadMap, Shape, scalar_t>;
|
66 |
+
static const bool kEnable = true;
|
67 |
+
using layout = cutlass::layout::RowMajor;
|
68 |
+
|
69 |
+
using GmemTileIterator = cutlass::transform::threadblock::
|
70 |
+
PredicatedTileIterator<Shape, scalar_t, layout, 0, ThreadMap>;
|
71 |
+
using Fragment = typename GmemTileIterator::Fragment;
|
72 |
+
|
73 |
+
CUTLASS_DEVICE static void load(Fragment& frag,
|
74 |
+
scalar_t* ptr,
|
75 |
+
int thread_id,
|
76 |
+
const cutlass::MatrixCoord& extent,
|
77 |
+
int stride)
|
78 |
+
{
|
79 |
+
GmemTileIterator iter({layout(stride)}, ptr, extent, thread_id);
|
80 |
+
iter.load(frag);
|
81 |
+
}
|
82 |
+
|
83 |
+
CUTLASS_DEVICE static scalar_t*
|
84 |
+
advance(scalar_t* ptr, int B_id, int N_id, int H_id, int strideB, int strideN, int strideH)
|
85 |
+
{
|
86 |
+
return ptr + B_id * strideB + H_id * strideH;
|
87 |
+
}
|
88 |
+
};
|
89 |
+
|
90 |
+
template <typename Shape,
|
91 |
+
typename scalar_t,
|
92 |
+
int kThreads,
|
93 |
+
template <typename, typename, typename>
|
94 |
+
class Broadcast1_,
|
95 |
+
template <typename, typename, typename>
|
96 |
+
class Broadcast2_>
|
97 |
+
struct AttentionBiasEpilogue {
|
98 |
+
using ThreadMap = cutlass::transform::PitchLinearStripminedThreadMap<
|
99 |
+
cutlass::layout::PitchLinearShape<Shape::kColumn, Shape::kRow>,
|
100 |
+
kThreads,
|
101 |
+
1>;
|
102 |
+
|
103 |
+
using Broadcast1 = Broadcast1_<ThreadMap, Shape, scalar_t>;
|
104 |
+
using Broadcast2 = Broadcast2_<ThreadMap, Shape, scalar_t>;
|
105 |
+
|
106 |
+
Broadcast1 broadcast1;
|
107 |
+
Broadcast2 broadcast2;
|
108 |
+
|
109 |
+
using Ref = cutlass::TensorRef<float, cutlass::layout::RowMajor>;
|
110 |
+
using SmemTileIterator = cutlass::transform::threadblock::
|
111 |
+
RegularTileIterator<Shape, float, cutlass::layout::RowMajor, 0, ThreadMap>;
|
112 |
+
|
113 |
+
CUTLASS_DEVICE void operator()(const Ref& ref,
|
114 |
+
scalar_t* ptr1,
|
115 |
+
scalar_t* ptr2,
|
116 |
+
int thread_id,
|
117 |
+
const cutlass::MatrixCoord& extent,
|
118 |
+
int stride)
|
119 |
+
{
|
120 |
+
static_assert(Broadcast1::Fragment::kElements == Broadcast2::Fragment::kElements,
|
121 |
+
"The two broadcast fragments must have the same number of "
|
122 |
+
"elements");
|
123 |
+
typename SmemTileIterator::Fragment frag;
|
124 |
+
frag.clear();
|
125 |
+
float* frag_ptr = reinterpret_cast<float*>(&frag);
|
126 |
+
if (Broadcast1::kEnable) {
|
127 |
+
typename Broadcast1::Fragment frag1;
|
128 |
+
frag1.clear();
|
129 |
+
broadcast1.load(frag1, ptr1, thread_id, extent, stride);
|
130 |
+
scalar_t* frag1_ptr = reinterpret_cast<scalar_t*>(&frag1);
|
131 |
+
for (int i = 0; i < Broadcast1::Fragment::kElements; ++i) {
|
132 |
+
frag_ptr[i] += static_cast<float>(frag1_ptr[i]);
|
133 |
+
}
|
134 |
+
}
|
135 |
+
if (Broadcast2::kEnable) {
|
136 |
+
typename Broadcast2::Fragment frag2;
|
137 |
+
frag2.clear();
|
138 |
+
broadcast2.load(frag2, ptr2, thread_id, extent, stride);
|
139 |
+
scalar_t* frag2_ptr = reinterpret_cast<scalar_t*>(&frag2);
|
140 |
+
for (int i = 0; i < Broadcast2::Fragment::kElements; ++i) {
|
141 |
+
frag_ptr[i] += static_cast<float>(frag2_ptr[i]);
|
142 |
+
}
|
143 |
+
}
|
144 |
+
SmemTileIterator iter(ref, thread_id);
|
145 |
+
iter.store(frag);
|
146 |
+
__syncthreads();
|
147 |
+
}
|
148 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/deepspeed4science/evoformer_attn/transform/tile_smem_loader.h
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights
|
3 |
+
*reserved. SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice,
|
9 |
+
*this list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holdvr nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
23 |
+
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
24 |
+
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
25 |
+
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
27 |
+
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
28 |
+
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
29 |
+
*POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
*
|
31 |
+
**************************************************************************************************/
|
32 |
+
|
33 |
+
// Copyright (c) Microsoft Corporation.
|
34 |
+
// SPDX-License-Identifier: Apache-2.0
|
35 |
+
|
36 |
+
// DeepSpeed Team
|
37 |
+
|
38 |
+
#pragma once
|
39 |
+
#include <cutlass/cutlass.h>
|
40 |
+
#include "cutlass/aligned_buffer.h"
|
41 |
+
#include "cutlass/array.h"
|
42 |
+
#include "cutlass/coord.h"
|
43 |
+
#include "cutlass/layout/matrix.h"
|
44 |
+
#include "cutlass/layout/pitch_linear.h"
|
45 |
+
#include "cutlass/numeric_types.h"
|
46 |
+
#include "cutlass/platform/platform.h"
|
47 |
+
#include "cutlass/transform/pitch_linear_thread_map.h"
|
48 |
+
#include "cutlass/transform/threadblock/predicated_tile_iterator.h"
|
49 |
+
#include "cutlass/transform/threadblock/regular_tile_iterator.h"
|
50 |
+
|
51 |
+
template <typename scalar_t, // scalar type
|
52 |
+
typename ThreadblockTileShape, // size of tile to load
|
53 |
+
int Threads, // number of participating threads
|
54 |
+
int ElementsPerAccess> // thread access width in elements
|
55 |
+
class TileSmemLoader {
|
56 |
+
public:
|
57 |
+
using Shape = ThreadblockTileShape;
|
58 |
+
using SmemTile = cutlass::AlignedBuffer<scalar_t, ThreadblockTileShape::kCount>;
|
59 |
+
|
60 |
+
using ThreadMap = cutlass::transform::PitchLinearStripminedThreadMap<
|
61 |
+
cutlass::layout::PitchLinearShape<ThreadblockTileShape::kColumn, // contiguous
|
62 |
+
ThreadblockTileShape::kRow>, // strided
|
63 |
+
Threads, // Threads
|
64 |
+
ElementsPerAccess>; // ElementsPerAccess
|
65 |
+
|
66 |
+
using GmemTileIterator = cutlass::transform::threadblock::PredicatedTileIterator<
|
67 |
+
ThreadblockTileShape, // Shape
|
68 |
+
scalar_t, // Element
|
69 |
+
cutlass::layout::RowMajor, // Layout
|
70 |
+
0, // AdvanceRank
|
71 |
+
ThreadMap>; // ThreadMap
|
72 |
+
|
73 |
+
using SmemTileIterator =
|
74 |
+
cutlass::transform::threadblock::RegularTileIterator<ThreadblockTileShape, // Shape
|
75 |
+
scalar_t, // Element
|
76 |
+
cutlass::layout::RowMajor, // Layout
|
77 |
+
0, // AdvanceRank
|
78 |
+
ThreadMap>; // ThreadMap
|
79 |
+
|
80 |
+
using Fragment = typename GmemTileIterator::Fragment;
|
81 |
+
|
82 |
+
/// load a tile from global memory into shared memory
|
83 |
+
CUTLASS_DEVICE
|
84 |
+
static void load(GmemTileIterator tile_load_iter, SmemTileIterator tile_store_iter)
|
85 |
+
{
|
86 |
+
Fragment tb_frag;
|
87 |
+
tb_frag.clear();
|
88 |
+
tile_load_iter.load(tb_frag);
|
89 |
+
tile_store_iter.store(tb_frag);
|
90 |
+
|
91 |
+
__syncthreads();
|
92 |
+
}
|
93 |
+
};
|