diff --git a/ckpts/universal/global_step40/zero/15.attention.query_key_value.weight/exp_avg_sq.pt b/ckpts/universal/global_step40/zero/15.attention.query_key_value.weight/exp_avg_sq.pt
new file mode 100644
index 0000000000000000000000000000000000000000..9d5f6dd16951205ebd2df29a275123a9fff266f9
--- /dev/null
+++ b/ckpts/universal/global_step40/zero/15.attention.query_key_value.weight/exp_avg_sq.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1f6133aed6e4cbc1847338e6787c9b3d52878c67fd8e4c05897ccfa3dce89c1f
+size 50332843
diff --git a/ckpts/universal/global_step40/zero/15.mlp.dense_h_to_4h.weight/exp_avg.pt b/ckpts/universal/global_step40/zero/15.mlp.dense_h_to_4h.weight/exp_avg.pt
new file mode 100644
index 0000000000000000000000000000000000000000..9772bb1fd701068f310e8a7efa28c6e967277d5a
--- /dev/null
+++ b/ckpts/universal/global_step40/zero/15.mlp.dense_h_to_4h.weight/exp_avg.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1052f284ef706155459598fa4d0a5cd04f0901ae70c09a0c08e36312fbf4bee0
+size 33555612
diff --git a/ckpts/universal/global_step40/zero/17.input_layernorm.weight/exp_avg_sq.pt b/ckpts/universal/global_step40/zero/17.input_layernorm.weight/exp_avg_sq.pt
new file mode 100644
index 0000000000000000000000000000000000000000..9e83daaa04486d2fd34010ba1f0800230a725bf4
--- /dev/null
+++ b/ckpts/universal/global_step40/zero/17.input_layernorm.weight/exp_avg_sq.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:39acee8a8a6e6e56c894fb1a77385dd607d89daf7f254d5fb6b636ffb17d38a2
+size 9387
diff --git a/ckpts/universal/global_step40/zero/17.mlp.dense_h_to_4h.weight/exp_avg.pt b/ckpts/universal/global_step40/zero/17.mlp.dense_h_to_4h.weight/exp_avg.pt
new file mode 100644
index 0000000000000000000000000000000000000000..108a554e2afa3b8b55039a0c1066f01202d3f707
--- /dev/null
+++ b/ckpts/universal/global_step40/zero/17.mlp.dense_h_to_4h.weight/exp_avg.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c55508f6386cabcde92c10133fb91e6e18086f699b4d3e3ba62a6f34214e0bd1
+size 33555612
diff --git a/venv/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/configuration_autoformer.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/configuration_autoformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..908f003dda40b12466b3732ba09983b9a5227d04
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/configuration_autoformer.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/modeling_autoformer.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/modeling_autoformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bcb3efd6ad21b920ac97c25147c11d4d832d8c9f
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/modeling_autoformer.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/cvt/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/cvt/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5241bb5a5f3a7a5ace9c7786926e1ff212e751fe
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/cvt/__init__.py
@@ -0,0 +1,81 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
+
+
+_import_structure = {"configuration_cvt": ["CVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CvtConfig"]}
+
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_cvt"] = [
+ "CVT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "CvtForImageClassification",
+ "CvtModel",
+ "CvtPreTrainedModel",
+ ]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_cvt"] = [
+ "TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TFCvtForImageClassification",
+ "TFCvtModel",
+ "TFCvtPreTrainedModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_cvt import CVT_PRETRAINED_CONFIG_ARCHIVE_MAP, CvtConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_cvt import (
+ CVT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ CvtForImageClassification,
+ CvtModel,
+ CvtPreTrainedModel,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_cvt import (
+ TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TFCvtForImageClassification,
+ TFCvtModel,
+ TFCvtPreTrainedModel,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/venv/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..56939d896b5fff02aa35e6c54a8ce1d9d07b5a79
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/__init__.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/convert_cvt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/convert_cvt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9965330f40ab718a40d091df1f607a6d1fb8d53a
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/convert_cvt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/cvt/configuration_cvt.py b/venv/lib/python3.10/site-packages/transformers/models/cvt/configuration_cvt.py
new file mode 100644
index 0000000000000000000000000000000000000000..412387af5e8a7bf21975207b513eeff90ca01479
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/cvt/configuration_cvt.py
@@ -0,0 +1,146 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" CvT model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import CVT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class CvtConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`CvtModel`]. It is used to instantiate a CvT model
+ according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the CvT
+ [microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3]`):
+ The kernel size of each encoder's patch embedding.
+ patch_stride (`List[int]`, *optional*, defaults to `[4, 2, 2]`):
+ The stride size of each encoder's patch embedding.
+ patch_padding (`List[int]`, *optional*, defaults to `[2, 1, 1]`):
+ The padding size of each encoder's patch embedding.
+ embed_dim (`List[int]`, *optional*, defaults to `[64, 192, 384]`):
+ Dimension of each of the encoder blocks.
+ num_heads (`List[int]`, *optional*, defaults to `[1, 3, 6]`):
+ Number of attention heads for each attention layer in each block of the Transformer encoder.
+ depth (`List[int]`, *optional*, defaults to `[1, 2, 10]`):
+ The number of layers in each encoder block.
+ mlp_ratios (`List[float]`, *optional*, defaults to `[4.0, 4.0, 4.0, 4.0]`):
+ Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
+ encoder blocks.
+ attention_drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`):
+ The dropout ratio for the attention probabilities.
+ drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`):
+ The dropout ratio for the patch embeddings probabilities.
+ drop_path_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.1]`):
+ The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
+ qkv_bias (`List[bool]`, *optional*, defaults to `[True, True, True]`):
+ The bias bool for query, key and value in attentions
+ cls_token (`List[bool]`, *optional*, defaults to `[False, False, True]`):
+ Whether or not to add a classification token to the output of each of the last 3 stages.
+ qkv_projection_method (`List[string]`, *optional*, defaults to ["dw_bn", "dw_bn", "dw_bn"]`):
+ The projection method for query, key and value Default is depth-wise convolutions with batch norm. For
+ Linear projection use "avg".
+ kernel_qkv (`List[int]`, *optional*, defaults to `[3, 3, 3]`):
+ The kernel size for query, key and value in attention layer
+ padding_kv (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
+ The padding size for key and value in attention layer
+ stride_kv (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
+ The stride size for key and value in attention layer
+ padding_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
+ The padding size for query in attention layer
+ stride_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
+ The stride size for query in attention layer
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
+ The epsilon used by the layer normalization layers.
+
+ Example:
+
+ ```python
+ >>> from transformers import CvtConfig, CvtModel
+
+ >>> # Initializing a Cvt msft/cvt style configuration
+ >>> configuration = CvtConfig()
+
+ >>> # Initializing a model (with random weights) from the msft/cvt style configuration
+ >>> model = CvtModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "cvt"
+
+ def __init__(
+ self,
+ num_channels=3,
+ patch_sizes=[7, 3, 3],
+ patch_stride=[4, 2, 2],
+ patch_padding=[2, 1, 1],
+ embed_dim=[64, 192, 384],
+ num_heads=[1, 3, 6],
+ depth=[1, 2, 10],
+ mlp_ratio=[4.0, 4.0, 4.0],
+ attention_drop_rate=[0.0, 0.0, 0.0],
+ drop_rate=[0.0, 0.0, 0.0],
+ drop_path_rate=[0.0, 0.0, 0.1],
+ qkv_bias=[True, True, True],
+ cls_token=[False, False, True],
+ qkv_projection_method=["dw_bn", "dw_bn", "dw_bn"],
+ kernel_qkv=[3, 3, 3],
+ padding_kv=[1, 1, 1],
+ stride_kv=[2, 2, 2],
+ padding_q=[1, 1, 1],
+ stride_q=[1, 1, 1],
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.num_channels = num_channels
+ self.patch_sizes = patch_sizes
+ self.patch_stride = patch_stride
+ self.patch_padding = patch_padding
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.depth = depth
+ self.mlp_ratio = mlp_ratio
+ self.attention_drop_rate = attention_drop_rate
+ self.drop_rate = drop_rate
+ self.drop_path_rate = drop_path_rate
+ self.qkv_bias = qkv_bias
+ self.cls_token = cls_token
+ self.qkv_projection_method = qkv_projection_method
+ self.kernel_qkv = kernel_qkv
+ self.padding_kv = padding_kv
+ self.stride_kv = stride_kv
+ self.padding_q = padding_q
+ self.stride_q = stride_q
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
diff --git a/venv/lib/python3.10/site-packages/transformers/models/cvt/convert_cvt_original_pytorch_checkpoint_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/cvt/convert_cvt_original_pytorch_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..ea4edac16cdbae353ea7b5f93f297164360b476f
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/cvt/convert_cvt_original_pytorch_checkpoint_to_pytorch.py
@@ -0,0 +1,362 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert CvT checkpoints from the original repository.
+
+URL: https://github.com/microsoft/CvT"""
+
+
+import argparse
+import json
+from collections import OrderedDict
+
+import torch
+from huggingface_hub import cached_download, hf_hub_url
+
+from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
+
+
+def embeddings(idx):
+ """
+ The function helps in renaming embedding layer weights.
+
+ Args:
+ idx: stage number in original model
+ """
+ embed = []
+ embed.append(
+ (
+ f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight",
+ f"stage{idx}.patch_embed.proj.weight",
+ )
+ )
+ embed.append(
+ (
+ f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias",
+ f"stage{idx}.patch_embed.proj.bias",
+ )
+ )
+ embed.append(
+ (
+ f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight",
+ f"stage{idx}.patch_embed.norm.weight",
+ )
+ )
+ embed.append(
+ (
+ f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias",
+ f"stage{idx}.patch_embed.norm.bias",
+ )
+ )
+ return embed
+
+
+def attention(idx, cnt):
+ """
+ The function helps in renaming attention block layers weights.
+
+ Args:
+ idx: stage number in original model
+ cnt: count of blocks in each stage
+ """
+ attention_weights = []
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked",
+ f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight",
+ f"stage{idx}.blocks.{cnt}.attn.proj_q.weight",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias",
+ f"stage{idx}.blocks.{cnt}.attn.proj_q.bias",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight",
+ f"stage{idx}.blocks.{cnt}.attn.proj_k.weight",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias",
+ f"stage{idx}.blocks.{cnt}.attn.proj_k.bias",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight",
+ f"stage{idx}.blocks.{cnt}.attn.proj_v.weight",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias",
+ f"stage{idx}.blocks.{cnt}.attn.proj_v.bias",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight",
+ f"stage{idx}.blocks.{cnt}.attn.proj.weight",
+ )
+ )
+ attention_weights.append(
+ (
+ f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias",
+ f"stage{idx}.blocks.{cnt}.attn.proj.bias",
+ )
+ )
+ attention_weights.append(
+ (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight")
+ )
+ attention_weights.append(
+ (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias")
+ )
+ attention_weights.append(
+ (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight")
+ )
+ attention_weights.append(
+ (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias")
+ )
+ attention_weights.append(
+ (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight")
+ )
+ attention_weights.append(
+ (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias")
+ )
+ attention_weights.append(
+ (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight")
+ )
+ attention_weights.append(
+ (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias")
+ )
+ return attention_weights
+
+
+def cls_token(idx):
+ """
+ Function helps in renaming cls_token weights
+ """
+ token = []
+ token.append((f"cvt.encoder.stages.{idx}.cls_token", "stage2.cls_token"))
+ return token
+
+
+def final():
+ """
+ Function helps in renaming final classification layer
+ """
+ head = []
+ head.append(("layernorm.weight", "norm.weight"))
+ head.append(("layernorm.bias", "norm.bias"))
+ head.append(("classifier.weight", "head.weight"))
+ head.append(("classifier.bias", "head.bias"))
+ return head
+
+
+def convert_cvt_checkpoint(cvt_model, image_size, cvt_file_name, pytorch_dump_folder):
+ """
+ Fucntion to convert the microsoft cvt checkpoint to huggingface checkpoint
+ """
+ img_labels_file = "imagenet-1k-id2label.json"
+ num_labels = 1000
+
+ repo_id = "huggingface/label-files"
+ num_labels = num_labels
+ id2label = json.load(open(cached_download(hf_hub_url(repo_id, img_labels_file, repo_type="dataset")), "r"))
+ id2label = {int(k): v for k, v in id2label.items()}
+
+ id2label = id2label
+ label2id = {v: k for k, v in id2label.items()}
+
+ config = config = CvtConfig(num_labels=num_labels, id2label=id2label, label2id=label2id)
+
+ # For depth size 13 (13 = 1+2+10)
+ if cvt_model.rsplit("/", 1)[-1][4:6] == "13":
+ config.depth = [1, 2, 10]
+
+ # For depth size 21 (21 = 1+4+16)
+ elif cvt_model.rsplit("/", 1)[-1][4:6] == "21":
+ config.depth = [1, 4, 16]
+
+ # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
+ else:
+ config.depth = [2, 2, 20]
+ config.num_heads = [3, 12, 16]
+ config.embed_dim = [192, 768, 1024]
+
+ model = CvtForImageClassification(config)
+ image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k")
+ image_processor.size["shortest_edge"] = image_size
+ original_weights = torch.load(cvt_file_name, map_location=torch.device("cpu"))
+
+ huggingface_weights = OrderedDict()
+ list_of_state_dict = []
+
+ for idx in range(len(config.depth)):
+ if config.cls_token[idx]:
+ list_of_state_dict = list_of_state_dict + cls_token(idx)
+ list_of_state_dict = list_of_state_dict + embeddings(idx)
+ for cnt in range(config.depth[idx]):
+ list_of_state_dict = list_of_state_dict + attention(idx, cnt)
+
+ list_of_state_dict = list_of_state_dict + final()
+ for gg in list_of_state_dict:
+ print(gg)
+ for i in range(len(list_of_state_dict)):
+ huggingface_weights[list_of_state_dict[i][0]] = original_weights[list_of_state_dict[i][1]]
+
+ model.load_state_dict(huggingface_weights)
+ model.save_pretrained(pytorch_dump_folder)
+ image_processor.save_pretrained(pytorch_dump_folder)
+
+
+# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--cvt_model",
+ default="cvt-w24",
+ type=str,
+ help="Name of the cvt model you'd like to convert.",
+ )
+ parser.add_argument(
+ "--image_size",
+ default=384,
+ type=int,
+ help="Input Image Size",
+ )
+ parser.add_argument(
+ "--cvt_file_name",
+ default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
+ type=str,
+ help="Input Image Size",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
+ )
+
+ args = parser.parse_args()
+ convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
diff --git a/venv/lib/python3.10/site-packages/transformers/models/cvt/modeling_cvt.py b/venv/lib/python3.10/site-packages/transformers/models/cvt/modeling_cvt.py
new file mode 100644
index 0000000000000000000000000000000000000000..25cf3963cbe10c9f4e06d71154ae3a09a3e16d45
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/cvt/modeling_cvt.py
@@ -0,0 +1,725 @@
+# coding=utf-8
+# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch CvT model."""
+
+
+import collections.abc
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
+from ...modeling_outputs import ImageClassifierOutputWithNoAttention, ModelOutput
+from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import logging
+from .configuration_cvt import CvtConfig
+
+
+logger = logging.get_logger(__name__)
+
+# General docstring
+_CONFIG_FOR_DOC = "CvtConfig"
+
+# Base docstring
+_CHECKPOINT_FOR_DOC = "microsoft/cvt-13"
+_EXPECTED_OUTPUT_SHAPE = [1, 384, 14, 14]
+
+# Image classification docstring
+_IMAGE_CLASS_CHECKPOINT = "microsoft/cvt-13"
+_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
+
+
+from ..deprecated._archive_maps import CVT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+@dataclass
+class BaseModelOutputWithCLSToken(ModelOutput):
+ """
+ Base class for model's outputs, with potential hidden states and attentions.
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ cls_token_value (`torch.FloatTensor` of shape `(batch_size, 1, hidden_size)`):
+ Classification token at the output of the last layer of the model.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
+ plus the initial embedding outputs.
+ """
+
+ last_hidden_state: torch.FloatTensor = None
+ cls_token_value: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+# Copied from transformers.models.beit.modeling_beit.drop_path
+def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
+ """
+ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
+
+ Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
+ however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
+ layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
+ argument.
+ """
+ if drop_prob == 0.0 or not training:
+ return input
+ keep_prob = 1 - drop_prob
+ shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
+ random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
+ random_tensor.floor_() # binarize
+ output = input.div(keep_prob) * random_tensor
+ return output
+
+
+# Copied from transformers.models.beit.modeling_beit.BeitDropPath
+class CvtDropPath(nn.Module):
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
+
+ def __init__(self, drop_prob: Optional[float] = None) -> None:
+ super().__init__()
+ self.drop_prob = drop_prob
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ return drop_path(hidden_states, self.drop_prob, self.training)
+
+ def extra_repr(self) -> str:
+ return "p={}".format(self.drop_prob)
+
+
+class CvtEmbeddings(nn.Module):
+ """
+ Construct the CvT embeddings.
+ """
+
+ def __init__(self, patch_size, num_channels, embed_dim, stride, padding, dropout_rate):
+ super().__init__()
+ self.convolution_embeddings = CvtConvEmbeddings(
+ patch_size=patch_size, num_channels=num_channels, embed_dim=embed_dim, stride=stride, padding=padding
+ )
+ self.dropout = nn.Dropout(dropout_rate)
+
+ def forward(self, pixel_values):
+ hidden_state = self.convolution_embeddings(pixel_values)
+ hidden_state = self.dropout(hidden_state)
+ return hidden_state
+
+
+class CvtConvEmbeddings(nn.Module):
+ """
+ Image to Conv Embedding.
+ """
+
+ def __init__(self, patch_size, num_channels, embed_dim, stride, padding):
+ super().__init__()
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
+ self.patch_size = patch_size
+ self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=stride, padding=padding)
+ self.normalization = nn.LayerNorm(embed_dim)
+
+ def forward(self, pixel_values):
+ pixel_values = self.projection(pixel_values)
+ batch_size, num_channels, height, width = pixel_values.shape
+ hidden_size = height * width
+ # rearrange "b c h w -> b (h w) c"
+ pixel_values = pixel_values.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
+ if self.normalization:
+ pixel_values = self.normalization(pixel_values)
+ # rearrange "b (h w) c" -> b c h w"
+ pixel_values = pixel_values.permute(0, 2, 1).view(batch_size, num_channels, height, width)
+ return pixel_values
+
+
+class CvtSelfAttentionConvProjection(nn.Module):
+ def __init__(self, embed_dim, kernel_size, padding, stride):
+ super().__init__()
+ self.convolution = nn.Conv2d(
+ embed_dim,
+ embed_dim,
+ kernel_size=kernel_size,
+ padding=padding,
+ stride=stride,
+ bias=False,
+ groups=embed_dim,
+ )
+ self.normalization = nn.BatchNorm2d(embed_dim)
+
+ def forward(self, hidden_state):
+ hidden_state = self.convolution(hidden_state)
+ hidden_state = self.normalization(hidden_state)
+ return hidden_state
+
+
+class CvtSelfAttentionLinearProjection(nn.Module):
+ def forward(self, hidden_state):
+ batch_size, num_channels, height, width = hidden_state.shape
+ hidden_size = height * width
+ # rearrange " b c h w -> b (h w) c"
+ hidden_state = hidden_state.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
+ return hidden_state
+
+
+class CvtSelfAttentionProjection(nn.Module):
+ def __init__(self, embed_dim, kernel_size, padding, stride, projection_method="dw_bn"):
+ super().__init__()
+ if projection_method == "dw_bn":
+ self.convolution_projection = CvtSelfAttentionConvProjection(embed_dim, kernel_size, padding, stride)
+ self.linear_projection = CvtSelfAttentionLinearProjection()
+
+ def forward(self, hidden_state):
+ hidden_state = self.convolution_projection(hidden_state)
+ hidden_state = self.linear_projection(hidden_state)
+ return hidden_state
+
+
+class CvtSelfAttention(nn.Module):
+ def __init__(
+ self,
+ num_heads,
+ embed_dim,
+ kernel_size,
+ padding_q,
+ padding_kv,
+ stride_q,
+ stride_kv,
+ qkv_projection_method,
+ qkv_bias,
+ attention_drop_rate,
+ with_cls_token=True,
+ **kwargs,
+ ):
+ super().__init__()
+ self.scale = embed_dim**-0.5
+ self.with_cls_token = with_cls_token
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+
+ self.convolution_projection_query = CvtSelfAttentionProjection(
+ embed_dim,
+ kernel_size,
+ padding_q,
+ stride_q,
+ projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method,
+ )
+ self.convolution_projection_key = CvtSelfAttentionProjection(
+ embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method
+ )
+ self.convolution_projection_value = CvtSelfAttentionProjection(
+ embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method
+ )
+
+ self.projection_query = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
+ self.projection_key = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
+ self.projection_value = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
+
+ self.dropout = nn.Dropout(attention_drop_rate)
+
+ def rearrange_for_multi_head_attention(self, hidden_state):
+ batch_size, hidden_size, _ = hidden_state.shape
+ head_dim = self.embed_dim // self.num_heads
+ # rearrange 'b t (h d) -> b h t d'
+ return hidden_state.view(batch_size, hidden_size, self.num_heads, head_dim).permute(0, 2, 1, 3)
+
+ def forward(self, hidden_state, height, width):
+ if self.with_cls_token:
+ cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1)
+ batch_size, hidden_size, num_channels = hidden_state.shape
+ # rearrange "b (h w) c -> b c h w"
+ hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width)
+
+ key = self.convolution_projection_key(hidden_state)
+ query = self.convolution_projection_query(hidden_state)
+ value = self.convolution_projection_value(hidden_state)
+
+ if self.with_cls_token:
+ query = torch.cat((cls_token, query), dim=1)
+ key = torch.cat((cls_token, key), dim=1)
+ value = torch.cat((cls_token, value), dim=1)
+
+ head_dim = self.embed_dim // self.num_heads
+
+ query = self.rearrange_for_multi_head_attention(self.projection_query(query))
+ key = self.rearrange_for_multi_head_attention(self.projection_key(key))
+ value = self.rearrange_for_multi_head_attention(self.projection_value(value))
+
+ attention_score = torch.einsum("bhlk,bhtk->bhlt", [query, key]) * self.scale
+ attention_probs = torch.nn.functional.softmax(attention_score, dim=-1)
+ attention_probs = self.dropout(attention_probs)
+
+ context = torch.einsum("bhlt,bhtv->bhlv", [attention_probs, value])
+ # rearrange"b h t d -> b t (h d)"
+ _, _, hidden_size, _ = context.shape
+ context = context.permute(0, 2, 1, 3).contiguous().view(batch_size, hidden_size, self.num_heads * head_dim)
+ return context
+
+
+class CvtSelfOutput(nn.Module):
+ """
+ The residual connection is defined in CvtLayer instead of here (as is the case with other models), due to the
+ layernorm applied before each block.
+ """
+
+ def __init__(self, embed_dim, drop_rate):
+ super().__init__()
+ self.dense = nn.Linear(embed_dim, embed_dim)
+ self.dropout = nn.Dropout(drop_rate)
+
+ def forward(self, hidden_state, input_tensor):
+ hidden_state = self.dense(hidden_state)
+ hidden_state = self.dropout(hidden_state)
+ return hidden_state
+
+
+class CvtAttention(nn.Module):
+ def __init__(
+ self,
+ num_heads,
+ embed_dim,
+ kernel_size,
+ padding_q,
+ padding_kv,
+ stride_q,
+ stride_kv,
+ qkv_projection_method,
+ qkv_bias,
+ attention_drop_rate,
+ drop_rate,
+ with_cls_token=True,
+ ):
+ super().__init__()
+ self.attention = CvtSelfAttention(
+ num_heads,
+ embed_dim,
+ kernel_size,
+ padding_q,
+ padding_kv,
+ stride_q,
+ stride_kv,
+ qkv_projection_method,
+ qkv_bias,
+ attention_drop_rate,
+ with_cls_token,
+ )
+ self.output = CvtSelfOutput(embed_dim, drop_rate)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.attention.query = prune_linear_layer(self.attention.query, index)
+ self.attention.key = prune_linear_layer(self.attention.key, index)
+ self.attention.value = prune_linear_layer(self.attention.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
+ self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(self, hidden_state, height, width):
+ self_output = self.attention(hidden_state, height, width)
+ attention_output = self.output(self_output, hidden_state)
+ return attention_output
+
+
+class CvtIntermediate(nn.Module):
+ def __init__(self, embed_dim, mlp_ratio):
+ super().__init__()
+ self.dense = nn.Linear(embed_dim, int(embed_dim * mlp_ratio))
+ self.activation = nn.GELU()
+
+ def forward(self, hidden_state):
+ hidden_state = self.dense(hidden_state)
+ hidden_state = self.activation(hidden_state)
+ return hidden_state
+
+
+class CvtOutput(nn.Module):
+ def __init__(self, embed_dim, mlp_ratio, drop_rate):
+ super().__init__()
+ self.dense = nn.Linear(int(embed_dim * mlp_ratio), embed_dim)
+ self.dropout = nn.Dropout(drop_rate)
+
+ def forward(self, hidden_state, input_tensor):
+ hidden_state = self.dense(hidden_state)
+ hidden_state = self.dropout(hidden_state)
+ hidden_state = hidden_state + input_tensor
+ return hidden_state
+
+
+class CvtLayer(nn.Module):
+ """
+ CvtLayer composed by attention layers, normalization and multi-layer perceptrons (mlps).
+ """
+
+ def __init__(
+ self,
+ num_heads,
+ embed_dim,
+ kernel_size,
+ padding_q,
+ padding_kv,
+ stride_q,
+ stride_kv,
+ qkv_projection_method,
+ qkv_bias,
+ attention_drop_rate,
+ drop_rate,
+ mlp_ratio,
+ drop_path_rate,
+ with_cls_token=True,
+ ):
+ super().__init__()
+ self.attention = CvtAttention(
+ num_heads,
+ embed_dim,
+ kernel_size,
+ padding_q,
+ padding_kv,
+ stride_q,
+ stride_kv,
+ qkv_projection_method,
+ qkv_bias,
+ attention_drop_rate,
+ drop_rate,
+ with_cls_token,
+ )
+
+ self.intermediate = CvtIntermediate(embed_dim, mlp_ratio)
+ self.output = CvtOutput(embed_dim, mlp_ratio, drop_rate)
+ self.drop_path = CvtDropPath(drop_prob=drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
+ self.layernorm_before = nn.LayerNorm(embed_dim)
+ self.layernorm_after = nn.LayerNorm(embed_dim)
+
+ def forward(self, hidden_state, height, width):
+ self_attention_output = self.attention(
+ self.layernorm_before(hidden_state), # in Cvt, layernorm is applied before self-attention
+ height,
+ width,
+ )
+ attention_output = self_attention_output
+ attention_output = self.drop_path(attention_output)
+
+ # first residual connection
+ hidden_state = attention_output + hidden_state
+
+ # in Cvt, layernorm is also applied after self-attention
+ layer_output = self.layernorm_after(hidden_state)
+ layer_output = self.intermediate(layer_output)
+
+ # second residual connection is done here
+ layer_output = self.output(layer_output, hidden_state)
+ layer_output = self.drop_path(layer_output)
+ return layer_output
+
+
+class CvtStage(nn.Module):
+ def __init__(self, config, stage):
+ super().__init__()
+ self.config = config
+ self.stage = stage
+ if self.config.cls_token[self.stage]:
+ self.cls_token = nn.Parameter(torch.randn(1, 1, self.config.embed_dim[-1]))
+
+ self.embedding = CvtEmbeddings(
+ patch_size=config.patch_sizes[self.stage],
+ stride=config.patch_stride[self.stage],
+ num_channels=config.num_channels if self.stage == 0 else config.embed_dim[self.stage - 1],
+ embed_dim=config.embed_dim[self.stage],
+ padding=config.patch_padding[self.stage],
+ dropout_rate=config.drop_rate[self.stage],
+ )
+
+ drop_path_rates = [x.item() for x in torch.linspace(0, config.drop_path_rate[self.stage], config.depth[stage])]
+
+ self.layers = nn.Sequential(
+ *[
+ CvtLayer(
+ num_heads=config.num_heads[self.stage],
+ embed_dim=config.embed_dim[self.stage],
+ kernel_size=config.kernel_qkv[self.stage],
+ padding_q=config.padding_q[self.stage],
+ padding_kv=config.padding_kv[self.stage],
+ stride_kv=config.stride_kv[self.stage],
+ stride_q=config.stride_q[self.stage],
+ qkv_projection_method=config.qkv_projection_method[self.stage],
+ qkv_bias=config.qkv_bias[self.stage],
+ attention_drop_rate=config.attention_drop_rate[self.stage],
+ drop_rate=config.drop_rate[self.stage],
+ drop_path_rate=drop_path_rates[self.stage],
+ mlp_ratio=config.mlp_ratio[self.stage],
+ with_cls_token=config.cls_token[self.stage],
+ )
+ for _ in range(config.depth[self.stage])
+ ]
+ )
+
+ def forward(self, hidden_state):
+ cls_token = None
+ hidden_state = self.embedding(hidden_state)
+ batch_size, num_channels, height, width = hidden_state.shape
+ # rearrange b c h w -> b (h w) c"
+ hidden_state = hidden_state.view(batch_size, num_channels, height * width).permute(0, 2, 1)
+ if self.config.cls_token[self.stage]:
+ cls_token = self.cls_token.expand(batch_size, -1, -1)
+ hidden_state = torch.cat((cls_token, hidden_state), dim=1)
+
+ for layer in self.layers:
+ layer_outputs = layer(hidden_state, height, width)
+ hidden_state = layer_outputs
+
+ if self.config.cls_token[self.stage]:
+ cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1)
+ hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width)
+ return hidden_state, cls_token
+
+
+class CvtEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.stages = nn.ModuleList([])
+ for stage_idx in range(len(config.depth)):
+ self.stages.append(CvtStage(config, stage_idx))
+
+ def forward(self, pixel_values, output_hidden_states=False, return_dict=True):
+ all_hidden_states = () if output_hidden_states else None
+ hidden_state = pixel_values
+
+ cls_token = None
+ for _, (stage_module) in enumerate(self.stages):
+ hidden_state, cls_token = stage_module(hidden_state)
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_state,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None)
+
+ return BaseModelOutputWithCLSToken(
+ last_hidden_state=hidden_state,
+ cls_token_value=cls_token,
+ hidden_states=all_hidden_states,
+ )
+
+
+class CvtPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = CvtConfig
+ base_model_prefix = "cvt"
+ main_input_name = "pixel_values"
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
+ module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, CvtStage):
+ if self.config.cls_token[module.stage]:
+ module.cls_token.data = nn.init.trunc_normal_(
+ torch.zeros(1, 1, self.config.embed_dim[-1]), mean=0.0, std=self.config.initializer_range
+ )
+
+
+CVT_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`CvtConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+CVT_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`]
+ for details.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.",
+ CVT_START_DOCSTRING,
+)
+class CvtModel(CvtPreTrainedModel):
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+ self.encoder = CvtEncoder(config)
+ self.post_init()
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithCLSToken,
+ config_class=_CONFIG_FOR_DOC,
+ modality="vision",
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
+ )
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithCLSToken]:
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ encoder_outputs = self.encoder(
+ pixel_values,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+
+ return BaseModelOutputWithCLSToken(
+ last_hidden_state=sequence_output,
+ cls_token_value=encoder_outputs.cls_token_value,
+ hidden_states=encoder_outputs.hidden_states,
+ )
+
+
+@add_start_docstrings(
+ """
+ Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
+ the [CLS] token) e.g. for ImageNet.
+ """,
+ CVT_START_DOCSTRING,
+)
+class CvtForImageClassification(CvtPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+ self.cvt = CvtModel(config, add_pooling_layer=False)
+ self.layernorm = nn.LayerNorm(config.embed_dim[-1])
+ # Classifier head
+ self.classifier = (
+ nn.Linear(config.embed_dim[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
+ )
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
+ output_type=ImageClassifierOutputWithNoAttention,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
+ )
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ outputs = self.cvt(
+ pixel_values,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ cls_token = outputs[1]
+ if self.config.cls_token[-1]:
+ sequence_output = self.layernorm(cls_token)
+ else:
+ batch_size, num_channels, height, width = sequence_output.shape
+ # rearrange "b c h w -> b (h w) c"
+ sequence_output = sequence_output.view(batch_size, num_channels, height * width).permute(0, 2, 1)
+ sequence_output = self.layernorm(sequence_output)
+
+ sequence_output_mean = sequence_output.mean(dim=1)
+ logits = self.classifier(sequence_output_mean)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.config.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.config.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
diff --git a/venv/lib/python3.10/site-packages/transformers/models/cvt/modeling_tf_cvt.py b/venv/lib/python3.10/site-packages/transformers/models/cvt/modeling_tf_cvt.py
new file mode 100644
index 0000000000000000000000000000000000000000..5664412effb594852c86106afa705ac44fc8fb52
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/cvt/modeling_tf_cvt.py
@@ -0,0 +1,1097 @@
+# coding=utf-8
+# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 Cvt model."""
+
+
+from __future__ import annotations
+
+import collections.abc
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import tensorflow as tf
+
+from ...modeling_tf_outputs import TFImageClassifierOutputWithNoAttention
+from ...modeling_tf_utils import (
+ TFModelInputType,
+ TFPreTrainedModel,
+ TFSequenceClassificationLoss,
+ get_initializer,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import shape_list, stable_softmax
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_cvt import CvtConfig
+
+
+logger = logging.get_logger(__name__)
+
+# General docstring
+_CONFIG_FOR_DOC = "CvtConfig"
+
+
+from ..deprecated._archive_maps import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+@dataclass
+class TFBaseModelOutputWithCLSToken(ModelOutput):
+ """
+ Base class for model's outputs.
+
+ Args:
+ last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ cls_token_value (`tf.Tensor` of shape `(batch_size, 1, hidden_size)`):
+ Classification token at the output of the last layer of the model.
+ hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
+ `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
+ the initial embedding outputs.
+ """
+
+ last_hidden_state: tf.Tensor = None
+ cls_token_value: tf.Tensor = None
+ hidden_states: Tuple[tf.Tensor, ...] | None = None
+
+
+class TFCvtDropPath(keras.layers.Layer):
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
+ References:
+ (1) github.com:rwightman/pytorch-image-models
+ """
+
+ def __init__(self, drop_prob: float, **kwargs):
+ super().__init__(**kwargs)
+ self.drop_prob = drop_prob
+
+ def call(self, x: tf.Tensor, training=None):
+ if self.drop_prob == 0.0 or not training:
+ return x
+ keep_prob = 1 - self.drop_prob
+ shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
+ random_tensor = keep_prob + tf.random.uniform(shape, 0, 1, dtype=self.compute_dtype)
+ random_tensor = tf.floor(random_tensor)
+ return (x / keep_prob) * random_tensor
+
+
+class TFCvtEmbeddings(keras.layers.Layer):
+ """Construct the Convolutional Token Embeddings."""
+
+ def __init__(
+ self,
+ config: CvtConfig,
+ patch_size: int,
+ num_channels: int,
+ embed_dim: int,
+ stride: int,
+ padding: int,
+ dropout_rate: float,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.convolution_embeddings = TFCvtConvEmbeddings(
+ config,
+ patch_size=patch_size,
+ num_channels=num_channels,
+ embed_dim=embed_dim,
+ stride=stride,
+ padding=padding,
+ name="convolution_embeddings",
+ )
+ self.dropout = keras.layers.Dropout(dropout_rate)
+
+ def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_state = self.convolution_embeddings(pixel_values)
+ hidden_state = self.dropout(hidden_state, training=training)
+ return hidden_state
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "convolution_embeddings", None) is not None:
+ with tf.name_scope(self.convolution_embeddings.name):
+ self.convolution_embeddings.build(None)
+
+
+class TFCvtConvEmbeddings(keras.layers.Layer):
+ """Image to Convolution Embeddings. This convolutional operation aims to model local spatial contexts."""
+
+ def __init__(
+ self,
+ config: CvtConfig,
+ patch_size: int,
+ num_channels: int,
+ embed_dim: int,
+ stride: int,
+ padding: int,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.padding = keras.layers.ZeroPadding2D(padding=padding)
+ self.patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
+ self.projection = keras.layers.Conv2D(
+ filters=embed_dim,
+ kernel_size=patch_size,
+ strides=stride,
+ padding="valid",
+ data_format="channels_last",
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="projection",
+ )
+ # Using the same default epsilon as PyTorch
+ self.normalization = keras.layers.LayerNormalization(epsilon=1e-5, name="normalization")
+ self.num_channels = num_channels
+ self.embed_dim = embed_dim
+
+ def call(self, pixel_values: tf.Tensor) -> tf.Tensor:
+ if isinstance(pixel_values, dict):
+ pixel_values = pixel_values["pixel_values"]
+
+ pixel_values = self.projection(self.padding(pixel_values))
+
+ # "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels"
+ batch_size, height, width, num_channels = shape_list(pixel_values)
+ hidden_size = height * width
+ pixel_values = tf.reshape(pixel_values, shape=(batch_size, hidden_size, num_channels))
+ pixel_values = self.normalization(pixel_values)
+
+ # "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels"
+ pixel_values = tf.reshape(pixel_values, shape=(batch_size, height, width, num_channels))
+ return pixel_values
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "projection", None) is not None:
+ with tf.name_scope(self.projection.name):
+ self.projection.build([None, None, None, self.num_channels])
+ if getattr(self, "normalization", None) is not None:
+ with tf.name_scope(self.normalization.name):
+ self.normalization.build([None, None, self.embed_dim])
+
+
+class TFCvtSelfAttentionConvProjection(keras.layers.Layer):
+ """Convolutional projection layer."""
+
+ def __init__(self, config: CvtConfig, embed_dim: int, kernel_size: int, stride: int, padding: int, **kwargs):
+ super().__init__(**kwargs)
+ self.padding = keras.layers.ZeroPadding2D(padding=padding)
+ self.convolution = keras.layers.Conv2D(
+ filters=embed_dim,
+ kernel_size=kernel_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ padding="valid",
+ strides=stride,
+ use_bias=False,
+ name="convolution",
+ groups=embed_dim,
+ )
+ # Using the same default epsilon as PyTorch, TF uses (1 - pytorch momentum)
+ self.normalization = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization")
+ self.embed_dim = embed_dim
+
+ def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_state = self.convolution(self.padding(hidden_state))
+ hidden_state = self.normalization(hidden_state, training=training)
+ return hidden_state
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "convolution", None) is not None:
+ with tf.name_scope(self.convolution.name):
+ self.convolution.build([None, None, None, self.embed_dim])
+ if getattr(self, "normalization", None) is not None:
+ with tf.name_scope(self.normalization.name):
+ self.normalization.build([None, None, None, self.embed_dim])
+
+
+class TFCvtSelfAttentionLinearProjection(keras.layers.Layer):
+ """Linear projection layer used to flatten tokens into 1D."""
+
+ def call(self, hidden_state: tf.Tensor) -> tf.Tensor:
+ # "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels"
+ batch_size, height, width, num_channels = shape_list(hidden_state)
+ hidden_size = height * width
+ hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, num_channels))
+ return hidden_state
+
+
+class TFCvtSelfAttentionProjection(keras.layers.Layer):
+ """Convolutional Projection for Attention."""
+
+ def __init__(
+ self,
+ config: CvtConfig,
+ embed_dim: int,
+ kernel_size: int,
+ stride: int,
+ padding: int,
+ projection_method: str = "dw_bn",
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ if projection_method == "dw_bn":
+ self.convolution_projection = TFCvtSelfAttentionConvProjection(
+ config, embed_dim, kernel_size, stride, padding, name="convolution_projection"
+ )
+ self.linear_projection = TFCvtSelfAttentionLinearProjection()
+
+ def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_state = self.convolution_projection(hidden_state, training=training)
+ hidden_state = self.linear_projection(hidden_state)
+ return hidden_state
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "convolution_projection", None) is not None:
+ with tf.name_scope(self.convolution_projection.name):
+ self.convolution_projection.build(None)
+
+
+class TFCvtSelfAttention(keras.layers.Layer):
+ """
+ Self-attention layer. A depth-wise separable convolution operation (Convolutional Projection), is applied for
+ query, key, and value embeddings.
+ """
+
+ def __init__(
+ self,
+ config: CvtConfig,
+ num_heads: int,
+ embed_dim: int,
+ kernel_size: int,
+ stride_q: int,
+ stride_kv: int,
+ padding_q: int,
+ padding_kv: int,
+ qkv_projection_method: str,
+ qkv_bias: bool,
+ attention_drop_rate: float,
+ with_cls_token: bool = True,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.scale = embed_dim**-0.5
+ self.with_cls_token = with_cls_token
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+
+ self.convolution_projection_query = TFCvtSelfAttentionProjection(
+ config,
+ embed_dim,
+ kernel_size,
+ stride_q,
+ padding_q,
+ projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method,
+ name="convolution_projection_query",
+ )
+ self.convolution_projection_key = TFCvtSelfAttentionProjection(
+ config,
+ embed_dim,
+ kernel_size,
+ stride_kv,
+ padding_kv,
+ projection_method=qkv_projection_method,
+ name="convolution_projection_key",
+ )
+ self.convolution_projection_value = TFCvtSelfAttentionProjection(
+ config,
+ embed_dim,
+ kernel_size,
+ stride_kv,
+ padding_kv,
+ projection_method=qkv_projection_method,
+ name="convolution_projection_value",
+ )
+
+ self.projection_query = keras.layers.Dense(
+ units=embed_dim,
+ kernel_initializer=get_initializer(config.initializer_range),
+ use_bias=qkv_bias,
+ bias_initializer="zeros",
+ name="projection_query",
+ )
+ self.projection_key = keras.layers.Dense(
+ units=embed_dim,
+ kernel_initializer=get_initializer(config.initializer_range),
+ use_bias=qkv_bias,
+ bias_initializer="zeros",
+ name="projection_key",
+ )
+ self.projection_value = keras.layers.Dense(
+ units=embed_dim,
+ kernel_initializer=get_initializer(config.initializer_range),
+ use_bias=qkv_bias,
+ bias_initializer="zeros",
+ name="projection_value",
+ )
+ self.dropout = keras.layers.Dropout(attention_drop_rate)
+
+ def rearrange_for_multi_head_attention(self, hidden_state: tf.Tensor) -> tf.Tensor:
+ batch_size, hidden_size, _ = shape_list(hidden_state)
+ head_dim = self.embed_dim // self.num_heads
+ hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, self.num_heads, head_dim))
+ hidden_state = tf.transpose(hidden_state, perm=(0, 2, 1, 3))
+ return hidden_state
+
+ def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor:
+ if self.with_cls_token:
+ cls_token, hidden_state = tf.split(hidden_state, [1, height * width], 1)
+
+ # "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels"
+ batch_size, hidden_size, num_channels = shape_list(hidden_state)
+ hidden_state = tf.reshape(hidden_state, shape=(batch_size, height, width, num_channels))
+
+ key = self.convolution_projection_key(hidden_state, training=training)
+ query = self.convolution_projection_query(hidden_state, training=training)
+ value = self.convolution_projection_value(hidden_state, training=training)
+
+ if self.with_cls_token:
+ query = tf.concat((cls_token, query), axis=1)
+ key = tf.concat((cls_token, key), axis=1)
+ value = tf.concat((cls_token, value), axis=1)
+
+ head_dim = self.embed_dim // self.num_heads
+
+ query = self.rearrange_for_multi_head_attention(self.projection_query(query))
+ key = self.rearrange_for_multi_head_attention(self.projection_key(key))
+ value = self.rearrange_for_multi_head_attention(self.projection_value(value))
+
+ attention_score = tf.matmul(query, key, transpose_b=True) * self.scale
+ attention_probs = stable_softmax(logits=attention_score, axis=-1)
+ attention_probs = self.dropout(attention_probs, training=training)
+
+ context = tf.matmul(attention_probs, value)
+ # "batch_size, num_heads, hidden_size, head_dim -> batch_size, hidden_size, (num_heads*head_dim)"
+ _, _, hidden_size, _ = shape_list(context)
+ context = tf.transpose(context, perm=(0, 2, 1, 3))
+ context = tf.reshape(context, (batch_size, hidden_size, self.num_heads * head_dim))
+ return context
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "convolution_projection_query", None) is not None:
+ with tf.name_scope(self.convolution_projection_query.name):
+ self.convolution_projection_query.build(None)
+ if getattr(self, "convolution_projection_key", None) is not None:
+ with tf.name_scope(self.convolution_projection_key.name):
+ self.convolution_projection_key.build(None)
+ if getattr(self, "convolution_projection_value", None) is not None:
+ with tf.name_scope(self.convolution_projection_value.name):
+ self.convolution_projection_value.build(None)
+ if getattr(self, "projection_query", None) is not None:
+ with tf.name_scope(self.projection_query.name):
+ self.projection_query.build([None, None, self.embed_dim])
+ if getattr(self, "projection_key", None) is not None:
+ with tf.name_scope(self.projection_key.name):
+ self.projection_key.build([None, None, self.embed_dim])
+ if getattr(self, "projection_value", None) is not None:
+ with tf.name_scope(self.projection_value.name):
+ self.projection_value.build([None, None, self.embed_dim])
+
+
+class TFCvtSelfOutput(keras.layers.Layer):
+ """Output of the Attention layer ."""
+
+ def __init__(self, config: CvtConfig, embed_dim: int, drop_rate: float, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(
+ units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.dropout = keras.layers.Dropout(drop_rate)
+ self.embed_dim = embed_dim
+
+ def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_state = self.dense(inputs=hidden_state)
+ hidden_state = self.dropout(inputs=hidden_state, training=training)
+ return hidden_state
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.embed_dim])
+
+
+class TFCvtAttention(keras.layers.Layer):
+ """Attention layer. First chunk of the convolutional transformer block."""
+
+ def __init__(
+ self,
+ config: CvtConfig,
+ num_heads: int,
+ embed_dim: int,
+ kernel_size: int,
+ stride_q: int,
+ stride_kv: int,
+ padding_q: int,
+ padding_kv: int,
+ qkv_projection_method: str,
+ qkv_bias: bool,
+ attention_drop_rate: float,
+ drop_rate: float,
+ with_cls_token: bool = True,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.attention = TFCvtSelfAttention(
+ config,
+ num_heads,
+ embed_dim,
+ kernel_size,
+ stride_q,
+ stride_kv,
+ padding_q,
+ padding_kv,
+ qkv_projection_method,
+ qkv_bias,
+ attention_drop_rate,
+ with_cls_token,
+ name="attention",
+ )
+ self.dense_output = TFCvtSelfOutput(config, embed_dim, drop_rate, name="output")
+
+ def prune_heads(self, heads):
+ raise NotImplementedError
+
+ def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False):
+ self_output = self.attention(hidden_state, height, width, training=training)
+ attention_output = self.dense_output(self_output, training=training)
+ return attention_output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attention", None) is not None:
+ with tf.name_scope(self.attention.name):
+ self.attention.build(None)
+ if getattr(self, "dense_output", None) is not None:
+ with tf.name_scope(self.dense_output.name):
+ self.dense_output.build(None)
+
+
+class TFCvtIntermediate(keras.layers.Layer):
+ """Intermediate dense layer. Second chunk of the convolutional transformer block."""
+
+ def __init__(self, config: CvtConfig, embed_dim: int, mlp_ratio: int, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(
+ units=int(embed_dim * mlp_ratio),
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="gelu",
+ name="dense",
+ )
+ self.embed_dim = embed_dim
+
+ def call(self, hidden_state: tf.Tensor) -> tf.Tensor:
+ hidden_state = self.dense(hidden_state)
+ return hidden_state
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.embed_dim])
+
+
+class TFCvtOutput(keras.layers.Layer):
+ """
+ Output of the Convolutional Transformer Block (last chunk). It consists of a MLP and a residual connection.
+ """
+
+ def __init__(self, config: CvtConfig, embed_dim: int, mlp_ratio: int, drop_rate: int, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(
+ units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.dropout = keras.layers.Dropout(drop_rate)
+ self.embed_dim = embed_dim
+ self.mlp_ratio = mlp_ratio
+
+ def call(self, hidden_state: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_state = self.dense(inputs=hidden_state)
+ hidden_state = self.dropout(inputs=hidden_state, training=training)
+ hidden_state = hidden_state + input_tensor
+ return hidden_state
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, int(self.embed_dim * self.mlp_ratio)])
+
+
+class TFCvtLayer(keras.layers.Layer):
+ """
+ Convolutional Transformer Block composed by attention layers, normalization and multi-layer perceptrons (mlps). It
+ consists of 3 chunks : an attention layer, an intermediate dense layer and an output layer. This corresponds to the
+ `Block` class in the original implementation.
+ """
+
+ def __init__(
+ self,
+ config: CvtConfig,
+ num_heads: int,
+ embed_dim: int,
+ kernel_size: int,
+ stride_q: int,
+ stride_kv: int,
+ padding_q: int,
+ padding_kv: int,
+ qkv_projection_method: str,
+ qkv_bias: bool,
+ attention_drop_rate: float,
+ drop_rate: float,
+ mlp_ratio: float,
+ drop_path_rate: float,
+ with_cls_token: bool = True,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.attention = TFCvtAttention(
+ config,
+ num_heads,
+ embed_dim,
+ kernel_size,
+ stride_q,
+ stride_kv,
+ padding_q,
+ padding_kv,
+ qkv_projection_method,
+ qkv_bias,
+ attention_drop_rate,
+ drop_rate,
+ with_cls_token,
+ name="attention",
+ )
+ self.intermediate = TFCvtIntermediate(config, embed_dim, mlp_ratio, name="intermediate")
+ self.dense_output = TFCvtOutput(config, embed_dim, mlp_ratio, drop_rate, name="output")
+ # Using `layers.Activation` instead of `tf.identity` to better control `training` behaviour.
+ self.drop_path = (
+ TFCvtDropPath(drop_path_rate, name="drop_path")
+ if drop_path_rate > 0.0
+ else keras.layers.Activation("linear", name="drop_path")
+ )
+ # Using the same default epsilon as PyTorch
+ self.layernorm_before = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_before")
+ self.layernorm_after = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_after")
+ self.embed_dim = embed_dim
+
+ def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor:
+ # in Cvt, layernorm is applied before self-attention
+ attention_output = self.attention(self.layernorm_before(hidden_state), height, width, training=training)
+ attention_output = self.drop_path(attention_output, training=training)
+
+ # first residual connection
+ hidden_state = attention_output + hidden_state
+
+ # in Cvt, layernorm is also applied after self-attention
+ layer_output = self.layernorm_after(hidden_state)
+ layer_output = self.intermediate(layer_output)
+
+ # second residual connection is done here
+ layer_output = self.dense_output(layer_output, hidden_state)
+ layer_output = self.drop_path(layer_output, training=training)
+ return layer_output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attention", None) is not None:
+ with tf.name_scope(self.attention.name):
+ self.attention.build(None)
+ if getattr(self, "intermediate", None) is not None:
+ with tf.name_scope(self.intermediate.name):
+ self.intermediate.build(None)
+ if getattr(self, "dense_output", None) is not None:
+ with tf.name_scope(self.dense_output.name):
+ self.dense_output.build(None)
+ if getattr(self, "drop_path", None) is not None:
+ with tf.name_scope(self.drop_path.name):
+ self.drop_path.build(None)
+ if getattr(self, "layernorm_before", None) is not None:
+ with tf.name_scope(self.layernorm_before.name):
+ self.layernorm_before.build([None, None, self.embed_dim])
+ if getattr(self, "layernorm_after", None) is not None:
+ with tf.name_scope(self.layernorm_after.name):
+ self.layernorm_after.build([None, None, self.embed_dim])
+
+
+class TFCvtStage(keras.layers.Layer):
+ """
+ Cvt stage (encoder block). Each stage has 2 parts :
+ - (1) A Convolutional Token Embedding layer
+ - (2) A Convolutional Transformer Block (layer).
+ The classification token is added only in the last stage.
+
+ Args:
+ config ([`CvtConfig`]): Model configuration class.
+ stage (`int`): Stage number.
+ """
+
+ def __init__(self, config: CvtConfig, stage: int, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.stage = stage
+ if self.config.cls_token[self.stage]:
+ self.cls_token = self.add_weight(
+ shape=(1, 1, self.config.embed_dim[-1]),
+ initializer=get_initializer(self.config.initializer_range),
+ trainable=True,
+ name="cvt.encoder.stages.2.cls_token",
+ )
+
+ self.embedding = TFCvtEmbeddings(
+ self.config,
+ patch_size=config.patch_sizes[self.stage],
+ num_channels=config.num_channels if self.stage == 0 else config.embed_dim[self.stage - 1],
+ stride=config.patch_stride[self.stage],
+ embed_dim=config.embed_dim[self.stage],
+ padding=config.patch_padding[self.stage],
+ dropout_rate=config.drop_rate[self.stage],
+ name="embedding",
+ )
+
+ drop_path_rates = tf.linspace(0.0, config.drop_path_rate[self.stage], config.depth[stage])
+ drop_path_rates = [x.numpy().item() for x in drop_path_rates]
+ self.layers = [
+ TFCvtLayer(
+ config,
+ num_heads=config.num_heads[self.stage],
+ embed_dim=config.embed_dim[self.stage],
+ kernel_size=config.kernel_qkv[self.stage],
+ stride_q=config.stride_q[self.stage],
+ stride_kv=config.stride_kv[self.stage],
+ padding_q=config.padding_q[self.stage],
+ padding_kv=config.padding_kv[self.stage],
+ qkv_projection_method=config.qkv_projection_method[self.stage],
+ qkv_bias=config.qkv_bias[self.stage],
+ attention_drop_rate=config.attention_drop_rate[self.stage],
+ drop_rate=config.drop_rate[self.stage],
+ mlp_ratio=config.mlp_ratio[self.stage],
+ drop_path_rate=drop_path_rates[self.stage],
+ with_cls_token=config.cls_token[self.stage],
+ name=f"layers.{j}",
+ )
+ for j in range(config.depth[self.stage])
+ ]
+
+ def call(self, hidden_state: tf.Tensor, training: bool = False):
+ cls_token = None
+ hidden_state = self.embedding(hidden_state, training)
+
+ # "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels"
+ batch_size, height, width, num_channels = shape_list(hidden_state)
+ hidden_size = height * width
+ hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, num_channels))
+
+ if self.config.cls_token[self.stage]:
+ cls_token = tf.repeat(self.cls_token, repeats=batch_size, axis=0)
+ hidden_state = tf.concat((cls_token, hidden_state), axis=1)
+
+ for layer in self.layers:
+ layer_outputs = layer(hidden_state, height, width, training=training)
+ hidden_state = layer_outputs
+
+ if self.config.cls_token[self.stage]:
+ cls_token, hidden_state = tf.split(hidden_state, [1, height * width], 1)
+
+ # "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels"
+ hidden_state = tf.reshape(hidden_state, shape=(batch_size, height, width, num_channels))
+ return hidden_state, cls_token
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embedding", None) is not None:
+ with tf.name_scope(self.embedding.name):
+ self.embedding.build(None)
+ if getattr(self, "layers", None) is not None:
+ for layer in self.layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+class TFCvtEncoder(keras.layers.Layer):
+ """
+ Convolutional Vision Transformer encoder. CVT has 3 stages of encoder blocks with their respective number of layers
+ (depth) being 1, 2 and 10.
+
+ Args:
+ config ([`CvtConfig`]): Model configuration class.
+ """
+
+ config_class = CvtConfig
+
+ def __init__(self, config: CvtConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.stages = [
+ TFCvtStage(config, stage_idx, name=f"stages.{stage_idx}") for stage_idx in range(len(config.depth))
+ ]
+
+ def call(
+ self,
+ pixel_values: TFModelInputType,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ training: Optional[bool] = False,
+ ) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]:
+ all_hidden_states = () if output_hidden_states else None
+ hidden_state = pixel_values
+ # When running on CPU, `keras.layers.Conv2D` doesn't support (batch_size, num_channels, height, width)
+ # as input format. So change the input format to (batch_size, height, width, num_channels).
+ hidden_state = tf.transpose(hidden_state, perm=(0, 2, 3, 1))
+
+ cls_token = None
+ for _, (stage_module) in enumerate(self.stages):
+ hidden_state, cls_token = stage_module(hidden_state, training=training)
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_state,)
+
+ # Change back to (batch_size, num_channels, height, width) format to have uniformity in the modules
+ hidden_state = tf.transpose(hidden_state, perm=(0, 3, 1, 2))
+ if output_hidden_states:
+ all_hidden_states = tuple([tf.transpose(hs, perm=(0, 3, 1, 2)) for hs in all_hidden_states])
+
+ if not return_dict:
+ return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None)
+
+ return TFBaseModelOutputWithCLSToken(
+ last_hidden_state=hidden_state,
+ cls_token_value=cls_token,
+ hidden_states=all_hidden_states,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "stages", None) is not None:
+ for layer in self.stages:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+@keras_serializable
+class TFCvtMainLayer(keras.layers.Layer):
+ """Construct the Cvt model."""
+
+ config_class = CvtConfig
+
+ def __init__(self, config: CvtConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ self.encoder = TFCvtEncoder(config, name="encoder")
+
+ @unpack_inputs
+ def call(
+ self,
+ pixel_values: TFModelInputType | None = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]:
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ encoder_outputs = self.encoder(
+ pixel_values,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = encoder_outputs[0]
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+
+ return TFBaseModelOutputWithCLSToken(
+ last_hidden_state=sequence_output,
+ cls_token_value=encoder_outputs.cls_token_value,
+ hidden_states=encoder_outputs.hidden_states,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+
+
+class TFCvtPreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = CvtConfig
+ base_model_prefix = "cvt"
+ main_input_name = "pixel_values"
+
+
+TFCVT_START_DOCSTRING = r"""
+
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TF 2.0 models accepts two formats as inputs:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional arguments.
+
+ This second option is useful when using [`keras.Model.fit`] method which currently requires having all the
+ tensors in the first argument of the model call function: `model(inputs)`.
+
+
+
+ Args:
+ config ([`CvtConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+TFCVT_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`]
+ for details.
+
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False``):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+@add_start_docstrings(
+ "The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.",
+ TFCVT_START_DOCSTRING,
+)
+class TFCvtModel(TFCvtPreTrainedModel):
+ def __init__(self, config: CvtConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.cvt = TFCvtMainLayer(config, name="cvt")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(TFCVT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=TFBaseModelOutputWithCLSToken, config_class=_CONFIG_FOR_DOC)
+ def call(
+ self,
+ pixel_values: tf.Tensor | None = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoImageProcessor, TFCvtModel
+ >>> from PIL import Image
+ >>> import requests
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13")
+ >>> model = TFCvtModel.from_pretrained("microsoft/cvt-13")
+
+ >>> inputs = image_processor(images=image, return_tensors="tf")
+ >>> outputs = model(**inputs)
+ >>> last_hidden_states = outputs.last_hidden_state
+ ```"""
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ outputs = self.cvt(
+ pixel_values=pixel_values,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ if not return_dict:
+ return (outputs[0],) + outputs[1:]
+
+ return TFBaseModelOutputWithCLSToken(
+ last_hidden_state=outputs.last_hidden_state,
+ cls_token_value=outputs.cls_token_value,
+ hidden_states=outputs.hidden_states,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "cvt", None) is not None:
+ with tf.name_scope(self.cvt.name):
+ self.cvt.build(None)
+
+
+@add_start_docstrings(
+ """
+ Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
+ the [CLS] token) e.g. for ImageNet.
+ """,
+ TFCVT_START_DOCSTRING,
+)
+class TFCvtForImageClassification(TFCvtPreTrainedModel, TFSequenceClassificationLoss):
+ def __init__(self, config: CvtConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+ self.cvt = TFCvtMainLayer(config, name="cvt")
+ # Using same default epsilon as in the original implementation.
+ self.layernorm = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm")
+
+ # Classifier head
+ self.classifier = keras.layers.Dense(
+ units=config.num_labels,
+ kernel_initializer=get_initializer(config.initializer_range),
+ use_bias=True,
+ bias_initializer="zeros",
+ name="classifier",
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(TFCVT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=TFImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC)
+ def call(
+ self,
+ pixel_values: tf.Tensor | None = None,
+ labels: tf.Tensor | None = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFImageClassifierOutputWithNoAttention, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoImageProcessor, TFCvtForImageClassification
+ >>> import tensorflow as tf
+ >>> from PIL import Image
+ >>> import requests
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13")
+ >>> model = TFCvtForImageClassification.from_pretrained("microsoft/cvt-13")
+
+ >>> inputs = image_processor(images=image, return_tensors="tf")
+ >>> outputs = model(**inputs)
+ >>> logits = outputs.logits
+ >>> # model predicts one of the 1000 ImageNet classes
+ >>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0]
+ >>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)])
+ ```"""
+
+ outputs = self.cvt(
+ pixel_values,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = outputs[0]
+ cls_token = outputs[1]
+ if self.config.cls_token[-1]:
+ sequence_output = self.layernorm(cls_token)
+ else:
+ # rearrange "batch_size, num_channels, height, width -> batch_size, (height*width), num_channels"
+ batch_size, num_channels, height, width = shape_list(sequence_output)
+ sequence_output = tf.reshape(sequence_output, shape=(batch_size, num_channels, height * width))
+ sequence_output = tf.transpose(sequence_output, perm=(0, 2, 1))
+ sequence_output = self.layernorm(sequence_output)
+
+ sequence_output_mean = tf.reduce_mean(sequence_output, axis=1)
+ logits = self.classifier(sequence_output_mean)
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "cvt", None) is not None:
+ with tf.name_scope(self.cvt.name):
+ self.cvt.build(None)
+ if getattr(self, "layernorm", None) is not None:
+ with tf.name_scope(self.layernorm.name):
+ self.layernorm.build([None, None, self.config.embed_dim[-1]])
+ if getattr(self, "classifier", None) is not None:
+ if hasattr(self.classifier, "name"):
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.embed_dim[-1]])
diff --git a/venv/lib/python3.10/site-packages/transformers/models/ernie/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/ernie/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..ea7f077f928d39527ab5cf9ba4f195a62445bb84
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/ernie/__init__.py
@@ -0,0 +1,70 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
+
+
+_import_structure = {
+ "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_ernie"] = [
+ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "ErnieForCausalLM",
+ "ErnieForMaskedLM",
+ "ErnieForMultipleChoice",
+ "ErnieForNextSentencePrediction",
+ "ErnieForPreTraining",
+ "ErnieForQuestionAnswering",
+ "ErnieForSequenceClassification",
+ "ErnieForTokenClassification",
+ "ErnieModel",
+ "ErniePreTrainedModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_ernie import (
+ ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
+ ErnieForCausalLM,
+ ErnieForMaskedLM,
+ ErnieForMultipleChoice,
+ ErnieForNextSentencePrediction,
+ ErnieForPreTraining,
+ ErnieForQuestionAnswering,
+ ErnieForSequenceClassification,
+ ErnieForTokenClassification,
+ ErnieModel,
+ ErniePreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b6ab1721c868afd25d75c1016be3f08f64211486
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/__init__.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/configuration_ernie.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/configuration_ernie.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c12486510ec345db21a4395f671fea6b40bdd8b0
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/configuration_ernie.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/modeling_ernie.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/modeling_ernie.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e40ba4773a5f20d9fdf42ce15c610ae3ac899c92
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/modeling_ernie.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/ernie/configuration_ernie.py b/venv/lib/python3.10/site-packages/transformers/models/ernie/configuration_ernie.py
new file mode 100644
index 0000000000000000000000000000000000000000..81ed03596303ee4cf02bcfc97a914a54b5decda3
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/ernie/configuration_ernie.py
@@ -0,0 +1,162 @@
+# coding=utf-8
+# Copyright 2022 The Google AI Language Team Authors and The HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" ERNIE model configuration"""
+from collections import OrderedDict
+from typing import Mapping
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class ErnieConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`ErnieModel`] or a [`TFErnieModel`]. It is used to
+ instantiate a ERNIE model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the ERNIE
+ [nghuyong/ernie-3.0-base-zh](https://huggingface.co/nghuyong/ernie-3.0-base-zh) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the ERNIE model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`ErnieModel`] or [`TFErnieModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`ErnieModel`] or [`TFErnieModel`].
+ task_type_vocab_size (`int`, *optional*, defaults to 3):
+ The vocabulary size of the `task_type_ids` for ERNIE2.0/ERNIE3.0 model
+ use_task_id (`bool`, *optional*, defaults to `False`):
+ Whether or not the model support `task_type_ids`
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ pad_token_id (`int`, *optional*, defaults to 0):
+ Padding token id.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ classifier_dropout (`float`, *optional*):
+ The dropout ratio for the classification head.
+
+ Examples:
+
+ ```python
+ >>> from transformers import ErnieConfig, ErnieModel
+
+ >>> # Initializing a ERNIE nghuyong/ernie-3.0-base-zh style configuration
+ >>> configuration = ErnieConfig()
+
+ >>> # Initializing a model (with random weights) from the nghuyong/ernie-3.0-base-zh style configuration
+ >>> model = ErnieModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "ernie"
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ task_type_vocab_size=3,
+ use_task_id=False,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ pad_token_id=0,
+ position_embedding_type="absolute",
+ use_cache=True,
+ classifier_dropout=None,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.intermediate_size = intermediate_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.type_vocab_size = type_vocab_size
+ self.task_type_vocab_size = task_type_vocab_size
+ self.use_task_id = use_task_id
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.position_embedding_type = position_embedding_type
+ self.use_cache = use_cache
+ self.classifier_dropout = classifier_dropout
+
+
+class ErnieOnnxConfig(OnnxConfig):
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ if self.task == "multiple-choice":
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
+ else:
+ dynamic_axis = {0: "batch", 1: "sequence"}
+ return OrderedDict(
+ [
+ ("input_ids", dynamic_axis),
+ ("attention_mask", dynamic_axis),
+ ("token_type_ids", dynamic_axis),
+ ("task_type_ids", dynamic_axis),
+ ]
+ )
diff --git a/venv/lib/python3.10/site-packages/transformers/models/ernie/modeling_ernie.py b/venv/lib/python3.10/site-packages/transformers/models/ernie/modeling_ernie.py
new file mode 100644
index 0000000000000000000000000000000000000000..a65f453205d5c599e29f0416cf76b585f26266f6
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/ernie/modeling_ernie.py
@@ -0,0 +1,1820 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch ERNIE model."""
+
+
+import math
+import warnings
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutputWithPastAndCrossAttentions,
+ BaseModelOutputWithPoolingAndCrossAttentions,
+ CausalLMOutputWithCrossAttentions,
+ MaskedLMOutput,
+ MultipleChoiceModelOutput,
+ NextSentencePredictorOutput,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_ernie import ErnieConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "nghuyong/ernie-1.0-base-zh"
+_CONFIG_FOR_DOC = "ErnieConfig"
+
+
+from ..deprecated._archive_maps import ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+class ErnieEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+ self.use_task_id = config.use_task_id
+ if config.use_task_id:
+ self.task_type_embeddings = nn.Embedding(config.task_type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+ self.register_buffer(
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
+ )
+
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ task_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ past_key_values_length: int = 0,
+ ) -> torch.Tensor:
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
+
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+ # issue #5664
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+
+ # add `task_type_id` for ERNIE model
+ if self.use_task_id:
+ if task_type_ids is None:
+ task_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+ task_type_embeddings = self.task_type_embeddings(task_type_ids)
+ embeddings += task_type_embeddings
+
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Ernie
+class ErnieSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = position_embedding_type or getattr(
+ config, "position_embedding_type", "absolute"
+ )
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ use_cache = past_key_value is not None
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
+ if use_cache:
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
+ -1, 1
+ )
+ else:
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in ErnieModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Ernie
+class ErnieSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Ernie
+class ErnieAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ self.self = ErnieSelfAttention(config, position_embedding_type=position_embedding_type)
+ self.output = ErnieSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Ernie
+class ErnieIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Ernie
+class ErnieOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Ernie
+class ErnieLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = ErnieAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = ErnieAttention(config, position_embedding_type="absolute")
+ self.intermediate = ErnieIntermediate(config)
+ self.output = ErnieOutput(config)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Ernie
+class ErnieEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([ErnieLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Ernie
+class ErniePooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Ernie
+class ErniePredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.transform_act_fn = config.hidden_act
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Ernie
+class ErnieLMPredictionHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.transform = ErniePredictionHeadTransform(config)
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
+ self.decoder.bias = self.bias
+
+ def forward(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ hidden_states = self.decoder(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Ernie
+class ErnieOnlyMLMHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.predictions = ErnieLMPredictionHead(config)
+
+ def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
+ prediction_scores = self.predictions(sequence_output)
+ return prediction_scores
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->Ernie
+class ErnieOnlyNSPHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
+
+ def forward(self, pooled_output):
+ seq_relationship_score = self.seq_relationship(pooled_output)
+ return seq_relationship_score
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->Ernie
+class ErniePreTrainingHeads(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.predictions = ErnieLMPredictionHead(config)
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
+
+ def forward(self, sequence_output, pooled_output):
+ prediction_scores = self.predictions(sequence_output)
+ seq_relationship_score = self.seq_relationship(pooled_output)
+ return prediction_scores, seq_relationship_score
+
+
+class ErniePreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ErnieConfig
+ base_model_prefix = "ernie"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+@dataclass
+# Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->Ernie
+class ErnieForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`ErnieForPreTraining`].
+
+ Args:
+ loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction
+ (classification) loss.
+ prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+ seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
+ Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
+ before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ prediction_logits: torch.FloatTensor = None
+ seq_relationship_logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+ERNIE_START_DOCSTRING = r"""
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`ErnieConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ERNIE_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ task_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Task type embedding is a special embedding to represent the characteristic of different tasks, such as
+ word-aware pre-training task, structure-aware pre-training task and semantic-aware pre-training task. We
+ assign a `task_type_id` to each task and the `task_type_id` is in the range `[0,
+ config.task_type_vocab_size-1]
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare Ernie Model transformer outputting raw hidden-states without any specific head on top.",
+ ERNIE_START_DOCSTRING,
+)
+class ErnieModel(ErniePreTrainedModel):
+ """
+
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
+
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
+ """
+
+ # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Ernie
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = ErnieEmbeddings(config)
+ self.encoder = ErnieEncoder(config)
+
+ self.pooler = ErniePooler(config) if add_pooling_layer else None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.bert.modeling_bert.BertModel.get_input_embeddings
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ # Copied from transformers.models.bert.modeling_bert.BertModel.set_input_embeddings
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ # Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ task_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.is_decoder:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ else:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
+
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ task_type_ids=task_type_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Ernie Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
+ sentence prediction (classification)` head.
+ """,
+ ERNIE_START_DOCSTRING,
+)
+class ErnieForPreTraining(ErniePreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
+
+ # Copied from transformers.models.bert.modeling_bert.BertForPreTraining.__init__ with Bert->Ernie,bert->ernie
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.ernie = ErnieModel(config)
+ self.cls = ErniePreTrainingHeads(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.bert.modeling_bert.BertForPreTraining.get_output_embeddings
+ def get_output_embeddings(self):
+ return self.cls.predictions.decoder
+
+ # Copied from transformers.models.bert.modeling_bert.BertForPreTraining.set_output_embeddings
+ def set_output_embeddings(self, new_embeddings):
+ self.cls.predictions.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=ErnieForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ task_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ next_sentence_label: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], ErnieForPreTrainingOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
+ the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
+ pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
+
+ - 0 indicates sequence B is a continuation of sequence A,
+ - 1 indicates sequence B is a random sequence.
+ kwargs (`Dict[str, any]`, optional, defaults to *{}*):
+ Used to hide legacy arguments that have been deprecated.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, ErnieForPreTraining
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
+ >>> model = ErnieForPreTraining.from_pretrained("nghuyong/ernie-1.0-base-zh")
+
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
+ >>> outputs = model(**inputs)
+
+ >>> prediction_logits = outputs.prediction_logits
+ >>> seq_relationship_logits = outputs.seq_relationship_logits
+ ```
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.ernie(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ task_type_ids=task_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output, pooled_output = outputs[:2]
+ prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
+
+ total_loss = None
+ if labels is not None and next_sentence_label is not None:
+ loss_fct = CrossEntropyLoss()
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+ next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
+ total_loss = masked_lm_loss + next_sentence_loss
+
+ if not return_dict:
+ output = (prediction_scores, seq_relationship_score) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return ErnieForPreTrainingOutput(
+ loss=total_loss,
+ prediction_logits=prediction_scores,
+ seq_relationship_logits=seq_relationship_score,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """Ernie Model with a `language modeling` head on top for CLM fine-tuning.""", ERNIE_START_DOCSTRING
+)
+class ErnieForCausalLM(ErniePreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
+
+ # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.__init__ with BertLMHeadModel->ErnieForCausalLM,Bert->Ernie,bert->ernie
+ def __init__(self, config):
+ super().__init__(config)
+
+ if not config.is_decoder:
+ logger.warning("If you want to use `ErnieForCausalLM` as a standalone, add `is_decoder=True.`")
+
+ self.ernie = ErnieModel(config, add_pooling_layer=False)
+ self.cls = ErnieOnlyMLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.get_output_embeddings
+ def get_output_embeddings(self):
+ return self.cls.predictions.decoder
+
+ # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.set_output_embeddings
+ def set_output_embeddings(self, new_embeddings):
+ self.cls.predictions.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=CausalLMOutputWithCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ task_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.Tensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
+ ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ if labels is not None:
+ use_cache = False
+
+ outputs = self.ernie(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ task_type_ids=task_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.cls(sequence_output)
+
+ lm_loss = None
+ if labels is not None:
+ # we are doing next-token prediction; shift prediction scores and input ids by one
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
+ labels = labels[:, 1:].contiguous()
+ loss_fct = CrossEntropyLoss()
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((lm_loss,) + output) if lm_loss is not None else output
+
+ return CausalLMOutputWithCrossAttentions(
+ loss=lm_loss,
+ logits=prediction_scores,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+ # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.prepare_inputs_for_generation
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, attention_mask=None, use_cache=True, **model_kwargs
+ ):
+ input_shape = input_ids.shape
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
+ if attention_mask is None:
+ attention_mask = input_ids.new_ones(input_shape)
+
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+
+ return {
+ "input_ids": input_ids,
+ "attention_mask": attention_mask,
+ "past_key_values": past_key_values,
+ "use_cache": use_cache,
+ }
+
+ # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel._reorder_cache
+ def _reorder_cache(self, past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
+
+
+@add_start_docstrings("""Ernie Model with a `language modeling` head on top.""", ERNIE_START_DOCSTRING)
+class ErnieForMaskedLM(ErniePreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
+
+ # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.__init__ with Bert->Ernie,bert->ernie
+ def __init__(self, config):
+ super().__init__(config)
+
+ if config.is_decoder:
+ logger.warning(
+ "If you want to use `ErnieForMaskedLM` make sure `config.is_decoder=False` for "
+ "bi-directional self-attention."
+ )
+
+ self.ernie = ErnieModel(config, add_pooling_layer=False)
+ self.cls = ErnieOnlyMLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.get_output_embeddings
+ def get_output_embeddings(self):
+ return self.cls.predictions.decoder
+
+ # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.set_output_embeddings
+ def set_output_embeddings(self, new_embeddings):
+ self.cls.predictions.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output="'paris'",
+ expected_loss=0.88,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ task_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.ernie(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ task_type_ids=task_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.cls(sequence_output)
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.prepare_inputs_for_generation
+ def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
+ input_shape = input_ids.shape
+ effective_batch_size = input_shape[0]
+
+ # add a dummy token
+ if self.config.pad_token_id is None:
+ raise ValueError("The PAD token should be defined for generation")
+
+ attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
+ dummy_token = torch.full(
+ (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
+ )
+ input_ids = torch.cat([input_ids, dummy_token], dim=1)
+
+ return {"input_ids": input_ids, "attention_mask": attention_mask}
+
+
+@add_start_docstrings(
+ """Ernie Model with a `next sentence prediction (classification)` head on top.""",
+ ERNIE_START_DOCSTRING,
+)
+class ErnieForNextSentencePrediction(ErniePreTrainedModel):
+ # Copied from transformers.models.bert.modeling_bert.BertForNextSentencePrediction.__init__ with Bert->Ernie,bert->ernie
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.ernie = ErnieModel(config)
+ self.cls = ErnieOnlyNSPHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ task_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs,
+ ) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
+ (see `input_ids` docstring). Indices should be in `[0, 1]`:
+
+ - 0 indicates sequence B is a continuation of sequence A,
+ - 1 indicates sequence B is a random sequence.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, ErnieForNextSentencePrediction
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
+ >>> model = ErnieForNextSentencePrediction.from_pretrained("nghuyong/ernie-1.0-base-zh")
+
+ >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
+ >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
+ >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
+
+ >>> outputs = model(**encoding, labels=torch.LongTensor([1]))
+ >>> logits = outputs.logits
+ >>> assert logits[0, 0] < logits[0, 1] # next sentence was random
+ ```
+ """
+
+ if "next_sentence_label" in kwargs:
+ warnings.warn(
+ "The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
+ " `labels` instead.",
+ FutureWarning,
+ )
+ labels = kwargs.pop("next_sentence_label")
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.ernie(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ task_type_ids=task_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = outputs[1]
+
+ seq_relationship_scores = self.cls(pooled_output)
+
+ next_sentence_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
+
+ if not return_dict:
+ output = (seq_relationship_scores,) + outputs[2:]
+ return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
+
+ return NextSentencePredictorOutput(
+ loss=next_sentence_loss,
+ logits=seq_relationship_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Ernie Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
+ output) e.g. for GLUE tasks.
+ """,
+ ERNIE_START_DOCSTRING,
+)
+class ErnieForSequenceClassification(ErniePreTrainedModel):
+ # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with Bert->Ernie,bert->ernie
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.config = config
+
+ self.ernie = ErnieModel(config)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ task_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.ernie(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ task_type_ids=task_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = outputs[1]
+
+ pooled_output = self.dropout(pooled_output)
+ logits = self.classifier(pooled_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Ernie Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ ERNIE_START_DOCSTRING,
+)
+class ErnieForMultipleChoice(ErniePreTrainedModel):
+ # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice.__init__ with Bert->Ernie,bert->ernie
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.ernie = ErnieModel(config)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ task_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
+ inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+
+ outputs = self.ernie(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ task_type_ids=task_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = outputs[1]
+
+ pooled_output = self.dropout(pooled_output)
+ logits = self.classifier(pooled_output)
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Ernie Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ ERNIE_START_DOCSTRING,
+)
+class ErnieForTokenClassification(ErniePreTrainedModel):
+ # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with Bert->Ernie,bert->ernie
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.ernie = ErnieModel(config, add_pooling_layer=False)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ task_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.ernie(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ task_type_ids=task_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Ernie Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ ERNIE_START_DOCSTRING,
+)
+class ErnieForQuestionAnswering(ErniePreTrainedModel):
+ # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with Bert->Ernie,bert->ernie
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.ernie = ErnieModel(config, add_pooling_layer=False)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ task_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ start_positions: Optional[torch.Tensor] = None,
+ end_positions: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.ernie(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ task_type_ids=task_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..80cc58d67a98dd47cc596c4e2a7357c2b75dce95
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/__init__.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/configuration_mgp_str.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/configuration_mgp_str.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c1c5ca007135ece82e34186816221cbb9ca29f0c
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/configuration_mgp_str.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/modeling_mgp_str.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/modeling_mgp_str.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ef31f89b671c8fb4c40d0caf5d2d41c70496e93d
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mgp_str/__pycache__/modeling_mgp_str.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/mgp_str/processing_mgp_str.py b/venv/lib/python3.10/site-packages/transformers/models/mgp_str/processing_mgp_str.py
new file mode 100644
index 0000000000000000000000000000000000000000..207d4230ba09b77aa76bb5f397275ebd2c267e00
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/mgp_str/processing_mgp_str.py
@@ -0,0 +1,230 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Processor class for MGP-STR."""
+
+import warnings
+
+from transformers import AutoTokenizer
+from transformers.utils import is_torch_available
+from transformers.utils.generic import ExplicitEnum
+
+from ...processing_utils import ProcessorMixin
+
+
+if is_torch_available():
+ import torch
+
+
+class DecodeType(ExplicitEnum):
+ CHARACTER = "char"
+ BPE = "bpe"
+ WORDPIECE = "wp"
+
+
+SUPPORTED_ANNOTATION_FORMATS = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
+
+
+class MgpstrProcessor(ProcessorMixin):
+ r"""
+ Constructs a MGP-STR processor which wraps an image processor and MGP-STR tokenizers into a single
+
+ [`MgpstrProcessor`] offers all the functionalities of `ViTImageProcessor`] and [`MgpstrTokenizer`]. See the
+ [`~MgpstrProcessor.__call__`] and [`~MgpstrProcessor.batch_decode`] for more information.
+
+ Args:
+ image_processor (`ViTImageProcessor`, *optional*):
+ An instance of `ViTImageProcessor`. The image processor is a required input.
+ tokenizer ([`MgpstrTokenizer`], *optional*):
+ The tokenizer is a required input.
+ """
+
+ attributes = ["image_processor", "char_tokenizer"]
+ image_processor_class = "ViTImageProcessor"
+ char_tokenizer_class = "MgpstrTokenizer"
+
+ def __init__(self, image_processor=None, tokenizer=None, **kwargs):
+ feature_extractor = None
+ if "feature_extractor" in kwargs:
+ warnings.warn(
+ "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
+ " instead.",
+ FutureWarning,
+ )
+ feature_extractor = kwargs.pop("feature_extractor")
+
+ image_processor = image_processor if image_processor is not None else feature_extractor
+ if image_processor is None:
+ raise ValueError("You need to specify an `image_processor`.")
+ if tokenizer is None:
+ raise ValueError("You need to specify a `tokenizer`.")
+
+ self.char_tokenizer = tokenizer
+ self.bpe_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
+ self.wp_tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
+
+ super().__init__(image_processor, tokenizer)
+
+ def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
+ """
+ When used in normal mode, this method forwards all its arguments to ViTImageProcessor's
+ [`~ViTImageProcessor.__call__`] and returns its output. This method also forwards the `text` and `kwargs`
+ arguments to MgpstrTokenizer's [`~MgpstrTokenizer.__call__`] if `text` is not `None` to encode the text. Please
+ refer to the doctsring of the above methods for more information.
+ """
+ if images is None and text is None:
+ raise ValueError("You need to specify either an `images` or `text` input to process.")
+
+ if images is not None:
+ inputs = self.image_processor(images, return_tensors=return_tensors, **kwargs)
+ if text is not None:
+ encodings = self.char_tokenizer(text, return_tensors=return_tensors, **kwargs)
+
+ if text is None:
+ return inputs
+ elif images is None:
+ return encodings
+ else:
+ inputs["labels"] = encodings["input_ids"]
+ return inputs
+
+ def batch_decode(self, sequences):
+ """
+ Convert a list of lists of token ids into a list of strings by calling decode.
+
+ Args:
+ sequences (`torch.Tensor`):
+ List of tokenized input ids.
+
+ Returns:
+ `Dict[str, any]`: Dictionary of all the outputs of the decoded results.
+ generated_text (`List[str]`): The final results after fusion of char, bpe, and wp. scores
+ (`List[float]`): The final scores after fusion of char, bpe, and wp. char_preds (`List[str]`): The list
+ of character decoded sentences. bpe_preds (`List[str]`): The list of bpe decoded sentences. wp_preds
+ (`List[str]`): The list of wp decoded sentences.
+
+ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
+ refer to the docstring of this method for more information.
+ """
+ char_preds, bpe_preds, wp_preds = sequences
+ batch_size = char_preds.size(0)
+
+ char_strs, char_scores = self._decode_helper(char_preds, "char")
+ bpe_strs, bpe_scores = self._decode_helper(bpe_preds, "bpe")
+ wp_strs, wp_scores = self._decode_helper(wp_preds, "wp")
+
+ final_strs = []
+ final_scores = []
+ for i in range(batch_size):
+ scores = [char_scores[i], bpe_scores[i], wp_scores[i]]
+ strs = [char_strs[i], bpe_strs[i], wp_strs[i]]
+ max_score_index = scores.index(max(scores))
+ final_strs.append(strs[max_score_index])
+ final_scores.append(scores[max_score_index])
+
+ out = {}
+ out["generated_text"] = final_strs
+ out["scores"] = final_scores
+ out["char_preds"] = char_strs
+ out["bpe_preds"] = bpe_strs
+ out["wp_preds"] = wp_strs
+ return out
+
+ def _decode_helper(self, pred_logits, format):
+ """
+ Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer.
+
+ Args:
+ pred_logits (`torch.Tensor`):
+ List of model prediction logits.
+ format (`Union[DecoderType, str]`):
+ Type of model prediction. Must be one of ['char', 'bpe', 'wp'].
+ Returns:
+ `tuple`:
+ dec_strs(`str`): The decode strings of model prediction. conf_scores(`List[float]`): The confidence
+ score of model prediction.
+ """
+ if format == DecodeType.CHARACTER:
+ decoder = self.char_decode
+ eos_token = 1
+ eos_str = "[s]"
+ elif format == DecodeType.BPE:
+ decoder = self.bpe_decode
+ eos_token = 2
+ eos_str = "#"
+ elif format == DecodeType.WORDPIECE:
+ decoder = self.wp_decode
+ eos_token = 102
+ eos_str = "[SEP]"
+ else:
+ raise ValueError(f"Format {format} is not supported.")
+
+ dec_strs, conf_scores = [], []
+ batch_size = pred_logits.size(0)
+ batch_max_length = pred_logits.size(1)
+ _, preds_index = pred_logits.topk(1, dim=-1, largest=True, sorted=True)
+ preds_index = preds_index.view(-1, batch_max_length)[:, 1:]
+ preds_str = decoder(preds_index)
+ preds_max_prob, _ = torch.nn.functional.softmax(pred_logits, dim=2).max(dim=2)
+ preds_max_prob = preds_max_prob[:, 1:]
+
+ for index in range(batch_size):
+ pred_eos = preds_str[index].find(eos_str)
+ pred = preds_str[index][:pred_eos]
+ pred_index = preds_index[index].cpu().tolist()
+ pred_eos_index = pred_index.index(eos_token) if eos_token in pred_index else -1
+ pred_max_prob = preds_max_prob[index][: pred_eos_index + 1]
+ confidence_score = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0
+ dec_strs.append(pred)
+ conf_scores.append(confidence_score)
+
+ return dec_strs, conf_scores
+
+ def char_decode(self, sequences):
+ """
+ Convert a list of lists of char token ids into a list of strings by calling char tokenizer.
+
+ Args:
+ sequences (`torch.Tensor`):
+ List of tokenized input ids.
+ Returns:
+ `List[str]`: The list of char decoded sentences.
+ """
+ decode_strs = [seq.replace(" ", "") for seq in self.char_tokenizer.batch_decode(sequences)]
+ return decode_strs
+
+ def bpe_decode(self, sequences):
+ """
+ Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer.
+
+ Args:
+ sequences (`torch.Tensor`):
+ List of tokenized input ids.
+ Returns:
+ `List[str]`: The list of bpe decoded sentences.
+ """
+ return self.bpe_tokenizer.batch_decode(sequences)
+
+ def wp_decode(self, sequences):
+ """
+ Convert a list of lists of word piece token ids into a list of strings by calling word piece tokenizer.
+
+ Args:
+ sequences (`torch.Tensor`):
+ List of tokenized input ids.
+ Returns:
+ `List[str]`: The list of wp decoded sentences.
+ """
+ decode_strs = [seq.replace(" ", "") for seq in self.wp_tokenizer.batch_decode(sequences)]
+ return decode_strs
diff --git a/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..3ac7ff1c99b064f418b16d59e10d05eedc998cb4
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__init__.py
@@ -0,0 +1,59 @@
+# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_recurrent_gemma": ["RecurrentGemmaConfig"],
+}
+
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_recurrent_gemma"] = [
+ "RecurrentGemmaForCausalLM",
+ "RecurrentGemmaModel",
+ "RecurrentGemmaPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_recurrent_gemma import RecurrentGemmaConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_recurrent_gemma import (
+ RecurrentGemmaForCausalLM,
+ RecurrentGemmaModel,
+ RecurrentGemmaPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c2950f432f48e098c36370e0a1b7160a4c4eaeea
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/__init__.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/configuration_recurrent_gemma.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/configuration_recurrent_gemma.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f474c9253f679d6127bc75962000444001ba852d
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/configuration_recurrent_gemma.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/convert_recurrent_gemma_to_hf.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/convert_recurrent_gemma_to_hf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..427af68a95f4944816ea1b84d7faaee8f7ef711e
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/convert_recurrent_gemma_to_hf.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/modeling_recurrent_gemma.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/modeling_recurrent_gemma.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..24026dae9a69cfeb924818f39b920553201e4ee4
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/modeling_recurrent_gemma.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/configuration_recurrent_gemma.py b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/configuration_recurrent_gemma.py
new file mode 100644
index 0000000000000000000000000000000000000000..f5a3f9673a3d20cee07a90fc3ffd64eb2d0c4d60
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/configuration_recurrent_gemma.py
@@ -0,0 +1,158 @@
+# coding=utf-8
+# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" RecurrentGemma model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class RecurrentGemmaConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`RecurrentGemmaModel`]. It is used to instantiate a RecurrentGemma
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the RecurrentGemma-7B.
+
+ e.g. [google/recurrentgemma-2b](https://huggingface.co/google/recurrentgemma-2b)
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ num_hidden_layers (`int`, *optional*, defaults to 26):
+ The number of hidden layers in the model.
+ vocab_size (`int`, *optional*, defaults to 256000):
+ Vocabulary size of the RecurrentGemma model. Defines the number of
+ different tokens that can be represented by the
+ `inputs_ids` passed when calling [`RecurrentGemmaModel`]
+ hidden_size (`int`, *optional*, defaults to 2560):
+ Dimension of the hidden representations.
+ intermediate_size (`int`, *optional*, defaults to 7680):
+ Dimension of the MLP representations.
+ num_attention_heads (`int`, *optional*, defaults to 10):
+ The number of heads for the attention block and the number of
+ heads/blocks for the block-diagonal layers used in the RG-LRU gates.
+ This number must divide `hidden_size` and `lru_width`.
+ lru_width (`int` or `None`, *optional*):
+ Dimension of the hidden representations of the RG-LRU. If `None`
+ this will be set to `hidden_size`.
+ Whether to scale the output of the embeddings by `sqrt(hidden_size)`.
+ attention_window_size (`int`, *optional*, defaults to 2048):
+ The size of the attention window used in the attention block.
+ conv1d_width (`int`, *optional*, defaults to 4):
+ The kernel size of conv1d layers used in the recurrent blocks.
+ logits_soft_cap (`float`, *optional*, defaults to 30.0):
+ The value at which the logits should be soft-capped to after the transformer and LM-head computation in the Causal LM architecture.
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
+ The epsilon used by the rms normalization layers.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether the model should return the last key/values
+ attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ pad_token_id (`int`, *optional*, defaults to 0):
+ Padding token id.
+ eos_token_id (`int`, *optional*, defaults to 1):
+ End of stream token id.
+ bos_token_id (`int`, *optional*, defaults to 2):
+ Beginning of stream token id.
+ hidden_activation (``str` or `function``, *optional*, defaults to `"gelu_pytorch_tanh"`):
+ The hidden activation used in the recurrent block as well as the MLP layer of the decoder layers.
+ partial_rotary_factor (`float`, *optional*, defaults to 0.5):
+ The partial rotary factor used in the initialization of the rotary embeddings.
+ rope_theta (`float`, *optional*, defaults to 10000.0):
+ The base period of the RoPE embeddings.
+ block_types (`List[str]`, *optional*, defaults to `('recurrent', 'recurrent', 'attention')`):
+ List of aleternating blocks that will be repeated to initialize the `temporal_block` layer.
+ attention_dropout (`float`, *optional*, defaults to 0.0): dropout value to use after the attention softmax.
+ num_key_value_heads (`16`, *optional*, defaults to 16): Number of key value heads to use GQA.
+ attention_bias (`bool`, *optional*, defaults to `False`): whether or not the linear q,k,v of the Attention layer should have bias
+ w_init_variance_scale (`float`, *optional*, defaults to 0.01): weight initialization variance.
+ ```python
+ >>> from transformers import RecurrentGemmaModel, RecurrentGemmaConfig
+
+ >>> # Initializing a RecurrentGemma recurrentgemma-2b style configuration
+ >>> configuration = RecurrentGemmaConfig()
+
+ >>> # Initializing a model from the recurrentgemma-2b style configuration
+ >>> model = RecurrentGemmaModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "recurrent_gemma"
+
+ def __init__(
+ self,
+ num_hidden_layers=26,
+ vocab_size=256000,
+ hidden_size=2560,
+ intermediate_size=3 * 2560,
+ num_attention_heads=10,
+ lru_width=None,
+ attention_window_size=2048,
+ conv1d_width=4,
+ logits_soft_cap=30.0,
+ rms_norm_eps=1e-6,
+ use_cache=True,
+ pad_token_id=0,
+ eos_token_id=1,
+ bos_token_id=2,
+ hidden_activation="gelu_pytorch_tanh",
+ partial_rotary_factor=0.5,
+ rope_theta=10000.0,
+ block_types=("recurrent", "recurrent", "attention"),
+ attention_dropout=0.0,
+ num_key_value_heads=None,
+ attention_bias=False,
+ w_init_variance_scale=0.01,
+ **kwargs,
+ ):
+ self.num_hidden_layers = num_hidden_layers
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.num_attention_heads = num_attention_heads
+ self.lru_width = lru_width if lru_width is not None else hidden_size
+ self.attention_window_size = attention_window_size
+ self.conv1d_width = conv1d_width
+ self.logits_soft_cap = logits_soft_cap
+ self.rms_norm_eps = rms_norm_eps
+ self.use_cache = use_cache
+ self.rope_theta = rope_theta
+ self.partial_rotary_factor = partial_rotary_factor
+ self.block_types = list(block_types)
+ self.hidden_activation = hidden_activation
+ self.head_dim = self.hidden_size // self.num_attention_heads
+ self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads
+ if self.num_key_value_heads > self.num_attention_heads:
+ raise ValueError("The number of `num_key_value_heads` must be smaller than `num_attention_heads`")
+ self.attention_dropout = attention_dropout
+ self.attention_bias = attention_bias
+ self.w_init_variance_scale = w_init_variance_scale
+ self.final_w_init_variance_scale = 2.0 / self.num_hidden_layers
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ **kwargs,
+ )
+
+ @property
+ def layers_block_type(self):
+ return (self.block_types * 100)[: self.num_hidden_layers]
diff --git a/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/convert_recurrent_gemma_to_hf.py b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/convert_recurrent_gemma_to_hf.py
new file mode 100644
index 0000000000000000000000000000000000000000..dc6619e217e4fde4666c05e0edb99eae499a07fa
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/convert_recurrent_gemma_to_hf.py
@@ -0,0 +1,222 @@
+# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import argparse
+import os
+import warnings
+
+import torch
+from accelerate import init_empty_weights
+
+from transformers import GemmaTokenizer, RecurrentGemmaConfig, RecurrentGemmaForCausalLM
+
+
+try:
+ from transformers import GemmaTokenizerFast
+except ImportError as e:
+ warnings.warn(e)
+ warnings.warn(
+ "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
+ )
+ GemmaTokenizerFast = None
+
+import regex as re
+
+
+"""
+Sample usage:
+
+```
+python src/transformers/models/gemma/convert_gemma_weights_to_hf.py \
+ --input_dir /path/to/downloaded/gemma/weights --model_size 7B --output_dir /output/path
+```
+
+Thereafter, models can be loaded via:
+
+```py
+from transformers import GemmaForCausalLM, GemmaTokenizerFast
+
+model = GemmaForCausalLM.from_pretrained("/output/path")
+tokenizer = GemmaTokenizerFast.from_pretrained("/output/path")
+```
+
+Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
+come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
+"""
+
+gemma_2b_config = RecurrentGemmaConfig(
+ num_attention_heads=10,
+ num_key_value_heads=1,
+ hidden_size=2560,
+ intermediate_size=15360,
+ vocab_size=256000,
+ num_hidden_layers=26,
+)
+
+gemma_7b_config = RecurrentGemmaConfig()
+
+CONFIG_MAPPING = {"2B": gemma_2b_config, "7B": gemma_7b_config}
+LAYER_NAME_MAPPING = {"embedder.weight": "model.embed_tokens.weight"}
+
+
+def write_model(save_path, input_base_path, config, safe_serialization=True, push_to_hub=False, dtype=torch.float32):
+ print(f"Fetching all parameters from the checkpoint at '{input_base_path}'")
+ model_state_dict = torch.load(input_base_path, map_location="cpu")
+
+ REPLACEMENT = {
+ "blocks.": "layers.",
+ ".ffw_down.b": ".down_proj.b",
+ ".ffw_down.w": ".down_proj.w",
+ ".ffw_up.b": ".up_proj.bias",
+ ".ffw_up.w": ".up_proj.weight",
+ "recurrent_block": "temporal_block",
+ "attention_block": "temporal_block",
+ "temporal_block.proj_final": "temporal_block.out_proj",
+ "norm.scale": "norm.weight",
+ ".proj_k": ".k_proj",
+ ".proj_q": ".q_proj",
+ ".proj_v": ".v_proj",
+ ".proj_final": ".o_proj",
+ "embedder.input_embedding": "embed_tokens.weight",
+ "conv_1d.w": "conv_1d.weight",
+ "conv_1d.b": "conv_1d.bias",
+ "input_gate.w": "input_gate.weight",
+ "input_gate.b": "input_gate.bias",
+ "a_param": "recurrent_param",
+ "a_gate.b": "recurrent_gate.bias",
+ "a_gate.w": "recurrent_gate.weight",
+ }
+
+ state_dict = {}
+ for k, v in model_state_dict.items():
+ k = "model." + k
+ pattern = re.compile("|".join(map(re.escape, REPLACEMENT.keys())))
+ key = pattern.sub(lambda match: REPLACEMENT[match.group(0)], k)
+ if "conv_1d.weight" in key:
+ v = v[:, None, :].transpose(0, 2)
+ if "up_proj.weight" in key:
+ state_dict[key.replace("up_proj", "gate_proj")] = v[0].T.contiguous()
+ v = v[1].T.contiguous()
+ if "up_proj.bias" in key:
+ state_dict[key.replace("up_proj", "gate_proj")] = v[0, 0, 0].clone()
+ v = v[1, 0, 0].contiguous()
+ if "recurrent_gate.bias" in key:
+ state_dict[key.replace("gate.", "gate_")] = v.contiguous().clone()
+ elif "recurrent_gate.weight" in key:
+ state_dict[key.replace("gate.", "gate_")] = v.contiguous().clone()
+ elif "input_gate.b" in key:
+ state_dict[key.replace("gate.", "gate_")] = v.contiguous().clone()
+ elif "input_gate.w" in key:
+ state_dict[key.replace("gate.", "gate_")] = v.contiguous().clone()
+ elif "embed_tokens" in key:
+ state_dict[key] = v[: config.vocab_size, :].contiguous().clone()
+ state_dict["lm_head.weight"] = v[: config.vocab_size, :].contiguous().clone()
+ else:
+ state_dict[key] = v.contiguous()
+
+ torch.set_default_dtype(dtype)
+
+ print("Loading the checkpoint in a Gemma model.")
+ with init_empty_weights():
+ model = RecurrentGemmaForCausalLM(config)
+ model.load_state_dict(state_dict, assign=True, strict=True)
+
+ model.config.torch_dtype = torch.float32
+ del model.config._name_or_path
+ print("Saving in the Transformers format.")
+
+ if push_to_hub:
+ print(f"pushing the model to {save_path}")
+ else:
+ model.save_pretrained(save_path, safe_serialization=safe_serialization)
+
+
+def write_tokenizer(input_tokenizer_path, save_path, push_to_hub=False):
+ # Initialize the tokenizer based on the `spm` model
+ tokenizer_class = GemmaTokenizer if GemmaTokenizerFast is None else GemmaTokenizerFast
+ print(f"Saving a {tokenizer_class.__name__} to {save_path}.")
+ tokenizer = tokenizer_class(input_tokenizer_path)
+ if push_to_hub:
+ tokenizer.push_to_hub(save_path)
+ else:
+ tokenizer.save_pretrained(save_path)
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--input_checkpoint",
+ help="Absolute path to the target Gemma weights.",
+ default="/home/arthur/transformers_recurrentgemma/google/recurrent-gemma-2b-it/ToBeDeleted/2b-it.pt",
+ )
+ parser.add_argument(
+ "--tokenizer_checkpoint",
+ help="Location of Gemma tokenizer model",
+ )
+ parser.add_argument(
+ "--model_size",
+ default="2B",
+ choices=["2B", "7B", "tokenizer_only"],
+ help="'f' models correspond to the finetuned versions, and are specific to the Gemma2 official release. For more details on Gemma2, checkout the original repo: https://huggingface.co/google/gemma-7b",
+ )
+ parser.add_argument(
+ "--output_dir",
+ default="google/recurrent-gemma-2b-it-hf",
+ help="Location to write HF model and tokenizer",
+ )
+ parser.add_argument(
+ "--pickle_serialization",
+ help="Whether or not to save using `safetensors`.",
+ action="store_true",
+ default=False,
+ )
+ parser.add_argument(
+ "--convert_tokenizer",
+ help="Whether or not to convert the tokenizer as well.",
+ action="store_true",
+ default=False,
+ )
+ parser.add_argument(
+ "--push_to_hub",
+ help="Whether or not to push the model to the hub at `output_dir` instead of saving it locally.",
+ action="store_true",
+ default=False,
+ )
+ parser.add_argument(
+ "--dtype",
+ default="float32",
+ help="Target dtype of the converted model",
+ )
+ args = parser.parse_args()
+
+ if args.convert_tokenizer:
+ if args.tokenizer_checkpoint is None:
+ raise ValueError("Path to the tokenizer is required when passing --convert_tokenizer")
+
+ spm_path = os.path.join(args.tokenizer_checkpoint)
+ write_tokenizer(spm_path, args.output_dir, args.push_to_hub)
+
+ config = CONFIG_MAPPING[args.model_size]
+ dtype = getattr(torch, args.dtype)
+ write_model(
+ config=config,
+ input_base_path=args.input_checkpoint,
+ save_path=args.output_dir,
+ safe_serialization=not args.pickle_serialization,
+ push_to_hub=args.push_to_hub,
+ dtype=dtype,
+ )
+
+
+if __name__ == "__main__":
+ main()
diff --git a/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py
new file mode 100644
index 0000000000000000000000000000000000000000..c21f99ce48bd32d9853a3dc09271550d2a916fec
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py
@@ -0,0 +1,942 @@
+# coding=utf-8
+# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
+#
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch RecurrentGemma model."""
+
+import math
+from typing import Dict, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...modeling_attn_mask_utils import AttentionMaskConverter
+from ...modeling_outputs import BaseModelOutputWithNoAttention, CausalLMOutput
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import ALL_LAYERNORM_LAYERS
+from ...utils import (
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_recurrent_gemma import RecurrentGemmaConfig
+
+
+logger = logging.get_logger(__name__)
+_CONFIG_FOR_DOC = "RecurrentGemmaConfig"
+_MAX_SQRT_GRADIENT = 1000.0
+
+
+# Copied from transformers.models.gemma.modeling_gemma.GemmaRMSNorm with Gemma->RecurrentGemma
+class RecurrentGemmaRMSNorm(nn.Module):
+ def __init__(self, dim: int, eps: float = 1e-6):
+ super().__init__()
+ self.eps = eps
+ self.weight = nn.Parameter(torch.zeros(dim))
+
+ def _norm(self, x):
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
+
+ def forward(self, x):
+ output = self._norm(x.float())
+ # Llama does x.to(float16) * w whilst RecurrentGemma is (x * w).to(float16)
+ # See https://github.com/huggingface/transformers/pull/29402
+ output = output * (1.0 + self.weight.float())
+ return output.type_as(x)
+
+
+ALL_LAYERNORM_LAYERS.append(RecurrentGemmaRMSNorm)
+
+
+class RecurrentGemmaRotaryEmbedding(nn.Module):
+ def __init__(self, dim, base=10000, device=None):
+ super().__init__()
+ self.dim = dim
+ self.base = base
+ self.register_buffer("inv_freq", None, persistent=False)
+
+ @torch.no_grad()
+ # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding.forward with Gemma->RecurrentGemma
+ def forward(self, x, position_ids, seq_len=None):
+ # x: [bs, num_attention_heads, seq_len, head_size]
+ if self.inv_freq is None:
+ self.inv_freq = 1.0 / (
+ self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
+ )
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
+ position_ids_expanded = position_ids[:, None, :].float()
+ # Force float32 since bfloat16 loses precision on long contexts
+ # See https://github.com/huggingface/transformers/pull/29285
+ device_type = x.device.type
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
+ with torch.autocast(device_type=device_type, enabled=False):
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
+ emb = torch.cat((freqs, freqs), dim=-1)
+ cos = emb.cos()
+ sin = emb.sin()
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
+
+
+# Copied from transformers.models.llama.modeling_llama.rotate_half
+def rotate_half(x):
+ """Rotates half the hidden dims of the input."""
+ x1 = x[..., : x.shape[-1] // 2]
+ x2 = x[..., x.shape[-1] // 2 :]
+ return torch.cat((-x2, x1), dim=-1)
+
+
+# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
+def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
+ """Applies Rotary Position Embedding to the query and key tensors.
+
+ Args:
+ q (`torch.Tensor`): The query tensor.
+ k (`torch.Tensor`): The key tensor.
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
+ position_ids (`torch.Tensor`, *optional*):
+ Deprecated and unused.
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
+ Returns:
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
+ """
+ cos = cos.unsqueeze(unsqueeze_dim)
+ sin = sin.unsqueeze(unsqueeze_dim)
+ q_embed = (q * cos) + (rotate_half(q) * sin)
+ k_embed = (k * cos) + (rotate_half(k) * sin)
+ return q_embed, k_embed
+
+
+# Copied from transformers.models.llama.modeling_llama.repeat_kv
+def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
+ """
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
+ """
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
+ if n_rep == 1:
+ return hidden_states
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
+
+
+class RecurrentGemmaSdpaAttention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(self, config: RecurrentGemmaConfig):
+ super().__init__()
+ self.config = config
+ self.attention_dropout = config.attention_dropout
+ self.hidden_size = config.hidden_size
+ self.num_attention_heads = config.num_attention_heads
+ self.head_dim = config.head_dim
+ self.num_key_value_heads = config.num_key_value_heads
+ self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads
+ self.partial_rotary_factor = config.partial_rotary_factor
+
+ self.q_proj = nn.Linear(self.hidden_size, self.num_attention_heads * self.head_dim, bias=config.attention_bias)
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
+ self.o_proj = nn.Linear(self.num_attention_heads * self.head_dim, self.hidden_size, bias=True)
+ self.rotary_emb = RecurrentGemmaRotaryEmbedding(
+ int(self.partial_rotary_factor * self.head_dim),
+ base=config.rope_theta,
+ )
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ position_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ use_cache: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ bsz, q_len, _ = hidden_states.size()
+
+ query_states = self.q_proj(hidden_states)
+ key_states = self.k_proj(hidden_states)
+ value_states = self.v_proj(hidden_states)
+
+ query_states = query_states.view(bsz, q_len, self.num_attention_heads, self.head_dim).transpose(1, 2)
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
+
+ # Partial rotary embedding
+ query_rot, query_pass = torch.chunk(query_states, int(1 / self.partial_rotary_factor), dim=-1)
+ key_rot, key_pass = torch.chunk(key_states, int(1 / self.partial_rotary_factor), dim=-1)
+ query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
+ query_states = torch.cat((query_rot, query_pass), dim=-1)
+ key_states = torch.cat((key_rot, key_pass), dim=-1)
+
+ if use_cache and hasattr(self, "key_states"):
+ cache_kwargs = {"cache_position": cache_position}
+ key_states, value_states = self._update_cache(key_states, value_states, **cache_kwargs)
+
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
+
+ causal_mask = attention_mask
+ if attention_mask is not None:
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
+
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
+ query_states.contiguous(),
+ key_states.contiguous(),
+ value_states.contiguous(),
+ attn_mask=causal_mask, # pretty much a must for sliding window backend!
+ dropout_p=self.attention_dropout if self.training else 0.0,
+ scale=self.head_dim**-0.5,
+ )
+
+ attn_output = attn_output.transpose(1, 2).contiguous()
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
+ attn_output = self.o_proj(attn_output)
+ return attn_output
+
+ def _setup_cache(self, batch_size, device, dtype=None):
+ if dtype is None and self.config.torch_dtype is not None:
+ dtype = self.config.torch_dtype
+ dtype = dtype if dtype is not None else torch.float32
+ cache_shape = (batch_size, self.num_key_value_heads, self.config.attention_window_size, self.head_dim)
+ self.value_states = torch.zeros(cache_shape, dtype=dtype, device=device)
+ self.key_states = torch.zeros(cache_shape, dtype=dtype, device=device)
+
+ @torch.no_grad()
+ def _update_cache(self, key_states, value_states, **cache_kwargs):
+ """
+ torch.compile compatible sliding window.
+ Computes the `indices` based on `cache_position >= self.config.attention_window_size - 1`.
+ The `to_shift` is only true once we are above attention_window_size. Thus with `attention_window_size==64`:
+
+ indices = (slicing + to_shift[-1].int()-1) % self.config.attention_window_size
+ tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
+ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
+ 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
+ 55, 56, 57, 58, 59, 60, 61, 62, 63, 0])
+
+ We overwrite the cache using these, then we always write at cache_position (clamped to `attention_window_size`)
+ """
+ cache_position = cache_kwargs.get("cache_position")
+ if cache_position.shape[0] > self.config.attention_window_size:
+ # int indexing -> device sync? in compile, use tensor
+ k_out = key_states[:, :, -self.config.attention_window_size :, :]
+ v_out = value_states[:, :, -self.config.attention_window_size :, :]
+ else:
+ slicing = torch.ones(
+ self.config.attention_window_size, dtype=torch.long, device=value_states.device
+ ).cumsum(0)
+ cache_position = cache_position.clamp(0, self.config.attention_window_size - 1)
+ to_shift = cache_position >= self.config.attention_window_size - 1
+ indices = (slicing + to_shift[-1].int() - 1) % self.config.attention_window_size
+
+ k_out, v_out = self.key_states.to(key_states.device), self.value_states.to(value_states.device)
+ k_out = k_out[:, :, indices]
+ v_out = v_out[:, :, indices]
+
+ k_out[:, :, cache_position] = key_states
+ v_out[:, :, cache_position] = value_states
+
+ self.key_states, self.value_states = k_out, v_out
+ return k_out, v_out
+
+
+class SqrtBoundDerivative(torch.autograd.Function):
+ """Computes a square root with a gradient clipped at `_MAX_SQRT_GRADIENT`."""
+
+ @staticmethod
+ def forward(ctx, x: torch.Tensor) -> torch.Tensor:
+ """The forward pass, which is a normal `sqrt`."""
+ ctx.save_for_backward(x)
+ return torch.sqrt(x)
+
+ @staticmethod
+ def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
+ """The backward pass, which clips the `sqrt` gradient."""
+ (x,) = ctx.saved_tensors
+ clipped_x_times_4 = torch.clip(4.0 * x, min=1 / (_MAX_SQRT_GRADIENT**2))
+ return grad_output / torch.sqrt(clipped_x_times_4)
+
+
+class RecurrentGemmaRglru(nn.Module):
+ """A Real-Gated Linear Recurrent Unit (RG-LRU) layer."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.num_attention_heads = config.num_attention_heads
+ self.block_width = config.lru_width // self.num_attention_heads
+
+ self.recurrent_param = nn.Parameter(torch.empty([config.lru_width]))
+ self.input_gate_weight = nn.Parameter(
+ torch.empty([self.num_attention_heads, self.block_width, self.block_width])
+ )
+ self.input_gate_bias = nn.Parameter(torch.empty([self.num_attention_heads, self.block_width]))
+
+ self.recurrent_gate_weight = nn.Parameter(
+ torch.empty([self.num_attention_heads, self.block_width, self.block_width])
+ )
+ self.recurrent_gate_bias = nn.Parameter(torch.empty([self.num_attention_heads, self.block_width]))
+ self.recurrent_states = None
+
+ def forward(
+ self,
+ activations: torch.Tensor,
+ position_ids: torch.Tensor,
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ batch_size, seq_len, lru_width = activations.shape
+ reset = position_ids[:, :, None] == 0
+
+ reshape_act = activations.reshape(batch_size * seq_len, self.num_attention_heads, self.block_width)
+ reshape_act = reshape_act.permute(1, 0, 2)
+
+ res = torch.baddbmm(self.input_gate_bias[:, None, :], reshape_act, self.input_gate_weight)
+ input_gate = torch.sigmoid(res.transpose(0, 1).reshape(batch_size, seq_len, lru_width))
+
+ res = torch.baddbmm(self.recurrent_gate_bias[:, None, :], reshape_act, self.recurrent_gate_weight)
+ recurrent_gate = torch.sigmoid(res.transpose(0, 1).reshape(batch_size, seq_len, lru_width))
+
+ # Compute the parameter `A` of the recurrence.
+ log_recurrent_gate = -8.0 * recurrent_gate * nn.functional.softplus(self.recurrent_param)
+ recurrent_gate = torch.exp(log_recurrent_gate)
+ a_square = torch.exp(2 * log_recurrent_gate)
+
+ # Gate the input.
+ gated_inputs = activations * input_gate
+
+ # Apply gamma normalization to the input. We need to clip the derivatives of
+ # `sqrt` in order to prevent NaNs during training in bfloat16. TODO a bit annoying
+ multiplier = 1
+ tracing = isinstance(activations, torch.fx.Proxy) or (
+ hasattr(torch, "_dynamo") and torch._dynamo.is_compiling()
+ )
+ if not torch.jit.is_tracing() and not tracing:
+ multiplier = SqrtBoundDerivative.apply(1 - a_square)
+ multiplier = reset + ~reset * multiplier
+ normalized_x = gated_inputs * multiplier.type(activations.dtype)
+
+ hidden_states, recurrent_states = self._rnn_scan(
+ hidden_states=normalized_x,
+ recurrent_gate=recurrent_gate,
+ reset=reset,
+ recurrent_states=self.recurrent_states,
+ )
+ self.recurrent_states = recurrent_states
+ return hidden_states
+
+ # TODO refactor
+ def _rnn_scan(
+ self,
+ hidden_states: torch.Tensor,
+ recurrent_gate: torch.Tensor,
+ reset: torch.Tensor,
+ recurrent_states: Union[torch.Tensor, None],
+ acc_dtype: torch.dtype = torch.float32,
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ """Runs the recurrence of a linear RNN.
+
+ Args:
+ hidden_states: The input sequence.
+ recurrent_gate: The diagonal of the recurrence matrix `A`.
+ reset: Indicator of document boundaries, e.g. when to reset the hidden state
+ of the RNN.
+ recurrent_states: The initial hidden state.
+ acc_dtype: The data type for the accumulation.
+
+ Returns:
+ The output of the linear recurrence.
+ """
+ # Multiply `a` by the reset.
+ recurrent_gate = recurrent_gate * ~reset
+
+ if hidden_states.shape[1] == 1:
+ # Using scan in sampling mode.
+ if recurrent_states is None: # same here, when decoding you always have cache
+ return hidden_states, hidden_states[:, 0].type(acc_dtype)
+
+ else:
+ contextualized_states = recurrent_gate.type(acc_dtype) * recurrent_states[:, None].to(
+ recurrent_gate.device
+ )
+ contextualized_states += hidden_states.type(acc_dtype)
+ return contextualized_states.type(hidden_states.dtype), contextualized_states[:, -1]
+
+ else:
+ # Using scan in linear mode.
+ if recurrent_states is None:
+ recurrent_states = torch.zeros(hidden_states[:, 0].shape, dtype=acc_dtype, device=hidden_states.device)
+
+ contextualized_states = torch.zeros_like(hidden_states)
+ for t in range(hidden_states.shape[1]):
+ recurrent_states = recurrent_gate[:, t].type(acc_dtype) * recurrent_states.to(recurrent_gate.device)
+ recurrent_states = recurrent_states + hidden_states[:, t].type(acc_dtype)
+ contextualized_states[:, t] = recurrent_states.type(hidden_states.dtype)
+
+ return contextualized_states, recurrent_states
+
+
+class RecurrentGemmaRecurrentBlock(nn.Module):
+ """Griffin and Hawk's recurrent block."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.lru_width = config.lru_width
+ self.hidden_size = config.hidden_size
+ self.linear_y = nn.Linear(in_features=config.hidden_size, out_features=config.lru_width)
+ self.linear_x = nn.Linear(in_features=config.hidden_size, out_features=config.lru_width)
+ self.linear_out = nn.Linear(in_features=config.lru_width, out_features=config.hidden_size)
+ self.conv1d_width = config.conv1d_width
+ self.conv_1d = nn.Conv1d(
+ config.lru_width,
+ config.lru_width,
+ kernel_size=config.conv1d_width,
+ groups=config.lru_width,
+ padding=config.conv1d_width - 1,
+ )
+ self.rg_lru = RecurrentGemmaRglru(config)
+ self.act_fn = ACT2FN[config.hidden_activation]
+
+ self.conv1d_state = None
+
+ def forward(
+ self,
+ input_states: torch.Tensor,
+ position_ids: torch.Tensor,
+ attention_mask: torch.Tensor,
+ cache_position: torch.Tensor,
+ use_cache: bool = True,
+ ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
+ _, seq_len, _ = input_states.shape
+
+ y_branch = self.linear_y(input_states)
+ y_branch = self.act_fn(y_branch)
+
+ x_branch = self.linear_x(input_states)
+ x_branch = x_branch.transpose(1, 2)
+
+ if use_cache:
+ if cache_position.shape[0] != 1: # prefill
+ self.conv1d_state = nn.functional.pad(x_branch, (self.conv1d_width - x_branch.shape[-1] - 1, 0))
+ x_branch = self.conv_1d(x_branch)[..., :seq_len]
+ else: # decoding
+ conv_state = torch.cat((self.conv1d_state, x_branch), -1)
+ x_branch = torch.sum(conv_state * self.conv_1d.weight[:, 0, :], dim=-1) + self.conv_1d.bias
+ x_branch = x_branch.unsqueeze(-1)
+ self.conv1d_state = conv_state[:, :, 1:]
+ else:
+ x_branch = self.conv_1d(x_branch)[..., :seq_len]
+
+ x_branch = self.rg_lru(x_branch.transpose(1, 2), position_ids)
+
+ hidden_states = x_branch * y_branch
+ hidden_states = self.linear_out(hidden_states)
+ return hidden_states
+
+ def _setup_cache(self, batch, device, dtype):
+ # recurrent_states always computed in full precision
+ self.rg_lru.recurrent_states = torch.zeros((batch, self.lru_width), device=device, dtype=torch.float32)
+ self.conv1d_state = torch.zeros((batch, self.hidden_size, self.conv1d_width - 1), device=device, dtype=dtype)
+
+
+TEMPORAL_BLOCK_CLASSES = {"recurrent": RecurrentGemmaRecurrentBlock, "attention": RecurrentGemmaSdpaAttention}
+
+
+class RecurrentGemmaMlp(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.intermediate_size = config.intermediate_size // 2
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True)
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True)
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=True)
+ self.act_fn = ACT2FN[config.hidden_activation]
+
+ def forward(self, hidden_states):
+ gate = self.act_fn(self.gate_proj(hidden_states))
+ return self.down_proj(gate * self.up_proj(hidden_states))
+
+
+class RecurrentGemmaDecoderLayer(nn.Module):
+ """Griffin and Hawk's residual block."""
+
+ def __init__(self, config, layer_idx):
+ super().__init__()
+ self.temporal_pre_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.temporal_block = TEMPORAL_BLOCK_CLASSES[config.layers_block_type[layer_idx]](config)
+ self.channel_pre_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.mlp_block = RecurrentGemmaMlp(config)
+
+ def forward(
+ self,
+ activations: torch.Tensor,
+ position_ids: torch.Tensor,
+ attention_mask: torch.Tensor,
+ cache_position: torch.Tensor = None,
+ use_cache: bool = None,
+ ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
+ raw_activations = activations
+ inputs_normalized = self.temporal_pre_norm(raw_activations) # RMSNorm introduces slight slight differences
+
+ hidden_states = self.temporal_block(
+ inputs_normalized, position_ids, attention_mask, cache_position=cache_position, use_cache=use_cache
+ )
+
+ residual = hidden_states + raw_activations
+
+ hidden_states = self.channel_pre_norm(residual)
+ hidden_states = self.mlp_block(hidden_states)
+
+ hidden_states = hidden_states + residual
+ return hidden_states
+
+
+RECURRENTGEMMA_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`RecurrentGemmaConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+@add_start_docstrings(
+ "The bare RecurrentGemma Model outputting raw hidden-states without any specific head on top.",
+ RECURRENTGEMMA_START_DOCSTRING,
+)
+class RecurrentGemmaPreTrainedModel(PreTrainedModel):
+ config_class = RecurrentGemmaConfig
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["RecurrentGemmaDecoderLayer"]
+ _skip_keys_device_placement = ["cache"]
+ _supports_flash_attn_2 = False
+ _supports_sdpa = False # we can't compare with eager for now
+ _supports_cache_class = True
+
+ def _init_weights(self, module):
+ std = math.sqrt(self.config.w_init_variance_scale / self.config.conv1d_width)
+ if isinstance(module, nn.Conv1d):
+ torch.nn.init.normal_(module.weight, mean=0.0, std=std)
+ torch.nn.init.zeros_(module.bias)
+ elif isinstance(module, RecurrentGemmaSdpaAttention):
+ torch.nn.init.normal_(module.q_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
+ torch.nn.init.normal_(module.k_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
+ torch.nn.init.normal_(module.v_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
+
+ std = math.sqrt(self.config.final_w_init_variance_scale / self.config.hidden_size)
+ torch.nn.init.normal_(module.o_proj.weight, mean=0.0, std=std)
+ elif isinstance(module, RecurrentGemmaRecurrentBlock):
+ torch.nn.init.zeros_(module.linear_x.bias)
+ torch.nn.init.normal_(module.linear_x.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
+
+ torch.nn.init.zeros_(module.linear_y.bias)
+ torch.nn.init.normal_(module.linear_y.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
+
+ std = math.sqrt(self.config.final_w_init_variance_scale / self.config.lru_width)
+ torch.nn.init.normal_(module.linear_out.weight, mean=0.0, std=std)
+ torch.nn.init.zeros_(module.linear_out.bias)
+ elif isinstance(module, RecurrentGemmaRglru):
+ std = math.sqrt(
+ self.config.w_init_variance_scale / (self.config.lru_width // self.config.num_attention_heads)
+ )
+ torch.nn.init.normal_(module.input_gate_weight, mean=0.0, std=std)
+ torch.nn.init.normal_(module.recurrent_gate_weight, mean=0.0, std=std)
+ torch.nn.init.zeros_(module.input_gate_bias)
+ torch.nn.init.zeros_(module.recurrent_gate_bias)
+
+ module.recurrent_param.data.uniform_(0.9**2 + 1e-8, 0.999**2 + 1e-8)
+ module.recurrent_param.data.log_().mul_(0.5)
+ module.recurrent_param.data.neg_().exp_().sub_(1.0).log_()
+ elif isinstance(module, nn.Linear):
+ torch.nn.init.normal_(module.weight, mean=0.0, std=std)
+ if getattr(module, "bias", None) is not None:
+ torch.nn.init.zeros_(module.bias)
+
+ def _setup_cache(self, config, batch, device, dtype):
+ layers = getattr(self, "model", self).layers
+ for layer in layers:
+ layer.temporal_block._setup_cache(batch, device, dtype)
+
+ def reset_cache(self, batch, device, dtype):
+ pass
+
+
+RECURRENTGEMMA_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.n_positions - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
+ the complete sequence length.
+"""
+
+
+@add_start_docstrings(
+ "The bare RecurrentGemma Model outputting raw hidden-states without any specific head on top.",
+ RECURRENTGEMMA_START_DOCSTRING,
+)
+class RecurrentGemmaModel(RecurrentGemmaPreTrainedModel):
+ """
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`RecurrentGemmaDecoderLayer`]
+
+ Args:
+ config: RecurrentGemmaConfig
+ """
+
+ def __init__(self, config: RecurrentGemmaConfig):
+ super().__init__(config)
+ self.padding_idx = config.pad_token_id
+ self.vocab_size = config.vocab_size
+
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
+ self.layers = nn.ModuleList(
+ [RecurrentGemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
+ )
+ self.final_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.gradient_checkpointing = False
+
+ self.register_buffer(
+ "normalizer", torch.tensor(self.config.hidden_size**0.5, dtype=torch.bfloat16), persistent=False
+ )
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.llama.modeling_llama.LlamaModel.get_input_embeddings
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ # Copied from transformers.models.llama.modeling_llama.LlamaModel.set_input_embeddings
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ @add_start_docstrings_to_model_forward(RECURRENTGEMMA_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs,
+ ) -> Union[Tuple, BaseModelOutputWithNoAttention]:
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if (input_ids is None) ^ (inputs_embeds is not None):
+ raise ValueError(
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
+ )
+
+ if self.gradient_checkpointing and self.training and use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
+ )
+ use_cache = False
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids)
+
+ hidden_states = inputs_embeds
+
+ if use_cache and inputs_embeds.shape[1] != 1: # TODO let's maybe only call in the `generate`?
+ self._setup_cache(self.config, hidden_states.shape[0], hidden_states.device, hidden_states.dtype)
+
+ if cache_position is None:
+ cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
+ if position_ids is None:
+ position_ids = cache_position.unsqueeze(0)
+
+ causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
+
+ hidden_states = hidden_states * self.normalizer.type(hidden_states.dtype)
+
+ all_hidden_states = () if output_hidden_states else None
+ for i, residual_block in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ if self.gradient_checkpointing and self.training:
+ hidden_states = self._gradient_checkpointing_func(
+ residual_block.__call__, hidden_states, position_ids, causal_mask, cache_position, use_cache
+ )
+ else:
+ hidden_states = residual_block(hidden_states, position_ids, causal_mask, cache_position, use_cache)
+
+ hidden_states = self.final_norm(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
+
+ return BaseModelOutputWithNoAttention(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ )
+
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
+ # Ignore copy
+ def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
+ dtype, device = input_tensor.dtype, input_tensor.device
+ min_dtype = torch.finfo(dtype).min
+ sequence_length = input_tensor.shape[1]
+ target_length = max(self.config.attention_window_size, sequence_length)
+
+ diagonal = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
+ causal_mask = diagonal
+ if sequence_length != 1:
+ causal_mask = torch.triu(diagonal, diagonal=-1)
+
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
+ if attention_mask is not None:
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
+ if attention_mask.dim() == 2:
+ mask_length = attention_mask.shape[-1]
+ padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
+ causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
+
+ if attention_mask is not None and attention_mask.device.type == "cuda":
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
+ # Details: https://github.com/pytorch/pytorch/issues/110213
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
+
+ return causal_mask
+
+
+# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->RECURRENTGEMMA,Llama->RecurrentGemma,llama->gemma
+class RecurrentGemmaForCausalLM(RecurrentGemmaPreTrainedModel):
+ _tied_weights_keys = ["lm_head.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.model = RecurrentGemmaModel(config)
+ self.vocab_size = config.vocab_size
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model = decoder
+
+ def get_decoder(self):
+ return self.model
+
+ # Ignore copy
+ @add_start_docstrings_to_model_forward(RECURRENTGEMMA_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ use_cache: Optional[bool] = None,
+ **kwargs, # for now we need this for generation
+ ) -> Union[Tuple, CausalLMOutput]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, RecurrentGemmaForCausalLM
+
+ >>> model = RecurrentGemmaForCausalLM.from_pretrained("google/recurrentgemma-2b")
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/recurrentgemma-2b")
+
+ >>> prompt = "What is your favorite condiment?"
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
+
+ >>> # Generate
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "What is your favorite condiment?"
+ ```"""
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = True
+ outputs = self.model(
+ input_ids=input_ids,
+ cache_position=cache_position,
+ attention_mask=attention_mask,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ logits = self.lm_head(hidden_states)
+
+ # Soft-cap the logits TODO remove if always done.
+ # if self.config.logits_soft_cap is not None:
+ cap = self.config.logits_soft_cap
+ logits = nn.functional.tanh(logits / cap) * cap
+
+ logits = logits.float()
+ loss = None
+ if labels is not None:
+ # Shift so that tokens < n predict n
+ shift_logits = logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss()
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
+ shift_labels = shift_labels.view(-1)
+ # Enable model parallelism
+ shift_labels = shift_labels.to(shift_logits.device)
+ loss = loss_fct(shift_logits, shift_labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return (loss,) + output if loss is not None else output
+
+ return CausalLMOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ )
+
+ # Ignore copy
+ def prepare_inputs_for_generation(
+ self, input_ids, attention_mask=None, inputs_embeds=None, cache_position=None, use_cache=None, **kwargs
+ ):
+ position_ids = kwargs.get("position_ids", None)
+ if attention_mask is not None and position_ids is None:
+ position_ids = attention_mask.long().cumsum(-1) - 1
+ position_ids.masked_fill_(attention_mask == 0, 1)
+
+ attention_mask = attention_mask[:, -self.config.attention_window_size :]
+
+ past_length = cache_position[0]
+ if past_length > 0:
+ position_ids = position_ids[:, past_length:]
+
+ if inputs_embeds is not None:
+ model_inputs = {"inputs_embeds": inputs_embeds[:, past_length:]}
+ else:
+ model_inputs = {"input_ids": input_ids[:, past_length:].contiguous()}
+
+ if cache_position is not None:
+ cache_position = cache_position[-position_ids.shape[1] :]
+
+ model_inputs.update(
+ {
+ "position_ids": position_ids,
+ "attention_mask": attention_mask,
+ "cache_position": cache_position,
+ "use_cache": use_cache,
+ }
+ )
+ return model_inputs
+
+ # Ignore copy
+ def _reorder_cache(self, past_key_values, beam_idx):
+ for layer in self.layers:
+ if hasattr(layer.temporal_block, "key_states"):
+ k_state = layer.temporal_block.key_states
+ v_state = layer.temporal_block.value_states
+ k_state = k_state.index_select(0, beam_idx.to(k_state.device))
+ v_state = v_state.index_select(0, beam_idx.to(v_state.device))
+ return None
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..3167311a5a6ef7df2ae198fe93a68647a9654ffe
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__init__.py
@@ -0,0 +1,111 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_sentencepiece_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_seamless_m4t": ["SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP", "SeamlessM4TConfig"],
+ "feature_extraction_seamless_m4t": ["SeamlessM4TFeatureExtractor"],
+ "processing_seamless_m4t": ["SeamlessM4TProcessor"],
+}
+
+try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_seamless_m4t"] = ["SeamlessM4TTokenizer"]
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_seamless_m4t_fast"] = ["SeamlessM4TTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_seamless_m4t"] = [
+ "SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "SeamlessM4TForTextToSpeech",
+ "SeamlessM4TForSpeechToSpeech",
+ "SeamlessM4TForTextToText",
+ "SeamlessM4TForSpeechToText",
+ "SeamlessM4TModel",
+ "SeamlessM4TPreTrainedModel",
+ "SeamlessM4TCodeHifiGan",
+ "SeamlessM4THifiGan",
+ "SeamlessM4TTextToUnitForConditionalGeneration",
+ "SeamlessM4TTextToUnitModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_seamless_m4t import SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP, SeamlessM4TConfig
+ from .feature_extraction_seamless_m4t import SeamlessM4TFeatureExtractor
+ from .processing_seamless_m4t import SeamlessM4TProcessor
+
+ try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_seamless_m4t import SeamlessM4TTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_seamless_m4t_fast import SeamlessM4TTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_seamless_m4t import (
+ SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST,
+ SeamlessM4TCodeHifiGan,
+ SeamlessM4TForSpeechToSpeech,
+ SeamlessM4TForSpeechToText,
+ SeamlessM4TForTextToSpeech,
+ SeamlessM4TForTextToText,
+ SeamlessM4THifiGan,
+ SeamlessM4TModel,
+ SeamlessM4TPreTrainedModel,
+ SeamlessM4TTextToUnitForConditionalGeneration,
+ SeamlessM4TTextToUnitModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c0e92f48dce14c67f1912328599e2fb3949a9f0b
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/__init__.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/configuration_seamless_m4t.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/configuration_seamless_m4t.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..faa01d882ff1ec1e8513f026062939a2f4fca1e0
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/configuration_seamless_m4t.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/convert_fairseq2_to_hf.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/convert_fairseq2_to_hf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..92b229e616820f2a33c92e03f56162fc74938d6e
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/convert_fairseq2_to_hf.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/feature_extraction_seamless_m4t.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/feature_extraction_seamless_m4t.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8185975812810f773bfc9fed53c822458bb3b759
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/feature_extraction_seamless_m4t.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/modeling_seamless_m4t.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/modeling_seamless_m4t.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9f24375e33fcbbdc740e8d381af5c05ab10340e7
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/modeling_seamless_m4t.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/processing_seamless_m4t.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/processing_seamless_m4t.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bef61cf8749620eb900bc9a14443704d82930681
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/processing_seamless_m4t.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/tokenization_seamless_m4t.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/tokenization_seamless_m4t.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0fb5447f9fb980b2cf5c4662d35daff27436aa8e
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/tokenization_seamless_m4t.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/tokenization_seamless_m4t_fast.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/tokenization_seamless_m4t_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fb73c9603310798fea7416ab4ddff6a8d51a6d2f
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/__pycache__/tokenization_seamless_m4t_fast.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/configuration_seamless_m4t.py b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/configuration_seamless_m4t.py
new file mode 100644
index 0000000000000000000000000000000000000000..8ae61f1defece6dc19cc3fa922711dab311a93b8
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/configuration_seamless_m4t.py
@@ -0,0 +1,416 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" SeamlessM4T model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class SeamlessM4TConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`~SeamlessM4TModel`]. It is used to instantiate an
+ SeamlessM4T model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the SeamlessM4T
+ ["facebook/hf-seamless-m4t-medium"](https://huggingface.co/"facebook/hf-seamless-m4t-medium") architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 256102):
+ Vocabulary size of the SeamlessM4T model. Defines the number of different tokens that can be represented by
+ the `inputs_ids` passed when calling [`~SeamlessM4TModel`], [`~SeamlessM4TForTextToSpeech`] or
+ [`~SeamlessM4TForTextToText`].
+ t2u_vocab_size (`int`, *optional*, defaults to 10082):
+ Unit vocabulary size of the SeamlessM4T model. Defines the number of different unit tokens that can be
+ represented by the `inputs_ids` passed when calling the Text-To-Units sub-model of [`~SeamlessM4TModel`],
+ [`~SeamlessM4TForSpeechToSpeech`] or [`~SeamlessM4TForTextToSpeech`].
+
+ > Parameters shared across sub-models
+
+ hidden_size (`int`, *optional*, defaults to 1024):
+ Dimensionality of the "intermediate" layers in the architecture.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the layer normalization layers.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models).
+ max_position_embeddings (`int`, *optional*, defaults to 1024):
+ The maximum sequence length that this model text encoder and decoder might ever be used with. Typically set
+ this to something large just in case (e.g., 512 or 1024 or 2048).
+ is_encoder_decoder (`bool`, *optional*, defaults to `True`):
+ Whether the model is used as an encoder/decoder or not.
+ encoder_layerdrop (`float`, *optional*, defaults to 0.05):
+ The LayerDrop probability for the encoders. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
+ for more details.
+ decoder_layerdrop (`float`, *optional*, defaults to 0.05):
+ The LayerDrop probability for the decoders. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
+ for more details.
+ activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
+ The non-linear activation function (function or string) in the decoder and feed-forward layers. If string,
+ `"gelu"`, `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, decoder, and pooler.
+ attention_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all attention layers.
+ activation_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout probability for all activation layers in the model.
+ scale_embedding (`bool`, *optional*, defaults to `True`):
+ Scale embeddings by diving by sqrt(d_model).
+
+ > Text encoder and text decoder specific parameters
+
+ encoder_layers (`int`, *optional*, defaults to 24):
+ Number of hidden layers in the Transformer text encoder.
+ encoder_ffn_dim (`int`, *optional*, defaults to 8192):
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text encoder.
+ encoder_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer text encoder.
+ decoder_layers (`int`, *optional*, defaults to 24):
+ Number of hidden layers in the Transformer text decoder.
+ decoder_ffn_dim (`int`, *optional*, defaults to 8192):
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text decoder.
+ decoder_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer text decoder.
+ decoder_start_token_id (`int`, *optional*, defaults to 3):
+ If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token. Only
+ applied in the text decoder.
+ max_new_tokens (`int`, *optional*, defaults to 256):
+ The maximum numbers of text tokens to generate, ignoring the number of tokens in the prompt.
+ pad_token_id (`int`, *optional*, defaults to 0):
+ The id of the _padding_ text token. Only applied to the text-decoder model.
+ bos_token_id (`int`, *optional*, defaults to 2):
+ The id of the _beginning-of-stream_ text token. Only applied to the text-decoder model.
+ eos_token_id (`int`, *optional*, defaults to 3):
+ The id of the _end-of-stream_ text token. Only applied to the text-decoder model.
+
+ > Speech encoder specific parameters
+
+ speech_encoder_layers (`int`, *optional*, defaults to 24):
+ Number of hidden layers in the Transformer speech encoder.
+ speech_encoder_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer speech encoder.
+ speech_encoder_intermediate_size (`int`, *optional*, defaults to 4096):
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer speech encoder.
+ speech_encoder_hidden_act (`str` or `function`, *optional*, defaults to `"swish"`):
+ The non-linear activation function (function or string) in the speech encoder. If string, `"gelu"`,
+ `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported.
+ speech_encoder_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout probability for all layers in the speech encoder.
+ add_adapter (`bool`, *optional*, defaults to `True`):
+ Add an adapter layer on top of the speech encoder.
+ speech_encoder_layerdrop (`float`, *optional*, defaults to 0.1):
+ The LayerDrop probability for the speech encoder. See the [LayerDrop paper](see
+ https://arxiv.org/abs/1909.11556) for more details.
+ feature_projection_input_dim (`int`, *optional*, defaults to 160):
+ Input dimension of the input feature projection of the speech encoder, i.e the dimension after processing
+ input audios with [`SeamlessM4TFeatureExtractor`].
+ num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
+ Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
+ embeddings layer of the speech encoder.
+ num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
+ Number of groups of 1D convolutional positional embeddings layer of the speech encoder.
+ adaptor_kernel_size (`int`, *optional*, defaults to 8):
+ Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
+ adaptor_stride (`int`, *optional*, defaults to 8):
+ Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
+ adaptor_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all layers in the speech adapter.
+ num_adapter_layers (`int`, *optional*, defaults to 1):
+ Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
+ True`.
+ position_embeddings_type (`str`, *optional*, defaults to `"relative"`):
+ Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left
+ `None` no relative position embedding is applied. Only applied to the speech encoder.
+ rotary_embedding_base (`int`, *optional*, defaults to 10000):
+ If `"rotary"` position embeddings are used, defines the size of the embedding base. Only applied to the
+ speech encoder.
+ max_source_positions (`int`, *optional*, defaults to 4096):
+ if `"relative"` position embeddings are used, defines the maximum source input positions. Only applied to
+ the speech encoder.
+ conv_depthwise_kernel_size (`int`, *optional*, defaults to 31):
+ Kernel size of convolutional depthwise 1D layer in Conformer blocks. Only applied to the speech encoder.
+
+ > Text-To-Unit (t2u) model specific parameters
+
+ t2u_bos_token_id (`int`, *optional*, defaults to 0):
+ The id of the _beginning-of-stream_ unit token. Only applied to the text-to-unit seq2seq model.
+ t2u_pad_token_id (`int`, *optional*, defaults to 1):
+ The id of the _padding_ unit token. Only applied to the text-to-unit seq2seq model.
+ t2u_eos_token_id (`int`, *optional*, defaults to 2):
+ The id of the _end-of-stream_ unit token. Only applied to the text-to-unit seq2seq model.
+ t2u_decoder_start_token_id (`int`, *optional*, defaults to 2):
+ If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token. Only
+ applied to the text-to-unit seq2seq model.
+ t2u_max_new_tokens (`int`, *optional*, defaults to 1024):
+ The maximum numbers of unit tokens to generate, ignoring the number of tokens in the prompt. Only applied
+ to the text-to-unit seq2seq model.
+ t2u_encoder_layers (`int`, *optional*, defaults to 6):
+ Number of hidden layers in the Transformer text-to-unit encoder.
+ t2u_encoder_ffn_dim (`int`, *optional*, defaults to 8192):
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text-to-unit encoder.
+ t2u_encoder_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer text-to-unit encoder.
+ t2u_decoder_layers (`int`, *optional*, defaults to 6):
+ Number of hidden layers in the Transformer text-to-unit decoder.
+ t2u_decoder_ffn_dim (`int`, *optional*, defaults to 8192):
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text-to-unit decoder.
+ t2u_decoder_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer text-to-unit decoder.
+ t2u_max_position_embeddings (`int`, *optional*, defaults to 2048):
+ The maximum sequence length that this model text-to-unit component might ever be used with. Typically set
+ this to something large just in case (e.g., 512 or 1024 or 2048).
+
+ > Hifi-Gan Vocoder specific parameters
+
+ sampling_rate (`int`, *optional*, defaults to 16000):
+ The sampling rate at which the output audio will be generated, expressed in hertz (Hz).
+ upsample_initial_channel (`int`, *optional*, defaults to 512):
+ The number of input channels into the hifi-gan upsampling network. Applies to the vocoder only.
+ upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[5, 4, 4, 2, 2]`):
+ A tuple of integers defining the stride of each 1D convolutional layer in the vocoder upsampling network.
+ The length of *upsample_rates* defines the number of convolutional layers and has to match the length of
+ *upsample_kernel_sizes*. Applies to the vocoder only.
+ upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[11, 8, 8, 4, 4]`):
+ A tuple of integers defining the kernel size of each 1D convolutional layer in the vocoder upsampling
+ network. The length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match
+ the length of *upsample_rates*. Applies to the vocoder only.
+ resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`):
+ A tuple of integers defining the kernel sizes of the vocoder 1D convolutional layers in the multi-receptive
+ field fusion (MRF) module. Applies to the vocoder only.
+ resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`):
+ A nested tuple of integers defining the dilation rates of the vocoder dilated 1D convolutional layers in
+ the multi-receptive field fusion (MRF) module. Applies to the vocoder only.
+ leaky_relu_slope (`float`, *optional*, defaults to 0.1):
+ The angle of the negative slope used by the leaky ReLU activation in the vocoder. Applies to the vocoder
+ only.
+ unit_hifi_gan_vocab_size (`int`, *optional*, defaults to 10000):
+ Vocabulary size of the SeamlessM4T vocoder. Defines the number of different unit tokens that can be
+ represented by the `inputs_ids` passed when calling the vocoder of [`~SeamlessM4TModel`],
+ [`~SeamlessM4TForSpeechToSpeech`] or [`~SeamlessM4TForTextToSpeech`].
+ unit_embed_dim (`int`, *optional*, defaults to 1280):
+ The projection dimension of the input ids given to the hifi-gan vocoder. Applies to the vocoder only.
+ lang_embed_dim (`int`, *optional*, defaults to 256):
+ The projection dimension of the target language given to the hifi-gan vocoder. Applies to the vocoder only.
+ spkr_embed_dim (`int`, *optional*, defaults to 256):
+ The projection dimension of the speaker id given to the hifi-gan vocoder. Applies to the vocoder only.
+ vocoder_num_langs (`int`, *optional*, defaults to 36):
+ Number of langs supported by the vocoder. Might be different from `t2u_num_langs`.
+ vocoder_num_spkrs (`int`, *optional*, defaults to 200):
+ Number of speakers supported by the vocoder.
+ variance_predictor_kernel_size (`int`, *optional*, defaults to 3):
+ Kernel size of the duration predictor. Applies to the vocoder only.
+ var_pred_dropout (`float`, *optional*, defaults to 0.5):
+ The dropout probability of the duration predictor. Applies to the vocoder only.
+ vocoder_offset (`int`, *optional*, defaults to 4):
+ Offset the unit token ids by this number to account for symbol tokens. Applies to the vocoder only.
+
+ ```python
+ >>> from transformers import SeamlessM4TModel, SeamlessM4TConfig
+
+ >>> # Initializing a SeamlessM4T "facebook/hf-seamless-m4t-medium" style configuration
+ >>> configuration = SeamlessM4TConfig()
+
+ >>> # Initializing a model from the "facebook/hf-seamless-m4t-medium" style configuration
+ >>> model = SeamlessM4TModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "seamless_m4t"
+
+ def __init__(
+ self,
+ vocab_size=256102,
+ t2u_vocab_size=10082,
+ # shared config
+ hidden_size=1024,
+ initializer_range=0.02,
+ layer_norm_eps=1e-5,
+ use_cache=True,
+ max_position_embeddings=1024,
+ is_encoder_decoder=True,
+ encoder_layerdrop=0.05,
+ decoder_layerdrop=0.05,
+ activation_function="relu",
+ dropout=0.1,
+ attention_dropout=0.1,
+ activation_dropout=0.0,
+ scale_embedding=True,
+ # text encoder|decoder
+ encoder_layers=24,
+ encoder_ffn_dim=8192,
+ encoder_attention_heads=16,
+ decoder_layers=24,
+ decoder_ffn_dim=8192,
+ decoder_attention_heads=16,
+ decoder_start_token_id=3,
+ max_new_tokens=256,
+ pad_token_id=0,
+ bos_token_id=2,
+ eos_token_id=3,
+ # speech_encoder
+ speech_encoder_layers=24,
+ speech_encoder_attention_heads=16,
+ speech_encoder_intermediate_size=4096,
+ speech_encoder_hidden_act="swish",
+ speech_encoder_dropout=0.0,
+ add_adapter=True,
+ speech_encoder_layerdrop=0.1,
+ feature_projection_input_dim=160,
+ num_conv_pos_embeddings=128,
+ num_conv_pos_embedding_groups=16,
+ adaptor_kernel_size=8,
+ adaptor_stride=8,
+ adaptor_dropout=0.1,
+ num_adapter_layers=1,
+ position_embeddings_type="relative",
+ rotary_embedding_base=10000,
+ max_source_positions=4096,
+ conv_depthwise_kernel_size=31,
+ # t2u config
+ t2u_bos_token_id=0,
+ t2u_pad_token_id=1,
+ t2u_eos_token_id=2,
+ t2u_decoder_start_token_id=2,
+ t2u_max_new_tokens=1024,
+ t2u_encoder_layers=6,
+ t2u_encoder_ffn_dim=8192,
+ t2u_encoder_attention_heads=16,
+ t2u_decoder_layers=6,
+ t2u_decoder_ffn_dim=8192,
+ t2u_decoder_attention_heads=16,
+ t2u_max_position_embeddings=2048,
+ # hifi-gan vocoder config
+ sampling_rate=16000,
+ upsample_initial_channel=512,
+ upsample_rates=[5, 4, 4, 2, 2],
+ upsample_kernel_sizes=[11, 8, 8, 4, 4],
+ resblock_kernel_sizes=[3, 7, 11],
+ resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
+ leaky_relu_slope=0.1,
+ # specific to Code Hifi-Gan
+ unit_hifi_gan_vocab_size=10000,
+ unit_embed_dim=1280,
+ lang_embed_dim=256,
+ spkr_embed_dim=256,
+ vocoder_num_langs=36,
+ vocoder_num_spkrs=200,
+ variance_predictor_kernel_size=3,
+ var_pred_dropout=0.5,
+ vocoder_offset=4,
+ **kwargs,
+ ):
+ # overall_config
+ self.vocab_size = vocab_size
+ self.t2u_vocab_size = t2u_vocab_size
+ self.hidden_size = hidden_size
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.max_position_embeddings = max_position_embeddings
+ self.use_cache = use_cache
+ self.max_new_tokens = max_new_tokens
+ self.encoder_layerdrop = encoder_layerdrop
+ self.decoder_layerdrop = decoder_layerdrop
+ self.activation_function = activation_function
+ self.dropout = dropout
+ self.attention_dropout = attention_dropout
+ self.activation_dropout = activation_dropout
+ self.scale_embedding = scale_embedding
+ # for proper config init
+ self.num_attention_heads = decoder_attention_heads
+ self.num_hidden_layers = decoder_layers
+
+ # text|unit encoder|decoder
+ self.encoder_layers = encoder_layers
+ self.encoder_ffn_dim = encoder_ffn_dim
+ self.encoder_attention_heads = encoder_attention_heads
+ self.decoder_layers = decoder_layers
+ self.decoder_ffn_dim = decoder_ffn_dim
+ self.decoder_attention_heads = decoder_attention_heads
+
+ # speech_encoder
+ self.speech_encoder_layers = speech_encoder_layers
+ self.speech_encoder_hidden_act = speech_encoder_hidden_act
+ self.speech_encoder_dropout = speech_encoder_dropout
+ self.speech_encoder_attention_heads = speech_encoder_attention_heads
+ self.speech_encoder_layerdrop = speech_encoder_layerdrop
+ self.speech_encoder_intermediate_size = speech_encoder_intermediate_size
+ self.feature_projection_input_dim = feature_projection_input_dim
+ self.num_conv_pos_embeddings = num_conv_pos_embeddings
+ self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
+ self.adaptor_kernel_size = adaptor_kernel_size
+ self.adaptor_stride = adaptor_stride
+ self.adaptor_dropout = adaptor_dropout
+ self.num_adapter_layers = num_adapter_layers
+ self.position_embeddings_type = position_embeddings_type
+ self.rotary_embedding_base = rotary_embedding_base
+ self.max_source_positions = max_source_positions
+ self.conv_depthwise_kernel_size = conv_depthwise_kernel_size
+ self.add_adapter = add_adapter
+
+ # t2u config
+ self.t2u_bos_token_id = t2u_bos_token_id
+ self.t2u_pad_token_id = t2u_pad_token_id
+ self.t2u_eos_token_id = t2u_eos_token_id
+ self.t2u_decoder_start_token_id = t2u_decoder_start_token_id
+ self.t2u_max_new_tokens = t2u_max_new_tokens
+ self.t2u_encoder_layers = t2u_encoder_layers
+ self.t2u_encoder_ffn_dim = t2u_encoder_ffn_dim
+ self.t2u_encoder_attention_heads = t2u_encoder_attention_heads
+ self.t2u_decoder_layers = t2u_decoder_layers
+ self.t2u_decoder_ffn_dim = t2u_decoder_ffn_dim
+ self.t2u_decoder_attention_heads = t2u_decoder_attention_heads
+ self.t2u_max_position_embeddings = t2u_max_position_embeddings
+
+ # hifi-gan vocoder config
+ # original parameters specific to Hifi-Gan
+ self.sampling_rate = sampling_rate
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_rates = upsample_rates
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.leaky_relu_slope = leaky_relu_slope
+
+ # specific to Code Hifi-Gan
+ self.unit_hifi_gan_vocab_size = unit_hifi_gan_vocab_size
+ self.unit_embed_dim = unit_embed_dim
+ self.lang_embed_dim = lang_embed_dim
+ self.spkr_embed_dim = spkr_embed_dim
+ self.vocoder_num_langs = vocoder_num_langs
+ self.vocoder_num_spkrs = vocoder_num_spkrs
+ self.variance_predictor_kernel_size = variance_predictor_kernel_size
+ self.var_pred_dropout = var_pred_dropout
+ self.vocoder_offset = vocoder_offset
+
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ decoder_start_token_id=decoder_start_token_id,
+ is_encoder_decoder=is_encoder_decoder,
+ max_position_embeddings=max_position_embeddings,
+ **kwargs,
+ )
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/convert_fairseq2_to_hf.py b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/convert_fairseq2_to_hf.py
new file mode 100644
index 0000000000000000000000000000000000000000..a90a30f5795f5f368841b2b3d9b3288aa4cf5c1a
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/convert_fairseq2_to_hf.py
@@ -0,0 +1,397 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Converting Meta SeamlessM4T checkpoints from seamless_communication to HF."""
+
+
+import argparse
+import os
+from pathlib import Path
+
+import torch
+from accelerate.utils.modeling import find_tied_parameters
+from seamless_communication.models.inference.translator import Translator
+
+from transformers import (
+ SeamlessM4TConfig,
+ SeamlessM4TFeatureExtractor,
+ SeamlessM4TModel,
+ SeamlessM4TProcessor,
+ SeamlessM4TTokenizer,
+)
+from transformers.utils import logging
+
+
+UNIT_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kan__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tam__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__", ] # fmt: skip
+VOCODER_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__",] # fmt: skip
+MEDIUM_SUPPORTED_LANGUAGES = ["ace","ace_Latn","acm","acq","aeb","afr","ajp","aka","amh","apc","arb","ars","ary","arz","asm","ast","awa","ayr","azb","azj","bak","bam","ban","bel","bem","ben","bho","bjn","bjn_Latn","bod","bos","bug","bul","cat","ceb","ces","cjk","ckb","crh","cym","dan","deu","dik","dyu","dzo","ell","eng","epo","est","eus","ewe","fao","pes","fij","fin","fon","fra","fur","fuv","gla","gle","glg","grn","guj","hat","hau","heb","hin","hne","hrv","hun","hye","ibo","ilo","ind","isl","ita","jav","jpn","kab","kac","kam","kan","kas","kas_Deva","kat","knc","knc_Latn","kaz","kbp","kea","khm","kik","kin","kir","kmb","kon","kor","kmr","lao","lvs","lij","lim","lin","lit","lmo","ltg","ltz","lua","lug","luo","lus","mag","mai","mal","mar","min","mkd","plt","mlt","mni","khk","mos","mri","zsm","mya","nld","nno","nob","npi","nso","nus","nya","oci","gaz","ory","pag","pan","pap","pol","por","prs","pbt","quy","ron","run","rus","sag","san","sat","scn","shn","sin","slk","slv","smo","sna","snd","som","sot","spa","als","srd","srp","ssw","sun","swe","swh","szl","tam","tat","tel","tgk","tgl","tha","tir","taq","taq_Tfng","tpi","tsn","tso","tuk","tum","tur","twi","tzm","uig","ukr","umb","urd","uzn","vec","vie","war","wol","xho","ydd","yor","yue","cmn","cmn_Hant","zul",] # fmt: skip
+LARGE_SUPPORTED_LANGUAGES = ["afr","amh","arb","ary","arz","asm","azj","bel","ben","bos","bul","cat","ceb","ces","ckb","cmn","cmn_Hant","cym","dan","deu","ell","eng","est","eus","fin","fra","fuv","gaz","gle","glg","guj","heb","hin","hrv","hun","hye","ibo","ind","isl","ita","jav","jpn","kan","kat","kaz","khk","khm","kir","kor","lao","lit","lug","luo","lvs","mai","mal","mar","mkd","mlt","mni","mya","nld","nno","nob","npi","nya","ory","pan","pbt","pes","pol","por","ron","rus","sat","slk","slv","sna","snd","som","spa","srp","swe","swh","tam","tel","tgk","tgl","tha","tur","ukr","urd","uzn","vie","yor","yue","zlm","zul",] # fmt: skip
+
+
+def assert_param_count(model_1, model_2):
+ count_1 = sum(p[1].numel() for p in model_1.named_parameters() if "final_proj" not in p[0])
+ count_2 = sum(p[1].numel() for p in model_2.named_parameters() if "final_proj" not in p[0])
+ assert count_1 == count_2, f"{model_1.__class__}: {count_1} != {model_2.__class__}: {count_2}"
+
+
+def param_count(model):
+ return sum(p[1].numel() for p in model.named_parameters() if "final_proj" not in p[0])
+
+
+def _grab_best_device(use_gpu=True):
+ if torch.cuda.device_count() > 0 and use_gpu:
+ device = "cuda"
+ else:
+ device = "cpu"
+ return torch.device(device)
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+vocoder_convert_list = [
+ ("ups", "hifi_gan.upsampler"),
+ ("conv_pre", "hifi_gan.conv_pre"),
+ ("resblocks", "hifi_gan.resblocks"),
+ ("conv_post", "hifi_gan.conv_post"),
+ ("lang", "language_embedding"),
+ ("spkr", "speaker_embedding"),
+ ("dict.", "unit_embedding."),
+ ("dur_predictor.conv1.0", "dur_predictor.conv1"),
+ ("dur_predictor.conv2.0", "dur_predictor.conv2"),
+]
+
+# order is important
+wav2vec_convert_list = [
+ ("speech_encoder_frontend.model_dim_proj", "feature_projection.projection"),
+ ("speech_encoder_frontend.post_extract_layer_norm", "feature_projection.layer_norm"),
+ ("speech_encoder_frontend.pos_encoder.conv", "encoder.pos_conv_embed.conv"),
+ ("speech_encoder.inner.layers", "encoder.layers"),
+ ("speech_encoder.inner_layer_norm", "encoder.layer_norm"),
+ ("speech_encoder.adaptor_layers", "adapter.layers"),
+ ("inner_proj", "intermediate_dense"),
+ ("self_attn.output_proj", "self_attn.linear_out"),
+ ("output_proj", "output_dense"),
+ ("self_attn.k_proj", "self_attn.linear_k"),
+ ("self_attn.v_proj", "self_attn.linear_v"),
+ ("self_attn.q_proj", "self_attn.linear_q"),
+ ("self_attn.sdpa.u_bias", "self_attn.pos_bias_u"),
+ ("self_attn.sdpa.v_bias", "self_attn.pos_bias_v"),
+ ("self_attn.sdpa.r_proj", "self_attn.linear_pos"),
+ ("conv.pointwise_conv1", "conv_module.pointwise_conv1"),
+ ("conv.pointwise_conv2", "conv_module.pointwise_conv2"),
+ ("conv.depthwise_conv", "conv_module.depthwise_conv"),
+ ("conv.batch_norm", "conv_module.batch_norm"),
+ ("conv_layer_norm", "conv_module.layer_norm"),
+ ("speech_encoder.proj1", "intermediate_ffn.intermediate_dense"),
+ ("speech_encoder.proj2", "intermediate_ffn.output_dense"),
+ ("speech_encoder.layer_norm", "inner_layer_norm"),
+]
+
+t2u_convert_list = [
+ ("t2u_model.final_proj", "lm_head"),
+ ("t2u_model.", "model."),
+ ("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"),
+ ("encoder_decoder_attn", "cross_attention"),
+ ("linear_k", "k_proj"),
+ ("linear_v", "v_proj"),
+ ("linear_q", "q_proj"),
+ ("ffn.inner_proj", "ffn.fc1"),
+ ("ffn.output_proj", "ffn.fc2"),
+ ("output_proj", "out_proj"),
+ ("decoder_frontend.embed", "decoder.embed_tokens"),
+]
+
+text_convert_list = [
+ ("text_encoder.", ""),
+ ("text_decoder.", ""),
+ ("text_encoder_frontend.embed", "embed_tokens"),
+ ("text_decoder_frontend.embed", "embed_tokens"),
+ ("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"),
+ ("encoder_decoder_attn", "cross_attention"),
+ ("linear_k", "k_proj"),
+ ("linear_v", "v_proj"),
+ ("linear_q", "q_proj"),
+ ("ffn.inner_proj", "ffn.fc1"),
+ ("ffn.output_proj", "ffn.fc2"),
+ ("output_proj", "out_proj"),
+ ("final_proj", "lm_head"),
+]
+
+CUR_PATH = os.path.dirname(os.path.abspath(__file__))
+default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache")
+CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "huggingface", "hub")
+
+
+def _load_hf_config(model_type="medium"):
+ if model_type == "medium":
+ kwargs = {
+ "vocab_size": 256206,
+ "t2u_vocab_size": 10082,
+ "hidden_size": 1024,
+ "max_position_embeddings": 4096,
+ "encoder_layers": 12,
+ "decoder_layers": 12,
+ "encoder_ffn_dim": 4096,
+ "decoder_ffn_dim": 4096,
+ "t2u_encoder_layers": 4,
+ "t2u_decoder_layers": 4,
+ "speech_encoder_layers": 12,
+ }
+ return SeamlessM4TConfig(**kwargs)
+ else:
+ return SeamlessM4TConfig()
+
+
+def _convert_model(
+ original_model,
+ hf_model,
+ convert_list,
+ device,
+ unwanted_prefix="model.",
+ filter_state_dict="speech",
+ exclude_state_dict=None,
+):
+ state_dict = original_model.state_dict()
+
+ # filter func
+ if isinstance(filter_state_dict, str):
+
+ def filter_func(x):
+ return filter_state_dict in x[0]
+
+ else:
+
+ def filter_func(item):
+ if exclude_state_dict is not None and exclude_state_dict in item[0]:
+ return False
+ for filter_el in filter_state_dict:
+ if filter_el in item[0]:
+ return True
+
+ return False
+
+ state_dict = dict(filter(filter_func, state_dict.items()))
+
+ for k, v in list(state_dict.items()):
+ new_k = k[len(unwanted_prefix) :]
+ for old_layer_name, new_layer_name in convert_list:
+ if old_layer_name in new_k:
+ new_k = new_k.replace(old_layer_name, new_layer_name)
+
+ # must do it by hand
+ if ".layer_norm" in new_k and new_k.split(".layer_norm")[0][-1].isnumeric():
+ new_k = new_k.replace("layer_norm", "final_layer_norm")
+
+ state_dict[new_k] = state_dict.pop(k)
+
+ extra_keys = set(state_dict.keys()) - set(hf_model.state_dict().keys())
+ extra_keys = set(extra_keys)
+ missing_keys = set(hf_model.state_dict().keys()) - set(state_dict.keys())
+ missing_keys = set({k for k in missing_keys if "final_logits_bias" not in k})
+ if len(extra_keys) != 0:
+ raise ValueError(f"extra keys found: {extra_keys}")
+ if len(missing_keys) != 0:
+ raise ValueError(f"missing keys: {missing_keys}")
+ hf_model.load_state_dict(state_dict, strict=False)
+ n_params = param_count(hf_model)
+
+ logger.info(f"model loaded: {round(n_params/1e6,1)}M params")
+
+ hf_model.eval()
+ hf_model.to(device)
+ del state_dict
+
+ return hf_model
+
+
+def load_model(save_dir, model_type, repo_id):
+ """
+ Meta SeamlessM4T is made of 8 main components:
+ - speech_encoder (#1) and speech_encoder_frontend (#2)
+ - t2u_model (#3)
+ - text_encoder (#4) and text_encoder_frontend (#5)
+ - text_decoder (#6) [and text_decoder_frontend (#5) = equals to text_encoder_frontend]
+ - final_proj (#7)
+ - vocoder (#8)
+ """
+ device = _grab_best_device()
+ if model_type == "medium":
+ name = "seamlessM4T_medium"
+ else:
+ name = "seamlessM4T_large"
+
+ original_model = Translator(name, "vocoder_36langs", device, torch.float32)
+
+ ######### TOKENIZER
+
+ langs = MEDIUM_SUPPORTED_LANGUAGES if model_type == "medium" else LARGE_SUPPORTED_LANGUAGES
+ langs = [f"__{lang}__" for lang in langs]
+ vocab_file = os.path.join(os.path.expanduser("~"), "tokenizer", model_type, "tokenizer.model")
+
+ save_dir = os.path.join(save_dir, name)
+ Path(save_dir).mkdir(exist_ok=True)
+
+ tokenizer = SeamlessM4TTokenizer(vocab_file, additional_special_tokens=langs)
+
+ sanity_check_lang_id = tokenizer.convert_tokens_to_ids("__fra__")
+
+ tokenizer.save_pretrained(save_dir)
+ tokenizer = SeamlessM4TTokenizer.from_pretrained(save_dir)
+
+ if sanity_check_lang_id != tokenizer.convert_tokens_to_ids("__fra__"):
+ raise ValueError(
+ f"Error in tokenizer saving/loading - __fra__ lang id is not coherent: {sanity_check_lang_id} vs {tokenizer.convert_tokens_to_ids('__fra__')}"
+ )
+
+ ####### get language to ids dict
+ text_decoder_lang_code_to_id = {lang.replace("__", ""): tokenizer.convert_tokens_to_ids(lang) for lang in langs}
+ # offset: vocoder unit vocab size + 5 (for EOS/PAD/BOS/UNK/MSK) + len(supported_languages)
+ t2u_lang_code_to_id = {
+ code.replace("__", ""): i + 10005 + len(UNIT_SUPPORTED_LANGUAGES)
+ for i, code in enumerate(UNIT_SUPPORTED_LANGUAGES)
+ }
+ vocoder_lang_code_to_id = {code.replace("__", ""): i for i, code in enumerate(VOCODER_SUPPORTED_LANGUAGES)}
+
+ ######### FE
+
+ fe = SeamlessM4TFeatureExtractor(language_code=langs)
+
+ fe.save_pretrained(save_dir)
+ fe = SeamlessM4TFeatureExtractor.from_pretrained(save_dir)
+
+ processor = SeamlessM4TProcessor(feature_extractor=fe, tokenizer=tokenizer)
+ processor.save_pretrained(save_dir)
+ processor.push_to_hub(repo_id=repo_id, create_pr=True)
+
+ processor = SeamlessM4TProcessor.from_pretrained(save_dir)
+
+ ######## Model
+
+ # init model
+ hf_config = _load_hf_config(model_type)
+ hf_model = SeamlessM4TModel(hf_config)
+
+ hf_model.generation_config.__setattr__("text_decoder_lang_to_code_id", text_decoder_lang_code_to_id)
+ hf_model.generation_config.__setattr__("t2u_lang_code_to_id", t2u_lang_code_to_id)
+ hf_model.generation_config.__setattr__("vocoder_lang_code_to_id", vocoder_lang_code_to_id)
+
+ # -1. take care of vocoder
+ # similarly to speech T5 must apply and remove weight norm
+ hf_model.vocoder.apply_weight_norm()
+ hf_model.vocoder = _convert_model(
+ original_model,
+ hf_model.vocoder,
+ vocoder_convert_list,
+ device,
+ unwanted_prefix="vocoder.code_generator.",
+ filter_state_dict="vocoder",
+ )
+ hf_model.vocoder.remove_weight_norm()
+
+ # 1. take care of speech encoder
+ wav2vec = hf_model.speech_encoder
+ hf_model.speech_encoder = _convert_model(
+ original_model, wav2vec, wav2vec_convert_list, device, unwanted_prefix="model.", filter_state_dict="speech"
+ )
+
+ # 2. take care of t2u
+
+ hf_model.t2u_model = _convert_model(
+ original_model,
+ hf_model.t2u_model,
+ t2u_convert_list,
+ device,
+ unwanted_prefix="model.",
+ filter_state_dict="t2u_model",
+ )
+
+ # 3. take care of text encoder
+ hf_model.text_encoder = _convert_model(
+ original_model,
+ hf_model.text_encoder,
+ text_convert_list,
+ device,
+ unwanted_prefix="model.",
+ filter_state_dict=["model.text_encoder"],
+ exclude_state_dict="t2u_model",
+ )
+
+ # 4. take care of text decoder
+ hf_model.text_decoder = _convert_model(
+ original_model,
+ hf_model.text_decoder,
+ text_convert_list,
+ device,
+ unwanted_prefix="model.",
+ filter_state_dict=["model.text_decoder"],
+ exclude_state_dict="t2u_model",
+ )
+
+ # 5. take care of final proj
+ hf_model.lm_head = _convert_model(
+ original_model,
+ hf_model.lm_head,
+ [("final_proj.", "")],
+ device,
+ unwanted_prefix="model.",
+ filter_state_dict=["model.final_proj"],
+ exclude_state_dict="t2u_model",
+ )
+
+ # sanity check
+ print(find_tied_parameters(hf_model))
+
+ count_1 = param_count(hf_model)
+ count_2 = param_count(original_model)
+
+ print(f"HF MODEL:{count_1}, ORIGINAL_MODEL: {count_2}, diff:{count_1 - count_2}")
+ print(f"HF MODEL excluding embeddings:{hf_model.num_parameters(exclude_embeddings=True)}")
+
+ del original_model
+
+ hf_model.generation_config._from_model_config = False
+ hf_model.save_pretrained(save_dir)
+ hf_model.push_to_hub(repo_id=repo_id, create_pr=True)
+ hf_model = SeamlessM4TModel.from_pretrained(save_dir)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+
+ parser.add_argument(
+ "--model_type",
+ default="medium",
+ type=str,
+ help="Model type.",
+ )
+
+ parser.add_argument(
+ "--save_dir",
+ default="/home/ubuntu/weights",
+ type=str,
+ help="Path to the output PyTorch model.",
+ )
+
+ parser.add_argument(
+ "--repo_id",
+ default="facebook/hf-seamless-m4t-medium",
+ type=str,
+ help="Repo ID.",
+ )
+
+ args = parser.parse_args()
+
+ load_model(args.save_dir, args.model_type, args.repo_id)
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py
new file mode 100644
index 0000000000000000000000000000000000000000..0d4879a35ea37792d27cfc8252e501bb66fbae4c
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py
@@ -0,0 +1,306 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Feature extractor class for SeamlessM4T
+"""
+
+from typing import List, Optional, Union
+
+import numpy as np
+
+from ...utils import is_torch_available
+
+
+if is_torch_available():
+ import torch
+
+from ...audio_utils import mel_filter_bank, spectrogram, window_function
+from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
+from ...feature_extraction_utils import BatchFeature
+from ...utils import PaddingStrategy, TensorType, logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class SeamlessM4TFeatureExtractor(SequenceFeatureExtractor):
+ r"""
+ Constructs a SeamlessM4T feature extractor.
+
+ This feature extractor inherits from [`SequenceFeatureExtractor`] which contains most of the main methods. Users
+ should refer to this superclass for more information regarding those methods.
+
+ This class extracts mel-filter bank features from raw speech.
+
+ Args:
+ feature_size (`int`, *optional*, defaults to 80):
+ The feature dimension of the extracted features.
+ sampling_rate (`int`, *optional*, defaults to 16000):
+ The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
+ num_mel_bins (`int`, *optional*, defaults to 80):
+ Number of Mel-frequency bins.
+ padding_value (`float`, *optional*, defaults to 0.0):
+ The value that is used to fill the padding vectors.
+ stride (`int`, *optional*, defaults to 2):
+ Stride used to reshape audios from shape (batch_size,num_frames,num_mel_bins) to
+ (batch_size,num_frames//stride,num_mel_bins*stride).
+ """
+
+ model_input_names = ["input_features", "attention_mask"]
+
+ def __init__(
+ self,
+ feature_size=80,
+ sampling_rate=16000,
+ num_mel_bins=80,
+ padding_value=0.0,
+ stride=2,
+ **kwargs,
+ ):
+ self.num_mel_bins = num_mel_bins
+ self.return_attention_mask = True
+ self.stride = stride
+
+ mel_filters = mel_filter_bank(
+ num_frequency_bins=256,
+ num_mel_filters=self.num_mel_bins,
+ min_frequency=20,
+ max_frequency=sampling_rate // 2,
+ sampling_rate=sampling_rate,
+ norm=None,
+ mel_scale="kaldi",
+ triangularize_in_mel_space=True,
+ )
+
+ self.mel_filters = np.pad(mel_filters, ((0, 1), (0, 0)))
+ self.window = window_function(400, "povey", periodic=False)
+
+ super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
+
+ @staticmethod
+ # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
+ def zero_mean_unit_var_norm(
+ input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0
+ ) -> List[np.ndarray]:
+ """
+ Every array in the list is normalized to have zero mean and unit variance
+ """
+ if attention_mask is not None:
+ attention_mask = np.array(attention_mask, np.int32)
+ normed_input_values = []
+
+ for vector, length in zip(input_values, attention_mask.sum(-1)):
+ normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7)
+ if length < normed_slice.shape[0]:
+ normed_slice[length:] = padding_value
+
+ normed_input_values.append(normed_slice)
+ else:
+ normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values]
+
+ return normed_input_values
+
+ def _extract_fbank_features(
+ self,
+ waveform: np.ndarray,
+ ) -> np.ndarray:
+ """
+ Get mel-filter bank features using TorchAudio. Note that TorchAudio requires 16-bit signed integers as inputs
+ and hence the waveform should not be normalized before feature extraction.
+ """
+ # by default, it extracts the left channel if stereo
+ if len(waveform.shape) == 2:
+ waveform = waveform[0]
+
+ waveform = np.squeeze(waveform) * (2**15) # Kaldi compliance: 16-bit signed integers
+ features = spectrogram(
+ waveform,
+ self.window,
+ frame_length=400,
+ hop_length=160,
+ fft_length=512,
+ power=2.0,
+ center=False,
+ preemphasis=0.97,
+ mel_filters=self.mel_filters,
+ log_mel="log",
+ mel_floor=1.192092955078125e-07,
+ remove_dc_offset=True,
+ ).T
+ return features
+
+ def __call__(
+ self,
+ raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
+ padding: Union[bool, str, PaddingStrategy] = True,
+ pad_to_multiple_of: Optional[int] = 2,
+ max_length: Optional[int] = None,
+ truncation: bool = False,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ sampling_rate: Optional[int] = None,
+ return_attention_mask: Optional[bool] = None,
+ do_normalize_per_mel_bins: Optional[bool] = True,
+ **kwargs,
+ ) -> BatchFeature:
+ """
+ Main method to featurize and prepare for the model one or several sequence(s).
+
+ Args:
+ raw_speech (`np.ndarray`, `torch.Tensor`, `List[float]`, `List[np.ndarray]`, `List[torch.Tensor]`,
+ `List[List[float]]`, `List[List[List[float]]]`):
+ The sequence or batch of sequences to be padded. Each sequence can be a numpy array,
+ a torch tensor, a list of float values, a list of numpy arrays, a list of torch tensors,
+ a list of list of float values or a list of a list of list of float values.
+ If `raw_speech` is a one-dimensional `np.ndarray`, `torch.Tensor` or a `List[float]`, `raw_speech` is
+ considered a single-channel, single-sample sound. In all other cases, the first dimension of
+ `raw_speech`, whether from an `np.ndarray`, a `torch.Tensor` or a `List[...]`,
+ corresponds to the number of samples in the batch, and the number of channels
+ (i.e. mono or stereo character) is derived from the other dimensions
+ (1D -> single-channel waveform batches; 2D-> stereo-channel waveform batches).
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
+ index) among:
+
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
+ sequence if provided).
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
+ acceptable input length for the model if that argument is not provided.
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
+ lengths).
+ pad_to_multiple_of (`int`, *optional*, defaults to 2):
+ If set will pad the sequence to a multiple of the provided value.
+
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
+ `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
+ max_length (`int`, *optional*):
+ Maximum length of the returned list and optionally padding length (see above).
+ truncation (`bool`):
+ Activates truncation to cut input sequences longer than *max_length* to *max_length*.
+ return_attention_mask (`bool`, *optional*):
+ Whether to return the attention mask. If left to the default, will return the attention mask according
+ to the specific feature_extractor's default.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+
+
+ For SeamlessM4T models, `attention_mask` should always be passed for batched inference, to avoid subtle
+ bugs.
+
+
+
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
+ If set, will return tensors instead of list of python integers. Acceptable values are:
+
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return Numpy `np.ndarray` objects.
+ sampling_rate (`int`, *optional*):
+ The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
+ `sampling_rate` at the forward call to prevent silent errors.
+ do_normalize_per_mel_bins (`bool`, *optional*, defaults to `True`):
+ Whether or not to zero-mean unit-variance normalize the input per mel-channel.
+ kwargs (*optional*):
+ Remaining dictionary of keyword arguments that will be passed to the tokenizer or the feature
+ extractor.
+ """
+ if sampling_rate is not None:
+ if sampling_rate != self.sampling_rate:
+ raise ValueError(
+ f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
+ f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
+ f" {self.sampling_rate} and not {sampling_rate}."
+ )
+ else:
+ logger.warning(
+ "It is strongly recommended to pass the `sampling_rate` argument to this function. "
+ "Failing to do so can result in silent errors that might be hard to debug."
+ )
+
+ return_attention_mask = (
+ return_attention_mask if return_attention_mask is not None else self.return_attention_mask
+ )
+
+ is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
+ if is_batched_numpy and len(raw_speech.shape) > 3:
+ raise ValueError(f"Only mono-channel or stereo-channel audio is supported for input to {self}")
+
+ acceptable_types = (
+ (torch.Tensor, np.ndarray, tuple, list) if is_torch_available() else (np.ndarray, tuple, list)
+ )
+ is_batched = is_batched_numpy or (
+ isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], acceptable_types))
+ )
+
+ if is_batched:
+ raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech]
+ elif not is_batched and not isinstance(raw_speech, np.ndarray):
+ raw_speech = np.asarray(raw_speech, dtype=np.float32)
+ elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
+ raw_speech = raw_speech.astype(np.float32)
+
+ # always return batch
+ if not is_batched:
+ raw_speech = [raw_speech]
+
+ # extract fbank features
+ features = [self._extract_fbank_features(waveform) for waveform in raw_speech]
+
+ if do_normalize_per_mel_bins:
+ # torch defaults to ddof=1, and numpy defaults to ddof=0
+ features = [
+ (x - np.expand_dims(x.mean(0), 0)) / np.sqrt(np.expand_dims(x.var(0, ddof=1), 0) + 1e-7)
+ for x in features
+ ]
+
+ # convert into correct format for padding
+ encoded_inputs = BatchFeature({"input_features": features})
+
+ padded_inputs = self.pad(
+ encoded_inputs,
+ padding=padding,
+ max_length=max_length,
+ truncation=truncation,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=True,
+ return_tensors="np",
+ )
+
+ # SeamlessM4T needs to process extracted features
+ input_features = padded_inputs.get("input_features")
+ attention_mask = padded_inputs.pop("attention_mask")
+
+ batch_size, num_frames, num_channels = input_features.shape
+
+ remainder = num_frames % self.stride
+ if remainder != 0:
+ input_features = input_features[:, :num_frames, :]
+ attention_mask = attention_mask[:, :num_frames]
+
+ input_features = np.reshape(
+ input_features, (batch_size, num_frames // self.stride, num_channels * self.stride)
+ )
+
+ indices = np.arange(0, num_frames)
+ attention_mask = attention_mask[:, indices % self.stride == 1]
+
+ padded_inputs["input_features"] = input_features
+ if return_attention_mask:
+ padded_inputs["attention_mask"] = attention_mask
+
+ if return_tensors is not None:
+ padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
+
+ return padded_inputs
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/modeling_seamless_m4t.py b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/modeling_seamless_m4t.py
new file mode 100644
index 0000000000000000000000000000000000000000..c0fe60a6434adec2e650d345d66a774e542eb311
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/modeling_seamless_m4t.py
@@ -0,0 +1,4384 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch SeamlessM4T model."""
+
+
+import copy
+import math
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import Tensor, nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...deepspeed import is_deepspeed_zero3_enabled
+from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPastAndCrossAttentions,
+ Seq2SeqLMOutput,
+ Seq2SeqModelOutput,
+ Wav2Vec2BaseModelOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+)
+from .configuration_seamless_m4t import SeamlessM4TConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "facebook/hf-seamless-m4t-medium"
+_CONFIG_FOR_DOC = "SeamlessM4TConfig"
+
+
+from ..deprecated._archive_maps import ( # noqa: F401, E402
+ SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST, # noqa: F401, E402
+ SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, # noqa: F401, E402
+)
+
+
+@dataclass
+class SeamlessM4TGenerationOutput(ModelOutput):
+ """
+ Class defining the generated outputs from [`SeamlessM4TModel`], [`SeamlessM4TForTextToText`],
+ [`SeamlessM4TForTextToSpeech`], [`SeamlessM4TForSpeechToSpeech`] and [`SeamlessM4TForTextToSpeech`].
+
+ Args:
+ waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
+ The final audio waveform predicted by the model.
+ waveform_lengths (`torch.IntTensor` of shape `(batch_size,)`, *optional*):
+ The length in samples of each element in the `waveform` batch.
+ sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ The generated translated sequences. This is the output of the text-to-text or the speech-to-text models.
+ The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished
+ early due to the `eos_token_id`.
+ unit_sequences (`torch.LongTensor` of shape `(batch_size, unit_sequence_length)`, *optional*):
+ The generated translated unit sequences. This is the output of the text-to-units model. The second
+ dimension (unit_sequence_length) is either equal to `t2u_max_length` or shorter if all batches finished
+ early due to the `t2u_eos_token_id`.
+ """
+
+ waveform: Optional[torch.FloatTensor] = None
+ waveform_lengths: Optional[torch.IntTensor] = None
+ sequences: Optional[Tuple[torch.FloatTensor]] = None
+ unit_sequences: Optional[Tuple[torch.FloatTensor]] = None
+
+
+SEAMLESS_M4T_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`~SeamlessM4TConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+SEAMLESS_M4T_INPUTS_DOCSTRING_FIRST_PART = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
+ [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
+ Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
+ [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
+ """
+
+SEAMLESS_M4T_INPUTS_DOCSTRING_TEXT_PART = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
+ [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ """
+
+SEAMLESS_M4T_INPUTS_DOCSTRING_SPEECH_PART = r"""
+ Args:
+ input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
+ Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
+ [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
+ """
+
+SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART = r"""
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
+ is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
+
+ For translation and summarization training, `decoder_input_ids` should be provided. If no
+ `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
+ for denoising pre-training following the paper.
+ decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+
+ If you want to change padding behavior, you should read [`modeling_bart._prepare_decoder_attention_mask`]
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
+ information on the default strategy.
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape`(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
+ representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
+ input (see `past_key_values`). This is useful if you want more control over how to convert
+ `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
+
+ If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
+ of `inputs_embeds`.
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+M4T_MODEL_INPUTS_DOCSTRING = SEAMLESS_M4T_INPUTS_DOCSTRING_FIRST_PART + SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART
+
+M4T_TEXT_INPUTS_DOCSTRING = SEAMLESS_M4T_INPUTS_DOCSTRING_TEXT_PART + SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART
+
+M4T_SPEECH_INPUTS_DOCSTRING = SEAMLESS_M4T_INPUTS_DOCSTRING_SPEECH_PART + SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART
+
+
+############ UTILS ################
+
+
+# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
+def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
+ """
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
+ are ignored. This is modified from fairseq's `utils.make_positions`.
+
+ Args:
+ x: torch.Tensor x:
+
+ Returns: torch.Tensor
+ """
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
+ mask = input_ids.ne(padding_idx).int()
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
+ return incremental_indices.long() + padding_idx
+
+
+# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
+def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
+ """
+ Shift input ids one token to the right.
+ """
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
+ shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
+ shifted_input_ids[:, 0] = decoder_start_token_id
+
+ if pad_token_id is None:
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
+ # replace possible -100 values in labels by `pad_token_id`
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
+
+ return shifted_input_ids
+
+
+def _compute_new_attention_mask(hidden_states: torch.Tensor, seq_lens: torch.Tensor):
+ """
+ Computes an attention mask of the form `(batch, seq_len)` with an attention for each element in the batch that
+ stops at the corresponding element in `seq_lens`.
+
+ Args:
+ hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, *)`):
+ The sequences to mask, where `*` is any number of sequence-specific dimensions including none.
+ seq_lens (`torch.Tensor` of shape `(batch)`:
+ Each element represents the length of the sequence at the same index in `hidden_states`
+
+ Returns:
+ `torch.FloatTensor`: The float attention mask of shape `(batch, seq_len)`
+ """
+ batch_size, mask_seq_len = hidden_states.shape[:2]
+
+ indices = torch.arange(mask_seq_len, device=seq_lens.device).expand(batch_size, -1)
+
+ bool_mask = indices >= seq_lens.unsqueeze(1).expand(-1, mask_seq_len)
+
+ mask = hidden_states.new_ones((batch_size, mask_seq_len))
+
+ mask = mask.masked_fill(bool_mask, 0)
+
+ return mask
+
+
+def format_speech_generation_kwargs(kwargs):
+ """
+ Format kwargs for SeamlessM4T models that generate speech, attribute kwargs to either the text generation or the
+ speech generation models.
+
+ Args:
+ kwargs (`dict`)`:
+ Keyword arguments are of two types:
+
+ - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
+ except for `decoder_input_ids` which will only be passed through the text components.
+ - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
+ text model and speech model respectively. It has the priority over the keywords without a prefix.
+
+ This means you can, for example, specify a generation strategy for one generation but not for the
+ other.
+ """
+ # attribute kwargs to models
+ kwargs_text = {}
+ kwargs_speech = {}
+ for key, value in kwargs.items():
+ if key.startswith("text_"):
+ key = key[len("text_") :]
+ kwargs_text[key] = value
+ elif key.startswith("speech_"):
+ key = key[len("speech_") :]
+ kwargs_speech[key] = value
+ else:
+ # If the key is already in a specific config, then it's been set with a
+ # submodules specific value and we don't override
+ if key not in kwargs_text:
+ kwargs_text[key] = value
+ if key not in kwargs_speech:
+ kwargs_speech[key] = value
+ return kwargs_text, kwargs_speech
+
+
+############ SPEECH ENCODER related code ################
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->SeamlessM4TConformer, feat_extract_activation->speech_encoder_hidden_act
+class SeamlessM4TConformerPositionalConvEmbedding(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.conv = nn.Conv1d(
+ config.hidden_size,
+ config.hidden_size,
+ kernel_size=config.num_conv_pos_embeddings,
+ padding=config.num_conv_pos_embeddings // 2,
+ groups=config.num_conv_pos_embedding_groups,
+ )
+
+ weight_norm = nn.utils.weight_norm
+ if hasattr(nn.utils.parametrizations, "weight_norm"):
+ weight_norm = nn.utils.parametrizations.weight_norm
+
+ if is_deepspeed_zero3_enabled():
+ import deepspeed
+
+ with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
+ self.conv = weight_norm(self.conv, name="weight", dim=2)
+ deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
+ deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
+ else:
+ self.conv = weight_norm(self.conv, name="weight", dim=2)
+
+ self.padding = SeamlessM4TConformerSamePadLayer(config.num_conv_pos_embeddings)
+ self.activation = ACT2FN[config.speech_encoder_hidden_act]
+
+ def forward(self, hidden_states):
+ hidden_states = hidden_states.transpose(1, 2)
+
+ hidden_states = self.conv(hidden_states)
+ hidden_states = self.padding(hidden_states)
+ hidden_states = self.activation(hidden_states)
+
+ hidden_states = hidden_states.transpose(1, 2)
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRotaryPositionalEmbedding with Wav2Vec2->SeamlessM4T, num_attention_heads->speech_encoder_attention_heads
+class SeamlessM4TConformerRotaryPositionalEmbedding(nn.Module):
+ """Rotary positional embedding
+ Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ dim = config.hidden_size // config.speech_encoder_attention_heads
+ base = config.rotary_embedding_base
+
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
+ self.register_buffer("inv_freq", inv_freq)
+ self.cached_sequence_length = None
+ self.cached_rotary_positional_embedding = None
+
+ def forward(self, hidden_states):
+ sequence_length = hidden_states.shape[1]
+
+ if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None:
+ return self.cached_rotary_positional_embedding
+
+ self.cached_sequence_length = sequence_length
+ # Embeddings are computed in the dtype of the inv_freq constant
+ time_stamps = torch.arange(sequence_length).type_as(self.inv_freq)
+ freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq)
+ embeddings = torch.cat((freqs, freqs), dim=-1)
+
+ cos_embeddings = embeddings.cos()[:, None, None, :]
+ sin_embeddings = embeddings.sin()[:, None, None, :]
+ # Computed embeddings are cast to the dtype of the hidden state inputs
+ self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings]).type_as(hidden_states)
+ return self.cached_rotary_positional_embedding
+
+
+# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRelPositionalEmbedding with Wav2Vec2->SeamlessM4T
+class SeamlessM4TConformerRelPositionalEmbedding(nn.Module):
+ """Relative positional encoding module."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.max_len = config.max_source_positions
+ self.d_model = config.hidden_size
+ self.pe = None
+ self.extend_pe(torch.tensor(0.0).expand(1, self.max_len))
+
+ def extend_pe(self, x):
+ # Reset the positional encodings
+ if self.pe is not None:
+ # self.pe contains both positive and negative parts
+ # the length of self.pe is 2 * input_len - 1
+ if self.pe.size(1) >= x.size(1) * 2 - 1:
+ if self.pe.dtype != x.dtype or self.pe.device != x.device:
+ self.pe = self.pe.to(dtype=x.dtype, device=x.device)
+ return
+ # Suppose `i` is the position of query vector and `j` is the
+ # position of key vector. We use positive relative positions when keys
+ # are to the left (i>j) and negative relative positions otherwise (iSeamlessM4T
+class SeamlessM4TConformerSamePadLayer(nn.Module):
+ def __init__(self, num_conv_pos_embeddings):
+ super().__init__()
+ self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
+
+ def forward(self, hidden_states):
+ if self.num_pad_remove > 0:
+ hidden_states = hidden_states[:, :, : -self.num_pad_remove]
+ return hidden_states
+
+
+class SeamlessM4TConformerFeatureProjection(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.layer_norm = nn.LayerNorm(config.feature_projection_input_dim, eps=config.layer_norm_eps)
+ self.projection = nn.Linear(config.feature_projection_input_dim, config.hidden_size)
+ self.dropout = nn.Dropout(config.speech_encoder_dropout)
+
+ def forward(self, hidden_states):
+ # non-projected hidden states are needed for quantization
+ norm_hidden_states = self.layer_norm(hidden_states)
+ hidden_states = self.projection(norm_hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ return hidden_states
+
+
+class SeamlessM4TConformerFeedForward(nn.Module):
+ def __init__(self, config, act_fn=None, dropout=None):
+ super().__init__()
+ dropout = dropout if dropout is not None else config.speech_encoder_dropout
+ act_fn = act_fn if act_fn is not None else config.speech_encoder_hidden_act
+
+ self.intermediate_dropout = nn.Dropout(dropout)
+ self.intermediate_dense = nn.Linear(config.hidden_size, config.speech_encoder_intermediate_size)
+ self.intermediate_act_fn = ACT2FN[act_fn] if isinstance(act_fn, str) else act_fn
+
+ self.output_dense = nn.Linear(config.speech_encoder_intermediate_size, config.hidden_size)
+ self.output_dropout = nn.Dropout(dropout)
+
+ def forward(self, hidden_states):
+ hidden_states = self.intermediate_dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ hidden_states = self.intermediate_dropout(hidden_states)
+
+ hidden_states = self.output_dense(hidden_states)
+ hidden_states = self.output_dropout(hidden_states)
+ return hidden_states
+
+
+class SeamlessM4TConformerConvolutionModule(nn.Module):
+ """Convolution block used in the conformer block"""
+
+ def __init__(self, config):
+ super().__init__()
+ if (config.conv_depthwise_kernel_size - 1) % 2 == 1:
+ raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding")
+ self.layer_norm = nn.LayerNorm(config.hidden_size)
+ self.pointwise_conv1 = nn.Conv1d(
+ config.hidden_size,
+ 2 * config.hidden_size,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ bias=False,
+ )
+ self.glu = nn.GLU(dim=1)
+ self.depthwise_conv = nn.Conv1d(
+ config.hidden_size,
+ config.hidden_size,
+ config.conv_depthwise_kernel_size,
+ stride=1,
+ padding="same",
+ groups=config.hidden_size,
+ bias=False,
+ )
+ self.batch_norm = nn.BatchNorm1d(config.hidden_size)
+ self.activation = ACT2FN[config.speech_encoder_hidden_act]
+ self.pointwise_conv2 = nn.Conv1d(
+ config.hidden_size,
+ config.hidden_size,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ bias=False,
+ )
+ self.dropout = nn.Dropout(config.speech_encoder_dropout)
+
+ def forward(self, hidden_states, attention_mask=None):
+ hidden_states = self.layer_norm(hidden_states)
+
+ # Ensure that we do not leak padded positions in depthwise convolution.
+ # Put 0 where necessary
+ if attention_mask is not None:
+ hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0)
+
+ # exchange the temporal dimension and the feature dimension
+ hidden_states = hidden_states.transpose(1, 2)
+
+ # GLU mechanism
+ # => (batch, 2*channel, dim)
+ hidden_states = self.pointwise_conv1(hidden_states)
+ # => (batch, channel, dim)
+ hidden_states = self.glu(hidden_states)
+
+ # 1D Depthwise Conv
+ hidden_states = self.depthwise_conv(hidden_states)
+ hidden_states = self.batch_norm(hidden_states)
+ hidden_states = self.activation(hidden_states)
+
+ hidden_states = self.pointwise_conv2(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = hidden_states.transpose(1, 2)
+ return hidden_states
+
+
+class SeamlessM4TConformerSelfAttention(nn.Module):
+ """Construct a SeamlessM4TConformerSelfAttention object.
+ Can be enhanced with rotary or relative position embeddings.
+ """
+
+ def __init__(self, config, use_position_embeddings=True):
+ super().__init__()
+
+ self.head_size = config.hidden_size // config.speech_encoder_attention_heads
+ self.num_heads = config.speech_encoder_attention_heads
+ self.position_embeddings_type = config.position_embeddings_type if use_position_embeddings else None
+
+ self.linear_q = nn.Linear(config.hidden_size, config.hidden_size)
+ self.linear_k = nn.Linear(config.hidden_size, config.hidden_size)
+ self.linear_v = nn.Linear(config.hidden_size, config.hidden_size)
+ self.linear_out = nn.Linear(config.hidden_size, config.hidden_size)
+
+ self.dropout = nn.Dropout(p=config.speech_encoder_dropout)
+
+ if self.position_embeddings_type == "relative":
+ # linear transformation for positional encoding
+ self.linear_pos = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
+ # these two learnable bias are used in matrix c and matrix d
+ # as described in https://arxiv.org/abs/1901.02860 Section 3.3
+ self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
+ self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
+
+ # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention.forward
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ relative_position_embeddings: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ # self-attention mechanism
+ batch_size, sequence_length, hidden_size = hidden_states.size()
+
+ # make sure query/key states can be != value states
+ query_key_states = hidden_states
+ value_states = hidden_states
+
+ if self.position_embeddings_type == "rotary":
+ if relative_position_embeddings is None:
+ raise ValueError(
+ "`relative_position_embeddings` has to be defined when `self.position_embeddings_type == 'rotary'"
+ )
+ query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings)
+
+ # project query_key_states and value_states
+ query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
+ key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
+ value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size)
+
+ # => (batch, head, time1, d_k)
+ query = query.transpose(1, 2)
+ key = key.transpose(1, 2)
+ value = value.transpose(1, 2)
+
+ if self.position_embeddings_type == "relative":
+ if relative_position_embeddings is None:
+ raise ValueError(
+ "`relative_position_embeddings` has to be defined when `self.position_embeddings_type =="
+ " 'relative'"
+ )
+ # apply relative_position_embeddings to qk scores
+ # as proposed in Transformer_XL: https://arxiv.org/abs/1901.02860
+ scores = self._apply_relative_embeddings(
+ query=query, key=key, relative_position_embeddings=relative_position_embeddings
+ )
+ else:
+ scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size)
+
+ # apply attention_mask if necessary
+ if attention_mask is not None:
+ scores = scores + attention_mask
+
+ # => (batch, head, time1, time2)
+ probs = torch.softmax(scores, dim=-1)
+ probs = self.dropout(probs)
+
+ # => (batch, head, time1, d_k)
+ hidden_states = torch.matmul(probs, value)
+
+ # => (batch, time1, hidden_size)
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size)
+ hidden_states = self.linear_out(hidden_states)
+
+ return hidden_states, probs
+
+ # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_rotary_embedding
+ def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings):
+ batch_size, sequence_length, hidden_size = hidden_states.size()
+ hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size)
+
+ cos = relative_position_embeddings[0, :sequence_length, ...]
+ sin = relative_position_embeddings[1, :sequence_length, ...]
+
+ # rotate hidden_states with rotary embeddings
+ hidden_states = hidden_states.transpose(0, 1)
+ rotated_states_begin = hidden_states[..., : self.head_size // 2]
+ rotated_states_end = hidden_states[..., self.head_size // 2 :]
+ rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1)
+ hidden_states = (hidden_states * cos) + (rotated_states * sin)
+ hidden_states = hidden_states.transpose(0, 1)
+
+ hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size)
+
+ return hidden_states
+
+ # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_relative_embeddings
+ def _apply_relative_embeddings(self, query, key, relative_position_embeddings):
+ # 1. project positional embeddings
+ # => (batch, head, 2*time1-1, d_k)
+ proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings)
+ proj_relative_position_embeddings = proj_relative_position_embeddings.view(
+ relative_position_embeddings.size(0), -1, self.num_heads, self.head_size
+ )
+ proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2)
+ proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3)
+
+ # 2. Add bias to query
+ # => (batch, head, time1, d_k)
+ query = query.transpose(1, 2)
+ q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2)
+ q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2)
+
+ # 3. attention score: first compute matrix a and matrix c
+ # as described in https://arxiv.org/abs/1901.02860 Section 3.3
+ # => (batch, head, time1, time2)
+ scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1))
+
+ # 4. then compute matrix b and matrix d
+ # => (batch, head, time1, 2*time1-1)
+ scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings)
+
+ # 5. shift matrix b and matrix d
+ zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype)
+ scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1)
+ scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2])
+ scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape)
+ scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd)
+ scores_bd = scores_bd[:, :, :, : scores_bd.size(-1) // 2 + 1]
+
+ # 6. sum matrices
+ # => (batch, head, time1, time2)
+ scores = (scores_ac + scores_bd) / math.sqrt(self.head_size)
+
+ return scores
+
+
+class SeamlessM4TConformerEncoderLayer(nn.Module):
+ """Conformer block based on https://arxiv.org/abs/2005.08100."""
+
+ # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerEncoderLayer.__init__ with Wav2Vec2->SeamlessM4T, attention_dropout->speech_encoder_dropout, torch.nn->nn
+ def __init__(self, config):
+ super().__init__()
+ embed_dim = config.hidden_size
+ dropout = config.speech_encoder_dropout
+
+ # Feed-forward 1
+ self.ffn1_layer_norm = nn.LayerNorm(embed_dim)
+ self.ffn1 = SeamlessM4TConformerFeedForward(config)
+
+ # Self-Attention
+ self.self_attn_layer_norm = nn.LayerNorm(embed_dim)
+ self.self_attn_dropout = nn.Dropout(dropout)
+ self.self_attn = SeamlessM4TConformerSelfAttention(config)
+
+ # Conformer Convolution
+ self.conv_module = SeamlessM4TConformerConvolutionModule(config)
+
+ # Feed-forward 2
+ self.ffn2_layer_norm = nn.LayerNorm(embed_dim)
+ self.ffn2 = SeamlessM4TConformerFeedForward(config)
+ self.final_layer_norm = nn.LayerNorm(embed_dim)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask: Optional[torch.Tensor] = None,
+ relative_position_embeddings: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ conv_attention_mask: Optional[torch.Tensor] = None,
+ ):
+ hidden_states = hidden_states
+
+ # 1. Feed-Forward 1 layer
+ residual = hidden_states
+ hidden_states = self.ffn1_layer_norm(hidden_states)
+ hidden_states = self.ffn1(hidden_states)
+ hidden_states = hidden_states * 0.5 + residual
+ residual = hidden_states
+
+ # 2. Self-Attention layer
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+ hidden_states, attn_weigts = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ relative_position_embeddings=relative_position_embeddings,
+ output_attentions=output_attentions,
+ )
+ hidden_states = self.self_attn_dropout(hidden_states)
+ hidden_states = hidden_states + residual
+
+ # 3. Convolutional Layer
+ residual = hidden_states
+ hidden_states = self.conv_module(hidden_states, attention_mask=conv_attention_mask)
+ hidden_states = residual + hidden_states
+
+ # 4. Feed-Forward 2 Layer
+ residual = hidden_states
+ hidden_states = self.ffn2_layer_norm(hidden_states)
+ hidden_states = self.ffn2(hidden_states)
+ hidden_states = hidden_states * 0.5 + residual
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ return hidden_states, attn_weigts
+
+
+class SeamlessM4TConformerEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+
+ if config.position_embeddings_type == "relative":
+ self.embed_positions = SeamlessM4TConformerRelPositionalEmbedding(config)
+ elif config.position_embeddings_type == "rotary":
+ self.embed_positions = SeamlessM4TConformerRotaryPositionalEmbedding(config)
+ else:
+ self.embed_positions = None
+
+ self.dropout = nn.Dropout(config.speech_encoder_dropout)
+ self.layers = nn.ModuleList(
+ [SeamlessM4TConformerEncoderLayer(config) for _ in range(config.speech_encoder_layers)]
+ )
+
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ ):
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ conv_attention_mask = attention_mask
+ if attention_mask is not None:
+ # make sure padded tokens output 0
+ hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0)
+ # extend attention_mask
+ attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
+ attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
+ attention_mask = attention_mask.expand(
+ attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
+ )
+
+ hidden_states = self.dropout(hidden_states)
+
+ if self.embed_positions is not None:
+ relative_position_embeddings = self.embed_positions(hidden_states)
+ else:
+ relative_position_embeddings = None
+
+ deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
+
+ for i, layer in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ dropout_probability = torch.rand([])
+
+ skip_the_layer = (
+ True if self.training and (dropout_probability < self.config.speech_encoder_layerdrop) else False
+ )
+ if not skip_the_layer or deepspeed_zero3_is_enabled:
+ # under deepspeed zero3 all gpus must run in sync
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer.__call__,
+ hidden_states,
+ attention_mask,
+ relative_position_embeddings,
+ )
+ else:
+ layer_outputs = layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ relative_position_embeddings=relative_position_embeddings,
+ output_attentions=output_attentions,
+ conv_attention_mask=conv_attention_mask,
+ )
+ hidden_states = layer_outputs[0]
+
+ if skip_the_layer:
+ layer_outputs = (None, None)
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ hidden_states = self.layer_norm(hidden_states)
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class SeamlessM4TConformerAdapterLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ embed_dim = config.hidden_size
+ dropout = config.adaptor_dropout
+
+ self.kernel_size = config.adaptor_kernel_size
+ self.stride = config.adaptor_stride
+
+ # 1. residual convolution
+ self.residual_layer_norm = nn.LayerNorm(embed_dim)
+ self.residual_conv = nn.Conv1d(
+ embed_dim,
+ 2 * embed_dim,
+ self.kernel_size,
+ stride=self.stride,
+ padding=self.stride // 2,
+ )
+ self.activation = nn.GLU(dim=1)
+
+ # Self-Attention
+ self.self_attn_layer_norm = nn.LayerNorm(embed_dim)
+ self.self_attn_conv = nn.Conv1d(
+ embed_dim,
+ 2 * embed_dim,
+ self.kernel_size,
+ stride=self.stride,
+ padding=self.stride // 2,
+ )
+ self.self_attn = SeamlessM4TConformerSelfAttention(config, use_position_embeddings=False)
+ self.self_attn_dropout = nn.Dropout(dropout)
+
+ # Feed-forward
+ self.ffn_layer_norm = nn.LayerNorm(embed_dim)
+ self.ffn = SeamlessM4TConformerFeedForward(config, act_fn="relu", dropout=dropout)
+
+ def _compute_sub_sample_lengths_from_attention_mask(self, attention_mask):
+ pad = self.kernel_size // 2
+ seq_lens = attention_mask.size(1) - (1 - attention_mask.int()).sum(1)
+
+ seq_lens = ((seq_lens + 2 * pad - self.kernel_size) / self.stride) + 1
+
+ return seq_lens.floor()
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ):
+ residual = self.residual_layer_norm(hidden_states)
+
+ # Apply pooling to the residual to match the sequence length of the
+ # multi-head attention output.
+ # (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len)
+ residual = residual.transpose(1, 2)
+ residual = self.residual_conv(residual)
+ residual = self.activation(residual)
+ # (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim)
+ residual = residual.transpose(1, 2)
+
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+ # Apply pooling before feeding to the multihead-attention layer.
+ # (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len)
+ hidden_states = hidden_states.transpose(1, 2)
+ hidden_states = self.self_attn_conv(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ # (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim)
+ hidden_states = hidden_states.transpose(1, 2)
+
+ if attention_mask is not None:
+ sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
+ hidden_states.device
+ )
+ attention_mask = _compute_new_attention_mask(hidden_states=hidden_states, seq_lens=sub_sampled_lengths)
+ attention_mask = _prepare_4d_attention_mask(
+ attention_mask,
+ hidden_states.dtype,
+ )
+
+ # The rest of the computation is identical to a vanilla Transformer
+ # encoder layer.
+ hidden_states, attn_weigths = self.self_attn(
+ hidden_states,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = self.self_attn_dropout(hidden_states)
+ hidden_states = hidden_states + residual
+
+ residual = hidden_states
+
+ hidden_states = self.ffn_layer_norm(hidden_states)
+ hidden_states = self.ffn(hidden_states) + residual
+
+ return hidden_states
+
+
+class SeamlessM4TConformerAdapter(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ self.layers = nn.ModuleList(SeamlessM4TConformerAdapterLayer(config) for _ in range(config.num_adapter_layers))
+
+ def forward(self, hidden_states, attention_mask):
+ # down project hidden_states if necessary
+
+ for layer in self.layers:
+ hidden_states = layer(hidden_states, attention_mask)
+
+ return hidden_states
+
+
+############ TEXT / UNITS related code ################
+
+
+# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding
+class SeamlessM4TSinusoidalPositionalEmbedding(nn.Module):
+ """This module produces sinusoidal positional embeddings of any length."""
+
+ def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
+ super().__init__()
+ self.offset = 2
+ self.embedding_dim = embedding_dim
+ self.padding_idx = padding_idx
+ self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
+
+ def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
+ emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
+ if hasattr(self, "weights"):
+ # in forward put the weights on the correct dtype and device of the param
+ emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
+
+ self.register_buffer("weights", emb_weights, persistent=False)
+
+ @staticmethod
+ def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
+ """
+ Build sinusoidal embeddings.
+
+ This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
+ "Attention Is All You Need".
+ """
+ half_dim = embedding_dim // 2
+ emb = math.log(10000) / (half_dim - 1)
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
+ emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
+ if embedding_dim % 2 == 1:
+ # zero pad
+ emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
+ if padding_idx is not None:
+ emb[padding_idx, :] = 0
+
+ return emb.to(torch.get_default_dtype())
+
+ @torch.no_grad()
+ def forward(
+ self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0
+ ):
+ if input_ids is not None:
+ bsz, seq_len = input_ids.size()
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
+ input_ids.device
+ )
+ else:
+ bsz, seq_len = inputs_embeds.size()[:-1]
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
+
+ # expand embeddings if needed
+ max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
+ if max_pos > self.weights.size(0):
+ self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
+
+ return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
+
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
+ """
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
+
+ Args:
+ inputs_embeds: torch.Tensor
+
+ Returns: torch.Tensor
+ """
+ input_shape = inputs_embeds.size()[:-1]
+ sequence_length = input_shape[1]
+
+ position_ids = torch.arange(
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
+ )
+ return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
+
+
+class SeamlessM4TAttention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ # Copied from transformers.models.bart.modeling_bart.BartAttention.__init__ with Bart->SeamlessM4T
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ is_decoder: bool = False,
+ bias: bool = True,
+ is_causal: bool = False,
+ config: Optional[SeamlessM4TConfig] = None,
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+ self.config = config
+
+ if (self.head_dim * num_heads) != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+ self.is_decoder = is_decoder
+ self.is_causal = is_causal
+
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if encoder_hidden_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = encoder_hidden_states is not None
+
+ bsz, tgt_len, _ = hidden_states.size()
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scaling
+ # get key, value proj
+ # `past_key_value[0].shape[2] == encoder_hidden_states.shape[1]`
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
+ # the provided `encoder_hidden_states` to support prefix tuning
+ if (
+ is_cross_attention
+ and past_key_value is not None
+ and past_key_value[0].shape[2] == encoder_hidden_states.shape[1]
+ ):
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
+ key_states = key_states.reshape(*proj_shape)
+ value_states = value_states.reshape(*proj_shape)
+
+ src_len = key_states.size(1)
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
+
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ if output_attentions:
+ # this operation is a bit awkward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to be reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
+ else:
+ attn_weights_reshaped = None
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ attn_output = torch.bmm(attn_probs, value_states)
+
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
+ # partitioned across GPUs when using tensor-parallelism.
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights_reshaped, past_key_value
+
+
+# Copied from transformers.models.nllb_moe.modeling_nllb_moe.NllbMoeDenseActDense with NllbMoe->SeamlessM4T,DenseActDense->FeedForwardNetwork, d_model->hidden_size
+class SeamlessM4TFeedForwardNetwork(nn.Module):
+ def __init__(self, config: SeamlessM4TConfig, ffn_dim: int):
+ super().__init__()
+ self.fc1 = nn.Linear(config.hidden_size, ffn_dim)
+ self.fc2 = nn.Linear(ffn_dim, config.hidden_size)
+ self.dropout = nn.Dropout(config.activation_dropout)
+ self.act = ACT2FN[config.activation_function]
+
+ def forward(self, hidden_states):
+ hidden_states = self.fc1(hidden_states)
+ hidden_states = self.act(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ if (
+ isinstance(self.fc2.weight, torch.Tensor)
+ and hidden_states.dtype != self.fc2.weight.dtype
+ and (self.fc2.weight.dtype != torch.int8 and self.fc2.weight.dtype != torch.uint8)
+ ):
+ hidden_states = hidden_states.to(self.fc2.weight.dtype)
+ hidden_states = self.fc2(hidden_states)
+ return hidden_states
+
+
+class SeamlessM4TEncoderLayer(nn.Module):
+ def __init__(self, config: SeamlessM4TConfig, encoder_ffn_dim=None, encoder_attention_heads=None):
+ super().__init__()
+ encoder_ffn_dim = config.encoder_ffn_dim if encoder_ffn_dim is None else encoder_ffn_dim
+ encoder_attention_heads = (
+ config.encoder_attention_heads if encoder_attention_heads is None else encoder_attention_heads
+ )
+
+ self.embed_dim = config.hidden_size
+ self.self_attn = SeamlessM4TAttention(
+ embed_dim=self.embed_dim,
+ num_heads=encoder_attention_heads,
+ dropout=config.attention_dropout,
+ )
+ self.attn_dropout = nn.Dropout(config.dropout)
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+
+ self.ffn = SeamlessM4TFeedForwardNetwork(config, ffn_dim=encoder_ffn_dim)
+
+ self.ffn_layer_norm = nn.LayerNorm(config.hidden_size)
+ self.ffn_dropout = nn.Dropout(config.activation_dropout)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: torch.Tensor,
+ output_attentions: bool = False,
+ ) -> torch.Tensor:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`):
+ input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`):
+ attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
+ large negative values.
+ """
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+ hidden_states, attn_weights, _ = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = self.attn_dropout(hidden_states)
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+
+ hidden_states = self.ffn_layer_norm(hidden_states)
+
+ hidden_states = self.ffn(hidden_states)
+ hidden_states = self.ffn_dropout(hidden_states)
+
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+class SeamlessM4TDecoderLayer(nn.Module):
+ def __init__(self, config: SeamlessM4TConfig, decoder_ffn_dim=None, decoder_attention_heads=None):
+ super().__init__()
+ decoder_ffn_dim = config.decoder_ffn_dim if decoder_ffn_dim is None else decoder_ffn_dim
+ decoder_attention_heads = (
+ config.decoder_attention_heads if decoder_attention_heads is None else decoder_attention_heads
+ )
+
+ self.embed_dim = config.hidden_size
+ self.self_attn = SeamlessM4TAttention(
+ embed_dim=self.embed_dim,
+ num_heads=decoder_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=True,
+ )
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.attn_dropout = nn.Dropout(config.dropout)
+
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.cross_attention = SeamlessM4TAttention(
+ self.embed_dim, decoder_attention_heads, config.attention_dropout, is_decoder=True
+ )
+ self.cross_attention_layer_norm = nn.LayerNorm(self.embed_dim)
+
+ self.ffn = SeamlessM4TFeedForwardNetwork(config, ffn_dim=decoder_ffn_dim)
+
+ self.ffn_layer_norm = nn.LayerNorm(config.hidden_size)
+ self.ffn_dropout = nn.Dropout(config.activation_dropout)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = True,
+ ) -> torch.Tensor:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`):
+ input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`):
+ attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
+ large negative values.
+ encoder_hidden_states (`torch.FloatTensor`):
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
+ encoder_attention_mask (`torch.FloatTensor`):
+ encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by
+ very large negative values.
+ past_key_value (`Tuple(torch.FloatTensor)`):
+ cached past key and value projection states
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Self Attention
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ past_key_value=self_attn_past_key_value,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = self.attn_dropout(hidden_states)
+ hidden_states = residual + hidden_states
+
+ # Cross-Attention Block
+ cross_attn_present_key_value = None
+ cross_attn_weights = None
+ if encoder_hidden_states is not None:
+ residual = hidden_states
+ hidden_states = self.cross_attention_layer_norm(hidden_states)
+
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.cross_attention(
+ hidden_states=hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ past_key_value=cross_attn_past_key_value,
+ attention_mask=encoder_attention_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = self.attn_dropout(hidden_states)
+ hidden_states = residual + hidden_states
+
+ # add cross-attn to positions 3,4 of present_key_value tuple
+ present_key_value += cross_attn_present_key_value
+
+ # Fully Connected
+ residual = hidden_states
+
+ hidden_states = self.ffn_layer_norm(hidden_states)
+
+ hidden_states = self.ffn(hidden_states)
+ hidden_states = self.ffn_dropout(hidden_states)
+
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states, present_key_value)
+
+ if output_attentions:
+ outputs += (self_attn_weights, cross_attn_weights)
+
+ return outputs
+
+
+############ SUB-MODELS related code ################
+
+
+class SeamlessM4TPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = SeamlessM4TConfig
+ base_model_prefix = "seamless_m4t"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["SeamlessM4TEncoderLayer", "SeamlessM4TDecoderLayer", "SeamlessM4TConformerEncoderLayer"]
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ std = self.config.initializer_range
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, SeamlessM4TConformerSelfAttention):
+ if hasattr(module, "pos_bias_u"):
+ nn.init.xavier_uniform_(module.pos_bias_u)
+ if hasattr(module, "pos_bias_v"):
+ nn.init.xavier_uniform_(module.pos_bias_v)
+ elif isinstance(module, SeamlessM4TConformerPositionalConvEmbedding):
+ nn.init.normal_(
+ module.conv.weight,
+ mean=0,
+ std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
+ )
+ nn.init.constant_(module.conv.bias, 0)
+ elif isinstance(module, SeamlessM4TConformerFeatureProjection):
+ k = math.sqrt(1 / module.projection.in_features)
+ nn.init.uniform_(module.projection.weight, a=-k, b=k)
+ nn.init.uniform_(module.projection.bias, a=-k, b=k)
+ elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, nn.Conv1d):
+ nn.init.kaiming_normal_(module.weight)
+ if module.bias is not None:
+ k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
+ nn.init.uniform_(module.bias, a=-k, b=k)
+
+ def _compute_sub_sample_lengths_from_attention_mask(self, attention_mask):
+ kernel_size, stride = self.config.adaptor_kernel_size, self.config.adaptor_stride
+ pad = kernel_size // 2
+ seq_lens = attention_mask.size(1) - (1 - attention_mask.int()).sum(1)
+
+ seq_lens = ((seq_lens + 2 * pad - kernel_size) / stride) + 1
+
+ return seq_lens.floor()
+
+ def compute_last_hidden_states_per_sample(
+ self,
+ hidden_states: Tuple[Tuple[torch.Tensor]],
+ beam_indices: Optional[torch.Tensor] = None,
+ ) -> torch.Tensor:
+ """
+ Computes the last hidden states.
+
+ Parameters:
+ hidden_states (`Tuple[Tuple[torch.Tensor]]`):
+ The generated hidden states. Tuple (one element for each generated token) of tuples (one element for
+ each layer of the decoder) of torch.FloatTensor of shape (batch_size*num_beams*num_return_sequences,
+ generated_length, hidden_size).
+ beam_indices (`torch.LongTensor`, *optional*):
+ Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
+ `(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at
+ generate-time.
+
+ Return:
+ `torch.Tensor`: A `torch.Tensor` of shape `(batch_size*num_return_sequences, sequence_length, hidden_size)`
+ containing
+ the last hidden states.
+ ```"""
+ # 1. First, let's compute last_hidden_states from hidden_states.
+ # For each generation step, takes the hidden state from the last layer.
+ # shape: (batch_size*vocab_size*num_return_sequences, # generation_steps, hidden_dim)
+ last_hidden_states = torch.concat([hidden_states[-1] for hidden_states in hidden_states], dim=1)
+
+ # 2. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent
+ # to a beam search approach were the first (and only) beam is always selected
+ # in that case, return directly last_hidden_states
+ if beam_indices is None:
+ return last_hidden_states
+
+ # 3. cut beam_indices to longest beam length
+ beam_indices_mask = beam_indices < 0
+ max_beam_length = (1 - beam_indices_mask.long()).sum(-1).max()
+ beam_indices = beam_indices.clone()[:, :max_beam_length]
+ beam_indices_mask = beam_indices_mask[:, :max_beam_length]
+
+ # 4. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards anyways
+ beam_indices[beam_indices_mask] = 0
+
+ # 5. expand beam_indices to last_hidden_states dim
+ beam_indices = beam_indices.unsqueeze(-1)
+ beam_indices = beam_indices.expand(-1, -1, last_hidden_states.shape[-1])
+
+ # 6. select the right candidate for each beam
+ # in other words, new_last_hidden_states[i,j,k] = last_hidden_states[beam_indices[i,j,k], j, k] for all i, j, k
+ last_hidden_states = torch.gather(last_hidden_states, 0, beam_indices)
+
+ return last_hidden_states
+
+
+@add_start_docstrings(
+ """Transformer speech encoder consisting of *config.speech_encoder_layers* conformer self attention layers.
+ Each layer is a [`SeamlessM4TConformerEncoderLayer`].""",
+ SEAMLESS_M4T_START_DOCSTRING,
+)
+class SeamlessM4TSpeechEncoder(SeamlessM4TPreTrainedModel):
+ main_input_name = "input_features"
+
+ def __init__(self, config: SeamlessM4TConfig):
+ super().__init__(config)
+
+ self.feature_projection = SeamlessM4TConformerFeatureProjection(config)
+ self.encoder = SeamlessM4TConformerEncoder(config)
+ self.intermediate_ffn = SeamlessM4TConformerFeedForward(config, act_fn="relu", dropout=0.0)
+ self.adapter = SeamlessM4TConformerAdapter(config) if config.add_adapter else None
+ self.inner_layer_norm = nn.LayerNorm(config.hidden_size)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def forward(
+ self,
+ input_features: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs,
+ ) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_features is None:
+ raise ValueError(
+ """Both `input_features` and `inputs_embeds` are `None` in `SeamlessM4TSpeechEncoder.forward`.
+ Make sure one of them is not `None`."""
+ )
+
+ hidden_states = self.feature_projection(input_features)
+
+ encoder_outputs = self.encoder(
+ hidden_states,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = encoder_outputs[0]
+
+ expanded_hidden_states = self.intermediate_ffn(hidden_states)
+ hidden_states = hidden_states + 0.5 * expanded_hidden_states
+
+ if self.adapter is not None:
+ hidden_states = self.adapter(hidden_states, attention_mask=attention_mask)
+
+ hidden_states = self.inner_layer_norm(hidden_states)
+
+ if not return_dict:
+ return (hidden_states,) + encoder_outputs[1:]
+
+ return Wav2Vec2BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+# inspired from MBart and NllbMoe
+@add_start_docstrings(
+ "Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`SeamlessM4TEncoderLayer`].",
+ SEAMLESS_M4T_START_DOCSTRING,
+ """
+ embed_tokens (`nn.Embedding`, *optional*):
+ Input embedding
+ is_t2u_encoder (`bool`, *optional*, defaults to `False`):
+ indicates if it belongs to the text-to-units model, in which case it won't have input embeddings
+ """,
+)
+class SeamlessM4TEncoder(SeamlessM4TPreTrainedModel):
+ def __init__(
+ self,
+ config: SeamlessM4TConfig,
+ embed_tokens: Optional[nn.Embedding] = None,
+ is_t2u_encoder: bool = False,
+ ):
+ super().__init__(config)
+
+ self.dropout = config.dropout
+ self.layerdrop = config.encoder_layerdrop
+ self.padding_idx = config.pad_token_id
+ embed_dim = config.hidden_size
+
+ self.is_t2u_encoder = is_t2u_encoder
+ self.max_source_positions = config.max_position_embeddings
+
+ if not self.is_t2u_encoder:
+ self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
+
+ self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
+
+ if embed_tokens is not None:
+ self.embed_tokens.weight = embed_tokens.weight
+
+ self.embed_positions = SeamlessM4TSinusoidalPositionalEmbedding(
+ self.max_source_positions,
+ embed_dim,
+ self.padding_idx,
+ )
+
+ layers = []
+ for _ in range(config.encoder_layers):
+ layers.append(
+ SeamlessM4TEncoderLayer(
+ config,
+ encoder_attention_heads=config.encoder_attention_heads,
+ encoder_ffn_dim=config.encoder_ffn_dim,
+ )
+ )
+
+ self.layers = nn.ModuleList(layers)
+
+ self.layer_norm = nn.LayerNorm(config.hidden_size)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs,
+ ) -> Union[Tuple, BaseModelOutput]:
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and self.is_t2u_encoder:
+ raise ValueError(
+ "You cannot pass input_ids to the encoder of the text_to_units model. Pass inputs_embeds instead."
+ )
+
+ # retrieve input_ids and inputs_embeds
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input = input_ids
+ input_shape = input.shape
+ input_ids = input_ids.view(-1, input_shape[-1])
+ elif inputs_embeds is not None:
+ input = inputs_embeds[:, :, -1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ if not self.is_t2u_encoder:
+ embed_pos = self.embed_positions(input)
+
+ hidden_states = inputs_embeds + embed_pos.to(inputs_embeds.device)
+ else:
+ hidden_states = inputs_embeds
+
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ # expand attention_mask
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ to_drop = False
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop: # skip the layer
+ to_drop = True
+
+ if to_drop:
+ layer_outputs = (None, None)
+ else:
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ encoder_layer.forward,
+ hidden_states,
+ attention_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ hidden_states = self.layer_norm(hidden_states)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+
+@add_start_docstrings(
+ "Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SeamlessM4TDecoderLayer`].",
+ SEAMLESS_M4T_START_DOCSTRING,
+ """
+ embed_tokens (`nn.Embedding`, *optional*):
+ Input embedding
+ """,
+)
+class SeamlessM4TDecoder(SeamlessM4TPreTrainedModel):
+ def __init__(
+ self,
+ config: SeamlessM4TConfig,
+ embed_tokens: Optional[nn.Embedding] = None,
+ ):
+ super().__init__(config)
+ self.dropout = config.dropout
+ self.layerdrop = config.decoder_layerdrop
+ self.padding_idx = config.pad_token_id
+ self.vocab_size = config.vocab_size
+ self.max_target_positions = config.max_position_embeddings
+ self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0
+
+ if embed_tokens is not None:
+ # if embed_tokens defined, use its shape instead
+ self.embed_tokens = nn.Embedding(embed_tokens.num_embeddings, embed_tokens.embedding_dim, self.padding_idx)
+ self.embed_tokens.weight = embed_tokens.weight
+ else:
+ self.embed_tokens = nn.Embedding(self.vocab_size, config.hidden_size, self.padding_idx)
+
+ self.embed_positions = SeamlessM4TSinusoidalPositionalEmbedding(
+ self.max_target_positions,
+ config.hidden_size,
+ padding_idx=self.padding_idx,
+ )
+
+ layers = []
+ for _ in range(config.decoder_layers):
+ layers.append(
+ SeamlessM4TDecoderLayer(
+ config,
+ decoder_attention_heads=config.decoder_attention_heads,
+ decoder_ffn_dim=config.decoder_ffn_dim,
+ )
+ )
+ self.layers = nn.ModuleList(layers)
+ self.layer_norm = nn.LayerNorm(config.hidden_size)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ of the decoder.
+ encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
+ selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # retrieve input_ids and inputs_embeds
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
+ elif input_ids is not None:
+ input = input_ids
+ input_shape = input.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ input = inputs_embeds[:, :, -1]
+ else:
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ attention_mask = _prepare_4d_causal_attention_mask(
+ attention_mask, input_shape, inputs_embeds, past_key_values_length
+ )
+
+ # expand encoder attention mask
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ encoder_attention_mask = _prepare_4d_attention_mask(
+ encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
+ )
+
+ # embed positions
+ positions = self.embed_positions(input, past_key_values_length=past_key_values_length)
+
+ hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
+
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+ next_decoder_cache = () if use_cache else None
+
+ for idx, decoder_layer in enumerate(self.layers):
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop:
+ continue
+
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ decoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ None,
+ output_attentions,
+ use_cache,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ )
+ hidden_states = layer_outputs[0]
+
+ if use_cache:
+ next_decoder_cache += (layer_outputs[1],)
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[2],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[3],)
+
+ hidden_states = self.layer_norm(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ next_cache = next_decoder_cache if use_cache else None
+ if not return_dict:
+ return tuple(
+ v
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ "Transformer bare text-to-unit encoder-decoder. The encoder is a [`SeamlessM4TEncoder`] without embeddings and the decoder is a [`SeamlessM4TDecoder`].",
+ SEAMLESS_M4T_START_DOCSTRING,
+ """
+ embed_tokens_decoder (`nn.Embedding`, *optional*): input embedding of the decoder.
+ """,
+)
+class SeamlessM4TTextToUnitModel(SeamlessM4TPreTrainedModel):
+ def __init__(
+ self,
+ config: SeamlessM4TConfig,
+ embed_tokens_decoder: Optional[nn.Embedding] = None,
+ ):
+ super().__init__(config)
+
+ self.encoder = SeamlessM4TEncoder(config, is_t2u_encoder=True)
+ self.decoder = SeamlessM4TDecoder(config, embed_tokens_decoder)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if encoder_outputs is None:
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
+ decoder_outputs = self.decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=attention_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs
+
+ return Seq2SeqModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ "Transformer text-to-unit encoder-decoder with a language model head. The base encoder-decoder model is a [`SeamlessM4TTextToUnit`].",
+ SEAMLESS_M4T_START_DOCSTRING,
+ """
+ embed_tokens_decoder (`nn.Embedding`, *optional*): input embedding of the decoder.
+ """,
+)
+class SeamlessM4TTextToUnitForConditionalGeneration(SeamlessM4TPreTrainedModel):
+ _keys_to_ignore_on_load_missing = [
+ "vocoder",
+ "speech_encoder",
+ "text_encoder",
+ "text_decoder",
+ ]
+ _tied_weights_keys = ["decoder.embed_tokens.weight", "lm_head.weight"]
+
+ def __init__(
+ self,
+ config: SeamlessM4TConfig,
+ embed_tokens_decoder: Optional[nn.Embedding] = None,
+ ):
+ # update config - used principaly for bos_token_id etc.
+ config = copy.deepcopy(config)
+ for param, val in config.to_dict().items():
+ if param.startswith("t2u_"):
+ config.__setattr__(param[4:], val)
+ super().__init__(config)
+
+ self.model = SeamlessM4TTextToUnitModel(config, embed_tokens_decoder)
+
+ self.lm_head = nn.Linear(config.hidden_size, config.t2u_vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_encoder(self):
+ return self.model.encoder
+
+ def get_decoder(self):
+ return self.model.decoder
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def get_input_embeddings(self):
+ return self.model.decoder.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.decoder.embed_tokens = value
+
+ @add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if labels is not None:
+ if use_cache:
+ logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
+ use_cache = False
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ decoder_input_ids = shift_tokens_right(
+ labels, self.config.t2u_pad_token_id, self.config.t2u_decoder_start_token_id
+ )
+
+ outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ encoder_outputs=encoder_outputs,
+ decoder_attention_mask=decoder_attention_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ lm_logits = self.lm_head(outputs[0])
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ labels = labels.to(lm_logits.device)
+ masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (lm_logits,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return Seq2SeqLMOutput(
+ loss=masked_lm_loss,
+ logits=lm_logits,
+ past_key_values=outputs.past_key_values,
+ decoder_hidden_states=outputs.decoder_hidden_states,
+ decoder_attentions=outputs.decoder_attentions,
+ cross_attentions=outputs.cross_attentions,
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+ encoder_hidden_states=outputs.encoder_hidden_states,
+ encoder_attentions=outputs.encoder_attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past is used
+ if past_key_values is not None:
+ decoder_input_ids = decoder_input_ids[:, -1:]
+
+ return {
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
+ "encoder_outputs": encoder_outputs,
+ "past_key_values": past_key_values,
+ "decoder_input_ids": decoder_input_ids,
+ "attention_mask": attention_mask,
+ "use_cache": use_cache,
+ }
+
+ def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
+ return shift_tokens_right(labels, self.config.t2u_pad_token_id, self.config.t2u_decoder_start_token_id)
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ # cached cross_attention states don't have to be reordered -> they are always the same
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
+ )
+ return reordered_past
+
+ def _tie_weights(self) -> None:
+ if getattr(self.config, "tie_word_embeddings", True):
+ output_embeddings = self.get_output_embeddings()
+ if output_embeddings is not None:
+ self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
+
+
+############ VOCODER related code ################
+
+
+HIFIGAN_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`SeamlessM4TConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+# Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock
+class HifiGanResidualBlock(nn.Module):
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
+ super().__init__()
+ self.leaky_relu_slope = leaky_relu_slope
+
+ self.convs1 = nn.ModuleList(
+ [
+ nn.Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ stride=1,
+ dilation=dilation[i],
+ padding=self.get_padding(kernel_size, dilation[i]),
+ )
+ for i in range(len(dilation))
+ ]
+ )
+ self.convs2 = nn.ModuleList(
+ [
+ nn.Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ stride=1,
+ dilation=1,
+ padding=self.get_padding(kernel_size, 1),
+ )
+ for _ in range(len(dilation))
+ ]
+ )
+
+ def get_padding(self, kernel_size, dilation=1):
+ return (kernel_size * dilation - dilation) // 2
+
+ def apply_weight_norm(self):
+ for layer in self.convs1:
+ nn.utils.weight_norm(layer)
+ for layer in self.convs2:
+ nn.utils.weight_norm(layer)
+
+ def remove_weight_norm(self):
+ for layer in self.convs1:
+ nn.utils.remove_weight_norm(layer)
+ for layer in self.convs2:
+ nn.utils.remove_weight_norm(layer)
+
+ def forward(self, hidden_states):
+ for conv1, conv2 in zip(self.convs1, self.convs2):
+ residual = hidden_states
+ hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
+ hidden_states = conv1(hidden_states)
+ hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
+ hidden_states = conv2(hidden_states)
+ hidden_states = hidden_states + residual
+ return hidden_states
+
+
+class SeamlessM4TVariancePredictor(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ embed_dim = config.unit_embed_dim
+ kernel_size = config.variance_predictor_kernel_size
+ var_pred_dropout = config.var_pred_dropout
+
+ self.conv1 = nn.Conv1d(
+ embed_dim,
+ embed_dim,
+ kernel_size=kernel_size,
+ padding=(kernel_size - 1) // 2,
+ )
+ self.activation_fuction = nn.ReLU()
+ self.ln1 = nn.LayerNorm(embed_dim)
+ self.dropout_module = nn.Dropout(p=var_pred_dropout)
+ self.conv2 = nn.Conv1d(
+ embed_dim,
+ embed_dim,
+ kernel_size=kernel_size,
+ padding=1,
+ )
+ self.ln2 = nn.LayerNorm(embed_dim)
+ self.proj = nn.Linear(embed_dim, 1)
+
+ def forward(self, hidden_states: Tensor) -> Tensor:
+ # Input: B x T x C; Output: B x T
+ hidden_states = self.conv1(hidden_states.transpose(1, 2))
+ hidden_states = self.activation_fuction(hidden_states).transpose(1, 2)
+ hidden_states = self.dropout_module(self.ln1(hidden_states))
+ hidden_states = self.conv2(hidden_states.transpose(1, 2))
+ hidden_states = self.activation_fuction(hidden_states).transpose(1, 2)
+ hidden_states = self.dropout_module(self.ln2(hidden_states))
+ return self.proj(hidden_states).squeeze(dim=2)
+
+
+class SeamlessM4THifiGan(nn.Module):
+ def __init__(self, config: SeamlessM4TConfig):
+ super().__init__()
+ model_in_dim = config.unit_embed_dim + config.lang_embed_dim + config.spkr_embed_dim
+ self.leaky_relu_slope = config.leaky_relu_slope
+ self.num_kernels = len(config.resblock_kernel_sizes)
+ self.num_upsamples = len(config.upsample_rates)
+ self.conv_pre = nn.Conv1d(
+ model_in_dim,
+ config.upsample_initial_channel,
+ kernel_size=7,
+ stride=1,
+ padding=3,
+ )
+
+ self.upsampler = nn.ModuleList()
+ for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
+ self.upsampler.append(
+ nn.ConvTranspose1d(
+ config.upsample_initial_channel // (2**i),
+ config.upsample_initial_channel // (2 ** (i + 1)),
+ kernel_size=kernel_size,
+ stride=upsample_rate,
+ padding=(kernel_size - upsample_rate) // 2,
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.upsampler)):
+ channels = config.upsample_initial_channel // (2 ** (i + 1))
+ for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
+ self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
+
+ self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3)
+
+ def forward(self, input_embeds: torch.FloatTensor) -> torch.FloatTensor:
+ r"""
+ Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch
+ of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech
+ waveform.
+
+ Args:
+ spectrogram (`torch.FloatTensor`):
+ Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length,
+ model_in_dim)`, or un-batched and of shape `(sequence_length, model_in_dim)`. Note that `model_in_dim`
+ is the sum of `config.unit_embed_dim`, `config.lang_embed_dim` and `config.spkr_embed_dim`.
+
+ Returns:
+ `torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of
+ shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`.
+ """
+
+ hidden_states = self.conv_pre(input_embeds)
+ for i in range(self.num_upsamples):
+ hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
+ hidden_states = self.upsampler[i](hidden_states)
+
+ res_state = self.resblocks[i * self.num_kernels](hidden_states)
+ for j in range(1, self.num_kernels):
+ res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
+ hidden_states = res_state / self.num_kernels
+
+ hidden_states = nn.functional.leaky_relu(hidden_states)
+ hidden_states = self.conv_post(hidden_states)
+ hidden_states = torch.tanh(hidden_states)
+
+ # remove seq-len dim since this collapses to 1
+ waveform = hidden_states.squeeze(1)
+
+ return waveform
+
+
+@add_start_docstrings(
+ """Code HiFi-GAN vocoder as described in this [repository](https://github.com/facebookresearch/speech-resynthesis).""",
+ HIFIGAN_START_DOCSTRING,
+)
+class SeamlessM4TCodeHifiGan(PreTrainedModel):
+ config_class = SeamlessM4TConfig
+ main_input_name = "input_embeds"
+ _no_split_modules = []
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.pad_token_id = config.t2u_pad_token_id
+ self.dur_predictor = SeamlessM4TVariancePredictor(config)
+
+ self.unit_embedding = nn.Embedding(config.unit_hifi_gan_vocab_size, config.unit_embed_dim)
+ self.speaker_embedding = nn.Embedding(config.vocoder_num_spkrs, config.spkr_embed_dim)
+ self.language_embedding = nn.Embedding(config.vocoder_num_langs, config.lang_embed_dim)
+
+ self.hifi_gan = SeamlessM4THifiGan(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def _get_dur_output_lengths(self, input_ids, dur_out):
+ """
+ Computes the output length after the duration layer.
+ """
+ unit_lengths = (input_ids != self.pad_token_id).sum(1)
+
+ # take care of edge cases where no padding or too many padding
+ unit_lengths = torch.clamp(unit_lengths, 0, dur_out.shape[1] - 1)
+
+ cumulative_dur_out = torch.cumsum(dur_out, dim=1)
+ unit_lengths = cumulative_dur_out.gather(dim=1, index=unit_lengths.unsqueeze(1)).squeeze()
+
+ return unit_lengths
+
+ def _get_output_hifigan_lengths(self, input_lengths: Union[torch.LongTensor, int]):
+ """
+ Computes the output length of the hifigan convolutional layers
+ """
+
+ def _conv_out_length(input_length, kernel_size, stride, pad, dilation=1):
+ # 1D convolutional layer output length formula taken
+ # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
+ return (
+ torch.div(input_length + 2 * pad - dilation * (kernel_size - 1) - 1, stride, rounding_mode="floor") + 1
+ )
+
+ def _transpose_conv_out_length(input_length, kernel_size, stride, pad, dilation=1):
+ return (input_length - 1) * stride - 2 * pad + dilation * (kernel_size - 1) + 1
+
+ # conv_pre
+ input_lengths = _conv_out_length(input_lengths, 7, 1, 3)
+
+ # upsampler
+ for i, (upsample_rate, kernel_size) in enumerate(
+ zip(self.config.upsample_rates, self.config.upsample_kernel_sizes)
+ ):
+ input_lengths = _transpose_conv_out_length(
+ input_lengths, kernel_size, upsample_rate, (kernel_size - upsample_rate) // 2
+ )
+
+ # resblock
+ for i in range(len(self.config.upsample_rates)):
+ for kernel_size, dilation in zip(self.config.resblock_kernel_sizes, self.config.resblock_dilation_sizes):
+ for dil in dilation:
+ input_lengths = _conv_out_length(
+ input_lengths, kernel_size, 1, (kernel_size - 1) * dil // 2, dilation=dil
+ )
+
+ for dil in dilation:
+ input_lengths = _conv_out_length(input_lengths, kernel_size, 1, (kernel_size - 1) // 2, dilation=1)
+
+ # conv_post
+ input_lengths = _conv_out_length(input_lengths, 7, 1, 3)
+
+ return input_lengths
+
+ def forward(
+ self, input_ids: torch.LongTensor, spkr_id: torch.Tensor, lang_id: torch.Tensor
+ ) -> Tuple[torch.Tensor]:
+ """
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`SeamlessM4TTextToUnitForConditionalGeneration`]. [What are input
+ IDs?](../glossary#input-ids)
+ spkr_id (`int`, *optional*):
+ The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
+ tgt_lang (`str`, *optional*):
+ The language id to use as target language for translation.
+ """
+ hidden_states = self.unit_embedding(input_ids).transpose(1, 2)
+ spkr = self.speaker_embedding(spkr_id).transpose(1, 2)
+ lang = self.language_embedding(lang_id).transpose(1, 2)
+
+ log_dur_pred = self.dur_predictor(hidden_states.transpose(1, 2))
+ dur_out = torch.clamp(torch.round((torch.exp(log_dur_pred) - 1)).long(), min=1)
+ # B x C x T
+ if hidden_states.size(0) == 1:
+ hidden_states = torch.repeat_interleave(hidden_states, dur_out.view(-1), dim=2)
+ else:
+ # if batched sample, need to interleave per sample, and pad -> loss of parallelism
+ if hidden_states.shape[0] > 1 and self.training:
+ logger.warning(
+ """`self.training=True` and you use batching. You lose parallelism during the hifigan
+ forward pass because the samples are interleaved."""
+ )
+ hidden_states = [
+ torch.repeat_interleave(hidden_state, duration, dim=-1).transpose(0, 1)
+ for (hidden_state, duration) in zip(hidden_states, dur_out)
+ ]
+
+ hidden_states = nn.utils.rnn.pad_sequence(hidden_states, batch_first=True).transpose(1, 2)
+
+ spkr = spkr.repeat(1, 1, hidden_states.shape[-1])
+ lang = lang.repeat(1, 1, hidden_states.shape[-1])
+ hidden_states = torch.cat([lang, hidden_states, spkr], dim=1)
+
+ hidden_states = self.hifi_gan(hidden_states)
+
+ unit_lengths = self._get_dur_output_lengths(input_ids, dur_out)
+ lengths = self._get_output_hifigan_lengths(unit_lengths)
+
+ return hidden_states, lengths
+
+ def _init_weights(self, module):
+ """Initialize the weights."""
+ if isinstance(module, (nn.Linear, nn.Conv1d, nn.ConvTranspose1d)):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+ def apply_weight_norm(self):
+ nn.utils.weight_norm(self.hifi_gan.conv_pre)
+ for layer in self.hifi_gan.upsampler:
+ nn.utils.weight_norm(layer)
+ for layer in self.hifi_gan.resblocks:
+ layer.apply_weight_norm()
+ nn.utils.weight_norm(self.hifi_gan.conv_post)
+
+ def remove_weight_norm(self):
+ nn.utils.remove_weight_norm(self.hifi_gan.conv_pre)
+ for layer in self.hifi_gan.upsampler:
+ nn.utils.remove_weight_norm(layer)
+ for layer in self.hifi_gan.resblocks:
+ layer.remove_weight_norm()
+ nn.utils.remove_weight_norm(self.hifi_gan.conv_post)
+
+
+############ WHOLE MODEL related code ################
+
+
+@add_start_docstrings(
+ "The text-to-text SeamlessM4T Model transformer which can be used for T2TT.",
+ SEAMLESS_M4T_START_DOCSTRING,
+)
+class SeamlessM4TForTextToText(SeamlessM4TPreTrainedModel):
+ _keys_to_ignore_on_load_missing = ["speech_encoder", "t2u_model", "vocoder"]
+ main_input_name = "input_ids"
+
+ _tied_weights_keys = [
+ "lm_head.weight",
+ "text_encoder.embed_tokens.weight",
+ "text_decoder.embed_tokens.weight",
+ ]
+
+ def __init__(self, config: SeamlessM4TConfig):
+ super().__init__(config)
+
+ self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
+
+ self.text_encoder = SeamlessM4TEncoder(config, self.shared)
+ self.text_decoder = SeamlessM4TDecoder(config, self.shared)
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_encoder(self):
+ return self.text_encoder
+
+ def get_decoder(self):
+ return self.text_decoder
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def get_input_embeddings(self):
+ return self.text_decoder.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.text_encoder.embed_tokens = value
+ self.text_decoder.embed_tokens = value
+ self.shared = value
+
+ def _tie_weights(self):
+ if self.config.tie_word_embeddings:
+ self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared)
+ self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
+ self._tie_or_clone_weights(self.lm_head, self.shared)
+
+ @add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs,
+ ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
+ if labels is not None:
+ if use_cache:
+ logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
+ use_cache = False
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ decoder_input_ids = shift_tokens_right(
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
+ )
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if encoder_outputs is None:
+ encoder_outputs = self.text_encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ encoder_attention_mask = attention_mask
+
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
+ decoder_outputs = self.text_decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ lm_logits = self.lm_head(decoder_outputs[0])
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ labels = labels.to(lm_logits.device)
+ masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ outputs = decoder_outputs + encoder_outputs
+ output = (lm_logits,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return Seq2SeqLMOutput(
+ loss=masked_lm_loss,
+ logits=lm_logits,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+ def generate(
+ self,
+ input_ids=None,
+ tgt_lang=None,
+ generation_config=None,
+ logits_processor=None,
+ stopping_criteria=None,
+ prefix_allowed_tokens_fn=None,
+ synced_gpus=False,
+ **kwargs,
+ ):
+ """
+ Generates sequences of token ids.
+
+
+
+ Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
+ model's default generation configuration. You can override any `generation_config` by passing the corresponding
+ parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
+
+ For an overview of generation strategies and code examples, check out the [following
+ guide](./generation_strategies).
+
+
+
+ Parameters:
+ input_ids (`torch.Tensor` of varying shape depending on the modality, *optional*):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
+ [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ tgt_lang (`str`, *optional*):
+ The language to use as target language for translation.
+ generation_config (`~generation.GenerationConfig`, *optional*):
+ The generation configuration to be used as base parametrization for the generation call. `**kwargs`
+ passed to generate matching the attributes of `generation_config` will override them. If
+ `generation_config` is not provided, the default will be used, which had the following loading
+ priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
+ configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
+ default values, whose documentation should be checked to parameterize generation.
+ logits_processor (`LogitsProcessorList`, *optional*):
+ Custom logits processors that complement the default logits processors built from arguments and
+ generation config. If a logit processor is passed that is already created with the arguments or a
+ generation config an error is thrown. This feature is intended for advanced users.
+ stopping_criteria (`StoppingCriteriaList`, *optional*):
+ Custom stopping criteria that complement the default stopping criteria built from arguments and a
+ generation config. If a stopping criteria is passed that is already created with the arguments or a
+ generation config an error is thrown. This feature is intended for advanced users.
+ prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
+ If provided, this function constraints the beam search to allowed tokens only at each step. If not
+ provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
+ `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
+ on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
+ for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
+ Retrieval](https://arxiv.org/abs/2010.00904).
+ synced_gpus (`bool`, *optional*, defaults to `False`):
+ Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
+ kwargs (`Dict[str, Any]`, *optional*):
+ Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
+ forwarded to the `forward` function of the model.
+
+ Return:
+ [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
+ or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. The possible
+ [`~utils.ModelOutput`] types are:
+ - [`~generation.GenerateEncoderDecoderOutput`],
+ - [`~generation.GenerateBeamEncoderDecoderOutput`]
+ """
+ # prepare text_decoder_input_ids
+ text_decoder_input_ids = kwargs.pop("decoder_input_ids", None)
+ # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
+ if tgt_lang is not None:
+ batch_size = len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds"))
+
+ if hasattr(self.generation_config, "text_decoder_lang_to_code_id"):
+ # also accept __xxx__
+ tgt_lang = tgt_lang.replace("__", "")
+ if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id:
+ raise ValueError(
+ f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in
+ {', '.join(self.generation_config.text_decoder_lang_to_code_id.keys())}"""
+ )
+ # tgt_lang gets priority over decoder input ids
+ text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
+ text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
+ else:
+ raise ValueError(
+ """This model generation config doesn't have a `text_decoder_lang_to_code_id` key which maps
+ the target language to the right token id. Make sure to load the right generation config."""
+ )
+ else:
+ # only a warning, otherwise errors appear in the tests
+ logger.warning(
+ """You must either specify a `tgt_lang` or pass a correct `text_decoder_input_ids` to get
+ a correct generation, otherwise the generation will probably make no sense."""
+ )
+
+ return super().generate(
+ input_ids,
+ generation_config,
+ logits_processor,
+ stopping_criteria,
+ prefix_allowed_tokens_fn,
+ synced_gpus,
+ decoder_input_ids=text_decoder_input_ids,
+ **kwargs,
+ )
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past is used
+ if past_key_values is not None:
+ decoder_input_ids = decoder_input_ids[:, -1:]
+
+ return {
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
+ "encoder_outputs": encoder_outputs,
+ "past_key_values": past_key_values,
+ "decoder_input_ids": decoder_input_ids,
+ "attention_mask": attention_mask,
+ "use_cache": use_cache,
+ }
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ # cached cross_attention states don't have to be reordered -> they are always the same
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
+ )
+ return reordered_past
+
+
+@add_start_docstrings(
+ "The speech-to-text SeamlessM4T Model transformer which can be used for S2TT.",
+ SEAMLESS_M4T_START_DOCSTRING,
+)
+class SeamlessM4TForSpeechToText(SeamlessM4TPreTrainedModel):
+ _keys_to_ignore_on_load_missing = ["text_decoder", "t2u_model", "vocoder"]
+ main_input_name = "input_features"
+
+ _tied_weights_keys = [
+ "lm_head.weight",
+ "text_decoder.embed_tokens.weight",
+ ]
+
+ def __init__(self, config: SeamlessM4TConfig):
+ super().__init__(config)
+
+ self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
+ self.speech_encoder = SeamlessM4TSpeechEncoder(config)
+ self.text_decoder = SeamlessM4TDecoder(config, self.shared)
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_encoder(self):
+ return self.speech_encoder
+
+ def get_decoder(self):
+ return self.text_decoder
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def get_input_embeddings(self):
+ return self.text_decoder.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.text_decoder.embed_tokens = value
+
+ def _tie_weights(self):
+ if self.config.tie_word_embeddings:
+ self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
+ self._tie_or_clone_weights(self.lm_head, self.shared)
+
+ @add_start_docstrings_to_model_forward(M4T_SPEECH_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_features: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs,
+ ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
+ if labels is not None:
+ if use_cache:
+ logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
+ use_cache = False
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ decoder_input_ids = shift_tokens_right(
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
+ )
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if encoder_outputs is None:
+ encoder_outputs = self.speech_encoder(
+ input_features=input_features,
+ attention_mask=attention_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ encoder_attention_mask = attention_mask
+ if attention_mask is not None:
+ sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
+ encoder_outputs[0].device
+ )
+ encoder_attention_mask = _compute_new_attention_mask(
+ hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths
+ )
+
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
+ decoder_outputs = self.text_decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ lm_logits = self.lm_head(decoder_outputs[0])
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ labels = labels.to(lm_logits.device)
+ masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ outputs = decoder_outputs + encoder_outputs
+ output = (lm_logits,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return Seq2SeqLMOutput(
+ loss=masked_lm_loss,
+ logits=lm_logits,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+ def generate(
+ self,
+ input_features=None,
+ tgt_lang=None,
+ generation_config=None,
+ logits_processor=None,
+ stopping_criteria=None,
+ prefix_allowed_tokens_fn=None,
+ synced_gpus=False,
+ **kwargs,
+ ):
+ """
+ Generates sequences of token ids.
+
+
+
+ Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
+ model's default generation configuration. You can override any `generation_config` by passing the corresponding
+ parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
+
+ For an overview of generation strategies and code examples, check out the [following
+ guide](./generation_strategies).
+
+
+
+ Parameters:
+ input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
+ Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
+ [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
+
+ tgt_lang (`str`, *optional*):
+ The language to use as target language for translation.
+ generation_config (`~generation.GenerationConfig`, *optional*):
+ The generation configuration to be used as base parametrization for the generation call. `**kwargs`
+ passed to generate matching the attributes of `generation_config` will override them. If
+ `generation_config` is not provided, the default will be used, which had the following loading
+ priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
+ configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
+ default values, whose documentation should be checked to parameterize generation.
+ logits_processor (`LogitsProcessorList`, *optional*):
+ Custom logits processors that complement the default logits processors built from arguments and
+ generation config. If a logit processor is passed that is already created with the arguments or a
+ generation config an error is thrown. This feature is intended for advanced users.
+ stopping_criteria (`StoppingCriteriaList`, *optional*):
+ Custom stopping criteria that complement the default stopping criteria built from arguments and a
+ generation config. If a stopping criteria is passed that is already created with the arguments or a
+ generation config an error is thrown. This feature is intended for advanced users.
+ prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
+ If provided, this function constraints the beam search to allowed tokens only at each step. If not
+ provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
+ `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
+ on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
+ for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
+ Retrieval](https://arxiv.org/abs/2010.00904).
+ synced_gpus (`bool`, *optional*, defaults to `False`):
+ Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
+ kwargs (`Dict[str, Any]`, *optional*):
+ Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
+ forwarded to the `forward` function of the model.
+
+ Return:
+ [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
+ or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. The possible
+ [`~utils.ModelOutput`] types are:
+ - [`~generation.GenerateEncoderDecoderOutput`],
+ - [`~generation.GenerateBeamEncoderDecoderOutput`]
+ """
+ text_decoder_input_ids = kwargs.pop("decoder_input_ids", None)
+ # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
+ if tgt_lang is not None:
+ inputs = kwargs.get("input_embeds") if input_features is None else input_features
+ inputs = (
+ inputs
+ if inputs is not None
+ else kwargs.get("encoder_outputs", {"last_hidden_state": None})["last_hidden_state"]
+ )
+ batch_size = len(inputs)
+
+ if hasattr(self.generation_config, "text_decoder_lang_to_code_id"):
+ # also accept __xxx__
+ tgt_lang = tgt_lang.replace("__", "")
+ if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id:
+ raise ValueError(
+ f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in
+ {', '.join(self.generation_config.text_decoder_lang_to_code_id.keys())}"""
+ )
+ # tgt_lang gets priority over decoder input ids
+ text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
+ text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
+ else:
+ raise ValueError(
+ """This model generation config doesn't have a `text_decoder_lang_to_code_id` key which maps
+ the target language to the right token id. Make sure to load the right generation config."""
+ )
+ else:
+ # only a warning, otherwise errors appear in the tests
+ logger.warning(
+ """You must either specify a `tgt_lang` or pass a correct `text_decoder_input_ids` to get
+ a correct generation, otherwise the generation will probably make no sense."""
+ )
+ return super().generate(
+ input_features,
+ generation_config,
+ logits_processor,
+ stopping_criteria,
+ prefix_allowed_tokens_fn,
+ synced_gpus,
+ decoder_input_ids=text_decoder_input_ids,
+ **kwargs,
+ )
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past is used
+ if past_key_values is not None:
+ decoder_input_ids = decoder_input_ids[:, -1:]
+
+ return {
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
+ "encoder_outputs": encoder_outputs,
+ "past_key_values": past_key_values,
+ "decoder_input_ids": decoder_input_ids,
+ "attention_mask": attention_mask,
+ "use_cache": use_cache,
+ }
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ # cached cross_attention states don't have to be reordered -> they are always the same
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
+ )
+ return reordered_past
+
+
+@add_start_docstrings(
+ "The text-to-speech SeamlessM4T Model transformer which can be used for T2ST.",
+ SEAMLESS_M4T_START_DOCSTRING,
+)
+class SeamlessM4TForTextToSpeech(SeamlessM4TPreTrainedModel):
+ _keys_to_ignore_on_load_missing = ["speech_encoder"]
+ main_input_name = "input_ids"
+
+ _tied_weights_keys = [
+ "lm_head.weight",
+ "text_encoder.embed_tokens.weight",
+ "text_decoder.embed_tokens.weight",
+ ]
+
+ def __init__(self, config: SeamlessM4TConfig):
+ super().__init__(config)
+
+ self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
+
+ self.text_encoder = SeamlessM4TEncoder(config, self.shared)
+ self.text_decoder = SeamlessM4TDecoder(config, self.shared)
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ self.t2u_model = SeamlessM4TTextToUnitForConditionalGeneration(config)
+ self.vocoder = SeamlessM4TCodeHifiGan(config)
+
+ def get_encoder(self):
+ return self.text_encoder
+
+ def get_decoder(self):
+ return self.text_decoder
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def get_input_embeddings(self):
+ return self.text_decoder.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.text_encoder.embed_tokens = value
+ self.text_decoder.embed_tokens = value
+ self.shared = value
+
+ def _tie_weights(self):
+ if self.config.tie_word_embeddings:
+ self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared)
+ self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
+ self._tie_or_clone_weights(self.lm_head, self.shared)
+
+ @add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
+ if labels is not None:
+ if use_cache:
+ logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
+ use_cache = False
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ decoder_input_ids = shift_tokens_right(
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
+ )
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if encoder_outputs is None:
+ # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
+ logger.warning(
+ "This is the same forward method as `SeamlessM4TForTextToText`."
+ "It doesn't use the text-to-unit model `SeamlessM4TTextToUnitForConditionalGeneration`."
+ "If you want to generate speech, use the `.generate` method."
+ )
+ encoder_outputs = self.text_encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ encoder_attention_mask = attention_mask
+
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
+ decoder_outputs = self.text_decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ lm_logits = self.lm_head(decoder_outputs[0])
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ labels = labels.to(lm_logits.device)
+ masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ outputs = decoder_outputs + encoder_outputs
+ output = (lm_logits,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return Seq2SeqLMOutput(
+ loss=masked_lm_loss,
+ logits=lm_logits,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+ @torch.no_grad()
+ def generate(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ return_intermediate_token_ids: Optional[bool] = None,
+ tgt_lang: Optional[str] = None,
+ spkr_id: Optional[int] = 0,
+ **kwargs,
+ ) -> Union[torch.Tensor, SeamlessM4TGenerationOutput]:
+ """
+ Generates translated audio waveforms.
+
+
+
+ This method successively calls the `.generate` function of two different sub-models. You can specify keyword
+ arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments
+ that will be passed to one of them.
+
+ For example, calling `.generate(input_ids, num_beams=4, speech_do_sample=True)` will successively perform
+ beam-search decoding on the text model, and multinomial beam-search sampling on the speech model.
+
+ For an overview of generation strategies and code examples, check out the [following
+ guide](./generation_strategies).
+
+
+
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
+ [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ return_intermediate_token_ids (`bool`, *optional*):
+ If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want
+ to get translated text alongside the audio.
+ tgt_lang (`str`, *optional*):
+ The language to use as target language for translation.
+ spkr_id (`int`, *optional*, defaults to 0):
+ The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
+ kwargs (*optional*):
+ Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword
+ arguments are of two types:
+
+ - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
+ except for `decoder_input_ids` which will only be passed through the text components.
+ - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
+ text model and speech model respectively. It has the priority over the keywords without a prefix.
+
+ This means you can, for example, specify a generation strategy for one generation but not for the
+ other.
+
+
+ Returns:
+ `Union[SeamlessM4TGenerationOutput, Tuple[Tensor]]`:
+ - If `return_intermediate_token_ids`, returns [`SeamlessM4TGenerationOutput`].
+ - If not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size,
+ sequence_length)`and and `waveform_lengths` which gives the length of each sample.
+ """
+ batch_size = len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds"))
+
+ if tgt_lang is None:
+ raise ValueError("You must specify a `tgt_lang` to generate translated speech.")
+ else:
+ # also accept __xxx__
+ tgt_lang = tgt_lang.replace("__", "")
+ for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]:
+ lang_code_to_id = getattr(self.generation_config, key, None)
+ if lang_code_to_id is None:
+ raise ValueError(
+ f"""This model generation config doesn't have a `{key}` key which maps the target language
+ to the right token id. Make sure to load the right generation config."""
+ )
+ elif tgt_lang not in lang_code_to_id:
+ raise ValueError(
+ f"""`tgt_lang={tgt_lang}` is not supported by this model.
+ Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
+ more languages for text translation than for speech synthesis."""
+ )
+
+ kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs)
+ kwargs_text["output_hidden_states"] = True
+ kwargs_text["return_dict_in_generate"] = True
+ kwargs_text["output_scores"] = True
+
+ text_decoder_input_ids = kwargs_text.get("decoder_input_ids")
+
+ # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
+ text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
+ text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
+
+ kwargs_text["decoder_input_ids"] = text_decoder_input_ids
+
+ # first generation
+ text_generation_output = super().generate(input_ids, **kwargs_text)
+ sequences = text_generation_output.sequences
+
+ # prepare second generation
+ num_return_sequences = len(sequences) // batch_size
+ attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None))
+
+ encoder_hidden_states = text_generation_output.encoder_hidden_states[-1]
+
+ # take care of num_return_sequences
+ # take most probable hidden states per batch of return_sequences
+ # (batch_size*num_return_sequences, ...) -> (batch_size,...)
+ if num_return_sequences > 1:
+ idx_most_probable_sequences_per_batch = text_generation_output.sequences_scores.view(batch_size, -1)
+ idx_most_probable_sequences_per_batch = idx_most_probable_sequences_per_batch.argmax(-1)
+ idx_most_probable_sequences_per_batch = (
+ idx_most_probable_sequences_per_batch + torch.arange(batch_size).to(self.device) * num_return_sequences
+ )
+ sequences = sequences[idx_most_probable_sequences_per_batch]
+
+ # get decoder last hidden state - must do a pass through the text decoder
+ t2u_input_embeds = self.text_decoder(
+ input_ids=sequences,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=attention_mask,
+ ).last_hidden_state
+
+ pad_token_id = self.generation_config.pad_token_id
+
+ # Compute new attention mask
+ seq_lens = (sequences != pad_token_id).int().sum(1)
+ t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens)
+ kwargs_speech["attention_mask"] = t2u_model_attention_mask
+
+ # Compute t2u decoder_input_ids
+ t2u_decoder_input_ids = kwargs_speech.get("decoder_input_ids")
+ t2u_tgt_lang_id = self.generation_config.t2u_lang_code_to_id.get(tgt_lang)
+ t2u_decoder_input_ids = torch.tensor([[self.config.t2u_eos_token_id, t2u_tgt_lang_id]] * batch_size).to(
+ self.device
+ )
+ kwargs_speech["decoder_input_ids"] = t2u_decoder_input_ids
+ # second generation
+ unit_ids = self.t2u_model.generate(inputs_embeds=t2u_input_embeds, **kwargs_speech)
+ output_unit_ids = unit_ids.detach().clone()
+
+ # get rid of t2u_decoder_input_ids
+ unit_ids = unit_ids[:, kwargs_speech["decoder_input_ids"].shape[1] :]
+ # replace eos per pad
+ unit_ids[unit_ids == self.config.t2u_eos_token_id] = self.config.t2u_pad_token_id
+ # offset of control symbols
+ unit_ids = torch.where(
+ unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset
+ )
+
+ vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang)
+ vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device)
+
+ spkr_id = torch.tensor([[spkr_id]] * len(unit_ids)).to(self.device)
+
+ waveform, waveform_lengths = self.vocoder(input_ids=unit_ids, spkr_id=spkr_id, lang_id=vocoder_tgt_lang_id)
+
+ if return_intermediate_token_ids:
+ return SeamlessM4TGenerationOutput(
+ waveform=waveform,
+ waveform_lengths=waveform_lengths,
+ sequences=sequences,
+ unit_sequences=output_unit_ids,
+ )
+
+ return waveform, waveform_lengths
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past is used
+ if past_key_values is not None:
+ decoder_input_ids = decoder_input_ids[:, -1:]
+
+ return {
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
+ "encoder_outputs": encoder_outputs,
+ "past_key_values": past_key_values,
+ "decoder_input_ids": decoder_input_ids,
+ "attention_mask": attention_mask,
+ "use_cache": use_cache,
+ }
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ # cached cross_attention states don't have to be reordered -> they are always the same
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
+ )
+ return reordered_past
+
+
+@add_start_docstrings(
+ "The speech-to-speech SeamlessM4T Model transformer which can be used for S2ST.",
+ SEAMLESS_M4T_START_DOCSTRING,
+)
+class SeamlessM4TForSpeechToSpeech(SeamlessM4TPreTrainedModel):
+ _keys_to_ignore_on_load_missing = ["text_encoder"]
+ main_input_name = "input_features"
+
+ _tied_weights_keys = [
+ "lm_head.weight",
+ "text_decoder.embed_tokens.weight",
+ ]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
+ self.speech_encoder = SeamlessM4TSpeechEncoder(config)
+ self.text_decoder = SeamlessM4TDecoder(config, self.shared)
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ self.t2u_model = SeamlessM4TTextToUnitForConditionalGeneration(config)
+ self.vocoder = SeamlessM4TCodeHifiGan(config)
+
+ def get_encoder(self):
+ return self.speech_encoder
+
+ def get_decoder(self):
+ return self.text_decoder
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def get_input_embeddings(self):
+ return self.text_decoder.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.text_decoder.embed_tokens = value
+
+ def _tie_weights(self):
+ if self.config.tie_word_embeddings:
+ self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
+ self._tie_or_clone_weights(self.lm_head, self.shared)
+
+ @add_start_docstrings_to_model_forward(M4T_SPEECH_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_features: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs,
+ ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
+ if labels is not None:
+ if use_cache:
+ logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
+ use_cache = False
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ decoder_input_ids = shift_tokens_right(
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
+ )
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if encoder_outputs is None:
+ # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
+ logger.warning(
+ "This is the same forward method as `SeamlessM4TForSpeechToText`. It doesn't use `self.t2u_model`."
+ "If you want to generate speech, use the `generate` method."
+ )
+
+ encoder_outputs = self.speech_encoder(
+ input_features=input_features,
+ attention_mask=attention_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ encoder_attention_mask = attention_mask
+ if attention_mask is not None:
+ sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
+ encoder_outputs[0].device
+ )
+ encoder_attention_mask = _compute_new_attention_mask(
+ hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths
+ )
+
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
+ decoder_outputs = self.text_decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ lm_logits = self.lm_head(decoder_outputs[0])
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ labels = labels.to(lm_logits.device)
+ masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ outputs = decoder_outputs + encoder_outputs
+ output = (lm_logits,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return Seq2SeqLMOutput(
+ loss=masked_lm_loss,
+ logits=lm_logits,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+ @torch.no_grad()
+ def generate(
+ self,
+ input_features: Optional[torch.Tensor] = None,
+ return_intermediate_token_ids: Optional[bool] = None,
+ tgt_lang: Optional[str] = None,
+ spkr_id: Optional[int] = 0,
+ **kwargs,
+ ) -> Union[torch.Tensor, SeamlessM4TGenerationOutput]:
+ """
+ Generates translated audio waveforms.
+
+
+
+ This method successively calls the `.generate` function of two different sub-models. You can specify keyword
+ arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments
+ that will be passed to one of them.
+
+ For example, calling `.generate(input_features, num_beams=4, speech_do_sample=True)` will successively perform
+ beam-search decoding on the text model, and multinomial beam-search sampling on the speech model.
+
+ For an overview of generation strategies and code examples, check out the [following
+ guide](./generation_strategies).
+
+
+
+ Args:
+ input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
+ Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
+ [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
+ return_intermediate_token_ids (`bool`, *optional*):
+ If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want
+ to get translated text alongside the audio.
+ tgt_lang (`str`, *optional*):
+ The language to use as target language for translation.
+ spkr_id (`int`, *optional*, defaults to 0):
+ The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
+
+ kwargs (*optional*):
+ Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword
+ arguments are of two types:
+
+ - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
+ except for `decoder_input_ids` which will only be passed through the text components.
+ - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
+ text model and speech model respectively. It has the priority over the keywords without a prefix.
+
+ This means you can, for example, specify a generation strategy for one generation but not for the
+ other.
+
+
+ Returns:
+ `Union[SeamlessM4TGenerationOutput, Tuple[Tensor]]`:
+ - If `return_intermediate_token_ids`, returns [`SeamlessM4TGenerationOutput`].
+ - If not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size,
+ sequence_length)`and and `waveform_lengths` which gives the length of each sample.
+ """
+ batch_size = len(input_features) if input_features is not None else len(kwargs.get("inputs_embeds"))
+
+ if tgt_lang is None:
+ raise ValueError("You must specify a `tgt_lang` to generate translated speech.")
+ else:
+ # also accept __xxx__
+ tgt_lang = tgt_lang.replace("__", "")
+ for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]:
+ lang_code_to_id = getattr(self.generation_config, key, None)
+ if lang_code_to_id is None:
+ raise ValueError(
+ f"""This model generation config doesn't have a `{key}` key which maps the target language
+ to the right token id. Make sure to load the right generation config."""
+ )
+ elif tgt_lang not in lang_code_to_id:
+ raise ValueError(
+ f"""`tgt_lang={tgt_lang}` is not supported by this model.
+ Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
+ more languages for text translation than for speech synthesis."""
+ )
+
+ kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs)
+ kwargs_text["output_hidden_states"] = True
+ kwargs_text["return_dict_in_generate"] = True
+ kwargs_text["output_scores"] = True
+
+ text_decoder_input_ids = kwargs_text.get("decoder_input_ids")
+ # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
+ text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
+ text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
+
+ kwargs_text["decoder_input_ids"] = text_decoder_input_ids
+
+ # first generation
+ text_generation_output = super().generate(input_features, **kwargs_text)
+ sequences = text_generation_output.sequences
+
+ # prepare second generation
+ num_return_sequences = len(sequences) // batch_size
+ attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None))
+
+ # get last_hidden_state from encoder
+ encoder_hidden_states = self.speech_encoder(input_features=input_features, attention_mask=attention_mask)[0]
+
+ # input modality = speech so new attention mask for the decoder
+ if attention_mask is not None:
+ sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
+ encoder_hidden_states.device
+ )
+ attention_mask = _compute_new_attention_mask(
+ hidden_states=encoder_hidden_states, seq_lens=sub_sampled_lengths
+ )
+
+ # take care of num_return_sequences
+ # take most probable hidden states per batch of return_sequences
+ # (batch_size*num_return_sequences, ...) -> (batch_size,...)
+ if num_return_sequences > 1:
+ idx_most_probable_sequences_per_batch = text_generation_output.sequences_scores.view(batch_size, -1)
+ idx_most_probable_sequences_per_batch = idx_most_probable_sequences_per_batch.argmax(-1)
+ idx_most_probable_sequences_per_batch = (
+ idx_most_probable_sequences_per_batch + torch.arange(batch_size).to(self.device) * num_return_sequences
+ )
+ sequences = sequences[idx_most_probable_sequences_per_batch]
+
+ # get decoder last hidden state - must do a pass through the text decoder
+ t2u_input_embeds = self.text_decoder(
+ input_ids=sequences,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=attention_mask,
+ ).last_hidden_state
+
+ pad_token_id = self.generation_config.pad_token_id
+
+ # Compute new attention mask
+ seq_lens = (sequences != pad_token_id).int().sum(1)
+ t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens)
+ kwargs_speech["attention_mask"] = t2u_model_attention_mask
+
+ # Compute t2u decoder_input_ids
+ t2u_decoder_input_ids = kwargs_speech.get("decoder_input_ids")
+ t2u_tgt_lang_id = self.generation_config.t2u_lang_code_to_id.get(tgt_lang)
+ t2u_decoder_input_ids = torch.tensor([[self.config.t2u_eos_token_id, t2u_tgt_lang_id]] * batch_size).to(
+ self.device
+ )
+ kwargs_speech["decoder_input_ids"] = t2u_decoder_input_ids
+
+ # second generation
+ unit_ids = self.t2u_model.generate(inputs_embeds=t2u_input_embeds, **kwargs_speech)
+ output_unit_ids = unit_ids.detach().clone()
+
+ # get rid of t2u_decoder_input_ids
+ unit_ids = unit_ids[:, kwargs_speech["decoder_input_ids"].shape[1] :]
+ # replace eos per pad
+ unit_ids[unit_ids == self.config.t2u_eos_token_id] = self.config.t2u_pad_token_id
+ # offset of control symbols
+ unit_ids = torch.where(
+ unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset
+ )
+
+ vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang)
+ vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device)
+
+ spkr_id = torch.tensor([[spkr_id]] * len(unit_ids)).to(self.device)
+
+ waveform, waveform_lengths = self.vocoder(input_ids=unit_ids, spkr_id=spkr_id, lang_id=vocoder_tgt_lang_id)
+
+ if return_intermediate_token_ids:
+ return SeamlessM4TGenerationOutput(
+ waveform=waveform,
+ waveform_lengths=waveform_lengths,
+ sequences=sequences,
+ unit_sequences=output_unit_ids,
+ )
+
+ return waveform, waveform_lengths
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ # cached cross_attention states don't have to be reordered -> they are always the same
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
+ )
+ return reordered_past
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past is used
+ if past_key_values is not None:
+ decoder_input_ids = decoder_input_ids[:, -1:]
+
+ return {
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
+ "encoder_outputs": encoder_outputs,
+ "past_key_values": past_key_values,
+ "decoder_input_ids": decoder_input_ids,
+ "attention_mask": attention_mask,
+ "use_cache": use_cache,
+ }
+
+
+@add_start_docstrings(
+ "The original SeamlessM4T Model transformer which can be used for every tasks available (S2ST, S2TT, T2TT, T2ST).",
+ SEAMLESS_M4T_START_DOCSTRING,
+ """
+ current_modality (`str`, *optional*, defaults to `"text"`):
+ Default modality. Used to initialize the model.
+ """,
+)
+class SeamlessM4TModel(SeamlessM4TPreTrainedModel):
+ _tied_weights_keys = [
+ "lm_head.weight",
+ "text_encoder.embed_tokens.weight",
+ "text_decoder.embed_tokens.weight",
+ ]
+
+ def __init__(self, config, current_modality="text"):
+ super().__init__(config)
+
+ self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
+
+ self.text_encoder = SeamlessM4TEncoder(config, self.shared)
+ self.speech_encoder = SeamlessM4TSpeechEncoder(config)
+ self.text_decoder = SeamlessM4TDecoder(config, self.shared)
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ self.current_modality = current_modality
+ if current_modality == "speech":
+ self.main_input_name = "input_features"
+
+ # these models already call post_init in their initialization
+ self.t2u_model = SeamlessM4TTextToUnitForConditionalGeneration(config)
+ self.vocoder = SeamlessM4TCodeHifiGan(config)
+
+ def set_modality(self, modality="text"):
+ if modality == "text":
+ self.main_input_name = "input_ids"
+ self.current_modality = "text"
+ elif modality == "speech":
+ self.main_input_name = "input_features"
+ self.current_modality = "speech"
+ else:
+ raise ValueError(f"`modality={modality}` is not a valid modality. It must be `text` or `speech`.")
+
+ def get_encoder(self):
+ if self.current_modality == "text":
+ return self.text_encoder
+ else:
+ return self.speech_encoder
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def get_input_embeddings(self):
+ return self.text_decoder.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.text_encoder.embed_tokens = value
+ self.text_decoder.embed_tokens = value
+ self.shared = value
+
+ def _tie_weights(self):
+ if self.config.tie_word_embeddings:
+ self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared)
+ self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
+ self._tie_or_clone_weights(self.lm_head, self.shared)
+
+ @add_start_docstrings_to_model_forward(M4T_MODEL_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ input_features: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs,
+ ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if labels is not None:
+ if use_cache:
+ logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
+ use_cache = False
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ decoder_input_ids = shift_tokens_right(
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
+ )
+
+ if input_ids is None and input_features is None and inputs_embeds is None and encoder_outputs is None:
+ raise ValueError(
+ "`input_ids`,`input_features`, `inputs_embeds` and `encoder_outputs` are all empty. Make sure at least one of them is not."
+ )
+ elif input_features is not None:
+ if input_ids is not None:
+ logger.warning(
+ "`input_ids` is not `None` but `input_features` has been given."
+ "`input_features` will be used in priority through the `speech_encoder`. "
+ "Make sure that `input_features` and `input_ids` are mutually exclusive."
+ )
+
+ if inputs_embeds is not None:
+ logger.warning(
+ "`inputs_embeds` is not `None` but `input_features` has been given."
+ "`input_features` will be used in priority through `speech_encoder`. "
+ "`inputs_embeds` will be ignored."
+ )
+
+ # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
+ logger.warning(
+ "This calls the same method `forward` as `SeamlessM4TForTextToText` and `SeamlessM4TForSpeechToText`"
+ "depending on the input modality. If you want to generate speech, use the `generate` method."
+ )
+
+ self.set_modality("speech")
+
+ encoder_outputs = self.speech_encoder(
+ input_features=input_features,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ elif input_ids is not None or inputs_embeds is not None:
+ # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
+ logger.warning(
+ "This calls the same method `forward` as `SeamlessM4TForTextToText` and `SeamlessM4TForSpeechToText`"
+ "depending on the input modality. If you want to generate speech, use the `generate` method."
+ )
+ self.set_modality("text")
+ encoder_outputs = self.text_encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ encoder_attention_mask = attention_mask
+ # input modality = speech so new attention mask
+ if self.current_modality == "speech" and attention_mask is not None:
+ sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
+ encoder_outputs[0].device
+ )
+ encoder_attention_mask = _compute_new_attention_mask(
+ hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths
+ )
+
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
+ decoder_outputs = self.text_decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ lm_logits = self.lm_head(decoder_outputs[0])
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ labels = labels.to(lm_logits.device)
+ masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ outputs = decoder_outputs + encoder_outputs
+ output = (lm_logits,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return Seq2SeqLMOutput(
+ loss=masked_lm_loss,
+ logits=lm_logits,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+ @torch.no_grad()
+ def generate(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ input_features: Optional[torch.Tensor] = None,
+ return_intermediate_token_ids: Optional[bool] = None,
+ tgt_lang: Optional[str] = None,
+ spkr_id: Optional[int] = 0,
+ generate_speech: Optional[bool] = True,
+ **kwargs,
+ ) -> Union[torch.Tensor, SeamlessM4TGenerationOutput]:
+ """
+ Generates translated token ids and/or translated audio waveforms.
+
+
+
+ This method successively calls the `.generate` function of two different sub-models. You can specify keyword
+ arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments
+ that will be passed to one of them.
+
+ For example, calling `.generate(input_ids=input_ids, num_beams=4, speech_do_sample=True)` will successively
+ perform beam-search decoding on the text model, and multinomial beam-search sampling on the speech model.
+
+ For an overview of generation strategies and code examples, check out the [following
+ guide](./generation_strategies).
+
+
+
+
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
+ [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`, *optional*):
+ Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
+ [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
+ return_intermediate_token_ids (`bool`, *optional*):
+ If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want
+ to get translated text alongside the audio. Note that if `generate_speech=True`, this parameter will be
+ ignored.
+ tgt_lang (`str`, *optional*):
+ The language to use as target language for translation.
+ spkr_id (`int`, *optional*, defaults to 0):
+ The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
+ generate_speech (`bool`, *optional*, defaults to `True`):
+ If `False`, will only returns the text tokens and won't generate speech.
+
+ kwargs (*optional*):
+ Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword
+ arguments are of two types:
+
+ - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
+ except for `decoder_input_ids` which will only be passed through the text components.
+ - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
+ text model and speech model respectively. It has the priority over the keywords without a prefix.
+
+ This means you can, for example, specify a generation strategy for one generation but not for the
+ other.
+
+ Returns:
+ `Union[SeamlessM4TGenerationOutput, Tuple[Tensor], ModelOutput]`:
+ - If `generate_speech` and `return_intermediate_token_ids`, returns [`SeamlessM4TGenerationOutput`].
+ - If `generate_speech` and not `return_intermediate_token_ids`, returns a tuple composed of waveforms of
+ shape `(batch_size, sequence_length)`and and `waveform_lengths` which gives the length of each sample.
+ - If `generate_speech=False`, it will returns `ModelOutput`.
+ """
+ if input_ids is None and input_features is None and kwargs.get("inputs_embeds", None) is None:
+ raise ValueError(
+ "`input_ids`,`input_features` and `inputs_embeds` are all empty. Make sure at least one of them is not."
+ )
+
+ if generate_speech and tgt_lang is None:
+ raise ValueError("You must specify a `tgt_lang` to generate translated speech.")
+
+ if tgt_lang is not None:
+ # also accept __xxx__
+ tgt_lang = tgt_lang.replace("__", "")
+ for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]:
+ lang_code_to_id = getattr(self.generation_config, key, None)
+ if lang_code_to_id is None:
+ raise ValueError(
+ f"""This model generation config doesn't have a `{key}` key which maps the target language
+ to the right token id. Make sure to load the right generation config."""
+ )
+ elif tgt_lang not in lang_code_to_id:
+ raise ValueError(
+ f"""`tgt_lang={tgt_lang}` is not supported by this model.
+ Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
+ more languages for text translation than for speech synthesis."""
+ )
+
+ batch_size = (
+ len(input_features)
+ if input_features is not None
+ else (len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds")))
+ )
+
+ kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs)
+ kwargs_text["output_hidden_states"] = True
+ kwargs_text["return_dict_in_generate"] = True
+ kwargs_text["output_scores"] = True
+
+ text_decoder_input_ids = kwargs_text.get("decoder_input_ids")
+ # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
+ if tgt_lang is not None:
+ # tgt_lang gets priority over decoder input ids
+ text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
+ text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
+
+ kwargs_text["decoder_input_ids"] = text_decoder_input_ids
+
+ # first generation
+ if input_features is not None:
+ self.set_modality("speech")
+ if input_ids is not None:
+ logger.warning(
+ "`input_features` and `input_ids` are both non empty. `input_features` will be used in priority "
+ "through the speech encoder. Make sure `input_features=None` if you want to use the text encoder."
+ )
+ text_generation_output = super().generate(input_features=input_features, **kwargs_text)
+ else:
+ self.set_modality("text")
+ text_generation_output = super().generate(input_ids=input_ids, input_features=None, **kwargs_text)
+ sequences = text_generation_output.sequences
+
+ if not generate_speech:
+ return text_generation_output
+
+ # prepare second generation
+ num_return_sequences = len(sequences) // batch_size
+ attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None))
+
+ # get encoder last hidden states
+ if self.current_modality == "speech":
+ # get last_hidden_state from encoder - must do a pass through the speech encoder
+ encoder_hidden_states = self.speech_encoder(
+ input_features=input_features, attention_mask=attention_mask
+ ).last_hidden_state
+
+ # input modality = speech so new attention mask for the decoder
+ if attention_mask is not None:
+ sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
+ encoder_hidden_states.device
+ )
+ attention_mask = _compute_new_attention_mask(
+ hidden_states=encoder_hidden_states, seq_lens=sub_sampled_lengths
+ )
+ else:
+ encoder_hidden_states = text_generation_output.encoder_hidden_states[-1]
+
+ # take care of num_return_sequences
+ # take most probable hidden states per batch of return_sequences
+ # (batch_size*num_return_sequences, ...) -> (batch_size,...)
+ if num_return_sequences > 1:
+ idx_most_probable_sequences_per_batch = text_generation_output.sequences_scores.view(batch_size, -1)
+ idx_most_probable_sequences_per_batch = idx_most_probable_sequences_per_batch.argmax(-1)
+ idx_most_probable_sequences_per_batch = (
+ idx_most_probable_sequences_per_batch + torch.arange(batch_size).to(self.device) * num_return_sequences
+ )
+ sequences = sequences[idx_most_probable_sequences_per_batch]
+
+ # get decoder last hidden state - must do a pass through the text decoder
+ t2u_input_embeds = self.text_decoder(
+ input_ids=sequences,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=attention_mask,
+ ).last_hidden_state
+
+ pad_token_id = self.generation_config.pad_token_id
+
+ # Compute new attention mask
+ seq_lens = (sequences != pad_token_id).int().sum(1)
+ t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens)
+ kwargs_speech["attention_mask"] = t2u_model_attention_mask
+
+ # Compute t2u decoder_input_ids
+ t2u_decoder_input_ids = kwargs_speech.get("decoder_input_ids")
+ t2u_tgt_lang_id = self.generation_config.t2u_lang_code_to_id.get(tgt_lang)
+ t2u_decoder_input_ids = torch.tensor([[self.config.t2u_eos_token_id, t2u_tgt_lang_id]] * batch_size).to(
+ self.device
+ )
+ kwargs_speech["decoder_input_ids"] = t2u_decoder_input_ids
+
+ # second generation
+ unit_ids = self.t2u_model.generate(inputs_embeds=t2u_input_embeds, **kwargs_speech)
+ output_unit_ids = unit_ids.detach().clone()
+
+ # get rid of t2u_decoder_input_ids
+ unit_ids = unit_ids[:, kwargs_speech["decoder_input_ids"].shape[1] :]
+ # replace eos per pad
+ unit_ids[unit_ids == self.config.t2u_eos_token_id] = self.config.t2u_pad_token_id
+ # offset of control symbols
+ unit_ids = torch.where(
+ unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset
+ )
+
+ vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang)
+ vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device)
+
+ spkr_id = torch.tensor([[spkr_id]] * len(unit_ids)).to(self.device)
+
+ waveform, waveform_lengths = self.vocoder(input_ids=unit_ids, spkr_id=spkr_id, lang_id=vocoder_tgt_lang_id)
+
+ if return_intermediate_token_ids:
+ return SeamlessM4TGenerationOutput(
+ waveform=waveform,
+ waveform_lengths=waveform_lengths,
+ sequences=sequences,
+ unit_sequences=output_unit_ids,
+ )
+
+ return waveform, waveform_lengths
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past is used
+ if past_key_values is not None:
+ decoder_input_ids = decoder_input_ids[:, -1:]
+
+ return {
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
+ "encoder_outputs": encoder_outputs,
+ "past_key_values": past_key_values,
+ "decoder_input_ids": decoder_input_ids,
+ "attention_mask": attention_mask,
+ "use_cache": use_cache,
+ }
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ # cached cross_attention states don't have to be reordered -> they are always the same
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
+ )
+ return reordered_past
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/processing_seamless_m4t.py b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/processing_seamless_m4t.py
new file mode 100644
index 0000000000000000000000000000000000000000..7e838913ca147c35fce17da6f531e39125d7553e
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/processing_seamless_m4t.py
@@ -0,0 +1,117 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Audio/Text processor class for SeamlessM4T
+"""
+
+from ...processing_utils import ProcessorMixin
+
+
+class SeamlessM4TProcessor(ProcessorMixin):
+ r"""
+ Constructs a SeamlessM4T processor which wraps a SeamlessM4T feature extractor and a SeamlessM4T tokenizer into a
+ single processor.
+
+ [`SeamlessM4TProcessor`] offers all the functionalities of [`SeamlessM4TFeatureExtractor`] and
+ [`SeamlessM4TTokenizerFast`]. See the [`~SeamlessM4TProcessor.__call__`] and [`~SeamlessM4TProcessor.decode`] for
+ more information.
+
+ Args:
+ feature_extractor ([`SeamlessM4TFeatureExtractor`]):
+ The audio processor is a required input.
+ tokenizer ([`SeamlessM4TTokenizerFast`]):
+ The tokenizer is a required input.
+ """
+
+ feature_extractor_class = "SeamlessM4TFeatureExtractor"
+ tokenizer_class = ("SeamlessM4TTokenizer", "SeamlessM4TTokenizerFast")
+
+ def __init__(self, feature_extractor, tokenizer):
+ super().__init__(feature_extractor, tokenizer)
+
+ def __call__(self, text=None, audios=None, src_lang=None, tgt_lang=None, **kwargs):
+ """
+ Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text`
+ and `kwargs` arguments to SeamlessM4TTokenizerFast's [`~SeamlessM4TTokenizerFast.__call__`] if `text` is not
+ `None` to encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to
+ SeamlessM4TFeatureExtractor's [`~SeamlessM4TFeatureExtractor.__call__`] if `audios` is not `None`. Please refer
+ to the doctsring of the above two methods for more information.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
+ audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
+ The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case
+ of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels,
+ and T the sample length of the audio.
+ src_lang (`str`, *optional*):
+ The language code of the input texts/audios. If not specified, the last `src_lang` specified will be
+ used.
+ tgt_lang (`str`, *optional*):
+ The code of the target language. If not specified, the last `tgt_lang` specified will be used.
+ kwargs (*optional*):
+ Remaining dictionary of keyword arguments that will be passed to the feature extractor and/or the
+ tokenizer.
+ Returns:
+ [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
+
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
+ `None`).
+ - **input_features** -- Audio input features to be fed to a model. Returned when `audios` is not `None`.
+ """
+ sampling_rate = kwargs.pop("sampling_rate", None)
+
+ if text is None and audios is None:
+ raise ValueError("You have to specify either text or audios. Both cannot be none.")
+ elif text is not None and audios is not None:
+ raise ValueError(
+ "Text and audios are mututally exclusive when passed to `SeamlessM4T`. Specify one or another."
+ )
+ elif text is not None:
+ if tgt_lang is not None:
+ self.tokenizer.tgt_lang = tgt_lang
+ if src_lang is not None:
+ self.tokenizer.src_lang = src_lang
+ encoding = self.tokenizer(text, **kwargs)
+
+ return encoding
+
+ else:
+ encoding = self.feature_extractor(audios, sampling_rate=sampling_rate, **kwargs)
+ return encoding
+
+ def batch_decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to SeamlessM4TTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
+ Please refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.batch_decode(*args, **kwargs)
+
+ def decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to SeamlessM4TTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
+ refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.decode(*args, **kwargs)
+
+ @property
+ def model_input_names(self):
+ tokenizer_input_names = self.tokenizer.model_input_names
+ feature_extractor_input_names = self.feature_extractor.model_input_names
+ return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/tokenization_seamless_m4t.py b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/tokenization_seamless_m4t.py
new file mode 100644
index 0000000000000000000000000000000000000000..bb6beb760a0e14c582aa1d83dc2d44c69e956c3d
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/tokenization_seamless_m4t.py
@@ -0,0 +1,562 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for SeamlessM4T."""
+import os
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+import sentencepiece as spm
+
+from ...convert_slow_tokenizer import import_protobuf
+from ...tokenization_utils import (
+ BatchEncoding,
+ PreTokenizedInput,
+ PreTrainedTokenizer,
+ TextInput,
+)
+from ...tokenization_utils_base import AddedToken
+from ...utils import PaddingStrategy, logging
+
+
+logger = logging.get_logger(__name__)
+
+
+SPIECE_UNDERLINE = "▁"
+
+
+VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
+
+
+class SeamlessM4TTokenizer(PreTrainedTokenizer):
+ """
+ Construct a SeamlessM4T tokenizer.
+
+ Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
+ [SentencePiece](https://github.com/google/sentencepiece).
+
+ The tokenization method is ` ` for source language documents, and ` ` for target language documents.
+
+ Examples:
+
+ ```python
+ >>> from transformers import SeamlessM4TTokenizer
+
+ >>> tokenizer = SeamlessM4TTokenizer.from_pretrained(
+ ... "facebook/hf-seamless-m4t-medium", src_lang="eng", tgt_lang="fra"
+ ... )
+ >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
+ >>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
+ >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")
+ ```
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ tokenizer_file (`str`, *optional*):
+ The path to a tokenizer file to use instead of the vocab file.
+ src_lang (`str`, *optional*, defaults to `"eng"`):
+ The language to use as source language for translation.
+ tgt_lang (`str`, *optional*, defaults to `"fra"`):
+ The language to use as target language for translation.
+ sp_model_kwargs (`Dict[str, Any]`, *optional*):
+ Additional keyword arguments to pass to the model initialization.
+ additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*):
+ A tuple or a list of additional special tokens. Can be used to specify the list of languages that will be
+ supported by the tokenizer.
+ add_prefix_space (`bool`, *optional*, defaults to `True`):
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
+ other word.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ prefix_tokens: List[int] = []
+ suffix_tokens: List[int] = []
+
+ def __init__(
+ self,
+ vocab_file,
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ tokenizer_file=None,
+ src_lang="eng",
+ tgt_lang="fra",
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ additional_special_tokens=None,
+ add_prefix_space=True,
+ **kwargs,
+ ):
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+ # Add this unused argument to keep some important Copied from statements
+ self.legacy = False
+ self.vocab_file = vocab_file
+
+ self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
+
+ # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
+ # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
+ # spm | '' | '' | '' | 'an' | 'en' | '_d' | 'er' | 'in' | '_s' | '_a'
+ # fairseq | '' | '' | '' | '' | 'an' | 'en' | '▁d' | 'er' | 'in' | '▁s'
+
+ # Mimic fairseq token-to-id alignment for the first 4 token
+ self._added_tokens_decoder = {
+ 0: AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token,
+ 1: AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token,
+ 2: AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token,
+ 3: AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token,
+ }
+
+ # The first "real" token "an" has position 4 in the original fairseq vocab and position 3 in the spm vocab
+ self.fairseq_offset = 1
+
+ self.sp_model_size = len(self.sp_model)
+
+ self._src_lang = f"__{src_lang}__" if "__" not in src_lang else src_lang
+ self._tgt_lang = f"__{tgt_lang}__" if "__" not in tgt_lang else tgt_lang
+ self.add_prefix_space = add_prefix_space
+
+ super().__init__(
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ tokenizer_file=tokenizer_file,
+ src_lang=src_lang,
+ tgt_lang=tgt_lang,
+ additional_special_tokens=additional_special_tokens,
+ sp_model_kwargs=self.sp_model_kwargs,
+ add_prefix_space=add_prefix_space,
+ **kwargs,
+ )
+
+ self.set_src_lang_special_tokens(self._src_lang)
+ self.set_tgt_lang_special_tokens(self._tgt_lang)
+
+ # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.__getstate__
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
+ return state
+
+ # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.__setstate__
+ def __setstate__(self, d):
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
+
+ @property
+ def vocab_size(self):
+ return len(self.sp_model)
+
+ def __call__(
+ self,
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
+ text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
+ text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
+ text_pair_target: Optional[
+ Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
+ ] = None,
+ padding: Union[bool, str, PaddingStrategy] = True,
+ pad_to_multiple_of: Optional[int] = 2,
+ src_lang: Optional[str] = None,
+ tgt_lang: Optional[str] = None,
+ **kwargs,
+ ):
+ """
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`, *optional*):
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
+ text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*):
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
+ text_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
+ The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
+ list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
+ you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
+ text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
+ The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
+ list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
+ you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
+ index) among:
+
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
+ sequence if provided).
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
+ acceptable input length for the model if that argument is not provided.
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
+ lengths).
+ pad_to_multiple_of (`int`, *optional*):
+ If set will pad the sequence to a multiple of the provided value.
+
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
+ `>= 7.5` (Volta).
+ src_lang (`str`, *optional*):
+ A string representing the source language. If not specified, the last `src_lang` specified (either
+ during initialization or when calling this tokenizer) will be used.
+ tgt_lang (`str`, *optional*):
+ A string representing the target language. If not specified, the last `tgt_lang` specified (either
+ during initialization or when calling this tokenizer) will be used.
+ kwargs (*optional*):
+ Remaining dictionary of keyword arguments that will be passed to [`PreTrainedTokenizer.__call__`].
+ """
+ if src_lang is not None:
+ self.src_lang = src_lang
+ if tgt_lang is not None:
+ self.tgt_lang = tgt_lang
+
+ output = super().__call__(
+ text=text,
+ text_pair=text_pair,
+ text_target=text_target,
+ text_pair_target=text_pair_target,
+ padding=padding,
+ pad_to_multiple_of=pad_to_multiple_of,
+ **kwargs,
+ )
+
+ return BatchEncoding(output, tensor_type=kwargs.get("return_tensors"))
+
+ @property
+ # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.src_lang
+ def src_lang(self) -> str:
+ return self._src_lang
+
+ @src_lang.setter
+ def src_lang(self, new_src_lang: str) -> None:
+ if "__" not in new_src_lang:
+ self._src_lang = f"__{new_src_lang}__"
+ else:
+ self._src_lang = new_src_lang
+ self.set_src_lang_special_tokens(self._src_lang)
+
+ @property
+ def tgt_lang(self) -> str:
+ return self._tgt_lang
+
+ @tgt_lang.setter
+ def tgt_lang(self, new_tgt_lang: str) -> None:
+ if "__" not in new_tgt_lang:
+ self._tgt_lang = f"__{new_tgt_lang}__"
+ else:
+ self._tgt_lang = new_tgt_lang
+ self.set_tgt_lang_special_tokens(self._tgt_lang)
+
+ # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.get_special_tokens_mask
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ prefix_ones = [1] * len(self.prefix_tokens)
+ suffix_ones = [1] * len(self.suffix_tokens)
+ if token_ids_1 is None:
+ return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
+ return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
+
+ # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.build_inputs_with_special_tokens
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. An NLLB sequence has the following format, where `X` represents the sequence:
+
+ - `input_ids` (for encoder) `X [eos, src_lang_code]`
+ - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
+
+ BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
+ separator.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return self.prefix_tokens + token_ids_0 + self.suffix_tokens
+ # We don't expect to process pairs, but leave the pair logic for API consistency
+ return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
+
+ # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.create_token_type_ids_from_sequences
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not
+ make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+
+ """
+
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
+
+ def _build_translation_inputs(
+ self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
+ ):
+ """Used by translation pipeline, to prepare inputs for the generate function"""
+ if src_lang is None or tgt_lang is None:
+ raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model.")
+ self.src_lang = src_lang
+ inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
+ if "__" not in tgt_lang:
+ tgt_lang = f"__{tgt_lang}__"
+ tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
+ inputs["forced_bos_token_id"] = tgt_lang_id
+ return inputs
+
+ def get_vocab(self):
+ vocab = {
+ self.convert_ids_to_tokens(i): i for i in range(self.fairseq_offset, self.vocab_size + self.fairseq_offset)
+ }
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ @property
+ def unk_token_length(self):
+ return len(self.sp_model.encode(str(self.unk_token)))
+
+ # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
+ def get_spm_processor(self, from_slow=False):
+ tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ if self.legacy or from_slow: # no dependency on protobuf
+ tokenizer.Load(self.vocab_file)
+ return tokenizer
+
+ with open(self.vocab_file, "rb") as f:
+ sp_model = f.read()
+ model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
+ model = model_pb2.ModelProto.FromString(sp_model)
+ normalizer_spec = model_pb2.NormalizerSpec()
+ normalizer_spec.add_dummy_prefix = False
+ model.normalizer_spec.MergeFrom(normalizer_spec)
+ sp_model = model.SerializeToString()
+ tokenizer.LoadFromSerializedProto(sp_model)
+ return tokenizer
+
+ # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
+ def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
+ """
+ Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
+ first token is special.
+ """
+ if self.legacy or len(text) == 0:
+ return super().tokenize(text, **kwargs)
+
+ text = text.replace(SPIECE_UNDERLINE, " ")
+ if self.add_prefix_space:
+ text = SPIECE_UNDERLINE + text
+
+ tokens = super().tokenize(text, **kwargs)
+
+ if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
+ tokens = tokens[1:]
+ return tokens
+
+ # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
+ def _tokenize(self, text, **kwargs):
+ """
+ Returns a tokenized string.
+
+ We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
+ SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
+ `['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
+ `unk_token`. Here is an example with `unk_token = ""` and `unk_token_length = 4`.
+ `self.tokenizer.sp_model.encode(" Hey", out_type = str)[4:]`.
+ """
+ tokens = self.sp_model.encode(text, out_type=str)
+ if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
+ return tokens
+
+ # 1. Encode string + prefix ex: " Hey"
+ tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
+ # 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
+ return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ spm_id = self.sp_model.PieceToId(token)
+
+ # Need to return unknown token if the SP model returned 0
+ return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.sp_model.IdToPiece(index - self.fairseq_offset)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (strings for sub-words) in a single string."""
+ # since we manually add the prefix space, we have to remove it when decoding
+ if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
+ tokens[0] = tokens[0][1:]
+
+ out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
+ return out_string
+
+ # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.save_vocabulary
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
+
+ # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.prepare_seq2seq_batch with eng_Latn->eng, fra_Latn->fra
+ def prepare_seq2seq_batch(
+ self,
+ src_texts: List[str],
+ src_lang: str = "eng",
+ tgt_texts: Optional[List[str]] = None,
+ tgt_lang: str = "fra",
+ **kwargs,
+ ) -> BatchEncoding:
+ self.src_lang = src_lang
+ self.tgt_lang = tgt_lang
+ return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
+
+ # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer._switch_to_input_mode
+ def _switch_to_input_mode(self):
+ return self.set_src_lang_special_tokens(self.src_lang)
+
+ # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer._switch_to_target_mode
+ def _switch_to_target_mode(self):
+ return self.set_tgt_lang_special_tokens(self.tgt_lang)
+
+ def set_src_lang_special_tokens(self, src_lang) -> None:
+ """Reset the special tokens to the source lang setting.
+ Prefix=[src_lang_code], suffix = [eos]
+ """
+ self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
+ self.init_kwargs["src_lang"] = src_lang
+
+ if self.cur_lang_code == self.unk_token_id:
+ logger.warning_once(
+ f"`src_lang={src_lang}` has not be found in the vocabulary. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id."
+ )
+
+ self.prefix_tokens = [self.cur_lang_code]
+ self.suffix_tokens = [self.eos_token_id]
+
+ # https://github.com/facebookresearch/fairseq2/blob/c53f18e6be6b8b46b722f2249b8397b7eccd7ad3/src/fairseq2/models/nllb/tokenizer.py#L112-L116
+ def set_tgt_lang_special_tokens(self, lang: str) -> None:
+ """Reset the special tokens to the target lang setting.
+ Prefix=[eos, tgt_lang_code] and suffix=[eos].
+ """
+ self.cur_lang_code = self.convert_tokens_to_ids(lang)
+ self.init_kwargs["tgt_lang"] = lang
+
+ if self.cur_lang_code == self.unk_token_id:
+ logger.warning_once(
+ f"`tgt_lang={lang}` has not be found in the vocabulary. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id."
+ )
+
+ self.prefix_tokens = [self.eos_token_id, self.cur_lang_code]
+ self.suffix_tokens = [self.eos_token_id]
diff --git a/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/tokenization_seamless_m4t_fast.py b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/tokenization_seamless_m4t_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..a236db3cb57cf3f3155a157d60e5574ce3ac6875
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/seamless_m4t/tokenization_seamless_m4t_fast.py
@@ -0,0 +1,446 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Fast Tokenization class for SeamlessM4T."""
+import os
+from shutil import copyfile
+from typing import List, Optional, Tuple, Union
+
+from tokenizers import processors
+
+from ...tokenization_utils import (
+ BatchEncoding,
+ PreTokenizedInput,
+ TextInput,
+)
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import PaddingStrategy, is_sentencepiece_available, logging
+
+
+if is_sentencepiece_available():
+ from .tokenization_seamless_m4t import SeamlessM4TTokenizer
+else:
+ SeamlessM4TTokenizer = None
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
+
+
+class SeamlessM4TTokenizerFast(PreTrainedTokenizerFast):
+ """
+ Construct a "fast" SeamlessM4T tokenizer (backed by HuggingFace's *tokenizers* library). Based on
+ [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ The tokenization method is ` ` for source language documents, and ` ` for target language documents.
+
+ Examples:
+
+ ```python
+ >>> from transformers import SeamlessM4TTokenizerFast
+
+ >>> tokenizer = SeamlessM4TTokenizerFast.from_pretrained(
+ ... "facebook/hf-seamless-m4t-medium", src_lang="eng", tgt_lang="fra"
+ ... )
+ >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
+ >>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
+ >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")
+ ```
+
+ Args:
+ vocab_file (`str`, *optional*):
+ Path to the vocabulary file.
+ tokenizer_file (`str`, *optional*):
+ The path to a tokenizer file to use instead of the vocab file.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ src_lang (`str`, *optional*, defaults to `"eng"`):
+ The language to use as source language for translation.
+ tgt_lang (`str`, *optional*, defaults to `"fra"`):
+ The language to use as target language for translation.
+ additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*):
+ A tuple or a list of additional special tokens.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ slow_tokenizer_class = SeamlessM4TTokenizer
+ model_input_names = ["input_ids", "attention_mask"]
+
+ prefix_tokens: List[int] = []
+ suffix_tokens: List[int] = []
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ src_lang="eng",
+ tgt_lang="fra",
+ additional_special_tokens=None,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_file=vocab_file,
+ tokenizer_file=tokenizer_file,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ unk_token=unk_token,
+ pad_token=pad_token,
+ src_lang=src_lang,
+ tgt_lang=tgt_lang,
+ additional_special_tokens=additional_special_tokens,
+ **kwargs,
+ )
+
+ self.vocab_file = vocab_file
+ self._src_lang = f"__{src_lang}__" if "__" not in src_lang else src_lang
+ self._tgt_lang = f"__{tgt_lang}__" if "__" not in tgt_lang else tgt_lang
+ self.set_src_lang_special_tokens(self._src_lang)
+ self.set_tgt_lang_special_tokens(self._tgt_lang)
+
+ @property
+ def can_save_slow_tokenizer(self) -> bool:
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
+
+ @property
+ # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.src_lang
+ def src_lang(self) -> str:
+ return self._src_lang
+
+ @src_lang.setter
+ def src_lang(self, new_src_lang: str) -> None:
+ if "__" not in new_src_lang:
+ self._src_lang = f"__{new_src_lang}__"
+ else:
+ self._src_lang = new_src_lang
+ self.set_src_lang_special_tokens(self._src_lang)
+
+ @property
+ def tgt_lang(self) -> str:
+ return self._tgt_lang
+
+ @tgt_lang.setter
+ def tgt_lang(self, new_tgt_lang: str) -> None:
+ if "__" not in new_tgt_lang:
+ self._tgt_lang = f"__{new_tgt_lang}__"
+ else:
+ self._tgt_lang = new_tgt_lang
+ self.set_tgt_lang_special_tokens(self._tgt_lang)
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. The special tokens depend on calling set_lang.
+
+ An SeamlessM4T sequence has the following format, where `X` represents the sequence:
+
+ - `input_ids` (for encoder) `[src_lang_code] X [eos]`
+ - `decoder_input_ids`: (for decoder) `[eos, tgt_lang_code] X [eos]`
+
+ BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
+ separator.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return self.prefix_tokens + token_ids_0 + self.suffix_tokens
+ # We don't expect to process pairs, but leave the pair logic for API consistency
+ return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
+
+ # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.create_token_type_ids_from_sequences
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not
+ make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+
+ """
+
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
+
+ def _build_translation_inputs(
+ self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
+ ):
+ """Used by translation pipeline, to prepare inputs for the generate function"""
+ if src_lang is None or tgt_lang is None:
+ raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
+ self.src_lang = src_lang
+ inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
+ if "__" not in tgt_lang:
+ tgt_lang = f"__{tgt_lang}__"
+ tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
+ inputs["forced_bos_token_id"] = tgt_lang_id
+ return inputs
+
+ # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.prepare_seq2seq_batch with "fra_Latn"->"fra", "eng_Latn"->"eng"
+ def prepare_seq2seq_batch(
+ self,
+ src_texts: List[str],
+ src_lang: str = "eng",
+ tgt_texts: Optional[List[str]] = None,
+ tgt_lang: str = "fra",
+ **kwargs,
+ ) -> BatchEncoding:
+ self.src_lang = src_lang
+ self.tgt_lang = tgt_lang
+ return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
+
+ # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast._switch_to_input_mode
+ def _switch_to_input_mode(self):
+ return self.set_src_lang_special_tokens(self.src_lang)
+
+ # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast._switch_to_target_mode
+ def _switch_to_target_mode(self):
+ return self.set_tgt_lang_special_tokens(self.tgt_lang)
+
+ def set_src_lang_special_tokens(self, src_lang) -> None:
+ """Reset the special tokens to the source lang setting.
+ Prefix=[src_lang_code], suffix = [eos]
+ """
+ self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
+
+ if self.cur_lang_code == self.unk_token_id:
+ logger.warning_once(
+ f"`tgt_lang={src_lang}` has not be found in the `vocabulary`. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id."
+ )
+
+ self.init_kwargs["src_lang"] = src_lang
+
+ self.prefix_tokens = [self.cur_lang_code]
+ self.suffix_tokens = [self.eos_token_id]
+
+ prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
+ suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
+
+ self._tokenizer.post_processor = processors.TemplateProcessing(
+ single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
+ pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
+ special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
+ )
+
+ def set_tgt_lang_special_tokens(self, lang: str) -> None:
+ """Reset the special tokens to the target lang setting.
+ Prefix=[eos, tgt_lang_code] and suffix=[eos].
+ """
+ self.cur_lang_code = self.convert_tokens_to_ids(lang)
+
+ if self.cur_lang_code == self.unk_token_id:
+ logger.warning_once(
+ f"`tgt_lang={lang}` has not be found in the `vocabulary`. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id."
+ )
+
+ self.init_kwargs["tgt_lang"] = lang
+
+ self.prefix_tokens = [self.eos_token_id, self.cur_lang_code]
+ self.suffix_tokens = [self.eos_token_id]
+
+ prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
+ suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
+
+ self._tokenizer.post_processor = processors.TemplateProcessing(
+ single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
+ pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
+ special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
+ )
+
+ # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.save_vocabulary
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not self.can_save_slow_tokenizer:
+ raise ValueError(
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
+ "tokenizer."
+ )
+
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+
+ return (out_vocab_file,)
+
+ @classmethod
+ def _from_pretrained(
+ cls,
+ resolved_vocab_files,
+ pretrained_model_name_or_path,
+ init_configuration,
+ *init_inputs,
+ token=None,
+ cache_dir=None,
+ local_files_only=False,
+ _commit_hash=None,
+ _is_local=False,
+ **kwargs,
+ ):
+ tokenizer = super()._from_pretrained(
+ resolved_vocab_files,
+ pretrained_model_name_or_path,
+ init_configuration,
+ *init_inputs,
+ token=token,
+ cache_dir=cache_dir,
+ local_files_only=local_files_only,
+ _commit_hash=_commit_hash,
+ _is_local=_is_local,
+ **kwargs,
+ )
+
+ # ensure also set after from pretrained
+ tokenizer.set_src_lang_special_tokens(tokenizer._src_lang)
+ tokenizer.set_tgt_lang_special_tokens(tokenizer._tgt_lang)
+
+ return tokenizer
+
+ def __call__(
+ self,
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
+ text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
+ text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
+ text_pair_target: Optional[
+ Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
+ ] = None,
+ padding: Union[bool, str, PaddingStrategy] = True,
+ pad_to_multiple_of: Optional[int] = 2,
+ src_lang: Optional[str] = None,
+ tgt_lang: Optional[str] = None,
+ **kwargs,
+ ):
+ """
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`, *optional*):
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
+ text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*):
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
+ text_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
+ The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
+ list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
+ you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
+ text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
+ The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
+ list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
+ you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
+ index) among:
+
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
+ sequence if provided).
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
+ acceptable input length for the model if that argument is not provided.
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
+ lengths).
+ pad_to_multiple_of (`int`, *optional*):
+ If set will pad the sequence to a multiple of the provided value.
+
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
+ `>= 7.5` (Volta).
+ src_lang (`str`, *optional*):
+ A string representing the source language. If not specified, the last `src_lang` specified (either
+ during initialization or when calling this tokenizer) will be used.
+ tgt_lang (`str`, *optional*):
+ A string representing the target language. If not specified, the last `tgt_lang` specified (either
+ during initialization or when calling this tokenizer) will be used.
+ kwargs (*optional*):
+ Remaining dictionary of keyword arguments that will be passed to [`PreTrainedTokenizerFast.__call__`].
+ """
+ if src_lang is not None:
+ self.src_lang = src_lang
+ if tgt_lang is not None:
+ self.tgt_lang = tgt_lang
+
+ output = super().__call__(
+ text=text,
+ text_pair=text_pair,
+ text_target=text_target,
+ text_pair_target=text_pair_target,
+ padding=padding,
+ pad_to_multiple_of=pad_to_multiple_of,
+ **kwargs,
+ )
+
+ return output
diff --git a/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3a19b1b7bd39460f8007d7d57a0074ee21dff1ea
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/__init__.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/configuration_vilt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/configuration_vilt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..32a151b3e7de490f8538c70a5d488a30165089aa
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/configuration_vilt.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/convert_vilt_original_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/convert_vilt_original_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f933d9b77534ce835f8e7a5b9b5a61d613538f04
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/convert_vilt_original_to_pytorch.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/feature_extraction_vilt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/feature_extraction_vilt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..48965d0877d6b796a53f37277827cc2b6dce2a9e
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/feature_extraction_vilt.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/image_processing_vilt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/image_processing_vilt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a0040a9eafc9817782ca03979886df4527166a2c
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/image_processing_vilt.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/modeling_vilt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/modeling_vilt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fc3bf9622ecef9b320f3837e7e5869b7e30c063e
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/modeling_vilt.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/processing_vilt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/processing_vilt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d9ddd0714f62da1834a7b71e16981d5a499824cb
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vilt/__pycache__/processing_vilt.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/vilt/feature_extraction_vilt.py b/venv/lib/python3.10/site-packages/transformers/models/vilt/feature_extraction_vilt.py
new file mode 100644
index 0000000000000000000000000000000000000000..5091946bf94334dae16408346e707cf2fcaffaa4
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/vilt/feature_extraction_vilt.py
@@ -0,0 +1,33 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Feature extractor class for ViLT."""
+
+import warnings
+
+from ...utils import logging
+from .image_processing_vilt import ViltImageProcessor
+
+
+logger = logging.get_logger(__name__)
+
+
+class ViltFeatureExtractor(ViltImageProcessor):
+ def __init__(self, *args, **kwargs) -> None:
+ warnings.warn(
+ "The class ViltFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
+ " use ViltImageProcessor instead.",
+ FutureWarning,
+ )
+ super().__init__(*args, **kwargs)
diff --git a/venv/lib/python3.10/site-packages/transformers/models/vilt/image_processing_vilt.py b/venv/lib/python3.10/site-packages/transformers/models/vilt/image_processing_vilt.py
new file mode 100644
index 0000000000000000000000000000000000000000..42e5b3f439d6aab9d9d9fc1349df6f0cf947f28c
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/vilt/image_processing_vilt.py
@@ -0,0 +1,505 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for Vilt."""
+
+from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
+
+import numpy as np
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
+from ...image_transforms import PaddingMode, pad, resize, to_channel_dimension_format
+from ...image_utils import (
+ IMAGENET_STANDARD_MEAN,
+ IMAGENET_STANDARD_STD,
+ ChannelDimension,
+ ImageInput,
+ PILImageResampling,
+ get_image_size,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+ validate_kwargs,
+ validate_preprocess_arguments,
+)
+from ...utils import TensorType, is_vision_available, logging
+
+
+if is_vision_available():
+ import PIL
+
+
+logger = logging.get_logger(__name__)
+
+
+def max_across_indices(values: Iterable[Any]) -> List[Any]:
+ """
+ Return the maximum value across all indices of an iterable of values.
+ """
+ return [max(values_i) for values_i in zip(*values)]
+
+
+def make_pixel_mask(
+ image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
+) -> np.ndarray:
+ """
+ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
+
+ Args:
+ image (`np.ndarray`):
+ Image to make the pixel mask for.
+ output_size (`Tuple[int, int]`):
+ Output size of the mask.
+ """
+ input_height, input_width = get_image_size(image, channel_dim=input_data_format)
+ mask = np.zeros(output_size, dtype=np.int64)
+ mask[:input_height, :input_width] = 1
+ return mask
+
+
+def get_max_height_width(
+ images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
+) -> List[int]:
+ """
+ Get the maximum height and width across all images in a batch.
+ """
+ if input_data_format is None:
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ if input_data_format == ChannelDimension.FIRST:
+ _, max_height, max_width = max_across_indices([img.shape for img in images])
+ elif input_data_format == ChannelDimension.LAST:
+ max_height, max_width, _ = max_across_indices([img.shape for img in images])
+ else:
+ raise ValueError(f"Invalid channel dimension format: {input_data_format}")
+ return (max_height, max_width)
+
+
+def get_resize_output_image_size(
+ input_image: np.ndarray,
+ shorter: int = 800,
+ longer: int = 1333,
+ size_divisor: int = 32,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+) -> Tuple[int, int]:
+ input_height, input_width = get_image_size(input_image, input_data_format)
+ min_size, max_size = shorter, longer
+
+ scale = min_size / min(input_height, input_width)
+
+ if input_height < input_width:
+ new_height = min_size
+ new_width = scale * input_width
+ else:
+ new_height = scale * input_height
+ new_width = min_size
+
+ if max(new_height, new_width) > max_size:
+ scale = max_size / max(new_height, new_width)
+ new_height = scale * new_height
+ new_width = scale * new_width
+
+ new_height, new_width = int(new_height + 0.5), int(new_width + 0.5)
+ new_height = new_height // size_divisor * size_divisor
+ new_width = new_width // size_divisor * size_divisor
+
+ return new_height, new_width
+
+
+class ViltImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a ViLT image processor.
+
+ Args:
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
+ `do_resize` parameter in the `preprocess` method.
+ size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 384}`):
+ Resize the shorter side of the input to `size["shortest_edge"]`. The longer side will be limited to under
+ `int((1333 / 800) * size["shortest_edge"])` while preserving the aspect ratio. Only has an effect if
+ `do_resize` is set to `True`. Can be overridden by the `size` parameter in the `preprocess` method.
+ size_divisor (`int`, *optional*, defaults to 32):
+ The size by which to make sure both the height and width can be divided. Only has an effect if `do_resize`
+ is set to `True`. Can be overridden by the `size_divisor` parameter in the `preprocess` method.
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
+ Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be
+ overridden by the `resample` parameter in the `preprocess` method.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Wwhether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
+ `do_rescale` parameter in the `preprocess` method.
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
+ overridden by the `rescale_factor` parameter in the `preprocess` method.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
+ method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
+ overridden by the `image_mean` parameter in the `preprocess` method.
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
+ do_pad (`bool`, *optional*, defaults to `True`):
+ Whether to pad the image to the `(max_height, max_width)` of the images in the batch. Can be overridden by
+ the `do_pad` parameter in the `preprocess` method.
+ """
+
+ model_input_names = ["pixel_values"]
+
+ def __init__(
+ self,
+ do_resize: bool = True,
+ size: Dict[str, int] = None,
+ size_divisor: int = 32,
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
+ do_rescale: bool = True,
+ rescale_factor: Union[int, float] = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_pad: bool = True,
+ **kwargs,
+ ) -> None:
+ if "pad_and_return_pixel_mask" in kwargs:
+ do_pad = kwargs.pop("pad_and_return_pixel_mask")
+
+ super().__init__(**kwargs)
+ size = size if size is not None else {"shortest_edge": 384}
+ size = get_size_dict(size, default_to_square=False)
+
+ self.do_resize = do_resize
+ self.size = size
+ self.size_divisor = size_divisor
+ self.resample = resample
+ self.do_rescale = do_rescale
+ self.rescale_factor = rescale_factor
+ self.do_normalize = do_normalize
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
+ self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
+ self.do_pad = do_pad
+ self._valid_processor_keys = [
+ "images",
+ "do_resize",
+ "size",
+ "size_divisor",
+ "resample",
+ "do_rescale",
+ "rescale_factor",
+ "do_normalize",
+ "image_mean",
+ "image_std",
+ "do_pad",
+ "return_tensors",
+ "data_format",
+ "input_data_format",
+ ]
+
+ @classmethod
+ def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
+ """
+ Overrides the `from_dict` method from the base class to make sure `reduce_labels` is updated if image processor
+ is created using from_dict and kwargs e.g. `ViltImageProcessor.from_pretrained(checkpoint,
+ pad_and_return_pixel_mask=False)`
+ """
+ image_processor_dict = image_processor_dict.copy()
+ if "pad_and_return_pixel_mask" in kwargs:
+ image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
+ return super().from_dict(image_processor_dict, **kwargs)
+
+ def resize(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ size_divisor: int = 32,
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Resize an image.
+
+ Resizes the shorter side of the image to `size["shortest_edge"]` while preserving the aspect ratio. If the
+ longer side is larger than the max size `(int(`size["shortest_edge"]` * 1333 / 800))`, the longer side is then
+ resized to the max size while preserving the aspect ratio.
+
+ Args:
+ image (`np.ndarray`):
+ Image to resize.
+ size (`Dict[str, int]`):
+ Controls the size of the output image. Should be of the form `{"shortest_edge": int}`.
+ size_divisor (`int`, defaults to 32):
+ The image is resized to a size that is a multiple of this value.
+ resample (`PILImageResampling` filter, *optional*, defaults to `PILImageResampling.BICUBIC`):
+ Resampling filter to use when resiizing the image.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
+ input_data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ """
+ size = get_size_dict(size, default_to_square=False)
+ if "shortest_edge" not in size:
+ raise ValueError(f"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}")
+ shorter = size["shortest_edge"]
+ longer = int(1333 / 800 * shorter)
+ output_size = get_resize_output_image_size(
+ image, shorter=shorter, longer=longer, size_divisor=size_divisor, input_data_format=input_data_format
+ )
+ return resize(
+ image,
+ size=output_size,
+ resample=resample,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+
+ def _pad_image(
+ self,
+ image: np.ndarray,
+ output_size: Tuple[int, int],
+ constant_values: Union[float, Iterable[float]] = 0,
+ data_format: Optional[ChannelDimension] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> np.ndarray:
+ """
+ Pad an image with zeros to the given size.
+ """
+ input_height, input_width = get_image_size(image, channel_dim=input_data_format)
+ output_height, output_width = output_size
+
+ pad_bottom = output_height - input_height
+ pad_right = output_width - input_width
+ padding = ((0, pad_bottom), (0, pad_right))
+ padded_image = pad(
+ image,
+ padding,
+ mode=PaddingMode.CONSTANT,
+ constant_values=constant_values,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ )
+ return padded_image
+
+ def pad(
+ self,
+ images: List[np.ndarray],
+ constant_values: Union[float, Iterable[float]] = 0,
+ return_pixel_mask: bool = True,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: Optional[ChannelDimension] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> BatchFeature:
+ """
+ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
+ in the batch and optionally returns their corresponding pixel mask.
+
+ Args:
+ image (`np.ndarray`):
+ Image to pad.
+ constant_values (`float` or `Iterable[float]`, *optional*):
+ The value to use for the padding if `mode` is `"constant"`.
+ return_pixel_mask (`bool`, *optional*, defaults to `True`):
+ Whether to return a pixel mask.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ """
+ pad_size = get_max_height_width(images, input_data_format=input_data_format)
+
+ padded_images = [
+ self._pad_image(
+ image,
+ pad_size,
+ constant_values=constant_values,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ )
+ for image in images
+ ]
+ data = {"pixel_values": padded_images}
+
+ if return_pixel_mask:
+ masks = [
+ make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
+ for image in images
+ ]
+ data["pixel_mask"] = masks
+
+ return BatchFeature(data=data, tensor_type=return_tensors)
+
+ def preprocess(
+ self,
+ images: ImageInput,
+ do_resize: Optional[bool] = None,
+ size: Optional[Dict[str, int]] = None,
+ size_divisor: Optional[int] = None,
+ resample: PILImageResampling = None,
+ do_rescale: Optional[bool] = None,
+ rescale_factor: Optional[float] = None,
+ do_normalize: Optional[bool] = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_pad: Optional[bool] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: ChannelDimension = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> PIL.Image.Image:
+ """
+ Preprocess an image or batch of images.
+
+ Args:
+ images (`ImageInput`):
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
+ Whether to resize the image.
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
+ Controls the size of the image after `resize`. The shortest edge of the image is resized to
+ `size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
+ is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
+ edge equal to `int(size["shortest_edge"] * (1333 / 800))`.
+ size_divisor (`int`, *optional*, defaults to `self.size_divisor`):
+ The image is resized to a size that is a multiple of this value.
+ resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
+ Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image values between [0 - 1].
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Image mean to normalize the image by if `do_normalize` is set to `True`.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
+ do_pad (`bool`, *optional*, defaults to `self.do_pad`):
+ Whether to pad the image to the (max_height, max_width) in the batch. If `True`, a pixel mask is also
+ created and returned.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ do_resize = do_resize if do_resize is not None else self.do_resize
+ size_divisor = size_divisor if size_divisor is not None else self.size_divisor
+ resample = resample if resample is not None else self.resample
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+ do_pad = do_pad if do_pad is not None else self.do_pad
+
+ size = size if size is not None else self.size
+ size = get_size_dict(size, default_to_square=False)
+
+ images = make_list_of_images(images)
+
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
+
+ if not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+
+ # Here the pad() method does not require any additional argument as it takes the maximum of (height, width).
+ # Hence, it does not need to be passed to a validate_preprocess_arguments() method.
+ validate_preprocess_arguments(
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ )
+
+ # All transformations expect numpy arrays.
+ images = [to_numpy_array(image) for image in images]
+
+ if is_scaled_image(images[0]) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ if do_resize:
+ images = [
+ self.resize(
+ image=image,
+ size=size,
+ size_divisor=size_divisor,
+ resample=resample,
+ input_data_format=input_data_format,
+ )
+ for image in images
+ ]
+
+ if do_rescale:
+ images = [
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if do_normalize:
+ images = [
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ images = [
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
+ ]
+
+ if do_pad:
+ encoded_outputs = self.pad(
+ images, return_pixel_mask=True, return_tensors=return_tensors, input_data_format=data_format
+ )
+ else:
+ encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
+
+ return encoded_outputs
diff --git a/venv/lib/python3.10/site-packages/transformers/models/vilt/modeling_vilt.py b/venv/lib/python3.10/site-packages/transformers/models/vilt/modeling_vilt.py
new file mode 100644
index 0000000000000000000000000000000000000000..5545b881bd670a724041814ddc85a225311c00ad
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/vilt/modeling_vilt.py
@@ -0,0 +1,1488 @@
+# coding=utf-8
+# Copyright 2022 NAVER AI Labs and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch ViLT model."""
+
+import collections.abc
+import math
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPooling,
+ MaskedLMOutput,
+ ModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import (
+ find_pruneable_heads_and_indices,
+ meshgrid,
+ prune_linear_layer,
+)
+from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
+from .configuration_vilt import ViltConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "ViltConfig"
+_CHECKPOINT_FOR_DOC = "dandelin/vilt-b32-mlm"
+
+
+from ..deprecated._archive_maps import VILT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+@dataclass
+class ViltForImagesAndTextClassificationOutput(ModelOutput):
+ """
+ Class for outputs of [`ViltForImagesAndTextClassification`].
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ Classification (or regression if config.num_labels==1) loss.
+ logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
+ Classification (or regression if config.num_labels==1) scores (before SoftMax).
+ hidden_states (`List[tuple(torch.FloatTensor)]`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ List of tuples of `torch.FloatTensor` (one for each image-text pair, each tuple containing the output of
+ the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`List[tuple(torch.FloatTensor)]`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ List of tuples of `torch.FloatTensor` (one for each image-text pair, each tuple containing the attention
+ weights of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the
+ attention softmax, used to compute the weighted average in the self-attention heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ hidden_states: Optional[List[Tuple[torch.FloatTensor]]] = None
+ attentions: Optional[List[Tuple[torch.FloatTensor]]] = None
+
+
+class ViltEmbeddings(nn.Module):
+ """
+ Construct the text and patch embeddings.
+
+ Text embeddings are equivalent to BERT embeddings.
+
+ Patch embeddings are equivalent to ViT embeddings.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+
+ # text embeddings
+ self.text_embeddings = TextEmbeddings(config)
+ # patch embeddings
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
+ self.patch_embeddings = ViltPatchEmbeddings(config)
+ num_patches = self.patch_embeddings.num_patches
+ self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
+ # modality type (text/patch) embeddings
+ self.token_type_embeddings = nn.Embedding(config.modality_type_vocab_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def visual_embed(self, pixel_values, pixel_mask, max_image_length=200):
+ _, _, ph, pw = self.patch_embeddings.projection.weight.shape
+
+ x = self.patch_embeddings(pixel_values)
+ x_mask = pixel_mask[:, None, :, :].float()
+ x_mask = nn.functional.interpolate(x_mask, size=(x.shape[2], x.shape[3])).long()
+ x_h = x_mask[:, 0].sum(dim=1)[:, 0]
+ x_w = x_mask[:, 0].sum(dim=2)[:, 0]
+
+ batch_size, num_channels, height, width = x.shape
+ patch_dim = self.config.image_size // self.config.patch_size
+ spatial_pos = self.position_embeddings[:, 1:, :].transpose(1, 2).view(1, num_channels, patch_dim, patch_dim)
+ pos_embed = torch.cat(
+ [
+ nn.functional.pad(
+ nn.functional.interpolate(
+ spatial_pos,
+ size=(h, w),
+ mode="bilinear",
+ align_corners=True,
+ ),
+ (0, width - w, 0, height - h),
+ )
+ for h, w in zip(x_h, x_w)
+ ],
+ dim=0,
+ )
+
+ pos_embed = pos_embed.flatten(2).transpose(1, 2)
+ x = x.flatten(2).transpose(1, 2)
+ # Set `device` here, otherwise `patch_index` will always be on `CPU` and will fail near the end for torch>=1.13
+ patch_index = torch.stack(
+ meshgrid(torch.arange(x_mask.shape[-2]), torch.arange(x_mask.shape[-1]), indexing="ij"), dim=-1
+ ).to(device=x_mask.device)
+ patch_index = patch_index[None, None, :, :, :]
+ patch_index = patch_index.expand(x_mask.shape[0], x_mask.shape[1], -1, -1, -1)
+ patch_index = patch_index.flatten(1, 3)
+ x_mask = x_mask.flatten(1)
+
+ if max_image_length < 0 or max_image_length is None or not isinstance(max_image_length, int):
+ # suppose aug is 800 x 1333, then, maximum effective res is 800 x 1333 (if one side gets bigger, the other will be constrained and be shrinked)
+ # (800 // self.patch_size) * (1333 // self.patch_size) is the maximum number of patches that single image can get.
+ # if self.patch_size = 32, 25 * 41 = 1025
+ # if res is 384 x 640, 12 * 20 = 240
+ effective_resolution = x_h * x_w
+ max_image_length = effective_resolution.max()
+ else:
+ effective_resolution = x_h * x_w
+ max_image_length = min(effective_resolution.max(), max_image_length)
+
+ valid_idx = x_mask.nonzero(as_tuple=False)
+ non_valid_idx = (1 - x_mask).nonzero(as_tuple=False)
+ unique_rows = valid_idx[:, 0].unique()
+ valid_row_idx = [valid_idx[valid_idx[:, 0] == u] for u in unique_rows]
+ non_valid_row_idx = [non_valid_idx[non_valid_idx[:, 0] == u] for u in unique_rows]
+
+ valid_nums = [v.size(0) for v in valid_row_idx]
+ non_valid_nums = [v.size(0) for v in non_valid_row_idx]
+ pad_nums = [max_image_length - v for v in valid_nums]
+
+ select = []
+ for i, (v, nv, p) in enumerate(zip(valid_nums, non_valid_nums, pad_nums)):
+ if p <= 0:
+ valid_choice = torch.multinomial(torch.ones(v).float(), max_image_length)
+ select.append(valid_row_idx[i][valid_choice])
+ else:
+ pad_choice = torch.multinomial(torch.ones(nv).float(), p, replacement=True)
+ select.append(torch.cat([valid_row_idx[i], non_valid_row_idx[i][pad_choice]], dim=0))
+
+ select = torch.cat(select, dim=0)
+ x = x[select[:, 0], select[:, 1]].view(batch_size, -1, num_channels)
+ x_mask = x_mask[select[:, 0], select[:, 1]].view(batch_size, -1)
+ # `patch_index` should be on the same device as `select` (for torch>=1.13), which is ensured at definition time.
+ patch_index = patch_index[select[:, 0], select[:, 1]].view(batch_size, -1, 2)
+ pos_embed = pos_embed[select[:, 0], select[:, 1]].view(batch_size, -1, num_channels)
+
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1)
+ x = torch.cat((cls_tokens, x), dim=1)
+ pos_embed = torch.cat(
+ (self.position_embeddings[:, 0, :][:, None, :].expand(batch_size, -1, -1), pos_embed), dim=1
+ )
+ x = x + pos_embed
+ x = self.dropout(x)
+
+ x_mask = torch.cat([torch.ones(x_mask.shape[0], 1).to(x_mask), x_mask], dim=1)
+
+ return x, x_mask, (patch_index, (height, width))
+
+ def forward(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ pixel_values,
+ pixel_mask,
+ inputs_embeds,
+ image_embeds,
+ image_token_type_idx=1,
+ ):
+ # PART 1: text embeddings
+ text_embeds = self.text_embeddings(
+ input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
+ )
+
+ # PART 2: patch embeddings (with interpolated position encodings)
+ if image_embeds is None:
+ image_embeds, image_masks, patch_index = self.visual_embed(
+ pixel_values, pixel_mask, max_image_length=self.config.max_image_length
+ )
+ else:
+ image_masks = pixel_mask.flatten(1)
+
+ # PART 3: add modality type embeddings
+ # 0 indicates text, 1 indicates image, 2 is optionally used when a second image is provided (NLVR2)
+ if image_token_type_idx is None:
+ image_token_type_idx = 1
+ text_embeds = text_embeds + self.token_type_embeddings(
+ torch.zeros_like(attention_mask, dtype=torch.long, device=text_embeds.device)
+ )
+ image_embeds = image_embeds + self.token_type_embeddings(
+ torch.full_like(image_masks, image_token_type_idx, dtype=torch.long, device=text_embeds.device)
+ )
+
+ # PART 4: concatenate
+ embeddings = torch.cat([text_embeds, image_embeds], dim=1)
+ masks = torch.cat([attention_mask, image_masks], dim=1)
+
+ return embeddings, masks
+
+
+class TextEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+ self.register_buffer(
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
+ )
+
+ def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, :seq_length]
+
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+ # issue #5664
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class ViltPatchEmbeddings(nn.Module):
+ """
+ Image to Patch Embedding.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ image_size, patch_size = config.image_size, config.patch_size
+ num_channels, hidden_size = config.num_channels, config.hidden_size
+
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.num_patches = num_patches
+
+ self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
+
+ def forward(self, pixel_values):
+ batch_size, num_channels, height, width = pixel_values.shape
+ if num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ )
+ target_dtype = self.projection.weight.dtype
+ x = self.projection(pixel_values.to(dtype=target_dtype))
+ return x
+
+
+class ViltSelfAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
+ f"heads {config.num_attention_heads}."
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x):
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False):
+ mixed_query_layer = self.query(hidden_states)
+
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ return outputs
+
+
+# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Vilt
+class ViltSelfOutput(nn.Module):
+ """
+ The residual connection is defined in ViltLayer instead of here (as is the case with other models), due to the
+ layernorm applied before each block.
+ """
+
+ def __init__(self, config: ViltConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ return hidden_states
+
+
+class ViltAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.attention = ViltSelfAttention(config)
+ self.output = ViltSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.attention.query = prune_linear_layer(self.attention.query, index)
+ self.attention.key = prune_linear_layer(self.attention.key, index)
+ self.attention.value = prune_linear_layer(self.attention.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
+ self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False):
+ self_outputs = self.attention(hidden_states, attention_mask, head_mask, output_attentions)
+
+ attention_output = self.output(self_outputs[0], hidden_states)
+
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->Vilt
+class ViltIntermediate(nn.Module):
+ def __init__(self, config: ViltConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+
+# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->Vilt
+class ViltOutput(nn.Module):
+ def __init__(self, config: ViltConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ hidden_states = hidden_states + input_tensor
+
+ return hidden_states
+
+
+class ViltLayer(nn.Module):
+ """This corresponds to the Block class in the timm implementation."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = ViltAttention(config)
+ self.intermediate = ViltIntermediate(config)
+ self.output = ViltOutput(config)
+ self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False):
+ self_attention_outputs = self.attention(
+ self.layernorm_before(hidden_states), # in ViLT, layernorm is applied before self-attention
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ )
+ attention_output = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ # first residual connection
+ hidden_states = attention_output + hidden_states.to(attention_output.device)
+
+ # in ViLT, layernorm is also applied after self-attention
+ layer_output = self.layernorm_after(hidden_states)
+ layer_output = self.intermediate(layer_output)
+
+ # second residual connection is done here
+ layer_output = self.output(layer_output, hidden_states)
+
+ outputs = (layer_output,) + outputs
+
+ return outputs
+
+
+class ViltEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([ViltLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ ):
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class ViltPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ViltConfig
+ base_model_prefix = "vilt"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["ViltEmbeddings", "ViltSelfAttention"]
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+VILT_START_DOCSTRING = r"""
+ This model is a PyTorch `torch.nn.Module `_ subclass. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`ViltConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+VILT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
+ [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
+ IDs?](../glossary#input-ids)
+
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ [What are attention masks?](../glossary#attention-mask)
+
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+ [What are token type IDs?](../glossary#token-type-ids)
+
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
+ [`ViltImageProcessor.__call__`] for details.
+
+ pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
+ Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
+
+ - 1 for pixels that are real (i.e. **not masked**),
+ - 0 for pixels that are padding (i.e. **masked**).
+ `What are attention masks? <../glossary.html#attention-mask>`__
+
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*):
+ Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `pixel_values` into patch embeddings.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+VILT_IMAGES_AND_TEXT_CLASSIFICATION_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
+ [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
+ IDs?](../glossary#input-ids)
+
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ [What are attention masks?](../glossary#attention-mask)
+
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+ [What are token type IDs?](../glossary#token-type-ids)
+
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_images, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
+ [`ViltImageProcessor.__call__`] for details.
+
+ pixel_mask (`torch.LongTensor` of shape `(batch_size, num_images, height, width)`, *optional*):
+ Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
+
+ - 1 for pixels that are real (i.e. **not masked**),
+ - 0 for pixels that are padding (i.e. **masked**).
+ `What are attention masks? <../glossary.html#attention-mask>`__
+
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, num_images, num_patches, hidden_size)`, *optional*):
+ Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `pixel_values` into patch embeddings.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare ViLT Model transformer outputting raw hidden-states without any specific head on top.",
+ VILT_START_DOCSTRING,
+)
+class ViltModel(ViltPreTrainedModel):
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = ViltEmbeddings(config)
+ self.encoder = ViltEncoder(config)
+
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.pooler = ViltPooler(config) if add_pooling_layer else None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.text_embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.text_embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ pixel_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ image_embeds: Optional[torch.FloatTensor] = None,
+ image_token_type_idx: Optional[int] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[BaseModelOutputWithPooling, Tuple[torch.FloatTensor]]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import ViltProcessor, ViltModel
+ >>> from PIL import Image
+ >>> import requests
+
+ >>> # prepare image and text
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+ >>> text = "hello world"
+
+ >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm")
+ >>> model = ViltModel.from_pretrained("dandelin/vilt-b32-mlm")
+
+ >>> inputs = processor(image, text, return_tensors="pt")
+ >>> outputs = model(**inputs)
+ >>> last_hidden_states = outputs.last_hidden_state
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ text_batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((text_batch_size, seq_length)), device=device)
+
+ if pixel_values is not None and image_embeds is not None:
+ raise ValueError("You cannot specify both pixel_values and image_embeds at the same time")
+ elif pixel_values is None and image_embeds is None:
+ raise ValueError("You have to specify either pixel_values or image_embeds")
+
+ image_batch_size = pixel_values.shape[0] if pixel_values is not None else image_embeds.shape[0]
+ if image_batch_size != text_batch_size:
+ raise ValueError("The text inputs and image inputs need to have the same batch size")
+ if pixel_mask is None:
+ pixel_mask = torch.ones((image_batch_size, self.config.image_size, self.config.image_size), device=device)
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output, attention_mask = self.embeddings(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ pixel_values,
+ pixel_mask,
+ inputs_embeds,
+ image_embeds,
+ image_token_type_idx=image_token_type_idx,
+ )
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ sequence_output = self.layernorm(sequence_output)
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+class ViltPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states):
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+@add_start_docstrings(
+ """
+ ViLT Model with a language modeling head on top as done during pretraining.
+ """,
+ VILT_START_DOCSTRING,
+)
+class ViltForMaskedLM(ViltPreTrainedModel):
+ _tied_weights_keys = ["mlm_score.decoder.weight", "mlm_score.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.vilt = ViltModel(config)
+ self.mlm_score = ViltMLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.mlm_score.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.mlm_score.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ pixel_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ image_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ labels (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in *[-100, 0, ...,
+ config.vocab_size]* (see *input_ids* docstring) Tokens with indices set to *-100* are ignored (masked), the
+ loss is only computed for the tokens with labels in *[0, ..., config.vocab_size]*
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import ViltProcessor, ViltForMaskedLM
+ >>> import requests
+ >>> from PIL import Image
+ >>> import re
+ >>> import torch
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+ >>> text = "a bunch of [MASK] laying on a [MASK]."
+
+ >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm")
+ >>> model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm")
+
+ >>> # prepare inputs
+ >>> encoding = processor(image, text, return_tensors="pt")
+
+ >>> # forward pass
+ >>> outputs = model(**encoding)
+
+ >>> tl = len(re.findall("\[MASK\]", text))
+ >>> inferred_token = [text]
+
+ >>> # gradually fill in the MASK tokens, one by one
+ >>> with torch.no_grad():
+ ... for i in range(tl):
+ ... encoded = processor.tokenizer(inferred_token)
+ ... input_ids = torch.tensor(encoded.input_ids)
+ ... encoded = encoded["input_ids"][0][1:-1]
+ ... outputs = model(input_ids=input_ids, pixel_values=encoding.pixel_values)
+ ... mlm_logits = outputs.logits[0] # shape (seq_len, vocab_size)
+ ... # only take into account text features (minus CLS and SEP token)
+ ... mlm_logits = mlm_logits[1 : input_ids.shape[1] - 1, :]
+ ... mlm_values, mlm_ids = mlm_logits.softmax(dim=-1).max(dim=-1)
+ ... # only take into account text
+ ... mlm_values[torch.tensor(encoded) != 103] = 0
+ ... select = mlm_values.argmax().item()
+ ... encoded[select] = mlm_ids[select].item()
+ ... inferred_token = [processor.decode(encoded)]
+
+ >>> selected_token = ""
+ >>> encoded = processor.tokenizer(inferred_token)
+ >>> output = processor.decode(encoded.input_ids[0], skip_special_tokens=True)
+ >>> print(output)
+ a bunch of cats laying on a couch.
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.vilt(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ pixel_values=pixel_values,
+ pixel_mask=pixel_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ image_embeds=image_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output, pooled_output = outputs[:2]
+ # split up final hidden states into text and image features
+ text_seq_len = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+ text_features, _ = (sequence_output[:, :text_seq_len], sequence_output[:, text_seq_len:])
+
+ mlm_logits = self.mlm_score(text_features)
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
+ # move labels to correct device to enable PP
+ labels = labels.to(mlm_logits.device)
+ masked_lm_loss = loss_fct(mlm_logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (mlm_logits,) + outputs[2:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=mlm_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class ViltPredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.transform_act_fn = config.hidden_act
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+class ViltMLMHead(nn.Module):
+ def __init__(self, config, weight=None):
+ super().__init__()
+ self.config = config
+ self.transform = ViltPredictionHeadTransform(config)
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+ if weight is not None:
+ self.decoder.weight = weight
+
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
+ self.decoder.bias = self.bias
+
+ def forward(self, x):
+ x = self.transform(x)
+ x = self.decoder(x)
+ return x
+
+
+@add_start_docstrings(
+ """
+ Vilt Model transformer with a classifier head on top (a linear layer on top of the final hidden state of the [CLS]
+ token) for visual question answering, e.g. for VQAv2.
+ """,
+ VILT_START_DOCSTRING,
+)
+class ViltForQuestionAnswering(ViltPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+ self.vilt = ViltModel(config)
+
+ # Classifier head
+ self.classifier = nn.Sequential(
+ nn.Linear(config.hidden_size, config.hidden_size * 2),
+ nn.LayerNorm(config.hidden_size * 2),
+ nn.GELU(),
+ nn.Linear(config.hidden_size * 2, config.num_labels),
+ )
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ pixel_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ image_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ labels (`torch.FloatTensor` of shape `(batch_size, num_labels)`, *optional*):
+ Labels for computing the visual question answering loss. This tensor must be either a one-hot encoding of
+ all answers that are applicable for a given example in the batch, or a soft encoding indicating which
+ answers are applicable, where 1.0 is the highest score.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import ViltProcessor, ViltForQuestionAnswering
+ >>> import requests
+ >>> from PIL import Image
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+ >>> text = "How many cats are there?"
+
+ >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
+ >>> model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
+
+ >>> # prepare inputs
+ >>> encoding = processor(image, text, return_tensors="pt")
+
+ >>> # forward pass
+ >>> outputs = model(**encoding)
+ >>> logits = outputs.logits
+ >>> idx = logits.argmax(-1).item()
+ >>> print("Predicted answer:", model.config.id2label[idx])
+ Predicted answer: 2
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.vilt(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ pixel_values=pixel_values,
+ pixel_mask=pixel_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ image_embeds=image_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooler_output = outputs.pooler_output if return_dict else outputs[1]
+
+ logits = self.classifier(pooler_output)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable PP
+ labels = labels.to(logits.device)
+ loss = nn.functional.binary_cross_entropy_with_logits(logits, labels) * labels.shape[1]
+ # see https://github.com/jnhwkim/ban-vqa/blob/master/train.py#L19
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Vilt Model transformer with a classifier head on top (a linear layer on top of the final hidden state of the [CLS]
+ token) for image-to-text or text-to-image retrieval, e.g. MSCOCO and F30K.
+ """,
+ VILT_START_DOCSTRING,
+)
+class ViltForImageAndTextRetrieval(ViltPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.vilt = ViltModel(config)
+
+ # Classifier head
+ self.rank_output = nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ pixel_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ image_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels are currently not supported.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import ViltProcessor, ViltForImageAndTextRetrieval
+ >>> import requests
+ >>> from PIL import Image
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+ >>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
+
+ >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-coco")
+ >>> model = ViltForImageAndTextRetrieval.from_pretrained("dandelin/vilt-b32-finetuned-coco")
+
+ >>> # forward pass
+ >>> scores = dict()
+ >>> for text in texts:
+ ... # prepare inputs
+ ... encoding = processor(image, text, return_tensors="pt")
+ ... outputs = model(**encoding)
+ ... scores[text] = outputs.logits[0, :].item()
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.vilt(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ pixel_values=pixel_values,
+ pixel_mask=pixel_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ image_embeds=image_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooler_output = outputs.pooler_output if return_dict else outputs[1]
+
+ logits = self.rank_output(pooler_output)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable PP
+ labels = labels.to(logits.device)
+ raise NotImplementedError("Training is not yet supported.")
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Vilt Model transformer with a classifier head on top for natural language visual reasoning, e.g. NLVR2.
+ """,
+ VILT_IMAGES_AND_TEXT_CLASSIFICATION_INPUTS_DOCSTRING,
+)
+class ViltForImagesAndTextClassification(ViltPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+ self.vilt = ViltModel(config)
+
+ # Classifier head
+ num_images = config.num_images
+ self.classifier = nn.Sequential(
+ nn.Linear(config.hidden_size * num_images, config.hidden_size * num_images),
+ nn.LayerNorm(config.hidden_size * num_images),
+ nn.GELU(),
+ nn.Linear(config.hidden_size * num_images, config.num_labels),
+ )
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=ViltForImagesAndTextClassificationOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ pixel_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ image_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[ViltForImagesAndTextClassificationOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Binary classification labels.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import ViltProcessor, ViltForImagesAndTextClassification
+ >>> import requests
+ >>> from PIL import Image
+
+ >>> image1 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg", stream=True).raw)
+ >>> image2 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_1.jpg", stream=True).raw)
+ >>> text = "The left image contains twice the number of dogs as the right image."
+
+ >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2")
+ >>> model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2")
+
+ >>> # prepare inputs
+ >>> encoding = processor([image1, image2], text, return_tensors="pt")
+
+ >>> # forward pass
+ >>> outputs = model(input_ids=encoding.input_ids, pixel_values=encoding.pixel_values.unsqueeze(0))
+ >>> logits = outputs.logits
+ >>> idx = logits.argmax(-1).item()
+ >>> print("Predicted answer:", model.config.id2label[idx])
+ Predicted answer: True
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is not None and pixel_values.ndim == 4:
+ # add dummy num_images dimension
+ pixel_values = pixel_values.unsqueeze(1)
+
+ if image_embeds is not None and image_embeds.ndim == 3:
+ # add dummy num_images dimension
+ image_embeds = image_embeds.unsqueeze(1)
+
+ num_images = pixel_values.shape[1] if pixel_values is not None else None
+ if num_images is None:
+ num_images = image_embeds.shape[1] if image_embeds is not None else None
+ if num_images != self.config.num_images:
+ raise ValueError(
+ "Make sure to match the number of images in the model with the number of images in the input."
+ )
+ pooler_outputs = []
+ hidden_states = [] if output_hidden_states else None
+ attentions = [] if output_attentions else None
+ for i in range(num_images):
+ # forward every image through the model
+ outputs = self.vilt(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ pixel_values=pixel_values[:, i, :, :, :] if pixel_values is not None else None,
+ pixel_mask=pixel_mask[:, i, :, :] if pixel_mask is not None else None,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ image_embeds=image_embeds[:, i, :, :] if image_embeds is not None else None,
+ image_token_type_idx=i + 1,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ pooler_output = outputs.pooler_output if return_dict else outputs[1]
+ pooler_outputs.append(pooler_output)
+ if output_hidden_states:
+ hidden_states.append(outputs.hidden_states)
+ if output_attentions:
+ attentions.append(outputs.attentions)
+
+ pooled_output = torch.cat(pooler_outputs, dim=-1)
+ logits = self.classifier(pooled_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ # move labels to correct device to enable PP
+ labels = labels.to(logits.device)
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits, hidden_states, attentions)
+ return ((loss,) + output) if loss is not None else output
+
+ return ViltForImagesAndTextClassificationOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=hidden_states,
+ attentions=attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ ViLT Model with a token classification head on top (a linear layer on top of the final hidden-states of the text
+ tokens) e.g. for Named-Entity-Recognition (NER) tasks.
+ """,
+ VILT_START_DOCSTRING,
+)
+class ViltForTokenClassification(ViltPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+ self.vilt = ViltModel(config, add_pooling_layer=False)
+
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ pixel_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ image_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[TokenClassifierOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, text_sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+
+ Returns:
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.vilt(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ pixel_values=pixel_values,
+ pixel_mask=pixel_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ image_embeds=image_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ text_input_size = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output[:, :text_input_size])
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ # move labels to correct device to enable PP
+ labels = labels.to(logits.device)
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..a752f1fa0c147676b75cd35e5a6a37bef6a62333
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__init__.py
@@ -0,0 +1,65 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
+
+
+_import_structure = {"configuration_visual_bert": ["VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VisualBertConfig"]}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_visual_bert"] = [
+ "VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "VisualBertForMultipleChoice",
+ "VisualBertForPreTraining",
+ "VisualBertForQuestionAnswering",
+ "VisualBertForRegionToPhraseAlignment",
+ "VisualBertForVisualReasoning",
+ "VisualBertLayer",
+ "VisualBertModel",
+ "VisualBertPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_visual_bert import VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, VisualBertConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_visual_bert import (
+ VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ VisualBertForMultipleChoice,
+ VisualBertForPreTraining,
+ VisualBertForQuestionAnswering,
+ VisualBertForRegionToPhraseAlignment,
+ VisualBertForVisualReasoning,
+ VisualBertLayer,
+ VisualBertModel,
+ VisualBertPreTrainedModel,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a05bde58c9923b1545ba76a5d4abd688be95340d
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__pycache__/__init__.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__pycache__/configuration_visual_bert.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__pycache__/configuration_visual_bert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b0e9840cbcc6834f0ef957edda3cb061f84a78ea
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__pycache__/configuration_visual_bert.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__pycache__/convert_visual_bert_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__pycache__/convert_visual_bert_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..88efea2b4bec9e086cd9a83e203fec9b9504661a
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__pycache__/convert_visual_bert_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__pycache__/modeling_visual_bert.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__pycache__/modeling_visual_bert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..830f59829c3ed14c5ab63d2fe17b5bc81d4ff202
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/__pycache__/modeling_visual_bert.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/visual_bert/configuration_visual_bert.py b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/configuration_visual_bert.py
new file mode 100644
index 0000000000000000000000000000000000000000..2edf5466e347b8ec51ae3f84e90668c053e8750d
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/configuration_visual_bert.py
@@ -0,0 +1,135 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" VisualBERT model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class VisualBertConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`VisualBertModel`]. It is used to instantiate an
+ VisualBERT model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the VisualBERT
+ [uclanlp/visualbert-vqa-coco-pre](https://huggingface.co/uclanlp/visualbert-vqa-coco-pre) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the VisualBERT model. Defines the number of different tokens that can be represented by
+ the `inputs_ids` passed when calling [`VisualBertModel`]. Vocabulary size of the model. Defines the
+ different tokens that can be represented by the `inputs_ids` passed to the forward method of
+ [`VisualBertModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ visual_embedding_dim (`int`, *optional*, defaults to 512):
+ Dimensionality of the visual embeddings to be passed to the model.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`VisualBertModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ bypass_transformer (`bool`, *optional*, defaults to `False`):
+ Whether or not the model should bypass the transformer for the visual embeddings. If set to `True`, the
+ model directly concatenates the visual embeddings from [`VisualBertEmbeddings`] with text output from
+ transformers, and then pass it to a self-attention layer.
+ special_visual_initialize (`bool`, *optional*, defaults to `True`):
+ Whether or not the visual token type and position type embedding weights should be initialized the same as
+ the textual token type and positive type embeddings. When set to `True`, the weights of the textual token
+ type and position type embeddings are copied to the respective visual embedding layers.
+
+
+ Example:
+
+ ```python
+ >>> from transformers import VisualBertConfig, VisualBertModel
+
+ >>> # Initializing a VisualBERT visualbert-vqa-coco-pre style configuration
+ >>> configuration = VisualBertConfig.from_pretrained("uclanlp/visualbert-vqa-coco-pre")
+
+ >>> # Initializing a model (with random weights) from the visualbert-vqa-coco-pre style configuration
+ >>> model = VisualBertModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "visual_bert"
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ hidden_size=768,
+ visual_embedding_dim=512,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ bypass_transformer=False,
+ special_visual_initialize=True,
+ pad_token_id=1,
+ bos_token_id=0,
+ eos_token_id=2,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.visual_embedding_dim = visual_embedding_dim
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.type_vocab_size = type_vocab_size
+ self.layer_norm_eps = layer_norm_eps
+ self.bypass_transformer = bypass_transformer
+ self.special_visual_initialize = special_visual_initialize
diff --git a/venv/lib/python3.10/site-packages/transformers/models/visual_bert/convert_visual_bert_original_pytorch_checkpoint_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/convert_visual_bert_original_pytorch_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..d1e95630bd000ff01ba941f200560b52a31db9cf
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/convert_visual_bert_original_pytorch_checkpoint_to_pytorch.py
@@ -0,0 +1,150 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert VisualBert checkpoint."""
+
+
+import argparse
+from collections import OrderedDict
+from pathlib import Path
+
+import torch
+
+from transformers import (
+ VisualBertConfig,
+ VisualBertForMultipleChoice,
+ VisualBertForPreTraining,
+ VisualBertForQuestionAnswering,
+ VisualBertForVisualReasoning,
+)
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+rename_keys_prefix = [
+ ("bert.bert", "visual_bert"),
+ ("bert.cls", "cls"),
+ ("bert.classifier", "cls"),
+ ("token_type_embeddings_visual", "visual_token_type_embeddings"),
+ ("position_embeddings_visual", "visual_position_embeddings"),
+ ("projection", "visual_projection"),
+]
+
+ACCEPTABLE_CHECKPOINTS = [
+ "nlvr2_coco_pre_trained.th",
+ "nlvr2_fine_tuned.th",
+ "nlvr2_pre_trained.th",
+ "vcr_coco_pre_train.th",
+ "vcr_fine_tune.th",
+ "vcr_pre_train.th",
+ "vqa_coco_pre_trained.th",
+ "vqa_fine_tuned.th",
+ "vqa_pre_trained.th",
+]
+
+
+def load_state_dict(checkpoint_path):
+ sd = torch.load(checkpoint_path, map_location="cpu")
+ return sd
+
+
+def get_new_dict(d, config, rename_keys_prefix=rename_keys_prefix):
+ new_d = OrderedDict()
+ new_d["visual_bert.embeddings.position_ids"] = torch.arange(config.max_position_embeddings).expand((1, -1))
+ # detector_d = OrderedDict()
+ for key in d:
+ if "detector" in key:
+ # detector_d[key.replace('detector.','')] = d[key]
+ continue
+ new_key = key
+ for name_pair in rename_keys_prefix:
+ new_key = new_key.replace(name_pair[0], name_pair[1])
+ new_d[new_key] = d[key]
+ if key == "bert.cls.predictions.decoder.weight":
+ # Old bert code didn't have `decoder.bias`, but was added separately
+ new_d["cls.predictions.decoder.bias"] = new_d["cls.predictions.bias"]
+ return new_d
+
+
+@torch.no_grad()
+def convert_visual_bert_checkpoint(checkpoint_path, pytorch_dump_folder_path):
+ """
+ Copy/paste/tweak model's weights to our VisualBERT structure.
+ """
+
+ assert (
+ checkpoint_path.split("/")[-1] in ACCEPTABLE_CHECKPOINTS
+ ), f"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."
+
+ # Get Config
+ if "pre" in checkpoint_path:
+ model_type = "pretraining"
+ if "vcr" in checkpoint_path:
+ config_params = {"visual_embedding_dim": 512}
+ elif "vqa_advanced" in checkpoint_path:
+ config_params = {"visual_embedding_dim": 2048}
+ elif "vqa" in checkpoint_path:
+ config_params = {"visual_embedding_dim": 2048}
+ elif "nlvr" in checkpoint_path:
+ config_params = {"visual_embedding_dim": 1024}
+ else:
+ raise NotImplementedError(f"No implementation found for `{checkpoint_path}`.")
+ else:
+ if "vcr" in checkpoint_path:
+ config_params = {"visual_embedding_dim": 512}
+ model_type = "multichoice"
+ elif "vqa_advanced" in checkpoint_path:
+ config_params = {"visual_embedding_dim": 2048}
+ model_type = "vqa_advanced"
+ elif "vqa" in checkpoint_path:
+ config_params = {"visual_embedding_dim": 2048, "num_labels": 3129}
+ model_type = "vqa"
+ elif "nlvr" in checkpoint_path:
+ config_params = {
+ "visual_embedding_dim": 1024,
+ "num_labels": 2,
+ }
+ model_type = "nlvr"
+
+ config = VisualBertConfig(**config_params)
+
+ # Load State Dict
+ state_dict = load_state_dict(checkpoint_path)
+
+ new_state_dict = get_new_dict(state_dict, config)
+
+ if model_type == "pretraining":
+ model = VisualBertForPreTraining(config)
+ elif model_type == "vqa":
+ model = VisualBertForQuestionAnswering(config)
+ elif model_type == "nlvr":
+ model = VisualBertForVisualReasoning(config)
+ elif model_type == "multichoice":
+ model = VisualBertForMultipleChoice(config)
+
+ model.load_state_dict(new_state_dict)
+ # Save Checkpoints
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
+ model.save_pretrained(pytorch_dump_folder_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.")
+ parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.")
+ args = parser.parse_args()
+ convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
diff --git a/venv/lib/python3.10/site-packages/transformers/models/visual_bert/modeling_visual_bert.py b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/modeling_visual_bert.py
new file mode 100644
index 0000000000000000000000000000000000000000..07c8b7a4b5173ce046578ccb0b28e2461a6efd4a
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/visual_bert/modeling_visual_bert.py
@@ -0,0 +1,1590 @@
+# coding=utf-8
+# Copyright 2021 The UCLA NLP Authors and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch VisualBERT model."""
+
+
+import math
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss, KLDivLoss, LogSoftmax
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPooling,
+ MultipleChoiceModelOutput,
+ SequenceClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_visual_bert import VisualBertConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "VisualBertConfig"
+_CHECKPOINT_FOR_DOC = "uclanlp/visualbert-vqa-coco-pre"
+
+
+from ..deprecated._archive_maps import VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+class VisualBertEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings and visual embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+
+ # For Visual Features
+ # Token type and position embedding for image features
+ self.visual_token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+ self.visual_position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+
+ if config.special_visual_initialize:
+ self.visual_token_type_embeddings.weight.data = nn.Parameter(
+ self.token_type_embeddings.weight.data.clone(), requires_grad=True
+ )
+ self.visual_position_embeddings.weight.data = nn.Parameter(
+ self.position_embeddings.weight.data.clone(), requires_grad=True
+ )
+
+ self.visual_projection = nn.Linear(config.visual_embedding_dim, config.hidden_size)
+
+ def forward(
+ self,
+ input_ids=None,
+ token_type_ids=None,
+ position_ids=None,
+ inputs_embeds=None,
+ visual_embeds=None,
+ visual_token_type_ids=None,
+ image_text_alignment=None,
+ ):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, :seq_length]
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+
+ # Absolute Position Embeddings
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+
+ if visual_embeds is not None:
+ if visual_token_type_ids is None:
+ visual_token_type_ids = torch.ones(
+ visual_embeds.size()[:-1], dtype=torch.long, device=self.position_ids.device
+ )
+
+ visual_embeds = self.visual_projection(visual_embeds)
+ visual_token_type_embeddings = self.visual_token_type_embeddings(visual_token_type_ids)
+
+ if image_text_alignment is not None:
+ # image_text_alignment = Batch x image_length x alignment_number.
+ # Each element denotes the position of the word corresponding to the image feature. -1 is the padding value.
+
+ dtype = token_type_embeddings.dtype
+ image_text_alignment_mask = (image_text_alignment != -1).long()
+ # Get rid of the -1.
+ image_text_alignment = image_text_alignment_mask * image_text_alignment
+
+ # Batch x image_length x alignment length x dim
+ visual_position_embeddings = self.position_embeddings(image_text_alignment)
+ visual_position_embeddings *= image_text_alignment_mask.to(dtype=dtype).unsqueeze(-1)
+ visual_position_embeddings = visual_position_embeddings.sum(2)
+
+ # We want to averge along the alignment_number dimension.
+ image_text_alignment_mask = image_text_alignment_mask.to(dtype=dtype).sum(2)
+
+ if (image_text_alignment_mask == 0).sum() != 0:
+ image_text_alignment_mask[image_text_alignment_mask == 0] = 1 # Avoid divide by zero error
+ logger.warning(
+ "Found 0 values in `image_text_alignment_mask`. Setting them to 1 to avoid divide-by-zero"
+ " error."
+ )
+ visual_position_embeddings = visual_position_embeddings / image_text_alignment_mask.unsqueeze(-1)
+
+ visual_position_ids = torch.zeros(
+ *visual_embeds.size()[:-1], dtype=torch.long, device=visual_embeds.device
+ )
+
+ # When fine-tuning the detector , the image_text_alignment is sometimes padded too long.
+ if visual_position_embeddings.size(1) != visual_embeds.size(1):
+ if visual_position_embeddings.size(1) < visual_embeds.size(1):
+ raise ValueError(
+ f"Visual position embeddings length: {visual_position_embeddings.size(1)} "
+ f"should be the same as `visual_embeds` length: {visual_embeds.size(1)}"
+ )
+ visual_position_embeddings = visual_position_embeddings[:, : visual_embeds.size(1), :]
+
+ visual_position_embeddings = visual_position_embeddings + self.visual_position_embeddings(
+ visual_position_ids
+ )
+ else:
+ visual_position_ids = torch.zeros(
+ *visual_embeds.size()[:-1], dtype=torch.long, device=visual_embeds.device
+ )
+ visual_position_embeddings = self.visual_position_embeddings(visual_position_ids)
+
+ visual_embeddings = visual_embeds + visual_position_embeddings + visual_token_type_embeddings
+
+ embeddings = torch.cat((embeddings, visual_embeddings), dim=1)
+
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class VisualBertSelfAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x):
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ ):
+ mixed_query_layer = self.query(hidden_states)
+
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in VisualBertSelfAttentionModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->VisualBert
+class VisualBertSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class VisualBertAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.self = VisualBertSelfAttention(config)
+ self.output = VisualBertSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ ):
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->VisualBert
+class VisualBertIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->VisualBert
+class VisualBertOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class VisualBertLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = VisualBertAttention(config)
+ self.intermediate = VisualBertIntermediate(config)
+ self.output = VisualBertOutput(config)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ ):
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ )
+ attention_output = self_attention_outputs[0]
+
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+class VisualBertEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([VisualBertLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ ):
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
+
+ hidden_states = layer_outputs[0]
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ all_hidden_states,
+ all_self_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions
+ )
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->VisualBert
+class VisualBertPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->VisualBert
+class VisualBertPredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.transform_act_fn = config.hidden_act
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->VisualBert
+class VisualBertLMPredictionHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.transform = VisualBertPredictionHeadTransform(config)
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
+ self.decoder.bias = self.bias
+
+ def forward(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ hidden_states = self.decoder(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->VisualBert
+class VisualBertPreTrainingHeads(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.predictions = VisualBertLMPredictionHead(config)
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
+
+ def forward(self, sequence_output, pooled_output):
+ prediction_scores = self.predictions(sequence_output)
+ seq_relationship_score = self.seq_relationship(pooled_output)
+ return prediction_scores, seq_relationship_score
+
+
+class VisualBertPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = VisualBertConfig
+ base_model_prefix = "visual_bert"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, (nn.Linear, nn.Embedding)):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ if isinstance(module, nn.Linear) and module.bias is not None:
+ module.bias.data.zero_()
+
+
+@dataclass
+class VisualBertForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`VisualBertForPreTraining`].
+
+ Args:
+ loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
+ Total loss as the sum of the masked language modeling loss and the sentence-image prediction
+ (classification) loss.
+ prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+ seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
+ Prediction scores of the sentence-image prediction (classification) head (scores of True/False continuation
+ before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ prediction_logits: torch.FloatTensor = None
+ seq_relationship_logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+VISUAL_BERT_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`VisualBertConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+VISUAL_BERT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+
+ visual_embeds (`torch.FloatTensor` of shape `(batch_size, visual_seq_length, visual_embedding_dim)`, *optional*):
+ The embedded representation of the visual inputs, generally derived using using an object detector.
+
+ visual_attention_mask (`torch.FloatTensor` of shape `(batch_size, visual_seq_length)`, *optional*):
+ Mask to avoid performing attention on visual embeddings. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ visual_token_type_ids (`torch.LongTensor` of shape `(batch_size, visual_seq_length)`, *optional*):
+ Segment token indices to indicate different portions of the visual embeds.
+
+ [What are token type IDs?](../glossary#token-type-ids) The authors of VisualBERT set the
+ *visual_token_type_ids* to *1* for all tokens.
+
+ image_text_alignment (`torch.LongTensor` of shape `(batch_size, visual_seq_length, alignment_number)`, *optional*):
+ Image-Text alignment uses to decide the position IDs of the visual embeddings.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare VisualBert Model transformer outputting raw hidden-states without any specific head on top.",
+ VISUAL_BERT_START_DOCSTRING,
+)
+class VisualBertModel(VisualBertPreTrainedModel):
+ """
+
+ The model can behave as an encoder (with only self-attention) following the architecture described in [Attention is
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
+ """
+
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = VisualBertEmbeddings(config)
+ self.encoder = VisualBertEncoder(config)
+
+ self.pooler = VisualBertPooler(config) if add_pooling_layer else None
+
+ self.bypass_transformer = config.bypass_transformer
+
+ if self.bypass_transformer:
+ self.additional_layer = VisualBertLayer(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ visual_embeds: Optional[torch.FloatTensor] = None,
+ visual_attention_mask: Optional[torch.LongTensor] = None,
+ visual_token_type_ids: Optional[torch.LongTensor] = None,
+ image_text_alignment: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
+ r"""
+
+ Returns:
+
+ Example:
+
+ ```python
+ # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image.
+ from transformers import AutoTokenizer, VisualBertModel
+ import torch
+
+ tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
+ model = VisualBertModel.from_pretrained("uclanlp/visualbert-vqa-coco-pre")
+
+ inputs = tokenizer("The capital of France is Paris.", return_tensors="pt")
+ visual_embeds = get_visual_embeddings(image).unsqueeze(0)
+ visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
+ visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
+
+ inputs.update(
+ {
+ "visual_embeds": visual_embeds,
+ "visual_token_type_ids": visual_token_type_ids,
+ "visual_attention_mask": visual_attention_mask,
+ }
+ )
+
+ outputs = model(**inputs)
+
+ last_hidden_states = outputs.last_hidden_state
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if visual_embeds is not None:
+ visual_input_shape = visual_embeds.size()[:-1]
+
+ if attention_mask is None:
+ attention_mask = torch.ones(input_shape, device=device)
+
+ if visual_embeds is not None and visual_attention_mask is None:
+ visual_attention_mask = torch.ones(visual_input_shape, device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ if visual_embeds is not None:
+ combined_attention_mask = torch.cat((attention_mask, visual_attention_mask), dim=-1)
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
+ combined_attention_mask, (batch_size, input_shape + visual_input_shape)
+ )
+
+ else:
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
+ attention_mask, (batch_size, input_shape)
+ )
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ visual_embeds=visual_embeds,
+ visual_token_type_ids=visual_token_type_ids,
+ image_text_alignment=image_text_alignment,
+ )
+
+ if self.bypass_transformer and visual_embeds is not None:
+ text_length = input_ids.size(1)
+ text_embedding_output = embedding_output[:, :text_length, :]
+ visual_embedding_output = embedding_output[:, text_length:, :]
+
+ text_extended_attention_mask = extended_attention_mask[:, :, text_length, :text_length]
+
+ encoded_outputs = self.encoder(
+ text_embedding_output,
+ attention_mask=text_extended_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoded_outputs[0]
+ concatenated_input = torch.cat((sequence_output, visual_embedding_output), dim=1)
+ sequence_output = self.additional_layer(concatenated_input, extended_attention_mask)
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ else:
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ VisualBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a
+ `sentence-image prediction (classification)` head.
+ """,
+ VISUAL_BERT_START_DOCSTRING,
+)
+class VisualBertForPreTraining(VisualBertPreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.visual_bert = VisualBertModel(config)
+ self.cls = VisualBertPreTrainingHeads(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.cls.predictions.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.cls.predictions.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=VisualBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ visual_embeds: Optional[torch.FloatTensor] = None,
+ visual_attention_mask: Optional[torch.LongTensor] = None,
+ visual_token_type_ids: Optional[torch.LongTensor] = None,
+ image_text_alignment: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.LongTensor] = None,
+ sentence_image_labels: Optional[torch.LongTensor] = None,
+ ) -> Union[Tuple[torch.Tensor], VisualBertForPreTrainingOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, total_sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ sentence_image_labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sentence-image prediction (classification) loss. Input should be a sequence pair
+ (see `input_ids` docstring) Indices should be in `[0, 1]`:
+
+ - 0 indicates sequence B is a matching pair of sequence A for the given image,
+ - 1 indicates sequence B is a random sequence w.r.t A for the given image.
+
+ Returns:
+
+ Example:
+
+ ```python
+ # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch.
+ from transformers import AutoTokenizer, VisualBertForPreTraining
+
+ tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
+ model = VisualBertForPreTraining.from_pretrained("uclanlp/visualbert-vqa-coco-pre")
+
+ inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
+ visual_embeds = get_visual_embeddings(image).unsqueeze(0)
+ visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
+ visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
+
+ inputs.update(
+ {
+ "visual_embeds": visual_embeds,
+ "visual_token_type_ids": visual_token_type_ids,
+ "visual_attention_mask": visual_attention_mask,
+ }
+ )
+ max_length = inputs["input_ids"].shape[-1] + visual_embeds.shape[-2]
+ labels = tokenizer(
+ "The capital of France is Paris.", return_tensors="pt", padding="max_length", max_length=max_length
+ )["input_ids"]
+ sentence_image_labels = torch.tensor(1).unsqueeze(0) # Batch_size
+
+
+ outputs = model(**inputs, labels=labels, sentence_image_labels=sentence_image_labels)
+ loss = outputs.loss
+ prediction_logits = outputs.prediction_logits
+ seq_relationship_logits = outputs.seq_relationship_logits
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.visual_bert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ visual_embeds=visual_embeds,
+ visual_attention_mask=visual_attention_mask,
+ visual_token_type_ids=visual_token_type_ids,
+ image_text_alignment=image_text_alignment,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output, pooled_output = outputs[:2]
+ prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
+
+ total_loss = None
+ if labels is not None and sentence_image_labels is not None:
+ total_size = attention_mask.size(-1) + visual_attention_mask.size(-1)
+ if labels.size(-1) != total_size:
+ raise ValueError(
+ "The labels provided should have same sequence length as total attention mask. "
+ f"Found labels with sequence length {labels.size(-1)}, expected {total_size}."
+ )
+
+ loss_fct = CrossEntropyLoss()
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+ sentence_image_loss = loss_fct(seq_relationship_score.view(-1, 2), sentence_image_labels.view(-1))
+ total_loss = masked_lm_loss + sentence_image_loss
+
+ if labels is not None and sentence_image_labels is None:
+ total_size = attention_mask.size(-1) + visual_attention_mask.size(-1)
+ if labels.size(-1) != total_size:
+ raise ValueError(
+ "The labels provided should have same sequence length as total attention mask. "
+ f"Found labels with sequence length {labels.size(-1)}, expected {total_size}."
+ )
+
+ loss_fct = CrossEntropyLoss()
+ total_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores, seq_relationship_score) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return VisualBertForPreTrainingOutput(
+ loss=total_loss,
+ prediction_logits=prediction_scores,
+ seq_relationship_logits=seq_relationship_score,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ VisualBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
+ a softmax) e.g. for VCR tasks.
+ """,
+ VISUAL_BERT_START_DOCSTRING,
+)
+class VisualBertForMultipleChoice(VisualBertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.visual_bert = VisualBertModel(config)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.cls = nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(
+ VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
+ )
+ @replace_return_docstrings(output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ visual_embeds: Optional[torch.FloatTensor] = None,
+ visual_attention_mask: Optional[torch.LongTensor] = None,
+ visual_token_type_ids: Optional[torch.LongTensor] = None,
+ image_text_alignment: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.LongTensor] = None,
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+
+ Returns:
+
+ Example:
+
+ ```python
+ # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch.
+ from transformers import AutoTokenizer, VisualBertForMultipleChoice
+ import torch
+
+ tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
+ model = VisualBertForMultipleChoice.from_pretrained("uclanlp/visualbert-vcr")
+
+ prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
+ choice0 = "It is eaten with a fork and a knife."
+ choice1 = "It is eaten while held in the hand."
+
+ visual_embeds = get_visual_embeddings(image)
+ # (batch_size, num_choices, visual_seq_length, visual_embedding_dim)
+ visual_embeds = visual_embeds.expand(1, 2, *visual_embeds.shape)
+ visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
+ visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
+
+ labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
+
+ encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors="pt", padding=True)
+ # batch size is 1
+ inputs_dict = {k: v.unsqueeze(0) for k, v in encoding.items()}
+ inputs_dict.update(
+ {
+ "visual_embeds": visual_embeds,
+ "visual_attention_mask": visual_attention_mask,
+ "visual_token_type_ids": visual_token_type_ids,
+ "labels": labels,
+ }
+ )
+ outputs = model(**inputs_dict)
+
+ loss = outputs.loss
+ logits = outputs.logits
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
+ inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+
+ visual_embeds = (
+ visual_embeds.view(-1, visual_embeds.size(-2), visual_embeds.size(-1))
+ if visual_embeds is not None
+ else None
+ )
+ visual_attention_mask = (
+ visual_attention_mask.view(-1, visual_attention_mask.size(-1))
+ if visual_attention_mask is not None
+ else None
+ )
+ visual_token_type_ids = (
+ visual_token_type_ids.view(-1, visual_token_type_ids.size(-1))
+ if visual_token_type_ids is not None
+ else None
+ )
+
+ outputs = self.visual_bert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ visual_embeds=visual_embeds,
+ visual_attention_mask=visual_attention_mask,
+ visual_token_type_ids=visual_token_type_ids,
+ image_text_alignment=image_text_alignment,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ _, pooled_output = outputs[0], outputs[1]
+
+ pooled_output = self.dropout(pooled_output)
+ logits = self.cls(pooled_output)
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ VisualBert Model with a classification/regression head on top (a dropout and a linear layer on top of the pooled
+ output) for VQA.
+ """,
+ VISUAL_BERT_START_DOCSTRING,
+)
+class VisualBertForQuestionAnswering(VisualBertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.visual_bert = VisualBertModel(config)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.cls = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ visual_embeds: Optional[torch.FloatTensor] = None,
+ visual_attention_mask: Optional[torch.LongTensor] = None,
+ visual_token_type_ids: Optional[torch.LongTensor] = None,
+ image_text_alignment: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.LongTensor] = None,
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, total_sequence_length)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. A KLDivLoss is computed between the labels and the returned logits.
+
+ Returns:
+
+ Example:
+
+ ```python
+ # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch.
+ from transformers import AutoTokenizer, VisualBertForQuestionAnswering
+ import torch
+
+ tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
+ model = VisualBertForQuestionAnswering.from_pretrained("uclanlp/visualbert-vqa")
+
+ text = "Who is eating the apple?"
+ inputs = tokenizer(text, return_tensors="pt")
+ visual_embeds = get_visual_embeddings(image).unsqueeze(0)
+ visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
+ visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
+
+ inputs.update(
+ {
+ "visual_embeds": visual_embeds,
+ "visual_token_type_ids": visual_token_type_ids,
+ "visual_attention_mask": visual_attention_mask,
+ }
+ )
+
+ labels = torch.tensor([[0.0, 1.0]]).unsqueeze(0) # Batch size 1, Num labels 2
+
+ outputs = model(**inputs, labels=labels)
+ loss = outputs.loss
+ scores = outputs.logits
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # Get the index of the last text token
+ index_to_gather = attention_mask.sum(1) - 2 # as in original code
+
+ outputs = self.visual_bert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ visual_embeds=visual_embeds,
+ visual_attention_mask=visual_attention_mask,
+ visual_token_type_ids=visual_token_type_ids,
+ image_text_alignment=image_text_alignment,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ # TO-CHECK: From the original code
+ index_to_gather = (
+ index_to_gather.unsqueeze(-1).unsqueeze(-1).expand(index_to_gather.size(0), 1, sequence_output.size(-1))
+ )
+ pooled_output = torch.gather(sequence_output, 1, index_to_gather)
+
+ pooled_output = self.dropout(pooled_output)
+ logits = self.cls(pooled_output)
+ reshaped_logits = logits.view(-1, self.num_labels)
+
+ loss = None
+ if labels is not None:
+ loss_fct = nn.KLDivLoss(reduction="batchmean")
+ log_softmax = nn.LogSoftmax(dim=-1)
+ reshaped_logits = log_softmax(reshaped_logits)
+ loss = loss_fct(reshaped_logits, labels.contiguous())
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ VisualBert Model with a sequence classification head on top (a dropout and a linear layer on top of the pooled
+ output) for Visual Reasoning e.g. for NLVR task.
+ """,
+ VISUAL_BERT_START_DOCSTRING,
+)
+class VisualBertForVisualReasoning(VisualBertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.visual_bert = VisualBertModel(config)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.cls = nn.Linear(config.hidden_size, config.num_labels) # 2
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ visual_embeds: Optional[torch.FloatTensor] = None,
+ visual_attention_mask: Optional[torch.LongTensor] = None,
+ visual_token_type_ids: Optional[torch.LongTensor] = None,
+ image_text_alignment: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.LongTensor] = None,
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. A classification loss is computed (Cross-Entropy) against these labels.
+
+ Returns:
+
+ Example:
+
+ ```python
+ # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch.
+ from transformers import AutoTokenizer, VisualBertForVisualReasoning
+ import torch
+
+ tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
+ model = VisualBertForVisualReasoning.from_pretrained("uclanlp/visualbert-nlvr2")
+
+ text = "Who is eating the apple?"
+ inputs = tokenizer(text, return_tensors="pt")
+ visual_embeds = get_visual_embeddings(image).unsqueeze(0)
+ visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
+ visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
+
+ inputs.update(
+ {
+ "visual_embeds": visual_embeds,
+ "visual_token_type_ids": visual_token_type_ids,
+ "visual_attention_mask": visual_attention_mask,
+ }
+ )
+
+ labels = torch.tensor(1).unsqueeze(0) # Batch size 1, Num choices 2
+
+ outputs = model(**inputs, labels=labels)
+ loss = outputs.loss
+ scores = outputs.logits
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.visual_bert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ visual_embeds=visual_embeds,
+ visual_attention_mask=visual_attention_mask,
+ visual_token_type_ids=visual_token_type_ids,
+ image_text_alignment=image_text_alignment,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ # sequence_output = outputs[0]
+ pooled_output = outputs[1]
+ pooled_output = self.dropout(pooled_output)
+ logits = self.cls(pooled_output)
+ reshaped_logits = logits.contiguous()
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class VisualBertRegionToPhraseAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+ self.num_attention_heads = 1 # config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x):
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(self, query, key, attention_mask):
+ attention_mask = attention_mask.to(query.dtype)
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
+ attention_mask = (1.0 - attention_mask) * torch.finfo(query.dtype).min
+
+ mixed_query_layer = self.query(query)
+ mixed_key_layer = self.key(key)
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+ key_layer = self.transpose_for_scores(mixed_key_layer)
+
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+
+ attention_scores = attention_scores + attention_mask
+
+ attention_scores = attention_scores.squeeze(1)
+ return attention_scores
+
+
+@add_start_docstrings(
+ """
+ VisualBert Model with a Masked Language Modeling head and an attention layer on top for Region-to-Phrase Alignment
+ e.g. for Flickr30 Entities task.
+ """,
+ VISUAL_BERT_START_DOCSTRING,
+)
+class VisualBertForRegionToPhraseAlignment(VisualBertPreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.visual_bert = VisualBertModel(config)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.cls = VisualBertPreTrainingHeads(config)
+ self.attention = VisualBertRegionToPhraseAttention(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(VISUAL_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ visual_embeds: Optional[torch.FloatTensor] = None,
+ visual_attention_mask: Optional[torch.LongTensor] = None,
+ visual_token_type_ids: Optional[torch.LongTensor] = None,
+ image_text_alignment: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ region_to_phrase_position: Optional[torch.LongTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
+ r"""
+ region_to_phrase_position (`torch.LongTensor` of shape `(batch_size, total_sequence_length)`, *optional*):
+ The positions depicting the position of the image embedding corresponding to the textual tokens.
+
+ labels (`torch.LongTensor` of shape `(batch_size, total_sequence_length, visual_sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. KLDivLoss is computed against these labels and the
+ outputs from the attention layer.
+
+ Returns:
+
+ Example:
+
+ ```python
+ # Assumption: *get_visual_embeddings(image)* gets the visual embeddings of the image in the batch.
+ from transformers import AutoTokenizer, VisualBertForRegionToPhraseAlignment
+ import torch
+
+ tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
+ model = VisualBertForRegionToPhraseAlignment.from_pretrained("uclanlp/visualbert-vqa-coco-pre")
+
+ text = "Who is eating the apple?"
+ inputs = tokenizer(text, return_tensors="pt")
+ visual_embeds = get_visual_embeddings(image).unsqueeze(0)
+ visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
+ visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
+ region_to_phrase_position = torch.ones((1, inputs["input_ids"].shape[-1] + visual_embeds.shape[-2]))
+
+ inputs.update(
+ {
+ "region_to_phrase_position": region_to_phrase_position,
+ "visual_embeds": visual_embeds,
+ "visual_token_type_ids": visual_token_type_ids,
+ "visual_attention_mask": visual_attention_mask,
+ }
+ )
+
+ labels = torch.ones(
+ (1, inputs["input_ids"].shape[-1] + visual_embeds.shape[-2], visual_embeds.shape[-2])
+ ) # Batch size 1
+
+ outputs = model(**inputs, labels=labels)
+ loss = outputs.loss
+ scores = outputs.logits
+ ```"""
+ if region_to_phrase_position is None:
+ raise ValueError("`region_to_phrase_position` should not be None when using Flickr Model.")
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.visual_bert(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ visual_embeds=visual_embeds,
+ visual_attention_mask=visual_attention_mask,
+ visual_token_type_ids=visual_token_type_ids,
+ image_text_alignment=image_text_alignment,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ region_to_phrase_position_mask = (region_to_phrase_position != -1).long()
+
+ # Make the -1 become 0
+ region_to_phrase_position = region_to_phrase_position * region_to_phrase_position_mask
+
+ # Selected_positions = batch x selected position x dim
+ expanded_region_to_phrase_positions = region_to_phrase_position.unsqueeze(2).expand(
+ region_to_phrase_position.size(0), region_to_phrase_position.size(1), sequence_output.size(2)
+ )
+ selected_positions = sequence_output.gather(1, expanded_region_to_phrase_positions)
+
+ # Visual Features = batch x visual_feature_length x dim
+ # This will need separate image and visual masks.
+ visual_features = sequence_output[:, attention_mask.size(1) :]
+
+ if visual_features.size(1) != visual_attention_mask.size(1):
+ raise ValueError(
+ f"Visual features length :{visual_features.size(1)} should be the same"
+ f" as visual attention mask length: {visual_attention_mask.size(1)}."
+ )
+
+ logits = self.attention(selected_positions, visual_features, visual_attention_mask)
+
+ loss = None
+
+ if labels is not None:
+ # scores = batch x selected position x visual_feature
+ # scores = selected_positions.bmm(visual_features.transpose(1,2))
+ # label = batch x selected_postion x needed position
+ loss_fct = KLDivLoss(reduction="batchmean")
+ log_softmax = LogSoftmax(dim=-1)
+ scores = log_softmax(logits)
+ labels = labels.contiguous()
+ loss = loss_fct(scores, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/venv/lib/python3.10/site-packages/transformers/models/xlnet/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f5e1d4568a66a4864af0d991f7ddf05cf5857bd0
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__init__.py
@@ -0,0 +1,142 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_sentencepiece_available,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]}
+
+try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_xlnet"] = ["XLNetTokenizer"]
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_xlnet_fast"] = ["XLNetTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_xlnet"] = [
+ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "XLNetForMultipleChoice",
+ "XLNetForQuestionAnswering",
+ "XLNetForQuestionAnsweringSimple",
+ "XLNetForSequenceClassification",
+ "XLNetForTokenClassification",
+ "XLNetLMHeadModel",
+ "XLNetModel",
+ "XLNetPreTrainedModel",
+ "load_tf_weights_in_xlnet",
+ ]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_xlnet"] = [
+ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TFXLNetForMultipleChoice",
+ "TFXLNetForQuestionAnsweringSimple",
+ "TFXLNetForSequenceClassification",
+ "TFXLNetForTokenClassification",
+ "TFXLNetLMHeadModel",
+ "TFXLNetMainLayer",
+ "TFXLNetModel",
+ "TFXLNetPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
+
+ try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_xlnet import XLNetTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_xlnet_fast import XLNetTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_xlnet import (
+ XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
+ XLNetForMultipleChoice,
+ XLNetForQuestionAnswering,
+ XLNetForQuestionAnsweringSimple,
+ XLNetForSequenceClassification,
+ XLNetForTokenClassification,
+ XLNetLMHeadModel,
+ XLNetModel,
+ XLNetPreTrainedModel,
+ load_tf_weights_in_xlnet,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_xlnet import (
+ TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TFXLNetForMultipleChoice,
+ TFXLNetForQuestionAnsweringSimple,
+ TFXLNetForSequenceClassification,
+ TFXLNetForTokenClassification,
+ TFXLNetLMHeadModel,
+ TFXLNetMainLayer,
+ TFXLNetModel,
+ TFXLNetPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5fb5cd34850b29ced2863bb4d851b4abac88aa2d
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/__init__.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/configuration_xlnet.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/configuration_xlnet.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..609f8f7f2419f4b9522b01e309e6ea9c3747513d
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/configuration_xlnet.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/convert_xlnet_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/convert_xlnet_original_tf_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cd354043118d39f71ad5bde218c4a7e648e693ba
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/convert_xlnet_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/modeling_tf_xlnet.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/modeling_tf_xlnet.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..72a60c330ed8bdcebc47e1d419ee26b4a0d6f0fc
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/modeling_tf_xlnet.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/modeling_xlnet.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/modeling_xlnet.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..668c08caf4383e6cf696ab1b45fde8ea3f3a2ac9
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/modeling_xlnet.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/tokenization_xlnet.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/tokenization_xlnet.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a556f610aad6b7d0ddc3023d60657936c296ffd7
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/tokenization_xlnet.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/tokenization_xlnet_fast.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/tokenization_xlnet_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..af0e4694217e945c31580cb6d545e04085e89b0d
Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/tokenization_xlnet_fast.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/transformers/models/xlnet/configuration_xlnet.py b/venv/lib/python3.10/site-packages/transformers/models/xlnet/configuration_xlnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..f81c456b61df69163e0bd52d496e889a94e99bad
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/xlnet/configuration_xlnet.py
@@ -0,0 +1,240 @@
+# coding=utf-8
+# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" XLNet configuration"""
+
+import warnings
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class XLNetConfig(PretrainedConfig):
+ """
+ This is the configuration class to store the configuration of a [`XLNetModel`] or a [`TFXLNetModel`]. It is used to
+ instantiate a XLNet model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the
+ [xlnet/xlnet-large-cased](https://huggingface.co/xlnet/xlnet-large-cased) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 32000):
+ Vocabulary size of the XLNet model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`XLNetModel`] or [`TFXLNetModel`].
+ d_model (`int`, *optional*, defaults to 1024):
+ Dimensionality of the encoder layers and the pooler layer.
+ n_layer (`int`, *optional*, defaults to 24):
+ Number of hidden layers in the Transformer encoder.
+ n_head (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ d_inner (`int`, *optional*, defaults to 4096):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ ff_activation (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the If string, `"gelu"`, `"relu"`, `"silu"` and
+ `"gelu_new"` are supported.
+ untie_r (`bool`, *optional*, defaults to `True`):
+ Whether or not to untie relative position biases
+ attn_type (`str`, *optional*, defaults to `"bi"`):
+ The attention type used by the model. Set `"bi"` for XLNet, `"uni"` for Transformer-XL.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ mem_len (`int` or `None`, *optional*):
+ The number of tokens to cache. The key/value pairs that have already been pre-computed in a previous
+ forward pass won't be re-computed. See the
+ [quickstart](https://huggingface.co/transformers/quickstart.html#using-the-past) for more information.
+ reuse_len (`int`, *optional*):
+ The number of tokens in the current batch to be cached and reused in the future.
+ bi_data (`bool`, *optional*, defaults to `False`):
+ Whether or not to use bidirectional input pipeline. Usually set to `True` during pretraining and `False`
+ during finetuning.
+ clamp_len (`int`, *optional*, defaults to -1):
+ Clamp all relative distances larger than clamp_len. Setting this attribute to -1 means no clamping.
+ same_length (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the same attention length for each token.
+ summary_type (`str`, *optional*, defaults to "last"):
+ Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
+
+ Has to be one of the following options:
+
+ - `"last"`: Take the last token hidden state (like XLNet).
+ - `"first"`: Take the first token hidden state (like BERT).
+ - `"mean"`: Take the mean of all tokens hidden states.
+ - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
+ - `"attn"`: Not implemented now, use multi-head attention.
+ summary_use_proj (`bool`, *optional*, defaults to `True`):
+ Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
+
+ Whether or not to add a projection after the vector extraction.
+ summary_activation (`str`, *optional*):
+ Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
+
+ Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
+ summary_proj_to_labels (`boo`, *optional*, defaults to `True`):
+ Used in the sequence classification and multiple choice models.
+
+ Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
+ summary_last_dropout (`float`, *optional*, defaults to 0.1):
+ Used in the sequence classification and multiple choice models.
+
+ The dropout ratio to be used after the projection and activation.
+ start_n_top (`int`, *optional*, defaults to 5):
+ Used in the SQuAD evaluation script.
+ end_n_top (`int`, *optional*, defaults to 5):
+ Used in the SQuAD evaluation script.
+ use_mems_eval (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should make use of the recurrent memory mechanism in evaluation mode.
+ use_mems_train (`bool`, *optional*, defaults to `False`):
+ Whether or not the model should make use of the recurrent memory mechanism in train mode.
+
+
+
+ For pretraining, it is recommended to set `use_mems_train` to `True`. For fine-tuning, it is recommended to
+ set `use_mems_train` to `False` as discussed
+ [here](https://github.com/zihangdai/xlnet/issues/41#issuecomment-505102587). If `use_mems_train` is set to
+ `True`, one has to make sure that the train batches are correctly pre-processed, *e.g.* `batch_1 = [[This
+ line is], [This is the]]` and `batch_2 = [[ the first line], [ second line]]` and that all batches are of
+ equal size.
+
+
+
+ Examples:
+
+ ```python
+ >>> from transformers import XLNetConfig, XLNetModel
+
+ >>> # Initializing a XLNet configuration
+ >>> configuration = XLNetConfig()
+
+ >>> # Initializing a model (with random weights) from the configuration
+ >>> model = XLNetModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "xlnet"
+ keys_to_ignore_at_inference = ["mems"]
+ attribute_map = {
+ "n_token": "vocab_size", # Backward compatibility
+ "hidden_size": "d_model",
+ "num_attention_heads": "n_head",
+ "num_hidden_layers": "n_layer",
+ }
+
+ def __init__(
+ self,
+ vocab_size=32000,
+ d_model=1024,
+ n_layer=24,
+ n_head=16,
+ d_inner=4096,
+ ff_activation="gelu",
+ untie_r=True,
+ attn_type="bi",
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ dropout=0.1,
+ mem_len=512,
+ reuse_len=None,
+ use_mems_eval=True,
+ use_mems_train=False,
+ bi_data=False,
+ clamp_len=-1,
+ same_length=False,
+ summary_type="last",
+ summary_use_proj=True,
+ summary_activation="tanh",
+ summary_last_dropout=0.1,
+ start_n_top=5,
+ end_n_top=5,
+ pad_token_id=5,
+ bos_token_id=1,
+ eos_token_id=2,
+ **kwargs,
+ ):
+ """Constructs XLNetConfig."""
+ self.vocab_size = vocab_size
+ self.d_model = d_model
+ self.n_layer = n_layer
+ self.n_head = n_head
+ if d_model % n_head != 0:
+ raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0")
+ if "d_head" in kwargs:
+ if kwargs["d_head"] != d_model // n_head:
+ raise ValueError(
+ f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})"
+ )
+ self.d_head = d_model // n_head
+ self.ff_activation = ff_activation
+ self.d_inner = d_inner
+ self.untie_r = untie_r
+ self.attn_type = attn_type
+
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+
+ self.dropout = dropout
+ self.mem_len = mem_len
+ self.reuse_len = reuse_len
+ self.bi_data = bi_data
+ self.clamp_len = clamp_len
+ self.same_length = same_length
+
+ self.summary_type = summary_type
+ self.summary_use_proj = summary_use_proj
+ self.summary_activation = summary_activation
+ self.summary_last_dropout = summary_last_dropout
+ self.start_n_top = start_n_top
+ self.end_n_top = end_n_top
+
+ self.bos_token_id = bos_token_id
+ self.pad_token_id = pad_token_id
+ self.eos_token_id = eos_token_id
+
+ if "use_cache" in kwargs:
+ warnings.warn(
+ "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"
+ " instead.",
+ FutureWarning,
+ )
+ use_mems_eval = kwargs["use_cache"]
+
+ self.use_mems_eval = use_mems_eval
+ self.use_mems_train = use_mems_train
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ @property
+ def max_position_embeddings(self):
+ logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.")
+ return -1
+
+ @max_position_embeddings.setter
+ def max_position_embeddings(self, value):
+ # Message copied from Transformer-XL documentation
+ raise NotImplementedError(
+ f"The model {self.model_type} is one of the few models that has no sequence length limit."
+ )
diff --git a/venv/lib/python3.10/site-packages/transformers/models/xlnet/convert_xlnet_original_tf_checkpoint_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/xlnet/convert_xlnet_original_tf_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..804b52b0dc87924fa5ee3eda7aa56e875d075a22
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/xlnet/convert_xlnet_original_tf_checkpoint_to_pytorch.py
@@ -0,0 +1,114 @@
+# coding=utf-8
+# Copyright 2018 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert BERT checkpoint."""
+
+
+import argparse
+import os
+
+import torch
+
+from transformers import (
+ XLNetConfig,
+ XLNetForQuestionAnswering,
+ XLNetForSequenceClassification,
+ XLNetLMHeadModel,
+ load_tf_weights_in_xlnet,
+)
+from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
+
+
+GLUE_TASKS_NUM_LABELS = {
+ "cola": 2,
+ "mnli": 3,
+ "mrpc": 2,
+ "sst-2": 2,
+ "sts-b": 1,
+ "qqp": 2,
+ "qnli": 2,
+ "rte": 2,
+ "wnli": 2,
+}
+
+
+logging.set_verbosity_info()
+
+
+def convert_xlnet_checkpoint_to_pytorch(
+ tf_checkpoint_path, bert_config_file, pytorch_dump_folder_path, finetuning_task=None
+):
+ # Initialise PyTorch model
+ config = XLNetConfig.from_json_file(bert_config_file)
+
+ finetuning_task = finetuning_task.lower() if finetuning_task is not None else ""
+ if finetuning_task in GLUE_TASKS_NUM_LABELS:
+ print(f"Building PyTorch XLNetForSequenceClassification model from configuration: {config}")
+ config.finetuning_task = finetuning_task
+ config.num_labels = GLUE_TASKS_NUM_LABELS[finetuning_task]
+ model = XLNetForSequenceClassification(config)
+ elif "squad" in finetuning_task:
+ config.finetuning_task = finetuning_task
+ model = XLNetForQuestionAnswering(config)
+ else:
+ model = XLNetLMHeadModel(config)
+
+ # Load weights from tf checkpoint
+ load_tf_weights_in_xlnet(model, config, tf_checkpoint_path)
+
+ # Save pytorch-model
+ pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME)
+ pytorch_config_dump_path = os.path.join(pytorch_dump_folder_path, CONFIG_NAME)
+ print(f"Save PyTorch model to {os.path.abspath(pytorch_weights_dump_path)}")
+ torch.save(model.state_dict(), pytorch_weights_dump_path)
+ print(f"Save configuration file to {os.path.abspath(pytorch_config_dump_path)}")
+ with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
+ f.write(config.to_json_string())
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
+ )
+ parser.add_argument(
+ "--xlnet_config_file",
+ default=None,
+ type=str,
+ required=True,
+ help=(
+ "The config json file corresponding to the pre-trained XLNet model. \n"
+ "This specifies the model architecture."
+ ),
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path",
+ default=None,
+ type=str,
+ required=True,
+ help="Path to the folder to store the PyTorch model or dataset/vocab.",
+ )
+ parser.add_argument(
+ "--finetuning_task",
+ default=None,
+ type=str,
+ help="Name of a task on which the XLNet TensorFlow model was fine-tuned",
+ )
+ args = parser.parse_args()
+ print(args)
+
+ convert_xlnet_checkpoint_to_pytorch(
+ args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
+ )
diff --git a/venv/lib/python3.10/site-packages/transformers/models/xlnet/modeling_tf_xlnet.py b/venv/lib/python3.10/site-packages/transformers/models/xlnet/modeling_tf_xlnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..188f5e39a2fba1a6238fbbf019338579cd68b676
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/xlnet/modeling_tf_xlnet.py
@@ -0,0 +1,1813 @@
+# coding=utf-8
+# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+ TF 2.0 XLNet model.
+"""
+
+
+from __future__ import annotations
+
+import warnings
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_utils import (
+ TFCausalLanguageModelingLoss,
+ TFModelInputType,
+ TFMultipleChoiceLoss,
+ TFPreTrainedModel,
+ TFQuestionAnsweringLoss,
+ TFSequenceClassificationLoss,
+ TFSequenceSummary,
+ TFSharedEmbeddings,
+ TFTokenClassificationLoss,
+ get_initializer,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_xlnet import XLNetConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "xlnet/xlnet-base-cased"
+_CONFIG_FOR_DOC = "XLNetConfig"
+
+
+from ..deprecated._archive_maps import TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+class TFXLNetRelativeAttention(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ if config.d_model % config.n_head != 0:
+ raise ValueError(
+ f"The hidden size ({config.d_model}) is not a multiple of the number of attention "
+ f"heads ({config.n_head}"
+ )
+
+ self.n_head = config.n_head
+ self.d_head = config.d_head
+ self.d_model = config.d_model
+ self.scale = 1 / (config.d_head**0.5)
+ self.initializer_range = config.initializer_range
+ self.output_attentions = config.output_attentions
+
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
+ self.dropout = keras.layers.Dropout(config.dropout)
+ self.config = config
+
+ def build(self, input_shape=None):
+ initializer = get_initializer(self.initializer_range)
+ self.q = self.add_weight(
+ shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="q"
+ )
+ self.k = self.add_weight(
+ shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="k"
+ )
+ self.v = self.add_weight(
+ shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="v"
+ )
+ self.o = self.add_weight(
+ shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="o"
+ )
+ self.r = self.add_weight(
+ shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="r"
+ )
+ self.r_r_bias = self.add_weight(
+ shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias"
+ )
+ self.r_s_bias = self.add_weight(
+ shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_s_bias"
+ )
+ self.r_w_bias = self.add_weight(
+ shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias"
+ )
+ self.seg_embed = self.add_weight(
+ shape=(2, self.n_head, self.d_head), initializer=initializer, trainable=True, name="seg_embed"
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "layer_norm", None) is not None:
+ with tf.name_scope(self.layer_norm.name):
+ self.layer_norm.build([None, None, self.config.d_model])
+
+ def prune_heads(self, heads):
+ raise NotImplementedError
+
+ def rel_shift(self, x, klen=-1):
+ """perform relative shift to form the relative attention score."""
+ x_size = shape_list(x)
+
+ x = tf.reshape(x, (x_size[1], x_size[0], x_size[2], x_size[3]))
+ x = x[1:, ...]
+ x = tf.reshape(x, (x_size[0], x_size[1] - 1, x_size[2], x_size[3]))
+ x = x[:, 0:klen, :, :]
+ # x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long))
+
+ return x
+
+ def rel_attn_core(
+ self, q_head, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask, head_mask, output_attentions, training=False
+ ):
+ """Core relative positional attention operations."""
+ # content based attention score
+ ac = tf.einsum("ibnd,jbnd->ijbn", q_head + self.r_w_bias, k_head_h)
+
+ # position based attention score
+ bd = tf.einsum("ibnd,jbnd->ijbn", q_head + self.r_r_bias, k_head_r)
+ bd = self.rel_shift(bd, klen=shape_list(ac)[1])
+
+ # segment based attention score
+ if seg_mat is None:
+ ef = 0
+ else:
+ ef = tf.einsum("ibnd,snd->ibns", q_head + self.r_s_bias, self.seg_embed)
+ ef = tf.einsum("ijbs,ibns->ijbn", seg_mat, ef)
+
+ # merge attention scores and perform masking
+ attn_score = (ac + bd + ef) * self.scale
+ if attn_mask is not None:
+ # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
+ if attn_mask.dtype == tf.float16 or attn_mask.dtype == tf.bfloat16:
+ attn_score = attn_score - 65500 * attn_mask
+ else:
+ attn_score = attn_score - 1e30 * attn_mask
+
+ # attention probability
+ attn_prob = stable_softmax(attn_score, axis=1)
+
+ attn_prob = self.dropout(attn_prob, training=training)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attn_prob = attn_prob * head_mask
+
+ # attention output
+ attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, v_head_h)
+
+ if output_attentions:
+ return attn_vec, attn_prob
+
+ return attn_vec
+
+ def post_attention(self, h, attn_vec, residual=True, training=False):
+ """Post-attention processing."""
+ # post-attention projection (back to `d_model`)
+ attn_out = tf.einsum("ibnd,hnd->ibh", attn_vec, self.o)
+
+ attn_out = self.dropout(attn_out, training=training)
+
+ if residual:
+ attn_out = attn_out + h
+ output = self.layer_norm(attn_out)
+
+ return output
+
+ def call(
+ self,
+ h,
+ g,
+ attn_mask_h,
+ attn_mask_g,
+ r,
+ seg_mat,
+ mems: np.ndarray | tf.Tensor | None = None,
+ target_mapping: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = False,
+ training: bool = False,
+ ):
+ if g is not None:
+ # Two-stream attention with relative positional encoding.
+ # content based attention score
+ if mems is not None and len(shape_list(mems)) > 1:
+ cat = tf.concat([mems, h], axis=0)
+ else:
+ cat = h
+
+ # content-based key head
+ k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.k)
+
+ # content-based value head
+ v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.v)
+
+ # position-based key head
+ k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.r)
+
+ # h-stream
+ # content-stream query head
+ q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.q)
+
+ # core attention ops
+ attn_vec_h = self.rel_attn_core(
+ q_head_h,
+ k_head_h,
+ v_head_h,
+ k_head_r,
+ seg_mat,
+ attn_mask_h,
+ head_mask,
+ output_attentions,
+ training=training,
+ )
+
+ if output_attentions:
+ attn_vec_h, attn_prob_h = attn_vec_h
+
+ # post processing
+ output_h = self.post_attention(h, attn_vec_h, training=training)
+
+ # g-stream
+ # query-stream query head
+ q_head_g = tf.einsum("ibh,hnd->ibnd", g, self.q)
+
+ # core attention ops
+ if target_mapping is not None:
+ q_head_g = tf.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping)
+ attn_vec_g = self.rel_attn_core(
+ q_head_g,
+ k_head_h,
+ v_head_h,
+ k_head_r,
+ seg_mat,
+ attn_mask_g,
+ head_mask,
+ output_attentions,
+ training=training,
+ )
+
+ if output_attentions:
+ attn_vec_g, attn_prob_g = attn_vec_g
+
+ attn_vec_g = tf.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping)
+ else:
+ attn_vec_g = self.rel_attn_core(
+ q_head_g,
+ k_head_h,
+ v_head_h,
+ k_head_r,
+ seg_mat,
+ attn_mask_g,
+ head_mask,
+ output_attentions,
+ training=training,
+ )
+
+ if output_attentions:
+ attn_vec_g, attn_prob_g = attn_vec_g
+
+ # post processing
+ output_g = self.post_attention(g, attn_vec_g, training=training)
+
+ if output_attentions:
+ attn_prob = attn_prob_h, attn_prob_g
+
+ else:
+ # Multi-head attention with relative positional encoding
+ if mems is not None and len(shape_list(mems)) > 1:
+ cat = tf.concat([mems, h], axis=0)
+ else:
+ cat = h
+
+ # content heads
+ q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.q)
+ k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.k)
+ v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.v)
+
+ # positional heads
+ k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.r)
+
+ # core attention ops
+ attn_vec = self.rel_attn_core(
+ q_head_h,
+ k_head_h,
+ v_head_h,
+ k_head_r,
+ seg_mat,
+ attn_mask_h,
+ head_mask,
+ output_attentions,
+ training=training,
+ )
+
+ if output_attentions:
+ attn_vec, attn_prob = attn_vec
+
+ # post processing
+ output_h = self.post_attention(h, attn_vec, training=training)
+ output_g = None
+
+ outputs = (output_h, output_g)
+ if output_attentions:
+ outputs = outputs + (attn_prob,)
+ return outputs
+
+
+class TFXLNetFeedForward(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
+ self.layer_1 = keras.layers.Dense(
+ config.d_inner, kernel_initializer=get_initializer(config.initializer_range), name="layer_1"
+ )
+ self.layer_2 = keras.layers.Dense(
+ config.d_model, kernel_initializer=get_initializer(config.initializer_range), name="layer_2"
+ )
+ self.dropout = keras.layers.Dropout(config.dropout)
+ if isinstance(config.ff_activation, str):
+ self.activation_function = get_tf_activation(config.ff_activation)
+ else:
+ self.activation_function = config.ff_activation
+ self.config = config
+
+ def call(self, inp, training=False):
+ output = inp
+ output = self.layer_1(output)
+ output = self.activation_function(output)
+ output = self.dropout(output, training=training)
+ output = self.layer_2(output)
+ output = self.dropout(output, training=training)
+ output = self.layer_norm(output + inp)
+ return output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "layer_norm", None) is not None:
+ with tf.name_scope(self.layer_norm.name):
+ self.layer_norm.build([None, None, self.config.d_model])
+ if getattr(self, "layer_1", None) is not None:
+ with tf.name_scope(self.layer_1.name):
+ self.layer_1.build([None, None, self.config.d_model])
+ if getattr(self, "layer_2", None) is not None:
+ with tf.name_scope(self.layer_2.name):
+ self.layer_2.build([None, None, self.config.d_inner])
+
+
+class TFXLNetLayer(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.rel_attn = TFXLNetRelativeAttention(config, name="rel_attn")
+ self.ff = TFXLNetFeedForward(config, name="ff")
+ self.dropout = keras.layers.Dropout(config.dropout)
+
+ def call(
+ self,
+ output_h,
+ output_g,
+ non_tgt_mask,
+ attn_mask,
+ pos_emb,
+ seg_mat,
+ mems: np.ndarray | tf.Tensor | None = None,
+ target_mapping: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = False,
+ training: bool = False,
+ ):
+ outputs = self.rel_attn(
+ output_h,
+ output_g,
+ non_tgt_mask,
+ attn_mask,
+ pos_emb,
+ seg_mat,
+ mems,
+ target_mapping,
+ head_mask,
+ output_attentions,
+ training=training,
+ )
+ output_h, output_g = outputs[:2]
+
+ if output_g is not None:
+ output_g = self.ff(output_g, training=training)
+ output_h = self.ff(output_h, training=training)
+
+ outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "rel_attn", None) is not None:
+ with tf.name_scope(self.rel_attn.name):
+ self.rel_attn.build(None)
+ if getattr(self, "ff", None) is not None:
+ with tf.name_scope(self.ff.name):
+ self.ff.build(None)
+
+
+class TFXLNetLMHead(keras.layers.Layer):
+ def __init__(self, config, input_embeddings, **kwargs):
+ super().__init__(**kwargs)
+ self.config = config
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.input_embeddings = input_embeddings
+
+ def build(self, input_shape):
+ self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
+ super().build(input_shape)
+
+ def get_output_embeddings(self):
+ return self.input_embeddings
+
+ def set_output_embeddings(self, value):
+ self.input_embeddings.weight = value
+ self.input_embeddings.vocab_size = shape_list(value)[0]
+
+ def get_bias(self):
+ return {"bias": self.bias}
+
+ def set_bias(self, value):
+ self.bias = value["bias"]
+ self.config.vocab_size = shape_list(value["bias"])[0]
+
+ def call(self, hidden_states):
+ hidden_states = self.input_embeddings(hidden_states, mode="linear")
+ hidden_states = hidden_states + self.bias
+ return hidden_states
+
+
+@keras_serializable
+class TFXLNetMainLayer(keras.layers.Layer):
+ config_class = XLNetConfig
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.output_hidden_states = config.output_hidden_states
+ self.output_attentions = config.output_attentions
+ self.return_dict = config.return_dict
+
+ self.mem_len = config.mem_len
+ self.reuse_len = config.reuse_len
+ self.d_model = config.d_model
+ self.same_length = config.same_length
+ self.attn_type = config.attn_type
+ self.bi_data = config.bi_data
+ self.clamp_len = config.clamp_len
+ self.n_layer = config.n_layer
+ self.use_bfloat16 = config.use_bfloat16
+ self.initializer_range = config.initializer_range
+
+ self.word_embedding = TFSharedEmbeddings(
+ config.vocab_size, config.d_model, initializer_range=config.initializer_range, name="word_embedding"
+ )
+ self.layer = [TFXLNetLayer(config, name=f"layer_._{i}") for i in range(config.n_layer)]
+ self.dropout = keras.layers.Dropout(config.dropout)
+
+ self.use_mems_eval = config.use_mems_eval
+ self.use_mems_train = config.use_mems_train
+
+ def get_input_embeddings(self):
+ return self.word_embedding
+
+ def set_input_embeddings(self, value):
+ self.word_embedding.weight = value
+ self.word_embedding.vocab_size = shape_list(value)[0]
+
+ def build(self, input_shape=None):
+ initializer = get_initializer(self.initializer_range)
+ self.mask_emb = self.add_weight(
+ shape=(1, 1, self.d_model), initializer=initializer, trainable=True, name="mask_emb"
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "word_embedding", None) is not None:
+ with tf.name_scope(self.word_embedding.name):
+ self.word_embedding.build(None)
+ if getattr(self, "layer", None) is not None:
+ for layer in self.layer:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+ def _prune_heads(self, heads_to_prune):
+ raise NotImplementedError
+
+ def create_mask(self, qlen, mlen):
+ """
+ Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked.
+
+ Args:
+ qlen: TODO Lysandre didn't fill
+ mlen: TODO Lysandre didn't fill
+
+ ```
+
+ same_length=False: same_length=True:
+ < qlen > < qlen >
+ ^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1]
+ [0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1]
+ qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1]
+ [0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1]
+ v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0]
+ ```
+ """
+ attn_mask = tf.ones([qlen, qlen])
+ mask_u = tf.linalg.band_part(attn_mask, 0, -1)
+ mask_dia = tf.linalg.band_part(attn_mask, 0, 0)
+ attn_mask_pad = tf.zeros([qlen, mlen])
+ ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1)
+ if self.same_length:
+ mask_l = tf.linalg.band_part(attn_mask, -1, 0)
+ ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)
+ return ret
+
+ def cache_mem(self, curr_out, prev_mem):
+ # cache hidden states into memory.
+ if self.reuse_len is not None and self.reuse_len > 0:
+ curr_out = curr_out[: self.reuse_len]
+
+ if self.mem_len is None or self.mem_len == 0:
+ # If `use_mems` is active but no `mem_len` is defined, the model behaves like GPT-2 at inference time
+ # and returns all of the past and current hidden states.
+ cutoff = 0
+ else:
+ # If `use_mems` is active and `mem_len` is defined, the model returns the last `mem_len` hidden
+ # states. This is the preferred setting for training and long-form generation.
+ cutoff = -self.mem_len
+ if prev_mem is None:
+ # if `use_mems` is active and `mem_len` is defined, the model
+ new_mem = curr_out[cutoff:]
+ else:
+ new_mem = tf.concat([prev_mem, curr_out], 0)[cutoff:]
+
+ return tf.stop_gradient(new_mem)
+
+ @staticmethod
+ def positional_embedding(pos_seq, inv_freq, bsz=None):
+ sinusoid_inp = tf.einsum("i,d->id", pos_seq, inv_freq)
+ pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], axis=-1)
+ pos_emb = pos_emb[:, None, :]
+
+ if bsz is not None:
+ pos_emb = tf.tile(pos_emb, [1, bsz, 1])
+
+ return pos_emb
+
+ def relative_positional_encoding(self, qlen, klen, bsz=None):
+ """create relative positional encoding."""
+ freq_seq = tf.range(0, self.d_model, 2.0)
+ inv_freq = 1 / (10000 ** (freq_seq / self.d_model))
+
+ if self.attn_type == "bi":
+ # beg, end = klen - 1, -qlen
+ beg, end = klen, -qlen
+ elif self.attn_type == "uni":
+ # beg, end = klen - 1, -1
+ beg, end = klen, -1
+ else:
+ raise ValueError(f"Unknown `attn_type` {self.attn_type}.")
+
+ if self.bi_data:
+ fwd_pos_seq = tf.range(beg, end, -1.0)
+ bwd_pos_seq = tf.range(-beg, -end, 1.0)
+
+ if self.clamp_len > 0:
+ fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len)
+ bwd_pos_seq = tf.clip_by_value(bwd_pos_seq, -self.clamp_len, self.clamp_len)
+
+ if bsz is not None:
+ if bsz % 2 != 0:
+ raise ValueError(f"With bi_data, the batch size {bsz} should be divisible by 2")
+ fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2)
+ bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2)
+ else:
+ fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
+ bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
+
+ pos_emb = tf.concat([fwd_pos_emb, bwd_pos_emb], axis=1)
+ else:
+ fwd_pos_seq = tf.range(beg, end, -1.0)
+ if self.clamp_len > 0:
+ fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len)
+ pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
+
+ return pos_emb
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ mems: np.ndarray | tf.Tensor | None = None,
+ perm_mask: np.ndarray | tf.Tensor | None = None,
+ target_mapping: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ input_mask: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ use_mems: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ):
+ if training and use_mems is None:
+ use_mems = self.use_mems_train
+ else:
+ use_mems = self.use_mems_eval
+
+ # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
+ # but we want a unified interface in the library with the batch size on the first dimension
+ # so we move here the first dimension (batch) to the end
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_ids = tf.transpose(input_ids, perm=(1, 0))
+ qlen, bsz = shape_list(input_ids)[:2]
+ elif inputs_embeds is not None:
+ inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2))
+ qlen, bsz = shape_list(inputs_embeds)[:2]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ token_type_ids = tf.transpose(token_type_ids, perm=(1, 0)) if token_type_ids is not None else None
+ input_mask = tf.transpose(input_mask, perm=(1, 0)) if input_mask is not None else None
+ attention_mask = tf.transpose(attention_mask, perm=(1, 0)) if attention_mask is not None else None
+ perm_mask = tf.transpose(perm_mask, perm=(1, 2, 0)) if perm_mask is not None else None
+ target_mapping = tf.transpose(target_mapping, perm=(1, 2, 0)) if target_mapping is not None else None
+
+ mlen = shape_list(mems[0])[0] if mems is not None and mems[0] is not None else 0
+ klen = mlen + qlen
+
+ # Attention mask
+ # causal attention mask
+ if self.attn_type == "uni":
+ attn_mask = self.create_mask(qlen, mlen)
+ attn_mask = attn_mask[:, :, None, None]
+ elif self.attn_type == "bi":
+ attn_mask = None
+ else:
+ raise ValueError(f"Unsupported attention type: {self.attn_type}")
+
+ # data mask: input mask & perm mask
+ assert input_mask is None or attention_mask is None, (
+ "You can only use one of input_mask (uses 1 for padding) "
+ "or attention_mask (uses 0 for padding, added for compatibility with BERT). Please choose one."
+ )
+ if input_mask is None and attention_mask is not None:
+ one_cst = tf.constant(1.0)
+ input_mask = 1.0 - tf.cast(attention_mask, dtype=one_cst.dtype)
+ if input_mask is not None and perm_mask is not None:
+ data_mask = input_mask[None] + perm_mask
+ elif input_mask is not None and perm_mask is None:
+ data_mask = input_mask[None]
+ elif input_mask is None and perm_mask is not None:
+ data_mask = perm_mask
+ else:
+ data_mask = None
+
+ if data_mask is not None:
+ # all mems can be attended to
+ if mlen > 0:
+ mems_mask = tf.zeros([shape_list(data_mask)[0], mlen, bsz])
+ data_mask = tf.concat([mems_mask, data_mask], axis=1)
+ if attn_mask is None:
+ attn_mask = data_mask[:, :, :, None]
+ else:
+ attn_mask += data_mask[:, :, :, None]
+
+ if attn_mask is not None:
+ attn_mask = tf.cast(attn_mask > 0, dtype=attn_mask.dtype)
+
+ if attn_mask is not None:
+ non_tgt_mask = -tf.eye(qlen)
+ if mlen > 0:
+ non_tgt_mask = tf.concat([tf.zeros([qlen, mlen]), non_tgt_mask], axis=-1)
+ non_tgt_mask = tf.cast((attn_mask + non_tgt_mask[:, :, None, None]) > 0, dtype=non_tgt_mask.dtype)
+ else:
+ non_tgt_mask = None
+
+ # Word embeddings and prepare h & g hidden states
+ if inputs_embeds is not None:
+ word_emb_k = inputs_embeds
+ else:
+ check_embeddings_within_bounds(input_ids, self.word_embedding.vocab_size)
+ word_emb_k = self.word_embedding(input_ids)
+ output_h = self.dropout(word_emb_k, training=training)
+ if target_mapping is not None:
+ word_emb_q = tf.tile(self.mask_emb, [shape_list(target_mapping)[0], bsz, 1])
+ # else: # We removed the inp_q input which was same as target mapping
+ # inp_q_ext = inp_q[:, :, None]
+ # word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
+ output_g = self.dropout(word_emb_q, training=training)
+ else:
+ output_g = None
+
+ # Segment embedding
+ if token_type_ids is not None:
+ # Convert `token_type_ids` to one-hot `seg_mat`
+ if mlen > 0:
+ mem_pad = tf.zeros([mlen, bsz], dtype=token_type_ids.dtype)
+ cat_ids = tf.concat([mem_pad, token_type_ids], 0)
+ else:
+ cat_ids = token_type_ids
+
+ # `1` indicates not in the same segment [qlen x klen x bsz]
+ seg_mat = tf.cast(
+ tf.logical_not(tf.equal(token_type_ids[:, None], cat_ids[None, :])),
+ dtype=token_type_ids.dtype,
+ )
+ seg_mat = tf.one_hot(seg_mat, 2)
+ else:
+ seg_mat = None
+
+ # Positional encoding
+ pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
+ pos_emb = self.dropout(pos_emb, training=training)
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
+ # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
+ if head_mask is not None:
+ raise NotImplementedError
+ else:
+ head_mask = [None] * self.n_layer
+
+ new_mems = ()
+ if mems is None:
+ mems = [None] * len(self.layer)
+
+ attentions = [] if output_attentions else None
+ hidden_states = [] if output_hidden_states else None
+ for i, layer_module in enumerate(self.layer):
+ # cache new mems
+ if use_mems:
+ new_mems = new_mems + (self.cache_mem(output_h, mems[i]),)
+ if output_hidden_states:
+ hidden_states.append((output_h, output_g) if output_g is not None else output_h)
+
+ outputs = layer_module(
+ output_h,
+ output_g,
+ non_tgt_mask,
+ attn_mask,
+ pos_emb,
+ seg_mat,
+ mems[i],
+ target_mapping,
+ head_mask[i],
+ output_attentions,
+ training=training,
+ )
+ output_h, output_g = outputs[:2]
+ if output_attentions:
+ attentions.append(outputs[2])
+
+ # Add last hidden state
+ if output_hidden_states:
+ hidden_states.append((output_h, output_g) if output_g is not None else output_h)
+
+ output = self.dropout(output_g if output_g is not None else output_h, training=training)
+
+ # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
+ output = tf.transpose(output, perm=(1, 0, 2))
+
+ if not use_mems:
+ new_mems = None
+ if output_hidden_states:
+ if output_g is not None:
+ hidden_states = tuple(tf.transpose(h, perm=(1, 0, 2)) for hs in hidden_states for h in hs)
+ else:
+ hidden_states = tuple(tf.transpose(hs, perm=(1, 0, 2)) for hs in hidden_states)
+ if output_attentions:
+ if target_mapping is not None:
+ # when target_mapping is provided, there are 2-tuple of attentions
+ attentions = tuple(
+ tuple(tf.transpose(attn_stream, perm=(2, 3, 0, 1)) for attn_stream in t) for t in attentions
+ )
+ else:
+ attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions)
+
+ if not return_dict:
+ return tuple(v for v in [output, new_mems, hidden_states, attentions] if v is not None)
+
+ return TFXLNetModelOutput(
+ last_hidden_state=output, mems=new_mems, hidden_states=hidden_states, attentions=attentions
+ )
+
+
+class TFXLNetPreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = XLNetConfig
+ base_model_prefix = "transformer"
+
+
+@dataclass
+class TFXLNetModelOutput(ModelOutput):
+ """
+ Output type of [`TFXLNetModel`].
+
+ Args:
+ last_hidden_state (`tf.Tensor` of shape `(batch_size, num_predict, hidden_size)`):
+ Sequence of hidden-states at the last layer of the model.
+
+ `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict`
+ corresponds to `sequence_length`.
+ mems (`List[tf.Tensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
+ token ids which have their past given to this model should not be passed as `input_ids` as they have
+ already been computed.
+ hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ last_hidden_state: tf.Tensor = None
+ mems: List[tf.Tensor] | None = None
+ hidden_states: Tuple[tf.Tensor, ...] | None = None
+ attentions: Tuple[tf.Tensor, ...] | None = None
+
+
+@dataclass
+class TFXLNetLMHeadModelOutput(ModelOutput):
+ """
+ Output type of [`TFXLNetLMHeadModel`].
+
+ Args:
+ loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided)
+ Language modeling loss (for next-token prediction).
+ logits (`tf.Tensor` of shape `(batch_size, num_predict, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+
+ `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict`
+ corresponds to `sequence_length`.
+ mems (`List[tf.Tensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
+ token ids which have their past given to this model should not be passed as `input_ids` as they have
+ already been computed.
+ hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: tf.Tensor | None = None
+ logits: tf.Tensor = None
+ mems: List[tf.Tensor] | None = None
+ hidden_states: Tuple[tf.Tensor, ...] | None = None
+ attentions: Tuple[tf.Tensor, ...] | None = None
+
+
+@dataclass
+class TFXLNetForSequenceClassificationOutput(ModelOutput):
+ """
+ Output type of [`TFXLNetForSequenceClassification`].
+
+ Args:
+ loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `label` is provided):
+ Classification (or regression if config.num_labels==1) loss.
+ logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
+ Classification (or regression if config.num_labels==1) scores (before SoftMax).
+ mems (`List[tf.Tensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
+ token ids which have their past given to this model should not be passed as `input_ids` as they have
+ already been computed.
+ hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: tf.Tensor | None = None
+ logits: tf.Tensor = None
+ mems: List[tf.Tensor] | None = None
+ hidden_states: Tuple[tf.Tensor, ...] | None = None
+ attentions: Tuple[tf.Tensor, ...] | None = None
+
+
+@dataclass
+class TFXLNetForTokenClassificationOutput(ModelOutput):
+ """
+ Output type of [`TFXLNetForTokenClassificationOutput`].
+
+ Args:
+ loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
+ Classification loss.
+ logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.num_labels)`):
+ Classification scores (before SoftMax).
+ mems (`List[tf.Tensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
+ token ids which have their past given to this model should not be passed as `input_ids` as they have
+ already been computed.
+ hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: tf.Tensor | None = None
+ logits: tf.Tensor = None
+ mems: List[tf.Tensor] | None = None
+ hidden_states: Tuple[tf.Tensor, ...] | None = None
+ attentions: Tuple[tf.Tensor, ...] | None = None
+
+
+@dataclass
+class TFXLNetForMultipleChoiceOutput(ModelOutput):
+ """
+ Output type of [`TFXLNetForMultipleChoice`].
+
+ Args:
+ loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided):
+ Classification loss.
+ logits (`tf.Tensor` of shape `(batch_size, num_choices)`):
+ *num_choices* is the second dimension of the input tensors. (see *input_ids* above).
+
+ Classification scores (before SoftMax).
+ mems (`List[tf.Tensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
+ token ids which have their past given to this model should not be passed as `input_ids` as they have
+ already been computed.
+ hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: tf.Tensor | None = None
+ logits: tf.Tensor = None
+ mems: List[tf.Tensor] | None = None
+ hidden_states: Tuple[tf.Tensor, ...] | None = None
+ attentions: Tuple[tf.Tensor, ...] | None = None
+
+
+@dataclass
+class TFXLNetForQuestionAnsweringSimpleOutput(ModelOutput):
+ """
+ Output type of [`TFXLNetForQuestionAnsweringSimple`].
+
+ Args:
+ loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
+ start_logits (`tf.Tensor` of shape `(batch_size, sequence_length,)`):
+ Span-start scores (before SoftMax).
+ end_logits (`tf.Tensor` of shape `(batch_size, sequence_length,)`):
+ Span-end scores (before SoftMax).
+ mems (`List[tf.Tensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
+ token ids which have their past given to this model should not be passed as `input_ids` as they have
+ already been computed.
+ hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: tf.Tensor | None = None
+ start_logits: tf.Tensor = None
+ end_logits: tf.Tensor = None
+ mems: List[tf.Tensor] | None = None
+ hidden_states: Tuple[tf.Tensor, ...] | None = None
+ attentions: Tuple[tf.Tensor, ...] | None = None
+
+
+XLNET_START_DOCSTRING = r"""
+
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Parameters:
+ config ([`XLNetConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+XLNET_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ mems (`List[torch.FloatTensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
+ decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
+ they have already been computed.
+
+ `use_mems` has to be set to `True` to make use of `mems`.
+ perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
+ Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
+
+ - if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
+ - if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
+
+ If not set, each token attends to all the others (full bidirectional attention). Only used during
+ pretraining (to define factorization order) or for sequential decoding (generation).
+ target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
+ Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
+ on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
+ (generation).
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ input_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
+ Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
+ real tokens and 1 for padding which is kept for compatibility with the original code base.
+
+ Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **masked**,
+ - 0 for tokens that are **not masked**.
+
+ You can only uses one of `input_mask` and `attention_mask`.
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare XLNet Model transformer outputting raw hidden-states without any specific head on top.",
+ XLNET_START_DOCSTRING,
+)
+class TFXLNetModel(TFXLNetPreTrainedModel):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.transformer = TFXLNetMainLayer(config, name="transformer")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFXLNetModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ mems: np.ndarray | tf.Tensor | None = None,
+ perm_mask: np.ndarray | tf.Tensor | None = None,
+ target_mapping: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ input_mask: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ use_mems: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFXLNetModelOutput, Tuple[tf.Tensor]]:
+ outputs = self.transformer(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ mems=mems,
+ perm_mask=perm_mask,
+ target_mapping=target_mapping,
+ token_type_ids=token_type_ids,
+ input_mask=input_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_mems=use_mems,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "transformer", None) is not None:
+ with tf.name_scope(self.transformer.name):
+ self.transformer.build(None)
+
+
+@add_start_docstrings(
+ """
+ XLNet Model with a language modeling head on top (linear layer with weights tied to the input embeddings).
+ """,
+ XLNET_START_DOCSTRING,
+)
+class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.transformer = TFXLNetMainLayer(config, name="transformer")
+ self.lm_loss = TFXLNetLMHead(config, self.transformer.word_embedding, name="lm_loss")
+ # generate fails to convert to a graph with XLNet
+ self.supports_xla_generation = False
+
+ def get_lm_head(self):
+ return self.lm_loss
+
+ def get_prefix_bias_name(self):
+ warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
+ return self.name + "/" + self.lm_loss.name
+
+ def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_mems=None, **kwargs):
+ # Add dummy token at the end (no attention on this one)
+ effective_batch_size = inputs.shape[0]
+ dummy_token = tf.zeros((effective_batch_size, 1), dtype=inputs.dtype)
+
+ # At every pass, the attention values for the new token and the two last generated tokens
+ # are computed, the rest is reloaded from the `past` cache. A purely auto-regressive model would have
+ # offset = 1; offset = 2 seems to have slightly better computation.
+ offset = 2
+
+ if past_key_values:
+ input_ids = tf.concat([inputs[:, -offset:], dummy_token], axis=1)
+ else:
+ input_ids = tf.concat([inputs, dummy_token], axis=1)
+
+ # Build permutation mask so that previous tokens don't see last token
+ sequence_length = input_ids.shape[1]
+ perm_mask = tf.zeros((effective_batch_size, sequence_length, sequence_length - 1))
+ perm_mask_seq_end = tf.ones((effective_batch_size, sequence_length, 1))
+ perm_mask = tf.concat([perm_mask, perm_mask_seq_end], axis=-1)
+
+ # We'll only predict the last token
+ target_mapping = tf.zeros((effective_batch_size, 1, sequence_length - 1))
+ target_mapping_seq_end = tf.ones((effective_batch_size, 1, 1))
+ target_mapping = tf.concat([target_mapping, target_mapping_seq_end], axis=-1)
+
+ inputs = {
+ "input_ids": input_ids,
+ "perm_mask": perm_mask,
+ "target_mapping": target_mapping,
+ "use_mems": use_mems,
+ }
+
+ # if past is defined in model kwargs then use it for faster decoding
+ if past_key_values:
+ inputs["mems"] = tuple(layer_past[:-offset, :, :] for layer_past in past_key_values)
+
+ return inputs
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=TFXLNetLMHeadModelOutput, config_class=_CONFIG_FOR_DOC)
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ mems: np.ndarray | tf.Tensor | None = None,
+ perm_mask: np.ndarray | tf.Tensor | None = None,
+ target_mapping: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ input_mask: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ use_mems: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: bool = False,
+ ) -> Union[TFXLNetLMHeadModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
+ config.vocab_size - 1]`.
+
+ Return:
+
+ Examples:
+
+ ```python
+ >>> import tensorflow as tf
+ >>> import numpy as np
+ >>> from transformers import AutoTokenizer, TFXLNetLMHeadModel
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-large-cased")
+ >>> model = TFXLNetLMHeadModel.from_pretrained("xlnet/xlnet-large-cased")
+
+ >>> # We show how to setup inputs to predict a next token using a bi-directional context.
+ >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is very ", add_special_tokens=True))[
+ ... None, :
+ ... ] # We will predict the masked token
+
+ >>> perm_mask = np.zeros((1, input_ids.shape[1], input_ids.shape[1]))
+ >>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
+
+ >>> target_mapping = np.zeros(
+ ... (1, 1, input_ids.shape[1])
+ ... ) # Shape [1, 1, seq_length] => let's predict one token
+ >>> target_mapping[
+ ... 0, 0, -1
+ ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
+
+ >>> outputs = model(
+ ... input_ids,
+ ... perm_mask=tf.constant(perm_mask, dtype=tf.float32),
+ ... target_mapping=tf.constant(target_mapping, dtype=tf.float32),
+ ... )
+
+ >>> next_token_logits = outputs[
+ ... 0
+ ... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
+ ```"""
+ transformer_outputs = self.transformer(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ mems=mems,
+ perm_mask=perm_mask,
+ target_mapping=target_mapping,
+ token_type_ids=token_type_ids,
+ input_mask=input_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_mems=use_mems,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ hidden_state = transformer_outputs[0]
+ logits = self.lm_loss(hidden_state, training=training)
+
+ loss = None
+ if labels is not None:
+ loss = self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFXLNetLMHeadModelOutput(
+ loss=loss,
+ logits=logits,
+ mems=transformer_outputs.mems,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "transformer", None) is not None:
+ with tf.name_scope(self.transformer.name):
+ self.transformer.build(None)
+ if getattr(self, "lm_loss", None) is not None:
+ with tf.name_scope(self.lm_loss.name):
+ self.lm_loss.build(None)
+
+
+@add_start_docstrings(
+ """
+ XLNet Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g.
+ for GLUE tasks.
+ """,
+ XLNET_START_DOCSTRING,
+)
+class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel, TFSequenceClassificationLoss):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.num_labels = config.num_labels
+
+ self.transformer = TFXLNetMainLayer(config, name="transformer")
+ self.sequence_summary = TFSequenceSummary(
+ config, initializer_range=config.initializer_range, name="sequence_summary"
+ )
+ self.logits_proj = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFXLNetForSequenceClassificationOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ mems: np.ndarray | tf.Tensor | None = None,
+ perm_mask: np.ndarray | tf.Tensor | None = None,
+ target_mapping: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ input_mask: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ use_mems: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: bool = False,
+ ) -> Union[TFXLNetForSequenceClassificationOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ transformer_outputs = self.transformer(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ mems=mems,
+ perm_mask=perm_mask,
+ target_mapping=target_mapping,
+ token_type_ids=token_type_ids,
+ input_mask=input_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_mems=use_mems,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ output = transformer_outputs[0]
+
+ output = self.sequence_summary(output)
+ logits = self.logits_proj(output)
+
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFXLNetForSequenceClassificationOutput(
+ loss=loss,
+ logits=logits,
+ mems=transformer_outputs.mems,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "transformer", None) is not None:
+ with tf.name_scope(self.transformer.name):
+ self.transformer.build(None)
+ if getattr(self, "sequence_summary", None) is not None:
+ with tf.name_scope(self.sequence_summary.name):
+ self.sequence_summary.build(None)
+ if getattr(self, "logits_proj", None) is not None:
+ with tf.name_scope(self.logits_proj.name):
+ self.logits_proj.build([None, None, self.config.d_model])
+
+
+@add_start_docstrings(
+ """
+ XLNET Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ XLNET_START_DOCSTRING,
+)
+class TFXLNetForMultipleChoice(TFXLNetPreTrainedModel, TFMultipleChoiceLoss):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.transformer = TFXLNetMainLayer(config, name="transformer")
+ self.sequence_summary = TFSequenceSummary(
+ config, initializer_range=config.initializer_range, name="sequence_summary"
+ )
+ self.logits_proj = keras.layers.Dense(
+ 1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFXLNetForMultipleChoiceOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ input_mask: np.ndarray | tf.Tensor | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ mems: np.ndarray | tf.Tensor | None = None,
+ perm_mask: np.ndarray | tf.Tensor | None = None,
+ target_mapping: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ use_mems: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: bool = False,
+ ) -> Union[TFXLNetForMultipleChoiceOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
+ where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
+ """
+
+ if input_ids is not None:
+ num_choices = shape_list(input_ids)[1]
+ seq_length = shape_list(input_ids)[2]
+ else:
+ num_choices = shape_list(inputs_embeds)[1]
+ seq_length = shape_list(inputs_embeds)[2]
+
+ flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
+ flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
+ flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
+ flat_input_mask = tf.reshape(input_mask, (-1, seq_length)) if input_mask is not None else None
+ flat_inputs_embeds = (
+ tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
+ if inputs_embeds is not None
+ else None
+ )
+ transformer_outputs = self.transformer(
+ flat_input_ids,
+ flat_attention_mask,
+ mems,
+ perm_mask,
+ target_mapping,
+ flat_token_type_ids,
+ flat_input_mask,
+ head_mask,
+ flat_inputs_embeds,
+ use_mems,
+ output_attentions,
+ output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ output = transformer_outputs[0]
+ logits = self.sequence_summary(output)
+ logits = self.logits_proj(logits)
+ reshaped_logits = tf.reshape(logits, (-1, num_choices))
+ loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
+
+ if not return_dict:
+ output = (reshaped_logits,) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFXLNetForMultipleChoiceOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ mems=transformer_outputs.mems,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "transformer", None) is not None:
+ with tf.name_scope(self.transformer.name):
+ self.transformer.build(None)
+ if getattr(self, "sequence_summary", None) is not None:
+ with tf.name_scope(self.sequence_summary.name):
+ self.sequence_summary.build(None)
+ if getattr(self, "logits_proj", None) is not None:
+ with tf.name_scope(self.logits_proj.name):
+ self.logits_proj.build([None, None, self.config.d_model])
+
+
+@add_start_docstrings(
+ """
+ XLNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ XLNET_START_DOCSTRING,
+)
+class TFXLNetForTokenClassification(TFXLNetPreTrainedModel, TFTokenClassificationLoss):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.num_labels = config.num_labels
+
+ self.transformer = TFXLNetMainLayer(config, name="transformer")
+ self.classifier = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFXLNetForTokenClassificationOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ mems: np.ndarray | tf.Tensor | None = None,
+ perm_mask: np.ndarray | tf.Tensor | None = None,
+ target_mapping: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ input_mask: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ use_mems: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: bool = False,
+ ) -> Union[TFXLNetForTokenClassificationOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+
+ transformer_outputs = self.transformer(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ mems=mems,
+ perm_mask=perm_mask,
+ target_mapping=target_mapping,
+ token_type_ids=token_type_ids,
+ input_mask=input_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_mems=use_mems,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ output = transformer_outputs[0]
+ logits = self.classifier(output)
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFXLNetForTokenClassificationOutput(
+ loss=loss,
+ logits=logits,
+ mems=transformer_outputs.mems,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "transformer", None) is not None:
+ with tf.name_scope(self.transformer.name):
+ self.transformer.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ XLNET_START_DOCSTRING,
+)
+class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel, TFQuestionAnsweringLoss):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.transformer = TFXLNetMainLayer(config, name="transformer")
+ self.qa_outputs = keras.layers.Dense(
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFXLNetForQuestionAnsweringSimpleOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ mems: np.ndarray | tf.Tensor | None = None,
+ perm_mask: np.ndarray | tf.Tensor | None = None,
+ target_mapping: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ input_mask: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ use_mems: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ start_positions: np.ndarray | tf.Tensor | None = None,
+ end_positions: np.ndarray | tf.Tensor | None = None,
+ training: bool = False,
+ ) -> Union[TFXLNetForQuestionAnsweringSimpleOutput, Tuple[tf.Tensor]]:
+ r"""
+ start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ transformer_outputs = self.transformer(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ mems=mems,
+ perm_mask=perm_mask,
+ target_mapping=target_mapping,
+ token_type_ids=token_type_ids,
+ input_mask=input_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_mems=use_mems,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = transformer_outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = tf.split(logits, 2, axis=-1)
+ start_logits = tf.squeeze(start_logits, axis=-1)
+ end_logits = tf.squeeze(end_logits, axis=-1)
+
+ loss = None
+ if start_positions is not None and end_positions is not None:
+ labels = {"start_position": start_positions}
+ labels["end_position"] = end_positions
+ loss = self.hf_compute_loss(labels, (start_logits, end_logits))
+
+ if not return_dict:
+ output = (start_logits, end_logits) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFXLNetForQuestionAnsweringSimpleOutput(
+ loss=loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ mems=transformer_outputs.mems,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "transformer", None) is not None:
+ with tf.name_scope(self.transformer.name):
+ self.transformer.build(None)
+ if getattr(self, "qa_outputs", None) is not None:
+ with tf.name_scope(self.qa_outputs.name):
+ self.qa_outputs.build([None, None, self.config.hidden_size])
diff --git a/venv/lib/python3.10/site-packages/transformers/models/xlnet/modeling_xlnet.py b/venv/lib/python3.10/site-packages/transformers/models/xlnet/modeling_xlnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..78ca545751a4afef20d5c08be32329d84c206e06
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/xlnet/modeling_xlnet.py
@@ -0,0 +1,2083 @@
+# coding=utf-8
+# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+ PyTorch XLNet model.
+"""
+import warnings
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import torch
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_utils import PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits, PreTrainedModel, SequenceSummary
+from ...pytorch_utils import apply_chunking_to_forward
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_xlnet import XLNetConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "xlnet/xlnet-base-cased"
+_CONFIG_FOR_DOC = "XLNetConfig"
+
+
+from ..deprecated._archive_maps import XLNET_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
+ """
+ A map of modules from TF to PyTorch. I use a map to keep the PyTorch model as identical to the original PyTorch
+ model as possible.
+ """
+
+ tf_to_pt_map = {}
+
+ if hasattr(model, "transformer"):
+ if hasattr(model, "lm_loss"):
+ # We will load also the output bias
+ tf_to_pt_map["model/lm_loss/bias"] = model.lm_loss.bias
+ if hasattr(model, "sequence_summary") and "model/sequnece_summary/summary/kernel" in tf_weights:
+ # We will load also the sequence summary
+ tf_to_pt_map["model/sequnece_summary/summary/kernel"] = model.sequence_summary.summary.weight
+ tf_to_pt_map["model/sequnece_summary/summary/bias"] = model.sequence_summary.summary.bias
+ if (
+ hasattr(model, "logits_proj")
+ and config.finetuning_task is not None
+ and f"model/regression_{config.finetuning_task}/logit/kernel" in tf_weights
+ ):
+ tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/kernel"] = model.logits_proj.weight
+ tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/bias"] = model.logits_proj.bias
+
+ # Now load the rest of the transformer
+ model = model.transformer
+
+ # Embeddings and output
+ tf_to_pt_map.update(
+ {
+ "model/transformer/word_embedding/lookup_table": model.word_embedding.weight,
+ "model/transformer/mask_emb/mask_emb": model.mask_emb,
+ }
+ )
+
+ # Transformer blocks
+ for i, b in enumerate(model.layer):
+ layer_str = f"model/transformer/layer_{i}/"
+ tf_to_pt_map.update(
+ {
+ layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
+ layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
+ layer_str + "rel_attn/o/kernel": b.rel_attn.o,
+ layer_str + "rel_attn/q/kernel": b.rel_attn.q,
+ layer_str + "rel_attn/k/kernel": b.rel_attn.k,
+ layer_str + "rel_attn/r/kernel": b.rel_attn.r,
+ layer_str + "rel_attn/v/kernel": b.rel_attn.v,
+ layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
+ layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
+ layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
+ layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
+ layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
+ layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
+ }
+ )
+
+ # Relative positioning biases
+ if config.untie_r:
+ r_r_list = []
+ r_w_list = []
+ r_s_list = []
+ seg_embed_list = []
+ for b in model.layer:
+ r_r_list.append(b.rel_attn.r_r_bias)
+ r_w_list.append(b.rel_attn.r_w_bias)
+ r_s_list.append(b.rel_attn.r_s_bias)
+ seg_embed_list.append(b.rel_attn.seg_embed)
+ else:
+ r_r_list = [model.r_r_bias]
+ r_w_list = [model.r_w_bias]
+ r_s_list = [model.r_s_bias]
+ seg_embed_list = [model.seg_embed]
+ tf_to_pt_map.update(
+ {
+ "model/transformer/r_r_bias": r_r_list,
+ "model/transformer/r_w_bias": r_w_list,
+ "model/transformer/r_s_bias": r_s_list,
+ "model/transformer/seg_embed": seg_embed_list,
+ }
+ )
+ return tf_to_pt_map
+
+
+def load_tf_weights_in_xlnet(model, config, tf_path):
+ """Load tf checkpoints in a pytorch model"""
+ try:
+ import numpy as np
+ import tensorflow as tf
+ except ImportError:
+ logger.error(
+ "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
+ "https://www.tensorflow.org/install/ for installation instructions."
+ )
+ raise
+ # Load weights from TF model
+ init_vars = tf.train.list_variables(tf_path)
+ tf_weights = {}
+ for name, shape in init_vars:
+ logger.info(f"Loading TF weight {name} with shape {shape}")
+ array = tf.train.load_variable(tf_path, name)
+ tf_weights[name] = array
+
+ # Build TF to PyTorch weights loading map
+ tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights)
+
+ for name, pointer in tf_to_pt_map.items():
+ logger.info(f"Importing {name}")
+ if name not in tf_weights:
+ logger.info(f"{name} not in tf pre-trained weights, skipping")
+ continue
+ array = tf_weights[name]
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
+ # which are not required for using pretrained model
+ if "kernel" in name and ("ff" in name or "summary" in name or "logit" in name):
+ logger.info("Transposing")
+ array = np.transpose(array)
+ if isinstance(pointer, list):
+ # Here we will split the TF weights
+ assert (
+ len(pointer) == array.shape[0]
+ ), f"Pointer length {len(pointer)} and array length {array.shape[0]} mismatched"
+ for i, p_i in enumerate(pointer):
+ arr_i = array[i, ...]
+ try:
+ assert (
+ p_i.shape == arr_i.shape
+ ), f"Pointer shape {p_i.shape} and array shape {arr_i.shape} mismatched"
+ except AssertionError as e:
+ e.args += (p_i.shape, arr_i.shape)
+ raise
+ logger.info(f"Initialize PyTorch weight {name} for layer {i}")
+ p_i.data = torch.from_numpy(arr_i)
+ else:
+ try:
+ assert (
+ pointer.shape == array.shape
+ ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
+ except AssertionError as e:
+ e.args += (pointer.shape, array.shape)
+ raise
+ logger.info(f"Initialize PyTorch weight {name}")
+ pointer.data = torch.from_numpy(array)
+ tf_weights.pop(name, None)
+ tf_weights.pop(name + "/Adam", None)
+ tf_weights.pop(name + "/Adam_1", None)
+
+ logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}")
+ return model
+
+
+class XLNetRelativeAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ if config.d_model % config.n_head != 0:
+ raise ValueError(
+ f"The hidden size ({config.d_model}) is not a multiple of the number of attention "
+ f"heads ({config.n_head}"
+ )
+
+ self.n_head = config.n_head
+ self.d_head = config.d_head
+ self.d_model = config.d_model
+ self.scale = 1 / (config.d_head**0.5)
+
+ self.q = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
+ self.k = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
+ self.v = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
+ self.o = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
+ self.r = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
+
+ self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
+ self.r_s_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
+ self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
+ self.seg_embed = nn.Parameter(torch.FloatTensor(2, self.n_head, self.d_head))
+
+ self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.dropout)
+
+ def prune_heads(self, heads):
+ raise NotImplementedError
+
+ @staticmethod
+ def rel_shift(x, klen=-1):
+ """perform relative shift to form the relative attention score."""
+ x_size = x.shape
+
+ x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
+ x = x[1:, ...]
+ x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
+ # x = x[:, 0:klen, :, :]
+ x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long))
+
+ return x
+
+ @staticmethod
+ def rel_shift_bnij(x, klen=-1):
+ x_size = x.shape
+
+ x = x.reshape(x_size[0], x_size[1], x_size[3], x_size[2])
+ x = x[:, :, 1:, :]
+ x = x.reshape(x_size[0], x_size[1], x_size[2], x_size[3] - 1)
+ # Note: the tensor-slice form was faster in my testing than torch.index_select
+ # However, tracing doesn't like the nature of the slice, and if klen changes
+ # during the run then it'll fail, whereas index_select will be fine.
+ x = torch.index_select(x, 3, torch.arange(klen, device=x.device, dtype=torch.long))
+ # x = x[:, :, :, :klen]
+
+ return x
+
+ def rel_attn_core(
+ self,
+ q_head,
+ k_head_h,
+ v_head_h,
+ k_head_r,
+ seg_mat=None,
+ attn_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ ):
+ """Core relative positional attention operations."""
+
+ # content based attention score
+ ac = torch.einsum("ibnd,jbnd->bnij", q_head + self.r_w_bias, k_head_h)
+
+ # position based attention score
+ bd = torch.einsum("ibnd,jbnd->bnij", q_head + self.r_r_bias, k_head_r)
+ bd = self.rel_shift_bnij(bd, klen=ac.shape[3])
+
+ # segment based attention score
+ if seg_mat is None:
+ ef = 0
+ else:
+ ef = torch.einsum("ibnd,snd->ibns", q_head + self.r_s_bias, self.seg_embed)
+ ef = torch.einsum("ijbs,ibns->bnij", seg_mat, ef)
+
+ # merge attention scores and perform masking
+ attn_score = (ac + bd + ef) * self.scale
+ if attn_mask is not None:
+ # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
+ if attn_mask.dtype == torch.float16:
+ attn_score = attn_score - 65500 * torch.einsum("ijbn->bnij", attn_mask)
+ else:
+ attn_score = attn_score - 1e30 * torch.einsum("ijbn->bnij", attn_mask)
+
+ # attention probability
+ attn_prob = nn.functional.softmax(attn_score, dim=3)
+ attn_prob = self.dropout(attn_prob)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attn_prob = attn_prob * torch.einsum("ijbn->bnij", head_mask)
+
+ # attention output
+ attn_vec = torch.einsum("bnij,jbnd->ibnd", attn_prob, v_head_h)
+
+ if output_attentions:
+ return attn_vec, torch.einsum("bnij->ijbn", attn_prob)
+
+ return attn_vec
+
+ def post_attention(self, h, attn_vec, residual=True):
+ """Post-attention processing."""
+ # post-attention projection (back to `d_model`)
+ attn_out = torch.einsum("ibnd,hnd->ibh", attn_vec, self.o)
+
+ attn_out = self.dropout(attn_out)
+ if residual:
+ attn_out = attn_out + h
+ output = self.layer_norm(attn_out)
+
+ return output
+
+ def forward(
+ self,
+ h,
+ g,
+ attn_mask_h,
+ attn_mask_g,
+ r,
+ seg_mat,
+ mems=None,
+ target_mapping=None,
+ head_mask=None,
+ output_attentions=False,
+ ):
+ if g is not None:
+ # Two-stream attention with relative positional encoding.
+ # content based attention score
+ if mems is not None and mems.dim() > 1:
+ cat = torch.cat([mems, h], dim=0)
+ else:
+ cat = h
+
+ # content-based key head
+ k_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.k)
+
+ # content-based value head
+ v_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.v)
+
+ # position-based key head
+ k_head_r = torch.einsum("ibh,hnd->ibnd", r, self.r)
+
+ # h-stream
+ # content-stream query head
+ q_head_h = torch.einsum("ibh,hnd->ibnd", h, self.q)
+
+ # core attention ops
+ attn_vec_h = self.rel_attn_core(
+ q_head_h,
+ k_head_h,
+ v_head_h,
+ k_head_r,
+ seg_mat=seg_mat,
+ attn_mask=attn_mask_h,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ )
+
+ if output_attentions:
+ attn_vec_h, attn_prob_h = attn_vec_h
+
+ # post processing
+ output_h = self.post_attention(h, attn_vec_h)
+
+ # g-stream
+ # query-stream query head
+ q_head_g = torch.einsum("ibh,hnd->ibnd", g, self.q)
+
+ # core attention ops
+ if target_mapping is not None:
+ q_head_g = torch.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping)
+ attn_vec_g = self.rel_attn_core(
+ q_head_g,
+ k_head_h,
+ v_head_h,
+ k_head_r,
+ seg_mat=seg_mat,
+ attn_mask=attn_mask_g,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ )
+
+ if output_attentions:
+ attn_vec_g, attn_prob_g = attn_vec_g
+
+ attn_vec_g = torch.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping)
+ else:
+ attn_vec_g = self.rel_attn_core(
+ q_head_g,
+ k_head_h,
+ v_head_h,
+ k_head_r,
+ seg_mat=seg_mat,
+ attn_mask=attn_mask_g,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ )
+
+ if output_attentions:
+ attn_vec_g, attn_prob_g = attn_vec_g
+
+ # post processing
+ output_g = self.post_attention(g, attn_vec_g)
+
+ if output_attentions:
+ attn_prob = attn_prob_h, attn_prob_g
+
+ else:
+ # Multi-head attention with relative positional encoding
+ if mems is not None and mems.dim() > 1:
+ cat = torch.cat([mems, h], dim=0)
+ else:
+ cat = h
+
+ # content heads
+ q_head_h = torch.einsum("ibh,hnd->ibnd", h, self.q)
+ k_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.k)
+ v_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.v)
+
+ # positional heads
+ # type casting for fp16 support
+ k_head_r = torch.einsum("ibh,hnd->ibnd", r.type(self.r.dtype), self.r)
+
+ # core attention ops
+ attn_vec = self.rel_attn_core(
+ q_head_h,
+ k_head_h,
+ v_head_h,
+ k_head_r,
+ seg_mat=seg_mat,
+ attn_mask=attn_mask_h,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ )
+
+ if output_attentions:
+ attn_vec, attn_prob = attn_vec
+
+ # post processing
+ output_h = self.post_attention(h, attn_vec)
+ output_g = None
+
+ outputs = (output_h, output_g)
+ if output_attentions:
+ outputs = outputs + (attn_prob,)
+ return outputs
+
+
+class XLNetFeedForward(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
+ self.layer_1 = nn.Linear(config.d_model, config.d_inner)
+ self.layer_2 = nn.Linear(config.d_inner, config.d_model)
+ self.dropout = nn.Dropout(config.dropout)
+ if isinstance(config.ff_activation, str):
+ self.activation_function = ACT2FN[config.ff_activation]
+ else:
+ self.activation_function = config.ff_activation
+
+ def forward(self, inp):
+ output = inp
+ output = self.layer_1(output)
+ output = self.activation_function(output)
+ output = self.dropout(output)
+ output = self.layer_2(output)
+ output = self.dropout(output)
+ output = self.layer_norm(output + inp)
+ return output
+
+
+class XLNetLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.rel_attn = XLNetRelativeAttention(config)
+ self.ff = XLNetFeedForward(config)
+ self.dropout = nn.Dropout(config.dropout)
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+
+ def forward(
+ self,
+ output_h,
+ output_g,
+ attn_mask_h,
+ attn_mask_g,
+ r,
+ seg_mat,
+ mems=None,
+ target_mapping=None,
+ head_mask=None,
+ output_attentions=False,
+ ):
+ outputs = self.rel_attn(
+ output_h,
+ output_g,
+ attn_mask_h,
+ attn_mask_g,
+ r,
+ seg_mat,
+ mems=mems,
+ target_mapping=target_mapping,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ )
+ output_h, output_g = outputs[:2]
+
+ if output_g is not None:
+ output_g = apply_chunking_to_forward(
+ self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, output_g
+ )
+ output_h = apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, output_h)
+
+ outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there
+ return outputs
+
+ def ff_chunk(self, output_x):
+ output_x = self.ff(output_x)
+ return output_x
+
+
+class XLNetPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = XLNetConfig
+ load_tf_weights = load_tf_weights_in_xlnet
+ base_model_prefix = "transformer"
+
+ def _init_weights(self, module):
+ """Initialize the weights."""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, XLNetRelativeAttention):
+ for param in [
+ module.q,
+ module.k,
+ module.v,
+ module.o,
+ module.r,
+ module.r_r_bias,
+ module.r_s_bias,
+ module.r_w_bias,
+ module.seg_embed,
+ ]:
+ param.data.normal_(mean=0.0, std=self.config.initializer_range)
+ elif isinstance(module, XLNetModel):
+ module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range)
+
+
+@dataclass
+class XLNetModelOutput(ModelOutput):
+ """
+ Output type of [`XLNetModel`].
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_predict, hidden_size)`):
+ Sequence of hidden-states at the last layer of the model.
+
+ `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict`
+ corresponds to `sequence_length`.
+ mems (`List[torch.FloatTensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
+ token ids which have their past given to this model should not be passed as `input_ids` as they have
+ already been computed.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ last_hidden_state: torch.FloatTensor
+ mems: Optional[List[torch.FloatTensor]] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class XLNetLMHeadModelOutput(ModelOutput):
+ """
+ Output type of [`XLNetLMHeadModel`].
+
+ Args:
+ loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided)
+ Language modeling loss (for next-token prediction).
+ logits (`torch.FloatTensor` of shape `(batch_size, num_predict, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+
+ `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict`
+ corresponds to `sequence_length`.
+ mems (`List[torch.FloatTensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
+ token ids which have their past given to this model should not be passed as `input_ids` as they have
+ already been computed.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ mems: Optional[List[torch.FloatTensor]] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class XLNetForSequenceClassificationOutput(ModelOutput):
+ """
+ Output type of [`XLNetForSequenceClassification`].
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `label` is provided):
+ Classification (or regression if config.num_labels==1) loss.
+ logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
+ Classification (or regression if config.num_labels==1) scores (before SoftMax).
+ mems (`List[torch.FloatTensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
+ token ids which have their past given to this model should not be passed as `input_ids` as they have
+ already been computed.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ mems: Optional[List[torch.FloatTensor]] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class XLNetForTokenClassificationOutput(ModelOutput):
+ """
+ Output type of [`XLNetForTokenClassificationOutput`].
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
+ Classification loss.
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
+ Classification scores (before SoftMax).
+ mems (`List[torch.FloatTensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
+ token ids which have their past given to this model should not be passed as `input_ids` as they have
+ already been computed.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ mems: Optional[List[torch.FloatTensor]] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class XLNetForMultipleChoiceOutput(ModelOutput):
+ """
+ Output type of [`XLNetForMultipleChoice`].
+
+ Args:
+ loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided):
+ Classification loss.
+ logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
+ *num_choices* is the second dimension of the input tensors. (see *input_ids* above).
+
+ Classification scores (before SoftMax).
+ mems (`List[torch.FloatTensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
+ token ids which have their past given to this model should not be passed as `input_ids` as they have
+ already been computed.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ mems: Optional[List[torch.FloatTensor]] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class XLNetForQuestionAnsweringSimpleOutput(ModelOutput):
+ """
+ Output type of [`XLNetForQuestionAnsweringSimple`].
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
+ start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length,)`):
+ Span-start scores (before SoftMax).
+ end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length,)`):
+ Span-end scores (before SoftMax).
+ mems (`List[torch.FloatTensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
+ token ids which have their past given to this model should not be passed as `input_ids` as they have
+ already been computed.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ start_logits: torch.FloatTensor = None
+ end_logits: torch.FloatTensor = None
+ mems: Optional[List[torch.FloatTensor]] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class XLNetForQuestionAnsweringOutput(ModelOutput):
+ """
+ Output type of [`XLNetForQuestionAnswering`].
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
+ Classification loss as the sum of start token, end token (and is_impossible if provided) classification
+ losses.
+ start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
+ Log probabilities for the top config.start_n_top start token possibilities (beam-search).
+ start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
+ Indices for the top config.start_n_top start token possibilities (beam-search).
+ end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
+ Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
+ (beam-search).
+ end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
+ Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
+ cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
+ Log probabilities for the `is_impossible` label of the answers.
+ mems (`List[torch.FloatTensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The
+ token ids which have their past given to this model should not be passed as `input_ids` as they have
+ already been computed.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ start_top_log_probs: Optional[torch.FloatTensor] = None
+ start_top_index: Optional[torch.LongTensor] = None
+ end_top_log_probs: Optional[torch.FloatTensor] = None
+ end_top_index: Optional[torch.LongTensor] = None
+ cls_logits: Optional[torch.FloatTensor] = None
+ mems: Optional[List[torch.FloatTensor]] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+XLNET_START_DOCSTRING = r"""
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`XLNetConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+XLNET_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ mems (`List[torch.FloatTensor]` of length `config.n_layers`):
+ Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential
+ decoding. The token ids which have their past given to this model should not be passed as `input_ids` as
+ they have already been computed.
+
+ `use_mems` has to be set to `True` to make use of `mems`.
+ perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*):
+ Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`:
+
+ - if `perm_mask[k, i, j] = 0`, i attend to j in batch k;
+ - if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k.
+
+ If not set, each token attends to all the others (full bidirectional attention). Only used during
+ pretraining (to define factorization order) or for sequential decoding (generation).
+ target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*):
+ Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is
+ on the j-th token. Only used during pretraining for partial prediction or for sequential decoding
+ (generation).
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ input_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
+ Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for
+ real tokens and 1 for padding which is kept for compatibility with the original code base.
+
+ Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **masked**,
+ - 0 for tokens that are **not masked**.
+
+ You can only uses one of `input_mask` and `attention_mask`.
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare XLNet Model transformer outputting raw hidden-states without any specific head on top.",
+ XLNET_START_DOCSTRING,
+)
+class XLNetModel(XLNetPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.mem_len = config.mem_len
+ self.reuse_len = config.reuse_len
+ self.d_model = config.d_model
+ self.same_length = config.same_length
+ self.attn_type = config.attn_type
+ self.bi_data = config.bi_data
+ self.clamp_len = config.clamp_len
+ self.n_layer = config.n_layer
+
+ self.word_embedding = nn.Embedding(config.vocab_size, config.d_model)
+ self.mask_emb = nn.Parameter(torch.FloatTensor(1, 1, config.d_model))
+ self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)])
+ self.dropout = nn.Dropout(config.dropout)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.word_embedding
+
+ def set_input_embeddings(self, new_embeddings):
+ self.word_embedding = new_embeddings
+
+ def _prune_heads(self, heads_to_prune):
+ raise NotImplementedError
+
+ def create_mask(self, qlen, mlen):
+ """
+ Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked.
+
+ Args:
+ qlen: Sequence length
+ mlen: Mask length
+
+ ::
+
+ same_length=False: same_length=True: < qlen > < qlen >
+ ^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1]
+ [0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1]
+ qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1]
+ [0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1]
+ v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0]
+
+ """
+ mask = torch.ones((qlen, qlen + mlen), device=self.device)
+ if self.same_length:
+ mask_lo = mask[:, :qlen].tril(-1)
+ mask.triu_(mlen + 1)
+ mask[:, :qlen] += mask_lo
+ else:
+ mask.triu_(mlen + 1)
+
+ return mask
+
+ def cache_mem(self, curr_out, prev_mem):
+ # cache hidden states into memory.
+ if self.reuse_len is not None and self.reuse_len > 0:
+ curr_out = curr_out[: self.reuse_len]
+
+ if self.mem_len is None or self.mem_len == 0:
+ # If `use_mems` is active but no `mem_len` is defined, the model behaves like GPT-2 at inference time
+ # and returns all of the past and current hidden states.
+ cutoff = 0
+ else:
+ # If `use_mems` is active and `mem_len` is defined, the model returns the last `mem_len` hidden
+ # states. This is the preferred setting for training and long-form generation.
+ cutoff = -self.mem_len
+ if prev_mem is None:
+ # if `use_mems` is active and `mem_len` is defined, the model
+ new_mem = curr_out[cutoff:]
+ else:
+ new_mem = torch.cat([prev_mem, curr_out], dim=0)[cutoff:]
+
+ return new_mem.detach()
+
+ @staticmethod
+ def positional_embedding(pos_seq, inv_freq, bsz=None):
+ sinusoid_inp = torch.einsum("i,d->id", pos_seq, inv_freq)
+ pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
+ pos_emb = pos_emb[:, None, :]
+
+ if bsz is not None:
+ pos_emb = pos_emb.expand(-1, bsz, -1)
+
+ return pos_emb
+
+ def relative_positional_encoding(self, qlen, klen, bsz=None):
+ # create relative positional encoding.
+ freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.int64).float()
+ inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model))
+
+ if self.attn_type == "bi":
+ # beg, end = klen - 1, -qlen
+ beg, end = klen, -qlen
+ elif self.attn_type == "uni":
+ # beg, end = klen - 1, -1
+ beg, end = klen, -1
+ else:
+ raise ValueError(f"Unknown `attn_type` {self.attn_type}.")
+
+ if self.bi_data:
+ fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.int64).float()
+ bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.int64).float()
+
+ if self.clamp_len > 0:
+ fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
+ bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
+
+ if bsz is not None:
+ fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2)
+ bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2)
+ else:
+ fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
+ bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
+
+ pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
+ else:
+ fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.int64).float()
+ if self.clamp_len > 0:
+ fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
+ pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
+
+ return pos_emb
+
+ @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=XLNetModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ mems: Optional[torch.Tensor] = None,
+ perm_mask: Optional[torch.Tensor] = None,
+ target_mapping: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ input_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ use_mems: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs, # delete after depreciation warning is removed
+ ) -> Union[Tuple, XLNetModelOutput]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if "use_cache" in kwargs:
+ warnings.warn(
+ "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems`"
+ " instead.",
+ FutureWarning,
+ )
+ use_mems = kwargs["use_cache"]
+
+ if self.training:
+ use_mems = use_mems if use_mems is not None else self.config.use_mems_train
+ else:
+ use_mems = use_mems if use_mems is not None else self.config.use_mems_eval
+
+ # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
+ # but we want a unified interface in the library with the batch size on the first dimension
+ # so we move here the first dimension (batch) to the end
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_ids = input_ids.transpose(0, 1).contiguous()
+ qlen, bsz = input_ids.shape[0], input_ids.shape[1]
+ elif inputs_embeds is not None:
+ inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
+ qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
+ input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
+ attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
+ perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
+ target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None
+
+ mlen = mems[0].shape[0] if mems is not None and mems[0] is not None else 0
+ klen = mlen + qlen
+
+ dtype_float = self.dtype
+ device = self.device
+
+ # Attention mask
+ # causal attention mask
+ if self.attn_type == "uni":
+ attn_mask = self.create_mask(qlen, mlen)
+ attn_mask = attn_mask[:, :, None, None]
+ elif self.attn_type == "bi":
+ attn_mask = None
+ else:
+ raise ValueError(f"Unsupported attention type: {self.attn_type}")
+
+ # data mask: input mask & perm mask
+ assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
+ "or attention_mask (uses 0 for padding, added for compatibility with BERT). Please choose one."
+ if input_mask is None and attention_mask is not None:
+ input_mask = 1.0 - attention_mask
+ if input_mask is not None and perm_mask is not None:
+ data_mask = input_mask[None] + perm_mask
+ elif input_mask is not None and perm_mask is None:
+ data_mask = input_mask[None]
+ elif input_mask is None and perm_mask is not None:
+ data_mask = perm_mask
+ else:
+ data_mask = None
+
+ if data_mask is not None:
+ # all mems can be attended to
+ if mlen > 0:
+ mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
+ data_mask = torch.cat([mems_mask, data_mask], dim=1)
+ if attn_mask is None:
+ attn_mask = data_mask[:, :, :, None]
+ else:
+ attn_mask += data_mask[:, :, :, None]
+
+ if attn_mask is not None:
+ attn_mask = (attn_mask > 0).to(dtype_float)
+
+ if attn_mask is not None:
+ non_tgt_mask = -torch.eye(qlen).to(attn_mask)
+ if mlen > 0:
+ non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
+ non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
+ else:
+ non_tgt_mask = None
+
+ # Word embeddings and prepare h & g hidden states
+ if inputs_embeds is not None:
+ word_emb_k = inputs_embeds
+ else:
+ word_emb_k = self.word_embedding(input_ids)
+ output_h = self.dropout(word_emb_k)
+ if target_mapping is not None:
+ word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
+ # else: # We removed the inp_q input which was same as target mapping
+ # inp_q_ext = inp_q[:, :, None]
+ # word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
+ output_g = self.dropout(word_emb_q)
+ else:
+ output_g = None
+
+ # Segment embedding
+ if token_type_ids is not None:
+ # Convert `token_type_ids` to one-hot `seg_mat`
+ if mlen > 0:
+ mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
+ cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
+ else:
+ cat_ids = token_type_ids
+
+ # `1` indicates not in the same segment [qlen x klen x bsz]
+ seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
+ seg_mat = nn.functional.one_hot(seg_mat, num_classes=2).to(dtype_float)
+ else:
+ seg_mat = None
+
+ # Positional encoding
+ pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
+ pos_emb = pos_emb.to(output_h.device)
+ pos_emb = self.dropout(pos_emb)
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
+ # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
+ if head_mask is not None:
+ if head_mask.dim() == 1:
+ head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
+ head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
+ elif head_mask.dim() == 2:
+ head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
+ head_mask = head_mask.to(
+ dtype=next(self.parameters()).dtype
+ ) # switch to float if need + fp16 compatibility
+ else:
+ head_mask = [None] * self.n_layer
+
+ new_mems = ()
+ if mems is None:
+ mems = [None] * len(self.layer)
+
+ attentions = [] if output_attentions else None
+ hidden_states = [] if output_hidden_states else None
+ for i, layer_module in enumerate(self.layer):
+ if use_mems:
+ # cache new mems
+ new_mems = new_mems + (self.cache_mem(output_h, mems[i]),)
+ if output_hidden_states:
+ hidden_states.append((output_h, output_g) if output_g is not None else output_h)
+
+ outputs = layer_module(
+ output_h,
+ output_g,
+ attn_mask_h=non_tgt_mask,
+ attn_mask_g=attn_mask,
+ r=pos_emb,
+ seg_mat=seg_mat,
+ mems=mems[i],
+ target_mapping=target_mapping,
+ head_mask=head_mask[i],
+ output_attentions=output_attentions,
+ )
+ output_h, output_g = outputs[:2]
+ if output_attentions:
+ attentions.append(outputs[2])
+
+ # Add last hidden state
+ if output_hidden_states:
+ hidden_states.append((output_h, output_g) if output_g is not None else output_h)
+
+ output = self.dropout(output_g if output_g is not None else output_h)
+
+ # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
+ output = output.permute(1, 0, 2).contiguous()
+
+ if not use_mems:
+ new_mems = None
+
+ if output_hidden_states:
+ if output_g is not None:
+ hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)
+ else:
+ hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states)
+
+ if output_attentions:
+ if target_mapping is not None:
+ # when target_mapping is provided, there are 2-tuple of attentions
+ attentions = tuple(
+ tuple(att_stream.permute(2, 3, 0, 1).contiguous() for att_stream in t) for t in attentions
+ )
+ else:
+ attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
+
+ if not return_dict:
+ return tuple(v for v in [output, new_mems, hidden_states, attentions] if v is not None)
+
+ return XLNetModelOutput(
+ last_hidden_state=output, mems=new_mems, hidden_states=hidden_states, attentions=attentions
+ )
+
+
+@add_start_docstrings(
+ """
+ XLNet Model with a language modeling head on top (linear layer with weights tied to the input embeddings).
+ """,
+ XLNET_START_DOCSTRING,
+)
+class XLNetLMHeadModel(XLNetPreTrainedModel):
+ _tied_weights_keys = ["lm_loss.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.attn_type = config.attn_type
+ self.same_length = config.same_length
+
+ self.transformer = XLNetModel(config)
+ self.lm_loss = nn.Linear(config.d_model, config.vocab_size, bias=True)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.lm_loss
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_loss = new_embeddings
+
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, use_mems=None, **kwargs):
+ # Add dummy token at the end (no attention on this one)
+
+ effective_batch_size = input_ids.shape[0]
+ dummy_token = torch.zeros((effective_batch_size, 1), dtype=torch.long, device=input_ids.device)
+
+ # At every pass, the attention values for the new token and the two last generated tokens
+ # are computed, the rest is reloaded from the `past` cache. A purely auto-regressive model would have
+ # offset = 1; offset = 2 seems to have slightly better computation.
+ offset = 2
+
+ if past_key_values:
+ input_ids = torch.cat([input_ids[:, -offset:], dummy_token], dim=1)
+ else:
+ input_ids = torch.cat([input_ids, dummy_token], dim=1)
+
+ # Build permutation mask so that previous tokens don't see last token
+ sequence_length = input_ids.shape[1]
+ perm_mask = torch.zeros(
+ (effective_batch_size, sequence_length, sequence_length), dtype=torch.float, device=input_ids.device
+ )
+ perm_mask[:, :, -1] = 1.0
+
+ # We'll only predict the last token
+ target_mapping = torch.zeros(
+ (effective_batch_size, 1, sequence_length), dtype=torch.float, device=input_ids.device
+ )
+ target_mapping[:, 0, -1] = 1.0
+
+ inputs = {
+ "input_ids": input_ids,
+ "perm_mask": perm_mask,
+ "target_mapping": target_mapping,
+ "use_mems": use_mems,
+ }
+
+ # if past is defined in model kwargs then use it for faster decoding
+ if past_key_values:
+ inputs["mems"] = tuple(layer_past[:-offset, :, :] for layer_past in past_key_values)
+
+ return inputs
+
+ @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=XLNetLMHeadModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ mems: Optional[torch.Tensor] = None,
+ perm_mask: Optional[torch.Tensor] = None,
+ target_mapping: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ input_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ use_mems: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs, # delete when `use_cache` is removed in XLNetModel
+ ) -> Union[Tuple, XLNetLMHeadModelOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, num_predict)`, *optional*):
+ Labels for masked language modeling. `num_predict` corresponds to `target_mapping.shape[1]`. If
+ `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`.
+
+ The labels should correspond to the masked input words that should be predicted and depends on
+ `target_mapping`. Note in order to perform standard auto-regressive language modeling a ** token has
+ to be added to the `input_ids` (see the `prepare_inputs_for_generation` function and examples below)
+
+ Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored, the loss
+ is only computed for labels in `[0, ..., config.vocab_size]`
+
+ Return:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, XLNetLMHeadModel
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-large-cased")
+ >>> model = XLNetLMHeadModel.from_pretrained("xlnet/xlnet-large-cased")
+
+ >>> # We show how to setup inputs to predict a next token using a bi-directional context.
+ >>> input_ids = torch.tensor(
+ ... tokenizer.encode("Hello, my dog is very ", add_special_tokens=False)
+ ... ).unsqueeze(
+ ... 0
+ ... ) # We will predict the masked token
+ >>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
+ >>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
+ >>> target_mapping = torch.zeros(
+ ... (1, 1, input_ids.shape[1]), dtype=torch.float
+ ... ) # Shape [1, 1, seq_length] => let's predict one token
+ >>> target_mapping[
+ ... 0, 0, -1
+ ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
+
+ >>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
+ >>> next_token_logits = outputs[
+ ... 0
+ ... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
+
+ >>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling.
+ >>> input_ids = torch.tensor(
+ ... tokenizer.encode("Hello, my dog is very ", add_special_tokens=False)
+ ... ).unsqueeze(
+ ... 0
+ ... ) # We will predict the masked token
+ >>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0)
+ >>> assert labels.shape[0] == 1, "only one word will be predicted"
+ >>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
+ >>> perm_mask[
+ ... :, :, -1
+ ... ] = 1.0 # Previous tokens don't see last token as is done in standard auto-regressive lm training
+ >>> target_mapping = torch.zeros(
+ ... (1, 1, input_ids.shape[1]), dtype=torch.float
+ ... ) # Shape [1, 1, seq_length] => let's predict one token
+ >>> target_mapping[
+ ... 0, 0, -1
+ ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
+
+ >>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels)
+ >>> loss = outputs.loss
+ >>> next_token_logits = (
+ ... outputs.logits
+ ... ) # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ transformer_outputs = self.transformer(
+ input_ids,
+ attention_mask=attention_mask,
+ mems=mems,
+ perm_mask=perm_mask,
+ target_mapping=target_mapping,
+ token_type_ids=token_type_ids,
+ input_mask=input_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_mems=use_mems,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ **kwargs,
+ )
+
+ logits = self.lm_loss(transformer_outputs[0])
+
+ loss = None
+ if labels is not None:
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return XLNetLMHeadModelOutput(
+ loss=loss,
+ logits=logits,
+ mems=transformer_outputs.mems,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+ @staticmethod
+ def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]:
+ """
+ This function is used to re-order the `mems` cache if [`~PreTrainedModel.beam_search`] or
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `mems` with the correct beam_idx at every
+ generation step.
+ """
+ return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems]
+
+
+@add_start_docstrings(
+ """
+ XLNet Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g.
+ for GLUE tasks.
+ """,
+ XLNET_START_DOCSTRING,
+)
+class XLNetForSequenceClassification(XLNetPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.config = config
+
+ self.transformer = XLNetModel(config)
+ self.sequence_summary = SequenceSummary(config)
+ self.logits_proj = nn.Linear(config.d_model, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=XLNetForSequenceClassificationOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ mems: Optional[torch.Tensor] = None,
+ perm_mask: Optional[torch.Tensor] = None,
+ target_mapping: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ input_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ use_mems: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs, # delete when `use_cache` is removed in XLNetModel
+ ) -> Union[Tuple, XLNetForSequenceClassificationOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ transformer_outputs = self.transformer(
+ input_ids,
+ attention_mask=attention_mask,
+ mems=mems,
+ perm_mask=perm_mask,
+ target_mapping=target_mapping,
+ token_type_ids=token_type_ids,
+ input_mask=input_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_mems=use_mems,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ **kwargs,
+ )
+ output = transformer_outputs[0]
+
+ output = self.sequence_summary(output)
+ logits = self.logits_proj(output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return XLNetForSequenceClassificationOutput(
+ loss=loss,
+ logits=logits,
+ mems=transformer_outputs.mems,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ XLNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ XLNET_START_DOCSTRING,
+)
+class XLNetForTokenClassification(XLNetPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.transformer = XLNetModel(config)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=XLNetForTokenClassificationOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ mems: Optional[torch.Tensor] = None,
+ perm_mask: Optional[torch.Tensor] = None,
+ target_mapping: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ input_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ use_mems: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs, # delete when `use_cache` is removed in XLNetModel
+ ) -> Union[Tuple, XLNetForTokenClassificationOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
+ where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.transformer(
+ input_ids,
+ attention_mask=attention_mask,
+ mems=mems,
+ perm_mask=perm_mask,
+ target_mapping=target_mapping,
+ token_type_ids=token_type_ids,
+ input_mask=input_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_mems=use_mems,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return XLNetForTokenClassificationOutput(
+ loss=loss,
+ logits=logits,
+ mems=outputs.mems,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ XLNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RACE/SWAG tasks.
+ """,
+ XLNET_START_DOCSTRING,
+)
+class XLNetForMultipleChoice(XLNetPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.transformer = XLNetModel(config)
+ self.sequence_summary = SequenceSummary(config)
+ self.logits_proj = nn.Linear(config.d_model, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=XLNetForMultipleChoiceOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ input_mask: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ mems: Optional[torch.Tensor] = None,
+ perm_mask: Optional[torch.Tensor] = None,
+ target_mapping: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ use_mems: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs, # delete when `use_cache` is removed in XLNetModel
+ ) -> Union[Tuple, XLNetForMultipleChoiceOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ flat_input_mask = input_mask.view(-1, input_mask.size(-1)) if input_mask is not None else None
+ flat_inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+
+ transformer_outputs = self.transformer(
+ flat_input_ids,
+ token_type_ids=flat_token_type_ids,
+ input_mask=flat_input_mask,
+ attention_mask=flat_attention_mask,
+ mems=mems,
+ perm_mask=perm_mask,
+ target_mapping=target_mapping,
+ head_mask=head_mask,
+ inputs_embeds=flat_inputs_embeds,
+ use_mems=use_mems,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ **kwargs,
+ )
+
+ output = transformer_outputs[0]
+
+ output = self.sequence_summary(output)
+ logits = self.logits_proj(output)
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels.view(-1))
+
+ if not return_dict:
+ output = (reshaped_logits,) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return XLNetForMultipleChoiceOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ mems=transformer_outputs.mems,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ XLNET_START_DOCSTRING,
+)
+class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.transformer = XLNetModel(config)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=XLNetForQuestionAnsweringSimpleOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ mems: Optional[torch.Tensor] = None,
+ perm_mask: Optional[torch.Tensor] = None,
+ target_mapping: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ input_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ start_positions: Optional[torch.Tensor] = None,
+ end_positions: Optional[torch.Tensor] = None,
+ use_mems: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs, # delete when `use_cache` is removed in XLNetModel
+ ) -> Union[Tuple, XLNetForQuestionAnsweringSimpleOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.transformer(
+ input_ids,
+ attention_mask=attention_mask,
+ mems=mems,
+ perm_mask=perm_mask,
+ target_mapping=target_mapping,
+ token_type_ids=token_type_ids,
+ input_mask=input_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_mems=use_mems,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ **kwargs,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[1:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return XLNetForQuestionAnsweringSimpleOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ mems=outputs.mems,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ XLNET_START_DOCSTRING,
+)
+class XLNetForQuestionAnswering(XLNetPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.start_n_top = config.start_n_top
+ self.end_n_top = config.end_n_top
+
+ self.transformer = XLNetModel(config)
+ self.start_logits = PoolerStartLogits(config)
+ self.end_logits = PoolerEndLogits(config)
+ self.answer_class = PoolerAnswerClass(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=XLNetForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ mems: Optional[torch.Tensor] = None,
+ perm_mask: Optional[torch.Tensor] = None,
+ target_mapping: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ input_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ start_positions: Optional[torch.Tensor] = None,
+ end_positions: Optional[torch.Tensor] = None,
+ is_impossible: Optional[torch.Tensor] = None,
+ cls_index: Optional[torch.Tensor] = None,
+ p_mask: Optional[torch.Tensor] = None,
+ use_mems: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs, # delete when `use_cache` is removed in XLNetModel
+ ) -> Union[Tuple, XLNetForQuestionAnsweringOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels whether a question has an answer or no answer (SQuAD 2.0)
+ cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the classification token to use as input for computing plausibility of the
+ answer.
+ p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be
+ masked. 0.0 mean token is not masked.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, XLNetForQuestionAnswering
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-base-cased")
+ >>> model = XLNetForQuestionAnswering.from_pretrained("xlnet/xlnet-base-cased")
+
+ >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
+ ... 0
+ ... ) # Batch size 1
+ >>> start_positions = torch.tensor([1])
+ >>> end_positions = torch.tensor([3])
+ >>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
+
+ >>> loss = outputs.loss
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ transformer_outputs = self.transformer(
+ input_ids,
+ attention_mask=attention_mask,
+ mems=mems,
+ perm_mask=perm_mask,
+ target_mapping=target_mapping,
+ token_type_ids=token_type_ids,
+ input_mask=input_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_mems=use_mems,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ **kwargs,
+ )
+ hidden_states = transformer_outputs[0]
+ start_logits = self.start_logits(hidden_states, p_mask=p_mask)
+
+ outputs = transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it
+
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, let's remove the dimension added by batch splitting
+ for x in (start_positions, end_positions, cls_index, is_impossible):
+ if x is not None and x.dim() > 1:
+ x.squeeze_(-1)
+
+ # during training, compute the end logits based on the ground truth of the start position
+ end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
+
+ loss_fct = CrossEntropyLoss()
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if cls_index is not None and is_impossible is not None:
+ # Predict answerability from the representation of CLS and START
+ cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
+ loss_fct_cls = nn.BCEWithLogitsLoss()
+ cls_loss = loss_fct_cls(cls_logits, is_impossible)
+
+ # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
+ total_loss += cls_loss * 0.5
+
+ if not return_dict:
+ return (total_loss,) + transformer_outputs[1:]
+ else:
+ return XLNetForQuestionAnsweringOutput(
+ loss=total_loss,
+ mems=transformer_outputs.mems,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+ else:
+ # during inference, compute the end logits based on beam search
+ bsz, slen, hsz = hidden_states.size()
+ start_log_probs = nn.functional.softmax(start_logits, dim=-1) # shape (bsz, slen)
+
+ start_top_log_probs, start_top_index = torch.topk(
+ start_log_probs, self.start_n_top, dim=-1
+ ) # shape (bsz, start_n_top)
+ start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
+ start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz)
+ start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)
+
+ hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
+ start_states
+ ) # shape (bsz, slen, start_n_top, hsz)
+ p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
+ end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
+ end_log_probs = nn.functional.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)
+
+ end_top_log_probs, end_top_index = torch.topk(
+ end_log_probs, self.end_n_top, dim=1
+ ) # shape (bsz, end_n_top, start_n_top)
+ end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
+ end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)
+
+ start_states = torch.einsum(
+ "blh,bl->bh", hidden_states, start_log_probs
+ ) # get the representation of START as weighted sum of hidden states
+ cls_logits = self.answer_class(
+ hidden_states, start_states=start_states, cls_index=cls_index
+ ) # Shape (batch size,): one single `cls_logits` for each sample
+
+ if not return_dict:
+ outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
+ return outputs + transformer_outputs[1:]
+ else:
+ return XLNetForQuestionAnsweringOutput(
+ start_top_log_probs=start_top_log_probs,
+ start_top_index=start_top_index,
+ end_top_log_probs=end_top_log_probs,
+ end_top_index=end_top_index,
+ cls_logits=cls_logits,
+ mems=transformer_outputs.mems,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
diff --git a/venv/lib/python3.10/site-packages/transformers/models/xlnet/tokenization_xlnet.py b/venv/lib/python3.10/site-packages/transformers/models/xlnet/tokenization_xlnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..8d87f34ba2462e44c1286f70a9a122267c890c14
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/xlnet/tokenization_xlnet.py
@@ -0,0 +1,383 @@
+# coding=utf-8
+# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Tokenization classes for XLNet model."""
+
+
+import os
+import unicodedata
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple
+
+import sentencepiece as spm
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer
+from ...utils import SPIECE_UNDERLINE, logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
+
+
+# Segments (not really needed)
+SEG_ID_A = 0
+SEG_ID_B = 1
+SEG_ID_CLS = 2
+SEG_ID_SEP = 3
+SEG_ID_PAD = 4
+
+
+class XLNetTokenizer(PreTrainedTokenizer):
+ """
+ Construct an XLNet tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ do_lower_case (`bool`, *optional*, defaults to `False`):
+ Whether to lowercase the input when tokenizing.
+ remove_space (`bool`, *optional*, defaults to `True`):
+ Whether to strip the text when tokenizing (removing excess spaces before and after the string).
+ keep_accents (`bool`, *optional*, defaults to `False`):
+ Whether to keep accents when tokenizing.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ additional_special_tokens (`List[str]`, *optional*, defaults to `['', '']`):
+ Additional special tokens used by the tokenizer.
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+
+ Attributes:
+ sp_model (`SentencePieceProcessor`):
+ The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ padding_side = "left"
+
+ def __init__(
+ self,
+ vocab_file,
+ do_lower_case=False,
+ remove_space=True,
+ keep_accents=False,
+ bos_token="",
+ eos_token="",
+ unk_token="",
+ sep_token="",
+ pad_token="",
+ cls_token="",
+ mask_token="",
+ additional_special_tokens=["", ""],
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ **kwargs,
+ ) -> None:
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
+
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+
+ self.do_lower_case = do_lower_case
+ self.remove_space = remove_space
+ self.keep_accents = keep_accents
+ self.vocab_file = vocab_file
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(vocab_file)
+
+ super().__init__(
+ do_lower_case=do_lower_case,
+ remove_space=remove_space,
+ keep_accents=keep_accents,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ additional_special_tokens=additional_special_tokens,
+ sp_model_kwargs=self.sp_model_kwargs,
+ **kwargs,
+ )
+
+ self._pad_token_type_id = 3
+
+ @property
+ def vocab_size(self):
+ return len(self.sp_model)
+
+ def get_vocab(self):
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(self.vocab_file)
+
+ def preprocess_text(self, inputs):
+ if self.remove_space:
+ outputs = " ".join(inputs.strip().split())
+ else:
+ outputs = inputs
+ outputs = outputs.replace("``", '"').replace("''", '"')
+
+ if not self.keep_accents:
+ outputs = unicodedata.normalize("NFKD", outputs)
+ outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
+ if self.do_lower_case:
+ outputs = outputs.lower()
+
+ return outputs
+
+ def _tokenize(self, text: str) -> List[str]:
+ """Tokenize a string."""
+ text = self.preprocess_text(text)
+ pieces = self.sp_model.encode(text, out_type=str)
+ new_pieces = []
+ for piece in pieces:
+ if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
+ cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
+ if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
+ if len(cur_pieces[0]) == 1:
+ cur_pieces = cur_pieces[1:]
+ else:
+ cur_pieces[0] = cur_pieces[0][1:]
+ cur_pieces.append(piece[-1])
+ new_pieces.extend(cur_pieces)
+ else:
+ new_pieces.append(piece)
+
+ return new_pieces
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.sp_model.PieceToId(token)
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.sp_model.IdToPiece(index)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (strings for sub-words) in a single string."""
+ out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
+ return out_string
+
+ def _decode(
+ self,
+ token_ids: List[int],
+ skip_special_tokens: bool = False,
+ clean_up_tokenization_spaces: bool = None,
+ spaces_between_special_tokens: bool = True,
+ **kwargs,
+ ) -> str:
+ self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
+
+ filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
+
+ # To avoid mixing byte-level and unicode for byte-level BPT
+ # we need to build string separately for added tokens and byte-level tokens
+ # cf. https://github.com/huggingface/transformers/issues/1133
+ sub_texts = []
+ current_sub_text = []
+ for token in filtered_tokens:
+ if skip_special_tokens and token in self.all_special_ids:
+ continue
+ if token in self.added_tokens_encoder:
+ if current_sub_text:
+ sub_texts.append(self.convert_tokens_to_string(current_sub_text))
+ current_sub_text = []
+ sub_texts.append(token)
+ else:
+ current_sub_text.append(token)
+ if current_sub_text:
+ sub_texts.append(self.convert_tokens_to_string(current_sub_text))
+
+ # Mimic the behavior of the Rust tokenizer:
+ # By default, there are no spaces between special tokens
+ text = "".join(sub_texts)
+
+ clean_up_tokenization_spaces = (
+ clean_up_tokenization_spaces
+ if clean_up_tokenization_spaces is not None
+ else self.clean_up_tokenization_spaces
+ )
+ if clean_up_tokenization_spaces:
+ clean_text = self.clean_up_tokenization(text)
+ return clean_text
+ else:
+ return text
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. An XLNet sequence has the following format:
+
+ - single sequence: `X `
+ - pair of sequences: `A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return token_ids_0 + sep + cls
+ return token_ids_0 + sep + token_ids_1 + sep + cls
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is not None:
+ return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1, 1]
+ return ([0] * len(token_ids_0)) + [1, 1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet
+ sequence pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls_segment_id = [2]
+
+ if token_ids_1 is None:
+ return len(token_ids_0 + sep) * [0] + cls_segment_id
+ return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
diff --git a/venv/lib/python3.10/site-packages/transformers/models/xlnet/tokenization_xlnet_fast.py b/venv/lib/python3.10/site-packages/transformers/models/xlnet/tokenization_xlnet_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..d77307e7a3dfbac9dd42fcf9eb0aa053cabca5ca
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/transformers/models/xlnet/tokenization_xlnet_fast.py
@@ -0,0 +1,232 @@
+# coding=utf-8
+# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Tokenization classes for XLNet model."""
+
+
+import os
+from shutil import copyfile
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import AddedToken
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import is_sentencepiece_available, logging
+
+
+if is_sentencepiece_available():
+ from .tokenization_xlnet import XLNetTokenizer
+else:
+ XLNetTokenizer = None
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
+
+
+SPIECE_UNDERLINE = "▁"
+
+# Segments (not really needed)
+SEG_ID_A = 0
+SEG_ID_B = 1
+SEG_ID_CLS = 2
+SEG_ID_SEP = 3
+SEG_ID_PAD = 4
+
+
+class XLNetTokenizerFast(PreTrainedTokenizerFast):
+ """
+ Construct a "fast" XLNet tokenizer (backed by HuggingFace's *tokenizers* library). Based on
+ [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models).
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether to lowercase the input when tokenizing.
+ remove_space (`bool`, *optional*, defaults to `True`):
+ Whether to strip the text when tokenizing (removing excess spaces before and after the string).
+ keep_accents (`bool`, *optional*, defaults to `False`):
+ Whether to keep accents when tokenizing.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ additional_special_tokens (`List[str]`, *optional*, defaults to `["", ""]`):
+ Additional special tokens used by the tokenizer.
+
+ Attributes:
+ sp_model (`SentencePieceProcessor`):
+ The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ padding_side = "left"
+ slow_tokenizer_class = XLNetTokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ do_lower_case=False,
+ remove_space=True,
+ keep_accents=False,
+ bos_token="",
+ eos_token="",
+ unk_token="",
+ sep_token="",
+ pad_token="",
+ cls_token="",
+ mask_token="",
+ additional_special_tokens=["", ""],
+ **kwargs,
+ ):
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
+
+ super().__init__(
+ vocab_file=vocab_file,
+ tokenizer_file=tokenizer_file,
+ do_lower_case=do_lower_case,
+ remove_space=remove_space,
+ keep_accents=keep_accents,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ additional_special_tokens=additional_special_tokens,
+ **kwargs,
+ )
+
+ self._pad_token_type_id = 3
+ self.do_lower_case = do_lower_case
+ self.remove_space = remove_space
+ self.keep_accents = keep_accents
+ self.vocab_file = vocab_file
+
+ @property
+ def can_save_slow_tokenizer(self) -> bool:
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. An XLNet sequence has the following format:
+
+ - single sequence: `X `
+ - pair of sequences: `A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return token_ids_0 + sep + cls
+ return token_ids_0 + sep + token_ids_1 + sep + cls
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet
+ sequence pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls_segment_id = [2]
+
+ if token_ids_1 is None:
+ return len(token_ids_0 + sep) * [0] + cls_segment_id
+ return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not self.can_save_slow_tokenizer:
+ raise ValueError(
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
+ "tokenizer."
+ )
+
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+
+ return (out_vocab_file,)