applied-ai-018 commited on
Commit
4627caa
·
verified ·
1 Parent(s): 45b75ea

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_199_mp_rank_00_optim_states.pt +3 -0
  2. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_200_mp_rank_02_optim_states.pt +3 -0
  3. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_210_mp_rank_03_optim_states.pt +3 -0
  4. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_87_mp_rank_02_optim_states.pt +3 -0
  5. venv/lib/python3.10/site-packages/pandas/tests/indexing/__init__.py +0 -0
  6. venv/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/__init__.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/common.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_check_indexer.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_datetime.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_indexers.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_scalar.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/pandas/tests/indexing/common.py +40 -0
  13. venv/lib/python3.10/site-packages/pandas/tests/indexing/conftest.py +127 -0
  14. venv/lib/python3.10/site-packages/pandas/tests/indexing/interval/__pycache__/__init__.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/pandas/tests/indexing/interval/__pycache__/test_interval.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/pandas/tests/indexing/interval/__pycache__/test_interval_new.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/pandas/tests/indexing/interval/test_interval_new.py +232 -0
  18. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__init__.py +0 -0
  19. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/__init__.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_chaining_and_caching.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_datetime.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_getitem.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_iloc.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_indexing_slow.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_loc.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_partial.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_setitem.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_sorted.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_chaining_and_caching.py +87 -0
  30. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_datetime.py +50 -0
  31. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_getitem.py +410 -0
  32. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_iloc.py +171 -0
  33. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_indexing_slow.py +118 -0
  34. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_loc.py +992 -0
  35. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_multiindex.py +235 -0
  36. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_partial.py +269 -0
  37. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_setitem.py +589 -0
  38. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_slice.py +796 -0
  39. venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_sorted.py +153 -0
  40. venv/lib/python3.10/site-packages/pandas/tests/indexing/test_at.py +257 -0
  41. venv/lib/python3.10/site-packages/pandas/tests/indexing/test_categorical.py +573 -0
  42. venv/lib/python3.10/site-packages/pandas/tests/indexing/test_chaining_and_caching.py +647 -0
  43. venv/lib/python3.10/site-packages/pandas/tests/indexing/test_check_indexer.py +105 -0
  44. venv/lib/python3.10/site-packages/pandas/tests/indexing/test_coercion.py +940 -0
  45. venv/lib/python3.10/site-packages/pandas/tests/indexing/test_datetime.py +191 -0
  46. venv/lib/python3.10/site-packages/pandas/tests/indexing/test_floats.py +689 -0
  47. venv/lib/python3.10/site-packages/pandas/tests/indexing/test_iat.py +53 -0
  48. venv/lib/python3.10/site-packages/pandas/tests/indexing/test_iloc.py +1478 -0
  49. venv/lib/python3.10/site-packages/pandas/tests/indexing/test_indexers.py +61 -0
  50. venv/lib/python3.10/site-packages/pandas/tests/indexing/test_indexing.py +1157 -0
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_199_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e8f1798072f0f11d0bbc07995ffaed862ee2f6dc490f4bf7e4b9d879873d6f9
3
+ size 41830148
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_200_mp_rank_02_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7792728dd588180203a3de3a8483f036f23e3fd043befb18df12b2fa51f87bc5
3
+ size 41830404
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_210_mp_rank_03_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b128453d9fe939c12054d23d7a8ccfb8b67f75bf12803b8d7deadc4f18009a4
3
+ size 41830340
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_87_mp_rank_02_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc377fa51e687aab55530a4e7ef56d9f33ae83f1a60cccf9c57b4cc17e03038a
3
+ size 41830330
venv/lib/python3.10/site-packages/pandas/tests/indexing/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (189 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/common.cpython-310.pyc ADDED
Binary file (1.29 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_check_indexer.cpython-310.pyc ADDED
Binary file (2.87 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_datetime.cpython-310.pyc ADDED
Binary file (5.41 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_indexers.cpython-310.pyc ADDED
Binary file (2.35 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_scalar.cpython-310.pyc ADDED
Binary file (9.75 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/common.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ common utilities """
2
+ from __future__ import annotations
3
+
4
+ from typing import (
5
+ Any,
6
+ Literal,
7
+ )
8
+
9
+
10
+ def _mklbl(prefix: str, n: int):
11
+ return [f"{prefix}{i}" for i in range(n)]
12
+
13
+
14
+ def check_indexing_smoketest_or_raises(
15
+ obj,
16
+ method: Literal["iloc", "loc"],
17
+ key: Any,
18
+ axes: Literal[0, 1] | None = None,
19
+ fails=None,
20
+ ) -> None:
21
+ if axes is None:
22
+ axes_list = [0, 1]
23
+ else:
24
+ assert axes in [0, 1]
25
+ axes_list = [axes]
26
+
27
+ for ax in axes_list:
28
+ if ax < obj.ndim:
29
+ # create a tuple accessor
30
+ new_axes = [slice(None)] * obj.ndim
31
+ new_axes[ax] = key
32
+ axified = tuple(new_axes)
33
+ try:
34
+ getattr(obj, method).__getitem__(axified)
35
+ except (IndexError, TypeError, KeyError) as detail:
36
+ # if we are in fails, the ok, otherwise raise it
37
+ if fails is not None:
38
+ if isinstance(detail, fails):
39
+ return
40
+ raise
venv/lib/python3.10/site-packages/pandas/tests/indexing/conftest.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ DataFrame,
6
+ Index,
7
+ MultiIndex,
8
+ Series,
9
+ date_range,
10
+ )
11
+
12
+
13
+ @pytest.fixture
14
+ def series_ints():
15
+ return Series(np.random.default_rng(2).random(4), index=np.arange(0, 8, 2))
16
+
17
+
18
+ @pytest.fixture
19
+ def frame_ints():
20
+ return DataFrame(
21
+ np.random.default_rng(2).standard_normal((4, 4)),
22
+ index=np.arange(0, 8, 2),
23
+ columns=np.arange(0, 12, 3),
24
+ )
25
+
26
+
27
+ @pytest.fixture
28
+ def series_uints():
29
+ return Series(
30
+ np.random.default_rng(2).random(4),
31
+ index=Index(np.arange(0, 8, 2, dtype=np.uint64)),
32
+ )
33
+
34
+
35
+ @pytest.fixture
36
+ def frame_uints():
37
+ return DataFrame(
38
+ np.random.default_rng(2).standard_normal((4, 4)),
39
+ index=Index(range(0, 8, 2), dtype=np.uint64),
40
+ columns=Index(range(0, 12, 3), dtype=np.uint64),
41
+ )
42
+
43
+
44
+ @pytest.fixture
45
+ def series_labels():
46
+ return Series(np.random.default_rng(2).standard_normal(4), index=list("abcd"))
47
+
48
+
49
+ @pytest.fixture
50
+ def frame_labels():
51
+ return DataFrame(
52
+ np.random.default_rng(2).standard_normal((4, 4)),
53
+ index=list("abcd"),
54
+ columns=list("ABCD"),
55
+ )
56
+
57
+
58
+ @pytest.fixture
59
+ def series_ts():
60
+ return Series(
61
+ np.random.default_rng(2).standard_normal(4),
62
+ index=date_range("20130101", periods=4),
63
+ )
64
+
65
+
66
+ @pytest.fixture
67
+ def frame_ts():
68
+ return DataFrame(
69
+ np.random.default_rng(2).standard_normal((4, 4)),
70
+ index=date_range("20130101", periods=4),
71
+ )
72
+
73
+
74
+ @pytest.fixture
75
+ def series_floats():
76
+ return Series(
77
+ np.random.default_rng(2).random(4),
78
+ index=Index(range(0, 8, 2), dtype=np.float64),
79
+ )
80
+
81
+
82
+ @pytest.fixture
83
+ def frame_floats():
84
+ return DataFrame(
85
+ np.random.default_rng(2).standard_normal((4, 4)),
86
+ index=Index(range(0, 8, 2), dtype=np.float64),
87
+ columns=Index(range(0, 12, 3), dtype=np.float64),
88
+ )
89
+
90
+
91
+ @pytest.fixture
92
+ def series_mixed():
93
+ return Series(np.random.default_rng(2).standard_normal(4), index=[2, 4, "null", 8])
94
+
95
+
96
+ @pytest.fixture
97
+ def frame_mixed():
98
+ return DataFrame(
99
+ np.random.default_rng(2).standard_normal((4, 4)), index=[2, 4, "null", 8]
100
+ )
101
+
102
+
103
+ @pytest.fixture
104
+ def frame_empty():
105
+ return DataFrame()
106
+
107
+
108
+ @pytest.fixture
109
+ def series_empty():
110
+ return Series(dtype=object)
111
+
112
+
113
+ @pytest.fixture
114
+ def frame_multi():
115
+ return DataFrame(
116
+ np.random.default_rng(2).standard_normal((4, 4)),
117
+ index=MultiIndex.from_product([[1, 2], [3, 4]]),
118
+ columns=MultiIndex.from_product([[5, 6], [7, 8]]),
119
+ )
120
+
121
+
122
+ @pytest.fixture
123
+ def series_multi():
124
+ return Series(
125
+ np.random.default_rng(2).random(4),
126
+ index=MultiIndex.from_product([[1, 2], [3, 4]]),
127
+ )
venv/lib/python3.10/site-packages/pandas/tests/indexing/interval/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (198 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/interval/__pycache__/test_interval.cpython-310.pyc ADDED
Binary file (6.89 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/interval/__pycache__/test_interval_new.cpython-310.pyc ADDED
Binary file (6.75 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/interval/test_interval_new.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas.compat import IS64
7
+
8
+ from pandas import (
9
+ Index,
10
+ Interval,
11
+ IntervalIndex,
12
+ Series,
13
+ )
14
+ import pandas._testing as tm
15
+
16
+
17
+ class TestIntervalIndex:
18
+ @pytest.fixture
19
+ def series_with_interval_index(self):
20
+ return Series(np.arange(5), IntervalIndex.from_breaks(np.arange(6)))
21
+
22
+ def test_loc_with_interval(self, series_with_interval_index, indexer_sl):
23
+ # loc with single label / list of labels:
24
+ # - Intervals: only exact matches
25
+ # - scalars: those that contain it
26
+
27
+ ser = series_with_interval_index.copy()
28
+
29
+ expected = 0
30
+ result = indexer_sl(ser)[Interval(0, 1)]
31
+ assert result == expected
32
+
33
+ expected = ser.iloc[3:5]
34
+ result = indexer_sl(ser)[[Interval(3, 4), Interval(4, 5)]]
35
+ tm.assert_series_equal(expected, result)
36
+
37
+ # missing or not exact
38
+ with pytest.raises(KeyError, match=re.escape("Interval(3, 5, closed='left')")):
39
+ indexer_sl(ser)[Interval(3, 5, closed="left")]
40
+
41
+ with pytest.raises(KeyError, match=re.escape("Interval(3, 5, closed='right')")):
42
+ indexer_sl(ser)[Interval(3, 5)]
43
+
44
+ with pytest.raises(
45
+ KeyError, match=re.escape("Interval(-2, 0, closed='right')")
46
+ ):
47
+ indexer_sl(ser)[Interval(-2, 0)]
48
+
49
+ with pytest.raises(KeyError, match=re.escape("Interval(5, 6, closed='right')")):
50
+ indexer_sl(ser)[Interval(5, 6)]
51
+
52
+ def test_loc_with_scalar(self, series_with_interval_index, indexer_sl):
53
+ # loc with single label / list of labels:
54
+ # - Intervals: only exact matches
55
+ # - scalars: those that contain it
56
+
57
+ ser = series_with_interval_index.copy()
58
+
59
+ assert indexer_sl(ser)[1] == 0
60
+ assert indexer_sl(ser)[1.5] == 1
61
+ assert indexer_sl(ser)[2] == 1
62
+
63
+ expected = ser.iloc[1:4]
64
+ tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 2.5, 3.5]])
65
+ tm.assert_series_equal(expected, indexer_sl(ser)[[2, 3, 4]])
66
+ tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 3, 4]])
67
+
68
+ expected = ser.iloc[[1, 1, 2, 1]]
69
+ tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 2, 2.5, 1.5]])
70
+
71
+ expected = ser.iloc[2:5]
72
+ tm.assert_series_equal(expected, indexer_sl(ser)[ser >= 2])
73
+
74
+ def test_loc_with_slices(self, series_with_interval_index, indexer_sl):
75
+ # loc with slices:
76
+ # - Interval objects: only works with exact matches
77
+ # - scalars: only works for non-overlapping, monotonic intervals,
78
+ # and start/stop select location based on the interval that
79
+ # contains them:
80
+ # (slice_loc(start, stop) == (idx.get_loc(start), idx.get_loc(stop))
81
+
82
+ ser = series_with_interval_index.copy()
83
+
84
+ # slice of interval
85
+
86
+ expected = ser.iloc[:3]
87
+ result = indexer_sl(ser)[Interval(0, 1) : Interval(2, 3)]
88
+ tm.assert_series_equal(expected, result)
89
+
90
+ expected = ser.iloc[3:]
91
+ result = indexer_sl(ser)[Interval(3, 4) :]
92
+ tm.assert_series_equal(expected, result)
93
+
94
+ msg = "Interval objects are not currently supported"
95
+ with pytest.raises(NotImplementedError, match=msg):
96
+ indexer_sl(ser)[Interval(3, 6) :]
97
+
98
+ with pytest.raises(NotImplementedError, match=msg):
99
+ indexer_sl(ser)[Interval(3, 4, closed="left") :]
100
+
101
+ def test_slice_step_ne1(self, series_with_interval_index):
102
+ # GH#31658 slice of scalar with step != 1
103
+ ser = series_with_interval_index.copy()
104
+ expected = ser.iloc[0:4:2]
105
+
106
+ result = ser[0:4:2]
107
+ tm.assert_series_equal(result, expected)
108
+
109
+ result2 = ser[0:4][::2]
110
+ tm.assert_series_equal(result2, expected)
111
+
112
+ def test_slice_float_start_stop(self, series_with_interval_index):
113
+ # GH#31658 slicing with integers is positional, with floats is not
114
+ # supported
115
+ ser = series_with_interval_index.copy()
116
+
117
+ msg = "label-based slicing with step!=1 is not supported for IntervalIndex"
118
+ with pytest.raises(ValueError, match=msg):
119
+ ser[1.5:9.5:2]
120
+
121
+ def test_slice_interval_step(self, series_with_interval_index):
122
+ # GH#31658 allows for integer step!=1, not Interval step
123
+ ser = series_with_interval_index.copy()
124
+ msg = "label-based slicing with step!=1 is not supported for IntervalIndex"
125
+ with pytest.raises(ValueError, match=msg):
126
+ ser[0 : 4 : Interval(0, 1)]
127
+
128
+ def test_loc_with_overlap(self, indexer_sl):
129
+ idx = IntervalIndex.from_tuples([(1, 5), (3, 7)])
130
+ ser = Series(range(len(idx)), index=idx)
131
+
132
+ # scalar
133
+ expected = ser
134
+ result = indexer_sl(ser)[4]
135
+ tm.assert_series_equal(expected, result)
136
+
137
+ result = indexer_sl(ser)[[4]]
138
+ tm.assert_series_equal(expected, result)
139
+
140
+ # interval
141
+ expected = 0
142
+ result = indexer_sl(ser)[Interval(1, 5)]
143
+ assert expected == result
144
+
145
+ expected = ser
146
+ result = indexer_sl(ser)[[Interval(1, 5), Interval(3, 7)]]
147
+ tm.assert_series_equal(expected, result)
148
+
149
+ with pytest.raises(KeyError, match=re.escape("Interval(3, 5, closed='right')")):
150
+ indexer_sl(ser)[Interval(3, 5)]
151
+
152
+ msg = (
153
+ r"None of \[IntervalIndex\(\[\(3, 5\]\], "
154
+ r"dtype='interval\[int64, right\]'\)\] are in the \[index\]"
155
+ )
156
+ with pytest.raises(KeyError, match=msg):
157
+ indexer_sl(ser)[[Interval(3, 5)]]
158
+
159
+ # slices with interval (only exact matches)
160
+ expected = ser
161
+ result = indexer_sl(ser)[Interval(1, 5) : Interval(3, 7)]
162
+ tm.assert_series_equal(expected, result)
163
+
164
+ msg = (
165
+ "'can only get slices from an IntervalIndex if bounds are "
166
+ "non-overlapping and all monotonic increasing or decreasing'"
167
+ )
168
+ with pytest.raises(KeyError, match=msg):
169
+ indexer_sl(ser)[Interval(1, 6) : Interval(3, 8)]
170
+
171
+ if indexer_sl is tm.loc:
172
+ # slices with scalar raise for overlapping intervals
173
+ # TODO KeyError is the appropriate error?
174
+ with pytest.raises(KeyError, match=msg):
175
+ ser.loc[1:4]
176
+
177
+ def test_non_unique(self, indexer_sl):
178
+ idx = IntervalIndex.from_tuples([(1, 3), (3, 7)])
179
+ ser = Series(range(len(idx)), index=idx)
180
+
181
+ result = indexer_sl(ser)[Interval(1, 3)]
182
+ assert result == 0
183
+
184
+ result = indexer_sl(ser)[[Interval(1, 3)]]
185
+ expected = ser.iloc[0:1]
186
+ tm.assert_series_equal(expected, result)
187
+
188
+ def test_non_unique_moar(self, indexer_sl):
189
+ idx = IntervalIndex.from_tuples([(1, 3), (1, 3), (3, 7)])
190
+ ser = Series(range(len(idx)), index=idx)
191
+
192
+ expected = ser.iloc[[0, 1]]
193
+ result = indexer_sl(ser)[Interval(1, 3)]
194
+ tm.assert_series_equal(expected, result)
195
+
196
+ expected = ser
197
+ result = indexer_sl(ser)[Interval(1, 3) :]
198
+ tm.assert_series_equal(expected, result)
199
+
200
+ expected = ser.iloc[[0, 1]]
201
+ result = indexer_sl(ser)[[Interval(1, 3)]]
202
+ tm.assert_series_equal(expected, result)
203
+
204
+ def test_loc_getitem_missing_key_error_message(
205
+ self, frame_or_series, series_with_interval_index
206
+ ):
207
+ # GH#27365
208
+ ser = series_with_interval_index.copy()
209
+ obj = frame_or_series(ser)
210
+ with pytest.raises(KeyError, match=r"\[6\]"):
211
+ obj.loc[[4, 5, 6]]
212
+
213
+
214
+ @pytest.mark.xfail(not IS64, reason="GH 23440")
215
+ @pytest.mark.parametrize(
216
+ "intervals",
217
+ [
218
+ ([Interval(-np.inf, 0.0), Interval(0.0, 1.0)]),
219
+ ([Interval(-np.inf, -2.0), Interval(-2.0, -1.0)]),
220
+ ([Interval(-1.0, 0.0), Interval(0.0, np.inf)]),
221
+ ([Interval(1.0, 2.0), Interval(2.0, np.inf)]),
222
+ ],
223
+ )
224
+ def test_repeating_interval_index_with_infs(intervals):
225
+ # GH 46658
226
+
227
+ interval_index = Index(intervals * 51)
228
+
229
+ expected = np.arange(1, 102, 2, dtype=np.intp)
230
+ result = interval_index.get_indexer_for([intervals[1]])
231
+
232
+ tm.assert_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (200 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_chaining_and_caching.cpython-310.pyc ADDED
Binary file (2.79 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_datetime.cpython-310.pyc ADDED
Binary file (1.3 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_getitem.cpython-310.pyc ADDED
Binary file (11.2 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_iloc.cpython-310.pyc ADDED
Binary file (5.83 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_indexing_slow.cpython-310.pyc ADDED
Binary file (3.32 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_loc.cpython-310.pyc ADDED
Binary file (29.8 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_partial.cpython-310.pyc ADDED
Binary file (7.05 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_setitem.cpython-310.pyc ADDED
Binary file (17 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_sorted.cpython-310.pyc ADDED
Binary file (5.51 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_chaining_and_caching.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._libs import index as libindex
5
+ from pandas.errors import SettingWithCopyError
6
+ import pandas.util._test_decorators as td
7
+
8
+ from pandas import (
9
+ DataFrame,
10
+ MultiIndex,
11
+ Series,
12
+ )
13
+ import pandas._testing as tm
14
+
15
+
16
+ def test_detect_chained_assignment(using_copy_on_write, warn_copy_on_write):
17
+ # Inplace ops, originally from:
18
+ # https://stackoverflow.com/questions/20508968/series-fillna-in-a-multiindex-dataframe-does-not-fill-is-this-a-bug
19
+ a = [12, 23]
20
+ b = [123, None]
21
+ c = [1234, 2345]
22
+ d = [12345, 23456]
23
+ tuples = [("eyes", "left"), ("eyes", "right"), ("ears", "left"), ("ears", "right")]
24
+ events = {
25
+ ("eyes", "left"): a,
26
+ ("eyes", "right"): b,
27
+ ("ears", "left"): c,
28
+ ("ears", "right"): d,
29
+ }
30
+ multiind = MultiIndex.from_tuples(tuples, names=["part", "side"])
31
+ zed = DataFrame(events, index=["a", "b"], columns=multiind)
32
+
33
+ if using_copy_on_write:
34
+ with tm.raises_chained_assignment_error():
35
+ zed["eyes"]["right"].fillna(value=555, inplace=True)
36
+ elif warn_copy_on_write:
37
+ with tm.assert_produces_warning(None):
38
+ zed["eyes"]["right"].fillna(value=555, inplace=True)
39
+ else:
40
+ msg = "A value is trying to be set on a copy of a slice from a DataFrame"
41
+ with pytest.raises(SettingWithCopyError, match=msg):
42
+ with tm.assert_produces_warning(None):
43
+ zed["eyes"]["right"].fillna(value=555, inplace=True)
44
+
45
+
46
+ @td.skip_array_manager_invalid_test # with ArrayManager df.loc[0] is not a view
47
+ def test_cache_updating(using_copy_on_write, warn_copy_on_write):
48
+ # 5216
49
+ # make sure that we don't try to set a dead cache
50
+ a = np.random.default_rng(2).random((10, 3))
51
+ df = DataFrame(a, columns=["x", "y", "z"])
52
+ df_original = df.copy()
53
+ tuples = [(i, j) for i in range(5) for j in range(2)]
54
+ index = MultiIndex.from_tuples(tuples)
55
+ df.index = index
56
+
57
+ # setting via chained assignment
58
+ # but actually works, since everything is a view
59
+
60
+ with tm.raises_chained_assignment_error():
61
+ df.loc[0]["z"].iloc[0] = 1.0
62
+
63
+ if using_copy_on_write:
64
+ assert df.loc[(0, 0), "z"] == df_original.loc[0, "z"]
65
+ else:
66
+ result = df.loc[(0, 0), "z"]
67
+ assert result == 1
68
+
69
+ # correct setting
70
+ df.loc[(0, 0), "z"] = 2
71
+ result = df.loc[(0, 0), "z"]
72
+ assert result == 2
73
+
74
+
75
+ def test_indexer_caching(monkeypatch):
76
+ # GH5727
77
+ # make sure that indexers are in the _internal_names_set
78
+ size_cutoff = 20
79
+ with monkeypatch.context():
80
+ monkeypatch.setattr(libindex, "_SIZE_CUTOFF", size_cutoff)
81
+ index = MultiIndex.from_arrays([np.arange(size_cutoff), np.arange(size_cutoff)])
82
+ s = Series(np.zeros(size_cutoff), index=index)
83
+
84
+ # setitem
85
+ s[s == 0] = 1
86
+ expected = Series(np.ones(size_cutoff), index=index)
87
+ tm.assert_series_equal(s, expected)
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_datetime.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+
3
+ import numpy as np
4
+
5
+ from pandas import (
6
+ DataFrame,
7
+ Index,
8
+ MultiIndex,
9
+ Period,
10
+ Series,
11
+ period_range,
12
+ to_datetime,
13
+ )
14
+ import pandas._testing as tm
15
+
16
+
17
+ def test_multiindex_period_datetime():
18
+ # GH4861, using datetime in period of multiindex raises exception
19
+
20
+ idx1 = Index(["a", "a", "a", "b", "b"])
21
+ idx2 = period_range("2012-01", periods=len(idx1), freq="M")
22
+ s = Series(np.random.default_rng(2).standard_normal(len(idx1)), [idx1, idx2])
23
+
24
+ # try Period as index
25
+ expected = s.iloc[0]
26
+ result = s.loc["a", Period("2012-01")]
27
+ assert result == expected
28
+
29
+ # try datetime as index
30
+ result = s.loc["a", datetime(2012, 1, 1)]
31
+ assert result == expected
32
+
33
+
34
+ def test_multiindex_datetime_columns():
35
+ # GH35015, using datetime as column indices raises exception
36
+
37
+ mi = MultiIndex.from_tuples(
38
+ [(to_datetime("02/29/2020"), to_datetime("03/01/2020"))], names=["a", "b"]
39
+ )
40
+
41
+ df = DataFrame([], columns=mi)
42
+
43
+ expected_df = DataFrame(
44
+ [],
45
+ columns=MultiIndex.from_arrays(
46
+ [[to_datetime("02/29/2020")], [to_datetime("03/01/2020")]], names=["a", "b"]
47
+ ),
48
+ )
49
+
50
+ tm.assert_frame_equal(df, expected_df)
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_getitem.py ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ DataFrame,
6
+ Index,
7
+ MultiIndex,
8
+ Series,
9
+ )
10
+ import pandas._testing as tm
11
+ from pandas.core.indexing import IndexingError
12
+
13
+ # ----------------------------------------------------------------------------
14
+ # test indexing of Series with multi-level Index
15
+ # ----------------------------------------------------------------------------
16
+
17
+
18
+ @pytest.mark.parametrize(
19
+ "access_method",
20
+ [lambda s, x: s[:, x], lambda s, x: s.loc[:, x], lambda s, x: s.xs(x, level=1)],
21
+ )
22
+ @pytest.mark.parametrize(
23
+ "level1_value, expected",
24
+ [(0, Series([1], index=[0])), (1, Series([2, 3], index=[1, 2]))],
25
+ )
26
+ def test_series_getitem_multiindex(access_method, level1_value, expected):
27
+ # GH 6018
28
+ # series regression getitem with a multi-index
29
+
30
+ mi = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 1)], names=["A", "B"])
31
+ ser = Series([1, 2, 3], index=mi)
32
+ expected.index.name = "A"
33
+
34
+ result = access_method(ser, level1_value)
35
+ tm.assert_series_equal(result, expected)
36
+
37
+
38
+ @pytest.mark.parametrize("level0_value", ["D", "A"])
39
+ def test_series_getitem_duplicates_multiindex(level0_value):
40
+ # GH 5725 the 'A' happens to be a valid Timestamp so the doesn't raise
41
+ # the appropriate error, only in PY3 of course!
42
+
43
+ index = MultiIndex(
44
+ levels=[[level0_value, "B", "C"], [0, 26, 27, 37, 57, 67, 75, 82]],
45
+ codes=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]],
46
+ names=["tag", "day"],
47
+ )
48
+ arr = np.random.default_rng(2).standard_normal((len(index), 1))
49
+ df = DataFrame(arr, index=index, columns=["val"])
50
+
51
+ # confirm indexing on missing value raises KeyError
52
+ if level0_value != "A":
53
+ with pytest.raises(KeyError, match=r"^'A'$"):
54
+ df.val["A"]
55
+
56
+ with pytest.raises(KeyError, match=r"^'X'$"):
57
+ df.val["X"]
58
+
59
+ result = df.val[level0_value]
60
+ expected = Series(
61
+ arr.ravel()[0:3], name="val", index=Index([26, 37, 57], name="day")
62
+ )
63
+ tm.assert_series_equal(result, expected)
64
+
65
+
66
+ def test_series_getitem(multiindex_year_month_day_dataframe_random_data, indexer_sl):
67
+ s = multiindex_year_month_day_dataframe_random_data["A"]
68
+ expected = s.reindex(s.index[42:65])
69
+ expected.index = expected.index.droplevel(0).droplevel(0)
70
+
71
+ result = indexer_sl(s)[2000, 3]
72
+ tm.assert_series_equal(result, expected)
73
+
74
+
75
+ def test_series_getitem_returns_scalar(
76
+ multiindex_year_month_day_dataframe_random_data, indexer_sl
77
+ ):
78
+ s = multiindex_year_month_day_dataframe_random_data["A"]
79
+ expected = s.iloc[49]
80
+
81
+ result = indexer_sl(s)[2000, 3, 10]
82
+ assert result == expected
83
+
84
+
85
+ @pytest.mark.parametrize(
86
+ "indexer,expected_error,expected_error_msg",
87
+ [
88
+ (lambda s: s.__getitem__((2000, 3, 4)), KeyError, r"^\(2000, 3, 4\)$"),
89
+ (lambda s: s[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"),
90
+ (lambda s: s.loc[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"),
91
+ (lambda s: s.loc[(2000, 3, 4, 5)], IndexingError, "Too many indexers"),
92
+ (lambda s: s.__getitem__(len(s)), KeyError, ""), # match should include len(s)
93
+ (lambda s: s[len(s)], KeyError, ""), # match should include len(s)
94
+ (
95
+ lambda s: s.iloc[len(s)],
96
+ IndexError,
97
+ "single positional indexer is out-of-bounds",
98
+ ),
99
+ ],
100
+ )
101
+ def test_series_getitem_indexing_errors(
102
+ multiindex_year_month_day_dataframe_random_data,
103
+ indexer,
104
+ expected_error,
105
+ expected_error_msg,
106
+ ):
107
+ s = multiindex_year_month_day_dataframe_random_data["A"]
108
+ with pytest.raises(expected_error, match=expected_error_msg):
109
+ indexer(s)
110
+
111
+
112
+ def test_series_getitem_corner_generator(
113
+ multiindex_year_month_day_dataframe_random_data,
114
+ ):
115
+ s = multiindex_year_month_day_dataframe_random_data["A"]
116
+ result = s[(x > 0 for x in s)]
117
+ expected = s[s > 0]
118
+ tm.assert_series_equal(result, expected)
119
+
120
+
121
+ # ----------------------------------------------------------------------------
122
+ # test indexing of DataFrame with multi-level Index
123
+ # ----------------------------------------------------------------------------
124
+
125
+
126
+ def test_getitem_simple(multiindex_dataframe_random_data):
127
+ df = multiindex_dataframe_random_data.T
128
+ expected = df.values[:, 0]
129
+ result = df["foo", "one"].values
130
+ tm.assert_almost_equal(result, expected)
131
+
132
+
133
+ @pytest.mark.parametrize(
134
+ "indexer,expected_error_msg",
135
+ [
136
+ (lambda df: df[("foo", "four")], r"^\('foo', 'four'\)$"),
137
+ (lambda df: df["foobar"], r"^'foobar'$"),
138
+ ],
139
+ )
140
+ def test_frame_getitem_simple_key_error(
141
+ multiindex_dataframe_random_data, indexer, expected_error_msg
142
+ ):
143
+ df = multiindex_dataframe_random_data.T
144
+ with pytest.raises(KeyError, match=expected_error_msg):
145
+ indexer(df)
146
+
147
+
148
+ def test_tuple_string_column_names():
149
+ # GH#50372
150
+ mi = MultiIndex.from_tuples([("a", "aa"), ("a", "ab"), ("b", "ba"), ("b", "bb")])
151
+ df = DataFrame([range(4), range(1, 5), range(2, 6)], columns=mi)
152
+ df["single_index"] = 0
153
+
154
+ df_flat = df.copy()
155
+ df_flat.columns = df_flat.columns.to_flat_index()
156
+ df_flat["new_single_index"] = 0
157
+
158
+ result = df_flat[[("a", "aa"), "new_single_index"]]
159
+ expected = DataFrame(
160
+ [[0, 0], [1, 0], [2, 0]], columns=Index([("a", "aa"), "new_single_index"])
161
+ )
162
+ tm.assert_frame_equal(result, expected)
163
+
164
+
165
+ def test_frame_getitem_multicolumn_empty_level():
166
+ df = DataFrame({"a": ["1", "2", "3"], "b": ["2", "3", "4"]})
167
+ df.columns = [
168
+ ["level1 item1", "level1 item2"],
169
+ ["", "level2 item2"],
170
+ ["level3 item1", "level3 item2"],
171
+ ]
172
+
173
+ result = df["level1 item1"]
174
+ expected = DataFrame(
175
+ [["1"], ["2"], ["3"]], index=df.index, columns=["level3 item1"]
176
+ )
177
+ tm.assert_frame_equal(result, expected)
178
+
179
+
180
+ @pytest.mark.parametrize(
181
+ "indexer,expected_slice",
182
+ [
183
+ (lambda df: df["foo"], slice(3)),
184
+ (lambda df: df["bar"], slice(3, 5)),
185
+ (lambda df: df.loc[:, "bar"], slice(3, 5)),
186
+ ],
187
+ )
188
+ def test_frame_getitem_toplevel(
189
+ multiindex_dataframe_random_data, indexer, expected_slice
190
+ ):
191
+ df = multiindex_dataframe_random_data.T
192
+ expected = df.reindex(columns=df.columns[expected_slice])
193
+ expected.columns = expected.columns.droplevel(0)
194
+ result = indexer(df)
195
+ tm.assert_frame_equal(result, expected)
196
+
197
+
198
+ def test_frame_mixed_depth_get():
199
+ arrays = [
200
+ ["a", "top", "top", "routine1", "routine1", "routine2"],
201
+ ["", "OD", "OD", "result1", "result2", "result1"],
202
+ ["", "wx", "wy", "", "", ""],
203
+ ]
204
+
205
+ tuples = sorted(zip(*arrays))
206
+ index = MultiIndex.from_tuples(tuples)
207
+ df = DataFrame(np.random.default_rng(2).standard_normal((4, 6)), columns=index)
208
+
209
+ result = df["a"]
210
+ expected = df["a", "", ""].rename("a")
211
+ tm.assert_series_equal(result, expected)
212
+
213
+ result = df["routine1", "result1"]
214
+ expected = df["routine1", "result1", ""]
215
+ expected = expected.rename(("routine1", "result1"))
216
+ tm.assert_series_equal(result, expected)
217
+
218
+
219
+ def test_frame_getitem_nan_multiindex(nulls_fixture):
220
+ # GH#29751
221
+ # loc on a multiindex containing nan values
222
+ n = nulls_fixture # for code readability
223
+ cols = ["a", "b", "c"]
224
+ df = DataFrame(
225
+ [[11, n, 13], [21, n, 23], [31, n, 33], [41, n, 43]],
226
+ columns=cols,
227
+ ).set_index(["a", "b"])
228
+ df["c"] = df["c"].astype("int64")
229
+
230
+ idx = (21, n)
231
+ result = df.loc[:idx]
232
+ expected = DataFrame([[11, n, 13], [21, n, 23]], columns=cols).set_index(["a", "b"])
233
+ expected["c"] = expected["c"].astype("int64")
234
+ tm.assert_frame_equal(result, expected)
235
+
236
+ result = df.loc[idx:]
237
+ expected = DataFrame(
238
+ [[21, n, 23], [31, n, 33], [41, n, 43]], columns=cols
239
+ ).set_index(["a", "b"])
240
+ expected["c"] = expected["c"].astype("int64")
241
+ tm.assert_frame_equal(result, expected)
242
+
243
+ idx1, idx2 = (21, n), (31, n)
244
+ result = df.loc[idx1:idx2]
245
+ expected = DataFrame([[21, n, 23], [31, n, 33]], columns=cols).set_index(["a", "b"])
246
+ expected["c"] = expected["c"].astype("int64")
247
+ tm.assert_frame_equal(result, expected)
248
+
249
+
250
+ @pytest.mark.parametrize(
251
+ "indexer,expected",
252
+ [
253
+ (
254
+ (["b"], ["bar", np.nan]),
255
+ (
256
+ DataFrame(
257
+ [[2, 3], [5, 6]],
258
+ columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]),
259
+ dtype="int64",
260
+ )
261
+ ),
262
+ ),
263
+ (
264
+ (["a", "b"]),
265
+ (
266
+ DataFrame(
267
+ [[1, 2, 3], [4, 5, 6]],
268
+ columns=MultiIndex.from_tuples(
269
+ [("a", "foo"), ("b", "bar"), ("b", np.nan)]
270
+ ),
271
+ dtype="int64",
272
+ )
273
+ ),
274
+ ),
275
+ (
276
+ (["b"]),
277
+ (
278
+ DataFrame(
279
+ [[2, 3], [5, 6]],
280
+ columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]),
281
+ dtype="int64",
282
+ )
283
+ ),
284
+ ),
285
+ (
286
+ (["b"], ["bar"]),
287
+ (
288
+ DataFrame(
289
+ [[2], [5]],
290
+ columns=MultiIndex.from_tuples([("b", "bar")]),
291
+ dtype="int64",
292
+ )
293
+ ),
294
+ ),
295
+ (
296
+ (["b"], [np.nan]),
297
+ (
298
+ DataFrame(
299
+ [[3], [6]],
300
+ columns=MultiIndex(
301
+ codes=[[1], [-1]], levels=[["a", "b"], ["bar", "foo"]]
302
+ ),
303
+ dtype="int64",
304
+ )
305
+ ),
306
+ ),
307
+ (("b", np.nan), Series([3, 6], dtype="int64", name=("b", np.nan))),
308
+ ],
309
+ )
310
+ def test_frame_getitem_nan_cols_multiindex(
311
+ indexer,
312
+ expected,
313
+ nulls_fixture,
314
+ ):
315
+ # Slicing MultiIndex including levels with nan values, for more information
316
+ # see GH#25154
317
+ df = DataFrame(
318
+ [[1, 2, 3], [4, 5, 6]],
319
+ columns=MultiIndex.from_tuples(
320
+ [("a", "foo"), ("b", "bar"), ("b", nulls_fixture)]
321
+ ),
322
+ dtype="int64",
323
+ )
324
+
325
+ result = df.loc[:, indexer]
326
+ tm.assert_equal(result, expected)
327
+
328
+
329
+ # ----------------------------------------------------------------------------
330
+ # test indexing of DataFrame with multi-level Index with duplicates
331
+ # ----------------------------------------------------------------------------
332
+
333
+
334
+ @pytest.fixture
335
+ def dataframe_with_duplicate_index():
336
+ """Fixture for DataFrame used in tests for gh-4145 and gh-4146"""
337
+ data = [["a", "d", "e", "c", "f", "b"], [1, 4, 5, 3, 6, 2], [1, 4, 5, 3, 6, 2]]
338
+ index = ["h1", "h3", "h5"]
339
+ columns = MultiIndex(
340
+ levels=[["A", "B"], ["A1", "A2", "B1", "B2"]],
341
+ codes=[[0, 0, 0, 1, 1, 1], [0, 3, 3, 0, 1, 2]],
342
+ names=["main", "sub"],
343
+ )
344
+ return DataFrame(data, index=index, columns=columns)
345
+
346
+
347
+ @pytest.mark.parametrize(
348
+ "indexer", [lambda df: df[("A", "A1")], lambda df: df.loc[:, ("A", "A1")]]
349
+ )
350
+ def test_frame_mi_access(dataframe_with_duplicate_index, indexer):
351
+ # GH 4145
352
+ df = dataframe_with_duplicate_index
353
+ index = Index(["h1", "h3", "h5"])
354
+ columns = MultiIndex.from_tuples([("A", "A1")], names=["main", "sub"])
355
+ expected = DataFrame([["a", 1, 1]], index=columns, columns=index).T
356
+
357
+ result = indexer(df)
358
+ tm.assert_frame_equal(result, expected)
359
+
360
+
361
+ def test_frame_mi_access_returns_series(dataframe_with_duplicate_index):
362
+ # GH 4146, not returning a block manager when selecting a unique index
363
+ # from a duplicate index
364
+ # as of 4879, this returns a Series (which is similar to what happens
365
+ # with a non-unique)
366
+ df = dataframe_with_duplicate_index
367
+ expected = Series(["a", 1, 1], index=["h1", "h3", "h5"], name="A1")
368
+ result = df["A"]["A1"]
369
+ tm.assert_series_equal(result, expected)
370
+
371
+
372
+ def test_frame_mi_access_returns_frame(dataframe_with_duplicate_index):
373
+ # selecting a non_unique from the 2nd level
374
+ df = dataframe_with_duplicate_index
375
+ expected = DataFrame(
376
+ [["d", 4, 4], ["e", 5, 5]],
377
+ index=Index(["B2", "B2"], name="sub"),
378
+ columns=["h1", "h3", "h5"],
379
+ ).T
380
+ result = df["A"]["B2"]
381
+ tm.assert_frame_equal(result, expected)
382
+
383
+
384
+ def test_frame_mi_empty_slice():
385
+ # GH 15454
386
+ df = DataFrame(0, index=range(2), columns=MultiIndex.from_product([[1], [2]]))
387
+ result = df[[]]
388
+ expected = DataFrame(
389
+ index=[0, 1], columns=MultiIndex(levels=[[1], [2]], codes=[[], []])
390
+ )
391
+ tm.assert_frame_equal(result, expected)
392
+
393
+
394
+ def test_loc_empty_multiindex():
395
+ # GH#36936
396
+ arrays = [["a", "a", "b", "a"], ["a", "a", "b", "b"]]
397
+ index = MultiIndex.from_arrays(arrays, names=("idx1", "idx2"))
398
+ df = DataFrame([1, 2, 3, 4], index=index, columns=["value"])
399
+
400
+ # loc on empty multiindex == loc with False mask
401
+ empty_multiindex = df.loc[df.loc[:, "value"] == 0, :].index
402
+ result = df.loc[empty_multiindex, :]
403
+ expected = df.loc[[False] * len(df.index), :]
404
+ tm.assert_frame_equal(result, expected)
405
+
406
+ # replacing value with loc on empty multiindex
407
+ df.loc[df.loc[df.loc[:, "value"] == 0].index, "value"] = 5
408
+ result = df
409
+ expected = DataFrame([1, 2, 3, 4], index=index, columns=["value"])
410
+ tm.assert_frame_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_iloc.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ DataFrame,
6
+ MultiIndex,
7
+ Series,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+
12
+ @pytest.fixture
13
+ def simple_multiindex_dataframe():
14
+ """
15
+ Factory function to create simple 3 x 3 dataframe with
16
+ both columns and row MultiIndex using supplied data or
17
+ random data by default.
18
+ """
19
+
20
+ data = np.random.default_rng(2).standard_normal((3, 3))
21
+ return DataFrame(
22
+ data, columns=[[2, 2, 4], [6, 8, 10]], index=[[4, 4, 8], [8, 10, 12]]
23
+ )
24
+
25
+
26
+ @pytest.mark.parametrize(
27
+ "indexer, expected",
28
+ [
29
+ (
30
+ lambda df: df.iloc[0],
31
+ lambda arr: Series(arr[0], index=[[2, 2, 4], [6, 8, 10]], name=(4, 8)),
32
+ ),
33
+ (
34
+ lambda df: df.iloc[2],
35
+ lambda arr: Series(arr[2], index=[[2, 2, 4], [6, 8, 10]], name=(8, 12)),
36
+ ),
37
+ (
38
+ lambda df: df.iloc[:, 2],
39
+ lambda arr: Series(arr[:, 2], index=[[4, 4, 8], [8, 10, 12]], name=(4, 10)),
40
+ ),
41
+ ],
42
+ )
43
+ def test_iloc_returns_series(indexer, expected, simple_multiindex_dataframe):
44
+ df = simple_multiindex_dataframe
45
+ arr = df.values
46
+ result = indexer(df)
47
+ expected = expected(arr)
48
+ tm.assert_series_equal(result, expected)
49
+
50
+
51
+ def test_iloc_returns_dataframe(simple_multiindex_dataframe):
52
+ df = simple_multiindex_dataframe
53
+ result = df.iloc[[0, 1]]
54
+ expected = df.xs(4, drop_level=False)
55
+ tm.assert_frame_equal(result, expected)
56
+
57
+
58
+ def test_iloc_returns_scalar(simple_multiindex_dataframe):
59
+ df = simple_multiindex_dataframe
60
+ arr = df.values
61
+ result = df.iloc[2, 2]
62
+ expected = arr[2, 2]
63
+ assert result == expected
64
+
65
+
66
+ def test_iloc_getitem_multiple_items():
67
+ # GH 5528
68
+ tup = zip(*[["a", "a", "b", "b"], ["x", "y", "x", "y"]])
69
+ index = MultiIndex.from_tuples(tup)
70
+ df = DataFrame(np.random.default_rng(2).standard_normal((4, 4)), index=index)
71
+ result = df.iloc[[2, 3]]
72
+ expected = df.xs("b", drop_level=False)
73
+ tm.assert_frame_equal(result, expected)
74
+
75
+
76
+ def test_iloc_getitem_labels():
77
+ # this is basically regular indexing
78
+ arr = np.random.default_rng(2).standard_normal((4, 3))
79
+ df = DataFrame(
80
+ arr,
81
+ columns=[["i", "i", "j"], ["A", "A", "B"]],
82
+ index=[["i", "i", "j", "k"], ["X", "X", "Y", "Y"]],
83
+ )
84
+ result = df.iloc[2, 2]
85
+ expected = arr[2, 2]
86
+ assert result == expected
87
+
88
+
89
+ def test_frame_getitem_slice(multiindex_dataframe_random_data):
90
+ df = multiindex_dataframe_random_data
91
+ result = df.iloc[:4]
92
+ expected = df[:4]
93
+ tm.assert_frame_equal(result, expected)
94
+
95
+
96
+ def test_frame_setitem_slice(multiindex_dataframe_random_data):
97
+ df = multiindex_dataframe_random_data
98
+ df.iloc[:4] = 0
99
+
100
+ assert (df.values[:4] == 0).all()
101
+ assert (df.values[4:] != 0).all()
102
+
103
+
104
+ def test_indexing_ambiguity_bug_1678():
105
+ # GH 1678
106
+ columns = MultiIndex.from_tuples(
107
+ [("Ohio", "Green"), ("Ohio", "Red"), ("Colorado", "Green")]
108
+ )
109
+ index = MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1), ("b", 2)])
110
+
111
+ df = DataFrame(np.arange(12).reshape((4, 3)), index=index, columns=columns)
112
+
113
+ result = df.iloc[:, 1]
114
+ expected = df.loc[:, ("Ohio", "Red")]
115
+ tm.assert_series_equal(result, expected)
116
+
117
+
118
+ def test_iloc_integer_locations():
119
+ # GH 13797
120
+ data = [
121
+ ["str00", "str01"],
122
+ ["str10", "str11"],
123
+ ["str20", "srt21"],
124
+ ["str30", "str31"],
125
+ ["str40", "str41"],
126
+ ]
127
+
128
+ index = MultiIndex.from_tuples(
129
+ [("CC", "A"), ("CC", "B"), ("CC", "B"), ("BB", "a"), ("BB", "b")]
130
+ )
131
+
132
+ expected = DataFrame(data)
133
+ df = DataFrame(data, index=index)
134
+
135
+ result = DataFrame([[df.iloc[r, c] for c in range(2)] for r in range(5)])
136
+
137
+ tm.assert_frame_equal(result, expected)
138
+
139
+
140
+ @pytest.mark.parametrize(
141
+ "data, indexes, values, expected_k",
142
+ [
143
+ # test without indexer value in first level of MultiIndex
144
+ ([[2, 22, 5], [2, 33, 6]], [0, -1, 1], [2, 3, 1], [7, 10]),
145
+ # test like code sample 1 in the issue
146
+ ([[1, 22, 555], [1, 33, 666]], [0, -1, 1], [200, 300, 100], [755, 1066]),
147
+ # test like code sample 2 in the issue
148
+ ([[1, 3, 7], [2, 4, 8]], [0, -1, 1], [10, 10, 1000], [17, 1018]),
149
+ # test like code sample 3 in the issue
150
+ ([[1, 11, 4], [2, 22, 5], [3, 33, 6]], [0, -1, 1], [4, 7, 10], [8, 15, 13]),
151
+ ],
152
+ )
153
+ def test_iloc_setitem_int_multiindex_series(data, indexes, values, expected_k):
154
+ # GH17148
155
+ df = DataFrame(data=data, columns=["i", "j", "k"])
156
+ df = df.set_index(["i", "j"])
157
+
158
+ series = df.k.copy()
159
+ for i, v in zip(indexes, values):
160
+ series.iloc[i] += v
161
+
162
+ df["k"] = expected_k
163
+ expected = df.k
164
+ tm.assert_series_equal(series, expected)
165
+
166
+
167
+ def test_getitem_iloc(multiindex_dataframe_random_data):
168
+ df = multiindex_dataframe_random_data
169
+ result = df.iloc[2]
170
+ expected = df.xs(df.index[2])
171
+ tm.assert_series_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_indexing_slow.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ DataFrame,
7
+ Series,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+
12
+ @pytest.fixture
13
+ def m():
14
+ return 5
15
+
16
+
17
+ @pytest.fixture
18
+ def n():
19
+ return 100
20
+
21
+
22
+ @pytest.fixture
23
+ def cols():
24
+ return ["jim", "joe", "jolie", "joline", "jolia"]
25
+
26
+
27
+ @pytest.fixture
28
+ def vals(n):
29
+ vals = [
30
+ np.random.default_rng(2).integers(0, 10, n),
31
+ np.random.default_rng(2).choice(list("abcdefghij"), n),
32
+ np.random.default_rng(2).choice(
33
+ pd.date_range("20141009", periods=10).tolist(), n
34
+ ),
35
+ np.random.default_rng(2).choice(list("ZYXWVUTSRQ"), n),
36
+ np.random.default_rng(2).standard_normal(n),
37
+ ]
38
+ vals = list(map(tuple, zip(*vals)))
39
+ return vals
40
+
41
+
42
+ @pytest.fixture
43
+ def keys(n, m, vals):
44
+ # bunch of keys for testing
45
+ keys = [
46
+ np.random.default_rng(2).integers(0, 11, m),
47
+ np.random.default_rng(2).choice(list("abcdefghijk"), m),
48
+ np.random.default_rng(2).choice(
49
+ pd.date_range("20141009", periods=11).tolist(), m
50
+ ),
51
+ np.random.default_rng(2).choice(list("ZYXWVUTSRQP"), m),
52
+ ]
53
+ keys = list(map(tuple, zip(*keys)))
54
+ keys += [t[:-1] for t in vals[:: n // m]]
55
+ return keys
56
+
57
+
58
+ # covers both unique index and non-unique index
59
+ @pytest.fixture
60
+ def df(vals, cols):
61
+ return DataFrame(vals, columns=cols)
62
+
63
+
64
+ @pytest.fixture
65
+ def a(df):
66
+ return pd.concat([df, df])
67
+
68
+
69
+ @pytest.fixture
70
+ def b(df, cols):
71
+ return df.drop_duplicates(subset=cols[:-1])
72
+
73
+
74
+ @pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning")
75
+ @pytest.mark.parametrize("lexsort_depth", list(range(5)))
76
+ @pytest.mark.parametrize("frame_fixture", ["a", "b"])
77
+ def test_multiindex_get_loc(request, lexsort_depth, keys, frame_fixture, cols):
78
+ # GH7724, GH2646
79
+
80
+ frame = request.getfixturevalue(frame_fixture)
81
+ if lexsort_depth == 0:
82
+ df = frame.copy(deep=False)
83
+ else:
84
+ df = frame.sort_values(by=cols[:lexsort_depth])
85
+
86
+ mi = df.set_index(cols[:-1])
87
+ assert not mi.index._lexsort_depth < lexsort_depth
88
+ for key in keys:
89
+ mask = np.ones(len(df), dtype=bool)
90
+
91
+ # test for all partials of this key
92
+ for i, k in enumerate(key):
93
+ mask &= df.iloc[:, i] == k
94
+
95
+ if not mask.any():
96
+ assert key[: i + 1] not in mi.index
97
+ continue
98
+
99
+ assert key[: i + 1] in mi.index
100
+ right = df[mask].copy(deep=False)
101
+
102
+ if i + 1 != len(key): # partial key
103
+ return_value = right.drop(cols[: i + 1], axis=1, inplace=True)
104
+ assert return_value is None
105
+ return_value = right.set_index(cols[i + 1 : -1], inplace=True)
106
+ assert return_value is None
107
+ tm.assert_frame_equal(mi.loc[key[: i + 1]], right)
108
+
109
+ else: # full key
110
+ return_value = right.set_index(cols[:-1], inplace=True)
111
+ assert return_value is None
112
+ if len(right) == 1: # single hit
113
+ right = Series(
114
+ right["jolia"].values, name=right.index[0], index=["jolia"]
115
+ )
116
+ tm.assert_series_equal(mi.loc[key[: i + 1]], right)
117
+ else: # multi hit
118
+ tm.assert_frame_equal(mi.loc[key[: i + 1]], right)
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_loc.py ADDED
@@ -0,0 +1,992 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.errors import (
5
+ IndexingError,
6
+ PerformanceWarning,
7
+ )
8
+
9
+ import pandas as pd
10
+ from pandas import (
11
+ DataFrame,
12
+ Index,
13
+ MultiIndex,
14
+ Series,
15
+ )
16
+ import pandas._testing as tm
17
+
18
+
19
+ @pytest.fixture
20
+ def single_level_multiindex():
21
+ """single level MultiIndex"""
22
+ return MultiIndex(
23
+ levels=[["foo", "bar", "baz", "qux"]], codes=[[0, 1, 2, 3]], names=["first"]
24
+ )
25
+
26
+
27
+ @pytest.fixture
28
+ def frame_random_data_integer_multi_index():
29
+ levels = [[0, 1], [0, 1, 2]]
30
+ codes = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]
31
+ index = MultiIndex(levels=levels, codes=codes)
32
+ return DataFrame(np.random.default_rng(2).standard_normal((6, 2)), index=index)
33
+
34
+
35
+ class TestMultiIndexLoc:
36
+ def test_loc_setitem_frame_with_multiindex(self, multiindex_dataframe_random_data):
37
+ frame = multiindex_dataframe_random_data
38
+ frame.loc[("bar", "two"), "B"] = 5
39
+ assert frame.loc[("bar", "two"), "B"] == 5
40
+
41
+ # with integer labels
42
+ df = frame.copy()
43
+ df.columns = list(range(3))
44
+ df.loc[("bar", "two"), 1] = 7
45
+ assert df.loc[("bar", "two"), 1] == 7
46
+
47
+ def test_loc_getitem_general(self, any_real_numpy_dtype):
48
+ # GH#2817
49
+ dtype = any_real_numpy_dtype
50
+ data = {
51
+ "amount": {0: 700, 1: 600, 2: 222, 3: 333, 4: 444},
52
+ "col": {0: 3.5, 1: 3.5, 2: 4.0, 3: 4.0, 4: 4.0},
53
+ "num": {0: 12, 1: 11, 2: 12, 3: 12, 4: 12},
54
+ }
55
+ df = DataFrame(data)
56
+ df = df.astype({"col": dtype, "num": dtype})
57
+ df = df.set_index(keys=["col", "num"])
58
+ key = 4.0, 12
59
+
60
+ # emits a PerformanceWarning, ok
61
+ with tm.assert_produces_warning(PerformanceWarning):
62
+ tm.assert_frame_equal(df.loc[key], df.iloc[2:])
63
+
64
+ # this is ok
65
+ return_value = df.sort_index(inplace=True)
66
+ assert return_value is None
67
+ res = df.loc[key]
68
+
69
+ # col has float dtype, result should be float64 Index
70
+ col_arr = np.array([4.0] * 3, dtype=dtype)
71
+ year_arr = np.array([12] * 3, dtype=dtype)
72
+ index = MultiIndex.from_arrays([col_arr, year_arr], names=["col", "num"])
73
+ expected = DataFrame({"amount": [222, 333, 444]}, index=index)
74
+ tm.assert_frame_equal(res, expected)
75
+
76
+ def test_loc_getitem_multiindex_missing_label_raises(self):
77
+ # GH#21593
78
+ df = DataFrame(
79
+ np.random.default_rng(2).standard_normal((3, 3)),
80
+ columns=[[2, 2, 4], [6, 8, 10]],
81
+ index=[[4, 4, 8], [8, 10, 12]],
82
+ )
83
+
84
+ with pytest.raises(KeyError, match=r"^2$"):
85
+ df.loc[2]
86
+
87
+ def test_loc_getitem_list_of_tuples_with_multiindex(
88
+ self, multiindex_year_month_day_dataframe_random_data
89
+ ):
90
+ ser = multiindex_year_month_day_dataframe_random_data["A"]
91
+ expected = ser.reindex(ser.index[49:51])
92
+ result = ser.loc[[(2000, 3, 10), (2000, 3, 13)]]
93
+ tm.assert_series_equal(result, expected)
94
+
95
+ def test_loc_getitem_series(self):
96
+ # GH14730
97
+ # passing a series as a key with a MultiIndex
98
+ index = MultiIndex.from_product([[1, 2, 3], ["A", "B", "C"]])
99
+ x = Series(index=index, data=range(9), dtype=np.float64)
100
+ y = Series([1, 3])
101
+ expected = Series(
102
+ data=[0, 1, 2, 6, 7, 8],
103
+ index=MultiIndex.from_product([[1, 3], ["A", "B", "C"]]),
104
+ dtype=np.float64,
105
+ )
106
+ result = x.loc[y]
107
+ tm.assert_series_equal(result, expected)
108
+
109
+ result = x.loc[[1, 3]]
110
+ tm.assert_series_equal(result, expected)
111
+
112
+ # GH15424
113
+ y1 = Series([1, 3], index=[1, 2])
114
+ result = x.loc[y1]
115
+ tm.assert_series_equal(result, expected)
116
+
117
+ empty = Series(data=[], dtype=np.float64)
118
+ expected = Series(
119
+ [],
120
+ index=MultiIndex(levels=index.levels, codes=[[], []], dtype=np.float64),
121
+ dtype=np.float64,
122
+ )
123
+ result = x.loc[empty]
124
+ tm.assert_series_equal(result, expected)
125
+
126
+ def test_loc_getitem_array(self):
127
+ # GH15434
128
+ # passing an array as a key with a MultiIndex
129
+ index = MultiIndex.from_product([[1, 2, 3], ["A", "B", "C"]])
130
+ x = Series(index=index, data=range(9), dtype=np.float64)
131
+ y = np.array([1, 3])
132
+ expected = Series(
133
+ data=[0, 1, 2, 6, 7, 8],
134
+ index=MultiIndex.from_product([[1, 3], ["A", "B", "C"]]),
135
+ dtype=np.float64,
136
+ )
137
+ result = x.loc[y]
138
+ tm.assert_series_equal(result, expected)
139
+
140
+ # empty array:
141
+ empty = np.array([])
142
+ expected = Series(
143
+ [],
144
+ index=MultiIndex(levels=index.levels, codes=[[], []], dtype=np.float64),
145
+ dtype="float64",
146
+ )
147
+ result = x.loc[empty]
148
+ tm.assert_series_equal(result, expected)
149
+
150
+ # 0-dim array (scalar):
151
+ scalar = np.int64(1)
152
+ expected = Series(data=[0, 1, 2], index=["A", "B", "C"], dtype=np.float64)
153
+ result = x.loc[scalar]
154
+ tm.assert_series_equal(result, expected)
155
+
156
+ def test_loc_multiindex_labels(self):
157
+ df = DataFrame(
158
+ np.random.default_rng(2).standard_normal((3, 3)),
159
+ columns=[["i", "i", "j"], ["A", "A", "B"]],
160
+ index=[["i", "i", "j"], ["X", "X", "Y"]],
161
+ )
162
+
163
+ # the first 2 rows
164
+ expected = df.iloc[[0, 1]].droplevel(0)
165
+ result = df.loc["i"]
166
+ tm.assert_frame_equal(result, expected)
167
+
168
+ # 2nd (last) column
169
+ expected = df.iloc[:, [2]].droplevel(0, axis=1)
170
+ result = df.loc[:, "j"]
171
+ tm.assert_frame_equal(result, expected)
172
+
173
+ # bottom right corner
174
+ expected = df.iloc[[2], [2]].droplevel(0).droplevel(0, axis=1)
175
+ result = df.loc["j"].loc[:, "j"]
176
+ tm.assert_frame_equal(result, expected)
177
+
178
+ # with a tuple
179
+ expected = df.iloc[[0, 1]]
180
+ result = df.loc[("i", "X")]
181
+ tm.assert_frame_equal(result, expected)
182
+
183
+ def test_loc_multiindex_ints(self):
184
+ df = DataFrame(
185
+ np.random.default_rng(2).standard_normal((3, 3)),
186
+ columns=[[2, 2, 4], [6, 8, 10]],
187
+ index=[[4, 4, 8], [8, 10, 12]],
188
+ )
189
+ expected = df.iloc[[0, 1]].droplevel(0)
190
+ result = df.loc[4]
191
+ tm.assert_frame_equal(result, expected)
192
+
193
+ def test_loc_multiindex_missing_label_raises(self):
194
+ df = DataFrame(
195
+ np.random.default_rng(2).standard_normal((3, 3)),
196
+ columns=[[2, 2, 4], [6, 8, 10]],
197
+ index=[[4, 4, 8], [8, 10, 12]],
198
+ )
199
+
200
+ with pytest.raises(KeyError, match=r"^2$"):
201
+ df.loc[2]
202
+
203
+ @pytest.mark.parametrize("key, pos", [([2, 4], [0, 1]), ([2], []), ([2, 3], [])])
204
+ def test_loc_multiindex_list_missing_label(self, key, pos):
205
+ # GH 27148 - lists with missing labels _do_ raise
206
+ df = DataFrame(
207
+ np.random.default_rng(2).standard_normal((3, 3)),
208
+ columns=[[2, 2, 4], [6, 8, 10]],
209
+ index=[[4, 4, 8], [8, 10, 12]],
210
+ )
211
+
212
+ with pytest.raises(KeyError, match="not in index"):
213
+ df.loc[key]
214
+
215
+ def test_loc_multiindex_too_many_dims_raises(self):
216
+ # GH 14885
217
+ s = Series(
218
+ range(8),
219
+ index=MultiIndex.from_product([["a", "b"], ["c", "d"], ["e", "f"]]),
220
+ )
221
+
222
+ with pytest.raises(KeyError, match=r"^\('a', 'b'\)$"):
223
+ s.loc["a", "b"]
224
+ with pytest.raises(KeyError, match=r"^\('a', 'd', 'g'\)$"):
225
+ s.loc["a", "d", "g"]
226
+ with pytest.raises(IndexingError, match="Too many indexers"):
227
+ s.loc["a", "d", "g", "j"]
228
+
229
+ def test_loc_multiindex_indexer_none(self):
230
+ # GH6788
231
+ # multi-index indexer is None (meaning take all)
232
+ attributes = ["Attribute" + str(i) for i in range(1)]
233
+ attribute_values = ["Value" + str(i) for i in range(5)]
234
+
235
+ index = MultiIndex.from_product([attributes, attribute_values])
236
+ df = 0.1 * np.random.default_rng(2).standard_normal((10, 1 * 5)) + 0.5
237
+ df = DataFrame(df, columns=index)
238
+ result = df[attributes]
239
+ tm.assert_frame_equal(result, df)
240
+
241
+ # GH 7349
242
+ # loc with a multi-index seems to be doing fallback
243
+ df = DataFrame(
244
+ np.arange(12).reshape(-1, 1),
245
+ index=MultiIndex.from_product([[1, 2, 3, 4], [1, 2, 3]]),
246
+ )
247
+
248
+ expected = df.loc[([1, 2],), :]
249
+ result = df.loc[[1, 2]]
250
+ tm.assert_frame_equal(result, expected)
251
+
252
+ def test_loc_multiindex_incomplete(self):
253
+ # GH 7399
254
+ # incomplete indexers
255
+ s = Series(
256
+ np.arange(15, dtype="int64"),
257
+ MultiIndex.from_product([range(5), ["a", "b", "c"]]),
258
+ )
259
+ expected = s.loc[:, "a":"c"]
260
+
261
+ result = s.loc[0:4, "a":"c"]
262
+ tm.assert_series_equal(result, expected)
263
+
264
+ result = s.loc[:4, "a":"c"]
265
+ tm.assert_series_equal(result, expected)
266
+
267
+ result = s.loc[0:, "a":"c"]
268
+ tm.assert_series_equal(result, expected)
269
+
270
+ # GH 7400
271
+ # multiindexer getitem with list of indexers skips wrong element
272
+ s = Series(
273
+ np.arange(15, dtype="int64"),
274
+ MultiIndex.from_product([range(5), ["a", "b", "c"]]),
275
+ )
276
+ expected = s.iloc[[6, 7, 8, 12, 13, 14]]
277
+ result = s.loc[2:4:2, "a":"c"]
278
+ tm.assert_series_equal(result, expected)
279
+
280
+ def test_get_loc_single_level(self, single_level_multiindex):
281
+ single_level = single_level_multiindex
282
+ s = Series(
283
+ np.random.default_rng(2).standard_normal(len(single_level)),
284
+ index=single_level,
285
+ )
286
+ for k in single_level.values:
287
+ s[k]
288
+
289
+ def test_loc_getitem_int_slice(self):
290
+ # GH 3053
291
+ # loc should treat integer slices like label slices
292
+
293
+ index = MultiIndex.from_product([[6, 7, 8], ["a", "b"]])
294
+ df = DataFrame(np.random.default_rng(2).standard_normal((6, 6)), index, index)
295
+ result = df.loc[6:8, :]
296
+ expected = df
297
+ tm.assert_frame_equal(result, expected)
298
+
299
+ index = MultiIndex.from_product([[10, 20, 30], ["a", "b"]])
300
+ df = DataFrame(np.random.default_rng(2).standard_normal((6, 6)), index, index)
301
+ result = df.loc[20:30, :]
302
+ expected = df.iloc[2:]
303
+ tm.assert_frame_equal(result, expected)
304
+
305
+ # doc examples
306
+ result = df.loc[10, :]
307
+ expected = df.iloc[0:2]
308
+ expected.index = ["a", "b"]
309
+ tm.assert_frame_equal(result, expected)
310
+
311
+ result = df.loc[:, 10]
312
+ expected = df[10]
313
+ tm.assert_frame_equal(result, expected)
314
+
315
+ @pytest.mark.parametrize(
316
+ "indexer_type_1", (list, tuple, set, slice, np.ndarray, Series, Index)
317
+ )
318
+ @pytest.mark.parametrize(
319
+ "indexer_type_2", (list, tuple, set, slice, np.ndarray, Series, Index)
320
+ )
321
+ def test_loc_getitem_nested_indexer(self, indexer_type_1, indexer_type_2):
322
+ # GH #19686
323
+ # .loc should work with nested indexers which can be
324
+ # any list-like objects (see `is_list_like` (`pandas.api.types`)) or slices
325
+
326
+ def convert_nested_indexer(indexer_type, keys):
327
+ if indexer_type == np.ndarray:
328
+ return np.array(keys)
329
+ if indexer_type == slice:
330
+ return slice(*keys)
331
+ return indexer_type(keys)
332
+
333
+ a = [10, 20, 30]
334
+ b = [1, 2, 3]
335
+ index = MultiIndex.from_product([a, b])
336
+ df = DataFrame(
337
+ np.arange(len(index), dtype="int64"), index=index, columns=["Data"]
338
+ )
339
+
340
+ keys = ([10, 20], [2, 3])
341
+ types = (indexer_type_1, indexer_type_2)
342
+
343
+ # check indexers with all the combinations of nested objects
344
+ # of all the valid types
345
+ indexer = tuple(
346
+ convert_nested_indexer(indexer_type, k)
347
+ for indexer_type, k in zip(types, keys)
348
+ )
349
+ if indexer_type_1 is set or indexer_type_2 is set:
350
+ with pytest.raises(TypeError, match="as an indexer is not supported"):
351
+ df.loc[indexer, "Data"]
352
+
353
+ return
354
+ else:
355
+ result = df.loc[indexer, "Data"]
356
+ expected = Series(
357
+ [1, 2, 4, 5], name="Data", index=MultiIndex.from_product(keys)
358
+ )
359
+
360
+ tm.assert_series_equal(result, expected)
361
+
362
+ def test_multiindex_loc_one_dimensional_tuple(self, frame_or_series):
363
+ # GH#37711
364
+ mi = MultiIndex.from_tuples([("a", "A"), ("b", "A")])
365
+ obj = frame_or_series([1, 2], index=mi)
366
+ obj.loc[("a",)] = 0
367
+ expected = frame_or_series([0, 2], index=mi)
368
+ tm.assert_equal(obj, expected)
369
+
370
+ @pytest.mark.parametrize("indexer", [("a",), ("a")])
371
+ def test_multiindex_one_dimensional_tuple_columns(self, indexer):
372
+ # GH#37711
373
+ mi = MultiIndex.from_tuples([("a", "A"), ("b", "A")])
374
+ obj = DataFrame([1, 2], index=mi)
375
+ obj.loc[indexer, :] = 0
376
+ expected = DataFrame([0, 2], index=mi)
377
+ tm.assert_frame_equal(obj, expected)
378
+
379
+ @pytest.mark.parametrize(
380
+ "indexer, exp_value", [(slice(None), 1.0), ((1, 2), np.nan)]
381
+ )
382
+ def test_multiindex_setitem_columns_enlarging(self, indexer, exp_value):
383
+ # GH#39147
384
+ mi = MultiIndex.from_tuples([(1, 2), (3, 4)])
385
+ df = DataFrame([[1, 2], [3, 4]], index=mi, columns=["a", "b"])
386
+ df.loc[indexer, ["c", "d"]] = 1.0
387
+ expected = DataFrame(
388
+ [[1, 2, 1.0, 1.0], [3, 4, exp_value, exp_value]],
389
+ index=mi,
390
+ columns=["a", "b", "c", "d"],
391
+ )
392
+ tm.assert_frame_equal(df, expected)
393
+
394
+ def test_sorted_multiindex_after_union(self):
395
+ # GH#44752
396
+ midx = MultiIndex.from_product(
397
+ [pd.date_range("20110101", periods=2), Index(["a", "b"])]
398
+ )
399
+ ser1 = Series(1, index=midx)
400
+ ser2 = Series(1, index=midx[:2])
401
+ df = pd.concat([ser1, ser2], axis=1)
402
+ expected = df.copy()
403
+ result = df.loc["2011-01-01":"2011-01-02"]
404
+ tm.assert_frame_equal(result, expected)
405
+
406
+ df = DataFrame({0: ser1, 1: ser2})
407
+ result = df.loc["2011-01-01":"2011-01-02"]
408
+ tm.assert_frame_equal(result, expected)
409
+
410
+ df = pd.concat([ser1, ser2.reindex(ser1.index)], axis=1)
411
+ result = df.loc["2011-01-01":"2011-01-02"]
412
+ tm.assert_frame_equal(result, expected)
413
+
414
+ def test_loc_no_second_level_index(self):
415
+ # GH#43599
416
+ df = DataFrame(
417
+ index=MultiIndex.from_product([list("ab"), list("cd"), list("e")]),
418
+ columns=["Val"],
419
+ )
420
+ res = df.loc[np.s_[:, "c", :]]
421
+ expected = DataFrame(
422
+ index=MultiIndex.from_product([list("ab"), list("e")]), columns=["Val"]
423
+ )
424
+ tm.assert_frame_equal(res, expected)
425
+
426
+ def test_loc_multi_index_key_error(self):
427
+ # GH 51892
428
+ df = DataFrame(
429
+ {
430
+ (1, 2): ["a", "b", "c"],
431
+ (1, 3): ["d", "e", "f"],
432
+ (2, 2): ["g", "h", "i"],
433
+ (2, 4): ["j", "k", "l"],
434
+ }
435
+ )
436
+ with pytest.raises(KeyError, match=r"(1, 4)"):
437
+ df.loc[0, (1, 4)]
438
+
439
+
440
+ @pytest.mark.parametrize(
441
+ "indexer, pos",
442
+ [
443
+ ([], []), # empty ok
444
+ (["A"], slice(3)),
445
+ (["A", "D"], []), # "D" isn't present -> raise
446
+ (["D", "E"], []), # no values found -> raise
447
+ (["D"], []), # same, with single item list: GH 27148
448
+ (pd.IndexSlice[:, ["foo"]], slice(2, None, 3)),
449
+ (pd.IndexSlice[:, ["foo", "bah"]], slice(2, None, 3)),
450
+ ],
451
+ )
452
+ def test_loc_getitem_duplicates_multiindex_missing_indexers(indexer, pos):
453
+ # GH 7866
454
+ # multi-index slicing with missing indexers
455
+ idx = MultiIndex.from_product(
456
+ [["A", "B", "C"], ["foo", "bar", "baz"]], names=["one", "two"]
457
+ )
458
+ ser = Series(np.arange(9, dtype="int64"), index=idx).sort_index()
459
+ expected = ser.iloc[pos]
460
+
461
+ if expected.size == 0 and indexer != []:
462
+ with pytest.raises(KeyError, match=str(indexer)):
463
+ ser.loc[indexer]
464
+ elif indexer == (slice(None), ["foo", "bah"]):
465
+ # "bah" is not in idx.levels[1], raising KeyError enforced in 2.0
466
+ with pytest.raises(KeyError, match="'bah'"):
467
+ ser.loc[indexer]
468
+ else:
469
+ result = ser.loc[indexer]
470
+ tm.assert_series_equal(result, expected)
471
+
472
+
473
+ @pytest.mark.parametrize("columns_indexer", [([], slice(None)), (["foo"], [])])
474
+ def test_loc_getitem_duplicates_multiindex_empty_indexer(columns_indexer):
475
+ # GH 8737
476
+ # empty indexer
477
+ multi_index = MultiIndex.from_product((["foo", "bar", "baz"], ["alpha", "beta"]))
478
+ df = DataFrame(
479
+ np.random.default_rng(2).standard_normal((5, 6)),
480
+ index=range(5),
481
+ columns=multi_index,
482
+ )
483
+ df = df.sort_index(level=0, axis=1)
484
+
485
+ expected = DataFrame(index=range(5), columns=multi_index.reindex([])[0])
486
+ result = df.loc[:, columns_indexer]
487
+ tm.assert_frame_equal(result, expected)
488
+
489
+
490
+ def test_loc_getitem_duplicates_multiindex_non_scalar_type_object():
491
+ # regression from < 0.14.0
492
+ # GH 7914
493
+ df = DataFrame(
494
+ [[np.mean, np.median], ["mean", "median"]],
495
+ columns=MultiIndex.from_tuples([("functs", "mean"), ("functs", "median")]),
496
+ index=["function", "name"],
497
+ )
498
+ result = df.loc["function", ("functs", "mean")]
499
+ expected = np.mean
500
+ assert result == expected
501
+
502
+
503
+ def test_loc_getitem_tuple_plus_slice():
504
+ # GH 671
505
+ df = DataFrame(
506
+ {
507
+ "a": np.arange(10),
508
+ "b": np.arange(10),
509
+ "c": np.random.default_rng(2).standard_normal(10),
510
+ "d": np.random.default_rng(2).standard_normal(10),
511
+ }
512
+ ).set_index(["a", "b"])
513
+ expected = df.loc[0, 0]
514
+ result = df.loc[(0, 0), :]
515
+ tm.assert_series_equal(result, expected)
516
+
517
+
518
+ def test_loc_getitem_int(frame_random_data_integer_multi_index):
519
+ df = frame_random_data_integer_multi_index
520
+ result = df.loc[1]
521
+ expected = df[-3:]
522
+ expected.index = expected.index.droplevel(0)
523
+ tm.assert_frame_equal(result, expected)
524
+
525
+
526
+ def test_loc_getitem_int_raises_exception(frame_random_data_integer_multi_index):
527
+ df = frame_random_data_integer_multi_index
528
+ with pytest.raises(KeyError, match=r"^3$"):
529
+ df.loc[3]
530
+
531
+
532
+ def test_loc_getitem_lowerdim_corner(multiindex_dataframe_random_data):
533
+ df = multiindex_dataframe_random_data
534
+
535
+ # test setup - check key not in dataframe
536
+ with pytest.raises(KeyError, match=r"^\('bar', 'three'\)$"):
537
+ df.loc[("bar", "three"), "B"]
538
+
539
+ # in theory should be inserting in a sorted space????
540
+ df.loc[("bar", "three"), "B"] = 0
541
+ expected = 0
542
+ result = df.sort_index().loc[("bar", "three"), "B"]
543
+ assert result == expected
544
+
545
+
546
+ def test_loc_setitem_single_column_slice():
547
+ # case from https://github.com/pandas-dev/pandas/issues/27841
548
+ df = DataFrame(
549
+ "string",
550
+ index=list("abcd"),
551
+ columns=MultiIndex.from_product([["Main"], ("another", "one")]),
552
+ )
553
+ df["labels"] = "a"
554
+ df.loc[:, "labels"] = df.index
555
+ tm.assert_numpy_array_equal(np.asarray(df["labels"]), np.asarray(df.index))
556
+
557
+ # test with non-object block
558
+ df = DataFrame(
559
+ np.nan,
560
+ index=range(4),
561
+ columns=MultiIndex.from_tuples([("A", "1"), ("A", "2"), ("B", "1")]),
562
+ )
563
+ expected = df.copy()
564
+ df.loc[:, "B"] = np.arange(4)
565
+ expected.iloc[:, 2] = np.arange(4)
566
+ tm.assert_frame_equal(df, expected)
567
+
568
+
569
+ def test_loc_nan_multiindex(using_infer_string):
570
+ # GH 5286
571
+ tups = [
572
+ ("Good Things", "C", np.nan),
573
+ ("Good Things", "R", np.nan),
574
+ ("Bad Things", "C", np.nan),
575
+ ("Bad Things", "T", np.nan),
576
+ ("Okay Things", "N", "B"),
577
+ ("Okay Things", "N", "D"),
578
+ ("Okay Things", "B", np.nan),
579
+ ("Okay Things", "D", np.nan),
580
+ ]
581
+ df = DataFrame(
582
+ np.ones((8, 4)),
583
+ columns=Index(["d1", "d2", "d3", "d4"]),
584
+ index=MultiIndex.from_tuples(tups, names=["u1", "u2", "u3"]),
585
+ )
586
+ result = df.loc["Good Things"].loc["C"]
587
+ expected = DataFrame(
588
+ np.ones((1, 4)),
589
+ index=Index(
590
+ [np.nan],
591
+ dtype="object" if not using_infer_string else "string[pyarrow_numpy]",
592
+ name="u3",
593
+ ),
594
+ columns=Index(["d1", "d2", "d3", "d4"]),
595
+ )
596
+ tm.assert_frame_equal(result, expected)
597
+
598
+
599
+ def test_loc_period_string_indexing():
600
+ # GH 9892
601
+ a = pd.period_range("2013Q1", "2013Q4", freq="Q")
602
+ i = (1111, 2222, 3333)
603
+ idx = MultiIndex.from_product((a, i), names=("Period", "CVR"))
604
+ df = DataFrame(
605
+ index=idx,
606
+ columns=(
607
+ "OMS",
608
+ "OMK",
609
+ "RES",
610
+ "DRIFT_IND",
611
+ "OEVRIG_IND",
612
+ "FIN_IND",
613
+ "VARE_UD",
614
+ "LOEN_UD",
615
+ "FIN_UD",
616
+ ),
617
+ )
618
+ result = df.loc[("2013Q1", 1111), "OMS"]
619
+
620
+ alt = df.loc[(a[0], 1111), "OMS"]
621
+ assert np.isnan(alt)
622
+
623
+ # Because the resolution of the string matches, it is an exact lookup,
624
+ # not a slice
625
+ assert np.isnan(result)
626
+
627
+ alt = df.loc[("2013Q1", 1111), "OMS"]
628
+ assert np.isnan(alt)
629
+
630
+
631
+ def test_loc_datetime_mask_slicing():
632
+ # GH 16699
633
+ dt_idx = pd.to_datetime(["2017-05-04", "2017-05-05"])
634
+ m_idx = MultiIndex.from_product([dt_idx, dt_idx], names=["Idx1", "Idx2"])
635
+ df = DataFrame(
636
+ data=[[1, 2], [3, 4], [5, 6], [7, 6]], index=m_idx, columns=["C1", "C2"]
637
+ )
638
+ result = df.loc[(dt_idx[0], (df.index.get_level_values(1) > "2017-05-04")), "C1"]
639
+ expected = Series(
640
+ [3],
641
+ name="C1",
642
+ index=MultiIndex.from_tuples(
643
+ [(pd.Timestamp("2017-05-04"), pd.Timestamp("2017-05-05"))],
644
+ names=["Idx1", "Idx2"],
645
+ ),
646
+ )
647
+ tm.assert_series_equal(result, expected)
648
+
649
+
650
+ def test_loc_datetime_series_tuple_slicing():
651
+ # https://github.com/pandas-dev/pandas/issues/35858
652
+ date = pd.Timestamp("2000")
653
+ ser = Series(
654
+ 1,
655
+ index=MultiIndex.from_tuples([("a", date)], names=["a", "b"]),
656
+ name="c",
657
+ )
658
+ result = ser.loc[:, [date]]
659
+ tm.assert_series_equal(result, ser)
660
+
661
+
662
+ def test_loc_with_mi_indexer():
663
+ # https://github.com/pandas-dev/pandas/issues/35351
664
+ df = DataFrame(
665
+ data=[["a", 1], ["a", 0], ["b", 1], ["c", 2]],
666
+ index=MultiIndex.from_tuples(
667
+ [(0, 1), (1, 0), (1, 1), (1, 1)], names=["index", "date"]
668
+ ),
669
+ columns=["author", "price"],
670
+ )
671
+ idx = MultiIndex.from_tuples([(0, 1), (1, 1)], names=["index", "date"])
672
+ result = df.loc[idx, :]
673
+ expected = DataFrame(
674
+ [["a", 1], ["b", 1], ["c", 2]],
675
+ index=MultiIndex.from_tuples([(0, 1), (1, 1), (1, 1)], names=["index", "date"]),
676
+ columns=["author", "price"],
677
+ )
678
+ tm.assert_frame_equal(result, expected)
679
+
680
+
681
+ def test_loc_mi_with_level1_named_0():
682
+ # GH#37194
683
+ dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific")
684
+
685
+ ser = Series(range(3), index=dti)
686
+ df = ser.to_frame()
687
+ df[1] = dti
688
+
689
+ df2 = df.set_index(0, append=True)
690
+ assert df2.index.names == (None, 0)
691
+ df2.index.get_loc(dti[0]) # smoke test
692
+
693
+ result = df2.loc[dti[0]]
694
+ expected = df2.iloc[[0]].droplevel(None)
695
+ tm.assert_frame_equal(result, expected)
696
+
697
+ ser2 = df2[1]
698
+ assert ser2.index.names == (None, 0)
699
+
700
+ result = ser2.loc[dti[0]]
701
+ expected = ser2.iloc[[0]].droplevel(None)
702
+ tm.assert_series_equal(result, expected)
703
+
704
+
705
+ def test_getitem_str_slice():
706
+ # GH#15928
707
+ df = DataFrame(
708
+ [
709
+ ["20160525 13:30:00.023", "MSFT", "51.95", "51.95"],
710
+ ["20160525 13:30:00.048", "GOOG", "720.50", "720.93"],
711
+ ["20160525 13:30:00.076", "AAPL", "98.55", "98.56"],
712
+ ["20160525 13:30:00.131", "AAPL", "98.61", "98.62"],
713
+ ["20160525 13:30:00.135", "MSFT", "51.92", "51.95"],
714
+ ["20160525 13:30:00.135", "AAPL", "98.61", "98.62"],
715
+ ],
716
+ columns="time,ticker,bid,ask".split(","),
717
+ )
718
+ df2 = df.set_index(["ticker", "time"]).sort_index()
719
+
720
+ res = df2.loc[("AAPL", slice("2016-05-25 13:30:00")), :].droplevel(0)
721
+ expected = df2.loc["AAPL"].loc[slice("2016-05-25 13:30:00"), :]
722
+ tm.assert_frame_equal(res, expected)
723
+
724
+
725
+ def test_3levels_leading_period_index():
726
+ # GH#24091
727
+ pi = pd.PeriodIndex(
728
+ ["20181101 1100", "20181101 1200", "20181102 1300", "20181102 1400"],
729
+ name="datetime",
730
+ freq="D",
731
+ )
732
+ lev2 = ["A", "A", "Z", "W"]
733
+ lev3 = ["B", "C", "Q", "F"]
734
+ mi = MultiIndex.from_arrays([pi, lev2, lev3])
735
+
736
+ ser = Series(range(4), index=mi, dtype=np.float64)
737
+ result = ser.loc[(pi[0], "A", "B")]
738
+ assert result == 0.0
739
+
740
+
741
+ class TestKeyErrorsWithMultiIndex:
742
+ def test_missing_keys_raises_keyerror(self):
743
+ # GH#27420 KeyError, not TypeError
744
+ df = DataFrame(np.arange(12).reshape(4, 3), columns=["A", "B", "C"])
745
+ df2 = df.set_index(["A", "B"])
746
+
747
+ with pytest.raises(KeyError, match="1"):
748
+ df2.loc[(1, 6)]
749
+
750
+ def test_missing_key_raises_keyerror2(self):
751
+ # GH#21168 KeyError, not "IndexingError: Too many indexers"
752
+ ser = Series(-1, index=MultiIndex.from_product([[0, 1]] * 2))
753
+
754
+ with pytest.raises(KeyError, match=r"\(0, 3\)"):
755
+ ser.loc[0, 3]
756
+
757
+ def test_missing_key_combination(self):
758
+ # GH: 19556
759
+ mi = MultiIndex.from_arrays(
760
+ [
761
+ np.array(["a", "a", "b", "b"]),
762
+ np.array(["1", "2", "2", "3"]),
763
+ np.array(["c", "d", "c", "d"]),
764
+ ],
765
+ names=["one", "two", "three"],
766
+ )
767
+ df = DataFrame(np.random.default_rng(2).random((4, 3)), index=mi)
768
+ msg = r"\('b', '1', slice\(None, None, None\)\)"
769
+ with pytest.raises(KeyError, match=msg):
770
+ df.loc[("b", "1", slice(None)), :]
771
+ with pytest.raises(KeyError, match=msg):
772
+ df.index.get_locs(("b", "1", slice(None)))
773
+ with pytest.raises(KeyError, match=r"\('b', '1'\)"):
774
+ df.loc[("b", "1"), :]
775
+
776
+
777
+ def test_getitem_loc_commutability(multiindex_year_month_day_dataframe_random_data):
778
+ df = multiindex_year_month_day_dataframe_random_data
779
+ ser = df["A"]
780
+ result = ser[2000, 5]
781
+ expected = df.loc[2000, 5]["A"]
782
+ tm.assert_series_equal(result, expected)
783
+
784
+
785
+ def test_loc_with_nan():
786
+ # GH: 27104
787
+ df = DataFrame(
788
+ {"col": [1, 2, 5], "ind1": ["a", "d", np.nan], "ind2": [1, 4, 5]}
789
+ ).set_index(["ind1", "ind2"])
790
+ result = df.loc[["a"]]
791
+ expected = DataFrame(
792
+ {"col": [1]}, index=MultiIndex.from_tuples([("a", 1)], names=["ind1", "ind2"])
793
+ )
794
+ tm.assert_frame_equal(result, expected)
795
+
796
+ result = df.loc["a"]
797
+ expected = DataFrame({"col": [1]}, index=Index([1], name="ind2"))
798
+ tm.assert_frame_equal(result, expected)
799
+
800
+
801
+ def test_getitem_non_found_tuple():
802
+ # GH: 25236
803
+ df = DataFrame([[1, 2, 3, 4]], columns=["a", "b", "c", "d"]).set_index(
804
+ ["a", "b", "c"]
805
+ )
806
+ with pytest.raises(KeyError, match=r"\(2\.0, 2\.0, 3\.0\)"):
807
+ df.loc[(2.0, 2.0, 3.0)]
808
+
809
+
810
+ def test_get_loc_datetime_index():
811
+ # GH#24263
812
+ index = pd.date_range("2001-01-01", periods=100)
813
+ mi = MultiIndex.from_arrays([index])
814
+ # Check if get_loc matches for Index and MultiIndex
815
+ assert mi.get_loc("2001-01") == slice(0, 31, None)
816
+ assert index.get_loc("2001-01") == slice(0, 31, None)
817
+
818
+ loc = mi[::2].get_loc("2001-01")
819
+ expected = index[::2].get_loc("2001-01")
820
+ assert loc == expected
821
+
822
+ loc = mi.repeat(2).get_loc("2001-01")
823
+ expected = index.repeat(2).get_loc("2001-01")
824
+ assert loc == expected
825
+
826
+ loc = mi.append(mi).get_loc("2001-01")
827
+ expected = index.append(index).get_loc("2001-01")
828
+ # TODO: standardize return type for MultiIndex.get_loc
829
+ tm.assert_numpy_array_equal(loc.nonzero()[0], expected)
830
+
831
+
832
+ def test_loc_setitem_indexer_differently_ordered():
833
+ # GH#34603
834
+ mi = MultiIndex.from_product([["a", "b"], [0, 1]])
835
+ df = DataFrame([[1, 2], [3, 4], [5, 6], [7, 8]], index=mi)
836
+
837
+ indexer = ("a", [1, 0])
838
+ df.loc[indexer, :] = np.array([[9, 10], [11, 12]])
839
+ expected = DataFrame([[11, 12], [9, 10], [5, 6], [7, 8]], index=mi)
840
+ tm.assert_frame_equal(df, expected)
841
+
842
+
843
+ def test_loc_getitem_index_differently_ordered_slice_none():
844
+ # GH#31330
845
+ df = DataFrame(
846
+ [[1, 2], [3, 4], [5, 6], [7, 8]],
847
+ index=[["a", "a", "b", "b"], [1, 2, 1, 2]],
848
+ columns=["a", "b"],
849
+ )
850
+ result = df.loc[(slice(None), [2, 1]), :]
851
+ expected = DataFrame(
852
+ [[3, 4], [7, 8], [1, 2], [5, 6]],
853
+ index=[["a", "b", "a", "b"], [2, 2, 1, 1]],
854
+ columns=["a", "b"],
855
+ )
856
+ tm.assert_frame_equal(result, expected)
857
+
858
+
859
+ @pytest.mark.parametrize("indexer", [[1, 2, 7, 6, 2, 3, 8, 7], [1, 2, 7, 6, 3, 8]])
860
+ def test_loc_getitem_index_differently_ordered_slice_none_duplicates(indexer):
861
+ # GH#40978
862
+ df = DataFrame(
863
+ [1] * 8,
864
+ index=MultiIndex.from_tuples(
865
+ [(1, 1), (1, 2), (1, 7), (1, 6), (2, 2), (2, 3), (2, 8), (2, 7)]
866
+ ),
867
+ columns=["a"],
868
+ )
869
+ result = df.loc[(slice(None), indexer), :]
870
+ expected = DataFrame(
871
+ [1] * 8,
872
+ index=[[1, 1, 2, 1, 2, 1, 2, 2], [1, 2, 2, 7, 7, 6, 3, 8]],
873
+ columns=["a"],
874
+ )
875
+ tm.assert_frame_equal(result, expected)
876
+
877
+ result = df.loc[df.index.isin(indexer, level=1), :]
878
+ tm.assert_frame_equal(result, df)
879
+
880
+
881
+ def test_loc_getitem_drops_levels_for_one_row_dataframe():
882
+ # GH#10521 "x" and "z" are both scalar indexing, so those levels are dropped
883
+ mi = MultiIndex.from_arrays([["x"], ["y"], ["z"]], names=["a", "b", "c"])
884
+ df = DataFrame({"d": [0]}, index=mi)
885
+ expected = df.droplevel([0, 2])
886
+ result = df.loc["x", :, "z"]
887
+ tm.assert_frame_equal(result, expected)
888
+
889
+ ser = Series([0], index=mi)
890
+ result = ser.loc["x", :, "z"]
891
+ expected = Series([0], index=Index(["y"], name="b"))
892
+ tm.assert_series_equal(result, expected)
893
+
894
+
895
+ def test_mi_columns_loc_list_label_order():
896
+ # GH 10710
897
+ cols = MultiIndex.from_product([["A", "B", "C"], [1, 2]])
898
+ df = DataFrame(np.zeros((5, 6)), columns=cols)
899
+ result = df.loc[:, ["B", "A"]]
900
+ expected = DataFrame(
901
+ np.zeros((5, 4)),
902
+ columns=MultiIndex.from_tuples([("B", 1), ("B", 2), ("A", 1), ("A", 2)]),
903
+ )
904
+ tm.assert_frame_equal(result, expected)
905
+
906
+
907
+ def test_mi_partial_indexing_list_raises():
908
+ # GH 13501
909
+ frame = DataFrame(
910
+ np.arange(12).reshape((4, 3)),
911
+ index=[["a", "a", "b", "b"], [1, 2, 1, 2]],
912
+ columns=[["Ohio", "Ohio", "Colorado"], ["Green", "Red", "Green"]],
913
+ )
914
+ frame.index.names = ["key1", "key2"]
915
+ frame.columns.names = ["state", "color"]
916
+ with pytest.raises(KeyError, match="\\[2\\] not in index"):
917
+ frame.loc[["b", 2], "Colorado"]
918
+
919
+
920
+ def test_mi_indexing_list_nonexistent_raises():
921
+ # GH 15452
922
+ s = Series(range(4), index=MultiIndex.from_product([[1, 2], ["a", "b"]]))
923
+ with pytest.raises(KeyError, match="\\['not' 'found'\\] not in index"):
924
+ s.loc[["not", "found"]]
925
+
926
+
927
+ def test_mi_add_cell_missing_row_non_unique():
928
+ # GH 16018
929
+ result = DataFrame(
930
+ [[1, 2, 5, 6], [3, 4, 7, 8]],
931
+ index=["a", "a"],
932
+ columns=MultiIndex.from_product([[1, 2], ["A", "B"]]),
933
+ )
934
+ result.loc["c"] = -1
935
+ result.loc["c", (1, "A")] = 3
936
+ result.loc["d", (1, "A")] = 3
937
+ expected = DataFrame(
938
+ [
939
+ [1.0, 2.0, 5.0, 6.0],
940
+ [3.0, 4.0, 7.0, 8.0],
941
+ [3.0, -1.0, -1, -1],
942
+ [3.0, np.nan, np.nan, np.nan],
943
+ ],
944
+ index=["a", "a", "c", "d"],
945
+ columns=MultiIndex.from_product([[1, 2], ["A", "B"]]),
946
+ )
947
+ tm.assert_frame_equal(result, expected)
948
+
949
+
950
+ def test_loc_get_scalar_casting_to_float():
951
+ # GH#41369
952
+ df = DataFrame(
953
+ {"a": 1.0, "b": 2}, index=MultiIndex.from_arrays([[3], [4]], names=["c", "d"])
954
+ )
955
+ result = df.loc[(3, 4), "b"]
956
+ assert result == 2
957
+ assert isinstance(result, np.int64)
958
+ result = df.loc[[(3, 4)], "b"].iloc[0]
959
+ assert result == 2
960
+ assert isinstance(result, np.int64)
961
+
962
+
963
+ def test_loc_empty_single_selector_with_names():
964
+ # GH 19517
965
+ idx = MultiIndex.from_product([["a", "b"], ["A", "B"]], names=[1, 0])
966
+ s2 = Series(index=idx, dtype=np.float64)
967
+ result = s2.loc["a"]
968
+ expected = Series([np.nan, np.nan], index=Index(["A", "B"], name=0))
969
+ tm.assert_series_equal(result, expected)
970
+
971
+
972
+ def test_loc_keyerror_rightmost_key_missing():
973
+ # GH 20951
974
+
975
+ df = DataFrame(
976
+ {
977
+ "A": [100, 100, 200, 200, 300, 300],
978
+ "B": [10, 10, 20, 21, 31, 33],
979
+ "C": range(6),
980
+ }
981
+ )
982
+ df = df.set_index(["A", "B"])
983
+ with pytest.raises(KeyError, match="^1$"):
984
+ df.loc[(100, 1)]
985
+
986
+
987
+ def test_multindex_series_loc_with_tuple_label():
988
+ # GH#43908
989
+ mi = MultiIndex.from_tuples([(1, 2), (3, (4, 5))])
990
+ ser = Series([1, 2], index=mi)
991
+ result = ser.loc[(3, (4, 5))]
992
+ assert result == 2
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_multiindex.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas._libs.index as libindex
5
+ from pandas.errors import PerformanceWarning
6
+
7
+ import pandas as pd
8
+ from pandas import (
9
+ CategoricalDtype,
10
+ DataFrame,
11
+ Index,
12
+ MultiIndex,
13
+ Series,
14
+ )
15
+ import pandas._testing as tm
16
+ from pandas.core.arrays.boolean import BooleanDtype
17
+
18
+
19
+ class TestMultiIndexBasic:
20
+ def test_multiindex_perf_warn(self):
21
+ df = DataFrame(
22
+ {
23
+ "jim": [0, 0, 1, 1],
24
+ "joe": ["x", "x", "z", "y"],
25
+ "jolie": np.random.default_rng(2).random(4),
26
+ }
27
+ ).set_index(["jim", "joe"])
28
+
29
+ with tm.assert_produces_warning(PerformanceWarning):
30
+ df.loc[(1, "z")]
31
+
32
+ df = df.iloc[[2, 1, 3, 0]]
33
+ with tm.assert_produces_warning(PerformanceWarning):
34
+ df.loc[(0,)]
35
+
36
+ @pytest.mark.parametrize("offset", [-5, 5])
37
+ def test_indexing_over_hashtable_size_cutoff(self, monkeypatch, offset):
38
+ size_cutoff = 20
39
+ n = size_cutoff + offset
40
+
41
+ with monkeypatch.context():
42
+ monkeypatch.setattr(libindex, "_SIZE_CUTOFF", size_cutoff)
43
+ s = Series(np.arange(n), MultiIndex.from_arrays((["a"] * n, np.arange(n))))
44
+
45
+ # hai it works!
46
+ assert s[("a", 5)] == 5
47
+ assert s[("a", 6)] == 6
48
+ assert s[("a", 7)] == 7
49
+
50
+ def test_multi_nan_indexing(self):
51
+ # GH 3588
52
+ df = DataFrame(
53
+ {
54
+ "a": ["R1", "R2", np.nan, "R4"],
55
+ "b": ["C1", "C2", "C3", "C4"],
56
+ "c": [10, 15, np.nan, 20],
57
+ }
58
+ )
59
+ result = df.set_index(["a", "b"], drop=False)
60
+ expected = DataFrame(
61
+ {
62
+ "a": ["R1", "R2", np.nan, "R4"],
63
+ "b": ["C1", "C2", "C3", "C4"],
64
+ "c": [10, 15, np.nan, 20],
65
+ },
66
+ index=[
67
+ Index(["R1", "R2", np.nan, "R4"], name="a"),
68
+ Index(["C1", "C2", "C3", "C4"], name="b"),
69
+ ],
70
+ )
71
+ tm.assert_frame_equal(result, expected)
72
+
73
+ def test_exclusive_nat_column_indexing(self):
74
+ # GH 38025
75
+ # test multi indexing when one column exclusively contains NaT values
76
+ df = DataFrame(
77
+ {
78
+ "a": [pd.NaT, pd.NaT, pd.NaT, pd.NaT],
79
+ "b": ["C1", "C2", "C3", "C4"],
80
+ "c": [10, 15, np.nan, 20],
81
+ }
82
+ )
83
+ df = df.set_index(["a", "b"])
84
+ expected = DataFrame(
85
+ {
86
+ "c": [10, 15, np.nan, 20],
87
+ },
88
+ index=[
89
+ Index([pd.NaT, pd.NaT, pd.NaT, pd.NaT], name="a"),
90
+ Index(["C1", "C2", "C3", "C4"], name="b"),
91
+ ],
92
+ )
93
+ tm.assert_frame_equal(df, expected)
94
+
95
+ def test_nested_tuples_duplicates(self):
96
+ # GH#30892
97
+
98
+ dti = pd.to_datetime(["20190101", "20190101", "20190102"])
99
+ idx = Index(["a", "a", "c"])
100
+ mi = MultiIndex.from_arrays([dti, idx], names=["index1", "index2"])
101
+
102
+ df = DataFrame({"c1": [1, 2, 3], "c2": [np.nan, np.nan, np.nan]}, index=mi)
103
+
104
+ expected = DataFrame({"c1": df["c1"], "c2": [1.0, 1.0, np.nan]}, index=mi)
105
+
106
+ df2 = df.copy(deep=True)
107
+ df2.loc[(dti[0], "a"), "c2"] = 1.0
108
+ tm.assert_frame_equal(df2, expected)
109
+
110
+ df3 = df.copy(deep=True)
111
+ df3.loc[[(dti[0], "a")], "c2"] = 1.0
112
+ tm.assert_frame_equal(df3, expected)
113
+
114
+ def test_multiindex_with_datatime_level_preserves_freq(self):
115
+ # https://github.com/pandas-dev/pandas/issues/35563
116
+ idx = Index(range(2), name="A")
117
+ dti = pd.date_range("2020-01-01", periods=7, freq="D", name="B")
118
+ mi = MultiIndex.from_product([idx, dti])
119
+ df = DataFrame(np.random.default_rng(2).standard_normal((14, 2)), index=mi)
120
+ result = df.loc[0].index
121
+ tm.assert_index_equal(result, dti)
122
+ assert result.freq == dti.freq
123
+
124
+ def test_multiindex_complex(self):
125
+ # GH#42145
126
+ complex_data = [1 + 2j, 4 - 3j, 10 - 1j]
127
+ non_complex_data = [3, 4, 5]
128
+ result = DataFrame(
129
+ {
130
+ "x": complex_data,
131
+ "y": non_complex_data,
132
+ "z": non_complex_data,
133
+ }
134
+ )
135
+ result.set_index(["x", "y"], inplace=True)
136
+ expected = DataFrame(
137
+ {"z": non_complex_data},
138
+ index=MultiIndex.from_arrays(
139
+ [complex_data, non_complex_data],
140
+ names=("x", "y"),
141
+ ),
142
+ )
143
+ tm.assert_frame_equal(result, expected)
144
+
145
+ def test_rename_multiindex_with_duplicates(self):
146
+ # GH 38015
147
+ mi = MultiIndex.from_tuples([("A", "cat"), ("B", "cat"), ("B", "cat")])
148
+ df = DataFrame(index=mi)
149
+ df = df.rename(index={"A": "Apple"}, level=0)
150
+
151
+ mi2 = MultiIndex.from_tuples([("Apple", "cat"), ("B", "cat"), ("B", "cat")])
152
+ expected = DataFrame(index=mi2)
153
+ tm.assert_frame_equal(df, expected)
154
+
155
+ def test_series_align_multiindex_with_nan_overlap_only(self):
156
+ # GH 38439
157
+ mi1 = MultiIndex.from_arrays([[81.0, np.nan], [np.nan, np.nan]])
158
+ mi2 = MultiIndex.from_arrays([[np.nan, 82.0], [np.nan, np.nan]])
159
+ ser1 = Series([1, 2], index=mi1)
160
+ ser2 = Series([1, 2], index=mi2)
161
+ result1, result2 = ser1.align(ser2)
162
+
163
+ mi = MultiIndex.from_arrays([[81.0, 82.0, np.nan], [np.nan, np.nan, np.nan]])
164
+ expected1 = Series([1.0, np.nan, 2.0], index=mi)
165
+ expected2 = Series([np.nan, 2.0, 1.0], index=mi)
166
+
167
+ tm.assert_series_equal(result1, expected1)
168
+ tm.assert_series_equal(result2, expected2)
169
+
170
+ def test_series_align_multiindex_with_nan(self):
171
+ # GH 38439
172
+ mi1 = MultiIndex.from_arrays([[81.0, np.nan], [np.nan, np.nan]])
173
+ mi2 = MultiIndex.from_arrays([[np.nan, 81.0], [np.nan, np.nan]])
174
+ ser1 = Series([1, 2], index=mi1)
175
+ ser2 = Series([1, 2], index=mi2)
176
+ result1, result2 = ser1.align(ser2)
177
+
178
+ mi = MultiIndex.from_arrays([[81.0, np.nan], [np.nan, np.nan]])
179
+ expected1 = Series([1, 2], index=mi)
180
+ expected2 = Series([2, 1], index=mi)
181
+
182
+ tm.assert_series_equal(result1, expected1)
183
+ tm.assert_series_equal(result2, expected2)
184
+
185
+ def test_nunique_smoke(self):
186
+ # GH 34019
187
+ n = DataFrame([[1, 2], [1, 2]]).set_index([0, 1]).index.nunique()
188
+ assert n == 1
189
+
190
+ def test_multiindex_repeated_keys(self):
191
+ # GH19414
192
+ tm.assert_series_equal(
193
+ Series([1, 2], MultiIndex.from_arrays([["a", "b"]])).loc[
194
+ ["a", "a", "b", "b"]
195
+ ],
196
+ Series([1, 1, 2, 2], MultiIndex.from_arrays([["a", "a", "b", "b"]])),
197
+ )
198
+
199
+ def test_multiindex_with_na_missing_key(self):
200
+ # GH46173
201
+ df = DataFrame.from_dict(
202
+ {
203
+ ("foo",): [1, 2, 3],
204
+ ("bar",): [5, 6, 7],
205
+ (None,): [8, 9, 0],
206
+ }
207
+ )
208
+ with pytest.raises(KeyError, match="missing_key"):
209
+ df[[("missing_key",)]]
210
+
211
+ def test_multiindex_dtype_preservation(self):
212
+ # GH51261
213
+ columns = MultiIndex.from_tuples([("A", "B")], names=["lvl1", "lvl2"])
214
+ df = DataFrame(["value"], columns=columns).astype("category")
215
+ df_no_multiindex = df["A"]
216
+ assert isinstance(df_no_multiindex["B"].dtype, CategoricalDtype)
217
+
218
+ # geopandas 1763 analogue
219
+ df = DataFrame(
220
+ [[1, 0], [0, 1]],
221
+ columns=[
222
+ ["foo", "foo"],
223
+ ["location", "location"],
224
+ ["x", "y"],
225
+ ],
226
+ ).assign(bools=Series([True, False], dtype="boolean"))
227
+ assert isinstance(df["bools"].dtype, BooleanDtype)
228
+
229
+ def test_multiindex_from_tuples_with_nan(self):
230
+ # GH#23578
231
+ result = MultiIndex.from_tuples([("a", "b", "c"), np.nan, ("d", "", "")])
232
+ expected = MultiIndex.from_tuples(
233
+ [("a", "b", "c"), (np.nan, np.nan, np.nan), ("d", "", "")]
234
+ )
235
+ tm.assert_index_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_partial.py ADDED
@@ -0,0 +1,269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas.util._test_decorators as td
5
+
6
+ from pandas import (
7
+ DataFrame,
8
+ DatetimeIndex,
9
+ MultiIndex,
10
+ date_range,
11
+ )
12
+ import pandas._testing as tm
13
+
14
+
15
+ class TestMultiIndexPartial:
16
+ def test_getitem_partial_int(self):
17
+ # GH 12416
18
+ # with single item
19
+ l1 = [10, 20]
20
+ l2 = ["a", "b"]
21
+ df = DataFrame(index=range(2), columns=MultiIndex.from_product([l1, l2]))
22
+ expected = DataFrame(index=range(2), columns=l2)
23
+ result = df[20]
24
+ tm.assert_frame_equal(result, expected)
25
+
26
+ # with list
27
+ expected = DataFrame(
28
+ index=range(2), columns=MultiIndex.from_product([l1[1:], l2])
29
+ )
30
+ result = df[[20]]
31
+ tm.assert_frame_equal(result, expected)
32
+
33
+ # missing item:
34
+ with pytest.raises(KeyError, match="1"):
35
+ df[1]
36
+ with pytest.raises(KeyError, match=r"'\[1\] not in index'"):
37
+ df[[1]]
38
+
39
+ def test_series_slice_partial(self):
40
+ pass
41
+
42
+ def test_xs_partial(
43
+ self,
44
+ multiindex_dataframe_random_data,
45
+ multiindex_year_month_day_dataframe_random_data,
46
+ ):
47
+ frame = multiindex_dataframe_random_data
48
+ ymd = multiindex_year_month_day_dataframe_random_data
49
+ result = frame.xs("foo")
50
+ result2 = frame.loc["foo"]
51
+ expected = frame.T["foo"].T
52
+ tm.assert_frame_equal(result, expected)
53
+ tm.assert_frame_equal(result, result2)
54
+
55
+ result = ymd.xs((2000, 4))
56
+ expected = ymd.loc[2000, 4]
57
+ tm.assert_frame_equal(result, expected)
58
+
59
+ # ex from #1796
60
+ index = MultiIndex(
61
+ levels=[["foo", "bar"], ["one", "two"], [-1, 1]],
62
+ codes=[
63
+ [0, 0, 0, 0, 1, 1, 1, 1],
64
+ [0, 0, 1, 1, 0, 0, 1, 1],
65
+ [0, 1, 0, 1, 0, 1, 0, 1],
66
+ ],
67
+ )
68
+ df = DataFrame(
69
+ np.random.default_rng(2).standard_normal((8, 4)),
70
+ index=index,
71
+ columns=list("abcd"),
72
+ )
73
+
74
+ result = df.xs(("foo", "one"))
75
+ expected = df.loc["foo", "one"]
76
+ tm.assert_frame_equal(result, expected)
77
+
78
+ def test_getitem_partial(self, multiindex_year_month_day_dataframe_random_data):
79
+ ymd = multiindex_year_month_day_dataframe_random_data
80
+ ymd = ymd.T
81
+ result = ymd[2000, 2]
82
+
83
+ expected = ymd.reindex(columns=ymd.columns[ymd.columns.codes[1] == 1])
84
+ expected.columns = expected.columns.droplevel(0).droplevel(0)
85
+ tm.assert_frame_equal(result, expected)
86
+
87
+ def test_fancy_slice_partial(
88
+ self,
89
+ multiindex_dataframe_random_data,
90
+ multiindex_year_month_day_dataframe_random_data,
91
+ ):
92
+ frame = multiindex_dataframe_random_data
93
+ result = frame.loc["bar":"baz"]
94
+ expected = frame[3:7]
95
+ tm.assert_frame_equal(result, expected)
96
+
97
+ ymd = multiindex_year_month_day_dataframe_random_data
98
+ result = ymd.loc[(2000, 2):(2000, 4)]
99
+ lev = ymd.index.codes[1]
100
+ expected = ymd[(lev >= 1) & (lev <= 3)]
101
+ tm.assert_frame_equal(result, expected)
102
+
103
+ def test_getitem_partial_column_select(self):
104
+ idx = MultiIndex(
105
+ codes=[[0, 0, 0], [0, 1, 1], [1, 0, 1]],
106
+ levels=[["a", "b"], ["x", "y"], ["p", "q"]],
107
+ )
108
+ df = DataFrame(np.random.default_rng(2).random((3, 2)), index=idx)
109
+
110
+ result = df.loc[("a", "y"), :]
111
+ expected = df.loc[("a", "y")]
112
+ tm.assert_frame_equal(result, expected)
113
+
114
+ result = df.loc[("a", "y"), [1, 0]]
115
+ expected = df.loc[("a", "y")][[1, 0]]
116
+ tm.assert_frame_equal(result, expected)
117
+
118
+ with pytest.raises(KeyError, match=r"\('a', 'foo'\)"):
119
+ df.loc[("a", "foo"), :]
120
+
121
+ # TODO(ArrayManager) rewrite test to not use .values
122
+ # exp.loc[2000, 4].values[:] select multiple columns -> .values is not a view
123
+ @td.skip_array_manager_invalid_test
124
+ def test_partial_set(
125
+ self,
126
+ multiindex_year_month_day_dataframe_random_data,
127
+ using_copy_on_write,
128
+ warn_copy_on_write,
129
+ ):
130
+ # GH #397
131
+ ymd = multiindex_year_month_day_dataframe_random_data
132
+ df = ymd.copy()
133
+ exp = ymd.copy()
134
+ df.loc[2000, 4] = 0
135
+ exp.iloc[65:85] = 0
136
+ tm.assert_frame_equal(df, exp)
137
+
138
+ if using_copy_on_write:
139
+ with tm.raises_chained_assignment_error():
140
+ df["A"].loc[2000, 4] = 1
141
+ df.loc[(2000, 4), "A"] = 1
142
+ else:
143
+ with tm.raises_chained_assignment_error():
144
+ df["A"].loc[2000, 4] = 1
145
+ exp.iloc[65:85, 0] = 1
146
+ tm.assert_frame_equal(df, exp)
147
+
148
+ df.loc[2000] = 5
149
+ exp.iloc[:100] = 5
150
+ tm.assert_frame_equal(df, exp)
151
+
152
+ # this works...for now
153
+ with tm.raises_chained_assignment_error():
154
+ df["A"].iloc[14] = 5
155
+ if using_copy_on_write:
156
+ assert df["A"].iloc[14] == exp["A"].iloc[14]
157
+ else:
158
+ assert df["A"].iloc[14] == 5
159
+
160
+ @pytest.mark.parametrize("dtype", [int, float])
161
+ def test_getitem_intkey_leading_level(
162
+ self, multiindex_year_month_day_dataframe_random_data, dtype
163
+ ):
164
+ # GH#33355 dont fall-back to positional when leading level is int
165
+ ymd = multiindex_year_month_day_dataframe_random_data
166
+ levels = ymd.index.levels
167
+ ymd.index = ymd.index.set_levels([levels[0].astype(dtype)] + levels[1:])
168
+ ser = ymd["A"]
169
+ mi = ser.index
170
+ assert isinstance(mi, MultiIndex)
171
+ if dtype is int:
172
+ assert mi.levels[0].dtype == np.dtype(int)
173
+ else:
174
+ assert mi.levels[0].dtype == np.float64
175
+
176
+ assert 14 not in mi.levels[0]
177
+ assert not mi.levels[0]._should_fallback_to_positional
178
+ assert not mi._should_fallback_to_positional
179
+
180
+ with pytest.raises(KeyError, match="14"):
181
+ ser[14]
182
+
183
+ # ---------------------------------------------------------------------
184
+
185
+ def test_setitem_multiple_partial(self, multiindex_dataframe_random_data):
186
+ frame = multiindex_dataframe_random_data
187
+ expected = frame.copy()
188
+ result = frame.copy()
189
+ result.loc[["foo", "bar"]] = 0
190
+ expected.loc["foo"] = 0
191
+ expected.loc["bar"] = 0
192
+ tm.assert_frame_equal(result, expected)
193
+
194
+ expected = frame.copy()
195
+ result = frame.copy()
196
+ result.loc["foo":"bar"] = 0
197
+ expected.loc["foo"] = 0
198
+ expected.loc["bar"] = 0
199
+ tm.assert_frame_equal(result, expected)
200
+
201
+ expected = frame["A"].copy()
202
+ result = frame["A"].copy()
203
+ result.loc[["foo", "bar"]] = 0
204
+ expected.loc["foo"] = 0
205
+ expected.loc["bar"] = 0
206
+ tm.assert_series_equal(result, expected)
207
+
208
+ expected = frame["A"].copy()
209
+ result = frame["A"].copy()
210
+ result.loc["foo":"bar"] = 0
211
+ expected.loc["foo"] = 0
212
+ expected.loc["bar"] = 0
213
+ tm.assert_series_equal(result, expected)
214
+
215
+ @pytest.mark.parametrize(
216
+ "indexer, exp_idx, exp_values",
217
+ [
218
+ (
219
+ slice("2019-2", None),
220
+ DatetimeIndex(["2019-02-01"], dtype="M8[ns]"),
221
+ [2, 3],
222
+ ),
223
+ (
224
+ slice(None, "2019-2"),
225
+ date_range("2019", periods=2, freq="MS"),
226
+ [0, 1, 2, 3],
227
+ ),
228
+ ],
229
+ )
230
+ def test_partial_getitem_loc_datetime(self, indexer, exp_idx, exp_values):
231
+ # GH: 25165
232
+ date_idx = date_range("2019", periods=2, freq="MS")
233
+ df = DataFrame(
234
+ list(range(4)),
235
+ index=MultiIndex.from_product([date_idx, [0, 1]], names=["x", "y"]),
236
+ )
237
+ expected = DataFrame(
238
+ exp_values,
239
+ index=MultiIndex.from_product([exp_idx, [0, 1]], names=["x", "y"]),
240
+ )
241
+ result = df[indexer]
242
+ tm.assert_frame_equal(result, expected)
243
+ result = df.loc[indexer]
244
+ tm.assert_frame_equal(result, expected)
245
+
246
+ result = df.loc(axis=0)[indexer]
247
+ tm.assert_frame_equal(result, expected)
248
+
249
+ result = df.loc[indexer, :]
250
+ tm.assert_frame_equal(result, expected)
251
+
252
+ df2 = df.swaplevel(0, 1).sort_index()
253
+ expected = expected.swaplevel(0, 1).sort_index()
254
+
255
+ result = df2.loc[:, indexer, :]
256
+ tm.assert_frame_equal(result, expected)
257
+
258
+
259
+ def test_loc_getitem_partial_both_axis():
260
+ # gh-12660
261
+ iterables = [["a", "b"], [2, 1]]
262
+ columns = MultiIndex.from_product(iterables, names=["col1", "col2"])
263
+ rows = MultiIndex.from_product(iterables, names=["row1", "row2"])
264
+ df = DataFrame(
265
+ np.random.default_rng(2).standard_normal((4, 4)), index=rows, columns=columns
266
+ )
267
+ expected = df.iloc[:2, 2:].droplevel("row1").droplevel("col1", axis=1)
268
+ result = df.loc["a", "b"]
269
+ tm.assert_frame_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_setitem.py ADDED
@@ -0,0 +1,589 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.errors import SettingWithCopyError
5
+ import pandas.util._test_decorators as td
6
+
7
+ import pandas as pd
8
+ from pandas import (
9
+ DataFrame,
10
+ MultiIndex,
11
+ Series,
12
+ date_range,
13
+ isna,
14
+ notna,
15
+ )
16
+ import pandas._testing as tm
17
+
18
+
19
+ def assert_equal(a, b):
20
+ assert a == b
21
+
22
+
23
+ class TestMultiIndexSetItem:
24
+ def check(self, target, indexers, value, compare_fn=assert_equal, expected=None):
25
+ target.loc[indexers] = value
26
+ result = target.loc[indexers]
27
+ if expected is None:
28
+ expected = value
29
+ compare_fn(result, expected)
30
+
31
+ def test_setitem_multiindex(self):
32
+ # GH#7190
33
+ cols = ["A", "w", "l", "a", "x", "X", "d", "profit"]
34
+ index = MultiIndex.from_product(
35
+ [np.arange(0, 100), np.arange(0, 80)], names=["time", "firm"]
36
+ )
37
+ t, n = 0, 2
38
+
39
+ df = DataFrame(
40
+ np.nan,
41
+ columns=cols,
42
+ index=index,
43
+ )
44
+ self.check(target=df, indexers=((t, n), "X"), value=0)
45
+
46
+ df = DataFrame(-999, columns=cols, index=index)
47
+ self.check(target=df, indexers=((t, n), "X"), value=1)
48
+
49
+ df = DataFrame(columns=cols, index=index)
50
+ self.check(target=df, indexers=((t, n), "X"), value=2)
51
+
52
+ # gh-7218: assigning with 0-dim arrays
53
+ df = DataFrame(-999, columns=cols, index=index)
54
+ self.check(
55
+ target=df,
56
+ indexers=((t, n), "X"),
57
+ value=np.array(3),
58
+ expected=3,
59
+ )
60
+
61
+ def test_setitem_multiindex2(self):
62
+ # GH#5206
63
+ df = DataFrame(
64
+ np.arange(25).reshape(5, 5), columns="A,B,C,D,E".split(","), dtype=float
65
+ )
66
+ df["F"] = 99
67
+ row_selection = df["A"] % 2 == 0
68
+ col_selection = ["B", "C"]
69
+ df.loc[row_selection, col_selection] = df["F"]
70
+ output = DataFrame(99.0, index=[0, 2, 4], columns=["B", "C"])
71
+ tm.assert_frame_equal(df.loc[row_selection, col_selection], output)
72
+ self.check(
73
+ target=df,
74
+ indexers=(row_selection, col_selection),
75
+ value=df["F"],
76
+ compare_fn=tm.assert_frame_equal,
77
+ expected=output,
78
+ )
79
+
80
+ def test_setitem_multiindex3(self):
81
+ # GH#11372
82
+ idx = MultiIndex.from_product(
83
+ [["A", "B", "C"], date_range("2015-01-01", "2015-04-01", freq="MS")]
84
+ )
85
+ cols = MultiIndex.from_product(
86
+ [["foo", "bar"], date_range("2016-01-01", "2016-02-01", freq="MS")]
87
+ )
88
+
89
+ df = DataFrame(
90
+ np.random.default_rng(2).random((12, 4)), index=idx, columns=cols
91
+ )
92
+
93
+ subidx = MultiIndex.from_arrays(
94
+ [["A", "A"], date_range("2015-01-01", "2015-02-01", freq="MS")]
95
+ )
96
+ subcols = MultiIndex.from_arrays(
97
+ [["foo", "foo"], date_range("2016-01-01", "2016-02-01", freq="MS")]
98
+ )
99
+
100
+ vals = DataFrame(
101
+ np.random.default_rng(2).random((2, 2)), index=subidx, columns=subcols
102
+ )
103
+ self.check(
104
+ target=df,
105
+ indexers=(subidx, subcols),
106
+ value=vals,
107
+ compare_fn=tm.assert_frame_equal,
108
+ )
109
+ # set all columns
110
+ vals = DataFrame(
111
+ np.random.default_rng(2).random((2, 4)), index=subidx, columns=cols
112
+ )
113
+ self.check(
114
+ target=df,
115
+ indexers=(subidx, slice(None, None, None)),
116
+ value=vals,
117
+ compare_fn=tm.assert_frame_equal,
118
+ )
119
+ # identity
120
+ copy = df.copy()
121
+ self.check(
122
+ target=df,
123
+ indexers=(df.index, df.columns),
124
+ value=df,
125
+ compare_fn=tm.assert_frame_equal,
126
+ expected=copy,
127
+ )
128
+
129
+ # TODO(ArrayManager) df.loc["bar"] *= 2 doesn't raise an error but results in
130
+ # all NaNs -> doesn't work in the "split" path (also for BlockManager actually)
131
+ @td.skip_array_manager_not_yet_implemented
132
+ def test_multiindex_setitem(self):
133
+ # GH 3738
134
+ # setting with a multi-index right hand side
135
+ arrays = [
136
+ np.array(["bar", "bar", "baz", "qux", "qux", "bar"]),
137
+ np.array(["one", "two", "one", "one", "two", "one"]),
138
+ np.arange(0, 6, 1),
139
+ ]
140
+
141
+ df_orig = DataFrame(
142
+ np.random.default_rng(2).standard_normal((6, 3)),
143
+ index=arrays,
144
+ columns=["A", "B", "C"],
145
+ ).sort_index()
146
+
147
+ expected = df_orig.loc[["bar"]] * 2
148
+ df = df_orig.copy()
149
+ df.loc[["bar"]] *= 2
150
+ tm.assert_frame_equal(df.loc[["bar"]], expected)
151
+
152
+ # raise because these have differing levels
153
+ msg = "cannot align on a multi-index with out specifying the join levels"
154
+ with pytest.raises(TypeError, match=msg):
155
+ df.loc["bar"] *= 2
156
+
157
+ def test_multiindex_setitem2(self):
158
+ # from SO
159
+ # https://stackoverflow.com/questions/24572040/pandas-access-the-level-of-multiindex-for-inplace-operation
160
+ df_orig = DataFrame.from_dict(
161
+ {
162
+ "price": {
163
+ ("DE", "Coal", "Stock"): 2,
164
+ ("DE", "Gas", "Stock"): 4,
165
+ ("DE", "Elec", "Demand"): 1,
166
+ ("FR", "Gas", "Stock"): 5,
167
+ ("FR", "Solar", "SupIm"): 0,
168
+ ("FR", "Wind", "SupIm"): 0,
169
+ }
170
+ }
171
+ )
172
+ df_orig.index = MultiIndex.from_tuples(
173
+ df_orig.index, names=["Sit", "Com", "Type"]
174
+ )
175
+
176
+ expected = df_orig.copy()
177
+ expected.iloc[[0, 1, 3]] *= 2
178
+
179
+ idx = pd.IndexSlice
180
+ df = df_orig.copy()
181
+ df.loc[idx[:, :, "Stock"], :] *= 2
182
+ tm.assert_frame_equal(df, expected)
183
+
184
+ df = df_orig.copy()
185
+ df.loc[idx[:, :, "Stock"], "price"] *= 2
186
+ tm.assert_frame_equal(df, expected)
187
+
188
+ def test_multiindex_assignment(self):
189
+ # GH3777 part 2
190
+
191
+ # mixed dtype
192
+ df = DataFrame(
193
+ np.random.default_rng(2).integers(5, 10, size=9).reshape(3, 3),
194
+ columns=list("abc"),
195
+ index=[[4, 4, 8], [8, 10, 12]],
196
+ )
197
+ df["d"] = np.nan
198
+ arr = np.array([0.0, 1.0])
199
+
200
+ df.loc[4, "d"] = arr
201
+ tm.assert_series_equal(df.loc[4, "d"], Series(arr, index=[8, 10], name="d"))
202
+
203
+ def test_multiindex_assignment_single_dtype(
204
+ self, using_copy_on_write, warn_copy_on_write
205
+ ):
206
+ # GH3777 part 2b
207
+ # single dtype
208
+ arr = np.array([0.0, 1.0])
209
+
210
+ df = DataFrame(
211
+ np.random.default_rng(2).integers(5, 10, size=9).reshape(3, 3),
212
+ columns=list("abc"),
213
+ index=[[4, 4, 8], [8, 10, 12]],
214
+ dtype=np.int64,
215
+ )
216
+ view = df["c"].iloc[:2].values
217
+
218
+ # arr can be losslessly cast to int, so this setitem is inplace
219
+ # INFO(CoW-warn) this does not warn because we directly took .values
220
+ # above, so no reference to a pandas object is alive for `view`
221
+ df.loc[4, "c"] = arr
222
+ exp = Series(arr, index=[8, 10], name="c", dtype="int64")
223
+ result = df.loc[4, "c"]
224
+ tm.assert_series_equal(result, exp)
225
+
226
+ # extra check for inplace-ness
227
+ if not using_copy_on_write:
228
+ tm.assert_numpy_array_equal(view, exp.values)
229
+
230
+ # arr + 0.5 cannot be cast losslessly to int, so we upcast
231
+ with tm.assert_produces_warning(
232
+ FutureWarning, match="item of incompatible dtype"
233
+ ):
234
+ df.loc[4, "c"] = arr + 0.5
235
+ result = df.loc[4, "c"]
236
+ exp = exp + 0.5
237
+ tm.assert_series_equal(result, exp)
238
+
239
+ # scalar ok
240
+ with tm.assert_cow_warning(warn_copy_on_write):
241
+ df.loc[4, "c"] = 10
242
+ exp = Series(10, index=[8, 10], name="c", dtype="float64")
243
+ tm.assert_series_equal(df.loc[4, "c"], exp)
244
+
245
+ # invalid assignments
246
+ msg = "Must have equal len keys and value when setting with an iterable"
247
+ with pytest.raises(ValueError, match=msg):
248
+ df.loc[4, "c"] = [0, 1, 2, 3]
249
+
250
+ with pytest.raises(ValueError, match=msg):
251
+ df.loc[4, "c"] = [0]
252
+
253
+ # But with a length-1 listlike column indexer this behaves like
254
+ # `df.loc[4, "c"] = 0
255
+ with tm.assert_cow_warning(warn_copy_on_write):
256
+ df.loc[4, ["c"]] = [0]
257
+ assert (df.loc[4, "c"] == 0).all()
258
+
259
+ def test_groupby_example(self):
260
+ # groupby example
261
+ NUM_ROWS = 100
262
+ NUM_COLS = 10
263
+ col_names = ["A" + num for num in map(str, np.arange(NUM_COLS).tolist())]
264
+ index_cols = col_names[:5]
265
+
266
+ df = DataFrame(
267
+ np.random.default_rng(2).integers(5, size=(NUM_ROWS, NUM_COLS)),
268
+ dtype=np.int64,
269
+ columns=col_names,
270
+ )
271
+ df = df.set_index(index_cols).sort_index()
272
+ grp = df.groupby(level=index_cols[:4])
273
+ df["new_col"] = np.nan
274
+
275
+ # we are actually operating on a copy here
276
+ # but in this case, that's ok
277
+ for name, df2 in grp:
278
+ new_vals = np.arange(df2.shape[0])
279
+ df.loc[name, "new_col"] = new_vals
280
+
281
+ def test_series_setitem(
282
+ self, multiindex_year_month_day_dataframe_random_data, warn_copy_on_write
283
+ ):
284
+ ymd = multiindex_year_month_day_dataframe_random_data
285
+ s = ymd["A"]
286
+
287
+ with tm.assert_cow_warning(warn_copy_on_write):
288
+ s[2000, 3] = np.nan
289
+ assert isna(s.values[42:65]).all()
290
+ assert notna(s.values[:42]).all()
291
+ assert notna(s.values[65:]).all()
292
+
293
+ with tm.assert_cow_warning(warn_copy_on_write):
294
+ s[2000, 3, 10] = np.nan
295
+ assert isna(s.iloc[49])
296
+
297
+ with pytest.raises(KeyError, match="49"):
298
+ # GH#33355 dont fall-back to positional when leading level is int
299
+ s[49]
300
+
301
+ def test_frame_getitem_setitem_boolean(self, multiindex_dataframe_random_data):
302
+ frame = multiindex_dataframe_random_data
303
+ df = frame.T.copy()
304
+ values = df.values.copy()
305
+
306
+ result = df[df > 0]
307
+ expected = df.where(df > 0)
308
+ tm.assert_frame_equal(result, expected)
309
+
310
+ df[df > 0] = 5
311
+ values[values > 0] = 5
312
+ tm.assert_almost_equal(df.values, values)
313
+
314
+ df[df == 5] = 0
315
+ values[values == 5] = 0
316
+ tm.assert_almost_equal(df.values, values)
317
+
318
+ # a df that needs alignment first
319
+ df[df[:-1] < 0] = 2
320
+ np.putmask(values[:-1], values[:-1] < 0, 2)
321
+ tm.assert_almost_equal(df.values, values)
322
+
323
+ with pytest.raises(TypeError, match="boolean values only"):
324
+ df[df * 0] = 2
325
+
326
+ def test_frame_getitem_setitem_multislice(self):
327
+ levels = [["t1", "t2"], ["a", "b", "c"]]
328
+ codes = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]]
329
+ midx = MultiIndex(codes=codes, levels=levels, names=[None, "id"])
330
+ df = DataFrame({"value": [1, 2, 3, 7, 8]}, index=midx)
331
+
332
+ result = df.loc[:, "value"]
333
+ tm.assert_series_equal(df["value"], result)
334
+
335
+ result = df.loc[df.index[1:3], "value"]
336
+ tm.assert_series_equal(df["value"][1:3], result)
337
+
338
+ result = df.loc[:, :]
339
+ tm.assert_frame_equal(df, result)
340
+
341
+ result = df
342
+ df.loc[:, "value"] = 10
343
+ result["value"] = 10
344
+ tm.assert_frame_equal(df, result)
345
+
346
+ df.loc[:, :] = 10
347
+ tm.assert_frame_equal(df, result)
348
+
349
+ def test_frame_setitem_multi_column(self):
350
+ df = DataFrame(
351
+ np.random.default_rng(2).standard_normal((10, 4)),
352
+ columns=[["a", "a", "b", "b"], [0, 1, 0, 1]],
353
+ )
354
+
355
+ cp = df.copy()
356
+ cp["a"] = cp["b"]
357
+ tm.assert_frame_equal(cp["a"], cp["b"])
358
+
359
+ # set with ndarray
360
+ cp = df.copy()
361
+ cp["a"] = cp["b"].values
362
+ tm.assert_frame_equal(cp["a"], cp["b"])
363
+
364
+ def test_frame_setitem_multi_column2(self):
365
+ # ---------------------------------------
366
+ # GH#1803
367
+ columns = MultiIndex.from_tuples([("A", "1"), ("A", "2"), ("B", "1")])
368
+ df = DataFrame(index=[1, 3, 5], columns=columns)
369
+
370
+ # Works, but adds a column instead of updating the two existing ones
371
+ df["A"] = 0.0 # Doesn't work
372
+ assert (df["A"].values == 0).all()
373
+
374
+ # it broadcasts
375
+ df["B", "1"] = [1, 2, 3]
376
+ df["A"] = df["B", "1"]
377
+
378
+ sliced_a1 = df["A", "1"]
379
+ sliced_a2 = df["A", "2"]
380
+ sliced_b1 = df["B", "1"]
381
+ tm.assert_series_equal(sliced_a1, sliced_b1, check_names=False)
382
+ tm.assert_series_equal(sliced_a2, sliced_b1, check_names=False)
383
+ assert sliced_a1.name == ("A", "1")
384
+ assert sliced_a2.name == ("A", "2")
385
+ assert sliced_b1.name == ("B", "1")
386
+
387
+ def test_loc_getitem_tuple_plus_columns(
388
+ self, multiindex_year_month_day_dataframe_random_data
389
+ ):
390
+ # GH #1013
391
+ ymd = multiindex_year_month_day_dataframe_random_data
392
+ df = ymd[:5]
393
+
394
+ result = df.loc[(2000, 1, 6), ["A", "B", "C"]]
395
+ expected = df.loc[2000, 1, 6][["A", "B", "C"]]
396
+ tm.assert_series_equal(result, expected)
397
+
398
+ @pytest.mark.filterwarnings("ignore:Setting a value on a view:FutureWarning")
399
+ def test_loc_getitem_setitem_slice_integers(self, frame_or_series):
400
+ index = MultiIndex(
401
+ levels=[[0, 1, 2], [0, 2]], codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]
402
+ )
403
+
404
+ obj = DataFrame(
405
+ np.random.default_rng(2).standard_normal((len(index), 4)),
406
+ index=index,
407
+ columns=["a", "b", "c", "d"],
408
+ )
409
+ obj = tm.get_obj(obj, frame_or_series)
410
+
411
+ res = obj.loc[1:2]
412
+ exp = obj.reindex(obj.index[2:])
413
+ tm.assert_equal(res, exp)
414
+
415
+ obj.loc[1:2] = 7
416
+ assert (obj.loc[1:2] == 7).values.all()
417
+
418
+ def test_setitem_change_dtype(self, multiindex_dataframe_random_data):
419
+ frame = multiindex_dataframe_random_data
420
+ dft = frame.T
421
+ s = dft["foo", "two"]
422
+ dft["foo", "two"] = s > s.median()
423
+ tm.assert_series_equal(dft["foo", "two"], s > s.median())
424
+ # assert isinstance(dft._data.blocks[1].items, MultiIndex)
425
+
426
+ reindexed = dft.reindex(columns=[("foo", "two")])
427
+ tm.assert_series_equal(reindexed["foo", "two"], s > s.median())
428
+
429
+ def test_set_column_scalar_with_loc(
430
+ self, multiindex_dataframe_random_data, using_copy_on_write, warn_copy_on_write
431
+ ):
432
+ frame = multiindex_dataframe_random_data
433
+ subset = frame.index[[1, 4, 5]]
434
+
435
+ frame.loc[subset] = 99
436
+ assert (frame.loc[subset].values == 99).all()
437
+
438
+ frame_original = frame.copy()
439
+ col = frame["B"]
440
+ with tm.assert_cow_warning(warn_copy_on_write):
441
+ col[subset] = 97
442
+ if using_copy_on_write:
443
+ # chained setitem doesn't work with CoW
444
+ tm.assert_frame_equal(frame, frame_original)
445
+ else:
446
+ assert (frame.loc[subset, "B"] == 97).all()
447
+
448
+ def test_nonunique_assignment_1750(self):
449
+ df = DataFrame(
450
+ [[1, 1, "x", "X"], [1, 1, "y", "Y"], [1, 2, "z", "Z"]], columns=list("ABCD")
451
+ )
452
+
453
+ df = df.set_index(["A", "B"])
454
+ mi = MultiIndex.from_tuples([(1, 1)])
455
+
456
+ df.loc[mi, "C"] = "_"
457
+
458
+ assert (df.xs((1, 1))["C"] == "_").all()
459
+
460
+ def test_astype_assignment_with_dups(self):
461
+ # GH 4686
462
+ # assignment with dups that has a dtype change
463
+ cols = MultiIndex.from_tuples([("A", "1"), ("B", "1"), ("A", "2")])
464
+ df = DataFrame(np.arange(3).reshape((1, 3)), columns=cols, dtype=object)
465
+ index = df.index.copy()
466
+
467
+ df["A"] = df["A"].astype(np.float64)
468
+ tm.assert_index_equal(df.index, index)
469
+
470
+ def test_setitem_nonmonotonic(self):
471
+ # https://github.com/pandas-dev/pandas/issues/31449
472
+ index = MultiIndex.from_tuples(
473
+ [("a", "c"), ("b", "x"), ("a", "d")], names=["l1", "l2"]
474
+ )
475
+ df = DataFrame(data=[0, 1, 2], index=index, columns=["e"])
476
+ df.loc["a", "e"] = np.arange(99, 101, dtype="int64")
477
+ expected = DataFrame({"e": [99, 1, 100]}, index=index)
478
+ tm.assert_frame_equal(df, expected)
479
+
480
+
481
+ class TestSetitemWithExpansionMultiIndex:
482
+ def test_setitem_new_column_mixed_depth(self):
483
+ arrays = [
484
+ ["a", "top", "top", "routine1", "routine1", "routine2"],
485
+ ["", "OD", "OD", "result1", "result2", "result1"],
486
+ ["", "wx", "wy", "", "", ""],
487
+ ]
488
+
489
+ tuples = sorted(zip(*arrays))
490
+ index = MultiIndex.from_tuples(tuples)
491
+ df = DataFrame(np.random.default_rng(2).standard_normal((4, 6)), columns=index)
492
+
493
+ result = df.copy()
494
+ expected = df.copy()
495
+ result["b"] = [1, 2, 3, 4]
496
+ expected["b", "", ""] = [1, 2, 3, 4]
497
+ tm.assert_frame_equal(result, expected)
498
+
499
+ def test_setitem_new_column_all_na(self):
500
+ # GH#1534
501
+ mix = MultiIndex.from_tuples([("1a", "2a"), ("1a", "2b"), ("1a", "2c")])
502
+ df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mix)
503
+ s = Series({(1, 1): 1, (1, 2): 2})
504
+ df["new"] = s
505
+ assert df["new"].isna().all()
506
+
507
+ def test_setitem_enlargement_keep_index_names(self):
508
+ # GH#53053
509
+ mi = MultiIndex.from_tuples([(1, 2, 3)], names=["i1", "i2", "i3"])
510
+ df = DataFrame(data=[[10, 20, 30]], index=mi, columns=["A", "B", "C"])
511
+ df.loc[(0, 0, 0)] = df.loc[(1, 2, 3)]
512
+ mi_expected = MultiIndex.from_tuples(
513
+ [(1, 2, 3), (0, 0, 0)], names=["i1", "i2", "i3"]
514
+ )
515
+ expected = DataFrame(
516
+ data=[[10, 20, 30], [10, 20, 30]],
517
+ index=mi_expected,
518
+ columns=["A", "B", "C"],
519
+ )
520
+ tm.assert_frame_equal(df, expected)
521
+
522
+
523
+ @td.skip_array_manager_invalid_test # df["foo"] select multiple columns -> .values
524
+ # is not a view
525
+ def test_frame_setitem_view_direct(
526
+ multiindex_dataframe_random_data, using_copy_on_write
527
+ ):
528
+ # this works because we are modifying the underlying array
529
+ # really a no-no
530
+ df = multiindex_dataframe_random_data.T
531
+ if using_copy_on_write:
532
+ with pytest.raises(ValueError, match="read-only"):
533
+ df["foo"].values[:] = 0
534
+ assert (df["foo"].values != 0).all()
535
+ else:
536
+ df["foo"].values[:] = 0
537
+ assert (df["foo"].values == 0).all()
538
+
539
+
540
+ def test_frame_setitem_copy_raises(
541
+ multiindex_dataframe_random_data, using_copy_on_write, warn_copy_on_write
542
+ ):
543
+ # will raise/warn as its chained assignment
544
+ df = multiindex_dataframe_random_data.T
545
+ if using_copy_on_write or warn_copy_on_write:
546
+ with tm.raises_chained_assignment_error():
547
+ df["foo"]["one"] = 2
548
+ else:
549
+ msg = "A value is trying to be set on a copy of a slice from a DataFrame"
550
+ with pytest.raises(SettingWithCopyError, match=msg):
551
+ with tm.raises_chained_assignment_error():
552
+ df["foo"]["one"] = 2
553
+
554
+
555
+ def test_frame_setitem_copy_no_write(
556
+ multiindex_dataframe_random_data, using_copy_on_write, warn_copy_on_write
557
+ ):
558
+ frame = multiindex_dataframe_random_data.T
559
+ expected = frame
560
+ df = frame.copy()
561
+ if using_copy_on_write or warn_copy_on_write:
562
+ with tm.raises_chained_assignment_error():
563
+ df["foo"]["one"] = 2
564
+ else:
565
+ msg = "A value is trying to be set on a copy of a slice from a DataFrame"
566
+ with pytest.raises(SettingWithCopyError, match=msg):
567
+ with tm.raises_chained_assignment_error():
568
+ df["foo"]["one"] = 2
569
+
570
+ result = df
571
+ tm.assert_frame_equal(result, expected)
572
+
573
+
574
+ def test_frame_setitem_partial_multiindex():
575
+ # GH 54875
576
+ df = DataFrame(
577
+ {
578
+ "a": [1, 2, 3],
579
+ "b": [3, 4, 5],
580
+ "c": 6,
581
+ "d": 7,
582
+ }
583
+ ).set_index(["a", "b", "c"])
584
+ ser = Series(8, index=df.index.droplevel("c"))
585
+ result = df.copy()
586
+ result["d"] = ser
587
+ expected = df.copy()
588
+ expected["d"] = 8
589
+ tm.assert_frame_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_slice.py ADDED
@@ -0,0 +1,796 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ datetime,
3
+ timedelta,
4
+ )
5
+
6
+ import numpy as np
7
+ import pytest
8
+
9
+ from pandas.errors import UnsortedIndexError
10
+
11
+ import pandas as pd
12
+ from pandas import (
13
+ DataFrame,
14
+ Index,
15
+ MultiIndex,
16
+ Series,
17
+ Timestamp,
18
+ )
19
+ import pandas._testing as tm
20
+ from pandas.tests.indexing.common import _mklbl
21
+
22
+
23
+ class TestMultiIndexSlicers:
24
+ def test_per_axis_per_level_getitem(self):
25
+ # GH6134
26
+ # example test case
27
+ ix = MultiIndex.from_product(
28
+ [_mklbl("A", 5), _mklbl("B", 7), _mklbl("C", 4), _mklbl("D", 2)]
29
+ )
30
+ df = DataFrame(np.arange(len(ix.to_numpy())), index=ix)
31
+
32
+ result = df.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :]
33
+ expected = df.loc[
34
+ [
35
+ (
36
+ a,
37
+ b,
38
+ c,
39
+ d,
40
+ )
41
+ for a, b, c, d in df.index.values
42
+ if a in ("A1", "A2", "A3") and c in ("C1", "C3")
43
+ ]
44
+ ]
45
+ tm.assert_frame_equal(result, expected)
46
+
47
+ expected = df.loc[
48
+ [
49
+ (
50
+ a,
51
+ b,
52
+ c,
53
+ d,
54
+ )
55
+ for a, b, c, d in df.index.values
56
+ if a in ("A1", "A2", "A3") and c in ("C1", "C2", "C3")
57
+ ]
58
+ ]
59
+ result = df.loc[(slice("A1", "A3"), slice(None), slice("C1", "C3")), :]
60
+ tm.assert_frame_equal(result, expected)
61
+
62
+ # test multi-index slicing with per axis and per index controls
63
+ index = MultiIndex.from_tuples(
64
+ [("A", 1), ("A", 2), ("A", 3), ("B", 1)], names=["one", "two"]
65
+ )
66
+ columns = MultiIndex.from_tuples(
67
+ [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
68
+ names=["lvl0", "lvl1"],
69
+ )
70
+
71
+ df = DataFrame(
72
+ np.arange(16, dtype="int64").reshape(4, 4), index=index, columns=columns
73
+ )
74
+ df = df.sort_index(axis=0).sort_index(axis=1)
75
+
76
+ # identity
77
+ result = df.loc[(slice(None), slice(None)), :]
78
+ tm.assert_frame_equal(result, df)
79
+ result = df.loc[(slice(None), slice(None)), (slice(None), slice(None))]
80
+ tm.assert_frame_equal(result, df)
81
+ result = df.loc[:, (slice(None), slice(None))]
82
+ tm.assert_frame_equal(result, df)
83
+
84
+ # index
85
+ result = df.loc[(slice(None), [1]), :]
86
+ expected = df.iloc[[0, 3]]
87
+ tm.assert_frame_equal(result, expected)
88
+
89
+ result = df.loc[(slice(None), 1), :]
90
+ expected = df.iloc[[0, 3]]
91
+ tm.assert_frame_equal(result, expected)
92
+
93
+ # columns
94
+ result = df.loc[:, (slice(None), ["foo"])]
95
+ expected = df.iloc[:, [1, 3]]
96
+ tm.assert_frame_equal(result, expected)
97
+
98
+ # both
99
+ result = df.loc[(slice(None), 1), (slice(None), ["foo"])]
100
+ expected = df.iloc[[0, 3], [1, 3]]
101
+ tm.assert_frame_equal(result, expected)
102
+
103
+ result = df.loc["A", "a"]
104
+ expected = DataFrame(
105
+ {"bar": [1, 5, 9], "foo": [0, 4, 8]},
106
+ index=Index([1, 2, 3], name="two"),
107
+ columns=Index(["bar", "foo"], name="lvl1"),
108
+ )
109
+ tm.assert_frame_equal(result, expected)
110
+
111
+ result = df.loc[(slice(None), [1, 2]), :]
112
+ expected = df.iloc[[0, 1, 3]]
113
+ tm.assert_frame_equal(result, expected)
114
+
115
+ # multi-level series
116
+ s = Series(np.arange(len(ix.to_numpy())), index=ix)
117
+ result = s.loc["A1":"A3", :, ["C1", "C3"]]
118
+ expected = s.loc[
119
+ [
120
+ (
121
+ a,
122
+ b,
123
+ c,
124
+ d,
125
+ )
126
+ for a, b, c, d in s.index.values
127
+ if a in ("A1", "A2", "A3") and c in ("C1", "C3")
128
+ ]
129
+ ]
130
+ tm.assert_series_equal(result, expected)
131
+
132
+ # boolean indexers
133
+ result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :]
134
+ expected = df.iloc[[2, 3]]
135
+ tm.assert_frame_equal(result, expected)
136
+
137
+ msg = (
138
+ "cannot index with a boolean indexer "
139
+ "that is not the same length as the index"
140
+ )
141
+ with pytest.raises(ValueError, match=msg):
142
+ df.loc[(slice(None), np.array([True, False])), :]
143
+
144
+ with pytest.raises(KeyError, match=r"\[1\] not in index"):
145
+ # slice(None) is on the index, [1] is on the columns, but 1 is
146
+ # not in the columns, so we raise
147
+ # This used to treat [1] as positional GH#16396
148
+ df.loc[slice(None), [1]]
149
+
150
+ # not lexsorted
151
+ assert df.index._lexsort_depth == 2
152
+ df = df.sort_index(level=1, axis=0)
153
+ assert df.index._lexsort_depth == 0
154
+
155
+ msg = (
156
+ "MultiIndex slicing requires the index to be "
157
+ r"lexsorted: slicing on levels \[1\], lexsort depth 0"
158
+ )
159
+ with pytest.raises(UnsortedIndexError, match=msg):
160
+ df.loc[(slice(None), slice("bar")), :]
161
+
162
+ # GH 16734: not sorted, but no real slicing
163
+ result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :]
164
+ tm.assert_frame_equal(result, df.iloc[[1, 3], :])
165
+
166
+ def test_multiindex_slicers_non_unique(self):
167
+ # GH 7106
168
+ # non-unique mi index support
169
+ df = (
170
+ DataFrame(
171
+ {
172
+ "A": ["foo", "foo", "foo", "foo"],
173
+ "B": ["a", "a", "a", "a"],
174
+ "C": [1, 2, 1, 3],
175
+ "D": [1, 2, 3, 4],
176
+ }
177
+ )
178
+ .set_index(["A", "B", "C"])
179
+ .sort_index()
180
+ )
181
+ assert not df.index.is_unique
182
+ expected = (
183
+ DataFrame({"A": ["foo", "foo"], "B": ["a", "a"], "C": [1, 1], "D": [1, 3]})
184
+ .set_index(["A", "B", "C"])
185
+ .sort_index()
186
+ )
187
+ result = df.loc[(slice(None), slice(None), 1), :]
188
+ tm.assert_frame_equal(result, expected)
189
+
190
+ # this is equivalent of an xs expression
191
+ result = df.xs(1, level=2, drop_level=False)
192
+ tm.assert_frame_equal(result, expected)
193
+
194
+ df = (
195
+ DataFrame(
196
+ {
197
+ "A": ["foo", "foo", "foo", "foo"],
198
+ "B": ["a", "a", "a", "a"],
199
+ "C": [1, 2, 1, 2],
200
+ "D": [1, 2, 3, 4],
201
+ }
202
+ )
203
+ .set_index(["A", "B", "C"])
204
+ .sort_index()
205
+ )
206
+ assert not df.index.is_unique
207
+ expected = (
208
+ DataFrame({"A": ["foo", "foo"], "B": ["a", "a"], "C": [1, 1], "D": [1, 3]})
209
+ .set_index(["A", "B", "C"])
210
+ .sort_index()
211
+ )
212
+ result = df.loc[(slice(None), slice(None), 1), :]
213
+ assert not result.index.is_unique
214
+ tm.assert_frame_equal(result, expected)
215
+
216
+ # GH12896
217
+ # numpy-implementation dependent bug
218
+ ints = [
219
+ 1,
220
+ 2,
221
+ 3,
222
+ 4,
223
+ 5,
224
+ 6,
225
+ 7,
226
+ 8,
227
+ 9,
228
+ 10,
229
+ 11,
230
+ 12,
231
+ 12,
232
+ 13,
233
+ 14,
234
+ 14,
235
+ 16,
236
+ 17,
237
+ 18,
238
+ 19,
239
+ 200000,
240
+ 200000,
241
+ ]
242
+ n = len(ints)
243
+ idx = MultiIndex.from_arrays([["a"] * n, ints])
244
+ result = Series([1] * n, index=idx)
245
+ result = result.sort_index()
246
+ result = result.loc[(slice(None), slice(100000))]
247
+ expected = Series([1] * (n - 2), index=idx[:-2]).sort_index()
248
+ tm.assert_series_equal(result, expected)
249
+
250
+ def test_multiindex_slicers_datetimelike(self):
251
+ # GH 7429
252
+ # buggy/inconsistent behavior when slicing with datetime-like
253
+ dates = [datetime(2012, 1, 1, 12, 12, 12) + timedelta(days=i) for i in range(6)]
254
+ freq = [1, 2]
255
+ index = MultiIndex.from_product([dates, freq], names=["date", "frequency"])
256
+
257
+ df = DataFrame(
258
+ np.arange(6 * 2 * 4, dtype="int64").reshape(-1, 4),
259
+ index=index,
260
+ columns=list("ABCD"),
261
+ )
262
+
263
+ # multi-axis slicing
264
+ idx = pd.IndexSlice
265
+ expected = df.iloc[[0, 2, 4], [0, 1]]
266
+ result = df.loc[
267
+ (
268
+ slice(
269
+ Timestamp("2012-01-01 12:12:12"), Timestamp("2012-01-03 12:12:12")
270
+ ),
271
+ slice(1, 1),
272
+ ),
273
+ slice("A", "B"),
274
+ ]
275
+ tm.assert_frame_equal(result, expected)
276
+
277
+ result = df.loc[
278
+ (
279
+ idx[
280
+ Timestamp("2012-01-01 12:12:12") : Timestamp("2012-01-03 12:12:12")
281
+ ],
282
+ idx[1:1],
283
+ ),
284
+ slice("A", "B"),
285
+ ]
286
+ tm.assert_frame_equal(result, expected)
287
+
288
+ result = df.loc[
289
+ (
290
+ slice(
291
+ Timestamp("2012-01-01 12:12:12"), Timestamp("2012-01-03 12:12:12")
292
+ ),
293
+ 1,
294
+ ),
295
+ slice("A", "B"),
296
+ ]
297
+ tm.assert_frame_equal(result, expected)
298
+
299
+ # with strings
300
+ result = df.loc[
301
+ (slice("2012-01-01 12:12:12", "2012-01-03 12:12:12"), slice(1, 1)),
302
+ slice("A", "B"),
303
+ ]
304
+ tm.assert_frame_equal(result, expected)
305
+
306
+ result = df.loc[
307
+ (idx["2012-01-01 12:12:12":"2012-01-03 12:12:12"], 1), idx["A", "B"]
308
+ ]
309
+ tm.assert_frame_equal(result, expected)
310
+
311
+ def test_multiindex_slicers_edges(self):
312
+ # GH 8132
313
+ # various edge cases
314
+ df = DataFrame(
315
+ {
316
+ "A": ["A0"] * 5 + ["A1"] * 5 + ["A2"] * 5,
317
+ "B": ["B0", "B0", "B1", "B1", "B2"] * 3,
318
+ "DATE": [
319
+ "2013-06-11",
320
+ "2013-07-02",
321
+ "2013-07-09",
322
+ "2013-07-30",
323
+ "2013-08-06",
324
+ "2013-06-11",
325
+ "2013-07-02",
326
+ "2013-07-09",
327
+ "2013-07-30",
328
+ "2013-08-06",
329
+ "2013-09-03",
330
+ "2013-10-01",
331
+ "2013-07-09",
332
+ "2013-08-06",
333
+ "2013-09-03",
334
+ ],
335
+ "VALUES": [22, 35, 14, 9, 4, 40, 18, 4, 2, 5, 1, 2, 3, 4, 2],
336
+ }
337
+ )
338
+
339
+ df["DATE"] = pd.to_datetime(df["DATE"])
340
+ df1 = df.set_index(["A", "B", "DATE"])
341
+ df1 = df1.sort_index()
342
+
343
+ # A1 - Get all values under "A0" and "A1"
344
+ result = df1.loc[(slice("A1")), :]
345
+ expected = df1.iloc[0:10]
346
+ tm.assert_frame_equal(result, expected)
347
+
348
+ # A2 - Get all values from the start to "A2"
349
+ result = df1.loc[(slice("A2")), :]
350
+ expected = df1
351
+ tm.assert_frame_equal(result, expected)
352
+
353
+ # A3 - Get all values under "B1" or "B2"
354
+ result = df1.loc[(slice(None), slice("B1", "B2")), :]
355
+ expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13, 14]]
356
+ tm.assert_frame_equal(result, expected)
357
+
358
+ # A4 - Get all values between 2013-07-02 and 2013-07-09
359
+ result = df1.loc[(slice(None), slice(None), slice("20130702", "20130709")), :]
360
+ expected = df1.iloc[[1, 2, 6, 7, 12]]
361
+ tm.assert_frame_equal(result, expected)
362
+
363
+ # B1 - Get all values in B0 that are also under A0, A1 and A2
364
+ result = df1.loc[(slice("A2"), slice("B0")), :]
365
+ expected = df1.iloc[[0, 1, 5, 6, 10, 11]]
366
+ tm.assert_frame_equal(result, expected)
367
+
368
+ # B2 - Get all values in B0, B1 and B2 (similar to what #2 is doing for
369
+ # the As)
370
+ result = df1.loc[(slice(None), slice("B2")), :]
371
+ expected = df1
372
+ tm.assert_frame_equal(result, expected)
373
+
374
+ # B3 - Get all values from B1 to B2 and up to 2013-08-06
375
+ result = df1.loc[(slice(None), slice("B1", "B2"), slice("2013-08-06")), :]
376
+ expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13]]
377
+ tm.assert_frame_equal(result, expected)
378
+
379
+ # B4 - Same as A4 but the start of the date slice is not a key.
380
+ # shows indexing on a partial selection slice
381
+ result = df1.loc[(slice(None), slice(None), slice("20130701", "20130709")), :]
382
+ expected = df1.iloc[[1, 2, 6, 7, 12]]
383
+ tm.assert_frame_equal(result, expected)
384
+
385
+ def test_per_axis_per_level_doc_examples(self):
386
+ # test index maker
387
+ idx = pd.IndexSlice
388
+
389
+ # from indexing.rst / advanced
390
+ index = MultiIndex.from_product(
391
+ [_mklbl("A", 4), _mklbl("B", 2), _mklbl("C", 4), _mklbl("D", 2)]
392
+ )
393
+ columns = MultiIndex.from_tuples(
394
+ [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
395
+ names=["lvl0", "lvl1"],
396
+ )
397
+ df = DataFrame(
398
+ np.arange(len(index) * len(columns), dtype="int64").reshape(
399
+ (len(index), len(columns))
400
+ ),
401
+ index=index,
402
+ columns=columns,
403
+ )
404
+ result = df.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :]
405
+ expected = df.loc[
406
+ [
407
+ (
408
+ a,
409
+ b,
410
+ c,
411
+ d,
412
+ )
413
+ for a, b, c, d in df.index.values
414
+ if a in ("A1", "A2", "A3") and c in ("C1", "C3")
415
+ ]
416
+ ]
417
+ tm.assert_frame_equal(result, expected)
418
+ result = df.loc[idx["A1":"A3", :, ["C1", "C3"]], :]
419
+ tm.assert_frame_equal(result, expected)
420
+
421
+ result = df.loc[(slice(None), slice(None), ["C1", "C3"]), :]
422
+ expected = df.loc[
423
+ [
424
+ (
425
+ a,
426
+ b,
427
+ c,
428
+ d,
429
+ )
430
+ for a, b, c, d in df.index.values
431
+ if c in ("C1", "C3")
432
+ ]
433
+ ]
434
+ tm.assert_frame_equal(result, expected)
435
+ result = df.loc[idx[:, :, ["C1", "C3"]], :]
436
+ tm.assert_frame_equal(result, expected)
437
+
438
+ # not sorted
439
+ msg = (
440
+ "MultiIndex slicing requires the index to be lexsorted: "
441
+ r"slicing on levels \[1\], lexsort depth 1"
442
+ )
443
+ with pytest.raises(UnsortedIndexError, match=msg):
444
+ df.loc["A1", ("a", slice("foo"))]
445
+
446
+ # GH 16734: not sorted, but no real slicing
447
+ tm.assert_frame_equal(
448
+ df.loc["A1", (slice(None), "foo")], df.loc["A1"].iloc[:, [0, 2]]
449
+ )
450
+
451
+ df = df.sort_index(axis=1)
452
+
453
+ # slicing
454
+ df.loc["A1", (slice(None), "foo")]
455
+ df.loc[(slice(None), slice(None), ["C1", "C3"]), (slice(None), "foo")]
456
+
457
+ # setitem
458
+ df.loc(axis=0)[:, :, ["C1", "C3"]] = -10
459
+
460
+ def test_loc_axis_arguments(self):
461
+ index = MultiIndex.from_product(
462
+ [_mklbl("A", 4), _mklbl("B", 2), _mklbl("C", 4), _mklbl("D", 2)]
463
+ )
464
+ columns = MultiIndex.from_tuples(
465
+ [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
466
+ names=["lvl0", "lvl1"],
467
+ )
468
+ df = (
469
+ DataFrame(
470
+ np.arange(len(index) * len(columns), dtype="int64").reshape(
471
+ (len(index), len(columns))
472
+ ),
473
+ index=index,
474
+ columns=columns,
475
+ )
476
+ .sort_index()
477
+ .sort_index(axis=1)
478
+ )
479
+
480
+ # axis 0
481
+ result = df.loc(axis=0)["A1":"A3", :, ["C1", "C3"]]
482
+ expected = df.loc[
483
+ [
484
+ (
485
+ a,
486
+ b,
487
+ c,
488
+ d,
489
+ )
490
+ for a, b, c, d in df.index.values
491
+ if a in ("A1", "A2", "A3") and c in ("C1", "C3")
492
+ ]
493
+ ]
494
+ tm.assert_frame_equal(result, expected)
495
+
496
+ result = df.loc(axis="index")[:, :, ["C1", "C3"]]
497
+ expected = df.loc[
498
+ [
499
+ (
500
+ a,
501
+ b,
502
+ c,
503
+ d,
504
+ )
505
+ for a, b, c, d in df.index.values
506
+ if c in ("C1", "C3")
507
+ ]
508
+ ]
509
+ tm.assert_frame_equal(result, expected)
510
+
511
+ # axis 1
512
+ result = df.loc(axis=1)[:, "foo"]
513
+ expected = df.loc[:, (slice(None), "foo")]
514
+ tm.assert_frame_equal(result, expected)
515
+
516
+ result = df.loc(axis="columns")[:, "foo"]
517
+ expected = df.loc[:, (slice(None), "foo")]
518
+ tm.assert_frame_equal(result, expected)
519
+
520
+ # invalid axis
521
+ for i in [-1, 2, "foo"]:
522
+ msg = f"No axis named {i} for object type DataFrame"
523
+ with pytest.raises(ValueError, match=msg):
524
+ df.loc(axis=i)[:, :, ["C1", "C3"]]
525
+
526
+ def test_loc_axis_single_level_multi_col_indexing_multiindex_col_df(self):
527
+ # GH29519
528
+ df = DataFrame(
529
+ np.arange(27).reshape(3, 9),
530
+ columns=MultiIndex.from_product([["a1", "a2", "a3"], ["b1", "b2", "b3"]]),
531
+ )
532
+ result = df.loc(axis=1)["a1":"a2"]
533
+ expected = df.iloc[:, :-3]
534
+
535
+ tm.assert_frame_equal(result, expected)
536
+
537
+ def test_loc_axis_single_level_single_col_indexing_multiindex_col_df(self):
538
+ # GH29519
539
+ df = DataFrame(
540
+ np.arange(27).reshape(3, 9),
541
+ columns=MultiIndex.from_product([["a1", "a2", "a3"], ["b1", "b2", "b3"]]),
542
+ )
543
+ result = df.loc(axis=1)["a1"]
544
+ expected = df.iloc[:, :3]
545
+ expected.columns = ["b1", "b2", "b3"]
546
+
547
+ tm.assert_frame_equal(result, expected)
548
+
549
+ def test_loc_ax_single_level_indexer_simple_df(self):
550
+ # GH29519
551
+ # test single level indexing on single index column data frame
552
+ df = DataFrame(np.arange(9).reshape(3, 3), columns=["a", "b", "c"])
553
+ result = df.loc(axis=1)["a"]
554
+ expected = Series(np.array([0, 3, 6]), name="a")
555
+ tm.assert_series_equal(result, expected)
556
+
557
+ def test_per_axis_per_level_setitem(self):
558
+ # test index maker
559
+ idx = pd.IndexSlice
560
+
561
+ # test multi-index slicing with per axis and per index controls
562
+ index = MultiIndex.from_tuples(
563
+ [("A", 1), ("A", 2), ("A", 3), ("B", 1)], names=["one", "two"]
564
+ )
565
+ columns = MultiIndex.from_tuples(
566
+ [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
567
+ names=["lvl0", "lvl1"],
568
+ )
569
+
570
+ df_orig = DataFrame(
571
+ np.arange(16, dtype="int64").reshape(4, 4), index=index, columns=columns
572
+ )
573
+ df_orig = df_orig.sort_index(axis=0).sort_index(axis=1)
574
+
575
+ # identity
576
+ df = df_orig.copy()
577
+ df.loc[(slice(None), slice(None)), :] = 100
578
+ expected = df_orig.copy()
579
+ expected.iloc[:, :] = 100
580
+ tm.assert_frame_equal(df, expected)
581
+
582
+ df = df_orig.copy()
583
+ df.loc(axis=0)[:, :] = 100
584
+ expected = df_orig.copy()
585
+ expected.iloc[:, :] = 100
586
+ tm.assert_frame_equal(df, expected)
587
+
588
+ df = df_orig.copy()
589
+ df.loc[(slice(None), slice(None)), (slice(None), slice(None))] = 100
590
+ expected = df_orig.copy()
591
+ expected.iloc[:, :] = 100
592
+ tm.assert_frame_equal(df, expected)
593
+
594
+ df = df_orig.copy()
595
+ df.loc[:, (slice(None), slice(None))] = 100
596
+ expected = df_orig.copy()
597
+ expected.iloc[:, :] = 100
598
+ tm.assert_frame_equal(df, expected)
599
+
600
+ # index
601
+ df = df_orig.copy()
602
+ df.loc[(slice(None), [1]), :] = 100
603
+ expected = df_orig.copy()
604
+ expected.iloc[[0, 3]] = 100
605
+ tm.assert_frame_equal(df, expected)
606
+
607
+ df = df_orig.copy()
608
+ df.loc[(slice(None), 1), :] = 100
609
+ expected = df_orig.copy()
610
+ expected.iloc[[0, 3]] = 100
611
+ tm.assert_frame_equal(df, expected)
612
+
613
+ df = df_orig.copy()
614
+ df.loc(axis=0)[:, 1] = 100
615
+ expected = df_orig.copy()
616
+ expected.iloc[[0, 3]] = 100
617
+ tm.assert_frame_equal(df, expected)
618
+
619
+ # columns
620
+ df = df_orig.copy()
621
+ df.loc[:, (slice(None), ["foo"])] = 100
622
+ expected = df_orig.copy()
623
+ expected.iloc[:, [1, 3]] = 100
624
+ tm.assert_frame_equal(df, expected)
625
+
626
+ # both
627
+ df = df_orig.copy()
628
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] = 100
629
+ expected = df_orig.copy()
630
+ expected.iloc[[0, 3], [1, 3]] = 100
631
+ tm.assert_frame_equal(df, expected)
632
+
633
+ df = df_orig.copy()
634
+ df.loc[idx[:, 1], idx[:, ["foo"]]] = 100
635
+ expected = df_orig.copy()
636
+ expected.iloc[[0, 3], [1, 3]] = 100
637
+ tm.assert_frame_equal(df, expected)
638
+
639
+ df = df_orig.copy()
640
+ df.loc["A", "a"] = 100
641
+ expected = df_orig.copy()
642
+ expected.iloc[0:3, 0:2] = 100
643
+ tm.assert_frame_equal(df, expected)
644
+
645
+ # setting with a list-like
646
+ df = df_orig.copy()
647
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array(
648
+ [[100, 100], [100, 100]], dtype="int64"
649
+ )
650
+ expected = df_orig.copy()
651
+ expected.iloc[[0, 3], [1, 3]] = 100
652
+ tm.assert_frame_equal(df, expected)
653
+
654
+ # not enough values
655
+ df = df_orig.copy()
656
+
657
+ msg = "setting an array element with a sequence."
658
+ with pytest.raises(ValueError, match=msg):
659
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array(
660
+ [[100], [100, 100]], dtype="int64"
661
+ )
662
+
663
+ msg = "Must have equal len keys and value when setting with an iterable"
664
+ with pytest.raises(ValueError, match=msg):
665
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array(
666
+ [100, 100, 100, 100], dtype="int64"
667
+ )
668
+
669
+ # with an alignable rhs
670
+ df = df_orig.copy()
671
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] = (
672
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] * 5
673
+ )
674
+ expected = df_orig.copy()
675
+ expected.iloc[[0, 3], [1, 3]] = expected.iloc[[0, 3], [1, 3]] * 5
676
+ tm.assert_frame_equal(df, expected)
677
+
678
+ df = df_orig.copy()
679
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] *= df.loc[
680
+ (slice(None), 1), (slice(None), ["foo"])
681
+ ]
682
+ expected = df_orig.copy()
683
+ expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]]
684
+ tm.assert_frame_equal(df, expected)
685
+
686
+ rhs = df_orig.loc[(slice(None), 1), (slice(None), ["foo"])].copy()
687
+ rhs.loc[:, ("c", "bah")] = 10
688
+ df = df_orig.copy()
689
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] *= rhs
690
+ expected = df_orig.copy()
691
+ expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]]
692
+ tm.assert_frame_equal(df, expected)
693
+
694
+ def test_multiindex_label_slicing_with_negative_step(self):
695
+ ser = Series(
696
+ np.arange(20), MultiIndex.from_product([list("abcde"), np.arange(4)])
697
+ )
698
+ SLC = pd.IndexSlice
699
+
700
+ tm.assert_indexing_slices_equivalent(ser, SLC[::-1], SLC[::-1])
701
+
702
+ tm.assert_indexing_slices_equivalent(ser, SLC["d"::-1], SLC[15::-1])
703
+ tm.assert_indexing_slices_equivalent(ser, SLC[("d",)::-1], SLC[15::-1])
704
+
705
+ tm.assert_indexing_slices_equivalent(ser, SLC[:"d":-1], SLC[:11:-1])
706
+ tm.assert_indexing_slices_equivalent(ser, SLC[:("d",):-1], SLC[:11:-1])
707
+
708
+ tm.assert_indexing_slices_equivalent(ser, SLC["d":"b":-1], SLC[15:3:-1])
709
+ tm.assert_indexing_slices_equivalent(ser, SLC[("d",):"b":-1], SLC[15:3:-1])
710
+ tm.assert_indexing_slices_equivalent(ser, SLC["d":("b",):-1], SLC[15:3:-1])
711
+ tm.assert_indexing_slices_equivalent(ser, SLC[("d",):("b",):-1], SLC[15:3:-1])
712
+ tm.assert_indexing_slices_equivalent(ser, SLC["b":"d":-1], SLC[:0])
713
+
714
+ tm.assert_indexing_slices_equivalent(ser, SLC[("c", 2)::-1], SLC[10::-1])
715
+ tm.assert_indexing_slices_equivalent(ser, SLC[:("c", 2):-1], SLC[:9:-1])
716
+ tm.assert_indexing_slices_equivalent(
717
+ ser, SLC[("e", 0):("c", 2):-1], SLC[16:9:-1]
718
+ )
719
+
720
+ def test_multiindex_slice_first_level(self):
721
+ # GH 12697
722
+ freq = ["a", "b", "c", "d"]
723
+ idx = MultiIndex.from_product([freq, range(500)])
724
+ df = DataFrame(list(range(2000)), index=idx, columns=["Test"])
725
+ df_slice = df.loc[pd.IndexSlice[:, 30:70], :]
726
+ result = df_slice.loc["a"]
727
+ expected = DataFrame(list(range(30, 71)), columns=["Test"], index=range(30, 71))
728
+ tm.assert_frame_equal(result, expected)
729
+ result = df_slice.loc["d"]
730
+ expected = DataFrame(
731
+ list(range(1530, 1571)), columns=["Test"], index=range(30, 71)
732
+ )
733
+ tm.assert_frame_equal(result, expected)
734
+
735
+ def test_int_series_slicing(self, multiindex_year_month_day_dataframe_random_data):
736
+ ymd = multiindex_year_month_day_dataframe_random_data
737
+ s = ymd["A"]
738
+ result = s[5:]
739
+ expected = s.reindex(s.index[5:])
740
+ tm.assert_series_equal(result, expected)
741
+
742
+ s = ymd["A"].copy()
743
+ exp = ymd["A"].copy()
744
+ s[5:] = 0
745
+ exp.iloc[5:] = 0
746
+ tm.assert_numpy_array_equal(s.values, exp.values)
747
+
748
+ result = ymd[5:]
749
+ expected = ymd.reindex(s.index[5:])
750
+ tm.assert_frame_equal(result, expected)
751
+
752
+ @pytest.mark.parametrize(
753
+ "dtype, loc, iloc",
754
+ [
755
+ # dtype = int, step = -1
756
+ ("int", slice(None, None, -1), slice(None, None, -1)),
757
+ ("int", slice(3, None, -1), slice(3, None, -1)),
758
+ ("int", slice(None, 1, -1), slice(None, 0, -1)),
759
+ ("int", slice(3, 1, -1), slice(3, 0, -1)),
760
+ # dtype = int, step = -2
761
+ ("int", slice(None, None, -2), slice(None, None, -2)),
762
+ ("int", slice(3, None, -2), slice(3, None, -2)),
763
+ ("int", slice(None, 1, -2), slice(None, 0, -2)),
764
+ ("int", slice(3, 1, -2), slice(3, 0, -2)),
765
+ # dtype = str, step = -1
766
+ ("str", slice(None, None, -1), slice(None, None, -1)),
767
+ ("str", slice("d", None, -1), slice(3, None, -1)),
768
+ ("str", slice(None, "b", -1), slice(None, 0, -1)),
769
+ ("str", slice("d", "b", -1), slice(3, 0, -1)),
770
+ # dtype = str, step = -2
771
+ ("str", slice(None, None, -2), slice(None, None, -2)),
772
+ ("str", slice("d", None, -2), slice(3, None, -2)),
773
+ ("str", slice(None, "b", -2), slice(None, 0, -2)),
774
+ ("str", slice("d", "b", -2), slice(3, 0, -2)),
775
+ ],
776
+ )
777
+ def test_loc_slice_negative_stepsize(self, dtype, loc, iloc):
778
+ # GH#38071
779
+ labels = {
780
+ "str": list("abcde"),
781
+ "int": range(5),
782
+ }[dtype]
783
+
784
+ mi = MultiIndex.from_arrays([labels] * 2)
785
+ df = DataFrame(1.0, index=mi, columns=["A"])
786
+
787
+ SLC = pd.IndexSlice
788
+
789
+ expected = df.iloc[iloc, :]
790
+ result_get_loc = df.loc[SLC[loc], :]
791
+ result_get_locs_level_0 = df.loc[SLC[loc, :], :]
792
+ result_get_locs_level_1 = df.loc[SLC[:, loc], :]
793
+
794
+ tm.assert_frame_equal(result_get_loc, expected)
795
+ tm.assert_frame_equal(result_get_locs_level_0, expected)
796
+ tm.assert_frame_equal(result_get_locs_level_1, expected)
venv/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_sorted.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ NA,
6
+ DataFrame,
7
+ MultiIndex,
8
+ Series,
9
+ array,
10
+ )
11
+ import pandas._testing as tm
12
+
13
+
14
+ class TestMultiIndexSorted:
15
+ def test_getitem_multilevel_index_tuple_not_sorted(self):
16
+ index_columns = list("abc")
17
+ df = DataFrame(
18
+ [[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"]
19
+ )
20
+ df = df.set_index(index_columns)
21
+ query_index = df.index[:1]
22
+ rs = df.loc[query_index, "data"]
23
+
24
+ xp_idx = MultiIndex.from_tuples([(0, 1, 0)], names=["a", "b", "c"])
25
+ xp = Series(["x"], index=xp_idx, name="data")
26
+ tm.assert_series_equal(rs, xp)
27
+
28
+ def test_getitem_slice_not_sorted(self, multiindex_dataframe_random_data):
29
+ frame = multiindex_dataframe_random_data
30
+ df = frame.sort_index(level=1).T
31
+
32
+ # buglet with int typechecking
33
+ result = df.iloc[:, : np.int32(3)]
34
+ expected = df.reindex(columns=df.columns[:3])
35
+ tm.assert_frame_equal(result, expected)
36
+
37
+ @pytest.mark.parametrize("key", [None, lambda x: x])
38
+ def test_frame_getitem_not_sorted2(self, key):
39
+ # 13431
40
+ df = DataFrame(
41
+ {
42
+ "col1": ["b", "d", "b", "a"],
43
+ "col2": [3, 1, 1, 2],
44
+ "data": ["one", "two", "three", "four"],
45
+ }
46
+ )
47
+
48
+ df2 = df.set_index(["col1", "col2"])
49
+ df2_original = df2.copy()
50
+
51
+ df2.index = df2.index.set_levels(["b", "d", "a"], level="col1")
52
+ df2.index = df2.index.set_codes([0, 1, 0, 2], level="col1")
53
+ assert not df2.index.is_monotonic_increasing
54
+
55
+ assert df2_original.index.equals(df2.index)
56
+ expected = df2.sort_index(key=key)
57
+ assert expected.index.is_monotonic_increasing
58
+
59
+ result = df2.sort_index(level=0, key=key)
60
+ assert result.index.is_monotonic_increasing
61
+ tm.assert_frame_equal(result, expected)
62
+
63
+ def test_sort_values_key(self):
64
+ arrays = [
65
+ ["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"],
66
+ ["one", "two", "one", "two", "one", "two", "one", "two"],
67
+ ]
68
+ tuples = zip(*arrays)
69
+ index = MultiIndex.from_tuples(tuples)
70
+ index = index.sort_values( # sort by third letter
71
+ key=lambda x: x.map(lambda entry: entry[2])
72
+ )
73
+ result = DataFrame(range(8), index=index)
74
+
75
+ arrays = [
76
+ ["foo", "foo", "bar", "bar", "qux", "qux", "baz", "baz"],
77
+ ["one", "two", "one", "two", "one", "two", "one", "two"],
78
+ ]
79
+ tuples = zip(*arrays)
80
+ index = MultiIndex.from_tuples(tuples)
81
+ expected = DataFrame(range(8), index=index)
82
+
83
+ tm.assert_frame_equal(result, expected)
84
+
85
+ def test_argsort_with_na(self):
86
+ # GH48495
87
+ arrays = [
88
+ array([2, NA, 1], dtype="Int64"),
89
+ array([1, 2, 3], dtype="Int64"),
90
+ ]
91
+ index = MultiIndex.from_arrays(arrays)
92
+ result = index.argsort()
93
+ expected = np.array([2, 0, 1], dtype=np.intp)
94
+ tm.assert_numpy_array_equal(result, expected)
95
+
96
+ def test_sort_values_with_na(self):
97
+ # GH48495
98
+ arrays = [
99
+ array([2, NA, 1], dtype="Int64"),
100
+ array([1, 2, 3], dtype="Int64"),
101
+ ]
102
+ index = MultiIndex.from_arrays(arrays)
103
+ index = index.sort_values()
104
+ result = DataFrame(range(3), index=index)
105
+
106
+ arrays = [
107
+ array([1, 2, NA], dtype="Int64"),
108
+ array([3, 1, 2], dtype="Int64"),
109
+ ]
110
+ index = MultiIndex.from_arrays(arrays)
111
+ expected = DataFrame(range(3), index=index)
112
+
113
+ tm.assert_frame_equal(result, expected)
114
+
115
+ def test_frame_getitem_not_sorted(self, multiindex_dataframe_random_data):
116
+ frame = multiindex_dataframe_random_data
117
+ df = frame.T
118
+ df["foo", "four"] = "foo"
119
+
120
+ arrays = [np.array(x) for x in zip(*df.columns.values)]
121
+
122
+ result = df["foo"]
123
+ result2 = df.loc[:, "foo"]
124
+ expected = df.reindex(columns=df.columns[arrays[0] == "foo"])
125
+ expected.columns = expected.columns.droplevel(0)
126
+ tm.assert_frame_equal(result, expected)
127
+ tm.assert_frame_equal(result2, expected)
128
+
129
+ df = df.T
130
+ result = df.xs("foo")
131
+ result2 = df.loc["foo"]
132
+ expected = df.reindex(df.index[arrays[0] == "foo"])
133
+ expected.index = expected.index.droplevel(0)
134
+ tm.assert_frame_equal(result, expected)
135
+ tm.assert_frame_equal(result2, expected)
136
+
137
+ def test_series_getitem_not_sorted(self):
138
+ arrays = [
139
+ ["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"],
140
+ ["one", "two", "one", "two", "one", "two", "one", "two"],
141
+ ]
142
+ tuples = zip(*arrays)
143
+ index = MultiIndex.from_tuples(tuples)
144
+ s = Series(np.random.default_rng(2).standard_normal(8), index=index)
145
+
146
+ arrays = [np.array(x) for x in zip(*index.values)]
147
+
148
+ result = s["qux"]
149
+ result2 = s.loc["qux"]
150
+ expected = s[arrays[0] == "qux"]
151
+ expected.index = expected.index.droplevel(0)
152
+ tm.assert_series_equal(result, expected)
153
+ tm.assert_series_equal(result2, expected)
venv/lib/python3.10/site-packages/pandas/tests/indexing/test_at.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ datetime,
3
+ timezone,
4
+ )
5
+
6
+ import numpy as np
7
+ import pytest
8
+
9
+ from pandas.errors import InvalidIndexError
10
+
11
+ from pandas import (
12
+ CategoricalDtype,
13
+ CategoricalIndex,
14
+ DataFrame,
15
+ DatetimeIndex,
16
+ Index,
17
+ MultiIndex,
18
+ Series,
19
+ Timestamp,
20
+ )
21
+ import pandas._testing as tm
22
+
23
+
24
+ def test_at_timezone():
25
+ # https://github.com/pandas-dev/pandas/issues/33544
26
+ result = DataFrame({"foo": [datetime(2000, 1, 1)]})
27
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
28
+ result.at[0, "foo"] = datetime(2000, 1, 2, tzinfo=timezone.utc)
29
+ expected = DataFrame(
30
+ {"foo": [datetime(2000, 1, 2, tzinfo=timezone.utc)]}, dtype=object
31
+ )
32
+ tm.assert_frame_equal(result, expected)
33
+
34
+
35
+ def test_selection_methods_of_assigned_col():
36
+ # GH 29282
37
+ df = DataFrame(data={"a": [1, 2, 3], "b": [4, 5, 6]})
38
+ df2 = DataFrame(data={"c": [7, 8, 9]}, index=[2, 1, 0])
39
+ df["c"] = df2["c"]
40
+ df.at[1, "c"] = 11
41
+ result = df
42
+ expected = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [9, 11, 7]})
43
+ tm.assert_frame_equal(result, expected)
44
+ result = df.at[1, "c"]
45
+ assert result == 11
46
+
47
+ result = df["c"]
48
+ expected = Series([9, 11, 7], name="c")
49
+ tm.assert_series_equal(result, expected)
50
+
51
+ result = df[["c"]]
52
+ expected = DataFrame({"c": [9, 11, 7]})
53
+ tm.assert_frame_equal(result, expected)
54
+
55
+
56
+ class TestAtSetItem:
57
+ def test_at_setitem_item_cache_cleared(self):
58
+ # GH#22372 Note the multi-step construction is necessary to trigger
59
+ # the original bug. pandas/issues/22372#issuecomment-413345309
60
+ df = DataFrame(index=[0])
61
+ df["x"] = 1
62
+ df["cost"] = 2
63
+
64
+ # accessing df["cost"] adds "cost" to the _item_cache
65
+ df["cost"]
66
+
67
+ # This loc[[0]] lookup used to call _consolidate_inplace at the
68
+ # BlockManager level, which failed to clear the _item_cache
69
+ df.loc[[0]]
70
+
71
+ df.at[0, "x"] = 4
72
+ df.at[0, "cost"] = 789
73
+
74
+ expected = DataFrame(
75
+ {"x": [4], "cost": 789},
76
+ index=[0],
77
+ columns=Index(["x", "cost"], dtype=object),
78
+ )
79
+ tm.assert_frame_equal(df, expected)
80
+
81
+ # And in particular, check that the _item_cache has updated correctly.
82
+ tm.assert_series_equal(df["cost"], expected["cost"])
83
+
84
+ def test_at_setitem_mixed_index_assignment(self):
85
+ # GH#19860
86
+ ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2])
87
+ ser.at["a"] = 11
88
+ assert ser.iat[0] == 11
89
+ ser.at[1] = 22
90
+ assert ser.iat[3] == 22
91
+
92
+ def test_at_setitem_categorical_missing(self):
93
+ df = DataFrame(
94
+ index=range(3), columns=range(3), dtype=CategoricalDtype(["foo", "bar"])
95
+ )
96
+ df.at[1, 1] = "foo"
97
+
98
+ expected = DataFrame(
99
+ [
100
+ [np.nan, np.nan, np.nan],
101
+ [np.nan, "foo", np.nan],
102
+ [np.nan, np.nan, np.nan],
103
+ ],
104
+ dtype=CategoricalDtype(["foo", "bar"]),
105
+ )
106
+
107
+ tm.assert_frame_equal(df, expected)
108
+
109
+ def test_at_setitem_multiindex(self):
110
+ df = DataFrame(
111
+ np.zeros((3, 2), dtype="int64"),
112
+ columns=MultiIndex.from_tuples([("a", 0), ("a", 1)]),
113
+ )
114
+ df.at[0, "a"] = 10
115
+ expected = DataFrame(
116
+ [[10, 10], [0, 0], [0, 0]],
117
+ columns=MultiIndex.from_tuples([("a", 0), ("a", 1)]),
118
+ )
119
+ tm.assert_frame_equal(df, expected)
120
+
121
+ @pytest.mark.parametrize("row", (Timestamp("2019-01-01"), "2019-01-01"))
122
+ def test_at_datetime_index(self, row):
123
+ # Set float64 dtype to avoid upcast when setting .5
124
+ df = DataFrame(
125
+ data=[[1] * 2], index=DatetimeIndex(data=["2019-01-01", "2019-01-02"])
126
+ ).astype({0: "float64"})
127
+ expected = DataFrame(
128
+ data=[[0.5, 1], [1.0, 1]],
129
+ index=DatetimeIndex(data=["2019-01-01", "2019-01-02"]),
130
+ )
131
+
132
+ df.at[row, 0] = 0.5
133
+ tm.assert_frame_equal(df, expected)
134
+
135
+
136
+ class TestAtSetItemWithExpansion:
137
+ def test_at_setitem_expansion_series_dt64tz_value(self, tz_naive_fixture):
138
+ # GH#25506
139
+ ts = Timestamp("2017-08-05 00:00:00+0100", tz=tz_naive_fixture)
140
+ result = Series(ts)
141
+ result.at[1] = ts
142
+ expected = Series([ts, ts])
143
+ tm.assert_series_equal(result, expected)
144
+
145
+
146
+ class TestAtWithDuplicates:
147
+ def test_at_with_duplicate_axes_requires_scalar_lookup(self):
148
+ # GH#33041 check that falling back to loc doesn't allow non-scalar
149
+ # args to slip in
150
+
151
+ arr = np.random.default_rng(2).standard_normal(6).reshape(3, 2)
152
+ df = DataFrame(arr, columns=["A", "A"])
153
+
154
+ msg = "Invalid call for scalar access"
155
+ with pytest.raises(ValueError, match=msg):
156
+ df.at[[1, 2]]
157
+ with pytest.raises(ValueError, match=msg):
158
+ df.at[1, ["A"]]
159
+ with pytest.raises(ValueError, match=msg):
160
+ df.at[:, "A"]
161
+
162
+ with pytest.raises(ValueError, match=msg):
163
+ df.at[[1, 2]] = 1
164
+ with pytest.raises(ValueError, match=msg):
165
+ df.at[1, ["A"]] = 1
166
+ with pytest.raises(ValueError, match=msg):
167
+ df.at[:, "A"] = 1
168
+
169
+
170
+ class TestAtErrors:
171
+ # TODO: De-duplicate/parametrize
172
+ # test_at_series_raises_key_error2, test_at_frame_raises_key_error2
173
+
174
+ def test_at_series_raises_key_error(self, indexer_al):
175
+ # GH#31724 .at should match .loc
176
+
177
+ ser = Series([1, 2, 3], index=[3, 2, 1])
178
+ result = indexer_al(ser)[1]
179
+ assert result == 3
180
+
181
+ with pytest.raises(KeyError, match="a"):
182
+ indexer_al(ser)["a"]
183
+
184
+ def test_at_frame_raises_key_error(self, indexer_al):
185
+ # GH#31724 .at should match .loc
186
+
187
+ df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1])
188
+
189
+ result = indexer_al(df)[1, 0]
190
+ assert result == 3
191
+
192
+ with pytest.raises(KeyError, match="a"):
193
+ indexer_al(df)["a", 0]
194
+
195
+ with pytest.raises(KeyError, match="a"):
196
+ indexer_al(df)[1, "a"]
197
+
198
+ def test_at_series_raises_key_error2(self, indexer_al):
199
+ # at should not fallback
200
+ # GH#7814
201
+ # GH#31724 .at should match .loc
202
+ ser = Series([1, 2, 3], index=list("abc"))
203
+ result = indexer_al(ser)["a"]
204
+ assert result == 1
205
+
206
+ with pytest.raises(KeyError, match="^0$"):
207
+ indexer_al(ser)[0]
208
+
209
+ def test_at_frame_raises_key_error2(self, indexer_al):
210
+ # GH#31724 .at should match .loc
211
+ df = DataFrame({"A": [1, 2, 3]}, index=list("abc"))
212
+ result = indexer_al(df)["a", "A"]
213
+ assert result == 1
214
+
215
+ with pytest.raises(KeyError, match="^0$"):
216
+ indexer_al(df)["a", 0]
217
+
218
+ def test_at_frame_multiple_columns(self):
219
+ # GH#48296 - at shouldn't modify multiple columns
220
+ df = DataFrame({"a": [1, 2], "b": [3, 4]})
221
+ new_row = [6, 7]
222
+ with pytest.raises(
223
+ InvalidIndexError,
224
+ match=f"You can only assign a scalar value not a \\{type(new_row)}",
225
+ ):
226
+ df.at[5] = new_row
227
+
228
+ def test_at_getitem_mixed_index_no_fallback(self):
229
+ # GH#19860
230
+ ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2])
231
+ with pytest.raises(KeyError, match="^0$"):
232
+ ser.at[0]
233
+ with pytest.raises(KeyError, match="^4$"):
234
+ ser.at[4]
235
+
236
+ def test_at_categorical_integers(self):
237
+ # CategoricalIndex with integer categories that don't happen to match
238
+ # the Categorical's codes
239
+ ci = CategoricalIndex([3, 4])
240
+
241
+ arr = np.arange(4).reshape(2, 2)
242
+ frame = DataFrame(arr, index=ci)
243
+
244
+ for df in [frame, frame.T]:
245
+ for key in [0, 1]:
246
+ with pytest.raises(KeyError, match=str(key)):
247
+ df.at[key, key]
248
+
249
+ def test_at_applied_for_rows(self):
250
+ # GH#48729 .at should raise InvalidIndexError when assigning rows
251
+ df = DataFrame(index=["a"], columns=["col1", "col2"])
252
+ new_row = [123, 15]
253
+ with pytest.raises(
254
+ InvalidIndexError,
255
+ match=f"You can only assign a scalar value not a \\{type(new_row)}",
256
+ ):
257
+ df.at["a"] = new_row
venv/lib/python3.10/site-packages/pandas/tests/indexing/test_categorical.py ADDED
@@ -0,0 +1,573 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas.util._test_decorators as td
7
+
8
+ import pandas as pd
9
+ from pandas import (
10
+ Categorical,
11
+ CategoricalDtype,
12
+ CategoricalIndex,
13
+ DataFrame,
14
+ Index,
15
+ Interval,
16
+ Series,
17
+ Timedelta,
18
+ Timestamp,
19
+ option_context,
20
+ )
21
+ import pandas._testing as tm
22
+
23
+
24
+ @pytest.fixture
25
+ def df():
26
+ return DataFrame(
27
+ {
28
+ "A": np.arange(6, dtype="int64"),
29
+ },
30
+ index=CategoricalIndex(
31
+ list("aabbca"), dtype=CategoricalDtype(list("cab")), name="B"
32
+ ),
33
+ )
34
+
35
+
36
+ @pytest.fixture
37
+ def df2():
38
+ return DataFrame(
39
+ {
40
+ "A": np.arange(6, dtype="int64"),
41
+ },
42
+ index=CategoricalIndex(
43
+ list("aabbca"), dtype=CategoricalDtype(list("cabe")), name="B"
44
+ ),
45
+ )
46
+
47
+
48
+ class TestCategoricalIndex:
49
+ def test_loc_scalar(self, df):
50
+ dtype = CategoricalDtype(list("cab"))
51
+ result = df.loc["a"]
52
+ bidx = Series(list("aaa"), name="B").astype(dtype)
53
+ assert bidx.dtype == dtype
54
+
55
+ expected = DataFrame({"A": [0, 1, 5]}, index=Index(bidx))
56
+ tm.assert_frame_equal(result, expected)
57
+
58
+ df = df.copy()
59
+ df.loc["a"] = 20
60
+ bidx2 = Series(list("aabbca"), name="B").astype(dtype)
61
+ assert bidx2.dtype == dtype
62
+ expected = DataFrame(
63
+ {
64
+ "A": [20, 20, 2, 3, 4, 20],
65
+ },
66
+ index=Index(bidx2),
67
+ )
68
+ tm.assert_frame_equal(df, expected)
69
+
70
+ # value not in the categories
71
+ with pytest.raises(KeyError, match=r"^'d'$"):
72
+ df.loc["d"]
73
+
74
+ df2 = df.copy()
75
+ expected = df2.copy()
76
+ expected.index = expected.index.astype(object)
77
+ expected.loc["d"] = 10
78
+ df2.loc["d"] = 10
79
+ tm.assert_frame_equal(df2, expected)
80
+
81
+ def test_loc_setitem_with_expansion_non_category(self, df):
82
+ # Setting-with-expansion with a new key "d" that is not among caegories
83
+ df.loc["a"] = 20
84
+
85
+ # Setting a new row on an existing column
86
+ df3 = df.copy()
87
+ df3.loc["d", "A"] = 10
88
+ bidx3 = Index(list("aabbcad"), name="B")
89
+ expected3 = DataFrame(
90
+ {
91
+ "A": [20, 20, 2, 3, 4, 20, 10.0],
92
+ },
93
+ index=Index(bidx3),
94
+ )
95
+ tm.assert_frame_equal(df3, expected3)
96
+
97
+ # Setting a new row _and_ new column
98
+ df4 = df.copy()
99
+ df4.loc["d", "C"] = 10
100
+ expected3 = DataFrame(
101
+ {
102
+ "A": [20, 20, 2, 3, 4, 20, np.nan],
103
+ "C": [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 10],
104
+ },
105
+ index=Index(bidx3),
106
+ )
107
+ tm.assert_frame_equal(df4, expected3)
108
+
109
+ def test_loc_getitem_scalar_non_category(self, df):
110
+ with pytest.raises(KeyError, match="^1$"):
111
+ df.loc[1]
112
+
113
+ def test_slicing(self):
114
+ cat = Series(Categorical([1, 2, 3, 4]))
115
+ reverse = cat[::-1]
116
+ exp = np.array([4, 3, 2, 1], dtype=np.int64)
117
+ tm.assert_numpy_array_equal(reverse.__array__(), exp)
118
+
119
+ df = DataFrame({"value": (np.arange(100) + 1).astype("int64")})
120
+ df["D"] = pd.cut(df.value, bins=[0, 25, 50, 75, 100])
121
+
122
+ expected = Series([11, Interval(0, 25)], index=["value", "D"], name=10)
123
+ result = df.iloc[10]
124
+ tm.assert_series_equal(result, expected)
125
+
126
+ expected = DataFrame(
127
+ {"value": np.arange(11, 21).astype("int64")},
128
+ index=np.arange(10, 20).astype("int64"),
129
+ )
130
+ expected["D"] = pd.cut(expected.value, bins=[0, 25, 50, 75, 100])
131
+ result = df.iloc[10:20]
132
+ tm.assert_frame_equal(result, expected)
133
+
134
+ expected = Series([9, Interval(0, 25)], index=["value", "D"], name=8)
135
+ result = df.loc[8]
136
+ tm.assert_series_equal(result, expected)
137
+
138
+ def test_slicing_and_getting_ops(self):
139
+ # systematically test the slicing operations:
140
+ # for all slicing ops:
141
+ # - returning a dataframe
142
+ # - returning a column
143
+ # - returning a row
144
+ # - returning a single value
145
+
146
+ cats = Categorical(
147
+ ["a", "c", "b", "c", "c", "c", "c"], categories=["a", "b", "c"]
148
+ )
149
+ idx = Index(["h", "i", "j", "k", "l", "m", "n"])
150
+ values = [1, 2, 3, 4, 5, 6, 7]
151
+ df = DataFrame({"cats": cats, "values": values}, index=idx)
152
+
153
+ # the expected values
154
+ cats2 = Categorical(["b", "c"], categories=["a", "b", "c"])
155
+ idx2 = Index(["j", "k"])
156
+ values2 = [3, 4]
157
+
158
+ # 2:4,: | "j":"k",:
159
+ exp_df = DataFrame({"cats": cats2, "values": values2}, index=idx2)
160
+
161
+ # :,"cats" | :,0
162
+ exp_col = Series(cats, index=idx, name="cats")
163
+
164
+ # "j",: | 2,:
165
+ exp_row = Series(["b", 3], index=["cats", "values"], dtype="object", name="j")
166
+
167
+ # "j","cats | 2,0
168
+ exp_val = "b"
169
+
170
+ # iloc
171
+ # frame
172
+ res_df = df.iloc[2:4, :]
173
+ tm.assert_frame_equal(res_df, exp_df)
174
+ assert isinstance(res_df["cats"].dtype, CategoricalDtype)
175
+
176
+ # row
177
+ res_row = df.iloc[2, :]
178
+ tm.assert_series_equal(res_row, exp_row)
179
+ assert isinstance(res_row["cats"], str)
180
+
181
+ # col
182
+ res_col = df.iloc[:, 0]
183
+ tm.assert_series_equal(res_col, exp_col)
184
+ assert isinstance(res_col.dtype, CategoricalDtype)
185
+
186
+ # single value
187
+ res_val = df.iloc[2, 0]
188
+ assert res_val == exp_val
189
+
190
+ # loc
191
+ # frame
192
+ res_df = df.loc["j":"k", :]
193
+ tm.assert_frame_equal(res_df, exp_df)
194
+ assert isinstance(res_df["cats"].dtype, CategoricalDtype)
195
+
196
+ # row
197
+ res_row = df.loc["j", :]
198
+ tm.assert_series_equal(res_row, exp_row)
199
+ assert isinstance(res_row["cats"], str)
200
+
201
+ # col
202
+ res_col = df.loc[:, "cats"]
203
+ tm.assert_series_equal(res_col, exp_col)
204
+ assert isinstance(res_col.dtype, CategoricalDtype)
205
+
206
+ # single value
207
+ res_val = df.loc["j", "cats"]
208
+ assert res_val == exp_val
209
+
210
+ # single value
211
+ res_val = df.loc["j", df.columns[0]]
212
+ assert res_val == exp_val
213
+
214
+ # iat
215
+ res_val = df.iat[2, 0]
216
+ assert res_val == exp_val
217
+
218
+ # at
219
+ res_val = df.at["j", "cats"]
220
+ assert res_val == exp_val
221
+
222
+ # fancy indexing
223
+ exp_fancy = df.iloc[[2]]
224
+
225
+ res_fancy = df[df["cats"] == "b"]
226
+ tm.assert_frame_equal(res_fancy, exp_fancy)
227
+ res_fancy = df[df["values"] == 3]
228
+ tm.assert_frame_equal(res_fancy, exp_fancy)
229
+
230
+ # get_value
231
+ res_val = df.at["j", "cats"]
232
+ assert res_val == exp_val
233
+
234
+ # i : int, slice, or sequence of integers
235
+ res_row = df.iloc[2]
236
+ tm.assert_series_equal(res_row, exp_row)
237
+ assert isinstance(res_row["cats"], str)
238
+
239
+ res_df = df.iloc[slice(2, 4)]
240
+ tm.assert_frame_equal(res_df, exp_df)
241
+ assert isinstance(res_df["cats"].dtype, CategoricalDtype)
242
+
243
+ res_df = df.iloc[[2, 3]]
244
+ tm.assert_frame_equal(res_df, exp_df)
245
+ assert isinstance(res_df["cats"].dtype, CategoricalDtype)
246
+
247
+ res_col = df.iloc[:, 0]
248
+ tm.assert_series_equal(res_col, exp_col)
249
+ assert isinstance(res_col.dtype, CategoricalDtype)
250
+
251
+ res_df = df.iloc[:, slice(0, 2)]
252
+ tm.assert_frame_equal(res_df, df)
253
+ assert isinstance(res_df["cats"].dtype, CategoricalDtype)
254
+
255
+ res_df = df.iloc[:, [0, 1]]
256
+ tm.assert_frame_equal(res_df, df)
257
+ assert isinstance(res_df["cats"].dtype, CategoricalDtype)
258
+
259
+ def test_slicing_doc_examples(self):
260
+ # GH 7918
261
+ cats = Categorical(
262
+ ["a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c"]
263
+ )
264
+ idx = Index(["h", "i", "j", "k", "l", "m", "n"])
265
+ values = [1, 2, 2, 2, 3, 4, 5]
266
+ df = DataFrame({"cats": cats, "values": values}, index=idx)
267
+
268
+ result = df.iloc[2:4, :]
269
+ expected = DataFrame(
270
+ {
271
+ "cats": Categorical(["b", "b"], categories=["a", "b", "c"]),
272
+ "values": [2, 2],
273
+ },
274
+ index=["j", "k"],
275
+ )
276
+ tm.assert_frame_equal(result, expected)
277
+
278
+ result = df.iloc[2:4, :].dtypes
279
+ expected = Series(["category", "int64"], ["cats", "values"], dtype=object)
280
+ tm.assert_series_equal(result, expected)
281
+
282
+ result = df.loc["h":"j", "cats"]
283
+ expected = Series(
284
+ Categorical(["a", "b", "b"], categories=["a", "b", "c"]),
285
+ index=["h", "i", "j"],
286
+ name="cats",
287
+ )
288
+ tm.assert_series_equal(result, expected)
289
+
290
+ result = df.loc["h":"j", df.columns[0:1]]
291
+ expected = DataFrame(
292
+ {"cats": Categorical(["a", "b", "b"], categories=["a", "b", "c"])},
293
+ index=["h", "i", "j"],
294
+ )
295
+ tm.assert_frame_equal(result, expected)
296
+
297
+ def test_loc_getitem_listlike_labels(self, df):
298
+ # list of labels
299
+ result = df.loc[["c", "a"]]
300
+ expected = df.iloc[[4, 0, 1, 5]]
301
+ tm.assert_frame_equal(result, expected, check_index_type=True)
302
+
303
+ def test_loc_getitem_listlike_unused_category(self, df2):
304
+ # GH#37901 a label that is in index.categories but not in index
305
+ # listlike containing an element in the categories but not in the values
306
+ with pytest.raises(KeyError, match=re.escape("['e'] not in index")):
307
+ df2.loc[["a", "b", "e"]]
308
+
309
+ def test_loc_getitem_label_unused_category(self, df2):
310
+ # element in the categories but not in the values
311
+ with pytest.raises(KeyError, match=r"^'e'$"):
312
+ df2.loc["e"]
313
+
314
+ def test_loc_getitem_non_category(self, df2):
315
+ # not all labels in the categories
316
+ with pytest.raises(KeyError, match=re.escape("['d'] not in index")):
317
+ df2.loc[["a", "d"]]
318
+
319
+ def test_loc_setitem_expansion_label_unused_category(self, df2):
320
+ # assigning with a label that is in the categories but not in the index
321
+ df = df2.copy()
322
+ df.loc["e"] = 20
323
+ result = df.loc[["a", "b", "e"]]
324
+ exp_index = CategoricalIndex(list("aaabbe"), categories=list("cabe"), name="B")
325
+ expected = DataFrame({"A": [0, 1, 5, 2, 3, 20]}, index=exp_index)
326
+ tm.assert_frame_equal(result, expected)
327
+
328
+ def test_loc_listlike_dtypes(self):
329
+ # GH 11586
330
+
331
+ # unique categories and codes
332
+ index = CategoricalIndex(["a", "b", "c"])
333
+ df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=index)
334
+
335
+ # unique slice
336
+ res = df.loc[["a", "b"]]
337
+ exp_index = CategoricalIndex(["a", "b"], categories=index.categories)
338
+ exp = DataFrame({"A": [1, 2], "B": [4, 5]}, index=exp_index)
339
+ tm.assert_frame_equal(res, exp, check_index_type=True)
340
+
341
+ # duplicated slice
342
+ res = df.loc[["a", "a", "b"]]
343
+
344
+ exp_index = CategoricalIndex(["a", "a", "b"], categories=index.categories)
345
+ exp = DataFrame({"A": [1, 1, 2], "B": [4, 4, 5]}, index=exp_index)
346
+ tm.assert_frame_equal(res, exp, check_index_type=True)
347
+
348
+ with pytest.raises(KeyError, match=re.escape("['x'] not in index")):
349
+ df.loc[["a", "x"]]
350
+
351
+ def test_loc_listlike_dtypes_duplicated_categories_and_codes(self):
352
+ # duplicated categories and codes
353
+ index = CategoricalIndex(["a", "b", "a"])
354
+ df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=index)
355
+
356
+ # unique slice
357
+ res = df.loc[["a", "b"]]
358
+ exp = DataFrame(
359
+ {"A": [1, 3, 2], "B": [4, 6, 5]}, index=CategoricalIndex(["a", "a", "b"])
360
+ )
361
+ tm.assert_frame_equal(res, exp, check_index_type=True)
362
+
363
+ # duplicated slice
364
+ res = df.loc[["a", "a", "b"]]
365
+ exp = DataFrame(
366
+ {"A": [1, 3, 1, 3, 2], "B": [4, 6, 4, 6, 5]},
367
+ index=CategoricalIndex(["a", "a", "a", "a", "b"]),
368
+ )
369
+ tm.assert_frame_equal(res, exp, check_index_type=True)
370
+
371
+ with pytest.raises(KeyError, match=re.escape("['x'] not in index")):
372
+ df.loc[["a", "x"]]
373
+
374
+ def test_loc_listlike_dtypes_unused_category(self):
375
+ # contains unused category
376
+ index = CategoricalIndex(["a", "b", "a", "c"], categories=list("abcde"))
377
+ df = DataFrame({"A": [1, 2, 3, 4], "B": [5, 6, 7, 8]}, index=index)
378
+
379
+ res = df.loc[["a", "b"]]
380
+ exp = DataFrame(
381
+ {"A": [1, 3, 2], "B": [5, 7, 6]},
382
+ index=CategoricalIndex(["a", "a", "b"], categories=list("abcde")),
383
+ )
384
+ tm.assert_frame_equal(res, exp, check_index_type=True)
385
+
386
+ # duplicated slice
387
+ res = df.loc[["a", "a", "b"]]
388
+ exp = DataFrame(
389
+ {"A": [1, 3, 1, 3, 2], "B": [5, 7, 5, 7, 6]},
390
+ index=CategoricalIndex(["a", "a", "a", "a", "b"], categories=list("abcde")),
391
+ )
392
+ tm.assert_frame_equal(res, exp, check_index_type=True)
393
+
394
+ with pytest.raises(KeyError, match=re.escape("['x'] not in index")):
395
+ df.loc[["a", "x"]]
396
+
397
+ def test_loc_getitem_listlike_unused_category_raises_keyerror(self):
398
+ # key that is an *unused* category raises
399
+ index = CategoricalIndex(["a", "b", "a", "c"], categories=list("abcde"))
400
+ df = DataFrame({"A": [1, 2, 3, 4], "B": [5, 6, 7, 8]}, index=index)
401
+
402
+ with pytest.raises(KeyError, match="e"):
403
+ # For comparison, check the scalar behavior
404
+ df.loc["e"]
405
+
406
+ with pytest.raises(KeyError, match=re.escape("['e'] not in index")):
407
+ df.loc[["a", "e"]]
408
+
409
+ def test_ix_categorical_index(self):
410
+ # GH 12531
411
+ df = DataFrame(
412
+ np.random.default_rng(2).standard_normal((3, 3)),
413
+ index=list("ABC"),
414
+ columns=list("XYZ"),
415
+ )
416
+ cdf = df.copy()
417
+ cdf.index = CategoricalIndex(df.index)
418
+ cdf.columns = CategoricalIndex(df.columns)
419
+
420
+ expect = Series(df.loc["A", :], index=cdf.columns, name="A")
421
+ tm.assert_series_equal(cdf.loc["A", :], expect)
422
+
423
+ expect = Series(df.loc[:, "X"], index=cdf.index, name="X")
424
+ tm.assert_series_equal(cdf.loc[:, "X"], expect)
425
+
426
+ exp_index = CategoricalIndex(list("AB"), categories=["A", "B", "C"])
427
+ expect = DataFrame(df.loc[["A", "B"], :], columns=cdf.columns, index=exp_index)
428
+ tm.assert_frame_equal(cdf.loc[["A", "B"], :], expect)
429
+
430
+ exp_columns = CategoricalIndex(list("XY"), categories=["X", "Y", "Z"])
431
+ expect = DataFrame(df.loc[:, ["X", "Y"]], index=cdf.index, columns=exp_columns)
432
+ tm.assert_frame_equal(cdf.loc[:, ["X", "Y"]], expect)
433
+
434
+ @pytest.mark.parametrize(
435
+ "infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))]
436
+ )
437
+ def test_ix_categorical_index_non_unique(self, infer_string):
438
+ # non-unique
439
+ with option_context("future.infer_string", infer_string):
440
+ df = DataFrame(
441
+ np.random.default_rng(2).standard_normal((3, 3)),
442
+ index=list("ABA"),
443
+ columns=list("XYX"),
444
+ )
445
+ cdf = df.copy()
446
+ cdf.index = CategoricalIndex(df.index)
447
+ cdf.columns = CategoricalIndex(df.columns)
448
+
449
+ exp_index = CategoricalIndex(list("AA"), categories=["A", "B"])
450
+ expect = DataFrame(df.loc["A", :], columns=cdf.columns, index=exp_index)
451
+ tm.assert_frame_equal(cdf.loc["A", :], expect)
452
+
453
+ exp_columns = CategoricalIndex(list("XX"), categories=["X", "Y"])
454
+ expect = DataFrame(df.loc[:, "X"], index=cdf.index, columns=exp_columns)
455
+ tm.assert_frame_equal(cdf.loc[:, "X"], expect)
456
+
457
+ expect = DataFrame(
458
+ df.loc[["A", "B"], :],
459
+ columns=cdf.columns,
460
+ index=CategoricalIndex(list("AAB")),
461
+ )
462
+ tm.assert_frame_equal(cdf.loc[["A", "B"], :], expect)
463
+
464
+ expect = DataFrame(
465
+ df.loc[:, ["X", "Y"]],
466
+ index=cdf.index,
467
+ columns=CategoricalIndex(list("XXY")),
468
+ )
469
+ tm.assert_frame_equal(cdf.loc[:, ["X", "Y"]], expect)
470
+
471
+ def test_loc_slice(self, df):
472
+ # GH9748
473
+ msg = (
474
+ "cannot do slice indexing on CategoricalIndex with these "
475
+ r"indexers \[1\] of type int"
476
+ )
477
+ with pytest.raises(TypeError, match=msg):
478
+ df.loc[1:5]
479
+
480
+ result = df.loc["b":"c"]
481
+ expected = df.iloc[[2, 3, 4]]
482
+ tm.assert_frame_equal(result, expected)
483
+
484
+ def test_loc_and_at_with_categorical_index(self):
485
+ # GH 20629
486
+ df = DataFrame(
487
+ [[1, 2], [3, 4], [5, 6]], index=CategoricalIndex(["A", "B", "C"])
488
+ )
489
+
490
+ s = df[0]
491
+ assert s.loc["A"] == 1
492
+ assert s.at["A"] == 1
493
+
494
+ assert df.loc["B", 1] == 4
495
+ assert df.at["B", 1] == 4
496
+
497
+ @pytest.mark.parametrize(
498
+ "idx_values",
499
+ [
500
+ # python types
501
+ [1, 2, 3],
502
+ [-1, -2, -3],
503
+ [1.5, 2.5, 3.5],
504
+ [-1.5, -2.5, -3.5],
505
+ # numpy int/uint
506
+ *(np.array([1, 2, 3], dtype=dtype) for dtype in tm.ALL_INT_NUMPY_DTYPES),
507
+ # numpy floats
508
+ *(np.array([1.5, 2.5, 3.5], dtype=dtyp) for dtyp in tm.FLOAT_NUMPY_DTYPES),
509
+ # numpy object
510
+ np.array([1, "b", 3.5], dtype=object),
511
+ # pandas scalars
512
+ [Interval(1, 4), Interval(4, 6), Interval(6, 9)],
513
+ [Timestamp(2019, 1, 1), Timestamp(2019, 2, 1), Timestamp(2019, 3, 1)],
514
+ [Timedelta(1, "d"), Timedelta(2, "d"), Timedelta(3, "D")],
515
+ # pandas Integer arrays
516
+ *(pd.array([1, 2, 3], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES),
517
+ # other pandas arrays
518
+ pd.IntervalIndex.from_breaks([1, 4, 6, 9]).array,
519
+ pd.date_range("2019-01-01", periods=3).array,
520
+ pd.timedelta_range(start="1d", periods=3).array,
521
+ ],
522
+ )
523
+ def test_loc_getitem_with_non_string_categories(self, idx_values, ordered):
524
+ # GH-17569
525
+ cat_idx = CategoricalIndex(idx_values, ordered=ordered)
526
+ df = DataFrame({"A": ["foo", "bar", "baz"]}, index=cat_idx)
527
+ sl = slice(idx_values[0], idx_values[1])
528
+
529
+ # scalar selection
530
+ result = df.loc[idx_values[0]]
531
+ expected = Series(["foo"], index=["A"], name=idx_values[0])
532
+ tm.assert_series_equal(result, expected)
533
+
534
+ # list selection
535
+ result = df.loc[idx_values[:2]]
536
+ expected = DataFrame(["foo", "bar"], index=cat_idx[:2], columns=["A"])
537
+ tm.assert_frame_equal(result, expected)
538
+
539
+ # slice selection
540
+ result = df.loc[sl]
541
+ expected = DataFrame(["foo", "bar"], index=cat_idx[:2], columns=["A"])
542
+ tm.assert_frame_equal(result, expected)
543
+
544
+ # scalar assignment
545
+ result = df.copy()
546
+ result.loc[idx_values[0]] = "qux"
547
+ expected = DataFrame({"A": ["qux", "bar", "baz"]}, index=cat_idx)
548
+ tm.assert_frame_equal(result, expected)
549
+
550
+ # list assignment
551
+ result = df.copy()
552
+ result.loc[idx_values[:2], "A"] = ["qux", "qux2"]
553
+ expected = DataFrame({"A": ["qux", "qux2", "baz"]}, index=cat_idx)
554
+ tm.assert_frame_equal(result, expected)
555
+
556
+ # slice assignment
557
+ result = df.copy()
558
+ result.loc[sl, "A"] = ["qux", "qux2"]
559
+ expected = DataFrame({"A": ["qux", "qux2", "baz"]}, index=cat_idx)
560
+ tm.assert_frame_equal(result, expected)
561
+
562
+ def test_getitem_categorical_with_nan(self):
563
+ # GH#41933
564
+ ci = CategoricalIndex(["A", "B", np.nan])
565
+
566
+ ser = Series(range(3), index=ci)
567
+
568
+ assert ser[np.nan] == 2
569
+ assert ser.loc[np.nan] == 2
570
+
571
+ df = DataFrame(ser)
572
+ assert df.loc[np.nan, 0] == 2
573
+ assert df.loc[np.nan][0] == 2
venv/lib/python3.10/site-packages/pandas/tests/indexing/test_chaining_and_caching.py ADDED
@@ -0,0 +1,647 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from string import ascii_letters
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas.errors import (
7
+ SettingWithCopyError,
8
+ SettingWithCopyWarning,
9
+ )
10
+ import pandas.util._test_decorators as td
11
+
12
+ import pandas as pd
13
+ from pandas import (
14
+ DataFrame,
15
+ Index,
16
+ Series,
17
+ Timestamp,
18
+ date_range,
19
+ option_context,
20
+ )
21
+ import pandas._testing as tm
22
+
23
+ msg = "A value is trying to be set on a copy of a slice from a DataFrame"
24
+
25
+
26
+ def random_text(nobs=100):
27
+ # Construct a DataFrame where each row is a random slice from 'letters'
28
+ idxs = np.random.default_rng(2).integers(len(ascii_letters), size=(nobs, 2))
29
+ idxs.sort(axis=1)
30
+ strings = [ascii_letters[x[0] : x[1]] for x in idxs]
31
+
32
+ return DataFrame(strings, columns=["letters"])
33
+
34
+
35
+ class TestCaching:
36
+ def test_slice_consolidate_invalidate_item_cache(self, using_copy_on_write):
37
+ # this is chained assignment, but will 'work'
38
+ with option_context("chained_assignment", None):
39
+ # #3970
40
+ df = DataFrame({"aa": np.arange(5), "bb": [2.2] * 5})
41
+
42
+ # Creates a second float block
43
+ df["cc"] = 0.0
44
+
45
+ # caches a reference to the 'bb' series
46
+ df["bb"]
47
+
48
+ # Assignment to wrong series
49
+ with tm.raises_chained_assignment_error():
50
+ df["bb"].iloc[0] = 0.17
51
+ df._clear_item_cache()
52
+ if not using_copy_on_write:
53
+ tm.assert_almost_equal(df["bb"][0], 0.17)
54
+ else:
55
+ # with ArrayManager, parent is not mutated with chained assignment
56
+ tm.assert_almost_equal(df["bb"][0], 2.2)
57
+
58
+ @pytest.mark.parametrize("do_ref", [True, False])
59
+ def test_setitem_cache_updating(self, do_ref):
60
+ # GH 5424
61
+ cont = ["one", "two", "three", "four", "five", "six", "seven"]
62
+
63
+ df = DataFrame({"a": cont, "b": cont[3:] + cont[:3], "c": np.arange(7)})
64
+
65
+ # ref the cache
66
+ if do_ref:
67
+ df.loc[0, "c"]
68
+
69
+ # set it
70
+ df.loc[7, "c"] = 1
71
+
72
+ assert df.loc[0, "c"] == 0.0
73
+ assert df.loc[7, "c"] == 1.0
74
+
75
+ def test_setitem_cache_updating_slices(
76
+ self, using_copy_on_write, warn_copy_on_write
77
+ ):
78
+ # GH 7084
79
+ # not updating cache on series setting with slices
80
+ expected = DataFrame(
81
+ {"A": [600, 600, 600]}, index=date_range("5/7/2014", "5/9/2014")
82
+ )
83
+ out = DataFrame({"A": [0, 0, 0]}, index=date_range("5/7/2014", "5/9/2014"))
84
+ df = DataFrame({"C": ["A", "A", "A"], "D": [100, 200, 300]})
85
+
86
+ # loop through df to update out
87
+ six = Timestamp("5/7/2014")
88
+ eix = Timestamp("5/9/2014")
89
+ for ix, row in df.iterrows():
90
+ out.loc[six:eix, row["C"]] = out.loc[six:eix, row["C"]] + row["D"]
91
+
92
+ tm.assert_frame_equal(out, expected)
93
+ tm.assert_series_equal(out["A"], expected["A"])
94
+
95
+ # try via a chain indexing
96
+ # this actually works
97
+ out = DataFrame({"A": [0, 0, 0]}, index=date_range("5/7/2014", "5/9/2014"))
98
+ out_original = out.copy()
99
+ for ix, row in df.iterrows():
100
+ v = out[row["C"]][six:eix] + row["D"]
101
+ with tm.raises_chained_assignment_error(
102
+ (ix == 0) or warn_copy_on_write or using_copy_on_write
103
+ ):
104
+ out[row["C"]][six:eix] = v
105
+
106
+ if not using_copy_on_write:
107
+ tm.assert_frame_equal(out, expected)
108
+ tm.assert_series_equal(out["A"], expected["A"])
109
+ else:
110
+ tm.assert_frame_equal(out, out_original)
111
+ tm.assert_series_equal(out["A"], out_original["A"])
112
+
113
+ out = DataFrame({"A": [0, 0, 0]}, index=date_range("5/7/2014", "5/9/2014"))
114
+ for ix, row in df.iterrows():
115
+ out.loc[six:eix, row["C"]] += row["D"]
116
+
117
+ tm.assert_frame_equal(out, expected)
118
+ tm.assert_series_equal(out["A"], expected["A"])
119
+
120
+ def test_altering_series_clears_parent_cache(
121
+ self, using_copy_on_write, warn_copy_on_write
122
+ ):
123
+ # GH #33675
124
+ df = DataFrame([[1, 2], [3, 4]], index=["a", "b"], columns=["A", "B"])
125
+ ser = df["A"]
126
+
127
+ if using_copy_on_write or warn_copy_on_write:
128
+ assert "A" not in df._item_cache
129
+ else:
130
+ assert "A" in df._item_cache
131
+
132
+ # Adding a new entry to ser swaps in a new array, so "A" needs to
133
+ # be removed from df._item_cache
134
+ ser["c"] = 5
135
+ assert len(ser) == 3
136
+ assert "A" not in df._item_cache
137
+ assert df["A"] is not ser
138
+ assert len(df["A"]) == 2
139
+
140
+
141
+ class TestChaining:
142
+ def test_setitem_chained_setfault(self, using_copy_on_write):
143
+ # GH6026
144
+ data = ["right", "left", "left", "left", "right", "left", "timeout"]
145
+ mdata = ["right", "left", "left", "left", "right", "left", "none"]
146
+
147
+ df = DataFrame({"response": np.array(data)})
148
+ mask = df.response == "timeout"
149
+ with tm.raises_chained_assignment_error():
150
+ df.response[mask] = "none"
151
+ if using_copy_on_write:
152
+ tm.assert_frame_equal(df, DataFrame({"response": data}))
153
+ else:
154
+ tm.assert_frame_equal(df, DataFrame({"response": mdata}))
155
+
156
+ recarray = np.rec.fromarrays([data], names=["response"])
157
+ df = DataFrame(recarray)
158
+ mask = df.response == "timeout"
159
+ with tm.raises_chained_assignment_error():
160
+ df.response[mask] = "none"
161
+ if using_copy_on_write:
162
+ tm.assert_frame_equal(df, DataFrame({"response": data}))
163
+ else:
164
+ tm.assert_frame_equal(df, DataFrame({"response": mdata}))
165
+
166
+ df = DataFrame({"response": data, "response1": data})
167
+ df_original = df.copy()
168
+ mask = df.response == "timeout"
169
+ with tm.raises_chained_assignment_error():
170
+ df.response[mask] = "none"
171
+ if using_copy_on_write:
172
+ tm.assert_frame_equal(df, df_original)
173
+ else:
174
+ tm.assert_frame_equal(df, DataFrame({"response": mdata, "response1": data}))
175
+
176
+ # GH 6056
177
+ expected = DataFrame({"A": [np.nan, "bar", "bah", "foo", "bar"]})
178
+ df = DataFrame({"A": np.array(["foo", "bar", "bah", "foo", "bar"])})
179
+ with tm.raises_chained_assignment_error():
180
+ df["A"].iloc[0] = np.nan
181
+ if using_copy_on_write:
182
+ expected = DataFrame({"A": ["foo", "bar", "bah", "foo", "bar"]})
183
+ else:
184
+ expected = DataFrame({"A": [np.nan, "bar", "bah", "foo", "bar"]})
185
+ result = df.head()
186
+ tm.assert_frame_equal(result, expected)
187
+
188
+ df = DataFrame({"A": np.array(["foo", "bar", "bah", "foo", "bar"])})
189
+ with tm.raises_chained_assignment_error():
190
+ df.A.iloc[0] = np.nan
191
+ result = df.head()
192
+ tm.assert_frame_equal(result, expected)
193
+
194
+ @pytest.mark.arm_slow
195
+ def test_detect_chained_assignment(self, using_copy_on_write):
196
+ with option_context("chained_assignment", "raise"):
197
+ # work with the chain
198
+ expected = DataFrame([[-5, 1], [-6, 3]], columns=list("AB"))
199
+ df = DataFrame(
200
+ np.arange(4).reshape(2, 2), columns=list("AB"), dtype="int64"
201
+ )
202
+ df_original = df.copy()
203
+ assert df._is_copy is None
204
+
205
+ with tm.raises_chained_assignment_error():
206
+ df["A"][0] = -5
207
+ with tm.raises_chained_assignment_error():
208
+ df["A"][1] = -6
209
+ if using_copy_on_write:
210
+ tm.assert_frame_equal(df, df_original)
211
+ else:
212
+ tm.assert_frame_equal(df, expected)
213
+
214
+ @pytest.mark.arm_slow
215
+ def test_detect_chained_assignment_raises(
216
+ self, using_array_manager, using_copy_on_write, warn_copy_on_write
217
+ ):
218
+ # test with the chaining
219
+ df = DataFrame(
220
+ {
221
+ "A": Series(range(2), dtype="int64"),
222
+ "B": np.array(np.arange(2, 4), dtype=np.float64),
223
+ }
224
+ )
225
+ df_original = df.copy()
226
+ assert df._is_copy is None
227
+
228
+ if using_copy_on_write:
229
+ with tm.raises_chained_assignment_error():
230
+ df["A"][0] = -5
231
+ with tm.raises_chained_assignment_error():
232
+ df["A"][1] = -6
233
+ tm.assert_frame_equal(df, df_original)
234
+ elif warn_copy_on_write:
235
+ with tm.raises_chained_assignment_error():
236
+ df["A"][0] = -5
237
+ with tm.raises_chained_assignment_error():
238
+ df["A"][1] = np.nan
239
+ elif not using_array_manager:
240
+ with pytest.raises(SettingWithCopyError, match=msg):
241
+ with tm.raises_chained_assignment_error():
242
+ df["A"][0] = -5
243
+
244
+ with pytest.raises(SettingWithCopyError, match=msg):
245
+ with tm.raises_chained_assignment_error():
246
+ df["A"][1] = np.nan
247
+
248
+ assert df["A"]._is_copy is None
249
+ else:
250
+ # INFO(ArrayManager) for ArrayManager it doesn't matter that it's
251
+ # a mixed dataframe
252
+ df["A"][0] = -5
253
+ df["A"][1] = -6
254
+ expected = DataFrame([[-5, 2], [-6, 3]], columns=list("AB"))
255
+ expected["B"] = expected["B"].astype("float64")
256
+ tm.assert_frame_equal(df, expected)
257
+
258
+ @pytest.mark.arm_slow
259
+ def test_detect_chained_assignment_fails(
260
+ self, using_copy_on_write, warn_copy_on_write
261
+ ):
262
+ # Using a copy (the chain), fails
263
+ df = DataFrame(
264
+ {
265
+ "A": Series(range(2), dtype="int64"),
266
+ "B": np.array(np.arange(2, 4), dtype=np.float64),
267
+ }
268
+ )
269
+
270
+ if using_copy_on_write or warn_copy_on_write:
271
+ with tm.raises_chained_assignment_error():
272
+ df.loc[0]["A"] = -5
273
+ else:
274
+ with pytest.raises(SettingWithCopyError, match=msg):
275
+ df.loc[0]["A"] = -5
276
+
277
+ @pytest.mark.arm_slow
278
+ def test_detect_chained_assignment_doc_example(
279
+ self, using_copy_on_write, warn_copy_on_write
280
+ ):
281
+ # Doc example
282
+ df = DataFrame(
283
+ {
284
+ "a": ["one", "one", "two", "three", "two", "one", "six"],
285
+ "c": Series(range(7), dtype="int64"),
286
+ }
287
+ )
288
+ assert df._is_copy is None
289
+
290
+ indexer = df.a.str.startswith("o")
291
+ if using_copy_on_write or warn_copy_on_write:
292
+ with tm.raises_chained_assignment_error():
293
+ df[indexer]["c"] = 42
294
+ else:
295
+ with pytest.raises(SettingWithCopyError, match=msg):
296
+ df[indexer]["c"] = 42
297
+
298
+ @pytest.mark.arm_slow
299
+ def test_detect_chained_assignment_object_dtype(
300
+ self, using_array_manager, using_copy_on_write, warn_copy_on_write
301
+ ):
302
+ expected = DataFrame({"A": [111, "bbb", "ccc"], "B": [1, 2, 3]})
303
+ df = DataFrame(
304
+ {"A": Series(["aaa", "bbb", "ccc"], dtype=object), "B": [1, 2, 3]}
305
+ )
306
+ df_original = df.copy()
307
+
308
+ if not using_copy_on_write and not warn_copy_on_write:
309
+ with pytest.raises(SettingWithCopyError, match=msg):
310
+ df.loc[0]["A"] = 111
311
+
312
+ if using_copy_on_write:
313
+ with tm.raises_chained_assignment_error():
314
+ df["A"][0] = 111
315
+ tm.assert_frame_equal(df, df_original)
316
+ elif warn_copy_on_write:
317
+ with tm.raises_chained_assignment_error():
318
+ df["A"][0] = 111
319
+ tm.assert_frame_equal(df, expected)
320
+ elif not using_array_manager:
321
+ with pytest.raises(SettingWithCopyError, match=msg):
322
+ with tm.raises_chained_assignment_error():
323
+ df["A"][0] = 111
324
+
325
+ df.loc[0, "A"] = 111
326
+ tm.assert_frame_equal(df, expected)
327
+ else:
328
+ # INFO(ArrayManager) for ArrayManager it doesn't matter that it's
329
+ # a mixed dataframe
330
+ df["A"][0] = 111
331
+ tm.assert_frame_equal(df, expected)
332
+
333
+ @pytest.mark.arm_slow
334
+ def test_detect_chained_assignment_is_copy_pickle(self):
335
+ # gh-5475: Make sure that is_copy is picked up reconstruction
336
+ df = DataFrame({"A": [1, 2]})
337
+ assert df._is_copy is None
338
+
339
+ with tm.ensure_clean("__tmp__pickle") as path:
340
+ df.to_pickle(path)
341
+ df2 = pd.read_pickle(path)
342
+ df2["B"] = df2["A"]
343
+ df2["B"] = df2["A"]
344
+
345
+ @pytest.mark.arm_slow
346
+ def test_detect_chained_assignment_setting_entire_column(self):
347
+ # gh-5597: a spurious raise as we are setting the entire column here
348
+
349
+ df = random_text(100000)
350
+
351
+ # Always a copy
352
+ x = df.iloc[[0, 1, 2]]
353
+ assert x._is_copy is not None
354
+
355
+ x = df.iloc[[0, 1, 2, 4]]
356
+ assert x._is_copy is not None
357
+
358
+ # Explicitly copy
359
+ indexer = df.letters.apply(lambda x: len(x) > 10)
360
+ df = df.loc[indexer].copy()
361
+
362
+ assert df._is_copy is None
363
+ df["letters"] = df["letters"].apply(str.lower)
364
+
365
+ @pytest.mark.arm_slow
366
+ def test_detect_chained_assignment_implicit_take(self):
367
+ # Implicitly take
368
+ df = random_text(100000)
369
+ indexer = df.letters.apply(lambda x: len(x) > 10)
370
+ df = df.loc[indexer]
371
+
372
+ assert df._is_copy is not None
373
+ df["letters"] = df["letters"].apply(str.lower)
374
+
375
+ @pytest.mark.arm_slow
376
+ def test_detect_chained_assignment_implicit_take2(
377
+ self, using_copy_on_write, warn_copy_on_write
378
+ ):
379
+ if using_copy_on_write or warn_copy_on_write:
380
+ pytest.skip("_is_copy is not always set for CoW")
381
+ # Implicitly take 2
382
+ df = random_text(100000)
383
+ indexer = df.letters.apply(lambda x: len(x) > 10)
384
+
385
+ df = df.loc[indexer]
386
+ assert df._is_copy is not None
387
+ df.loc[:, "letters"] = df["letters"].apply(str.lower)
388
+
389
+ # with the enforcement of #45333 in 2.0, the .loc[:, letters] setting
390
+ # is inplace, so df._is_copy remains non-None.
391
+ assert df._is_copy is not None
392
+
393
+ df["letters"] = df["letters"].apply(str.lower)
394
+ assert df._is_copy is None
395
+
396
+ @pytest.mark.arm_slow
397
+ def test_detect_chained_assignment_str(self):
398
+ df = random_text(100000)
399
+ indexer = df.letters.apply(lambda x: len(x) > 10)
400
+ df.loc[indexer, "letters"] = df.loc[indexer, "letters"].apply(str.lower)
401
+
402
+ @pytest.mark.arm_slow
403
+ def test_detect_chained_assignment_is_copy(self):
404
+ # an identical take, so no copy
405
+ df = DataFrame({"a": [1]}).dropna()
406
+ assert df._is_copy is None
407
+ df["a"] += 1
408
+
409
+ @pytest.mark.arm_slow
410
+ def test_detect_chained_assignment_sorting(self):
411
+ df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)))
412
+ ser = df.iloc[:, 0].sort_values()
413
+
414
+ tm.assert_series_equal(ser, df.iloc[:, 0].sort_values())
415
+ tm.assert_series_equal(ser, df[0].sort_values())
416
+
417
+ @pytest.mark.arm_slow
418
+ def test_detect_chained_assignment_false_positives(self):
419
+ # see gh-6025: false positives
420
+ df = DataFrame({"column1": ["a", "a", "a"], "column2": [4, 8, 9]})
421
+ str(df)
422
+
423
+ df["column1"] = df["column1"] + "b"
424
+ str(df)
425
+
426
+ df = df[df["column2"] != 8]
427
+ str(df)
428
+
429
+ df["column1"] = df["column1"] + "c"
430
+ str(df)
431
+
432
+ @pytest.mark.arm_slow
433
+ def test_detect_chained_assignment_undefined_column(
434
+ self, using_copy_on_write, warn_copy_on_write
435
+ ):
436
+ # from SO:
437
+ # https://stackoverflow.com/questions/24054495/potential-bug-setting-value-for-undefined-column-using-iloc
438
+ df = DataFrame(np.arange(0, 9), columns=["count"])
439
+ df["group"] = "b"
440
+ df_original = df.copy()
441
+
442
+ if using_copy_on_write:
443
+ with tm.raises_chained_assignment_error():
444
+ df.iloc[0:5]["group"] = "a"
445
+ tm.assert_frame_equal(df, df_original)
446
+ elif warn_copy_on_write:
447
+ with tm.raises_chained_assignment_error():
448
+ df.iloc[0:5]["group"] = "a"
449
+ else:
450
+ with pytest.raises(SettingWithCopyError, match=msg):
451
+ with tm.raises_chained_assignment_error():
452
+ df.iloc[0:5]["group"] = "a"
453
+
454
+ @pytest.mark.arm_slow
455
+ def test_detect_chained_assignment_changing_dtype(
456
+ self, using_array_manager, using_copy_on_write, warn_copy_on_write
457
+ ):
458
+ # Mixed type setting but same dtype & changing dtype
459
+ df = DataFrame(
460
+ {
461
+ "A": date_range("20130101", periods=5),
462
+ "B": np.random.default_rng(2).standard_normal(5),
463
+ "C": np.arange(5, dtype="int64"),
464
+ "D": ["a", "b", "c", "d", "e"],
465
+ }
466
+ )
467
+ df_original = df.copy()
468
+
469
+ if using_copy_on_write or warn_copy_on_write:
470
+ with tm.raises_chained_assignment_error():
471
+ df.loc[2]["D"] = "foo"
472
+ with tm.raises_chained_assignment_error():
473
+ df.loc[2]["C"] = "foo"
474
+ tm.assert_frame_equal(df, df_original)
475
+ with tm.raises_chained_assignment_error(extra_warnings=(FutureWarning,)):
476
+ df["C"][2] = "foo"
477
+ if using_copy_on_write:
478
+ tm.assert_frame_equal(df, df_original)
479
+ else:
480
+ assert df.loc[2, "C"] == "foo"
481
+ else:
482
+ with pytest.raises(SettingWithCopyError, match=msg):
483
+ df.loc[2]["D"] = "foo"
484
+
485
+ with pytest.raises(SettingWithCopyError, match=msg):
486
+ df.loc[2]["C"] = "foo"
487
+
488
+ if not using_array_manager:
489
+ with pytest.raises(SettingWithCopyError, match=msg):
490
+ with tm.raises_chained_assignment_error():
491
+ df["C"][2] = "foo"
492
+ else:
493
+ # INFO(ArrayManager) for ArrayManager it doesn't matter if it's
494
+ # changing the dtype or not
495
+ df["C"][2] = "foo"
496
+ assert df.loc[2, "C"] == "foo"
497
+
498
+ def test_setting_with_copy_bug(self, using_copy_on_write, warn_copy_on_write):
499
+ # operating on a copy
500
+ df = DataFrame(
501
+ {"a": list(range(4)), "b": list("ab.."), "c": ["a", "b", np.nan, "d"]}
502
+ )
503
+ df_original = df.copy()
504
+ mask = pd.isna(df.c)
505
+
506
+ if using_copy_on_write:
507
+ with tm.raises_chained_assignment_error():
508
+ df[["c"]][mask] = df[["b"]][mask]
509
+ tm.assert_frame_equal(df, df_original)
510
+ elif warn_copy_on_write:
511
+ with tm.raises_chained_assignment_error():
512
+ df[["c"]][mask] = df[["b"]][mask]
513
+ else:
514
+ with pytest.raises(SettingWithCopyError, match=msg):
515
+ df[["c"]][mask] = df[["b"]][mask]
516
+
517
+ def test_setting_with_copy_bug_no_warning(self):
518
+ # invalid warning as we are returning a new object
519
+ # GH 8730
520
+ df1 = DataFrame({"x": Series(["a", "b", "c"]), "y": Series(["d", "e", "f"])})
521
+ df2 = df1[["x"]]
522
+
523
+ # this should not raise
524
+ df2["y"] = ["g", "h", "i"]
525
+
526
+ def test_detect_chained_assignment_warnings_errors(
527
+ self, using_copy_on_write, warn_copy_on_write
528
+ ):
529
+ df = DataFrame({"A": ["aaa", "bbb", "ccc"], "B": [1, 2, 3]})
530
+ if using_copy_on_write or warn_copy_on_write:
531
+ with tm.raises_chained_assignment_error():
532
+ df.loc[0]["A"] = 111
533
+ return
534
+
535
+ with option_context("chained_assignment", "warn"):
536
+ with tm.assert_produces_warning(SettingWithCopyWarning):
537
+ df.loc[0]["A"] = 111
538
+
539
+ with option_context("chained_assignment", "raise"):
540
+ with pytest.raises(SettingWithCopyError, match=msg):
541
+ df.loc[0]["A"] = 111
542
+
543
+ @pytest.mark.parametrize("rhs", [3, DataFrame({0: [1, 2, 3, 4]})])
544
+ def test_detect_chained_assignment_warning_stacklevel(
545
+ self, rhs, using_copy_on_write, warn_copy_on_write
546
+ ):
547
+ # GH#42570
548
+ df = DataFrame(np.arange(25).reshape(5, 5))
549
+ df_original = df.copy()
550
+ chained = df.loc[:3]
551
+ with option_context("chained_assignment", "warn"):
552
+ if not using_copy_on_write and not warn_copy_on_write:
553
+ with tm.assert_produces_warning(SettingWithCopyWarning) as t:
554
+ chained[2] = rhs
555
+ assert t[0].filename == __file__
556
+ else:
557
+ # INFO(CoW) no warning, and original dataframe not changed
558
+ chained[2] = rhs
559
+ tm.assert_frame_equal(df, df_original)
560
+
561
+ # TODO(ArrayManager) fast_xs with array-like scalars is not yet working
562
+ @td.skip_array_manager_not_yet_implemented
563
+ def test_chained_getitem_with_lists(self):
564
+ # GH6394
565
+ # Regression in chained getitem indexing with embedded list-like from
566
+ # 0.12
567
+
568
+ df = DataFrame({"A": 5 * [np.zeros(3)], "B": 5 * [np.ones(3)]})
569
+ expected = df["A"].iloc[2]
570
+ result = df.loc[2, "A"]
571
+ tm.assert_numpy_array_equal(result, expected)
572
+ result2 = df.iloc[2]["A"]
573
+ tm.assert_numpy_array_equal(result2, expected)
574
+ result3 = df["A"].loc[2]
575
+ tm.assert_numpy_array_equal(result3, expected)
576
+ result4 = df["A"].iloc[2]
577
+ tm.assert_numpy_array_equal(result4, expected)
578
+
579
+ def test_cache_updating(self):
580
+ # GH 4939, make sure to update the cache on setitem
581
+
582
+ df = DataFrame(
583
+ np.zeros((10, 4)),
584
+ columns=Index(list("ABCD"), dtype=object),
585
+ )
586
+ df["A"] # cache series
587
+ df.loc["Hello Friend"] = df.iloc[0]
588
+ assert "Hello Friend" in df["A"].index
589
+ assert "Hello Friend" in df["B"].index
590
+
591
+ def test_cache_updating2(self, using_copy_on_write):
592
+ # 10264
593
+ df = DataFrame(
594
+ np.zeros((5, 5), dtype="int64"),
595
+ columns=["a", "b", "c", "d", "e"],
596
+ index=range(5),
597
+ )
598
+ df["f"] = 0
599
+ df_orig = df.copy()
600
+ if using_copy_on_write:
601
+ with pytest.raises(ValueError, match="read-only"):
602
+ df.f.values[3] = 1
603
+ tm.assert_frame_equal(df, df_orig)
604
+ return
605
+
606
+ df.f.values[3] = 1
607
+
608
+ df.f.values[3] = 2
609
+ expected = DataFrame(
610
+ np.zeros((5, 6), dtype="int64"),
611
+ columns=["a", "b", "c", "d", "e", "f"],
612
+ index=range(5),
613
+ )
614
+ expected.at[3, "f"] = 2
615
+ tm.assert_frame_equal(df, expected)
616
+ expected = Series([0, 0, 0, 2, 0], name="f")
617
+ tm.assert_series_equal(df.f, expected)
618
+
619
+ def test_iloc_setitem_chained_assignment(self, using_copy_on_write):
620
+ # GH#3970
621
+ with option_context("chained_assignment", None):
622
+ df = DataFrame({"aa": range(5), "bb": [2.2] * 5})
623
+ df["cc"] = 0.0
624
+
625
+ ck = [True] * len(df)
626
+
627
+ with tm.raises_chained_assignment_error():
628
+ df["bb"].iloc[0] = 0.13
629
+
630
+ # GH#3970 this lookup used to break the chained setting to 0.15
631
+ df.iloc[ck]
632
+
633
+ with tm.raises_chained_assignment_error():
634
+ df["bb"].iloc[0] = 0.15
635
+
636
+ if not using_copy_on_write:
637
+ assert df["bb"].iloc[0] == 0.15
638
+ else:
639
+ assert df["bb"].iloc[0] == 2.2
640
+
641
+ def test_getitem_loc_assignment_slice_state(self):
642
+ # GH 13569
643
+ df = DataFrame({"a": [10, 20, 30]})
644
+ with tm.raises_chained_assignment_error():
645
+ df["a"].loc[4] = 40
646
+ tm.assert_frame_equal(df, DataFrame({"a": [10, 20, 30]}))
647
+ tm.assert_series_equal(df["a"], Series([10, 20, 30], name="a"))
venv/lib/python3.10/site-packages/pandas/tests/indexing/test_check_indexer.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+ from pandas.api.indexers import check_array_indexer
7
+
8
+
9
+ @pytest.mark.parametrize(
10
+ "indexer, expected",
11
+ [
12
+ # integer
13
+ ([1, 2], np.array([1, 2], dtype=np.intp)),
14
+ (np.array([1, 2], dtype="int64"), np.array([1, 2], dtype=np.intp)),
15
+ (pd.array([1, 2], dtype="Int32"), np.array([1, 2], dtype=np.intp)),
16
+ (pd.Index([1, 2]), np.array([1, 2], dtype=np.intp)),
17
+ # boolean
18
+ ([True, False, True], np.array([True, False, True], dtype=np.bool_)),
19
+ (np.array([True, False, True]), np.array([True, False, True], dtype=np.bool_)),
20
+ (
21
+ pd.array([True, False, True], dtype="boolean"),
22
+ np.array([True, False, True], dtype=np.bool_),
23
+ ),
24
+ # other
25
+ ([], np.array([], dtype=np.intp)),
26
+ ],
27
+ )
28
+ def test_valid_input(indexer, expected):
29
+ arr = np.array([1, 2, 3])
30
+ result = check_array_indexer(arr, indexer)
31
+ tm.assert_numpy_array_equal(result, expected)
32
+
33
+
34
+ @pytest.mark.parametrize(
35
+ "indexer", [[True, False, None], pd.array([True, False, None], dtype="boolean")]
36
+ )
37
+ def test_boolean_na_returns_indexer(indexer):
38
+ # https://github.com/pandas-dev/pandas/issues/31503
39
+ arr = np.array([1, 2, 3])
40
+
41
+ result = check_array_indexer(arr, indexer)
42
+ expected = np.array([True, False, False], dtype=bool)
43
+
44
+ tm.assert_numpy_array_equal(result, expected)
45
+
46
+
47
+ @pytest.mark.parametrize(
48
+ "indexer",
49
+ [
50
+ [True, False],
51
+ pd.array([True, False], dtype="boolean"),
52
+ np.array([True, False], dtype=np.bool_),
53
+ ],
54
+ )
55
+ def test_bool_raise_length(indexer):
56
+ arr = np.array([1, 2, 3])
57
+
58
+ msg = "Boolean index has wrong length"
59
+ with pytest.raises(IndexError, match=msg):
60
+ check_array_indexer(arr, indexer)
61
+
62
+
63
+ @pytest.mark.parametrize(
64
+ "indexer", [[0, 1, None], pd.array([0, 1, pd.NA], dtype="Int64")]
65
+ )
66
+ def test_int_raise_missing_values(indexer):
67
+ arr = np.array([1, 2, 3])
68
+
69
+ msg = "Cannot index with an integer indexer containing NA values"
70
+ with pytest.raises(ValueError, match=msg):
71
+ check_array_indexer(arr, indexer)
72
+
73
+
74
+ @pytest.mark.parametrize(
75
+ "indexer",
76
+ [
77
+ [0.0, 1.0],
78
+ np.array([1.0, 2.0], dtype="float64"),
79
+ np.array([True, False], dtype=object),
80
+ pd.Index([True, False], dtype=object),
81
+ ],
82
+ )
83
+ def test_raise_invalid_array_dtypes(indexer):
84
+ arr = np.array([1, 2, 3])
85
+
86
+ msg = "arrays used as indices must be of integer or boolean type"
87
+ with pytest.raises(IndexError, match=msg):
88
+ check_array_indexer(arr, indexer)
89
+
90
+
91
+ def test_raise_nullable_string_dtype(nullable_string_dtype):
92
+ indexer = pd.array(["a", "b"], dtype=nullable_string_dtype)
93
+ arr = np.array([1, 2, 3])
94
+
95
+ msg = "arrays used as indices must be of integer or boolean type"
96
+ with pytest.raises(IndexError, match=msg):
97
+ check_array_indexer(arr, indexer)
98
+
99
+
100
+ @pytest.mark.parametrize("indexer", [None, Ellipsis, slice(0, 3), (None,)])
101
+ def test_pass_through_non_array_likes(indexer):
102
+ arr = np.array([1, 2, 3])
103
+
104
+ result = check_array_indexer(arr, indexer)
105
+ assert result == indexer
venv/lib/python3.10/site-packages/pandas/tests/indexing/test_coercion.py ADDED
@@ -0,0 +1,940 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from datetime import (
4
+ datetime,
5
+ timedelta,
6
+ )
7
+ import itertools
8
+
9
+ import numpy as np
10
+ import pytest
11
+
12
+ from pandas._config import using_pyarrow_string_dtype
13
+
14
+ from pandas.compat import (
15
+ IS64,
16
+ is_platform_windows,
17
+ )
18
+ from pandas.compat.numpy import np_version_gt2
19
+
20
+ import pandas as pd
21
+ import pandas._testing as tm
22
+
23
+ ###############################################################
24
+ # Index / Series common tests which may trigger dtype coercions
25
+ ###############################################################
26
+
27
+
28
+ @pytest.fixture(autouse=True, scope="class")
29
+ def check_comprehensiveness(request):
30
+ # Iterate over combination of dtype, method and klass
31
+ # and ensure that each are contained within a collected test
32
+ cls = request.cls
33
+ combos = itertools.product(cls.klasses, cls.dtypes, [cls.method])
34
+
35
+ def has_test(combo):
36
+ klass, dtype, method = combo
37
+ cls_funcs = request.node.session.items
38
+ return any(
39
+ klass in x.name and dtype in x.name and method in x.name for x in cls_funcs
40
+ )
41
+
42
+ opts = request.config.option
43
+ if opts.lf or opts.keyword:
44
+ # If we are running with "last-failed" or -k foo, we expect to only
45
+ # run a subset of tests.
46
+ yield
47
+
48
+ else:
49
+ for combo in combos:
50
+ if not has_test(combo):
51
+ raise AssertionError(
52
+ f"test method is not defined: {cls.__name__}, {combo}"
53
+ )
54
+
55
+ yield
56
+
57
+
58
+ class CoercionBase:
59
+ klasses = ["index", "series"]
60
+ dtypes = [
61
+ "object",
62
+ "int64",
63
+ "float64",
64
+ "complex128",
65
+ "bool",
66
+ "datetime64",
67
+ "datetime64tz",
68
+ "timedelta64",
69
+ "period",
70
+ ]
71
+
72
+ @property
73
+ def method(self):
74
+ raise NotImplementedError(self)
75
+
76
+
77
+ class TestSetitemCoercion(CoercionBase):
78
+ method = "setitem"
79
+
80
+ # disable comprehensiveness tests, as most of these have been moved to
81
+ # tests.series.indexing.test_setitem in SetitemCastingEquivalents subclasses.
82
+ klasses: list[str] = []
83
+
84
+ def test_setitem_series_no_coercion_from_values_list(self):
85
+ # GH35865 - int casted to str when internally calling np.array(ser.values)
86
+ ser = pd.Series(["a", 1])
87
+ ser[:] = list(ser.values)
88
+
89
+ expected = pd.Series(["a", 1])
90
+
91
+ tm.assert_series_equal(ser, expected)
92
+
93
+ def _assert_setitem_index_conversion(
94
+ self, original_series, loc_key, expected_index, expected_dtype
95
+ ):
96
+ """test index's coercion triggered by assign key"""
97
+ temp = original_series.copy()
98
+ # GH#33469 pre-2.0 with int loc_key and temp.index.dtype == np.float64
99
+ # `temp[loc_key] = 5` treated loc_key as positional
100
+ temp[loc_key] = 5
101
+ exp = pd.Series([1, 2, 3, 4, 5], index=expected_index)
102
+ tm.assert_series_equal(temp, exp)
103
+ # check dtype explicitly for sure
104
+ assert temp.index.dtype == expected_dtype
105
+
106
+ temp = original_series.copy()
107
+ temp.loc[loc_key] = 5
108
+ exp = pd.Series([1, 2, 3, 4, 5], index=expected_index)
109
+ tm.assert_series_equal(temp, exp)
110
+ # check dtype explicitly for sure
111
+ assert temp.index.dtype == expected_dtype
112
+
113
+ @pytest.mark.parametrize(
114
+ "val,exp_dtype", [("x", object), (5, IndexError), (1.1, object)]
115
+ )
116
+ def test_setitem_index_object(self, val, exp_dtype):
117
+ obj = pd.Series([1, 2, 3, 4], index=pd.Index(list("abcd"), dtype=object))
118
+ assert obj.index.dtype == object
119
+
120
+ if exp_dtype is IndexError:
121
+ temp = obj.copy()
122
+ warn_msg = "Series.__setitem__ treating keys as positions is deprecated"
123
+ msg = "index 5 is out of bounds for axis 0 with size 4"
124
+ with pytest.raises(exp_dtype, match=msg):
125
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
126
+ temp[5] = 5
127
+ else:
128
+ exp_index = pd.Index(list("abcd") + [val], dtype=object)
129
+ self._assert_setitem_index_conversion(obj, val, exp_index, exp_dtype)
130
+
131
+ @pytest.mark.parametrize(
132
+ "val,exp_dtype", [(5, np.int64), (1.1, np.float64), ("x", object)]
133
+ )
134
+ def test_setitem_index_int64(self, val, exp_dtype):
135
+ obj = pd.Series([1, 2, 3, 4])
136
+ assert obj.index.dtype == np.int64
137
+
138
+ exp_index = pd.Index([0, 1, 2, 3, val])
139
+ self._assert_setitem_index_conversion(obj, val, exp_index, exp_dtype)
140
+
141
+ @pytest.mark.parametrize(
142
+ "val,exp_dtype", [(5, np.float64), (5.1, np.float64), ("x", object)]
143
+ )
144
+ def test_setitem_index_float64(self, val, exp_dtype, request):
145
+ obj = pd.Series([1, 2, 3, 4], index=[1.1, 2.1, 3.1, 4.1])
146
+ assert obj.index.dtype == np.float64
147
+
148
+ exp_index = pd.Index([1.1, 2.1, 3.1, 4.1, val])
149
+ self._assert_setitem_index_conversion(obj, val, exp_index, exp_dtype)
150
+
151
+ @pytest.mark.xfail(reason="Test not implemented")
152
+ def test_setitem_series_period(self):
153
+ raise NotImplementedError
154
+
155
+ @pytest.mark.xfail(reason="Test not implemented")
156
+ def test_setitem_index_complex128(self):
157
+ raise NotImplementedError
158
+
159
+ @pytest.mark.xfail(reason="Test not implemented")
160
+ def test_setitem_index_bool(self):
161
+ raise NotImplementedError
162
+
163
+ @pytest.mark.xfail(reason="Test not implemented")
164
+ def test_setitem_index_datetime64(self):
165
+ raise NotImplementedError
166
+
167
+ @pytest.mark.xfail(reason="Test not implemented")
168
+ def test_setitem_index_datetime64tz(self):
169
+ raise NotImplementedError
170
+
171
+ @pytest.mark.xfail(reason="Test not implemented")
172
+ def test_setitem_index_timedelta64(self):
173
+ raise NotImplementedError
174
+
175
+ @pytest.mark.xfail(reason="Test not implemented")
176
+ def test_setitem_index_period(self):
177
+ raise NotImplementedError
178
+
179
+
180
+ class TestInsertIndexCoercion(CoercionBase):
181
+ klasses = ["index"]
182
+ method = "insert"
183
+
184
+ def _assert_insert_conversion(self, original, value, expected, expected_dtype):
185
+ """test coercion triggered by insert"""
186
+ target = original.copy()
187
+ res = target.insert(1, value)
188
+ tm.assert_index_equal(res, expected)
189
+ assert res.dtype == expected_dtype
190
+
191
+ @pytest.mark.parametrize(
192
+ "insert, coerced_val, coerced_dtype",
193
+ [
194
+ (1, 1, object),
195
+ (1.1, 1.1, object),
196
+ (False, False, object),
197
+ ("x", "x", object),
198
+ ],
199
+ )
200
+ def test_insert_index_object(self, insert, coerced_val, coerced_dtype):
201
+ obj = pd.Index(list("abcd"), dtype=object)
202
+ assert obj.dtype == object
203
+
204
+ exp = pd.Index(["a", coerced_val, "b", "c", "d"], dtype=object)
205
+ self._assert_insert_conversion(obj, insert, exp, coerced_dtype)
206
+
207
+ @pytest.mark.parametrize(
208
+ "insert, coerced_val, coerced_dtype",
209
+ [
210
+ (1, 1, None),
211
+ (1.1, 1.1, np.float64),
212
+ (False, False, object), # GH#36319
213
+ ("x", "x", object),
214
+ ],
215
+ )
216
+ def test_insert_int_index(
217
+ self, any_int_numpy_dtype, insert, coerced_val, coerced_dtype
218
+ ):
219
+ dtype = any_int_numpy_dtype
220
+ obj = pd.Index([1, 2, 3, 4], dtype=dtype)
221
+ coerced_dtype = coerced_dtype if coerced_dtype is not None else dtype
222
+
223
+ exp = pd.Index([1, coerced_val, 2, 3, 4], dtype=coerced_dtype)
224
+ self._assert_insert_conversion(obj, insert, exp, coerced_dtype)
225
+
226
+ @pytest.mark.parametrize(
227
+ "insert, coerced_val, coerced_dtype",
228
+ [
229
+ (1, 1.0, None),
230
+ # When float_numpy_dtype=float32, this is not the case
231
+ # see the correction below
232
+ (1.1, 1.1, np.float64),
233
+ (False, False, object), # GH#36319
234
+ ("x", "x", object),
235
+ ],
236
+ )
237
+ def test_insert_float_index(
238
+ self, float_numpy_dtype, insert, coerced_val, coerced_dtype
239
+ ):
240
+ dtype = float_numpy_dtype
241
+ obj = pd.Index([1.0, 2.0, 3.0, 4.0], dtype=dtype)
242
+ coerced_dtype = coerced_dtype if coerced_dtype is not None else dtype
243
+
244
+ if np_version_gt2 and dtype == "float32" and coerced_val == 1.1:
245
+ # Hack, in the 2nd test case, since 1.1 can be losslessly cast to float32
246
+ # the expected dtype will be float32 if the original dtype was float32
247
+ coerced_dtype = np.float32
248
+ exp = pd.Index([1.0, coerced_val, 2.0, 3.0, 4.0], dtype=coerced_dtype)
249
+ self._assert_insert_conversion(obj, insert, exp, coerced_dtype)
250
+
251
+ @pytest.mark.parametrize(
252
+ "fill_val,exp_dtype",
253
+ [
254
+ (pd.Timestamp("2012-01-01"), "datetime64[ns]"),
255
+ (pd.Timestamp("2012-01-01", tz="US/Eastern"), "datetime64[ns, US/Eastern]"),
256
+ ],
257
+ ids=["datetime64", "datetime64tz"],
258
+ )
259
+ @pytest.mark.parametrize(
260
+ "insert_value",
261
+ [pd.Timestamp("2012-01-01"), pd.Timestamp("2012-01-01", tz="Asia/Tokyo"), 1],
262
+ )
263
+ def test_insert_index_datetimes(self, fill_val, exp_dtype, insert_value):
264
+ obj = pd.DatetimeIndex(
265
+ ["2011-01-01", "2011-01-02", "2011-01-03", "2011-01-04"], tz=fill_val.tz
266
+ ).as_unit("ns")
267
+ assert obj.dtype == exp_dtype
268
+
269
+ exp = pd.DatetimeIndex(
270
+ ["2011-01-01", fill_val.date(), "2011-01-02", "2011-01-03", "2011-01-04"],
271
+ tz=fill_val.tz,
272
+ ).as_unit("ns")
273
+ self._assert_insert_conversion(obj, fill_val, exp, exp_dtype)
274
+
275
+ if fill_val.tz:
276
+ # mismatched tzawareness
277
+ ts = pd.Timestamp("2012-01-01")
278
+ result = obj.insert(1, ts)
279
+ expected = obj.astype(object).insert(1, ts)
280
+ assert expected.dtype == object
281
+ tm.assert_index_equal(result, expected)
282
+
283
+ ts = pd.Timestamp("2012-01-01", tz="Asia/Tokyo")
284
+ result = obj.insert(1, ts)
285
+ # once deprecation is enforced:
286
+ expected = obj.insert(1, ts.tz_convert(obj.dtype.tz))
287
+ assert expected.dtype == obj.dtype
288
+ tm.assert_index_equal(result, expected)
289
+
290
+ else:
291
+ # mismatched tzawareness
292
+ ts = pd.Timestamp("2012-01-01", tz="Asia/Tokyo")
293
+ result = obj.insert(1, ts)
294
+ expected = obj.astype(object).insert(1, ts)
295
+ assert expected.dtype == object
296
+ tm.assert_index_equal(result, expected)
297
+
298
+ item = 1
299
+ result = obj.insert(1, item)
300
+ expected = obj.astype(object).insert(1, item)
301
+ assert expected[1] == item
302
+ assert expected.dtype == object
303
+ tm.assert_index_equal(result, expected)
304
+
305
+ def test_insert_index_timedelta64(self):
306
+ obj = pd.TimedeltaIndex(["1 day", "2 day", "3 day", "4 day"])
307
+ assert obj.dtype == "timedelta64[ns]"
308
+
309
+ # timedelta64 + timedelta64 => timedelta64
310
+ exp = pd.TimedeltaIndex(["1 day", "10 day", "2 day", "3 day", "4 day"])
311
+ self._assert_insert_conversion(
312
+ obj, pd.Timedelta("10 day"), exp, "timedelta64[ns]"
313
+ )
314
+
315
+ for item in [pd.Timestamp("2012-01-01"), 1]:
316
+ result = obj.insert(1, item)
317
+ expected = obj.astype(object).insert(1, item)
318
+ assert expected.dtype == object
319
+ tm.assert_index_equal(result, expected)
320
+
321
+ @pytest.mark.parametrize(
322
+ "insert, coerced_val, coerced_dtype",
323
+ [
324
+ (pd.Period("2012-01", freq="M"), "2012-01", "period[M]"),
325
+ (pd.Timestamp("2012-01-01"), pd.Timestamp("2012-01-01"), object),
326
+ (1, 1, object),
327
+ ("x", "x", object),
328
+ ],
329
+ )
330
+ def test_insert_index_period(self, insert, coerced_val, coerced_dtype):
331
+ obj = pd.PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq="M")
332
+ assert obj.dtype == "period[M]"
333
+
334
+ data = [
335
+ pd.Period("2011-01", freq="M"),
336
+ coerced_val,
337
+ pd.Period("2011-02", freq="M"),
338
+ pd.Period("2011-03", freq="M"),
339
+ pd.Period("2011-04", freq="M"),
340
+ ]
341
+ if isinstance(insert, pd.Period):
342
+ exp = pd.PeriodIndex(data, freq="M")
343
+ self._assert_insert_conversion(obj, insert, exp, coerced_dtype)
344
+
345
+ # string that can be parsed to appropriate PeriodDtype
346
+ self._assert_insert_conversion(obj, str(insert), exp, coerced_dtype)
347
+
348
+ else:
349
+ result = obj.insert(0, insert)
350
+ expected = obj.astype(object).insert(0, insert)
351
+ tm.assert_index_equal(result, expected)
352
+
353
+ # TODO: ATM inserting '2012-01-01 00:00:00' when we have obj.freq=="M"
354
+ # casts that string to Period[M], not clear that is desirable
355
+ if not isinstance(insert, pd.Timestamp):
356
+ # non-castable string
357
+ result = obj.insert(0, str(insert))
358
+ expected = obj.astype(object).insert(0, str(insert))
359
+ tm.assert_index_equal(result, expected)
360
+
361
+ @pytest.mark.xfail(reason="Test not implemented")
362
+ def test_insert_index_complex128(self):
363
+ raise NotImplementedError
364
+
365
+ @pytest.mark.xfail(reason="Test not implemented")
366
+ def test_insert_index_bool(self):
367
+ raise NotImplementedError
368
+
369
+
370
+ class TestWhereCoercion(CoercionBase):
371
+ method = "where"
372
+ _cond = np.array([True, False, True, False])
373
+
374
+ def _assert_where_conversion(
375
+ self, original, cond, values, expected, expected_dtype
376
+ ):
377
+ """test coercion triggered by where"""
378
+ target = original.copy()
379
+ res = target.where(cond, values)
380
+ tm.assert_equal(res, expected)
381
+ assert res.dtype == expected_dtype
382
+
383
+ def _construct_exp(self, obj, klass, fill_val, exp_dtype):
384
+ if fill_val is True:
385
+ values = klass([True, False, True, True])
386
+ elif isinstance(fill_val, (datetime, np.datetime64)):
387
+ values = pd.date_range(fill_val, periods=4)
388
+ else:
389
+ values = klass(x * fill_val for x in [5, 6, 7, 8])
390
+
391
+ exp = klass([obj[0], values[1], obj[2], values[3]], dtype=exp_dtype)
392
+ return values, exp
393
+
394
+ def _run_test(self, obj, fill_val, klass, exp_dtype):
395
+ cond = klass(self._cond)
396
+
397
+ exp = klass([obj[0], fill_val, obj[2], fill_val], dtype=exp_dtype)
398
+ self._assert_where_conversion(obj, cond, fill_val, exp, exp_dtype)
399
+
400
+ values, exp = self._construct_exp(obj, klass, fill_val, exp_dtype)
401
+ self._assert_where_conversion(obj, cond, values, exp, exp_dtype)
402
+
403
+ @pytest.mark.parametrize(
404
+ "fill_val,exp_dtype",
405
+ [(1, object), (1.1, object), (1 + 1j, object), (True, object)],
406
+ )
407
+ def test_where_object(self, index_or_series, fill_val, exp_dtype):
408
+ klass = index_or_series
409
+ obj = klass(list("abcd"), dtype=object)
410
+ assert obj.dtype == object
411
+ self._run_test(obj, fill_val, klass, exp_dtype)
412
+
413
+ @pytest.mark.parametrize(
414
+ "fill_val,exp_dtype",
415
+ [(1, np.int64), (1.1, np.float64), (1 + 1j, np.complex128), (True, object)],
416
+ )
417
+ def test_where_int64(self, index_or_series, fill_val, exp_dtype, request):
418
+ klass = index_or_series
419
+
420
+ obj = klass([1, 2, 3, 4])
421
+ assert obj.dtype == np.int64
422
+ self._run_test(obj, fill_val, klass, exp_dtype)
423
+
424
+ @pytest.mark.parametrize(
425
+ "fill_val, exp_dtype",
426
+ [(1, np.float64), (1.1, np.float64), (1 + 1j, np.complex128), (True, object)],
427
+ )
428
+ def test_where_float64(self, index_or_series, fill_val, exp_dtype, request):
429
+ klass = index_or_series
430
+
431
+ obj = klass([1.1, 2.2, 3.3, 4.4])
432
+ assert obj.dtype == np.float64
433
+ self._run_test(obj, fill_val, klass, exp_dtype)
434
+
435
+ @pytest.mark.parametrize(
436
+ "fill_val,exp_dtype",
437
+ [
438
+ (1, np.complex128),
439
+ (1.1, np.complex128),
440
+ (1 + 1j, np.complex128),
441
+ (True, object),
442
+ ],
443
+ )
444
+ def test_where_complex128(self, index_or_series, fill_val, exp_dtype):
445
+ klass = index_or_series
446
+ obj = klass([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j], dtype=np.complex128)
447
+ assert obj.dtype == np.complex128
448
+ self._run_test(obj, fill_val, klass, exp_dtype)
449
+
450
+ @pytest.mark.parametrize(
451
+ "fill_val,exp_dtype",
452
+ [(1, object), (1.1, object), (1 + 1j, object), (True, np.bool_)],
453
+ )
454
+ def test_where_series_bool(self, index_or_series, fill_val, exp_dtype):
455
+ klass = index_or_series
456
+
457
+ obj = klass([True, False, True, False])
458
+ assert obj.dtype == np.bool_
459
+ self._run_test(obj, fill_val, klass, exp_dtype)
460
+
461
+ @pytest.mark.parametrize(
462
+ "fill_val,exp_dtype",
463
+ [
464
+ (pd.Timestamp("2012-01-01"), "datetime64[ns]"),
465
+ (pd.Timestamp("2012-01-01", tz="US/Eastern"), object),
466
+ ],
467
+ ids=["datetime64", "datetime64tz"],
468
+ )
469
+ def test_where_datetime64(self, index_or_series, fill_val, exp_dtype):
470
+ klass = index_or_series
471
+
472
+ obj = klass(pd.date_range("2011-01-01", periods=4, freq="D")._with_freq(None))
473
+ assert obj.dtype == "datetime64[ns]"
474
+
475
+ fv = fill_val
476
+ # do the check with each of the available datetime scalars
477
+ if exp_dtype == "datetime64[ns]":
478
+ for scalar in [fv, fv.to_pydatetime(), fv.to_datetime64()]:
479
+ self._run_test(obj, scalar, klass, exp_dtype)
480
+ else:
481
+ for scalar in [fv, fv.to_pydatetime()]:
482
+ self._run_test(obj, fill_val, klass, exp_dtype)
483
+
484
+ @pytest.mark.xfail(reason="Test not implemented")
485
+ def test_where_index_complex128(self):
486
+ raise NotImplementedError
487
+
488
+ @pytest.mark.xfail(reason="Test not implemented")
489
+ def test_where_index_bool(self):
490
+ raise NotImplementedError
491
+
492
+ @pytest.mark.xfail(reason="Test not implemented")
493
+ def test_where_series_timedelta64(self):
494
+ raise NotImplementedError
495
+
496
+ @pytest.mark.xfail(reason="Test not implemented")
497
+ def test_where_series_period(self):
498
+ raise NotImplementedError
499
+
500
+ @pytest.mark.parametrize(
501
+ "value", [pd.Timedelta(days=9), timedelta(days=9), np.timedelta64(9, "D")]
502
+ )
503
+ def test_where_index_timedelta64(self, value):
504
+ tdi = pd.timedelta_range("1 Day", periods=4)
505
+ cond = np.array([True, False, False, True])
506
+
507
+ expected = pd.TimedeltaIndex(["1 Day", value, value, "4 Days"])
508
+ result = tdi.where(cond, value)
509
+ tm.assert_index_equal(result, expected)
510
+
511
+ # wrong-dtyped NaT
512
+ dtnat = np.datetime64("NaT", "ns")
513
+ expected = pd.Index([tdi[0], dtnat, dtnat, tdi[3]], dtype=object)
514
+ assert expected[1] is dtnat
515
+
516
+ result = tdi.where(cond, dtnat)
517
+ tm.assert_index_equal(result, expected)
518
+
519
+ def test_where_index_period(self):
520
+ dti = pd.date_range("2016-01-01", periods=3, freq="QS")
521
+ pi = dti.to_period("Q")
522
+
523
+ cond = np.array([False, True, False])
524
+
525
+ # Passing a valid scalar
526
+ value = pi[-1] + pi.freq * 10
527
+ expected = pd.PeriodIndex([value, pi[1], value])
528
+ result = pi.where(cond, value)
529
+ tm.assert_index_equal(result, expected)
530
+
531
+ # Case passing ndarray[object] of Periods
532
+ other = np.asarray(pi + pi.freq * 10, dtype=object)
533
+ result = pi.where(cond, other)
534
+ expected = pd.PeriodIndex([other[0], pi[1], other[2]])
535
+ tm.assert_index_equal(result, expected)
536
+
537
+ # Passing a mismatched scalar -> casts to object
538
+ td = pd.Timedelta(days=4)
539
+ expected = pd.Index([td, pi[1], td], dtype=object)
540
+ result = pi.where(cond, td)
541
+ tm.assert_index_equal(result, expected)
542
+
543
+ per = pd.Period("2020-04-21", "D")
544
+ expected = pd.Index([per, pi[1], per], dtype=object)
545
+ result = pi.where(cond, per)
546
+ tm.assert_index_equal(result, expected)
547
+
548
+
549
+ class TestFillnaSeriesCoercion(CoercionBase):
550
+ # not indexing, but place here for consistency
551
+
552
+ method = "fillna"
553
+
554
+ @pytest.mark.xfail(reason="Test not implemented")
555
+ def test_has_comprehensive_tests(self):
556
+ raise NotImplementedError
557
+
558
+ def _assert_fillna_conversion(self, original, value, expected, expected_dtype):
559
+ """test coercion triggered by fillna"""
560
+ target = original.copy()
561
+ res = target.fillna(value)
562
+ tm.assert_equal(res, expected)
563
+ assert res.dtype == expected_dtype
564
+
565
+ @pytest.mark.parametrize(
566
+ "fill_val, fill_dtype",
567
+ [(1, object), (1.1, object), (1 + 1j, object), (True, object)],
568
+ )
569
+ def test_fillna_object(self, index_or_series, fill_val, fill_dtype):
570
+ klass = index_or_series
571
+ obj = klass(["a", np.nan, "c", "d"], dtype=object)
572
+ assert obj.dtype == object
573
+
574
+ exp = klass(["a", fill_val, "c", "d"], dtype=object)
575
+ self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
576
+
577
+ @pytest.mark.parametrize(
578
+ "fill_val,fill_dtype",
579
+ [(1, np.float64), (1.1, np.float64), (1 + 1j, np.complex128), (True, object)],
580
+ )
581
+ def test_fillna_float64(self, index_or_series, fill_val, fill_dtype):
582
+ klass = index_or_series
583
+ obj = klass([1.1, np.nan, 3.3, 4.4])
584
+ assert obj.dtype == np.float64
585
+
586
+ exp = klass([1.1, fill_val, 3.3, 4.4])
587
+ self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
588
+
589
+ @pytest.mark.parametrize(
590
+ "fill_val,fill_dtype",
591
+ [
592
+ (1, np.complex128),
593
+ (1.1, np.complex128),
594
+ (1 + 1j, np.complex128),
595
+ (True, object),
596
+ ],
597
+ )
598
+ def test_fillna_complex128(self, index_or_series, fill_val, fill_dtype):
599
+ klass = index_or_series
600
+ obj = klass([1 + 1j, np.nan, 3 + 3j, 4 + 4j], dtype=np.complex128)
601
+ assert obj.dtype == np.complex128
602
+
603
+ exp = klass([1 + 1j, fill_val, 3 + 3j, 4 + 4j])
604
+ self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
605
+
606
+ @pytest.mark.parametrize(
607
+ "fill_val,fill_dtype",
608
+ [
609
+ (pd.Timestamp("2012-01-01"), "datetime64[ns]"),
610
+ (pd.Timestamp("2012-01-01", tz="US/Eastern"), object),
611
+ (1, object),
612
+ ("x", object),
613
+ ],
614
+ ids=["datetime64", "datetime64tz", "object", "object"],
615
+ )
616
+ def test_fillna_datetime(self, index_or_series, fill_val, fill_dtype):
617
+ klass = index_or_series
618
+ obj = klass(
619
+ [
620
+ pd.Timestamp("2011-01-01"),
621
+ pd.NaT,
622
+ pd.Timestamp("2011-01-03"),
623
+ pd.Timestamp("2011-01-04"),
624
+ ]
625
+ )
626
+ assert obj.dtype == "datetime64[ns]"
627
+
628
+ exp = klass(
629
+ [
630
+ pd.Timestamp("2011-01-01"),
631
+ fill_val,
632
+ pd.Timestamp("2011-01-03"),
633
+ pd.Timestamp("2011-01-04"),
634
+ ]
635
+ )
636
+ self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
637
+
638
+ @pytest.mark.parametrize(
639
+ "fill_val,fill_dtype",
640
+ [
641
+ (pd.Timestamp("2012-01-01", tz="US/Eastern"), "datetime64[ns, US/Eastern]"),
642
+ (pd.Timestamp("2012-01-01"), object),
643
+ # pre-2.0 with a mismatched tz we would get object result
644
+ (pd.Timestamp("2012-01-01", tz="Asia/Tokyo"), "datetime64[ns, US/Eastern]"),
645
+ (1, object),
646
+ ("x", object),
647
+ ],
648
+ )
649
+ def test_fillna_datetime64tz(self, index_or_series, fill_val, fill_dtype):
650
+ klass = index_or_series
651
+ tz = "US/Eastern"
652
+
653
+ obj = klass(
654
+ [
655
+ pd.Timestamp("2011-01-01", tz=tz),
656
+ pd.NaT,
657
+ pd.Timestamp("2011-01-03", tz=tz),
658
+ pd.Timestamp("2011-01-04", tz=tz),
659
+ ]
660
+ )
661
+ assert obj.dtype == "datetime64[ns, US/Eastern]"
662
+
663
+ if getattr(fill_val, "tz", None) is None:
664
+ fv = fill_val
665
+ else:
666
+ fv = fill_val.tz_convert(tz)
667
+ exp = klass(
668
+ [
669
+ pd.Timestamp("2011-01-01", tz=tz),
670
+ fv,
671
+ pd.Timestamp("2011-01-03", tz=tz),
672
+ pd.Timestamp("2011-01-04", tz=tz),
673
+ ]
674
+ )
675
+ self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
676
+
677
+ @pytest.mark.parametrize(
678
+ "fill_val",
679
+ [
680
+ 1,
681
+ 1.1,
682
+ 1 + 1j,
683
+ True,
684
+ pd.Interval(1, 2, closed="left"),
685
+ pd.Timestamp("2012-01-01", tz="US/Eastern"),
686
+ pd.Timestamp("2012-01-01"),
687
+ pd.Timedelta(days=1),
688
+ pd.Period("2016-01-01", "D"),
689
+ ],
690
+ )
691
+ def test_fillna_interval(self, index_or_series, fill_val):
692
+ ii = pd.interval_range(1.0, 5.0, closed="right").insert(1, np.nan)
693
+ assert isinstance(ii.dtype, pd.IntervalDtype)
694
+ obj = index_or_series(ii)
695
+
696
+ exp = index_or_series([ii[0], fill_val, ii[2], ii[3], ii[4]], dtype=object)
697
+
698
+ fill_dtype = object
699
+ self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
700
+
701
+ @pytest.mark.xfail(reason="Test not implemented")
702
+ def test_fillna_series_int64(self):
703
+ raise NotImplementedError
704
+
705
+ @pytest.mark.xfail(reason="Test not implemented")
706
+ def test_fillna_index_int64(self):
707
+ raise NotImplementedError
708
+
709
+ @pytest.mark.xfail(reason="Test not implemented")
710
+ def test_fillna_series_bool(self):
711
+ raise NotImplementedError
712
+
713
+ @pytest.mark.xfail(reason="Test not implemented")
714
+ def test_fillna_index_bool(self):
715
+ raise NotImplementedError
716
+
717
+ @pytest.mark.xfail(reason="Test not implemented")
718
+ def test_fillna_series_timedelta64(self):
719
+ raise NotImplementedError
720
+
721
+ @pytest.mark.parametrize(
722
+ "fill_val",
723
+ [
724
+ 1,
725
+ 1.1,
726
+ 1 + 1j,
727
+ True,
728
+ pd.Interval(1, 2, closed="left"),
729
+ pd.Timestamp("2012-01-01", tz="US/Eastern"),
730
+ pd.Timestamp("2012-01-01"),
731
+ pd.Timedelta(days=1),
732
+ pd.Period("2016-01-01", "W"),
733
+ ],
734
+ )
735
+ def test_fillna_series_period(self, index_or_series, fill_val):
736
+ pi = pd.period_range("2016-01-01", periods=4, freq="D").insert(1, pd.NaT)
737
+ assert isinstance(pi.dtype, pd.PeriodDtype)
738
+ obj = index_or_series(pi)
739
+
740
+ exp = index_or_series([pi[0], fill_val, pi[2], pi[3], pi[4]], dtype=object)
741
+
742
+ fill_dtype = object
743
+ self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
744
+
745
+ @pytest.mark.xfail(reason="Test not implemented")
746
+ def test_fillna_index_timedelta64(self):
747
+ raise NotImplementedError
748
+
749
+ @pytest.mark.xfail(reason="Test not implemented")
750
+ def test_fillna_index_period(self):
751
+ raise NotImplementedError
752
+
753
+
754
+ class TestReplaceSeriesCoercion(CoercionBase):
755
+ klasses = ["series"]
756
+ method = "replace"
757
+
758
+ rep: dict[str, list] = {}
759
+ rep["object"] = ["a", "b"]
760
+ rep["int64"] = [4, 5]
761
+ rep["float64"] = [1.1, 2.2]
762
+ rep["complex128"] = [1 + 1j, 2 + 2j]
763
+ rep["bool"] = [True, False]
764
+ rep["datetime64[ns]"] = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-03")]
765
+
766
+ for tz in ["UTC", "US/Eastern"]:
767
+ # to test tz => different tz replacement
768
+ key = f"datetime64[ns, {tz}]"
769
+ rep[key] = [
770
+ pd.Timestamp("2011-01-01", tz=tz),
771
+ pd.Timestamp("2011-01-03", tz=tz),
772
+ ]
773
+
774
+ rep["timedelta64[ns]"] = [pd.Timedelta("1 day"), pd.Timedelta("2 day")]
775
+
776
+ @pytest.fixture(params=["dict", "series"])
777
+ def how(self, request):
778
+ return request.param
779
+
780
+ @pytest.fixture(
781
+ params=[
782
+ "object",
783
+ "int64",
784
+ "float64",
785
+ "complex128",
786
+ "bool",
787
+ "datetime64[ns]",
788
+ "datetime64[ns, UTC]",
789
+ "datetime64[ns, US/Eastern]",
790
+ "timedelta64[ns]",
791
+ ]
792
+ )
793
+ def from_key(self, request):
794
+ return request.param
795
+
796
+ @pytest.fixture(
797
+ params=[
798
+ "object",
799
+ "int64",
800
+ "float64",
801
+ "complex128",
802
+ "bool",
803
+ "datetime64[ns]",
804
+ "datetime64[ns, UTC]",
805
+ "datetime64[ns, US/Eastern]",
806
+ "timedelta64[ns]",
807
+ ],
808
+ ids=[
809
+ "object",
810
+ "int64",
811
+ "float64",
812
+ "complex128",
813
+ "bool",
814
+ "datetime64",
815
+ "datetime64tz",
816
+ "datetime64tz",
817
+ "timedelta64",
818
+ ],
819
+ )
820
+ def to_key(self, request):
821
+ return request.param
822
+
823
+ @pytest.fixture
824
+ def replacer(self, how, from_key, to_key):
825
+ """
826
+ Object we will pass to `Series.replace`
827
+ """
828
+ if how == "dict":
829
+ replacer = dict(zip(self.rep[from_key], self.rep[to_key]))
830
+ elif how == "series":
831
+ replacer = pd.Series(self.rep[to_key], index=self.rep[from_key])
832
+ else:
833
+ raise ValueError
834
+ return replacer
835
+
836
+ # Expected needs adjustment for the infer string option, seems to work as expecetd
837
+ @pytest.mark.skipif(using_pyarrow_string_dtype(), reason="TODO: test is to complex")
838
+ def test_replace_series(self, how, to_key, from_key, replacer):
839
+ index = pd.Index([3, 4], name="xxx")
840
+ obj = pd.Series(self.rep[from_key], index=index, name="yyy")
841
+ assert obj.dtype == from_key
842
+
843
+ if from_key.startswith("datetime") and to_key.startswith("datetime"):
844
+ # tested below
845
+ return
846
+ elif from_key in ["datetime64[ns, US/Eastern]", "datetime64[ns, UTC]"]:
847
+ # tested below
848
+ return
849
+
850
+ if (from_key == "float64" and to_key in ("int64")) or (
851
+ from_key == "complex128" and to_key in ("int64", "float64")
852
+ ):
853
+ if not IS64 or is_platform_windows():
854
+ pytest.skip(f"32-bit platform buggy: {from_key} -> {to_key}")
855
+
856
+ # Expected: do not downcast by replacement
857
+ exp = pd.Series(self.rep[to_key], index=index, name="yyy", dtype=from_key)
858
+
859
+ else:
860
+ exp = pd.Series(self.rep[to_key], index=index, name="yyy")
861
+ assert exp.dtype == to_key
862
+
863
+ msg = "Downcasting behavior in `replace`"
864
+ warn = FutureWarning
865
+ if (
866
+ exp.dtype == obj.dtype
867
+ or exp.dtype == object
868
+ or (exp.dtype.kind in "iufc" and obj.dtype.kind in "iufc")
869
+ ):
870
+ warn = None
871
+ with tm.assert_produces_warning(warn, match=msg):
872
+ result = obj.replace(replacer)
873
+
874
+ tm.assert_series_equal(result, exp)
875
+
876
+ @pytest.mark.parametrize(
877
+ "to_key",
878
+ ["timedelta64[ns]", "bool", "object", "complex128", "float64", "int64"],
879
+ indirect=True,
880
+ )
881
+ @pytest.mark.parametrize(
882
+ "from_key", ["datetime64[ns, UTC]", "datetime64[ns, US/Eastern]"], indirect=True
883
+ )
884
+ def test_replace_series_datetime_tz(
885
+ self, how, to_key, from_key, replacer, using_infer_string
886
+ ):
887
+ index = pd.Index([3, 4], name="xyz")
888
+ obj = pd.Series(self.rep[from_key], index=index, name="yyy")
889
+ assert obj.dtype == from_key
890
+
891
+ exp = pd.Series(self.rep[to_key], index=index, name="yyy")
892
+ if using_infer_string and to_key == "object":
893
+ assert exp.dtype == "string"
894
+ else:
895
+ assert exp.dtype == to_key
896
+
897
+ msg = "Downcasting behavior in `replace`"
898
+ warn = FutureWarning if exp.dtype != object else None
899
+ with tm.assert_produces_warning(warn, match=msg):
900
+ result = obj.replace(replacer)
901
+
902
+ tm.assert_series_equal(result, exp)
903
+
904
+ @pytest.mark.parametrize(
905
+ "to_key",
906
+ ["datetime64[ns]", "datetime64[ns, UTC]", "datetime64[ns, US/Eastern]"],
907
+ indirect=True,
908
+ )
909
+ @pytest.mark.parametrize(
910
+ "from_key",
911
+ ["datetime64[ns]", "datetime64[ns, UTC]", "datetime64[ns, US/Eastern]"],
912
+ indirect=True,
913
+ )
914
+ def test_replace_series_datetime_datetime(self, how, to_key, from_key, replacer):
915
+ index = pd.Index([3, 4], name="xyz")
916
+ obj = pd.Series(self.rep[from_key], index=index, name="yyy")
917
+ assert obj.dtype == from_key
918
+
919
+ exp = pd.Series(self.rep[to_key], index=index, name="yyy")
920
+ warn = FutureWarning
921
+ if isinstance(obj.dtype, pd.DatetimeTZDtype) and isinstance(
922
+ exp.dtype, pd.DatetimeTZDtype
923
+ ):
924
+ # with mismatched tzs, we retain the original dtype as of 2.0
925
+ exp = exp.astype(obj.dtype)
926
+ warn = None
927
+ else:
928
+ assert exp.dtype == to_key
929
+ if to_key == from_key:
930
+ warn = None
931
+
932
+ msg = "Downcasting behavior in `replace`"
933
+ with tm.assert_produces_warning(warn, match=msg):
934
+ result = obj.replace(replacer)
935
+
936
+ tm.assert_series_equal(result, exp)
937
+
938
+ @pytest.mark.xfail(reason="Test not implemented")
939
+ def test_replace_series_period(self):
940
+ raise NotImplementedError
venv/lib/python3.10/site-packages/pandas/tests/indexing/test_datetime.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import pytest
4
+
5
+ import pandas as pd
6
+ from pandas import (
7
+ DataFrame,
8
+ Index,
9
+ Series,
10
+ Timestamp,
11
+ date_range,
12
+ )
13
+ import pandas._testing as tm
14
+
15
+
16
+ class TestDatetimeIndex:
17
+ def test_get_loc_naive_dti_aware_str_deprecated(self):
18
+ # GH#46903
19
+ ts = Timestamp("20130101")._value
20
+ dti = pd.DatetimeIndex([ts + 50 + i for i in range(100)])
21
+ ser = Series(range(100), index=dti)
22
+
23
+ key = "2013-01-01 00:00:00.000000050+0000"
24
+ msg = re.escape(repr(key))
25
+ with pytest.raises(KeyError, match=msg):
26
+ ser[key]
27
+
28
+ with pytest.raises(KeyError, match=msg):
29
+ dti.get_loc(key)
30
+
31
+ def test_indexing_with_datetime_tz(self):
32
+ # GH#8260
33
+ # support datetime64 with tz
34
+
35
+ idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo")
36
+ dr = date_range("20130110", periods=3)
37
+ df = DataFrame({"A": idx, "B": dr})
38
+ df["C"] = idx
39
+ df.iloc[1, 1] = pd.NaT
40
+ df.iloc[1, 2] = pd.NaT
41
+
42
+ expected = Series(
43
+ [Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT],
44
+ index=list("ABC"),
45
+ dtype="object",
46
+ name=1,
47
+ )
48
+
49
+ # indexing
50
+ result = df.iloc[1]
51
+ tm.assert_series_equal(result, expected)
52
+ result = df.loc[1]
53
+ tm.assert_series_equal(result, expected)
54
+
55
+ def test_indexing_fast_xs(self):
56
+ # indexing - fast_xs
57
+ df = DataFrame({"a": date_range("2014-01-01", periods=10, tz="UTC")})
58
+ result = df.iloc[5]
59
+ expected = Series(
60
+ [Timestamp("2014-01-06 00:00:00+0000", tz="UTC")],
61
+ index=["a"],
62
+ name=5,
63
+ dtype="M8[ns, UTC]",
64
+ )
65
+ tm.assert_series_equal(result, expected)
66
+
67
+ result = df.loc[5]
68
+ tm.assert_series_equal(result, expected)
69
+
70
+ # indexing - boolean
71
+ result = df[df.a > df.a[3]]
72
+ expected = df.iloc[4:]
73
+ tm.assert_frame_equal(result, expected)
74
+
75
+ def test_consistency_with_tz_aware_scalar(self):
76
+ # xef gh-12938
77
+ # various ways of indexing the same tz-aware scalar
78
+ df = Series([Timestamp("2016-03-30 14:35:25", tz="Europe/Brussels")]).to_frame()
79
+
80
+ df = pd.concat([df, df]).reset_index(drop=True)
81
+ expected = Timestamp("2016-03-30 14:35:25+0200", tz="Europe/Brussels")
82
+
83
+ result = df[0][0]
84
+ assert result == expected
85
+
86
+ result = df.iloc[0, 0]
87
+ assert result == expected
88
+
89
+ result = df.loc[0, 0]
90
+ assert result == expected
91
+
92
+ result = df.iat[0, 0]
93
+ assert result == expected
94
+
95
+ result = df.at[0, 0]
96
+ assert result == expected
97
+
98
+ result = df[0].loc[0]
99
+ assert result == expected
100
+
101
+ result = df[0].at[0]
102
+ assert result == expected
103
+
104
+ def test_indexing_with_datetimeindex_tz(self, indexer_sl):
105
+ # GH 12050
106
+ # indexing on a series with a datetimeindex with tz
107
+ index = date_range("2015-01-01", periods=2, tz="utc")
108
+
109
+ ser = Series(range(2), index=index, dtype="int64")
110
+
111
+ # list-like indexing
112
+
113
+ for sel in (index, list(index)):
114
+ # getitem
115
+ result = indexer_sl(ser)[sel]
116
+ expected = ser.copy()
117
+ if sel is not index:
118
+ expected.index = expected.index._with_freq(None)
119
+ tm.assert_series_equal(result, expected)
120
+
121
+ # setitem
122
+ result = ser.copy()
123
+ indexer_sl(result)[sel] = 1
124
+ expected = Series(1, index=index)
125
+ tm.assert_series_equal(result, expected)
126
+
127
+ # single element indexing
128
+
129
+ # getitem
130
+ assert indexer_sl(ser)[index[1]] == 1
131
+
132
+ # setitem
133
+ result = ser.copy()
134
+ indexer_sl(result)[index[1]] = 5
135
+ expected = Series([0, 5], index=index)
136
+ tm.assert_series_equal(result, expected)
137
+
138
+ def test_nanosecond_getitem_setitem_with_tz(self):
139
+ # GH 11679
140
+ data = ["2016-06-28 08:30:00.123456789"]
141
+ index = pd.DatetimeIndex(data, dtype="datetime64[ns, America/Chicago]")
142
+ df = DataFrame({"a": [10]}, index=index)
143
+ result = df.loc[df.index[0]]
144
+ expected = Series(10, index=["a"], name=df.index[0])
145
+ tm.assert_series_equal(result, expected)
146
+
147
+ result = df.copy()
148
+ result.loc[df.index[0], "a"] = -1
149
+ expected = DataFrame(-1, index=index, columns=["a"])
150
+ tm.assert_frame_equal(result, expected)
151
+
152
+ def test_getitem_str_slice_millisecond_resolution(self, frame_or_series):
153
+ # GH#33589
154
+
155
+ keys = [
156
+ "2017-10-25T16:25:04.151",
157
+ "2017-10-25T16:25:04.252",
158
+ "2017-10-25T16:50:05.237",
159
+ "2017-10-25T16:50:05.238",
160
+ ]
161
+ obj = frame_or_series(
162
+ [1, 2, 3, 4],
163
+ index=[Timestamp(x) for x in keys],
164
+ )
165
+ result = obj[keys[1] : keys[2]]
166
+ expected = frame_or_series(
167
+ [2, 3],
168
+ index=[
169
+ Timestamp(keys[1]),
170
+ Timestamp(keys[2]),
171
+ ],
172
+ )
173
+ tm.assert_equal(result, expected)
174
+
175
+ def test_getitem_pyarrow_index(self, frame_or_series):
176
+ # GH 53644
177
+ pytest.importorskip("pyarrow")
178
+ obj = frame_or_series(
179
+ range(5),
180
+ index=date_range("2020", freq="D", periods=5).astype(
181
+ "timestamp[us][pyarrow]"
182
+ ),
183
+ )
184
+ result = obj.loc[obj.index[:-3]]
185
+ expected = frame_or_series(
186
+ range(2),
187
+ index=date_range("2020", freq="D", periods=2).astype(
188
+ "timestamp[us][pyarrow]"
189
+ ),
190
+ )
191
+ tm.assert_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/indexing/test_floats.py ADDED
@@ -0,0 +1,689 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ DataFrame,
6
+ Index,
7
+ RangeIndex,
8
+ Series,
9
+ date_range,
10
+ period_range,
11
+ timedelta_range,
12
+ )
13
+ import pandas._testing as tm
14
+
15
+
16
+ def gen_obj(klass, index):
17
+ if klass is Series:
18
+ obj = Series(np.arange(len(index)), index=index)
19
+ else:
20
+ obj = DataFrame(
21
+ np.random.default_rng(2).standard_normal((len(index), len(index))),
22
+ index=index,
23
+ columns=index,
24
+ )
25
+ return obj
26
+
27
+
28
+ class TestFloatIndexers:
29
+ def check(self, result, original, indexer, getitem):
30
+ """
31
+ comparator for results
32
+ we need to take care if we are indexing on a
33
+ Series or a frame
34
+ """
35
+ if isinstance(original, Series):
36
+ expected = original.iloc[indexer]
37
+ elif getitem:
38
+ expected = original.iloc[:, indexer]
39
+ else:
40
+ expected = original.iloc[indexer]
41
+
42
+ tm.assert_almost_equal(result, expected)
43
+
44
+ @pytest.mark.parametrize(
45
+ "index",
46
+ [
47
+ Index(list("abcde")),
48
+ Index(list("abcde"), dtype="category"),
49
+ date_range("2020-01-01", periods=5),
50
+ timedelta_range("1 day", periods=5),
51
+ period_range("2020-01-01", periods=5),
52
+ ],
53
+ )
54
+ def test_scalar_non_numeric(self, index, frame_or_series, indexer_sl):
55
+ # GH 4892
56
+ # float_indexers should raise exceptions
57
+ # on appropriate Index types & accessors
58
+
59
+ s = gen_obj(frame_or_series, index)
60
+
61
+ # getting
62
+ with pytest.raises(KeyError, match="^3.0$"):
63
+ indexer_sl(s)[3.0]
64
+
65
+ # contains
66
+ assert 3.0 not in s
67
+
68
+ s2 = s.copy()
69
+ indexer_sl(s2)[3.0] = 10
70
+
71
+ if indexer_sl is tm.setitem:
72
+ assert 3.0 in s2.axes[-1]
73
+ elif indexer_sl is tm.loc:
74
+ assert 3.0 in s2.axes[0]
75
+ else:
76
+ assert 3.0 not in s2.axes[0]
77
+ assert 3.0 not in s2.axes[-1]
78
+
79
+ @pytest.mark.parametrize(
80
+ "index",
81
+ [
82
+ Index(list("abcde")),
83
+ Index(list("abcde"), dtype="category"),
84
+ date_range("2020-01-01", periods=5),
85
+ timedelta_range("1 day", periods=5),
86
+ period_range("2020-01-01", periods=5),
87
+ ],
88
+ )
89
+ def test_scalar_non_numeric_series_fallback(self, index):
90
+ # fallsback to position selection, series only
91
+ s = Series(np.arange(len(index)), index=index)
92
+
93
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
94
+ with tm.assert_produces_warning(FutureWarning, match=msg):
95
+ s[3]
96
+ with pytest.raises(KeyError, match="^3.0$"):
97
+ s[3.0]
98
+
99
+ def test_scalar_with_mixed(self, indexer_sl):
100
+ s2 = Series([1, 2, 3], index=["a", "b", "c"])
101
+ s3 = Series([1, 2, 3], index=["a", "b", 1.5])
102
+
103
+ # lookup in a pure string index with an invalid indexer
104
+
105
+ with pytest.raises(KeyError, match="^1.0$"):
106
+ indexer_sl(s2)[1.0]
107
+
108
+ with pytest.raises(KeyError, match=r"^1\.0$"):
109
+ indexer_sl(s2)[1.0]
110
+
111
+ result = indexer_sl(s2)["b"]
112
+ expected = 2
113
+ assert result == expected
114
+
115
+ # mixed index so we have label
116
+ # indexing
117
+ with pytest.raises(KeyError, match="^1.0$"):
118
+ indexer_sl(s3)[1.0]
119
+
120
+ if indexer_sl is not tm.loc:
121
+ # __getitem__ falls back to positional
122
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
123
+ with tm.assert_produces_warning(FutureWarning, match=msg):
124
+ result = s3[1]
125
+ expected = 2
126
+ assert result == expected
127
+
128
+ with pytest.raises(KeyError, match=r"^1\.0$"):
129
+ indexer_sl(s3)[1.0]
130
+
131
+ result = indexer_sl(s3)[1.5]
132
+ expected = 3
133
+ assert result == expected
134
+
135
+ @pytest.mark.parametrize(
136
+ "index", [Index(np.arange(5), dtype=np.int64), RangeIndex(5)]
137
+ )
138
+ def test_scalar_integer(self, index, frame_or_series, indexer_sl):
139
+ getitem = indexer_sl is not tm.loc
140
+
141
+ # test how scalar float indexers work on int indexes
142
+
143
+ # integer index
144
+ i = index
145
+ obj = gen_obj(frame_or_series, i)
146
+
147
+ # coerce to equal int
148
+
149
+ result = indexer_sl(obj)[3.0]
150
+ self.check(result, obj, 3, getitem)
151
+
152
+ if isinstance(obj, Series):
153
+
154
+ def compare(x, y):
155
+ assert x == y
156
+
157
+ expected = 100
158
+ else:
159
+ compare = tm.assert_series_equal
160
+ if getitem:
161
+ expected = Series(100, index=range(len(obj)), name=3)
162
+ else:
163
+ expected = Series(100.0, index=range(len(obj)), name=3)
164
+
165
+ s2 = obj.copy()
166
+ indexer_sl(s2)[3.0] = 100
167
+
168
+ result = indexer_sl(s2)[3.0]
169
+ compare(result, expected)
170
+
171
+ result = indexer_sl(s2)[3]
172
+ compare(result, expected)
173
+
174
+ @pytest.mark.parametrize(
175
+ "index", [Index(np.arange(5), dtype=np.int64), RangeIndex(5)]
176
+ )
177
+ def test_scalar_integer_contains_float(self, index, frame_or_series):
178
+ # contains
179
+ # integer index
180
+ obj = gen_obj(frame_or_series, index)
181
+
182
+ # coerce to equal int
183
+ assert 3.0 in obj
184
+
185
+ def test_scalar_float(self, frame_or_series):
186
+ # scalar float indexers work on a float index
187
+ index = Index(np.arange(5.0))
188
+ s = gen_obj(frame_or_series, index)
189
+
190
+ # assert all operations except for iloc are ok
191
+ indexer = index[3]
192
+ for idxr in [tm.loc, tm.setitem]:
193
+ getitem = idxr is not tm.loc
194
+
195
+ # getting
196
+ result = idxr(s)[indexer]
197
+ self.check(result, s, 3, getitem)
198
+
199
+ # setting
200
+ s2 = s.copy()
201
+
202
+ result = idxr(s2)[indexer]
203
+ self.check(result, s, 3, getitem)
204
+
205
+ # random float is a KeyError
206
+ with pytest.raises(KeyError, match=r"^3\.5$"):
207
+ idxr(s)[3.5]
208
+
209
+ # contains
210
+ assert 3.0 in s
211
+
212
+ # iloc succeeds with an integer
213
+ expected = s.iloc[3]
214
+ s2 = s.copy()
215
+
216
+ s2.iloc[3] = expected
217
+ result = s2.iloc[3]
218
+ self.check(result, s, 3, False)
219
+
220
+ @pytest.mark.parametrize(
221
+ "index",
222
+ [
223
+ Index(list("abcde"), dtype=object),
224
+ date_range("2020-01-01", periods=5),
225
+ timedelta_range("1 day", periods=5),
226
+ period_range("2020-01-01", periods=5),
227
+ ],
228
+ )
229
+ @pytest.mark.parametrize("idx", [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)])
230
+ def test_slice_non_numeric(self, index, idx, frame_or_series, indexer_sli):
231
+ # GH 4892
232
+ # float_indexers should raise exceptions
233
+ # on appropriate Index types & accessors
234
+
235
+ s = gen_obj(frame_or_series, index)
236
+
237
+ # getitem
238
+ if indexer_sli is tm.iloc:
239
+ msg = (
240
+ "cannot do positional indexing "
241
+ rf"on {type(index).__name__} with these indexers \[(3|4)\.0\] of "
242
+ "type float"
243
+ )
244
+ else:
245
+ msg = (
246
+ "cannot do slice indexing "
247
+ rf"on {type(index).__name__} with these indexers "
248
+ r"\[(3|4)(\.0)?\] "
249
+ r"of type (float|int)"
250
+ )
251
+ with pytest.raises(TypeError, match=msg):
252
+ indexer_sli(s)[idx]
253
+
254
+ # setitem
255
+ if indexer_sli is tm.iloc:
256
+ # otherwise we keep the same message as above
257
+ msg = "slice indices must be integers or None or have an __index__ method"
258
+ with pytest.raises(TypeError, match=msg):
259
+ indexer_sli(s)[idx] = 0
260
+
261
+ def test_slice_integer(self):
262
+ # same as above, but for Integer based indexes
263
+ # these coerce to a like integer
264
+ # oob indicates if we are out of bounds
265
+ # of positional indexing
266
+ for index, oob in [
267
+ (Index(np.arange(5, dtype=np.int64)), False),
268
+ (RangeIndex(5), False),
269
+ (Index(np.arange(5, dtype=np.int64) + 10), True),
270
+ ]:
271
+ # s is an in-range index
272
+ s = Series(range(5), index=index)
273
+
274
+ # getitem
275
+ for idx in [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)]:
276
+ result = s.loc[idx]
277
+
278
+ # these are all label indexing
279
+ # except getitem which is positional
280
+ # empty
281
+ if oob:
282
+ indexer = slice(0, 0)
283
+ else:
284
+ indexer = slice(3, 5)
285
+ self.check(result, s, indexer, False)
286
+
287
+ # getitem out-of-bounds
288
+ for idx in [slice(-6, 6), slice(-6.0, 6.0)]:
289
+ result = s.loc[idx]
290
+
291
+ # these are all label indexing
292
+ # except getitem which is positional
293
+ # empty
294
+ if oob:
295
+ indexer = slice(0, 0)
296
+ else:
297
+ indexer = slice(-6, 6)
298
+ self.check(result, s, indexer, False)
299
+
300
+ # positional indexing
301
+ msg = (
302
+ "cannot do slice indexing "
303
+ rf"on {type(index).__name__} with these indexers \[-6\.0\] of "
304
+ "type float"
305
+ )
306
+ with pytest.raises(TypeError, match=msg):
307
+ s[slice(-6.0, 6.0)]
308
+
309
+ # getitem odd floats
310
+ for idx, res1 in [
311
+ (slice(2.5, 4), slice(3, 5)),
312
+ (slice(2, 3.5), slice(2, 4)),
313
+ (slice(2.5, 3.5), slice(3, 4)),
314
+ ]:
315
+ result = s.loc[idx]
316
+ if oob:
317
+ res = slice(0, 0)
318
+ else:
319
+ res = res1
320
+
321
+ self.check(result, s, res, False)
322
+
323
+ # positional indexing
324
+ msg = (
325
+ "cannot do slice indexing "
326
+ rf"on {type(index).__name__} with these indexers \[(2|3)\.5\] of "
327
+ "type float"
328
+ )
329
+ with pytest.raises(TypeError, match=msg):
330
+ s[idx]
331
+
332
+ @pytest.mark.parametrize("idx", [slice(2, 4.0), slice(2.0, 4), slice(2.0, 4.0)])
333
+ def test_integer_positional_indexing(self, idx):
334
+ """make sure that we are raising on positional indexing
335
+ w.r.t. an integer index
336
+ """
337
+ s = Series(range(2, 6), index=range(2, 6))
338
+
339
+ result = s[2:4]
340
+ expected = s.iloc[2:4]
341
+ tm.assert_series_equal(result, expected)
342
+
343
+ klass = RangeIndex
344
+ msg = (
345
+ "cannot do (slice|positional) indexing "
346
+ rf"on {klass.__name__} with these indexers \[(2|4)\.0\] of "
347
+ "type float"
348
+ )
349
+ with pytest.raises(TypeError, match=msg):
350
+ s[idx]
351
+ with pytest.raises(TypeError, match=msg):
352
+ s.iloc[idx]
353
+
354
+ @pytest.mark.parametrize(
355
+ "index", [Index(np.arange(5), dtype=np.int64), RangeIndex(5)]
356
+ )
357
+ def test_slice_integer_frame_getitem(self, index):
358
+ # similar to above, but on the getitem dim (of a DataFrame)
359
+ s = DataFrame(np.random.default_rng(2).standard_normal((5, 2)), index=index)
360
+
361
+ # getitem
362
+ for idx in [slice(0.0, 1), slice(0, 1.0), slice(0.0, 1.0)]:
363
+ result = s.loc[idx]
364
+ indexer = slice(0, 2)
365
+ self.check(result, s, indexer, False)
366
+
367
+ # positional indexing
368
+ msg = (
369
+ "cannot do slice indexing "
370
+ rf"on {type(index).__name__} with these indexers \[(0|1)\.0\] of "
371
+ "type float"
372
+ )
373
+ with pytest.raises(TypeError, match=msg):
374
+ s[idx]
375
+
376
+ # getitem out-of-bounds
377
+ for idx in [slice(-10, 10), slice(-10.0, 10.0)]:
378
+ result = s.loc[idx]
379
+ self.check(result, s, slice(-10, 10), True)
380
+
381
+ # positional indexing
382
+ msg = (
383
+ "cannot do slice indexing "
384
+ rf"on {type(index).__name__} with these indexers \[-10\.0\] of "
385
+ "type float"
386
+ )
387
+ with pytest.raises(TypeError, match=msg):
388
+ s[slice(-10.0, 10.0)]
389
+
390
+ # getitem odd floats
391
+ for idx, res in [
392
+ (slice(0.5, 1), slice(1, 2)),
393
+ (slice(0, 0.5), slice(0, 1)),
394
+ (slice(0.5, 1.5), slice(1, 2)),
395
+ ]:
396
+ result = s.loc[idx]
397
+ self.check(result, s, res, False)
398
+
399
+ # positional indexing
400
+ msg = (
401
+ "cannot do slice indexing "
402
+ rf"on {type(index).__name__} with these indexers \[0\.5\] of "
403
+ "type float"
404
+ )
405
+ with pytest.raises(TypeError, match=msg):
406
+ s[idx]
407
+
408
+ @pytest.mark.parametrize("idx", [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)])
409
+ @pytest.mark.parametrize(
410
+ "index", [Index(np.arange(5), dtype=np.int64), RangeIndex(5)]
411
+ )
412
+ def test_float_slice_getitem_with_integer_index_raises(self, idx, index):
413
+ # similar to above, but on the getitem dim (of a DataFrame)
414
+ s = DataFrame(np.random.default_rng(2).standard_normal((5, 2)), index=index)
415
+
416
+ # setitem
417
+ sc = s.copy()
418
+ sc.loc[idx] = 0
419
+ result = sc.loc[idx].values.ravel()
420
+ assert (result == 0).all()
421
+
422
+ # positional indexing
423
+ msg = (
424
+ "cannot do slice indexing "
425
+ rf"on {type(index).__name__} with these indexers \[(3|4)\.0\] of "
426
+ "type float"
427
+ )
428
+ with pytest.raises(TypeError, match=msg):
429
+ s[idx] = 0
430
+
431
+ with pytest.raises(TypeError, match=msg):
432
+ s[idx]
433
+
434
+ @pytest.mark.parametrize("idx", [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)])
435
+ def test_slice_float(self, idx, frame_or_series, indexer_sl):
436
+ # same as above, but for floats
437
+ index = Index(np.arange(5.0)) + 0.1
438
+ s = gen_obj(frame_or_series, index)
439
+
440
+ expected = s.iloc[3:4]
441
+
442
+ # getitem
443
+ result = indexer_sl(s)[idx]
444
+ assert isinstance(result, type(s))
445
+ tm.assert_equal(result, expected)
446
+
447
+ # setitem
448
+ s2 = s.copy()
449
+ indexer_sl(s2)[idx] = 0
450
+ result = indexer_sl(s2)[idx].values.ravel()
451
+ assert (result == 0).all()
452
+
453
+ def test_floating_index_doc_example(self):
454
+ index = Index([1.5, 2, 3, 4.5, 5])
455
+ s = Series(range(5), index=index)
456
+ assert s[3] == 2
457
+ assert s.loc[3] == 2
458
+ assert s.iloc[3] == 3
459
+
460
+ def test_floating_misc(self, indexer_sl):
461
+ # related 236
462
+ # scalar/slicing of a float index
463
+ s = Series(np.arange(5), index=np.arange(5) * 2.5, dtype=np.int64)
464
+
465
+ # label based slicing
466
+ result = indexer_sl(s)[1.0:3.0]
467
+ expected = Series(1, index=[2.5])
468
+ tm.assert_series_equal(result, expected)
469
+
470
+ # exact indexing when found
471
+
472
+ result = indexer_sl(s)[5.0]
473
+ assert result == 2
474
+
475
+ result = indexer_sl(s)[5]
476
+ assert result == 2
477
+
478
+ # value not found (and no fallbacking at all)
479
+
480
+ # scalar integers
481
+ with pytest.raises(KeyError, match=r"^4$"):
482
+ indexer_sl(s)[4]
483
+
484
+ # fancy floats/integers create the correct entry (as nan)
485
+ # fancy tests
486
+ expected = Series([2, 0], index=Index([5.0, 0.0], dtype=np.float64))
487
+ for fancy_idx in [[5.0, 0.0], np.array([5.0, 0.0])]: # float
488
+ tm.assert_series_equal(indexer_sl(s)[fancy_idx], expected)
489
+
490
+ expected = Series([2, 0], index=Index([5, 0], dtype="float64"))
491
+ for fancy_idx in [[5, 0], np.array([5, 0])]:
492
+ tm.assert_series_equal(indexer_sl(s)[fancy_idx], expected)
493
+
494
+ warn = FutureWarning if indexer_sl is tm.setitem else None
495
+ msg = r"The behavior of obj\[i:j\] with a float-dtype index"
496
+
497
+ # all should return the same as we are slicing 'the same'
498
+ with tm.assert_produces_warning(warn, match=msg):
499
+ result1 = indexer_sl(s)[2:5]
500
+ result2 = indexer_sl(s)[2.0:5.0]
501
+ result3 = indexer_sl(s)[2.0:5]
502
+ result4 = indexer_sl(s)[2.1:5]
503
+ tm.assert_series_equal(result1, result2)
504
+ tm.assert_series_equal(result1, result3)
505
+ tm.assert_series_equal(result1, result4)
506
+
507
+ expected = Series([1, 2], index=[2.5, 5.0])
508
+ with tm.assert_produces_warning(warn, match=msg):
509
+ result = indexer_sl(s)[2:5]
510
+
511
+ tm.assert_series_equal(result, expected)
512
+
513
+ # list selection
514
+ result1 = indexer_sl(s)[[0.0, 5, 10]]
515
+ result2 = s.iloc[[0, 2, 4]]
516
+ tm.assert_series_equal(result1, result2)
517
+
518
+ with pytest.raises(KeyError, match="not in index"):
519
+ indexer_sl(s)[[1.6, 5, 10]]
520
+
521
+ with pytest.raises(KeyError, match="not in index"):
522
+ indexer_sl(s)[[0, 1, 2]]
523
+
524
+ result = indexer_sl(s)[[2.5, 5]]
525
+ tm.assert_series_equal(result, Series([1, 2], index=[2.5, 5.0]))
526
+
527
+ result = indexer_sl(s)[[2.5]]
528
+ tm.assert_series_equal(result, Series([1], index=[2.5]))
529
+
530
+ def test_floatindex_slicing_bug(self, float_numpy_dtype):
531
+ # GH 5557, related to slicing a float index
532
+ dtype = float_numpy_dtype
533
+ ser = {
534
+ 256: 2321.0,
535
+ 1: 78.0,
536
+ 2: 2716.0,
537
+ 3: 0.0,
538
+ 4: 369.0,
539
+ 5: 0.0,
540
+ 6: 269.0,
541
+ 7: 0.0,
542
+ 8: 0.0,
543
+ 9: 0.0,
544
+ 10: 3536.0,
545
+ 11: 0.0,
546
+ 12: 24.0,
547
+ 13: 0.0,
548
+ 14: 931.0,
549
+ 15: 0.0,
550
+ 16: 101.0,
551
+ 17: 78.0,
552
+ 18: 9643.0,
553
+ 19: 0.0,
554
+ 20: 0.0,
555
+ 21: 0.0,
556
+ 22: 63761.0,
557
+ 23: 0.0,
558
+ 24: 446.0,
559
+ 25: 0.0,
560
+ 26: 34773.0,
561
+ 27: 0.0,
562
+ 28: 729.0,
563
+ 29: 78.0,
564
+ 30: 0.0,
565
+ 31: 0.0,
566
+ 32: 3374.0,
567
+ 33: 0.0,
568
+ 34: 1391.0,
569
+ 35: 0.0,
570
+ 36: 361.0,
571
+ 37: 0.0,
572
+ 38: 61808.0,
573
+ 39: 0.0,
574
+ 40: 0.0,
575
+ 41: 0.0,
576
+ 42: 6677.0,
577
+ 43: 0.0,
578
+ 44: 802.0,
579
+ 45: 0.0,
580
+ 46: 2691.0,
581
+ 47: 0.0,
582
+ 48: 3582.0,
583
+ 49: 0.0,
584
+ 50: 734.0,
585
+ 51: 0.0,
586
+ 52: 627.0,
587
+ 53: 70.0,
588
+ 54: 2584.0,
589
+ 55: 0.0,
590
+ 56: 324.0,
591
+ 57: 0.0,
592
+ 58: 605.0,
593
+ 59: 0.0,
594
+ 60: 0.0,
595
+ 61: 0.0,
596
+ 62: 3989.0,
597
+ 63: 10.0,
598
+ 64: 42.0,
599
+ 65: 0.0,
600
+ 66: 904.0,
601
+ 67: 0.0,
602
+ 68: 88.0,
603
+ 69: 70.0,
604
+ 70: 8172.0,
605
+ 71: 0.0,
606
+ 72: 0.0,
607
+ 73: 0.0,
608
+ 74: 64902.0,
609
+ 75: 0.0,
610
+ 76: 347.0,
611
+ 77: 0.0,
612
+ 78: 36605.0,
613
+ 79: 0.0,
614
+ 80: 379.0,
615
+ 81: 70.0,
616
+ 82: 0.0,
617
+ 83: 0.0,
618
+ 84: 3001.0,
619
+ 85: 0.0,
620
+ 86: 1630.0,
621
+ 87: 7.0,
622
+ 88: 364.0,
623
+ 89: 0.0,
624
+ 90: 67404.0,
625
+ 91: 9.0,
626
+ 92: 0.0,
627
+ 93: 0.0,
628
+ 94: 7685.0,
629
+ 95: 0.0,
630
+ 96: 1017.0,
631
+ 97: 0.0,
632
+ 98: 2831.0,
633
+ 99: 0.0,
634
+ 100: 2963.0,
635
+ 101: 0.0,
636
+ 102: 854.0,
637
+ 103: 0.0,
638
+ 104: 0.0,
639
+ 105: 0.0,
640
+ 106: 0.0,
641
+ 107: 0.0,
642
+ 108: 0.0,
643
+ 109: 0.0,
644
+ 110: 0.0,
645
+ 111: 0.0,
646
+ 112: 0.0,
647
+ 113: 0.0,
648
+ 114: 0.0,
649
+ 115: 0.0,
650
+ 116: 0.0,
651
+ 117: 0.0,
652
+ 118: 0.0,
653
+ 119: 0.0,
654
+ 120: 0.0,
655
+ 121: 0.0,
656
+ 122: 0.0,
657
+ 123: 0.0,
658
+ 124: 0.0,
659
+ 125: 0.0,
660
+ 126: 67744.0,
661
+ 127: 22.0,
662
+ 128: 264.0,
663
+ 129: 0.0,
664
+ 260: 197.0,
665
+ 268: 0.0,
666
+ 265: 0.0,
667
+ 269: 0.0,
668
+ 261: 0.0,
669
+ 266: 1198.0,
670
+ 267: 0.0,
671
+ 262: 2629.0,
672
+ 258: 775.0,
673
+ 257: 0.0,
674
+ 263: 0.0,
675
+ 259: 0.0,
676
+ 264: 163.0,
677
+ 250: 10326.0,
678
+ 251: 0.0,
679
+ 252: 1228.0,
680
+ 253: 0.0,
681
+ 254: 2769.0,
682
+ 255: 0.0,
683
+ }
684
+
685
+ # smoke test for the repr
686
+ s = Series(ser, dtype=dtype)
687
+ result = s.value_counts()
688
+ assert result.index.dtype == dtype
689
+ str(result)
venv/lib/python3.10/site-packages/pandas/tests/indexing/test_iat.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas import (
4
+ DataFrame,
5
+ Series,
6
+ period_range,
7
+ )
8
+ import pandas._testing as tm
9
+
10
+
11
+ def test_iat(float_frame):
12
+ for i, row in enumerate(float_frame.index):
13
+ for j, col in enumerate(float_frame.columns):
14
+ result = float_frame.iat[i, j]
15
+ expected = float_frame.at[row, col]
16
+ assert result == expected
17
+
18
+
19
+ def test_iat_duplicate_columns():
20
+ # https://github.com/pandas-dev/pandas/issues/11754
21
+ df = DataFrame([[1, 2]], columns=["x", "x"])
22
+ assert df.iat[0, 0] == 1
23
+
24
+
25
+ def test_iat_getitem_series_with_period_index():
26
+ # GH#4390, iat incorrectly indexing
27
+ index = period_range("1/1/2001", periods=10)
28
+ ser = Series(np.random.default_rng(2).standard_normal(10), index=index)
29
+ expected = ser[index[0]]
30
+ result = ser.iat[0]
31
+ assert expected == result
32
+
33
+
34
+ def test_iat_setitem_item_cache_cleared(
35
+ indexer_ial, using_copy_on_write, warn_copy_on_write
36
+ ):
37
+ # GH#45684
38
+ data = {"x": np.arange(8, dtype=np.int64), "y": np.int64(0)}
39
+ df = DataFrame(data).copy()
40
+ ser = df["y"]
41
+
42
+ # previously this iat setting would split the block and fail to clear
43
+ # the item_cache.
44
+ with tm.assert_cow_warning(warn_copy_on_write):
45
+ indexer_ial(df)[7, 0] = 9999
46
+
47
+ with tm.assert_cow_warning(warn_copy_on_write):
48
+ indexer_ial(df)[7, 1] = 1234
49
+
50
+ assert df.iat[7, 1] == 1234
51
+ if not using_copy_on_write:
52
+ assert ser.iloc[-1] == 1234
53
+ assert df.iloc[-1, -1] == 1234
venv/lib/python3.10/site-packages/pandas/tests/indexing/test_iloc.py ADDED
@@ -0,0 +1,1478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ test positional based indexing with iloc """
2
+
3
+ from datetime import datetime
4
+ import re
5
+
6
+ import numpy as np
7
+ import pytest
8
+
9
+ from pandas.errors import IndexingError
10
+ import pandas.util._test_decorators as td
11
+
12
+ from pandas import (
13
+ NA,
14
+ Categorical,
15
+ CategoricalDtype,
16
+ DataFrame,
17
+ Index,
18
+ Interval,
19
+ NaT,
20
+ Series,
21
+ Timestamp,
22
+ array,
23
+ concat,
24
+ date_range,
25
+ interval_range,
26
+ isna,
27
+ to_datetime,
28
+ )
29
+ import pandas._testing as tm
30
+ from pandas.api.types import is_scalar
31
+ from pandas.tests.indexing.common import check_indexing_smoketest_or_raises
32
+
33
+ # We pass through the error message from numpy
34
+ _slice_iloc_msg = re.escape(
35
+ "only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) "
36
+ "and integer or boolean arrays are valid indices"
37
+ )
38
+
39
+
40
+ class TestiLoc:
41
+ @pytest.mark.parametrize("key", [2, -1, [0, 1, 2]])
42
+ @pytest.mark.parametrize("kind", ["series", "frame"])
43
+ @pytest.mark.parametrize(
44
+ "col",
45
+ ["labels", "mixed", "ts", "floats", "empty"],
46
+ )
47
+ def test_iloc_getitem_int_and_list_int(self, key, kind, col, request):
48
+ obj = request.getfixturevalue(f"{kind}_{col}")
49
+ check_indexing_smoketest_or_raises(
50
+ obj,
51
+ "iloc",
52
+ key,
53
+ fails=IndexError,
54
+ )
55
+
56
+ # array of ints (GH5006), make sure that a single indexer is returning
57
+ # the correct type
58
+
59
+
60
+ class TestiLocBaseIndependent:
61
+ """Tests Independent Of Base Class"""
62
+
63
+ @pytest.mark.parametrize(
64
+ "key",
65
+ [
66
+ slice(None),
67
+ slice(3),
68
+ range(3),
69
+ [0, 1, 2],
70
+ Index(range(3)),
71
+ np.asarray([0, 1, 2]),
72
+ ],
73
+ )
74
+ @pytest.mark.parametrize("indexer", [tm.loc, tm.iloc])
75
+ def test_iloc_setitem_fullcol_categorical(self, indexer, key, using_array_manager):
76
+ frame = DataFrame({0: range(3)}, dtype=object)
77
+
78
+ cat = Categorical(["alpha", "beta", "gamma"])
79
+
80
+ if not using_array_manager:
81
+ assert frame._mgr.blocks[0]._can_hold_element(cat)
82
+
83
+ df = frame.copy()
84
+ orig_vals = df.values
85
+
86
+ indexer(df)[key, 0] = cat
87
+
88
+ expected = DataFrame({0: cat}).astype(object)
89
+ if not using_array_manager:
90
+ assert np.shares_memory(df[0].values, orig_vals)
91
+
92
+ tm.assert_frame_equal(df, expected)
93
+
94
+ # check we dont have a view on cat (may be undesired GH#39986)
95
+ df.iloc[0, 0] = "gamma"
96
+ assert cat[0] != "gamma"
97
+
98
+ # pre-2.0 with mixed dataframe ("split" path) we always overwrote the
99
+ # column. as of 2.0 we correctly write "into" the column, so
100
+ # we retain the object dtype.
101
+ frame = DataFrame({0: np.array([0, 1, 2], dtype=object), 1: range(3)})
102
+ df = frame.copy()
103
+ indexer(df)[key, 0] = cat
104
+ expected = DataFrame({0: Series(cat.astype(object), dtype=object), 1: range(3)})
105
+ tm.assert_frame_equal(df, expected)
106
+
107
+ @pytest.mark.parametrize("box", [array, Series])
108
+ def test_iloc_setitem_ea_inplace(self, frame_or_series, box, using_copy_on_write):
109
+ # GH#38952 Case with not setting a full column
110
+ # IntegerArray without NAs
111
+ arr = array([1, 2, 3, 4])
112
+ obj = frame_or_series(arr.to_numpy("i8"))
113
+
114
+ if frame_or_series is Series:
115
+ values = obj.values
116
+ else:
117
+ values = obj._mgr.arrays[0]
118
+
119
+ if frame_or_series is Series:
120
+ obj.iloc[:2] = box(arr[2:])
121
+ else:
122
+ obj.iloc[:2, 0] = box(arr[2:])
123
+
124
+ expected = frame_or_series(np.array([3, 4, 3, 4], dtype="i8"))
125
+ tm.assert_equal(obj, expected)
126
+
127
+ # Check that we are actually in-place
128
+ if frame_or_series is Series:
129
+ if using_copy_on_write:
130
+ assert obj.values is not values
131
+ assert np.shares_memory(obj.values, values)
132
+ else:
133
+ assert obj.values is values
134
+ else:
135
+ assert np.shares_memory(obj[0].values, values)
136
+
137
+ def test_is_scalar_access(self):
138
+ # GH#32085 index with duplicates doesn't matter for _is_scalar_access
139
+ index = Index([1, 2, 1])
140
+ ser = Series(range(3), index=index)
141
+
142
+ assert ser.iloc._is_scalar_access((1,))
143
+
144
+ df = ser.to_frame()
145
+ assert df.iloc._is_scalar_access((1, 0))
146
+
147
+ def test_iloc_exceeds_bounds(self):
148
+ # GH6296
149
+ # iloc should allow indexers that exceed the bounds
150
+ df = DataFrame(np.random.default_rng(2).random((20, 5)), columns=list("ABCDE"))
151
+
152
+ # lists of positions should raise IndexError!
153
+ msg = "positional indexers are out-of-bounds"
154
+ with pytest.raises(IndexError, match=msg):
155
+ df.iloc[:, [0, 1, 2, 3, 4, 5]]
156
+ with pytest.raises(IndexError, match=msg):
157
+ df.iloc[[1, 30]]
158
+ with pytest.raises(IndexError, match=msg):
159
+ df.iloc[[1, -30]]
160
+ with pytest.raises(IndexError, match=msg):
161
+ df.iloc[[100]]
162
+
163
+ s = df["A"]
164
+ with pytest.raises(IndexError, match=msg):
165
+ s.iloc[[100]]
166
+ with pytest.raises(IndexError, match=msg):
167
+ s.iloc[[-100]]
168
+
169
+ # still raise on a single indexer
170
+ msg = "single positional indexer is out-of-bounds"
171
+ with pytest.raises(IndexError, match=msg):
172
+ df.iloc[30]
173
+ with pytest.raises(IndexError, match=msg):
174
+ df.iloc[-30]
175
+
176
+ # GH10779
177
+ # single positive/negative indexer exceeding Series bounds should raise
178
+ # an IndexError
179
+ with pytest.raises(IndexError, match=msg):
180
+ s.iloc[30]
181
+ with pytest.raises(IndexError, match=msg):
182
+ s.iloc[-30]
183
+
184
+ # slices are ok
185
+ result = df.iloc[:, 4:10] # 0 < start < len < stop
186
+ expected = df.iloc[:, 4:]
187
+ tm.assert_frame_equal(result, expected)
188
+
189
+ result = df.iloc[:, -4:-10] # stop < 0 < start < len
190
+ expected = df.iloc[:, :0]
191
+ tm.assert_frame_equal(result, expected)
192
+
193
+ result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down)
194
+ expected = df.iloc[:, :4:-1]
195
+ tm.assert_frame_equal(result, expected)
196
+
197
+ result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down)
198
+ expected = df.iloc[:, 4::-1]
199
+ tm.assert_frame_equal(result, expected)
200
+
201
+ result = df.iloc[:, -10:4] # start < 0 < stop < len
202
+ expected = df.iloc[:, :4]
203
+ tm.assert_frame_equal(result, expected)
204
+
205
+ result = df.iloc[:, 10:4] # 0 < stop < len < start
206
+ expected = df.iloc[:, :0]
207
+ tm.assert_frame_equal(result, expected)
208
+
209
+ result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down)
210
+ expected = df.iloc[:, :0]
211
+ tm.assert_frame_equal(result, expected)
212
+
213
+ result = df.iloc[:, 10:11] # 0 < len < start < stop
214
+ expected = df.iloc[:, :0]
215
+ tm.assert_frame_equal(result, expected)
216
+
217
+ # slice bounds exceeding is ok
218
+ result = s.iloc[18:30]
219
+ expected = s.iloc[18:]
220
+ tm.assert_series_equal(result, expected)
221
+
222
+ result = s.iloc[30:]
223
+ expected = s.iloc[:0]
224
+ tm.assert_series_equal(result, expected)
225
+
226
+ result = s.iloc[30::-1]
227
+ expected = s.iloc[::-1]
228
+ tm.assert_series_equal(result, expected)
229
+
230
+ # doc example
231
+ dfl = DataFrame(
232
+ np.random.default_rng(2).standard_normal((5, 2)), columns=list("AB")
233
+ )
234
+ tm.assert_frame_equal(
235
+ dfl.iloc[:, 2:3],
236
+ DataFrame(index=dfl.index, columns=Index([], dtype=dfl.columns.dtype)),
237
+ )
238
+ tm.assert_frame_equal(dfl.iloc[:, 1:3], dfl.iloc[:, [1]])
239
+ tm.assert_frame_equal(dfl.iloc[4:6], dfl.iloc[[4]])
240
+
241
+ msg = "positional indexers are out-of-bounds"
242
+ with pytest.raises(IndexError, match=msg):
243
+ dfl.iloc[[4, 5, 6]]
244
+ msg = "single positional indexer is out-of-bounds"
245
+ with pytest.raises(IndexError, match=msg):
246
+ dfl.iloc[:, 4]
247
+
248
+ @pytest.mark.parametrize("index,columns", [(np.arange(20), list("ABCDE"))])
249
+ @pytest.mark.parametrize(
250
+ "index_vals,column_vals",
251
+ [
252
+ ([slice(None), ["A", "D"]]),
253
+ (["1", "2"], slice(None)),
254
+ ([datetime(2019, 1, 1)], slice(None)),
255
+ ],
256
+ )
257
+ def test_iloc_non_integer_raises(self, index, columns, index_vals, column_vals):
258
+ # GH 25753
259
+ df = DataFrame(
260
+ np.random.default_rng(2).standard_normal((len(index), len(columns))),
261
+ index=index,
262
+ columns=columns,
263
+ )
264
+ msg = ".iloc requires numeric indexers, got"
265
+ with pytest.raises(IndexError, match=msg):
266
+ df.iloc[index_vals, column_vals]
267
+
268
+ def test_iloc_getitem_invalid_scalar(self, frame_or_series):
269
+ # GH 21982
270
+
271
+ obj = DataFrame(np.arange(100).reshape(10, 10))
272
+ obj = tm.get_obj(obj, frame_or_series)
273
+
274
+ with pytest.raises(TypeError, match="Cannot index by location index"):
275
+ obj.iloc["a"]
276
+
277
+ def test_iloc_array_not_mutating_negative_indices(self):
278
+ # GH 21867
279
+ array_with_neg_numbers = np.array([1, 2, -1])
280
+ array_copy = array_with_neg_numbers.copy()
281
+ df = DataFrame(
282
+ {"A": [100, 101, 102], "B": [103, 104, 105], "C": [106, 107, 108]},
283
+ index=[1, 2, 3],
284
+ )
285
+ df.iloc[array_with_neg_numbers]
286
+ tm.assert_numpy_array_equal(array_with_neg_numbers, array_copy)
287
+ df.iloc[:, array_with_neg_numbers]
288
+ tm.assert_numpy_array_equal(array_with_neg_numbers, array_copy)
289
+
290
+ def test_iloc_getitem_neg_int_can_reach_first_index(self):
291
+ # GH10547 and GH10779
292
+ # negative integers should be able to reach index 0
293
+ df = DataFrame({"A": [2, 3, 5], "B": [7, 11, 13]})
294
+ s = df["A"]
295
+
296
+ expected = df.iloc[0]
297
+ result = df.iloc[-3]
298
+ tm.assert_series_equal(result, expected)
299
+
300
+ expected = df.iloc[[0]]
301
+ result = df.iloc[[-3]]
302
+ tm.assert_frame_equal(result, expected)
303
+
304
+ expected = s.iloc[0]
305
+ result = s.iloc[-3]
306
+ assert result == expected
307
+
308
+ expected = s.iloc[[0]]
309
+ result = s.iloc[[-3]]
310
+ tm.assert_series_equal(result, expected)
311
+
312
+ # check the length 1 Series case highlighted in GH10547
313
+ expected = Series(["a"], index=["A"])
314
+ result = expected.iloc[[-1]]
315
+ tm.assert_series_equal(result, expected)
316
+
317
+ def test_iloc_getitem_dups(self):
318
+ # GH 6766
319
+ df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}])
320
+ df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}])
321
+ df = concat([df1, df2], axis=1)
322
+
323
+ # cross-sectional indexing
324
+ result = df.iloc[0, 0]
325
+ assert isna(result)
326
+
327
+ result = df.iloc[0, :]
328
+ expected = Series([np.nan, 1, 3, 3], index=["A", "B", "A", "B"], name=0)
329
+ tm.assert_series_equal(result, expected)
330
+
331
+ def test_iloc_getitem_array(self):
332
+ df = DataFrame(
333
+ [
334
+ {"A": 1, "B": 2, "C": 3},
335
+ {"A": 100, "B": 200, "C": 300},
336
+ {"A": 1000, "B": 2000, "C": 3000},
337
+ ]
338
+ )
339
+
340
+ expected = DataFrame([{"A": 1, "B": 2, "C": 3}])
341
+ tm.assert_frame_equal(df.iloc[[0]], expected)
342
+
343
+ expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}])
344
+ tm.assert_frame_equal(df.iloc[[0, 1]], expected)
345
+
346
+ expected = DataFrame([{"B": 2, "C": 3}, {"B": 2000, "C": 3000}], index=[0, 2])
347
+ result = df.iloc[[0, 2], [1, 2]]
348
+ tm.assert_frame_equal(result, expected)
349
+
350
+ def test_iloc_getitem_bool(self):
351
+ df = DataFrame(
352
+ [
353
+ {"A": 1, "B": 2, "C": 3},
354
+ {"A": 100, "B": 200, "C": 300},
355
+ {"A": 1000, "B": 2000, "C": 3000},
356
+ ]
357
+ )
358
+
359
+ expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}])
360
+ result = df.iloc[[True, True, False]]
361
+ tm.assert_frame_equal(result, expected)
362
+
363
+ expected = DataFrame(
364
+ [{"A": 1, "B": 2, "C": 3}, {"A": 1000, "B": 2000, "C": 3000}], index=[0, 2]
365
+ )
366
+ result = df.iloc[lambda x: x.index % 2 == 0]
367
+ tm.assert_frame_equal(result, expected)
368
+
369
+ @pytest.mark.parametrize("index", [[True, False], [True, False, True, False]])
370
+ def test_iloc_getitem_bool_diff_len(self, index):
371
+ # GH26658
372
+ s = Series([1, 2, 3])
373
+ msg = f"Boolean index has wrong length: {len(index)} instead of {len(s)}"
374
+ with pytest.raises(IndexError, match=msg):
375
+ s.iloc[index]
376
+
377
+ def test_iloc_getitem_slice(self):
378
+ df = DataFrame(
379
+ [
380
+ {"A": 1, "B": 2, "C": 3},
381
+ {"A": 100, "B": 200, "C": 300},
382
+ {"A": 1000, "B": 2000, "C": 3000},
383
+ ]
384
+ )
385
+
386
+ expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}])
387
+ result = df.iloc[:2]
388
+ tm.assert_frame_equal(result, expected)
389
+
390
+ expected = DataFrame([{"A": 100, "B": 200}], index=[1])
391
+ result = df.iloc[1:2, 0:2]
392
+ tm.assert_frame_equal(result, expected)
393
+
394
+ expected = DataFrame(
395
+ [{"A": 1, "C": 3}, {"A": 100, "C": 300}, {"A": 1000, "C": 3000}]
396
+ )
397
+ result = df.iloc[:, lambda df: [0, 2]]
398
+ tm.assert_frame_equal(result, expected)
399
+
400
+ def test_iloc_getitem_slice_dups(self):
401
+ df1 = DataFrame(
402
+ np.random.default_rng(2).standard_normal((10, 4)),
403
+ columns=["A", "A", "B", "B"],
404
+ )
405
+ df2 = DataFrame(
406
+ np.random.default_rng(2).integers(0, 10, size=20).reshape(10, 2),
407
+ columns=["A", "C"],
408
+ )
409
+
410
+ # axis=1
411
+ df = concat([df1, df2], axis=1)
412
+ tm.assert_frame_equal(df.iloc[:, :4], df1)
413
+ tm.assert_frame_equal(df.iloc[:, 4:], df2)
414
+
415
+ df = concat([df2, df1], axis=1)
416
+ tm.assert_frame_equal(df.iloc[:, :2], df2)
417
+ tm.assert_frame_equal(df.iloc[:, 2:], df1)
418
+
419
+ exp = concat([df2, df1.iloc[:, [0]]], axis=1)
420
+ tm.assert_frame_equal(df.iloc[:, 0:3], exp)
421
+
422
+ # axis=0
423
+ df = concat([df, df], axis=0)
424
+ tm.assert_frame_equal(df.iloc[0:10, :2], df2)
425
+ tm.assert_frame_equal(df.iloc[0:10, 2:], df1)
426
+ tm.assert_frame_equal(df.iloc[10:, :2], df2)
427
+ tm.assert_frame_equal(df.iloc[10:, 2:], df1)
428
+
429
+ def test_iloc_setitem(self, warn_copy_on_write):
430
+ df = DataFrame(
431
+ np.random.default_rng(2).standard_normal((4, 4)),
432
+ index=np.arange(0, 8, 2),
433
+ columns=np.arange(0, 12, 3),
434
+ )
435
+
436
+ df.iloc[1, 1] = 1
437
+ result = df.iloc[1, 1]
438
+ assert result == 1
439
+
440
+ df.iloc[:, 2:3] = 0
441
+ expected = df.iloc[:, 2:3]
442
+ result = df.iloc[:, 2:3]
443
+ tm.assert_frame_equal(result, expected)
444
+
445
+ # GH5771
446
+ s = Series(0, index=[4, 5, 6])
447
+ s.iloc[1:2] += 1
448
+ expected = Series([0, 1, 0], index=[4, 5, 6])
449
+ tm.assert_series_equal(s, expected)
450
+
451
+ def test_iloc_setitem_axis_argument(self):
452
+ # GH45032
453
+ df = DataFrame([[6, "c", 10], [7, "d", 11], [8, "e", 12]])
454
+ df[1] = df[1].astype(object)
455
+ expected = DataFrame([[6, "c", 10], [7, "d", 11], [5, 5, 5]])
456
+ expected[1] = expected[1].astype(object)
457
+ df.iloc(axis=0)[2] = 5
458
+ tm.assert_frame_equal(df, expected)
459
+
460
+ df = DataFrame([[6, "c", 10], [7, "d", 11], [8, "e", 12]])
461
+ df[1] = df[1].astype(object)
462
+ expected = DataFrame([[6, "c", 5], [7, "d", 5], [8, "e", 5]])
463
+ expected[1] = expected[1].astype(object)
464
+ df.iloc(axis=1)[2] = 5
465
+ tm.assert_frame_equal(df, expected)
466
+
467
+ def test_iloc_setitem_list(self):
468
+ # setitem with an iloc list
469
+ df = DataFrame(
470
+ np.arange(9).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]
471
+ )
472
+ df.iloc[[0, 1], [1, 2]]
473
+ df.iloc[[0, 1], [1, 2]] += 100
474
+
475
+ expected = DataFrame(
476
+ np.array([0, 101, 102, 3, 104, 105, 6, 7, 8]).reshape((3, 3)),
477
+ index=["A", "B", "C"],
478
+ columns=["A", "B", "C"],
479
+ )
480
+ tm.assert_frame_equal(df, expected)
481
+
482
+ def test_iloc_setitem_pandas_object(self):
483
+ # GH 17193
484
+ s_orig = Series([0, 1, 2, 3])
485
+ expected = Series([0, -1, -2, 3])
486
+
487
+ s = s_orig.copy()
488
+ s.iloc[Series([1, 2])] = [-1, -2]
489
+ tm.assert_series_equal(s, expected)
490
+
491
+ s = s_orig.copy()
492
+ s.iloc[Index([1, 2])] = [-1, -2]
493
+ tm.assert_series_equal(s, expected)
494
+
495
+ def test_iloc_setitem_dups(self):
496
+ # GH 6766
497
+ # iloc with a mask aligning from another iloc
498
+ df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}])
499
+ df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}])
500
+ df = concat([df1, df2], axis=1)
501
+
502
+ expected = df.fillna(3)
503
+ inds = np.isnan(df.iloc[:, 0])
504
+ mask = inds[inds].index
505
+ df.iloc[mask, 0] = df.iloc[mask, 2]
506
+ tm.assert_frame_equal(df, expected)
507
+
508
+ # del a dup column across blocks
509
+ expected = DataFrame({0: [1, 2], 1: [3, 4]})
510
+ expected.columns = ["B", "B"]
511
+ del df["A"]
512
+ tm.assert_frame_equal(df, expected)
513
+
514
+ # assign back to self
515
+ df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]]
516
+ tm.assert_frame_equal(df, expected)
517
+
518
+ # reversed x 2
519
+ df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index(drop=True)
520
+ df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index(drop=True)
521
+ tm.assert_frame_equal(df, expected)
522
+
523
+ def test_iloc_setitem_frame_duplicate_columns_multiple_blocks(
524
+ self, using_array_manager
525
+ ):
526
+ # Same as the "assign back to self" check in test_iloc_setitem_dups
527
+ # but on a DataFrame with multiple blocks
528
+ df = DataFrame([[0, 1], [2, 3]], columns=["B", "B"])
529
+
530
+ # setting float values that can be held by existing integer arrays
531
+ # is inplace
532
+ df.iloc[:, 0] = df.iloc[:, 0].astype("f8")
533
+ if not using_array_manager:
534
+ assert len(df._mgr.blocks) == 1
535
+
536
+ # if the assigned values cannot be held by existing integer arrays,
537
+ # we cast
538
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
539
+ df.iloc[:, 0] = df.iloc[:, 0] + 0.5
540
+ if not using_array_manager:
541
+ assert len(df._mgr.blocks) == 2
542
+
543
+ expected = df.copy()
544
+
545
+ # assign back to self
546
+ df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]]
547
+
548
+ tm.assert_frame_equal(df, expected)
549
+
550
+ # TODO: GH#27620 this test used to compare iloc against ix; check if this
551
+ # is redundant with another test comparing iloc against loc
552
+ def test_iloc_getitem_frame(self):
553
+ df = DataFrame(
554
+ np.random.default_rng(2).standard_normal((10, 4)),
555
+ index=range(0, 20, 2),
556
+ columns=range(0, 8, 2),
557
+ )
558
+
559
+ result = df.iloc[2]
560
+ exp = df.loc[4]
561
+ tm.assert_series_equal(result, exp)
562
+
563
+ result = df.iloc[2, 2]
564
+ exp = df.loc[4, 4]
565
+ assert result == exp
566
+
567
+ # slice
568
+ result = df.iloc[4:8]
569
+ expected = df.loc[8:14]
570
+ tm.assert_frame_equal(result, expected)
571
+
572
+ result = df.iloc[:, 2:3]
573
+ expected = df.loc[:, 4:5]
574
+ tm.assert_frame_equal(result, expected)
575
+
576
+ # list of integers
577
+ result = df.iloc[[0, 1, 3]]
578
+ expected = df.loc[[0, 2, 6]]
579
+ tm.assert_frame_equal(result, expected)
580
+
581
+ result = df.iloc[[0, 1, 3], [0, 1]]
582
+ expected = df.loc[[0, 2, 6], [0, 2]]
583
+ tm.assert_frame_equal(result, expected)
584
+
585
+ # neg indices
586
+ result = df.iloc[[-1, 1, 3], [-1, 1]]
587
+ expected = df.loc[[18, 2, 6], [6, 2]]
588
+ tm.assert_frame_equal(result, expected)
589
+
590
+ # dups indices
591
+ result = df.iloc[[-1, -1, 1, 3], [-1, 1]]
592
+ expected = df.loc[[18, 18, 2, 6], [6, 2]]
593
+ tm.assert_frame_equal(result, expected)
594
+
595
+ # with index-like
596
+ s = Series(index=range(1, 5), dtype=object)
597
+ result = df.iloc[s.index]
598
+ expected = df.loc[[2, 4, 6, 8]]
599
+ tm.assert_frame_equal(result, expected)
600
+
601
+ def test_iloc_getitem_labelled_frame(self):
602
+ # try with labelled frame
603
+ df = DataFrame(
604
+ np.random.default_rng(2).standard_normal((10, 4)),
605
+ index=list("abcdefghij"),
606
+ columns=list("ABCD"),
607
+ )
608
+
609
+ result = df.iloc[1, 1]
610
+ exp = df.loc["b", "B"]
611
+ assert result == exp
612
+
613
+ result = df.iloc[:, 2:3]
614
+ expected = df.loc[:, ["C"]]
615
+ tm.assert_frame_equal(result, expected)
616
+
617
+ # negative indexing
618
+ result = df.iloc[-1, -1]
619
+ exp = df.loc["j", "D"]
620
+ assert result == exp
621
+
622
+ # out-of-bounds exception
623
+ msg = "index 5 is out of bounds for axis 0 with size 4|index out of bounds"
624
+ with pytest.raises(IndexError, match=msg):
625
+ df.iloc[10, 5]
626
+
627
+ # trying to use a label
628
+ msg = (
629
+ r"Location based indexing can only have \[integer, integer "
630
+ r"slice \(START point is INCLUDED, END point is EXCLUDED\), "
631
+ r"listlike of integers, boolean array\] types"
632
+ )
633
+ with pytest.raises(ValueError, match=msg):
634
+ df.iloc["j", "D"]
635
+
636
+ def test_iloc_getitem_doc_issue(self, using_array_manager):
637
+ # multi axis slicing issue with single block
638
+ # surfaced in GH 6059
639
+
640
+ arr = np.random.default_rng(2).standard_normal((6, 4))
641
+ index = date_range("20130101", periods=6)
642
+ columns = list("ABCD")
643
+ df = DataFrame(arr, index=index, columns=columns)
644
+
645
+ # defines ref_locs
646
+ df.describe()
647
+
648
+ result = df.iloc[3:5, 0:2]
649
+
650
+ expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=columns[0:2])
651
+ tm.assert_frame_equal(result, expected)
652
+
653
+ # for dups
654
+ df.columns = list("aaaa")
655
+ result = df.iloc[3:5, 0:2]
656
+
657
+ expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=list("aa"))
658
+ tm.assert_frame_equal(result, expected)
659
+
660
+ # related
661
+ arr = np.random.default_rng(2).standard_normal((6, 4))
662
+ index = list(range(0, 12, 2))
663
+ columns = list(range(0, 8, 2))
664
+ df = DataFrame(arr, index=index, columns=columns)
665
+
666
+ if not using_array_manager:
667
+ df._mgr.blocks[0].mgr_locs
668
+ result = df.iloc[1:5, 2:4]
669
+ expected = DataFrame(arr[1:5, 2:4], index=index[1:5], columns=columns[2:4])
670
+ tm.assert_frame_equal(result, expected)
671
+
672
+ def test_iloc_setitem_series(self):
673
+ df = DataFrame(
674
+ np.random.default_rng(2).standard_normal((10, 4)),
675
+ index=list("abcdefghij"),
676
+ columns=list("ABCD"),
677
+ )
678
+
679
+ df.iloc[1, 1] = 1
680
+ result = df.iloc[1, 1]
681
+ assert result == 1
682
+
683
+ df.iloc[:, 2:3] = 0
684
+ expected = df.iloc[:, 2:3]
685
+ result = df.iloc[:, 2:3]
686
+ tm.assert_frame_equal(result, expected)
687
+
688
+ s = Series(np.random.default_rng(2).standard_normal(10), index=range(0, 20, 2))
689
+
690
+ s.iloc[1] = 1
691
+ result = s.iloc[1]
692
+ assert result == 1
693
+
694
+ s.iloc[:4] = 0
695
+ expected = s.iloc[:4]
696
+ result = s.iloc[:4]
697
+ tm.assert_series_equal(result, expected)
698
+
699
+ s = Series([-1] * 6)
700
+ s.iloc[0::2] = [0, 2, 4]
701
+ s.iloc[1::2] = [1, 3, 5]
702
+ result = s
703
+ expected = Series([0, 1, 2, 3, 4, 5])
704
+ tm.assert_series_equal(result, expected)
705
+
706
+ def test_iloc_setitem_list_of_lists(self):
707
+ # GH 7551
708
+ # list-of-list is set incorrectly in mixed vs. single dtyped frames
709
+ df = DataFrame(
710
+ {"A": np.arange(5, dtype="int64"), "B": np.arange(5, 10, dtype="int64")}
711
+ )
712
+ df.iloc[2:4] = [[10, 11], [12, 13]]
713
+ expected = DataFrame({"A": [0, 1, 10, 12, 4], "B": [5, 6, 11, 13, 9]})
714
+ tm.assert_frame_equal(df, expected)
715
+
716
+ df = DataFrame(
717
+ {"A": ["a", "b", "c", "d", "e"], "B": np.arange(5, 10, dtype="int64")}
718
+ )
719
+ df.iloc[2:4] = [["x", 11], ["y", 13]]
720
+ expected = DataFrame({"A": ["a", "b", "x", "y", "e"], "B": [5, 6, 11, 13, 9]})
721
+ tm.assert_frame_equal(df, expected)
722
+
723
+ @pytest.mark.parametrize("indexer", [[0], slice(None, 1, None), np.array([0])])
724
+ @pytest.mark.parametrize("value", [["Z"], np.array(["Z"])])
725
+ def test_iloc_setitem_with_scalar_index(self, indexer, value):
726
+ # GH #19474
727
+ # assigning like "df.iloc[0, [0]] = ['Z']" should be evaluated
728
+ # elementwisely, not using "setter('A', ['Z'])".
729
+
730
+ # Set object type to avoid upcast when setting "Z"
731
+ df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]).astype({"A": object})
732
+ df.iloc[0, indexer] = value
733
+ result = df.iloc[0, 0]
734
+
735
+ assert is_scalar(result) and result == "Z"
736
+
737
+ @pytest.mark.filterwarnings("ignore::UserWarning")
738
+ def test_iloc_mask(self):
739
+ # GH 3631, iloc with a mask (of a series) should raise
740
+ df = DataFrame(list(range(5)), index=list("ABCDE"), columns=["a"])
741
+ mask = df.a % 2 == 0
742
+ msg = "iLocation based boolean indexing cannot use an indexable as a mask"
743
+ with pytest.raises(ValueError, match=msg):
744
+ df.iloc[mask]
745
+ mask.index = range(len(mask))
746
+ msg = "iLocation based boolean indexing on an integer type is not available"
747
+ with pytest.raises(NotImplementedError, match=msg):
748
+ df.iloc[mask]
749
+
750
+ # ndarray ok
751
+ result = df.iloc[np.array([True] * len(mask), dtype=bool)]
752
+ tm.assert_frame_equal(result, df)
753
+
754
+ # the possibilities
755
+ locs = np.arange(4)
756
+ nums = 2**locs
757
+ reps = [bin(num) for num in nums]
758
+ df = DataFrame({"locs": locs, "nums": nums}, reps)
759
+
760
+ expected = {
761
+ (None, ""): "0b1100",
762
+ (None, ".loc"): "0b1100",
763
+ (None, ".iloc"): "0b1100",
764
+ ("index", ""): "0b11",
765
+ ("index", ".loc"): "0b11",
766
+ ("index", ".iloc"): (
767
+ "iLocation based boolean indexing cannot use an indexable as a mask"
768
+ ),
769
+ ("locs", ""): "Unalignable boolean Series provided as indexer "
770
+ "(index of the boolean Series and of the indexed "
771
+ "object do not match).",
772
+ ("locs", ".loc"): "Unalignable boolean Series provided as indexer "
773
+ "(index of the boolean Series and of the "
774
+ "indexed object do not match).",
775
+ ("locs", ".iloc"): (
776
+ "iLocation based boolean indexing on an "
777
+ "integer type is not available"
778
+ ),
779
+ }
780
+
781
+ # UserWarnings from reindex of a boolean mask
782
+ for idx in [None, "index", "locs"]:
783
+ mask = (df.nums > 2).values
784
+ if idx:
785
+ mask_index = getattr(df, idx)[::-1]
786
+ mask = Series(mask, list(mask_index))
787
+ for method in ["", ".loc", ".iloc"]:
788
+ try:
789
+ if method:
790
+ accessor = getattr(df, method[1:])
791
+ else:
792
+ accessor = df
793
+ answer = str(bin(accessor[mask]["nums"].sum()))
794
+ except (ValueError, IndexingError, NotImplementedError) as err:
795
+ answer = str(err)
796
+
797
+ key = (
798
+ idx,
799
+ method,
800
+ )
801
+ r = expected.get(key)
802
+ if r != answer:
803
+ raise AssertionError(
804
+ f"[{key}] does not match [{answer}], received [{r}]"
805
+ )
806
+
807
+ def test_iloc_non_unique_indexing(self):
808
+ # GH 4017, non-unique indexing (on the axis)
809
+ df = DataFrame({"A": [0.1] * 3000, "B": [1] * 3000})
810
+ idx = np.arange(30) * 99
811
+ expected = df.iloc[idx]
812
+
813
+ df3 = concat([df, 2 * df, 3 * df])
814
+ result = df3.iloc[idx]
815
+
816
+ tm.assert_frame_equal(result, expected)
817
+
818
+ df2 = DataFrame({"A": [0.1] * 1000, "B": [1] * 1000})
819
+ df2 = concat([df2, 2 * df2, 3 * df2])
820
+
821
+ with pytest.raises(KeyError, match="not in index"):
822
+ df2.loc[idx]
823
+
824
+ def test_iloc_empty_list_indexer_is_ok(self):
825
+ df = DataFrame(
826
+ np.ones((5, 2)),
827
+ index=Index([f"i-{i}" for i in range(5)], name="a"),
828
+ columns=Index([f"i-{i}" for i in range(2)], name="a"),
829
+ )
830
+ # vertical empty
831
+ tm.assert_frame_equal(
832
+ df.iloc[:, []],
833
+ df.iloc[:, :0],
834
+ check_index_type=True,
835
+ check_column_type=True,
836
+ )
837
+ # horizontal empty
838
+ tm.assert_frame_equal(
839
+ df.iloc[[], :],
840
+ df.iloc[:0, :],
841
+ check_index_type=True,
842
+ check_column_type=True,
843
+ )
844
+ # horizontal empty
845
+ tm.assert_frame_equal(
846
+ df.iloc[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True
847
+ )
848
+
849
+ def test_identity_slice_returns_new_object(
850
+ self, using_copy_on_write, warn_copy_on_write
851
+ ):
852
+ # GH13873
853
+ original_df = DataFrame({"a": [1, 2, 3]})
854
+ sliced_df = original_df.iloc[:]
855
+ assert sliced_df is not original_df
856
+
857
+ # should be a shallow copy
858
+ assert np.shares_memory(original_df["a"], sliced_df["a"])
859
+
860
+ # Setting using .loc[:, "a"] sets inplace so alters both sliced and orig
861
+ # depending on CoW
862
+ with tm.assert_cow_warning(warn_copy_on_write):
863
+ original_df.loc[:, "a"] = [4, 4, 4]
864
+ if using_copy_on_write:
865
+ assert (sliced_df["a"] == [1, 2, 3]).all()
866
+ else:
867
+ assert (sliced_df["a"] == 4).all()
868
+
869
+ original_series = Series([1, 2, 3, 4, 5, 6])
870
+ sliced_series = original_series.iloc[:]
871
+ assert sliced_series is not original_series
872
+
873
+ # should also be a shallow copy
874
+ with tm.assert_cow_warning(warn_copy_on_write):
875
+ original_series[:3] = [7, 8, 9]
876
+ if using_copy_on_write:
877
+ # shallow copy not updated (CoW)
878
+ assert all(sliced_series[:3] == [1, 2, 3])
879
+ else:
880
+ assert all(sliced_series[:3] == [7, 8, 9])
881
+
882
+ def test_indexing_zerodim_np_array(self):
883
+ # GH24919
884
+ df = DataFrame([[1, 2], [3, 4]])
885
+ result = df.iloc[np.array(0)]
886
+ s = Series([1, 2], name=0)
887
+ tm.assert_series_equal(result, s)
888
+
889
+ def test_series_indexing_zerodim_np_array(self):
890
+ # GH24919
891
+ s = Series([1, 2])
892
+ result = s.iloc[np.array(0)]
893
+ assert result == 1
894
+
895
+ def test_iloc_setitem_categorical_updates_inplace(self):
896
+ # Mixed dtype ensures we go through take_split_path in setitem_with_indexer
897
+ cat = Categorical(["A", "B", "C"])
898
+ df = DataFrame({1: cat, 2: [1, 2, 3]}, copy=False)
899
+
900
+ assert tm.shares_memory(df[1], cat)
901
+
902
+ # With the enforcement of GH#45333 in 2.0, this modifies original
903
+ # values inplace
904
+ df.iloc[:, 0] = cat[::-1]
905
+
906
+ assert tm.shares_memory(df[1], cat)
907
+ expected = Categorical(["C", "B", "A"], categories=["A", "B", "C"])
908
+ tm.assert_categorical_equal(cat, expected)
909
+
910
+ def test_iloc_with_boolean_operation(self):
911
+ # GH 20627
912
+ result = DataFrame([[0, 1], [2, 3], [4, 5], [6, np.nan]])
913
+ result.iloc[result.index <= 2] *= 2
914
+ expected = DataFrame([[0, 2], [4, 6], [8, 10], [6, np.nan]])
915
+ tm.assert_frame_equal(result, expected)
916
+
917
+ result.iloc[result.index > 2] *= 2
918
+ expected = DataFrame([[0, 2], [4, 6], [8, 10], [12, np.nan]])
919
+ tm.assert_frame_equal(result, expected)
920
+
921
+ result.iloc[[True, True, False, False]] *= 2
922
+ expected = DataFrame([[0, 4], [8, 12], [8, 10], [12, np.nan]])
923
+ tm.assert_frame_equal(result, expected)
924
+
925
+ result.iloc[[False, False, True, True]] /= 2
926
+ expected = DataFrame([[0, 4.0], [8, 12.0], [4, 5.0], [6, np.nan]])
927
+ tm.assert_frame_equal(result, expected)
928
+
929
+ def test_iloc_getitem_singlerow_slice_categoricaldtype_gives_series(self):
930
+ # GH#29521
931
+ df = DataFrame({"x": Categorical("a b c d e".split())})
932
+ result = df.iloc[0]
933
+ raw_cat = Categorical(["a"], categories=["a", "b", "c", "d", "e"])
934
+ expected = Series(raw_cat, index=["x"], name=0, dtype="category")
935
+
936
+ tm.assert_series_equal(result, expected)
937
+
938
+ def test_iloc_getitem_categorical_values(self):
939
+ # GH#14580
940
+ # test iloc() on Series with Categorical data
941
+
942
+ ser = Series([1, 2, 3]).astype("category")
943
+
944
+ # get slice
945
+ result = ser.iloc[0:2]
946
+ expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3]))
947
+ tm.assert_series_equal(result, expected)
948
+
949
+ # get list of indexes
950
+ result = ser.iloc[[0, 1]]
951
+ expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3]))
952
+ tm.assert_series_equal(result, expected)
953
+
954
+ # get boolean array
955
+ result = ser.iloc[[True, False, False]]
956
+ expected = Series([1]).astype(CategoricalDtype([1, 2, 3]))
957
+ tm.assert_series_equal(result, expected)
958
+
959
+ @pytest.mark.parametrize("value", [None, NaT, np.nan])
960
+ def test_iloc_setitem_td64_values_cast_na(self, value):
961
+ # GH#18586
962
+ series = Series([0, 1, 2], dtype="timedelta64[ns]")
963
+ series.iloc[0] = value
964
+ expected = Series([NaT, 1, 2], dtype="timedelta64[ns]")
965
+ tm.assert_series_equal(series, expected)
966
+
967
+ @pytest.mark.parametrize("not_na", [Interval(0, 1), "a", 1.0])
968
+ def test_setitem_mix_of_nan_and_interval(self, not_na, nulls_fixture):
969
+ # GH#27937
970
+ dtype = CategoricalDtype(categories=[not_na])
971
+ ser = Series(
972
+ [nulls_fixture, nulls_fixture, nulls_fixture, nulls_fixture], dtype=dtype
973
+ )
974
+ ser.iloc[:3] = [nulls_fixture, not_na, nulls_fixture]
975
+ exp = Series([nulls_fixture, not_na, nulls_fixture, nulls_fixture], dtype=dtype)
976
+ tm.assert_series_equal(ser, exp)
977
+
978
+ def test_iloc_setitem_empty_frame_raises_with_3d_ndarray(self):
979
+ idx = Index([])
980
+ obj = DataFrame(
981
+ np.random.default_rng(2).standard_normal((len(idx), len(idx))),
982
+ index=idx,
983
+ columns=idx,
984
+ )
985
+ nd3 = np.random.default_rng(2).integers(5, size=(2, 2, 2))
986
+
987
+ msg = f"Cannot set values with ndim > {obj.ndim}"
988
+ with pytest.raises(ValueError, match=msg):
989
+ obj.iloc[nd3] = 0
990
+
991
+ @pytest.mark.parametrize("indexer", [tm.loc, tm.iloc])
992
+ def test_iloc_getitem_read_only_values(self, indexer):
993
+ # GH#10043 this is fundamentally a test for iloc, but test loc while
994
+ # we're here
995
+ rw_array = np.eye(10)
996
+ rw_df = DataFrame(rw_array)
997
+
998
+ ro_array = np.eye(10)
999
+ ro_array.setflags(write=False)
1000
+ ro_df = DataFrame(ro_array)
1001
+
1002
+ tm.assert_frame_equal(indexer(rw_df)[[1, 2, 3]], indexer(ro_df)[[1, 2, 3]])
1003
+ tm.assert_frame_equal(indexer(rw_df)[[1]], indexer(ro_df)[[1]])
1004
+ tm.assert_series_equal(indexer(rw_df)[1], indexer(ro_df)[1])
1005
+ tm.assert_frame_equal(indexer(rw_df)[1:3], indexer(ro_df)[1:3])
1006
+
1007
+ def test_iloc_getitem_readonly_key(self):
1008
+ # GH#17192 iloc with read-only array raising TypeError
1009
+ df = DataFrame({"data": np.ones(100, dtype="float64")})
1010
+ indices = np.array([1, 3, 6])
1011
+ indices.flags.writeable = False
1012
+
1013
+ result = df.iloc[indices]
1014
+ expected = df.loc[[1, 3, 6]]
1015
+ tm.assert_frame_equal(result, expected)
1016
+
1017
+ result = df["data"].iloc[indices]
1018
+ expected = df["data"].loc[[1, 3, 6]]
1019
+ tm.assert_series_equal(result, expected)
1020
+
1021
+ def test_iloc_assign_series_to_df_cell(self):
1022
+ # GH 37593
1023
+ df = DataFrame(columns=["a"], index=[0])
1024
+ df.iloc[0, 0] = Series([1, 2, 3])
1025
+ expected = DataFrame({"a": [Series([1, 2, 3])]}, columns=["a"], index=[0])
1026
+ tm.assert_frame_equal(df, expected)
1027
+
1028
+ @pytest.mark.parametrize("klass", [list, np.array])
1029
+ def test_iloc_setitem_bool_indexer(self, klass):
1030
+ # GH#36741
1031
+ df = DataFrame({"flag": ["x", "y", "z"], "value": [1, 3, 4]})
1032
+ indexer = klass([True, False, False])
1033
+ df.iloc[indexer, 1] = df.iloc[indexer, 1] * 2
1034
+ expected = DataFrame({"flag": ["x", "y", "z"], "value": [2, 3, 4]})
1035
+ tm.assert_frame_equal(df, expected)
1036
+
1037
+ @pytest.mark.parametrize("indexer", [[1], slice(1, 2)])
1038
+ def test_iloc_setitem_pure_position_based(self, indexer):
1039
+ # GH#22046
1040
+ df1 = DataFrame({"a2": [11, 12, 13], "b2": [14, 15, 16]})
1041
+ df2 = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]})
1042
+ df2.iloc[:, indexer] = df1.iloc[:, [0]]
1043
+ expected = DataFrame({"a": [1, 2, 3], "b": [11, 12, 13], "c": [7, 8, 9]})
1044
+ tm.assert_frame_equal(df2, expected)
1045
+
1046
+ def test_iloc_setitem_dictionary_value(self):
1047
+ # GH#37728
1048
+ df = DataFrame({"x": [1, 2], "y": [2, 2]})
1049
+ rhs = {"x": 9, "y": 99}
1050
+ df.iloc[1] = rhs
1051
+ expected = DataFrame({"x": [1, 9], "y": [2, 99]})
1052
+ tm.assert_frame_equal(df, expected)
1053
+
1054
+ # GH#38335 same thing, mixed dtypes
1055
+ df = DataFrame({"x": [1, 2], "y": [2.0, 2.0]})
1056
+ df.iloc[1] = rhs
1057
+ expected = DataFrame({"x": [1, 9], "y": [2.0, 99.0]})
1058
+ tm.assert_frame_equal(df, expected)
1059
+
1060
+ def test_iloc_getitem_float_duplicates(self):
1061
+ df = DataFrame(
1062
+ np.random.default_rng(2).standard_normal((3, 3)),
1063
+ index=[0.1, 0.2, 0.2],
1064
+ columns=list("abc"),
1065
+ )
1066
+ expect = df.iloc[1:]
1067
+ tm.assert_frame_equal(df.loc[0.2], expect)
1068
+
1069
+ expect = df.iloc[1:, 0]
1070
+ tm.assert_series_equal(df.loc[0.2, "a"], expect)
1071
+
1072
+ df.index = [1, 0.2, 0.2]
1073
+ expect = df.iloc[1:]
1074
+ tm.assert_frame_equal(df.loc[0.2], expect)
1075
+
1076
+ expect = df.iloc[1:, 0]
1077
+ tm.assert_series_equal(df.loc[0.2, "a"], expect)
1078
+
1079
+ df = DataFrame(
1080
+ np.random.default_rng(2).standard_normal((4, 3)),
1081
+ index=[1, 0.2, 0.2, 1],
1082
+ columns=list("abc"),
1083
+ )
1084
+ expect = df.iloc[1:-1]
1085
+ tm.assert_frame_equal(df.loc[0.2], expect)
1086
+
1087
+ expect = df.iloc[1:-1, 0]
1088
+ tm.assert_series_equal(df.loc[0.2, "a"], expect)
1089
+
1090
+ df.index = [0.1, 0.2, 2, 0.2]
1091
+ expect = df.iloc[[1, -1]]
1092
+ tm.assert_frame_equal(df.loc[0.2], expect)
1093
+
1094
+ expect = df.iloc[[1, -1], 0]
1095
+ tm.assert_series_equal(df.loc[0.2, "a"], expect)
1096
+
1097
+ def test_iloc_setitem_custom_object(self):
1098
+ # iloc with an object
1099
+ class TO:
1100
+ def __init__(self, value) -> None:
1101
+ self.value = value
1102
+
1103
+ def __str__(self) -> str:
1104
+ return f"[{self.value}]"
1105
+
1106
+ __repr__ = __str__
1107
+
1108
+ def __eq__(self, other) -> bool:
1109
+ return self.value == other.value
1110
+
1111
+ def view(self):
1112
+ return self
1113
+
1114
+ df = DataFrame(index=[0, 1], columns=[0])
1115
+ df.iloc[1, 0] = TO(1)
1116
+ df.iloc[1, 0] = TO(2)
1117
+
1118
+ result = DataFrame(index=[0, 1], columns=[0])
1119
+ result.iloc[1, 0] = TO(2)
1120
+
1121
+ tm.assert_frame_equal(result, df)
1122
+
1123
+ # remains object dtype even after setting it back
1124
+ df = DataFrame(index=[0, 1], columns=[0])
1125
+ df.iloc[1, 0] = TO(1)
1126
+ df.iloc[1, 0] = np.nan
1127
+ result = DataFrame(index=[0, 1], columns=[0])
1128
+
1129
+ tm.assert_frame_equal(result, df)
1130
+
1131
+ def test_iloc_getitem_with_duplicates(self):
1132
+ df = DataFrame(
1133
+ np.random.default_rng(2).random((3, 3)),
1134
+ columns=list("ABC"),
1135
+ index=list("aab"),
1136
+ )
1137
+
1138
+ result = df.iloc[0]
1139
+ assert isinstance(result, Series)
1140
+ tm.assert_almost_equal(result.values, df.values[0])
1141
+
1142
+ result = df.T.iloc[:, 0]
1143
+ assert isinstance(result, Series)
1144
+ tm.assert_almost_equal(result.values, df.values[0])
1145
+
1146
+ def test_iloc_getitem_with_duplicates2(self):
1147
+ # GH#2259
1148
+ df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1, 1, 2])
1149
+ result = df.iloc[:, [0]]
1150
+ expected = df.take([0], axis=1)
1151
+ tm.assert_frame_equal(result, expected)
1152
+
1153
+ def test_iloc_interval(self):
1154
+ # GH#17130
1155
+ df = DataFrame({Interval(1, 2): [1, 2]})
1156
+
1157
+ result = df.iloc[0]
1158
+ expected = Series({Interval(1, 2): 1}, name=0)
1159
+ tm.assert_series_equal(result, expected)
1160
+
1161
+ result = df.iloc[:, 0]
1162
+ expected = Series([1, 2], name=Interval(1, 2))
1163
+ tm.assert_series_equal(result, expected)
1164
+
1165
+ result = df.copy()
1166
+ result.iloc[:, 0] += 1
1167
+ expected = DataFrame({Interval(1, 2): [2, 3]})
1168
+ tm.assert_frame_equal(result, expected)
1169
+
1170
+ @pytest.mark.parametrize("indexing_func", [list, np.array])
1171
+ @pytest.mark.parametrize("rhs_func", [list, np.array])
1172
+ def test_loc_setitem_boolean_list(self, rhs_func, indexing_func):
1173
+ # GH#20438 testing specifically list key, not arraylike
1174
+ ser = Series([0, 1, 2])
1175
+ ser.iloc[indexing_func([True, False, True])] = rhs_func([5, 10])
1176
+ expected = Series([5, 1, 10])
1177
+ tm.assert_series_equal(ser, expected)
1178
+
1179
+ df = DataFrame({"a": [0, 1, 2]})
1180
+ df.iloc[indexing_func([True, False, True])] = rhs_func([[5], [10]])
1181
+ expected = DataFrame({"a": [5, 1, 10]})
1182
+ tm.assert_frame_equal(df, expected)
1183
+
1184
+ def test_iloc_getitem_slice_negative_step_ea_block(self):
1185
+ # GH#44551
1186
+ df = DataFrame({"A": [1, 2, 3]}, dtype="Int64")
1187
+
1188
+ res = df.iloc[:, ::-1]
1189
+ tm.assert_frame_equal(res, df)
1190
+
1191
+ df["B"] = "foo"
1192
+ res = df.iloc[:, ::-1]
1193
+ expected = DataFrame({"B": df["B"], "A": df["A"]})
1194
+ tm.assert_frame_equal(res, expected)
1195
+
1196
+ def test_iloc_setitem_2d_ndarray_into_ea_block(self):
1197
+ # GH#44703
1198
+ df = DataFrame({"status": ["a", "b", "c"]}, dtype="category")
1199
+ df.iloc[np.array([0, 1]), np.array([0])] = np.array([["a"], ["a"]])
1200
+
1201
+ expected = DataFrame({"status": ["a", "a", "c"]}, dtype=df["status"].dtype)
1202
+ tm.assert_frame_equal(df, expected)
1203
+
1204
+ @td.skip_array_manager_not_yet_implemented
1205
+ def test_iloc_getitem_int_single_ea_block_view(self):
1206
+ # GH#45241
1207
+ # TODO: make an extension interface test for this?
1208
+ arr = interval_range(1, 10.0)._values
1209
+ df = DataFrame(arr)
1210
+
1211
+ # ser should be a *view* on the DataFrame data
1212
+ ser = df.iloc[2]
1213
+
1214
+ # if we have a view, then changing arr[2] should also change ser[0]
1215
+ assert arr[2] != arr[-1] # otherwise the rest isn't meaningful
1216
+ arr[2] = arr[-1]
1217
+ assert ser[0] == arr[-1]
1218
+
1219
+ def test_iloc_setitem_multicolumn_to_datetime(self):
1220
+ # GH#20511
1221
+ df = DataFrame({"A": ["2022-01-01", "2022-01-02"], "B": ["2021", "2022"]})
1222
+
1223
+ df.iloc[:, [0]] = DataFrame({"A": to_datetime(["2021", "2022"])})
1224
+ expected = DataFrame(
1225
+ {
1226
+ "A": [
1227
+ Timestamp("2021-01-01 00:00:00"),
1228
+ Timestamp("2022-01-01 00:00:00"),
1229
+ ],
1230
+ "B": ["2021", "2022"],
1231
+ }
1232
+ )
1233
+ tm.assert_frame_equal(df, expected, check_dtype=False)
1234
+
1235
+
1236
+ class TestILocErrors:
1237
+ # NB: this test should work for _any_ Series we can pass as
1238
+ # series_with_simple_index
1239
+ def test_iloc_float_raises(
1240
+ self, series_with_simple_index, frame_or_series, warn_copy_on_write
1241
+ ):
1242
+ # GH#4892
1243
+ # float_indexers should raise exceptions
1244
+ # on appropriate Index types & accessors
1245
+ # this duplicates the code below
1246
+ # but is specifically testing for the error
1247
+ # message
1248
+
1249
+ obj = series_with_simple_index
1250
+ if frame_or_series is DataFrame:
1251
+ obj = obj.to_frame()
1252
+
1253
+ msg = "Cannot index by location index with a non-integer key"
1254
+ with pytest.raises(TypeError, match=msg):
1255
+ obj.iloc[3.0]
1256
+
1257
+ with pytest.raises(IndexError, match=_slice_iloc_msg):
1258
+ with tm.assert_cow_warning(
1259
+ warn_copy_on_write and frame_or_series is DataFrame
1260
+ ):
1261
+ obj.iloc[3.0] = 0
1262
+
1263
+ def test_iloc_getitem_setitem_fancy_exceptions(self, float_frame):
1264
+ with pytest.raises(IndexingError, match="Too many indexers"):
1265
+ float_frame.iloc[:, :, :]
1266
+
1267
+ with pytest.raises(IndexError, match="too many indices for array"):
1268
+ # GH#32257 we let numpy do validation, get their exception
1269
+ float_frame.iloc[:, :, :] = 1
1270
+
1271
+ def test_iloc_frame_indexer(self):
1272
+ # GH#39004
1273
+ df = DataFrame({"a": [1, 2, 3]})
1274
+ indexer = DataFrame({"a": [True, False, True]})
1275
+ msg = "DataFrame indexer for .iloc is not supported. Consider using .loc"
1276
+ with pytest.raises(TypeError, match=msg):
1277
+ df.iloc[indexer] = 1
1278
+
1279
+ msg = (
1280
+ "DataFrame indexer is not allowed for .iloc\n"
1281
+ "Consider using .loc for automatic alignment."
1282
+ )
1283
+ with pytest.raises(IndexError, match=msg):
1284
+ df.iloc[indexer]
1285
+
1286
+
1287
+ class TestILocSetItemDuplicateColumns:
1288
+ def test_iloc_setitem_scalar_duplicate_columns(self):
1289
+ # GH#15686, duplicate columns and mixed dtype
1290
+ df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}])
1291
+ df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}])
1292
+ df = concat([df1, df2], axis=1)
1293
+ df.iloc[0, 0] = -1
1294
+
1295
+ assert df.iloc[0, 0] == -1
1296
+ assert df.iloc[0, 2] == 3
1297
+ assert df.dtypes.iloc[2] == np.int64
1298
+
1299
+ def test_iloc_setitem_list_duplicate_columns(self):
1300
+ # GH#22036 setting with same-sized list
1301
+ df = DataFrame([[0, "str", "str2"]], columns=["a", "b", "b"])
1302
+
1303
+ df.iloc[:, 2] = ["str3"]
1304
+
1305
+ expected = DataFrame([[0, "str", "str3"]], columns=["a", "b", "b"])
1306
+ tm.assert_frame_equal(df, expected)
1307
+
1308
+ def test_iloc_setitem_series_duplicate_columns(self):
1309
+ df = DataFrame(
1310
+ np.arange(8, dtype=np.int64).reshape(2, 4), columns=["A", "B", "A", "B"]
1311
+ )
1312
+ df.iloc[:, 0] = df.iloc[:, 0].astype(np.float64)
1313
+ assert df.dtypes.iloc[2] == np.int64
1314
+
1315
+ @pytest.mark.parametrize(
1316
+ ["dtypes", "init_value", "expected_value"],
1317
+ [("int64", "0", 0), ("float", "1.2", 1.2)],
1318
+ )
1319
+ def test_iloc_setitem_dtypes_duplicate_columns(
1320
+ self, dtypes, init_value, expected_value
1321
+ ):
1322
+ # GH#22035
1323
+ df = DataFrame(
1324
+ [[init_value, "str", "str2"]], columns=["a", "b", "b"], dtype=object
1325
+ )
1326
+
1327
+ # with the enforcement of GH#45333 in 2.0, this sets values inplace,
1328
+ # so we retain object dtype
1329
+ df.iloc[:, 0] = df.iloc[:, 0].astype(dtypes)
1330
+
1331
+ expected_df = DataFrame(
1332
+ [[expected_value, "str", "str2"]],
1333
+ columns=["a", "b", "b"],
1334
+ dtype=object,
1335
+ )
1336
+ tm.assert_frame_equal(df, expected_df)
1337
+
1338
+
1339
+ class TestILocCallable:
1340
+ def test_frame_iloc_getitem_callable(self):
1341
+ # GH#11485
1342
+ df = DataFrame({"X": [1, 2, 3, 4], "Y": list("aabb")}, index=list("ABCD"))
1343
+
1344
+ # return location
1345
+ res = df.iloc[lambda x: [1, 3]]
1346
+ tm.assert_frame_equal(res, df.iloc[[1, 3]])
1347
+
1348
+ res = df.iloc[lambda x: [1, 3], :]
1349
+ tm.assert_frame_equal(res, df.iloc[[1, 3], :])
1350
+
1351
+ res = df.iloc[lambda x: [1, 3], lambda x: 0]
1352
+ tm.assert_series_equal(res, df.iloc[[1, 3], 0])
1353
+
1354
+ res = df.iloc[lambda x: [1, 3], lambda x: [0]]
1355
+ tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])
1356
+
1357
+ # mixture
1358
+ res = df.iloc[[1, 3], lambda x: 0]
1359
+ tm.assert_series_equal(res, df.iloc[[1, 3], 0])
1360
+
1361
+ res = df.iloc[[1, 3], lambda x: [0]]
1362
+ tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])
1363
+
1364
+ res = df.iloc[lambda x: [1, 3], 0]
1365
+ tm.assert_series_equal(res, df.iloc[[1, 3], 0])
1366
+
1367
+ res = df.iloc[lambda x: [1, 3], [0]]
1368
+ tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])
1369
+
1370
+ def test_frame_iloc_setitem_callable(self):
1371
+ # GH#11485
1372
+ df = DataFrame(
1373
+ {"X": [1, 2, 3, 4], "Y": Series(list("aabb"), dtype=object)},
1374
+ index=list("ABCD"),
1375
+ )
1376
+
1377
+ # return location
1378
+ res = df.copy()
1379
+ res.iloc[lambda x: [1, 3]] = 0
1380
+ exp = df.copy()
1381
+ exp.iloc[[1, 3]] = 0
1382
+ tm.assert_frame_equal(res, exp)
1383
+
1384
+ res = df.copy()
1385
+ res.iloc[lambda x: [1, 3], :] = -1
1386
+ exp = df.copy()
1387
+ exp.iloc[[1, 3], :] = -1
1388
+ tm.assert_frame_equal(res, exp)
1389
+
1390
+ res = df.copy()
1391
+ res.iloc[lambda x: [1, 3], lambda x: 0] = 5
1392
+ exp = df.copy()
1393
+ exp.iloc[[1, 3], 0] = 5
1394
+ tm.assert_frame_equal(res, exp)
1395
+
1396
+ res = df.copy()
1397
+ res.iloc[lambda x: [1, 3], lambda x: [0]] = 25
1398
+ exp = df.copy()
1399
+ exp.iloc[[1, 3], [0]] = 25
1400
+ tm.assert_frame_equal(res, exp)
1401
+
1402
+ # mixture
1403
+ res = df.copy()
1404
+ res.iloc[[1, 3], lambda x: 0] = -3
1405
+ exp = df.copy()
1406
+ exp.iloc[[1, 3], 0] = -3
1407
+ tm.assert_frame_equal(res, exp)
1408
+
1409
+ res = df.copy()
1410
+ res.iloc[[1, 3], lambda x: [0]] = -5
1411
+ exp = df.copy()
1412
+ exp.iloc[[1, 3], [0]] = -5
1413
+ tm.assert_frame_equal(res, exp)
1414
+
1415
+ res = df.copy()
1416
+ res.iloc[lambda x: [1, 3], 0] = 10
1417
+ exp = df.copy()
1418
+ exp.iloc[[1, 3], 0] = 10
1419
+ tm.assert_frame_equal(res, exp)
1420
+
1421
+ res = df.copy()
1422
+ res.iloc[lambda x: [1, 3], [0]] = [-5, -5]
1423
+ exp = df.copy()
1424
+ exp.iloc[[1, 3], [0]] = [-5, -5]
1425
+ tm.assert_frame_equal(res, exp)
1426
+
1427
+
1428
+ class TestILocSeries:
1429
+ def test_iloc(self, using_copy_on_write, warn_copy_on_write):
1430
+ ser = Series(
1431
+ np.random.default_rng(2).standard_normal(10), index=list(range(0, 20, 2))
1432
+ )
1433
+ ser_original = ser.copy()
1434
+
1435
+ for i in range(len(ser)):
1436
+ result = ser.iloc[i]
1437
+ exp = ser[ser.index[i]]
1438
+ tm.assert_almost_equal(result, exp)
1439
+
1440
+ # pass a slice
1441
+ result = ser.iloc[slice(1, 3)]
1442
+ expected = ser.loc[2:4]
1443
+ tm.assert_series_equal(result, expected)
1444
+
1445
+ # test slice is a view
1446
+ with tm.assert_produces_warning(None):
1447
+ # GH#45324 make sure we aren't giving a spurious FutureWarning
1448
+ with tm.assert_cow_warning(warn_copy_on_write):
1449
+ result[:] = 0
1450
+ if using_copy_on_write:
1451
+ tm.assert_series_equal(ser, ser_original)
1452
+ else:
1453
+ assert (ser.iloc[1:3] == 0).all()
1454
+
1455
+ # list of integers
1456
+ result = ser.iloc[[0, 2, 3, 4, 5]]
1457
+ expected = ser.reindex(ser.index[[0, 2, 3, 4, 5]])
1458
+ tm.assert_series_equal(result, expected)
1459
+
1460
+ def test_iloc_getitem_nonunique(self):
1461
+ ser = Series([0, 1, 2], index=[0, 1, 0])
1462
+ assert ser.iloc[2] == 2
1463
+
1464
+ def test_iloc_setitem_pure_position_based(self):
1465
+ # GH#22046
1466
+ ser1 = Series([1, 2, 3])
1467
+ ser2 = Series([4, 5, 6], index=[1, 0, 2])
1468
+ ser1.iloc[1:3] = ser2.iloc[1:3]
1469
+ expected = Series([1, 5, 6])
1470
+ tm.assert_series_equal(ser1, expected)
1471
+
1472
+ def test_iloc_nullable_int64_size_1_nan(self):
1473
+ # GH 31861
1474
+ result = DataFrame({"a": ["test"], "b": [np.nan]})
1475
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1476
+ result.loc[:, "b"] = result.loc[:, "b"].astype("Int64")
1477
+ expected = DataFrame({"a": ["test"], "b": array([NA], dtype="Int64")})
1478
+ tm.assert_frame_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/indexing/test_indexers.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Tests aimed at pandas.core.indexers
2
+ import numpy as np
3
+ import pytest
4
+
5
+ from pandas.core.indexers import (
6
+ is_scalar_indexer,
7
+ length_of_indexer,
8
+ validate_indices,
9
+ )
10
+
11
+
12
+ def test_length_of_indexer():
13
+ arr = np.zeros(4, dtype=bool)
14
+ arr[0] = 1
15
+ result = length_of_indexer(arr)
16
+ assert result == 1
17
+
18
+
19
+ def test_is_scalar_indexer():
20
+ indexer = (0, 1)
21
+ assert is_scalar_indexer(indexer, 2)
22
+ assert not is_scalar_indexer(indexer[0], 2)
23
+
24
+ indexer = (np.array([2]), 1)
25
+ assert not is_scalar_indexer(indexer, 2)
26
+
27
+ indexer = (np.array([2]), np.array([3]))
28
+ assert not is_scalar_indexer(indexer, 2)
29
+
30
+ indexer = (np.array([2]), np.array([3, 4]))
31
+ assert not is_scalar_indexer(indexer, 2)
32
+
33
+ assert not is_scalar_indexer(slice(None), 1)
34
+
35
+ indexer = 0
36
+ assert is_scalar_indexer(indexer, 1)
37
+
38
+ indexer = (0,)
39
+ assert is_scalar_indexer(indexer, 1)
40
+
41
+
42
+ class TestValidateIndices:
43
+ def test_validate_indices_ok(self):
44
+ indices = np.asarray([0, 1])
45
+ validate_indices(indices, 2)
46
+ validate_indices(indices[:0], 0)
47
+ validate_indices(np.array([-1, -1]), 0)
48
+
49
+ def test_validate_indices_low(self):
50
+ indices = np.asarray([0, -2])
51
+ with pytest.raises(ValueError, match="'indices' contains"):
52
+ validate_indices(indices, 2)
53
+
54
+ def test_validate_indices_high(self):
55
+ indices = np.asarray([0, 1, 2])
56
+ with pytest.raises(IndexError, match="indices are out"):
57
+ validate_indices(indices, 2)
58
+
59
+ def test_validate_indices_empty(self):
60
+ with pytest.raises(IndexError, match="indices are out"):
61
+ validate_indices(np.array([0, 1]), 0)
venv/lib/python3.10/site-packages/pandas/tests/indexing/test_indexing.py ADDED
@@ -0,0 +1,1157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ test fancy indexing & misc """
2
+
3
+ import array
4
+ from datetime import datetime
5
+ import re
6
+ import weakref
7
+
8
+ import numpy as np
9
+ import pytest
10
+
11
+ from pandas._config import using_pyarrow_string_dtype
12
+
13
+ from pandas.errors import IndexingError
14
+
15
+ from pandas.core.dtypes.common import (
16
+ is_float_dtype,
17
+ is_integer_dtype,
18
+ is_object_dtype,
19
+ )
20
+
21
+ import pandas as pd
22
+ from pandas import (
23
+ DataFrame,
24
+ Index,
25
+ NaT,
26
+ Series,
27
+ date_range,
28
+ offsets,
29
+ timedelta_range,
30
+ )
31
+ import pandas._testing as tm
32
+ from pandas.tests.indexing.common import _mklbl
33
+ from pandas.tests.indexing.test_floats import gen_obj
34
+
35
+ # ------------------------------------------------------------------------
36
+ # Indexing test cases
37
+
38
+
39
+ class TestFancy:
40
+ """pure get/set item & fancy indexing"""
41
+
42
+ def test_setitem_ndarray_1d(self):
43
+ # GH5508
44
+
45
+ # len of indexer vs length of the 1d ndarray
46
+ df = DataFrame(index=Index(np.arange(1, 11), dtype=np.int64))
47
+ df["foo"] = np.zeros(10, dtype=np.float64)
48
+ df["bar"] = np.zeros(10, dtype=complex)
49
+
50
+ # invalid
51
+ msg = "Must have equal len keys and value when setting with an iterable"
52
+ with pytest.raises(ValueError, match=msg):
53
+ df.loc[df.index[2:5], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0])
54
+
55
+ # valid
56
+ df.loc[df.index[2:6], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0])
57
+
58
+ result = df.loc[df.index[2:6], "bar"]
59
+ expected = Series(
60
+ [2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name="bar"
61
+ )
62
+ tm.assert_series_equal(result, expected)
63
+
64
+ def test_setitem_ndarray_1d_2(self):
65
+ # GH5508
66
+
67
+ # dtype getting changed?
68
+ df = DataFrame(index=Index(np.arange(1, 11)))
69
+ df["foo"] = np.zeros(10, dtype=np.float64)
70
+ df["bar"] = np.zeros(10, dtype=complex)
71
+
72
+ msg = "Must have equal len keys and value when setting with an iterable"
73
+ with pytest.raises(ValueError, match=msg):
74
+ df[2:5] = np.arange(1, 4) * 1j
75
+
76
+ @pytest.mark.filterwarnings(
77
+ "ignore:Series.__getitem__ treating keys as positions is deprecated:"
78
+ "FutureWarning"
79
+ )
80
+ def test_getitem_ndarray_3d(
81
+ self, index, frame_or_series, indexer_sli, using_array_manager
82
+ ):
83
+ # GH 25567
84
+ obj = gen_obj(frame_or_series, index)
85
+ idxr = indexer_sli(obj)
86
+ nd3 = np.random.default_rng(2).integers(5, size=(2, 2, 2))
87
+
88
+ msgs = []
89
+ if frame_or_series is Series and indexer_sli in [tm.setitem, tm.iloc]:
90
+ msgs.append(r"Wrong number of dimensions. values.ndim > ndim \[3 > 1\]")
91
+ if using_array_manager:
92
+ msgs.append("Passed array should be 1-dimensional")
93
+ if frame_or_series is Series or indexer_sli is tm.iloc:
94
+ msgs.append(r"Buffer has wrong number of dimensions \(expected 1, got 3\)")
95
+ if using_array_manager:
96
+ msgs.append("indexer should be 1-dimensional")
97
+ if indexer_sli is tm.loc or (
98
+ frame_or_series is Series and indexer_sli is tm.setitem
99
+ ):
100
+ msgs.append("Cannot index with multidimensional key")
101
+ if frame_or_series is DataFrame and indexer_sli is tm.setitem:
102
+ msgs.append("Index data must be 1-dimensional")
103
+ if isinstance(index, pd.IntervalIndex) and indexer_sli is tm.iloc:
104
+ msgs.append("Index data must be 1-dimensional")
105
+ if isinstance(index, (pd.TimedeltaIndex, pd.DatetimeIndex, pd.PeriodIndex)):
106
+ msgs.append("Data must be 1-dimensional")
107
+ if len(index) == 0 or isinstance(index, pd.MultiIndex):
108
+ msgs.append("positional indexers are out-of-bounds")
109
+ if type(index) is Index and not isinstance(index._values, np.ndarray):
110
+ # e.g. Int64
111
+ msgs.append("values must be a 1D array")
112
+
113
+ # string[pyarrow]
114
+ msgs.append("only handle 1-dimensional arrays")
115
+
116
+ msg = "|".join(msgs)
117
+
118
+ potential_errors = (IndexError, ValueError, NotImplementedError)
119
+ with pytest.raises(potential_errors, match=msg):
120
+ idxr[nd3]
121
+
122
+ @pytest.mark.filterwarnings(
123
+ "ignore:Series.__setitem__ treating keys as positions is deprecated:"
124
+ "FutureWarning"
125
+ )
126
+ def test_setitem_ndarray_3d(self, index, frame_or_series, indexer_sli):
127
+ # GH 25567
128
+ obj = gen_obj(frame_or_series, index)
129
+ idxr = indexer_sli(obj)
130
+ nd3 = np.random.default_rng(2).integers(5, size=(2, 2, 2))
131
+
132
+ if indexer_sli is tm.iloc:
133
+ err = ValueError
134
+ msg = f"Cannot set values with ndim > {obj.ndim}"
135
+ else:
136
+ err = ValueError
137
+ msg = "|".join(
138
+ [
139
+ r"Buffer has wrong number of dimensions \(expected 1, got 3\)",
140
+ "Cannot set values with ndim > 1",
141
+ "Index data must be 1-dimensional",
142
+ "Data must be 1-dimensional",
143
+ "Array conditional must be same shape as self",
144
+ ]
145
+ )
146
+
147
+ with pytest.raises(err, match=msg):
148
+ idxr[nd3] = 0
149
+
150
+ def test_getitem_ndarray_0d(self):
151
+ # GH#24924
152
+ key = np.array(0)
153
+
154
+ # dataframe __getitem__
155
+ df = DataFrame([[1, 2], [3, 4]])
156
+ result = df[key]
157
+ expected = Series([1, 3], name=0)
158
+ tm.assert_series_equal(result, expected)
159
+
160
+ # series __getitem__
161
+ ser = Series([1, 2])
162
+ result = ser[key]
163
+ assert result == 1
164
+
165
+ def test_inf_upcast(self):
166
+ # GH 16957
167
+ # We should be able to use np.inf as a key
168
+ # np.inf should cause an index to convert to float
169
+
170
+ # Test with np.inf in rows
171
+ df = DataFrame(columns=[0])
172
+ df.loc[1] = 1
173
+ df.loc[2] = 2
174
+ df.loc[np.inf] = 3
175
+
176
+ # make sure we can look up the value
177
+ assert df.loc[np.inf, 0] == 3
178
+
179
+ result = df.index
180
+ expected = Index([1, 2, np.inf], dtype=np.float64)
181
+ tm.assert_index_equal(result, expected)
182
+
183
+ def test_setitem_dtype_upcast(self):
184
+ # GH3216
185
+ df = DataFrame([{"a": 1}, {"a": 3, "b": 2}])
186
+ df["c"] = np.nan
187
+ assert df["c"].dtype == np.float64
188
+
189
+ with tm.assert_produces_warning(
190
+ FutureWarning, match="item of incompatible dtype"
191
+ ):
192
+ df.loc[0, "c"] = "foo"
193
+ expected = DataFrame(
194
+ {"a": [1, 3], "b": [np.nan, 2], "c": Series(["foo", np.nan], dtype=object)}
195
+ )
196
+ tm.assert_frame_equal(df, expected)
197
+
198
+ @pytest.mark.parametrize("val", [3.14, "wxyz"])
199
+ def test_setitem_dtype_upcast2(self, val):
200
+ # GH10280
201
+ df = DataFrame(
202
+ np.arange(6, dtype="int64").reshape(2, 3),
203
+ index=list("ab"),
204
+ columns=["foo", "bar", "baz"],
205
+ )
206
+
207
+ left = df.copy()
208
+ with tm.assert_produces_warning(
209
+ FutureWarning, match="item of incompatible dtype"
210
+ ):
211
+ left.loc["a", "bar"] = val
212
+ right = DataFrame(
213
+ [[0, val, 2], [3, 4, 5]],
214
+ index=list("ab"),
215
+ columns=["foo", "bar", "baz"],
216
+ )
217
+
218
+ tm.assert_frame_equal(left, right)
219
+ assert is_integer_dtype(left["foo"])
220
+ assert is_integer_dtype(left["baz"])
221
+
222
+ def test_setitem_dtype_upcast3(self):
223
+ left = DataFrame(
224
+ np.arange(6, dtype="int64").reshape(2, 3) / 10.0,
225
+ index=list("ab"),
226
+ columns=["foo", "bar", "baz"],
227
+ )
228
+ with tm.assert_produces_warning(
229
+ FutureWarning, match="item of incompatible dtype"
230
+ ):
231
+ left.loc["a", "bar"] = "wxyz"
232
+
233
+ right = DataFrame(
234
+ [[0, "wxyz", 0.2], [0.3, 0.4, 0.5]],
235
+ index=list("ab"),
236
+ columns=["foo", "bar", "baz"],
237
+ )
238
+
239
+ tm.assert_frame_equal(left, right)
240
+ assert is_float_dtype(left["foo"])
241
+ assert is_float_dtype(left["baz"])
242
+
243
+ def test_dups_fancy_indexing(self):
244
+ # GH 3455
245
+
246
+ df = DataFrame(np.eye(3), columns=["a", "a", "b"])
247
+ result = df[["b", "a"]].columns
248
+ expected = Index(["b", "a", "a"])
249
+ tm.assert_index_equal(result, expected)
250
+
251
+ def test_dups_fancy_indexing_across_dtypes(self):
252
+ # across dtypes
253
+ df = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]], columns=list("aaaaaaa"))
254
+ result = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]])
255
+ result.columns = list("aaaaaaa") # GH#3468
256
+
257
+ # GH#3509 smoke tests for indexing with duplicate columns
258
+ df.iloc[:, 4]
259
+ result.iloc[:, 4]
260
+
261
+ tm.assert_frame_equal(df, result)
262
+
263
+ def test_dups_fancy_indexing_not_in_order(self):
264
+ # GH 3561, dups not in selected order
265
+ df = DataFrame(
266
+ {"test": [5, 7, 9, 11], "test1": [4.0, 5, 6, 7], "other": list("abcd")},
267
+ index=["A", "A", "B", "C"],
268
+ )
269
+ rows = ["C", "B"]
270
+ expected = DataFrame(
271
+ {"test": [11, 9], "test1": [7.0, 6], "other": ["d", "c"]}, index=rows
272
+ )
273
+ result = df.loc[rows]
274
+ tm.assert_frame_equal(result, expected)
275
+
276
+ result = df.loc[Index(rows)]
277
+ tm.assert_frame_equal(result, expected)
278
+
279
+ rows = ["C", "B", "E"]
280
+ with pytest.raises(KeyError, match="not in index"):
281
+ df.loc[rows]
282
+
283
+ # see GH5553, make sure we use the right indexer
284
+ rows = ["F", "G", "H", "C", "B", "E"]
285
+ with pytest.raises(KeyError, match="not in index"):
286
+ df.loc[rows]
287
+
288
+ def test_dups_fancy_indexing_only_missing_label(self, using_infer_string):
289
+ # List containing only missing label
290
+ dfnu = DataFrame(
291
+ np.random.default_rng(2).standard_normal((5, 3)), index=list("AABCD")
292
+ )
293
+ if using_infer_string:
294
+ with pytest.raises(
295
+ KeyError,
296
+ match=re.escape(
297
+ "\"None of [Index(['E'], dtype='string')] are in the [index]\""
298
+ ),
299
+ ):
300
+ dfnu.loc[["E"]]
301
+ else:
302
+ with pytest.raises(
303
+ KeyError,
304
+ match=re.escape(
305
+ "\"None of [Index(['E'], dtype='object')] are in the [index]\""
306
+ ),
307
+ ):
308
+ dfnu.loc[["E"]]
309
+
310
+ @pytest.mark.parametrize("vals", [[0, 1, 2], list("abc")])
311
+ def test_dups_fancy_indexing_missing_label(self, vals):
312
+ # GH 4619; duplicate indexer with missing label
313
+ df = DataFrame({"A": vals})
314
+ with pytest.raises(KeyError, match="not in index"):
315
+ df.loc[[0, 8, 0]]
316
+
317
+ def test_dups_fancy_indexing_non_unique(self):
318
+ # non unique with non unique selector
319
+ df = DataFrame({"test": [5, 7, 9, 11]}, index=["A", "A", "B", "C"])
320
+ with pytest.raises(KeyError, match="not in index"):
321
+ df.loc[["A", "A", "E"]]
322
+
323
+ def test_dups_fancy_indexing2(self):
324
+ # GH 5835
325
+ # dups on index and missing values
326
+ df = DataFrame(
327
+ np.random.default_rng(2).standard_normal((5, 5)),
328
+ columns=["A", "B", "B", "B", "A"],
329
+ )
330
+
331
+ with pytest.raises(KeyError, match="not in index"):
332
+ df.loc[:, ["A", "B", "C"]]
333
+
334
+ def test_dups_fancy_indexing3(self):
335
+ # GH 6504, multi-axis indexing
336
+ df = DataFrame(
337
+ np.random.default_rng(2).standard_normal((9, 2)),
338
+ index=[1, 1, 1, 2, 2, 2, 3, 3, 3],
339
+ columns=["a", "b"],
340
+ )
341
+
342
+ expected = df.iloc[0:6]
343
+ result = df.loc[[1, 2]]
344
+ tm.assert_frame_equal(result, expected)
345
+
346
+ expected = df
347
+ result = df.loc[:, ["a", "b"]]
348
+ tm.assert_frame_equal(result, expected)
349
+
350
+ expected = df.iloc[0:6, :]
351
+ result = df.loc[[1, 2], ["a", "b"]]
352
+ tm.assert_frame_equal(result, expected)
353
+
354
+ def test_duplicate_int_indexing(self, indexer_sl):
355
+ # GH 17347
356
+ ser = Series(range(3), index=[1, 1, 3])
357
+ expected = Series(range(2), index=[1, 1])
358
+ result = indexer_sl(ser)[[1]]
359
+ tm.assert_series_equal(result, expected)
360
+
361
+ def test_indexing_mixed_frame_bug(self):
362
+ # GH3492
363
+ df = DataFrame(
364
+ {"a": {1: "aaa", 2: "bbb", 3: "ccc"}, "b": {1: 111, 2: 222, 3: 333}}
365
+ )
366
+
367
+ # this works, new column is created correctly
368
+ df["test"] = df["a"].apply(lambda x: "_" if x == "aaa" else x)
369
+
370
+ # this does not work, ie column test is not changed
371
+ idx = df["test"] == "_"
372
+ temp = df.loc[idx, "a"].apply(lambda x: "-----" if x == "aaa" else x)
373
+ df.loc[idx, "test"] = temp
374
+ assert df.iloc[0, 2] == "-----"
375
+
376
+ def test_multitype_list_index_access(self):
377
+ # GH 10610
378
+ df = DataFrame(
379
+ np.random.default_rng(2).random((10, 5)), columns=["a"] + [20, 21, 22, 23]
380
+ )
381
+
382
+ with pytest.raises(KeyError, match=re.escape("'[26, -8] not in index'")):
383
+ df[[22, 26, -8]]
384
+ assert df[21].shape[0] == df.shape[0]
385
+
386
+ def test_set_index_nan(self):
387
+ # GH 3586
388
+ df = DataFrame(
389
+ {
390
+ "PRuid": {
391
+ 17: "nonQC",
392
+ 18: "nonQC",
393
+ 19: "nonQC",
394
+ 20: "10",
395
+ 21: "11",
396
+ 22: "12",
397
+ 23: "13",
398
+ 24: "24",
399
+ 25: "35",
400
+ 26: "46",
401
+ 27: "47",
402
+ 28: "48",
403
+ 29: "59",
404
+ 30: "10",
405
+ },
406
+ "QC": {
407
+ 17: 0.0,
408
+ 18: 0.0,
409
+ 19: 0.0,
410
+ 20: np.nan,
411
+ 21: np.nan,
412
+ 22: np.nan,
413
+ 23: np.nan,
414
+ 24: 1.0,
415
+ 25: np.nan,
416
+ 26: np.nan,
417
+ 27: np.nan,
418
+ 28: np.nan,
419
+ 29: np.nan,
420
+ 30: np.nan,
421
+ },
422
+ "data": {
423
+ 17: 7.9544899999999998,
424
+ 18: 8.0142609999999994,
425
+ 19: 7.8591520000000008,
426
+ 20: 0.86140349999999999,
427
+ 21: 0.87853110000000001,
428
+ 22: 0.8427041999999999,
429
+ 23: 0.78587700000000005,
430
+ 24: 0.73062459999999996,
431
+ 25: 0.81668560000000001,
432
+ 26: 0.81927080000000008,
433
+ 27: 0.80705009999999999,
434
+ 28: 0.81440240000000008,
435
+ 29: 0.80140849999999997,
436
+ 30: 0.81307740000000006,
437
+ },
438
+ "year": {
439
+ 17: 2006,
440
+ 18: 2007,
441
+ 19: 2008,
442
+ 20: 1985,
443
+ 21: 1985,
444
+ 22: 1985,
445
+ 23: 1985,
446
+ 24: 1985,
447
+ 25: 1985,
448
+ 26: 1985,
449
+ 27: 1985,
450
+ 28: 1985,
451
+ 29: 1985,
452
+ 30: 1986,
453
+ },
454
+ }
455
+ ).reset_index()
456
+
457
+ result = (
458
+ df.set_index(["year", "PRuid", "QC"])
459
+ .reset_index()
460
+ .reindex(columns=df.columns)
461
+ )
462
+ tm.assert_frame_equal(result, df)
463
+
464
+ @pytest.mark.xfail(
465
+ using_pyarrow_string_dtype(), reason="can't multiply arrow strings"
466
+ )
467
+ def test_multi_assign(self):
468
+ # GH 3626, an assignment of a sub-df to a df
469
+ # set float64 to avoid upcast when setting nan
470
+ df = DataFrame(
471
+ {
472
+ "FC": ["a", "b", "a", "b", "a", "b"],
473
+ "PF": [0, 0, 0, 0, 1, 1],
474
+ "col1": list(range(6)),
475
+ "col2": list(range(6, 12)),
476
+ }
477
+ ).astype({"col2": "float64"})
478
+ df.iloc[1, 0] = np.nan
479
+ df2 = df.copy()
480
+
481
+ mask = ~df2.FC.isna()
482
+ cols = ["col1", "col2"]
483
+
484
+ dft = df2 * 2
485
+ dft.iloc[3, 3] = np.nan
486
+
487
+ expected = DataFrame(
488
+ {
489
+ "FC": ["a", np.nan, "a", "b", "a", "b"],
490
+ "PF": [0, 0, 0, 0, 1, 1],
491
+ "col1": Series([0, 1, 4, 6, 8, 10]),
492
+ "col2": [12, 7, 16, np.nan, 20, 22],
493
+ }
494
+ )
495
+
496
+ # frame on rhs
497
+ df2.loc[mask, cols] = dft.loc[mask, cols]
498
+ tm.assert_frame_equal(df2, expected)
499
+
500
+ # with an ndarray on rhs
501
+ # coerces to float64 because values has float64 dtype
502
+ # GH 14001
503
+ expected = DataFrame(
504
+ {
505
+ "FC": ["a", np.nan, "a", "b", "a", "b"],
506
+ "PF": [0, 0, 0, 0, 1, 1],
507
+ "col1": [0, 1, 4, 6, 8, 10],
508
+ "col2": [12, 7, 16, np.nan, 20, 22],
509
+ }
510
+ )
511
+ df2 = df.copy()
512
+ df2.loc[mask, cols] = dft.loc[mask, cols].values
513
+ tm.assert_frame_equal(df2, expected)
514
+
515
+ def test_multi_assign_broadcasting_rhs(self):
516
+ # broadcasting on the rhs is required
517
+ df = DataFrame(
518
+ {
519
+ "A": [1, 2, 0, 0, 0],
520
+ "B": [0, 0, 0, 10, 11],
521
+ "C": [0, 0, 0, 10, 11],
522
+ "D": [3, 4, 5, 6, 7],
523
+ }
524
+ )
525
+
526
+ expected = df.copy()
527
+ mask = expected["A"] == 0
528
+ for col in ["A", "B"]:
529
+ expected.loc[mask, col] = df["D"]
530
+
531
+ df.loc[df["A"] == 0, ["A", "B"]] = df["D"].copy()
532
+ tm.assert_frame_equal(df, expected)
533
+
534
+ def test_setitem_list(self):
535
+ # GH 6043
536
+ # iloc with a list
537
+ df = DataFrame(index=[0, 1], columns=[0])
538
+ df.iloc[1, 0] = [1, 2, 3]
539
+ df.iloc[1, 0] = [1, 2]
540
+
541
+ result = DataFrame(index=[0, 1], columns=[0])
542
+ result.iloc[1, 0] = [1, 2]
543
+
544
+ tm.assert_frame_equal(result, df)
545
+
546
+ def test_string_slice(self):
547
+ # GH 14424
548
+ # string indexing against datetimelike with object
549
+ # dtype should properly raises KeyError
550
+ df = DataFrame([1], Index([pd.Timestamp("2011-01-01")], dtype=object))
551
+ assert df.index._is_all_dates
552
+ with pytest.raises(KeyError, match="'2011'"):
553
+ df["2011"]
554
+
555
+ with pytest.raises(KeyError, match="'2011'"):
556
+ df.loc["2011", 0]
557
+
558
+ def test_string_slice_empty(self):
559
+ # GH 14424
560
+
561
+ df = DataFrame()
562
+ assert not df.index._is_all_dates
563
+ with pytest.raises(KeyError, match="'2011'"):
564
+ df["2011"]
565
+
566
+ with pytest.raises(KeyError, match="^0$"):
567
+ df.loc["2011", 0]
568
+
569
+ def test_astype_assignment(self, using_infer_string):
570
+ # GH4312 (iloc)
571
+ df_orig = DataFrame(
572
+ [["1", "2", "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
573
+ )
574
+
575
+ df = df_orig.copy()
576
+
577
+ # with the enforcement of GH#45333 in 2.0, this setting is attempted inplace,
578
+ # so object dtype is retained
579
+ df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64)
580
+ expected = DataFrame(
581
+ [[1, 2, "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
582
+ )
583
+ if not using_infer_string:
584
+ expected["A"] = expected["A"].astype(object)
585
+ expected["B"] = expected["B"].astype(object)
586
+ tm.assert_frame_equal(df, expected)
587
+
588
+ # GH5702 (loc)
589
+ df = df_orig.copy()
590
+ df.loc[:, "A"] = df.loc[:, "A"].astype(np.int64)
591
+ expected = DataFrame(
592
+ [[1, "2", "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
593
+ )
594
+ if not using_infer_string:
595
+ expected["A"] = expected["A"].astype(object)
596
+ tm.assert_frame_equal(df, expected)
597
+
598
+ df = df_orig.copy()
599
+ df.loc[:, ["B", "C"]] = df.loc[:, ["B", "C"]].astype(np.int64)
600
+ expected = DataFrame(
601
+ [["1", 2, 3, ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
602
+ )
603
+ if not using_infer_string:
604
+ expected["B"] = expected["B"].astype(object)
605
+ expected["C"] = expected["C"].astype(object)
606
+ tm.assert_frame_equal(df, expected)
607
+
608
+ def test_astype_assignment_full_replacements(self):
609
+ # full replacements / no nans
610
+ df = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]})
611
+
612
+ # With the enforcement of GH#45333 in 2.0, this assignment occurs inplace,
613
+ # so float64 is retained
614
+ df.iloc[:, 0] = df["A"].astype(np.int64)
615
+ expected = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]})
616
+ tm.assert_frame_equal(df, expected)
617
+
618
+ df = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]})
619
+ df.loc[:, "A"] = df["A"].astype(np.int64)
620
+ tm.assert_frame_equal(df, expected)
621
+
622
+ @pytest.mark.parametrize("indexer", [tm.getitem, tm.loc])
623
+ def test_index_type_coercion(self, indexer):
624
+ # GH 11836
625
+ # if we have an index type and set it with something that looks
626
+ # to numpy like the same, but is actually, not
627
+ # (e.g. setting with a float or string '0')
628
+ # then we need to coerce to object
629
+
630
+ # integer indexes
631
+ for s in [Series(range(5)), Series(range(5), index=range(1, 6))]:
632
+ assert is_integer_dtype(s.index)
633
+
634
+ s2 = s.copy()
635
+ indexer(s2)[0.1] = 0
636
+ assert is_float_dtype(s2.index)
637
+ assert indexer(s2)[0.1] == 0
638
+
639
+ s2 = s.copy()
640
+ indexer(s2)[0.0] = 0
641
+ exp = s.index
642
+ if 0 not in s:
643
+ exp = Index(s.index.tolist() + [0])
644
+ tm.assert_index_equal(s2.index, exp)
645
+
646
+ s2 = s.copy()
647
+ indexer(s2)["0"] = 0
648
+ assert is_object_dtype(s2.index)
649
+
650
+ for s in [Series(range(5), index=np.arange(5.0))]:
651
+ assert is_float_dtype(s.index)
652
+
653
+ s2 = s.copy()
654
+ indexer(s2)[0.1] = 0
655
+ assert is_float_dtype(s2.index)
656
+ assert indexer(s2)[0.1] == 0
657
+
658
+ s2 = s.copy()
659
+ indexer(s2)[0.0] = 0
660
+ tm.assert_index_equal(s2.index, s.index)
661
+
662
+ s2 = s.copy()
663
+ indexer(s2)["0"] = 0
664
+ assert is_object_dtype(s2.index)
665
+
666
+
667
+ class TestMisc:
668
+ def test_float_index_to_mixed(self):
669
+ df = DataFrame(
670
+ {
671
+ 0.0: np.random.default_rng(2).random(10),
672
+ 1.0: np.random.default_rng(2).random(10),
673
+ }
674
+ )
675
+ df["a"] = 10
676
+
677
+ expected = DataFrame({0.0: df[0.0], 1.0: df[1.0], "a": [10] * 10})
678
+ tm.assert_frame_equal(expected, df)
679
+
680
+ def test_float_index_non_scalar_assignment(self):
681
+ df = DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}, index=[1.0, 2.0, 3.0])
682
+ df.loc[df.index[:2]] = 1
683
+ expected = DataFrame({"a": [1, 1, 3], "b": [1, 1, 5]}, index=df.index)
684
+ tm.assert_frame_equal(expected, df)
685
+
686
+ def test_loc_setitem_fullindex_views(self):
687
+ df = DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}, index=[1.0, 2.0, 3.0])
688
+ df2 = df.copy()
689
+ df.loc[df.index] = df.loc[df.index]
690
+ tm.assert_frame_equal(df, df2)
691
+
692
+ @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't set int into string")
693
+ def test_rhs_alignment(self):
694
+ # GH8258, tests that both rows & columns are aligned to what is
695
+ # assigned to. covers both uniform data-type & multi-type cases
696
+ def run_tests(df, rhs, right_loc, right_iloc):
697
+ # label, index, slice
698
+ lbl_one, idx_one, slice_one = list("bcd"), [1, 2, 3], slice(1, 4)
699
+ lbl_two, idx_two, slice_two = ["joe", "jolie"], [1, 2], slice(1, 3)
700
+
701
+ left = df.copy()
702
+ left.loc[lbl_one, lbl_two] = rhs
703
+ tm.assert_frame_equal(left, right_loc)
704
+
705
+ left = df.copy()
706
+ left.iloc[idx_one, idx_two] = rhs
707
+ tm.assert_frame_equal(left, right_iloc)
708
+
709
+ left = df.copy()
710
+ left.iloc[slice_one, slice_two] = rhs
711
+ tm.assert_frame_equal(left, right_iloc)
712
+
713
+ xs = np.arange(20).reshape(5, 4)
714
+ cols = ["jim", "joe", "jolie", "joline"]
715
+ df = DataFrame(xs, columns=cols, index=list("abcde"), dtype="int64")
716
+
717
+ # right hand side; permute the indices and multiplpy by -2
718
+ rhs = -2 * df.iloc[3:0:-1, 2:0:-1]
719
+
720
+ # expected `right` result; just multiply by -2
721
+ right_iloc = df.copy()
722
+ right_iloc["joe"] = [1, 14, 10, 6, 17]
723
+ right_iloc["jolie"] = [2, 13, 9, 5, 18]
724
+ right_iloc.iloc[1:4, 1:3] *= -2
725
+ right_loc = df.copy()
726
+ right_loc.iloc[1:4, 1:3] *= -2
727
+
728
+ # run tests with uniform dtypes
729
+ run_tests(df, rhs, right_loc, right_iloc)
730
+
731
+ # make frames multi-type & re-run tests
732
+ for frame in [df, rhs, right_loc, right_iloc]:
733
+ frame["joe"] = frame["joe"].astype("float64")
734
+ frame["jolie"] = frame["jolie"].map(lambda x: f"@{x}")
735
+ right_iloc["joe"] = [1.0, "@-28", "@-20", "@-12", 17.0]
736
+ right_iloc["jolie"] = ["@2", -26.0, -18.0, -10.0, "@18"]
737
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
738
+ run_tests(df, rhs, right_loc, right_iloc)
739
+
740
+ @pytest.mark.parametrize(
741
+ "idx", [_mklbl("A", 20), np.arange(20) + 100, np.linspace(100, 150, 20)]
742
+ )
743
+ def test_str_label_slicing_with_negative_step(self, idx):
744
+ SLC = pd.IndexSlice
745
+
746
+ idx = Index(idx)
747
+ ser = Series(np.arange(20), index=idx)
748
+ tm.assert_indexing_slices_equivalent(ser, SLC[idx[9] :: -1], SLC[9::-1])
749
+ tm.assert_indexing_slices_equivalent(ser, SLC[: idx[9] : -1], SLC[:8:-1])
750
+ tm.assert_indexing_slices_equivalent(
751
+ ser, SLC[idx[13] : idx[9] : -1], SLC[13:8:-1]
752
+ )
753
+ tm.assert_indexing_slices_equivalent(ser, SLC[idx[9] : idx[13] : -1], SLC[:0])
754
+
755
+ def test_slice_with_zero_step_raises(self, index, indexer_sl, frame_or_series):
756
+ obj = frame_or_series(np.arange(len(index)), index=index)
757
+ with pytest.raises(ValueError, match="slice step cannot be zero"):
758
+ indexer_sl(obj)[::0]
759
+
760
+ def test_loc_setitem_indexing_assignment_dict_already_exists(self):
761
+ index = Index([-5, 0, 5], name="z")
762
+ df = DataFrame({"x": [1, 2, 6], "y": [2, 2, 8]}, index=index)
763
+ expected = df.copy()
764
+ rhs = {"x": 9, "y": 99}
765
+ df.loc[5] = rhs
766
+ expected.loc[5] = [9, 99]
767
+ tm.assert_frame_equal(df, expected)
768
+
769
+ # GH#38335 same thing, mixed dtypes
770
+ df = DataFrame({"x": [1, 2, 6], "y": [2.0, 2.0, 8.0]}, index=index)
771
+ df.loc[5] = rhs
772
+ expected = DataFrame({"x": [1, 2, 9], "y": [2.0, 2.0, 99.0]}, index=index)
773
+ tm.assert_frame_equal(df, expected)
774
+
775
+ def test_iloc_getitem_indexing_dtypes_on_empty(self):
776
+ # Check that .iloc returns correct dtypes GH9983
777
+ df = DataFrame({"a": [1, 2, 3], "b": ["b", "b2", "b3"]})
778
+ df2 = df.iloc[[], :]
779
+
780
+ assert df2.loc[:, "a"].dtype == np.int64
781
+ tm.assert_series_equal(df2.loc[:, "a"], df2.iloc[:, 0])
782
+
783
+ @pytest.mark.parametrize("size", [5, 999999, 1000000])
784
+ def test_loc_range_in_series_indexing(self, size):
785
+ # range can cause an indexing error
786
+ # GH 11652
787
+ s = Series(index=range(size), dtype=np.float64)
788
+ s.loc[range(1)] = 42
789
+ tm.assert_series_equal(s.loc[range(1)], Series(42.0, index=[0]))
790
+
791
+ s.loc[range(2)] = 43
792
+ tm.assert_series_equal(s.loc[range(2)], Series(43.0, index=[0, 1]))
793
+
794
+ def test_partial_boolean_frame_indexing(self):
795
+ # GH 17170
796
+ df = DataFrame(
797
+ np.arange(9.0).reshape(3, 3), index=list("abc"), columns=list("ABC")
798
+ )
799
+ index_df = DataFrame(1, index=list("ab"), columns=list("AB"))
800
+ result = df[index_df.notnull()]
801
+ expected = DataFrame(
802
+ np.array([[0.0, 1.0, np.nan], [3.0, 4.0, np.nan], [np.nan] * 3]),
803
+ index=list("abc"),
804
+ columns=list("ABC"),
805
+ )
806
+ tm.assert_frame_equal(result, expected)
807
+
808
+ def test_no_reference_cycle(self):
809
+ df = DataFrame({"a": [0, 1], "b": [2, 3]})
810
+ for name in ("loc", "iloc", "at", "iat"):
811
+ getattr(df, name)
812
+ wr = weakref.ref(df)
813
+ del df
814
+ assert wr() is None
815
+
816
+ def test_label_indexing_on_nan(self, nulls_fixture):
817
+ # GH 32431
818
+ df = Series([1, "{1,2}", 1, nulls_fixture])
819
+ vc = df.value_counts(dropna=False)
820
+ result1 = vc.loc[nulls_fixture]
821
+ result2 = vc[nulls_fixture]
822
+
823
+ expected = 1
824
+ assert result1 == expected
825
+ assert result2 == expected
826
+
827
+
828
+ class TestDataframeNoneCoercion:
829
+ EXPECTED_SINGLE_ROW_RESULTS = [
830
+ # For numeric series, we should coerce to NaN.
831
+ ([1, 2, 3], [np.nan, 2, 3], FutureWarning),
832
+ ([1.0, 2.0, 3.0], [np.nan, 2.0, 3.0], None),
833
+ # For datetime series, we should coerce to NaT.
834
+ (
835
+ [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
836
+ [NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)],
837
+ None,
838
+ ),
839
+ # For objects, we should preserve the None value.
840
+ (["foo", "bar", "baz"], [None, "bar", "baz"], None),
841
+ ]
842
+
843
+ @pytest.mark.parametrize("expected", EXPECTED_SINGLE_ROW_RESULTS)
844
+ def test_coercion_with_loc(self, expected):
845
+ start_data, expected_result, warn = expected
846
+
847
+ start_dataframe = DataFrame({"foo": start_data})
848
+ start_dataframe.loc[0, ["foo"]] = None
849
+
850
+ expected_dataframe = DataFrame({"foo": expected_result})
851
+ tm.assert_frame_equal(start_dataframe, expected_dataframe)
852
+
853
+ @pytest.mark.parametrize("expected", EXPECTED_SINGLE_ROW_RESULTS)
854
+ def test_coercion_with_setitem_and_dataframe(self, expected):
855
+ start_data, expected_result, warn = expected
856
+
857
+ start_dataframe = DataFrame({"foo": start_data})
858
+ start_dataframe[start_dataframe["foo"] == start_dataframe["foo"][0]] = None
859
+
860
+ expected_dataframe = DataFrame({"foo": expected_result})
861
+ tm.assert_frame_equal(start_dataframe, expected_dataframe)
862
+
863
+ @pytest.mark.parametrize("expected", EXPECTED_SINGLE_ROW_RESULTS)
864
+ def test_none_coercion_loc_and_dataframe(self, expected):
865
+ start_data, expected_result, warn = expected
866
+
867
+ start_dataframe = DataFrame({"foo": start_data})
868
+ start_dataframe.loc[start_dataframe["foo"] == start_dataframe["foo"][0]] = None
869
+
870
+ expected_dataframe = DataFrame({"foo": expected_result})
871
+ tm.assert_frame_equal(start_dataframe, expected_dataframe)
872
+
873
+ def test_none_coercion_mixed_dtypes(self):
874
+ start_dataframe = DataFrame(
875
+ {
876
+ "a": [1, 2, 3],
877
+ "b": [1.0, 2.0, 3.0],
878
+ "c": [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
879
+ "d": ["a", "b", "c"],
880
+ }
881
+ )
882
+ start_dataframe.iloc[0] = None
883
+
884
+ exp = DataFrame(
885
+ {
886
+ "a": [np.nan, 2, 3],
887
+ "b": [np.nan, 2.0, 3.0],
888
+ "c": [NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)],
889
+ "d": [None, "b", "c"],
890
+ }
891
+ )
892
+ tm.assert_frame_equal(start_dataframe, exp)
893
+
894
+
895
+ class TestDatetimelikeCoercion:
896
+ def test_setitem_dt64_string_scalar(self, tz_naive_fixture, indexer_sli):
897
+ # dispatching _can_hold_element to underlying DatetimeArray
898
+ tz = tz_naive_fixture
899
+
900
+ dti = date_range("2016-01-01", periods=3, tz=tz)
901
+ ser = Series(dti.copy(deep=True))
902
+
903
+ values = ser._values
904
+
905
+ newval = "2018-01-01"
906
+ values._validate_setitem_value(newval)
907
+
908
+ indexer_sli(ser)[0] = newval
909
+
910
+ if tz is None:
911
+ # TODO(EA2D): we can make this no-copy in tz-naive case too
912
+ assert ser.dtype == dti.dtype
913
+ assert ser._values._ndarray is values._ndarray
914
+ else:
915
+ assert ser._values is values
916
+
917
+ @pytest.mark.parametrize("box", [list, np.array, pd.array, pd.Categorical, Index])
918
+ @pytest.mark.parametrize(
919
+ "key", [[0, 1], slice(0, 2), np.array([True, True, False])]
920
+ )
921
+ def test_setitem_dt64_string_values(self, tz_naive_fixture, indexer_sli, key, box):
922
+ # dispatching _can_hold_element to underling DatetimeArray
923
+ tz = tz_naive_fixture
924
+
925
+ if isinstance(key, slice) and indexer_sli is tm.loc:
926
+ key = slice(0, 1)
927
+
928
+ dti = date_range("2016-01-01", periods=3, tz=tz)
929
+ ser = Series(dti.copy(deep=True))
930
+
931
+ values = ser._values
932
+
933
+ newvals = box(["2019-01-01", "2010-01-02"])
934
+ values._validate_setitem_value(newvals)
935
+
936
+ indexer_sli(ser)[key] = newvals
937
+
938
+ if tz is None:
939
+ # TODO(EA2D): we can make this no-copy in tz-naive case too
940
+ assert ser.dtype == dti.dtype
941
+ assert ser._values._ndarray is values._ndarray
942
+ else:
943
+ assert ser._values is values
944
+
945
+ @pytest.mark.parametrize("scalar", ["3 Days", offsets.Hour(4)])
946
+ def test_setitem_td64_scalar(self, indexer_sli, scalar):
947
+ # dispatching _can_hold_element to underling TimedeltaArray
948
+ tdi = timedelta_range("1 Day", periods=3)
949
+ ser = Series(tdi.copy(deep=True))
950
+
951
+ values = ser._values
952
+ values._validate_setitem_value(scalar)
953
+
954
+ indexer_sli(ser)[0] = scalar
955
+ assert ser._values._ndarray is values._ndarray
956
+
957
+ @pytest.mark.parametrize("box", [list, np.array, pd.array, pd.Categorical, Index])
958
+ @pytest.mark.parametrize(
959
+ "key", [[0, 1], slice(0, 2), np.array([True, True, False])]
960
+ )
961
+ def test_setitem_td64_string_values(self, indexer_sli, key, box):
962
+ # dispatching _can_hold_element to underling TimedeltaArray
963
+ if isinstance(key, slice) and indexer_sli is tm.loc:
964
+ key = slice(0, 1)
965
+
966
+ tdi = timedelta_range("1 Day", periods=3)
967
+ ser = Series(tdi.copy(deep=True))
968
+
969
+ values = ser._values
970
+
971
+ newvals = box(["10 Days", "44 hours"])
972
+ values._validate_setitem_value(newvals)
973
+
974
+ indexer_sli(ser)[key] = newvals
975
+ assert ser._values._ndarray is values._ndarray
976
+
977
+
978
+ def test_extension_array_cross_section():
979
+ # A cross-section of a homogeneous EA should be an EA
980
+ df = DataFrame(
981
+ {
982
+ "A": pd.array([1, 2], dtype="Int64"),
983
+ "B": pd.array([3, 4], dtype="Int64"),
984
+ },
985
+ index=["a", "b"],
986
+ )
987
+ expected = Series(pd.array([1, 3], dtype="Int64"), index=["A", "B"], name="a")
988
+ result = df.loc["a"]
989
+ tm.assert_series_equal(result, expected)
990
+
991
+ result = df.iloc[0]
992
+ tm.assert_series_equal(result, expected)
993
+
994
+
995
+ def test_extension_array_cross_section_converts():
996
+ # all numeric columns -> numeric series
997
+ df = DataFrame(
998
+ {
999
+ "A": pd.array([1, 2], dtype="Int64"),
1000
+ "B": np.array([1, 2], dtype="int64"),
1001
+ },
1002
+ index=["a", "b"],
1003
+ )
1004
+ result = df.loc["a"]
1005
+ expected = Series([1, 1], dtype="Int64", index=["A", "B"], name="a")
1006
+ tm.assert_series_equal(result, expected)
1007
+
1008
+ result = df.iloc[0]
1009
+ tm.assert_series_equal(result, expected)
1010
+
1011
+ # mixed columns -> object series
1012
+ df = DataFrame(
1013
+ {"A": pd.array([1, 2], dtype="Int64"), "B": np.array(["a", "b"])},
1014
+ index=["a", "b"],
1015
+ )
1016
+ result = df.loc["a"]
1017
+ expected = Series([1, "a"], dtype=object, index=["A", "B"], name="a")
1018
+ tm.assert_series_equal(result, expected)
1019
+
1020
+ result = df.iloc[0]
1021
+ tm.assert_series_equal(result, expected)
1022
+
1023
+
1024
+ @pytest.mark.parametrize(
1025
+ "ser, keys",
1026
+ [(Series([10]), (0, 0)), (Series([1, 2, 3], index=list("abc")), (0, 1))],
1027
+ )
1028
+ def test_ser_tup_indexer_exceeds_dimensions(ser, keys, indexer_li):
1029
+ # GH#13831
1030
+ exp_err, exp_msg = IndexingError, "Too many indexers"
1031
+ with pytest.raises(exp_err, match=exp_msg):
1032
+ indexer_li(ser)[keys]
1033
+
1034
+ if indexer_li == tm.iloc:
1035
+ # For iloc.__setitem__ we let numpy handle the error reporting.
1036
+ exp_err, exp_msg = IndexError, "too many indices for array"
1037
+
1038
+ with pytest.raises(exp_err, match=exp_msg):
1039
+ indexer_li(ser)[keys] = 0
1040
+
1041
+
1042
+ def test_ser_list_indexer_exceeds_dimensions(indexer_li):
1043
+ # GH#13831
1044
+ # Make sure an exception is raised when a tuple exceeds the dimension of the series,
1045
+ # but not list when a list is used.
1046
+ ser = Series([10])
1047
+ res = indexer_li(ser)[[0, 0]]
1048
+ exp = Series([10, 10], index=Index([0, 0]))
1049
+ tm.assert_series_equal(res, exp)
1050
+
1051
+
1052
+ @pytest.mark.parametrize(
1053
+ "value", [(0, 1), [0, 1], np.array([0, 1]), array.array("b", [0, 1])]
1054
+ )
1055
+ def test_scalar_setitem_with_nested_value(value):
1056
+ # For numeric data, we try to unpack and thus raise for mismatching length
1057
+ df = DataFrame({"A": [1, 2, 3]})
1058
+ msg = "|".join(
1059
+ [
1060
+ "Must have equal len keys and value",
1061
+ "setting an array element with a sequence",
1062
+ ]
1063
+ )
1064
+ with pytest.raises(ValueError, match=msg):
1065
+ df.loc[0, "B"] = value
1066
+
1067
+ # TODO For object dtype this happens as well, but should we rather preserve
1068
+ # the nested data and set as such?
1069
+ df = DataFrame({"A": [1, 2, 3], "B": np.array([1, "a", "b"], dtype=object)})
1070
+ with pytest.raises(ValueError, match="Must have equal len keys and value"):
1071
+ df.loc[0, "B"] = value
1072
+ # if isinstance(value, np.ndarray):
1073
+ # assert (df.loc[0, "B"] == value).all()
1074
+ # else:
1075
+ # assert df.loc[0, "B"] == value
1076
+
1077
+
1078
+ @pytest.mark.parametrize(
1079
+ "value", [(0, 1), [0, 1], np.array([0, 1]), array.array("b", [0, 1])]
1080
+ )
1081
+ def test_scalar_setitem_series_with_nested_value(value, indexer_sli):
1082
+ # For numeric data, we try to unpack and thus raise for mismatching length
1083
+ ser = Series([1, 2, 3])
1084
+ with pytest.raises(ValueError, match="setting an array element with a sequence"):
1085
+ indexer_sli(ser)[0] = value
1086
+
1087
+ # but for object dtype we preserve the nested data and set as such
1088
+ ser = Series([1, "a", "b"], dtype=object)
1089
+ indexer_sli(ser)[0] = value
1090
+ if isinstance(value, np.ndarray):
1091
+ assert (ser.loc[0] == value).all()
1092
+ else:
1093
+ assert ser.loc[0] == value
1094
+
1095
+
1096
+ @pytest.mark.parametrize(
1097
+ "value", [(0.0,), [0.0], np.array([0.0]), array.array("d", [0.0])]
1098
+ )
1099
+ def test_scalar_setitem_with_nested_value_length1(value):
1100
+ # https://github.com/pandas-dev/pandas/issues/46268
1101
+
1102
+ # For numeric data, assigning length-1 array to scalar position gets unpacked
1103
+ df = DataFrame({"A": [1, 2, 3]})
1104
+ df.loc[0, "B"] = value
1105
+ expected = DataFrame({"A": [1, 2, 3], "B": [0.0, np.nan, np.nan]})
1106
+ tm.assert_frame_equal(df, expected)
1107
+
1108
+ # but for object dtype we preserve the nested data
1109
+ df = DataFrame({"A": [1, 2, 3], "B": np.array([1, "a", "b"], dtype=object)})
1110
+ df.loc[0, "B"] = value
1111
+ if isinstance(value, np.ndarray):
1112
+ assert (df.loc[0, "B"] == value).all()
1113
+ else:
1114
+ assert df.loc[0, "B"] == value
1115
+
1116
+
1117
+ @pytest.mark.parametrize(
1118
+ "value", [(0.0,), [0.0], np.array([0.0]), array.array("d", [0.0])]
1119
+ )
1120
+ def test_scalar_setitem_series_with_nested_value_length1(value, indexer_sli):
1121
+ # For numeric data, assigning length-1 array to scalar position gets unpacked
1122
+ # TODO this only happens in case of ndarray, should we make this consistent
1123
+ # for all list-likes? (as happens for DataFrame.(i)loc, see test above)
1124
+ ser = Series([1.0, 2.0, 3.0])
1125
+ if isinstance(value, np.ndarray):
1126
+ indexer_sli(ser)[0] = value
1127
+ expected = Series([0.0, 2.0, 3.0])
1128
+ tm.assert_series_equal(ser, expected)
1129
+ else:
1130
+ with pytest.raises(
1131
+ ValueError, match="setting an array element with a sequence"
1132
+ ):
1133
+ indexer_sli(ser)[0] = value
1134
+
1135
+ # but for object dtype we preserve the nested data
1136
+ ser = Series([1, "a", "b"], dtype=object)
1137
+ indexer_sli(ser)[0] = value
1138
+ if isinstance(value, np.ndarray):
1139
+ assert (ser.loc[0] == value).all()
1140
+ else:
1141
+ assert ser.loc[0] == value
1142
+
1143
+
1144
+ def test_object_dtype_series_set_series_element():
1145
+ # GH 48933
1146
+ s1 = Series(dtype="O", index=["a", "b"])
1147
+
1148
+ s1["a"] = Series()
1149
+ s1.loc["b"] = Series()
1150
+
1151
+ tm.assert_series_equal(s1.loc["a"], Series())
1152
+ tm.assert_series_equal(s1.loc["b"], Series())
1153
+
1154
+ s2 = Series(dtype="O", index=["a", "b"])
1155
+
1156
+ s2.iloc[1] = Series()
1157
+ tm.assert_series_equal(s2.iloc[1], Series())