Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/16.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/16.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/16.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/16.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/_functions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/activation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/adaptive.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/batchnorm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/channelshuffle.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/container.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/conv.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/distance.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/dropout.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/flatten.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/fold.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/instancenorm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/lazy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/linear.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/loss.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/module.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/normalization.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/padding.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/pixelshuffle.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/pooling.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/rnn.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/sparse.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/transformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/upsampling.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/activation.py +1624 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/adaptive.py +312 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/conv.py +1602 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/distance.py +89 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/dropout.py +294 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/fold.py +303 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/lazy.py +265 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/loss.py +1790 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/normalization.py +297 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/padding.py +801 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/pixelshuffle.py +113 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/sparse.py +455 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/transformer.py +975 -0
- venv/lib/python3.10/site-packages/torch/nn/modules/utils.py +79 -0
- venv/lib/python3.10/site-packages/torch/nn/utils/__init__.py +32 -0
- venv/lib/python3.10/site-packages/torch/nn/utils/__pycache__/_named_member_accessor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/utils/__pycache__/clip_grad.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/utils/__pycache__/convert_parameters.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/utils/__pycache__/fusion.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/utils/__pycache__/parametrizations.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/16.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:198ddbf890b43dd6e96048e31c1ed6abc4d3eb4b19d7d54155c04108fa73ffca
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/16.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be50aeea76da0dc1a922243fd0fddc96f71d32bd0caa18da742bd9d0881ec032
|
3 |
+
size 33555627
|
ckpts/universal/global_step120/zero/16.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e28c74cf785f8c67a68201aa14360678fc1eb2a5a48e82354e96c6178117886
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/16.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:025ae16894556c909f0cf895e4192489618f7715640e783f205d09ecc38b865b
|
3 |
+
size 33555627
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (5.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/_functions.cpython-310.pyc
ADDED
Binary file (5.99 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/activation.cpython-310.pyc
ADDED
Binary file (54.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/adaptive.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/batchnorm.cpython-310.pyc
ADDED
Binary file (32 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/channelshuffle.cpython-310.pyc
ADDED
Binary file (2.08 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/container.cpython-310.pyc
ADDED
Binary file (34.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/conv.cpython-310.pyc
ADDED
Binary file (58.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/distance.cpython-310.pyc
ADDED
Binary file (4.08 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/dropout.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/flatten.cpython-310.pyc
ADDED
Binary file (5.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/fold.cpython-310.pyc
ADDED
Binary file (13.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/instancenorm.cpython-310.pyc
ADDED
Binary file (20.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/lazy.cpython-310.pyc
ADDED
Binary file (12 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/linear.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/loss.cpython-310.pyc
ADDED
Binary file (93.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/module.cpython-310.pyc
ADDED
Binary file (89.7 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/normalization.cpython-310.pyc
ADDED
Binary file (11.7 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/padding.cpython-310.pyc
ADDED
Binary file (33.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/pixelshuffle.cpython-310.pyc
ADDED
Binary file (4.33 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/pooling.cpython-310.pyc
ADDED
Binary file (57 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/rnn.cpython-310.pyc
ADDED
Binary file (54.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/sparse.cpython-310.pyc
ADDED
Binary file (21.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/transformer.cpython-310.pyc
ADDED
Binary file (36.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/upsampling.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (2.77 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/modules/activation.py
ADDED
@@ -0,0 +1,1624 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import Tensor
|
6 |
+
from .linear import NonDynamicallyQuantizableLinear
|
7 |
+
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
|
8 |
+
from torch.nn.parameter import Parameter
|
9 |
+
from .module import Module
|
10 |
+
from .. import functional as F
|
11 |
+
|
12 |
+
__all__ = ['Threshold', 'ReLU', 'RReLU', 'Hardtanh', 'ReLU6', 'Sigmoid', 'Hardsigmoid', 'Tanh',
|
13 |
+
'SiLU', 'Mish', 'Hardswish', 'ELU', 'CELU', 'SELU', 'GLU', 'GELU', 'Hardshrink', 'LeakyReLU',
|
14 |
+
'LogSigmoid', 'Softplus', 'Softshrink', 'MultiheadAttention', 'PReLU', 'Softsign', 'Tanhshrink',
|
15 |
+
'Softmin', 'Softmax', 'Softmax2d', 'LogSoftmax']
|
16 |
+
|
17 |
+
|
18 |
+
class Threshold(Module):
|
19 |
+
r"""Thresholds each element of the input Tensor.
|
20 |
+
|
21 |
+
Threshold is defined as:
|
22 |
+
|
23 |
+
.. math::
|
24 |
+
y =
|
25 |
+
\begin{cases}
|
26 |
+
x, &\text{ if } x > \text{threshold} \\
|
27 |
+
\text{value}, &\text{ otherwise }
|
28 |
+
\end{cases}
|
29 |
+
|
30 |
+
Args:
|
31 |
+
threshold: The value to threshold at
|
32 |
+
value: The value to replace with
|
33 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
34 |
+
|
35 |
+
Shape:
|
36 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
37 |
+
- Output: :math:`(*)`, same shape as the input.
|
38 |
+
|
39 |
+
Examples::
|
40 |
+
|
41 |
+
>>> m = nn.Threshold(0.1, 20)
|
42 |
+
>>> input = torch.randn(2)
|
43 |
+
>>> output = m(input)
|
44 |
+
"""
|
45 |
+
|
46 |
+
__constants__ = ['threshold', 'value', 'inplace']
|
47 |
+
|
48 |
+
threshold: float
|
49 |
+
value: float
|
50 |
+
inplace: bool
|
51 |
+
|
52 |
+
def __init__(self, threshold: float, value: float, inplace: bool = False) -> None:
|
53 |
+
super().__init__()
|
54 |
+
self.threshold = threshold
|
55 |
+
self.value = value
|
56 |
+
self.inplace = inplace
|
57 |
+
# TODO: check in THNN (if inplace == True, then assert value <= threshold)
|
58 |
+
|
59 |
+
def forward(self, input: Tensor) -> Tensor:
|
60 |
+
return F.threshold(input, self.threshold, self.value, self.inplace)
|
61 |
+
|
62 |
+
def extra_repr(self):
|
63 |
+
inplace_str = ', inplace=True' if self.inplace else ''
|
64 |
+
return f'threshold={self.threshold}, value={self.value}{inplace_str}'
|
65 |
+
|
66 |
+
|
67 |
+
class ReLU(Module):
|
68 |
+
r"""Applies the rectified linear unit function element-wise.
|
69 |
+
|
70 |
+
:math:`\text{ReLU}(x) = (x)^+ = \max(0, x)`
|
71 |
+
|
72 |
+
Args:
|
73 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
74 |
+
|
75 |
+
Shape:
|
76 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
77 |
+
- Output: :math:`(*)`, same shape as the input.
|
78 |
+
|
79 |
+
.. image:: ../scripts/activation_images/ReLU.png
|
80 |
+
|
81 |
+
Examples::
|
82 |
+
|
83 |
+
>>> m = nn.ReLU()
|
84 |
+
>>> input = torch.randn(2)
|
85 |
+
>>> output = m(input)
|
86 |
+
|
87 |
+
|
88 |
+
An implementation of CReLU - https://arxiv.org/abs/1603.05201
|
89 |
+
|
90 |
+
>>> m = nn.ReLU()
|
91 |
+
>>> input = torch.randn(2).unsqueeze(0)
|
92 |
+
>>> output = torch.cat((m(input), m(-input)))
|
93 |
+
"""
|
94 |
+
|
95 |
+
__constants__ = ['inplace']
|
96 |
+
inplace: bool
|
97 |
+
|
98 |
+
def __init__(self, inplace: bool = False):
|
99 |
+
super().__init__()
|
100 |
+
self.inplace = inplace
|
101 |
+
|
102 |
+
def forward(self, input: Tensor) -> Tensor:
|
103 |
+
return F.relu(input, inplace=self.inplace)
|
104 |
+
|
105 |
+
def extra_repr(self) -> str:
|
106 |
+
inplace_str = 'inplace=True' if self.inplace else ''
|
107 |
+
return inplace_str
|
108 |
+
|
109 |
+
|
110 |
+
class RReLU(Module):
|
111 |
+
r"""Applies the randomized leaky rectified linear unit function, element-wise.
|
112 |
+
|
113 |
+
Method described in the paper:
|
114 |
+
`Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_.
|
115 |
+
|
116 |
+
The function is defined as:
|
117 |
+
|
118 |
+
.. math::
|
119 |
+
\text{RReLU}(x) =
|
120 |
+
\begin{cases}
|
121 |
+
x & \text{if } x \geq 0 \\
|
122 |
+
ax & \text{ otherwise }
|
123 |
+
\end{cases}
|
124 |
+
|
125 |
+
where :math:`a` is randomly sampled from uniform distribution
|
126 |
+
:math:`\mathcal{U}(\text{lower}, \text{upper})` during training while during
|
127 |
+
evaluation :math:`a` is fixed with :math:`a = \frac{\text{lower} + \text{upper}}{2}`.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}`
|
131 |
+
upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}`
|
132 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
133 |
+
|
134 |
+
Shape:
|
135 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
136 |
+
- Output: :math:`(*)`, same shape as the input.
|
137 |
+
|
138 |
+
.. image:: ../scripts/activation_images/RReLU.png
|
139 |
+
|
140 |
+
Examples::
|
141 |
+
|
142 |
+
>>> m = nn.RReLU(0.1, 0.3)
|
143 |
+
>>> input = torch.randn(2)
|
144 |
+
>>> output = m(input)
|
145 |
+
|
146 |
+
"""
|
147 |
+
|
148 |
+
__constants__ = ['lower', 'upper', 'inplace']
|
149 |
+
|
150 |
+
lower: float
|
151 |
+
upper: float
|
152 |
+
inplace: bool
|
153 |
+
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
lower: float = 1. / 8,
|
157 |
+
upper: float = 1. / 3,
|
158 |
+
inplace: bool = False
|
159 |
+
):
|
160 |
+
super().__init__()
|
161 |
+
self.lower = lower
|
162 |
+
self.upper = upper
|
163 |
+
self.inplace = inplace
|
164 |
+
|
165 |
+
def forward(self, input: Tensor) -> Tensor:
|
166 |
+
return F.rrelu(input, self.lower, self.upper, self.training, self.inplace)
|
167 |
+
|
168 |
+
def extra_repr(self):
|
169 |
+
inplace_str = ', inplace=True' if self.inplace else ''
|
170 |
+
return f'lower={self.lower}, upper={self.upper}{inplace_str}'
|
171 |
+
|
172 |
+
|
173 |
+
class Hardtanh(Module):
|
174 |
+
r"""Applies the HardTanh function element-wise.
|
175 |
+
|
176 |
+
HardTanh is defined as:
|
177 |
+
|
178 |
+
.. math::
|
179 |
+
\text{HardTanh}(x) = \begin{cases}
|
180 |
+
\text{max\_val} & \text{ if } x > \text{ max\_val } \\
|
181 |
+
\text{min\_val} & \text{ if } x < \text{ min\_val } \\
|
182 |
+
x & \text{ otherwise } \\
|
183 |
+
\end{cases}
|
184 |
+
|
185 |
+
Args:
|
186 |
+
min_val: minimum value of the linear region range. Default: -1
|
187 |
+
max_val: maximum value of the linear region range. Default: 1
|
188 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
189 |
+
|
190 |
+
Keyword arguments :attr:`min_value` and :attr:`max_value`
|
191 |
+
have been deprecated in favor of :attr:`min_val` and :attr:`max_val`.
|
192 |
+
|
193 |
+
Shape:
|
194 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
195 |
+
- Output: :math:`(*)`, same shape as the input.
|
196 |
+
|
197 |
+
.. image:: ../scripts/activation_images/Hardtanh.png
|
198 |
+
|
199 |
+
Examples::
|
200 |
+
|
201 |
+
>>> m = nn.Hardtanh(-2, 2)
|
202 |
+
>>> input = torch.randn(2)
|
203 |
+
>>> output = m(input)
|
204 |
+
"""
|
205 |
+
|
206 |
+
__constants__ = ['min_val', 'max_val', 'inplace']
|
207 |
+
|
208 |
+
min_val: float
|
209 |
+
max_val: float
|
210 |
+
inplace: bool
|
211 |
+
|
212 |
+
def __init__(
|
213 |
+
self,
|
214 |
+
min_val: float = -1.,
|
215 |
+
max_val: float = 1.,
|
216 |
+
inplace: bool = False,
|
217 |
+
min_value: Optional[float] = None,
|
218 |
+
max_value: Optional[float] = None
|
219 |
+
) -> None:
|
220 |
+
super().__init__()
|
221 |
+
if min_value is not None:
|
222 |
+
warnings.warn("keyword argument min_value is deprecated and rename to min_val")
|
223 |
+
min_val = min_value
|
224 |
+
if max_value is not None:
|
225 |
+
warnings.warn("keyword argument max_value is deprecated and rename to max_val")
|
226 |
+
max_val = max_value
|
227 |
+
|
228 |
+
self.min_val = min_val
|
229 |
+
self.max_val = max_val
|
230 |
+
self.inplace = inplace
|
231 |
+
assert self.max_val > self.min_val
|
232 |
+
|
233 |
+
def forward(self, input: Tensor) -> Tensor:
|
234 |
+
return F.hardtanh(input, self.min_val, self.max_val, self.inplace)
|
235 |
+
|
236 |
+
def extra_repr(self) -> str:
|
237 |
+
inplace_str = ', inplace=True' if self.inplace else ''
|
238 |
+
return f'min_val={self.min_val}, max_val={self.max_val}{inplace_str}'
|
239 |
+
|
240 |
+
|
241 |
+
class ReLU6(Hardtanh):
|
242 |
+
r"""Applies the ReLU6 function element-wise.
|
243 |
+
|
244 |
+
.. math::
|
245 |
+
\text{ReLU6}(x) = \min(\max(0,x), 6)
|
246 |
+
|
247 |
+
Args:
|
248 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
249 |
+
|
250 |
+
Shape:
|
251 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
252 |
+
- Output: :math:`(*)`, same shape as the input.
|
253 |
+
|
254 |
+
.. image:: ../scripts/activation_images/ReLU6.png
|
255 |
+
|
256 |
+
Examples::
|
257 |
+
|
258 |
+
>>> m = nn.ReLU6()
|
259 |
+
>>> input = torch.randn(2)
|
260 |
+
>>> output = m(input)
|
261 |
+
"""
|
262 |
+
|
263 |
+
def __init__(self, inplace: bool = False):
|
264 |
+
super().__init__(0., 6., inplace)
|
265 |
+
|
266 |
+
def extra_repr(self) -> str:
|
267 |
+
inplace_str = 'inplace=True' if self.inplace else ''
|
268 |
+
return inplace_str
|
269 |
+
|
270 |
+
|
271 |
+
class Sigmoid(Module):
|
272 |
+
r"""Applies the Sigmoid function element-wise.
|
273 |
+
|
274 |
+
.. math::
|
275 |
+
\text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)}
|
276 |
+
|
277 |
+
|
278 |
+
Shape:
|
279 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
280 |
+
- Output: :math:`(*)`, same shape as the input.
|
281 |
+
|
282 |
+
.. image:: ../scripts/activation_images/Sigmoid.png
|
283 |
+
|
284 |
+
Examples::
|
285 |
+
|
286 |
+
>>> m = nn.Sigmoid()
|
287 |
+
>>> input = torch.randn(2)
|
288 |
+
>>> output = m(input)
|
289 |
+
"""
|
290 |
+
|
291 |
+
def forward(self, input: Tensor) -> Tensor:
|
292 |
+
return torch.sigmoid(input)
|
293 |
+
|
294 |
+
|
295 |
+
class Hardsigmoid(Module):
|
296 |
+
r"""Applies the Hardsigmoid function element-wise.
|
297 |
+
|
298 |
+
Hardsigmoid is defined as:
|
299 |
+
|
300 |
+
.. math::
|
301 |
+
\text{Hardsigmoid}(x) = \begin{cases}
|
302 |
+
0 & \text{if~} x \le -3, \\
|
303 |
+
1 & \text{if~} x \ge +3, \\
|
304 |
+
x / 6 + 1 / 2 & \text{otherwise}
|
305 |
+
\end{cases}
|
306 |
+
|
307 |
+
Args:
|
308 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
309 |
+
|
310 |
+
Shape:
|
311 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
312 |
+
- Output: :math:`(*)`, same shape as the input.
|
313 |
+
|
314 |
+
.. image:: ../scripts/activation_images/Hardsigmoid.png
|
315 |
+
|
316 |
+
Examples::
|
317 |
+
|
318 |
+
>>> m = nn.Hardsigmoid()
|
319 |
+
>>> input = torch.randn(2)
|
320 |
+
>>> output = m(input)
|
321 |
+
"""
|
322 |
+
|
323 |
+
__constants__ = ['inplace']
|
324 |
+
|
325 |
+
inplace: bool
|
326 |
+
|
327 |
+
def __init__(self, inplace : bool = False) -> None:
|
328 |
+
super().__init__()
|
329 |
+
self.inplace = inplace
|
330 |
+
|
331 |
+
def forward(self, input: Tensor) -> Tensor:
|
332 |
+
return F.hardsigmoid(input, self.inplace)
|
333 |
+
|
334 |
+
|
335 |
+
class Tanh(Module):
|
336 |
+
r"""Applies the Hyperbolic Tangent (Tanh) function element-wise.
|
337 |
+
|
338 |
+
Tanh is defined as:
|
339 |
+
|
340 |
+
.. math::
|
341 |
+
\text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)}
|
342 |
+
|
343 |
+
Shape:
|
344 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
345 |
+
- Output: :math:`(*)`, same shape as the input.
|
346 |
+
|
347 |
+
.. image:: ../scripts/activation_images/Tanh.png
|
348 |
+
|
349 |
+
Examples::
|
350 |
+
|
351 |
+
>>> m = nn.Tanh()
|
352 |
+
>>> input = torch.randn(2)
|
353 |
+
>>> output = m(input)
|
354 |
+
"""
|
355 |
+
|
356 |
+
def forward(self, input: Tensor) -> Tensor:
|
357 |
+
return torch.tanh(input)
|
358 |
+
|
359 |
+
class SiLU(Module):
|
360 |
+
r"""Applies the Sigmoid Linear Unit (SiLU) function, element-wise.
|
361 |
+
|
362 |
+
The SiLU function is also known as the swish function.
|
363 |
+
|
364 |
+
.. math::
|
365 |
+
\text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.}
|
366 |
+
|
367 |
+
.. note::
|
368 |
+
See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_
|
369 |
+
where the SiLU (Sigmoid Linear Unit) was originally coined, and see
|
370 |
+
`Sigmoid-Weighted Linear Units for Neural Network Function Approximation
|
371 |
+
in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish:
|
372 |
+
a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_
|
373 |
+
where the SiLU was experimented with later.
|
374 |
+
|
375 |
+
Shape:
|
376 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
377 |
+
- Output: :math:`(*)`, same shape as the input.
|
378 |
+
|
379 |
+
.. image:: ../scripts/activation_images/SiLU.png
|
380 |
+
|
381 |
+
Examples::
|
382 |
+
|
383 |
+
>>> m = nn.SiLU()
|
384 |
+
>>> input = torch.randn(2)
|
385 |
+
>>> output = m(input)
|
386 |
+
"""
|
387 |
+
|
388 |
+
__constants__ = ['inplace']
|
389 |
+
inplace: bool
|
390 |
+
|
391 |
+
def __init__(self, inplace: bool = False):
|
392 |
+
super().__init__()
|
393 |
+
self.inplace = inplace
|
394 |
+
|
395 |
+
def forward(self, input: Tensor) -> Tensor:
|
396 |
+
return F.silu(input, inplace=self.inplace)
|
397 |
+
|
398 |
+
def extra_repr(self) -> str:
|
399 |
+
inplace_str = 'inplace=True' if self.inplace else ''
|
400 |
+
return inplace_str
|
401 |
+
|
402 |
+
class Mish(Module):
|
403 |
+
r"""Applies the Mish function, element-wise.
|
404 |
+
|
405 |
+
Mish: A Self Regularized Non-Monotonic Neural Activation Function.
|
406 |
+
|
407 |
+
.. math::
|
408 |
+
\text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x))
|
409 |
+
|
410 |
+
.. note::
|
411 |
+
See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_
|
412 |
+
|
413 |
+
Shape:
|
414 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
415 |
+
- Output: :math:`(*)`, same shape as the input.
|
416 |
+
|
417 |
+
.. image:: ../scripts/activation_images/Mish.png
|
418 |
+
|
419 |
+
Examples::
|
420 |
+
|
421 |
+
>>> m = nn.Mish()
|
422 |
+
>>> input = torch.randn(2)
|
423 |
+
>>> output = m(input)
|
424 |
+
"""
|
425 |
+
|
426 |
+
__constants__ = ['inplace']
|
427 |
+
inplace: bool
|
428 |
+
|
429 |
+
def __init__(self, inplace: bool = False):
|
430 |
+
super().__init__()
|
431 |
+
self.inplace = inplace
|
432 |
+
|
433 |
+
def forward(self, input: Tensor) -> Tensor:
|
434 |
+
return F.mish(input, inplace=self.inplace)
|
435 |
+
|
436 |
+
def extra_repr(self) -> str:
|
437 |
+
inplace_str = 'inplace=True' if self.inplace else ''
|
438 |
+
return inplace_str
|
439 |
+
|
440 |
+
class Hardswish(Module):
|
441 |
+
r"""Applies the Hardswish function, element-wise.
|
442 |
+
|
443 |
+
Method described in the paper: `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_.
|
444 |
+
|
445 |
+
Hardswish is defined as:
|
446 |
+
|
447 |
+
.. math::
|
448 |
+
\text{Hardswish}(x) = \begin{cases}
|
449 |
+
0 & \text{if~} x \le -3, \\
|
450 |
+
x & \text{if~} x \ge +3, \\
|
451 |
+
x \cdot (x + 3) /6 & \text{otherwise}
|
452 |
+
\end{cases}
|
453 |
+
|
454 |
+
Args:
|
455 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
456 |
+
|
457 |
+
Shape:
|
458 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
459 |
+
- Output: :math:`(*)`, same shape as the input.
|
460 |
+
|
461 |
+
.. image:: ../scripts/activation_images/Hardswish.png
|
462 |
+
|
463 |
+
Examples::
|
464 |
+
|
465 |
+
>>> m = nn.Hardswish()
|
466 |
+
>>> input = torch.randn(2)
|
467 |
+
>>> output = m(input)
|
468 |
+
"""
|
469 |
+
|
470 |
+
__constants__ = ['inplace']
|
471 |
+
|
472 |
+
inplace: bool
|
473 |
+
|
474 |
+
def __init__(self, inplace : bool = False) -> None:
|
475 |
+
super().__init__()
|
476 |
+
self.inplace = inplace
|
477 |
+
|
478 |
+
def forward(self, input: Tensor) -> Tensor:
|
479 |
+
return F.hardswish(input, self.inplace)
|
480 |
+
|
481 |
+
|
482 |
+
class ELU(Module):
|
483 |
+
r"""Applies the Exponential Linear Unit (ELU) function, element-wise.
|
484 |
+
|
485 |
+
Method described in the paper: `Fast and Accurate Deep Network Learning by Exponential Linear
|
486 |
+
Units (ELUs) <https://arxiv.org/abs/1511.07289>`__.
|
487 |
+
|
488 |
+
ELU is defined as:
|
489 |
+
|
490 |
+
.. math::
|
491 |
+
\text{ELU}(x) = \begin{cases}
|
492 |
+
x, & \text{ if } x > 0\\
|
493 |
+
\alpha * (\exp(x) - 1), & \text{ if } x \leq 0
|
494 |
+
\end{cases}
|
495 |
+
|
496 |
+
Args:
|
497 |
+
alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0
|
498 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
499 |
+
|
500 |
+
Shape:
|
501 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
502 |
+
- Output: :math:`(*)`, same shape as the input.
|
503 |
+
|
504 |
+
.. image:: ../scripts/activation_images/ELU.png
|
505 |
+
|
506 |
+
Examples::
|
507 |
+
|
508 |
+
>>> m = nn.ELU()
|
509 |
+
>>> input = torch.randn(2)
|
510 |
+
>>> output = m(input)
|
511 |
+
"""
|
512 |
+
|
513 |
+
__constants__ = ['alpha', 'inplace']
|
514 |
+
alpha: float
|
515 |
+
inplace: bool
|
516 |
+
|
517 |
+
def __init__(self, alpha: float = 1., inplace: bool = False) -> None:
|
518 |
+
super().__init__()
|
519 |
+
self.alpha = alpha
|
520 |
+
self.inplace = inplace
|
521 |
+
|
522 |
+
def forward(self, input: Tensor) -> Tensor:
|
523 |
+
return F.elu(input, self.alpha, self.inplace)
|
524 |
+
|
525 |
+
def extra_repr(self) -> str:
|
526 |
+
inplace_str = ', inplace=True' if self.inplace else ''
|
527 |
+
return f'alpha={self.alpha}{inplace_str}'
|
528 |
+
|
529 |
+
|
530 |
+
class CELU(Module):
|
531 |
+
r"""Applies the CELU function element-wise.
|
532 |
+
|
533 |
+
.. math::
|
534 |
+
\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))
|
535 |
+
|
536 |
+
More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ .
|
537 |
+
|
538 |
+
Args:
|
539 |
+
alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0
|
540 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
541 |
+
|
542 |
+
Shape:
|
543 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
544 |
+
- Output: :math:`(*)`, same shape as the input.
|
545 |
+
|
546 |
+
.. image:: ../scripts/activation_images/CELU.png
|
547 |
+
|
548 |
+
Examples::
|
549 |
+
|
550 |
+
>>> m = nn.CELU()
|
551 |
+
>>> input = torch.randn(2)
|
552 |
+
>>> output = m(input)
|
553 |
+
|
554 |
+
.. _`Continuously Differentiable Exponential Linear Units`:
|
555 |
+
https://arxiv.org/abs/1704.07483
|
556 |
+
"""
|
557 |
+
|
558 |
+
__constants__ = ['alpha', 'inplace']
|
559 |
+
alpha: float
|
560 |
+
inplace: bool
|
561 |
+
|
562 |
+
def __init__(self, alpha: float = 1., inplace: bool = False) -> None:
|
563 |
+
super().__init__()
|
564 |
+
self.alpha = alpha
|
565 |
+
self.inplace = inplace
|
566 |
+
|
567 |
+
def forward(self, input: Tensor) -> Tensor:
|
568 |
+
return F.celu(input, self.alpha, self.inplace)
|
569 |
+
|
570 |
+
def extra_repr(self) -> str:
|
571 |
+
inplace_str = ', inplace=True' if self.inplace else ''
|
572 |
+
return f'alpha={self.alpha}{inplace_str}'
|
573 |
+
|
574 |
+
|
575 |
+
class SELU(Module):
|
576 |
+
r"""Applies the SELU function element-wise.
|
577 |
+
|
578 |
+
.. math::
|
579 |
+
\text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))
|
580 |
+
|
581 |
+
with :math:`\alpha = 1.6732632423543772848170429916717` and
|
582 |
+
:math:`\text{scale} = 1.0507009873554804934193349852946`.
|
583 |
+
|
584 |
+
.. warning::
|
585 |
+
When using ``kaiming_normal`` or ``kaiming_normal_`` for initialisation,
|
586 |
+
``nonlinearity='linear'`` should be used instead of ``nonlinearity='selu'``
|
587 |
+
in order to get `Self-Normalizing Neural Networks`_.
|
588 |
+
See :func:`torch.nn.init.calculate_gain` for more information.
|
589 |
+
|
590 |
+
More details can be found in the paper `Self-Normalizing Neural Networks`_ .
|
591 |
+
|
592 |
+
Args:
|
593 |
+
inplace (bool, optional): can optionally do the operation in-place. Default: ``False``
|
594 |
+
|
595 |
+
Shape:
|
596 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
597 |
+
- Output: :math:`(*)`, same shape as the input.
|
598 |
+
|
599 |
+
.. image:: ../scripts/activation_images/SELU.png
|
600 |
+
|
601 |
+
Examples::
|
602 |
+
|
603 |
+
>>> m = nn.SELU()
|
604 |
+
>>> input = torch.randn(2)
|
605 |
+
>>> output = m(input)
|
606 |
+
|
607 |
+
.. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515
|
608 |
+
"""
|
609 |
+
|
610 |
+
__constants__ = ['inplace']
|
611 |
+
inplace: bool
|
612 |
+
|
613 |
+
def __init__(self, inplace: bool = False) -> None:
|
614 |
+
super().__init__()
|
615 |
+
self.inplace = inplace
|
616 |
+
|
617 |
+
def forward(self, input: Tensor) -> Tensor:
|
618 |
+
return F.selu(input, self.inplace)
|
619 |
+
|
620 |
+
def extra_repr(self) -> str:
|
621 |
+
inplace_str = 'inplace=True' if self.inplace else ''
|
622 |
+
return inplace_str
|
623 |
+
|
624 |
+
|
625 |
+
class GLU(Module):
|
626 |
+
r"""Applies the gated linear unit function.
|
627 |
+
|
628 |
+
:math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half
|
629 |
+
of the input matrices and :math:`b` is the second half.
|
630 |
+
|
631 |
+
Args:
|
632 |
+
dim (int): the dimension on which to split the input. Default: -1
|
633 |
+
|
634 |
+
Shape:
|
635 |
+
- Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional
|
636 |
+
dimensions
|
637 |
+
- Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2`
|
638 |
+
|
639 |
+
Examples::
|
640 |
+
|
641 |
+
>>> m = nn.GLU()
|
642 |
+
>>> input = torch.randn(4, 2)
|
643 |
+
>>> output = m(input)
|
644 |
+
"""
|
645 |
+
|
646 |
+
__constants__ = ['dim']
|
647 |
+
dim: int
|
648 |
+
|
649 |
+
def __init__(self, dim: int = -1) -> None:
|
650 |
+
super().__init__()
|
651 |
+
self.dim = dim
|
652 |
+
|
653 |
+
def forward(self, input: Tensor) -> Tensor:
|
654 |
+
return F.glu(input, self.dim)
|
655 |
+
|
656 |
+
def extra_repr(self) -> str:
|
657 |
+
return f'dim={self.dim}'
|
658 |
+
|
659 |
+
|
660 |
+
class GELU(Module):
|
661 |
+
r"""Applies the Gaussian Error Linear Units function.
|
662 |
+
|
663 |
+
.. math:: \text{GELU}(x) = x * \Phi(x)
|
664 |
+
|
665 |
+
where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution.
|
666 |
+
|
667 |
+
When the approximate argument is 'tanh', Gelu is estimated with:
|
668 |
+
|
669 |
+
.. math:: \text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt{2 / \pi} * (x + 0.044715 * x^3)))
|
670 |
+
|
671 |
+
Args:
|
672 |
+
approximate (str, optional): the gelu approximation algorithm to use:
|
673 |
+
``'none'`` | ``'tanh'``. Default: ``'none'``
|
674 |
+
|
675 |
+
Shape:
|
676 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
677 |
+
- Output: :math:`(*)`, same shape as the input.
|
678 |
+
|
679 |
+
.. image:: ../scripts/activation_images/GELU.png
|
680 |
+
|
681 |
+
Examples::
|
682 |
+
|
683 |
+
>>> m = nn.GELU()
|
684 |
+
>>> input = torch.randn(2)
|
685 |
+
>>> output = m(input)
|
686 |
+
"""
|
687 |
+
|
688 |
+
__constants__ = ['approximate']
|
689 |
+
approximate: str
|
690 |
+
|
691 |
+
def __init__(self, approximate: str = 'none') -> None:
|
692 |
+
super().__init__()
|
693 |
+
self.approximate = approximate
|
694 |
+
|
695 |
+
def forward(self, input: Tensor) -> Tensor:
|
696 |
+
return F.gelu(input, approximate=self.approximate)
|
697 |
+
|
698 |
+
def extra_repr(self) -> str:
|
699 |
+
return f'approximate={repr(self.approximate)}'
|
700 |
+
|
701 |
+
|
702 |
+
class Hardshrink(Module):
|
703 |
+
r"""Applies the Hard Shrinkage (Hardshrink) function element-wise.
|
704 |
+
|
705 |
+
Hardshrink is defined as:
|
706 |
+
|
707 |
+
.. math::
|
708 |
+
\text{HardShrink}(x) =
|
709 |
+
\begin{cases}
|
710 |
+
x, & \text{ if } x > \lambda \\
|
711 |
+
x, & \text{ if } x < -\lambda \\
|
712 |
+
0, & \text{ otherwise }
|
713 |
+
\end{cases}
|
714 |
+
|
715 |
+
Args:
|
716 |
+
lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5
|
717 |
+
|
718 |
+
Shape:
|
719 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
720 |
+
- Output: :math:`(*)`, same shape as the input.
|
721 |
+
|
722 |
+
.. image:: ../scripts/activation_images/Hardshrink.png
|
723 |
+
|
724 |
+
Examples::
|
725 |
+
|
726 |
+
>>> m = nn.Hardshrink()
|
727 |
+
>>> input = torch.randn(2)
|
728 |
+
>>> output = m(input)
|
729 |
+
"""
|
730 |
+
|
731 |
+
__constants__ = ['lambd']
|
732 |
+
lambd: float
|
733 |
+
|
734 |
+
def __init__(self, lambd: float = 0.5) -> None:
|
735 |
+
super().__init__()
|
736 |
+
self.lambd = lambd
|
737 |
+
|
738 |
+
def forward(self, input: Tensor) -> Tensor:
|
739 |
+
return F.hardshrink(input, self.lambd)
|
740 |
+
|
741 |
+
def extra_repr(self) -> str:
|
742 |
+
return f'{self.lambd}'
|
743 |
+
|
744 |
+
|
745 |
+
class LeakyReLU(Module):
|
746 |
+
r"""Applies the LeakyReLU function element-wise.
|
747 |
+
|
748 |
+
.. math::
|
749 |
+
\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)
|
750 |
+
|
751 |
+
|
752 |
+
or
|
753 |
+
|
754 |
+
.. math::
|
755 |
+
\text{LeakyReLU}(x) =
|
756 |
+
\begin{cases}
|
757 |
+
x, & \text{ if } x \geq 0 \\
|
758 |
+
\text{negative\_slope} \times x, & \text{ otherwise }
|
759 |
+
\end{cases}
|
760 |
+
|
761 |
+
Args:
|
762 |
+
negative_slope: Controls the angle of the negative slope (which is used for
|
763 |
+
negative input values). Default: 1e-2
|
764 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
765 |
+
|
766 |
+
Shape:
|
767 |
+
- Input: :math:`(*)` where `*` means, any number of additional
|
768 |
+
dimensions
|
769 |
+
- Output: :math:`(*)`, same shape as the input
|
770 |
+
|
771 |
+
.. image:: ../scripts/activation_images/LeakyReLU.png
|
772 |
+
|
773 |
+
Examples::
|
774 |
+
|
775 |
+
>>> m = nn.LeakyReLU(0.1)
|
776 |
+
>>> input = torch.randn(2)
|
777 |
+
>>> output = m(input)
|
778 |
+
"""
|
779 |
+
|
780 |
+
__constants__ = ['inplace', 'negative_slope']
|
781 |
+
inplace: bool
|
782 |
+
negative_slope: float
|
783 |
+
|
784 |
+
def __init__(self, negative_slope: float = 1e-2, inplace: bool = False) -> None:
|
785 |
+
super().__init__()
|
786 |
+
self.negative_slope = negative_slope
|
787 |
+
self.inplace = inplace
|
788 |
+
|
789 |
+
def forward(self, input: Tensor) -> Tensor:
|
790 |
+
return F.leaky_relu(input, self.negative_slope, self.inplace)
|
791 |
+
|
792 |
+
def extra_repr(self) -> str:
|
793 |
+
inplace_str = ', inplace=True' if self.inplace else ''
|
794 |
+
return f'negative_slope={self.negative_slope}{inplace_str}'
|
795 |
+
|
796 |
+
|
797 |
+
class LogSigmoid(Module):
|
798 |
+
r"""Applies the Logsigmoid function element-wise.
|
799 |
+
|
800 |
+
.. math::
|
801 |
+
\text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right)
|
802 |
+
|
803 |
+
Shape:
|
804 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
805 |
+
- Output: :math:`(*)`, same shape as the input.
|
806 |
+
|
807 |
+
.. image:: ../scripts/activation_images/LogSigmoid.png
|
808 |
+
|
809 |
+
Examples::
|
810 |
+
|
811 |
+
>>> m = nn.LogSigmoid()
|
812 |
+
>>> input = torch.randn(2)
|
813 |
+
>>> output = m(input)
|
814 |
+
"""
|
815 |
+
|
816 |
+
def forward(self, input: Tensor) -> Tensor:
|
817 |
+
return F.logsigmoid(input)
|
818 |
+
|
819 |
+
|
820 |
+
class Softplus(Module):
|
821 |
+
r"""Applies the Softplus function element-wise.
|
822 |
+
|
823 |
+
.. math::
|
824 |
+
\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))
|
825 |
+
|
826 |
+
SoftPlus is a smooth approximation to the ReLU function and can be used
|
827 |
+
to constrain the output of a machine to always be positive.
|
828 |
+
|
829 |
+
For numerical stability the implementation reverts to the linear function
|
830 |
+
when :math:`input \times \beta > threshold`.
|
831 |
+
|
832 |
+
Args:
|
833 |
+
beta: the :math:`\beta` value for the Softplus formulation. Default: 1
|
834 |
+
threshold: values above this revert to a linear function. Default: 20
|
835 |
+
|
836 |
+
Shape:
|
837 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
838 |
+
- Output: :math:`(*)`, same shape as the input.
|
839 |
+
|
840 |
+
.. image:: ../scripts/activation_images/Softplus.png
|
841 |
+
|
842 |
+
Examples::
|
843 |
+
|
844 |
+
>>> m = nn.Softplus()
|
845 |
+
>>> input = torch.randn(2)
|
846 |
+
>>> output = m(input)
|
847 |
+
"""
|
848 |
+
|
849 |
+
__constants__ = ['beta', 'threshold']
|
850 |
+
beta: float
|
851 |
+
threshold: float
|
852 |
+
|
853 |
+
def __init__(self, beta: float = 1.0, threshold: float = 20.0) -> None:
|
854 |
+
super().__init__()
|
855 |
+
self.beta = beta
|
856 |
+
self.threshold = threshold
|
857 |
+
|
858 |
+
def forward(self, input: Tensor) -> Tensor:
|
859 |
+
return F.softplus(input, self.beta, self.threshold)
|
860 |
+
|
861 |
+
def extra_repr(self) -> str:
|
862 |
+
return f'beta={self.beta}, threshold={self.threshold}'
|
863 |
+
|
864 |
+
|
865 |
+
class Softshrink(Module):
|
866 |
+
r"""Applies the soft shrinkage function element-wise.
|
867 |
+
|
868 |
+
.. math::
|
869 |
+
\text{SoftShrinkage}(x) =
|
870 |
+
\begin{cases}
|
871 |
+
x - \lambda, & \text{ if } x > \lambda \\
|
872 |
+
x + \lambda, & \text{ if } x < -\lambda \\
|
873 |
+
0, & \text{ otherwise }
|
874 |
+
\end{cases}
|
875 |
+
|
876 |
+
Args:
|
877 |
+
lambd: the :math:`\lambda` (must be no less than zero) value for the Softshrink formulation. Default: 0.5
|
878 |
+
|
879 |
+
Shape:
|
880 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
881 |
+
- Output: :math:`(*)`, same shape as the input.
|
882 |
+
|
883 |
+
.. image:: ../scripts/activation_images/Softshrink.png
|
884 |
+
|
885 |
+
Examples::
|
886 |
+
|
887 |
+
>>> m = nn.Softshrink()
|
888 |
+
>>> input = torch.randn(2)
|
889 |
+
>>> output = m(input)
|
890 |
+
"""
|
891 |
+
|
892 |
+
__constants__ = ['lambd']
|
893 |
+
lambd: float
|
894 |
+
|
895 |
+
def __init__(self, lambd: float = 0.5) -> None:
|
896 |
+
super().__init__()
|
897 |
+
self.lambd = lambd
|
898 |
+
|
899 |
+
def forward(self, input: Tensor) -> Tensor:
|
900 |
+
return F.softshrink(input, self.lambd)
|
901 |
+
|
902 |
+
def extra_repr(self) -> str:
|
903 |
+
return str(self.lambd)
|
904 |
+
|
905 |
+
|
906 |
+
def _check_arg_device(x: Optional[torch.Tensor]) -> bool:
|
907 |
+
if x is not None:
|
908 |
+
return x.device.type in ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name]
|
909 |
+
return True
|
910 |
+
|
911 |
+
|
912 |
+
def _arg_requires_grad(x: Optional[torch.Tensor]) -> bool:
|
913 |
+
if x is not None:
|
914 |
+
return x.requires_grad
|
915 |
+
return False
|
916 |
+
|
917 |
+
|
918 |
+
def _is_make_fx_tracing():
|
919 |
+
if not torch.jit.is_scripting():
|
920 |
+
torch_dispatch_mode_stack = torch.utils._python_dispatch._get_current_dispatch_mode_stack()
|
921 |
+
return any(type(x) == torch.fx.experimental.proxy_tensor.ProxyTorchDispatchMode for x in torch_dispatch_mode_stack)
|
922 |
+
else:
|
923 |
+
return False
|
924 |
+
|
925 |
+
|
926 |
+
class MultiheadAttention(Module):
|
927 |
+
r"""Allows the model to jointly attend to information from different representation subspaces.
|
928 |
+
|
929 |
+
Method described in the paper:
|
930 |
+
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
|
931 |
+
|
932 |
+
Multi-Head Attention is defined as:
|
933 |
+
|
934 |
+
.. math::
|
935 |
+
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
936 |
+
|
937 |
+
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
|
938 |
+
|
939 |
+
``nn.MultiHeadAttention`` will use the optimized implementations of
|
940 |
+
``scaled_dot_product_attention()`` when possible.
|
941 |
+
|
942 |
+
In addition to support for the new ``scaled_dot_product_attention()``
|
943 |
+
function, for speeding up Inference, MHA will use
|
944 |
+
fastpath inference with support for Nested Tensors, iff:
|
945 |
+
|
946 |
+
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor).
|
947 |
+
- inputs are batched (3D) with ``batch_first==True``
|
948 |
+
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
|
949 |
+
- training is disabled (using ``.eval()``)
|
950 |
+
- ``add_bias_kv`` is ``False``
|
951 |
+
- ``add_zero_attn`` is ``False``
|
952 |
+
- ``kdim`` and ``vdim`` are equal to ``embed_dim``
|
953 |
+
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
|
954 |
+
nor ``attn_mask`` is passed
|
955 |
+
- autocast is disabled
|
956 |
+
|
957 |
+
If the optimized inference fastpath implementation is in use, a
|
958 |
+
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
|
959 |
+
``query``/``key``/``value`` to represent padding more efficiently than using a
|
960 |
+
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
|
961 |
+
will be returned, and an additional speedup proportional to the fraction of the input
|
962 |
+
that is padding can be expected.
|
963 |
+
|
964 |
+
Args:
|
965 |
+
embed_dim: Total dimension of the model.
|
966 |
+
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
|
967 |
+
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
|
968 |
+
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
|
969 |
+
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
|
970 |
+
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
|
971 |
+
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
|
972 |
+
Default: ``False``.
|
973 |
+
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
|
974 |
+
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
|
975 |
+
batch_first: If ``True``, then the input and output tensors are provided
|
976 |
+
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
977 |
+
|
978 |
+
Examples::
|
979 |
+
|
980 |
+
>>> # xdoctest: +SKIP
|
981 |
+
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
982 |
+
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
983 |
+
|
984 |
+
.. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`:
|
985 |
+
https://arxiv.org/abs/2205.14135
|
986 |
+
|
987 |
+
"""
|
988 |
+
|
989 |
+
__constants__ = ['batch_first']
|
990 |
+
bias_k: Optional[torch.Tensor]
|
991 |
+
bias_v: Optional[torch.Tensor]
|
992 |
+
|
993 |
+
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
|
994 |
+
kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None:
|
995 |
+
if embed_dim <= 0 or num_heads <= 0:
|
996 |
+
raise ValueError(
|
997 |
+
f"embed_dim and num_heads must be greater than 0,"
|
998 |
+
f" got embed_dim={embed_dim} and num_heads={num_heads} instead"
|
999 |
+
)
|
1000 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
1001 |
+
super().__init__()
|
1002 |
+
self.embed_dim = embed_dim
|
1003 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
1004 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
1005 |
+
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
1006 |
+
|
1007 |
+
self.num_heads = num_heads
|
1008 |
+
self.dropout = dropout
|
1009 |
+
self.batch_first = batch_first
|
1010 |
+
self.head_dim = embed_dim // num_heads
|
1011 |
+
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
1012 |
+
|
1013 |
+
if not self._qkv_same_embed_dim:
|
1014 |
+
self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs))
|
1015 |
+
self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs))
|
1016 |
+
self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs))
|
1017 |
+
self.register_parameter('in_proj_weight', None)
|
1018 |
+
else:
|
1019 |
+
self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
|
1020 |
+
self.register_parameter('q_proj_weight', None)
|
1021 |
+
self.register_parameter('k_proj_weight', None)
|
1022 |
+
self.register_parameter('v_proj_weight', None)
|
1023 |
+
|
1024 |
+
if bias:
|
1025 |
+
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
|
1026 |
+
else:
|
1027 |
+
self.register_parameter('in_proj_bias', None)
|
1028 |
+
self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
|
1029 |
+
|
1030 |
+
if add_bias_kv:
|
1031 |
+
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
1032 |
+
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
1033 |
+
else:
|
1034 |
+
self.bias_k = self.bias_v = None
|
1035 |
+
|
1036 |
+
self.add_zero_attn = add_zero_attn
|
1037 |
+
|
1038 |
+
self._reset_parameters()
|
1039 |
+
|
1040 |
+
def _reset_parameters(self):
|
1041 |
+
if self._qkv_same_embed_dim:
|
1042 |
+
xavier_uniform_(self.in_proj_weight)
|
1043 |
+
else:
|
1044 |
+
xavier_uniform_(self.q_proj_weight)
|
1045 |
+
xavier_uniform_(self.k_proj_weight)
|
1046 |
+
xavier_uniform_(self.v_proj_weight)
|
1047 |
+
|
1048 |
+
if self.in_proj_bias is not None:
|
1049 |
+
constant_(self.in_proj_bias, 0.)
|
1050 |
+
constant_(self.out_proj.bias, 0.)
|
1051 |
+
if self.bias_k is not None:
|
1052 |
+
xavier_normal_(self.bias_k)
|
1053 |
+
if self.bias_v is not None:
|
1054 |
+
xavier_normal_(self.bias_v)
|
1055 |
+
|
1056 |
+
def __setstate__(self, state):
|
1057 |
+
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
1058 |
+
if '_qkv_same_embed_dim' not in state:
|
1059 |
+
state['_qkv_same_embed_dim'] = True
|
1060 |
+
|
1061 |
+
super().__setstate__(state)
|
1062 |
+
|
1063 |
+
def forward(
|
1064 |
+
self,
|
1065 |
+
query: Tensor,
|
1066 |
+
key: Tensor,
|
1067 |
+
value: Tensor,
|
1068 |
+
key_padding_mask: Optional[Tensor] = None,
|
1069 |
+
need_weights: bool = True,
|
1070 |
+
attn_mask: Optional[Tensor] = None,
|
1071 |
+
average_attn_weights: bool = True,
|
1072 |
+
is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]:
|
1073 |
+
r"""Compute attention outputs using query, key, and value embeddings.
|
1074 |
+
|
1075 |
+
Supports optional parameters for padding, masks and attention weights.
|
1076 |
+
|
1077 |
+
Args:
|
1078 |
+
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
|
1079 |
+
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
|
1080 |
+
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
|
1081 |
+
Queries are compared against key-value pairs to produce the output.
|
1082 |
+
See "Attention Is All You Need" for more details.
|
1083 |
+
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
|
1084 |
+
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
|
1085 |
+
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
|
1086 |
+
See "Attention Is All You Need" for more details.
|
1087 |
+
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
|
1088 |
+
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
|
1089 |
+
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
|
1090 |
+
See "Attention Is All You Need" for more details.
|
1091 |
+
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
|
1092 |
+
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
|
1093 |
+
Binary and float masks are supported.
|
1094 |
+
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
|
1095 |
+
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
|
1096 |
+
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
|
1097 |
+
Set ``need_weights=False`` to use the optimized ``scaled_dot_product_attention``
|
1098 |
+
and achieve the best performance for MHA.
|
1099 |
+
Default: ``True``.
|
1100 |
+
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
|
1101 |
+
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
|
1102 |
+
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
|
1103 |
+
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
|
1104 |
+
Binary and float masks are supported. For a binary mask, a ``True`` value indicates that the
|
1105 |
+
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
|
1106 |
+
the attention weight.
|
1107 |
+
If both attn_mask and key_padding_mask are supplied, their types should match.
|
1108 |
+
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
|
1109 |
+
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
|
1110 |
+
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
|
1111 |
+
is_causal: If specified, applies a causal mask as attention mask.
|
1112 |
+
Default: ``False``.
|
1113 |
+
Warning:
|
1114 |
+
``is_causal`` provides a hint that ``attn_mask`` is the
|
1115 |
+
causal mask. Providing incorrect hints can result in
|
1116 |
+
incorrect execution, including forward and backward
|
1117 |
+
compatibility.
|
1118 |
+
|
1119 |
+
Outputs:
|
1120 |
+
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
|
1121 |
+
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
|
1122 |
+
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
|
1123 |
+
embedding dimension ``embed_dim``.
|
1124 |
+
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
|
1125 |
+
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
1126 |
+
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
1127 |
+
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
1128 |
+
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
|
1129 |
+
|
1130 |
+
.. note::
|
1131 |
+
`batch_first` argument is ignored for unbatched inputs.
|
1132 |
+
"""
|
1133 |
+
why_not_fast_path = ''
|
1134 |
+
if ((attn_mask is not None and torch.is_floating_point(attn_mask))
|
1135 |
+
or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)):
|
1136 |
+
why_not_fast_path = "floating-point masks are not supported for fast path."
|
1137 |
+
|
1138 |
+
is_batched = query.dim() == 3
|
1139 |
+
|
1140 |
+
key_padding_mask = F._canonical_mask(
|
1141 |
+
mask=key_padding_mask,
|
1142 |
+
mask_name="key_padding_mask",
|
1143 |
+
other_type=F._none_or_dtype(attn_mask),
|
1144 |
+
other_name="attn_mask",
|
1145 |
+
target_type=query.dtype
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
attn_mask = F._canonical_mask(
|
1149 |
+
mask=attn_mask,
|
1150 |
+
mask_name="attn_mask",
|
1151 |
+
other_type=None,
|
1152 |
+
other_name="",
|
1153 |
+
target_type=query.dtype,
|
1154 |
+
check_other=False,
|
1155 |
+
)
|
1156 |
+
|
1157 |
+
is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()
|
1158 |
+
|
1159 |
+
if not is_fastpath_enabled:
|
1160 |
+
why_not_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True"
|
1161 |
+
elif not is_batched:
|
1162 |
+
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
1163 |
+
elif query is not key or key is not value:
|
1164 |
+
# When lifting this restriction, don't forget to either
|
1165 |
+
# enforce that the dtypes all match or test cases where
|
1166 |
+
# they don't!
|
1167 |
+
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
1168 |
+
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
|
1169 |
+
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
1170 |
+
elif self.in_proj_weight is None:
|
1171 |
+
why_not_fast_path = "in_proj_weight was None"
|
1172 |
+
elif query.dtype != self.in_proj_weight.dtype:
|
1173 |
+
# this case will fail anyway, but at least they'll get a useful error message.
|
1174 |
+
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
1175 |
+
elif self.training:
|
1176 |
+
why_not_fast_path = "training is enabled"
|
1177 |
+
elif (self.num_heads % 2) != 0:
|
1178 |
+
why_not_fast_path = "self.num_heads is not even"
|
1179 |
+
elif not self.batch_first:
|
1180 |
+
why_not_fast_path = "batch_first was not True"
|
1181 |
+
elif self.bias_k is not None:
|
1182 |
+
why_not_fast_path = "self.bias_k was not None"
|
1183 |
+
elif self.bias_v is not None:
|
1184 |
+
why_not_fast_path = "self.bias_v was not None"
|
1185 |
+
elif self.add_zero_attn:
|
1186 |
+
why_not_fast_path = "add_zero_attn was enabled"
|
1187 |
+
elif not self._qkv_same_embed_dim:
|
1188 |
+
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
1189 |
+
elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
|
1190 |
+
why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
|
1191 |
+
is not supported with NestedTensor input"
|
1192 |
+
elif torch.is_autocast_enabled():
|
1193 |
+
why_not_fast_path = "autocast is enabled"
|
1194 |
+
|
1195 |
+
if not why_not_fast_path:
|
1196 |
+
tensor_args = (
|
1197 |
+
query,
|
1198 |
+
key,
|
1199 |
+
value,
|
1200 |
+
self.in_proj_weight,
|
1201 |
+
self.in_proj_bias,
|
1202 |
+
self.out_proj.weight,
|
1203 |
+
self.out_proj.bias,
|
1204 |
+
)
|
1205 |
+
# We have to use list comprehensions below because TorchScript does not support
|
1206 |
+
# generator expressions.
|
1207 |
+
if torch.overrides.has_torch_function(tensor_args):
|
1208 |
+
why_not_fast_path = "some Tensor argument has_torch_function"
|
1209 |
+
elif _is_make_fx_tracing():
|
1210 |
+
why_not_fast_path = "we are running make_fx tracing"
|
1211 |
+
elif not all(_check_arg_device(x) for x in tensor_args):
|
1212 |
+
why_not_fast_path = ("some Tensor argument's device is neither one of "
|
1213 |
+
f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}")
|
1214 |
+
elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
|
1215 |
+
why_not_fast_path = ("grad is enabled and at least one of query or the "
|
1216 |
+
"input/output projection weights or biases requires_grad")
|
1217 |
+
if not why_not_fast_path:
|
1218 |
+
merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
|
1219 |
+
|
1220 |
+
if self.in_proj_bias is not None and self.in_proj_weight is not None:
|
1221 |
+
return torch._native_multi_head_attention(
|
1222 |
+
query,
|
1223 |
+
key,
|
1224 |
+
value,
|
1225 |
+
self.embed_dim,
|
1226 |
+
self.num_heads,
|
1227 |
+
self.in_proj_weight,
|
1228 |
+
self.in_proj_bias,
|
1229 |
+
self.out_proj.weight,
|
1230 |
+
self.out_proj.bias,
|
1231 |
+
merged_mask,
|
1232 |
+
need_weights,
|
1233 |
+
average_attn_weights,
|
1234 |
+
mask_type)
|
1235 |
+
|
1236 |
+
any_nested = query.is_nested or key.is_nested or value.is_nested
|
1237 |
+
assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " +
|
1238 |
+
f"The fast path was not hit because {why_not_fast_path}")
|
1239 |
+
|
1240 |
+
if self.batch_first and is_batched:
|
1241 |
+
# make sure that the transpose op does not affect the "is" property
|
1242 |
+
if key is value:
|
1243 |
+
if query is key:
|
1244 |
+
query = key = value = query.transpose(1, 0)
|
1245 |
+
else:
|
1246 |
+
query, key = (x.transpose(1, 0) for x in (query, key))
|
1247 |
+
value = key
|
1248 |
+
else:
|
1249 |
+
query, key, value = (x.transpose(1, 0) for x in (query, key, value))
|
1250 |
+
|
1251 |
+
if not self._qkv_same_embed_dim:
|
1252 |
+
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
1253 |
+
query, key, value, self.embed_dim, self.num_heads,
|
1254 |
+
self.in_proj_weight, self.in_proj_bias,
|
1255 |
+
self.bias_k, self.bias_v, self.add_zero_attn,
|
1256 |
+
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
1257 |
+
training=self.training,
|
1258 |
+
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
1259 |
+
attn_mask=attn_mask,
|
1260 |
+
use_separate_proj_weight=True,
|
1261 |
+
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
|
1262 |
+
v_proj_weight=self.v_proj_weight,
|
1263 |
+
average_attn_weights=average_attn_weights,
|
1264 |
+
is_causal=is_causal)
|
1265 |
+
else:
|
1266 |
+
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
1267 |
+
query, key, value, self.embed_dim, self.num_heads,
|
1268 |
+
self.in_proj_weight, self.in_proj_bias,
|
1269 |
+
self.bias_k, self.bias_v, self.add_zero_attn,
|
1270 |
+
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
1271 |
+
training=self.training,
|
1272 |
+
key_padding_mask=key_padding_mask,
|
1273 |
+
need_weights=need_weights,
|
1274 |
+
attn_mask=attn_mask,
|
1275 |
+
average_attn_weights=average_attn_weights,
|
1276 |
+
is_causal=is_causal)
|
1277 |
+
if self.batch_first and is_batched:
|
1278 |
+
return attn_output.transpose(1, 0), attn_output_weights
|
1279 |
+
else:
|
1280 |
+
return attn_output, attn_output_weights
|
1281 |
+
|
1282 |
+
def merge_masks(self, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor],
|
1283 |
+
query: Tensor) -> Tuple[Optional[Tensor], Optional[int]]:
|
1284 |
+
r"""Determine mask type and combine masks if necessary.
|
1285 |
+
|
1286 |
+
If only one mask is provided, that mask
|
1287 |
+
and the corresponding mask type will be returned. If both masks are provided, they will be both
|
1288 |
+
expanded to shape ``(batch_size, num_heads, seq_len, seq_len)``, combined with logical ``or``
|
1289 |
+
and mask type 2 will be returned
|
1290 |
+
Args:
|
1291 |
+
attn_mask: attention mask of shape ``(seq_len, seq_len)``, mask type 0
|
1292 |
+
key_padding_mask: padding mask of shape ``(batch_size, seq_len)``, mask type 1
|
1293 |
+
query: query embeddings of shape ``(batch_size, seq_len, embed_dim)``
|
1294 |
+
Returns:
|
1295 |
+
merged_mask: merged mask
|
1296 |
+
mask_type: merged mask type (0, 1, or 2)
|
1297 |
+
"""
|
1298 |
+
mask_type: Optional[int] = None
|
1299 |
+
merged_mask: Optional[Tensor] = None
|
1300 |
+
|
1301 |
+
if key_padding_mask is not None:
|
1302 |
+
mask_type = 1
|
1303 |
+
merged_mask = key_padding_mask
|
1304 |
+
|
1305 |
+
if attn_mask is not None:
|
1306 |
+
# In this branch query can't be a nested tensor, so it has a shape
|
1307 |
+
batch_size, seq_len, _ = query.shape
|
1308 |
+
mask_type = 2
|
1309 |
+
|
1310 |
+
# Always expands attn_mask to 4D
|
1311 |
+
if attn_mask.dim() == 3:
|
1312 |
+
attn_mask_expanded = attn_mask.view(batch_size, -1, seq_len, seq_len)
|
1313 |
+
else: # attn_mask.dim() == 2:
|
1314 |
+
attn_mask_expanded = attn_mask.view(1, 1, seq_len, seq_len).expand(batch_size, self.num_heads, -1, -1)
|
1315 |
+
merged_mask = attn_mask_expanded
|
1316 |
+
|
1317 |
+
if key_padding_mask is not None:
|
1318 |
+
key_padding_mask_expanded = key_padding_mask.view(batch_size, 1, 1, seq_len).expand(-1, self.num_heads, -1, -1)
|
1319 |
+
merged_mask = attn_mask_expanded + key_padding_mask_expanded
|
1320 |
+
|
1321 |
+
# no attn_mask and no key_padding_mask, returns None, None
|
1322 |
+
return merged_mask, mask_type
|
1323 |
+
|
1324 |
+
|
1325 |
+
class PReLU(Module):
|
1326 |
+
r"""Applies the element-wise PReLU function.
|
1327 |
+
|
1328 |
+
.. math::
|
1329 |
+
\text{PReLU}(x) = \max(0,x) + a * \min(0,x)
|
1330 |
+
|
1331 |
+
or
|
1332 |
+
|
1333 |
+
.. math::
|
1334 |
+
\text{PReLU}(x) =
|
1335 |
+
\begin{cases}
|
1336 |
+
x, & \text{ if } x \geq 0 \\
|
1337 |
+
ax, & \text{ otherwise }
|
1338 |
+
\end{cases}
|
1339 |
+
|
1340 |
+
Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single
|
1341 |
+
parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`,
|
1342 |
+
a separate :math:`a` is used for each input channel.
|
1343 |
+
|
1344 |
+
|
1345 |
+
.. note::
|
1346 |
+
weight decay should not be used when learning :math:`a` for good performance.
|
1347 |
+
|
1348 |
+
.. note::
|
1349 |
+
Channel dim is the 2nd dim of input. When input has dims < 2, then there is
|
1350 |
+
no channel dim and the number of channels = 1.
|
1351 |
+
|
1352 |
+
Args:
|
1353 |
+
num_parameters (int): number of :math:`a` to learn.
|
1354 |
+
Although it takes an int as input, there is only two values are legitimate:
|
1355 |
+
1, or the number of channels at input. Default: 1
|
1356 |
+
init (float): the initial value of :math:`a`. Default: 0.25
|
1357 |
+
|
1358 |
+
Shape:
|
1359 |
+
- Input: :math:`( *)` where `*` means, any number of additional
|
1360 |
+
dimensions.
|
1361 |
+
- Output: :math:`(*)`, same shape as the input.
|
1362 |
+
|
1363 |
+
Attributes:
|
1364 |
+
weight (Tensor): the learnable weights of shape (:attr:`num_parameters`).
|
1365 |
+
|
1366 |
+
.. image:: ../scripts/activation_images/PReLU.png
|
1367 |
+
|
1368 |
+
Examples::
|
1369 |
+
|
1370 |
+
>>> m = nn.PReLU()
|
1371 |
+
>>> input = torch.randn(2)
|
1372 |
+
>>> output = m(input)
|
1373 |
+
"""
|
1374 |
+
|
1375 |
+
__constants__ = ['num_parameters']
|
1376 |
+
num_parameters: int
|
1377 |
+
|
1378 |
+
def __init__(self, num_parameters: int = 1, init: float = 0.25,
|
1379 |
+
device=None, dtype=None) -> None:
|
1380 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
1381 |
+
self.num_parameters = num_parameters
|
1382 |
+
super().__init__()
|
1383 |
+
self.init = init
|
1384 |
+
self.weight = Parameter(torch.empty(num_parameters, **factory_kwargs))
|
1385 |
+
self.reset_parameters()
|
1386 |
+
|
1387 |
+
def reset_parameters(self):
|
1388 |
+
torch.nn.init.constant_(self.weight, self.init)
|
1389 |
+
|
1390 |
+
def forward(self, input: Tensor) -> Tensor:
|
1391 |
+
return F.prelu(input, self.weight)
|
1392 |
+
|
1393 |
+
def extra_repr(self) -> str:
|
1394 |
+
return f'num_parameters={self.num_parameters}'
|
1395 |
+
|
1396 |
+
|
1397 |
+
class Softsign(Module):
|
1398 |
+
r"""Applies the element-wise Softsign function.
|
1399 |
+
|
1400 |
+
.. math::
|
1401 |
+
\text{SoftSign}(x) = \frac{x}{ 1 + |x|}
|
1402 |
+
|
1403 |
+
Shape:
|
1404 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
1405 |
+
- Output: :math:`(*)`, same shape as the input.
|
1406 |
+
|
1407 |
+
.. image:: ../scripts/activation_images/Softsign.png
|
1408 |
+
|
1409 |
+
Examples::
|
1410 |
+
|
1411 |
+
>>> m = nn.Softsign()
|
1412 |
+
>>> input = torch.randn(2)
|
1413 |
+
>>> output = m(input)
|
1414 |
+
"""
|
1415 |
+
|
1416 |
+
def forward(self, input: Tensor) -> Tensor:
|
1417 |
+
return F.softsign(input)
|
1418 |
+
|
1419 |
+
|
1420 |
+
class Tanhshrink(Module):
|
1421 |
+
r"""Applies the element-wise Tanhshrink function.
|
1422 |
+
|
1423 |
+
.. math::
|
1424 |
+
\text{Tanhshrink}(x) = x - \tanh(x)
|
1425 |
+
|
1426 |
+
Shape:
|
1427 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
1428 |
+
- Output: :math:`(*)`, same shape as the input.
|
1429 |
+
|
1430 |
+
.. image:: ../scripts/activation_images/Tanhshrink.png
|
1431 |
+
|
1432 |
+
Examples::
|
1433 |
+
|
1434 |
+
>>> m = nn.Tanhshrink()
|
1435 |
+
>>> input = torch.randn(2)
|
1436 |
+
>>> output = m(input)
|
1437 |
+
"""
|
1438 |
+
|
1439 |
+
def forward(self, input: Tensor) -> Tensor:
|
1440 |
+
return F.tanhshrink(input)
|
1441 |
+
|
1442 |
+
|
1443 |
+
class Softmin(Module):
|
1444 |
+
r"""Applies the Softmin function to an n-dimensional input Tensor.
|
1445 |
+
|
1446 |
+
Rescales them so that the elements of the n-dimensional output Tensor
|
1447 |
+
lie in the range `[0, 1]` and sum to 1.
|
1448 |
+
|
1449 |
+
Softmin is defined as:
|
1450 |
+
|
1451 |
+
.. math::
|
1452 |
+
\text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}
|
1453 |
+
|
1454 |
+
Shape:
|
1455 |
+
- Input: :math:`(*)` where `*` means, any number of additional
|
1456 |
+
dimensions
|
1457 |
+
- Output: :math:`(*)`, same shape as the input
|
1458 |
+
|
1459 |
+
Args:
|
1460 |
+
dim (int): A dimension along which Softmin will be computed (so every slice
|
1461 |
+
along dim will sum to 1).
|
1462 |
+
|
1463 |
+
Returns:
|
1464 |
+
a Tensor of the same dimension and shape as the input, with
|
1465 |
+
values in the range [0, 1]
|
1466 |
+
|
1467 |
+
Examples::
|
1468 |
+
|
1469 |
+
>>> m = nn.Softmin(dim=1)
|
1470 |
+
>>> input = torch.randn(2, 3)
|
1471 |
+
>>> output = m(input)
|
1472 |
+
"""
|
1473 |
+
|
1474 |
+
__constants__ = ['dim']
|
1475 |
+
dim: Optional[int]
|
1476 |
+
|
1477 |
+
def __init__(self, dim: Optional[int] = None) -> None:
|
1478 |
+
super().__init__()
|
1479 |
+
self.dim = dim
|
1480 |
+
|
1481 |
+
def __setstate__(self, state):
|
1482 |
+
super().__setstate__(state)
|
1483 |
+
if not hasattr(self, 'dim'):
|
1484 |
+
self.dim = None
|
1485 |
+
|
1486 |
+
def forward(self, input: Tensor) -> Tensor:
|
1487 |
+
return F.softmin(input, self.dim, _stacklevel=5)
|
1488 |
+
|
1489 |
+
def extra_repr(self):
|
1490 |
+
return f'dim={self.dim}'
|
1491 |
+
|
1492 |
+
class Softmax(Module):
|
1493 |
+
r"""Applies the Softmax function to an n-dimensional input Tensor.
|
1494 |
+
|
1495 |
+
Rescales them so that the elements of the n-dimensional output Tensor
|
1496 |
+
lie in the range [0,1] and sum to 1.
|
1497 |
+
|
1498 |
+
Softmax is defined as:
|
1499 |
+
|
1500 |
+
.. math::
|
1501 |
+
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
|
1502 |
+
|
1503 |
+
When the input Tensor is a sparse tensor then the unspecified
|
1504 |
+
values are treated as ``-inf``.
|
1505 |
+
|
1506 |
+
Shape:
|
1507 |
+
- Input: :math:`(*)` where `*` means, any number of additional
|
1508 |
+
dimensions
|
1509 |
+
- Output: :math:`(*)`, same shape as the input
|
1510 |
+
|
1511 |
+
Returns:
|
1512 |
+
a Tensor of the same dimension and shape as the input with
|
1513 |
+
values in the range [0, 1]
|
1514 |
+
|
1515 |
+
Args:
|
1516 |
+
dim (int): A dimension along which Softmax will be computed (so every slice
|
1517 |
+
along dim will sum to 1).
|
1518 |
+
|
1519 |
+
.. note::
|
1520 |
+
This module doesn't work directly with NLLLoss,
|
1521 |
+
which expects the Log to be computed between the Softmax and itself.
|
1522 |
+
Use `LogSoftmax` instead (it's faster and has better numerical properties).
|
1523 |
+
|
1524 |
+
Examples::
|
1525 |
+
|
1526 |
+
>>> m = nn.Softmax(dim=1)
|
1527 |
+
>>> input = torch.randn(2, 3)
|
1528 |
+
>>> output = m(input)
|
1529 |
+
|
1530 |
+
"""
|
1531 |
+
|
1532 |
+
__constants__ = ['dim']
|
1533 |
+
dim: Optional[int]
|
1534 |
+
|
1535 |
+
def __init__(self, dim: Optional[int] = None) -> None:
|
1536 |
+
super().__init__()
|
1537 |
+
self.dim = dim
|
1538 |
+
|
1539 |
+
def __setstate__(self, state):
|
1540 |
+
super().__setstate__(state)
|
1541 |
+
if not hasattr(self, 'dim'):
|
1542 |
+
self.dim = None
|
1543 |
+
|
1544 |
+
def forward(self, input: Tensor) -> Tensor:
|
1545 |
+
return F.softmax(input, self.dim, _stacklevel=5)
|
1546 |
+
|
1547 |
+
def extra_repr(self) -> str:
|
1548 |
+
return f'dim={self.dim}'
|
1549 |
+
|
1550 |
+
|
1551 |
+
class Softmax2d(Module):
|
1552 |
+
r"""Applies SoftMax over features to each spatial location.
|
1553 |
+
|
1554 |
+
When given an image of ``Channels x Height x Width``, it will
|
1555 |
+
apply `Softmax` to each location :math:`(Channels, h_i, w_j)`
|
1556 |
+
|
1557 |
+
Shape:
|
1558 |
+
- Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`.
|
1559 |
+
- Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input)
|
1560 |
+
|
1561 |
+
Returns:
|
1562 |
+
a Tensor of the same dimension and shape as the input with
|
1563 |
+
values in the range [0, 1]
|
1564 |
+
|
1565 |
+
Examples::
|
1566 |
+
|
1567 |
+
>>> m = nn.Softmax2d()
|
1568 |
+
>>> # you softmax over the 2nd dimension
|
1569 |
+
>>> input = torch.randn(2, 3, 12, 13)
|
1570 |
+
>>> output = m(input)
|
1571 |
+
"""
|
1572 |
+
|
1573 |
+
def forward(self, input: Tensor) -> Tensor:
|
1574 |
+
if input.dim() not in (3, 4):
|
1575 |
+
raise ValueError(
|
1576 |
+
f"Softmax2d: expected input to be 3D or 4D, got {input.dim()}D instead"
|
1577 |
+
)
|
1578 |
+
return F.softmax(input, -3, _stacklevel=5)
|
1579 |
+
|
1580 |
+
|
1581 |
+
class LogSoftmax(Module):
|
1582 |
+
r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional input Tensor.
|
1583 |
+
|
1584 |
+
The LogSoftmax formulation can be simplified as:
|
1585 |
+
|
1586 |
+
.. math::
|
1587 |
+
\text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right)
|
1588 |
+
|
1589 |
+
Shape:
|
1590 |
+
- Input: :math:`(*)` where `*` means, any number of additional
|
1591 |
+
dimensions
|
1592 |
+
- Output: :math:`(*)`, same shape as the input
|
1593 |
+
|
1594 |
+
Args:
|
1595 |
+
dim (int): A dimension along which LogSoftmax will be computed.
|
1596 |
+
|
1597 |
+
Returns:
|
1598 |
+
a Tensor of the same dimension and shape as the input with
|
1599 |
+
values in the range [-inf, 0)
|
1600 |
+
|
1601 |
+
Examples::
|
1602 |
+
|
1603 |
+
>>> m = nn.LogSoftmax(dim=1)
|
1604 |
+
>>> input = torch.randn(2, 3)
|
1605 |
+
>>> output = m(input)
|
1606 |
+
"""
|
1607 |
+
|
1608 |
+
__constants__ = ['dim']
|
1609 |
+
dim: Optional[int]
|
1610 |
+
|
1611 |
+
def __init__(self, dim: Optional[int] = None) -> None:
|
1612 |
+
super().__init__()
|
1613 |
+
self.dim = dim
|
1614 |
+
|
1615 |
+
def __setstate__(self, state):
|
1616 |
+
super().__setstate__(state)
|
1617 |
+
if not hasattr(self, 'dim'):
|
1618 |
+
self.dim = None
|
1619 |
+
|
1620 |
+
def forward(self, input: Tensor) -> Tensor:
|
1621 |
+
return F.log_softmax(input, self.dim, _stacklevel=5)
|
1622 |
+
|
1623 |
+
def extra_repr(self):
|
1624 |
+
return f'dim={self.dim}'
|
venv/lib/python3.10/site-packages/torch/nn/modules/adaptive.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from collections import namedtuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from torch import Tensor
|
7 |
+
from typing import List, Sequence
|
8 |
+
|
9 |
+
from . import Sequential, ModuleList, Linear
|
10 |
+
from .module import Module
|
11 |
+
from ..functional import log_softmax
|
12 |
+
|
13 |
+
__all__ = ['AdaptiveLogSoftmaxWithLoss']
|
14 |
+
|
15 |
+
_ASMoutput = namedtuple('_ASMoutput', ['output', 'loss'])
|
16 |
+
|
17 |
+
|
18 |
+
class AdaptiveLogSoftmaxWithLoss(Module):
|
19 |
+
r"""Efficient softmax approximation.
|
20 |
+
|
21 |
+
As described in
|
22 |
+
`Efficient softmax approximation for GPUs by Edouard Grave, Armand Joulin,
|
23 |
+
Moustapha Cissé, David Grangier, and Hervé Jégou
|
24 |
+
<https://arxiv.org/abs/1609.04309>`__.
|
25 |
+
|
26 |
+
Adaptive softmax is an approximate strategy for training models with large
|
27 |
+
output spaces. It is most effective when the label distribution is highly
|
28 |
+
imbalanced, for example in natural language modelling, where the word
|
29 |
+
frequency distribution approximately follows the `Zipf's law`_.
|
30 |
+
|
31 |
+
Adaptive softmax partitions the labels into several clusters, according to
|
32 |
+
their frequency. These clusters may contain different number of targets
|
33 |
+
each.
|
34 |
+
Additionally, clusters containing less frequent labels assign lower
|
35 |
+
dimensional embeddings to those labels, which speeds up the computation.
|
36 |
+
For each minibatch, only clusters for which at least one target is
|
37 |
+
present are evaluated.
|
38 |
+
|
39 |
+
The idea is that the clusters which are accessed frequently
|
40 |
+
(like the first one, containing most frequent labels), should also be cheap
|
41 |
+
to compute -- that is, contain a small number of assigned labels.
|
42 |
+
|
43 |
+
We highly recommend taking a look at the original paper for more details.
|
44 |
+
|
45 |
+
* :attr:`cutoffs` should be an ordered Sequence of integers sorted
|
46 |
+
in the increasing order.
|
47 |
+
It controls number of clusters and the partitioning of targets into
|
48 |
+
clusters. For example setting ``cutoffs = [10, 100, 1000]``
|
49 |
+
means that first `10` targets will be assigned
|
50 |
+
to the 'head' of the adaptive softmax, targets `11, 12, ..., 100` will be
|
51 |
+
assigned to the first cluster, and targets `101, 102, ..., 1000` will be
|
52 |
+
assigned to the second cluster, while targets
|
53 |
+
`1001, 1002, ..., n_classes - 1` will be assigned
|
54 |
+
to the last, third cluster.
|
55 |
+
|
56 |
+
* :attr:`div_value` is used to compute the size of each additional cluster,
|
57 |
+
which is given as
|
58 |
+
:math:`\left\lfloor\frac{\texttt{in\_features}}{\texttt{div\_value}^{idx}}\right\rfloor`,
|
59 |
+
where :math:`idx` is the cluster index (with clusters
|
60 |
+
for less frequent words having larger indices,
|
61 |
+
and indices starting from :math:`1`).
|
62 |
+
|
63 |
+
* :attr:`head_bias` if set to True, adds a bias term to the 'head' of the
|
64 |
+
adaptive softmax. See paper for details. Set to False in the official
|
65 |
+
implementation.
|
66 |
+
|
67 |
+
.. warning::
|
68 |
+
Labels passed as inputs to this module should be sorted according to
|
69 |
+
their frequency. This means that the most frequent label should be
|
70 |
+
represented by the index `0`, and the least frequent
|
71 |
+
label should be represented by the index `n_classes - 1`.
|
72 |
+
|
73 |
+
.. note::
|
74 |
+
This module returns a ``NamedTuple`` with ``output``
|
75 |
+
and ``loss`` fields. See further documentation for details.
|
76 |
+
|
77 |
+
.. note::
|
78 |
+
To compute log-probabilities for all classes, the ``log_prob``
|
79 |
+
method can be used.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
in_features (int): Number of features in the input tensor
|
83 |
+
n_classes (int): Number of classes in the dataset
|
84 |
+
cutoffs (Sequence): Cutoffs used to assign targets to their buckets
|
85 |
+
div_value (float, optional): value used as an exponent to compute sizes
|
86 |
+
of the clusters. Default: 4.0
|
87 |
+
head_bias (bool, optional): If ``True``, adds a bias term to the 'head' of the
|
88 |
+
adaptive softmax. Default: ``False``
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
``NamedTuple`` with ``output`` and ``loss`` fields:
|
92 |
+
* **output** is a Tensor of size ``N`` containing computed target
|
93 |
+
log probabilities for each example
|
94 |
+
* **loss** is a Scalar representing the computed negative
|
95 |
+
log likelihood loss
|
96 |
+
|
97 |
+
Shape:
|
98 |
+
- input: :math:`(N, \texttt{in\_features})` or :math:`(\texttt{in\_features})`
|
99 |
+
- target: :math:`(N)` or :math:`()` where each value satisfies :math:`0 <= \texttt{target[i]} <= \texttt{n\_classes}`
|
100 |
+
- output1: :math:`(N)` or :math:`()`
|
101 |
+
- output2: ``Scalar``
|
102 |
+
|
103 |
+
.. _Zipf's law: https://en.wikipedia.org/wiki/Zipf%27s_law
|
104 |
+
"""
|
105 |
+
|
106 |
+
in_features: int
|
107 |
+
n_classes: int
|
108 |
+
cutoffs: List[int]
|
109 |
+
div_value: float
|
110 |
+
head_bias: bool
|
111 |
+
head: Linear
|
112 |
+
tail: ModuleList
|
113 |
+
|
114 |
+
def __init__(
|
115 |
+
self,
|
116 |
+
in_features: int,
|
117 |
+
n_classes: int,
|
118 |
+
cutoffs: Sequence[int],
|
119 |
+
div_value: float = 4.,
|
120 |
+
head_bias: bool = False,
|
121 |
+
device=None,
|
122 |
+
dtype=None
|
123 |
+
) -> None:
|
124 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
125 |
+
super().__init__()
|
126 |
+
|
127 |
+
cutoffs = list(cutoffs)
|
128 |
+
|
129 |
+
if (len(cutoffs) == 0):
|
130 |
+
raise ValueError("cutoffs should be a sequence of length larger than 0")
|
131 |
+
|
132 |
+
if (cutoffs != sorted(cutoffs)) \
|
133 |
+
or (min(cutoffs) <= 0) \
|
134 |
+
or (max(cutoffs) > (n_classes - 1)) \
|
135 |
+
or (len(set(cutoffs)) != len(cutoffs)) \
|
136 |
+
or any(int(c) != c for c in cutoffs):
|
137 |
+
|
138 |
+
raise ValueError("cutoffs should be a sequence of unique, positive "
|
139 |
+
"integers sorted in an increasing order, where "
|
140 |
+
"each value is between 1 and n_classes-1")
|
141 |
+
|
142 |
+
self.in_features = in_features
|
143 |
+
self.n_classes = n_classes
|
144 |
+
self.cutoffs = cutoffs + [n_classes]
|
145 |
+
self.div_value = div_value
|
146 |
+
self.head_bias = head_bias
|
147 |
+
|
148 |
+
self.shortlist_size = self.cutoffs[0]
|
149 |
+
self.n_clusters = len(self.cutoffs) - 1
|
150 |
+
self.head_size = self.shortlist_size + self.n_clusters
|
151 |
+
|
152 |
+
self.head = Linear(self.in_features, self.head_size, bias=self.head_bias,
|
153 |
+
**factory_kwargs)
|
154 |
+
self.tail = ModuleList()
|
155 |
+
|
156 |
+
for i in range(self.n_clusters):
|
157 |
+
|
158 |
+
hsz = int(self.in_features // (self.div_value ** (i + 1)))
|
159 |
+
osz = self.cutoffs[i + 1] - self.cutoffs[i]
|
160 |
+
|
161 |
+
projection = Sequential(
|
162 |
+
Linear(self.in_features, hsz, bias=False, **factory_kwargs),
|
163 |
+
Linear(hsz, osz, bias=False, **factory_kwargs),
|
164 |
+
)
|
165 |
+
|
166 |
+
self.tail.append(projection)
|
167 |
+
|
168 |
+
def reset_parameters(self) -> None:
|
169 |
+
self.head.reset_parameters()
|
170 |
+
for i2h, h2o in self.tail:
|
171 |
+
i2h.reset_parameters()
|
172 |
+
h2o.reset_parameters()
|
173 |
+
|
174 |
+
def forward(self, input_: Tensor, target_: Tensor) -> _ASMoutput:
|
175 |
+
targ_dim = target_.dim()
|
176 |
+
|
177 |
+
if targ_dim == 1:
|
178 |
+
if input_.size(0) != target_.size(0):
|
179 |
+
raise RuntimeError('Input and target should have the same size '
|
180 |
+
'in the batch dimension.')
|
181 |
+
if input_.dim() != 2:
|
182 |
+
raise RuntimeError('1D target tensor expects 2D input tensors, '
|
183 |
+
'but found inputs with size', input_.size())
|
184 |
+
elif targ_dim == 0:
|
185 |
+
if input_.dim() != 1:
|
186 |
+
raise RuntimeError('0D target tensor expects 1D input tensors, '
|
187 |
+
'but found inputs with size', input_.size())
|
188 |
+
else:
|
189 |
+
raise RuntimeError('0D or 1D target tensor expected, '
|
190 |
+
'multi-target not supported')
|
191 |
+
|
192 |
+
is_batched = targ_dim > 0
|
193 |
+
input = input_ if is_batched else input_.unsqueeze(0)
|
194 |
+
target = target_ if is_batched else target_.unsqueeze(0)
|
195 |
+
|
196 |
+
used_rows = 0
|
197 |
+
batch_size = target.size(0)
|
198 |
+
|
199 |
+
output = input.new_zeros(batch_size)
|
200 |
+
gather_inds = target.new_empty(batch_size)
|
201 |
+
|
202 |
+
cutoff_values = [0] + self.cutoffs
|
203 |
+
for i in range(len(cutoff_values) - 1):
|
204 |
+
|
205 |
+
low_idx = cutoff_values[i]
|
206 |
+
high_idx = cutoff_values[i + 1]
|
207 |
+
|
208 |
+
target_mask = (target >= low_idx) & (target < high_idx)
|
209 |
+
row_indices = target_mask.nonzero().squeeze()
|
210 |
+
|
211 |
+
if row_indices.numel() == 0:
|
212 |
+
continue
|
213 |
+
|
214 |
+
if i == 0:
|
215 |
+
gather_inds.index_copy_(0, row_indices, target[target_mask])
|
216 |
+
|
217 |
+
else:
|
218 |
+
relative_target = target[target_mask] - low_idx
|
219 |
+
input_subset = input.index_select(0, row_indices)
|
220 |
+
|
221 |
+
cluster_output = self.tail[i - 1](input_subset)
|
222 |
+
cluster_index = self.shortlist_size + i - 1
|
223 |
+
|
224 |
+
gather_inds.index_fill_(0, row_indices, cluster_index)
|
225 |
+
cluster_logprob = log_softmax(cluster_output, dim=1)
|
226 |
+
local_logprob = cluster_logprob.gather(1, relative_target.unsqueeze(1))
|
227 |
+
output.index_copy_(0, row_indices, local_logprob.squeeze(1))
|
228 |
+
|
229 |
+
used_rows += row_indices.numel()
|
230 |
+
|
231 |
+
if used_rows != batch_size:
|
232 |
+
raise RuntimeError(f"Target values should be in [0, {self.n_classes - 1}], "
|
233 |
+
f"but values in range [{target.min().item()}, {target.max().item()}] "
|
234 |
+
"were found. ")
|
235 |
+
|
236 |
+
head_output = self.head(input)
|
237 |
+
head_logprob = log_softmax(head_output, dim=1)
|
238 |
+
output += head_logprob.gather(1, gather_inds.unsqueeze(1)).squeeze()
|
239 |
+
loss = (-output).mean()
|
240 |
+
|
241 |
+
if not is_batched:
|
242 |
+
output = output.squeeze(0)
|
243 |
+
|
244 |
+
return _ASMoutput(output, loss)
|
245 |
+
|
246 |
+
def _get_full_log_prob(self, input, head_output):
|
247 |
+
"""Given input tensor, and output of ``self.head``, compute the log of the full distribution."""
|
248 |
+
out = input.new_empty((head_output.size(0), self.n_classes))
|
249 |
+
head_logprob = log_softmax(head_output, dim=1)
|
250 |
+
|
251 |
+
out[:, :self.shortlist_size] = head_logprob[:, :self.shortlist_size]
|
252 |
+
|
253 |
+
for i, (start_idx, stop_idx) in enumerate(zip(self.cutoffs, self.cutoffs[1:])):
|
254 |
+
cluster_output = self.tail[i](input)
|
255 |
+
cluster_logprob = log_softmax(cluster_output, dim=1)
|
256 |
+
output_logprob = cluster_logprob + head_logprob[:, self.shortlist_size + i].unsqueeze(1)
|
257 |
+
|
258 |
+
out[:, start_idx:stop_idx] = output_logprob
|
259 |
+
|
260 |
+
return out
|
261 |
+
|
262 |
+
def log_prob(self, input: Tensor) -> Tensor:
|
263 |
+
r"""Compute log probabilities for all :math:`\texttt{n\_classes}`.
|
264 |
+
|
265 |
+
Args:
|
266 |
+
input (Tensor): a minibatch of examples
|
267 |
+
|
268 |
+
Returns:
|
269 |
+
log-probabilities of for each class :math:`c`
|
270 |
+
in range :math:`0 <= c <= \texttt{n\_classes}`, where :math:`\texttt{n\_classes}` is a
|
271 |
+
parameter passed to ``AdaptiveLogSoftmaxWithLoss`` constructor.
|
272 |
+
|
273 |
+
Shape:
|
274 |
+
- Input: :math:`(N, \texttt{in\_features})`
|
275 |
+
- Output: :math:`(N, \texttt{n\_classes})`
|
276 |
+
|
277 |
+
"""
|
278 |
+
head_output = self.head(input)
|
279 |
+
return self._get_full_log_prob(input, head_output)
|
280 |
+
|
281 |
+
def predict(self, input: Tensor) -> Tensor:
|
282 |
+
r"""Return the class with the highest probability for each example in the input minibatch.
|
283 |
+
|
284 |
+
This is equivalent to ``self.log_prob(input).argmax(dim=1)``, but is more efficient in some cases.
|
285 |
+
|
286 |
+
Args:
|
287 |
+
input (Tensor): a minibatch of examples
|
288 |
+
|
289 |
+
Returns:
|
290 |
+
output (Tensor): a class with the highest probability for each example
|
291 |
+
|
292 |
+
Shape:
|
293 |
+
- Input: :math:`(N, \texttt{in\_features})`
|
294 |
+
- Output: :math:`(N)`
|
295 |
+
"""
|
296 |
+
head_output = self.head(input)
|
297 |
+
output = torch.argmax(head_output, dim=1)
|
298 |
+
not_in_shortlist = (output >= self.shortlist_size)
|
299 |
+
all_in_shortlist = not (not_in_shortlist.any())
|
300 |
+
|
301 |
+
if all_in_shortlist:
|
302 |
+
return output
|
303 |
+
|
304 |
+
elif not_in_shortlist.all():
|
305 |
+
log_prob = self._get_full_log_prob(input, head_output)
|
306 |
+
return torch.argmax(log_prob, dim=1)
|
307 |
+
|
308 |
+
else:
|
309 |
+
log_prob = self._get_full_log_prob(input[not_in_shortlist],
|
310 |
+
head_output[not_in_shortlist])
|
311 |
+
output[not_in_shortlist] = torch.argmax(log_prob, dim=1)
|
312 |
+
return output
|
venv/lib/python3.10/site-packages/torch/nn/modules/conv.py
ADDED
@@ -0,0 +1,1602 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import Tensor
|
6 |
+
from torch.nn.parameter import Parameter, UninitializedParameter
|
7 |
+
from .. import functional as F
|
8 |
+
from .. import init
|
9 |
+
from .lazy import LazyModuleMixin
|
10 |
+
from .module import Module
|
11 |
+
from .utils import _single, _pair, _triple, _reverse_repeat_tuple
|
12 |
+
from torch._torch_docs import reproducibility_notes
|
13 |
+
|
14 |
+
from ..common_types import _size_1_t, _size_2_t, _size_3_t
|
15 |
+
from typing import Optional, List, Tuple, Union
|
16 |
+
|
17 |
+
__all__ = ['Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d',
|
18 |
+
'LazyConv1d', 'LazyConv2d', 'LazyConv3d', 'LazyConvTranspose1d', 'LazyConvTranspose2d',
|
19 |
+
'LazyConvTranspose3d']
|
20 |
+
|
21 |
+
convolution_notes = \
|
22 |
+
{"groups_note": r"""* :attr:`groups` controls the connections between inputs and outputs.
|
23 |
+
:attr:`in_channels` and :attr:`out_channels` must both be divisible by
|
24 |
+
:attr:`groups`. For example,
|
25 |
+
|
26 |
+
* At groups=1, all inputs are convolved to all outputs.
|
27 |
+
* At groups=2, the operation becomes equivalent to having two conv
|
28 |
+
layers side by side, each seeing half the input channels
|
29 |
+
and producing half the output channels, and both subsequently
|
30 |
+
concatenated.
|
31 |
+
* At groups= :attr:`in_channels`, each input channel is convolved with
|
32 |
+
its own set of filters (of size
|
33 |
+
:math:`\frac{\text{out\_channels}}{\text{in\_channels}}`).""",
|
34 |
+
|
35 |
+
"depthwise_separable_note": r"""When `groups == in_channels` and `out_channels == K * in_channels`,
|
36 |
+
where `K` is a positive integer, this operation is also known as a "depthwise convolution".
|
37 |
+
|
38 |
+
In other words, for an input of size :math:`(N, C_{in}, L_{in})`,
|
39 |
+
a depthwise convolution with a depthwise multiplier `K` can be performed with the arguments
|
40 |
+
:math:`(C_\text{in}=C_\text{in}, C_\text{out}=C_\text{in} \times \text{K}, ..., \text{groups}=C_\text{in})`."""} # noqa: B950
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
class _ConvNd(Module):
|
47 |
+
|
48 |
+
__constants__ = ['stride', 'padding', 'dilation', 'groups',
|
49 |
+
'padding_mode', 'output_padding', 'in_channels',
|
50 |
+
'out_channels', 'kernel_size']
|
51 |
+
__annotations__ = {'bias': Optional[torch.Tensor]}
|
52 |
+
|
53 |
+
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: # type: ignore[empty-body]
|
54 |
+
...
|
55 |
+
|
56 |
+
in_channels: int
|
57 |
+
_reversed_padding_repeated_twice: List[int]
|
58 |
+
out_channels: int
|
59 |
+
kernel_size: Tuple[int, ...]
|
60 |
+
stride: Tuple[int, ...]
|
61 |
+
padding: Union[str, Tuple[int, ...]]
|
62 |
+
dilation: Tuple[int, ...]
|
63 |
+
transposed: bool
|
64 |
+
output_padding: Tuple[int, ...]
|
65 |
+
groups: int
|
66 |
+
padding_mode: str
|
67 |
+
weight: Tensor
|
68 |
+
bias: Optional[Tensor]
|
69 |
+
|
70 |
+
def __init__(self,
|
71 |
+
in_channels: int,
|
72 |
+
out_channels: int,
|
73 |
+
kernel_size: Tuple[int, ...],
|
74 |
+
stride: Tuple[int, ...],
|
75 |
+
padding: Tuple[int, ...],
|
76 |
+
dilation: Tuple[int, ...],
|
77 |
+
transposed: bool,
|
78 |
+
output_padding: Tuple[int, ...],
|
79 |
+
groups: int,
|
80 |
+
bias: bool,
|
81 |
+
padding_mode: str,
|
82 |
+
device=None,
|
83 |
+
dtype=None) -> None:
|
84 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
85 |
+
super().__init__()
|
86 |
+
if groups <= 0:
|
87 |
+
raise ValueError('groups must be a positive integer')
|
88 |
+
if in_channels % groups != 0:
|
89 |
+
raise ValueError('in_channels must be divisible by groups')
|
90 |
+
if out_channels % groups != 0:
|
91 |
+
raise ValueError('out_channels must be divisible by groups')
|
92 |
+
valid_padding_strings = {'same', 'valid'}
|
93 |
+
if isinstance(padding, str):
|
94 |
+
if padding not in valid_padding_strings:
|
95 |
+
raise ValueError(
|
96 |
+
f"Invalid padding string {padding!r}, should be one of {valid_padding_strings}")
|
97 |
+
if padding == 'same' and any(s != 1 for s in stride):
|
98 |
+
raise ValueError("padding='same' is not supported for strided convolutions")
|
99 |
+
|
100 |
+
valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
|
101 |
+
if padding_mode not in valid_padding_modes:
|
102 |
+
raise ValueError(f"padding_mode must be one of {valid_padding_modes}, but got padding_mode='{padding_mode}'")
|
103 |
+
self.in_channels = in_channels
|
104 |
+
self.out_channels = out_channels
|
105 |
+
self.kernel_size = kernel_size
|
106 |
+
self.stride = stride
|
107 |
+
self.padding = padding
|
108 |
+
self.dilation = dilation
|
109 |
+
self.transposed = transposed
|
110 |
+
self.output_padding = output_padding
|
111 |
+
self.groups = groups
|
112 |
+
self.padding_mode = padding_mode
|
113 |
+
# `_reversed_padding_repeated_twice` is the padding to be passed to
|
114 |
+
# `F.pad` if needed (e.g., for non-zero padding types that are
|
115 |
+
# implemented as two ops: padding + conv). `F.pad` accepts paddings in
|
116 |
+
# reverse order than the dimension.
|
117 |
+
if isinstance(self.padding, str):
|
118 |
+
self._reversed_padding_repeated_twice = [0, 0] * len(kernel_size)
|
119 |
+
if padding == 'same':
|
120 |
+
for d, k, i in zip(dilation, kernel_size,
|
121 |
+
range(len(kernel_size) - 1, -1, -1)):
|
122 |
+
total_padding = d * (k - 1)
|
123 |
+
left_pad = total_padding // 2
|
124 |
+
self._reversed_padding_repeated_twice[2 * i] = left_pad
|
125 |
+
self._reversed_padding_repeated_twice[2 * i + 1] = (
|
126 |
+
total_padding - left_pad)
|
127 |
+
else:
|
128 |
+
self._reversed_padding_repeated_twice = _reverse_repeat_tuple(self.padding, 2)
|
129 |
+
|
130 |
+
if transposed:
|
131 |
+
self.weight = Parameter(torch.empty(
|
132 |
+
(in_channels, out_channels // groups, *kernel_size), **factory_kwargs))
|
133 |
+
else:
|
134 |
+
self.weight = Parameter(torch.empty(
|
135 |
+
(out_channels, in_channels // groups, *kernel_size), **factory_kwargs))
|
136 |
+
if bias:
|
137 |
+
self.bias = Parameter(torch.empty(out_channels, **factory_kwargs))
|
138 |
+
else:
|
139 |
+
self.register_parameter('bias', None)
|
140 |
+
|
141 |
+
self.reset_parameters()
|
142 |
+
|
143 |
+
def reset_parameters(self) -> None:
|
144 |
+
# Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
|
145 |
+
# uniform(-1/sqrt(k), 1/sqrt(k)), where k = weight.size(1) * prod(*kernel_size)
|
146 |
+
# For more details see: https://github.com/pytorch/pytorch/issues/15314#issuecomment-477448573
|
147 |
+
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
148 |
+
if self.bias is not None:
|
149 |
+
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
|
150 |
+
if fan_in != 0:
|
151 |
+
bound = 1 / math.sqrt(fan_in)
|
152 |
+
init.uniform_(self.bias, -bound, bound)
|
153 |
+
|
154 |
+
def extra_repr(self):
|
155 |
+
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'
|
156 |
+
', stride={stride}')
|
157 |
+
if self.padding != (0,) * len(self.padding):
|
158 |
+
s += ', padding={padding}'
|
159 |
+
if self.dilation != (1,) * len(self.dilation):
|
160 |
+
s += ', dilation={dilation}'
|
161 |
+
if self.output_padding != (0,) * len(self.output_padding):
|
162 |
+
s += ', output_padding={output_padding}'
|
163 |
+
if self.groups != 1:
|
164 |
+
s += ', groups={groups}'
|
165 |
+
if self.bias is None:
|
166 |
+
s += ', bias=False'
|
167 |
+
if self.padding_mode != 'zeros':
|
168 |
+
s += ', padding_mode={padding_mode}'
|
169 |
+
return s.format(**self.__dict__)
|
170 |
+
|
171 |
+
def __setstate__(self, state):
|
172 |
+
super().__setstate__(state)
|
173 |
+
if not hasattr(self, 'padding_mode'):
|
174 |
+
self.padding_mode = 'zeros'
|
175 |
+
|
176 |
+
|
177 |
+
class Conv1d(_ConvNd):
|
178 |
+
__doc__ = r"""Applies a 1D convolution over an input signal composed of several input
|
179 |
+
planes.
|
180 |
+
|
181 |
+
In the simplest case, the output value of the layer with input size
|
182 |
+
:math:`(N, C_{\text{in}}, L)` and output :math:`(N, C_{\text{out}}, L_{\text{out}})` can be
|
183 |
+
precisely described as:
|
184 |
+
|
185 |
+
.. math::
|
186 |
+
\text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +
|
187 |
+
\sum_{k = 0}^{C_{in} - 1} \text{weight}(C_{\text{out}_j}, k)
|
188 |
+
\star \text{input}(N_i, k)
|
189 |
+
|
190 |
+
where :math:`\star` is the valid `cross-correlation`_ operator,
|
191 |
+
:math:`N` is a batch size, :math:`C` denotes a number of channels,
|
192 |
+
:math:`L` is a length of signal sequence.
|
193 |
+
""" + r"""
|
194 |
+
|
195 |
+
This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
|
196 |
+
|
197 |
+
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
|
198 |
+
|
199 |
+
* :attr:`stride` controls the stride for the cross-correlation, a single
|
200 |
+
number or a one-element tuple.
|
201 |
+
|
202 |
+
* :attr:`padding` controls the amount of padding applied to the input. It
|
203 |
+
can be either a string {{'valid', 'same'}} or a tuple of ints giving the
|
204 |
+
amount of implicit padding applied on both sides.
|
205 |
+
|
206 |
+
* :attr:`dilation` controls the spacing between the kernel points; also
|
207 |
+
known as the à trous algorithm. It is harder to describe, but this `link`_
|
208 |
+
has a nice visualization of what :attr:`dilation` does.
|
209 |
+
|
210 |
+
{groups_note}
|
211 |
+
|
212 |
+
Note:
|
213 |
+
{depthwise_separable_note}
|
214 |
+
Note:
|
215 |
+
{cudnn_reproducibility_note}
|
216 |
+
|
217 |
+
Note:
|
218 |
+
``padding='valid'`` is the same as no padding. ``padding='same'`` pads
|
219 |
+
the input so the output has the shape as the input. However, this mode
|
220 |
+
doesn't support any stride values other than 1.
|
221 |
+
|
222 |
+
Note:
|
223 |
+
This module supports complex data types i.e. ``complex32, complex64, complex128``.
|
224 |
+
|
225 |
+
Args:
|
226 |
+
in_channels (int): Number of channels in the input image
|
227 |
+
out_channels (int): Number of channels produced by the convolution
|
228 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
229 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
230 |
+
padding (int, tuple or str, optional): Padding added to both sides of
|
231 |
+
the input. Default: 0
|
232 |
+
padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
|
233 |
+
``'replicate'`` or ``'circular'``. Default: ``'zeros'``
|
234 |
+
dilation (int or tuple, optional): Spacing between kernel
|
235 |
+
elements. Default: 1
|
236 |
+
groups (int, optional): Number of blocked connections from input
|
237 |
+
channels to output channels. Default: 1
|
238 |
+
bias (bool, optional): If ``True``, adds a learnable bias to the
|
239 |
+
output. Default: ``True``
|
240 |
+
|
241 |
+
""".format(**reproducibility_notes, **convolution_notes) + r"""
|
242 |
+
|
243 |
+
Shape:
|
244 |
+
- Input: :math:`(N, C_{in}, L_{in})` or :math:`(C_{in}, L_{in})`
|
245 |
+
- Output: :math:`(N, C_{out}, L_{out})` or :math:`(C_{out}, L_{out})`, where
|
246 |
+
|
247 |
+
.. math::
|
248 |
+
L_{out} = \left\lfloor\frac{L_{in} + 2 \times \text{padding} - \text{dilation}
|
249 |
+
\times (\text{kernel\_size} - 1) - 1}{\text{stride}} + 1\right\rfloor
|
250 |
+
|
251 |
+
Attributes:
|
252 |
+
weight (Tensor): the learnable weights of the module of shape
|
253 |
+
:math:`(\text{out\_channels},
|
254 |
+
\frac{\text{in\_channels}}{\text{groups}}, \text{kernel\_size})`.
|
255 |
+
The values of these weights are sampled from
|
256 |
+
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
257 |
+
:math:`k = \frac{groups}{C_\text{in} * \text{kernel\_size}}`
|
258 |
+
bias (Tensor): the learnable bias of the module of shape
|
259 |
+
(out_channels). If :attr:`bias` is ``True``, then the values of these weights are
|
260 |
+
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
261 |
+
:math:`k = \frac{groups}{C_\text{in} * \text{kernel\_size}}`
|
262 |
+
|
263 |
+
Examples::
|
264 |
+
|
265 |
+
>>> m = nn.Conv1d(16, 33, 3, stride=2)
|
266 |
+
>>> input = torch.randn(20, 16, 50)
|
267 |
+
>>> output = m(input)
|
268 |
+
|
269 |
+
.. _cross-correlation:
|
270 |
+
https://en.wikipedia.org/wiki/Cross-correlation
|
271 |
+
|
272 |
+
.. _link:
|
273 |
+
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
|
274 |
+
"""
|
275 |
+
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
in_channels: int,
|
279 |
+
out_channels: int,
|
280 |
+
kernel_size: _size_1_t,
|
281 |
+
stride: _size_1_t = 1,
|
282 |
+
padding: Union[str, _size_1_t] = 0,
|
283 |
+
dilation: _size_1_t = 1,
|
284 |
+
groups: int = 1,
|
285 |
+
bias: bool = True,
|
286 |
+
padding_mode: str = 'zeros', # TODO: refine this type
|
287 |
+
device=None,
|
288 |
+
dtype=None
|
289 |
+
) -> None:
|
290 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
291 |
+
# we create new variables below to make mypy happy since kernel_size has
|
292 |
+
# type Union[int, Tuple[int]] and kernel_size_ has type Tuple[int]
|
293 |
+
kernel_size_ = _single(kernel_size)
|
294 |
+
stride_ = _single(stride)
|
295 |
+
padding_ = padding if isinstance(padding, str) else _single(padding)
|
296 |
+
dilation_ = _single(dilation)
|
297 |
+
super().__init__(
|
298 |
+
in_channels, out_channels, kernel_size_, stride_, padding_, dilation_,
|
299 |
+
False, _single(0), groups, bias, padding_mode, **factory_kwargs)
|
300 |
+
|
301 |
+
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
|
302 |
+
if self.padding_mode != 'zeros':
|
303 |
+
return F.conv1d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode),
|
304 |
+
weight, bias, self.stride,
|
305 |
+
_single(0), self.dilation, self.groups)
|
306 |
+
return F.conv1d(input, weight, bias, self.stride,
|
307 |
+
self.padding, self.dilation, self.groups)
|
308 |
+
|
309 |
+
def forward(self, input: Tensor) -> Tensor:
|
310 |
+
return self._conv_forward(input, self.weight, self.bias)
|
311 |
+
|
312 |
+
|
313 |
+
class Conv2d(_ConvNd):
|
314 |
+
__doc__ = r"""Applies a 2D convolution over an input signal composed of several input
|
315 |
+
planes.
|
316 |
+
|
317 |
+
In the simplest case, the output value of the layer with input size
|
318 |
+
:math:`(N, C_{\text{in}}, H, W)` and output :math:`(N, C_{\text{out}}, H_{\text{out}}, W_{\text{out}})`
|
319 |
+
can be precisely described as:
|
320 |
+
|
321 |
+
.. math::
|
322 |
+
\text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +
|
323 |
+
\sum_{k = 0}^{C_{\text{in}} - 1} \text{weight}(C_{\text{out}_j}, k) \star \text{input}(N_i, k)
|
324 |
+
|
325 |
+
|
326 |
+
where :math:`\star` is the valid 2D `cross-correlation`_ operator,
|
327 |
+
:math:`N` is a batch size, :math:`C` denotes a number of channels,
|
328 |
+
:math:`H` is a height of input planes in pixels, and :math:`W` is
|
329 |
+
width in pixels.
|
330 |
+
""" + r"""
|
331 |
+
|
332 |
+
This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
|
333 |
+
|
334 |
+
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
|
335 |
+
|
336 |
+
* :attr:`stride` controls the stride for the cross-correlation, a single
|
337 |
+
number or a tuple.
|
338 |
+
|
339 |
+
* :attr:`padding` controls the amount of padding applied to the input. It
|
340 |
+
can be either a string {{'valid', 'same'}} or an int / a tuple of ints giving the
|
341 |
+
amount of implicit padding applied on both sides.
|
342 |
+
|
343 |
+
* :attr:`dilation` controls the spacing between the kernel points; also
|
344 |
+
known as the à trous algorithm. It is harder to describe, but this `link`_
|
345 |
+
has a nice visualization of what :attr:`dilation` does.
|
346 |
+
|
347 |
+
{groups_note}
|
348 |
+
|
349 |
+
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:
|
350 |
+
|
351 |
+
- a single ``int`` -- in which case the same value is used for the height and width dimension
|
352 |
+
- a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
|
353 |
+
and the second `int` for the width dimension
|
354 |
+
|
355 |
+
Note:
|
356 |
+
{depthwise_separable_note}
|
357 |
+
|
358 |
+
Note:
|
359 |
+
{cudnn_reproducibility_note}
|
360 |
+
|
361 |
+
Note:
|
362 |
+
``padding='valid'`` is the same as no padding. ``padding='same'`` pads
|
363 |
+
the input so the output has the shape as the input. However, this mode
|
364 |
+
doesn't support any stride values other than 1.
|
365 |
+
|
366 |
+
Note:
|
367 |
+
This module supports complex data types i.e. ``complex32, complex64, complex128``.
|
368 |
+
|
369 |
+
Args:
|
370 |
+
in_channels (int): Number of channels in the input image
|
371 |
+
out_channels (int): Number of channels produced by the convolution
|
372 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
373 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
374 |
+
padding (int, tuple or str, optional): Padding added to all four sides of
|
375 |
+
the input. Default: 0
|
376 |
+
padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
|
377 |
+
``'replicate'`` or ``'circular'``. Default: ``'zeros'``
|
378 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
379 |
+
groups (int, optional): Number of blocked connections from input
|
380 |
+
channels to output channels. Default: 1
|
381 |
+
bias (bool, optional): If ``True``, adds a learnable bias to the
|
382 |
+
output. Default: ``True``
|
383 |
+
""".format(**reproducibility_notes, **convolution_notes) + r"""
|
384 |
+
|
385 |
+
Shape:
|
386 |
+
- Input: :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})`
|
387 |
+
- Output: :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out}, H_{out}, W_{out})`, where
|
388 |
+
|
389 |
+
.. math::
|
390 |
+
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[0] - \text{dilation}[0]
|
391 |
+
\times (\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor
|
392 |
+
|
393 |
+
.. math::
|
394 |
+
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[1] - \text{dilation}[1]
|
395 |
+
\times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor
|
396 |
+
|
397 |
+
Attributes:
|
398 |
+
weight (Tensor): the learnable weights of the module of shape
|
399 |
+
:math:`(\text{out\_channels}, \frac{\text{in\_channels}}{\text{groups}},`
|
400 |
+
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]})`.
|
401 |
+
The values of these weights are sampled from
|
402 |
+
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
403 |
+
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`
|
404 |
+
bias (Tensor): the learnable bias of the module of shape
|
405 |
+
(out_channels). If :attr:`bias` is ``True``,
|
406 |
+
then the values of these weights are
|
407 |
+
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
408 |
+
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`
|
409 |
+
|
410 |
+
Examples:
|
411 |
+
|
412 |
+
>>> # With square kernels and equal stride
|
413 |
+
>>> m = nn.Conv2d(16, 33, 3, stride=2)
|
414 |
+
>>> # non-square kernels and unequal stride and with padding
|
415 |
+
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
|
416 |
+
>>> # non-square kernels and unequal stride and with padding and dilation
|
417 |
+
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
|
418 |
+
>>> input = torch.randn(20, 16, 50, 100)
|
419 |
+
>>> output = m(input)
|
420 |
+
|
421 |
+
.. _cross-correlation:
|
422 |
+
https://en.wikipedia.org/wiki/Cross-correlation
|
423 |
+
|
424 |
+
.. _link:
|
425 |
+
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
|
426 |
+
"""
|
427 |
+
|
428 |
+
def __init__(
|
429 |
+
self,
|
430 |
+
in_channels: int,
|
431 |
+
out_channels: int,
|
432 |
+
kernel_size: _size_2_t,
|
433 |
+
stride: _size_2_t = 1,
|
434 |
+
padding: Union[str, _size_2_t] = 0,
|
435 |
+
dilation: _size_2_t = 1,
|
436 |
+
groups: int = 1,
|
437 |
+
bias: bool = True,
|
438 |
+
padding_mode: str = 'zeros', # TODO: refine this type
|
439 |
+
device=None,
|
440 |
+
dtype=None
|
441 |
+
) -> None:
|
442 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
443 |
+
kernel_size_ = _pair(kernel_size)
|
444 |
+
stride_ = _pair(stride)
|
445 |
+
padding_ = padding if isinstance(padding, str) else _pair(padding)
|
446 |
+
dilation_ = _pair(dilation)
|
447 |
+
super().__init__(
|
448 |
+
in_channels, out_channels, kernel_size_, stride_, padding_, dilation_,
|
449 |
+
False, _pair(0), groups, bias, padding_mode, **factory_kwargs)
|
450 |
+
|
451 |
+
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
|
452 |
+
if self.padding_mode != 'zeros':
|
453 |
+
return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode),
|
454 |
+
weight, bias, self.stride,
|
455 |
+
_pair(0), self.dilation, self.groups)
|
456 |
+
return F.conv2d(input, weight, bias, self.stride,
|
457 |
+
self.padding, self.dilation, self.groups)
|
458 |
+
|
459 |
+
def forward(self, input: Tensor) -> Tensor:
|
460 |
+
return self._conv_forward(input, self.weight, self.bias)
|
461 |
+
|
462 |
+
class Conv3d(_ConvNd):
|
463 |
+
__doc__ = r"""Applies a 3D convolution over an input signal composed of several input
|
464 |
+
planes.
|
465 |
+
|
466 |
+
In the simplest case, the output value of the layer with input size :math:`(N, C_{in}, D, H, W)`
|
467 |
+
and output :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` can be precisely described as:
|
468 |
+
|
469 |
+
.. math::
|
470 |
+
out(N_i, C_{out_j}) = bias(C_{out_j}) +
|
471 |
+
\sum_{k = 0}^{C_{in} - 1} weight(C_{out_j}, k) \star input(N_i, k)
|
472 |
+
|
473 |
+
where :math:`\star` is the valid 3D `cross-correlation`_ operator
|
474 |
+
""" + r"""
|
475 |
+
|
476 |
+
This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
|
477 |
+
|
478 |
+
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
|
479 |
+
|
480 |
+
* :attr:`stride` controls the stride for the cross-correlation.
|
481 |
+
|
482 |
+
* :attr:`padding` controls the amount of padding applied to the input. It
|
483 |
+
can be either a string {{'valid', 'same'}} or a tuple of ints giving the
|
484 |
+
amount of implicit padding applied on both sides.
|
485 |
+
|
486 |
+
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
|
487 |
+
It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does.
|
488 |
+
|
489 |
+
{groups_note}
|
490 |
+
|
491 |
+
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:
|
492 |
+
|
493 |
+
- a single ``int`` -- in which case the same value is used for the depth, height and width dimension
|
494 |
+
- a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension,
|
495 |
+
the second `int` for the height dimension and the third `int` for the width dimension
|
496 |
+
|
497 |
+
Note:
|
498 |
+
{depthwise_separable_note}
|
499 |
+
|
500 |
+
Note:
|
501 |
+
{cudnn_reproducibility_note}
|
502 |
+
|
503 |
+
Note:
|
504 |
+
``padding='valid'`` is the same as no padding. ``padding='same'`` pads
|
505 |
+
the input so the output has the shape as the input. However, this mode
|
506 |
+
doesn't support any stride values other than 1.
|
507 |
+
|
508 |
+
Note:
|
509 |
+
This module supports complex data types i.e. ``complex32, complex64, complex128``.
|
510 |
+
|
511 |
+
Args:
|
512 |
+
in_channels (int): Number of channels in the input image
|
513 |
+
out_channels (int): Number of channels produced by the convolution
|
514 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
515 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
516 |
+
padding (int, tuple or str, optional): Padding added to all six sides of
|
517 |
+
the input. Default: 0
|
518 |
+
padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``
|
519 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
520 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
521 |
+
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
|
522 |
+
""".format(**reproducibility_notes, **convolution_notes) + r"""
|
523 |
+
|
524 |
+
Shape:
|
525 |
+
- Input: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` or :math:`(C_{in}, D_{in}, H_{in}, W_{in})`
|
526 |
+
- Output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` or :math:`(C_{out}, D_{out}, H_{out}, W_{out})`,
|
527 |
+
where
|
528 |
+
|
529 |
+
.. math::
|
530 |
+
D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0]
|
531 |
+
\times (\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor
|
532 |
+
|
533 |
+
.. math::
|
534 |
+
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1]
|
535 |
+
\times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor
|
536 |
+
|
537 |
+
.. math::
|
538 |
+
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2]
|
539 |
+
\times (\text{kernel\_size}[2] - 1) - 1}{\text{stride}[2]} + 1\right\rfloor
|
540 |
+
|
541 |
+
Attributes:
|
542 |
+
weight (Tensor): the learnable weights of the module of shape
|
543 |
+
:math:`(\text{out\_channels}, \frac{\text{in\_channels}}{\text{groups}},`
|
544 |
+
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]}, \text{kernel\_size[2]})`.
|
545 |
+
The values of these weights are sampled from
|
546 |
+
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
547 |
+
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`
|
548 |
+
bias (Tensor): the learnable bias of the module of shape (out_channels). If :attr:`bias` is ``True``,
|
549 |
+
then the values of these weights are
|
550 |
+
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
551 |
+
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`
|
552 |
+
|
553 |
+
Examples::
|
554 |
+
|
555 |
+
>>> # With square kernels and equal stride
|
556 |
+
>>> m = nn.Conv3d(16, 33, 3, stride=2)
|
557 |
+
>>> # non-square kernels and unequal stride and with padding
|
558 |
+
>>> m = nn.Conv3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0))
|
559 |
+
>>> input = torch.randn(20, 16, 10, 50, 100)
|
560 |
+
>>> output = m(input)
|
561 |
+
|
562 |
+
.. _cross-correlation:
|
563 |
+
https://en.wikipedia.org/wiki/Cross-correlation
|
564 |
+
|
565 |
+
.. _link:
|
566 |
+
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
|
567 |
+
"""
|
568 |
+
|
569 |
+
def __init__(
|
570 |
+
self,
|
571 |
+
in_channels: int,
|
572 |
+
out_channels: int,
|
573 |
+
kernel_size: _size_3_t,
|
574 |
+
stride: _size_3_t = 1,
|
575 |
+
padding: Union[str, _size_3_t] = 0,
|
576 |
+
dilation: _size_3_t = 1,
|
577 |
+
groups: int = 1,
|
578 |
+
bias: bool = True,
|
579 |
+
padding_mode: str = 'zeros',
|
580 |
+
device=None,
|
581 |
+
dtype=None
|
582 |
+
) -> None:
|
583 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
584 |
+
kernel_size_ = _triple(kernel_size)
|
585 |
+
stride_ = _triple(stride)
|
586 |
+
padding_ = padding if isinstance(padding, str) else _triple(padding)
|
587 |
+
dilation_ = _triple(dilation)
|
588 |
+
super().__init__(
|
589 |
+
in_channels, out_channels, kernel_size_, stride_, padding_, dilation_,
|
590 |
+
False, _triple(0), groups, bias, padding_mode, **factory_kwargs)
|
591 |
+
|
592 |
+
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
|
593 |
+
if self.padding_mode != "zeros":
|
594 |
+
return F.conv3d(
|
595 |
+
F.pad(
|
596 |
+
input, self._reversed_padding_repeated_twice, mode=self.padding_mode
|
597 |
+
),
|
598 |
+
weight,
|
599 |
+
bias,
|
600 |
+
self.stride,
|
601 |
+
_triple(0),
|
602 |
+
self.dilation,
|
603 |
+
self.groups,
|
604 |
+
)
|
605 |
+
return F.conv3d(
|
606 |
+
input, weight, bias, self.stride, self.padding, self.dilation, self.groups
|
607 |
+
)
|
608 |
+
|
609 |
+
def forward(self, input: Tensor) -> Tensor:
|
610 |
+
return self._conv_forward(input, self.weight, self.bias)
|
611 |
+
|
612 |
+
|
613 |
+
|
614 |
+
class _ConvTransposeNd(_ConvNd):
|
615 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride,
|
616 |
+
padding, dilation, transposed, output_padding,
|
617 |
+
groups, bias, padding_mode, device=None, dtype=None) -> None:
|
618 |
+
if padding_mode != 'zeros':
|
619 |
+
raise ValueError(f'Only "zeros" padding mode is supported for {self.__class__.__name__}')
|
620 |
+
|
621 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
622 |
+
super().__init__(
|
623 |
+
in_channels, out_channels, kernel_size, stride,
|
624 |
+
padding, dilation, transposed, output_padding,
|
625 |
+
groups, bias, padding_mode, **factory_kwargs)
|
626 |
+
|
627 |
+
# dilation being an optional parameter is for backwards
|
628 |
+
# compatibility
|
629 |
+
def _output_padding(self, input: Tensor, output_size: Optional[List[int]],
|
630 |
+
stride: List[int], padding: List[int], kernel_size: List[int],
|
631 |
+
num_spatial_dims: int, dilation: Optional[List[int]] = None) -> List[int]:
|
632 |
+
if output_size is None:
|
633 |
+
ret = _single(self.output_padding) # converting to list if was not already
|
634 |
+
else:
|
635 |
+
has_batch_dim = input.dim() == num_spatial_dims + 2
|
636 |
+
num_non_spatial_dims = 2 if has_batch_dim else 1
|
637 |
+
if len(output_size) == num_non_spatial_dims + num_spatial_dims:
|
638 |
+
output_size = output_size[num_non_spatial_dims:]
|
639 |
+
if len(output_size) != num_spatial_dims:
|
640 |
+
raise ValueError(
|
641 |
+
"ConvTranspose{}D: for {}D input, output_size must have {} or {} elements (got {})"
|
642 |
+
.format(num_spatial_dims, input.dim(), num_spatial_dims,
|
643 |
+
num_non_spatial_dims + num_spatial_dims, len(output_size)))
|
644 |
+
|
645 |
+
min_sizes = torch.jit.annotate(List[int], [])
|
646 |
+
max_sizes = torch.jit.annotate(List[int], [])
|
647 |
+
for d in range(num_spatial_dims):
|
648 |
+
dim_size = ((input.size(d + num_non_spatial_dims) - 1) * stride[d] -
|
649 |
+
2 * padding[d] +
|
650 |
+
(dilation[d] if dilation is not None else 1) * (kernel_size[d] - 1) + 1)
|
651 |
+
min_sizes.append(dim_size)
|
652 |
+
max_sizes.append(min_sizes[d] + stride[d] - 1)
|
653 |
+
|
654 |
+
for i in range(len(output_size)):
|
655 |
+
size = output_size[i]
|
656 |
+
min_size = min_sizes[i]
|
657 |
+
max_size = max_sizes[i]
|
658 |
+
if size < min_size or size > max_size:
|
659 |
+
raise ValueError(
|
660 |
+
f"requested an output size of {output_size}, but valid sizes range "
|
661 |
+
f"from {min_sizes} to {max_sizes} (for an input of {input.size()[2:]})")
|
662 |
+
|
663 |
+
res = torch.jit.annotate(List[int], [])
|
664 |
+
for d in range(num_spatial_dims):
|
665 |
+
res.append(output_size[d] - min_sizes[d])
|
666 |
+
|
667 |
+
ret = res
|
668 |
+
return ret
|
669 |
+
|
670 |
+
|
671 |
+
class ConvTranspose1d(_ConvTransposeNd):
|
672 |
+
__doc__ = r"""Applies a 1D transposed convolution operator over an input image
|
673 |
+
composed of several input planes.
|
674 |
+
|
675 |
+
This module can be seen as the gradient of Conv1d with respect to its input.
|
676 |
+
It is also known as a fractionally-strided convolution or
|
677 |
+
a deconvolution (although it is not an actual deconvolution operation as it does
|
678 |
+
not compute a true inverse of convolution). For more information, see the visualizations
|
679 |
+
`here`_ and the `Deconvolutional Networks`_ paper.
|
680 |
+
|
681 |
+
This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
|
682 |
+
|
683 |
+
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
|
684 |
+
|
685 |
+
* :attr:`stride` controls the stride for the cross-correlation.
|
686 |
+
|
687 |
+
* :attr:`padding` controls the amount of implicit zero padding on both
|
688 |
+
sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note
|
689 |
+
below for details.
|
690 |
+
|
691 |
+
* :attr:`output_padding` controls the additional size added to one side
|
692 |
+
of the output shape. See note below for details.
|
693 |
+
|
694 |
+
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
|
695 |
+
It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does.
|
696 |
+
|
697 |
+
{groups_note}
|
698 |
+
|
699 |
+
Note:
|
700 |
+
The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding``
|
701 |
+
amount of zero padding to both sizes of the input. This is set so that
|
702 |
+
when a :class:`~torch.nn.Conv1d` and a :class:`~torch.nn.ConvTranspose1d`
|
703 |
+
are initialized with same parameters, they are inverses of each other in
|
704 |
+
regard to the input and output shapes. However, when ``stride > 1``,
|
705 |
+
:class:`~torch.nn.Conv1d` maps multiple input shapes to the same output
|
706 |
+
shape. :attr:`output_padding` is provided to resolve this ambiguity by
|
707 |
+
effectively increasing the calculated output shape on one side. Note
|
708 |
+
that :attr:`output_padding` is only used to find output shape, but does
|
709 |
+
not actually add zero-padding to output.
|
710 |
+
|
711 |
+
Note:
|
712 |
+
In some circumstances when using the CUDA backend with CuDNN, this operator
|
713 |
+
may select a nondeterministic algorithm to increase performance. If this is
|
714 |
+
undesirable, you can try to make the operation deterministic (potentially at
|
715 |
+
a performance cost) by setting ``torch.backends.cudnn.deterministic =
|
716 |
+
True``.
|
717 |
+
Please see the notes on :doc:`/notes/randomness` for background.
|
718 |
+
|
719 |
+
|
720 |
+
Args:
|
721 |
+
in_channels (int): Number of channels in the input image
|
722 |
+
out_channels (int): Number of channels produced by the convolution
|
723 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
724 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
725 |
+
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
|
726 |
+
will be added to both sides of the input. Default: 0
|
727 |
+
output_padding (int or tuple, optional): Additional size added to one side
|
728 |
+
of the output shape. Default: 0
|
729 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
730 |
+
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
|
731 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
732 |
+
""".format(**reproducibility_notes, **convolution_notes) + r"""
|
733 |
+
|
734 |
+
Shape:
|
735 |
+
- Input: :math:`(N, C_{in}, L_{in})` or :math:`(C_{in}, L_{in})`
|
736 |
+
- Output: :math:`(N, C_{out}, L_{out})` or :math:`(C_{out}, L_{out})`, where
|
737 |
+
|
738 |
+
.. math::
|
739 |
+
L_{out} = (L_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation}
|
740 |
+
\times (\text{kernel\_size} - 1) + \text{output\_padding} + 1
|
741 |
+
|
742 |
+
Attributes:
|
743 |
+
weight (Tensor): the learnable weights of the module of shape
|
744 |
+
:math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},`
|
745 |
+
:math:`\text{kernel\_size})`.
|
746 |
+
The values of these weights are sampled from
|
747 |
+
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
748 |
+
:math:`k = \frac{groups}{C_\text{out} * \text{kernel\_size}}`
|
749 |
+
bias (Tensor): the learnable bias of the module of shape (out_channels).
|
750 |
+
If :attr:`bias` is ``True``, then the values of these weights are
|
751 |
+
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
752 |
+
:math:`k = \frac{groups}{C_\text{out} * \text{kernel\_size}}`
|
753 |
+
|
754 |
+
.. _`here`:
|
755 |
+
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
|
756 |
+
|
757 |
+
.. _`Deconvolutional Networks`:
|
758 |
+
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf
|
759 |
+
"""
|
760 |
+
|
761 |
+
def __init__(
|
762 |
+
self,
|
763 |
+
in_channels: int,
|
764 |
+
out_channels: int,
|
765 |
+
kernel_size: _size_1_t,
|
766 |
+
stride: _size_1_t = 1,
|
767 |
+
padding: _size_1_t = 0,
|
768 |
+
output_padding: _size_1_t = 0,
|
769 |
+
groups: int = 1,
|
770 |
+
bias: bool = True,
|
771 |
+
dilation: _size_1_t = 1,
|
772 |
+
padding_mode: str = 'zeros',
|
773 |
+
device=None,
|
774 |
+
dtype=None
|
775 |
+
) -> None:
|
776 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
777 |
+
kernel_size = _single(kernel_size)
|
778 |
+
stride = _single(stride)
|
779 |
+
padding = _single(padding)
|
780 |
+
dilation = _single(dilation)
|
781 |
+
output_padding = _single(output_padding)
|
782 |
+
super().__init__(
|
783 |
+
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
784 |
+
True, output_padding, groups, bias, padding_mode, **factory_kwargs)
|
785 |
+
|
786 |
+
def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor:
|
787 |
+
if self.padding_mode != 'zeros':
|
788 |
+
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose1d')
|
789 |
+
|
790 |
+
assert isinstance(self.padding, tuple)
|
791 |
+
# One cannot replace List by Tuple or Sequence in "_output_padding" because
|
792 |
+
# TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
|
793 |
+
num_spatial_dims = 1
|
794 |
+
output_padding = self._output_padding(
|
795 |
+
input, output_size, self.stride, self.padding, self.kernel_size, # type: ignore[arg-type]
|
796 |
+
num_spatial_dims, self.dilation) # type: ignore[arg-type]
|
797 |
+
return F.conv_transpose1d(
|
798 |
+
input, self.weight, self.bias, self.stride, self.padding,
|
799 |
+
output_padding, self.groups, self.dilation)
|
800 |
+
|
801 |
+
|
802 |
+
class ConvTranspose2d(_ConvTransposeNd):
|
803 |
+
__doc__ = r"""Applies a 2D transposed convolution operator over an input image
|
804 |
+
composed of several input planes.
|
805 |
+
|
806 |
+
This module can be seen as the gradient of Conv2d with respect to its input.
|
807 |
+
It is also known as a fractionally-strided convolution or
|
808 |
+
a deconvolution (although it is not an actual deconvolution operation as it does
|
809 |
+
not compute a true inverse of convolution). For more information, see the visualizations
|
810 |
+
`here`_ and the `Deconvolutional Networks`_ paper.
|
811 |
+
|
812 |
+
This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
|
813 |
+
|
814 |
+
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
|
815 |
+
|
816 |
+
* :attr:`stride` controls the stride for the cross-correlation.
|
817 |
+
|
818 |
+
* :attr:`padding` controls the amount of implicit zero padding on both
|
819 |
+
sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note
|
820 |
+
below for details.
|
821 |
+
|
822 |
+
* :attr:`output_padding` controls the additional size added to one side
|
823 |
+
of the output shape. See note below for details.
|
824 |
+
|
825 |
+
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
|
826 |
+
It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does.
|
827 |
+
|
828 |
+
{groups_note}
|
829 |
+
|
830 |
+
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding`
|
831 |
+
can either be:
|
832 |
+
|
833 |
+
- a single ``int`` -- in which case the same value is used for the height and width dimensions
|
834 |
+
- a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
|
835 |
+
and the second `int` for the width dimension
|
836 |
+
|
837 |
+
Note:
|
838 |
+
The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding``
|
839 |
+
amount of zero padding to both sizes of the input. This is set so that
|
840 |
+
when a :class:`~torch.nn.Conv2d` and a :class:`~torch.nn.ConvTranspose2d`
|
841 |
+
are initialized with same parameters, they are inverses of each other in
|
842 |
+
regard to the input and output shapes. However, when ``stride > 1``,
|
843 |
+
:class:`~torch.nn.Conv2d` maps multiple input shapes to the same output
|
844 |
+
shape. :attr:`output_padding` is provided to resolve this ambiguity by
|
845 |
+
effectively increasing the calculated output shape on one side. Note
|
846 |
+
that :attr:`output_padding` is only used to find output shape, but does
|
847 |
+
not actually add zero-padding to output.
|
848 |
+
|
849 |
+
Note:
|
850 |
+
{cudnn_reproducibility_note}
|
851 |
+
|
852 |
+
Args:
|
853 |
+
in_channels (int): Number of channels in the input image
|
854 |
+
out_channels (int): Number of channels produced by the convolution
|
855 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
856 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
857 |
+
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
|
858 |
+
will be added to both sides of each dimension in the input. Default: 0
|
859 |
+
output_padding (int or tuple, optional): Additional size added to one side
|
860 |
+
of each dimension in the output shape. Default: 0
|
861 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
862 |
+
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
|
863 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
864 |
+
""".format(**reproducibility_notes, **convolution_notes) + r"""
|
865 |
+
|
866 |
+
Shape:
|
867 |
+
- Input: :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})`
|
868 |
+
- Output: :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out}, H_{out}, W_{out})`, where
|
869 |
+
|
870 |
+
.. math::
|
871 |
+
H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0]
|
872 |
+
\times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1
|
873 |
+
.. math::
|
874 |
+
W_{out} = (W_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1]
|
875 |
+
\times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1
|
876 |
+
|
877 |
+
Attributes:
|
878 |
+
weight (Tensor): the learnable weights of the module of shape
|
879 |
+
:math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},`
|
880 |
+
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]})`.
|
881 |
+
The values of these weights are sampled from
|
882 |
+
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
883 |
+
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`
|
884 |
+
bias (Tensor): the learnable bias of the module of shape (out_channels)
|
885 |
+
If :attr:`bias` is ``True``, then the values of these weights are
|
886 |
+
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
887 |
+
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`
|
888 |
+
|
889 |
+
Examples::
|
890 |
+
|
891 |
+
>>> # With square kernels and equal stride
|
892 |
+
>>> m = nn.ConvTranspose2d(16, 33, 3, stride=2)
|
893 |
+
>>> # non-square kernels and unequal stride and with padding
|
894 |
+
>>> m = nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
|
895 |
+
>>> input = torch.randn(20, 16, 50, 100)
|
896 |
+
>>> output = m(input)
|
897 |
+
>>> # exact output size can be also specified as an argument
|
898 |
+
>>> input = torch.randn(1, 16, 12, 12)
|
899 |
+
>>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1)
|
900 |
+
>>> upsample = nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1)
|
901 |
+
>>> h = downsample(input)
|
902 |
+
>>> h.size()
|
903 |
+
torch.Size([1, 16, 6, 6])
|
904 |
+
>>> output = upsample(h, output_size=input.size())
|
905 |
+
>>> output.size()
|
906 |
+
torch.Size([1, 16, 12, 12])
|
907 |
+
|
908 |
+
.. _`here`:
|
909 |
+
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
|
910 |
+
|
911 |
+
.. _`Deconvolutional Networks`:
|
912 |
+
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf
|
913 |
+
"""
|
914 |
+
|
915 |
+
def __init__(
|
916 |
+
self,
|
917 |
+
in_channels: int,
|
918 |
+
out_channels: int,
|
919 |
+
kernel_size: _size_2_t,
|
920 |
+
stride: _size_2_t = 1,
|
921 |
+
padding: _size_2_t = 0,
|
922 |
+
output_padding: _size_2_t = 0,
|
923 |
+
groups: int = 1,
|
924 |
+
bias: bool = True,
|
925 |
+
dilation: _size_2_t = 1,
|
926 |
+
padding_mode: str = 'zeros',
|
927 |
+
device=None,
|
928 |
+
dtype=None
|
929 |
+
) -> None:
|
930 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
931 |
+
kernel_size = _pair(kernel_size)
|
932 |
+
stride = _pair(stride)
|
933 |
+
padding = _pair(padding)
|
934 |
+
dilation = _pair(dilation)
|
935 |
+
output_padding = _pair(output_padding)
|
936 |
+
super().__init__(
|
937 |
+
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
938 |
+
True, output_padding, groups, bias, padding_mode, **factory_kwargs)
|
939 |
+
|
940 |
+
def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor:
|
941 |
+
if self.padding_mode != 'zeros':
|
942 |
+
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose2d')
|
943 |
+
|
944 |
+
assert isinstance(self.padding, tuple)
|
945 |
+
# One cannot replace List by Tuple or Sequence in "_output_padding" because
|
946 |
+
# TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
|
947 |
+
num_spatial_dims = 2
|
948 |
+
output_padding = self._output_padding(
|
949 |
+
input, output_size, self.stride, self.padding, self.kernel_size, # type: ignore[arg-type]
|
950 |
+
num_spatial_dims, self.dilation) # type: ignore[arg-type]
|
951 |
+
|
952 |
+
return F.conv_transpose2d(
|
953 |
+
input, self.weight, self.bias, self.stride, self.padding,
|
954 |
+
output_padding, self.groups, self.dilation)
|
955 |
+
|
956 |
+
|
957 |
+
class ConvTranspose3d(_ConvTransposeNd):
|
958 |
+
__doc__ = r"""Applies a 3D transposed convolution operator over an input image composed of several input
|
959 |
+
planes.
|
960 |
+
The transposed convolution operator multiplies each input value element-wise by a learnable kernel,
|
961 |
+
and sums over the outputs from all input feature planes.
|
962 |
+
|
963 |
+
This module can be seen as the gradient of Conv3d with respect to its input.
|
964 |
+
It is also known as a fractionally-strided convolution or
|
965 |
+
a deconvolution (although it is not an actual deconvolution operation as it does
|
966 |
+
not compute a true inverse of convolution). For more information, see the visualizations
|
967 |
+
`here`_ and the `Deconvolutional Networks`_ paper.
|
968 |
+
|
969 |
+
This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
|
970 |
+
|
971 |
+
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
|
972 |
+
|
973 |
+
* :attr:`stride` controls the stride for the cross-correlation.
|
974 |
+
|
975 |
+
* :attr:`padding` controls the amount of implicit zero padding on both
|
976 |
+
sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note
|
977 |
+
below for details.
|
978 |
+
|
979 |
+
* :attr:`output_padding` controls the additional size added to one side
|
980 |
+
of the output shape. See note below for details.
|
981 |
+
|
982 |
+
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
|
983 |
+
It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does.
|
984 |
+
|
985 |
+
{groups_note}
|
986 |
+
|
987 |
+
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding`
|
988 |
+
can either be:
|
989 |
+
|
990 |
+
- a single ``int`` -- in which case the same value is used for the depth, height and width dimensions
|
991 |
+
- a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension,
|
992 |
+
the second `int` for the height dimension and the third `int` for the width dimension
|
993 |
+
|
994 |
+
Note:
|
995 |
+
The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding``
|
996 |
+
amount of zero padding to both sizes of the input. This is set so that
|
997 |
+
when a :class:`~torch.nn.Conv3d` and a :class:`~torch.nn.ConvTranspose3d`
|
998 |
+
are initialized with same parameters, they are inverses of each other in
|
999 |
+
regard to the input and output shapes. However, when ``stride > 1``,
|
1000 |
+
:class:`~torch.nn.Conv3d` maps multiple input shapes to the same output
|
1001 |
+
shape. :attr:`output_padding` is provided to resolve this ambiguity by
|
1002 |
+
effectively increasing the calculated output shape on one side. Note
|
1003 |
+
that :attr:`output_padding` is only used to find output shape, but does
|
1004 |
+
not actually add zero-padding to output.
|
1005 |
+
|
1006 |
+
Note:
|
1007 |
+
{cudnn_reproducibility_note}
|
1008 |
+
|
1009 |
+
Args:
|
1010 |
+
in_channels (int): Number of channels in the input image
|
1011 |
+
out_channels (int): Number of channels produced by the convolution
|
1012 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
1013 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
1014 |
+
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
|
1015 |
+
will be added to both sides of each dimension in the input. Default: 0
|
1016 |
+
output_padding (int or tuple, optional): Additional size added to one side
|
1017 |
+
of each dimension in the output shape. Default: 0
|
1018 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
1019 |
+
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
|
1020 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
1021 |
+
""".format(**reproducibility_notes, **convolution_notes) + r"""
|
1022 |
+
|
1023 |
+
Shape:
|
1024 |
+
- Input: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` or :math:`(C_{in}, D_{in}, H_{in}, W_{in})`
|
1025 |
+
- Output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` or
|
1026 |
+
:math:`(C_{out}, D_{out}, H_{out}, W_{out})`, where
|
1027 |
+
|
1028 |
+
.. math::
|
1029 |
+
D_{out} = (D_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0]
|
1030 |
+
\times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1
|
1031 |
+
.. math::
|
1032 |
+
H_{out} = (H_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1]
|
1033 |
+
\times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1
|
1034 |
+
.. math::
|
1035 |
+
W_{out} = (W_{in} - 1) \times \text{stride}[2] - 2 \times \text{padding}[2] + \text{dilation}[2]
|
1036 |
+
\times (\text{kernel\_size}[2] - 1) + \text{output\_padding}[2] + 1
|
1037 |
+
|
1038 |
+
|
1039 |
+
Attributes:
|
1040 |
+
weight (Tensor): the learnable weights of the module of shape
|
1041 |
+
:math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},`
|
1042 |
+
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]}, \text{kernel\_size[2]})`.
|
1043 |
+
The values of these weights are sampled from
|
1044 |
+
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
1045 |
+
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`
|
1046 |
+
bias (Tensor): the learnable bias of the module of shape (out_channels)
|
1047 |
+
If :attr:`bias` is ``True``, then the values of these weights are
|
1048 |
+
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
1049 |
+
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`
|
1050 |
+
|
1051 |
+
Examples::
|
1052 |
+
|
1053 |
+
>>> # With square kernels and equal stride
|
1054 |
+
>>> m = nn.ConvTranspose3d(16, 33, 3, stride=2)
|
1055 |
+
>>> # non-square kernels and unequal stride and with padding
|
1056 |
+
>>> m = nn.ConvTranspose3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(0, 4, 2))
|
1057 |
+
>>> input = torch.randn(20, 16, 10, 50, 100)
|
1058 |
+
>>> output = m(input)
|
1059 |
+
|
1060 |
+
.. _`here`:
|
1061 |
+
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
|
1062 |
+
|
1063 |
+
.. _`Deconvolutional Networks`:
|
1064 |
+
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf
|
1065 |
+
"""
|
1066 |
+
|
1067 |
+
def __init__(
|
1068 |
+
self,
|
1069 |
+
in_channels: int,
|
1070 |
+
out_channels: int,
|
1071 |
+
kernel_size: _size_3_t,
|
1072 |
+
stride: _size_3_t = 1,
|
1073 |
+
padding: _size_3_t = 0,
|
1074 |
+
output_padding: _size_3_t = 0,
|
1075 |
+
groups: int = 1,
|
1076 |
+
bias: bool = True,
|
1077 |
+
dilation: _size_3_t = 1,
|
1078 |
+
padding_mode: str = 'zeros',
|
1079 |
+
device=None,
|
1080 |
+
dtype=None
|
1081 |
+
) -> None:
|
1082 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
1083 |
+
kernel_size = _triple(kernel_size)
|
1084 |
+
stride = _triple(stride)
|
1085 |
+
padding = _triple(padding)
|
1086 |
+
dilation = _triple(dilation)
|
1087 |
+
output_padding = _triple(output_padding)
|
1088 |
+
super().__init__(
|
1089 |
+
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
1090 |
+
True, output_padding, groups, bias, padding_mode, **factory_kwargs)
|
1091 |
+
|
1092 |
+
def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor:
|
1093 |
+
if self.padding_mode != 'zeros':
|
1094 |
+
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose3d')
|
1095 |
+
|
1096 |
+
assert isinstance(self.padding, tuple)
|
1097 |
+
# One cannot replace List by Tuple or Sequence in "_output_padding" because
|
1098 |
+
# TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
|
1099 |
+
num_spatial_dims = 3
|
1100 |
+
output_padding = self._output_padding(
|
1101 |
+
input, output_size, self.stride, self.padding, self.kernel_size, # type: ignore[arg-type]
|
1102 |
+
num_spatial_dims, self.dilation) # type: ignore[arg-type]
|
1103 |
+
|
1104 |
+
return F.conv_transpose3d(
|
1105 |
+
input, self.weight, self.bias, self.stride, self.padding,
|
1106 |
+
output_padding, self.groups, self.dilation)
|
1107 |
+
|
1108 |
+
|
1109 |
+
# TODO: Deprecate and remove the following alias `_ConvTransposeMixin`.
|
1110 |
+
#
|
1111 |
+
# `_ConvTransposeMixin` was a mixin that was removed. It is meant to be used
|
1112 |
+
# with `_ConvNd` to construct actual module classes that implements conv
|
1113 |
+
# transpose ops:
|
1114 |
+
#
|
1115 |
+
# class MyConvTranspose(_ConvNd, _ConvTransposeMixin):
|
1116 |
+
# ...
|
1117 |
+
#
|
1118 |
+
# In PyTorch, it has been replaced by `_ConvTransposeNd`, which is a proper
|
1119 |
+
# subclass of `_ConvNd`. However, some user code in the wild still (incorrectly)
|
1120 |
+
# use the internal class `_ConvTransposeMixin`. Hence, we provide this alias
|
1121 |
+
# for BC, because it is cheap and easy for us to do so, even though that
|
1122 |
+
# `_ConvTransposeNd` is really not a mixin anymore (but multiple inheritance as
|
1123 |
+
# above would still work).
|
1124 |
+
class _ConvTransposeMixin(_ConvTransposeNd):
|
1125 |
+
def __init__(self, *args, **kwargs):
|
1126 |
+
warnings.warn(
|
1127 |
+
"_ConvTransposeMixin is a deprecated internal class. "
|
1128 |
+
"Please consider using public APIs.")
|
1129 |
+
super().__init__(*args, **kwargs)
|
1130 |
+
|
1131 |
+
|
1132 |
+
# TODO: Conv2dLocal
|
1133 |
+
# TODO: Conv2dMap
|
1134 |
+
# TODO: ConvTranspose2dMap
|
1135 |
+
|
1136 |
+
|
1137 |
+
class _LazyConvXdMixin(LazyModuleMixin):
|
1138 |
+
groups: int
|
1139 |
+
transposed: bool
|
1140 |
+
in_channels: int
|
1141 |
+
out_channels: int
|
1142 |
+
kernel_size: Tuple[int, ...]
|
1143 |
+
weight: UninitializedParameter
|
1144 |
+
bias: UninitializedParameter
|
1145 |
+
|
1146 |
+
def reset_parameters(self) -> None:
|
1147 |
+
# has_uninitialized_params is defined in parent class and it is using a protocol on self
|
1148 |
+
if not self.has_uninitialized_params() and self.in_channels != 0: # type: ignore[misc]
|
1149 |
+
# "type:ignore[..]" is required because mypy thinks that "reset_parameters" is undefined
|
1150 |
+
# in super class. Turns out that it is defined in _ConvND which is inherited by any class
|
1151 |
+
# that also inherits _LazyConvXdMixin
|
1152 |
+
super().reset_parameters() # type: ignore[misc]
|
1153 |
+
|
1154 |
+
# Signature of "initialize_parameters" is incompatible with the definition in supertype LazyModuleMixin
|
1155 |
+
def initialize_parameters(self, input) -> None: # type: ignore[override]
|
1156 |
+
# defined by parent class but using a protocol
|
1157 |
+
if self.has_uninitialized_params(): # type: ignore[misc]
|
1158 |
+
self.in_channels = self._get_in_channels(input)
|
1159 |
+
if self.in_channels % self.groups != 0:
|
1160 |
+
raise ValueError('in_channels must be divisible by groups')
|
1161 |
+
assert isinstance(self.weight, UninitializedParameter)
|
1162 |
+
if self.transposed:
|
1163 |
+
self.weight.materialize((
|
1164 |
+
self.in_channels, self.out_channels // self.groups, *self.kernel_size))
|
1165 |
+
else:
|
1166 |
+
self.weight.materialize((
|
1167 |
+
self.out_channels, self.in_channels // self.groups, *self.kernel_size))
|
1168 |
+
if self.bias is not None:
|
1169 |
+
assert isinstance(self.bias, UninitializedParameter)
|
1170 |
+
self.bias.materialize((self.out_channels,))
|
1171 |
+
self.reset_parameters()
|
1172 |
+
|
1173 |
+
# Function to extract in_channels from first input.
|
1174 |
+
def _get_in_channels(self, input: Tensor) -> int:
|
1175 |
+
num_spatial_dims = self._get_num_spatial_dims()
|
1176 |
+
num_dims_no_batch = num_spatial_dims + 1 # +1 for channels dim
|
1177 |
+
num_dims_batch = num_dims_no_batch + 1
|
1178 |
+
if input.dim() not in (num_dims_no_batch, num_dims_batch):
|
1179 |
+
raise RuntimeError("Expected {}D (unbatched) or {}D (batched) input to {}, but "
|
1180 |
+
"got input of size: {}".format(num_dims_no_batch, num_dims_batch,
|
1181 |
+
self.__class__.__name__, input.shape))
|
1182 |
+
return input.shape[1] if input.dim() == num_dims_batch else input.shape[0]
|
1183 |
+
|
1184 |
+
# Function to return the number of spatial dims expected for inputs to the module.
|
1185 |
+
# This is expected to be implemented by subclasses.
|
1186 |
+
def _get_num_spatial_dims(self) -> int:
|
1187 |
+
raise NotImplementedError()
|
1188 |
+
|
1189 |
+
|
1190 |
+
# LazyConv1d defines weight as a Tensor but derived class defines it as UnitializeParameter
|
1191 |
+
class LazyConv1d(_LazyConvXdMixin, Conv1d): # type: ignore[misc]
|
1192 |
+
r"""A :class:`torch.nn.Conv1d` module with lazy initialization of the ``in_channels`` argument.
|
1193 |
+
|
1194 |
+
The ``in_channels`` argument of the :class:`Conv1d` is inferred from the ``input.size(1)``.
|
1195 |
+
The attributes that will be lazily initialized are `weight` and `bias`.
|
1196 |
+
|
1197 |
+
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
|
1198 |
+
on lazy modules and their limitations.
|
1199 |
+
|
1200 |
+
Args:
|
1201 |
+
out_channels (int): Number of channels produced by the convolution
|
1202 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
1203 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
1204 |
+
padding (int or tuple, optional): Zero-padding added to both sides of
|
1205 |
+
the input. Default: 0
|
1206 |
+
padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
|
1207 |
+
``'replicate'`` or ``'circular'``. Default: ``'zeros'``
|
1208 |
+
dilation (int or tuple, optional): Spacing between kernel
|
1209 |
+
elements. Default: 1
|
1210 |
+
groups (int, optional): Number of blocked connections from input
|
1211 |
+
channels to output channels. Default: 1
|
1212 |
+
bias (bool, optional): If ``True``, adds a learnable bias to the
|
1213 |
+
output. Default: ``True``
|
1214 |
+
|
1215 |
+
.. seealso:: :class:`torch.nn.Conv1d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
|
1216 |
+
"""
|
1217 |
+
|
1218 |
+
# super class define this variable as None. "type: ignore[..] is required
|
1219 |
+
# since we are redefining the variable.
|
1220 |
+
cls_to_become = Conv1d # type: ignore[assignment]
|
1221 |
+
|
1222 |
+
def __init__(
|
1223 |
+
self,
|
1224 |
+
out_channels: int,
|
1225 |
+
kernel_size: _size_1_t,
|
1226 |
+
stride: _size_1_t = 1,
|
1227 |
+
padding: _size_1_t = 0,
|
1228 |
+
dilation: _size_1_t = 1,
|
1229 |
+
groups: int = 1,
|
1230 |
+
bias: bool = True,
|
1231 |
+
padding_mode: str = 'zeros',
|
1232 |
+
device=None,
|
1233 |
+
dtype=None
|
1234 |
+
) -> None:
|
1235 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
1236 |
+
super().__init__(
|
1237 |
+
0,
|
1238 |
+
0,
|
1239 |
+
kernel_size,
|
1240 |
+
stride,
|
1241 |
+
padding,
|
1242 |
+
dilation,
|
1243 |
+
groups,
|
1244 |
+
# bias is hardcoded to False to avoid creating tensor
|
1245 |
+
# that will soon be overwritten.
|
1246 |
+
False,
|
1247 |
+
padding_mode,
|
1248 |
+
**factory_kwargs
|
1249 |
+
)
|
1250 |
+
self.weight = UninitializedParameter(**factory_kwargs)
|
1251 |
+
self.out_channels = out_channels
|
1252 |
+
if bias:
|
1253 |
+
self.bias = UninitializedParameter(**factory_kwargs)
|
1254 |
+
|
1255 |
+
def _get_num_spatial_dims(self) -> int:
|
1256 |
+
return 1
|
1257 |
+
|
1258 |
+
|
1259 |
+
# LazyConv2d defines weight as a Tensor but derived class defines it as UnitializeParameter
|
1260 |
+
class LazyConv2d(_LazyConvXdMixin, Conv2d): # type: ignore[misc]
|
1261 |
+
r"""A :class:`torch.nn.Conv2d` module with lazy initialization of the ``in_channels`` argument.
|
1262 |
+
|
1263 |
+
The ``in_channels`` argument of the :class:`Conv2d` that is inferred from the ``input.size(1)``.
|
1264 |
+
The attributes that will be lazily initialized are `weight` and `bias`.
|
1265 |
+
|
1266 |
+
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
|
1267 |
+
on lazy modules and their limitations.
|
1268 |
+
|
1269 |
+
Args:
|
1270 |
+
out_channels (int): Number of channels produced by the convolution
|
1271 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
1272 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
1273 |
+
padding (int or tuple, optional): Zero-padding added to both sides of
|
1274 |
+
the input. Default: 0
|
1275 |
+
padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
|
1276 |
+
``'replicate'`` or ``'circular'``. Default: ``'zeros'``
|
1277 |
+
dilation (int or tuple, optional): Spacing between kernel
|
1278 |
+
elements. Default: 1
|
1279 |
+
groups (int, optional): Number of blocked connections from input
|
1280 |
+
channels to output channels. Default: 1
|
1281 |
+
bias (bool, optional): If ``True``, adds a learnable bias to the
|
1282 |
+
output. Default: ``True``
|
1283 |
+
|
1284 |
+
.. seealso:: :class:`torch.nn.Conv2d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
|
1285 |
+
"""
|
1286 |
+
|
1287 |
+
# super class define this variable as None. "type: ignore[..] is required
|
1288 |
+
# since we are redefining the variable.
|
1289 |
+
cls_to_become = Conv2d # type: ignore[assignment]
|
1290 |
+
|
1291 |
+
def __init__(
|
1292 |
+
self,
|
1293 |
+
out_channels: int,
|
1294 |
+
kernel_size: _size_2_t,
|
1295 |
+
stride: _size_2_t = 1,
|
1296 |
+
padding: _size_2_t = 0,
|
1297 |
+
dilation: _size_2_t = 1,
|
1298 |
+
groups: int = 1,
|
1299 |
+
bias: bool = True,
|
1300 |
+
padding_mode: str = 'zeros', # TODO: refine this type
|
1301 |
+
device=None,
|
1302 |
+
dtype=None
|
1303 |
+
) -> None:
|
1304 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
1305 |
+
super().__init__(
|
1306 |
+
0,
|
1307 |
+
0,
|
1308 |
+
kernel_size,
|
1309 |
+
stride,
|
1310 |
+
padding,
|
1311 |
+
dilation,
|
1312 |
+
groups,
|
1313 |
+
# bias is hardcoded to False to avoid creating tensor
|
1314 |
+
# that will soon be overwritten.
|
1315 |
+
False,
|
1316 |
+
padding_mode,
|
1317 |
+
**factory_kwargs
|
1318 |
+
)
|
1319 |
+
self.weight = UninitializedParameter(**factory_kwargs)
|
1320 |
+
self.out_channels = out_channels
|
1321 |
+
if bias:
|
1322 |
+
self.bias = UninitializedParameter(**factory_kwargs)
|
1323 |
+
|
1324 |
+
def _get_num_spatial_dims(self) -> int:
|
1325 |
+
return 2
|
1326 |
+
|
1327 |
+
|
1328 |
+
# LazyConv3d defines weight as a Tensor but derived class defines it as UnitializeParameter
|
1329 |
+
class LazyConv3d(_LazyConvXdMixin, Conv3d): # type: ignore[misc]
|
1330 |
+
r"""A :class:`torch.nn.Conv3d` module with lazy initialization of the ``in_channels`` argument.
|
1331 |
+
|
1332 |
+
The ``in_channels`` argument of the :class:`Conv3d` that is inferred from
|
1333 |
+
the ``input.size(1)``.
|
1334 |
+
The attributes that will be lazily initialized are `weight` and `bias`.
|
1335 |
+
|
1336 |
+
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
|
1337 |
+
on lazy modules and their limitations.
|
1338 |
+
|
1339 |
+
Args:
|
1340 |
+
out_channels (int): Number of channels produced by the convolution
|
1341 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
1342 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
1343 |
+
padding (int or tuple, optional): Zero-padding added to both sides of
|
1344 |
+
the input. Default: 0
|
1345 |
+
padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
|
1346 |
+
``'replicate'`` or ``'circular'``. Default: ``'zeros'``
|
1347 |
+
dilation (int or tuple, optional): Spacing between kernel
|
1348 |
+
elements. Default: 1
|
1349 |
+
groups (int, optional): Number of blocked connections from input
|
1350 |
+
channels to output channels. Default: 1
|
1351 |
+
bias (bool, optional): If ``True``, adds a learnable bias to the
|
1352 |
+
output. Default: ``True``
|
1353 |
+
|
1354 |
+
.. seealso:: :class:`torch.nn.Conv3d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
|
1355 |
+
"""
|
1356 |
+
|
1357 |
+
# super class define this variable as None. "type: ignore[..] is required
|
1358 |
+
# since we are redefining the variable.
|
1359 |
+
cls_to_become = Conv3d # type: ignore[assignment]
|
1360 |
+
|
1361 |
+
def __init__(
|
1362 |
+
self,
|
1363 |
+
out_channels: int,
|
1364 |
+
kernel_size: _size_3_t,
|
1365 |
+
stride: _size_3_t = 1,
|
1366 |
+
padding: _size_3_t = 0,
|
1367 |
+
dilation: _size_3_t = 1,
|
1368 |
+
groups: int = 1,
|
1369 |
+
bias: bool = True,
|
1370 |
+
padding_mode: str = 'zeros',
|
1371 |
+
device=None,
|
1372 |
+
dtype=None
|
1373 |
+
) -> None:
|
1374 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
1375 |
+
super().__init__(
|
1376 |
+
0,
|
1377 |
+
0,
|
1378 |
+
kernel_size,
|
1379 |
+
stride,
|
1380 |
+
padding,
|
1381 |
+
dilation,
|
1382 |
+
groups,
|
1383 |
+
# bias is hardcoded to False to avoid creating tensor
|
1384 |
+
# that will soon be overwritten.
|
1385 |
+
False,
|
1386 |
+
padding_mode,
|
1387 |
+
**factory_kwargs
|
1388 |
+
)
|
1389 |
+
self.weight = UninitializedParameter(**factory_kwargs)
|
1390 |
+
self.out_channels = out_channels
|
1391 |
+
if bias:
|
1392 |
+
self.bias = UninitializedParameter(**factory_kwargs)
|
1393 |
+
|
1394 |
+
def _get_num_spatial_dims(self) -> int:
|
1395 |
+
return 3
|
1396 |
+
|
1397 |
+
|
1398 |
+
# LazyConvTranspose1d defines weight as a Tensor but derived class defines it as UnitializeParameter
|
1399 |
+
class LazyConvTranspose1d(_LazyConvXdMixin, ConvTranspose1d): # type: ignore[misc]
|
1400 |
+
r"""A :class:`torch.nn.ConvTranspose1d` module with lazy initialization of the ``in_channels`` argument.
|
1401 |
+
|
1402 |
+
The ``in_channels`` argument of the :class:`ConvTranspose1d` that is inferred from
|
1403 |
+
the ``input.size(1)``.
|
1404 |
+
The attributes that will be lazily initialized are `weight` and `bias`.
|
1405 |
+
|
1406 |
+
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
|
1407 |
+
on lazy modules and their limitations.
|
1408 |
+
|
1409 |
+
Args:
|
1410 |
+
out_channels (int): Number of channels produced by the convolution
|
1411 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
1412 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
1413 |
+
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
|
1414 |
+
will be added to both sides of the input. Default: 0
|
1415 |
+
output_padding (int or tuple, optional): Additional size added to one side
|
1416 |
+
of the output shape. Default: 0
|
1417 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
1418 |
+
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
|
1419 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
1420 |
+
|
1421 |
+
.. seealso:: :class:`torch.nn.ConvTranspose1d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
|
1422 |
+
"""
|
1423 |
+
|
1424 |
+
# super class define this variable as None. "type: ignore[..] is required
|
1425 |
+
# since we are redefining the variable.
|
1426 |
+
cls_to_become = ConvTranspose1d # type: ignore[assignment]
|
1427 |
+
|
1428 |
+
def __init__(
|
1429 |
+
self,
|
1430 |
+
out_channels: int,
|
1431 |
+
kernel_size: _size_1_t,
|
1432 |
+
stride: _size_1_t = 1,
|
1433 |
+
padding: _size_1_t = 0,
|
1434 |
+
output_padding: _size_1_t = 0,
|
1435 |
+
groups: int = 1,
|
1436 |
+
bias: bool = True,
|
1437 |
+
dilation: _size_1_t = 1,
|
1438 |
+
padding_mode: str = 'zeros',
|
1439 |
+
device=None,
|
1440 |
+
dtype=None
|
1441 |
+
) -> None:
|
1442 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
1443 |
+
super().__init__(
|
1444 |
+
0,
|
1445 |
+
0,
|
1446 |
+
kernel_size,
|
1447 |
+
stride,
|
1448 |
+
padding,
|
1449 |
+
output_padding,
|
1450 |
+
groups,
|
1451 |
+
# bias is hardcoded to False to avoid creating tensor
|
1452 |
+
# that will soon be overwritten.
|
1453 |
+
False,
|
1454 |
+
dilation,
|
1455 |
+
padding_mode,
|
1456 |
+
**factory_kwargs
|
1457 |
+
)
|
1458 |
+
self.weight = UninitializedParameter(**factory_kwargs)
|
1459 |
+
self.out_channels = out_channels
|
1460 |
+
if bias:
|
1461 |
+
self.bias = UninitializedParameter(**factory_kwargs)
|
1462 |
+
|
1463 |
+
def _get_num_spatial_dims(self) -> int:
|
1464 |
+
return 1
|
1465 |
+
|
1466 |
+
|
1467 |
+
# LazyConvTranspose2d defines weight as a Tensor but derived class defines it as UnitializeParameter
|
1468 |
+
class LazyConvTranspose2d(_LazyConvXdMixin, ConvTranspose2d): # type: ignore[misc]
|
1469 |
+
r"""A :class:`torch.nn.ConvTranspose2d` module with lazy initialization of the ``in_channels`` argument.
|
1470 |
+
|
1471 |
+
The ``in_channels`` argument of the :class:`ConvTranspose2d` is inferred from
|
1472 |
+
the ``input.size(1)``.
|
1473 |
+
The attributes that will be lazily initialized are `weight` and `bias`.
|
1474 |
+
|
1475 |
+
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
|
1476 |
+
on lazy modules and their limitations.
|
1477 |
+
|
1478 |
+
Args:
|
1479 |
+
out_channels (int): Number of channels produced by the convolution
|
1480 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
1481 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
1482 |
+
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
|
1483 |
+
will be added to both sides of each dimension in the input. Default: 0
|
1484 |
+
output_padding (int or tuple, optional): Additional size added to one side
|
1485 |
+
of each dimension in the output shape. Default: 0
|
1486 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
1487 |
+
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
|
1488 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
1489 |
+
|
1490 |
+
.. seealso:: :class:`torch.nn.ConvTranspose2d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
|
1491 |
+
"""
|
1492 |
+
|
1493 |
+
# super class define this variable as None. "type: ignore[..] is required
|
1494 |
+
# since we are redefining the variable.
|
1495 |
+
cls_to_become = ConvTranspose2d # type: ignore[assignment]
|
1496 |
+
|
1497 |
+
def __init__(
|
1498 |
+
self,
|
1499 |
+
out_channels: int,
|
1500 |
+
kernel_size: _size_2_t,
|
1501 |
+
stride: _size_2_t = 1,
|
1502 |
+
padding: _size_2_t = 0,
|
1503 |
+
output_padding: _size_2_t = 0,
|
1504 |
+
groups: int = 1,
|
1505 |
+
bias: bool = True,
|
1506 |
+
dilation: int = 1,
|
1507 |
+
padding_mode: str = 'zeros',
|
1508 |
+
device=None,
|
1509 |
+
dtype=None
|
1510 |
+
) -> None:
|
1511 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
1512 |
+
super().__init__(
|
1513 |
+
0,
|
1514 |
+
0,
|
1515 |
+
kernel_size,
|
1516 |
+
stride,
|
1517 |
+
padding,
|
1518 |
+
output_padding,
|
1519 |
+
groups,
|
1520 |
+
# bias is hardcoded to False to avoid creating tensor
|
1521 |
+
# that will soon be overwritten.
|
1522 |
+
False,
|
1523 |
+
dilation,
|
1524 |
+
padding_mode,
|
1525 |
+
**factory_kwargs
|
1526 |
+
)
|
1527 |
+
self.weight = UninitializedParameter(**factory_kwargs)
|
1528 |
+
self.out_channels = out_channels
|
1529 |
+
if bias:
|
1530 |
+
self.bias = UninitializedParameter(**factory_kwargs)
|
1531 |
+
|
1532 |
+
def _get_num_spatial_dims(self) -> int:
|
1533 |
+
return 2
|
1534 |
+
|
1535 |
+
|
1536 |
+
# LazyConvTranspose3d defines weight as a Tensor but derived class defines it as UnitializeParameter
|
1537 |
+
class LazyConvTranspose3d(_LazyConvXdMixin, ConvTranspose3d): # type: ignore[misc]
|
1538 |
+
r"""A :class:`torch.nn.ConvTranspose3d` module with lazy initialization of the ``in_channels`` argument.
|
1539 |
+
|
1540 |
+
The ``in_channels`` argument of the :class:`ConvTranspose3d` is inferred from
|
1541 |
+
the ``input.size(1)``.
|
1542 |
+
The attributes that will be lazily initialized are `weight` and `bias`.
|
1543 |
+
|
1544 |
+
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
|
1545 |
+
on lazy modules and their limitations.
|
1546 |
+
|
1547 |
+
Args:
|
1548 |
+
out_channels (int): Number of channels produced by the convolution
|
1549 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
1550 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
1551 |
+
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
|
1552 |
+
will be added to both sides of each dimension in the input. Default: 0
|
1553 |
+
output_padding (int or tuple, optional): Additional size added to one side
|
1554 |
+
of each dimension in the output shape. Default: 0
|
1555 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
1556 |
+
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
|
1557 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
1558 |
+
|
1559 |
+
.. seealso:: :class:`torch.nn.ConvTranspose3d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
|
1560 |
+
"""
|
1561 |
+
|
1562 |
+
# super class define this variable as None. "type: ignore[..] is required
|
1563 |
+
# since we are redefining the variable.
|
1564 |
+
cls_to_become = ConvTranspose3d # type: ignore[assignment]
|
1565 |
+
|
1566 |
+
def __init__(
|
1567 |
+
self,
|
1568 |
+
out_channels: int,
|
1569 |
+
kernel_size: _size_3_t,
|
1570 |
+
stride: _size_3_t = 1,
|
1571 |
+
padding: _size_3_t = 0,
|
1572 |
+
output_padding: _size_3_t = 0,
|
1573 |
+
groups: int = 1,
|
1574 |
+
bias: bool = True,
|
1575 |
+
dilation: _size_3_t = 1,
|
1576 |
+
padding_mode: str = 'zeros',
|
1577 |
+
device=None,
|
1578 |
+
dtype=None
|
1579 |
+
) -> None:
|
1580 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
1581 |
+
super().__init__(
|
1582 |
+
0,
|
1583 |
+
0,
|
1584 |
+
kernel_size,
|
1585 |
+
stride,
|
1586 |
+
padding,
|
1587 |
+
output_padding,
|
1588 |
+
groups,
|
1589 |
+
# bias is hardcoded to False to avoid creating tensor
|
1590 |
+
# that will soon be overwritten.
|
1591 |
+
False,
|
1592 |
+
dilation,
|
1593 |
+
padding_mode,
|
1594 |
+
**factory_kwargs
|
1595 |
+
)
|
1596 |
+
self.weight = UninitializedParameter(**factory_kwargs)
|
1597 |
+
self.out_channels = out_channels
|
1598 |
+
if bias:
|
1599 |
+
self.bias = UninitializedParameter(**factory_kwargs)
|
1600 |
+
|
1601 |
+
def _get_num_spatial_dims(self) -> int:
|
1602 |
+
return 3
|
venv/lib/python3.10/site-packages/torch/nn/modules/distance.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .module import Module
|
2 |
+
from .. import functional as F
|
3 |
+
|
4 |
+
from torch import Tensor
|
5 |
+
|
6 |
+
__all__ = ['PairwiseDistance', 'CosineSimilarity']
|
7 |
+
|
8 |
+
class PairwiseDistance(Module):
|
9 |
+
r"""
|
10 |
+
Computes the pairwise distance between input vectors, or between columns of input matrices.
|
11 |
+
|
12 |
+
Distances are computed using ``p``-norm, with constant ``eps`` added to avoid division by zero
|
13 |
+
if ``p`` is negative, i.e.:
|
14 |
+
|
15 |
+
.. math ::
|
16 |
+
\mathrm{dist}\left(x, y\right) = \left\Vert x-y + \epsilon e \right\Vert_p,
|
17 |
+
|
18 |
+
where :math:`e` is the vector of ones and the ``p``-norm is given by.
|
19 |
+
|
20 |
+
.. math ::
|
21 |
+
\Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
p (real, optional): the norm degree. Can be negative. Default: 2
|
25 |
+
eps (float, optional): Small value to avoid division by zero.
|
26 |
+
Default: 1e-6
|
27 |
+
keepdim (bool, optional): Determines whether or not to keep the vector dimension.
|
28 |
+
Default: False
|
29 |
+
Shape:
|
30 |
+
- Input1: :math:`(N, D)` or :math:`(D)` where `N = batch dimension` and `D = vector dimension`
|
31 |
+
- Input2: :math:`(N, D)` or :math:`(D)`, same shape as the Input1
|
32 |
+
- Output: :math:`(N)` or :math:`()` based on input dimension.
|
33 |
+
If :attr:`keepdim` is ``True``, then :math:`(N, 1)` or :math:`(1)` based on input dimension.
|
34 |
+
|
35 |
+
Examples::
|
36 |
+
>>> pdist = nn.PairwiseDistance(p=2)
|
37 |
+
>>> input1 = torch.randn(100, 128)
|
38 |
+
>>> input2 = torch.randn(100, 128)
|
39 |
+
>>> output = pdist(input1, input2)
|
40 |
+
"""
|
41 |
+
|
42 |
+
__constants__ = ['norm', 'eps', 'keepdim']
|
43 |
+
norm: float
|
44 |
+
eps: float
|
45 |
+
keepdim: bool
|
46 |
+
|
47 |
+
def __init__(self, p: float = 2., eps: float = 1e-6, keepdim: bool = False) -> None:
|
48 |
+
super().__init__()
|
49 |
+
self.norm = p
|
50 |
+
self.eps = eps
|
51 |
+
self.keepdim = keepdim
|
52 |
+
|
53 |
+
def forward(self, x1: Tensor, x2: Tensor) -> Tensor:
|
54 |
+
return F.pairwise_distance(x1, x2, self.norm, self.eps, self.keepdim)
|
55 |
+
|
56 |
+
|
57 |
+
class CosineSimilarity(Module):
|
58 |
+
r"""Returns cosine similarity between :math:`x_1` and :math:`x_2`, computed along `dim`.
|
59 |
+
|
60 |
+
.. math ::
|
61 |
+
\text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
dim (int, optional): Dimension where cosine similarity is computed. Default: 1
|
65 |
+
eps (float, optional): Small value to avoid division by zero.
|
66 |
+
Default: 1e-8
|
67 |
+
Shape:
|
68 |
+
- Input1: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`
|
69 |
+
- Input2: :math:`(\ast_1, D, \ast_2)`, same number of dimensions as x1, matching x1 size at dimension `dim`,
|
70 |
+
and broadcastable with x1 at other dimensions.
|
71 |
+
- Output: :math:`(\ast_1, \ast_2)`
|
72 |
+
Examples::
|
73 |
+
>>> input1 = torch.randn(100, 128)
|
74 |
+
>>> input2 = torch.randn(100, 128)
|
75 |
+
>>> cos = nn.CosineSimilarity(dim=1, eps=1e-6)
|
76 |
+
>>> output = cos(input1, input2)
|
77 |
+
"""
|
78 |
+
|
79 |
+
__constants__ = ['dim', 'eps']
|
80 |
+
dim: int
|
81 |
+
eps: float
|
82 |
+
|
83 |
+
def __init__(self, dim: int = 1, eps: float = 1e-8) -> None:
|
84 |
+
super().__init__()
|
85 |
+
self.dim = dim
|
86 |
+
self.eps = eps
|
87 |
+
|
88 |
+
def forward(self, x1: Tensor, x2: Tensor) -> Tensor:
|
89 |
+
return F.cosine_similarity(x1, x2, self.dim, self.eps)
|
venv/lib/python3.10/site-packages/torch/nn/modules/dropout.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .module import Module
|
2 |
+
from .. import functional as F
|
3 |
+
|
4 |
+
from torch import Tensor
|
5 |
+
|
6 |
+
__all__ = ['Dropout', 'Dropout1d', 'Dropout2d', 'Dropout3d', 'AlphaDropout', 'FeatureAlphaDropout']
|
7 |
+
|
8 |
+
class _DropoutNd(Module):
|
9 |
+
__constants__ = ['p', 'inplace']
|
10 |
+
p: float
|
11 |
+
inplace: bool
|
12 |
+
|
13 |
+
def __init__(self, p: float = 0.5, inplace: bool = False) -> None:
|
14 |
+
super().__init__()
|
15 |
+
if p < 0 or p > 1:
|
16 |
+
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
|
17 |
+
self.p = p
|
18 |
+
self.inplace = inplace
|
19 |
+
|
20 |
+
def extra_repr(self) -> str:
|
21 |
+
return f'p={self.p}, inplace={self.inplace}'
|
22 |
+
|
23 |
+
|
24 |
+
class Dropout(_DropoutNd):
|
25 |
+
r"""During training, randomly zeroes some of the elements of the input tensor with probability :attr:`p`.
|
26 |
+
|
27 |
+
The zeroed elements are chosen independently for each forward call and are sampled from a Bernoulli distribution.
|
28 |
+
|
29 |
+
Each channel will be zeroed out independently on every forward call.
|
30 |
+
|
31 |
+
This has proven to be an effective technique for regularization and
|
32 |
+
preventing the co-adaptation of neurons as described in the paper
|
33 |
+
`Improving neural networks by preventing co-adaptation of feature
|
34 |
+
detectors`_ .
|
35 |
+
|
36 |
+
Furthermore, the outputs are scaled by a factor of :math:`\frac{1}{1-p}` during
|
37 |
+
training. This means that during evaluation the module simply computes an
|
38 |
+
identity function.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
p: probability of an element to be zeroed. Default: 0.5
|
42 |
+
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
|
43 |
+
|
44 |
+
Shape:
|
45 |
+
- Input: :math:`(*)`. Input can be of any shape
|
46 |
+
- Output: :math:`(*)`. Output is of the same shape as input
|
47 |
+
|
48 |
+
Examples::
|
49 |
+
|
50 |
+
>>> m = nn.Dropout(p=0.2)
|
51 |
+
>>> input = torch.randn(20, 16)
|
52 |
+
>>> output = m(input)
|
53 |
+
|
54 |
+
.. _Improving neural networks by preventing co-adaptation of feature
|
55 |
+
detectors: https://arxiv.org/abs/1207.0580
|
56 |
+
"""
|
57 |
+
|
58 |
+
def forward(self, input: Tensor) -> Tensor:
|
59 |
+
return F.dropout(input, self.p, self.training, self.inplace)
|
60 |
+
|
61 |
+
|
62 |
+
class Dropout1d(_DropoutNd):
|
63 |
+
r"""Randomly zero out entire channels.
|
64 |
+
|
65 |
+
A channel is a 1D feature map,
|
66 |
+
e.g., the :math:`j`-th channel of the :math:`i`-th sample in the
|
67 |
+
batched input is a 1D tensor :math:`\text{input}[i, j]`.
|
68 |
+
|
69 |
+
Each channel will be zeroed out independently on every forward call with
|
70 |
+
probability :attr:`p` using samples from a Bernoulli distribution.
|
71 |
+
|
72 |
+
Usually the input comes from :class:`nn.Conv1d` modules.
|
73 |
+
|
74 |
+
As described in the paper
|
75 |
+
`Efficient Object Localization Using Convolutional Networks`_ ,
|
76 |
+
if adjacent pixels within feature maps are strongly correlated
|
77 |
+
(as is normally the case in early convolution layers) then i.i.d. dropout
|
78 |
+
will not regularize the activations and will otherwise just result
|
79 |
+
in an effective learning rate decrease.
|
80 |
+
|
81 |
+
In this case, :func:`nn.Dropout1d` will help promote independence between
|
82 |
+
feature maps and should be used instead.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
p (float, optional): probability of an element to be zero-ed.
|
86 |
+
inplace (bool, optional): If set to ``True``, will do this operation
|
87 |
+
in-place
|
88 |
+
|
89 |
+
Shape:
|
90 |
+
- Input: :math:`(N, C, L)` or :math:`(C, L)`.
|
91 |
+
- Output: :math:`(N, C, L)` or :math:`(C, L)` (same shape as input).
|
92 |
+
|
93 |
+
Examples::
|
94 |
+
|
95 |
+
>>> m = nn.Dropout1d(p=0.2)
|
96 |
+
>>> input = torch.randn(20, 16, 32)
|
97 |
+
>>> output = m(input)
|
98 |
+
|
99 |
+
.. _Efficient Object Localization Using Convolutional Networks:
|
100 |
+
https://arxiv.org/abs/1411.4280
|
101 |
+
"""
|
102 |
+
|
103 |
+
def forward(self, input: Tensor) -> Tensor:
|
104 |
+
return F.dropout1d(input, self.p, self.training, self.inplace)
|
105 |
+
|
106 |
+
|
107 |
+
class Dropout2d(_DropoutNd):
|
108 |
+
r"""Randomly zero out entire channels.
|
109 |
+
|
110 |
+
A channel is a 2D feature map,
|
111 |
+
e.g., the :math:`j`-th channel of the :math:`i`-th sample in the
|
112 |
+
batched input is a 2D tensor :math:`\text{input}[i, j]`.
|
113 |
+
|
114 |
+
Each channel will be zeroed out independently on every forward call with
|
115 |
+
probability :attr:`p` using samples from a Bernoulli distribution.
|
116 |
+
|
117 |
+
Usually the input comes from :class:`nn.Conv2d` modules.
|
118 |
+
|
119 |
+
As described in the paper
|
120 |
+
`Efficient Object Localization Using Convolutional Networks`_ ,
|
121 |
+
if adjacent pixels within feature maps are strongly correlated
|
122 |
+
(as is normally the case in early convolution layers) then i.i.d. dropout
|
123 |
+
will not regularize the activations and will otherwise just result
|
124 |
+
in an effective learning rate decrease.
|
125 |
+
|
126 |
+
In this case, :func:`nn.Dropout2d` will help promote independence between
|
127 |
+
feature maps and should be used instead.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
p (float, optional): probability of an element to be zero-ed.
|
131 |
+
inplace (bool, optional): If set to ``True``, will do this operation
|
132 |
+
in-place
|
133 |
+
|
134 |
+
.. warning ::
|
135 |
+
Due to historical reasons, this class will perform 1D channel-wise dropout
|
136 |
+
for 3D inputs (as done by :class:`nn.Dropout1d`). Thus, it currently does NOT
|
137 |
+
support inputs without a batch dimension of shape :math:`(C, H, W)`. This
|
138 |
+
behavior will change in a future release to interpret 3D inputs as no-batch-dim
|
139 |
+
inputs. To maintain the old behavior, switch to :class:`nn.Dropout1d`.
|
140 |
+
|
141 |
+
Shape:
|
142 |
+
- Input: :math:`(N, C, H, W)` or :math:`(N, C, L)`.
|
143 |
+
- Output: :math:`(N, C, H, W)` or :math:`(N, C, L)` (same shape as input).
|
144 |
+
|
145 |
+
Examples::
|
146 |
+
|
147 |
+
>>> m = nn.Dropout2d(p=0.2)
|
148 |
+
>>> input = torch.randn(20, 16, 32, 32)
|
149 |
+
>>> output = m(input)
|
150 |
+
|
151 |
+
.. _Efficient Object Localization Using Convolutional Networks:
|
152 |
+
https://arxiv.org/abs/1411.4280
|
153 |
+
"""
|
154 |
+
|
155 |
+
def forward(self, input: Tensor) -> Tensor:
|
156 |
+
return F.dropout2d(input, self.p, self.training, self.inplace)
|
157 |
+
|
158 |
+
|
159 |
+
class Dropout3d(_DropoutNd):
|
160 |
+
r"""Randomly zero out entire channels.
|
161 |
+
|
162 |
+
A channel is a 3D feature map,
|
163 |
+
e.g., the :math:`j`-th channel of the :math:`i`-th sample in the
|
164 |
+
batched input is a 3D tensor :math:`\text{input}[i, j]`.
|
165 |
+
|
166 |
+
Each channel will be zeroed out independently on every forward call with
|
167 |
+
probability :attr:`p` using samples from a Bernoulli distribution.
|
168 |
+
|
169 |
+
Usually the input comes from :class:`nn.Conv3d` modules.
|
170 |
+
|
171 |
+
As described in the paper
|
172 |
+
`Efficient Object Localization Using Convolutional Networks`_ ,
|
173 |
+
if adjacent pixels within feature maps are strongly correlated
|
174 |
+
(as is normally the case in early convolution layers) then i.i.d. dropout
|
175 |
+
will not regularize the activations and will otherwise just result
|
176 |
+
in an effective learning rate decrease.
|
177 |
+
|
178 |
+
In this case, :func:`nn.Dropout3d` will help promote independence between
|
179 |
+
feature maps and should be used instead.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
p (float, optional): probability of an element to be zeroed.
|
183 |
+
inplace (bool, optional): If set to ``True``, will do this operation
|
184 |
+
in-place
|
185 |
+
|
186 |
+
Shape:
|
187 |
+
- Input: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)`.
|
188 |
+
- Output: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)` (same shape as input).
|
189 |
+
|
190 |
+
Examples::
|
191 |
+
|
192 |
+
>>> m = nn.Dropout3d(p=0.2)
|
193 |
+
>>> input = torch.randn(20, 16, 4, 32, 32)
|
194 |
+
>>> output = m(input)
|
195 |
+
|
196 |
+
.. _Efficient Object Localization Using Convolutional Networks:
|
197 |
+
https://arxiv.org/abs/1411.4280
|
198 |
+
"""
|
199 |
+
|
200 |
+
def forward(self, input: Tensor) -> Tensor:
|
201 |
+
return F.dropout3d(input, self.p, self.training, self.inplace)
|
202 |
+
|
203 |
+
|
204 |
+
class AlphaDropout(_DropoutNd):
|
205 |
+
r"""Applies Alpha Dropout over the input.
|
206 |
+
|
207 |
+
Alpha Dropout is a type of Dropout that maintains the self-normalizing
|
208 |
+
property.
|
209 |
+
For an input with zero mean and unit standard deviation, the output of
|
210 |
+
Alpha Dropout maintains the original mean and standard deviation of the
|
211 |
+
input.
|
212 |
+
Alpha Dropout goes hand-in-hand with SELU activation function, which ensures
|
213 |
+
that the outputs have zero mean and unit standard deviation.
|
214 |
+
|
215 |
+
During training, it randomly masks some of the elements of the input
|
216 |
+
tensor with probability *p* using samples from a bernoulli distribution.
|
217 |
+
The elements to masked are randomized on every forward call, and scaled
|
218 |
+
and shifted to maintain zero mean and unit standard deviation.
|
219 |
+
|
220 |
+
During evaluation the module simply computes an identity function.
|
221 |
+
|
222 |
+
More details can be found in the paper `Self-Normalizing Neural Networks`_ .
|
223 |
+
|
224 |
+
Args:
|
225 |
+
p (float): probability of an element to be dropped. Default: 0.5
|
226 |
+
inplace (bool, optional): If set to ``True``, will do this operation
|
227 |
+
in-place
|
228 |
+
|
229 |
+
Shape:
|
230 |
+
- Input: :math:`(*)`. Input can be of any shape
|
231 |
+
- Output: :math:`(*)`. Output is of the same shape as input
|
232 |
+
|
233 |
+
Examples::
|
234 |
+
|
235 |
+
>>> m = nn.AlphaDropout(p=0.2)
|
236 |
+
>>> input = torch.randn(20, 16)
|
237 |
+
>>> output = m(input)
|
238 |
+
|
239 |
+
.. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515
|
240 |
+
"""
|
241 |
+
|
242 |
+
def forward(self, input: Tensor) -> Tensor:
|
243 |
+
return F.alpha_dropout(input, self.p, self.training)
|
244 |
+
|
245 |
+
|
246 |
+
class FeatureAlphaDropout(_DropoutNd):
|
247 |
+
r"""Randomly masks out entire channels.
|
248 |
+
|
249 |
+
A channel is a feature map,
|
250 |
+
e.g. the :math:`j`-th channel of the :math:`i`-th sample in the batch input
|
251 |
+
is a tensor :math:`\text{input}[i, j]` of the input tensor). Instead of
|
252 |
+
setting activations to zero, as in regular Dropout, the activations are set
|
253 |
+
to the negative saturation value of the SELU activation function. More details
|
254 |
+
can be found in the paper `Self-Normalizing Neural Networks`_ .
|
255 |
+
|
256 |
+
Each element will be masked independently for each sample on every forward
|
257 |
+
call with probability :attr:`p` using samples from a Bernoulli distribution.
|
258 |
+
The elements to be masked are randomized on every forward call, and scaled
|
259 |
+
and shifted to maintain zero mean and unit variance.
|
260 |
+
|
261 |
+
Usually the input comes from :class:`nn.AlphaDropout` modules.
|
262 |
+
|
263 |
+
As described in the paper
|
264 |
+
`Efficient Object Localization Using Convolutional Networks`_ ,
|
265 |
+
if adjacent pixels within feature maps are strongly correlated
|
266 |
+
(as is normally the case in early convolution layers) then i.i.d. dropout
|
267 |
+
will not regularize the activations and will otherwise just result
|
268 |
+
in an effective learning rate decrease.
|
269 |
+
|
270 |
+
In this case, :func:`nn.AlphaDropout` will help promote independence between
|
271 |
+
feature maps and should be used instead.
|
272 |
+
|
273 |
+
Args:
|
274 |
+
p (float, optional): probability of an element to be zeroed. Default: 0.5
|
275 |
+
inplace (bool, optional): If set to ``True``, will do this operation
|
276 |
+
in-place
|
277 |
+
|
278 |
+
Shape:
|
279 |
+
- Input: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)`.
|
280 |
+
- Output: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)` (same shape as input).
|
281 |
+
|
282 |
+
Examples::
|
283 |
+
|
284 |
+
>>> m = nn.FeatureAlphaDropout(p=0.2)
|
285 |
+
>>> input = torch.randn(20, 16, 4, 32, 32)
|
286 |
+
>>> output = m(input)
|
287 |
+
|
288 |
+
.. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515
|
289 |
+
.. _Efficient Object Localization Using Convolutional Networks:
|
290 |
+
https://arxiv.org/abs/1411.4280
|
291 |
+
"""
|
292 |
+
|
293 |
+
def forward(self, input: Tensor) -> Tensor:
|
294 |
+
return F.feature_alpha_dropout(input, self.p, self.training)
|
venv/lib/python3.10/site-packages/torch/nn/modules/fold.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .module import Module
|
2 |
+
from .. import functional as F
|
3 |
+
|
4 |
+
from torch import Tensor
|
5 |
+
from ..common_types import _size_any_t
|
6 |
+
|
7 |
+
__all__ = ['Fold', 'Unfold']
|
8 |
+
|
9 |
+
class Fold(Module):
|
10 |
+
r"""Combines an array of sliding local blocks into a large containing tensor.
|
11 |
+
|
12 |
+
Consider a batched :attr:`input` tensor containing sliding local blocks,
|
13 |
+
e.g., patches of images, of shape :math:`(N, C \times \prod(\text{kernel\_size}), L)`,
|
14 |
+
where :math:`N` is batch dimension, :math:`C \times \prod(\text{kernel\_size})`
|
15 |
+
is the number of values within a block (a block has :math:`\prod(\text{kernel\_size})`
|
16 |
+
spatial locations each containing a :math:`C`-channeled vector), and
|
17 |
+
:math:`L` is the total number of blocks. (This is exactly the
|
18 |
+
same specification as the output shape of :class:`~torch.nn.Unfold`.) This
|
19 |
+
operation combines these local blocks into the large :attr:`output` tensor
|
20 |
+
of shape :math:`(N, C, \text{output\_size}[0], \text{output\_size}[1], \dots)`
|
21 |
+
by summing the overlapping values. Similar to :class:`~torch.nn.Unfold`, the
|
22 |
+
arguments must satisfy
|
23 |
+
|
24 |
+
.. math::
|
25 |
+
L = \prod_d \left\lfloor\frac{\text{output\_size}[d] + 2 \times \text{padding}[d] %
|
26 |
+
- \text{dilation}[d] \times (\text{kernel\_size}[d] - 1) - 1}{\text{stride}[d]} + 1\right\rfloor,
|
27 |
+
|
28 |
+
where :math:`d` is over all spatial dimensions.
|
29 |
+
|
30 |
+
* :attr:`output_size` describes the spatial shape of the large containing
|
31 |
+
tensor of the sliding local blocks. It is useful to resolve the ambiguity
|
32 |
+
when multiple input shapes map to same number of sliding blocks, e.g.,
|
33 |
+
with ``stride > 0``.
|
34 |
+
|
35 |
+
The :attr:`padding`, :attr:`stride` and :attr:`dilation` arguments specify
|
36 |
+
how the sliding blocks are retrieved.
|
37 |
+
|
38 |
+
* :attr:`stride` controls the stride for the sliding blocks.
|
39 |
+
|
40 |
+
* :attr:`padding` controls the amount of implicit zero-paddings on both
|
41 |
+
sides for :attr:`padding` number of points for each dimension before
|
42 |
+
reshaping.
|
43 |
+
|
44 |
+
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
|
45 |
+
It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
output_size (int or tuple): the shape of the spatial dimensions of the
|
49 |
+
output (i.e., ``output.sizes()[2:]``)
|
50 |
+
kernel_size (int or tuple): the size of the sliding blocks
|
51 |
+
dilation (int or tuple, optional): a parameter that controls the
|
52 |
+
stride of elements within the
|
53 |
+
neighborhood. Default: 1
|
54 |
+
padding (int or tuple, optional): implicit zero padding to be added on
|
55 |
+
both sides of input. Default: 0
|
56 |
+
stride (int or tuple): the stride of the sliding blocks in the input
|
57 |
+
spatial dimensions. Default: 1
|
58 |
+
|
59 |
+
* If :attr:`output_size`, :attr:`kernel_size`, :attr:`dilation`,
|
60 |
+
:attr:`padding` or :attr:`stride` is an int or a tuple of length 1 then
|
61 |
+
their values will be replicated across all spatial dimensions.
|
62 |
+
|
63 |
+
* For the case of two output spatial dimensions this operation is sometimes
|
64 |
+
called ``col2im``.
|
65 |
+
|
66 |
+
.. note::
|
67 |
+
:class:`~torch.nn.Fold` calculates each combined value in the resulting
|
68 |
+
large tensor by summing all values from all containing blocks.
|
69 |
+
:class:`~torch.nn.Unfold` extracts the values in the local blocks by
|
70 |
+
copying from the large tensor. So, if the blocks overlap, they are not
|
71 |
+
inverses of each other.
|
72 |
+
|
73 |
+
In general, folding and unfolding operations are related as
|
74 |
+
follows. Consider :class:`~torch.nn.Fold` and
|
75 |
+
:class:`~torch.nn.Unfold` instances created with the same
|
76 |
+
parameters:
|
77 |
+
|
78 |
+
>>> fold_params = dict(kernel_size=..., dilation=..., padding=..., stride=...)
|
79 |
+
>>> fold = nn.Fold(output_size=..., **fold_params)
|
80 |
+
>>> unfold = nn.Unfold(**fold_params)
|
81 |
+
|
82 |
+
Then for any (supported) ``input`` tensor the following
|
83 |
+
equality holds:
|
84 |
+
|
85 |
+
::
|
86 |
+
|
87 |
+
fold(unfold(input)) == divisor * input
|
88 |
+
|
89 |
+
where ``divisor`` is a tensor that depends only on the shape
|
90 |
+
and dtype of the ``input``:
|
91 |
+
|
92 |
+
>>> # xdoctest: +SKIP
|
93 |
+
>>> input_ones = torch.ones(input.shape, dtype=input.dtype)
|
94 |
+
>>> divisor = fold(unfold(input_ones))
|
95 |
+
|
96 |
+
When the ``divisor`` tensor contains no zero elements, then
|
97 |
+
``fold`` and ``unfold`` operations are inverses of each
|
98 |
+
other (up to constant divisor).
|
99 |
+
|
100 |
+
.. warning::
|
101 |
+
Currently, only unbatched (3D) or batched (4D) image-like output tensors are supported.
|
102 |
+
|
103 |
+
Shape:
|
104 |
+
- Input: :math:`(N, C \times \prod(\text{kernel\_size}), L)` or :math:`(C \times \prod(\text{kernel\_size}), L)`
|
105 |
+
- Output: :math:`(N, C, \text{output\_size}[0], \text{output\_size}[1], \dots)`
|
106 |
+
or :math:`(C, \text{output\_size}[0], \text{output\_size}[1], \dots)` as described above
|
107 |
+
|
108 |
+
Examples::
|
109 |
+
|
110 |
+
>>> fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 2))
|
111 |
+
>>> input = torch.randn(1, 3 * 2 * 2, 12)
|
112 |
+
>>> output = fold(input)
|
113 |
+
>>> output.size()
|
114 |
+
torch.Size([1, 3, 4, 5])
|
115 |
+
|
116 |
+
.. _link:
|
117 |
+
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
|
118 |
+
|
119 |
+
"""
|
120 |
+
|
121 |
+
__constants__ = ['output_size', 'kernel_size', 'dilation', 'padding',
|
122 |
+
'stride']
|
123 |
+
output_size: _size_any_t
|
124 |
+
kernel_size: _size_any_t
|
125 |
+
dilation: _size_any_t
|
126 |
+
padding: _size_any_t
|
127 |
+
stride: _size_any_t
|
128 |
+
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
output_size: _size_any_t,
|
132 |
+
kernel_size: _size_any_t,
|
133 |
+
dilation: _size_any_t = 1,
|
134 |
+
padding: _size_any_t = 0,
|
135 |
+
stride: _size_any_t = 1
|
136 |
+
) -> None:
|
137 |
+
super().__init__()
|
138 |
+
self.output_size = output_size
|
139 |
+
self.kernel_size = kernel_size
|
140 |
+
self.dilation = dilation
|
141 |
+
self.padding = padding
|
142 |
+
self.stride = stride
|
143 |
+
|
144 |
+
def forward(self, input: Tensor) -> Tensor:
|
145 |
+
return F.fold(input, self.output_size, self.kernel_size, self.dilation,
|
146 |
+
self.padding, self.stride)
|
147 |
+
|
148 |
+
def extra_repr(self) -> str:
|
149 |
+
return 'output_size={output_size}, kernel_size={kernel_size}, ' \
|
150 |
+
'dilation={dilation}, padding={padding}, stride={stride}'.format(
|
151 |
+
**self.__dict__
|
152 |
+
)
|
153 |
+
|
154 |
+
|
155 |
+
class Unfold(Module):
|
156 |
+
r"""Extracts sliding local blocks from a batched input tensor.
|
157 |
+
|
158 |
+
Consider a batched :attr:`input` tensor of shape :math:`(N, C, *)`,
|
159 |
+
where :math:`N` is the batch dimension, :math:`C` is the channel dimension,
|
160 |
+
and :math:`*` represent arbitrary spatial dimensions. This operation flattens
|
161 |
+
each sliding :attr:`kernel_size`-sized block within the spatial dimensions
|
162 |
+
of :attr:`input` into a column (i.e., last dimension) of a 3-D :attr:`output`
|
163 |
+
tensor of shape :math:`(N, C \times \prod(\text{kernel\_size}), L)`, where
|
164 |
+
:math:`C \times \prod(\text{kernel\_size})` is the total number of values
|
165 |
+
within each block (a block has :math:`\prod(\text{kernel\_size})` spatial
|
166 |
+
locations each containing a :math:`C`-channeled vector), and :math:`L` is
|
167 |
+
the total number of such blocks:
|
168 |
+
|
169 |
+
.. math::
|
170 |
+
L = \prod_d \left\lfloor\frac{\text{spatial\_size}[d] + 2 \times \text{padding}[d] %
|
171 |
+
- \text{dilation}[d] \times (\text{kernel\_size}[d] - 1) - 1}{\text{stride}[d]} + 1\right\rfloor,
|
172 |
+
|
173 |
+
where :math:`\text{spatial\_size}` is formed by the spatial dimensions
|
174 |
+
of :attr:`input` (:math:`*` above), and :math:`d` is over all spatial
|
175 |
+
dimensions.
|
176 |
+
|
177 |
+
Therefore, indexing :attr:`output` at the last dimension (column dimension)
|
178 |
+
gives all values within a certain block.
|
179 |
+
|
180 |
+
The :attr:`padding`, :attr:`stride` and :attr:`dilation` arguments specify
|
181 |
+
how the sliding blocks are retrieved.
|
182 |
+
|
183 |
+
* :attr:`stride` controls the stride for the sliding blocks.
|
184 |
+
|
185 |
+
* :attr:`padding` controls the amount of implicit zero-paddings on both
|
186 |
+
sides for :attr:`padding` number of points for each dimension before
|
187 |
+
reshaping.
|
188 |
+
|
189 |
+
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
|
190 |
+
It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
kernel_size (int or tuple): the size of the sliding blocks
|
194 |
+
dilation (int or tuple, optional): a parameter that controls the
|
195 |
+
stride of elements within the
|
196 |
+
neighborhood. Default: 1
|
197 |
+
padding (int or tuple, optional): implicit zero padding to be added on
|
198 |
+
both sides of input. Default: 0
|
199 |
+
stride (int or tuple, optional): the stride of the sliding blocks in the input
|
200 |
+
spatial dimensions. Default: 1
|
201 |
+
|
202 |
+
* If :attr:`kernel_size`, :attr:`dilation`, :attr:`padding` or
|
203 |
+
:attr:`stride` is an int or a tuple of length 1, their values will be
|
204 |
+
replicated across all spatial dimensions.
|
205 |
+
|
206 |
+
* For the case of two input spatial dimensions this operation is sometimes
|
207 |
+
called ``im2col``.
|
208 |
+
|
209 |
+
.. note::
|
210 |
+
:class:`~torch.nn.Fold` calculates each combined value in the resulting
|
211 |
+
large tensor by summing all values from all containing blocks.
|
212 |
+
:class:`~torch.nn.Unfold` extracts the values in the local blocks by
|
213 |
+
copying from the large tensor. So, if the blocks overlap, they are not
|
214 |
+
inverses of each other.
|
215 |
+
|
216 |
+
In general, folding and unfolding operations are related as
|
217 |
+
follows. Consider :class:`~torch.nn.Fold` and
|
218 |
+
:class:`~torch.nn.Unfold` instances created with the same
|
219 |
+
parameters:
|
220 |
+
|
221 |
+
>>> fold_params = dict(kernel_size=..., dilation=..., padding=..., stride=...)
|
222 |
+
>>> fold = nn.Fold(output_size=..., **fold_params)
|
223 |
+
>>> unfold = nn.Unfold(**fold_params)
|
224 |
+
|
225 |
+
Then for any (supported) ``input`` tensor the following
|
226 |
+
equality holds:
|
227 |
+
|
228 |
+
::
|
229 |
+
|
230 |
+
fold(unfold(input)) == divisor * input
|
231 |
+
|
232 |
+
where ``divisor`` is a tensor that depends only on the shape
|
233 |
+
and dtype of the ``input``:
|
234 |
+
|
235 |
+
>>> # xdoctest: +SKIP
|
236 |
+
>>> input_ones = torch.ones(input.shape, dtype=input.dtype)
|
237 |
+
>>> divisor = fold(unfold(input_ones))
|
238 |
+
|
239 |
+
When the ``divisor`` tensor contains no zero elements, then
|
240 |
+
``fold`` and ``unfold`` operations are inverses of each
|
241 |
+
other (up to constant divisor).
|
242 |
+
|
243 |
+
.. warning::
|
244 |
+
Currently, only 4-D input tensors (batched image-like tensors) are
|
245 |
+
supported.
|
246 |
+
|
247 |
+
Shape:
|
248 |
+
- Input: :math:`(N, C, *)`
|
249 |
+
- Output: :math:`(N, C \times \prod(\text{kernel\_size}), L)` as described above
|
250 |
+
|
251 |
+
Examples::
|
252 |
+
|
253 |
+
>>> unfold = nn.Unfold(kernel_size=(2, 3))
|
254 |
+
>>> input = torch.randn(2, 5, 3, 4)
|
255 |
+
>>> output = unfold(input)
|
256 |
+
>>> # each patch contains 30 values (2x3=6 vectors, each of 5 channels)
|
257 |
+
>>> # 4 blocks (2x3 kernels) in total in the 3x4 input
|
258 |
+
>>> output.size()
|
259 |
+
torch.Size([2, 30, 4])
|
260 |
+
|
261 |
+
>>> # xdoctest: +IGNORE_WANT
|
262 |
+
>>> # Convolution is equivalent with Unfold + Matrix Multiplication + Fold (or view to output shape)
|
263 |
+
>>> inp = torch.randn(1, 3, 10, 12)
|
264 |
+
>>> w = torch.randn(2, 3, 4, 5)
|
265 |
+
>>> inp_unf = torch.nn.functional.unfold(inp, (4, 5))
|
266 |
+
>>> out_unf = inp_unf.transpose(1, 2).matmul(w.view(w.size(0), -1).t()).transpose(1, 2)
|
267 |
+
>>> out = torch.nn.functional.fold(out_unf, (7, 8), (1, 1))
|
268 |
+
>>> # or equivalently (and avoiding a copy),
|
269 |
+
>>> # out = out_unf.view(1, 2, 7, 8)
|
270 |
+
>>> (torch.nn.functional.conv2d(inp, w) - out).abs().max()
|
271 |
+
tensor(1.9073e-06)
|
272 |
+
|
273 |
+
.. _link:
|
274 |
+
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
|
275 |
+
|
276 |
+
"""
|
277 |
+
|
278 |
+
__constants__ = ['kernel_size', 'dilation', 'padding', 'stride']
|
279 |
+
kernel_size: _size_any_t
|
280 |
+
dilation: _size_any_t
|
281 |
+
padding: _size_any_t
|
282 |
+
stride: _size_any_t
|
283 |
+
|
284 |
+
def __init__(
|
285 |
+
self,
|
286 |
+
kernel_size: _size_any_t,
|
287 |
+
dilation: _size_any_t = 1,
|
288 |
+
padding: _size_any_t = 0,
|
289 |
+
stride: _size_any_t = 1
|
290 |
+
) -> None:
|
291 |
+
super().__init__()
|
292 |
+
self.kernel_size = kernel_size
|
293 |
+
self.dilation = dilation
|
294 |
+
self.padding = padding
|
295 |
+
self.stride = stride
|
296 |
+
|
297 |
+
def forward(self, input: Tensor) -> Tensor:
|
298 |
+
return F.unfold(input, self.kernel_size, self.dilation,
|
299 |
+
self.padding, self.stride)
|
300 |
+
|
301 |
+
def extra_repr(self) -> str:
|
302 |
+
return 'kernel_size={kernel_size}, dilation={dilation}, padding={padding},' \
|
303 |
+
' stride={stride}'.format(**self.__dict__)
|
venv/lib/python3.10/site-packages/torch/nn/modules/lazy.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
import warnings
|
3 |
+
from typing import Protocol, Optional, Type, Any
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from ..parameter import is_lazy
|
7 |
+
|
8 |
+
__all__ = ['LazyModuleMixin']
|
9 |
+
|
10 |
+
class _LazyProtocol(Protocol):
|
11 |
+
"""This class is used to avoid errors with mypy checks for the attributes in a mixin.
|
12 |
+
|
13 |
+
https://mypy.readthedocs.io/en/latest/more_types.html#mixin-classes
|
14 |
+
"""
|
15 |
+
|
16 |
+
def _register_load_state_dict_pre_hook(self, hook):
|
17 |
+
...
|
18 |
+
|
19 |
+
def register_forward_pre_hook(self, hook, *, prepend=False, with_kwargs=False):
|
20 |
+
...
|
21 |
+
|
22 |
+
def _lazy_load_hook(
|
23 |
+
self, state_dict, prefix, local_metadata, strict,
|
24 |
+
missing_keys, unexpected_keys, error_msgs):
|
25 |
+
...
|
26 |
+
|
27 |
+
def _get_name(self):
|
28 |
+
...
|
29 |
+
|
30 |
+
def _infer_parameters(self, module, input):
|
31 |
+
...
|
32 |
+
|
33 |
+
@property
|
34 |
+
def _parameters(self):
|
35 |
+
...
|
36 |
+
|
37 |
+
@property
|
38 |
+
def _buffers(self):
|
39 |
+
...
|
40 |
+
|
41 |
+
@property
|
42 |
+
def _non_persistent_buffers_set(self):
|
43 |
+
...
|
44 |
+
|
45 |
+
@property
|
46 |
+
def _load_hook(self):
|
47 |
+
...
|
48 |
+
|
49 |
+
@property
|
50 |
+
def _initialize_hook(self):
|
51 |
+
...
|
52 |
+
|
53 |
+
|
54 |
+
class LazyModuleMixin:
|
55 |
+
r"""A mixin for modules that lazily initialize parameters, also known as "lazy modules".
|
56 |
+
|
57 |
+
.. warning:
|
58 |
+
Lazy modules are an experimental new feature under active development,
|
59 |
+
and their API is likely to change.
|
60 |
+
|
61 |
+
Modules that lazily initialize parameters, or "lazy modules",
|
62 |
+
derive the shapes of their parameters from the first input(s)
|
63 |
+
to their forward method. Until that first forward they contain
|
64 |
+
:class:`torch.nn.UninitializedParameter` s that should not be accessed
|
65 |
+
or used, and afterward they contain regular :class:`torch.nn.Parameter` s.
|
66 |
+
Lazy modules are convenient since they don't require computing some
|
67 |
+
module arguments, like the :attr:`in_features` argument of a
|
68 |
+
typical :class:`torch.nn.Linear`.
|
69 |
+
|
70 |
+
After construction, networks with lazy modules should first
|
71 |
+
be converted to the desired dtype and placed on the expected device.
|
72 |
+
This is because lazy modules only perform shape inference so the usual dtype
|
73 |
+
and device placement behavior applies.
|
74 |
+
The lazy modules should then perform "dry runs" to initialize all the components in the module.
|
75 |
+
These "dry runs" send inputs of the correct size, dtype, and device through
|
76 |
+
the network and to each one of its lazy modules. After this the network can be used as usual.
|
77 |
+
|
78 |
+
>>> # xdoctest: +SKIP
|
79 |
+
>>> class LazyMLP(torch.nn.Module):
|
80 |
+
... def __init__(self):
|
81 |
+
... super().__init__()
|
82 |
+
... self.fc1 = torch.nn.LazyLinear(10)
|
83 |
+
... self.relu1 = torch.nn.ReLU()
|
84 |
+
... self.fc2 = torch.nn.LazyLinear(1)
|
85 |
+
... self.relu2 = torch.nn.ReLU()
|
86 |
+
...
|
87 |
+
... def forward(self, input):
|
88 |
+
... x = self.relu1(self.fc1(input))
|
89 |
+
... y = self.relu2(self.fc2(x))
|
90 |
+
... return y
|
91 |
+
>>> # constructs a network with lazy modules
|
92 |
+
>>> lazy_mlp = LazyMLP()
|
93 |
+
>>> # transforms the network's device and dtype
|
94 |
+
>>> # NOTE: these transforms can and should be applied after construction and before any 'dry runs'
|
95 |
+
>>> lazy_mlp = lazy_mlp.cuda().double()
|
96 |
+
>>> lazy_mlp
|
97 |
+
LazyMLP( (fc1): LazyLinear(in_features=0, out_features=10, bias=True)
|
98 |
+
(relu1): ReLU()
|
99 |
+
(fc2): LazyLinear(in_features=0, out_features=1, bias=True)
|
100 |
+
(relu2): ReLU()
|
101 |
+
)
|
102 |
+
>>> # performs a dry run to initialize the network's lazy modules
|
103 |
+
>>> lazy_mlp(torch.ones(10,10).cuda())
|
104 |
+
>>> # after initialization, LazyLinear modules become regular Linear modules
|
105 |
+
>>> lazy_mlp
|
106 |
+
LazyMLP(
|
107 |
+
(fc1): Linear(in_features=10, out_features=10, bias=True)
|
108 |
+
(relu1): ReLU()
|
109 |
+
(fc2): Linear(in_features=10, out_features=1, bias=True)
|
110 |
+
(relu2): ReLU()
|
111 |
+
)
|
112 |
+
>>> # attaches an optimizer, since parameters can now be used as usual
|
113 |
+
>>> optim = torch.optim.SGD(mlp.parameters(), lr=0.01)
|
114 |
+
|
115 |
+
A final caveat when using lazy modules is that the order of initialization of a network's
|
116 |
+
parameters may change, since the lazy modules are always initialized after other modules.
|
117 |
+
For example, if the LazyMLP class defined above had a :class:`torch.nn.LazyLinear` module
|
118 |
+
first and then a regular :class:`torch.nn.Linear` second, the second module would be
|
119 |
+
initialized on construction and the first module would be initialized during the first dry run.
|
120 |
+
This can cause the parameters of a network using lazy modules to be initialized differently
|
121 |
+
than the parameters of a network without lazy modules as the order of parameter initializations,
|
122 |
+
which often depends on a stateful random number generator, is different.
|
123 |
+
Check :doc:`/notes/randomness` for more details.
|
124 |
+
|
125 |
+
Lazy modules can be serialized with a state dict like other modules. For example:
|
126 |
+
|
127 |
+
>>> lazy_mlp = LazyMLP()
|
128 |
+
>>> # The state dict shows the uninitialized parameters
|
129 |
+
>>> lazy_mlp.state_dict()
|
130 |
+
OrderedDict([('fc1.weight', Uninitialized parameter),
|
131 |
+
('fc1.bias',
|
132 |
+
tensor([-1.8832e+25, 4.5636e-41, -1.8832e+25, 4.5636e-41, -6.1598e-30,
|
133 |
+
4.5637e-41, -1.8788e+22, 4.5636e-41, -2.0042e-31, 4.5637e-41])),
|
134 |
+
('fc2.weight', Uninitialized parameter),
|
135 |
+
('fc2.bias', tensor([0.0019]))])
|
136 |
+
|
137 |
+
|
138 |
+
Lazy modules can load regular :class:`torch.nn.Parameter` s (i.e. you can serialize/deserialize
|
139 |
+
initialized LazyModules and they will remain initialized)
|
140 |
+
|
141 |
+
|
142 |
+
>>> full_mlp = LazyMLP()
|
143 |
+
>>> # Dry run to initialize another module
|
144 |
+
>>> full_mlp.forward(torch.ones(10, 1))
|
145 |
+
>>> # Load an initialized state into a lazy module
|
146 |
+
>>> lazy_mlp.load_state_dict(full_mlp.state_dict())
|
147 |
+
>>> # The state dict now holds valid values
|
148 |
+
>>> lazy_mlp.state_dict()
|
149 |
+
OrderedDict([('fc1.weight',
|
150 |
+
tensor([[-0.3837],
|
151 |
+
[ 0.0907],
|
152 |
+
[ 0.6708],
|
153 |
+
[-0.5223],
|
154 |
+
[-0.9028],
|
155 |
+
[ 0.2851],
|
156 |
+
[-0.4537],
|
157 |
+
[ 0.6813],
|
158 |
+
[ 0.5766],
|
159 |
+
[-0.8678]])),
|
160 |
+
('fc1.bias',
|
161 |
+
tensor([-1.8832e+25, 4.5636e-41, -1.8832e+25, 4.5636e-41, -6.1598e-30,
|
162 |
+
4.5637e-41, -1.8788e+22, 4.5636e-41, -2.0042e-31, 4.5637e-41])),
|
163 |
+
('fc2.weight',
|
164 |
+
tensor([[ 0.1320, 0.2938, 0.0679, 0.2793, 0.1088, -0.1795, -0.2301, 0.2807,
|
165 |
+
0.2479, 0.1091]])),
|
166 |
+
('fc2.bias', tensor([0.0019]))])
|
167 |
+
|
168 |
+
Note, however, that the loaded parameters will not be replaced when doing a "dry run" if they are initialized
|
169 |
+
when the state is loaded. This prevents using initialized modules in different contexts.
|
170 |
+
"""
|
171 |
+
|
172 |
+
# modules inheriting from this will change their __class__ to the specified
|
173 |
+
# one after they are fully initialized
|
174 |
+
cls_to_become: Optional[Type[Any]] = None
|
175 |
+
|
176 |
+
def __init__(self: _LazyProtocol, *args, **kwargs):
|
177 |
+
# Mypy doesnt like this super call in a mixin
|
178 |
+
super().__init__(*args, **kwargs) # type: ignore[misc]
|
179 |
+
self._load_hook = self._register_load_state_dict_pre_hook(self._lazy_load_hook)
|
180 |
+
self._initialize_hook = self.register_forward_pre_hook(self._infer_parameters, with_kwargs=True)
|
181 |
+
warnings.warn('Lazy modules are a new feature under heavy development '
|
182 |
+
'so changes to the API or functionality can happen at any moment.')
|
183 |
+
|
184 |
+
def _save_to_state_dict(self: _LazyProtocol, destination, prefix, keep_vars):
|
185 |
+
# This should be ideally implemented as a hook,
|
186 |
+
# but we should override `detach` in the UninitializedParameter to return itself
|
187 |
+
# which is not clean
|
188 |
+
for name, param in self._parameters.items():
|
189 |
+
if param is not None:
|
190 |
+
if not (is_lazy(param) or keep_vars):
|
191 |
+
param = param.detach()
|
192 |
+
destination[prefix + name] = param
|
193 |
+
for name, buf in self._buffers.items():
|
194 |
+
if buf is not None and name not in self._non_persistent_buffers_set:
|
195 |
+
if not (is_lazy(buf) or keep_vars):
|
196 |
+
buf = buf.detach()
|
197 |
+
destination[prefix + name] = buf
|
198 |
+
|
199 |
+
def _lazy_load_hook(
|
200 |
+
self: _LazyProtocol, state_dict, prefix, local_metadata, strict,
|
201 |
+
missing_keys, unexpected_keys, error_msgs):
|
202 |
+
"""load_state_dict pre-hook function for lazy buffers and parameters.
|
203 |
+
|
204 |
+
The purpose of this hook is to adjust the current state and/or
|
205 |
+
``state_dict`` being loaded so that a module instance serialized in
|
206 |
+
both un/initialized state can be deserialized onto both un/initialized
|
207 |
+
module instance.
|
208 |
+
See comment in ``torch.nn.Module._register_load_state_dict_pre_hook``
|
209 |
+
for the details of the hook specification.
|
210 |
+
"""
|
211 |
+
for name, param in itertools.chain(self._parameters.items(), self._buffers.items()):
|
212 |
+
key = prefix + name
|
213 |
+
if key in state_dict and param is not None:
|
214 |
+
input_param = state_dict[key]
|
215 |
+
if is_lazy(param):
|
216 |
+
# The current parameter is not initialized but the one being loaded one is
|
217 |
+
# create a new parameter based on the uninitialized one
|
218 |
+
if not is_lazy(input_param):
|
219 |
+
with torch.no_grad():
|
220 |
+
param.materialize(input_param.shape)
|
221 |
+
|
222 |
+
def initialize_parameters(self: _LazyProtocol, *args, **kwargs):
|
223 |
+
r"""Initialize parameters according to the input batch properties.
|
224 |
+
|
225 |
+
This adds an interface to isolate parameter initialization from the
|
226 |
+
forward pass when doing parameter shape inference.
|
227 |
+
"""
|
228 |
+
raise NotImplementedError(f'initialize_parameters is not implemented for {self.__class__.__name__}')
|
229 |
+
|
230 |
+
def has_uninitialized_params(self: _LazyProtocol):
|
231 |
+
r"""Check if a module has parameters that are not initialized."""
|
232 |
+
# This is to avoid the JIT to track this parameter and force
|
233 |
+
# custom modules __setstate__ to add it
|
234 |
+
params = self._parameters.values()
|
235 |
+
buffers = self._buffers.values()
|
236 |
+
for param in itertools.chain(params, buffers):
|
237 |
+
if is_lazy(param):
|
238 |
+
return True
|
239 |
+
return False
|
240 |
+
|
241 |
+
def _infer_parameters(self: _LazyProtocol, module, args, kwargs=None):
|
242 |
+
r"""Infers the size and initializes the parameters according to the provided input batch.
|
243 |
+
|
244 |
+
Given a module that contains parameters that were declared inferrable
|
245 |
+
using :class:`torch.nn.parameter.ParameterMode.Infer`, runs a forward pass
|
246 |
+
in the complete module using the provided input to initialize all the parameters
|
247 |
+
as needed.
|
248 |
+
The module is set into evaluation mode before running the forward pass in order
|
249 |
+
to avoid saving statistics or calculating gradients
|
250 |
+
"""
|
251 |
+
kwargs = kwargs if kwargs else {}
|
252 |
+
module.initialize_parameters(*args, **kwargs)
|
253 |
+
if module.has_uninitialized_params():
|
254 |
+
raise RuntimeError(f'module {self._get_name()} has not been fully initialized')
|
255 |
+
module._initialize_hook.remove()
|
256 |
+
module._load_hook.remove()
|
257 |
+
delattr(module, '_initialize_hook')
|
258 |
+
delattr(module, '_load_hook')
|
259 |
+
if module.cls_to_become is not None:
|
260 |
+
module.__class__ = module.cls_to_become
|
261 |
+
|
262 |
+
|
263 |
+
def _replicate_for_data_parallel(self: _LazyProtocol):
|
264 |
+
raise RuntimeError('Modules with uninitialized parameters can\'t be used with `DataParallel`. '
|
265 |
+
'Run a dummy forward pass to correctly initialize the modules')
|
venv/lib/python3.10/site-packages/torch/nn/modules/loss.py
ADDED
@@ -0,0 +1,1790 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
from .distance import PairwiseDistance
|
4 |
+
from .module import Module
|
5 |
+
from .. import functional as F
|
6 |
+
from .. import _reduction as _Reduction
|
7 |
+
|
8 |
+
from torch import Tensor
|
9 |
+
from typing import Callable, Optional
|
10 |
+
|
11 |
+
__all__ = ['L1Loss', 'NLLLoss', 'NLLLoss2d', 'PoissonNLLLoss', 'GaussianNLLLoss', 'KLDivLoss',
|
12 |
+
'MSELoss', 'BCELoss', 'BCEWithLogitsLoss', 'HingeEmbeddingLoss', 'MultiLabelMarginLoss',
|
13 |
+
'SmoothL1Loss', 'HuberLoss', 'SoftMarginLoss', 'CrossEntropyLoss', 'MultiLabelSoftMarginLoss',
|
14 |
+
'CosineEmbeddingLoss', 'MarginRankingLoss', 'MultiMarginLoss', 'TripletMarginLoss',
|
15 |
+
'TripletMarginWithDistanceLoss', 'CTCLoss']
|
16 |
+
|
17 |
+
class _Loss(Module):
|
18 |
+
reduction: str
|
19 |
+
|
20 |
+
def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
|
21 |
+
super().__init__()
|
22 |
+
if size_average is not None or reduce is not None:
|
23 |
+
self.reduction: str = _Reduction.legacy_get_string(size_average, reduce)
|
24 |
+
else:
|
25 |
+
self.reduction = reduction
|
26 |
+
|
27 |
+
|
28 |
+
class _WeightedLoss(_Loss):
|
29 |
+
def __init__(self, weight: Optional[Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean') -> None:
|
30 |
+
super().__init__(size_average, reduce, reduction)
|
31 |
+
self.register_buffer('weight', weight)
|
32 |
+
self.weight: Optional[Tensor]
|
33 |
+
|
34 |
+
|
35 |
+
class L1Loss(_Loss):
|
36 |
+
r"""Creates a criterion that measures the mean absolute error (MAE) between each element in
|
37 |
+
the input :math:`x` and target :math:`y`.
|
38 |
+
|
39 |
+
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
|
40 |
+
|
41 |
+
.. math::
|
42 |
+
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
|
43 |
+
l_n = \left| x_n - y_n \right|,
|
44 |
+
|
45 |
+
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
|
46 |
+
(default ``'mean'``), then:
|
47 |
+
|
48 |
+
.. math::
|
49 |
+
\ell(x, y) =
|
50 |
+
\begin{cases}
|
51 |
+
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
|
52 |
+
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
|
53 |
+
\end{cases}
|
54 |
+
|
55 |
+
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
|
56 |
+
of :math:`n` elements each.
|
57 |
+
|
58 |
+
The sum operation still operates over all the elements, and divides by :math:`n`.
|
59 |
+
|
60 |
+
The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``.
|
61 |
+
|
62 |
+
Supports real-valued and complex-valued inputs.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
66 |
+
the losses are averaged over each loss element in the batch. Note that for
|
67 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
68 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
69 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
70 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
71 |
+
losses are averaged or summed over observations for each minibatch depending
|
72 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
73 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
74 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
75 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
76 |
+
``'mean'``: the sum of the output will be divided by the number of
|
77 |
+
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
78 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
79 |
+
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
80 |
+
|
81 |
+
Shape:
|
82 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
83 |
+
- Target: :math:`(*)`, same shape as the input.
|
84 |
+
- Output: scalar. If :attr:`reduction` is ``'none'``, then
|
85 |
+
:math:`(*)`, same shape as the input.
|
86 |
+
|
87 |
+
Examples::
|
88 |
+
|
89 |
+
>>> loss = nn.L1Loss()
|
90 |
+
>>> input = torch.randn(3, 5, requires_grad=True)
|
91 |
+
>>> target = torch.randn(3, 5)
|
92 |
+
>>> output = loss(input, target)
|
93 |
+
>>> output.backward()
|
94 |
+
"""
|
95 |
+
__constants__ = ['reduction']
|
96 |
+
|
97 |
+
def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
|
98 |
+
super().__init__(size_average, reduce, reduction)
|
99 |
+
|
100 |
+
def forward(self, input: Tensor, target: Tensor) -> Tensor:
|
101 |
+
return F.l1_loss(input, target, reduction=self.reduction)
|
102 |
+
|
103 |
+
|
104 |
+
class NLLLoss(_WeightedLoss):
|
105 |
+
r"""The negative log likelihood loss. It is useful to train a classification
|
106 |
+
problem with `C` classes.
|
107 |
+
|
108 |
+
If provided, the optional argument :attr:`weight` should be a 1D Tensor assigning
|
109 |
+
weight to each of the classes. This is particularly useful when you have an
|
110 |
+
unbalanced training set.
|
111 |
+
|
112 |
+
The `input` given through a forward call is expected to contain
|
113 |
+
log-probabilities of each class. `input` has to be a Tensor of size either
|
114 |
+
:math:`(minibatch, C)` or :math:`(minibatch, C, d_1, d_2, ..., d_K)`
|
115 |
+
with :math:`K \geq 1` for the `K`-dimensional case. The latter is useful for
|
116 |
+
higher dimension inputs, such as computing NLL loss per-pixel for 2D images.
|
117 |
+
|
118 |
+
Obtaining log-probabilities in a neural network is easily achieved by
|
119 |
+
adding a `LogSoftmax` layer in the last layer of your network.
|
120 |
+
You may use `CrossEntropyLoss` instead, if you prefer not to add an extra
|
121 |
+
layer.
|
122 |
+
|
123 |
+
The `target` that this loss expects should be a class index in the range :math:`[0, C-1]`
|
124 |
+
where `C = number of classes`; if `ignore_index` is specified, this loss also accepts
|
125 |
+
this class index (this index may not necessarily be in the class range).
|
126 |
+
|
127 |
+
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
|
128 |
+
|
129 |
+
.. math::
|
130 |
+
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
|
131 |
+
l_n = - w_{y_n} x_{n,y_n}, \quad
|
132 |
+
w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore\_index}\},
|
133 |
+
|
134 |
+
where :math:`x` is the input, :math:`y` is the target, :math:`w` is the weight, and
|
135 |
+
:math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
|
136 |
+
(default ``'mean'``), then
|
137 |
+
|
138 |
+
.. math::
|
139 |
+
\ell(x, y) = \begin{cases}
|
140 |
+
\sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, &
|
141 |
+
\text{if reduction} = \text{`mean';}\\
|
142 |
+
\sum_{n=1}^N l_n, &
|
143 |
+
\text{if reduction} = \text{`sum'.}
|
144 |
+
\end{cases}
|
145 |
+
|
146 |
+
Args:
|
147 |
+
weight (Tensor, optional): a manual rescaling weight given to each
|
148 |
+
class. If given, it has to be a Tensor of size `C`. Otherwise, it is
|
149 |
+
treated as if having all ones.
|
150 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
151 |
+
the losses are averaged over each loss element in the batch. Note that for
|
152 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
153 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
154 |
+
when :attr:`reduce` is ``False``. Default: ``None``
|
155 |
+
ignore_index (int, optional): Specifies a target value that is ignored
|
156 |
+
and does not contribute to the input gradient. When
|
157 |
+
:attr:`size_average` is ``True``, the loss is averaged over
|
158 |
+
non-ignored targets.
|
159 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
160 |
+
losses are averaged or summed over observations for each minibatch depending
|
161 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
162 |
+
batch element instead and ignores :attr:`size_average`. Default: ``None``
|
163 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
164 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will
|
165 |
+
be applied, ``'mean'``: the weighted mean of the output is taken,
|
166 |
+
``'sum'``: the output will be summed. Note: :attr:`size_average`
|
167 |
+
and :attr:`reduce` are in the process of being deprecated, and in
|
168 |
+
the meantime, specifying either of those two args will override
|
169 |
+
:attr:`reduction`. Default: ``'mean'``
|
170 |
+
|
171 |
+
Shape:
|
172 |
+
- Input: :math:`(N, C)` or :math:`(C)`, where `C = number of classes`, or
|
173 |
+
:math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`
|
174 |
+
in the case of `K`-dimensional loss.
|
175 |
+
- Target: :math:`(N)` or :math:`()`, where each value is
|
176 |
+
:math:`0 \leq \text{targets}[i] \leq C-1`, or
|
177 |
+
:math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of
|
178 |
+
K-dimensional loss.
|
179 |
+
- Output: If :attr:`reduction` is ``'none'``, shape :math:`(N)` or
|
180 |
+
:math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of K-dimensional loss.
|
181 |
+
Otherwise, scalar.
|
182 |
+
|
183 |
+
Examples::
|
184 |
+
|
185 |
+
>>> m = nn.LogSoftmax(dim=1)
|
186 |
+
>>> loss = nn.NLLLoss()
|
187 |
+
>>> # input is of size N x C = 3 x 5
|
188 |
+
>>> input = torch.randn(3, 5, requires_grad=True)
|
189 |
+
>>> # each element in target has to have 0 <= value < C
|
190 |
+
>>> target = torch.tensor([1, 0, 4])
|
191 |
+
>>> output = loss(m(input), target)
|
192 |
+
>>> output.backward()
|
193 |
+
>>>
|
194 |
+
>>>
|
195 |
+
>>> # 2D loss example (used, for example, with image inputs)
|
196 |
+
>>> N, C = 5, 4
|
197 |
+
>>> loss = nn.NLLLoss()
|
198 |
+
>>> # input is of size N x C x height x width
|
199 |
+
>>> data = torch.randn(N, 16, 10, 10)
|
200 |
+
>>> conv = nn.Conv2d(16, C, (3, 3))
|
201 |
+
>>> m = nn.LogSoftmax(dim=1)
|
202 |
+
>>> # each element in target has to have 0 <= value < C
|
203 |
+
>>> target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C)
|
204 |
+
>>> output = loss(m(conv(data)), target)
|
205 |
+
>>> output.backward()
|
206 |
+
"""
|
207 |
+
__constants__ = ['ignore_index', 'reduction']
|
208 |
+
ignore_index: int
|
209 |
+
|
210 |
+
def __init__(self, weight: Optional[Tensor] = None, size_average=None, ignore_index: int = -100,
|
211 |
+
reduce=None, reduction: str = 'mean') -> None:
|
212 |
+
super().__init__(weight, size_average, reduce, reduction)
|
213 |
+
self.ignore_index = ignore_index
|
214 |
+
|
215 |
+
def forward(self, input: Tensor, target: Tensor) -> Tensor:
|
216 |
+
return F.nll_loss(input, target, weight=self.weight, ignore_index=self.ignore_index, reduction=self.reduction)
|
217 |
+
|
218 |
+
|
219 |
+
class NLLLoss2d(NLLLoss):
|
220 |
+
def __init__(self, weight: Optional[Tensor] = None, size_average=None, ignore_index: int = -100,
|
221 |
+
reduce=None, reduction: str = 'mean') -> None:
|
222 |
+
warnings.warn("NLLLoss2d has been deprecated. "
|
223 |
+
"Please use NLLLoss instead as a drop-in replacement and see "
|
224 |
+
"https://pytorch.org/docs/master/nn.html#torch.nn.NLLLoss for more details.")
|
225 |
+
super().__init__(weight, size_average, ignore_index, reduce, reduction)
|
226 |
+
|
227 |
+
|
228 |
+
class PoissonNLLLoss(_Loss):
|
229 |
+
r"""Negative log likelihood loss with Poisson distribution of target.
|
230 |
+
|
231 |
+
The loss can be described as:
|
232 |
+
|
233 |
+
.. math::
|
234 |
+
\text{target} \sim \mathrm{Poisson}(\text{input})
|
235 |
+
|
236 |
+
\text{loss}(\text{input}, \text{target}) = \text{input} - \text{target} * \log(\text{input})
|
237 |
+
+ \log(\text{target!})
|
238 |
+
|
239 |
+
The last term can be omitted or approximated with Stirling formula. The
|
240 |
+
approximation is used for target values more than 1. For targets less or
|
241 |
+
equal to 1 zeros are added to the loss.
|
242 |
+
|
243 |
+
Args:
|
244 |
+
log_input (bool, optional): if ``True`` the loss is computed as
|
245 |
+
:math:`\exp(\text{input}) - \text{target}*\text{input}`, if ``False`` the loss is
|
246 |
+
:math:`\text{input} - \text{target}*\log(\text{input}+\text{eps})`.
|
247 |
+
full (bool, optional): whether to compute full loss, i. e. to add the
|
248 |
+
Stirling approximation term
|
249 |
+
|
250 |
+
.. math::
|
251 |
+
\text{target}*\log(\text{target}) - \text{target} + 0.5 * \log(2\pi\text{target}).
|
252 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
253 |
+
the losses are averaged over each loss element in the batch. Note that for
|
254 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
255 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
256 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
257 |
+
eps (float, optional): Small value to avoid evaluation of :math:`\log(0)` when
|
258 |
+
:attr:`log_input = False`. Default: 1e-8
|
259 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
260 |
+
losses are averaged or summed over observations for each minibatch depending
|
261 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
262 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
263 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
264 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
265 |
+
``'mean'``: the sum of the output will be divided by the number of
|
266 |
+
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
267 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
268 |
+
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
269 |
+
|
270 |
+
Examples::
|
271 |
+
|
272 |
+
>>> loss = nn.PoissonNLLLoss()
|
273 |
+
>>> log_input = torch.randn(5, 2, requires_grad=True)
|
274 |
+
>>> target = torch.randn(5, 2)
|
275 |
+
>>> output = loss(log_input, target)
|
276 |
+
>>> output.backward()
|
277 |
+
|
278 |
+
Shape:
|
279 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
280 |
+
- Target: :math:`(*)`, same shape as the input.
|
281 |
+
- Output: scalar by default. If :attr:`reduction` is ``'none'``, then :math:`(*)`,
|
282 |
+
the same shape as the input.
|
283 |
+
"""
|
284 |
+
__constants__ = ['log_input', 'full', 'eps', 'reduction']
|
285 |
+
log_input: bool
|
286 |
+
full: bool
|
287 |
+
eps: float
|
288 |
+
|
289 |
+
def __init__(self, log_input: bool = True, full: bool = False, size_average=None,
|
290 |
+
eps: float = 1e-8, reduce=None, reduction: str = 'mean') -> None:
|
291 |
+
super().__init__(size_average, reduce, reduction)
|
292 |
+
self.log_input = log_input
|
293 |
+
self.full = full
|
294 |
+
self.eps = eps
|
295 |
+
|
296 |
+
def forward(self, log_input: Tensor, target: Tensor) -> Tensor:
|
297 |
+
return F.poisson_nll_loss(log_input, target, log_input=self.log_input, full=self.full,
|
298 |
+
eps=self.eps, reduction=self.reduction)
|
299 |
+
|
300 |
+
|
301 |
+
class GaussianNLLLoss(_Loss):
|
302 |
+
r"""Gaussian negative log likelihood loss.
|
303 |
+
|
304 |
+
The targets are treated as samples from Gaussian distributions with
|
305 |
+
expectations and variances predicted by the neural network. For a
|
306 |
+
``target`` tensor modelled as having Gaussian distribution with a tensor
|
307 |
+
of expectations ``input`` and a tensor of positive variances ``var`` the loss is:
|
308 |
+
|
309 |
+
.. math::
|
310 |
+
\text{loss} = \frac{1}{2}\left(\log\left(\text{max}\left(\text{var},
|
311 |
+
\ \text{eps}\right)\right) + \frac{\left(\text{input} - \text{target}\right)^2}
|
312 |
+
{\text{max}\left(\text{var}, \ \text{eps}\right)}\right) + \text{const.}
|
313 |
+
|
314 |
+
where :attr:`eps` is used for stability. By default, the constant term of
|
315 |
+
the loss function is omitted unless :attr:`full` is ``True``. If ``var`` is not the same
|
316 |
+
size as ``input`` (due to a homoscedastic assumption), it must either have a final dimension
|
317 |
+
of 1 or have one fewer dimension (with all other sizes being the same) for correct broadcasting.
|
318 |
+
|
319 |
+
Args:
|
320 |
+
full (bool, optional): include the constant term in the loss
|
321 |
+
calculation. Default: ``False``.
|
322 |
+
eps (float, optional): value used to clamp ``var`` (see note below), for
|
323 |
+
stability. Default: 1e-6.
|
324 |
+
reduction (str, optional): specifies the reduction to apply to the
|
325 |
+
output:``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction
|
326 |
+
will be applied, ``'mean'``: the output is the average of all batch
|
327 |
+
member losses, ``'sum'``: the output is the sum of all batch member
|
328 |
+
losses. Default: ``'mean'``.
|
329 |
+
|
330 |
+
Shape:
|
331 |
+
- Input: :math:`(N, *)` or :math:`(*)` where :math:`*` means any number of additional
|
332 |
+
dimensions
|
333 |
+
- Target: :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input
|
334 |
+
but with one dimension equal to 1 (to allow for broadcasting)
|
335 |
+
- Var: :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input but
|
336 |
+
with one dimension equal to 1, or same shape as the input but with one fewer
|
337 |
+
dimension (to allow for broadcasting)
|
338 |
+
- Output: scalar if :attr:`reduction` is ``'mean'`` (default) or
|
339 |
+
``'sum'``. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`, same
|
340 |
+
shape as the input
|
341 |
+
|
342 |
+
Examples::
|
343 |
+
>>> loss = nn.GaussianNLLLoss()
|
344 |
+
>>> input = torch.randn(5, 2, requires_grad=True)
|
345 |
+
>>> target = torch.randn(5, 2)
|
346 |
+
>>> var = torch.ones(5, 2, requires_grad=True) # heteroscedastic
|
347 |
+
>>> output = loss(input, target, var)
|
348 |
+
>>> output.backward()
|
349 |
+
|
350 |
+
>>> loss = nn.GaussianNLLLoss()
|
351 |
+
>>> input = torch.randn(5, 2, requires_grad=True)
|
352 |
+
>>> target = torch.randn(5, 2)
|
353 |
+
>>> var = torch.ones(5, 1, requires_grad=True) # homoscedastic
|
354 |
+
>>> output = loss(input, target, var)
|
355 |
+
>>> output.backward()
|
356 |
+
|
357 |
+
Note:
|
358 |
+
The clamping of ``var`` is ignored with respect to autograd, and so the
|
359 |
+
gradients are unaffected by it.
|
360 |
+
|
361 |
+
Reference:
|
362 |
+
Nix, D. A. and Weigend, A. S., "Estimating the mean and variance of the
|
363 |
+
target probability distribution", Proceedings of 1994 IEEE International
|
364 |
+
Conference on Neural Networks (ICNN'94), Orlando, FL, USA, 1994, pp. 55-60
|
365 |
+
vol.1, doi: 10.1109/ICNN.1994.374138.
|
366 |
+
"""
|
367 |
+
__constants__ = ['full', 'eps', 'reduction']
|
368 |
+
full: bool
|
369 |
+
eps: float
|
370 |
+
|
371 |
+
def __init__(self, *, full: bool = False, eps: float = 1e-6, reduction: str = 'mean') -> None:
|
372 |
+
super().__init__(None, None, reduction)
|
373 |
+
self.full = full
|
374 |
+
self.eps = eps
|
375 |
+
|
376 |
+
def forward(self, input: Tensor, target: Tensor, var: Tensor) -> Tensor:
|
377 |
+
return F.gaussian_nll_loss(input, target, var, full=self.full, eps=self.eps, reduction=self.reduction)
|
378 |
+
|
379 |
+
|
380 |
+
class KLDivLoss(_Loss):
|
381 |
+
r"""The Kullback-Leibler divergence loss.
|
382 |
+
|
383 |
+
For tensors of the same shape :math:`y_{\text{pred}},\ y_{\text{true}}`,
|
384 |
+
where :math:`y_{\text{pred}}` is the :attr:`input` and :math:`y_{\text{true}}` is the
|
385 |
+
:attr:`target`, we define the **pointwise KL-divergence** as
|
386 |
+
|
387 |
+
.. math::
|
388 |
+
|
389 |
+
L(y_{\text{pred}},\ y_{\text{true}})
|
390 |
+
= y_{\text{true}} \cdot \log \frac{y_{\text{true}}}{y_{\text{pred}}}
|
391 |
+
= y_{\text{true}} \cdot (\log y_{\text{true}} - \log y_{\text{pred}})
|
392 |
+
|
393 |
+
To avoid underflow issues when computing this quantity, this loss expects the argument
|
394 |
+
:attr:`input` in the log-space. The argument :attr:`target` may also be provided in the
|
395 |
+
log-space if :attr:`log_target`\ `= True`.
|
396 |
+
|
397 |
+
To summarise, this function is roughly equivalent to computing
|
398 |
+
|
399 |
+
.. code-block:: python
|
400 |
+
|
401 |
+
if not log_target: # default
|
402 |
+
loss_pointwise = target * (target.log() - input)
|
403 |
+
else:
|
404 |
+
loss_pointwise = target.exp() * (target - input)
|
405 |
+
|
406 |
+
and then reducing this result depending on the argument :attr:`reduction` as
|
407 |
+
|
408 |
+
.. code-block:: python
|
409 |
+
|
410 |
+
if reduction == "mean": # default
|
411 |
+
loss = loss_pointwise.mean()
|
412 |
+
elif reduction == "batchmean": # mathematically correct
|
413 |
+
loss = loss_pointwise.sum() / input.size(0)
|
414 |
+
elif reduction == "sum":
|
415 |
+
loss = loss_pointwise.sum()
|
416 |
+
else: # reduction == "none"
|
417 |
+
loss = loss_pointwise
|
418 |
+
|
419 |
+
.. note::
|
420 |
+
As all the other losses in PyTorch, this function expects the first argument,
|
421 |
+
:attr:`input`, to be the output of the model (e.g. the neural network)
|
422 |
+
and the second, :attr:`target`, to be the observations in the dataset.
|
423 |
+
This differs from the standard mathematical notation :math:`KL(P\ ||\ Q)` where
|
424 |
+
:math:`P` denotes the distribution of the observations and :math:`Q` denotes the model.
|
425 |
+
|
426 |
+
.. warning::
|
427 |
+
:attr:`reduction`\ `= "mean"` doesn't return the true KL divergence value, please use
|
428 |
+
:attr:`reduction`\ `= "batchmean"` which aligns with the mathematical definition.
|
429 |
+
|
430 |
+
Args:
|
431 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
432 |
+
the losses are averaged over each loss element in the batch. Note that for
|
433 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
434 |
+
is set to `False`, the losses are instead summed for each minibatch. Ignored
|
435 |
+
when :attr:`reduce` is `False`. Default: `True`
|
436 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
437 |
+
losses are averaged or summed over observations for each minibatch depending
|
438 |
+
on :attr:`size_average`. When :attr:`reduce` is `False`, returns a loss per
|
439 |
+
batch element instead and ignores :attr:`size_average`. Default: `True`
|
440 |
+
reduction (str, optional): Specifies the reduction to apply to the output. Default: `"mean"`
|
441 |
+
log_target (bool, optional): Specifies whether `target` is the log space. Default: `False`
|
442 |
+
|
443 |
+
Shape:
|
444 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
445 |
+
- Target: :math:`(*)`, same shape as the input.
|
446 |
+
- Output: scalar by default. If :attr:`reduction` is `'none'`, then :math:`(*)`,
|
447 |
+
same shape as the input.
|
448 |
+
|
449 |
+
Examples::
|
450 |
+
|
451 |
+
>>> import torch.nn.functional as F
|
452 |
+
>>> kl_loss = nn.KLDivLoss(reduction="batchmean")
|
453 |
+
>>> # input should be a distribution in the log space
|
454 |
+
>>> input = F.log_softmax(torch.randn(3, 5, requires_grad=True), dim=1)
|
455 |
+
>>> # Sample a batch of distributions. Usually this would come from the dataset
|
456 |
+
>>> target = F.softmax(torch.rand(3, 5), dim=1)
|
457 |
+
>>> output = kl_loss(input, target)
|
458 |
+
|
459 |
+
>>> kl_loss = nn.KLDivLoss(reduction="batchmean", log_target=True)
|
460 |
+
>>> log_target = F.log_softmax(torch.rand(3, 5), dim=1)
|
461 |
+
>>> output = kl_loss(input, log_target)
|
462 |
+
"""
|
463 |
+
__constants__ = ['reduction']
|
464 |
+
|
465 |
+
def __init__(self, size_average=None, reduce=None, reduction: str = 'mean', log_target: bool = False) -> None:
|
466 |
+
super().__init__(size_average, reduce, reduction)
|
467 |
+
self.log_target = log_target
|
468 |
+
|
469 |
+
def forward(self, input: Tensor, target: Tensor) -> Tensor:
|
470 |
+
return F.kl_div(input, target, reduction=self.reduction, log_target=self.log_target)
|
471 |
+
|
472 |
+
|
473 |
+
class MSELoss(_Loss):
|
474 |
+
r"""Creates a criterion that measures the mean squared error (squared L2 norm) between
|
475 |
+
each element in the input :math:`x` and target :math:`y`.
|
476 |
+
|
477 |
+
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
|
478 |
+
|
479 |
+
.. math::
|
480 |
+
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
|
481 |
+
l_n = \left( x_n - y_n \right)^2,
|
482 |
+
|
483 |
+
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
|
484 |
+
(default ``'mean'``), then:
|
485 |
+
|
486 |
+
.. math::
|
487 |
+
\ell(x, y) =
|
488 |
+
\begin{cases}
|
489 |
+
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
|
490 |
+
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
|
491 |
+
\end{cases}
|
492 |
+
|
493 |
+
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
|
494 |
+
of :math:`n` elements each.
|
495 |
+
|
496 |
+
The mean operation still operates over all the elements, and divides by :math:`n`.
|
497 |
+
|
498 |
+
The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``.
|
499 |
+
|
500 |
+
Args:
|
501 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
502 |
+
the losses are averaged over each loss element in the batch. Note that for
|
503 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
504 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
505 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
506 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
507 |
+
losses are averaged or summed over observations for each minibatch depending
|
508 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
509 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
510 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
511 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
512 |
+
``'mean'``: the sum of the output will be divided by the number of
|
513 |
+
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
514 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
515 |
+
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
516 |
+
|
517 |
+
Shape:
|
518 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
519 |
+
- Target: :math:`(*)`, same shape as the input.
|
520 |
+
|
521 |
+
Examples::
|
522 |
+
|
523 |
+
>>> loss = nn.MSELoss()
|
524 |
+
>>> input = torch.randn(3, 5, requires_grad=True)
|
525 |
+
>>> target = torch.randn(3, 5)
|
526 |
+
>>> output = loss(input, target)
|
527 |
+
>>> output.backward()
|
528 |
+
"""
|
529 |
+
__constants__ = ['reduction']
|
530 |
+
|
531 |
+
def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
|
532 |
+
super().__init__(size_average, reduce, reduction)
|
533 |
+
|
534 |
+
def forward(self, input: Tensor, target: Tensor) -> Tensor:
|
535 |
+
return F.mse_loss(input, target, reduction=self.reduction)
|
536 |
+
|
537 |
+
|
538 |
+
class BCELoss(_WeightedLoss):
|
539 |
+
r"""Creates a criterion that measures the Binary Cross Entropy between the target and
|
540 |
+
the input probabilities:
|
541 |
+
|
542 |
+
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
|
543 |
+
|
544 |
+
.. math::
|
545 |
+
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
|
546 |
+
l_n = - w_n \left[ y_n \cdot \log x_n + (1 - y_n) \cdot \log (1 - x_n) \right],
|
547 |
+
|
548 |
+
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
|
549 |
+
(default ``'mean'``), then
|
550 |
+
|
551 |
+
.. math::
|
552 |
+
\ell(x, y) = \begin{cases}
|
553 |
+
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
|
554 |
+
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
|
555 |
+
\end{cases}
|
556 |
+
|
557 |
+
This is used for measuring the error of a reconstruction in for example
|
558 |
+
an auto-encoder. Note that the targets :math:`y` should be numbers
|
559 |
+
between 0 and 1.
|
560 |
+
|
561 |
+
Notice that if :math:`x_n` is either 0 or 1, one of the log terms would be
|
562 |
+
mathematically undefined in the above loss equation. PyTorch chooses to set
|
563 |
+
:math:`\log (0) = -\infty`, since :math:`\lim_{x\to 0} \log (x) = -\infty`.
|
564 |
+
However, an infinite term in the loss equation is not desirable for several reasons.
|
565 |
+
|
566 |
+
For one, if either :math:`y_n = 0` or :math:`(1 - y_n) = 0`, then we would be
|
567 |
+
multiplying 0 with infinity. Secondly, if we have an infinite loss value, then
|
568 |
+
we would also have an infinite term in our gradient, since
|
569 |
+
:math:`\lim_{x\to 0} \frac{d}{dx} \log (x) = \infty`.
|
570 |
+
This would make BCELoss's backward method nonlinear with respect to :math:`x_n`,
|
571 |
+
and using it for things like linear regression would not be straight-forward.
|
572 |
+
|
573 |
+
Our solution is that BCELoss clamps its log function outputs to be greater than
|
574 |
+
or equal to -100. This way, we can always have a finite loss value and a linear
|
575 |
+
backward method.
|
576 |
+
|
577 |
+
|
578 |
+
Args:
|
579 |
+
weight (Tensor, optional): a manual rescaling weight given to the loss
|
580 |
+
of each batch element. If given, has to be a Tensor of size `nbatch`.
|
581 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
582 |
+
the losses are averaged over each loss element in the batch. Note that for
|
583 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
584 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
585 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
586 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
587 |
+
losses are averaged or summed over observations for each minibatch depending
|
588 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
589 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
590 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
591 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
592 |
+
``'mean'``: the sum of the output will be divided by the number of
|
593 |
+
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
594 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
595 |
+
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
596 |
+
|
597 |
+
Shape:
|
598 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
599 |
+
- Target: :math:`(*)`, same shape as the input.
|
600 |
+
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same
|
601 |
+
shape as input.
|
602 |
+
|
603 |
+
Examples::
|
604 |
+
|
605 |
+
>>> m = nn.Sigmoid()
|
606 |
+
>>> loss = nn.BCELoss()
|
607 |
+
>>> input = torch.randn(3, 2, requires_grad=True)
|
608 |
+
>>> target = torch.rand(3, 2, requires_grad=False)
|
609 |
+
>>> output = loss(m(input), target)
|
610 |
+
>>> output.backward()
|
611 |
+
"""
|
612 |
+
__constants__ = ['reduction']
|
613 |
+
|
614 |
+
def __init__(self, weight: Optional[Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean') -> None:
|
615 |
+
super().__init__(weight, size_average, reduce, reduction)
|
616 |
+
|
617 |
+
def forward(self, input: Tensor, target: Tensor) -> Tensor:
|
618 |
+
return F.binary_cross_entropy(input, target, weight=self.weight, reduction=self.reduction)
|
619 |
+
|
620 |
+
|
621 |
+
class BCEWithLogitsLoss(_Loss):
|
622 |
+
r"""This loss combines a `Sigmoid` layer and the `BCELoss` in one single
|
623 |
+
class. This version is more numerically stable than using a plain `Sigmoid`
|
624 |
+
followed by a `BCELoss` as, by combining the operations into one layer,
|
625 |
+
we take advantage of the log-sum-exp trick for numerical stability.
|
626 |
+
|
627 |
+
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
|
628 |
+
|
629 |
+
.. math::
|
630 |
+
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
|
631 |
+
l_n = - w_n \left[ y_n \cdot \log \sigma(x_n)
|
632 |
+
+ (1 - y_n) \cdot \log (1 - \sigma(x_n)) \right],
|
633 |
+
|
634 |
+
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
|
635 |
+
(default ``'mean'``), then
|
636 |
+
|
637 |
+
.. math::
|
638 |
+
\ell(x, y) = \begin{cases}
|
639 |
+
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
|
640 |
+
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
|
641 |
+
\end{cases}
|
642 |
+
|
643 |
+
This is used for measuring the error of a reconstruction in for example
|
644 |
+
an auto-encoder. Note that the targets `t[i]` should be numbers
|
645 |
+
between 0 and 1.
|
646 |
+
|
647 |
+
It's possible to trade off recall and precision by adding weights to positive examples.
|
648 |
+
In the case of multi-label classification the loss can be described as:
|
649 |
+
|
650 |
+
.. math::
|
651 |
+
\ell_c(x, y) = L_c = \{l_{1,c},\dots,l_{N,c}\}^\top, \quad
|
652 |
+
l_{n,c} = - w_{n,c} \left[ p_c y_{n,c} \cdot \log \sigma(x_{n,c})
|
653 |
+
+ (1 - y_{n,c}) \cdot \log (1 - \sigma(x_{n,c})) \right],
|
654 |
+
|
655 |
+
where :math:`c` is the class number (:math:`c > 1` for multi-label binary classification,
|
656 |
+
:math:`c = 1` for single-label binary classification),
|
657 |
+
:math:`n` is the number of the sample in the batch and
|
658 |
+
:math:`p_c` is the weight of the positive answer for the class :math:`c`.
|
659 |
+
|
660 |
+
:math:`p_c > 1` increases the recall, :math:`p_c < 1` increases the precision.
|
661 |
+
|
662 |
+
For example, if a dataset contains 100 positive and 300 negative examples of a single class,
|
663 |
+
then ``pos_weight`` for the class should be equal to :math:`\frac{300}{100}=3`.
|
664 |
+
The loss would act as if the dataset contains :math:`3\times 100=300` positive examples.
|
665 |
+
|
666 |
+
Examples::
|
667 |
+
|
668 |
+
>>> target = torch.ones([10, 64], dtype=torch.float32) # 64 classes, batch size = 10
|
669 |
+
>>> output = torch.full([10, 64], 1.5) # A prediction (logit)
|
670 |
+
>>> pos_weight = torch.ones([64]) # All weights are equal to 1
|
671 |
+
>>> criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
|
672 |
+
>>> criterion(output, target) # -log(sigmoid(1.5))
|
673 |
+
tensor(0.20...)
|
674 |
+
|
675 |
+
In the above example, the ``pos_weight`` tensor's elements correspond to the 64 distinct classes
|
676 |
+
in a multi-label binary classification scenario. Each element in ``pos_weight`` is designed to adjust the
|
677 |
+
loss function based on the imbalance between negative and positive samples for the respective class.
|
678 |
+
This approach is useful in datasets with varying levels of class imbalance, ensuring that the loss
|
679 |
+
calculation accurately accounts for the distribution in each class.
|
680 |
+
|
681 |
+
Args:
|
682 |
+
weight (Tensor, optional): a manual rescaling weight given to the loss
|
683 |
+
of each batch element. If given, has to be a Tensor of size `nbatch`.
|
684 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
685 |
+
the losses are averaged over each loss element in the batch. Note that for
|
686 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
687 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
688 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
689 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
690 |
+
losses are averaged or summed over observations for each minibatch depending
|
691 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
692 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
693 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
694 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
695 |
+
``'mean'``: the sum of the output will be divided by the number of
|
696 |
+
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
697 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
698 |
+
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
699 |
+
pos_weight (Tensor, optional): a weight of positive examples to be broadcasted with target.
|
700 |
+
Must be a tensor with equal size along the class dimension to the number of classes.
|
701 |
+
Pay close attention to PyTorch's broadcasting semantics in order to achieve the desired
|
702 |
+
operations. For a target of size [B, C, H, W] (where B is batch size) pos_weight of
|
703 |
+
size [B, C, H, W] will apply different pos_weights to each element of the batch or
|
704 |
+
[C, H, W] the same pos_weights across the batch. To apply the same positive weight
|
705 |
+
along all spacial dimensions for a 2D multi-class target [C, H, W] use: [C, 1, 1].
|
706 |
+
Default: ``None``
|
707 |
+
|
708 |
+
Shape:
|
709 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
710 |
+
- Target: :math:`(*)`, same shape as the input.
|
711 |
+
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same
|
712 |
+
shape as input.
|
713 |
+
|
714 |
+
Examples::
|
715 |
+
|
716 |
+
>>> loss = nn.BCEWithLogitsLoss()
|
717 |
+
>>> input = torch.randn(3, requires_grad=True)
|
718 |
+
>>> target = torch.empty(3).random_(2)
|
719 |
+
>>> output = loss(input, target)
|
720 |
+
>>> output.backward()
|
721 |
+
"""
|
722 |
+
def __init__(self, weight: Optional[Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean',
|
723 |
+
pos_weight: Optional[Tensor] = None) -> None:
|
724 |
+
super().__init__(size_average, reduce, reduction)
|
725 |
+
self.register_buffer('weight', weight)
|
726 |
+
self.register_buffer('pos_weight', pos_weight)
|
727 |
+
self.weight: Optional[Tensor]
|
728 |
+
self.pos_weight: Optional[Tensor]
|
729 |
+
|
730 |
+
def forward(self, input: Tensor, target: Tensor) -> Tensor:
|
731 |
+
return F.binary_cross_entropy_with_logits(input, target,
|
732 |
+
self.weight,
|
733 |
+
pos_weight=self.pos_weight,
|
734 |
+
reduction=self.reduction)
|
735 |
+
|
736 |
+
|
737 |
+
class HingeEmbeddingLoss(_Loss):
|
738 |
+
r"""Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`
|
739 |
+
(containing 1 or -1).
|
740 |
+
This is usually used for measuring whether two inputs are similar or
|
741 |
+
dissimilar, e.g. using the L1 pairwise distance as :math:`x`, and is typically
|
742 |
+
used for learning nonlinear embeddings or semi-supervised learning.
|
743 |
+
|
744 |
+
The loss function for :math:`n`-th sample in the mini-batch is
|
745 |
+
|
746 |
+
.. math::
|
747 |
+
l_n = \begin{cases}
|
748 |
+
x_n, & \text{if}\; y_n = 1,\\
|
749 |
+
\max \{0, margin - x_n\}, & \text{if}\; y_n = -1,
|
750 |
+
\end{cases}
|
751 |
+
|
752 |
+
and the total loss functions is
|
753 |
+
|
754 |
+
.. math::
|
755 |
+
\ell(x, y) = \begin{cases}
|
756 |
+
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
|
757 |
+
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
|
758 |
+
\end{cases}
|
759 |
+
|
760 |
+
where :math:`L = \{l_1,\dots,l_N\}^\top`.
|
761 |
+
|
762 |
+
Args:
|
763 |
+
margin (float, optional): Has a default value of `1`.
|
764 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
765 |
+
the losses are averaged over each loss element in the batch. Note that for
|
766 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
767 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
768 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
769 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
770 |
+
losses are averaged or summed over observations for each minibatch depending
|
771 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
772 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
773 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
774 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
775 |
+
``'mean'``: the sum of the output will be divided by the number of
|
776 |
+
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
777 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
778 |
+
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
779 |
+
|
780 |
+
Shape:
|
781 |
+
- Input: :math:`(*)` where :math:`*` means, any number of dimensions. The sum operation
|
782 |
+
operates over all the elements.
|
783 |
+
- Target: :math:`(*)`, same shape as the input
|
784 |
+
- Output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input
|
785 |
+
"""
|
786 |
+
__constants__ = ['margin', 'reduction']
|
787 |
+
margin: float
|
788 |
+
|
789 |
+
def __init__(self, margin: float = 1.0, size_average=None, reduce=None, reduction: str = 'mean') -> None:
|
790 |
+
super().__init__(size_average, reduce, reduction)
|
791 |
+
self.margin = margin
|
792 |
+
|
793 |
+
def forward(self, input: Tensor, target: Tensor) -> Tensor:
|
794 |
+
return F.hinge_embedding_loss(input, target, margin=self.margin, reduction=self.reduction)
|
795 |
+
|
796 |
+
|
797 |
+
class MultiLabelMarginLoss(_Loss):
|
798 |
+
r"""Creates a criterion that optimizes a multi-class multi-classification
|
799 |
+
hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
|
800 |
+
and output :math:`y` (which is a 2D `Tensor` of target class indices).
|
801 |
+
For each sample in the mini-batch:
|
802 |
+
|
803 |
+
.. math::
|
804 |
+
\text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}
|
805 |
+
|
806 |
+
where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
|
807 |
+
:math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
|
808 |
+
:math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
|
809 |
+
and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
|
810 |
+
|
811 |
+
:math:`y` and :math:`x` must have the same size.
|
812 |
+
|
813 |
+
The criterion only considers a contiguous block of non-negative targets that
|
814 |
+
starts at the front.
|
815 |
+
|
816 |
+
This allows for different samples to have variable amounts of target classes.
|
817 |
+
|
818 |
+
Args:
|
819 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
820 |
+
the losses are averaged over each loss element in the batch. Note that for
|
821 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
822 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
823 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
824 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
825 |
+
losses are averaged or summed over observations for each minibatch depending
|
826 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
827 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
828 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
829 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
830 |
+
``'mean'``: the sum of the output will be divided by the number of
|
831 |
+
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
832 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
833 |
+
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
834 |
+
|
835 |
+
Shape:
|
836 |
+
- Input: :math:`(C)` or :math:`(N, C)` where `N` is the batch size and `C`
|
837 |
+
is the number of classes.
|
838 |
+
- Target: :math:`(C)` or :math:`(N, C)`, label targets padded by -1 ensuring same shape as the input.
|
839 |
+
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N)`.
|
840 |
+
|
841 |
+
Examples::
|
842 |
+
|
843 |
+
>>> loss = nn.MultiLabelMarginLoss()
|
844 |
+
>>> x = torch.FloatTensor([[0.1, 0.2, 0.4, 0.8]])
|
845 |
+
>>> # for target y, only consider labels 3 and 0, not after label -1
|
846 |
+
>>> y = torch.LongTensor([[3, 0, -1, 1]])
|
847 |
+
>>> # 0.25 * ((1-(0.1-0.2)) + (1-(0.1-0.4)) + (1-(0.8-0.2)) + (1-(0.8-0.4)))
|
848 |
+
>>> loss(x, y)
|
849 |
+
tensor(0.85...)
|
850 |
+
|
851 |
+
"""
|
852 |
+
__constants__ = ['reduction']
|
853 |
+
|
854 |
+
def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
|
855 |
+
super().__init__(size_average, reduce, reduction)
|
856 |
+
|
857 |
+
def forward(self, input: Tensor, target: Tensor) -> Tensor:
|
858 |
+
return F.multilabel_margin_loss(input, target, reduction=self.reduction)
|
859 |
+
|
860 |
+
|
861 |
+
class SmoothL1Loss(_Loss):
|
862 |
+
r"""Creates a criterion that uses a squared term if the absolute
|
863 |
+
element-wise error falls below beta and an L1 term otherwise.
|
864 |
+
It is less sensitive to outliers than :class:`torch.nn.MSELoss` and in some cases
|
865 |
+
prevents exploding gradients (e.g. see the paper `Fast R-CNN`_ by Ross Girshick).
|
866 |
+
|
867 |
+
For a batch of size :math:`N`, the unreduced loss can be described as:
|
868 |
+
|
869 |
+
.. math::
|
870 |
+
\ell(x, y) = L = \{l_1, ..., l_N\}^T
|
871 |
+
|
872 |
+
with
|
873 |
+
|
874 |
+
.. math::
|
875 |
+
l_n = \begin{cases}
|
876 |
+
0.5 (x_n - y_n)^2 / beta, & \text{if } |x_n - y_n| < beta \\
|
877 |
+
|x_n - y_n| - 0.5 * beta, & \text{otherwise }
|
878 |
+
\end{cases}
|
879 |
+
|
880 |
+
If `reduction` is not `none`, then:
|
881 |
+
|
882 |
+
.. math::
|
883 |
+
\ell(x, y) =
|
884 |
+
\begin{cases}
|
885 |
+
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
|
886 |
+
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
|
887 |
+
\end{cases}
|
888 |
+
|
889 |
+
.. note::
|
890 |
+
Smooth L1 loss can be seen as exactly :class:`L1Loss`, but with the :math:`|x - y| < beta`
|
891 |
+
portion replaced with a quadratic function such that its slope is 1 at :math:`|x - y| = beta`.
|
892 |
+
The quadratic segment smooths the L1 loss near :math:`|x - y| = 0`.
|
893 |
+
|
894 |
+
.. note::
|
895 |
+
Smooth L1 loss is closely related to :class:`HuberLoss`, being
|
896 |
+
equivalent to :math:`huber(x, y) / beta` (note that Smooth L1's beta hyper-parameter is
|
897 |
+
also known as delta for Huber). This leads to the following differences:
|
898 |
+
|
899 |
+
* As beta -> 0, Smooth L1 loss converges to :class:`L1Loss`, while :class:`HuberLoss`
|
900 |
+
converges to a constant 0 loss. When beta is 0, Smooth L1 loss is equivalent to L1 loss.
|
901 |
+
* As beta -> :math:`+\infty`, Smooth L1 loss converges to a constant 0 loss, while
|
902 |
+
:class:`HuberLoss` converges to :class:`MSELoss`.
|
903 |
+
* For Smooth L1 loss, as beta varies, the L1 segment of the loss has a constant slope of 1.
|
904 |
+
For :class:`HuberLoss`, the slope of the L1 segment is beta.
|
905 |
+
|
906 |
+
.. _`Fast R-CNN`: https://arxiv.org/abs/1504.08083
|
907 |
+
|
908 |
+
Args:
|
909 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
910 |
+
the losses are averaged over each loss element in the batch. Note that for
|
911 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
912 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
913 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
914 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
915 |
+
losses are averaged or summed over observations for each minibatch depending
|
916 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
917 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
918 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
919 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
920 |
+
``'mean'``: the sum of the output will be divided by the number of
|
921 |
+
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
922 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
923 |
+
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
924 |
+
beta (float, optional): Specifies the threshold at which to change between L1 and L2 loss.
|
925 |
+
The value must be non-negative. Default: 1.0
|
926 |
+
|
927 |
+
Shape:
|
928 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
929 |
+
- Target: :math:`(*)`, same shape as the input.
|
930 |
+
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same shape as the input.
|
931 |
+
"""
|
932 |
+
__constants__ = ['reduction']
|
933 |
+
|
934 |
+
def __init__(self, size_average=None, reduce=None, reduction: str = 'mean', beta: float = 1.0) -> None:
|
935 |
+
super().__init__(size_average, reduce, reduction)
|
936 |
+
self.beta = beta
|
937 |
+
|
938 |
+
def forward(self, input: Tensor, target: Tensor) -> Tensor:
|
939 |
+
return F.smooth_l1_loss(input, target, reduction=self.reduction, beta=self.beta)
|
940 |
+
|
941 |
+
|
942 |
+
class HuberLoss(_Loss):
|
943 |
+
r"""Creates a criterion that uses a squared term if the absolute
|
944 |
+
element-wise error falls below delta and a delta-scaled L1 term otherwise.
|
945 |
+
This loss combines advantages of both :class:`L1Loss` and :class:`MSELoss`; the
|
946 |
+
delta-scaled L1 region makes the loss less sensitive to outliers than :class:`MSELoss`,
|
947 |
+
while the L2 region provides smoothness over :class:`L1Loss` near 0. See
|
948 |
+
`Huber loss <https://en.wikipedia.org/wiki/Huber_loss>`_ for more information.
|
949 |
+
|
950 |
+
For a batch of size :math:`N`, the unreduced loss can be described as:
|
951 |
+
|
952 |
+
.. math::
|
953 |
+
\ell(x, y) = L = \{l_1, ..., l_N\}^T
|
954 |
+
|
955 |
+
with
|
956 |
+
|
957 |
+
.. math::
|
958 |
+
l_n = \begin{cases}
|
959 |
+
0.5 (x_n - y_n)^2, & \text{if } |x_n - y_n| < delta \\
|
960 |
+
delta * (|x_n - y_n| - 0.5 * delta), & \text{otherwise }
|
961 |
+
\end{cases}
|
962 |
+
|
963 |
+
If `reduction` is not `none`, then:
|
964 |
+
|
965 |
+
.. math::
|
966 |
+
\ell(x, y) =
|
967 |
+
\begin{cases}
|
968 |
+
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
|
969 |
+
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
|
970 |
+
\end{cases}
|
971 |
+
|
972 |
+
.. note::
|
973 |
+
When delta is set to 1, this loss is equivalent to :class:`SmoothL1Loss`.
|
974 |
+
In general, this loss differs from :class:`SmoothL1Loss` by a factor of delta (AKA beta
|
975 |
+
in Smooth L1).
|
976 |
+
See :class:`SmoothL1Loss` for additional discussion on the differences in behavior
|
977 |
+
between the two losses.
|
978 |
+
|
979 |
+
Args:
|
980 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
981 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
982 |
+
``'mean'``: the sum of the output will be divided by the number of
|
983 |
+
elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'``
|
984 |
+
delta (float, optional): Specifies the threshold at which to change between delta-scaled L1 and L2 loss.
|
985 |
+
The value must be positive. Default: 1.0
|
986 |
+
|
987 |
+
Shape:
|
988 |
+
- Input: :math:`(*)` where :math:`*` means any number of dimensions.
|
989 |
+
- Target: :math:`(*)`, same shape as the input.
|
990 |
+
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same shape as the input.
|
991 |
+
"""
|
992 |
+
__constants__ = ['reduction', 'delta']
|
993 |
+
|
994 |
+
def __init__(self, reduction: str = 'mean', delta: float = 1.0) -> None:
|
995 |
+
super().__init__(reduction=reduction)
|
996 |
+
self.delta = delta
|
997 |
+
|
998 |
+
def forward(self, input: Tensor, target: Tensor) -> Tensor:
|
999 |
+
return F.huber_loss(input, target, reduction=self.reduction, delta=self.delta)
|
1000 |
+
|
1001 |
+
|
1002 |
+
class SoftMarginLoss(_Loss):
|
1003 |
+
r"""Creates a criterion that optimizes a two-class classification
|
1004 |
+
logistic loss between input tensor :math:`x` and target tensor :math:`y`
|
1005 |
+
(containing 1 or -1).
|
1006 |
+
|
1007 |
+
.. math::
|
1008 |
+
\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()}
|
1009 |
+
|
1010 |
+
Args:
|
1011 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
1012 |
+
the losses are averaged over each loss element in the batch. Note that for
|
1013 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
1014 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
1015 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
1016 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
1017 |
+
losses are averaged or summed over observations for each minibatch depending
|
1018 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
1019 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
1020 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
1021 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
1022 |
+
``'mean'``: the sum of the output will be divided by the number of
|
1023 |
+
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
1024 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
1025 |
+
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
1026 |
+
|
1027 |
+
Shape:
|
1028 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
1029 |
+
- Target: :math:`(*)`, same shape as the input.
|
1030 |
+
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same
|
1031 |
+
shape as input.
|
1032 |
+
|
1033 |
+
"""
|
1034 |
+
__constants__ = ['reduction']
|
1035 |
+
|
1036 |
+
def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
|
1037 |
+
super().__init__(size_average, reduce, reduction)
|
1038 |
+
|
1039 |
+
def forward(self, input: Tensor, target: Tensor) -> Tensor:
|
1040 |
+
return F.soft_margin_loss(input, target, reduction=self.reduction)
|
1041 |
+
|
1042 |
+
|
1043 |
+
class CrossEntropyLoss(_WeightedLoss):
|
1044 |
+
r"""This criterion computes the cross entropy loss between input logits
|
1045 |
+
and target.
|
1046 |
+
|
1047 |
+
It is useful when training a classification problem with `C` classes.
|
1048 |
+
If provided, the optional argument :attr:`weight` should be a 1D `Tensor`
|
1049 |
+
assigning weight to each of the classes.
|
1050 |
+
This is particularly useful when you have an unbalanced training set.
|
1051 |
+
|
1052 |
+
The `input` is expected to contain the unnormalized logits for each class (which do `not` need
|
1053 |
+
to be positive or sum to 1, in general).
|
1054 |
+
`input` has to be a Tensor of size :math:`(C)` for unbatched input,
|
1055 |
+
:math:`(minibatch, C)` or :math:`(minibatch, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1` for the
|
1056 |
+
`K`-dimensional case. The last being useful for higher dimension inputs, such
|
1057 |
+
as computing cross entropy loss per-pixel for 2D images.
|
1058 |
+
|
1059 |
+
The `target` that this criterion expects should contain either:
|
1060 |
+
|
1061 |
+
- Class indices in the range :math:`[0, C)` where :math:`C` is the number of classes; if
|
1062 |
+
`ignore_index` is specified, this loss also accepts this class index (this index
|
1063 |
+
may not necessarily be in the class range). The unreduced (i.e. with :attr:`reduction`
|
1064 |
+
set to ``'none'``) loss for this case can be described as:
|
1065 |
+
|
1066 |
+
.. math::
|
1067 |
+
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
|
1068 |
+
l_n = - w_{y_n} \log \frac{\exp(x_{n,y_n})}{\sum_{c=1}^C \exp(x_{n,c})}
|
1069 |
+
\cdot \mathbb{1}\{y_n \not= \text{ignore\_index}\}
|
1070 |
+
|
1071 |
+
where :math:`x` is the input, :math:`y` is the target, :math:`w` is the weight,
|
1072 |
+
:math:`C` is the number of classes, and :math:`N` spans the minibatch dimension as well as
|
1073 |
+
:math:`d_1, ..., d_k` for the `K`-dimensional case. If
|
1074 |
+
:attr:`reduction` is not ``'none'`` (default ``'mean'``), then
|
1075 |
+
|
1076 |
+
.. math::
|
1077 |
+
\ell(x, y) = \begin{cases}
|
1078 |
+
\sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n} \cdot \mathbb{1}\{y_n \not= \text{ignore\_index}\}} l_n, &
|
1079 |
+
\text{if reduction} = \text{`mean';}\\
|
1080 |
+
\sum_{n=1}^N l_n, &
|
1081 |
+
\text{if reduction} = \text{`sum'.}
|
1082 |
+
\end{cases}
|
1083 |
+
|
1084 |
+
Note that this case is equivalent to applying :class:`~torch.nn.LogSoftmax`
|
1085 |
+
on an input, followed by :class:`~torch.nn.NLLLoss`.
|
1086 |
+
|
1087 |
+
- Probabilities for each class; useful when labels beyond a single class per minibatch item
|
1088 |
+
are required, such as for blended labels, label smoothing, etc. The unreduced (i.e. with
|
1089 |
+
:attr:`reduction` set to ``'none'``) loss for this case can be described as:
|
1090 |
+
|
1091 |
+
.. math::
|
1092 |
+
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
|
1093 |
+
l_n = - \sum_{c=1}^C w_c \log \frac{\exp(x_{n,c})}{\sum_{i=1}^C \exp(x_{n,i})} y_{n,c}
|
1094 |
+
|
1095 |
+
where :math:`x` is the input, :math:`y` is the target, :math:`w` is the weight,
|
1096 |
+
:math:`C` is the number of classes, and :math:`N` spans the minibatch dimension as well as
|
1097 |
+
:math:`d_1, ..., d_k` for the `K`-dimensional case. If
|
1098 |
+
:attr:`reduction` is not ``'none'`` (default ``'mean'``), then
|
1099 |
+
|
1100 |
+
.. math::
|
1101 |
+
\ell(x, y) = \begin{cases}
|
1102 |
+
\frac{\sum_{n=1}^N l_n}{N}, &
|
1103 |
+
\text{if reduction} = \text{`mean';}\\
|
1104 |
+
\sum_{n=1}^N l_n, &
|
1105 |
+
\text{if reduction} = \text{`sum'.}
|
1106 |
+
\end{cases}
|
1107 |
+
|
1108 |
+
.. note::
|
1109 |
+
The performance of this criterion is generally better when `target` contains class
|
1110 |
+
indices, as this allows for optimized computation. Consider providing `target` as
|
1111 |
+
class probabilities only when a single class label per minibatch item is too restrictive.
|
1112 |
+
|
1113 |
+
Args:
|
1114 |
+
weight (Tensor, optional): a manual rescaling weight given to each class.
|
1115 |
+
If given, has to be a Tensor of size `C` and floating point dtype
|
1116 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
1117 |
+
the losses are averaged over each loss element in the batch. Note that for
|
1118 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
1119 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
1120 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
1121 |
+
ignore_index (int, optional): Specifies a target value that is ignored
|
1122 |
+
and does not contribute to the input gradient. When :attr:`size_average` is
|
1123 |
+
``True``, the loss is averaged over non-ignored targets. Note that
|
1124 |
+
:attr:`ignore_index` is only applicable when the target contains class indices.
|
1125 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
1126 |
+
losses are averaged or summed over observations for each minibatch depending
|
1127 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
1128 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
1129 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
1130 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will
|
1131 |
+
be applied, ``'mean'``: the weighted mean of the output is taken,
|
1132 |
+
``'sum'``: the output will be summed. Note: :attr:`size_average`
|
1133 |
+
and :attr:`reduce` are in the process of being deprecated, and in
|
1134 |
+
the meantime, specifying either of those two args will override
|
1135 |
+
:attr:`reduction`. Default: ``'mean'``
|
1136 |
+
label_smoothing (float, optional): A float in [0.0, 1.0]. Specifies the amount
|
1137 |
+
of smoothing when computing the loss, where 0.0 means no smoothing. The targets
|
1138 |
+
become a mixture of the original ground truth and a uniform distribution as described in
|
1139 |
+
`Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`.
|
1140 |
+
|
1141 |
+
Shape:
|
1142 |
+
- Input: Shape :math:`(C)`, :math:`(N, C)` or :math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`
|
1143 |
+
in the case of `K`-dimensional loss.
|
1144 |
+
- Target: If containing class indices, shape :math:`()`, :math:`(N)` or :math:`(N, d_1, d_2, ..., d_K)` with
|
1145 |
+
:math:`K \geq 1` in the case of K-dimensional loss where each value should be between :math:`[0, C)`.
|
1146 |
+
If containing class probabilities, same shape as the input and each value should be between :math:`[0, 1]`.
|
1147 |
+
- Output: If reduction is 'none', shape :math:`()`, :math:`(N)` or :math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1`
|
1148 |
+
in the case of K-dimensional loss, depending on the shape of the input. Otherwise, scalar.
|
1149 |
+
|
1150 |
+
|
1151 |
+
where:
|
1152 |
+
|
1153 |
+
.. math::
|
1154 |
+
\begin{aligned}
|
1155 |
+
C ={} & \text{number of classes} \\
|
1156 |
+
N ={} & \text{batch size} \\
|
1157 |
+
\end{aligned}
|
1158 |
+
|
1159 |
+
Examples::
|
1160 |
+
|
1161 |
+
>>> # Example of target with class indices
|
1162 |
+
>>> loss = nn.CrossEntropyLoss()
|
1163 |
+
>>> input = torch.randn(3, 5, requires_grad=True)
|
1164 |
+
>>> target = torch.empty(3, dtype=torch.long).random_(5)
|
1165 |
+
>>> output = loss(input, target)
|
1166 |
+
>>> output.backward()
|
1167 |
+
>>>
|
1168 |
+
>>> # Example of target with class probabilities
|
1169 |
+
>>> input = torch.randn(3, 5, requires_grad=True)
|
1170 |
+
>>> target = torch.randn(3, 5).softmax(dim=1)
|
1171 |
+
>>> output = loss(input, target)
|
1172 |
+
>>> output.backward()
|
1173 |
+
"""
|
1174 |
+
__constants__ = ['ignore_index', 'reduction', 'label_smoothing']
|
1175 |
+
ignore_index: int
|
1176 |
+
label_smoothing: float
|
1177 |
+
|
1178 |
+
def __init__(self, weight: Optional[Tensor] = None, size_average=None, ignore_index: int = -100,
|
1179 |
+
reduce=None, reduction: str = 'mean', label_smoothing: float = 0.0) -> None:
|
1180 |
+
super().__init__(weight, size_average, reduce, reduction)
|
1181 |
+
self.ignore_index = ignore_index
|
1182 |
+
self.label_smoothing = label_smoothing
|
1183 |
+
|
1184 |
+
def forward(self, input: Tensor, target: Tensor) -> Tensor:
|
1185 |
+
return F.cross_entropy(input, target, weight=self.weight,
|
1186 |
+
ignore_index=self.ignore_index, reduction=self.reduction,
|
1187 |
+
label_smoothing=self.label_smoothing)
|
1188 |
+
|
1189 |
+
|
1190 |
+
class MultiLabelSoftMarginLoss(_WeightedLoss):
|
1191 |
+
r"""Creates a criterion that optimizes a multi-label one-versus-all
|
1192 |
+
loss based on max-entropy, between input :math:`x` and target :math:`y` of size
|
1193 |
+
:math:`(N, C)`.
|
1194 |
+
For each sample in the minibatch:
|
1195 |
+
|
1196 |
+
.. math::
|
1197 |
+
loss(x, y) = - \frac{1}{C} * \sum_i y[i] * \log((1 + \exp(-x[i]))^{-1})
|
1198 |
+
+ (1-y[i]) * \log\left(\frac{\exp(-x[i])}{(1 + \exp(-x[i]))}\right)
|
1199 |
+
|
1200 |
+
where :math:`i \in \left\{0, \; \cdots , \; \text{x.nElement}() - 1\right\}`,
|
1201 |
+
:math:`y[i] \in \left\{0, \; 1\right\}`.
|
1202 |
+
|
1203 |
+
Args:
|
1204 |
+
weight (Tensor, optional): a manual rescaling weight given to each
|
1205 |
+
class. If given, it has to be a Tensor of size `C`. Otherwise, it is
|
1206 |
+
treated as if having all ones.
|
1207 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
1208 |
+
the losses are averaged over each loss element in the batch. Note that for
|
1209 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
1210 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
1211 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
1212 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
1213 |
+
losses are averaged or summed over observations for each minibatch depending
|
1214 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
1215 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
1216 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
1217 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
1218 |
+
``'mean'``: the sum of the output will be divided by the number of
|
1219 |
+
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
1220 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
1221 |
+
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
1222 |
+
|
1223 |
+
Shape:
|
1224 |
+
- Input: :math:`(N, C)` where `N` is the batch size and `C` is the number of classes.
|
1225 |
+
- Target: :math:`(N, C)`, label targets must have the same shape as the input.
|
1226 |
+
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N)`.
|
1227 |
+
"""
|
1228 |
+
__constants__ = ['reduction']
|
1229 |
+
|
1230 |
+
def __init__(self, weight: Optional[Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean') -> None:
|
1231 |
+
super().__init__(weight, size_average, reduce, reduction)
|
1232 |
+
|
1233 |
+
def forward(self, input: Tensor, target: Tensor) -> Tensor:
|
1234 |
+
return F.multilabel_soft_margin_loss(input, target, weight=self.weight, reduction=self.reduction)
|
1235 |
+
|
1236 |
+
|
1237 |
+
class CosineEmbeddingLoss(_Loss):
|
1238 |
+
r"""Creates a criterion that measures the loss given input tensors
|
1239 |
+
:math:`x_1`, :math:`x_2` and a `Tensor` label :math:`y` with values 1 or -1.
|
1240 |
+
Use (:math:`y=1`) to maximize the cosine similarity of two inputs, and (:math:`y=-1`) otherwise.
|
1241 |
+
This is typically used for learning nonlinear
|
1242 |
+
embeddings or semi-supervised learning.
|
1243 |
+
|
1244 |
+
The loss function for each sample is:
|
1245 |
+
|
1246 |
+
.. math::
|
1247 |
+
\text{loss}(x, y) =
|
1248 |
+
\begin{cases}
|
1249 |
+
1 - \cos(x_1, x_2), & \text{if } y = 1 \\
|
1250 |
+
\max(0, \cos(x_1, x_2) - \text{margin}), & \text{if } y = -1
|
1251 |
+
\end{cases}
|
1252 |
+
|
1253 |
+
Args:
|
1254 |
+
margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
|
1255 |
+
:math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
|
1256 |
+
default value is :math:`0`.
|
1257 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
1258 |
+
the losses are averaged over each loss element in the batch. Note that for
|
1259 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
1260 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
1261 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
1262 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
1263 |
+
losses are averaged or summed over observations for each minibatch depending
|
1264 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
1265 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
1266 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
1267 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
1268 |
+
``'mean'``: the sum of the output will be divided by the number of
|
1269 |
+
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
1270 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
1271 |
+
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
1272 |
+
|
1273 |
+
Shape:
|
1274 |
+
- Input1: :math:`(N, D)` or :math:`(D)`, where `N` is the batch size and `D` is the embedding dimension.
|
1275 |
+
- Input2: :math:`(N, D)` or :math:`(D)`, same shape as Input1.
|
1276 |
+
- Target: :math:`(N)` or :math:`()`.
|
1277 |
+
- Output: If :attr:`reduction` is ``'none'``, then :math:`(N)`, otherwise scalar.
|
1278 |
+
|
1279 |
+
Examples::
|
1280 |
+
|
1281 |
+
>>> loss = nn.CosineEmbeddingLoss()
|
1282 |
+
>>> input1 = torch.randn(3, 5, requires_grad=True)
|
1283 |
+
>>> input2 = torch.randn(3, 5, requires_grad=True)
|
1284 |
+
>>> target = torch.ones(3)
|
1285 |
+
>>> output = loss(input1, input2, target)
|
1286 |
+
>>> output.backward()
|
1287 |
+
"""
|
1288 |
+
__constants__ = ['margin', 'reduction']
|
1289 |
+
margin: float
|
1290 |
+
|
1291 |
+
def __init__(self, margin: float = 0., size_average=None, reduce=None, reduction: str = 'mean') -> None:
|
1292 |
+
super().__init__(size_average, reduce, reduction)
|
1293 |
+
self.margin = margin
|
1294 |
+
|
1295 |
+
def forward(self, input1: Tensor, input2: Tensor, target: Tensor) -> Tensor:
|
1296 |
+
return F.cosine_embedding_loss(input1, input2, target, margin=self.margin, reduction=self.reduction)
|
1297 |
+
|
1298 |
+
|
1299 |
+
class MarginRankingLoss(_Loss):
|
1300 |
+
r"""Creates a criterion that measures the loss given
|
1301 |
+
inputs :math:`x1`, :math:`x2`, two 1D mini-batch or 0D `Tensors`,
|
1302 |
+
and a label 1D mini-batch or 0D `Tensor` :math:`y` (containing 1 or -1).
|
1303 |
+
|
1304 |
+
If :math:`y = 1` then it assumed the first input should be ranked higher
|
1305 |
+
(have a larger value) than the second input, and vice-versa for :math:`y = -1`.
|
1306 |
+
|
1307 |
+
The loss function for each pair of samples in the mini-batch is:
|
1308 |
+
|
1309 |
+
.. math::
|
1310 |
+
\text{loss}(x1, x2, y) = \max(0, -y * (x1 - x2) + \text{margin})
|
1311 |
+
|
1312 |
+
Args:
|
1313 |
+
margin (float, optional): Has a default value of :math:`0`.
|
1314 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
1315 |
+
the losses are averaged over each loss element in the batch. Note that for
|
1316 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
1317 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
1318 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
1319 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
1320 |
+
losses are averaged or summed over observations for each minibatch depending
|
1321 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
1322 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
1323 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
1324 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
1325 |
+
``'mean'``: the sum of the output will be divided by the number of
|
1326 |
+
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
1327 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
1328 |
+
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
1329 |
+
|
1330 |
+
Shape:
|
1331 |
+
- Input1: :math:`(N)` or :math:`()` where `N` is the batch size.
|
1332 |
+
- Input2: :math:`(N)` or :math:`()`, same shape as the Input1.
|
1333 |
+
- Target: :math:`(N)` or :math:`()`, same shape as the inputs.
|
1334 |
+
- Output: scalar. If :attr:`reduction` is ``'none'`` and Input size is not :math:`()`, then :math:`(N)`.
|
1335 |
+
|
1336 |
+
Examples::
|
1337 |
+
|
1338 |
+
>>> loss = nn.MarginRankingLoss()
|
1339 |
+
>>> input1 = torch.randn(3, requires_grad=True)
|
1340 |
+
>>> input2 = torch.randn(3, requires_grad=True)
|
1341 |
+
>>> target = torch.randn(3).sign()
|
1342 |
+
>>> output = loss(input1, input2, target)
|
1343 |
+
>>> output.backward()
|
1344 |
+
"""
|
1345 |
+
__constants__ = ['margin', 'reduction']
|
1346 |
+
margin: float
|
1347 |
+
|
1348 |
+
def __init__(self, margin: float = 0., size_average=None, reduce=None, reduction: str = 'mean') -> None:
|
1349 |
+
super().__init__(size_average, reduce, reduction)
|
1350 |
+
self.margin = margin
|
1351 |
+
|
1352 |
+
def forward(self, input1: Tensor, input2: Tensor, target: Tensor) -> Tensor:
|
1353 |
+
return F.margin_ranking_loss(input1, input2, target, margin=self.margin, reduction=self.reduction)
|
1354 |
+
|
1355 |
+
|
1356 |
+
class MultiMarginLoss(_WeightedLoss):
|
1357 |
+
r"""Creates a criterion that optimizes a multi-class classification hinge
|
1358 |
+
loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`) and
|
1359 |
+
output :math:`y` (which is a 1D tensor of target class indices,
|
1360 |
+
:math:`0 \leq y \leq \text{x.size}(1)-1`):
|
1361 |
+
|
1362 |
+
For each mini-batch sample, the loss in terms of the 1D input :math:`x` and scalar
|
1363 |
+
output :math:`y` is:
|
1364 |
+
|
1365 |
+
.. math::
|
1366 |
+
\text{loss}(x, y) = \frac{\sum_i \max(0, \text{margin} - x[y] + x[i])^p}{\text{x.size}(0)}
|
1367 |
+
|
1368 |
+
where :math:`i \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`
|
1369 |
+
and :math:`i \neq y`.
|
1370 |
+
|
1371 |
+
Optionally, you can give non-equal weighting on the classes by passing
|
1372 |
+
a 1D :attr:`weight` tensor into the constructor.
|
1373 |
+
|
1374 |
+
The loss function then becomes:
|
1375 |
+
|
1376 |
+
.. math::
|
1377 |
+
\text{loss}(x, y) = \frac{\sum_i w[y] * \max(0, \text{margin} - x[y] + x[i])^p}{\text{x.size}(0)}
|
1378 |
+
|
1379 |
+
Args:
|
1380 |
+
p (int, optional): Has a default value of :math:`1`. :math:`1` and :math:`2`
|
1381 |
+
are the only supported values.
|
1382 |
+
margin (float, optional): Has a default value of :math:`1`.
|
1383 |
+
weight (Tensor, optional): a manual rescaling weight given to each
|
1384 |
+
class. If given, it has to be a Tensor of size `C`. Otherwise, it is
|
1385 |
+
treated as if having all ones.
|
1386 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
1387 |
+
the losses are averaged over each loss element in the batch. Note that for
|
1388 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
1389 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
1390 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
1391 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
1392 |
+
losses are averaged or summed over observations for each minibatch depending
|
1393 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
1394 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
1395 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
1396 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
1397 |
+
``'mean'``: the sum of the output will be divided by the number of
|
1398 |
+
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
1399 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
1400 |
+
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
1401 |
+
|
1402 |
+
Shape:
|
1403 |
+
- Input: :math:`(N, C)` or :math:`(C)`, where :math:`N` is the batch size and :math:`C` is the number of classes.
|
1404 |
+
- Target: :math:`(N)` or :math:`()`, where each value is :math:`0 \leq \text{targets}[i] \leq C-1`.
|
1405 |
+
- Output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the target.
|
1406 |
+
|
1407 |
+
Examples::
|
1408 |
+
|
1409 |
+
>>> loss = nn.MultiMarginLoss()
|
1410 |
+
>>> x = torch.tensor([[0.1, 0.2, 0.4, 0.8]])
|
1411 |
+
>>> y = torch.tensor([3])
|
1412 |
+
>>> # 0.25 * ((1-(0.8-0.1)) + (1-(0.8-0.2)) + (1-(0.8-0.4)))
|
1413 |
+
>>> loss(x, y)
|
1414 |
+
tensor(0.32...)
|
1415 |
+
"""
|
1416 |
+
__constants__ = ['p', 'margin', 'reduction']
|
1417 |
+
margin: float
|
1418 |
+
p: int
|
1419 |
+
|
1420 |
+
def __init__(self, p: int = 1, margin: float = 1., weight: Optional[Tensor] = None, size_average=None,
|
1421 |
+
reduce=None, reduction: str = 'mean') -> None:
|
1422 |
+
super().__init__(weight, size_average, reduce, reduction)
|
1423 |
+
if p != 1 and p != 2:
|
1424 |
+
raise ValueError("only p == 1 and p == 2 supported")
|
1425 |
+
if weight is not None and weight.dim() != 1 :
|
1426 |
+
raise ValueError(
|
1427 |
+
f"MultiMarginLoss: expected weight to be None or 1D tensor, got {weight.dim()}D instead"
|
1428 |
+
)
|
1429 |
+
self.p = p
|
1430 |
+
self.margin = margin
|
1431 |
+
|
1432 |
+
def forward(self, input: Tensor, target: Tensor) -> Tensor:
|
1433 |
+
return F.multi_margin_loss(input, target, p=self.p, margin=self.margin,
|
1434 |
+
weight=self.weight, reduction=self.reduction)
|
1435 |
+
|
1436 |
+
|
1437 |
+
class TripletMarginLoss(_Loss):
|
1438 |
+
r"""Creates a criterion that measures the triplet loss given an input
|
1439 |
+
tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
|
1440 |
+
This is used for measuring a relative similarity between samples. A triplet
|
1441 |
+
is composed by `a`, `p` and `n` (i.e., `anchor`, `positive examples` and `negative
|
1442 |
+
examples` respectively). The shapes of all input tensors should be
|
1443 |
+
:math:`(N, D)`.
|
1444 |
+
|
1445 |
+
The distance swap is described in detail in the paper `Learning shallow
|
1446 |
+
convolutional feature descriptors with triplet losses`_ by
|
1447 |
+
V. Balntas, E. Riba et al.
|
1448 |
+
|
1449 |
+
The loss function for each sample in the mini-batch is:
|
1450 |
+
|
1451 |
+
.. math::
|
1452 |
+
L(a, p, n) = \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\}
|
1453 |
+
|
1454 |
+
|
1455 |
+
where
|
1456 |
+
|
1457 |
+
.. math::
|
1458 |
+
d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p
|
1459 |
+
|
1460 |
+
The norm is calculated using the specified p value and a small constant :math:`\varepsilon` is
|
1461 |
+
added for numerical stability.
|
1462 |
+
|
1463 |
+
See also :class:`~torch.nn.TripletMarginWithDistanceLoss`, which computes the
|
1464 |
+
triplet margin loss for input tensors using a custom distance function.
|
1465 |
+
|
1466 |
+
Args:
|
1467 |
+
margin (float, optional): Default: :math:`1`.
|
1468 |
+
p (int, optional): The norm degree for pairwise distance. Default: :math:`2`.
|
1469 |
+
eps (float, optional): Small constant for numerical stability. Default: :math:`1e-6`.
|
1470 |
+
swap (bool, optional): The distance swap is described in detail in the paper
|
1471 |
+
`Learning shallow convolutional feature descriptors with triplet losses` by
|
1472 |
+
V. Balntas, E. Riba et al. Default: ``False``.
|
1473 |
+
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
1474 |
+
the losses are averaged over each loss element in the batch. Note that for
|
1475 |
+
some losses, there are multiple elements per sample. If the field :attr:`size_average`
|
1476 |
+
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
1477 |
+
when :attr:`reduce` is ``False``. Default: ``True``
|
1478 |
+
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
1479 |
+
losses are averaged or summed over observations for each minibatch depending
|
1480 |
+
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
1481 |
+
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
1482 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
1483 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
1484 |
+
``'mean'``: the sum of the output will be divided by the number of
|
1485 |
+
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
1486 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
1487 |
+
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
1488 |
+
|
1489 |
+
Shape:
|
1490 |
+
- Input: :math:`(N, D)` or :math:`(D)` where :math:`D` is the vector dimension.
|
1491 |
+
- Output: A Tensor of shape :math:`(N)` if :attr:`reduction` is ``'none'`` and
|
1492 |
+
input shape is :math:`(N, D)`; a scalar otherwise.
|
1493 |
+
|
1494 |
+
Examples::
|
1495 |
+
|
1496 |
+
>>> triplet_loss = nn.TripletMarginLoss(margin=1.0, p=2, eps=1e-7)
|
1497 |
+
>>> anchor = torch.randn(100, 128, requires_grad=True)
|
1498 |
+
>>> positive = torch.randn(100, 128, requires_grad=True)
|
1499 |
+
>>> negative = torch.randn(100, 128, requires_grad=True)
|
1500 |
+
>>> output = triplet_loss(anchor, positive, negative)
|
1501 |
+
>>> output.backward()
|
1502 |
+
|
1503 |
+
.. _Learning shallow convolutional feature descriptors with triplet losses:
|
1504 |
+
http://www.bmva.org/bmvc/2016/papers/paper119/index.html
|
1505 |
+
"""
|
1506 |
+
__constants__ = ['margin', 'p', 'eps', 'swap', 'reduction']
|
1507 |
+
margin: float
|
1508 |
+
p: float
|
1509 |
+
eps: float
|
1510 |
+
swap: bool
|
1511 |
+
|
1512 |
+
def __init__(self, margin: float = 1.0, p: float = 2., eps: float = 1e-6, swap: bool = False, size_average=None,
|
1513 |
+
reduce=None, reduction: str = 'mean'):
|
1514 |
+
super().__init__(size_average, reduce, reduction)
|
1515 |
+
self.margin = margin
|
1516 |
+
self.p = p
|
1517 |
+
self.eps = eps
|
1518 |
+
self.swap = swap
|
1519 |
+
|
1520 |
+
def forward(self, anchor: Tensor, positive: Tensor, negative: Tensor) -> Tensor:
|
1521 |
+
return F.triplet_margin_loss(anchor, positive, negative, margin=self.margin, p=self.p,
|
1522 |
+
eps=self.eps, swap=self.swap, reduction=self.reduction)
|
1523 |
+
|
1524 |
+
|
1525 |
+
class TripletMarginWithDistanceLoss(_Loss):
|
1526 |
+
r"""Creates a criterion that measures the triplet loss given input
|
1527 |
+
tensors :math:`a`, :math:`p`, and :math:`n` (representing anchor,
|
1528 |
+
positive, and negative examples, respectively), and a nonnegative,
|
1529 |
+
real-valued function ("distance function") used to compute the relationship
|
1530 |
+
between the anchor and positive example ("positive distance") and the
|
1531 |
+
anchor and negative example ("negative distance").
|
1532 |
+
|
1533 |
+
The unreduced loss (i.e., with :attr:`reduction` set to ``'none'``)
|
1534 |
+
can be described as:
|
1535 |
+
|
1536 |
+
.. math::
|
1537 |
+
\ell(a, p, n) = L = \{l_1,\dots,l_N\}^\top, \quad
|
1538 |
+
l_i = \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\}
|
1539 |
+
|
1540 |
+
where :math:`N` is the batch size; :math:`d` is a nonnegative, real-valued function
|
1541 |
+
quantifying the closeness of two tensors, referred to as the :attr:`distance_function`;
|
1542 |
+
and :math:`margin` is a nonnegative margin representing the minimum difference
|
1543 |
+
between the positive and negative distances that is required for the loss to
|
1544 |
+
be 0. The input tensors have :math:`N` elements each and can be of any shape
|
1545 |
+
that the distance function can handle.
|
1546 |
+
|
1547 |
+
If :attr:`reduction` is not ``'none'``
|
1548 |
+
(default ``'mean'``), then:
|
1549 |
+
|
1550 |
+
.. math::
|
1551 |
+
\ell(x, y) =
|
1552 |
+
\begin{cases}
|
1553 |
+
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
|
1554 |
+
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
|
1555 |
+
\end{cases}
|
1556 |
+
|
1557 |
+
See also :class:`~torch.nn.TripletMarginLoss`, which computes the triplet
|
1558 |
+
loss for input tensors using the :math:`l_p` distance as the distance function.
|
1559 |
+
|
1560 |
+
Args:
|
1561 |
+
distance_function (Callable, optional): A nonnegative, real-valued function that
|
1562 |
+
quantifies the closeness of two tensors. If not specified,
|
1563 |
+
`nn.PairwiseDistance` will be used. Default: ``None``
|
1564 |
+
margin (float, optional): A nonnegative margin representing the minimum difference
|
1565 |
+
between the positive and negative distances required for the loss to be 0. Larger
|
1566 |
+
margins penalize cases where the negative examples are not distant enough from the
|
1567 |
+
anchors, relative to the positives. Default: :math:`1`.
|
1568 |
+
swap (bool, optional): Whether to use the distance swap described in the paper
|
1569 |
+
`Learning shallow convolutional feature descriptors with triplet losses` by
|
1570 |
+
V. Balntas, E. Riba et al. If True, and if the positive example is closer to the
|
1571 |
+
negative example than the anchor is, swaps the positive example and the anchor in
|
1572 |
+
the loss computation. Default: ``False``.
|
1573 |
+
reduction (str, optional): Specifies the (optional) reduction to apply to the output:
|
1574 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
1575 |
+
``'mean'``: the sum of the output will be divided by the number of
|
1576 |
+
elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'``
|
1577 |
+
|
1578 |
+
|
1579 |
+
Shape:
|
1580 |
+
- Input: :math:`(N, *)` where :math:`*` represents any number of additional dimensions
|
1581 |
+
as supported by the distance function.
|
1582 |
+
- Output: A Tensor of shape :math:`(N)` if :attr:`reduction` is ``'none'``, or a scalar
|
1583 |
+
otherwise.
|
1584 |
+
|
1585 |
+
Examples::
|
1586 |
+
|
1587 |
+
>>> # Initialize embeddings
|
1588 |
+
>>> embedding = nn.Embedding(1000, 128)
|
1589 |
+
>>> anchor_ids = torch.randint(0, 1000, (1,))
|
1590 |
+
>>> positive_ids = torch.randint(0, 1000, (1,))
|
1591 |
+
>>> negative_ids = torch.randint(0, 1000, (1,))
|
1592 |
+
>>> anchor = embedding(anchor_ids)
|
1593 |
+
>>> positive = embedding(positive_ids)
|
1594 |
+
>>> negative = embedding(negative_ids)
|
1595 |
+
>>>
|
1596 |
+
>>> # Built-in Distance Function
|
1597 |
+
>>> triplet_loss = \
|
1598 |
+
>>> nn.TripletMarginWithDistanceLoss(distance_function=nn.PairwiseDistance())
|
1599 |
+
>>> output = triplet_loss(anchor, positive, negative)
|
1600 |
+
>>> output.backward()
|
1601 |
+
>>>
|
1602 |
+
>>> # Custom Distance Function
|
1603 |
+
>>> def l_infinity(x1, x2):
|
1604 |
+
>>> return torch.max(torch.abs(x1 - x2), dim=1).values
|
1605 |
+
>>>
|
1606 |
+
>>> # xdoctest: +SKIP("FIXME: Would call backwards a second time")
|
1607 |
+
>>> triplet_loss = (
|
1608 |
+
>>> nn.TripletMarginWithDistanceLoss(distance_function=l_infinity, margin=1.5))
|
1609 |
+
>>> output = triplet_loss(anchor, positive, negative)
|
1610 |
+
>>> output.backward()
|
1611 |
+
>>>
|
1612 |
+
>>> # Custom Distance Function (Lambda)
|
1613 |
+
>>> triplet_loss = (
|
1614 |
+
>>> nn.TripletMarginWithDistanceLoss(
|
1615 |
+
>>> distance_function=lambda x, y: 1.0 - F.cosine_similarity(x, y)))
|
1616 |
+
>>> output = triplet_loss(anchor, positive, negative)
|
1617 |
+
>>> output.backward()
|
1618 |
+
|
1619 |
+
Reference:
|
1620 |
+
V. Balntas, et al.: Learning shallow convolutional feature descriptors with triplet losses:
|
1621 |
+
http://www.bmva.org/bmvc/2016/papers/paper119/index.html
|
1622 |
+
"""
|
1623 |
+
__constants__ = ['margin', 'swap', 'reduction']
|
1624 |
+
margin: float
|
1625 |
+
swap: bool
|
1626 |
+
|
1627 |
+
def __init__(self, *, distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = None,
|
1628 |
+
margin: float = 1.0, swap: bool = False, reduction: str = 'mean'):
|
1629 |
+
super().__init__(size_average=None, reduce=None, reduction=reduction)
|
1630 |
+
self.distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = \
|
1631 |
+
distance_function if distance_function is not None else PairwiseDistance()
|
1632 |
+
self.margin = margin
|
1633 |
+
self.swap = swap
|
1634 |
+
|
1635 |
+
def forward(self, anchor: Tensor, positive: Tensor, negative: Tensor) -> Tensor:
|
1636 |
+
return F.triplet_margin_with_distance_loss(anchor, positive, negative,
|
1637 |
+
distance_function=self.distance_function,
|
1638 |
+
margin=self.margin, swap=self.swap, reduction=self.reduction)
|
1639 |
+
|
1640 |
+
|
1641 |
+
class CTCLoss(_Loss):
|
1642 |
+
r"""The Connectionist Temporal Classification loss.
|
1643 |
+
|
1644 |
+
Calculates loss between a continuous (unsegmented) time series and a target sequence. CTCLoss sums over the
|
1645 |
+
probability of possible alignments of input to target, producing a loss value which is differentiable
|
1646 |
+
with respect to each input node. The alignment of input to target is assumed to be "many-to-one", which
|
1647 |
+
limits the length of the target sequence such that it must be :math:`\leq` the input length.
|
1648 |
+
|
1649 |
+
Args:
|
1650 |
+
blank (int, optional): blank label. Default :math:`0`.
|
1651 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
1652 |
+
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
1653 |
+
``'mean'``: the output losses will be divided by the target lengths and
|
1654 |
+
then the mean over the batch is taken, ``'sum'``: the output losses will be summed.
|
1655 |
+
Default: ``'mean'``
|
1656 |
+
zero_infinity (bool, optional):
|
1657 |
+
Whether to zero infinite losses and the associated gradients.
|
1658 |
+
Default: ``False``
|
1659 |
+
Infinite losses mainly occur when the inputs are too short
|
1660 |
+
to be aligned to the targets.
|
1661 |
+
|
1662 |
+
Shape:
|
1663 |
+
- Log_probs: Tensor of size :math:`(T, N, C)` or :math:`(T, C)`,
|
1664 |
+
where :math:`T = \text{input length}`,
|
1665 |
+
:math:`N = \text{batch size}`, and
|
1666 |
+
:math:`C = \text{number of classes (including blank)}`.
|
1667 |
+
The logarithmized probabilities of the outputs (e.g. obtained with
|
1668 |
+
:func:`torch.nn.functional.log_softmax`).
|
1669 |
+
- Targets: Tensor of size :math:`(N, S)` or
|
1670 |
+
:math:`(\operatorname{sum}(\text{target\_lengths}))`,
|
1671 |
+
where :math:`N = \text{batch size}` and
|
1672 |
+
:math:`S = \text{max target length, if shape is } (N, S)`.
|
1673 |
+
It represent the target sequences. Each element in the target
|
1674 |
+
sequence is a class index. And the target index cannot be blank (default=0).
|
1675 |
+
In the :math:`(N, S)` form, targets are padded to the
|
1676 |
+
length of the longest sequence, and stacked.
|
1677 |
+
In the :math:`(\operatorname{sum}(\text{target\_lengths}))` form,
|
1678 |
+
the targets are assumed to be un-padded and
|
1679 |
+
concatenated within 1 dimension.
|
1680 |
+
- Input_lengths: Tuple or tensor of size :math:`(N)` or :math:`()`,
|
1681 |
+
where :math:`N = \text{batch size}`. It represent the lengths of the
|
1682 |
+
inputs (must each be :math:`\leq T`). And the lengths are specified
|
1683 |
+
for each sequence to achieve masking under the assumption that sequences
|
1684 |
+
are padded to equal lengths.
|
1685 |
+
- Target_lengths: Tuple or tensor of size :math:`(N)` or :math:`()`,
|
1686 |
+
where :math:`N = \text{batch size}`. It represent lengths of the targets.
|
1687 |
+
Lengths are specified for each sequence to achieve masking under the
|
1688 |
+
assumption that sequences are padded to equal lengths. If target shape is
|
1689 |
+
:math:`(N,S)`, target_lengths are effectively the stop index
|
1690 |
+
:math:`s_n` for each target sequence, such that ``target_n = targets[n,0:s_n]`` for
|
1691 |
+
each target in a batch. Lengths must each be :math:`\leq S`
|
1692 |
+
If the targets are given as a 1d tensor that is the concatenation of individual
|
1693 |
+
targets, the target_lengths must add up to the total length of the tensor.
|
1694 |
+
- Output: scalar if :attr:`reduction` is ``'mean'`` (default) or
|
1695 |
+
``'sum'``. If :attr:`reduction` is ``'none'``, then :math:`(N)` if input is batched or
|
1696 |
+
:math:`()` if input is unbatched, where :math:`N = \text{batch size}`.
|
1697 |
+
|
1698 |
+
Examples::
|
1699 |
+
|
1700 |
+
>>> # Target are to be padded
|
1701 |
+
>>> T = 50 # Input sequence length
|
1702 |
+
>>> C = 20 # Number of classes (including blank)
|
1703 |
+
>>> N = 16 # Batch size
|
1704 |
+
>>> S = 30 # Target sequence length of longest target in batch (padding length)
|
1705 |
+
>>> S_min = 10 # Minimum target length, for demonstration purposes
|
1706 |
+
>>>
|
1707 |
+
>>> # Initialize random batch of input vectors, for *size = (T,N,C)
|
1708 |
+
>>> input = torch.randn(T, N, C).log_softmax(2).detach().requires_grad_()
|
1709 |
+
>>>
|
1710 |
+
>>> # Initialize random batch of targets (0 = blank, 1:C = classes)
|
1711 |
+
>>> target = torch.randint(low=1, high=C, size=(N, S), dtype=torch.long)
|
1712 |
+
>>>
|
1713 |
+
>>> input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long)
|
1714 |
+
>>> target_lengths = torch.randint(low=S_min, high=S, size=(N,), dtype=torch.long)
|
1715 |
+
>>> ctc_loss = nn.CTCLoss()
|
1716 |
+
>>> loss = ctc_loss(input, target, input_lengths, target_lengths)
|
1717 |
+
>>> loss.backward()
|
1718 |
+
>>>
|
1719 |
+
>>>
|
1720 |
+
>>> # Target are to be un-padded
|
1721 |
+
>>> T = 50 # Input sequence length
|
1722 |
+
>>> C = 20 # Number of classes (including blank)
|
1723 |
+
>>> N = 16 # Batch size
|
1724 |
+
>>>
|
1725 |
+
>>> # Initialize random batch of input vectors, for *size = (T,N,C)
|
1726 |
+
>>> input = torch.randn(T, N, C).log_softmax(2).detach().requires_grad_()
|
1727 |
+
>>> input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long)
|
1728 |
+
>>>
|
1729 |
+
>>> # Initialize random batch of targets (0 = blank, 1:C = classes)
|
1730 |
+
>>> target_lengths = torch.randint(low=1, high=T, size=(N,), dtype=torch.long)
|
1731 |
+
>>> target = torch.randint(low=1, high=C, size=(sum(target_lengths),), dtype=torch.long)
|
1732 |
+
>>> ctc_loss = nn.CTCLoss()
|
1733 |
+
>>> loss = ctc_loss(input, target, input_lengths, target_lengths)
|
1734 |
+
>>> loss.backward()
|
1735 |
+
>>>
|
1736 |
+
>>>
|
1737 |
+
>>> # Target are to be un-padded and unbatched (effectively N=1)
|
1738 |
+
>>> T = 50 # Input sequence length
|
1739 |
+
>>> C = 20 # Number of classes (including blank)
|
1740 |
+
>>>
|
1741 |
+
>>> # Initialize random batch of input vectors, for *size = (T,C)
|
1742 |
+
>>> # xdoctest: +SKIP("FIXME: error in doctest")
|
1743 |
+
>>> input = torch.randn(T, C).log_softmax(1).detach().requires_grad_()
|
1744 |
+
>>> input_lengths = torch.tensor(T, dtype=torch.long)
|
1745 |
+
>>>
|
1746 |
+
>>> # Initialize random batch of targets (0 = blank, 1:C = classes)
|
1747 |
+
>>> target_lengths = torch.randint(low=1, high=T, size=(), dtype=torch.long)
|
1748 |
+
>>> target = torch.randint(low=1, high=C, size=(target_lengths,), dtype=torch.long)
|
1749 |
+
>>> ctc_loss = nn.CTCLoss()
|
1750 |
+
>>> loss = ctc_loss(input, target, input_lengths, target_lengths)
|
1751 |
+
>>> loss.backward()
|
1752 |
+
|
1753 |
+
Reference:
|
1754 |
+
A. Graves et al.: Connectionist Temporal Classification:
|
1755 |
+
Labelling Unsegmented Sequence Data with Recurrent Neural Networks:
|
1756 |
+
https://www.cs.toronto.edu/~graves/icml_2006.pdf
|
1757 |
+
|
1758 |
+
Note:
|
1759 |
+
In order to use CuDNN, the following must be satisfied: :attr:`targets` must be
|
1760 |
+
in concatenated format, all :attr:`input_lengths` must be `T`. :math:`blank=0`,
|
1761 |
+
:attr:`target_lengths` :math:`\leq 256`, the integer arguments must be of
|
1762 |
+
dtype :attr:`torch.int32`.
|
1763 |
+
|
1764 |
+
The regular implementation uses the (more common in PyTorch) `torch.long` dtype.
|
1765 |
+
|
1766 |
+
|
1767 |
+
Note:
|
1768 |
+
In some circumstances when using the CUDA backend with CuDNN, this operator
|
1769 |
+
may select a nondeterministic algorithm to increase performance. If this is
|
1770 |
+
undesirable, you can try to make the operation deterministic (potentially at
|
1771 |
+
a performance cost) by setting ``torch.backends.cudnn.deterministic =
|
1772 |
+
True``.
|
1773 |
+
Please see the notes on :doc:`/notes/randomness` for background.
|
1774 |
+
"""
|
1775 |
+
__constants__ = ['blank', 'reduction']
|
1776 |
+
blank: int
|
1777 |
+
zero_infinity: bool
|
1778 |
+
|
1779 |
+
def __init__(self, blank: int = 0, reduction: str = 'mean', zero_infinity: bool = False):
|
1780 |
+
super().__init__(reduction=reduction)
|
1781 |
+
self.blank = blank
|
1782 |
+
self.zero_infinity = zero_infinity
|
1783 |
+
|
1784 |
+
def forward(self, log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor) -> Tensor:
|
1785 |
+
return F.ctc_loss(log_probs, targets, input_lengths, target_lengths, self.blank, self.reduction,
|
1786 |
+
self.zero_infinity)
|
1787 |
+
|
1788 |
+
# TODO: L1HingeEmbeddingCriterion
|
1789 |
+
# TODO: MSECriterion weight
|
1790 |
+
# TODO: ClassSimplexCriterion
|
venv/lib/python3.10/site-packages/torch/nn/modules/normalization.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numbers
|
3 |
+
from torch.nn.parameter import Parameter
|
4 |
+
from .module import Module
|
5 |
+
from ._functions import CrossMapLRN2d as _cross_map_lrn2d
|
6 |
+
from .. import functional as F
|
7 |
+
from .. import init
|
8 |
+
|
9 |
+
from torch import Tensor, Size
|
10 |
+
from typing import Union, List, Tuple
|
11 |
+
|
12 |
+
__all__ = ['LocalResponseNorm', 'CrossMapLRN2d', 'LayerNorm', 'GroupNorm']
|
13 |
+
|
14 |
+
class LocalResponseNorm(Module):
|
15 |
+
r"""Applies local response normalization over an input signal.
|
16 |
+
|
17 |
+
The input signal is composed of several input planes, where channels occupy the second dimension.
|
18 |
+
Applies normalization across channels.
|
19 |
+
|
20 |
+
.. math::
|
21 |
+
b_{c} = a_{c}\left(k + \frac{\alpha}{n}
|
22 |
+
\sum_{c'=\max(0, c-n/2)}^{\min(N-1,c+n/2)}a_{c'}^2\right)^{-\beta}
|
23 |
+
|
24 |
+
Args:
|
25 |
+
size: amount of neighbouring channels used for normalization
|
26 |
+
alpha: multiplicative factor. Default: 0.0001
|
27 |
+
beta: exponent. Default: 0.75
|
28 |
+
k: additive factor. Default: 1
|
29 |
+
|
30 |
+
Shape:
|
31 |
+
- Input: :math:`(N, C, *)`
|
32 |
+
- Output: :math:`(N, C, *)` (same shape as input)
|
33 |
+
|
34 |
+
Examples::
|
35 |
+
|
36 |
+
>>> lrn = nn.LocalResponseNorm(2)
|
37 |
+
>>> signal_2d = torch.randn(32, 5, 24, 24)
|
38 |
+
>>> signal_4d = torch.randn(16, 5, 7, 7, 7, 7)
|
39 |
+
>>> output_2d = lrn(signal_2d)
|
40 |
+
>>> output_4d = lrn(signal_4d)
|
41 |
+
|
42 |
+
"""
|
43 |
+
|
44 |
+
__constants__ = ['size', 'alpha', 'beta', 'k']
|
45 |
+
size: int
|
46 |
+
alpha: float
|
47 |
+
beta: float
|
48 |
+
k: float
|
49 |
+
|
50 |
+
def __init__(self, size: int, alpha: float = 1e-4, beta: float = 0.75, k: float = 1.) -> None:
|
51 |
+
super().__init__()
|
52 |
+
self.size = size
|
53 |
+
self.alpha = alpha
|
54 |
+
self.beta = beta
|
55 |
+
self.k = k
|
56 |
+
|
57 |
+
def forward(self, input: Tensor) -> Tensor:
|
58 |
+
return F.local_response_norm(input, self.size, self.alpha, self.beta,
|
59 |
+
self.k)
|
60 |
+
|
61 |
+
def extra_repr(self):
|
62 |
+
return '{size}, alpha={alpha}, beta={beta}, k={k}'.format(**self.__dict__)
|
63 |
+
|
64 |
+
|
65 |
+
class CrossMapLRN2d(Module):
|
66 |
+
size: int
|
67 |
+
alpha: float
|
68 |
+
beta: float
|
69 |
+
k: float
|
70 |
+
|
71 |
+
def __init__(self, size: int, alpha: float = 1e-4, beta: float = 0.75, k: float = 1) -> None:
|
72 |
+
super().__init__()
|
73 |
+
self.size = size
|
74 |
+
self.alpha = alpha
|
75 |
+
self.beta = beta
|
76 |
+
self.k = k
|
77 |
+
|
78 |
+
def forward(self, input: Tensor) -> Tensor:
|
79 |
+
return _cross_map_lrn2d.apply(input, self.size, self.alpha, self.beta,
|
80 |
+
self.k)
|
81 |
+
|
82 |
+
def extra_repr(self) -> str:
|
83 |
+
return '{size}, alpha={alpha}, beta={beta}, k={k}'.format(**self.__dict__)
|
84 |
+
|
85 |
+
|
86 |
+
_shape_t = Union[int, List[int], Size]
|
87 |
+
|
88 |
+
|
89 |
+
class LayerNorm(Module):
|
90 |
+
r"""Applies Layer Normalization over a mini-batch of inputs.
|
91 |
+
|
92 |
+
This layer implements the operation as described in
|
93 |
+
the paper `Layer Normalization <https://arxiv.org/abs/1607.06450>`__
|
94 |
+
|
95 |
+
.. math::
|
96 |
+
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
|
97 |
+
|
98 |
+
The mean and standard-deviation are calculated over the last `D` dimensions, where `D`
|
99 |
+
is the dimension of :attr:`normalized_shape`. For example, if :attr:`normalized_shape`
|
100 |
+
is ``(3, 5)`` (a 2-dimensional shape), the mean and standard-deviation are computed over
|
101 |
+
the last 2 dimensions of the input (i.e. ``input.mean((-2, -1))``).
|
102 |
+
:math:`\gamma` and :math:`\beta` are learnable affine transform parameters of
|
103 |
+
:attr:`normalized_shape` if :attr:`elementwise_affine` is ``True``.
|
104 |
+
The standard-deviation is calculated via the biased estimator, equivalent to
|
105 |
+
`torch.var(input, unbiased=False)`.
|
106 |
+
|
107 |
+
.. note::
|
108 |
+
Unlike Batch Normalization and Instance Normalization, which applies
|
109 |
+
scalar scale and bias for each entire channel/plane with the
|
110 |
+
:attr:`affine` option, Layer Normalization applies per-element scale and
|
111 |
+
bias with :attr:`elementwise_affine`.
|
112 |
+
|
113 |
+
This layer uses statistics computed from input data in both training and
|
114 |
+
evaluation modes.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
normalized_shape (int or list or torch.Size): input shape from an expected input
|
118 |
+
of size
|
119 |
+
|
120 |
+
.. math::
|
121 |
+
[* \times \text{normalized\_shape}[0] \times \text{normalized\_shape}[1]
|
122 |
+
\times \ldots \times \text{normalized\_shape}[-1]]
|
123 |
+
|
124 |
+
If a single integer is used, it is treated as a singleton list, and this module will
|
125 |
+
normalize over the last dimension which is expected to be of that specific size.
|
126 |
+
eps: a value added to the denominator for numerical stability. Default: 1e-5
|
127 |
+
elementwise_affine: a boolean value that when set to ``True``, this module
|
128 |
+
has learnable per-element affine parameters initialized to ones (for weights)
|
129 |
+
and zeros (for biases). Default: ``True``.
|
130 |
+
bias: If set to ``False``, the layer will not learn an additive bias (only relevant if
|
131 |
+
:attr:`elementwise_affine` is ``True``). Default: ``True``.
|
132 |
+
|
133 |
+
Attributes:
|
134 |
+
weight: the learnable weights of the module of shape
|
135 |
+
:math:`\text{normalized\_shape}` when :attr:`elementwise_affine` is set to ``True``.
|
136 |
+
The values are initialized to 1.
|
137 |
+
bias: the learnable bias of the module of shape
|
138 |
+
:math:`\text{normalized\_shape}` when :attr:`elementwise_affine` is set to ``True``.
|
139 |
+
The values are initialized to 0.
|
140 |
+
|
141 |
+
Shape:
|
142 |
+
- Input: :math:`(N, *)`
|
143 |
+
- Output: :math:`(N, *)` (same shape as input)
|
144 |
+
|
145 |
+
Examples::
|
146 |
+
|
147 |
+
>>> # NLP Example
|
148 |
+
>>> batch, sentence_length, embedding_dim = 20, 5, 10
|
149 |
+
>>> embedding = torch.randn(batch, sentence_length, embedding_dim)
|
150 |
+
>>> layer_norm = nn.LayerNorm(embedding_dim)
|
151 |
+
>>> # Activate module
|
152 |
+
>>> layer_norm(embedding)
|
153 |
+
>>>
|
154 |
+
>>> # Image Example
|
155 |
+
>>> N, C, H, W = 20, 5, 10, 10
|
156 |
+
>>> input = torch.randn(N, C, H, W)
|
157 |
+
>>> # Normalize over the last three dimensions (i.e. the channel and spatial dimensions)
|
158 |
+
>>> # as shown in the image below
|
159 |
+
>>> layer_norm = nn.LayerNorm([C, H, W])
|
160 |
+
>>> output = layer_norm(input)
|
161 |
+
|
162 |
+
.. image:: ../_static/img/nn/layer_norm.jpg
|
163 |
+
:scale: 50 %
|
164 |
+
|
165 |
+
"""
|
166 |
+
|
167 |
+
__constants__ = ['normalized_shape', 'eps', 'elementwise_affine']
|
168 |
+
normalized_shape: Tuple[int, ...]
|
169 |
+
eps: float
|
170 |
+
elementwise_affine: bool
|
171 |
+
|
172 |
+
def __init__(self, normalized_shape: _shape_t, eps: float = 1e-5, elementwise_affine: bool = True,
|
173 |
+
bias: bool = True, device=None, dtype=None) -> None:
|
174 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
175 |
+
super().__init__()
|
176 |
+
if isinstance(normalized_shape, numbers.Integral):
|
177 |
+
# mypy error: incompatible types in assignment
|
178 |
+
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
179 |
+
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
180 |
+
self.eps = eps
|
181 |
+
self.elementwise_affine = elementwise_affine
|
182 |
+
if self.elementwise_affine:
|
183 |
+
self.weight = Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
|
184 |
+
if bias:
|
185 |
+
self.bias = Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
|
186 |
+
else:
|
187 |
+
self.register_parameter('bias', None)
|
188 |
+
else:
|
189 |
+
self.register_parameter('weight', None)
|
190 |
+
self.register_parameter('bias', None)
|
191 |
+
|
192 |
+
self.reset_parameters()
|
193 |
+
|
194 |
+
def reset_parameters(self) -> None:
|
195 |
+
if self.elementwise_affine:
|
196 |
+
init.ones_(self.weight)
|
197 |
+
if self.bias is not None:
|
198 |
+
init.zeros_(self.bias)
|
199 |
+
|
200 |
+
def forward(self, input: Tensor) -> Tensor:
|
201 |
+
return F.layer_norm(
|
202 |
+
input, self.normalized_shape, self.weight, self.bias, self.eps)
|
203 |
+
|
204 |
+
def extra_repr(self) -> str:
|
205 |
+
return '{normalized_shape}, eps={eps}, ' \
|
206 |
+
'elementwise_affine={elementwise_affine}'.format(**self.__dict__)
|
207 |
+
|
208 |
+
|
209 |
+
class GroupNorm(Module):
|
210 |
+
r"""Applies Group Normalization over a mini-batch of inputs.
|
211 |
+
|
212 |
+
This layer implements the operation as described in
|
213 |
+
the paper `Group Normalization <https://arxiv.org/abs/1803.08494>`__
|
214 |
+
|
215 |
+
.. math::
|
216 |
+
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
|
217 |
+
|
218 |
+
The input channels are separated into :attr:`num_groups` groups, each containing
|
219 |
+
``num_channels / num_groups`` channels. :attr:`num_channels` must be divisible by
|
220 |
+
:attr:`num_groups`. The mean and standard-deviation are calculated
|
221 |
+
separately over the each group. :math:`\gamma` and :math:`\beta` are learnable
|
222 |
+
per-channel affine transform parameter vectors of size :attr:`num_channels` if
|
223 |
+
:attr:`affine` is ``True``.
|
224 |
+
The standard-deviation is calculated via the biased estimator, equivalent to
|
225 |
+
`torch.var(input, unbiased=False)`.
|
226 |
+
|
227 |
+
This layer uses statistics computed from input data in both training and
|
228 |
+
evaluation modes.
|
229 |
+
|
230 |
+
Args:
|
231 |
+
num_groups (int): number of groups to separate the channels into
|
232 |
+
num_channels (int): number of channels expected in input
|
233 |
+
eps: a value added to the denominator for numerical stability. Default: 1e-5
|
234 |
+
affine: a boolean value that when set to ``True``, this module
|
235 |
+
has learnable per-channel affine parameters initialized to ones (for weights)
|
236 |
+
and zeros (for biases). Default: ``True``.
|
237 |
+
|
238 |
+
Shape:
|
239 |
+
- Input: :math:`(N, C, *)` where :math:`C=\text{num\_channels}`
|
240 |
+
- Output: :math:`(N, C, *)` (same shape as input)
|
241 |
+
|
242 |
+
Examples::
|
243 |
+
|
244 |
+
>>> input = torch.randn(20, 6, 10, 10)
|
245 |
+
>>> # Separate 6 channels into 3 groups
|
246 |
+
>>> m = nn.GroupNorm(3, 6)
|
247 |
+
>>> # Separate 6 channels into 6 groups (equivalent with InstanceNorm)
|
248 |
+
>>> m = nn.GroupNorm(6, 6)
|
249 |
+
>>> # Put all 6 channels into a single group (equivalent with LayerNorm)
|
250 |
+
>>> m = nn.GroupNorm(1, 6)
|
251 |
+
>>> # Activating the module
|
252 |
+
>>> output = m(input)
|
253 |
+
"""
|
254 |
+
|
255 |
+
__constants__ = ['num_groups', 'num_channels', 'eps', 'affine']
|
256 |
+
num_groups: int
|
257 |
+
num_channels: int
|
258 |
+
eps: float
|
259 |
+
affine: bool
|
260 |
+
|
261 |
+
def __init__(self, num_groups: int, num_channels: int, eps: float = 1e-5, affine: bool = True,
|
262 |
+
device=None, dtype=None) -> None:
|
263 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
264 |
+
super().__init__()
|
265 |
+
if num_channels % num_groups != 0:
|
266 |
+
raise ValueError('num_channels must be divisible by num_groups')
|
267 |
+
|
268 |
+
self.num_groups = num_groups
|
269 |
+
self.num_channels = num_channels
|
270 |
+
self.eps = eps
|
271 |
+
self.affine = affine
|
272 |
+
if self.affine:
|
273 |
+
self.weight = Parameter(torch.empty(num_channels, **factory_kwargs))
|
274 |
+
self.bias = Parameter(torch.empty(num_channels, **factory_kwargs))
|
275 |
+
else:
|
276 |
+
self.register_parameter('weight', None)
|
277 |
+
self.register_parameter('bias', None)
|
278 |
+
|
279 |
+
self.reset_parameters()
|
280 |
+
|
281 |
+
def reset_parameters(self) -> None:
|
282 |
+
if self.affine:
|
283 |
+
init.ones_(self.weight)
|
284 |
+
init.zeros_(self.bias)
|
285 |
+
|
286 |
+
def forward(self, input: Tensor) -> Tensor:
|
287 |
+
return F.group_norm(
|
288 |
+
input, self.num_groups, self.weight, self.bias, self.eps)
|
289 |
+
|
290 |
+
def extra_repr(self) -> str:
|
291 |
+
return '{num_groups}, {num_channels}, eps={eps}, ' \
|
292 |
+
'affine={affine}'.format(**self.__dict__)
|
293 |
+
|
294 |
+
|
295 |
+
# TODO: ContrastiveNorm2d
|
296 |
+
# TODO: DivisiveNorm2d
|
297 |
+
# TODO: SubtractiveNorm2d
|
venv/lib/python3.10/site-packages/torch/nn/modules/padding.py
ADDED
@@ -0,0 +1,801 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .module import Module
|
2 |
+
from .utils import _pair, _quadruple, _ntuple
|
3 |
+
from .. import functional as F
|
4 |
+
|
5 |
+
from torch import Tensor
|
6 |
+
from ..common_types import _size_2_t, _size_4_t, _size_6_t
|
7 |
+
from typing import Sequence, Tuple
|
8 |
+
|
9 |
+
|
10 |
+
# TODO: grad_output size asserts in THNN
|
11 |
+
|
12 |
+
__all__ = ['CircularPad1d', 'CircularPad2d', 'CircularPad3d', 'ConstantPad1d', 'ConstantPad2d',
|
13 |
+
'ConstantPad3d', 'ReflectionPad1d', 'ReflectionPad2d', 'ReflectionPad3d',
|
14 |
+
'ReplicationPad1d', 'ReplicationPad2d', 'ReplicationPad3d', 'ZeroPad1d', 'ZeroPad2d', 'ZeroPad3d']
|
15 |
+
|
16 |
+
|
17 |
+
class _CircularPadNd(Module):
|
18 |
+
__constants__ = ['padding']
|
19 |
+
padding: Sequence[int]
|
20 |
+
|
21 |
+
def _check_input_dim(self, input):
|
22 |
+
raise NotImplementedError
|
23 |
+
|
24 |
+
def forward(self, input: Tensor) -> Tensor:
|
25 |
+
self._check_input_dim(input)
|
26 |
+
return F.pad(input, self.padding, 'circular')
|
27 |
+
|
28 |
+
def extra_repr(self) -> str:
|
29 |
+
return f'{self.padding}'
|
30 |
+
|
31 |
+
|
32 |
+
class CircularPad1d(_CircularPadNd):
|
33 |
+
r"""Pads the input tensor using circular padding of the input boundary.
|
34 |
+
|
35 |
+
Tensor values at the beginning of the dimension are used to pad the end,
|
36 |
+
and values at the end are used to pad the beginning. If negative padding is
|
37 |
+
applied then the ends of the tensor get removed.
|
38 |
+
|
39 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
43 |
+
padding in all boundaries. If a 2-`tuple`, uses
|
44 |
+
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
|
45 |
+
|
46 |
+
Shape:
|
47 |
+
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
|
48 |
+
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
|
49 |
+
|
50 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
51 |
+
|
52 |
+
Examples::
|
53 |
+
|
54 |
+
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
|
55 |
+
>>> m = nn.CircularPad1d(2)
|
56 |
+
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
|
57 |
+
>>> input
|
58 |
+
tensor([[[0., 1., 2., 3.],
|
59 |
+
[4., 5., 6., 7.]]])
|
60 |
+
>>> m(input)
|
61 |
+
tensor([[[2., 3., 0., 1., 2., 3., 0., 1.],
|
62 |
+
[6., 7., 4., 5., 6., 7., 4., 5.]]])
|
63 |
+
>>> # using different paddings for different sides
|
64 |
+
>>> m = nn.CircularPad1d((3, 1))
|
65 |
+
>>> m(input)
|
66 |
+
tensor([[[1., 2., 3., 0., 1., 2., 3., 0.],
|
67 |
+
[5., 6., 7., 4., 5., 6., 7., 4.]]])
|
68 |
+
"""
|
69 |
+
|
70 |
+
padding: Tuple[int, int]
|
71 |
+
|
72 |
+
def __init__(self, padding: _size_2_t) -> None:
|
73 |
+
super().__init__()
|
74 |
+
self.padding = _pair(padding)
|
75 |
+
|
76 |
+
def _check_input_dim(self, input):
|
77 |
+
if input.dim() != 2 and input.dim() != 3:
|
78 |
+
raise ValueError(
|
79 |
+
f"expected 2D or 3D input (got {input.dim()}D input)"
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
class CircularPad2d(_CircularPadNd):
|
84 |
+
r"""Pads the input tensor using circular padding of the input boundary.
|
85 |
+
|
86 |
+
Tensor values at the beginning of the dimension are used to pad the end,
|
87 |
+
and values at the end are used to pad the beginning. If negative padding is
|
88 |
+
applied then the ends of the tensor get removed.
|
89 |
+
|
90 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
94 |
+
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
|
95 |
+
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
|
96 |
+
|
97 |
+
Shape:
|
98 |
+
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
|
99 |
+
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
|
100 |
+
|
101 |
+
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
102 |
+
|
103 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
104 |
+
|
105 |
+
Examples::
|
106 |
+
|
107 |
+
>>> m = nn.CircularPad2d(2)
|
108 |
+
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
|
109 |
+
>>> input
|
110 |
+
tensor([[[[0., 1., 2.],
|
111 |
+
[3., 4., 5.],
|
112 |
+
[6., 7., 8.]]]])
|
113 |
+
>>> m(input)
|
114 |
+
tensor([[[[4., 5., 3., 4., 5., 3., 4.],
|
115 |
+
[7., 8., 6., 7., 8., 6., 7.],
|
116 |
+
[1., 2., 0., 1., 2., 0., 1.],
|
117 |
+
[4., 5., 3., 4., 5., 3., 4.],
|
118 |
+
[7., 8., 6., 7., 8., 6., 7.],
|
119 |
+
[1., 2., 0., 1., 2., 0., 1.],
|
120 |
+
[4., 5., 3., 4., 5., 3., 4.]]]])
|
121 |
+
>>> # using different paddings for different sides
|
122 |
+
>>> m = nn.CircularPad2d((1, 1, 2, 0))
|
123 |
+
>>> m(input)
|
124 |
+
tensor([[[[5., 3., 4., 5., 3.],
|
125 |
+
[8., 6., 7., 8., 6.],
|
126 |
+
[2., 0., 1., 2., 0.],
|
127 |
+
[5., 3., 4., 5., 3.],
|
128 |
+
[8., 6., 7., 8., 6.]]]])
|
129 |
+
"""
|
130 |
+
|
131 |
+
padding: Tuple[int, int, int, int]
|
132 |
+
|
133 |
+
def __init__(self, padding: _size_4_t) -> None:
|
134 |
+
super().__init__()
|
135 |
+
self.padding = _quadruple(padding)
|
136 |
+
|
137 |
+
def _check_input_dim(self, input):
|
138 |
+
if input.dim() != 3 and input.dim() != 4:
|
139 |
+
raise ValueError(
|
140 |
+
f"expected 3D or 4D input (got {input.dim()}D input)"
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
class CircularPad3d(_CircularPadNd):
|
145 |
+
r"""Pads the input tensor using circular padding of the input boundary.
|
146 |
+
|
147 |
+
Tensor values at the beginning of the dimension are used to pad the end,
|
148 |
+
and values at the end are used to pad the beginning. If negative padding is
|
149 |
+
applied then the ends of the tensor get removed.
|
150 |
+
|
151 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
155 |
+
padding in all boundaries. If a 6-`tuple`, uses
|
156 |
+
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
|
157 |
+
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
|
158 |
+
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
|
159 |
+
|
160 |
+
Shape:
|
161 |
+
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
|
162 |
+
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`,
|
163 |
+
where
|
164 |
+
|
165 |
+
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
|
166 |
+
|
167 |
+
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
168 |
+
|
169 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
170 |
+
|
171 |
+
Examples::
|
172 |
+
|
173 |
+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
174 |
+
>>> m = nn.CircularPad3d(3)
|
175 |
+
>>> input = torch.randn(16, 3, 8, 320, 480)
|
176 |
+
>>> output = m(input)
|
177 |
+
>>> # using different paddings for different sides
|
178 |
+
>>> m = nn.CircularPad3d((3, 3, 6, 6, 1, 1))
|
179 |
+
>>> output = m(input)
|
180 |
+
"""
|
181 |
+
|
182 |
+
padding: Tuple[int, int, int, int, int, int]
|
183 |
+
|
184 |
+
def __init__(self, padding: _size_6_t) -> None:
|
185 |
+
super().__init__()
|
186 |
+
self.padding = _ntuple(6)(padding)
|
187 |
+
|
188 |
+
def _check_input_dim(self, input):
|
189 |
+
if input.dim() != 4 and input.dim() != 5:
|
190 |
+
raise ValueError(
|
191 |
+
f"expected 4D or 5D input (got {input.dim()}D input)"
|
192 |
+
)
|
193 |
+
|
194 |
+
|
195 |
+
class _ConstantPadNd(Module):
|
196 |
+
__constants__ = ['padding', 'value']
|
197 |
+
value: float
|
198 |
+
padding: Sequence[int]
|
199 |
+
|
200 |
+
def __init__(self, value: float) -> None:
|
201 |
+
super().__init__()
|
202 |
+
self.value = value
|
203 |
+
|
204 |
+
def forward(self, input: Tensor) -> Tensor:
|
205 |
+
return F.pad(input, self.padding, 'constant', self.value)
|
206 |
+
|
207 |
+
def extra_repr(self) -> str:
|
208 |
+
return f'padding={self.padding}, value={self.value}'
|
209 |
+
|
210 |
+
|
211 |
+
class ConstantPad1d(_ConstantPadNd):
|
212 |
+
r"""Pads the input tensor boundaries with a constant value.
|
213 |
+
|
214 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
215 |
+
|
216 |
+
Args:
|
217 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
218 |
+
padding in both boundaries. If a 2-`tuple`, uses
|
219 |
+
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
|
220 |
+
|
221 |
+
Shape:
|
222 |
+
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
|
223 |
+
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
|
224 |
+
|
225 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
226 |
+
|
227 |
+
Examples::
|
228 |
+
|
229 |
+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
230 |
+
>>> m = nn.ConstantPad1d(2, 3.5)
|
231 |
+
>>> input = torch.randn(1, 2, 4)
|
232 |
+
>>> input
|
233 |
+
tensor([[[-1.0491, -0.7152, -0.0749, 0.8530],
|
234 |
+
[-1.3287, 1.8966, 0.1466, -0.2771]]])
|
235 |
+
>>> m(input)
|
236 |
+
tensor([[[ 3.5000, 3.5000, -1.0491, -0.7152, -0.0749, 0.8530, 3.5000,
|
237 |
+
3.5000],
|
238 |
+
[ 3.5000, 3.5000, -1.3287, 1.8966, 0.1466, -0.2771, 3.5000,
|
239 |
+
3.5000]]])
|
240 |
+
>>> m = nn.ConstantPad1d(2, 3.5)
|
241 |
+
>>> input = torch.randn(1, 2, 3)
|
242 |
+
>>> input
|
243 |
+
tensor([[[ 1.6616, 1.4523, -1.1255],
|
244 |
+
[-3.6372, 0.1182, -1.8652]]])
|
245 |
+
>>> m(input)
|
246 |
+
tensor([[[ 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000, 3.5000],
|
247 |
+
[ 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000, 3.5000]]])
|
248 |
+
>>> # using different paddings for different sides
|
249 |
+
>>> m = nn.ConstantPad1d((3, 1), 3.5)
|
250 |
+
>>> m(input)
|
251 |
+
tensor([[[ 3.5000, 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000],
|
252 |
+
[ 3.5000, 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000]]])
|
253 |
+
"""
|
254 |
+
|
255 |
+
padding: Tuple[int, int]
|
256 |
+
|
257 |
+
def __init__(self, padding: _size_2_t, value: float):
|
258 |
+
super().__init__(value)
|
259 |
+
self.padding = _pair(padding)
|
260 |
+
|
261 |
+
|
262 |
+
class ConstantPad2d(_ConstantPadNd):
|
263 |
+
r"""Pads the input tensor boundaries with a constant value.
|
264 |
+
|
265 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
269 |
+
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
|
270 |
+
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
|
271 |
+
|
272 |
+
Shape:
|
273 |
+
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
|
274 |
+
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
|
275 |
+
|
276 |
+
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
277 |
+
|
278 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
279 |
+
|
280 |
+
Examples::
|
281 |
+
|
282 |
+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
283 |
+
>>> m = nn.ConstantPad2d(2, 3.5)
|
284 |
+
>>> input = torch.randn(1, 2, 2)
|
285 |
+
>>> input
|
286 |
+
tensor([[[ 1.6585, 0.4320],
|
287 |
+
[-0.8701, -0.4649]]])
|
288 |
+
>>> m(input)
|
289 |
+
tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
|
290 |
+
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
|
291 |
+
[ 3.5000, 3.5000, 1.6585, 0.4320, 3.5000, 3.5000],
|
292 |
+
[ 3.5000, 3.5000, -0.8701, -0.4649, 3.5000, 3.5000],
|
293 |
+
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
|
294 |
+
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]])
|
295 |
+
>>> # using different paddings for different sides
|
296 |
+
>>> m = nn.ConstantPad2d((3, 0, 2, 1), 3.5)
|
297 |
+
>>> m(input)
|
298 |
+
tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
|
299 |
+
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
|
300 |
+
[ 3.5000, 3.5000, 3.5000, 1.6585, 0.4320],
|
301 |
+
[ 3.5000, 3.5000, 3.5000, -0.8701, -0.4649],
|
302 |
+
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]])
|
303 |
+
"""
|
304 |
+
|
305 |
+
__constants__ = ['padding', 'value']
|
306 |
+
padding: Tuple[int, int, int, int]
|
307 |
+
|
308 |
+
def __init__(self, padding: _size_4_t, value: float) -> None:
|
309 |
+
super().__init__(value)
|
310 |
+
self.padding = _quadruple(padding)
|
311 |
+
|
312 |
+
|
313 |
+
class ConstantPad3d(_ConstantPadNd):
|
314 |
+
r"""Pads the input tensor boundaries with a constant value.
|
315 |
+
|
316 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
317 |
+
|
318 |
+
Args:
|
319 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
320 |
+
padding in all boundaries. If a 6-`tuple`, uses
|
321 |
+
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
|
322 |
+
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
|
323 |
+
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
|
324 |
+
|
325 |
+
Shape:
|
326 |
+
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
|
327 |
+
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or
|
328 |
+
:math:`(C, D_{out}, H_{out}, W_{out})`, where
|
329 |
+
|
330 |
+
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
|
331 |
+
|
332 |
+
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
333 |
+
|
334 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
335 |
+
|
336 |
+
Examples::
|
337 |
+
|
338 |
+
>>> m = nn.ConstantPad3d(3, 3.5)
|
339 |
+
>>> input = torch.randn(16, 3, 10, 20, 30)
|
340 |
+
>>> output = m(input)
|
341 |
+
>>> # using different paddings for different sides
|
342 |
+
>>> m = nn.ConstantPad3d((3, 3, 6, 6, 0, 1), 3.5)
|
343 |
+
>>> output = m(input)
|
344 |
+
"""
|
345 |
+
|
346 |
+
padding: Tuple[int, int, int, int, int, int]
|
347 |
+
|
348 |
+
def __init__(self, padding: _size_6_t, value: float) -> None:
|
349 |
+
super().__init__(value)
|
350 |
+
self.padding = _ntuple(6)(padding)
|
351 |
+
|
352 |
+
|
353 |
+
class _ReflectionPadNd(Module):
|
354 |
+
__constants__ = ['padding']
|
355 |
+
padding: Sequence[int]
|
356 |
+
|
357 |
+
def forward(self, input: Tensor) -> Tensor:
|
358 |
+
return F.pad(input, self.padding, 'reflect')
|
359 |
+
|
360 |
+
def extra_repr(self) -> str:
|
361 |
+
return f'{self.padding}'
|
362 |
+
|
363 |
+
|
364 |
+
class ReflectionPad1d(_ReflectionPadNd):
|
365 |
+
r"""Pads the input tensor using the reflection of the input boundary.
|
366 |
+
|
367 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
368 |
+
|
369 |
+
Args:
|
370 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
371 |
+
padding in all boundaries. If a 2-`tuple`, uses
|
372 |
+
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
|
373 |
+
|
374 |
+
Shape:
|
375 |
+
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
|
376 |
+
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
|
377 |
+
|
378 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
379 |
+
|
380 |
+
Examples::
|
381 |
+
|
382 |
+
>>> m = nn.ReflectionPad1d(2)
|
383 |
+
>>> # xdoctest: +IGNORE_WANT("other tests seem to modify printing styles")
|
384 |
+
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
|
385 |
+
>>> input
|
386 |
+
tensor([[[0., 1., 2., 3.],
|
387 |
+
[4., 5., 6., 7.]]])
|
388 |
+
>>> m(input)
|
389 |
+
tensor([[[2., 1., 0., 1., 2., 3., 2., 1.],
|
390 |
+
[6., 5., 4., 5., 6., 7., 6., 5.]]])
|
391 |
+
>>> # using different paddings for different sides
|
392 |
+
>>> m = nn.ReflectionPad1d((3, 1))
|
393 |
+
>>> m(input)
|
394 |
+
tensor([[[3., 2., 1., 0., 1., 2., 3., 2.],
|
395 |
+
[7., 6., 5., 4., 5., 6., 7., 6.]]])
|
396 |
+
"""
|
397 |
+
|
398 |
+
padding: Tuple[int, int]
|
399 |
+
|
400 |
+
def __init__(self, padding: _size_2_t) -> None:
|
401 |
+
super().__init__()
|
402 |
+
self.padding = _pair(padding)
|
403 |
+
|
404 |
+
|
405 |
+
class ReflectionPad2d(_ReflectionPadNd):
|
406 |
+
r"""Pads the input tensor using the reflection of the input boundary.
|
407 |
+
|
408 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
409 |
+
|
410 |
+
Args:
|
411 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
412 |
+
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
|
413 |
+
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
|
414 |
+
Note that padding size should be less than the corresponding input dimension.
|
415 |
+
|
416 |
+
Shape:
|
417 |
+
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
|
418 |
+
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})` where
|
419 |
+
|
420 |
+
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
421 |
+
|
422 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
423 |
+
|
424 |
+
Examples::
|
425 |
+
|
426 |
+
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
|
427 |
+
>>> m = nn.ReflectionPad2d(2)
|
428 |
+
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
|
429 |
+
>>> input
|
430 |
+
tensor([[[[0., 1., 2.],
|
431 |
+
[3., 4., 5.],
|
432 |
+
[6., 7., 8.]]]])
|
433 |
+
>>> m(input)
|
434 |
+
tensor([[[[8., 7., 6., 7., 8., 7., 6.],
|
435 |
+
[5., 4., 3., 4., 5., 4., 3.],
|
436 |
+
[2., 1., 0., 1., 2., 1., 0.],
|
437 |
+
[5., 4., 3., 4., 5., 4., 3.],
|
438 |
+
[8., 7., 6., 7., 8., 7., 6.],
|
439 |
+
[5., 4., 3., 4., 5., 4., 3.],
|
440 |
+
[2., 1., 0., 1., 2., 1., 0.]]]])
|
441 |
+
>>> # using different paddings for different sides
|
442 |
+
>>> m = nn.ReflectionPad2d((1, 1, 2, 0))
|
443 |
+
>>> m(input)
|
444 |
+
tensor([[[[7., 6., 7., 8., 7.],
|
445 |
+
[4., 3., 4., 5., 4.],
|
446 |
+
[1., 0., 1., 2., 1.],
|
447 |
+
[4., 3., 4., 5., 4.],
|
448 |
+
[7., 6., 7., 8., 7.]]]])
|
449 |
+
"""
|
450 |
+
|
451 |
+
padding: Tuple[int, int, int, int]
|
452 |
+
|
453 |
+
def __init__(self, padding: _size_4_t) -> None:
|
454 |
+
super().__init__()
|
455 |
+
self.padding = _quadruple(padding)
|
456 |
+
|
457 |
+
|
458 |
+
class ReflectionPad3d(_ReflectionPadNd):
|
459 |
+
r"""Pads the input tensor using the reflection of the input boundary.
|
460 |
+
|
461 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
462 |
+
|
463 |
+
Args:
|
464 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
465 |
+
padding in all boundaries. If a 6-`tuple`, uses
|
466 |
+
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
|
467 |
+
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
|
468 |
+
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
|
469 |
+
|
470 |
+
Shape:
|
471 |
+
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
|
472 |
+
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`,
|
473 |
+
where
|
474 |
+
|
475 |
+
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
|
476 |
+
|
477 |
+
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
478 |
+
|
479 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
480 |
+
|
481 |
+
Examples::
|
482 |
+
|
483 |
+
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
|
484 |
+
>>> m = nn.ReflectionPad3d(1)
|
485 |
+
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 1, 2, 2, 2)
|
486 |
+
>>> m(input)
|
487 |
+
tensor([[[[[7., 6., 7., 6.],
|
488 |
+
[5., 4., 5., 4.],
|
489 |
+
[7., 6., 7., 6.],
|
490 |
+
[5., 4., 5., 4.]],
|
491 |
+
[[3., 2., 3., 2.],
|
492 |
+
[1., 0., 1., 0.],
|
493 |
+
[3., 2., 3., 2.],
|
494 |
+
[1., 0., 1., 0.]],
|
495 |
+
[[7., 6., 7., 6.],
|
496 |
+
[5., 4., 5., 4.],
|
497 |
+
[7., 6., 7., 6.],
|
498 |
+
[5., 4., 5., 4.]],
|
499 |
+
[[3., 2., 3., 2.],
|
500 |
+
[1., 0., 1., 0.],
|
501 |
+
[3., 2., 3., 2.],
|
502 |
+
[1., 0., 1., 0.]]]]])
|
503 |
+
"""
|
504 |
+
|
505 |
+
padding: Tuple[int, int, int, int, int, int]
|
506 |
+
|
507 |
+
def __init__(self, padding: _size_6_t) -> None:
|
508 |
+
super().__init__()
|
509 |
+
self.padding = _ntuple(6)(padding)
|
510 |
+
|
511 |
+
|
512 |
+
class _ReplicationPadNd(Module):
|
513 |
+
__constants__ = ['padding']
|
514 |
+
padding: Sequence[int]
|
515 |
+
|
516 |
+
def forward(self, input: Tensor) -> Tensor:
|
517 |
+
return F.pad(input, self.padding, 'replicate')
|
518 |
+
|
519 |
+
def extra_repr(self) -> str:
|
520 |
+
return f'{self.padding}'
|
521 |
+
|
522 |
+
|
523 |
+
class ReplicationPad1d(_ReplicationPadNd):
|
524 |
+
r"""Pads the input tensor using replication of the input boundary.
|
525 |
+
|
526 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
527 |
+
|
528 |
+
Args:
|
529 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
530 |
+
padding in all boundaries. If a 2-`tuple`, uses
|
531 |
+
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
|
532 |
+
|
533 |
+
Shape:
|
534 |
+
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
|
535 |
+
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
|
536 |
+
|
537 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
538 |
+
|
539 |
+
Examples::
|
540 |
+
|
541 |
+
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
|
542 |
+
>>> m = nn.ReplicationPad1d(2)
|
543 |
+
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
|
544 |
+
>>> input
|
545 |
+
tensor([[[0., 1., 2., 3.],
|
546 |
+
[4., 5., 6., 7.]]])
|
547 |
+
>>> m(input)
|
548 |
+
tensor([[[0., 0., 0., 1., 2., 3., 3., 3.],
|
549 |
+
[4., 4., 4., 5., 6., 7., 7., 7.]]])
|
550 |
+
>>> # using different paddings for different sides
|
551 |
+
>>> m = nn.ReplicationPad1d((3, 1))
|
552 |
+
>>> m(input)
|
553 |
+
tensor([[[0., 0., 0., 0., 1., 2., 3., 3.],
|
554 |
+
[4., 4., 4., 4., 5., 6., 7., 7.]]])
|
555 |
+
"""
|
556 |
+
|
557 |
+
padding: Tuple[int, int]
|
558 |
+
|
559 |
+
def __init__(self, padding: _size_2_t) -> None:
|
560 |
+
super().__init__()
|
561 |
+
self.padding = _pair(padding)
|
562 |
+
|
563 |
+
|
564 |
+
class ReplicationPad2d(_ReplicationPadNd):
|
565 |
+
r"""Pads the input tensor using replication of the input boundary.
|
566 |
+
|
567 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
568 |
+
|
569 |
+
Args:
|
570 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
571 |
+
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
|
572 |
+
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
|
573 |
+
|
574 |
+
Shape:
|
575 |
+
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
|
576 |
+
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
|
577 |
+
|
578 |
+
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
579 |
+
|
580 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
581 |
+
|
582 |
+
Examples::
|
583 |
+
|
584 |
+
>>> m = nn.ReplicationPad2d(2)
|
585 |
+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
586 |
+
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
|
587 |
+
>>> input
|
588 |
+
tensor([[[[0., 1., 2.],
|
589 |
+
[3., 4., 5.],
|
590 |
+
[6., 7., 8.]]]])
|
591 |
+
>>> m(input)
|
592 |
+
tensor([[[[0., 0., 0., 1., 2., 2., 2.],
|
593 |
+
[0., 0., 0., 1., 2., 2., 2.],
|
594 |
+
[0., 0., 0., 1., 2., 2., 2.],
|
595 |
+
[3., 3., 3., 4., 5., 5., 5.],
|
596 |
+
[6., 6., 6., 7., 8., 8., 8.],
|
597 |
+
[6., 6., 6., 7., 8., 8., 8.],
|
598 |
+
[6., 6., 6., 7., 8., 8., 8.]]]])
|
599 |
+
>>> # using different paddings for different sides
|
600 |
+
>>> m = nn.ReplicationPad2d((1, 1, 2, 0))
|
601 |
+
>>> m(input)
|
602 |
+
tensor([[[[0., 0., 1., 2., 2.],
|
603 |
+
[0., 0., 1., 2., 2.],
|
604 |
+
[0., 0., 1., 2., 2.],
|
605 |
+
[3., 3., 4., 5., 5.],
|
606 |
+
[6., 6., 7., 8., 8.]]]])
|
607 |
+
"""
|
608 |
+
|
609 |
+
padding: Tuple[int, int, int, int]
|
610 |
+
|
611 |
+
def __init__(self, padding: _size_4_t) -> None:
|
612 |
+
super().__init__()
|
613 |
+
self.padding = _quadruple(padding)
|
614 |
+
|
615 |
+
|
616 |
+
class ReplicationPad3d(_ReplicationPadNd):
|
617 |
+
r"""Pads the input tensor using replication of the input boundary.
|
618 |
+
|
619 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
620 |
+
|
621 |
+
Args:
|
622 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
623 |
+
padding in all boundaries. If a 6-`tuple`, uses
|
624 |
+
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
|
625 |
+
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
|
626 |
+
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
|
627 |
+
|
628 |
+
Shape:
|
629 |
+
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
|
630 |
+
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`,
|
631 |
+
where
|
632 |
+
|
633 |
+
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
|
634 |
+
|
635 |
+
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
636 |
+
|
637 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
638 |
+
|
639 |
+
Examples::
|
640 |
+
|
641 |
+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
642 |
+
>>> m = nn.ReplicationPad3d(3)
|
643 |
+
>>> input = torch.randn(16, 3, 8, 320, 480)
|
644 |
+
>>> output = m(input)
|
645 |
+
>>> # using different paddings for different sides
|
646 |
+
>>> m = nn.ReplicationPad3d((3, 3, 6, 6, 1, 1))
|
647 |
+
>>> output = m(input)
|
648 |
+
"""
|
649 |
+
|
650 |
+
padding: Tuple[int, int, int, int, int, int]
|
651 |
+
|
652 |
+
def __init__(self, padding: _size_6_t) -> None:
|
653 |
+
super().__init__()
|
654 |
+
self.padding = _ntuple(6)(padding)
|
655 |
+
|
656 |
+
|
657 |
+
class ZeroPad1d(ConstantPad1d):
|
658 |
+
r"""Pads the input tensor boundaries with zero.
|
659 |
+
|
660 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
661 |
+
|
662 |
+
Args:
|
663 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
664 |
+
padding in both boundaries. If a 2-`tuple`, uses
|
665 |
+
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
|
666 |
+
|
667 |
+
Shape:
|
668 |
+
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
|
669 |
+
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
|
670 |
+
|
671 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
672 |
+
|
673 |
+
Examples::
|
674 |
+
|
675 |
+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
676 |
+
>>> m = nn.ZeroPad1d(2)
|
677 |
+
>>> input = torch.randn(1, 2, 4)
|
678 |
+
>>> input
|
679 |
+
tensor([[[-1.0491, -0.7152, -0.0749, 0.8530],
|
680 |
+
[-1.3287, 1.8966, 0.1466, -0.2771]]])
|
681 |
+
>>> m(input)
|
682 |
+
tensor([[[ 0.0000, 0.0000, -1.0491, -0.7152, -0.0749, 0.8530, 0.0000,
|
683 |
+
0.0000],
|
684 |
+
[ 0.0000, 0.0000, -1.3287, 1.8966, 0.1466, -0.2771, 0.0000,
|
685 |
+
0.0000]]])
|
686 |
+
>>> m = nn.ZeroPad1d(2)
|
687 |
+
>>> input = torch.randn(1, 2, 3)
|
688 |
+
>>> input
|
689 |
+
tensor([[[ 1.6616, 1.4523, -1.1255],
|
690 |
+
[-3.6372, 0.1182, -1.8652]]])
|
691 |
+
>>> m(input)
|
692 |
+
tensor([[[ 0.0000, 0.0000, 1.6616, 1.4523, -1.1255, 0.0000, 0.0000],
|
693 |
+
[ 0.0000, 0.0000, -3.6372, 0.1182, -1.8652, 0.0000, 0.0000]]])
|
694 |
+
>>> # using different paddings for different sides
|
695 |
+
>>> m = nn.ZeroPad1d((3, 1))
|
696 |
+
>>> m(input)
|
697 |
+
tensor([[[ 0.0000, 0.0000, 0.0000, 1.6616, 1.4523, -1.1255, 0.0000],
|
698 |
+
[ 0.0000, 0.0000, 0.0000, -3.6372, 0.1182, -1.8652, 0.0000]]])
|
699 |
+
"""
|
700 |
+
|
701 |
+
padding: Tuple[int, int]
|
702 |
+
|
703 |
+
def __init__(self, padding: _size_2_t) -> None:
|
704 |
+
super().__init__(padding, 0.)
|
705 |
+
|
706 |
+
def extra_repr(self) -> str:
|
707 |
+
return f'{self.padding}'
|
708 |
+
|
709 |
+
class ZeroPad2d(ConstantPad2d):
|
710 |
+
r"""Pads the input tensor boundaries with zero.
|
711 |
+
|
712 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
713 |
+
|
714 |
+
Args:
|
715 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
716 |
+
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
|
717 |
+
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
|
718 |
+
|
719 |
+
Shape:
|
720 |
+
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
|
721 |
+
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
|
722 |
+
|
723 |
+
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
724 |
+
|
725 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
726 |
+
|
727 |
+
Examples::
|
728 |
+
|
729 |
+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
730 |
+
>>> m = nn.ZeroPad2d(2)
|
731 |
+
>>> input = torch.randn(1, 1, 3, 3)
|
732 |
+
>>> input
|
733 |
+
tensor([[[[-0.1678, -0.4418, 1.9466],
|
734 |
+
[ 0.9604, -0.4219, -0.5241],
|
735 |
+
[-0.9162, -0.5436, -0.6446]]]])
|
736 |
+
>>> m(input)
|
737 |
+
tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
|
738 |
+
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
|
739 |
+
[ 0.0000, 0.0000, -0.1678, -0.4418, 1.9466, 0.0000, 0.0000],
|
740 |
+
[ 0.0000, 0.0000, 0.9604, -0.4219, -0.5241, 0.0000, 0.0000],
|
741 |
+
[ 0.0000, 0.0000, -0.9162, -0.5436, -0.6446, 0.0000, 0.0000],
|
742 |
+
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
|
743 |
+
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])
|
744 |
+
>>> # using different paddings for different sides
|
745 |
+
>>> m = nn.ZeroPad2d((1, 1, 2, 0))
|
746 |
+
>>> m(input)
|
747 |
+
tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
|
748 |
+
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
|
749 |
+
[ 0.0000, -0.1678, -0.4418, 1.9466, 0.0000],
|
750 |
+
[ 0.0000, 0.9604, -0.4219, -0.5241, 0.0000],
|
751 |
+
[ 0.0000, -0.9162, -0.5436, -0.6446, 0.0000]]]])
|
752 |
+
"""
|
753 |
+
|
754 |
+
padding: Tuple[int, int, int, int]
|
755 |
+
|
756 |
+
def __init__(self, padding: _size_4_t) -> None:
|
757 |
+
super().__init__(padding, 0.)
|
758 |
+
|
759 |
+
def extra_repr(self) -> str:
|
760 |
+
return f'{self.padding}'
|
761 |
+
|
762 |
+
class ZeroPad3d(ConstantPad3d):
|
763 |
+
r"""Pads the input tensor boundaries with zero.
|
764 |
+
|
765 |
+
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
766 |
+
|
767 |
+
Args:
|
768 |
+
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
769 |
+
padding in all boundaries. If a 6-`tuple`, uses
|
770 |
+
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
|
771 |
+
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
|
772 |
+
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
|
773 |
+
|
774 |
+
Shape:
|
775 |
+
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
|
776 |
+
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or
|
777 |
+
:math:`(C, D_{out}, H_{out}, W_{out})`, where
|
778 |
+
|
779 |
+
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
|
780 |
+
|
781 |
+
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
782 |
+
|
783 |
+
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
784 |
+
|
785 |
+
Examples::
|
786 |
+
|
787 |
+
>>> m = nn.ZeroPad3d(3)
|
788 |
+
>>> input = torch.randn(16, 3, 10, 20, 30)
|
789 |
+
>>> output = m(input)
|
790 |
+
>>> # using different paddings for different sides
|
791 |
+
>>> m = nn.ZeroPad3d((3, 3, 6, 6, 0, 1))
|
792 |
+
>>> output = m(input)
|
793 |
+
"""
|
794 |
+
|
795 |
+
padding: Tuple[int, int, int, int, int, int]
|
796 |
+
|
797 |
+
def __init__(self, padding: _size_6_t) -> None:
|
798 |
+
super().__init__(padding, 0.)
|
799 |
+
|
800 |
+
def extra_repr(self) -> str:
|
801 |
+
return f'{self.padding}'
|
venv/lib/python3.10/site-packages/torch/nn/modules/pixelshuffle.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .module import Module
|
2 |
+
from .. import functional as F
|
3 |
+
|
4 |
+
from torch import Tensor
|
5 |
+
|
6 |
+
__all__ = ['PixelShuffle', 'PixelUnshuffle']
|
7 |
+
|
8 |
+
class PixelShuffle(Module):
|
9 |
+
r"""Rearrange elements in a tensor according to an upscaling factor.
|
10 |
+
|
11 |
+
Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)`
|
12 |
+
to a tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is an upscale factor.
|
13 |
+
|
14 |
+
This is useful for implementing efficient sub-pixel convolution
|
15 |
+
with a stride of :math:`1/r`.
|
16 |
+
|
17 |
+
See the paper:
|
18 |
+
`Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
|
19 |
+
by Shi et. al (2016) for more details.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
upscale_factor (int): factor to increase spatial resolution by
|
23 |
+
|
24 |
+
Shape:
|
25 |
+
- Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
|
26 |
+
- Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where
|
27 |
+
|
28 |
+
.. math::
|
29 |
+
C_{out} = C_{in} \div \text{upscale\_factor}^2
|
30 |
+
|
31 |
+
.. math::
|
32 |
+
H_{out} = H_{in} \times \text{upscale\_factor}
|
33 |
+
|
34 |
+
.. math::
|
35 |
+
W_{out} = W_{in} \times \text{upscale\_factor}
|
36 |
+
|
37 |
+
Examples::
|
38 |
+
|
39 |
+
>>> pixel_shuffle = nn.PixelShuffle(3)
|
40 |
+
>>> input = torch.randn(1, 9, 4, 4)
|
41 |
+
>>> output = pixel_shuffle(input)
|
42 |
+
>>> print(output.size())
|
43 |
+
torch.Size([1, 1, 12, 12])
|
44 |
+
|
45 |
+
.. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
|
46 |
+
https://arxiv.org/abs/1609.05158
|
47 |
+
"""
|
48 |
+
|
49 |
+
__constants__ = ['upscale_factor']
|
50 |
+
upscale_factor: int
|
51 |
+
|
52 |
+
def __init__(self, upscale_factor: int) -> None:
|
53 |
+
super().__init__()
|
54 |
+
self.upscale_factor = upscale_factor
|
55 |
+
|
56 |
+
def forward(self, input: Tensor) -> Tensor:
|
57 |
+
return F.pixel_shuffle(input, self.upscale_factor)
|
58 |
+
|
59 |
+
def extra_repr(self) -> str:
|
60 |
+
return f'upscale_factor={self.upscale_factor}'
|
61 |
+
|
62 |
+
|
63 |
+
class PixelUnshuffle(Module):
|
64 |
+
r"""Reverse the PixelShuffle operation.
|
65 |
+
|
66 |
+
Reverses the :class:`~torch.nn.PixelShuffle` operation by rearranging elements
|
67 |
+
in a tensor of shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape
|
68 |
+
:math:`(*, C \times r^2, H, W)`, where r is a downscale factor.
|
69 |
+
|
70 |
+
See the paper:
|
71 |
+
`Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
|
72 |
+
by Shi et. al (2016) for more details.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
downscale_factor (int): factor to decrease spatial resolution by
|
76 |
+
|
77 |
+
Shape:
|
78 |
+
- Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
|
79 |
+
- Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where
|
80 |
+
|
81 |
+
.. math::
|
82 |
+
C_{out} = C_{in} \times \text{downscale\_factor}^2
|
83 |
+
|
84 |
+
.. math::
|
85 |
+
H_{out} = H_{in} \div \text{downscale\_factor}
|
86 |
+
|
87 |
+
.. math::
|
88 |
+
W_{out} = W_{in} \div \text{downscale\_factor}
|
89 |
+
|
90 |
+
Examples::
|
91 |
+
|
92 |
+
>>> pixel_unshuffle = nn.PixelUnshuffle(3)
|
93 |
+
>>> input = torch.randn(1, 1, 12, 12)
|
94 |
+
>>> output = pixel_unshuffle(input)
|
95 |
+
>>> print(output.size())
|
96 |
+
torch.Size([1, 9, 4, 4])
|
97 |
+
|
98 |
+
.. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
|
99 |
+
https://arxiv.org/abs/1609.05158
|
100 |
+
"""
|
101 |
+
|
102 |
+
__constants__ = ['downscale_factor']
|
103 |
+
downscale_factor: int
|
104 |
+
|
105 |
+
def __init__(self, downscale_factor: int) -> None:
|
106 |
+
super().__init__()
|
107 |
+
self.downscale_factor = downscale_factor
|
108 |
+
|
109 |
+
def forward(self, input: Tensor) -> Tensor:
|
110 |
+
return F.pixel_unshuffle(input, self.downscale_factor)
|
111 |
+
|
112 |
+
def extra_repr(self) -> str:
|
113 |
+
return f'downscale_factor={self.downscale_factor}'
|
venv/lib/python3.10/site-packages/torch/nn/modules/sparse.py
ADDED
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import Tensor
|
5 |
+
from torch.nn.parameter import Parameter
|
6 |
+
|
7 |
+
from .module import Module
|
8 |
+
from .. import functional as F
|
9 |
+
from .. import init
|
10 |
+
|
11 |
+
__all__ = ['Embedding', 'EmbeddingBag']
|
12 |
+
|
13 |
+
class Embedding(Module):
|
14 |
+
r"""A simple lookup table that stores embeddings of a fixed dictionary and size.
|
15 |
+
|
16 |
+
This module is often used to store word embeddings and retrieve them using indices.
|
17 |
+
The input to the module is a list of indices, and the output is the corresponding
|
18 |
+
word embeddings.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
num_embeddings (int): size of the dictionary of embeddings
|
22 |
+
embedding_dim (int): the size of each embedding vector
|
23 |
+
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
|
24 |
+
therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
|
25 |
+
i.e. it remains as a fixed "pad". For a newly constructed Embedding,
|
26 |
+
the embedding vector at :attr:`padding_idx` will default to all zeros,
|
27 |
+
but can be updated to another value to be used as the padding vector.
|
28 |
+
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
|
29 |
+
is renormalized to have norm :attr:`max_norm`.
|
30 |
+
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
|
31 |
+
scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of
|
32 |
+
the words in the mini-batch. Default ``False``.
|
33 |
+
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor.
|
34 |
+
See Notes for more details regarding sparse gradients.
|
35 |
+
|
36 |
+
Attributes:
|
37 |
+
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
|
38 |
+
initialized from :math:`\mathcal{N}(0, 1)`
|
39 |
+
|
40 |
+
Shape:
|
41 |
+
- Input: :math:`(*)`, IntTensor or LongTensor of arbitrary shape containing the indices to extract
|
42 |
+
- Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`
|
43 |
+
|
44 |
+
.. note::
|
45 |
+
Keep in mind that only a limited number of optimizers support
|
46 |
+
sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
|
47 |
+
:class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)
|
48 |
+
|
49 |
+
.. note::
|
50 |
+
When :attr:`max_norm` is not ``None``, :class:`Embedding`'s forward method will modify the
|
51 |
+
:attr:`weight` tensor in-place. Since tensors needed for gradient computations cannot be
|
52 |
+
modified in-place, performing a differentiable operation on ``Embedding.weight`` before
|
53 |
+
calling :class:`Embedding`'s forward method requires cloning ``Embedding.weight`` when
|
54 |
+
:attr:`max_norm` is not ``None``. For example::
|
55 |
+
|
56 |
+
n, d, m = 3, 5, 7
|
57 |
+
embedding = nn.Embedding(n, d, max_norm=True)
|
58 |
+
W = torch.randn((m, d), requires_grad=True)
|
59 |
+
idx = torch.tensor([1, 2])
|
60 |
+
a = embedding.weight.clone() @ W.t() # weight must be cloned for this to be differentiable
|
61 |
+
b = embedding(idx) @ W.t() # modifies weight in-place
|
62 |
+
out = (a.unsqueeze(0) + b.unsqueeze(1))
|
63 |
+
loss = out.sigmoid().prod()
|
64 |
+
loss.backward()
|
65 |
+
|
66 |
+
Examples::
|
67 |
+
|
68 |
+
>>> # an Embedding module containing 10 tensors of size 3
|
69 |
+
>>> embedding = nn.Embedding(10, 3)
|
70 |
+
>>> # a batch of 2 samples of 4 indices each
|
71 |
+
>>> input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])
|
72 |
+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
73 |
+
>>> embedding(input)
|
74 |
+
tensor([[[-0.0251, -1.6902, 0.7172],
|
75 |
+
[-0.6431, 0.0748, 0.6969],
|
76 |
+
[ 1.4970, 1.3448, -0.9685],
|
77 |
+
[-0.3677, -2.7265, -0.1685]],
|
78 |
+
|
79 |
+
[[ 1.4970, 1.3448, -0.9685],
|
80 |
+
[ 0.4362, -0.4004, 0.9400],
|
81 |
+
[-0.6431, 0.0748, 0.6969],
|
82 |
+
[ 0.9124, -2.3616, 1.1151]]])
|
83 |
+
|
84 |
+
|
85 |
+
>>> # example with padding_idx
|
86 |
+
>>> embedding = nn.Embedding(10, 3, padding_idx=0)
|
87 |
+
>>> input = torch.LongTensor([[0, 2, 0, 5]])
|
88 |
+
>>> embedding(input)
|
89 |
+
tensor([[[ 0.0000, 0.0000, 0.0000],
|
90 |
+
[ 0.1535, -2.0309, 0.9315],
|
91 |
+
[ 0.0000, 0.0000, 0.0000],
|
92 |
+
[-0.1655, 0.9897, 0.0635]]])
|
93 |
+
|
94 |
+
>>> # example of changing `pad` vector
|
95 |
+
>>> padding_idx = 0
|
96 |
+
>>> embedding = nn.Embedding(3, 3, padding_idx=padding_idx)
|
97 |
+
>>> embedding.weight
|
98 |
+
Parameter containing:
|
99 |
+
tensor([[ 0.0000, 0.0000, 0.0000],
|
100 |
+
[-0.7895, -0.7089, -0.0364],
|
101 |
+
[ 0.6778, 0.5803, 0.2678]], requires_grad=True)
|
102 |
+
>>> with torch.no_grad():
|
103 |
+
... embedding.weight[padding_idx] = torch.ones(3)
|
104 |
+
>>> embedding.weight
|
105 |
+
Parameter containing:
|
106 |
+
tensor([[ 1.0000, 1.0000, 1.0000],
|
107 |
+
[-0.7895, -0.7089, -0.0364],
|
108 |
+
[ 0.6778, 0.5803, 0.2678]], requires_grad=True)
|
109 |
+
"""
|
110 |
+
|
111 |
+
__constants__ = ['num_embeddings', 'embedding_dim', 'padding_idx', 'max_norm',
|
112 |
+
'norm_type', 'scale_grad_by_freq', 'sparse']
|
113 |
+
|
114 |
+
num_embeddings: int
|
115 |
+
embedding_dim: int
|
116 |
+
padding_idx: Optional[int]
|
117 |
+
max_norm: Optional[float]
|
118 |
+
norm_type: float
|
119 |
+
scale_grad_by_freq: bool
|
120 |
+
weight: Tensor
|
121 |
+
freeze: bool
|
122 |
+
sparse: bool
|
123 |
+
|
124 |
+
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None,
|
125 |
+
max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,
|
126 |
+
sparse: bool = False, _weight: Optional[Tensor] = None, _freeze: bool = False,
|
127 |
+
device=None, dtype=None) -> None:
|
128 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
129 |
+
super().__init__()
|
130 |
+
self.num_embeddings = num_embeddings
|
131 |
+
self.embedding_dim = embedding_dim
|
132 |
+
if padding_idx is not None:
|
133 |
+
if padding_idx > 0:
|
134 |
+
assert padding_idx < self.num_embeddings, 'Padding_idx must be within num_embeddings'
|
135 |
+
elif padding_idx < 0:
|
136 |
+
assert padding_idx >= -self.num_embeddings, 'Padding_idx must be within num_embeddings'
|
137 |
+
padding_idx = self.num_embeddings + padding_idx
|
138 |
+
self.padding_idx = padding_idx
|
139 |
+
self.max_norm = max_norm
|
140 |
+
self.norm_type = norm_type
|
141 |
+
self.scale_grad_by_freq = scale_grad_by_freq
|
142 |
+
if _weight is None:
|
143 |
+
self.weight = Parameter(torch.empty((num_embeddings, embedding_dim), **factory_kwargs),
|
144 |
+
requires_grad=not _freeze)
|
145 |
+
self.reset_parameters()
|
146 |
+
else:
|
147 |
+
assert list(_weight.shape) == [num_embeddings, embedding_dim], \
|
148 |
+
'Shape of weight does not match num_embeddings and embedding_dim'
|
149 |
+
self.weight = Parameter(_weight, requires_grad=not _freeze)
|
150 |
+
|
151 |
+
self.sparse = sparse
|
152 |
+
|
153 |
+
def reset_parameters(self) -> None:
|
154 |
+
init.normal_(self.weight)
|
155 |
+
self._fill_padding_idx_with_zero()
|
156 |
+
|
157 |
+
def _fill_padding_idx_with_zero(self) -> None:
|
158 |
+
if self.padding_idx is not None:
|
159 |
+
with torch.no_grad():
|
160 |
+
self.weight[self.padding_idx].fill_(0)
|
161 |
+
|
162 |
+
def forward(self, input: Tensor) -> Tensor:
|
163 |
+
return F.embedding(
|
164 |
+
input, self.weight, self.padding_idx, self.max_norm,
|
165 |
+
self.norm_type, self.scale_grad_by_freq, self.sparse)
|
166 |
+
|
167 |
+
def extra_repr(self) -> str:
|
168 |
+
s = '{num_embeddings}, {embedding_dim}'
|
169 |
+
if self.padding_idx is not None:
|
170 |
+
s += ', padding_idx={padding_idx}'
|
171 |
+
if self.max_norm is not None:
|
172 |
+
s += ', max_norm={max_norm}'
|
173 |
+
if self.norm_type != 2:
|
174 |
+
s += ', norm_type={norm_type}'
|
175 |
+
if self.scale_grad_by_freq is not False:
|
176 |
+
s += ', scale_grad_by_freq={scale_grad_by_freq}'
|
177 |
+
if self.sparse is not False:
|
178 |
+
s += ', sparse=True'
|
179 |
+
return s.format(**self.__dict__)
|
180 |
+
|
181 |
+
@classmethod
|
182 |
+
def from_pretrained(cls, embeddings, freeze=True, padding_idx=None,
|
183 |
+
max_norm=None, norm_type=2., scale_grad_by_freq=False,
|
184 |
+
sparse=False):
|
185 |
+
r"""Create Embedding instance from given 2-dimensional FloatTensor.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
embeddings (Tensor): FloatTensor containing weights for the Embedding.
|
189 |
+
First dimension is being passed to Embedding as ``num_embeddings``, second as ``embedding_dim``.
|
190 |
+
freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process.
|
191 |
+
Equivalent to ``embedding.weight.requires_grad = False``. Default: ``True``
|
192 |
+
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
|
193 |
+
therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
|
194 |
+
i.e. it remains as a fixed "pad".
|
195 |
+
max_norm (float, optional): See module initialization documentation.
|
196 |
+
norm_type (float, optional): See module initialization documentation. Default ``2``.
|
197 |
+
scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``.
|
198 |
+
sparse (bool, optional): See module initialization documentation.
|
199 |
+
|
200 |
+
Examples::
|
201 |
+
|
202 |
+
>>> # FloatTensor containing pretrained weights
|
203 |
+
>>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
|
204 |
+
>>> embedding = nn.Embedding.from_pretrained(weight)
|
205 |
+
>>> # Get embeddings for index 1
|
206 |
+
>>> input = torch.LongTensor([1])
|
207 |
+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
208 |
+
>>> embedding(input)
|
209 |
+
tensor([[ 4.0000, 5.1000, 6.3000]])
|
210 |
+
"""
|
211 |
+
assert embeddings.dim() == 2, \
|
212 |
+
'Embeddings parameter is expected to be 2-dimensional'
|
213 |
+
rows, cols = embeddings.shape
|
214 |
+
embedding = cls(
|
215 |
+
num_embeddings=rows,
|
216 |
+
embedding_dim=cols,
|
217 |
+
_weight=embeddings,
|
218 |
+
_freeze=freeze,
|
219 |
+
padding_idx=padding_idx,
|
220 |
+
max_norm=max_norm,
|
221 |
+
norm_type=norm_type,
|
222 |
+
scale_grad_by_freq=scale_grad_by_freq,
|
223 |
+
sparse=sparse)
|
224 |
+
return embedding
|
225 |
+
|
226 |
+
|
227 |
+
class EmbeddingBag(Module):
|
228 |
+
r"""Compute sums or means of 'bags' of embeddings, without instantiating the intermediate embeddings.
|
229 |
+
|
230 |
+
For bags of constant length, no :attr:`per_sample_weights`, no indices equal to :attr:`padding_idx`,
|
231 |
+
and with 2D inputs, this class
|
232 |
+
|
233 |
+
* with ``mode="sum"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.sum(dim=1)``,
|
234 |
+
* with ``mode="mean"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.mean(dim=1)``,
|
235 |
+
* with ``mode="max"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.max(dim=1)``.
|
236 |
+
|
237 |
+
However, :class:`~torch.nn.EmbeddingBag` is much more time and memory efficient than using a chain of these
|
238 |
+
operations.
|
239 |
+
|
240 |
+
EmbeddingBag also supports per-sample weights as an argument to the forward
|
241 |
+
pass. This scales the output of the Embedding before performing a weighted
|
242 |
+
reduction as specified by ``mode``. If :attr:`per_sample_weights` is passed, the
|
243 |
+
only supported ``mode`` is ``"sum"``, which computes a weighted sum according to
|
244 |
+
:attr:`per_sample_weights`.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
num_embeddings (int): size of the dictionary of embeddings
|
248 |
+
embedding_dim (int): the size of each embedding vector
|
249 |
+
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
|
250 |
+
is renormalized to have norm :attr:`max_norm`.
|
251 |
+
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
|
252 |
+
scale_grad_by_freq (bool, optional): if given, this will scale gradients by the inverse of frequency of
|
253 |
+
the words in the mini-batch. Default ``False``.
|
254 |
+
Note: this option is not supported when ``mode="max"``.
|
255 |
+
mode (str, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.
|
256 |
+
``"sum"`` computes the weighted sum, taking :attr:`per_sample_weights`
|
257 |
+
into consideration. ``"mean"`` computes the average of the values
|
258 |
+
in the bag, ``"max"`` computes the max value over each bag.
|
259 |
+
Default: ``"mean"``
|
260 |
+
sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. See
|
261 |
+
Notes for more details regarding sparse gradients. Note: this option is not
|
262 |
+
supported when ``mode="max"``.
|
263 |
+
include_last_offset (bool, optional): if ``True``, :attr:`offsets` has one additional element, where the last element
|
264 |
+
is equivalent to the size of `indices`. This matches the CSR format.
|
265 |
+
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the
|
266 |
+
gradient; therefore, the embedding vector at :attr:`padding_idx` is not updated
|
267 |
+
during training, i.e. it remains as a fixed "pad". For a newly constructed
|
268 |
+
EmbeddingBag, the embedding vector at :attr:`padding_idx` will default to all
|
269 |
+
zeros, but can be updated to another value to be used as the padding vector.
|
270 |
+
Note that the embedding vector at :attr:`padding_idx` is excluded from the
|
271 |
+
reduction.
|
272 |
+
|
273 |
+
Attributes:
|
274 |
+
weight (Tensor): the learnable weights of the module of shape `(num_embeddings, embedding_dim)`
|
275 |
+
initialized from :math:`\mathcal{N}(0, 1)`.
|
276 |
+
|
277 |
+
Examples::
|
278 |
+
|
279 |
+
>>> # an EmbeddingBag module containing 10 tensors of size 3
|
280 |
+
>>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum')
|
281 |
+
>>> # a batch of 2 samples of 4 indices each
|
282 |
+
>>> input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long)
|
283 |
+
>>> offsets = torch.tensor([0, 4], dtype=torch.long)
|
284 |
+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
285 |
+
>>> embedding_sum(input, offsets)
|
286 |
+
tensor([[-0.8861, -5.4350, -0.0523],
|
287 |
+
[ 1.1306, -2.5798, -1.0044]])
|
288 |
+
|
289 |
+
>>> # Example with padding_idx
|
290 |
+
>>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum', padding_idx=2)
|
291 |
+
>>> input = torch.tensor([2, 2, 2, 2, 4, 3, 2, 9], dtype=torch.long)
|
292 |
+
>>> offsets = torch.tensor([0, 4], dtype=torch.long)
|
293 |
+
>>> embedding_sum(input, offsets)
|
294 |
+
tensor([[ 0.0000, 0.0000, 0.0000],
|
295 |
+
[-0.7082, 3.2145, -2.6251]])
|
296 |
+
|
297 |
+
>>> # An EmbeddingBag can be loaded from an Embedding like so
|
298 |
+
>>> embedding = nn.Embedding(10, 3, padding_idx=2)
|
299 |
+
>>> embedding_sum = nn.EmbeddingBag.from_pretrained(
|
300 |
+
embedding.weight,
|
301 |
+
padding_idx=embedding.padding_idx,
|
302 |
+
mode='sum')
|
303 |
+
"""
|
304 |
+
|
305 |
+
__constants__ = ['num_embeddings', 'embedding_dim', 'max_norm', 'norm_type',
|
306 |
+
'scale_grad_by_freq', 'mode', 'sparse', 'include_last_offset',
|
307 |
+
'padding_idx']
|
308 |
+
|
309 |
+
num_embeddings: int
|
310 |
+
embedding_dim: int
|
311 |
+
max_norm: Optional[float]
|
312 |
+
norm_type: float
|
313 |
+
scale_grad_by_freq: bool
|
314 |
+
weight: Tensor
|
315 |
+
mode: str
|
316 |
+
sparse: bool
|
317 |
+
include_last_offset: bool
|
318 |
+
padding_idx: Optional[int]
|
319 |
+
|
320 |
+
def __init__(self, num_embeddings: int, embedding_dim: int,
|
321 |
+
max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,
|
322 |
+
mode: str = 'mean', sparse: bool = False, _weight: Optional[Tensor] = None,
|
323 |
+
include_last_offset: bool = False, padding_idx: Optional[int] = None,
|
324 |
+
device=None, dtype=None) -> None:
|
325 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
326 |
+
super().__init__()
|
327 |
+
self.num_embeddings = num_embeddings
|
328 |
+
self.embedding_dim = embedding_dim
|
329 |
+
self.max_norm = max_norm
|
330 |
+
self.norm_type = norm_type
|
331 |
+
self.scale_grad_by_freq = scale_grad_by_freq
|
332 |
+
if padding_idx is not None:
|
333 |
+
if padding_idx > 0:
|
334 |
+
assert padding_idx < self.num_embeddings, 'padding_idx must be within num_embeddings'
|
335 |
+
elif padding_idx < 0:
|
336 |
+
assert padding_idx >= -self.num_embeddings, 'padding_idx must be within num_embeddings'
|
337 |
+
padding_idx = self.num_embeddings + padding_idx
|
338 |
+
self.padding_idx = padding_idx
|
339 |
+
if _weight is None:
|
340 |
+
self.weight = Parameter(torch.empty((num_embeddings, embedding_dim), **factory_kwargs))
|
341 |
+
self.reset_parameters()
|
342 |
+
else:
|
343 |
+
assert list(_weight.shape) == [num_embeddings, embedding_dim], \
|
344 |
+
'Shape of weight does not match num_embeddings and embedding_dim'
|
345 |
+
self.weight = Parameter(_weight)
|
346 |
+
self.mode = mode
|
347 |
+
self.sparse = sparse
|
348 |
+
self.include_last_offset = include_last_offset
|
349 |
+
|
350 |
+
def reset_parameters(self) -> None:
|
351 |
+
init.normal_(self.weight)
|
352 |
+
self._fill_padding_idx_with_zero()
|
353 |
+
|
354 |
+
def _fill_padding_idx_with_zero(self) -> None:
|
355 |
+
if self.padding_idx is not None:
|
356 |
+
with torch.no_grad():
|
357 |
+
self.weight[self.padding_idx].fill_(0)
|
358 |
+
|
359 |
+
def forward(self, input: Tensor, offsets: Optional[Tensor] = None, per_sample_weights: Optional[Tensor] = None) -> Tensor:
|
360 |
+
"""Forward pass of EmbeddingBag.
|
361 |
+
|
362 |
+
Args:
|
363 |
+
input (Tensor): Tensor containing bags of indices into the embedding matrix.
|
364 |
+
offsets (Tensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines
|
365 |
+
the starting index position of each bag (sequence) in :attr:`input`.
|
366 |
+
per_sample_weights (Tensor, optional): a tensor of float / double weights, or None
|
367 |
+
to indicate all weights should be taken to be ``1``. If specified, :attr:`per_sample_weights`
|
368 |
+
must have exactly the same shape as input and is treated as having the same
|
369 |
+
:attr:`offsets`, if those are not ``None``. Only supported for ``mode='sum'``.
|
370 |
+
|
371 |
+
Returns:
|
372 |
+
Tensor output shape of `(B, embedding_dim)`.
|
373 |
+
|
374 |
+
.. note::
|
375 |
+
|
376 |
+
A few notes about ``input`` and ``offsets``:
|
377 |
+
|
378 |
+
- :attr:`input` and :attr:`offsets` have to be of the same type, either int or long
|
379 |
+
|
380 |
+
- If :attr:`input` is 2D of shape `(B, N)`, it will be treated as ``B`` bags (sequences)
|
381 |
+
each of fixed length ``N``, and this will return ``B`` values aggregated in a way
|
382 |
+
depending on the :attr:`mode`. :attr:`offsets` is ignored and required to be ``None`` in this case.
|
383 |
+
|
384 |
+
- If :attr:`input` is 1D of shape `(N)`, it will be treated as a concatenation of
|
385 |
+
multiple bags (sequences). :attr:`offsets` is required to be a 1D tensor containing the
|
386 |
+
starting index positions of each bag in :attr:`input`. Therefore, for :attr:`offsets` of shape `(B)`,
|
387 |
+
:attr:`input` will be viewed as having ``B`` bags. Empty bags (i.e., having 0-length) will have
|
388 |
+
returned vectors filled by zeros.
|
389 |
+
"""
|
390 |
+
return F.embedding_bag(input, self.weight, offsets,
|
391 |
+
self.max_norm, self.norm_type,
|
392 |
+
self.scale_grad_by_freq, self.mode, self.sparse,
|
393 |
+
per_sample_weights, self.include_last_offset,
|
394 |
+
self.padding_idx)
|
395 |
+
|
396 |
+
def extra_repr(self) -> str:
|
397 |
+
s = '{num_embeddings}, {embedding_dim}'
|
398 |
+
if self.max_norm is not None:
|
399 |
+
s += ', max_norm={max_norm}'
|
400 |
+
if self.norm_type != 2:
|
401 |
+
s += ', norm_type={norm_type}'
|
402 |
+
if self.scale_grad_by_freq is not False:
|
403 |
+
s += ', scale_grad_by_freq={scale_grad_by_freq}'
|
404 |
+
s += ', mode={mode}'
|
405 |
+
if self.padding_idx is not None:
|
406 |
+
s += ', padding_idx={padding_idx}'
|
407 |
+
return s.format(**{k: repr(v) for k, v in self.__dict__.items()})
|
408 |
+
|
409 |
+
@classmethod
|
410 |
+
def from_pretrained(cls, embeddings: Tensor, freeze: bool = True, max_norm: Optional[float] = None,
|
411 |
+
norm_type: float = 2., scale_grad_by_freq: bool = False,
|
412 |
+
mode: str = 'mean', sparse: bool = False, include_last_offset: bool = False,
|
413 |
+
padding_idx: Optional[int] = None) -> 'EmbeddingBag':
|
414 |
+
r"""Create EmbeddingBag instance from given 2-dimensional FloatTensor.
|
415 |
+
|
416 |
+
Args:
|
417 |
+
embeddings (Tensor): FloatTensor containing weights for the EmbeddingBag.
|
418 |
+
First dimension is being passed to EmbeddingBag as 'num_embeddings', second as 'embedding_dim'.
|
419 |
+
freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process.
|
420 |
+
Equivalent to ``embeddingbag.weight.requires_grad = False``. Default: ``True``
|
421 |
+
max_norm (float, optional): See module initialization documentation. Default: ``None``
|
422 |
+
norm_type (float, optional): See module initialization documentation. Default ``2``.
|
423 |
+
scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``.
|
424 |
+
mode (str, optional): See module initialization documentation. Default: ``"mean"``
|
425 |
+
sparse (bool, optional): See module initialization documentation. Default: ``False``.
|
426 |
+
include_last_offset (bool, optional): See module initialization documentation. Default: ``False``.
|
427 |
+
padding_idx (int, optional): See module initialization documentation. Default: ``None``.
|
428 |
+
|
429 |
+
Examples::
|
430 |
+
|
431 |
+
>>> # FloatTensor containing pretrained weights
|
432 |
+
>>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
|
433 |
+
>>> embeddingbag = nn.EmbeddingBag.from_pretrained(weight)
|
434 |
+
>>> # Get embeddings for index 1
|
435 |
+
>>> input = torch.LongTensor([[1, 0]])
|
436 |
+
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
437 |
+
>>> embeddingbag(input)
|
438 |
+
tensor([[ 2.5000, 3.7000, 4.6500]])
|
439 |
+
"""
|
440 |
+
assert embeddings.dim() == 2, \
|
441 |
+
'Embeddings parameter is expected to be 2-dimensional'
|
442 |
+
rows, cols = embeddings.shape
|
443 |
+
embeddingbag = cls(
|
444 |
+
num_embeddings=rows,
|
445 |
+
embedding_dim=cols,
|
446 |
+
_weight=embeddings,
|
447 |
+
max_norm=max_norm,
|
448 |
+
norm_type=norm_type,
|
449 |
+
scale_grad_by_freq=scale_grad_by_freq,
|
450 |
+
mode=mode,
|
451 |
+
sparse=sparse,
|
452 |
+
include_last_offset=include_last_offset,
|
453 |
+
padding_idx=padding_idx)
|
454 |
+
embeddingbag.weight.requires_grad = not freeze
|
455 |
+
return embeddingbag
|
venv/lib/python3.10/site-packages/torch/nn/modules/transformer.py
ADDED
@@ -0,0 +1,975 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from typing import Optional, Any, Union, Callable
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import warnings
|
6 |
+
from torch import Tensor
|
7 |
+
from .. import functional as F
|
8 |
+
from .module import Module
|
9 |
+
from .activation import MultiheadAttention
|
10 |
+
from .container import ModuleList
|
11 |
+
from ..init import xavier_uniform_
|
12 |
+
from .dropout import Dropout
|
13 |
+
from .linear import Linear
|
14 |
+
from .normalization import LayerNorm
|
15 |
+
|
16 |
+
__all__ = ['Transformer', 'TransformerEncoder', 'TransformerDecoder', 'TransformerEncoderLayer', 'TransformerDecoderLayer']
|
17 |
+
|
18 |
+
def _generate_square_subsequent_mask(
|
19 |
+
sz: int,
|
20 |
+
device: Optional[torch.device] = None,
|
21 |
+
dtype: Optional[torch.dtype] = None,
|
22 |
+
) -> Tensor:
|
23 |
+
r"""Generate a square causal mask for the sequence.
|
24 |
+
|
25 |
+
The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0).
|
26 |
+
"""
|
27 |
+
if device is None:
|
28 |
+
device = torch.device('cpu')
|
29 |
+
if dtype is None:
|
30 |
+
dtype = torch.float32
|
31 |
+
return torch.triu(
|
32 |
+
torch.full((sz, sz), float('-inf'), dtype=dtype, device=device),
|
33 |
+
diagonal=1,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def _get_seq_len(
|
38 |
+
src: Tensor,
|
39 |
+
batch_first: bool
|
40 |
+
) -> Optional[int]:
|
41 |
+
|
42 |
+
if src.is_nested:
|
43 |
+
return None
|
44 |
+
else:
|
45 |
+
src_size = src.size()
|
46 |
+
if len(src_size) == 2:
|
47 |
+
# unbatched: S, E
|
48 |
+
return src_size[0]
|
49 |
+
else:
|
50 |
+
# batched: B, S, E if batch_first else S, B, E
|
51 |
+
seq_len_pos = 1 if batch_first else 0
|
52 |
+
return src_size[seq_len_pos]
|
53 |
+
|
54 |
+
|
55 |
+
class Transformer(Module):
|
56 |
+
r"""A transformer model.
|
57 |
+
|
58 |
+
User is able to modify the attributes as needed. The architecture
|
59 |
+
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
|
60 |
+
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
|
61 |
+
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
|
62 |
+
Processing Systems, pages 6000-6010.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
d_model: the number of expected features in the encoder/decoder inputs (default=512).
|
66 |
+
nhead: the number of heads in the multiheadattention models (default=8).
|
67 |
+
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
|
68 |
+
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
|
69 |
+
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
70 |
+
dropout: the dropout value (default=0.1).
|
71 |
+
activation: the activation function of encoder/decoder intermediate layer, can be a string
|
72 |
+
("relu" or "gelu") or a unary callable. Default: relu
|
73 |
+
custom_encoder: custom encoder (default=None).
|
74 |
+
custom_decoder: custom decoder (default=None).
|
75 |
+
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
|
76 |
+
batch_first: If ``True``, then the input and output tensors are provided
|
77 |
+
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
78 |
+
norm_first: if ``True``, encoder and decoder layers will perform LayerNorms before
|
79 |
+
other attention and feedforward operations, otherwise after. Default: ``False`` (after).
|
80 |
+
bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
|
81 |
+
bias. Default: ``True``.
|
82 |
+
|
83 |
+
Examples::
|
84 |
+
>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
|
85 |
+
>>> src = torch.rand((10, 32, 512))
|
86 |
+
>>> tgt = torch.rand((20, 32, 512))
|
87 |
+
>>> out = transformer_model(src, tgt)
|
88 |
+
|
89 |
+
Note: A full example to apply nn.Transformer module for the word language model is available in
|
90 |
+
https://github.com/pytorch/examples/tree/master/word_language_model
|
91 |
+
"""
|
92 |
+
|
93 |
+
def __init__(self, d_model: int = 512, nhead: int = 8, num_encoder_layers: int = 6,
|
94 |
+
num_decoder_layers: int = 6, dim_feedforward: int = 2048, dropout: float = 0.1,
|
95 |
+
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
96 |
+
custom_encoder: Optional[Any] = None, custom_decoder: Optional[Any] = None,
|
97 |
+
layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
|
98 |
+
bias: bool = True, device=None, dtype=None) -> None:
|
99 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
100 |
+
super().__init__()
|
101 |
+
torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
|
102 |
+
|
103 |
+
if custom_encoder is not None:
|
104 |
+
self.encoder = custom_encoder
|
105 |
+
else:
|
106 |
+
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout,
|
107 |
+
activation, layer_norm_eps, batch_first, norm_first,
|
108 |
+
bias, **factory_kwargs)
|
109 |
+
encoder_norm = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
|
110 |
+
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
111 |
+
|
112 |
+
if custom_decoder is not None:
|
113 |
+
self.decoder = custom_decoder
|
114 |
+
else:
|
115 |
+
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout,
|
116 |
+
activation, layer_norm_eps, batch_first, norm_first,
|
117 |
+
bias, **factory_kwargs)
|
118 |
+
decoder_norm = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
|
119 |
+
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)
|
120 |
+
|
121 |
+
self._reset_parameters()
|
122 |
+
|
123 |
+
self.d_model = d_model
|
124 |
+
self.nhead = nhead
|
125 |
+
|
126 |
+
self.batch_first = batch_first
|
127 |
+
|
128 |
+
def forward(self, src: Tensor, tgt: Tensor, src_mask: Optional[Tensor] = None, tgt_mask: Optional[Tensor] = None,
|
129 |
+
memory_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None,
|
130 |
+
tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None,
|
131 |
+
src_is_causal: Optional[bool] = None, tgt_is_causal: Optional[bool] = None,
|
132 |
+
memory_is_causal: bool = False) -> Tensor:
|
133 |
+
r"""Take in and process masked source/target sequences.
|
134 |
+
|
135 |
+
.. note::
|
136 |
+
|
137 |
+
If a boolean tensor is provided for any of the [src/tgt/memory]_mask arguments, positions with a ``True`` value are
|
138 |
+
not allowed to participate in the attention,
|
139 |
+
which is the opposite of the definition for :attr:`attn_mask`
|
140 |
+
in :func:`torch.nn.functional.scaled_dot_product_attention`.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
src: the sequence to the encoder (required).
|
144 |
+
tgt: the sequence to the decoder (required).
|
145 |
+
src_mask: the additive mask for the src sequence (optional).
|
146 |
+
tgt_mask: the additive mask for the tgt sequence (optional).
|
147 |
+
memory_mask: the additive mask for the encoder output (optional).
|
148 |
+
src_key_padding_mask: the Tensor mask for src keys per batch (optional).
|
149 |
+
tgt_key_padding_mask: the Tensor mask for tgt keys per batch (optional).
|
150 |
+
memory_key_padding_mask: the Tensor mask for memory keys per batch (optional).
|
151 |
+
src_is_causal: If specified, applies a causal mask as ``src_mask``.
|
152 |
+
Default: ``None``; try to detect a causal mask.
|
153 |
+
Warning:
|
154 |
+
``src_is_causal`` provides a hint that ``src_mask`` is
|
155 |
+
the causal mask. Providing incorrect hints can result in
|
156 |
+
incorrect execution, including forward and backward
|
157 |
+
compatibility.
|
158 |
+
tgt_is_causal: If specified, applies a causal mask as ``tgt_mask``.
|
159 |
+
Default: ``None``; try to detect a causal mask.
|
160 |
+
Warning:
|
161 |
+
``tgt_is_causal`` provides a hint that ``tgt_mask`` is
|
162 |
+
the causal mask. Providing incorrect hints can result in
|
163 |
+
incorrect execution, including forward and backward
|
164 |
+
compatibility.
|
165 |
+
memory_is_causal: If specified, applies a causal mask as
|
166 |
+
``memory_mask``.
|
167 |
+
Default: ``False``.
|
168 |
+
Warning:
|
169 |
+
``memory_is_causal`` provides a hint that
|
170 |
+
``memory_mask`` is the causal mask. Providing incorrect
|
171 |
+
hints can result in incorrect execution, including
|
172 |
+
forward and backward compatibility.
|
173 |
+
|
174 |
+
Shape:
|
175 |
+
- src: :math:`(S, E)` for unbatched input, :math:`(S, N, E)` if `batch_first=False` or
|
176 |
+
`(N, S, E)` if `batch_first=True`.
|
177 |
+
- tgt: :math:`(T, E)` for unbatched input, :math:`(T, N, E)` if `batch_first=False` or
|
178 |
+
`(N, T, E)` if `batch_first=True`.
|
179 |
+
- src_mask: :math:`(S, S)` or :math:`(N\cdot\text{num\_heads}, S, S)`.
|
180 |
+
- tgt_mask: :math:`(T, T)` or :math:`(N\cdot\text{num\_heads}, T, T)`.
|
181 |
+
- memory_mask: :math:`(T, S)`.
|
182 |
+
- src_key_padding_mask: :math:`(S)` for unbatched input otherwise :math:`(N, S)`.
|
183 |
+
- tgt_key_padding_mask: :math:`(T)` for unbatched input otherwise :math:`(N, T)`.
|
184 |
+
- memory_key_padding_mask: :math:`(S)` for unbatched input otherwise :math:`(N, S)`.
|
185 |
+
|
186 |
+
Note: [src/tgt/memory]_mask ensures that position :math:`i` is allowed to attend the unmasked
|
187 |
+
positions. If a BoolTensor is provided, positions with ``True``
|
188 |
+
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
189 |
+
is provided, it will be added to the attention weight.
|
190 |
+
[src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by
|
191 |
+
the attention. If a BoolTensor is provided, the positions with the
|
192 |
+
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
193 |
+
|
194 |
+
- output: :math:`(T, E)` for unbatched input, :math:`(T, N, E)` if `batch_first=False` or
|
195 |
+
`(N, T, E)` if `batch_first=True`.
|
196 |
+
|
197 |
+
Note: Due to the multi-head attention architecture in the transformer model,
|
198 |
+
the output sequence length of a transformer is same as the input sequence
|
199 |
+
(i.e. target) length of the decoder.
|
200 |
+
|
201 |
+
where :math:`S` is the source sequence length, :math:`T` is the target sequence length, :math:`N` is the
|
202 |
+
batch size, :math:`E` is the feature number
|
203 |
+
|
204 |
+
Examples:
|
205 |
+
>>> # xdoctest: +SKIP
|
206 |
+
>>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
|
207 |
+
"""
|
208 |
+
is_batched = src.dim() == 3
|
209 |
+
if not self.batch_first and src.size(1) != tgt.size(1) and is_batched:
|
210 |
+
raise RuntimeError("the batch number of src and tgt must be equal")
|
211 |
+
elif self.batch_first and src.size(0) != tgt.size(0) and is_batched:
|
212 |
+
raise RuntimeError("the batch number of src and tgt must be equal")
|
213 |
+
|
214 |
+
if src.size(-1) != self.d_model or tgt.size(-1) != self.d_model:
|
215 |
+
raise RuntimeError("the feature number of src and tgt must be equal to d_model")
|
216 |
+
|
217 |
+
memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask,
|
218 |
+
is_causal=src_is_causal)
|
219 |
+
output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
|
220 |
+
tgt_key_padding_mask=tgt_key_padding_mask,
|
221 |
+
memory_key_padding_mask=memory_key_padding_mask,
|
222 |
+
tgt_is_causal=tgt_is_causal, memory_is_causal=memory_is_causal)
|
223 |
+
return output
|
224 |
+
|
225 |
+
@staticmethod
|
226 |
+
def generate_square_subsequent_mask(
|
227 |
+
sz: int,
|
228 |
+
device: Optional[torch.device] = None,
|
229 |
+
dtype: Optional[torch.dtype] = None,
|
230 |
+
) -> Tensor:
|
231 |
+
r"""Generate a square causal mask for the sequence.
|
232 |
+
|
233 |
+
The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0).
|
234 |
+
"""
|
235 |
+
return _generate_square_subsequent_mask(sz, dtype=dtype, device=device)
|
236 |
+
|
237 |
+
def _reset_parameters(self):
|
238 |
+
r"""Initiate parameters in the transformer model."""
|
239 |
+
for p in self.parameters():
|
240 |
+
if p.dim() > 1:
|
241 |
+
xavier_uniform_(p)
|
242 |
+
|
243 |
+
|
244 |
+
class TransformerEncoder(Module):
|
245 |
+
r"""TransformerEncoder is a stack of N encoder layers.
|
246 |
+
|
247 |
+
Users can build the BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
251 |
+
num_layers: the number of sub-encoder-layers in the encoder (required).
|
252 |
+
norm: the layer normalization component (optional).
|
253 |
+
enable_nested_tensor: if True, input will automatically convert to nested tensor
|
254 |
+
(and convert back on output). This will improve the overall performance of
|
255 |
+
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
|
256 |
+
|
257 |
+
Examples::
|
258 |
+
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
|
259 |
+
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
|
260 |
+
>>> src = torch.rand(10, 32, 512)
|
261 |
+
>>> out = transformer_encoder(src)
|
262 |
+
"""
|
263 |
+
|
264 |
+
__constants__ = ['norm']
|
265 |
+
|
266 |
+
def __init__(
|
267 |
+
self,
|
268 |
+
encoder_layer: "TransformerEncoderLayer",
|
269 |
+
num_layers: int,
|
270 |
+
norm: Optional[Module] = None,
|
271 |
+
enable_nested_tensor: bool = True,
|
272 |
+
mask_check: bool = True
|
273 |
+
) -> None:
|
274 |
+
super().__init__()
|
275 |
+
torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
|
276 |
+
self.layers = _get_clones(encoder_layer, num_layers)
|
277 |
+
self.num_layers = num_layers
|
278 |
+
self.norm = norm
|
279 |
+
# this attribute saves the value providedat object construction
|
280 |
+
self.enable_nested_tensor = enable_nested_tensor
|
281 |
+
# this attribute controls whether nested tensors are used
|
282 |
+
self.use_nested_tensor = enable_nested_tensor
|
283 |
+
self.mask_check = mask_check
|
284 |
+
|
285 |
+
enc_layer = "encoder_layer"
|
286 |
+
why_not_sparsity_fast_path = ''
|
287 |
+
if not isinstance(encoder_layer, torch.nn.TransformerEncoderLayer):
|
288 |
+
why_not_sparsity_fast_path = f"{enc_layer} was not TransformerEncoderLayer"
|
289 |
+
elif encoder_layer.norm_first :
|
290 |
+
why_not_sparsity_fast_path = f"{enc_layer}.norm_first was True"
|
291 |
+
elif not encoder_layer.self_attn.batch_first:
|
292 |
+
why_not_sparsity_fast_path = (f"{enc_layer}.self_attn.batch_first was not True" +
|
293 |
+
"(use batch_first for better inference performance)")
|
294 |
+
elif not encoder_layer.self_attn._qkv_same_embed_dim:
|
295 |
+
why_not_sparsity_fast_path = f"{enc_layer}.self_attn._qkv_same_embed_dim was not True"
|
296 |
+
elif encoder_layer.self_attn.in_proj_bias is None:
|
297 |
+
why_not_sparsity_fast_path = f"{enc_layer}.self_attn was passed bias=False"
|
298 |
+
elif not encoder_layer.activation_relu_or_gelu:
|
299 |
+
why_not_sparsity_fast_path = f"{enc_layer}.activation_relu_or_gelu was not True"
|
300 |
+
elif not (encoder_layer.norm1.eps == encoder_layer.norm2.eps) :
|
301 |
+
why_not_sparsity_fast_path = f"{enc_layer}.norm1.eps was not equal to {enc_layer}.norm2.eps"
|
302 |
+
elif encoder_layer.self_attn.num_heads % 2 == 1:
|
303 |
+
why_not_sparsity_fast_path = f"{enc_layer}.self_attn.num_heads is odd"
|
304 |
+
|
305 |
+
if enable_nested_tensor and why_not_sparsity_fast_path:
|
306 |
+
warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}")
|
307 |
+
self.use_nested_tensor = False
|
308 |
+
|
309 |
+
|
310 |
+
def forward(
|
311 |
+
self,
|
312 |
+
src: Tensor,
|
313 |
+
mask: Optional[Tensor] = None,
|
314 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
315 |
+
is_causal: Optional[bool] = None) -> Tensor:
|
316 |
+
r"""Pass the input through the encoder layers in turn.
|
317 |
+
|
318 |
+
Args:
|
319 |
+
src: the sequence to the encoder (required).
|
320 |
+
mask: the mask for the src sequence (optional).
|
321 |
+
src_key_padding_mask: the mask for the src keys per batch (optional).
|
322 |
+
is_causal: If specified, applies a causal mask as ``mask``.
|
323 |
+
Default: ``None``; try to detect a causal mask.
|
324 |
+
Warning:
|
325 |
+
``is_causal`` provides a hint that ``mask`` is the
|
326 |
+
causal mask. Providing incorrect hints can result in
|
327 |
+
incorrect execution, including forward and backward
|
328 |
+
compatibility.
|
329 |
+
|
330 |
+
Shape:
|
331 |
+
see the docs in :class:`~torch.nn.Transformer`.
|
332 |
+
"""
|
333 |
+
src_key_padding_mask = F._canonical_mask(
|
334 |
+
mask=src_key_padding_mask,
|
335 |
+
mask_name="src_key_padding_mask",
|
336 |
+
other_type=F._none_or_dtype(mask),
|
337 |
+
other_name="mask",
|
338 |
+
target_type=src.dtype
|
339 |
+
)
|
340 |
+
|
341 |
+
mask = F._canonical_mask(
|
342 |
+
mask=mask,
|
343 |
+
mask_name="mask",
|
344 |
+
other_type=None,
|
345 |
+
other_name="",
|
346 |
+
target_type=src.dtype,
|
347 |
+
check_other=False,
|
348 |
+
)
|
349 |
+
|
350 |
+
output = src
|
351 |
+
convert_to_nested = False
|
352 |
+
first_layer = self.layers[0]
|
353 |
+
src_key_padding_mask_for_layers = src_key_padding_mask
|
354 |
+
why_not_sparsity_fast_path = ''
|
355 |
+
str_first_layer = "self.layers[0]"
|
356 |
+
batch_first = first_layer.self_attn.batch_first
|
357 |
+
is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()
|
358 |
+
|
359 |
+
if not is_fastpath_enabled:
|
360 |
+
why_not_sparsity_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True"
|
361 |
+
elif not hasattr(self, "use_nested_tensor"):
|
362 |
+
why_not_sparsity_fast_path = "use_nested_tensor attribute not present"
|
363 |
+
elif not self.use_nested_tensor:
|
364 |
+
why_not_sparsity_fast_path = "self.use_nested_tensor (set in init) was not True"
|
365 |
+
elif first_layer.training:
|
366 |
+
why_not_sparsity_fast_path = f"{str_first_layer} was in training mode"
|
367 |
+
elif not src.dim() == 3:
|
368 |
+
why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}"
|
369 |
+
elif src_key_padding_mask is None:
|
370 |
+
why_not_sparsity_fast_path = "src_key_padding_mask was None"
|
371 |
+
elif (((not hasattr(self, "mask_check")) or self.mask_check)
|
372 |
+
and not torch._nested_tensor_from_mask_left_aligned(src, src_key_padding_mask.logical_not())):
|
373 |
+
why_not_sparsity_fast_path = "mask_check enabled, and src and src_key_padding_mask was not left aligned"
|
374 |
+
elif output.is_nested:
|
375 |
+
why_not_sparsity_fast_path = "NestedTensor input is not supported"
|
376 |
+
elif mask is not None:
|
377 |
+
why_not_sparsity_fast_path = "src_key_padding_mask and mask were both supplied"
|
378 |
+
elif torch.is_autocast_enabled():
|
379 |
+
why_not_sparsity_fast_path = "autocast is enabled"
|
380 |
+
|
381 |
+
if not why_not_sparsity_fast_path:
|
382 |
+
tensor_args = (
|
383 |
+
src,
|
384 |
+
first_layer.self_attn.in_proj_weight,
|
385 |
+
first_layer.self_attn.in_proj_bias,
|
386 |
+
first_layer.self_attn.out_proj.weight,
|
387 |
+
first_layer.self_attn.out_proj.bias,
|
388 |
+
first_layer.norm1.weight,
|
389 |
+
first_layer.norm1.bias,
|
390 |
+
first_layer.norm2.weight,
|
391 |
+
first_layer.norm2.bias,
|
392 |
+
first_layer.linear1.weight,
|
393 |
+
first_layer.linear1.bias,
|
394 |
+
first_layer.linear2.weight,
|
395 |
+
first_layer.linear2.bias,
|
396 |
+
)
|
397 |
+
_supported_device_type = ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name]
|
398 |
+
if torch.overrides.has_torch_function(tensor_args):
|
399 |
+
why_not_sparsity_fast_path = "some Tensor argument has_torch_function"
|
400 |
+
elif src.device.type not in _supported_device_type:
|
401 |
+
why_not_sparsity_fast_path = f"src device is neither one of {_supported_device_type}"
|
402 |
+
elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args):
|
403 |
+
why_not_sparsity_fast_path = ("grad is enabled and at least one of query or the "
|
404 |
+
"input/output projection weights or biases requires_grad")
|
405 |
+
|
406 |
+
if (not why_not_sparsity_fast_path) and (src_key_padding_mask is not None):
|
407 |
+
convert_to_nested = True
|
408 |
+
output = torch._nested_tensor_from_mask(output, src_key_padding_mask.logical_not(), mask_check=False)
|
409 |
+
src_key_padding_mask_for_layers = None
|
410 |
+
|
411 |
+
seq_len = _get_seq_len(src, batch_first)
|
412 |
+
is_causal = _detect_is_causal_mask(mask, is_causal, seq_len)
|
413 |
+
|
414 |
+
for mod in self.layers:
|
415 |
+
output = mod(output, src_mask=mask, is_causal=is_causal, src_key_padding_mask=src_key_padding_mask_for_layers)
|
416 |
+
|
417 |
+
if convert_to_nested:
|
418 |
+
output = output.to_padded_tensor(0., src.size())
|
419 |
+
|
420 |
+
if self.norm is not None:
|
421 |
+
output = self.norm(output)
|
422 |
+
|
423 |
+
return output
|
424 |
+
|
425 |
+
|
426 |
+
class TransformerDecoder(Module):
|
427 |
+
r"""TransformerDecoder is a stack of N decoder layers.
|
428 |
+
|
429 |
+
Args:
|
430 |
+
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
|
431 |
+
num_layers: the number of sub-decoder-layers in the decoder (required).
|
432 |
+
norm: the layer normalization component (optional).
|
433 |
+
|
434 |
+
Examples::
|
435 |
+
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
|
436 |
+
>>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
|
437 |
+
>>> memory = torch.rand(10, 32, 512)
|
438 |
+
>>> tgt = torch.rand(20, 32, 512)
|
439 |
+
>>> out = transformer_decoder(tgt, memory)
|
440 |
+
"""
|
441 |
+
|
442 |
+
__constants__ = ['norm']
|
443 |
+
|
444 |
+
def __init__(
|
445 |
+
self,
|
446 |
+
decoder_layer: "TransformerDecoderLayer",
|
447 |
+
num_layers: int,
|
448 |
+
norm: Optional[Module] = None
|
449 |
+
) -> None:
|
450 |
+
super().__init__()
|
451 |
+
torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
|
452 |
+
self.layers = _get_clones(decoder_layer, num_layers)
|
453 |
+
self.num_layers = num_layers
|
454 |
+
self.norm = norm
|
455 |
+
|
456 |
+
def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None,
|
457 |
+
memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None,
|
458 |
+
memory_key_padding_mask: Optional[Tensor] = None, tgt_is_causal: Optional[bool] = None,
|
459 |
+
memory_is_causal: bool = False) -> Tensor:
|
460 |
+
r"""Pass the inputs (and mask) through the decoder layer in turn.
|
461 |
+
|
462 |
+
Args:
|
463 |
+
tgt: the sequence to the decoder (required).
|
464 |
+
memory: the sequence from the last layer of the encoder (required).
|
465 |
+
tgt_mask: the mask for the tgt sequence (optional).
|
466 |
+
memory_mask: the mask for the memory sequence (optional).
|
467 |
+
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
|
468 |
+
memory_key_padding_mask: the mask for the memory keys per batch (optional).
|
469 |
+
tgt_is_causal: If specified, applies a causal mask as ``tgt mask``.
|
470 |
+
Default: ``None``; try to detect a causal mask.
|
471 |
+
Warning:
|
472 |
+
``tgt_is_causal`` provides a hint that ``tgt_mask`` is
|
473 |
+
the causal mask. Providing incorrect hints can result in
|
474 |
+
incorrect execution, including forward and backward
|
475 |
+
compatibility.
|
476 |
+
memory_is_causal: If specified, applies a causal mask as
|
477 |
+
``memory mask``.
|
478 |
+
Default: ``False``.
|
479 |
+
Warning:
|
480 |
+
``memory_is_causal`` provides a hint that
|
481 |
+
``memory_mask`` is the causal mask. Providing incorrect
|
482 |
+
hints can result in incorrect execution, including
|
483 |
+
forward and backward compatibility.
|
484 |
+
|
485 |
+
Shape:
|
486 |
+
see the docs in :class:`~torch.nn.Transformer`.
|
487 |
+
"""
|
488 |
+
output = tgt
|
489 |
+
|
490 |
+
seq_len = _get_seq_len(tgt, self.layers[0].self_attn.batch_first)
|
491 |
+
tgt_is_causal = _detect_is_causal_mask(tgt_mask, tgt_is_causal, seq_len)
|
492 |
+
|
493 |
+
for mod in self.layers:
|
494 |
+
output = mod(output, memory, tgt_mask=tgt_mask,
|
495 |
+
memory_mask=memory_mask,
|
496 |
+
tgt_key_padding_mask=tgt_key_padding_mask,
|
497 |
+
memory_key_padding_mask=memory_key_padding_mask,
|
498 |
+
tgt_is_causal=tgt_is_causal,
|
499 |
+
memory_is_causal=memory_is_causal)
|
500 |
+
|
501 |
+
if self.norm is not None:
|
502 |
+
output = self.norm(output)
|
503 |
+
|
504 |
+
return output
|
505 |
+
|
506 |
+
class TransformerEncoderLayer(Module):
|
507 |
+
r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
|
508 |
+
|
509 |
+
This standard encoder layer is based on the paper "Attention Is All You Need".
|
510 |
+
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
|
511 |
+
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
|
512 |
+
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
|
513 |
+
in a different way during application.
|
514 |
+
|
515 |
+
TransformerEncoderLayer can handle either traditional torch.tensor inputs,
|
516 |
+
or Nested Tensor inputs. Derived classes are expected to similarly accept
|
517 |
+
both input formats. (Not all combinations of inputs are currently
|
518 |
+
supported by TransformerEncoderLayer while Nested Tensor is in prototype
|
519 |
+
state.)
|
520 |
+
|
521 |
+
If you are implementing a custom layer, you may derive it either from
|
522 |
+
the Module or TransformerEncoderLayer class. If your custom layer
|
523 |
+
supports both torch.Tensors and Nested Tensors inputs, make its
|
524 |
+
implementation a derived class of TransformerEncoderLayer. If your custom
|
525 |
+
Layer supports only torch.Tensor inputs, derive its implementation from
|
526 |
+
Module.
|
527 |
+
|
528 |
+
Args:
|
529 |
+
d_model: the number of expected features in the input (required).
|
530 |
+
nhead: the number of heads in the multiheadattention models (required).
|
531 |
+
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
532 |
+
dropout: the dropout value (default=0.1).
|
533 |
+
activation: the activation function of the intermediate layer, can be a string
|
534 |
+
("relu" or "gelu") or a unary callable. Default: relu
|
535 |
+
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
|
536 |
+
batch_first: If ``True``, then the input and output tensors are provided
|
537 |
+
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
538 |
+
norm_first: if ``True``, layer norm is done prior to attention and feedforward
|
539 |
+
operations, respectively. Otherwise it's done after. Default: ``False`` (after).
|
540 |
+
bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
|
541 |
+
bias. Default: ``True``.
|
542 |
+
|
543 |
+
Examples::
|
544 |
+
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
|
545 |
+
>>> src = torch.rand(10, 32, 512)
|
546 |
+
>>> out = encoder_layer(src)
|
547 |
+
|
548 |
+
Alternatively, when ``batch_first`` is ``True``:
|
549 |
+
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
|
550 |
+
>>> src = torch.rand(32, 10, 512)
|
551 |
+
>>> out = encoder_layer(src)
|
552 |
+
|
553 |
+
Fast path:
|
554 |
+
forward() will use a special optimized implementation described in
|
555 |
+
`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`_ if all of the following
|
556 |
+
conditions are met:
|
557 |
+
|
558 |
+
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor
|
559 |
+
argument ``requires_grad``
|
560 |
+
- training is disabled (using ``.eval()``)
|
561 |
+
- batch_first is ``True`` and the input is batched (i.e., ``src.dim() == 3``)
|
562 |
+
- activation is one of: ``"relu"``, ``"gelu"``, ``torch.functional.relu``, or ``torch.functional.gelu``
|
563 |
+
- at most one of ``src_mask`` and ``src_key_padding_mask`` is passed
|
564 |
+
- if src is a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_, neither ``src_mask``
|
565 |
+
nor ``src_key_padding_mask`` is passed
|
566 |
+
- the two ``LayerNorm`` instances have a consistent ``eps`` value (this will naturally be the case
|
567 |
+
unless the caller has manually modified one without modifying the other)
|
568 |
+
|
569 |
+
If the optimized implementation is in use, a
|
570 |
+
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be
|
571 |
+
passed for ``src`` to represent padding more efficiently than using a padding
|
572 |
+
mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ will be
|
573 |
+
returned, and an additional speedup proportional to the fraction of the input that
|
574 |
+
is padding can be expected.
|
575 |
+
|
576 |
+
.. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`:
|
577 |
+
https://arxiv.org/abs/2205.14135
|
578 |
+
|
579 |
+
"""
|
580 |
+
|
581 |
+
__constants__ = ['norm_first']
|
582 |
+
|
583 |
+
def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1,
|
584 |
+
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
585 |
+
layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
|
586 |
+
bias: bool = True, device=None, dtype=None) -> None:
|
587 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
588 |
+
super().__init__()
|
589 |
+
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout,
|
590 |
+
bias=bias, batch_first=batch_first,
|
591 |
+
**factory_kwargs)
|
592 |
+
# Implementation of Feedforward model
|
593 |
+
self.linear1 = Linear(d_model, dim_feedforward, bias=bias, **factory_kwargs)
|
594 |
+
self.dropout = Dropout(dropout)
|
595 |
+
self.linear2 = Linear(dim_feedforward, d_model, bias=bias, **factory_kwargs)
|
596 |
+
|
597 |
+
self.norm_first = norm_first
|
598 |
+
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
|
599 |
+
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
|
600 |
+
self.dropout1 = Dropout(dropout)
|
601 |
+
self.dropout2 = Dropout(dropout)
|
602 |
+
|
603 |
+
# Legacy string support for activation function.
|
604 |
+
if isinstance(activation, str):
|
605 |
+
activation = _get_activation_fn(activation)
|
606 |
+
|
607 |
+
# We can't test self.activation in forward() in TorchScript,
|
608 |
+
# so stash some information about it instead.
|
609 |
+
if activation is F.relu or isinstance(activation, torch.nn.ReLU):
|
610 |
+
self.activation_relu_or_gelu = 1
|
611 |
+
elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
|
612 |
+
self.activation_relu_or_gelu = 2
|
613 |
+
else:
|
614 |
+
self.activation_relu_or_gelu = 0
|
615 |
+
self.activation = activation
|
616 |
+
|
617 |
+
def __setstate__(self, state):
|
618 |
+
super().__setstate__(state)
|
619 |
+
if not hasattr(self, 'activation'):
|
620 |
+
self.activation = F.relu
|
621 |
+
|
622 |
+
|
623 |
+
def forward(
|
624 |
+
self,
|
625 |
+
src: Tensor,
|
626 |
+
src_mask: Optional[Tensor] = None,
|
627 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
628 |
+
is_causal: bool = False) -> Tensor:
|
629 |
+
r"""Pass the input through the encoder layer.
|
630 |
+
|
631 |
+
Args:
|
632 |
+
src: the sequence to the encoder layer (required).
|
633 |
+
src_mask: the mask for the src sequence (optional).
|
634 |
+
src_key_padding_mask: the mask for the src keys per batch (optional).
|
635 |
+
is_causal: If specified, applies a causal mask as ``src mask``.
|
636 |
+
Default: ``False``.
|
637 |
+
Warning:
|
638 |
+
``is_causal`` provides a hint that ``src_mask`` is the
|
639 |
+
causal mask. Providing incorrect hints can result in
|
640 |
+
incorrect execution, including forward and backward
|
641 |
+
compatibility.
|
642 |
+
|
643 |
+
Shape:
|
644 |
+
see the docs in :class:`~torch.nn.Transformer`.
|
645 |
+
"""
|
646 |
+
src_key_padding_mask = F._canonical_mask(
|
647 |
+
mask=src_key_padding_mask,
|
648 |
+
mask_name="src_key_padding_mask",
|
649 |
+
other_type=F._none_or_dtype(src_mask),
|
650 |
+
other_name="src_mask",
|
651 |
+
target_type=src.dtype
|
652 |
+
)
|
653 |
+
|
654 |
+
src_mask = F._canonical_mask(
|
655 |
+
mask=src_mask,
|
656 |
+
mask_name="src_mask",
|
657 |
+
other_type=None,
|
658 |
+
other_name="",
|
659 |
+
target_type=src.dtype,
|
660 |
+
check_other=False,
|
661 |
+
)
|
662 |
+
|
663 |
+
is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()
|
664 |
+
|
665 |
+
# see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
|
666 |
+
why_not_sparsity_fast_path = ''
|
667 |
+
if not is_fastpath_enabled:
|
668 |
+
why_not_sparsity_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True"
|
669 |
+
elif not src.dim() == 3:
|
670 |
+
why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}"
|
671 |
+
elif self.training:
|
672 |
+
why_not_sparsity_fast_path = "training is enabled"
|
673 |
+
elif not self.self_attn.batch_first:
|
674 |
+
why_not_sparsity_fast_path = "self_attn.batch_first was not True"
|
675 |
+
elif self.self_attn.in_proj_bias is None:
|
676 |
+
why_not_sparsity_fast_path = "self_attn was passed bias=False"
|
677 |
+
elif not self.self_attn._qkv_same_embed_dim:
|
678 |
+
why_not_sparsity_fast_path = "self_attn._qkv_same_embed_dim was not True"
|
679 |
+
elif not self.activation_relu_or_gelu:
|
680 |
+
why_not_sparsity_fast_path = "activation_relu_or_gelu was not True"
|
681 |
+
elif not (self.norm1.eps == self.norm2.eps):
|
682 |
+
why_not_sparsity_fast_path = "norm1.eps is not equal to norm2.eps"
|
683 |
+
elif src.is_nested and (src_key_padding_mask is not None or src_mask is not None):
|
684 |
+
why_not_sparsity_fast_path = "neither src_key_padding_mask nor src_mask are not supported with NestedTensor input"
|
685 |
+
elif self.self_attn.num_heads % 2 == 1:
|
686 |
+
why_not_sparsity_fast_path = "num_head is odd"
|
687 |
+
elif torch.is_autocast_enabled():
|
688 |
+
why_not_sparsity_fast_path = "autocast is enabled"
|
689 |
+
if not why_not_sparsity_fast_path:
|
690 |
+
tensor_args = (
|
691 |
+
src,
|
692 |
+
self.self_attn.in_proj_weight,
|
693 |
+
self.self_attn.in_proj_bias,
|
694 |
+
self.self_attn.out_proj.weight,
|
695 |
+
self.self_attn.out_proj.bias,
|
696 |
+
self.norm1.weight,
|
697 |
+
self.norm1.bias,
|
698 |
+
self.norm2.weight,
|
699 |
+
self.norm2.bias,
|
700 |
+
self.linear1.weight,
|
701 |
+
self.linear1.bias,
|
702 |
+
self.linear2.weight,
|
703 |
+
self.linear2.bias,
|
704 |
+
)
|
705 |
+
|
706 |
+
# We have to use list comprehensions below because TorchScript does not support
|
707 |
+
# generator expressions.
|
708 |
+
_supported_device_type = ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name]
|
709 |
+
if torch.overrides.has_torch_function(tensor_args):
|
710 |
+
why_not_sparsity_fast_path = "some Tensor argument has_torch_function"
|
711 |
+
elif not all((x.device.type in _supported_device_type) for x in tensor_args):
|
712 |
+
why_not_sparsity_fast_path = ("some Tensor argument's device is neither one of "
|
713 |
+
f"{_supported_device_type}")
|
714 |
+
elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args):
|
715 |
+
why_not_sparsity_fast_path = ("grad is enabled and at least one of query or the "
|
716 |
+
"input/output projection weights or biases requires_grad")
|
717 |
+
|
718 |
+
if not why_not_sparsity_fast_path:
|
719 |
+
merged_mask, mask_type = self.self_attn.merge_masks(src_mask, src_key_padding_mask, src)
|
720 |
+
return torch._transformer_encoder_layer_fwd(
|
721 |
+
src,
|
722 |
+
self.self_attn.embed_dim,
|
723 |
+
self.self_attn.num_heads,
|
724 |
+
self.self_attn.in_proj_weight,
|
725 |
+
self.self_attn.in_proj_bias,
|
726 |
+
self.self_attn.out_proj.weight,
|
727 |
+
self.self_attn.out_proj.bias,
|
728 |
+
self.activation_relu_or_gelu == 2,
|
729 |
+
self.norm_first,
|
730 |
+
self.norm1.eps,
|
731 |
+
self.norm1.weight,
|
732 |
+
self.norm1.bias,
|
733 |
+
self.norm2.weight,
|
734 |
+
self.norm2.bias,
|
735 |
+
self.linear1.weight,
|
736 |
+
self.linear1.bias,
|
737 |
+
self.linear2.weight,
|
738 |
+
self.linear2.bias,
|
739 |
+
merged_mask,
|
740 |
+
mask_type,
|
741 |
+
)
|
742 |
+
|
743 |
+
|
744 |
+
x = src
|
745 |
+
if self.norm_first:
|
746 |
+
x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask, is_causal=is_causal)
|
747 |
+
x = x + self._ff_block(self.norm2(x))
|
748 |
+
else:
|
749 |
+
x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask, is_causal=is_causal))
|
750 |
+
x = self.norm2(x + self._ff_block(x))
|
751 |
+
|
752 |
+
return x
|
753 |
+
|
754 |
+
# self-attention block
|
755 |
+
def _sa_block(self, x: Tensor,
|
756 |
+
attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor:
|
757 |
+
x = self.self_attn(x, x, x,
|
758 |
+
attn_mask=attn_mask,
|
759 |
+
key_padding_mask=key_padding_mask,
|
760 |
+
need_weights=False, is_causal=is_causal)[0]
|
761 |
+
return self.dropout1(x)
|
762 |
+
|
763 |
+
# feed forward block
|
764 |
+
def _ff_block(self, x: Tensor) -> Tensor:
|
765 |
+
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
766 |
+
return self.dropout2(x)
|
767 |
+
|
768 |
+
|
769 |
+
class TransformerDecoderLayer(Module):
|
770 |
+
r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
|
771 |
+
|
772 |
+
This standard decoder layer is based on the paper "Attention Is All You Need".
|
773 |
+
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
|
774 |
+
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
|
775 |
+
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
|
776 |
+
in a different way during application.
|
777 |
+
|
778 |
+
Args:
|
779 |
+
d_model: the number of expected features in the input (required).
|
780 |
+
nhead: the number of heads in the multiheadattention models (required).
|
781 |
+
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
782 |
+
dropout: the dropout value (default=0.1).
|
783 |
+
activation: the activation function of the intermediate layer, can be a string
|
784 |
+
("relu" or "gelu") or a unary callable. Default: relu
|
785 |
+
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
|
786 |
+
batch_first: If ``True``, then the input and output tensors are provided
|
787 |
+
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
788 |
+
norm_first: if ``True``, layer norm is done prior to self attention, multihead
|
789 |
+
attention and feedforward operations, respectively. Otherwise it's done after.
|
790 |
+
Default: ``False`` (after).
|
791 |
+
bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
|
792 |
+
bias. Default: ``True``.
|
793 |
+
|
794 |
+
Examples::
|
795 |
+
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
|
796 |
+
>>> memory = torch.rand(10, 32, 512)
|
797 |
+
>>> tgt = torch.rand(20, 32, 512)
|
798 |
+
>>> out = decoder_layer(tgt, memory)
|
799 |
+
|
800 |
+
Alternatively, when ``batch_first`` is ``True``:
|
801 |
+
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=True)
|
802 |
+
>>> memory = torch.rand(32, 10, 512)
|
803 |
+
>>> tgt = torch.rand(32, 20, 512)
|
804 |
+
>>> out = decoder_layer(tgt, memory)
|
805 |
+
"""
|
806 |
+
|
807 |
+
__constants__ = ['norm_first']
|
808 |
+
|
809 |
+
def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1,
|
810 |
+
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
811 |
+
layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
|
812 |
+
bias: bool = True, device=None, dtype=None) -> None:
|
813 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
814 |
+
super().__init__()
|
815 |
+
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
|
816 |
+
bias=bias, **factory_kwargs)
|
817 |
+
self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
|
818 |
+
bias=bias, **factory_kwargs)
|
819 |
+
# Implementation of Feedforward model
|
820 |
+
self.linear1 = Linear(d_model, dim_feedforward, bias=bias, **factory_kwargs)
|
821 |
+
self.dropout = Dropout(dropout)
|
822 |
+
self.linear2 = Linear(dim_feedforward, d_model, bias=bias, **factory_kwargs)
|
823 |
+
|
824 |
+
self.norm_first = norm_first
|
825 |
+
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
|
826 |
+
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
|
827 |
+
self.norm3 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
|
828 |
+
self.dropout1 = Dropout(dropout)
|
829 |
+
self.dropout2 = Dropout(dropout)
|
830 |
+
self.dropout3 = Dropout(dropout)
|
831 |
+
|
832 |
+
# Legacy string support for activation function.
|
833 |
+
if isinstance(activation, str):
|
834 |
+
self.activation = _get_activation_fn(activation)
|
835 |
+
else:
|
836 |
+
self.activation = activation
|
837 |
+
|
838 |
+
def __setstate__(self, state):
|
839 |
+
if 'activation' not in state:
|
840 |
+
state['activation'] = F.relu
|
841 |
+
super().__setstate__(state)
|
842 |
+
|
843 |
+
def forward(
|
844 |
+
self,
|
845 |
+
tgt: Tensor,
|
846 |
+
memory: Tensor,
|
847 |
+
tgt_mask: Optional[Tensor] = None,
|
848 |
+
memory_mask: Optional[Tensor] = None,
|
849 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
850 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
851 |
+
tgt_is_causal: bool = False,
|
852 |
+
memory_is_causal: bool = False,
|
853 |
+
) -> Tensor:
|
854 |
+
r"""Pass the inputs (and mask) through the decoder layer.
|
855 |
+
|
856 |
+
Args:
|
857 |
+
tgt: the sequence to the decoder layer (required).
|
858 |
+
memory: the sequence from the last layer of the encoder (required).
|
859 |
+
tgt_mask: the mask for the tgt sequence (optional).
|
860 |
+
memory_mask: the mask for the memory sequence (optional).
|
861 |
+
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
|
862 |
+
memory_key_padding_mask: the mask for the memory keys per batch (optional).
|
863 |
+
tgt_is_causal: If specified, applies a causal mask as ``tgt mask``.
|
864 |
+
Default: ``False``.
|
865 |
+
Warning:
|
866 |
+
``tgt_is_causal`` provides a hint that ``tgt_mask`` is
|
867 |
+
the causal mask. Providing incorrect hints can result in
|
868 |
+
incorrect execution, including forward and backward
|
869 |
+
compatibility.
|
870 |
+
memory_is_causal: If specified, applies a causal mask as
|
871 |
+
``memory mask``.
|
872 |
+
Default: ``False``.
|
873 |
+
Warning:
|
874 |
+
``memory_is_causal`` provides a hint that
|
875 |
+
``memory_mask`` is the causal mask. Providing incorrect
|
876 |
+
hints can result in incorrect execution, including
|
877 |
+
forward and backward compatibility.
|
878 |
+
|
879 |
+
Shape:
|
880 |
+
see the docs in :class:`~torch.nn.Transformer`.
|
881 |
+
"""
|
882 |
+
# see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
|
883 |
+
|
884 |
+
x = tgt
|
885 |
+
if self.norm_first:
|
886 |
+
x = x + self._sa_block(self.norm1(x), tgt_mask, tgt_key_padding_mask, tgt_is_causal)
|
887 |
+
x = x + self._mha_block(self.norm2(x), memory, memory_mask, memory_key_padding_mask, memory_is_causal)
|
888 |
+
x = x + self._ff_block(self.norm3(x))
|
889 |
+
else:
|
890 |
+
x = self.norm1(x + self._sa_block(x, tgt_mask, tgt_key_padding_mask, tgt_is_causal))
|
891 |
+
x = self.norm2(x + self._mha_block(x, memory, memory_mask, memory_key_padding_mask, memory_is_causal))
|
892 |
+
x = self.norm3(x + self._ff_block(x))
|
893 |
+
|
894 |
+
return x
|
895 |
+
|
896 |
+
# self-attention block
|
897 |
+
def _sa_block(self, x: Tensor,
|
898 |
+
attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor:
|
899 |
+
x = self.self_attn(x, x, x,
|
900 |
+
attn_mask=attn_mask,
|
901 |
+
key_padding_mask=key_padding_mask,
|
902 |
+
is_causal=is_causal,
|
903 |
+
need_weights=False)[0]
|
904 |
+
return self.dropout1(x)
|
905 |
+
|
906 |
+
# multihead attention block
|
907 |
+
def _mha_block(self, x: Tensor, mem: Tensor,
|
908 |
+
attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor:
|
909 |
+
x = self.multihead_attn(x, mem, mem,
|
910 |
+
attn_mask=attn_mask,
|
911 |
+
key_padding_mask=key_padding_mask,
|
912 |
+
is_causal=is_causal,
|
913 |
+
need_weights=False)[0]
|
914 |
+
return self.dropout2(x)
|
915 |
+
|
916 |
+
# feed forward block
|
917 |
+
def _ff_block(self, x: Tensor) -> Tensor:
|
918 |
+
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
919 |
+
return self.dropout3(x)
|
920 |
+
|
921 |
+
|
922 |
+
def _get_clones(module, N):
|
923 |
+
# FIXME: copy.deepcopy() is not defined on nn.module
|
924 |
+
return ModuleList([copy.deepcopy(module) for i in range(N)])
|
925 |
+
|
926 |
+
|
927 |
+
def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]:
|
928 |
+
if activation == "relu":
|
929 |
+
return F.relu
|
930 |
+
elif activation == "gelu":
|
931 |
+
return F.gelu
|
932 |
+
|
933 |
+
raise RuntimeError(f"activation should be relu/gelu, not {activation}")
|
934 |
+
|
935 |
+
|
936 |
+
def _detect_is_causal_mask(
|
937 |
+
mask: Optional[Tensor],
|
938 |
+
is_causal: Optional[bool] = None,
|
939 |
+
size: Optional[int] = None,
|
940 |
+
) -> bool:
|
941 |
+
"""Return whether the given attention mask is causal.
|
942 |
+
|
943 |
+
Warning:
|
944 |
+
If ``is_causal`` is not ``None``, its value will be returned as is. If a
|
945 |
+
user supplies an incorrect ``is_causal`` hint,
|
946 |
+
|
947 |
+
``is_causal=False`` when the mask is in fact a causal attention.mask
|
948 |
+
may lead to reduced performance relative to what would be achievable
|
949 |
+
with ``is_causal=True``;
|
950 |
+
``is_causal=True`` when the mask is in fact not a causal attention.mask
|
951 |
+
may lead to incorrect and unpredictable execution - in some scenarios,
|
952 |
+
a causal mask may be applied based on the hint, in other execution
|
953 |
+
scenarios the specified mask may be used. The choice may not appear
|
954 |
+
to be deterministic, in that a number of factors like alignment,
|
955 |
+
hardware SKU, etc influence the decision whether to use a mask or
|
956 |
+
rely on the hint.
|
957 |
+
``size`` if not None, check whether the mask is a causal mask of the provided size
|
958 |
+
Otherwise, checks for any causal mask.
|
959 |
+
"""
|
960 |
+
# Prevent type refinement
|
961 |
+
make_causal = (is_causal is True)
|
962 |
+
|
963 |
+
if is_causal is None and mask is not None:
|
964 |
+
sz = size if size is not None else mask.size(-2)
|
965 |
+
causal_comparison = _generate_square_subsequent_mask(
|
966 |
+
sz, device=mask.device, dtype=mask.dtype)
|
967 |
+
|
968 |
+
# Do not use `torch.equal` so we handle batched masks by
|
969 |
+
# broadcasting the comparison.
|
970 |
+
if mask.size() == causal_comparison.size():
|
971 |
+
make_causal = bool((mask == causal_comparison).all())
|
972 |
+
else:
|
973 |
+
make_causal = False
|
974 |
+
|
975 |
+
return make_causal
|
venv/lib/python3.10/site-packages/torch/nn/modules/utils.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
from itertools import repeat
|
3 |
+
from typing import List, Dict, Any
|
4 |
+
|
5 |
+
__all__ = ['consume_prefix_in_state_dict_if_present']
|
6 |
+
|
7 |
+
|
8 |
+
def _ntuple(n, name="parse"):
|
9 |
+
def parse(x):
|
10 |
+
if isinstance(x, collections.abc.Iterable):
|
11 |
+
return tuple(x)
|
12 |
+
return tuple(repeat(x, n))
|
13 |
+
|
14 |
+
parse.__name__ = name
|
15 |
+
return parse
|
16 |
+
|
17 |
+
|
18 |
+
_single = _ntuple(1, "_single")
|
19 |
+
_pair = _ntuple(2, "_pair")
|
20 |
+
_triple = _ntuple(3, "_triple")
|
21 |
+
_quadruple = _ntuple(4, "_quadruple")
|
22 |
+
|
23 |
+
|
24 |
+
def _reverse_repeat_tuple(t, n):
|
25 |
+
r"""Reverse the order of `t` and repeat each element for `n` times.
|
26 |
+
|
27 |
+
This can be used to translate padding arg used by Conv and Pooling modules
|
28 |
+
to the ones used by `F.pad`.
|
29 |
+
"""
|
30 |
+
return tuple(x for x in reversed(t) for _ in range(n))
|
31 |
+
|
32 |
+
|
33 |
+
def _list_with_default(out_size: List[int], defaults: List[int]) -> List[int]:
|
34 |
+
import torch
|
35 |
+
if isinstance(out_size, (int, torch.SymInt)):
|
36 |
+
return out_size
|
37 |
+
if len(defaults) <= len(out_size):
|
38 |
+
raise ValueError(
|
39 |
+
f"Input dimension should be at least {len(out_size) + 1}"
|
40 |
+
)
|
41 |
+
return [
|
42 |
+
v if v is not None else d for v, d in zip(out_size, defaults[-len(out_size) :])
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
def consume_prefix_in_state_dict_if_present(
|
47 |
+
state_dict: Dict[str, Any], prefix: str
|
48 |
+
) -> None:
|
49 |
+
r"""Strip the prefix in state_dict in place, if any.
|
50 |
+
|
51 |
+
..note::
|
52 |
+
Given a `state_dict` from a DP/DDP model, a local model can load it by applying
|
53 |
+
`consume_prefix_in_state_dict_if_present(state_dict, "module.")` before calling
|
54 |
+
:meth:`torch.nn.Module.load_state_dict`.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
state_dict (OrderedDict): a state-dict to be loaded to the model.
|
58 |
+
prefix (str): prefix.
|
59 |
+
"""
|
60 |
+
keys = list(state_dict.keys())
|
61 |
+
for key in keys:
|
62 |
+
if key.startswith(prefix):
|
63 |
+
newkey = key[len(prefix) :]
|
64 |
+
state_dict[newkey] = state_dict.pop(key)
|
65 |
+
|
66 |
+
# also strip the prefix in metadata if any.
|
67 |
+
if hasattr(state_dict, "_metadata"):
|
68 |
+
keys = list(state_dict._metadata.keys())
|
69 |
+
for key in keys:
|
70 |
+
# for the metadata dict, the key can be:
|
71 |
+
# '': for the DDP module, which we want to remove.
|
72 |
+
# 'module': for the actual model.
|
73 |
+
# 'module.xx.xx': for the rest.
|
74 |
+
if len(key) == 0:
|
75 |
+
continue
|
76 |
+
# handling both, 'module' case and 'module.' cases
|
77 |
+
if key == prefix.replace('.', '') or key.startswith(prefix):
|
78 |
+
newkey = key[len(prefix) :]
|
79 |
+
state_dict._metadata[newkey] = state_dict._metadata.pop(key)
|
venv/lib/python3.10/site-packages/torch/nn/utils/__init__.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . import rnn
|
2 |
+
from .clip_grad import clip_grad_norm, clip_grad_norm_, clip_grad_value_
|
3 |
+
from .weight_norm import weight_norm, remove_weight_norm
|
4 |
+
from .convert_parameters import parameters_to_vector, vector_to_parameters
|
5 |
+
from .spectral_norm import spectral_norm, remove_spectral_norm
|
6 |
+
from .fusion import fuse_conv_bn_eval, fuse_conv_bn_weights, fuse_linear_bn_eval, fuse_linear_bn_weights
|
7 |
+
from .memory_format import convert_conv2d_weight_memory_format, convert_conv3d_weight_memory_format
|
8 |
+
from . import parametrizations
|
9 |
+
from .init import skip_init
|
10 |
+
from . import stateless
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
"clip_grad_norm",
|
14 |
+
"clip_grad_norm_",
|
15 |
+
"clip_grad_value_",
|
16 |
+
"convert_conv2d_weight_memory_format",
|
17 |
+
"convert_conv3d_weight_memory_format",
|
18 |
+
"fuse_conv_bn_eval",
|
19 |
+
"fuse_conv_bn_weights",
|
20 |
+
"fuse_linear_bn_eval",
|
21 |
+
"fuse_linear_bn_weights",
|
22 |
+
"parameters_to_vector",
|
23 |
+
"parametrizations",
|
24 |
+
"remove_spectral_norm",
|
25 |
+
"remove_weight_norm",
|
26 |
+
"rnn",
|
27 |
+
"skip_init",
|
28 |
+
"spectral_norm",
|
29 |
+
"stateless",
|
30 |
+
"vector_to_parameters",
|
31 |
+
"weight_norm",
|
32 |
+
]
|
venv/lib/python3.10/site-packages/torch/nn/utils/__pycache__/_named_member_accessor.cpython-310.pyc
ADDED
Binary file (12.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/utils/__pycache__/clip_grad.cpython-310.pyc
ADDED
Binary file (6.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/utils/__pycache__/convert_parameters.cpython-310.pyc
ADDED
Binary file (2.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/utils/__pycache__/fusion.cpython-310.pyc
ADDED
Binary file (5.05 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/utils/__pycache__/parametrizations.cpython-310.pyc
ADDED
Binary file (17.9 kB). View file
|
|