2:
+ f = k*(k-1)
+ tre, tim = ((tre*z2re-tim*z2im)//f)>>wp, ((tre*z2im+tim*z2re)//f)>>wp
+ sre += tre//k
+ sim += tim//k
+ k += 2
+ return from_man_exp(sre, -wp), from_man_exp(sim, -wp)
+
+def mpf_ci_si(x, prec, rnd=round_fast, which=2):
+ """
+ Calculation of Ci(x), Si(x) for real x.
+
+ which = 0 -- returns (Ci(x), -)
+ which = 1 -- returns (Si(x), -)
+ which = 2 -- returns (Ci(x), Si(x))
+
+ Note: if x < 0, Ci(x) needs an additional imaginary term, pi*i.
+ """
+ wp = prec + 20
+ sign, man, exp, bc = x
+ ci, si = None, None
+ if not man:
+ if x == fzero:
+ return (fninf, fzero)
+ if x == fnan:
+ return (x, x)
+ ci = fzero
+ if which != 0:
+ if x == finf:
+ si = mpf_shift(mpf_pi(prec, rnd), -1)
+ if x == fninf:
+ si = mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1))
+ return (ci, si)
+ # For small x: Ci(x) ~ euler + log(x), Si(x) ~ x
+ mag = exp+bc
+ if mag < -wp:
+ if which != 0:
+ si = mpf_perturb(x, 1-sign, prec, rnd)
+ if which != 1:
+ y = mpf_euler(wp)
+ xabs = mpf_abs(x)
+ ci = mpf_add(y, mpf_log(xabs, wp), prec, rnd)
+ return ci, si
+ # For huge x: Ci(x) ~ sin(x)/x, Si(x) ~ pi/2
+ elif mag > wp:
+ if which != 0:
+ if sign:
+ si = mpf_neg(mpf_pi(prec, negative_rnd[rnd]))
+ else:
+ si = mpf_pi(prec, rnd)
+ si = mpf_shift(si, -1)
+ if which != 1:
+ ci = mpf_div(mpf_sin(x, wp), x, prec, rnd)
+ return ci, si
+ else:
+ wp += abs(mag)
+ # Use an asymptotic series? The smallest value of n!/x^n
+ # occurs for n ~ x, where the magnitude is ~ exp(-x).
+ asymptotic = mag-1 > math.log(wp, 2)
+ # Case 1: convergent series near 0
+ if not asymptotic:
+ if which != 0:
+ si = mpf_pos(mpf_ci_si_taylor(x, wp, 1), prec, rnd)
+ if which != 1:
+ ci = mpf_ci_si_taylor(x, wp, 0)
+ ci = mpf_add(ci, mpf_euler(wp), wp)
+ ci = mpf_add(ci, mpf_log(mpf_abs(x), wp), prec, rnd)
+ return ci, si
+ x = mpf_abs(x)
+ # Case 2: asymptotic series for x >> 1
+ xf = to_fixed(x, wp)
+ xr = (MPZ_ONE<<(2*wp)) // xf # 1/x
+ s1 = (MPZ_ONE << wp)
+ s2 = xr
+ t = xr
+ k = 2
+ while t:
+ t = -t
+ t = (t*xr*k)>>wp
+ k += 1
+ s1 += t
+ t = (t*xr*k)>>wp
+ k += 1
+ s2 += t
+ s1 = from_man_exp(s1, -wp)
+ s2 = from_man_exp(s2, -wp)
+ s1 = mpf_div(s1, x, wp)
+ s2 = mpf_div(s2, x, wp)
+ cos, sin = mpf_cos_sin(x, wp)
+ # Ci(x) = sin(x)*s1-cos(x)*s2
+ # Si(x) = pi/2-cos(x)*s1-sin(x)*s2
+ if which != 0:
+ si = mpf_add(mpf_mul(cos, s1), mpf_mul(sin, s2), wp)
+ si = mpf_sub(mpf_shift(mpf_pi(wp), -1), si, wp)
+ if sign:
+ si = mpf_neg(si)
+ si = mpf_pos(si, prec, rnd)
+ if which != 1:
+ ci = mpf_sub(mpf_mul(sin, s1), mpf_mul(cos, s2), prec, rnd)
+ return ci, si
+
+def mpf_ci(x, prec, rnd=round_fast):
+ if mpf_sign(x) < 0:
+ raise ComplexResult
+ return mpf_ci_si(x, prec, rnd, 0)[0]
+
+def mpf_si(x, prec, rnd=round_fast):
+ return mpf_ci_si(x, prec, rnd, 1)[1]
+
+def mpc_ci(z, prec, rnd=round_fast):
+ re, im = z
+ if im == fzero:
+ ci = mpf_ci_si(re, prec, rnd, 0)[0]
+ if mpf_sign(re) < 0:
+ return (ci, mpf_pi(prec, rnd))
+ return (ci, fzero)
+ wp = prec + 20
+ cre, cim = mpc_ci_si_taylor(re, im, wp, 0)
+ cre = mpf_add(cre, mpf_euler(wp), wp)
+ ci = mpc_add((cre, cim), mpc_log(z, wp), prec, rnd)
+ return ci
+
+def mpc_si(z, prec, rnd=round_fast):
+ re, im = z
+ if im == fzero:
+ return (mpf_ci_si(re, prec, rnd, 1)[1], fzero)
+ wp = prec + 20
+ z = mpc_ci_si_taylor(re, im, wp, 1)
+ return mpc_pos(z, prec, rnd)
+
+
+#-----------------------------------------------------------------------#
+# #
+# Bessel functions #
+# #
+#-----------------------------------------------------------------------#
+
+# A Bessel function of the first kind of integer order, J_n(x), is
+# given by the power series
+
+# oo
+# ___ k 2 k + n
+# \ (-1) / x \
+# J_n(x) = ) ----------- | - |
+# /___ k! (k + n)! \ 2 /
+# k = 0
+
+# Simplifying the quotient between two successive terms gives the
+# ratio x^2 / (-4*k*(k+n)). Hence, we only need one full-precision
+# multiplication and one division by a small integer per term.
+# The complex version is very similar, the only difference being
+# that the multiplication is actually 4 multiplies.
+
+# In the general case, we have
+# J_v(x) = (x/2)**v / v! * 0F1(v+1, (-1/4)*z**2)
+
+# TODO: for extremely large x, we could use an asymptotic
+# trigonometric approximation.
+
+# TODO: recompute at higher precision if the fixed-point mantissa
+# is very small
+
+def mpf_besseljn(n, x, prec, rounding=round_fast):
+ prec += 50
+ negate = n < 0 and n & 1
+ mag = x[2]+x[3]
+ n = abs(n)
+ wp = prec + 20 + n*bitcount(n)
+ if mag < 0:
+ wp -= n * mag
+ x = to_fixed(x, wp)
+ x2 = (x**2) >> wp
+ if not n:
+ s = t = MPZ_ONE << wp
+ else:
+ s = t = (x**n // ifac(n)) >> ((n-1)*wp + n)
+ k = 1
+ while t:
+ t = ((t * x2) // (-4*k*(k+n))) >> wp
+ s += t
+ k += 1
+ if negate:
+ s = -s
+ return from_man_exp(s, -wp, prec, rounding)
+
+def mpc_besseljn(n, z, prec, rounding=round_fast):
+ negate = n < 0 and n & 1
+ n = abs(n)
+ origprec = prec
+ zre, zim = z
+ mag = max(zre[2]+zre[3], zim[2]+zim[3])
+ prec += 20 + n*bitcount(n) + abs(mag)
+ if mag < 0:
+ prec -= n * mag
+ zre = to_fixed(zre, prec)
+ zim = to_fixed(zim, prec)
+ z2re = (zre**2 - zim**2) >> prec
+ z2im = (zre*zim) >> (prec-1)
+ if not n:
+ sre = tre = MPZ_ONE << prec
+ sim = tim = MPZ_ZERO
+ else:
+ re, im = complex_int_pow(zre, zim, n)
+ sre = tre = (re // ifac(n)) >> ((n-1)*prec + n)
+ sim = tim = (im // ifac(n)) >> ((n-1)*prec + n)
+ k = 1
+ while abs(tre) + abs(tim) > 3:
+ p = -4*k*(k+n)
+ tre, tim = tre*z2re - tim*z2im, tim*z2re + tre*z2im
+ tre = (tre // p) >> prec
+ tim = (tim // p) >> prec
+ sre += tre
+ sim += tim
+ k += 1
+ if negate:
+ sre = -sre
+ sim = -sim
+ re = from_man_exp(sre, -prec, origprec, rounding)
+ im = from_man_exp(sim, -prec, origprec, rounding)
+ return (re, im)
+
+def mpf_agm(a, b, prec, rnd=round_fast):
+ """
+ Computes the arithmetic-geometric mean agm(a,b) for
+ nonnegative mpf values a, b.
+ """
+ asign, aman, aexp, abc = a
+ bsign, bman, bexp, bbc = b
+ if asign or bsign:
+ raise ComplexResult("agm of a negative number")
+ # Handle inf, nan or zero in either operand
+ if not (aman and bman):
+ if a == fnan or b == fnan:
+ return fnan
+ if a == finf:
+ if b == fzero:
+ return fnan
+ return finf
+ if b == finf:
+ if a == fzero:
+ return fnan
+ return finf
+ # agm(0,x) = agm(x,0) = 0
+ return fzero
+ wp = prec + 20
+ amag = aexp+abc
+ bmag = bexp+bbc
+ mag_delta = amag - bmag
+ # Reduce to roughly the same magnitude using floating-point AGM
+ abs_mag_delta = abs(mag_delta)
+ if abs_mag_delta > 10:
+ while abs_mag_delta > 10:
+ a, b = mpf_shift(mpf_add(a,b,wp),-1), \
+ mpf_sqrt(mpf_mul(a,b,wp),wp)
+ abs_mag_delta //= 2
+ asign, aman, aexp, abc = a
+ bsign, bman, bexp, bbc = b
+ amag = aexp+abc
+ bmag = bexp+bbc
+ mag_delta = amag - bmag
+ #print to_float(a), to_float(b)
+ # Use agm(a,b) = agm(x*a,x*b)/x to obtain a, b ~= 1
+ min_mag = min(amag,bmag)
+ max_mag = max(amag,bmag)
+ n = 0
+ # If too small, we lose precision when going to fixed-point
+ if min_mag < -8:
+ n = -min_mag
+ # If too large, we waste time using fixed-point with large numbers
+ elif max_mag > 20:
+ n = -max_mag
+ if n:
+ a = mpf_shift(a, n)
+ b = mpf_shift(b, n)
+ #print to_float(a), to_float(b)
+ af = to_fixed(a, wp)
+ bf = to_fixed(b, wp)
+ g = agm_fixed(af, bf, wp)
+ return from_man_exp(g, -wp-n, prec, rnd)
+
+def mpf_agm1(a, prec, rnd=round_fast):
+ """
+ Computes the arithmetic-geometric mean agm(1,a) for a nonnegative
+ mpf value a.
+ """
+ return mpf_agm(fone, a, prec, rnd)
+
+def mpc_agm(a, b, prec, rnd=round_fast):
+ """
+ Complex AGM.
+
+ TODO:
+ * check that convergence works as intended
+ * optimize
+ * select a nonarbitrary branch
+ """
+ if mpc_is_infnan(a) or mpc_is_infnan(b):
+ return fnan, fnan
+ if mpc_zero in (a, b):
+ return fzero, fzero
+ if mpc_neg(a) == b:
+ return fzero, fzero
+ wp = prec+20
+ eps = mpf_shift(fone, -wp+10)
+ while 1:
+ a1 = mpc_shift(mpc_add(a, b, wp), -1)
+ b1 = mpc_sqrt(mpc_mul(a, b, wp), wp)
+ a, b = a1, b1
+ size = mpf_min_max([mpc_abs(a,10), mpc_abs(b,10)])[1]
+ err = mpc_abs(mpc_sub(a, b, 10), 10)
+ if size == fzero or mpf_lt(err, mpf_mul(eps, size)):
+ return a
+
+def mpc_agm1(a, prec, rnd=round_fast):
+ return mpc_agm(mpc_one, a, prec, rnd)
+
+def mpf_ellipk(x, prec, rnd=round_fast):
+ if not x[1]:
+ if x == fzero:
+ return mpf_shift(mpf_pi(prec, rnd), -1)
+ if x == fninf:
+ return fzero
+ if x == fnan:
+ return x
+ if x == fone:
+ return finf
+ # TODO: for |x| << 1/2, one could use fall back to
+ # pi/2 * hyp2f1_rat((1,2),(1,2),(1,1), x)
+ wp = prec + 15
+ # Use K(x) = pi/2/agm(1,a) where a = sqrt(1-x)
+ # The sqrt raises ComplexResult if x > 0
+ a = mpf_sqrt(mpf_sub(fone, x, wp), wp)
+ v = mpf_agm1(a, wp)
+ r = mpf_div(mpf_pi(wp), v, prec, rnd)
+ return mpf_shift(r, -1)
+
+def mpc_ellipk(z, prec, rnd=round_fast):
+ re, im = z
+ if im == fzero:
+ if re == finf:
+ return mpc_zero
+ if mpf_le(re, fone):
+ return mpf_ellipk(re, prec, rnd), fzero
+ wp = prec + 15
+ a = mpc_sqrt(mpc_sub(mpc_one, z, wp), wp)
+ v = mpc_agm1(a, wp)
+ r = mpc_mpf_div(mpf_pi(wp), v, prec, rnd)
+ return mpc_shift(r, -1)
+
+def mpf_ellipe(x, prec, rnd=round_fast):
+ # http://functions.wolfram.com/EllipticIntegrals/
+ # EllipticK/20/01/0001/
+ # E = (1-m)*(K'(m)*2*m + K(m))
+ sign, man, exp, bc = x
+ if not man:
+ if x == fzero:
+ return mpf_shift(mpf_pi(prec, rnd), -1)
+ if x == fninf:
+ return finf
+ if x == fnan:
+ return x
+ if x == finf:
+ raise ComplexResult
+ if x == fone:
+ return fone
+ wp = prec+20
+ mag = exp+bc
+ if mag < -wp:
+ return mpf_shift(mpf_pi(prec, rnd), -1)
+ # Compute a finite difference for K'
+ p = max(mag, 0) - wp
+ h = mpf_shift(fone, p)
+ K = mpf_ellipk(x, 2*wp)
+ Kh = mpf_ellipk(mpf_sub(x, h), 2*wp)
+ Kdiff = mpf_shift(mpf_sub(K, Kh), -p)
+ t = mpf_sub(fone, x)
+ b = mpf_mul(Kdiff, mpf_shift(x,1), wp)
+ return mpf_mul(t, mpf_add(K, b), prec, rnd)
+
+def mpc_ellipe(z, prec, rnd=round_fast):
+ re, im = z
+ if im == fzero:
+ if re == finf:
+ return (fzero, finf)
+ if mpf_le(re, fone):
+ return mpf_ellipe(re, prec, rnd), fzero
+ wp = prec + 15
+ mag = mpc_abs(z, 1)
+ p = max(mag[2]+mag[3], 0) - wp
+ h = mpf_shift(fone, p)
+ K = mpc_ellipk(z, 2*wp)
+ Kh = mpc_ellipk(mpc_add_mpf(z, h, 2*wp), 2*wp)
+ Kdiff = mpc_shift(mpc_sub(Kh, K, wp), -p)
+ t = mpc_sub(mpc_one, z, wp)
+ b = mpc_mul(Kdiff, mpc_shift(z,1), wp)
+ return mpc_mul(t, mpc_add(K, b, wp), prec, rnd)
diff --git a/venv/lib/python3.10/site-packages/mpmath/libmp/libintmath.py b/venv/lib/python3.10/site-packages/mpmath/libmp/libintmath.py
new file mode 100644
index 0000000000000000000000000000000000000000..7880546e135639208d136488408b102ad41682a2
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/mpmath/libmp/libintmath.py
@@ -0,0 +1,584 @@
+"""
+Utility functions for integer math.
+
+TODO: rename, cleanup, perhaps move the gmpy wrapper code
+here from settings.py
+
+"""
+
+import math
+from bisect import bisect
+
+from .backend import xrange
+from .backend import BACKEND, gmpy, sage, sage_utils, MPZ, MPZ_ONE, MPZ_ZERO
+
+small_trailing = [0] * 256
+for j in range(1,8):
+ small_trailing[1<>> giant_steps(50,1000)
+ [66, 128, 253, 502, 1000]
+ >>> giant_steps(50,1000,4)
+ [65, 252, 1000]
+
+ """
+ L = [target]
+ while L[-1] > start*n:
+ L = L + [L[-1]//n + 2]
+ return L[::-1]
+
+def rshift(x, n):
+ """For an integer x, calculate x >> n with the fastest (floor)
+ rounding. Unlike the plain Python expression (x >> n), n is
+ allowed to be negative, in which case a left shift is performed."""
+ if n >= 0: return x >> n
+ else: return x << (-n)
+
+def lshift(x, n):
+ """For an integer x, calculate x << n. Unlike the plain Python
+ expression (x << n), n is allowed to be negative, in which case a
+ right shift with default (floor) rounding is performed."""
+ if n >= 0: return x << n
+ else: return x >> (-n)
+
+if BACKEND == 'sage':
+ import operator
+ rshift = operator.rshift
+ lshift = operator.lshift
+
+def python_trailing(n):
+ """Count the number of trailing zero bits in abs(n)."""
+ if not n:
+ return 0
+ low_byte = n & 0xff
+ if low_byte:
+ return small_trailing[low_byte]
+ t = 8
+ n >>= 8
+ while not n & 0xff:
+ n >>= 8
+ t += 8
+ return t + small_trailing[n & 0xff]
+
+if BACKEND == 'gmpy':
+ if gmpy.version() >= '2':
+ def gmpy_trailing(n):
+ """Count the number of trailing zero bits in abs(n) using gmpy."""
+ if n: return MPZ(n).bit_scan1()
+ else: return 0
+ else:
+ def gmpy_trailing(n):
+ """Count the number of trailing zero bits in abs(n) using gmpy."""
+ if n: return MPZ(n).scan1()
+ else: return 0
+
+# Small powers of 2
+powers = [1<<_ for _ in range(300)]
+
+def python_bitcount(n):
+ """Calculate bit size of the nonnegative integer n."""
+ bc = bisect(powers, n)
+ if bc != 300:
+ return bc
+ bc = int(math.log(n, 2)) - 4
+ return bc + bctable[n>>bc]
+
+def gmpy_bitcount(n):
+ """Calculate bit size of the nonnegative integer n."""
+ if n: return MPZ(n).numdigits(2)
+ else: return 0
+
+#def sage_bitcount(n):
+# if n: return MPZ(n).nbits()
+# else: return 0
+
+def sage_trailing(n):
+ return MPZ(n).trailing_zero_bits()
+
+if BACKEND == 'gmpy':
+ bitcount = gmpy_bitcount
+ trailing = gmpy_trailing
+elif BACKEND == 'sage':
+ sage_bitcount = sage_utils.bitcount
+ bitcount = sage_bitcount
+ trailing = sage_trailing
+else:
+ bitcount = python_bitcount
+ trailing = python_trailing
+
+if BACKEND == 'gmpy' and 'bit_length' in dir(gmpy):
+ bitcount = gmpy.bit_length
+
+# Used to avoid slow function calls as far as possible
+trailtable = [trailing(n) for n in range(256)]
+bctable = [bitcount(n) for n in range(1024)]
+
+# TODO: speed up for bases 2, 4, 8, 16, ...
+
+def bin_to_radix(x, xbits, base, bdigits):
+ """Changes radix of a fixed-point number; i.e., converts
+ x * 2**xbits to floor(x * 10**bdigits)."""
+ return x * (MPZ(base)**bdigits) >> xbits
+
+stddigits = '0123456789abcdefghijklmnopqrstuvwxyz'
+
+def small_numeral(n, base=10, digits=stddigits):
+ """Return the string numeral of a positive integer in an arbitrary
+ base. Most efficient for small input."""
+ if base == 10:
+ return str(n)
+ digs = []
+ while n:
+ n, digit = divmod(n, base)
+ digs.append(digits[digit])
+ return "".join(digs[::-1])
+
+def numeral_python(n, base=10, size=0, digits=stddigits):
+ """Represent the integer n as a string of digits in the given base.
+ Recursive division is used to make this function about 3x faster
+ than Python's str() for converting integers to decimal strings.
+
+ The 'size' parameters specifies the number of digits in n; this
+ number is only used to determine splitting points and need not be
+ exact."""
+ if n <= 0:
+ if not n:
+ return "0"
+ return "-" + numeral(-n, base, size, digits)
+ # Fast enough to do directly
+ if size < 250:
+ return small_numeral(n, base, digits)
+ # Divide in half
+ half = (size // 2) + (size & 1)
+ A, B = divmod(n, base**half)
+ ad = numeral(A, base, half, digits)
+ bd = numeral(B, base, half, digits).rjust(half, "0")
+ return ad + bd
+
+def numeral_gmpy(n, base=10, size=0, digits=stddigits):
+ """Represent the integer n as a string of digits in the given base.
+ Recursive division is used to make this function about 3x faster
+ than Python's str() for converting integers to decimal strings.
+
+ The 'size' parameters specifies the number of digits in n; this
+ number is only used to determine splitting points and need not be
+ exact."""
+ if n < 0:
+ return "-" + numeral(-n, base, size, digits)
+ # gmpy.digits() may cause a segmentation fault when trying to convert
+ # extremely large values to a string. The size limit may need to be
+ # adjusted on some platforms, but 1500000 works on Windows and Linux.
+ if size < 1500000:
+ return gmpy.digits(n, base)
+ # Divide in half
+ half = (size // 2) + (size & 1)
+ A, B = divmod(n, MPZ(base)**half)
+ ad = numeral(A, base, half, digits)
+ bd = numeral(B, base, half, digits).rjust(half, "0")
+ return ad + bd
+
+if BACKEND == "gmpy":
+ numeral = numeral_gmpy
+else:
+ numeral = numeral_python
+
+_1_800 = 1<<800
+_1_600 = 1<<600
+_1_400 = 1<<400
+_1_200 = 1<<200
+_1_100 = 1<<100
+_1_50 = 1<<50
+
+def isqrt_small_python(x):
+ """
+ Correctly (floor) rounded integer square root, using
+ division. Fast up to ~200 digits.
+ """
+ if not x:
+ return x
+ if x < _1_800:
+ # Exact with IEEE double precision arithmetic
+ if x < _1_50:
+ return int(x**0.5)
+ # Initial estimate can be any integer >= the true root; round up
+ r = int(x**0.5 * 1.00000000000001) + 1
+ else:
+ bc = bitcount(x)
+ n = bc//2
+ r = int((x>>(2*n-100))**0.5+2)<<(n-50) # +2 is to round up
+ # The following iteration now precisely computes floor(sqrt(x))
+ # See e.g. Crandall & Pomerance, "Prime Numbers: A Computational
+ # Perspective"
+ while 1:
+ y = (r+x//r)>>1
+ if y >= r:
+ return r
+ r = y
+
+def isqrt_fast_python(x):
+ """
+ Fast approximate integer square root, computed using division-free
+ Newton iteration for large x. For random integers the result is almost
+ always correct (floor(sqrt(x))), but is 1 ulp too small with a roughly
+ 0.1% probability. If x is very close to an exact square, the answer is
+ 1 ulp wrong with high probability.
+
+ With 0 guard bits, the largest error over a set of 10^5 random
+ inputs of size 1-10^5 bits was 3 ulp. The use of 10 guard bits
+ almost certainly guarantees a max 1 ulp error.
+ """
+ # Use direct division-based iteration if sqrt(x) < 2^400
+ # Assume floating-point square root accurate to within 1 ulp, then:
+ # 0 Newton iterations good to 52 bits
+ # 1 Newton iterations good to 104 bits
+ # 2 Newton iterations good to 208 bits
+ # 3 Newton iterations good to 416 bits
+ if x < _1_800:
+ y = int(x**0.5)
+ if x >= _1_100:
+ y = (y + x//y) >> 1
+ if x >= _1_200:
+ y = (y + x//y) >> 1
+ if x >= _1_400:
+ y = (y + x//y) >> 1
+ return y
+ bc = bitcount(x)
+ guard_bits = 10
+ x <<= 2*guard_bits
+ bc += 2*guard_bits
+ bc += (bc&1)
+ hbc = bc//2
+ startprec = min(50, hbc)
+ # Newton iteration for 1/sqrt(x), with floating-point starting value
+ r = int(2.0**(2*startprec) * (x >> (bc-2*startprec)) ** -0.5)
+ pp = startprec
+ for p in giant_steps(startprec, hbc):
+ # r**2, scaled from real size 2**(-bc) to 2**p
+ r2 = (r*r) >> (2*pp - p)
+ # x*r**2, scaled from real size ~1.0 to 2**p
+ xr2 = ((x >> (bc-p)) * r2) >> p
+ # New value of r, scaled from real size 2**(-bc/2) to 2**p
+ r = (r * ((3<> (pp+1)
+ pp = p
+ # (1/sqrt(x))*x = sqrt(x)
+ return (r*(x>>hbc)) >> (p+guard_bits)
+
+def sqrtrem_python(x):
+ """Correctly rounded integer (floor) square root with remainder."""
+ # to check cutoff:
+ # plot(lambda x: timing(isqrt, 2**int(x)), [0,2000])
+ if x < _1_600:
+ y = isqrt_small_python(x)
+ return y, x - y*y
+ y = isqrt_fast_python(x) + 1
+ rem = x - y*y
+ # Correct remainder
+ while rem < 0:
+ y -= 1
+ rem += (1+2*y)
+ else:
+ if rem:
+ while rem > 2*(1+y):
+ y += 1
+ rem -= (1+2*y)
+ return y, rem
+
+def isqrt_python(x):
+ """Integer square root with correct (floor) rounding."""
+ return sqrtrem_python(x)[0]
+
+def sqrt_fixed(x, prec):
+ return isqrt_fast(x<= '2':
+ isqrt_small = isqrt_fast = isqrt = gmpy.isqrt
+ sqrtrem = gmpy.isqrt_rem
+ else:
+ isqrt_small = isqrt_fast = isqrt = gmpy.sqrt
+ sqrtrem = gmpy.sqrtrem
+elif BACKEND == 'sage':
+ isqrt_small = isqrt_fast = isqrt = \
+ getattr(sage_utils, "isqrt", lambda n: MPZ(n).isqrt())
+ sqrtrem = lambda n: MPZ(n).sqrtrem()
+else:
+ isqrt_small = isqrt_small_python
+ isqrt_fast = isqrt_fast_python
+ isqrt = isqrt_python
+ sqrtrem = sqrtrem_python
+
+
+def ifib(n, _cache={}):
+ """Computes the nth Fibonacci number as an integer, for
+ integer n."""
+ if n < 0:
+ return (-1)**(-n+1) * ifib(-n)
+ if n in _cache:
+ return _cache[n]
+ m = n
+ # Use Dijkstra's logarithmic algorithm
+ # The following implementation is basically equivalent to
+ # http://en.literateprograms.org/Fibonacci_numbers_(Scheme)
+ a, b, p, q = MPZ_ONE, MPZ_ZERO, MPZ_ZERO, MPZ_ONE
+ while n:
+ if n & 1:
+ aq = a*q
+ a, b = b*q+aq+a*p, b*p+aq
+ n -= 1
+ else:
+ qq = q*q
+ p, q = p*p+qq, qq+2*p*q
+ n >>= 1
+ if m < 250:
+ _cache[m] = b
+ return b
+
+MAX_FACTORIAL_CACHE = 1000
+
+def ifac(n, memo={0:1, 1:1}):
+ """Return n factorial (for integers n >= 0 only)."""
+ f = memo.get(n)
+ if f:
+ return f
+ k = len(memo)
+ p = memo[k-1]
+ MAX = MAX_FACTORIAL_CACHE
+ while k <= n:
+ p *= k
+ if k <= MAX:
+ memo[k] = p
+ k += 1
+ return p
+
+def ifac2(n, memo_pair=[{0:1}, {1:1}]):
+ """Return n!! (double factorial), integers n >= 0 only."""
+ memo = memo_pair[n&1]
+ f = memo.get(n)
+ if f:
+ return f
+ k = max(memo)
+ p = memo[k]
+ MAX = MAX_FACTORIAL_CACHE
+ while k < n:
+ k += 2
+ p *= k
+ if k <= MAX:
+ memo[k] = p
+ return p
+
+if BACKEND == 'gmpy':
+ ifac = gmpy.fac
+elif BACKEND == 'sage':
+ ifac = lambda n: int(sage.factorial(n))
+ ifib = sage.fibonacci
+
+def list_primes(n):
+ n = n + 1
+ sieve = list(xrange(n))
+ sieve[:2] = [0, 0]
+ for i in xrange(2, int(n**0.5)+1):
+ if sieve[i]:
+ for j in xrange(i**2, n, i):
+ sieve[j] = 0
+ return [p for p in sieve if p]
+
+if BACKEND == 'sage':
+ # Note: it is *VERY* important for performance that we convert
+ # the list to Python ints.
+ def list_primes(n):
+ return [int(_) for _ in sage.primes(n+1)]
+
+small_odd_primes = (3,5,7,11,13,17,19,23,29,31,37,41,43,47)
+small_odd_primes_set = set(small_odd_primes)
+
+def isprime(n):
+ """
+ Determines whether n is a prime number. A probabilistic test is
+ performed if n is very large. No special trick is used for detecting
+ perfect powers.
+
+ >>> sum(list_primes(100000))
+ 454396537
+ >>> sum(n*isprime(n) for n in range(100000))
+ 454396537
+
+ """
+ n = int(n)
+ if not n & 1:
+ return n == 2
+ if n < 50:
+ return n in small_odd_primes_set
+ for p in small_odd_primes:
+ if not n % p:
+ return False
+ m = n-1
+ s = trailing(m)
+ d = m >> s
+ def test(a):
+ x = pow(a,d,n)
+ if x == 1 or x == m:
+ return True
+ for r in xrange(1,s):
+ x = x**2 % n
+ if x == m:
+ return True
+ return False
+ # See http://primes.utm.edu/prove/prove2_3.html
+ if n < 1373653:
+ witnesses = [2,3]
+ elif n < 341550071728321:
+ witnesses = [2,3,5,7,11,13,17]
+ else:
+ witnesses = small_odd_primes
+ for a in witnesses:
+ if not test(a):
+ return False
+ return True
+
+def moebius(n):
+ """
+ Evaluates the Moebius function which is `mu(n) = (-1)^k` if `n`
+ is a product of `k` distinct primes and `mu(n) = 0` otherwise.
+
+ TODO: speed up using factorization
+ """
+ n = abs(int(n))
+ if n < 2:
+ return n
+ factors = []
+ for p in xrange(2, n+1):
+ if not (n % p):
+ if not (n % p**2):
+ return 0
+ if not sum(p % f for f in factors):
+ factors.append(p)
+ return (-1)**len(factors)
+
+def gcd(*args):
+ a = 0
+ for b in args:
+ if a:
+ while b:
+ a, b = b, a % b
+ else:
+ a = b
+ return a
+
+
+# Comment by Juan Arias de Reyna:
+#
+# I learn this method to compute EulerE[2n] from van de Lune.
+#
+# We apply the formula EulerE[2n] = (-1)^n 2**(-2n) sum_{j=0}^n a(2n,2j+1)
+#
+# where the numbers a(n,j) vanish for j > n+1 or j <= -1 and satisfies
+#
+# a(0,-1) = a(0,0) = 0; a(0,1)= 1; a(0,2) = a(0,3) = 0
+#
+# a(n,j) = a(n-1,j) when n+j is even
+# a(n,j) = (j-1) a(n-1,j-1) + (j+1) a(n-1,j+1) when n+j is odd
+#
+#
+# But we can use only one array unidimensional a(j) since to compute
+# a(n,j) we only need to know a(n-1,k) where k and j are of different parity
+# and we have not to conserve the used values.
+#
+# We cached up the values of Euler numbers to sufficiently high order.
+#
+# Important Observation: If we pretend to use the numbers
+# EulerE[1], EulerE[2], ... , EulerE[n]
+# it is convenient to compute first EulerE[n], since the algorithm
+# computes first all
+# the previous ones, and keeps them in the CACHE
+
+MAX_EULER_CACHE = 500
+
+def eulernum(m, _cache={0:MPZ_ONE}):
+ r"""
+ Computes the Euler numbers `E(n)`, which can be defined as
+ coefficients of the Taylor expansion of `1/cosh x`:
+
+ .. math ::
+
+ \frac{1}{\cosh x} = \sum_{n=0}^\infty \frac{E_n}{n!} x^n
+
+ Example::
+
+ >>> [int(eulernum(n)) for n in range(11)]
+ [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521]
+ >>> [int(eulernum(n)) for n in range(11)] # test cache
+ [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521]
+
+ """
+ # for odd m > 1, the Euler numbers are zero
+ if m & 1:
+ return MPZ_ZERO
+ f = _cache.get(m)
+ if f:
+ return f
+ MAX = MAX_EULER_CACHE
+ n = m
+ a = [MPZ(_) for _ in [0,0,1,0,0,0]]
+ for n in range(1, m+1):
+ for j in range(n+1, -1, -2):
+ a[j+1] = (j-1)*a[j] + (j+1)*a[j+2]
+ a.append(0)
+ suma = 0
+ for k in range(n+1, -1, -2):
+ suma += a[k+1]
+ if n <= MAX:
+ _cache[n] = ((-1)**(n//2))*(suma // 2**n)
+ if n == m:
+ return ((-1)**(n//2))*suma // 2**n
+
+def stirling1(n, k):
+ """
+ Stirling number of the first kind.
+ """
+ if n < 0 or k < 0:
+ raise ValueError
+ if k >= n:
+ return MPZ(n == k)
+ if k < 1:
+ return MPZ_ZERO
+ L = [MPZ_ZERO] * (k+1)
+ L[1] = MPZ_ONE
+ for m in xrange(2, n+1):
+ for j in xrange(min(k, m), 0, -1):
+ L[j] = (m-1) * L[j] + L[j-1]
+ return (-1)**(n+k) * L[k]
+
+def stirling2(n, k):
+ """
+ Stirling number of the second kind.
+ """
+ if n < 0 or k < 0:
+ raise ValueError
+ if k >= n:
+ return MPZ(n == k)
+ if k <= 1:
+ return MPZ(k == 1)
+ s = MPZ_ZERO
+ t = MPZ_ONE
+ for j in xrange(k+1):
+ if (k + j) & 1:
+ s -= t * MPZ(j)**n
+ else:
+ s += t * MPZ(j)**n
+ t = t * (k - j) // (j + 1)
+ return s // ifac(k)
diff --git a/venv/lib/python3.10/site-packages/mpmath/libmp/libmpc.py b/venv/lib/python3.10/site-packages/mpmath/libmp/libmpc.py
new file mode 100644
index 0000000000000000000000000000000000000000..cc22d0e73674676c8a9249ebc2d48da7f3be8b0d
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/mpmath/libmp/libmpc.py
@@ -0,0 +1,835 @@
+"""
+Low-level functions for complex arithmetic.
+"""
+
+import sys
+
+from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, BACKEND
+
+from .libmpf import (\
+ round_floor, round_ceiling, round_down, round_up,
+ round_nearest, round_fast, bitcount,
+ bctable, normalize, normalize1, reciprocal_rnd, rshift, lshift, giant_steps,
+ negative_rnd,
+ to_str, to_fixed, from_man_exp, from_float, to_float, from_int, to_int,
+ fzero, fone, ftwo, fhalf, finf, fninf, fnan, fnone,
+ mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul,
+ mpf_div, mpf_mul_int, mpf_shift, mpf_sqrt, mpf_hypot,
+ mpf_rdiv_int, mpf_floor, mpf_ceil, mpf_nint, mpf_frac,
+ mpf_sign, mpf_hash,
+ ComplexResult
+)
+
+from .libelefun import (\
+ mpf_pi, mpf_exp, mpf_log, mpf_cos_sin, mpf_cosh_sinh, mpf_tan, mpf_pow_int,
+ mpf_log_hypot,
+ mpf_cos_sin_pi, mpf_phi,
+ mpf_cos, mpf_sin, mpf_cos_pi, mpf_sin_pi,
+ mpf_atan, mpf_atan2, mpf_cosh, mpf_sinh, mpf_tanh,
+ mpf_asin, mpf_acos, mpf_acosh, mpf_nthroot, mpf_fibonacci
+)
+
+# An mpc value is a (real, imag) tuple
+mpc_one = fone, fzero
+mpc_zero = fzero, fzero
+mpc_two = ftwo, fzero
+mpc_half = (fhalf, fzero)
+
+_infs = (finf, fninf)
+_infs_nan = (finf, fninf, fnan)
+
+def mpc_is_inf(z):
+ """Check if either real or imaginary part is infinite"""
+ re, im = z
+ if re in _infs: return True
+ if im in _infs: return True
+ return False
+
+def mpc_is_infnan(z):
+ """Check if either real or imaginary part is infinite or nan"""
+ re, im = z
+ if re in _infs_nan: return True
+ if im in _infs_nan: return True
+ return False
+
+def mpc_to_str(z, dps, **kwargs):
+ re, im = z
+ rs = to_str(re, dps)
+ if im[0]:
+ return rs + " - " + to_str(mpf_neg(im), dps, **kwargs) + "j"
+ else:
+ return rs + " + " + to_str(im, dps, **kwargs) + "j"
+
+def mpc_to_complex(z, strict=False, rnd=round_fast):
+ re, im = z
+ return complex(to_float(re, strict, rnd), to_float(im, strict, rnd))
+
+def mpc_hash(z):
+ if sys.version_info >= (3, 2):
+ re, im = z
+ h = mpf_hash(re) + sys.hash_info.imag * mpf_hash(im)
+ # Need to reduce either module 2^32 or 2^64
+ h = h % (2**sys.hash_info.width)
+ return int(h)
+ else:
+ try:
+ return hash(mpc_to_complex(z, strict=True))
+ except OverflowError:
+ return hash(z)
+
+def mpc_conjugate(z, prec, rnd=round_fast):
+ re, im = z
+ return re, mpf_neg(im, prec, rnd)
+
+def mpc_is_nonzero(z):
+ return z != mpc_zero
+
+def mpc_add(z, w, prec, rnd=round_fast):
+ a, b = z
+ c, d = w
+ return mpf_add(a, c, prec, rnd), mpf_add(b, d, prec, rnd)
+
+def mpc_add_mpf(z, x, prec, rnd=round_fast):
+ a, b = z
+ return mpf_add(a, x, prec, rnd), b
+
+def mpc_sub(z, w, prec=0, rnd=round_fast):
+ a, b = z
+ c, d = w
+ return mpf_sub(a, c, prec, rnd), mpf_sub(b, d, prec, rnd)
+
+def mpc_sub_mpf(z, p, prec=0, rnd=round_fast):
+ a, b = z
+ return mpf_sub(a, p, prec, rnd), b
+
+def mpc_pos(z, prec, rnd=round_fast):
+ a, b = z
+ return mpf_pos(a, prec, rnd), mpf_pos(b, prec, rnd)
+
+def mpc_neg(z, prec=None, rnd=round_fast):
+ a, b = z
+ return mpf_neg(a, prec, rnd), mpf_neg(b, prec, rnd)
+
+def mpc_shift(z, n):
+ a, b = z
+ return mpf_shift(a, n), mpf_shift(b, n)
+
+def mpc_abs(z, prec, rnd=round_fast):
+ """Absolute value of a complex number, |a+bi|.
+ Returns an mpf value."""
+ a, b = z
+ return mpf_hypot(a, b, prec, rnd)
+
+def mpc_arg(z, prec, rnd=round_fast):
+ """Argument of a complex number. Returns an mpf value."""
+ a, b = z
+ return mpf_atan2(b, a, prec, rnd)
+
+def mpc_floor(z, prec, rnd=round_fast):
+ a, b = z
+ return mpf_floor(a, prec, rnd), mpf_floor(b, prec, rnd)
+
+def mpc_ceil(z, prec, rnd=round_fast):
+ a, b = z
+ return mpf_ceil(a, prec, rnd), mpf_ceil(b, prec, rnd)
+
+def mpc_nint(z, prec, rnd=round_fast):
+ a, b = z
+ return mpf_nint(a, prec, rnd), mpf_nint(b, prec, rnd)
+
+def mpc_frac(z, prec, rnd=round_fast):
+ a, b = z
+ return mpf_frac(a, prec, rnd), mpf_frac(b, prec, rnd)
+
+
+def mpc_mul(z, w, prec, rnd=round_fast):
+ """
+ Complex multiplication.
+
+ Returns the real and imaginary part of (a+bi)*(c+di), rounded to
+ the specified precision. The rounding mode applies to the real and
+ imaginary parts separately.
+ """
+ a, b = z
+ c, d = w
+ p = mpf_mul(a, c)
+ q = mpf_mul(b, d)
+ r = mpf_mul(a, d)
+ s = mpf_mul(b, c)
+ re = mpf_sub(p, q, prec, rnd)
+ im = mpf_add(r, s, prec, rnd)
+ return re, im
+
+def mpc_square(z, prec, rnd=round_fast):
+ # (a+b*I)**2 == a**2 - b**2 + 2*I*a*b
+ a, b = z
+ p = mpf_mul(a,a)
+ q = mpf_mul(b,b)
+ r = mpf_mul(a,b, prec, rnd)
+ re = mpf_sub(p, q, prec, rnd)
+ im = mpf_shift(r, 1)
+ return re, im
+
+def mpc_mul_mpf(z, p, prec, rnd=round_fast):
+ a, b = z
+ re = mpf_mul(a, p, prec, rnd)
+ im = mpf_mul(b, p, prec, rnd)
+ return re, im
+
+def mpc_mul_imag_mpf(z, x, prec, rnd=round_fast):
+ """
+ Multiply the mpc value z by I*x where x is an mpf value.
+ """
+ a, b = z
+ re = mpf_neg(mpf_mul(b, x, prec, rnd))
+ im = mpf_mul(a, x, prec, rnd)
+ return re, im
+
+def mpc_mul_int(z, n, prec, rnd=round_fast):
+ a, b = z
+ re = mpf_mul_int(a, n, prec, rnd)
+ im = mpf_mul_int(b, n, prec, rnd)
+ return re, im
+
+def mpc_div(z, w, prec, rnd=round_fast):
+ a, b = z
+ c, d = w
+ wp = prec + 10
+ # mag = c*c + d*d
+ mag = mpf_add(mpf_mul(c, c), mpf_mul(d, d), wp)
+ # (a*c+b*d)/mag, (b*c-a*d)/mag
+ t = mpf_add(mpf_mul(a,c), mpf_mul(b,d), wp)
+ u = mpf_sub(mpf_mul(b,c), mpf_mul(a,d), wp)
+ return mpf_div(t,mag,prec,rnd), mpf_div(u,mag,prec,rnd)
+
+def mpc_div_mpf(z, p, prec, rnd=round_fast):
+ """Calculate z/p where p is real"""
+ a, b = z
+ re = mpf_div(a, p, prec, rnd)
+ im = mpf_div(b, p, prec, rnd)
+ return re, im
+
+def mpc_reciprocal(z, prec, rnd=round_fast):
+ """Calculate 1/z efficiently"""
+ a, b = z
+ m = mpf_add(mpf_mul(a,a),mpf_mul(b,b),prec+10)
+ re = mpf_div(a, m, prec, rnd)
+ im = mpf_neg(mpf_div(b, m, prec, rnd))
+ return re, im
+
+def mpc_mpf_div(p, z, prec, rnd=round_fast):
+ """Calculate p/z where p is real efficiently"""
+ a, b = z
+ m = mpf_add(mpf_mul(a,a),mpf_mul(b,b), prec+10)
+ re = mpf_div(mpf_mul(a,p), m, prec, rnd)
+ im = mpf_div(mpf_neg(mpf_mul(b,p)), m, prec, rnd)
+ return re, im
+
+def complex_int_pow(a, b, n):
+ """Complex integer power: computes (a+b*I)**n exactly for
+ nonnegative n (a and b must be Python ints)."""
+ wre = 1
+ wim = 0
+ while n:
+ if n & 1:
+ wre, wim = wre*a - wim*b, wim*a + wre*b
+ n -= 1
+ a, b = a*a - b*b, 2*a*b
+ n //= 2
+ return wre, wim
+
+def mpc_pow(z, w, prec, rnd=round_fast):
+ if w[1] == fzero:
+ return mpc_pow_mpf(z, w[0], prec, rnd)
+ return mpc_exp(mpc_mul(mpc_log(z, prec+10), w, prec+10), prec, rnd)
+
+def mpc_pow_mpf(z, p, prec, rnd=round_fast):
+ psign, pman, pexp, pbc = p
+ if pexp >= 0:
+ return mpc_pow_int(z, (-1)**psign * (pman< 0:
+ aman <<= de
+ aexp = bexp
+ else:
+ bman <<= (-de)
+ bexp = aexp
+ re, im = complex_int_pow(aman, bman, n)
+ re = from_man_exp(re, int(n*aexp), prec, rnd)
+ im = from_man_exp(im, int(n*bexp), prec, rnd)
+ return re, im
+ return mpc_exp(mpc_mul_int(mpc_log(z, prec+10), n, prec+10), prec, rnd)
+
+def mpc_sqrt(z, prec, rnd=round_fast):
+ """Complex square root (principal branch).
+
+ We have sqrt(a+bi) = sqrt((r+a)/2) + b/sqrt(2*(r+a))*i where
+ r = abs(a+bi), when a+bi is not a negative real number."""
+ a, b = z
+ if b == fzero:
+ if a == fzero:
+ return (a, b)
+ # When a+bi is a negative real number, we get a real sqrt times i
+ if a[0]:
+ im = mpf_sqrt(mpf_neg(a), prec, rnd)
+ return (fzero, im)
+ else:
+ re = mpf_sqrt(a, prec, rnd)
+ return (re, fzero)
+ wp = prec+20
+ if not a[0]: # case a positive
+ t = mpf_add(mpc_abs((a, b), wp), a, wp) # t = abs(a+bi) + a
+ u = mpf_shift(t, -1) # u = t/2
+ re = mpf_sqrt(u, prec, rnd) # re = sqrt(u)
+ v = mpf_shift(t, 1) # v = 2*t
+ w = mpf_sqrt(v, wp) # w = sqrt(v)
+ im = mpf_div(b, w, prec, rnd) # im = b / w
+ else: # case a negative
+ t = mpf_sub(mpc_abs((a, b), wp), a, wp) # t = abs(a+bi) - a
+ u = mpf_shift(t, -1) # u = t/2
+ im = mpf_sqrt(u, prec, rnd) # im = sqrt(u)
+ v = mpf_shift(t, 1) # v = 2*t
+ w = mpf_sqrt(v, wp) # w = sqrt(v)
+ re = mpf_div(b, w, prec, rnd) # re = b/w
+ if b[0]:
+ re = mpf_neg(re)
+ im = mpf_neg(im)
+ return re, im
+
+def mpc_nthroot_fixed(a, b, n, prec):
+ # a, b signed integers at fixed precision prec
+ start = 50
+ a1 = int(rshift(a, prec - n*start))
+ b1 = int(rshift(b, prec - n*start))
+ try:
+ r = (a1 + 1j * b1)**(1.0/n)
+ re = r.real
+ im = r.imag
+ re = MPZ(int(re))
+ im = MPZ(int(im))
+ except OverflowError:
+ a1 = from_int(a1, start)
+ b1 = from_int(b1, start)
+ fn = from_int(n)
+ nth = mpf_rdiv_int(1, fn, start)
+ re, im = mpc_pow((a1, b1), (nth, fzero), start)
+ re = to_int(re)
+ im = to_int(im)
+ extra = 10
+ prevp = start
+ extra1 = n
+ for p in giant_steps(start, prec+extra):
+ # this is slow for large n, unlike int_pow_fixed
+ re2, im2 = complex_int_pow(re, im, n-1)
+ re2 = rshift(re2, (n-1)*prevp - p - extra1)
+ im2 = rshift(im2, (n-1)*prevp - p - extra1)
+ r4 = (re2*re2 + im2*im2) >> (p + extra1)
+ ap = rshift(a, prec - p)
+ bp = rshift(b, prec - p)
+ rec = (ap * re2 + bp * im2) >> p
+ imc = (-ap * im2 + bp * re2) >> p
+ reb = (rec << p) // r4
+ imb = (imc << p) // r4
+ re = (reb + (n-1)*lshift(re, p-prevp))//n
+ im = (imb + (n-1)*lshift(im, p-prevp))//n
+ prevp = p
+ return re, im
+
+def mpc_nthroot(z, n, prec, rnd=round_fast):
+ """
+ Complex n-th root.
+
+ Use Newton method as in the real case when it is faster,
+ otherwise use z**(1/n)
+ """
+ a, b = z
+ if a[0] == 0 and b == fzero:
+ re = mpf_nthroot(a, n, prec, rnd)
+ return (re, fzero)
+ if n < 2:
+ if n == 0:
+ return mpc_one
+ if n == 1:
+ return mpc_pos((a, b), prec, rnd)
+ if n == -1:
+ return mpc_div(mpc_one, (a, b), prec, rnd)
+ inverse = mpc_nthroot((a, b), -n, prec+5, reciprocal_rnd[rnd])
+ return mpc_div(mpc_one, inverse, prec, rnd)
+ if n <= 20:
+ prec2 = int(1.2 * (prec + 10))
+ asign, aman, aexp, abc = a
+ bsign, bman, bexp, bbc = b
+ pf = mpc_abs((a,b), prec)
+ if pf[-2] + pf[-1] > -10 and pf[-2] + pf[-1] < prec:
+ af = to_fixed(a, prec2)
+ bf = to_fixed(b, prec2)
+ re, im = mpc_nthroot_fixed(af, bf, n, prec2)
+ extra = 10
+ re = from_man_exp(re, -prec2-extra, prec2, rnd)
+ im = from_man_exp(im, -prec2-extra, prec2, rnd)
+ return re, im
+ fn = from_int(n)
+ prec2 = prec+10 + 10
+ nth = mpf_rdiv_int(1, fn, prec2)
+ re, im = mpc_pow((a, b), (nth, fzero), prec2, rnd)
+ re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
+ im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
+ return re, im
+
+def mpc_cbrt(z, prec, rnd=round_fast):
+ """
+ Complex cubic root.
+ """
+ return mpc_nthroot(z, 3, prec, rnd)
+
+def mpc_exp(z, prec, rnd=round_fast):
+ """
+ Complex exponential function.
+
+ We use the direct formula exp(a+bi) = exp(a) * (cos(b) + sin(b)*i)
+ for the computation. This formula is very nice because it is
+ pefectly stable; since we just do real multiplications, the only
+ numerical errors that can creep in are single-ulp rounding errors.
+
+ The formula is efficient since mpmath's real exp is quite fast and
+ since we can compute cos and sin simultaneously.
+
+ It is no problem if a and b are large; if the implementations of
+ exp/cos/sin are accurate and efficient for all real numbers, then
+ so is this function for all complex numbers.
+ """
+ a, b = z
+ if a == fzero:
+ return mpf_cos_sin(b, prec, rnd)
+ if b == fzero:
+ return mpf_exp(a, prec, rnd), fzero
+ mag = mpf_exp(a, prec+4, rnd)
+ c, s = mpf_cos_sin(b, prec+4, rnd)
+ re = mpf_mul(mag, c, prec, rnd)
+ im = mpf_mul(mag, s, prec, rnd)
+ return re, im
+
+def mpc_log(z, prec, rnd=round_fast):
+ re = mpf_log_hypot(z[0], z[1], prec, rnd)
+ im = mpc_arg(z, prec, rnd)
+ return re, im
+
+def mpc_cos(z, prec, rnd=round_fast):
+ """Complex cosine. The formula used is cos(a+bi) = cos(a)*cosh(b) -
+ sin(a)*sinh(b)*i.
+
+ The same comments apply as for the complex exp: only real
+ multiplications are pewrormed, so no cancellation errors are
+ possible. The formula is also efficient since we can compute both
+ pairs (cos, sin) and (cosh, sinh) in single stwps."""
+ a, b = z
+ if b == fzero:
+ return mpf_cos(a, prec, rnd), fzero
+ if a == fzero:
+ return mpf_cosh(b, prec, rnd), fzero
+ wp = prec + 6
+ c, s = mpf_cos_sin(a, wp)
+ ch, sh = mpf_cosh_sinh(b, wp)
+ re = mpf_mul(c, ch, prec, rnd)
+ im = mpf_mul(s, sh, prec, rnd)
+ return re, mpf_neg(im)
+
+def mpc_sin(z, prec, rnd=round_fast):
+ """Complex sine. We have sin(a+bi) = sin(a)*cosh(b) +
+ cos(a)*sinh(b)*i. See the docstring for mpc_cos for additional
+ comments."""
+ a, b = z
+ if b == fzero:
+ return mpf_sin(a, prec, rnd), fzero
+ if a == fzero:
+ return fzero, mpf_sinh(b, prec, rnd)
+ wp = prec + 6
+ c, s = mpf_cos_sin(a, wp)
+ ch, sh = mpf_cosh_sinh(b, wp)
+ re = mpf_mul(s, ch, prec, rnd)
+ im = mpf_mul(c, sh, prec, rnd)
+ return re, im
+
+def mpc_tan(z, prec, rnd=round_fast):
+ """Complex tangent. Computed as tan(a+bi) = sin(2a)/M + sinh(2b)/M*i
+ where M = cos(2a) + cosh(2b)."""
+ a, b = z
+ asign, aman, aexp, abc = a
+ bsign, bman, bexp, bbc = b
+ if b == fzero: return mpf_tan(a, prec, rnd), fzero
+ if a == fzero: return fzero, mpf_tanh(b, prec, rnd)
+ wp = prec + 15
+ a = mpf_shift(a, 1)
+ b = mpf_shift(b, 1)
+ c, s = mpf_cos_sin(a, wp)
+ ch, sh = mpf_cosh_sinh(b, wp)
+ # TODO: handle cancellation when c ~= -1 and ch ~= 1
+ mag = mpf_add(c, ch, wp)
+ re = mpf_div(s, mag, prec, rnd)
+ im = mpf_div(sh, mag, prec, rnd)
+ return re, im
+
+def mpc_cos_pi(z, prec, rnd=round_fast):
+ a, b = z
+ if b == fzero:
+ return mpf_cos_pi(a, prec, rnd), fzero
+ b = mpf_mul(b, mpf_pi(prec+5), prec+5)
+ if a == fzero:
+ return mpf_cosh(b, prec, rnd), fzero
+ wp = prec + 6
+ c, s = mpf_cos_sin_pi(a, wp)
+ ch, sh = mpf_cosh_sinh(b, wp)
+ re = mpf_mul(c, ch, prec, rnd)
+ im = mpf_mul(s, sh, prec, rnd)
+ return re, mpf_neg(im)
+
+def mpc_sin_pi(z, prec, rnd=round_fast):
+ a, b = z
+ if b == fzero:
+ return mpf_sin_pi(a, prec, rnd), fzero
+ b = mpf_mul(b, mpf_pi(prec+5), prec+5)
+ if a == fzero:
+ return fzero, mpf_sinh(b, prec, rnd)
+ wp = prec + 6
+ c, s = mpf_cos_sin_pi(a, wp)
+ ch, sh = mpf_cosh_sinh(b, wp)
+ re = mpf_mul(s, ch, prec, rnd)
+ im = mpf_mul(c, sh, prec, rnd)
+ return re, im
+
+def mpc_cos_sin(z, prec, rnd=round_fast):
+ a, b = z
+ if a == fzero:
+ ch, sh = mpf_cosh_sinh(b, prec, rnd)
+ return (ch, fzero), (fzero, sh)
+ if b == fzero:
+ c, s = mpf_cos_sin(a, prec, rnd)
+ return (c, fzero), (s, fzero)
+ wp = prec + 6
+ c, s = mpf_cos_sin(a, wp)
+ ch, sh = mpf_cosh_sinh(b, wp)
+ cre = mpf_mul(c, ch, prec, rnd)
+ cim = mpf_mul(s, sh, prec, rnd)
+ sre = mpf_mul(s, ch, prec, rnd)
+ sim = mpf_mul(c, sh, prec, rnd)
+ return (cre, mpf_neg(cim)), (sre, sim)
+
+def mpc_cos_sin_pi(z, prec, rnd=round_fast):
+ a, b = z
+ if b == fzero:
+ c, s = mpf_cos_sin_pi(a, prec, rnd)
+ return (c, fzero), (s, fzero)
+ b = mpf_mul(b, mpf_pi(prec+5), prec+5)
+ if a == fzero:
+ ch, sh = mpf_cosh_sinh(b, prec, rnd)
+ return (ch, fzero), (fzero, sh)
+ wp = prec + 6
+ c, s = mpf_cos_sin_pi(a, wp)
+ ch, sh = mpf_cosh_sinh(b, wp)
+ cre = mpf_mul(c, ch, prec, rnd)
+ cim = mpf_mul(s, sh, prec, rnd)
+ sre = mpf_mul(s, ch, prec, rnd)
+ sim = mpf_mul(c, sh, prec, rnd)
+ return (cre, mpf_neg(cim)), (sre, sim)
+
+def mpc_cosh(z, prec, rnd=round_fast):
+ """Complex hyperbolic cosine. Computed as cosh(z) = cos(z*i)."""
+ a, b = z
+ return mpc_cos((b, mpf_neg(a)), prec, rnd)
+
+def mpc_sinh(z, prec, rnd=round_fast):
+ """Complex hyperbolic sine. Computed as sinh(z) = -i*sin(z*i)."""
+ a, b = z
+ b, a = mpc_sin((b, a), prec, rnd)
+ return a, b
+
+def mpc_tanh(z, prec, rnd=round_fast):
+ """Complex hyperbolic tangent. Computed as tanh(z) = -i*tan(z*i)."""
+ a, b = z
+ b, a = mpc_tan((b, a), prec, rnd)
+ return a, b
+
+# TODO: avoid loss of accuracy
+def mpc_atan(z, prec, rnd=round_fast):
+ a, b = z
+ # atan(z) = (I/2)*(log(1-I*z) - log(1+I*z))
+ # x = 1-I*z = 1 + b - I*a
+ # y = 1+I*z = 1 - b + I*a
+ wp = prec + 15
+ x = mpf_add(fone, b, wp), mpf_neg(a)
+ y = mpf_sub(fone, b, wp), a
+ l1 = mpc_log(x, wp)
+ l2 = mpc_log(y, wp)
+ a, b = mpc_sub(l1, l2, prec, rnd)
+ # (I/2) * (a+b*I) = (-b/2 + a/2*I)
+ v = mpf_neg(mpf_shift(b,-1)), mpf_shift(a,-1)
+ # Subtraction at infinity gives correct real part but
+ # wrong imaginary part (should be zero)
+ if v[1] == fnan and mpc_is_inf(z):
+ v = (v[0], fzero)
+ return v
+
+beta_crossover = from_float(0.6417)
+alpha_crossover = from_float(1.5)
+
+def acos_asin(z, prec, rnd, n):
+ """ complex acos for n = 0, asin for n = 1
+ The algorithm is described in
+ T.E. Hull, T.F. Fairgrieve and P.T.P. Tang
+ 'Implementing the Complex Arcsine and Arcosine Functions
+ using Exception Handling',
+ ACM Trans. on Math. Software Vol. 23 (1997), p299
+ The complex acos and asin can be defined as
+ acos(z) = acos(beta) - I*sign(a)* log(alpha + sqrt(alpha**2 -1))
+ asin(z) = asin(beta) + I*sign(a)* log(alpha + sqrt(alpha**2 -1))
+ where z = a + I*b
+ alpha = (1/2)*(r + s); beta = (1/2)*(r - s) = a/alpha
+ r = sqrt((a+1)**2 + y**2); s = sqrt((a-1)**2 + y**2)
+ These expressions are rewritten in different ways in different
+ regions, delimited by two crossovers alpha_crossover and beta_crossover,
+ and by abs(a) <= 1, in order to improve the numerical accuracy.
+ """
+ a, b = z
+ wp = prec + 10
+ # special cases with real argument
+ if b == fzero:
+ am = mpf_sub(fone, mpf_abs(a), wp)
+ # case abs(a) <= 1
+ if not am[0]:
+ if n == 0:
+ return mpf_acos(a, prec, rnd), fzero
+ else:
+ return mpf_asin(a, prec, rnd), fzero
+ # cases abs(a) > 1
+ else:
+ # case a < -1
+ if a[0]:
+ pi = mpf_pi(prec, rnd)
+ c = mpf_acosh(mpf_neg(a), prec, rnd)
+ if n == 0:
+ return pi, mpf_neg(c)
+ else:
+ return mpf_neg(mpf_shift(pi, -1)), c
+ # case a > 1
+ else:
+ c = mpf_acosh(a, prec, rnd)
+ if n == 0:
+ return fzero, c
+ else:
+ pi = mpf_pi(prec, rnd)
+ return mpf_shift(pi, -1), mpf_neg(c)
+ asign = bsign = 0
+ if a[0]:
+ a = mpf_neg(a)
+ asign = 1
+ if b[0]:
+ b = mpf_neg(b)
+ bsign = 1
+ am = mpf_sub(fone, a, wp)
+ ap = mpf_add(fone, a, wp)
+ r = mpf_hypot(ap, b, wp)
+ s = mpf_hypot(am, b, wp)
+ alpha = mpf_shift(mpf_add(r, s, wp), -1)
+ beta = mpf_div(a, alpha, wp)
+ b2 = mpf_mul(b,b, wp)
+ # case beta <= beta_crossover
+ if not mpf_sub(beta_crossover, beta, wp)[0]:
+ if n == 0:
+ re = mpf_acos(beta, wp)
+ else:
+ re = mpf_asin(beta, wp)
+ else:
+ # to compute the real part in this region use the identity
+ # asin(beta) = atan(beta/sqrt(1-beta**2))
+ # beta/sqrt(1-beta**2) = (alpha + a) * (alpha - a)
+ # alpha + a is numerically accurate; alpha - a can have
+ # cancellations leading to numerical inaccuracies, so rewrite
+ # it in differente ways according to the region
+ Ax = mpf_add(alpha, a, wp)
+ # case a <= 1
+ if not am[0]:
+ # c = b*b/(r + (a+1)); d = (s + (1-a))
+ # alpha - a = (1/2)*(c + d)
+ # case n=0: re = atan(sqrt((1/2) * Ax * (c + d))/a)
+ # case n=1: re = atan(a/sqrt((1/2) * Ax * (c + d)))
+ c = mpf_div(b2, mpf_add(r, ap, wp), wp)
+ d = mpf_add(s, am, wp)
+ re = mpf_shift(mpf_mul(Ax, mpf_add(c, d, wp), wp), -1)
+ if n == 0:
+ re = mpf_atan(mpf_div(mpf_sqrt(re, wp), a, wp), wp)
+ else:
+ re = mpf_atan(mpf_div(a, mpf_sqrt(re, wp), wp), wp)
+ else:
+ # c = Ax/(r + (a+1)); d = Ax/(s - (1-a))
+ # alpha - a = (1/2)*(c + d)
+ # case n = 0: re = atan(b*sqrt(c + d)/2/a)
+ # case n = 1: re = atan(a/(b*sqrt(c + d)/2)
+ c = mpf_div(Ax, mpf_add(r, ap, wp), wp)
+ d = mpf_div(Ax, mpf_sub(s, am, wp), wp)
+ re = mpf_shift(mpf_add(c, d, wp), -1)
+ re = mpf_mul(b, mpf_sqrt(re, wp), wp)
+ if n == 0:
+ re = mpf_atan(mpf_div(re, a, wp), wp)
+ else:
+ re = mpf_atan(mpf_div(a, re, wp), wp)
+ # to compute alpha + sqrt(alpha**2 - 1), if alpha <= alpha_crossover
+ # replace it with 1 + Am1 + sqrt(Am1*(alpha+1)))
+ # where Am1 = alpha -1
+ # if alpha <= alpha_crossover:
+ if not mpf_sub(alpha_crossover, alpha, wp)[0]:
+ c1 = mpf_div(b2, mpf_add(r, ap, wp), wp)
+ # case a < 1
+ if mpf_neg(am)[0]:
+ # Am1 = (1/2) * (b*b/(r + (a+1)) + b*b/(s + (1-a))
+ c2 = mpf_add(s, am, wp)
+ c2 = mpf_div(b2, c2, wp)
+ Am1 = mpf_shift(mpf_add(c1, c2, wp), -1)
+ else:
+ # Am1 = (1/2) * (b*b/(r + (a+1)) + (s - (1-a)))
+ c2 = mpf_sub(s, am, wp)
+ Am1 = mpf_shift(mpf_add(c1, c2, wp), -1)
+ # im = log(1 + Am1 + sqrt(Am1*(alpha+1)))
+ im = mpf_mul(Am1, mpf_add(alpha, fone, wp), wp)
+ im = mpf_log(mpf_add(fone, mpf_add(Am1, mpf_sqrt(im, wp), wp), wp), wp)
+ else:
+ # im = log(alpha + sqrt(alpha*alpha - 1))
+ im = mpf_sqrt(mpf_sub(mpf_mul(alpha, alpha, wp), fone, wp), wp)
+ im = mpf_log(mpf_add(alpha, im, wp), wp)
+ if asign:
+ if n == 0:
+ re = mpf_sub(mpf_pi(wp), re, wp)
+ else:
+ re = mpf_neg(re)
+ if not bsign and n == 0:
+ im = mpf_neg(im)
+ if bsign and n == 1:
+ im = mpf_neg(im)
+ re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
+ im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
+ return re, im
+
+def mpc_acos(z, prec, rnd=round_fast):
+ return acos_asin(z, prec, rnd, 0)
+
+def mpc_asin(z, prec, rnd=round_fast):
+ return acos_asin(z, prec, rnd, 1)
+
+def mpc_asinh(z, prec, rnd=round_fast):
+ # asinh(z) = I * asin(-I z)
+ a, b = z
+ a, b = mpc_asin((b, mpf_neg(a)), prec, rnd)
+ return mpf_neg(b), a
+
+def mpc_acosh(z, prec, rnd=round_fast):
+ # acosh(z) = -I * acos(z) for Im(acos(z)) <= 0
+ # +I * acos(z) otherwise
+ a, b = mpc_acos(z, prec, rnd)
+ if b[0] or b == fzero:
+ return mpf_neg(b), a
+ else:
+ return b, mpf_neg(a)
+
+def mpc_atanh(z, prec, rnd=round_fast):
+ # atanh(z) = (log(1+z)-log(1-z))/2
+ wp = prec + 15
+ a = mpc_add(z, mpc_one, wp)
+ b = mpc_sub(mpc_one, z, wp)
+ a = mpc_log(a, wp)
+ b = mpc_log(b, wp)
+ v = mpc_shift(mpc_sub(a, b, wp), -1)
+ # Subtraction at infinity gives correct imaginary part but
+ # wrong real part (should be zero)
+ if v[0] == fnan and mpc_is_inf(z):
+ v = (fzero, v[1])
+ return v
+
+def mpc_fibonacci(z, prec, rnd=round_fast):
+ re, im = z
+ if im == fzero:
+ return (mpf_fibonacci(re, prec, rnd), fzero)
+ size = max(abs(re[2]+re[3]), abs(re[2]+re[3]))
+ wp = prec + size + 20
+ a = mpf_phi(wp)
+ b = mpf_add(mpf_shift(a, 1), fnone, wp)
+ u = mpc_pow((a, fzero), z, wp)
+ v = mpc_cos_pi(z, wp)
+ v = mpc_div(v, u, wp)
+ u = mpc_sub(u, v, wp)
+ u = mpc_div_mpf(u, b, prec, rnd)
+ return u
+
+def mpf_expj(x, prec, rnd='f'):
+ raise ComplexResult
+
+def mpc_expj(z, prec, rnd='f'):
+ re, im = z
+ if im == fzero:
+ return mpf_cos_sin(re, prec, rnd)
+ if re == fzero:
+ return mpf_exp(mpf_neg(im), prec, rnd), fzero
+ ey = mpf_exp(mpf_neg(im), prec+10)
+ c, s = mpf_cos_sin(re, prec+10)
+ re = mpf_mul(ey, c, prec, rnd)
+ im = mpf_mul(ey, s, prec, rnd)
+ return re, im
+
+def mpf_expjpi(x, prec, rnd='f'):
+ raise ComplexResult
+
+def mpc_expjpi(z, prec, rnd='f'):
+ re, im = z
+ if im == fzero:
+ return mpf_cos_sin_pi(re, prec, rnd)
+ sign, man, exp, bc = im
+ wp = prec+10
+ if man:
+ wp += max(0, exp+bc)
+ im = mpf_neg(mpf_mul(mpf_pi(wp), im, wp))
+ if re == fzero:
+ return mpf_exp(im, prec, rnd), fzero
+ ey = mpf_exp(im, prec+10)
+ c, s = mpf_cos_sin_pi(re, prec+10)
+ re = mpf_mul(ey, c, prec, rnd)
+ im = mpf_mul(ey, s, prec, rnd)
+ return re, im
+
+
+if BACKEND == 'sage':
+ try:
+ import sage.libs.mpmath.ext_libmp as _lbmp
+ mpc_exp = _lbmp.mpc_exp
+ mpc_sqrt = _lbmp.mpc_sqrt
+ except (ImportError, AttributeError):
+ print("Warning: Sage imports in libmpc failed")
diff --git a/venv/lib/python3.10/site-packages/mpmath/libmp/libmpf.py b/venv/lib/python3.10/site-packages/mpmath/libmp/libmpf.py
new file mode 100644
index 0000000000000000000000000000000000000000..5c162e17d4f688c71dc3476b944e2d31c65faab7
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/mpmath/libmp/libmpf.py
@@ -0,0 +1,1414 @@
+"""
+Low-level functions for arbitrary-precision floating-point arithmetic.
+"""
+
+__docformat__ = 'plaintext'
+
+import math
+
+from bisect import bisect
+
+import sys
+
+# Importing random is slow
+#from random import getrandbits
+getrandbits = None
+
+from .backend import (MPZ, MPZ_TYPE, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE,
+ BACKEND, STRICT, HASH_MODULUS, HASH_BITS, gmpy, sage, sage_utils)
+
+from .libintmath import (giant_steps,
+ trailtable, bctable, lshift, rshift, bitcount, trailing,
+ sqrt_fixed, numeral, isqrt, isqrt_fast, sqrtrem,
+ bin_to_radix)
+
+# We don't pickle tuples directly for the following reasons:
+# 1: pickle uses str() for ints, which is inefficient when they are large
+# 2: pickle doesn't work for gmpy mpzs
+# Both problems are solved by using hex()
+
+if BACKEND == 'sage':
+ def to_pickable(x):
+ sign, man, exp, bc = x
+ return sign, hex(man), exp, bc
+else:
+ def to_pickable(x):
+ sign, man, exp, bc = x
+ return sign, hex(man)[2:], exp, bc
+
+def from_pickable(x):
+ sign, man, exp, bc = x
+ return (sign, MPZ(man, 16), exp, bc)
+
+class ComplexResult(ValueError):
+ pass
+
+try:
+ intern
+except NameError:
+ intern = lambda x: x
+
+# All supported rounding modes
+round_nearest = intern('n')
+round_floor = intern('f')
+round_ceiling = intern('c')
+round_up = intern('u')
+round_down = intern('d')
+round_fast = round_down
+
+def prec_to_dps(n):
+ """Return number of accurate decimals that can be represented
+ with a precision of n bits."""
+ return max(1, int(round(int(n)/3.3219280948873626)-1))
+
+def dps_to_prec(n):
+ """Return the number of bits required to represent n decimals
+ accurately."""
+ return max(1, int(round((int(n)+1)*3.3219280948873626)))
+
+def repr_dps(n):
+ """Return the number of decimal digits required to represent
+ a number with n-bit precision so that it can be uniquely
+ reconstructed from the representation."""
+ dps = prec_to_dps(n)
+ if dps == 15:
+ return 17
+ return dps + 3
+
+#----------------------------------------------------------------------------#
+# Some commonly needed float values #
+#----------------------------------------------------------------------------#
+
+# Regular number format:
+# (-1)**sign * mantissa * 2**exponent, plus bitcount of mantissa
+fzero = (0, MPZ_ZERO, 0, 0)
+fnzero = (1, MPZ_ZERO, 0, 0)
+fone = (0, MPZ_ONE, 0, 1)
+fnone = (1, MPZ_ONE, 0, 1)
+ftwo = (0, MPZ_ONE, 1, 1)
+ften = (0, MPZ_FIVE, 1, 3)
+fhalf = (0, MPZ_ONE, -1, 1)
+
+# Arbitrary encoding for special numbers: zero mantissa, nonzero exponent
+fnan = (0, MPZ_ZERO, -123, -1)
+finf = (0, MPZ_ZERO, -456, -2)
+fninf = (1, MPZ_ZERO, -789, -3)
+
+# Was 1e1000; this is broken in Python 2.4
+math_float_inf = 1e300 * 1e300
+
+
+#----------------------------------------------------------------------------#
+# Rounding #
+#----------------------------------------------------------------------------#
+
+# This function can be used to round a mantissa generally. However,
+# we will try to do most rounding inline for efficiency.
+def round_int(x, n, rnd):
+ if rnd == round_nearest:
+ if x >= 0:
+ t = x >> (n-1)
+ if t & 1 and ((t & 2) or (x & h_mask[n<300][n])):
+ return (t>>1)+1
+ else:
+ return t>>1
+ else:
+ return -round_int(-x, n, rnd)
+ if rnd == round_floor:
+ return x >> n
+ if rnd == round_ceiling:
+ return -((-x) >> n)
+ if rnd == round_down:
+ if x >= 0:
+ return x >> n
+ return -((-x) >> n)
+ if rnd == round_up:
+ if x >= 0:
+ return -((-x) >> n)
+ return x >> n
+
+# These masks are used to pick out segments of numbers to determine
+# which direction to round when rounding to nearest.
+class h_mask_big:
+ def __getitem__(self, n):
+ return (MPZ_ONE<<(n-1))-1
+
+h_mask_small = [0]+[((MPZ_ONE<<(_-1))-1) for _ in range(1, 300)]
+h_mask = [h_mask_big(), h_mask_small]
+
+# The >> operator rounds to floor. shifts_down[rnd][sign]
+# tells whether this is the right direction to use, or if the
+# number should be negated before shifting
+shifts_down = {round_floor:(1,0), round_ceiling:(0,1),
+ round_down:(1,1), round_up:(0,0)}
+
+
+#----------------------------------------------------------------------------#
+# Normalization of raw mpfs #
+#----------------------------------------------------------------------------#
+
+# This function is called almost every time an mpf is created.
+# It has been optimized accordingly.
+
+def _normalize(sign, man, exp, bc, prec, rnd):
+ """
+ Create a raw mpf tuple with value (-1)**sign * man * 2**exp and
+ normalized mantissa. The mantissa is rounded in the specified
+ direction if its size exceeds the precision. Trailing zero bits
+ are also stripped from the mantissa to ensure that the
+ representation is canonical.
+
+ Conditions on the input:
+ * The input must represent a regular (finite) number
+ * The sign bit must be 0 or 1
+ * The mantissa must be positive
+ * The exponent must be an integer
+ * The bitcount must be exact
+
+ If these conditions are not met, use from_man_exp, mpf_pos, or any
+ of the conversion functions to create normalized raw mpf tuples.
+ """
+ if not man:
+ return fzero
+ # Cut mantissa down to size if larger than target precision
+ n = bc - prec
+ if n > 0:
+ if rnd == round_nearest:
+ t = man >> (n-1)
+ if t & 1 and ((t & 2) or (man & h_mask[n<300][n])):
+ man = (t>>1)+1
+ else:
+ man = t>>1
+ elif shifts_down[rnd][sign]:
+ man >>= n
+ else:
+ man = -((-man)>>n)
+ exp += n
+ bc = prec
+ # Strip trailing bits
+ if not man & 1:
+ t = trailtable[int(man & 255)]
+ if not t:
+ while not man & 255:
+ man >>= 8
+ exp += 8
+ bc -= 8
+ t = trailtable[int(man & 255)]
+ man >>= t
+ exp += t
+ bc -= t
+ # Bit count can be wrong if the input mantissa was 1 less than
+ # a power of 2 and got rounded up, thereby adding an extra bit.
+ # With trailing bits removed, all powers of two have mantissa 1,
+ # so this is easy to check for.
+ if man == 1:
+ bc = 1
+ return sign, man, exp, bc
+
+def _normalize1(sign, man, exp, bc, prec, rnd):
+ """same as normalize, but with the added condition that
+ man is odd or zero
+ """
+ if not man:
+ return fzero
+ if bc <= prec:
+ return sign, man, exp, bc
+ n = bc - prec
+ if rnd == round_nearest:
+ t = man >> (n-1)
+ if t & 1 and ((t & 2) or (man & h_mask[n<300][n])):
+ man = (t>>1)+1
+ else:
+ man = t>>1
+ elif shifts_down[rnd][sign]:
+ man >>= n
+ else:
+ man = -((-man)>>n)
+ exp += n
+ bc = prec
+ # Strip trailing bits
+ if not man & 1:
+ t = trailtable[int(man & 255)]
+ if not t:
+ while not man & 255:
+ man >>= 8
+ exp += 8
+ bc -= 8
+ t = trailtable[int(man & 255)]
+ man >>= t
+ exp += t
+ bc -= t
+ # Bit count can be wrong if the input mantissa was 1 less than
+ # a power of 2 and got rounded up, thereby adding an extra bit.
+ # With trailing bits removed, all powers of two have mantissa 1,
+ # so this is easy to check for.
+ if man == 1:
+ bc = 1
+ return sign, man, exp, bc
+
+try:
+ _exp_types = (int, long)
+except NameError:
+ _exp_types = (int,)
+
+def strict_normalize(sign, man, exp, bc, prec, rnd):
+ """Additional checks on the components of an mpf. Enable tests by setting
+ the environment variable MPMATH_STRICT to Y."""
+ assert type(man) == MPZ_TYPE
+ assert type(bc) in _exp_types
+ assert type(exp) in _exp_types
+ assert bc == bitcount(man)
+ return _normalize(sign, man, exp, bc, prec, rnd)
+
+def strict_normalize1(sign, man, exp, bc, prec, rnd):
+ """Additional checks on the components of an mpf. Enable tests by setting
+ the environment variable MPMATH_STRICT to Y."""
+ assert type(man) == MPZ_TYPE
+ assert type(bc) in _exp_types
+ assert type(exp) in _exp_types
+ assert bc == bitcount(man)
+ assert (not man) or (man & 1)
+ return _normalize1(sign, man, exp, bc, prec, rnd)
+
+if BACKEND == 'gmpy' and '_mpmath_normalize' in dir(gmpy):
+ _normalize = gmpy._mpmath_normalize
+ _normalize1 = gmpy._mpmath_normalize
+
+if BACKEND == 'sage':
+ _normalize = _normalize1 = sage_utils.normalize
+
+if STRICT:
+ normalize = strict_normalize
+ normalize1 = strict_normalize1
+else:
+ normalize = _normalize
+ normalize1 = _normalize1
+
+#----------------------------------------------------------------------------#
+# Conversion functions #
+#----------------------------------------------------------------------------#
+
+def from_man_exp(man, exp, prec=None, rnd=round_fast):
+ """Create raw mpf from (man, exp) pair. The mantissa may be signed.
+ If no precision is specified, the mantissa is stored exactly."""
+ man = MPZ(man)
+ sign = 0
+ if man < 0:
+ sign = 1
+ man = -man
+ if man < 1024:
+ bc = bctable[int(man)]
+ else:
+ bc = bitcount(man)
+ if not prec:
+ if not man:
+ return fzero
+ if not man & 1:
+ if man & 2:
+ return (sign, man >> 1, exp + 1, bc - 1)
+ t = trailtable[int(man & 255)]
+ if not t:
+ while not man & 255:
+ man >>= 8
+ exp += 8
+ bc -= 8
+ t = trailtable[int(man & 255)]
+ man >>= t
+ exp += t
+ bc -= t
+ return (sign, man, exp, bc)
+ return normalize(sign, man, exp, bc, prec, rnd)
+
+int_cache = dict((n, from_man_exp(n, 0)) for n in range(-10, 257))
+
+if BACKEND == 'gmpy' and '_mpmath_create' in dir(gmpy):
+ from_man_exp = gmpy._mpmath_create
+
+if BACKEND == 'sage':
+ from_man_exp = sage_utils.from_man_exp
+
+def from_int(n, prec=0, rnd=round_fast):
+ """Create a raw mpf from an integer. If no precision is specified,
+ the mantissa is stored exactly."""
+ if not prec:
+ if n in int_cache:
+ return int_cache[n]
+ return from_man_exp(n, 0, prec, rnd)
+
+def to_man_exp(s):
+ """Return (man, exp) of a raw mpf. Raise an error if inf/nan."""
+ sign, man, exp, bc = s
+ if (not man) and exp:
+ raise ValueError("mantissa and exponent are undefined for %s" % man)
+ return man, exp
+
+def to_int(s, rnd=None):
+ """Convert a raw mpf to the nearest int. Rounding is done down by
+ default (same as int(float) in Python), but can be changed. If the
+ input is inf/nan, an exception is raised."""
+ sign, man, exp, bc = s
+ if (not man) and exp:
+ raise ValueError("cannot convert inf or nan to int")
+ if exp >= 0:
+ if sign:
+ return (-man) << exp
+ return man << exp
+ # Make default rounding fast
+ if not rnd:
+ if sign:
+ return -(man >> (-exp))
+ else:
+ return man >> (-exp)
+ if sign:
+ return round_int(-man, -exp, rnd)
+ else:
+ return round_int(man, -exp, rnd)
+
+def mpf_round_int(s, rnd):
+ sign, man, exp, bc = s
+ if (not man) and exp:
+ return s
+ if exp >= 0:
+ return s
+ mag = exp+bc
+ if mag < 1:
+ if rnd == round_ceiling:
+ if sign: return fzero
+ else: return fone
+ elif rnd == round_floor:
+ if sign: return fnone
+ else: return fzero
+ elif rnd == round_nearest:
+ if mag < 0 or man == MPZ_ONE: return fzero
+ elif sign: return fnone
+ else: return fone
+ else:
+ raise NotImplementedError
+ return mpf_pos(s, min(bc, mag), rnd)
+
+def mpf_floor(s, prec=0, rnd=round_fast):
+ v = mpf_round_int(s, round_floor)
+ if prec:
+ v = mpf_pos(v, prec, rnd)
+ return v
+
+def mpf_ceil(s, prec=0, rnd=round_fast):
+ v = mpf_round_int(s, round_ceiling)
+ if prec:
+ v = mpf_pos(v, prec, rnd)
+ return v
+
+def mpf_nint(s, prec=0, rnd=round_fast):
+ v = mpf_round_int(s, round_nearest)
+ if prec:
+ v = mpf_pos(v, prec, rnd)
+ return v
+
+def mpf_frac(s, prec=0, rnd=round_fast):
+ return mpf_sub(s, mpf_floor(s), prec, rnd)
+
+def from_float(x, prec=53, rnd=round_fast):
+ """Create a raw mpf from a Python float, rounding if necessary.
+ If prec >= 53, the result is guaranteed to represent exactly the
+ same number as the input. If prec is not specified, use prec=53."""
+ # frexp only raises an exception for nan on some platforms
+ if x != x:
+ return fnan
+ # in Python2.5 math.frexp gives an exception for float infinity
+ # in Python2.6 it returns (float infinity, 0)
+ try:
+ m, e = math.frexp(x)
+ except:
+ if x == math_float_inf: return finf
+ if x == -math_float_inf: return fninf
+ return fnan
+ if x == math_float_inf: return finf
+ if x == -math_float_inf: return fninf
+ return from_man_exp(int(m*(1<<53)), e-53, prec, rnd)
+
+def from_npfloat(x, prec=113, rnd=round_fast):
+ """Create a raw mpf from a numpy float, rounding if necessary.
+ If prec >= 113, the result is guaranteed to represent exactly the
+ same number as the input. If prec is not specified, use prec=113."""
+ y = float(x)
+ if x == y: # ldexp overflows for float16
+ return from_float(y, prec, rnd)
+ import numpy as np
+ if np.isfinite(x):
+ m, e = np.frexp(x)
+ return from_man_exp(int(np.ldexp(m, 113)), int(e-113), prec, rnd)
+ if np.isposinf(x): return finf
+ if np.isneginf(x): return fninf
+ return fnan
+
+def from_Decimal(x, prec=None, rnd=round_fast):
+ """Create a raw mpf from a Decimal, rounding if necessary.
+ If prec is not specified, use the equivalent bit precision
+ of the number of significant digits in x."""
+ if x.is_nan(): return fnan
+ if x.is_infinite(): return fninf if x.is_signed() else finf
+ if prec is None:
+ prec = int(len(x.as_tuple()[1])*3.3219280948873626)
+ return from_str(str(x), prec, rnd)
+
+def to_float(s, strict=False, rnd=round_fast):
+ """
+ Convert a raw mpf to a Python float. The result is exact if the
+ bitcount of s is <= 53 and no underflow/overflow occurs.
+
+ If the number is too large or too small to represent as a regular
+ float, it will be converted to inf or 0.0. Setting strict=True
+ forces an OverflowError to be raised instead.
+
+ Warning: with a directed rounding mode, the correct nearest representable
+ floating-point number in the specified direction might not be computed
+ in case of overflow or (gradual) underflow.
+ """
+ sign, man, exp, bc = s
+ if not man:
+ if s == fzero: return 0.0
+ if s == finf: return math_float_inf
+ if s == fninf: return -math_float_inf
+ return math_float_inf/math_float_inf
+ if bc > 53:
+ sign, man, exp, bc = normalize1(sign, man, exp, bc, 53, rnd)
+ if sign:
+ man = -man
+ try:
+ return math.ldexp(man, exp)
+ except OverflowError:
+ if strict:
+ raise
+ # Overflow to infinity
+ if exp + bc > 0:
+ if sign:
+ return -math_float_inf
+ else:
+ return math_float_inf
+ # Underflow to zero
+ return 0.0
+
+def from_rational(p, q, prec, rnd=round_fast):
+ """Create a raw mpf from a rational number p/q, round if
+ necessary."""
+ return mpf_div(from_int(p), from_int(q), prec, rnd)
+
+def to_rational(s):
+ """Convert a raw mpf to a rational number. Return integers (p, q)
+ such that s = p/q exactly."""
+ sign, man, exp, bc = s
+ if sign:
+ man = -man
+ if bc == -1:
+ raise ValueError("cannot convert %s to a rational number" % man)
+ if exp >= 0:
+ return man * (1<= 0: return (-man) << offset
+ else: return (-man) >> (-offset)
+ else:
+ if offset >= 0: return man << offset
+ else: return man >> (-offset)
+
+
+##############################################################################
+##############################################################################
+
+#----------------------------------------------------------------------------#
+# Arithmetic operations, etc. #
+#----------------------------------------------------------------------------#
+
+def mpf_rand(prec):
+ """Return a raw mpf chosen randomly from [0, 1), with prec bits
+ in the mantissa."""
+ global getrandbits
+ if not getrandbits:
+ import random
+ getrandbits = random.getrandbits
+ return from_man_exp(getrandbits(prec), -prec, prec, round_floor)
+
+def mpf_eq(s, t):
+ """Test equality of two raw mpfs. This is simply tuple comparison
+ unless either number is nan, in which case the result is False."""
+ if not s[1] or not t[1]:
+ if s == fnan or t == fnan:
+ return False
+ return s == t
+
+def mpf_hash(s):
+ # Duplicate the new hash algorithm introduces in Python 3.2.
+ if sys.version_info >= (3, 2):
+ ssign, sman, sexp, sbc = s
+
+ # Handle special numbers
+ if not sman:
+ if s == fnan: return sys.hash_info.nan
+ if s == finf: return sys.hash_info.inf
+ if s == fninf: return -sys.hash_info.inf
+ h = sman % HASH_MODULUS
+ if sexp >= 0:
+ sexp = sexp % HASH_BITS
+ else:
+ sexp = HASH_BITS - 1 - ((-1 - sexp) % HASH_BITS)
+ h = (h << sexp) % HASH_MODULUS
+ if ssign: h = -h
+ if h == -1: h = -2
+ return int(h)
+ else:
+ try:
+ # Try to be compatible with hash values for floats and ints
+ return hash(to_float(s, strict=1))
+ except OverflowError:
+ # We must unfortunately sacrifice compatibility with ints here.
+ # We could do hash(man << exp) when the exponent is positive, but
+ # this would cause unreasonable inefficiency for large numbers.
+ return hash(s)
+
+def mpf_cmp(s, t):
+ """Compare the raw mpfs s and t. Return -1 if s < t, 0 if s == t,
+ and 1 if s > t. (Same convention as Python's cmp() function.)"""
+
+ # In principle, a comparison amounts to determining the sign of s-t.
+ # A full subtraction is relatively slow, however, so we first try to
+ # look at the components.
+ ssign, sman, sexp, sbc = s
+ tsign, tman, texp, tbc = t
+
+ # Handle zeros and special numbers
+ if not sman or not tman:
+ if s == fzero: return -mpf_sign(t)
+ if t == fzero: return mpf_sign(s)
+ if s == t: return 0
+ # Follow same convention as Python's cmp for float nan
+ if t == fnan: return 1
+ if s == finf: return 1
+ if t == fninf: return 1
+ return -1
+ # Different sides of zero
+ if ssign != tsign:
+ if not ssign: return 1
+ return -1
+ # This reduces to direct integer comparison
+ if sexp == texp:
+ if sman == tman:
+ return 0
+ if sman > tman:
+ if ssign: return -1
+ else: return 1
+ else:
+ if ssign: return 1
+ else: return -1
+ # Check position of the highest set bit in each number. If
+ # different, there is certainly an inequality.
+ a = sbc + sexp
+ b = tbc + texp
+ if ssign:
+ if a < b: return 1
+ if a > b: return -1
+ else:
+ if a < b: return -1
+ if a > b: return 1
+
+ # Both numbers have the same highest bit. Subtract to find
+ # how the lower bits compare.
+ delta = mpf_sub(s, t, 5, round_floor)
+ if delta[0]:
+ return -1
+ return 1
+
+def mpf_lt(s, t):
+ if s == fnan or t == fnan:
+ return False
+ return mpf_cmp(s, t) < 0
+
+def mpf_le(s, t):
+ if s == fnan or t == fnan:
+ return False
+ return mpf_cmp(s, t) <= 0
+
+def mpf_gt(s, t):
+ if s == fnan or t == fnan:
+ return False
+ return mpf_cmp(s, t) > 0
+
+def mpf_ge(s, t):
+ if s == fnan or t == fnan:
+ return False
+ return mpf_cmp(s, t) >= 0
+
+def mpf_min_max(seq):
+ min = max = seq[0]
+ for x in seq[1:]:
+ if mpf_lt(x, min): min = x
+ if mpf_gt(x, max): max = x
+ return min, max
+
+def mpf_pos(s, prec=0, rnd=round_fast):
+ """Calculate 0+s for a raw mpf (i.e., just round s to the specified
+ precision)."""
+ if prec:
+ sign, man, exp, bc = s
+ if (not man) and exp:
+ return s
+ return normalize1(sign, man, exp, bc, prec, rnd)
+ return s
+
+def mpf_neg(s, prec=None, rnd=round_fast):
+ """Negate a raw mpf (return -s), rounding the result to the
+ specified precision. The prec argument can be omitted to do the
+ operation exactly."""
+ sign, man, exp, bc = s
+ if not man:
+ if exp:
+ if s == finf: return fninf
+ if s == fninf: return finf
+ return s
+ if not prec:
+ return (1-sign, man, exp, bc)
+ return normalize1(1-sign, man, exp, bc, prec, rnd)
+
+def mpf_abs(s, prec=None, rnd=round_fast):
+ """Return abs(s) of the raw mpf s, rounded to the specified
+ precision. The prec argument can be omitted to generate an
+ exact result."""
+ sign, man, exp, bc = s
+ if (not man) and exp:
+ if s == fninf:
+ return finf
+ return s
+ if not prec:
+ if sign:
+ return (0, man, exp, bc)
+ return s
+ return normalize1(0, man, exp, bc, prec, rnd)
+
+def mpf_sign(s):
+ """Return -1, 0, or 1 (as a Python int, not a raw mpf) depending on
+ whether s is negative, zero, or positive. (Nan is taken to give 0.)"""
+ sign, man, exp, bc = s
+ if not man:
+ if s == finf: return 1
+ if s == fninf: return -1
+ return 0
+ return (-1) ** sign
+
+def mpf_add(s, t, prec=0, rnd=round_fast, _sub=0):
+ """
+ Add the two raw mpf values s and t.
+
+ With prec=0, no rounding is performed. Note that this can
+ produce a very large mantissa (potentially too large to fit
+ in memory) if exponents are far apart.
+ """
+ ssign, sman, sexp, sbc = s
+ tsign, tman, texp, tbc = t
+ tsign ^= _sub
+ # Standard case: two nonzero, regular numbers
+ if sman and tman:
+ offset = sexp - texp
+ if offset:
+ if offset > 0:
+ # Outside precision range; only need to perturb
+ if offset > 100 and prec:
+ delta = sbc + sexp - tbc - texp
+ if delta > prec + 4:
+ offset = prec + 4
+ sman <<= offset
+ if tsign == ssign: sman += 1
+ else: sman -= 1
+ return normalize1(ssign, sman, sexp-offset,
+ bitcount(sman), prec, rnd)
+ # Add
+ if ssign == tsign:
+ man = tman + (sman << offset)
+ # Subtract
+ else:
+ if ssign: man = tman - (sman << offset)
+ else: man = (sman << offset) - tman
+ if man >= 0:
+ ssign = 0
+ else:
+ man = -man
+ ssign = 1
+ bc = bitcount(man)
+ return normalize1(ssign, man, texp, bc, prec or bc, rnd)
+ elif offset < 0:
+ # Outside precision range; only need to perturb
+ if offset < -100 and prec:
+ delta = tbc + texp - sbc - sexp
+ if delta > prec + 4:
+ offset = prec + 4
+ tman <<= offset
+ if ssign == tsign: tman += 1
+ else: tman -= 1
+ return normalize1(tsign, tman, texp-offset,
+ bitcount(tman), prec, rnd)
+ # Add
+ if ssign == tsign:
+ man = sman + (tman << -offset)
+ # Subtract
+ else:
+ if tsign: man = sman - (tman << -offset)
+ else: man = (tman << -offset) - sman
+ if man >= 0:
+ ssign = 0
+ else:
+ man = -man
+ ssign = 1
+ bc = bitcount(man)
+ return normalize1(ssign, man, sexp, bc, prec or bc, rnd)
+ # Equal exponents; no shifting necessary
+ if ssign == tsign:
+ man = tman + sman
+ else:
+ if ssign: man = tman - sman
+ else: man = sman - tman
+ if man >= 0:
+ ssign = 0
+ else:
+ man = -man
+ ssign = 1
+ bc = bitcount(man)
+ return normalize(ssign, man, texp, bc, prec or bc, rnd)
+ # Handle zeros and special numbers
+ if _sub:
+ t = mpf_neg(t)
+ if not sman:
+ if sexp:
+ if s == t or tman or not texp:
+ return s
+ return fnan
+ if tman:
+ return normalize1(tsign, tman, texp, tbc, prec or tbc, rnd)
+ return t
+ if texp:
+ return t
+ if sman:
+ return normalize1(ssign, sman, sexp, sbc, prec or sbc, rnd)
+ return s
+
+def mpf_sub(s, t, prec=0, rnd=round_fast):
+ """Return the difference of two raw mpfs, s-t. This function is
+ simply a wrapper of mpf_add that changes the sign of t."""
+ return mpf_add(s, t, prec, rnd, 1)
+
+def mpf_sum(xs, prec=0, rnd=round_fast, absolute=False):
+ """
+ Sum a list of mpf values efficiently and accurately
+ (typically no temporary roundoff occurs). If prec=0,
+ the final result will not be rounded either.
+
+ There may be roundoff error or cancellation if extremely
+ large exponent differences occur.
+
+ With absolute=True, sums the absolute values.
+ """
+ man = 0
+ exp = 0
+ max_extra_prec = prec*2 or 1000000 # XXX
+ special = None
+ for x in xs:
+ xsign, xman, xexp, xbc = x
+ if xman:
+ if xsign and not absolute:
+ xman = -xman
+ delta = xexp - exp
+ if xexp >= exp:
+ # x much larger than existing sum?
+ # first: quick test
+ if (delta > max_extra_prec) and \
+ ((not man) or delta-bitcount(abs(man)) > max_extra_prec):
+ man = xman
+ exp = xexp
+ else:
+ man += (xman << delta)
+ else:
+ delta = -delta
+ # x much smaller than existing sum?
+ if delta-xbc > max_extra_prec:
+ if not man:
+ man, exp = xman, xexp
+ else:
+ man = (man << delta) + xman
+ exp = xexp
+ elif xexp:
+ if absolute:
+ x = mpf_abs(x)
+ special = mpf_add(special or fzero, x, 1)
+ # Will be inf or nan
+ if special:
+ return special
+ return from_man_exp(man, exp, prec, rnd)
+
+def gmpy_mpf_mul(s, t, prec=0, rnd=round_fast):
+ """Multiply two raw mpfs"""
+ ssign, sman, sexp, sbc = s
+ tsign, tman, texp, tbc = t
+ sign = ssign ^ tsign
+ man = sman*tman
+ if man:
+ bc = bitcount(man)
+ if prec:
+ return normalize1(sign, man, sexp+texp, bc, prec, rnd)
+ else:
+ return (sign, man, sexp+texp, bc)
+ s_special = (not sman) and sexp
+ t_special = (not tman) and texp
+ if not s_special and not t_special:
+ return fzero
+ if fnan in (s, t): return fnan
+ if (not tman) and texp: s, t = t, s
+ if t == fzero: return fnan
+ return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)]
+
+def gmpy_mpf_mul_int(s, n, prec, rnd=round_fast):
+ """Multiply by a Python integer."""
+ sign, man, exp, bc = s
+ if not man:
+ return mpf_mul(s, from_int(n), prec, rnd)
+ if not n:
+ return fzero
+ if n < 0:
+ sign ^= 1
+ n = -n
+ man *= n
+ return normalize(sign, man, exp, bitcount(man), prec, rnd)
+
+def python_mpf_mul(s, t, prec=0, rnd=round_fast):
+ """Multiply two raw mpfs"""
+ ssign, sman, sexp, sbc = s
+ tsign, tman, texp, tbc = t
+ sign = ssign ^ tsign
+ man = sman*tman
+ if man:
+ bc = sbc + tbc - 1
+ bc += int(man>>bc)
+ if prec:
+ return normalize1(sign, man, sexp+texp, bc, prec, rnd)
+ else:
+ return (sign, man, sexp+texp, bc)
+ s_special = (not sman) and sexp
+ t_special = (not tman) and texp
+ if not s_special and not t_special:
+ return fzero
+ if fnan in (s, t): return fnan
+ if (not tman) and texp: s, t = t, s
+ if t == fzero: return fnan
+ return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)]
+
+def python_mpf_mul_int(s, n, prec, rnd=round_fast):
+ """Multiply by a Python integer."""
+ sign, man, exp, bc = s
+ if not man:
+ return mpf_mul(s, from_int(n), prec, rnd)
+ if not n:
+ return fzero
+ if n < 0:
+ sign ^= 1
+ n = -n
+ man *= n
+ # Generally n will be small
+ if n < 1024:
+ bc += bctable[int(n)] - 1
+ else:
+ bc += bitcount(n) - 1
+ bc += int(man>>bc)
+ return normalize(sign, man, exp, bc, prec, rnd)
+
+
+if BACKEND == 'gmpy':
+ mpf_mul = gmpy_mpf_mul
+ mpf_mul_int = gmpy_mpf_mul_int
+else:
+ mpf_mul = python_mpf_mul
+ mpf_mul_int = python_mpf_mul_int
+
+def mpf_shift(s, n):
+ """Quickly multiply the raw mpf s by 2**n without rounding."""
+ sign, man, exp, bc = s
+ if not man:
+ return s
+ return sign, man, exp+n, bc
+
+def mpf_frexp(x):
+ """Convert x = y*2**n to (y, n) with abs(y) in [0.5, 1) if nonzero"""
+ sign, man, exp, bc = x
+ if not man:
+ if x == fzero:
+ return (fzero, 0)
+ else:
+ raise ValueError
+ return mpf_shift(x, -bc-exp), bc+exp
+
+def mpf_div(s, t, prec, rnd=round_fast):
+ """Floating-point division"""
+ ssign, sman, sexp, sbc = s
+ tsign, tman, texp, tbc = t
+ if not sman or not tman:
+ if s == fzero:
+ if t == fzero: raise ZeroDivisionError
+ if t == fnan: return fnan
+ return fzero
+ if t == fzero:
+ raise ZeroDivisionError
+ s_special = (not sman) and sexp
+ t_special = (not tman) and texp
+ if s_special and t_special:
+ return fnan
+ if s == fnan or t == fnan:
+ return fnan
+ if not t_special:
+ if t == fzero:
+ return fnan
+ return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)]
+ return fzero
+ sign = ssign ^ tsign
+ if tman == 1:
+ return normalize1(sign, sman, sexp-texp, sbc, prec, rnd)
+ # Same strategy as for addition: if there is a remainder, perturb
+ # the result a few bits outside the precision range before rounding
+ extra = prec - sbc + tbc + 5
+ if extra < 5:
+ extra = 5
+ quot, rem = divmod(sman< sexp+sbc:
+ return s
+ # Another important special case: this allows us to do e.g. x % 1.0
+ # to find the fractional part of x, and it will work when x is huge.
+ if tman == 1 and sexp > texp+tbc:
+ return fzero
+ base = min(sexp, texp)
+ sman = (-1)**ssign * sman
+ tman = (-1)**tsign * tman
+ man = (sman << (sexp-base)) % (tman << (texp-base))
+ if man >= 0:
+ sign = 0
+ else:
+ man = -man
+ sign = 1
+ return normalize(sign, man, base, bitcount(man), prec, rnd)
+
+reciprocal_rnd = {
+ round_down : round_up,
+ round_up : round_down,
+ round_floor : round_ceiling,
+ round_ceiling : round_floor,
+ round_nearest : round_nearest
+}
+
+negative_rnd = {
+ round_down : round_down,
+ round_up : round_up,
+ round_floor : round_ceiling,
+ round_ceiling : round_floor,
+ round_nearest : round_nearest
+}
+
+def mpf_pow_int(s, n, prec, rnd=round_fast):
+ """Compute s**n, where s is a raw mpf and n is a Python integer."""
+ sign, man, exp, bc = s
+
+ if (not man) and exp:
+ if s == finf:
+ if n > 0: return s
+ if n == 0: return fnan
+ return fzero
+ if s == fninf:
+ if n > 0: return [finf, fninf][n & 1]
+ if n == 0: return fnan
+ return fzero
+ return fnan
+
+ n = int(n)
+ if n == 0: return fone
+ if n == 1: return mpf_pos(s, prec, rnd)
+ if n == 2:
+ _, man, exp, bc = s
+ if not man:
+ return fzero
+ man = man*man
+ if man == 1:
+ return (0, MPZ_ONE, exp+exp, 1)
+ bc = bc + bc - 2
+ bc += bctable[int(man>>bc)]
+ return normalize1(0, man, exp+exp, bc, prec, rnd)
+ if n == -1: return mpf_div(fone, s, prec, rnd)
+ if n < 0:
+ inverse = mpf_pow_int(s, -n, prec+5, reciprocal_rnd[rnd])
+ return mpf_div(fone, inverse, prec, rnd)
+
+ result_sign = sign & n
+
+ # Use exact integer power when the exact mantissa is small
+ if man == 1:
+ return (result_sign, MPZ_ONE, exp*n, 1)
+ if bc*n < 1000:
+ man **= n
+ return normalize1(result_sign, man, exp*n, bitcount(man), prec, rnd)
+
+ # Use directed rounding all the way through to maintain rigorous
+ # bounds for interval arithmetic
+ rounds_down = (rnd == round_nearest) or \
+ shifts_down[rnd][result_sign]
+
+ # Now we perform binary exponentiation. Need to estimate precision
+ # to avoid rounding errors from temporary operations. Roughly log_2(n)
+ # operations are performed.
+ workprec = prec + 4*bitcount(n) + 4
+ _, pm, pe, pbc = fone
+ while 1:
+ if n & 1:
+ pm = pm*man
+ pe = pe+exp
+ pbc += bc - 2
+ pbc = pbc + bctable[int(pm >> pbc)]
+ if pbc > workprec:
+ if rounds_down:
+ pm = pm >> (pbc-workprec)
+ else:
+ pm = -((-pm) >> (pbc-workprec))
+ pe += pbc - workprec
+ pbc = workprec
+ n -= 1
+ if not n:
+ break
+ man = man*man
+ exp = exp+exp
+ bc = bc + bc - 2
+ bc = bc + bctable[int(man >> bc)]
+ if bc > workprec:
+ if rounds_down:
+ man = man >> (bc-workprec)
+ else:
+ man = -((-man) >> (bc-workprec))
+ exp += bc - workprec
+ bc = workprec
+ n = n // 2
+
+ return normalize(result_sign, pm, pe, pbc, prec, rnd)
+
+
+def mpf_perturb(x, eps_sign, prec, rnd):
+ """
+ For nonzero x, calculate x + eps with directed rounding, where
+ eps < prec relatively and eps has the given sign (0 for
+ positive, 1 for negative).
+
+ With rounding to nearest, this is taken to simply normalize
+ x to the given precision.
+ """
+ if rnd == round_nearest:
+ return mpf_pos(x, prec, rnd)
+ sign, man, exp, bc = x
+ eps = (eps_sign, MPZ_ONE, exp+bc-prec-1, 1)
+ if sign:
+ away = (rnd in (round_down, round_ceiling)) ^ eps_sign
+ else:
+ away = (rnd in (round_up, round_ceiling)) ^ eps_sign
+ if away:
+ return mpf_add(x, eps, prec, rnd)
+ else:
+ return mpf_pos(x, prec, rnd)
+
+
+#----------------------------------------------------------------------------#
+# Radix conversion #
+#----------------------------------------------------------------------------#
+
+def to_digits_exp(s, dps):
+ """Helper function for representing the floating-point number s as
+ a decimal with dps digits. Returns (sign, string, exponent) where
+ sign is '' or '-', string is the digit string, and exponent is
+ the decimal exponent as an int.
+
+ If inexact, the decimal representation is rounded toward zero."""
+
+ # Extract sign first so it doesn't mess up the string digit count
+ if s[0]:
+ sign = '-'
+ s = mpf_neg(s)
+ else:
+ sign = ''
+ _sign, man, exp, bc = s
+
+ if not man:
+ return '', '0', 0
+
+ bitprec = int(dps * math.log(10,2)) + 10
+
+ # Cut down to size
+ # TODO: account for precision when doing this
+ exp_from_1 = exp + bc
+ if abs(exp_from_1) > 3500:
+ from .libelefun import mpf_ln2, mpf_ln10
+ # Set b = int(exp * log(2)/log(10))
+ # If exp is huge, we must use high-precision arithmetic to
+ # find the nearest power of ten
+ expprec = bitcount(abs(exp)) + 5
+ tmp = from_int(exp)
+ tmp = mpf_mul(tmp, mpf_ln2(expprec))
+ tmp = mpf_div(tmp, mpf_ln10(expprec), expprec)
+ b = to_int(tmp)
+ s = mpf_div(s, mpf_pow_int(ften, b, bitprec), bitprec)
+ _sign, man, exp, bc = s
+ exponent = b
+ else:
+ exponent = 0
+
+ # First, calculate mantissa digits by converting to a binary
+ # fixed-point number and then converting that number to
+ # a decimal fixed-point number.
+ fixprec = max(bitprec - exp - bc, 0)
+ fixdps = int(fixprec / math.log(10,2) + 0.5)
+ sf = to_fixed(s, fixprec)
+ sd = bin_to_radix(sf, fixprec, 10, fixdps)
+ digits = numeral(sd, base=10, size=dps)
+
+ exponent += len(digits) - fixdps - 1
+ return sign, digits, exponent
+
+def to_str(s, dps, strip_zeros=True, min_fixed=None, max_fixed=None,
+ show_zero_exponent=False):
+ """
+ Convert a raw mpf to a decimal floating-point literal with at
+ most `dps` decimal digits in the mantissa (not counting extra zeros
+ that may be inserted for visual purposes).
+
+ The number will be printed in fixed-point format if the position
+ of the leading digit is strictly between min_fixed
+ (default = min(-dps/3,-5)) and max_fixed (default = dps).
+
+ To force fixed-point format always, set min_fixed = -inf,
+ max_fixed = +inf. To force floating-point format, set
+ min_fixed >= max_fixed.
+
+ The literal is formatted so that it can be parsed back to a number
+ by to_str, float() or Decimal().
+ """
+
+ # Special numbers
+ if not s[1]:
+ if s == fzero:
+ if dps: t = '0.0'
+ else: t = '.0'
+ if show_zero_exponent:
+ t += 'e+0'
+ return t
+ if s == finf: return '+inf'
+ if s == fninf: return '-inf'
+ if s == fnan: return 'nan'
+ raise ValueError
+
+ if min_fixed is None: min_fixed = min(-(dps//3), -5)
+ if max_fixed is None: max_fixed = dps
+
+ # to_digits_exp rounds to floor.
+ # This sometimes kills some instances of "...00001"
+ sign, digits, exponent = to_digits_exp(s, dps+3)
+
+ # No digits: show only .0; round exponent to nearest
+ if not dps:
+ if digits[0] in '56789':
+ exponent += 1
+ digits = ".0"
+
+ else:
+ # Rounding up kills some instances of "...99999"
+ if len(digits) > dps and digits[dps] in '56789':
+ digits = digits[:dps]
+ i = dps - 1
+ while i >= 0 and digits[i] == '9':
+ i -= 1
+ if i >= 0:
+ digits = digits[:i] + str(int(digits[i]) + 1) + '0' * (dps - i - 1)
+ else:
+ digits = '1' + '0' * (dps - 1)
+ exponent += 1
+ else:
+ digits = digits[:dps]
+
+ # Prettify numbers close to unit magnitude
+ if min_fixed < exponent < max_fixed:
+ if exponent < 0:
+ digits = ("0"*int(-exponent)) + digits
+ split = 1
+ else:
+ split = exponent + 1
+ if split > dps:
+ digits += "0"*(split-dps)
+ exponent = 0
+ else:
+ split = 1
+
+ digits = (digits[:split] + "." + digits[split:])
+
+ if strip_zeros:
+ # Clean up trailing zeros
+ digits = digits.rstrip('0')
+ if digits[-1] == ".":
+ digits += "0"
+
+ if exponent == 0 and dps and not show_zero_exponent: return sign + digits
+ if exponent >= 0: return sign + digits + "e+" + str(exponent)
+ if exponent < 0: return sign + digits + "e" + str(exponent)
+
+def str_to_man_exp(x, base=10):
+ """Helper function for from_str."""
+ x = x.lower().rstrip('l')
+ # Verify that the input is a valid float literal
+ float(x)
+ # Split into mantissa, exponent
+ parts = x.split('e')
+ if len(parts) == 1:
+ exp = 0
+ else: # == 2
+ x = parts[0]
+ exp = int(parts[1])
+ # Look for radix point in mantissa
+ parts = x.split('.')
+ if len(parts) == 2:
+ a, b = parts[0], parts[1].rstrip('0')
+ exp -= len(b)
+ x = a + b
+ x = MPZ(int(x, base))
+ return x, exp
+
+special_str = {'inf':finf, '+inf':finf, '-inf':fninf, 'nan':fnan}
+
+def from_str(x, prec, rnd=round_fast):
+ """Create a raw mpf from a decimal literal, rounding in the
+ specified direction if the input number cannot be represented
+ exactly as a binary floating-point number with the given number of
+ bits. The literal syntax accepted is the same as for Python
+ floats.
+
+ TODO: the rounding does not work properly for large exponents.
+ """
+ x = x.lower().strip()
+ if x in special_str:
+ return special_str[x]
+
+ if '/' in x:
+ p, q = x.split('/')
+ p, q = p.rstrip('l'), q.rstrip('l')
+ return from_rational(int(p), int(q), prec, rnd)
+
+ man, exp = str_to_man_exp(x, base=10)
+
+ # XXX: appropriate cutoffs & track direction
+ # note no factors of 5
+ if abs(exp) > 400:
+ s = from_int(man, prec+10)
+ s = mpf_mul(s, mpf_pow_int(ften, exp, prec+10), prec, rnd)
+ else:
+ if exp >= 0:
+ s = from_int(man * 10**exp, prec, rnd)
+ else:
+ s = from_rational(man, 10**-exp, prec, rnd)
+ return s
+
+# Binary string conversion. These are currently mainly used for debugging
+# and could use some improvement in the future
+
+def from_bstr(x):
+ man, exp = str_to_man_exp(x, base=2)
+ man = MPZ(man)
+ sign = 0
+ if man < 0:
+ man = -man
+ sign = 1
+ bc = bitcount(man)
+ return normalize(sign, man, exp, bc, bc, round_floor)
+
+def to_bstr(x):
+ sign, man, exp, bc = x
+ return ['','-'][sign] + numeral(man, size=bitcount(man), base=2) + ("e%i" % exp)
+
+
+#----------------------------------------------------------------------------#
+# Square roots #
+#----------------------------------------------------------------------------#
+
+
+def mpf_sqrt(s, prec, rnd=round_fast):
+ """
+ Compute the square root of a nonnegative mpf value. The
+ result is correctly rounded.
+ """
+ sign, man, exp, bc = s
+ if sign:
+ raise ComplexResult("square root of a negative number")
+ if not man:
+ return s
+ if exp & 1:
+ exp -= 1
+ man <<= 1
+ bc += 1
+ elif man == 1:
+ return normalize1(sign, man, exp//2, bc, prec, rnd)
+ shift = max(4, 2*prec-bc+4)
+ shift += shift & 1
+ if rnd in 'fd':
+ man = isqrt(man<= 0:
+ a = mpf_pos(sa, prec, round_floor)
+ b = mpf_pos(sb, prec, round_ceiling)
+ # Upper point nonnegative?
+ elif sbs >= 0:
+ a = fzero
+ negsa = mpf_neg(sa)
+ if mpf_lt(negsa, sb):
+ b = mpf_pos(sb, prec, round_ceiling)
+ else:
+ b = mpf_pos(negsa, prec, round_ceiling)
+ # Both negative?
+ else:
+ a = mpf_neg(sb, prec, round_floor)
+ b = mpf_neg(sa, prec, round_ceiling)
+ return a, b
+
+# TODO: optimize
+def mpi_mul_mpf(s, t, prec):
+ return mpi_mul(s, (t, t), prec)
+
+def mpi_div_mpf(s, t, prec):
+ return mpi_div(s, (t, t), prec)
+
+def mpi_mul(s, t, prec=0):
+ sa, sb = s
+ ta, tb = t
+ sas = mpf_sign(sa)
+ sbs = mpf_sign(sb)
+ tas = mpf_sign(ta)
+ tbs = mpf_sign(tb)
+ if sas == sbs == 0:
+ # Should maybe be undefined
+ if ta == fninf or tb == finf:
+ return fninf, finf
+ return fzero, fzero
+ if tas == tbs == 0:
+ # Should maybe be undefined
+ if sa == fninf or sb == finf:
+ return fninf, finf
+ return fzero, fzero
+ if sas >= 0:
+ # positive * positive
+ if tas >= 0:
+ a = mpf_mul(sa, ta, prec, round_floor)
+ b = mpf_mul(sb, tb, prec, round_ceiling)
+ if a == fnan: a = fzero
+ if b == fnan: b = finf
+ # positive * negative
+ elif tbs <= 0:
+ a = mpf_mul(sb, ta, prec, round_floor)
+ b = mpf_mul(sa, tb, prec, round_ceiling)
+ if a == fnan: a = fninf
+ if b == fnan: b = fzero
+ # positive * both signs
+ else:
+ a = mpf_mul(sb, ta, prec, round_floor)
+ b = mpf_mul(sb, tb, prec, round_ceiling)
+ if a == fnan: a = fninf
+ if b == fnan: b = finf
+ elif sbs <= 0:
+ # negative * positive
+ if tas >= 0:
+ a = mpf_mul(sa, tb, prec, round_floor)
+ b = mpf_mul(sb, ta, prec, round_ceiling)
+ if a == fnan: a = fninf
+ if b == fnan: b = fzero
+ # negative * negative
+ elif tbs <= 0:
+ a = mpf_mul(sb, tb, prec, round_floor)
+ b = mpf_mul(sa, ta, prec, round_ceiling)
+ if a == fnan: a = fzero
+ if b == fnan: b = finf
+ # negative * both signs
+ else:
+ a = mpf_mul(sa, tb, prec, round_floor)
+ b = mpf_mul(sa, ta, prec, round_ceiling)
+ if a == fnan: a = fninf
+ if b == fnan: b = finf
+ else:
+ # General case: perform all cross-multiplications and compare
+ # Since the multiplications can be done exactly, we need only
+ # do 4 (instead of 8: two for each rounding mode)
+ cases = [mpf_mul(sa, ta), mpf_mul(sa, tb), mpf_mul(sb, ta), mpf_mul(sb, tb)]
+ if fnan in cases:
+ a, b = (fninf, finf)
+ else:
+ a, b = mpf_min_max(cases)
+ a = mpf_pos(a, prec, round_floor)
+ b = mpf_pos(b, prec, round_ceiling)
+ return a, b
+
+def mpi_square(s, prec=0):
+ sa, sb = s
+ if mpf_ge(sa, fzero):
+ a = mpf_mul(sa, sa, prec, round_floor)
+ b = mpf_mul(sb, sb, prec, round_ceiling)
+ elif mpf_le(sb, fzero):
+ a = mpf_mul(sb, sb, prec, round_floor)
+ b = mpf_mul(sa, sa, prec, round_ceiling)
+ else:
+ sa = mpf_neg(sa)
+ sa, sb = mpf_min_max([sa, sb])
+ a = fzero
+ b = mpf_mul(sb, sb, prec, round_ceiling)
+ return a, b
+
+def mpi_div(s, t, prec):
+ sa, sb = s
+ ta, tb = t
+ sas = mpf_sign(sa)
+ sbs = mpf_sign(sb)
+ tas = mpf_sign(ta)
+ tbs = mpf_sign(tb)
+ # 0 / X
+ if sas == sbs == 0:
+ # 0 /
+ if (tas < 0 and tbs > 0) or (tas == 0 or tbs == 0):
+ return fninf, finf
+ return fzero, fzero
+ # Denominator contains both negative and positive numbers;
+ # this should properly be a multi-interval, but the closest
+ # match is the entire (extended) real line
+ if tas < 0 and tbs > 0:
+ return fninf, finf
+ # Assume denominator to be nonnegative
+ if tas < 0:
+ return mpi_div(mpi_neg(s), mpi_neg(t), prec)
+ # Division by zero
+ # XXX: make sure all results make sense
+ if tas == 0:
+ # Numerator contains both signs?
+ if sas < 0 and sbs > 0:
+ return fninf, finf
+ if tas == tbs:
+ return fninf, finf
+ # Numerator positive?
+ if sas >= 0:
+ a = mpf_div(sa, tb, prec, round_floor)
+ b = finf
+ if sbs <= 0:
+ a = fninf
+ b = mpf_div(sb, tb, prec, round_ceiling)
+ # Division with positive denominator
+ # We still have to handle nans resulting from inf/0 or inf/inf
+ else:
+ # Nonnegative numerator
+ if sas >= 0:
+ a = mpf_div(sa, tb, prec, round_floor)
+ b = mpf_div(sb, ta, prec, round_ceiling)
+ if a == fnan: a = fzero
+ if b == fnan: b = finf
+ # Nonpositive numerator
+ elif sbs <= 0:
+ a = mpf_div(sa, ta, prec, round_floor)
+ b = mpf_div(sb, tb, prec, round_ceiling)
+ if a == fnan: a = fninf
+ if b == fnan: b = fzero
+ # Numerator contains both signs?
+ else:
+ a = mpf_div(sa, ta, prec, round_floor)
+ b = mpf_div(sb, ta, prec, round_ceiling)
+ if a == fnan: a = fninf
+ if b == fnan: b = finf
+ return a, b
+
+def mpi_pi(prec):
+ a = mpf_pi(prec, round_floor)
+ b = mpf_pi(prec, round_ceiling)
+ return a, b
+
+def mpi_exp(s, prec):
+ sa, sb = s
+ # exp is monotonic
+ a = mpf_exp(sa, prec, round_floor)
+ b = mpf_exp(sb, prec, round_ceiling)
+ return a, b
+
+def mpi_log(s, prec):
+ sa, sb = s
+ # log is monotonic
+ a = mpf_log(sa, prec, round_floor)
+ b = mpf_log(sb, prec, round_ceiling)
+ return a, b
+
+def mpi_sqrt(s, prec):
+ sa, sb = s
+ # sqrt is monotonic
+ a = mpf_sqrt(sa, prec, round_floor)
+ b = mpf_sqrt(sb, prec, round_ceiling)
+ return a, b
+
+def mpi_atan(s, prec):
+ sa, sb = s
+ a = mpf_atan(sa, prec, round_floor)
+ b = mpf_atan(sb, prec, round_ceiling)
+ return a, b
+
+def mpi_pow_int(s, n, prec):
+ sa, sb = s
+ if n < 0:
+ return mpi_div((fone, fone), mpi_pow_int(s, -n, prec+20), prec)
+ if n == 0:
+ return (fone, fone)
+ if n == 1:
+ return s
+ if n == 2:
+ return mpi_square(s, prec)
+ # Odd -- signs are preserved
+ if n & 1:
+ a = mpf_pow_int(sa, n, prec, round_floor)
+ b = mpf_pow_int(sb, n, prec, round_ceiling)
+ # Even -- important to ensure positivity
+ else:
+ sas = mpf_sign(sa)
+ sbs = mpf_sign(sb)
+ # Nonnegative?
+ if sas >= 0:
+ a = mpf_pow_int(sa, n, prec, round_floor)
+ b = mpf_pow_int(sb, n, prec, round_ceiling)
+ # Nonpositive?
+ elif sbs <= 0:
+ a = mpf_pow_int(sb, n, prec, round_floor)
+ b = mpf_pow_int(sa, n, prec, round_ceiling)
+ # Mixed signs?
+ else:
+ a = fzero
+ # max(-a,b)**n
+ sa = mpf_neg(sa)
+ if mpf_ge(sa, sb):
+ b = mpf_pow_int(sa, n, prec, round_ceiling)
+ else:
+ b = mpf_pow_int(sb, n, prec, round_ceiling)
+ return a, b
+
+def mpi_pow(s, t, prec):
+ ta, tb = t
+ if ta == tb and ta not in (finf, fninf):
+ if ta == from_int(to_int(ta)):
+ return mpi_pow_int(s, to_int(ta), prec)
+ if ta == fhalf:
+ return mpi_sqrt(s, prec)
+ u = mpi_log(s, prec + 20)
+ v = mpi_mul(u, t, prec + 20)
+ return mpi_exp(v, prec)
+
+def MIN(x, y):
+ if mpf_le(x, y):
+ return x
+ return y
+
+def MAX(x, y):
+ if mpf_ge(x, y):
+ return x
+ return y
+
+def cos_sin_quadrant(x, wp):
+ sign, man, exp, bc = x
+ if x == fzero:
+ return fone, fzero, 0
+ # TODO: combine evaluation code to avoid duplicate modulo
+ c, s = mpf_cos_sin(x, wp)
+ t, n, wp_ = mod_pi2(man, exp, exp+bc, 15)
+ if sign:
+ n = -1-n
+ return c, s, n
+
+def mpi_cos_sin(x, prec):
+ a, b = x
+ if a == b == fzero:
+ return (fone, fone), (fzero, fzero)
+ # Guaranteed to contain both -1 and 1
+ if (finf in x) or (fninf in x):
+ return (fnone, fone), (fnone, fone)
+ wp = prec + 20
+ ca, sa, na = cos_sin_quadrant(a, wp)
+ cb, sb, nb = cos_sin_quadrant(b, wp)
+ ca, cb = mpf_min_max([ca, cb])
+ sa, sb = mpf_min_max([sa, sb])
+ # Both functions are monotonic within one quadrant
+ if na == nb:
+ pass
+ # Guaranteed to contain both -1 and 1
+ elif nb - na >= 4:
+ return (fnone, fone), (fnone, fone)
+ else:
+ # cos has maximum between a and b
+ if na//4 != nb//4:
+ cb = fone
+ # cos has minimum
+ if (na-2)//4 != (nb-2)//4:
+ ca = fnone
+ # sin has maximum
+ if (na-1)//4 != (nb-1)//4:
+ sb = fone
+ # sin has minimum
+ if (na-3)//4 != (nb-3)//4:
+ sa = fnone
+ # Perturb to force interval rounding
+ more = from_man_exp((MPZ_ONE<= 1:
+ if sign:
+ return fnone
+ return fone
+ return v
+ ca = finalize(ca, round_floor)
+ cb = finalize(cb, round_ceiling)
+ sa = finalize(sa, round_floor)
+ sb = finalize(sb, round_ceiling)
+ return (ca,cb), (sa,sb)
+
+def mpi_cos(x, prec):
+ return mpi_cos_sin(x, prec)[0]
+
+def mpi_sin(x, prec):
+ return mpi_cos_sin(x, prec)[1]
+
+def mpi_tan(x, prec):
+ cos, sin = mpi_cos_sin(x, prec+20)
+ return mpi_div(sin, cos, prec)
+
+def mpi_cot(x, prec):
+ cos, sin = mpi_cos_sin(x, prec+20)
+ return mpi_div(cos, sin, prec)
+
+def mpi_from_str_a_b(x, y, percent, prec):
+ wp = prec + 20
+ xa = from_str(x, wp, round_floor)
+ xb = from_str(x, wp, round_ceiling)
+ #ya = from_str(y, wp, round_floor)
+ y = from_str(y, wp, round_ceiling)
+ assert mpf_ge(y, fzero)
+ if percent:
+ y = mpf_mul(MAX(mpf_abs(xa), mpf_abs(xb)), y, wp, round_ceiling)
+ y = mpf_div(y, from_int(100), wp, round_ceiling)
+ a = mpf_sub(xa, y, prec, round_floor)
+ b = mpf_add(xb, y, prec, round_ceiling)
+ return a, b
+
+def mpi_from_str(s, prec):
+ """
+ Parse an interval number given as a string.
+
+ Allowed forms are
+
+ "-1.23e-27"
+ Any single decimal floating-point literal.
+ "a +- b" or "a (b)"
+ a is the midpoint of the interval and b is the half-width
+ "a +- b%" or "a (b%)"
+ a is the midpoint of the interval and the half-width
+ is b percent of a (`a \times b / 100`).
+ "[a, b]"
+ The interval indicated directly.
+ "x[y,z]e"
+ x are shared digits, y and z are unequal digits, e is the exponent.
+
+ """
+ e = ValueError("Improperly formed interval number '%s'" % s)
+ s = s.replace(" ", "")
+ wp = prec + 20
+ if "+-" in s:
+ x, y = s.split("+-")
+ return mpi_from_str_a_b(x, y, False, prec)
+ # case 2
+ elif "(" in s:
+ # Don't confuse with a complex number (x,y)
+ if s[0] == "(" or ")" not in s:
+ raise e
+ s = s.replace(")", "")
+ percent = False
+ if "%" in s:
+ if s[-1] != "%":
+ raise e
+ percent = True
+ s = s.replace("%", "")
+ x, y = s.split("(")
+ return mpi_from_str_a_b(x, y, percent, prec)
+ elif "," in s:
+ if ('[' not in s) or (']' not in s):
+ raise e
+ if s[0] == '[':
+ # case 3
+ s = s.replace("[", "")
+ s = s.replace("]", "")
+ a, b = s.split(",")
+ a = from_str(a, prec, round_floor)
+ b = from_str(b, prec, round_ceiling)
+ return a, b
+ else:
+ # case 4
+ x, y = s.split('[')
+ y, z = y.split(',')
+ if 'e' in s:
+ z, e = z.split(']')
+ else:
+ z, e = z.rstrip(']'), ''
+ a = from_str(x+y+e, prec, round_floor)
+ b = from_str(x+z+e, prec, round_ceiling)
+ return a, b
+ else:
+ a = from_str(s, prec, round_floor)
+ b = from_str(s, prec, round_ceiling)
+ return a, b
+
+def mpi_to_str(x, dps, use_spaces=True, brackets='[]', mode='brackets', error_dps=4, **kwargs):
+ """
+ Convert a mpi interval to a string.
+
+ **Arguments**
+
+ *dps*
+ decimal places to use for printing
+ *use_spaces*
+ use spaces for more readable output, defaults to true
+ *brackets*
+ pair of strings (or two-character string) giving left and right brackets
+ *mode*
+ mode of display: 'plusminus', 'percent', 'brackets' (default) or 'diff'
+ *error_dps*
+ limit the error to *error_dps* digits (mode 'plusminus and 'percent')
+
+ Additional keyword arguments are forwarded to the mpf-to-string conversion
+ for the components of the output.
+
+ **Examples**
+
+ >>> from mpmath import mpi, mp
+ >>> mp.dps = 30
+ >>> x = mpi(1, 2)._mpi_
+ >>> mpi_to_str(x, 2, mode='plusminus')
+ '1.5 +- 0.5'
+ >>> mpi_to_str(x, 2, mode='percent')
+ '1.5 (33.33%)'
+ >>> mpi_to_str(x, 2, mode='brackets')
+ '[1.0, 2.0]'
+ >>> mpi_to_str(x, 2, mode='brackets' , brackets=('<', '>'))
+ '<1.0, 2.0>'
+ >>> x = mpi('5.2582327113062393041', '5.2582327113062749951')._mpi_
+ >>> mpi_to_str(x, 15, mode='diff')
+ '5.2582327113062[4, 7]'
+ >>> mpi_to_str(mpi(0)._mpi_, 2, mode='percent')
+ '0.0 (0.0%)'
+
+ """
+ prec = dps_to_prec(dps)
+ wp = prec + 20
+ a, b = x
+ mid = mpi_mid(x, prec)
+ delta = mpi_delta(x, prec)
+ a_str = to_str(a, dps, **kwargs)
+ b_str = to_str(b, dps, **kwargs)
+ mid_str = to_str(mid, dps, **kwargs)
+ sp = ""
+ if use_spaces:
+ sp = " "
+ br1, br2 = brackets
+ if mode == 'plusminus':
+ delta_str = to_str(mpf_shift(delta,-1), dps, **kwargs)
+ s = mid_str + sp + "+-" + sp + delta_str
+ elif mode == 'percent':
+ if mid == fzero:
+ p = fzero
+ else:
+ # p = 100 * delta(x) / (2*mid(x))
+ p = mpf_mul(delta, from_int(100))
+ p = mpf_div(p, mpf_mul(mid, from_int(2)), wp)
+ s = mid_str + sp + "(" + to_str(p, error_dps) + "%)"
+ elif mode == 'brackets':
+ s = br1 + a_str + "," + sp + b_str + br2
+ elif mode == 'diff':
+ # use more digits if str(x.a) and str(x.b) are equal
+ if a_str == b_str:
+ a_str = to_str(a, dps+3, **kwargs)
+ b_str = to_str(b, dps+3, **kwargs)
+ # separate mantissa and exponent
+ a = a_str.split('e')
+ if len(a) == 1:
+ a.append('')
+ b = b_str.split('e')
+ if len(b) == 1:
+ b.append('')
+ if a[1] == b[1]:
+ if a[0] != b[0]:
+ for i in xrange(len(a[0]) + 1):
+ if a[0][i] != b[0][i]:
+ break
+ s = (a[0][:i] + br1 + a[0][i:] + ',' + sp + b[0][i:] + br2
+ + 'e'*min(len(a[1]), 1) + a[1])
+ else: # no difference
+ s = a[0] + br1 + br2 + 'e'*min(len(a[1]), 1) + a[1]
+ else:
+ s = br1 + 'e'.join(a) + ',' + sp + 'e'.join(b) + br2
+ else:
+ raise ValueError("'%s' is unknown mode for printing mpi" % mode)
+ return s
+
+def mpci_add(x, y, prec):
+ a, b = x
+ c, d = y
+ return mpi_add(a, c, prec), mpi_add(b, d, prec)
+
+def mpci_sub(x, y, prec):
+ a, b = x
+ c, d = y
+ return mpi_sub(a, c, prec), mpi_sub(b, d, prec)
+
+def mpci_neg(x, prec=0):
+ a, b = x
+ return mpi_neg(a, prec), mpi_neg(b, prec)
+
+def mpci_pos(x, prec):
+ a, b = x
+ return mpi_pos(a, prec), mpi_pos(b, prec)
+
+def mpci_mul(x, y, prec):
+ # TODO: optimize for real/imag cases
+ a, b = x
+ c, d = y
+ r1 = mpi_mul(a,c)
+ r2 = mpi_mul(b,d)
+ re = mpi_sub(r1,r2,prec)
+ i1 = mpi_mul(a,d)
+ i2 = mpi_mul(b,c)
+ im = mpi_add(i1,i2,prec)
+ return re, im
+
+def mpci_div(x, y, prec):
+ # TODO: optimize for real/imag cases
+ a, b = x
+ c, d = y
+ wp = prec+20
+ m1 = mpi_square(c)
+ m2 = mpi_square(d)
+ m = mpi_add(m1,m2,wp)
+ re = mpi_add(mpi_mul(a,c), mpi_mul(b,d), wp)
+ im = mpi_sub(mpi_mul(b,c), mpi_mul(a,d), wp)
+ re = mpi_div(re, m, prec)
+ im = mpi_div(im, m, prec)
+ return re, im
+
+def mpci_exp(x, prec):
+ a, b = x
+ wp = prec+20
+ r = mpi_exp(a, wp)
+ c, s = mpi_cos_sin(b, wp)
+ a = mpi_mul(r, c, prec)
+ b = mpi_mul(r, s, prec)
+ return a, b
+
+def mpi_shift(x, n):
+ a, b = x
+ return mpf_shift(a,n), mpf_shift(b,n)
+
+def mpi_cosh_sinh(x, prec):
+ # TODO: accuracy for small x
+ wp = prec+20
+ e1 = mpi_exp(x, wp)
+ e2 = mpi_div(mpi_one, e1, wp)
+ c = mpi_add(e1, e2, prec)
+ s = mpi_sub(e1, e2, prec)
+ c = mpi_shift(c, -1)
+ s = mpi_shift(s, -1)
+ return c, s
+
+def mpci_cos(x, prec):
+ a, b = x
+ wp = prec+10
+ c, s = mpi_cos_sin(a, wp)
+ ch, sh = mpi_cosh_sinh(b, wp)
+ re = mpi_mul(c, ch, prec)
+ im = mpi_mul(s, sh, prec)
+ return re, mpi_neg(im)
+
+def mpci_sin(x, prec):
+ a, b = x
+ wp = prec+10
+ c, s = mpi_cos_sin(a, wp)
+ ch, sh = mpi_cosh_sinh(b, wp)
+ re = mpi_mul(s, ch, prec)
+ im = mpi_mul(c, sh, prec)
+ return re, im
+
+def mpci_abs(x, prec):
+ a, b = x
+ if a == mpi_zero:
+ return mpi_abs(b)
+ if b == mpi_zero:
+ return mpi_abs(a)
+ # Important: nonnegative
+ a = mpi_square(a)
+ b = mpi_square(b)
+ t = mpi_add(a, b, prec+20)
+ return mpi_sqrt(t, prec)
+
+def mpi_atan2(y, x, prec):
+ ya, yb = y
+ xa, xb = x
+ # Constrained to the real line
+ if ya == yb == fzero:
+ if mpf_ge(xa, fzero):
+ return mpi_zero
+ return mpi_pi(prec)
+ # Right half-plane
+ if mpf_ge(xa, fzero):
+ if mpf_ge(ya, fzero):
+ a = mpf_atan2(ya, xb, prec, round_floor)
+ else:
+ a = mpf_atan2(ya, xa, prec, round_floor)
+ if mpf_ge(yb, fzero):
+ b = mpf_atan2(yb, xa, prec, round_ceiling)
+ else:
+ b = mpf_atan2(yb, xb, prec, round_ceiling)
+ # Upper half-plane
+ elif mpf_ge(ya, fzero):
+ b = mpf_atan2(ya, xa, prec, round_ceiling)
+ if mpf_le(xb, fzero):
+ a = mpf_atan2(yb, xb, prec, round_floor)
+ else:
+ a = mpf_atan2(ya, xb, prec, round_floor)
+ # Lower half-plane
+ elif mpf_le(yb, fzero):
+ a = mpf_atan2(yb, xa, prec, round_floor)
+ if mpf_le(xb, fzero):
+ b = mpf_atan2(ya, xb, prec, round_ceiling)
+ else:
+ b = mpf_atan2(yb, xb, prec, round_ceiling)
+ # Covering the origin
+ else:
+ b = mpf_pi(prec, round_ceiling)
+ a = mpf_neg(b)
+ return a, b
+
+def mpci_arg(z, prec):
+ x, y = z
+ return mpi_atan2(y, x, prec)
+
+def mpci_log(z, prec):
+ x, y = z
+ re = mpi_log(mpci_abs(z, prec+20), prec)
+ im = mpci_arg(z, prec)
+ return re, im
+
+def mpci_pow(x, y, prec):
+ # TODO: recognize/speed up real cases, integer y
+ yre, yim = y
+ if yim == mpi_zero:
+ ya, yb = yre
+ if ya == yb:
+ sign, man, exp, bc = yb
+ if man and exp >= 0:
+ return mpci_pow_int(x, (-1)**sign * int(man<>= 1
+ return mpci_pos(result, prec)
+
+gamma_min_a = from_float(1.46163214496)
+gamma_min_b = from_float(1.46163214497)
+gamma_min = (gamma_min_a, gamma_min_b)
+gamma_mono_imag_a = from_float(-1.1)
+gamma_mono_imag_b = from_float(1.1)
+
+def mpi_overlap(x, y):
+ a, b = x
+ c, d = y
+ if mpf_lt(d, a): return False
+ if mpf_gt(c, b): return False
+ return True
+
+# type = 0 -- gamma
+# type = 1 -- factorial
+# type = 2 -- 1/gamma
+# type = 3 -- log-gamma
+
+def mpi_gamma(z, prec, type=0):
+ a, b = z
+ wp = prec+20
+
+ if type == 1:
+ return mpi_gamma(mpi_add(z, mpi_one, wp), prec, 0)
+
+ # increasing
+ if mpf_gt(a, gamma_min_b):
+ if type == 0:
+ c = mpf_gamma(a, prec, round_floor)
+ d = mpf_gamma(b, prec, round_ceiling)
+ elif type == 2:
+ c = mpf_rgamma(b, prec, round_floor)
+ d = mpf_rgamma(a, prec, round_ceiling)
+ elif type == 3:
+ c = mpf_loggamma(a, prec, round_floor)
+ d = mpf_loggamma(b, prec, round_ceiling)
+ # decreasing
+ elif mpf_gt(a, fzero) and mpf_lt(b, gamma_min_a):
+ if type == 0:
+ c = mpf_gamma(b, prec, round_floor)
+ d = mpf_gamma(a, prec, round_ceiling)
+ elif type == 2:
+ c = mpf_rgamma(a, prec, round_floor)
+ d = mpf_rgamma(b, prec, round_ceiling)
+ elif type == 3:
+ c = mpf_loggamma(b, prec, round_floor)
+ d = mpf_loggamma(a, prec, round_ceiling)
+ else:
+ # TODO: reflection formula
+ znew = mpi_add(z, mpi_one, wp)
+ if type == 0: return mpi_div(mpi_gamma(znew, prec+2, 0), z, prec)
+ if type == 2: return mpi_mul(mpi_gamma(znew, prec+2, 2), z, prec)
+ if type == 3: return mpi_sub(mpi_gamma(znew, prec+2, 3), mpi_log(z, prec+2), prec)
+ return c, d
+
+def mpci_gamma(z, prec, type=0):
+ (a1,a2), (b1,b2) = z
+
+ # Real case
+ if b1 == b2 == fzero and (type != 3 or mpf_gt(a1,fzero)):
+ return mpi_gamma(z, prec, type), mpi_zero
+
+ # Estimate precision
+ wp = prec+20
+ if type != 3:
+ amag = a2[2]+a2[3]
+ bmag = b2[2]+b2[3]
+ if a2 != fzero:
+ mag = max(amag, bmag)
+ else:
+ mag = bmag
+ an = abs(to_int(a2))
+ bn = abs(to_int(b2))
+ absn = max(an, bn)
+ gamma_size = max(0,absn*mag)
+ wp += bitcount(gamma_size)
+
+ # Assume type != 1
+ if type == 1:
+ (a1,a2) = mpi_add((a1,a2), mpi_one, wp); z = (a1,a2), (b1,b2)
+ type = 0
+
+ # Avoid non-monotonic region near the negative real axis
+ if mpf_lt(a1, gamma_min_b):
+ if mpi_overlap((b1,b2), (gamma_mono_imag_a, gamma_mono_imag_b)):
+ # TODO: reflection formula
+ #if mpf_lt(a2, mpf_shift(fone,-1)):
+ # znew = mpci_sub((mpi_one,mpi_zero),z,wp)
+ # ...
+ # Recurrence:
+ # gamma(z) = gamma(z+1)/z
+ znew = mpi_add((a1,a2), mpi_one, wp), (b1,b2)
+ if type == 0: return mpci_div(mpci_gamma(znew, prec+2, 0), z, prec)
+ if type == 2: return mpci_mul(mpci_gamma(znew, prec+2, 2), z, prec)
+ if type == 3: return mpci_sub(mpci_gamma(znew, prec+2, 3), mpci_log(z,prec+2), prec)
+
+ # Use monotonicity (except for a small region close to the
+ # origin and near poles)
+ # upper half-plane
+ if mpf_ge(b1, fzero):
+ minre = mpc_loggamma((a1,b2), wp, round_floor)
+ maxre = mpc_loggamma((a2,b1), wp, round_ceiling)
+ minim = mpc_loggamma((a1,b1), wp, round_floor)
+ maxim = mpc_loggamma((a2,b2), wp, round_ceiling)
+ # lower half-plane
+ elif mpf_le(b2, fzero):
+ minre = mpc_loggamma((a1,b1), wp, round_floor)
+ maxre = mpc_loggamma((a2,b2), wp, round_ceiling)
+ minim = mpc_loggamma((a2,b1), wp, round_floor)
+ maxim = mpc_loggamma((a1,b2), wp, round_ceiling)
+ # crosses real axis
+ else:
+ maxre = mpc_loggamma((a2,fzero), wp, round_ceiling)
+ # stretches more into the lower half-plane
+ if mpf_gt(mpf_neg(b1), b2):
+ minre = mpc_loggamma((a1,b1), wp, round_ceiling)
+ else:
+ minre = mpc_loggamma((a1,b2), wp, round_ceiling)
+ minim = mpc_loggamma((a2,b1), wp, round_floor)
+ maxim = mpc_loggamma((a2,b2), wp, round_floor)
+
+ w = (minre[0], maxre[0]), (minim[1], maxim[1])
+ if type == 3:
+ return mpi_pos(w[0], prec), mpi_pos(w[1], prec)
+ if type == 2:
+ w = mpci_neg(w)
+ return mpci_exp(w, prec)
+
+def mpi_loggamma(z, prec): return mpi_gamma(z, prec, type=3)
+def mpci_loggamma(z, prec): return mpci_gamma(z, prec, type=3)
+
+def mpi_rgamma(z, prec): return mpi_gamma(z, prec, type=2)
+def mpci_rgamma(z, prec): return mpci_gamma(z, prec, type=2)
+
+def mpi_factorial(z, prec): return mpi_gamma(z, prec, type=1)
+def mpci_factorial(z, prec): return mpci_gamma(z, prec, type=1)
diff --git a/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b7baaa760536200f659255c5ffe7358927b36e2e
Binary files /dev/null and b/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/__init__.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/calculus.cpython-310.pyc b/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/calculus.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f2492e0036d529ea05dd8a576b44f5598add0324
Binary files /dev/null and b/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/calculus.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/eigen.cpython-310.pyc b/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/eigen.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7b407ff2f90a022ef1923c9e9aa39b63aaf8f918
Binary files /dev/null and b/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/eigen.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/eigen_symmetric.cpython-310.pyc b/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/eigen_symmetric.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..68acedca02a4d886006206d0e1b3e55cfe69429f
Binary files /dev/null and b/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/eigen_symmetric.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/linalg.cpython-310.pyc b/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/linalg.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..30d7cf4e6d245421cb68f6954cd0d6a0b2b0f7e5
Binary files /dev/null and b/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/linalg.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/matrices.cpython-310.pyc b/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/matrices.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3edf3b797f1e8897e2a39374e9e9a6838eccd6b9
Binary files /dev/null and b/venv/lib/python3.10/site-packages/mpmath/matrices/__pycache__/matrices.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/mpmath/matrices/calculus.py b/venv/lib/python3.10/site-packages/mpmath/matrices/calculus.py
new file mode 100644
index 0000000000000000000000000000000000000000..7fae2a7a9a29898241ed41810331b480ff70798f
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/mpmath/matrices/calculus.py
@@ -0,0 +1,531 @@
+from ..libmp.backend import xrange
+
+# TODO: should use diagonalization-based algorithms
+
+class MatrixCalculusMethods(object):
+
+ def _exp_pade(ctx, a):
+ """
+ Exponential of a matrix using Pade approximants.
+
+ See G. H. Golub, C. F. van Loan 'Matrix Computations',
+ third Ed., page 572
+
+ TODO:
+ - find a good estimate for q
+ - reduce the number of matrix multiplications to improve
+ performance
+ """
+ def eps_pade(p):
+ return ctx.mpf(2)**(3-2*p) * \
+ ctx.factorial(p)**2/(ctx.factorial(2*p)**2 * (2*p + 1))
+ q = 4
+ extraq = 8
+ while 1:
+ if eps_pade(q) < ctx.eps:
+ break
+ q += 1
+ q += extraq
+ j = int(max(1, ctx.mag(ctx.mnorm(a,'inf'))))
+ extra = q
+ prec = ctx.prec
+ ctx.dps += extra + 3
+ try:
+ a = a/2**j
+ na = a.rows
+ den = ctx.eye(na)
+ num = ctx.eye(na)
+ x = ctx.eye(na)
+ c = ctx.mpf(1)
+ for k in range(1, q+1):
+ c *= ctx.mpf(q - k + 1)/((2*q - k + 1) * k)
+ x = a*x
+ cx = c*x
+ num += cx
+ den += (-1)**k * cx
+ f = ctx.lu_solve_mat(den, num)
+ for k in range(j):
+ f = f*f
+ finally:
+ ctx.prec = prec
+ return f*1
+
+ def expm(ctx, A, method='taylor'):
+ r"""
+ Computes the matrix exponential of a square matrix `A`, which is defined
+ by the power series
+
+ .. math ::
+
+ \exp(A) = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \ldots
+
+ With method='taylor', the matrix exponential is computed
+ using the Taylor series. With method='pade', Pade approximants
+ are used instead.
+
+ **Examples**
+
+ Basic examples::
+
+ >>> from mpmath import *
+ >>> mp.dps = 15; mp.pretty = True
+ >>> expm(zeros(3))
+ [1.0 0.0 0.0]
+ [0.0 1.0 0.0]
+ [0.0 0.0 1.0]
+ >>> expm(eye(3))
+ [2.71828182845905 0.0 0.0]
+ [ 0.0 2.71828182845905 0.0]
+ [ 0.0 0.0 2.71828182845905]
+ >>> expm([[1,1,0],[1,0,1],[0,1,0]])
+ [ 3.86814500615414 2.26812870852145 0.841130841230196]
+ [ 2.26812870852145 2.44114713886289 1.42699786729125]
+ [0.841130841230196 1.42699786729125 1.6000162976327]
+ >>> expm([[1,1,0],[1,0,1],[0,1,0]], method='pade')
+ [ 3.86814500615414 2.26812870852145 0.841130841230196]
+ [ 2.26812870852145 2.44114713886289 1.42699786729125]
+ [0.841130841230196 1.42699786729125 1.6000162976327]
+ >>> expm([[1+j, 0], [1+j,1]])
+ [(1.46869393991589 + 2.28735528717884j) 0.0]
+ [ (1.03776739863568 + 3.536943175722j) (2.71828182845905 + 0.0j)]
+
+ Matrices with large entries are allowed::
+
+ >>> expm(matrix([[1,2],[2,3]])**25)
+ [5.65024064048415e+2050488462815550 9.14228140091932e+2050488462815550]
+ [9.14228140091932e+2050488462815550 1.47925220414035e+2050488462815551]
+
+ The identity `\exp(A+B) = \exp(A) \exp(B)` does not hold for
+ noncommuting matrices::
+
+ >>> A = hilbert(3)
+ >>> B = A + eye(3)
+ >>> chop(mnorm(A*B - B*A))
+ 0.0
+ >>> chop(mnorm(expm(A+B) - expm(A)*expm(B)))
+ 0.0
+ >>> B = A + ones(3)
+ >>> mnorm(A*B - B*A)
+ 1.8
+ >>> mnorm(expm(A+B) - expm(A)*expm(B))
+ 42.0927851137247
+
+ """
+ if method == 'pade':
+ prec = ctx.prec
+ try:
+ A = ctx.matrix(A)
+ ctx.prec += 2*A.rows
+ res = ctx._exp_pade(A)
+ finally:
+ ctx.prec = prec
+ return res
+ A = ctx.matrix(A)
+ prec = ctx.prec
+ j = int(max(1, ctx.mag(ctx.mnorm(A,'inf'))))
+ j += int(0.5*prec**0.5)
+ try:
+ ctx.prec += 10 + 2*j
+ tol = +ctx.eps
+ A = A/2**j
+ T = A
+ Y = A**0 + A
+ k = 2
+ while 1:
+ T *= A * (1/ctx.mpf(k))
+ if ctx.mnorm(T, 'inf') < tol:
+ break
+ Y += T
+ k += 1
+ for k in xrange(j):
+ Y = Y*Y
+ finally:
+ ctx.prec = prec
+ Y *= 1
+ return Y
+
+ def cosm(ctx, A):
+ r"""
+ Gives the cosine of a square matrix `A`, defined in analogy
+ with the matrix exponential.
+
+ Examples::
+
+ >>> from mpmath import *
+ >>> mp.dps = 15; mp.pretty = True
+ >>> X = eye(3)
+ >>> cosm(X)
+ [0.54030230586814 0.0 0.0]
+ [ 0.0 0.54030230586814 0.0]
+ [ 0.0 0.0 0.54030230586814]
+ >>> X = hilbert(3)
+ >>> cosm(X)
+ [ 0.424403834569555 -0.316643413047167 -0.221474945949293]
+ [-0.316643413047167 0.820646708837824 -0.127183694770039]
+ [-0.221474945949293 -0.127183694770039 0.909236687217541]
+ >>> X = matrix([[1+j,-2],[0,-j]])
+ >>> cosm(X)
+ [(0.833730025131149 - 0.988897705762865j) (1.07485840848393 - 0.17192140544213j)]
+ [ 0.0 (1.54308063481524 + 0.0j)]
+ """
+ B = 0.5 * (ctx.expm(A*ctx.j) + ctx.expm(A*(-ctx.j)))
+ if not sum(A.apply(ctx.im).apply(abs)):
+ B = B.apply(ctx.re)
+ return B
+
+ def sinm(ctx, A):
+ r"""
+ Gives the sine of a square matrix `A`, defined in analogy
+ with the matrix exponential.
+
+ Examples::
+
+ >>> from mpmath import *
+ >>> mp.dps = 15; mp.pretty = True
+ >>> X = eye(3)
+ >>> sinm(X)
+ [0.841470984807897 0.0 0.0]
+ [ 0.0 0.841470984807897 0.0]
+ [ 0.0 0.0 0.841470984807897]
+ >>> X = hilbert(3)
+ >>> sinm(X)
+ [0.711608512150994 0.339783913247439 0.220742837314741]
+ [0.339783913247439 0.244113865695532 0.187231271174372]
+ [0.220742837314741 0.187231271174372 0.155816730769635]
+ >>> X = matrix([[1+j,-2],[0,-j]])
+ >>> sinm(X)
+ [(1.29845758141598 + 0.634963914784736j) (-1.96751511930922 + 0.314700021761367j)]
+ [ 0.0 (0.0 - 1.1752011936438j)]
+ """
+ B = (-0.5j) * (ctx.expm(A*ctx.j) - ctx.expm(A*(-ctx.j)))
+ if not sum(A.apply(ctx.im).apply(abs)):
+ B = B.apply(ctx.re)
+ return B
+
+ def _sqrtm_rot(ctx, A, _may_rotate):
+ # If the iteration fails to converge, cheat by performing
+ # a rotation by a complex number
+ u = ctx.j**0.3
+ return ctx.sqrtm(u*A, _may_rotate) / ctx.sqrt(u)
+
+ def sqrtm(ctx, A, _may_rotate=2):
+ r"""
+ Computes a square root of the square matrix `A`, i.e. returns
+ a matrix `B = A^{1/2}` such that `B^2 = A`. The square root
+ of a matrix, if it exists, is not unique.
+
+ **Examples**
+
+ Square roots of some simple matrices::
+
+ >>> from mpmath import *
+ >>> mp.dps = 15; mp.pretty = True
+ >>> sqrtm([[1,0], [0,1]])
+ [1.0 0.0]
+ [0.0 1.0]
+ >>> sqrtm([[0,0], [0,0]])
+ [0.0 0.0]
+ [0.0 0.0]
+ >>> sqrtm([[2,0],[0,1]])
+ [1.4142135623731 0.0]
+ [ 0.0 1.0]
+ >>> sqrtm([[1,1],[1,0]])
+ [ (0.920442065259926 - 0.21728689675164j) (0.568864481005783 + 0.351577584254143j)]
+ [(0.568864481005783 + 0.351577584254143j) (0.351577584254143 - 0.568864481005783j)]
+ >>> sqrtm([[1,0],[0,1]])
+ [1.0 0.0]
+ [0.0 1.0]
+ >>> sqrtm([[-1,0],[0,1]])
+ [(0.0 - 1.0j) 0.0]
+ [ 0.0 (1.0 + 0.0j)]
+ >>> sqrtm([[j,0],[0,j]])
+ [(0.707106781186547 + 0.707106781186547j) 0.0]
+ [ 0.0 (0.707106781186547 + 0.707106781186547j)]
+
+ A square root of a rotation matrix, giving the corresponding
+ half-angle rotation matrix::
+
+ >>> t1 = 0.75
+ >>> t2 = t1 * 0.5
+ >>> A1 = matrix([[cos(t1), -sin(t1)], [sin(t1), cos(t1)]])
+ >>> A2 = matrix([[cos(t2), -sin(t2)], [sin(t2), cos(t2)]])
+ >>> sqrtm(A1)
+ [0.930507621912314 -0.366272529086048]
+ [0.366272529086048 0.930507621912314]
+ >>> A2
+ [0.930507621912314 -0.366272529086048]
+ [0.366272529086048 0.930507621912314]
+
+ The identity `(A^2)^{1/2} = A` does not necessarily hold::
+
+ >>> A = matrix([[4,1,4],[7,8,9],[10,2,11]])
+ >>> sqrtm(A**2)
+ [ 4.0 1.0 4.0]
+ [ 7.0 8.0 9.0]
+ [10.0 2.0 11.0]
+ >>> sqrtm(A)**2
+ [ 4.0 1.0 4.0]
+ [ 7.0 8.0 9.0]
+ [10.0 2.0 11.0]
+ >>> A = matrix([[-4,1,4],[7,-8,9],[10,2,11]])
+ >>> sqrtm(A**2)
+ [ 7.43715112194995 -0.324127569985474 1.8481718827526]
+ [-0.251549715716942 9.32699765900402 2.48221180985147]
+ [ 4.11609388833616 0.775751877098258 13.017955697342]
+ >>> chop(sqrtm(A)**2)
+ [-4.0 1.0 4.0]
+ [ 7.0 -8.0 9.0]
+ [10.0 2.0 11.0]
+
+ For some matrices, a square root does not exist::
+
+ >>> sqrtm([[0,1], [0,0]])
+ Traceback (most recent call last):
+ ...
+ ZeroDivisionError: matrix is numerically singular
+
+ Two examples from the documentation for Matlab's ``sqrtm``::
+
+ >>> mp.dps = 15; mp.pretty = True
+ >>> sqrtm([[7,10],[15,22]])
+ [1.56669890360128 1.74077655955698]
+ [2.61116483933547 4.17786374293675]
+ >>>
+ >>> X = matrix(\
+ ... [[5,-4,1,0,0],
+ ... [-4,6,-4,1,0],
+ ... [1,-4,6,-4,1],
+ ... [0,1,-4,6,-4],
+ ... [0,0,1,-4,5]])
+ >>> Y = matrix(\
+ ... [[2,-1,-0,-0,-0],
+ ... [-1,2,-1,0,-0],
+ ... [0,-1,2,-1,0],
+ ... [-0,0,-1,2,-1],
+ ... [-0,-0,-0,-1,2]])
+ >>> mnorm(sqrtm(X) - Y)
+ 4.53155328326114e-19
+
+ """
+ A = ctx.matrix(A)
+ # Trivial
+ if A*0 == A:
+ return A
+ prec = ctx.prec
+ if _may_rotate:
+ d = ctx.det(A)
+ if abs(ctx.im(d)) < 16*ctx.eps and ctx.re(d) < 0:
+ return ctx._sqrtm_rot(A, _may_rotate-1)
+ try:
+ ctx.prec += 10
+ tol = ctx.eps * 128
+ Y = A
+ Z = I = A**0
+ k = 0
+ # Denman-Beavers iteration
+ while 1:
+ Yprev = Y
+ try:
+ Y, Z = 0.5*(Y+ctx.inverse(Z)), 0.5*(Z+ctx.inverse(Y))
+ except ZeroDivisionError:
+ if _may_rotate:
+ Y = ctx._sqrtm_rot(A, _may_rotate-1)
+ break
+ else:
+ raise
+ mag1 = ctx.mnorm(Y-Yprev, 'inf')
+ mag2 = ctx.mnorm(Y, 'inf')
+ if mag1 <= mag2*tol:
+ break
+ if _may_rotate and k > 6 and not mag1 < mag2 * 0.001:
+ return ctx._sqrtm_rot(A, _may_rotate-1)
+ k += 1
+ if k > ctx.prec:
+ raise ctx.NoConvergence
+ finally:
+ ctx.prec = prec
+ Y *= 1
+ return Y
+
+ def logm(ctx, A):
+ r"""
+ Computes a logarithm of the square matrix `A`, i.e. returns
+ a matrix `B = \log(A)` such that `\exp(B) = A`. The logarithm
+ of a matrix, if it exists, is not unique.
+
+ **Examples**
+
+ Logarithms of some simple matrices::
+
+ >>> from mpmath import *
+ >>> mp.dps = 15; mp.pretty = True
+ >>> X = eye(3)
+ >>> logm(X)
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+ >>> logm(2*X)
+ [0.693147180559945 0.0 0.0]
+ [ 0.0 0.693147180559945 0.0]
+ [ 0.0 0.0 0.693147180559945]
+ >>> logm(expm(X))
+ [1.0 0.0 0.0]
+ [0.0 1.0 0.0]
+ [0.0 0.0 1.0]
+
+ A logarithm of a complex matrix::
+
+ >>> X = matrix([[2+j, 1, 3], [1-j, 1-2*j, 1], [-4, -5, j]])
+ >>> B = logm(X)
+ >>> nprint(B)
+ [ (0.808757 + 0.107759j) (2.20752 + 0.202762j) (1.07376 - 0.773874j)]
+ [ (0.905709 - 0.107795j) (0.0287395 - 0.824993j) (0.111619 + 0.514272j)]
+ [(-0.930151 + 0.399512j) (-2.06266 - 0.674397j) (0.791552 + 0.519839j)]
+ >>> chop(expm(B))
+ [(2.0 + 1.0j) 1.0 3.0]
+ [(1.0 - 1.0j) (1.0 - 2.0j) 1.0]
+ [ -4.0 -5.0 (0.0 + 1.0j)]
+
+ A matrix `X` close to the identity matrix, for which
+ `\log(\exp(X)) = \exp(\log(X)) = X` holds::
+
+ >>> X = eye(3) + hilbert(3)/4
+ >>> X
+ [ 1.25 0.125 0.0833333333333333]
+ [ 0.125 1.08333333333333 0.0625]
+ [0.0833333333333333 0.0625 1.05]
+ >>> logm(expm(X))
+ [ 1.25 0.125 0.0833333333333333]
+ [ 0.125 1.08333333333333 0.0625]
+ [0.0833333333333333 0.0625 1.05]
+ >>> expm(logm(X))
+ [ 1.25 0.125 0.0833333333333333]
+ [ 0.125 1.08333333333333 0.0625]
+ [0.0833333333333333 0.0625 1.05]
+
+ A logarithm of a rotation matrix, giving back the angle of
+ the rotation::
+
+ >>> t = 3.7
+ >>> A = matrix([[cos(t),sin(t)],[-sin(t),cos(t)]])
+ >>> chop(logm(A))
+ [ 0.0 -2.58318530717959]
+ [2.58318530717959 0.0]
+ >>> (2*pi-t)
+ 2.58318530717959
+
+ For some matrices, a logarithm does not exist::
+
+ >>> logm([[1,0], [0,0]])
+ Traceback (most recent call last):
+ ...
+ ZeroDivisionError: matrix is numerically singular
+
+ Logarithm of a matrix with large entries::
+
+ >>> logm(hilbert(3) * 10**20).apply(re)
+ [ 45.5597513593433 1.27721006042799 0.317662687717978]
+ [ 1.27721006042799 42.5222778973542 2.24003708791604]
+ [0.317662687717978 2.24003708791604 42.395212822267]
+
+ """
+ A = ctx.matrix(A)
+ prec = ctx.prec
+ try:
+ ctx.prec += 10
+ tol = ctx.eps * 128
+ I = A**0
+ B = A
+ n = 0
+ while 1:
+ B = ctx.sqrtm(B)
+ n += 1
+ if ctx.mnorm(B-I, 'inf') < 0.125:
+ break
+ T = X = B-I
+ L = X*0
+ k = 1
+ while 1:
+ if k & 1:
+ L += T / k
+ else:
+ L -= T / k
+ T *= X
+ if ctx.mnorm(T, 'inf') < tol:
+ break
+ k += 1
+ if k > ctx.prec:
+ raise ctx.NoConvergence
+ finally:
+ ctx.prec = prec
+ L *= 2**n
+ return L
+
+ def powm(ctx, A, r):
+ r"""
+ Computes `A^r = \exp(A \log r)` for a matrix `A` and complex
+ number `r`.
+
+ **Examples**
+
+ Powers and inverse powers of a matrix::
+
+ >>> from mpmath import *
+ >>> mp.dps = 15; mp.pretty = True
+ >>> A = matrix([[4,1,4],[7,8,9],[10,2,11]])
+ >>> powm(A, 2)
+ [ 63.0 20.0 69.0]
+ [174.0 89.0 199.0]
+ [164.0 48.0 179.0]
+ >>> chop(powm(powm(A, 4), 1/4.))
+ [ 4.0 1.0 4.0]
+ [ 7.0 8.0 9.0]
+ [10.0 2.0 11.0]
+ >>> powm(extraprec(20)(powm)(A, -4), -1/4.)
+ [ 4.0 1.0 4.0]
+ [ 7.0 8.0 9.0]
+ [10.0 2.0 11.0]
+ >>> chop(powm(powm(A, 1+0.5j), 1/(1+0.5j)))
+ [ 4.0 1.0 4.0]
+ [ 7.0 8.0 9.0]
+ [10.0 2.0 11.0]
+ >>> powm(extraprec(5)(powm)(A, -1.5), -1/(1.5))
+ [ 4.0 1.0 4.0]
+ [ 7.0 8.0 9.0]
+ [10.0 2.0 11.0]
+
+ A Fibonacci-generating matrix::
+
+ >>> powm([[1,1],[1,0]], 10)
+ [89.0 55.0]
+ [55.0 34.0]
+ >>> fib(10)
+ 55.0
+ >>> powm([[1,1],[1,0]], 6.5)
+ [(16.5166626964253 - 0.0121089837381789j) (10.2078589271083 + 0.0195927472575932j)]
+ [(10.2078589271083 + 0.0195927472575932j) (6.30880376931698 - 0.0317017309957721j)]
+ >>> (phi**6.5 - (1-phi)**6.5)/sqrt(5)
+ (10.2078589271083 - 0.0195927472575932j)
+ >>> powm([[1,1],[1,0]], 6.2)
+ [ (14.3076953002666 - 0.008222855781077j) (8.81733464837593 + 0.0133048601383712j)]
+ [(8.81733464837593 + 0.0133048601383712j) (5.49036065189071 - 0.0215277159194482j)]
+ >>> (phi**6.2 - (1-phi)**6.2)/sqrt(5)
+ (8.81733464837593 - 0.0133048601383712j)
+
+ """
+ A = ctx.matrix(A)
+ r = ctx.convert(r)
+ prec = ctx.prec
+ try:
+ ctx.prec += 10
+ if ctx.isint(r):
+ v = A ** int(r)
+ elif ctx.isint(r*2):
+ y = int(r*2)
+ v = ctx.sqrtm(A) ** y
+ else:
+ v = ctx.expm(r*ctx.logm(A))
+ finally:
+ ctx.prec = prec
+ v *= 1
+ return v
diff --git a/venv/lib/python3.10/site-packages/mpmath/matrices/eigen.py b/venv/lib/python3.10/site-packages/mpmath/matrices/eigen.py
new file mode 100644
index 0000000000000000000000000000000000000000..885d604203195b695183329acc637de91aeaf5ea
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/mpmath/matrices/eigen.py
@@ -0,0 +1,877 @@
+#!/usr/bin/python
+# -*- coding: utf-8 -*-
+
+##################################################################################################
+# module for the eigenvalue problem
+# Copyright 2013 Timo Hartmann (thartmann15 at gmail.com)
+#
+# todo:
+# - implement balancing
+# - agressive early deflation
+#
+##################################################################################################
+
+"""
+The eigenvalue problem
+----------------------
+
+This file contains routines for the eigenvalue problem.
+
+high level routines:
+
+ hessenberg : reduction of a real or complex square matrix to upper Hessenberg form
+ schur : reduction of a real or complex square matrix to upper Schur form
+ eig : eigenvalues and eigenvectors of a real or complex square matrix
+
+low level routines:
+
+ hessenberg_reduce_0 : reduction of a real or complex square matrix to upper Hessenberg form
+ hessenberg_reduce_1 : auxiliary routine to hessenberg_reduce_0
+ qr_step : a single implicitly shifted QR step for an upper Hessenberg matrix
+ hessenberg_qr : Schur decomposition of an upper Hessenberg matrix
+ eig_tr_r : right eigenvectors of an upper triangular matrix
+ eig_tr_l : left eigenvectors of an upper triangular matrix
+"""
+
+from ..libmp.backend import xrange
+
+class Eigen(object):
+ pass
+
+def defun(f):
+ setattr(Eigen, f.__name__, f)
+ return f
+
+def hessenberg_reduce_0(ctx, A, T):
+ """
+ This routine computes the (upper) Hessenberg decomposition of a square matrix A.
+ Given A, an unitary matrix Q is calculated such that
+
+ Q' A Q = H and Q' Q = Q Q' = 1
+
+ where H is an upper Hessenberg matrix, meaning that it only contains zeros
+ below the first subdiagonal. Here ' denotes the hermitian transpose (i.e.
+ transposition and conjugation).
+
+ parameters:
+ A (input/output) On input, A contains the square matrix A of
+ dimension (n,n). On output, A contains a compressed representation
+ of Q and H.
+ T (output) An array of length n containing the first elements of
+ the Householder reflectors.
+ """
+
+ # internally we work with householder reflections from the right.
+ # let u be a row vector (i.e. u[i]=A[i,:i]). then
+ # Q is build up by reflectors of the type (1-v'v) where v is a suitable
+ # modification of u. these reflectors are applyed to A from the right.
+ # because we work with reflectors from the right we have to start with
+ # the bottom row of A and work then upwards (this corresponds to
+ # some kind of RQ decomposition).
+ # the first part of the vectors v (i.e. A[i,:(i-1)]) are stored as row vectors
+ # in the lower left part of A (excluding the diagonal and subdiagonal).
+ # the last entry of v is stored in T.
+ # the upper right part of A (including diagonal and subdiagonal) becomes H.
+
+
+ n = A.rows
+ if n <= 2: return
+
+ for i in xrange(n-1, 1, -1):
+
+ # scale the vector
+
+ scale = 0
+ for k in xrange(0, i):
+ scale += abs(ctx.re(A[i,k])) + abs(ctx.im(A[i,k]))
+
+ scale_inv = 0
+ if scale != 0:
+ scale_inv = 1 / scale
+
+ if scale == 0 or ctx.isinf(scale_inv):
+ # sadly there are floating point numbers not equal to zero whose reciprocal is infinity
+ T[i] = 0
+ A[i,i-1] = 0
+ continue
+
+ # calculate parameters for housholder transformation
+
+ H = 0
+ for k in xrange(0, i):
+ A[i,k] *= scale_inv
+ rr = ctx.re(A[i,k])
+ ii = ctx.im(A[i,k])
+ H += rr * rr + ii * ii
+
+ F = A[i,i-1]
+ f = abs(F)
+ G = ctx.sqrt(H)
+ A[i,i-1] = - G * scale
+
+ if f == 0:
+ T[i] = G
+ else:
+ ff = F / f
+ T[i] = F + G * ff
+ A[i,i-1] *= ff
+
+ H += G * f
+ H = 1 / ctx.sqrt(H)
+
+ T[i] *= H
+ for k in xrange(0, i - 1):
+ A[i,k] *= H
+
+ for j in xrange(0, i):
+ # apply housholder transformation (from right)
+
+ G = ctx.conj(T[i]) * A[j,i-1]
+ for k in xrange(0, i-1):
+ G += ctx.conj(A[i,k]) * A[j,k]
+
+ A[j,i-1] -= G * T[i]
+ for k in xrange(0, i-1):
+ A[j,k] -= G * A[i,k]
+
+ for j in xrange(0, n):
+ # apply housholder transformation (from left)
+
+ G = T[i] * A[i-1,j]
+ for k in xrange(0, i-1):
+ G += A[i,k] * A[k,j]
+
+ A[i-1,j] -= G * ctx.conj(T[i])
+ for k in xrange(0, i-1):
+ A[k,j] -= G * ctx.conj(A[i,k])
+
+
+
+def hessenberg_reduce_1(ctx, A, T):
+ """
+ This routine forms the unitary matrix Q described in hessenberg_reduce_0.
+
+ parameters:
+ A (input/output) On input, A is the same matrix as delivered by
+ hessenberg_reduce_0. On output, A is set to Q.
+
+ T (input) On input, T is the same array as delivered by hessenberg_reduce_0.
+ """
+
+ n = A.rows
+
+ if n == 1:
+ A[0,0] = 1
+ return
+
+ A[0,0] = A[1,1] = 1
+ A[0,1] = A[1,0] = 0
+
+ for i in xrange(2, n):
+ if T[i] != 0:
+
+ for j in xrange(0, i):
+ G = T[i] * A[i-1,j]
+ for k in xrange(0, i-1):
+ G += A[i,k] * A[k,j]
+
+ A[i-1,j] -= G * ctx.conj(T[i])
+ for k in xrange(0, i-1):
+ A[k,j] -= G * ctx.conj(A[i,k])
+
+ A[i,i] = 1
+ for j in xrange(0, i):
+ A[j,i] = A[i,j] = 0
+
+
+
+@defun
+def hessenberg(ctx, A, overwrite_a = False):
+ """
+ This routine computes the Hessenberg decomposition of a square matrix A.
+ Given A, an unitary matrix Q is determined such that
+
+ Q' A Q = H and Q' Q = Q Q' = 1
+
+ where H is an upper right Hessenberg matrix. Here ' denotes the hermitian
+ transpose (i.e. transposition and conjugation).
+
+ input:
+ A : a real or complex square matrix
+ overwrite_a : if true, allows modification of A which may improve
+ performance. if false, A is not modified.
+
+ output:
+ Q : an unitary matrix
+ H : an upper right Hessenberg matrix
+
+ example:
+ >>> from mpmath import mp
+ >>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]])
+ >>> Q, H = mp.hessenberg(A)
+ >>> mp.nprint(H, 3) # doctest:+SKIP
+ [ 3.15 2.23 4.44]
+ [-0.769 4.85 3.05]
+ [ 0.0 3.61 7.0]
+ >>> print(mp.chop(A - Q * H * Q.transpose_conj()))
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+
+ return value: (Q, H)
+ """
+
+ n = A.rows
+
+ if n == 1:
+ return (ctx.matrix([[1]]), A)
+
+ if not overwrite_a:
+ A = A.copy()
+
+ T = ctx.matrix(n, 1)
+
+ hessenberg_reduce_0(ctx, A, T)
+ Q = A.copy()
+ hessenberg_reduce_1(ctx, Q, T)
+
+ for x in xrange(n):
+ for y in xrange(x+2, n):
+ A[y,x] = 0
+
+ return Q, A
+
+
+###########################################################################
+
+
+def qr_step(ctx, n0, n1, A, Q, shift):
+ """
+ This subroutine executes a single implicitly shifted QR step applied to an
+ upper Hessenberg matrix A. Given A and shift as input, first an QR
+ decomposition is calculated:
+
+ Q R = A - shift * 1 .
+
+ The output is then following matrix:
+
+ R Q + shift * 1
+
+ parameters:
+ n0, n1 (input) Two integers which specify the submatrix A[n0:n1,n0:n1]
+ on which this subroutine operators. The subdiagonal elements
+ to the left and below this submatrix must be deflated (i.e. zero).
+ following restriction is imposed: n1>=n0+2
+ A (input/output) On input, A is an upper Hessenberg matrix.
+ On output, A is replaced by "R Q + shift * 1"
+ Q (input/output) The parameter Q is multiplied by the unitary matrix
+ Q arising from the QR decomposition. Q can also be false, in which
+ case the unitary matrix Q is not computated.
+ shift (input) a complex number specifying the shift. idealy close to an
+ eigenvalue of the bottemmost part of the submatrix A[n0:n1,n0:n1].
+
+ references:
+ Stoer, Bulirsch - Introduction to Numerical Analysis.
+ Kresser : Numerical Methods for General and Structured Eigenvalue Problems
+ """
+
+ # implicitly shifted and bulge chasing is explained at p.398/399 in "Stoer, Bulirsch - Introduction to Numerical Analysis"
+ # for bulge chasing see also "Watkins - The Matrix Eigenvalue Problem" sec.4.5,p.173
+
+ # the Givens rotation we used is determined as follows: let c,s be two complex
+ # numbers. then we have following relation:
+ #
+ # v = sqrt(|c|^2 + |s|^2)
+ #
+ # 1/v [ c~ s~] [c] = [v]
+ # [-s c ] [s] [0]
+ #
+ # the matrix on the left is our Givens rotation.
+
+ n = A.rows
+
+ # first step
+
+ # calculate givens rotation
+ c = A[n0 ,n0] - shift
+ s = A[n0+1,n0]
+
+ v = ctx.hypot(ctx.hypot(ctx.re(c), ctx.im(c)), ctx.hypot(ctx.re(s), ctx.im(s)))
+
+ if v == 0:
+ v = 1
+ c = 1
+ s = 0
+ else:
+ c /= v
+ s /= v
+
+ cc = ctx.conj(c)
+ cs = ctx.conj(s)
+
+ for k in xrange(n0, n):
+ # apply givens rotation from the left
+ x = A[n0 ,k]
+ y = A[n0+1,k]
+ A[n0 ,k] = cc * x + cs * y
+ A[n0+1,k] = c * y - s * x
+
+ for k in xrange(min(n1, n0+3)):
+ # apply givens rotation from the right
+ x = A[k,n0 ]
+ y = A[k,n0+1]
+ A[k,n0 ] = c * x + s * y
+ A[k,n0+1] = cc * y - cs * x
+
+ if not isinstance(Q, bool):
+ for k in xrange(n):
+ # eigenvectors
+ x = Q[k,n0 ]
+ y = Q[k,n0+1]
+ Q[k,n0 ] = c * x + s * y
+ Q[k,n0+1] = cc * y - cs * x
+
+ # chase the bulge
+
+ for j in xrange(n0, n1 - 2):
+ # calculate givens rotation
+
+ c = A[j+1,j]
+ s = A[j+2,j]
+
+ v = ctx.hypot(ctx.hypot(ctx.re(c), ctx.im(c)), ctx.hypot(ctx.re(s), ctx.im(s)))
+
+ if v == 0:
+ A[j+1,j] = 0
+ v = 1
+ c = 1
+ s = 0
+ else:
+ A[j+1,j] = v
+ c /= v
+ s /= v
+
+ A[j+2,j] = 0
+
+ cc = ctx.conj(c)
+ cs = ctx.conj(s)
+
+ for k in xrange(j+1, n):
+ # apply givens rotation from the left
+ x = A[j+1,k]
+ y = A[j+2,k]
+ A[j+1,k] = cc * x + cs * y
+ A[j+2,k] = c * y - s * x
+
+ for k in xrange(0, min(n1, j+4)):
+ # apply givens rotation from the right
+ x = A[k,j+1]
+ y = A[k,j+2]
+ A[k,j+1] = c * x + s * y
+ A[k,j+2] = cc * y - cs * x
+
+ if not isinstance(Q, bool):
+ for k in xrange(0, n):
+ # eigenvectors
+ x = Q[k,j+1]
+ y = Q[k,j+2]
+ Q[k,j+1] = c * x + s * y
+ Q[k,j+2] = cc * y - cs * x
+
+
+
+def hessenberg_qr(ctx, A, Q):
+ """
+ This routine computes the Schur decomposition of an upper Hessenberg matrix A.
+ Given A, an unitary matrix Q is determined such that
+
+ Q' A Q = R and Q' Q = Q Q' = 1
+
+ where R is an upper right triangular matrix. Here ' denotes the hermitian
+ transpose (i.e. transposition and conjugation).
+
+ parameters:
+ A (input/output) On input, A contains an upper Hessenberg matrix.
+ On output, A is replace by the upper right triangluar matrix R.
+
+ Q (input/output) The parameter Q is multiplied by the unitary
+ matrix Q arising from the Schur decomposition. Q can also be
+ false, in which case the unitary matrix Q is not computated.
+ """
+
+ n = A.rows
+
+ norm = 0
+ for x in xrange(n):
+ for y in xrange(min(x+2, n)):
+ norm += ctx.re(A[y,x]) ** 2 + ctx.im(A[y,x]) ** 2
+ norm = ctx.sqrt(norm) / n
+
+ if norm == 0:
+ return
+
+ n0 = 0
+ n1 = n
+
+ eps = ctx.eps / (100 * n)
+ maxits = ctx.dps * 4
+
+ its = totalits = 0
+
+ while 1:
+ # kressner p.32 algo 3
+ # the active submatrix is A[n0:n1,n0:n1]
+
+ k = n0
+
+ while k + 1 < n1:
+ s = abs(ctx.re(A[k,k])) + abs(ctx.im(A[k,k])) + abs(ctx.re(A[k+1,k+1])) + abs(ctx.im(A[k+1,k+1]))
+ if s < eps * norm:
+ s = norm
+ if abs(A[k+1,k]) < eps * s:
+ break
+ k += 1
+
+ if k + 1 < n1:
+ # deflation found at position (k+1, k)
+
+ A[k+1,k] = 0
+ n0 = k + 1
+
+ its = 0
+
+ if n0 + 1 >= n1:
+ # block of size at most two has converged
+ n0 = 0
+ n1 = k + 1
+ if n1 < 2:
+ # QR algorithm has converged
+ return
+ else:
+ if (its % 30) == 10:
+ # exceptional shift
+ shift = A[n1-1,n1-2]
+ elif (its % 30) == 20:
+ # exceptional shift
+ shift = abs(A[n1-1,n1-2])
+ elif (its % 30) == 29:
+ # exceptional shift
+ shift = norm
+ else:
+ # A = [ a b ] det(x-A)=x*x-x*tr(A)+det(A)
+ # [ c d ]
+ #
+ # eigenvalues bad: (tr(A)+sqrt((tr(A))**2-4*det(A)))/2
+ # bad because of cancellation if |c| is small and |a-d| is small, too.
+ #
+ # eigenvalues good: (a+d+sqrt((a-d)**2+4*b*c))/2
+
+ t = A[n1-2,n1-2] + A[n1-1,n1-1]
+ s = (A[n1-1,n1-1] - A[n1-2,n1-2]) ** 2 + 4 * A[n1-1,n1-2] * A[n1-2,n1-1]
+ if ctx.re(s) > 0:
+ s = ctx.sqrt(s)
+ else:
+ s = ctx.sqrt(-s) * 1j
+ a = (t + s) / 2
+ b = (t - s) / 2
+ if abs(A[n1-1,n1-1] - a) > abs(A[n1-1,n1-1] - b):
+ shift = b
+ else:
+ shift = a
+
+ its += 1
+ totalits += 1
+
+ qr_step(ctx, n0, n1, A, Q, shift)
+
+ if its > maxits:
+ raise RuntimeError("qr: failed to converge after %d steps" % its)
+
+
+@defun
+def schur(ctx, A, overwrite_a = False):
+ """
+ This routine computes the Schur decomposition of a square matrix A.
+ Given A, an unitary matrix Q is determined such that
+
+ Q' A Q = R and Q' Q = Q Q' = 1
+
+ where R is an upper right triangular matrix. Here ' denotes the
+ hermitian transpose (i.e. transposition and conjugation).
+
+ input:
+ A : a real or complex square matrix
+ overwrite_a : if true, allows modification of A which may improve
+ performance. if false, A is not modified.
+
+ output:
+ Q : an unitary matrix
+ R : an upper right triangular matrix
+
+ return value: (Q, R)
+
+ example:
+ >>> from mpmath import mp
+ >>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]])
+ >>> Q, R = mp.schur(A)
+ >>> mp.nprint(R, 3) # doctest:+SKIP
+ [2.0 0.417 -2.53]
+ [0.0 4.0 -4.74]
+ [0.0 0.0 9.0]
+ >>> print(mp.chop(A - Q * R * Q.transpose_conj()))
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+
+ warning: The Schur decomposition is not unique.
+ """
+
+ n = A.rows
+
+ if n == 1:
+ return (ctx.matrix([[1]]), A)
+
+ if not overwrite_a:
+ A = A.copy()
+
+ T = ctx.matrix(n, 1)
+
+ hessenberg_reduce_0(ctx, A, T)
+ Q = A.copy()
+ hessenberg_reduce_1(ctx, Q, T)
+
+ for x in xrange(n):
+ for y in xrange(x + 2, n):
+ A[y,x] = 0
+
+ hessenberg_qr(ctx, A, Q)
+
+ return Q, A
+
+
+def eig_tr_r(ctx, A):
+ """
+ This routine calculates the right eigenvectors of an upper right triangular matrix.
+
+ input:
+ A an upper right triangular matrix
+
+ output:
+ ER a matrix whose columns form the right eigenvectors of A
+
+ return value: ER
+ """
+
+ # this subroutine is inspired by the lapack routines ctrevc.f,clatrs.f
+
+ n = A.rows
+
+ ER = ctx.eye(n)
+
+ eps = ctx.eps
+
+ unfl = ctx.ldexp(ctx.one, -ctx.prec * 30)
+ # since mpmath effectively has no limits on the exponent, we simply scale doubles up
+ # original double has prec*20
+
+ smlnum = unfl * (n / eps)
+ simin = 1 / ctx.sqrt(eps)
+
+ rmax = 1
+
+ for i in xrange(1, n):
+ s = A[i,i]
+
+ smin = max(eps * abs(s), smlnum)
+
+ for j in xrange(i - 1, -1, -1):
+
+ r = 0
+ for k in xrange(j + 1, i + 1):
+ r += A[j,k] * ER[k,i]
+
+ t = A[j,j] - s
+ if abs(t) < smin:
+ t = smin
+
+ r = -r / t
+ ER[j,i] = r
+
+ rmax = max(rmax, abs(r))
+ if rmax > simin:
+ for k in xrange(j, i+1):
+ ER[k,i] /= rmax
+ rmax = 1
+
+ if rmax != 1:
+ for k in xrange(0, i + 1):
+ ER[k,i] /= rmax
+
+ return ER
+
+def eig_tr_l(ctx, A):
+ """
+ This routine calculates the left eigenvectors of an upper right triangular matrix.
+
+ input:
+ A an upper right triangular matrix
+
+ output:
+ EL a matrix whose rows form the left eigenvectors of A
+
+ return value: EL
+ """
+
+ n = A.rows
+
+ EL = ctx.eye(n)
+
+ eps = ctx.eps
+
+ unfl = ctx.ldexp(ctx.one, -ctx.prec * 30)
+ # since mpmath effectively has no limits on the exponent, we simply scale doubles up
+ # original double has prec*20
+
+ smlnum = unfl * (n / eps)
+ simin = 1 / ctx.sqrt(eps)
+
+ rmax = 1
+
+ for i in xrange(0, n - 1):
+ s = A[i,i]
+
+ smin = max(eps * abs(s), smlnum)
+
+ for j in xrange(i + 1, n):
+
+ r = 0
+ for k in xrange(i, j):
+ r += EL[i,k] * A[k,j]
+
+ t = A[j,j] - s
+ if abs(t) < smin:
+ t = smin
+
+ r = -r / t
+ EL[i,j] = r
+
+ rmax = max(rmax, abs(r))
+ if rmax > simin:
+ for k in xrange(i, j + 1):
+ EL[i,k] /= rmax
+ rmax = 1
+
+ if rmax != 1:
+ for k in xrange(i, n):
+ EL[i,k] /= rmax
+
+ return EL
+
+@defun
+def eig(ctx, A, left = False, right = True, overwrite_a = False):
+ """
+ This routine computes the eigenvalues and optionally the left and right
+ eigenvectors of a square matrix A. Given A, a vector E and matrices ER
+ and EL are calculated such that
+
+ A ER[:,i] = E[i] ER[:,i]
+ EL[i,:] A = EL[i,:] E[i]
+
+ E contains the eigenvalues of A. The columns of ER contain the right eigenvectors
+ of A whereas the rows of EL contain the left eigenvectors.
+
+
+ input:
+ A : a real or complex square matrix of shape (n, n)
+ left : if true, the left eigenvectors are calculated.
+ right : if true, the right eigenvectors are calculated.
+ overwrite_a : if true, allows modification of A which may improve
+ performance. if false, A is not modified.
+
+ output:
+ E : a list of length n containing the eigenvalues of A.
+ ER : a matrix whose columns contain the right eigenvectors of A.
+ EL : a matrix whose rows contain the left eigenvectors of A.
+
+ return values:
+ E if left and right are both false.
+ (E, ER) if right is true and left is false.
+ (E, EL) if left is true and right is false.
+ (E, EL, ER) if left and right are true.
+
+
+ examples:
+ >>> from mpmath import mp
+ >>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]])
+ >>> E, ER = mp.eig(A)
+ >>> print(mp.chop(A * ER[:,0] - E[0] * ER[:,0]))
+ [0.0]
+ [0.0]
+ [0.0]
+
+ >>> E, EL, ER = mp.eig(A,left = True, right = True)
+ >>> E, EL, ER = mp.eig_sort(E, EL, ER)
+ >>> mp.nprint(E)
+ [2.0, 4.0, 9.0]
+ >>> print(mp.chop(A * ER[:,0] - E[0] * ER[:,0]))
+ [0.0]
+ [0.0]
+ [0.0]
+ >>> print(mp.chop( EL[0,:] * A - EL[0,:] * E[0]))
+ [0.0 0.0 0.0]
+
+ warning:
+ - If there are multiple eigenvalues, the eigenvectors do not necessarily
+ span the whole vectorspace, i.e. ER and EL may have not full rank.
+ Furthermore in that case the eigenvectors are numerical ill-conditioned.
+ - In the general case the eigenvalues have no natural order.
+
+ see also:
+ - eigh (or eigsy, eighe) for the symmetric eigenvalue problem.
+ - eig_sort for sorting of eigenvalues and eigenvectors
+ """
+
+ n = A.rows
+
+ if n == 1:
+ if left and (not right):
+ return ([A[0]], ctx.matrix([[1]]))
+
+ if right and (not left):
+ return ([A[0]], ctx.matrix([[1]]))
+
+ return ([A[0]], ctx.matrix([[1]]), ctx.matrix([[1]]))
+
+ if not overwrite_a:
+ A = A.copy()
+
+ T = ctx.zeros(n, 1)
+
+ hessenberg_reduce_0(ctx, A, T)
+
+ if left or right:
+ Q = A.copy()
+ hessenberg_reduce_1(ctx, Q, T)
+ else:
+ Q = False
+
+ for x in xrange(n):
+ for y in xrange(x + 2, n):
+ A[y,x] = 0
+
+ hessenberg_qr(ctx, A, Q)
+
+ E = [0 for i in xrange(n)]
+ for i in xrange(n):
+ E[i] = A[i,i]
+
+ if not (left or right):
+ return E
+
+ if left:
+ EL = eig_tr_l(ctx, A)
+ EL = EL * Q.transpose_conj()
+
+ if right:
+ ER = eig_tr_r(ctx, A)
+ ER = Q * ER
+
+ if left and (not right):
+ return (E, EL)
+
+ if right and (not left):
+ return (E, ER)
+
+ return (E, EL, ER)
+
+@defun
+def eig_sort(ctx, E, EL = False, ER = False, f = "real"):
+ """
+ This routine sorts the eigenvalues and eigenvectors delivered by ``eig``.
+
+ parameters:
+ E : the eigenvalues as delivered by eig
+ EL : the left eigenvectors as delivered by eig, or false
+ ER : the right eigenvectors as delivered by eig, or false
+ f : either a string ("real" sort by increasing real part, "imag" sort by
+ increasing imag part, "abs" sort by absolute value) or a function
+ mapping complexs to the reals, i.e. ``f = lambda x: -mp.re(x) ``
+ would sort the eigenvalues by decreasing real part.
+
+ return values:
+ E if EL and ER are both false.
+ (E, ER) if ER is not false and left is false.
+ (E, EL) if EL is not false and right is false.
+ (E, EL, ER) if EL and ER are not false.
+
+ example:
+ >>> from mpmath import mp
+ >>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]])
+ >>> E, EL, ER = mp.eig(A,left = True, right = True)
+ >>> E, EL, ER = mp.eig_sort(E, EL, ER)
+ >>> mp.nprint(E)
+ [2.0, 4.0, 9.0]
+ >>> E, EL, ER = mp.eig_sort(E, EL, ER,f = lambda x: -mp.re(x))
+ >>> mp.nprint(E)
+ [9.0, 4.0, 2.0]
+ >>> print(mp.chop(A * ER[:,0] - E[0] * ER[:,0]))
+ [0.0]
+ [0.0]
+ [0.0]
+ >>> print(mp.chop( EL[0,:] * A - EL[0,:] * E[0]))
+ [0.0 0.0 0.0]
+ """
+
+ if isinstance(f, str):
+ if f == "real":
+ f = ctx.re
+ elif f == "imag":
+ f = ctx.im
+ elif f == "abs":
+ f = abs
+ else:
+ raise RuntimeError("unknown function %s" % f)
+
+ n = len(E)
+
+ # Sort eigenvalues (bubble-sort)
+
+ for i in xrange(n):
+ imax = i
+ s = f(E[i]) # s is the current maximal element
+
+ for j in xrange(i + 1, n):
+ c = f(E[j])
+ if c < s:
+ s = c
+ imax = j
+
+ if imax != i:
+ # swap eigenvalues
+
+ z = E[i]
+ E[i] = E[imax]
+ E[imax] = z
+
+ if not isinstance(EL, bool):
+ for j in xrange(n):
+ z = EL[i,j]
+ EL[i,j] = EL[imax,j]
+ EL[imax,j] = z
+
+ if not isinstance(ER, bool):
+ for j in xrange(n):
+ z = ER[j,i]
+ ER[j,i] = ER[j,imax]
+ ER[j,imax] = z
+
+ if isinstance(EL, bool) and isinstance(ER, bool):
+ return E
+
+ if isinstance(EL, bool) and not(isinstance(ER, bool)):
+ return (E, ER)
+
+ if isinstance(ER, bool) and not(isinstance(EL, bool)):
+ return (E, EL)
+
+ return (E, EL, ER)
diff --git a/venv/lib/python3.10/site-packages/mpmath/matrices/eigen_symmetric.py b/venv/lib/python3.10/site-packages/mpmath/matrices/eigen_symmetric.py
new file mode 100644
index 0000000000000000000000000000000000000000..c82c0bb061d22c37a89f82a0b9bdab3e9ba7ddde
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/mpmath/matrices/eigen_symmetric.py
@@ -0,0 +1,1807 @@
+#!/usr/bin/python
+# -*- coding: utf-8 -*-
+
+##################################################################################################
+# module for the symmetric eigenvalue problem
+# Copyright 2013 Timo Hartmann (thartmann15 at gmail.com)
+#
+# todo:
+# - implement balancing
+#
+##################################################################################################
+
+"""
+The symmetric eigenvalue problem.
+---------------------------------
+
+This file contains routines for the symmetric eigenvalue problem.
+
+high level routines:
+
+ eigsy : real symmetric (ordinary) eigenvalue problem
+ eighe : complex hermitian (ordinary) eigenvalue problem
+ eigh : unified interface for eigsy and eighe
+ svd_r : singular value decomposition for real matrices
+ svd_c : singular value decomposition for complex matrices
+ svd : unified interface for svd_r and svd_c
+
+
+low level routines:
+
+ r_sy_tridiag : reduction of real symmetric matrix to real symmetric tridiagonal matrix
+ c_he_tridiag_0 : reduction of complex hermitian matrix to real symmetric tridiagonal matrix
+ c_he_tridiag_1 : auxiliary routine to c_he_tridiag_0
+ c_he_tridiag_2 : auxiliary routine to c_he_tridiag_0
+ tridiag_eigen : solves the real symmetric tridiagonal matrix eigenvalue problem
+ svd_r_raw : raw singular value decomposition for real matrices
+ svd_c_raw : raw singular value decomposition for complex matrices
+"""
+
+from ..libmp.backend import xrange
+from .eigen import defun
+
+
+def r_sy_tridiag(ctx, A, D, E, calc_ev = True):
+ """
+ This routine transforms a real symmetric matrix A to a real symmetric
+ tridiagonal matrix T using an orthogonal similarity transformation:
+ Q' * A * Q = T (here ' denotes the matrix transpose).
+ The orthogonal matrix Q is build up from Householder reflectors.
+
+ parameters:
+ A (input/output) On input, A contains the real symmetric matrix of
+ dimension (n,n). On output, if calc_ev is true, A contains the
+ orthogonal matrix Q, otherwise A is destroyed.
+
+ D (output) real array of length n, contains the diagonal elements
+ of the tridiagonal matrix
+
+ E (output) real array of length n, contains the offdiagonal elements
+ of the tridiagonal matrix in E[0:(n-1)] where is the dimension of
+ the matrix A. E[n-1] is undefined.
+
+ calc_ev (input) If calc_ev is true, this routine explicitly calculates the
+ orthogonal matrix Q which is then returned in A. If calc_ev is
+ false, Q is not explicitly calculated resulting in a shorter run time.
+
+ This routine is a python translation of the fortran routine tred2.f in the
+ software library EISPACK (see netlib.org) which itself is based on the algol
+ procedure tred2 described in:
+ - Num. Math. 11, p.181-195 (1968) by Martin, Reinsch and Wilkonson
+ - Handbook for auto. comp., Vol II, Linear Algebra, p.212-226 (1971)
+
+ For a good introduction to Householder reflections, see also
+ Stoer, Bulirsch - Introduction to Numerical Analysis.
+ """
+
+ # note : the vector v of the i-th houshoulder reflector is stored in a[(i+1):,i]
+ # whereas v/ is stored in a[i,(i+1):]
+
+ n = A.rows
+ for i in xrange(n - 1, 0, -1):
+ # scale the vector
+
+ scale = 0
+ for k in xrange(0, i):
+ scale += abs(A[k,i])
+
+ scale_inv = 0
+ if scale != 0:
+ scale_inv = 1/scale
+
+ # sadly there are floating point numbers not equal to zero whose reciprocal is infinity
+
+ if i == 1 or scale == 0 or ctx.isinf(scale_inv):
+ E[i] = A[i-1,i] # nothing to do
+ D[i] = 0
+ continue
+
+ # calculate parameters for housholder transformation
+
+ H = 0
+ for k in xrange(0, i):
+ A[k,i] *= scale_inv
+ H += A[k,i] * A[k,i]
+
+ F = A[i-1,i]
+ G = ctx.sqrt(H)
+ if F > 0:
+ G = -G
+ E[i] = scale * G
+ H -= F * G
+ A[i-1,i] = F - G
+ F = 0
+
+ # apply housholder transformation
+
+ for j in xrange(0, i):
+ if calc_ev:
+ A[i,j] = A[j,i] / H
+
+ G = 0 # calculate A*U
+ for k in xrange(0, j + 1):
+ G += A[k,j] * A[k,i]
+ for k in xrange(j + 1, i):
+ G += A[j,k] * A[k,i]
+
+ E[j] = G / H # calculate P
+ F += E[j] * A[j,i]
+
+ HH = F / (2 * H)
+
+ for j in xrange(0, i): # calculate reduced A
+ F = A[j,i]
+ G = E[j] - HH * F # calculate Q
+ E[j] = G
+
+ for k in xrange(0, j + 1):
+ A[k,j] -= F * E[k] + G * A[k,i]
+
+ D[i] = H
+
+ for i in xrange(1, n): # better for compatibility
+ E[i-1] = E[i]
+ E[n-1] = 0
+
+ if calc_ev:
+ D[0] = 0
+ for i in xrange(0, n):
+ if D[i] != 0:
+ for j in xrange(0, i): # accumulate transformation matrices
+ G = 0
+ for k in xrange(0, i):
+ G += A[i,k] * A[k,j]
+ for k in xrange(0, i):
+ A[k,j] -= G * A[k,i]
+
+ D[i] = A[i,i]
+ A[i,i] = 1
+
+ for j in xrange(0, i):
+ A[j,i] = A[i,j] = 0
+ else:
+ for i in xrange(0, n):
+ D[i] = A[i,i]
+
+
+
+
+
+def c_he_tridiag_0(ctx, A, D, E, T):
+ """
+ This routine transforms a complex hermitian matrix A to a real symmetric
+ tridiagonal matrix T using an unitary similarity transformation:
+ Q' * A * Q = T (here ' denotes the hermitian matrix transpose,
+ i.e. transposition und conjugation).
+ The unitary matrix Q is build up from Householder reflectors and
+ an unitary diagonal matrix.
+
+ parameters:
+ A (input/output) On input, A contains the complex hermitian matrix
+ of dimension (n,n). On output, A contains the unitary matrix Q
+ in compressed form.
+
+ D (output) real array of length n, contains the diagonal elements
+ of the tridiagonal matrix.
+
+ E (output) real array of length n, contains the offdiagonal elements
+ of the tridiagonal matrix in E[0:(n-1)] where is the dimension of
+ the matrix A. E[n-1] is undefined.
+
+ T (output) complex array of length n, contains a unitary diagonal
+ matrix.
+
+ This routine is a python translation (in slightly modified form) of the fortran
+ routine htridi.f in the software library EISPACK (see netlib.org) which itself
+ is a complex version of the algol procedure tred1 described in:
+ - Num. Math. 11, p.181-195 (1968) by Martin, Reinsch and Wilkonson
+ - Handbook for auto. comp., Vol II, Linear Algebra, p.212-226 (1971)
+
+ For a good introduction to Householder reflections, see also
+ Stoer, Bulirsch - Introduction to Numerical Analysis.
+ """
+
+ n = A.rows
+ T[n-1] = 1
+ for i in xrange(n - 1, 0, -1):
+
+ # scale the vector
+
+ scale = 0
+ for k in xrange(0, i):
+ scale += abs(ctx.re(A[k,i])) + abs(ctx.im(A[k,i]))
+
+ scale_inv = 0
+ if scale != 0:
+ scale_inv = 1 / scale
+
+ # sadly there are floating point numbers not equal to zero whose reciprocal is infinity
+
+ if scale == 0 or ctx.isinf(scale_inv):
+ E[i] = 0
+ D[i] = 0
+ T[i-1] = 1
+ continue
+
+ if i == 1:
+ F = A[i-1,i]
+ f = abs(F)
+ E[i] = f
+ D[i] = 0
+ if f != 0:
+ T[i-1] = T[i] * F / f
+ else:
+ T[i-1] = T[i]
+ continue
+
+ # calculate parameters for housholder transformation
+
+ H = 0
+ for k in xrange(0, i):
+ A[k,i] *= scale_inv
+ rr = ctx.re(A[k,i])
+ ii = ctx.im(A[k,i])
+ H += rr * rr + ii * ii
+
+ F = A[i-1,i]
+ f = abs(F)
+ G = ctx.sqrt(H)
+ H += G * f
+ E[i] = scale * G
+ if f != 0:
+ F = F / f
+ TZ = - T[i] * F # T[i-1]=-T[i]*F, but we need T[i-1] as temporary storage
+ G *= F
+ else:
+ TZ = -T[i] # T[i-1]=-T[i]
+ A[i-1,i] += G
+ F = 0
+
+ # apply housholder transformation
+
+ for j in xrange(0, i):
+ A[i,j] = A[j,i] / H
+
+ G = 0 # calculate A*U
+ for k in xrange(0, j + 1):
+ G += ctx.conj(A[k,j]) * A[k,i]
+ for k in xrange(j + 1, i):
+ G += A[j,k] * A[k,i]
+
+ T[j] = G / H # calculate P
+ F += ctx.conj(T[j]) * A[j,i]
+
+ HH = F / (2 * H)
+
+ for j in xrange(0, i): # calculate reduced A
+ F = A[j,i]
+ G = T[j] - HH * F # calculate Q
+ T[j] = G
+
+ for k in xrange(0, j + 1):
+ A[k,j] -= ctx.conj(F) * T[k] + ctx.conj(G) * A[k,i]
+ # as we use the lower left part for storage
+ # we have to use the transpose of the normal formula
+
+ T[i-1] = TZ
+ D[i] = H
+
+ for i in xrange(1, n): # better for compatibility
+ E[i-1] = E[i]
+ E[n-1] = 0
+
+ D[0] = 0
+ for i in xrange(0, n):
+ zw = D[i]
+ D[i] = ctx.re(A[i,i])
+ A[i,i] = zw
+
+
+
+
+
+
+
+def c_he_tridiag_1(ctx, A, T):
+ """
+ This routine forms the unitary matrix Q described in c_he_tridiag_0.
+
+ parameters:
+ A (input/output) On input, A is the same matrix as delivered by
+ c_he_tridiag_0. On output, A is set to Q.
+
+ T (input) On input, T is the same array as delivered by c_he_tridiag_0.
+
+ """
+
+ n = A.rows
+
+ for i in xrange(0, n):
+ if A[i,i] != 0:
+ for j in xrange(0, i):
+ G = 0
+ for k in xrange(0, i):
+ G += ctx.conj(A[i,k]) * A[k,j]
+ for k in xrange(0, i):
+ A[k,j] -= G * A[k,i]
+
+ A[i,i] = 1
+
+ for j in xrange(0, i):
+ A[j,i] = A[i,j] = 0
+
+ for i in xrange(0, n):
+ for k in xrange(0, n):
+ A[i,k] *= T[k]
+
+
+
+
+def c_he_tridiag_2(ctx, A, T, B):
+ """
+ This routine applied the unitary matrix Q described in c_he_tridiag_0
+ onto the the matrix B, i.e. it forms Q*B.
+
+ parameters:
+ A (input) On input, A is the same matrix as delivered by c_he_tridiag_0.
+
+ T (input) On input, T is the same array as delivered by c_he_tridiag_0.
+
+ B (input/output) On input, B is a complex matrix. On output B is replaced
+ by Q*B.
+
+ This routine is a python translation of the fortran routine htribk.f in the
+ software library EISPACK (see netlib.org). See c_he_tridiag_0 for more
+ references.
+ """
+
+ n = A.rows
+
+ for i in xrange(0, n):
+ for k in xrange(0, n):
+ B[k,i] *= T[k]
+
+ for i in xrange(0, n):
+ if A[i,i] != 0:
+ for j in xrange(0, n):
+ G = 0
+ for k in xrange(0, i):
+ G += ctx.conj(A[i,k]) * B[k,j]
+ for k in xrange(0, i):
+ B[k,j] -= G * A[k,i]
+
+
+
+
+
+def tridiag_eigen(ctx, d, e, z = False):
+ """
+ This subroutine find the eigenvalues and the first components of the
+ eigenvectors of a real symmetric tridiagonal matrix using the implicit
+ QL method.
+
+ parameters:
+
+ d (input/output) real array of length n. on input, d contains the diagonal
+ elements of the input matrix. on output, d contains the eigenvalues in
+ ascending order.
+
+ e (input) real array of length n. on input, e contains the offdiagonal
+ elements of the input matrix in e[0:(n-1)]. On output, e has been
+ destroyed.
+
+ z (input/output) If z is equal to False, no eigenvectors will be computed.
+ Otherwise on input z should have the format z[0:m,0:n] (i.e. a real or
+ complex matrix of dimension (m,n) ). On output this matrix will be
+ multiplied by the matrix of the eigenvectors (i.e. the columns of this
+ matrix are the eigenvectors): z --> z*EV
+ That means if z[i,j]={1 if j==j; 0 otherwise} on input, then on output
+ z will contain the first m components of the eigenvectors. That means
+ if m is equal to n, the i-th eigenvector will be z[:,i].
+
+ This routine is a python translation (in slightly modified form) of the
+ fortran routine imtql2.f in the software library EISPACK (see netlib.org)
+ which itself is based on the algol procudure imtql2 desribed in:
+ - num. math. 12, p. 377-383(1968) by matrin and wilkinson
+ - modified in num. math. 15, p. 450(1970) by dubrulle
+ - handbook for auto. comp., vol. II-linear algebra, p. 241-248 (1971)
+ See also the routine gaussq.f in netlog.org or acm algorithm 726.
+ """
+
+ n = len(d)
+ e[n-1] = 0
+ iterlim = 2 * ctx.dps
+
+ for l in xrange(n):
+ j = 0
+ while 1:
+ m = l
+ while 1:
+ # look for a small subdiagonal element
+ if m + 1 == n:
+ break
+ if abs(e[m]) <= ctx.eps * (abs(d[m]) + abs(d[m + 1])):
+ break
+ m = m + 1
+ if m == l:
+ break
+
+ if j >= iterlim:
+ raise RuntimeError("tridiag_eigen: no convergence to an eigenvalue after %d iterations" % iterlim)
+
+ j += 1
+
+ # form shift
+
+ p = d[l]
+ g = (d[l + 1] - p) / (2 * e[l])
+ r = ctx.hypot(g, 1)
+
+ if g < 0:
+ s = g - r
+ else:
+ s = g + r
+
+ g = d[m] - p + e[l] / s
+
+ s, c, p = 1, 1, 0
+
+ for i in xrange(m - 1, l - 1, -1):
+ f = s * e[i]
+ b = c * e[i]
+ if abs(f) > abs(g): # this here is a slight improvement also used in gaussq.f or acm algorithm 726.
+ c = g / f
+ r = ctx.hypot(c, 1)
+ e[i + 1] = f * r
+ s = 1 / r
+ c = c * s
+ else:
+ s = f / g
+ r = ctx.hypot(s, 1)
+ e[i + 1] = g * r
+ c = 1 / r
+ s = s * c
+ g = d[i + 1] - p
+ r = (d[i] - g) * s + 2 * c * b
+ p = s * r
+ d[i + 1] = g + p
+ g = c * r - b
+
+ if not isinstance(z, bool):
+ # calculate eigenvectors
+ for w in xrange(z.rows):
+ f = z[w,i+1]
+ z[w,i+1] = s * z[w,i] + c * f
+ z[w,i ] = c * z[w,i] - s * f
+
+ d[l] = d[l] - p
+ e[l] = g
+ e[m] = 0
+
+ for ii in xrange(1, n):
+ # sort eigenvalues and eigenvectors (bubble-sort)
+ i = ii - 1
+ k = i
+ p = d[i]
+ for j in xrange(ii, n):
+ if d[j] >= p:
+ continue
+ k = j
+ p = d[k]
+ if k == i:
+ continue
+ d[k] = d[i]
+ d[i] = p
+
+ if not isinstance(z, bool):
+ for w in xrange(z.rows):
+ p = z[w,i]
+ z[w,i] = z[w,k]
+ z[w,k] = p
+
+########################################################################################
+
+@defun
+def eigsy(ctx, A, eigvals_only = False, overwrite_a = False):
+ """
+ This routine solves the (ordinary) eigenvalue problem for a real symmetric
+ square matrix A. Given A, an orthogonal matrix Q is calculated which
+ diagonalizes A:
+
+ Q' A Q = diag(E) and Q Q' = Q' Q = 1
+
+ Here diag(E) is a diagonal matrix whose diagonal is E.
+ ' denotes the transpose.
+
+ The columns of Q are the eigenvectors of A and E contains the eigenvalues:
+
+ A Q[:,i] = E[i] Q[:,i]
+
+
+ input:
+
+ A: real matrix of format (n,n) which is symmetric
+ (i.e. A=A' or A[i,j]=A[j,i])
+
+ eigvals_only: if true, calculates only the eigenvalues E.
+ if false, calculates both eigenvectors and eigenvalues.
+
+ overwrite_a: if true, allows modification of A which may improve
+ performance. if false, A is not modified.
+
+ output:
+
+ E: vector of format (n). contains the eigenvalues of A in ascending order.
+
+ Q: orthogonal matrix of format (n,n). contains the eigenvectors
+ of A as columns.
+
+ return value:
+
+ E if eigvals_only is true
+ (E, Q) if eigvals_only is false
+
+ example:
+ >>> from mpmath import mp
+ >>> A = mp.matrix([[3, 2], [2, 0]])
+ >>> E = mp.eigsy(A, eigvals_only = True)
+ >>> print(E)
+ [-1.0]
+ [ 4.0]
+
+ >>> A = mp.matrix([[1, 2], [2, 3]])
+ >>> E, Q = mp.eigsy(A)
+ >>> print(mp.chop(A * Q[:,0] - E[0] * Q[:,0]))
+ [0.0]
+ [0.0]
+
+ see also: eighe, eigh, eig
+ """
+
+ if not overwrite_a:
+ A = A.copy()
+
+ d = ctx.zeros(A.rows, 1)
+ e = ctx.zeros(A.rows, 1)
+
+ if eigvals_only:
+ r_sy_tridiag(ctx, A, d, e, calc_ev = False)
+ tridiag_eigen(ctx, d, e, False)
+ return d
+ else:
+ r_sy_tridiag(ctx, A, d, e, calc_ev = True)
+ tridiag_eigen(ctx, d, e, A)
+ return (d, A)
+
+
+@defun
+def eighe(ctx, A, eigvals_only = False, overwrite_a = False):
+ """
+ This routine solves the (ordinary) eigenvalue problem for a complex
+ hermitian square matrix A. Given A, an unitary matrix Q is calculated which
+ diagonalizes A:
+
+ Q' A Q = diag(E) and Q Q' = Q' Q = 1
+
+ Here diag(E) a is diagonal matrix whose diagonal is E.
+ ' denotes the hermitian transpose (i.e. ordinary transposition and
+ complex conjugation).
+
+ The columns of Q are the eigenvectors of A and E contains the eigenvalues:
+
+ A Q[:,i] = E[i] Q[:,i]
+
+
+ input:
+
+ A: complex matrix of format (n,n) which is hermitian
+ (i.e. A=A' or A[i,j]=conj(A[j,i]))
+
+ eigvals_only: if true, calculates only the eigenvalues E.
+ if false, calculates both eigenvectors and eigenvalues.
+
+ overwrite_a: if true, allows modification of A which may improve
+ performance. if false, A is not modified.
+
+ output:
+
+ E: vector of format (n). contains the eigenvalues of A in ascending order.
+
+ Q: unitary matrix of format (n,n). contains the eigenvectors
+ of A as columns.
+
+ return value:
+
+ E if eigvals_only is true
+ (E, Q) if eigvals_only is false
+
+ example:
+ >>> from mpmath import mp
+ >>> A = mp.matrix([[1, -3 - 1j], [-3 + 1j, -2]])
+ >>> E = mp.eighe(A, eigvals_only = True)
+ >>> print(E)
+ [-4.0]
+ [ 3.0]
+
+ >>> A = mp.matrix([[1, 2 + 5j], [2 - 5j, 3]])
+ >>> E, Q = mp.eighe(A)
+ >>> print(mp.chop(A * Q[:,0] - E[0] * Q[:,0]))
+ [0.0]
+ [0.0]
+
+ see also: eigsy, eigh, eig
+ """
+
+ if not overwrite_a:
+ A = A.copy()
+
+ d = ctx.zeros(A.rows, 1)
+ e = ctx.zeros(A.rows, 1)
+ t = ctx.zeros(A.rows, 1)
+
+ if eigvals_only:
+ c_he_tridiag_0(ctx, A, d, e, t)
+ tridiag_eigen(ctx, d, e, False)
+ return d
+ else:
+ c_he_tridiag_0(ctx, A, d, e, t)
+ B = ctx.eye(A.rows)
+ tridiag_eigen(ctx, d, e, B)
+ c_he_tridiag_2(ctx, A, t, B)
+ return (d, B)
+
+@defun
+def eigh(ctx, A, eigvals_only = False, overwrite_a = False):
+ """
+ "eigh" is a unified interface for "eigsy" and "eighe". Depending on
+ whether A is real or complex the appropriate function is called.
+
+ This routine solves the (ordinary) eigenvalue problem for a real symmetric
+ or complex hermitian square matrix A. Given A, an orthogonal (A real) or
+ unitary (A complex) matrix Q is calculated which diagonalizes A:
+
+ Q' A Q = diag(E) and Q Q' = Q' Q = 1
+
+ Here diag(E) a is diagonal matrix whose diagonal is E.
+ ' denotes the hermitian transpose (i.e. ordinary transposition and
+ complex conjugation).
+
+ The columns of Q are the eigenvectors of A and E contains the eigenvalues:
+
+ A Q[:,i] = E[i] Q[:,i]
+
+ input:
+
+ A: a real or complex square matrix of format (n,n) which is symmetric
+ (i.e. A[i,j]=A[j,i]) or hermitian (i.e. A[i,j]=conj(A[j,i])).
+
+ eigvals_only: if true, calculates only the eigenvalues E.
+ if false, calculates both eigenvectors and eigenvalues.
+
+ overwrite_a: if true, allows modification of A which may improve
+ performance. if false, A is not modified.
+
+ output:
+
+ E: vector of format (n). contains the eigenvalues of A in ascending order.
+
+ Q: an orthogonal or unitary matrix of format (n,n). contains the
+ eigenvectors of A as columns.
+
+ return value:
+
+ E if eigvals_only is true
+ (E, Q) if eigvals_only is false
+
+ example:
+ >>> from mpmath import mp
+ >>> A = mp.matrix([[3, 2], [2, 0]])
+ >>> E = mp.eigh(A, eigvals_only = True)
+ >>> print(E)
+ [-1.0]
+ [ 4.0]
+
+ >>> A = mp.matrix([[1, 2], [2, 3]])
+ >>> E, Q = mp.eigh(A)
+ >>> print(mp.chop(A * Q[:,0] - E[0] * Q[:,0]))
+ [0.0]
+ [0.0]
+
+ >>> A = mp.matrix([[1, 2 + 5j], [2 - 5j, 3]])
+ >>> E, Q = mp.eigh(A)
+ >>> print(mp.chop(A * Q[:,0] - E[0] * Q[:,0]))
+ [0.0]
+ [0.0]
+
+ see also: eigsy, eighe, eig
+ """
+
+ iscomplex = any(type(x) is ctx.mpc for x in A)
+
+ if iscomplex:
+ return ctx.eighe(A, eigvals_only = eigvals_only, overwrite_a = overwrite_a)
+ else:
+ return ctx.eigsy(A, eigvals_only = eigvals_only, overwrite_a = overwrite_a)
+
+
+@defun
+def gauss_quadrature(ctx, n, qtype = "legendre", alpha = 0, beta = 0):
+ """
+ This routine calulates gaussian quadrature rules for different
+ families of orthogonal polynomials. Let (a, b) be an interval,
+ W(x) a positive weight function and n a positive integer.
+ Then the purpose of this routine is to calculate pairs (x_k, w_k)
+ for k=0, 1, 2, ... (n-1) which give
+
+ int(W(x) * F(x), x = a..b) = sum(w_k * F(x_k),k = 0..(n-1))
+
+ exact for all polynomials F(x) of degree (strictly) less than 2*n. For all
+ integrable functions F(x) the sum is a (more or less) good approximation to
+ the integral. The x_k are called nodes (which are the zeros of the
+ related orthogonal polynomials) and the w_k are called the weights.
+
+ parameters
+ n (input) The degree of the quadrature rule, i.e. its number of
+ nodes.
+
+ qtype (input) The family of orthogonal polynmomials for which to
+ compute the quadrature rule. See the list below.
+
+ alpha (input) real number, used as parameter for some orthogonal
+ polynomials
+
+ beta (input) real number, used as parameter for some orthogonal
+ polynomials.
+
+ return value
+
+ (X, W) a pair of two real arrays where x_k = X[k] and w_k = W[k].
+
+
+ orthogonal polynomials:
+
+ qtype polynomial
+ ----- ----------
+
+ "legendre" Legendre polynomials, W(x)=1 on the interval (-1, +1)
+ "legendre01" shifted Legendre polynomials, W(x)=1 on the interval (0, +1)
+ "hermite" Hermite polynomials, W(x)=exp(-x*x) on (-infinity,+infinity)
+ "laguerre" Laguerre polynomials, W(x)=exp(-x) on (0,+infinity)
+ "glaguerre" generalized Laguerre polynomials, W(x)=exp(-x)*x**alpha
+ on (0, +infinity)
+ "chebyshev1" Chebyshev polynomials of the first kind, W(x)=1/sqrt(1-x*x)
+ on (-1, +1)
+ "chebyshev2" Chebyshev polynomials of the second kind, W(x)=sqrt(1-x*x)
+ on (-1, +1)
+ "jacobi" Jacobi polynomials, W(x)=(1-x)**alpha * (1+x)**beta on (-1, +1)
+ with alpha>-1 and beta>-1
+
+ examples:
+ >>> from mpmath import mp
+ >>> f = lambda x: x**8 + 2 * x**6 - 3 * x**4 + 5 * x**2 - 7
+ >>> X, W = mp.gauss_quadrature(5, "hermite")
+ >>> A = mp.fdot([(f(x), w) for x, w in zip(X, W)])
+ >>> B = mp.sqrt(mp.pi) * 57 / 16
+ >>> C = mp.quad(lambda x: mp.exp(- x * x) * f(x), [-mp.inf, +mp.inf])
+ >>> mp.nprint((mp.chop(A-B, tol = 1e-10), mp.chop(A-C, tol = 1e-10)))
+ (0.0, 0.0)
+
+ >>> f = lambda x: x**5 - 2 * x**4 + 3 * x**3 - 5 * x**2 + 7 * x - 11
+ >>> X, W = mp.gauss_quadrature(3, "laguerre")
+ >>> A = mp.fdot([(f(x), w) for x, w in zip(X, W)])
+ >>> B = 76
+ >>> C = mp.quad(lambda x: mp.exp(-x) * f(x), [0, +mp.inf])
+ >>> mp.nprint(mp.chop(A-B, tol = 1e-10), mp.chop(A-C, tol = 1e-10))
+ .0
+
+ # orthogonality of the chebyshev polynomials:
+ >>> f = lambda x: mp.chebyt(3, x) * mp.chebyt(2, x)
+ >>> X, W = mp.gauss_quadrature(3, "chebyshev1")
+ >>> A = mp.fdot([(f(x), w) for x, w in zip(X, W)])
+ >>> print(mp.chop(A, tol = 1e-10))
+ 0.0
+
+ references:
+ - golub and welsch, "calculations of gaussian quadrature rules", mathematics of
+ computation 23, p. 221-230 (1969)
+ - golub, "some modified matrix eigenvalue problems", siam review 15, p. 318-334 (1973)
+ - stroud and secrest, "gaussian quadrature formulas", prentice-hall (1966)
+
+ See also the routine gaussq.f in netlog.org or ACM Transactions on
+ Mathematical Software algorithm 726.
+ """
+
+ d = ctx.zeros(n, 1)
+ e = ctx.zeros(n, 1)
+ z = ctx.zeros(1, n)
+
+ z[0,0] = 1
+
+ if qtype == "legendre":
+ # legendre on the range -1 +1 , abramowitz, table 25.4, p.916
+ w = 2
+ for i in xrange(n):
+ j = i + 1
+ e[i] = ctx.sqrt(j * j / (4 * j * j - ctx.mpf(1)))
+ elif qtype == "legendre01":
+ # legendre shifted to 0 1 , abramowitz, table 25.8, p.921
+ w = 1
+ for i in xrange(n):
+ d[i] = 1 / ctx.mpf(2)
+ j = i + 1
+ e[i] = ctx.sqrt(j * j / (16 * j * j - ctx.mpf(4)))
+ elif qtype == "hermite":
+ # hermite on the range -inf +inf , abramowitz, table 25.10,p.924
+ w = ctx.sqrt(ctx.pi)
+ for i in xrange(n):
+ j = i + 1
+ e[i] = ctx.sqrt(j / ctx.mpf(2))
+ elif qtype == "laguerre":
+ # laguerre on the range 0 +inf , abramowitz, table 25.9, p. 923
+ w = 1
+ for i in xrange(n):
+ j = i + 1
+ d[i] = 2 * j - 1
+ e[i] = j
+ elif qtype=="chebyshev1":
+ # chebyshev polynimials of the first kind
+ w = ctx.pi
+ for i in xrange(n):
+ e[i] = 1 / ctx.mpf(2)
+ e[0] = ctx.sqrt(1 / ctx.mpf(2))
+ elif qtype == "chebyshev2":
+ # chebyshev polynimials of the second kind
+ w = ctx.pi / 2
+ for i in xrange(n):
+ e[i] = 1 / ctx.mpf(2)
+ elif qtype == "glaguerre":
+ # generalized laguerre on the range 0 +inf
+ w = ctx.gamma(1 + alpha)
+ for i in xrange(n):
+ j = i + 1
+ d[i] = 2 * j - 1 + alpha
+ e[i] = ctx.sqrt(j * (j + alpha))
+ elif qtype == "jacobi":
+ # jacobi polynomials
+ alpha = ctx.mpf(alpha)
+ beta = ctx.mpf(beta)
+ ab = alpha + beta
+ abi = ab + 2
+ w = (2**(ab+1)) * ctx.gamma(alpha + 1) * ctx.gamma(beta + 1) / ctx.gamma(abi)
+ d[0] = (beta - alpha) / abi
+ e[0] = ctx.sqrt(4 * (1 + alpha) * (1 + beta) / ((abi + 1) * (abi * abi)))
+ a2b2 = beta * beta - alpha * alpha
+ for i in xrange(1, n):
+ j = i + 1
+ abi = 2 * j + ab
+ d[i] = a2b2 / ((abi - 2) * abi)
+ e[i] = ctx.sqrt(4 * j * (j + alpha) * (j + beta) * (j + ab) / ((abi * abi - 1) * abi * abi))
+ elif isinstance(qtype, str):
+ raise ValueError("unknown quadrature rule \"%s\"" % qtype)
+ elif not isinstance(qtype, str):
+ w = qtype(d, e)
+ else:
+ assert 0
+
+ tridiag_eigen(ctx, d, e, z)
+
+ for i in xrange(len(z)):
+ z[i] *= z[i]
+
+ z = z.transpose()
+ return (d, w * z)
+
+##################################################################################################
+##################################################################################################
+##################################################################################################
+
+def svd_r_raw(ctx, A, V = False, calc_u = False):
+ """
+ This routine computes the singular value decomposition of a matrix A.
+ Given A, two orthogonal matrices U and V are calculated such that
+
+ A = U S V
+
+ where S is a suitable shaped matrix whose off-diagonal elements are zero.
+ The diagonal elements of S are the singular values of A, i.e. the
+ squareroots of the eigenvalues of A' A or A A'. Here ' denotes the transpose.
+ Householder bidiagonalization and a variant of the QR algorithm is used.
+
+ overview of the matrices :
+
+ A : m*n A gets replaced by U
+ U : m*n U replaces A. If n>m then only the first m*m block of U is
+ non-zero. column-orthogonal: U' U = B
+ here B is a n*n matrix whose first min(m,n) diagonal
+ elements are 1 and all other elements are zero.
+ S : n*n diagonal matrix, only the diagonal elements are stored in
+ the array S. only the first min(m,n) diagonal elements are non-zero.
+ V : n*n orthogonal: V V' = V' V = 1
+
+ parameters:
+ A (input/output) On input, A contains a real matrix of shape m*n.
+ On output, if calc_u is true A contains the column-orthogonal
+ matrix U; otherwise A is simply used as workspace and thus destroyed.
+
+ V (input/output) if false, the matrix V is not calculated. otherwise
+ V must be a matrix of shape n*n.
+
+ calc_u (input) If true, the matrix U is calculated and replaces A.
+ if false, U is not calculated and A is simply destroyed
+
+ return value:
+ S an array of length n containing the singular values of A sorted by
+ decreasing magnitude. only the first min(m,n) elements are non-zero.
+
+ This routine is a python translation of the fortran routine svd.f in the
+ software library EISPACK (see netlib.org) which itself is based on the
+ algol procedure svd described in:
+ - num. math. 14, 403-420(1970) by golub and reinsch.
+ - wilkinson/reinsch: handbook for auto. comp., vol ii-linear algebra, 134-151(1971).
+
+ """
+
+ m, n = A.rows, A.cols
+
+ S = ctx.zeros(n, 1)
+
+ # work is a temporary array of size n
+ work = ctx.zeros(n, 1)
+
+ g = scale = anorm = 0
+ maxits = 3 * ctx.dps
+
+ for i in xrange(n): # householder reduction to bidiagonal form
+ work[i] = scale*g
+ g = s = scale = 0
+ if i < m:
+ for k in xrange(i, m):
+ scale += ctx.fabs(A[k,i])
+ if scale != 0:
+ for k in xrange(i, m):
+ A[k,i] /= scale
+ s += A[k,i] * A[k,i]
+ f = A[i,i]
+ g = -ctx.sqrt(s)
+ if f < 0:
+ g = -g
+ h = f * g - s
+ A[i,i] = f - g
+ for j in xrange(i+1, n):
+ s = 0
+ for k in xrange(i, m):
+ s += A[k,i] * A[k,j]
+ f = s / h
+ for k in xrange(i, m):
+ A[k,j] += f * A[k,i]
+ for k in xrange(i,m):
+ A[k,i] *= scale
+
+ S[i] = scale * g
+ g = s = scale = 0
+
+ if i < m and i != n - 1:
+ for k in xrange(i+1, n):
+ scale += ctx.fabs(A[i,k])
+ if scale:
+ for k in xrange(i+1, n):
+ A[i,k] /= scale
+ s += A[i,k] * A[i,k]
+ f = A[i,i+1]
+ g = -ctx.sqrt(s)
+ if f < 0:
+ g = -g
+ h = f * g - s
+ A[i,i+1] = f - g
+
+ for k in xrange(i+1, n):
+ work[k] = A[i,k] / h
+
+ for j in xrange(i+1, m):
+ s = 0
+ for k in xrange(i+1, n):
+ s += A[j,k] * A[i,k]
+ for k in xrange(i+1, n):
+ A[j,k] += s * work[k]
+
+ for k in xrange(i+1, n):
+ A[i,k] *= scale
+
+ anorm = max(anorm, ctx.fabs(S[i]) + ctx.fabs(work[i]))
+
+ if not isinstance(V, bool):
+ for i in xrange(n-2, -1, -1): # accumulation of right hand transformations
+ V[i+1,i+1] = 1
+
+ if work[i+1] != 0:
+ for j in xrange(i+1, n):
+ V[i,j] = (A[i,j] / A[i,i+1]) / work[i+1]
+ for j in xrange(i+1, n):
+ s = 0
+ for k in xrange(i+1, n):
+ s += A[i,k] * V[j,k]
+ for k in xrange(i+1, n):
+ V[j,k] += s * V[i,k]
+
+ for j in xrange(i+1, n):
+ V[j,i] = V[i,j] = 0
+
+ V[0,0] = 1
+
+ if m= maxits:
+ raise RuntimeError("svd: no convergence to an eigenvalue after %d iterations" % its)
+
+ x = S[l] # shift from bottom 2 by 2 minor
+ nm = k-1
+ y = S[nm]
+ g = work[nm]
+ h = work[k]
+ f = ((y - z) * (y + z) + (g - h) * (g + h))/(2 * h * y)
+ g = ctx.hypot(f, 1)
+ if f >= 0: f = ((x - z) * (x + z) + h * ((y / (f + g)) - h)) / x
+ else: f = ((x - z) * (x + z) + h * ((y / (f - g)) - h)) / x
+
+ c = s = 1 # next qt transformation
+
+ for j in xrange(l, nm + 1):
+ g = work[j+1]
+ y = S[j+1]
+ h = s * g
+ g = c * g
+ z = ctx.hypot(f, h)
+ work[j] = z
+ c = f / z
+ s = h / z
+ f = x * c + g * s
+ g = g * c - x * s
+ h = y * s
+ y *= c
+ if not isinstance(V, bool):
+ for jj in xrange(n):
+ x = V[j ,jj]
+ z = V[j+1,jj]
+ V[j ,jj]= x * c + z * s
+ V[j+1 ,jj]= z * c - x * s
+ z = ctx.hypot(f, h)
+ S[j] = z
+ if z != 0: # rotation can be arbitray if z=0
+ z = 1 / z
+ c = f * z
+ s = h * z
+ f = c * g + s * y
+ x = c * y - s * g
+
+ if calc_u:
+ for jj in xrange(m):
+ y = A[jj,j ]
+ z = A[jj,j+1]
+ A[jj,j ] = y * c + z * s
+ A[jj,j+1 ] = z * c - y * s
+
+ work[l] = 0
+ work[k] = f
+ S[k] = x
+
+ ##########################
+
+ # Sort singular values into decreasing order (bubble-sort)
+
+ for i in xrange(n):
+ imax = i
+ s = ctx.fabs(S[i]) # s is the current maximal element
+
+ for j in xrange(i + 1, n):
+ c = ctx.fabs(S[j])
+ if c > s:
+ s = c
+ imax = j
+
+ if imax != i:
+ # swap singular values
+
+ z = S[i]
+ S[i] = S[imax]
+ S[imax] = z
+
+ if calc_u:
+ for j in xrange(m):
+ z = A[j,i]
+ A[j,i] = A[j,imax]
+ A[j,imax] = z
+
+ if not isinstance(V, bool):
+ for j in xrange(n):
+ z = V[i,j]
+ V[i,j] = V[imax,j]
+ V[imax,j] = z
+
+ return S
+
+#######################
+
+def svd_c_raw(ctx, A, V = False, calc_u = False):
+ """
+ This routine computes the singular value decomposition of a matrix A.
+ Given A, two unitary matrices U and V are calculated such that
+
+ A = U S V
+
+ where S is a suitable shaped matrix whose off-diagonal elements are zero.
+ The diagonal elements of S are the singular values of A, i.e. the
+ squareroots of the eigenvalues of A' A or A A'. Here ' denotes the hermitian
+ transpose (i.e. transposition and conjugation). Householder bidiagonalization
+ and a variant of the QR algorithm is used.
+
+ overview of the matrices :
+
+ A : m*n A gets replaced by U
+ U : m*n U replaces A. If n>m then only the first m*m block of U is
+ non-zero. column-unitary: U' U = B
+ here B is a n*n matrix whose first min(m,n) diagonal
+ elements are 1 and all other elements are zero.
+ S : n*n diagonal matrix, only the diagonal elements are stored in
+ the array S. only the first min(m,n) diagonal elements are non-zero.
+ V : n*n unitary: V V' = V' V = 1
+
+ parameters:
+ A (input/output) On input, A contains a complex matrix of shape m*n.
+ On output, if calc_u is true A contains the column-unitary
+ matrix U; otherwise A is simply used as workspace and thus destroyed.
+
+ V (input/output) if false, the matrix V is not calculated. otherwise
+ V must be a matrix of shape n*n.
+
+ calc_u (input) If true, the matrix U is calculated and replaces A.
+ if false, U is not calculated and A is simply destroyed
+
+ return value:
+ S an array of length n containing the singular values of A sorted by
+ decreasing magnitude. only the first min(m,n) elements are non-zero.
+
+ This routine is a python translation of the fortran routine svd.f in the
+ software library EISPACK (see netlib.org) which itself is based on the
+ algol procedure svd described in:
+ - num. math. 14, 403-420(1970) by golub and reinsch.
+ - wilkinson/reinsch: handbook for auto. comp., vol ii-linear algebra, 134-151(1971).
+
+ """
+
+ m, n = A.rows, A.cols
+
+ S = ctx.zeros(n, 1)
+
+ # work is a temporary array of size n
+ work = ctx.zeros(n, 1)
+ lbeta = ctx.zeros(n, 1)
+ rbeta = ctx.zeros(n, 1)
+ dwork = ctx.zeros(n, 1)
+
+ g = scale = anorm = 0
+ maxits = 3 * ctx.dps
+
+ for i in xrange(n): # householder reduction to bidiagonal form
+ dwork[i] = scale * g # dwork are the side-diagonal elements
+ g = s = scale = 0
+ if i < m:
+ for k in xrange(i, m):
+ scale += ctx.fabs(ctx.re(A[k,i])) + ctx.fabs(ctx.im(A[k,i]))
+ if scale != 0:
+ for k in xrange(i, m):
+ A[k,i] /= scale
+ ar = ctx.re(A[k,i])
+ ai = ctx.im(A[k,i])
+ s += ar * ar + ai * ai
+ f = A[i,i]
+ g = -ctx.sqrt(s)
+ if ctx.re(f) < 0:
+ beta = -g - ctx.conj(f)
+ g = -g
+ else:
+ beta = -g + ctx.conj(f)
+ beta /= ctx.conj(beta)
+ beta += 1
+ h = 2 * (ctx.re(f) * g - s)
+ A[i,i] = f - g
+ beta /= h
+ lbeta[i] = (beta / scale) / scale
+ for j in xrange(i+1, n):
+ s = 0
+ for k in xrange(i, m):
+ s += ctx.conj(A[k,i]) * A[k,j]
+ f = beta * s
+ for k in xrange(i, m):
+ A[k,j] += f * A[k,i]
+ for k in xrange(i, m):
+ A[k,i] *= scale
+
+ S[i] = scale * g # S are the diagonal elements
+ g = s = scale = 0
+
+ if i < m and i != n - 1:
+ for k in xrange(i+1, n):
+ scale += ctx.fabs(ctx.re(A[i,k])) + ctx.fabs(ctx.im(A[i,k]))
+ if scale:
+ for k in xrange(i+1, n):
+ A[i,k] /= scale
+ ar = ctx.re(A[i,k])
+ ai = ctx.im(A[i,k])
+ s += ar * ar + ai * ai
+ f = A[i,i+1]
+ g = -ctx.sqrt(s)
+ if ctx.re(f) < 0:
+ beta = -g - ctx.conj(f)
+ g = -g
+ else:
+ beta = -g + ctx.conj(f)
+
+ beta /= ctx.conj(beta)
+ beta += 1
+
+ h = 2 * (ctx.re(f) * g - s)
+ A[i,i+1] = f - g
+
+ beta /= h
+ rbeta[i] = (beta / scale) / scale
+
+ for k in xrange(i+1, n):
+ work[k] = A[i, k]
+
+ for j in xrange(i+1, m):
+ s = 0
+ for k in xrange(i+1, n):
+ s += ctx.conj(A[i,k]) * A[j,k]
+ f = s * beta
+ for k in xrange(i+1,n):
+ A[j,k] += f * work[k]
+
+ for k in xrange(i+1, n):
+ A[i,k] *= scale
+
+ anorm = max(anorm,ctx.fabs(S[i]) + ctx.fabs(dwork[i]))
+
+ if not isinstance(V, bool):
+ for i in xrange(n-2, -1, -1): # accumulation of right hand transformations
+ V[i+1,i+1] = 1
+
+ if dwork[i+1] != 0:
+ f = ctx.conj(rbeta[i])
+ for j in xrange(i+1, n):
+ V[i,j] = A[i,j] * f
+ for j in xrange(i+1, n):
+ s = 0
+ for k in xrange(i+1, n):
+ s += ctx.conj(A[i,k]) * V[j,k]
+ for k in xrange(i+1, n):
+ V[j,k] += s * V[i,k]
+
+ for j in xrange(i+1,n):
+ V[j,i] = V[i,j] = 0
+
+ V[0,0] = 1
+
+ if m < n : minnm = m
+ else : minnm = n
+
+ if calc_u:
+ for i in xrange(minnm-1, -1, -1): # accumulation of left hand transformations
+ g = S[i]
+ for j in xrange(i+1, n):
+ A[i,j] = 0
+ if g != 0:
+ g = 1 / g
+ for j in xrange(i+1, n):
+ s = 0
+ for k in xrange(i+1, m):
+ s += ctx.conj(A[k,i]) * A[k,j]
+ f = s * ctx.conj(lbeta[i])
+ for k in xrange(i, m):
+ A[k,j] += f * A[k,i]
+ for j in xrange(i, m):
+ A[j,i] *= g
+ else:
+ for j in xrange(i, m):
+ A[j,i] = 0
+ A[i,i] += 1
+
+ for k in xrange(n-1, -1, -1):
+ # diagonalization of the bidiagonal form:
+ # loop over singular values, and over allowed itations
+
+ its = 0
+ while 1:
+ its += 1
+ flag = True
+
+ for l in xrange(k, -1, -1):
+ nm = l - 1
+
+ if ctx.fabs(dwork[l]) + anorm == anorm:
+ flag = False
+ break
+
+ if ctx.fabs(S[nm]) + anorm == anorm:
+ break
+
+ if flag:
+ c = 0
+ s = 1
+ for i in xrange(l, k+1):
+ f = s * dwork[i]
+ dwork[i] *= c
+ if ctx.fabs(f) + anorm == anorm:
+ break
+ g = S[i]
+ h = ctx.hypot(f, g)
+ S[i] = h
+ h = 1 / h
+ c = g * h
+ s = -f * h
+
+ if calc_u:
+ for j in xrange(m):
+ y = A[j,nm]
+ z = A[j,i]
+ A[j,nm]= y * c + z * s
+ A[j,i] = z * c - y * s
+
+ z = S[k]
+
+ if l == k: # convergence
+ if z < 0: # singular value is made nonnegative
+ S[k] = -z
+ if not isinstance(V, bool):
+ for j in xrange(n):
+ V[k,j] = -V[k,j]
+ break
+
+ if its >= maxits:
+ raise RuntimeError("svd: no convergence to an eigenvalue after %d iterations" % its)
+
+ x = S[l] # shift from bottom 2 by 2 minor
+ nm = k-1
+ y = S[nm]
+ g = dwork[nm]
+ h = dwork[k]
+ f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2 * h * y)
+ g = ctx.hypot(f, 1)
+ if f >=0: f = (( x - z) *( x + z) + h *((y / (f + g)) - h)) / x
+ else: f = (( x - z) *( x + z) + h *((y / (f - g)) - h)) / x
+
+ c = s = 1 # next qt transformation
+
+ for j in xrange(l, nm + 1):
+ g = dwork[j+1]
+ y = S[j+1]
+ h = s * g
+ g = c * g
+ z = ctx.hypot(f, h)
+ dwork[j] = z
+ c = f / z
+ s = h / z
+ f = x * c + g * s
+ g = g * c - x * s
+ h = y * s
+ y *= c
+ if not isinstance(V, bool):
+ for jj in xrange(n):
+ x = V[j ,jj]
+ z = V[j+1,jj]
+ V[j ,jj]= x * c + z * s
+ V[j+1,jj ]= z * c - x * s
+ z = ctx.hypot(f, h)
+ S[j] = z
+ if z != 0: # rotation can be arbitray if z=0
+ z = 1 / z
+ c = f * z
+ s = h * z
+ f = c * g + s * y
+ x = c * y - s * g
+ if calc_u:
+ for jj in xrange(m):
+ y = A[jj,j ]
+ z = A[jj,j+1]
+ A[jj,j ]= y * c + z * s
+ A[jj,j+1 ]= z * c - y * s
+
+ dwork[l] = 0
+ dwork[k] = f
+ S[k] = x
+
+ ##########################
+
+ # Sort singular values into decreasing order (bubble-sort)
+
+ for i in xrange(n):
+ imax = i
+ s = ctx.fabs(S[i]) # s is the current maximal element
+
+ for j in xrange(i + 1, n):
+ c = ctx.fabs(S[j])
+ if c > s:
+ s = c
+ imax = j
+
+ if imax != i:
+ # swap singular values
+
+ z = S[i]
+ S[i] = S[imax]
+ S[imax] = z
+
+ if calc_u:
+ for j in xrange(m):
+ z = A[j,i]
+ A[j,i] = A[j,imax]
+ A[j,imax] = z
+
+ if not isinstance(V, bool):
+ for j in xrange(n):
+ z = V[i,j]
+ V[i,j] = V[imax,j]
+ V[imax,j] = z
+
+ return S
+
+##################################################################################################
+
+@defun
+def svd_r(ctx, A, full_matrices = False, compute_uv = True, overwrite_a = False):
+ """
+ This routine computes the singular value decomposition of a matrix A.
+ Given A, two orthogonal matrices U and V are calculated such that
+
+ A = U S V and U' U = 1 and V V' = 1
+
+ where S is a suitable shaped matrix whose off-diagonal elements are zero.
+ Here ' denotes the transpose. The diagonal elements of S are the singular
+ values of A, i.e. the squareroots of the eigenvalues of A' A or A A'.
+
+ input:
+ A : a real matrix of shape (m, n)
+ full_matrices : if true, U and V are of shape (m, m) and (n, n).
+ if false, U and V are of shape (m, min(m, n)) and (min(m, n), n).
+ compute_uv : if true, U and V are calculated. if false, only S is calculated.
+ overwrite_a : if true, allows modification of A which may improve
+ performance. if false, A is not modified.
+
+ output:
+ U : an orthogonal matrix: U' U = 1. if full_matrices is true, U is of
+ shape (m, m). ortherwise it is of shape (m, min(m, n)).
+
+ S : an array of length min(m, n) containing the singular values of A sorted by
+ decreasing magnitude.
+
+ V : an orthogonal matrix: V V' = 1. if full_matrices is true, V is of
+ shape (n, n). ortherwise it is of shape (min(m, n), n).
+
+ return value:
+
+ S if compute_uv is false
+ (U, S, V) if compute_uv is true
+
+ overview of the matrices:
+
+ full_matrices true:
+ A : m*n
+ U : m*m U' U = 1
+ S as matrix : m*n
+ V : n*n V V' = 1
+
+ full_matrices false:
+ A : m*n
+ U : m*min(n,m) U' U = 1
+ S as matrix : min(m,n)*min(m,n)
+ V : min(m,n)*n V V' = 1
+
+ examples:
+
+ >>> from mpmath import mp
+ >>> A = mp.matrix([[2, -2, -1], [3, 4, -2], [-2, -2, 0]])
+ >>> S = mp.svd_r(A, compute_uv = False)
+ >>> print(S)
+ [6.0]
+ [3.0]
+ [1.0]
+
+ >>> U, S, V = mp.svd_r(A)
+ >>> print(mp.chop(A - U * mp.diag(S) * V))
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+
+
+ see also: svd, svd_c
+ """
+
+ m, n = A.rows, A.cols
+
+ if not compute_uv:
+ if not overwrite_a:
+ A = A.copy()
+ S = svd_r_raw(ctx, A, V = False, calc_u = False)
+ S = S[:min(m,n)]
+ return S
+
+ if full_matrices and n < m:
+ V = ctx.zeros(m, m)
+ A0 = ctx.zeros(m, m)
+ A0[:,:n] = A
+ S = svd_r_raw(ctx, A0, V, calc_u = True)
+
+ S = S[:n]
+ V = V[:n,:n]
+
+ return (A0, S, V)
+ else:
+ if not overwrite_a:
+ A = A.copy()
+ V = ctx.zeros(n, n)
+ S = svd_r_raw(ctx, A, V, calc_u = True)
+
+ if n > m:
+ if full_matrices == False:
+ V = V[:m,:]
+
+ S = S[:m]
+ A = A[:,:m]
+
+ return (A, S, V)
+
+##############################
+
+@defun
+def svd_c(ctx, A, full_matrices = False, compute_uv = True, overwrite_a = False):
+ """
+ This routine computes the singular value decomposition of a matrix A.
+ Given A, two unitary matrices U and V are calculated such that
+
+ A = U S V and U' U = 1 and V V' = 1
+
+ where S is a suitable shaped matrix whose off-diagonal elements are zero.
+ Here ' denotes the hermitian transpose (i.e. transposition and complex
+ conjugation). The diagonal elements of S are the singular values of A,
+ i.e. the squareroots of the eigenvalues of A' A or A A'.
+
+ input:
+ A : a complex matrix of shape (m, n)
+ full_matrices : if true, U and V are of shape (m, m) and (n, n).
+ if false, U and V are of shape (m, min(m, n)) and (min(m, n), n).
+ compute_uv : if true, U and V are calculated. if false, only S is calculated.
+ overwrite_a : if true, allows modification of A which may improve
+ performance. if false, A is not modified.
+
+ output:
+ U : an unitary matrix: U' U = 1. if full_matrices is true, U is of
+ shape (m, m). ortherwise it is of shape (m, min(m, n)).
+
+ S : an array of length min(m, n) containing the singular values of A sorted by
+ decreasing magnitude.
+
+ V : an unitary matrix: V V' = 1. if full_matrices is true, V is of
+ shape (n, n). ortherwise it is of shape (min(m, n), n).
+
+ return value:
+
+ S if compute_uv is false
+ (U, S, V) if compute_uv is true
+
+ overview of the matrices:
+
+ full_matrices true:
+ A : m*n
+ U : m*m U' U = 1
+ S as matrix : m*n
+ V : n*n V V' = 1
+
+ full_matrices false:
+ A : m*n
+ U : m*min(n,m) U' U = 1
+ S as matrix : min(m,n)*min(m,n)
+ V : min(m,n)*n V V' = 1
+
+ example:
+ >>> from mpmath import mp
+ >>> A = mp.matrix([[-2j, -1-3j, -2+2j], [2-2j, -1-3j, 1], [-3+1j,-2j,0]])
+ >>> S = mp.svd_c(A, compute_uv = False)
+ >>> print(mp.chop(S - mp.matrix([mp.sqrt(34), mp.sqrt(15), mp.sqrt(6)])))
+ [0.0]
+ [0.0]
+ [0.0]
+
+ >>> U, S, V = mp.svd_c(A)
+ >>> print(mp.chop(A - U * mp.diag(S) * V))
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+
+ see also: svd, svd_r
+ """
+
+ m, n = A.rows, A.cols
+
+ if not compute_uv:
+ if not overwrite_a:
+ A = A.copy()
+ S = svd_c_raw(ctx, A, V = False, calc_u = False)
+ S = S[:min(m,n)]
+ return S
+
+ if full_matrices and n < m:
+ V = ctx.zeros(m, m)
+ A0 = ctx.zeros(m, m)
+ A0[:,:n] = A
+ S = svd_c_raw(ctx, A0, V, calc_u = True)
+
+ S = S[:n]
+ V = V[:n,:n]
+
+ return (A0, S, V)
+ else:
+ if not overwrite_a:
+ A = A.copy()
+ V = ctx.zeros(n, n)
+ S = svd_c_raw(ctx, A, V, calc_u = True)
+
+ if n > m:
+ if full_matrices == False:
+ V = V[:m,:]
+
+ S = S[:m]
+ A = A[:,:m]
+
+ return (A, S, V)
+
+@defun
+def svd(ctx, A, full_matrices = False, compute_uv = True, overwrite_a = False):
+ """
+ "svd" is a unified interface for "svd_r" and "svd_c". Depending on
+ whether A is real or complex the appropriate function is called.
+
+ This routine computes the singular value decomposition of a matrix A.
+ Given A, two orthogonal (A real) or unitary (A complex) matrices U and V
+ are calculated such that
+
+ A = U S V and U' U = 1 and V V' = 1
+
+ where S is a suitable shaped matrix whose off-diagonal elements are zero.
+ Here ' denotes the hermitian transpose (i.e. transposition and complex
+ conjugation). The diagonal elements of S are the singular values of A,
+ i.e. the squareroots of the eigenvalues of A' A or A A'.
+
+ input:
+ A : a real or complex matrix of shape (m, n)
+ full_matrices : if true, U and V are of shape (m, m) and (n, n).
+ if false, U and V are of shape (m, min(m, n)) and (min(m, n), n).
+ compute_uv : if true, U and V are calculated. if false, only S is calculated.
+ overwrite_a : if true, allows modification of A which may improve
+ performance. if false, A is not modified.
+
+ output:
+ U : an orthogonal or unitary matrix: U' U = 1. if full_matrices is true, U is of
+ shape (m, m). ortherwise it is of shape (m, min(m, n)).
+
+ S : an array of length min(m, n) containing the singular values of A sorted by
+ decreasing magnitude.
+
+ V : an orthogonal or unitary matrix: V V' = 1. if full_matrices is true, V is of
+ shape (n, n). ortherwise it is of shape (min(m, n), n).
+
+ return value:
+
+ S if compute_uv is false
+ (U, S, V) if compute_uv is true
+
+ overview of the matrices:
+
+ full_matrices true:
+ A : m*n
+ U : m*m U' U = 1
+ S as matrix : m*n
+ V : n*n V V' = 1
+
+ full_matrices false:
+ A : m*n
+ U : m*min(n,m) U' U = 1
+ S as matrix : min(m,n)*min(m,n)
+ V : min(m,n)*n V V' = 1
+
+ examples:
+
+ >>> from mpmath import mp
+ >>> A = mp.matrix([[2, -2, -1], [3, 4, -2], [-2, -2, 0]])
+ >>> S = mp.svd(A, compute_uv = False)
+ >>> print(S)
+ [6.0]
+ [3.0]
+ [1.0]
+
+ >>> U, S, V = mp.svd(A)
+ >>> print(mp.chop(A - U * mp.diag(S) * V))
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+
+ see also: svd_r, svd_c
+ """
+
+ iscomplex = any(type(x) is ctx.mpc for x in A)
+
+ if iscomplex:
+ return ctx.svd_c(A, full_matrices = full_matrices, compute_uv = compute_uv, overwrite_a = overwrite_a)
+ else:
+ return ctx.svd_r(A, full_matrices = full_matrices, compute_uv = compute_uv, overwrite_a = overwrite_a)
diff --git a/venv/lib/python3.10/site-packages/mpmath/matrices/linalg.py b/venv/lib/python3.10/site-packages/mpmath/matrices/linalg.py
new file mode 100644
index 0000000000000000000000000000000000000000..e2fe643e809822e3d05a52b73c965edb622f9af9
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/mpmath/matrices/linalg.py
@@ -0,0 +1,790 @@
+"""
+Linear algebra
+--------------
+
+Linear equations
+................
+
+Basic linear algebra is implemented; you can for example solve the linear
+equation system::
+
+ x + 2*y = -10
+ 3*x + 4*y = 10
+
+using ``lu_solve``::
+
+ >>> from mpmath import *
+ >>> mp.pretty = False
+ >>> A = matrix([[1, 2], [3, 4]])
+ >>> b = matrix([-10, 10])
+ >>> x = lu_solve(A, b)
+ >>> x
+ matrix(
+ [['30.0'],
+ ['-20.0']])
+
+If you don't trust the result, use ``residual`` to calculate the residual ||A*x-b||::
+
+ >>> residual(A, x, b)
+ matrix(
+ [['3.46944695195361e-18'],
+ ['3.46944695195361e-18']])
+ >>> str(eps)
+ '2.22044604925031e-16'
+
+As you can see, the solution is quite accurate. The error is caused by the
+inaccuracy of the internal floating point arithmetic. Though, it's even smaller
+than the current machine epsilon, which basically means you can trust the
+result.
+
+If you need more speed, use NumPy, or ``fp.lu_solve`` for a floating-point computation.
+
+ >>> fp.lu_solve(A, b) # doctest: +ELLIPSIS
+ matrix(...)
+
+``lu_solve`` accepts overdetermined systems. It is usually not possible to solve
+such systems, so the residual is minimized instead. Internally this is done
+using Cholesky decomposition to compute a least squares approximation. This means
+that that ``lu_solve`` will square the errors. If you can't afford this, use
+``qr_solve`` instead. It is twice as slow but more accurate, and it calculates
+the residual automatically.
+
+
+Matrix factorization
+....................
+
+The function ``lu`` computes an explicit LU factorization of a matrix::
+
+ >>> P, L, U = lu(matrix([[0,2,3],[4,5,6],[7,8,9]]))
+ >>> print(P)
+ [0.0 0.0 1.0]
+ [1.0 0.0 0.0]
+ [0.0 1.0 0.0]
+ >>> print(L)
+ [ 1.0 0.0 0.0]
+ [ 0.0 1.0 0.0]
+ [0.571428571428571 0.214285714285714 1.0]
+ >>> print(U)
+ [7.0 8.0 9.0]
+ [0.0 2.0 3.0]
+ [0.0 0.0 0.214285714285714]
+ >>> print(P.T*L*U)
+ [0.0 2.0 3.0]
+ [4.0 5.0 6.0]
+ [7.0 8.0 9.0]
+
+Interval matrices
+-----------------
+
+Matrices may contain interval elements. This allows one to perform
+basic linear algebra operations such as matrix multiplication
+and equation solving with rigorous error bounds::
+
+ >>> a = iv.matrix([['0.1','0.3','1.0'],
+ ... ['7.1','5.5','4.8'],
+ ... ['3.2','4.4','5.6']])
+ >>>
+ >>> b = iv.matrix(['4','0.6','0.5'])
+ >>> c = iv.lu_solve(a, b)
+ >>> print(c)
+ [ [5.2582327113062568605927528666, 5.25823271130625686059275702219]]
+ [[-13.1550493962678375411635581388, -13.1550493962678375411635540152]]
+ [ [7.42069154774972557628979076189, 7.42069154774972557628979190734]]
+ >>> print(a*c)
+ [ [3.99999999999999999999999844904, 4.00000000000000000000000155096]]
+ [[0.599999999999999999999968898009, 0.600000000000000000000031763736]]
+ [[0.499999999999999999999979320485, 0.500000000000000000000020679515]]
+"""
+
+# TODO:
+# *implement high-level qr()
+# *test unitvector
+# *iterative solving
+
+from copy import copy
+
+from ..libmp.backend import xrange
+
+class LinearAlgebraMethods(object):
+
+ def LU_decomp(ctx, A, overwrite=False, use_cache=True):
+ """
+ LU-factorization of a n*n matrix using the Gauss algorithm.
+ Returns L and U in one matrix and the pivot indices.
+
+ Use overwrite to specify whether A will be overwritten with L and U.
+ """
+ if not A.rows == A.cols:
+ raise ValueError('need n*n matrix')
+ # get from cache if possible
+ if use_cache and isinstance(A, ctx.matrix) and A._LU:
+ return A._LU
+ if not overwrite:
+ orig = A
+ A = A.copy()
+ tol = ctx.absmin(ctx.mnorm(A,1) * ctx.eps) # each pivot element has to be bigger
+ n = A.rows
+ p = [None]*(n - 1)
+ for j in xrange(n - 1):
+ # pivoting, choose max(abs(reciprocal row sum)*abs(pivot element))
+ biggest = 0
+ for k in xrange(j, n):
+ s = ctx.fsum([ctx.absmin(A[k,l]) for l in xrange(j, n)])
+ if ctx.absmin(s) <= tol:
+ raise ZeroDivisionError('matrix is numerically singular')
+ current = 1/s * ctx.absmin(A[k,j])
+ if current > biggest: # TODO: what if equal?
+ biggest = current
+ p[j] = k
+ # swap rows according to p
+ ctx.swap_row(A, j, p[j])
+ if ctx.absmin(A[j,j]) <= tol:
+ raise ZeroDivisionError('matrix is numerically singular')
+ # calculate elimination factors and add rows
+ for i in xrange(j + 1, n):
+ A[i,j] /= A[j,j]
+ for k in xrange(j + 1, n):
+ A[i,k] -= A[i,j]*A[j,k]
+ if ctx.absmin(A[n - 1,n - 1]) <= tol:
+ raise ZeroDivisionError('matrix is numerically singular')
+ # cache decomposition
+ if not overwrite and isinstance(orig, ctx.matrix):
+ orig._LU = (A, p)
+ return A, p
+
+ def L_solve(ctx, L, b, p=None):
+ """
+ Solve the lower part of a LU factorized matrix for y.
+ """
+ if L.rows != L.cols:
+ raise RuntimeError("need n*n matrix")
+ n = L.rows
+ if len(b) != n:
+ raise ValueError("Value should be equal to n")
+ b = copy(b)
+ if p: # swap b according to p
+ for k in xrange(0, len(p)):
+ ctx.swap_row(b, k, p[k])
+ # solve
+ for i in xrange(1, n):
+ for j in xrange(i):
+ b[i] -= L[i,j] * b[j]
+ return b
+
+ def U_solve(ctx, U, y):
+ """
+ Solve the upper part of a LU factorized matrix for x.
+ """
+ if U.rows != U.cols:
+ raise RuntimeError("need n*n matrix")
+ n = U.rows
+ if len(y) != n:
+ raise ValueError("Value should be equal to n")
+ x = copy(y)
+ for i in xrange(n - 1, -1, -1):
+ for j in xrange(i + 1, n):
+ x[i] -= U[i,j] * x[j]
+ x[i] /= U[i,i]
+ return x
+
+ def lu_solve(ctx, A, b, **kwargs):
+ """
+ Ax = b => x
+
+ Solve a determined or overdetermined linear equations system.
+ Fast LU decomposition is used, which is less accurate than QR decomposition
+ (especially for overdetermined systems), but it's twice as efficient.
+ Use qr_solve if you want more precision or have to solve a very ill-
+ conditioned system.
+
+ If you specify real=True, it does not check for overdeterminded complex
+ systems.
+ """
+ prec = ctx.prec
+ try:
+ ctx.prec += 10
+ # do not overwrite A nor b
+ A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy()
+ if A.rows < A.cols:
+ raise ValueError('cannot solve underdetermined system')
+ if A.rows > A.cols:
+ # use least-squares method if overdetermined
+ # (this increases errors)
+ AH = A.H
+ A = AH * A
+ b = AH * b
+ if (kwargs.get('real', False) or
+ not sum(type(i) is ctx.mpc for i in A)):
+ # TODO: necessary to check also b?
+ x = ctx.cholesky_solve(A, b)
+ else:
+ x = ctx.lu_solve(A, b)
+ else:
+ # LU factorization
+ A, p = ctx.LU_decomp(A)
+ b = ctx.L_solve(A, b, p)
+ x = ctx.U_solve(A, b)
+ finally:
+ ctx.prec = prec
+ return x
+
+ def improve_solution(ctx, A, x, b, maxsteps=1):
+ """
+ Improve a solution to a linear equation system iteratively.
+
+ This re-uses the LU decomposition and is thus cheap.
+ Usually 3 up to 4 iterations are giving the maximal improvement.
+ """
+ if A.rows != A.cols:
+ raise RuntimeError("need n*n matrix") # TODO: really?
+ for _ in xrange(maxsteps):
+ r = ctx.residual(A, x, b)
+ if ctx.norm(r, 2) < 10*ctx.eps:
+ break
+ # this uses cached LU decomposition and is thus cheap
+ dx = ctx.lu_solve(A, -r)
+ x += dx
+ return x
+
+ def lu(ctx, A):
+ """
+ A -> P, L, U
+
+ LU factorisation of a square matrix A. L is the lower, U the upper part.
+ P is the permutation matrix indicating the row swaps.
+
+ P*A = L*U
+
+ If you need efficiency, use the low-level method LU_decomp instead, it's
+ much more memory efficient.
+ """
+ # get factorization
+ A, p = ctx.LU_decomp(A)
+ n = A.rows
+ L = ctx.matrix(n)
+ U = ctx.matrix(n)
+ for i in xrange(n):
+ for j in xrange(n):
+ if i > j:
+ L[i,j] = A[i,j]
+ elif i == j:
+ L[i,j] = 1
+ U[i,j] = A[i,j]
+ else:
+ U[i,j] = A[i,j]
+ # calculate permutation matrix
+ P = ctx.eye(n)
+ for k in xrange(len(p)):
+ ctx.swap_row(P, k, p[k])
+ return P, L, U
+
+ def unitvector(ctx, n, i):
+ """
+ Return the i-th n-dimensional unit vector.
+ """
+ assert 0 < i <= n, 'this unit vector does not exist'
+ return [ctx.zero]*(i-1) + [ctx.one] + [ctx.zero]*(n-i)
+
+ def inverse(ctx, A, **kwargs):
+ """
+ Calculate the inverse of a matrix.
+
+ If you want to solve an equation system Ax = b, it's recommended to use
+ solve(A, b) instead, it's about 3 times more efficient.
+ """
+ prec = ctx.prec
+ try:
+ ctx.prec += 10
+ # do not overwrite A
+ A = ctx.matrix(A, **kwargs).copy()
+ n = A.rows
+ # get LU factorisation
+ A, p = ctx.LU_decomp(A)
+ cols = []
+ # calculate unit vectors and solve corresponding system to get columns
+ for i in xrange(1, n + 1):
+ e = ctx.unitvector(n, i)
+ y = ctx.L_solve(A, e, p)
+ cols.append(ctx.U_solve(A, y))
+ # convert columns to matrix
+ inv = []
+ for i in xrange(n):
+ row = []
+ for j in xrange(n):
+ row.append(cols[j][i])
+ inv.append(row)
+ result = ctx.matrix(inv, **kwargs)
+ finally:
+ ctx.prec = prec
+ return result
+
+ def householder(ctx, A):
+ """
+ (A|b) -> H, p, x, res
+
+ (A|b) is the coefficient matrix with left hand side of an optionally
+ overdetermined linear equation system.
+ H and p contain all information about the transformation matrices.
+ x is the solution, res the residual.
+ """
+ if not isinstance(A, ctx.matrix):
+ raise TypeError("A should be a type of ctx.matrix")
+ m = A.rows
+ n = A.cols
+ if m < n - 1:
+ raise RuntimeError("Columns should not be less than rows")
+ # calculate Householder matrix
+ p = []
+ for j in xrange(0, n - 1):
+ s = ctx.fsum(abs(A[i,j])**2 for i in xrange(j, m))
+ if not abs(s) > ctx.eps:
+ raise ValueError('matrix is numerically singular')
+ p.append(-ctx.sign(ctx.re(A[j,j])) * ctx.sqrt(s))
+ kappa = ctx.one / (s - p[j] * A[j,j])
+ A[j,j] -= p[j]
+ for k in xrange(j+1, n):
+ y = ctx.fsum(ctx.conj(A[i,j]) * A[i,k] for i in xrange(j, m)) * kappa
+ for i in xrange(j, m):
+ A[i,k] -= A[i,j] * y
+ # solve Rx = c1
+ x = [A[i,n - 1] for i in xrange(n - 1)]
+ for i in xrange(n - 2, -1, -1):
+ x[i] -= ctx.fsum(A[i,j] * x[j] for j in xrange(i + 1, n - 1))
+ x[i] /= p[i]
+ # calculate residual
+ if not m == n - 1:
+ r = [A[m-1-i, n-1] for i in xrange(m - n + 1)]
+ else:
+ # determined system, residual should be 0
+ r = [0]*m # maybe a bad idea, changing r[i] will change all elements
+ return A, p, x, r
+
+ #def qr(ctx, A):
+ # """
+ # A -> Q, R
+ #
+ # QR factorisation of a square matrix A using Householder decomposition.
+ # Q is orthogonal, this leads to very few numerical errors.
+ #
+ # A = Q*R
+ # """
+ # H, p, x, res = householder(A)
+ # TODO: implement this
+
+ def residual(ctx, A, x, b, **kwargs):
+ """
+ Calculate the residual of a solution to a linear equation system.
+
+ r = A*x - b for A*x = b
+ """
+ oldprec = ctx.prec
+ try:
+ ctx.prec *= 2
+ A, x, b = ctx.matrix(A, **kwargs), ctx.matrix(x, **kwargs), ctx.matrix(b, **kwargs)
+ return A*x - b
+ finally:
+ ctx.prec = oldprec
+
+ def qr_solve(ctx, A, b, norm=None, **kwargs):
+ """
+ Ax = b => x, ||Ax - b||
+
+ Solve a determined or overdetermined linear equations system and
+ calculate the norm of the residual (error).
+ QR decomposition using Householder factorization is applied, which gives very
+ accurate results even for ill-conditioned matrices. qr_solve is twice as
+ efficient.
+ """
+ if norm is None:
+ norm = ctx.norm
+ prec = ctx.prec
+ try:
+ ctx.prec += 10
+ # do not overwrite A nor b
+ A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy()
+ if A.rows < A.cols:
+ raise ValueError('cannot solve underdetermined system')
+ H, p, x, r = ctx.householder(ctx.extend(A, b))
+ res = ctx.norm(r)
+ # calculate residual "manually" for determined systems
+ if res == 0:
+ res = ctx.norm(ctx.residual(A, x, b))
+ return ctx.matrix(x, **kwargs), res
+ finally:
+ ctx.prec = prec
+
+ def cholesky(ctx, A, tol=None):
+ r"""
+ Cholesky decomposition of a symmetric positive-definite matrix `A`.
+ Returns a lower triangular matrix `L` such that `A = L \times L^T`.
+ More generally, for a complex Hermitian positive-definite matrix,
+ a Cholesky decomposition satisfying `A = L \times L^H` is returned.
+
+ The Cholesky decomposition can be used to solve linear equation
+ systems twice as efficiently as LU decomposition, or to
+ test whether `A` is positive-definite.
+
+ The optional parameter ``tol`` determines the tolerance for
+ verifying positive-definiteness.
+
+ **Examples**
+
+ Cholesky decomposition of a positive-definite symmetric matrix::
+
+ >>> from mpmath import *
+ >>> mp.dps = 25; mp.pretty = True
+ >>> A = eye(3) + hilbert(3)
+ >>> nprint(A)
+ [ 2.0 0.5 0.333333]
+ [ 0.5 1.33333 0.25]
+ [0.333333 0.25 1.2]
+ >>> L = cholesky(A)
+ >>> nprint(L)
+ [ 1.41421 0.0 0.0]
+ [0.353553 1.09924 0.0]
+ [0.235702 0.15162 1.05899]
+ >>> chop(A - L*L.T)
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+
+ Cholesky decomposition of a Hermitian matrix::
+
+ >>> A = eye(3) + matrix([[0,0.25j,-0.5j],[-0.25j,0,0],[0.5j,0,0]])
+ >>> L = cholesky(A)
+ >>> nprint(L)
+ [ 1.0 0.0 0.0]
+ [(0.0 - 0.25j) (0.968246 + 0.0j) 0.0]
+ [ (0.0 + 0.5j) (0.129099 + 0.0j) (0.856349 + 0.0j)]
+ >>> chop(A - L*L.H)
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+ [0.0 0.0 0.0]
+
+ Attempted Cholesky decomposition of a matrix that is not positive
+ definite::
+
+ >>> A = -eye(3) + hilbert(3)
+ >>> L = cholesky(A)
+ Traceback (most recent call last):
+ ...
+ ValueError: matrix is not positive-definite
+
+ **References**
+
+ 1. [Wikipedia]_ http://en.wikipedia.org/wiki/Cholesky_decomposition
+
+ """
+ if not isinstance(A, ctx.matrix):
+ raise RuntimeError("A should be a type of ctx.matrix")
+ if not A.rows == A.cols:
+ raise ValueError('need n*n matrix')
+ if tol is None:
+ tol = +ctx.eps
+ n = A.rows
+ L = ctx.matrix(n)
+ for j in xrange(n):
+ c = ctx.re(A[j,j])
+ if abs(c-A[j,j]) > tol:
+ raise ValueError('matrix is not Hermitian')
+ s = c - ctx.fsum((L[j,k] for k in xrange(j)),
+ absolute=True, squared=True)
+ if s < tol:
+ raise ValueError('matrix is not positive-definite')
+ L[j,j] = ctx.sqrt(s)
+ for i in xrange(j, n):
+ it1 = (L[i,k] for k in xrange(j))
+ it2 = (L[j,k] for k in xrange(j))
+ t = ctx.fdot(it1, it2, conjugate=True)
+ L[i,j] = (A[i,j] - t) / L[j,j]
+ return L
+
+ def cholesky_solve(ctx, A, b, **kwargs):
+ """
+ Ax = b => x
+
+ Solve a symmetric positive-definite linear equation system.
+ This is twice as efficient as lu_solve.
+
+ Typical use cases:
+ * A.T*A
+ * Hessian matrix
+ * differential equations
+ """
+ prec = ctx.prec
+ try:
+ ctx.prec += 10
+ # do not overwrite A nor b
+ A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy()
+ if A.rows != A.cols:
+ raise ValueError('can only solve determined system')
+ # Cholesky factorization
+ L = ctx.cholesky(A)
+ # solve
+ n = L.rows
+ if len(b) != n:
+ raise ValueError("Value should be equal to n")
+ for i in xrange(n):
+ b[i] -= ctx.fsum(L[i,j] * b[j] for j in xrange(i))
+ b[i] /= L[i,i]
+ x = ctx.U_solve(L.T, b)
+ return x
+ finally:
+ ctx.prec = prec
+
+ def det(ctx, A):
+ """
+ Calculate the determinant of a matrix.
+ """
+ prec = ctx.prec
+ try:
+ # do not overwrite A
+ A = ctx.matrix(A).copy()
+ # use LU factorization to calculate determinant
+ try:
+ R, p = ctx.LU_decomp(A)
+ except ZeroDivisionError:
+ return 0
+ z = 1
+ for i, e in enumerate(p):
+ if i != e:
+ z *= -1
+ for i in xrange(A.rows):
+ z *= R[i,i]
+ return z
+ finally:
+ ctx.prec = prec
+
+ def cond(ctx, A, norm=None):
+ """
+ Calculate the condition number of a matrix using a specified matrix norm.
+
+ The condition number estimates the sensitivity of a matrix to errors.
+ Example: small input errors for ill-conditioned coefficient matrices
+ alter the solution of the system dramatically.
+
+ For ill-conditioned matrices it's recommended to use qr_solve() instead
+ of lu_solve(). This does not help with input errors however, it just avoids
+ to add additional errors.
+
+ Definition: cond(A) = ||A|| * ||A**-1||
+ """
+ if norm is None:
+ norm = lambda x: ctx.mnorm(x,1)
+ return norm(A) * norm(ctx.inverse(A))
+
+ def lu_solve_mat(ctx, a, b):
+ """Solve a * x = b where a and b are matrices."""
+ r = ctx.matrix(a.rows, b.cols)
+ for i in range(b.cols):
+ c = ctx.lu_solve(a, b.column(i))
+ for j in range(len(c)):
+ r[j, i] = c[j]
+ return r
+
+ def qr(ctx, A, mode = 'full', edps = 10):
+ """
+ Compute a QR factorization $A = QR$ where
+ A is an m x n matrix of real or complex numbers where m >= n
+
+ mode has following meanings:
+ (1) mode = 'raw' returns two matrixes (A, tau) in the
+ internal format used by LAPACK
+ (2) mode = 'skinny' returns the leading n columns of Q
+ and n rows of R
+ (3) Any other value returns the leading m columns of Q
+ and m rows of R
+
+ edps is the increase in mp precision used for calculations
+
+ **Examples**
+
+ >>> from mpmath import *
+ >>> mp.dps = 15
+ >>> mp.pretty = True
+ >>> A = matrix([[1, 2], [3, 4], [1, 1]])
+ >>> Q, R = qr(A)
+ >>> Q
+ [-0.301511344577764 0.861640436855329 0.408248290463863]
+ [-0.904534033733291 -0.123091490979333 -0.408248290463863]
+ [-0.301511344577764 -0.492365963917331 0.816496580927726]
+ >>> R
+ [-3.3166247903554 -4.52267016866645]
+ [ 0.0 0.738548945875996]
+ [ 0.0 0.0]
+ >>> Q * R
+ [1.0 2.0]
+ [3.0 4.0]
+ [1.0 1.0]
+ >>> chop(Q.T * Q)
+ [1.0 0.0 0.0]
+ [0.0 1.0 0.0]
+ [0.0 0.0 1.0]
+ >>> B = matrix([[1+0j, 2-3j], [3+j, 4+5j]])
+ >>> Q, R = qr(B)
+ >>> nprint(Q)
+ [ (-0.301511 + 0.0j) (0.0695795 - 0.95092j)]
+ [(-0.904534 - 0.301511j) (-0.115966 + 0.278318j)]
+ >>> nprint(R)
+ [(-3.31662 + 0.0j) (-5.72872 - 2.41209j)]
+ [ 0.0 (3.91965 + 0.0j)]
+ >>> Q * R
+ [(1.0 + 0.0j) (2.0 - 3.0j)]
+ [(3.0 + 1.0j) (4.0 + 5.0j)]
+ >>> chop(Q.T * Q.conjugate())
+ [1.0 0.0]
+ [0.0 1.0]
+
+ """
+
+ # check values before continuing
+ assert isinstance(A, ctx.matrix)
+ m = A.rows
+ n = A.cols
+ assert n >= 0
+ assert m >= n
+ assert edps >= 0
+
+ # check for complex data type
+ cmplx = any(type(x) is ctx.mpc for x in A)
+
+ # temporarily increase the precision and initialize
+ with ctx.extradps(edps):
+ tau = ctx.matrix(n,1)
+ A = A.copy()
+
+ # ---------------
+ # FACTOR MATRIX A
+ # ---------------
+ if cmplx:
+ one = ctx.mpc('1.0', '0.0')
+ zero = ctx.mpc('0.0', '0.0')
+ rzero = ctx.mpf('0.0')
+
+ # main loop to factor A (complex)
+ for j in xrange(0, n):
+ alpha = A[j,j]
+ alphr = ctx.re(alpha)
+ alphi = ctx.im(alpha)
+
+ if (m-j) >= 2:
+ xnorm = ctx.fsum( A[i,j]*ctx.conj(A[i,j]) for i in xrange(j+1, m) )
+ xnorm = ctx.re( ctx.sqrt(xnorm) )
+ else:
+ xnorm = rzero
+
+ if (xnorm == rzero) and (alphi == rzero):
+ tau[j] = zero
+ continue
+
+ if alphr < rzero:
+ beta = ctx.sqrt(alphr**2 + alphi**2 + xnorm**2)
+ else:
+ beta = -ctx.sqrt(alphr**2 + alphi**2 + xnorm**2)
+
+ tau[j] = ctx.mpc( (beta - alphr) / beta, -alphi / beta )
+ t = -ctx.conj(tau[j])
+ za = one / (alpha - beta)
+
+ for i in xrange(j+1, m):
+ A[i,j] *= za
+
+ A[j,j] = one
+ for k in xrange(j+1, n):
+ y = ctx.fsum(A[i,j] * ctx.conj(A[i,k]) for i in xrange(j, m))
+ temp = t * ctx.conj(y)
+ for i in xrange(j, m):
+ A[i,k] += A[i,j] * temp
+
+ A[j,j] = ctx.mpc(beta, '0.0')
+ else:
+ one = ctx.mpf('1.0')
+ zero = ctx.mpf('0.0')
+
+ # main loop to factor A (real)
+ for j in xrange(0, n):
+ alpha = A[j,j]
+
+ if (m-j) > 2:
+ xnorm = ctx.fsum( (A[i,j])**2 for i in xrange(j+1, m) )
+ xnorm = ctx.sqrt(xnorm)
+ elif (m-j) == 2:
+ xnorm = abs( A[m-1,j] )
+ else:
+ xnorm = zero
+
+ if xnorm == zero:
+ tau[j] = zero
+ continue
+
+ if alpha < zero:
+ beta = ctx.sqrt(alpha**2 + xnorm**2)
+ else:
+ beta = -ctx.sqrt(alpha**2 + xnorm**2)
+
+ tau[j] = (beta - alpha) / beta
+ t = -tau[j]
+ da = one / (alpha - beta)
+
+ for i in xrange(j+1, m):
+ A[i,j] *= da
+
+ A[j,j] = one
+ for k in xrange(j+1, n):
+ y = ctx.fsum( A[i,j] * A[i,k] for i in xrange(j, m) )
+ temp = t * y
+ for i in xrange(j,m):
+ A[i,k] += A[i,j] * temp
+
+ A[j,j] = beta
+
+ # return factorization in same internal format as LAPACK
+ if (mode == 'raw') or (mode == 'RAW'):
+ return A, tau
+
+ # ----------------------------------
+ # FORM Q USING BACKWARD ACCUMULATION
+ # ----------------------------------
+
+ # form R before the values are overwritten
+ R = A.copy()
+ for j in xrange(0, n):
+ for i in xrange(j+1, m):
+ R[i,j] = zero
+
+ # set the value of p (number of columns of Q to return)
+ p = m
+ if (mode == 'skinny') or (mode == 'SKINNY'):
+ p = n
+
+ # add columns to A if needed and initialize
+ A.cols += (p-n)
+ for j in xrange(0, p):
+ A[j,j] = one
+ for i in xrange(0, j):
+ A[i,j] = zero
+
+ # main loop to form Q
+ for j in xrange(n-1, -1, -1):
+ t = -tau[j]
+ A[j,j] += t
+
+ for k in xrange(j+1, p):
+ if cmplx:
+ y = ctx.fsum(A[i,j] * ctx.conj(A[i,k]) for i in xrange(j+1, m))
+ temp = t * ctx.conj(y)
+ else:
+ y = ctx.fsum(A[i,j] * A[i,k] for i in xrange(j+1, m))
+ temp = t * y
+ A[j,k] = temp
+ for i in xrange(j+1, m):
+ A[i,k] += A[i,j] * temp
+
+ for i in xrange(j+1, m):
+ A[i, j] *= t
+
+ return A, R[0:p,0:n]
+
+ # ------------------
+ # END OF FUNCTION QR
+ # ------------------
diff --git a/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/AUTHORS.txt b/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/AUTHORS.txt
new file mode 100644
index 0000000000000000000000000000000000000000..88b904760b5f8950189dd1c2c30da8fb3b22374f
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/AUTHORS.txt
@@ -0,0 +1,31 @@
+Numexpr was initially written by David Cooke, and extended to more
+types by Tim Hochberg.
+
+Francesc Alted contributed support for booleans and simple-precision
+floating point types, efficient strided and unaligned array operations
+and multi-threading code.
+
+Ivan Vilata contributed support for strings.
+
+Gregor Thalhammer implemented the support for Intel VML (Vector Math
+Library).
+
+Mark Wiebe added support for the new iterator in NumPy, which allows
+for better performance in more scenarios (like broadcasting,
+fortran-ordered or non-native byte orderings).
+
+Gaëtan de Menten contributed important bug fixes and speed
+enhancements.
+
+Antonio Valentino contributed the port to Python 3.
+
+Google Inc. contributed bug fixes.
+
+David Cox improved readability of the Readme.
+
+Robert A. McLeod contributed bug fixes and ported the documentation to
+numexpr.readthedocs.io. He has served as the maintainer of the package
+since 2016 to 2023.
+
+Teng Liu fixed many bugs, and in particular, contributed valuable fixes
+to the new regex sanitizer for expressions.
diff --git a/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/INSTALLER b/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/INSTALLER
new file mode 100644
index 0000000000000000000000000000000000000000..a1b589e38a32041e49332e5e81c2d363dc418d68
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/INSTALLER
@@ -0,0 +1 @@
+pip
diff --git a/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/LICENSE.txt b/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/LICENSE.txt
new file mode 100644
index 0000000000000000000000000000000000000000..de9a582603ca6aa895136e2b118443e9397897da
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/LICENSE.txt
@@ -0,0 +1,21 @@
+Copyright (c) 2007,2008 David M. Cooke
+Copyright (c) 2009,2010 Francesc Alted
+Copyright (c) 2011- See AUTHORS.txt
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE.
diff --git a/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/METADATA b/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/METADATA
new file mode 100644
index 0000000000000000000000000000000000000000..eed663cf8b60f10356bdeff476d6307d6d1bc8b2
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/METADATA
@@ -0,0 +1,212 @@
+Metadata-Version: 2.1
+Name: numexpr
+Version: 2.10.0
+Summary: Fast numerical expression evaluator for NumPy
+Home-page: https://github.com/pydata/numexpr
+Author: David M. Cooke, Francesc Alted, and others
+Maintainer: Francesc Alted
+Maintainer-email: faltet@gmail.com
+License: MIT
+Classifier: Development Status :: 6 - Mature
+Classifier: Intended Audience :: Financial and Insurance Industry
+Classifier: Intended Audience :: Science/Research
+Classifier: License :: OSI Approved :: MIT License
+Classifier: Programming Language :: Python :: 3
+Classifier: Programming Language :: Python :: 3.9
+Classifier: Programming Language :: Python :: 3.10
+Classifier: Programming Language :: Python :: 3.11
+Classifier: Programming Language :: Python :: 3.12
+Classifier: Operating System :: Microsoft :: Windows
+Classifier: Operating System :: POSIX
+Classifier: Operating System :: MacOS
+Requires-Python: >=3.9
+Description-Content-Type: text/x-rst
+License-File: LICENSE.txt
+License-File: AUTHORS.txt
+Requires-Dist: numpy >=1.19.3
+
+======================================================
+NumExpr: Fast numerical expression evaluator for NumPy
+======================================================
+
+:Author: David M. Cooke, Francesc Alted, and others.
+:Maintainer: Francesc Alted
+:Contact: faltet@gmail.com
+:URL: https://github.com/pydata/numexpr
+:Documentation: http://numexpr.readthedocs.io/en/latest/
+:GitHub Actions: |actions|
+:PyPi: |version|
+:DOI: |doi|
+:readthedocs: |docs|
+
+.. |actions| image:: https://github.com/pydata/numexpr/workflows/Build/badge.svg
+ :target: https://github.com/pydata/numexpr/actions
+.. |travis| image:: https://travis-ci.org/pydata/numexpr.png?branch=master
+ :target: https://travis-ci.org/pydata/numexpr
+.. |docs| image:: https://readthedocs.org/projects/numexpr/badge/?version=latest
+ :target: http://numexpr.readthedocs.io/en/latest
+.. |doi| image:: https://zenodo.org/badge/doi/10.5281/zenodo.2483274.svg
+ :target: https://doi.org/10.5281/zenodo.2483274
+.. |version| image:: https://img.shields.io/pypi/v/numexpr
+ :target: https://pypi.python.org/pypi/numexpr
+
+
+What is NumExpr?
+----------------
+
+NumExpr is a fast numerical expression evaluator for NumPy. With it,
+expressions that operate on arrays (like :code:`'3*a+4*b'`) are accelerated
+and use less memory than doing the same calculation in Python.
+
+In addition, its multi-threaded capabilities can make use of all your
+cores -- which generally results in substantial performance scaling compared
+to NumPy.
+
+Last but not least, numexpr can make use of Intel's VML (Vector Math
+Library, normally integrated in its Math Kernel Library, or MKL).
+This allows further acceleration of transcendent expressions.
+
+
+How NumExpr achieves high performance
+-------------------------------------
+
+The main reason why NumExpr achieves better performance than NumPy is
+that it avoids allocating memory for intermediate results. This
+results in better cache utilization and reduces memory access in
+general. Due to this, NumExpr works best with large arrays.
+
+NumExpr parses expressions into its own op-codes that are then used by
+an integrated computing virtual machine. The array operands are split
+into small chunks that easily fit in the cache of the CPU and passed
+to the virtual machine. The virtual machine then applies the
+operations on each chunk. It's worth noting that all temporaries and
+constants in the expression are also chunked. Chunks are distributed among
+the available cores of the CPU, resulting in highly parallelized code
+execution.
+
+The result is that NumExpr can get the most of your machine computing
+capabilities for array-wise computations. Common speed-ups with regard
+to NumPy are usually between 0.95x (for very simple expressions like
+:code:`'a + 1'`) and 4x (for relatively complex ones like :code:`'a*b-4.1*a > 2.5*b'`),
+although much higher speed-ups can be achieved for some functions and complex
+math operations (up to 15x in some cases).
+
+NumExpr performs best on matrices that are too large to fit in L1 CPU cache.
+In order to get a better idea on the different speed-ups that can be achieved
+on your platform, run the provided benchmarks.
+
+Installation
+------------
+
+From wheels
+^^^^^^^^^^^
+
+NumExpr is available for install via `pip` for a wide range of platforms and
+Python versions (which may be browsed at: https://pypi.org/project/numexpr/#files).
+Installation can be performed as::
+
+ pip install numexpr
+
+If you are using the Anaconda or Miniconda distribution of Python you may prefer
+to use the `conda` package manager in this case::
+
+ conda install numexpr
+
+From Source
+^^^^^^^^^^^
+
+On most \*nix systems your compilers will already be present. However if you
+are using a virtual environment with a substantially newer version of Python than
+your system Python you may be prompted to install a new version of `gcc` or `clang`.
+
+For Windows, you will need to install the Microsoft Visual C++ Build Tools
+(which are free) first. The version depends on which version of Python you have
+installed:
+
+https://wiki.python.org/moin/WindowsCompilers
+
+For Python 3.6+ simply installing the latest version of MSVC build tools should
+be sufficient. Note that wheels found via pip do not include MKL support. Wheels
+available via `conda` will have MKL, if the MKL backend is used for NumPy.
+
+See `requirements.txt` for the required version of NumPy.
+
+NumExpr is built in the standard Python way::
+
+ python setup.py build install
+
+You can test `numexpr` with::
+
+ python -c "import numexpr; numexpr.test()"
+
+Do not test NumExpr in the source directory or you will generate import errors.
+
+Enable Intel® MKL support
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+NumExpr includes support for Intel's MKL library. This may provide better
+performance on Intel architectures, mainly when evaluating transcendental
+functions (trigonometrical, exponential, ...).
+
+If you have Intel's MKL, copy the `site.cfg.example` that comes with the
+distribution to `site.cfg` and edit the latter file to provide correct paths to
+the MKL libraries in your system. After doing this, you can proceed with the
+usual building instructions listed above.
+
+Pay attention to the messages during the building process in order to know
+whether MKL has been detected or not. Finally, you can check the speed-ups on
+your machine by running the `bench/vml_timing.py` script (you can play with
+different parameters to the `set_vml_accuracy_mode()` and `set_vml_num_threads()`
+functions in the script so as to see how it would affect performance).
+
+Usage
+-----
+
+::
+
+ >>> import numpy as np
+ >>> import numexpr as ne
+
+ >>> a = np.arange(1e6) # Choose large arrays for better speedups
+ >>> b = np.arange(1e6)
+
+ >>> ne.evaluate("a + 1") # a simple expression
+ array([ 1.00000000e+00, 2.00000000e+00, 3.00000000e+00, ...,
+ 9.99998000e+05, 9.99999000e+05, 1.00000000e+06])
+
+ >>> ne.evaluate("a * b - 4.1 * a > 2.5 * b") # a more complex one
+ array([False, False, False, ..., True, True, True], dtype=bool)
+
+ >>> ne.evaluate("sin(a) + arcsinh(a/b)") # you can also use functions
+ array([ NaN, 1.72284457, 1.79067101, ..., 1.09567006,
+ 0.17523598, -0.09597844])
+
+ >>> s = np.array([b'abba', b'abbb', b'abbcdef'])
+ >>> ne.evaluate("b'abba' == s") # string arrays are supported too
+ array([ True, False, False], dtype=bool)
+
+
+Documentation
+-------------
+
+Please see the official documentation at `numexpr.readthedocs.io `_.
+Included is a user guide, benchmark results, and the reference API.
+
+
+Authors
+-------
+
+Please see `AUTHORS.txt `_.
+
+
+License
+-------
+
+NumExpr is distributed under the `MIT `_ license.
+
+
+.. Local Variables:
+.. mode: text
+.. coding: utf-8
+.. fill-column: 70
+.. End:
diff --git a/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/RECORD b/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/RECORD
new file mode 100644
index 0000000000000000000000000000000000000000..443445cfb3aa4aaefb1d387f41e48be29e1cd778
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/RECORD
@@ -0,0 +1,24 @@
+numexpr-2.10.0.dist-info/AUTHORS.txt,sha256=PaKTkzR-lu5K3JSzDqN4ATMT8baQKypX8177j7WsLkg,1053
+numexpr-2.10.0.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
+numexpr-2.10.0.dist-info/LICENSE.txt,sha256=A_3YAlpObXDK8ncg6Rp5rY2f5CLr4YIPXOxh3OrnCf8,1193
+numexpr-2.10.0.dist-info/METADATA,sha256=flleeACi8UBaSkttO8ArKQQyf28Sb69tkca5m7nLLBk,7870
+numexpr-2.10.0.dist-info/RECORD,,
+numexpr-2.10.0.dist-info/WHEEL,sha256=CzQQWV-lNyM92gr3iaBk8dvO35YDHRxgzkZ-dxumUIM,152
+numexpr-2.10.0.dist-info/top_level.txt,sha256=5R5OAhc7k6sUajqt4vp-368lWWhb23CoC6LltIMNqNA,8
+numexpr/__init__.py,sha256=BveiRb343utwo5WHQhDDXW-rzj8xempYWkpUKPP42-A,2279
+numexpr/__pycache__/__init__.cpython-310.pyc,,
+numexpr/__pycache__/cpuinfo.cpython-310.pyc,,
+numexpr/__pycache__/expressions.cpython-310.pyc,,
+numexpr/__pycache__/necompiler.cpython-310.pyc,,
+numexpr/__pycache__/utils.cpython-310.pyc,,
+numexpr/__pycache__/version.cpython-310.pyc,,
+numexpr/cpuinfo.py,sha256=AFBUER-10rJclvgH6nGgOj7q-HahAoj3_SxftaUnRkQ,25164
+numexpr/expressions.py,sha256=J9e_mlMRDfCQlridk48vwgnyFIhlCzA3voNLJpowheY,16138
+numexpr/interpreter.cpython-310-x86_64-linux-gnu.so,sha256=vLDGSB-1OaDSBamLitmGDzImo7gOw92BIAlwQVGZyrU,1150680
+numexpr/necompiler.py,sha256=OW2gsD94jzflN_NvIR0USKF7l2dgcHYwHlDuUWrgd_U,34845
+numexpr/tests/__init__.py,sha256=GBFxEA1-KjffdC-yum4Zj4u-f_zYVhSZIMPv-bOKoSQ,447
+numexpr/tests/__pycache__/__init__.cpython-310.pyc,,
+numexpr/tests/__pycache__/test_numexpr.cpython-310.pyc,,
+numexpr/tests/test_numexpr.py,sha256=zyMW-WxvWzdYhc6C0wF7GgvCHoiqOe3tFGj-Rwc_PpI,50968
+numexpr/utils.py,sha256=lly5fvICKOR0_2aHju4CcA1A_nOacrZKUrUr9V5NUKs,7725
+numexpr/version.py,sha256=lsi9_VC5i0byRpzLsw5tH4fFBnoobWU6AJgnEFV3v_w,119
diff --git a/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/WHEEL b/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/WHEEL
new file mode 100644
index 0000000000000000000000000000000000000000..9bb86cf30c63df9170e9af3dd246ce6f41270402
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/WHEEL
@@ -0,0 +1,6 @@
+Wheel-Version: 1.0
+Generator: bdist_wheel (0.43.0)
+Root-Is-Purelib: false
+Tag: cp310-cp310-manylinux_2_17_x86_64
+Tag: cp310-cp310-manylinux2014_x86_64
+
diff --git a/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/top_level.txt b/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/top_level.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ba1904bf1533907788338997eb320918b2578528
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/top_level.txt
@@ -0,0 +1 @@
+numexpr
diff --git a/venv/lib/python3.10/site-packages/regex/__init__.py b/venv/lib/python3.10/site-packages/regex/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..eb06564ab033a2b0b501f7f41efb169dacd1f801
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/regex/__init__.py
@@ -0,0 +1,3 @@
+from .regex import *
+from . import regex
+__all__ = regex.__all__
diff --git a/venv/lib/python3.10/site-packages/regex/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/regex/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..56b445a380268fe0bd2d7de27bd6b8e52ed6c205
Binary files /dev/null and b/venv/lib/python3.10/site-packages/regex/__pycache__/__init__.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/regex/__pycache__/_regex_core.cpython-310.pyc b/venv/lib/python3.10/site-packages/regex/__pycache__/_regex_core.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3ca70b8cf230546a404e99f8a39130cd6246be31
Binary files /dev/null and b/venv/lib/python3.10/site-packages/regex/__pycache__/_regex_core.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/regex/__pycache__/regex.cpython-310.pyc b/venv/lib/python3.10/site-packages/regex/__pycache__/regex.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1a41f7282f42ce1c7068785f3a1b29467f91bd5c
Binary files /dev/null and b/venv/lib/python3.10/site-packages/regex/__pycache__/regex.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/regex/__pycache__/test_regex.cpython-310.pyc b/venv/lib/python3.10/site-packages/regex/__pycache__/test_regex.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e4dfd88be23afc69ffb1ba5be29d8b7f9cd39d9b
Binary files /dev/null and b/venv/lib/python3.10/site-packages/regex/__pycache__/test_regex.cpython-310.pyc differ
diff --git a/venv/lib/python3.10/site-packages/regex/_regex_core.py b/venv/lib/python3.10/site-packages/regex/_regex_core.py
new file mode 100644
index 0000000000000000000000000000000000000000..550e9225dda3adbd7ea19aa390345323776eb19d
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/regex/_regex_core.py
@@ -0,0 +1,4495 @@
+#
+# Secret Labs' Regular Expression Engine core module
+#
+# Copyright (c) 1998-2001 by Secret Labs AB. All rights reserved.
+#
+# This version of the SRE library can be redistributed under CNRI's
+# Python 1.6 license. For any other use, please contact Secret Labs
+# AB (info@pythonware.com).
+#
+# Portions of this engine have been developed in cooperation with
+# CNRI. Hewlett-Packard provided funding for 1.6 integration and
+# other compatibility work.
+#
+# 2010-01-16 mrab Python front-end re-written and extended
+
+import enum
+import string
+import unicodedata
+from collections import defaultdict
+
+import regex._regex as _regex
+
+__all__ = ["A", "ASCII", "B", "BESTMATCH", "D", "DEBUG", "E", "ENHANCEMATCH",
+ "F", "FULLCASE", "I", "IGNORECASE", "L", "LOCALE", "M", "MULTILINE", "P",
+ "POSIX", "R", "REVERSE", "S", "DOTALL", "T", "TEMPLATE", "U", "UNICODE",
+ "V0", "VERSION0", "V1", "VERSION1", "W", "WORD", "X", "VERBOSE", "error",
+ "Scanner", "RegexFlag"]
+
+# The regex exception.
+class error(Exception):
+ """Exception raised for invalid regular expressions.
+
+ Attributes:
+
+ msg: The unformatted error message
+ pattern: The regular expression pattern
+ pos: The position in the pattern where compilation failed, or None
+ lineno: The line number where compilation failed, unless pos is None
+ colno: The column number where compilation failed, unless pos is None
+ """
+
+ def __init__(self, message, pattern=None, pos=None):
+ newline = '\n' if isinstance(pattern, str) else b'\n'
+ self.msg = message
+ self.pattern = pattern
+ self.pos = pos
+ if pattern is not None and pos is not None:
+ self.lineno = pattern.count(newline, 0, pos) + 1
+ self.colno = pos - pattern.rfind(newline, 0, pos)
+
+ message = "{} at position {}".format(message, pos)
+
+ if newline in pattern:
+ message += " (line {}, column {})".format(self.lineno,
+ self.colno)
+
+ Exception.__init__(self, message)
+
+# The exception for when a positional flag has been turned on in the old
+# behaviour.
+class _UnscopedFlagSet(Exception):
+ pass
+
+# The exception for when parsing fails and we want to try something else.
+class ParseError(Exception):
+ pass
+
+# The exception for when there isn't a valid first set.
+class _FirstSetError(Exception):
+ pass
+
+# Flags.
+class RegexFlag(enum.IntFlag):
+ A = ASCII = 0x80 # Assume ASCII locale.
+ B = BESTMATCH = 0x1000 # Best fuzzy match.
+ D = DEBUG = 0x200 # Print parsed pattern.
+ E = ENHANCEMATCH = 0x8000 # Attempt to improve the fit after finding the first
+ # fuzzy match.
+ F = FULLCASE = 0x4000 # Unicode full case-folding.
+ I = IGNORECASE = 0x2 # Ignore case.
+ L = LOCALE = 0x4 # Assume current 8-bit locale.
+ M = MULTILINE = 0x8 # Make anchors look for newline.
+ P = POSIX = 0x10000 # POSIX-style matching (leftmost longest).
+ R = REVERSE = 0x400 # Search backwards.
+ S = DOTALL = 0x10 # Make dot match newline.
+ U = UNICODE = 0x20 # Assume Unicode locale.
+ V0 = VERSION0 = 0x2000 # Old legacy behaviour.
+ V1 = VERSION1 = 0x100 # New enhanced behaviour.
+ W = WORD = 0x800 # Default Unicode word breaks.
+ X = VERBOSE = 0x40 # Ignore whitespace and comments.
+ T = TEMPLATE = 0x1 # Template (present because re module has it).
+
+ def __repr__(self):
+ if self._name_ is not None:
+ return 'regex.%s' % self._name_
+
+ value = self._value_
+ members = []
+ negative = value < 0
+
+ if negative:
+ value = ~value
+
+ for m in self.__class__:
+ if value & m._value_:
+ value &= ~m._value_
+ members.append('regex.%s' % m._name_)
+
+ if value:
+ members.append(hex(value))
+
+ res = '|'.join(members)
+
+ if negative:
+ if len(members) > 1:
+ res = '~(%s)' % res
+ else:
+ res = '~%s' % res
+
+ return res
+
+ __str__ = object.__str__
+
+globals().update(RegexFlag.__members__)
+
+DEFAULT_VERSION = VERSION1
+
+_ALL_VERSIONS = VERSION0 | VERSION1
+_ALL_ENCODINGS = ASCII | LOCALE | UNICODE
+
+# The default flags for the various versions.
+DEFAULT_FLAGS = {VERSION0: 0, VERSION1: FULLCASE}
+
+# The mask for the flags.
+GLOBAL_FLAGS = (_ALL_VERSIONS | BESTMATCH | DEBUG | ENHANCEMATCH | POSIX |
+ REVERSE)
+SCOPED_FLAGS = (FULLCASE | IGNORECASE | MULTILINE | DOTALL | WORD | VERBOSE |
+ _ALL_ENCODINGS)
+
+ALPHA = frozenset(string.ascii_letters)
+DIGITS = frozenset(string.digits)
+ALNUM = ALPHA | DIGITS
+OCT_DIGITS = frozenset(string.octdigits)
+HEX_DIGITS = frozenset(string.hexdigits)
+SPECIAL_CHARS = frozenset("()|?*+{^$.[\\#") | frozenset([""])
+NAMED_CHAR_PART = ALNUM | frozenset(" -")
+PROPERTY_NAME_PART = ALNUM | frozenset(" &_-.")
+SET_OPS = ("||", "~~", "&&", "--")
+
+# The width of the code words inside the regex engine.
+BYTES_PER_CODE = _regex.get_code_size()
+BITS_PER_CODE = BYTES_PER_CODE * 8
+
+# The repeat count which represents infinity.
+UNLIMITED = (1 << BITS_PER_CODE) - 1
+
+# The regular expression flags.
+REGEX_FLAGS = {"a": ASCII, "b": BESTMATCH, "e": ENHANCEMATCH, "f": FULLCASE,
+ "i": IGNORECASE, "L": LOCALE, "m": MULTILINE, "p": POSIX, "r": REVERSE,
+ "s": DOTALL, "u": UNICODE, "V0": VERSION0, "V1": VERSION1, "w": WORD, "x":
+ VERBOSE}
+
+# The case flags.
+CASE_FLAGS = FULLCASE | IGNORECASE
+NOCASE = 0
+FULLIGNORECASE = FULLCASE | IGNORECASE
+
+FULL_CASE_FOLDING = UNICODE | FULLIGNORECASE
+
+CASE_FLAGS_COMBINATIONS = {0: 0, FULLCASE: 0, IGNORECASE: IGNORECASE,
+ FULLIGNORECASE: FULLIGNORECASE}
+
+# The number of digits in hexadecimal escapes.
+HEX_ESCAPES = {"x": 2, "u": 4, "U": 8}
+
+# The names of the opcodes.
+OPCODES = """
+FAILURE
+SUCCESS
+ANY
+ANY_ALL
+ANY_ALL_REV
+ANY_REV
+ANY_U
+ANY_U_REV
+ATOMIC
+BOUNDARY
+BRANCH
+CALL_REF
+CHARACTER
+CHARACTER_IGN
+CHARACTER_IGN_REV
+CHARACTER_REV
+CONDITIONAL
+DEFAULT_BOUNDARY
+DEFAULT_END_OF_WORD
+DEFAULT_START_OF_WORD
+END
+END_OF_LINE
+END_OF_LINE_U
+END_OF_STRING
+END_OF_STRING_LINE
+END_OF_STRING_LINE_U
+END_OF_WORD
+FUZZY
+GRAPHEME_BOUNDARY
+GREEDY_REPEAT
+GROUP
+GROUP_CALL
+GROUP_EXISTS
+KEEP
+LAZY_REPEAT
+LOOKAROUND
+NEXT
+PROPERTY
+PROPERTY_IGN
+PROPERTY_IGN_REV
+PROPERTY_REV
+PRUNE
+RANGE
+RANGE_IGN
+RANGE_IGN_REV
+RANGE_REV
+REF_GROUP
+REF_GROUP_FLD
+REF_GROUP_FLD_REV
+REF_GROUP_IGN
+REF_GROUP_IGN_REV
+REF_GROUP_REV
+SEARCH_ANCHOR
+SET_DIFF
+SET_DIFF_IGN
+SET_DIFF_IGN_REV
+SET_DIFF_REV
+SET_INTER
+SET_INTER_IGN
+SET_INTER_IGN_REV
+SET_INTER_REV
+SET_SYM_DIFF
+SET_SYM_DIFF_IGN
+SET_SYM_DIFF_IGN_REV
+SET_SYM_DIFF_REV
+SET_UNION
+SET_UNION_IGN
+SET_UNION_IGN_REV
+SET_UNION_REV
+SKIP
+START_OF_LINE
+START_OF_LINE_U
+START_OF_STRING
+START_OF_WORD
+STRING
+STRING_FLD
+STRING_FLD_REV
+STRING_IGN
+STRING_IGN_REV
+STRING_REV
+FUZZY_EXT
+"""
+
+# Define the opcodes in a namespace.
+class Namespace:
+ pass
+
+OP = Namespace()
+for i, op in enumerate(OPCODES.split()):
+ setattr(OP, op, i)
+
+def _shrink_cache(cache_dict, args_dict, locale_sensitive, max_length, divisor=5):
+ """Make room in the given cache.
+
+ Args:
+ cache_dict: The cache dictionary to modify.
+ args_dict: The dictionary of named list args used by patterns.
+ max_length: Maximum # of entries in cache_dict before it is shrunk.
+ divisor: Cache will shrink to max_length - 1/divisor*max_length items.
+ """
+ # Toss out a fraction of the entries at random to make room for new ones.
+ # A random algorithm was chosen as opposed to simply cache_dict.popitem()
+ # as popitem could penalize the same regular expression repeatedly based
+ # on its internal hash value. Being random should spread the cache miss
+ # love around.
+ cache_keys = tuple(cache_dict.keys())
+ overage = len(cache_keys) - max_length
+ if overage < 0:
+ # Cache is already within limits. Normally this should not happen
+ # but it could due to multithreading.
+ return
+
+ number_to_toss = max_length // divisor + overage
+
+ # The import is done here to avoid a circular dependency.
+ import random
+ if not hasattr(random, 'sample'):
+ # Do nothing while resolving the circular dependency:
+ # re->random->warnings->tokenize->string->re
+ return
+
+ for doomed_key in random.sample(cache_keys, number_to_toss):
+ try:
+ del cache_dict[doomed_key]
+ except KeyError:
+ # Ignore problems if the cache changed from another thread.
+ pass
+
+ # Rebuild the arguments and locale-sensitivity dictionaries.
+ args_dict.clear()
+ sensitivity_dict = {}
+ for pattern, pattern_type, flags, args, default_version, locale in tuple(cache_dict):
+ args_dict[pattern, pattern_type, flags, default_version, locale] = args
+ try:
+ sensitivity_dict[pattern_type, pattern] = locale_sensitive[pattern_type, pattern]
+ except KeyError:
+ pass
+
+ locale_sensitive.clear()
+ locale_sensitive.update(sensitivity_dict)
+
+def _fold_case(info, string):
+ "Folds the case of a string."
+ flags = info.flags
+ if (flags & _ALL_ENCODINGS) == 0:
+ flags |= info.guess_encoding
+
+ return _regex.fold_case(flags, string)
+
+def is_cased_i(info, char):
+ "Checks whether a character is cased."
+ return len(_regex.get_all_cases(info.flags, char)) > 1
+
+def is_cased_f(flags, char):
+ "Checks whether a character is cased."
+ return len(_regex.get_all_cases(flags, char)) > 1
+
+def _compile_firstset(info, fs):
+ "Compiles the firstset for the pattern."
+ reverse = bool(info.flags & REVERSE)
+ fs = _check_firstset(info, reverse, fs)
+ if not fs:
+ return []
+
+ # Compile the firstset.
+ return fs.compile(reverse)
+
+def _check_firstset(info, reverse, fs):
+ "Checks the firstset for the pattern."
+ if not fs or None in fs:
+ return None
+
+ # If we ignore the case, for simplicity we won't build a firstset.
+ members = set()
+ case_flags = NOCASE
+ for i in fs:
+ if isinstance(i, Character) and not i.positive:
+ return None
+
+# if i.case_flags:
+# if isinstance(i, Character):
+# if is_cased_i(info, i.value):
+# return []
+# elif isinstance(i, SetBase):
+# return []
+ case_flags |= i.case_flags
+ members.add(i.with_flags(case_flags=NOCASE))
+
+ if case_flags == (FULLCASE | IGNORECASE):
+ return None
+
+ # Build the firstset.
+ fs = SetUnion(info, list(members), case_flags=case_flags & ~FULLCASE,
+ zerowidth=True)
+ fs = fs.optimise(info, reverse, in_set=True)
+
+ return fs
+
+def _flatten_code(code):
+ "Flattens the code from a list of tuples."
+ flat_code = []
+ for c in code:
+ flat_code.extend(c)
+
+ return flat_code
+
+def make_case_flags(info):
+ "Makes the case flags."
+ flags = info.flags & CASE_FLAGS
+
+ # Turn off FULLCASE if ASCII is turned on.
+ if info.flags & ASCII:
+ flags &= ~FULLCASE
+
+ return flags
+
+def make_character(info, value, in_set=False):
+ "Makes a character literal."
+ if in_set:
+ # A character set is built case-sensitively.
+ return Character(value)
+
+ return Character(value, case_flags=make_case_flags(info))
+
+def make_ref_group(info, name, position):
+ "Makes a group reference."
+ return RefGroup(info, name, position, case_flags=make_case_flags(info))
+
+def make_string_set(info, name):
+ "Makes a string set."
+ return StringSet(info, name, case_flags=make_case_flags(info))
+
+def make_property(info, prop, in_set):
+ "Makes a property."
+ if in_set:
+ return prop
+
+ return prop.with_flags(case_flags=make_case_flags(info))
+
+def _parse_pattern(source, info):
+ "Parses a pattern, eg. 'a|b|c'."
+ branches = [parse_sequence(source, info)]
+ while source.match("|"):
+ branches.append(parse_sequence(source, info))
+
+ if len(branches) == 1:
+ return branches[0]
+ return Branch(branches)
+
+def parse_sequence(source, info):
+ "Parses a sequence, eg. 'abc'."
+ sequence = [None]
+ case_flags = make_case_flags(info)
+ while True:
+ saved_pos = source.pos
+ ch = source.get()
+ if ch in SPECIAL_CHARS:
+ if ch in ")|":
+ # The end of a sequence. At the end of the pattern ch is "".
+ source.pos = saved_pos
+ break
+ elif ch == "\\":
+ # An escape sequence outside a set.
+ sequence.append(parse_escape(source, info, False))
+ elif ch == "(":
+ # A parenthesised subpattern or a flag.
+ element = parse_paren(source, info)
+ if element is None:
+ case_flags = make_case_flags(info)
+ else:
+ sequence.append(element)
+ elif ch == ".":
+ # Any character.
+ if info.flags & DOTALL:
+ sequence.append(AnyAll())
+ elif info.flags & WORD:
+ sequence.append(AnyU())
+ else:
+ sequence.append(Any())
+ elif ch == "[":
+ # A character set.
+ sequence.append(parse_set(source, info))
+ elif ch == "^":
+ # The start of a line or the string.
+ if info.flags & MULTILINE:
+ if info.flags & WORD:
+ sequence.append(StartOfLineU())
+ else:
+ sequence.append(StartOfLine())
+ else:
+ sequence.append(StartOfString())
+ elif ch == "$":
+ # The end of a line or the string.
+ if info.flags & MULTILINE:
+ if info.flags & WORD:
+ sequence.append(EndOfLineU())
+ else:
+ sequence.append(EndOfLine())
+ else:
+ if info.flags & WORD:
+ sequence.append(EndOfStringLineU())
+ else:
+ sequence.append(EndOfStringLine())
+ elif ch in "?*+{":
+ # Looks like a quantifier.
+ counts = parse_quantifier(source, info, ch)
+ if counts:
+ # It _is_ a quantifier.
+ apply_quantifier(source, info, counts, case_flags, ch,
+ saved_pos, sequence)
+ sequence.append(None)
+ else:
+ # It's not a quantifier. Maybe it's a fuzzy constraint.
+ constraints = parse_fuzzy(source, info, ch, case_flags)
+ if constraints:
+ # It _is_ a fuzzy constraint.
+ apply_constraint(source, info, constraints, case_flags,
+ saved_pos, sequence)
+ sequence.append(None)
+ else:
+ # The element was just a literal.
+ sequence.append(Character(ord(ch),
+ case_flags=case_flags))
+ else:
+ # A literal.
+ sequence.append(Character(ord(ch), case_flags=case_flags))
+ else:
+ # A literal.
+ sequence.append(Character(ord(ch), case_flags=case_flags))
+
+ sequence = [item for item in sequence if item is not None]
+ return Sequence(sequence)
+
+def apply_quantifier(source, info, counts, case_flags, ch, saved_pos,
+ sequence):
+ element = sequence.pop()
+ if element is None:
+ if sequence:
+ raise error("multiple repeat", source.string, saved_pos)
+ raise error("nothing to repeat", source.string, saved_pos)
+
+ if isinstance(element, (GreedyRepeat, LazyRepeat, PossessiveRepeat)):
+ raise error("multiple repeat", source.string, saved_pos)
+
+ min_count, max_count = counts
+ saved_pos = source.pos
+ ch = source.get()
+ if ch == "?":
+ # The "?" suffix that means it's a lazy repeat.
+ repeated = LazyRepeat
+ elif ch == "+":
+ # The "+" suffix that means it's a possessive repeat.
+ repeated = PossessiveRepeat
+ else:
+ # No suffix means that it's a greedy repeat.
+ source.pos = saved_pos
+ repeated = GreedyRepeat
+
+ # Ignore the quantifier if it applies to a zero-width item or the number of
+ # repeats is fixed at 1.
+ if not element.is_empty() and (min_count != 1 or max_count != 1):
+ element = repeated(element, min_count, max_count)
+
+ sequence.append(element)
+
+def apply_constraint(source, info, constraints, case_flags, saved_pos,
+ sequence):
+ element = sequence.pop()
+ if element is None:
+ raise error("nothing for fuzzy constraint", source.string, saved_pos)
+
+ # If a group is marked as fuzzy then put all of the fuzzy part in the
+ # group.
+ if isinstance(element, Group):
+ element.subpattern = Fuzzy(element.subpattern, constraints)
+ sequence.append(element)
+ else:
+ sequence.append(Fuzzy(element, constraints))
+
+_QUANTIFIERS = {"?": (0, 1), "*": (0, None), "+": (1, None)}
+
+def parse_quantifier(source, info, ch):
+ "Parses a quantifier."
+ q = _QUANTIFIERS.get(ch)
+ if q:
+ # It's a quantifier.
+ return q
+
+ if ch == "{":
+ # Looks like a limited repeated element, eg. 'a{2,3}'.
+ counts = parse_limited_quantifier(source)
+ if counts:
+ return counts
+
+ return None
+
+def is_above_limit(count):
+ "Checks whether a count is above the maximum."
+ return count is not None and count >= UNLIMITED
+
+def parse_limited_quantifier(source):
+ "Parses a limited quantifier."
+ saved_pos = source.pos
+ min_count = parse_count(source)
+ if source.match(","):
+ max_count = parse_count(source)
+
+ # No minimum means 0 and no maximum means unlimited.
+ min_count = int(min_count or 0)
+ max_count = int(max_count) if max_count else None
+ else:
+ if not min_count:
+ source.pos = saved_pos
+ return None
+
+ min_count = max_count = int(min_count)
+
+ if not source.match ("}"):
+ source.pos = saved_pos
+ return None
+
+ if is_above_limit(min_count) or is_above_limit(max_count):
+ raise error("repeat count too big", source.string, saved_pos)
+
+ if max_count is not None and min_count > max_count:
+ raise error("min repeat greater than max repeat", source.string,
+ saved_pos)
+
+ return min_count, max_count
+
+def parse_fuzzy(source, info, ch, case_flags):
+ "Parses a fuzzy setting, if present."
+ saved_pos = source.pos
+
+ if ch != "{":
+ return None
+
+ constraints = {}
+ try:
+ parse_fuzzy_item(source, constraints)
+ while source.match(","):
+ parse_fuzzy_item(source, constraints)
+ except ParseError:
+ source.pos = saved_pos
+ return None
+
+ if source.match(":"):
+ constraints["test"] = parse_fuzzy_test(source, info, case_flags)
+
+ if not source.match("}"):
+ raise error("expected }", source.string, source.pos)
+
+ return constraints
+
+def parse_fuzzy_item(source, constraints):
+ "Parses a fuzzy setting item."
+ saved_pos = source.pos
+ try:
+ parse_cost_constraint(source, constraints)
+ except ParseError:
+ source.pos = saved_pos
+
+ parse_cost_equation(source, constraints)
+
+def parse_cost_constraint(source, constraints):
+ "Parses a cost constraint."
+ saved_pos = source.pos
+ ch = source.get()
+ if ch in ALPHA:
+ # Syntax: constraint [("<=" | "<") cost]
+ constraint = parse_constraint(source, constraints, ch)
+
+ max_inc = parse_fuzzy_compare(source)
+
+ if max_inc is None:
+ # No maximum cost.
+ constraints[constraint] = 0, None
+ else:
+ # There's a maximum cost.
+ cost_pos = source.pos
+ max_cost = parse_cost_limit(source)
+
+ # Inclusive or exclusive limit?
+ if not max_inc:
+ max_cost -= 1
+
+ if max_cost < 0:
+ raise error("bad fuzzy cost limit", source.string, cost_pos)
+
+ constraints[constraint] = 0, max_cost
+ elif ch in DIGITS:
+ # Syntax: cost ("<=" | "<") constraint ("<=" | "<") cost
+ source.pos = saved_pos
+
+ # Minimum cost.
+ cost_pos = source.pos
+ min_cost = parse_cost_limit(source)
+
+ min_inc = parse_fuzzy_compare(source)
+ if min_inc is None:
+ raise ParseError()
+
+ constraint = parse_constraint(source, constraints, source.get())
+
+ max_inc = parse_fuzzy_compare(source)
+ if max_inc is None:
+ raise ParseError()
+
+ # Maximum cost.
+ cost_pos = source.pos
+ max_cost = parse_cost_limit(source)
+
+ # Inclusive or exclusive limits?
+ if not min_inc:
+ min_cost += 1
+ if not max_inc:
+ max_cost -= 1
+
+ if not 0 <= min_cost <= max_cost:
+ raise error("bad fuzzy cost limit", source.string, cost_pos)
+
+ constraints[constraint] = min_cost, max_cost
+ else:
+ raise ParseError()
+
+def parse_cost_limit(source):
+ "Parses a cost limit."
+ cost_pos = source.pos
+ digits = parse_count(source)
+
+ try:
+ return int(digits)
+ except ValueError:
+ pass
+
+ raise error("bad fuzzy cost limit", source.string, cost_pos)
+
+def parse_constraint(source, constraints, ch):
+ "Parses a constraint."
+ if ch not in "deis":
+ raise ParseError()
+
+ if ch in constraints:
+ raise ParseError()
+
+ return ch
+
+def parse_fuzzy_compare(source):
+ "Parses a cost comparator."
+ if source.match("<="):
+ return True
+ elif source.match("<"):
+ return False
+ else:
+ return None
+
+def parse_cost_equation(source, constraints):
+ "Parses a cost equation."
+ if "cost" in constraints:
+ raise error("more than one cost equation", source.string, source.pos)
+
+ cost = {}
+
+ parse_cost_term(source, cost)
+ while source.match("+"):
+ parse_cost_term(source, cost)
+
+ max_inc = parse_fuzzy_compare(source)
+ if max_inc is None:
+ raise ParseError()
+
+ max_cost = int(parse_count(source))
+
+ if not max_inc:
+ max_cost -= 1
+
+ if max_cost < 0:
+ raise error("bad fuzzy cost limit", source.string, source.pos)
+
+ cost["max"] = max_cost
+
+ constraints["cost"] = cost
+
+def parse_cost_term(source, cost):
+ "Parses a cost equation term."
+ coeff = parse_count(source)
+ ch = source.get()
+ if ch not in "dis":
+ raise ParseError()
+
+ if ch in cost:
+ raise error("repeated fuzzy cost", source.string, source.pos)
+
+ cost[ch] = int(coeff or 1)
+
+def parse_fuzzy_test(source, info, case_flags):
+ saved_pos = source.pos
+ ch = source.get()
+ if ch in SPECIAL_CHARS:
+ if ch == "\\":
+ # An escape sequence outside a set.
+ return parse_escape(source, info, False)
+ elif ch == ".":
+ # Any character.
+ if info.flags & DOTALL:
+ return AnyAll()
+ elif info.flags & WORD:
+ return AnyU()
+ else:
+ return Any()
+ elif ch == "[":
+ # A character set.
+ return parse_set(source, info)
+ else:
+ raise error("expected character set", source.string, saved_pos)
+ elif ch:
+ # A literal.
+ return Character(ord(ch), case_flags=case_flags)
+ else:
+ raise error("expected character set", source.string, saved_pos)
+
+def parse_count(source):
+ "Parses a quantifier's count, which can be empty."
+ return source.get_while(DIGITS)
+
+def parse_paren(source, info):
+ """Parses a parenthesised subpattern or a flag. Returns FLAGS if it's an
+ inline flag.
+ """
+ saved_pos = source.pos
+ ch = source.get(True)
+ if ch == "?":
+ # (?...
+ saved_pos_2 = source.pos
+ ch = source.get(True)
+ if ch == "<":
+ # (?<...
+ saved_pos_3 = source.pos
+ ch = source.get()
+ if ch in ("=", "!"):
+ # (?<=... or (?")
+ saved_flags = info.flags
+ try:
+ subpattern = _parse_pattern(source, info)
+ source.expect(")")
+ finally:
+ info.flags = saved_flags
+ source.ignore_space = bool(info.flags & VERBOSE)
+
+ info.close_group()
+ return Group(info, group, subpattern)
+ if ch in ("=", "!"):
+ # (?=... or (?!...: lookahead.
+ return parse_lookaround(source, info, False, ch == "=")
+ if ch == "P":
+ # (?P...: a Python extension.
+ return parse_extension(source, info)
+ if ch == "#":
+ # (?#...: a comment.
+ return parse_comment(source)
+ if ch == "(":
+ # (?(...: a conditional subpattern.
+ return parse_conditional(source, info)
+ if ch == ">":
+ # (?>...: an atomic subpattern.
+ return parse_atomic(source, info)
+ if ch == "|":
+ # (?|...: a common/reset groups branch.
+ return parse_common(source, info)
+ if ch == "R" or "0" <= ch <= "9":
+ # (?R...: probably a call to a group.
+ return parse_call_group(source, info, ch, saved_pos_2)
+ if ch == "&":
+ # (?&...: a call to a named group.
+ return parse_call_named_group(source, info, saved_pos_2)
+
+ # (?...: probably a flags subpattern.
+ source.pos = saved_pos_2
+ return parse_flags_subpattern(source, info)
+
+ if ch == "*":
+ # (*...
+ saved_pos_2 = source.pos
+ word = source.get_while(set(")>"), include=False)
+ if word[ : 1].isalpha():
+ verb = VERBS.get(word)
+ if not verb:
+ raise error("unknown verb", source.string, saved_pos_2)
+
+ source.expect(")")
+
+ return verb
+
+ # (...: an unnamed capture group.
+ source.pos = saved_pos
+ group = info.open_group()
+ saved_flags = info.flags
+ try:
+ subpattern = _parse_pattern(source, info)
+ source.expect(")")
+ finally:
+ info.flags = saved_flags
+ source.ignore_space = bool(info.flags & VERBOSE)
+
+ info.close_group()
+
+ return Group(info, group, subpattern)
+
+def parse_extension(source, info):
+ "Parses a Python extension."
+ saved_pos = source.pos
+ ch = source.get()
+ if ch == "<":
+ # (?P<...: a named capture group.
+ name = parse_name(source)
+ group = info.open_group(name)
+ source.expect(">")
+ saved_flags = info.flags
+ try:
+ subpattern = _parse_pattern(source, info)
+ source.expect(")")
+ finally:
+ info.flags = saved_flags
+ source.ignore_space = bool(info.flags & VERBOSE)
+
+ info.close_group()
+
+ return Group(info, group, subpattern)
+ if ch == "=":
+ # (?P=...: a named group reference.
+ name = parse_name(source, allow_numeric=True)
+ source.expect(")")
+ if info.is_open_group(name):
+ raise error("cannot refer to an open group", source.string,
+ saved_pos)
+
+ return make_ref_group(info, name, saved_pos)
+ if ch == ">" or ch == "&":
+ # (?P>...: a call to a group.
+ return parse_call_named_group(source, info, saved_pos)
+
+ source.pos = saved_pos
+ raise error("unknown extension", source.string, saved_pos)
+
+def parse_comment(source):
+ "Parses a comment."
+ while True:
+ saved_pos = source.pos
+ c = source.get(True)
+
+ if not c or c == ")":
+ break
+
+ if c == "\\":
+ c = source.get(True)
+
+ source.pos = saved_pos
+ source.expect(")")
+
+ return None
+
+def parse_lookaround(source, info, behind, positive):
+ "Parses a lookaround."
+ saved_flags = info.flags
+ try:
+ subpattern = _parse_pattern(source, info)
+ source.expect(")")
+ finally:
+ info.flags = saved_flags
+ source.ignore_space = bool(info.flags & VERBOSE)
+
+ return LookAround(behind, positive, subpattern)
+
+def parse_conditional(source, info):
+ "Parses a conditional subpattern."
+ saved_flags = info.flags
+ saved_pos = source.pos
+ ch = source.get()
+ if ch == "?":
+ # (?(?...
+ ch = source.get()
+ if ch in ("=", "!"):
+ # (?(?=... or (?(?!...: lookahead conditional.
+ return parse_lookaround_conditional(source, info, False, ch == "=")
+ if ch == "<":
+ # (?(?<...
+ ch = source.get()
+ if ch in ("=", "!"):
+ # (?(?<=... or (?(?"), include=False)
+
+ if not name:
+ raise error("missing group name", source.string, source.pos)
+
+ if name.isdigit():
+ min_group = 0 if allow_group_0 else 1
+ if not allow_numeric or int(name) < min_group:
+ raise error("bad character in group name", source.string,
+ source.pos)
+ else:
+ if not name.isidentifier():
+ raise error("bad character in group name", source.string,
+ source.pos)
+
+ return name
+
+def is_octal(string):
+ "Checks whether a string is octal."
+ return all(ch in OCT_DIGITS for ch in string)
+
+def is_decimal(string):
+ "Checks whether a string is decimal."
+ return all(ch in DIGITS for ch in string)
+
+def is_hexadecimal(string):
+ "Checks whether a string is hexadecimal."
+ return all(ch in HEX_DIGITS for ch in string)
+
+def parse_escape(source, info, in_set):
+ "Parses an escape sequence."
+ saved_ignore = source.ignore_space
+ source.ignore_space = False
+ ch = source.get()
+ source.ignore_space = saved_ignore
+ if not ch:
+ # A backslash at the end of the pattern.
+ raise error("bad escape (end of pattern)", source.string, source.pos)
+ if ch in HEX_ESCAPES:
+ # A hexadecimal escape sequence.
+ return parse_hex_escape(source, info, ch, HEX_ESCAPES[ch], in_set, ch)
+ elif ch == "g" and not in_set:
+ # A group reference.
+ saved_pos = source.pos
+ try:
+ return parse_group_ref(source, info)
+ except error:
+ # Invalid as a group reference, so assume it's a literal.
+ source.pos = saved_pos
+
+ return make_character(info, ord(ch), in_set)
+ elif ch == "G" and not in_set:
+ # A search anchor.
+ return SearchAnchor()
+ elif ch == "L" and not in_set:
+ # A string set.
+ return parse_string_set(source, info)
+ elif ch == "N":
+ # A named codepoint.
+ return parse_named_char(source, info, in_set)
+ elif ch in "pP":
+ # A Unicode property, positive or negative.
+ return parse_property(source, info, ch == "p", in_set)
+ elif ch == "R" and not in_set:
+ # A line ending.
+ charset = [0x0A, 0x0B, 0x0C, 0x0D]
+ if info.guess_encoding == UNICODE:
+ charset.extend([0x85, 0x2028, 0x2029])
+
+ return Atomic(Branch([String([0x0D, 0x0A]), SetUnion(info, [Character(c)
+ for c in charset])]))
+ elif ch == "X" and not in_set:
+ # A grapheme cluster.
+ return Grapheme()
+ elif ch in ALPHA:
+ # An alphabetic escape sequence.
+ # Positional escapes aren't allowed inside a character set.
+ if not in_set:
+ if info.flags & WORD:
+ value = WORD_POSITION_ESCAPES.get(ch)
+ else:
+ value = POSITION_ESCAPES.get(ch)
+
+ if value:
+ return value
+
+ value = CHARSET_ESCAPES.get(ch)
+ if value:
+ return value
+
+ value = CHARACTER_ESCAPES.get(ch)
+ if value:
+ return Character(ord(value))
+
+ raise error("bad escape \\%s" % ch, source.string, source.pos)
+ elif ch in DIGITS:
+ # A numeric escape sequence.
+ return parse_numeric_escape(source, info, ch, in_set)
+ else:
+ # A literal.
+ return make_character(info, ord(ch), in_set)
+
+def parse_numeric_escape(source, info, ch, in_set):
+ "Parses a numeric escape sequence."
+ if in_set or ch == "0":
+ # Octal escape sequence, max 3 digits.
+ return parse_octal_escape(source, info, [ch], in_set)
+
+ # At least 1 digit, so either octal escape or group.
+ digits = ch
+ saved_pos = source.pos
+ ch = source.get()
+ if ch in DIGITS:
+ # At least 2 digits, so either octal escape or group.
+ digits += ch
+ saved_pos = source.pos
+ ch = source.get()
+ if is_octal(digits) and ch in OCT_DIGITS:
+ # 3 octal digits, so octal escape sequence.
+ encoding = info.flags & _ALL_ENCODINGS
+ if encoding == ASCII or encoding == LOCALE:
+ octal_mask = 0xFF
+ else:
+ octal_mask = 0x1FF
+
+ value = int(digits + ch, 8) & octal_mask
+ return make_character(info, value)
+
+ # Group reference.
+ source.pos = saved_pos
+ if info.is_open_group(digits):
+ raise error("cannot refer to an open group", source.string, source.pos)
+
+ return make_ref_group(info, digits, source.pos)
+
+def parse_octal_escape(source, info, digits, in_set):
+ "Parses an octal escape sequence."
+ saved_pos = source.pos
+ ch = source.get()
+ while len(digits) < 3 and ch in OCT_DIGITS:
+ digits.append(ch)
+ saved_pos = source.pos
+ ch = source.get()
+
+ source.pos = saved_pos
+ try:
+ value = int("".join(digits), 8)
+ return make_character(info, value, in_set)
+ except ValueError:
+ if digits[0] in OCT_DIGITS:
+ raise error("incomplete escape \\%s" % ''.join(digits),
+ source.string, source.pos)
+ else:
+ raise error("bad escape \\%s" % digits[0], source.string,
+ source.pos)
+
+def parse_hex_escape(source, info, esc, expected_len, in_set, type):
+ "Parses a hex escape sequence."
+ saved_pos = source.pos
+ digits = []
+ for i in range(expected_len):
+ ch = source.get()
+ if ch not in HEX_DIGITS:
+ raise error("incomplete escape \\%s%s" % (type, ''.join(digits)),
+ source.string, saved_pos)
+ digits.append(ch)
+
+ try:
+ value = int("".join(digits), 16)
+ except ValueError:
+ pass
+ else:
+ if value < 0x110000:
+ return make_character(info, value, in_set)
+
+ # Bad hex escape.
+ raise error("bad hex escape \\%s%s" % (esc, ''.join(digits)),
+ source.string, saved_pos)
+
+def parse_group_ref(source, info):
+ "Parses a group reference."
+ source.expect("<")
+ saved_pos = source.pos
+ name = parse_name(source, True)
+ source.expect(">")
+ if info.is_open_group(name):
+ raise error("cannot refer to an open group", source.string, source.pos)
+
+ return make_ref_group(info, name, saved_pos)
+
+def parse_string_set(source, info):
+ "Parses a string set reference."
+ source.expect("<")
+ name = parse_name(source, True)
+ source.expect(">")
+ if name is None or name not in info.kwargs:
+ raise error("undefined named list", source.string, source.pos)
+
+ return make_string_set(info, name)
+
+def parse_named_char(source, info, in_set):
+ "Parses a named character."
+ saved_pos = source.pos
+ if source.match("{"):
+ name = source.get_while(NAMED_CHAR_PART)
+ if source.match("}"):
+ try:
+ value = unicodedata.lookup(name)
+ return make_character(info, ord(value), in_set)
+ except KeyError:
+ raise error("undefined character name", source.string,
+ source.pos)
+
+ source.pos = saved_pos
+ return make_character(info, ord("N"), in_set)
+
+def parse_property(source, info, positive, in_set):
+ "Parses a Unicode property."
+ saved_pos = source.pos
+ ch = source.get()
+ if ch == "{":
+ negate = source.match("^")
+ prop_name, name = parse_property_name(source)
+ if source.match("}"):
+ # It's correctly delimited.
+ prop = lookup_property(prop_name, name, positive != negate, source)
+ return make_property(info, prop, in_set)
+ elif ch and ch in "CLMNPSZ":
+ # An abbreviated property, eg \pL.
+ prop = lookup_property(None, ch, positive, source)
+ return make_property(info, prop, in_set)
+
+ # Not a property, so treat as a literal "p" or "P".
+ source.pos = saved_pos
+ ch = "p" if positive else "P"
+ return make_character(info, ord(ch), in_set)
+
+def parse_property_name(source):
+ "Parses a property name, which may be qualified."
+ name = source.get_while(PROPERTY_NAME_PART)
+ saved_pos = source.pos
+
+ ch = source.get()
+ if ch and ch in ":=":
+ prop_name = name
+ name = source.get_while(ALNUM | set(" &_-./")).strip()
+
+ if name:
+ # Name after the ":" or "=", so it's a qualified name.
+ saved_pos = source.pos
+ else:
+ # No name after the ":" or "=", so assume it's an unqualified name.
+ prop_name, name = None, prop_name
+ else:
+ prop_name = None
+
+ source.pos = saved_pos
+ return prop_name, name
+
+def parse_set(source, info):
+ "Parses a character set."
+ version = (info.flags & _ALL_VERSIONS) or DEFAULT_VERSION
+
+ saved_ignore = source.ignore_space
+ source.ignore_space = False
+ # Negative set?
+ negate = source.match("^")
+ try:
+ if version == VERSION0:
+ item = parse_set_imp_union(source, info)
+ else:
+ item = parse_set_union(source, info)
+
+ if not source.match("]"):
+ raise error("missing ]", source.string, source.pos)
+ finally:
+ source.ignore_space = saved_ignore
+
+ if negate:
+ item = item.with_flags(positive=not item.positive)
+
+ item = item.with_flags(case_flags=make_case_flags(info))
+
+ return item
+
+def parse_set_union(source, info):
+ "Parses a set union ([x||y])."
+ items = [parse_set_symm_diff(source, info)]
+ while source.match("||"):
+ items.append(parse_set_symm_diff(source, info))
+
+ if len(items) == 1:
+ return items[0]
+ return SetUnion(info, items)
+
+def parse_set_symm_diff(source, info):
+ "Parses a set symmetric difference ([x~~y])."
+ items = [parse_set_inter(source, info)]
+ while source.match("~~"):
+ items.append(parse_set_inter(source, info))
+
+ if len(items) == 1:
+ return items[0]
+ return SetSymDiff(info, items)
+
+def parse_set_inter(source, info):
+ "Parses a set intersection ([x&&y])."
+ items = [parse_set_diff(source, info)]
+ while source.match("&&"):
+ items.append(parse_set_diff(source, info))
+
+ if len(items) == 1:
+ return items[0]
+ return SetInter(info, items)
+
+def parse_set_diff(source, info):
+ "Parses a set difference ([x--y])."
+ items = [parse_set_imp_union(source, info)]
+ while source.match("--"):
+ items.append(parse_set_imp_union(source, info))
+
+ if len(items) == 1:
+ return items[0]
+ return SetDiff(info, items)
+
+def parse_set_imp_union(source, info):
+ "Parses a set implicit union ([xy])."
+ version = (info.flags & _ALL_VERSIONS) or DEFAULT_VERSION
+
+ items = [parse_set_member(source, info)]
+ while True:
+ saved_pos = source.pos
+ if source.match("]"):
+ # End of the set.
+ source.pos = saved_pos
+ break
+
+ if version == VERSION1 and any(source.match(op) for op in SET_OPS):
+ # The new behaviour has set operators.
+ source.pos = saved_pos
+ break
+
+ items.append(parse_set_member(source, info))
+
+ if len(items) == 1:
+ return items[0]
+ return SetUnion(info, items)
+
+def parse_set_member(source, info):
+ "Parses a member in a character set."
+ # Parse a set item.
+ start = parse_set_item(source, info)
+ saved_pos1 = source.pos
+ if (not isinstance(start, Character) or not start.positive or not
+ source.match("-")):
+ # It's not the start of a range.
+ return start
+
+ version = (info.flags & _ALL_VERSIONS) or DEFAULT_VERSION
+
+ # It looks like the start of a range of characters.
+ saved_pos2 = source.pos
+ if version == VERSION1 and source.match("-"):
+ # It's actually the set difference operator '--', so return the
+ # character.
+ source.pos = saved_pos1
+ return start
+
+ if source.match("]"):
+ # We've reached the end of the set, so return both the character and
+ # hyphen.
+ source.pos = saved_pos2
+ return SetUnion(info, [start, Character(ord("-"))])
+
+ # Parse a set item.
+ end = parse_set_item(source, info)
+ if not isinstance(end, Character) or not end.positive:
+ # It's not a range, so return the character, hyphen and property.
+ return SetUnion(info, [start, Character(ord("-")), end])
+
+ # It _is_ a range.
+ if start.value > end.value:
+ raise error("bad character range", source.string, source.pos)
+
+ if start.value == end.value:
+ return start
+
+ return Range(start.value, end.value)
+
+def parse_set_item(source, info):
+ "Parses an item in a character set."
+ version = (info.flags & _ALL_VERSIONS) or DEFAULT_VERSION
+
+ if source.match("\\"):
+ # An escape sequence in a set.
+ return parse_escape(source, info, True)
+
+ saved_pos = source.pos
+ if source.match("[:"):
+ # Looks like a POSIX character class.
+ try:
+ return parse_posix_class(source, info)
+ except ParseError:
+ # Not a POSIX character class.
+ source.pos = saved_pos
+
+ if version == VERSION1 and source.match("["):
+ # It's the start of a nested set.
+
+ # Negative set?
+ negate = source.match("^")
+ item = parse_set_union(source, info)
+
+ if not source.match("]"):
+ raise error("missing ]", source.string, source.pos)
+
+ if negate:
+ item = item.with_flags(positive=not item.positive)
+
+ return item
+
+ ch = source.get()
+ if not ch:
+ raise error("unterminated character set", source.string, source.pos)
+
+ return Character(ord(ch))
+
+def parse_posix_class(source, info):
+ "Parses a POSIX character class."
+ negate = source.match("^")
+ prop_name, name = parse_property_name(source)
+ if not source.match(":]"):
+ raise ParseError()
+
+ return lookup_property(prop_name, name, not negate, source, posix=True)
+
+def float_to_rational(flt):
+ "Converts a float to a rational pair."
+ int_part = int(flt)
+ error = flt - int_part
+ if abs(error) < 0.0001:
+ return int_part, 1
+
+ den, num = float_to_rational(1.0 / error)
+
+ return int_part * den + num, den
+
+def numeric_to_rational(numeric):
+ "Converts a numeric string to a rational string, if possible."
+ if numeric[ : 1] == "-":
+ sign, numeric = numeric[0], numeric[1 : ]
+ else:
+ sign = ""
+
+ parts = numeric.split("/")
+ if len(parts) == 2:
+ num, den = float_to_rational(float(parts[0]) / float(parts[1]))
+ elif len(parts) == 1:
+ num, den = float_to_rational(float(parts[0]))
+ else:
+ raise ValueError()
+
+ result = "{}{}/{}".format(sign, num, den)
+ if result.endswith("/1"):
+ return result[ : -2]
+
+ return result
+
+def standardise_name(name):
+ "Standardises a property or value name."
+ try:
+ return numeric_to_rational("".join(name))
+ except (ValueError, ZeroDivisionError):
+ return "".join(ch for ch in name if ch not in "_- ").upper()
+
+_POSIX_CLASSES = set('ALNUM DIGIT PUNCT XDIGIT'.split())
+
+_BINARY_VALUES = set('YES Y NO N TRUE T FALSE F'.split())
+
+def lookup_property(property, value, positive, source=None, posix=False):
+ "Looks up a property."
+ # Normalise the names (which may still be lists).
+ property = standardise_name(property) if property else None
+ value = standardise_name(value)
+
+ if (property, value) == ("GENERALCATEGORY", "ASSIGNED"):
+ property, value, positive = "GENERALCATEGORY", "UNASSIGNED", not positive
+
+ if posix and not property and value.upper() in _POSIX_CLASSES:
+ value = 'POSIX' + value
+
+ if property:
+ # Both the property and the value are provided.
+ prop = PROPERTIES.get(property)
+ if not prop:
+ if not source:
+ raise error("unknown property")
+
+ raise error("unknown property", source.string, source.pos)
+
+ prop_id, value_dict = prop
+ val_id = value_dict.get(value)
+ if val_id is None:
+ if not source:
+ raise error("unknown property value")
+
+ raise error("unknown property value", source.string, source.pos)
+
+ return Property((prop_id << 16) | val_id, positive)
+
+ # Only the value is provided.
+ # It might be the name of a GC, script or block value.
+ for property in ("GC", "SCRIPT", "BLOCK"):
+ prop_id, value_dict = PROPERTIES.get(property)
+ val_id = value_dict.get(value)
+ if val_id is not None:
+ return Property((prop_id << 16) | val_id, positive)
+
+ # It might be the name of a binary property.
+ prop = PROPERTIES.get(value)
+ if prop:
+ prop_id, value_dict = prop
+ if set(value_dict) == _BINARY_VALUES:
+ return Property((prop_id << 16) | 1, positive)
+
+ return Property(prop_id << 16, not positive)
+
+ # It might be the name of a binary property starting with a prefix.
+ if value.startswith("IS"):
+ prop = PROPERTIES.get(value[2 : ])
+ if prop:
+ prop_id, value_dict = prop
+ if "YES" in value_dict:
+ return Property((prop_id << 16) | 1, positive)
+
+ # It might be the name of a script or block starting with a prefix.
+ for prefix, property in (("IS", "SCRIPT"), ("IN", "BLOCK")):
+ if value.startswith(prefix):
+ prop_id, value_dict = PROPERTIES.get(property)
+ val_id = value_dict.get(value[2 : ])
+ if val_id is not None:
+ return Property((prop_id << 16) | val_id, positive)
+
+ # Unknown property.
+ if not source:
+ raise error("unknown property")
+
+ raise error("unknown property", source.string, source.pos)
+
+def _compile_replacement(source, pattern, is_unicode):
+ "Compiles a replacement template escape sequence."
+ ch = source.get()
+ if ch in ALPHA:
+ # An alphabetic escape sequence.
+ value = CHARACTER_ESCAPES.get(ch)
+ if value:
+ return False, [ord(value)]
+
+ if ch in HEX_ESCAPES and (ch == "x" or is_unicode):
+ # A hexadecimal escape sequence.
+ return False, [parse_repl_hex_escape(source, HEX_ESCAPES[ch], ch)]
+
+ if ch == "g":
+ # A group preference.
+ return True, [compile_repl_group(source, pattern)]
+
+ if ch == "N" and is_unicode:
+ # A named character.
+ value = parse_repl_named_char(source)
+ if value is not None:
+ return False, [value]
+
+ raise error("bad escape \\%s" % ch, source.string, source.pos)
+
+ if isinstance(source.sep, bytes):
+ octal_mask = 0xFF
+ else:
+ octal_mask = 0x1FF
+
+ if ch == "0":
+ # An octal escape sequence.
+ digits = ch
+ while len(digits) < 3:
+ saved_pos = source.pos
+ ch = source.get()
+ if ch not in OCT_DIGITS:
+ source.pos = saved_pos
+ break
+ digits += ch
+
+ return False, [int(digits, 8) & octal_mask]
+
+ if ch in DIGITS:
+ # Either an octal escape sequence (3 digits) or a group reference (max
+ # 2 digits).
+ digits = ch
+ saved_pos = source.pos
+ ch = source.get()
+ if ch in DIGITS:
+ digits += ch
+ saved_pos = source.pos
+ ch = source.get()
+ if ch and is_octal(digits + ch):
+ # An octal escape sequence.
+ return False, [int(digits + ch, 8) & octal_mask]
+
+ # A group reference.
+ source.pos = saved_pos
+ return True, [int(digits)]
+
+ if ch == "\\":
+ # An escaped backslash is a backslash.
+ return False, [ord("\\")]
+
+ if not ch:
+ # A trailing backslash.
+ raise error("bad escape (end of pattern)", source.string, source.pos)
+
+ # An escaped non-backslash is a backslash followed by the literal.
+ return False, [ord("\\"), ord(ch)]
+
+def parse_repl_hex_escape(source, expected_len, type):
+ "Parses a hex escape sequence in a replacement string."
+ digits = []
+ for i in range(expected_len):
+ ch = source.get()
+ if ch not in HEX_DIGITS:
+ raise error("incomplete escape \\%s%s" % (type, ''.join(digits)),
+ source.string, source.pos)
+ digits.append(ch)
+
+ return int("".join(digits), 16)
+
+def parse_repl_named_char(source):
+ "Parses a named character in a replacement string."
+ saved_pos = source.pos
+ if source.match("{"):
+ name = source.get_while(ALPHA | set(" "))
+
+ if source.match("}"):
+ try:
+ value = unicodedata.lookup(name)
+ return ord(value)
+ except KeyError:
+ raise error("undefined character name", source.string,
+ source.pos)
+
+ source.pos = saved_pos
+ return None
+
+def compile_repl_group(source, pattern):
+ "Compiles a replacement template group reference."
+ source.expect("<")
+ name = parse_name(source, True, True)
+
+ source.expect(">")
+ if name.isdigit():
+ index = int(name)
+ if not 0 <= index <= pattern.groups:
+ raise error("invalid group reference", source.string, source.pos)
+
+ return index
+
+ try:
+ return pattern.groupindex[name]
+ except KeyError:
+ raise IndexError("unknown group")
+
+# The regular expression is parsed into a syntax tree. The different types of
+# node are defined below.
+
+INDENT = " "
+POSITIVE_OP = 0x1
+ZEROWIDTH_OP = 0x2
+FUZZY_OP = 0x4
+REVERSE_OP = 0x8
+REQUIRED_OP = 0x10
+
+POS_TEXT = {False: "NON-MATCH", True: "MATCH"}
+CASE_TEXT = {NOCASE: "", IGNORECASE: " SIMPLE_IGNORE_CASE", FULLCASE: "",
+ FULLIGNORECASE: " FULL_IGNORE_CASE"}
+
+def make_sequence(items):
+ if len(items) == 1:
+ return items[0]
+ return Sequence(items)
+
+# Common base class for all nodes.
+class RegexBase:
+ def __init__(self):
+ self._key = self.__class__
+
+ def with_flags(self, positive=None, case_flags=None, zerowidth=None):
+ if positive is None:
+ positive = self.positive
+ else:
+ positive = bool(positive)
+ if case_flags is None:
+ case_flags = self.case_flags
+ else:
+ case_flags = CASE_FLAGS_COMBINATIONS[case_flags & CASE_FLAGS]
+ if zerowidth is None:
+ zerowidth = self.zerowidth
+ else:
+ zerowidth = bool(zerowidth)
+
+ if (positive == self.positive and case_flags == self.case_flags and
+ zerowidth == self.zerowidth):
+ return self
+
+ return self.rebuild(positive, case_flags, zerowidth)
+
+ def fix_groups(self, pattern, reverse, fuzzy):
+ pass
+
+ def optimise(self, info, reverse):
+ return self
+
+ def pack_characters(self, info):
+ return self
+
+ def remove_captures(self):
+ return self
+
+ def is_atomic(self):
+ return True
+
+ def can_be_affix(self):
+ return True
+
+ def contains_group(self):
+ return False
+
+ def get_firstset(self, reverse):
+ raise _FirstSetError()
+
+ def has_simple_start(self):
+ return False
+
+ def compile(self, reverse=False, fuzzy=False):
+ return self._compile(reverse, fuzzy)
+
+ def is_empty(self):
+ return False
+
+ def __hash__(self):
+ return hash(self._key)
+
+ def __eq__(self, other):
+ return type(self) is type(other) and self._key == other._key
+
+ def __ne__(self, other):
+ return not self.__eq__(other)
+
+ def get_required_string(self, reverse):
+ return self.max_width(), None
+
+# Base class for zero-width nodes.
+class ZeroWidthBase(RegexBase):
+ def __init__(self, positive=True):
+ RegexBase.__init__(self)
+ self.positive = bool(positive)
+
+ self._key = self.__class__, self.positive
+
+ def get_firstset(self, reverse):
+ return set([None])
+
+ def _compile(self, reverse, fuzzy):
+ flags = 0
+ if self.positive:
+ flags |= POSITIVE_OP
+ if fuzzy:
+ flags |= FUZZY_OP
+ if reverse:
+ flags |= REVERSE_OP
+ return [(self._opcode, flags)]
+
+ def dump(self, indent, reverse):
+ print("{}{} {}".format(INDENT * indent, self._op_name,
+ POS_TEXT[self.positive]))
+
+ def max_width(self):
+ return 0
+
+class Any(RegexBase):
+ _opcode = {False: OP.ANY, True: OP.ANY_REV}
+ _op_name = "ANY"
+
+ def has_simple_start(self):
+ return True
+
+ def _compile(self, reverse, fuzzy):
+ flags = 0
+ if fuzzy:
+ flags |= FUZZY_OP
+ return [(self._opcode[reverse], flags)]
+
+ def dump(self, indent, reverse):
+ print("{}{}".format(INDENT * indent, self._op_name))
+
+ def max_width(self):
+ return 1
+
+class AnyAll(Any):
+ _opcode = {False: OP.ANY_ALL, True: OP.ANY_ALL_REV}
+ _op_name = "ANY_ALL"
+
+class AnyU(Any):
+ _opcode = {False: OP.ANY_U, True: OP.ANY_U_REV}
+ _op_name = "ANY_U"
+
+class Atomic(RegexBase):
+ def __init__(self, subpattern):
+ RegexBase.__init__(self)
+ self.subpattern = subpattern
+
+ def fix_groups(self, pattern, reverse, fuzzy):
+ self.subpattern.fix_groups(pattern, reverse, fuzzy)
+
+ def optimise(self, info, reverse):
+ self.subpattern = self.subpattern.optimise(info, reverse)
+
+ if self.subpattern.is_empty():
+ return self.subpattern
+ return self
+
+ def pack_characters(self, info):
+ self.subpattern = self.subpattern.pack_characters(info)
+ return self
+
+ def remove_captures(self):
+ self.subpattern = self.subpattern.remove_captures()
+ return self
+
+ def can_be_affix(self):
+ return self.subpattern.can_be_affix()
+
+ def contains_group(self):
+ return self.subpattern.contains_group()
+
+ def get_firstset(self, reverse):
+ return self.subpattern.get_firstset(reverse)
+
+ def has_simple_start(self):
+ return self.subpattern.has_simple_start()
+
+ def _compile(self, reverse, fuzzy):
+ return ([(OP.ATOMIC, )] + self.subpattern.compile(reverse, fuzzy) +
+ [(OP.END, )])
+
+ def dump(self, indent, reverse):
+ print("{}ATOMIC".format(INDENT * indent))
+ self.subpattern.dump(indent + 1, reverse)
+
+ def is_empty(self):
+ return self.subpattern.is_empty()
+
+ def __eq__(self, other):
+ return (type(self) is type(other) and self.subpattern ==
+ other.subpattern)
+
+ def max_width(self):
+ return self.subpattern.max_width()
+
+ def get_required_string(self, reverse):
+ return self.subpattern.get_required_string(reverse)
+
+class Boundary(ZeroWidthBase):
+ _opcode = OP.BOUNDARY
+ _op_name = "BOUNDARY"
+
+class Branch(RegexBase):
+ def __init__(self, branches):
+ RegexBase.__init__(self)
+ self.branches = branches
+
+ def fix_groups(self, pattern, reverse, fuzzy):
+ for b in self.branches:
+ b.fix_groups(pattern, reverse, fuzzy)
+
+ def optimise(self, info, reverse):
+ if not self.branches:
+ return Sequence([])
+
+ # Flatten branches within branches.
+ branches = Branch._flatten_branches(info, reverse, self.branches)
+
+ # Move any common prefix or suffix out of the branches.
+ if reverse:
+ suffix, branches = Branch._split_common_suffix(info, branches)
+ prefix = []
+ else:
+ prefix, branches = Branch._split_common_prefix(info, branches)
+ suffix = []
+
+ # Try to reduce adjacent single-character branches to sets.
+ branches = Branch._reduce_to_set(info, reverse, branches)
+
+ if len(branches) > 1:
+ sequence = [Branch(branches)]
+
+ if not prefix or not suffix:
+ # We might be able to add a quick precheck before the branches.
+ firstset = self._add_precheck(info, reverse, branches)
+
+ if firstset:
+ if reverse:
+ sequence.append(firstset)
+ else:
+ sequence.insert(0, firstset)
+ else:
+ sequence = branches
+
+ return make_sequence(prefix + sequence + suffix)
+
+ def _add_precheck(self, info, reverse, branches):
+ charset = set()
+ pos = -1 if reverse else 0
+
+ for branch in branches:
+ if type(branch) is Literal and branch.case_flags == NOCASE:
+ charset.add(branch.characters[pos])
+ else:
+ return
+
+ if not charset:
+ return None
+
+ return _check_firstset(info, reverse, [Character(c) for c in charset])
+
+ def pack_characters(self, info):
+ self.branches = [b.pack_characters(info) for b in self.branches]
+ return self
+
+ def remove_captures(self):
+ self.branches = [b.remove_captures() for b in self.branches]
+ return self
+
+ def is_atomic(self):
+ return all(b.is_atomic() for b in self.branches)
+
+ def can_be_affix(self):
+ return all(b.can_be_affix() for b in self.branches)
+
+ def contains_group(self):
+ return any(b.contains_group() for b in self.branches)
+
+ def get_firstset(self, reverse):
+ fs = set()
+ for b in self.branches:
+ fs |= b.get_firstset(reverse)
+
+ return fs or set([None])
+
+ def _compile(self, reverse, fuzzy):
+ if not self.branches:
+ return []
+
+ code = [(OP.BRANCH, )]
+ for b in self.branches:
+ code.extend(b.compile(reverse, fuzzy))
+ code.append((OP.NEXT, ))
+
+ code[-1] = (OP.END, )
+
+ return code
+
+ def dump(self, indent, reverse):
+ print("{}BRANCH".format(INDENT * indent))
+ self.branches[0].dump(indent + 1, reverse)
+ for b in self.branches[1 : ]:
+ print("{}OR".format(INDENT * indent))
+ b.dump(indent + 1, reverse)
+
+ @staticmethod
+ def _flatten_branches(info, reverse, branches):
+ # Flatten the branches so that there aren't branches of branches.
+ new_branches = []
+ for b in branches:
+ b = b.optimise(info, reverse)
+ if isinstance(b, Branch):
+ new_branches.extend(b.branches)
+ else:
+ new_branches.append(b)
+
+ return new_branches
+
+ @staticmethod
+ def _split_common_prefix(info, branches):
+ # Common leading items can be moved out of the branches.
+ # Get the items in the branches.
+ alternatives = []
+ for b in branches:
+ if isinstance(b, Sequence):
+ alternatives.append(b.items)
+ else:
+ alternatives.append([b])
+
+ # What is the maximum possible length of the prefix?
+ max_count = min(len(a) for a in alternatives)
+
+ # What is the longest common prefix?
+ prefix = alternatives[0]
+ pos = 0
+ end_pos = max_count
+ while pos < end_pos and prefix[pos].can_be_affix() and all(a[pos] ==
+ prefix[pos] for a in alternatives):
+ pos += 1
+ count = pos
+
+ if info.flags & UNICODE:
+ # We need to check that we're not splitting a sequence of
+ # characters which could form part of full case-folding.
+ count = pos
+ while count > 0 and not all(Branch._can_split(a, count) for a in
+ alternatives):
+ count -= 1
+
+ # No common prefix is possible.
+ if count == 0:
+ return [], branches
+
+ # Rebuild the branches.
+ new_branches = []
+ for a in alternatives:
+ new_branches.append(make_sequence(a[count : ]))
+
+ return prefix[ : count], new_branches
+
+ @staticmethod
+ def _split_common_suffix(info, branches):
+ # Common trailing items can be moved out of the branches.
+ # Get the items in the branches.
+ alternatives = []
+ for b in branches:
+ if isinstance(b, Sequence):
+ alternatives.append(b.items)
+ else:
+ alternatives.append([b])
+
+ # What is the maximum possible length of the suffix?
+ max_count = min(len(a) for a in alternatives)
+
+ # What is the longest common suffix?
+ suffix = alternatives[0]
+ pos = -1
+ end_pos = -1 - max_count
+ while pos > end_pos and suffix[pos].can_be_affix() and all(a[pos] ==
+ suffix[pos] for a in alternatives):
+ pos -= 1
+ count = -1 - pos
+
+ if info.flags & UNICODE:
+ # We need to check that we're not splitting a sequence of
+ # characters which could form part of full case-folding.
+ while count > 0 and not all(Branch._can_split_rev(a, count) for a
+ in alternatives):
+ count -= 1
+
+ # No common suffix is possible.
+ if count == 0:
+ return [], branches
+
+ # Rebuild the branches.
+ new_branches = []
+ for a in alternatives:
+ new_branches.append(make_sequence(a[ : -count]))
+
+ return suffix[-count : ], new_branches
+
+ @staticmethod
+ def _can_split(items, count):
+ # Check the characters either side of the proposed split.
+ if not Branch._is_full_case(items, count - 1):
+ return True
+
+ if not Branch._is_full_case(items, count):
+ return True
+
+ # Check whether a 1-1 split would be OK.
+ if Branch._is_folded(items[count - 1 : count + 1]):
+ return False
+
+ # Check whether a 1-2 split would be OK.
+ if (Branch._is_full_case(items, count + 2) and
+ Branch._is_folded(items[count - 1 : count + 2])):
+ return False
+
+ # Check whether a 2-1 split would be OK.
+ if (Branch._is_full_case(items, count - 2) and
+ Branch._is_folded(items[count - 2 : count + 1])):
+ return False
+
+ return True
+
+ @staticmethod
+ def _can_split_rev(items, count):
+ end = len(items)
+
+ # Check the characters either side of the proposed split.
+ if not Branch._is_full_case(items, end - count):
+ return True
+
+ if not Branch._is_full_case(items, end - count - 1):
+ return True
+
+ # Check whether a 1-1 split would be OK.
+ if Branch._is_folded(items[end - count - 1 : end - count + 1]):
+ return False
+
+ # Check whether a 1-2 split would be OK.
+ if (Branch._is_full_case(items, end - count + 2) and
+ Branch._is_folded(items[end - count - 1 : end - count + 2])):
+ return False
+
+ # Check whether a 2-1 split would be OK.
+ if (Branch._is_full_case(items, end - count - 2) and
+ Branch._is_folded(items[end - count - 2 : end - count + 1])):
+ return False
+
+ return True
+
+ @staticmethod
+ def _merge_common_prefixes(info, reverse, branches):
+ # Branches with the same case-sensitive character prefix can be grouped
+ # together if they are separated only by other branches with a
+ # character prefix.
+ prefixed = defaultdict(list)
+ order = {}
+ new_branches = []
+ for b in branches:
+ if Branch._is_simple_character(b):
+ # Branch starts with a simple character.
+ prefixed[b.value].append([b])
+ order.setdefault(b.value, len(order))
+ elif (isinstance(b, Sequence) and b.items and
+ Branch._is_simple_character(b.items[0])):
+ # Branch starts with a simple character.
+ prefixed[b.items[0].value].append(b.items)
+ order.setdefault(b.items[0].value, len(order))
+ else:
+ Branch._flush_char_prefix(info, reverse, prefixed, order,
+ new_branches)
+
+ new_branches.append(b)
+
+ Branch._flush_char_prefix(info, prefixed, order, new_branches)
+
+ return new_branches
+
+ @staticmethod
+ def _is_simple_character(c):
+ return isinstance(c, Character) and c.positive and not c.case_flags
+
+ @staticmethod
+ def _reduce_to_set(info, reverse, branches):
+ # Can the branches be reduced to a set?
+ new_branches = []
+ items = set()
+ case_flags = NOCASE
+ for b in branches:
+ if isinstance(b, (Character, Property, SetBase)):
+ # Branch starts with a single character.
+ if b.case_flags != case_flags:
+ # Different case sensitivity, so flush.
+ Branch._flush_set_members(info, reverse, items, case_flags,
+ new_branches)
+
+ case_flags = b.case_flags
+
+ items.add(b.with_flags(case_flags=NOCASE))
+ else:
+ Branch._flush_set_members(info, reverse, items, case_flags,
+ new_branches)
+
+ new_branches.append(b)
+
+ Branch._flush_set_members(info, reverse, items, case_flags,
+ new_branches)
+
+ return new_branches
+
+ @staticmethod
+ def _flush_char_prefix(info, reverse, prefixed, order, new_branches):
+ # Flush the prefixed branches.
+ if not prefixed:
+ return
+
+ for value, branches in sorted(prefixed.items(), key=lambda pair:
+ order[pair[0]]):
+ if len(branches) == 1:
+ new_branches.append(make_sequence(branches[0]))
+ else:
+ subbranches = []
+ optional = False
+ for b in branches:
+ if len(b) > 1:
+ subbranches.append(make_sequence(b[1 : ]))
+ elif not optional:
+ subbranches.append(Sequence())
+ optional = True
+
+ sequence = Sequence([Character(value), Branch(subbranches)])
+ new_branches.append(sequence.optimise(info, reverse))
+
+ prefixed.clear()
+ order.clear()
+
+ @staticmethod
+ def _flush_set_members(info, reverse, items, case_flags, new_branches):
+ # Flush the set members.
+ if not items:
+ return
+
+ if len(items) == 1:
+ item = list(items)[0]
+ else:
+ item = SetUnion(info, list(items)).optimise(info, reverse)
+
+ new_branches.append(item.with_flags(case_flags=case_flags))
+
+ items.clear()
+
+ @staticmethod
+ def _is_full_case(items, i):
+ if not 0 <= i < len(items):
+ return False
+
+ item = items[i]
+ return (isinstance(item, Character) and item.positive and
+ (item.case_flags & FULLIGNORECASE) == FULLIGNORECASE)
+
+ @staticmethod
+ def _is_folded(items):
+ if len(items) < 2:
+ return False
+
+ for i in items:
+ if (not isinstance(i, Character) or not i.positive or not
+ i.case_flags):
+ return False
+
+ folded = "".join(chr(i.value) for i in items)
+ folded = _regex.fold_case(FULL_CASE_FOLDING, folded)
+
+ # Get the characters which expand to multiple codepoints on folding.
+ expanding_chars = _regex.get_expand_on_folding()
+
+ for c in expanding_chars:
+ if folded == _regex.fold_case(FULL_CASE_FOLDING, c):
+ return True
+
+ return False
+
+ def is_empty(self):
+ return all(b.is_empty() for b in self.branches)
+
+ def __eq__(self, other):
+ return type(self) is type(other) and self.branches == other.branches
+
+ def max_width(self):
+ return max(b.max_width() for b in self.branches)
+
+class CallGroup(RegexBase):
+ def __init__(self, info, group, position):
+ RegexBase.__init__(self)
+ self.info = info
+ self.group = group
+ self.position = position
+
+ self._key = self.__class__, self.group
+
+ def fix_groups(self, pattern, reverse, fuzzy):
+ try:
+ self.group = int(self.group)
+ except ValueError:
+ try:
+ self.group = self.info.group_index[self.group]
+ except KeyError:
+ raise error("invalid group reference", pattern, self.position)
+
+ if not 0 <= self.group <= self.info.group_count:
+ raise error("unknown group", pattern, self.position)
+
+ if self.group > 0 and self.info.open_group_count[self.group] > 1:
+ raise error("ambiguous group reference", pattern, self.position)
+
+ self.info.group_calls.append((self, reverse, fuzzy))
+
+ self._key = self.__class__, self.group
+
+ def remove_captures(self):
+ raise error("group reference not allowed", pattern, self.position)
+
+ def _compile(self, reverse, fuzzy):
+ return [(OP.GROUP_CALL, self.call_ref)]
+
+ def dump(self, indent, reverse):
+ print("{}GROUP_CALL {}".format(INDENT * indent, self.group))
+
+ def __eq__(self, other):
+ return type(self) is type(other) and self.group == other.group
+
+ def max_width(self):
+ return UNLIMITED
+
+ def __del__(self):
+ self.info = None
+
+class CallRef(RegexBase):
+ def __init__(self, ref, parsed):
+ self.ref = ref
+ self.parsed = parsed
+
+ def _compile(self, reverse, fuzzy):
+ return ([(OP.CALL_REF, self.ref)] + self.parsed._compile(reverse,
+ fuzzy) + [(OP.END, )])
+
+class Character(RegexBase):
+ _opcode = {(NOCASE, False): OP.CHARACTER, (IGNORECASE, False):
+ OP.CHARACTER_IGN, (FULLCASE, False): OP.CHARACTER, (FULLIGNORECASE,
+ False): OP.CHARACTER_IGN, (NOCASE, True): OP.CHARACTER_REV, (IGNORECASE,
+ True): OP.CHARACTER_IGN_REV, (FULLCASE, True): OP.CHARACTER_REV,
+ (FULLIGNORECASE, True): OP.CHARACTER_IGN_REV}
+
+ def __init__(self, value, positive=True, case_flags=NOCASE,
+ zerowidth=False):
+ RegexBase.__init__(self)
+ self.value = value
+ self.positive = bool(positive)
+ self.case_flags = CASE_FLAGS_COMBINATIONS[case_flags]
+ self.zerowidth = bool(zerowidth)
+
+ if (self.positive and (self.case_flags & FULLIGNORECASE) ==
+ FULLIGNORECASE):
+ self.folded = _regex.fold_case(FULL_CASE_FOLDING, chr(self.value))
+ else:
+ self.folded = chr(self.value)
+
+ self._key = (self.__class__, self.value, self.positive,
+ self.case_flags, self.zerowidth)
+
+ def rebuild(self, positive, case_flags, zerowidth):
+ return Character(self.value, positive, case_flags, zerowidth)
+
+ def optimise(self, info, reverse, in_set=False):
+ return self
+
+ def get_firstset(self, reverse):
+ return set([self])
+
+ def has_simple_start(self):
+ return True
+
+ def _compile(self, reverse, fuzzy):
+ flags = 0
+ if self.positive:
+ flags |= POSITIVE_OP
+ if self.zerowidth:
+ flags |= ZEROWIDTH_OP
+ if fuzzy:
+ flags |= FUZZY_OP
+
+ code = PrecompiledCode([self._opcode[self.case_flags, reverse], flags,
+ self.value])
+
+ if len(self.folded) > 1:
+ # The character expands on full case-folding.
+ code = Branch([code, String([ord(c) for c in self.folded],
+ case_flags=self.case_flags)])
+
+ return code.compile(reverse, fuzzy)
+
+ def dump(self, indent, reverse):
+ display = ascii(chr(self.value)).lstrip("bu")
+ print("{}CHARACTER {} {}{}".format(INDENT * indent,
+ POS_TEXT[self.positive], display, CASE_TEXT[self.case_flags]))
+
+ def matches(self, ch):
+ return (ch == self.value) == self.positive
+
+ def max_width(self):
+ return len(self.folded)
+
+ def get_required_string(self, reverse):
+ if not self.positive:
+ return 1, None
+
+ self.folded_characters = tuple(ord(c) for c in self.folded)
+
+ return 0, self
+
+class Conditional(RegexBase):
+ def __init__(self, info, group, yes_item, no_item, position):
+ RegexBase.__init__(self)
+ self.info = info
+ self.group = group
+ self.yes_item = yes_item
+ self.no_item = no_item
+ self.position = position
+
+ def fix_groups(self, pattern, reverse, fuzzy):
+ try:
+ self.group = int(self.group)
+ except ValueError:
+ try:
+ self.group = self.info.group_index[self.group]
+ except KeyError:
+ if self.group == 'DEFINE':
+ # 'DEFINE' is a special name unless there's a group with
+ # that name.
+ self.group = 0
+ else:
+ raise error("unknown group", pattern, self.position)
+
+ if not 0 <= self.group <= self.info.group_count:
+ raise error("invalid group reference", pattern, self.position)
+
+ self.yes_item.fix_groups(pattern, reverse, fuzzy)
+ self.no_item.fix_groups(pattern, reverse, fuzzy)
+
+ def optimise(self, info, reverse):
+ yes_item = self.yes_item.optimise(info, reverse)
+ no_item = self.no_item.optimise(info, reverse)
+
+ return Conditional(info, self.group, yes_item, no_item, self.position)
+
+ def pack_characters(self, info):
+ self.yes_item = self.yes_item.pack_characters(info)
+ self.no_item = self.no_item.pack_characters(info)
+ return self
+
+ def remove_captures(self):
+ self.yes_item = self.yes_item.remove_captures()
+ self.no_item = self.no_item.remove_captures()
+
+ def is_atomic(self):
+ return self.yes_item.is_atomic() and self.no_item.is_atomic()
+
+ def can_be_affix(self):
+ return self.yes_item.can_be_affix() and self.no_item.can_be_affix()
+
+ def contains_group(self):
+ return self.yes_item.contains_group() or self.no_item.contains_group()
+
+ def get_firstset(self, reverse):
+ return (self.yes_item.get_firstset(reverse) |
+ self.no_item.get_firstset(reverse))
+
+ def _compile(self, reverse, fuzzy):
+ code = [(OP.GROUP_EXISTS, self.group)]
+ code.extend(self.yes_item.compile(reverse, fuzzy))
+ add_code = self.no_item.compile(reverse, fuzzy)
+ if add_code:
+ code.append((OP.NEXT, ))
+ code.extend(add_code)
+
+ code.append((OP.END, ))
+
+ return code
+
+ def dump(self, indent, reverse):
+ print("{}GROUP_EXISTS {}".format(INDENT * indent, self.group))
+ self.yes_item.dump(indent + 1, reverse)
+ if not self.no_item.is_empty():
+ print("{}OR".format(INDENT * indent))
+ self.no_item.dump(indent + 1, reverse)
+
+ def is_empty(self):
+ return self.yes_item.is_empty() and self.no_item.is_empty()
+
+ def __eq__(self, other):
+ return type(self) is type(other) and (self.group, self.yes_item,
+ self.no_item) == (other.group, other.yes_item, other.no_item)
+
+ def max_width(self):
+ return max(self.yes_item.max_width(), self.no_item.max_width())
+
+ def __del__(self):
+ self.info = None
+
+class DefaultBoundary(ZeroWidthBase):
+ _opcode = OP.DEFAULT_BOUNDARY
+ _op_name = "DEFAULT_BOUNDARY"
+
+class DefaultEndOfWord(ZeroWidthBase):
+ _opcode = OP.DEFAULT_END_OF_WORD
+ _op_name = "DEFAULT_END_OF_WORD"
+
+class DefaultStartOfWord(ZeroWidthBase):
+ _opcode = OP.DEFAULT_START_OF_WORD
+ _op_name = "DEFAULT_START_OF_WORD"
+
+class EndOfLine(ZeroWidthBase):
+ _opcode = OP.END_OF_LINE
+ _op_name = "END_OF_LINE"
+
+class EndOfLineU(EndOfLine):
+ _opcode = OP.END_OF_LINE_U
+ _op_name = "END_OF_LINE_U"
+
+class EndOfString(ZeroWidthBase):
+ _opcode = OP.END_OF_STRING
+ _op_name = "END_OF_STRING"
+
+class EndOfStringLine(ZeroWidthBase):
+ _opcode = OP.END_OF_STRING_LINE
+ _op_name = "END_OF_STRING_LINE"
+
+class EndOfStringLineU(EndOfStringLine):
+ _opcode = OP.END_OF_STRING_LINE_U
+ _op_name = "END_OF_STRING_LINE_U"
+
+class EndOfWord(ZeroWidthBase):
+ _opcode = OP.END_OF_WORD
+ _op_name = "END_OF_WORD"
+
+class Failure(ZeroWidthBase):
+ _op_name = "FAILURE"
+
+ def _compile(self, reverse, fuzzy):
+ return [(OP.FAILURE, )]
+
+class Fuzzy(RegexBase):
+ def __init__(self, subpattern, constraints=None):
+ RegexBase.__init__(self)
+ if constraints is None:
+ constraints = {}
+ self.subpattern = subpattern
+ self.constraints = constraints
+
+ # If an error type is mentioned in the cost equation, then its maximum
+ # defaults to unlimited.
+ if "cost" in constraints:
+ for e in "dis":
+ if e in constraints["cost"]:
+ constraints.setdefault(e, (0, None))
+
+ # If any error type is mentioned, then all the error maxima default to
+ # 0, otherwise they default to unlimited.
+ if set(constraints) & set("dis"):
+ for e in "dis":
+ constraints.setdefault(e, (0, 0))
+ else:
+ for e in "dis":
+ constraints.setdefault(e, (0, None))
+
+ # The maximum of the generic error type defaults to unlimited.
+ constraints.setdefault("e", (0, None))
+
+ # The cost equation defaults to equal costs. Also, the cost of any
+ # error type not mentioned in the cost equation defaults to 0.
+ if "cost" in constraints:
+ for e in "dis":
+ constraints["cost"].setdefault(e, 0)
+ else:
+ constraints["cost"] = {"d": 1, "i": 1, "s": 1, "max":
+ constraints["e"][1]}
+
+ def fix_groups(self, pattern, reverse, fuzzy):
+ self.subpattern.fix_groups(pattern, reverse, True)
+
+ def pack_characters(self, info):
+ self.subpattern = self.subpattern.pack_characters(info)
+ return self
+
+ def remove_captures(self):
+ self.subpattern = self.subpattern.remove_captures()
+ return self
+
+ def is_atomic(self):
+ return self.subpattern.is_atomic()
+
+ def contains_group(self):
+ return self.subpattern.contains_group()
+
+ def _compile(self, reverse, fuzzy):
+ # The individual limits.
+ arguments = []
+ for e in "dise":
+ v = self.constraints[e]
+ arguments.append(v[0])
+ arguments.append(UNLIMITED if v[1] is None else v[1])
+
+ # The coeffs of the cost equation.
+ for e in "dis":
+ arguments.append(self.constraints["cost"][e])
+
+ # The maximum of the cost equation.
+ v = self.constraints["cost"]["max"]
+ arguments.append(UNLIMITED if v is None else v)
+
+ flags = 0
+ if reverse:
+ flags |= REVERSE_OP
+
+ test = self.constraints.get("test")
+
+ if test:
+ return ([(OP.FUZZY_EXT, flags) + tuple(arguments)] +
+ test.compile(reverse, True) + [(OP.NEXT,)] +
+ self.subpattern.compile(reverse, True) + [(OP.END,)])
+
+ return ([(OP.FUZZY, flags) + tuple(arguments)] +
+ self.subpattern.compile(reverse, True) + [(OP.END,)])
+
+ def dump(self, indent, reverse):
+ constraints = self._constraints_to_string()
+ if constraints:
+ constraints = " " + constraints
+ print("{}FUZZY{}".format(INDENT * indent, constraints))
+ self.subpattern.dump(indent + 1, reverse)
+
+ def is_empty(self):
+ return self.subpattern.is_empty()
+
+ def __eq__(self, other):
+ return (type(self) is type(other) and self.subpattern ==
+ other.subpattern and self.constraints == other.constraints)
+
+ def max_width(self):
+ return UNLIMITED
+
+ def _constraints_to_string(self):
+ constraints = []
+
+ for name in "ids":
+ min, max = self.constraints[name]
+ if max == 0:
+ continue
+
+ con = ""
+
+ if min > 0:
+ con = "{}<=".format(min)
+
+ con += name
+
+ if max is not None:
+ con += "<={}".format(max)
+
+ constraints.append(con)
+
+ cost = []
+ for name in "ids":
+ coeff = self.constraints["cost"][name]
+ if coeff > 0:
+ cost.append("{}{}".format(coeff, name))
+
+ limit = self.constraints["cost"]["max"]
+ if limit is not None and limit > 0:
+ cost = "{}<={}".format("+".join(cost), limit)
+ constraints.append(cost)
+
+ return ",".join(constraints)
+
+class Grapheme(RegexBase):
+ def _compile(self, reverse, fuzzy):
+ # Match at least 1 character until a grapheme boundary is reached. Note
+ # that this is the same whether matching forwards or backwards.
+ grapheme_matcher = Atomic(Sequence([LazyRepeat(AnyAll(), 1, None),
+ GraphemeBoundary()]))
+
+ return grapheme_matcher.compile(reverse, fuzzy)
+
+ def dump(self, indent, reverse):
+ print("{}GRAPHEME".format(INDENT * indent))
+
+ def max_width(self):
+ return UNLIMITED
+
+class GraphemeBoundary:
+ def compile(self, reverse, fuzzy):
+ return [(OP.GRAPHEME_BOUNDARY, 1)]
+
+class GreedyRepeat(RegexBase):
+ _opcode = OP.GREEDY_REPEAT
+ _op_name = "GREEDY_REPEAT"
+
+ def __init__(self, subpattern, min_count, max_count):
+ RegexBase.__init__(self)
+ self.subpattern = subpattern
+ self.min_count = min_count
+ self.max_count = max_count
+
+ def fix_groups(self, pattern, reverse, fuzzy):
+ self.subpattern.fix_groups(pattern, reverse, fuzzy)
+
+ def optimise(self, info, reverse):
+ subpattern = self.subpattern.optimise(info, reverse)
+
+ return type(self)(subpattern, self.min_count, self.max_count)
+
+ def pack_characters(self, info):
+ self.subpattern = self.subpattern.pack_characters(info)
+ return self
+
+ def remove_captures(self):
+ self.subpattern = self.subpattern.remove_captures()
+ return self
+
+ def is_atomic(self):
+ return self.min_count == self.max_count and self.subpattern.is_atomic()
+
+ def can_be_affix(self):
+ return False
+
+ def contains_group(self):
+ return self.subpattern.contains_group()
+
+ def get_firstset(self, reverse):
+ fs = self.subpattern.get_firstset(reverse)
+ if self.min_count == 0:
+ fs.add(None)
+
+ return fs
+
+ def _compile(self, reverse, fuzzy):
+ repeat = [self._opcode, self.min_count]
+ if self.max_count is None:
+ repeat.append(UNLIMITED)
+ else:
+ repeat.append(self.max_count)
+
+ subpattern = self.subpattern.compile(reverse, fuzzy)
+ if not subpattern:
+ return []
+
+ return ([tuple(repeat)] + subpattern + [(OP.END, )])
+
+ def dump(self, indent, reverse):
+ if self.max_count is None:
+ limit = "INF"
+ else:
+ limit = self.max_count
+ print("{}{} {} {}".format(INDENT * indent, self._op_name,
+ self.min_count, limit))
+
+ self.subpattern.dump(indent + 1, reverse)
+
+ def is_empty(self):
+ return self.subpattern.is_empty()
+
+ def __eq__(self, other):
+ return type(self) is type(other) and (self.subpattern, self.min_count,
+ self.max_count) == (other.subpattern, other.min_count,
+ other.max_count)
+
+ def max_width(self):
+ if self.max_count is None:
+ return UNLIMITED
+
+ return self.subpattern.max_width() * self.max_count
+
+ def get_required_string(self, reverse):
+ max_count = UNLIMITED if self.max_count is None else self.max_count
+ if self.min_count == 0:
+ w = self.subpattern.max_width() * max_count
+ return min(w, UNLIMITED), None
+
+ ofs, req = self.subpattern.get_required_string(reverse)
+ if req:
+ return ofs, req
+
+ w = self.subpattern.max_width() * max_count
+ return min(w, UNLIMITED), None
+
+class PossessiveRepeat(GreedyRepeat):
+ def is_atomic(self):
+ return True
+
+ def _compile(self, reverse, fuzzy):
+ subpattern = self.subpattern.compile(reverse, fuzzy)
+ if not subpattern:
+ return []
+
+ repeat = [self._opcode, self.min_count]
+ if self.max_count is None:
+ repeat.append(UNLIMITED)
+ else:
+ repeat.append(self.max_count)
+
+ return ([(OP.ATOMIC, ), tuple(repeat)] + subpattern + [(OP.END, ),
+ (OP.END, )])
+
+ def dump(self, indent, reverse):
+ print("{}ATOMIC".format(INDENT * indent))
+
+ if self.max_count is None:
+ limit = "INF"
+ else:
+ limit = self.max_count
+ print("{}{} {} {}".format(INDENT * (indent + 1), self._op_name,
+ self.min_count, limit))
+
+ self.subpattern.dump(indent + 2, reverse)
+
+class Group(RegexBase):
+ def __init__(self, info, group, subpattern):
+ RegexBase.__init__(self)
+ self.info = info
+ self.group = group
+ self.subpattern = subpattern
+
+ self.call_ref = None
+
+ def fix_groups(self, pattern, reverse, fuzzy):
+ self.info.defined_groups[self.group] = (self, reverse, fuzzy)
+ self.subpattern.fix_groups(pattern, reverse, fuzzy)
+
+ def optimise(self, info, reverse):
+ subpattern = self.subpattern.optimise(info, reverse)
+
+ return Group(self.info, self.group, subpattern)
+
+ def pack_characters(self, info):
+ self.subpattern = self.subpattern.pack_characters(info)
+ return self
+
+ def remove_captures(self):
+ return self.subpattern.remove_captures()
+
+ def is_atomic(self):
+ return self.subpattern.is_atomic()
+
+ def can_be_affix(self):
+ return False
+
+ def contains_group(self):
+ return True
+
+ def get_firstset(self, reverse):
+ return self.subpattern.get_firstset(reverse)
+
+ def has_simple_start(self):
+ return self.subpattern.has_simple_start()
+
+ def _compile(self, reverse, fuzzy):
+ code = []
+
+ public_group = private_group = self.group
+ if private_group < 0:
+ public_group = self.info.private_groups[private_group]
+ private_group = self.info.group_count - private_group
+
+ key = self.group, reverse, fuzzy
+ ref = self.info.call_refs.get(key)
+ if ref is not None:
+ code += [(OP.CALL_REF, ref)]
+
+ code += [(OP.GROUP, int(not reverse), private_group, public_group)]
+ code += self.subpattern.compile(reverse, fuzzy)
+ code += [(OP.END, )]
+
+ if ref is not None:
+ code += [(OP.END, )]
+
+ return code
+
+ def dump(self, indent, reverse):
+ group = self.group
+ if group < 0:
+ group = private_groups[group]
+ print("{}GROUP {}".format(INDENT * indent, group))
+ self.subpattern.dump(indent + 1, reverse)
+
+ def __eq__(self, other):
+ return (type(self) is type(other) and (self.group, self.subpattern) ==
+ (other.group, other.subpattern))
+
+ def max_width(self):
+ return self.subpattern.max_width()
+
+ def get_required_string(self, reverse):
+ return self.subpattern.get_required_string(reverse)
+
+ def __del__(self):
+ self.info = None
+
+class Keep(ZeroWidthBase):
+ _opcode = OP.KEEP
+ _op_name = "KEEP"
+
+class LazyRepeat(GreedyRepeat):
+ _opcode = OP.LAZY_REPEAT
+ _op_name = "LAZY_REPEAT"
+
+class LookAround(RegexBase):
+ _dir_text = {False: "AHEAD", True: "BEHIND"}
+
+ def __init__(self, behind, positive, subpattern):
+ RegexBase.__init__(self)
+ self.behind = bool(behind)
+ self.positive = bool(positive)
+ self.subpattern = subpattern
+
+ def fix_groups(self, pattern, reverse, fuzzy):
+ self.subpattern.fix_groups(pattern, self.behind, fuzzy)
+
+ def optimise(self, info, reverse):
+ subpattern = self.subpattern.optimise(info, self.behind)
+ if self.positive and subpattern.is_empty():
+ return subpattern
+
+ return LookAround(self.behind, self.positive, subpattern)
+
+ def pack_characters(self, info):
+ self.subpattern = self.subpattern.pack_characters(info)
+ return self
+
+ def remove_captures(self):
+ return self.subpattern.remove_captures()
+
+ def is_atomic(self):
+ return self.subpattern.is_atomic()
+
+ def can_be_affix(self):
+ return self.subpattern.can_be_affix()
+
+ def contains_group(self):
+ return self.subpattern.contains_group()
+
+ def get_firstset(self, reverse):
+ if self.positive and self.behind == reverse:
+ return self.subpattern.get_firstset(reverse)
+
+ return set([None])
+
+ def _compile(self, reverse, fuzzy):
+ flags = 0
+ if self.positive:
+ flags |= POSITIVE_OP
+ if fuzzy:
+ flags |= FUZZY_OP
+ if reverse:
+ flags |= REVERSE_OP
+
+ return ([(OP.LOOKAROUND, flags, int(not self.behind))] +
+ self.subpattern.compile(self.behind) + [(OP.END, )])
+
+ def dump(self, indent, reverse):
+ print("{}LOOK{} {}".format(INDENT * indent,
+ self._dir_text[self.behind], POS_TEXT[self.positive]))
+ self.subpattern.dump(indent + 1, self.behind)
+
+ def is_empty(self):
+ return self.positive and self.subpattern.is_empty()
+
+ def __eq__(self, other):
+ return type(self) is type(other) and (self.behind, self.positive,
+ self.subpattern) == (other.behind, other.positive, other.subpattern)
+
+ def max_width(self):
+ return 0
+
+class LookAroundConditional(RegexBase):
+ _dir_text = {False: "AHEAD", True: "BEHIND"}
+
+ def __init__(self, behind, positive, subpattern, yes_item, no_item):
+ RegexBase.__init__(self)
+ self.behind = bool(behind)
+ self.positive = bool(positive)
+ self.subpattern = subpattern
+ self.yes_item = yes_item
+ self.no_item = no_item
+
+ def fix_groups(self, pattern, reverse, fuzzy):
+ self.subpattern.fix_groups(pattern, reverse, fuzzy)
+ self.yes_item.fix_groups(pattern, reverse, fuzzy)
+ self.no_item.fix_groups(pattern, reverse, fuzzy)
+
+ def optimise(self, info, reverse):
+ subpattern = self.subpattern.optimise(info, self.behind)
+ yes_item = self.yes_item.optimise(info, self.behind)
+ no_item = self.no_item.optimise(info, self.behind)
+
+ return LookAroundConditional(self.behind, self.positive, subpattern,
+ yes_item, no_item)
+
+ def pack_characters(self, info):
+ self.subpattern = self.subpattern.pack_characters(info)
+ self.yes_item = self.yes_item.pack_characters(info)
+ self.no_item = self.no_item.pack_characters(info)
+ return self
+
+ def remove_captures(self):
+ self.subpattern = self.subpattern.remove_captures()
+ self.yes_item = self.yes_item.remove_captures()
+ self.no_item = self.no_item.remove_captures()
+
+ def is_atomic(self):
+ return (self.subpattern.is_atomic() and self.yes_item.is_atomic() and
+ self.no_item.is_atomic())
+
+ def can_be_affix(self):
+ return (self.subpattern.can_be_affix() and self.yes_item.can_be_affix()
+ and self.no_item.can_be_affix())
+
+ def contains_group(self):
+ return (self.subpattern.contains_group() or
+ self.yes_item.contains_group() or self.no_item.contains_group())
+
+ def _compile(self, reverse, fuzzy):
+ code = [(OP.CONDITIONAL, int(self.positive), int(not self.behind))]
+ code.extend(self.subpattern.compile(self.behind, fuzzy))
+ code.append((OP.NEXT, ))
+ code.extend(self.yes_item.compile(reverse, fuzzy))
+ add_code = self.no_item.compile(reverse, fuzzy)
+ if add_code:
+ code.append((OP.NEXT, ))
+ code.extend(add_code)
+
+ code.append((OP.END, ))
+
+ return code
+
+ def dump(self, indent, reverse):
+ print("{}CONDITIONAL {} {}".format(INDENT * indent,
+ self._dir_text[self.behind], POS_TEXT[self.positive]))
+ self.subpattern.dump(indent + 1, self.behind)
+ print("{}EITHER".format(INDENT * indent))
+ self.yes_item.dump(indent + 1, reverse)
+ if not self.no_item.is_empty():
+ print("{}OR".format(INDENT * indent))
+ self.no_item.dump(indent + 1, reverse)
+
+ def is_empty(self):
+ return (self.subpattern.is_empty() and self.yes_item.is_empty() or
+ self.no_item.is_empty())
+
+ def __eq__(self, other):
+ return type(self) is type(other) and (self.subpattern, self.yes_item,
+ self.no_item) == (other.subpattern, other.yes_item, other.no_item)
+
+ def max_width(self):
+ return max(self.yes_item.max_width(), self.no_item.max_width())
+
+ def get_required_string(self, reverse):
+ return self.max_width(), None
+
+class PrecompiledCode(RegexBase):
+ def __init__(self, code):
+ self.code = code
+
+ def _compile(self, reverse, fuzzy):
+ return [tuple(self.code)]
+
+class Property(RegexBase):
+ _opcode = {(NOCASE, False): OP.PROPERTY, (IGNORECASE, False):
+ OP.PROPERTY_IGN, (FULLCASE, False): OP.PROPERTY, (FULLIGNORECASE, False):
+ OP.PROPERTY_IGN, (NOCASE, True): OP.PROPERTY_REV, (IGNORECASE, True):
+ OP.PROPERTY_IGN_REV, (FULLCASE, True): OP.PROPERTY_REV, (FULLIGNORECASE,
+ True): OP.PROPERTY_IGN_REV}
+
+ def __init__(self, value, positive=True, case_flags=NOCASE,
+ zerowidth=False):
+ RegexBase.__init__(self)
+ self.value = value
+ self.positive = bool(positive)
+ self.case_flags = CASE_FLAGS_COMBINATIONS[case_flags]
+ self.zerowidth = bool(zerowidth)
+
+ self._key = (self.__class__, self.value, self.positive,
+ self.case_flags, self.zerowidth)
+
+ def rebuild(self, positive, case_flags, zerowidth):
+ return Property(self.value, positive, case_flags, zerowidth)
+
+ def optimise(self, info, reverse, in_set=False):
+ return self
+
+ def get_firstset(self, reverse):
+ return set([self])
+
+ def has_simple_start(self):
+ return True
+
+ def _compile(self, reverse, fuzzy):
+ flags = 0
+ if self.positive:
+ flags |= POSITIVE_OP
+ if self.zerowidth:
+ flags |= ZEROWIDTH_OP
+ if fuzzy:
+ flags |= FUZZY_OP
+ return [(self._opcode[self.case_flags, reverse], flags, self.value)]
+
+ def dump(self, indent, reverse):
+ prop = PROPERTY_NAMES[self.value >> 16]
+ name, value = prop[0], prop[1][self.value & 0xFFFF]
+ print("{}PROPERTY {} {}:{}{}".format(INDENT * indent,
+ POS_TEXT[self.positive], name, value, CASE_TEXT[self.case_flags]))
+
+ def matches(self, ch):
+ return _regex.has_property_value(self.value, ch) == self.positive
+
+ def max_width(self):
+ return 1
+
+class Prune(ZeroWidthBase):
+ _op_name = "PRUNE"
+
+ def _compile(self, reverse, fuzzy):
+ return [(OP.PRUNE, )]
+
+class Range(RegexBase):
+ _opcode = {(NOCASE, False): OP.RANGE, (IGNORECASE, False): OP.RANGE_IGN,
+ (FULLCASE, False): OP.RANGE, (FULLIGNORECASE, False): OP.RANGE_IGN,
+ (NOCASE, True): OP.RANGE_REV, (IGNORECASE, True): OP.RANGE_IGN_REV,
+ (FULLCASE, True): OP.RANGE_REV, (FULLIGNORECASE, True): OP.RANGE_IGN_REV}
+ _op_name = "RANGE"
+
+ def __init__(self, lower, upper, positive=True, case_flags=NOCASE,
+ zerowidth=False):
+ RegexBase.__init__(self)
+ self.lower = lower
+ self.upper = upper
+ self.positive = bool(positive)
+ self.case_flags = CASE_FLAGS_COMBINATIONS[case_flags]
+ self.zerowidth = bool(zerowidth)
+
+ self._key = (self.__class__, self.lower, self.upper, self.positive,
+ self.case_flags, self.zerowidth)
+
+ def rebuild(self, positive, case_flags, zerowidth):
+ return Range(self.lower, self.upper, positive, case_flags, zerowidth)
+
+ def optimise(self, info, reverse, in_set=False):
+ # Is the range case-sensitive?
+ if not self.positive or not (self.case_flags & IGNORECASE) or in_set:
+ return self
+
+ # Is full case-folding possible?
+ if (not (info.flags & UNICODE) or (self.case_flags & FULLIGNORECASE) !=
+ FULLIGNORECASE):
+ return self
+
+ # Get the characters which expand to multiple codepoints on folding.
+ expanding_chars = _regex.get_expand_on_folding()
+
+ # Get the folded characters in the range.
+ items = []
+ for ch in expanding_chars:
+ if self.lower <= ord(ch) <= self.upper:
+ folded = _regex.fold_case(FULL_CASE_FOLDING, ch)
+ items.append(String([ord(c) for c in folded],
+ case_flags=self.case_flags))
+
+ if not items:
+ # We can fall back to simple case-folding.
+ return self
+
+ if len(items) < self.upper - self.lower + 1:
+ # Not all the characters are covered by the full case-folding.
+ items.insert(0, self)
+
+ return Branch(items)
+
+ def _compile(self, reverse, fuzzy):
+ flags = 0
+ if self.positive:
+ flags |= POSITIVE_OP
+ if self.zerowidth:
+ flags |= ZEROWIDTH_OP
+ if fuzzy:
+ flags |= FUZZY_OP
+ return [(self._opcode[self.case_flags, reverse], flags, self.lower,
+ self.upper)]
+
+ def dump(self, indent, reverse):
+ display_lower = ascii(chr(self.lower)).lstrip("bu")
+ display_upper = ascii(chr(self.upper)).lstrip("bu")
+ print("{}RANGE {} {} {}{}".format(INDENT * indent,
+ POS_TEXT[self.positive], display_lower, display_upper,
+ CASE_TEXT[self.case_flags]))
+
+ def matches(self, ch):
+ return (self.lower <= ch <= self.upper) == self.positive
+
+ def max_width(self):
+ return 1
+
+class RefGroup(RegexBase):
+ _opcode = {(NOCASE, False): OP.REF_GROUP, (IGNORECASE, False):
+ OP.REF_GROUP_IGN, (FULLCASE, False): OP.REF_GROUP, (FULLIGNORECASE,
+ False): OP.REF_GROUP_FLD, (NOCASE, True): OP.REF_GROUP_REV, (IGNORECASE,
+ True): OP.REF_GROUP_IGN_REV, (FULLCASE, True): OP.REF_GROUP_REV,
+ (FULLIGNORECASE, True): OP.REF_GROUP_FLD_REV}
+
+ def __init__(self, info, group, position, case_flags=NOCASE):
+ RegexBase.__init__(self)
+ self.info = info
+ self.group = group
+ self.position = position
+ self.case_flags = CASE_FLAGS_COMBINATIONS[case_flags]
+
+ self._key = self.__class__, self.group, self.case_flags
+
+ def fix_groups(self, pattern, reverse, fuzzy):
+ try:
+ self.group = int(self.group)
+ except ValueError:
+ try:
+ self.group = self.info.group_index[self.group]
+ except KeyError:
+ raise error("unknown group", pattern, self.position)
+
+ if not 1 <= self.group <= self.info.group_count:
+ raise error("invalid group reference", pattern, self.position)
+
+ self._key = self.__class__, self.group, self.case_flags
+
+ def remove_captures(self):
+ raise error("group reference not allowed", pattern, self.position)
+
+ def _compile(self, reverse, fuzzy):
+ flags = 0
+ if fuzzy:
+ flags |= FUZZY_OP
+ return [(self._opcode[self.case_flags, reverse], flags, self.group)]
+
+ def dump(self, indent, reverse):
+ print("{}REF_GROUP {}{}".format(INDENT * indent, self.group,
+ CASE_TEXT[self.case_flags]))
+
+ def max_width(self):
+ return UNLIMITED
+
+ def __del__(self):
+ self.info = None
+
+class SearchAnchor(ZeroWidthBase):
+ _opcode = OP.SEARCH_ANCHOR
+ _op_name = "SEARCH_ANCHOR"
+
+class Sequence(RegexBase):
+ def __init__(self, items=None):
+ RegexBase.__init__(self)
+ if items is None:
+ items = []
+
+ self.items = items
+
+ def fix_groups(self, pattern, reverse, fuzzy):
+ for s in self.items:
+ s.fix_groups(pattern, reverse, fuzzy)
+
+ def optimise(self, info, reverse):
+ # Flatten the sequences.
+ items = []
+ for s in self.items:
+ s = s.optimise(info, reverse)
+ if isinstance(s, Sequence):
+ items.extend(s.items)
+ else:
+ items.append(s)
+
+ return make_sequence(items)
+
+ def pack_characters(self, info):
+ "Packs sequences of characters into strings."
+ items = []
+ characters = []
+ case_flags = NOCASE
+ for s in self.items:
+ if type(s) is Character and s.positive and not s.zerowidth:
+ if s.case_flags != case_flags:
+ # Different case sensitivity, so flush, unless neither the
+ # previous nor the new character are cased.
+ if s.case_flags or is_cased_i(info, s.value):
+ Sequence._flush_characters(info, characters,
+ case_flags, items)
+
+ case_flags = s.case_flags
+
+ characters.append(s.value)
+ elif type(s) is String or type(s) is Literal:
+ if s.case_flags != case_flags:
+ # Different case sensitivity, so flush, unless the neither
+ # the previous nor the new string are cased.
+ if s.case_flags or any(is_cased_i(info, c) for c in
+ characters):
+ Sequence._flush_characters(info, characters,
+ case_flags, items)
+
+ case_flags = s.case_flags
+
+ characters.extend(s.characters)
+ else:
+ Sequence._flush_characters(info, characters, case_flags, items)
+
+ items.append(s.pack_characters(info))
+
+ Sequence._flush_characters(info, characters, case_flags, items)
+
+ return make_sequence(items)
+
+ def remove_captures(self):
+ self.items = [s.remove_captures() for s in self.items]
+ return self
+
+ def is_atomic(self):
+ return all(s.is_atomic() for s in self.items)
+
+ def can_be_affix(self):
+ return False
+
+ def contains_group(self):
+ return any(s.contains_group() for s in self.items)
+
+ def get_firstset(self, reverse):
+ fs = set()
+ items = self.items
+ if reverse:
+ items.reverse()
+ for s in items:
+ fs |= s.get_firstset(reverse)
+ if None not in fs:
+ return fs
+ fs.discard(None)
+
+ return fs | set([None])
+
+ def has_simple_start(self):
+ return bool(self.items) and self.items[0].has_simple_start()
+
+ def _compile(self, reverse, fuzzy):
+ seq = self.items
+ if reverse:
+ seq = seq[::-1]
+
+ code = []
+ for s in seq:
+ code.extend(s.compile(reverse, fuzzy))
+
+ return code
+
+ def dump(self, indent, reverse):
+ for s in self.items:
+ s.dump(indent, reverse)
+
+ @staticmethod
+ def _flush_characters(info, characters, case_flags, items):
+ if not characters:
+ return
+
+ # Disregard case_flags if all of the characters are case-less.
+ if case_flags & IGNORECASE:
+ if not any(is_cased_i(info, c) for c in characters):
+ case_flags = NOCASE
+
+ if (case_flags & FULLIGNORECASE) == FULLIGNORECASE:
+ literals = Sequence._fix_full_casefold(characters)
+
+ for item in literals:
+ chars = item.characters
+
+ if len(chars) == 1:
+ items.append(Character(chars[0], case_flags=item.case_flags))
+ else:
+ items.append(String(chars, case_flags=item.case_flags))
+ else:
+ if len(characters) == 1:
+ items.append(Character(characters[0], case_flags=case_flags))
+ else:
+ items.append(String(characters, case_flags=case_flags))
+
+ characters[:] = []
+
+ @staticmethod
+ def _fix_full_casefold(characters):
+ # Split a literal needing full case-folding into chunks that need it
+ # and chunks that can use simple case-folding, which is faster.
+ expanded = [_regex.fold_case(FULL_CASE_FOLDING, c) for c in
+ _regex.get_expand_on_folding()]
+ string = _regex.fold_case(FULL_CASE_FOLDING, ''.join(chr(c)
+ for c in characters)).lower()
+ chunks = []
+
+ for e in expanded:
+ found = string.find(e)
+
+ while found >= 0:
+ chunks.append((found, found + len(e)))
+ found = string.find(e, found + 1)
+
+ pos = 0
+ literals = []
+
+ for start, end in Sequence._merge_chunks(chunks):
+ if pos < start:
+ literals.append(Literal(characters[pos : start],
+ case_flags=IGNORECASE))
+
+ literals.append(Literal(characters[start : end],
+ case_flags=FULLIGNORECASE))
+ pos = end
+
+ if pos < len(characters):
+ literals.append(Literal(characters[pos : ], case_flags=IGNORECASE))
+
+ return literals
+
+ @staticmethod
+ def _merge_chunks(chunks):
+ if len(chunks) < 2:
+ return chunks
+
+ chunks.sort()
+
+ start, end = chunks[0]
+ new_chunks = []
+
+ for s, e in chunks[1 : ]:
+ if s <= end:
+ end = max(end, e)
+ else:
+ new_chunks.append((start, end))
+ start, end = s, e
+
+ new_chunks.append((start, end))
+
+ return new_chunks
+
+ def is_empty(self):
+ return all(i.is_empty() for i in self.items)
+
+ def __eq__(self, other):
+ return type(self) is type(other) and self.items == other.items
+
+ def max_width(self):
+ return sum(s.max_width() for s in self.items)
+
+ def get_required_string(self, reverse):
+ seq = self.items
+ if reverse:
+ seq = seq[::-1]
+
+ offset = 0
+
+ for s in seq:
+ ofs, req = s.get_required_string(reverse)
+ offset += ofs
+ if req:
+ return offset, req
+
+ return offset, None
+
+class SetBase(RegexBase):
+ def __init__(self, info, items, positive=True, case_flags=NOCASE,
+ zerowidth=False):
+ RegexBase.__init__(self)
+ self.info = info
+ self.items = tuple(items)
+ self.positive = bool(positive)
+ self.case_flags = CASE_FLAGS_COMBINATIONS[case_flags]
+ self.zerowidth = bool(zerowidth)
+
+ self.char_width = 1
+
+ self._key = (self.__class__, self.items, self.positive,
+ self.case_flags, self.zerowidth)
+
+ def rebuild(self, positive, case_flags, zerowidth):
+ return type(self)(self.info, self.items, positive, case_flags,
+ zerowidth).optimise(self.info, False)
+
+ def get_firstset(self, reverse):
+ return set([self])
+
+ def has_simple_start(self):
+ return True
+
+ def _compile(self, reverse, fuzzy):
+ flags = 0
+ if self.positive:
+ flags |= POSITIVE_OP
+ if self.zerowidth:
+ flags |= ZEROWIDTH_OP
+ if fuzzy:
+ flags |= FUZZY_OP
+ code = [(self._opcode[self.case_flags, reverse], flags)]
+ for m in self.items:
+ code.extend(m.compile())
+
+ code.append((OP.END, ))
+
+ return code
+
+ def dump(self, indent, reverse):
+ print("{}{} {}{}".format(INDENT * indent, self._op_name,
+ POS_TEXT[self.positive], CASE_TEXT[self.case_flags]))
+ for i in self.items:
+ i.dump(indent + 1, reverse)
+
+ def _handle_case_folding(self, info, in_set):
+ # Is the set case-sensitive?
+ if not self.positive or not (self.case_flags & IGNORECASE) or in_set:
+ return self
+
+ # Is full case-folding possible?
+ if (not (self.info.flags & UNICODE) or (self.case_flags &
+ FULLIGNORECASE) != FULLIGNORECASE):
+ return self
+
+ # Get the characters which expand to multiple codepoints on folding.
+ expanding_chars = _regex.get_expand_on_folding()
+
+ # Get the folded characters in the set.
+ items = []
+ seen = set()
+ for ch in expanding_chars:
+ if self.matches(ord(ch)):
+ folded = _regex.fold_case(FULL_CASE_FOLDING, ch)
+ if folded not in seen:
+ items.append(String([ord(c) for c in folded],
+ case_flags=self.case_flags))
+ seen.add(folded)
+
+ if not items:
+ # We can fall back to simple case-folding.
+ return self
+
+ return Branch([self] + items)
+
+ def max_width(self):
+ # Is the set case-sensitive?
+ if not self.positive or not (self.case_flags & IGNORECASE):
+ return 1
+
+ # Is full case-folding possible?
+ if (not (self.info.flags & UNICODE) or (self.case_flags &
+ FULLIGNORECASE) != FULLIGNORECASE):
+ return 1
+
+ # Get the characters which expand to multiple codepoints on folding.
+ expanding_chars = _regex.get_expand_on_folding()
+
+ # Get the folded characters in the set.
+ seen = set()
+ for ch in expanding_chars:
+ if self.matches(ord(ch)):
+ folded = _regex.fold_case(FULL_CASE_FOLDING, ch)
+ seen.add(folded)
+
+ if not seen:
+ return 1
+
+ return max(len(folded) for folded in seen)
+
+ def __del__(self):
+ self.info = None
+
+class SetDiff(SetBase):
+ _opcode = {(NOCASE, False): OP.SET_DIFF, (IGNORECASE, False):
+ OP.SET_DIFF_IGN, (FULLCASE, False): OP.SET_DIFF, (FULLIGNORECASE, False):
+ OP.SET_DIFF_IGN, (NOCASE, True): OP.SET_DIFF_REV, (IGNORECASE, True):
+ OP.SET_DIFF_IGN_REV, (FULLCASE, True): OP.SET_DIFF_REV, (FULLIGNORECASE,
+ True): OP.SET_DIFF_IGN_REV}
+ _op_name = "SET_DIFF"
+
+ def optimise(self, info, reverse, in_set=False):
+ items = self.items
+ if len(items) > 2:
+ items = [items[0], SetUnion(info, items[1 : ])]
+
+ if len(items) == 1:
+ return items[0].with_flags(case_flags=self.case_flags,
+ zerowidth=self.zerowidth).optimise(info, reverse, in_set)
+
+ self.items = tuple(m.optimise(info, reverse, in_set=True) for m in
+ items)
+
+ return self._handle_case_folding(info, in_set)
+
+ def matches(self, ch):
+ m = self.items[0].matches(ch) and not self.items[1].matches(ch)
+ return m == self.positive
+
+class SetInter(SetBase):
+ _opcode = {(NOCASE, False): OP.SET_INTER, (IGNORECASE, False):
+ OP.SET_INTER_IGN, (FULLCASE, False): OP.SET_INTER, (FULLIGNORECASE,
+ False): OP.SET_INTER_IGN, (NOCASE, True): OP.SET_INTER_REV, (IGNORECASE,
+ True): OP.SET_INTER_IGN_REV, (FULLCASE, True): OP.SET_INTER_REV,
+ (FULLIGNORECASE, True): OP.SET_INTER_IGN_REV}
+ _op_name = "SET_INTER"
+
+ def optimise(self, info, reverse, in_set=False):
+ items = []
+ for m in self.items:
+ m = m.optimise(info, reverse, in_set=True)
+ if isinstance(m, SetInter) and m.positive:
+ # Intersection in intersection.
+ items.extend(m.items)
+ else:
+ items.append(m)
+
+ if len(items) == 1:
+ return items[0].with_flags(case_flags=self.case_flags,
+ zerowidth=self.zerowidth).optimise(info, reverse, in_set)
+
+ self.items = tuple(items)
+
+ return self._handle_case_folding(info, in_set)
+
+ def matches(self, ch):
+ m = all(i.matches(ch) for i in self.items)
+ return m == self.positive
+
+class SetSymDiff(SetBase):
+ _opcode = {(NOCASE, False): OP.SET_SYM_DIFF, (IGNORECASE, False):
+ OP.SET_SYM_DIFF_IGN, (FULLCASE, False): OP.SET_SYM_DIFF, (FULLIGNORECASE,
+ False): OP.SET_SYM_DIFF_IGN, (NOCASE, True): OP.SET_SYM_DIFF_REV,
+ (IGNORECASE, True): OP.SET_SYM_DIFF_IGN_REV, (FULLCASE, True):
+ OP.SET_SYM_DIFF_REV, (FULLIGNORECASE, True): OP.SET_SYM_DIFF_IGN_REV}
+ _op_name = "SET_SYM_DIFF"
+
+ def optimise(self, info, reverse, in_set=False):
+ items = []
+ for m in self.items:
+ m = m.optimise(info, reverse, in_set=True)
+ if isinstance(m, SetSymDiff) and m.positive:
+ # Symmetric difference in symmetric difference.
+ items.extend(m.items)
+ else:
+ items.append(m)
+
+ if len(items) == 1:
+ return items[0].with_flags(case_flags=self.case_flags,
+ zerowidth=self.zerowidth).optimise(info, reverse, in_set)
+
+ self.items = tuple(items)
+
+ return self._handle_case_folding(info, in_set)
+
+ def matches(self, ch):
+ m = False
+ for i in self.items:
+ m = m != i.matches(ch)
+
+ return m == self.positive
+
+class SetUnion(SetBase):
+ _opcode = {(NOCASE, False): OP.SET_UNION, (IGNORECASE, False):
+ OP.SET_UNION_IGN, (FULLCASE, False): OP.SET_UNION, (FULLIGNORECASE,
+ False): OP.SET_UNION_IGN, (NOCASE, True): OP.SET_UNION_REV, (IGNORECASE,
+ True): OP.SET_UNION_IGN_REV, (FULLCASE, True): OP.SET_UNION_REV,
+ (FULLIGNORECASE, True): OP.SET_UNION_IGN_REV}
+ _op_name = "SET_UNION"
+
+ def optimise(self, info, reverse, in_set=False):
+ items = []
+ for m in self.items:
+ m = m.optimise(info, reverse, in_set=True)
+ if isinstance(m, SetUnion) and m.positive:
+ # Union in union.
+ items.extend(m.items)
+ else:
+ items.append(m)
+
+ if len(items) == 1:
+ i = items[0]
+ return i.with_flags(positive=i.positive == self.positive,
+ case_flags=self.case_flags,
+ zerowidth=self.zerowidth).optimise(info, reverse, in_set)
+
+ self.items = tuple(items)
+
+ return self._handle_case_folding(info, in_set)
+
+ def _compile(self, reverse, fuzzy):
+ flags = 0
+ if self.positive:
+ flags |= POSITIVE_OP
+ if self.zerowidth:
+ flags |= ZEROWIDTH_OP
+ if fuzzy:
+ flags |= FUZZY_OP
+
+ characters, others = defaultdict(list), []
+ for m in self.items:
+ if isinstance(m, Character):
+ characters[m.positive].append(m.value)
+ else:
+ others.append(m)
+
+ code = [(self._opcode[self.case_flags, reverse], flags)]
+
+ for positive, values in characters.items():
+ flags = 0
+ if positive:
+ flags |= POSITIVE_OP
+ if len(values) == 1:
+ code.append((OP.CHARACTER, flags, values[0]))
+ else:
+ code.append((OP.STRING, flags, len(values)) + tuple(values))
+
+ for m in others:
+ code.extend(m.compile())
+
+ code.append((OP.END, ))
+
+ return code
+
+ def matches(self, ch):
+ m = any(i.matches(ch) for i in self.items)
+ return m == self.positive
+
+class Skip(ZeroWidthBase):
+ _op_name = "SKIP"
+ _opcode = OP.SKIP
+
+class StartOfLine(ZeroWidthBase):
+ _opcode = OP.START_OF_LINE
+ _op_name = "START_OF_LINE"
+
+class StartOfLineU(StartOfLine):
+ _opcode = OP.START_OF_LINE_U
+ _op_name = "START_OF_LINE_U"
+
+class StartOfString(ZeroWidthBase):
+ _opcode = OP.START_OF_STRING
+ _op_name = "START_OF_STRING"
+
+class StartOfWord(ZeroWidthBase):
+ _opcode = OP.START_OF_WORD
+ _op_name = "START_OF_WORD"
+
+class String(RegexBase):
+ _opcode = {(NOCASE, False): OP.STRING, (IGNORECASE, False): OP.STRING_IGN,
+ (FULLCASE, False): OP.STRING, (FULLIGNORECASE, False): OP.STRING_FLD,
+ (NOCASE, True): OP.STRING_REV, (IGNORECASE, True): OP.STRING_IGN_REV,
+ (FULLCASE, True): OP.STRING_REV, (FULLIGNORECASE, True):
+ OP.STRING_FLD_REV}
+
+ def __init__(self, characters, case_flags=NOCASE):
+ self.characters = tuple(characters)
+ self.case_flags = CASE_FLAGS_COMBINATIONS[case_flags]
+
+ if (self.case_flags & FULLIGNORECASE) == FULLIGNORECASE:
+ folded_characters = []
+ for char in self.characters:
+ folded = _regex.fold_case(FULL_CASE_FOLDING, chr(char))
+ folded_characters.extend(ord(c) for c in folded)
+ else:
+ folded_characters = self.characters
+
+ self.folded_characters = tuple(folded_characters)
+ self.required = False
+
+ self._key = self.__class__, self.characters, self.case_flags
+
+ def get_firstset(self, reverse):
+ if reverse:
+ pos = -1
+ else:
+ pos = 0
+ return set([Character(self.characters[pos],
+ case_flags=self.case_flags)])
+
+ def has_simple_start(self):
+ return True
+
+ def _compile(self, reverse, fuzzy):
+ flags = 0
+ if fuzzy:
+ flags |= FUZZY_OP
+ if self.required:
+ flags |= REQUIRED_OP
+ return [(self._opcode[self.case_flags, reverse], flags,
+ len(self.folded_characters)) + self.folded_characters]
+
+ def dump(self, indent, reverse):
+ display = ascii("".join(chr(c) for c in self.characters)).lstrip("bu")
+ print("{}STRING {}{}".format(INDENT * indent, display,
+ CASE_TEXT[self.case_flags]))
+
+ def max_width(self):
+ return len(self.folded_characters)
+
+ def get_required_string(self, reverse):
+ return 0, self
+
+class Literal(String):
+ def dump(self, indent, reverse):
+ literal = ''.join(chr(c) for c in self.characters)
+ display = ascii(literal).lstrip("bu")
+ print("{}LITERAL MATCH {}{}".format(INDENT * indent, display,
+ CASE_TEXT[self.case_flags]))
+
+class StringSet(Branch):
+ def __init__(self, info, name, case_flags=NOCASE):
+ self.info = info
+ self.name = name
+ self.case_flags = CASE_FLAGS_COMBINATIONS[case_flags]
+
+ self._key = self.__class__, self.name, self.case_flags
+
+ self.set_key = (name, self.case_flags)
+ if self.set_key not in info.named_lists_used:
+ info.named_lists_used[self.set_key] = len(info.named_lists_used)
+
+ index = self.info.named_lists_used[self.set_key]
+ items = self.info.kwargs[self.name]
+
+ case_flags = self.case_flags
+
+ encoding = self.info.flags & _ALL_ENCODINGS
+ fold_flags = encoding | case_flags
+
+ choices = []
+
+ for string in items:
+ if isinstance(string, str):
+ string = [ord(c) for c in string]
+
+ choices.append([Character(c, case_flags=case_flags) for c in
+ string])
+
+ # Sort from longest to shortest.
+ choices.sort(key=len, reverse=True)
+
+ self.branches = [Sequence(choice) for choice in choices]
+
+ def dump(self, indent, reverse):
+ print("{}STRING_SET {}{}".format(INDENT * indent, self.name,
+ CASE_TEXT[self.case_flags]))
+
+ def __del__(self):
+ self.info = None
+
+class Source:
+ "Scanner for the regular expression source string."
+ def __init__(self, string):
+ if isinstance(string, str):
+ self.string = string
+ self.char_type = chr
+ else:
+ self.string = string.decode("latin-1")
+ self.char_type = lambda c: bytes([c])
+
+ self.pos = 0
+ self.ignore_space = False
+ self.sep = string[ : 0]
+
+ def get(self, override_ignore=False):
+ string = self.string
+ pos = self.pos
+
+ try:
+ if self.ignore_space and not override_ignore:
+ while True:
+ if string[pos].isspace():
+ # Skip over the whitespace.
+ pos += 1
+ elif string[pos] == "#":
+ # Skip over the comment to the end of the line.
+ pos = string.index("\n", pos)
+ else:
+ break
+
+ ch = string[pos]
+ self.pos = pos + 1
+ return ch
+ except IndexError:
+ # We've reached the end of the string.
+ self.pos = pos
+ return string[ : 0]
+ except ValueError:
+ # The comment extended to the end of the string.
+ self.pos = len(string)
+ return string[ : 0]
+
+ def get_many(self, count=1):
+ string = self.string
+ pos = self.pos
+
+ try:
+ if self.ignore_space:
+ substring = []
+
+ while len(substring) < count:
+ while True:
+ if string[pos].isspace():
+ # Skip over the whitespace.
+ pos += 1
+ elif string[pos] == "#":
+ # Skip over the comment to the end of the line.
+ pos = string.index("\n", pos)
+ else:
+ break
+
+ substring.append(string[pos])
+ pos += 1
+
+ substring = "".join(substring)
+ else:
+ substring = string[pos : pos + count]
+ pos += len(substring)
+
+ self.pos = pos
+ return substring
+ except IndexError:
+ # We've reached the end of the string.
+ self.pos = len(string)
+ return "".join(substring)
+ except ValueError:
+ # The comment extended to the end of the string.
+ self.pos = len(string)
+ return "".join(substring)
+
+ def get_while(self, test_set, include=True):
+ string = self.string
+ pos = self.pos
+
+ if self.ignore_space:
+ try:
+ substring = []
+
+ while True:
+ if string[pos].isspace():
+ # Skip over the whitespace.
+ pos += 1
+ elif string[pos] == "#":
+ # Skip over the comment to the end of the line.
+ pos = string.index("\n", pos)
+ elif (string[pos] in test_set) == include:
+ substring.append(string[pos])
+ pos += 1
+ else:
+ break
+
+ self.pos = pos
+ except IndexError:
+ # We've reached the end of the string.
+ self.pos = len(string)
+ except ValueError:
+ # The comment extended to the end of the string.
+ self.pos = len(string)
+
+ return "".join(substring)
+ else:
+ try:
+ while (string[pos] in test_set) == include:
+ pos += 1
+
+ substring = string[self.pos : pos]
+
+ self.pos = pos
+
+ return substring
+ except IndexError:
+ # We've reached the end of the string.
+ substring = string[self.pos : pos]
+
+ self.pos = pos
+
+ return substring
+
+ def skip_while(self, test_set, include=True):
+ string = self.string
+ pos = self.pos
+
+ try:
+ if self.ignore_space:
+ while True:
+ if string[pos].isspace():
+ # Skip over the whitespace.
+ pos += 1
+ elif string[pos] == "#":
+ # Skip over the comment to the end of the line.
+ pos = string.index("\n", pos)
+ elif (string[pos] in test_set) == include:
+ pos += 1
+ else:
+ break
+ else:
+ while (string[pos] in test_set) == include:
+ pos += 1
+
+ self.pos = pos
+ except IndexError:
+ # We've reached the end of the string.
+ self.pos = len(string)
+ except ValueError:
+ # The comment extended to the end of the string.
+ self.pos = len(string)
+
+ def match(self, substring):
+ string = self.string
+ pos = self.pos
+
+ if self.ignore_space:
+ try:
+ for c in substring:
+ while True:
+ if string[pos].isspace():
+ # Skip over the whitespace.
+ pos += 1
+ elif string[pos] == "#":
+ # Skip over the comment to the end of the line.
+ pos = string.index("\n", pos)
+ else:
+ break
+
+ if string[pos] != c:
+ return False
+
+ pos += 1
+
+ self.pos = pos
+
+ return True
+ except IndexError:
+ # We've reached the end of the string.
+ return False
+ except ValueError:
+ # The comment extended to the end of the string.
+ return False
+ else:
+ if not string.startswith(substring, pos):
+ return False
+
+ self.pos = pos + len(substring)
+
+ return True
+
+ def expect(self, substring):
+ if not self.match(substring):
+ raise error("missing {}".format(substring), self.string, self.pos)
+
+ def at_end(self):
+ string = self.string
+ pos = self.pos
+
+ try:
+ if self.ignore_space:
+ while True:
+ if string[pos].isspace():
+ pos += 1
+ elif string[pos] == "#":
+ pos = string.index("\n", pos)
+ else:
+ break
+
+ return pos >= len(string)
+ except IndexError:
+ # We've reached the end of the string.
+ return True
+ except ValueError:
+ # The comment extended to the end of the string.
+ return True
+
+class Info:
+ "Info about the regular expression."
+
+ def __init__(self, flags=0, char_type=None, kwargs={}):
+ flags |= DEFAULT_FLAGS[(flags & _ALL_VERSIONS) or DEFAULT_VERSION]
+ self.flags = flags
+ self.global_flags = flags
+ self.inline_locale = False
+
+ self.kwargs = kwargs
+
+ self.group_count = 0
+ self.group_index = {}
+ self.group_name = {}
+ self.char_type = char_type
+ self.named_lists_used = {}
+ self.open_groups = []
+ self.open_group_count = {}
+ self.defined_groups = {}
+ self.group_calls = []
+ self.private_groups = {}
+
+ def open_group(self, name=None):
+ group = self.group_index.get(name)
+ if group is None:
+ while True:
+ self.group_count += 1
+ if name is None or self.group_count not in self.group_name:
+ break
+
+ group = self.group_count
+ if name:
+ self.group_index[name] = group
+ self.group_name[group] = name
+
+ if group in self.open_groups:
+ # We have a nested named group. We'll assign it a private group
+ # number, initially negative until we can assign a proper
+ # (positive) number.
+ group_alias = -(len(self.private_groups) + 1)
+ self.private_groups[group_alias] = group
+ group = group_alias
+
+ self.open_groups.append(group)
+ self.open_group_count[group] = self.open_group_count.get(group, 0) + 1
+
+ return group
+
+ def close_group(self):
+ self.open_groups.pop()
+
+ def is_open_group(self, name):
+ # In version 1, a group reference can refer to an open group. We'll
+ # just pretend the group isn't open.
+ version = (self.flags & _ALL_VERSIONS) or DEFAULT_VERSION
+ if version == VERSION1:
+ return False
+
+ if name.isdigit():
+ group = int(name)
+ else:
+ group = self.group_index.get(name)
+
+ return group in self.open_groups
+
+def _check_group_features(info, parsed):
+ """Checks whether the reverse and fuzzy features of the group calls match
+ the groups which they call.
+ """
+ call_refs = {}
+ additional_groups = []
+ for call, reverse, fuzzy in info.group_calls:
+ # Look up the reference of this group call.
+ key = (call.group, reverse, fuzzy)
+ ref = call_refs.get(key)
+ if ref is None:
+ # This group doesn't have a reference yet, so look up its features.
+ if call.group == 0:
+ # Calling the pattern as a whole.
+ rev = bool(info.flags & REVERSE)
+ fuz = isinstance(parsed, Fuzzy)
+ if (rev, fuz) != (reverse, fuzzy):
+ # The pattern as a whole doesn't have the features we want,
+ # so we'll need to make a copy of it with the desired
+ # features.
+ additional_groups.append((CallRef(len(call_refs), parsed),
+ reverse, fuzzy))
+ else:
+ # Calling a capture group.
+ def_info = info.defined_groups[call.group]
+ group = def_info[0]
+ if def_info[1 : ] != (reverse, fuzzy):
+ # The group doesn't have the features we want, so we'll
+ # need to make a copy of it with the desired features.
+ additional_groups.append((group, reverse, fuzzy))
+
+ ref = len(call_refs)
+ call_refs[key] = ref
+
+ call.call_ref = ref
+
+ info.call_refs = call_refs
+ info.additional_groups = additional_groups
+
+def _get_required_string(parsed, flags):
+ "Gets the required string and related info of a parsed pattern."
+
+ req_offset, required = parsed.get_required_string(bool(flags & REVERSE))
+ if required:
+ required.required = True
+ if req_offset >= UNLIMITED:
+ req_offset = -1
+
+ req_flags = required.case_flags
+ if not (flags & UNICODE):
+ req_flags &= ~UNICODE
+
+ req_chars = required.folded_characters
+ else:
+ req_offset = 0
+ req_chars = ()
+ req_flags = 0
+
+ return req_offset, req_chars, req_flags
+
+class Scanner:
+ def __init__(self, lexicon, flags=0):
+ self.lexicon = lexicon
+
+ # Combine phrases into a compound pattern.
+ patterns = []
+ for phrase, action in lexicon:
+ # Parse the regular expression.
+ source = Source(phrase)
+ info = Info(flags, source.char_type)
+ source.ignore_space = bool(info.flags & VERBOSE)
+ parsed = _parse_pattern(source, info)
+ if not source.at_end():
+ raise error("unbalanced parenthesis", source.string,
+ source.pos)
+
+ # We want to forbid capture groups within each phrase.
+ patterns.append(parsed.remove_captures())
+
+ # Combine all the subpatterns into one pattern.
+ info = Info(flags)
+ patterns = [Group(info, g + 1, p) for g, p in enumerate(patterns)]
+ parsed = Branch(patterns)
+
+ # Optimise the compound pattern.
+ reverse = bool(info.flags & REVERSE)
+ parsed = parsed.optimise(info, reverse)
+ parsed = parsed.pack_characters(info)
+
+ # Get the required string.
+ req_offset, req_chars, req_flags = _get_required_string(parsed,
+ info.flags)
+
+ # Check the features of the groups.
+ _check_group_features(info, parsed)
+
+ # Complain if there are any group calls. They are not supported by the
+ # Scanner class.
+ if info.call_refs:
+ raise error("recursive regex not supported by Scanner",
+ source.string, source.pos)
+
+ reverse = bool(info.flags & REVERSE)
+
+ # Compile the compound pattern. The result is a list of tuples.
+ code = parsed.compile(reverse) + [(OP.SUCCESS, )]
+
+ # Flatten the code into a list of ints.
+ code = _flatten_code(code)
+
+ if not parsed.has_simple_start():
+ # Get the first set, if possible.
+ try:
+ fs_code = _compile_firstset(info, parsed.get_firstset(reverse))
+ fs_code = _flatten_code(fs_code)
+ code = fs_code + code
+ except _FirstSetError:
+ pass
+
+ # Check the global flags for conflicts.
+ version = (info.flags & _ALL_VERSIONS) or DEFAULT_VERSION
+ if version not in (0, VERSION0, VERSION1):
+ raise ValueError("VERSION0 and VERSION1 flags are mutually incompatible")
+
+ # Create the PatternObject.
+ #
+ # Local flags like IGNORECASE affect the code generation, but aren't
+ # needed by the PatternObject itself. Conversely, global flags like
+ # LOCALE _don't_ affect the code generation but _are_ needed by the
+ # PatternObject.
+ self.scanner = _regex.compile(None, (flags & GLOBAL_FLAGS) | version,
+ code, {}, {}, {}, [], req_offset, req_chars, req_flags,
+ len(patterns))
+
+ def scan(self, string):
+ result = []
+ append = result.append
+ match = self.scanner.scanner(string).match
+ i = 0
+ while True:
+ m = match()
+ if not m:
+ break
+ j = m.end()
+ if i == j:
+ break
+ action = self.lexicon[m.lastindex - 1][1]
+ if hasattr(action, '__call__'):
+ self.match = m
+ action = action(self, m.group())
+ if action is not None:
+ append(action)
+ i = j
+
+ return result, string[i : ]
+
+# Get the known properties dict.
+PROPERTIES = _regex.get_properties()
+
+# Build the inverse of the properties dict.
+PROPERTY_NAMES = {}
+for prop_name, (prop_id, values) in PROPERTIES.items():
+ name, prop_values = PROPERTY_NAMES.get(prop_id, ("", {}))
+ name = max(name, prop_name, key=len)
+ PROPERTY_NAMES[prop_id] = name, prop_values
+
+ for val_name, val_id in values.items():
+ prop_values[val_id] = max(prop_values.get(val_id, ""), val_name,
+ key=len)
+
+# Character escape sequences.
+CHARACTER_ESCAPES = {
+ "a": "\a",
+ "b": "\b",
+ "f": "\f",
+ "n": "\n",
+ "r": "\r",
+ "t": "\t",
+ "v": "\v",
+}
+
+# Predefined character set escape sequences.
+CHARSET_ESCAPES = {
+ "d": lookup_property(None, "Digit", True),
+ "D": lookup_property(None, "Digit", False),
+ "h": lookup_property(None, "Blank", True),
+ "s": lookup_property(None, "Space", True),
+ "S": lookup_property(None, "Space", False),
+ "w": lookup_property(None, "Word", True),
+ "W": lookup_property(None, "Word", False),
+}
+
+# Positional escape sequences.
+POSITION_ESCAPES = {
+ "A": StartOfString(),
+ "b": Boundary(),
+ "B": Boundary(False),
+ "K": Keep(),
+ "m": StartOfWord(),
+ "M": EndOfWord(),
+ "Z": EndOfString(),
+}
+
+# Positional escape sequences when WORD flag set.
+WORD_POSITION_ESCAPES = dict(POSITION_ESCAPES)
+WORD_POSITION_ESCAPES.update({
+ "b": DefaultBoundary(),
+ "B": DefaultBoundary(False),
+ "m": DefaultStartOfWord(),
+ "M": DefaultEndOfWord(),
+})
+
+# Regex control verbs.
+VERBS = {
+ "FAIL": Failure(),
+ "F": Failure(),
+ "PRUNE": Prune(),
+ "SKIP": Skip(),
+}
diff --git a/venv/lib/python3.10/site-packages/regex/regex.py b/venv/lib/python3.10/site-packages/regex/regex.py
new file mode 100644
index 0000000000000000000000000000000000000000..e467685af5e4ff6c8fc0013e83b2b95cd3cb188a
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/regex/regex.py
@@ -0,0 +1,746 @@
+#
+# Secret Labs' Regular Expression Engine
+#
+# Copyright (c) 1998-2001 by Secret Labs AB. All rights reserved.
+#
+# This version of the SRE library can be redistributed under CNRI's
+# Python 1.6 license. For any other use, please contact Secret Labs
+# AB (info@pythonware.com).
+#
+# Portions of this engine have been developed in cooperation with
+# CNRI. Hewlett-Packard provided funding for 1.6 integration and
+# other compatibility work.
+#
+# 2010-01-16 mrab Python front-end re-written and extended
+
+r"""Support for regular expressions (RE).
+
+This module provides regular expression matching operations similar to those
+found in Perl. It supports both 8-bit and Unicode strings; both the pattern and
+the strings being processed can contain null bytes and characters outside the
+US ASCII range.
+
+Regular expressions can contain both special and ordinary characters. Most
+ordinary characters, like "A", "a", or "0", are the simplest regular
+expressions; they simply match themselves. You can concatenate ordinary
+characters, so last matches the string 'last'.
+
+There are a few differences between the old (legacy) behaviour and the new
+(enhanced) behaviour, which are indicated by VERSION0 or VERSION1.
+
+The special characters are:
+ "." Matches any character except a newline.
+ "^" Matches the start of the string.
+ "$" Matches the end of the string or just before the
+ newline at the end of the string.
+ "*" Matches 0 or more (greedy) repetitions of the preceding
+ RE. Greedy means that it will match as many repetitions
+ as possible.
+ "+" Matches 1 or more (greedy) repetitions of the preceding
+ RE.
+ "?" Matches 0 or 1 (greedy) of the preceding RE.
+ *?,+?,?? Non-greedy versions of the previous three special
+ characters.
+ *+,++,?+ Possessive versions of the previous three special
+ characters.
+ {m,n} Matches from m to n repetitions of the preceding RE.
+ {m,n}? Non-greedy version of the above.
+ {m,n}+ Possessive version of the above.
+ {...} Fuzzy matching constraints.
+ "\\" Either escapes special characters or signals a special
+ sequence.
+ [...] Indicates a set of characters. A "^" as the first
+ character indicates a complementing set.
+ "|" A|B, creates an RE that will match either A or B.
+ (...) Matches the RE inside the parentheses. The contents are
+ captured and can be retrieved or matched later in the
+ string.
+ (?flags-flags) VERSION1: Sets/clears the flags for the remainder of
+ the group or pattern; VERSION0: Sets the flags for the
+ entire pattern.
+ (?:...) Non-capturing version of regular parentheses.
+ (?>...) Atomic non-capturing version of regular parentheses.
+ (?flags-flags:...) Non-capturing version of regular parentheses with local
+ flags.
+ (?P...) The substring matched by the group is accessible by
+ name.
+ (?...) The substring matched by the group is accessible by
+ name.
+ (?P=name) Matches the text matched earlier by the group named
+ name.
+ (?#...) A comment; ignored.
+ (?=...) Matches if ... matches next, but doesn't consume the
+ string.
+ (?!...) Matches if ... doesn't match next.
+ (?<=...) Matches if preceded by ....
+ (? Matches the text matched by the group named name.
+ \G Matches the empty string, but only at the position where
+ the search started.
+ \h Matches horizontal whitespace.
+ \K Keeps only what follows for the entire match.
+ \L Named list. The list is provided as a keyword argument.
+ \m Matches the empty string, but only at the start of a word.
+ \M Matches the empty string, but only at the end of a word.
+ \n Matches the newline character.
+ \N{name} Matches the named character.
+ \p{name=value} Matches the character if its property has the specified
+ value.
+ \P{name=value} Matches the character if its property hasn't the specified
+ value.
+ \r Matches the carriage-return character.
+ \s Matches any whitespace character; equivalent to
+ [ \t\n\r\f\v].
+ \S Matches any non-whitespace character; equivalent to [^\s].
+ \t Matches the tab character.
+ \uXXXX Matches the Unicode codepoint with 4-digit hex code XXXX.
+ \UXXXXXXXX Matches the Unicode codepoint with 8-digit hex code
+ XXXXXXXX.
+ \v Matches the vertical tab character.
+ \w Matches any alphanumeric character; equivalent to
+ [a-zA-Z0-9_] when matching a bytestring or a Unicode string
+ with the ASCII flag, or the whole range of Unicode
+ alphanumeric characters (letters plus digits plus
+ underscore) when matching a Unicode string. With LOCALE, it
+ will match the set [0-9_] plus characters defined as
+ letters for the current locale.
+ \W Matches the complement of \w; equivalent to [^\w].
+ \xXX Matches the character with 2-digit hex code XX.
+ \X Matches a grapheme.
+ \Z Matches only at the end of the string.
+ \\ Matches a literal backslash.
+
+This module exports the following functions:
+ match Match a regular expression pattern at the beginning of a string.
+ fullmatch Match a regular expression pattern against all of a string.
+ search Search a string for the presence of a pattern.
+ sub Substitute occurrences of a pattern found in a string using a
+ template string.
+ subf Substitute occurrences of a pattern found in a string using a
+ format string.
+ subn Same as sub, but also return the number of substitutions made.
+ subfn Same as subf, but also return the number of substitutions made.
+ split Split a string by the occurrences of a pattern. VERSION1: will
+ split at zero-width match; VERSION0: won't split at zero-width
+ match.
+ splititer Return an iterator yielding the parts of a split string.
+ findall Find all occurrences of a pattern in a string.
+ finditer Return an iterator yielding a match object for each match.
+ compile Compile a pattern into a Pattern object.
+ purge Clear the regular expression cache.
+ escape Backslash all non-alphanumerics or special characters in a
+ string.
+
+Most of the functions support a concurrent parameter: if True, the GIL will be
+released during matching, allowing other Python threads to run concurrently. If
+the string changes during matching, the behaviour is undefined. This parameter
+is not needed when working on the builtin (immutable) string classes.
+
+Some of the functions in this module take flags as optional parameters. Most of
+these flags can also be set within an RE:
+ A a ASCII Make \w, \W, \b, \B, \d, and \D match the
+ corresponding ASCII character categories. Default
+ when matching a bytestring.
+ B b BESTMATCH Find the best fuzzy match (default is first).
+ D DEBUG Print the parsed pattern.
+ E e ENHANCEMATCH Attempt to improve the fit after finding the first
+ fuzzy match.
+ F f FULLCASE Use full case-folding when performing
+ case-insensitive matching in Unicode.
+ I i IGNORECASE Perform case-insensitive matching.
+ L L LOCALE Make \w, \W, \b, \B, \d, and \D dependent on the
+ current locale. (One byte per character only.)
+ M m MULTILINE "^" matches the beginning of lines (after a newline)
+ as well as the string. "$" matches the end of lines
+ (before a newline) as well as the end of the string.
+ P p POSIX Perform POSIX-standard matching (leftmost longest).
+ R r REVERSE Searches backwards.
+ S s DOTALL "." matches any character at all, including the
+ newline.
+ U u UNICODE Make \w, \W, \b, \B, \d, and \D dependent on the
+ Unicode locale. Default when matching a Unicode
+ string.
+ V0 V0 VERSION0 Turn on the old legacy behaviour.
+ V1 V1 VERSION1 Turn on the new enhanced behaviour. This flag
+ includes the FULLCASE flag.
+ W w WORD Make \b and \B work with default Unicode word breaks
+ and make ".", "^" and "$" work with Unicode line
+ breaks.
+ X x VERBOSE Ignore whitespace and comments for nicer looking REs.
+
+This module also defines an exception 'error'.
+
+"""
+
+# Public symbols.
+__all__ = ["cache_all", "compile", "DEFAULT_VERSION", "escape", "findall",
+ "finditer", "fullmatch", "match", "purge", "search", "split", "splititer",
+ "sub", "subf", "subfn", "subn", "template", "Scanner", "A", "ASCII", "B",
+ "BESTMATCH", "D", "DEBUG", "E", "ENHANCEMATCH", "S", "DOTALL", "F",
+ "FULLCASE", "I", "IGNORECASE", "L", "LOCALE", "M", "MULTILINE", "P", "POSIX",
+ "R", "REVERSE", "T", "TEMPLATE", "U", "UNICODE", "V0", "VERSION0", "V1",
+ "VERSION1", "X", "VERBOSE", "W", "WORD", "error", "Regex", "__version__",
+ "__doc__", "RegexFlag"]
+
+__version__ = "2.5.141"
+
+# --------------------------------------------------------------------
+# Public interface.
+
+def match(pattern, string, flags=0, pos=None, endpos=None, partial=False,
+ concurrent=None, timeout=None, ignore_unused=False, **kwargs):
+ """Try to apply the pattern at the start of the string, returning a match
+ object, or None if no match was found."""
+ pat = _compile(pattern, flags, ignore_unused, kwargs, True)
+ return pat.match(string, pos, endpos, concurrent, partial, timeout)
+
+def fullmatch(pattern, string, flags=0, pos=None, endpos=None, partial=False,
+ concurrent=None, timeout=None, ignore_unused=False, **kwargs):
+ """Try to apply the pattern against all of the string, returning a match
+ object, or None if no match was found."""
+ pat = _compile(pattern, flags, ignore_unused, kwargs, True)
+ return pat.fullmatch(string, pos, endpos, concurrent, partial, timeout)
+
+def search(pattern, string, flags=0, pos=None, endpos=None, partial=False,
+ concurrent=None, timeout=None, ignore_unused=False, **kwargs):
+ """Search through string looking for a match to the pattern, returning a
+ match object, or None if no match was found."""
+ pat = _compile(pattern, flags, ignore_unused, kwargs, True)
+ return pat.search(string, pos, endpos, concurrent, partial, timeout)
+
+def sub(pattern, repl, string, count=0, flags=0, pos=None, endpos=None,
+ concurrent=None, timeout=None, ignore_unused=False, **kwargs):
+ """Return the string obtained by replacing the leftmost (or rightmost with a
+ reverse pattern) non-overlapping occurrences of the pattern in string by the
+ replacement repl. repl can be either a string or a callable; if a string,
+ backslash escapes in it are processed; if a callable, it's passed the match
+ object and must return a replacement string to be used."""
+ pat = _compile(pattern, flags, ignore_unused, kwargs, True)
+ return pat.sub(repl, string, count, pos, endpos, concurrent, timeout)
+
+def subf(pattern, format, string, count=0, flags=0, pos=None, endpos=None,
+ concurrent=None, timeout=None, ignore_unused=False, **kwargs):
+ """Return the string obtained by replacing the leftmost (or rightmost with a
+ reverse pattern) non-overlapping occurrences of the pattern in string by the
+ replacement format. format can be either a string or a callable; if a string,
+ it's treated as a format string; if a callable, it's passed the match object
+ and must return a replacement string to be used."""
+ pat = _compile(pattern, flags, ignore_unused, kwargs, True)
+ return pat.subf(format, string, count, pos, endpos, concurrent, timeout)
+
+def subn(pattern, repl, string, count=0, flags=0, pos=None, endpos=None,
+ concurrent=None, timeout=None, ignore_unused=False, **kwargs):
+ """Return a 2-tuple containing (new_string, number). new_string is the string
+ obtained by replacing the leftmost (or rightmost with a reverse pattern)
+ non-overlapping occurrences of the pattern in the source string by the
+ replacement repl. number is the number of substitutions that were made. repl
+ can be either a string or a callable; if a string, backslash escapes in it
+ are processed; if a callable, it's passed the match object and must return a
+ replacement string to be used."""
+ pat = _compile(pattern, flags, ignore_unused, kwargs, True)
+ return pat.subn(repl, string, count, pos, endpos, concurrent, timeout)
+
+def subfn(pattern, format, string, count=0, flags=0, pos=None, endpos=None,
+ concurrent=None, timeout=None, ignore_unused=False, **kwargs):
+ """Return a 2-tuple containing (new_string, number). new_string is the string
+ obtained by replacing the leftmost (or rightmost with a reverse pattern)
+ non-overlapping occurrences of the pattern in the source string by the
+ replacement format. number is the number of substitutions that were made. format
+ can be either a string or a callable; if a string, it's treated as a format
+ string; if a callable, it's passed the match object and must return a
+ replacement string to be used."""
+ pat = _compile(pattern, flags, ignore_unused, kwargs, True)
+ return pat.subfn(format, string, count, pos, endpos, concurrent, timeout)
+
+def split(pattern, string, maxsplit=0, flags=0, concurrent=None, timeout=None,
+ ignore_unused=False, **kwargs):
+ """Split the source string by the occurrences of the pattern, returning a
+ list containing the resulting substrings. If capturing parentheses are used
+ in pattern, then the text of all groups in the pattern are also returned as
+ part of the resulting list. If maxsplit is nonzero, at most maxsplit splits
+ occur, and the remainder of the string is returned as the final element of
+ the list."""
+ pat = _compile(pattern, flags, ignore_unused, kwargs, True)
+ return pat.split(string, maxsplit, concurrent, timeout)
+
+def splititer(pattern, string, maxsplit=0, flags=0, concurrent=None,
+ timeout=None, ignore_unused=False, **kwargs):
+ "Return an iterator yielding the parts of a split string."
+ pat = _compile(pattern, flags, ignore_unused, kwargs, True)
+ return pat.splititer(string, maxsplit, concurrent, timeout)
+
+def findall(pattern, string, flags=0, pos=None, endpos=None, overlapped=False,
+ concurrent=None, timeout=None, ignore_unused=False, **kwargs):
+ """Return a list of all matches in the string. The matches may be overlapped
+ if overlapped is True. If one or more groups are present in the pattern,
+ return a list of groups; this will be a list of tuples if the pattern has
+ more than one group. Empty matches are included in the result."""
+ pat = _compile(pattern, flags, ignore_unused, kwargs, True)
+ return pat.findall(string, pos, endpos, overlapped, concurrent, timeout)
+
+def finditer(pattern, string, flags=0, pos=None, endpos=None, overlapped=False,
+ partial=False, concurrent=None, timeout=None, ignore_unused=False, **kwargs):
+ """Return an iterator over all matches in the string. The matches may be
+ overlapped if overlapped is True. For each match, the iterator returns a
+ match object. Empty matches are included in the result."""
+ pat = _compile(pattern, flags, ignore_unused, kwargs, True)
+ return pat.finditer(string, pos, endpos, overlapped, concurrent, partial,
+ timeout)
+
+def compile(pattern, flags=0, ignore_unused=False, cache_pattern=None, **kwargs):
+ "Compile a regular expression pattern, returning a pattern object."
+ if cache_pattern is None:
+ cache_pattern = _cache_all
+ return _compile(pattern, flags, ignore_unused, kwargs, cache_pattern)
+
+def purge():
+ "Clear the regular expression cache"
+ _cache.clear()
+ _locale_sensitive.clear()
+
+# Whether to cache all patterns.
+_cache_all = True
+
+def cache_all(value=True):
+ """Sets whether to cache all patterns, even those are compiled explicitly.
+ Passing None has no effect, but returns the current setting."""
+ global _cache_all
+
+ if value is None:
+ return _cache_all
+
+ _cache_all = value
+
+def template(pattern, flags=0):
+ "Compile a template pattern, returning a pattern object."
+ return _compile(pattern, flags | TEMPLATE, False, {}, False)
+
+def escape(pattern, special_only=True, literal_spaces=False):
+ """Escape a string for use as a literal in a pattern. If special_only is
+ True, escape only special characters, else escape all non-alphanumeric
+ characters. If literal_spaces is True, don't escape spaces."""
+ # Convert it to Unicode.
+ if isinstance(pattern, bytes):
+ p = pattern.decode("latin-1")
+ else:
+ p = pattern
+
+ s = []
+ if special_only:
+ for c in p:
+ if c == " " and literal_spaces:
+ s.append(c)
+ elif c in _METACHARS or c.isspace():
+ s.append("\\")
+ s.append(c)
+ else:
+ s.append(c)
+ else:
+ for c in p:
+ if c == " " and literal_spaces:
+ s.append(c)
+ elif c in _ALNUM:
+ s.append(c)
+ else:
+ s.append("\\")
+ s.append(c)
+
+ r = "".join(s)
+ # Convert it back to bytes if necessary.
+ if isinstance(pattern, bytes):
+ r = r.encode("latin-1")
+
+ return r
+
+# --------------------------------------------------------------------
+# Internals.
+
+import regex._regex_core as _regex_core
+import regex._regex as _regex
+from threading import RLock as _RLock
+from locale import getpreferredencoding as _getpreferredencoding
+from regex._regex_core import *
+from regex._regex_core import (_ALL_VERSIONS, _ALL_ENCODINGS, _FirstSetError,
+ _UnscopedFlagSet, _check_group_features, _compile_firstset,
+ _compile_replacement, _flatten_code, _fold_case, _get_required_string,
+ _parse_pattern, _shrink_cache)
+from regex._regex_core import (ALNUM as _ALNUM, Info as _Info, OP as _OP, Source
+ as _Source, Fuzzy as _Fuzzy)
+
+# Version 0 is the old behaviour, compatible with the original 're' module.
+# Version 1 is the new behaviour, which differs slightly.
+
+DEFAULT_VERSION = VERSION0
+
+_METACHARS = frozenset("()[]{}?*+|^$\\.-#&~")
+
+_regex_core.DEFAULT_VERSION = DEFAULT_VERSION
+
+# Caches for the patterns and replacements.
+_cache = {}
+_cache_lock = _RLock()
+_named_args = {}
+_replacement_cache = {}
+_locale_sensitive = {}
+
+# Maximum size of the cache.
+_MAXCACHE = 500
+_MAXREPCACHE = 500
+
+def _compile(pattern, flags, ignore_unused, kwargs, cache_it):
+ "Compiles a regular expression to a PatternObject."
+
+ global DEFAULT_VERSION
+ try:
+ from regex import DEFAULT_VERSION
+ except ImportError:
+ pass
+
+ # We won't bother to cache the pattern if we're debugging.
+ if (flags & DEBUG) != 0:
+ cache_it = False
+
+ # What locale is this pattern using?
+ locale_key = (type(pattern), pattern)
+ if _locale_sensitive.get(locale_key, True) or (flags & LOCALE) != 0:
+ # This pattern is, or might be, locale-sensitive.
+ pattern_locale = _getpreferredencoding()
+ else:
+ # This pattern is definitely not locale-sensitive.
+ pattern_locale = None
+
+ def complain_unused_args():
+ if ignore_unused:
+ return
+
+ # Complain about any unused keyword arguments, possibly resulting from a typo.
+ unused_kwargs = set(kwargs) - {k for k, v in args_needed}
+ if unused_kwargs:
+ any_one = next(iter(unused_kwargs))
+ raise ValueError('unused keyword argument {!a}'.format(any_one))
+
+ if cache_it:
+ try:
+ # Do we know what keyword arguments are needed?
+ args_key = pattern, type(pattern), flags
+ args_needed = _named_args[args_key]
+
+ # Are we being provided with its required keyword arguments?
+ args_supplied = set()
+ if args_needed:
+ for k, v in args_needed:
+ try:
+ args_supplied.add((k, frozenset(kwargs[k])))
+ except KeyError:
+ raise error("missing named list: {!r}".format(k))
+
+ complain_unused_args()
+
+ args_supplied = frozenset(args_supplied)
+
+ # Have we already seen this regular expression and named list?
+ pattern_key = (pattern, type(pattern), flags, args_supplied,
+ DEFAULT_VERSION, pattern_locale)
+ return _cache[pattern_key]
+ except KeyError:
+ # It's a new pattern, or new named list for a known pattern.
+ pass
+
+ # Guess the encoding from the class of the pattern string.
+ if isinstance(pattern, str):
+ guess_encoding = UNICODE
+ elif isinstance(pattern, bytes):
+ guess_encoding = ASCII
+ elif isinstance(pattern, Pattern):
+ if flags:
+ raise ValueError("cannot process flags argument with a compiled pattern")
+
+ return pattern
+ else:
+ raise TypeError("first argument must be a string or compiled pattern")
+
+ # Set the default version in the core code in case it has been changed.
+ _regex_core.DEFAULT_VERSION = DEFAULT_VERSION
+
+ global_flags = flags
+
+ while True:
+ caught_exception = None
+ try:
+ source = _Source(pattern)
+ info = _Info(global_flags, source.char_type, kwargs)
+ info.guess_encoding = guess_encoding
+ source.ignore_space = bool(info.flags & VERBOSE)
+ parsed = _parse_pattern(source, info)
+ break
+ except _UnscopedFlagSet:
+ # Remember the global flags for the next attempt.
+ global_flags = info.global_flags
+ except error as e:
+ caught_exception = e
+
+ if caught_exception:
+ raise error(caught_exception.msg, caught_exception.pattern,
+ caught_exception.pos)
+
+ if not source.at_end():
+ raise error("unbalanced parenthesis", pattern, source.pos)
+
+ # Check the global flags for conflicts.
+ version = (info.flags & _ALL_VERSIONS) or DEFAULT_VERSION
+ if version not in (0, VERSION0, VERSION1):
+ raise ValueError("VERSION0 and VERSION1 flags are mutually incompatible")
+
+ if (info.flags & _ALL_ENCODINGS) not in (0, ASCII, LOCALE, UNICODE):
+ raise ValueError("ASCII, LOCALE and UNICODE flags are mutually incompatible")
+
+ if isinstance(pattern, bytes) and (info.flags & UNICODE):
+ raise ValueError("cannot use UNICODE flag with a bytes pattern")
+
+ if not (info.flags & _ALL_ENCODINGS):
+ if isinstance(pattern, str):
+ info.flags |= UNICODE
+ else:
+ info.flags |= ASCII
+
+ reverse = bool(info.flags & REVERSE)
+ fuzzy = isinstance(parsed, _Fuzzy)
+
+ # Remember whether this pattern as an inline locale flag.
+ _locale_sensitive[locale_key] = info.inline_locale
+
+ # Fix the group references.
+ caught_exception = None
+ try:
+ parsed.fix_groups(pattern, reverse, False)
+ except error as e:
+ caught_exception = e
+
+ if caught_exception:
+ raise error(caught_exception.msg, caught_exception.pattern,
+ caught_exception.pos)
+
+ # Should we print the parsed pattern?
+ if flags & DEBUG:
+ parsed.dump(indent=0, reverse=reverse)
+
+ # Optimise the parsed pattern.
+ parsed = parsed.optimise(info, reverse)
+ parsed = parsed.pack_characters(info)
+
+ # Get the required string.
+ req_offset, req_chars, req_flags = _get_required_string(parsed, info.flags)
+
+ # Build the named lists.
+ named_lists = {}
+ named_list_indexes = [None] * len(info.named_lists_used)
+ args_needed = set()
+ for key, index in info.named_lists_used.items():
+ name, case_flags = key
+ values = frozenset(kwargs[name])
+ if case_flags:
+ items = frozenset(_fold_case(info, v) for v in values)
+ else:
+ items = values
+ named_lists[name] = values
+ named_list_indexes[index] = items
+ args_needed.add((name, values))
+
+ complain_unused_args()
+
+ # Check the features of the groups.
+ _check_group_features(info, parsed)
+
+ # Compile the parsed pattern. The result is a list of tuples.
+ code = parsed.compile(reverse)
+
+ # Is there a group call to the pattern as a whole?
+ key = (0, reverse, fuzzy)
+ ref = info.call_refs.get(key)
+ if ref is not None:
+ code = [(_OP.CALL_REF, ref)] + code + [(_OP.END, )]
+
+ # Add the final 'success' opcode.
+ code += [(_OP.SUCCESS, )]
+
+ # Compile the additional copies of the groups that we need.
+ for group, rev, fuz in info.additional_groups:
+ code += group.compile(rev, fuz)
+
+ # Flatten the code into a list of ints.
+ code = _flatten_code(code)
+
+ if not parsed.has_simple_start():
+ # Get the first set, if possible.
+ try:
+ fs_code = _compile_firstset(info, parsed.get_firstset(reverse))
+ fs_code = _flatten_code(fs_code)
+ code = fs_code + code
+ except _FirstSetError:
+ pass
+
+ # The named capture groups.
+ index_group = dict((v, n) for n, v in info.group_index.items())
+
+ # Create the PatternObject.
+ #
+ # Local flags like IGNORECASE affect the code generation, but aren't needed
+ # by the PatternObject itself. Conversely, global flags like LOCALE _don't_
+ # affect the code generation but _are_ needed by the PatternObject.
+ compiled_pattern = _regex.compile(pattern, info.flags | version, code,
+ info.group_index, index_group, named_lists, named_list_indexes,
+ req_offset, req_chars, req_flags, info.group_count)
+
+ # Do we need to reduce the size of the cache?
+ if len(_cache) >= _MAXCACHE:
+ with _cache_lock:
+ _shrink_cache(_cache, _named_args, _locale_sensitive, _MAXCACHE)
+
+ if cache_it:
+ if (info.flags & LOCALE) == 0:
+ pattern_locale = None
+
+ args_needed = frozenset(args_needed)
+
+ # Store this regular expression and named list.
+ pattern_key = (pattern, type(pattern), flags, args_needed,
+ DEFAULT_VERSION, pattern_locale)
+ _cache[pattern_key] = compiled_pattern
+
+ # Store what keyword arguments are needed.
+ _named_args[args_key] = args_needed
+
+ return compiled_pattern
+
+def _compile_replacement_helper(pattern, template):
+ "Compiles a replacement template."
+ # This function is called by the _regex module.
+
+ # Have we seen this before?
+ key = pattern.pattern, pattern.flags, template
+ compiled = _replacement_cache.get(key)
+ if compiled is not None:
+ return compiled
+
+ if len(_replacement_cache) >= _MAXREPCACHE:
+ _replacement_cache.clear()
+
+ is_unicode = isinstance(template, str)
+ source = _Source(template)
+ if is_unicode:
+ def make_string(char_codes):
+ return "".join(chr(c) for c in char_codes)
+ else:
+ def make_string(char_codes):
+ return bytes(char_codes)
+
+ compiled = []
+ literal = []
+ while True:
+ ch = source.get()
+ if not ch:
+ break
+ if ch == "\\":
+ # '_compile_replacement' will return either an int group reference
+ # or a string literal. It returns items (plural) in order to handle
+ # a 2-character literal (an invalid escape sequence).
+ is_group, items = _compile_replacement(source, pattern, is_unicode)
+ if is_group:
+ # It's a group, so first flush the literal.
+ if literal:
+ compiled.append(make_string(literal))
+ literal = []
+ compiled.extend(items)
+ else:
+ literal.extend(items)
+ else:
+ literal.append(ord(ch))
+
+ # Flush the literal.
+ if literal:
+ compiled.append(make_string(literal))
+
+ _replacement_cache[key] = compiled
+
+ return compiled
+
+# We define Pattern here after all the support objects have been defined.
+_pat = _compile('', 0, False, {}, False)
+Pattern = type(_pat)
+Match = type(_pat.match(''))
+del _pat
+
+# Make Pattern public for typing annotations.
+__all__.append("Pattern")
+__all__.append("Match")
+
+# We'll define an alias for the 'compile' function so that the repr of a
+# pattern object is eval-able.
+Regex = compile
+
+# Register myself for pickling.
+import copyreg as _copy_reg
+
+def _pickle(pattern):
+ return _regex.compile, pattern._pickled_data
+
+_copy_reg.pickle(Pattern, _pickle)
diff --git a/venv/lib/python3.10/site-packages/regex/test_regex.py b/venv/lib/python3.10/site-packages/regex/test_regex.py
new file mode 100644
index 0000000000000000000000000000000000000000..9f902c0b870032a9631712069fa4681b59467104
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/regex/test_regex.py
@@ -0,0 +1,4461 @@
+from weakref import proxy
+import copy
+import pickle
+import regex
+import string
+import sys
+import unittest
+
+# String subclasses for issue 18468.
+class StrSubclass(str):
+ def __getitem__(self, index):
+ return StrSubclass(super().__getitem__(index))
+
+class BytesSubclass(bytes):
+ def __getitem__(self, index):
+ return BytesSubclass(super().__getitem__(index))
+
+class RegexTests(unittest.TestCase):
+ PATTERN_CLASS = ""
+ FLAGS_WITH_COMPILED_PAT = "cannot process flags argument with a compiled pattern"
+ INVALID_GROUP_REF = "invalid group reference"
+ MISSING_GT = "missing >"
+ BAD_GROUP_NAME = "bad character in group name"
+ MISSING_GROUP_NAME = "missing group name"
+ MISSING_LT = "missing <"
+ UNKNOWN_GROUP_I = "unknown group"
+ UNKNOWN_GROUP = "unknown group"
+ BAD_ESCAPE = r"bad escape \(end of pattern\)"
+ BAD_OCTAL_ESCAPE = r"bad escape \\"
+ BAD_SET = "unterminated character set"
+ STR_PAT_ON_BYTES = "cannot use a string pattern on a bytes-like object"
+ BYTES_PAT_ON_STR = "cannot use a bytes pattern on a string-like object"
+ STR_PAT_BYTES_TEMPL = "expected str instance, bytes found"
+ BYTES_PAT_STR_TEMPL = "expected a bytes-like object, str found"
+ BYTES_PAT_UNI_FLAG = "cannot use UNICODE flag with a bytes pattern"
+ MIXED_FLAGS = "ASCII, LOCALE and UNICODE flags are mutually incompatible"
+ MISSING_RPAREN = "missing \\)"
+ TRAILING_CHARS = "unbalanced parenthesis"
+ BAD_CHAR_RANGE = "bad character range"
+ NOTHING_TO_REPEAT = "nothing to repeat"
+ MULTIPLE_REPEAT = "multiple repeat"
+ OPEN_GROUP = "cannot refer to an open group"
+ DUPLICATE_GROUP = "duplicate group"
+ CANT_TURN_OFF = "bad inline flags: cannot turn flags off"
+ UNDEF_CHAR_NAME = "undefined character name"
+
+ def assertTypedEqual(self, actual, expect, msg=None):
+ self.assertEqual(actual, expect, msg)
+
+ def recurse(actual, expect):
+ if isinstance(expect, (tuple, list)):
+ for x, y in zip(actual, expect):
+ recurse(x, y)
+ else:
+ self.assertIs(type(actual), type(expect), msg)
+
+ recurse(actual, expect)
+
+ def test_weakref(self):
+ s = 'QabbbcR'
+ x = regex.compile('ab+c')
+ y = proxy(x)
+ if x.findall('QabbbcR') != y.findall('QabbbcR'):
+ self.fail()
+
+ def test_search_star_plus(self):
+ self.assertEqual(regex.search('a*', 'xxx').span(0), (0, 0))
+ self.assertEqual(regex.search('x*', 'axx').span(), (0, 0))
+ self.assertEqual(regex.search('x+', 'axx').span(0), (1, 3))
+ self.assertEqual(regex.search('x+', 'axx').span(), (1, 3))
+ self.assertEqual(regex.search('x', 'aaa'), None)
+ self.assertEqual(regex.match('a*', 'xxx').span(0), (0, 0))
+ self.assertEqual(regex.match('a*', 'xxx').span(), (0, 0))
+ self.assertEqual(regex.match('x*', 'xxxa').span(0), (0, 3))
+ self.assertEqual(regex.match('x*', 'xxxa').span(), (0, 3))
+ self.assertEqual(regex.match('a+', 'xxx'), None)
+
+ def bump_num(self, matchobj):
+ int_value = int(matchobj[0])
+ return str(int_value + 1)
+
+ def test_basic_regex_sub(self):
+ self.assertEqual(regex.sub("(?i)b+", "x", "bbbb BBBB"), 'x x')
+ self.assertEqual(regex.sub(r'\d+', self.bump_num, '08.2 -2 23x99y'),
+ '9.3 -3 24x100y')
+ self.assertEqual(regex.sub(r'\d+', self.bump_num, '08.2 -2 23x99y', 3),
+ '9.3 -3 23x99y')
+
+ self.assertEqual(regex.sub('.', lambda m: r"\n", 'x'), "\\n")
+ self.assertEqual(regex.sub('.', r"\n", 'x'), "\n")
+
+ self.assertEqual(regex.sub('(?Px)', r'\g\g', 'xx'), 'xxxx')
+ self.assertEqual(regex.sub('(?Px)', r'\g\g<1>', 'xx'), 'xxxx')
+ self.assertEqual(regex.sub('(?Px)', r'\g\g', 'xx'),
+ 'xxxx')
+ self.assertEqual(regex.sub('(?Px)', r'\g<1>\g<1>', 'xx'), 'xxxx')
+
+ self.assertEqual(regex.sub('a', r'\t\n\v\r\f\a\b', 'a'), "\t\n\v\r\f\a\b")
+ self.assertEqual(regex.sub('a', '\t\n\v\r\f\a', 'a'), "\t\n\v\r\f\a")
+ self.assertEqual(regex.sub('a', '\t\n\v\r\f\a', 'a'), chr(9) + chr(10)
+ + chr(11) + chr(13) + chr(12) + chr(7))
+
+ self.assertEqual(regex.sub(r'^\s*', 'X', 'test'), 'Xtest')
+
+ self.assertEqual(regex.sub(r"x", r"\x0A", "x"), "\n")
+ self.assertEqual(regex.sub(r"x", r"\u000A", "x"), "\n")
+ self.assertEqual(regex.sub(r"x", r"\U0000000A", "x"), "\n")
+ self.assertEqual(regex.sub(r"x", r"\N{LATIN CAPITAL LETTER A}",
+ "x"), "A")
+
+ self.assertEqual(regex.sub(br"x", br"\x0A", b"x"), b"\n")
+
+ def test_bug_449964(self):
+ # Fails for group followed by other escape.
+ self.assertEqual(regex.sub(r'(?Px)', r'\g<1>\g<1>\b', 'xx'),
+ "xx\bxx\b")
+
+ def test_bug_449000(self):
+ # Test for sub() on escaped characters.
+ self.assertEqual(regex.sub(r'\r\n', r'\n', 'abc\r\ndef\r\n'),
+ "abc\ndef\n")
+ self.assertEqual(regex.sub('\r\n', r'\n', 'abc\r\ndef\r\n'),
+ "abc\ndef\n")
+ self.assertEqual(regex.sub(r'\r\n', '\n', 'abc\r\ndef\r\n'),
+ "abc\ndef\n")
+ self.assertEqual(regex.sub('\r\n', '\n', 'abc\r\ndef\r\n'),
+ "abc\ndef\n")
+
+ def test_bug_1661(self):
+ # Verify that flags do not get silently ignored with compiled patterns
+ pattern = regex.compile('.')
+ self.assertRaisesRegex(ValueError, self.FLAGS_WITH_COMPILED_PAT,
+ lambda: regex.match(pattern, 'A', regex.I))
+ self.assertRaisesRegex(ValueError, self.FLAGS_WITH_COMPILED_PAT,
+ lambda: regex.search(pattern, 'A', regex.I))
+ self.assertRaisesRegex(ValueError, self.FLAGS_WITH_COMPILED_PAT,
+ lambda: regex.findall(pattern, 'A', regex.I))
+ self.assertRaisesRegex(ValueError, self.FLAGS_WITH_COMPILED_PAT,
+ lambda: regex.compile(pattern, regex.I))
+
+ def test_bug_3629(self):
+ # A regex that triggered a bug in the sre-code validator
+ self.assertEqual(repr(type(regex.compile("(?P)(?(quote))"))),
+ self.PATTERN_CLASS)
+
+ def test_sub_template_numeric_escape(self):
+ # Bug 776311 and friends.
+ self.assertEqual(regex.sub('x', r'\0', 'x'), "\0")
+ self.assertEqual(regex.sub('x', r'\000', 'x'), "\000")
+ self.assertEqual(regex.sub('x', r'\001', 'x'), "\001")
+ self.assertEqual(regex.sub('x', r'\008', 'x'), "\0" + "8")
+ self.assertEqual(regex.sub('x', r'\009', 'x'), "\0" + "9")
+ self.assertEqual(regex.sub('x', r'\111', 'x'), "\111")
+ self.assertEqual(regex.sub('x', r'\117', 'x'), "\117")
+
+ self.assertEqual(regex.sub('x', r'\1111', 'x'), "\1111")
+ self.assertEqual(regex.sub('x', r'\1111', 'x'), "\111" + "1")
+
+ self.assertEqual(regex.sub('x', r'\00', 'x'), '\x00')
+ self.assertEqual(regex.sub('x', r'\07', 'x'), '\x07')
+ self.assertEqual(regex.sub('x', r'\08', 'x'), "\0" + "8")
+ self.assertEqual(regex.sub('x', r'\09', 'x'), "\0" + "9")
+ self.assertEqual(regex.sub('x', r'\0a', 'x'), "\0" + "a")
+
+ self.assertEqual(regex.sub('x', r'\400', 'x'), "\u0100")
+ self.assertEqual(regex.sub('x', r'\777', 'x'), "\u01FF")
+ self.assertEqual(regex.sub(b'x', br'\400', b'x'), b"\x00")
+ self.assertEqual(regex.sub(b'x', br'\777', b'x'), b"\xFF")
+
+ self.assertRaisesRegex(regex.error, self.INVALID_GROUP_REF, lambda:
+ regex.sub('x', r'\1', 'x'))
+ self.assertRaisesRegex(regex.error, self.INVALID_GROUP_REF, lambda:
+ regex.sub('x', r'\8', 'x'))
+ self.assertRaisesRegex(regex.error, self.INVALID_GROUP_REF, lambda:
+ regex.sub('x', r'\9', 'x'))
+ self.assertRaisesRegex(regex.error, self.INVALID_GROUP_REF, lambda:
+ regex.sub('x', r'\11', 'x'))
+ self.assertRaisesRegex(regex.error, self.INVALID_GROUP_REF, lambda:
+ regex.sub('x', r'\18', 'x'))
+ self.assertRaisesRegex(regex.error, self.INVALID_GROUP_REF, lambda:
+ regex.sub('x', r'\1a', 'x'))
+ self.assertRaisesRegex(regex.error, self.INVALID_GROUP_REF, lambda:
+ regex.sub('x', r'\90', 'x'))
+ self.assertRaisesRegex(regex.error, self.INVALID_GROUP_REF, lambda:
+ regex.sub('x', r'\99', 'x'))
+ self.assertRaisesRegex(regex.error, self.INVALID_GROUP_REF, lambda:
+ regex.sub('x', r'\118', 'x')) # r'\11' + '8'
+ self.assertRaisesRegex(regex.error, self.INVALID_GROUP_REF, lambda:
+ regex.sub('x', r'\11a', 'x'))
+ self.assertRaisesRegex(regex.error, self.INVALID_GROUP_REF, lambda:
+ regex.sub('x', r'\181', 'x')) # r'\18' + '1'
+ self.assertRaisesRegex(regex.error, self.INVALID_GROUP_REF, lambda:
+ regex.sub('x', r'\800', 'x')) # r'\80' + '0'
+
+ # In Python 2.3 (etc), these loop endlessly in sre_parser.py.
+ self.assertEqual(regex.sub('(((((((((((x)))))))))))', r'\11', 'x'),
+ 'x')
+ self.assertEqual(regex.sub('((((((((((y))))))))))(.)', r'\118', 'xyz'),
+ 'xz8')
+ self.assertEqual(regex.sub('((((((((((y))))))))))(.)', r'\11a', 'xyz'),
+ 'xza')
+
+ def test_qualified_re_sub(self):
+ self.assertEqual(regex.sub('a', 'b', 'aaaaa'), 'bbbbb')
+ self.assertEqual(regex.sub('a', 'b', 'aaaaa', 1), 'baaaa')
+
+ def test_bug_114660(self):
+ self.assertEqual(regex.sub(r'(\S)\s+(\S)', r'\1 \2', 'hello there'),
+ 'hello there')
+
+ def test_bug_462270(self):
+ # Test for empty sub() behaviour, see SF bug #462270
+ if sys.version_info >= (3, 7, 0):
+ self.assertEqual(regex.sub('(?V0)x*', '-', 'abxd'), '-a-b--d-')
+ else:
+ self.assertEqual(regex.sub('(?V0)x*', '-', 'abxd'), '-a-b-d-')
+ self.assertEqual(regex.sub('(?V1)x*', '-', 'abxd'), '-a-b--d-')
+ self.assertEqual(regex.sub('x+', '-', 'abxd'), 'ab-d')
+
+ def test_bug_14462(self):
+ # chr(255) is a valid identifier in Python 3.
+ group_name = '\xFF'
+ self.assertEqual(regex.search(r'(?P<' + group_name + '>a)',
+ 'abc').group(group_name), 'a')
+
+ def test_symbolic_refs(self):
+ self.assertRaisesRegex(regex.error, self.MISSING_GT, lambda:
+ regex.sub('(?Px)', r'\gx)', r'\g<', 'xx'))
+ self.assertRaisesRegex(regex.error, self.MISSING_LT, lambda:
+ regex.sub('(?Px)', r'\g', 'xx'))
+ self.assertRaisesRegex(regex.error, self.BAD_GROUP_NAME, lambda:
+ regex.sub('(?Px)', r'\g', 'xx'))
+ self.assertRaisesRegex(regex.error, self.BAD_GROUP_NAME, lambda:
+ regex.sub('(?Px)', r'\g<1a1>', 'xx'))
+ self.assertRaisesRegex(IndexError, self.UNKNOWN_GROUP_I, lambda:
+ regex.sub('(?Px)', r'\g', 'xx'))
+
+ # The new behaviour of unmatched but valid groups is to treat them like
+ # empty matches in the replacement template, like in Perl.
+ self.assertEqual(regex.sub('(?Px)|(?Py)', r'\g', 'xx'), '')
+ self.assertEqual(regex.sub('(?Px)|(?Py)', r'\2', 'xx'), '')
+
+ # The old behaviour was to raise it as an IndexError.
+ self.assertRaisesRegex(regex.error, self.BAD_GROUP_NAME, lambda:
+ regex.sub('(?Px)', r'\g<-1>', 'xx'))
+
+ def test_re_subn(self):
+ self.assertEqual(regex.subn("(?i)b+", "x", "bbbb BBBB"), ('x x', 2))
+ self.assertEqual(regex.subn("b+", "x", "bbbb BBBB"), ('x BBBB', 1))
+ self.assertEqual(regex.subn("b+", "x", "xyz"), ('xyz', 0))
+ self.assertEqual(regex.subn("b*", "x", "xyz"), ('xxxyxzx', 4))
+ self.assertEqual(regex.subn("b*", "x", "xyz", 2), ('xxxyz', 2))
+
+ def test_re_split(self):
+ self.assertEqual(regex.split(":", ":a:b::c"), ['', 'a', 'b', '', 'c'])
+ if sys.version_info >= (3, 7, 0):
+ self.assertEqual(regex.split(":*", ":a:b::c"), ['', '', 'a', '',
+ 'b', '', 'c', ''])
+ self.assertEqual(regex.split("(:*)", ":a:b::c"), ['', ':', '', '',
+ 'a', ':', '', '', 'b', '::', '', '', 'c', '', ''])
+ self.assertEqual(regex.split("(?::*)", ":a:b::c"), ['', '', 'a',
+ '', 'b', '', 'c', ''])
+ self.assertEqual(regex.split("(:)*", ":a:b::c"), ['', ':', '',
+ None, 'a', ':', '', None, 'b', ':', '', None, 'c', None, ''])
+ else:
+ self.assertEqual(regex.split(":*", ":a:b::c"), ['', 'a', 'b', 'c'])
+ self.assertEqual(regex.split("(:*)", ":a:b::c"), ['', ':', 'a',
+ ':', 'b', '::', 'c'])
+ self.assertEqual(regex.split("(?::*)", ":a:b::c"), ['', 'a', 'b',
+ 'c'])
+ self.assertEqual(regex.split("(:)*", ":a:b::c"), ['', ':', 'a',
+ ':', 'b', ':', 'c'])
+ self.assertEqual(regex.split("([b:]+)", ":a:b::c"), ['', ':', 'a',
+ ':b::', 'c'])
+ self.assertEqual(regex.split("(b)|(:+)", ":a:b::c"), ['', None, ':',
+ 'a', None, ':', '', 'b', None, '', None, '::', 'c'])
+ self.assertEqual(regex.split("(?:b)|(?::+)", ":a:b::c"), ['', 'a', '',
+ '', 'c'])
+
+ self.assertEqual(regex.split("x", "xaxbxc"), ['', 'a', 'b', 'c'])
+ self.assertEqual([m for m in regex.splititer("x", "xaxbxc")], ['', 'a',
+ 'b', 'c'])
+
+ self.assertEqual(regex.split("(?r)x", "xaxbxc"), ['c', 'b', 'a', ''])
+ self.assertEqual([m for m in regex.splititer("(?r)x", "xaxbxc")], ['c',
+ 'b', 'a', ''])
+
+ self.assertEqual(regex.split("(x)|(y)", "xaxbxc"), ['', 'x', None, 'a',
+ 'x', None, 'b', 'x', None, 'c'])
+ self.assertEqual([m for m in regex.splititer("(x)|(y)", "xaxbxc")],
+ ['', 'x', None, 'a', 'x', None, 'b', 'x', None, 'c'])
+
+ self.assertEqual(regex.split("(?r)(x)|(y)", "xaxbxc"), ['c', 'x', None,
+ 'b', 'x', None, 'a', 'x', None, ''])
+ self.assertEqual([m for m in regex.splititer("(?r)(x)|(y)", "xaxbxc")],
+ ['c', 'x', None, 'b', 'x', None, 'a', 'x', None, ''])
+
+ self.assertEqual(regex.split(r"(?V1)\b", "a b c"), ['', 'a', ' ', 'b',
+ ' ', 'c', ''])
+ self.assertEqual(regex.split(r"(?V1)\m", "a b c"), ['', 'a ', 'b ',
+ 'c'])
+ self.assertEqual(regex.split(r"(?V1)\M", "a b c"), ['a', ' b', ' c',
+ ''])
+
+ def test_qualified_re_split(self):
+ self.assertEqual(regex.split(":", ":a:b::c", 2), ['', 'a', 'b::c'])
+ self.assertEqual(regex.split(':', 'a:b:c:d', 2), ['a', 'b', 'c:d'])
+ self.assertEqual(regex.split("(:)", ":a:b::c", 2), ['', ':', 'a', ':',
+ 'b::c'])
+
+ if sys.version_info >= (3, 7, 0):
+ self.assertEqual(regex.split("(:*)", ":a:b::c", 2), ['', ':', '',
+ '', 'a:b::c'])
+ else:
+ self.assertEqual(regex.split("(:*)", ":a:b::c", 2), ['', ':', 'a',
+ ':', 'b::c'])
+
+ def test_re_findall(self):
+ self.assertEqual(regex.findall(":+", "abc"), [])
+ self.assertEqual(regex.findall(":+", "a:b::c:::d"), [':', '::', ':::'])
+ self.assertEqual(regex.findall("(:+)", "a:b::c:::d"), [':', '::',
+ ':::'])
+ self.assertEqual(regex.findall("(:)(:*)", "a:b::c:::d"), [(':', ''),
+ (':', ':'), (':', '::')])
+
+ self.assertEqual(regex.findall(r"\((?P.{0,5}?TEST)\)",
+ "(MY TEST)"), ["MY TEST"])
+ self.assertEqual(regex.findall(r"\((?P.{0,3}?TEST)\)",
+ "(MY TEST)"), ["MY TEST"])
+ self.assertEqual(regex.findall(r"\((?P.{0,3}?T)\)", "(MY T)"),
+ ["MY T"])
+
+ self.assertEqual(regex.findall(r"[^a]{2}[A-Z]", "\n S"), [' S'])
+ self.assertEqual(regex.findall(r"[^a]{2,3}[A-Z]", "\n S"), ['\n S'])
+ self.assertEqual(regex.findall(r"[^a]{2,3}[A-Z]", "\n S"), [' S'])
+
+ self.assertEqual(regex.findall(r"X(Y[^Y]+?){1,2}( |Q)+DEF",
+ "XYABCYPPQ\nQ DEF"), [('YPPQ\n', ' ')])
+
+ self.assertEqual(regex.findall(r"(\nTest(\n+.+?){0,2}?)?\n+End",
+ "\nTest\nxyz\nxyz\nEnd"), [('\nTest\nxyz\nxyz', '\nxyz')])
+
+ def test_bug_117612(self):
+ self.assertEqual(regex.findall(r"(a|(b))", "aba"), [('a', ''), ('b',
+ 'b'), ('a', '')])
+
+ def test_re_match(self):
+ self.assertEqual(regex.match('a', 'a')[:], ('a',))
+ self.assertEqual(regex.match('(a)', 'a')[:], ('a', 'a'))
+ self.assertEqual(regex.match(r'(a)', 'a')[0], 'a')
+ self.assertEqual(regex.match(r'(a)', 'a')[1], 'a')
+ self.assertEqual(regex.match(r'(a)', 'a').group(1, 1), ('a', 'a'))
+
+ pat = regex.compile('((a)|(b))(c)?')
+ self.assertEqual(pat.match('a')[:], ('a', 'a', 'a', None, None))
+ self.assertEqual(pat.match('b')[:], ('b', 'b', None, 'b', None))
+ self.assertEqual(pat.match('ac')[:], ('ac', 'a', 'a', None, 'c'))
+ self.assertEqual(pat.match('bc')[:], ('bc', 'b', None, 'b', 'c'))
+ self.assertEqual(pat.match('bc')[:], ('bc', 'b', None, 'b', 'c'))
+
+ # A single group.
+ m = regex.match('(a)', 'a')
+ self.assertEqual(m.group(), 'a')
+ self.assertEqual(m.group(0), 'a')
+ self.assertEqual(m.group(1), 'a')
+ self.assertEqual(m.group(1, 1), ('a', 'a'))
+
+ pat = regex.compile('(?:(?Pa)|(?Pb))(?Pc)?')
+ self.assertEqual(pat.match('a').group(1, 2, 3), ('a', None, None))
+ self.assertEqual(pat.match('b').group('a1', 'b2', 'c3'), (None, 'b',
+ None))
+ self.assertEqual(pat.match('ac').group(1, 'b2', 3), ('a', None, 'c'))
+
+ def test_re_groupref_exists(self):
+ self.assertEqual(regex.match(r'^(\()?([^()]+)(?(1)\))$', '(a)')[:],
+ ('(a)', '(', 'a'))
+ self.assertEqual(regex.match(r'^(\()?([^()]+)(?(1)\))$', 'a')[:], ('a',
+ None, 'a'))
+ self.assertEqual(regex.match(r'^(\()?([^()]+)(?(1)\))$', 'a)'), None)
+ self.assertEqual(regex.match(r'^(\()?([^()]+)(?(1)\))$', '(a'), None)
+ self.assertEqual(regex.match('^(?:(a)|c)((?(1)b|d))$', 'ab')[:], ('ab',
+ 'a', 'b'))
+ self.assertEqual(regex.match('^(?:(a)|c)((?(1)b|d))$', 'cd')[:], ('cd',
+ None, 'd'))
+ self.assertEqual(regex.match('^(?:(a)|c)((?(1)|d))$', 'cd')[:], ('cd',
+ None, 'd'))
+ self.assertEqual(regex.match('^(?:(a)|c)((?(1)|d))$', 'a')[:], ('a',
+ 'a', ''))
+
+ # Tests for bug #1177831: exercise groups other than the first group.
+ p = regex.compile('(?Pa)(?Pb)?((?(g2)c|d))')
+ self.assertEqual(p.match('abc')[:], ('abc', 'a', 'b', 'c'))
+ self.assertEqual(p.match('ad')[:], ('ad', 'a', None, 'd'))
+ self.assertEqual(p.match('abd'), None)
+ self.assertEqual(p.match('ac'), None)
+
+ def test_re_groupref(self):
+ self.assertEqual(regex.match(r'^(\|)?([^()]+)\1$', '|a|')[:], ('|a|',
+ '|', 'a'))
+ self.assertEqual(regex.match(r'^(\|)?([^()]+)\1?$', 'a')[:], ('a',
+ None, 'a'))
+ self.assertEqual(regex.match(r'^(\|)?([^()]+)\1$', 'a|'), None)
+ self.assertEqual(regex.match(r'^(\|)?([^()]+)\1$', '|a'), None)
+ self.assertEqual(regex.match(r'^(?:(a)|c)(\1)$', 'aa')[:], ('aa', 'a',
+ 'a'))
+ self.assertEqual(regex.match(r'^(?:(a)|c)(\1)?$', 'c')[:], ('c', None,
+ None))
+
+ self.assertEqual(regex.findall(r"(?i)(.{1,40}?),(.{1,40}?)(?:;)+(.{1,80}).{1,40}?\3(\ |;)+(.{1,80}?)\1",
+ "TEST, BEST; LEST ; Lest 123 Test, Best"), [('TEST', ' BEST',
+ ' LEST', ' ', '123 ')])
+
+ def test_groupdict(self):
+ self.assertEqual(regex.match('(?Pfirst) (?Psecond)',
+ 'first second').groupdict(), {'first': 'first', 'second': 'second'})
+
+ def test_expand(self):
+ self.assertEqual(regex.match("(?Pfirst) (?Psecond)",
+ "first second").expand(r"\2 \1 \g \g"),
+ 'second first second first')
+
+ def test_repeat_minmax(self):
+ self.assertEqual(regex.match(r"^(\w){1}$", "abc"), None)
+ self.assertEqual(regex.match(r"^(\w){1}?$", "abc"), None)
+ self.assertEqual(regex.match(r"^(\w){1,2}$", "abc"), None)
+ self.assertEqual(regex.match(r"^(\w){1,2}?$", "abc"), None)
+
+ self.assertEqual(regex.match(r"^(\w){3}$", "abc")[1], 'c')
+ self.assertEqual(regex.match(r"^(\w){1,3}$", "abc")[1], 'c')
+ self.assertEqual(regex.match(r"^(\w){1,4}$", "abc")[1], 'c')
+ self.assertEqual(regex.match(r"^(\w){3,4}?$", "abc")[1], 'c')
+ self.assertEqual(regex.match(r"^(\w){3}?$", "abc")[1], 'c')
+ self.assertEqual(regex.match(r"^(\w){1,3}?$", "abc")[1], 'c')
+ self.assertEqual(regex.match(r"^(\w){1,4}?$", "abc")[1], 'c')
+ self.assertEqual(regex.match(r"^(\w){3,4}?$", "abc")[1], 'c')
+
+ self.assertEqual(regex.match("^x{1}$", "xxx"), None)
+ self.assertEqual(regex.match("^x{1}?$", "xxx"), None)
+ self.assertEqual(regex.match("^x{1,2}$", "xxx"), None)
+ self.assertEqual(regex.match("^x{1,2}?$", "xxx"), None)
+
+ self.assertEqual(regex.match("^x{1}", "xxx")[0], 'x')
+ self.assertEqual(regex.match("^x{1}?", "xxx")[0], 'x')
+ self.assertEqual(regex.match("^x{0,1}", "xxx")[0], 'x')
+ self.assertEqual(regex.match("^x{0,1}?", "xxx")[0], '')
+
+ self.assertEqual(bool(regex.match("^x{3}$", "xxx")), True)
+ self.assertEqual(bool(regex.match("^x{1,3}$", "xxx")), True)
+ self.assertEqual(bool(regex.match("^x{1,4}$", "xxx")), True)
+ self.assertEqual(bool(regex.match("^x{3,4}?$", "xxx")), True)
+ self.assertEqual(bool(regex.match("^x{3}?$", "xxx")), True)
+ self.assertEqual(bool(regex.match("^x{1,3}?$", "xxx")), True)
+ self.assertEqual(bool(regex.match("^x{1,4}?$", "xxx")), True)
+ self.assertEqual(bool(regex.match("^x{3,4}?$", "xxx")), True)
+
+ self.assertEqual(regex.match("^x{}$", "xxx"), None)
+ self.assertEqual(bool(regex.match("^x{}$", "x{}")), True)
+
+ def test_getattr(self):
+ self.assertEqual(regex.compile("(?i)(a)(b)").pattern, '(?i)(a)(b)')
+ self.assertEqual(regex.compile("(?i)(a)(b)").flags, regex.I | regex.U |
+ regex.DEFAULT_VERSION)
+ self.assertEqual(regex.compile(b"(?i)(a)(b)").flags, regex.A | regex.I
+ | regex.DEFAULT_VERSION)
+ self.assertEqual(regex.compile("(?i)(a)(b)").groups, 2)
+ self.assertEqual(regex.compile("(?i)(a)(b)").groupindex, {})
+
+ self.assertEqual(regex.compile("(?i)(?Pa)(?Pb)").groupindex,
+ {'first': 1, 'other': 2})
+
+ self.assertEqual(regex.match("(a)", "a").pos, 0)
+ self.assertEqual(regex.match("(a)", "a").endpos, 1)
+
+ self.assertEqual(regex.search("b(c)", "abcdef").pos, 0)
+ self.assertEqual(regex.search("b(c)", "abcdef").endpos, 6)
+ self.assertEqual(regex.search("b(c)", "abcdef").span(), (1, 3))
+ self.assertEqual(regex.search("b(c)", "abcdef").span(1), (2, 3))
+
+ self.assertEqual(regex.match("(a)", "a").string, 'a')
+ self.assertEqual(regex.match("(a)", "a").regs, ((0, 1), (0, 1)))
+ self.assertEqual(repr(type(regex.match("(a)", "a").re)),
+ self.PATTERN_CLASS)
+
+ # Issue 14260.
+ p = regex.compile(r'abc(?Pdef)')
+ p.groupindex["n"] = 0
+ self.assertEqual(p.groupindex["n"], 1)
+
+ def test_special_escapes(self):
+ self.assertEqual(regex.search(r"\b(b.)\b", "abcd abc bcd bx")[1], 'bx')
+ self.assertEqual(regex.search(r"\B(b.)\B", "abc bcd bc abxd")[1], 'bx')
+ self.assertEqual(regex.search(br"\b(b.)\b", b"abcd abc bcd bx",
+ regex.LOCALE)[1], b'bx')
+ self.assertEqual(regex.search(br"\B(b.)\B", b"abc bcd bc abxd",
+ regex.LOCALE)[1], b'bx')
+ self.assertEqual(regex.search(r"\b(b.)\b", "abcd abc bcd bx",
+ regex.UNICODE)[1], 'bx')
+ self.assertEqual(regex.search(r"\B(b.)\B", "abc bcd bc abxd",
+ regex.UNICODE)[1], 'bx')
+
+ self.assertEqual(regex.search(r"^abc$", "\nabc\n", regex.M)[0], 'abc')
+ self.assertEqual(regex.search(r"^\Aabc\Z$", "abc", regex.M)[0], 'abc')
+ self.assertEqual(regex.search(r"^\Aabc\Z$", "\nabc\n", regex.M), None)
+
+ self.assertEqual(regex.search(br"\b(b.)\b", b"abcd abc bcd bx")[1],
+ b'bx')
+ self.assertEqual(regex.search(br"\B(b.)\B", b"abc bcd bc abxd")[1],
+ b'bx')
+ self.assertEqual(regex.search(br"^abc$", b"\nabc\n", regex.M)[0],
+ b'abc')
+ self.assertEqual(regex.search(br"^\Aabc\Z$", b"abc", regex.M)[0],
+ b'abc')
+ self.assertEqual(regex.search(br"^\Aabc\Z$", b"\nabc\n", regex.M),
+ None)
+
+ self.assertEqual(regex.search(r"\d\D\w\W\s\S", "1aa! a")[0], '1aa! a')
+ self.assertEqual(regex.search(br"\d\D\w\W\s\S", b"1aa! a",
+ regex.LOCALE)[0], b'1aa! a')
+ self.assertEqual(regex.search(r"\d\D\w\W\s\S", "1aa! a",
+ regex.UNICODE)[0], '1aa! a')
+
+ def test_bigcharset(self):
+ self.assertEqual(regex.match(r"([\u2222\u2223])", "\u2222")[1],
+ '\u2222')
+ self.assertEqual(regex.match(r"([\u2222\u2223])", "\u2222",
+ regex.UNICODE)[1], '\u2222')
+ self.assertEqual("".join(regex.findall(".",
+ "e\xe8\xe9\xea\xeb\u0113\u011b\u0117", flags=regex.UNICODE)),
+ 'e\xe8\xe9\xea\xeb\u0113\u011b\u0117')
+ self.assertEqual("".join(regex.findall(r"[e\xe8\xe9\xea\xeb\u0113\u011b\u0117]",
+ "e\xe8\xe9\xea\xeb\u0113\u011b\u0117", flags=regex.UNICODE)),
+ 'e\xe8\xe9\xea\xeb\u0113\u011b\u0117')
+ self.assertEqual("".join(regex.findall(r"e|\xe8|\xe9|\xea|\xeb|\u0113|\u011b|\u0117",
+ "e\xe8\xe9\xea\xeb\u0113\u011b\u0117", flags=regex.UNICODE)),
+ 'e\xe8\xe9\xea\xeb\u0113\u011b\u0117')
+
+ def test_anyall(self):
+ self.assertEqual(regex.match("a.b", "a\nb", regex.DOTALL)[0], "a\nb")
+ self.assertEqual(regex.match("a.*b", "a\n\nb", regex.DOTALL)[0],
+ "a\n\nb")
+
+ def test_non_consuming(self):
+ self.assertEqual(regex.match(r"(a(?=\s[^a]))", "a b")[1], 'a')
+ self.assertEqual(regex.match(r"(a(?=\s[^a]*))", "a b")[1], 'a')
+ self.assertEqual(regex.match(r"(a(?=\s[abc]))", "a b")[1], 'a')
+ self.assertEqual(regex.match(r"(a(?=\s[abc]*))", "a bc")[1], 'a')
+ self.assertEqual(regex.match(r"(a)(?=\s\1)", "a a")[1], 'a')
+ self.assertEqual(regex.match(r"(a)(?=\s\1*)", "a aa")[1], 'a')
+ self.assertEqual(regex.match(r"(a)(?=\s(abc|a))", "a a")[1], 'a')
+
+ self.assertEqual(regex.match(r"(a(?!\s[^a]))", "a a")[1], 'a')
+ self.assertEqual(regex.match(r"(a(?!\s[abc]))", "a d")[1], 'a')
+ self.assertEqual(regex.match(r"(a)(?!\s\1)", "a b")[1], 'a')
+ self.assertEqual(regex.match(r"(a)(?!\s(abc|a))", "a b")[1], 'a')
+
+ def test_ignore_case(self):
+ self.assertEqual(regex.match("abc", "ABC", regex.I)[0], 'ABC')
+ self.assertEqual(regex.match(b"abc", b"ABC", regex.I)[0], b'ABC')
+
+ self.assertEqual(regex.match(r"(a\s[^a]*)", "a bb", regex.I)[1],
+ 'a bb')
+ self.assertEqual(regex.match(r"(a\s[abc])", "a b", regex.I)[1], 'a b')
+ self.assertEqual(regex.match(r"(a\s[abc]*)", "a bb", regex.I)[1],
+ 'a bb')
+ self.assertEqual(regex.match(r"((a)\s\2)", "a a", regex.I)[1], 'a a')
+ self.assertEqual(regex.match(r"((a)\s\2*)", "a aa", regex.I)[1],
+ 'a aa')
+ self.assertEqual(regex.match(r"((a)\s(abc|a))", "a a", regex.I)[1],
+ 'a a')
+ self.assertEqual(regex.match(r"((a)\s(abc|a)*)", "a aa", regex.I)[1],
+ 'a aa')
+
+ # Issue 3511.
+ self.assertEqual(regex.match(r"[Z-a]", "_").span(), (0, 1))
+ self.assertEqual(regex.match(r"(?i)[Z-a]", "_").span(), (0, 1))
+
+ self.assertEqual(bool(regex.match(r"(?i)nao", "nAo")), True)
+ self.assertEqual(bool(regex.match(r"(?i)n\xE3o", "n\xC3o")), True)
+ self.assertEqual(bool(regex.match(r"(?i)n\xE3o", "N\xC3O")), True)
+ self.assertEqual(bool(regex.match(r"(?i)s", "\u017F")), True)
+
+ def test_case_folding(self):
+ self.assertEqual(regex.search(r"(?fi)ss", "SS").span(), (0, 2))
+ self.assertEqual(regex.search(r"(?fi)SS", "ss").span(), (0, 2))
+ self.assertEqual(regex.search(r"(?fi)SS",
+ "\N{LATIN SMALL LETTER SHARP S}").span(), (0, 1))
+ self.assertEqual(regex.search(r"(?fi)\N{LATIN SMALL LETTER SHARP S}",
+ "SS").span(), (0, 2))
+
+ self.assertEqual(regex.search(r"(?fi)\N{LATIN SMALL LIGATURE ST}",
+ "ST").span(), (0, 2))
+ self.assertEqual(regex.search(r"(?fi)ST",
+ "\N{LATIN SMALL LIGATURE ST}").span(), (0, 1))
+ self.assertEqual(regex.search(r"(?fi)ST",
+ "\N{LATIN SMALL LIGATURE LONG S T}").span(), (0, 1))
+
+ self.assertEqual(regex.search(r"(?fi)SST",
+ "\N{LATIN SMALL LETTER SHARP S}t").span(), (0, 2))
+ self.assertEqual(regex.search(r"(?fi)SST",
+ "s\N{LATIN SMALL LIGATURE LONG S T}").span(), (0, 2))
+ self.assertEqual(regex.search(r"(?fi)SST",
+ "s\N{LATIN SMALL LIGATURE ST}").span(), (0, 2))
+ self.assertEqual(regex.search(r"(?fi)\N{LATIN SMALL LIGATURE ST}",
+ "SST").span(), (1, 3))
+ self.assertEqual(regex.search(r"(?fi)SST",
+ "s\N{LATIN SMALL LIGATURE ST}").span(), (0, 2))
+
+ self.assertEqual(regex.search(r"(?fi)FFI",
+ "\N{LATIN SMALL LIGATURE FFI}").span(), (0, 1))
+ self.assertEqual(regex.search(r"(?fi)FFI",
+ "\N{LATIN SMALL LIGATURE FF}i").span(), (0, 2))
+ self.assertEqual(regex.search(r"(?fi)FFI",
+ "f\N{LATIN SMALL LIGATURE FI}").span(), (0, 2))
+ self.assertEqual(regex.search(r"(?fi)\N{LATIN SMALL LIGATURE FFI}",
+ "FFI").span(), (0, 3))
+ self.assertEqual(regex.search(r"(?fi)\N{LATIN SMALL LIGATURE FF}i",
+ "FFI").span(), (0, 3))
+ self.assertEqual(regex.search(r"(?fi)f\N{LATIN SMALL LIGATURE FI}",
+ "FFI").span(), (0, 3))
+
+ sigma = "\u03A3\u03C3\u03C2"
+ for ch1 in sigma:
+ for ch2 in sigma:
+ if not regex.match(r"(?fi)" + ch1, ch2):
+ self.fail()
+
+ self.assertEqual(bool(regex.search(r"(?iV1)ff", "\uFB00\uFB01")),
+ True)
+ self.assertEqual(bool(regex.search(r"(?iV1)ff", "\uFB01\uFB00")),
+ True)
+ self.assertEqual(bool(regex.search(r"(?iV1)fi", "\uFB00\uFB01")),
+ True)
+ self.assertEqual(bool(regex.search(r"(?iV1)fi", "\uFB01\uFB00")),
+ True)
+ self.assertEqual(bool(regex.search(r"(?iV1)fffi", "\uFB00\uFB01")),
+ True)
+ self.assertEqual(bool(regex.search(r"(?iV1)f\uFB03",
+ "\uFB00\uFB01")), True)
+ self.assertEqual(bool(regex.search(r"(?iV1)ff", "\uFB00\uFB01")),
+ True)
+ self.assertEqual(bool(regex.search(r"(?iV1)fi", "\uFB00\uFB01")),
+ True)
+ self.assertEqual(bool(regex.search(r"(?iV1)fffi", "\uFB00\uFB01")),
+ True)
+ self.assertEqual(bool(regex.search(r"(?iV1)f\uFB03",
+ "\uFB00\uFB01")), True)
+ self.assertEqual(bool(regex.search(r"(?iV1)f\uFB01", "\uFB00i")),
+ True)
+ self.assertEqual(bool(regex.search(r"(?iV1)f\uFB01", "\uFB00i")),
+ True)
+
+ self.assertEqual(regex.findall(r"(?iV0)\m(?:word){e<=3}\M(?ne", "affine",
+ options=["\N{LATIN SMALL LIGATURE FFI}"]).span(), (0, 6))
+ self.assertEqual(regex.search(r"(?fi)a\Lne",
+ "a\N{LATIN SMALL LIGATURE FFI}ne", options=["ffi"]).span(), (0, 4))
+
+ def test_category(self):
+ self.assertEqual(regex.match(r"(\s)", " ")[1], ' ')
+
+ def test_not_literal(self):
+ self.assertEqual(regex.search(r"\s([^a])", " b")[1], 'b')
+ self.assertEqual(regex.search(r"\s([^a]*)", " bb")[1], 'bb')
+
+ def test_search_coverage(self):
+ self.assertEqual(regex.search(r"\s(b)", " b")[1], 'b')
+ self.assertEqual(regex.search(r"a\s", "a ")[0], 'a ')
+
+ def test_re_escape(self):
+ p = ""
+ self.assertEqual(regex.escape(p), p)
+ for i in range(0, 256):
+ p += chr(i)
+ self.assertEqual(bool(regex.match(regex.escape(chr(i)), chr(i))),
+ True)
+ self.assertEqual(regex.match(regex.escape(chr(i)), chr(i)).span(),
+ (0, 1))
+
+ pat = regex.compile(regex.escape(p))
+ self.assertEqual(pat.match(p).span(), (0, 256))
+
+ def test_re_escape_byte(self):
+ p = b""
+ self.assertEqual(regex.escape(p), p)
+ for i in range(0, 256):
+ b = bytes([i])
+ p += b
+ self.assertEqual(bool(regex.match(regex.escape(b), b)), True)
+ self.assertEqual(regex.match(regex.escape(b), b).span(), (0, 1))
+
+ pat = regex.compile(regex.escape(p))
+ self.assertEqual(pat.match(p).span(), (0, 256))
+
+ def test_constants(self):
+ if regex.I != regex.IGNORECASE:
+ self.fail()
+ if regex.L != regex.LOCALE:
+ self.fail()
+ if regex.M != regex.MULTILINE:
+ self.fail()
+ if regex.S != regex.DOTALL:
+ self.fail()
+ if regex.X != regex.VERBOSE:
+ self.fail()
+
+ def test_flags(self):
+ for flag in [regex.I, regex.M, regex.X, regex.S, regex.L]:
+ self.assertEqual(repr(type(regex.compile('^pattern$', flag))),
+ self.PATTERN_CLASS)
+
+ def test_sre_character_literals(self):
+ for i in [0, 8, 16, 32, 64, 127, 128, 255]:
+ self.assertEqual(bool(regex.match(r"\%03o" % i, chr(i))), True)
+ self.assertEqual(bool(regex.match(r"\%03o0" % i, chr(i) + "0")),
+ True)
+ self.assertEqual(bool(regex.match(r"\%03o8" % i, chr(i) + "8")),
+ True)
+ self.assertEqual(bool(regex.match(r"\x%02x" % i, chr(i))), True)
+ self.assertEqual(bool(regex.match(r"\x%02x0" % i, chr(i) + "0")),
+ True)
+ self.assertEqual(bool(regex.match(r"\x%02xz" % i, chr(i) + "z")),
+ True)
+
+ self.assertRaisesRegex(regex.error, self.INVALID_GROUP_REF, lambda:
+ regex.match(r"\911", ""))
+
+ def test_sre_character_class_literals(self):
+ for i in [0, 8, 16, 32, 64, 127, 128, 255]:
+ self.assertEqual(bool(regex.match(r"[\%03o]" % i, chr(i))), True)
+ self.assertEqual(bool(regex.match(r"[\%03o0]" % i, chr(i))), True)
+ self.assertEqual(bool(regex.match(r"[\%03o8]" % i, chr(i))), True)
+ self.assertEqual(bool(regex.match(r"[\x%02x]" % i, chr(i))), True)
+ self.assertEqual(bool(regex.match(r"[\x%02x0]" % i, chr(i))), True)
+ self.assertEqual(bool(regex.match(r"[\x%02xz]" % i, chr(i))), True)
+
+ self.assertRaisesRegex(regex.error, self.BAD_OCTAL_ESCAPE, lambda:
+ regex.match(r"[\911]", ""))
+
+ def test_bug_113254(self):
+ self.assertEqual(regex.match(r'(a)|(b)', 'b').start(1), -1)
+ self.assertEqual(regex.match(r'(a)|(b)', 'b').end(1), -1)
+ self.assertEqual(regex.match(r'(a)|(b)', 'b').span(1), (-1, -1))
+
+ def test_bug_527371(self):
+ # Bug described in patches 527371/672491.
+ self.assertEqual(regex.match(r'(a)?a','a').lastindex, None)
+ self.assertEqual(regex.match(r'(a)(b)?b','ab').lastindex, 1)
+ self.assertEqual(regex.match(r'(?Pa)(?Pb)?b','ab').lastgroup,
+ 'a')
+ self.assertEqual(regex.match("(?Pa(b))", "ab").lastgroup, 'a')
+ self.assertEqual(regex.match("((a))", "a").lastindex, 1)
+
+ def test_bug_545855(self):
+ # Bug 545855 -- This pattern failed to cause a compile error as it
+ # should, instead provoking a TypeError.
+ self.assertRaisesRegex(regex.error, self.BAD_SET, lambda:
+ regex.compile('foo[a-'))
+
+ def test_bug_418626(self):
+ # Bugs 418626 at al. -- Testing Greg Chapman's addition of op code
+ # SRE_OP_MIN_REPEAT_ONE for eliminating recursion on simple uses of
+ # pattern '*?' on a long string.
+ self.assertEqual(regex.match('.*?c', 10000 * 'ab' + 'cd').end(0),
+ 20001)
+ self.assertEqual(regex.match('.*?cd', 5000 * 'ab' + 'c' + 5000 * 'ab' +
+ 'cde').end(0), 20003)
+ self.assertEqual(regex.match('.*?cd', 20000 * 'abc' + 'de').end(0),
+ 60001)
+ # Non-simple '*?' still used to hit the recursion limit, before the
+ # non-recursive scheme was implemented.
+ self.assertEqual(regex.search('(a|b)*?c', 10000 * 'ab' + 'cd').end(0),
+ 20001)
+
+ def test_bug_612074(self):
+ pat = "[" + regex.escape("\u2039") + "]"
+ self.assertEqual(regex.compile(pat) and 1, 1)
+
+ def test_stack_overflow(self):
+ # Nasty cases that used to overflow the straightforward recursive
+ # implementation of repeated groups.
+ self.assertEqual(regex.match('(x)*', 50000 * 'x')[1], 'x')
+ self.assertEqual(regex.match('(x)*y', 50000 * 'x' + 'y')[1], 'x')
+ self.assertEqual(regex.match('(x)*?y', 50000 * 'x' + 'y')[1], 'x')
+
+ def test_scanner(self):
+ def s_ident(scanner, token): return token
+ def s_operator(scanner, token): return "op%s" % token
+ def s_float(scanner, token): return float(token)
+ def s_int(scanner, token): return int(token)
+
+ scanner = regex.Scanner([(r"[a-zA-Z_]\w*", s_ident), (r"\d+\.\d*",
+ s_float), (r"\d+", s_int), (r"=|\+|-|\*|/", s_operator), (r"\s+",
+ None), ])
+
+ self.assertEqual(repr(type(scanner.scanner.scanner("").pattern)),
+ self.PATTERN_CLASS)
+
+ self.assertEqual(scanner.scan("sum = 3*foo + 312.50 + bar"), (['sum',
+ 'op=', 3, 'op*', 'foo', 'op+', 312.5, 'op+', 'bar'], ''))
+
+ def test_bug_448951(self):
+ # Bug 448951 (similar to 429357, but with single char match).
+ # (Also test greedy matches.)
+ for op in '', '?', '*':
+ self.assertEqual(regex.match(r'((.%s):)?z' % op, 'z')[:], ('z',
+ None, None))
+ self.assertEqual(regex.match(r'((.%s):)?z' % op, 'a:z')[:], ('a:z',
+ 'a:', 'a'))
+
+ def test_bug_725106(self):
+ # Capturing groups in alternatives in repeats.
+ self.assertEqual(regex.match('^((a)|b)*', 'abc')[:], ('ab', 'b', 'a'))
+ self.assertEqual(regex.match('^(([ab])|c)*', 'abc')[:], ('abc', 'c',
+ 'b'))
+ self.assertEqual(regex.match('^((d)|[ab])*', 'abc')[:], ('ab', 'b',
+ None))
+ self.assertEqual(regex.match('^((a)c|[ab])*', 'abc')[:], ('ab', 'b',
+ None))
+ self.assertEqual(regex.match('^((a)|b)*?c', 'abc')[:], ('abc', 'b',
+ 'a'))
+ self.assertEqual(regex.match('^(([ab])|c)*?d', 'abcd')[:], ('abcd',
+ 'c', 'b'))
+ self.assertEqual(regex.match('^((d)|[ab])*?c', 'abc')[:], ('abc', 'b',
+ None))
+ self.assertEqual(regex.match('^((a)c|[ab])*?c', 'abc')[:], ('abc', 'b',
+ None))
+
+ def test_bug_725149(self):
+ # Mark_stack_base restoring before restoring marks.
+ self.assertEqual(regex.match('(a)(?:(?=(b)*)c)*', 'abb')[:], ('a', 'a',
+ None))
+ self.assertEqual(regex.match('(a)((?!(b)*))*', 'abb')[:], ('a', 'a',
+ None, None))
+
+ def test_bug_764548(self):
+ # Bug 764548, regex.compile() barfs on str/unicode subclasses.
+ class my_unicode(str): pass
+ pat = regex.compile(my_unicode("abc"))
+ self.assertEqual(pat.match("xyz"), None)
+
+ def test_finditer(self):
+ it = regex.finditer(r":+", "a:b::c:::d")
+ self.assertEqual([item[0] for item in it], [':', '::', ':::'])
+
+ def test_bug_926075(self):
+ if regex.compile('bug_926075') is regex.compile(b'bug_926075'):
+ self.fail()
+
+ def test_bug_931848(self):
+ pattern = "[\u002E\u3002\uFF0E\uFF61]"
+ self.assertEqual(regex.compile(pattern).split("a.b.c"), ['a', 'b',
+ 'c'])
+
+ def test_bug_581080(self):
+ it = regex.finditer(r"\s", "a b")
+ self.assertEqual(next(it).span(), (1, 2))
+ self.assertRaises(StopIteration, lambda: next(it))
+
+ scanner = regex.compile(r"\s").scanner("a b")
+ self.assertEqual(scanner.search().span(), (1, 2))
+ self.assertEqual(scanner.search(), None)
+
+ def test_bug_817234(self):
+ it = regex.finditer(r".*", "asdf")
+ self.assertEqual(next(it).span(), (0, 4))
+ self.assertEqual(next(it).span(), (4, 4))
+ self.assertRaises(StopIteration, lambda: next(it))
+
+ def test_empty_array(self):
+ # SF buf 1647541.
+ import array
+ for typecode in 'bBuhHiIlLfd':
+ a = array.array(typecode)
+ self.assertEqual(regex.compile(b"bla").match(a), None)
+ self.assertEqual(regex.compile(b"").match(a)[1 : ], ())
+
+ def test_inline_flags(self):
+ # Bug #1700.
+ upper_char = chr(0x1ea0) # Latin Capital Letter A with Dot Below
+ lower_char = chr(0x1ea1) # Latin Small Letter A with Dot Below
+
+ p = regex.compile(upper_char, regex.I | regex.U)
+ self.assertEqual(bool(p.match(lower_char)), True)
+
+ p = regex.compile(lower_char, regex.I | regex.U)
+ self.assertEqual(bool(p.match(upper_char)), True)
+
+ p = regex.compile('(?i)' + upper_char, regex.U)
+ self.assertEqual(bool(p.match(lower_char)), True)
+
+ p = regex.compile('(?i)' + lower_char, regex.U)
+ self.assertEqual(bool(p.match(upper_char)), True)
+
+ p = regex.compile('(?iu)' + upper_char)
+ self.assertEqual(bool(p.match(lower_char)), True)
+
+ p = regex.compile('(?iu)' + lower_char)
+ self.assertEqual(bool(p.match(upper_char)), True)
+
+ # Changed to positional flags in regex 2023.12.23.
+ self.assertEqual(bool(regex.match(r"(?i)a", "A")), True)
+ self.assertEqual(regex.match(r"a(?i)", "A"), None)
+
+ def test_dollar_matches_twice(self):
+ # $ matches the end of string, and just before the terminating \n.
+ pattern = regex.compile('$')
+ self.assertEqual(pattern.sub('#', 'a\nb\n'), 'a\nb#\n#')
+ self.assertEqual(pattern.sub('#', 'a\nb\nc'), 'a\nb\nc#')
+ self.assertEqual(pattern.sub('#', '\n'), '#\n#')
+
+ pattern = regex.compile('$', regex.MULTILINE)
+ self.assertEqual(pattern.sub('#', 'a\nb\n' ), 'a#\nb#\n#')
+ self.assertEqual(pattern.sub('#', 'a\nb\nc'), 'a#\nb#\nc#')
+ self.assertEqual(pattern.sub('#', '\n'), '#\n#')
+
+ def test_bytes_str_mixing(self):
+ # Mixing str and bytes is disallowed.
+ pat = regex.compile('.')
+ bpat = regex.compile(b'.')
+ self.assertRaisesRegex(TypeError, self.STR_PAT_ON_BYTES, lambda:
+ pat.match(b'b'))
+ self.assertRaisesRegex(TypeError, self.BYTES_PAT_ON_STR, lambda:
+ bpat.match('b'))
+ self.assertRaisesRegex(TypeError, self.STR_PAT_BYTES_TEMPL, lambda:
+ pat.sub(b'b', 'c'))
+ self.assertRaisesRegex(TypeError, self.STR_PAT_ON_BYTES, lambda:
+ pat.sub('b', b'c'))
+ self.assertRaisesRegex(TypeError, self.STR_PAT_ON_BYTES, lambda:
+ pat.sub(b'b', b'c'))
+ self.assertRaisesRegex(TypeError, self.BYTES_PAT_ON_STR, lambda:
+ bpat.sub(b'b', 'c'))
+ self.assertRaisesRegex(TypeError, self.BYTES_PAT_STR_TEMPL, lambda:
+ bpat.sub('b', b'c'))
+ self.assertRaisesRegex(TypeError, self.BYTES_PAT_ON_STR, lambda:
+ bpat.sub('b', 'c'))
+
+ self.assertRaisesRegex(ValueError, self.BYTES_PAT_UNI_FLAG, lambda:
+ regex.compile(br'\w', regex.UNICODE))
+ self.assertRaisesRegex(ValueError, self.BYTES_PAT_UNI_FLAG, lambda:
+ regex.compile(br'(?u)\w'))
+ self.assertRaisesRegex(ValueError, self.MIXED_FLAGS, lambda:
+ regex.compile(r'\w', regex.UNICODE | regex.ASCII))
+ self.assertRaisesRegex(ValueError, self.MIXED_FLAGS, lambda:
+ regex.compile(r'(?u)\w', regex.ASCII))
+ self.assertRaisesRegex(ValueError, self.MIXED_FLAGS, lambda:
+ regex.compile(r'(?a)\w', regex.UNICODE))
+ self.assertRaisesRegex(ValueError, self.MIXED_FLAGS, lambda:
+ regex.compile(r'(?au)\w'))
+
+ def test_ascii_and_unicode_flag(self):
+ # String patterns.
+ for flags in (0, regex.UNICODE):
+ pat = regex.compile('\xc0', flags | regex.IGNORECASE)
+ self.assertEqual(bool(pat.match('\xe0')), True)
+ pat = regex.compile(r'\w', flags)
+ self.assertEqual(bool(pat.match('\xe0')), True)
+
+ pat = regex.compile('\xc0', regex.ASCII | regex.IGNORECASE)
+ self.assertEqual(pat.match('\xe0'), None)
+ pat = regex.compile('(?a)\xc0', regex.IGNORECASE)
+ self.assertEqual(pat.match('\xe0'), None)
+ pat = regex.compile(r'\w', regex.ASCII)
+ self.assertEqual(pat.match('\xe0'), None)
+ pat = regex.compile(r'(?a)\w')
+ self.assertEqual(pat.match('\xe0'), None)
+
+ # Bytes patterns.
+ for flags in (0, regex.ASCII):
+ pat = regex.compile(b'\xc0', flags | regex.IGNORECASE)
+ self.assertEqual(pat.match(b'\xe0'), None)
+ pat = regex.compile(br'\w')
+ self.assertEqual(pat.match(b'\xe0'), None)
+
+ self.assertRaisesRegex(ValueError, self.MIXED_FLAGS, lambda:
+ regex.compile(r'(?au)\w'))
+
+ def test_subscripting_match(self):
+ m = regex.match(r'(?\w)', 'xy')
+ if not m:
+ self.fail("Failed: expected match but returned None")
+ elif not m or m[0] != m.group(0) or m[1] != m.group(1):
+ self.fail("Failed")
+ if not m:
+ self.fail("Failed: expected match but returned None")
+ elif m[:] != ('x', 'x'):
+ self.fail("Failed: expected \"('x', 'x')\" but got {} instead".format(ascii(m[:])))
+
+ def test_new_named_groups(self):
+ m0 = regex.match(r'(?P\w)', 'x')
+ m1 = regex.match(r'(?\w)', 'x')
+ if not (m0 and m1 and m0[:] == m1[:]):
+ self.fail("Failed")
+
+ def test_properties(self):
+ self.assertEqual(regex.match(b'(?ai)\xC0', b'\xE0'), None)
+ self.assertEqual(regex.match(br'(?ai)\xC0', b'\xE0'), None)
+ self.assertEqual(regex.match(br'(?a)\w', b'\xE0'), None)
+ self.assertEqual(bool(regex.match(r'\w', '\xE0')), True)
+
+ # Dropped the following test. It's not possible to determine what the
+ # correct result should be in the general case.
+# self.assertEqual(bool(regex.match(br'(?L)\w', b'\xE0')),
+# b'\xE0'.isalnum())
+
+ self.assertEqual(bool(regex.match(br'(?L)\d', b'0')), True)
+ self.assertEqual(bool(regex.match(br'(?L)\s', b' ')), True)
+ self.assertEqual(bool(regex.match(br'(?L)\w', b'a')), True)
+ self.assertEqual(regex.match(br'(?L)\d', b'?'), None)
+ self.assertEqual(regex.match(br'(?L)\s', b'?'), None)
+ self.assertEqual(regex.match(br'(?L)\w', b'?'), None)
+
+ self.assertEqual(regex.match(br'(?L)\D', b'0'), None)
+ self.assertEqual(regex.match(br'(?L)\S', b' '), None)
+ self.assertEqual(regex.match(br'(?L)\W', b'a'), None)
+ self.assertEqual(bool(regex.match(br'(?L)\D', b'?')), True)
+ self.assertEqual(bool(regex.match(br'(?L)\S', b'?')), True)
+ self.assertEqual(bool(regex.match(br'(?L)\W', b'?')), True)
+
+ self.assertEqual(bool(regex.match(r'\p{Cyrillic}',
+ '\N{CYRILLIC CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'(?i)\p{Cyrillic}',
+ '\N{CYRILLIC CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'\p{IsCyrillic}',
+ '\N{CYRILLIC CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'\p{Script=Cyrillic}',
+ '\N{CYRILLIC CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'\p{InCyrillic}',
+ '\N{CYRILLIC CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'\p{Block=Cyrillic}',
+ '\N{CYRILLIC CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'[[:Cyrillic:]]',
+ '\N{CYRILLIC CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'[[:IsCyrillic:]]',
+ '\N{CYRILLIC CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'[[:Script=Cyrillic:]]',
+ '\N{CYRILLIC CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'[[:InCyrillic:]]',
+ '\N{CYRILLIC CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'[[:Block=Cyrillic:]]',
+ '\N{CYRILLIC CAPITAL LETTER A}')), True)
+
+ self.assertEqual(bool(regex.match(r'\P{Cyrillic}',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'\P{IsCyrillic}',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'\P{Script=Cyrillic}',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'\P{InCyrillic}',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'\P{Block=Cyrillic}',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'\p{^Cyrillic}',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'\p{^IsCyrillic}',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'\p{^Script=Cyrillic}',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'\p{^InCyrillic}',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'\p{^Block=Cyrillic}',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'[[:^Cyrillic:]]',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'[[:^IsCyrillic:]]',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'[[:^Script=Cyrillic:]]',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'[[:^InCyrillic:]]',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+ self.assertEqual(bool(regex.match(r'[[:^Block=Cyrillic:]]',
+ '\N{LATIN CAPITAL LETTER A}')), True)
+
+ self.assertEqual(bool(regex.match(r'\d', '0')), True)
+ self.assertEqual(bool(regex.match(r'\s', ' ')), True)
+ self.assertEqual(bool(regex.match(r'\w', 'A')), True)
+ self.assertEqual(regex.match(r"\d", "?"), None)
+ self.assertEqual(regex.match(r"\s", "?"), None)
+ self.assertEqual(regex.match(r"\w", "?"), None)
+ self.assertEqual(regex.match(r"\D", "0"), None)
+ self.assertEqual(regex.match(r"\S", " "), None)
+ self.assertEqual(regex.match(r"\W", "A"), None)
+ self.assertEqual(bool(regex.match(r'\D', '?')), True)
+ self.assertEqual(bool(regex.match(r'\S', '?')), True)
+ self.assertEqual(bool(regex.match(r'\W', '?')), True)
+
+ self.assertEqual(bool(regex.match(r'\p{L}', 'A')), True)
+ self.assertEqual(bool(regex.match(r'\p{L}', 'a')), True)
+ self.assertEqual(bool(regex.match(r'\p{Lu}', 'A')), True)
+ self.assertEqual(bool(regex.match(r'\p{Ll}', 'a')), True)
+
+ self.assertEqual(bool(regex.match(r'(?i)a', 'a')), True)
+ self.assertEqual(bool(regex.match(r'(?i)a', 'A')), True)
+
+ self.assertEqual(bool(regex.match(r'\w', '0')), True)
+ self.assertEqual(bool(regex.match(r'\w', 'a')), True)
+ self.assertEqual(bool(regex.match(r'\w', '_')), True)
+
+ self.assertEqual(regex.match(r"\X", "\xE0").span(), (0, 1))
+ self.assertEqual(regex.match(r"\X", "a\u0300").span(), (0, 2))
+ self.assertEqual(regex.findall(r"\X",
+ "a\xE0a\u0300e\xE9e\u0301"), ['a', '\xe0', 'a\u0300', 'e',
+ '\xe9', 'e\u0301'])
+ self.assertEqual(regex.findall(r"\X{3}",
+ "a\xE0a\u0300e\xE9e\u0301"), ['a\xe0a\u0300', 'e\xe9e\u0301'])
+ self.assertEqual(regex.findall(r"\X", "\r\r\n\u0301A\u0301"),
+ ['\r', '\r\n', '\u0301', 'A\u0301'])
+
+ self.assertEqual(bool(regex.match(r'\p{Ll}', 'a')), True)
+
+ chars_u = "-09AZaz_\u0393\u03b3"
+ chars_b = b"-09AZaz_"
+ word_set = set("Ll Lm Lo Lt Lu Mc Me Mn Nd Nl No Pc".split())
+
+ tests = [
+ (r"\w", chars_u, "09AZaz_\u0393\u03b3"),
+ (r"[[:word:]]", chars_u, "09AZaz_\u0393\u03b3"),
+ (r"\W", chars_u, "-"),
+ (r"[[:^word:]]", chars_u, "-"),
+ (r"\d", chars_u, "09"),
+ (r"[[:digit:]]", chars_u, "09"),
+ (r"\D", chars_u, "-AZaz_\u0393\u03b3"),
+ (r"[[:^digit:]]", chars_u, "-AZaz_\u0393\u03b3"),
+ (r"[[:alpha:]]", chars_u, "AZaz\u0393\u03b3"),
+ (r"[[:^alpha:]]", chars_u, "-09_"),
+ (r"[[:alnum:]]", chars_u, "09AZaz\u0393\u03b3"),
+ (r"[[:^alnum:]]", chars_u, "-_"),
+ (r"[[:xdigit:]]", chars_u, "09Aa"),
+ (r"[[:^xdigit:]]", chars_u, "-Zz_\u0393\u03b3"),
+ (r"\p{InBasicLatin}", "a\xE1", "a"),
+ (r"\P{InBasicLatin}", "a\xE1", "\xE1"),
+ (r"(?i)\p{InBasicLatin}", "a\xE1", "a"),
+ (r"(?i)\P{InBasicLatin}", "a\xE1", "\xE1"),
+
+ (br"(?L)\w", chars_b, b"09AZaz_"),
+ (br"(?L)[[:word:]]", chars_b, b"09AZaz_"),
+ (br"(?L)\W", chars_b, b"-"),
+ (br"(?L)[[:^word:]]", chars_b, b"-"),
+ (br"(?L)\d", chars_b, b"09"),
+ (br"(?L)[[:digit:]]", chars_b, b"09"),
+ (br"(?L)\D", chars_b, b"-AZaz_"),
+ (br"(?L)[[:^digit:]]", chars_b, b"-AZaz_"),
+ (br"(?L)[[:alpha:]]", chars_b, b"AZaz"),
+ (br"(?L)[[:^alpha:]]", chars_b, b"-09_"),
+ (br"(?L)[[:alnum:]]", chars_b, b"09AZaz"),
+ (br"(?L)[[:^alnum:]]", chars_b, b"-_"),
+ (br"(?L)[[:xdigit:]]", chars_b, b"09Aa"),
+ (br"(?L)[[:^xdigit:]]", chars_b, b"-Zz_"),
+
+ (br"(?a)\w", chars_b, b"09AZaz_"),
+ (br"(?a)[[:word:]]", chars_b, b"09AZaz_"),
+ (br"(?a)\W", chars_b, b"-"),
+ (br"(?a)[[:^word:]]", chars_b, b"-"),
+ (br"(?a)\d", chars_b, b"09"),
+ (br"(?a)[[:digit:]]", chars_b, b"09"),
+ (br"(?a)\D", chars_b, b"-AZaz_"),
+ (br"(?a)[[:^digit:]]", chars_b, b"-AZaz_"),
+ (br"(?a)[[:alpha:]]", chars_b, b"AZaz"),
+ (br"(?a)[[:^alpha:]]", chars_b, b"-09_"),
+ (br"(?a)[[:alnum:]]", chars_b, b"09AZaz"),
+ (br"(?a)[[:^alnum:]]", chars_b, b"-_"),
+ (br"(?a)[[:xdigit:]]", chars_b, b"09Aa"),
+ (br"(?a)[[:^xdigit:]]", chars_b, b"-Zz_"),
+ ]
+ for pattern, chars, expected in tests:
+ try:
+ if chars[ : 0].join(regex.findall(pattern, chars)) != expected:
+ self.fail("Failed: {}".format(pattern))
+ except Exception as e:
+ self.fail("Failed: {} raised {}".format(pattern, ascii(e)))
+
+ self.assertEqual(bool(regex.match(r"\p{NumericValue=0}", "0")),
+ True)
+ self.assertEqual(bool(regex.match(r"\p{NumericValue=1/2}",
+ "\N{VULGAR FRACTION ONE HALF}")), True)
+ self.assertEqual(bool(regex.match(r"\p{NumericValue=0.5}",
+ "\N{VULGAR FRACTION ONE HALF}")), True)
+
+ def test_word_class(self):
+ self.assertEqual(regex.findall(r"\w+",
+ " \u0939\u093f\u0928\u094d\u0926\u0940,"),
+ ['\u0939\u093f\u0928\u094d\u0926\u0940'])
+ self.assertEqual(regex.findall(r"\W+",
+ " \u0939\u093f\u0928\u094d\u0926\u0940,"), [' ', ','])
+ self.assertEqual(regex.split(r"(?V1)\b",
+ " \u0939\u093f\u0928\u094d\u0926\u0940,"), [' ',
+ '\u0939\u093f\u0928\u094d\u0926\u0940', ','])
+ self.assertEqual(regex.split(r"(?V1)\B",
+ " \u0939\u093f\u0928\u094d\u0926\u0940,"), ['', ' \u0939',
+ '\u093f', '\u0928', '\u094d', '\u0926', '\u0940,', ''])
+
+ def test_search_anchor(self):
+ self.assertEqual(regex.findall(r"\G\w{2}", "abcd ef"), ['ab', 'cd'])
+
+ def test_search_reverse(self):
+ self.assertEqual(regex.findall(r"(?r).", "abc"), ['c', 'b', 'a'])
+ self.assertEqual(regex.findall(r"(?r).", "abc", overlapped=True), ['c',
+ 'b', 'a'])
+ self.assertEqual(regex.findall(r"(?r)..", "abcde"), ['de', 'bc'])
+ self.assertEqual(regex.findall(r"(?r)..", "abcde", overlapped=True),
+ ['de', 'cd', 'bc', 'ab'])
+ self.assertEqual(regex.findall(r"(?r)(.)(-)(.)", "a-b-c",
+ overlapped=True), [("b", "-", "c"), ("a", "-", "b")])
+
+ self.assertEqual([m[0] for m in regex.finditer(r"(?r).", "abc")], ['c',
+ 'b', 'a'])
+ self.assertEqual([m[0] for m in regex.finditer(r"(?r)..", "abcde",
+ overlapped=True)], ['de', 'cd', 'bc', 'ab'])
+ self.assertEqual([m[0] for m in regex.finditer(r"(?r).", "abc")], ['c',
+ 'b', 'a'])
+ self.assertEqual([m[0] for m in regex.finditer(r"(?r)..", "abcde",
+ overlapped=True)], ['de', 'cd', 'bc', 'ab'])
+
+ self.assertEqual(regex.findall(r"^|\w+", "foo bar"), ['', 'foo',
+ 'bar'])
+ self.assertEqual(regex.findall(r"(?V1)^|\w+", "foo bar"), ['', 'foo',
+ 'bar'])
+ self.assertEqual(regex.findall(r"(?r)^|\w+", "foo bar"), ['bar', 'foo',
+ ''])
+ self.assertEqual(regex.findall(r"(?rV1)^|\w+", "foo bar"), ['bar',
+ 'foo', ''])
+
+ self.assertEqual([m[0] for m in regex.finditer(r"^|\w+", "foo bar")],
+ ['', 'foo', 'bar'])
+ self.assertEqual([m[0] for m in regex.finditer(r"(?V1)^|\w+",
+ "foo bar")], ['', 'foo', 'bar'])
+ self.assertEqual([m[0] for m in regex.finditer(r"(?r)^|\w+",
+ "foo bar")], ['bar', 'foo', ''])
+ self.assertEqual([m[0] for m in regex.finditer(r"(?rV1)^|\w+",
+ "foo bar")], ['bar', 'foo', ''])
+
+ self.assertEqual(regex.findall(r"\G\w{2}", "abcd ef"), ['ab', 'cd'])
+ self.assertEqual(regex.findall(r".{2}(?<=\G.*)", "abcd"), ['ab', 'cd'])
+ self.assertEqual(regex.findall(r"(?r)\G\w{2}", "abcd ef"), [])
+ self.assertEqual(regex.findall(r"(?r)\w{2}\G", "abcd ef"), ['ef'])
+
+ self.assertEqual(regex.findall(r"q*", "qqwe"), ['qq', '', '', ''])
+ self.assertEqual(regex.findall(r"(?V1)q*", "qqwe"), ['qq', '', '', ''])
+ self.assertEqual(regex.findall(r"(?r)q*", "qqwe"), ['', '', 'qq', ''])
+ self.assertEqual(regex.findall(r"(?rV1)q*", "qqwe"), ['', '', 'qq',
+ ''])
+
+ self.assertEqual(regex.findall(".", "abcd", pos=1, endpos=3), ['b',
+ 'c'])
+ self.assertEqual(regex.findall(".", "abcd", pos=1, endpos=-1), ['b',
+ 'c'])
+ self.assertEqual([m[0] for m in regex.finditer(".", "abcd", pos=1,
+ endpos=3)], ['b', 'c'])
+ self.assertEqual([m[0] for m in regex.finditer(".", "abcd", pos=1,
+ endpos=-1)], ['b', 'c'])
+
+ self.assertEqual([m[0] for m in regex.finditer("(?r).", "abcd", pos=1,
+ endpos=3)], ['c', 'b'])
+ self.assertEqual([m[0] for m in regex.finditer("(?r).", "abcd", pos=1,
+ endpos=-1)], ['c', 'b'])
+ self.assertEqual(regex.findall("(?r).", "abcd", pos=1, endpos=3), ['c',
+ 'b'])
+ self.assertEqual(regex.findall("(?r).", "abcd", pos=1, endpos=-1),
+ ['c', 'b'])
+
+ self.assertEqual(regex.findall(r"[ab]", "aB", regex.I), ['a', 'B'])
+ self.assertEqual(regex.findall(r"(?r)[ab]", "aB", regex.I), ['B', 'a'])
+
+ self.assertEqual(regex.findall(r"(?r).{2}", "abc"), ['bc'])
+ self.assertEqual(regex.findall(r"(?r).{2}", "abc", overlapped=True),
+ ['bc', 'ab'])
+ self.assertEqual(regex.findall(r"(\w+) (\w+)",
+ "first second third fourth fifth"), [('first', 'second'), ('third',
+ 'fourth')])
+ self.assertEqual(regex.findall(r"(?r)(\w+) (\w+)",
+ "first second third fourth fifth"), [('fourth', 'fifth'), ('second',
+ 'third')])
+
+ self.assertEqual([m[0] for m in regex.finditer(r"(?r).{2}", "abc")],
+ ['bc'])
+ self.assertEqual([m[0] for m in regex.finditer(r"(?r).{2}", "abc",
+ overlapped=True)], ['bc', 'ab'])
+ self.assertEqual([m[0] for m in regex.finditer(r"(\w+) (\w+)",
+ "first second third fourth fifth")], ['first second',
+ 'third fourth'])
+ self.assertEqual([m[0] for m in regex.finditer(r"(?r)(\w+) (\w+)",
+ "first second third fourth fifth")], ['fourth fifth',
+ 'second third'])
+
+ self.assertEqual(regex.search("abcdef", "abcdef").span(), (0, 6))
+ self.assertEqual(regex.search("(?r)abcdef", "abcdef").span(), (0, 6))
+ self.assertEqual(regex.search("(?i)abcdef", "ABCDEF").span(), (0, 6))
+ self.assertEqual(regex.search("(?ir)abcdef", "ABCDEF").span(), (0, 6))
+
+ self.assertEqual(regex.sub(r"(.)", r"\1", "abc"), 'abc')
+ self.assertEqual(regex.sub(r"(?r)(.)", r"\1", "abc"), 'abc')
+
+ def test_atomic(self):
+ # Issue 433030.
+ self.assertEqual(regex.search(r"(?>a*)a", "aa"), None)
+
+ def test_possessive(self):
+ # Single-character non-possessive.
+ self.assertEqual(regex.search(r"a?a", "a").span(), (0, 1))
+ self.assertEqual(regex.search(r"a*a", "aaa").span(), (0, 3))
+ self.assertEqual(regex.search(r"a+a", "aaa").span(), (0, 3))
+ self.assertEqual(regex.search(r"a{1,3}a", "aaa").span(), (0, 3))
+
+ # Multiple-character non-possessive.
+ self.assertEqual(regex.search(r"(?:ab)?ab", "ab").span(), (0, 2))
+ self.assertEqual(regex.search(r"(?:ab)*ab", "ababab").span(), (0, 6))
+ self.assertEqual(regex.search(r"(?:ab)+ab", "ababab").span(), (0, 6))
+ self.assertEqual(regex.search(r"(?:ab){1,3}ab", "ababab").span(), (0,
+ 6))
+
+ # Single-character possessive.
+ self.assertEqual(regex.search(r"a?+a", "a"), None)
+ self.assertEqual(regex.search(r"a*+a", "aaa"), None)
+ self.assertEqual(regex.search(r"a++a", "aaa"), None)
+ self.assertEqual(regex.search(r"a{1,3}+a", "aaa"), None)
+
+ # Multiple-character possessive.
+ self.assertEqual(regex.search(r"(?:ab)?+ab", "ab"), None)
+ self.assertEqual(regex.search(r"(?:ab)*+ab", "ababab"), None)
+ self.assertEqual(regex.search(r"(?:ab)++ab", "ababab"), None)
+ self.assertEqual(regex.search(r"(?:ab){1,3}+ab", "ababab"), None)
+
+ def test_zerowidth(self):
+ # Issue 3262.
+ if sys.version_info >= (3, 7, 0):
+ self.assertEqual(regex.split(r"\b", "a b"), ['', 'a', ' ', 'b',
+ ''])
+ else:
+ self.assertEqual(regex.split(r"\b", "a b"), ['a b'])
+ self.assertEqual(regex.split(r"(?V1)\b", "a b"), ['', 'a', ' ', 'b',
+ ''])
+
+ # Issue 1647489.
+ self.assertEqual(regex.findall(r"^|\w+", "foo bar"), ['', 'foo',
+ 'bar'])
+ self.assertEqual([m[0] for m in regex.finditer(r"^|\w+", "foo bar")],
+ ['', 'foo', 'bar'])
+ self.assertEqual(regex.findall(r"(?r)^|\w+", "foo bar"), ['bar',
+ 'foo', ''])
+ self.assertEqual([m[0] for m in regex.finditer(r"(?r)^|\w+",
+ "foo bar")], ['bar', 'foo', ''])
+ self.assertEqual(regex.findall(r"(?V1)^|\w+", "foo bar"), ['', 'foo',
+ 'bar'])
+ self.assertEqual([m[0] for m in regex.finditer(r"(?V1)^|\w+",
+ "foo bar")], ['', 'foo', 'bar'])
+ self.assertEqual(regex.findall(r"(?rV1)^|\w+", "foo bar"), ['bar',
+ 'foo', ''])
+ self.assertEqual([m[0] for m in regex.finditer(r"(?rV1)^|\w+",
+ "foo bar")], ['bar', 'foo', ''])
+
+ if sys.version_info >= (3, 7, 0):
+ self.assertEqual(regex.split("", "xaxbxc"), ['', 'x', 'a', 'x',
+ 'b', 'x', 'c', ''])
+ self.assertEqual([m for m in regex.splititer("", "xaxbxc")], ['',
+ 'x', 'a', 'x', 'b', 'x', 'c', ''])
+ else:
+ self.assertEqual(regex.split("", "xaxbxc"), ['xaxbxc'])
+ self.assertEqual([m for m in regex.splititer("", "xaxbxc")],
+ ['xaxbxc'])
+
+ if sys.version_info >= (3, 7, 0):
+ self.assertEqual(regex.split("(?r)", "xaxbxc"), ['', 'c', 'x', 'b',
+ 'x', 'a', 'x', ''])
+ self.assertEqual([m for m in regex.splititer("(?r)", "xaxbxc")],
+ ['', 'c', 'x', 'b', 'x', 'a', 'x', ''])
+ else:
+ self.assertEqual(regex.split("(?r)", "xaxbxc"), ['xaxbxc'])
+ self.assertEqual([m for m in regex.splititer("(?r)", "xaxbxc")],
+ ['xaxbxc'])
+
+ self.assertEqual(regex.split("(?V1)", "xaxbxc"), ['', 'x', 'a', 'x',
+ 'b', 'x', 'c', ''])
+ self.assertEqual([m for m in regex.splititer("(?V1)", "xaxbxc")], ['',
+ 'x', 'a', 'x', 'b', 'x', 'c', ''])
+
+ self.assertEqual(regex.split("(?rV1)", "xaxbxc"), ['', 'c', 'x', 'b',
+ 'x', 'a', 'x', ''])
+ self.assertEqual([m for m in regex.splititer("(?rV1)", "xaxbxc")], ['',
+ 'c', 'x', 'b', 'x', 'a', 'x', ''])
+
+ def test_scoped_and_inline_flags(self):
+ # Issues 433028, 433024, 433027.
+ self.assertEqual(regex.search(r"(?i)Ab", "ab").span(), (0, 2))
+ self.assertEqual(regex.search(r"(?i:A)b", "ab").span(), (0, 2))
+ # Changed to positional flags in regex 2023.12.23.
+ self.assertEqual(regex.search(r"A(?i)b", "ab"), None)
+
+ self.assertEqual(regex.search(r"(?V0)Ab", "ab"), None)
+ self.assertEqual(regex.search(r"(?V1)Ab", "ab"), None)
+ self.assertEqual(regex.search(r"(?-i)Ab", "ab", flags=regex.I), None)
+ self.assertEqual(regex.search(r"(?-i:A)b", "ab", flags=regex.I), None)
+ self.assertEqual(regex.search(r"A(?-i)b", "ab", flags=regex.I).span(),
+ (0, 2))
+
+ def test_repeated_repeats(self):
+ # Issue 2537.
+ self.assertEqual(regex.search(r"(?:a+)+", "aaa").span(), (0, 3))
+ self.assertEqual(regex.search(r"(?:(?:ab)+c)+", "abcabc").span(), (0,
+ 6))
+
+ # Hg issue 286.
+ self.assertEqual(regex.search(r"(?:a+){2,}", "aaa").span(), (0, 3))
+
+ def test_lookbehind(self):
+ self.assertEqual(regex.search(r"123(?<=a\d+)", "a123").span(), (1, 4))
+ self.assertEqual(regex.search(r"123(?<=a\d+)", "b123"), None)
+ self.assertEqual(regex.search(r"123(?= (3, 7, 0):
+ self.assertEqual(regex.sub(r"(?V0)(x)?(y)?", r"\2-\1", "xy"),
+ 'y-x-')
+ else:
+ self.assertEqual(regex.sub(r"(?V0)(x)?(y)?", r"\2-\1", "xy"),
+ 'y-x')
+ self.assertEqual(regex.sub(r"(?V1)(x)?(y)?", r"\2-\1", "xy"), 'y-x-')
+ if sys.version_info >= (3, 7, 0):
+ self.assertEqual(regex.sub(r"(?V0)(x)?(y)?", r"\2-\1", "x"), '-x-')
+ else:
+ self.assertEqual(regex.sub(r"(?V0)(x)?(y)?", r"\2-\1", "x"), '-x')
+ self.assertEqual(regex.sub(r"(?V1)(x)?(y)?", r"\2-\1", "x"), '-x-')
+ if sys.version_info >= (3, 7, 0):
+ self.assertEqual(regex.sub(r"(?V0)(x)?(y)?", r"\2-\1", "y"), 'y--')
+ else:
+ self.assertEqual(regex.sub(r"(?V0)(x)?(y)?", r"\2-\1", "y"), 'y-')
+ self.assertEqual(regex.sub(r"(?V1)(x)?(y)?", r"\2-\1", "y"), 'y--')
+
+ def test_bug_10328 (self):
+ # Issue 10328.
+ pat = regex.compile(r'(?mV0)(?P[ \t]+\r*$)|(?P(?<=[^\n])\Z)')
+ if sys.version_info >= (3, 7, 0):
+ self.assertEqual(pat.subn(lambda m: '<' + m.lastgroup + '>',
+ 'foobar '), ('foobar', 2))
+ else:
+ self.assertEqual(pat.subn(lambda m: '<' + m.lastgroup + '>',
+ 'foobar '), ('foobar', 1))
+ self.assertEqual([m.group() for m in pat.finditer('foobar ')], [' ',
+ ''])
+ pat = regex.compile(r'(?mV1)(?P[ \t]+\r*$)|(?P(?<=[^\n])\Z)')
+ self.assertEqual(pat.subn(lambda m: '<' + m.lastgroup + '>',
+ 'foobar '), ('foobar', 2))
+ self.assertEqual([m.group() for m in pat.finditer('foobar ')], [' ',
+ ''])
+
+ def test_overlapped(self):
+ self.assertEqual(regex.findall(r"..", "abcde"), ['ab', 'cd'])
+ self.assertEqual(regex.findall(r"..", "abcde", overlapped=True), ['ab',
+ 'bc', 'cd', 'de'])
+ self.assertEqual(regex.findall(r"(?r)..", "abcde"), ['de', 'bc'])
+ self.assertEqual(regex.findall(r"(?r)..", "abcde", overlapped=True),
+ ['de', 'cd', 'bc', 'ab'])
+ self.assertEqual(regex.findall(r"(.)(-)(.)", "a-b-c", overlapped=True),
+ [("a", "-", "b"), ("b", "-", "c")])
+
+ self.assertEqual([m[0] for m in regex.finditer(r"..", "abcde")], ['ab',
+ 'cd'])
+ self.assertEqual([m[0] for m in regex.finditer(r"..", "abcde",
+ overlapped=True)], ['ab', 'bc', 'cd', 'de'])
+ self.assertEqual([m[0] for m in regex.finditer(r"(?r)..", "abcde")],
+ ['de', 'bc'])
+ self.assertEqual([m[0] for m in regex.finditer(r"(?r)..", "abcde",
+ overlapped=True)], ['de', 'cd', 'bc', 'ab'])
+
+ self.assertEqual([m.groups() for m in regex.finditer(r"(.)(-)(.)",
+ "a-b-c", overlapped=True)], [("a", "-", "b"), ("b", "-", "c")])
+ self.assertEqual([m.groups() for m in regex.finditer(r"(?r)(.)(-)(.)",
+ "a-b-c", overlapped=True)], [("b", "-", "c"), ("a", "-", "b")])
+
+ def test_splititer(self):
+ self.assertEqual(regex.split(r",", "a,b,,c,"), ['a', 'b', '', 'c', ''])
+ self.assertEqual([m for m in regex.splititer(r",", "a,b,,c,")], ['a',
+ 'b', '', 'c', ''])
+
+ def test_grapheme(self):
+ self.assertEqual(regex.match(r"\X", "\xE0").span(), (0, 1))
+ self.assertEqual(regex.match(r"\X", "a\u0300").span(), (0, 2))
+
+ self.assertEqual(regex.findall(r"\X",
+ "a\xE0a\u0300e\xE9e\u0301"), ['a', '\xe0', 'a\u0300', 'e',
+ '\xe9', 'e\u0301'])
+ self.assertEqual(regex.findall(r"\X{3}",
+ "a\xE0a\u0300e\xE9e\u0301"), ['a\xe0a\u0300', 'e\xe9e\u0301'])
+ self.assertEqual(regex.findall(r"\X", "\r\r\n\u0301A\u0301"),
+ ['\r', '\r\n', '\u0301', 'A\u0301'])
+
+ def test_word_boundary(self):
+ text = 'The quick ("brown") fox can\'t jump 32.3 feet, right?'
+ self.assertEqual(regex.split(r'(?V1)\b', text), ['', 'The', ' ',
+ 'quick', ' ("', 'brown', '") ', 'fox', ' ', 'can', "'", 't',
+ ' ', 'jump', ' ', '32', '.', '3', ' ', 'feet', ', ',
+ 'right', '?'])
+ self.assertEqual(regex.split(r'(?V1w)\b', text), ['', 'The', ' ',
+ 'quick', ' ', '(', '"', 'brown', '"', ')', ' ', 'fox', ' ',
+ "can't", ' ', 'jump', ' ', '32.3', ' ', 'feet', ',', ' ',
+ 'right', '?', ''])
+
+ text = "The fox"
+ self.assertEqual(regex.split(r'(?V1)\b', text), ['', 'The', ' ',
+ 'fox', ''])
+ self.assertEqual(regex.split(r'(?V1w)\b', text), ['', 'The', ' ',
+ 'fox', ''])
+
+ text = "can't aujourd'hui l'objectif"
+ self.assertEqual(regex.split(r'(?V1)\b', text), ['', 'can', "'",
+ 't', ' ', 'aujourd', "'", 'hui', ' ', 'l', "'", 'objectif',
+ ''])
+ self.assertEqual(regex.split(r'(?V1w)\b', text), ['', "can't", ' ',
+ "aujourd'hui", ' ', "l'objectif", ''])
+
+ def test_line_boundary(self):
+ self.assertEqual(regex.findall(r".+", "Line 1\nLine 2\n"), ["Line 1",
+ "Line 2"])
+ self.assertEqual(regex.findall(r".+", "Line 1\rLine 2\r"),
+ ["Line 1\rLine 2\r"])
+ self.assertEqual(regex.findall(r".+", "Line 1\r\nLine 2\r\n"),
+ ["Line 1\r", "Line 2\r"])
+ self.assertEqual(regex.findall(r"(?w).+", "Line 1\nLine 2\n"),
+ ["Line 1", "Line 2"])
+ self.assertEqual(regex.findall(r"(?w).+", "Line 1\rLine 2\r"),
+ ["Line 1", "Line 2"])
+ self.assertEqual(regex.findall(r"(?w).+", "Line 1\r\nLine 2\r\n"),
+ ["Line 1", "Line 2"])
+
+ self.assertEqual(regex.search(r"^abc", "abc").start(), 0)
+ self.assertEqual(regex.search(r"^abc", "\nabc"), None)
+ self.assertEqual(regex.search(r"^abc", "\rabc"), None)
+ self.assertEqual(regex.search(r"(?w)^abc", "abc").start(), 0)
+ self.assertEqual(regex.search(r"(?w)^abc", "\nabc"), None)
+ self.assertEqual(regex.search(r"(?w)^abc", "\rabc"), None)
+
+ self.assertEqual(regex.search(r"abc$", "abc").start(), 0)
+ self.assertEqual(regex.search(r"abc$", "abc\n").start(), 0)
+ self.assertEqual(regex.search(r"abc$", "abc\r"), None)
+ self.assertEqual(regex.search(r"(?w)abc$", "abc").start(), 0)
+ self.assertEqual(regex.search(r"(?w)abc$", "abc\n").start(), 0)
+ self.assertEqual(regex.search(r"(?w)abc$", "abc\r").start(), 0)
+
+ self.assertEqual(regex.search(r"(?m)^abc", "abc").start(), 0)
+ self.assertEqual(regex.search(r"(?m)^abc", "\nabc").start(), 1)
+ self.assertEqual(regex.search(r"(?m)^abc", "\rabc"), None)
+ self.assertEqual(regex.search(r"(?mw)^abc", "abc").start(), 0)
+ self.assertEqual(regex.search(r"(?mw)^abc", "\nabc").start(), 1)
+ self.assertEqual(regex.search(r"(?mw)^abc", "\rabc").start(), 1)
+
+ self.assertEqual(regex.search(r"(?m)abc$", "abc").start(), 0)
+ self.assertEqual(regex.search(r"(?m)abc$", "abc\n").start(), 0)
+ self.assertEqual(regex.search(r"(?m)abc$", "abc\r"), None)
+ self.assertEqual(regex.search(r"(?mw)abc$", "abc").start(), 0)
+ self.assertEqual(regex.search(r"(?mw)abc$", "abc\n").start(), 0)
+ self.assertEqual(regex.search(r"(?mw)abc$", "abc\r").start(), 0)
+
+ def test_branch_reset(self):
+ self.assertEqual(regex.match(r"(?:(a)|(b))(c)", "ac").groups(), ('a',
+ None, 'c'))
+ self.assertEqual(regex.match(r"(?:(a)|(b))(c)", "bc").groups(), (None,
+ 'b', 'c'))
+ self.assertEqual(regex.match(r"(?:(?a)|(?b))(?c)",
+ "ac").groups(), ('a', None, 'c'))
+ self.assertEqual(regex.match(r"(?:(?a)|(?b))(?c)",
+ "bc").groups(), (None, 'b', 'c'))
+
+ self.assertEqual(regex.match(r"(?a)(?:(?b)|(?c))(?d)",
+ "abd").groups(), ('a', 'b', None, 'd'))
+ self.assertEqual(regex.match(r"(?a)(?:(?b)|(?c))(?d)",
+ "acd").groups(), ('a', None, 'c', 'd'))
+ self.assertEqual(regex.match(r"(a)(?:(b)|(c))(d)", "abd").groups(),
+ ('a', 'b', None, 'd'))
+
+ self.assertEqual(regex.match(r"(a)(?:(b)|(c))(d)", "acd").groups(),
+ ('a', None, 'c', 'd'))
+ self.assertEqual(regex.match(r"(a)(?|(b)|(b))(d)", "abd").groups(),
+ ('a', 'b', 'd'))
+ self.assertEqual(regex.match(r"(?|(?a)|(?b))(c)", "ac").groups(),
+ ('a', None, 'c'))
+ self.assertEqual(regex.match(r"(?|(?a)|(?b))(c)", "bc").groups(),
+ (None, 'b', 'c'))
+ self.assertEqual(regex.match(r"(?|(?a)|(?b))(c)", "ac").groups(),
+ ('a', 'c'))
+
+ self.assertEqual(regex.match(r"(?|(?a)|(?b))(c)", "bc").groups(),
+ ('b', 'c'))
+
+ self.assertEqual(regex.match(r"(?|(?a)(?b)|(?c)(?d))(e)",
+ "abe").groups(), ('a', 'b', 'e'))
+ self.assertEqual(regex.match(r"(?|(?a)(?b)|(?c)(?d))(e)",
+ "cde").groups(), ('d', 'c', 'e'))
+ self.assertEqual(regex.match(r"(?|(?a)(?b)|(?c)(d))(e)",
+ "abe").groups(), ('a', 'b', 'e'))
+ self.assertEqual(regex.match(r"(?|(?a)(?b)|(?c)(d))(e)",
+ "cde").groups(), ('d', 'c', 'e'))
+ self.assertEqual(regex.match(r"(?|(?a)(?b)|(c)(d))(e)",
+ "abe").groups(), ('a', 'b', 'e'))
+ self.assertEqual(regex.match(r"(?|(?a)(?b)|(c)(d))(e)",
+ "cde").groups(), ('c', 'd', 'e'))
+
+ # Hg issue 87: Allow duplicate names of groups
+ self.assertEqual(regex.match(r"(?|(?a)(?b)|(c)(?d))(e)",
+ "abe").groups(), ("a", "b", "e"))
+ self.assertEqual(regex.match(r"(?|(?a)(?b)|(c)(?d))(e)",
+ "abe").capturesdict(), {"a": ["a"], "b": ["b"]})
+ self.assertEqual(regex.match(r"(?|(?a)(?b)|(c)(?d))(e)",
+ "cde").groups(), ("d", None, "e"))
+ self.assertEqual(regex.match(r"(?|(?a)(?b)|(c)(?d))(e)",
+ "cde").capturesdict(), {"a": ["c", "d"], "b": []})
+
+ def test_set(self):
+ self.assertEqual(regex.match(r"[a]", "a").span(), (0, 1))
+ self.assertEqual(regex.match(r"(?i)[a]", "A").span(), (0, 1))
+ self.assertEqual(regex.match(r"[a-b]", r"a").span(), (0, 1))
+ self.assertEqual(regex.match(r"(?i)[a-b]", r"A").span(), (0, 1))
+
+ self.assertEqual(regex.sub(r"(?V0)([][])", r"-", "a[b]c"), "a-b-c")
+
+ self.assertEqual(regex.findall(r"[\p{Alpha}]", "a0"), ["a"])
+ self.assertEqual(regex.findall(r"(?i)[\p{Alpha}]", "A0"), ["A"])
+
+ self.assertEqual(regex.findall(r"[a\p{Alpha}]", "ab0"), ["a", "b"])
+ self.assertEqual(regex.findall(r"[a\P{Alpha}]", "ab0"), ["a", "0"])
+ self.assertEqual(regex.findall(r"(?i)[a\p{Alpha}]", "ab0"), ["a",
+ "b"])
+ self.assertEqual(regex.findall(r"(?i)[a\P{Alpha}]", "ab0"), ["a",
+ "0"])
+
+ self.assertEqual(regex.findall(r"[a-b\p{Alpha}]", "abC0"), ["a",
+ "b", "C"])
+ self.assertEqual(regex.findall(r"(?i)[a-b\p{Alpha}]", "AbC0"), ["A",
+ "b", "C"])
+
+ self.assertEqual(regex.findall(r"[\p{Alpha}]", "a0"), ["a"])
+ self.assertEqual(regex.findall(r"[\P{Alpha}]", "a0"), ["0"])
+ self.assertEqual(regex.findall(r"[^\p{Alpha}]", "a0"), ["0"])
+ self.assertEqual(regex.findall(r"[^\P{Alpha}]", "a0"), ["a"])
+
+ self.assertEqual("".join(regex.findall(r"[^\d-h]", "a^b12c-h")),
+ 'a^bc')
+ self.assertEqual("".join(regex.findall(r"[^\dh]", "a^b12c-h")),
+ 'a^bc-')
+ self.assertEqual("".join(regex.findall(r"[^h\s\db]", "a^b 12c-h")),
+ 'a^c-')
+ self.assertEqual("".join(regex.findall(r"[^b\w]", "a b")), ' ')
+ self.assertEqual("".join(regex.findall(r"[^b\S]", "a b")), ' ')
+ self.assertEqual("".join(regex.findall(r"[^8\d]", "a 1b2")), 'a b')
+
+ all_chars = "".join(chr(c) for c in range(0x100))
+ self.assertEqual(len(regex.findall(r"\p{ASCII}", all_chars)), 128)
+ self.assertEqual(len(regex.findall(r"\p{Letter}", all_chars)),
+ 117)
+ self.assertEqual(len(regex.findall(r"\p{Digit}", all_chars)), 10)
+
+ # Set operators
+ self.assertEqual(len(regex.findall(r"(?V1)[\p{ASCII}&&\p{Letter}]",
+ all_chars)), 52)
+ self.assertEqual(len(regex.findall(r"(?V1)[\p{ASCII}&&\p{Alnum}&&\p{Letter}]",
+ all_chars)), 52)
+ self.assertEqual(len(regex.findall(r"(?V1)[\p{ASCII}&&\p{Alnum}&&\p{Digit}]",
+ all_chars)), 10)
+ self.assertEqual(len(regex.findall(r"(?V1)[\p{ASCII}&&\p{Cc}]",
+ all_chars)), 33)
+ self.assertEqual(len(regex.findall(r"(?V1)[\p{ASCII}&&\p{Graph}]",
+ all_chars)), 94)
+ self.assertEqual(len(regex.findall(r"(?V1)[\p{ASCII}--\p{Cc}]",
+ all_chars)), 95)
+ self.assertEqual(len(regex.findall(r"[\p{Letter}\p{Digit}]",
+ all_chars)), 127)
+ self.assertEqual(len(regex.findall(r"(?V1)[\p{Letter}||\p{Digit}]",
+ all_chars)), 127)
+ self.assertEqual(len(regex.findall(r"\p{HexDigit}", all_chars)),
+ 22)
+ self.assertEqual(len(regex.findall(r"(?V1)[\p{HexDigit}~~\p{Digit}]",
+ all_chars)), 12)
+ self.assertEqual(len(regex.findall(r"(?V1)[\p{Digit}~~\p{HexDigit}]",
+ all_chars)), 12)
+
+ self.assertEqual(repr(type(regex.compile(r"(?V0)([][-])"))),
+ self.PATTERN_CLASS)
+ self.assertEqual(regex.findall(r"(?V1)[[a-z]--[aei]]", "abc"), ["b",
+ "c"])
+ self.assertEqual(regex.findall(r"(?iV1)[[a-z]--[aei]]", "abc"), ["b",
+ "c"])
+ self.assertEqual(regex.findall(r"(?V1)[\w--a]","abc"), ["b", "c"])
+ self.assertEqual(regex.findall(r"(?iV1)[\w--a]","abc"), ["b", "c"])
+
+ def test_various(self):
+ tests = [
+ # Test ?P< and ?P= extensions.
+ ('(?Pa)', '', '', regex.error, self.BAD_GROUP_NAME), # Begins with a digit.
+ ('(?Pa)', '', '', regex.error, self.BAD_GROUP_NAME), # Begins with an illegal char.
+ ('(?Pa)', '', '', regex.error, self.BAD_GROUP_NAME), # Begins with an illegal char.
+
+ # Same tests, for the ?P= form.
+ ('(?Pa)(?P=foo_123', 'aa', '', regex.error,
+ self.MISSING_RPAREN),
+ ('(?Pa)(?P=1)', 'aa', '1', ascii('a')),
+ ('(?Pa)(?P=0)', 'aa', '', regex.error,
+ self.BAD_GROUP_NAME),
+ ('(?Pa)(?P=-1)', 'aa', '', regex.error,
+ self.BAD_GROUP_NAME),
+ ('(?Pa)(?P=!)', 'aa', '', regex.error,
+ self.BAD_GROUP_NAME),
+ ('(?Pa)(?P=foo_124)', 'aa', '', regex.error,
+ self.UNKNOWN_GROUP), # Backref to undefined group.
+
+ ('(?Pa)', 'a', '1', ascii('a')),
+ ('(?Pa)(?P=foo_123)', 'aa', '1', ascii('a')),
+
+ # Mal-formed \g in pattern treated as literal for compatibility.
+ (r'(?a)\ga)\g<1>', 'aa', '1', ascii('a')),
+ (r'(?a)\g', 'aa', '', ascii(None)),
+ (r'(?a)\g', 'aa', '', regex.error,
+ self.UNKNOWN_GROUP), # Backref to undefined group.
+
+ ('(?a)', 'a', '1', ascii('a')),
+ (r'(?a)\g', 'aa', '1', ascii('a')),
+
+ # Test octal escapes.
+ ('\\1', 'a', '', regex.error, self.INVALID_GROUP_REF), # Backreference.
+ ('[\\1]', '\1', '0', "'\\x01'"), # Character.
+ ('\\09', chr(0) + '9', '0', ascii(chr(0) + '9')),
+ ('\\141', 'a', '0', ascii('a')),
+ ('(a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)\\119', 'abcdefghijklk9',
+ '0,11', ascii(('abcdefghijklk9', 'k'))),
+
+ # Test \0 is handled everywhere.
+ (r'\0', '\0', '0', ascii('\0')),
+ (r'[\0a]', '\0', '0', ascii('\0')),
+ (r'[a\0]', '\0', '0', ascii('\0')),
+ (r'[^a\0]', '\0', '', ascii(None)),
+
+ # Test various letter escapes.
+ (r'\a[\b]\f\n\r\t\v', '\a\b\f\n\r\t\v', '0',
+ ascii('\a\b\f\n\r\t\v')),
+ (r'[\a][\b][\f][\n][\r][\t][\v]', '\a\b\f\n\r\t\v', '0',
+ ascii('\a\b\f\n\r\t\v')),
+ (r'\xff', '\377', '0', ascii(chr(255))),
+
+ # New \x semantics.
+ (r'\x00ffffffffffffff', '\377', '', ascii(None)),
+ (r'\x00f', '\017', '', ascii(None)),
+ (r'\x00fe', '\376', '', ascii(None)),
+
+ (r'\x00ff', '\377', '', ascii(None)),
+ (r'\t\n\v\r\f\a\g', '\t\n\v\r\f\ag', '0', ascii('\t\n\v\r\f\ag')),
+ ('\t\n\v\r\f\a\\g', '\t\n\v\r\f\ag', '0', ascii('\t\n\v\r\f\ag')),
+ (r'\t\n\v\r\f\a', '\t\n\v\r\f\a', '0', ascii(chr(9) + chr(10) +
+ chr(11) + chr(13) + chr(12) + chr(7))),
+ (r'[\t][\n][\v][\r][\f][\b]', '\t\n\v\r\f\b', '0',
+ ascii('\t\n\v\r\f\b')),
+
+ (r"^\w+=(\\[\000-\277]|[^\n\\])*",
+ "SRC=eval.c g.c blah blah blah \\\\\n\tapes.c", '0',
+ ascii("SRC=eval.c g.c blah blah blah \\\\")),
+
+ # Test that . only matches \n in DOTALL mode.
+ ('a.b', 'acb', '0', ascii('acb')),
+ ('a.b', 'a\nb', '', ascii(None)),
+ ('a.*b', 'acc\nccb', '', ascii(None)),
+ ('a.{4,5}b', 'acc\nccb', '', ascii(None)),
+ ('a.b', 'a\rb', '0', ascii('a\rb')),
+ # Changed to positional flags in regex 2023.12.23.
+ ('a.b(?s)', 'a\nb', '', ascii(None)),
+ ('(?s)a.b', 'a\nb', '0', ascii('a\nb')),
+ ('a.*(?s)b', 'acc\nccb', '', ascii(None)),
+ ('(?s)a.*b', 'acc\nccb', '0', ascii('acc\nccb')),
+ ('(?s)a.{4,5}b', 'acc\nccb', '0', ascii('acc\nccb')),
+
+ (')', '', '', regex.error, self.TRAILING_CHARS), # Unmatched right bracket.
+ ('', '', '0', "''"), # Empty pattern.
+ ('abc', 'abc', '0', ascii('abc')),
+ ('abc', 'xbc', '', ascii(None)),
+ ('abc', 'axc', '', ascii(None)),
+ ('abc', 'abx', '', ascii(None)),
+ ('abc', 'xabcy', '0', ascii('abc')),
+ ('abc', 'ababc', '0', ascii('abc')),
+ ('ab*c', 'abc', '0', ascii('abc')),
+ ('ab*bc', 'abc', '0', ascii('abc')),
+
+ ('ab*bc', 'abbc', '0', ascii('abbc')),
+ ('ab*bc', 'abbbbc', '0', ascii('abbbbc')),
+ ('ab+bc', 'abbc', '0', ascii('abbc')),
+ ('ab+bc', 'abc', '', ascii(None)),
+ ('ab+bc', 'abq', '', ascii(None)),
+ ('ab+bc', 'abbbbc', '0', ascii('abbbbc')),
+ ('ab?bc', 'abbc', '0', ascii('abbc')),
+ ('ab?bc', 'abc', '0', ascii('abc')),
+ ('ab?bc', 'abbbbc', '', ascii(None)),
+ ('ab?c', 'abc', '0', ascii('abc')),
+
+ ('^abc$', 'abc', '0', ascii('abc')),
+ ('^abc$', 'abcc', '', ascii(None)),
+ ('^abc', 'abcc', '0', ascii('abc')),
+ ('^abc$', 'aabc', '', ascii(None)),
+ ('abc$', 'aabc', '0', ascii('abc')),
+ ('^', 'abc', '0', ascii('')),
+ ('$', 'abc', '0', ascii('')),
+ ('a.c', 'abc', '0', ascii('abc')),
+ ('a.c', 'axc', '0', ascii('axc')),
+ ('a.*c', 'axyzc', '0', ascii('axyzc')),
+
+ ('a.*c', 'axyzd', '', ascii(None)),
+ ('a[bc]d', 'abc', '', ascii(None)),
+ ('a[bc]d', 'abd', '0', ascii('abd')),
+ ('a[b-d]e', 'abd', '', ascii(None)),
+ ('a[b-d]e', 'ace', '0', ascii('ace')),
+ ('a[b-d]', 'aac', '0', ascii('ac')),
+ ('a[-b]', 'a-', '0', ascii('a-')),
+ ('a[\\-b]', 'a-', '0', ascii('a-')),
+ ('a[b-]', 'a-', '0', ascii('a-')),
+ ('a[]b', '-', '', regex.error, self.BAD_SET),
+
+ ('a[', '-', '', regex.error, self.BAD_SET),
+ ('a\\', '-', '', regex.error, self.BAD_ESCAPE),
+ ('abc)', '-', '', regex.error, self.TRAILING_CHARS),
+ ('(abc', '-', '', regex.error, self.MISSING_RPAREN),
+ ('a]', 'a]', '0', ascii('a]')),
+ ('a[]]b', 'a]b', '0', ascii('a]b')),
+ ('a[]]b', 'a]b', '0', ascii('a]b')),
+ ('a[^bc]d', 'aed', '0', ascii('aed')),
+ ('a[^bc]d', 'abd', '', ascii(None)),
+ ('a[^-b]c', 'adc', '0', ascii('adc')),
+
+ ('a[^-b]c', 'a-c', '', ascii(None)),
+ ('a[^]b]c', 'a]c', '', ascii(None)),
+ ('a[^]b]c', 'adc', '0', ascii('adc')),
+ ('\\ba\\b', 'a-', '0', ascii('a')),
+ ('\\ba\\b', '-a', '0', ascii('a')),
+ ('\\ba\\b', '-a-', '0', ascii('a')),
+ ('\\by\\b', 'xy', '', ascii(None)),
+ ('\\by\\b', 'yz', '', ascii(None)),
+ ('\\by\\b', 'xyz', '', ascii(None)),
+ ('x\\b', 'xyz', '', ascii(None)),
+
+ ('x\\B', 'xyz', '0', ascii('x')),
+ ('\\Bz', 'xyz', '0', ascii('z')),
+ ('z\\B', 'xyz', '', ascii(None)),
+ ('\\Bx', 'xyz', '', ascii(None)),
+ ('\\Ba\\B', 'a-', '', ascii(None)),
+ ('\\Ba\\B', '-a', '', ascii(None)),
+ ('\\Ba\\B', '-a-', '', ascii(None)),
+ ('\\By\\B', 'xy', '', ascii(None)),
+ ('\\By\\B', 'yz', '', ascii(None)),
+ ('\\By\\b', 'xy', '0', ascii('y')),
+
+ ('\\by\\B', 'yz', '0', ascii('y')),
+ ('\\By\\B', 'xyz', '0', ascii('y')),
+ ('ab|cd', 'abc', '0', ascii('ab')),
+ ('ab|cd', 'abcd', '0', ascii('ab')),
+ ('()ef', 'def', '0,1', ascii(('ef', ''))),
+ ('$b', 'b', '', ascii(None)),
+ ('a\\(b', 'a(b', '', ascii(('a(b',))),
+ ('a\\(*b', 'ab', '0', ascii('ab')),
+ ('a\\(*b', 'a((b', '0', ascii('a((b')),
+ ('a\\\\b', 'a\\b', '0', ascii('a\\b')),
+
+ ('((a))', 'abc', '0,1,2', ascii(('a', 'a', 'a'))),
+ ('(a)b(c)', 'abc', '0,1,2', ascii(('abc', 'a', 'c'))),
+ ('a+b+c', 'aabbabc', '0', ascii('abc')),
+ ('(a+|b)*', 'ab', '0,1', ascii(('ab', 'b'))),
+ ('(a+|b)+', 'ab', '0,1', ascii(('ab', 'b'))),
+ ('(a+|b)?', 'ab', '0,1', ascii(('a', 'a'))),
+ (')(', '-', '', regex.error, self.TRAILING_CHARS),
+ ('[^ab]*', 'cde', '0', ascii('cde')),
+ ('abc', '', '', ascii(None)),
+ ('a*', '', '0', ascii('')),
+
+ ('a|b|c|d|e', 'e', '0', ascii('e')),
+ ('(a|b|c|d|e)f', 'ef', '0,1', ascii(('ef', 'e'))),
+ ('abcd*efg', 'abcdefg', '0', ascii('abcdefg')),
+ ('ab*', 'xabyabbbz', '0', ascii('ab')),
+ ('ab*', 'xayabbbz', '0', ascii('a')),
+ ('(ab|cd)e', 'abcde', '0,1', ascii(('cde', 'cd'))),
+ ('[abhgefdc]ij', 'hij', '0', ascii('hij')),
+ ('^(ab|cd)e', 'abcde', '', ascii(None)),
+ ('(abc|)ef', 'abcdef', '0,1', ascii(('ef', ''))),
+ ('(a|b)c*d', 'abcd', '0,1', ascii(('bcd', 'b'))),
+
+ ('(ab|ab*)bc', 'abc', '0,1', ascii(('abc', 'a'))),
+ ('a([bc]*)c*', 'abc', '0,1', ascii(('abc', 'bc'))),
+ ('a([bc]*)(c*d)', 'abcd', '0,1,2', ascii(('abcd', 'bc', 'd'))),
+ ('a([bc]+)(c*d)', 'abcd', '0,1,2', ascii(('abcd', 'bc', 'd'))),
+ ('a([bc]*)(c+d)', 'abcd', '0,1,2', ascii(('abcd', 'b', 'cd'))),
+ ('a[bcd]*dcdcde', 'adcdcde', '0', ascii('adcdcde')),
+ ('a[bcd]+dcdcde', 'adcdcde', '', ascii(None)),
+ ('(ab|a)b*c', 'abc', '0,1', ascii(('abc', 'ab'))),
+ ('((a)(b)c)(d)', 'abcd', '1,2,3,4', ascii(('abc', 'a', 'b', 'd'))),
+ ('[a-zA-Z_][a-zA-Z0-9_]*', 'alpha', '0', ascii('alpha')),
+
+ ('^a(bc+|b[eh])g|.h$', 'abh', '0,1', ascii(('bh', None))),
+ ('(bc+d$|ef*g.|h?i(j|k))', 'effgz', '0,1,2', ascii(('effgz',
+ 'effgz', None))),
+ ('(bc+d$|ef*g.|h?i(j|k))', 'ij', '0,1,2', ascii(('ij', 'ij',
+ 'j'))),
+ ('(bc+d$|ef*g.|h?i(j|k))', 'effg', '', ascii(None)),
+ ('(bc+d$|ef*g.|h?i(j|k))', 'bcdd', '', ascii(None)),
+ ('(bc+d$|ef*g.|h?i(j|k))', 'reffgz', '0,1,2', ascii(('effgz',
+ 'effgz', None))),
+ ('(((((((((a)))))))))', 'a', '0', ascii('a')),
+ ('multiple words of text', 'uh-uh', '', ascii(None)),
+ ('multiple words', 'multiple words, yeah', '0',
+ ascii('multiple words')),
+ ('(.*)c(.*)', 'abcde', '0,1,2', ascii(('abcde', 'ab', 'de'))),
+
+ ('\\((.*), (.*)\\)', '(a, b)', '2,1', ascii(('b', 'a'))),
+ ('[k]', 'ab', '', ascii(None)),
+ ('a[-]?c', 'ac', '0', ascii('ac')),
+ ('(abc)\\1', 'abcabc', '1', ascii('abc')),
+ ('([a-c]*)\\1', 'abcabc', '1', ascii('abc')),
+ ('^(.+)?B', 'AB', '1', ascii('A')),
+ ('(a+).\\1$', 'aaaaa', '0,1', ascii(('aaaaa', 'aa'))),
+ ('^(a+).\\1$', 'aaaa', '', ascii(None)),
+ ('(abc)\\1', 'abcabc', '0,1', ascii(('abcabc', 'abc'))),
+ ('([a-c]+)\\1', 'abcabc', '0,1', ascii(('abcabc', 'abc'))),
+
+ ('(a)\\1', 'aa', '0,1', ascii(('aa', 'a'))),
+ ('(a+)\\1', 'aa', '0,1', ascii(('aa', 'a'))),
+ ('(a+)+\\1', 'aa', '0,1', ascii(('aa', 'a'))),
+ ('(a).+\\1', 'aba', '0,1', ascii(('aba', 'a'))),
+ ('(a)ba*\\1', 'aba', '0,1', ascii(('aba', 'a'))),
+ ('(aa|a)a\\1$', 'aaa', '0,1', ascii(('aaa', 'a'))),
+ ('(a|aa)a\\1$', 'aaa', '0,1', ascii(('aaa', 'a'))),
+ ('(a+)a\\1$', 'aaa', '0,1', ascii(('aaa', 'a'))),
+ ('([abc]*)\\1', 'abcabc', '0,1', ascii(('abcabc', 'abc'))),
+ ('(a)(b)c|ab', 'ab', '0,1,2', ascii(('ab', None, None))),
+
+ ('(a)+x', 'aaax', '0,1', ascii(('aaax', 'a'))),
+ ('([ac])+x', 'aacx', '0,1', ascii(('aacx', 'c'))),
+ ('([^/]*/)*sub1/', 'd:msgs/tdir/sub1/trial/away.cpp', '0,1',
+ ascii(('d:msgs/tdir/sub1/', 'tdir/'))),
+ ('([^.]*)\\.([^:]*):[T ]+(.*)', 'track1.title:TBlah blah blah',
+ '0,1,2,3', ascii(('track1.title:TBlah blah blah', 'track1',
+ 'title', 'Blah blah blah'))),
+ ('([^N]*N)+', 'abNNxyzN', '0,1', ascii(('abNNxyzN', 'xyzN'))),
+ ('([^N]*N)+', 'abNNxyz', '0,1', ascii(('abNN', 'N'))),
+ ('([abc]*)x', 'abcx', '0,1', ascii(('abcx', 'abc'))),
+ ('([abc]*)x', 'abc', '', ascii(None)),
+ ('([xyz]*)x', 'abcx', '0,1', ascii(('x', ''))),
+ ('(a)+b|aac', 'aac', '0,1', ascii(('aac', None))),
+
+ # Test symbolic groups.
+ ('(?Paaa)a', 'aaaa', '', regex.error, self.BAD_GROUP_NAME),
+ ('(?Paaa)a', 'aaaa', '0,id', ascii(('aaaa', 'aaa'))),
+ ('(?Paa)(?P=id)', 'aaaa', '0,id', ascii(('aaaa', 'aa'))),
+ ('(?Paa)(?P=xd)', 'aaaa', '', regex.error, self.UNKNOWN_GROUP),
+
+ # Character properties.
+ (r"\g", "g", '0', ascii('g')),
+ (r"\g<1>", "g", '', regex.error, self.INVALID_GROUP_REF),
+ (r"(.)\g<1>", "gg", '0', ascii('gg')),
+ (r"(.)\g<1>", "gg", '', ascii(('gg', 'g'))),
+ (r"\N", "N", '0', ascii('N')),
+ (r"\N{LATIN SMALL LETTER A}", "a", '0', ascii('a')),
+ (r"\p", "p", '0', ascii('p')),
+ (r"\p{Ll}", "a", '0', ascii('a')),
+ (r"\P", "P", '0', ascii('P')),
+ (r"\P{Lu}", "p", '0', ascii('p')),
+
+ # All tests from Perl.
+ ('abc', 'abc', '0', ascii('abc')),
+ ('abc', 'xbc', '', ascii(None)),
+ ('abc', 'axc', '', ascii(None)),
+ ('abc', 'abx', '', ascii(None)),
+ ('abc', 'xabcy', '0', ascii('abc')),
+ ('abc', 'ababc', '0', ascii('abc')),
+
+ ('ab*c', 'abc', '0', ascii('abc')),
+ ('ab*bc', 'abc', '0', ascii('abc')),
+ ('ab*bc', 'abbc', '0', ascii('abbc')),
+ ('ab*bc', 'abbbbc', '0', ascii('abbbbc')),
+ ('ab{0,}bc', 'abbbbc', '0', ascii('abbbbc')),
+ ('ab+bc', 'abbc', '0', ascii('abbc')),
+ ('ab+bc', 'abc', '', ascii(None)),
+ ('ab+bc', 'abq', '', ascii(None)),
+ ('ab{1,}bc', 'abq', '', ascii(None)),
+ ('ab+bc', 'abbbbc', '0', ascii('abbbbc')),
+
+ ('ab{1,}bc', 'abbbbc', '0', ascii('abbbbc')),
+ ('ab{1,3}bc', 'abbbbc', '0', ascii('abbbbc')),
+ ('ab{3,4}bc', 'abbbbc', '0', ascii('abbbbc')),
+ ('ab{4,5}bc', 'abbbbc', '', ascii(None)),
+ ('ab?bc', 'abbc', '0', ascii('abbc')),
+ ('ab?bc', 'abc', '0', ascii('abc')),
+ ('ab{0,1}bc', 'abc', '0', ascii('abc')),
+ ('ab?bc', 'abbbbc', '', ascii(None)),
+ ('ab?c', 'abc', '0', ascii('abc')),
+ ('ab{0,1}c', 'abc', '0', ascii('abc')),
+
+ ('^abc$', 'abc', '0', ascii('abc')),
+ ('^abc$', 'abcc', '', ascii(None)),
+ ('^abc', 'abcc', '0', ascii('abc')),
+ ('^abc$', 'aabc', '', ascii(None)),
+ ('abc$', 'aabc', '0', ascii('abc')),
+ ('^', 'abc', '0', ascii('')),
+ ('$', 'abc', '0', ascii('')),
+ ('a.c', 'abc', '0', ascii('abc')),
+ ('a.c', 'axc', '0', ascii('axc')),
+ ('a.*c', 'axyzc', '0', ascii('axyzc')),
+
+ ('a.*c', 'axyzd', '', ascii(None)),
+ ('a[bc]d', 'abc', '', ascii(None)),
+ ('a[bc]d', 'abd', '0', ascii('abd')),
+ ('a[b-d]e', 'abd', '', ascii(None)),
+ ('a[b-d]e', 'ace', '0', ascii('ace')),
+ ('a[b-d]', 'aac', '0', ascii('ac')),
+ ('a[-b]', 'a-', '0', ascii('a-')),
+ ('a[b-]', 'a-', '0', ascii('a-')),
+ ('a[b-a]', '-', '', regex.error, self.BAD_CHAR_RANGE),
+ ('a[]b', '-', '', regex.error, self.BAD_SET),
+
+ ('a[', '-', '', regex.error, self.BAD_SET),
+ ('a]', 'a]', '0', ascii('a]')),
+ ('a[]]b', 'a]b', '0', ascii('a]b')),
+ ('a[^bc]d', 'aed', '0', ascii('aed')),
+ ('a[^bc]d', 'abd', '', ascii(None)),
+ ('a[^-b]c', 'adc', '0', ascii('adc')),
+ ('a[^-b]c', 'a-c', '', ascii(None)),
+ ('a[^]b]c', 'a]c', '', ascii(None)),
+ ('a[^]b]c', 'adc', '0', ascii('adc')),
+ ('ab|cd', 'abc', '0', ascii('ab')),
+
+ ('ab|cd', 'abcd', '0', ascii('ab')),
+ ('()ef', 'def', '0,1', ascii(('ef', ''))),
+ ('*a', '-', '', regex.error, self.NOTHING_TO_REPEAT),
+ ('(*)b', '-', '', regex.error, self.NOTHING_TO_REPEAT),
+ ('$b', 'b', '', ascii(None)),
+ ('a\\', '-', '', regex.error, self.BAD_ESCAPE),
+ ('a\\(b', 'a(b', '', ascii(('a(b',))),
+ ('a\\(*b', 'ab', '0', ascii('ab')),
+ ('a\\(*b', 'a((b', '0', ascii('a((b')),
+ ('a\\\\b', 'a\\b', '0', ascii('a\\b')),
+
+ ('abc)', '-', '', regex.error, self.TRAILING_CHARS),
+ ('(abc', '-', '', regex.error, self.MISSING_RPAREN),
+ ('((a))', 'abc', '0,1,2', ascii(('a', 'a', 'a'))),
+ ('(a)b(c)', 'abc', '0,1,2', ascii(('abc', 'a', 'c'))),
+ ('a+b+c', 'aabbabc', '0', ascii('abc')),
+ ('a{1,}b{1,}c', 'aabbabc', '0', ascii('abc')),
+ ('a**', '-', '', regex.error, self.MULTIPLE_REPEAT),
+ ('a.+?c', 'abcabc', '0', ascii('abc')),
+ ('(a+|b)*', 'ab', '0,1', ascii(('ab', 'b'))),
+ ('(a+|b){0,}', 'ab', '0,1', ascii(('ab', 'b'))),
+
+ ('(a+|b)+', 'ab', '0,1', ascii(('ab', 'b'))),
+ ('(a+|b){1,}', 'ab', '0,1', ascii(('ab', 'b'))),
+ ('(a+|b)?', 'ab', '0,1', ascii(('a', 'a'))),
+ ('(a+|b){0,1}', 'ab', '0,1', ascii(('a', 'a'))),
+ (')(', '-', '', regex.error, self.TRAILING_CHARS),
+ ('[^ab]*', 'cde', '0', ascii('cde')),
+ ('abc', '', '', ascii(None)),
+ ('a*', '', '0', ascii('')),
+ ('([abc])*d', 'abbbcd', '0,1', ascii(('abbbcd', 'c'))),
+ ('([abc])*bcd', 'abcd', '0,1', ascii(('abcd', 'a'))),
+
+ ('a|b|c|d|e', 'e', '0', ascii('e')),
+ ('(a|b|c|d|e)f', 'ef', '0,1', ascii(('ef', 'e'))),
+ ('abcd*efg', 'abcdefg', '0', ascii('abcdefg')),
+ ('ab*', 'xabyabbbz', '0', ascii('ab')),
+ ('ab*', 'xayabbbz', '0', ascii('a')),
+ ('(ab|cd)e', 'abcde', '0,1', ascii(('cde', 'cd'))),
+ ('[abhgefdc]ij', 'hij', '0', ascii('hij')),
+ ('^(ab|cd)e', 'abcde', '', ascii(None)),
+ ('(abc|)ef', 'abcdef', '0,1', ascii(('ef', ''))),
+ ('(a|b)c*d', 'abcd', '0,1', ascii(('bcd', 'b'))),
+
+ ('(ab|ab*)bc', 'abc', '0,1', ascii(('abc', 'a'))),
+ ('a([bc]*)c*', 'abc', '0,1', ascii(('abc', 'bc'))),
+ ('a([bc]*)(c*d)', 'abcd', '0,1,2', ascii(('abcd', 'bc', 'd'))),
+ ('a([bc]+)(c*d)', 'abcd', '0,1,2', ascii(('abcd', 'bc', 'd'))),
+ ('a([bc]*)(c+d)', 'abcd', '0,1,2', ascii(('abcd', 'b', 'cd'))),
+ ('a[bcd]*dcdcde', 'adcdcde', '0', ascii('adcdcde')),
+ ('a[bcd]+dcdcde', 'adcdcde', '', ascii(None)),
+ ('(ab|a)b*c', 'abc', '0,1', ascii(('abc', 'ab'))),
+ ('((a)(b)c)(d)', 'abcd', '1,2,3,4', ascii(('abc', 'a', 'b', 'd'))),
+ ('[a-zA-Z_][a-zA-Z0-9_]*', 'alpha', '0', ascii('alpha')),
+
+ ('^a(bc+|b[eh])g|.h$', 'abh', '0,1', ascii(('bh', None))),
+ ('(bc+d$|ef*g.|h?i(j|k))', 'effgz', '0,1,2', ascii(('effgz',
+ 'effgz', None))),
+ ('(bc+d$|ef*g.|h?i(j|k))', 'ij', '0,1,2', ascii(('ij', 'ij',
+ 'j'))),
+ ('(bc+d$|ef*g.|h?i(j|k))', 'effg', '', ascii(None)),
+ ('(bc+d$|ef*g.|h?i(j|k))', 'bcdd', '', ascii(None)),
+ ('(bc+d$|ef*g.|h?i(j|k))', 'reffgz', '0,1,2', ascii(('effgz',
+ 'effgz', None))),
+ ('((((((((((a))))))))))', 'a', '10', ascii('a')),
+ ('((((((((((a))))))))))\\10', 'aa', '0', ascii('aa')),
+
+ # Python does not have the same rules for \\41 so this is a syntax error
+ # ('((((((((((a))))))))))\\41', 'aa', '', ascii(None)),
+ # ('((((((((((a))))))))))\\41', 'a!', '0', ascii('a!')),
+ ('((((((((((a))))))))))\\41', '', '', regex.error,
+ self.INVALID_GROUP_REF),
+ ('(?i)((((((((((a))))))))))\\41', '', '', regex.error,
+ self.INVALID_GROUP_REF),
+
+ ('(((((((((a)))))))))', 'a', '0', ascii('a')),
+ ('multiple words of text', 'uh-uh', '', ascii(None)),
+ ('multiple words', 'multiple words, yeah', '0',
+ ascii('multiple words')),
+ ('(.*)c(.*)', 'abcde', '0,1,2', ascii(('abcde', 'ab', 'de'))),
+ ('\\((.*), (.*)\\)', '(a, b)', '2,1', ascii(('b', 'a'))),
+ ('[k]', 'ab', '', ascii(None)),
+ ('a[-]?c', 'ac', '0', ascii('ac')),
+ ('(abc)\\1', 'abcabc', '1', ascii('abc')),
+ ('([a-c]*)\\1', 'abcabc', '1', ascii('abc')),
+ ('(?i)abc', 'ABC', '0', ascii('ABC')),
+
+ ('(?i)abc', 'XBC', '', ascii(None)),
+ ('(?i)abc', 'AXC', '', ascii(None)),
+ ('(?i)abc', 'ABX', '', ascii(None)),
+ ('(?i)abc', 'XABCY', '0', ascii('ABC')),
+ ('(?i)abc', 'ABABC', '0', ascii('ABC')),
+ ('(?i)ab*c', 'ABC', '0', ascii('ABC')),
+ ('(?i)ab*bc', 'ABC', '0', ascii('ABC')),
+ ('(?i)ab*bc', 'ABBC', '0', ascii('ABBC')),
+ ('(?i)ab*?bc', 'ABBBBC', '0', ascii('ABBBBC')),
+ ('(?i)ab{0,}?bc', 'ABBBBC', '0', ascii('ABBBBC')),
+
+ ('(?i)ab+?bc', 'ABBC', '0', ascii('ABBC')),
+ ('(?i)ab+bc', 'ABC', '', ascii(None)),
+ ('(?i)ab+bc', 'ABQ', '', ascii(None)),
+ ('(?i)ab{1,}bc', 'ABQ', '', ascii(None)),
+ ('(?i)ab+bc', 'ABBBBC', '0', ascii('ABBBBC')),
+ ('(?i)ab{1,}?bc', 'ABBBBC', '0', ascii('ABBBBC')),
+ ('(?i)ab{1,3}?bc', 'ABBBBC', '0', ascii('ABBBBC')),
+ ('(?i)ab{3,4}?bc', 'ABBBBC', '0', ascii('ABBBBC')),
+ ('(?i)ab{4,5}?bc', 'ABBBBC', '', ascii(None)),
+ ('(?i)ab??bc', 'ABBC', '0', ascii('ABBC')),
+
+ ('(?i)ab??bc', 'ABC', '0', ascii('ABC')),
+ ('(?i)ab{0,1}?bc', 'ABC', '0', ascii('ABC')),
+ ('(?i)ab??bc', 'ABBBBC', '', ascii(None)),
+ ('(?i)ab??c', 'ABC', '0', ascii('ABC')),
+ ('(?i)ab{0,1}?c', 'ABC', '0', ascii('ABC')),
+ ('(?i)^abc$', 'ABC', '0', ascii('ABC')),
+ ('(?i)^abc$', 'ABCC', '', ascii(None)),
+ ('(?i)^abc', 'ABCC', '0', ascii('ABC')),
+ ('(?i)^abc$', 'AABC', '', ascii(None)),
+ ('(?i)abc$', 'AABC', '0', ascii('ABC')),
+
+ ('(?i)^', 'ABC', '0', ascii('')),
+ ('(?i)$', 'ABC', '0', ascii('')),
+ ('(?i)a.c', 'ABC', '0', ascii('ABC')),
+ ('(?i)a.c', 'AXC', '0', ascii('AXC')),
+ ('(?i)a.*?c', 'AXYZC', '0', ascii('AXYZC')),
+ ('(?i)a.*c', 'AXYZD', '', ascii(None)),
+ ('(?i)a[bc]d', 'ABC', '', ascii(None)),
+ ('(?i)a[bc]d', 'ABD', '0', ascii('ABD')),
+ ('(?i)a[b-d]e', 'ABD', '', ascii(None)),
+ ('(?i)a[b-d]e', 'ACE', '0', ascii('ACE')),
+
+ ('(?i)a[b-d]', 'AAC', '0', ascii('AC')),
+ ('(?i)a[-b]', 'A-', '0', ascii('A-')),
+ ('(?i)a[b-]', 'A-', '0', ascii('A-')),
+ ('(?i)a[b-a]', '-', '', regex.error, self.BAD_CHAR_RANGE),
+ ('(?i)a[]b', '-', '', regex.error, self.BAD_SET),
+ ('(?i)a[', '-', '', regex.error, self.BAD_SET),
+ ('(?i)a]', 'A]', '0', ascii('A]')),
+ ('(?i)a[]]b', 'A]B', '0', ascii('A]B')),
+ ('(?i)a[^bc]d', 'AED', '0', ascii('AED')),
+ ('(?i)a[^bc]d', 'ABD', '', ascii(None)),
+
+ ('(?i)a[^-b]c', 'ADC', '0', ascii('ADC')),
+ ('(?i)a[^-b]c', 'A-C', '', ascii(None)),
+ ('(?i)a[^]b]c', 'A]C', '', ascii(None)),
+ ('(?i)a[^]b]c', 'ADC', '0', ascii('ADC')),
+ ('(?i)ab|cd', 'ABC', '0', ascii('AB')),
+ ('(?i)ab|cd', 'ABCD', '0', ascii('AB')),
+ ('(?i)()ef', 'DEF', '0,1', ascii(('EF', ''))),
+ ('(?i)*a', '-', '', regex.error, self.NOTHING_TO_REPEAT),
+ ('(?i)(*)b', '-', '', regex.error, self.NOTHING_TO_REPEAT),
+ ('(?i)$b', 'B', '', ascii(None)),
+
+ ('(?i)a\\', '-', '', regex.error, self.BAD_ESCAPE),
+ ('(?i)a\\(b', 'A(B', '', ascii(('A(B',))),
+ ('(?i)a\\(*b', 'AB', '0', ascii('AB')),
+ ('(?i)a\\(*b', 'A((B', '0', ascii('A((B')),
+ ('(?i)a\\\\b', 'A\\B', '0', ascii('A\\B')),
+ ('(?i)abc)', '-', '', regex.error, self.TRAILING_CHARS),
+ ('(?i)(abc', '-', '', regex.error, self.MISSING_RPAREN),
+ ('(?i)((a))', 'ABC', '0,1,2', ascii(('A', 'A', 'A'))),
+ ('(?i)(a)b(c)', 'ABC', '0,1,2', ascii(('ABC', 'A', 'C'))),
+ ('(?i)a+b+c', 'AABBABC', '0', ascii('ABC')),
+
+ ('(?i)a{1,}b{1,}c', 'AABBABC', '0', ascii('ABC')),
+ ('(?i)a**', '-', '', regex.error, self.MULTIPLE_REPEAT),
+ ('(?i)a.+?c', 'ABCABC', '0', ascii('ABC')),
+ ('(?i)a.*?c', 'ABCABC', '0', ascii('ABC')),
+ ('(?i)a.{0,5}?c', 'ABCABC', '0', ascii('ABC')),
+ ('(?i)(a+|b)*', 'AB', '0,1', ascii(('AB', 'B'))),
+ ('(?i)(a+|b){0,}', 'AB', '0,1', ascii(('AB', 'B'))),
+ ('(?i)(a+|b)+', 'AB', '0,1', ascii(('AB', 'B'))),
+ ('(?i)(a+|b){1,}', 'AB', '0,1', ascii(('AB', 'B'))),
+ ('(?i)(a+|b)?', 'AB', '0,1', ascii(('A', 'A'))),
+
+ ('(?i)(a+|b){0,1}', 'AB', '0,1', ascii(('A', 'A'))),
+ ('(?i)(a+|b){0,1}?', 'AB', '0,1', ascii(('', None))),
+ ('(?i))(', '-', '', regex.error, self.TRAILING_CHARS),
+ ('(?i)[^ab]*', 'CDE', '0', ascii('CDE')),
+ ('(?i)abc', '', '', ascii(None)),
+ ('(?i)a*', '', '0', ascii('')),
+ ('(?i)([abc])*d', 'ABBBCD', '0,1', ascii(('ABBBCD', 'C'))),
+ ('(?i)([abc])*bcd', 'ABCD', '0,1', ascii(('ABCD', 'A'))),
+ ('(?i)a|b|c|d|e', 'E', '0', ascii('E')),
+ ('(?i)(a|b|c|d|e)f', 'EF', '0,1', ascii(('EF', 'E'))),
+
+ ('(?i)abcd*efg', 'ABCDEFG', '0', ascii('ABCDEFG')),
+ ('(?i)ab*', 'XABYABBBZ', '0', ascii('AB')),
+ ('(?i)ab*', 'XAYABBBZ', '0', ascii('A')),
+ ('(?i)(ab|cd)e', 'ABCDE', '0,1', ascii(('CDE', 'CD'))),
+ ('(?i)[abhgefdc]ij', 'HIJ', '0', ascii('HIJ')),
+ ('(?i)^(ab|cd)e', 'ABCDE', '', ascii(None)),
+ ('(?i)(abc|)ef', 'ABCDEF', '0,1', ascii(('EF', ''))),
+ ('(?i)(a|b)c*d', 'ABCD', '0,1', ascii(('BCD', 'B'))),
+ ('(?i)(ab|ab*)bc', 'ABC', '0,1', ascii(('ABC', 'A'))),
+ ('(?i)a([bc]*)c*', 'ABC', '0,1', ascii(('ABC', 'BC'))),
+
+ ('(?i)a([bc]*)(c*d)', 'ABCD', '0,1,2', ascii(('ABCD', 'BC', 'D'))),
+ ('(?i)a([bc]+)(c*d)', 'ABCD', '0,1,2', ascii(('ABCD', 'BC', 'D'))),
+ ('(?i)a([bc]*)(c+d)', 'ABCD', '0,1,2', ascii(('ABCD', 'B', 'CD'))),
+ ('(?i)a[bcd]*dcdcde', 'ADCDCDE', '0', ascii('ADCDCDE')),
+ ('(?i)a[bcd]+dcdcde', 'ADCDCDE', '', ascii(None)),
+ ('(?i)(ab|a)b*c', 'ABC', '0,1', ascii(('ABC', 'AB'))),
+ ('(?i)((a)(b)c)(d)', 'ABCD', '1,2,3,4', ascii(('ABC', 'A', 'B',
+ 'D'))),
+ ('(?i)[a-zA-Z_][a-zA-Z0-9_]*', 'ALPHA', '0', ascii('ALPHA')),
+ ('(?i)^a(bc+|b[eh])g|.h$', 'ABH', '0,1', ascii(('BH', None))),
+ ('(?i)(bc+d$|ef*g.|h?i(j|k))', 'EFFGZ', '0,1,2', ascii(('EFFGZ',
+ 'EFFGZ', None))),
+
+ ('(?i)(bc+d$|ef*g.|h?i(j|k))', 'IJ', '0,1,2', ascii(('IJ', 'IJ',
+ 'J'))),
+ ('(?i)(bc+d$|ef*g.|h?i(j|k))', 'EFFG', '', ascii(None)),
+ ('(?i)(bc+d$|ef*g.|h?i(j|k))', 'BCDD', '', ascii(None)),
+ ('(?i)(bc+d$|ef*g.|h?i(j|k))', 'REFFGZ', '0,1,2', ascii(('EFFGZ',
+ 'EFFGZ', None))),
+ ('(?i)((((((((((a))))))))))', 'A', '10', ascii('A')),
+ ('(?i)((((((((((a))))))))))\\10', 'AA', '0', ascii('AA')),
+ #('(?i)((((((((((a))))))))))\\41', 'AA', '', ascii(None)),
+ #('(?i)((((((((((a))))))))))\\41', 'A!', '0', ascii('A!')),
+ ('(?i)(((((((((a)))))))))', 'A', '0', ascii('A')),
+ ('(?i)(?:(?:(?:(?:(?:(?:(?:(?:(?:(a))))))))))', 'A', '1',
+ ascii('A')),
+ ('(?i)(?:(?:(?:(?:(?:(?:(?:(?:(?:(a|b|c))))))))))', 'C', '1',
+ ascii('C')),
+ ('(?i)multiple words of text', 'UH-UH', '', ascii(None)),
+
+ ('(?i)multiple words', 'MULTIPLE WORDS, YEAH', '0',
+ ascii('MULTIPLE WORDS')),
+ ('(?i)(.*)c(.*)', 'ABCDE', '0,1,2', ascii(('ABCDE', 'AB', 'DE'))),
+ ('(?i)\\((.*), (.*)\\)', '(A, B)', '2,1', ascii(('B', 'A'))),
+ ('(?i)[k]', 'AB', '', ascii(None)),
+ # ('(?i)abcd', 'ABCD', SUCCEED, 'found+"-"+\\found+"-"+\\\\found', ascii(ABCD-$&-\\ABCD)),
+ # ('(?i)a(bc)d', 'ABCD', SUCCEED, 'g1+"-"+\\g1+"-"+\\\\g1', ascii(BC-$1-\\BC)),
+ ('(?i)a[-]?c', 'AC', '0', ascii('AC')),
+ ('(?i)(abc)\\1', 'ABCABC', '1', ascii('ABC')),
+ ('(?i)([a-c]*)\\1', 'ABCABC', '1', ascii('ABC')),
+ ('a(?!b).', 'abad', '0', ascii('ad')),
+ ('a(?=d).', 'abad', '0', ascii('ad')),
+ ('a(?=c|d).', 'abad', '0', ascii('ad')),
+
+ ('a(?:b|c|d)(.)', 'ace', '1', ascii('e')),
+ ('a(?:b|c|d)*(.)', 'ace', '1', ascii('e')),
+ ('a(?:b|c|d)+?(.)', 'ace', '1', ascii('e')),
+ ('a(?:b|(c|e){1,2}?|d)+?(.)', 'ace', '1,2', ascii(('c', 'e'))),
+
+ # Lookbehind: split by : but not if it is escaped by -.
+ ('(?]*?b', 'a>b', '', ascii(None)),
+ # Bug 490573: minimizing repeat problem.
+ (r'^a*?$', 'foo', '', ascii(None)),
+ # Bug 470582: nested groups problem.
+ (r'^((a)c)?(ab)$', 'ab', '1,2,3', ascii((None, None, 'ab'))),
+ # Another minimizing repeat problem (capturing groups in assertions).
+ ('^([ab]*?)(?=(b)?)c', 'abc', '1,2', ascii(('ab', None))),
+ ('^([ab]*?)(?!(b))c', 'abc', '1,2', ascii(('ab', None))),
+ ('^([ab]*?)(?(.){0,2})d", "abcd").captures(1),
+ ['b', 'c'])
+ self.assertEqual(regex.search(r"(.)+", "a").captures(1), ['a'])
+
+ def test_guards(self):
+ m = regex.search(r"(X.*?Y\s*){3}(X\s*)+AB:",
+ "XY\nX Y\nX Y\nXY\nXX AB:")
+ self.assertEqual(m.span(0, 1, 2), ((3, 21), (12, 15), (16, 18)))
+
+ m = regex.search(r"(X.*?Y\s*){3,}(X\s*)+AB:",
+ "XY\nX Y\nX Y\nXY\nXX AB:")
+ self.assertEqual(m.span(0, 1, 2), ((0, 21), (12, 15), (16, 18)))
+
+ m = regex.search(r'\d{4}(\s*\w)?\W*((?!\d)\w){2}', "9999XX")
+ self.assertEqual(m.span(0, 1, 2), ((0, 6), (-1, -1), (5, 6)))
+
+ m = regex.search(r'A\s*?.*?(\n+.*?\s*?){0,2}\(X', 'A\n1\nS\n1 (X')
+ self.assertEqual(m.span(0, 1), ((0, 10), (5, 8)))
+
+ m = regex.search(r'Derde\s*:', 'aaaaaa:\nDerde:')
+ self.assertEqual(m.span(), (8, 14))
+ m = regex.search(r'Derde\s*:', 'aaaaa:\nDerde:')
+ self.assertEqual(m.span(), (7, 13))
+
+ def test_turkic(self):
+ # Turkish has dotted and dotless I/i.
+ pairs = "I=i;I=\u0131;i=\u0130"
+
+ all_chars = set()
+ matching = set()
+ for pair in pairs.split(";"):
+ ch1, ch2 = pair.split("=")
+ all_chars.update((ch1, ch2))
+ matching.add((ch1, ch1))
+ matching.add((ch1, ch2))
+ matching.add((ch2, ch1))
+ matching.add((ch2, ch2))
+
+ for ch1 in all_chars:
+ for ch2 in all_chars:
+ m = regex.match(r"(?i)\A" + ch1 + r"\Z", ch2)
+ if m:
+ if (ch1, ch2) not in matching:
+ self.fail("{} matching {}".format(ascii(ch1),
+ ascii(ch2)))
+ else:
+ if (ch1, ch2) in matching:
+ self.fail("{} not matching {}".format(ascii(ch1),
+ ascii(ch2)))
+
+ def test_named_lists(self):
+ options = ["one", "two", "three"]
+ self.assertEqual(regex.match(r"333\L444", "333one444",
+ bar=options).group(), "333one444")
+ self.assertEqual(regex.match(r"(?i)333\L444", "333TWO444",
+ bar=options).group(), "333TWO444")
+ self.assertEqual(regex.match(r"333\L444", "333four444",
+ bar=options), None)
+
+ options = [b"one", b"two", b"three"]
+ self.assertEqual(regex.match(br"333\L444", b"333one444",
+ bar=options).group(), b"333one444")
+ self.assertEqual(regex.match(br"(?i)333\L444", b"333TWO444",
+ bar=options).group(), b"333TWO444")
+ self.assertEqual(regex.match(br"333\L444", b"333four444",
+ bar=options), None)
+
+ self.assertEqual(repr(type(regex.compile(r"3\L4\L+5",
+ bar=["one", "two", "three"]))), self.PATTERN_CLASS)
+
+ self.assertEqual(regex.findall(r"^\L", "solid QWERT",
+ options=set(['good', 'brilliant', '+s\\ol[i}d'])), [])
+ self.assertEqual(regex.findall(r"^\L", "+solid QWERT",
+ options=set(['good', 'brilliant', '+solid'])), ['+solid'])
+
+ options = ["STRASSE"]
+ self.assertEqual(regex.match(r"(?fi)\L",
+ "stra\N{LATIN SMALL LETTER SHARP S}e", words=options).span(), (0,
+ 6))
+
+ options = ["STRASSE", "stress"]
+ self.assertEqual(regex.match(r"(?fi)\L",
+ "stra\N{LATIN SMALL LETTER SHARP S}e", words=options).span(), (0,
+ 6))
+
+ options = ["stra\N{LATIN SMALL LETTER SHARP S}e"]
+ self.assertEqual(regex.match(r"(?fi)\L", "STRASSE",
+ words=options).span(), (0, 7))
+
+ options = ["kit"]
+ self.assertEqual(regex.search(r"(?i)\L", "SKITS",
+ words=options).span(), (1, 4))
+ self.assertEqual(regex.search(r"(?i)\L",
+ "SK\N{LATIN CAPITAL LETTER I WITH DOT ABOVE}TS",
+ words=options).span(), (1, 4))
+
+ self.assertEqual(regex.search(r"(?fi)\b(\w+) +\1\b",
+ " stra\N{LATIN SMALL LETTER SHARP S}e STRASSE ").span(), (1, 15))
+ self.assertEqual(regex.search(r"(?fi)\b(\w+) +\1\b",
+ " STRASSE stra\N{LATIN SMALL LETTER SHARP S}e ").span(), (1, 15))
+
+ self.assertEqual(regex.search(r"^\L$", "", options=[]).span(),
+ (0, 0))
+
+ def test_fuzzy(self):
+ # Some tests borrowed from TRE library tests.
+ self.assertEqual(repr(type(regex.compile('(fou){s,e<=1}'))),
+ self.PATTERN_CLASS)
+ self.assertEqual(repr(type(regex.compile('(fuu){s}'))),
+ self.PATTERN_CLASS)
+ self.assertEqual(repr(type(regex.compile('(fuu){s,e}'))),
+ self.PATTERN_CLASS)
+ self.assertEqual(repr(type(regex.compile('(anaconda){1i+1d<1,s<=1}'))),
+ self.PATTERN_CLASS)
+ self.assertEqual(repr(type(regex.compile('(anaconda){1i+1d<1,s<=1,e<=10}'))),
+ self.PATTERN_CLASS)
+ self.assertEqual(repr(type(regex.compile('(anaconda){s<=1,e<=1,1i+1d<1}'))),
+ self.PATTERN_CLASS)
+
+ text = 'molasses anaconda foo bar baz smith anderson '
+ self.assertEqual(regex.search('(znacnda){s<=1,e<=3,1i+1d<1}', text),
+ None)
+ self.assertEqual(regex.search('(znacnda){s<=1,e<=3,1i+1d<2}',
+ text).span(0, 1), ((9, 17), (9, 17)))
+ self.assertEqual(regex.search('(ananda){1i+1d<2}', text), None)
+ self.assertEqual(regex.search(r"(?:\bznacnda){e<=2}", text)[0],
+ "anaconda")
+ self.assertEqual(regex.search(r"(?:\bnacnda){e<=2}", text)[0],
+ "anaconda")
+
+ text = 'anaconda foo bar baz smith anderson'
+ self.assertEqual(regex.search('(fuu){i<=3,d<=3,e<=5}', text).span(0,
+ 1), ((0, 0), (0, 0)))
+ self.assertEqual(regex.search('(?b)(fuu){i<=3,d<=3,e<=5}',
+ text).span(0, 1), ((9, 10), (9, 10)))
+ self.assertEqual(regex.search('(fuu){i<=2,d<=2,e<=5}', text).span(0,
+ 1), ((7, 10), (7, 10)))
+ self.assertEqual(regex.search('(?e)(fuu){i<=2,d<=2,e<=5}',
+ text).span(0, 1), ((9, 10), (9, 10)))
+ self.assertEqual(regex.search('(fuu){i<=3,d<=3,e}', text).span(0, 1),
+ ((0, 0), (0, 0)))
+ self.assertEqual(regex.search('(?b)(fuu){i<=3,d<=3,e}', text).span(0,
+ 1), ((9, 10), (9, 10)))
+
+ self.assertEqual(repr(type(regex.compile('(approximate){s<=3,1i+1d<3}'))),
+ self.PATTERN_CLASS)
+
+ # No cost limit.
+ self.assertEqual(regex.search('(foobar){e}',
+ 'xirefoabralfobarxie').span(0, 1), ((0, 6), (0, 6)))
+ self.assertEqual(regex.search('(?e)(foobar){e}',
+ 'xirefoabralfobarxie').span(0, 1), ((0, 3), (0, 3)))
+ self.assertEqual(regex.search('(?b)(foobar){e}',
+ 'xirefoabralfobarxie').span(0, 1), ((11, 16), (11, 16)))
+
+ # At most two errors.
+ self.assertEqual(regex.search('(foobar){e<=2}',
+ 'xirefoabrzlfd').span(0, 1), ((4, 9), (4, 9)))
+ self.assertEqual(regex.search('(foobar){e<=2}', 'xirefoabzlfd'), None)
+
+ # At most two inserts or substitutions and max two errors total.
+ self.assertEqual(regex.search('(foobar){i<=2,s<=2,e<=2}',
+ 'oobargoobaploowap').span(0, 1), ((5, 11), (5, 11)))
+
+ # Find best whole word match for "foobar".
+ self.assertEqual(regex.search('\\b(foobar){e}\\b', 'zfoobarz').span(0,
+ 1), ((0, 8), (0, 8)))
+ self.assertEqual(regex.search('\\b(foobar){e}\\b',
+ 'boing zfoobarz goobar woop').span(0, 1), ((0, 6), (0, 6)))
+ self.assertEqual(regex.search('(?b)\\b(foobar){e}\\b',
+ 'boing zfoobarz goobar woop').span(0, 1), ((15, 21), (15, 21)))
+
+ # Match whole string, allow only 1 error.
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'foobar').span(0, 1),
+ ((0, 6), (0, 6)))
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'xfoobar').span(0,
+ 1), ((0, 7), (0, 7)))
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'foobarx').span(0,
+ 1), ((0, 7), (0, 7)))
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'fooxbar').span(0,
+ 1), ((0, 7), (0, 7)))
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'foxbar').span(0, 1),
+ ((0, 6), (0, 6)))
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'xoobar').span(0, 1),
+ ((0, 6), (0, 6)))
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'foobax').span(0, 1),
+ ((0, 6), (0, 6)))
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'oobar').span(0, 1),
+ ((0, 5), (0, 5)))
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'fobar').span(0, 1),
+ ((0, 5), (0, 5)))
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'fooba').span(0, 1),
+ ((0, 5), (0, 5)))
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'xfoobarx'), None)
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'foobarxx'), None)
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'xxfoobar'), None)
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'xfoxbar'), None)
+ self.assertEqual(regex.search('^(foobar){e<=1}$', 'foxbarx'), None)
+
+ # At most one insert, two deletes, and three substitutions.
+ # Additionally, deletes cost two and substitutes one, and total
+ # cost must be less than 4.
+ self.assertEqual(regex.search('(foobar){i<=1,d<=2,s<=3,2d+1s<4}',
+ '3oifaowefbaoraofuiebofasebfaobfaorfeoaro').span(0, 1), ((6, 13), (6,
+ 13)))
+ self.assertEqual(regex.search('(?b)(foobar){i<=1,d<=2,s<=3,2d+1s<4}',
+ '3oifaowefbaoraofuiebofasebfaobfaorfeoaro').span(0, 1), ((34, 39),
+ (34, 39)))
+
+ # Partially fuzzy matches.
+ self.assertEqual(regex.search('foo(bar){e<=1}zap', 'foobarzap').span(0,
+ 1), ((0, 9), (3, 6)))
+ self.assertEqual(regex.search('foo(bar){e<=1}zap', 'fobarzap'), None)
+ self.assertEqual(regex.search('foo(bar){e<=1}zap', 'foobrzap').span(0,
+ 1), ((0, 8), (3, 5)))
+
+ text = ('www.cnn.com 64.236.16.20\nwww.slashdot.org 66.35.250.150\n'
+ 'For useful information, use www.slashdot.org\nthis is demo data!\n')
+ self.assertEqual(regex.search(r'(?s)^.*(dot.org){e}.*$', text).span(0,
+ 1), ((0, 120), (120, 120)))
+ self.assertEqual(regex.search(r'(?es)^.*(dot.org){e}.*$', text).span(0,
+ 1), ((0, 120), (93, 100)))
+ self.assertEqual(regex.search(r'^.*(dot.org){e}.*$', text).span(0, 1),
+ ((0, 119), (24, 101)))
+
+ # Behaviour is unexpected, but arguably not wrong. It first finds the
+ # best match, then the best in what follows, etc.
+ self.assertEqual(regex.findall(r"\b\L{e<=1}\b",
+ " book cot dog desk ", words="cat dog".split()), ["cot", "dog"])
+ self.assertEqual(regex.findall(r"\b\L{e<=1}\b",
+ " book dog cot desk ", words="cat dog".split()), [" dog", "cot"])
+ self.assertEqual(regex.findall(r"(?e)\b\L{e<=1}\b",
+ " book dog cot desk ", words="cat dog".split()), ["dog", "cot"])
+ self.assertEqual(regex.findall(r"(?r)\b\L{e<=1}\b",
+ " book cot dog desk ", words="cat dog".split()), ["dog ", "cot"])
+ self.assertEqual(regex.findall(r"(?er)\b\L{e<=1}\b",
+ " book cot dog desk ", words="cat dog".split()), ["dog", "cot"])
+ self.assertEqual(regex.findall(r"(?r)\b\L{e<=1}\b",
+ " book dog cot desk ", words="cat dog".split()), ["cot", "dog"])
+ self.assertEqual(regex.findall(br"\b\L{e<=1}\b",
+ b" book cot dog desk ", words=b"cat dog".split()), [b"cot", b"dog"])
+ self.assertEqual(regex.findall(br"\b\L{e<=1}\b",
+ b" book dog cot desk ", words=b"cat dog".split()), [b" dog", b"cot"])
+ self.assertEqual(regex.findall(br"(?e)\b\L{e<=1}\b",
+ b" book dog cot desk ", words=b"cat dog".split()), [b"dog", b"cot"])
+ self.assertEqual(regex.findall(br"(?r)\b\L{e<=1}\b",
+ b" book cot dog desk ", words=b"cat dog".split()), [b"dog ", b"cot"])
+ self.assertEqual(regex.findall(br"(?er)\b\L{e<=1}\b",
+ b" book cot dog desk ", words=b"cat dog".split()), [b"dog", b"cot"])
+ self.assertEqual(regex.findall(br"(?r)\b\L{e<=1}\b",
+ b" book dog cot desk ", words=b"cat dog".split()), [b"cot", b"dog"])
+
+ self.assertEqual(regex.search(r"(\w+) (\1{e<=1})", "foo fou").groups(),
+ ("foo", "fou"))
+ self.assertEqual(regex.search(r"(?r)(\2{e<=1}) (\w+)",
+ "foo fou").groups(), ("foo", "fou"))
+ self.assertEqual(regex.search(br"(\w+) (\1{e<=1})",
+ b"foo fou").groups(), (b"foo", b"fou"))
+
+ self.assertEqual(regex.findall(r"(?:(?:QR)+){e}", "abcde"), ["abcde",
+ ""])
+ self.assertEqual(regex.findall(r"(?:Q+){e}", "abc"), ["abc", ""])
+
+ # Hg issue 41: = for fuzzy matches
+ self.assertEqual(regex.match(r"(?:service detection){0[^()]+)|(?R))*\)", "(ab(cd)ef)")[
+ : ], ("(ab(cd)ef)", "ef"))
+ self.assertEqual(regex.search(r"\(((?>[^()]+)|(?R))*\)",
+ "(ab(cd)ef)").captures(1), ["ab", "cd", "(cd)", "ef"])
+
+ self.assertEqual(regex.search(r"(?r)\(((?R)|(?>[^()]+))*\)",
+ "(ab(cd)ef)")[ : ], ("(ab(cd)ef)", "ab"))
+ self.assertEqual(regex.search(r"(?r)\(((?R)|(?>[^()]+))*\)",
+ "(ab(cd)ef)").captures(1), ["ef", "cd", "(cd)", "ab"])
+
+ self.assertEqual(regex.search(r"\(([^()]+|(?R))*\)",
+ "some text (a(b(c)d)e) more text")[ : ], ("(a(b(c)d)e)", "e"))
+
+ self.assertEqual(regex.search(r"(?r)\(((?R)|[^()]+)*\)",
+ "some text (a(b(c)d)e) more text")[ : ], ("(a(b(c)d)e)", "a"))
+
+ self.assertEqual(regex.search(r"(foo(\(((?:(?>[^()]+)|(?2))*)\)))",
+ "foo(bar(baz)+baz(bop))")[ : ], ("foo(bar(baz)+baz(bop))",
+ "foo(bar(baz)+baz(bop))", "(bar(baz)+baz(bop))",
+ "bar(baz)+baz(bop)"))
+
+ self.assertEqual(regex.search(r"(?r)(foo(\(((?:(?2)|(?>[^()]+))*)\)))",
+ "foo(bar(baz)+baz(bop))")[ : ], ("foo(bar(baz)+baz(bop))",
+ "foo(bar(baz)+baz(bop))", "(bar(baz)+baz(bop))",
+ "bar(baz)+baz(bop)"))
+
+ rgx = regex.compile(r"""^\s*(<\s*([a-zA-Z:]+)(?:\s*[a-zA-Z:]*\s*=\s*(?:'[^']*'|"[^"]*"))*\s*(/\s*)?>(?:[^<>]*|(?1))*(?(3)|<\s*/\s*\2\s*>))\s*$""")
+ self.assertEqual(bool(rgx.search('')), True)
+ self.assertEqual(bool(rgx.search('')), False)
+ self.assertEqual(bool(rgx.search('')), True)
+ self.assertEqual(bool(rgx.search('')), False)
+ self.assertEqual(bool(rgx.search('')), False)
+
+ self.assertEqual(bool(rgx.search('')), False)
+ self.assertEqual(bool(rgx.search('')), True)
+ self.assertEqual(bool(rgx.search('< fooo / >')), True)
+ # The next regex should and does match. Perl 5.14 agrees.
+ #self.assertEqual(bool(rgx.search('foo')), False)
+ self.assertEqual(bool(rgx.search('foo')), False)
+
+ self.assertEqual(bool(rgx.search('foo')), True)
+ self.assertEqual(bool(rgx.search('foo')), True)
+ self.assertEqual(bool(rgx.search('')), True)
+
+ def test_copy(self):
+ # PatternObjects are immutable, therefore there's no need to clone them.
+ r = regex.compile("a")
+ self.assertTrue(copy.copy(r) is r)
+ self.assertTrue(copy.deepcopy(r) is r)
+
+ # MatchObjects are normally mutable because the target string can be
+ # detached. However, after the target string has been detached, a
+ # MatchObject becomes immutable, so there's no need to clone it.
+ m = r.match("a")
+ self.assertTrue(copy.copy(m) is not m)
+ self.assertTrue(copy.deepcopy(m) is not m)
+
+ self.assertTrue(m.string is not None)
+ m2 = copy.copy(m)
+ m2.detach_string()
+ self.assertTrue(m.string is not None)
+ self.assertTrue(m2.string is None)
+
+ # The following behaviour matches that of the re module.
+ it = regex.finditer(".", "ab")
+ it2 = copy.copy(it)
+ self.assertEqual(next(it).group(), "a")
+ self.assertEqual(next(it2).group(), "b")
+
+ # The following behaviour matches that of the re module.
+ it = regex.finditer(".", "ab")
+ it2 = copy.deepcopy(it)
+ self.assertEqual(next(it).group(), "a")
+ self.assertEqual(next(it2).group(), "b")
+
+ # The following behaviour is designed to match that of copying 'finditer'.
+ it = regex.splititer(" ", "a b")
+ it2 = copy.copy(it)
+ self.assertEqual(next(it), "a")
+ self.assertEqual(next(it2), "b")
+
+ # The following behaviour is designed to match that of copying 'finditer'.
+ it = regex.splititer(" ", "a b")
+ it2 = copy.deepcopy(it)
+ self.assertEqual(next(it), "a")
+ self.assertEqual(next(it2), "b")
+
+ def test_format(self):
+ self.assertEqual(regex.subf(r"(\w+) (\w+)", "{0} => {2} {1}",
+ "foo bar"), "foo bar => bar foo")
+ self.assertEqual(regex.subf(r"(?\w+) (?\w+)",
+ "{word2} {word1}", "foo bar"), "bar foo")
+
+ self.assertEqual(regex.subfn(r"(\w+) (\w+)", "{0} => {2} {1}",
+ "foo bar"), ("foo bar => bar foo", 1))
+ self.assertEqual(regex.subfn(r"(?\w+) (?\w+)",
+ "{word2} {word1}", "foo bar"), ("bar foo", 1))
+
+ self.assertEqual(regex.match(r"(\w+) (\w+)",
+ "foo bar").expandf("{0} => {2} {1}"), "foo bar => bar foo")
+
+ def test_fullmatch(self):
+ self.assertEqual(bool(regex.fullmatch(r"abc", "abc")), True)
+ self.assertEqual(bool(regex.fullmatch(r"abc", "abcx")), False)
+ self.assertEqual(bool(regex.fullmatch(r"abc", "abcx", endpos=3)), True)
+
+ self.assertEqual(bool(regex.fullmatch(r"abc", "xabc", pos=1)), True)
+ self.assertEqual(bool(regex.fullmatch(r"abc", "xabcy", pos=1)), False)
+ self.assertEqual(bool(regex.fullmatch(r"abc", "xabcy", pos=1,
+ endpos=4)), True)
+
+ self.assertEqual(bool(regex.fullmatch(r"(?r)abc", "abc")), True)
+ self.assertEqual(bool(regex.fullmatch(r"(?r)abc", "abcx")), False)
+ self.assertEqual(bool(regex.fullmatch(r"(?r)abc", "abcx", endpos=3)),
+ True)
+
+ self.assertEqual(bool(regex.fullmatch(r"(?r)abc", "xabc", pos=1)),
+ True)
+ self.assertEqual(bool(regex.fullmatch(r"(?r)abc", "xabcy", pos=1)),
+ False)
+ self.assertEqual(bool(regex.fullmatch(r"(?r)abc", "xabcy", pos=1,
+ endpos=4)), True)
+
+ def test_issue_18468(self):
+ self.assertTypedEqual(regex.sub('y', 'a', 'xyz'), 'xaz')
+ self.assertTypedEqual(regex.sub('y', StrSubclass('a'),
+ StrSubclass('xyz')), 'xaz')
+ self.assertTypedEqual(regex.sub(b'y', b'a', b'xyz'), b'xaz')
+ self.assertTypedEqual(regex.sub(b'y', BytesSubclass(b'a'),
+ BytesSubclass(b'xyz')), b'xaz')
+ self.assertTypedEqual(regex.sub(b'y', bytearray(b'a'),
+ bytearray(b'xyz')), b'xaz')
+ self.assertTypedEqual(regex.sub(b'y', memoryview(b'a'),
+ memoryview(b'xyz')), b'xaz')
+
+ for string in ":a:b::c", StrSubclass(":a:b::c"):
+ self.assertTypedEqual(regex.split(":", string), ['', 'a', 'b', '',
+ 'c'])
+ if sys.version_info >= (3, 7, 0):
+ self.assertTypedEqual(regex.split(":*", string), ['', '', 'a',
+ '', 'b', '', 'c', ''])
+ self.assertTypedEqual(regex.split("(:*)", string), ['', ':',
+ '', '', 'a', ':', '', '', 'b', '::', '', '', 'c', '', ''])
+ else:
+ self.assertTypedEqual(regex.split(":*", string), ['', 'a', 'b',
+ 'c'])
+ self.assertTypedEqual(regex.split("(:*)", string), ['', ':',
+ 'a', ':', 'b', '::', 'c'])
+
+ for string in (b":a:b::c", BytesSubclass(b":a:b::c"),
+ bytearray(b":a:b::c"), memoryview(b":a:b::c")):
+ self.assertTypedEqual(regex.split(b":", string), [b'', b'a', b'b',
+ b'', b'c'])
+ if sys.version_info >= (3, 7, 0):
+ self.assertTypedEqual(regex.split(b":*", string), [b'', b'',
+ b'a', b'', b'b', b'', b'c', b''])
+ self.assertTypedEqual(regex.split(b"(:*)", string), [b'', b':',
+ b'', b'', b'a', b':', b'', b'', b'b', b'::', b'', b'', b'c',
+ b'', b''])
+ else:
+ self.assertTypedEqual(regex.split(b":*", string), [b'', b'a',
+ b'b', b'c'])
+ self.assertTypedEqual(regex.split(b"(:*)", string), [b'', b':',
+ b'a', b':', b'b', b'::', b'c'])
+
+ for string in "a:b::c:::d", StrSubclass("a:b::c:::d"):
+ self.assertTypedEqual(regex.findall(":+", string), [":", "::",
+ ":::"])
+ self.assertTypedEqual(regex.findall("(:+)", string), [":", "::",
+ ":::"])
+ self.assertTypedEqual(regex.findall("(:)(:*)", string), [(":", ""),
+ (":", ":"), (":", "::")])
+
+ for string in (b"a:b::c:::d", BytesSubclass(b"a:b::c:::d"),
+ bytearray(b"a:b::c:::d"), memoryview(b"a:b::c:::d")):
+ self.assertTypedEqual(regex.findall(b":+", string), [b":", b"::",
+ b":::"])
+ self.assertTypedEqual(regex.findall(b"(:+)", string), [b":", b"::",
+ b":::"])
+ self.assertTypedEqual(regex.findall(b"(:)(:*)", string), [(b":",
+ b""), (b":", b":"), (b":", b"::")])
+
+ for string in 'a', StrSubclass('a'):
+ self.assertEqual(regex.match('a', string).groups(), ())
+ self.assertEqual(regex.match('(a)', string).groups(), ('a',))
+ self.assertEqual(regex.match('(a)', string).group(0), 'a')
+ self.assertEqual(regex.match('(a)', string).group(1), 'a')
+ self.assertEqual(regex.match('(a)', string).group(1, 1), ('a',
+ 'a'))
+
+ for string in (b'a', BytesSubclass(b'a'), bytearray(b'a'),
+ memoryview(b'a')):
+ self.assertEqual(regex.match(b'a', string).groups(), ())
+ self.assertEqual(regex.match(b'(a)', string).groups(), (b'a',))
+ self.assertEqual(regex.match(b'(a)', string).group(0), b'a')
+ self.assertEqual(regex.match(b'(a)', string).group(1), b'a')
+ self.assertEqual(regex.match(b'(a)', string).group(1, 1), (b'a',
+ b'a'))
+
+ def test_partial(self):
+ self.assertEqual(regex.match('ab', 'a', partial=True).partial, True)
+ self.assertEqual(regex.match('ab', 'a', partial=True).span(), (0, 1))
+ self.assertEqual(regex.match(r'cats', 'cat', partial=True).partial,
+ True)
+ self.assertEqual(regex.match(r'cats', 'cat', partial=True).span(), (0,
+ 3))
+ self.assertEqual(regex.match(r'cats', 'catch', partial=True), None)
+ self.assertEqual(regex.match(r'abc\w{3}', 'abcdef',
+ partial=True).partial, False)
+ self.assertEqual(regex.match(r'abc\w{3}', 'abcdef',
+ partial=True).span(), (0, 6))
+ self.assertEqual(regex.match(r'abc\w{3}', 'abcde',
+ partial=True).partial, True)
+ self.assertEqual(regex.match(r'abc\w{3}', 'abcde',
+ partial=True).span(), (0, 5))
+
+ self.assertEqual(regex.match(r'\d{4}$', '1234', partial=True).partial,
+ False)
+
+ self.assertEqual(regex.match(r'\L', 'post', partial=True,
+ words=['post']).partial, False)
+ self.assertEqual(regex.match(r'\L', 'post', partial=True,
+ words=['post']).span(), (0, 4))
+ self.assertEqual(regex.match(r'\L', 'pos', partial=True,
+ words=['post']).partial, True)
+ self.assertEqual(regex.match(r'\L', 'pos', partial=True,
+ words=['post']).span(), (0, 3))
+
+ self.assertEqual(regex.match(r'(?fi)\L', 'POST', partial=True,
+ words=['po\uFB06']).partial, False)
+ self.assertEqual(regex.match(r'(?fi)\L', 'POST', partial=True,
+ words=['po\uFB06']).span(), (0, 4))
+ self.assertEqual(regex.match(r'(?fi)\L', 'POS', partial=True,
+ words=['po\uFB06']).partial, True)
+ self.assertEqual(regex.match(r'(?fi)\L', 'POS', partial=True,
+ words=['po\uFB06']).span(), (0, 3))
+ self.assertEqual(regex.match(r'(?fi)\L', 'po\uFB06',
+ partial=True, words=['POS']), None)
+
+ self.assertEqual(regex.match(r'[a-z]*4R$', 'a', partial=True).span(),
+ (0, 1))
+ self.assertEqual(regex.match(r'[a-z]*4R$', 'ab', partial=True).span(),
+ (0, 2))
+ self.assertEqual(regex.match(r'[a-z]*4R$', 'ab4', partial=True).span(),
+ (0, 3))
+ self.assertEqual(regex.match(r'[a-z]*4R$', 'a4', partial=True).span(),
+ (0, 2))
+ self.assertEqual(regex.match(r'[a-z]*4R$', 'a4R', partial=True).span(),
+ (0, 3))
+ self.assertEqual(regex.match(r'[a-z]*4R$', '4a', partial=True), None)
+ self.assertEqual(regex.match(r'[a-z]*4R$', 'a44', partial=True), None)
+
+ def test_hg_bugs(self):
+ # Hg issue 28: regex.compile("(?>b)") causes "TypeError: 'Character'
+ # object is not subscriptable"
+ self.assertEqual(bool(regex.compile("(?>b)", flags=regex.V1)), True)
+
+ # Hg issue 29: regex.compile("^((?>\w+)|(?>\s+))*$") causes
+ # "TypeError: 'GreedyRepeat' object is not iterable"
+ self.assertEqual(bool(regex.compile(r"^((?>\w+)|(?>\s+))*$",
+ flags=regex.V1)), True)
+
+ # Hg issue 31: atomic and normal groups in recursive patterns
+ self.assertEqual(regex.findall(r"\((?:(?>[^()]+)|(?R))*\)",
+ "a(bcd(e)f)g(h)"), ['(bcd(e)f)', '(h)'])
+ self.assertEqual(regex.findall(r"\((?:(?:[^()]+)|(?R))*\)",
+ "a(bcd(e)f)g(h)"), ['(bcd(e)f)', '(h)'])
+ self.assertEqual(regex.findall(r"\((?:(?>[^()]+)|(?R))*\)",
+ "a(b(cd)e)f)g)h"), ['(b(cd)e)'])
+ self.assertEqual(regex.findall(r"\((?:(?>[^()]+)|(?R))*\)",
+ "a(bc(d(e)f)gh"), ['(d(e)f)'])
+ self.assertEqual(regex.findall(r"(?r)\((?:(?>[^()]+)|(?R))*\)",
+ "a(bc(d(e)f)gh"), ['(d(e)f)'])
+ self.assertEqual([m.group() for m in
+ regex.finditer(r"\((?:[^()]*+|(?0))*\)", "a(b(c(de)fg)h")],
+ ['(c(de)fg)'])
+
+ # Hg issue 32: regex.search("a(bc)d", "abcd", regex.I|regex.V1) returns
+ # None
+ self.assertEqual(regex.search("a(bc)d", "abcd", regex.I |
+ regex.V1).group(0), "abcd")
+
+ # Hg issue 33: regex.search("([\da-f:]+)$", "E", regex.I|regex.V1)
+ # returns None
+ self.assertEqual(regex.search(r"([\da-f:]+)$", "E", regex.I |
+ regex.V1).group(0), "E")
+ self.assertEqual(regex.search(r"([\da-f:]+)$", "e", regex.I |
+ regex.V1).group(0), "e")
+
+ # Hg issue 34: regex.search("^(?=ab(de))(abd)(e)", "abde").groups()
+ # returns (None, 'abd', 'e') instead of ('de', 'abd', 'e')
+ self.assertEqual(regex.search("^(?=ab(de))(abd)(e)", "abde").groups(),
+ ('de', 'abd', 'e'))
+
+ # Hg issue 35: regex.compile("\ ", regex.X) causes "_regex_core.error:
+ # bad escape"
+ self.assertEqual(bool(regex.match(r"\ ", " ", flags=regex.X)), True)
+
+ # Hg issue 36: regex.search("^(a|)\1{2}b", "b") returns None
+ self.assertEqual(regex.search(r"^(a|)\1{2}b", "b").group(0, 1), ('b',
+ ''))
+
+ # Hg issue 37: regex.search("^(a){0,0}", "abc").group(0,1) returns
+ # ('a', 'a') instead of ('', None)
+ self.assertEqual(regex.search("^(a){0,0}", "abc").group(0, 1), ('',
+ None))
+
+ # Hg issue 38: regex.search("(?>.*/)b", "a/b") returns None
+ self.assertEqual(regex.search("(?>.*/)b", "a/b").group(0), "a/b")
+
+ # Hg issue 39: regex.search("((?i)blah)\\s+\\1", "blah BLAH") doesn't
+ # return None
+ # Changed to positional flags in regex 2023.12.23.
+ self.assertEqual(regex.search(r"((?i)blah)\s+\1", "blah BLAH"), None)
+
+ # Hg issue 40: regex.search("(\()?[^()]+(?(1)\)|)", "(abcd").group(0)
+ # returns "bcd" instead of "abcd"
+ self.assertEqual(regex.search(r"(\()?[^()]+(?(1)\)|)",
+ "(abcd").group(0), "abcd")
+
+ # Hg issue 42: regex.search("(a*)*", "a", flags=regex.V1).span(1)
+ # returns (0, 1) instead of (1, 1)
+ self.assertEqual(regex.search("(a*)*", "a").span(1), (1, 1))
+ self.assertEqual(regex.search("(a*)*", "aa").span(1), (2, 2))
+ self.assertEqual(regex.search("(a*)*", "aaa").span(1), (3, 3))
+
+ # Hg issue 43: regex.compile("a(?#xxx)*") causes "_regex_core.error:
+ # nothing to repeat"
+ self.assertEqual(regex.search("a(?#xxx)*", "aaa").group(), "aaa")
+
+ # Hg issue 44: regex.compile("(?=abc){3}abc") causes
+ # "_regex_core.error: nothing to repeat"
+ self.assertEqual(regex.search("(?=abc){3}abc", "abcabcabc").span(), (0,
+ 3))
+
+ # Hg issue 45: regex.compile("^(?:a(?:(?:))+)+") causes
+ # "_regex_core.error: nothing to repeat"
+ self.assertEqual(regex.search("^(?:a(?:(?:))+)+", "a").span(), (0, 1))
+ self.assertEqual(regex.search("^(?:a(?:(?:))+)+", "aa").span(), (0, 2))
+
+ # Hg issue 46: regex.compile("a(?x: b c )d") causes
+ # "_regex_core.error: missing )"
+ self.assertEqual(regex.search("a(?x: b c )d", "abcd").group(0), "abcd")
+
+ # Hg issue 47: regex.compile("a#comment\n*", flags=regex.X) causes
+ # "_regex_core.error: nothing to repeat"
+ self.assertEqual(regex.search("a#comment\n*", "aaa",
+ flags=regex.X).group(0), "aaa")
+
+ # Hg issue 48: regex.search("(a(?(1)\\1)){4}", "a"*10,
+ # flags=regex.V1).group(0,1) returns ('aaaaa', 'a') instead of ('aaaaaaaaaa', 'aaaa')
+ self.assertEqual(regex.search(r"(?V1)(a(?(1)\1)){1}",
+ "aaaaaaaaaa").span(0, 1), ((0, 1), (0, 1)))
+ self.assertEqual(regex.search(r"(?V1)(a(?(1)\1)){2}",
+ "aaaaaaaaaa").span(0, 1), ((0, 3), (1, 3)))
+ self.assertEqual(regex.search(r"(?V1)(a(?(1)\1)){3}",
+ "aaaaaaaaaa").span(0, 1), ((0, 6), (3, 6)))
+ self.assertEqual(regex.search(r"(?V1)(a(?(1)\1)){4}",
+ "aaaaaaaaaa").span(0, 1), ((0, 10), (6, 10)))
+
+ # Hg issue 49: regex.search("(a)(?<=b(?1))", "baz", regex.V1) returns
+ # None incorrectly
+ self.assertEqual(regex.search("(?V1)(a)(?<=b(?1))", "baz").group(0),
+ "a")
+
+ # Hg issue 50: not all keywords are found by named list with
+ # overlapping keywords when full Unicode casefolding is required
+ self.assertEqual(regex.findall(r'(?fi)\L',
+ 'POST, Post, post, po\u017Ft, po\uFB06, and po\uFB05',
+ keywords=['post','pos']), ['POST', 'Post', 'post', 'po\u017Ft',
+ 'po\uFB06', 'po\uFB05'])
+ self.assertEqual(regex.findall(r'(?fi)pos|post',
+ 'POST, Post, post, po\u017Ft, po\uFB06, and po\uFB05'), ['POS',
+ 'Pos', 'pos', 'po\u017F', 'po\uFB06', 'po\uFB05'])
+ self.assertEqual(regex.findall(r'(?fi)post|pos',
+ 'POST, Post, post, po\u017Ft, po\uFB06, and po\uFB05'), ['POST',
+ 'Post', 'post', 'po\u017Ft', 'po\uFB06', 'po\uFB05'])
+ self.assertEqual(regex.findall(r'(?fi)post|another',
+ 'POST, Post, post, po\u017Ft, po\uFB06, and po\uFB05'), ['POST',
+ 'Post', 'post', 'po\u017Ft', 'po\uFB06', 'po\uFB05'])
+
+ # Hg issue 51: regex.search("((a)(?1)|(?2))", "a", flags=regex.V1)
+ # returns None incorrectly
+ self.assertEqual(regex.search("(?V1)((a)(?1)|(?2))", "a").group(0, 1,
+ 2), ('a', 'a', None))
+
+ # Hg issue 52: regex.search("(\\1xx|){6}", "xx",
+ # flags=regex.V1).span(0,1) returns incorrect value
+ self.assertEqual(regex.search(r"(?V1)(\1xx|){6}", "xx").span(0, 1),
+ ((0, 2), (2, 2)))
+
+ # Hg issue 53: regex.search("(a|)+", "a") causes MemoryError
+ self.assertEqual(regex.search("(a|)+", "a").group(0, 1), ("a", ""))
+
+ # Hg issue 54: regex.search("(a|)*\\d", "a"*80) causes MemoryError
+ self.assertEqual(regex.search(r"(a|)*\d", "a" * 80), None)
+
+ # Hg issue 55: regex.search("^(?:a?b?)*$", "ac") take a very long time.
+ self.assertEqual(regex.search("^(?:a?b?)*$", "ac"), None)
+
+ # Hg issue 58: bad named character escape sequences like "\\N{1}"
+ # treats as "N"
+ self.assertRaisesRegex(regex.error, self.UNDEF_CHAR_NAME, lambda:
+ regex.compile("\\N{1}"))
+
+ # Hg issue 59: regex.search("\\Z", "a\na\n") returns None incorrectly
+ self.assertEqual(regex.search("\\Z", "a\na\n").span(0), (4, 4))
+
+ # Hg issue 60: regex.search("(q1|.)*(q2|.)*(x(a|bc)*y){2,}", "xayxay")
+ # returns None incorrectly
+ self.assertEqual(regex.search("(q1|.)*(q2|.)*(x(a|bc)*y){2,}",
+ "xayxay").group(0), "xayxay")
+
+ # Hg issue 61: regex.search("[^a]", "A", regex.I).group(0) returns ''
+ # incorrectly
+ self.assertEqual(regex.search("(?i)[^a]", "A"), None)
+
+ # Hg issue 63: regex.search("[[:ascii:]]", "\N{KELVIN SIGN}",
+ # flags=regex.I|regex.V1) doesn't return None
+ self.assertEqual(regex.search("(?i)[[:ascii:]]", "\N{KELVIN SIGN}"),
+ None)
+
+ # Hg issue 66: regex.search("((a|b(?1)c){3,5})", "baaaaca",
+ # flags=regex.V1).groups() returns ('baaaac', 'baaaac') instead of ('aaaa', 'a')
+ self.assertEqual(regex.search("((a|b(?1)c){3,5})", "baaaaca").group(0,
+ 1, 2), ('aaaa', 'aaaa', 'a'))
+
+ # Hg issue 71: non-greedy quantifier in lookbehind
+ self.assertEqual(regex.findall(r"(?<=:\S+ )\w+", ":9 abc :10 def"),
+ ['abc', 'def'])
+ self.assertEqual(regex.findall(r"(?<=:\S* )\w+", ":9 abc :10 def"),
+ ['abc', 'def'])
+ self.assertEqual(regex.findall(r"(?<=:\S+? )\w+", ":9 abc :10 def"),
+ ['abc', 'def'])
+ self.assertEqual(regex.findall(r"(?<=:\S*? )\w+", ":9 abc :10 def"),
+ ['abc', 'def'])
+
+ # Hg issue 73: conditional patterns
+ self.assertEqual(regex.search(r"(?:fe)?male", "female").group(),
+ "female")
+ self.assertEqual([m.group() for m in
+ regex.finditer(r"(fe)?male: h(?(1)(er)|(is)) (\w+)",
+ "female: her dog; male: his cat. asdsasda")], ['female: her dog',
+ 'male: his cat'])
+
+ # Hg issue 78: "Captures" doesn't work for recursive calls
+ self.assertEqual(regex.search(r'(?\((?:[^()]++|(?&rec))*\))',
+ 'aaa(((1+0)+1)+1)bbb').captures('rec'), ['(1+0)', '((1+0)+1)',
+ '(((1+0)+1)+1)'])
+
+ # Hg issue 80: Escape characters throws an exception
+ self.assertRaisesRegex(regex.error, self.BAD_ESCAPE, lambda:
+ regex.sub('x', '\\', 'x'), )
+
+ # Hg issue 82: error range does not work
+ fz = "(CAGCCTCCCATTTCAGAATATACATCC){1a(?b))', "ab").spans("x"), [(1,
+ 2), (0, 2)])
+
+ # Hg issue 91: match.expand is extremely slow
+ # Check that the replacement cache works.
+ self.assertEqual(regex.sub(r'(-)', lambda m: m.expand(r'x'), 'a-b-c'),
+ 'axbxc')
+
+ # Hg issue 94: Python crashes when executing regex updates
+ # pattern.findall
+ rx = regex.compile(r'\bt(est){i<2}', flags=regex.V1)
+ self.assertEqual(rx.search("Some text"), None)
+ self.assertEqual(rx.findall("Some text"), [])
+
+ # Hg issue 95: 'pos' for regex.error
+ self.assertRaisesRegex(regex.error, self.MULTIPLE_REPEAT, lambda:
+ regex.compile(r'.???'))
+
+ # Hg issue 97: behaviour of regex.escape's special_only is wrong
+ #
+ # Hg issue 244: Make `special_only=True` the default in
+ # `regex.escape()`
+ self.assertEqual(regex.escape('foo!?', special_only=False), 'foo\\!\\?')
+ self.assertEqual(regex.escape('foo!?', special_only=True), 'foo!\\?')
+ self.assertEqual(regex.escape('foo!?'), 'foo!\\?')
+
+ self.assertEqual(regex.escape(b'foo!?', special_only=False), b'foo\\!\\?')
+ self.assertEqual(regex.escape(b'foo!?', special_only=True),
+ b'foo!\\?')
+ self.assertEqual(regex.escape(b'foo!?'), b'foo!\\?')
+
+ # Hg issue 100: strange results from regex.search
+ self.assertEqual(regex.search('^([^z]*(?:WWWi|W))?$',
+ 'WWWi').groups(), ('WWWi', ))
+ self.assertEqual(regex.search('^([^z]*(?:WWWi|w))?$',
+ 'WWWi').groups(), ('WWWi', ))
+ self.assertEqual(regex.search('^([^z]*?(?:WWWi|W))?$',
+ 'WWWi').groups(), ('WWWi', ))
+
+ # Hg issue 101: findall() broken (seems like memory corruption)
+ pat = regex.compile(r'xxx', flags=regex.FULLCASE | regex.UNICODE)
+ self.assertEqual([x.group() for x in pat.finditer('yxxx')], ['xxx'])
+ self.assertEqual(pat.findall('yxxx'), ['xxx'])
+
+ raw = 'yxxx'
+ self.assertEqual([x.group() for x in pat.finditer(raw)], ['xxx'])
+ self.assertEqual(pat.findall(raw), ['xxx'])
+
+ pat = regex.compile(r'xxx', flags=regex.FULLCASE | regex.IGNORECASE |
+ regex.UNICODE)
+ self.assertEqual([x.group() for x in pat.finditer('yxxx')], ['xxx'])
+ self.assertEqual(pat.findall('yxxx'), ['xxx'])
+
+ raw = 'yxxx'
+ self.assertEqual([x.group() for x in pat.finditer(raw)], ['xxx'])
+ self.assertEqual(pat.findall(raw), ['xxx'])
+
+ # Hg issue 106: * operator not working correctly with sub()
+ if sys.version_info >= (3, 7, 0):
+ self.assertEqual(regex.sub('(?V0).*', 'x', 'test'), 'xx')
+ else:
+ self.assertEqual(regex.sub('(?V0).*', 'x', 'test'), 'x')
+ self.assertEqual(regex.sub('(?V1).*', 'x', 'test'), 'xx')
+
+ if sys.version_info >= (3, 7, 0):
+ self.assertEqual(regex.sub('(?V0).*?', '|', 'test'), '|||||||||')
+ else:
+ self.assertEqual(regex.sub('(?V0).*?', '|', 'test'), '|t|e|s|t|')
+ self.assertEqual(regex.sub('(?V1).*?', '|', 'test'), '|||||||||')
+
+ # Hg issue 112: re: OK, but regex: SystemError
+ self.assertEqual(regex.sub(r'^(@)\n(?!.*?@)(.*)',
+ r'\1\n==========\n\2', '@\n', flags=regex.DOTALL), '@\n==========\n')
+
+ # Hg issue 109: Edit distance of fuzzy match
+ self.assertEqual(regex.match(r'(?:cats|cat){e<=1}',
+ 'caz').fuzzy_counts, (1, 0, 0))
+ self.assertEqual(regex.match(r'(?e)(?:cats|cat){e<=1}',
+ 'caz').fuzzy_counts, (1, 0, 0))
+ self.assertEqual(regex.match(r'(?b)(?:cats|cat){e<=1}',
+ 'caz').fuzzy_counts, (1, 0, 0))
+
+ self.assertEqual(regex.match(r'(?:cat){e<=1}', 'caz').fuzzy_counts,
+ (1, 0, 0))
+ self.assertEqual(regex.match(r'(?e)(?:cat){e<=1}',
+ 'caz').fuzzy_counts, (1, 0, 0))
+ self.assertEqual(regex.match(r'(?b)(?:cat){e<=1}',
+ 'caz').fuzzy_counts, (1, 0, 0))
+
+ self.assertEqual(regex.match(r'(?:cats){e<=2}', 'c ats').fuzzy_counts,
+ (1, 1, 0))
+ self.assertEqual(regex.match(r'(?e)(?:cats){e<=2}',
+ 'c ats').fuzzy_counts, (0, 1, 0))
+ self.assertEqual(regex.match(r'(?b)(?:cats){e<=2}',
+ 'c ats').fuzzy_counts, (0, 1, 0))
+
+ self.assertEqual(regex.match(r'(?:cats){e<=2}',
+ 'c a ts').fuzzy_counts, (0, 2, 0))
+ self.assertEqual(regex.match(r'(?e)(?:cats){e<=2}',
+ 'c a ts').fuzzy_counts, (0, 2, 0))
+ self.assertEqual(regex.match(r'(?b)(?:cats){e<=2}',
+ 'c a ts').fuzzy_counts, (0, 2, 0))
+
+ self.assertEqual(regex.match(r'(?:cats){e<=1}', 'c ats').fuzzy_counts,
+ (0, 1, 0))
+ self.assertEqual(regex.match(r'(?e)(?:cats){e<=1}',
+ 'c ats').fuzzy_counts, (0, 1, 0))
+ self.assertEqual(regex.match(r'(?b)(?:cats){e<=1}',
+ 'c ats').fuzzy_counts, (0, 1, 0))
+
+ # Hg issue 115: Infinite loop when processing backreferences
+ self.assertEqual(regex.findall(r'\bof ([a-z]+) of \1\b',
+ 'To make use of one of these modules'), [])
+
+ # Hg issue 125: Reference to entire match (\g<0>) in
+ # Pattern.sub() doesn't work as of 2014.09.22 release.
+ self.assertEqual(regex.sub(r'x', r'\g<0>', 'x'), 'x')
+
+ # Unreported issue: no such builtin as 'ascii' in Python 2.
+ self.assertEqual(bool(regex.match(r'a', 'a', regex.DEBUG)), True)
+
+ # Hg issue 131: nested sets behaviour
+ self.assertEqual(regex.findall(r'(?V1)[[b-e]--cd]', 'abcdef'), ['b',
+ 'e'])
+ self.assertEqual(regex.findall(r'(?V1)[b-e--cd]', 'abcdef'), ['b',
+ 'e'])
+ self.assertEqual(regex.findall(r'(?V1)[[bcde]--cd]', 'abcdef'), ['b',
+ 'e'])
+ self.assertEqual(regex.findall(r'(?V1)[bcde--cd]', 'abcdef'), ['b',
+ 'e'])
+
+ # Hg issue 132: index out of range on null property \p{}
+ self.assertRaisesRegex(regex.error, '^unknown property at position 4$',
+ lambda: regex.compile(r'\p{}'))
+
+ # Issue 23692.
+ self.assertEqual(regex.match('(?:()|(?(1)()|z)){2}(?(2)a|z)',
+ 'a').group(0, 1, 2), ('a', '', ''))
+ self.assertEqual(regex.match('(?:()|(?(1)()|z)){0,2}(?(2)a|z)',
+ 'a').group(0, 1, 2), ('a', '', ''))
+
+ # Hg issue 137: Posix character class :punct: does not seem to be
+ # supported.
+
+ # Posix compatibility as recommended here:
+ # http://www.unicode.org/reports/tr18/#Compatibility_Properties
+
+ # Posix in Unicode.
+ chars = ''.join(chr(c) for c in range(0x10000))
+
+ self.assertEqual(ascii(''.join(regex.findall(r'''[[:alnum:]]+''',
+ chars))), ascii(''.join(regex.findall(r'''[\p{Alpha}\p{PosixDigit}]+''',
+ chars))))
+ self.assertEqual(ascii(''.join(regex.findall(r'''[[:alpha:]]+''',
+ chars))), ascii(''.join(regex.findall(r'''\p{Alpha}+''',
+ chars))))
+ self.assertEqual(ascii(''.join(regex.findall(r'''[[:ascii:]]+''',
+ chars))), ascii(''.join(regex.findall(r'''[\p{InBasicLatin}]+''',
+ chars))))
+ self.assertEqual(ascii(''.join(regex.findall(r'''[[:blank:]]+''',
+ chars))), ascii(''.join(regex.findall(r'''[\p{gc=Space_Separator}\t]+''',
+ chars))))
+ self.assertEqual(ascii(''.join(regex.findall(r'''[[:cntrl:]]+''',
+ chars))), ascii(''.join(regex.findall(r'''\p{gc=Control}+''', chars))))
+ self.assertEqual(ascii(''.join(regex.findall(r'''[[:digit:]]+''',
+ chars))), ascii(''.join(regex.findall(r'''[0-9]+''', chars))))
+ self.assertEqual(ascii(''.join(regex.findall(r'''[[:graph:]]+''',
+ chars))), ascii(''.join(regex.findall(r'''[^\p{Space}\p{gc=Control}\p{gc=Surrogate}\p{gc=Unassigned}]+''',
+ chars))))
+ self.assertEqual(ascii(''.join(regex.findall(r'''[[:lower:]]+''',
+ chars))), ascii(''.join(regex.findall(r'''\p{Lower}+''',
+ chars))))
+ self.assertEqual(ascii(''.join(regex.findall(r'''[[:print:]]+''',
+ chars))), ascii(''.join(regex.findall(r'''(?V1)[\p{Graph}\p{Blank}--\p{Cntrl}]+''', chars))))
+ self.assertEqual(ascii(''.join(regex.findall(r'''[[:punct:]]+''',
+ chars))),
+ ascii(''.join(regex.findall(r'''(?V1)[\p{gc=Punctuation}\p{gc=Symbol}--\p{Alpha}]+''',
+ chars))))
+ self.assertEqual(ascii(''.join(regex.findall(r'''[[:space:]]+''',
+ chars))), ascii(''.join(regex.findall(r'''\p{Whitespace}+''',
+ chars))))
+ self.assertEqual(ascii(''.join(regex.findall(r'''[[:upper:]]+''',
+ chars))), ascii(''.join(regex.findall(r'''\p{Upper}+''',
+ chars))))
+ self.assertEqual(ascii(''.join(regex.findall(r'''[[:word:]]+''',
+ chars))), ascii(''.join(regex.findall(r'''[\p{Alpha}\p{gc=Mark}\p{Digit}\p{gc=Connector_Punctuation}\p{Join_Control}]+''',
+ chars))))
+ self.assertEqual(ascii(''.join(regex.findall(r'''[[:xdigit:]]+''',
+ chars))), ascii(''.join(regex.findall(r'''[0-9A-Fa-f]+''',
+ chars))))
+
+ # Posix in ASCII.
+ chars = bytes(range(0x100))
+
+ self.assertEqual(ascii(b''.join(regex.findall(br'''(?a)[[:alnum:]]+''',
+ chars))), ascii(b''.join(regex.findall(br'''(?a)[\p{Alpha}\p{PosixDigit}]+''',
+ chars))))
+ self.assertEqual(ascii(b''.join(regex.findall(br'''(?a)[[:alpha:]]+''',
+ chars))), ascii(b''.join(regex.findall(br'''(?a)\p{Alpha}+''', chars))))
+ self.assertEqual(ascii(b''.join(regex.findall(br'''(?a)[[:ascii:]]+''',
+ chars))), ascii(b''.join(regex.findall(br'''(?a)[\x00-\x7F]+''', chars))))
+ self.assertEqual(ascii(b''.join(regex.findall(br'''(?a)[[:blank:]]+''',
+ chars))), ascii(b''.join(regex.findall(br'''(?a)[\p{gc=Space_Separator}\t]+''',
+ chars))))
+ self.assertEqual(ascii(b''.join(regex.findall(br'''(?a)[[:cntrl:]]+''',
+ chars))), ascii(b''.join(regex.findall(br'''(?a)\p{gc=Control}+''',
+ chars))))
+ self.assertEqual(ascii(b''.join(regex.findall(br'''(?a)[[:digit:]]+''',
+ chars))), ascii(b''.join(regex.findall(br'''(?a)[0-9]+''', chars))))
+ self.assertEqual(ascii(b''.join(regex.findall(br'''(?a)[[:graph:]]+''',
+ chars))), ascii(b''.join(regex.findall(br'''(?a)[^\p{Space}\p{gc=Control}\p{gc=Surrogate}\p{gc=Unassigned}]+''', chars))))
+ self.assertEqual(ascii(b''.join(regex.findall(br'''(?a)[[:lower:]]+''',
+ chars))), ascii(b''.join(regex.findall(br'''(?a)\p{Lower}+''', chars))))
+ self.assertEqual(ascii(b''.join(regex.findall(br'''(?a)[[:print:]]+''',
+ chars))), ascii(b''.join(regex.findall(br'''(?aV1)[\p{Graph}\p{Blank}--\p{Cntrl}]+''', chars))))
+ self.assertEqual(ascii(b''.join(regex.findall(br'''(?a)[[:punct:]]+''',
+ chars))), ascii(b''.join(regex.findall(br'''(?aV1)[\p{gc=Punctuation}\p{gc=Symbol}--\p{Alpha}]+''',
+ chars))))
+ self.assertEqual(ascii(b''.join(regex.findall(br'''(?a)[[:space:]]+''',
+ chars))), ascii(b''.join(regex.findall(br'''(?a)\p{Whitespace}+''', chars))))
+ self.assertEqual(ascii(b''.join(regex.findall(br'''(?a)[[:upper:]]+''',
+ chars))), ascii(b''.join(regex.findall(br'''(?a)\p{Upper}+''', chars))))
+ self.assertEqual(ascii(b''.join(regex.findall(br'''(?a)[[:word:]]+''',
+ chars))), ascii(b''.join(regex.findall(br'''(?a)[\p{Alpha}\p{gc=Mark}\p{Digit}\p{gc=Connector_Punctuation}\p{Join_Control}]+''', chars))))
+ self.assertEqual(ascii(b''.join(regex.findall(br'''(?a)[[:xdigit:]]+''',
+ chars))), ascii(b''.join(regex.findall(br'''(?a)[0-9A-Fa-f]+''', chars))))
+
+ # Hg issue 138: grapheme anchored search not working properly.
+ self.assertEqual(ascii(regex.search(r'\X$', 'ab\u2103').group()),
+ ascii('\u2103'))
+
+ # Hg issue 139: Regular expression with multiple wildcards where first
+ # should match empty string does not always work.
+ self.assertEqual(regex.search("([^L]*)([^R]*R)", "LtR").groups(), ('',
+ 'LtR'))
+
+ # Hg issue 140: Replace with REVERSE and groups has unexpected
+ # behavior.
+ self.assertEqual(regex.sub(r'(.)', r'x\1y', 'ab'), 'xayxby')
+ self.assertEqual(regex.sub(r'(?r)(.)', r'x\1y', 'ab'), 'xayxby')
+ self.assertEqual(regex.subf(r'(.)', 'x{1}y', 'ab'), 'xayxby')
+ self.assertEqual(regex.subf(r'(?r)(.)', 'x{1}y', 'ab'), 'xayxby')
+
+ # Hg issue 141: Crash on a certain partial match.
+ self.assertEqual(regex.fullmatch('(a)*abc', 'ab',
+ partial=True).span(), (0, 2))
+ self.assertEqual(regex.fullmatch('(a)*abc', 'ab',
+ partial=True).partial, True)
+
+ # Hg issue 143: Partial matches have incorrect span if prefix is '.'
+ # wildcard.
+ self.assertEqual(regex.search('OXRG', 'OOGOX', partial=True).span(),
+ (3, 5))
+ self.assertEqual(regex.search('.XRG', 'OOGOX', partial=True).span(),
+ (3, 5))
+ self.assertEqual(regex.search('.{1,3}XRG', 'OOGOX',
+ partial=True).span(), (1, 5))
+
+ # Hg issue 144: Latest version problem with matching 'R|R'.
+ self.assertEqual(regex.match('R|R', 'R').span(), (0, 1))
+
+ # Hg issue 146: Forced-fail (?!) works improperly in conditional.
+ self.assertEqual(regex.match(r'(.)(?(1)(?!))', 'xy'), None)
+
+ # Groups cleared after failure.
+ self.assertEqual(regex.findall(r'(y)?(\d)(?(1)\b\B)', 'ax1y2z3b'),
+ [('', '1'), ('', '2'), ('', '3')])
+ self.assertEqual(regex.findall(r'(y)?+(\d)(?(1)\b\B)', 'ax1y2z3b'),
+ [('', '1'), ('', '2'), ('', '3')])
+
+ # Hg issue 147: Fuzzy match can return match points beyond buffer end.
+ self.assertEqual([m.span() for m in regex.finditer(r'(?i)(?:error){e}',
+ 'regex failure')], [(0, 5), (5, 10), (10, 13), (13, 13)])
+ self.assertEqual([m.span() for m in
+ regex.finditer(r'(?fi)(?:error){e}', 'regex failure')], [(0, 5), (5,
+ 10), (10, 13), (13, 13)])
+
+ # Hg issue 150: Have an option for POSIX-compatible longest match of
+ # alternates.
+ self.assertEqual(regex.search(r'(?p)\d+(\w(\d*)?|[eE]([+-]\d+))',
+ '10b12')[0], '10b12')
+ self.assertEqual(regex.search(r'(?p)\d+(\w(\d*)?|[eE]([+-]\d+))',
+ '10E+12')[0], '10E+12')
+
+ self.assertEqual(regex.search(r'(?p)(\w|ae|oe|ue|ss)', 'ae')[0], 'ae')
+ self.assertEqual(regex.search(r'(?p)one(self)?(selfsufficient)?',
+ 'oneselfsufficient')[0], 'oneselfsufficient')
+
+ # Hg issue 151: Request: \K.
+ self.assertEqual(regex.search(r'(ab\Kcd)', 'abcd').group(0, 1), ('cd',
+ 'abcd'))
+ self.assertEqual(regex.findall(r'\w\w\K\w\w', 'abcdefgh'), ['cd',
+ 'gh'])
+ self.assertEqual(regex.findall(r'(\w\w\K\w\w)', 'abcdefgh'), ['abcd',
+ 'efgh'])
+
+ self.assertEqual(regex.search(r'(?r)(ab\Kcd)', 'abcd').group(0, 1),
+ ('ab', 'abcd'))
+ self.assertEqual(regex.findall(r'(?r)\w\w\K\w\w', 'abcdefgh'), ['ef',
+ 'ab'])
+ self.assertEqual(regex.findall(r'(?r)(\w\w\K\w\w)', 'abcdefgh'),
+ ['efgh', 'abcd'])
+
+ # Hg issue 152: Request: Request: (?(DEFINE)...).
+ self.assertEqual(regex.search(r'(?(DEFINE)(?\d+)(?- \w+))(?&quant) (?&item)',
+ '5 elephants')[0], '5 elephants')
+
+ self.assertEqual(regex.search(r'(?&routine)(?(DEFINE)(?.))', 'a').group('routine'), None)
+ self.assertEqual(regex.search(r'(?&routine)(?(DEFINE)(?.))', 'a').captures('routine'), ['a'])
+
+ # Hg issue 153: Request: (*SKIP).
+ self.assertEqual(regex.search(r'12(*FAIL)|3', '123')[0], '3')
+ self.assertEqual(regex.search(r'(?r)12(*FAIL)|3', '123')[0], '3')
+
+ self.assertEqual(regex.search(r'\d+(*PRUNE)\d', '123'), None)
+ self.assertEqual(regex.search(r'\d+(?=(*PRUNE))\d', '123')[0], '123')
+ self.assertEqual(regex.search(r'\d+(*PRUNE)bcd|[3d]', '123bcd')[0],
+ '123bcd')
+ self.assertEqual(regex.search(r'\d+(*PRUNE)bcd|[3d]', '123zzd')[0],
+ 'd')
+ self.assertEqual(regex.search(r'\d+?(*PRUNE)bcd|[3d]', '123bcd')[0],
+ '3bcd')
+ self.assertEqual(regex.search(r'\d+?(*PRUNE)bcd|[3d]', '123zzd')[0],
+ 'd')
+ self.assertEqual(regex.search(r'\d++(?<=3(*PRUNE))zzd|[4d]$',
+ '123zzd')[0], '123zzd')
+ self.assertEqual(regex.search(r'\d++(?<=3(*PRUNE))zzd|[4d]$',
+ '124zzd')[0], 'd')
+ self.assertEqual(regex.search(r'\d++(?<=(*PRUNE)3)zzd|[4d]$',
+ '124zzd')[0], 'd')
+ self.assertEqual(regex.search(r'\d++(?<=2(*PRUNE)3)zzd|[3d]$',
+ '124zzd')[0], 'd')
+
+ self.assertEqual(regex.search(r'(?r)\d(*PRUNE)\d+', '123'), None)
+ self.assertEqual(regex.search(r'(?r)\d(?<=(*PRUNE))\d+', '123')[0],
+ '123')
+ self.assertEqual(regex.search(r'(?r)\d+(*PRUNE)bcd|[3d]',
+ '123bcd')[0], '123bcd')
+ self.assertEqual(regex.search(r'(?r)\d+(*PRUNE)bcd|[3d]',
+ '123zzd')[0], 'd')
+ self.assertEqual(regex.search(r'(?r)\d++(?<=3(*PRUNE))zzd|[4d]$',
+ '123zzd')[0], '123zzd')
+ self.assertEqual(regex.search(r'(?r)\d++(?<=3(*PRUNE))zzd|[4d]$',
+ '124zzd')[0], 'd')
+ self.assertEqual(regex.search(r'(?r)\d++(?<=(*PRUNE)3)zzd|[4d]$',
+ '124zzd')[0], 'd')
+ self.assertEqual(regex.search(r'(?r)\d++(?<=2(*PRUNE)3)zzd|[3d]$',
+ '124zzd')[0], 'd')
+
+ self.assertEqual(regex.search(r'\d+(*SKIP)bcd|[3d]', '123bcd')[0],
+ '123bcd')
+ self.assertEqual(regex.search(r'\d+(*SKIP)bcd|[3d]', '123zzd')[0],
+ 'd')
+ self.assertEqual(regex.search(r'\d+?(*SKIP)bcd|[3d]', '123bcd')[0],
+ '3bcd')
+ self.assertEqual(regex.search(r'\d+?(*SKIP)bcd|[3d]', '123zzd')[0],
+ 'd')
+ self.assertEqual(regex.search(r'\d++(?<=3(*SKIP))zzd|[4d]$',
+ '123zzd')[0], '123zzd')
+ self.assertEqual(regex.search(r'\d++(?<=3(*SKIP))zzd|[4d]$',
+ '124zzd')[0], 'd')
+ self.assertEqual(regex.search(r'\d++(?<=(*SKIP)3)zzd|[4d]$',
+ '124zzd')[0], 'd')
+ self.assertEqual(regex.search(r'\d++(?<=2(*SKIP)3)zzd|[3d]$',
+ '124zzd')[0], 'd')
+
+ self.assertEqual(regex.search(r'(?r)\d+(*SKIP)bcd|[3d]', '123bcd')[0],
+ '123bcd')
+ self.assertEqual(regex.search(r'(?r)\d+(*SKIP)bcd|[3d]', '123zzd')[0],
+ 'd')
+ self.assertEqual(regex.search(r'(?r)\d++(?<=3(*SKIP))zzd|[4d]$',
+ '123zzd')[0], '123zzd')
+ self.assertEqual(regex.search(r'(?r)\d++(?<=3(*SKIP))zzd|[4d]$',
+ '124zzd')[0], 'd')
+ self.assertEqual(regex.search(r'(?r)\d++(?<=(*SKIP)3)zzd|[4d]$',
+ '124zzd')[0], 'd')
+ self.assertEqual(regex.search(r'(?r)\d++(?<=2(*SKIP)3)zzd|[3d]$',
+ '124zzd')[0], 'd')
+
+ # Hg issue 154: Segmentation fault 11 when working with an atomic group
+ text = """June 30, December 31, 2013 2012
+some words follow:
+more words and numbers 1,234,567 9,876,542
+more words and numbers 1,234,567 9,876,542"""
+ self.assertEqual(len(regex.findall(r'(?2014|2013 ?2012)', text)), 1)
+
+ # Hg issue 156: regression on atomic grouping
+ self.assertEqual(regex.match('1(?>2)', '12').span(), (0, 2))
+
+ # Hg issue 157: regression: segfault on complex lookaround
+ self.assertEqual(regex.match(r'(?V1w)(?=(?=[^A-Z]*+[A-Z])(?=[^a-z]*+[a-z]))(?=\D*+\d)(?=\p{Alphanumeric}*+\P{Alphanumeric})\A(?s:.){8,255}+\Z',
+ 'AAaa11!!')[0], 'AAaa11!!')
+
+ # Hg issue 158: Group issue with (?(DEFINE)...)
+ TEST_REGEX = regex.compile(r'''(?smx)
+(?(DEFINE)
+ (?
+ ^,[^,]+,
+ )
+)
+
+# Group 2 is defined on this line
+^,([^,]+),
+
+(?:(?!(?&subcat)[\r\n]+(?&subcat)).)+
+''')
+
+ TEST_DATA = '''
+,Cat 1,
+,Brand 1,
+some
+thing
+,Brand 2,
+other
+things
+,Cat 2,
+,Brand,
+Some
+thing
+'''
+
+ self.assertEqual([m.span(1, 2) for m in
+ TEST_REGEX.finditer(TEST_DATA)], [((-1, -1), (2, 7)), ((-1, -1), (54,
+ 59))])
+
+ # Hg issue 161: Unexpected fuzzy match results
+ self.assertEqual(regex.search('(abcdefgh){e}',
+ '******abcdefghijklmnopqrtuvwxyz', regex.BESTMATCH).span(), (6, 14))
+ self.assertEqual(regex.search('(abcdefghi){e}',
+ '******abcdefghijklmnopqrtuvwxyz', regex.BESTMATCH).span(), (6, 15))
+
+ # Hg issue 163: allow lookarounds in conditionals.
+ self.assertEqual(regex.match(r'(?:(?=\d)\d+\b|\w+)', '123abc').span(),
+ (0, 6))
+ self.assertEqual(regex.match(r'(?(?=\d)\d+\b|\w+)', '123abc'), None)
+ self.assertEqual(regex.search(r'(?(?<=love\s)you|(?<=hate\s)her)',
+ "I love you").span(), (7, 10))
+ self.assertEqual(regex.findall(r'(?(?<=love\s)you|(?<=hate\s)her)',
+ "I love you but I don't hate her either"), ['you', 'her'])
+
+ # Hg issue 180: bug of POSIX matching.
+ self.assertEqual(regex.search(r'(?p)a*(.*?)', 'aaabbb').group(0, 1),
+ ('aaabbb', 'bbb'))
+ self.assertEqual(regex.search(r'(?p)a*(.*)', 'aaabbb').group(0, 1),
+ ('aaabbb', 'bbb'))
+ self.assertEqual(regex.sub(r'(?p)a*(.*?)', r'\1', 'aaabbb'), 'bbb')
+ self.assertEqual(regex.sub(r'(?p)a*(.*)', r'\1', 'aaabbb'), 'bbb')
+
+ # Hg issue 192: Named lists reverse matching doesn't work with
+ # IGNORECASE and V1
+ self.assertEqual(regex.match(r'(?irV0)\L', '21', kw=['1']).span(),
+ (1, 2))
+ self.assertEqual(regex.match(r'(?irV1)\L', '21', kw=['1']).span(),
+ (1, 2))
+
+ # Hg issue 193: Alternation and .REVERSE flag.
+ self.assertEqual(regex.search('a|b', '111a222').span(), (3, 4))
+ self.assertEqual(regex.search('(?r)a|b', '111a222').span(), (3, 4))
+
+ # Hg issue 194: .FULLCASE and Backreference
+ self.assertEqual(regex.search(r'(?if)<(CLI)><\1>',
+ '').span(), (0, 10))
+ self.assertEqual(regex.search(r'(?if)<(CLI)><\1>',
+ '').span(), (0, 10))
+ self.assertEqual(regex.search(r'(?ifr)<\1><(CLI)>',
+ '').span(), (0, 10))
+
+ # Hg issue 195: Pickle (or otherwise serial) the compiled regex
+ r = regex.compile(r'\L', options=['foo', 'bar'])
+ p = pickle.dumps(r)
+ r = pickle.loads(p)
+ self.assertEqual(r.match('foo').span(), (0, 3))
+
+ # Hg issue 196: Fuzzy matching on repeated regex not working as
+ # expected
+ self.assertEqual(regex.match('(x{6}){e<=1}', 'xxxxxx',
+ flags=regex.BESTMATCH).span(), (0, 6))
+ self.assertEqual(regex.match('(x{6}){e<=1}', 'xxxxx',
+ flags=regex.BESTMATCH).span(), (0, 5))
+ self.assertEqual(regex.match('(x{6}){e<=1}', 'x',
+ flags=regex.BESTMATCH), None)
+ self.assertEqual(regex.match('(?r)(x{6}){e<=1}', 'xxxxxx',
+ flags=regex.BESTMATCH).span(), (0, 6))
+ self.assertEqual(regex.match('(?r)(x{6}){e<=1}', 'xxxxx',
+ flags=regex.BESTMATCH).span(), (0, 5))
+ self.assertEqual(regex.match('(?r)(x{6}){e<=1}', 'x',
+ flags=regex.BESTMATCH), None)
+
+ # Hg issue 197: ValueError in regex.compile
+ self.assertRaises(regex.error, lambda:
+ regex.compile(b'00000\\0\\00\\^\50\\00\\U05000000'))
+
+ # Hg issue 198: ValueError in regex.compile
+ self.assertRaises(regex.error, lambda: regex.compile(b"{e', '22', aa=['121',
+ '22'])), True)
+ self.assertEqual(bool(regex.search(r'(?ri)\L', '22', aa=['121',
+ '22'])), True)
+ self.assertEqual(bool(regex.search(r'(?fi)\L', '22', aa=['121',
+ '22'])), True)
+ self.assertEqual(bool(regex.search(r'(?fri)\L', '22', aa=['121',
+ '22'])), True)
+
+ # Hg issue 208: Named list, (?ri) flags, Backreference
+ self.assertEqual(regex.search(r'(?r)\1dog..(?<=(\L))$', 'ccdogcc',
+ aa=['bcb', 'cc']). span(), (0, 7))
+ self.assertEqual(regex.search(r'(?ir)\1dog..(?<=(\L))$',
+ 'ccdogcc', aa=['bcb', 'cc']). span(), (0, 7))
+
+ # Hg issue 210: Fuzzy matching and Backreference
+ self.assertEqual(regex.search(r'(2)(?:\1{5}){e<=1}',
+ '3222212').span(), (1, 7))
+ self.assertEqual(regex.search(r'(\d)(?:\1{5}){e<=1}',
+ '3222212').span(), (1, 7))
+
+ # Hg issue 211: Segmentation fault with recursive matches and atomic
+ # groups
+ self.assertEqual(regex.match(r'''\A(?P(?>\((?&whole)\)|[+\-]))\Z''',
+ '((-))').span(), (0, 5))
+ self.assertEqual(regex.match(r'''\A(?P(?>\((?&whole)\)|[+\-]))\Z''',
+ '((-)+)'), None)
+
+ # Hg issue 212: Unexpected matching difference with .*? between re and
+ # regex
+ self.assertEqual(regex.match(r"x.*? (.).*\1(.*)\1",
+ 'x |y| z|').span(), (0, 9))
+ self.assertEqual(regex.match(r"\.sr (.*?) (.)(.*)\2(.*)\2(.*)",
+ r'.sr h |||').span(), (0, 35))
+
+ # Hg issue 213: Segmentation Fault
+ a = '"\\xF9\\x80\\xAEqdz\\x95L\\xA7\\x89[\\xFE \\x91)\\xF9]\\xDB\'\\x99\\x09=\\x00\\xFD\\x98\\x22\\xDD\\xF1\\xB6\\xC3 Z\\xB6gv\\xA5x\\x93P\\xE1r\\x14\\x8Cv\\x0C\\xC0w\\x15r\\xFFc%" '
+ py_regex_pattern = r'''(?P((?>(?"(?>\\.|[^\\"]+)+"|""|(?>'(?>\\.|[^\\']+)+')|''|(?>`(?>\\.|[^\\`]+)+`)|``)))) (?P((?>(?"(?>\\.|[^\\"]+)+"|""|(?>'(?>\\.|[^\\']+)+')|''|(?>`(?>\\.|[^\\`]+)+`)|``))))'''
+ self.assertEqual(bool(regex.search(py_regex_pattern, a)), False)
+
+ # Hg Issue 216: Invalid match when using negative lookbehind and pipe
+ self.assertEqual(bool(regex.match('foo(?<=foo)', 'foo')), True)
+ self.assertEqual(bool(regex.match('foo(?.*\!\w*\:.*)|(?P.*))',
+ '!')), False)
+
+ # Hg issue 220: Misbehavior of group capture with OR operand
+ self.assertEqual(regex.match(r'\w*(ea)\w*|\w*e(?!a)\w*',
+ 'easier').groups(), ('ea', ))
+
+ # Hg issue 225: BESTMATCH in fuzzy match not working
+ self.assertEqual(regex.search('(^1234$){i,d}', '12234',
+ regex.BESTMATCH).span(), (0, 5))
+ self.assertEqual(regex.search('(^1234$){i,d}', '12234',
+ regex.BESTMATCH).fuzzy_counts, (0, 1, 0))
+
+ self.assertEqual(regex.search('(^1234$){s,i,d}', '12234',
+ regex.BESTMATCH).span(), (0, 5))
+ self.assertEqual(regex.search('(^1234$){s,i,d}', '12234',
+ regex.BESTMATCH).fuzzy_counts, (0, 1, 0))
+
+ # Hg issue 226: Error matching at start of string
+ self.assertEqual(regex.search('(^123$){s,i,d}', 'xxxxxxxx123',
+ regex.BESTMATCH).span(), (0, 11))
+ self.assertEqual(regex.search('(^123$){s,i,d}', 'xxxxxxxx123',
+ regex.BESTMATCH).fuzzy_counts, (0, 8, 0))
+
+ # Hg issue 227: Incorrect behavior for ? operator with UNICODE +
+ # IGNORECASE
+ self.assertEqual(regex.search(r'a?yz', 'xxxxyz', flags=regex.FULLCASE |
+ regex.IGNORECASE).span(), (4, 6))
+
+ # Hg issue 230: Is it a bug of (?(DEFINE)...)
+ self.assertEqual(regex.findall(r'(?:(?![a-d]).)+', 'abcdefgh'),
+ ['efgh'])
+ self.assertEqual(regex.findall(r'''(?(DEFINE)(?P(?:(?![a-d]).)))(?&mydef)+''',
+ 'abcdefgh'), ['efgh'])
+
+ # Hg issue 238: Not fully re backward compatible
+ self.assertEqual(regex.findall(r'((\w{1,3})(\.{2,10})){1,3}',
+ '"Erm....yes. T..T...Thank you for that."'), [('Erm....', 'Erm',
+ '....'), ('T...', 'T', '...')])
+ self.assertEqual(regex.findall(r'((\w{1,3})(\.{2,10})){3}',
+ '"Erm....yes. T..T...Thank you for that."'), [])
+ self.assertEqual(regex.findall(r'((\w{1,3})(\.{2,10})){2}',
+ '"Erm....yes. T..T...Thank you for that."'), [('T...', 'T', '...')])
+ self.assertEqual(regex.findall(r'((\w{1,3})(\.{2,10})){1}',
+ '"Erm....yes. T..T...Thank you for that."'), [('Erm....', 'Erm',
+ '....'), ('T..', 'T', '..'), ('T...', 'T', '...')])
+
+ # Hg issue 247: Unexpected result with fuzzy matching and lookahead
+ # expression
+ self.assertEqual(regex.search(r'(?:ESTONIA(?!\w)){e<=1}',
+ 'ESTONIAN WORKERS').group(), 'ESTONIAN')
+ self.assertEqual(regex.search(r'(?:ESTONIA(?=\W)){e<=1}',
+ 'ESTONIAN WORKERS').group(), 'ESTONIAN')
+
+ self.assertEqual(regex.search(r'(?:(?.))(?&func)',
+ 'abc').groups(), (None, ))
+ self.assertEqual(regex.search(r'(?(DEFINE)(?.))(?&func)',
+ 'abc').groupdict(), {'func': None})
+ self.assertEqual(regex.search(r'(?(DEFINE)(?.))(?&func)',
+ 'abc').capturesdict(), {'func': ['a']})
+
+ self.assertEqual(regex.search(r'(?(DEFINE)(?.))(?=(?&func))',
+ 'abc').groups(), (None, ))
+ self.assertEqual(regex.search(r'(?(DEFINE)(?.))(?=(?&func))',
+ 'abc').groupdict(), {'func': None})
+ self.assertEqual(regex.search(r'(?(DEFINE)(?.))(?=(?&func))',
+ 'abc').capturesdict(), {'func': ['a']})
+
+ self.assertEqual(regex.search(r'(?(DEFINE)(?.)).(?<=(?&func))',
+ 'abc').groups(), (None, ))
+ self.assertEqual(regex.search(r'(?(DEFINE)(?.)).(?<=(?&func))',
+ 'abc').groupdict(), {'func': None})
+ self.assertEqual(regex.search(r'(?(DEFINE)(?.)).(?<=(?&func))',
+ 'abc').capturesdict(), {'func': ['a']})
+
+ # Hg issue 271: Comment logic different between Re and Regex
+ self.assertEqual(bool(regex.match(r'ab(?#comment\))cd', 'abcd')), True)
+
+ # Hg issue 276: Partial Matches yield incorrect matches and bounds
+ self.assertEqual(regex.search(r'[a-z]+ [a-z]*?:', 'foo bar',
+ partial=True).span(), (0, 7))
+ self.assertEqual(regex.search(r'(?r):[a-z]*? [a-z]+', 'foo bar',
+ partial=True).span(), (0, 7))
+
+ # Hg issue 291: Include Script Extensions as a supported Unicode property
+ self.assertEqual(bool(regex.match(r'(?u)\p{Script:Beng}',
+ '\u09EF')), True)
+ self.assertEqual(bool(regex.match(r'(?u)\p{Script:Bengali}',
+ '\u09EF')), True)
+ self.assertEqual(bool(regex.match(r'(?u)\p{Script_Extensions:Bengali}',
+ '\u09EF')), True)
+ self.assertEqual(bool(regex.match(r'(?u)\p{Script_Extensions:Beng}',
+ '\u09EF')), True)
+ self.assertEqual(bool(regex.match(r'(?u)\p{Script_Extensions:Cakm}',
+ '\u09EF')), True)
+ self.assertEqual(bool(regex.match(r'(?u)\p{Script_Extensions:Sylo}',
+ '\u09EF')), True)
+
+ # Hg issue #293: scx (Script Extensions) property currently matches
+ # incorrectly
+ self.assertEqual(bool(regex.match(r'(?u)\p{scx:Latin}', 'P')), True)
+ self.assertEqual(bool(regex.match(r'(?u)\p{scx:Ahom}', 'P')), False)
+ self.assertEqual(bool(regex.match(r'(?u)\p{scx:Common}', '4')), True)
+ self.assertEqual(bool(regex.match(r'(?u)\p{scx:Caucasian_Albanian}', '4')),
+ False)
+ self.assertEqual(bool(regex.match(r'(?u)\p{scx:Arabic}', '\u062A')), True)
+ self.assertEqual(bool(regex.match(r'(?u)\p{scx:Balinese}', '\u062A')),
+ False)
+ self.assertEqual(bool(regex.match(r'(?u)\p{scx:Devanagari}', '\u091C')),
+ True)
+ self.assertEqual(bool(regex.match(r'(?u)\p{scx:Batak}', '\u091C')), False)
+
+ # Hg issue 296: Group references are not taken into account when group is reporting the last match
+ self.assertEqual(regex.fullmatch('(?P.)*(?&x)', 'abc').captures('x'),
+ ['a', 'b', 'c'])
+ self.assertEqual(regex.fullmatch('(?P.)*(?&x)', 'abc').group('x'),
+ 'b')
+
+ self.assertEqual(regex.fullmatch('(?P.)(?P.)(?P.)',
+ 'abc').captures('x'), ['a', 'b', 'c'])
+ self.assertEqual(regex.fullmatch('(?P.)(?P.)(?P.)',
+ 'abc').group('x'), 'c')
+
+ # Hg issue 299: Partial gives misleading results with "open ended" regexp
+ self.assertEqual(regex.match('(?:ab)*', 'ab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?:ab)*', 'abab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?:ab)*?', '', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?:ab)*+', 'ab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?:ab)*+', 'abab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?:ab)+', 'ab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?:ab)+', 'abab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?:ab)+?', 'ab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?:ab)++', 'ab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?:ab)++', 'abab', partial=True).partial,
+ False)
+
+ self.assertEqual(regex.match('(?r)(?:ab)*', 'ab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?r)(?:ab)*', 'abab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?r)(?:ab)*?', '', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?r)(?:ab)*+', 'ab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?r)(?:ab)*+', 'abab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?r)(?:ab)+', 'ab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?r)(?:ab)+', 'abab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?r)(?:ab)+?', 'ab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?r)(?:ab)++', 'ab', partial=True).partial,
+ False)
+ self.assertEqual(regex.match('(?r)(?:ab)++', 'abab', partial=True).partial,
+ False)
+
+ self.assertEqual(regex.match('a*', '', partial=True).partial, False)
+ self.assertEqual(regex.match('a*?', '', partial=True).partial, False)
+ self.assertEqual(regex.match('a*+', '', partial=True).partial, False)
+ self.assertEqual(regex.match('a+', '', partial=True).partial, True)
+ self.assertEqual(regex.match('a+?', '', partial=True).partial, True)
+ self.assertEqual(regex.match('a++', '', partial=True).partial, True)
+ self.assertEqual(regex.match('a+', 'a', partial=True).partial, False)
+ self.assertEqual(regex.match('a+?', 'a', partial=True).partial, False)
+ self.assertEqual(regex.match('a++', 'a', partial=True).partial, False)
+
+ self.assertEqual(regex.match('(?r)a*', '', partial=True).partial, False)
+ self.assertEqual(regex.match('(?r)a*?', '', partial=True).partial, False)
+ self.assertEqual(regex.match('(?r)a*+', '', partial=True).partial, False)
+ self.assertEqual(regex.match('(?r)a+', '', partial=True).partial, True)
+ self.assertEqual(regex.match('(?r)a+?', '', partial=True).partial, True)
+ self.assertEqual(regex.match('(?r)a++', '', partial=True).partial, True)
+ self.assertEqual(regex.match('(?r)a+', 'a', partial=True).partial, False)
+ self.assertEqual(regex.match('(?r)a+?', 'a', partial=True).partial, False)
+ self.assertEqual(regex.match('(?r)a++', 'a', partial=True).partial, False)
+
+ self.assertEqual(regex.match(r"(?:\s*\w+'*)+", 'whatever', partial=True).partial,
+ False)
+
+ # Hg issue 300: segmentation fault
+ pattern = ('(?PGGCGTCACACTTTGCTATGCCATAGCAT[AG]TTTATCCATAAGA'
+ 'TTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATAACAGAACATATTGA'
+ 'CTATCCGGTATTACCCGGCATGACAGGAGTAAAA){e<=1}'
+ '(?P[ACGT]{1059}){e<=2}'
+ '(?PTAATCGTCTTGTTTGATACACAAGGGTCGCATCTGCGGCCCTTTTGCTTTTTTAAG'
+ 'TTGTAAGGATATGCCATTCTAGA){e<=0}'
+ '(?P[ACGT]{18}){e<=0}'
+ '(?PAGATCGG[CT]AGAGCGTCGTGTAGGGAAAGAGTGTGG){e<=1}')
+
+ text = ('GCACGGCGTCACACTTTGCTATGCCATAGCATATTTATCCATAAGATTAGCGGATCCTACC'
+ 'TGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATAACAGAACATATTGACTATCCGGTATTACC'
+ 'CGGCATGACAGGAGTAAAAATGGCTATCGACGAAAACAAACAGAAAGCGTTGGCGGCAGCACTGGGC'
+ 'CAGATTGAGAAACAATTTGGTAAAGGCTCCATCATGCGCCTGGGTGAAGACCGTTCCATGGATGTGG'
+ 'AAACCATCTCTACCGGTTCGCTTTCACTGGATATCGCGCTTGGGGCAGGTGGTCTGCCGATGGGCCG'
+ 'TATCGTCGAAATCTACGGACCGGAATCTTCCGGTAAAACCACGCTGACGCTGCAGGTGATCGCCGCA'
+ 'GCGCAGCGTGAAGGTAAAACCTGTGCGTTTATCGATGCTGAACACGCGCTGGACCCAATCTACGCAC'
+ 'GTAAACTGGGCGTCGATATCGACAACCTGCTGTGCTCCCAGCCGGACACCGGCGAGCAGGCACTGGA'
+ 'AATCTGTGACGCCCTGGCGCGTTCTGGCGCAGTAGACGTTATCGTCGTTGACTCCGTGGCGGCACTG'
+ 'ACGCCGAAAGCGGAAATCGAAGGCGAAATCGGCGACTCTCATATGGGCCTTGCGGCACGTATGATGA'
+ 'GCCAGGCGATGCGTAAGCTGGCGGGTAACCTGAAGCAGTCCAACACGCTGCTGATCTTCATCAACCC'
+ 'CATCCGTATGAAAATTGGTGTGATGTTCGGCAACCCGGAAACCACTTACCGGTGGTAACGCGCTGAA'
+ 'ATTCTACGCCTCTGTTCGTCTCGACATCCGTTAAATCGGCGCGGTGAAAGAGGGCGAAAACGTGGTG'
+ 'GGTAGCGAAACCCGCGTGAAAGTGGTGAAGAACAAAATCGCTGCGCCGTTTAAACAGGCTGAATTCC'
+ 'AGATCCTCTACGGCGAAGGTATCAACTTCTACCCCGAACTGGTTGACCTGGGCGTAAAAGAGAAGCT'
+ 'GATCGAGAAAGCAGGCGCGTGGTACAGCTACAAAGGTGAGAAGATCGGTCAGGGTAAAGCGAATGCG'
+ 'ACTGCCTGGCTGAAATTTAACCCGGAAACCGCGAAAGAGATCGAGTGAAAAGTACGTGAGTTGCTGC'
+ 'TGAGCAACCCGAACTCAACGCCGGATTTCTCTGTAGATGATAGCGAAGGCGTAGCAGAAACTAACGA'
+ 'AGATTTTTAATCGTCTTGTTTGATACACAAGGGTCGCATCTGCGGCCCTTTTGCTTTTTTAAGTTGT'
+ 'AAGGATATGCCATTCTAGACAGTTAACACACCAACAAAGATCGGTAGAGCGTCGTGTAGGGAAAGAG'
+ 'TGTGGTACC')
+
+ m = regex.search(pattern, text, flags=regex.BESTMATCH)
+ self.assertEqual(m.fuzzy_counts, (0, 1, 0))
+ self.assertEqual(m.fuzzy_changes, ([], [1206], []))
+
+ # Hg issue 306: Fuzzy match parameters not respecting quantifier scope
+ self.assertEqual(regex.search(r'(?e)(dogf(((oo){e<1})|((00){e<1}))d){e<2}',
+ 'dogfood').fuzzy_counts, (0, 0, 0))
+ self.assertEqual(regex.search(r'(?e)(dogf(((oo){e<1})|((00){e<1}))d){e<2}',
+ 'dogfoot').fuzzy_counts, (1, 0, 0))
+
+ # Hg issue 312: \X not matching graphemes with zero-width-joins
+ self.assertEqual(regex.findall(r'\X',
+ '\U0001F468\u200D\U0001F469\u200D\U0001F467\u200D\U0001F466'),
+ ['\U0001F468\u200D\U0001F469\u200D\U0001F467\u200D\U0001F466'])
+
+ # Hg issue 320: Abnormal performance
+ self.assertEqual(bool(regex.search(r'(?=a)a', 'a')), True)
+ self.assertEqual(bool(regex.search(r'(?!b)a', 'a')), True)
+
+ # Hg issue 327: .fullmatch() causes MemoryError
+ self.assertEqual(regex.fullmatch(r'((\d)*?)*?', '123').span(), (0, 3))
+
+ # Hg issue 329: Wrong group matches when question mark quantifier is used within a look behind
+ self.assertEqual(regex.search(r'''(?(DEFINE)(?(?THIS_SHOULD_NOT_MATCHx?)|(?right))).*(?<=(?&mydef).*)''',
+ 'x right').capturesdict(), {'mydef': ['right'], 'wrong': [], 'right':
+ ['right']})
+
+ # Hg issue 338: specifying allowed characters when fuzzy-matching
+ self.assertEqual(bool(regex.match(r'(?:cat){e<=1:[u]}', 'cut')), True)
+ self.assertEqual(bool(regex.match(r'(?:cat){e<=1:u}', 'cut')), True)
+
+ # Hg issue 353: fuzzy changes negative indexes
+ self.assertEqual(regex.search(r'(?be)(AGTGTTCCCCGCGCCAGCGGGGATAAACCG){s<=5,i<=5,d<=5,s+i+d<=10}',
+ 'TTCCCCGCGCCAGCGGGGATAAACCG').fuzzy_changes, ([], [], [0, 1, 3, 5]))
+
+ # Git issue 364: Contradictory values in fuzzy_counts and fuzzy_changes
+ self.assertEqual(regex.match(r'(?:bc){e}', 'c').fuzzy_counts, (1, 0,
+ 1))
+ self.assertEqual(regex.match(r'(?:bc){e}', 'c').fuzzy_changes, ([0],
+ [], [1]))
+ self.assertEqual(regex.match(r'(?e)(?:bc){e}', 'c').fuzzy_counts, (0,
+ 0, 1))
+ self.assertEqual(regex.match(r'(?e)(?:bc){e}', 'c').fuzzy_changes,
+ ([], [], [0]))
+ self.assertEqual(regex.match(r'(?b)(?:bc){e}', 'c').fuzzy_counts, (0,
+ 0, 1))
+ self.assertEqual(regex.match(r'(?b)(?:bc){e}', 'c').fuzzy_changes,
+ ([], [], [0]))
+
+ # Git issue 370: Confusions about Fuzzy matching behavior
+ self.assertEqual(regex.match('(?e)(?:^(\\$ )?\\d{1,3}(,\\d{3})*(\\.\\d{2})$){e}',
+ '$ 10,112.111.12').fuzzy_counts, (6, 0, 5))
+ self.assertEqual(regex.match('(?e)(?:^(\\$ )?\\d{1,3}(,\\d{3})*(\\.\\d{2})$){s<=1}',
+ '$ 10,112.111.12').fuzzy_counts, (1, 0, 0))
+ self.assertEqual(regex.match('(?e)(?:^(\\$ )?\\d{1,3}(,\\d{3})*(\\.\\d{2})$){s<=1,i<=1,d<=1}',
+ '$ 10,112.111.12').fuzzy_counts, (1, 0, 0))
+ self.assertEqual(regex.match('(?e)(?:^(\\$ )?\\d{1,3}(,\\d{3})*(\\.\\d{2})$){s<=3}',
+ '$ 10,1a2.111.12').fuzzy_counts, (2, 0, 0))
+ self.assertEqual(regex.match('(?e)(?:^(\\$ )?\\d{1,3}(,\\d{3})*(\\.\\d{2})$){s<=2}',
+ '$ 10,1a2.111.12').fuzzy_counts, (2, 0, 0))
+
+ self.assertEqual(regex.fullmatch(r'(?e)(?:0?,0(?:,0)?){s<=1,d<=1}',
+ ',0;0').fuzzy_counts, (1, 0, 0))
+ self.assertEqual(regex.fullmatch(r'(?e)(?:0??,0(?:,0)?){s<=1,d<=1}',
+ ',0;0').fuzzy_counts, (1, 0, 0))
+
+ # Git issue 371: Specifying character set when fuzzy-matching allows characters not in the set
+ self.assertEqual(regex.search(r"\b(?e)(?:\d{6,20}){i<=5:[\-\\\/]}\b",
+ "cat dog starting at 00:01132.000. hello world"), None)
+
+ # Git issue 385: Comments in expressions
+ self.assertEqual(bool(regex.compile('(?#)')), True)
+ self.assertEqual(bool(regex.compile('(?x)(?#)')), True)
+
+ # Git issue 394: Unexpected behaviour in fuzzy matching with limited character set with IGNORECASE flag
+ self.assertEqual(regex.findall(r'(\d+){i<=2:[ab]}', '123X4Y5'),
+ ['123', '4', '5'])
+ self.assertEqual(regex.findall(r'(?i)(\d+){i<=2:[ab]}', '123X4Y5'),
+ ['123', '4', '5'])
+
+ # Git issue 403: Fuzzy matching with wrong distance (unnecessary substitutions)
+ self.assertEqual(regex.match(r'^(test){e<=5}$', 'terstin',
+ flags=regex.B).fuzzy_counts, (0, 3, 0))
+
+ # Git issue 408: regex fails with a quantified backreference but succeeds with repeated backref
+ self.assertEqual(bool(regex.match(r"(?:(x*)\1\1\1)*x$", "x" * 5)), True)
+ self.assertEqual(bool(regex.match(r"(?:(x*)\1{3})*x$", "x" * 5)), True)
+
+ # Git issue 415: Fuzzy character restrictions don't apply to insertions at "right edge"
+ self.assertEqual(regex.match(r't(?:es){s<=1:\d}t', 'te5t').group(),
+ 'te5t')
+ self.assertEqual(regex.match(r't(?:es){s<=1:\d}t', 'tezt'), None)
+ self.assertEqual(regex.match(r't(?:es){i<=1:\d}t', 'tes5t').group(),
+ 'tes5t')
+ self.assertEqual(regex.match(r't(?:es){i<=1:\d}t', 'teszt'), None)
+ self.assertEqual(regex.match(r't(?:es){i<=1:\d}t',
+ 'tes5t').fuzzy_changes, ([], [3], []))
+ self.assertEqual(regex.match(r't(es){i<=1,0.*)(?PCTTCC){e<=1}(?P([ACGT]){4,6})(?PCAATACCGACTCCTCACTGTGT){e<=2}(?P([ACGT]){0,6}$)'
+
+ m = regex.match(pattern, sequence, flags=regex.BESTMATCH)
+ self.assertEqual(m.span(), (0, 50))
+ self.assertEqual(m.groupdict(), {'insert': 'TTCAGACGTGTGCT', 'anchor': 'CTTCC', 'umi': 'GATCT', 'sid': 'CAATACCGACTCCTCACTGTGT', 'end': 'GTCT'})
+
+ m = regex.match(pattern, sequence, flags=regex.ENHANCEMATCH)
+ self.assertEqual(m.span(), (0, 50))
+ self.assertEqual(m.groupdict(), {'insert': 'TTCAGACGTGTGCT', 'anchor': 'CTTCC', 'umi': 'GATCT', 'sid': 'CAATACCGACTCCTCACTGTGT', 'end': 'GTCT'})
+
+ # Git issue 433: Disagreement between fuzzy_counts and fuzzy_changes
+ pattern = r'(?P.*)(?PAACACTGG){e<=1}(?P([AT][CG]){5}){e<=2}(?PGTAACCGAAG){e<=2}(?P([ACGT]){0,6}$)'
+
+ sequence = 'GGAAAACACTGGTCTCAGTCTCGTAACCGAAGTGGTCG'
+ m = regex.match(pattern, sequence, flags=regex.BESTMATCH)
+ self.assertEqual(m.fuzzy_counts, (0, 0, 0))
+ self.assertEqual(m.fuzzy_changes, ([], [], []))
+
+ sequence = 'GGAAAACACTGGTCTCAGTCTCGTCCCCGAAGTGGTCG'
+ m = regex.match(pattern, sequence, flags=regex.BESTMATCH)
+ self.assertEqual(m.fuzzy_counts, (2, 0, 0))
+ self.assertEqual(m.fuzzy_changes, ([24, 25], [], []))
+
+ # Git issue 439: Unmatched groups: sub vs subf
+ self.assertEqual(regex.sub(r'(test1)|(test2)', r'matched: \1\2', 'test1'), 'matched: test1')
+ self.assertEqual(regex.subf(r'(test1)|(test2)', r'matched: {1}{2}', 'test1'), 'matched: test1')
+ self.assertEqual(regex.search(r'(test1)|(test2)', 'matched: test1').expand(r'matched: \1\2'), 'matched: test1'),
+ self.assertEqual(regex.search(r'(test1)|(test2)', 'matched: test1').expandf(r'matched: {1}{2}'), 'matched: test1')
+
+ # Git issue 442: Fuzzy regex matching doesn't seem to test insertions correctly
+ self.assertEqual(regex.search(r"(?:\bha\b){i:[ ]}", "having"), None)
+ self.assertEqual(regex.search(r"(?:\bha\b){i:[ ]}", "having", flags=regex.I), None)
+
+ # Git issue 467: Scoped inline flags 'a', 'u' and 'L' affect global flags
+ self.assertEqual(regex.match(r'(?a:\w)\w', 'd\N{CYRILLIC SMALL LETTER ZHE}').span(), (0, 2))
+ self.assertEqual(regex.match(r'(?a:\w)(?u:\w)', 'd\N{CYRILLIC SMALL LETTER ZHE}').span(), (0, 2))
+
+ # Git issue 473: Emoji classified as letter
+ self.assertEqual(regex.match(r'^\p{LC}+$', '\N{SMILING CAT FACE WITH OPEN MOUTH}'), None)
+ self.assertEqual(regex.match(r'^\p{So}+$', '\N{SMILING CAT FACE WITH OPEN MOUTH}').span(), (0, 1))
+
+ # Git issue 474: regex has no equivalent to `re.Match.groups()` for captures
+ self.assertEqual(regex.match(r'(.)+', 'abc').allcaptures(), (['abc'], ['a', 'b', 'c']))
+ self.assertEqual(regex.match(r'(.)+', 'abc').allspans(), ([(0, 3)], [(0, 1), (1, 2), (2, 3)]))
+
+ # Git issue 477: \v for vertical spacing
+ self.assertEqual(bool(regex.fullmatch(r'\p{HorizSpace}+', '\t \xA0\u1680\u180E\u2000\u2001\u2002\u2003\u2004\u2005\u2006\u2007\u2008\u2009\u200A\u202F\u205F\u3000')), True)
+ self.assertEqual(bool(regex.fullmatch(r'\p{VertSpace}+', '\n\v\f\r\x85\u2028\u2029')), True)
+
+ # Git issue 479: Segmentation fault when using conditional pattern
+ self.assertEqual(regex.match(r'(?(?<=A)|(?(?![^B])C|D))', 'A'), None)
+ self.assertEqual(regex.search(r'(?(?<=A)|(?(?![^B])C|D))', 'A').span(), (1, 1))
+
+ # Git issue 494: Backtracking failure matching regex ^a?(a?)b?c\1$ against string abca
+ self.assertEqual(regex.search(r"^a?(a?)b?c\1$", "abca").span(), (0, 4))
+
+ # Git issue 498: Conditional negative lookahead inside positive lookahead fails to match
+ self.assertEqual(regex.match(r'(?(?=a).|..)', 'ab').span(), (0, 1))
+ self.assertEqual(regex.match(r'(?(?=b).|..)', 'ab').span(), (0, 2))
+ self.assertEqual(regex.match(r'(?(?!a).|..)', 'ab').span(), (0, 2))
+ self.assertEqual(regex.match(r'(?(?!b).|..)', 'ab').span(), (0, 1))
+
+ # Git issue 525: segfault when fuzzy matching empty list
+ self.assertEqual(regex.match(r"(\L){e<=5}", "blah", foo=[]).span(), (0, 0))
+
+ def test_fuzzy_ext(self):
+ self.assertEqual(bool(regex.fullmatch(r'(?r)(?:a){e<=1:[a-z]}', 'e')),
+ True)
+ self.assertEqual(bool(regex.fullmatch(r'(?:a){e<=1:[a-z]}', 'e')),
+ True)
+ self.assertEqual(bool(regex.fullmatch(r'(?:a){e<=1:[a-z]}', '-')),
+ False)
+ self.assertEqual(bool(regex.fullmatch(r'(?r)(?:a){e<=1:[a-z]}', '-')),
+ False)
+
+ self.assertEqual(bool(regex.fullmatch(r'(?:a){e<=1:[a-z]}', 'ae')),
+ True)
+ self.assertEqual(bool(regex.fullmatch(r'(?r)(?:a){e<=1:[a-z]}',
+ 'ae')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(?:a){e<=1:[a-z]}', 'a-')),
+ False)
+ self.assertEqual(bool(regex.fullmatch(r'(?r)(?:a){e<=1:[a-z]}',
+ 'a-')), False)
+
+ self.assertEqual(bool(regex.fullmatch(r'(?:ab){e<=1:[a-z]}', 'ae')),
+ True)
+ self.assertEqual(bool(regex.fullmatch(r'(?r)(?:ab){e<=1:[a-z]}',
+ 'ae')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(?:ab){e<=1:[a-z]}', 'a-')),
+ False)
+ self.assertEqual(bool(regex.fullmatch(r'(?r)(?:ab){e<=1:[a-z]}',
+ 'a-')), False)
+
+ self.assertEqual(bool(regex.fullmatch(r'(a)\1{e<=1:[a-z]}', 'ae')),
+ True)
+ self.assertEqual(bool(regex.fullmatch(r'(?r)\1{e<=1:[a-z]}(a)',
+ 'ea')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(a)\1{e<=1:[a-z]}', 'a-')),
+ False)
+ self.assertEqual(bool(regex.fullmatch(r'(?r)\1{e<=1:[a-z]}(a)',
+ '-a')), False)
+
+ self.assertEqual(bool(regex.fullmatch(r'(?fiu)(?:\N{LATIN SMALL LETTER SHARP S}){e<=1:[a-z]}',
+ 'ts')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(?fiu)(?:\N{LATIN SMALL LETTER SHARP S}){e<=1:[a-z]}',
+ 'st')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(?firu)(?:\N{LATIN SMALL LETTER SHARP S}){e<=1:[a-z]}',
+ 'st')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(?firu)(?:\N{LATIN SMALL LETTER SHARP S}){e<=1:[a-z]}',
+ 'ts')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(?fiu)(?:\N{LATIN SMALL LETTER SHARP S}){e<=1:[a-z]}',
+ '-s')), False)
+ self.assertEqual(bool(regex.fullmatch(r'(?fiu)(?:\N{LATIN SMALL LETTER SHARP S}){e<=1:[a-z]}',
+ 's-')), False)
+ self.assertEqual(bool(regex.fullmatch(r'(?firu)(?:\N{LATIN SMALL LETTER SHARP S}){e<=1:[a-z]}',
+ 's-')), False)
+ self.assertEqual(bool(regex.fullmatch(r'(?firu)(?:\N{LATIN SMALL LETTER SHARP S}){e<=1:[a-z]}',
+ '-s')), False)
+
+ self.assertEqual(bool(regex.fullmatch(r'(?fiu)(\N{LATIN SMALL LETTER SHARP S})\1{e<=1:[a-z]}',
+ 'ssst')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(?fiu)(\N{LATIN SMALL LETTER SHARP S})\1{e<=1:[a-z]}',
+ 'ssts')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(?firu)\1{e<=1:[a-z]}(\N{LATIN SMALL LETTER SHARP S})',
+ 'stss')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(?firu)\1{e<=1:[a-z]}(\N{LATIN SMALL LETTER SHARP S})',
+ 'tsss')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(?fiu)(\N{LATIN SMALL LETTER SHARP S})\1{e<=1:[a-z]}',
+ 'ss-s')), False)
+ self.assertEqual(bool(regex.fullmatch(r'(?fiu)(\N{LATIN SMALL LETTER SHARP S})\1{e<=1:[a-z]}',
+ 'sss-')), False)
+ self.assertEqual(bool(regex.fullmatch(r'(?firu)(\N{LATIN SMALL LETTER SHARP S})\1{e<=1:[a-z]}',
+ '-s')), False)
+ self.assertEqual(bool(regex.fullmatch(r'(?firu)(\N{LATIN SMALL LETTER SHARP S})\1{e<=1:[a-z]}',
+ 's-')), False)
+
+ self.assertEqual(bool(regex.fullmatch(r'(?fiu)(ss)\1{e<=1:[a-z]}',
+ '\N{LATIN SMALL LETTER SHARP S}ts')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(?fiu)(ss)\1{e<=1:[a-z]}',
+ '\N{LATIN SMALL LETTER SHARP S}st')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(?firu)\1{e<=1:[a-z]}(ss)',
+ 'st\N{LATIN SMALL LETTER SHARP S}')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(?firu)\1{e<=1:[a-z]}(ss)',
+ 'ts\N{LATIN SMALL LETTER SHARP S}')), True)
+ self.assertEqual(bool(regex.fullmatch(r'(?fiu)(ss)\1{e<=1:[a-z]}',
+ '\N{LATIN SMALL LETTER SHARP S}-s')), False)
+ self.assertEqual(bool(regex.fullmatch(r'(?fiu)(ss)\1{e<=1:[a-z]}',
+ '\N{LATIN SMALL LETTER SHARP S}s-')), False)
+ self.assertEqual(bool(regex.fullmatch(r'(?firu)(ss)\1{e<=1:[a-z]}',
+ 's-\N{LATIN SMALL LETTER SHARP S}')), False)
+ self.assertEqual(bool(regex.fullmatch(r'(?firu)(ss)\1{e<=1:[a-z]}',
+ '-s\N{LATIN SMALL LETTER SHARP S}')), False)
+
+ def test_subscripted_captures(self):
+ self.assertEqual(regex.match(r'(?P.)+',
+ 'abc').expandf('{0} {0[0]} {0[-1]}'), 'abc abc abc')
+ self.assertEqual(regex.match(r'(?P.)+',
+ 'abc').expandf('{1} {1[0]} {1[1]} {1[2]} {1[-1]} {1[-2]} {1[-3]}'),
+ 'c a b c c b a')
+ self.assertEqual(regex.match(r'(?P.)+',
+ 'abc').expandf('{x} {x[0]} {x[1]} {x[2]} {x[-1]} {x[-2]} {x[-3]}'),
+ 'c a b c c b a')
+
+ self.assertEqual(regex.subf(r'(?P.)+', r'{0} {0[0]} {0[-1]}',
+ 'abc'), 'abc abc abc')
+ self.assertEqual(regex.subf(r'(?P.)+',
+ '{1} {1[0]} {1[1]} {1[2]} {1[-1]} {1[-2]} {1[-3]}', 'abc'),
+ 'c a b c c b a')
+ self.assertEqual(regex.subf(r'(?P.)+',
+ '{x} {x[0]} {x[1]} {x[2]} {x[-1]} {x[-2]} {x[-3]}', 'abc'),
+ 'c a b c c b a')
+
+ def test_more_zerowidth(self):
+ if sys.version_info >= (3, 7, 0):
+ self.assertEqual(regex.split(r'\b|:+', 'a::bc'), ['', 'a', '', '',
+ 'bc', ''])
+ self.assertEqual(regex.sub(r'\b|:+', '-', 'a::bc'), '-a---bc-')
+ self.assertEqual(regex.findall(r'\b|:+', 'a::bc'), ['', '', '::',
+ '', ''])
+ self.assertEqual([m.span() for m in regex.finditer(r'\b|:+',
+ 'a::bc')], [(0, 0), (1, 1), (1, 3), (3, 3), (5, 5)])
+ self.assertEqual([m.span() for m in regex.finditer(r'(?m)^\s*?$',
+ 'foo\n\n\nbar')], [(4, 4), (4, 5), (5, 5)])
+
+ def test_line_ending(self):
+ self.assertEqual(regex.findall(r'\R', '\r\n\n\x0B\f\r\x85\u2028\u2029'),
+ ['\r\n', '\n', '\x0B', '\f', '\r', '\x85', '\u2028', '\u2029'])
+ self.assertEqual(regex.findall(br'\R', b'\r\n\n\x0B\f\r\x85'), [b'\r\n',
+ b'\n', b'\x0B', b'\f', b'\r'])
+
+def test_main():
+ unittest.main(verbosity=2)
+
+if __name__ == "__main__":
+ test_main()
diff --git a/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/PKG-INFO b/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/PKG-INFO
new file mode 100644
index 0000000000000000000000000000000000000000..d353c64c8eeb1553e9da4e877071be6ce816757b
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/PKG-INFO
@@ -0,0 +1,114 @@
+Metadata-Version: 2.1
+Name: rouge-score
+Version: 0.1.2
+Summary: Pure python implementation of ROUGE-1.5.5.
+Home-page: https://github.com/google-research/google-research/tree/master/rouge
+Author: Google LLC
+Author-email: rouge-opensource@google.com
+License: UNKNOWN
+Platform: UNKNOWN
+Classifier: Programming Language :: Python :: 3
+Classifier: License :: OSI Approved :: Apache Software License
+Classifier: Operating System :: OS Independent
+Requires-Python: >=3.7
+Description-Content-Type: text/markdown
+
+# Python ROUGE Implementation
+
+## Overview
+
+This is a native python implementation of ROUGE, designed to replicate results
+from the original perl package.
+
+Maintainers may be contacted at rouge-opensource@google.com.
+
+ROUGE was originally introduced in the paper:
+
+Lin, Chin-Yew. ROUGE: a Package for Automatic Evaluation of Summaries. In
+Proceedings of the Workshop on Text Summarization Branches Out (WAS 2004),
+Barcelona, Spain, July 25 - 26, 2004.
+
+## ROUGE for Python
+
+There are ROUGE implementations available for Python, however some are not
+native python due to their dependency on the perl script, and others provide
+differing results when compared with the original implementation. This makes it
+difficult to directly compare with known results.
+
+This package is designed to replicate perl results. It implements:
+
+* ROUGE-N (N-gram) scoring
+* ROUGE-L (Longest Common Subsequence) scoring
+* Text normalization
+* Bootstrap resampling for confidence interval calculation
+* Optional Porter stemming to remove plurals and word suffixes such as (ing,
+ ion, ment).
+
+Note that not all options provided by the original perl ROUGE script are
+supported, but the subset of options that are implemented should replicate the
+original functionality.
+
+## Stopword removal
+
+The original ROUGE perl script implemented optional stopword removal (using the
+-s parameter). However, there were ~600 stopwords used by ROUGE, borrowed from
+another now defunct package. This word list contained many words that may not be
+suited to some tasks, such as day and month names and numbers. It also has no
+clear license for redistribution. Since we are unable to replicate this
+functionality precisely we do not include stopword removal.
+
+## Two flavors of ROUGE-L
+In the ROUGE paper, two flavors of ROUGE are described:
+
+1. sentence-level: Compute longest common subsequence (LCS) between two pieces of
+text. Newlines are ignored. This is called `rougeL` in this package.
+2. summary-level: Newlines in the text are interpreted as sentence boundaries,
+and the LCS is computed between each pair of reference and candidate sentences,
+and something called union-LCS is computed. This is called `rougeLsum` in this
+package. This is the ROUGE-L reported in *[Get To The Point: Summarization with
+Pointer-Generator Networks](https://arxiv.org/abs/1704.04368)*, for example.
+If your references/candidates do not have newline delimiters, you can use the
+--split_summaries flag (or optional argument in RougeScorer).
+
+## How to run
+
+This package compares target files (containing one example per line) with
+prediction files in the same format. It can be launched as follows (from
+google-research/):
+
+```shell
+python -m rouge.rouge \
+ --target_filepattern=*.targets \
+ --prediction_filepattern=*.decodes \
+ --output_filename=scores.csv \
+ --use_stemmer=true \
+ --split_summaries=true
+```
+
+## Using pip
+```
+pip install -r rouge/requirements.txt
+pip install rouge-score
+```
+
+Then in python:
+
+```python
+from rouge_score import rouge_scorer
+
+scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True)
+scores = scorer.score('The quick brown fox jumps over the lazy dog',
+ 'The quick brown dog jumps on the log.')
+```
+
+## License
+
+Licensed under the
+[Apache 2.0](https://github.com/google-research/google-research/blob/master/LICENSE)
+License.
+
+## Disclaimer
+
+This is not an official Google product.
+
+
diff --git a/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/SOURCES.txt b/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/SOURCES.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8550f6e8ce09a7a45cf974836cbeb52b6cc329ea
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/SOURCES.txt
@@ -0,0 +1,22 @@
+README.md
+setup.cfg
+setup.py
+rouge_score/__init__.py
+rouge_score/create_pyrouge_files.py
+rouge_score/io.py
+rouge_score/io_test.py
+rouge_score/rouge.py
+rouge_score/rouge_scorer.py
+rouge_score/rouge_scorer_test.py
+rouge_score/scoring.py
+rouge_score/scoring_test.py
+rouge_score/test_util.py
+rouge_score/tokenize.py
+rouge_score/tokenize_test.py
+rouge_score/tokenizers.py
+rouge_score/tokenizers_test.py
+rouge_score.egg-info/PKG-INFO
+rouge_score.egg-info/SOURCES.txt
+rouge_score.egg-info/dependency_links.txt
+rouge_score.egg-info/requires.txt
+rouge_score.egg-info/top_level.txt
\ No newline at end of file
diff --git a/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/dependency_links.txt b/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/dependency_links.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8b137891791fe96927ad78e64b0aad7bded08bdc
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/dependency_links.txt
@@ -0,0 +1 @@
+
diff --git a/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/installed-files.txt b/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/installed-files.txt
new file mode 100644
index 0000000000000000000000000000000000000000..33de4d2b77e6efc7b2b79f11f058c30104554b2f
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/installed-files.txt
@@ -0,0 +1,33 @@
+../rouge_score/__init__.py
+../rouge_score/__pycache__/__init__.cpython-310.pyc
+../rouge_score/__pycache__/create_pyrouge_files.cpython-310.pyc
+../rouge_score/__pycache__/io.cpython-310.pyc
+../rouge_score/__pycache__/io_test.cpython-310.pyc
+../rouge_score/__pycache__/rouge.cpython-310.pyc
+../rouge_score/__pycache__/rouge_scorer.cpython-310.pyc
+../rouge_score/__pycache__/rouge_scorer_test.cpython-310.pyc
+../rouge_score/__pycache__/scoring.cpython-310.pyc
+../rouge_score/__pycache__/scoring_test.cpython-310.pyc
+../rouge_score/__pycache__/test_util.cpython-310.pyc
+../rouge_score/__pycache__/tokenize.cpython-310.pyc
+../rouge_score/__pycache__/tokenize_test.cpython-310.pyc
+../rouge_score/__pycache__/tokenizers.cpython-310.pyc
+../rouge_score/__pycache__/tokenizers_test.cpython-310.pyc
+../rouge_score/create_pyrouge_files.py
+../rouge_score/io.py
+../rouge_score/io_test.py
+../rouge_score/rouge.py
+../rouge_score/rouge_scorer.py
+../rouge_score/rouge_scorer_test.py
+../rouge_score/scoring.py
+../rouge_score/scoring_test.py
+../rouge_score/test_util.py
+../rouge_score/tokenize.py
+../rouge_score/tokenize_test.py
+../rouge_score/tokenizers.py
+../rouge_score/tokenizers_test.py
+PKG-INFO
+SOURCES.txt
+dependency_links.txt
+requires.txt
+top_level.txt
diff --git a/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/requires.txt b/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/requires.txt
new file mode 100644
index 0000000000000000000000000000000000000000..93b9d91714331f65285c92919c7416985ad185b1
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/requires.txt
@@ -0,0 +1,4 @@
+absl-py
+nltk
+numpy
+six>=1.14.0
diff --git a/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/top_level.txt b/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/top_level.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ec47eb53957702d6fba3decef23ddecf6061f7ec
--- /dev/null
+++ b/venv/lib/python3.10/site-packages/rouge_score-0.1.2.egg-info/top_level.txt
@@ -0,0 +1 @@
+rouge_score