diff --git a/ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt b/ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt new file mode 100644 index 0000000000000000000000000000000000000000..61d0b16f8595011d1d76f9846b36e332882e0d3d --- /dev/null +++ b/ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5c58d9a4ba78bf6b0804db683329e66eb8ae93b01ff31f4f020feb4fad4514ee +size 33555612 diff --git a/ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt b/ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt new file mode 100644 index 0000000000000000000000000000000000000000..9826506a66ff12a6f292cccf94a14fad257f994d --- /dev/null +++ b/ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ce326dc8c6d418331420b423287b45bfa55d60a768a3d87f44baf2125a288035 +size 33555627 diff --git a/ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/fp32.pt b/ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/fp32.pt new file mode 100644 index 0000000000000000000000000000000000000000..2b6751d00a6532a1e9fd5f08906d9a64079f9a66 --- /dev/null +++ b/ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h_swiglu.weight/fp32.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:058ce3d1d39eba8b80c35b26ea61854f1330e05b249b0e8edb3e8a41ed44893d +size 33555533 diff --git a/venv/lib/python3.10/site-packages/transformers/models/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..292a264644be85f9d7350756415c37d062fdb159 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/__init__.py @@ -0,0 +1,273 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from . import ( + albert, + align, + altclip, + audio_spectrogram_transformer, + auto, + autoformer, + bark, + bart, + barthez, + bartpho, + beit, + bert, + bert_generation, + bert_japanese, + bertweet, + big_bird, + bigbird_pegasus, + biogpt, + bit, + blenderbot, + blenderbot_small, + blip, + blip_2, + bloom, + bridgetower, + bros, + byt5, + camembert, + canine, + chinese_clip, + clap, + clip, + clipseg, + clvp, + code_llama, + codegen, + cohere, + conditional_detr, + convbert, + convnext, + convnextv2, + cpm, + cpmant, + ctrl, + cvt, + data2vec, + dbrx, + deberta, + deberta_v2, + decision_transformer, + deformable_detr, + deit, + deprecated, + depth_anything, + deta, + detr, + dialogpt, + dinat, + dinov2, + distilbert, + dit, + donut, + dpr, + dpt, + efficientformer, + efficientnet, + electra, + encodec, + encoder_decoder, + ernie, + ernie_m, + esm, + falcon, + fastspeech2_conformer, + flaubert, + flava, + fnet, + focalnet, + fsmt, + funnel, + fuyu, + gemma, + git, + glpn, + gpt2, + gpt_bigcode, + gpt_neo, + gpt_neox, + gpt_neox_japanese, + gpt_sw3, + gptj, + gptsan_japanese, + graphormer, + grounding_dino, + groupvit, + herbert, + hubert, + ibert, + idefics, + idefics2, + imagegpt, + informer, + instructblip, + jamba, + jukebox, + kosmos2, + layoutlm, + layoutlmv2, + layoutlmv3, + layoutxlm, + led, + levit, + lilt, + llama, + llava, + llava_next, + longformer, + longt5, + luke, + lxmert, + m2m_100, + mamba, + marian, + markuplm, + mask2former, + maskformer, + mbart, + mbart50, + mega, + megatron_bert, + megatron_gpt2, + mgp_str, + mistral, + mixtral, + mluke, + mobilebert, + mobilenet_v1, + mobilenet_v2, + mobilevit, + mobilevitv2, + mpnet, + mpt, + mra, + mt5, + musicgen, + musicgen_melody, + mvp, + nat, + nezha, + nllb, + nllb_moe, + nougat, + nystromformer, + olmo, + oneformer, + openai, + opt, + owlv2, + owlvit, + patchtsmixer, + patchtst, + pegasus, + pegasus_x, + perceiver, + persimmon, + phi, + phobert, + pix2struct, + plbart, + poolformer, + pop2piano, + prophetnet, + pvt, + pvt_v2, + qdqbert, + qwen2, + qwen2_moe, + rag, + realm, + recurrent_gemma, + reformer, + regnet, + rembert, + resnet, + roberta, + roberta_prelayernorm, + roc_bert, + roformer, + rwkv, + sam, + seamless_m4t, + seamless_m4t_v2, + segformer, + seggpt, + sew, + sew_d, + siglip, + speech_encoder_decoder, + speech_to_text, + speech_to_text_2, + speecht5, + splinter, + squeezebert, + stablelm, + starcoder2, + superpoint, + swiftformer, + swin, + swin2sr, + swinv2, + switch_transformers, + t5, + table_transformer, + tapas, + time_series_transformer, + timesformer, + timm_backbone, + trocr, + tvlt, + tvp, + udop, + umt5, + unispeech, + unispeech_sat, + univnet, + upernet, + videomae, + vilt, + vipllava, + vision_encoder_decoder, + vision_text_dual_encoder, + visual_bert, + vit, + vit_hybrid, + vit_mae, + vit_msn, + vitdet, + vitmatte, + vits, + vivit, + wav2vec2, + wav2vec2_bert, + wav2vec2_conformer, + wav2vec2_phoneme, + wav2vec2_with_lm, + wavlm, + whisper, + x_clip, + xglm, + xlm, + xlm_prophetnet, + xlm_roberta, + xlm_roberta_xl, + xlnet, + xmod, + yolos, + yoso, +) diff --git a/venv/lib/python3.10/site-packages/transformers/models/bit/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/bit/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..fc50659d9fa06820ebe1edc7b56ab3d5de4ef67b --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/bit/__init__.py @@ -0,0 +1,73 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available + + +_import_structure = {"configuration_bit": ["BIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BitConfig", "BitOnnxConfig"]} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_bit"] = [ + "BIT_PRETRAINED_MODEL_ARCHIVE_LIST", + "BitForImageClassification", + "BitModel", + "BitPreTrainedModel", + "BitBackbone", + ] + + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["image_processing_bit"] = ["BitImageProcessor"] + + +if TYPE_CHECKING: + from .configuration_bit import BIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BitConfig, BitOnnxConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_bit import ( + BIT_PRETRAINED_MODEL_ARCHIVE_LIST, + BitBackbone, + BitForImageClassification, + BitModel, + BitPreTrainedModel, + ) + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .image_processing_bit import BitImageProcessor + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) diff --git a/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..087c22fd4cb90da3f0c50765aaa3d119065f0419 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/configuration_bit.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/configuration_bit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..db8aa8153281bae2601ebd03e3a0f644a3abf136 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/configuration_bit.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/convert_bit_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/convert_bit_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9181271314ebb9cf29cd0ebd327683aa21b34a90 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/convert_bit_to_pytorch.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/image_processing_bit.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/image_processing_bit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a75f5eedb5525b57019aa99865dbb4565c0534fe Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/image_processing_bit.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/modeling_bit.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/modeling_bit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..07c44d63b9711f2a7e195c4bd9dcee755ad3c926 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/bit/__pycache__/modeling_bit.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/bit/configuration_bit.py b/venv/lib/python3.10/site-packages/transformers/models/bit/configuration_bit.py new file mode 100644 index 0000000000000000000000000000000000000000..2ec6307421bfaab92825496e6c7464ff20793d7d --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/bit/configuration_bit.py @@ -0,0 +1,136 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" BiT model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging +from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import BIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class BitConfig(BackboneConfigMixin, PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`BitModel`]. It is used to instantiate an BiT + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the BiT + [google/bit-50](https://huggingface.co/google/bit-50) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + embedding_size (`int`, *optional*, defaults to 64): + Dimensionality (hidden size) for the embedding layer. + hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`): + Dimensionality (hidden size) at each stage. + depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`): + Depth (number of layers) for each stage. + layer_type (`str`, *optional*, defaults to `"preactivation"`): + The layer to use, it can be either `"preactivation"` or `"bottleneck"`. + hidden_act (`str`, *optional*, defaults to `"relu"`): + The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` + are supported. + global_padding (`str`, *optional*): + Padding strategy to use for the convolutional layers. Can be either `"valid"`, `"same"`, or `None`. + num_groups (`int`, *optional*, defaults to 32): + Number of groups used for the `BitGroupNormActivation` layers. + drop_path_rate (`float`, *optional*, defaults to 0.0): + The drop path rate for the stochastic depth. + embedding_dynamic_padding (`bool`, *optional*, defaults to `False`): + Whether or not to make use of dynamic padding for the embedding layer. + output_stride (`int`, *optional*, defaults to 32): + The output stride of the model. + width_factor (`int`, *optional*, defaults to 1): + The width factor for the model. + out_features (`List[str]`, *optional*): + If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. + (depending on how many stages the model has). If unset and `out_indices` is set, will default to the + corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + out_indices (`List[int]`, *optional*): + If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how + many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. + If unset and `out_features` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + + Example: + ```python + >>> from transformers import BitConfig, BitModel + + >>> # Initializing a BiT bit-50 style configuration + >>> configuration = BitConfig() + + >>> # Initializing a model (with random weights) from the bit-50 style configuration + >>> model = BitModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ``` + """ + + model_type = "bit" + layer_types = ["preactivation", "bottleneck"] + supported_padding = ["SAME", "VALID"] + + def __init__( + self, + num_channels=3, + embedding_size=64, + hidden_sizes=[256, 512, 1024, 2048], + depths=[3, 4, 6, 3], + layer_type="preactivation", + hidden_act="relu", + global_padding=None, + num_groups=32, + drop_path_rate=0.0, + embedding_dynamic_padding=False, + output_stride=32, + width_factor=1, + out_features=None, + out_indices=None, + **kwargs, + ): + super().__init__(**kwargs) + if layer_type not in self.layer_types: + raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}") + if global_padding is not None: + if global_padding.upper() in self.supported_padding: + global_padding = global_padding.upper() + else: + raise ValueError(f"Padding strategy {global_padding} not supported") + self.num_channels = num_channels + self.embedding_size = embedding_size + self.hidden_sizes = hidden_sizes + self.depths = depths + self.layer_type = layer_type + self.hidden_act = hidden_act + self.global_padding = global_padding + self.num_groups = num_groups + self.drop_path_rate = drop_path_rate + self.embedding_dynamic_padding = embedding_dynamic_padding + self.output_stride = output_stride + self.width_factor = width_factor + + self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)] + self._out_features, self._out_indices = get_aligned_output_features_output_indices( + out_features=out_features, out_indices=out_indices, stage_names=self.stage_names + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/bit/convert_bit_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/bit/convert_bit_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..7cc7f64107ce9ee3735dd4e10875c492626cf242 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/bit/convert_bit_to_pytorch.py @@ -0,0 +1,178 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert BiT checkpoints from the timm library.""" + + +import argparse +import json +from pathlib import Path + +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image +from timm import create_model +from timm.data import resolve_data_config +from timm.data.transforms_factory import create_transform + +from transformers import BitConfig, BitForImageClassification, BitImageProcessor +from transformers.image_utils import PILImageResampling +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +def get_config(model_name): + repo_id = "huggingface/label-files" + filename = "imagenet-1k-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + label2id = {v: k for k, v in id2label.items()} + + conv_layer = "std_conv" if "bit" in model_name else False + + # note that when using BiT as backbone for ViT-hybrid checkpoints, + # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", + # config.conv_layer = "std_conv_same" + config = BitConfig( + conv_layer=conv_layer, + num_labels=1000, + id2label=id2label, + label2id=label2id, + ) + + return config + + +def rename_key(name): + if "stem.conv" in name: + name = name.replace("stem.conv", "bit.embedder.convolution") + if "blocks" in name: + name = name.replace("blocks", "layers") + if "head.fc" in name: + name = name.replace("head.fc", "classifier.1") + if name.startswith("norm"): + name = "bit." + name + if "bit" not in name and "classifier" not in name: + name = "bit.encoder." + name + + return name + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + im = Image.open(requests.get(url, stream=True).raw) + return im + + +@torch.no_grad() +def convert_bit_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False): + """ + Copy/paste/tweak model's weights to our BiT structure. + """ + + # define default BiT configuration + config = get_config(model_name) + + # load original model from timm + timm_model = create_model(model_name, pretrained=True) + timm_model.eval() + + # load state_dict of original model + state_dict = timm_model.state_dict() + for key in state_dict.copy().keys(): + val = state_dict.pop(key) + state_dict[rename_key(key)] = val.squeeze() if "head" in key else val + + # load HuggingFace model + model = BitForImageClassification(config) + model.eval() + model.load_state_dict(state_dict) + + # create image processor + transform = create_transform(**resolve_data_config({}, model=timm_model)) + timm_transforms = transform.transforms + + pillow_resamplings = { + "bilinear": PILImageResampling.BILINEAR, + "bicubic": PILImageResampling.BICUBIC, + "nearest": PILImageResampling.NEAREST, + } + + processor = BitImageProcessor( + do_resize=True, + size={"shortest_edge": timm_transforms[0].size}, + resample=pillow_resamplings[timm_transforms[0].interpolation.value], + do_center_crop=True, + crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]}, + do_normalize=True, + image_mean=timm_transforms[-1].mean.tolist(), + image_std=timm_transforms[-1].std.tolist(), + ) + + image = prepare_img() + timm_pixel_values = transform(image).unsqueeze(0) + pixel_values = processor(image, return_tensors="pt").pixel_values + + # verify pixel values + assert torch.allclose(timm_pixel_values, pixel_values) + + # verify logits + with torch.no_grad(): + outputs = model(pixel_values) + logits = outputs.logits + + print("Logits:", logits[0, :3]) + print("Predicted class:", model.config.id2label[logits.argmax(-1).item()]) + timm_logits = timm_model(pixel_values) + assert timm_logits.shape == outputs.logits.shape + assert torch.allclose(timm_logits, outputs.logits, atol=1e-3) + print("Looks ok!") + + if pytorch_dump_folder_path is not None: + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + print(f"Saving model {model_name} and processor to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + processor.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + print(f"Pushing model {model_name} and processor to the hub") + model.push_to_hub(f"ybelkada/{model_name}") + processor.push_to_hub(f"ybelkada/{model_name}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--model_name", + default="resnetv2_50x1_bitm", + type=str, + help="Name of the BiT timm model you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." + ) + parser.add_argument( + "--push_to_hub", + action="store_true", + help="Whether to push the model to the hub.", + ) + + args = parser.parse_args() + convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) diff --git a/venv/lib/python3.10/site-packages/transformers/models/bit/image_processing_bit.py b/venv/lib/python3.10/site-packages/transformers/models/bit/image_processing_bit.py new file mode 100644 index 0000000000000000000000000000000000000000..c9d5c7a7594a495f79d69c5d1c9a924fa24a01ad --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/bit/image_processing_bit.py @@ -0,0 +1,345 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for BiT.""" + +from typing import Dict, List, Optional, Union + +import numpy as np + +from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from ...image_transforms import ( + convert_to_rgb, + get_resize_output_image_size, + resize, + to_channel_dimension_format, +) +from ...image_utils import ( + OPENAI_CLIP_MEAN, + OPENAI_CLIP_STD, + ChannelDimension, + ImageInput, + PILImageResampling, + infer_channel_dimension_format, + is_scaled_image, + make_list_of_images, + to_numpy_array, + valid_images, + validate_kwargs, + validate_preprocess_arguments, +) +from ...utils import TensorType, is_vision_available, logging + + +logger = logging.get_logger(__name__) + + +if is_vision_available(): + import PIL + + +class BitImageProcessor(BaseImageProcessor): + r""" + Constructs a BiT image processor. + + Args: + do_resize (`bool`, *optional*, defaults to `True`): + Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by + `do_resize` in the `preprocess` method. + size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): + Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with + the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` + method. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): + Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. + do_center_crop (`bool`, *optional*, defaults to `True`): + Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the + `preprocess` method. + crop_size (`Dict[str, int]` *optional*, defaults to 224): + Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess` + method. + do_rescale (`bool`, *optional*, defaults to `True`): + Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in + the `preprocess` method. + rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): + Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` + method. + do_normalize: + Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. + image_mean (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`): + Mean to use if normalizing the image. This is a float or list of floats the length of the number of + channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`): + Standard deviation to use if normalizing the image. This is a float or list of floats the length of the + number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. + Can be overridden by the `image_std` parameter in the `preprocess` method. + do_convert_rgb (`bool`, *optional*, defaults to `True`): + Whether to convert the image to RGB. + """ + + model_input_names = ["pixel_values"] + + def __init__( + self, + do_resize: bool = True, + size: Dict[str, int] = None, + resample: PILImageResampling = PILImageResampling.BICUBIC, + do_center_crop: bool = True, + crop_size: Dict[str, int] = None, + do_rescale: bool = True, + rescale_factor: Union[int, float] = 1 / 255, + do_normalize: bool = True, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + do_convert_rgb: bool = True, + **kwargs, + ) -> None: + super().__init__(**kwargs) + size = size if size is not None else {"shortest_edge": 224} + size = get_size_dict(size, default_to_square=False) + crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} + crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") + + self.do_resize = do_resize + self.size = size + self.resample = resample + self.do_center_crop = do_center_crop + self.crop_size = crop_size + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN + self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD + self.do_convert_rgb = do_convert_rgb + self._valid_processor_keys = [ + "images", + "do_resize", + "size", + "resample", + "do_center_crop", + "crop_size", + "do_rescale", + "rescale_factor", + "do_normalize", + "image_mean", + "image_std", + "do_convert_rgb", + "return_tensors", + "data_format", + "input_data_format", + ] + + # Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + resample: PILImageResampling = PILImageResampling.BICUBIC, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge + resized to keep the input aspect ratio. + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + Size of the output image. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): + Resampling filter to use when resiizing the image. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the image. If not provided, it will be the same as the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + """ + default_to_square = True + if "shortest_edge" in size: + size = size["shortest_edge"] + default_to_square = False + elif "height" in size and "width" in size: + size = (size["height"], size["width"]) + else: + raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.") + + output_size = get_resize_output_image_size( + image, + size=size, + default_to_square=default_to_square, + input_data_format=input_data_format, + ) + return resize( + image, + size=output_size, + resample=resample, + data_format=data_format, + input_data_format=input_data_format, + **kwargs, + ) + + def preprocess( + self, + images: ImageInput, + do_resize: bool = None, + size: Dict[str, int] = None, + resample: PILImageResampling = None, + do_center_crop: bool = None, + crop_size: int = None, + do_rescale: bool = None, + rescale_factor: float = None, + do_normalize: bool = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + do_convert_rgb: bool = None, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> PIL.Image.Image: + """ + Preprocess an image or batch of images. + + Args: + images (`ImageInput`): + Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If + passing in images with pixel values between 0 and 1, set `do_rescale=False`. + do_resize (`bool`, *optional*, defaults to `self.do_resize`): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to `self.size`): + Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with + the longest edge resized to keep the input aspect ratio. + resample (`int`, *optional*, defaults to `self.resample`): + Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only + has an effect if `do_resize` is set to `True`. + do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): + Whether to center crop the image. + crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): + Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image. + rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): + Rescale factor to rescale the image by if `do_rescale` is set to `True`. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): + Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. + image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): + Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to + `True`. + do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): + Whether to convert the image to RGB. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - Unset: Use the channel dimension format of the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + do_resize = do_resize if do_resize is not None else self.do_resize + size = size if size is not None else self.size + size = get_size_dict(size, param_name="size", default_to_square=False) + resample = resample if resample is not None else self.resample + do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop + crop_size = crop_size if crop_size is not None else self.crop_size + crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True) + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb + + validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) + + images = make_list_of_images(images) + + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + + validate_preprocess_arguments( + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_center_crop=do_center_crop, + crop_size=crop_size, + do_resize=do_resize, + size=size, + resample=resample, + ) + + # PIL RGBA images are converted to RGB + if do_convert_rgb: + images = [convert_to_rgb(image) for image in images] + + # All transformations expect numpy arrays. + images = [to_numpy_array(image) for image in images] + + if is_scaled_image(images[0]) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + + if input_data_format is None: + # We assume that all images have the same channel dimension format. + input_data_format = infer_channel_dimension_format(images[0]) + + if do_resize: + images = [ + self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) + for image in images + ] + + if do_center_crop: + images = [ + self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images + ] + + if do_rescale: + images = [ + self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) + for image in images + ] + + if do_normalize: + images = [ + self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) + for image in images + ] + + images = [ + to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images + ] + + data = {"pixel_values": images} + return BatchFeature(data=data, tensor_type=return_tensors) diff --git a/venv/lib/python3.10/site-packages/transformers/models/bit/modeling_bit.py b/venv/lib/python3.10/site-packages/transformers/models/bit/modeling_bit.py new file mode 100644 index 0000000000000000000000000000000000000000..27141a9009e540780373ff6b5ebc450883784335 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/bit/modeling_bit.py @@ -0,0 +1,898 @@ +# coding=utf-8 +# Copyright 2022 Google AI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch BiT model. Also supports backbone for ViT hybrid.""" + +import collections +import math +from typing import Optional, Tuple + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import Tensor, nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BackboneOutput, + BaseModelOutputWithNoAttention, + BaseModelOutputWithPoolingAndNoAttention, + ImageClassifierOutputWithNoAttention, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from ...utils.backbone_utils import BackboneMixin +from .configuration_bit import BitConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "BitConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "google/bit-50" +_EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "google/bit-50" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat" + + +from ..deprecated._archive_maps import BIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +def get_padding_value(padding=None, kernel_size=7, stride=1, dilation=1) -> Tuple[Tuple, bool]: + r""" + Utility function to get the tuple padding value given the kernel_size and padding. + + Args: + padding (Union[`str`, `int`], *optional*): + Padding value, can be either `"same"`, `"valid"`. If a different value is provided the default padding from + PyTorch is used. + kernel_size (`int`, *optional*, defaults to 7): + Kernel size of the convolution layers. + stride (`int`, *optional*, defaults to 1): + Stride value of the convolution layers. + dilation (`int`, *optional*, defaults to 1): + Dilation value of the convolution layers. + """ + dynamic = False + if padding is None: + padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 + return padding, dynamic + + if isinstance(padding, str): + # for any string padding, the padding will be calculated for you, one of three ways + padding = padding.lower() + if padding == "same": + # TF compatible 'SAME' padding, has a performance and GPU memory allocation impact + if stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0: + # static case, no extra overhead + padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 + else: + # dynamic 'SAME' padding, has runtime/GPU memory overhead + padding = 0 + dynamic = True + elif padding == "valid": + # 'VALID' padding, same as padding=0 + padding = 0 + else: + # Default to PyTorch style 'same'-ish symmetric padding + padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 + return padding, dynamic + + +class WeightStandardizedConv2d(nn.Conv2d): + """Conv2d with Weight Standardization. Includes TensorFlow compatible SAME padding. Used for ViT Hybrid model. + + Paper: [Micro-Batch Training with Batch-Channel Normalization and Weight + Standardization](https://arxiv.org/abs/1903.10520v2) + """ + + def __init__( + self, + in_channel, + out_channels, + kernel_size, + stride=1, + padding="SAME", + dilation=1, + groups=1, + bias=False, + eps=1e-6, + ): + padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation) + super().__init__( + in_channel, + out_channels, + kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + groups=groups, + bias=bias, + ) + if is_dynamic: + self.pad = DynamicPad2d(kernel_size, stride, dilation) + else: + self.pad = None + self.eps = eps + + def forward(self, hidden_state): + if self.pad is not None: + hidden_state = self.pad(hidden_state) + weight = nn.functional.batch_norm( + self.weight.reshape(1, self.out_channels, -1), None, None, training=True, momentum=0.0, eps=self.eps + ).reshape_as(self.weight) + hidden_state = nn.functional.conv2d( + hidden_state, weight, self.bias, self.stride, self.padding, self.dilation, self.groups + ) + return hidden_state + + +class BitGroupNormActivation(nn.GroupNorm): + r""" + A module that combines group normalization with an activation function. + """ + + def __init__(self, config, num_channels, eps=1e-5, affine=True, apply_activation=True): + super(BitGroupNormActivation, self).__init__(config.num_groups, num_channels, eps=eps, affine=affine) + if apply_activation: + self.activation = ACT2FN[config.hidden_act] + else: + self.activation = nn.Identity() + + def forward(self, hidden_state): + hidden_state = nn.functional.group_norm(hidden_state, self.num_groups, self.weight, self.bias, self.eps) + hidden_state = self.activation(hidden_state) + return hidden_state + + +class DynamicPad2d(nn.Module): + r""" + A module that wraps dynamic padding of any input, given the parameters of the convolutional layer and the input + hidden states. + """ + + def __init__(self, kernel_size, stride, dilation, value=0): + super().__init__() + # Safety checkers + if isinstance(kernel_size, int): + kernel_size = (kernel_size, kernel_size) + + if isinstance(stride, int): + stride = (stride, stride) + + if isinstance(dilation, int): + dilation = (dilation, dilation) + + self.kernel_size = kernel_size + self.stride = stride + self.dilation = dilation + self.value = value + + def compute_padding(x, kernel_size, stride, dilation): + return max((math.ceil(x / stride) - 1) * stride + (kernel_size - 1) * dilation + 1 - x, 0) + + self.compute_padding = compute_padding + + def __call__(self, input): + # Get width and height + input_height, input_width = input.size()[-2:] + + # Compute the padding values + padding_height = self.compute_padding(input_height, self.kernel_size[0], self.stride[0], self.dilation[0]) + padding_width = self.compute_padding(input_width, self.kernel_size[1], self.stride[1], self.dilation[1]) + + # apply pad + if padding_height > 0 or padding_width > 0: + input = nn.functional.pad( + input, + [ + padding_width // 2, + padding_width - padding_width // 2, + padding_height // 2, + padding_height - padding_height // 2, + ], + value=self.value, + ) + return input + + +class BitMaxPool2d(nn.MaxPool2d): + """Tensorflow like 'SAME' wrapper for 2D max pooling""" + + def __init__( + self, + kernel_size: int, + stride=None, + dilation=1, + ceil_mode=False, + padding=(0, 0), + padding_value=0, + use_dynamic_padding=True, + ): + kernel_size = kernel_size if isinstance(kernel_size, collections.abc.Iterable) else (kernel_size, kernel_size) + stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride) + dilation = dilation if isinstance(dilation, collections.abc.Iterable) else (dilation, dilation) + super().__init__(kernel_size, stride, padding, dilation, ceil_mode) + if use_dynamic_padding: + self.pad = DynamicPad2d(kernel_size, stride, dilation, padding_value) + else: + self.pad = nn.Identity() + + def forward(self, hidden_states): + hidden_states = self.pad(hidden_states) + return nn.functional.max_pool2d( + hidden_states, self.kernel_size, self.stride, self.padding, self.dilation, self.ceil_mode + ) + + +class BitEmbeddings(nn.Module): + """ + BiT Embeddings (stem) composed of a single aggressive convolution. + """ + + def __init__(self, config: BitConfig): + super().__init__() + + self.convolution = WeightStandardizedConv2d( + config.num_channels, + config.embedding_size, + kernel_size=7, + stride=2, + eps=1e-8, + padding=config.global_padding, + ) + + self.pooler = BitMaxPool2d(kernel_size=3, stride=2, use_dynamic_padding=config.embedding_dynamic_padding) + + # Use the same padding strategy as convolutional layers + if config.global_padding is not None and config.global_padding.upper() == "SAME": + self.pad = nn.Identity() + else: + self.pad = nn.ConstantPad2d(padding=(1, 1, 1, 1), value=0.0) + + if not config.layer_type == "preactivation": + self.norm = BitGroupNormActivation(config, num_channels=config.embedding_size) + else: + self.norm = nn.Identity() + + self.num_channels = config.num_channels + + def forward(self, pixel_values: Tensor) -> Tensor: + num_channels = pixel_values.shape[1] + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + + embedding = self.convolution(pixel_values) + + embedding = self.pad(embedding) + + embedding = self.norm(embedding) + + embedding = self.pooler(embedding) + + return embedding + + +# Copied from transformers.models.convnext.modeling_convnext.drop_path +def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: + """ + Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, + however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the + layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the + argument. + """ + if drop_prob == 0.0 or not training: + return input + keep_prob = 1 - drop_prob + shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) + random_tensor.floor_() # binarize + output = input.div(keep_prob) * random_tensor + return output + + +# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Bit +class BitDropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob: Optional[float] = None) -> None: + super().__init__() + self.drop_prob = drop_prob + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + return drop_path(hidden_states, self.drop_prob, self.training) + + def extra_repr(self) -> str: + return "p={}".format(self.drop_prob) + + +def make_div(value, divisor=8): + min_value = divisor + new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) + if new_value < 0.9 * value: + new_value += divisor + return new_value + + +class BitPreActivationBottleneckLayer(nn.Module): + """Pre-activation (v2) bottleneck block. + Follows the implementation of "Identity Mappings in Deep Residual Networks": + https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua + + Except it puts the stride on 3x3 conv when available. + """ + + def __init__( + self, + config, + in_channels, + out_channels=None, + bottle_ratio=0.25, + stride=1, + dilation=1, + first_dilation=None, + groups=1, + drop_path_rate=0.0, + is_first_layer=False, + ): + super().__init__() + + first_dilation = first_dilation or dilation + + out_channels = out_channels or in_channels + mid_channels = make_div(out_channels * bottle_ratio) + + if is_first_layer: + self.downsample = BitDownsampleConv( + config, + in_channels, + out_channels, + stride=stride, + preact=True, + ) + else: + self.downsample = None + + self.norm1 = BitGroupNormActivation(config, in_channels) + self.conv1 = WeightStandardizedConv2d(in_channels, mid_channels, 1, eps=1e-8, padding=config.global_padding) + + self.norm2 = BitGroupNormActivation(config, num_channels=mid_channels) + self.conv2 = WeightStandardizedConv2d( + mid_channels, mid_channels, 3, stride=stride, groups=groups, eps=1e-8, padding=config.global_padding + ) + + self.norm3 = BitGroupNormActivation(config, mid_channels) + self.conv3 = WeightStandardizedConv2d(mid_channels, out_channels, 1, eps=1e-8, padding=config.global_padding) + + self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + + def forward(self, hidden_states): + hidden_states_preact = self.norm1(hidden_states) + + # shortcut branch + shortcut = hidden_states + if self.downsample is not None: + shortcut = self.downsample(hidden_states_preact) + + # residual branch + hidden_states = self.conv1(hidden_states_preact) + hidden_states = self.conv2(self.norm2(hidden_states)) + hidden_states = self.conv3(self.norm3(hidden_states)) + hidden_states = self.drop_path(hidden_states) + return hidden_states + shortcut + + +class BitBottleneckLayer(nn.Module): + """Non Pre-activation bottleneck block, equivalent to V1.5/V1b bottleneck. Used for ViT Hybrid.""" + + def __init__( + self, + config, + in_channels, + out_channels=None, + bottle_ratio=0.25, + stride=1, + dilation=1, + first_dilation=None, + groups=1, + drop_path_rate=0.0, + is_first_layer=False, + ): + super().__init__() + first_dilation = first_dilation or dilation + + out_channels = out_channels or in_channels + mid_chs = make_div(out_channels * bottle_ratio) + + if is_first_layer: + self.downsample = BitDownsampleConv( + config, + in_channels, + out_channels, + stride=stride, + preact=False, + ) + else: + self.downsample = None + + self.conv1 = WeightStandardizedConv2d(in_channels, mid_chs, 1, eps=1e-8, padding=config.global_padding) + self.norm1 = BitGroupNormActivation(config, num_channels=mid_chs) + self.conv2 = WeightStandardizedConv2d( + mid_chs, + mid_chs, + 3, + stride=stride, + dilation=first_dilation, + groups=groups, + eps=1e-8, + padding=config.global_padding, + ) + self.norm2 = BitGroupNormActivation(config, num_channels=mid_chs) + self.conv3 = WeightStandardizedConv2d(mid_chs, out_channels, 1, eps=1e-8, padding=config.global_padding) + self.norm3 = BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False) + self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + + self.activation = ACT2FN[config.hidden_act] + + def forward(self, hidden_states): + # shortcut branch + shortcut = hidden_states + if self.downsample is not None: + shortcut = self.downsample(hidden_states) + + # residual + hidden_states = self.conv1(hidden_states) + hidden_states = self.norm1(hidden_states) + + hidden_states = self.conv2(hidden_states) + hidden_states = self.norm2(hidden_states) + + hidden_states = self.conv3(hidden_states) + hidden_states = self.norm3(hidden_states) + + hidden_states = self.drop_path(hidden_states) + hidden_states = self.activation(hidden_states + shortcut) + return hidden_states + + +class BitDownsampleConv(nn.Module): + def __init__( + self, + config, + in_channels, + out_channels, + stride=1, + preact=True, + ): + super().__init__() + self.conv = WeightStandardizedConv2d( + in_channels, out_channels, 1, stride=stride, eps=1e-8, padding=config.global_padding + ) + self.norm = ( + nn.Identity() + if preact + else BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False) + ) + + def forward(self, x): + return self.norm(self.conv(x)) + + +class BitStage(nn.Module): + """ + A ResNet v2 stage composed by stacked layers. + """ + + def __init__( + self, + config, + in_channels, + out_channels, + stride, + dilation, + depth, + bottle_ratio=0.25, + layer_dropout=None, + ): + super().__init__() + + first_dilation = 1 if dilation in (1, 2) else 2 + + # Get the layer type + if config.layer_type == "bottleneck": + layer_cls = BitBottleneckLayer + else: + layer_cls = BitPreActivationBottleneckLayer + + prev_chs = in_channels + self.layers = nn.Sequential() + for layer_idx in range(depth): + # Get the current hyper-parameters + stride, drop_path_rate, is_first_layer = self._get_updated_hyperparameters( + layer_idx, stride, layer_dropout + ) + + self.layers.add_module( + str(layer_idx), + layer_cls( + config, + prev_chs, + out_channels, + stride=stride, + dilation=dilation, + bottle_ratio=bottle_ratio, + first_dilation=first_dilation, + drop_path_rate=drop_path_rate, + is_first_layer=is_first_layer, + ), + ) + prev_chs = out_channels + first_dilation = dilation + + def _get_updated_hyperparameters(self, layer_idx, stride, layer_dropout): + r""" + Get the new hyper-parameters with respect to the previous ones and the index of the current layer. + """ + if layer_dropout: + drop_path_rate = layer_dropout[layer_idx] + else: + drop_path_rate = 0.0 + + if layer_idx != 0: + stride = 1 + + is_first_layer = layer_idx == 0 + + return stride, drop_path_rate, is_first_layer + + def forward(self, input: Tensor) -> Tensor: + hidden_state = input + for _, layer in enumerate(self.layers): + hidden_state = layer(hidden_state) + return hidden_state + + +class BitEncoder(nn.Module): + def __init__(self, config: BitConfig): + super().__init__() + self.stages = nn.ModuleList([]) + + prev_chs = config.embedding_size + + # These needs to stay hardcoded + current_stride = 4 + dilation = 1 + + layer_dropouts = [ + x.tolist() + for x in torch.Tensor(np.linspace(0, config.drop_path_rate, sum(config.depths))).split(config.depths) + ] + + for stage_idx, (current_depth, current_hidden_size, layer_dropout) in enumerate( + zip(config.depths, config.hidden_sizes, layer_dropouts) + ): + # Get the updated hyper params + out_channels, stride, dilation = self._get_updated_hyperparameters( + stage_idx, current_stride, current_hidden_size, dilation, config + ) + + stage = BitStage( + config, + prev_chs, + out_channels, + stride=stride, + dilation=dilation, + depth=current_depth, + layer_dropout=layer_dropout, + ) + + prev_chs = out_channels + current_stride *= stride + + self.stages.add_module(str(stage_idx), stage) + + def _get_updated_hyperparameters(self, stage_idx, current_stride, current_hidden_size, dilation, config): + out_channels = make_div(current_hidden_size * config.width_factor) + stride = 1 if stage_idx == 0 else 2 + if current_stride >= config.output_stride: + dilation *= stride + stride = 1 + return out_channels, stride, dilation + + def forward( + self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True + ) -> BaseModelOutputWithNoAttention: + hidden_states = () if output_hidden_states else None + + for stage_module in self.stages: + if output_hidden_states: + hidden_states = hidden_states + (hidden_state,) + + hidden_state = stage_module(hidden_state) + + if output_hidden_states: + hidden_states = hidden_states + (hidden_state,) + + if not return_dict: + return tuple(v for v in [hidden_state, hidden_states] if v is not None) + + return BaseModelOutputWithNoAttention( + last_hidden_state=hidden_state, + hidden_states=hidden_states, + ) + + +class BitPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = BitConfig + base_model_prefix = "bit" + main_input_name = "pixel_values" + + def _init_weights(self, module): + if isinstance(module, nn.Conv2d): + nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") + elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)): + nn.init.constant_(module.weight, 1) + nn.init.constant_(module.bias, 0) + + +BIT_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`BitConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +BIT_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BitImageProcessor.__call__`] + for details. + + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare BiT model outputting raw features without any specific head on top.", + BIT_START_DOCSTRING, +) +class BitModel(BitPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.config = config + + self.embedder = BitEmbeddings(config) + + self.encoder = BitEncoder(config) + self.norm = ( + BitGroupNormActivation(config, num_channels=config.hidden_sizes[-1]) + if config.layer_type == "preactivation" + else nn.Identity() + ) + + self.pooler = nn.AdaptiveAvgPool2d((1, 1)) + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndNoAttention, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None + ) -> BaseModelOutputWithPoolingAndNoAttention: + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + embedding_output = self.embedder(pixel_values) + + encoder_outputs = self.encoder( + embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict + ) + + last_hidden_state = encoder_outputs[0] + + last_hidden_state = self.norm(last_hidden_state) + + pooled_output = self.pooler(last_hidden_state) + + if not return_dict: + return (last_hidden_state, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndNoAttention( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + ) + + +@add_start_docstrings( + """ + BiT Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for + ImageNet. + """, + BIT_START_DOCSTRING, +) +class BitForImageClassification(BitPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.bit = BitModel(config) + # classification head + self.classifier = nn.Sequential( + nn.Flatten(), + nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(), + ) + # initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=ImageClassifierOutputWithNoAttention, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> ImageClassifierOutputWithNoAttention: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) + + pooled_output = outputs.pooler_output if return_dict else outputs[1] + + logits = self.classifier(pooled_output) + + loss = None + + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return (loss,) + output if loss is not None else output + + return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states) + + +@add_start_docstrings( + """ + BiT backbone, to be used with frameworks like DETR and MaskFormer. + """, + BIT_START_DOCSTRING, +) +class BitBackbone(BitPreTrainedModel, BackboneMixin): + def __init__(self, config): + super().__init__(config) + super()._init_backbone(config) + + self.bit = BitModel(config) + self.num_features = [config.embedding_size] + config.hidden_sizes + + # initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None + ) -> BackboneOutput: + """ + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, AutoBackbone + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> processor = AutoImageProcessor.from_pretrained("google/resnetnv2-50") + >>> model = AutoBackbone.from_pretrained("google/resnetnv2-50") + + >>> inputs = processor(image, return_tensors="pt") + >>> outputs = model(**inputs) + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + outputs = self.bit(pixel_values, output_hidden_states=True, return_dict=True) + + hidden_states = outputs.hidden_states + + feature_maps = () + for idx, stage in enumerate(self.stage_names): + if stage in self.out_features: + feature_maps += (hidden_states[idx],) + + if not return_dict: + output = (feature_maps,) + if output_hidden_states: + output += (outputs.hidden_states,) + return output + + return BackboneOutput( + feature_maps=feature_maps, + hidden_states=outputs.hidden_states if output_hidden_states else None, + attentions=None, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/dinov2/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/dinov2/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..01d02a9e65fda02e543b116dc4bf7ccba6097c6e --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/dinov2/__init__.py @@ -0,0 +1,61 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_torch_available, +) + + +_import_structure = { + "configuration_dinov2": ["DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Dinov2Config", "Dinov2OnnxConfig"] +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_dinov2"] = [ + "DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST", + "Dinov2ForImageClassification", + "Dinov2Model", + "Dinov2PreTrainedModel", + "Dinov2Backbone", + ] + +if TYPE_CHECKING: + from .configuration_dinov2 import DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP, Dinov2Config, Dinov2OnnxConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_dinov2 import ( + DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST, + Dinov2Backbone, + Dinov2ForImageClassification, + Dinov2Model, + Dinov2PreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cde5c90a53b5f2b99a0f4fed810e28f068ea81af Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/configuration_dinov2.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/configuration_dinov2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..633fa0568bab0731ff37a22cab6c72f31f854fea Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/configuration_dinov2.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/convert_dinov2_to_hf.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/convert_dinov2_to_hf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ce86daf9818e6b206d136ec80e81984a0495d798 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/convert_dinov2_to_hf.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/modeling_dinov2.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/modeling_dinov2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b45e5fa59d11d6e0b6bc4e8b69d57c2990d2e70d Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/modeling_dinov2.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/dinov2/configuration_dinov2.py b/venv/lib/python3.10/site-packages/transformers/models/dinov2/configuration_dinov2.py new file mode 100644 index 0000000000000000000000000000000000000000..b5fe872a706fc71808562e8152db4eee4ca7218f --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/dinov2/configuration_dinov2.py @@ -0,0 +1,175 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" DINOv2 model configuration""" + +from collections import OrderedDict +from typing import Mapping + +from packaging import version + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging +from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class Dinov2Config(BackboneConfigMixin, PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Dinov2Model`]. It is used to instantiate an + Dinov2 model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the Dinov2 + [google/dinov2-base-patch16-224](https://huggingface.co/google/dinov2-base-patch16-224) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + mlp_ratio (`int`, *optional*, defaults to 4): + Ratio of the hidden size of the MLPs relative to the `hidden_size`. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the layer normalization layers. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 16): + The size (resolution) of each patch. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + qkv_bias (`bool`, *optional*, defaults to `True`): + Whether to add a bias to the queries, keys and values. + layerscale_value (`float`, *optional*, defaults to 1.0): + Initial value to use for layer scale. + drop_path_rate (`float`, *optional*, defaults to 0.0): + Stochastic depth rate per sample (when applied in the main path of residual layers). + use_swiglu_ffn (`bool`, *optional*, defaults to `False`): + Whether to use the SwiGLU feedforward neural network. + out_features (`List[str]`, *optional*): + If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. + (depending on how many stages the model has). If unset and `out_indices` is set, will default to the + corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + out_indices (`List[int]`, *optional*): + If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how + many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. + If unset and `out_features` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + apply_layernorm (`bool`, *optional*, defaults to `True`): + Whether to apply layer normalization to the feature maps in case the model is used as backbone. + reshape_hidden_states (`bool`, *optional*, defaults to `True`): + Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in + case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size, + seq_len, hidden_size)`. + + Example: + + ```python + >>> from transformers import Dinov2Config, Dinov2Model + + >>> # Initializing a Dinov2 dinov2-base-patch16-224 style configuration + >>> configuration = Dinov2Config() + + >>> # Initializing a model (with random weights) from the dinov2-base-patch16-224 style configuration + >>> model = Dinov2Model(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "dinov2" + + def __init__( + self, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + mlp_ratio=4, + hidden_act="gelu", + hidden_dropout_prob=0.0, + attention_probs_dropout_prob=0.0, + initializer_range=0.02, + layer_norm_eps=1e-6, + image_size=224, + patch_size=16, + num_channels=3, + qkv_bias=True, + layerscale_value=1.0, + drop_path_rate=0.0, + use_swiglu_ffn=False, + out_features=None, + out_indices=None, + apply_layernorm=True, + reshape_hidden_states=True, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.mlp_ratio = mlp_ratio + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.qkv_bias = qkv_bias + self.layerscale_value = layerscale_value + self.drop_path_rate = drop_path_rate + self.use_swiglu_ffn = use_swiglu_ffn + self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_hidden_layers + 1)] + self._out_features, self._out_indices = get_aligned_output_features_output_indices( + out_features=out_features, out_indices=out_indices, stage_names=self.stage_names + ) + self.apply_layernorm = apply_layernorm + self.reshape_hidden_states = reshape_hidden_states + + +class Dinov2OnnxConfig(OnnxConfig): + torch_onnx_minimum_version = version.parse("1.11") + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict( + [ + ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), + ] + ) + + @property + def atol_for_validation(self) -> float: + return 1e-4 diff --git a/venv/lib/python3.10/site-packages/transformers/models/dinov2/convert_dinov2_to_hf.py b/venv/lib/python3.10/site-packages/transformers/models/dinov2/convert_dinov2_to_hf.py new file mode 100644 index 0000000000000000000000000000000000000000..dd5871e6c440661a7050bab7696db39e865b714d --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/dinov2/convert_dinov2_to_hf.py @@ -0,0 +1,287 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert DINOv2 checkpoints from the original repository. + +URL: https://github.com/facebookresearch/dinov2/tree/main +""" + + +import argparse +import json +from pathlib import Path + +import requests +import torch +import torch.nn as nn +from huggingface_hub import hf_hub_download +from PIL import Image +from torchvision import transforms + +from transformers import BitImageProcessor, Dinov2Config, Dinov2ForImageClassification, Dinov2Model +from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +def get_dinov2_config(model_name, image_classifier=False): + config = Dinov2Config(image_size=518, patch_size=14) + + # size of the architecture + if "vits" in model_name: + config.hidden_size = 384 + config.num_attention_heads = 6 + elif "vitb" in model_name: + pass + elif "vitl" in model_name: + config.hidden_size = 1024 + config.num_hidden_layers = 24 + config.num_attention_heads = 16 + elif "vitg" in model_name: + config.use_swiglu_ffn = True + config.hidden_size = 1536 + config.num_hidden_layers = 40 + config.num_attention_heads = 24 + else: + raise ValueError("Model not supported") + + if image_classifier: + repo_id = "huggingface/label-files" + filename = "imagenet-1k-id2label.json" + config.num_labels = 1000 + config.id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + config.id2label = {int(k): v for k, v in config.id2label.items()} + + return config + + +def create_rename_keys(config): + rename_keys = [] + # fmt: off + + # patch embedding layer + rename_keys.append(("cls_token", "embeddings.cls_token")) + rename_keys.append(("mask_token", "embeddings.mask_token")) + rename_keys.append(("pos_embed", "embeddings.position_embeddings")) + rename_keys.append(("patch_embed.proj.weight", "embeddings.patch_embeddings.projection.weight")) + rename_keys.append(("patch_embed.proj.bias", "embeddings.patch_embeddings.projection.bias")) + + for i in range(config.num_hidden_layers): + # layernorms + rename_keys.append((f"blocks.{i}.norm1.weight", f"encoder.layer.{i}.norm1.weight")) + rename_keys.append((f"blocks.{i}.norm1.bias", f"encoder.layer.{i}.norm1.bias")) + rename_keys.append((f"blocks.{i}.norm2.weight", f"encoder.layer.{i}.norm2.weight")) + rename_keys.append((f"blocks.{i}.norm2.bias", f"encoder.layer.{i}.norm2.bias")) + # MLP + if config.use_swiglu_ffn: + rename_keys.append((f"blocks.{i}.mlp.w12.weight", f"encoder.layer.{i}.mlp.w12.weight")) + rename_keys.append((f"blocks.{i}.mlp.w12.bias", f"encoder.layer.{i}.mlp.w12.bias")) + rename_keys.append((f"blocks.{i}.mlp.w3.weight", f"encoder.layer.{i}.mlp.w3.weight")) + rename_keys.append((f"blocks.{i}.mlp.w3.bias", f"encoder.layer.{i}.mlp.w3.bias")) + else: + rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"encoder.layer.{i}.mlp.fc1.weight")) + rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"encoder.layer.{i}.mlp.fc1.bias")) + rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"encoder.layer.{i}.mlp.fc2.weight")) + rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"encoder.layer.{i}.mlp.fc2.bias")) + # layerscale + rename_keys.append((f"blocks.{i}.ls1.gamma", f"encoder.layer.{i}.layer_scale1.lambda1")) + rename_keys.append((f"blocks.{i}.ls2.gamma", f"encoder.layer.{i}.layer_scale2.lambda1")) + # attention projection layer + rename_keys.append((f"blocks.{i}.attn.proj.weight", f"encoder.layer.{i}.attention.output.dense.weight")) + rename_keys.append((f"blocks.{i}.attn.proj.bias", f"encoder.layer.{i}.attention.output.dense.bias")) + + # final layernorm + rename_keys.append(("norm.weight", "layernorm.weight")) + rename_keys.append(("norm.bias", "layernorm.bias")) + + # fmt: on + return rename_keys + + +def rename_key(dct, old, new): + val = dct.pop(old) + dct[new] = val + + +# we split up the matrix of each encoder layer into queries, keys and values +def read_in_q_k_v(state_dict, config): + for i in range(config.num_hidden_layers): + # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) + in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") + in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :] + state_dict[f"encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] + state_dict[f"encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ + config.hidden_size : config.hidden_size * 2, : + ] + state_dict[f"encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ + config.hidden_size : config.hidden_size * 2 + ] + state_dict[f"encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-config.hidden_size :, :] + state_dict[f"encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + image = Image.open(requests.get(url, stream=True).raw) + return image + + +@torch.no_grad() +def convert_dinov2_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False): + """ + Copy/paste/tweak model's weights to our DINOv2 structure. + """ + + # define default Dinov2 configuration + image_classifier = "1layer" in model_name + config = get_dinov2_config(model_name, image_classifier=image_classifier) + + # load original model from torch hub + original_model = torch.hub.load("facebookresearch/dinov2", model_name.replace("_1layer", "")) + original_model.eval() + + # load state_dict of original model, remove and rename some keys + state_dict = original_model.state_dict() + rename_keys = create_rename_keys(config) + for src, dest in rename_keys: + rename_key(state_dict, src, dest) + read_in_q_k_v(state_dict, config) + + for key, val in state_dict.copy().items(): + val = state_dict.pop(key) + if "w12" in key: + key = key.replace("w12", "weights_in") + if "w3" in key: + key = key.replace("w3", "weights_out") + state_dict[key] = val + + # load HuggingFace model + if image_classifier: + model = Dinov2ForImageClassification(config).eval() + model.dinov2.load_state_dict(state_dict) + model_name_to_classifier_dict_url = { + "dinov2_vits14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_linear_head.pth", + "dinov2_vitb14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_linear_head.pth", + "dinov2_vitl14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_linear_head.pth", + "dinov2_vitg14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_linear_head.pth", + } + url = model_name_to_classifier_dict_url[model_name] + classifier_state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu") + model.classifier.weight = nn.Parameter(classifier_state_dict["weight"]) + model.classifier.bias = nn.Parameter(classifier_state_dict["bias"]) + else: + model = Dinov2Model(config).eval() + model.load_state_dict(state_dict) + + # load image + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + image = Image.open(requests.get(url, stream=True).raw).convert("RGB") + + # preprocess image + transformations = transforms.Compose( + [ + transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC), + transforms.CenterCrop(224), + transforms.ToTensor(), + transforms.Normalize( + mean=IMAGENET_DEFAULT_MEAN, # these are RGB mean+std values + std=IMAGENET_DEFAULT_STD, # across a large photo dataset. + ), + ] + ) + + original_pixel_values = transformations(image).unsqueeze(0) # insert batch dimension + + processor = BitImageProcessor( + size={"shortest_edge": 256}, + resample=PILImageResampling.BICUBIC, + image_mean=IMAGENET_DEFAULT_MEAN, + image_std=IMAGENET_DEFAULT_STD, + ) + pixel_values = processor(image, return_tensors="pt").pixel_values + + assert torch.allclose(original_pixel_values, pixel_values) + + with torch.no_grad(): + outputs = model(pixel_values, output_hidden_states=True) + original_outputs = original_model(pixel_values) + + # assert values + if image_classifier: + print("Predicted class:") + class_idx = outputs.logits.argmax(-1).item() + print(model.config.id2label[class_idx]) + else: + assert outputs.last_hidden_state[:, 0].shape == original_outputs.shape + assert torch.allclose(outputs.last_hidden_state[:, 0], original_outputs, atol=1e-3) + print("Looks ok!") + + if pytorch_dump_folder_path is not None: + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + print(f"Saving model {model_name} to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + print(f"Saving image processor to {pytorch_dump_folder_path}") + processor.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + model_name_to_hf_name = { + "dinov2_vits14": "dinov2-small", + "dinov2_vitb14": "dinov2-base", + "dinov2_vitl14": "dinov2-large", + "dinov2_vitg14": "dinov2-giant", + "dinov2_vits14_1layer": "dinov2-small-imagenet1k-1-layer", + "dinov2_vitb14_1layer": "dinov2-base-imagenet1k-1-layer", + "dinov2_vitl14_1layer": "dinov2-large-imagenet1k-1-layer", + "dinov2_vitg14_1layer": "dinov2-giant-imagenet1k-1-layer", + } + + name = model_name_to_hf_name[model_name] + model.push_to_hub(f"facebook/{name}") + processor.push_to_hub(f"facebook/{name}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--model_name", + default="dinov2_vitb14", + type=str, + choices=[ + "dinov2_vits14", + "dinov2_vitb14", + "dinov2_vitl14", + "dinov2_vitg14", + "dinov2_vits14_1layer", + "dinov2_vitb14_1layer", + "dinov2_vitl14_1layer", + "dinov2_vitg14_1layer", + ], + help="Name of the model you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." + ) + parser.add_argument( + "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." + ) + + args = parser.parse_args() + convert_dinov2_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) diff --git a/venv/lib/python3.10/site-packages/transformers/models/dinov2/modeling_dinov2.py b/venv/lib/python3.10/site-packages/transformers/models/dinov2/modeling_dinov2.py new file mode 100644 index 0000000000000000000000000000000000000000..c25022f6ec22d8d4afa1f926af9eb6e4d03adb35 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/dinov2/modeling_dinov2.py @@ -0,0 +1,856 @@ +# coding=utf-8 +# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch DINOv2 model.""" + + +import collections.abc +import math +from typing import Dict, List, Optional, Set, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BackboneOutput, + BaseModelOutput, + BaseModelOutputWithPooling, + ImageClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from ...utils.backbone_utils import BackboneMixin +from .configuration_dinov2 import Dinov2Config + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "Dinov2Config" + +# Base docstring +_CHECKPOINT_FOR_DOC = "facebook/dinov2-base" +_EXPECTED_OUTPUT_SHAPE = [1, 257, 768] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "facebook/dinov2-small-imagenet1k-1-layer" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" + + +from ..deprecated._archive_maps import DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class Dinov2Embeddings(nn.Module): + """ + Construct the CLS token, mask token, position and patch embeddings. + """ + + def __init__(self, config: Dinov2Config) -> None: + super().__init__() + + self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) + self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size)) + self.patch_embeddings = Dinov2PatchEmbeddings(config) + num_patches = self.patch_embeddings.num_patches + self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.config = config + + def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: + """ + This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher + resolution images. + + Source: + https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 + """ + + num_patches = embeddings.shape[1] - 1 + num_positions = self.position_embeddings.shape[1] - 1 + if num_patches == num_positions and height == width: + return self.position_embeddings + class_pos_embed = self.position_embeddings[:, 0] + patch_pos_embed = self.position_embeddings[:, 1:] + dim = embeddings.shape[-1] + height = height // self.config.patch_size + width = width // self.config.patch_size + # we add a small number to avoid floating point error in the interpolation + # see discussion at https://github.com/facebookresearch/dino/issues/8 + height, width = height + 0.1, width + 0.1 + patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) + patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) + target_dtype = patch_pos_embed.dtype + patch_pos_embed = nn.functional.interpolate( + patch_pos_embed.to(dtype=torch.float32), + scale_factor=(float(height / math.sqrt(num_positions)), float(width / math.sqrt(num_positions))), + mode="bicubic", + align_corners=False, + ).to(dtype=target_dtype) + if int(height) != patch_pos_embed.shape[-2] or int(width) != patch_pos_embed.shape[-1]: + raise ValueError("Width or height does not match with the interpolated position embeddings") + patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) + return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) + + def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None) -> torch.Tensor: + batch_size, _, height, width = pixel_values.shape + target_dtype = self.patch_embeddings.projection.weight.dtype + embeddings = self.patch_embeddings(pixel_values.to(dtype=target_dtype)) + + if bool_masked_pos is not None: + embeddings = torch.where( + bool_masked_pos.unsqueeze(-1), self.mask_token.to(embeddings.dtype).unsqueeze(0), embeddings + ) + + # add the [CLS] token to the embedded patch tokens + cls_tokens = self.cls_token.expand(batch_size, -1, -1) + embeddings = torch.cat((cls_tokens, embeddings), dim=1) + + # add positional encoding to each token + embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) + + embeddings = self.dropout(embeddings) + + return embeddings + + +class Dinov2PatchEmbeddings(nn.Module): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config): + super().__init__() + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: + num_channels = pixel_values.shape[1] + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + f" Expected {self.num_channels} but got {num_channels}." + ) + embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) + return embeddings + + +# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Dinov2 +class Dinov2SelfAttention(nn.Module): + def __init__(self, config: Dinov2Config) -> None: + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Dinov2 +class Dinov2SelfOutput(nn.Module): + """ + The residual connection is defined in Dinov2Layer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: Dinov2Config) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Dinov2 +class Dinov2Attention(nn.Module): + def __init__(self, config: Dinov2Config) -> None: + super().__init__() + self.attention = Dinov2SelfAttention(config) + self.output = Dinov2SelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads: Set[int]) -> None: + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_outputs = self.attention(hidden_states, head_mask, output_attentions) + + attention_output = self.output(self_outputs[0], hidden_states) + + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +class Dinov2LayerScale(nn.Module): + def __init__(self, config) -> None: + super().__init__() + self.lambda1 = nn.Parameter(config.layerscale_value * torch.ones(config.hidden_size)) + + def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: + return hidden_state * self.lambda1 + + +# Copied from transformers.models.beit.modeling_beit.drop_path +def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: + """ + Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, + however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the + layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the + argument. + """ + if drop_prob == 0.0 or not training: + return input + keep_prob = 1 - drop_prob + shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) + random_tensor.floor_() # binarize + output = input.div(keep_prob) * random_tensor + return output + + +# Copied from transformers.models.beit.modeling_beit.BeitDropPath +class Dinov2DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob: Optional[float] = None) -> None: + super().__init__() + self.drop_prob = drop_prob + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + return drop_path(hidden_states, self.drop_prob, self.training) + + def extra_repr(self) -> str: + return "p={}".format(self.drop_prob) + + +class Dinov2MLP(nn.Module): + def __init__(self, config) -> None: + super().__init__() + in_features = out_features = config.hidden_size + hidden_features = int(config.hidden_size * config.mlp_ratio) + self.fc1 = nn.Linear(in_features, hidden_features, bias=True) + if isinstance(config.hidden_act, str): + self.activation = ACT2FN[config.hidden_act] + else: + self.activation = config.hidden_act + self.fc2 = nn.Linear(hidden_features, out_features, bias=True) + + def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: + hidden_state = self.fc1(hidden_state) + hidden_state = self.activation(hidden_state) + hidden_state = self.fc2(hidden_state) + return hidden_state + + +class Dinov2SwiGLUFFN(nn.Module): + def __init__(self, config) -> None: + super().__init__() + in_features = out_features = config.hidden_size + hidden_features = int(config.hidden_size * config.mlp_ratio) + hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 + + self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True) + self.weights_out = nn.Linear(hidden_features, out_features, bias=True) + + def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: + hidden_state = self.weights_in(hidden_state) + x1, x2 = hidden_state.chunk(2, dim=-1) + hidden = nn.functional.silu(x1) * x2 + return self.weights_out(hidden) + + +class Dinov2Layer(nn.Module): + """This corresponds to the Block class in the original implementation.""" + + def __init__(self, config: Dinov2Config) -> None: + super().__init__() + + self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.attention = Dinov2Attention(config) + self.layer_scale1 = Dinov2LayerScale(config) + self.drop_path = Dinov2DropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() + + self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + if config.use_swiglu_ffn: + self.mlp = Dinov2SwiGLUFFN(config) + else: + self.mlp = Dinov2MLP(config) + self.layer_scale2 = Dinov2LayerScale(config) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_attention_outputs = self.attention( + self.norm1(hidden_states), # in Dinov2, layernorm is applied before self-attention + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + + attention_output = self.layer_scale1(attention_output) + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # first residual connection + hidden_states = self.drop_path(attention_output) + hidden_states + + # in Dinov2, layernorm is also applied after self-attention + layer_output = self.norm2(hidden_states) + layer_output = self.mlp(layer_output) + layer_output = self.layer_scale2(layer_output) + + # second residual connection + layer_output = self.drop_path(layer_output) + hidden_states + + outputs = (layer_output,) + outputs + + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->Dinov2 +class Dinov2Encoder(nn.Module): + def __init__(self, config: Dinov2Config) -> None: + super().__init__() + self.config = config + self.layer = nn.ModuleList([Dinov2Layer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class Dinov2PreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = Dinov2Config + base_model_prefix = "dinov2" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid + # `trunc_normal_cpu` not implemented in `half` issues + module.weight.data = nn.init.trunc_normal_( + module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range + ).to(module.weight.dtype) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, Dinov2Embeddings): + module.position_embeddings.data = nn.init.trunc_normal_( + module.position_embeddings.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ).to(module.position_embeddings.dtype) + + module.cls_token.data = nn.init.trunc_normal_( + module.cls_token.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ).to(module.cls_token.dtype) + + +DINOV2_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`Dinov2Config`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +DINOV2_BASE_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`BitImageProcessor.preprocess`] for details. + + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Only relevant for + pre-training. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +DINOV2_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`BitImageProcessor.preprocess`] for details. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare DINOv2 Model transformer outputting raw hidden-states without any specific head on top.", + DINOV2_START_DOCSTRING, +) +class Dinov2Model(Dinov2PreTrainedModel): + def __init__(self, config: Dinov2Config): + super().__init__(config) + self.config = config + + self.embeddings = Dinov2Embeddings(config) + self.encoder = Dinov2Encoder(config) + + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> Dinov2PatchEmbeddings: + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(DINOV2_BASE_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + bool_masked_pos: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos) + + encoder_outputs = self.encoder( + embedding_output, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output) + pooled_output = sequence_output[:, 0, :] + + if not return_dict: + head_outputs = (sequence_output, pooled_output) + return head_outputs + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """ + Dinov2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state + of the [CLS] token) e.g. for ImageNet. + """, + DINOV2_START_DOCSTRING, +) +class Dinov2ForImageClassification(Dinov2PreTrainedModel): + def __init__(self, config: Dinov2Config) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.dinov2 = Dinov2Model(config) + + # Classifier head + self.classifier = ( + nn.Linear(config.hidden_size * 2, config.num_labels) if config.num_labels > 0 else nn.Identity() + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=ImageClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, ImageClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.dinov2( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] # batch_size, sequence_length, hidden_size + + cls_token = sequence_output[:, 0] + patch_tokens = sequence_output[:, 1:] + + linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1) + + logits = self.classifier(linear_input) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Dinov2 backbone, to be used with frameworks like DETR and MaskFormer. + """, + DINOV2_START_DOCSTRING, +) +class Dinov2Backbone(Dinov2PreTrainedModel, BackboneMixin): + def __init__(self, config): + super().__init__(config) + super()._init_backbone(config) + + self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)] + self.embeddings = Dinov2Embeddings(config) + self.encoder = Dinov2Encoder(config) + + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> Dinov2PatchEmbeddings: + return self.embeddings.patch_embeddings + + @add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.Tensor, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> BackboneOutput: + """ + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, AutoBackbone + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base") + >>> model = AutoBackbone.from_pretrained( + ... "facebook/dinov2-base", out_features=["stage2", "stage5", "stage8", "stage11"] + ... ) + + >>> inputs = processor(image, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> feature_maps = outputs.feature_maps + >>> list(feature_maps[-1].shape) + [1, 768, 16, 16] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + + embedding_output = self.embeddings(pixel_values) + + outputs = self.encoder( + embedding_output, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict + ) + + hidden_states = outputs.hidden_states if return_dict else outputs[1] + + feature_maps = () + for stage, hidden_state in zip(self.stage_names, hidden_states): + if stage in self.out_features: + if self.config.apply_layernorm: + hidden_state = self.layernorm(hidden_state) + if self.config.reshape_hidden_states: + hidden_state = hidden_state[:, 1:] + # this was actually a bug in the original implementation that we copied here, + # cause normally the order is height, width + batch_size, _, height, width = pixel_values.shape + patch_size = self.config.patch_size + hidden_state = hidden_state.reshape(batch_size, height // patch_size, width // patch_size, -1) + hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous() + feature_maps += (hidden_state,) + + if not return_dict: + if output_hidden_states: + output = (feature_maps,) + outputs[1:] + else: + output = (feature_maps,) + outputs[2:] + return output + + return BackboneOutput( + feature_maps=feature_maps, + hidden_states=outputs.hidden_states if output_hidden_states else None, + attentions=outputs.attentions if output_attentions else None, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/distilbert/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..6a2756eb9d1c269e08446f9328120738196349d0 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__init__.py @@ -0,0 +1,166 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_distilbert": [ + "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "DistilBertConfig", + "DistilBertOnnxConfig", + ], + "tokenization_distilbert": ["DistilBertTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_distilbert_fast"] = ["DistilBertTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_distilbert"] = [ + "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", + "DistilBertForMaskedLM", + "DistilBertForMultipleChoice", + "DistilBertForQuestionAnswering", + "DistilBertForSequenceClassification", + "DistilBertForTokenClassification", + "DistilBertModel", + "DistilBertPreTrainedModel", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_distilbert"] = [ + "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFDistilBertForMaskedLM", + "TFDistilBertForMultipleChoice", + "TFDistilBertForQuestionAnswering", + "TFDistilBertForSequenceClassification", + "TFDistilBertForTokenClassification", + "TFDistilBertMainLayer", + "TFDistilBertModel", + "TFDistilBertPreTrainedModel", + ] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_distilbert"] = [ + "FlaxDistilBertForMaskedLM", + "FlaxDistilBertForMultipleChoice", + "FlaxDistilBertForQuestionAnswering", + "FlaxDistilBertForSequenceClassification", + "FlaxDistilBertForTokenClassification", + "FlaxDistilBertModel", + "FlaxDistilBertPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_distilbert import ( + DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, + DistilBertConfig, + DistilBertOnnxConfig, + ) + from .tokenization_distilbert import DistilBertTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_distilbert_fast import DistilBertTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_distilbert import ( + DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, + DistilBertForMaskedLM, + DistilBertForMultipleChoice, + DistilBertForQuestionAnswering, + DistilBertForSequenceClassification, + DistilBertForTokenClassification, + DistilBertModel, + DistilBertPreTrainedModel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_distilbert import ( + TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, + TFDistilBertForMaskedLM, + TFDistilBertForMultipleChoice, + TFDistilBertForQuestionAnswering, + TFDistilBertForSequenceClassification, + TFDistilBertForTokenClassification, + TFDistilBertMainLayer, + TFDistilBertModel, + TFDistilBertPreTrainedModel, + ) + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_distilbert import ( + FlaxDistilBertForMaskedLM, + FlaxDistilBertForMultipleChoice, + FlaxDistilBertForQuestionAnswering, + FlaxDistilBertForSequenceClassification, + FlaxDistilBertForTokenClassification, + FlaxDistilBertModel, + FlaxDistilBertPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c70705cfe79d1cf9110830ffadb0198bc799e351 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/configuration_distilbert.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/configuration_distilbert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8a7309a4ab237f2388c08a3a66431bc3bee36df8 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/configuration_distilbert.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_distilbert.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_distilbert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..726fbf6aca2c442fcb77f028522909fd5dc7aa81 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_distilbert.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_flax_distilbert.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_flax_distilbert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d37a7a1338811a63a7d7fbb2fc9769abf256b1ac Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_flax_distilbert.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_tf_distilbert.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_tf_distilbert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..85a8abd7641f098ebf57f9a18a4adcf73f8ff6a6 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_tf_distilbert.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/tokenization_distilbert.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/tokenization_distilbert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2af40decdcfcdfb5afbd4d7a0e3560759529bcc6 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/tokenization_distilbert.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/tokenization_distilbert_fast.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/tokenization_distilbert_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..be2f01bb3c6bfb9855756309fec3ce1180057851 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/tokenization_distilbert_fast.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/distilbert/configuration_distilbert.py b/venv/lib/python3.10/site-packages/transformers/models/distilbert/configuration_distilbert.py new file mode 100644 index 0000000000000000000000000000000000000000..5f6b004dc0bbb978f7f4efea55ab4f643a0a9dc9 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/distilbert/configuration_distilbert.py @@ -0,0 +1,140 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" DistilBERT model configuration""" +from collections import OrderedDict +from typing import Mapping + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class DistilBertConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`DistilBertModel`] or a [`TFDistilBertModel`]. It + is used to instantiate a DistilBERT model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the DistilBERT + [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the DistilBERT model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`DistilBertModel`] or [`TFDistilBertModel`]. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + sinusoidal_pos_embds (`boolean`, *optional*, defaults to `False`): + Whether to use sinusoidal positional embeddings. + n_layers (`int`, *optional*, defaults to 6): + Number of hidden layers in the Transformer encoder. + n_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + dim (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + hidden_dim (`int`, *optional*, defaults to 3072): + The size of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + activation (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + qa_dropout (`float`, *optional*, defaults to 0.1): + The dropout probabilities used in the question answering model [`DistilBertForQuestionAnswering`]. + seq_classif_dropout (`float`, *optional*, defaults to 0.2): + The dropout probabilities used in the sequence classification and the multiple choice model + [`DistilBertForSequenceClassification`]. + + Examples: + + ```python + >>> from transformers import DistilBertConfig, DistilBertModel + + >>> # Initializing a DistilBERT configuration + >>> configuration = DistilBertConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = DistilBertModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "distilbert" + attribute_map = { + "hidden_size": "dim", + "num_attention_heads": "n_heads", + "num_hidden_layers": "n_layers", + } + + def __init__( + self, + vocab_size=30522, + max_position_embeddings=512, + sinusoidal_pos_embds=False, + n_layers=6, + n_heads=12, + dim=768, + hidden_dim=4 * 768, + dropout=0.1, + attention_dropout=0.1, + activation="gelu", + initializer_range=0.02, + qa_dropout=0.1, + seq_classif_dropout=0.2, + pad_token_id=0, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.sinusoidal_pos_embds = sinusoidal_pos_embds + self.n_layers = n_layers + self.n_heads = n_heads + self.dim = dim + self.hidden_dim = hidden_dim + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation = activation + self.initializer_range = initializer_range + self.qa_dropout = qa_dropout + self.seq_classif_dropout = seq_classif_dropout + super().__init__(**kwargs, pad_token_id=pad_token_id) + + +class DistilBertOnnxConfig(OnnxConfig): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "multiple-choice": + dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} + else: + dynamic_axis = {0: "batch", 1: "sequence"} + return OrderedDict( + [ + ("input_ids", dynamic_axis), + ("attention_mask", dynamic_axis), + ] + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_distilbert.py b/venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_distilbert.py new file mode 100644 index 0000000000000000000000000000000000000000..3a65e0296116dca625ef343ac027243cca3dc392 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_distilbert.py @@ -0,0 +1,1384 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" + PyTorch DistilBERT model adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) and in + part from HuggingFace PyTorch version of Google AI Bert model (https://github.com/google-research/bert) +""" + + +import math +from typing import Dict, List, Optional, Set, Tuple, Union + +import numpy as np +import torch +import torch.nn.functional as F +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import get_activation +from ...configuration_utils import PretrainedConfig +from ...integrations.deepspeed import is_deepspeed_zero3_enabled +from ...modeling_outputs import ( + BaseModelOutput, + MaskedLMOutput, + MultipleChoiceModelOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from .configuration_distilbert import DistilBertConfig + + +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + +logger = logging.get_logger(__name__) +_CHECKPOINT_FOR_DOC = "distilbert-base-uncased" +_CONFIG_FOR_DOC = "DistilBertConfig" + + +from ..deprecated._archive_maps import DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# UTILS AND BUILDING BLOCKS OF THE ARCHITECTURE # + + +# Copied from transformers.models.llama.modeling_llama._get_unpad_data +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +def create_sinusoidal_embeddings(n_pos: int, dim: int, out: torch.Tensor): + if is_deepspeed_zero3_enabled(): + import deepspeed + + with deepspeed.zero.GatheredParameters(out, modifier_rank=0): + if torch.distributed.get_rank() == 0: + _create_sinusoidal_embeddings(n_pos=n_pos, dim=dim, out=out) + else: + _create_sinusoidal_embeddings(n_pos=n_pos, dim=dim, out=out) + + +def _create_sinusoidal_embeddings(n_pos: int, dim: int, out: torch.Tensor): + position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]) + out.requires_grad = False + out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) + out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) + out.detach_() + + +class Embeddings(nn.Module): + def __init__(self, config: PretrainedConfig): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.dim, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim) + + self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12) + self.dropout = nn.Dropout(config.dropout) + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + + def forward(self, input_ids: torch.Tensor, input_embeds: Optional[torch.Tensor] = None) -> torch.Tensor: + """ + Parameters: + input_ids (torch.Tensor): + torch.tensor(bs, max_seq_length) The token ids to embed. + input_embeds (*optional*, torch.Tensor): + The pre-computed word embeddings. Can only be passed if the input ids are `None`. + + + Returns: torch.tensor(bs, max_seq_length, dim) The embedded tokens (plus position embeddings, no token_type + embeddings) + """ + if input_ids is not None: + input_embeds = self.word_embeddings(input_ids) # (bs, max_seq_length, dim) + + seq_length = input_embeds.size(1) + + # Setting the position-ids to the registered buffer in constructor, it helps + # when tracing the model without passing position-ids, solves + # isues similar to issue #5664 + if hasattr(self, "position_ids"): + position_ids = self.position_ids[:, :seq_length] + else: + position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) # (max_seq_length) + position_ids = position_ids.unsqueeze(0).expand_as(input_ids) # (bs, max_seq_length) + + position_embeddings = self.position_embeddings(position_ids) # (bs, max_seq_length, dim) + + embeddings = input_embeds + position_embeddings # (bs, max_seq_length, dim) + embeddings = self.LayerNorm(embeddings) # (bs, max_seq_length, dim) + embeddings = self.dropout(embeddings) # (bs, max_seq_length, dim) + return embeddings + + +class MultiHeadSelfAttention(nn.Module): + def __init__(self, config: PretrainedConfig): + super().__init__() + self.config = config + + self.n_heads = config.n_heads + self.dim = config.dim + self.dropout = nn.Dropout(p=config.attention_dropout) + self.is_causal = False + + # Have an even number of multi heads that divide the dimensions + if self.dim % self.n_heads != 0: + # Raise value errors for even multi-head attention nodes + raise ValueError(f"self.n_heads: {self.n_heads} must divide self.dim: {self.dim} evenly") + + self.q_lin = nn.Linear(in_features=config.dim, out_features=config.dim) + self.k_lin = nn.Linear(in_features=config.dim, out_features=config.dim) + self.v_lin = nn.Linear(in_features=config.dim, out_features=config.dim) + self.out_lin = nn.Linear(in_features=config.dim, out_features=config.dim) + + self.pruned_heads: Set[int] = set() + self.attention_head_size = self.dim // self.n_heads + + def prune_heads(self, heads: List[int]): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.n_heads, self.attention_head_size, self.pruned_heads + ) + # Prune linear layers + self.q_lin = prune_linear_layer(self.q_lin, index) + self.k_lin = prune_linear_layer(self.k_lin, index) + self.v_lin = prune_linear_layer(self.v_lin, index) + self.out_lin = prune_linear_layer(self.out_lin, index, dim=1) + # Update hyper params + self.n_heads = self.n_heads - len(heads) + self.dim = self.attention_head_size * self.n_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + mask: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, ...]: + """ + Parameters: + query: torch.tensor(bs, seq_length, dim) + key: torch.tensor(bs, seq_length, dim) + value: torch.tensor(bs, seq_length, dim) + mask: torch.tensor(bs, seq_length) + + Returns: + weights: torch.tensor(bs, n_heads, seq_length, seq_length) Attention weights context: torch.tensor(bs, + seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True` + """ + bs, q_length, dim = query.size() + k_length = key.size(1) + # assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured' + # assert key.size() == value.size() + + dim_per_head = self.dim // self.n_heads + + mask_reshp = (bs, 1, 1, k_length) + + def shape(x: torch.Tensor) -> torch.Tensor: + """separate heads""" + return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2) + + def unshape(x: torch.Tensor) -> torch.Tensor: + """group heads""" + return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head) + + q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head) + k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head) + v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head) + + q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head) + scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, q_length, k_length) + mask = (mask == 0).view(mask_reshp).expand_as(scores) # (bs, n_heads, q_length, k_length) + scores = scores.masked_fill( + mask, torch.tensor(torch.finfo(scores.dtype).min) + ) # (bs, n_heads, q_length, k_length) + + weights = nn.functional.softmax(scores, dim=-1) # (bs, n_heads, q_length, k_length) + weights = self.dropout(weights) # (bs, n_heads, q_length, k_length) + + # Mask heads if we want to + if head_mask is not None: + weights = weights * head_mask + + context = torch.matmul(weights, v) # (bs, n_heads, q_length, dim_per_head) + context = unshape(context) # (bs, q_length, dim) + context = self.out_lin(context) # (bs, q_length, dim) + + if output_attentions: + return (context, weights) + else: + return (context,) + + +class DistilBertFlashAttention2(MultiHeadSelfAttention): + """ + DistilBert flash attention module. This module inherits from `MultiHeadSelfAttention` as the weights of the module + stays untouched. The only required change would be on the forward pass where it needs to correctly call the public + API of flash attention and deal with padding tokens in case the input contains any of them. + """ + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + mask: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, ...]: + """ + Parameters: + query: torch.tensor(bs, seq_length, dim) + key: torch.tensor(bs, seq_length, dim) + value: torch.tensor(bs, seq_length, dim) + mask: torch.tensor(bs, seq_length) + + Returns: + weights: torch.tensor(bs, n_heads, seq_length, seq_length) Attention weights context: torch.tensor(bs, + seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True` + """ + batch_size, q_length, dim = query.size() + + dim_per_head = self.dim // self.n_heads + + def reshape(x: torch.Tensor) -> torch.Tensor: + """separate heads""" + return x.view(batch_size, -1, self.n_heads, dim_per_head) + + # Flash attention requires the input to have the shape + # batch_size x seq_length x head_dim x hidden_dim + query_states = reshape(self.q_lin(query)) + key_states = reshape(self.k_lin(key)) + value_states = reshape(self.v_lin(value)) + + attn_dropout = self.config.attention_dropout if self.training else 0.0 + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in the correct dtype just to be sure everything works as expected. + # This might slowdown training & inference so it is recommended to not cast the LayerNorms + # in fp32. (LlamaRMSNorm handles it correctly) + + if query_states.dtype == torch.float32: + if torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + # Handle the case where the model is quantized + elif hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + else: + target_dtype = self.q_lin.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + attn_weights = self._flash_attention_forward( + query_states, key_states, value_states, mask, q_length, dropout=attn_dropout + ) + + attn_weights_reshaped = attn_weights.reshape(batch_size, q_length, self.n_heads * dim_per_head) + attn_output = self.out_lin(attn_weights_reshaped) + + if output_attentions: + return (attn_output, attn_weights) + else: + return (attn_output,) + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward with causal=True->causal=False + def _flash_attention_forward( + self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`float`): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + """ + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) + else: + attn_output = flash_attn_func( + query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal + ) + + return attn_output + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input with num_heads->n_heads + def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + + key_layer = index_first_axis( + key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + value_layer = index_first_axis( + value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim), indices_k + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +class FFN(nn.Module): + def __init__(self, config: PretrainedConfig): + super().__init__() + self.dropout = nn.Dropout(p=config.dropout) + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim) + self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim) + self.activation = get_activation(config.activation) + + def forward(self, input: torch.Tensor) -> torch.Tensor: + return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input) + + def ff_chunk(self, input: torch.Tensor) -> torch.Tensor: + x = self.lin1(input) + x = self.activation(x) + x = self.lin2(x) + x = self.dropout(x) + return x + + +DISTILBERT_ATTENTION_CLASSES = { + "eager": MultiHeadSelfAttention, + "flash_attention_2": DistilBertFlashAttention2, +} + + +class TransformerBlock(nn.Module): + def __init__(self, config: PretrainedConfig): + super().__init__() + + # Have an even number of Configure multi-heads + if config.dim % config.n_heads != 0: + raise ValueError(f"config.n_heads {config.n_heads} must divide config.dim {config.dim} evenly") + + self.attention = DISTILBERT_ATTENTION_CLASSES[config._attn_implementation](config) + self.sa_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12) + + self.ffn = FFN(config) + self.output_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12) + + def forward( + self, + x: torch.Tensor, + attn_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, ...]: + """ + Parameters: + x: torch.tensor(bs, seq_length, dim) + attn_mask: torch.tensor(bs, seq_length) + + Returns: + sa_weights: torch.tensor(bs, n_heads, seq_length, seq_length) The attention weights ffn_output: + torch.tensor(bs, seq_length, dim) The output of the transformer block contextualization. + """ + # Self-Attention + sa_output = self.attention( + query=x, + key=x, + value=x, + mask=attn_mask, + head_mask=head_mask, + output_attentions=output_attentions, + ) + if output_attentions: + sa_output, sa_weights = sa_output # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length) + else: # To handle these `output_attentions` or `output_hidden_states` cases returning tuples + if type(sa_output) != tuple: + raise TypeError(f"sa_output must be a tuple but it is {type(sa_output)} type") + + sa_output = sa_output[0] + sa_output = self.sa_layer_norm(sa_output + x) # (bs, seq_length, dim) + + # Feed Forward Network + ffn_output = self.ffn(sa_output) # (bs, seq_length, dim) + ffn_output: torch.Tensor = self.output_layer_norm(ffn_output + sa_output) # (bs, seq_length, dim) + + output = (ffn_output,) + if output_attentions: + output = (sa_weights,) + output + return output + + +class Transformer(nn.Module): + def __init__(self, config: PretrainedConfig): + super().__init__() + self.n_layers = config.n_layers + self.layer = nn.ModuleList([TransformerBlock(config) for _ in range(config.n_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + x: torch.Tensor, + attn_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: Optional[bool] = None, + ) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]: # docstyle-ignore + """ + Parameters: + x: torch.tensor(bs, seq_length, dim) Input sequence embedded. + attn_mask: torch.tensor(bs, seq_length) Attention mask on the sequence. + + Returns: + hidden_state: torch.tensor(bs, seq_length, dim) Sequence of hidden states in the last (top) + layer all_hidden_states: Tuple[torch.tensor(bs, seq_length, dim)] + Tuple of length n_layers with the hidden states from each layer. + Optional: only if output_hidden_states=True + all_attentions: Tuple[torch.tensor(bs, n_heads, seq_length, seq_length)] + Tuple of length n_layers with the attention weights from each layer + Optional: only if output_attentions=True + """ + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + hidden_state = x + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_state,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_state, + attn_mask, + head_mask[i], + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_state, + attn_mask, + head_mask[i], + output_attentions, + ) + + hidden_state = layer_outputs[-1] + + if output_attentions: + if len(layer_outputs) != 2: + raise ValueError(f"The length of the layer_outputs should be 2, but it is {len(layer_outputs)}") + + attentions = layer_outputs[0] + all_attentions = all_attentions + (attentions,) + else: + if len(layer_outputs) != 1: + raise ValueError(f"The length of the layer_outputs should be 1, but it is {len(layer_outputs)}") + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_state,) + + if not return_dict: + return tuple(v for v in [hidden_state, all_hidden_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL # +class DistilBertPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = DistilBertConfig + load_tf_weights = None + base_model_prefix = "distilbert" + supports_gradient_checkpointing = True + _supports_flash_attn_2 = True + + def _init_weights(self, module: nn.Module): + """Initialize the weights.""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, Embeddings) and self.config.sinusoidal_pos_embds: + create_sinusoidal_embeddings( + self.config.max_position_embeddings, self.config.dim, module.position_embeddings.weight + ) + + +DISTILBERT_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +DISTILBERT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top.", + DISTILBERT_START_DOCSTRING, +) +class DistilBertModel(DistilBertPreTrainedModel): + def __init__(self, config: PretrainedConfig): + super().__init__(config) + + self.embeddings = Embeddings(config) # Embeddings + self.transformer = Transformer(config) # Encoder + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + + # Initialize weights and apply final processing + self.post_init() + + def get_position_embeddings(self) -> nn.Embedding: + """ + Returns the position embeddings + """ + return self.embeddings.position_embeddings + + def resize_position_embeddings(self, new_num_position_embeddings: int): + """ + Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`. + + Arguments: + new_num_position_embeddings (`int`): + The number of new position embedding matrix. If position embeddings are learned, increasing the size + will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the + end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the + size will add correct vectors at the end following the position encoding algorithm, whereas reducing + the size will remove vectors from the end. + """ + num_position_embeds_diff = new_num_position_embeddings - self.config.max_position_embeddings + + # no resizing needs to be done if the length stays the same + if num_position_embeds_diff == 0: + return + + logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...") + self.config.max_position_embeddings = new_num_position_embeddings + + old_position_embeddings_weight = self.embeddings.position_embeddings.weight.clone() + + self.embeddings.position_embeddings = nn.Embedding(self.config.max_position_embeddings, self.config.dim) + + if self.config.sinusoidal_pos_embds: + create_sinusoidal_embeddings( + n_pos=self.config.max_position_embeddings, dim=self.config.dim, out=self.position_embeddings.weight + ) + else: + with torch.no_grad(): + if num_position_embeds_diff > 0: + self.embeddings.position_embeddings.weight[:-num_position_embeds_diff] = nn.Parameter( + old_position_embeddings_weight + ) + else: + self.embeddings.position_embeddings.weight = nn.Parameter( + old_position_embeddings_weight[:num_position_embeds_diff] + ) + # move position_embeddings to correct device + self.embeddings.position_embeddings.to(self.device) + + def get_input_embeddings(self) -> nn.Embedding: + return self.embeddings.word_embeddings + + def set_input_embeddings(self, new_embeddings: nn.Embedding): + self.embeddings.word_embeddings = new_embeddings + + def _prune_heads(self, heads_to_prune: Dict[int, List[List[int]]]): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.transformer.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # Prepare head mask if needed + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embeddings = self.embeddings(input_ids, inputs_embeds) # (bs, seq_length, dim) + + if self._use_flash_attention_2: + attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None + else: + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) # (bs, seq_length) + + return self.transformer( + x=embeddings, + attn_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +@add_start_docstrings( + """DistilBert Model with a `masked language modeling` head on top.""", + DISTILBERT_START_DOCSTRING, +) +class DistilBertForMaskedLM(DistilBertPreTrainedModel): + _tied_weights_keys = ["vocab_projector.weight"] + + def __init__(self, config: PretrainedConfig): + super().__init__(config) + + self.activation = get_activation(config.activation) + + self.distilbert = DistilBertModel(config) + self.vocab_transform = nn.Linear(config.dim, config.dim) + self.vocab_layer_norm = nn.LayerNorm(config.dim, eps=1e-12) + self.vocab_projector = nn.Linear(config.dim, config.vocab_size) + + # Initialize weights and apply final processing + self.post_init() + + self.mlm_loss_fct = nn.CrossEntropyLoss() + + def get_position_embeddings(self) -> nn.Embedding: + """ + Returns the position embeddings + """ + return self.distilbert.get_position_embeddings() + + def resize_position_embeddings(self, new_num_position_embeddings: int): + """ + Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`. + + Arguments: + new_num_position_embeddings (`int`): + The number of new position embedding matrix. If position embeddings are learned, increasing the size + will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the + end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the + size will add correct vectors at the end following the position encoding algorithm, whereas reducing + the size will remove vectors from the end. + """ + self.distilbert.resize_position_embeddings(new_num_position_embeddings) + + def get_output_embeddings(self) -> nn.Module: + return self.vocab_projector + + def set_output_embeddings(self, new_embeddings: nn.Module): + self.vocab_projector = new_embeddings + + @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[MaskedLMOutput, Tuple[torch.Tensor, ...]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + dlbrt_output = self.distilbert( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = dlbrt_output[0] # (bs, seq_length, dim) + prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim) + prediction_logits = self.activation(prediction_logits) # (bs, seq_length, dim) + prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim) + prediction_logits = self.vocab_projector(prediction_logits) # (bs, seq_length, vocab_size) + + mlm_loss = None + if labels is not None: + mlm_loss = self.mlm_loss_fct(prediction_logits.view(-1, prediction_logits.size(-1)), labels.view(-1)) + + if not return_dict: + output = (prediction_logits,) + dlbrt_output[1:] + return ((mlm_loss,) + output) if mlm_loss is not None else output + + return MaskedLMOutput( + loss=mlm_loss, + logits=prediction_logits, + hidden_states=dlbrt_output.hidden_states, + attentions=dlbrt_output.attentions, + ) + + +@add_start_docstrings( + """ + DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + DISTILBERT_START_DOCSTRING, +) +class DistilBertForSequenceClassification(DistilBertPreTrainedModel): + def __init__(self, config: PretrainedConfig): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.distilbert = DistilBertModel(config) + self.pre_classifier = nn.Linear(config.dim, config.dim) + self.classifier = nn.Linear(config.dim, config.num_labels) + self.dropout = nn.Dropout(config.seq_classif_dropout) + + # Initialize weights and apply final processing + self.post_init() + + def get_position_embeddings(self) -> nn.Embedding: + """ + Returns the position embeddings + """ + return self.distilbert.get_position_embeddings() + + def resize_position_embeddings(self, new_num_position_embeddings: int): + """ + Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`. + + Arguments: + new_num_position_embeddings (`int`): + The number of new position embedding matrix. If position embeddings are learned, increasing the size + will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the + end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the + size will add correct vectors at the end following the position encoding algorithm, whereas reducing + the size will remove vectors from the end. + """ + self.distilbert.resize_position_embeddings(new_num_position_embeddings) + + @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[SequenceClassifierOutput, Tuple[torch.Tensor, ...]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + distilbert_output = self.distilbert( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_state = distilbert_output[0] # (bs, seq_len, dim) + pooled_output = hidden_state[:, 0] # (bs, dim) + pooled_output = self.pre_classifier(pooled_output) # (bs, dim) + pooled_output = nn.ReLU()(pooled_output) # (bs, dim) + pooled_output = self.dropout(pooled_output) # (bs, dim) + logits = self.classifier(pooled_output) # (bs, num_labels) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + distilbert_output[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=distilbert_output.hidden_states, + attentions=distilbert_output.attentions, + ) + + +@add_start_docstrings( + """ + DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a + linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + DISTILBERT_START_DOCSTRING, +) +class DistilBertForQuestionAnswering(DistilBertPreTrainedModel): + def __init__(self, config: PretrainedConfig): + super().__init__(config) + + self.distilbert = DistilBertModel(config) + self.qa_outputs = nn.Linear(config.dim, config.num_labels) + if config.num_labels != 2: + raise ValueError(f"config.num_labels should be 2, but it is {config.num_labels}") + + self.dropout = nn.Dropout(config.qa_dropout) + + # Initialize weights and apply final processing + self.post_init() + + def get_position_embeddings(self) -> nn.Embedding: + """ + Returns the position embeddings + """ + return self.distilbert.get_position_embeddings() + + def resize_position_embeddings(self, new_num_position_embeddings: int): + """ + Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`. + + Arguments: + new_num_position_embeddings (`int`): + The number of new position embedding matrix. If position embeddings are learned, increasing the size + will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the + end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the + size will add correct vectors at the end following the position encoding algorithm, whereas reducing + the size will remove vectors from the end. + """ + self.distilbert.resize_position_embeddings(new_num_position_embeddings) + + @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[QuestionAnsweringModelOutput, Tuple[torch.Tensor, ...]]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + distilbert_output = self.distilbert( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = distilbert_output[0] # (bs, max_query_len, dim) + + hidden_states = self.dropout(hidden_states) # (bs, max_query_len, dim) + logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() # (bs, max_query_len) + end_logits = end_logits.squeeze(-1).contiguous() # (bs, max_query_len) + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + distilbert_output[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=distilbert_output.hidden_states, + attentions=distilbert_output.attentions, + ) + + +@add_start_docstrings( + """ + DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + DISTILBERT_START_DOCSTRING, +) +class DistilBertForTokenClassification(DistilBertPreTrainedModel): + def __init__(self, config: PretrainedConfig): + super().__init__(config) + self.num_labels = config.num_labels + + self.distilbert = DistilBertModel(config) + self.dropout = nn.Dropout(config.dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + def get_position_embeddings(self) -> nn.Embedding: + """ + Returns the position embeddings + """ + return self.distilbert.get_position_embeddings() + + def resize_position_embeddings(self, new_num_position_embeddings: int): + """ + Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`. + + Arguments: + new_num_position_embeddings (`int`): + The number of new position embedding matrix. If position embeddings are learned, increasing the size + will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the + end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the + size will add correct vectors at the end following the position encoding algorithm, whereas reducing + the size will remove vectors from the end. + """ + self.distilbert.resize_position_embeddings(new_num_position_embeddings) + + @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[TokenClassifierOutput, Tuple[torch.Tensor, ...]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.distilbert( + input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and + a softmax) e.g. for RocStories/SWAG tasks. + """, + DISTILBERT_START_DOCSTRING, +) +class DistilBertForMultipleChoice(DistilBertPreTrainedModel): + def __init__(self, config: PretrainedConfig): + super().__init__(config) + + self.distilbert = DistilBertModel(config) + self.pre_classifier = nn.Linear(config.dim, config.dim) + self.classifier = nn.Linear(config.dim, 1) + self.dropout = nn.Dropout(config.seq_classif_dropout) + + # Initialize weights and apply final processing + self.post_init() + + def get_position_embeddings(self) -> nn.Embedding: + """ + Returns the position embeddings + """ + return self.distilbert.get_position_embeddings() + + def resize_position_embeddings(self, new_num_position_embeddings: int): + """ + Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`. + + Arguments: + new_num_position_embeddings (`int`) + The number of new position embeddings. If position embeddings are learned, increasing the size will add + newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If + position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will + add correct vectors at the end following the position encoding algorithm, whereas reducing the size + will remove vectors from the end. + """ + self.distilbert.resize_position_embeddings(new_num_position_embeddings) + + @add_start_docstrings_to_model_forward( + DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @replace_return_docstrings(output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[MultipleChoiceModelOutput, Tuple[torch.Tensor, ...]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, DistilBertForMultipleChoice + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased") + >>> model = DistilBertForMultipleChoice.from_pretrained("distilbert-base-cased") + + >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." + >>> choice0 = "It is eaten with a fork and a knife." + >>> choice1 = "It is eaten while held in the hand." + >>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 + + >>> encoding = tokenizer([[prompt, choice0], [prompt, choice1]], return_tensors="pt", padding=True) + >>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1 + + >>> # the linear classifier still needs to be trained + >>> loss = outputs.loss + >>> logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.distilbert( + input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_state = outputs[0] # (bs * num_choices, seq_len, dim) + pooled_output = hidden_state[:, 0] # (bs * num_choices, dim) + pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim) + pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim) + pooled_output = self.dropout(pooled_output) # (bs * num_choices, dim) + logits = self.classifier(pooled_output) # (bs * num_choices, 1) + + reshaped_logits = logits.view(-1, num_choices) # (bs, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_flax_distilbert.py b/venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_flax_distilbert.py new file mode 100644 index 0000000000000000000000000000000000000000..d3c48c077adc529a1e942fcbce1999c2d0f8d524 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_flax_distilbert.py @@ -0,0 +1,895 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from typing import Callable, Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutput, + FlaxMaskedLMOutput, + FlaxMultipleChoiceModelOutput, + FlaxQuestionAnsweringModelOutput, + FlaxSequenceClassifierOutput, + FlaxTokenClassifierOutput, +) +from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, overwrite_call_docstring +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_distilbert import DistilBertConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "distilbert-base-uncased" +_CONFIG_FOR_DOC = "DistilBertConfig" + + +FLAX_DISTILBERT_START_DOCSTRING = r""" + + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading, saving and converting weights from PyTorch models) + + This model is also a + [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as + a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and + behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +DISTILBERT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`numpy.ndarray` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +def get_angles(pos, i, d_model): + angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model)) + return pos * angle_rates + + +def positional_encoding(position, d_model): + # create the sinusoidal pattern for the positional encoding + angle_rads = get_angles(np.arange(position)[:, np.newaxis], np.arange(d_model)[np.newaxis, :], d_model) + + # apply sin to even indices in the array; 2i + angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) + + # apply cos to odd indices in the array; 2i+1 + angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) + + pos_encoding = angle_rads[np.newaxis, ...] + + return jnp.array(pos_encoding) + + +class FlaxEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + config: DistilBertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.word_embeddings = nn.Embed( + self.config.vocab_size, + self.config.dim, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + if not self.config.sinusoidal_pos_embds: + self.position_embeddings = nn.Embed( + self.config.max_position_embeddings, + self.config.dim, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + else: + self.pos_encoding = positional_encoding(self.config.max_position_embeddings, self.config.dim) + self.LayerNorm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype) + self.dropout = nn.Dropout(rate=self.config.dropout) + + def __call__(self, input_ids, deterministic: bool = True): + # Embed + batch_size, seq_length = input_ids.shape + inputs_embeds = self.word_embeddings(input_ids.astype("i4")) + if not self.config.sinusoidal_pos_embds: + position_ids = jnp.arange(seq_length).astype("i4") + position_ids = jnp.broadcast_to(position_ids, shape=(batch_size, seq_length)) + position_embeds = self.position_embeddings(position_ids.astype("i4")) + else: + position_embeds = self.pos_encoding[:, :seq_length, :] + # explicitly cast the positions here, since self.embed_positions are not registered as parameters + position_embeds = position_embeds.astype(inputs_embeds.dtype) + + # Sum all embeddings + hidden_states = inputs_embeds + position_embeds + + # Layer Norm + hidden_states = self.LayerNorm(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + return hidden_states + + +class FlaxMultiHeadSelfAttention(nn.Module): + config: DistilBertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.n_heads = self.config.n_heads + self.dim = self.config.dim + self.dropout = nn.Dropout(rate=self.config.attention_dropout) + + if not (self.dim % self.n_heads == 0): + raise ValueError(f"Hidden size {self.dim} not dividable by number of heads {self.n_heads}") + + self.q_lin = nn.Dense( + self.dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + self.k_lin = nn.Dense( + self.dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + self.v_lin = nn.Dense( + self.dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + self.out_lin = nn.Dense( + self.dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + + def __call__( + self, + query, + key, + value, + mask, + deterministic: bool = True, + output_attentions: bool = False, + ): + bs, q_len, dim = query.shape + k_len = key.shape[1] + # assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured' + # assert key.size() == value.size() + + dim_per_head = self.dim // self.n_heads + + mask_reshp = (bs, 1, 1, k_len) + + def shape(x): + """separate heads""" + return x.reshape(bs, -1, self.n_heads, dim_per_head).transpose(0, 2, 1, 3) + + def unshape(x): + """group heads""" + return x.transpose(0, 2, 1, 3).reshape(bs, -1, self.n_heads * dim_per_head) + + q = shape(self.q_lin(query)) # (bs, n_heads, q_len, dim_per_head) + k = shape(self.k_lin(key)) # (bs, n_heads, k_len, dim_per_head) + v = shape(self.v_lin(value)) # (bs, n_heads, k_len, dim_per_head) + + q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_len, dim_per_head) + scores = jnp.matmul(q, k.transpose(0, 1, 3, 2)) # (bs, n_heads, q_len, k_len) + mask = jnp.reshape(mask, mask_reshp) + + mask = mask.astype(scores.dtype) + scores = scores - 1e30 * (1.0 - mask) + + weights = nn.softmax(scores, axis=-1) # (bs, n_heads, q_len, k_len) + weights = self.dropout(weights, deterministic=deterministic) + + context = jnp.matmul(weights, v) # (bs, n_heads, q_len, dim_per_head) + context = unshape(context) # (bs, q_len, dim) + context = self.out_lin(context) # (bs, q_len, dim) + + if output_attentions: + return (context, weights) + else: + return (context,) + + +class FlaxFFN(nn.Module): + config: DistilBertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dropout = nn.Dropout(rate=self.config.dropout) + self.chunk_size_feed_forward = self.config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.lin1 = nn.Dense( + self.config.hidden_dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + self.lin2 = nn.Dense( + self.config.dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + + self.activation = ACT2FN[self.config.activation] + + def __call__(self, hidden_states, deterministic: bool = True): + hidden_states = self.lin1(hidden_states) + hidden_states = self.activation(hidden_states) + hidden_states = self.lin2(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + return hidden_states + + +class FlaxTransformerBlock(nn.Module): + config: DistilBertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + assert ( + self.config.dim % self.config.n_heads == 0 + ), f"Hidden size {self.config.dim} not dividable by number of heads {self.config.n_heads}" + + self.attention = FlaxMultiHeadSelfAttention(self.config, dtype=self.dtype) + self.sa_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype) + + self.ffn = FlaxFFN(self.config, dtype=self.dtype) + self.output_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype) + + def __call__( + self, + hidden_states, + attn_mask, + output_attentions: bool = False, + deterministic: bool = True, + ): + # Self-Attention + sa_output = self.attention( + query=hidden_states, + key=hidden_states, + value=hidden_states, + mask=attn_mask, + output_attentions=output_attentions, + deterministic=deterministic, + ) + if output_attentions: + sa_output, sa_weights = sa_output + else: + assert type(sa_output) == tuple + sa_output = sa_output[0] + sa_output = self.sa_layer_norm(sa_output + hidden_states) + + # Feed Forward Network + ffn_output = self.ffn(sa_output, deterministic=deterministic) + ffn_output = self.output_layer_norm(ffn_output + sa_output) + output = (ffn_output,) + if output_attentions: + output = (sa_weights,) + output + return output + + +class FlaxTransformer(nn.Module): + config: DistilBertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxTransformerBlock(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.n_layers) + ] + + def __call__( + self, + hidden_states, + attention_mask, + output_attentions: bool = False, + output_hidden_states: bool = False, + deterministic: bool = True, + return_dict: bool = False, + ): + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + for layer_module in self.layers: + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = layer_module( + hidden_states=hidden_states, + attn_mask=attention_mask, + output_attentions=output_attentions, + deterministic=deterministic, + ) + hidden_states = layer_outputs[-1] + + if output_attentions: + assert len(layer_outputs) == 2 + attentions = layer_outputs[0] + all_attentions = all_attentions + (attentions,) + else: + assert len(layer_outputs) == 1 + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_attentions, all_hidden_states] if v is not None) + return FlaxBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +class FlaxTransformerEncoder(nn.Module): + config: DistilBertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layer = FlaxTransformer(self.config, dtype=self.dtype) + + def __call__( + self, + hidden_states, + attention_mask, + output_attentions: bool = False, + output_hidden_states: bool = False, + deterministic: bool = True, + return_dict: bool = False, + ): + return self.layer( + hidden_states=hidden_states, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + deterministic=deterministic, + return_dict=return_dict, + ) + + +class FlaxDistilBertLMDecoder(nn.Module): + config: DistilBertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros + + def setup(self): + self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) + + def __call__(self, inputs, kernel): + inputs = jnp.asarray(inputs, self.dtype) + kernel = jnp.asarray(kernel, self.dtype) + y = lax.dot_general(inputs, kernel, (((inputs.ndim - 1,), (0,)), ((), ()))) + bias = jnp.asarray(self.bias, self.dtype) + y = y + bias + return y + + +class FlaxDistilBertPreTrainedModel(FlaxPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = DistilBertConfig + base_model_prefix = "distilbert" + module_class: nn.Module = None + + def __init__( + self, + config: DistilBertConfig, + input_shape: Tuple = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + attention_mask = jnp.ones_like(input_ids) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + random_params = self.module.init(rngs, input_ids, attention_mask, return_dict=False)["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + def __call__( + self, + input_ids, + attention_mask=None, + head_mask=None, + params: dict = None, + dropout_rng: jax.random.PRNGKey = None, + train: bool = False, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + return self.module.apply( + {"params": params or self.params}, + jnp.array(input_ids, dtype="i4"), + jnp.array(attention_mask, dtype="i4"), + not train, + output_attentions, + output_hidden_states, + return_dict, + rngs=rngs, + ) + + +class FlaxDistilBertModule(nn.Module): + config: DistilBertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.embeddings = FlaxEmbeddings(self.config, dtype=self.dtype) + self.transformer = FlaxTransformerEncoder(self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + input_embeds = self.embeddings(input_ids, deterministic=deterministic) + return self.transformer( + hidden_states=input_embeds, + attention_mask=attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +@add_start_docstrings( + "The bare DistilBert Model transformer outputting raw hidden-states without any specific head on top.", + FLAX_DISTILBERT_START_DOCSTRING, +) +class FlaxDistilBertModel(FlaxDistilBertPreTrainedModel): + module_class = FlaxDistilBertModule + + +append_call_sample_docstring(FlaxDistilBertModel, _CHECKPOINT_FOR_DOC, None, _CONFIG_FOR_DOC) + + +class FlaxDistilBertForMaskedLMModule(nn.Module): + config: DistilBertConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.distilbert = FlaxDistilBertModule(self.config, dtype=self.dtype) + self.vocab_transform = nn.Dense( + self.config.dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + self.vocab_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype) + if self.config.tie_word_embeddings: + self.vocab_projector = FlaxDistilBertLMDecoder( + self.config, + dtype=self.dtype, + ) + else: + self.vocab_projector = nn.Dense( + self.config.vocab_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + + def __call__( + self, + input_ids, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + dlbrt_output = self.distilbert( + input_ids=input_ids, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + deterministic=deterministic, + return_dict=return_dict, + ) + hidden_states = dlbrt_output[0] + prediction_logits = self.vocab_transform(hidden_states) + prediction_logits = ACT2FN[self.config.activation](prediction_logits) + prediction_logits = self.vocab_layer_norm(prediction_logits) + + if self.config.tie_word_embeddings: + shared_embedding = self.distilbert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] + prediction_logits = self.vocab_projector(prediction_logits, shared_embedding.T) + else: + prediction_logits = self.vocab_projector(prediction_logits) + + if not return_dict: + output = (prediction_logits,) + dlbrt_output[1:] + return output + + return FlaxMaskedLMOutput( + logits=prediction_logits, + hidden_states=dlbrt_output.hidden_states, + attentions=dlbrt_output.attentions, + ) + + +@add_start_docstrings("""DistilBert Model with a `language modeling` head on top.""", FLAX_DISTILBERT_START_DOCSTRING) +class FlaxDistilBertForMaskedLM(FlaxDistilBertPreTrainedModel): + module_class = FlaxDistilBertForMaskedLMModule + + +append_call_sample_docstring(FlaxDistilBertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC) + + +class FlaxDistilBertForSequenceClassificationModule(nn.Module): + config: DistilBertConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype) + self.pre_classifier = nn.Dense( + self.config.dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + self.dropout = nn.Dropout(rate=self.config.seq_classif_dropout) + self.classifier = nn.Dense( + self.config.num_labels, + dtype=self.dtype, + ) + + def __call__( + self, + input_ids, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + # Model + distilbert_output = self.distilbert( + input_ids, + attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_state = distilbert_output[0] # (bs, seq_len, dim) + pooled_output = hidden_state[:, 0] # (bs, dim) + pooled_output = self.pre_classifier(pooled_output) # (bs, dim) + pooled_output = ACT2FN["relu"](pooled_output) + pooled_output = self.dropout(pooled_output, deterministic=deterministic) + logits = self.classifier(pooled_output) # (bs, dim) + + if not return_dict: + return (logits,) + distilbert_output[1:] + + return FlaxSequenceClassifierOutput( + logits=logits, + hidden_states=distilbert_output.hidden_states, + attentions=distilbert_output.attentions, + ) + + +@add_start_docstrings( + """ + DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + FLAX_DISTILBERT_START_DOCSTRING, +) +class FlaxDistilBertForSequenceClassification(FlaxDistilBertPreTrainedModel): + module_class = FlaxDistilBertForSequenceClassificationModule + + +append_call_sample_docstring( + FlaxDistilBertForSequenceClassification, + _CHECKPOINT_FOR_DOC, + FlaxSequenceClassifierOutput, + _CONFIG_FOR_DOC, +) + + +class FlaxDistilBertForMultipleChoiceModule(nn.Module): + config: DistilBertConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype) + self.pre_classifier = nn.Dense( + self.config.dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + self.dropout = nn.Dropout(rate=self.config.seq_classif_dropout) + self.classifier = nn.Dense( + 1, + dtype=self.dtype, + ) + + def __call__( + self, + input_ids, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] + input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None + attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None + + # Model + outputs = self.distilbert( + input_ids, + attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_state = outputs[0] + pooled_output = hidden_state[:, 0] + pooled_output = self.pre_classifier(pooled_output) + pooled_output = ACT2FN["relu"](pooled_output) + pooled_output = self.dropout(pooled_output, deterministic=deterministic) + logits = self.classifier(pooled_output) + + reshaped_logits = logits.reshape(-1, num_choices) + + if not return_dict: + return (reshaped_logits,) + outputs[2:] + + return FlaxMultipleChoiceModelOutput( + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and + a softmax) e.g. for RocStories/SWAG tasks. + """, + FLAX_DISTILBERT_START_DOCSTRING, +) +class FlaxDistilBertForMultipleChoice(FlaxDistilBertPreTrainedModel): + module_class = FlaxDistilBertForMultipleChoiceModule + + +overwrite_call_docstring( + FlaxDistilBertForMultipleChoice, DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") +) +append_call_sample_docstring( + FlaxDistilBertForMultipleChoice, + _CHECKPOINT_FOR_DOC, + FlaxMultipleChoiceModelOutput, + _CONFIG_FOR_DOC, +) + + +class FlaxDistilBertForTokenClassificationModule(nn.Module): + config: DistilBertConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype) + self.dropout = nn.Dropout(rate=self.config.dropout) + self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + # Model + outputs = self.distilbert( + input_ids, + attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + logits = self.classifier(hidden_states) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxTokenClassifierOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + FLAX_DISTILBERT_START_DOCSTRING, +) +class FlaxDistilBertForTokenClassification(FlaxDistilBertPreTrainedModel): + module_class = FlaxDistilBertForTokenClassificationModule + + +append_call_sample_docstring( + FlaxDistilBertForTokenClassification, + _CHECKPOINT_FOR_DOC, + FlaxTokenClassifierOutput, + _CONFIG_FOR_DOC, +) + + +class FlaxDistilBertForQuestionAnsweringModule(nn.Module): + config: DistilBertConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype) + self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) + assert self.config.num_labels == 2 + self.dropout = nn.Dropout(rate=self.config.qa_dropout) + + def __call__( + self, + input_ids, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # Model + distilbert_output = self.distilbert( + input_ids, + attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = distilbert_output[0] + + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + logits = self.qa_outputs(hidden_states) + start_logits, end_logits = logits.split(self.config.num_labels, axis=-1) + start_logits = start_logits.squeeze(-1) + end_logits = end_logits.squeeze(-1) + + if not return_dict: + return (start_logits, end_logits) + distilbert_output[1:] + + return FlaxQuestionAnsweringModelOutput( + start_logits=start_logits, + end_logits=end_logits, + hidden_states=distilbert_output.hidden_states, + attentions=distilbert_output.attentions, + ) + + +@add_start_docstrings( + """ + DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a + linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + FLAX_DISTILBERT_START_DOCSTRING, +) +class FlaxDistilBertForQuestionAnswering(FlaxDistilBertPreTrainedModel): + module_class = FlaxDistilBertForQuestionAnsweringModule + + +append_call_sample_docstring( + FlaxDistilBertForQuestionAnswering, + _CHECKPOINT_FOR_DOC, + FlaxQuestionAnsweringModelOutput, + _CONFIG_FOR_DOC, +) diff --git a/venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_tf_distilbert.py b/venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_tf_distilbert.py new file mode 100644 index 0000000000000000000000000000000000000000..c41deac3f2e57e53572e99fefaa4b7e26eb4309f --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/distilbert/modeling_tf_distilbert.py @@ -0,0 +1,1139 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" + TF 2.0 DistilBERT model +""" + + +from __future__ import annotations + +import warnings +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFMaskedLMOutput, + TFMultipleChoiceModelOutput, + TFQuestionAnsweringModelOutput, + TFSequenceClassifierOutput, + TFTokenClassifierOutput, +) +from ...modeling_tf_utils import ( + TFMaskedLanguageModelingLoss, + TFModelInputType, + TFMultipleChoiceLoss, + TFPreTrainedModel, + TFQuestionAnsweringLoss, + TFSequenceClassificationLoss, + TFTokenClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from .configuration_distilbert import DistilBertConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "distilbert-base-uncased" +_CONFIG_FOR_DOC = "DistilBertConfig" + + +from ..deprecated._archive_maps import TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class TFEmbeddings(keras.layers.Layer): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.config = config + self.dim = config.dim + self.initializer_range = config.initializer_range + self.max_position_embeddings = config.max_position_embeddings + self.LayerNorm = keras.layers.LayerNormalization(epsilon=1e-12, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.dropout) + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.dim], + initializer=get_initializer(initializer_range=self.initializer_range), + ) + + with tf.name_scope("position_embeddings"): + self.position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_position_embeddings, self.dim], + initializer=get_initializer(initializer_range=self.initializer_range), + ) + + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.dim]) + + def call(self, input_ids=None, position_ids=None, inputs_embeds=None, training=False): + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + assert not (input_ids is None and inputs_embeds is None) + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(params=self.weight, indices=input_ids) + + input_shape = shape_list(inputs_embeds)[:-1] + + if position_ids is None: + position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) + + position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) + final_embeddings = inputs_embeds + position_embeds + final_embeddings = self.LayerNorm(inputs=final_embeddings) + final_embeddings = self.dropout(inputs=final_embeddings, training=training) + + return final_embeddings + + +class TFMultiHeadSelfAttention(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.n_heads = config.n_heads + self.dim = config.dim + self.dropout = keras.layers.Dropout(config.attention_dropout) + self.output_attentions = config.output_attentions + + assert self.dim % self.n_heads == 0, f"Hidden size {self.dim} not dividable by number of heads {self.n_heads}" + + self.q_lin = keras.layers.Dense( + config.dim, kernel_initializer=get_initializer(config.initializer_range), name="q_lin" + ) + self.k_lin = keras.layers.Dense( + config.dim, kernel_initializer=get_initializer(config.initializer_range), name="k_lin" + ) + self.v_lin = keras.layers.Dense( + config.dim, kernel_initializer=get_initializer(config.initializer_range), name="v_lin" + ) + self.out_lin = keras.layers.Dense( + config.dim, kernel_initializer=get_initializer(config.initializer_range), name="out_lin" + ) + + self.pruned_heads = set() + self.config = config + + def prune_heads(self, heads): + raise NotImplementedError + + def call(self, query, key, value, mask, head_mask, output_attentions, training=False): + """ + Parameters: + query: tf.Tensor(bs, seq_length, dim) + key: tf.Tensor(bs, seq_length, dim) + value: tf.Tensor(bs, seq_length, dim) + mask: tf.Tensor(bs, seq_length) + + Returns: + weights: tf.Tensor(bs, n_heads, seq_length, seq_length) Attention weights context: tf.Tensor(bs, + seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True` + """ + bs, q_length, dim = shape_list(query) + k_length = shape_list(key)[1] + # assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured' + # assert key.size() == value.size() + dim_per_head = int(self.dim / self.n_heads) + dim_per_head = tf.cast(dim_per_head, dtype=tf.int32) + mask_reshape = [bs, 1, 1, k_length] + + def shape(x): + """separate heads""" + return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3)) + + def unshape(x): + """group heads""" + return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head)) + + q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head) + k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head) + v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head) + q = tf.cast(q, dtype=tf.float32) + q = tf.multiply(q, tf.math.rsqrt(tf.cast(dim_per_head, dtype=tf.float32))) + k = tf.cast(k, dtype=q.dtype) + scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, q_length, k_length) + mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen) + # scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, q_length, k_length) + + mask = tf.cast(mask, dtype=scores.dtype) + scores = scores - 1e30 * (1.0 - mask) + weights = stable_softmax(scores, axis=-1) # (bs, n_heads, qlen, klen) + weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen) + + # Mask heads if we want to + if head_mask is not None: + weights = weights * head_mask + + context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head) + context = unshape(context) # (bs, q_length, dim) + context = self.out_lin(context) # (bs, q_length, dim) + + if output_attentions: + return (context, weights) + else: + return (context,) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "q_lin", None) is not None: + with tf.name_scope(self.q_lin.name): + self.q_lin.build([None, None, self.config.dim]) + if getattr(self, "k_lin", None) is not None: + with tf.name_scope(self.k_lin.name): + self.k_lin.build([None, None, self.config.dim]) + if getattr(self, "v_lin", None) is not None: + with tf.name_scope(self.v_lin.name): + self.v_lin.build([None, None, self.config.dim]) + if getattr(self, "out_lin", None) is not None: + with tf.name_scope(self.out_lin.name): + self.out_lin.build([None, None, self.config.dim]) + + +class TFFFN(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dropout = keras.layers.Dropout(config.dropout) + self.lin1 = keras.layers.Dense( + config.hidden_dim, kernel_initializer=get_initializer(config.initializer_range), name="lin1" + ) + self.lin2 = keras.layers.Dense( + config.dim, kernel_initializer=get_initializer(config.initializer_range), name="lin2" + ) + self.activation = get_tf_activation(config.activation) + self.config = config + + def call(self, input, training=False): + x = self.lin1(input) + x = self.activation(x) + x = self.lin2(x) + x = self.dropout(x, training=training) + return x + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "lin1", None) is not None: + with tf.name_scope(self.lin1.name): + self.lin1.build([None, None, self.config.dim]) + if getattr(self, "lin2", None) is not None: + with tf.name_scope(self.lin2.name): + self.lin2.build([None, None, self.config.hidden_dim]) + + +class TFTransformerBlock(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.n_heads = config.n_heads + self.dim = config.dim + self.hidden_dim = config.hidden_dim + self.dropout = keras.layers.Dropout(config.dropout) + self.activation = config.activation + self.output_attentions = config.output_attentions + + assert ( + config.dim % config.n_heads == 0 + ), f"Hidden size {config.dim} not dividable by number of heads {config.n_heads}" + + self.attention = TFMultiHeadSelfAttention(config, name="attention") + self.sa_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="sa_layer_norm") + + self.ffn = TFFFN(config, name="ffn") + self.output_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="output_layer_norm") + self.config = config + + def call(self, x, attn_mask, head_mask, output_attentions, training=False): # removed: src_enc=None, src_len=None + """ + Parameters: + x: tf.Tensor(bs, seq_length, dim) + attn_mask: tf.Tensor(bs, seq_length) + + Outputs: sa_weights: tf.Tensor(bs, n_heads, seq_length, seq_length) The attention weights ffn_output: + tf.Tensor(bs, seq_length, dim) The output of the transformer block contextualization. + """ + # Self-Attention + sa_output = self.attention(x, x, x, attn_mask, head_mask, output_attentions, training=training) + if output_attentions: + sa_output, sa_weights = sa_output # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length) + else: # To handle these `output_attentions` or `output_hidden_states` cases returning tuples + # assert type(sa_output) == tuple + sa_output = sa_output[0] + sa_output = self.sa_layer_norm(sa_output + x) # (bs, seq_length, dim) + + # Feed Forward Network + ffn_output = self.ffn(sa_output, training=training) # (bs, seq_length, dim) + ffn_output = self.output_layer_norm(ffn_output + sa_output) # (bs, seq_length, dim) + + output = (ffn_output,) + if output_attentions: + output = (sa_weights,) + output + return output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "sa_layer_norm", None) is not None: + with tf.name_scope(self.sa_layer_norm.name): + self.sa_layer_norm.build([None, None, self.config.dim]) + if getattr(self, "ffn", None) is not None: + with tf.name_scope(self.ffn.name): + self.ffn.build(None) + if getattr(self, "output_layer_norm", None) is not None: + with tf.name_scope(self.output_layer_norm.name): + self.output_layer_norm.build([None, None, self.config.dim]) + + +class TFTransformer(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.n_layers = config.n_layers + self.output_hidden_states = config.output_hidden_states + self.output_attentions = config.output_attentions + + self.layer = [TFTransformerBlock(config, name=f"layer_._{i}") for i in range(config.n_layers)] + + def call(self, x, attn_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False): + # docstyle-ignore + """ + Parameters: + x: tf.Tensor(bs, seq_length, dim) Input sequence embedded. + attn_mask: tf.Tensor(bs, seq_length) Attention mask on the sequence. + + Returns: + hidden_state: tf.Tensor(bs, seq_length, dim) + Sequence of hidden states in the last (top) layer + all_hidden_states: Tuple[tf.Tensor(bs, seq_length, dim)] + Tuple of length n_layers with the hidden states from each layer. + Optional: only if output_hidden_states=True + all_attentions: Tuple[tf.Tensor(bs, n_heads, seq_length, seq_length)] + Tuple of length n_layers with the attention weights from each layer + Optional: only if output_attentions=True + """ + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + hidden_state = x + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_state,) + + layer_outputs = layer_module(hidden_state, attn_mask, head_mask[i], output_attentions, training=training) + hidden_state = layer_outputs[-1] + + if output_attentions: + assert len(layer_outputs) == 2 + attentions = layer_outputs[0] + all_attentions = all_attentions + (attentions,) + else: + assert len(layer_outputs) == 1, f"Incorrect number of outputs {len(layer_outputs)} instead of 1" + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_state,) + + if not return_dict: + return tuple(v for v in [hidden_state, all_hidden_states, all_attentions] if v is not None) + return TFBaseModelOutput( + last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=all_attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFDistilBertMainLayer(keras.layers.Layer): + config_class = DistilBertConfig + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.num_hidden_layers = config.num_hidden_layers + self.output_attentions = config.output_attentions + self.output_hidden_states = config.output_hidden_states + self.return_dict = config.use_return_dict + + self.embeddings = TFEmbeddings(config, name="embeddings") # Embeddings + self.transformer = TFTransformer(config, name="transformer") # Encoder + + def get_input_embeddings(self): + return self.embeddings + + def set_input_embeddings(self, value): + self.embeddings.weight = value + self.embeddings.vocab_size = value.shape[0] + + def _prune_heads(self, heads_to_prune): + raise NotImplementedError + + @unpack_inputs + def call( + self, + input_ids=None, + attention_mask=None, + head_mask=None, + inputs_embeds=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if attention_mask is None: + attention_mask = tf.ones(input_shape) # (bs, seq_length) + + attention_mask = tf.cast(attention_mask, dtype=tf.float32) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.num_hidden_layers + + embedding_output = self.embeddings(input_ids, inputs_embeds=inputs_embeds) # (bs, seq_length, dim) + tfmr_output = self.transformer( + embedding_output, + attention_mask, + head_mask, + output_attentions, + output_hidden_states, + return_dict, + training=training, + ) + + return tfmr_output # last-layer hidden-state, (all hidden_states), (all attentions) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "transformer", None) is not None: + with tf.name_scope(self.transformer.name): + self.transformer.build(None) + + +# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL # +class TFDistilBertPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = DistilBertConfig + base_model_prefix = "distilbert" + + +DISTILBERT_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +DISTILBERT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top.", + DISTILBERT_START_DOCSTRING, +) +class TFDistilBertModel(TFDistilBertPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.distilbert = TFDistilBertMainLayer(config, name="distilbert") # Embeddings + + @unpack_inputs + @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: + outputs = self.distilbert( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "distilbert", None) is not None: + with tf.name_scope(self.distilbert.name): + self.distilbert.build(None) + + +class TFDistilBertLMHead(keras.layers.Layer): + def __init__(self, config, input_embeddings, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.dim = config.dim + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.input_embeddings = input_embeddings + + def build(self, input_shape): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + + super().build(input_shape) + + def get_output_embeddings(self): + return self.input_embeddings + + def set_output_embeddings(self, value): + self.input_embeddings.weight = value + self.input_embeddings.vocab_size = shape_list(value)[0] + + def get_bias(self): + return {"bias": self.bias} + + def set_bias(self, value): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states): + seq_length = shape_list(tensor=hidden_states)[1] + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.dim]) + hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) + hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) + + return hidden_states + + +@add_start_docstrings( + """DistilBert Model with a `masked language modeling` head on top.""", + DISTILBERT_START_DOCSTRING, +) +class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel, TFMaskedLanguageModelingLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.config = config + + self.distilbert = TFDistilBertMainLayer(config, name="distilbert") + self.vocab_transform = keras.layers.Dense( + config.dim, kernel_initializer=get_initializer(config.initializer_range), name="vocab_transform" + ) + self.act = get_tf_activation(config.activation) + self.vocab_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="vocab_layer_norm") + self.vocab_projector = TFDistilBertLMHead(config, self.distilbert.embeddings, name="vocab_projector") + + def get_lm_head(self): + return self.vocab_projector + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.vocab_projector.name + + @unpack_inputs + @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + distilbert_output = self.distilbert( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + hidden_states = distilbert_output[0] # (bs, seq_length, dim) + prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim) + prediction_logits = self.act(prediction_logits) # (bs, seq_length, dim) + prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim) + prediction_logits = self.vocab_projector(prediction_logits) + + loss = None if labels is None else self.hf_compute_loss(labels, prediction_logits) + + if not return_dict: + output = (prediction_logits,) + distilbert_output[1:] + return ((loss,) + output) if loss is not None else output + + return TFMaskedLMOutput( + loss=loss, + logits=prediction_logits, + hidden_states=distilbert_output.hidden_states, + attentions=distilbert_output.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "distilbert", None) is not None: + with tf.name_scope(self.distilbert.name): + self.distilbert.build(None) + if getattr(self, "vocab_transform", None) is not None: + with tf.name_scope(self.vocab_transform.name): + self.vocab_transform.build([None, None, self.config.dim]) + if getattr(self, "vocab_layer_norm", None) is not None: + with tf.name_scope(self.vocab_layer_norm.name): + self.vocab_layer_norm.build([None, None, self.config.dim]) + if getattr(self, "vocab_projector", None) is not None: + with tf.name_scope(self.vocab_projector.name): + self.vocab_projector.build(None) + + +@add_start_docstrings( + """ + DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + DISTILBERT_START_DOCSTRING, +) +class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.distilbert = TFDistilBertMainLayer(config, name="distilbert") + self.pre_classifier = keras.layers.Dense( + config.dim, + kernel_initializer=get_initializer(config.initializer_range), + activation="relu", + name="pre_classifier", + ) + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.dropout = keras.layers.Dropout(config.seq_classif_dropout) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + distilbert_output = self.distilbert( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + hidden_state = distilbert_output[0] # (bs, seq_len, dim) + pooled_output = hidden_state[:, 0] # (bs, dim) + pooled_output = self.pre_classifier(pooled_output) # (bs, dim) + pooled_output = self.dropout(pooled_output, training=training) # (bs, dim) + logits = self.classifier(pooled_output) # (bs, dim) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + distilbert_output[1:] + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=distilbert_output.hidden_states, + attentions=distilbert_output.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "distilbert", None) is not None: + with tf.name_scope(self.distilbert.name): + self.distilbert.build(None) + if getattr(self, "pre_classifier", None) is not None: + with tf.name_scope(self.pre_classifier.name): + self.pre_classifier.build([None, None, self.config.dim]) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.dim]) + + +@add_start_docstrings( + """ + DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + DISTILBERT_START_DOCSTRING, +) +class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel, TFTokenClassificationLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.distilbert = TFDistilBertMainLayer(config, name="distilbert") + self.dropout = keras.layers.Dropout(config.dropout) + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + outputs = self.distilbert( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + sequence_output = self.dropout(sequence_output, training=training) + logits = self.classifier(sequence_output) + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "distilbert", None) is not None: + with tf.name_scope(self.distilbert.name): + self.distilbert.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and + a softmax) e.g. for RocStories/SWAG tasks. + """, + DISTILBERT_START_DOCSTRING, +) +class TFDistilBertForMultipleChoice(TFDistilBertPreTrainedModel, TFMultipleChoiceLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.distilbert = TFDistilBertMainLayer(config, name="distilbert") + self.dropout = keras.layers.Dropout(config.seq_classif_dropout) + self.pre_classifier = keras.layers.Dense( + config.dim, + kernel_initializer=get_initializer(config.initializer_range), + activation="relu", + name="pre_classifier", + ) + self.classifier = keras.layers.Dense( + 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward( + DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` + where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) + """ + if input_ids is not None: + num_choices = shape_list(input_ids)[1] + seq_length = shape_list(input_ids)[2] + else: + num_choices = shape_list(inputs_embeds)[1] + seq_length = shape_list(inputs_embeds)[2] + + flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None + flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None + flat_inputs_embeds = ( + tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) + if inputs_embeds is not None + else None + ) + distilbert_output = self.distilbert( + flat_input_ids, + flat_attention_mask, + head_mask, + flat_inputs_embeds, + output_attentions, + output_hidden_states, + return_dict=return_dict, + training=training, + ) + hidden_state = distilbert_output[0] # (bs, seq_len, dim) + pooled_output = hidden_state[:, 0] # (bs, dim) + pooled_output = self.pre_classifier(pooled_output) # (bs, dim) + pooled_output = self.dropout(pooled_output, training=training) # (bs, dim) + logits = self.classifier(pooled_output) + reshaped_logits = tf.reshape(logits, (-1, num_choices)) + + loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) + + if not return_dict: + output = (reshaped_logits,) + distilbert_output[1:] + return ((loss,) + output) if loss is not None else output + + return TFMultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=distilbert_output.hidden_states, + attentions=distilbert_output.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "distilbert", None) is not None: + with tf.name_scope(self.distilbert.name): + self.distilbert.build(None) + if getattr(self, "pre_classifier", None) is not None: + with tf.name_scope(self.pre_classifier.name): + self.pre_classifier.build([None, None, self.config.dim]) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.dim]) + + +@add_start_docstrings( + """ + DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a + linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + DISTILBERT_START_DOCSTRING, +) +class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel, TFQuestionAnsweringLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.distilbert = TFDistilBertMainLayer(config, name="distilbert") + self.qa_outputs = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" + ) + assert config.num_labels == 2, f"Incorrect number of labels {config.num_labels} instead of 2" + self.dropout = keras.layers.Dropout(config.qa_dropout) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + start_positions: np.ndarray | tf.Tensor | None = None, + end_positions: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: + r""" + start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + distilbert_output = self.distilbert( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + hidden_states = distilbert_output[0] # (bs, max_query_len, dim) + hidden_states = self.dropout(hidden_states, training=training) # (bs, max_query_len, dim) + logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2) + start_logits, end_logits = tf.split(logits, 2, axis=-1) + start_logits = tf.squeeze(start_logits, axis=-1) + end_logits = tf.squeeze(end_logits, axis=-1) + + loss = None + if start_positions is not None and end_positions is not None: + labels = {"start_position": start_positions} + labels["end_position"] = end_positions + loss = self.hf_compute_loss(labels, (start_logits, end_logits)) + + if not return_dict: + output = (start_logits, end_logits) + distilbert_output[1:] + return ((loss,) + output) if loss is not None else output + + return TFQuestionAnsweringModelOutput( + loss=loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=distilbert_output.hidden_states, + attentions=distilbert_output.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "distilbert", None) is not None: + with tf.name_scope(self.distilbert.name): + self.distilbert.build(None) + if getattr(self, "qa_outputs", None) is not None: + with tf.name_scope(self.qa_outputs.name): + self.qa_outputs.build([None, None, self.config.dim]) diff --git a/venv/lib/python3.10/site-packages/transformers/models/distilbert/tokenization_distilbert.py b/venv/lib/python3.10/site-packages/transformers/models/distilbert/tokenization_distilbert.py new file mode 100644 index 0000000000000000000000000000000000000000..ff8854ba3dcf893a1a38d9491b2aa148a64057ca --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/distilbert/tokenization_distilbert.py @@ -0,0 +1,514 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for DistilBERT.""" + +import collections +import os +import unicodedata +from typing import List, Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} + + +# Copied from transformers.models.bert.tokenization_bert.load_vocab +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as reader: + tokens = reader.readlines() + for index, token in enumerate(tokens): + token = token.rstrip("\n") + vocab[token] = index + return vocab + + +# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +class DistilBertTokenizer(PreTrainedTokenizer): + r""" + Construct a DistilBERT tokenizer. Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + do_basic_tokenize (`bool`, *optional*, defaults to `True`): + Whether or not to do basic tokenization before WordPiece. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + do_lower_case=True, + do_basic_tokenize=True, + never_split=None, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + if not os.path.isfile(vocab_file): + raise ValueError( + f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" + " model use `tokenizer = DistilBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + self.vocab = load_vocab(vocab_file) + self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) + self.do_basic_tokenize = do_basic_tokenize + if do_basic_tokenize: + self.basic_tokenizer = BasicTokenizer( + do_lower_case=do_lower_case, + never_split=never_split, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + ) + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) + + super().__init__( + do_lower_case=do_lower_case, + do_basic_tokenize=do_basic_tokenize, + never_split=never_split, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + @property + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case + def do_lower_case(self): + return self.basic_tokenizer.do_lower_case + + @property + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size + def vocab_size(self): + return len(self.vocab) + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab + def get_vocab(self): + return dict(self.vocab, **self.added_tokens_encoder) + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize + def _tokenize(self, text, split_special_tokens=False): + split_tokens = [] + if self.do_basic_tokenize: + for token in self.basic_tokenizer.tokenize( + text, never_split=self.all_special_tokens if not split_special_tokens else None + ): + # If the token is part of the never_split set + if token in self.basic_tokenizer.never_split: + split_tokens.append(token) + else: + split_tokens += self.wordpiece_tokenizer.tokenize(token) + else: + split_tokens = self.wordpiece_tokenizer.tokenize(text) + return split_tokens + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.vocab.get(token, self.vocab.get(self.unk_token)) + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.ids_to_tokens.get(index, self.unk_token) + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + out_string = " ".join(tokens).replace(" ##", "").strip() + return out_string + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A BERT sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + token_ids_1 + sep + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + index = 0 + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "w", encoding="utf-8") as writer: + for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!" + ) + index = token_index + writer.write(token + "\n") + index += 1 + return (vocab_file,) + + +# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer +class BasicTokenizer(object): + """ + Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). + + Args: + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + do_split_on_punc (`bool`, *optional*, defaults to `True`): + In some instances we want to skip the basic punctuation splitting so that later tokenization can capture + the full context of the words, such as contractions. + """ + + def __init__( + self, + do_lower_case=True, + never_split=None, + tokenize_chinese_chars=True, + strip_accents=None, + do_split_on_punc=True, + ): + if never_split is None: + never_split = [] + self.do_lower_case = do_lower_case + self.never_split = set(never_split) + self.tokenize_chinese_chars = tokenize_chinese_chars + self.strip_accents = strip_accents + self.do_split_on_punc = do_split_on_punc + + def tokenize(self, text, never_split=None): + """ + Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. + + Args: + never_split (`List[str]`, *optional*) + Kept for backward compatibility purposes. Now implemented directly at the base class level (see + [`PreTrainedTokenizer.tokenize`]) List of token not to split. + """ + # union() returns a new set by concatenating the two sets. + never_split = self.never_split.union(set(never_split)) if never_split else self.never_split + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + if self.tokenize_chinese_chars: + text = self._tokenize_chinese_chars(text) + # prevents treating the same character with different unicode codepoints as different characters + unicode_normalized_text = unicodedata.normalize("NFC", text) + orig_tokens = whitespace_tokenize(unicode_normalized_text) + split_tokens = [] + for token in orig_tokens: + if token not in never_split: + if self.do_lower_case: + token = token.lower() + if self.strip_accents is not False: + token = self._run_strip_accents(token) + elif self.strip_accents: + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token, never_split)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text, never_split=None): + """Splits punctuation on a piece of text.""" + if not self.do_split_on_punc or (never_split is not None and text in never_split): + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xFFFD or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer +class WordpieceTokenizer(object): + """Runs WordPiece tokenization.""" + + def __init__(self, vocab, unk_token, max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """ + Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform + tokenization using the given vocabulary. + + For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through *BasicTokenizer*. + + Returns: + A list of wordpiece tokens. + """ + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens diff --git a/venv/lib/python3.10/site-packages/transformers/models/distilbert/tokenization_distilbert_fast.py b/venv/lib/python3.10/site-packages/transformers/models/distilbert/tokenization_distilbert_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..f1d69a27d67c081301adb22b263928eb02f4dd84 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/distilbert/tokenization_distilbert_fast.py @@ -0,0 +1,176 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for DistilBERT.""" + +import json +from typing import List, Optional, Tuple + +from tokenizers import normalizers + +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from .tokenization_distilbert import DistilBertTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} + + +class DistilBertTokenizerFast(PreTrainedTokenizerFast): + r""" + Construct a "fast" DistilBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + clean_text (`bool`, *optional*, defaults to `True`): + Whether or not to clean the text before tokenization by removing any control characters and replacing all + whitespaces by the classic one. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this + issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + wordpieces_prefix (`str`, *optional*, defaults to `"##"`): + The prefix for subwords. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = DistilBertTokenizer + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + do_lower_case=True, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + do_lower_case=do_lower_case, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) + if ( + normalizer_state.get("lowercase", do_lower_case) != do_lower_case + or normalizer_state.get("strip_accents", strip_accents) != strip_accents + or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars + ): + normalizer_class = getattr(normalizers, normalizer_state.pop("type")) + normalizer_state["lowercase"] = do_lower_case + normalizer_state["strip_accents"] = strip_accents + normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars + self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) + + self.do_lower_case = do_lower_case + + # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A BERT sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + + if token_ids_1 is not None: + output += token_ids_1 + [self.sep_token_id] + + return output + + # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.create_token_type_ids_from_sequences + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) diff --git a/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ba71f1f7c7a9e121cf3bdda9c1604cb5021a8a3b --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__init__.py @@ -0,0 +1,82 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_tf_available, + is_torch_available, +) + + +_import_structure = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_encoder_decoder"] = ["EncoderDecoderModel"] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_encoder_decoder"] = ["TFEncoderDecoderModel"] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_encoder_decoder"] = ["FlaxEncoderDecoderModel"] + +if TYPE_CHECKING: + from .configuration_encoder_decoder import EncoderDecoderConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_encoder_decoder import EncoderDecoderModel + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_encoder_decoder import TFEncoderDecoderModel + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fad4eebb7943e9e6d315f349bb833d89c8e5faad Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/configuration_encoder_decoder.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/configuration_encoder_decoder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2d4da88a1793a898eeb358382c23e507132402b1 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/configuration_encoder_decoder.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_encoder_decoder.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_encoder_decoder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3a828a6a896d7db6146ef5d4b18c1167ff1e22fe Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_encoder_decoder.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_flax_encoder_decoder.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_flax_encoder_decoder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a045b34c828344c8ef1879ceafe3484ad8f894e8 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_flax_encoder_decoder.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_tf_encoder_decoder.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_tf_encoder_decoder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ad14d8e315cc23955fa9e9bab34c03b5c8b7557a Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/__pycache__/modeling_tf_encoder_decoder.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/configuration_encoder_decoder.py b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/configuration_encoder_decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..8c0ae2771e81f16ab1f7e82a69e91f2fa1ad5407 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/configuration_encoder_decoder.py @@ -0,0 +1,106 @@ +# coding=utf-8 +# Copyright 2020 The HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class EncoderDecoderConfig(PretrainedConfig): + r""" + [`EncoderDecoderConfig`] is the configuration class to store the configuration of a [`EncoderDecoderModel`]. It is + used to instantiate an Encoder Decoder model according to the specified arguments, defining the encoder and decoder + configs. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + kwargs (*optional*): + Dictionary of keyword arguments. Notably: + + - **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines + the encoder config. + - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines + the decoder config. + + Examples: + + ```python + >>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel + + >>> # Initializing a BERT google-bert/bert-base-uncased style configuration + >>> config_encoder = BertConfig() + >>> config_decoder = BertConfig() + + >>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) + + >>> # Initializing a Bert2Bert model (with random weights) from the google-bert/bert-base-uncased style configurations + >>> model = EncoderDecoderModel(config=config) + + >>> # Accessing the model configuration + >>> config_encoder = model.config.encoder + >>> config_decoder = model.config.decoder + >>> # set decoder config to causal lm + >>> config_decoder.is_decoder = True + >>> config_decoder.add_cross_attention = True + + >>> # Saving the model, including its configuration + >>> model.save_pretrained("my-model") + + >>> # loading model and config from pretrained folder + >>> encoder_decoder_config = EncoderDecoderConfig.from_pretrained("my-model") + >>> model = EncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config) + ```""" + + model_type = "encoder-decoder" + is_composition = True + + def __init__(self, **kwargs): + super().__init__(**kwargs) + assert ( + "encoder" in kwargs and "decoder" in kwargs + ), "Config has to be initialized with encoder and decoder config" + encoder_config = kwargs.pop("encoder") + encoder_model_type = encoder_config.pop("model_type") + decoder_config = kwargs.pop("decoder") + decoder_model_type = decoder_config.pop("model_type") + + from ..auto.configuration_auto import AutoConfig + + self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config) + self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config) + self.is_encoder_decoder = True + + @classmethod + def from_encoder_decoder_configs( + cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs + ) -> PretrainedConfig: + r""" + Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and + decoder model configuration. + + Returns: + [`EncoderDecoderConfig`]: An instance of a configuration object + """ + logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") + decoder_config.is_decoder = True + decoder_config.add_cross_attention = True + + return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs) diff --git a/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_encoder_decoder.py b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_encoder_decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..16248fee64ce593a6d68d309259115abb083aba2 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_encoder_decoder.py @@ -0,0 +1,693 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Classes to support Encoder-Decoder architectures""" + + +import gc +import inspect +import os +import tempfile +import warnings +from typing import Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...configuration_utils import PretrainedConfig +from ...modeling_outputs import BaseModelOutput, Seq2SeqLMOutput +from ...modeling_utils import PreTrainedModel +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from ..auto.configuration_auto import AutoConfig +from ..auto.modeling_auto import AutoModel, AutoModelForCausalLM +from .configuration_encoder_decoder import EncoderDecoderConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "EncoderDecoderConfig" + +DEPRECATION_WARNING = ( + "Version v4.12.0 introduces a better way to train encoder-decoder models by computing the loss inside the" + " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if" + " fine-tuning a model trained with versions anterior to 4.12.0. The decoder_input_ids are now created based on the" + " labels, no need to pass them yourself anymore." +) + +ENCODER_DECODER_START_DOCSTRING = r""" + This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the + encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via + [`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`] + function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream + generative task, like summarization. + + The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation + tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation + Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi + Zhou, Wei Li, Peter J. Liu. + + After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models + (see the examples for more information). + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +ENCODER_DECODER_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + + If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the + right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`. + decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + encoder_outputs (`tuple(torch.FloatTensor)`, *optional*): + This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor + of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the + decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. This is useful if you want more control over how to convert `decoder_input_ids` indices + into associated vectors than the model's internal embedding lookup matrix. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, + ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. + kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: + + - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. + - With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function. +""" + + +def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): + """ + Shift input ids one token to the right. + """ + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() + if decoder_start_token_id is None: + raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") + shifted_input_ids[:, 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +@add_start_docstrings(ENCODER_DECODER_START_DOCSTRING) +class EncoderDecoderModel(PreTrainedModel): + r""" + [`EncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one + of the base model classes of the library as encoder and another one as decoder when created with the + :meth*~transformers.AutoModel.from_pretrained* class method for the encoder and + :meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder. + """ + + config_class = EncoderDecoderConfig + base_model_prefix = "encoder_decoder" + main_input_name = "input_ids" + supports_gradient_checkpointing = True + + def __init__( + self, + config: Optional[PretrainedConfig] = None, + encoder: Optional[PreTrainedModel] = None, + decoder: Optional[PreTrainedModel] = None, + ): + if config is None and (encoder is None or decoder is None): + raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") + if config is None: + config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) + else: + if not isinstance(config, self.config_class): + raise ValueError(f"Config: {config} has to be of type {self.config_class}") + + if config.decoder.cross_attention_hidden_size is not None: + if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: + raise ValueError( + "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" + f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" + f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" + " `config.encoder.hidden_size`." + ) + + # initialize with config + super().__init__(config) + + if encoder is None: + from ..auto.modeling_auto import AutoModel + + encoder = AutoModel.from_config(config.encoder) + + if decoder is None: + from ..auto.modeling_auto import AutoModelForCausalLM + + decoder = AutoModelForCausalLM.from_config(config.decoder) + + self.encoder = encoder + self.decoder = decoder + + if self.encoder.config.to_dict() != self.config.encoder.to_dict(): + logger.warning( + f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" + f" {self.config.encoder}" + ) + if self.decoder.config.to_dict() != self.config.decoder.to_dict(): + logger.warning( + f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" + f" {self.config.decoder}" + ) + + # make sure that the individual model's config refers to the shared config + # so that the updates to the config will be synced + self.encoder.config = self.config.encoder + self.decoder.config = self.config.decoder + + # encoder outputs might need to be projected to different dimension for decoder + if ( + self.encoder.config.hidden_size != self.decoder.config.hidden_size + and self.decoder.config.cross_attention_hidden_size is None + ): + self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size) + + if self.encoder.get_output_embeddings() is not None: + raise ValueError( + f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" + ) + + decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys()) + if "encoder_hidden_states" not in decoder_signature: + raise ValueError( + "The selected decoder is not prepared for the encoder hidden states to be passed. Please see the " + "following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350" + ) + + # tie encoder, decoder weights if config set accordingly + self.tie_weights() + + def tie_weights(self): + # tie encoder & decoder if needed + if self.config.tie_encoder_decoder: + # tie encoder and decoder base model + decoder_base_model_prefix = self.decoder.base_model_prefix + tied_weights = self._tie_encoder_decoder_weights( + self.encoder, + self.decoder._modules[decoder_base_model_prefix], + self.decoder.base_model_prefix, + "encoder", + ) + # Setting a dynamic variable instead of `_tied_weights_keys` because it's a class + # attributed not an instance member, therefore modifying it will modify the entire class + # Leading to issues on subsequent calls by different tests or subsequent calls. + self._dynamic_tied_weights_keys = tied_weights + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def get_input_embeddings(self): + return self.encoder.get_input_embeddings() + + def get_output_embeddings(self): + return self.decoder.get_output_embeddings() + + def set_output_embeddings(self, new_embeddings): + return self.decoder.set_output_embeddings(new_embeddings) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): + r""" + Example: + + ```python + >>> from transformers import EncoderDecoderModel + + >>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16") + ```""" + + from_tf = kwargs.pop("from_tf", False) + if from_tf: + from transformers import TFEncoderDecoderModel + + # a workaround to load from tensorflow checkpoint + # Using `_tf_model` won't work, because the weight names in the encoder/decoder of `_tf_model` get + # extended before saving those components. For example, The name of `_tf_model.encoder.vit` is + # `[top model name]/encoder/vit`, but the name of `tf_model.encoder.vit` is `[top model name]/vit`. The + # [top model name] is handled (stripped) by the conversion method, and the former case gets extra `encoder`, + # which should not occur when we want to save the components alone. + # There was a (very) ugly potential fix, which wasn't integrated to `transformers`: see + # https://github.com/huggingface/transformers/pull/13222/commits/dbb3c9de76eee235791d2064094654637c99f36d#r697304245 + # (the change in `src/transformers/modeling_tf_utils.py`) + _tf_model = TFEncoderDecoderModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) + config = _tf_model.config + + # Using `tf_model` instead + encoder = _tf_model.encoder.__class__(_tf_model.config.encoder) + decoder = _tf_model.decoder.__class__(_tf_model.config.decoder) + # Make sure models are built + encoder(encoder.dummy_inputs) + decoder(decoder.dummy_inputs) + + # Get the variable correspondence between `_tf_model` and `encoder` and `decoder` + encoder_variables = {} + for v in encoder.trainable_variables + encoder.non_trainable_variables: + encoder_variables["/".join(v.name.split("/")[1:])] = v + decoder_variables = {} + for v in decoder.trainable_variables + decoder.non_trainable_variables: + decoder_variables["/".join(v.name.split("/")[1:])] = v + + _encoder_variables = {} + for v in _tf_model.encoder.trainable_variables + _tf_model.encoder.non_trainable_variables: + _encoder_variables["/".join(v.name.split("/")[2:])] = v + _decoder_variables = {} + for v in _tf_model.decoder.trainable_variables + _tf_model.decoder.non_trainable_variables: + _decoder_variables["/".join(v.name.split("/")[2:])] = v + + # assign weight values to `encoder` and `decoder` from `_tf_model` + for name, v in encoder_variables.items(): + v.assign(_encoder_variables[name]) + for name, v in decoder_variables.items(): + v.assign(_decoder_variables[name]) + + tf_model = TFEncoderDecoderModel(encoder=encoder, decoder=decoder) + + # Deal with `enc_to_dec_proj` + if hasattr(_tf_model, "enc_to_dec_proj"): + tf_model(tf_model.dummy_inputs) + tf_model.enc_to_dec_proj.kernel.assign(_tf_model.enc_to_dec_proj.kernel) + tf_model.enc_to_dec_proj.bias.assign(_tf_model.enc_to_dec_proj.bias) + + with tempfile.TemporaryDirectory() as tmpdirname: + encoder_dir = os.path.join(tmpdirname, "encoder") + decoder_dir = os.path.join(tmpdirname, "decoder") + tf_model.encoder.save_pretrained(encoder_dir) + tf_model.decoder.save_pretrained(decoder_dir) + + if hasattr(tf_model, "enc_to_dec_proj"): + enc_to_dec_proj_weight = torch.transpose( + torch.from_numpy(tf_model.enc_to_dec_proj.kernel.numpy()), 1, 0 + ) + enc_to_dec_proj_bias = torch.from_numpy(tf_model.enc_to_dec_proj.bias.numpy()) + + del _tf_model + del tf_model + gc.collect() + + model = EncoderDecoderModel.from_encoder_decoder_pretrained( + encoder_dir, decoder_dir, encoder_from_tf=True, decoder_from_tf=True + ) + # This is only for copying some specific attributes of this particular model. + model.config = config + + if hasattr(model, "enc_to_dec_proj"): + model.enc_to_dec_proj.weight.data = enc_to_dec_proj_weight.contiguous() + model.enc_to_dec_proj.bias.data = enc_to_dec_proj_bias.contiguous() + + return model + + # At the moment fast initialization is not supported for composite models + if kwargs.get("_fast_init", False): + logger.warning( + "Fast initialization is currently not supported for EncoderDecoderModel. " + "Falling back to slow initialization..." + ) + kwargs["_fast_init"] = False + + return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) + + @classmethod + def from_encoder_decoder_pretrained( + cls, + encoder_pretrained_model_name_or_path: str = None, + decoder_pretrained_model_name_or_path: str = None, + *model_args, + **kwargs, + ) -> PreTrainedModel: + r""" + Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model + checkpoints. + + + The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train + the model, you need to first set it back in training mode with `model.train()`. + + Params: + encoder_pretrained_model_name_or_path (`str`, *optional*): + Information necessary to initiate the encoder. Can be either: + + - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. + - A path to a *directory* containing model weights saved using + [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. + - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In + this case, `from_tf` should be set to `True` and a configuration object should be provided as + `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a + PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. + + decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): + Information necessary to initiate the decoder. Can be either: + + - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. + - A path to a *directory* containing model weights saved using + [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. + - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In + this case, `from_tf` should be set to `True` and a configuration object should be provided as + `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a + PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. + + model_args (remaining positional arguments, *optional*): + All remaining positional arguments will be passed to the underlying model's `__init__` method. + + kwargs (remaining dictionary of keyword arguments, *optional*): + Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., + `output_attentions=True`). + + - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. + - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. + - To update the parent model configuration, do not use a prefix for each configuration parameter. + + Behaves differently depending on whether a `config` is provided or automatically loaded. + + Example: + + ```python + >>> from transformers import EncoderDecoderModel + + >>> # initialize a bert2bert from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized + >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased") + >>> # saving model after fine-tuning + >>> model.save_pretrained("./bert2bert") + >>> # load fine-tuned model + >>> model = EncoderDecoderModel.from_pretrained("./bert2bert") + ```""" + + kwargs_encoder = { + argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") + } + + kwargs_decoder = { + argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") + } + + # remove encoder, decoder kwargs from kwargs + for key in kwargs_encoder.keys(): + del kwargs["encoder_" + key] + for key in kwargs_decoder.keys(): + del kwargs["decoder_" + key] + + # Load and initialize the encoder and decoder + # The distinction between encoder and decoder at the model level is made + # by the value of the flag `is_decoder` that we need to set correctly. + encoder = kwargs_encoder.pop("model", None) + if encoder is None: + if encoder_pretrained_model_name_or_path is None: + raise ValueError( + "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " + "to be defined." + ) + + if "config" not in kwargs_encoder: + encoder_config, kwargs_encoder = AutoConfig.from_pretrained( + encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True + ) + + if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: + logger.info( + f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " + "from a decoder model. Cross-attention and casual mask are disabled." + ) + encoder_config.is_decoder = False + encoder_config.add_cross_attention = False + + kwargs_encoder["config"] = encoder_config + + encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) + + decoder = kwargs_decoder.pop("model", None) + if decoder is None: + if decoder_pretrained_model_name_or_path is None: + raise ValueError( + "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " + "to be defined." + ) + + if "config" not in kwargs_decoder: + decoder_config, kwargs_decoder = AutoConfig.from_pretrained( + decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True + ) + + if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: + logger.info( + f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" + f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" + f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." + ) + decoder_config.is_decoder = True + decoder_config.add_cross_attention = True + + kwargs_decoder["config"] = decoder_config + + if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: + logger.warning( + f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " + f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " + "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " + "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " + "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" + ) + + decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) + + # instantiate config with corresponding kwargs + config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) + return cls(encoder=encoder, decoder=decoder, config=config) + + @add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, + past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, + ) -> Union[Tuple, Seq2SeqLMOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import EncoderDecoderModel, BertTokenizer + >>> import torch + + >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") + >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained( + ... "google-bert/bert-base-uncased", "google-bert/bert-base-uncased" + ... ) # initialize Bert2Bert from pre-trained checkpoints + + >>> # training + >>> model.config.decoder_start_token_id = tokenizer.cls_token_id + >>> model.config.pad_token_id = tokenizer.pad_token_id + >>> model.config.vocab_size = model.config.decoder.vocab_size + + >>> input_ids = tokenizer("This is a really long text", return_tensors="pt").input_ids + >>> labels = tokenizer("This is the corresponding summary", return_tensors="pt").input_ids + >>> outputs = model(input_ids=input_ids, labels=labels) + >>> loss, logits = outputs.loss, outputs.logits + + >>> # save and load from pretrained + >>> model.save_pretrained("bert2bert") + >>> model = EncoderDecoderModel.from_pretrained("bert2bert") + + >>> # generation + >>> generated = model.generate(input_ids) + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} + + kwargs_decoder = { + argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") + } + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + **kwargs_encoder, + ) + elif isinstance(encoder_outputs, tuple): + encoder_outputs = BaseModelOutput(*encoder_outputs) + + encoder_hidden_states = encoder_outputs[0] + + # optionally project encoder_hidden_states + if ( + self.encoder.config.hidden_size != self.decoder.config.hidden_size + and self.decoder.config.cross_attention_hidden_size is None + ): + encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) + + if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + if decoder_attention_mask is None: + decoder_attention_mask = decoder_input_ids.new_tensor(decoder_input_ids != self.config.pad_token_id) + + # Decode + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=attention_mask, + inputs_embeds=decoder_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + use_cache=use_cache, + past_key_values=past_key_values, + return_dict=return_dict, + **kwargs_decoder, + ) + + # Compute loss independent from decoder (as some shift the logits inside them) + loss = None + if labels is not None: + warnings.warn(DEPRECATION_WARNING, FutureWarning) + logits = decoder_outputs.logits if return_dict else decoder_outputs[0] + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.view(-1)) + + if not return_dict: + if loss is not None: + return (loss,) + decoder_outputs + encoder_outputs + else: + return decoder_outputs + encoder_outputs + + return Seq2SeqLMOutput( + loss=loss, + logits=decoder_outputs.logits, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): + return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs + ): + decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) + decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None + input_dict = { + "attention_mask": attention_mask, + "decoder_attention_mask": decoder_attention_mask, + "decoder_input_ids": decoder_inputs["input_ids"], + "encoder_outputs": encoder_outputs, + "past_key_values": decoder_inputs["past_key_values"], + "use_cache": use_cache, + } + return input_dict + + def resize_token_embeddings(self, *args, **kwargs): + raise NotImplementedError( + "Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the" + " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" + " model.decoder.resize_token_embeddings(...))" + ) + + def _reorder_cache(self, past_key_values, beam_idx): + # apply decoder cache reordering here + return self.decoder._reorder_cache(past_key_values, beam_idx) diff --git a/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_flax_encoder_decoder.py b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_flax_encoder_decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..beecd080328e167a56e68b943c23822fa78d36b8 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_flax_encoder_decoder.py @@ -0,0 +1,899 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Classes to support Flax Encoder-Decoder architectures""" + + +import os +from typing import Optional, Tuple, Union + +import flax.linen as nn +import jax +import jax.numpy as jnp +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax +from jax.random import PRNGKey + +from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput +from ...modeling_flax_utils import FlaxPreTrainedModel +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from ..auto.configuration_auto import AutoConfig +from ..auto.modeling_flax_auto import FlaxAutoModel, FlaxAutoModelForCausalLM +from .configuration_encoder_decoder import EncoderDecoderConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "EncoderDecoderConfig" + +ENCODER_DECODER_START_DOCSTRING = r""" + This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the + encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via + [`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`] + function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream + generative task, like summarization. + + The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation + tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation + Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi + Zhou, Wei Li, Peter J. Liu. + + After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models + (see the examples for more information). + + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a Flax Linen + [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a + regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. + + Parameters: + config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + +ENCODER_DECODER_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + For sequence to sequence training, `decoder_input_ids` should be provided. `decoder_input_ids` should be + created outside of the model by shifting the `labels` to the right, replacing -100 by the `pad_token_id` + and prepending them with the `decoder_start_token_id`. + decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.encoder.max_position_embeddings - 1]`. + decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.decoder.max_position_embeddings - 1]`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + If set to `True`, the model will return a [`~utils.FlaxSeq2SeqLMOutput`] instead of a plain tuple. +""" + +ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.encoder.max_position_embeddings - 1]`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + If set to `True`, the model will return a [`~utils.FlaxBaseModelOutput`] instead of a plain tuple. +""" + +ENCODER_DECODER_DECODE_INPUTS_DOCSTRING = r""" + Args: + decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + For sequence to sequence training, `decoder_input_ids` should be provided. `decoder_input_ids` should be + created outside of the model by shifting the `labels` to the right, replacing -100 by the `pad_token_id` + and prepending them with the `decoder_start_token_id`. + encoder_outputs (`tuple(tuple(jnp.ndarray)`): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.decoder.max_position_embeddings - 1]`. + past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): + Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast + auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + If set to `True`, the model will return a [`~utils.FlaxCausalLMOutputWithCrossAttentions`] instead of a + plain tuple. +""" + + +class FlaxEncoderDecoderModule(nn.Module): + config: EncoderDecoderConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + encoder_config = self.config.encoder + decoder_config = self.config.decoder + + # Copied from `modeling_hybrid_clip.py` with modifications. + from ...models.auto.modeling_flax_auto import FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, FLAX_MODEL_MAPPING + + encoder_module = FLAX_MODEL_MAPPING[encoder_config.__class__].module_class + decoder_module = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING[decoder_config.__class__].module_class + + self.encoder = encoder_module(encoder_config, dtype=self.dtype) + self.decoder = decoder_module(decoder_config, dtype=self.dtype) + + # encoder outputs might need to be projected to different dimension for decoder + if ( + self.encoder.config.hidden_size != self.decoder.config.hidden_size + and self.decoder.config.cross_attention_hidden_size is None + ): + self.enc_to_dec_proj = nn.Dense( + self.decoder.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.decoder.config.initializer_range), + dtype=self.dtype, + ) + else: + self.enc_to_dec_proj = None + + def _get_encoder_module(self): + return self.encoder + + def _get_projection_module(self): + return self.enc_to_dec_proj + + def _get_decoder_module(self): + return self.decoder + + def __call__( + self, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + encoder_hidden_states = encoder_outputs[0] + + # optionally project encoder_hidden_states + if self.enc_to_dec_proj is not None: + encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) + + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + position_ids=decoder_position_ids, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return FlaxSeq2SeqLMOutput( + logits=decoder_outputs.logits, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings(ENCODER_DECODER_START_DOCSTRING) +class FlaxEncoderDecoderModel(FlaxPreTrainedModel): + r""" + [`FlaxEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with + the module (flax.nn.Module) of one of the base model classes of the library as encoder module and another one as + decoder module when created with the :meth*~transformers.FlaxAutoModel.from_pretrained* class method for the + encoder and :meth*~transformers.FlaxAutoModelForCausalLM.from_pretrained* class method for the decoder. + """ + + config_class = EncoderDecoderConfig + base_model_prefix = "encoder_decoder" + module_class = FlaxEncoderDecoderModule + + def __init__( + self, + config: EncoderDecoderConfig, + input_shape: Optional[Tuple] = None, + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + if input_shape is None: + input_shape = ((1, 1), (1, 1)) + + if not _do_init: + raise ValueError( + "`FlaxEncoderDecoderModel` cannot be created without initializing, `_do_init` must be `True`." + ) + + if config.decoder.cross_attention_hidden_size is not None: + if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: + raise ValueError( + "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" + f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" + f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" + " `config.encoder.hidden_size`." + ) + + module = self.module_class(config=config, dtype=dtype, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + encoder_input_shape, decoder_input_shape = input_shape + + # init input tensors + input_ids = jnp.zeros(encoder_input_shape, dtype="i4") + attention_mask = jnp.ones_like(input_ids) + decoder_input_ids = jnp.zeros(decoder_input_shape, dtype="i4") + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + decoder_batch_size, decoder_sequence_length = decoder_input_ids.shape + if not decoder_batch_size == batch_size: + raise ValueError( + f"The inputs of encoder and decoder should have the same batch size, but got {batch_size} for encoder" + f" and {decoder_batch_size} for decoder." + ) + decoder_position_ids = jnp.broadcast_to( + jnp.arange(decoder_sequence_length)[None, :], (decoder_batch_size, decoder_sequence_length) + ) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + random_params = self.module.init( + rngs, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + )["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + def init_cache(self, batch_size, max_length, encoder_outputs): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): + `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: + `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) + is a sequence of hidden-states at the output of the last layer of the encoder. Used in the + cross-attention of the decoder. + """ + # init input variables to retrieve cache + decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + decoder_position_ids = jnp.broadcast_to( + jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape + ) + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): + decoder_module = module._get_decoder_module() + return decoder_module( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + position_ids=decoder_position_ids, + **kwargs, + ) + + init_variables = self.module.init( + jax.random.PRNGKey(0), + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + init_cache=True, + method=_decoder_forward, # we only need to call the decoder to init the cache + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings(ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=_CONFIG_FOR_DOC) + def encode( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import FlaxEncoderDecoderModel, BertTokenizer + + >>> # initialize a bert2gpt2 from pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized + >>> model = FlaxEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2") + + >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") + + >>> text = "My friends are cool but they eat too many carbs." + >>> input_ids = tokenizer.encode(text, return_tensors="np") + >>> encoder_outputs = model.encode(input_ids) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + if position_ids is None: + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): + encode_module = module._get_encoder_module() + return encode_module(input_ids, attention_mask, position_ids, **kwargs) + + outputs = self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + method=_encoder_forward, + ) + + if return_dict: + outputs = FlaxBaseModelOutput( + last_hidden_state=outputs.last_hidden_state, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + return outputs + + @add_start_docstrings(ENCODER_DECODER_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import FlaxEncoderDecoderModel, BertTokenizer + >>> import jax.numpy as jnp + + >>> # initialize a bert2gpt2 from pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized + >>> model = FlaxEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2") + + >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") + + >>> text = "My friends are cool but they eat too many carbs." + >>> input_ids = tokenizer.encode(text, max_length=1024, return_tensors="np") + >>> encoder_outputs = model.encode(input_ids) + + >>> decoder_start_token_id = model.config.decoder.bos_token_id + >>> decoder_input_ids = jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> logits = outputs.logits + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + if encoder_attention_mask is None: + batch_size, sequence_length = encoder_hidden_states.shape[:2] + encoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + if decoder_position_ids is None: + if past_key_values is not None: + raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") + + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxBartAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward( + module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_hidden_states, **kwargs + ): + projection_module = module._get_projection_module() + decoder_module = module._get_decoder_module() + + # optionally project encoder_hidden_states + if projection_module is not None: + encoder_hidden_states = projection_module(encoder_hidden_states) + + return decoder_module( + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + encoder_hidden_states=encoder_hidden_states, + **kwargs, + ) + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past = outputs + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past = outputs + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + @add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def __call__( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + decoder_input_ids: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Examples: + + ```python + >>> from transformers import FlaxEncoderDecoderModel, BertTokenizer, GPT2Tokenizer + + >>> # load a fine-tuned bert2gpt2 model + >>> model = FlaxEncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16") + >>> # load input & output tokenizer + >>> tokenizer_input = BertTokenizer.from_pretrained("google-bert/bert-base-cased") + >>> tokenizer_output = GPT2Tokenizer.from_pretrained("openai-community/gpt2") + + >>> article = '''Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members + >>> singing a racist chant. SAE's national chapter suspended the students, + >>> but University of Oklahoma President David Boren took it a step further, + >>> saying the university's affiliation with the fraternity is permanently done.''' + + >>> input_ids = tokenizer_input(article, add_special_tokens=True, return_tensors="np").input_ids + + >>> # use GPT2's eos_token as the pad as well as eos token + >>> model.config.eos_token_id = model.config.decoder.eos_token_id + >>> model.config.pad_token_id = model.config.eos_token_id + + >>> sequences = model.generate(input_ids, num_beams=4, max_length=12).sequences + + >>> summary = tokenizer_output.batch_decode(sequences, skip_special_tokens=True)[0] + >>> assert summary == "SAS Alpha Epsilon suspended Sigma Alpha Epsilon members" + ``` + """ + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # prepare encoder inputs + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + if position_ids is None: + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + # prepare decoder inputs + if decoder_input_ids is None: + raise ValueError( + "`decoder_input_ids` cannot be `None`. For sequence to sequence training, `decoder_position_ids` must" + " be specified as an input argument." + ) + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + if decoder_position_ids is None: + batch_size, sequence_length = decoder_input_ids.shape + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + # Handle any PRNG if needed + rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} + + return self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + max_length, + attention_mask: Optional[jax.Array] = None, + decoder_attention_mask: Optional[jax.Array] = None, + encoder_outputs=None, + **kwargs, + ): + # initializing the cache + batch_size, seq_length = decoder_input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since the decoder uses a causal mask, those positions are masked anyways. + # Thus we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if decoder_attention_mask is not None: + decoder_position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 + extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) + else: + decoder_position_ids = jnp.broadcast_to( + jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length) + ) + + return { + "past_key_values": past_key_values, + "encoder_outputs": encoder_outputs, + "encoder_attention_mask": attention_mask, + "decoder_attention_mask": extended_attention_mask, + "decoder_position_ids": decoder_position_ids, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 + return model_kwargs + + @classmethod + def from_encoder_decoder_pretrained( + cls, + encoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, + decoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, + *model_args, + **kwargs, + ) -> FlaxPreTrainedModel: + r""" + Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model + checkpoints. + + Params: + encoder_pretrained_model_name_or_path (`Union[str, os.PathLike]`, *optional*): + Information necessary to initiate the encoder. Can be either: + + - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. + - A path to a *directory* containing model weights saved using + [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. + + decoder_pretrained_model_name_or_path (`Union[str, os.PathLike]`, *optional*, defaults to `None`): + Information necessary to initiate the decoder. Can be either: + + - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. + - A path to a *directory* containing model weights saved using + [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. + + model_args (remaining positional arguments, *optional*): + All remaning positional arguments will be passed to the underlying model's `__init__` method. + + kwargs (remaining dictionary of keyword arguments, *optional*): + Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., + `output_attentions=True`). + + - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. + - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. + - To update the parent model configuration, do not use a prefix for each configuration parameter. + + Behaves differently depending on whether a `config` is provided or automatically loaded. + + Example: + + ```python + >>> from transformers import FlaxEncoderDecoderModel + + >>> # initialize a bert2gpt2 from pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized + >>> model = FlaxEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2") + >>> # saving model after fine-tuning + >>> model.save_pretrained("./bert2gpt2") + >>> # load fine-tuned model + >>> model = FlaxEncoderDecoderModel.from_pretrained("./bert2gpt2") + ```""" + + kwargs_encoder = { + argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") + } + + kwargs_decoder = { + argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") + } + + # remove encoder, decoder kwargs from kwargs + for key in kwargs_encoder.keys(): + del kwargs["encoder_" + key] + for key in kwargs_decoder.keys(): + del kwargs["decoder_" + key] + + # Load and initialize the encoder and decoder + # The distinction between encoder and decoder at the model level is made + # by the value of the flag `is_decoder` that we need to set correctly. + encoder = kwargs_encoder.pop("model", None) + if encoder is None: + if encoder_pretrained_model_name_or_path is None: + raise ValueError( + "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " + "to be defined." + ) + + if "config" not in kwargs_encoder: + encoder_config, kwargs_encoder = AutoConfig.from_pretrained( + encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True + ) + if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: + logger.info( + f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " + "from a decoder model. Cross-attention and casual mask are disabled." + ) + encoder_config.is_decoder = False + encoder_config.add_cross_attention = False + + kwargs_encoder["config"] = encoder_config + + encoder = FlaxAutoModel.from_pretrained( + encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder + ) + + decoder = kwargs_decoder.pop("model", None) + if decoder is None: + if decoder_pretrained_model_name_or_path is None: + raise ValueError( + "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " + "to be defined." + ) + + if "config" not in kwargs_decoder: + decoder_config, kwargs_decoder = AutoConfig.from_pretrained( + decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True + ) + if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: + logger.info( + f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" + f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" + f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." + ) + decoder_config.is_decoder = True + decoder_config.add_cross_attention = True + + kwargs_decoder["config"] = decoder_config + + if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: + logger.warning( + f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " + f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " + "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " + "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " + "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" + ) + + decoder = FlaxAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) + + # instantiate config with corresponding kwargs + dtype = kwargs.pop("dtype", jnp.float32) + config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) + + # init model + model = cls(config, dtype=dtype) + model.params["encoder"] = encoder.params + model.params["decoder"] = decoder.params + + return model diff --git a/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_tf_encoder_decoder.py b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_tf_encoder_decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..855fb767d13d73173365034f485b43174ed583d9 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/encoder_decoder/modeling_tf_encoder_decoder.py @@ -0,0 +1,663 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Classes to support TF Encoder-Decoder architectures""" + + +from __future__ import annotations + +import inspect +import re +import warnings +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...configuration_utils import PretrainedConfig +from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput +from ...modeling_tf_utils import ( + TFCausalLanguageModelingLoss, + TFModelInputType, + TFPreTrainedModel, + get_initializer, + keras, + unpack_inputs, +) +from ...tf_utils import shape_list +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from ..auto.configuration_auto import AutoConfig +from ..auto.modeling_tf_auto import TFAutoModel, TFAutoModelForCausalLM +from .configuration_encoder_decoder import EncoderDecoderConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "EncoderDecoderConfig" + +DEPRECATION_WARNING = ( + "Version v4.17.0 introduces a better way to train encoder-decoder models by computing the loss inside the" + " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if" + " fine-tuning a model trained with versions anterior to 4.17.0. The decoder_input_ids are now created based on the" + " labels, no need to pass them yourself anymore." +) + +ENCODER_DECODER_START_DOCSTRING = r""" + This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the + encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via + [`~TFAutoModel.from_pretrained`] function and the decoder is loaded via [`~TFAutoModelForCausalLM.from_pretrained`] + function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream + generative task, like summarization. + + The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation + tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation + Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi + Zhou, Wei Li, Peter J. Liu. + + After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models + (see the examples for more information). + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +ENCODER_DECODER_INPUTS_DOCSTRING = r""" + Args: + input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + + If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + Provide for sequence to sequence training to the decoder. Indices can be obtained using + [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for + details. + decoder_attention_mask (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*): + This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` (`tf.Tensor` of shape `({0}, hidden_size)`) is a tensor of hidden-states at the output + of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `({0})`. + inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + decoder_inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. This is useful if you want more control over how to convert `decoder_input_ids` indices + into associated vectors than the model's internal embedding lookup matrix. + labels (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, + ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). + kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: + + - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. + - With a *decoder_* prefix which will be input as `**decoder_kwargs`` for the decoder forward function. +""" + + +def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): + if pad_token_id is None: + raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") + pad_token_id = tf.cast(pad_token_id, input_ids.dtype) + + if decoder_start_token_id is None: + raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") + decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) + + start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) + shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids = tf.where( + shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids + ) + + # "Verify that `labels` has only positive values and -100" + assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) + + # Make sure the assertion op is called by wrapping the result in an identity no-op + with tf.control_dependencies([assert_gte0]): + shifted_input_ids = tf.identity(shifted_input_ids) + + return shifted_input_ids + + +@add_start_docstrings(ENCODER_DECODER_START_DOCSTRING) +class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss): + r""" + [`TFEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one + of the base model classes of the library as encoder and another one as decoder when created with the + [`~TFAutoModel.from_pretrained`] class method for the encoder and [`~TFAutoModelForCausalLM.from_pretrained`] class + method for the decoder. + """ + + config_class = EncoderDecoderConfig + base_model_prefix = "encoder_decoder" + load_weight_prefix = "tf_encoder_decoder_model" + + def __init__( + self, + config: Optional[PretrainedConfig] = None, + encoder: Optional[TFPreTrainedModel] = None, + decoder: Optional[TFPreTrainedModel] = None, + ): + if config is None and (encoder is None or decoder is None): + raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") + if config is None: + config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) + else: + if not isinstance(config, self.config_class): + raise ValueError(f"config: {config} has to be of type {self.config_class}") + + if config.decoder.cross_attention_hidden_size is not None: + if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: + raise ValueError( + "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" + f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" + f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" + " `config.encoder.hidden_size`." + ) + + # initialize with config + super().__init__(config) + + if encoder is None: + encoder = TFAutoModel.from_config(config.encoder, name="encoder") + + if decoder is None: + decoder = TFAutoModelForCausalLM.from_config(config.decoder, name="decoder") + + self.encoder = encoder + self.decoder = decoder + + if self.encoder.config.to_dict() != self.config.encoder.to_dict(): + logger.warning( + f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" + f" {self.config.encoder}" + ) + if self.decoder.config.to_dict() != self.config.decoder.to_dict(): + logger.warning( + f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" + f" {self.config.decoder}" + ) + + # make sure that the individual model's config refers to the shared config + # so that the updates to the config will be synced + self.encoder.config = self.config.encoder + self.decoder.config = self.config.decoder + + # encoder outputs might need to be projected to different dimension for decoder + if ( + self.encoder.config.hidden_size != self.decoder.config.hidden_size + and self.decoder.config.cross_attention_hidden_size is None + ): + self.enc_to_dec_proj = keras.layers.Dense( + units=self.decoder.config.hidden_size, + kernel_initializer=get_initializer(config.encoder.initializer_range), + name="enc_to_dec_proj", + ) + + if self.encoder.get_output_embeddings() is not None: + raise ValueError( + f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" + ) + + decoder_signature = set(inspect.signature(self.decoder.call).parameters.keys()) + if "encoder_hidden_states" not in decoder_signature: + raise ValueError( + "The selected decoder is not prepared for the encoder hidden states to be passed. Please see the " + "following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350" + ) + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def get_input_embeddings(self): + return self.encoder.get_input_embeddings() + + def get_output_embeddings(self): + return self.decoder.get_output_embeddings() + + def set_output_embeddings(self, new_embeddings): + return self.decoder.set_output_embeddings(new_embeddings) + + def tf_to_pt_weight_rename(self, tf_weight): + # Matt: The TF and PT weights don't align because our TF base classes have an extra layer compared to PT models + # (the main model stem is in the MainLayer class). If we remove that layer, then weight names sync up as normal. + # However, the name of that extra layer is the name of the MainLayer in the base model. We make the assumption + # here that the config model_type is the same as the name of the MainLayer. I don't know of anywhere that's + # not the case, and I wasn't sure how else to go from the config to the correct MainLayer name! + + # This override is only needed in the case where we're crossloading weights from PT. However, since weights are + # often safetensors now, we don't know if we're going to be crossloading until we sniff the weights file. + # Therefore, we specify tf_to_pt_weight_rename anyway, and let the super method figure out if it needs it + # or not. + encoder_model_type = self.config.encoder.model_type + if "encoder" in tf_weight and "decoder" not in tf_weight: + return (re.sub(rf"encoder\.{encoder_model_type}\.", "encoder.", tf_weight),) + else: + return (tf_weight,) + + @classmethod + def from_encoder_decoder_pretrained( + cls, + encoder_pretrained_model_name_or_path: str = None, + decoder_pretrained_model_name_or_path: str = None, + *model_args, + **kwargs, + ) -> TFPreTrainedModel: + r""" + Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model + checkpoints. + + + Params: + encoder_pretrained_model_name_or_path (`str`, *optional*): + Information necessary to initiate the encoder. Can be either: + + - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. + - A path to a *directory* containing model weights saved using + [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. + - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, + `encoder_from_pt` should be set to `True`. + + decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): + Information necessary to initiate the decoder. Can be either: + + - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. + - A path to a *directory* containing model weights saved using + [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. + - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, + `decoder_from_pt` should be set to `True`. + + model_args (remaining positional arguments, *optional*): + All remaning positional arguments will be passed to the underlying model's `__init__` method. + + kwargs (remaining dictionary of keyword arguments, *optional*): + Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., + `output_attentions=True`). + + - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. + - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. + - To update the parent model configuration, do not use a prefix for each configuration parameter. + + Behaves differently depending on whether a `config` is provided or automatically loaded. + + Example: + + ```python + >>> from transformers import TFEncoderDecoderModel + + >>> # initialize a bert2gpt2 from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized + >>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "openai-community/gpt2") + >>> # saving model after fine-tuning + >>> model.save_pretrained("./bert2gpt2") + >>> # load fine-tuned model + >>> model = TFEncoderDecoderModel.from_pretrained("./bert2gpt2") + ```""" + + kwargs_encoder = { + argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") + } + + kwargs_decoder = { + argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") + } + + # remove encoder, decoder kwargs from kwargs + for key in kwargs_encoder.keys(): + del kwargs["encoder_" + key] + for key in kwargs_decoder.keys(): + del kwargs["decoder_" + key] + + # Load and initialize the encoder and decoder + # The distinction between encoder and decoder at the model level is made + # by the value of the flag `is_decoder` that we need to set correctly. + encoder = kwargs_encoder.pop("model", None) + if encoder is None: + if encoder_pretrained_model_name_or_path is None: + raise ValueError( + "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " + "to be defined." + ) + + if "config" not in kwargs_encoder: + encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path) + if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: + logger.info( + f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " + "from a decoder model. Cross-attention and casual mask are disabled." + ) + encoder_config.is_decoder = False + encoder_config.add_cross_attention = False + + kwargs_encoder["config"] = encoder_config + + kwargs_encoder["name"] = "encoder" + kwargs_encoder["load_weight_prefix"] = cls.load_weight_prefix + encoder = TFAutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) + + decoder = kwargs_decoder.pop("model", None) + if decoder is None: + if decoder_pretrained_model_name_or_path is None: + raise ValueError( + "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " + "to be defined." + ) + + if "config" not in kwargs_decoder: + decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path) + if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: + logger.info( + f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" + f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" + f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." + ) + decoder_config.is_decoder = True + decoder_config.add_cross_attention = True + + kwargs_decoder["config"] = decoder_config + + if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: + logger.warning( + f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " + f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " + "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " + "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " + "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" + ) + + kwargs_decoder["name"] = "decoder" + kwargs_decoder["load_weight_prefix"] = cls.load_weight_prefix + decoder = TFAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) + + # Make sure these 2 `keras.Model` have fixed names so `from_pretrained` could load model weights correctly. + if encoder.name != "encoder": + raise ValueError("encoder model must be created with the name `encoder`.") + if decoder.name != "decoder": + raise ValueError("decoder model must be created with the name `decoder`.") + + # instantiate config with corresponding kwargs + config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) + return cls(encoder=encoder, decoder=decoder, config=config) + + @unpack_inputs + @add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + decoder_input_ids: np.ndarray | tf.Tensor | None = None, + decoder_attention_mask: np.ndarray | tf.Tensor | None = None, + encoder_outputs: np.ndarray | tf.Tensor | None = None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, + labels: np.ndarray | tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + **kwargs, + ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import TFEncoderDecoderModel, BertTokenizer + + >>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized + >>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2") + + >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") + + >>> # forward + >>> input_ids = tokenizer.encode( + ... "Hello, my dog is cute", add_special_tokens=True, return_tensors="tf" + ... ) # Batch size 1 + >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids) + + >>> # training + >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=input_ids) + >>> loss, logits = outputs.loss, outputs.logits + + >>> # save and load from pretrained + >>> model.save_pretrained("bert2gpt2") + >>> model = TFEncoderDecoderModel.from_pretrained("bert2gpt2") + + >>> # generation + >>> generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.bos_token_id) + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} + + kwargs_decoder = { + argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") + } + + # Let the user be responsible for the expected format. + if encoder_outputs is not None: + if return_dict and not isinstance(encoder_outputs, ModelOutput): + raise ValueError( + "If `return_dict=True` and `encoder_outputs` is provided, it should be an instance of " + f"`ModelOutput`. Got an instance {type(encoder_outputs)} for `encoder_outputs`." + ) + + if encoder_outputs is None: + encoder_inputs = { + "input_ids": input_ids, + "attention_mask": attention_mask, + "inputs_embeds": inputs_embeds, + "output_attentions": output_attentions, + "output_hidden_states": output_hidden_states, + "return_dict": return_dict, + "training": training, + } + + # Add arguments to encoder from `kwargs_encoder` + encoder_inputs.update(kwargs_encoder) + + # Handle the case where the inputs are passed as a single dict which contains `labels`. + # The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this + # parameter (otherwise, an error occurs when `input_processing` is called inside `self.encoder.call()`). + if "labels" in encoder_inputs: + labels = encoder_inputs.pop("labels") + + # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. + if "decoder_input_ids" in encoder_inputs: + decoder_input_ids = encoder_inputs.pop("decoder_input_ids") + # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. + if "decoder_attention_mask" in encoder_inputs: + decoder_attention_mask = encoder_inputs.pop("decoder_attention_mask") + + encoder_outputs = self.encoder(**encoder_inputs) + + encoder_hidden_states = encoder_outputs[0] + + # optionally project encoder_hidden_states + if ( + self.encoder.config.hidden_size != self.decoder.config.hidden_size + and self.decoder.config.cross_attention_hidden_size is None + ): + encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) + + if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + decoder_inputs = { + "input_ids": decoder_input_ids, + "attention_mask": decoder_attention_mask, + "encoder_hidden_states": encoder_hidden_states, + "encoder_attention_mask": attention_mask, + "inputs_embeds": decoder_inputs_embeds, + "output_attentions": output_attentions, + "output_hidden_states": output_hidden_states, + "use_cache": use_cache, + "past_key_values": past_key_values, + "return_dict": return_dict, + "training": training, + } + + # Add arguments to decoder from `kwargs_decoder` + decoder_inputs.update(kwargs_decoder) + + decoder_outputs = self.decoder(**decoder_inputs) + + logits = decoder_outputs[0] + + # Compute loss independent from decoder (as some shift the logits inside them) + loss = None + if labels is not None: + warnings.warn(DEPRECATION_WARNING, FutureWarning) + loss = self.hf_compute_loss(labels, logits) + + if not return_dict: + past_key_values = None + if use_cache: + past_key_values = decoder_outputs[1] + # The starting index of the remaining elements in `decoder_outputs` + start_index = sum([1 if x is not None else 0 for x in (loss, logits, past_key_values)]) + + if not isinstance(encoder_outputs, tuple): + encoder_outputs = encoder_outputs.to_tuple() + output = (loss, logits, past_key_values) + decoder_outputs[start_index:] + encoder_outputs + output = tuple([x for x in output if x is not None]) + return output + + return TFSeq2SeqLMOutput( + loss=loss, + logits=decoder_outputs.logits, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs + ): + decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) + decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None + past_key_values = decoder_inputs.get("past_key_values") + if past_key_values is None: + past_key_values = decoder_inputs.get("past") # e.g. on TF GPT2 + input_dict = { + "input_ids": None, # needs to be passed to make Keras.layer.__call__ happy + "attention_mask": attention_mask, + "decoder_attention_mask": decoder_attention_mask, + "decoder_input_ids": decoder_inputs["input_ids"], + # TODO (joao): the `TFBaseModelOutput` wrapper should not be needed after the generate refactor is complete + "encoder_outputs": TFBaseModelOutput(last_hidden_state=encoder_outputs[0]), + "past_key_values": past_key_values, + "use_cache": use_cache, + } + return input_dict + + def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): + return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) + + def resize_token_embeddings(self, *args, **kwargs): + raise NotImplementedError( + "Resizing the embedding layers via the TFEncoderDecoderModel directly is not supported.Please use the" + " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" + " model.decoder.resize_token_embeddings(...))" + ) + + def _reorder_cache(self, past, beam_idx): + # apply decoder cache reordering here + return self.decoder._reorder_cache(past, beam_idx) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "enc_to_dec_proj", None) is not None: + with tf.name_scope(self.enc_to_dec_proj.name): + self.enc_to_dec_proj.build([None, None, self.encoder.config.hidden_size]) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) diff --git a/venv/lib/python3.10/site-packages/transformers/models/ibert/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/ibert/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..637eb08eaf412d136e2e8ccf7a1d7d92147d364f --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/ibert/__init__.py @@ -0,0 +1,62 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_ibert"] = [ + "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", + "IBertForMaskedLM", + "IBertForMultipleChoice", + "IBertForQuestionAnswering", + "IBertForSequenceClassification", + "IBertForTokenClassification", + "IBertModel", + "IBertPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_ibert import ( + IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, + IBertForMaskedLM, + IBertForMultipleChoice, + IBertForQuestionAnswering, + IBertForSequenceClassification, + IBertForTokenClassification, + IBertModel, + IBertPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..78d0442dd41d516e72589fa1d88613dc836e2b05 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/configuration_ibert.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/configuration_ibert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c06a4f9542878f28e76aac39920de4bcc17fa364 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/configuration_ibert.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/modeling_ibert.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/modeling_ibert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..252824bb7e0f045ea1f108092d2f5f561f149a16 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/modeling_ibert.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/quant_modules.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/quant_modules.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..36dad3e7bac5532e285e063ba90bd041ee3bbb75 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/ibert/__pycache__/quant_modules.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/ibert/configuration_ibert.py b/venv/lib/python3.10/site-packages/transformers/models/ibert/configuration_ibert.py new file mode 100644 index 0000000000000000000000000000000000000000..94e040d417ef8dc81df1b97d736f43ebc098309e --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/ibert/configuration_ibert.py @@ -0,0 +1,141 @@ +# coding=utf-8 +# Copyright 2021 The I-BERT Authors (Sehoon Kim, Amir Gholami, Zhewei Yao, +# Michael Mahoney, Kurt Keutzer - UC Berkeley) and The HuggingFace Inc. team. +# Copyright (c) 20121, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" I-BERT configuration""" +from collections import OrderedDict +from typing import Mapping + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class IBertConfig(PretrainedConfig): + """ + This is the configuration class to store the configuration of a [`IBertModel`]. It is used to instantiate a I-BERT + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the IBERT + [kssteven/ibert-roberta-base](https://huggingface.co/kssteven/ibert-roberta-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the I-BERT model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`IBertModel`] + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`IBertModel`] + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For + positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to + [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). + For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models + with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). + quant_mode (`bool`, *optional*, defaults to `False`): + Whether to quantize the model or not. + force_dequant (`str`, *optional*, defaults to `"none"`): + Force dequantize specific nonlinear layer. Dequatized layers are then executed with full precision. + `"none"`, `"gelu"`, `"softmax"`, `"layernorm"` and `"nonlinear"` are supported. As deafult, it is set as + `"none"`, which does not dequantize any layers. Please specify `"gelu"`, `"softmax"`, or `"layernorm"` to + dequantize GELU, Softmax, or LayerNorm, respectively. `"nonlinear"` will dequantize all nonlinear layers, + i.e., GELU, Softmax, and LayerNorm. + """ + + model_type = "ibert" + + def __init__( + self, + vocab_size=30522, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + position_embedding_type="absolute", + quant_mode=False, + force_dequant="none", + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.quant_mode = quant_mode + self.force_dequant = force_dequant + + +class IBertOnnxConfig(OnnxConfig): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "multiple-choice": + dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} + else: + dynamic_axis = {0: "batch", 1: "sequence"} + return OrderedDict( + [ + ("input_ids", dynamic_axis), + ("attention_mask", dynamic_axis), + ] + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/ibert/modeling_ibert.py b/venv/lib/python3.10/site-packages/transformers/models/ibert/modeling_ibert.py new file mode 100644 index 0000000000000000000000000000000000000000..54c37f507e3a63983c87ebb408327a5650431934 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/ibert/modeling_ibert.py @@ -0,0 +1,1353 @@ +# coding=utf-8 +# Copyright 2021 The I-BERT Authors (Sehoon Kim, Amir Gholami, Zhewei Yao, +# Michael Mahoney, Kurt Keutzer - UC Berkeley) and The HuggingFace Inc. team. +# Copyright (c) 20121, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""PyTorch I-BERT model.""" + +import math +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import gelu +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPoolingAndCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_ibert import IBertConfig +from .quant_modules import IntGELU, IntLayerNorm, IntSoftmax, QuantAct, QuantEmbedding, QuantLinear + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "kssteven/ibert-roberta-base" +_CONFIG_FOR_DOC = "IBertConfig" + + +from ..deprecated._archive_maps import IBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class IBertEmbeddings(nn.Module): + """ + Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. + """ + + def __init__(self, config): + super().__init__() + self.quant_mode = config.quant_mode + self.embedding_bit = 8 + self.embedding_act_bit = 16 + self.act_bit = 8 + self.ln_input_bit = 22 + self.ln_output_bit = 32 + + self.word_embeddings = QuantEmbedding( + config.vocab_size, + config.hidden_size, + padding_idx=config.pad_token_id, + weight_bit=self.embedding_bit, + quant_mode=self.quant_mode, + ) + self.token_type_embeddings = QuantEmbedding( + config.type_vocab_size, config.hidden_size, weight_bit=self.embedding_bit, quant_mode=self.quant_mode + ) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + + # End copy + self.padding_idx = config.pad_token_id + self.position_embeddings = QuantEmbedding( + config.max_position_embeddings, + config.hidden_size, + padding_idx=self.padding_idx, + weight_bit=self.embedding_bit, + quant_mode=self.quant_mode, + ) + + # Integer-only addition between embeddings + self.embeddings_act1 = QuantAct(self.embedding_act_bit, quant_mode=self.quant_mode) + self.embeddings_act2 = QuantAct(self.embedding_act_bit, quant_mode=self.quant_mode) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = IntLayerNorm( + config.hidden_size, + eps=config.layer_norm_eps, + output_bit=self.ln_output_bit, + quant_mode=self.quant_mode, + force_dequant=config.force_dequant, + ) + self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward( + self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 + ): + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = create_position_ids_from_input_ids( + input_ids, self.padding_idx, past_key_values_length + ).to(input_ids.device) + else: + position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) + + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds, inputs_embeds_scaling_factor = self.word_embeddings(input_ids) + else: + inputs_embeds_scaling_factor = None + token_type_embeddings, token_type_embeddings_scaling_factor = self.token_type_embeddings(token_type_ids) + + embeddings, embeddings_scaling_factor = self.embeddings_act1( + inputs_embeds, + inputs_embeds_scaling_factor, + identity=token_type_embeddings, + identity_scaling_factor=token_type_embeddings_scaling_factor, + ) + + if self.position_embedding_type == "absolute": + position_embeddings, position_embeddings_scaling_factor = self.position_embeddings(position_ids) + embeddings, embeddings_scaling_factor = self.embeddings_act1( + embeddings, + embeddings_scaling_factor, + identity=position_embeddings, + identity_scaling_factor=position_embeddings_scaling_factor, + ) + + embeddings, embeddings_scaling_factor = self.LayerNorm(embeddings, embeddings_scaling_factor) + embeddings = self.dropout(embeddings) + embeddings, embeddings_scaling_factor = self.output_activation(embeddings, embeddings_scaling_factor) + return embeddings, embeddings_scaling_factor + + def create_position_ids_from_inputs_embeds(self, inputs_embeds): + """ + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. + + Args: + inputs_embeds: torch.Tensor + + Returns: torch.Tensor + """ + input_shape = inputs_embeds.size()[:-1] + sequence_length = input_shape[1] + + position_ids = torch.arange( + self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device + ) + return position_ids.unsqueeze(0).expand(input_shape) + + +class IBertSelfAttention(nn.Module): + def __init__(self, config): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + self.quant_mode = config.quant_mode + self.weight_bit = 8 + self.bias_bit = 32 + self.act_bit = 8 + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + # Q, K, V Linear layers + self.query = QuantLinear( + config.hidden_size, + self.all_head_size, + bias=True, + weight_bit=self.weight_bit, + bias_bit=self.bias_bit, + quant_mode=self.quant_mode, + per_channel=True, + ) + self.key = QuantLinear( + config.hidden_size, + self.all_head_size, + bias=True, + weight_bit=self.weight_bit, + bias_bit=self.bias_bit, + quant_mode=self.quant_mode, + per_channel=True, + ) + self.value = QuantLinear( + config.hidden_size, + self.all_head_size, + bias=True, + weight_bit=self.weight_bit, + bias_bit=self.bias_bit, + quant_mode=self.quant_mode, + per_channel=True, + ) + + # Requantization (32bit -> 8bit) for Q, K, V activations + self.query_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) + self.key_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) + self.value_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) + self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + if self.position_embedding_type != "absolute": + raise ValueError("I-BERT only supports 'absolute' for `config.position_embedding_type`") + + self.softmax = IntSoftmax(self.act_bit, quant_mode=self.quant_mode, force_dequant=config.force_dequant) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states, + hidden_states_scaling_factor, + attention_mask=None, + head_mask=None, + output_attentions=False, + ): + # Projection + mixed_query_layer, mixed_query_layer_scaling_factor = self.query(hidden_states, hidden_states_scaling_factor) + mixed_key_layer, mixed_key_layer_scaling_factor = self.key(hidden_states, hidden_states_scaling_factor) + mixed_value_layer, mixed_value_layer_scaling_factor = self.value(hidden_states, hidden_states_scaling_factor) + + # Requantization + query_layer, query_layer_scaling_factor = self.query_activation( + mixed_query_layer, mixed_query_layer_scaling_factor + ) + key_layer, key_layer_scaling_factor = self.key_activation(mixed_key_layer, mixed_key_layer_scaling_factor) + value_layer, value_layer_scaling_factor = self.value_activation( + mixed_value_layer, mixed_value_layer_scaling_factor + ) + + # Transpose + query_layer = self.transpose_for_scores(query_layer) + key_layer = self.transpose_for_scores(key_layer) + value_layer = self.transpose_for_scores(value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + scale = math.sqrt(self.attention_head_size) + attention_scores = attention_scores / scale + if self.quant_mode: + attention_scores_scaling_factor = query_layer_scaling_factor * key_layer_scaling_factor / scale + else: + attention_scores_scaling_factor = None + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in IBertModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs, attention_probs_scaling_factor = self.softmax( + attention_scores, attention_scores_scaling_factor + ) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + if attention_probs_scaling_factor is not None: + context_layer_scaling_factor = attention_probs_scaling_factor * value_layer_scaling_factor + else: + context_layer_scaling_factor = None + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + # requantization: 32-bit -> 8-bit + context_layer, context_layer_scaling_factor = self.output_activation( + context_layer, context_layer_scaling_factor + ) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + output_scaling_factor = ( + (context_layer_scaling_factor, attention_probs_scaling_factor) + if output_attentions + else (context_layer_scaling_factor,) + ) + + return outputs, output_scaling_factor + + +class IBertSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.quant_mode = config.quant_mode + self.act_bit = 8 + self.weight_bit = 8 + self.bias_bit = 32 + self.ln_input_bit = 22 + self.ln_output_bit = 32 + + self.dense = QuantLinear( + config.hidden_size, + config.hidden_size, + bias=True, + weight_bit=self.weight_bit, + bias_bit=self.bias_bit, + quant_mode=self.quant_mode, + per_channel=True, + ) + self.ln_input_act = QuantAct(self.ln_input_bit, quant_mode=self.quant_mode) + self.LayerNorm = IntLayerNorm( + config.hidden_size, + eps=config.layer_norm_eps, + output_bit=self.ln_output_bit, + quant_mode=self.quant_mode, + force_dequant=config.force_dequant, + ) + self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states, hidden_states_scaling_factor, input_tensor, input_tensor_scaling_factor): + hidden_states, hidden_states_scaling_factor = self.dense(hidden_states, hidden_states_scaling_factor) + hidden_states = self.dropout(hidden_states) + hidden_states, hidden_states_scaling_factor = self.ln_input_act( + hidden_states, + hidden_states_scaling_factor, + identity=input_tensor, + identity_scaling_factor=input_tensor_scaling_factor, + ) + hidden_states, hidden_states_scaling_factor = self.LayerNorm(hidden_states, hidden_states_scaling_factor) + + hidden_states, hidden_states_scaling_factor = self.output_activation( + hidden_states, hidden_states_scaling_factor + ) + return hidden_states, hidden_states_scaling_factor + + +class IBertAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.quant_mode = config.quant_mode + self.self = IBertSelfAttention(config) + self.output = IBertSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states, + hidden_states_scaling_factor, + attention_mask=None, + head_mask=None, + output_attentions=False, + ): + self_outputs, self_outputs_scaling_factor = self.self( + hidden_states, + hidden_states_scaling_factor, + attention_mask, + head_mask, + output_attentions, + ) + attention_output, attention_output_scaling_factor = self.output( + self_outputs[0], self_outputs_scaling_factor[0], hidden_states, hidden_states_scaling_factor + ) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + outputs_scaling_factor = (attention_output_scaling_factor,) + self_outputs_scaling_factor[1:] + return outputs, outputs_scaling_factor + + +class IBertIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.quant_mode = config.quant_mode + self.act_bit = 8 + self.weight_bit = 8 + self.bias_bit = 32 + self.dense = QuantLinear( + config.hidden_size, + config.intermediate_size, + bias=True, + weight_bit=self.weight_bit, + bias_bit=self.bias_bit, + quant_mode=self.quant_mode, + per_channel=True, + ) + if config.hidden_act != "gelu": + raise ValueError("I-BERT only supports 'gelu' for `config.hidden_act`") + self.intermediate_act_fn = IntGELU(quant_mode=self.quant_mode, force_dequant=config.force_dequant) + self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) + + def forward(self, hidden_states, hidden_states_scaling_factor): + hidden_states, hidden_states_scaling_factor = self.dense(hidden_states, hidden_states_scaling_factor) + hidden_states, hidden_states_scaling_factor = self.intermediate_act_fn( + hidden_states, hidden_states_scaling_factor + ) + + # Requantization: 32bit -> 8-bit + hidden_states, hidden_states_scaling_factor = self.output_activation( + hidden_states, hidden_states_scaling_factor + ) + return hidden_states, hidden_states_scaling_factor + + +class IBertOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.quant_mode = config.quant_mode + self.act_bit = 8 + self.weight_bit = 8 + self.bias_bit = 32 + self.ln_input_bit = 22 + self.ln_output_bit = 32 + + self.dense = QuantLinear( + config.intermediate_size, + config.hidden_size, + bias=True, + weight_bit=self.weight_bit, + bias_bit=self.bias_bit, + quant_mode=self.quant_mode, + per_channel=True, + ) + self.ln_input_act = QuantAct(self.ln_input_bit, quant_mode=self.quant_mode) + self.LayerNorm = IntLayerNorm( + config.hidden_size, + eps=config.layer_norm_eps, + output_bit=self.ln_output_bit, + quant_mode=self.quant_mode, + force_dequant=config.force_dequant, + ) + self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states, hidden_states_scaling_factor, input_tensor, input_tensor_scaling_factor): + hidden_states, hidden_states_scaling_factor = self.dense(hidden_states, hidden_states_scaling_factor) + hidden_states = self.dropout(hidden_states) + hidden_states, hidden_states_scaling_factor = self.ln_input_act( + hidden_states, + hidden_states_scaling_factor, + identity=input_tensor, + identity_scaling_factor=input_tensor_scaling_factor, + ) + hidden_states, hidden_states_scaling_factor = self.LayerNorm(hidden_states, hidden_states_scaling_factor) + + hidden_states, hidden_states_scaling_factor = self.output_activation( + hidden_states, hidden_states_scaling_factor + ) + return hidden_states, hidden_states_scaling_factor + + +class IBertLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.quant_mode = config.quant_mode + self.act_bit = 8 + + self.seq_len_dim = 1 + self.attention = IBertAttention(config) + self.intermediate = IBertIntermediate(config) + self.output = IBertOutput(config) + + self.pre_intermediate_act = QuantAct(self.act_bit, quant_mode=self.quant_mode) + self.pre_output_act = QuantAct(self.act_bit, quant_mode=self.quant_mode) + + def forward( + self, + hidden_states, + hidden_states_scaling_factor, + attention_mask=None, + head_mask=None, + output_attentions=False, + ): + self_attention_outputs, self_attention_outputs_scaling_factor = self.attention( + hidden_states, + hidden_states_scaling_factor, + attention_mask, + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + attention_output_scaling_factor = self_attention_outputs_scaling_factor[0] + + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + layer_output, layer_output_scaling_factor = self.feed_forward_chunk( + attention_output, attention_output_scaling_factor + ) + outputs = (layer_output,) + outputs + + return outputs + + def feed_forward_chunk(self, attention_output, attention_output_scaling_factor): + attention_output, attention_output_scaling_factor = self.pre_intermediate_act( + attention_output, attention_output_scaling_factor + ) + intermediate_output, intermediate_output_scaling_factor = self.intermediate( + attention_output, attention_output_scaling_factor + ) + + intermediate_output, intermediate_output_scaling_factor = self.pre_output_act( + intermediate_output, intermediate_output_scaling_factor + ) + layer_output, layer_output_scaling_factor = self.output( + intermediate_output, intermediate_output_scaling_factor, attention_output, attention_output_scaling_factor + ) + return layer_output, layer_output_scaling_factor + + +class IBertEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.quant_mode = config.quant_mode + self.layer = nn.ModuleList([IBertLayer(config) for _ in range(config.num_hidden_layers)]) + + def forward( + self, + hidden_states, + hidden_states_scaling_factor, + attention_mask=None, + head_mask=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = None # `config.add_cross_attention` is not supported + next_decoder_cache = None # `config.use_cache` is not supported + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + layer_outputs = layer_module( + hidden_states, + hidden_states_scaling_factor, + attention_mask, + layer_head_mask, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +class IBertPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.quant_mode = config.quant_mode + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class IBertPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = IBertConfig + base_model_prefix = "ibert" + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, (QuantLinear, nn.Linear)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, (QuantEmbedding, nn.Embedding)): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, (IntLayerNorm, nn.LayerNorm)): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + def resize_token_embeddings(self, new_num_tokens=None): + raise NotImplementedError("`resize_token_embeddings` is not supported for I-BERT.") + + +IBERT_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`IBertConfig`]): Model configuration class with all the parameters of the + model. Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +IBERT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare I-BERT Model transformer outputting raw hidden-states without any specific head on top.", + IBERT_START_DOCSTRING, +) +class IBertModel(IBertPreTrainedModel): + """ + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in [Attention is + all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, + Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. + + """ + + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + self.quant_mode = config.quant_mode + + self.embeddings = IBertEmbeddings(config) + self.encoder = IBertEncoder(config) + + self.pooler = IBertPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[BaseModelOutputWithPoolingAndCrossAttentions, Tuple[torch.FloatTensor]]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length)), device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output, embedding_output_scaling_factor = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + ) + encoder_outputs = self.encoder( + embedding_output, + embedding_output_scaling_factor, + attention_mask=extended_attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings("""I-BERT Model with a `language modeling` head on top.""", IBERT_START_DOCSTRING) +class IBertForMaskedLM(IBertPreTrainedModel): + _tied_weights_keys = ["lm_head.decoder.bias", "lm_head.decoder.weight"] + + def __init__(self, config): + super().__init__(config) + + self.ibert = IBertModel(config, add_pooling_layer=False) + self.lm_head = IBertLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head.decoder + + def set_output_embeddings(self, new_embeddings): + self.lm_head.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + mask="", + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + kwargs (`Dict[str, any]`, optional, defaults to *{}*): + Used to hide legacy arguments that have been deprecated. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.ibert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class IBertLMHead(nn.Module): + """I-BERT Head for masked language modeling.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.decoder = nn.Linear(config.hidden_size, config.vocab_size) + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + self.decoder.bias = self.bias + + def forward(self, features, **kwargs): + x = self.dense(features) + x = gelu(x) + x = self.layer_norm(x) + + # project back to size of vocabulary with bias + x = self.decoder(x) + + return x + + def _tie_weights(self): + # To tie those two weights if they get disconnected (on TPU or when the bias is resized) + self.bias = self.decoder.bias + + +@add_start_docstrings( + """ + I-BERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled + output) e.g. for GLUE tasks. + """, + IBERT_START_DOCSTRING, +) +class IBertForSequenceClassification(IBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.ibert = IBertModel(config, add_pooling_layer=False) + self.classifier = IBertClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.ibert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + I-BERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + IBERT_START_DOCSTRING, +) +class IBertForMultipleChoice(IBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.ibert = IBertModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[MultipleChoiceModelOutput, Tuple[torch.FloatTensor]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + flat_inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.ibert( + flat_input_ids, + position_ids=flat_position_ids, + token_type_ids=flat_token_type_ids, + attention_mask=flat_attention_mask, + head_mask=head_mask, + inputs_embeds=flat_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + I-BERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + IBERT_START_DOCSTRING, +) +class IBertForTokenClassification(IBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.ibert = IBertModel(config, add_pooling_layer=False) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[TokenClassifierOutput, Tuple[torch.FloatTensor]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.ibert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class IBertClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) + + def forward(self, features, **kwargs): + hidden_states = features[:, 0, :] # take token (equiv. to [CLS]) + hidden_states = self.dropout(hidden_states) + hidden_states = self.dense(hidden_states) + hidden_states = torch.tanh(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.out_proj(hidden_states) + return hidden_states + + +@add_start_docstrings( + """ + I-BERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + IBERT_START_DOCSTRING, +) +class IBertForQuestionAnswering(IBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.ibert = IBertModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[QuestionAnsweringModelOutput, Tuple[torch.FloatTensor]]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.ibert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's *utils.make_positions*. + + Args: + input_ids (`torch.LongTensor`): + Indices of input sequence tokens in the vocabulary. + + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask + return incremental_indices.long() + padding_idx diff --git a/venv/lib/python3.10/site-packages/transformers/models/ibert/quant_modules.py b/venv/lib/python3.10/site-packages/transformers/models/ibert/quant_modules.py new file mode 100644 index 0000000000000000000000000000000000000000..8e2f123c578c0b4840b6d0e52d61af891abcd41d --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/ibert/quant_modules.py @@ -0,0 +1,820 @@ +# coding=utf-8 +# Copyright 2021 The I-BERT Authors (Sehoon Kim, Amir Gholami, Zhewei Yao, +# Michael Mahoney, Kurt Keutzer - UC Berkeley) and The HuggingFace Inc. team. +# Copyright (c) 20121, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import decimal + +import numpy as np +import torch +from torch import nn +from torch.autograd import Function + +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class QuantEmbedding(nn.Module): + """ + Quantized version of `torch.nn.Embedding`. Adds quantization-specific arguments on top of `torch.nn.Embedding`. + + Args: + weight_bit (`int`, *optional*, defaults to `8`): + Bitwidth for the quantized weight. + momentum (`float`, *optional*, defaults to `0.95`): + Momentum for updating the activation quantization range. + quant_mode (`bool`, *optional*, defaults to `False`): + Whether or not the layer is quantized. + """ + + def __init__( + self, + num_embeddings, + embedding_dim, + padding_idx=None, + max_norm=None, + norm_type=2.0, + scale_grad_by_freq=False, + sparse=False, + _weight=None, + weight_bit=8, + momentum=0.95, + quant_mode=False, + ): + super().__init__() + self.num_ = num_embeddings + self.dim = embedding_dim + self.padding_idx = padding_idx + self.max_norm = max_norm + self.norm_type = norm_type + self.scale_grad_by_freq = scale_grad_by_freq + self.sparse = sparse + + self.weight = nn.Parameter(torch.zeros([num_embeddings, embedding_dim])) + self.register_buffer("weight_scaling_factor", torch.zeros(1)) + self.register_buffer("weight_integer", torch.zeros_like(self.weight)) + + self.weight_bit = weight_bit + self.momentum = momentum + self.quant_mode = quant_mode + self.percentile_mode = False + self.weight_function = SymmetricQuantFunction.apply + + def forward(self, x, positions=None, incremental_state=None): + if not self.quant_mode: + return ( + nn.functional.embedding( + x, + self.weight, + self.padding_idx, + self.max_norm, + self.norm_type, + self.scale_grad_by_freq, + self.sparse, + ), + None, + ) + + w = self.weight + w_transform = w.data.detach() + w_min = w_transform.min().expand(1) + w_max = w_transform.max().expand(1) + + self.weight_scaling_factor = symmetric_linear_quantization_params(self.weight_bit, w_min, w_max, False) + self.weight_integer = self.weight_function( + self.weight, self.weight_bit, self.percentile_mode, self.weight_scaling_factor + ) + + emb_int = nn.functional.embedding( + x, + self.weight_integer, + self.padding_idx, + self.max_norm, + self.norm_type, + self.scale_grad_by_freq, + self.sparse, + ) + return emb_int * self.weight_scaling_factor, self.weight_scaling_factor + + +class QuantAct(nn.Module): + """ + Quantizes the given activation. + + Args: + activation_bit (`int`): + Bitwidth for the quantized activation. + act_range_momentum (`float`, *optional*, defaults to `0.95`): + Momentum for updating the activation quantization range. + per_channel (`bool`, *optional*, defaults to `False`): + Whether to or not use channel-wise quantization. + channel_len (`int`, *optional*): + Specify the channel length when set the *per_channel* True. + quant_mode (`bool`, *optional*, defaults to `False`): + Whether or not the layer is quantized. + """ + + def __init__(self, activation_bit, act_range_momentum=0.95, per_channel=False, channel_len=None, quant_mode=False): + super().__init__() + + self.activation_bit = activation_bit + self.act_range_momentum = act_range_momentum + self.quant_mode = quant_mode + self.per_channel = per_channel + self.percentile = False + self.act_function = SymmetricQuantFunction.apply + + if not self.per_channel: + self.register_buffer("x_min", torch.zeros(1)) + self.register_buffer("x_max", torch.zeros(1)) + self.register_buffer("act_scaling_factor", torch.zeros(1)) + self.x_min -= 1e-5 + self.x_max += 1e-5 + else: + raise NotImplementedError("per-channel mode is not currently supported for activation.") + + def __repr__(self): + return ( + f"{self.__class__.__name__}(activation_bit={self.activation_bit}, " + f"quant_mode: {self.quant_mode}, Act_min: {self.x_min.item():.2f}, " + f"Act_max: {self.x_max.item():.2f})" + ) + + def forward( + self, + x, + pre_act_scaling_factor=None, + identity=None, + identity_scaling_factor=None, + specified_min=None, + specified_max=None, + ): + x_act = x if identity is None else identity + x + # collect running stats if training + if self.training: + assert not self.percentile, "percentile mode is not currently supported for activation." + assert not self.per_channel, "per-channel mode is not currently supported for activation." + x_min = x_act.data.min() + x_max = x_act.data.max() + + assert ( + x_max.isnan().sum() == 0 and x_min.isnan().sum() == 0 + ), "NaN detected when computing min/max of the activation" + + # Initialization + if self.x_min.min() > -1.1e-5 and self.x_max.max() < 1.1e-5: + self.x_min = self.x_min + x_min + self.x_max = self.x_max + x_max + + # exponential moving average (EMA) + # use momentum to prevent the quantized values change greatly every iteration + elif self.act_range_momentum == -1: + self.x_min = torch.min(self.x_min, x_min) + self.x_max = torch.max(self.x_max, x_max) + else: + self.x_min = self.x_min * self.act_range_momentum + x_min * (1 - self.act_range_momentum) + self.x_max = self.x_max * self.act_range_momentum + x_max * (1 - self.act_range_momentum) + + if not self.quant_mode: + return x_act, None + + x_min = self.x_min if specified_min is None else specified_min + x_max = self.x_max if specified_max is None else specified_max + + self.act_scaling_factor = symmetric_linear_quantization_params( + self.activation_bit, x_min, x_max, per_channel=self.per_channel + ) + + if pre_act_scaling_factor is None: + # this is for the input quantization + quant_act_int = self.act_function(x, self.activation_bit, self.percentile, self.act_scaling_factor) + else: + quant_act_int = FixedPointMul.apply( + x, + pre_act_scaling_factor, + self.activation_bit, + self.act_scaling_factor, + identity, + identity_scaling_factor, + ) + + correct_output_scale = self.act_scaling_factor.view(-1) + + return quant_act_int * correct_output_scale, self.act_scaling_factor + + +class QuantLinear(nn.Module): + """ + Quantized version of `torch.nn.Linear`. Adds quantization-specific arguments on top of `torch.nn.Linear`. + + Args: + weight_bit (`int`, *optional*, defaults to `8`): + Bitwidth for the quantized weight. + bias_bit (`int`, *optional*, defaults to `32`): + Bitwidth for the quantized bias. + per_channel (`bool`, *optional*, defaults to `False`): + Whether or not to use channel-wise quantization. + quant_mode (`bool`, *optional*, defaults to `False`): + Whether or not the layer is quantized. + """ + + def __init__( + self, in_features, out_features, bias=True, weight_bit=8, bias_bit=32, per_channel=False, quant_mode=False + ): + super().__init__() + self.in_features = in_features + self.out_features = out_features + + self.weight = nn.Parameter(torch.zeros([out_features, in_features])) + self.register_buffer("weight_integer", torch.zeros_like(self.weight)) + self.register_buffer("fc_scaling_factor", torch.zeros(self.out_features)) + if bias: + self.bias = nn.Parameter(torch.zeros(out_features)) + self.register_buffer("bias_integer", torch.zeros_like(self.bias)) + + self.weight_bit = weight_bit + self.quant_mode = quant_mode + self.per_channel = per_channel + self.bias_bit = bias_bit + self.quant_mode = quant_mode + self.percentile_mode = False + self.weight_function = SymmetricQuantFunction.apply + + def __repr__(self): + s = super().__repr__() + s = f"({s} weight_bit={self.weight_bit}, quant_mode={self.quant_mode})" + return s + + def forward(self, x, prev_act_scaling_factor=None): + if not self.quant_mode: + return nn.functional.linear(x, weight=self.weight, bias=self.bias), None + + # assert that prev_act_scaling_factor is a scalar tensor + assert prev_act_scaling_factor is not None and prev_act_scaling_factor.shape == (1,), ( + "Input activation to the QuantLinear layer should be globally (non-channel-wise) quantized. " + "Please add a QuantAct layer with `per_channel = True` before this QuantAct layer" + ) + + w = self.weight + w_transform = w.data.detach() + if self.per_channel: + w_min, _ = torch.min(w_transform, dim=1, out=None) + w_max, _ = torch.max(w_transform, dim=1, out=None) + else: + w_min = w_transform.min().expand(1) + w_max = w_transform.max().expand(1) + + self.fc_scaling_factor = symmetric_linear_quantization_params(self.weight_bit, w_min, w_max, self.per_channel) + self.weight_integer = self.weight_function( + self.weight, self.weight_bit, self.percentile_mode, self.fc_scaling_factor + ) + + bias_scaling_factor = self.fc_scaling_factor * prev_act_scaling_factor + + if self.bias is not None: + self.bias_integer = self.weight_function(self.bias, self.bias_bit, False, bias_scaling_factor) + + prev_act_scaling_factor = prev_act_scaling_factor.view(1, -1) + x_int = x / prev_act_scaling_factor + + return ( + nn.functional.linear(x_int, weight=self.weight_integer, bias=self.bias_integer) * bias_scaling_factor, + bias_scaling_factor, + ) + + +class IntGELU(nn.Module): + """ + Quantized version of `torch.nn.GELU`. Adds quantization-specific arguments on top of `torch.nn.GELU`. + + Args: + quant_mode (`bool`, *optional*, defaults to `False`): + Whether or not the layer is quantized. + force_dequant (`str`, *optional*, defaults to `"none"`): + Force dequantize the layer if either "gelu" or "nonlinear" is given. + """ + + def __init__(self, quant_mode=True, force_dequant="none"): + super().__init__() + self.quant_mode = quant_mode + + if force_dequant in ["nonlinear", "gelu"]: + logger.info("Force dequantize gelu") + self.quant_mode = False + + if not self.quant_mode: + self.activation_fn = nn.GELU() + + self.k = 1.4142 + self.const = 14 # dummy integer constant + self.coeff = [-0.2888, -1.769, 1] # a(x+b)**2 + c + self.coeff[2] /= self.coeff[0] + + def int_erf(self, x_int, scaling_factor): + b_int = torch.floor(self.coeff[1] / scaling_factor) + c_int = torch.floor(self.coeff[2] / scaling_factor**2) + sign = torch.sign(x_int) + + abs_int = torch.min(torch.abs(x_int), -b_int) + y_int = sign * ((abs_int + b_int) ** 2 + c_int) + scaling_factor = scaling_factor**2 * self.coeff[0] + + # avoid overflow + y_int = floor_ste.apply(y_int / 2**self.const) + scaling_factor = scaling_factor * 2**self.const + + return y_int, scaling_factor + + def forward(self, x, scaling_factor=None): + if not self.quant_mode: + return self.activation_fn(x), None + + x_int = x / scaling_factor + sigmoid_int, sigmoid_scaling_factor = self.int_erf(x_int, scaling_factor / self.k) + + shift_int = 1.0 // sigmoid_scaling_factor + + x_int = x_int * (sigmoid_int + shift_int) + scaling_factor = scaling_factor * sigmoid_scaling_factor / 2 + + return x_int * scaling_factor, scaling_factor + + +class IntSoftmax(nn.Module): + """ + Quantized version of `torch.nn.Softmax`. Adds quantization-specific arguments on top of `torch.nn.Softmax`. + + Args: + output_bit (`int`): + Bitwidth for the layer output activation. + quant_mode (`bool`, *optional*, defaults to `False`): + Whether or not the layer is quantized. + force_dequant (`str`, *optional*, defaults to `"none"`): + Force dequantize the layer if either "softmax" or "nonlinear" is given. + """ + + def __init__(self, output_bit, quant_mode=False, force_dequant="none"): + super().__init__() + self.output_bit = output_bit + self.max_bit = 32 + self.quant_mode = quant_mode + + if force_dequant in ["nonlinear", "softmax"]: + logger.info("Force dequantize softmax") + self.quant_mode = False + + self.act = QuantAct(16, quant_mode=self.quant_mode) + self.x0 = -0.6931 # -ln2 + self.const = 30 # dummy integer constant + self.coef = [0.35815147, 0.96963238, 1.0] # ax**2 + bx + c + self.coef[1] /= self.coef[0] + self.coef[2] /= self.coef[0] + + def int_polynomial(self, x_int, scaling_factor): + with torch.no_grad(): + b_int = torch.floor(self.coef[1] / scaling_factor) + c_int = torch.floor(self.coef[2] / scaling_factor**2) + z = (x_int + b_int) * x_int + c_int + scaling_factor = self.coef[0] * scaling_factor**2 + return z, scaling_factor + + def int_exp(self, x_int, scaling_factor): + with torch.no_grad(): + x0_int = torch.floor(self.x0 / scaling_factor) + x_int = torch.max(x_int, self.const * x0_int) + + q = floor_ste.apply(x_int / x0_int) + r = x_int - x0_int * q + exp_int, exp_scaling_factor = self.int_polynomial(r, scaling_factor) + exp_int = torch.clamp(floor_ste.apply(exp_int * 2 ** (self.const - q)), min=0) + scaling_factor = exp_scaling_factor / 2**self.const + return exp_int, scaling_factor + + def forward(self, x, scaling_factor): + if not self.quant_mode: + return nn.functional.softmax(x, dim=-1), None + + x_int = x / scaling_factor + + x_int_max, _ = x_int.max(dim=-1, keepdim=True) + x_int = x_int - x_int_max + exp_int, exp_scaling_factor = self.int_exp(x_int, scaling_factor) + + # Avoid overflow + exp, exp_scaling_factor = self.act(exp_int, exp_scaling_factor) + exp_int = exp / exp_scaling_factor + + exp_int_sum = exp_int.sum(dim=-1, keepdim=True) + factor = floor_ste.apply(2**self.max_bit / exp_int_sum) + exp_int = floor_ste.apply(exp_int * factor / 2 ** (self.max_bit - self.output_bit)) + scaling_factor = 1 / 2**self.output_bit + return exp_int * scaling_factor, scaling_factor + + +class IntLayerNorm(nn.Module): + """ + Quantized version of `torch.nn.LayerNorm`. Adds quantization-specific arguments on top of `torch.nn.LayerNorm`. + + Args: + output_bit (`int`, *optional*, defaults to `8`): + Bitwidth for the layer output activation. + quant_mode (`bool`, *optional*, defaults to `False`): + Whether or not the layer is quantized. + force_dequant (`str`, *optional*, defaults to `"none"`): + Force dequantize the layer if either "layernorm" or "nonlinear" is given. + """ + + def __init__(self, normalized_shape, eps, output_bit=8, quant_mode=False, force_dequant="none"): + super().__init__() + self.normalized_shape = normalized_shape + self.eps = eps + + self.weight = nn.Parameter(torch.zeros(normalized_shape)) + self.bias = nn.Parameter(torch.zeros(normalized_shape)) + + self.quant_mode = quant_mode + if force_dequant in ["nonlinear", "layernorm"]: + logger.info("Force dequantize layernorm") + self.quant_mode = False + + self.register_buffer("shift", torch.zeros(1)) + self.output_bit = output_bit + self.max_bit = 32 + self.dim_sqrt = None + self.activation = QuantAct(self.output_bit, quant_mode=self.quant_mode) + + def set_shift(self, y_int): + with torch.no_grad(): + y_sq_int = y_int**2 + var_int = torch.sum(y_sq_int, axis=2, keepdim=True) + shift = (torch.log2(torch.sqrt(var_int / 2**self.max_bit)).ceil()).max() + shift_old = self.shift + self.shift = torch.max(self.shift, shift) + logger.info(f"Dynamic shift adjustment: {int(shift_old)} -> {int(self.shift)}") + + def overflow_fallback(self, y_int): + """ + This fallback function is called when overflow is detected during training time, and adjusts the `self.shift` + to avoid overflow in the subsequent runs. + """ + self.set_shift(y_int) # adjusts `self.shift` + y_int_shifted = floor_ste.apply(y_int / 2**self.shift) + y_sq_int = y_int_shifted**2 + var_int = torch.sum(y_sq_int, axis=2, keepdim=True) + return var_int + + def forward(self, x, scaling_factor=None): + if not self.quant_mode: + mean = x.mean(axis=2, keepdim=True) + y = x - mean + var = torch.mean(y**2, axis=2, keepdim=True) + x = y / torch.sqrt(self.eps + var) + x = x * self.weight + self.bias + return x, None + + # compute sqrt of the feature dimension if it is the first run + if self.dim_sqrt is None: + n = torch.tensor(x.shape[2], dtype=torch.float) + self.dim_sqrt = torch.sqrt(n).to(x.device) + + # Normalization: computes mean and variance(std) + x_int = x / scaling_factor + mean_int = round_ste.apply(x_int.mean(axis=2, keepdim=True)) + y_int = x_int - mean_int + y_int_shifted = floor_ste.apply(y_int / 2**self.shift) + y_sq_int = y_int_shifted**2 + var_int = torch.sum(y_sq_int, axis=2, keepdim=True) + + # overflow handling in training time + if self.training: + # if overflow is detected + if var_int.max() >= 2**self.max_bit: + var_int = self.overflow_fallback(y_int) + assert var_int.max() < 2**self.max_bit + 0.1, ( + "Error detected in overflow handling: " + "`var_int` exceeds `self.max_bit` (the maximum possible bit width)" + ) + + # To be replaced with integer-sqrt kernel that produces the same output + std_int = floor_ste.apply(torch.sqrt(var_int)) * 2**self.shift + factor = floor_ste.apply(2**31 / std_int) + y_int = floor_ste.apply(y_int * factor / 2) + scaling_factor = self.dim_sqrt / 2**30 + + # scaling and shifting + bias = self.bias.data.detach() / (self.weight.data.detach()) + bias_int = floor_ste.apply(bias / scaling_factor) + + y_int = y_int + bias_int + scaling_factor = scaling_factor * self.weight + x = y_int * scaling_factor + + return x, scaling_factor + + +def get_percentile_min_max(input, lower_percentile, upper_percentile, output_tensor=False): + """ + Calculate the percentile max and min values in a given tensor + + Args: + input (`torch.Tensor`): + The target tensor to calculate percentile max and min. + lower_percentile (`float`): + If 0.1, means we return the value of the smallest 0.1% value in the tensor as percentile min. + upper_percentile (`float`): + If 99.9, means we return the value of the largest 0.1% value in the tensor as percentile max. + output_tensor (`bool`, *optional*, defaults to `False`): + If True, this function returns tensors, otherwise it returns values. + + Returns: + `Tuple(torch.Tensor, torch.Tensor)`: Percentile min and max value of *input* + """ + input_length = input.shape[0] + + lower_index = round(input_length * (1 - lower_percentile * 0.01)) + upper_index = round(input_length * upper_percentile * 0.01) + + upper_bound = torch.kthvalue(input, k=upper_index).values + + if lower_percentile == 0: + lower_bound = upper_bound * 0 + # lower_index += 1 + else: + lower_bound = -torch.kthvalue(-input, k=lower_index).values + + if not output_tensor: + lower_bound = lower_bound.item() + upper_bound = upper_bound.item() + return lower_bound, upper_bound + + +def linear_quantize(input, scale, zero_point, inplace=False): + """ + Quantize single-precision input tensor to integers with the given scaling factor and zeropoint. + + Args: + input (`torch.Tensor`): + Single-precision input tensor to be quantized. + scale (`torch.Tensor`): + Scaling factor for quantization. + zero_pint (`torch.Tensor`): + Shift for quantization. + inplace (`bool`, *optional*, defaults to `False`): + Whether to compute inplace or not. + + Returns: + `torch.Tensor`: Linearly quantized value of *input* according to *scale* and *zero_point*. + """ + # reshape scale and zeropoint for convolutional weights and activation + if len(input.shape) == 4: + scale = scale.view(-1, 1, 1, 1) + zero_point = zero_point.view(-1, 1, 1, 1) + # reshape scale and zeropoint for linear weights + elif len(input.shape) == 2: + scale = scale.view(-1, 1) + zero_point = zero_point.view(-1, 1) + else: + scale = scale.view(-1) + zero_point = zero_point.view(-1) + # quantized = float / scale + zero_point + if inplace: + input.mul_(1.0 / scale).add_(zero_point).round_() + return input + return torch.round(1.0 / scale * input + zero_point) + + +def symmetric_linear_quantization_params(num_bits, saturation_min, saturation_max, per_channel=False): + """ + Compute the scaling factor with the given quantization range for symmetric quantization. + + Args: + saturation_min (`torch.Tensor`): + Lower bound for quantization range. + saturation_max (`torch.Tensor`): + Upper bound for quantization range. + per_channel (`bool`, *optional*, defaults to `False`): + Whether to or not use channel-wise quantization. + + Returns: + `torch.Tensor`: Scaling factor that linearly quantizes the given range between *saturation_min* and + *saturation_max*. + """ + # in this part, we do not need any gradient computation, + # in order to enforce this, we put torch.no_grad() + with torch.no_grad(): + n = 2 ** (num_bits - 1) - 1 + + if per_channel: + scale, _ = torch.max(torch.stack([saturation_min.abs(), saturation_max.abs()], dim=1), dim=1) + scale = torch.clamp(scale, min=1e-8) / n + + else: + scale = max(saturation_min.abs(), saturation_max.abs()) + scale = torch.clamp(scale, min=1e-8) / n + + return scale + + +class SymmetricQuantFunction(Function): + """ + Class to quantize the given floating-point values using symmetric quantization with given range and bitwidth. + """ + + @staticmethod + def forward(ctx, x, k, percentile_mode, scale): + """ + Args: + x (`torch.Tensor`): + Floating point tensor to be quantized. + k (`int`): + Quantization bitwidth. + percentile_mode (`bool`): + Whether or not to use percentile calibration. + scale (`torch.Tensor`): + Pre-calculated scaling factor for *x*. Note that the current implementation of SymmetricQuantFunction + requires pre-calculated scaling factor. + + Returns: + `torch.Tensor`: Symmetric-quantized value of *input*. + """ + zero_point = torch.tensor(0.0).to(scale.device) + + n = 2 ** (k - 1) - 1 + new_quant_x = linear_quantize(x, scale, zero_point, inplace=False) + new_quant_x = torch.clamp(new_quant_x, -n, n - 1) + + ctx.scale = scale + return new_quant_x + + @staticmethod + def backward(ctx, grad_output): + scale = ctx.scale + if len(grad_output.shape) == 4: + scale = scale.view(-1, 1, 1, 1) + # reshape scale and zeropoint for linear weights + elif len(grad_output.shape) == 2: + scale = scale.view(-1, 1) + else: + scale = scale.view(-1) + + return grad_output.clone() / scale, None, None, None, None + + +class floor_ste(Function): + """ + Straight-through Estimator(STE) for torch.floor() + """ + + @staticmethod + def forward(ctx, x): + return torch.floor(x) + + @staticmethod + def backward(ctx, grad_output): + return grad_output.clone() + + +class round_ste(Function): + """ + Straight-through Estimator(STE) for torch.round() + """ + + @staticmethod + def forward(ctx, x): + return torch.round(x) + + @staticmethod + def backward(ctx, grad_output): + return grad_output.clone() + + +def batch_frexp(inputs, max_bit=31): + """ + Decompose the scaling factor into mantissa and twos exponent. + + Args: + scaling_factor (`torch.Tensor`): + Target scaling factor to decompose. + + Returns: + ``Tuple(torch.Tensor, torch.Tensor)`: mantisa and exponent + """ + + shape_of_input = inputs.size() + + # trans the input to be a 1-d tensor + inputs = inputs.view(-1) + + output_m, output_e = np.frexp(inputs.cpu().numpy()) + tmp_m = [] + for m in output_m: + int_m_shifted = int( + decimal.Decimal(m * (2**max_bit)).quantize(decimal.Decimal("1"), rounding=decimal.ROUND_HALF_UP) + ) + tmp_m.append(int_m_shifted) + output_m = np.array(tmp_m) + + output_e = float(max_bit) - output_e + + return ( + torch.from_numpy(output_m).to(inputs.device).view(shape_of_input), + torch.from_numpy(output_e).to(inputs.device).view(shape_of_input), + ) + + +class FixedPointMul(Function): + """ + Function to perform fixed-point arithmetic that can match integer arithmetic on hardware. + + Args: + pre_act (`torch.Tensor`): + Input tensor. + pre_act_scaling_factor (`torch.Tensor`): + Scaling factor of the input tensor *pre_act*. + bit_num (`int`): + Quantization bitwidth. + z_scaling_factor (`torch.Tensor`): + Scaling factor of the output tensor. + identity (`torch.Tensor`, *optional*): + Identity tensor, if exists. + identity_scaling_factor (`torch.Tensor`, *optional*): + Scaling factor of the identity tensor *identity*, if exists. + + Returns: + `torch.Tensor`: Output tensor(*pre_act* if *identity* is not given, otherwise the addition of *pre_act* and + *identity*), whose scale is rescaled to *z_scaling_factor*. + """ + + @staticmethod + def forward( + ctx, + pre_act, + pre_act_scaling_factor, + bit_num, + z_scaling_factor, + identity=None, + identity_scaling_factor=None, + ): + if len(pre_act_scaling_factor.shape) == 3: + reshape = lambda x: x # noqa: E731 + else: + reshape = lambda x: x.view(1, 1, -1) # noqa: E731 + ctx.identity = identity + + n = 2 ** (bit_num - 1) - 1 + + with torch.no_grad(): + pre_act_scaling_factor = reshape(pre_act_scaling_factor) + if identity is not None: + identity_scaling_factor = reshape(identity_scaling_factor) + + ctx.z_scaling_factor = z_scaling_factor + + z_int = torch.round(pre_act / pre_act_scaling_factor) + _A = pre_act_scaling_factor.type(torch.double) + _B = (z_scaling_factor.type(torch.float)).type(torch.double) + new_scale = _A / _B + new_scale = reshape(new_scale) + + m, e = batch_frexp(new_scale) + + output = z_int.type(torch.double) * m.type(torch.double) + output = torch.round(output / (2.0**e)) + + if identity is not None: + # needs addition of identity activation + wx_int = torch.round(identity / identity_scaling_factor) + + _A = identity_scaling_factor.type(torch.double) + _B = (z_scaling_factor.type(torch.float)).type(torch.double) + new_scale = _A / _B + new_scale = reshape(new_scale) + + m1, e1 = batch_frexp(new_scale) + output1 = wx_int.type(torch.double) * m1.type(torch.double) + output1 = torch.round(output1 / (2.0**e1)) + + output = output1 + output + + return torch.clamp(output.type(torch.float), -n - 1, n) + + @staticmethod + def backward(ctx, grad_output): + identity_grad = None + if ctx.identity is not None: + identity_grad = grad_output.clone() / ctx.z_scaling_factor + return grad_output.clone() / ctx.z_scaling_factor, None, None, None, None, identity_grad, None diff --git a/venv/lib/python3.10/site-packages/transformers/models/longformer/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/longformer/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..66ef7c953cff4385424b208313445962d4facf28 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/longformer/__init__.py @@ -0,0 +1,135 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_longformer": [ + "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "LongformerConfig", + "LongformerOnnxConfig", + ], + "tokenization_longformer": ["LongformerTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_longformer_fast"] = ["LongformerTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_longformer"] = [ + "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", + "LongformerForMaskedLM", + "LongformerForMultipleChoice", + "LongformerForQuestionAnswering", + "LongformerForSequenceClassification", + "LongformerForTokenClassification", + "LongformerModel", + "LongformerPreTrainedModel", + "LongformerSelfAttention", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_longformer"] = [ + "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFLongformerForMaskedLM", + "TFLongformerForMultipleChoice", + "TFLongformerForQuestionAnswering", + "TFLongformerForSequenceClassification", + "TFLongformerForTokenClassification", + "TFLongformerModel", + "TFLongformerPreTrainedModel", + "TFLongformerSelfAttention", + ] + + +if TYPE_CHECKING: + from .configuration_longformer import ( + LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + LongformerConfig, + LongformerOnnxConfig, + ) + from .tokenization_longformer import LongformerTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_longformer_fast import LongformerTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_longformer import ( + LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, + LongformerForMaskedLM, + LongformerForMultipleChoice, + LongformerForQuestionAnswering, + LongformerForSequenceClassification, + LongformerForTokenClassification, + LongformerModel, + LongformerPreTrainedModel, + LongformerSelfAttention, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_longformer import ( + TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, + TFLongformerForMaskedLM, + TFLongformerForMultipleChoice, + TFLongformerForQuestionAnswering, + TFLongformerForSequenceClassification, + TFLongformerForTokenClassification, + TFLongformerModel, + TFLongformerPreTrainedModel, + TFLongformerSelfAttention, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..797c6f67a190c6dba98bf7d4a01d4a2b2fb2160a Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/configuration_longformer.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/configuration_longformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1cb5d28cbc7163a74ccddfe33a701e8006ae384b Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/configuration_longformer.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/convert_longformer_original_pytorch_lightning_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/convert_longformer_original_pytorch_lightning_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a1229930b8fe9b7c33c46ce7eec5343a9386d0ca Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/convert_longformer_original_pytorch_lightning_to_pytorch.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_longformer.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_longformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6e2b4dedef61e4d9b38c463c07c3f59c6a2c7cc7 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_longformer.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_tf_longformer.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_tf_longformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1c2aea927bb7fd1cbd506d96ecb2accba55f0542 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_tf_longformer.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eaa93e86e0836d9f6b5829c2f9275978e85a5a70 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer_fast.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9789b03e2134dcac4dc169ffec9328368d5abb12 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer_fast.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/longformer/configuration_longformer.py b/venv/lib/python3.10/site-packages/transformers/models/longformer/configuration_longformer.py new file mode 100644 index 0000000000000000000000000000000000000000..7dce8a74a631c797297931278648508f01bafb4d --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/longformer/configuration_longformer.py @@ -0,0 +1,203 @@ +# coding=utf-8 +# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Longformer configuration""" +from collections import OrderedDict +from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import TensorType, logging + + +if TYPE_CHECKING: + from ...onnx.config import PatchingSpec + from ...tokenization_utils_base import PreTrainedTokenizerBase + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class LongformerConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`LongformerModel`] or a [`TFLongformerModel`]. It + is used to instantiate a Longformer model according to the specified arguments, defining the model architecture. + + This is the configuration class to store the configuration of a [`LongformerModel`]. It is used to instantiate an + Longformer model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the LongFormer + [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) architecture with a sequence + length 4,096. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the Longformer model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`LongformerModel`] or [`TFLongformerModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`LongformerModel`] or + [`TFLongformerModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + attention_window (`int` or `List[int]`, *optional*, defaults to 512): + Size of an attention window around each token. If an `int`, use the same size for all layers. To specify a + different window size for each layer, use a `List[int]` where `len(attention_window) == num_hidden_layers`. + + Example: + + ```python + >>> from transformers import LongformerConfig, LongformerModel + + >>> # Initializing a Longformer configuration + >>> configuration = LongformerConfig() + + >>> # Initializing a model from the configuration + >>> model = LongformerModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "longformer" + + def __init__( + self, + attention_window: Union[List[int], int] = 512, + sep_token_id: int = 2, + pad_token_id: int = 1, + bos_token_id: int = 0, + eos_token_id: int = 2, + vocab_size: int = 30522, + hidden_size: int = 768, + num_hidden_layers: int = 12, + num_attention_heads: int = 12, + intermediate_size: int = 3072, + hidden_act: str = "gelu", + hidden_dropout_prob: float = 0.1, + attention_probs_dropout_prob: float = 0.1, + max_position_embeddings: int = 512, + type_vocab_size: int = 2, + initializer_range: float = 0.02, + layer_norm_eps: float = 1e-12, + onnx_export: bool = False, + **kwargs, + ): + """Constructs LongformerConfig.""" + super().__init__(pad_token_id=pad_token_id, **kwargs) + + self.attention_window = attention_window + self.sep_token_id = sep_token_id + self.bos_token_id = bos_token_id + self.eos_token_id = eos_token_id + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.onnx_export = onnx_export + + +class LongformerOnnxConfig(OnnxConfig): + def __init__(self, config: "PretrainedConfig", task: str = "default", patching_specs: "List[PatchingSpec]" = None): + super().__init__(config, task, patching_specs) + config.onnx_export = True + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "multiple-choice": + dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} + else: + dynamic_axis = {0: "batch", 1: "sequence"} + return OrderedDict( + [ + ("input_ids", dynamic_axis), + ("attention_mask", dynamic_axis), + ("global_attention_mask", dynamic_axis), + ] + ) + + @property + def outputs(self) -> Mapping[str, Mapping[int, str]]: + outputs = super().outputs + if self.task == "default": + outputs["pooler_output"] = {0: "batch"} + return outputs + + @property + def atol_for_validation(self) -> float: + """ + What absolute tolerance value to use during model conversion validation. + + Returns: + Float absolute tolerance value. + """ + return 1e-4 + + @property + def default_onnx_opset(self) -> int: + # needs to be >= 14 to support tril operator + return max(super().default_onnx_opset, 14) + + def generate_dummy_inputs( + self, + tokenizer: "PreTrainedTokenizerBase", + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + inputs = super().generate_dummy_inputs( + preprocessor=tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + import torch + + # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) + # makes the export fail randomly + inputs["global_attention_mask"] = torch.zeros_like(inputs["input_ids"]) + # make every second token global + inputs["global_attention_mask"][:, ::2] = 1 + + return inputs diff --git a/venv/lib/python3.10/site-packages/transformers/models/longformer/convert_longformer_original_pytorch_lightning_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/longformer/convert_longformer_original_pytorch_lightning_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..ed7d32ab3edbefa8a16307b7bcf35d615c63a66f --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/longformer/convert_longformer_original_pytorch_lightning_to_pytorch.py @@ -0,0 +1,86 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert RoBERTa checkpoint.""" + + +import argparse + +import pytorch_lightning as pl +import torch +from torch import nn + +from transformers import LongformerForQuestionAnswering, LongformerModel + + +class LightningModel(pl.LightningModule): + def __init__(self, model): + super().__init__() + self.model = model + self.num_labels = 2 + self.qa_outputs = nn.Linear(self.model.config.hidden_size, self.num_labels) + + # implement only because lightning requires to do so + def forward(self): + pass + + +def convert_longformer_qa_checkpoint_to_pytorch( + longformer_model: str, longformer_question_answering_ckpt_path: str, pytorch_dump_folder_path: str +): + # load longformer model from model identifier + longformer = LongformerModel.from_pretrained(longformer_model) + lightning_model = LightningModel(longformer) + + ckpt = torch.load(longformer_question_answering_ckpt_path, map_location=torch.device("cpu")) + lightning_model.load_state_dict(ckpt["state_dict"]) + + # init longformer question answering model + longformer_for_qa = LongformerForQuestionAnswering.from_pretrained(longformer_model) + + # transfer weights + longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) + longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) + longformer_for_qa.eval() + + # save model + longformer_for_qa.save_pretrained(pytorch_dump_folder_path) + + print(f"Conversion successful. Model saved under {pytorch_dump_folder_path}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--longformer_model", + default=None, + type=str, + required=True, + help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", + ) + parser.add_argument( + "--longformer_question_answering_ckpt_path", + default=None, + type=str, + required=True, + help="Path the official PyTorch Lightning Checkpoint.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_longformer_qa_checkpoint_to_pytorch( + args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/longformer/modeling_longformer.py b/venv/lib/python3.10/site-packages/transformers/models/longformer/modeling_longformer.py new file mode 100644 index 0000000000000000000000000000000000000000..f8c7c44ef9918cbf1de35f7564a4ccfa639ef524 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/longformer/modeling_longformer.py @@ -0,0 +1,2327 @@ +# coding=utf-8 +# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch Longformer model.""" + +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN, gelu +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_longformer import LongformerConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "allenai/longformer-base-4096" +_CONFIG_FOR_DOC = "LongformerConfig" + + +from ..deprecated._archive_maps import LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class LongformerBaseModelOutput(ModelOutput): + """ + Base class for Longformer's outputs, with potential hidden states, local and global attentions. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + last_hidden_state: torch.FloatTensor + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LongformerBaseModelOutputWithPooling(ModelOutput): + """ + Base class for Longformer's outputs that also contains a pooling of the last hidden states. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): + Last layer hidden-state of the first token of the sequence (classification token) further processed by a + Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence + prediction (classification) objective during pretraining. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + last_hidden_state: torch.FloatTensor + pooler_output: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LongformerMaskedLMOutput(ModelOutput): + """ + Base class for masked language models outputs. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Masked language modeling (MLM) loss. + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LongformerQuestionAnsweringModelOutput(ModelOutput): + """ + Base class for outputs of question answering Longformer models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. + start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Span-start scores (before SoftMax). + end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Span-end scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: Optional[torch.FloatTensor] = None + start_logits: torch.FloatTensor = None + end_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LongformerSequenceClassifierOutput(ModelOutput): + """ + Base class for outputs of sentence classification models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Classification (or regression if config.num_labels==1) loss. + logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LongformerMultipleChoiceModelOutput(ModelOutput): + """ + Base class for outputs of multiple choice Longformer models. + + Args: + loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided): + Classification loss. + logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`): + *num_choices* is the second dimension of the input tensors. (see *input_ids* above). + + Classification scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LongformerTokenClassifierOutput(ModelOutput): + """ + Base class for outputs of token classification models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : + Classification loss. + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`): + Classification scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +def _get_question_end_index(input_ids, sep_token_id): + """ + Computes the index of the first occurrence of `sep_token_id`. + """ + + sep_token_indices = (input_ids == sep_token_id).nonzero() + batch_size = input_ids.shape[0] + + assert sep_token_indices.shape[1] == 2, "`input_ids` should have two dimensions" + assert sep_token_indices.shape[0] == 3 * batch_size, ( + f"There should be exactly three separator tokens: {sep_token_id} in every sample for questions answering. You" + " might also consider to set `global_attention_mask` manually in the forward function to avoid this error." + ) + return sep_token_indices.view(batch_size, 3, 2)[:, 0, 1] + + +def _compute_global_attention_mask(input_ids, sep_token_id, before_sep_token=True): + """ + Computes global attention mask by putting attention on all tokens before `sep_token_id` if `before_sep_token is + True` else after `sep_token_id`. + """ + question_end_index = _get_question_end_index(input_ids, sep_token_id) + question_end_index = question_end_index.unsqueeze(dim=1) # size: batch_size x 1 + # bool attention mask with True in locations of global attention + attention_mask = torch.arange(input_ids.shape[1], device=input_ids.device) + if before_sep_token is True: + attention_mask = (attention_mask.expand_as(input_ids) < question_end_index).to(torch.bool) + else: + # last token is separation token and should not be counted and in the middle are two separation tokens + attention_mask = (attention_mask.expand_as(input_ids) > (question_end_index + 1)).to(torch.bool) * ( + attention_mask.expand_as(input_ids) < input_ids.shape[-1] + ).to(torch.bool) + + return attention_mask + + +def create_position_ids_from_input_ids(input_ids, padding_idx): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: torch.Tensor x: + + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask + return incremental_indices.long() + padding_idx + + +class LongformerEmbeddings(nn.Module): + """ + Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. + """ + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + self.padding_idx = config.pad_token_id + self.position_embeddings = nn.Embedding( + config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx + ) + + def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device) + else: + position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) + + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + position_embeddings = self.position_embeddings(position_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + position_embeddings + token_type_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + def create_position_ids_from_inputs_embeds(self, inputs_embeds): + """ + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. + + Args: + inputs_embeds: torch.Tensor inputs_embeds: + + Returns: torch.Tensor + """ + input_shape = inputs_embeds.size()[:-1] + sequence_length = input_shape[1] + + position_ids = torch.arange( + self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device + ) + return position_ids.unsqueeze(0).expand(input_shape) + + +class LongformerSelfAttention(nn.Module): + def __init__(self, config, layer_id): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + self.num_heads = config.num_attention_heads + self.head_dim = int(config.hidden_size / config.num_attention_heads) + self.embed_dim = config.hidden_size + + self.query = nn.Linear(config.hidden_size, self.embed_dim) + self.key = nn.Linear(config.hidden_size, self.embed_dim) + self.value = nn.Linear(config.hidden_size, self.embed_dim) + + # separate projection layers for tokens with global attention + self.query_global = nn.Linear(config.hidden_size, self.embed_dim) + self.key_global = nn.Linear(config.hidden_size, self.embed_dim) + self.value_global = nn.Linear(config.hidden_size, self.embed_dim) + + self.dropout = config.attention_probs_dropout_prob + + self.layer_id = layer_id + attention_window = config.attention_window[self.layer_id] + assert ( + attention_window % 2 == 0 + ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}" + assert ( + attention_window > 0 + ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}" + + self.one_sided_attn_window_size = attention_window // 2 + + self.config = config + + def forward( + self, + hidden_states, + attention_mask=None, + layer_head_mask=None, + is_index_masked=None, + is_index_global_attn=None, + is_global_attn=None, + output_attentions=False, + ): + """ + [`LongformerSelfAttention`] expects *len(hidden_states)* to be multiple of *attention_window*. Padding to + *attention_window* happens in [`LongformerModel.forward`] to avoid redoing the padding on each layer. + + The *attention_mask* is changed in [`LongformerModel.forward`] from 0, 1, 2 to: + + - -10000: no attention + - 0: local attention + - +10000: global attention + """ + hidden_states = hidden_states.transpose(0, 1) + + # project hidden states + query_vectors = self.query(hidden_states) + key_vectors = self.key(hidden_states) + value_vectors = self.value(hidden_states) + + seq_len, batch_size, embed_dim = hidden_states.size() + assert ( + embed_dim == self.embed_dim + ), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}" + + # normalize query + query_vectors /= math.sqrt(self.head_dim) + + query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) + key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) + + attn_scores = self._sliding_chunks_query_key_matmul( + query_vectors, key_vectors, self.one_sided_attn_window_size + ) + + # values to pad for attention probs + remove_from_windowed_attention_mask = (attention_mask != 0)[:, :, None, None] + + # cast to fp32/fp16 then replace 1's with -inf + float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill( + remove_from_windowed_attention_mask, torch.finfo(query_vectors.dtype).min + ) + # diagonal mask with zeros everywhere and -inf inplace of padding + diagonal_mask = self._sliding_chunks_query_key_matmul( + float_mask.new_ones(size=float_mask.size()), float_mask, self.one_sided_attn_window_size + ) + + # pad local attention probs + attn_scores += diagonal_mask + + assert list(attn_scores.size()) == [ + batch_size, + seq_len, + self.num_heads, + self.one_sided_attn_window_size * 2 + 1, + ], ( + f"local_attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}," + f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.size()}" + ) + + # compute local attention probs from global attention keys and contact over window dim + if is_global_attn: + # compute global attn indices required through out forward fn + ( + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ) = self._get_global_attn_indices(is_index_global_attn) + # calculate global attn probs from global key + + global_key_attn_scores = self._concat_with_global_key_attn_probs( + query_vectors=query_vectors, + key_vectors=key_vectors, + max_num_global_attn_indices=max_num_global_attn_indices, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, + ) + # concat to local_attn_probs + # (batch_size, seq_len, num_heads, extra attention count + 2*window+1) + attn_scores = torch.cat((global_key_attn_scores, attn_scores), dim=-1) + + # free memory + del global_key_attn_scores + + attn_probs = nn.functional.softmax( + attn_scores, dim=-1, dtype=torch.float32 + ) # use fp32 for numerical stability + + if layer_head_mask is not None: + assert layer_head_mask.size() == ( + self.num_heads, + ), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" + attn_probs = layer_head_mask.view(1, 1, -1, 1) * attn_probs + + # softmax sometimes inserts NaN if all positions are masked, replace them with 0 + attn_probs = torch.masked_fill(attn_probs, is_index_masked[:, :, None, None], 0.0) + attn_probs = attn_probs.type_as(attn_scores) + + # free memory + del attn_scores + + # apply dropout + attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training) + + value_vectors = value_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) + + # compute local attention output with global attention value and add + if is_global_attn: + # compute sum of global and local attn + attn_output = self._compute_attn_output_with_global_indices( + value_vectors=value_vectors, + attn_probs=attn_probs, + max_num_global_attn_indices=max_num_global_attn_indices, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + ) + else: + # compute local attn only + attn_output = self._sliding_chunks_matmul_attn_probs_value( + attn_probs, value_vectors, self.one_sided_attn_window_size + ) + + assert attn_output.size() == (batch_size, seq_len, self.num_heads, self.head_dim), "Unexpected size" + attn_output = attn_output.transpose(0, 1).reshape(seq_len, batch_size, embed_dim).contiguous() + + # compute value for global attention and overwrite to attention output + # TODO: remove the redundant computation + if is_global_attn: + global_attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden( + hidden_states=hidden_states, + max_num_global_attn_indices=max_num_global_attn_indices, + layer_head_mask=layer_head_mask, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, + is_index_masked=is_index_masked, + ) + + # get only non zero global attn output + nonzero_global_attn_output = global_attn_output[ + is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1] + ] + + # overwrite values with global attention + attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view( + len(is_local_index_global_attn_nonzero[0]), -1 + ) + # The attention weights for tokens with global attention are + # just filler values, they were never used to compute the output. + # Fill with 0 now, the correct values are in 'global_attn_probs'. + attn_probs[is_index_global_attn_nonzero] = 0 + + outputs = (attn_output.transpose(0, 1),) + + if output_attentions: + outputs += (attn_probs,) + + return outputs + (global_attn_probs,) if (is_global_attn and output_attentions) else outputs + + @staticmethod + def _pad_and_transpose_last_two_dims(hidden_states_padded, padding): + """pads rows and then flips rows and columns""" + hidden_states_padded = nn.functional.pad( + hidden_states_padded, padding + ) # padding value is not important because it will be overwritten + hidden_states_padded = hidden_states_padded.view( + *hidden_states_padded.size()[:-2], hidden_states_padded.size(-1), hidden_states_padded.size(-2) + ) + return hidden_states_padded + + @staticmethod + def _pad_and_diagonalize(chunked_hidden_states): + """ + shift every row 1 step right, converting columns into diagonals. + + Example: + + ```python + chunked_hidden_states: [ + 0.4983, + 2.6918, + -0.0071, + 1.0492, + -1.8348, + 0.7672, + 0.2986, + 0.0285, + -0.7584, + 0.4206, + -0.0405, + 0.1599, + 2.0514, + -1.1600, + 0.5372, + 0.2629, + ] + window_overlap = num_rows = 4 + ``` + + (pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000 + 0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206, + -0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ] + """ + total_num_heads, num_chunks, window_overlap, hidden_dim = chunked_hidden_states.size() + chunked_hidden_states = nn.functional.pad( + chunked_hidden_states, (0, window_overlap + 1) + ) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten + chunked_hidden_states = chunked_hidden_states.view( + total_num_heads, num_chunks, -1 + ) # total_num_heads x num_chunks x window_overlap*window_overlap+window_overlap + chunked_hidden_states = chunked_hidden_states[ + :, :, :-window_overlap + ] # total_num_heads x num_chunks x window_overlap*window_overlap + chunked_hidden_states = chunked_hidden_states.view( + total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim + ) + chunked_hidden_states = chunked_hidden_states[:, :, :, :-1] + return chunked_hidden_states + + @staticmethod + def _chunk(hidden_states, window_overlap, onnx_export: bool = False): + """convert into overlapping chunks. Chunk size = 2w, overlap size = w""" + if not onnx_export: + # non-overlapping chunks of size = 2w + hidden_states = hidden_states.view( + hidden_states.size(0), + torch.div(hidden_states.size(1), (window_overlap * 2), rounding_mode="trunc"), + window_overlap * 2, + hidden_states.size(2), + ) + # use `as_strided` to make the chunks overlap with an overlap size = window_overlap + chunk_size = list(hidden_states.size()) + chunk_size[1] = chunk_size[1] * 2 - 1 + + chunk_stride = list(hidden_states.stride()) + chunk_stride[1] = chunk_stride[1] // 2 + return hidden_states.as_strided(size=chunk_size, stride=chunk_stride) + + # When exporting to ONNX, use this separate logic + # have to use slow implementation since as_strided, unfold and 2d-tensor indexing aren't supported (yet) in ONNX export + + # TODO replace this with + # > return hidden_states.unfold(dimension=1, size=window_overlap * 2, step=window_overlap).transpose(2, 3) + # once `unfold` is supported + # the case hidden_states.size(1) == window_overlap * 2 can also simply return hidden_states.unsqueeze(1), but that's control flow + + chunk_size = [ + hidden_states.size(0), + torch.div(hidden_states.size(1), window_overlap, rounding_mode="trunc") - 1, + window_overlap * 2, + hidden_states.size(2), + ] + + overlapping_chunks = torch.empty(chunk_size, device=hidden_states.device) + for chunk in range(chunk_size[1]): + overlapping_chunks[:, chunk, :, :] = hidden_states[ + :, chunk * window_overlap : chunk * window_overlap + 2 * window_overlap, : + ] + return overlapping_chunks + + @staticmethod + def _mask_invalid_locations(input_tensor, affected_seq_len) -> torch.Tensor: + beginning_mask_2d = input_tensor.new_ones(affected_seq_len, affected_seq_len + 1).tril().flip(dims=[0]) + beginning_mask = beginning_mask_2d[None, :, None, :] + ending_mask = beginning_mask.flip(dims=(1, 3)) + beginning_input = input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1] + beginning_mask = beginning_mask.expand(beginning_input.size()) + input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1] = torch.full_like( + beginning_input, -float("inf") + ).where(beginning_mask.bool(), beginning_input) + ending_input = input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :] + ending_mask = ending_mask.expand(ending_input.size()) + input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :] = torch.full_like( + ending_input, -float("inf") + ).where(ending_mask.bool(), ending_input) + + def _sliding_chunks_query_key_matmul(self, query: torch.Tensor, key: torch.Tensor, window_overlap: int): + """ + Matrix multiplication of query and key tensors using with a sliding window attention pattern. This + implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an + overlap of size window_overlap + """ + batch_size, seq_len, num_heads, head_dim = query.size() + assert ( + seq_len % (window_overlap * 2) == 0 + ), f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}" + assert query.size() == key.size() + + chunks_count = torch.div(seq_len, window_overlap, rounding_mode="trunc") - 1 + + # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2 + query = query.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) + key = key.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) + + query = self._chunk(query, window_overlap, getattr(self.config, "onnx_export", False)) + key = self._chunk(key, window_overlap, getattr(self.config, "onnx_export", False)) + + # matrix multiplication + # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim + # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim + # bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap + diagonal_chunked_attention_scores = torch.einsum("bcxd,bcyd->bcxy", (query, key)) # multiply + + # convert diagonals into columns + diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims( + diagonal_chunked_attention_scores, padding=(0, 0, 0, 1) + ) + + # allocate space for the overall attention matrix where the chunks are combined. The last dimension + # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to + # window_overlap previous words). The following column is attention score from each word to itself, then + # followed by window_overlap columns for the upper triangle. + + diagonal_attention_scores = diagonal_chunked_attention_scores.new_zeros( + (batch_size * num_heads, chunks_count + 1, window_overlap, window_overlap * 2 + 1) + ) + + # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions + # - copying the main diagonal and the upper triangle + diagonal_attention_scores[:, :-1, :, window_overlap:] = diagonal_chunked_attention_scores[ + :, :, :window_overlap, : window_overlap + 1 + ] + diagonal_attention_scores[:, -1, :, window_overlap:] = diagonal_chunked_attention_scores[ + :, -1, window_overlap:, : window_overlap + 1 + ] + # - copying the lower triangle + diagonal_attention_scores[:, 1:, :, :window_overlap] = diagonal_chunked_attention_scores[ + :, :, -(window_overlap + 1) : -1, window_overlap + 1 : + ] + + diagonal_attention_scores[:, 0, 1:window_overlap, 1:window_overlap] = diagonal_chunked_attention_scores[ + :, 0, : window_overlap - 1, 1 - window_overlap : + ] + + # separate batch_size and num_heads dimensions again + diagonal_attention_scores = diagonal_attention_scores.view( + batch_size, num_heads, seq_len, 2 * window_overlap + 1 + ).transpose(2, 1) + + self._mask_invalid_locations(diagonal_attention_scores, window_overlap) + return diagonal_attention_scores + + def _sliding_chunks_matmul_attn_probs_value( + self, attn_probs: torch.Tensor, value: torch.Tensor, window_overlap: int + ): + """ + Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the + same shape as `attn_probs` + """ + batch_size, seq_len, num_heads, head_dim = value.size() + + assert seq_len % (window_overlap * 2) == 0 + assert attn_probs.size()[:3] == value.size()[:3] + assert attn_probs.size(3) == 2 * window_overlap + 1 + chunks_count = torch.div(seq_len, window_overlap, rounding_mode="trunc") - 1 + # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap + + chunked_attn_probs = attn_probs.transpose(1, 2).reshape( + batch_size * num_heads, + torch.div(seq_len, window_overlap, rounding_mode="trunc"), + window_overlap, + 2 * window_overlap + 1, + ) + + # group batch_size and num_heads dimensions into one + value = value.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) + + # pad seq_len with w at the beginning of the sequence and another window overlap at the end + padded_value = nn.functional.pad(value, (0, 0, window_overlap, window_overlap), value=-1) + + # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap + chunked_value_size = (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim) + chunked_value_stride = padded_value.stride() + chunked_value_stride = ( + chunked_value_stride[0], + window_overlap * chunked_value_stride[1], + chunked_value_stride[1], + chunked_value_stride[2], + ) + chunked_value = padded_value.as_strided(size=chunked_value_size, stride=chunked_value_stride) + + chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs) + + context = torch.einsum("bcwd,bcdh->bcwh", (chunked_attn_probs, chunked_value)) + return context.view(batch_size, num_heads, seq_len, head_dim).transpose(1, 2) + + @staticmethod + def _get_global_attn_indices(is_index_global_attn): + """compute global attn indices required throughout forward pass""" + # helper variable + num_global_attn_indices = is_index_global_attn.long().sum(dim=1) + + # max number of global attn indices in batch + max_num_global_attn_indices = num_global_attn_indices.max() + + # indices of global attn + is_index_global_attn_nonzero = is_index_global_attn.nonzero(as_tuple=True) + + # helper variable + is_local_index_global_attn = torch.arange( + max_num_global_attn_indices, device=is_index_global_attn.device + ) < num_global_attn_indices.unsqueeze(dim=-1) + + # location of the non-padding values within global attention indices + is_local_index_global_attn_nonzero = is_local_index_global_attn.nonzero(as_tuple=True) + + # location of the padding values within global attention indices + is_local_index_no_global_attn_nonzero = (is_local_index_global_attn == 0).nonzero(as_tuple=True) + return ( + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ) + + def _concat_with_global_key_attn_probs( + self, + key_vectors, + query_vectors, + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ): + batch_size = key_vectors.shape[0] + + # create only global key vectors + key_vectors_only_global = key_vectors.new_zeros( + batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim + ) + + key_vectors_only_global[is_local_index_global_attn_nonzero] = key_vectors[is_index_global_attn_nonzero] + + # (batch_size, seq_len, num_heads, max_num_global_attn_indices) + attn_probs_from_global_key = torch.einsum("blhd,bshd->blhs", (query_vectors, key_vectors_only_global)) + + # need to transpose since ONNX export only supports consecutive indexing: https://pytorch.org/docs/stable/onnx.html#writes-sets + attn_probs_from_global_key = attn_probs_from_global_key.transpose(1, 3) + attn_probs_from_global_key[ + is_local_index_no_global_attn_nonzero[0], is_local_index_no_global_attn_nonzero[1], :, : + ] = torch.finfo(attn_probs_from_global_key.dtype).min + attn_probs_from_global_key = attn_probs_from_global_key.transpose(1, 3) + + return attn_probs_from_global_key + + def _compute_attn_output_with_global_indices( + self, + value_vectors, + attn_probs, + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + ): + batch_size = attn_probs.shape[0] + + # cut local attn probs to global only + attn_probs_only_global = attn_probs.narrow(-1, 0, max_num_global_attn_indices) + # get value vectors for global only + value_vectors_only_global = value_vectors.new_zeros( + batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim + ) + value_vectors_only_global[is_local_index_global_attn_nonzero] = value_vectors[is_index_global_attn_nonzero] + + # use `matmul` because `einsum` crashes sometimes with fp16 + # attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v)) + # compute attn output only global + attn_output_only_global = torch.matmul( + attn_probs_only_global.transpose(1, 2).clone(), value_vectors_only_global.transpose(1, 2).clone() + ).transpose(1, 2) + + # reshape attn probs + attn_probs_without_global = attn_probs.narrow( + -1, max_num_global_attn_indices, attn_probs.size(-1) - max_num_global_attn_indices + ).contiguous() + + # compute attn output with global + attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value( + attn_probs_without_global, value_vectors, self.one_sided_attn_window_size + ) + return attn_output_only_global + attn_output_without_global + + def _compute_global_attn_output_from_hidden( + self, + hidden_states, + max_num_global_attn_indices, + layer_head_mask, + is_local_index_global_attn_nonzero, + is_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + is_index_masked, + ): + seq_len, batch_size = hidden_states.shape[:2] + + # prepare global hidden states + global_attn_hidden_states = hidden_states.new_zeros(max_num_global_attn_indices, batch_size, self.embed_dim) + global_attn_hidden_states[is_local_index_global_attn_nonzero[::-1]] = hidden_states[ + is_index_global_attn_nonzero[::-1] + ] + + # global key, query, value + global_query_vectors_only_global = self.query_global(global_attn_hidden_states) + global_key_vectors = self.key_global(hidden_states) + global_value_vectors = self.value_global(hidden_states) + + # normalize + global_query_vectors_only_global /= math.sqrt(self.head_dim) + + # reshape + global_query_vectors_only_global = ( + global_query_vectors_only_global.contiguous() + .view(max_num_global_attn_indices, batch_size * self.num_heads, self.head_dim) + .transpose(0, 1) + ) # (batch_size * self.num_heads, max_num_global_attn_indices, head_dim) + global_key_vectors = ( + global_key_vectors.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1) + ) # batch_size * self.num_heads, seq_len, head_dim) + global_value_vectors = ( + global_value_vectors.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1) + ) # batch_size * self.num_heads, seq_len, head_dim) + + # compute attn scores + global_attn_scores = torch.bmm(global_query_vectors_only_global, global_key_vectors.transpose(1, 2)) + + assert list(global_attn_scores.size()) == [ + batch_size * self.num_heads, + max_num_global_attn_indices, + seq_len, + ], ( + "global_attn_scores have the wrong size. Size should be" + f" {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is" + f" {global_attn_scores.size()}." + ) + + global_attn_scores = global_attn_scores.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len) + + # need to transpose since ONNX export only supports consecutive indexing: https://pytorch.org/docs/stable/onnx.html#writes-sets + global_attn_scores = global_attn_scores.transpose(1, 2) + global_attn_scores[ + is_local_index_no_global_attn_nonzero[0], is_local_index_no_global_attn_nonzero[1], :, : + ] = torch.finfo(global_attn_scores.dtype).min + global_attn_scores = global_attn_scores.transpose(1, 2) + + global_attn_scores = global_attn_scores.masked_fill( + is_index_masked[:, None, None, :], + torch.finfo(global_attn_scores.dtype).min, + ) + + global_attn_scores = global_attn_scores.view(batch_size * self.num_heads, max_num_global_attn_indices, seq_len) + + # compute global attn probs + global_attn_probs_float = nn.functional.softmax( + global_attn_scores, dim=-1, dtype=torch.float32 + ) # use fp32 for numerical stability + + # apply layer head masking + if layer_head_mask is not None: + assert layer_head_mask.size() == ( + self.num_heads, + ), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" + global_attn_probs_float = layer_head_mask.view(1, -1, 1, 1) * global_attn_probs_float.view( + batch_size, self.num_heads, max_num_global_attn_indices, seq_len + ) + global_attn_probs_float = global_attn_probs_float.view( + batch_size * self.num_heads, max_num_global_attn_indices, seq_len + ) + + global_attn_probs = nn.functional.dropout( + global_attn_probs_float.type_as(global_attn_scores), p=self.dropout, training=self.training + ) + + # global attn output + global_attn_output = torch.bmm(global_attn_probs, global_value_vectors) + + assert list(global_attn_output.size()) == [ + batch_size * self.num_heads, + max_num_global_attn_indices, + self.head_dim, + ], ( + "global_attn_output tensor has the wrong size. Size should be" + f" {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is" + f" {global_attn_output.size()}." + ) + + global_attn_probs = global_attn_probs.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len) + global_attn_output = global_attn_output.view( + batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim + ) + return global_attn_output, global_attn_probs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput +class LongformerSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class LongformerAttention(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.self = LongformerSelfAttention(config, layer_id) + self.output = LongformerSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states, + attention_mask=None, + layer_head_mask=None, + is_index_masked=None, + is_index_global_attn=None, + is_global_attn=None, + output_attentions=False, + ): + self_outputs = self.self( + hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + is_index_masked=is_index_masked, + is_index_global_attn=is_index_global_attn, + is_global_attn=is_global_attn, + output_attentions=output_attentions, + ) + attn_output = self.output(self_outputs[0], hidden_states) + outputs = (attn_output,) + self_outputs[1:] + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class LongformerIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput +class LongformerOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class LongformerLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.attention = LongformerAttention(config, layer_id) + self.intermediate = LongformerIntermediate(config) + self.output = LongformerOutput(config) + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + + def forward( + self, + hidden_states, + attention_mask=None, + layer_head_mask=None, + is_index_masked=None, + is_index_global_attn=None, + is_global_attn=None, + output_attentions=False, + ): + self_attn_outputs = self.attention( + hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + is_index_masked=is_index_masked, + is_index_global_attn=is_index_global_attn, + is_global_attn=is_global_attn, + output_attentions=output_attentions, + ) + attn_output = self_attn_outputs[0] + outputs = self_attn_outputs[1:] + + layer_output = apply_chunking_to_forward( + self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attn_output + ) + outputs = (layer_output,) + outputs + return outputs + + def ff_chunk(self, attn_output): + intermediate_output = self.intermediate(attn_output) + layer_output = self.output(intermediate_output, attn_output) + return layer_output + + +class LongformerEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([LongformerLayer(config, layer_id=i) for i in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + padding_len=0, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + is_index_masked = attention_mask < 0 + is_index_global_attn = attention_mask > 0 + + # Record `is_global_attn == True` to enable ONNX export + is_global_attn = is_index_global_attn.flatten().any().item() + + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None # All local attentions. + all_global_attentions = () if (output_attentions and is_global_attn) else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + assert head_mask.size()[0] == ( + len(self.layer) + ), f"The head_mask should be specified for {len(self.layer)} layers, but it is for {head_mask.size()[0]}." + for idx, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + head_mask[idx] if head_mask is not None else None, + is_index_masked, + is_index_global_attn, + is_global_attn, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask=attention_mask, + layer_head_mask=head_mask[idx] if head_mask is not None else None, + is_index_masked=is_index_masked, + is_index_global_attn=is_index_global_attn, + is_global_attn=is_global_attn, + output_attentions=output_attentions, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1) + all_attentions = all_attentions + (layer_outputs[1].transpose(1, 2),) + + if is_global_attn: + # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn + all_global_attentions = all_global_attentions + (layer_outputs[2].transpose(2, 3),) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + # undo padding if necessary + # unpad `hidden_states` because the calling function is expecting a length == input_ids.size(1) + hidden_states = hidden_states[:, : hidden_states.shape[1] - padding_len] + if output_hidden_states: + all_hidden_states = tuple([state[:, : state.shape[1] - padding_len] for state in all_hidden_states]) + + if output_attentions: + all_attentions = tuple([state[:, :, : state.shape[2] - padding_len, :] for state in all_attentions]) + + if not return_dict: + return tuple( + v for v in [hidden_states, all_hidden_states, all_attentions, all_global_attentions] if v is not None + ) + return LongformerBaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + global_attentions=all_global_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPooler +class LongformerPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Longformer +class LongformerLMHead(nn.Module): + """Longformer Head for masked language modeling.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.decoder = nn.Linear(config.hidden_size, config.vocab_size) + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + self.decoder.bias = self.bias + + def forward(self, features, **kwargs): + x = self.dense(features) + x = gelu(x) + x = self.layer_norm(x) + + # project back to size of vocabulary with bias + x = self.decoder(x) + + return x + + def _tie_weights(self): + # To tie those two weights if they get disconnected (on TPU or when the bias is resized) + # For accelerate compatibility and to not break backward compatibility + if self.decoder.bias.device.type == "meta": + self.decoder.bias = self.bias + else: + self.bias = self.decoder.bias + + +class LongformerPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = LongformerConfig + base_model_prefix = "longformer" + supports_gradient_checkpointing = True + _no_split_modules = ["LongformerSelfAttention"] + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +LONGFORMER_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`LongformerConfig`]): Model configuration class with all the parameters of the + model. Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +LONGFORMER_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + global_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to decide the attention given on each token, local attention or global attention. Tokens with global + attention attends to all other tokens, and all other tokens attend to them. This is important for + task-specific finetuning because it makes the model more flexible at representing the task. For example, + for classification, the token should be given global attention. For QA, all question tokens should also + have global attention. Please refer to the [Longformer paper](https://arxiv.org/abs/2004.05150) for more + details. Mask values selected in `[0, 1]`: + + - 0 for local attention (a sliding window attention), + - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). + + head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Longformer Model outputting raw hidden-states without any specific head on top.", + LONGFORMER_START_DOCSTRING, +) +class LongformerModel(LongformerPreTrainedModel): + """ + This class copied code from [`RobertaModel`] and overwrote standard self-attention with longformer self-attention + to provide the ability to process long sequences following the self-attention approach described in [Longformer: + the Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, and Arman Cohan. + Longformer self-attention combines a local (sliding window) and global attention to extend to long documents + without the O(n^2) increase in memory and compute. + + The self-attention module `LongformerSelfAttention` implemented here supports the combination of local and global + attention but it lacks support for autoregressive attention and dilated attention. Autoregressive and dilated + attention are more relevant for autoregressive language modeling than finetuning on downstream tasks. Future + release will add support for autoregressive attention, but the support for dilated attention requires a custom CUDA + kernel to be memory and compute efficient. + + """ + + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + if isinstance(config.attention_window, int): + assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value" + assert config.attention_window > 0, "`config.attention_window` has to be positive" + config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer + else: + assert len(config.attention_window) == config.num_hidden_layers, ( + "`len(config.attention_window)` should equal `config.num_hidden_layers`. " + f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}" + ) + + self.embeddings = LongformerEmbeddings(config) + self.encoder = LongformerEncoder(config) + self.pooler = LongformerPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + def _pad_to_window_size( + self, + input_ids: torch.Tensor, + attention_mask: torch.Tensor, + token_type_ids: torch.Tensor, + position_ids: torch.Tensor, + inputs_embeds: torch.Tensor, + pad_token_id: int, + ): + """A helper function to pad tokens and mask to work with implementation of Longformer self-attention.""" + # padding + attention_window = ( + self.config.attention_window + if isinstance(self.config.attention_window, int) + else max(self.config.attention_window) + ) + + assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}" + input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape + batch_size, seq_len = input_shape[:2] + + padding_len = (attention_window - seq_len % attention_window) % attention_window + + # this path should be recorded in the ONNX export, it is fine with padding_len == 0 as well + if padding_len > 0: + logger.warning_once( + f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of " + f"`config.attention_window`: {attention_window}" + ) + if input_ids is not None: + input_ids = nn.functional.pad(input_ids, (0, padding_len), value=pad_token_id) + if position_ids is not None: + # pad with position_id = pad_token_id as in modeling_roberta.RobertaEmbeddings + position_ids = nn.functional.pad(position_ids, (0, padding_len), value=pad_token_id) + if inputs_embeds is not None: + input_ids_padding = inputs_embeds.new_full( + (batch_size, padding_len), + self.config.pad_token_id, + dtype=torch.long, + ) + inputs_embeds_padding = self.embeddings(input_ids_padding) + inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2) + + attention_mask = nn.functional.pad( + attention_mask, (0, padding_len), value=0 + ) # no attention on the padding tokens + token_type_ids = nn.functional.pad(token_type_ids, (0, padding_len), value=0) # pad with token_type_id = 0 + + return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds + + def _merge_to_attention_mask(self, attention_mask: torch.Tensor, global_attention_mask: torch.Tensor): + # longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn) + # (global_attention_mask + 1) => 1 for local attention, 2 for global attention + # => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention + if attention_mask is not None: + attention_mask = attention_mask * (global_attention_mask + 1) + else: + # simply use `global_attention_mask` as `attention_mask` + # if no `attention_mask` is given + attention_mask = global_attention_mask + 1 + return attention_mask + + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=LongformerBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerBaseModelOutputWithPooling]: + r""" + + Returns: + + Examples: + + ```python + >>> import torch + >>> from transformers import LongformerModel, AutoTokenizer + + >>> model = LongformerModel.from_pretrained("allenai/longformer-base-4096") + >>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096") + + >>> SAMPLE_TEXT = " ".join(["Hello world! "] * 1000) # long input document + >>> input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0) # batch of size 1 + + >>> attention_mask = torch.ones( + ... input_ids.shape, dtype=torch.long, device=input_ids.device + ... ) # initialize to local attention + >>> global_attention_mask = torch.zeros( + ... input_ids.shape, dtype=torch.long, device=input_ids.device + ... ) # initialize to global attention to be deactivated for all tokens + >>> global_attention_mask[ + ... :, + ... [ + ... 1, + ... 4, + ... 21, + ... ], + ... ] = 1 # Set global attention to random tokens for the sake of this example + >>> # Usually, set global attention based on the task. For example, + >>> # classification: the token + >>> # QA: question tokens + >>> # LM: potentially on the beginning of sentences and paragraphs + >>> outputs = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask) + >>> sequence_output = outputs.last_hidden_state + >>> pooled_output = outputs.pooler_output + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # merge `global_attention_mask` and `attention_mask` + if global_attention_mask is not None: + attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask) + + padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds = self._pad_to_window_size( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + pad_token_id=self.config.pad_token_id, + ) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)[ + :, 0, 0, : + ] + + embedding_output = self.embeddings( + input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds + ) + + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + padding_len=padding_len, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return LongformerBaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + global_attentions=encoder_outputs.global_attentions, + ) + + +@add_start_docstrings("""Longformer Model with a `language modeling` head on top.""", LONGFORMER_START_DOCSTRING) +class LongformerForMaskedLM(LongformerPreTrainedModel): + _tied_weights_keys = ["lm_head.decoder"] + + def __init__(self, config): + super().__init__(config) + + self.longformer = LongformerModel(config, add_pooling_layer=False) + self.lm_head = LongformerLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head.decoder + + def set_output_embeddings(self, new_embeddings): + self.lm_head.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=LongformerMaskedLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerMaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + kwargs (`Dict[str, any]`, optional, defaults to *{}*): + Used to hide legacy arguments that have been deprecated. + + Returns: + + Mask filling example: + + ```python + >>> from transformers import AutoTokenizer, LongformerForMaskedLM + + >>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096") + >>> model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096") + ``` + + Let's try a very long input. + + ```python + >>> TXT = ( + ... "My friends are but they eat too many carbs." + ... + " That's why I decide not to eat with them." * 300 + ... ) + >>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"] + >>> logits = model(input_ids).logits + + >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() + >>> probs = logits[0, masked_index].softmax(dim=0) + >>> values, predictions = probs.topk(5) + + >>> tokenizer.decode(predictions).split() + ['healthy', 'skinny', 'thin', 'good', 'vegetarian'] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.longformer( + input_ids, + attention_mask=attention_mask, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + + labels = labels.to(prediction_scores.device) + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return LongformerMaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + +@add_start_docstrings( + """ + Longformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + LONGFORMER_START_DOCSTRING, +) +class LongformerForSequenceClassification(LongformerPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.longformer = LongformerModel(config, add_pooling_layer=False) + self.classifier = LongformerClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="jpwahle/longformer-base-plagiarism-detection", + output_type=LongformerSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="'ORIGINAL'", + expected_loss=5.44, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerSequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if global_attention_mask is None: + logger.warning_once("Initializing global attention on CLS token...") + global_attention_mask = torch.zeros_like(input_ids) + # global attention on cls token + global_attention_mask[:, 0] = 1 + + outputs = self.longformer( + input_ids, + attention_mask=attention_mask, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + labels = labels.to(logits.device) + + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return LongformerSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + +class LongformerClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) + + def forward(self, hidden_states, **kwargs): + hidden_states = hidden_states[:, 0, :] # take token (equiv. to [CLS]) + hidden_states = self.dropout(hidden_states) + hidden_states = self.dense(hidden_states) + hidden_states = torch.tanh(hidden_states) + hidden_states = self.dropout(hidden_states) + output = self.out_proj(hidden_states) + return output + + +@add_start_docstrings( + """ + Longformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / + TriviaQA (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + LONGFORMER_START_DOCSTRING, +) +class LongformerForQuestionAnswering(LongformerPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.longformer = LongformerModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=LongformerQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerQuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, LongformerForQuestionAnswering + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa") + >>> model = LongformerForQuestionAnswering.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa") + + >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" + >>> encoding = tokenizer(question, text, return_tensors="pt") + >>> input_ids = encoding["input_ids"] + + >>> # default is local attention everywhere + >>> # the forward method will automatically set global attention on question tokens + >>> attention_mask = encoding["attention_mask"] + + >>> outputs = model(input_ids, attention_mask=attention_mask) + >>> start_logits = outputs.start_logits + >>> end_logits = outputs.end_logits + >>> all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) + + >>> answer_tokens = all_tokens[torch.argmax(start_logits) : torch.argmax(end_logits) + 1] + >>> answer = tokenizer.decode( + ... tokenizer.convert_tokens_to_ids(answer_tokens) + ... ) # remove space prepending space token + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if global_attention_mask is None: + if input_ids is None: + logger.warning( + "It is not possible to automatically generate the `global_attention_mask` because input_ids is" + " None. Please make sure that it is correctly set." + ) + else: + # set global attention on question tokens automatically + global_attention_mask = _compute_global_attention_mask(input_ids, self.config.sep_token_id) + + outputs = self.longformer( + input_ids, + attention_mask=attention_mask, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return LongformerQuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + +@add_start_docstrings( + """ + Longformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + LONGFORMER_START_DOCSTRING, +) +class LongformerForTokenClassification(LongformerPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.longformer = LongformerModel(config, add_pooling_layer=False) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="brad1141/Longformer-finetuned-norm", + output_type=LongformerTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=( + "['Evidence', 'Evidence', 'Evidence', 'Evidence', 'Evidence', 'Evidence', 'Evidence', 'Evidence'," + " 'Evidence', 'Evidence', 'Evidence', 'Evidence']" + ), + expected_loss=0.63, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerTokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.longformer( + input_ids, + attention_mask=attention_mask, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + + labels = labels.to(logits.device) + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return LongformerTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + +@add_start_docstrings( + """ + Longformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and + a softmax) e.g. for RocStories/SWAG tasks. + """, + LONGFORMER_START_DOCSTRING, +) +class LongformerForMultipleChoice(LongformerPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.longformer = LongformerModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward( + LONGFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=LongformerMultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerMultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # set global attention on question tokens + if global_attention_mask is None and input_ids is not None: + logger.warning_once("Initializing global attention on multiple choice...") + # put global attention on all tokens after `config.sep_token_id` + global_attention_mask = torch.stack( + [ + _compute_global_attention_mask(input_ids[:, i], self.config.sep_token_id, before_sep_token=False) + for i in range(num_choices) + ], + dim=1, + ) + + flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + flat_global_attention_mask = ( + global_attention_mask.view(-1, global_attention_mask.size(-1)) + if global_attention_mask is not None + else None + ) + flat_inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.longformer( + flat_input_ids, + position_ids=flat_position_ids, + token_type_ids=flat_token_type_ids, + attention_mask=flat_attention_mask, + global_attention_mask=flat_global_attention_mask, + head_mask=head_mask, + inputs_embeds=flat_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + + labels = labels.to(reshaped_logits.device) + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return LongformerMultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/longformer/modeling_tf_longformer.py b/venv/lib/python3.10/site-packages/transformers/models/longformer/modeling_tf_longformer.py new file mode 100644 index 0000000000000000000000000000000000000000..907fbbddf1e68f86fe21223d9ed7a1b4453c525a --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/longformer/modeling_tf_longformer.py @@ -0,0 +1,2778 @@ +# coding=utf-8 +# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tensorflow Longformer model.""" + + +from __future__ import annotations + +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_utils import ( + TFMaskedLanguageModelingLoss, + TFModelInputType, + TFMultipleChoiceLoss, + TFPreTrainedModel, + TFQuestionAnsweringLoss, + TFSequenceClassificationLoss, + TFTokenClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from .configuration_longformer import LongformerConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "allenai/longformer-base-4096" +_CONFIG_FOR_DOC = "LongformerConfig" + +LARGE_NEGATIVE = -1e8 + + +from ..deprecated._archive_maps import TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class TFLongformerBaseModelOutput(ModelOutput): + """ + Base class for Longformer's outputs, with potential hidden states, local and global attentions. + + Args: + last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + last_hidden_state: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLongformerBaseModelOutputWithPooling(ModelOutput): + """ + Base class for Longformer's outputs that also contains a pooling of the last hidden states. + + Args: + last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`): + Last layer hidden-state of the first token of the sequence (classification token) further processed by a + Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence + prediction (classification) objective during pretraining. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + last_hidden_state: tf.Tensor = None + pooler_output: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLongformerMaskedLMOutput(ModelOutput): + """ + Base class for masked language models outputs. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Masked language modeling (MLM) loss. + logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLongformerQuestionAnsweringModelOutput(ModelOutput): + """ + Base class for outputs of question answering Longformer models. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. + start_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Span-start scores (before SoftMax). + end_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Span-end scores (before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: tf.Tensor | None = None + start_logits: tf.Tensor = None + end_logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLongformerSequenceClassifierOutput(ModelOutput): + """ + Base class for outputs of sentence classification models. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Classification (or regression if config.num_labels==1) loss. + logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLongformerMultipleChoiceModelOutput(ModelOutput): + """ + Base class for outputs of multiple choice models. + + Args: + loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided): + Classification loss. + logits (`tf.Tensor` of shape `(batch_size, num_choices)`): + *num_choices* is the second dimension of the input tensors. (see *input_ids* above). + + Classification scores (before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLongformerTokenClassifierOutput(ModelOutput): + """ + Base class for outputs of token classification models. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : + Classification loss. + logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.num_labels)`): + Classification scores (before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +def _compute_global_attention_mask(input_ids_shape, sep_token_indices, before_sep_token=True): + """ + Computes global attention mask by putting attention on all tokens before `sep_token_id` if `before_sep_token is + True` else after `sep_token_id`. + """ + assert shape_list(sep_token_indices)[1] == 2, "`input_ids` should have two dimensions" + question_end_index = tf.reshape(sep_token_indices, (input_ids_shape[0], 3, 2))[:, 0, 1][:, None] + # bool attention mask with True in locations of global attention + attention_mask = tf.expand_dims(tf.range(input_ids_shape[1], dtype=tf.int64), axis=0) + attention_mask = tf.tile(attention_mask, (input_ids_shape[0], 1)) + if before_sep_token is True: + question_end_index = tf.tile(question_end_index, (1, input_ids_shape[1])) + attention_mask = tf.cast(attention_mask < question_end_index, dtype=question_end_index.dtype) + else: + # last token is separation token and should not be counted and in the middle are two separation tokens + question_end_index = tf.tile(question_end_index + 1, (1, input_ids_shape[1])) + attention_mask = tf.cast( + attention_mask > question_end_index, + dtype=question_end_index.dtype, + ) * tf.cast(attention_mask < input_ids_shape[-1], dtype=question_end_index.dtype) + + return attention_mask + + +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->Longformer +class TFLongformerLMHead(keras.layers.Layer): + """Longformer Head for masked language modeling.""" + + def __init__(self, config, input_embeddings, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.hidden_size = config.hidden_size + self.dense = keras.layers.Dense( + config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") + self.act = get_tf_activation("gelu") + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = input_embeddings + + def build(self, input_shape=None): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.hidden_size]) + + def get_output_embeddings(self): + return self.decoder + + def set_output_embeddings(self, value): + self.decoder.weight = value + self.decoder.vocab_size = shape_list(value)[0] + + def get_bias(self): + return {"bias": self.bias} + + def set_bias(self, value): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.layer_norm(hidden_states) + + # project back to size of vocabulary with bias + seq_length = shape_list(tensor=hidden_states)[1] + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) + hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) + hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) + + return hidden_states + + +class TFLongformerEmbeddings(keras.layers.Layer): + """ + Same as BertEmbeddings with a tiny tweak for positional embeddings indexing and some extra casting. + """ + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.padding_idx = 1 + self.config = config + self.hidden_size = config.hidden_size + self.max_position_embeddings = config.max_position_embeddings + self.initializer_range = config.initializer_range + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("token_type_embeddings"): + self.token_type_embeddings = self.add_weight( + name="embeddings", + shape=[self.config.type_vocab_size, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("position_embeddings"): + self.position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_position_embeddings, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding + symbols are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + input_ids: tf.Tensor + Returns: tf.Tensor + """ + mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype) + incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask + + return incremental_indices + self.padding_idx + + def call( + self, + input_ids=None, + position_ids=None, + token_type_ids=None, + inputs_embeds=None, + past_key_values_length=0, + training=False, + ): + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + assert not (input_ids is None and inputs_embeds is None) + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(params=self.weight, indices=input_ids) + + input_shape = shape_list(inputs_embeds)[:-1] + + if token_type_ids is None: + token_type_ids = tf.cast(tf.fill(dims=input_shape, value=0), tf.int64) + + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = self.create_position_ids_from_input_ids( + input_ids=input_ids, past_key_values_length=past_key_values_length + ) + else: + position_ids = tf.expand_dims( + tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1, dtype=tf.int64), + axis=0, + ) + + position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) + token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) + final_embeddings = inputs_embeds + position_embeds + token_type_embeds + final_embeddings = self.LayerNorm(inputs=final_embeddings) + final_embeddings = self.dropout(inputs=final_embeddings, training=training) + + return final_embeddings + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Longformer +class TFLongformerIntermediate(keras.layers.Layer): + def __init__(self, config: LongformerConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Longformer +class TFLongformerOutput(keras.layers.Layer): + def __init__(self, config: LongformerConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Longformer +class TFLongformerPooler(keras.layers.Layer): + def __init__(self, config: LongformerConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(inputs=first_token_tensor) + + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Longformer +class TFLongformerSelfOutput(keras.layers.Layer): + def __init__(self, config: LongformerConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +class TFLongformerSelfAttention(keras.layers.Layer): + def __init__(self, config, layer_id, **kwargs): + super().__init__(**kwargs) + self.config = config + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads}" + ) + + self.num_heads = config.num_attention_heads + self.head_dim = int(config.hidden_size / config.num_attention_heads) + self.embed_dim = config.hidden_size + self.query = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="query", + ) + self.key = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="key", + ) + self.value = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="value", + ) + + # separate projection layers for tokens with global attention + self.query_global = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="query_global", + ) + self.key_global = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="key_global", + ) + self.value_global = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="value_global", + ) + self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) + self.global_dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) + self.layer_id = layer_id + attention_window = config.attention_window[self.layer_id] + + assert ( + attention_window % 2 == 0 + ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}" + assert ( + attention_window > 0 + ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}" + + self.one_sided_attn_window_size = attention_window // 2 + + def build(self, input_shape=None): + if not self.built: + with tf.name_scope("query_global"): + self.query_global.build((self.config.hidden_size,)) + with tf.name_scope("key_global"): + self.key_global.build((self.config.hidden_size,)) + with tf.name_scope("value_global"): + self.value_global.build((self.config.hidden_size,)) + + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.config.hidden_size]) + if getattr(self, "query_global", None) is not None: + with tf.name_scope(self.query_global.name): + self.query_global.build([None, None, self.config.hidden_size]) + if getattr(self, "key_global", None) is not None: + with tf.name_scope(self.key_global.name): + self.key_global.build([None, None, self.config.hidden_size]) + if getattr(self, "value_global", None) is not None: + with tf.name_scope(self.value_global.name): + self.value_global.build([None, None, self.config.hidden_size]) + + def call( + self, + inputs, + training=False, + ): + """ + LongformerSelfAttention expects *len(hidden_states)* to be multiple of *attention_window*. Padding to + *attention_window* happens in LongformerModel.forward to avoid redoing the padding on each layer. + + The *attention_mask* is changed in [`LongformerModel.forward`] from 0, 1, 2 to: + + - -10000: no attention + - 0: local attention + - +10000: global attention + """ + # retrieve input args + ( + hidden_states, + attention_mask, + layer_head_mask, + is_index_masked, + is_index_global_attn, + is_global_attn, + ) = inputs + + # project hidden states + query_vectors = self.query(hidden_states) + key_vectors = self.key(hidden_states) + value_vectors = self.value(hidden_states) + batch_size, seq_len, embed_dim = shape_list(hidden_states) + + tf.debugging.assert_equal( + embed_dim, + self.embed_dim, + message=f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}", + ) + + # normalize query + query_vectors /= tf.math.sqrt(tf.cast(self.head_dim, dtype=query_vectors.dtype)) + query_vectors = tf.reshape(query_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) + key_vectors = tf.reshape(key_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) + + # attn_probs = (batch_size, seq_len, num_heads, window*2+1) + attn_scores = self._sliding_chunks_query_key_matmul( + query_vectors, key_vectors, self.one_sided_attn_window_size + ) + + # values to pad for attention probs + remove_from_windowed_attention_mask = attention_mask != 0 + # cast to fp32/fp16 then replace 1's with -inf + float_mask = tf.cast(remove_from_windowed_attention_mask, dtype=query_vectors.dtype) * LARGE_NEGATIVE + + # diagonal mask with zeros everywhere and -inf inplace of padding + diagonal_mask = self._sliding_chunks_query_key_matmul( + tf.ones(shape_list(attention_mask)), + float_mask, + self.one_sided_attn_window_size, + ) + + # pad local attention probs + attn_scores += diagonal_mask + + tf.debugging.assert_equal( + shape_list(attn_scores), + [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1], + message=( + f"attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}," + f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {shape_list(attn_scores)}" + ), + ) + + # compute global attn indices required through out forward fn + ( + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ) = self._get_global_attn_indices(is_index_global_attn) + + # this function is only relevant for global attention + if is_global_attn: + attn_scores = self._concat_with_global_key_attn_probs( + attn_scores=attn_scores, + query_vectors=query_vectors, + key_vectors=key_vectors, + max_num_global_attn_indices=max_num_global_attn_indices, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, + ) + + attn_probs = stable_softmax(attn_scores, axis=-1) + + # softmax sometimes inserts NaN if all positions are masked, replace them with 0 + # Make sure to create a mask with the proper shape: + # if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1] + # if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1] + if is_global_attn: + masked_index = tf.tile( + is_index_masked[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1), + ) + else: + masked_index = tf.tile( + is_index_masked[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1), + ) + attn_probs = tf.where( + masked_index, + tf.zeros(shape_list(masked_index), dtype=attn_probs.dtype), + attn_probs, + ) + + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + + attn_probs = tf.reshape(layer_head_mask, (1, 1, -1, 1)) * attn_probs + + # apply dropout + attn_probs = self.dropout(attn_probs, training=training) + value_vectors = tf.reshape(value_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) + + # if global attention, compute sum of global and local attn + + if is_global_attn: + attn_output = self._compute_attn_output_with_global_indices( + value_vectors=value_vectors, + attn_probs=attn_probs, + max_num_global_attn_indices=max_num_global_attn_indices, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + ) + else: + attn_output = self._sliding_chunks_matmul_attn_probs_value( + attn_probs, value_vectors, self.one_sided_attn_window_size + ) + + tf.debugging.assert_equal( + shape_list(attn_output), [batch_size, seq_len, self.num_heads, self.head_dim], message="Unexpected size" + ) + + attn_output = tf.reshape(attn_output, (batch_size, seq_len, embed_dim)) + + # compute value for global attention and overwrite to attention output + if is_global_attn: + attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden( + attn_output=attn_output, + hidden_states=hidden_states, + max_num_global_attn_indices=max_num_global_attn_indices, + layer_head_mask=layer_head_mask, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, + is_index_masked=is_index_masked, + training=training, + ) + else: + # Leave attn_output unchanged + global_attn_probs = tf.zeros((batch_size, self.num_heads, max_num_global_attn_indices, seq_len)) + + # make sure that local attention probabilities are set to 0 for indices of global attn + # Make sure to create a mask with the proper shape: + # if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1] + # if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1] + if is_global_attn: + masked_global_attn_index = tf.tile( + is_index_global_attn[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1), + ) + else: + masked_global_attn_index = tf.tile( + is_index_global_attn[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1), + ) + attn_probs = tf.where( + masked_global_attn_index, + tf.zeros(shape_list(masked_global_attn_index), dtype=attn_probs.dtype), + attn_probs, + ) + + outputs = (attn_output, attn_probs, global_attn_probs) + + return outputs + + def _sliding_chunks_query_key_matmul(self, query, key, window_overlap): + """ + Matrix multiplication of query and key tensors using with a sliding window attention pattern. This + implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an + overlap of size window_overlap + """ + batch_size, seq_len, num_heads, head_dim = shape_list(query) + + tf.debugging.assert_equal( + seq_len % (window_overlap * 2), + 0, + message=f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}", + ) + tf.debugging.assert_equal( + shape_list(query), + shape_list(key), + message=( + f"Shape of query and key should be equal, but got query: {shape_list(query)} and key:" + f" {shape_list(key)}" + ), + ) + + chunks_count = seq_len // window_overlap - 1 + + # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2 + query = tf.reshape( + tf.transpose(query, (0, 2, 1, 3)), + (batch_size * num_heads, seq_len, head_dim), + ) + key = tf.reshape(tf.transpose(key, (0, 2, 1, 3)), (batch_size * num_heads, seq_len, head_dim)) + chunked_query = self._chunk(query, window_overlap) + chunked_key = self._chunk(key, window_overlap) + + # matrix multiplication + # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim + # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim + # bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap + chunked_query = tf.cast(chunked_query, dtype=chunked_key.dtype) + chunked_attention_scores = tf.einsum("bcxd,bcyd->bcxy", chunked_query, chunked_key) # multiply + + # convert diagonals into columns + paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 1], [0, 0]]) + diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims(chunked_attention_scores, paddings) + + # allocate space for the overall attention matrix where the chunks are combined. The last dimension + # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to + # window_overlap previous words). The following column is attention score from each word to itself, then + # followed by window_overlap columns for the upper triangle. + + # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions + # - copying the main diagonal and the upper triangle + # TODO: This code is most likely not very efficient and should be improved + diagonal_attn_scores_up_triang = tf.concat( + [ + diagonal_chunked_attention_scores[:, :, :window_overlap, : window_overlap + 1], + diagonal_chunked_attention_scores[:, -1:, window_overlap:, : window_overlap + 1], + ], + axis=1, + ) + + # - copying the lower triangle + diagonal_attn_scores_low_triang = tf.concat( + [ + tf.zeros( + (batch_size * num_heads, 1, window_overlap, window_overlap), + dtype=diagonal_chunked_attention_scores.dtype, + ), + diagonal_chunked_attention_scores[:, :, -(window_overlap + 1) : -1, window_overlap + 1 :], + ], + axis=1, + ) + diagonal_attn_scores_first_chunk = tf.concat( + [ + tf.roll( + diagonal_chunked_attention_scores, + shift=[1, window_overlap], + axis=[2, 3], + )[:, :, :window_overlap, :window_overlap], + tf.zeros( + (batch_size * num_heads, 1, window_overlap, window_overlap), + dtype=diagonal_chunked_attention_scores.dtype, + ), + ], + axis=1, + ) + first_chunk_mask = ( + tf.tile( + tf.range(chunks_count + 1, dtype=tf.int64)[None, :, None, None], + (batch_size * num_heads, 1, window_overlap, window_overlap), + ) + < 1 + ) + diagonal_attn_scores_low_triang = tf.where( + first_chunk_mask, + diagonal_attn_scores_first_chunk, + diagonal_attn_scores_low_triang, + ) + + # merging upper and lower triangle + diagonal_attention_scores = tf.concat( + [diagonal_attn_scores_low_triang, diagonal_attn_scores_up_triang], axis=-1 + ) + + # separate batch_size and num_heads dimensions again + diagonal_attention_scores = tf.transpose( + tf.reshape( + diagonal_attention_scores, + (batch_size, num_heads, seq_len, 2 * window_overlap + 1), + ), + (0, 2, 1, 3), + ) + + diagonal_attention_scores = self._mask_invalid_locations(diagonal_attention_scores, window_overlap) + + return diagonal_attention_scores + + @staticmethod + def _mask_invalid_locations(input_tensor, window_overlap): + # create correct upper triangle bool mask + mask_2d_upper = tf.reverse( + tf.linalg.band_part(tf.ones(shape=(window_overlap, window_overlap + 1)), -1, 0), + axis=[0], + ) + + # pad to full matrix + padding = tf.convert_to_tensor( + [[0, shape_list(input_tensor)[1] - window_overlap], [0, shape_list(input_tensor)[3] - window_overlap - 1]] + ) + + # create lower mask + mask_2d = tf.pad(mask_2d_upper, padding) + + # combine with upper mask + mask_2d = mask_2d + tf.reverse(mask_2d, axis=[0, 1]) + + # broadcast to full matrix + mask_4d = tf.tile(mask_2d[None, :, None, :], (shape_list(input_tensor)[0], 1, 1, 1)) + + # inf tensor used for masking + inf_tensor = -float("inf") * tf.ones_like(input_tensor) + + # mask + input_tensor = tf.where(tf.math.greater(mask_4d, 0), inf_tensor, input_tensor) + + return input_tensor + + def _sliding_chunks_matmul_attn_probs_value(self, attn_probs, value, window_overlap): + """ + Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the + same shape as `attn_probs` + """ + + batch_size, seq_len, num_heads, head_dim = shape_list(value) + + tf.debugging.assert_equal( + seq_len % (window_overlap * 2), 0, message="Seq_len has to be multiple of 2 * window_overlap" + ) + tf.debugging.assert_equal( + shape_list(attn_probs)[:3], + shape_list(value)[:3], + message="value and attn_probs must have same dims (except head_dim)", + ) + tf.debugging.assert_equal( + shape_list(attn_probs)[3], + 2 * window_overlap + 1, + message="attn_probs last dim has to be 2 * window_overlap + 1", + ) + + chunks_count = seq_len // window_overlap - 1 + + # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap + chunked_attn_probs = tf.reshape( + tf.transpose(attn_probs, (0, 2, 1, 3)), + ( + batch_size * num_heads, + seq_len // window_overlap, + window_overlap, + 2 * window_overlap + 1, + ), + ) + + # group batch_size and num_heads dimensions into one + value = tf.reshape( + tf.transpose(value, (0, 2, 1, 3)), + (batch_size * num_heads, seq_len, head_dim), + ) + + # pad seq_len with w at the beginning of the sequence and another window overlap at the end + paddings = tf.convert_to_tensor([[0, 0], [window_overlap, window_overlap], [0, 0]]) + padded_value = tf.pad(value, paddings, constant_values=-1) + + # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap + frame_size = 3 * window_overlap * head_dim + frame_hop_size = (shape_list(padded_value)[1] * head_dim - frame_size) // chunks_count + chunked_value = tf.signal.frame( + tf.reshape(padded_value, (batch_size * num_heads, -1)), + frame_size, + frame_hop_size, + ) + chunked_value = tf.reshape( + chunked_value, + (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim), + ) + + tf.debugging.assert_equal( + shape_list(chunked_value), + [batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim], + message="Chunked value has the wrong shape", + ) + + chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs) + context = tf.einsum("bcwd,bcdh->bcwh", chunked_attn_probs, chunked_value) + context = tf.transpose( + tf.reshape(context, (batch_size, num_heads, seq_len, head_dim)), + (0, 2, 1, 3), + ) + + return context + + @staticmethod + def _pad_and_transpose_last_two_dims(hidden_states_padded, paddings): + """pads rows and then flips rows and columns""" + hidden_states_padded = tf.pad( + hidden_states_padded, paddings + ) # padding value is not important because it will be overwritten + batch_size, chunk_size, seq_length, hidden_dim = shape_list(hidden_states_padded) + hidden_states_padded = tf.reshape(hidden_states_padded, (batch_size, chunk_size, hidden_dim, seq_length)) + + return hidden_states_padded + + @staticmethod + def _pad_and_diagonalize(chunked_hidden_states): + """ + shift every row 1 step right, converting columns into diagonals. + + Example: + + ```python + chunked_hidden_states: [ + 0.4983, + 2.6918, + -0.0071, + 1.0492, + -1.8348, + 0.7672, + 0.2986, + 0.0285, + -0.7584, + 0.4206, + -0.0405, + 0.1599, + 2.0514, + -1.1600, + 0.5372, + 0.2629, + ] + window_overlap = num_rows = 4 + ``` + + (pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000 + 0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206, + -0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ] + """ + total_num_heads, num_chunks, window_overlap, hidden_dim = shape_list(chunked_hidden_states) + paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 0], [0, window_overlap + 1]]) + chunked_hidden_states = tf.pad( + chunked_hidden_states, paddings + ) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten + chunked_hidden_states = tf.reshape( + chunked_hidden_states, (total_num_heads, num_chunks, -1) + ) # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap+window_overlap + chunked_hidden_states = chunked_hidden_states[ + :, :, :-window_overlap + ] # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap + chunked_hidden_states = tf.reshape( + chunked_hidden_states, + (total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim), + ) # total_num_heads x num_chunks, window_overlap x hidden_dim+window_overlap + chunked_hidden_states = chunked_hidden_states[:, :, :, :-1] + + return chunked_hidden_states + + @staticmethod + def _chunk(hidden_states, window_overlap): + """convert into overlapping chunks. Chunk size = 2w, overlap size = w""" + batch_size, seq_length, hidden_dim = shape_list(hidden_states) + num_output_chunks = 2 * (seq_length // (2 * window_overlap)) - 1 + + # define frame size and frame stride (similar to convolution) + frame_hop_size = window_overlap * hidden_dim + frame_size = 2 * frame_hop_size + hidden_states = tf.reshape(hidden_states, (batch_size, seq_length * hidden_dim)) + + # chunk with overlap + chunked_hidden_states = tf.signal.frame(hidden_states, frame_size, frame_hop_size) + + tf.debugging.assert_equal( + shape_list(chunked_hidden_states), + [batch_size, num_output_chunks, frame_size], + message=( + "Make sure chunking is correctly applied. `Chunked hidden states should have output dimension" + f" {[batch_size, frame_size, num_output_chunks]}, but got {shape_list(chunked_hidden_states)}." + ), + ) + + chunked_hidden_states = tf.reshape( + chunked_hidden_states, + (batch_size, num_output_chunks, 2 * window_overlap, hidden_dim), + ) + + return chunked_hidden_states + + @staticmethod + def _get_global_attn_indices(is_index_global_attn): + """compute global attn indices required throughout forward pass""" + # helper variable + num_global_attn_indices = tf.math.count_nonzero(is_index_global_attn, axis=1) + num_global_attn_indices = tf.cast(num_global_attn_indices, dtype=tf.constant(1).dtype) + + # max number of global attn indices in batch + max_num_global_attn_indices = tf.reduce_max(num_global_attn_indices) + + # indices of global attn + is_index_global_attn_nonzero = tf.where(is_index_global_attn) + + # helper variable + is_local_index_global_attn = tf.range(max_num_global_attn_indices) < tf.expand_dims( + num_global_attn_indices, axis=-1 + ) + + # location of the non-padding values within global attention indices + is_local_index_global_attn_nonzero = tf.where(is_local_index_global_attn) + + # location of the padding values within global attention indices + is_local_index_no_global_attn_nonzero = tf.where(tf.math.logical_not(is_local_index_global_attn)) + + return ( + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ) + + def _concat_with_global_key_attn_probs( + self, + attn_scores, + key_vectors, + query_vectors, + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ): + batch_size = shape_list(key_vectors)[0] + + # select global key vectors + global_key_vectors = tf.gather_nd(key_vectors, is_index_global_attn_nonzero) + + # create only global key vectors + key_vectors_only_global = tf.scatter_nd( + is_local_index_global_attn_nonzero, + global_key_vectors, + shape=( + batch_size, + max_num_global_attn_indices, + self.num_heads, + self.head_dim, + ), + ) + + # (batch_size, seq_len, num_heads, max_num_global_attn_indices) + attn_probs_from_global_key = tf.einsum("blhd,bshd->blhs", query_vectors, key_vectors_only_global) + + # (batch_size, max_num_global_attn_indices, seq_len, num_heads) + attn_probs_from_global_key_trans = tf.transpose(attn_probs_from_global_key, (0, 3, 1, 2)) + mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple( + shape_list(attn_probs_from_global_key_trans)[-2:] + ) + mask = tf.ones(mask_shape) * -10000.0 + mask = tf.cast(mask, dtype=attn_probs_from_global_key_trans.dtype) + + # scatter mask + attn_probs_from_global_key_trans = tf.tensor_scatter_nd_update( + attn_probs_from_global_key_trans, + is_local_index_no_global_attn_nonzero, + mask, + ) + + # (batch_size, seq_len, num_heads, max_num_global_attn_indices) + attn_probs_from_global_key = tf.transpose(attn_probs_from_global_key_trans, (0, 2, 3, 1)) + + # concat to attn_probs + # (batch_size, seq_len, num_heads, extra attention count + 2*window+1) + attn_scores = tf.concat((attn_probs_from_global_key, attn_scores), axis=-1) + + return attn_scores + + def _compute_attn_output_with_global_indices( + self, + value_vectors, + attn_probs, + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + ): + batch_size = shape_list(attn_probs)[0] + + # cut local attn probs to global only + attn_probs_only_global = attn_probs[:, :, :, :max_num_global_attn_indices] + + # select global value vectors + global_value_vectors = tf.gather_nd(value_vectors, is_index_global_attn_nonzero) + + # create only global value vectors + value_vectors_only_global = tf.scatter_nd( + is_local_index_global_attn_nonzero, + global_value_vectors, + shape=( + batch_size, + max_num_global_attn_indices, + self.num_heads, + self.head_dim, + ), + ) + + # compute attn output only global + attn_output_only_global = tf.einsum("blhs,bshd->blhd", attn_probs_only_global, value_vectors_only_global) + + # reshape attn probs + attn_probs_without_global = attn_probs[:, :, :, max_num_global_attn_indices:] + + # compute attn output with global + attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value( + attn_probs_without_global, value_vectors, self.one_sided_attn_window_size + ) + + return attn_output_only_global + attn_output_without_global + + def _compute_global_attn_output_from_hidden( + self, + attn_output, + hidden_states, + max_num_global_attn_indices, + layer_head_mask, + is_local_index_global_attn_nonzero, + is_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + is_index_masked, + training, + ): + batch_size, seq_len = shape_list(hidden_states)[:2] + + # prepare global hidden states + global_attn_hidden_states = tf.gather_nd(hidden_states, is_index_global_attn_nonzero) + global_attn_hidden_states = tf.scatter_nd( + is_local_index_global_attn_nonzero, + global_attn_hidden_states, + shape=(batch_size, max_num_global_attn_indices, self.embed_dim), + ) + + # global key, query, value + global_query_vectors_only_global = self.query_global(global_attn_hidden_states) + global_key_vectors = self.key_global(hidden_states) + global_value_vectors = self.value_global(hidden_states) + + # normalize + global_query_vectors_only_global /= tf.math.sqrt( + tf.cast(self.head_dim, dtype=global_query_vectors_only_global.dtype) + ) + global_query_vectors_only_global = self.reshape_and_transpose(global_query_vectors_only_global, batch_size) + global_key_vectors = self.reshape_and_transpose(global_key_vectors, batch_size) + global_value_vectors = self.reshape_and_transpose(global_value_vectors, batch_size) + + # compute attn scores + global_attn_scores = tf.matmul(global_query_vectors_only_global, global_key_vectors, transpose_b=True) + + tf.debugging.assert_equal( + shape_list(global_attn_scores), + [batch_size * self.num_heads, max_num_global_attn_indices, seq_len], + message=( + "global_attn_scores have the wrong size. Size should be" + f" {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is" + f" {shape_list(global_attn_scores)}." + ), + ) + + global_attn_scores = tf.reshape( + global_attn_scores, + (batch_size, self.num_heads, max_num_global_attn_indices, seq_len), + ) + global_attn_scores_trans = tf.transpose(global_attn_scores, (0, 2, 1, 3)) + mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple( + shape_list(global_attn_scores_trans)[-2:] + ) + global_attn_mask = tf.ones(mask_shape) * -10000.0 + global_attn_mask = tf.cast(global_attn_mask, dtype=global_attn_scores_trans.dtype) + + # scatter mask + global_attn_scores_trans = tf.tensor_scatter_nd_update( + global_attn_scores_trans, + is_local_index_no_global_attn_nonzero, + global_attn_mask, + ) + global_attn_scores = tf.transpose(global_attn_scores_trans, (0, 2, 1, 3)) + + # mask global attn scores + attn_mask = tf.tile(is_index_masked[:, None, None, :], (1, shape_list(global_attn_scores)[1], 1, 1)) + global_attn_scores = tf.where(attn_mask, -10000.0, global_attn_scores) + global_attn_scores = tf.reshape( + global_attn_scores, + (batch_size * self.num_heads, max_num_global_attn_indices, seq_len), + ) + + # compute global attn probs + global_attn_probs_float = stable_softmax(global_attn_scores, axis=-1) + + # apply layer head masking + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + global_attn_probs_float = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( + global_attn_probs_float, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len) + ) + global_attn_probs_float = tf.reshape( + global_attn_probs_float, (batch_size * self.num_heads, max_num_global_attn_indices, seq_len) + ) + + # dropout + global_attn_probs = self.global_dropout(global_attn_probs_float, training=training) + + # global attn output + global_attn_output = tf.matmul(global_attn_probs, global_value_vectors) + + tf.debugging.assert_equal( + shape_list(global_attn_output), + [batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim], + message=( + "global_attn_output tensor has the wrong size. Size should be" + f" {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is" + f" {shape_list(global_attn_output)}." + ), + ) + + global_attn_output = tf.reshape( + global_attn_output, + (batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim), + ) + + # get only non zero global attn output + nonzero_global_attn_output = tf.gather_nd( + tf.transpose(global_attn_output, (0, 2, 1, 3)), + is_local_index_global_attn_nonzero, + ) + nonzero_global_attn_output = tf.reshape( + nonzero_global_attn_output, + (shape_list(is_local_index_global_attn_nonzero)[0], -1), + ) + + # overwrite values with global attention + attn_output = tf.tensor_scatter_nd_update( + attn_output, is_index_global_attn_nonzero, nonzero_global_attn_output + ) + + global_attn_probs = tf.reshape( + global_attn_probs, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len) + ) + + return attn_output, global_attn_probs + + def reshape_and_transpose(self, vector, batch_size): + return tf.reshape( + tf.transpose( + tf.reshape(vector, (batch_size, -1, self.num_heads, self.head_dim)), + (0, 2, 1, 3), + ), + (batch_size * self.num_heads, -1, self.head_dim), + ) + + +class TFLongformerAttention(keras.layers.Layer): + def __init__(self, config, layer_id=0, **kwargs): + super().__init__(**kwargs) + + self.self_attention = TFLongformerSelfAttention(config, layer_id, name="self") + self.dense_output = TFLongformerSelfOutput(config, name="output") + + def prune_heads(self, heads): + raise NotImplementedError + + def call(self, inputs, training=False): + ( + hidden_states, + attention_mask, + layer_head_mask, + is_index_masked, + is_index_global_attn, + is_global_attn, + ) = inputs + + self_outputs = self.self_attention( + [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn], + training=training, + ) + attention_output = self.dense_output(self_outputs[0], hidden_states, training=training) + outputs = (attention_output,) + self_outputs[1:] + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attention", None) is not None: + with tf.name_scope(self.self_attention.name): + self.self_attention.build(None) + if getattr(self, "dense_output", None) is not None: + with tf.name_scope(self.dense_output.name): + self.dense_output.build(None) + + +class TFLongformerLayer(keras.layers.Layer): + def __init__(self, config, layer_id=0, **kwargs): + super().__init__(**kwargs) + + self.attention = TFLongformerAttention(config, layer_id, name="attention") + self.intermediate = TFLongformerIntermediate(config, name="intermediate") + self.longformer_output = TFLongformerOutput(config, name="output") + + def call(self, inputs, training=False): + ( + hidden_states, + attention_mask, + layer_head_mask, + is_index_masked, + is_index_global_attn, + is_global_attn, + ) = inputs + + attention_outputs = self.attention( + [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn], + training=training, + ) + attention_output = attention_outputs[0] + intermediate_output = self.intermediate(attention_output) + layer_output = self.longformer_output(intermediate_output, attention_output, training=training) + outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "longformer_output", None) is not None: + with tf.name_scope(self.longformer_output.name): + self.longformer_output.build(None) + + +class TFLongformerEncoder(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.output_hidden_states = config.output_hidden_states + self.output_attentions = config.output_attentions + self.layer = [TFLongformerLayer(config, i, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] + + def call( + self, + hidden_states, + attention_mask=None, + head_mask=None, + padding_len=0, + is_index_masked=None, + is_index_global_attn=None, + is_global_attn=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + all_hidden_states = () if output_hidden_states else None + all_attentions = all_global_attentions = () if output_attentions else None + + for idx, layer_module in enumerate(self.layer): + if output_hidden_states: + hidden_states_to_add = hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states + all_hidden_states = all_hidden_states + (hidden_states_to_add,) + + layer_outputs = layer_module( + [ + hidden_states, + attention_mask, + head_mask[idx] if head_mask is not None else None, + is_index_masked, + is_index_global_attn, + is_global_attn, + ], + training=training, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1) + all_attentions = all_attentions + (tf.transpose(layer_outputs[1], (0, 2, 1, 3)),) + + # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn + all_global_attentions = all_global_attentions + (tf.transpose(layer_outputs[2], (0, 1, 3, 2)),) + + # Add last layer + if output_hidden_states: + hidden_states_to_add = hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states + all_hidden_states = all_hidden_states + (hidden_states_to_add,) + + # undo padding + # unpad `hidden_states` because the calling function is expecting a length == input_ids.size(1) + hidden_states = hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states + if output_attentions: + all_attentions = ( + tuple([state[:, :, :-padding_len, :] for state in all_attentions]) + if padding_len > 0 + else all_attentions + ) + + if not return_dict: + return tuple( + v for v in [hidden_states, all_hidden_states, all_attentions, all_global_attentions] if v is not None + ) + + return TFLongformerBaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + global_attentions=all_global_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFLongformerMainLayer(keras.layers.Layer): + config_class = LongformerConfig + + def __init__(self, config, add_pooling_layer=True, **kwargs): + super().__init__(**kwargs) + + if isinstance(config.attention_window, int): + assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value" + assert config.attention_window > 0, "`config.attention_window` has to be positive" + config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer + else: + assert len(config.attention_window) == config.num_hidden_layers, ( + "`len(config.attention_window)` should equal `config.num_hidden_layers`. " + f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}" + ) + + self.config = config + self.num_hidden_layers = config.num_hidden_layers + self.initializer_range = config.initializer_range + self.output_attentions = config.output_attentions + self.output_hidden_states = config.output_hidden_states + self.return_dict = config.use_return_dict + self.pad_token_id = config.pad_token_id + self.attention_window = config.attention_window + self.embeddings = TFLongformerEmbeddings(config, name="embeddings") + self.encoder = TFLongformerEncoder(config, name="encoder") + self.pooler = TFLongformerPooler(config, name="pooler") if add_pooling_layer else None + + def get_input_embeddings(self): + return self.embeddings + + def set_input_embeddings(self, value): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + @unpack_inputs + def call( + self, + input_ids=None, + attention_mask=None, + head_mask=None, + global_attention_mask=None, + token_type_ids=None, + position_ids=None, + inputs_embeds=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + if input_ids is not None and not isinstance(input_ids, tf.Tensor): + input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int64) + elif input_ids is not None: + input_ids = tf.cast(input_ids, tf.int64) + + if attention_mask is not None and not isinstance(attention_mask, tf.Tensor): + attention_mask = tf.convert_to_tensor(attention_mask, dtype=tf.int64) + elif attention_mask is not None: + attention_mask = tf.cast(attention_mask, tf.int64) + + if global_attention_mask is not None and not isinstance(global_attention_mask, tf.Tensor): + global_attention_mask = tf.convert_to_tensor(global_attention_mask, dtype=tf.int64) + elif global_attention_mask is not None: + global_attention_mask = tf.cast(global_attention_mask, tf.int64) + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if attention_mask is None: + attention_mask = tf.cast(tf.fill(input_shape, 1), tf.int64) + + if token_type_ids is None: + token_type_ids = tf.cast(tf.fill(input_shape, 0), tf.int64) + + # merge `global_attention_mask` and `attention_mask` + if global_attention_mask is not None: + attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask) + + ( + padding_len, + input_ids, + attention_mask, + token_type_ids, + position_ids, + inputs_embeds, + ) = self._pad_to_window_size( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + pad_token_id=self.pad_token_id, + ) + + # is index masked or global attention + is_index_masked = tf.math.less(attention_mask, 1) + is_index_global_attn = tf.math.greater(attention_mask, 1) + is_global_attn = tf.math.reduce_any(is_index_global_attn) + + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, to_seq_length, 1, 1] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask_shape = shape_list(attention_mask) + extended_attention_mask = tf.reshape(attention_mask, (attention_mask_shape[0], attention_mask_shape[1], 1, 1)) + + # Since attention_mask is 1.0 for positions we want to attend locally and 0.0 for + # masked and global attn positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = tf.cast(tf.math.abs(1 - extended_attention_mask), tf.dtypes.float32) * -10000.0 + embedding_output = self.embeddings( + input_ids, + position_ids, + token_type_ids, + inputs_embeds, + training=training, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + padding_len=padding_len, + is_index_masked=is_index_masked, + is_index_global_attn=is_index_global_attn, + is_global_attn=is_global_attn, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return ( + sequence_output, + pooled_output, + ) + encoder_outputs[1:] + + return TFLongformerBaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + global_attentions=encoder_outputs.global_attentions, + ) + + def _pad_to_window_size( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + inputs_embeds, + pad_token_id, + ): + """A helper function to pad tokens and mask to work with implementation of Longformer selfattention.""" + # padding + attention_window = ( + self.attention_window if isinstance(self.attention_window, int) else max(self.attention_window) + ) + + assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}" + + input_shape = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds) + batch_size, seq_len = input_shape[:2] + padding_len = (attention_window - seq_len % attention_window) % attention_window + + paddings = tf.convert_to_tensor([[0, 0], [0, padding_len]]) + + if input_ids is not None: + input_ids = tf.pad(input_ids, paddings, constant_values=pad_token_id) + + if position_ids is not None: + # pad with position_id = pad_token_id as in modeling_roberta.RobertaEmbeddings + position_ids = tf.pad(position_ids, paddings, constant_values=pad_token_id) + + if inputs_embeds is not None: + if padding_len > 0: + input_ids_padding = tf.cast(tf.fill((batch_size, padding_len), self.pad_token_id), tf.int64) + inputs_embeds_padding = self.embeddings(input_ids_padding) + inputs_embeds = tf.concat([inputs_embeds, inputs_embeds_padding], axis=-2) + + attention_mask = tf.pad(attention_mask, paddings, constant_values=False) # no attention on the padding tokens + token_type_ids = tf.pad(token_type_ids, paddings, constant_values=0) # pad with token_type_id = 0 + + return ( + padding_len, + input_ids, + attention_mask, + token_type_ids, + position_ids, + inputs_embeds, + ) + + @staticmethod + def _merge_to_attention_mask(attention_mask: tf.Tensor, global_attention_mask: tf.Tensor): + # longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn) + # (global_attention_mask + 1) => 1 for local attention, 2 for global attention + # => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention + if attention_mask is not None: + attention_mask = attention_mask * (global_attention_mask + 1) + else: + # simply use `global_attention_mask` as `attention_mask` + # if no `attention_mask` is given + attention_mask = global_attention_mask + 1 + + return attention_mask + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + + +class TFLongformerPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = LongformerConfig + base_model_prefix = "longformer" + + @property + def input_signature(self): + sig = super().input_signature + sig["global_attention_mask"] = tf.TensorSpec((None, None), tf.int32, name="global_attention_mask") + return sig + + +LONGFORMER_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`LongformerConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +LONGFORMER_INPUTS_DOCSTRING = r""" + Args: + input_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`np.ndarray` or `tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + global_attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to decide the attention given on each token, local attention or global attention. Tokens with global + attention attends to all other tokens, and all other tokens attend to them. This is important for + task-specific finetuning because it makes the model more flexible at representing the task. For example, + for classification, the token should be given global attention. For QA, all question tokens should also + have global attention. Please refer to the [Longformer paper](https://arxiv.org/abs/2004.05150) for more + details. Mask values selected in `[0, 1]`: + + - 0 for local attention (a sliding window attention), + - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). + + token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare Longformer Model outputting raw hidden-states without any specific head on top.", + LONGFORMER_START_DOCSTRING, +) +class TFLongformerModel(TFLongformerPreTrainedModel): + """ + + This class copies code from [`TFRobertaModel`] and overwrites standard self-attention with longformer + self-attention to provide the ability to process long sequences following the self-attention approach described in + [Longformer: the Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, and + Arman Cohan. Longformer self-attention combines a local (sliding window) and global attention to extend to long + documents without the O(n^2) increase in memory and compute. + + The self-attention module `TFLongformerSelfAttention` implemented here supports the combination of local and global + attention but it lacks support for autoregressive attention and dilated attention. Autoregressive and dilated + attention are more relevant for autoregressive language modeling than finetuning on downstream tasks. Future + release will add support for autoregressive attention, but the support for dilated attention requires a custom CUDA + kernel to be memory and compute efficient. + + """ + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.longformer = TFLongformerMainLayer(config, name="longformer") + + @unpack_inputs + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + global_attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[TFLongformerBaseModelOutputWithPooling, Tuple[tf.Tensor]]: + outputs = self.longformer( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + global_attention_mask=global_attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "longformer", None) is not None: + with tf.name_scope(self.longformer.name): + self.longformer.build(None) + + +@add_start_docstrings( + """Longformer Model with a `language modeling` head on top.""", + LONGFORMER_START_DOCSTRING, +) +class TFLongformerForMaskedLM(TFLongformerPreTrainedModel, TFMaskedLanguageModelingLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer") + self.lm_head = TFLongformerLMHead(config, self.longformer.embeddings, name="lm_head") + + def get_lm_head(self): + return self.lm_head + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.lm_head.name + + @unpack_inputs + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="allenai/longformer-base-4096", + output_type=TFLongformerMaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + mask="", + expected_output="' Paris'", + expected_loss=0.44, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + global_attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFLongformerMaskedLMOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + + outputs = self.longformer( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + global_attention_mask=global_attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output, training=training) + loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + + return ((loss,) + output) if loss is not None else output + + return TFLongformerMaskedLMOutput( + loss=loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "longformer", None) is not None: + with tf.name_scope(self.longformer.name): + self.longformer.build(None) + if getattr(self, "lm_head", None) is not None: + with tf.name_scope(self.lm_head.name): + self.lm_head.build(None) + + +@add_start_docstrings( + """ + Longformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / + TriviaQA (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + LONGFORMER_START_DOCSTRING, +) +class TFLongformerForQuestionAnswering(TFLongformerPreTrainedModel, TFQuestionAnsweringLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer") + self.qa_outputs = keras.layers.Dense( + config.num_labels, + kernel_initializer=get_initializer(config.initializer_range), + name="qa_outputs", + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="allenai/longformer-large-4096-finetuned-triviaqa", + output_type=TFLongformerQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="' puppet'", + expected_loss=0.96, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + global_attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + start_positions: np.ndarray | tf.Tensor | None = None, + end_positions: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFLongformerQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: + r""" + start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence + are not taken into account for computing the loss. + """ + + if input_ids is not None and not isinstance(input_ids, tf.Tensor): + input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int64) + elif input_ids is not None: + input_ids = tf.cast(input_ids, tf.int64) + + if attention_mask is not None and not isinstance(attention_mask, tf.Tensor): + attention_mask = tf.convert_to_tensor(attention_mask, dtype=tf.int64) + elif attention_mask is not None: + attention_mask = tf.cast(attention_mask, tf.int64) + + if global_attention_mask is not None and not isinstance(global_attention_mask, tf.Tensor): + global_attention_mask = tf.convert_to_tensor(global_attention_mask, dtype=tf.int64) + elif global_attention_mask is not None: + global_attention_mask = tf.cast(global_attention_mask, tf.int64) + + # set global attention on question tokens + if global_attention_mask is None and input_ids is not None: + if shape_list(tf.where(input_ids == self.config.sep_token_id))[0] != 3 * shape_list(input_ids)[0]: + logger.warning( + f"There should be exactly three separator tokens: {self.config.sep_token_id} in every sample for" + " questions answering. You might also consider to set `global_attention_mask` manually in the" + " forward function to avoid this. This is most likely an error. The global attention is disabled" + " for this forward pass." + ) + global_attention_mask = tf.cast(tf.fill(shape_list(input_ids), value=0), tf.int64) + else: + logger.warning_once("Initializing global attention on question tokens...") + # put global attention on all tokens until `config.sep_token_id` is reached + sep_token_indices = tf.where(input_ids == self.config.sep_token_id) + sep_token_indices = tf.cast(sep_token_indices, dtype=tf.int64) + global_attention_mask = _compute_global_attention_mask(shape_list(input_ids), sep_token_indices) + + outputs = self.longformer( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + global_attention_mask=global_attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = tf.split(logits, 2, axis=-1) + start_logits = tf.squeeze(start_logits, axis=-1) + end_logits = tf.squeeze(end_logits, axis=-1) + loss = None + + if start_positions is not None and end_positions is not None: + labels = {"start_position": start_positions} + labels["end_position"] = end_positions + loss = self.hf_compute_loss(labels, (start_logits, end_logits)) + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + + return ((loss,) + output) if loss is not None else output + + return TFLongformerQuestionAnsweringModelOutput( + loss=loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "longformer", None) is not None: + with tf.name_scope(self.longformer.name): + self.longformer.build(None) + if getattr(self, "qa_outputs", None) is not None: + with tf.name_scope(self.qa_outputs.name): + self.qa_outputs.build([None, None, self.config.hidden_size]) + + +class TFLongformerClassificationHead(keras.layers.Layer): + """Head for sentence-level classification tasks.""" + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense( + config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.out_proj = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" + ) + self.config = config + + def call(self, hidden_states, training=False): + hidden_states = hidden_states[:, 0, :] # take token (equiv. to [CLS]) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + output = self.out_proj(hidden_states) + return output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + Longformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + LONGFORMER_START_DOCSTRING, +) +class TFLongformerForSequenceClassification(TFLongformerPreTrainedModel, TFSequenceClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + + self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer") + self.classifier = TFLongformerClassificationHead(config, name="classifier") + + @unpack_inputs + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFLongformerSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + global_attention_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFLongformerSequenceClassifierOutput, Tuple[tf.Tensor]]: + if input_ids is not None and not isinstance(input_ids, tf.Tensor): + input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int64) + elif input_ids is not None: + input_ids = tf.cast(input_ids, tf.int64) + + if attention_mask is not None and not isinstance(attention_mask, tf.Tensor): + attention_mask = tf.convert_to_tensor(attention_mask, dtype=tf.int64) + elif attention_mask is not None: + attention_mask = tf.cast(attention_mask, tf.int64) + + if global_attention_mask is not None and not isinstance(global_attention_mask, tf.Tensor): + global_attention_mask = tf.convert_to_tensor(global_attention_mask, dtype=tf.int64) + elif global_attention_mask is not None: + global_attention_mask = tf.cast(global_attention_mask, tf.int64) + + if global_attention_mask is None and input_ids is not None: + logger.warning_once("Initializing global attention on CLS token...") + # global attention on cls token + global_attention_mask = tf.zeros_like(input_ids) + updates = tf.ones(shape_list(input_ids)[0], dtype=tf.int64) + indices = tf.pad( + tensor=tf.expand_dims(tf.range(shape_list(input_ids)[0], dtype=tf.int64), axis=1), + paddings=[[0, 0], [0, 1]], + constant_values=0, + ) + global_attention_mask = tf.tensor_scatter_nd_update( + global_attention_mask, + indices, + updates, + ) + + outputs = self.longformer( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + global_attention_mask=global_attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFLongformerSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "longformer", None) is not None: + with tf.name_scope(self.longformer.name): + self.longformer.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build(None) + + +@add_start_docstrings( + """ + Longformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and + a softmax) e.g. for RocStories/SWAG tasks. + """, + LONGFORMER_START_DOCSTRING, +) +class TFLongformerForMultipleChoice(TFLongformerPreTrainedModel, TFMultipleChoiceLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.longformer = TFLongformerMainLayer(config, name="longformer") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.classifier = keras.layers.Dense( + 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @property + def input_signature(self): + return { + "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), + "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), + "global_attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="global_attention_mask"), + } + + @unpack_inputs + @add_start_docstrings_to_model_forward( + LONGFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFLongformerMultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + global_attention_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFLongformerMultipleChoiceModelOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` + where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) + """ + + if input_ids is not None: + num_choices = shape_list(input_ids)[1] + seq_length = shape_list(input_ids)[2] + else: + num_choices = shape_list(inputs_embeds)[1] + seq_length = shape_list(inputs_embeds)[2] + + flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None + flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None + flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None + flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None + flat_global_attention_mask = ( + tf.reshape(global_attention_mask, (-1, shape_list(global_attention_mask)[-1])) + if global_attention_mask is not None + else None + ) + flat_inputs_embeds = ( + tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) + if inputs_embeds is not None + else None + ) + + outputs = self.longformer( + flat_input_ids, + position_ids=flat_position_ids, + token_type_ids=flat_token_type_ids, + attention_mask=flat_attention_mask, + head_mask=head_mask, + global_attention_mask=flat_global_attention_mask, + inputs_embeds=flat_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = tf.reshape(logits, (-1, num_choices)) + + loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFLongformerMultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "longformer", None) is not None: + with tf.name_scope(self.longformer.name): + self.longformer.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + Longformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + LONGFORMER_START_DOCSTRING, +) +class TFLongformerForTokenClassification(TFLongformerPreTrainedModel, TFTokenClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler"] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + self.longformer = TFLongformerMainLayer(config=config, add_pooling_layer=False, name="longformer") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFLongformerTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + global_attention_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[Union[np.array, tf.Tensor]] = None, + training: Optional[bool] = False, + ) -> Union[TFLongformerTokenClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + + outputs = self.longformer( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + global_attention_mask=global_attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFLongformerTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "longformer", None) is not None: + with tf.name_scope(self.longformer.name): + self.longformer.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) diff --git a/venv/lib/python3.10/site-packages/transformers/models/longformer/tokenization_longformer.py b/venv/lib/python3.10/site-packages/transformers/models/longformer/tokenization_longformer.py new file mode 100644 index 0000000000000000000000000000000000000000..51728d778081580a89ab067577439dfa3e46a6df --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/longformer/tokenization_longformer.py @@ -0,0 +1,399 @@ +# coding=utf-8 +# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import json +import os +from functools import lru_cache +from typing import List, Optional, Tuple + +import regex as re + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} + + +@lru_cache() +# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control + characters the bpe code barfs on. + + The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab + if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for + decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup + tables between utf-8 bytes and unicode strings. + """ + bs = ( + list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) + ) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8 + n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +# Copied from transformers.models.roberta.tokenization_roberta.get_pairs +def get_pairs(word): + """ + Return set of symbol pairs in a word. + + Word is represented as tuple of symbols (symbols being variable-length strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer with FacebookAI/roberta-base->allenai/longformer-base-4096, RoBERTa->Longformer all-casing, RobertaTokenizer->LongformerTokenizer +class LongformerTokenizer(PreTrainedTokenizer): + """ + Constructs a Longformer tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding. + + This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import LongformerTokenizer + + >>> tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096") + >>> tokenizer("Hello world")["input_ids"] + [0, 31414, 232, 2] + + >>> tokenizer(" Hello world")["input_ids"] + [0, 20920, 232, 2] + ``` + + You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you + call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. + + + + When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). + + + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (Longformer tokenizer detect beginning of words by the preceding space). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + merges_file, + errors="replace", + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + add_prefix_space=False, + **kwargs, + ): + bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token + pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token + eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token + unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token + sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token + cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token + + # Mask token behave like a normal word, i.e. include the space before it + mask_token = ( + AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False) + if isinstance(mask_token, str) + else mask_token + ) + + # these special tokens are not part of the vocab.json, let's add them in the correct order + + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + self.decoder = {v: k for k, v in self.encoder.items()} + self.errors = errors # how to handle errors in decoding + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + bpe_merges = merges_handle.read().split("\n")[1:-1] + bpe_merges = [tuple(merge.split()) for merge in bpe_merges] + self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) + self.cache = {} + self.add_prefix_space = add_prefix_space + + # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions + self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") + + super().__init__( + errors=errors, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + add_prefix_space=add_prefix_space, + **kwargs, + ) + + @property + def vocab_size(self): + return len(self.encoder) + + def get_vocab(self): + vocab = dict(self.encoder).copy() + vocab.update(self.added_tokens_encoder) + return vocab + + def bpe(self, token): + if token in self.cache: + return self.cache[token] + word = tuple(token) + pairs = get_pairs(word) + + if not pairs: + return token + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + self.cache[token] = word + return word + + def _tokenize(self, text): + """Tokenize a string.""" + bpe_tokens = [] + for token in re.findall(self.pat, text): + token = "".join( + self.byte_encoder[b] for b in token.encode("utf-8") + ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) + bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) + return bpe_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + text = "".join(tokens) + text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) + return text + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + merge_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + writer.write("#version: 0.2\n") + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A Longformer sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. Longformer does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): + add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) + if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): + text = " " + text + return (text, kwargs) diff --git a/venv/lib/python3.10/site-packages/transformers/models/longformer/tokenization_longformer_fast.py b/venv/lib/python3.10/site-packages/transformers/models/longformer/tokenization_longformer_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..02b74818a23ef813c5a03e1e2eba7585cb3b46b7 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/longformer/tokenization_longformer_fast.py @@ -0,0 +1,269 @@ +# coding=utf-8 +# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Fast Tokenization classes for Longformer.""" +import json +from typing import List, Optional, Tuple + +from tokenizers import pre_tokenizers, processors + +from ...tokenization_utils_base import AddedToken, BatchEncoding +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from .tokenization_longformer import LongformerTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} + + +# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast with FacebookAI/roberta-base->allenai/longformer-base-4096, RoBERTa->Longformer all-casing, Roberta->Longformer +class LongformerTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" Longformer tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2 + tokenizer, using byte-level Byte-Pair-Encoding. + + This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import LongformerTokenizerFast + + >>> tokenizer = LongformerTokenizerFast.from_pretrained("allenai/longformer-base-4096") + >>> tokenizer("Hello world")["input_ids"] + [0, 31414, 232, 2] + + >>> tokenizer(" Hello world")["input_ids"] + [0, 20920, 232, 2] + ``` + + You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you + call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. + + + + When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. + + + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (Longformer tokenizer detect beginning of words by the preceding space). + trim_offsets (`bool`, *optional*, defaults to `True`): + Whether the post processing step should trim offsets to avoid including whitespaces. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = LongformerTokenizer + + def __init__( + self, + vocab_file=None, + merges_file=None, + tokenizer_file=None, + errors="replace", + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + add_prefix_space=False, + trim_offsets=True, + **kwargs, + ): + mask_token = ( + AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False) + if isinstance(mask_token, str) + else mask_token + ) + super().__init__( + vocab_file, + merges_file, + tokenizer_file=tokenizer_file, + errors=errors, + bos_token=bos_token, + eos_token=eos_token, + sep_token=sep_token, + cls_token=cls_token, + unk_token=unk_token, + pad_token=pad_token, + mask_token=mask_token, + add_prefix_space=add_prefix_space, + trim_offsets=trim_offsets, + **kwargs, + ) + + pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) + if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: + pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) + pre_tok_state["add_prefix_space"] = add_prefix_space + self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) + + self.add_prefix_space = add_prefix_space + + tokenizer_component = "post_processor" + tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None) + if tokenizer_component_instance: + state = json.loads(tokenizer_component_instance.__getstate__()) + + # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` + if "sep" in state: + state["sep"] = tuple(state["sep"]) + if "cls" in state: + state["cls"] = tuple(state["cls"]) + + changes_to_apply = False + + if state.get("add_prefix_space", add_prefix_space) != add_prefix_space: + state["add_prefix_space"] = add_prefix_space + changes_to_apply = True + + if state.get("trim_offsets", trim_offsets) != trim_offsets: + state["trim_offsets"] = trim_offsets + changes_to_apply = True + + if changes_to_apply: + component_class = getattr(processors, state.pop("type")) + new_value = component_class(**state) + setattr(self.backend_tokenizer, tokenizer_component, new_value) + + @property + def mask_token(self) -> str: + """ + `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not + having been set. + + Longformer tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily + comprise the space before the **. + """ + if self._mask_token is None: + if self.verbose: + logger.error("Using mask_token, but it is not set yet.") + return None + return str(self._mask_token) + + @mask_token.setter + def mask_token(self, value): + """ + Overriding the default behavior of the mask token to have it eat the space before it. + + This is needed to preserve backward compatibility with all the previously used models based on Longformer. + """ + # Mask token behave like a normal word, i.e. include the space before it + # So we set lstrip to True + value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value + self._mask_token = value + + def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: + is_split_into_words = kwargs.get("is_split_into_words", False) + assert self.add_prefix_space or not is_split_into_words, ( + f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " + "to use it with pretokenized inputs." + ) + + return super()._batch_encode_plus(*args, **kwargs) + + def _encode_plus(self, *args, **kwargs) -> BatchEncoding: + is_split_into_words = kwargs.get("is_split_into_words", False) + + assert self.add_prefix_space or not is_split_into_words, ( + f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " + "to use it with pretokenized inputs." + ) + + return super()._encode_plus(*args, **kwargs) + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] + if token_ids_1 is None: + return output + + return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. Longformer does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] diff --git a/venv/lib/python3.10/site-packages/transformers/models/markuplm/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/markuplm/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f8df88ce16f683bce947839ab1dbf5b4b1325ee1 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/markuplm/__init__.py @@ -0,0 +1,83 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available + + +_import_structure = { + "configuration_markuplm": ["MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "MarkupLMConfig"], + "feature_extraction_markuplm": ["MarkupLMFeatureExtractor"], + "processing_markuplm": ["MarkupLMProcessor"], + "tokenization_markuplm": ["MarkupLMTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_markuplm_fast"] = ["MarkupLMTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_markuplm"] = [ + "MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST", + "MarkupLMForQuestionAnswering", + "MarkupLMForSequenceClassification", + "MarkupLMForTokenClassification", + "MarkupLMModel", + "MarkupLMPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_markuplm import MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP, MarkupLMConfig + from .feature_extraction_markuplm import MarkupLMFeatureExtractor + from .processing_markuplm import MarkupLMProcessor + from .tokenization_markuplm import MarkupLMTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_markuplm_fast import MarkupLMTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_markuplm import ( + MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST, + MarkupLMForQuestionAnswering, + MarkupLMForSequenceClassification, + MarkupLMForTokenClassification, + MarkupLMModel, + MarkupLMPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) diff --git a/venv/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/configuration_markuplm.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/configuration_markuplm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6dfb8114e8831ce7cd165609bd32b8e712579408 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/configuration_markuplm.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/markuplm/configuration_markuplm.py b/venv/lib/python3.10/site-packages/transformers/models/markuplm/configuration_markuplm.py new file mode 100644 index 0000000000000000000000000000000000000000..aeb80ae51f96baecf7e84276af9839559e49d596 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/markuplm/configuration_markuplm.py @@ -0,0 +1,156 @@ +# coding=utf-8 +# Copyright 2021, The Microsoft Research Asia MarkupLM Team authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" MarkupLM model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class MarkupLMConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MarkupLMModel`]. It is used to instantiate a + MarkupLM model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the MarkupLM + [microsoft/markuplm-base](https://huggingface.co/microsoft/markuplm-base) architecture. + + Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the + documentation from [`BertConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the MarkupLM model. Defines the different tokens that can be represented by the + *inputs_ids* passed to the forward method of [`MarkupLMModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed into [`MarkupLMModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + max_tree_id_unit_embeddings (`int`, *optional*, defaults to 1024): + The maximum value that the tree id unit embedding might ever use. Typically set this to something large + just in case (e.g., 1024). + max_xpath_tag_unit_embeddings (`int`, *optional*, defaults to 256): + The maximum value that the xpath tag unit embedding might ever use. Typically set this to something large + just in case (e.g., 256). + max_xpath_subs_unit_embeddings (`int`, *optional*, defaults to 1024): + The maximum value that the xpath subscript unit embedding might ever use. Typically set this to something + large just in case (e.g., 1024). + tag_pad_id (`int`, *optional*, defaults to 216): + The id of the padding token in the xpath tags. + subs_pad_id (`int`, *optional*, defaults to 1001): + The id of the padding token in the xpath subscripts. + xpath_tag_unit_hidden_size (`int`, *optional*, defaults to 32): + The hidden size of each tree id unit. One complete tree index will have + (50*xpath_tag_unit_hidden_size)-dim. + max_depth (`int`, *optional*, defaults to 50): + The maximum depth in xpath. + + Examples: + + ```python + >>> from transformers import MarkupLMModel, MarkupLMConfig + + >>> # Initializing a MarkupLM microsoft/markuplm-base style configuration + >>> configuration = MarkupLMConfig() + + >>> # Initializing a model from the microsoft/markuplm-base style configuration + >>> model = MarkupLMModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "markuplm" + + def __init__( + self, + vocab_size=30522, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + pad_token_id=0, + bos_token_id=0, + eos_token_id=2, + max_xpath_tag_unit_embeddings=256, + max_xpath_subs_unit_embeddings=1024, + tag_pad_id=216, + subs_pad_id=1001, + xpath_unit_hidden_size=32, + max_depth=50, + position_embedding_type="absolute", + use_cache=True, + classifier_dropout=None, + **kwargs, + ): + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + **kwargs, + ) + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.use_cache = use_cache + self.classifier_dropout = classifier_dropout + # additional properties + self.max_depth = max_depth + self.max_xpath_tag_unit_embeddings = max_xpath_tag_unit_embeddings + self.max_xpath_subs_unit_embeddings = max_xpath_subs_unit_embeddings + self.tag_pad_id = tag_pad_id + self.subs_pad_id = subs_pad_id + self.xpath_unit_hidden_size = xpath_unit_hidden_size diff --git a/venv/lib/python3.10/site-packages/transformers/models/markuplm/feature_extraction_markuplm.py b/venv/lib/python3.10/site-packages/transformers/models/markuplm/feature_extraction_markuplm.py new file mode 100644 index 0000000000000000000000000000000000000000..73c16bad302b54d6456e3be7e16c825c4d03b6ad --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/markuplm/feature_extraction_markuplm.py @@ -0,0 +1,183 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Feature extractor class for MarkupLM. +""" + +import html + +from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin +from ...utils import is_bs4_available, logging, requires_backends + + +if is_bs4_available(): + import bs4 + from bs4 import BeautifulSoup + + +logger = logging.get_logger(__name__) + + +class MarkupLMFeatureExtractor(FeatureExtractionMixin): + r""" + Constructs a MarkupLM feature extractor. This can be used to get a list of nodes and corresponding xpaths from HTML + strings. + + This feature extractor inherits from [`~feature_extraction_utils.PreTrainedFeatureExtractor`] which contains most + of the main methods. Users should refer to this superclass for more information regarding those methods. + + """ + + def __init__(self, **kwargs): + requires_backends(self, ["bs4"]) + super().__init__(**kwargs) + + def xpath_soup(self, element): + xpath_tags = [] + xpath_subscripts = [] + child = element if element.name else element.parent + for parent in child.parents: # type: bs4.element.Tag + siblings = parent.find_all(child.name, recursive=False) + xpath_tags.append(child.name) + xpath_subscripts.append( + 0 if 1 == len(siblings) else next(i for i, s in enumerate(siblings, 1) if s is child) + ) + child = parent + xpath_tags.reverse() + xpath_subscripts.reverse() + return xpath_tags, xpath_subscripts + + def get_three_from_single(self, html_string): + html_code = BeautifulSoup(html_string, "html.parser") + + all_doc_strings = [] + string2xtag_seq = [] + string2xsubs_seq = [] + + for element in html_code.descendants: + if isinstance(element, bs4.element.NavigableString): + if type(element.parent) != bs4.element.Tag: + continue + + text_in_this_tag = html.unescape(element).strip() + if not text_in_this_tag: + continue + + all_doc_strings.append(text_in_this_tag) + + xpath_tags, xpath_subscripts = self.xpath_soup(element) + string2xtag_seq.append(xpath_tags) + string2xsubs_seq.append(xpath_subscripts) + + if len(all_doc_strings) != len(string2xtag_seq): + raise ValueError("Number of doc strings and xtags does not correspond") + if len(all_doc_strings) != len(string2xsubs_seq): + raise ValueError("Number of doc strings and xsubs does not correspond") + + return all_doc_strings, string2xtag_seq, string2xsubs_seq + + def construct_xpath(self, xpath_tags, xpath_subscripts): + xpath = "" + for tagname, subs in zip(xpath_tags, xpath_subscripts): + xpath += f"/{tagname}" + if subs != 0: + xpath += f"[{subs}]" + return xpath + + def __call__(self, html_strings) -> BatchFeature: + """ + Main method to prepare for the model one or several HTML strings. + + Args: + html_strings (`str`, `List[str]`): + The HTML string or batch of HTML strings from which to extract nodes and corresponding xpaths. + + Returns: + [`BatchFeature`]: A [`BatchFeature`] with the following fields: + + - **nodes** -- Nodes. + - **xpaths** -- Corresponding xpaths. + + Examples: + + ```python + >>> from transformers import MarkupLMFeatureExtractor + + >>> page_name_1 = "page1.html" + >>> page_name_2 = "page2.html" + >>> page_name_3 = "page3.html" + + >>> with open(page_name_1) as f: + ... single_html_string = f.read() + + >>> feature_extractor = MarkupLMFeatureExtractor() + + >>> # single example + >>> encoding = feature_extractor(single_html_string) + >>> print(encoding.keys()) + >>> # dict_keys(['nodes', 'xpaths']) + + >>> # batched example + + >>> multi_html_strings = [] + + >>> with open(page_name_2) as f: + ... multi_html_strings.append(f.read()) + >>> with open(page_name_3) as f: + ... multi_html_strings.append(f.read()) + + >>> encoding = feature_extractor(multi_html_strings) + >>> print(encoding.keys()) + >>> # dict_keys(['nodes', 'xpaths']) + ```""" + + # Input type checking for clearer error + valid_strings = False + + # Check that strings has a valid type + if isinstance(html_strings, str): + valid_strings = True + elif isinstance(html_strings, (list, tuple)): + if len(html_strings) == 0 or isinstance(html_strings[0], str): + valid_strings = True + + if not valid_strings: + raise ValueError( + "HTML strings must of type `str`, `List[str]` (batch of examples), " + f"but is of type {type(html_strings)}." + ) + + is_batched = bool(isinstance(html_strings, (list, tuple)) and (isinstance(html_strings[0], str))) + + if not is_batched: + html_strings = [html_strings] + + # Get nodes + xpaths + nodes = [] + xpaths = [] + for html_string in html_strings: + all_doc_strings, string2xtag_seq, string2xsubs_seq = self.get_three_from_single(html_string) + nodes.append(all_doc_strings) + xpath_strings = [] + for node, tag_list, sub_list in zip(all_doc_strings, string2xtag_seq, string2xsubs_seq): + xpath_string = self.construct_xpath(tag_list, sub_list) + xpath_strings.append(xpath_string) + xpaths.append(xpath_strings) + + # return as Dict + data = {"nodes": nodes, "xpaths": xpaths} + encoded_inputs = BatchFeature(data=data, tensor_type=None) + + return encoded_inputs diff --git a/venv/lib/python3.10/site-packages/transformers/models/markuplm/modeling_markuplm.py b/venv/lib/python3.10/site-packages/transformers/models/markuplm/modeling_markuplm.py new file mode 100644 index 0000000000000000000000000000000000000000..2058ce2795167689468496e43394ac26ee2bdeab --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/markuplm/modeling_markuplm.py @@ -0,0 +1,1316 @@ +# coding=utf-8 +# Copyright 2022 Microsoft Research Asia and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch MarkupLM model.""" + +import math +import os +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...file_utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + replace_return_docstrings, +) +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPoolingAndCrossAttentions, + MaskedLMOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import ( + PreTrainedModel, + apply_chunking_to_forward, + find_pruneable_heads_and_indices, + prune_linear_layer, +) +from ...utils import logging +from .configuration_markuplm import MarkupLMConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "microsoft/markuplm-base" +_CONFIG_FOR_DOC = "MarkupLMConfig" + + +from ..deprecated._archive_maps import MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class XPathEmbeddings(nn.Module): + """Construct the embeddings from xpath tags and subscripts. + + We drop tree-id in this version, as its info can be covered by xpath. + """ + + def __init__(self, config): + super(XPathEmbeddings, self).__init__() + self.max_depth = config.max_depth + + self.xpath_unitseq2_embeddings = nn.Linear(config.xpath_unit_hidden_size * self.max_depth, config.hidden_size) + + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + self.activation = nn.ReLU() + self.xpath_unitseq2_inner = nn.Linear(config.xpath_unit_hidden_size * self.max_depth, 4 * config.hidden_size) + self.inner2emb = nn.Linear(4 * config.hidden_size, config.hidden_size) + + self.xpath_tag_sub_embeddings = nn.ModuleList( + [ + nn.Embedding(config.max_xpath_tag_unit_embeddings, config.xpath_unit_hidden_size) + for _ in range(self.max_depth) + ] + ) + + self.xpath_subs_sub_embeddings = nn.ModuleList( + [ + nn.Embedding(config.max_xpath_subs_unit_embeddings, config.xpath_unit_hidden_size) + for _ in range(self.max_depth) + ] + ) + + def forward(self, xpath_tags_seq=None, xpath_subs_seq=None): + xpath_tags_embeddings = [] + xpath_subs_embeddings = [] + + for i in range(self.max_depth): + xpath_tags_embeddings.append(self.xpath_tag_sub_embeddings[i](xpath_tags_seq[:, :, i])) + xpath_subs_embeddings.append(self.xpath_subs_sub_embeddings[i](xpath_subs_seq[:, :, i])) + + xpath_tags_embeddings = torch.cat(xpath_tags_embeddings, dim=-1) + xpath_subs_embeddings = torch.cat(xpath_subs_embeddings, dim=-1) + + xpath_embeddings = xpath_tags_embeddings + xpath_subs_embeddings + + xpath_embeddings = self.inner2emb(self.dropout(self.activation(self.xpath_unitseq2_inner(xpath_embeddings)))) + + return xpath_embeddings + + +# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids +def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: torch.Tensor x: + + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask + return incremental_indices.long() + padding_idx + + +class MarkupLMEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super(MarkupLMEmbeddings, self).__init__() + self.config = config + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + + self.max_depth = config.max_depth + + self.xpath_embeddings = XPathEmbeddings(config) + + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + + self.padding_idx = config.pad_token_id + self.position_embeddings = nn.Embedding( + config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx + ) + + # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings.create_position_ids_from_inputs_embeds + def create_position_ids_from_inputs_embeds(self, inputs_embeds): + """ + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. + + Args: + inputs_embeds: torch.Tensor + + Returns: torch.Tensor + """ + input_shape = inputs_embeds.size()[:-1] + sequence_length = input_shape[1] + + position_ids = torch.arange( + self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device + ) + return position_ids.unsqueeze(0).expand(input_shape) + + def forward( + self, + input_ids=None, + xpath_tags_seq=None, + xpath_subs_seq=None, + token_type_ids=None, + position_ids=None, + inputs_embeds=None, + past_key_values_length=0, + ): + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) + else: + position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + # prepare xpath seq + if xpath_tags_seq is None: + xpath_tags_seq = self.config.tag_pad_id * torch.ones( + tuple(list(input_shape) + [self.max_depth]), dtype=torch.long, device=device + ) + if xpath_subs_seq is None: + xpath_subs_seq = self.config.subs_pad_id * torch.ones( + tuple(list(input_shape) + [self.max_depth]), dtype=torch.long, device=device + ) + + words_embeddings = inputs_embeds + position_embeddings = self.position_embeddings(position_ids) + + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + xpath_embeddings = self.xpath_embeddings(xpath_tags_seq, xpath_subs_seq) + embeddings = words_embeddings + position_embeddings + token_type_embeddings + xpath_embeddings + + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->MarkupLM +class MarkupLMSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class MarkupLMIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->MarkupLM +class MarkupLMOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertPooler +class MarkupLMPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->MarkupLM +class MarkupLMPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->MarkupLM +class MarkupLMLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = MarkupLMPredictionHeadTransform(config) + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->MarkupLM +class MarkupLMOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = MarkupLMLMPredictionHead(config) + + def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->MarkupLM +class MarkupLMSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + use_cache = past_key_value is not None + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + query_length, key_length = query_layer.shape[2], key_layer.shape[2] + if use_cache: + position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( + -1, 1 + ) + else: + position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in MarkupLMModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->MarkupLM +class MarkupLMAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = MarkupLMSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = MarkupLMSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->MarkupLM +class MarkupLMLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = MarkupLMAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = MarkupLMAttention(config, position_embedding_type="absolute") + self.intermediate = MarkupLMIntermediate(config) + self.output = MarkupLMOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->MarkupLM +class MarkupLMEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([MarkupLMLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +class MarkupLMPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MarkupLMConfig + base_model_prefix = "markuplm" + + # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights with Bert->MarkupLM + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): + return super(MarkupLMPreTrainedModel, cls).from_pretrained( + pretrained_model_name_or_path, *model_args, **kwargs + ) + + +MARKUPLM_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`MarkupLMConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MARKUPLM_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + + xpath_tags_seq (`torch.LongTensor` of shape `({0}, config.max_depth)`, *optional*): + Tag IDs for each token in the input sequence, padded up to config.max_depth. + + xpath_subs_seq (`torch.LongTensor` of shape `({0}, config.max_depth)`, *optional*): + Subscript IDs for each token in the input sequence, padded up to config.max_depth. + + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: `1` for + tokens that are NOT MASKED, `0` for MASKED tokens. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: `0` corresponds to a *sentence A* token, `1` corresponds to a *sentence B* token + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: `1` + indicates the head is **not masked**, `0` indicates the head is **masked**. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + If set to `True`, the attentions tensors of all attention layers are returned. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + If set to `True`, the hidden states of all layers are returned. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + If set to `True`, the model will return a [`~file_utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare MarkupLM Model transformer outputting raw hidden-states without any specific head on top.", + MARKUPLM_START_DOCSTRING, +) +class MarkupLMModel(MarkupLMPreTrainedModel): + # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->MarkupLM + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embeddings = MarkupLMEmbeddings(config) + self.encoder = MarkupLMEncoder(config) + + self.pooler = MarkupLMPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + xpath_tags_seq: Optional[torch.LongTensor] = None, + xpath_subs_seq: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoProcessor, MarkupLMModel + + >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base") + >>> model = MarkupLMModel.from_pretrained("microsoft/markuplm-base") + + >>> html_string = " Page Title " + + >>> encoding = processor(html_string, return_tensors="pt") + + >>> outputs = model(**encoding) + >>> last_hidden_states = outputs.last_hidden_state + >>> list(last_hidden_states.shape) + [1, 4, 768] + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) + extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) + extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 + + if head_mask is not None: + if head_mask.dim() == 1: + head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) + head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) + elif head_mask.dim() == 2: + head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) + head_mask = head_mask.to(dtype=next(self.parameters()).dtype) + else: + head_mask = [None] * self.config.num_hidden_layers + + embedding_output = self.embeddings( + input_ids=input_ids, + xpath_tags_seq=xpath_tags_seq, + xpath_subs_seq=xpath_subs_seq, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + ) + encoder_outputs = self.encoder( + embedding_output, + extended_attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + # Copied from transformers.models.bert.modeling_bert.BertModel.prepare_inputs_for_generation + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, use_cache=True, **model_kwargs + ): + input_shape = input_ids.shape + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_shape) + + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + return { + "input_ids": input_ids, + "attention_mask": attention_mask, + "past_key_values": past_key_values, + "use_cache": use_cache, + } + + # Copied from transformers.models.bert.modeling_bert.BertModel._reorder_cache + def _reorder_cache(self, past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings( + """ + MarkupLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MARKUPLM_START_DOCSTRING, +) +class MarkupLMForQuestionAnswering(MarkupLMPreTrainedModel): + # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with bert->markuplm, Bert->MarkupLM + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.markuplm = MarkupLMModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + xpath_tags_seq: Optional[torch.Tensor] = None, + xpath_subs_seq: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoProcessor, MarkupLMForQuestionAnswering + >>> import torch + + >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base-finetuned-websrc") + >>> model = MarkupLMForQuestionAnswering.from_pretrained("microsoft/markuplm-base-finetuned-websrc") + + >>> html_string = " My name is Niels " + >>> question = "What's his name?" + + >>> encoding = processor(html_string, questions=question, return_tensors="pt") + + >>> with torch.no_grad(): + ... outputs = model(**encoding) + + >>> answer_start_index = outputs.start_logits.argmax() + >>> answer_end_index = outputs.end_logits.argmax() + + >>> predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1] + >>> processor.decode(predict_answer_tokens).strip() + 'Niels' + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.markuplm( + input_ids, + xpath_tags_seq=xpath_tags_seq, + xpath_subs_seq=xpath_subs_seq, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions.clamp_(0, ignored_index) + end_positions.clamp_(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings("""MarkupLM Model with a `token_classification` head on top.""", MARKUPLM_START_DOCSTRING) +class MarkupLMForTokenClassification(MarkupLMPreTrainedModel): + # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with bert->markuplm, Bert->MarkupLM + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.markuplm = MarkupLMModel(config, add_pooling_layer=False) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + xpath_tags_seq: Optional[torch.Tensor] = None, + xpath_subs_seq: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoProcessor, AutoModelForTokenClassification + >>> import torch + + >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base") + >>> processor.parse_html = False + >>> model = AutoModelForTokenClassification.from_pretrained("microsoft/markuplm-base", num_labels=7) + + >>> nodes = ["hello", "world"] + >>> xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span"] + >>> node_labels = [1, 2] + >>> encoding = processor(nodes=nodes, xpaths=xpaths, node_labels=node_labels, return_tensors="pt") + + >>> with torch.no_grad(): + ... outputs = model(**encoding) + + >>> loss = outputs.loss + >>> logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.markuplm( + input_ids, + xpath_tags_seq=xpath_tags_seq, + xpath_subs_seq=xpath_subs_seq, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.classifier(sequence_output) # (batch_size, seq_length, node_type_size) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct( + prediction_scores.view(-1, self.config.num_labels), + labels.view(-1), + ) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MarkupLM Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + MARKUPLM_START_DOCSTRING, +) +class MarkupLMForSequenceClassification(MarkupLMPreTrainedModel): + # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with bert->markuplm, Bert->MarkupLM + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.markuplm = MarkupLMModel(config) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + xpath_tags_seq: Optional[torch.Tensor] = None, + xpath_subs_seq: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoProcessor, AutoModelForSequenceClassification + >>> import torch + + >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base") + >>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/markuplm-base", num_labels=7) + + >>> html_string = " Page Title " + >>> encoding = processor(html_string, return_tensors="pt") + + >>> with torch.no_grad(): + ... outputs = model(**encoding) + + >>> loss = outputs.loss + >>> logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.markuplm( + input_ids, + xpath_tags_seq=xpath_tags_seq, + xpath_subs_seq=xpath_subs_seq, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/markuplm/processing_markuplm.py b/venv/lib/python3.10/site-packages/transformers/models/markuplm/processing_markuplm.py new file mode 100644 index 0000000000000000000000000000000000000000..81aaca9e5cce4a691d969462028c537f4673b1df --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/markuplm/processing_markuplm.py @@ -0,0 +1,146 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Processor class for MarkupLM. +""" +from typing import Optional, Union + +from ...file_utils import TensorType +from ...processing_utils import ProcessorMixin +from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, TruncationStrategy + + +class MarkupLMProcessor(ProcessorMixin): + r""" + Constructs a MarkupLM processor which combines a MarkupLM feature extractor and a MarkupLM tokenizer into a single + processor. + + [`MarkupLMProcessor`] offers all the functionalities you need to prepare data for the model. + + It first uses [`MarkupLMFeatureExtractor`] to extract nodes and corresponding xpaths from one or more HTML strings. + Next, these are provided to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`], which turns them into token-level + `input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and `xpath_subs_seq`. + + Args: + feature_extractor (`MarkupLMFeatureExtractor`): + An instance of [`MarkupLMFeatureExtractor`]. The feature extractor is a required input. + tokenizer (`MarkupLMTokenizer` or `MarkupLMTokenizerFast`): + An instance of [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]. The tokenizer is a required input. + parse_html (`bool`, *optional*, defaults to `True`): + Whether or not to use `MarkupLMFeatureExtractor` to parse HTML strings into nodes and corresponding xpaths. + """ + + feature_extractor_class = "MarkupLMFeatureExtractor" + tokenizer_class = ("MarkupLMTokenizer", "MarkupLMTokenizerFast") + parse_html = True + + def __call__( + self, + html_strings=None, + nodes=None, + xpaths=None, + node_labels=None, + questions=None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + return_tensors: Optional[Union[str, TensorType]] = None, + **kwargs, + ) -> BatchEncoding: + """ + This method first forwards the `html_strings` argument to [`~MarkupLMFeatureExtractor.__call__`]. Next, it + passes the `nodes` and `xpaths` along with the additional arguments to [`~MarkupLMTokenizer.__call__`] and + returns the output. + + Optionally, one can also provide a `text` argument which is passed along as first sequence. + + Please refer to the docstring of the above two methods for more information. + """ + # first, create nodes and xpaths + if self.parse_html: + if html_strings is None: + raise ValueError("Make sure to pass HTML strings in case `parse_html` is set to `True`") + + if nodes is not None or xpaths is not None or node_labels is not None: + raise ValueError( + "Please don't pass nodes, xpaths nor node labels in case `parse_html` is set to `True`" + ) + + features = self.feature_extractor(html_strings) + nodes = features["nodes"] + xpaths = features["xpaths"] + else: + if html_strings is not None: + raise ValueError("You have passed HTML strings but `parse_html` is set to `False`.") + if nodes is None or xpaths is None: + raise ValueError("Make sure to pass nodes and xpaths in case `parse_html` is set to `False`") + + # # second, apply the tokenizer + if questions is not None and self.parse_html: + if isinstance(questions, str): + questions = [questions] # add batch dimension (as the feature extractor always adds a batch dimension) + + encoded_inputs = self.tokenizer( + text=questions if questions is not None else nodes, + text_pair=nodes if questions is not None else None, + xpaths=xpaths, + node_labels=node_labels, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + return_tensors=return_tensors, + **kwargs, + ) + + return encoded_inputs + + def batch_decode(self, *args, **kwargs): + """ + This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer + to the docstring of this method for more information. + """ + return self.tokenizer.batch_decode(*args, **kwargs) + + def decode(self, *args, **kwargs): + """ + This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the + docstring of this method for more information. + """ + return self.tokenizer.decode(*args, **kwargs) + + @property + def model_input_names(self): + tokenizer_input_names = self.tokenizer.model_input_names + return tokenizer_input_names diff --git a/venv/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm.py b/venv/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm.py new file mode 100644 index 0000000000000000000000000000000000000000..c77865abc934c99d41541b4644eb84b1b62406a4 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm.py @@ -0,0 +1,1445 @@ +# coding=utf-8 +# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization class for MarkupLM.""" + +import json +import os +from functools import lru_cache +from typing import Dict, List, Optional, Tuple, Union + +import regex as re + +from ...file_utils import PaddingStrategy, TensorType, add_end_docstrings +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...tokenization_utils_base import ( + ENCODE_KWARGS_DOCSTRING, + BatchEncoding, + EncodedInput, + PreTokenizedInput, + TextInput, + TextInputPair, + TruncationStrategy, +) +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} + + +MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" + add_special_tokens (`bool`, *optional*, defaults to `True`): + Whether or not to encode the sequences with the special tokens relative to their model. + padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): + Activates and controls padding. Accepts the following values: + + - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single + sequence if provided). + - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum + acceptable input length for the model if that argument is not provided. + - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different + lengths). + truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): + Activates and controls truncation. Accepts the following values: + + - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or + to the maximum acceptable input length for the model if that argument is not provided. This will + truncate token by token, removing a token from the longest sequence in the pair if a pair of + sequences (or a batch of pairs) is provided. + - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will only + truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. + - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will only + truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. + - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths + greater than the model maximum admissible input size). + max_length (`int`, *optional*): + Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to + `None`, this will use the predefined model maximum length if a maximum length is required by one of the + truncation/padding parameters. If the model has no specific maximum input length (like XLNet) + truncation/padding to a maximum length will be deactivated. + stride (`int`, *optional*, defaults to 0): + If set to a number along with `max_length`, the overflowing tokens returned when + `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence + returned to provide some overlap between truncated and overflowing sequences. The value of this + argument defines the number of overlapping tokens. + pad_to_multiple_of (`int`, *optional*): + If set will pad the sequence to a multiple of the provided value. This is especially useful to enable + the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). + return_tensors (`str` or [`~file_utils.TensorType`], *optional*): + If set, will return tensors instead of list of python integers. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return Numpy `np.ndarray` objects. +""" + + +@lru_cache() +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control + characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # + of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset + you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe + vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + """ + bs = ( + list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) + ) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8 + n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +def get_pairs(word): + """ + Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length + strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +class MarkupLMTokenizer(PreTrainedTokenizer): + r""" + Construct a MarkupLM tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). [`MarkupLMTokenizer`] can be used to + turn HTML strings into to token-level `input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and + `xpath_tags_seq`. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. + Users should refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (RoBERTa tokenizer detect beginning of words by the preceding space). + """ + + vocab_files_names = VOCAB_FILES_NAMES + + def __init__( + self, + vocab_file, + merges_file, + tags_dict, + errors="replace", + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + add_prefix_space=False, + max_depth=50, + max_width=1000, + pad_width=1001, + pad_token_label=-100, + only_label_first_subword=True, + **kwargs, + ): + bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token + eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token + sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token + cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token + unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token + pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token + + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + + self.tags_dict = tags_dict + self.decoder = {v: k for k, v in self.encoder.items()} + self.errors = errors # how to handle errors in decoding + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + bpe_merges = merges_handle.read().split("\n")[1:-1] + bpe_merges = [tuple(merge.split()) for merge in bpe_merges] + self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) + self.cache = {} + self.add_prefix_space = add_prefix_space + + # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions + self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") + + # additional properties + self.max_depth = max_depth + self.max_width = max_width + self.pad_width = pad_width + self.unk_tag_id = len(self.tags_dict) + self.pad_tag_id = self.unk_tag_id + 1 + self.pad_xpath_tags_seq = [self.pad_tag_id] * self.max_depth + self.pad_xpath_subs_seq = [self.pad_width] * self.max_depth + + super().__init__( + vocab_file=vocab_file, + merges_file=merges_file, + tags_dict=tags_dict, + errors=errors, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + add_prefix_space=add_prefix_space, + max_depth=max_depth, + max_width=max_width, + pad_width=pad_width, + pad_token_label=pad_token_label, + only_label_first_subword=only_label_first_subword, + **kwargs, + ) + + self.pad_token_label = pad_token_label + self.only_label_first_subword = only_label_first_subword + + def get_xpath_seq(self, xpath): + """ + Given the xpath expression of one particular node (like "/html/body/div/li[1]/div/span[2]"), return a list of + tag IDs and corresponding subscripts, taking into account max depth. + """ + xpath_tags_list = [] + xpath_subs_list = [] + + xpath_units = xpath.split("/") + for unit in xpath_units: + if not unit.strip(): + continue + name_subs = unit.strip().split("[") + tag_name = name_subs[0] + sub = 0 if len(name_subs) == 1 else int(name_subs[1][:-1]) + xpath_tags_list.append(self.tags_dict.get(tag_name, self.unk_tag_id)) + xpath_subs_list.append(min(self.max_width, sub)) + + xpath_tags_list = xpath_tags_list[: self.max_depth] + xpath_subs_list = xpath_subs_list[: self.max_depth] + xpath_tags_list += [self.pad_tag_id] * (self.max_depth - len(xpath_tags_list)) + xpath_subs_list += [self.pad_width] * (self.max_depth - len(xpath_subs_list)) + + return xpath_tags_list, xpath_subs_list + + @property + def vocab_size(self): + return len(self.encoder) + + def get_vocab(self): + vocab = self.encoder.copy() + vocab.update(self.added_tokens_encoder) + return vocab + + def bpe(self, token): + if token in self.cache: + return self.cache[token] + word = tuple(token) + pairs = get_pairs(word) + + if not pairs: + return token + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + self.cache[token] = word + return word + + def _tokenize(self, text): + """Tokenize a string.""" + bpe_tokens = [] + for token in re.findall(self.pat, text): + token = "".join( + self.byte_encoder[b] for b in token.encode("utf-8") + ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) + bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) + return bpe_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + logger.warning( + "MarkupLM now does not support generative tasks, decoding is experimental and subject to change." + ) + text = "".join(tokens) + text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) + return text + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + merge_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + # save vocab_file + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + # save merge_file + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + writer.write("#version: 0.2\n") + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file + + def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): + add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) + if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): + text = " " + text + return (text, kwargs) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A RoBERTa sequence has the following format: + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + token_ids_1 + sep + + def build_xpath_tags_with_special_tokens( + self, xpath_tags_0: List[int], xpath_tags_1: Optional[List[int]] = None + ) -> List[int]: + pad = [self.pad_xpath_tags_seq] + if len(xpath_tags_1) == 0: + return pad + xpath_tags_0 + pad + return pad + xpath_tags_0 + pad + xpath_tags_1 + pad + + def build_xpath_subs_with_special_tokens( + self, xpath_subs_0: List[int], xpath_subs_1: Optional[List[int]] = None + ) -> List[int]: + pad = [self.pad_xpath_subs_seq] + if len(xpath_subs_1) == 0: + return pad + xpath_subs_0 + pad + return pad + xpath_subs_0 + pad + xpath_subs_1 + pad + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Args: + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + token_ids_1 + sep) * [0] + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def __call__( + self, + text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], + text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, + xpaths: Union[List[List[int]], List[List[List[int]]]] = None, + node_labels: Optional[Union[List[int], List[List[int]]]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of + sequences with node-level xpaths and optional labels. + + Args: + text (`str`, `List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings + (nodes of a single example or questions of a batch of examples) or a list of list of strings (batch of + nodes). + text_pair (`List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence should be a list of strings + (pretokenized string). + xpaths (`List[List[int]]`, `List[List[List[int]]]`): + Node-level xpaths. + node_labels (`List[int]`, `List[List[int]]`, *optional*): + Node-level integer labels (for token classification tasks). + """ + + # Input type checking for clearer error + def _is_valid_text_input(t): + if isinstance(t, str): + # Strings are fine + return True + elif isinstance(t, (list, tuple)): + # List are fine as long as they are... + if len(t) == 0: + # ... empty + return True + elif isinstance(t[0], str): + # ... list of strings + return True + elif isinstance(t[0], (list, tuple)): + # ... list with an empty list or with a list of strings + return len(t[0]) == 0 or isinstance(t[0][0], str) + else: + return False + else: + return False + + if text_pair is not None: + # in case text + text_pair are provided, text = questions, text_pair = nodes + if not _is_valid_text_input(text): + raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") + if not isinstance(text_pair, (list, tuple)): + raise ValueError( + "Nodes must be of type `List[str]` (single pretokenized example), " + "or `List[List[str]]` (batch of pretokenized examples)." + ) + else: + # in case only text is provided => must be nodes + if not isinstance(text, (list, tuple)): + raise ValueError( + "Nodes must be of type `List[str]` (single pretokenized example), " + "or `List[List[str]]` (batch of pretokenized examples)." + ) + + if text_pair is not None: + is_batched = isinstance(text, (list, tuple)) + else: + is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) + + nodes = text if text_pair is None else text_pair + assert xpaths is not None, "You must provide corresponding xpaths" + if is_batched: + assert len(nodes) == len(xpaths), "You must provide nodes and xpaths for an equal amount of examples" + for nodes_example, xpaths_example in zip(nodes, xpaths): + assert len(nodes_example) == len(xpaths_example), "You must provide as many nodes as there are xpaths" + else: + assert len(nodes) == len(xpaths), "You must provide as many nodes as there are xpaths" + + if is_batched: + if text_pair is not None and len(text) != len(text_pair): + raise ValueError( + f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" + f" {len(text_pair)}." + ) + batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text + is_pair = bool(text_pair is not None) + return self.batch_encode_plus( + batch_text_or_text_pairs=batch_text_or_text_pairs, + is_pair=is_pair, + xpaths=xpaths, + node_labels=node_labels, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + else: + return self.encode_plus( + text=text, + text_pair=text_pair, + xpaths=xpaths, + node_labels=node_labels, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def batch_encode_plus( + self, + batch_text_or_text_pairs: Union[ + List[TextInput], + List[TextInputPair], + List[PreTokenizedInput], + ], + is_pair: bool = None, + xpaths: Optional[List[List[List[int]]]] = None, + node_labels: Optional[Union[List[int], List[List[int]]]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' + padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + verbose=verbose, + **kwargs, + ) + + return self._batch_encode_plus( + batch_text_or_text_pairs=batch_text_or_text_pairs, + is_pair=is_pair, + xpaths=xpaths, + node_labels=node_labels, + add_special_tokens=add_special_tokens, + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + def _batch_encode_plus( + self, + batch_text_or_text_pairs: Union[ + List[TextInput], + List[TextInputPair], + List[PreTokenizedInput], + ], + is_pair: bool = None, + xpaths: Optional[List[List[List[int]]]] = None, + node_labels: Optional[List[List[int]]] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + if return_offsets_mapping: + raise NotImplementedError( + "return_offset_mapping is not available when using Python tokenizers. " + "To use this feature, change your tokenizer to one deriving from " + "transformers.PreTrainedTokenizerFast." + ) + + batch_outputs = self._batch_prepare_for_model( + batch_text_or_text_pairs=batch_text_or_text_pairs, + is_pair=is_pair, + xpaths=xpaths, + node_labels=node_labels, + add_special_tokens=add_special_tokens, + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + return_tensors=return_tensors, + verbose=verbose, + ) + + return BatchEncoding(batch_outputs) + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def _batch_prepare_for_model( + self, + batch_text_or_text_pairs, + is_pair: bool = None, + xpaths: Optional[List[List[int]]] = None, + node_labels: Optional[List[List[int]]] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[str] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_length: bool = False, + verbose: bool = True, + ) -> BatchEncoding: + """ + Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It + adds special tokens, truncates sequences if overflowing while taking into account the special tokens and + manages a moving window (with user defined stride) for overflowing tokens. + + Args: + batch_ids_pairs: list of tokenized input ids or input ids pairs + """ + + batch_outputs = {} + for idx, example in enumerate(zip(batch_text_or_text_pairs, xpaths)): + batch_text_or_text_pair, xpaths_example = example + outputs = self.prepare_for_model( + batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair, + batch_text_or_text_pair[1] if is_pair else None, + xpaths_example, + node_labels=node_labels[idx] if node_labels is not None else None, + add_special_tokens=add_special_tokens, + padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward + truncation=truncation_strategy.value, + max_length=max_length, + stride=stride, + pad_to_multiple_of=None, # we pad in batch afterward + return_attention_mask=False, # we pad in batch afterward + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + return_tensors=None, # We convert the whole batch to tensors at the end + prepend_batch_axis=False, + verbose=verbose, + ) + + for key, value in outputs.items(): + if key not in batch_outputs: + batch_outputs[key] = [] + batch_outputs[key].append(value) + + batch_outputs = self.pad( + batch_outputs, + padding=padding_strategy.value, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + ) + + batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) + + return batch_outputs + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING) + def encode( + self, + text: Union[TextInput, PreTokenizedInput], + text_pair: Optional[PreTokenizedInput] = None, + xpaths: Optional[List[List[int]]] = None, + node_labels: Optional[List[int]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> List[int]: + encoded_inputs = self.encode_plus( + text=text, + text_pair=text_pair, + xpaths=xpaths, + node_labels=node_labels, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + return encoded_inputs["input_ids"] + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def encode_plus( + self, + text: Union[TextInput, PreTokenizedInput], + text_pair: Optional[PreTokenizedInput] = None, + xpaths: Optional[List[List[int]]] = None, + node_labels: Optional[List[int]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated, + `__call__` should be used instead. + + Args: + text (`str`, `List[str]`, `List[List[str]]`): + The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. + text_pair (`List[str]` or `List[int]`, *optional*): + Optional second sequence to be encoded. This can be a list of strings (nodes of a single example) or a + list of list of strings (nodes of a batch of examples). + """ + + # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' + padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + verbose=verbose, + **kwargs, + ) + + return self._encode_plus( + text=text, + xpaths=xpaths, + text_pair=text_pair, + node_labels=node_labels, + add_special_tokens=add_special_tokens, + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + def _encode_plus( + self, + text: Union[TextInput, PreTokenizedInput], + text_pair: Optional[PreTokenizedInput] = None, + xpaths: Optional[List[List[int]]] = None, + node_labels: Optional[List[int]] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + if return_offsets_mapping: + raise NotImplementedError( + "return_offset_mapping is not available when using Python tokenizers. " + "To use this feature, change your tokenizer to one deriving from " + "transformers.PreTrainedTokenizerFast. " + "More information on available tokenizers at " + "https://github.com/huggingface/transformers/pull/2674" + ) + + return self.prepare_for_model( + text=text, + text_pair=text_pair, + xpaths=xpaths, + node_labels=node_labels, + add_special_tokens=add_special_tokens, + padding=padding_strategy.value, + truncation=truncation_strategy.value, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + prepend_batch_axis=True, + return_attention_mask=return_attention_mask, + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + verbose=verbose, + ) + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def prepare_for_model( + self, + text: Union[TextInput, PreTokenizedInput], + text_pair: Optional[PreTokenizedInput] = None, + xpaths: Optional[List[List[int]]] = None, + node_labels: Optional[List[int]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + prepend_batch_axis: bool = False, + **kwargs, + ) -> BatchEncoding: + """ + Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens, + truncates sequences if overflowing while taking into account the special tokens and manages a moving window + (with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and + *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a + combination of arguments will raise an error. + + Node-level `xpaths` are turned into token-level `xpath_tags_seq` and `xpath_subs_seq`. If provided, node-level + `node_labels` are turned into token-level `labels`. The node label is used for the first token of the node, + while remaining tokens are labeled with -100, such that they will be ignored by the loss function. + + Args: + text (`str`, `List[str]`, `List[List[str]]`): + The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. + text_pair (`List[str]` or `List[int]`, *optional*): + Optional second sequence to be encoded. This can be a list of strings (nodes of a single example) or a + list of list of strings (nodes of a batch of examples). + """ + + # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' + padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + verbose=verbose, + **kwargs, + ) + + tokens = [] + pair_tokens = [] + xpath_tags_seq = [] + xpath_subs_seq = [] + pair_xpath_tags_seq = [] + pair_xpath_subs_seq = [] + labels = [] + + if text_pair is None: + if node_labels is None: + # CASE 1: web page classification (training + inference) + CASE 2: token classification (inference) + for word, xpath in zip(text, xpaths): + if len(word) < 1: # skip empty nodes + continue + word_tokens = self.tokenize(word) + tokens.extend(word_tokens) + xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath) + xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens)) + xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens)) + else: + # CASE 2: token classification (training) + for word, xpath, label in zip(text, xpaths, node_labels): + if len(word) < 1: # skip empty nodes + continue + word_tokens = self.tokenize(word) + tokens.extend(word_tokens) + xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath) + xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens)) + xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens)) + if self.only_label_first_subword: + # Use the real label id for the first token of the word, and padding ids for the remaining tokens + labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1)) + else: + labels.extend([label] * len(word_tokens)) + else: + # CASE 3: web page question answering (inference) + # text = question + # text_pair = nodes + tokens = self.tokenize(text) + xpath_tags_seq = [self.pad_xpath_tags_seq for _ in range(len(tokens))] + xpath_subs_seq = [self.pad_xpath_subs_seq for _ in range(len(tokens))] + + for word, xpath in zip(text_pair, xpaths): + if len(word) < 1: # skip empty nodes + continue + word_tokens = self.tokenize(word) + pair_tokens.extend(word_tokens) + xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath) + pair_xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens)) + pair_xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens)) + + # Create ids + pair_ids + ids = self.convert_tokens_to_ids(tokens) + pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None + + if ( + return_overflowing_tokens + and truncation_strategy == TruncationStrategy.LONGEST_FIRST + and pair_ids is not None + ): + raise ValueError( + "Not possible to return overflowing tokens for pair of sequences with the " + "`longest_first`. Please select another truncation strategy than `longest_first`, " + "for instance `only_second` or `only_first`." + ) + + # Compute the total size of the returned encodings + pair = bool(pair_ids is not None) + len_ids = len(ids) + len_pair_ids = len(pair_ids) if pair else 0 + total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) + + # Truncation: Handle max sequence length + overflowing_tokens = [] + overflowing_xpath_tags_seq = [] + overflowing_xpath_subs_seq = [] + overflowing_labels = [] + if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: + ( + ids, + xpath_tags_seq, + xpath_subs_seq, + pair_ids, + pair_xpath_tags_seq, + pair_xpath_subs_seq, + labels, + overflowing_tokens, + overflowing_xpath_tags_seq, + overflowing_xpath_subs_seq, + overflowing_labels, + ) = self.truncate_sequences( + ids, + xpath_tags_seq=xpath_tags_seq, + xpath_subs_seq=xpath_subs_seq, + pair_ids=pair_ids, + pair_xpath_tags_seq=pair_xpath_tags_seq, + pair_xpath_subs_seq=pair_xpath_subs_seq, + labels=labels, + num_tokens_to_remove=total_len - max_length, + truncation_strategy=truncation_strategy, + stride=stride, + ) + + if return_token_type_ids and not add_special_tokens: + raise ValueError( + "Asking to return token_type_ids while setting add_special_tokens to False " + "results in an undefined behavior. Please set add_special_tokens to True or " + "set return_token_type_ids to None." + ) + + # Load from model defaults + if return_token_type_ids is None: + return_token_type_ids = "token_type_ids" in self.model_input_names + if return_attention_mask is None: + return_attention_mask = "attention_mask" in self.model_input_names + + encoded_inputs = {} + + if return_overflowing_tokens: + encoded_inputs["overflowing_tokens"] = overflowing_tokens + encoded_inputs["overflowing_xpath_tags_seq"] = overflowing_xpath_tags_seq + encoded_inputs["overflowing_xpath_subs_seq"] = overflowing_xpath_subs_seq + encoded_inputs["overflowing_labels"] = overflowing_labels + encoded_inputs["num_truncated_tokens"] = total_len - max_length + + # Add special tokens + if add_special_tokens: + sequence = self.build_inputs_with_special_tokens(ids, pair_ids) + token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) + xpath_tags_ids = self.build_xpath_tags_with_special_tokens(xpath_tags_seq, pair_xpath_tags_seq) + xpath_subs_ids = self.build_xpath_subs_with_special_tokens(xpath_subs_seq, pair_xpath_subs_seq) + if labels: + labels = [self.pad_token_label] + labels + [self.pad_token_label] + else: + sequence = ids + pair_ids if pair else ids + token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) + xpath_tags_ids = xpath_tags_seq + pair_xpath_tags_seq if pair else xpath_tags_seq + xpath_subs_ids = xpath_subs_seq + pair_xpath_subs_seq if pair else xpath_subs_seq + + # Build output dictionary + encoded_inputs["input_ids"] = sequence + encoded_inputs["xpath_tags_seq"] = xpath_tags_ids + encoded_inputs["xpath_subs_seq"] = xpath_subs_ids + if return_token_type_ids: + encoded_inputs["token_type_ids"] = token_type_ids + if return_special_tokens_mask: + if add_special_tokens: + encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) + else: + encoded_inputs["special_tokens_mask"] = [0] * len(sequence) + + if labels: + encoded_inputs["labels"] = labels + + # Check lengths + self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) + + # Padding + if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: + encoded_inputs = self.pad( + encoded_inputs, + max_length=max_length, + padding=padding_strategy.value, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + ) + + if return_length: + encoded_inputs["length"] = len(encoded_inputs["input_ids"]) + + batch_outputs = BatchEncoding( + encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis + ) + + return batch_outputs + + def truncate_sequences( + self, + ids: List[int], + xpath_tags_seq: List[List[int]], + xpath_subs_seq: List[List[int]], + pair_ids: Optional[List[int]] = None, + pair_xpath_tags_seq: Optional[List[List[int]]] = None, + pair_xpath_subs_seq: Optional[List[List[int]]] = None, + labels: Optional[List[int]] = None, + num_tokens_to_remove: int = 0, + truncation_strategy: Union[str, TruncationStrategy] = "longest_first", + stride: int = 0, + ) -> Tuple[List[int], List[int], List[int]]: + """ + Args: + Truncates a sequence pair in-place following the strategy. + ids (`List[int]`): + Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and + `convert_tokens_to_ids` methods. + xpath_tags_seq (`List[List[int]]`): + XPath tag IDs of the first sequence. + xpath_subs_seq (`List[List[int]]`): + XPath sub IDs of the first sequence. + pair_ids (`List[int]`, *optional*): + Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` + and `convert_tokens_to_ids` methods. + pair_xpath_tags_seq (`List[List[int]]`, *optional*): + XPath tag IDs of the second sequence. + pair_xpath_subs_seq (`List[List[int]]`, *optional*): + XPath sub IDs of the second sequence. + num_tokens_to_remove (`int`, *optional*, defaults to 0): + Number of tokens to remove using the truncation strategy. + truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to + `False`): + The strategy to follow for truncation. Can be: + - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will truncate + token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a + batch of pairs) is provided. + - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will only + truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. + - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will only + truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. + - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater + than the model maximum admissible input size). + stride (`int`, *optional*, defaults to 0): + If set to a positive number, the overflowing tokens returned will contain some tokens from the main + sequence returned. The value of this argument defines the number of additional tokens. + Returns: + `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of + overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair + of sequences (or a batch of pairs) is provided. + """ + if num_tokens_to_remove <= 0: + return ids, xpath_tags_seq, xpath_subs_seq, pair_ids, pair_xpath_tags_seq, pair_xpath_subs_seq, [], [], [] + + if not isinstance(truncation_strategy, TruncationStrategy): + truncation_strategy = TruncationStrategy(truncation_strategy) + + overflowing_tokens = [] + overflowing_xpath_tags_seq = [] + overflowing_xpath_subs_seq = [] + overflowing_labels = [] + if truncation_strategy == TruncationStrategy.ONLY_FIRST or ( + truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None + ): + if len(ids) > num_tokens_to_remove: + window_len = min(len(ids), stride + num_tokens_to_remove) + overflowing_tokens = ids[-window_len:] + overflowing_xpath_tags_seq = xpath_tags_seq[-window_len:] + overflowing_xpath_subs_seq = xpath_subs_seq[-window_len:] + ids = ids[:-num_tokens_to_remove] + xpath_tags_seq = xpath_tags_seq[:-num_tokens_to_remove] + xpath_subs_seq = xpath_subs_seq[:-num_tokens_to_remove] + labels = labels[:-num_tokens_to_remove] + else: + error_msg = ( + f"We need to remove {num_tokens_to_remove} to truncate the input " + f"but the first sequence has a length {len(ids)}. " + ) + if truncation_strategy == TruncationStrategy.ONLY_FIRST: + error_msg = ( + error_msg + "Please select another truncation strategy than " + f"{truncation_strategy}, for instance 'longest_first' or 'only_second'." + ) + logger.error(error_msg) + elif truncation_strategy == TruncationStrategy.LONGEST_FIRST: + logger.warning( + "Be aware, overflowing tokens are not returned for the setting you have chosen," + f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' " + "truncation strategy. So the returned list will always be empty even if some " + "tokens have been removed." + ) + for _ in range(num_tokens_to_remove): + if pair_ids is None or len(ids) > len(pair_ids): + ids = ids[:-1] + xpath_tags_seq = xpath_tags_seq[:-1] + xpath_subs_seq = xpath_subs_seq[:-1] + labels = labels[:-1] + else: + pair_ids = pair_ids[:-1] + pair_xpath_tags_seq = pair_xpath_tags_seq[:-1] + pair_xpath_subs_seq = pair_xpath_subs_seq[:-1] + elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: + if len(pair_ids) > num_tokens_to_remove: + window_len = min(len(pair_ids), stride + num_tokens_to_remove) + overflowing_tokens = pair_ids[-window_len:] + overflowing_xpath_tags_seq = pair_xpath_tags_seq[-window_len:] + overflowing_xpath_subs_seq = pair_xpath_subs_seq[-window_len:] + pair_ids = pair_ids[:-num_tokens_to_remove] + pair_xpath_tags_seq = pair_xpath_tags_seq[:-num_tokens_to_remove] + pair_xpath_subs_seq = pair_xpath_subs_seq[:-num_tokens_to_remove] + else: + logger.error( + f"We need to remove {num_tokens_to_remove} to truncate the input " + f"but the second sequence has a length {len(pair_ids)}. " + f"Please select another truncation strategy than {truncation_strategy}, " + "for instance 'longest_first' or 'only_first'." + ) + + return ( + ids, + xpath_tags_seq, + xpath_subs_seq, + pair_ids, + pair_xpath_tags_seq, + pair_xpath_subs_seq, + labels, + overflowing_tokens, + overflowing_xpath_tags_seq, + overflowing_xpath_subs_seq, + overflowing_labels, + ) + + def _pad( + self, + encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], + max_length: Optional[int] = None, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + pad_to_multiple_of: Optional[int] = None, + return_attention_mask: Optional[bool] = None, + ) -> dict: + """ + Args: + Pad encoded inputs (on left/right and up to predefined length or max length in the batch) + encoded_inputs: + Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). + max_length: maximum length of the returned list and optionally padding length (see below). + Will truncate by taking into account the special tokens. + padding_strategy: PaddingStrategy to use for padding. + - PaddingStrategy.LONGEST Pad to the longest sequence in the batch + - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) + - PaddingStrategy.DO_NOT_PAD: Do not pad + The tokenizer padding sides are defined in self.padding_side: + - 'left': pads on the left of the sequences + - 'right': pads on the right of the sequences + pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. + This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability + `>= 7.5` (Volta). + return_attention_mask: + (optional) Set to False to avoid returning attention mask (default: set to model specifics) + """ + # Load from model defaults + if return_attention_mask is None: + return_attention_mask = "attention_mask" in self.model_input_names + + required_input = encoded_inputs[self.model_input_names[0]] + + if padding_strategy == PaddingStrategy.LONGEST: + max_length = len(required_input) + + if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): + max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of + + needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length + + # Initialize attention mask if not present. + if return_attention_mask and "attention_mask" not in encoded_inputs: + encoded_inputs["attention_mask"] = [1] * len(required_input) + + if needs_to_be_padded: + difference = max_length - len(required_input) + if self.padding_side == "right": + if return_attention_mask: + encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference + if "token_type_ids" in encoded_inputs: + encoded_inputs["token_type_ids"] = ( + encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference + ) + if "xpath_tags_seq" in encoded_inputs: + encoded_inputs["xpath_tags_seq"] = ( + encoded_inputs["xpath_tags_seq"] + [self.pad_xpath_tags_seq] * difference + ) + if "xpath_subs_seq" in encoded_inputs: + encoded_inputs["xpath_subs_seq"] = ( + encoded_inputs["xpath_subs_seq"] + [self.pad_xpath_subs_seq] * difference + ) + if "labels" in encoded_inputs: + encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference + if "special_tokens_mask" in encoded_inputs: + encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference + encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference + elif self.padding_side == "left": + if return_attention_mask: + encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] + if "token_type_ids" in encoded_inputs: + encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ + "token_type_ids" + ] + if "xpath_tags_seq" in encoded_inputs: + encoded_inputs["xpath_tags_seq"] = [self.pad_xpath_tags_seq] * difference + encoded_inputs[ + "xpath_tags_seq" + ] + if "xpath_subs_seq" in encoded_inputs: + encoded_inputs["xpath_subs_seq"] = [self.pad_xpath_subs_seq] * difference + encoded_inputs[ + "xpath_subs_seq" + ] + if "labels" in encoded_inputs: + encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] + if "special_tokens_mask" in encoded_inputs: + encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] + encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input + else: + raise ValueError("Invalid padding strategy:" + str(self.padding_side)) + + return encoded_inputs diff --git a/venv/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm_fast.py b/venv/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..ff0e4ffeb56e9f1b0721e86f2e82324b14a3f477 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm_fast.py @@ -0,0 +1,918 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Fast tokenization class for MarkupLM. It overwrites 2 methods of the slow tokenizer class, namely _batch_encode_plus +and _encode_plus, in which the Rust tokenizer is used. +""" + +import json +from functools import lru_cache +from typing import Dict, List, Optional, Tuple, Union + +from tokenizers import pre_tokenizers, processors + +from ...file_utils import PaddingStrategy, TensorType, add_end_docstrings +from ...tokenization_utils_base import ( + ENCODE_KWARGS_DOCSTRING, + AddedToken, + BatchEncoding, + EncodedInput, + PreTokenizedInput, + TextInput, + TextInputPair, + TruncationStrategy, +) +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from .tokenization_markuplm import MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING, MarkupLMTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} + + +@lru_cache() +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control + characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # + of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset + you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe + vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + """ + bs = ( + list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) + ) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8 + n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +def get_pairs(word): + """ + Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length + strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +class MarkupLMTokenizerFast(PreTrainedTokenizerFast): + r""" + Construct a MarkupLM tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). + + [`MarkupLMTokenizerFast`] can be used to turn HTML strings into to token-level `input_ids`, `attention_mask`, + `token_type_ids`, `xpath_tags_seq` and `xpath_tags_seq`. This tokenizer inherits from [`PreTrainedTokenizer`] which + contains most of the main methods. + + Users should refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (RoBERTa tokenizer detect beginning of words by the preceding space). + """ + + vocab_files_names = VOCAB_FILES_NAMES + slow_tokenizer_class = MarkupLMTokenizer + + def __init__( + self, + vocab_file, + merges_file, + tags_dict, + tokenizer_file=None, + errors="replace", + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + add_prefix_space=False, + max_depth=50, + max_width=1000, + pad_width=1001, + pad_token_label=-100, + only_label_first_subword=True, + trim_offsets=False, + **kwargs, + ): + bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token + eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token + sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token + cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token + unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token + pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token + + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + super().__init__( + vocab_file=vocab_file, + merges_file=merges_file, + tags_dict=tags_dict, + tokenizer_file=tokenizer_file, + errors=errors, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + add_prefix_space=add_prefix_space, + trim_offsets=trim_offsets, + max_depth=max_depth, + max_width=max_width, + pad_width=pad_width, + pad_token_label=pad_token_label, + only_label_first_subword=only_label_first_subword, + **kwargs, + ) + if trim_offsets: + # Not implemented yet, because we need to chain two post processors which is not possible yet + # We need to wait for https://github.com/huggingface/tokenizers/pull/1005 + # With `trim_offsets=False` we don't need to do add `processors.ByteLevel(trim_offsets=False)` + # because it's not doing anything + raise NotImplementedError( + "`trim_offsets=True` is not implemented for MarkupLMTokenizerFast. Please set it to False." + ) + + self.tags_dict = tags_dict + + pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) + if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: + pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) + pre_tok_state["add_prefix_space"] = add_prefix_space + self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) + + self.add_prefix_space = add_prefix_space + + tokenizer_component = "post_processor" + tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None) + if tokenizer_component_instance: + state = json.loads(tokenizer_component_instance.__getstate__()) + + # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` + if "sep" in state: + state["sep"] = tuple(state["sep"]) + if "cls" in state: + state["cls"] = tuple(state["cls"]) + + changes_to_apply = False + + if state.get("add_prefix_space", add_prefix_space) != add_prefix_space: + state["add_prefix_space"] = add_prefix_space + changes_to_apply = True + + if changes_to_apply: + component_class = getattr(processors, state.pop("type")) + new_value = component_class(**state) + setattr(self.backend_tokenizer, tokenizer_component, new_value) + + # additional properties + self.max_depth = max_depth + self.max_width = max_width + self.pad_width = pad_width + self.unk_tag_id = len(self.tags_dict) + self.pad_tag_id = self.unk_tag_id + 1 + self.pad_xpath_tags_seq = [self.pad_tag_id] * self.max_depth + self.pad_xpath_subs_seq = [self.pad_width] * self.max_depth + self.pad_token_label = pad_token_label + self.only_label_first_subword = only_label_first_subword + + def get_xpath_seq(self, xpath): + """ + Given the xpath expression of one particular node (like "/html/body/div/li[1]/div/span[2]"), return a list of + tag IDs and corresponding subscripts, taking into account max depth. + """ + xpath_tags_list = [] + xpath_subs_list = [] + + xpath_units = xpath.split("/") + for unit in xpath_units: + if not unit.strip(): + continue + name_subs = unit.strip().split("[") + tag_name = name_subs[0] + sub = 0 if len(name_subs) == 1 else int(name_subs[1][:-1]) + xpath_tags_list.append(self.tags_dict.get(tag_name, self.unk_tag_id)) + xpath_subs_list.append(min(self.max_width, sub)) + + xpath_tags_list = xpath_tags_list[: self.max_depth] + xpath_subs_list = xpath_subs_list[: self.max_depth] + xpath_tags_list += [self.pad_tag_id] * (self.max_depth - len(xpath_tags_list)) + xpath_subs_list += [self.pad_width] * (self.max_depth - len(xpath_subs_list)) + + return xpath_tags_list, xpath_subs_list + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def __call__( + self, + text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], + text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, + xpaths: Union[List[List[int]], List[List[List[int]]]] = None, + node_labels: Optional[Union[List[int], List[List[int]]]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of + sequences with nodes, xpaths and optional labels. + + Args: + text (`str`, `List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings + (words of a single example or questions of a batch of examples) or a list of list of strings (batch of + words). + text_pair (`List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence should be a list of strings + (pretokenized string). + xpaths (`List[List[int]]`, `List[List[List[int]]]`): + Node-level xpaths. Each bounding box should be normalized to be on a 0-1000 scale. + node_labels (`List[int]`, `List[List[int]]`, *optional*): + Node-level integer labels (for token classification tasks). + """ + + # Input type checking for clearer error + def _is_valid_text_input(t): + if isinstance(t, str): + # Strings are fine + return True + elif isinstance(t, (list, tuple)): + # List are fine as long as they are... + if len(t) == 0: + # ... empty + return True + elif isinstance(t[0], str): + # ... list of strings + return True + elif isinstance(t[0], (list, tuple)): + # ... list with an empty list or with a list of strings + return len(t[0]) == 0 or isinstance(t[0][0], str) + else: + return False + else: + return False + + if text_pair is not None: + # in case text + text_pair are provided, text = questions, text_pair = nodes + if not _is_valid_text_input(text): + raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") + if not isinstance(text_pair, (list, tuple)): + raise ValueError( + "Nodes must be of type `List[str]` (single pretokenized example), " + "or `List[List[str]]` (batch of pretokenized examples)." + ) + else: + # in case only text is provided => must be nodes + if not isinstance(text, (list, tuple)): + raise ValueError( + "Nodes must be of type `List[str]` (single pretokenized example), " + "or `List[List[str]]` (batch of pretokenized examples)." + ) + + if text_pair is not None: + is_batched = isinstance(text, (list, tuple)) + else: + is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) + + nodes = text if text_pair is None else text_pair + assert xpaths is not None, "You must provide corresponding xpaths" + if is_batched: + assert len(nodes) == len(xpaths), "You must provide nodes and xpaths for an equal amount of examples" + for nodes_example, xpaths_example in zip(nodes, xpaths): + assert len(nodes_example) == len(xpaths_example), "You must provide as many nodes as there are xpaths" + else: + assert len(nodes) == len(xpaths), "You must provide as many nodes as there are xpaths" + + if is_batched: + if text_pair is not None and len(text) != len(text_pair): + raise ValueError( + f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" + f" {len(text_pair)}." + ) + batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text + is_pair = bool(text_pair is not None) + return self.batch_encode_plus( + batch_text_or_text_pairs=batch_text_or_text_pairs, + is_pair=is_pair, + xpaths=xpaths, + node_labels=node_labels, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + else: + return self.encode_plus( + text=text, + text_pair=text_pair, + xpaths=xpaths, + node_labels=node_labels, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def batch_encode_plus( + self, + batch_text_or_text_pairs: Union[ + List[TextInput], + List[TextInputPair], + List[PreTokenizedInput], + ], + is_pair: bool = None, + xpaths: Optional[List[List[List[int]]]] = None, + node_labels: Optional[Union[List[int], List[List[int]]]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' + padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + verbose=verbose, + **kwargs, + ) + + return self._batch_encode_plus( + batch_text_or_text_pairs=batch_text_or_text_pairs, + is_pair=is_pair, + xpaths=xpaths, + node_labels=node_labels, + add_special_tokens=add_special_tokens, + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]: + batched_input = [(text, pair)] if pair else [text] + encodings = self._tokenizer.encode_batch( + batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs + ) + + return encodings[0].tokens + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def encode_plus( + self, + text: Union[TextInput, PreTokenizedInput], + text_pair: Optional[PreTokenizedInput] = None, + xpaths: Optional[List[List[int]]] = None, + node_labels: Optional[List[int]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated, + `__call__` should be used instead. + + Args: + text (`str`, `List[str]`, `List[List[str]]`): + The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. + text_pair (`List[str]` or `List[int]`, *optional*): + Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a + list of list of strings (words of a batch of examples). + """ + + # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' + padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + verbose=verbose, + **kwargs, + ) + + return self._encode_plus( + text=text, + xpaths=xpaths, + text_pair=text_pair, + node_labels=node_labels, + add_special_tokens=add_special_tokens, + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + def _batch_encode_plus( + self, + batch_text_or_text_pairs: Union[ + List[TextInput], + List[TextInputPair], + List[PreTokenizedInput], + ], + is_pair: bool = None, + xpaths: Optional[List[List[List[int]]]] = None, + node_labels: Optional[List[List[int]]] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[str] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + ) -> BatchEncoding: + if not isinstance(batch_text_or_text_pairs, list): + raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})") + + # Set the truncation and padding strategy and restore the initial configuration + self.set_truncation_and_padding( + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + ) + + if is_pair: + batch_text_or_text_pairs = [([text], text_pair) for text, text_pair in batch_text_or_text_pairs] + + encodings = self._tokenizer.encode_batch( + batch_text_or_text_pairs, + add_special_tokens=add_special_tokens, + is_pretokenized=True, # we set this to True as MarkupLM always expects pretokenized inputs + ) + + # Convert encoding to dict + # `Tokens` is a tuple of (List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]], + # List[EncodingFast]) with nested dimensions corresponding to batch, overflows, sequence length + tokens_and_encodings = [ + self._convert_encoding( + encoding=encoding, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=True + if node_labels is not None + else return_offsets_mapping, # we use offsets to create the labels + return_length=return_length, + verbose=verbose, + ) + for encoding in encodings + ] + + # Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension + # From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length) + # (we say ~ because the number of overflow varies with the example in the batch) + # + # To match each overflowing sample with the original sample in the batch + # we add an overflow_to_sample_mapping array (see below) + sanitized_tokens = {} + for key in tokens_and_encodings[0][0].keys(): + stack = [e for item, _ in tokens_and_encodings for e in item[key]] + sanitized_tokens[key] = stack + sanitized_encodings = [e for _, item in tokens_and_encodings for e in item] + + # If returning overflowing tokens, we need to return a mapping + # from the batch idx to the original sample + if return_overflowing_tokens: + overflow_to_sample_mapping = [] + for i, (toks, _) in enumerate(tokens_and_encodings): + overflow_to_sample_mapping += [i] * len(toks["input_ids"]) + sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping + + for input_ids in sanitized_tokens["input_ids"]: + self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose) + + # create the token-level xpaths tags and subscripts + xpath_tags_seq = [] + xpath_subs_seq = [] + for batch_index in range(len(sanitized_tokens["input_ids"])): + if return_overflowing_tokens: + original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index] + else: + original_index = batch_index + xpath_tags_seq_example = [] + xpath_subs_seq_example = [] + for id, sequence_id, word_id in zip( + sanitized_tokens["input_ids"][batch_index], + sanitized_encodings[batch_index].sequence_ids, + sanitized_encodings[batch_index].word_ids, + ): + if word_id is not None: + if is_pair and sequence_id == 0: + xpath_tags_seq_example.append(self.pad_xpath_tags_seq) + xpath_subs_seq_example.append(self.pad_xpath_subs_seq) + else: + xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpaths[original_index][word_id]) + xpath_tags_seq_example.extend([xpath_tags_list]) + xpath_subs_seq_example.extend([xpath_subs_list]) + else: + if id in [self.cls_token_id, self.sep_token_id, self.pad_token_id]: + xpath_tags_seq_example.append(self.pad_xpath_tags_seq) + xpath_subs_seq_example.append(self.pad_xpath_subs_seq) + else: + raise ValueError("Id not recognized") + xpath_tags_seq.append(xpath_tags_seq_example) + xpath_subs_seq.append(xpath_subs_seq_example) + + sanitized_tokens["xpath_tags_seq"] = xpath_tags_seq + sanitized_tokens["xpath_subs_seq"] = xpath_subs_seq + + # optionally, create the labels + if node_labels is not None: + labels = [] + for batch_index in range(len(sanitized_tokens["input_ids"])): + if return_overflowing_tokens: + original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index] + else: + original_index = batch_index + labels_example = [] + for id, offset, word_id in zip( + sanitized_tokens["input_ids"][batch_index], + sanitized_tokens["offset_mapping"][batch_index], + sanitized_encodings[batch_index].word_ids, + ): + if word_id is not None: + if self.only_label_first_subword: + if offset[0] == 0: + # Use the real label id for the first token of the word, and padding ids for the remaining tokens + labels_example.append(node_labels[original_index][word_id]) + else: + labels_example.append(self.pad_token_label) + else: + labels_example.append(node_labels[original_index][word_id]) + else: + labels_example.append(self.pad_token_label) + labels.append(labels_example) + + sanitized_tokens["labels"] = labels + # finally, remove offsets if the user didn't want them + if not return_offsets_mapping: + del sanitized_tokens["offset_mapping"] + + return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors) + + def _encode_plus( + self, + text: Union[TextInput, PreTokenizedInput], + text_pair: Optional[PreTokenizedInput] = None, + xpaths: Optional[List[List[int]]] = None, + node_labels: Optional[List[int]] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[bool] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + # make it a batched input + # 2 options: + # 1) only text, in case text must be a list of str + # 2) text + text_pair, in which case text = str and text_pair a list of str + batched_input = [(text, text_pair)] if text_pair else [text] + batched_xpaths = [xpaths] + batched_node_labels = [node_labels] if node_labels is not None else None + batched_output = self._batch_encode_plus( + batched_input, + is_pair=bool(text_pair is not None), + xpaths=batched_xpaths, + node_labels=batched_node_labels, + add_special_tokens=add_special_tokens, + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + # Return tensor is None, then we can remove the leading batch axis + # Overflowing tokens are returned as a batch of output so we keep them in this case + if return_tensors is None and not return_overflowing_tokens: + batched_output = BatchEncoding( + { + key: value[0] if len(value) > 0 and isinstance(value[0], list) else value + for key, value in batched_output.items() + }, + batched_output.encodings, + ) + + self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose) + + return batched_output + + def _pad( + self, + encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], + max_length: Optional[int] = None, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + pad_to_multiple_of: Optional[int] = None, + return_attention_mask: Optional[bool] = None, + ) -> dict: + """ + Args: + Pad encoded inputs (on left/right and up to predefined length or max length in the batch) + encoded_inputs: + Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). + max_length: maximum length of the returned list and optionally padding length (see below). + Will truncate by taking into account the special tokens. + padding_strategy: PaddingStrategy to use for padding. + - PaddingStrategy.LONGEST Pad to the longest sequence in the batch + - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) + - PaddingStrategy.DO_NOT_PAD: Do not pad + The tokenizer padding sides are defined in self.padding_side: + - 'left': pads on the left of the sequences + - 'right': pads on the right of the sequences + pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. + This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability + `>= 7.5` (Volta). + return_attention_mask: + (optional) Set to False to avoid returning attention mask (default: set to model specifics) + """ + # Load from model defaults + if return_attention_mask is None: + return_attention_mask = "attention_mask" in self.model_input_names + + required_input = encoded_inputs[self.model_input_names[0]] + + if padding_strategy == PaddingStrategy.LONGEST: + max_length = len(required_input) + + if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): + max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of + + needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length + + # Initialize attention mask if not present. + if return_attention_mask and "attention_mask" not in encoded_inputs: + encoded_inputs["attention_mask"] = [1] * len(required_input) + + if needs_to_be_padded: + difference = max_length - len(required_input) + if self.padding_side == "right": + if return_attention_mask: + encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference + if "token_type_ids" in encoded_inputs: + encoded_inputs["token_type_ids"] = ( + encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference + ) + if "xpath_tags_seq" in encoded_inputs: + encoded_inputs["xpath_tags_seq"] = ( + encoded_inputs["xpath_tags_seq"] + [self.pad_xpath_tags_seq] * difference + ) + if "xpath_subs_seq" in encoded_inputs: + encoded_inputs["xpath_subs_seq"] = ( + encoded_inputs["xpath_subs_seq"] + [self.pad_xpath_subs_seq] * difference + ) + if "labels" in encoded_inputs: + encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference + if "special_tokens_mask" in encoded_inputs: + encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference + encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference + elif self.padding_side == "left": + if return_attention_mask: + encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] + if "token_type_ids" in encoded_inputs: + encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ + "token_type_ids" + ] + if "xpath_tags_seq" in encoded_inputs: + encoded_inputs["xpath_tags_seq"] = [self.pad_xpath_tags_seq] * difference + encoded_inputs[ + "xpath_tags_seq" + ] + if "xpath_subs_seq" in encoded_inputs: + encoded_inputs["xpath_subs_seq"] = [self.pad_xpath_subs_seq] * difference + encoded_inputs[ + "xpath_subs_seq" + ] + if "labels" in encoded_inputs: + encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] + if "special_tokens_mask" in encoded_inputs: + encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] + encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input + else: + raise ValueError("Invalid padding strategy:" + str(self.padding_side)) + + return encoded_inputs + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A RoBERTa sequence has the following format: + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + token_ids_1 + sep + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + token_ids_1 + sep) * [0] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) diff --git a/venv/lib/python3.10/site-packages/transformers/tools/__pycache__/base.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/tools/__pycache__/base.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3230a25b23183f5d3984f09bf065af209dcab37b Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/tools/__pycache__/base.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/tools/__pycache__/text_question_answering.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/tools/__pycache__/text_question_answering.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8876ac14e5872e862ea711dc2e10593835acdf1a Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/tools/__pycache__/text_question_answering.cpython-310.pyc differ