applied-ai-018 commited on
Commit
47c4876
·
verified ·
1 Parent(s): a577093

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step80/zero/15.input_layernorm.weight/exp_avg_sq.pt +3 -0
  2. ckpts/universal/global_step80/zero/26.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
  3. ckpts/universal/global_step80/zero/5.attention.query_key_value.weight/fp32.pt +3 -0
  4. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/__init__.cpython-310.pyc +0 -0
  5. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/clique.cpython-310.pyc +0 -0
  6. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/clustering_coefficient.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/connectivity.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/distance_measures.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/dominating_set.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/kcomponents.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/matching.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/maxcut.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/ramsey.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/steinertree.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/traveling_salesman.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/treewidth.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/vertex_cover.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/clustering_coefficient.py +71 -0
  19. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/steinertree.py +220 -0
  20. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__init__.py +0 -0
  21. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_approx_clust_coeff.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_clique.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_connectivity.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_distance_measures.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_dominating_set.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_kcomponents.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_matching.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_maxcut.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_ramsey.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_steinertree.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_traveling_salesman.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_treewidth.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_vertex_cover.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_approx_clust_coeff.py +41 -0
  36. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_clique.py +113 -0
  37. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_connectivity.py +199 -0
  38. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_distance_measures.py +60 -0
  39. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_dominating_set.py +78 -0
  40. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_kcomponents.py +303 -0
  41. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_matching.py +8 -0
  42. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_maxcut.py +94 -0
  43. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_ramsey.py +31 -0
  44. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_steinertree.py +226 -0
  45. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_traveling_salesman.py +979 -0
  46. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_treewidth.py +280 -0
  47. venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_vertex_cover.py +68 -0
  48. venv/lib/python3.10/site-packages/networkx/algorithms/flow/__init__.py +11 -0
  49. venv/lib/python3.10/site-packages/networkx/algorithms/flow/__pycache__/__init__.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/networkx/algorithms/flow/__pycache__/edmondskarp.cpython-310.pyc +0 -0
ckpts/universal/global_step80/zero/15.input_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75aa5fca114361bd216a803a1813058de0b4aa6c92e3e101ce9a26ae1dcba82e
3
+ size 9387
ckpts/universal/global_step80/zero/26.mlp.dense_h_to_4h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbf49f5a4ec265b628bf6bbeb41696db2b3b4729260c7ed01b9478d4b9f042b4
3
+ size 33555533
ckpts/universal/global_step80/zero/5.attention.query_key_value.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b5c625e2aa4a056eff48d5f9f6c8a14a7e9ed6d9505de62f49846e7ad3c707e
3
+ size 50332749
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.36 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/clique.cpython-310.pyc ADDED
Binary file (7.97 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/clustering_coefficient.cpython-310.pyc ADDED
Binary file (2.53 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/connectivity.cpython-310.pyc ADDED
Binary file (11.2 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/distance_measures.cpython-310.pyc ADDED
Binary file (5.03 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/dominating_set.cpython-310.pyc ADDED
Binary file (4.47 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/kcomponents.cpython-310.pyc ADDED
Binary file (13.9 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/matching.cpython-310.pyc ADDED
Binary file (1.44 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/maxcut.cpython-310.pyc ADDED
Binary file (4.33 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/ramsey.cpython-310.pyc ADDED
Binary file (1.58 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/steinertree.cpython-310.pyc ADDED
Binary file (7.23 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/traveling_salesman.cpython-310.pyc ADDED
Binary file (46.1 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/treewidth.cpython-310.pyc ADDED
Binary file (6.64 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/__pycache__/vertex_cover.cpython-310.pyc ADDED
Binary file (2.87 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/clustering_coefficient.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import networkx as nx
2
+ from networkx.utils import not_implemented_for, py_random_state
3
+
4
+ __all__ = ["average_clustering"]
5
+
6
+
7
+ @not_implemented_for("directed")
8
+ @py_random_state(2)
9
+ @nx._dispatchable(name="approximate_average_clustering")
10
+ def average_clustering(G, trials=1000, seed=None):
11
+ r"""Estimates the average clustering coefficient of G.
12
+
13
+ The local clustering of each node in `G` is the fraction of triangles
14
+ that actually exist over all possible triangles in its neighborhood.
15
+ The average clustering coefficient of a graph `G` is the mean of
16
+ local clusterings.
17
+
18
+ This function finds an approximate average clustering coefficient
19
+ for G by repeating `n` times (defined in `trials`) the following
20
+ experiment: choose a node at random, choose two of its neighbors
21
+ at random, and check if they are connected. The approximate
22
+ coefficient is the fraction of triangles found over the number
23
+ of trials [1]_.
24
+
25
+ Parameters
26
+ ----------
27
+ G : NetworkX graph
28
+
29
+ trials : integer
30
+ Number of trials to perform (default 1000).
31
+
32
+ seed : integer, random_state, or None (default)
33
+ Indicator of random number generation state.
34
+ See :ref:`Randomness<randomness>`.
35
+
36
+ Returns
37
+ -------
38
+ c : float
39
+ Approximated average clustering coefficient.
40
+
41
+ Examples
42
+ --------
43
+ >>> from networkx.algorithms import approximation
44
+ >>> G = nx.erdos_renyi_graph(10, 0.2, seed=10)
45
+ >>> approximation.average_clustering(G, trials=1000, seed=10)
46
+ 0.214
47
+
48
+ Raises
49
+ ------
50
+ NetworkXNotImplemented
51
+ If G is directed.
52
+
53
+ References
54
+ ----------
55
+ .. [1] Schank, Thomas, and Dorothea Wagner. Approximating clustering
56
+ coefficient and transitivity. Universität Karlsruhe, Fakultät für
57
+ Informatik, 2004.
58
+ https://doi.org/10.5445/IR/1000001239
59
+
60
+ """
61
+ n = len(G)
62
+ triangles = 0
63
+ nodes = list(G)
64
+ for i in [int(seed.random() * n) for i in range(trials)]:
65
+ nbrs = list(G[nodes[i]])
66
+ if len(nbrs) < 2:
67
+ continue
68
+ u, v = seed.sample(nbrs, 2)
69
+ if u in G[v]:
70
+ triangles += 1
71
+ return triangles / trials
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/steinertree.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import chain
2
+
3
+ import networkx as nx
4
+ from networkx.utils import not_implemented_for, pairwise
5
+
6
+ __all__ = ["metric_closure", "steiner_tree"]
7
+
8
+
9
+ @not_implemented_for("directed")
10
+ @nx._dispatchable(edge_attrs="weight", returns_graph=True)
11
+ def metric_closure(G, weight="weight"):
12
+ """Return the metric closure of a graph.
13
+
14
+ The metric closure of a graph *G* is the complete graph in which each edge
15
+ is weighted by the shortest path distance between the nodes in *G* .
16
+
17
+ Parameters
18
+ ----------
19
+ G : NetworkX graph
20
+
21
+ Returns
22
+ -------
23
+ NetworkX graph
24
+ Metric closure of the graph `G`.
25
+
26
+ """
27
+ M = nx.Graph()
28
+
29
+ Gnodes = set(G)
30
+
31
+ # check for connected graph while processing first node
32
+ all_paths_iter = nx.all_pairs_dijkstra(G, weight=weight)
33
+ u, (distance, path) = next(all_paths_iter)
34
+ if Gnodes - set(distance):
35
+ msg = "G is not a connected graph. metric_closure is not defined."
36
+ raise nx.NetworkXError(msg)
37
+ Gnodes.remove(u)
38
+ for v in Gnodes:
39
+ M.add_edge(u, v, distance=distance[v], path=path[v])
40
+
41
+ # first node done -- now process the rest
42
+ for u, (distance, path) in all_paths_iter:
43
+ Gnodes.remove(u)
44
+ for v in Gnodes:
45
+ M.add_edge(u, v, distance=distance[v], path=path[v])
46
+
47
+ return M
48
+
49
+
50
+ def _mehlhorn_steiner_tree(G, terminal_nodes, weight):
51
+ paths = nx.multi_source_dijkstra_path(G, terminal_nodes)
52
+
53
+ d_1 = {}
54
+ s = {}
55
+ for v in G.nodes():
56
+ s[v] = paths[v][0]
57
+ d_1[(v, s[v])] = len(paths[v]) - 1
58
+
59
+ # G1-G4 names match those from the Mehlhorn 1988 paper.
60
+ G_1_prime = nx.Graph()
61
+ for u, v, data in G.edges(data=True):
62
+ su, sv = s[u], s[v]
63
+ weight_here = d_1[(u, su)] + data.get(weight, 1) + d_1[(v, sv)]
64
+ if not G_1_prime.has_edge(su, sv):
65
+ G_1_prime.add_edge(su, sv, weight=weight_here)
66
+ else:
67
+ new_weight = min(weight_here, G_1_prime[su][sv]["weight"])
68
+ G_1_prime.add_edge(su, sv, weight=new_weight)
69
+
70
+ G_2 = nx.minimum_spanning_edges(G_1_prime, data=True)
71
+
72
+ G_3 = nx.Graph()
73
+ for u, v, d in G_2:
74
+ path = nx.shortest_path(G, u, v, weight)
75
+ for n1, n2 in pairwise(path):
76
+ G_3.add_edge(n1, n2)
77
+
78
+ G_3_mst = list(nx.minimum_spanning_edges(G_3, data=False))
79
+ if G.is_multigraph():
80
+ G_3_mst = (
81
+ (u, v, min(G[u][v], key=lambda k: G[u][v][k][weight])) for u, v in G_3_mst
82
+ )
83
+ G_4 = G.edge_subgraph(G_3_mst).copy()
84
+ _remove_nonterminal_leaves(G_4, terminal_nodes)
85
+ return G_4.edges()
86
+
87
+
88
+ def _kou_steiner_tree(G, terminal_nodes, weight):
89
+ # H is the subgraph induced by terminal_nodes in the metric closure M of G.
90
+ M = metric_closure(G, weight=weight)
91
+ H = M.subgraph(terminal_nodes)
92
+
93
+ # Use the 'distance' attribute of each edge provided by M.
94
+ mst_edges = nx.minimum_spanning_edges(H, weight="distance", data=True)
95
+
96
+ # Create an iterator over each edge in each shortest path; repeats are okay
97
+ mst_all_edges = chain.from_iterable(pairwise(d["path"]) for u, v, d in mst_edges)
98
+ if G.is_multigraph():
99
+ mst_all_edges = (
100
+ (u, v, min(G[u][v], key=lambda k: G[u][v][k][weight]))
101
+ for u, v in mst_all_edges
102
+ )
103
+
104
+ # Find the MST again, over this new set of edges
105
+ G_S = G.edge_subgraph(mst_all_edges)
106
+ T_S = nx.minimum_spanning_edges(G_S, weight="weight", data=False)
107
+
108
+ # Leaf nodes that are not terminal might still remain; remove them here
109
+ T_H = G.edge_subgraph(T_S).copy()
110
+ _remove_nonterminal_leaves(T_H, terminal_nodes)
111
+
112
+ return T_H.edges()
113
+
114
+
115
+ def _remove_nonterminal_leaves(G, terminals):
116
+ terminals_set = set(terminals)
117
+ for n in list(G.nodes):
118
+ if n not in terminals_set and G.degree(n) == 1:
119
+ G.remove_node(n)
120
+
121
+
122
+ ALGORITHMS = {
123
+ "kou": _kou_steiner_tree,
124
+ "mehlhorn": _mehlhorn_steiner_tree,
125
+ }
126
+
127
+
128
+ @not_implemented_for("directed")
129
+ @nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
130
+ def steiner_tree(G, terminal_nodes, weight="weight", method=None):
131
+ r"""Return an approximation to the minimum Steiner tree of a graph.
132
+
133
+ The minimum Steiner tree of `G` w.r.t a set of `terminal_nodes` (also *S*)
134
+ is a tree within `G` that spans those nodes and has minimum size (sum of
135
+ edge weights) among all such trees.
136
+
137
+ The approximation algorithm is specified with the `method` keyword
138
+ argument. All three available algorithms produce a tree whose weight is
139
+ within a ``(2 - (2 / l))`` factor of the weight of the optimal Steiner tree,
140
+ where ``l`` is the minimum number of leaf nodes across all possible Steiner
141
+ trees.
142
+
143
+ * ``"kou"`` [2]_ (runtime $O(|S| |V|^2)$) computes the minimum spanning tree of
144
+ the subgraph of the metric closure of *G* induced by the terminal nodes,
145
+ where the metric closure of *G* is the complete graph in which each edge is
146
+ weighted by the shortest path distance between the nodes in *G*.
147
+
148
+ * ``"mehlhorn"`` [3]_ (runtime $O(|E|+|V|\log|V|)$) modifies Kou et al.'s
149
+ algorithm, beginning by finding the closest terminal node for each
150
+ non-terminal. This data is used to create a complete graph containing only
151
+ the terminal nodes, in which edge is weighted with the shortest path
152
+ distance between them. The algorithm then proceeds in the same way as Kou
153
+ et al..
154
+
155
+ Parameters
156
+ ----------
157
+ G : NetworkX graph
158
+
159
+ terminal_nodes : list
160
+ A list of terminal nodes for which minimum steiner tree is
161
+ to be found.
162
+
163
+ weight : string (default = 'weight')
164
+ Use the edge attribute specified by this string as the edge weight.
165
+ Any edge attribute not present defaults to 1.
166
+
167
+ method : string, optional (default = 'mehlhorn')
168
+ The algorithm to use to approximate the Steiner tree.
169
+ Supported options: 'kou', 'mehlhorn'.
170
+ Other inputs produce a ValueError.
171
+
172
+ Returns
173
+ -------
174
+ NetworkX graph
175
+ Approximation to the minimum steiner tree of `G` induced by
176
+ `terminal_nodes` .
177
+
178
+ Raises
179
+ ------
180
+ NetworkXNotImplemented
181
+ If `G` is directed.
182
+
183
+ ValueError
184
+ If the specified `method` is not supported.
185
+
186
+ Notes
187
+ -----
188
+ For multigraphs, the edge between two nodes with minimum weight is the
189
+ edge put into the Steiner tree.
190
+
191
+
192
+ References
193
+ ----------
194
+ .. [1] Steiner_tree_problem on Wikipedia.
195
+ https://en.wikipedia.org/wiki/Steiner_tree_problem
196
+ .. [2] Kou, L., G. Markowsky, and L. Berman. 1981.
197
+ ‘A Fast Algorithm for Steiner Trees’.
198
+ Acta Informatica 15 (2): 141–45.
199
+ https://doi.org/10.1007/BF00288961.
200
+ .. [3] Mehlhorn, Kurt. 1988.
201
+ ‘A Faster Approximation Algorithm for the Steiner Problem in Graphs’.
202
+ Information Processing Letters 27 (3): 125–28.
203
+ https://doi.org/10.1016/0020-0190(88)90066-X.
204
+ """
205
+ if method is None:
206
+ method = "mehlhorn"
207
+
208
+ try:
209
+ algo = ALGORITHMS[method]
210
+ except KeyError as e:
211
+ raise ValueError(f"{method} is not a valid choice for an algorithm.") from e
212
+
213
+ edges = algo(G, terminal_nodes, weight)
214
+ # For multigraph we should add the minimal weight edge keys
215
+ if G.is_multigraph():
216
+ edges = (
217
+ (u, v, min(G[u][v], key=lambda k: G[u][v][k][weight])) for u, v in edges
218
+ )
219
+ T = G.edge_subgraph(edges)
220
+ return T
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (207 Bytes). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_approx_clust_coeff.cpython-310.pyc ADDED
Binary file (1.41 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_clique.cpython-310.pyc ADDED
Binary file (4.41 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_connectivity.cpython-310.pyc ADDED
Binary file (5.84 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_distance_measures.cpython-310.pyc ADDED
Binary file (3.11 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_dominating_set.cpython-310.pyc ADDED
Binary file (2.56 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_kcomponents.cpython-310.pyc ADDED
Binary file (9.63 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_matching.cpython-310.pyc ADDED
Binary file (519 Bytes). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_maxcut.cpython-310.pyc ADDED
Binary file (3.03 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_ramsey.cpython-310.pyc ADDED
Binary file (1.18 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_steinertree.cpython-310.pyc ADDED
Binary file (7.07 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_traveling_salesman.cpython-310.pyc ADDED
Binary file (27 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_treewidth.cpython-310.pyc ADDED
Binary file (7.18 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_vertex_cover.cpython-310.pyc ADDED
Binary file (2.82 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_approx_clust_coeff.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import networkx as nx
2
+ from networkx.algorithms.approximation import average_clustering
3
+
4
+ # This approximation has to be exact in regular graphs
5
+ # with no triangles or with all possible triangles.
6
+
7
+
8
+ def test_petersen():
9
+ # Actual coefficient is 0
10
+ G = nx.petersen_graph()
11
+ assert average_clustering(G, trials=len(G) // 2) == nx.average_clustering(G)
12
+
13
+
14
+ def test_petersen_seed():
15
+ # Actual coefficient is 0
16
+ G = nx.petersen_graph()
17
+ assert average_clustering(G, trials=len(G) // 2, seed=1) == nx.average_clustering(G)
18
+
19
+
20
+ def test_tetrahedral():
21
+ # Actual coefficient is 1
22
+ G = nx.tetrahedral_graph()
23
+ assert average_clustering(G, trials=len(G) // 2) == nx.average_clustering(G)
24
+
25
+
26
+ def test_dodecahedral():
27
+ # Actual coefficient is 0
28
+ G = nx.dodecahedral_graph()
29
+ assert average_clustering(G, trials=len(G) // 2) == nx.average_clustering(G)
30
+
31
+
32
+ def test_empty():
33
+ G = nx.empty_graph(5)
34
+ assert average_clustering(G, trials=len(G) // 2) == 0
35
+
36
+
37
+ def test_complete():
38
+ G = nx.complete_graph(5)
39
+ assert average_clustering(G, trials=len(G) // 2) == 1
40
+ G = nx.complete_graph(7)
41
+ assert average_clustering(G, trials=len(G) // 2) == 1
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_clique.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.algorithms.approximation.clique` module."""
2
+
3
+
4
+ import networkx as nx
5
+ from networkx.algorithms.approximation import (
6
+ clique_removal,
7
+ large_clique_size,
8
+ max_clique,
9
+ maximum_independent_set,
10
+ )
11
+
12
+
13
+ def is_independent_set(G, nodes):
14
+ """Returns True if and only if `nodes` is a clique in `G`.
15
+
16
+ `G` is a NetworkX graph. `nodes` is an iterable of nodes in
17
+ `G`.
18
+
19
+ """
20
+ return G.subgraph(nodes).number_of_edges() == 0
21
+
22
+
23
+ def is_clique(G, nodes):
24
+ """Returns True if and only if `nodes` is an independent set
25
+ in `G`.
26
+
27
+ `G` is an undirected simple graph. `nodes` is an iterable of
28
+ nodes in `G`.
29
+
30
+ """
31
+ H = G.subgraph(nodes)
32
+ n = len(H)
33
+ return H.number_of_edges() == n * (n - 1) // 2
34
+
35
+
36
+ class TestCliqueRemoval:
37
+ """Unit tests for the
38
+ :func:`~networkx.algorithms.approximation.clique_removal` function.
39
+
40
+ """
41
+
42
+ def test_trivial_graph(self):
43
+ G = nx.trivial_graph()
44
+ independent_set, cliques = clique_removal(G)
45
+ assert is_independent_set(G, independent_set)
46
+ assert all(is_clique(G, clique) for clique in cliques)
47
+ # In fact, we should only have 1-cliques, that is, singleton nodes.
48
+ assert all(len(clique) == 1 for clique in cliques)
49
+
50
+ def test_complete_graph(self):
51
+ G = nx.complete_graph(10)
52
+ independent_set, cliques = clique_removal(G)
53
+ assert is_independent_set(G, independent_set)
54
+ assert all(is_clique(G, clique) for clique in cliques)
55
+
56
+ def test_barbell_graph(self):
57
+ G = nx.barbell_graph(10, 5)
58
+ independent_set, cliques = clique_removal(G)
59
+ assert is_independent_set(G, independent_set)
60
+ assert all(is_clique(G, clique) for clique in cliques)
61
+
62
+
63
+ class TestMaxClique:
64
+ """Unit tests for the :func:`networkx.algorithms.approximation.max_clique`
65
+ function.
66
+
67
+ """
68
+
69
+ def test_null_graph(self):
70
+ G = nx.null_graph()
71
+ assert len(max_clique(G)) == 0
72
+
73
+ def test_complete_graph(self):
74
+ graph = nx.complete_graph(30)
75
+ # this should return the entire graph
76
+ mc = max_clique(graph)
77
+ assert 30 == len(mc)
78
+
79
+ def test_maximal_by_cardinality(self):
80
+ """Tests that the maximal clique is computed according to maximum
81
+ cardinality of the sets.
82
+
83
+ For more information, see pull request #1531.
84
+
85
+ """
86
+ G = nx.complete_graph(5)
87
+ G.add_edge(4, 5)
88
+ clique = max_clique(G)
89
+ assert len(clique) > 1
90
+
91
+ G = nx.lollipop_graph(30, 2)
92
+ clique = max_clique(G)
93
+ assert len(clique) > 2
94
+
95
+
96
+ def test_large_clique_size():
97
+ G = nx.complete_graph(9)
98
+ nx.add_cycle(G, [9, 10, 11])
99
+ G.add_edge(8, 9)
100
+ G.add_edge(1, 12)
101
+ G.add_node(13)
102
+
103
+ assert large_clique_size(G) == 9
104
+ G.remove_node(5)
105
+ assert large_clique_size(G) == 8
106
+ G.remove_edge(2, 3)
107
+ assert large_clique_size(G) == 7
108
+
109
+
110
+ def test_independent_set():
111
+ # smoke test
112
+ G = nx.Graph()
113
+ assert len(maximum_independent_set(G)) == 0
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_connectivity.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx.algorithms import approximation as approx
5
+
6
+
7
+ def test_global_node_connectivity():
8
+ # Figure 1 chapter on Connectivity
9
+ G = nx.Graph()
10
+ G.add_edges_from(
11
+ [
12
+ (1, 2),
13
+ (1, 3),
14
+ (1, 4),
15
+ (1, 5),
16
+ (2, 3),
17
+ (2, 6),
18
+ (3, 4),
19
+ (3, 6),
20
+ (4, 6),
21
+ (4, 7),
22
+ (5, 7),
23
+ (6, 8),
24
+ (6, 9),
25
+ (7, 8),
26
+ (7, 10),
27
+ (8, 11),
28
+ (9, 10),
29
+ (9, 11),
30
+ (10, 11),
31
+ ]
32
+ )
33
+ assert 2 == approx.local_node_connectivity(G, 1, 11)
34
+ assert 2 == approx.node_connectivity(G)
35
+ assert 2 == approx.node_connectivity(G, 1, 11)
36
+
37
+
38
+ def test_white_harary1():
39
+ # Figure 1b white and harary (2001)
40
+ # A graph with high adhesion (edge connectivity) and low cohesion
41
+ # (node connectivity)
42
+ G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4))
43
+ G.remove_node(7)
44
+ for i in range(4, 7):
45
+ G.add_edge(0, i)
46
+ G = nx.disjoint_union(G, nx.complete_graph(4))
47
+ G.remove_node(G.order() - 1)
48
+ for i in range(7, 10):
49
+ G.add_edge(0, i)
50
+ assert 1 == approx.node_connectivity(G)
51
+
52
+
53
+ def test_complete_graphs():
54
+ for n in range(5, 25, 5):
55
+ G = nx.complete_graph(n)
56
+ assert n - 1 == approx.node_connectivity(G)
57
+ assert n - 1 == approx.node_connectivity(G, 0, 3)
58
+
59
+
60
+ def test_empty_graphs():
61
+ for k in range(5, 25, 5):
62
+ G = nx.empty_graph(k)
63
+ assert 0 == approx.node_connectivity(G)
64
+ assert 0 == approx.node_connectivity(G, 0, 3)
65
+
66
+
67
+ def test_petersen():
68
+ G = nx.petersen_graph()
69
+ assert 3 == approx.node_connectivity(G)
70
+ assert 3 == approx.node_connectivity(G, 0, 5)
71
+
72
+
73
+ # Approximation fails with tutte graph
74
+ # def test_tutte():
75
+ # G = nx.tutte_graph()
76
+ # assert_equal(3, approx.node_connectivity(G))
77
+
78
+
79
+ def test_dodecahedral():
80
+ G = nx.dodecahedral_graph()
81
+ assert 3 == approx.node_connectivity(G)
82
+ assert 3 == approx.node_connectivity(G, 0, 5)
83
+
84
+
85
+ def test_octahedral():
86
+ G = nx.octahedral_graph()
87
+ assert 4 == approx.node_connectivity(G)
88
+ assert 4 == approx.node_connectivity(G, 0, 5)
89
+
90
+
91
+ # Approximation can fail with icosahedral graph depending
92
+ # on iteration order.
93
+ # def test_icosahedral():
94
+ # G=nx.icosahedral_graph()
95
+ # assert_equal(5, approx.node_connectivity(G))
96
+ # assert_equal(5, approx.node_connectivity(G, 0, 5))
97
+
98
+
99
+ def test_only_source():
100
+ G = nx.complete_graph(5)
101
+ pytest.raises(nx.NetworkXError, approx.node_connectivity, G, s=0)
102
+
103
+
104
+ def test_only_target():
105
+ G = nx.complete_graph(5)
106
+ pytest.raises(nx.NetworkXError, approx.node_connectivity, G, t=0)
107
+
108
+
109
+ def test_missing_source():
110
+ G = nx.path_graph(4)
111
+ pytest.raises(nx.NetworkXError, approx.node_connectivity, G, 10, 1)
112
+
113
+
114
+ def test_missing_target():
115
+ G = nx.path_graph(4)
116
+ pytest.raises(nx.NetworkXError, approx.node_connectivity, G, 1, 10)
117
+
118
+
119
+ def test_source_equals_target():
120
+ G = nx.complete_graph(5)
121
+ pytest.raises(nx.NetworkXError, approx.local_node_connectivity, G, 0, 0)
122
+
123
+
124
+ def test_directed_node_connectivity():
125
+ G = nx.cycle_graph(10, create_using=nx.DiGraph()) # only one direction
126
+ D = nx.cycle_graph(10).to_directed() # 2 reciprocal edges
127
+ assert 1 == approx.node_connectivity(G)
128
+ assert 1 == approx.node_connectivity(G, 1, 4)
129
+ assert 2 == approx.node_connectivity(D)
130
+ assert 2 == approx.node_connectivity(D, 1, 4)
131
+
132
+
133
+ class TestAllPairsNodeConnectivityApprox:
134
+ @classmethod
135
+ def setup_class(cls):
136
+ cls.path = nx.path_graph(7)
137
+ cls.directed_path = nx.path_graph(7, create_using=nx.DiGraph())
138
+ cls.cycle = nx.cycle_graph(7)
139
+ cls.directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph())
140
+ cls.gnp = nx.gnp_random_graph(30, 0.1)
141
+ cls.directed_gnp = nx.gnp_random_graph(30, 0.1, directed=True)
142
+ cls.K20 = nx.complete_graph(20)
143
+ cls.K10 = nx.complete_graph(10)
144
+ cls.K5 = nx.complete_graph(5)
145
+ cls.G_list = [
146
+ cls.path,
147
+ cls.directed_path,
148
+ cls.cycle,
149
+ cls.directed_cycle,
150
+ cls.gnp,
151
+ cls.directed_gnp,
152
+ cls.K10,
153
+ cls.K5,
154
+ cls.K20,
155
+ ]
156
+
157
+ def test_cycles(self):
158
+ K_undir = approx.all_pairs_node_connectivity(self.cycle)
159
+ for source in K_undir:
160
+ for target, k in K_undir[source].items():
161
+ assert k == 2
162
+ K_dir = approx.all_pairs_node_connectivity(self.directed_cycle)
163
+ for source in K_dir:
164
+ for target, k in K_dir[source].items():
165
+ assert k == 1
166
+
167
+ def test_complete(self):
168
+ for G in [self.K10, self.K5, self.K20]:
169
+ K = approx.all_pairs_node_connectivity(G)
170
+ for source in K:
171
+ for target, k in K[source].items():
172
+ assert k == len(G) - 1
173
+
174
+ def test_paths(self):
175
+ K_undir = approx.all_pairs_node_connectivity(self.path)
176
+ for source in K_undir:
177
+ for target, k in K_undir[source].items():
178
+ assert k == 1
179
+ K_dir = approx.all_pairs_node_connectivity(self.directed_path)
180
+ for source in K_dir:
181
+ for target, k in K_dir[source].items():
182
+ if source < target:
183
+ assert k == 1
184
+ else:
185
+ assert k == 0
186
+
187
+ def test_cutoff(self):
188
+ for G in [self.K10, self.K5, self.K20]:
189
+ for mp in [2, 3, 4]:
190
+ paths = approx.all_pairs_node_connectivity(G, cutoff=mp)
191
+ for source in paths:
192
+ for target, K in paths[source].items():
193
+ assert K == mp
194
+
195
+ def test_all_pairs_connectivity_nbunch(self):
196
+ G = nx.complete_graph(5)
197
+ nbunch = [0, 2, 3]
198
+ C = approx.all_pairs_node_connectivity(G, nbunch=nbunch)
199
+ assert len(C) == len(nbunch)
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_distance_measures.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.algorithms.approximation.distance_measures` module.
2
+ """
3
+
4
+ import pytest
5
+
6
+ import networkx as nx
7
+ from networkx.algorithms.approximation import diameter
8
+
9
+
10
+ class TestDiameter:
11
+ """Unit tests for the approximate diameter function
12
+ :func:`~networkx.algorithms.approximation.distance_measures.diameter`.
13
+ """
14
+
15
+ def test_null_graph(self):
16
+ """Test empty graph."""
17
+ G = nx.null_graph()
18
+ with pytest.raises(
19
+ nx.NetworkXError, match="Expected non-empty NetworkX graph!"
20
+ ):
21
+ diameter(G)
22
+
23
+ def test_undirected_non_connected(self):
24
+ """Test an undirected disconnected graph."""
25
+ graph = nx.path_graph(10)
26
+ graph.remove_edge(3, 4)
27
+ with pytest.raises(nx.NetworkXError, match="Graph not connected."):
28
+ diameter(graph)
29
+
30
+ def test_directed_non_strongly_connected(self):
31
+ """Test a directed non strongly connected graph."""
32
+ graph = nx.path_graph(10, create_using=nx.DiGraph())
33
+ with pytest.raises(nx.NetworkXError, match="DiGraph not strongly connected."):
34
+ diameter(graph)
35
+
36
+ def test_complete_undirected_graph(self):
37
+ """Test a complete undirected graph."""
38
+ graph = nx.complete_graph(10)
39
+ assert diameter(graph) == 1
40
+
41
+ def test_complete_directed_graph(self):
42
+ """Test a complete directed graph."""
43
+ graph = nx.complete_graph(10, create_using=nx.DiGraph())
44
+ assert diameter(graph) == 1
45
+
46
+ def test_undirected_path_graph(self):
47
+ """Test an undirected path graph with 10 nodes."""
48
+ graph = nx.path_graph(10)
49
+ assert diameter(graph) == 9
50
+
51
+ def test_directed_path_graph(self):
52
+ """Test a directed path graph with 10 nodes."""
53
+ graph = nx.path_graph(10).to_directed()
54
+ assert diameter(graph) == 9
55
+
56
+ def test_single_node(self):
57
+ """Test a graph which contains just a node."""
58
+ graph = nx.Graph()
59
+ graph.add_node(1)
60
+ assert diameter(graph) == 0
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_dominating_set.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx.algorithms.approximation import (
5
+ min_edge_dominating_set,
6
+ min_weighted_dominating_set,
7
+ )
8
+
9
+
10
+ class TestMinWeightDominatingSet:
11
+ def test_min_weighted_dominating_set(self):
12
+ graph = nx.Graph()
13
+ graph.add_edge(1, 2)
14
+ graph.add_edge(1, 5)
15
+ graph.add_edge(2, 3)
16
+ graph.add_edge(2, 5)
17
+ graph.add_edge(3, 4)
18
+ graph.add_edge(3, 6)
19
+ graph.add_edge(5, 6)
20
+
21
+ vertices = {1, 2, 3, 4, 5, 6}
22
+ # due to ties, this might be hard to test tight bounds
23
+ dom_set = min_weighted_dominating_set(graph)
24
+ for vertex in vertices - dom_set:
25
+ neighbors = set(graph.neighbors(vertex))
26
+ assert len(neighbors & dom_set) > 0, "Non dominating set found!"
27
+
28
+ def test_star_graph(self):
29
+ """Tests that an approximate dominating set for the star graph,
30
+ even when the center node does not have the smallest integer
31
+ label, gives just the center node.
32
+
33
+ For more information, see #1527.
34
+
35
+ """
36
+ # Create a star graph in which the center node has the highest
37
+ # label instead of the lowest.
38
+ G = nx.star_graph(10)
39
+ G = nx.relabel_nodes(G, {0: 9, 9: 0})
40
+ assert min_weighted_dominating_set(G) == {9}
41
+
42
+ def test_null_graph(self):
43
+ """Tests that the unique dominating set for the null graph is an empty set"""
44
+ G = nx.Graph()
45
+ assert min_weighted_dominating_set(G) == set()
46
+
47
+ def test_min_edge_dominating_set(self):
48
+ graph = nx.path_graph(5)
49
+ dom_set = min_edge_dominating_set(graph)
50
+
51
+ # this is a crappy way to test, but good enough for now.
52
+ for edge in graph.edges():
53
+ if edge in dom_set:
54
+ continue
55
+ else:
56
+ u, v = edge
57
+ found = False
58
+ for dom_edge in dom_set:
59
+ found |= u == dom_edge[0] or u == dom_edge[1]
60
+ assert found, "Non adjacent edge found!"
61
+
62
+ graph = nx.complete_graph(10)
63
+ dom_set = min_edge_dominating_set(graph)
64
+
65
+ # this is a crappy way to test, but good enough for now.
66
+ for edge in graph.edges():
67
+ if edge in dom_set:
68
+ continue
69
+ else:
70
+ u, v = edge
71
+ found = False
72
+ for dom_edge in dom_set:
73
+ found |= u == dom_edge[0] or u == dom_edge[1]
74
+ assert found, "Non adjacent edge found!"
75
+
76
+ graph = nx.Graph() # empty Networkx graph
77
+ with pytest.raises(ValueError, match="Expected non-empty NetworkX graph!"):
78
+ min_edge_dominating_set(graph)
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_kcomponents.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Test for approximation to k-components algorithm
2
+ import pytest
3
+
4
+ import networkx as nx
5
+ from networkx.algorithms.approximation import k_components
6
+ from networkx.algorithms.approximation.kcomponents import _AntiGraph, _same
7
+
8
+
9
+ def build_k_number_dict(k_components):
10
+ k_num = {}
11
+ for k, comps in sorted(k_components.items()):
12
+ for comp in comps:
13
+ for node in comp:
14
+ k_num[node] = k
15
+ return k_num
16
+
17
+
18
+ ##
19
+ # Some nice synthetic graphs
20
+ ##
21
+
22
+
23
+ def graph_example_1():
24
+ G = nx.convert_node_labels_to_integers(
25
+ nx.grid_graph([5, 5]), label_attribute="labels"
26
+ )
27
+ rlabels = nx.get_node_attributes(G, "labels")
28
+ labels = {v: k for k, v in rlabels.items()}
29
+
30
+ for nodes in [
31
+ (labels[(0, 0)], labels[(1, 0)]),
32
+ (labels[(0, 4)], labels[(1, 4)]),
33
+ (labels[(3, 0)], labels[(4, 0)]),
34
+ (labels[(3, 4)], labels[(4, 4)]),
35
+ ]:
36
+ new_node = G.order() + 1
37
+ # Petersen graph is triconnected
38
+ P = nx.petersen_graph()
39
+ G = nx.disjoint_union(G, P)
40
+ # Add two edges between the grid and P
41
+ G.add_edge(new_node + 1, nodes[0])
42
+ G.add_edge(new_node, nodes[1])
43
+ # K5 is 4-connected
44
+ K = nx.complete_graph(5)
45
+ G = nx.disjoint_union(G, K)
46
+ # Add three edges between P and K5
47
+ G.add_edge(new_node + 2, new_node + 11)
48
+ G.add_edge(new_node + 3, new_node + 12)
49
+ G.add_edge(new_node + 4, new_node + 13)
50
+ # Add another K5 sharing a node
51
+ G = nx.disjoint_union(G, K)
52
+ nbrs = G[new_node + 10]
53
+ G.remove_node(new_node + 10)
54
+ for nbr in nbrs:
55
+ G.add_edge(new_node + 17, nbr)
56
+ G.add_edge(new_node + 16, new_node + 5)
57
+ return G
58
+
59
+
60
+ def torrents_and_ferraro_graph():
61
+ G = nx.convert_node_labels_to_integers(
62
+ nx.grid_graph([5, 5]), label_attribute="labels"
63
+ )
64
+ rlabels = nx.get_node_attributes(G, "labels")
65
+ labels = {v: k for k, v in rlabels.items()}
66
+
67
+ for nodes in [(labels[(0, 4)], labels[(1, 4)]), (labels[(3, 4)], labels[(4, 4)])]:
68
+ new_node = G.order() + 1
69
+ # Petersen graph is triconnected
70
+ P = nx.petersen_graph()
71
+ G = nx.disjoint_union(G, P)
72
+ # Add two edges between the grid and P
73
+ G.add_edge(new_node + 1, nodes[0])
74
+ G.add_edge(new_node, nodes[1])
75
+ # K5 is 4-connected
76
+ K = nx.complete_graph(5)
77
+ G = nx.disjoint_union(G, K)
78
+ # Add three edges between P and K5
79
+ G.add_edge(new_node + 2, new_node + 11)
80
+ G.add_edge(new_node + 3, new_node + 12)
81
+ G.add_edge(new_node + 4, new_node + 13)
82
+ # Add another K5 sharing a node
83
+ G = nx.disjoint_union(G, K)
84
+ nbrs = G[new_node + 10]
85
+ G.remove_node(new_node + 10)
86
+ for nbr in nbrs:
87
+ G.add_edge(new_node + 17, nbr)
88
+ # Commenting this makes the graph not biconnected !!
89
+ # This stupid mistake make one reviewer very angry :P
90
+ G.add_edge(new_node + 16, new_node + 8)
91
+
92
+ for nodes in [(labels[(0, 0)], labels[(1, 0)]), (labels[(3, 0)], labels[(4, 0)])]:
93
+ new_node = G.order() + 1
94
+ # Petersen graph is triconnected
95
+ P = nx.petersen_graph()
96
+ G = nx.disjoint_union(G, P)
97
+ # Add two edges between the grid and P
98
+ G.add_edge(new_node + 1, nodes[0])
99
+ G.add_edge(new_node, nodes[1])
100
+ # K5 is 4-connected
101
+ K = nx.complete_graph(5)
102
+ G = nx.disjoint_union(G, K)
103
+ # Add three edges between P and K5
104
+ G.add_edge(new_node + 2, new_node + 11)
105
+ G.add_edge(new_node + 3, new_node + 12)
106
+ G.add_edge(new_node + 4, new_node + 13)
107
+ # Add another K5 sharing two nodes
108
+ G = nx.disjoint_union(G, K)
109
+ nbrs = G[new_node + 10]
110
+ G.remove_node(new_node + 10)
111
+ for nbr in nbrs:
112
+ G.add_edge(new_node + 17, nbr)
113
+ nbrs2 = G[new_node + 9]
114
+ G.remove_node(new_node + 9)
115
+ for nbr in nbrs2:
116
+ G.add_edge(new_node + 18, nbr)
117
+ return G
118
+
119
+
120
+ # Helper function
121
+
122
+
123
+ def _check_connectivity(G):
124
+ result = k_components(G)
125
+ for k, components in result.items():
126
+ if k < 3:
127
+ continue
128
+ for component in components:
129
+ C = G.subgraph(component)
130
+ K = nx.node_connectivity(C)
131
+ assert K >= k
132
+
133
+
134
+ def test_torrents_and_ferraro_graph():
135
+ G = torrents_and_ferraro_graph()
136
+ _check_connectivity(G)
137
+
138
+
139
+ def test_example_1():
140
+ G = graph_example_1()
141
+ _check_connectivity(G)
142
+
143
+
144
+ def test_karate_0():
145
+ G = nx.karate_club_graph()
146
+ _check_connectivity(G)
147
+
148
+
149
+ def test_karate_1():
150
+ karate_k_num = {
151
+ 0: 4,
152
+ 1: 4,
153
+ 2: 4,
154
+ 3: 4,
155
+ 4: 3,
156
+ 5: 3,
157
+ 6: 3,
158
+ 7: 4,
159
+ 8: 4,
160
+ 9: 2,
161
+ 10: 3,
162
+ 11: 1,
163
+ 12: 2,
164
+ 13: 4,
165
+ 14: 2,
166
+ 15: 2,
167
+ 16: 2,
168
+ 17: 2,
169
+ 18: 2,
170
+ 19: 3,
171
+ 20: 2,
172
+ 21: 2,
173
+ 22: 2,
174
+ 23: 3,
175
+ 24: 3,
176
+ 25: 3,
177
+ 26: 2,
178
+ 27: 3,
179
+ 28: 3,
180
+ 29: 3,
181
+ 30: 4,
182
+ 31: 3,
183
+ 32: 4,
184
+ 33: 4,
185
+ }
186
+ approx_karate_k_num = karate_k_num.copy()
187
+ approx_karate_k_num[24] = 2
188
+ approx_karate_k_num[25] = 2
189
+ G = nx.karate_club_graph()
190
+ k_comps = k_components(G)
191
+ k_num = build_k_number_dict(k_comps)
192
+ assert k_num in (karate_k_num, approx_karate_k_num)
193
+
194
+
195
+ def test_example_1_detail_3_and_4():
196
+ G = graph_example_1()
197
+ result = k_components(G)
198
+ # In this example graph there are 8 3-components, 4 with 15 nodes
199
+ # and 4 with 5 nodes.
200
+ assert len(result[3]) == 8
201
+ assert len([c for c in result[3] if len(c) == 15]) == 4
202
+ assert len([c for c in result[3] if len(c) == 5]) == 4
203
+ # There are also 8 4-components all with 5 nodes.
204
+ assert len(result[4]) == 8
205
+ assert all(len(c) == 5 for c in result[4])
206
+ # Finally check that the k-components detected have actually node
207
+ # connectivity >= k.
208
+ for k, components in result.items():
209
+ if k < 3:
210
+ continue
211
+ for component in components:
212
+ K = nx.node_connectivity(G.subgraph(component))
213
+ assert K >= k
214
+
215
+
216
+ def test_directed():
217
+ with pytest.raises(nx.NetworkXNotImplemented):
218
+ G = nx.gnp_random_graph(10, 0.4, directed=True)
219
+ kc = k_components(G)
220
+
221
+
222
+ def test_same():
223
+ equal = {"A": 2, "B": 2, "C": 2}
224
+ slightly_different = {"A": 2, "B": 1, "C": 2}
225
+ different = {"A": 2, "B": 8, "C": 18}
226
+ assert _same(equal)
227
+ assert not _same(slightly_different)
228
+ assert _same(slightly_different, tol=1)
229
+ assert not _same(different)
230
+ assert not _same(different, tol=4)
231
+
232
+
233
+ class TestAntiGraph:
234
+ @classmethod
235
+ def setup_class(cls):
236
+ cls.Gnp = nx.gnp_random_graph(20, 0.8, seed=42)
237
+ cls.Anp = _AntiGraph(nx.complement(cls.Gnp))
238
+ cls.Gd = nx.davis_southern_women_graph()
239
+ cls.Ad = _AntiGraph(nx.complement(cls.Gd))
240
+ cls.Gk = nx.karate_club_graph()
241
+ cls.Ak = _AntiGraph(nx.complement(cls.Gk))
242
+ cls.GA = [(cls.Gnp, cls.Anp), (cls.Gd, cls.Ad), (cls.Gk, cls.Ak)]
243
+
244
+ def test_size(self):
245
+ for G, A in self.GA:
246
+ n = G.order()
247
+ s = len(list(G.edges())) + len(list(A.edges()))
248
+ assert s == (n * (n - 1)) / 2
249
+
250
+ def test_degree(self):
251
+ for G, A in self.GA:
252
+ assert sorted(G.degree()) == sorted(A.degree())
253
+
254
+ def test_core_number(self):
255
+ for G, A in self.GA:
256
+ assert nx.core_number(G) == nx.core_number(A)
257
+
258
+ def test_connected_components(self):
259
+ # ccs are same unless isolated nodes or any node has degree=len(G)-1
260
+ # graphs in self.GA avoid this problem
261
+ for G, A in self.GA:
262
+ gc = [set(c) for c in nx.connected_components(G)]
263
+ ac = [set(c) for c in nx.connected_components(A)]
264
+ for comp in ac:
265
+ assert comp in gc
266
+
267
+ def test_adj(self):
268
+ for G, A in self.GA:
269
+ for n, nbrs in G.adj.items():
270
+ a_adj = sorted((n, sorted(ad)) for n, ad in A.adj.items())
271
+ g_adj = sorted((n, sorted(ad)) for n, ad in G.adj.items())
272
+ assert a_adj == g_adj
273
+
274
+ def test_adjacency(self):
275
+ for G, A in self.GA:
276
+ a_adj = list(A.adjacency())
277
+ for n, nbrs in G.adjacency():
278
+ assert (n, set(nbrs)) in a_adj
279
+
280
+ def test_neighbors(self):
281
+ for G, A in self.GA:
282
+ node = list(G.nodes())[0]
283
+ assert set(G.neighbors(node)) == set(A.neighbors(node))
284
+
285
+ def test_node_not_in_graph(self):
286
+ for G, A in self.GA:
287
+ node = "non_existent_node"
288
+ pytest.raises(nx.NetworkXError, A.neighbors, node)
289
+ pytest.raises(nx.NetworkXError, G.neighbors, node)
290
+
291
+ def test_degree_thingraph(self):
292
+ for G, A in self.GA:
293
+ node = list(G.nodes())[0]
294
+ nodes = list(G.nodes())[1:4]
295
+ assert G.degree(node) == A.degree(node)
296
+ assert sum(d for n, d in G.degree()) == sum(d for n, d in A.degree())
297
+ # AntiGraph is a ThinGraph, so all the weights are 1
298
+ assert sum(d for n, d in A.degree()) == sum(
299
+ d for n, d in A.degree(weight="weight")
300
+ )
301
+ assert sum(d for n, d in G.degree(nodes)) == sum(
302
+ d for n, d in A.degree(nodes)
303
+ )
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_matching.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ import networkx as nx
2
+ import networkx.algorithms.approximation as a
3
+
4
+
5
+ def test_min_maximal_matching():
6
+ # smoke test
7
+ G = nx.Graph()
8
+ assert len(a.min_maximal_matching(G)) == 0
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_maxcut.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+ from networkx.algorithms.approximation import maxcut
7
+
8
+
9
+ @pytest.mark.parametrize(
10
+ "f", (nx.approximation.randomized_partitioning, nx.approximation.one_exchange)
11
+ )
12
+ @pytest.mark.parametrize("graph_constructor", (nx.DiGraph, nx.MultiGraph))
13
+ def test_raises_on_directed_and_multigraphs(f, graph_constructor):
14
+ G = graph_constructor([(0, 1), (1, 2)])
15
+ with pytest.raises(nx.NetworkXNotImplemented):
16
+ f(G)
17
+
18
+
19
+ def _is_valid_cut(G, set1, set2):
20
+ union = set1.union(set2)
21
+ assert union == set(G.nodes)
22
+ assert len(set1) + len(set2) == G.number_of_nodes()
23
+
24
+
25
+ def _cut_is_locally_optimal(G, cut_size, set1):
26
+ # test if cut can be locally improved
27
+ for i, node in enumerate(set1):
28
+ cut_size_without_node = nx.algorithms.cut_size(
29
+ G, set1 - {node}, weight="weight"
30
+ )
31
+ assert cut_size_without_node <= cut_size
32
+
33
+
34
+ def test_random_partitioning():
35
+ G = nx.complete_graph(5)
36
+ _, (set1, set2) = maxcut.randomized_partitioning(G, seed=5)
37
+ _is_valid_cut(G, set1, set2)
38
+
39
+
40
+ def test_random_partitioning_all_to_one():
41
+ G = nx.complete_graph(5)
42
+ _, (set1, set2) = maxcut.randomized_partitioning(G, p=1)
43
+ _is_valid_cut(G, set1, set2)
44
+ assert len(set1) == G.number_of_nodes()
45
+ assert len(set2) == 0
46
+
47
+
48
+ def test_one_exchange_basic():
49
+ G = nx.complete_graph(5)
50
+ random.seed(5)
51
+ for u, v, w in G.edges(data=True):
52
+ w["weight"] = random.randrange(-100, 100, 1) / 10
53
+
54
+ initial_cut = set(random.sample(sorted(G.nodes()), k=5))
55
+ cut_size, (set1, set2) = maxcut.one_exchange(
56
+ G, initial_cut, weight="weight", seed=5
57
+ )
58
+
59
+ _is_valid_cut(G, set1, set2)
60
+ _cut_is_locally_optimal(G, cut_size, set1)
61
+
62
+
63
+ def test_one_exchange_optimal():
64
+ # Greedy one exchange should find the optimal solution for this graph (14)
65
+ G = nx.Graph()
66
+ G.add_edge(1, 2, weight=3)
67
+ G.add_edge(1, 3, weight=3)
68
+ G.add_edge(1, 4, weight=3)
69
+ G.add_edge(1, 5, weight=3)
70
+ G.add_edge(2, 3, weight=5)
71
+
72
+ cut_size, (set1, set2) = maxcut.one_exchange(G, weight="weight", seed=5)
73
+
74
+ _is_valid_cut(G, set1, set2)
75
+ _cut_is_locally_optimal(G, cut_size, set1)
76
+ # check global optimality
77
+ assert cut_size == 14
78
+
79
+
80
+ def test_negative_weights():
81
+ G = nx.complete_graph(5)
82
+ random.seed(5)
83
+ for u, v, w in G.edges(data=True):
84
+ w["weight"] = -1 * random.random()
85
+
86
+ initial_cut = set(random.sample(sorted(G.nodes()), k=5))
87
+ cut_size, (set1, set2) = maxcut.one_exchange(G, initial_cut, weight="weight")
88
+
89
+ # make sure it is a valid cut
90
+ _is_valid_cut(G, set1, set2)
91
+ # check local optimality
92
+ _cut_is_locally_optimal(G, cut_size, set1)
93
+ # test that all nodes are in the same partition
94
+ assert len(set1) == len(G.nodes) or len(set2) == len(G.nodes)
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_ramsey.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import networkx as nx
2
+ import networkx.algorithms.approximation as apxa
3
+
4
+
5
+ def test_ramsey():
6
+ # this should only find the complete graph
7
+ graph = nx.complete_graph(10)
8
+ c, i = apxa.ramsey_R2(graph)
9
+ cdens = nx.density(graph.subgraph(c))
10
+ assert cdens == 1.0, "clique not correctly found by ramsey!"
11
+ idens = nx.density(graph.subgraph(i))
12
+ assert idens == 0.0, "i-set not correctly found by ramsey!"
13
+
14
+ # this trivial graph has no cliques. should just find i-sets
15
+ graph = nx.trivial_graph()
16
+ c, i = apxa.ramsey_R2(graph)
17
+ assert c == {0}, "clique not correctly found by ramsey!"
18
+ assert i == {0}, "i-set not correctly found by ramsey!"
19
+
20
+ graph = nx.barbell_graph(10, 5, nx.Graph())
21
+ c, i = apxa.ramsey_R2(graph)
22
+ cdens = nx.density(graph.subgraph(c))
23
+ assert cdens == 1.0, "clique not correctly found by ramsey!"
24
+ idens = nx.density(graph.subgraph(i))
25
+ assert idens == 0.0, "i-set not correctly found by ramsey!"
26
+
27
+ # add self-loops and test again
28
+ graph.add_edges_from([(n, n) for n in range(0, len(graph), 2)])
29
+ cc, ii = apxa.ramsey_R2(graph)
30
+ assert cc == c
31
+ assert ii == i
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_steinertree.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx.algorithms.approximation.steinertree import metric_closure, steiner_tree
5
+ from networkx.utils import edges_equal
6
+
7
+
8
+ class TestSteinerTree:
9
+ @classmethod
10
+ def setup_class(cls):
11
+ G1 = nx.Graph()
12
+ G1.add_edge(1, 2, weight=10)
13
+ G1.add_edge(2, 3, weight=10)
14
+ G1.add_edge(3, 4, weight=10)
15
+ G1.add_edge(4, 5, weight=10)
16
+ G1.add_edge(5, 6, weight=10)
17
+ G1.add_edge(2, 7, weight=1)
18
+ G1.add_edge(7, 5, weight=1)
19
+
20
+ G2 = nx.Graph()
21
+ G2.add_edge(0, 5, weight=6)
22
+ G2.add_edge(1, 2, weight=2)
23
+ G2.add_edge(1, 5, weight=3)
24
+ G2.add_edge(2, 4, weight=4)
25
+ G2.add_edge(3, 5, weight=5)
26
+ G2.add_edge(4, 5, weight=1)
27
+
28
+ G3 = nx.Graph()
29
+ G3.add_edge(1, 2, weight=8)
30
+ G3.add_edge(1, 9, weight=3)
31
+ G3.add_edge(1, 8, weight=6)
32
+ G3.add_edge(1, 10, weight=2)
33
+ G3.add_edge(1, 14, weight=3)
34
+ G3.add_edge(2, 3, weight=6)
35
+ G3.add_edge(3, 4, weight=3)
36
+ G3.add_edge(3, 10, weight=2)
37
+ G3.add_edge(3, 11, weight=1)
38
+ G3.add_edge(4, 5, weight=1)
39
+ G3.add_edge(4, 11, weight=1)
40
+ G3.add_edge(5, 6, weight=4)
41
+ G3.add_edge(5, 11, weight=2)
42
+ G3.add_edge(5, 12, weight=1)
43
+ G3.add_edge(5, 13, weight=3)
44
+ G3.add_edge(6, 7, weight=2)
45
+ G3.add_edge(6, 12, weight=3)
46
+ G3.add_edge(6, 13, weight=1)
47
+ G3.add_edge(7, 8, weight=3)
48
+ G3.add_edge(7, 9, weight=3)
49
+ G3.add_edge(7, 11, weight=5)
50
+ G3.add_edge(7, 13, weight=2)
51
+ G3.add_edge(7, 14, weight=4)
52
+ G3.add_edge(8, 9, weight=2)
53
+ G3.add_edge(9, 14, weight=1)
54
+ G3.add_edge(10, 11, weight=2)
55
+ G3.add_edge(10, 14, weight=1)
56
+ G3.add_edge(11, 12, weight=1)
57
+ G3.add_edge(11, 14, weight=7)
58
+ G3.add_edge(12, 14, weight=3)
59
+ G3.add_edge(12, 15, weight=1)
60
+ G3.add_edge(13, 14, weight=4)
61
+ G3.add_edge(13, 15, weight=1)
62
+ G3.add_edge(14, 15, weight=2)
63
+
64
+ cls.G1 = G1
65
+ cls.G2 = G2
66
+ cls.G3 = G3
67
+ cls.G1_term_nodes = [1, 2, 3, 4, 5]
68
+ cls.G2_term_nodes = [0, 2, 3]
69
+ cls.G3_term_nodes = [1, 3, 5, 6, 8, 10, 11, 12, 13]
70
+
71
+ cls.methods = ["kou", "mehlhorn"]
72
+
73
+ def test_connected_metric_closure(self):
74
+ G = self.G1.copy()
75
+ G.add_node(100)
76
+ pytest.raises(nx.NetworkXError, metric_closure, G)
77
+
78
+ def test_metric_closure(self):
79
+ M = metric_closure(self.G1)
80
+ mc = [
81
+ (1, 2, {"distance": 10, "path": [1, 2]}),
82
+ (1, 3, {"distance": 20, "path": [1, 2, 3]}),
83
+ (1, 4, {"distance": 22, "path": [1, 2, 7, 5, 4]}),
84
+ (1, 5, {"distance": 12, "path": [1, 2, 7, 5]}),
85
+ (1, 6, {"distance": 22, "path": [1, 2, 7, 5, 6]}),
86
+ (1, 7, {"distance": 11, "path": [1, 2, 7]}),
87
+ (2, 3, {"distance": 10, "path": [2, 3]}),
88
+ (2, 4, {"distance": 12, "path": [2, 7, 5, 4]}),
89
+ (2, 5, {"distance": 2, "path": [2, 7, 5]}),
90
+ (2, 6, {"distance": 12, "path": [2, 7, 5, 6]}),
91
+ (2, 7, {"distance": 1, "path": [2, 7]}),
92
+ (3, 4, {"distance": 10, "path": [3, 4]}),
93
+ (3, 5, {"distance": 12, "path": [3, 2, 7, 5]}),
94
+ (3, 6, {"distance": 22, "path": [3, 2, 7, 5, 6]}),
95
+ (3, 7, {"distance": 11, "path": [3, 2, 7]}),
96
+ (4, 5, {"distance": 10, "path": [4, 5]}),
97
+ (4, 6, {"distance": 20, "path": [4, 5, 6]}),
98
+ (4, 7, {"distance": 11, "path": [4, 5, 7]}),
99
+ (5, 6, {"distance": 10, "path": [5, 6]}),
100
+ (5, 7, {"distance": 1, "path": [5, 7]}),
101
+ (6, 7, {"distance": 11, "path": [6, 5, 7]}),
102
+ ]
103
+ assert edges_equal(list(M.edges(data=True)), mc)
104
+
105
+ def test_steiner_tree(self):
106
+ valid_steiner_trees = [
107
+ [
108
+ [
109
+ (1, 2, {"weight": 10}),
110
+ (2, 3, {"weight": 10}),
111
+ (2, 7, {"weight": 1}),
112
+ (3, 4, {"weight": 10}),
113
+ (5, 7, {"weight": 1}),
114
+ ],
115
+ [
116
+ (1, 2, {"weight": 10}),
117
+ (2, 7, {"weight": 1}),
118
+ (3, 4, {"weight": 10}),
119
+ (4, 5, {"weight": 10}),
120
+ (5, 7, {"weight": 1}),
121
+ ],
122
+ [
123
+ (1, 2, {"weight": 10}),
124
+ (2, 3, {"weight": 10}),
125
+ (2, 7, {"weight": 1}),
126
+ (4, 5, {"weight": 10}),
127
+ (5, 7, {"weight": 1}),
128
+ ],
129
+ ],
130
+ [
131
+ [
132
+ (0, 5, {"weight": 6}),
133
+ (1, 2, {"weight": 2}),
134
+ (1, 5, {"weight": 3}),
135
+ (3, 5, {"weight": 5}),
136
+ ],
137
+ [
138
+ (0, 5, {"weight": 6}),
139
+ (4, 2, {"weight": 4}),
140
+ (4, 5, {"weight": 1}),
141
+ (3, 5, {"weight": 5}),
142
+ ],
143
+ ],
144
+ [
145
+ [
146
+ (1, 10, {"weight": 2}),
147
+ (3, 10, {"weight": 2}),
148
+ (3, 11, {"weight": 1}),
149
+ (5, 12, {"weight": 1}),
150
+ (6, 13, {"weight": 1}),
151
+ (8, 9, {"weight": 2}),
152
+ (9, 14, {"weight": 1}),
153
+ (10, 14, {"weight": 1}),
154
+ (11, 12, {"weight": 1}),
155
+ (12, 15, {"weight": 1}),
156
+ (13, 15, {"weight": 1}),
157
+ ]
158
+ ],
159
+ ]
160
+ for method in self.methods:
161
+ for G, term_nodes, valid_trees in zip(
162
+ [self.G1, self.G2, self.G3],
163
+ [self.G1_term_nodes, self.G2_term_nodes, self.G3_term_nodes],
164
+ valid_steiner_trees,
165
+ ):
166
+ S = steiner_tree(G, term_nodes, method=method)
167
+ assert any(
168
+ edges_equal(list(S.edges(data=True)), valid_tree)
169
+ for valid_tree in valid_trees
170
+ )
171
+
172
+ def test_multigraph_steiner_tree(self):
173
+ G = nx.MultiGraph()
174
+ G.add_edges_from(
175
+ [
176
+ (1, 2, 0, {"weight": 1}),
177
+ (2, 3, 0, {"weight": 999}),
178
+ (2, 3, 1, {"weight": 1}),
179
+ (3, 4, 0, {"weight": 1}),
180
+ (3, 5, 0, {"weight": 1}),
181
+ ]
182
+ )
183
+ terminal_nodes = [2, 4, 5]
184
+ expected_edges = [
185
+ (2, 3, 1, {"weight": 1}), # edge with key 1 has lower weight
186
+ (3, 4, 0, {"weight": 1}),
187
+ (3, 5, 0, {"weight": 1}),
188
+ ]
189
+ for method in self.methods:
190
+ S = steiner_tree(G, terminal_nodes, method=method)
191
+ assert edges_equal(S.edges(data=True, keys=True), expected_edges)
192
+
193
+
194
+ @pytest.mark.parametrize("method", ("kou", "mehlhorn"))
195
+ def test_steiner_tree_weight_attribute(method):
196
+ G = nx.star_graph(4)
197
+ # Add an edge attribute that is named something other than "weight"
198
+ nx.set_edge_attributes(G, {e: 10 for e in G.edges}, name="distance")
199
+ H = nx.approximation.steiner_tree(G, [1, 3], method=method, weight="distance")
200
+ assert nx.utils.edges_equal(H.edges, [(0, 1), (0, 3)])
201
+
202
+
203
+ @pytest.mark.parametrize("method", ("kou", "mehlhorn"))
204
+ def test_steiner_tree_multigraph_weight_attribute(method):
205
+ G = nx.cycle_graph(3, create_using=nx.MultiGraph)
206
+ nx.set_edge_attributes(G, {e: 10 for e in G.edges}, name="distance")
207
+ G.add_edge(2, 0, distance=5)
208
+ H = nx.approximation.steiner_tree(G, list(G), method=method, weight="distance")
209
+ assert len(H.edges) == 2 and H.has_edge(2, 0, key=1)
210
+ assert sum(dist for *_, dist in H.edges(data="distance")) == 15
211
+
212
+
213
+ @pytest.mark.parametrize("method", (None, "mehlhorn", "kou"))
214
+ def test_steiner_tree_methods(method):
215
+ G = nx.star_graph(4)
216
+ expected = nx.Graph([(0, 1), (0, 3)])
217
+ st = nx.approximation.steiner_tree(G, [1, 3], method=method)
218
+ assert nx.utils.edges_equal(st.edges, expected.edges)
219
+
220
+
221
+ def test_steiner_tree_method_invalid():
222
+ G = nx.star_graph(4)
223
+ with pytest.raises(
224
+ ValueError, match="invalid_method is not a valid choice for an algorithm."
225
+ ):
226
+ nx.approximation.steiner_tree(G, terminal_nodes=[1, 3], method="invalid_method")
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_traveling_salesman.py ADDED
@@ -0,0 +1,979 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the traveling_salesman module."""
2
+
3
+ import random
4
+
5
+ import pytest
6
+
7
+ import networkx as nx
8
+ import networkx.algorithms.approximation as nx_app
9
+
10
+ pairwise = nx.utils.pairwise
11
+
12
+
13
+ def test_christofides_hamiltonian():
14
+ random.seed(42)
15
+ G = nx.complete_graph(20)
16
+ for u, v in G.edges():
17
+ G[u][v]["weight"] = random.randint(0, 10)
18
+
19
+ H = nx.Graph()
20
+ H.add_edges_from(pairwise(nx_app.christofides(G)))
21
+ H.remove_edges_from(nx.find_cycle(H))
22
+ assert len(H.edges) == 0
23
+
24
+ tree = nx.minimum_spanning_tree(G, weight="weight")
25
+ H = nx.Graph()
26
+ H.add_edges_from(pairwise(nx_app.christofides(G, tree)))
27
+ H.remove_edges_from(nx.find_cycle(H))
28
+ assert len(H.edges) == 0
29
+
30
+
31
+ def test_christofides_incomplete_graph():
32
+ G = nx.complete_graph(10)
33
+ G.remove_edge(0, 1)
34
+ pytest.raises(nx.NetworkXError, nx_app.christofides, G)
35
+
36
+
37
+ def test_christofides_ignore_selfloops():
38
+ G = nx.complete_graph(5)
39
+ G.add_edge(3, 3)
40
+ cycle = nx_app.christofides(G)
41
+ assert len(cycle) - 1 == len(G) == len(set(cycle))
42
+
43
+
44
+ # set up graphs for other tests
45
+ class TestBase:
46
+ @classmethod
47
+ def setup_class(cls):
48
+ cls.DG = nx.DiGraph()
49
+ cls.DG.add_weighted_edges_from(
50
+ {
51
+ ("A", "B", 3),
52
+ ("A", "C", 17),
53
+ ("A", "D", 14),
54
+ ("B", "A", 3),
55
+ ("B", "C", 12),
56
+ ("B", "D", 16),
57
+ ("C", "A", 13),
58
+ ("C", "B", 12),
59
+ ("C", "D", 4),
60
+ ("D", "A", 14),
61
+ ("D", "B", 15),
62
+ ("D", "C", 2),
63
+ }
64
+ )
65
+ cls.DG_cycle = ["D", "C", "B", "A", "D"]
66
+ cls.DG_cost = 31.0
67
+
68
+ cls.DG2 = nx.DiGraph()
69
+ cls.DG2.add_weighted_edges_from(
70
+ {
71
+ ("A", "B", 3),
72
+ ("A", "C", 17),
73
+ ("A", "D", 14),
74
+ ("B", "A", 30),
75
+ ("B", "C", 2),
76
+ ("B", "D", 16),
77
+ ("C", "A", 33),
78
+ ("C", "B", 32),
79
+ ("C", "D", 34),
80
+ ("D", "A", 14),
81
+ ("D", "B", 15),
82
+ ("D", "C", 2),
83
+ }
84
+ )
85
+ cls.DG2_cycle = ["D", "A", "B", "C", "D"]
86
+ cls.DG2_cost = 53.0
87
+
88
+ cls.unweightedUG = nx.complete_graph(5, nx.Graph())
89
+ cls.unweightedDG = nx.complete_graph(5, nx.DiGraph())
90
+
91
+ cls.incompleteUG = nx.Graph()
92
+ cls.incompleteUG.add_weighted_edges_from({(0, 1, 1), (1, 2, 3)})
93
+ cls.incompleteDG = nx.DiGraph()
94
+ cls.incompleteDG.add_weighted_edges_from({(0, 1, 1), (1, 2, 3)})
95
+
96
+ cls.UG = nx.Graph()
97
+ cls.UG.add_weighted_edges_from(
98
+ {
99
+ ("A", "B", 3),
100
+ ("A", "C", 17),
101
+ ("A", "D", 14),
102
+ ("B", "C", 12),
103
+ ("B", "D", 16),
104
+ ("C", "D", 4),
105
+ }
106
+ )
107
+ cls.UG_cycle = ["D", "C", "B", "A", "D"]
108
+ cls.UG_cost = 33.0
109
+
110
+ cls.UG2 = nx.Graph()
111
+ cls.UG2.add_weighted_edges_from(
112
+ {
113
+ ("A", "B", 1),
114
+ ("A", "C", 15),
115
+ ("A", "D", 5),
116
+ ("B", "C", 16),
117
+ ("B", "D", 8),
118
+ ("C", "D", 3),
119
+ }
120
+ )
121
+ cls.UG2_cycle = ["D", "C", "B", "A", "D"]
122
+ cls.UG2_cost = 25.0
123
+
124
+
125
+ def validate_solution(soln, cost, exp_soln, exp_cost):
126
+ assert soln == exp_soln
127
+ assert cost == exp_cost
128
+
129
+
130
+ def validate_symmetric_solution(soln, cost, exp_soln, exp_cost):
131
+ assert soln == exp_soln or soln == exp_soln[::-1]
132
+ assert cost == exp_cost
133
+
134
+
135
+ class TestGreedyTSP(TestBase):
136
+ def test_greedy(self):
137
+ cycle = nx_app.greedy_tsp(self.DG, source="D")
138
+ cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle))
139
+ validate_solution(cycle, cost, ["D", "C", "B", "A", "D"], 31.0)
140
+
141
+ cycle = nx_app.greedy_tsp(self.DG2, source="D")
142
+ cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle))
143
+ validate_solution(cycle, cost, ["D", "C", "B", "A", "D"], 78.0)
144
+
145
+ cycle = nx_app.greedy_tsp(self.UG, source="D")
146
+ cost = sum(self.UG[n][nbr]["weight"] for n, nbr in pairwise(cycle))
147
+ validate_solution(cycle, cost, ["D", "C", "B", "A", "D"], 33.0)
148
+
149
+ cycle = nx_app.greedy_tsp(self.UG2, source="D")
150
+ cost = sum(self.UG2[n][nbr]["weight"] for n, nbr in pairwise(cycle))
151
+ validate_solution(cycle, cost, ["D", "C", "A", "B", "D"], 27.0)
152
+
153
+ def test_not_complete_graph(self):
154
+ pytest.raises(nx.NetworkXError, nx_app.greedy_tsp, self.incompleteUG)
155
+ pytest.raises(nx.NetworkXError, nx_app.greedy_tsp, self.incompleteDG)
156
+
157
+ def test_not_weighted_graph(self):
158
+ nx_app.greedy_tsp(self.unweightedUG)
159
+ nx_app.greedy_tsp(self.unweightedDG)
160
+
161
+ def test_two_nodes(self):
162
+ G = nx.Graph()
163
+ G.add_weighted_edges_from({(1, 2, 1)})
164
+ cycle = nx_app.greedy_tsp(G)
165
+ cost = sum(G[n][nbr]["weight"] for n, nbr in pairwise(cycle))
166
+ validate_solution(cycle, cost, [1, 2, 1], 2)
167
+
168
+ def test_ignore_selfloops(self):
169
+ G = nx.complete_graph(5)
170
+ G.add_edge(3, 3)
171
+ cycle = nx_app.greedy_tsp(G)
172
+ assert len(cycle) - 1 == len(G) == len(set(cycle))
173
+
174
+
175
+ class TestSimulatedAnnealingTSP(TestBase):
176
+ tsp = staticmethod(nx_app.simulated_annealing_tsp)
177
+
178
+ def test_simulated_annealing_directed(self):
179
+ cycle = self.tsp(self.DG, "greedy", source="D", seed=42)
180
+ cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle))
181
+ validate_solution(cycle, cost, self.DG_cycle, self.DG_cost)
182
+
183
+ initial_sol = ["D", "B", "A", "C", "D"]
184
+ cycle = self.tsp(self.DG, initial_sol, source="D", seed=42)
185
+ cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle))
186
+ validate_solution(cycle, cost, self.DG_cycle, self.DG_cost)
187
+
188
+ initial_sol = ["D", "A", "C", "B", "D"]
189
+ cycle = self.tsp(self.DG, initial_sol, move="1-0", source="D", seed=42)
190
+ cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle))
191
+ validate_solution(cycle, cost, self.DG_cycle, self.DG_cost)
192
+
193
+ cycle = self.tsp(self.DG2, "greedy", source="D", seed=42)
194
+ cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle))
195
+ validate_solution(cycle, cost, self.DG2_cycle, self.DG2_cost)
196
+
197
+ cycle = self.tsp(self.DG2, "greedy", move="1-0", source="D", seed=42)
198
+ cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle))
199
+ validate_solution(cycle, cost, self.DG2_cycle, self.DG2_cost)
200
+
201
+ def test_simulated_annealing_undirected(self):
202
+ cycle = self.tsp(self.UG, "greedy", source="D", seed=42)
203
+ cost = sum(self.UG[n][nbr]["weight"] for n, nbr in pairwise(cycle))
204
+ validate_solution(cycle, cost, self.UG_cycle, self.UG_cost)
205
+
206
+ cycle = self.tsp(self.UG2, "greedy", source="D", seed=42)
207
+ cost = sum(self.UG2[n][nbr]["weight"] for n, nbr in pairwise(cycle))
208
+ validate_symmetric_solution(cycle, cost, self.UG2_cycle, self.UG2_cost)
209
+
210
+ cycle = self.tsp(self.UG2, "greedy", move="1-0", source="D", seed=42)
211
+ cost = sum(self.UG2[n][nbr]["weight"] for n, nbr in pairwise(cycle))
212
+ validate_symmetric_solution(cycle, cost, self.UG2_cycle, self.UG2_cost)
213
+
214
+ def test_error_on_input_order_mistake(self):
215
+ # see issue #4846 https://github.com/networkx/networkx/issues/4846
216
+ pytest.raises(TypeError, self.tsp, self.UG, weight="weight")
217
+ pytest.raises(nx.NetworkXError, self.tsp, self.UG, "weight")
218
+
219
+ def test_not_complete_graph(self):
220
+ pytest.raises(nx.NetworkXError, self.tsp, self.incompleteUG, "greedy", source=0)
221
+ pytest.raises(nx.NetworkXError, self.tsp, self.incompleteDG, "greedy", source=0)
222
+
223
+ def test_ignore_selfloops(self):
224
+ G = nx.complete_graph(5)
225
+ G.add_edge(3, 3)
226
+ cycle = self.tsp(G, "greedy")
227
+ assert len(cycle) - 1 == len(G) == len(set(cycle))
228
+
229
+ def test_not_weighted_graph(self):
230
+ self.tsp(self.unweightedUG, "greedy")
231
+ self.tsp(self.unweightedDG, "greedy")
232
+
233
+ def test_two_nodes(self):
234
+ G = nx.Graph()
235
+ G.add_weighted_edges_from({(1, 2, 1)})
236
+
237
+ cycle = self.tsp(G, "greedy", source=1, seed=42)
238
+ cost = sum(G[n][nbr]["weight"] for n, nbr in pairwise(cycle))
239
+ validate_solution(cycle, cost, [1, 2, 1], 2)
240
+
241
+ cycle = self.tsp(G, [1, 2, 1], source=1, seed=42)
242
+ cost = sum(G[n][nbr]["weight"] for n, nbr in pairwise(cycle))
243
+ validate_solution(cycle, cost, [1, 2, 1], 2)
244
+
245
+ def test_failure_of_costs_too_high_when_iterations_low(self):
246
+ # Simulated Annealing Version:
247
+ # set number of moves low and alpha high
248
+ cycle = self.tsp(
249
+ self.DG2, "greedy", source="D", move="1-0", alpha=1, N_inner=1, seed=42
250
+ )
251
+ cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle))
252
+ print(cycle, cost)
253
+ assert cost > self.DG2_cost
254
+
255
+ # Try with an incorrect initial guess
256
+ initial_sol = ["D", "A", "B", "C", "D"]
257
+ cycle = self.tsp(
258
+ self.DG,
259
+ initial_sol,
260
+ source="D",
261
+ move="1-0",
262
+ alpha=0.1,
263
+ N_inner=1,
264
+ max_iterations=1,
265
+ seed=42,
266
+ )
267
+ cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle))
268
+ print(cycle, cost)
269
+ assert cost > self.DG_cost
270
+
271
+
272
+ class TestThresholdAcceptingTSP(TestSimulatedAnnealingTSP):
273
+ tsp = staticmethod(nx_app.threshold_accepting_tsp)
274
+
275
+ def test_failure_of_costs_too_high_when_iterations_low(self):
276
+ # Threshold Version:
277
+ # set number of moves low and number of iterations low
278
+ cycle = self.tsp(
279
+ self.DG2,
280
+ "greedy",
281
+ source="D",
282
+ move="1-0",
283
+ N_inner=1,
284
+ max_iterations=1,
285
+ seed=4,
286
+ )
287
+ cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle))
288
+ assert cost > self.DG2_cost
289
+
290
+ # set threshold too low
291
+ initial_sol = ["D", "A", "B", "C", "D"]
292
+ cycle = self.tsp(
293
+ self.DG, initial_sol, source="D", move="1-0", threshold=-3, seed=42
294
+ )
295
+ cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle))
296
+ assert cost > self.DG_cost
297
+
298
+
299
+ # Tests for function traveling_salesman_problem
300
+ def test_TSP_method():
301
+ G = nx.cycle_graph(9)
302
+ G[4][5]["weight"] = 10
303
+
304
+ # Test using the old currying method
305
+ sa_tsp = lambda G, weight: nx_app.simulated_annealing_tsp(
306
+ G, "greedy", weight, source=4, seed=1
307
+ )
308
+
309
+ path = nx_app.traveling_salesman_problem(
310
+ G,
311
+ method=sa_tsp,
312
+ cycle=False,
313
+ )
314
+ print(path)
315
+ assert path == [4, 3, 2, 1, 0, 8, 7, 6, 5]
316
+
317
+
318
+ def test_TSP_unweighted():
319
+ G = nx.cycle_graph(9)
320
+ path = nx_app.traveling_salesman_problem(G, nodes=[3, 6], cycle=False)
321
+ assert path in ([3, 4, 5, 6], [6, 5, 4, 3])
322
+
323
+ cycle = nx_app.traveling_salesman_problem(G, nodes=[3, 6])
324
+ assert cycle in ([3, 4, 5, 6, 5, 4, 3], [6, 5, 4, 3, 4, 5, 6])
325
+
326
+
327
+ def test_TSP_weighted():
328
+ G = nx.cycle_graph(9)
329
+ G[0][1]["weight"] = 2
330
+ G[1][2]["weight"] = 2
331
+ G[2][3]["weight"] = 2
332
+ G[3][4]["weight"] = 4
333
+ G[4][5]["weight"] = 5
334
+ G[5][6]["weight"] = 4
335
+ G[6][7]["weight"] = 2
336
+ G[7][8]["weight"] = 2
337
+ G[8][0]["weight"] = 2
338
+ tsp = nx_app.traveling_salesman_problem
339
+
340
+ # path between 3 and 6
341
+ expected_paths = ([3, 2, 1, 0, 8, 7, 6], [6, 7, 8, 0, 1, 2, 3])
342
+ # cycle between 3 and 6
343
+ expected_cycles = (
344
+ [3, 2, 1, 0, 8, 7, 6, 7, 8, 0, 1, 2, 3],
345
+ [6, 7, 8, 0, 1, 2, 3, 2, 1, 0, 8, 7, 6],
346
+ )
347
+ # path through all nodes
348
+ expected_tourpaths = ([5, 6, 7, 8, 0, 1, 2, 3, 4], [4, 3, 2, 1, 0, 8, 7, 6, 5])
349
+
350
+ # Check default method
351
+ cycle = tsp(G, nodes=[3, 6], weight="weight")
352
+ assert cycle in expected_cycles
353
+
354
+ path = tsp(G, nodes=[3, 6], weight="weight", cycle=False)
355
+ assert path in expected_paths
356
+
357
+ tourpath = tsp(G, weight="weight", cycle=False)
358
+ assert tourpath in expected_tourpaths
359
+
360
+ # Check all methods
361
+ methods = [
362
+ (nx_app.christofides, {}),
363
+ (nx_app.greedy_tsp, {}),
364
+ (
365
+ nx_app.simulated_annealing_tsp,
366
+ {"init_cycle": "greedy"},
367
+ ),
368
+ (
369
+ nx_app.threshold_accepting_tsp,
370
+ {"init_cycle": "greedy"},
371
+ ),
372
+ ]
373
+ for method, kwargs in methods:
374
+ cycle = tsp(G, nodes=[3, 6], weight="weight", method=method, **kwargs)
375
+ assert cycle in expected_cycles
376
+
377
+ path = tsp(
378
+ G, nodes=[3, 6], weight="weight", method=method, cycle=False, **kwargs
379
+ )
380
+ assert path in expected_paths
381
+
382
+ tourpath = tsp(G, weight="weight", method=method, cycle=False, **kwargs)
383
+ assert tourpath in expected_tourpaths
384
+
385
+
386
+ def test_TSP_incomplete_graph_short_path():
387
+ G = nx.cycle_graph(9)
388
+ G.add_edges_from([(4, 9), (9, 10), (10, 11), (11, 0)])
389
+ G[4][5]["weight"] = 5
390
+
391
+ cycle = nx_app.traveling_salesman_problem(G)
392
+ print(cycle)
393
+ assert len(cycle) == 17 and len(set(cycle)) == 12
394
+
395
+ # make sure that cutting one edge out of complete graph formulation
396
+ # cuts out many edges out of the path of the TSP
397
+ path = nx_app.traveling_salesman_problem(G, cycle=False)
398
+ print(path)
399
+ assert len(path) == 13 and len(set(path)) == 12
400
+
401
+
402
+ def test_held_karp_ascent():
403
+ """
404
+ Test the Held-Karp relaxation with the ascent method
405
+ """
406
+ import networkx.algorithms.approximation.traveling_salesman as tsp
407
+
408
+ np = pytest.importorskip("numpy")
409
+ pytest.importorskip("scipy")
410
+
411
+ # Adjacency matrix from page 1153 of the 1970 Held and Karp paper
412
+ # which have been edited to be directional, but also symmetric
413
+ G_array = np.array(
414
+ [
415
+ [0, 97, 60, 73, 17, 52],
416
+ [97, 0, 41, 52, 90, 30],
417
+ [60, 41, 0, 21, 35, 41],
418
+ [73, 52, 21, 0, 95, 46],
419
+ [17, 90, 35, 95, 0, 81],
420
+ [52, 30, 41, 46, 81, 0],
421
+ ]
422
+ )
423
+
424
+ solution_edges = [(1, 3), (2, 4), (3, 2), (4, 0), (5, 1), (0, 5)]
425
+
426
+ G = nx.from_numpy_array(G_array, create_using=nx.DiGraph)
427
+ opt_hk, z_star = tsp.held_karp_ascent(G)
428
+
429
+ # Check that the optimal weights are the same
430
+ assert round(opt_hk, 2) == 207.00
431
+ # Check that the z_stars are the same
432
+ solution = nx.DiGraph()
433
+ solution.add_edges_from(solution_edges)
434
+ assert nx.utils.edges_equal(z_star.edges, solution.edges)
435
+
436
+
437
+ def test_ascent_fractional_solution():
438
+ """
439
+ Test the ascent method using a modified version of Figure 2 on page 1140
440
+ in 'The Traveling Salesman Problem and Minimum Spanning Trees' by Held and
441
+ Karp
442
+ """
443
+ import networkx.algorithms.approximation.traveling_salesman as tsp
444
+
445
+ np = pytest.importorskip("numpy")
446
+ pytest.importorskip("scipy")
447
+
448
+ # This version of Figure 2 has all of the edge weights multiplied by 100
449
+ # and is a complete directed graph with infinite edge weights for the
450
+ # edges not listed in the original graph
451
+ G_array = np.array(
452
+ [
453
+ [0, 100, 100, 100000, 100000, 1],
454
+ [100, 0, 100, 100000, 1, 100000],
455
+ [100, 100, 0, 1, 100000, 100000],
456
+ [100000, 100000, 1, 0, 100, 100],
457
+ [100000, 1, 100000, 100, 0, 100],
458
+ [1, 100000, 100000, 100, 100, 0],
459
+ ]
460
+ )
461
+
462
+ solution_z_star = {
463
+ (0, 1): 5 / 12,
464
+ (0, 2): 5 / 12,
465
+ (0, 5): 5 / 6,
466
+ (1, 0): 5 / 12,
467
+ (1, 2): 1 / 3,
468
+ (1, 4): 5 / 6,
469
+ (2, 0): 5 / 12,
470
+ (2, 1): 1 / 3,
471
+ (2, 3): 5 / 6,
472
+ (3, 2): 5 / 6,
473
+ (3, 4): 1 / 3,
474
+ (3, 5): 1 / 2,
475
+ (4, 1): 5 / 6,
476
+ (4, 3): 1 / 3,
477
+ (4, 5): 1 / 2,
478
+ (5, 0): 5 / 6,
479
+ (5, 3): 1 / 2,
480
+ (5, 4): 1 / 2,
481
+ }
482
+
483
+ G = nx.from_numpy_array(G_array, create_using=nx.DiGraph)
484
+ opt_hk, z_star = tsp.held_karp_ascent(G)
485
+
486
+ # Check that the optimal weights are the same
487
+ assert round(opt_hk, 2) == 303.00
488
+ # Check that the z_stars are the same
489
+ assert {key: round(z_star[key], 4) for key in z_star} == {
490
+ key: round(solution_z_star[key], 4) for key in solution_z_star
491
+ }
492
+
493
+
494
+ def test_ascent_method_asymmetric():
495
+ """
496
+ Tests the ascent method using a truly asymmetric graph for which the
497
+ solution has been brute forced
498
+ """
499
+ import networkx.algorithms.approximation.traveling_salesman as tsp
500
+
501
+ np = pytest.importorskip("numpy")
502
+ pytest.importorskip("scipy")
503
+
504
+ G_array = np.array(
505
+ [
506
+ [0, 26, 63, 59, 69, 31, 41],
507
+ [62, 0, 91, 53, 75, 87, 47],
508
+ [47, 82, 0, 90, 15, 9, 18],
509
+ [68, 19, 5, 0, 58, 34, 93],
510
+ [11, 58, 53, 55, 0, 61, 79],
511
+ [88, 75, 13, 76, 98, 0, 40],
512
+ [41, 61, 55, 88, 46, 45, 0],
513
+ ]
514
+ )
515
+
516
+ solution_edges = [(0, 1), (1, 3), (3, 2), (2, 5), (5, 6), (4, 0), (6, 4)]
517
+
518
+ G = nx.from_numpy_array(G_array, create_using=nx.DiGraph)
519
+ opt_hk, z_star = tsp.held_karp_ascent(G)
520
+
521
+ # Check that the optimal weights are the same
522
+ assert round(opt_hk, 2) == 190.00
523
+ # Check that the z_stars match.
524
+ solution = nx.DiGraph()
525
+ solution.add_edges_from(solution_edges)
526
+ assert nx.utils.edges_equal(z_star.edges, solution.edges)
527
+
528
+
529
+ def test_ascent_method_asymmetric_2():
530
+ """
531
+ Tests the ascent method using a truly asymmetric graph for which the
532
+ solution has been brute forced
533
+ """
534
+ import networkx.algorithms.approximation.traveling_salesman as tsp
535
+
536
+ np = pytest.importorskip("numpy")
537
+ pytest.importorskip("scipy")
538
+
539
+ G_array = np.array(
540
+ [
541
+ [0, 45, 39, 92, 29, 31],
542
+ [72, 0, 4, 12, 21, 60],
543
+ [81, 6, 0, 98, 70, 53],
544
+ [49, 71, 59, 0, 98, 94],
545
+ [74, 95, 24, 43, 0, 47],
546
+ [56, 43, 3, 65, 22, 0],
547
+ ]
548
+ )
549
+
550
+ solution_edges = [(0, 5), (5, 4), (1, 3), (3, 0), (2, 1), (4, 2)]
551
+
552
+ G = nx.from_numpy_array(G_array, create_using=nx.DiGraph)
553
+ opt_hk, z_star = tsp.held_karp_ascent(G)
554
+
555
+ # Check that the optimal weights are the same
556
+ assert round(opt_hk, 2) == 144.00
557
+ # Check that the z_stars match.
558
+ solution = nx.DiGraph()
559
+ solution.add_edges_from(solution_edges)
560
+ assert nx.utils.edges_equal(z_star.edges, solution.edges)
561
+
562
+
563
+ def test_held_karp_ascent_asymmetric_3():
564
+ """
565
+ Tests the ascent method using a truly asymmetric graph with a fractional
566
+ solution for which the solution has been brute forced.
567
+
568
+ In this graph their are two different optimal, integral solutions (which
569
+ are also the overall atsp solutions) to the Held Karp relaxation. However,
570
+ this particular graph has two different tours of optimal value and the
571
+ possible solutions in the held_karp_ascent function are not stored in an
572
+ ordered data structure.
573
+ """
574
+ import networkx.algorithms.approximation.traveling_salesman as tsp
575
+
576
+ np = pytest.importorskip("numpy")
577
+ pytest.importorskip("scipy")
578
+
579
+ G_array = np.array(
580
+ [
581
+ [0, 1, 5, 2, 7, 4],
582
+ [7, 0, 7, 7, 1, 4],
583
+ [4, 7, 0, 9, 2, 1],
584
+ [7, 2, 7, 0, 4, 4],
585
+ [5, 5, 4, 4, 0, 3],
586
+ [3, 9, 1, 3, 4, 0],
587
+ ]
588
+ )
589
+
590
+ solution1_edges = [(0, 3), (1, 4), (2, 5), (3, 1), (4, 2), (5, 0)]
591
+
592
+ solution2_edges = [(0, 3), (3, 1), (1, 4), (4, 5), (2, 0), (5, 2)]
593
+
594
+ G = nx.from_numpy_array(G_array, create_using=nx.DiGraph)
595
+ opt_hk, z_star = tsp.held_karp_ascent(G)
596
+
597
+ assert round(opt_hk, 2) == 13.00
598
+ # Check that the z_stars are the same
599
+ solution1 = nx.DiGraph()
600
+ solution1.add_edges_from(solution1_edges)
601
+ solution2 = nx.DiGraph()
602
+ solution2.add_edges_from(solution2_edges)
603
+ assert nx.utils.edges_equal(z_star.edges, solution1.edges) or nx.utils.edges_equal(
604
+ z_star.edges, solution2.edges
605
+ )
606
+
607
+
608
+ def test_held_karp_ascent_fractional_asymmetric():
609
+ """
610
+ Tests the ascent method using a truly asymmetric graph with a fractional
611
+ solution for which the solution has been brute forced
612
+ """
613
+ import networkx.algorithms.approximation.traveling_salesman as tsp
614
+
615
+ np = pytest.importorskip("numpy")
616
+ pytest.importorskip("scipy")
617
+
618
+ G_array = np.array(
619
+ [
620
+ [0, 100, 150, 100000, 100000, 1],
621
+ [150, 0, 100, 100000, 1, 100000],
622
+ [100, 150, 0, 1, 100000, 100000],
623
+ [100000, 100000, 1, 0, 150, 100],
624
+ [100000, 2, 100000, 100, 0, 150],
625
+ [2, 100000, 100000, 150, 100, 0],
626
+ ]
627
+ )
628
+
629
+ solution_z_star = {
630
+ (0, 1): 5 / 12,
631
+ (0, 2): 5 / 12,
632
+ (0, 5): 5 / 6,
633
+ (1, 0): 5 / 12,
634
+ (1, 2): 5 / 12,
635
+ (1, 4): 5 / 6,
636
+ (2, 0): 5 / 12,
637
+ (2, 1): 5 / 12,
638
+ (2, 3): 5 / 6,
639
+ (3, 2): 5 / 6,
640
+ (3, 4): 5 / 12,
641
+ (3, 5): 5 / 12,
642
+ (4, 1): 5 / 6,
643
+ (4, 3): 5 / 12,
644
+ (4, 5): 5 / 12,
645
+ (5, 0): 5 / 6,
646
+ (5, 3): 5 / 12,
647
+ (5, 4): 5 / 12,
648
+ }
649
+
650
+ G = nx.from_numpy_array(G_array, create_using=nx.DiGraph)
651
+ opt_hk, z_star = tsp.held_karp_ascent(G)
652
+
653
+ # Check that the optimal weights are the same
654
+ assert round(opt_hk, 2) == 304.00
655
+ # Check that the z_stars are the same
656
+ assert {key: round(z_star[key], 4) for key in z_star} == {
657
+ key: round(solution_z_star[key], 4) for key in solution_z_star
658
+ }
659
+
660
+
661
+ def test_spanning_tree_distribution():
662
+ """
663
+ Test that we can create an exponential distribution of spanning trees such
664
+ that the probability of each tree is proportional to the product of edge
665
+ weights.
666
+
667
+ Results of this test have been confirmed with hypothesis testing from the
668
+ created distribution.
669
+
670
+ This test uses the symmetric, fractional Held Karp solution.
671
+ """
672
+ import networkx.algorithms.approximation.traveling_salesman as tsp
673
+
674
+ pytest.importorskip("numpy")
675
+ pytest.importorskip("scipy")
676
+
677
+ z_star = {
678
+ (0, 1): 5 / 12,
679
+ (0, 2): 5 / 12,
680
+ (0, 5): 5 / 6,
681
+ (1, 0): 5 / 12,
682
+ (1, 2): 1 / 3,
683
+ (1, 4): 5 / 6,
684
+ (2, 0): 5 / 12,
685
+ (2, 1): 1 / 3,
686
+ (2, 3): 5 / 6,
687
+ (3, 2): 5 / 6,
688
+ (3, 4): 1 / 3,
689
+ (3, 5): 1 / 2,
690
+ (4, 1): 5 / 6,
691
+ (4, 3): 1 / 3,
692
+ (4, 5): 1 / 2,
693
+ (5, 0): 5 / 6,
694
+ (5, 3): 1 / 2,
695
+ (5, 4): 1 / 2,
696
+ }
697
+
698
+ solution_gamma = {
699
+ (0, 1): -0.6383,
700
+ (0, 2): -0.6827,
701
+ (0, 5): 0,
702
+ (1, 2): -1.0781,
703
+ (1, 4): 0,
704
+ (2, 3): 0,
705
+ (5, 3): -0.2820,
706
+ (5, 4): -0.3327,
707
+ (4, 3): -0.9927,
708
+ }
709
+
710
+ # The undirected support of z_star
711
+ G = nx.MultiGraph()
712
+ for u, v in z_star:
713
+ if (u, v) in G.edges or (v, u) in G.edges:
714
+ continue
715
+ G.add_edge(u, v)
716
+
717
+ gamma = tsp.spanning_tree_distribution(G, z_star)
718
+
719
+ assert {key: round(gamma[key], 4) for key in gamma} == solution_gamma
720
+
721
+
722
+ def test_asadpour_tsp():
723
+ """
724
+ Test the complete asadpour tsp algorithm with the fractional, symmetric
725
+ Held Karp solution. This test also uses an incomplete graph as input.
726
+ """
727
+ # This version of Figure 2 has all of the edge weights multiplied by 100
728
+ # and the 0 weight edges have a weight of 1.
729
+ pytest.importorskip("numpy")
730
+ pytest.importorskip("scipy")
731
+
732
+ edge_list = [
733
+ (0, 1, 100),
734
+ (0, 2, 100),
735
+ (0, 5, 1),
736
+ (1, 2, 100),
737
+ (1, 4, 1),
738
+ (2, 3, 1),
739
+ (3, 4, 100),
740
+ (3, 5, 100),
741
+ (4, 5, 100),
742
+ (1, 0, 100),
743
+ (2, 0, 100),
744
+ (5, 0, 1),
745
+ (2, 1, 100),
746
+ (4, 1, 1),
747
+ (3, 2, 1),
748
+ (4, 3, 100),
749
+ (5, 3, 100),
750
+ (5, 4, 100),
751
+ ]
752
+
753
+ G = nx.DiGraph()
754
+ G.add_weighted_edges_from(edge_list)
755
+
756
+ tour = nx_app.traveling_salesman_problem(
757
+ G, weight="weight", method=nx_app.asadpour_atsp, seed=19
758
+ )
759
+
760
+ # Check that the returned list is a valid tour. Because this is an
761
+ # incomplete graph, the conditions are not as strict. We need the tour to
762
+ #
763
+ # Start and end at the same node
764
+ # Pass through every vertex at least once
765
+ # Have a total cost at most ln(6) / ln(ln(6)) = 3.0723 times the optimal
766
+ #
767
+ # For the second condition it is possible to have the tour pass through the
768
+ # same vertex more then. Imagine that the tour on the complete version takes
769
+ # an edge not in the original graph. In the output this is substituted with
770
+ # the shortest path between those vertices, allowing vertices to appear more
771
+ # than once.
772
+ #
773
+ # Even though we are using a fixed seed, multiple tours have been known to
774
+ # be returned. The first two are from the original delevopment of this test,
775
+ # and the third one from issue #5913 on GitHub. If other tours are returned,
776
+ # add it on the list of expected tours.
777
+ expected_tours = [
778
+ [1, 4, 5, 0, 2, 3, 2, 1],
779
+ [3, 2, 0, 1, 4, 5, 3],
780
+ [3, 2, 1, 0, 5, 4, 3],
781
+ ]
782
+
783
+ assert tour in expected_tours
784
+
785
+
786
+ def test_asadpour_real_world():
787
+ """
788
+ This test uses airline prices between the six largest cities in the US.
789
+
790
+ * New York City -> JFK
791
+ * Los Angeles -> LAX
792
+ * Chicago -> ORD
793
+ * Houston -> IAH
794
+ * Phoenix -> PHX
795
+ * Philadelphia -> PHL
796
+
797
+ Flight prices from August 2021 using Delta or American airlines to get
798
+ nonstop flight. The brute force solution found the optimal tour to cost $872
799
+
800
+ This test also uses the `source` keyword argument to ensure that the tour
801
+ always starts at city 0.
802
+ """
803
+ np = pytest.importorskip("numpy")
804
+ pytest.importorskip("scipy")
805
+
806
+ G_array = np.array(
807
+ [
808
+ # JFK LAX ORD IAH PHX PHL
809
+ [0, 243, 199, 208, 169, 183], # JFK
810
+ [277, 0, 217, 123, 127, 252], # LAX
811
+ [297, 197, 0, 197, 123, 177], # ORD
812
+ [303, 169, 197, 0, 117, 117], # IAH
813
+ [257, 127, 160, 117, 0, 319], # PHX
814
+ [183, 332, 217, 117, 319, 0], # PHL
815
+ ]
816
+ )
817
+
818
+ node_map = {0: "JFK", 1: "LAX", 2: "ORD", 3: "IAH", 4: "PHX", 5: "PHL"}
819
+
820
+ expected_tours = [
821
+ ["JFK", "LAX", "PHX", "ORD", "IAH", "PHL", "JFK"],
822
+ ["JFK", "ORD", "PHX", "LAX", "IAH", "PHL", "JFK"],
823
+ ]
824
+
825
+ G = nx.from_numpy_array(G_array, create_using=nx.DiGraph)
826
+ nx.relabel_nodes(G, node_map, copy=False)
827
+
828
+ tour = nx_app.traveling_salesman_problem(
829
+ G, weight="weight", method=nx_app.asadpour_atsp, seed=37, source="JFK"
830
+ )
831
+
832
+ assert tour in expected_tours
833
+
834
+
835
+ def test_asadpour_real_world_path():
836
+ """
837
+ This test uses airline prices between the six largest cities in the US. This
838
+ time using a path, not a cycle.
839
+
840
+ * New York City -> JFK
841
+ * Los Angeles -> LAX
842
+ * Chicago -> ORD
843
+ * Houston -> IAH
844
+ * Phoenix -> PHX
845
+ * Philadelphia -> PHL
846
+
847
+ Flight prices from August 2021 using Delta or American airlines to get
848
+ nonstop flight. The brute force solution found the optimal tour to cost $872
849
+ """
850
+ np = pytest.importorskip("numpy")
851
+ pytest.importorskip("scipy")
852
+
853
+ G_array = np.array(
854
+ [
855
+ # JFK LAX ORD IAH PHX PHL
856
+ [0, 243, 199, 208, 169, 183], # JFK
857
+ [277, 0, 217, 123, 127, 252], # LAX
858
+ [297, 197, 0, 197, 123, 177], # ORD
859
+ [303, 169, 197, 0, 117, 117], # IAH
860
+ [257, 127, 160, 117, 0, 319], # PHX
861
+ [183, 332, 217, 117, 319, 0], # PHL
862
+ ]
863
+ )
864
+
865
+ node_map = {0: "JFK", 1: "LAX", 2: "ORD", 3: "IAH", 4: "PHX", 5: "PHL"}
866
+
867
+ expected_paths = [
868
+ ["ORD", "PHX", "LAX", "IAH", "PHL", "JFK"],
869
+ ["JFK", "PHL", "IAH", "ORD", "PHX", "LAX"],
870
+ ]
871
+
872
+ G = nx.from_numpy_array(G_array, create_using=nx.DiGraph)
873
+ nx.relabel_nodes(G, node_map, copy=False)
874
+
875
+ path = nx_app.traveling_salesman_problem(
876
+ G, weight="weight", cycle=False, method=nx_app.asadpour_atsp, seed=56
877
+ )
878
+
879
+ assert path in expected_paths
880
+
881
+
882
+ def test_asadpour_disconnected_graph():
883
+ """
884
+ Test that the proper exception is raised when asadpour_atsp is given an
885
+ disconnected graph.
886
+ """
887
+
888
+ G = nx.complete_graph(4, create_using=nx.DiGraph)
889
+ # have to set edge weights so that if the exception is not raised, the
890
+ # function will complete and we will fail the test
891
+ nx.set_edge_attributes(G, 1, "weight")
892
+ G.add_node(5)
893
+
894
+ pytest.raises(nx.NetworkXError, nx_app.asadpour_atsp, G)
895
+
896
+
897
+ def test_asadpour_incomplete_graph():
898
+ """
899
+ Test that the proper exception is raised when asadpour_atsp is given an
900
+ incomplete graph
901
+ """
902
+
903
+ G = nx.complete_graph(4, create_using=nx.DiGraph)
904
+ # have to set edge weights so that if the exception is not raised, the
905
+ # function will complete and we will fail the test
906
+ nx.set_edge_attributes(G, 1, "weight")
907
+ G.remove_edge(0, 1)
908
+
909
+ pytest.raises(nx.NetworkXError, nx_app.asadpour_atsp, G)
910
+
911
+
912
+ def test_asadpour_empty_graph():
913
+ """
914
+ Test the asadpour_atsp function with an empty graph
915
+ """
916
+ G = nx.DiGraph()
917
+
918
+ pytest.raises(nx.NetworkXError, nx_app.asadpour_atsp, G)
919
+
920
+
921
+ @pytest.mark.slow
922
+ def test_asadpour_integral_held_karp():
923
+ """
924
+ This test uses an integral held karp solution and the held karp function
925
+ will return a graph rather than a dict, bypassing most of the asadpour
926
+ algorithm.
927
+
928
+ At first glance, this test probably doesn't look like it ensures that we
929
+ skip the rest of the asadpour algorithm, but it does. We are not fixing a
930
+ see for the random number generator, so if we sample any spanning trees
931
+ the approximation would be different basically every time this test is
932
+ executed but it is not since held karp is deterministic and we do not
933
+ reach the portion of the code with the dependence on random numbers.
934
+ """
935
+ np = pytest.importorskip("numpy")
936
+
937
+ G_array = np.array(
938
+ [
939
+ [0, 26, 63, 59, 69, 31, 41],
940
+ [62, 0, 91, 53, 75, 87, 47],
941
+ [47, 82, 0, 90, 15, 9, 18],
942
+ [68, 19, 5, 0, 58, 34, 93],
943
+ [11, 58, 53, 55, 0, 61, 79],
944
+ [88, 75, 13, 76, 98, 0, 40],
945
+ [41, 61, 55, 88, 46, 45, 0],
946
+ ]
947
+ )
948
+
949
+ G = nx.from_numpy_array(G_array, create_using=nx.DiGraph)
950
+
951
+ for _ in range(2):
952
+ tour = nx_app.traveling_salesman_problem(G, method=nx_app.asadpour_atsp)
953
+
954
+ assert [1, 3, 2, 5, 2, 6, 4, 0, 1] == tour
955
+
956
+
957
+ def test_directed_tsp_impossible():
958
+ """
959
+ Test the asadpour algorithm with a graph without a hamiltonian circuit
960
+ """
961
+ pytest.importorskip("numpy")
962
+
963
+ # In this graph, once we leave node 0 we cannot return
964
+ edges = [
965
+ (0, 1, 10),
966
+ (0, 2, 11),
967
+ (0, 3, 12),
968
+ (1, 2, 4),
969
+ (1, 3, 6),
970
+ (2, 1, 3),
971
+ (2, 3, 2),
972
+ (3, 1, 5),
973
+ (3, 2, 1),
974
+ ]
975
+
976
+ G = nx.DiGraph()
977
+ G.add_weighted_edges_from(edges)
978
+
979
+ pytest.raises(nx.NetworkXError, nx_app.traveling_salesman_problem, G)
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_treewidth.py ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+
3
+ import networkx as nx
4
+ from networkx.algorithms.approximation import (
5
+ treewidth_min_degree,
6
+ treewidth_min_fill_in,
7
+ )
8
+ from networkx.algorithms.approximation.treewidth import (
9
+ MinDegreeHeuristic,
10
+ min_fill_in_heuristic,
11
+ )
12
+
13
+
14
+ def is_tree_decomp(graph, decomp):
15
+ """Check if the given tree decomposition is valid."""
16
+ for x in graph.nodes():
17
+ appear_once = False
18
+ for bag in decomp.nodes():
19
+ if x in bag:
20
+ appear_once = True
21
+ break
22
+ assert appear_once
23
+
24
+ # Check if each connected pair of nodes are at least once together in a bag
25
+ for x, y in graph.edges():
26
+ appear_together = False
27
+ for bag in decomp.nodes():
28
+ if x in bag and y in bag:
29
+ appear_together = True
30
+ break
31
+ assert appear_together
32
+
33
+ # Check if the nodes associated with vertex v form a connected subset of T
34
+ for v in graph.nodes():
35
+ subset = []
36
+ for bag in decomp.nodes():
37
+ if v in bag:
38
+ subset.append(bag)
39
+ sub_graph = decomp.subgraph(subset)
40
+ assert nx.is_connected(sub_graph)
41
+
42
+
43
+ class TestTreewidthMinDegree:
44
+ """Unit tests for the min_degree function"""
45
+
46
+ @classmethod
47
+ def setup_class(cls):
48
+ """Setup for different kinds of trees"""
49
+ cls.complete = nx.Graph()
50
+ cls.complete.add_edge(1, 2)
51
+ cls.complete.add_edge(2, 3)
52
+ cls.complete.add_edge(1, 3)
53
+
54
+ cls.small_tree = nx.Graph()
55
+ cls.small_tree.add_edge(1, 3)
56
+ cls.small_tree.add_edge(4, 3)
57
+ cls.small_tree.add_edge(2, 3)
58
+ cls.small_tree.add_edge(3, 5)
59
+ cls.small_tree.add_edge(5, 6)
60
+ cls.small_tree.add_edge(5, 7)
61
+ cls.small_tree.add_edge(6, 7)
62
+
63
+ cls.deterministic_graph = nx.Graph()
64
+ cls.deterministic_graph.add_edge(0, 1) # deg(0) = 1
65
+
66
+ cls.deterministic_graph.add_edge(1, 2) # deg(1) = 2
67
+
68
+ cls.deterministic_graph.add_edge(2, 3)
69
+ cls.deterministic_graph.add_edge(2, 4) # deg(2) = 3
70
+
71
+ cls.deterministic_graph.add_edge(3, 4)
72
+ cls.deterministic_graph.add_edge(3, 5)
73
+ cls.deterministic_graph.add_edge(3, 6) # deg(3) = 4
74
+
75
+ cls.deterministic_graph.add_edge(4, 5)
76
+ cls.deterministic_graph.add_edge(4, 6)
77
+ cls.deterministic_graph.add_edge(4, 7) # deg(4) = 5
78
+
79
+ cls.deterministic_graph.add_edge(5, 6)
80
+ cls.deterministic_graph.add_edge(5, 7)
81
+ cls.deterministic_graph.add_edge(5, 8)
82
+ cls.deterministic_graph.add_edge(5, 9) # deg(5) = 6
83
+
84
+ cls.deterministic_graph.add_edge(6, 7)
85
+ cls.deterministic_graph.add_edge(6, 8)
86
+ cls.deterministic_graph.add_edge(6, 9) # deg(6) = 6
87
+
88
+ cls.deterministic_graph.add_edge(7, 8)
89
+ cls.deterministic_graph.add_edge(7, 9) # deg(7) = 5
90
+
91
+ cls.deterministic_graph.add_edge(8, 9) # deg(8) = 4
92
+
93
+ def test_petersen_graph(self):
94
+ """Test Petersen graph tree decomposition result"""
95
+ G = nx.petersen_graph()
96
+ _, decomp = treewidth_min_degree(G)
97
+ is_tree_decomp(G, decomp)
98
+
99
+ def test_small_tree_treewidth(self):
100
+ """Test small tree
101
+
102
+ Test if the computed treewidth of the known self.small_tree is 2.
103
+ As we know which value we can expect from our heuristic, values other
104
+ than two are regressions
105
+ """
106
+ G = self.small_tree
107
+ # the order of removal should be [1,2,4]3[5,6,7]
108
+ # (with [] denoting any order of the containing nodes)
109
+ # resulting in treewidth 2 for the heuristic
110
+ treewidth, _ = treewidth_min_fill_in(G)
111
+ assert treewidth == 2
112
+
113
+ def test_heuristic_abort(self):
114
+ """Test heuristic abort condition for fully connected graph"""
115
+ graph = {}
116
+ for u in self.complete:
117
+ graph[u] = set()
118
+ for v in self.complete[u]:
119
+ if u != v: # ignore self-loop
120
+ graph[u].add(v)
121
+
122
+ deg_heuristic = MinDegreeHeuristic(graph)
123
+ node = deg_heuristic.best_node(graph)
124
+ if node is None:
125
+ pass
126
+ else:
127
+ assert False
128
+
129
+ def test_empty_graph(self):
130
+ """Test empty graph"""
131
+ G = nx.Graph()
132
+ _, _ = treewidth_min_degree(G)
133
+
134
+ def test_two_component_graph(self):
135
+ G = nx.Graph()
136
+ G.add_node(1)
137
+ G.add_node(2)
138
+ treewidth, _ = treewidth_min_degree(G)
139
+ assert treewidth == 0
140
+
141
+ def test_not_sortable_nodes(self):
142
+ G = nx.Graph([(0, "a")])
143
+ treewidth_min_degree(G)
144
+
145
+ def test_heuristic_first_steps(self):
146
+ """Test first steps of min_degree heuristic"""
147
+ graph = {
148
+ n: set(self.deterministic_graph[n]) - {n} for n in self.deterministic_graph
149
+ }
150
+ deg_heuristic = MinDegreeHeuristic(graph)
151
+ elim_node = deg_heuristic.best_node(graph)
152
+ print(f"Graph {graph}:")
153
+ steps = []
154
+
155
+ while elim_node is not None:
156
+ print(f"Removing {elim_node}:")
157
+ steps.append(elim_node)
158
+ nbrs = graph[elim_node]
159
+
160
+ for u, v in itertools.permutations(nbrs, 2):
161
+ if v not in graph[u]:
162
+ graph[u].add(v)
163
+
164
+ for u in graph:
165
+ if elim_node in graph[u]:
166
+ graph[u].remove(elim_node)
167
+
168
+ del graph[elim_node]
169
+ print(f"Graph {graph}:")
170
+ elim_node = deg_heuristic.best_node(graph)
171
+
172
+ # check only the first 5 elements for equality
173
+ assert steps[:5] == [0, 1, 2, 3, 4]
174
+
175
+
176
+ class TestTreewidthMinFillIn:
177
+ """Unit tests for the treewidth_min_fill_in function."""
178
+
179
+ @classmethod
180
+ def setup_class(cls):
181
+ """Setup for different kinds of trees"""
182
+ cls.complete = nx.Graph()
183
+ cls.complete.add_edge(1, 2)
184
+ cls.complete.add_edge(2, 3)
185
+ cls.complete.add_edge(1, 3)
186
+
187
+ cls.small_tree = nx.Graph()
188
+ cls.small_tree.add_edge(1, 2)
189
+ cls.small_tree.add_edge(2, 3)
190
+ cls.small_tree.add_edge(3, 4)
191
+ cls.small_tree.add_edge(1, 4)
192
+ cls.small_tree.add_edge(2, 4)
193
+ cls.small_tree.add_edge(4, 5)
194
+ cls.small_tree.add_edge(5, 6)
195
+ cls.small_tree.add_edge(5, 7)
196
+ cls.small_tree.add_edge(6, 7)
197
+
198
+ cls.deterministic_graph = nx.Graph()
199
+ cls.deterministic_graph.add_edge(1, 2)
200
+ cls.deterministic_graph.add_edge(1, 3)
201
+ cls.deterministic_graph.add_edge(3, 4)
202
+ cls.deterministic_graph.add_edge(2, 4)
203
+ cls.deterministic_graph.add_edge(3, 5)
204
+ cls.deterministic_graph.add_edge(4, 5)
205
+ cls.deterministic_graph.add_edge(3, 6)
206
+ cls.deterministic_graph.add_edge(5, 6)
207
+
208
+ def test_petersen_graph(self):
209
+ """Test Petersen graph tree decomposition result"""
210
+ G = nx.petersen_graph()
211
+ _, decomp = treewidth_min_fill_in(G)
212
+ is_tree_decomp(G, decomp)
213
+
214
+ def test_small_tree_treewidth(self):
215
+ """Test if the computed treewidth of the known self.small_tree is 2"""
216
+ G = self.small_tree
217
+ # the order of removal should be [1,2,4]3[5,6,7]
218
+ # (with [] denoting any order of the containing nodes)
219
+ # resulting in treewidth 2 for the heuristic
220
+ treewidth, _ = treewidth_min_fill_in(G)
221
+ assert treewidth == 2
222
+
223
+ def test_heuristic_abort(self):
224
+ """Test if min_fill_in returns None for fully connected graph"""
225
+ graph = {}
226
+ for u in self.complete:
227
+ graph[u] = set()
228
+ for v in self.complete[u]:
229
+ if u != v: # ignore self-loop
230
+ graph[u].add(v)
231
+ next_node = min_fill_in_heuristic(graph)
232
+ if next_node is None:
233
+ pass
234
+ else:
235
+ assert False
236
+
237
+ def test_empty_graph(self):
238
+ """Test empty graph"""
239
+ G = nx.Graph()
240
+ _, _ = treewidth_min_fill_in(G)
241
+
242
+ def test_two_component_graph(self):
243
+ G = nx.Graph()
244
+ G.add_node(1)
245
+ G.add_node(2)
246
+ treewidth, _ = treewidth_min_fill_in(G)
247
+ assert treewidth == 0
248
+
249
+ def test_not_sortable_nodes(self):
250
+ G = nx.Graph([(0, "a")])
251
+ treewidth_min_fill_in(G)
252
+
253
+ def test_heuristic_first_steps(self):
254
+ """Test first steps of min_fill_in heuristic"""
255
+ graph = {
256
+ n: set(self.deterministic_graph[n]) - {n} for n in self.deterministic_graph
257
+ }
258
+ print(f"Graph {graph}:")
259
+ elim_node = min_fill_in_heuristic(graph)
260
+ steps = []
261
+
262
+ while elim_node is not None:
263
+ print(f"Removing {elim_node}:")
264
+ steps.append(elim_node)
265
+ nbrs = graph[elim_node]
266
+
267
+ for u, v in itertools.permutations(nbrs, 2):
268
+ if v not in graph[u]:
269
+ graph[u].add(v)
270
+
271
+ for u in graph:
272
+ if elim_node in graph[u]:
273
+ graph[u].remove(elim_node)
274
+
275
+ del graph[elim_node]
276
+ print(f"Graph {graph}:")
277
+ elim_node = min_fill_in_heuristic(graph)
278
+
279
+ # check only the first 2 elements for equality
280
+ assert steps[:2] == [6, 5]
venv/lib/python3.10/site-packages/networkx/algorithms/approximation/tests/test_vertex_cover.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import networkx as nx
2
+ from networkx.algorithms.approximation import min_weighted_vertex_cover
3
+
4
+
5
+ def is_cover(G, node_cover):
6
+ return all({u, v} & node_cover for u, v in G.edges())
7
+
8
+
9
+ class TestMWVC:
10
+ """Unit tests for the approximate minimum weighted vertex cover
11
+ function,
12
+ :func:`~networkx.algorithms.approximation.vertex_cover.min_weighted_vertex_cover`.
13
+
14
+ """
15
+
16
+ def test_unweighted_directed(self):
17
+ # Create a star graph in which half the nodes are directed in
18
+ # and half are directed out.
19
+ G = nx.DiGraph()
20
+ G.add_edges_from((0, v) for v in range(1, 26))
21
+ G.add_edges_from((v, 0) for v in range(26, 51))
22
+ cover = min_weighted_vertex_cover(G)
23
+ assert 1 == len(cover)
24
+ assert is_cover(G, cover)
25
+
26
+ def test_unweighted_undirected(self):
27
+ # create a simple star graph
28
+ size = 50
29
+ sg = nx.star_graph(size)
30
+ cover = min_weighted_vertex_cover(sg)
31
+ assert 1 == len(cover)
32
+ assert is_cover(sg, cover)
33
+
34
+ def test_weighted(self):
35
+ wg = nx.Graph()
36
+ wg.add_node(0, weight=10)
37
+ wg.add_node(1, weight=1)
38
+ wg.add_node(2, weight=1)
39
+ wg.add_node(3, weight=1)
40
+ wg.add_node(4, weight=1)
41
+
42
+ wg.add_edge(0, 1)
43
+ wg.add_edge(0, 2)
44
+ wg.add_edge(0, 3)
45
+ wg.add_edge(0, 4)
46
+
47
+ wg.add_edge(1, 2)
48
+ wg.add_edge(2, 3)
49
+ wg.add_edge(3, 4)
50
+ wg.add_edge(4, 1)
51
+
52
+ cover = min_weighted_vertex_cover(wg, weight="weight")
53
+ csum = sum(wg.nodes[node]["weight"] for node in cover)
54
+ assert 4 == csum
55
+ assert is_cover(wg, cover)
56
+
57
+ def test_unweighted_self_loop(self):
58
+ slg = nx.Graph()
59
+ slg.add_node(0)
60
+ slg.add_node(1)
61
+ slg.add_node(2)
62
+
63
+ slg.add_edge(0, 1)
64
+ slg.add_edge(2, 2)
65
+
66
+ cover = min_weighted_vertex_cover(slg)
67
+ assert 2 == len(cover)
68
+ assert is_cover(slg, cover)
venv/lib/python3.10/site-packages/networkx/algorithms/flow/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .maxflow import *
2
+ from .mincost import *
3
+ from .boykovkolmogorov import *
4
+ from .dinitz_alg import *
5
+ from .edmondskarp import *
6
+ from .gomory_hu import *
7
+ from .preflowpush import *
8
+ from .shortestaugmentingpath import *
9
+ from .capacityscaling import *
10
+ from .networksimplex import *
11
+ from .utils import build_flow_dict, build_residual_network
venv/lib/python3.10/site-packages/networkx/algorithms/flow/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (517 Bytes). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/flow/__pycache__/edmondskarp.cpython-310.pyc ADDED
Binary file (7.18 kB). View file