Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step80/zero/14.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/26.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/common.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/conftest.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_alter_axes.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_api.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_arrow_interface.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_block_internals.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_constructors.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_cumulative.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_iteration.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_logical_ops.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_nonunique_indexes.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_npfuncs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_query_eval.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_reductions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_repr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_stack_unstack.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_subclass.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_ufunc.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_unary.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_validate.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/constructors/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/constructors/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/constructors/__pycache__/test_from_dict.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/constructors/__pycache__/test_from_records.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/constructors/test_from_dict.py +228 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/constructors/test_from_records.py +505 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_coercion.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_delitem.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_get.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_get_value.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_getitem.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_indexing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_insert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_mask.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_set_value.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_setitem.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_take.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_where.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_xs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/test_coercion.py +199 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/test_delitem.py +60 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/test_get.py +27 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/test_get_value.py +22 -0
- venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/test_getitem.py +472 -0
ckpts/universal/global_step80/zero/14.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c6913781bec7a7e712ba47cf9820c97bfe145bbdabf736adb519d48b5dddb8c
|
3 |
+
size 33555533
|
ckpts/universal/global_step80/zero/26.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20708760c2b7a78217316cb1903d48f4d1a8112ae64463a94f49106d01f952ad
|
3 |
+
size 33555612
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/common.cpython-310.pyc
ADDED
Binary file (2.34 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/conftest.cpython-310.pyc
ADDED
Binary file (3.49 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_alter_axes.cpython-310.pyc
ADDED
Binary file (1.23 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_api.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_arithmetic.cpython-310.pyc
ADDED
Binary file (58.8 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_arrow_interface.cpython-310.pyc
ADDED
Binary file (1.43 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_block_internals.cpython-310.pyc
ADDED
Binary file (11.9 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_constructors.cpython-310.pyc
ADDED
Binary file (115 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_cumulative.cpython-310.pyc
ADDED
Binary file (2.44 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_iteration.cpython-310.pyc
ADDED
Binary file (6.06 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_logical_ops.cpython-310.pyc
ADDED
Binary file (6.14 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_nonunique_indexes.cpython-310.pyc
ADDED
Binary file (10 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_npfuncs.cpython-310.pyc
ADDED
Binary file (2.76 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_query_eval.cpython-310.pyc
ADDED
Binary file (48.7 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_reductions.cpython-310.pyc
ADDED
Binary file (56.8 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_repr.cpython-310.pyc
ADDED
Binary file (17.9 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_stack_unstack.cpython-310.pyc
ADDED
Binary file (68.2 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_subclass.cpython-310.pyc
ADDED
Binary file (24 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_ufunc.cpython-310.pyc
ADDED
Binary file (8.59 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_unary.cpython-310.pyc
ADDED
Binary file (5.42 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/__pycache__/test_validate.cpython-310.pyc
ADDED
Binary file (1.4 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/constructors/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/tests/frame/constructors/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (199 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/constructors/__pycache__/test_from_dict.cpython-310.pyc
ADDED
Binary file (6.87 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/constructors/__pycache__/test_from_records.cpython-310.pyc
ADDED
Binary file (17.8 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/constructors/test_from_dict.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas._config import using_pyarrow_string_dtype
|
7 |
+
|
8 |
+
from pandas import (
|
9 |
+
DataFrame,
|
10 |
+
Index,
|
11 |
+
MultiIndex,
|
12 |
+
RangeIndex,
|
13 |
+
Series,
|
14 |
+
)
|
15 |
+
import pandas._testing as tm
|
16 |
+
|
17 |
+
|
18 |
+
class TestFromDict:
|
19 |
+
# Note: these tests are specific to the from_dict method, not for
|
20 |
+
# passing dictionaries to DataFrame.__init__
|
21 |
+
|
22 |
+
def test_constructor_list_of_odicts(self):
|
23 |
+
data = [
|
24 |
+
OrderedDict([["a", 1.5], ["b", 3], ["c", 4], ["d", 6]]),
|
25 |
+
OrderedDict([["a", 1.5], ["b", 3], ["d", 6]]),
|
26 |
+
OrderedDict([["a", 1.5], ["d", 6]]),
|
27 |
+
OrderedDict(),
|
28 |
+
OrderedDict([["a", 1.5], ["b", 3], ["c", 4]]),
|
29 |
+
OrderedDict([["b", 3], ["c", 4], ["d", 6]]),
|
30 |
+
]
|
31 |
+
|
32 |
+
result = DataFrame(data)
|
33 |
+
expected = DataFrame.from_dict(
|
34 |
+
dict(zip(range(len(data)), data)), orient="index"
|
35 |
+
)
|
36 |
+
tm.assert_frame_equal(result, expected.reindex(result.index))
|
37 |
+
|
38 |
+
def test_constructor_single_row(self):
|
39 |
+
data = [OrderedDict([["a", 1.5], ["b", 3], ["c", 4], ["d", 6]])]
|
40 |
+
|
41 |
+
result = DataFrame(data)
|
42 |
+
expected = DataFrame.from_dict(dict(zip([0], data)), orient="index").reindex(
|
43 |
+
result.index
|
44 |
+
)
|
45 |
+
tm.assert_frame_equal(result, expected)
|
46 |
+
|
47 |
+
@pytest.mark.skipif(
|
48 |
+
using_pyarrow_string_dtype(), reason="columns inferring logic broken"
|
49 |
+
)
|
50 |
+
def test_constructor_list_of_series(self):
|
51 |
+
data = [
|
52 |
+
OrderedDict([["a", 1.5], ["b", 3.0], ["c", 4.0]]),
|
53 |
+
OrderedDict([["a", 1.5], ["b", 3.0], ["c", 6.0]]),
|
54 |
+
]
|
55 |
+
sdict = OrderedDict(zip(["x", "y"], data))
|
56 |
+
idx = Index(["a", "b", "c"])
|
57 |
+
|
58 |
+
# all named
|
59 |
+
data2 = [
|
60 |
+
Series([1.5, 3, 4], idx, dtype="O", name="x"),
|
61 |
+
Series([1.5, 3, 6], idx, name="y"),
|
62 |
+
]
|
63 |
+
result = DataFrame(data2)
|
64 |
+
expected = DataFrame.from_dict(sdict, orient="index")
|
65 |
+
tm.assert_frame_equal(result, expected)
|
66 |
+
|
67 |
+
# some unnamed
|
68 |
+
data2 = [
|
69 |
+
Series([1.5, 3, 4], idx, dtype="O", name="x"),
|
70 |
+
Series([1.5, 3, 6], idx),
|
71 |
+
]
|
72 |
+
result = DataFrame(data2)
|
73 |
+
|
74 |
+
sdict = OrderedDict(zip(["x", "Unnamed 0"], data))
|
75 |
+
expected = DataFrame.from_dict(sdict, orient="index")
|
76 |
+
tm.assert_frame_equal(result, expected)
|
77 |
+
|
78 |
+
# none named
|
79 |
+
data = [
|
80 |
+
OrderedDict([["a", 1.5], ["b", 3], ["c", 4], ["d", 6]]),
|
81 |
+
OrderedDict([["a", 1.5], ["b", 3], ["d", 6]]),
|
82 |
+
OrderedDict([["a", 1.5], ["d", 6]]),
|
83 |
+
OrderedDict(),
|
84 |
+
OrderedDict([["a", 1.5], ["b", 3], ["c", 4]]),
|
85 |
+
OrderedDict([["b", 3], ["c", 4], ["d", 6]]),
|
86 |
+
]
|
87 |
+
data = [Series(d) for d in data]
|
88 |
+
|
89 |
+
result = DataFrame(data)
|
90 |
+
sdict = OrderedDict(zip(range(len(data)), data))
|
91 |
+
expected = DataFrame.from_dict(sdict, orient="index")
|
92 |
+
tm.assert_frame_equal(result, expected.reindex(result.index))
|
93 |
+
|
94 |
+
result2 = DataFrame(data, index=np.arange(6, dtype=np.int64))
|
95 |
+
tm.assert_frame_equal(result, result2)
|
96 |
+
|
97 |
+
result = DataFrame([Series(dtype=object)])
|
98 |
+
expected = DataFrame(index=[0])
|
99 |
+
tm.assert_frame_equal(result, expected)
|
100 |
+
|
101 |
+
data = [
|
102 |
+
OrderedDict([["a", 1.5], ["b", 3.0], ["c", 4.0]]),
|
103 |
+
OrderedDict([["a", 1.5], ["b", 3.0], ["c", 6.0]]),
|
104 |
+
]
|
105 |
+
sdict = OrderedDict(zip(range(len(data)), data))
|
106 |
+
|
107 |
+
idx = Index(["a", "b", "c"])
|
108 |
+
data2 = [Series([1.5, 3, 4], idx, dtype="O"), Series([1.5, 3, 6], idx)]
|
109 |
+
result = DataFrame(data2)
|
110 |
+
expected = DataFrame.from_dict(sdict, orient="index")
|
111 |
+
tm.assert_frame_equal(result, expected)
|
112 |
+
|
113 |
+
def test_constructor_orient(self, float_string_frame):
|
114 |
+
data_dict = float_string_frame.T._series
|
115 |
+
recons = DataFrame.from_dict(data_dict, orient="index")
|
116 |
+
expected = float_string_frame.reindex(index=recons.index)
|
117 |
+
tm.assert_frame_equal(recons, expected)
|
118 |
+
|
119 |
+
# dict of sequence
|
120 |
+
a = {"hi": [32, 3, 3], "there": [3, 5, 3]}
|
121 |
+
rs = DataFrame.from_dict(a, orient="index")
|
122 |
+
xp = DataFrame.from_dict(a).T.reindex(list(a.keys()))
|
123 |
+
tm.assert_frame_equal(rs, xp)
|
124 |
+
|
125 |
+
def test_constructor_from_ordered_dict(self):
|
126 |
+
# GH#8425
|
127 |
+
a = OrderedDict(
|
128 |
+
[
|
129 |
+
("one", OrderedDict([("col_a", "foo1"), ("col_b", "bar1")])),
|
130 |
+
("two", OrderedDict([("col_a", "foo2"), ("col_b", "bar2")])),
|
131 |
+
("three", OrderedDict([("col_a", "foo3"), ("col_b", "bar3")])),
|
132 |
+
]
|
133 |
+
)
|
134 |
+
expected = DataFrame.from_dict(a, orient="columns").T
|
135 |
+
result = DataFrame.from_dict(a, orient="index")
|
136 |
+
tm.assert_frame_equal(result, expected)
|
137 |
+
|
138 |
+
def test_from_dict_columns_parameter(self):
|
139 |
+
# GH#18529
|
140 |
+
# Test new columns parameter for from_dict that was added to make
|
141 |
+
# from_items(..., orient='index', columns=[...]) easier to replicate
|
142 |
+
result = DataFrame.from_dict(
|
143 |
+
OrderedDict([("A", [1, 2]), ("B", [4, 5])]),
|
144 |
+
orient="index",
|
145 |
+
columns=["one", "two"],
|
146 |
+
)
|
147 |
+
expected = DataFrame([[1, 2], [4, 5]], index=["A", "B"], columns=["one", "two"])
|
148 |
+
tm.assert_frame_equal(result, expected)
|
149 |
+
|
150 |
+
msg = "cannot use columns parameter with orient='columns'"
|
151 |
+
with pytest.raises(ValueError, match=msg):
|
152 |
+
DataFrame.from_dict(
|
153 |
+
{"A": [1, 2], "B": [4, 5]},
|
154 |
+
orient="columns",
|
155 |
+
columns=["one", "two"],
|
156 |
+
)
|
157 |
+
with pytest.raises(ValueError, match=msg):
|
158 |
+
DataFrame.from_dict({"A": [1, 2], "B": [4, 5]}, columns=["one", "two"])
|
159 |
+
|
160 |
+
@pytest.mark.parametrize(
|
161 |
+
"data_dict, orient, expected",
|
162 |
+
[
|
163 |
+
({}, "index", RangeIndex(0)),
|
164 |
+
(
|
165 |
+
[{("a",): 1}, {("a",): 2}],
|
166 |
+
"columns",
|
167 |
+
Index([("a",)], tupleize_cols=False),
|
168 |
+
),
|
169 |
+
(
|
170 |
+
[OrderedDict([(("a",), 1), (("b",), 2)])],
|
171 |
+
"columns",
|
172 |
+
Index([("a",), ("b",)], tupleize_cols=False),
|
173 |
+
),
|
174 |
+
([{("a", "b"): 1}], "columns", Index([("a", "b")], tupleize_cols=False)),
|
175 |
+
],
|
176 |
+
)
|
177 |
+
def test_constructor_from_dict_tuples(self, data_dict, orient, expected):
|
178 |
+
# GH#16769
|
179 |
+
df = DataFrame.from_dict(data_dict, orient)
|
180 |
+
result = df.columns
|
181 |
+
tm.assert_index_equal(result, expected)
|
182 |
+
|
183 |
+
def test_frame_dict_constructor_empty_series(self):
|
184 |
+
s1 = Series(
|
185 |
+
[1, 2, 3, 4], index=MultiIndex.from_tuples([(1, 2), (1, 3), (2, 2), (2, 4)])
|
186 |
+
)
|
187 |
+
s2 = Series(
|
188 |
+
[1, 2, 3, 4], index=MultiIndex.from_tuples([(1, 2), (1, 3), (3, 2), (3, 4)])
|
189 |
+
)
|
190 |
+
s3 = Series(dtype=object)
|
191 |
+
|
192 |
+
# it works!
|
193 |
+
DataFrame({"foo": s1, "bar": s2, "baz": s3})
|
194 |
+
DataFrame.from_dict({"foo": s1, "baz": s3, "bar": s2})
|
195 |
+
|
196 |
+
def test_from_dict_scalars_requires_index(self):
|
197 |
+
msg = "If using all scalar values, you must pass an index"
|
198 |
+
with pytest.raises(ValueError, match=msg):
|
199 |
+
DataFrame.from_dict(OrderedDict([("b", 8), ("a", 5), ("a", 6)]))
|
200 |
+
|
201 |
+
def test_from_dict_orient_invalid(self):
|
202 |
+
msg = (
|
203 |
+
"Expected 'index', 'columns' or 'tight' for orient parameter. "
|
204 |
+
"Got 'abc' instead"
|
205 |
+
)
|
206 |
+
with pytest.raises(ValueError, match=msg):
|
207 |
+
DataFrame.from_dict({"foo": 1, "baz": 3, "bar": 2}, orient="abc")
|
208 |
+
|
209 |
+
def test_from_dict_order_with_single_column(self):
|
210 |
+
data = {
|
211 |
+
"alpha": {
|
212 |
+
"value2": 123,
|
213 |
+
"value1": 532,
|
214 |
+
"animal": 222,
|
215 |
+
"plant": False,
|
216 |
+
"name": "test",
|
217 |
+
}
|
218 |
+
}
|
219 |
+
result = DataFrame.from_dict(
|
220 |
+
data,
|
221 |
+
orient="columns",
|
222 |
+
)
|
223 |
+
expected = DataFrame(
|
224 |
+
[[123], [532], [222], [False], ["test"]],
|
225 |
+
index=["value2", "value1", "animal", "plant", "name"],
|
226 |
+
columns=["alpha"],
|
227 |
+
)
|
228 |
+
tm.assert_frame_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/frame/constructors/test_from_records.py
ADDED
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Iterator
|
2 |
+
from datetime import datetime
|
3 |
+
from decimal import Decimal
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pytest
|
7 |
+
import pytz
|
8 |
+
|
9 |
+
from pandas._config import using_pyarrow_string_dtype
|
10 |
+
|
11 |
+
from pandas.compat import is_platform_little_endian
|
12 |
+
|
13 |
+
from pandas import (
|
14 |
+
CategoricalIndex,
|
15 |
+
DataFrame,
|
16 |
+
Index,
|
17 |
+
Interval,
|
18 |
+
RangeIndex,
|
19 |
+
Series,
|
20 |
+
date_range,
|
21 |
+
)
|
22 |
+
import pandas._testing as tm
|
23 |
+
|
24 |
+
|
25 |
+
class TestFromRecords:
|
26 |
+
def test_from_records_dt64tz_frame(self):
|
27 |
+
# GH#51162 don't lose tz when calling from_records with DataFrame input
|
28 |
+
dti = date_range("2016-01-01", periods=10, tz="US/Pacific")
|
29 |
+
df = DataFrame({i: dti for i in range(4)})
|
30 |
+
with tm.assert_produces_warning(FutureWarning):
|
31 |
+
res = DataFrame.from_records(df)
|
32 |
+
tm.assert_frame_equal(res, df)
|
33 |
+
|
34 |
+
def test_from_records_with_datetimes(self):
|
35 |
+
# this may fail on certain platforms because of a numpy issue
|
36 |
+
# related GH#6140
|
37 |
+
if not is_platform_little_endian():
|
38 |
+
pytest.skip("known failure of test on non-little endian")
|
39 |
+
|
40 |
+
# construction with a null in a recarray
|
41 |
+
# GH#6140
|
42 |
+
expected = DataFrame({"EXPIRY": [datetime(2005, 3, 1, 0, 0), None]})
|
43 |
+
|
44 |
+
arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])]
|
45 |
+
dtypes = [("EXPIRY", "<M8[ns]")]
|
46 |
+
|
47 |
+
recarray = np.rec.fromarrays(arrdata, dtype=dtypes)
|
48 |
+
|
49 |
+
result = DataFrame.from_records(recarray)
|
50 |
+
tm.assert_frame_equal(result, expected)
|
51 |
+
|
52 |
+
# coercion should work too
|
53 |
+
arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])]
|
54 |
+
dtypes = [("EXPIRY", "<M8[m]")]
|
55 |
+
recarray = np.rec.fromarrays(arrdata, dtype=dtypes)
|
56 |
+
result = DataFrame.from_records(recarray)
|
57 |
+
# we get the closest supported unit, "s"
|
58 |
+
expected["EXPIRY"] = expected["EXPIRY"].astype("M8[s]")
|
59 |
+
tm.assert_frame_equal(result, expected)
|
60 |
+
|
61 |
+
@pytest.mark.skipif(
|
62 |
+
using_pyarrow_string_dtype(), reason="dtype checking logic doesn't work"
|
63 |
+
)
|
64 |
+
def test_from_records_sequencelike(self):
|
65 |
+
df = DataFrame(
|
66 |
+
{
|
67 |
+
"A": np.array(
|
68 |
+
np.random.default_rng(2).standard_normal(6), dtype=np.float64
|
69 |
+
),
|
70 |
+
"A1": np.array(
|
71 |
+
np.random.default_rng(2).standard_normal(6), dtype=np.float64
|
72 |
+
),
|
73 |
+
"B": np.array(np.arange(6), dtype=np.int64),
|
74 |
+
"C": ["foo"] * 6,
|
75 |
+
"D": np.array([True, False] * 3, dtype=bool),
|
76 |
+
"E": np.array(
|
77 |
+
np.random.default_rng(2).standard_normal(6), dtype=np.float32
|
78 |
+
),
|
79 |
+
"E1": np.array(
|
80 |
+
np.random.default_rng(2).standard_normal(6), dtype=np.float32
|
81 |
+
),
|
82 |
+
"F": np.array(np.arange(6), dtype=np.int32),
|
83 |
+
}
|
84 |
+
)
|
85 |
+
|
86 |
+
# this is actually tricky to create the recordlike arrays and
|
87 |
+
# have the dtypes be intact
|
88 |
+
blocks = df._to_dict_of_blocks()
|
89 |
+
tuples = []
|
90 |
+
columns = []
|
91 |
+
dtypes = []
|
92 |
+
for dtype, b in blocks.items():
|
93 |
+
columns.extend(b.columns)
|
94 |
+
dtypes.extend([(c, np.dtype(dtype).descr[0][1]) for c in b.columns])
|
95 |
+
for i in range(len(df.index)):
|
96 |
+
tup = []
|
97 |
+
for _, b in blocks.items():
|
98 |
+
tup.extend(b.iloc[i].values)
|
99 |
+
tuples.append(tuple(tup))
|
100 |
+
|
101 |
+
recarray = np.array(tuples, dtype=dtypes).view(np.rec.recarray)
|
102 |
+
recarray2 = df.to_records()
|
103 |
+
lists = [list(x) for x in tuples]
|
104 |
+
|
105 |
+
# tuples (lose the dtype info)
|
106 |
+
result = DataFrame.from_records(tuples, columns=columns).reindex(
|
107 |
+
columns=df.columns
|
108 |
+
)
|
109 |
+
|
110 |
+
# created recarray and with to_records recarray (have dtype info)
|
111 |
+
result2 = DataFrame.from_records(recarray, columns=columns).reindex(
|
112 |
+
columns=df.columns
|
113 |
+
)
|
114 |
+
result3 = DataFrame.from_records(recarray2, columns=columns).reindex(
|
115 |
+
columns=df.columns
|
116 |
+
)
|
117 |
+
|
118 |
+
# list of tuples (no dtype info)
|
119 |
+
result4 = DataFrame.from_records(lists, columns=columns).reindex(
|
120 |
+
columns=df.columns
|
121 |
+
)
|
122 |
+
|
123 |
+
tm.assert_frame_equal(result, df, check_dtype=False)
|
124 |
+
tm.assert_frame_equal(result2, df)
|
125 |
+
tm.assert_frame_equal(result3, df)
|
126 |
+
tm.assert_frame_equal(result4, df, check_dtype=False)
|
127 |
+
|
128 |
+
# tuples is in the order of the columns
|
129 |
+
result = DataFrame.from_records(tuples)
|
130 |
+
tm.assert_index_equal(result.columns, RangeIndex(8))
|
131 |
+
|
132 |
+
# test exclude parameter & we are casting the results here (as we don't
|
133 |
+
# have dtype info to recover)
|
134 |
+
columns_to_test = [columns.index("C"), columns.index("E1")]
|
135 |
+
|
136 |
+
exclude = list(set(range(8)) - set(columns_to_test))
|
137 |
+
result = DataFrame.from_records(tuples, exclude=exclude)
|
138 |
+
result.columns = [columns[i] for i in sorted(columns_to_test)]
|
139 |
+
tm.assert_series_equal(result["C"], df["C"])
|
140 |
+
tm.assert_series_equal(result["E1"], df["E1"])
|
141 |
+
|
142 |
+
def test_from_records_sequencelike_empty(self):
|
143 |
+
# empty case
|
144 |
+
result = DataFrame.from_records([], columns=["foo", "bar", "baz"])
|
145 |
+
assert len(result) == 0
|
146 |
+
tm.assert_index_equal(result.columns, Index(["foo", "bar", "baz"]))
|
147 |
+
|
148 |
+
result = DataFrame.from_records([])
|
149 |
+
assert len(result) == 0
|
150 |
+
assert len(result.columns) == 0
|
151 |
+
|
152 |
+
def test_from_records_dictlike(self):
|
153 |
+
# test the dict methods
|
154 |
+
df = DataFrame(
|
155 |
+
{
|
156 |
+
"A": np.array(
|
157 |
+
np.random.default_rng(2).standard_normal(6), dtype=np.float64
|
158 |
+
),
|
159 |
+
"A1": np.array(
|
160 |
+
np.random.default_rng(2).standard_normal(6), dtype=np.float64
|
161 |
+
),
|
162 |
+
"B": np.array(np.arange(6), dtype=np.int64),
|
163 |
+
"C": ["foo"] * 6,
|
164 |
+
"D": np.array([True, False] * 3, dtype=bool),
|
165 |
+
"E": np.array(
|
166 |
+
np.random.default_rng(2).standard_normal(6), dtype=np.float32
|
167 |
+
),
|
168 |
+
"E1": np.array(
|
169 |
+
np.random.default_rng(2).standard_normal(6), dtype=np.float32
|
170 |
+
),
|
171 |
+
"F": np.array(np.arange(6), dtype=np.int32),
|
172 |
+
}
|
173 |
+
)
|
174 |
+
|
175 |
+
# columns is in a different order here than the actual items iterated
|
176 |
+
# from the dict
|
177 |
+
blocks = df._to_dict_of_blocks()
|
178 |
+
columns = []
|
179 |
+
for b in blocks.values():
|
180 |
+
columns.extend(b.columns)
|
181 |
+
|
182 |
+
asdict = dict(df.items())
|
183 |
+
asdict2 = {x: y.values for x, y in df.items()}
|
184 |
+
|
185 |
+
# dict of series & dict of ndarrays (have dtype info)
|
186 |
+
results = []
|
187 |
+
results.append(DataFrame.from_records(asdict).reindex(columns=df.columns))
|
188 |
+
results.append(
|
189 |
+
DataFrame.from_records(asdict, columns=columns).reindex(columns=df.columns)
|
190 |
+
)
|
191 |
+
results.append(
|
192 |
+
DataFrame.from_records(asdict2, columns=columns).reindex(columns=df.columns)
|
193 |
+
)
|
194 |
+
|
195 |
+
for r in results:
|
196 |
+
tm.assert_frame_equal(r, df)
|
197 |
+
|
198 |
+
def test_from_records_with_index_data(self):
|
199 |
+
df = DataFrame(
|
200 |
+
np.random.default_rng(2).standard_normal((10, 3)), columns=["A", "B", "C"]
|
201 |
+
)
|
202 |
+
|
203 |
+
data = np.random.default_rng(2).standard_normal(10)
|
204 |
+
with tm.assert_produces_warning(FutureWarning):
|
205 |
+
df1 = DataFrame.from_records(df, index=data)
|
206 |
+
tm.assert_index_equal(df1.index, Index(data))
|
207 |
+
|
208 |
+
def test_from_records_bad_index_column(self):
|
209 |
+
df = DataFrame(
|
210 |
+
np.random.default_rng(2).standard_normal((10, 3)), columns=["A", "B", "C"]
|
211 |
+
)
|
212 |
+
|
213 |
+
# should pass
|
214 |
+
with tm.assert_produces_warning(FutureWarning):
|
215 |
+
df1 = DataFrame.from_records(df, index=["C"])
|
216 |
+
tm.assert_index_equal(df1.index, Index(df.C))
|
217 |
+
|
218 |
+
with tm.assert_produces_warning(FutureWarning):
|
219 |
+
df1 = DataFrame.from_records(df, index="C")
|
220 |
+
tm.assert_index_equal(df1.index, Index(df.C))
|
221 |
+
|
222 |
+
# should fail
|
223 |
+
msg = "|".join(
|
224 |
+
[
|
225 |
+
r"'None of \[2\] are in the columns'",
|
226 |
+
]
|
227 |
+
)
|
228 |
+
with pytest.raises(KeyError, match=msg):
|
229 |
+
with tm.assert_produces_warning(FutureWarning):
|
230 |
+
DataFrame.from_records(df, index=[2])
|
231 |
+
with pytest.raises(KeyError, match=msg):
|
232 |
+
with tm.assert_produces_warning(FutureWarning):
|
233 |
+
DataFrame.from_records(df, index=2)
|
234 |
+
|
235 |
+
def test_from_records_non_tuple(self):
|
236 |
+
class Record:
|
237 |
+
def __init__(self, *args) -> None:
|
238 |
+
self.args = args
|
239 |
+
|
240 |
+
def __getitem__(self, i):
|
241 |
+
return self.args[i]
|
242 |
+
|
243 |
+
def __iter__(self) -> Iterator:
|
244 |
+
return iter(self.args)
|
245 |
+
|
246 |
+
recs = [Record(1, 2, 3), Record(4, 5, 6), Record(7, 8, 9)]
|
247 |
+
tups = [tuple(rec) for rec in recs]
|
248 |
+
|
249 |
+
result = DataFrame.from_records(recs)
|
250 |
+
expected = DataFrame.from_records(tups)
|
251 |
+
tm.assert_frame_equal(result, expected)
|
252 |
+
|
253 |
+
def test_from_records_len0_with_columns(self):
|
254 |
+
# GH#2633
|
255 |
+
result = DataFrame.from_records([], index="foo", columns=["foo", "bar"])
|
256 |
+
expected = Index(["bar"])
|
257 |
+
|
258 |
+
assert len(result) == 0
|
259 |
+
assert result.index.name == "foo"
|
260 |
+
tm.assert_index_equal(result.columns, expected)
|
261 |
+
|
262 |
+
def test_from_records_series_list_dict(self):
|
263 |
+
# GH#27358
|
264 |
+
expected = DataFrame([[{"a": 1, "b": 2}, {"a": 3, "b": 4}]]).T
|
265 |
+
data = Series([[{"a": 1, "b": 2}], [{"a": 3, "b": 4}]])
|
266 |
+
result = DataFrame.from_records(data)
|
267 |
+
tm.assert_frame_equal(result, expected)
|
268 |
+
|
269 |
+
def test_from_records_series_categorical_index(self):
|
270 |
+
# GH#32805
|
271 |
+
index = CategoricalIndex(
|
272 |
+
[Interval(-20, -10), Interval(-10, 0), Interval(0, 10)]
|
273 |
+
)
|
274 |
+
series_of_dicts = Series([{"a": 1}, {"a": 2}, {"b": 3}], index=index)
|
275 |
+
frame = DataFrame.from_records(series_of_dicts, index=index)
|
276 |
+
expected = DataFrame(
|
277 |
+
{"a": [1, 2, np.nan], "b": [np.nan, np.nan, 3]}, index=index
|
278 |
+
)
|
279 |
+
tm.assert_frame_equal(frame, expected)
|
280 |
+
|
281 |
+
def test_frame_from_records_utc(self):
|
282 |
+
rec = {"datum": 1.5, "begin_time": datetime(2006, 4, 27, tzinfo=pytz.utc)}
|
283 |
+
|
284 |
+
# it works
|
285 |
+
DataFrame.from_records([rec], index="begin_time")
|
286 |
+
|
287 |
+
def test_from_records_to_records(self):
|
288 |
+
# from numpy documentation
|
289 |
+
arr = np.zeros((2,), dtype=("i4,f4,S10"))
|
290 |
+
arr[:] = [(1, 2.0, "Hello"), (2, 3.0, "World")]
|
291 |
+
|
292 |
+
DataFrame.from_records(arr)
|
293 |
+
|
294 |
+
index = Index(np.arange(len(arr))[::-1])
|
295 |
+
indexed_frame = DataFrame.from_records(arr, index=index)
|
296 |
+
tm.assert_index_equal(indexed_frame.index, index)
|
297 |
+
|
298 |
+
# without names, it should go to last ditch
|
299 |
+
arr2 = np.zeros((2, 3))
|
300 |
+
tm.assert_frame_equal(DataFrame.from_records(arr2), DataFrame(arr2))
|
301 |
+
|
302 |
+
# wrong length
|
303 |
+
msg = "|".join(
|
304 |
+
[
|
305 |
+
r"Length of values \(2\) does not match length of index \(1\)",
|
306 |
+
]
|
307 |
+
)
|
308 |
+
with pytest.raises(ValueError, match=msg):
|
309 |
+
DataFrame.from_records(arr, index=index[:-1])
|
310 |
+
|
311 |
+
indexed_frame = DataFrame.from_records(arr, index="f1")
|
312 |
+
|
313 |
+
# what to do?
|
314 |
+
records = indexed_frame.to_records()
|
315 |
+
assert len(records.dtype.names) == 3
|
316 |
+
|
317 |
+
records = indexed_frame.to_records(index=False)
|
318 |
+
assert len(records.dtype.names) == 2
|
319 |
+
assert "index" not in records.dtype.names
|
320 |
+
|
321 |
+
def test_from_records_nones(self):
|
322 |
+
tuples = [(1, 2, None, 3), (1, 2, None, 3), (None, 2, 5, 3)]
|
323 |
+
|
324 |
+
df = DataFrame.from_records(tuples, columns=["a", "b", "c", "d"])
|
325 |
+
assert np.isnan(df["c"][0])
|
326 |
+
|
327 |
+
def test_from_records_iterator(self):
|
328 |
+
arr = np.array(
|
329 |
+
[(1.0, 1.0, 2, 2), (3.0, 3.0, 4, 4), (5.0, 5.0, 6, 6), (7.0, 7.0, 8, 8)],
|
330 |
+
dtype=[
|
331 |
+
("x", np.float64),
|
332 |
+
("u", np.float32),
|
333 |
+
("y", np.int64),
|
334 |
+
("z", np.int32),
|
335 |
+
],
|
336 |
+
)
|
337 |
+
df = DataFrame.from_records(iter(arr), nrows=2)
|
338 |
+
xp = DataFrame(
|
339 |
+
{
|
340 |
+
"x": np.array([1.0, 3.0], dtype=np.float64),
|
341 |
+
"u": np.array([1.0, 3.0], dtype=np.float32),
|
342 |
+
"y": np.array([2, 4], dtype=np.int64),
|
343 |
+
"z": np.array([2, 4], dtype=np.int32),
|
344 |
+
}
|
345 |
+
)
|
346 |
+
tm.assert_frame_equal(df.reindex_like(xp), xp)
|
347 |
+
|
348 |
+
# no dtypes specified here, so just compare with the default
|
349 |
+
arr = [(1.0, 2), (3.0, 4), (5.0, 6), (7.0, 8)]
|
350 |
+
df = DataFrame.from_records(iter(arr), columns=["x", "y"], nrows=2)
|
351 |
+
tm.assert_frame_equal(df, xp.reindex(columns=["x", "y"]), check_dtype=False)
|
352 |
+
|
353 |
+
def test_from_records_tuples_generator(self):
|
354 |
+
def tuple_generator(length):
|
355 |
+
for i in range(length):
|
356 |
+
letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
357 |
+
yield (i, letters[i % len(letters)], i / length)
|
358 |
+
|
359 |
+
columns_names = ["Integer", "String", "Float"]
|
360 |
+
columns = [
|
361 |
+
[i[j] for i in tuple_generator(10)] for j in range(len(columns_names))
|
362 |
+
]
|
363 |
+
data = {"Integer": columns[0], "String": columns[1], "Float": columns[2]}
|
364 |
+
expected = DataFrame(data, columns=columns_names)
|
365 |
+
|
366 |
+
generator = tuple_generator(10)
|
367 |
+
result = DataFrame.from_records(generator, columns=columns_names)
|
368 |
+
tm.assert_frame_equal(result, expected)
|
369 |
+
|
370 |
+
def test_from_records_lists_generator(self):
|
371 |
+
def list_generator(length):
|
372 |
+
for i in range(length):
|
373 |
+
letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
374 |
+
yield [i, letters[i % len(letters)], i / length]
|
375 |
+
|
376 |
+
columns_names = ["Integer", "String", "Float"]
|
377 |
+
columns = [
|
378 |
+
[i[j] for i in list_generator(10)] for j in range(len(columns_names))
|
379 |
+
]
|
380 |
+
data = {"Integer": columns[0], "String": columns[1], "Float": columns[2]}
|
381 |
+
expected = DataFrame(data, columns=columns_names)
|
382 |
+
|
383 |
+
generator = list_generator(10)
|
384 |
+
result = DataFrame.from_records(generator, columns=columns_names)
|
385 |
+
tm.assert_frame_equal(result, expected)
|
386 |
+
|
387 |
+
def test_from_records_columns_not_modified(self):
|
388 |
+
tuples = [(1, 2, 3), (1, 2, 3), (2, 5, 3)]
|
389 |
+
|
390 |
+
columns = ["a", "b", "c"]
|
391 |
+
original_columns = list(columns)
|
392 |
+
|
393 |
+
DataFrame.from_records(tuples, columns=columns, index="a")
|
394 |
+
|
395 |
+
assert columns == original_columns
|
396 |
+
|
397 |
+
def test_from_records_decimal(self):
|
398 |
+
tuples = [(Decimal("1.5"),), (Decimal("2.5"),), (None,)]
|
399 |
+
|
400 |
+
df = DataFrame.from_records(tuples, columns=["a"])
|
401 |
+
assert df["a"].dtype == object
|
402 |
+
|
403 |
+
df = DataFrame.from_records(tuples, columns=["a"], coerce_float=True)
|
404 |
+
assert df["a"].dtype == np.float64
|
405 |
+
assert np.isnan(df["a"].values[-1])
|
406 |
+
|
407 |
+
def test_from_records_duplicates(self):
|
408 |
+
result = DataFrame.from_records([(1, 2, 3), (4, 5, 6)], columns=["a", "b", "a"])
|
409 |
+
|
410 |
+
expected = DataFrame([(1, 2, 3), (4, 5, 6)], columns=["a", "b", "a"])
|
411 |
+
|
412 |
+
tm.assert_frame_equal(result, expected)
|
413 |
+
|
414 |
+
def test_from_records_set_index_name(self):
|
415 |
+
def create_dict(order_id):
|
416 |
+
return {
|
417 |
+
"order_id": order_id,
|
418 |
+
"quantity": np.random.default_rng(2).integers(1, 10),
|
419 |
+
"price": np.random.default_rng(2).integers(1, 10),
|
420 |
+
}
|
421 |
+
|
422 |
+
documents = [create_dict(i) for i in range(10)]
|
423 |
+
# demo missing data
|
424 |
+
documents.append({"order_id": 10, "quantity": 5})
|
425 |
+
|
426 |
+
result = DataFrame.from_records(documents, index="order_id")
|
427 |
+
assert result.index.name == "order_id"
|
428 |
+
|
429 |
+
# MultiIndex
|
430 |
+
result = DataFrame.from_records(documents, index=["order_id", "quantity"])
|
431 |
+
assert result.index.names == ("order_id", "quantity")
|
432 |
+
|
433 |
+
def test_from_records_misc_brokenness(self):
|
434 |
+
# GH#2179
|
435 |
+
|
436 |
+
data = {1: ["foo"], 2: ["bar"]}
|
437 |
+
|
438 |
+
result = DataFrame.from_records(data, columns=["a", "b"])
|
439 |
+
exp = DataFrame(data, columns=["a", "b"])
|
440 |
+
tm.assert_frame_equal(result, exp)
|
441 |
+
|
442 |
+
# overlap in index/index_names
|
443 |
+
|
444 |
+
data = {"a": [1, 2, 3], "b": [4, 5, 6]}
|
445 |
+
|
446 |
+
result = DataFrame.from_records(data, index=["a", "b", "c"])
|
447 |
+
exp = DataFrame(data, index=["a", "b", "c"])
|
448 |
+
tm.assert_frame_equal(result, exp)
|
449 |
+
|
450 |
+
def test_from_records_misc_brokenness2(self):
|
451 |
+
# GH#2623
|
452 |
+
rows = []
|
453 |
+
rows.append([datetime(2010, 1, 1), 1])
|
454 |
+
rows.append([datetime(2010, 1, 2), "hi"]) # test col upconverts to obj
|
455 |
+
result = DataFrame.from_records(rows, columns=["date", "test"])
|
456 |
+
expected = DataFrame(
|
457 |
+
{"date": [row[0] for row in rows], "test": [row[1] for row in rows]}
|
458 |
+
)
|
459 |
+
tm.assert_frame_equal(result, expected)
|
460 |
+
assert result.dtypes["test"] == np.dtype(object)
|
461 |
+
|
462 |
+
def test_from_records_misc_brokenness3(self):
|
463 |
+
rows = []
|
464 |
+
rows.append([datetime(2010, 1, 1), 1])
|
465 |
+
rows.append([datetime(2010, 1, 2), 1])
|
466 |
+
result = DataFrame.from_records(rows, columns=["date", "test"])
|
467 |
+
expected = DataFrame(
|
468 |
+
{"date": [row[0] for row in rows], "test": [row[1] for row in rows]}
|
469 |
+
)
|
470 |
+
tm.assert_frame_equal(result, expected)
|
471 |
+
|
472 |
+
def test_from_records_empty(self):
|
473 |
+
# GH#3562
|
474 |
+
result = DataFrame.from_records([], columns=["a", "b", "c"])
|
475 |
+
expected = DataFrame(columns=["a", "b", "c"])
|
476 |
+
tm.assert_frame_equal(result, expected)
|
477 |
+
|
478 |
+
result = DataFrame.from_records([], columns=["a", "b", "b"])
|
479 |
+
expected = DataFrame(columns=["a", "b", "b"])
|
480 |
+
tm.assert_frame_equal(result, expected)
|
481 |
+
|
482 |
+
def test_from_records_empty_with_nonempty_fields_gh3682(self):
|
483 |
+
a = np.array([(1, 2)], dtype=[("id", np.int64), ("value", np.int64)])
|
484 |
+
df = DataFrame.from_records(a, index="id")
|
485 |
+
|
486 |
+
ex_index = Index([1], name="id")
|
487 |
+
expected = DataFrame({"value": [2]}, index=ex_index, columns=["value"])
|
488 |
+
tm.assert_frame_equal(df, expected)
|
489 |
+
|
490 |
+
b = a[:0]
|
491 |
+
df2 = DataFrame.from_records(b, index="id")
|
492 |
+
tm.assert_frame_equal(df2, df.iloc[:0])
|
493 |
+
|
494 |
+
def test_from_records_empty2(self):
|
495 |
+
# GH#42456
|
496 |
+
dtype = [("prop", int)]
|
497 |
+
shape = (0, len(dtype))
|
498 |
+
arr = np.empty(shape, dtype=dtype)
|
499 |
+
|
500 |
+
result = DataFrame.from_records(arr)
|
501 |
+
expected = DataFrame({"prop": np.array([], dtype=int)})
|
502 |
+
tm.assert_frame_equal(result, expected)
|
503 |
+
|
504 |
+
alt = DataFrame(arr)
|
505 |
+
tm.assert_frame_equal(alt, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (195 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_coercion.cpython-310.pyc
ADDED
Binary file (5.23 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_delitem.cpython-310.pyc
ADDED
Binary file (2.15 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_get.cpython-310.pyc
ADDED
Binary file (1 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_get_value.cpython-310.pyc
ADDED
Binary file (1.15 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_getitem.cpython-310.pyc
ADDED
Binary file (15.5 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_indexing.cpython-310.pyc
ADDED
Binary file (58.8 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_insert.cpython-310.pyc
ADDED
Binary file (4.37 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_mask.cpython-310.pyc
ADDED
Binary file (5.46 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_set_value.cpython-310.pyc
ADDED
Binary file (2.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_setitem.cpython-310.pyc
ADDED
Binary file (48.4 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_take.cpython-310.pyc
ADDED
Binary file (2.86 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_where.cpython-310.pyc
ADDED
Binary file (30.6 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/__pycache__/test_xs.cpython-310.pyc
ADDED
Binary file (13.9 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/test_coercion.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Tests for values coercion in setitem-like operations on DataFrame.
|
3 |
+
|
4 |
+
For the most part, these should be multi-column DataFrames, otherwise
|
5 |
+
we would share the tests with Series.
|
6 |
+
"""
|
7 |
+
import numpy as np
|
8 |
+
import pytest
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
from pandas import (
|
12 |
+
DataFrame,
|
13 |
+
MultiIndex,
|
14 |
+
NaT,
|
15 |
+
Series,
|
16 |
+
Timestamp,
|
17 |
+
date_range,
|
18 |
+
)
|
19 |
+
import pandas._testing as tm
|
20 |
+
|
21 |
+
|
22 |
+
class TestDataFrameSetitemCoercion:
|
23 |
+
@pytest.mark.parametrize("consolidate", [True, False])
|
24 |
+
def test_loc_setitem_multiindex_columns(self, consolidate):
|
25 |
+
# GH#18415 Setting values in a single column preserves dtype,
|
26 |
+
# while setting them in multiple columns did unwanted cast.
|
27 |
+
|
28 |
+
# Note that A here has 2 blocks, below we do the same thing
|
29 |
+
# with a consolidated frame.
|
30 |
+
A = DataFrame(np.zeros((6, 5), dtype=np.float32))
|
31 |
+
A = pd.concat([A, A], axis=1, keys=[1, 2])
|
32 |
+
if consolidate:
|
33 |
+
A = A._consolidate()
|
34 |
+
|
35 |
+
A.loc[2:3, (1, slice(2, 3))] = np.ones((2, 2), dtype=np.float32)
|
36 |
+
assert (A.dtypes == np.float32).all()
|
37 |
+
|
38 |
+
A.loc[0:5, (1, slice(2, 3))] = np.ones((6, 2), dtype=np.float32)
|
39 |
+
|
40 |
+
assert (A.dtypes == np.float32).all()
|
41 |
+
|
42 |
+
A.loc[:, (1, slice(2, 3))] = np.ones((6, 2), dtype=np.float32)
|
43 |
+
assert (A.dtypes == np.float32).all()
|
44 |
+
|
45 |
+
# TODO: i think this isn't about MultiIndex and could be done with iloc?
|
46 |
+
|
47 |
+
|
48 |
+
def test_37477():
|
49 |
+
# fixed by GH#45121
|
50 |
+
orig = DataFrame({"A": [1, 2, 3], "B": [3, 4, 5]})
|
51 |
+
expected = DataFrame({"A": [1, 2, 3], "B": [3, 1.2, 5]})
|
52 |
+
|
53 |
+
df = orig.copy()
|
54 |
+
with tm.assert_produces_warning(
|
55 |
+
FutureWarning, match="Setting an item of incompatible dtype"
|
56 |
+
):
|
57 |
+
df.at[1, "B"] = 1.2
|
58 |
+
tm.assert_frame_equal(df, expected)
|
59 |
+
|
60 |
+
df = orig.copy()
|
61 |
+
with tm.assert_produces_warning(
|
62 |
+
FutureWarning, match="Setting an item of incompatible dtype"
|
63 |
+
):
|
64 |
+
df.loc[1, "B"] = 1.2
|
65 |
+
tm.assert_frame_equal(df, expected)
|
66 |
+
|
67 |
+
df = orig.copy()
|
68 |
+
with tm.assert_produces_warning(
|
69 |
+
FutureWarning, match="Setting an item of incompatible dtype"
|
70 |
+
):
|
71 |
+
df.iat[1, 1] = 1.2
|
72 |
+
tm.assert_frame_equal(df, expected)
|
73 |
+
|
74 |
+
df = orig.copy()
|
75 |
+
with tm.assert_produces_warning(
|
76 |
+
FutureWarning, match="Setting an item of incompatible dtype"
|
77 |
+
):
|
78 |
+
df.iloc[1, 1] = 1.2
|
79 |
+
tm.assert_frame_equal(df, expected)
|
80 |
+
|
81 |
+
|
82 |
+
def test_6942(indexer_al):
|
83 |
+
# check that the .at __setitem__ after setting "Live" actually sets the data
|
84 |
+
start = Timestamp("2014-04-01")
|
85 |
+
t1 = Timestamp("2014-04-23 12:42:38.883082")
|
86 |
+
t2 = Timestamp("2014-04-24 01:33:30.040039")
|
87 |
+
|
88 |
+
dti = date_range(start, periods=1)
|
89 |
+
orig = DataFrame(index=dti, columns=["timenow", "Live"])
|
90 |
+
|
91 |
+
df = orig.copy()
|
92 |
+
indexer_al(df)[start, "timenow"] = t1
|
93 |
+
|
94 |
+
df["Live"] = True
|
95 |
+
|
96 |
+
df.at[start, "timenow"] = t2
|
97 |
+
assert df.iloc[0, 0] == t2
|
98 |
+
|
99 |
+
|
100 |
+
def test_26395(indexer_al):
|
101 |
+
# .at case fixed by GH#45121 (best guess)
|
102 |
+
df = DataFrame(index=["A", "B", "C"])
|
103 |
+
df["D"] = 0
|
104 |
+
|
105 |
+
indexer_al(df)["C", "D"] = 2
|
106 |
+
expected = DataFrame({"D": [0, 0, 2]}, index=["A", "B", "C"], dtype=np.int64)
|
107 |
+
tm.assert_frame_equal(df, expected)
|
108 |
+
|
109 |
+
with tm.assert_produces_warning(
|
110 |
+
FutureWarning, match="Setting an item of incompatible dtype"
|
111 |
+
):
|
112 |
+
indexer_al(df)["C", "D"] = 44.5
|
113 |
+
expected = DataFrame({"D": [0, 0, 44.5]}, index=["A", "B", "C"], dtype=np.float64)
|
114 |
+
tm.assert_frame_equal(df, expected)
|
115 |
+
|
116 |
+
with tm.assert_produces_warning(
|
117 |
+
FutureWarning, match="Setting an item of incompatible dtype"
|
118 |
+
):
|
119 |
+
indexer_al(df)["C", "D"] = "hello"
|
120 |
+
expected = DataFrame({"D": [0, 0, "hello"]}, index=["A", "B", "C"], dtype=object)
|
121 |
+
tm.assert_frame_equal(df, expected)
|
122 |
+
|
123 |
+
|
124 |
+
@pytest.mark.xfail(reason="unwanted upcast")
|
125 |
+
def test_15231():
|
126 |
+
df = DataFrame([[1, 2], [3, 4]], columns=["a", "b"])
|
127 |
+
df.loc[2] = Series({"a": 5, "b": 6})
|
128 |
+
assert (df.dtypes == np.int64).all()
|
129 |
+
|
130 |
+
df.loc[3] = Series({"a": 7})
|
131 |
+
|
132 |
+
# df["a"] doesn't have any NaNs, should not have been cast
|
133 |
+
exp_dtypes = Series([np.int64, np.float64], dtype=object, index=["a", "b"])
|
134 |
+
tm.assert_series_equal(df.dtypes, exp_dtypes)
|
135 |
+
|
136 |
+
|
137 |
+
def test_iloc_setitem_unnecesssary_float_upcasting():
|
138 |
+
# GH#12255
|
139 |
+
df = DataFrame(
|
140 |
+
{
|
141 |
+
0: np.array([1, 3], dtype=np.float32),
|
142 |
+
1: np.array([2, 4], dtype=np.float32),
|
143 |
+
2: ["a", "b"],
|
144 |
+
}
|
145 |
+
)
|
146 |
+
orig = df.copy()
|
147 |
+
|
148 |
+
values = df[0].values.reshape(2, 1)
|
149 |
+
df.iloc[:, 0:1] = values
|
150 |
+
|
151 |
+
tm.assert_frame_equal(df, orig)
|
152 |
+
|
153 |
+
|
154 |
+
@pytest.mark.xfail(reason="unwanted casting to dt64")
|
155 |
+
def test_12499():
|
156 |
+
# TODO: OP in GH#12499 used np.datetim64("NaT") instead of pd.NaT,
|
157 |
+
# which has consequences for the expected df["two"] (though i think at
|
158 |
+
# the time it might not have because of a separate bug). See if it makes
|
159 |
+
# a difference which one we use here.
|
160 |
+
ts = Timestamp("2016-03-01 03:13:22.98986", tz="UTC")
|
161 |
+
|
162 |
+
data = [{"one": 0, "two": ts}]
|
163 |
+
orig = DataFrame(data)
|
164 |
+
df = orig.copy()
|
165 |
+
df.loc[1] = [np.nan, NaT]
|
166 |
+
|
167 |
+
expected = DataFrame(
|
168 |
+
{"one": [0, np.nan], "two": Series([ts, NaT], dtype="datetime64[ns, UTC]")}
|
169 |
+
)
|
170 |
+
tm.assert_frame_equal(df, expected)
|
171 |
+
|
172 |
+
data = [{"one": 0, "two": ts}]
|
173 |
+
df = orig.copy()
|
174 |
+
df.loc[1, :] = [np.nan, NaT]
|
175 |
+
tm.assert_frame_equal(df, expected)
|
176 |
+
|
177 |
+
|
178 |
+
def test_20476():
|
179 |
+
mi = MultiIndex.from_product([["A", "B"], ["a", "b", "c"]])
|
180 |
+
df = DataFrame(-1, index=range(3), columns=mi)
|
181 |
+
filler = DataFrame([[1, 2, 3.0]] * 3, index=range(3), columns=["a", "b", "c"])
|
182 |
+
df["A"] = filler
|
183 |
+
|
184 |
+
expected = DataFrame(
|
185 |
+
{
|
186 |
+
0: [1, 1, 1],
|
187 |
+
1: [2, 2, 2],
|
188 |
+
2: [3.0, 3.0, 3.0],
|
189 |
+
3: [-1, -1, -1],
|
190 |
+
4: [-1, -1, -1],
|
191 |
+
5: [-1, -1, -1],
|
192 |
+
}
|
193 |
+
)
|
194 |
+
expected.columns = mi
|
195 |
+
exp_dtypes = Series(
|
196 |
+
[np.dtype(np.int64)] * 2 + [np.dtype(np.float64)] + [np.dtype(np.int64)] * 3,
|
197 |
+
index=mi,
|
198 |
+
)
|
199 |
+
tm.assert_series_equal(df.dtypes, exp_dtypes)
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/test_delitem.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
DataFrame,
|
8 |
+
MultiIndex,
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
class TestDataFrameDelItem:
|
13 |
+
def test_delitem(self, float_frame):
|
14 |
+
del float_frame["A"]
|
15 |
+
assert "A" not in float_frame
|
16 |
+
|
17 |
+
def test_delitem_multiindex(self):
|
18 |
+
midx = MultiIndex.from_product([["A", "B"], [1, 2]])
|
19 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((4, 4)), columns=midx)
|
20 |
+
assert len(df.columns) == 4
|
21 |
+
assert ("A",) in df.columns
|
22 |
+
assert "A" in df.columns
|
23 |
+
|
24 |
+
result = df["A"]
|
25 |
+
assert isinstance(result, DataFrame)
|
26 |
+
del df["A"]
|
27 |
+
|
28 |
+
assert len(df.columns) == 2
|
29 |
+
|
30 |
+
# A still in the levels, BUT get a KeyError if trying
|
31 |
+
# to delete
|
32 |
+
assert ("A",) not in df.columns
|
33 |
+
with pytest.raises(KeyError, match=re.escape("('A',)")):
|
34 |
+
del df[("A",)]
|
35 |
+
|
36 |
+
# behavior of dropped/deleted MultiIndex levels changed from
|
37 |
+
# GH 2770 to GH 19027: MultiIndex no longer '.__contains__'
|
38 |
+
# levels which are dropped/deleted
|
39 |
+
assert "A" not in df.columns
|
40 |
+
with pytest.raises(KeyError, match=re.escape("('A',)")):
|
41 |
+
del df["A"]
|
42 |
+
|
43 |
+
def test_delitem_corner(self, float_frame):
|
44 |
+
f = float_frame.copy()
|
45 |
+
del f["D"]
|
46 |
+
assert len(f.columns) == 3
|
47 |
+
with pytest.raises(KeyError, match=r"^'D'$"):
|
48 |
+
del f["D"]
|
49 |
+
del f["B"]
|
50 |
+
assert len(f.columns) == 2
|
51 |
+
|
52 |
+
def test_delitem_col_still_multiindex(self):
|
53 |
+
arrays = [["a", "b", "c", "top"], ["", "", "", "OD"], ["", "", "", "wx"]]
|
54 |
+
|
55 |
+
tuples = sorted(zip(*arrays))
|
56 |
+
index = MultiIndex.from_tuples(tuples)
|
57 |
+
|
58 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((3, 4)), columns=index)
|
59 |
+
del df[("a", "", "")]
|
60 |
+
assert isinstance(df.columns, MultiIndex)
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/test_get.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import DataFrame
|
4 |
+
import pandas._testing as tm
|
5 |
+
|
6 |
+
|
7 |
+
class TestGet:
|
8 |
+
def test_get(self, float_frame):
|
9 |
+
b = float_frame.get("B")
|
10 |
+
tm.assert_series_equal(b, float_frame["B"])
|
11 |
+
|
12 |
+
assert float_frame.get("foo") is None
|
13 |
+
tm.assert_series_equal(
|
14 |
+
float_frame.get("foo", float_frame["B"]), float_frame["B"]
|
15 |
+
)
|
16 |
+
|
17 |
+
@pytest.mark.parametrize(
|
18 |
+
"df",
|
19 |
+
[
|
20 |
+
DataFrame(),
|
21 |
+
DataFrame(columns=list("AB")),
|
22 |
+
DataFrame(columns=list("AB"), index=range(3)),
|
23 |
+
],
|
24 |
+
)
|
25 |
+
def test_get_none(self, df):
|
26 |
+
# see gh-5652
|
27 |
+
assert df.get(None) is None
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/test_get_value.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import (
|
4 |
+
DataFrame,
|
5 |
+
MultiIndex,
|
6 |
+
)
|
7 |
+
|
8 |
+
|
9 |
+
class TestGetValue:
|
10 |
+
def test_get_set_value_no_partial_indexing(self):
|
11 |
+
# partial w/ MultiIndex raise exception
|
12 |
+
index = MultiIndex.from_tuples([(0, 1), (0, 2), (1, 1), (1, 2)])
|
13 |
+
df = DataFrame(index=index, columns=range(4))
|
14 |
+
with pytest.raises(KeyError, match=r"^0$"):
|
15 |
+
df._get_value(0, 1)
|
16 |
+
|
17 |
+
def test_get_value(self, float_frame):
|
18 |
+
for idx in float_frame.index:
|
19 |
+
for col in float_frame.columns:
|
20 |
+
result = float_frame._get_value(idx, col)
|
21 |
+
expected = float_frame[col][idx]
|
22 |
+
assert result == expected
|
venv/lib/python3.10/site-packages/pandas/tests/frame/indexing/test_getitem.py
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
Categorical,
|
8 |
+
CategoricalDtype,
|
9 |
+
CategoricalIndex,
|
10 |
+
DataFrame,
|
11 |
+
DateOffset,
|
12 |
+
DatetimeIndex,
|
13 |
+
Index,
|
14 |
+
MultiIndex,
|
15 |
+
Series,
|
16 |
+
Timestamp,
|
17 |
+
concat,
|
18 |
+
date_range,
|
19 |
+
get_dummies,
|
20 |
+
period_range,
|
21 |
+
)
|
22 |
+
import pandas._testing as tm
|
23 |
+
from pandas.core.arrays import SparseArray
|
24 |
+
|
25 |
+
|
26 |
+
class TestGetitem:
|
27 |
+
def test_getitem_unused_level_raises(self):
|
28 |
+
# GH#20410
|
29 |
+
mi = MultiIndex(
|
30 |
+
levels=[["a_lot", "onlyone", "notevenone"], [1970, ""]],
|
31 |
+
codes=[[1, 0], [1, 0]],
|
32 |
+
)
|
33 |
+
df = DataFrame(-1, index=range(3), columns=mi)
|
34 |
+
|
35 |
+
with pytest.raises(KeyError, match="notevenone"):
|
36 |
+
df["notevenone"]
|
37 |
+
|
38 |
+
def test_getitem_periodindex(self):
|
39 |
+
rng = period_range("1/1/2000", periods=5)
|
40 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 5)), columns=rng)
|
41 |
+
|
42 |
+
ts = df[rng[0]]
|
43 |
+
tm.assert_series_equal(ts, df.iloc[:, 0])
|
44 |
+
|
45 |
+
ts = df["1/1/2000"]
|
46 |
+
tm.assert_series_equal(ts, df.iloc[:, 0])
|
47 |
+
|
48 |
+
def test_getitem_list_of_labels_categoricalindex_cols(self):
|
49 |
+
# GH#16115
|
50 |
+
cats = Categorical([Timestamp("12-31-1999"), Timestamp("12-31-2000")])
|
51 |
+
|
52 |
+
expected = DataFrame([[1, 0], [0, 1]], dtype="bool", index=[0, 1], columns=cats)
|
53 |
+
dummies = get_dummies(cats)
|
54 |
+
result = dummies[list(dummies.columns)]
|
55 |
+
tm.assert_frame_equal(result, expected)
|
56 |
+
|
57 |
+
def test_getitem_sparse_column_return_type_and_dtype(self):
|
58 |
+
# https://github.com/pandas-dev/pandas/issues/23559
|
59 |
+
data = SparseArray([0, 1])
|
60 |
+
df = DataFrame({"A": data})
|
61 |
+
expected = Series(data, name="A")
|
62 |
+
result = df["A"]
|
63 |
+
tm.assert_series_equal(result, expected)
|
64 |
+
|
65 |
+
# Also check iloc and loc while we're here
|
66 |
+
result = df.iloc[:, 0]
|
67 |
+
tm.assert_series_equal(result, expected)
|
68 |
+
|
69 |
+
result = df.loc[:, "A"]
|
70 |
+
tm.assert_series_equal(result, expected)
|
71 |
+
|
72 |
+
def test_getitem_string_columns(self):
|
73 |
+
# GH#46185
|
74 |
+
df = DataFrame([[1, 2]], columns=Index(["A", "B"], dtype="string"))
|
75 |
+
result = df.A
|
76 |
+
expected = df["A"]
|
77 |
+
tm.assert_series_equal(result, expected)
|
78 |
+
|
79 |
+
|
80 |
+
class TestGetitemListLike:
|
81 |
+
def test_getitem_list_missing_key(self):
|
82 |
+
# GH#13822, incorrect error string with non-unique columns when missing
|
83 |
+
# column is accessed
|
84 |
+
df = DataFrame({"x": [1.0], "y": [2.0], "z": [3.0]})
|
85 |
+
df.columns = ["x", "x", "z"]
|
86 |
+
|
87 |
+
# Check that we get the correct value in the KeyError
|
88 |
+
with pytest.raises(KeyError, match=r"\['y'\] not in index"):
|
89 |
+
df[["x", "y", "z"]]
|
90 |
+
|
91 |
+
def test_getitem_list_duplicates(self):
|
92 |
+
# GH#1943
|
93 |
+
df = DataFrame(
|
94 |
+
np.random.default_rng(2).standard_normal((4, 4)), columns=list("AABC")
|
95 |
+
)
|
96 |
+
df.columns.name = "foo"
|
97 |
+
|
98 |
+
result = df[["B", "C"]]
|
99 |
+
assert result.columns.name == "foo"
|
100 |
+
|
101 |
+
expected = df.iloc[:, 2:]
|
102 |
+
tm.assert_frame_equal(result, expected)
|
103 |
+
|
104 |
+
def test_getitem_dupe_cols(self):
|
105 |
+
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"])
|
106 |
+
msg = "\"None of [Index(['baf'], dtype="
|
107 |
+
with pytest.raises(KeyError, match=re.escape(msg)):
|
108 |
+
df[["baf"]]
|
109 |
+
|
110 |
+
@pytest.mark.parametrize(
|
111 |
+
"idx_type",
|
112 |
+
[
|
113 |
+
list,
|
114 |
+
iter,
|
115 |
+
Index,
|
116 |
+
set,
|
117 |
+
lambda keys: dict(zip(keys, range(len(keys)))),
|
118 |
+
lambda keys: dict(zip(keys, range(len(keys)))).keys(),
|
119 |
+
],
|
120 |
+
ids=["list", "iter", "Index", "set", "dict", "dict_keys"],
|
121 |
+
)
|
122 |
+
@pytest.mark.parametrize("levels", [1, 2])
|
123 |
+
def test_getitem_listlike(self, idx_type, levels, float_frame):
|
124 |
+
# GH#21294
|
125 |
+
|
126 |
+
if levels == 1:
|
127 |
+
frame, missing = float_frame, "food"
|
128 |
+
else:
|
129 |
+
# MultiIndex columns
|
130 |
+
frame = DataFrame(
|
131 |
+
np.random.default_rng(2).standard_normal((8, 3)),
|
132 |
+
columns=Index(
|
133 |
+
[("foo", "bar"), ("baz", "qux"), ("peek", "aboo")],
|
134 |
+
name=("sth", "sth2"),
|
135 |
+
),
|
136 |
+
)
|
137 |
+
missing = ("good", "food")
|
138 |
+
|
139 |
+
keys = [frame.columns[1], frame.columns[0]]
|
140 |
+
idx = idx_type(keys)
|
141 |
+
idx_check = list(idx_type(keys))
|
142 |
+
|
143 |
+
if isinstance(idx, (set, dict)):
|
144 |
+
with pytest.raises(TypeError, match="as an indexer is not supported"):
|
145 |
+
frame[idx]
|
146 |
+
|
147 |
+
return
|
148 |
+
else:
|
149 |
+
result = frame[idx]
|
150 |
+
|
151 |
+
expected = frame.loc[:, idx_check]
|
152 |
+
expected.columns.names = frame.columns.names
|
153 |
+
|
154 |
+
tm.assert_frame_equal(result, expected)
|
155 |
+
|
156 |
+
idx = idx_type(keys + [missing])
|
157 |
+
with pytest.raises(KeyError, match="not in index"):
|
158 |
+
frame[idx]
|
159 |
+
|
160 |
+
def test_getitem_iloc_generator(self):
|
161 |
+
# GH#39614
|
162 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
163 |
+
indexer = (x for x in [1, 2])
|
164 |
+
result = df.iloc[indexer]
|
165 |
+
expected = DataFrame({"a": [2, 3], "b": [5, 6]}, index=[1, 2])
|
166 |
+
tm.assert_frame_equal(result, expected)
|
167 |
+
|
168 |
+
def test_getitem_iloc_two_dimensional_generator(self):
|
169 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
170 |
+
indexer = (x for x in [1, 2])
|
171 |
+
result = df.iloc[indexer, 1]
|
172 |
+
expected = Series([5, 6], name="b", index=[1, 2])
|
173 |
+
tm.assert_series_equal(result, expected)
|
174 |
+
|
175 |
+
def test_getitem_iloc_dateoffset_days(self):
|
176 |
+
# GH 46671
|
177 |
+
df = DataFrame(
|
178 |
+
list(range(10)),
|
179 |
+
index=date_range("01-01-2022", periods=10, freq=DateOffset(days=1)),
|
180 |
+
)
|
181 |
+
result = df.loc["2022-01-01":"2022-01-03"]
|
182 |
+
expected = DataFrame(
|
183 |
+
[0, 1, 2],
|
184 |
+
index=DatetimeIndex(
|
185 |
+
["2022-01-01", "2022-01-02", "2022-01-03"],
|
186 |
+
dtype="datetime64[ns]",
|
187 |
+
freq=DateOffset(days=1),
|
188 |
+
),
|
189 |
+
)
|
190 |
+
tm.assert_frame_equal(result, expected)
|
191 |
+
|
192 |
+
df = DataFrame(
|
193 |
+
list(range(10)),
|
194 |
+
index=date_range(
|
195 |
+
"01-01-2022", periods=10, freq=DateOffset(days=1, hours=2)
|
196 |
+
),
|
197 |
+
)
|
198 |
+
result = df.loc["2022-01-01":"2022-01-03"]
|
199 |
+
expected = DataFrame(
|
200 |
+
[0, 1, 2],
|
201 |
+
index=DatetimeIndex(
|
202 |
+
["2022-01-01 00:00:00", "2022-01-02 02:00:00", "2022-01-03 04:00:00"],
|
203 |
+
dtype="datetime64[ns]",
|
204 |
+
freq=DateOffset(days=1, hours=2),
|
205 |
+
),
|
206 |
+
)
|
207 |
+
tm.assert_frame_equal(result, expected)
|
208 |
+
|
209 |
+
df = DataFrame(
|
210 |
+
list(range(10)),
|
211 |
+
index=date_range("01-01-2022", periods=10, freq=DateOffset(minutes=3)),
|
212 |
+
)
|
213 |
+
result = df.loc["2022-01-01":"2022-01-03"]
|
214 |
+
tm.assert_frame_equal(result, df)
|
215 |
+
|
216 |
+
|
217 |
+
class TestGetitemCallable:
|
218 |
+
def test_getitem_callable(self, float_frame):
|
219 |
+
# GH#12533
|
220 |
+
result = float_frame[lambda x: "A"]
|
221 |
+
expected = float_frame.loc[:, "A"]
|
222 |
+
tm.assert_series_equal(result, expected)
|
223 |
+
|
224 |
+
result = float_frame[lambda x: ["A", "B"]]
|
225 |
+
expected = float_frame.loc[:, ["A", "B"]]
|
226 |
+
tm.assert_frame_equal(result, float_frame.loc[:, ["A", "B"]])
|
227 |
+
|
228 |
+
df = float_frame[:3]
|
229 |
+
result = df[lambda x: [True, False, True]]
|
230 |
+
expected = float_frame.iloc[[0, 2], :]
|
231 |
+
tm.assert_frame_equal(result, expected)
|
232 |
+
|
233 |
+
def test_loc_multiindex_columns_one_level(self):
|
234 |
+
# GH#29749
|
235 |
+
df = DataFrame([[1, 2]], columns=[["a", "b"]])
|
236 |
+
expected = DataFrame([1], columns=[["a"]])
|
237 |
+
|
238 |
+
result = df["a"]
|
239 |
+
tm.assert_frame_equal(result, expected)
|
240 |
+
|
241 |
+
result = df.loc[:, "a"]
|
242 |
+
tm.assert_frame_equal(result, expected)
|
243 |
+
|
244 |
+
|
245 |
+
class TestGetitemBooleanMask:
|
246 |
+
def test_getitem_bool_mask_categorical_index(self):
|
247 |
+
df3 = DataFrame(
|
248 |
+
{
|
249 |
+
"A": np.arange(6, dtype="int64"),
|
250 |
+
},
|
251 |
+
index=CategoricalIndex(
|
252 |
+
[1, 1, 2, 1, 3, 2],
|
253 |
+
dtype=CategoricalDtype([3, 2, 1], ordered=True),
|
254 |
+
name="B",
|
255 |
+
),
|
256 |
+
)
|
257 |
+
df4 = DataFrame(
|
258 |
+
{
|
259 |
+
"A": np.arange(6, dtype="int64"),
|
260 |
+
},
|
261 |
+
index=CategoricalIndex(
|
262 |
+
[1, 1, 2, 1, 3, 2],
|
263 |
+
dtype=CategoricalDtype([3, 2, 1], ordered=False),
|
264 |
+
name="B",
|
265 |
+
),
|
266 |
+
)
|
267 |
+
|
268 |
+
result = df3[df3.index == "a"]
|
269 |
+
expected = df3.iloc[[]]
|
270 |
+
tm.assert_frame_equal(result, expected)
|
271 |
+
|
272 |
+
result = df4[df4.index == "a"]
|
273 |
+
expected = df4.iloc[[]]
|
274 |
+
tm.assert_frame_equal(result, expected)
|
275 |
+
|
276 |
+
result = df3[df3.index == 1]
|
277 |
+
expected = df3.iloc[[0, 1, 3]]
|
278 |
+
tm.assert_frame_equal(result, expected)
|
279 |
+
|
280 |
+
result = df4[df4.index == 1]
|
281 |
+
expected = df4.iloc[[0, 1, 3]]
|
282 |
+
tm.assert_frame_equal(result, expected)
|
283 |
+
|
284 |
+
# since we have an ordered categorical
|
285 |
+
|
286 |
+
# CategoricalIndex([1, 1, 2, 1, 3, 2],
|
287 |
+
# categories=[3, 2, 1],
|
288 |
+
# ordered=True,
|
289 |
+
# name='B')
|
290 |
+
result = df3[df3.index < 2]
|
291 |
+
expected = df3.iloc[[4]]
|
292 |
+
tm.assert_frame_equal(result, expected)
|
293 |
+
|
294 |
+
result = df3[df3.index > 1]
|
295 |
+
expected = df3.iloc[[]]
|
296 |
+
tm.assert_frame_equal(result, expected)
|
297 |
+
|
298 |
+
# unordered
|
299 |
+
# cannot be compared
|
300 |
+
|
301 |
+
# CategoricalIndex([1, 1, 2, 1, 3, 2],
|
302 |
+
# categories=[3, 2, 1],
|
303 |
+
# ordered=False,
|
304 |
+
# name='B')
|
305 |
+
msg = "Unordered Categoricals can only compare equality or not"
|
306 |
+
with pytest.raises(TypeError, match=msg):
|
307 |
+
df4[df4.index < 2]
|
308 |
+
with pytest.raises(TypeError, match=msg):
|
309 |
+
df4[df4.index > 1]
|
310 |
+
|
311 |
+
@pytest.mark.parametrize(
|
312 |
+
"data1,data2,expected_data",
|
313 |
+
(
|
314 |
+
(
|
315 |
+
[[1, 2], [3, 4]],
|
316 |
+
[[0.5, 6], [7, 8]],
|
317 |
+
[[np.nan, 3.0], [np.nan, 4.0], [np.nan, 7.0], [6.0, 8.0]],
|
318 |
+
),
|
319 |
+
(
|
320 |
+
[[1, 2], [3, 4]],
|
321 |
+
[[5, 6], [7, 8]],
|
322 |
+
[[np.nan, 3.0], [np.nan, 4.0], [5, 7], [6, 8]],
|
323 |
+
),
|
324 |
+
),
|
325 |
+
)
|
326 |
+
def test_getitem_bool_mask_duplicate_columns_mixed_dtypes(
|
327 |
+
self,
|
328 |
+
data1,
|
329 |
+
data2,
|
330 |
+
expected_data,
|
331 |
+
):
|
332 |
+
# GH#31954
|
333 |
+
|
334 |
+
df1 = DataFrame(np.array(data1))
|
335 |
+
df2 = DataFrame(np.array(data2))
|
336 |
+
df = concat([df1, df2], axis=1)
|
337 |
+
|
338 |
+
result = df[df > 2]
|
339 |
+
|
340 |
+
exdict = {i: np.array(col) for i, col in enumerate(expected_data)}
|
341 |
+
expected = DataFrame(exdict).rename(columns={2: 0, 3: 1})
|
342 |
+
tm.assert_frame_equal(result, expected)
|
343 |
+
|
344 |
+
@pytest.fixture
|
345 |
+
def df_dup_cols(self):
|
346 |
+
dups = ["A", "A", "C", "D"]
|
347 |
+
df = DataFrame(np.arange(12).reshape(3, 4), columns=dups, dtype="float64")
|
348 |
+
return df
|
349 |
+
|
350 |
+
def test_getitem_boolean_frame_unaligned_with_duplicate_columns(self, df_dup_cols):
|
351 |
+
# `df.A > 6` is a DataFrame with a different shape from df
|
352 |
+
|
353 |
+
# boolean with the duplicate raises
|
354 |
+
df = df_dup_cols
|
355 |
+
msg = "cannot reindex on an axis with duplicate labels"
|
356 |
+
with pytest.raises(ValueError, match=msg):
|
357 |
+
df[df.A > 6]
|
358 |
+
|
359 |
+
def test_getitem_boolean_series_with_duplicate_columns(self, df_dup_cols):
|
360 |
+
# boolean indexing
|
361 |
+
# GH#4879
|
362 |
+
df = DataFrame(
|
363 |
+
np.arange(12).reshape(3, 4), columns=["A", "B", "C", "D"], dtype="float64"
|
364 |
+
)
|
365 |
+
expected = df[df.C > 6]
|
366 |
+
expected.columns = df_dup_cols.columns
|
367 |
+
|
368 |
+
df = df_dup_cols
|
369 |
+
result = df[df.C > 6]
|
370 |
+
|
371 |
+
tm.assert_frame_equal(result, expected)
|
372 |
+
|
373 |
+
def test_getitem_boolean_frame_with_duplicate_columns(self, df_dup_cols):
|
374 |
+
# where
|
375 |
+
df = DataFrame(
|
376 |
+
np.arange(12).reshape(3, 4), columns=["A", "B", "C", "D"], dtype="float64"
|
377 |
+
)
|
378 |
+
# `df > 6` is a DataFrame with the same shape+alignment as df
|
379 |
+
expected = df[df > 6]
|
380 |
+
expected.columns = df_dup_cols.columns
|
381 |
+
|
382 |
+
df = df_dup_cols
|
383 |
+
result = df[df > 6]
|
384 |
+
|
385 |
+
tm.assert_frame_equal(result, expected)
|
386 |
+
|
387 |
+
def test_getitem_empty_frame_with_boolean(self):
|
388 |
+
# Test for issue GH#11859
|
389 |
+
|
390 |
+
df = DataFrame()
|
391 |
+
df2 = df[df > 0]
|
392 |
+
tm.assert_frame_equal(df, df2)
|
393 |
+
|
394 |
+
def test_getitem_returns_view_when_column_is_unique_in_df(
|
395 |
+
self, using_copy_on_write, warn_copy_on_write
|
396 |
+
):
|
397 |
+
# GH#45316
|
398 |
+
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"])
|
399 |
+
df_orig = df.copy()
|
400 |
+
view = df["b"]
|
401 |
+
with tm.assert_cow_warning(warn_copy_on_write):
|
402 |
+
view.loc[:] = 100
|
403 |
+
if using_copy_on_write:
|
404 |
+
expected = df_orig
|
405 |
+
else:
|
406 |
+
expected = DataFrame([[1, 2, 100], [4, 5, 100]], columns=["a", "a", "b"])
|
407 |
+
tm.assert_frame_equal(df, expected)
|
408 |
+
|
409 |
+
def test_getitem_frozenset_unique_in_column(self):
|
410 |
+
# GH#41062
|
411 |
+
df = DataFrame([[1, 2, 3, 4]], columns=[frozenset(["KEY"]), "B", "C", "C"])
|
412 |
+
result = df[frozenset(["KEY"])]
|
413 |
+
expected = Series([1], name=frozenset(["KEY"]))
|
414 |
+
tm.assert_series_equal(result, expected)
|
415 |
+
|
416 |
+
|
417 |
+
class TestGetitemSlice:
|
418 |
+
def test_getitem_slice_float64(self, frame_or_series):
|
419 |
+
values = np.arange(10.0, 50.0, 2)
|
420 |
+
index = Index(values)
|
421 |
+
|
422 |
+
start, end = values[[5, 15]]
|
423 |
+
|
424 |
+
data = np.random.default_rng(2).standard_normal((20, 3))
|
425 |
+
if frame_or_series is not DataFrame:
|
426 |
+
data = data[:, 0]
|
427 |
+
|
428 |
+
obj = frame_or_series(data, index=index)
|
429 |
+
|
430 |
+
result = obj[start:end]
|
431 |
+
expected = obj.iloc[5:16]
|
432 |
+
tm.assert_equal(result, expected)
|
433 |
+
|
434 |
+
result = obj.loc[start:end]
|
435 |
+
tm.assert_equal(result, expected)
|
436 |
+
|
437 |
+
def test_getitem_datetime_slice(self):
|
438 |
+
# GH#43223
|
439 |
+
df = DataFrame(
|
440 |
+
{"a": 0},
|
441 |
+
index=DatetimeIndex(
|
442 |
+
[
|
443 |
+
"11.01.2011 22:00",
|
444 |
+
"11.01.2011 23:00",
|
445 |
+
"12.01.2011 00:00",
|
446 |
+
"2011-01-13 00:00",
|
447 |
+
]
|
448 |
+
),
|
449 |
+
)
|
450 |
+
with pytest.raises(
|
451 |
+
KeyError, match="Value based partial slicing on non-monotonic"
|
452 |
+
):
|
453 |
+
df["2011-01-01":"2011-11-01"]
|
454 |
+
|
455 |
+
def test_getitem_slice_same_dim_only_one_axis(self):
|
456 |
+
# GH#54622
|
457 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 8)))
|
458 |
+
result = df.iloc[(slice(None, None, 2),)]
|
459 |
+
assert result.shape == (5, 8)
|
460 |
+
expected = df.iloc[slice(None, None, 2), slice(None)]
|
461 |
+
tm.assert_frame_equal(result, expected)
|
462 |
+
|
463 |
+
|
464 |
+
class TestGetitemDeprecatedIndexers:
|
465 |
+
@pytest.mark.parametrize("key", [{"a", "b"}, {"a": "a"}])
|
466 |
+
def test_getitem_dict_and_set_deprecated(self, key):
|
467 |
+
# GH#42825 enforced in 2.0
|
468 |
+
df = DataFrame(
|
469 |
+
[[1, 2], [3, 4]], columns=MultiIndex.from_tuples([("a", 1), ("b", 2)])
|
470 |
+
)
|
471 |
+
with pytest.raises(TypeError, match="as an indexer is not supported"):
|
472 |
+
df[key]
|