applied-ai-018 commited on
Commit
4d1078a
·
verified ·
1 Parent(s): 3b26b7a

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step80/zero/21.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
  2. ckpts/universal/global_step80/zero/22.attention.query_key_value.weight/exp_avg.pt +3 -0
  3. ckpts/universal/global_step80/zero/22.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
  4. ckpts/universal/global_step80/zero/22.attention.query_key_value.weight/fp32.pt +3 -0
  5. ckpts/universal/global_step80/zero/8.input_layernorm.weight/exp_avg.pt +3 -0
  6. ckpts/universal/global_step80/zero/8.input_layernorm.weight/exp_avg_sq.pt +3 -0
  7. ckpts/universal/global_step80/zero/8.input_layernorm.weight/fp32.pt +3 -0
  8. venv/lib/python3.10/site-packages/sympy/codegen/__pycache__/__init__.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/sympy/codegen/__pycache__/abstract_nodes.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/sympy/codegen/__pycache__/cutils.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/sympy/codegen/__pycache__/fnodes.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/sympy/codegen/__pycache__/pynodes.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/sympy/codegen/__pycache__/rewriting.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/sympy/combinatorics/__init__.py +43 -0
  15. venv/lib/python3.10/site-packages/sympy/combinatorics/coset_table.py +1255 -0
  16. venv/lib/python3.10/site-packages/sympy/combinatorics/fp_groups.py +1348 -0
  17. venv/lib/python3.10/site-packages/sympy/combinatorics/free_groups.py +1354 -0
  18. venv/lib/python3.10/site-packages/sympy/combinatorics/galois.py +611 -0
  19. venv/lib/python3.10/site-packages/sympy/combinatorics/generators.py +302 -0
  20. venv/lib/python3.10/site-packages/sympy/combinatorics/graycode.py +430 -0
  21. venv/lib/python3.10/site-packages/sympy/combinatorics/group_constructs.py +61 -0
  22. venv/lib/python3.10/site-packages/sympy/combinatorics/group_numbers.py +118 -0
  23. venv/lib/python3.10/site-packages/sympy/combinatorics/homomorphisms.py +549 -0
  24. venv/lib/python3.10/site-packages/sympy/combinatorics/named_groups.py +332 -0
  25. venv/lib/python3.10/site-packages/sympy/combinatorics/partitions.py +745 -0
  26. venv/lib/python3.10/site-packages/sympy/combinatorics/pc_groups.py +709 -0
  27. venv/lib/python3.10/site-packages/sympy/combinatorics/perm_groups.py +0 -0
  28. venv/lib/python3.10/site-packages/sympy/combinatorics/permutations.py +3112 -0
  29. venv/lib/python3.10/site-packages/sympy/combinatorics/polyhedron.py +1019 -0
  30. venv/lib/python3.10/site-packages/sympy/combinatorics/prufer.py +436 -0
  31. venv/lib/python3.10/site-packages/sympy/combinatorics/rewritingsystem.py +453 -0
  32. venv/lib/python3.10/site-packages/sympy/combinatorics/rewritingsystem_fsm.py +60 -0
  33. venv/lib/python3.10/site-packages/sympy/combinatorics/schur_number.py +160 -0
  34. venv/lib/python3.10/site-packages/sympy/combinatorics/subsets.py +619 -0
  35. venv/lib/python3.10/site-packages/sympy/combinatorics/tensor_can.py +1190 -0
  36. venv/lib/python3.10/site-packages/sympy/combinatorics/tests/test_testutil.py +55 -0
  37. venv/lib/python3.10/site-packages/sympy/combinatorics/testutil.py +358 -0
  38. venv/lib/python3.10/site-packages/sympy/combinatorics/util.py +536 -0
  39. venv/lib/python3.10/site-packages/sympy/geometry/__init__.py +45 -0
  40. venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/__init__.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/curve.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/ellipse.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/entity.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/exceptions.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/line.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/parabola.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/plane.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/point.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/polygon.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/util.cpython-310.pyc +0 -0
ckpts/universal/global_step80/zero/21.mlp.dense_h_to_4h_swiglu.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:159724b7828578b4eb373c6553a52d183313ef9a2b514d06ab1f8ab06531f2bb
3
+ size 33555533
ckpts/universal/global_step80/zero/22.attention.query_key_value.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22cc0bd93ed78d475bdc48622a3832bd6b305b33e1ff79c6afc4bdb1d03b09dc
3
+ size 50332828
ckpts/universal/global_step80/zero/22.attention.query_key_value.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a5f0bdc2008facf3aaa5f62c3689b67448d8f2b5c45299fe3431999880cdc5d
3
+ size 50332843
ckpts/universal/global_step80/zero/22.attention.query_key_value.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68668ab7546b207fb5a6667700e7333e5ce252f5b3fd2afd0305ed7839c6f14c
3
+ size 50332749
ckpts/universal/global_step80/zero/8.input_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d7a847fab5d3b3c84f21e4e0ae3d274134a56e4a1b7c22bd75aafb71aa00aac
3
+ size 9372
ckpts/universal/global_step80/zero/8.input_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b38db52162fdbfdf9d71d1e42148a0982766be85368ca6df71ff9b925101bb18
3
+ size 9387
ckpts/universal/global_step80/zero/8.input_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d753f975b01bc787c35c93a87ef16f5daf1dcc6f58ad3bf8b92cac38091908c
3
+ size 9293
venv/lib/python3.10/site-packages/sympy/codegen/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.09 kB). View file
 
venv/lib/python3.10/site-packages/sympy/codegen/__pycache__/abstract_nodes.cpython-310.pyc ADDED
Binary file (953 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/codegen/__pycache__/cutils.cpython-310.pyc ADDED
Binary file (720 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/codegen/__pycache__/fnodes.cpython-310.pyc ADDED
Binary file (21.2 kB). View file
 
venv/lib/python3.10/site-packages/sympy/codegen/__pycache__/pynodes.cpython-310.pyc ADDED
Binary file (672 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/codegen/__pycache__/rewriting.cpython-310.pyc ADDED
Binary file (13.5 kB). View file
 
venv/lib/python3.10/site-packages/sympy/combinatorics/__init__.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics.permutations import Permutation, Cycle
2
+ from sympy.combinatorics.prufer import Prufer
3
+ from sympy.combinatorics.generators import cyclic, alternating, symmetric, dihedral
4
+ from sympy.combinatorics.subsets import Subset
5
+ from sympy.combinatorics.partitions import (Partition, IntegerPartition,
6
+ RGS_rank, RGS_unrank, RGS_enum)
7
+ from sympy.combinatorics.polyhedron import (Polyhedron, tetrahedron, cube,
8
+ octahedron, dodecahedron, icosahedron)
9
+ from sympy.combinatorics.perm_groups import PermutationGroup, Coset, SymmetricPermutationGroup
10
+ from sympy.combinatorics.group_constructs import DirectProduct
11
+ from sympy.combinatorics.graycode import GrayCode
12
+ from sympy.combinatorics.named_groups import (SymmetricGroup, DihedralGroup,
13
+ CyclicGroup, AlternatingGroup, AbelianGroup, RubikGroup)
14
+ from sympy.combinatorics.pc_groups import PolycyclicGroup, Collector
15
+ from sympy.combinatorics.free_groups import free_group
16
+
17
+ __all__ = [
18
+ 'Permutation', 'Cycle',
19
+
20
+ 'Prufer',
21
+
22
+ 'cyclic', 'alternating', 'symmetric', 'dihedral',
23
+
24
+ 'Subset',
25
+
26
+ 'Partition', 'IntegerPartition', 'RGS_rank', 'RGS_unrank', 'RGS_enum',
27
+
28
+ 'Polyhedron', 'tetrahedron', 'cube', 'octahedron', 'dodecahedron',
29
+ 'icosahedron',
30
+
31
+ 'PermutationGroup', 'Coset', 'SymmetricPermutationGroup',
32
+
33
+ 'DirectProduct',
34
+
35
+ 'GrayCode',
36
+
37
+ 'SymmetricGroup', 'DihedralGroup', 'CyclicGroup', 'AlternatingGroup',
38
+ 'AbelianGroup', 'RubikGroup',
39
+
40
+ 'PolycyclicGroup', 'Collector',
41
+
42
+ 'free_group',
43
+ ]
venv/lib/python3.10/site-packages/sympy/combinatorics/coset_table.py ADDED
@@ -0,0 +1,1255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics.free_groups import free_group
2
+ from sympy.printing.defaults import DefaultPrinting
3
+
4
+ from itertools import chain, product
5
+ from bisect import bisect_left
6
+
7
+
8
+ ###############################################################################
9
+ # COSET TABLE #
10
+ ###############################################################################
11
+
12
+ class CosetTable(DefaultPrinting):
13
+ # coset_table: Mathematically a coset table
14
+ # represented using a list of lists
15
+ # alpha: Mathematically a coset (precisely, a live coset)
16
+ # represented by an integer between i with 1 <= i <= n
17
+ # alpha in c
18
+ # x: Mathematically an element of "A" (set of generators and
19
+ # their inverses), represented using "FpGroupElement"
20
+ # fp_grp: Finitely Presented Group with < X|R > as presentation.
21
+ # H: subgroup of fp_grp.
22
+ # NOTE: We start with H as being only a list of words in generators
23
+ # of "fp_grp". Since `.subgroup` method has not been implemented.
24
+
25
+ r"""
26
+
27
+ Properties
28
+ ==========
29
+
30
+ [1] `0 \in \Omega` and `\tau(1) = \epsilon`
31
+ [2] `\alpha^x = \beta \Leftrightarrow \beta^{x^{-1}} = \alpha`
32
+ [3] If `\alpha^x = \beta`, then `H \tau(\alpha)x = H \tau(\beta)`
33
+ [4] `\forall \alpha \in \Omega, 1^{\tau(\alpha)} = \alpha`
34
+
35
+ References
36
+ ==========
37
+
38
+ .. [1] Holt, D., Eick, B., O'Brien, E.
39
+ "Handbook of Computational Group Theory"
40
+
41
+ .. [2] John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
42
+ Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490.
43
+ "Implementation and Analysis of the Todd-Coxeter Algorithm"
44
+
45
+ """
46
+ # default limit for the number of cosets allowed in a
47
+ # coset enumeration.
48
+ coset_table_max_limit = 4096000
49
+ # limit for the current instance
50
+ coset_table_limit = None
51
+ # maximum size of deduction stack above or equal to
52
+ # which it is emptied
53
+ max_stack_size = 100
54
+
55
+ def __init__(self, fp_grp, subgroup, max_cosets=None):
56
+ if not max_cosets:
57
+ max_cosets = CosetTable.coset_table_max_limit
58
+ self.fp_group = fp_grp
59
+ self.subgroup = subgroup
60
+ self.coset_table_limit = max_cosets
61
+ # "p" is setup independent of Omega and n
62
+ self.p = [0]
63
+ # a list of the form `[gen_1, gen_1^{-1}, ... , gen_k, gen_k^{-1}]`
64
+ self.A = list(chain.from_iterable((gen, gen**-1) \
65
+ for gen in self.fp_group.generators))
66
+ #P[alpha, x] Only defined when alpha^x is defined.
67
+ self.P = [[None]*len(self.A)]
68
+ # the mathematical coset table which is a list of lists
69
+ self.table = [[None]*len(self.A)]
70
+ self.A_dict = {x: self.A.index(x) for x in self.A}
71
+ self.A_dict_inv = {}
72
+ for x, index in self.A_dict.items():
73
+ if index % 2 == 0:
74
+ self.A_dict_inv[x] = self.A_dict[x] + 1
75
+ else:
76
+ self.A_dict_inv[x] = self.A_dict[x] - 1
77
+ # used in the coset-table based method of coset enumeration. Each of
78
+ # the element is called a "deduction" which is the form (alpha, x) whenever
79
+ # a value is assigned to alpha^x during a definition or "deduction process"
80
+ self.deduction_stack = []
81
+ # Attributes for modified methods.
82
+ H = self.subgroup
83
+ self._grp = free_group(', ' .join(["a_%d" % i for i in range(len(H))]))[0]
84
+ self.P = [[None]*len(self.A)]
85
+ self.p_p = {}
86
+
87
+ @property
88
+ def omega(self):
89
+ """Set of live cosets. """
90
+ return [coset for coset in range(len(self.p)) if self.p[coset] == coset]
91
+
92
+ def copy(self):
93
+ """
94
+ Return a shallow copy of Coset Table instance ``self``.
95
+
96
+ """
97
+ self_copy = self.__class__(self.fp_group, self.subgroup)
98
+ self_copy.table = [list(perm_rep) for perm_rep in self.table]
99
+ self_copy.p = list(self.p)
100
+ self_copy.deduction_stack = list(self.deduction_stack)
101
+ return self_copy
102
+
103
+ def __str__(self):
104
+ return "Coset Table on %s with %s as subgroup generators" \
105
+ % (self.fp_group, self.subgroup)
106
+
107
+ __repr__ = __str__
108
+
109
+ @property
110
+ def n(self):
111
+ """The number `n` represents the length of the sublist containing the
112
+ live cosets.
113
+
114
+ """
115
+ if not self.table:
116
+ return 0
117
+ return max(self.omega) + 1
118
+
119
+ # Pg. 152 [1]
120
+ def is_complete(self):
121
+ r"""
122
+ The coset table is called complete if it has no undefined entries
123
+ on the live cosets; that is, `\alpha^x` is defined for all
124
+ `\alpha \in \Omega` and `x \in A`.
125
+
126
+ """
127
+ return not any(None in self.table[coset] for coset in self.omega)
128
+
129
+ # Pg. 153 [1]
130
+ def define(self, alpha, x, modified=False):
131
+ r"""
132
+ This routine is used in the relator-based strategy of Todd-Coxeter
133
+ algorithm if some `\alpha^x` is undefined. We check whether there is
134
+ space available for defining a new coset. If there is enough space
135
+ then we remedy this by adjoining a new coset `\beta` to `\Omega`
136
+ (i.e to set of live cosets) and put that equal to `\alpha^x`, then
137
+ make an assignment satisfying Property[1]. If there is not enough space
138
+ then we halt the Coset Table creation. The maximum amount of space that
139
+ can be used by Coset Table can be manipulated using the class variable
140
+ ``CosetTable.coset_table_max_limit``.
141
+
142
+ See Also
143
+ ========
144
+
145
+ define_c
146
+
147
+ """
148
+ A = self.A
149
+ table = self.table
150
+ len_table = len(table)
151
+ if len_table >= self.coset_table_limit:
152
+ # abort the further generation of cosets
153
+ raise ValueError("the coset enumeration has defined more than "
154
+ "%s cosets. Try with a greater value max number of cosets "
155
+ % self.coset_table_limit)
156
+ table.append([None]*len(A))
157
+ self.P.append([None]*len(self.A))
158
+ # beta is the new coset generated
159
+ beta = len_table
160
+ self.p.append(beta)
161
+ table[alpha][self.A_dict[x]] = beta
162
+ table[beta][self.A_dict_inv[x]] = alpha
163
+ # P[alpha][x] = epsilon, P[beta][x**-1] = epsilon
164
+ if modified:
165
+ self.P[alpha][self.A_dict[x]] = self._grp.identity
166
+ self.P[beta][self.A_dict_inv[x]] = self._grp.identity
167
+ self.p_p[beta] = self._grp.identity
168
+
169
+ def define_c(self, alpha, x):
170
+ r"""
171
+ A variation of ``define`` routine, described on Pg. 165 [1], used in
172
+ the coset table-based strategy of Todd-Coxeter algorithm. It differs
173
+ from ``define`` routine in that for each definition it also adds the
174
+ tuple `(\alpha, x)` to the deduction stack.
175
+
176
+ See Also
177
+ ========
178
+
179
+ define
180
+
181
+ """
182
+ A = self.A
183
+ table = self.table
184
+ len_table = len(table)
185
+ if len_table >= self.coset_table_limit:
186
+ # abort the further generation of cosets
187
+ raise ValueError("the coset enumeration has defined more than "
188
+ "%s cosets. Try with a greater value max number of cosets "
189
+ % self.coset_table_limit)
190
+ table.append([None]*len(A))
191
+ # beta is the new coset generated
192
+ beta = len_table
193
+ self.p.append(beta)
194
+ table[alpha][self.A_dict[x]] = beta
195
+ table[beta][self.A_dict_inv[x]] = alpha
196
+ # append to deduction stack
197
+ self.deduction_stack.append((alpha, x))
198
+
199
+ def scan_c(self, alpha, word):
200
+ """
201
+ A variation of ``scan`` routine, described on pg. 165 of [1], which
202
+ puts at tuple, whenever a deduction occurs, to deduction stack.
203
+
204
+ See Also
205
+ ========
206
+
207
+ scan, scan_check, scan_and_fill, scan_and_fill_c
208
+
209
+ """
210
+ # alpha is an integer representing a "coset"
211
+ # since scanning can be in two cases
212
+ # 1. for alpha=0 and w in Y (i.e generating set of H)
213
+ # 2. alpha in Omega (set of live cosets), w in R (relators)
214
+ A_dict = self.A_dict
215
+ A_dict_inv = self.A_dict_inv
216
+ table = self.table
217
+ f = alpha
218
+ i = 0
219
+ r = len(word)
220
+ b = alpha
221
+ j = r - 1
222
+ # list of union of generators and their inverses
223
+ while i <= j and table[f][A_dict[word[i]]] is not None:
224
+ f = table[f][A_dict[word[i]]]
225
+ i += 1
226
+ if i > j:
227
+ if f != b:
228
+ self.coincidence_c(f, b)
229
+ return
230
+ while j >= i and table[b][A_dict_inv[word[j]]] is not None:
231
+ b = table[b][A_dict_inv[word[j]]]
232
+ j -= 1
233
+ if j < i:
234
+ # we have an incorrect completed scan with coincidence f ~ b
235
+ # run the "coincidence" routine
236
+ self.coincidence_c(f, b)
237
+ elif j == i:
238
+ # deduction process
239
+ table[f][A_dict[word[i]]] = b
240
+ table[b][A_dict_inv[word[i]]] = f
241
+ self.deduction_stack.append((f, word[i]))
242
+ # otherwise scan is incomplete and yields no information
243
+
244
+ # alpha, beta coincide, i.e. alpha, beta represent the pair of cosets where
245
+ # coincidence occurs
246
+ def coincidence_c(self, alpha, beta):
247
+ """
248
+ A variation of ``coincidence`` routine used in the coset-table based
249
+ method of coset enumeration. The only difference being on addition of
250
+ a new coset in coset table(i.e new coset introduction), then it is
251
+ appended to ``deduction_stack``.
252
+
253
+ See Also
254
+ ========
255
+
256
+ coincidence
257
+
258
+ """
259
+ A_dict = self.A_dict
260
+ A_dict_inv = self.A_dict_inv
261
+ table = self.table
262
+ # behaves as a queue
263
+ q = []
264
+ self.merge(alpha, beta, q)
265
+ while len(q) > 0:
266
+ gamma = q.pop(0)
267
+ for x in A_dict:
268
+ delta = table[gamma][A_dict[x]]
269
+ if delta is not None:
270
+ table[delta][A_dict_inv[x]] = None
271
+ # only line of difference from ``coincidence`` routine
272
+ self.deduction_stack.append((delta, x**-1))
273
+ mu = self.rep(gamma)
274
+ nu = self.rep(delta)
275
+ if table[mu][A_dict[x]] is not None:
276
+ self.merge(nu, table[mu][A_dict[x]], q)
277
+ elif table[nu][A_dict_inv[x]] is not None:
278
+ self.merge(mu, table[nu][A_dict_inv[x]], q)
279
+ else:
280
+ table[mu][A_dict[x]] = nu
281
+ table[nu][A_dict_inv[x]] = mu
282
+
283
+ def scan(self, alpha, word, y=None, fill=False, modified=False):
284
+ r"""
285
+ ``scan`` performs a scanning process on the input ``word``.
286
+ It first locates the largest prefix ``s`` of ``word`` for which
287
+ `\alpha^s` is defined (i.e is not ``None``), ``s`` may be empty. Let
288
+ ``word=sv``, let ``t`` be the longest suffix of ``v`` for which
289
+ `\alpha^{t^{-1}}` is defined, and let ``v=ut``. Then three
290
+ possibilities are there:
291
+
292
+ 1. If ``t=v``, then we say that the scan completes, and if, in addition
293
+ `\alpha^s = \alpha^{t^{-1}}`, then we say that the scan completes
294
+ correctly.
295
+
296
+ 2. It can also happen that scan does not complete, but `|u|=1`; that
297
+ is, the word ``u`` consists of a single generator `x \in A`. In that
298
+ case, if `\alpha^s = \beta` and `\alpha^{t^{-1}} = \gamma`, then we can
299
+ set `\beta^x = \gamma` and `\gamma^{x^{-1}} = \beta`. These assignments
300
+ are known as deductions and enable the scan to complete correctly.
301
+
302
+ 3. See ``coicidence`` routine for explanation of third condition.
303
+
304
+ Notes
305
+ =====
306
+
307
+ The code for the procedure of scanning `\alpha \in \Omega`
308
+ under `w \in A*` is defined on pg. 155 [1]
309
+
310
+ See Also
311
+ ========
312
+
313
+ scan_c, scan_check, scan_and_fill, scan_and_fill_c
314
+
315
+ Scan and Fill
316
+ =============
317
+
318
+ Performed when the default argument fill=True.
319
+
320
+ Modified Scan
321
+ =============
322
+
323
+ Performed when the default argument modified=True
324
+
325
+ """
326
+ # alpha is an integer representing a "coset"
327
+ # since scanning can be in two cases
328
+ # 1. for alpha=0 and w in Y (i.e generating set of H)
329
+ # 2. alpha in Omega (set of live cosets), w in R (relators)
330
+ A_dict = self.A_dict
331
+ A_dict_inv = self.A_dict_inv
332
+ table = self.table
333
+ f = alpha
334
+ i = 0
335
+ r = len(word)
336
+ b = alpha
337
+ j = r - 1
338
+ b_p = y
339
+ if modified:
340
+ f_p = self._grp.identity
341
+ flag = 0
342
+ while fill or flag == 0:
343
+ flag = 1
344
+ while i <= j and table[f][A_dict[word[i]]] is not None:
345
+ if modified:
346
+ f_p = f_p*self.P[f][A_dict[word[i]]]
347
+ f = table[f][A_dict[word[i]]]
348
+ i += 1
349
+ if i > j:
350
+ if f != b:
351
+ if modified:
352
+ self.modified_coincidence(f, b, f_p**-1*y)
353
+ else:
354
+ self.coincidence(f, b)
355
+ return
356
+ while j >= i and table[b][A_dict_inv[word[j]]] is not None:
357
+ if modified:
358
+ b_p = b_p*self.P[b][self.A_dict_inv[word[j]]]
359
+ b = table[b][A_dict_inv[word[j]]]
360
+ j -= 1
361
+ if j < i:
362
+ # we have an incorrect completed scan with coincidence f ~ b
363
+ # run the "coincidence" routine
364
+ if modified:
365
+ self.modified_coincidence(f, b, f_p**-1*b_p)
366
+ else:
367
+ self.coincidence(f, b)
368
+ elif j == i:
369
+ # deduction process
370
+ table[f][A_dict[word[i]]] = b
371
+ table[b][A_dict_inv[word[i]]] = f
372
+ if modified:
373
+ self.P[f][self.A_dict[word[i]]] = f_p**-1*b_p
374
+ self.P[b][self.A_dict_inv[word[i]]] = b_p**-1*f_p
375
+ return
376
+ elif fill:
377
+ self.define(f, word[i], modified=modified)
378
+ # otherwise scan is incomplete and yields no information
379
+
380
+ # used in the low-index subgroups algorithm
381
+ def scan_check(self, alpha, word):
382
+ r"""
383
+ Another version of ``scan`` routine, described on, it checks whether
384
+ `\alpha` scans correctly under `word`, it is a straightforward
385
+ modification of ``scan``. ``scan_check`` returns ``False`` (rather than
386
+ calling ``coincidence``) if the scan completes incorrectly; otherwise
387
+ it returns ``True``.
388
+
389
+ See Also
390
+ ========
391
+
392
+ scan, scan_c, scan_and_fill, scan_and_fill_c
393
+
394
+ """
395
+ # alpha is an integer representing a "coset"
396
+ # since scanning can be in two cases
397
+ # 1. for alpha=0 and w in Y (i.e generating set of H)
398
+ # 2. alpha in Omega (set of live cosets), w in R (relators)
399
+ A_dict = self.A_dict
400
+ A_dict_inv = self.A_dict_inv
401
+ table = self.table
402
+ f = alpha
403
+ i = 0
404
+ r = len(word)
405
+ b = alpha
406
+ j = r - 1
407
+ while i <= j and table[f][A_dict[word[i]]] is not None:
408
+ f = table[f][A_dict[word[i]]]
409
+ i += 1
410
+ if i > j:
411
+ return f == b
412
+ while j >= i and table[b][A_dict_inv[word[j]]] is not None:
413
+ b = table[b][A_dict_inv[word[j]]]
414
+ j -= 1
415
+ if j < i:
416
+ # we have an incorrect completed scan with coincidence f ~ b
417
+ # return False, instead of calling coincidence routine
418
+ return False
419
+ elif j == i:
420
+ # deduction process
421
+ table[f][A_dict[word[i]]] = b
422
+ table[b][A_dict_inv[word[i]]] = f
423
+ return True
424
+
425
+ def merge(self, k, lamda, q, w=None, modified=False):
426
+ """
427
+ Merge two classes with representatives ``k`` and ``lamda``, described
428
+ on Pg. 157 [1] (for pseudocode), start by putting ``p[k] = lamda``.
429
+ It is more efficient to choose the new representative from the larger
430
+ of the two classes being merged, i.e larger among ``k`` and ``lamda``.
431
+ procedure ``merge`` performs the merging operation, adds the deleted
432
+ class representative to the queue ``q``.
433
+
434
+ Parameters
435
+ ==========
436
+
437
+ 'k', 'lamda' being the two class representatives to be merged.
438
+
439
+ Notes
440
+ =====
441
+
442
+ Pg. 86-87 [1] contains a description of this method.
443
+
444
+ See Also
445
+ ========
446
+
447
+ coincidence, rep
448
+
449
+ """
450
+ p = self.p
451
+ rep = self.rep
452
+ phi = rep(k, modified=modified)
453
+ psi = rep(lamda, modified=modified)
454
+ if phi != psi:
455
+ mu = min(phi, psi)
456
+ v = max(phi, psi)
457
+ p[v] = mu
458
+ if modified:
459
+ if v == phi:
460
+ self.p_p[phi] = self.p_p[k]**-1*w*self.p_p[lamda]
461
+ else:
462
+ self.p_p[psi] = self.p_p[lamda]**-1*w**-1*self.p_p[k]
463
+ q.append(v)
464
+
465
+ def rep(self, k, modified=False):
466
+ r"""
467
+ Parameters
468
+ ==========
469
+
470
+ `k \in [0 \ldots n-1]`, as for ``self`` only array ``p`` is used
471
+
472
+ Returns
473
+ =======
474
+
475
+ Representative of the class containing ``k``.
476
+
477
+ Returns the representative of `\sim` class containing ``k``, it also
478
+ makes some modification to array ``p`` of ``self`` to ease further
479
+ computations, described on Pg. 157 [1].
480
+
481
+ The information on classes under `\sim` is stored in array `p` of
482
+ ``self`` argument, which will always satisfy the property:
483
+
484
+ `p[\alpha] \sim \alpha` and `p[\alpha]=\alpha \iff \alpha=rep(\alpha)`
485
+ `\forall \in [0 \ldots n-1]`.
486
+
487
+ So, for `\alpha \in [0 \ldots n-1]`, we find `rep(self, \alpha)` by
488
+ continually replacing `\alpha` by `p[\alpha]` until it becomes
489
+ constant (i.e satisfies `p[\alpha] = \alpha`):w
490
+
491
+ To increase the efficiency of later ``rep`` calculations, whenever we
492
+ find `rep(self, \alpha)=\beta`, we set
493
+ `p[\gamma] = \beta \forall \gamma \in p-chain` from `\alpha` to `\beta`
494
+
495
+ Notes
496
+ =====
497
+
498
+ ``rep`` routine is also described on Pg. 85-87 [1] in Atkinson's
499
+ algorithm, this results from the fact that ``coincidence`` routine
500
+ introduces functionality similar to that introduced by the
501
+ ``minimal_block`` routine on Pg. 85-87 [1].
502
+
503
+ See Also
504
+ ========
505
+
506
+ coincidence, merge
507
+
508
+ """
509
+ p = self.p
510
+ lamda = k
511
+ rho = p[lamda]
512
+ if modified:
513
+ s = p[:]
514
+ while rho != lamda:
515
+ if modified:
516
+ s[rho] = lamda
517
+ lamda = rho
518
+ rho = p[lamda]
519
+ if modified:
520
+ rho = s[lamda]
521
+ while rho != k:
522
+ mu = rho
523
+ rho = s[mu]
524
+ p[rho] = lamda
525
+ self.p_p[rho] = self.p_p[rho]*self.p_p[mu]
526
+ else:
527
+ mu = k
528
+ rho = p[mu]
529
+ while rho != lamda:
530
+ p[mu] = lamda
531
+ mu = rho
532
+ rho = p[mu]
533
+ return lamda
534
+
535
+ # alpha, beta coincide, i.e. alpha, beta represent the pair of cosets
536
+ # where coincidence occurs
537
+ def coincidence(self, alpha, beta, w=None, modified=False):
538
+ r"""
539
+ The third situation described in ``scan`` routine is handled by this
540
+ routine, described on Pg. 156-161 [1].
541
+
542
+ The unfortunate situation when the scan completes but not correctly,
543
+ then ``coincidence`` routine is run. i.e when for some `i` with
544
+ `1 \le i \le r+1`, we have `w=st` with `s = x_1 x_2 \dots x_{i-1}`,
545
+ `t = x_i x_{i+1} \dots x_r`, and `\beta = \alpha^s` and
546
+ `\gamma = \alpha^{t-1}` are defined but unequal. This means that
547
+ `\beta` and `\gamma` represent the same coset of `H` in `G`. Described
548
+ on Pg. 156 [1]. ``rep``
549
+
550
+ See Also
551
+ ========
552
+
553
+ scan
554
+
555
+ """
556
+ A_dict = self.A_dict
557
+ A_dict_inv = self.A_dict_inv
558
+ table = self.table
559
+ # behaves as a queue
560
+ q = []
561
+ if modified:
562
+ self.modified_merge(alpha, beta, w, q)
563
+ else:
564
+ self.merge(alpha, beta, q)
565
+ while len(q) > 0:
566
+ gamma = q.pop(0)
567
+ for x in A_dict:
568
+ delta = table[gamma][A_dict[x]]
569
+ if delta is not None:
570
+ table[delta][A_dict_inv[x]] = None
571
+ mu = self.rep(gamma, modified=modified)
572
+ nu = self.rep(delta, modified=modified)
573
+ if table[mu][A_dict[x]] is not None:
574
+ if modified:
575
+ v = self.p_p[delta]**-1*self.P[gamma][self.A_dict[x]]**-1
576
+ v = v*self.p_p[gamma]*self.P[mu][self.A_dict[x]]
577
+ self.modified_merge(nu, table[mu][self.A_dict[x]], v, q)
578
+ else:
579
+ self.merge(nu, table[mu][A_dict[x]], q)
580
+ elif table[nu][A_dict_inv[x]] is not None:
581
+ if modified:
582
+ v = self.p_p[gamma]**-1*self.P[gamma][self.A_dict[x]]
583
+ v = v*self.p_p[delta]*self.P[mu][self.A_dict_inv[x]]
584
+ self.modified_merge(mu, table[nu][self.A_dict_inv[x]], v, q)
585
+ else:
586
+ self.merge(mu, table[nu][A_dict_inv[x]], q)
587
+ else:
588
+ table[mu][A_dict[x]] = nu
589
+ table[nu][A_dict_inv[x]] = mu
590
+ if modified:
591
+ v = self.p_p[gamma]**-1*self.P[gamma][self.A_dict[x]]*self.p_p[delta]
592
+ self.P[mu][self.A_dict[x]] = v
593
+ self.P[nu][self.A_dict_inv[x]] = v**-1
594
+
595
+ # method used in the HLT strategy
596
+ def scan_and_fill(self, alpha, word):
597
+ """
598
+ A modified version of ``scan`` routine used in the relator-based
599
+ method of coset enumeration, described on pg. 162-163 [1], which
600
+ follows the idea that whenever the procedure is called and the scan
601
+ is incomplete then it makes new definitions to enable the scan to
602
+ complete; i.e it fills in the gaps in the scan of the relator or
603
+ subgroup generator.
604
+
605
+ """
606
+ self.scan(alpha, word, fill=True)
607
+
608
+ def scan_and_fill_c(self, alpha, word):
609
+ """
610
+ A modified version of ``scan`` routine, described on Pg. 165 second
611
+ para. [1], with modification similar to that of ``scan_anf_fill`` the
612
+ only difference being it calls the coincidence procedure used in the
613
+ coset-table based method i.e. the routine ``coincidence_c`` is used.
614
+
615
+ See Also
616
+ ========
617
+
618
+ scan, scan_and_fill
619
+
620
+ """
621
+ A_dict = self.A_dict
622
+ A_dict_inv = self.A_dict_inv
623
+ table = self.table
624
+ r = len(word)
625
+ f = alpha
626
+ i = 0
627
+ b = alpha
628
+ j = r - 1
629
+ # loop until it has filled the alpha row in the table.
630
+ while True:
631
+ # do the forward scanning
632
+ while i <= j and table[f][A_dict[word[i]]] is not None:
633
+ f = table[f][A_dict[word[i]]]
634
+ i += 1
635
+ if i > j:
636
+ if f != b:
637
+ self.coincidence_c(f, b)
638
+ return
639
+ # forward scan was incomplete, scan backwards
640
+ while j >= i and table[b][A_dict_inv[word[j]]] is not None:
641
+ b = table[b][A_dict_inv[word[j]]]
642
+ j -= 1
643
+ if j < i:
644
+ self.coincidence_c(f, b)
645
+ elif j == i:
646
+ table[f][A_dict[word[i]]] = b
647
+ table[b][A_dict_inv[word[i]]] = f
648
+ self.deduction_stack.append((f, word[i]))
649
+ else:
650
+ self.define_c(f, word[i])
651
+
652
+ # method used in the HLT strategy
653
+ def look_ahead(self):
654
+ """
655
+ When combined with the HLT method this is known as HLT+Lookahead
656
+ method of coset enumeration, described on pg. 164 [1]. Whenever
657
+ ``define`` aborts due to lack of space available this procedure is
658
+ executed. This routine helps in recovering space resulting from
659
+ "coincidence" of cosets.
660
+
661
+ """
662
+ R = self.fp_group.relators
663
+ p = self.p
664
+ # complete scan all relators under all cosets(obviously live)
665
+ # without making new definitions
666
+ for beta in self.omega:
667
+ for w in R:
668
+ self.scan(beta, w)
669
+ if p[beta] < beta:
670
+ break
671
+
672
+ # Pg. 166
673
+ def process_deductions(self, R_c_x, R_c_x_inv):
674
+ """
675
+ Processes the deductions that have been pushed onto ``deduction_stack``,
676
+ described on Pg. 166 [1] and is used in coset-table based enumeration.
677
+
678
+ See Also
679
+ ========
680
+
681
+ deduction_stack
682
+
683
+ """
684
+ p = self.p
685
+ table = self.table
686
+ while len(self.deduction_stack) > 0:
687
+ if len(self.deduction_stack) >= CosetTable.max_stack_size:
688
+ self.look_ahead()
689
+ del self.deduction_stack[:]
690
+ continue
691
+ else:
692
+ alpha, x = self.deduction_stack.pop()
693
+ if p[alpha] == alpha:
694
+ for w in R_c_x:
695
+ self.scan_c(alpha, w)
696
+ if p[alpha] < alpha:
697
+ break
698
+ beta = table[alpha][self.A_dict[x]]
699
+ if beta is not None and p[beta] == beta:
700
+ for w in R_c_x_inv:
701
+ self.scan_c(beta, w)
702
+ if p[beta] < beta:
703
+ break
704
+
705
+ def process_deductions_check(self, R_c_x, R_c_x_inv):
706
+ """
707
+ A variation of ``process_deductions``, this calls ``scan_check``
708
+ wherever ``process_deductions`` calls ``scan``, described on Pg. [1].
709
+
710
+ See Also
711
+ ========
712
+
713
+ process_deductions
714
+
715
+ """
716
+ table = self.table
717
+ while len(self.deduction_stack) > 0:
718
+ alpha, x = self.deduction_stack.pop()
719
+ for w in R_c_x:
720
+ if not self.scan_check(alpha, w):
721
+ return False
722
+ beta = table[alpha][self.A_dict[x]]
723
+ if beta is not None:
724
+ for w in R_c_x_inv:
725
+ if not self.scan_check(beta, w):
726
+ return False
727
+ return True
728
+
729
+ def switch(self, beta, gamma):
730
+ r"""Switch the elements `\beta, \gamma \in \Omega` of ``self``, used
731
+ by the ``standardize`` procedure, described on Pg. 167 [1].
732
+
733
+ See Also
734
+ ========
735
+
736
+ standardize
737
+
738
+ """
739
+ A = self.A
740
+ A_dict = self.A_dict
741
+ table = self.table
742
+ for x in A:
743
+ z = table[gamma][A_dict[x]]
744
+ table[gamma][A_dict[x]] = table[beta][A_dict[x]]
745
+ table[beta][A_dict[x]] = z
746
+ for alpha in range(len(self.p)):
747
+ if self.p[alpha] == alpha:
748
+ if table[alpha][A_dict[x]] == beta:
749
+ table[alpha][A_dict[x]] = gamma
750
+ elif table[alpha][A_dict[x]] == gamma:
751
+ table[alpha][A_dict[x]] = beta
752
+
753
+ def standardize(self):
754
+ r"""
755
+ A coset table is standardized if when running through the cosets and
756
+ within each coset through the generator images (ignoring generator
757
+ inverses), the cosets appear in order of the integers
758
+ `0, 1, \dots, n`. "Standardize" reorders the elements of `\Omega`
759
+ such that, if we scan the coset table first by elements of `\Omega`
760
+ and then by elements of A, then the cosets occur in ascending order.
761
+ ``standardize()`` is used at the end of an enumeration to permute the
762
+ cosets so that they occur in some sort of standard order.
763
+
764
+ Notes
765
+ =====
766
+
767
+ procedure is described on pg. 167-168 [1], it also makes use of the
768
+ ``switch`` routine to replace by smaller integer value.
769
+
770
+ Examples
771
+ ========
772
+
773
+ >>> from sympy.combinatorics import free_group
774
+ >>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r
775
+ >>> F, x, y = free_group("x, y")
776
+
777
+ # Example 5.3 from [1]
778
+ >>> f = FpGroup(F, [x**2*y**2, x**3*y**5])
779
+ >>> C = coset_enumeration_r(f, [])
780
+ >>> C.compress()
781
+ >>> C.table
782
+ [[1, 3, 1, 3], [2, 0, 2, 0], [3, 1, 3, 1], [0, 2, 0, 2]]
783
+ >>> C.standardize()
784
+ >>> C.table
785
+ [[1, 2, 1, 2], [3, 0, 3, 0], [0, 3, 0, 3], [2, 1, 2, 1]]
786
+
787
+ """
788
+ A = self.A
789
+ A_dict = self.A_dict
790
+ gamma = 1
791
+ for alpha, x in product(range(self.n), A):
792
+ beta = self.table[alpha][A_dict[x]]
793
+ if beta >= gamma:
794
+ if beta > gamma:
795
+ self.switch(gamma, beta)
796
+ gamma += 1
797
+ if gamma == self.n:
798
+ return
799
+
800
+ # Compression of a Coset Table
801
+ def compress(self):
802
+ """Removes the non-live cosets from the coset table, described on
803
+ pg. 167 [1].
804
+
805
+ """
806
+ gamma = -1
807
+ A = self.A
808
+ A_dict = self.A_dict
809
+ A_dict_inv = self.A_dict_inv
810
+ table = self.table
811
+ chi = tuple([i for i in range(len(self.p)) if self.p[i] != i])
812
+ for alpha in self.omega:
813
+ gamma += 1
814
+ if gamma != alpha:
815
+ # replace alpha by gamma in coset table
816
+ for x in A:
817
+ beta = table[alpha][A_dict[x]]
818
+ table[gamma][A_dict[x]] = beta
819
+ table[beta][A_dict_inv[x]] == gamma
820
+ # all the cosets in the table are live cosets
821
+ self.p = list(range(gamma + 1))
822
+ # delete the useless columns
823
+ del table[len(self.p):]
824
+ # re-define values
825
+ for row in table:
826
+ for j in range(len(self.A)):
827
+ row[j] -= bisect_left(chi, row[j])
828
+
829
+ def conjugates(self, R):
830
+ R_c = list(chain.from_iterable((rel.cyclic_conjugates(), \
831
+ (rel**-1).cyclic_conjugates()) for rel in R))
832
+ R_set = set()
833
+ for conjugate in R_c:
834
+ R_set = R_set.union(conjugate)
835
+ R_c_list = []
836
+ for x in self.A:
837
+ r = {word for word in R_set if word[0] == x}
838
+ R_c_list.append(r)
839
+ R_set.difference_update(r)
840
+ return R_c_list
841
+
842
+ def coset_representative(self, coset):
843
+ '''
844
+ Compute the coset representative of a given coset.
845
+
846
+ Examples
847
+ ========
848
+
849
+ >>> from sympy.combinatorics import free_group
850
+ >>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r
851
+ >>> F, x, y = free_group("x, y")
852
+ >>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
853
+ >>> C = coset_enumeration_r(f, [x])
854
+ >>> C.compress()
855
+ >>> C.table
856
+ [[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1]]
857
+ >>> C.coset_representative(0)
858
+ <identity>
859
+ >>> C.coset_representative(1)
860
+ y
861
+ >>> C.coset_representative(2)
862
+ y**-1
863
+
864
+ '''
865
+ for x in self.A:
866
+ gamma = self.table[coset][self.A_dict[x]]
867
+ if coset == 0:
868
+ return self.fp_group.identity
869
+ if gamma < coset:
870
+ return self.coset_representative(gamma)*x**-1
871
+
872
+ ##############################
873
+ # Modified Methods #
874
+ ##############################
875
+
876
+ def modified_define(self, alpha, x):
877
+ r"""
878
+ Define a function p_p from from [1..n] to A* as
879
+ an additional component of the modified coset table.
880
+
881
+ Parameters
882
+ ==========
883
+
884
+ \alpha \in \Omega
885
+ x \in A*
886
+
887
+ See Also
888
+ ========
889
+
890
+ define
891
+
892
+ """
893
+ self.define(alpha, x, modified=True)
894
+
895
+ def modified_scan(self, alpha, w, y, fill=False):
896
+ r"""
897
+ Parameters
898
+ ==========
899
+ \alpha \in \Omega
900
+ w \in A*
901
+ y \in (YUY^-1)
902
+ fill -- `modified_scan_and_fill` when set to True.
903
+
904
+ See Also
905
+ ========
906
+
907
+ scan
908
+ """
909
+ self.scan(alpha, w, y=y, fill=fill, modified=True)
910
+
911
+ def modified_scan_and_fill(self, alpha, w, y):
912
+ self.modified_scan(alpha, w, y, fill=True)
913
+
914
+ def modified_merge(self, k, lamda, w, q):
915
+ r"""
916
+ Parameters
917
+ ==========
918
+
919
+ 'k', 'lamda' -- the two class representatives to be merged.
920
+ q -- queue of length l of elements to be deleted from `\Omega` *.
921
+ w -- Word in (YUY^-1)
922
+
923
+ See Also
924
+ ========
925
+
926
+ merge
927
+ """
928
+ self.merge(k, lamda, q, w=w, modified=True)
929
+
930
+ def modified_rep(self, k):
931
+ r"""
932
+ Parameters
933
+ ==========
934
+
935
+ `k \in [0 \ldots n-1]`
936
+
937
+ See Also
938
+ ========
939
+
940
+ rep
941
+ """
942
+ self.rep(k, modified=True)
943
+
944
+ def modified_coincidence(self, alpha, beta, w):
945
+ r"""
946
+ Parameters
947
+ ==========
948
+
949
+ A coincident pair `\alpha, \beta \in \Omega, w \in Y \cup Y^{-1}`
950
+
951
+ See Also
952
+ ========
953
+
954
+ coincidence
955
+
956
+ """
957
+ self.coincidence(alpha, beta, w=w, modified=True)
958
+
959
+ ###############################################################################
960
+ # COSET ENUMERATION #
961
+ ###############################################################################
962
+
963
+ # relator-based method
964
+ def coset_enumeration_r(fp_grp, Y, max_cosets=None, draft=None,
965
+ incomplete=False, modified=False):
966
+ """
967
+ This is easier of the two implemented methods of coset enumeration.
968
+ and is often called the HLT method, after Hazelgrove, Leech, Trotter
969
+ The idea is that we make use of ``scan_and_fill`` makes new definitions
970
+ whenever the scan is incomplete to enable the scan to complete; this way
971
+ we fill in the gaps in the scan of the relator or subgroup generator,
972
+ that's why the name relator-based method.
973
+
974
+ An instance of `CosetTable` for `fp_grp` can be passed as the keyword
975
+ argument `draft` in which case the coset enumeration will start with
976
+ that instance and attempt to complete it.
977
+
978
+ When `incomplete` is `True` and the function is unable to complete for
979
+ some reason, the partially complete table will be returned.
980
+
981
+ # TODO: complete the docstring
982
+
983
+ See Also
984
+ ========
985
+
986
+ scan_and_fill,
987
+
988
+ Examples
989
+ ========
990
+
991
+ >>> from sympy.combinatorics.free_groups import free_group
992
+ >>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r
993
+ >>> F, x, y = free_group("x, y")
994
+
995
+ # Example 5.1 from [1]
996
+ >>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
997
+ >>> C = coset_enumeration_r(f, [x])
998
+ >>> for i in range(len(C.p)):
999
+ ... if C.p[i] == i:
1000
+ ... print(C.table[i])
1001
+ [0, 0, 1, 2]
1002
+ [1, 1, 2, 0]
1003
+ [2, 2, 0, 1]
1004
+ >>> C.p
1005
+ [0, 1, 2, 1, 1]
1006
+
1007
+ # Example from exercises Q2 [1]
1008
+ >>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
1009
+ >>> C = coset_enumeration_r(f, [])
1010
+ >>> C.compress(); C.standardize()
1011
+ >>> C.table
1012
+ [[1, 2, 3, 4],
1013
+ [5, 0, 6, 7],
1014
+ [0, 5, 7, 6],
1015
+ [7, 6, 5, 0],
1016
+ [6, 7, 0, 5],
1017
+ [2, 1, 4, 3],
1018
+ [3, 4, 2, 1],
1019
+ [4, 3, 1, 2]]
1020
+
1021
+ # Example 5.2
1022
+ >>> f = FpGroup(F, [x**2, y**3, (x*y)**3])
1023
+ >>> Y = [x*y]
1024
+ >>> C = coset_enumeration_r(f, Y)
1025
+ >>> for i in range(len(C.p)):
1026
+ ... if C.p[i] == i:
1027
+ ... print(C.table[i])
1028
+ [1, 1, 2, 1]
1029
+ [0, 0, 0, 2]
1030
+ [3, 3, 1, 0]
1031
+ [2, 2, 3, 3]
1032
+
1033
+ # Example 5.3
1034
+ >>> f = FpGroup(F, [x**2*y**2, x**3*y**5])
1035
+ >>> Y = []
1036
+ >>> C = coset_enumeration_r(f, Y)
1037
+ >>> for i in range(len(C.p)):
1038
+ ... if C.p[i] == i:
1039
+ ... print(C.table[i])
1040
+ [1, 3, 1, 3]
1041
+ [2, 0, 2, 0]
1042
+ [3, 1, 3, 1]
1043
+ [0, 2, 0, 2]
1044
+
1045
+ # Example 5.4
1046
+ >>> F, a, b, c, d, e = free_group("a, b, c, d, e")
1047
+ >>> f = FpGroup(F, [a*b*c**-1, b*c*d**-1, c*d*e**-1, d*e*a**-1, e*a*b**-1])
1048
+ >>> Y = [a]
1049
+ >>> C = coset_enumeration_r(f, Y)
1050
+ >>> for i in range(len(C.p)):
1051
+ ... if C.p[i] == i:
1052
+ ... print(C.table[i])
1053
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
1054
+
1055
+ # example of "compress" method
1056
+ >>> C.compress()
1057
+ >>> C.table
1058
+ [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
1059
+
1060
+ # Exercises Pg. 161, Q2.
1061
+ >>> F, x, y = free_group("x, y")
1062
+ >>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
1063
+ >>> Y = []
1064
+ >>> C = coset_enumeration_r(f, Y)
1065
+ >>> C.compress()
1066
+ >>> C.standardize()
1067
+ >>> C.table
1068
+ [[1, 2, 3, 4],
1069
+ [5, 0, 6, 7],
1070
+ [0, 5, 7, 6],
1071
+ [7, 6, 5, 0],
1072
+ [6, 7, 0, 5],
1073
+ [2, 1, 4, 3],
1074
+ [3, 4, 2, 1],
1075
+ [4, 3, 1, 2]]
1076
+
1077
+ # John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
1078
+ # Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490
1079
+ # from 1973chwd.pdf
1080
+ # Table 1. Ex. 1
1081
+ >>> F, r, s, t = free_group("r, s, t")
1082
+ >>> E1 = FpGroup(F, [t**-1*r*t*r**-2, r**-1*s*r*s**-2, s**-1*t*s*t**-2])
1083
+ >>> C = coset_enumeration_r(E1, [r])
1084
+ >>> for i in range(len(C.p)):
1085
+ ... if C.p[i] == i:
1086
+ ... print(C.table[i])
1087
+ [0, 0, 0, 0, 0, 0]
1088
+
1089
+ Ex. 2
1090
+ >>> F, a, b = free_group("a, b")
1091
+ >>> Cox = FpGroup(F, [a**6, b**6, (a*b)**2, (a**2*b**2)**2, (a**3*b**3)**5])
1092
+ >>> C = coset_enumeration_r(Cox, [a])
1093
+ >>> index = 0
1094
+ >>> for i in range(len(C.p)):
1095
+ ... if C.p[i] == i:
1096
+ ... index += 1
1097
+ >>> index
1098
+ 500
1099
+
1100
+ # Ex. 3
1101
+ >>> F, a, b = free_group("a, b")
1102
+ >>> B_2_4 = FpGroup(F, [a**4, b**4, (a*b)**4, (a**-1*b)**4, (a**2*b)**4, \
1103
+ (a*b**2)**4, (a**2*b**2)**4, (a**-1*b*a*b)**4, (a*b**-1*a*b)**4])
1104
+ >>> C = coset_enumeration_r(B_2_4, [a])
1105
+ >>> index = 0
1106
+ >>> for i in range(len(C.p)):
1107
+ ... if C.p[i] == i:
1108
+ ... index += 1
1109
+ >>> index
1110
+ 1024
1111
+
1112
+ References
1113
+ ==========
1114
+
1115
+ .. [1] Holt, D., Eick, B., O'Brien, E.
1116
+ "Handbook of computational group theory"
1117
+
1118
+ """
1119
+ # 1. Initialize a coset table C for < X|R >
1120
+ C = CosetTable(fp_grp, Y, max_cosets=max_cosets)
1121
+ # Define coset table methods.
1122
+ if modified:
1123
+ _scan_and_fill = C.modified_scan_and_fill
1124
+ _define = C.modified_define
1125
+ else:
1126
+ _scan_and_fill = C.scan_and_fill
1127
+ _define = C.define
1128
+ if draft:
1129
+ C.table = draft.table[:]
1130
+ C.p = draft.p[:]
1131
+ R = fp_grp.relators
1132
+ A_dict = C.A_dict
1133
+ p = C.p
1134
+ for i in range(len(Y)):
1135
+ if modified:
1136
+ _scan_and_fill(0, Y[i], C._grp.generators[i])
1137
+ else:
1138
+ _scan_and_fill(0, Y[i])
1139
+ alpha = 0
1140
+ while alpha < C.n:
1141
+ if p[alpha] == alpha:
1142
+ try:
1143
+ for w in R:
1144
+ if modified:
1145
+ _scan_and_fill(alpha, w, C._grp.identity)
1146
+ else:
1147
+ _scan_and_fill(alpha, w)
1148
+ # if alpha was eliminated during the scan then break
1149
+ if p[alpha] < alpha:
1150
+ break
1151
+ if p[alpha] == alpha:
1152
+ for x in A_dict:
1153
+ if C.table[alpha][A_dict[x]] is None:
1154
+ _define(alpha, x)
1155
+ except ValueError as e:
1156
+ if incomplete:
1157
+ return C
1158
+ raise e
1159
+ alpha += 1
1160
+ return C
1161
+
1162
+ def modified_coset_enumeration_r(fp_grp, Y, max_cosets=None, draft=None,
1163
+ incomplete=False):
1164
+ r"""
1165
+ Introduce a new set of symbols y \in Y that correspond to the
1166
+ generators of the subgroup. Store the elements of Y as a
1167
+ word P[\alpha, x] and compute the coset table similar to that of
1168
+ the regular coset enumeration methods.
1169
+
1170
+ Examples
1171
+ ========
1172
+
1173
+ >>> from sympy.combinatorics.free_groups import free_group
1174
+ >>> from sympy.combinatorics.fp_groups import FpGroup
1175
+ >>> from sympy.combinatorics.coset_table import modified_coset_enumeration_r
1176
+ >>> F, x, y = free_group("x, y")
1177
+ >>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
1178
+ >>> C = modified_coset_enumeration_r(f, [x])
1179
+ >>> C.table
1180
+ [[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1], [None, 1, None, None], [1, 3, None, None]]
1181
+
1182
+ See Also
1183
+ ========
1184
+
1185
+ coset_enumertation_r
1186
+
1187
+ References
1188
+ ==========
1189
+
1190
+ .. [1] Holt, D., Eick, B., O'Brien, E.,
1191
+ "Handbook of Computational Group Theory",
1192
+ Section 5.3.2
1193
+ """
1194
+ return coset_enumeration_r(fp_grp, Y, max_cosets=max_cosets, draft=draft,
1195
+ incomplete=incomplete, modified=True)
1196
+
1197
+ # Pg. 166
1198
+ # coset-table based method
1199
+ def coset_enumeration_c(fp_grp, Y, max_cosets=None, draft=None,
1200
+ incomplete=False):
1201
+ """
1202
+ >>> from sympy.combinatorics.free_groups import free_group
1203
+ >>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_c
1204
+ >>> F, x, y = free_group("x, y")
1205
+ >>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
1206
+ >>> C = coset_enumeration_c(f, [x])
1207
+ >>> C.table
1208
+ [[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1]]
1209
+
1210
+ """
1211
+ # Initialize a coset table C for < X|R >
1212
+ X = fp_grp.generators
1213
+ R = fp_grp.relators
1214
+ C = CosetTable(fp_grp, Y, max_cosets=max_cosets)
1215
+ if draft:
1216
+ C.table = draft.table[:]
1217
+ C.p = draft.p[:]
1218
+ C.deduction_stack = draft.deduction_stack
1219
+ for alpha, x in product(range(len(C.table)), X):
1220
+ if C.table[alpha][C.A_dict[x]] is not None:
1221
+ C.deduction_stack.append((alpha, x))
1222
+ A = C.A
1223
+ # replace all the elements by cyclic reductions
1224
+ R_cyc_red = [rel.identity_cyclic_reduction() for rel in R]
1225
+ R_c = list(chain.from_iterable((rel.cyclic_conjugates(), (rel**-1).cyclic_conjugates()) \
1226
+ for rel in R_cyc_red))
1227
+ R_set = set()
1228
+ for conjugate in R_c:
1229
+ R_set = R_set.union(conjugate)
1230
+ # a list of subsets of R_c whose words start with "x".
1231
+ R_c_list = []
1232
+ for x in C.A:
1233
+ r = {word for word in R_set if word[0] == x}
1234
+ R_c_list.append(r)
1235
+ R_set.difference_update(r)
1236
+ for w in Y:
1237
+ C.scan_and_fill_c(0, w)
1238
+ for x in A:
1239
+ C.process_deductions(R_c_list[C.A_dict[x]], R_c_list[C.A_dict_inv[x]])
1240
+ alpha = 0
1241
+ while alpha < len(C.table):
1242
+ if C.p[alpha] == alpha:
1243
+ try:
1244
+ for x in C.A:
1245
+ if C.p[alpha] != alpha:
1246
+ break
1247
+ if C.table[alpha][C.A_dict[x]] is None:
1248
+ C.define_c(alpha, x)
1249
+ C.process_deductions(R_c_list[C.A_dict[x]], R_c_list[C.A_dict_inv[x]])
1250
+ except ValueError as e:
1251
+ if incomplete:
1252
+ return C
1253
+ raise e
1254
+ alpha += 1
1255
+ return C
venv/lib/python3.10/site-packages/sympy/combinatorics/fp_groups.py ADDED
@@ -0,0 +1,1348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Finitely Presented Groups and its algorithms. """
2
+
3
+ from sympy.core.singleton import S
4
+ from sympy.core.symbol import symbols
5
+ from sympy.combinatorics.free_groups import (FreeGroup, FreeGroupElement,
6
+ free_group)
7
+ from sympy.combinatorics.rewritingsystem import RewritingSystem
8
+ from sympy.combinatorics.coset_table import (CosetTable,
9
+ coset_enumeration_r,
10
+ coset_enumeration_c)
11
+ from sympy.combinatorics import PermutationGroup
12
+ from sympy.matrices.normalforms import invariant_factors
13
+ from sympy.matrices import Matrix
14
+ from sympy.polys.polytools import gcd
15
+ from sympy.printing.defaults import DefaultPrinting
16
+ from sympy.utilities import public
17
+ from sympy.utilities.magic import pollute
18
+
19
+ from itertools import product
20
+
21
+
22
+ @public
23
+ def fp_group(fr_grp, relators=()):
24
+ _fp_group = FpGroup(fr_grp, relators)
25
+ return (_fp_group,) + tuple(_fp_group._generators)
26
+
27
+ @public
28
+ def xfp_group(fr_grp, relators=()):
29
+ _fp_group = FpGroup(fr_grp, relators)
30
+ return (_fp_group, _fp_group._generators)
31
+
32
+ # Does not work. Both symbols and pollute are undefined. Never tested.
33
+ @public
34
+ def vfp_group(fr_grpm, relators):
35
+ _fp_group = FpGroup(symbols, relators)
36
+ pollute([sym.name for sym in _fp_group.symbols], _fp_group.generators)
37
+ return _fp_group
38
+
39
+
40
+ def _parse_relators(rels):
41
+ """Parse the passed relators."""
42
+ return rels
43
+
44
+
45
+ ###############################################################################
46
+ # FINITELY PRESENTED GROUPS #
47
+ ###############################################################################
48
+
49
+
50
+ class FpGroup(DefaultPrinting):
51
+ """
52
+ The FpGroup would take a FreeGroup and a list/tuple of relators, the
53
+ relators would be specified in such a way that each of them be equal to the
54
+ identity of the provided free group.
55
+
56
+ """
57
+ is_group = True
58
+ is_FpGroup = True
59
+ is_PermutationGroup = False
60
+
61
+ def __init__(self, fr_grp, relators):
62
+ relators = _parse_relators(relators)
63
+ self.free_group = fr_grp
64
+ self.relators = relators
65
+ self.generators = self._generators()
66
+ self.dtype = type("FpGroupElement", (FpGroupElement,), {"group": self})
67
+
68
+ # CosetTable instance on identity subgroup
69
+ self._coset_table = None
70
+ # returns whether coset table on identity subgroup
71
+ # has been standardized
72
+ self._is_standardized = False
73
+
74
+ self._order = None
75
+ self._center = None
76
+
77
+ self._rewriting_system = RewritingSystem(self)
78
+ self._perm_isomorphism = None
79
+ return
80
+
81
+ def _generators(self):
82
+ return self.free_group.generators
83
+
84
+ def make_confluent(self):
85
+ '''
86
+ Try to make the group's rewriting system confluent
87
+
88
+ '''
89
+ self._rewriting_system.make_confluent()
90
+ return
91
+
92
+ def reduce(self, word):
93
+ '''
94
+ Return the reduced form of `word` in `self` according to the group's
95
+ rewriting system. If it's confluent, the reduced form is the unique normal
96
+ form of the word in the group.
97
+
98
+ '''
99
+ return self._rewriting_system.reduce(word)
100
+
101
+ def equals(self, word1, word2):
102
+ '''
103
+ Compare `word1` and `word2` for equality in the group
104
+ using the group's rewriting system. If the system is
105
+ confluent, the returned answer is necessarily correct.
106
+ (If it is not, `False` could be returned in some cases
107
+ where in fact `word1 == word2`)
108
+
109
+ '''
110
+ if self.reduce(word1*word2**-1) == self.identity:
111
+ return True
112
+ elif self._rewriting_system.is_confluent:
113
+ return False
114
+ return None
115
+
116
+ @property
117
+ def identity(self):
118
+ return self.free_group.identity
119
+
120
+ def __contains__(self, g):
121
+ return g in self.free_group
122
+
123
+ def subgroup(self, gens, C=None, homomorphism=False):
124
+ '''
125
+ Return the subgroup generated by `gens` using the
126
+ Reidemeister-Schreier algorithm
127
+ homomorphism -- When set to True, return a dictionary containing the images
128
+ of the presentation generators in the original group.
129
+
130
+ Examples
131
+ ========
132
+
133
+ >>> from sympy.combinatorics.fp_groups import FpGroup
134
+ >>> from sympy.combinatorics import free_group
135
+ >>> F, x, y = free_group("x, y")
136
+ >>> f = FpGroup(F, [x**3, y**5, (x*y)**2])
137
+ >>> H = [x*y, x**-1*y**-1*x*y*x]
138
+ >>> K, T = f.subgroup(H, homomorphism=True)
139
+ >>> T(K.generators)
140
+ [x*y, x**-1*y**2*x**-1]
141
+
142
+ '''
143
+
144
+ if not all(isinstance(g, FreeGroupElement) for g in gens):
145
+ raise ValueError("Generators must be `FreeGroupElement`s")
146
+ if not all(g.group == self.free_group for g in gens):
147
+ raise ValueError("Given generators are not members of the group")
148
+ if homomorphism:
149
+ g, rels, _gens = reidemeister_presentation(self, gens, C=C, homomorphism=True)
150
+ else:
151
+ g, rels = reidemeister_presentation(self, gens, C=C)
152
+ if g:
153
+ g = FpGroup(g[0].group, rels)
154
+ else:
155
+ g = FpGroup(free_group('')[0], [])
156
+ if homomorphism:
157
+ from sympy.combinatorics.homomorphisms import homomorphism
158
+ return g, homomorphism(g, self, g.generators, _gens, check=False)
159
+ return g
160
+
161
+ def coset_enumeration(self, H, strategy="relator_based", max_cosets=None,
162
+ draft=None, incomplete=False):
163
+ """
164
+ Return an instance of ``coset table``, when Todd-Coxeter algorithm is
165
+ run over the ``self`` with ``H`` as subgroup, using ``strategy``
166
+ argument as strategy. The returned coset table is compressed but not
167
+ standardized.
168
+
169
+ An instance of `CosetTable` for `fp_grp` can be passed as the keyword
170
+ argument `draft` in which case the coset enumeration will start with
171
+ that instance and attempt to complete it.
172
+
173
+ When `incomplete` is `True` and the function is unable to complete for
174
+ some reason, the partially complete table will be returned.
175
+
176
+ """
177
+ if not max_cosets:
178
+ max_cosets = CosetTable.coset_table_max_limit
179
+ if strategy == 'relator_based':
180
+ C = coset_enumeration_r(self, H, max_cosets=max_cosets,
181
+ draft=draft, incomplete=incomplete)
182
+ else:
183
+ C = coset_enumeration_c(self, H, max_cosets=max_cosets,
184
+ draft=draft, incomplete=incomplete)
185
+ if C.is_complete():
186
+ C.compress()
187
+ return C
188
+
189
+ def standardize_coset_table(self):
190
+ """
191
+ Standardized the coset table ``self`` and makes the internal variable
192
+ ``_is_standardized`` equal to ``True``.
193
+
194
+ """
195
+ self._coset_table.standardize()
196
+ self._is_standardized = True
197
+
198
+ def coset_table(self, H, strategy="relator_based", max_cosets=None,
199
+ draft=None, incomplete=False):
200
+ """
201
+ Return the mathematical coset table of ``self`` in ``H``.
202
+
203
+ """
204
+ if not H:
205
+ if self._coset_table is not None:
206
+ if not self._is_standardized:
207
+ self.standardize_coset_table()
208
+ else:
209
+ C = self.coset_enumeration([], strategy, max_cosets=max_cosets,
210
+ draft=draft, incomplete=incomplete)
211
+ self._coset_table = C
212
+ self.standardize_coset_table()
213
+ return self._coset_table.table
214
+ else:
215
+ C = self.coset_enumeration(H, strategy, max_cosets=max_cosets,
216
+ draft=draft, incomplete=incomplete)
217
+ C.standardize()
218
+ return C.table
219
+
220
+ def order(self, strategy="relator_based"):
221
+ """
222
+ Returns the order of the finitely presented group ``self``. It uses
223
+ the coset enumeration with identity group as subgroup, i.e ``H=[]``.
224
+
225
+ Examples
226
+ ========
227
+
228
+ >>> from sympy.combinatorics import free_group
229
+ >>> from sympy.combinatorics.fp_groups import FpGroup
230
+ >>> F, x, y = free_group("x, y")
231
+ >>> f = FpGroup(F, [x, y**2])
232
+ >>> f.order(strategy="coset_table_based")
233
+ 2
234
+
235
+ """
236
+ if self._order is not None:
237
+ return self._order
238
+ if self._coset_table is not None:
239
+ self._order = len(self._coset_table.table)
240
+ elif len(self.relators) == 0:
241
+ self._order = self.free_group.order()
242
+ elif len(self.generators) == 1:
243
+ self._order = abs(gcd([r.array_form[0][1] for r in self.relators]))
244
+ elif self._is_infinite():
245
+ self._order = S.Infinity
246
+ else:
247
+ gens, C = self._finite_index_subgroup()
248
+ if C:
249
+ ind = len(C.table)
250
+ self._order = ind*self.subgroup(gens, C=C).order()
251
+ else:
252
+ self._order = self.index([])
253
+ return self._order
254
+
255
+ def _is_infinite(self):
256
+ '''
257
+ Test if the group is infinite. Return `True` if the test succeeds
258
+ and `None` otherwise
259
+
260
+ '''
261
+ used_gens = set()
262
+ for r in self.relators:
263
+ used_gens.update(r.contains_generators())
264
+ if not set(self.generators) <= used_gens:
265
+ return True
266
+ # Abelianisation test: check is the abelianisation is infinite
267
+ abelian_rels = []
268
+ for rel in self.relators:
269
+ abelian_rels.append([rel.exponent_sum(g) for g in self.generators])
270
+ m = Matrix(Matrix(abelian_rels))
271
+ if 0 in invariant_factors(m):
272
+ return True
273
+ else:
274
+ return None
275
+
276
+
277
+ def _finite_index_subgroup(self, s=None):
278
+ '''
279
+ Find the elements of `self` that generate a finite index subgroup
280
+ and, if found, return the list of elements and the coset table of `self` by
281
+ the subgroup, otherwise return `(None, None)`
282
+
283
+ '''
284
+ gen = self.most_frequent_generator()
285
+ rels = list(self.generators)
286
+ rels.extend(self.relators)
287
+ if not s:
288
+ if len(self.generators) == 2:
289
+ s = [gen] + [g for g in self.generators if g != gen]
290
+ else:
291
+ rand = self.free_group.identity
292
+ i = 0
293
+ while ((rand in rels or rand**-1 in rels or rand.is_identity)
294
+ and i<10):
295
+ rand = self.random()
296
+ i += 1
297
+ s = [gen, rand] + [g for g in self.generators if g != gen]
298
+ mid = (len(s)+1)//2
299
+ half1 = s[:mid]
300
+ half2 = s[mid:]
301
+ draft1 = None
302
+ draft2 = None
303
+ m = 200
304
+ C = None
305
+ while not C and (m/2 < CosetTable.coset_table_max_limit):
306
+ m = min(m, CosetTable.coset_table_max_limit)
307
+ draft1 = self.coset_enumeration(half1, max_cosets=m,
308
+ draft=draft1, incomplete=True)
309
+ if draft1.is_complete():
310
+ C = draft1
311
+ half = half1
312
+ else:
313
+ draft2 = self.coset_enumeration(half2, max_cosets=m,
314
+ draft=draft2, incomplete=True)
315
+ if draft2.is_complete():
316
+ C = draft2
317
+ half = half2
318
+ if not C:
319
+ m *= 2
320
+ if not C:
321
+ return None, None
322
+ C.compress()
323
+ return half, C
324
+
325
+ def most_frequent_generator(self):
326
+ gens = self.generators
327
+ rels = self.relators
328
+ freqs = [sum([r.generator_count(g) for r in rels]) for g in gens]
329
+ return gens[freqs.index(max(freqs))]
330
+
331
+ def random(self):
332
+ import random
333
+ r = self.free_group.identity
334
+ for i in range(random.randint(2,3)):
335
+ r = r*random.choice(self.generators)**random.choice([1,-1])
336
+ return r
337
+
338
+ def index(self, H, strategy="relator_based"):
339
+ """
340
+ Return the index of subgroup ``H`` in group ``self``.
341
+
342
+ Examples
343
+ ========
344
+
345
+ >>> from sympy.combinatorics import free_group
346
+ >>> from sympy.combinatorics.fp_groups import FpGroup
347
+ >>> F, x, y = free_group("x, y")
348
+ >>> f = FpGroup(F, [x**5, y**4, y*x*y**3*x**3])
349
+ >>> f.index([x])
350
+ 4
351
+
352
+ """
353
+ # TODO: use |G:H| = |G|/|H| (currently H can't be made into a group)
354
+ # when we know |G| and |H|
355
+
356
+ if H == []:
357
+ return self.order()
358
+ else:
359
+ C = self.coset_enumeration(H, strategy)
360
+ return len(C.table)
361
+
362
+ def __str__(self):
363
+ if self.free_group.rank > 30:
364
+ str_form = "<fp group with %s generators>" % self.free_group.rank
365
+ else:
366
+ str_form = "<fp group on the generators %s>" % str(self.generators)
367
+ return str_form
368
+
369
+ __repr__ = __str__
370
+
371
+ #==============================================================================
372
+ # PERMUTATION GROUP METHODS
373
+ #==============================================================================
374
+
375
+ def _to_perm_group(self):
376
+ '''
377
+ Return an isomorphic permutation group and the isomorphism.
378
+ The implementation is dependent on coset enumeration so
379
+ will only terminate for finite groups.
380
+
381
+ '''
382
+ from sympy.combinatorics import Permutation
383
+ from sympy.combinatorics.homomorphisms import homomorphism
384
+ if self.order() is S.Infinity:
385
+ raise NotImplementedError("Permutation presentation of infinite "
386
+ "groups is not implemented")
387
+ if self._perm_isomorphism:
388
+ T = self._perm_isomorphism
389
+ P = T.image()
390
+ else:
391
+ C = self.coset_table([])
392
+ gens = self.generators
393
+ images = [[C[i][2*gens.index(g)] for i in range(len(C))] for g in gens]
394
+ images = [Permutation(i) for i in images]
395
+ P = PermutationGroup(images)
396
+ T = homomorphism(self, P, gens, images, check=False)
397
+ self._perm_isomorphism = T
398
+ return P, T
399
+
400
+ def _perm_group_list(self, method_name, *args):
401
+ '''
402
+ Given the name of a `PermutationGroup` method (returning a subgroup
403
+ or a list of subgroups) and (optionally) additional arguments it takes,
404
+ return a list or a list of lists containing the generators of this (or
405
+ these) subgroups in terms of the generators of `self`.
406
+
407
+ '''
408
+ P, T = self._to_perm_group()
409
+ perm_result = getattr(P, method_name)(*args)
410
+ single = False
411
+ if isinstance(perm_result, PermutationGroup):
412
+ perm_result, single = [perm_result], True
413
+ result = []
414
+ for group in perm_result:
415
+ gens = group.generators
416
+ result.append(T.invert(gens))
417
+ return result[0] if single else result
418
+
419
+ def derived_series(self):
420
+ '''
421
+ Return the list of lists containing the generators
422
+ of the subgroups in the derived series of `self`.
423
+
424
+ '''
425
+ return self._perm_group_list('derived_series')
426
+
427
+ def lower_central_series(self):
428
+ '''
429
+ Return the list of lists containing the generators
430
+ of the subgroups in the lower central series of `self`.
431
+
432
+ '''
433
+ return self._perm_group_list('lower_central_series')
434
+
435
+ def center(self):
436
+ '''
437
+ Return the list of generators of the center of `self`.
438
+
439
+ '''
440
+ return self._perm_group_list('center')
441
+
442
+
443
+ def derived_subgroup(self):
444
+ '''
445
+ Return the list of generators of the derived subgroup of `self`.
446
+
447
+ '''
448
+ return self._perm_group_list('derived_subgroup')
449
+
450
+
451
+ def centralizer(self, other):
452
+ '''
453
+ Return the list of generators of the centralizer of `other`
454
+ (a list of elements of `self`) in `self`.
455
+
456
+ '''
457
+ T = self._to_perm_group()[1]
458
+ other = T(other)
459
+ return self._perm_group_list('centralizer', other)
460
+
461
+ def normal_closure(self, other):
462
+ '''
463
+ Return the list of generators of the normal closure of `other`
464
+ (a list of elements of `self`) in `self`.
465
+
466
+ '''
467
+ T = self._to_perm_group()[1]
468
+ other = T(other)
469
+ return self._perm_group_list('normal_closure', other)
470
+
471
+ def _perm_property(self, attr):
472
+ '''
473
+ Given an attribute of a `PermutationGroup`, return
474
+ its value for a permutation group isomorphic to `self`.
475
+
476
+ '''
477
+ P = self._to_perm_group()[0]
478
+ return getattr(P, attr)
479
+
480
+ @property
481
+ def is_abelian(self):
482
+ '''
483
+ Check if `self` is abelian.
484
+
485
+ '''
486
+ return self._perm_property("is_abelian")
487
+
488
+ @property
489
+ def is_nilpotent(self):
490
+ '''
491
+ Check if `self` is nilpotent.
492
+
493
+ '''
494
+ return self._perm_property("is_nilpotent")
495
+
496
+ @property
497
+ def is_solvable(self):
498
+ '''
499
+ Check if `self` is solvable.
500
+
501
+ '''
502
+ return self._perm_property("is_solvable")
503
+
504
+ @property
505
+ def elements(self):
506
+ '''
507
+ List the elements of `self`.
508
+
509
+ '''
510
+ P, T = self._to_perm_group()
511
+ return T.invert(P._elements)
512
+
513
+ @property
514
+ def is_cyclic(self):
515
+ """
516
+ Return ``True`` if group is Cyclic.
517
+
518
+ """
519
+ if len(self.generators) <= 1:
520
+ return True
521
+ try:
522
+ P, T = self._to_perm_group()
523
+ except NotImplementedError:
524
+ raise NotImplementedError("Check for infinite Cyclic group "
525
+ "is not implemented")
526
+ return P.is_cyclic
527
+
528
+ def abelian_invariants(self):
529
+ """
530
+ Return Abelian Invariants of a group.
531
+ """
532
+ try:
533
+ P, T = self._to_perm_group()
534
+ except NotImplementedError:
535
+ raise NotImplementedError("abelian invariants is not implemented"
536
+ "for infinite group")
537
+ return P.abelian_invariants()
538
+
539
+ def composition_series(self):
540
+ """
541
+ Return subnormal series of maximum length for a group.
542
+ """
543
+ try:
544
+ P, T = self._to_perm_group()
545
+ except NotImplementedError:
546
+ raise NotImplementedError("composition series is not implemented"
547
+ "for infinite group")
548
+ return P.composition_series()
549
+
550
+
551
+ class FpSubgroup(DefaultPrinting):
552
+ '''
553
+ The class implementing a subgroup of an FpGroup or a FreeGroup
554
+ (only finite index subgroups are supported at this point). This
555
+ is to be used if one wishes to check if an element of the original
556
+ group belongs to the subgroup
557
+
558
+ '''
559
+ def __init__(self, G, gens, normal=False):
560
+ super().__init__()
561
+ self.parent = G
562
+ self.generators = list({g for g in gens if g != G.identity})
563
+ self._min_words = None #for use in __contains__
564
+ self.C = None
565
+ self.normal = normal
566
+
567
+ def __contains__(self, g):
568
+
569
+ if isinstance(self.parent, FreeGroup):
570
+ if self._min_words is None:
571
+ # make _min_words - a list of subwords such that
572
+ # g is in the subgroup if and only if it can be
573
+ # partitioned into these subwords. Infinite families of
574
+ # subwords are presented by tuples, e.g. (r, w)
575
+ # stands for the family of subwords r*w**n*r**-1
576
+
577
+ def _process(w):
578
+ # this is to be used before adding new words
579
+ # into _min_words; if the word w is not cyclically
580
+ # reduced, it will generate an infinite family of
581
+ # subwords so should be written as a tuple;
582
+ # if it is, w**-1 should be added to the list
583
+ # as well
584
+ p, r = w.cyclic_reduction(removed=True)
585
+ if not r.is_identity:
586
+ return [(r, p)]
587
+ else:
588
+ return [w, w**-1]
589
+
590
+ # make the initial list
591
+ gens = []
592
+ for w in self.generators:
593
+ if self.normal:
594
+ w = w.cyclic_reduction()
595
+ gens.extend(_process(w))
596
+
597
+ for w1 in gens:
598
+ for w2 in gens:
599
+ # if w1 and w2 are equal or are inverses, continue
600
+ if w1 == w2 or (not isinstance(w1, tuple)
601
+ and w1**-1 == w2):
602
+ continue
603
+
604
+ # if the start of one word is the inverse of the
605
+ # end of the other, their multiple should be added
606
+ # to _min_words because of cancellation
607
+ if isinstance(w1, tuple):
608
+ # start, end
609
+ s1, s2 = w1[0][0], w1[0][0]**-1
610
+ else:
611
+ s1, s2 = w1[0], w1[len(w1)-1]
612
+
613
+ if isinstance(w2, tuple):
614
+ # start, end
615
+ r1, r2 = w2[0][0], w2[0][0]**-1
616
+ else:
617
+ r1, r2 = w2[0], w2[len(w1)-1]
618
+
619
+ # p1 and p2 are w1 and w2 or, in case when
620
+ # w1 or w2 is an infinite family, a representative
621
+ p1, p2 = w1, w2
622
+ if isinstance(w1, tuple):
623
+ p1 = w1[0]*w1[1]*w1[0]**-1
624
+ if isinstance(w2, tuple):
625
+ p2 = w2[0]*w2[1]*w2[0]**-1
626
+
627
+ # add the product of the words to the list is necessary
628
+ if r1**-1 == s2 and not (p1*p2).is_identity:
629
+ new = _process(p1*p2)
630
+ if new not in gens:
631
+ gens.extend(new)
632
+
633
+ if r2**-1 == s1 and not (p2*p1).is_identity:
634
+ new = _process(p2*p1)
635
+ if new not in gens:
636
+ gens.extend(new)
637
+
638
+ self._min_words = gens
639
+
640
+ min_words = self._min_words
641
+
642
+ def _is_subword(w):
643
+ # check if w is a word in _min_words or one of
644
+ # the infinite families in it
645
+ w, r = w.cyclic_reduction(removed=True)
646
+ if r.is_identity or self.normal:
647
+ return w in min_words
648
+ else:
649
+ t = [s[1] for s in min_words if isinstance(s, tuple)
650
+ and s[0] == r]
651
+ return [s for s in t if w.power_of(s)] != []
652
+
653
+ # store the solution of words for which the result of
654
+ # _word_break (below) is known
655
+ known = {}
656
+
657
+ def _word_break(w):
658
+ # check if w can be written as a product of words
659
+ # in min_words
660
+ if len(w) == 0:
661
+ return True
662
+ i = 0
663
+ while i < len(w):
664
+ i += 1
665
+ prefix = w.subword(0, i)
666
+ if not _is_subword(prefix):
667
+ continue
668
+ rest = w.subword(i, len(w))
669
+ if rest not in known:
670
+ known[rest] = _word_break(rest)
671
+ if known[rest]:
672
+ return True
673
+ return False
674
+
675
+ if self.normal:
676
+ g = g.cyclic_reduction()
677
+ return _word_break(g)
678
+ else:
679
+ if self.C is None:
680
+ C = self.parent.coset_enumeration(self.generators)
681
+ self.C = C
682
+ i = 0
683
+ C = self.C
684
+ for j in range(len(g)):
685
+ i = C.table[i][C.A_dict[g[j]]]
686
+ return i == 0
687
+
688
+ def order(self):
689
+ if not self.generators:
690
+ return S.One
691
+ if isinstance(self.parent, FreeGroup):
692
+ return S.Infinity
693
+ if self.C is None:
694
+ C = self.parent.coset_enumeration(self.generators)
695
+ self.C = C
696
+ # This is valid because `len(self.C.table)` (the index of the subgroup)
697
+ # will always be finite - otherwise coset enumeration doesn't terminate
698
+ return self.parent.order()/len(self.C.table)
699
+
700
+ def to_FpGroup(self):
701
+ if isinstance(self.parent, FreeGroup):
702
+ gen_syms = [('x_%d'%i) for i in range(len(self.generators))]
703
+ return free_group(', '.join(gen_syms))[0]
704
+ return self.parent.subgroup(C=self.C)
705
+
706
+ def __str__(self):
707
+ if len(self.generators) > 30:
708
+ str_form = "<fp subgroup with %s generators>" % len(self.generators)
709
+ else:
710
+ str_form = "<fp subgroup on the generators %s>" % str(self.generators)
711
+ return str_form
712
+
713
+ __repr__ = __str__
714
+
715
+
716
+ ###############################################################################
717
+ # LOW INDEX SUBGROUPS #
718
+ ###############################################################################
719
+
720
+ def low_index_subgroups(G, N, Y=()):
721
+ """
722
+ Implements the Low Index Subgroups algorithm, i.e find all subgroups of
723
+ ``G`` upto a given index ``N``. This implements the method described in
724
+ [Sim94]. This procedure involves a backtrack search over incomplete Coset
725
+ Tables, rather than over forced coincidences.
726
+
727
+ Parameters
728
+ ==========
729
+
730
+ G: An FpGroup < X|R >
731
+ N: positive integer, representing the maximum index value for subgroups
732
+ Y: (an optional argument) specifying a list of subgroup generators, such
733
+ that each of the resulting subgroup contains the subgroup generated by Y.
734
+
735
+ Examples
736
+ ========
737
+
738
+ >>> from sympy.combinatorics import free_group
739
+ >>> from sympy.combinatorics.fp_groups import FpGroup, low_index_subgroups
740
+ >>> F, x, y = free_group("x, y")
741
+ >>> f = FpGroup(F, [x**2, y**3, (x*y)**4])
742
+ >>> L = low_index_subgroups(f, 4)
743
+ >>> for coset_table in L:
744
+ ... print(coset_table.table)
745
+ [[0, 0, 0, 0]]
746
+ [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 3, 3]]
747
+ [[0, 0, 1, 2], [2, 2, 2, 0], [1, 1, 0, 1]]
748
+ [[1, 1, 0, 0], [0, 0, 1, 1]]
749
+
750
+ References
751
+ ==========
752
+
753
+ .. [1] Holt, D., Eick, B., O'Brien, E.
754
+ "Handbook of Computational Group Theory"
755
+ Section 5.4
756
+
757
+ .. [2] Marston Conder and Peter Dobcsanyi
758
+ "Applications and Adaptions of the Low Index Subgroups Procedure"
759
+
760
+ """
761
+ C = CosetTable(G, [])
762
+ R = G.relators
763
+ # length chosen for the length of the short relators
764
+ len_short_rel = 5
765
+ # elements of R2 only checked at the last step for complete
766
+ # coset tables
767
+ R2 = {rel for rel in R if len(rel) > len_short_rel}
768
+ # elements of R1 are used in inner parts of the process to prune
769
+ # branches of the search tree,
770
+ R1 = {rel.identity_cyclic_reduction() for rel in set(R) - R2}
771
+ R1_c_list = C.conjugates(R1)
772
+ S = []
773
+ descendant_subgroups(S, C, R1_c_list, C.A[0], R2, N, Y)
774
+ return S
775
+
776
+
777
+ def descendant_subgroups(S, C, R1_c_list, x, R2, N, Y):
778
+ A_dict = C.A_dict
779
+ A_dict_inv = C.A_dict_inv
780
+ if C.is_complete():
781
+ # if C is complete then it only needs to test
782
+ # whether the relators in R2 are satisfied
783
+ for w, alpha in product(R2, C.omega):
784
+ if not C.scan_check(alpha, w):
785
+ return
786
+ # relators in R2 are satisfied, append the table to list
787
+ S.append(C)
788
+ else:
789
+ # find the first undefined entry in Coset Table
790
+ for alpha, x in product(range(len(C.table)), C.A):
791
+ if C.table[alpha][A_dict[x]] is None:
792
+ # this is "x" in pseudo-code (using "y" makes it clear)
793
+ undefined_coset, undefined_gen = alpha, x
794
+ break
795
+ # for filling up the undefine entry we try all possible values
796
+ # of beta in Omega or beta = n where beta^(undefined_gen^-1) is undefined
797
+ reach = C.omega + [C.n]
798
+ for beta in reach:
799
+ if beta < N:
800
+ if beta == C.n or C.table[beta][A_dict_inv[undefined_gen]] is None:
801
+ try_descendant(S, C, R1_c_list, R2, N, undefined_coset, \
802
+ undefined_gen, beta, Y)
803
+
804
+
805
+ def try_descendant(S, C, R1_c_list, R2, N, alpha, x, beta, Y):
806
+ r"""
807
+ Solves the problem of trying out each individual possibility
808
+ for `\alpha^x.
809
+
810
+ """
811
+ D = C.copy()
812
+ if beta == D.n and beta < N:
813
+ D.table.append([None]*len(D.A))
814
+ D.p.append(beta)
815
+ D.table[alpha][D.A_dict[x]] = beta
816
+ D.table[beta][D.A_dict_inv[x]] = alpha
817
+ D.deduction_stack.append((alpha, x))
818
+ if not D.process_deductions_check(R1_c_list[D.A_dict[x]], \
819
+ R1_c_list[D.A_dict_inv[x]]):
820
+ return
821
+ for w in Y:
822
+ if not D.scan_check(0, w):
823
+ return
824
+ if first_in_class(D, Y):
825
+ descendant_subgroups(S, D, R1_c_list, x, R2, N, Y)
826
+
827
+
828
+ def first_in_class(C, Y=()):
829
+ """
830
+ Checks whether the subgroup ``H=G1`` corresponding to the Coset Table
831
+ could possibly be the canonical representative of its conjugacy class.
832
+
833
+ Parameters
834
+ ==========
835
+
836
+ C: CosetTable
837
+
838
+ Returns
839
+ =======
840
+
841
+ bool: True/False
842
+
843
+ If this returns False, then no descendant of C can have that property, and
844
+ so we can abandon C. If it returns True, then we need to process further
845
+ the node of the search tree corresponding to C, and so we call
846
+ ``descendant_subgroups`` recursively on C.
847
+
848
+ Examples
849
+ ========
850
+
851
+ >>> from sympy.combinatorics import free_group
852
+ >>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, first_in_class
853
+ >>> F, x, y = free_group("x, y")
854
+ >>> f = FpGroup(F, [x**2, y**3, (x*y)**4])
855
+ >>> C = CosetTable(f, [])
856
+ >>> C.table = [[0, 0, None, None]]
857
+ >>> first_in_class(C)
858
+ True
859
+ >>> C.table = [[1, 1, 1, None], [0, 0, None, 1]]; C.p = [0, 1]
860
+ >>> first_in_class(C)
861
+ True
862
+ >>> C.table = [[1, 1, 2, 1], [0, 0, 0, None], [None, None, None, 0]]
863
+ >>> C.p = [0, 1, 2]
864
+ >>> first_in_class(C)
865
+ False
866
+ >>> C.table = [[1, 1, 1, 2], [0, 0, 2, 0], [2, None, 0, 1]]
867
+ >>> first_in_class(C)
868
+ False
869
+
870
+ # TODO:: Sims points out in [Sim94] that performance can be improved by
871
+ # remembering some of the information computed by ``first_in_class``. If
872
+ # the ``continue alpha`` statement is executed at line 14, then the same thing
873
+ # will happen for that value of alpha in any descendant of the table C, and so
874
+ # the values the values of alpha for which this occurs could profitably be
875
+ # stored and passed through to the descendants of C. Of course this would
876
+ # make the code more complicated.
877
+
878
+ # The code below is taken directly from the function on page 208 of [Sim94]
879
+ # nu[alpha]
880
+
881
+ """
882
+ n = C.n
883
+ # lamda is the largest numbered point in Omega_c_alpha which is currently defined
884
+ lamda = -1
885
+ # for alpha in Omega_c, nu[alpha] is the point in Omega_c_alpha corresponding to alpha
886
+ nu = [None]*n
887
+ # for alpha in Omega_c_alpha, mu[alpha] is the point in Omega_c corresponding to alpha
888
+ mu = [None]*n
889
+ # mutually nu and mu are the mutually-inverse equivalence maps between
890
+ # Omega_c_alpha and Omega_c
891
+ next_alpha = False
892
+ # For each 0!=alpha in [0 .. nc-1], we start by constructing the equivalent
893
+ # standardized coset table C_alpha corresponding to H_alpha
894
+ for alpha in range(1, n):
895
+ # reset nu to "None" after previous value of alpha
896
+ for beta in range(lamda+1):
897
+ nu[mu[beta]] = None
898
+ # we only want to reject our current table in favour of a preceding
899
+ # table in the ordering in which 1 is replaced by alpha, if the subgroup
900
+ # G_alpha corresponding to this preceding table definitely contains the
901
+ # given subgroup
902
+ for w in Y:
903
+ # TODO: this should support input of a list of general words
904
+ # not just the words which are in "A" (i.e gen and gen^-1)
905
+ if C.table[alpha][C.A_dict[w]] != alpha:
906
+ # continue with alpha
907
+ next_alpha = True
908
+ break
909
+ if next_alpha:
910
+ next_alpha = False
911
+ continue
912
+ # try alpha as the new point 0 in Omega_C_alpha
913
+ mu[0] = alpha
914
+ nu[alpha] = 0
915
+ # compare corresponding entries in C and C_alpha
916
+ lamda = 0
917
+ for beta in range(n):
918
+ for x in C.A:
919
+ gamma = C.table[beta][C.A_dict[x]]
920
+ delta = C.table[mu[beta]][C.A_dict[x]]
921
+ # if either of the entries is undefined,
922
+ # we move with next alpha
923
+ if gamma is None or delta is None:
924
+ # continue with alpha
925
+ next_alpha = True
926
+ break
927
+ if nu[delta] is None:
928
+ # delta becomes the next point in Omega_C_alpha
929
+ lamda += 1
930
+ nu[delta] = lamda
931
+ mu[lamda] = delta
932
+ if nu[delta] < gamma:
933
+ return False
934
+ if nu[delta] > gamma:
935
+ # continue with alpha
936
+ next_alpha = True
937
+ break
938
+ if next_alpha:
939
+ next_alpha = False
940
+ break
941
+ return True
942
+
943
+ #========================================================================
944
+ # Simplifying Presentation
945
+ #========================================================================
946
+
947
+ def simplify_presentation(*args, change_gens=False):
948
+ '''
949
+ For an instance of `FpGroup`, return a simplified isomorphic copy of
950
+ the group (e.g. remove redundant generators or relators). Alternatively,
951
+ a list of generators and relators can be passed in which case the
952
+ simplified lists will be returned.
953
+
954
+ By default, the generators of the group are unchanged. If you would
955
+ like to remove redundant generators, set the keyword argument
956
+ `change_gens = True`.
957
+
958
+ '''
959
+ if len(args) == 1:
960
+ if not isinstance(args[0], FpGroup):
961
+ raise TypeError("The argument must be an instance of FpGroup")
962
+ G = args[0]
963
+ gens, rels = simplify_presentation(G.generators, G.relators,
964
+ change_gens=change_gens)
965
+ if gens:
966
+ return FpGroup(gens[0].group, rels)
967
+ return FpGroup(FreeGroup([]), [])
968
+ elif len(args) == 2:
969
+ gens, rels = args[0][:], args[1][:]
970
+ if not gens:
971
+ return gens, rels
972
+ identity = gens[0].group.identity
973
+ else:
974
+ if len(args) == 0:
975
+ m = "Not enough arguments"
976
+ else:
977
+ m = "Too many arguments"
978
+ raise RuntimeError(m)
979
+
980
+ prev_gens = []
981
+ prev_rels = []
982
+ while not set(prev_rels) == set(rels):
983
+ prev_rels = rels
984
+ while change_gens and not set(prev_gens) == set(gens):
985
+ prev_gens = gens
986
+ gens, rels = elimination_technique_1(gens, rels, identity)
987
+ rels = _simplify_relators(rels, identity)
988
+
989
+ if change_gens:
990
+ syms = [g.array_form[0][0] for g in gens]
991
+ F = free_group(syms)[0]
992
+ identity = F.identity
993
+ gens = F.generators
994
+ subs = dict(zip(syms, gens))
995
+ for j, r in enumerate(rels):
996
+ a = r.array_form
997
+ rel = identity
998
+ for sym, p in a:
999
+ rel = rel*subs[sym]**p
1000
+ rels[j] = rel
1001
+ return gens, rels
1002
+
1003
+ def _simplify_relators(rels, identity):
1004
+ """Relies upon ``_simplification_technique_1`` for its functioning. """
1005
+ rels = rels[:]
1006
+
1007
+ rels = list(set(_simplification_technique_1(rels)))
1008
+ rels.sort()
1009
+ rels = [r.identity_cyclic_reduction() for r in rels]
1010
+ try:
1011
+ rels.remove(identity)
1012
+ except ValueError:
1013
+ pass
1014
+ return rels
1015
+
1016
+ # Pg 350, section 2.5.1 from [2]
1017
+ def elimination_technique_1(gens, rels, identity):
1018
+ rels = rels[:]
1019
+ # the shorter relators are examined first so that generators selected for
1020
+ # elimination will have shorter strings as equivalent
1021
+ rels.sort()
1022
+ gens = gens[:]
1023
+ redundant_gens = {}
1024
+ redundant_rels = []
1025
+ used_gens = set()
1026
+ # examine each relator in relator list for any generator occurring exactly
1027
+ # once
1028
+ for rel in rels:
1029
+ # don't look for a redundant generator in a relator which
1030
+ # depends on previously found ones
1031
+ contained_gens = rel.contains_generators()
1032
+ if any(g in contained_gens for g in redundant_gens):
1033
+ continue
1034
+ contained_gens = list(contained_gens)
1035
+ contained_gens.sort(reverse = True)
1036
+ for gen in contained_gens:
1037
+ if rel.generator_count(gen) == 1 and gen not in used_gens:
1038
+ k = rel.exponent_sum(gen)
1039
+ gen_index = rel.index(gen**k)
1040
+ bk = rel.subword(gen_index + 1, len(rel))
1041
+ fw = rel.subword(0, gen_index)
1042
+ chi = bk*fw
1043
+ redundant_gens[gen] = chi**(-1*k)
1044
+ used_gens.update(chi.contains_generators())
1045
+ redundant_rels.append(rel)
1046
+ break
1047
+ rels = [r for r in rels if r not in redundant_rels]
1048
+ # eliminate the redundant generators from remaining relators
1049
+ rels = [r.eliminate_words(redundant_gens, _all = True).identity_cyclic_reduction() for r in rels]
1050
+ rels = list(set(rels))
1051
+ try:
1052
+ rels.remove(identity)
1053
+ except ValueError:
1054
+ pass
1055
+ gens = [g for g in gens if g not in redundant_gens]
1056
+ return gens, rels
1057
+
1058
+ def _simplification_technique_1(rels):
1059
+ """
1060
+ All relators are checked to see if they are of the form `gen^n`. If any
1061
+ such relators are found then all other relators are processed for strings
1062
+ in the `gen` known order.
1063
+
1064
+ Examples
1065
+ ========
1066
+
1067
+ >>> from sympy.combinatorics import free_group
1068
+ >>> from sympy.combinatorics.fp_groups import _simplification_technique_1
1069
+ >>> F, x, y = free_group("x, y")
1070
+ >>> w1 = [x**2*y**4, x**3]
1071
+ >>> _simplification_technique_1(w1)
1072
+ [x**-1*y**4, x**3]
1073
+
1074
+ >>> w2 = [x**2*y**-4*x**5, x**3, x**2*y**8, y**5]
1075
+ >>> _simplification_technique_1(w2)
1076
+ [x**-1*y*x**-1, x**3, x**-1*y**-2, y**5]
1077
+
1078
+ >>> w3 = [x**6*y**4, x**4]
1079
+ >>> _simplification_technique_1(w3)
1080
+ [x**2*y**4, x**4]
1081
+
1082
+ """
1083
+ rels = rels[:]
1084
+ # dictionary with "gen: n" where gen^n is one of the relators
1085
+ exps = {}
1086
+ for i in range(len(rels)):
1087
+ rel = rels[i]
1088
+ if rel.number_syllables() == 1:
1089
+ g = rel[0]
1090
+ exp = abs(rel.array_form[0][1])
1091
+ if rel.array_form[0][1] < 0:
1092
+ rels[i] = rels[i]**-1
1093
+ g = g**-1
1094
+ if g in exps:
1095
+ exp = gcd(exp, exps[g].array_form[0][1])
1096
+ exps[g] = g**exp
1097
+
1098
+ one_syllables_words = exps.values()
1099
+ # decrease some of the exponents in relators, making use of the single
1100
+ # syllable relators
1101
+ for i in range(len(rels)):
1102
+ rel = rels[i]
1103
+ if rel in one_syllables_words:
1104
+ continue
1105
+ rel = rel.eliminate_words(one_syllables_words, _all = True)
1106
+ # if rels[i] contains g**n where abs(n) is greater than half of the power p
1107
+ # of g in exps, g**n can be replaced by g**(n-p) (or g**(p-n) if n<0)
1108
+ for g in rel.contains_generators():
1109
+ if g in exps:
1110
+ exp = exps[g].array_form[0][1]
1111
+ max_exp = (exp + 1)//2
1112
+ rel = rel.eliminate_word(g**(max_exp), g**(max_exp-exp), _all = True)
1113
+ rel = rel.eliminate_word(g**(-max_exp), g**(-(max_exp-exp)), _all = True)
1114
+ rels[i] = rel
1115
+ rels = [r.identity_cyclic_reduction() for r in rels]
1116
+ return rels
1117
+
1118
+
1119
+ ###############################################################################
1120
+ # SUBGROUP PRESENTATIONS #
1121
+ ###############################################################################
1122
+
1123
+ # Pg 175 [1]
1124
+ def define_schreier_generators(C, homomorphism=False):
1125
+ '''
1126
+ Parameters
1127
+ ==========
1128
+
1129
+ C -- Coset table.
1130
+ homomorphism -- When set to True, return a dictionary containing the images
1131
+ of the presentation generators in the original group.
1132
+ '''
1133
+ y = []
1134
+ gamma = 1
1135
+ f = C.fp_group
1136
+ X = f.generators
1137
+ if homomorphism:
1138
+ # `_gens` stores the elements of the parent group to
1139
+ # to which the schreier generators correspond to.
1140
+ _gens = {}
1141
+ # compute the schreier Traversal
1142
+ tau = {}
1143
+ tau[0] = f.identity
1144
+ C.P = [[None]*len(C.A) for i in range(C.n)]
1145
+ for alpha, x in product(C.omega, C.A):
1146
+ beta = C.table[alpha][C.A_dict[x]]
1147
+ if beta == gamma:
1148
+ C.P[alpha][C.A_dict[x]] = "<identity>"
1149
+ C.P[beta][C.A_dict_inv[x]] = "<identity>"
1150
+ gamma += 1
1151
+ if homomorphism:
1152
+ tau[beta] = tau[alpha]*x
1153
+ elif x in X and C.P[alpha][C.A_dict[x]] is None:
1154
+ y_alpha_x = '%s_%s' % (x, alpha)
1155
+ y.append(y_alpha_x)
1156
+ C.P[alpha][C.A_dict[x]] = y_alpha_x
1157
+ if homomorphism:
1158
+ _gens[y_alpha_x] = tau[alpha]*x*tau[beta]**-1
1159
+ grp_gens = list(free_group(', '.join(y)))
1160
+ C._schreier_free_group = grp_gens.pop(0)
1161
+ C._schreier_generators = grp_gens
1162
+ if homomorphism:
1163
+ C._schreier_gen_elem = _gens
1164
+ # replace all elements of P by, free group elements
1165
+ for i, j in product(range(len(C.P)), range(len(C.A))):
1166
+ # if equals "<identity>", replace by identity element
1167
+ if C.P[i][j] == "<identity>":
1168
+ C.P[i][j] = C._schreier_free_group.identity
1169
+ elif isinstance(C.P[i][j], str):
1170
+ r = C._schreier_generators[y.index(C.P[i][j])]
1171
+ C.P[i][j] = r
1172
+ beta = C.table[i][j]
1173
+ C.P[beta][j + 1] = r**-1
1174
+
1175
+ def reidemeister_relators(C):
1176
+ R = C.fp_group.relators
1177
+ rels = [rewrite(C, coset, word) for word in R for coset in range(C.n)]
1178
+ order_1_gens = {i for i in rels if len(i) == 1}
1179
+
1180
+ # remove all the order 1 generators from relators
1181
+ rels = list(filter(lambda rel: rel not in order_1_gens, rels))
1182
+
1183
+ # replace order 1 generators by identity element in reidemeister relators
1184
+ for i in range(len(rels)):
1185
+ w = rels[i]
1186
+ w = w.eliminate_words(order_1_gens, _all=True)
1187
+ rels[i] = w
1188
+
1189
+ C._schreier_generators = [i for i in C._schreier_generators
1190
+ if not (i in order_1_gens or i**-1 in order_1_gens)]
1191
+
1192
+ # Tietze transformation 1 i.e TT_1
1193
+ # remove cyclic conjugate elements from relators
1194
+ i = 0
1195
+ while i < len(rels):
1196
+ w = rels[i]
1197
+ j = i + 1
1198
+ while j < len(rels):
1199
+ if w.is_cyclic_conjugate(rels[j]):
1200
+ del rels[j]
1201
+ else:
1202
+ j += 1
1203
+ i += 1
1204
+
1205
+ C._reidemeister_relators = rels
1206
+
1207
+
1208
+ def rewrite(C, alpha, w):
1209
+ """
1210
+ Parameters
1211
+ ==========
1212
+
1213
+ C: CosetTable
1214
+ alpha: A live coset
1215
+ w: A word in `A*`
1216
+
1217
+ Returns
1218
+ =======
1219
+
1220
+ rho(tau(alpha), w)
1221
+
1222
+ Examples
1223
+ ========
1224
+
1225
+ >>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, define_schreier_generators, rewrite
1226
+ >>> from sympy.combinatorics import free_group
1227
+ >>> F, x, y = free_group("x, y")
1228
+ >>> f = FpGroup(F, [x**2, y**3, (x*y)**6])
1229
+ >>> C = CosetTable(f, [])
1230
+ >>> C.table = [[1, 1, 2, 3], [0, 0, 4, 5], [4, 4, 3, 0], [5, 5, 0, 2], [2, 2, 5, 1], [3, 3, 1, 4]]
1231
+ >>> C.p = [0, 1, 2, 3, 4, 5]
1232
+ >>> define_schreier_generators(C)
1233
+ >>> rewrite(C, 0, (x*y)**6)
1234
+ x_4*y_2*x_3*x_1*x_2*y_4*x_5
1235
+
1236
+ """
1237
+ v = C._schreier_free_group.identity
1238
+ for i in range(len(w)):
1239
+ x_i = w[i]
1240
+ v = v*C.P[alpha][C.A_dict[x_i]]
1241
+ alpha = C.table[alpha][C.A_dict[x_i]]
1242
+ return v
1243
+
1244
+ # Pg 350, section 2.5.2 from [2]
1245
+ def elimination_technique_2(C):
1246
+ """
1247
+ This technique eliminates one generator at a time. Heuristically this
1248
+ seems superior in that we may select for elimination the generator with
1249
+ shortest equivalent string at each stage.
1250
+
1251
+ >>> from sympy.combinatorics import free_group
1252
+ >>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r, \
1253
+ reidemeister_relators, define_schreier_generators, elimination_technique_2
1254
+ >>> F, x, y = free_group("x, y")
1255
+ >>> f = FpGroup(F, [x**3, y**5, (x*y)**2]); H = [x*y, x**-1*y**-1*x*y*x]
1256
+ >>> C = coset_enumeration_r(f, H)
1257
+ >>> C.compress(); C.standardize()
1258
+ >>> define_schreier_generators(C)
1259
+ >>> reidemeister_relators(C)
1260
+ >>> elimination_technique_2(C)
1261
+ ([y_1, y_2], [y_2**-3, y_2*y_1*y_2*y_1*y_2*y_1, y_1**2])
1262
+
1263
+ """
1264
+ rels = C._reidemeister_relators
1265
+ rels.sort(reverse=True)
1266
+ gens = C._schreier_generators
1267
+ for i in range(len(gens) - 1, -1, -1):
1268
+ rel = rels[i]
1269
+ for j in range(len(gens) - 1, -1, -1):
1270
+ gen = gens[j]
1271
+ if rel.generator_count(gen) == 1:
1272
+ k = rel.exponent_sum(gen)
1273
+ gen_index = rel.index(gen**k)
1274
+ bk = rel.subword(gen_index + 1, len(rel))
1275
+ fw = rel.subword(0, gen_index)
1276
+ rep_by = (bk*fw)**(-1*k)
1277
+ del rels[i]; del gens[j]
1278
+ for l in range(len(rels)):
1279
+ rels[l] = rels[l].eliminate_word(gen, rep_by)
1280
+ break
1281
+ C._reidemeister_relators = rels
1282
+ C._schreier_generators = gens
1283
+ return C._schreier_generators, C._reidemeister_relators
1284
+
1285
+ def reidemeister_presentation(fp_grp, H, C=None, homomorphism=False):
1286
+ """
1287
+ Parameters
1288
+ ==========
1289
+
1290
+ fp_group: A finitely presented group, an instance of FpGroup
1291
+ H: A subgroup whose presentation is to be found, given as a list
1292
+ of words in generators of `fp_grp`
1293
+ homomorphism: When set to True, return a homomorphism from the subgroup
1294
+ to the parent group
1295
+
1296
+ Examples
1297
+ ========
1298
+
1299
+ >>> from sympy.combinatorics import free_group
1300
+ >>> from sympy.combinatorics.fp_groups import FpGroup, reidemeister_presentation
1301
+ >>> F, x, y = free_group("x, y")
1302
+
1303
+ Example 5.6 Pg. 177 from [1]
1304
+ >>> f = FpGroup(F, [x**3, y**5, (x*y)**2])
1305
+ >>> H = [x*y, x**-1*y**-1*x*y*x]
1306
+ >>> reidemeister_presentation(f, H)
1307
+ ((y_1, y_2), (y_1**2, y_2**3, y_2*y_1*y_2*y_1*y_2*y_1))
1308
+
1309
+ Example 5.8 Pg. 183 from [1]
1310
+ >>> f = FpGroup(F, [x**3, y**3, (x*y)**3])
1311
+ >>> H = [x*y, x*y**-1]
1312
+ >>> reidemeister_presentation(f, H)
1313
+ ((x_0, y_0), (x_0**3, y_0**3, x_0*y_0*x_0*y_0*x_0*y_0))
1314
+
1315
+ Exercises Q2. Pg 187 from [1]
1316
+ >>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
1317
+ >>> H = [x]
1318
+ >>> reidemeister_presentation(f, H)
1319
+ ((x_0,), (x_0**4,))
1320
+
1321
+ Example 5.9 Pg. 183 from [1]
1322
+ >>> f = FpGroup(F, [x**3*y**-3, (x*y)**3, (x*y**-1)**2])
1323
+ >>> H = [x]
1324
+ >>> reidemeister_presentation(f, H)
1325
+ ((x_0,), (x_0**6,))
1326
+
1327
+ """
1328
+ if not C:
1329
+ C = coset_enumeration_r(fp_grp, H)
1330
+ C.compress(); C.standardize()
1331
+ define_schreier_generators(C, homomorphism=homomorphism)
1332
+ reidemeister_relators(C)
1333
+ gens, rels = C._schreier_generators, C._reidemeister_relators
1334
+ gens, rels = simplify_presentation(gens, rels, change_gens=True)
1335
+
1336
+ C.schreier_generators = tuple(gens)
1337
+ C.reidemeister_relators = tuple(rels)
1338
+
1339
+ if homomorphism:
1340
+ _gens = []
1341
+ for gen in gens:
1342
+ _gens.append(C._schreier_gen_elem[str(gen)])
1343
+ return C.schreier_generators, C.reidemeister_relators, _gens
1344
+
1345
+ return C.schreier_generators, C.reidemeister_relators
1346
+
1347
+
1348
+ FpGroupElement = FreeGroupElement
venv/lib/python3.10/site-packages/sympy/combinatorics/free_groups.py ADDED
@@ -0,0 +1,1354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from sympy.core import S
4
+ from sympy.core.expr import Expr
5
+ from sympy.core.symbol import Symbol, symbols as _symbols
6
+ from sympy.core.sympify import CantSympify
7
+ from sympy.printing.defaults import DefaultPrinting
8
+ from sympy.utilities import public
9
+ from sympy.utilities.iterables import flatten, is_sequence
10
+ from sympy.utilities.magic import pollute
11
+ from sympy.utilities.misc import as_int
12
+
13
+
14
+ @public
15
+ def free_group(symbols):
16
+ """Construct a free group returning ``(FreeGroup, (f_0, f_1, ..., f_(n-1))``.
17
+
18
+ Parameters
19
+ ==========
20
+
21
+ symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty)
22
+
23
+ Examples
24
+ ========
25
+
26
+ >>> from sympy.combinatorics import free_group
27
+ >>> F, x, y, z = free_group("x, y, z")
28
+ >>> F
29
+ <free group on the generators (x, y, z)>
30
+ >>> x**2*y**-1
31
+ x**2*y**-1
32
+ >>> type(_)
33
+ <class 'sympy.combinatorics.free_groups.FreeGroupElement'>
34
+
35
+ """
36
+ _free_group = FreeGroup(symbols)
37
+ return (_free_group,) + tuple(_free_group.generators)
38
+
39
+ @public
40
+ def xfree_group(symbols):
41
+ """Construct a free group returning ``(FreeGroup, (f_0, f_1, ..., f_(n-1)))``.
42
+
43
+ Parameters
44
+ ==========
45
+
46
+ symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty)
47
+
48
+ Examples
49
+ ========
50
+
51
+ >>> from sympy.combinatorics.free_groups import xfree_group
52
+ >>> F, (x, y, z) = xfree_group("x, y, z")
53
+ >>> F
54
+ <free group on the generators (x, y, z)>
55
+ >>> y**2*x**-2*z**-1
56
+ y**2*x**-2*z**-1
57
+ >>> type(_)
58
+ <class 'sympy.combinatorics.free_groups.FreeGroupElement'>
59
+
60
+ """
61
+ _free_group = FreeGroup(symbols)
62
+ return (_free_group, _free_group.generators)
63
+
64
+ @public
65
+ def vfree_group(symbols):
66
+ """Construct a free group and inject ``f_0, f_1, ..., f_(n-1)`` as symbols
67
+ into the global namespace.
68
+
69
+ Parameters
70
+ ==========
71
+
72
+ symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty)
73
+
74
+ Examples
75
+ ========
76
+
77
+ >>> from sympy.combinatorics.free_groups import vfree_group
78
+ >>> vfree_group("x, y, z")
79
+ <free group on the generators (x, y, z)>
80
+ >>> x**2*y**-2*z # noqa: F821
81
+ x**2*y**-2*z
82
+ >>> type(_)
83
+ <class 'sympy.combinatorics.free_groups.FreeGroupElement'>
84
+
85
+ """
86
+ _free_group = FreeGroup(symbols)
87
+ pollute([sym.name for sym in _free_group.symbols], _free_group.generators)
88
+ return _free_group
89
+
90
+
91
+ def _parse_symbols(symbols):
92
+ if not symbols:
93
+ return ()
94
+ if isinstance(symbols, str):
95
+ return _symbols(symbols, seq=True)
96
+ elif isinstance(symbols, (Expr, FreeGroupElement)):
97
+ return (symbols,)
98
+ elif is_sequence(symbols):
99
+ if all(isinstance(s, str) for s in symbols):
100
+ return _symbols(symbols)
101
+ elif all(isinstance(s, Expr) for s in symbols):
102
+ return symbols
103
+ raise ValueError("The type of `symbols` must be one of the following: "
104
+ "a str, Symbol/Expr or a sequence of "
105
+ "one of these types")
106
+
107
+
108
+ ##############################################################################
109
+ # FREE GROUP #
110
+ ##############################################################################
111
+
112
+ _free_group_cache: dict[int, FreeGroup] = {}
113
+
114
+ class FreeGroup(DefaultPrinting):
115
+ """
116
+ Free group with finite or infinite number of generators. Its input API
117
+ is that of a str, Symbol/Expr or a sequence of one of
118
+ these types (which may be empty)
119
+
120
+ See Also
121
+ ========
122
+
123
+ sympy.polys.rings.PolyRing
124
+
125
+ References
126
+ ==========
127
+
128
+ .. [1] https://www.gap-system.org/Manuals/doc/ref/chap37.html
129
+
130
+ .. [2] https://en.wikipedia.org/wiki/Free_group
131
+
132
+ """
133
+ is_associative = True
134
+ is_group = True
135
+ is_FreeGroup = True
136
+ is_PermutationGroup = False
137
+ relators: list[Expr] = []
138
+
139
+ def __new__(cls, symbols):
140
+ symbols = tuple(_parse_symbols(symbols))
141
+ rank = len(symbols)
142
+ _hash = hash((cls.__name__, symbols, rank))
143
+ obj = _free_group_cache.get(_hash)
144
+
145
+ if obj is None:
146
+ obj = object.__new__(cls)
147
+ obj._hash = _hash
148
+ obj._rank = rank
149
+ # dtype method is used to create new instances of FreeGroupElement
150
+ obj.dtype = type("FreeGroupElement", (FreeGroupElement,), {"group": obj})
151
+ obj.symbols = symbols
152
+ obj.generators = obj._generators()
153
+ obj._gens_set = set(obj.generators)
154
+ for symbol, generator in zip(obj.symbols, obj.generators):
155
+ if isinstance(symbol, Symbol):
156
+ name = symbol.name
157
+ if hasattr(obj, name):
158
+ setattr(obj, name, generator)
159
+
160
+ _free_group_cache[_hash] = obj
161
+
162
+ return obj
163
+
164
+ def _generators(group):
165
+ """Returns the generators of the FreeGroup.
166
+
167
+ Examples
168
+ ========
169
+
170
+ >>> from sympy.combinatorics import free_group
171
+ >>> F, x, y, z = free_group("x, y, z")
172
+ >>> F.generators
173
+ (x, y, z)
174
+
175
+ """
176
+ gens = []
177
+ for sym in group.symbols:
178
+ elm = ((sym, 1),)
179
+ gens.append(group.dtype(elm))
180
+ return tuple(gens)
181
+
182
+ def clone(self, symbols=None):
183
+ return self.__class__(symbols or self.symbols)
184
+
185
+ def __contains__(self, i):
186
+ """Return True if ``i`` is contained in FreeGroup."""
187
+ if not isinstance(i, FreeGroupElement):
188
+ return False
189
+ group = i.group
190
+ return self == group
191
+
192
+ def __hash__(self):
193
+ return self._hash
194
+
195
+ def __len__(self):
196
+ return self.rank
197
+
198
+ def __str__(self):
199
+ if self.rank > 30:
200
+ str_form = "<free group with %s generators>" % self.rank
201
+ else:
202
+ str_form = "<free group on the generators "
203
+ gens = self.generators
204
+ str_form += str(gens) + ">"
205
+ return str_form
206
+
207
+ __repr__ = __str__
208
+
209
+ def __getitem__(self, index):
210
+ symbols = self.symbols[index]
211
+ return self.clone(symbols=symbols)
212
+
213
+ def __eq__(self, other):
214
+ """No ``FreeGroup`` is equal to any "other" ``FreeGroup``.
215
+ """
216
+ return self is other
217
+
218
+ def index(self, gen):
219
+ """Return the index of the generator `gen` from ``(f_0, ..., f_(n-1))``.
220
+
221
+ Examples
222
+ ========
223
+
224
+ >>> from sympy.combinatorics import free_group
225
+ >>> F, x, y = free_group("x, y")
226
+ >>> F.index(y)
227
+ 1
228
+ >>> F.index(x)
229
+ 0
230
+
231
+ """
232
+ if isinstance(gen, self.dtype):
233
+ return self.generators.index(gen)
234
+ else:
235
+ raise ValueError("expected a generator of Free Group %s, got %s" % (self, gen))
236
+
237
+ def order(self):
238
+ """Return the order of the free group.
239
+
240
+ Examples
241
+ ========
242
+
243
+ >>> from sympy.combinatorics import free_group
244
+ >>> F, x, y = free_group("x, y")
245
+ >>> F.order()
246
+ oo
247
+
248
+ >>> free_group("")[0].order()
249
+ 1
250
+
251
+ """
252
+ if self.rank == 0:
253
+ return S.One
254
+ else:
255
+ return S.Infinity
256
+
257
+ @property
258
+ def elements(self):
259
+ """
260
+ Return the elements of the free group.
261
+
262
+ Examples
263
+ ========
264
+
265
+ >>> from sympy.combinatorics import free_group
266
+ >>> (z,) = free_group("")
267
+ >>> z.elements
268
+ {<identity>}
269
+
270
+ """
271
+ if self.rank == 0:
272
+ # A set containing Identity element of `FreeGroup` self is returned
273
+ return {self.identity}
274
+ else:
275
+ raise ValueError("Group contains infinitely many elements"
276
+ ", hence cannot be represented")
277
+
278
+ @property
279
+ def rank(self):
280
+ r"""
281
+ In group theory, the `rank` of a group `G`, denoted `G.rank`,
282
+ can refer to the smallest cardinality of a generating set
283
+ for G, that is
284
+
285
+ \operatorname{rank}(G)=\min\{ |X|: X\subseteq G, \left\langle X\right\rangle =G\}.
286
+
287
+ """
288
+ return self._rank
289
+
290
+ @property
291
+ def is_abelian(self):
292
+ """Returns if the group is Abelian.
293
+
294
+ Examples
295
+ ========
296
+
297
+ >>> from sympy.combinatorics import free_group
298
+ >>> f, x, y, z = free_group("x y z")
299
+ >>> f.is_abelian
300
+ False
301
+
302
+ """
303
+ return self.rank in (0, 1)
304
+
305
+ @property
306
+ def identity(self):
307
+ """Returns the identity element of free group."""
308
+ return self.dtype()
309
+
310
+ def contains(self, g):
311
+ """Tests if Free Group element ``g`` belong to self, ``G``.
312
+
313
+ In mathematical terms any linear combination of generators
314
+ of a Free Group is contained in it.
315
+
316
+ Examples
317
+ ========
318
+
319
+ >>> from sympy.combinatorics import free_group
320
+ >>> f, x, y, z = free_group("x y z")
321
+ >>> f.contains(x**3*y**2)
322
+ True
323
+
324
+ """
325
+ if not isinstance(g, FreeGroupElement):
326
+ return False
327
+ elif self != g.group:
328
+ return False
329
+ else:
330
+ return True
331
+
332
+ def center(self):
333
+ """Returns the center of the free group `self`."""
334
+ return {self.identity}
335
+
336
+
337
+ ############################################################################
338
+ # FreeGroupElement #
339
+ ############################################################################
340
+
341
+
342
+ class FreeGroupElement(CantSympify, DefaultPrinting, tuple):
343
+ """Used to create elements of FreeGroup. It cannot be used directly to
344
+ create a free group element. It is called by the `dtype` method of the
345
+ `FreeGroup` class.
346
+
347
+ """
348
+ is_assoc_word = True
349
+
350
+ def new(self, init):
351
+ return self.__class__(init)
352
+
353
+ _hash = None
354
+
355
+ def __hash__(self):
356
+ _hash = self._hash
357
+ if _hash is None:
358
+ self._hash = _hash = hash((self.group, frozenset(tuple(self))))
359
+ return _hash
360
+
361
+ def copy(self):
362
+ return self.new(self)
363
+
364
+ @property
365
+ def is_identity(self):
366
+ if self.array_form == ():
367
+ return True
368
+ else:
369
+ return False
370
+
371
+ @property
372
+ def array_form(self):
373
+ """
374
+ SymPy provides two different internal kinds of representation
375
+ of associative words. The first one is called the `array_form`
376
+ which is a tuple containing `tuples` as its elements, where the
377
+ size of each tuple is two. At the first position the tuple
378
+ contains the `symbol-generator`, while at the second position
379
+ of tuple contains the exponent of that generator at the position.
380
+ Since elements (i.e. words) do not commute, the indexing of tuple
381
+ makes that property to stay.
382
+
383
+ The structure in ``array_form`` of ``FreeGroupElement`` is of form:
384
+
385
+ ``( ( symbol_of_gen, exponent ), ( , ), ... ( , ) )``
386
+
387
+ Examples
388
+ ========
389
+
390
+ >>> from sympy.combinatorics import free_group
391
+ >>> f, x, y, z = free_group("x y z")
392
+ >>> (x*z).array_form
393
+ ((x, 1), (z, 1))
394
+ >>> (x**2*z*y*x**2).array_form
395
+ ((x, 2), (z, 1), (y, 1), (x, 2))
396
+
397
+ See Also
398
+ ========
399
+
400
+ letter_repr
401
+
402
+ """
403
+ return tuple(self)
404
+
405
+ @property
406
+ def letter_form(self):
407
+ """
408
+ The letter representation of a ``FreeGroupElement`` is a tuple
409
+ of generator symbols, with each entry corresponding to a group
410
+ generator. Inverses of the generators are represented by
411
+ negative generator symbols.
412
+
413
+ Examples
414
+ ========
415
+
416
+ >>> from sympy.combinatorics import free_group
417
+ >>> f, a, b, c, d = free_group("a b c d")
418
+ >>> (a**3).letter_form
419
+ (a, a, a)
420
+ >>> (a**2*d**-2*a*b**-4).letter_form
421
+ (a, a, -d, -d, a, -b, -b, -b, -b)
422
+ >>> (a**-2*b**3*d).letter_form
423
+ (-a, -a, b, b, b, d)
424
+
425
+ See Also
426
+ ========
427
+
428
+ array_form
429
+
430
+ """
431
+ return tuple(flatten([(i,)*j if j > 0 else (-i,)*(-j)
432
+ for i, j in self.array_form]))
433
+
434
+ def __getitem__(self, i):
435
+ group = self.group
436
+ r = self.letter_form[i]
437
+ if r.is_Symbol:
438
+ return group.dtype(((r, 1),))
439
+ else:
440
+ return group.dtype(((-r, -1),))
441
+
442
+ def index(self, gen):
443
+ if len(gen) != 1:
444
+ raise ValueError()
445
+ return (self.letter_form).index(gen.letter_form[0])
446
+
447
+ @property
448
+ def letter_form_elm(self):
449
+ """
450
+ """
451
+ group = self.group
452
+ r = self.letter_form
453
+ return [group.dtype(((elm,1),)) if elm.is_Symbol \
454
+ else group.dtype(((-elm,-1),)) for elm in r]
455
+
456
+ @property
457
+ def ext_rep(self):
458
+ """This is called the External Representation of ``FreeGroupElement``
459
+ """
460
+ return tuple(flatten(self.array_form))
461
+
462
+ def __contains__(self, gen):
463
+ return gen.array_form[0][0] in tuple([r[0] for r in self.array_form])
464
+
465
+ def __str__(self):
466
+ if self.is_identity:
467
+ return "<identity>"
468
+
469
+ str_form = ""
470
+ array_form = self.array_form
471
+ for i in range(len(array_form)):
472
+ if i == len(array_form) - 1:
473
+ if array_form[i][1] == 1:
474
+ str_form += str(array_form[i][0])
475
+ else:
476
+ str_form += str(array_form[i][0]) + \
477
+ "**" + str(array_form[i][1])
478
+ else:
479
+ if array_form[i][1] == 1:
480
+ str_form += str(array_form[i][0]) + "*"
481
+ else:
482
+ str_form += str(array_form[i][0]) + \
483
+ "**" + str(array_form[i][1]) + "*"
484
+ return str_form
485
+
486
+ __repr__ = __str__
487
+
488
+ def __pow__(self, n):
489
+ n = as_int(n)
490
+ group = self.group
491
+ if n == 0:
492
+ return group.identity
493
+
494
+ if n < 0:
495
+ n = -n
496
+ return (self.inverse())**n
497
+
498
+ result = self
499
+ for i in range(n - 1):
500
+ result = result*self
501
+ # this method can be improved instead of just returning the
502
+ # multiplication of elements
503
+ return result
504
+
505
+ def __mul__(self, other):
506
+ """Returns the product of elements belonging to the same ``FreeGroup``.
507
+
508
+ Examples
509
+ ========
510
+
511
+ >>> from sympy.combinatorics import free_group
512
+ >>> f, x, y, z = free_group("x y z")
513
+ >>> x*y**2*y**-4
514
+ x*y**-2
515
+ >>> z*y**-2
516
+ z*y**-2
517
+ >>> x**2*y*y**-1*x**-2
518
+ <identity>
519
+
520
+ """
521
+ group = self.group
522
+ if not isinstance(other, group.dtype):
523
+ raise TypeError("only FreeGroup elements of same FreeGroup can "
524
+ "be multiplied")
525
+ if self.is_identity:
526
+ return other
527
+ if other.is_identity:
528
+ return self
529
+ r = list(self.array_form + other.array_form)
530
+ zero_mul_simp(r, len(self.array_form) - 1)
531
+ return group.dtype(tuple(r))
532
+
533
+ def __truediv__(self, other):
534
+ group = self.group
535
+ if not isinstance(other, group.dtype):
536
+ raise TypeError("only FreeGroup elements of same FreeGroup can "
537
+ "be multiplied")
538
+ return self*(other.inverse())
539
+
540
+ def __rtruediv__(self, other):
541
+ group = self.group
542
+ if not isinstance(other, group.dtype):
543
+ raise TypeError("only FreeGroup elements of same FreeGroup can "
544
+ "be multiplied")
545
+ return other*(self.inverse())
546
+
547
+ def __add__(self, other):
548
+ return NotImplemented
549
+
550
+ def inverse(self):
551
+ """
552
+ Returns the inverse of a ``FreeGroupElement`` element
553
+
554
+ Examples
555
+ ========
556
+
557
+ >>> from sympy.combinatorics import free_group
558
+ >>> f, x, y, z = free_group("x y z")
559
+ >>> x.inverse()
560
+ x**-1
561
+ >>> (x*y).inverse()
562
+ y**-1*x**-1
563
+
564
+ """
565
+ group = self.group
566
+ r = tuple([(i, -j) for i, j in self.array_form[::-1]])
567
+ return group.dtype(r)
568
+
569
+ def order(self):
570
+ """Find the order of a ``FreeGroupElement``.
571
+
572
+ Examples
573
+ ========
574
+
575
+ >>> from sympy.combinatorics import free_group
576
+ >>> f, x, y = free_group("x y")
577
+ >>> (x**2*y*y**-1*x**-2).order()
578
+ 1
579
+
580
+ """
581
+ if self.is_identity:
582
+ return S.One
583
+ else:
584
+ return S.Infinity
585
+
586
+ def commutator(self, other):
587
+ """
588
+ Return the commutator of `self` and `x`: ``~x*~self*x*self``
589
+
590
+ """
591
+ group = self.group
592
+ if not isinstance(other, group.dtype):
593
+ raise ValueError("commutator of only FreeGroupElement of the same "
594
+ "FreeGroup exists")
595
+ else:
596
+ return self.inverse()*other.inverse()*self*other
597
+
598
+ def eliminate_words(self, words, _all=False, inverse=True):
599
+ '''
600
+ Replace each subword from the dictionary `words` by words[subword].
601
+ If words is a list, replace the words by the identity.
602
+
603
+ '''
604
+ again = True
605
+ new = self
606
+ if isinstance(words, dict):
607
+ while again:
608
+ again = False
609
+ for sub in words:
610
+ prev = new
611
+ new = new.eliminate_word(sub, words[sub], _all=_all, inverse=inverse)
612
+ if new != prev:
613
+ again = True
614
+ else:
615
+ while again:
616
+ again = False
617
+ for sub in words:
618
+ prev = new
619
+ new = new.eliminate_word(sub, _all=_all, inverse=inverse)
620
+ if new != prev:
621
+ again = True
622
+ return new
623
+
624
+ def eliminate_word(self, gen, by=None, _all=False, inverse=True):
625
+ """
626
+ For an associative word `self`, a subword `gen`, and an associative
627
+ word `by` (identity by default), return the associative word obtained by
628
+ replacing each occurrence of `gen` in `self` by `by`. If `_all = True`,
629
+ the occurrences of `gen` that may appear after the first substitution will
630
+ also be replaced and so on until no occurrences are found. This might not
631
+ always terminate (e.g. `(x).eliminate_word(x, x**2, _all=True)`).
632
+
633
+ Examples
634
+ ========
635
+
636
+ >>> from sympy.combinatorics import free_group
637
+ >>> f, x, y = free_group("x y")
638
+ >>> w = x**5*y*x**2*y**-4*x
639
+ >>> w.eliminate_word( x, x**2 )
640
+ x**10*y*x**4*y**-4*x**2
641
+ >>> w.eliminate_word( x, y**-1 )
642
+ y**-11
643
+ >>> w.eliminate_word(x**5)
644
+ y*x**2*y**-4*x
645
+ >>> w.eliminate_word(x*y, y)
646
+ x**4*y*x**2*y**-4*x
647
+
648
+ See Also
649
+ ========
650
+ substituted_word
651
+
652
+ """
653
+ if by is None:
654
+ by = self.group.identity
655
+ if self.is_independent(gen) or gen == by:
656
+ return self
657
+ if gen == self:
658
+ return by
659
+ if gen**-1 == by:
660
+ _all = False
661
+ word = self
662
+ l = len(gen)
663
+
664
+ try:
665
+ i = word.subword_index(gen)
666
+ k = 1
667
+ except ValueError:
668
+ if not inverse:
669
+ return word
670
+ try:
671
+ i = word.subword_index(gen**-1)
672
+ k = -1
673
+ except ValueError:
674
+ return word
675
+
676
+ word = word.subword(0, i)*by**k*word.subword(i+l, len(word)).eliminate_word(gen, by)
677
+
678
+ if _all:
679
+ return word.eliminate_word(gen, by, _all=True, inverse=inverse)
680
+ else:
681
+ return word
682
+
683
+ def __len__(self):
684
+ """
685
+ For an associative word `self`, returns the number of letters in it.
686
+
687
+ Examples
688
+ ========
689
+
690
+ >>> from sympy.combinatorics import free_group
691
+ >>> f, a, b = free_group("a b")
692
+ >>> w = a**5*b*a**2*b**-4*a
693
+ >>> len(w)
694
+ 13
695
+ >>> len(a**17)
696
+ 17
697
+ >>> len(w**0)
698
+ 0
699
+
700
+ """
701
+ return sum(abs(j) for (i, j) in self)
702
+
703
+ def __eq__(self, other):
704
+ """
705
+ Two associative words are equal if they are words over the
706
+ same alphabet and if they are sequences of the same letters.
707
+ This is equivalent to saying that the external representations
708
+ of the words are equal.
709
+ There is no "universal" empty word, every alphabet has its own
710
+ empty word.
711
+
712
+ Examples
713
+ ========
714
+
715
+ >>> from sympy.combinatorics import free_group
716
+ >>> f, swapnil0, swapnil1 = free_group("swapnil0 swapnil1")
717
+ >>> f
718
+ <free group on the generators (swapnil0, swapnil1)>
719
+ >>> g, swap0, swap1 = free_group("swap0 swap1")
720
+ >>> g
721
+ <free group on the generators (swap0, swap1)>
722
+
723
+ >>> swapnil0 == swapnil1
724
+ False
725
+ >>> swapnil0*swapnil1 == swapnil1/swapnil1*swapnil0*swapnil1
726
+ True
727
+ >>> swapnil0*swapnil1 == swapnil1*swapnil0
728
+ False
729
+ >>> swapnil1**0 == swap0**0
730
+ False
731
+
732
+ """
733
+ group = self.group
734
+ if not isinstance(other, group.dtype):
735
+ return False
736
+ return tuple.__eq__(self, other)
737
+
738
+ def __lt__(self, other):
739
+ """
740
+ The ordering of associative words is defined by length and
741
+ lexicography (this ordering is called short-lex ordering), that
742
+ is, shorter words are smaller than longer words, and words of the
743
+ same length are compared w.r.t. the lexicographical ordering induced
744
+ by the ordering of generators. Generators are sorted according
745
+ to the order in which they were created. If the generators are
746
+ invertible then each generator `g` is larger than its inverse `g^{-1}`,
747
+ and `g^{-1}` is larger than every generator that is smaller than `g`.
748
+
749
+ Examples
750
+ ========
751
+
752
+ >>> from sympy.combinatorics import free_group
753
+ >>> f, a, b = free_group("a b")
754
+ >>> b < a
755
+ False
756
+ >>> a < a.inverse()
757
+ False
758
+
759
+ """
760
+ group = self.group
761
+ if not isinstance(other, group.dtype):
762
+ raise TypeError("only FreeGroup elements of same FreeGroup can "
763
+ "be compared")
764
+ l = len(self)
765
+ m = len(other)
766
+ # implement lenlex order
767
+ if l < m:
768
+ return True
769
+ elif l > m:
770
+ return False
771
+ for i in range(l):
772
+ a = self[i].array_form[0]
773
+ b = other[i].array_form[0]
774
+ p = group.symbols.index(a[0])
775
+ q = group.symbols.index(b[0])
776
+ if p < q:
777
+ return True
778
+ elif p > q:
779
+ return False
780
+ elif a[1] < b[1]:
781
+ return True
782
+ elif a[1] > b[1]:
783
+ return False
784
+ return False
785
+
786
+ def __le__(self, other):
787
+ return (self == other or self < other)
788
+
789
+ def __gt__(self, other):
790
+ """
791
+
792
+ Examples
793
+ ========
794
+
795
+ >>> from sympy.combinatorics import free_group
796
+ >>> f, x, y, z = free_group("x y z")
797
+ >>> y**2 > x**2
798
+ True
799
+ >>> y*z > z*y
800
+ False
801
+ >>> x > x.inverse()
802
+ True
803
+
804
+ """
805
+ group = self.group
806
+ if not isinstance(other, group.dtype):
807
+ raise TypeError("only FreeGroup elements of same FreeGroup can "
808
+ "be compared")
809
+ return not self <= other
810
+
811
+ def __ge__(self, other):
812
+ return not self < other
813
+
814
+ def exponent_sum(self, gen):
815
+ """
816
+ For an associative word `self` and a generator or inverse of generator
817
+ `gen`, ``exponent_sum`` returns the number of times `gen` appears in
818
+ `self` minus the number of times its inverse appears in `self`. If
819
+ neither `gen` nor its inverse occur in `self` then 0 is returned.
820
+
821
+ Examples
822
+ ========
823
+
824
+ >>> from sympy.combinatorics import free_group
825
+ >>> F, x, y = free_group("x, y")
826
+ >>> w = x**2*y**3
827
+ >>> w.exponent_sum(x)
828
+ 2
829
+ >>> w.exponent_sum(x**-1)
830
+ -2
831
+ >>> w = x**2*y**4*x**-3
832
+ >>> w.exponent_sum(x)
833
+ -1
834
+
835
+ See Also
836
+ ========
837
+
838
+ generator_count
839
+
840
+ """
841
+ if len(gen) != 1:
842
+ raise ValueError("gen must be a generator or inverse of a generator")
843
+ s = gen.array_form[0]
844
+ return s[1]*sum([i[1] for i in self.array_form if i[0] == s[0]])
845
+
846
+ def generator_count(self, gen):
847
+ """
848
+ For an associative word `self` and a generator `gen`,
849
+ ``generator_count`` returns the multiplicity of generator
850
+ `gen` in `self`.
851
+
852
+ Examples
853
+ ========
854
+
855
+ >>> from sympy.combinatorics import free_group
856
+ >>> F, x, y = free_group("x, y")
857
+ >>> w = x**2*y**3
858
+ >>> w.generator_count(x)
859
+ 2
860
+ >>> w = x**2*y**4*x**-3
861
+ >>> w.generator_count(x)
862
+ 5
863
+
864
+ See Also
865
+ ========
866
+
867
+ exponent_sum
868
+
869
+ """
870
+ if len(gen) != 1 or gen.array_form[0][1] < 0:
871
+ raise ValueError("gen must be a generator")
872
+ s = gen.array_form[0]
873
+ return s[1]*sum([abs(i[1]) for i in self.array_form if i[0] == s[0]])
874
+
875
+ def subword(self, from_i, to_j, strict=True):
876
+ """
877
+ For an associative word `self` and two positive integers `from_i` and
878
+ `to_j`, `subword` returns the subword of `self` that begins at position
879
+ `from_i` and ends at `to_j - 1`, indexing is done with origin 0.
880
+
881
+ Examples
882
+ ========
883
+
884
+ >>> from sympy.combinatorics import free_group
885
+ >>> f, a, b = free_group("a b")
886
+ >>> w = a**5*b*a**2*b**-4*a
887
+ >>> w.subword(2, 6)
888
+ a**3*b
889
+
890
+ """
891
+ group = self.group
892
+ if not strict:
893
+ from_i = max(from_i, 0)
894
+ to_j = min(len(self), to_j)
895
+ if from_i < 0 or to_j > len(self):
896
+ raise ValueError("`from_i`, `to_j` must be positive and no greater than "
897
+ "the length of associative word")
898
+ if to_j <= from_i:
899
+ return group.identity
900
+ else:
901
+ letter_form = self.letter_form[from_i: to_j]
902
+ array_form = letter_form_to_array_form(letter_form, group)
903
+ return group.dtype(array_form)
904
+
905
+ def subword_index(self, word, start = 0):
906
+ '''
907
+ Find the index of `word` in `self`.
908
+
909
+ Examples
910
+ ========
911
+
912
+ >>> from sympy.combinatorics import free_group
913
+ >>> f, a, b = free_group("a b")
914
+ >>> w = a**2*b*a*b**3
915
+ >>> w.subword_index(a*b*a*b)
916
+ 1
917
+
918
+ '''
919
+ l = len(word)
920
+ self_lf = self.letter_form
921
+ word_lf = word.letter_form
922
+ index = None
923
+ for i in range(start,len(self_lf)-l+1):
924
+ if self_lf[i:i+l] == word_lf:
925
+ index = i
926
+ break
927
+ if index is not None:
928
+ return index
929
+ else:
930
+ raise ValueError("The given word is not a subword of self")
931
+
932
+ def is_dependent(self, word):
933
+ """
934
+ Examples
935
+ ========
936
+
937
+ >>> from sympy.combinatorics import free_group
938
+ >>> F, x, y = free_group("x, y")
939
+ >>> (x**4*y**-3).is_dependent(x**4*y**-2)
940
+ True
941
+ >>> (x**2*y**-1).is_dependent(x*y)
942
+ False
943
+ >>> (x*y**2*x*y**2).is_dependent(x*y**2)
944
+ True
945
+ >>> (x**12).is_dependent(x**-4)
946
+ True
947
+
948
+ See Also
949
+ ========
950
+
951
+ is_independent
952
+
953
+ """
954
+ try:
955
+ return self.subword_index(word) is not None
956
+ except ValueError:
957
+ pass
958
+ try:
959
+ return self.subword_index(word**-1) is not None
960
+ except ValueError:
961
+ return False
962
+
963
+ def is_independent(self, word):
964
+ """
965
+
966
+ See Also
967
+ ========
968
+
969
+ is_dependent
970
+
971
+ """
972
+ return not self.is_dependent(word)
973
+
974
+ def contains_generators(self):
975
+ """
976
+ Examples
977
+ ========
978
+
979
+ >>> from sympy.combinatorics import free_group
980
+ >>> F, x, y, z = free_group("x, y, z")
981
+ >>> (x**2*y**-1).contains_generators()
982
+ {x, y}
983
+ >>> (x**3*z).contains_generators()
984
+ {x, z}
985
+
986
+ """
987
+ group = self.group
988
+ gens = set()
989
+ for syllable in self.array_form:
990
+ gens.add(group.dtype(((syllable[0], 1),)))
991
+ return set(gens)
992
+
993
+ def cyclic_subword(self, from_i, to_j):
994
+ group = self.group
995
+ l = len(self)
996
+ letter_form = self.letter_form
997
+ period1 = int(from_i/l)
998
+ if from_i >= l:
999
+ from_i -= l*period1
1000
+ to_j -= l*period1
1001
+ diff = to_j - from_i
1002
+ word = letter_form[from_i: to_j]
1003
+ period2 = int(to_j/l) - 1
1004
+ word += letter_form*period2 + letter_form[:diff-l+from_i-l*period2]
1005
+ word = letter_form_to_array_form(word, group)
1006
+ return group.dtype(word)
1007
+
1008
+ def cyclic_conjugates(self):
1009
+ """Returns a words which are cyclic to the word `self`.
1010
+
1011
+ Examples
1012
+ ========
1013
+
1014
+ >>> from sympy.combinatorics import free_group
1015
+ >>> F, x, y = free_group("x, y")
1016
+ >>> w = x*y*x*y*x
1017
+ >>> w.cyclic_conjugates()
1018
+ {x*y*x**2*y, x**2*y*x*y, y*x*y*x**2, y*x**2*y*x, x*y*x*y*x}
1019
+ >>> s = x*y*x**2*y*x
1020
+ >>> s.cyclic_conjugates()
1021
+ {x**2*y*x**2*y, y*x**2*y*x**2, x*y*x**2*y*x}
1022
+
1023
+ References
1024
+ ==========
1025
+
1026
+ .. [1] https://planetmath.org/cyclicpermutation
1027
+
1028
+ """
1029
+ return {self.cyclic_subword(i, i+len(self)) for i in range(len(self))}
1030
+
1031
+ def is_cyclic_conjugate(self, w):
1032
+ """
1033
+ Checks whether words ``self``, ``w`` are cyclic conjugates.
1034
+
1035
+ Examples
1036
+ ========
1037
+
1038
+ >>> from sympy.combinatorics import free_group
1039
+ >>> F, x, y = free_group("x, y")
1040
+ >>> w1 = x**2*y**5
1041
+ >>> w2 = x*y**5*x
1042
+ >>> w1.is_cyclic_conjugate(w2)
1043
+ True
1044
+ >>> w3 = x**-1*y**5*x**-1
1045
+ >>> w3.is_cyclic_conjugate(w2)
1046
+ False
1047
+
1048
+ """
1049
+ l1 = len(self)
1050
+ l2 = len(w)
1051
+ if l1 != l2:
1052
+ return False
1053
+ w1 = self.identity_cyclic_reduction()
1054
+ w2 = w.identity_cyclic_reduction()
1055
+ letter1 = w1.letter_form
1056
+ letter2 = w2.letter_form
1057
+ str1 = ' '.join(map(str, letter1))
1058
+ str2 = ' '.join(map(str, letter2))
1059
+ if len(str1) != len(str2):
1060
+ return False
1061
+
1062
+ return str1 in str2 + ' ' + str2
1063
+
1064
+ def number_syllables(self):
1065
+ """Returns the number of syllables of the associative word `self`.
1066
+
1067
+ Examples
1068
+ ========
1069
+
1070
+ >>> from sympy.combinatorics import free_group
1071
+ >>> f, swapnil0, swapnil1 = free_group("swapnil0 swapnil1")
1072
+ >>> (swapnil1**3*swapnil0*swapnil1**-1).number_syllables()
1073
+ 3
1074
+
1075
+ """
1076
+ return len(self.array_form)
1077
+
1078
+ def exponent_syllable(self, i):
1079
+ """
1080
+ Returns the exponent of the `i`-th syllable of the associative word
1081
+ `self`.
1082
+
1083
+ Examples
1084
+ ========
1085
+
1086
+ >>> from sympy.combinatorics import free_group
1087
+ >>> f, a, b = free_group("a b")
1088
+ >>> w = a**5*b*a**2*b**-4*a
1089
+ >>> w.exponent_syllable( 2 )
1090
+ 2
1091
+
1092
+ """
1093
+ return self.array_form[i][1]
1094
+
1095
+ def generator_syllable(self, i):
1096
+ """
1097
+ Returns the symbol of the generator that is involved in the
1098
+ i-th syllable of the associative word `self`.
1099
+
1100
+ Examples
1101
+ ========
1102
+
1103
+ >>> from sympy.combinatorics import free_group
1104
+ >>> f, a, b = free_group("a b")
1105
+ >>> w = a**5*b*a**2*b**-4*a
1106
+ >>> w.generator_syllable( 3 )
1107
+ b
1108
+
1109
+ """
1110
+ return self.array_form[i][0]
1111
+
1112
+ def sub_syllables(self, from_i, to_j):
1113
+ """
1114
+ `sub_syllables` returns the subword of the associative word `self` that
1115
+ consists of syllables from positions `from_to` to `to_j`, where
1116
+ `from_to` and `to_j` must be positive integers and indexing is done
1117
+ with origin 0.
1118
+
1119
+ Examples
1120
+ ========
1121
+
1122
+ >>> from sympy.combinatorics import free_group
1123
+ >>> f, a, b = free_group("a, b")
1124
+ >>> w = a**5*b*a**2*b**-4*a
1125
+ >>> w.sub_syllables(1, 2)
1126
+ b
1127
+ >>> w.sub_syllables(3, 3)
1128
+ <identity>
1129
+
1130
+ """
1131
+ if not isinstance(from_i, int) or not isinstance(to_j, int):
1132
+ raise ValueError("both arguments should be integers")
1133
+ group = self.group
1134
+ if to_j <= from_i:
1135
+ return group.identity
1136
+ else:
1137
+ r = tuple(self.array_form[from_i: to_j])
1138
+ return group.dtype(r)
1139
+
1140
+ def substituted_word(self, from_i, to_j, by):
1141
+ """
1142
+ Returns the associative word obtained by replacing the subword of
1143
+ `self` that begins at position `from_i` and ends at position `to_j - 1`
1144
+ by the associative word `by`. `from_i` and `to_j` must be positive
1145
+ integers, indexing is done with origin 0. In other words,
1146
+ `w.substituted_word(w, from_i, to_j, by)` is the product of the three
1147
+ words: `w.subword(0, from_i)`, `by`, and
1148
+ `w.subword(to_j len(w))`.
1149
+
1150
+ See Also
1151
+ ========
1152
+
1153
+ eliminate_word
1154
+
1155
+ """
1156
+ lw = len(self)
1157
+ if from_i >= to_j or from_i > lw or to_j > lw:
1158
+ raise ValueError("values should be within bounds")
1159
+
1160
+ # otherwise there are four possibilities
1161
+
1162
+ # first if from=1 and to=lw then
1163
+ if from_i == 0 and to_j == lw:
1164
+ return by
1165
+ elif from_i == 0: # second if from_i=1 (and to_j < lw) then
1166
+ return by*self.subword(to_j, lw)
1167
+ elif to_j == lw: # third if to_j=1 (and from_i > 1) then
1168
+ return self.subword(0, from_i)*by
1169
+ else: # finally
1170
+ return self.subword(0, from_i)*by*self.subword(to_j, lw)
1171
+
1172
+ def is_cyclically_reduced(self):
1173
+ r"""Returns whether the word is cyclically reduced or not.
1174
+ A word is cyclically reduced if by forming the cycle of the
1175
+ word, the word is not reduced, i.e a word w = `a_1 ... a_n`
1176
+ is called cyclically reduced if `a_1 \ne a_n^{-1}`.
1177
+
1178
+ Examples
1179
+ ========
1180
+
1181
+ >>> from sympy.combinatorics import free_group
1182
+ >>> F, x, y = free_group("x, y")
1183
+ >>> (x**2*y**-1*x**-1).is_cyclically_reduced()
1184
+ False
1185
+ >>> (y*x**2*y**2).is_cyclically_reduced()
1186
+ True
1187
+
1188
+ """
1189
+ if not self:
1190
+ return True
1191
+ return self[0] != self[-1]**-1
1192
+
1193
+ def identity_cyclic_reduction(self):
1194
+ """Return a unique cyclically reduced version of the word.
1195
+
1196
+ Examples
1197
+ ========
1198
+
1199
+ >>> from sympy.combinatorics import free_group
1200
+ >>> F, x, y = free_group("x, y")
1201
+ >>> (x**2*y**2*x**-1).identity_cyclic_reduction()
1202
+ x*y**2
1203
+ >>> (x**-3*y**-1*x**5).identity_cyclic_reduction()
1204
+ x**2*y**-1
1205
+
1206
+ References
1207
+ ==========
1208
+
1209
+ .. [1] https://planetmath.org/cyclicallyreduced
1210
+
1211
+ """
1212
+ word = self.copy()
1213
+ group = self.group
1214
+ while not word.is_cyclically_reduced():
1215
+ exp1 = word.exponent_syllable(0)
1216
+ exp2 = word.exponent_syllable(-1)
1217
+ r = exp1 + exp2
1218
+ if r == 0:
1219
+ rep = word.array_form[1: word.number_syllables() - 1]
1220
+ else:
1221
+ rep = ((word.generator_syllable(0), exp1 + exp2),) + \
1222
+ word.array_form[1: word.number_syllables() - 1]
1223
+ word = group.dtype(rep)
1224
+ return word
1225
+
1226
+ def cyclic_reduction(self, removed=False):
1227
+ """Return a cyclically reduced version of the word. Unlike
1228
+ `identity_cyclic_reduction`, this will not cyclically permute
1229
+ the reduced word - just remove the "unreduced" bits on either
1230
+ side of it. Compare the examples with those of
1231
+ `identity_cyclic_reduction`.
1232
+
1233
+ When `removed` is `True`, return a tuple `(word, r)` where
1234
+ self `r` is such that before the reduction the word was either
1235
+ `r*word*r**-1`.
1236
+
1237
+ Examples
1238
+ ========
1239
+
1240
+ >>> from sympy.combinatorics import free_group
1241
+ >>> F, x, y = free_group("x, y")
1242
+ >>> (x**2*y**2*x**-1).cyclic_reduction()
1243
+ x*y**2
1244
+ >>> (x**-3*y**-1*x**5).cyclic_reduction()
1245
+ y**-1*x**2
1246
+ >>> (x**-3*y**-1*x**5).cyclic_reduction(removed=True)
1247
+ (y**-1*x**2, x**-3)
1248
+
1249
+ """
1250
+ word = self.copy()
1251
+ g = self.group.identity
1252
+ while not word.is_cyclically_reduced():
1253
+ exp1 = abs(word.exponent_syllable(0))
1254
+ exp2 = abs(word.exponent_syllable(-1))
1255
+ exp = min(exp1, exp2)
1256
+ start = word[0]**abs(exp)
1257
+ end = word[-1]**abs(exp)
1258
+ word = start**-1*word*end**-1
1259
+ g = g*start
1260
+ if removed:
1261
+ return word, g
1262
+ return word
1263
+
1264
+ def power_of(self, other):
1265
+ '''
1266
+ Check if `self == other**n` for some integer n.
1267
+
1268
+ Examples
1269
+ ========
1270
+
1271
+ >>> from sympy.combinatorics import free_group
1272
+ >>> F, x, y = free_group("x, y")
1273
+ >>> ((x*y)**2).power_of(x*y)
1274
+ True
1275
+ >>> (x**-3*y**-2*x**3).power_of(x**-3*y*x**3)
1276
+ True
1277
+
1278
+ '''
1279
+ if self.is_identity:
1280
+ return True
1281
+
1282
+ l = len(other)
1283
+ if l == 1:
1284
+ # self has to be a power of one generator
1285
+ gens = self.contains_generators()
1286
+ s = other in gens or other**-1 in gens
1287
+ return len(gens) == 1 and s
1288
+
1289
+ # if self is not cyclically reduced and it is a power of other,
1290
+ # other isn't cyclically reduced and the parts removed during
1291
+ # their reduction must be equal
1292
+ reduced, r1 = self.cyclic_reduction(removed=True)
1293
+ if not r1.is_identity:
1294
+ other, r2 = other.cyclic_reduction(removed=True)
1295
+ if r1 == r2:
1296
+ return reduced.power_of(other)
1297
+ return False
1298
+
1299
+ if len(self) < l or len(self) % l:
1300
+ return False
1301
+
1302
+ prefix = self.subword(0, l)
1303
+ if prefix == other or prefix**-1 == other:
1304
+ rest = self.subword(l, len(self))
1305
+ return rest.power_of(other)
1306
+ return False
1307
+
1308
+
1309
+ def letter_form_to_array_form(array_form, group):
1310
+ """
1311
+ This method converts a list given with possible repetitions of elements in
1312
+ it. It returns a new list such that repetitions of consecutive elements is
1313
+ removed and replace with a tuple element of size two such that the first
1314
+ index contains `value` and the second index contains the number of
1315
+ consecutive repetitions of `value`.
1316
+
1317
+ """
1318
+ a = list(array_form[:])
1319
+ new_array = []
1320
+ n = 1
1321
+ symbols = group.symbols
1322
+ for i in range(len(a)):
1323
+ if i == len(a) - 1:
1324
+ if a[i] == a[i - 1]:
1325
+ if (-a[i]) in symbols:
1326
+ new_array.append((-a[i], -n))
1327
+ else:
1328
+ new_array.append((a[i], n))
1329
+ else:
1330
+ if (-a[i]) in symbols:
1331
+ new_array.append((-a[i], -1))
1332
+ else:
1333
+ new_array.append((a[i], 1))
1334
+ return new_array
1335
+ elif a[i] == a[i + 1]:
1336
+ n += 1
1337
+ else:
1338
+ if (-a[i]) in symbols:
1339
+ new_array.append((-a[i], -n))
1340
+ else:
1341
+ new_array.append((a[i], n))
1342
+ n = 1
1343
+
1344
+
1345
+ def zero_mul_simp(l, index):
1346
+ """Used to combine two reduced words."""
1347
+ while index >=0 and index < len(l) - 1 and l[index][0] == l[index + 1][0]:
1348
+ exp = l[index][1] + l[index + 1][1]
1349
+ base = l[index][0]
1350
+ l[index] = (base, exp)
1351
+ del l[index + 1]
1352
+ if l[index][1] == 0:
1353
+ del l[index]
1354
+ index -= 1
venv/lib/python3.10/site-packages/sympy/combinatorics/galois.py ADDED
@@ -0,0 +1,611 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r"""
2
+ Construct transitive subgroups of symmetric groups, useful in Galois theory.
3
+
4
+ Besides constructing instances of the :py:class:`~.PermutationGroup` class to
5
+ represent the transitive subgroups of $S_n$ for small $n$, this module provides
6
+ *names* for these groups.
7
+
8
+ In some applications, it may be preferable to know the name of a group,
9
+ rather than receive an instance of the :py:class:`~.PermutationGroup`
10
+ class, and then have to do extra work to determine which group it is, by
11
+ checking various properties.
12
+
13
+ Names are instances of ``Enum`` classes defined in this module. With a name in
14
+ hand, the name's ``get_perm_group`` method can then be used to retrieve a
15
+ :py:class:`~.PermutationGroup`.
16
+
17
+ The names used for groups in this module are taken from [1].
18
+
19
+ References
20
+ ==========
21
+
22
+ .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory*.
23
+
24
+ """
25
+
26
+ from collections import defaultdict
27
+ from enum import Enum
28
+ import itertools
29
+
30
+ from sympy.combinatorics.named_groups import (
31
+ SymmetricGroup, AlternatingGroup, CyclicGroup, DihedralGroup,
32
+ set_symmetric_group_properties, set_alternating_group_properties,
33
+ )
34
+ from sympy.combinatorics.perm_groups import PermutationGroup
35
+ from sympy.combinatorics.permutations import Permutation
36
+
37
+
38
+ class S1TransitiveSubgroups(Enum):
39
+ """
40
+ Names for the transitive subgroups of S1.
41
+ """
42
+ S1 = "S1"
43
+
44
+ def get_perm_group(self):
45
+ return SymmetricGroup(1)
46
+
47
+
48
+ class S2TransitiveSubgroups(Enum):
49
+ """
50
+ Names for the transitive subgroups of S2.
51
+ """
52
+ S2 = "S2"
53
+
54
+ def get_perm_group(self):
55
+ return SymmetricGroup(2)
56
+
57
+
58
+ class S3TransitiveSubgroups(Enum):
59
+ """
60
+ Names for the transitive subgroups of S3.
61
+ """
62
+ A3 = "A3"
63
+ S3 = "S3"
64
+
65
+ def get_perm_group(self):
66
+ if self == S3TransitiveSubgroups.A3:
67
+ return AlternatingGroup(3)
68
+ elif self == S3TransitiveSubgroups.S3:
69
+ return SymmetricGroup(3)
70
+
71
+
72
+ class S4TransitiveSubgroups(Enum):
73
+ """
74
+ Names for the transitive subgroups of S4.
75
+ """
76
+ C4 = "C4"
77
+ V = "V"
78
+ D4 = "D4"
79
+ A4 = "A4"
80
+ S4 = "S4"
81
+
82
+ def get_perm_group(self):
83
+ if self == S4TransitiveSubgroups.C4:
84
+ return CyclicGroup(4)
85
+ elif self == S4TransitiveSubgroups.V:
86
+ return four_group()
87
+ elif self == S4TransitiveSubgroups.D4:
88
+ return DihedralGroup(4)
89
+ elif self == S4TransitiveSubgroups.A4:
90
+ return AlternatingGroup(4)
91
+ elif self == S4TransitiveSubgroups.S4:
92
+ return SymmetricGroup(4)
93
+
94
+
95
+ class S5TransitiveSubgroups(Enum):
96
+ """
97
+ Names for the transitive subgroups of S5.
98
+ """
99
+ C5 = "C5"
100
+ D5 = "D5"
101
+ M20 = "M20"
102
+ A5 = "A5"
103
+ S5 = "S5"
104
+
105
+ def get_perm_group(self):
106
+ if self == S5TransitiveSubgroups.C5:
107
+ return CyclicGroup(5)
108
+ elif self == S5TransitiveSubgroups.D5:
109
+ return DihedralGroup(5)
110
+ elif self == S5TransitiveSubgroups.M20:
111
+ return M20()
112
+ elif self == S5TransitiveSubgroups.A5:
113
+ return AlternatingGroup(5)
114
+ elif self == S5TransitiveSubgroups.S5:
115
+ return SymmetricGroup(5)
116
+
117
+
118
+ class S6TransitiveSubgroups(Enum):
119
+ """
120
+ Names for the transitive subgroups of S6.
121
+ """
122
+ C6 = "C6"
123
+ S3 = "S3"
124
+ D6 = "D6"
125
+ A4 = "A4"
126
+ G18 = "G18"
127
+ A4xC2 = "A4 x C2"
128
+ S4m = "S4-"
129
+ S4p = "S4+"
130
+ G36m = "G36-"
131
+ G36p = "G36+"
132
+ S4xC2 = "S4 x C2"
133
+ PSL2F5 = "PSL2(F5)"
134
+ G72 = "G72"
135
+ PGL2F5 = "PGL2(F5)"
136
+ A6 = "A6"
137
+ S6 = "S6"
138
+
139
+ def get_perm_group(self):
140
+ if self == S6TransitiveSubgroups.C6:
141
+ return CyclicGroup(6)
142
+ elif self == S6TransitiveSubgroups.S3:
143
+ return S3_in_S6()
144
+ elif self == S6TransitiveSubgroups.D6:
145
+ return DihedralGroup(6)
146
+ elif self == S6TransitiveSubgroups.A4:
147
+ return A4_in_S6()
148
+ elif self == S6TransitiveSubgroups.G18:
149
+ return G18()
150
+ elif self == S6TransitiveSubgroups.A4xC2:
151
+ return A4xC2()
152
+ elif self == S6TransitiveSubgroups.S4m:
153
+ return S4m()
154
+ elif self == S6TransitiveSubgroups.S4p:
155
+ return S4p()
156
+ elif self == S6TransitiveSubgroups.G36m:
157
+ return G36m()
158
+ elif self == S6TransitiveSubgroups.G36p:
159
+ return G36p()
160
+ elif self == S6TransitiveSubgroups.S4xC2:
161
+ return S4xC2()
162
+ elif self == S6TransitiveSubgroups.PSL2F5:
163
+ return PSL2F5()
164
+ elif self == S6TransitiveSubgroups.G72:
165
+ return G72()
166
+ elif self == S6TransitiveSubgroups.PGL2F5:
167
+ return PGL2F5()
168
+ elif self == S6TransitiveSubgroups.A6:
169
+ return AlternatingGroup(6)
170
+ elif self == S6TransitiveSubgroups.S6:
171
+ return SymmetricGroup(6)
172
+
173
+
174
+ def four_group():
175
+ """
176
+ Return a representation of the Klein four-group as a transitive subgroup
177
+ of S4.
178
+ """
179
+ return PermutationGroup(
180
+ Permutation(0, 1)(2, 3),
181
+ Permutation(0, 2)(1, 3)
182
+ )
183
+
184
+
185
+ def M20():
186
+ """
187
+ Return a representation of the metacyclic group M20, a transitive subgroup
188
+ of S5 that is one of the possible Galois groups for polys of degree 5.
189
+
190
+ Notes
191
+ =====
192
+
193
+ See [1], Page 323.
194
+
195
+ """
196
+ G = PermutationGroup(Permutation(0, 1, 2, 3, 4), Permutation(1, 2, 4, 3))
197
+ G._degree = 5
198
+ G._order = 20
199
+ G._is_transitive = True
200
+ G._is_sym = False
201
+ G._is_alt = False
202
+ G._is_cyclic = False
203
+ G._is_dihedral = False
204
+ return G
205
+
206
+
207
+ def S3_in_S6():
208
+ """
209
+ Return a representation of S3 as a transitive subgroup of S6.
210
+
211
+ Notes
212
+ =====
213
+
214
+ The representation is found by viewing the group as the symmetries of a
215
+ triangular prism.
216
+
217
+ """
218
+ G = PermutationGroup(Permutation(0, 1, 2)(3, 4, 5), Permutation(0, 3)(2, 4)(1, 5))
219
+ set_symmetric_group_properties(G, 3, 6)
220
+ return G
221
+
222
+
223
+ def A4_in_S6():
224
+ """
225
+ Return a representation of A4 as a transitive subgroup of S6.
226
+
227
+ Notes
228
+ =====
229
+
230
+ This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
231
+
232
+ """
233
+ G = PermutationGroup(Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 1, 2)(3, 5, 4))
234
+ set_alternating_group_properties(G, 4, 6)
235
+ return G
236
+
237
+
238
+ def S4m():
239
+ """
240
+ Return a representation of the S4- transitive subgroup of S6.
241
+
242
+ Notes
243
+ =====
244
+
245
+ This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
246
+
247
+ """
248
+ G = PermutationGroup(Permutation(1, 4, 5, 3), Permutation(0, 4)(1, 5)(2, 3))
249
+ set_symmetric_group_properties(G, 4, 6)
250
+ return G
251
+
252
+
253
+ def S4p():
254
+ """
255
+ Return a representation of the S4+ transitive subgroup of S6.
256
+
257
+ Notes
258
+ =====
259
+
260
+ This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
261
+
262
+ """
263
+ G = PermutationGroup(Permutation(0, 2, 4, 1)(3, 5), Permutation(0, 3)(4, 5))
264
+ set_symmetric_group_properties(G, 4, 6)
265
+ return G
266
+
267
+
268
+ def A4xC2():
269
+ """
270
+ Return a representation of the (A4 x C2) transitive subgroup of S6.
271
+
272
+ Notes
273
+ =====
274
+
275
+ This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
276
+
277
+ """
278
+ return PermutationGroup(
279
+ Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 1, 2)(3, 5, 4),
280
+ Permutation(5)(2, 4))
281
+
282
+
283
+ def S4xC2():
284
+ """
285
+ Return a representation of the (S4 x C2) transitive subgroup of S6.
286
+
287
+ Notes
288
+ =====
289
+
290
+ This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
291
+
292
+ """
293
+ return PermutationGroup(
294
+ Permutation(1, 4, 5, 3), Permutation(0, 4)(1, 5)(2, 3),
295
+ Permutation(1, 4)(3, 5))
296
+
297
+
298
+ def G18():
299
+ """
300
+ Return a representation of the group G18, a transitive subgroup of S6
301
+ isomorphic to the semidirect product of C3^2 with C2.
302
+
303
+ Notes
304
+ =====
305
+
306
+ This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
307
+
308
+ """
309
+ return PermutationGroup(
310
+ Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
311
+ Permutation(0, 4)(1, 5)(2, 3))
312
+
313
+
314
+ def G36m():
315
+ """
316
+ Return a representation of the group G36-, a transitive subgroup of S6
317
+ isomorphic to the semidirect product of C3^2 with C2^2.
318
+
319
+ Notes
320
+ =====
321
+
322
+ This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
323
+
324
+ """
325
+ return PermutationGroup(
326
+ Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
327
+ Permutation(1, 2)(3, 5), Permutation(0, 4)(1, 5)(2, 3))
328
+
329
+
330
+ def G36p():
331
+ """
332
+ Return a representation of the group G36+, a transitive subgroup of S6
333
+ isomorphic to the semidirect product of C3^2 with C4.
334
+
335
+ Notes
336
+ =====
337
+
338
+ This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
339
+
340
+ """
341
+ return PermutationGroup(
342
+ Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
343
+ Permutation(0, 5, 2, 3)(1, 4))
344
+
345
+
346
+ def G72():
347
+ """
348
+ Return a representation of the group G72, a transitive subgroup of S6
349
+ isomorphic to the semidirect product of C3^2 with D4.
350
+
351
+ Notes
352
+ =====
353
+
354
+ See [1], Page 325.
355
+
356
+ """
357
+ return PermutationGroup(
358
+ Permutation(5)(0, 1, 2),
359
+ Permutation(0, 4, 1, 3)(2, 5), Permutation(0, 3)(1, 4)(2, 5))
360
+
361
+
362
+ def PSL2F5():
363
+ r"""
364
+ Return a representation of the group $PSL_2(\mathbb{F}_5)$, as a transitive
365
+ subgroup of S6, isomorphic to $A_5$.
366
+
367
+ Notes
368
+ =====
369
+
370
+ This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
371
+
372
+ """
373
+ G = PermutationGroup(
374
+ Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 4, 3, 1, 5))
375
+ set_alternating_group_properties(G, 5, 6)
376
+ return G
377
+
378
+
379
+ def PGL2F5():
380
+ r"""
381
+ Return a representation of the group $PGL_2(\mathbb{F}_5)$, as a transitive
382
+ subgroup of S6, isomorphic to $S_5$.
383
+
384
+ Notes
385
+ =====
386
+
387
+ See [1], Page 325.
388
+
389
+ """
390
+ G = PermutationGroup(
391
+ Permutation(0, 1, 2, 3, 4), Permutation(0, 5)(1, 2)(3, 4))
392
+ set_symmetric_group_properties(G, 5, 6)
393
+ return G
394
+
395
+
396
+ def find_transitive_subgroups_of_S6(*targets, print_report=False):
397
+ r"""
398
+ Search for certain transitive subgroups of $S_6$.
399
+
400
+ The symmetric group $S_6$ has 16 different transitive subgroups, up to
401
+ conjugacy. Some are more easily constructed than others. For example, the
402
+ dihedral group $D_6$ is immediately found, but it is not at all obvious how
403
+ to realize $S_4$ or $S_5$ *transitively* within $S_6$.
404
+
405
+ In some cases there are well-known constructions that can be used. For
406
+ example, $S_5$ is isomorphic to $PGL_2(\mathbb{F}_5)$, which acts in a
407
+ natural way on the projective line $P^1(\mathbb{F}_5)$, a set of order 6.
408
+
409
+ In absence of such special constructions however, we can simply search for
410
+ generators. For example, transitive instances of $A_4$ and $S_4$ can be
411
+ found within $S_6$ in this way.
412
+
413
+ Once we are engaged in such searches, it may then be easier (if less
414
+ elegant) to find even those groups like $S_5$ that do have special
415
+ constructions, by mere search.
416
+
417
+ This function locates generators for transitive instances in $S_6$ of the
418
+ following subgroups:
419
+
420
+ * $A_4$
421
+ * $S_4^-$ ($S_4$ not contained within $A_6$)
422
+ * $S_4^+$ ($S_4$ contained within $A_6$)
423
+ * $A_4 \times C_2$
424
+ * $S_4 \times C_2$
425
+ * $G_{18} = C_3^2 \rtimes C_2$
426
+ * $G_{36}^- = C_3^2 \rtimes C_2^2$
427
+ * $G_{36}^+ = C_3^2 \rtimes C_4$
428
+ * $G_{72} = C_3^2 \rtimes D_4$
429
+ * $A_5$
430
+ * $S_5$
431
+
432
+ Note: Each of these groups also has a dedicated function in this module
433
+ that returns the group immediately, using generators that were found by
434
+ this search procedure.
435
+
436
+ The search procedure serves as a record of how these generators were
437
+ found. Also, due to randomness in the generation of the elements of
438
+ permutation groups, it can be called again, in order to (probably) get
439
+ different generators for the same groups.
440
+
441
+ Parameters
442
+ ==========
443
+
444
+ targets : list of :py:class:`~.S6TransitiveSubgroups` values
445
+ The groups you want to find.
446
+
447
+ print_report : bool (default False)
448
+ If True, print to stdout the generators found for each group.
449
+
450
+ Returns
451
+ =======
452
+
453
+ dict
454
+ mapping each name in *targets* to the :py:class:`~.PermutationGroup`
455
+ that was found
456
+
457
+ References
458
+ ==========
459
+
460
+ .. [2] https://en.wikipedia.org/wiki/Projective_linear_group#Exceptional_isomorphisms
461
+ .. [3] https://en.wikipedia.org/wiki/Automorphisms_of_the_symmetric_and_alternating_groups#PGL(2,5)
462
+
463
+ """
464
+ def elts_by_order(G):
465
+ """Sort the elements of a group by their order. """
466
+ elts = defaultdict(list)
467
+ for g in G.elements:
468
+ elts[g.order()].append(g)
469
+ return elts
470
+
471
+ def order_profile(G, name=None):
472
+ """Determine how many elements a group has, of each order. """
473
+ elts = elts_by_order(G)
474
+ profile = {o:len(e) for o, e in elts.items()}
475
+ if name:
476
+ print(f'{name}: ' + ' '.join(f'{len(profile[r])}@{r}' for r in sorted(profile.keys())))
477
+ return profile
478
+
479
+ S6 = SymmetricGroup(6)
480
+ A6 = AlternatingGroup(6)
481
+ S6_by_order = elts_by_order(S6)
482
+
483
+ def search(existing_gens, needed_gen_orders, order, alt=None, profile=None, anti_profile=None):
484
+ """
485
+ Find a transitive subgroup of S6.
486
+
487
+ Parameters
488
+ ==========
489
+
490
+ existing_gens : list of Permutation
491
+ Optionally empty list of generators that must be in the group.
492
+
493
+ needed_gen_orders : list of positive int
494
+ Nonempty list of the orders of the additional generators that are
495
+ to be found.
496
+
497
+ order: int
498
+ The order of the group being sought.
499
+
500
+ alt: bool, None
501
+ If True, require the group to be contained in A6.
502
+ If False, require the group not to be contained in A6.
503
+
504
+ profile : dict
505
+ If given, the group's order profile must equal this.
506
+
507
+ anti_profile : dict
508
+ If given, the group's order profile must *not* equal this.
509
+
510
+ """
511
+ for gens in itertools.product(*[S6_by_order[n] for n in needed_gen_orders]):
512
+ if len(set(gens)) < len(gens):
513
+ continue
514
+ G = PermutationGroup(existing_gens + list(gens))
515
+ if G.order() == order and G.is_transitive():
516
+ if alt is not None and G.is_subgroup(A6) != alt:
517
+ continue
518
+ if profile and order_profile(G) != profile:
519
+ continue
520
+ if anti_profile and order_profile(G) == anti_profile:
521
+ continue
522
+ return G
523
+
524
+ def match_known_group(G, alt=None):
525
+ needed = [g.order() for g in G.generators]
526
+ return search([], needed, G.order(), alt=alt, profile=order_profile(G))
527
+
528
+ found = {}
529
+
530
+ def finish_up(name, G):
531
+ found[name] = G
532
+ if print_report:
533
+ print("=" * 40)
534
+ print(f"{name}:")
535
+ print(G.generators)
536
+
537
+ if S6TransitiveSubgroups.A4 in targets or S6TransitiveSubgroups.A4xC2 in targets:
538
+ A4_in_S6 = match_known_group(AlternatingGroup(4))
539
+ finish_up(S6TransitiveSubgroups.A4, A4_in_S6)
540
+
541
+ if S6TransitiveSubgroups.S4m in targets or S6TransitiveSubgroups.S4xC2 in targets:
542
+ S4m_in_S6 = match_known_group(SymmetricGroup(4), alt=False)
543
+ finish_up(S6TransitiveSubgroups.S4m, S4m_in_S6)
544
+
545
+ if S6TransitiveSubgroups.S4p in targets:
546
+ S4p_in_S6 = match_known_group(SymmetricGroup(4), alt=True)
547
+ finish_up(S6TransitiveSubgroups.S4p, S4p_in_S6)
548
+
549
+ if S6TransitiveSubgroups.A4xC2 in targets:
550
+ A4xC2_in_S6 = search(A4_in_S6.generators, [2], 24, anti_profile=order_profile(SymmetricGroup(4)))
551
+ finish_up(S6TransitiveSubgroups.A4xC2, A4xC2_in_S6)
552
+
553
+ if S6TransitiveSubgroups.S4xC2 in targets:
554
+ S4xC2_in_S6 = search(S4m_in_S6.generators, [2], 48)
555
+ finish_up(S6TransitiveSubgroups.S4xC2, S4xC2_in_S6)
556
+
557
+ # For the normal factor N = C3^2 in any of the G_n subgroups, we take one
558
+ # obvious instance of C3^2 in S6:
559
+ N_gens = [Permutation(5)(0, 1, 2), Permutation(5)(3, 4, 5)]
560
+
561
+ if S6TransitiveSubgroups.G18 in targets:
562
+ G18_in_S6 = search(N_gens, [2], 18)
563
+ finish_up(S6TransitiveSubgroups.G18, G18_in_S6)
564
+
565
+ if S6TransitiveSubgroups.G36m in targets:
566
+ G36m_in_S6 = search(N_gens, [2, 2], 36, alt=False)
567
+ finish_up(S6TransitiveSubgroups.G36m, G36m_in_S6)
568
+
569
+ if S6TransitiveSubgroups.G36p in targets:
570
+ G36p_in_S6 = search(N_gens, [4], 36, alt=True)
571
+ finish_up(S6TransitiveSubgroups.G36p, G36p_in_S6)
572
+
573
+ if S6TransitiveSubgroups.G72 in targets:
574
+ G72_in_S6 = search(N_gens, [4, 2], 72)
575
+ finish_up(S6TransitiveSubgroups.G72, G72_in_S6)
576
+
577
+ # The PSL2(F5) and PGL2(F5) subgroups are isomorphic to A5 and S5, resp.
578
+
579
+ if S6TransitiveSubgroups.PSL2F5 in targets:
580
+ PSL2F5_in_S6 = match_known_group(AlternatingGroup(5))
581
+ finish_up(S6TransitiveSubgroups.PSL2F5, PSL2F5_in_S6)
582
+
583
+ if S6TransitiveSubgroups.PGL2F5 in targets:
584
+ PGL2F5_in_S6 = match_known_group(SymmetricGroup(5))
585
+ finish_up(S6TransitiveSubgroups.PGL2F5, PGL2F5_in_S6)
586
+
587
+ # There is little need to "search" for any of the groups C6, S3, D6, A6,
588
+ # or S6, since they all have obvious realizations within S6. However, we
589
+ # support them here just in case a random representation is desired.
590
+
591
+ if S6TransitiveSubgroups.C6 in targets:
592
+ C6 = match_known_group(CyclicGroup(6))
593
+ finish_up(S6TransitiveSubgroups.C6, C6)
594
+
595
+ if S6TransitiveSubgroups.S3 in targets:
596
+ S3 = match_known_group(SymmetricGroup(3))
597
+ finish_up(S6TransitiveSubgroups.S3, S3)
598
+
599
+ if S6TransitiveSubgroups.D6 in targets:
600
+ D6 = match_known_group(DihedralGroup(6))
601
+ finish_up(S6TransitiveSubgroups.D6, D6)
602
+
603
+ if S6TransitiveSubgroups.A6 in targets:
604
+ A6 = match_known_group(A6)
605
+ finish_up(S6TransitiveSubgroups.A6, A6)
606
+
607
+ if S6TransitiveSubgroups.S6 in targets:
608
+ S6 = match_known_group(S6)
609
+ finish_up(S6TransitiveSubgroups.S6, S6)
610
+
611
+ return found
venv/lib/python3.10/site-packages/sympy/combinatorics/generators.py ADDED
@@ -0,0 +1,302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics.permutations import Permutation
2
+ from sympy.core.symbol import symbols
3
+ from sympy.matrices import Matrix
4
+ from sympy.utilities.iterables import variations, rotate_left
5
+
6
+
7
+ def symmetric(n):
8
+ """
9
+ Generates the symmetric group of order n, Sn.
10
+
11
+ Examples
12
+ ========
13
+
14
+ >>> from sympy.combinatorics.generators import symmetric
15
+ >>> list(symmetric(3))
16
+ [(2), (1 2), (2)(0 1), (0 1 2), (0 2 1), (0 2)]
17
+ """
18
+ for perm in variations(range(n), n):
19
+ yield Permutation(perm)
20
+
21
+
22
+ def cyclic(n):
23
+ """
24
+ Generates the cyclic group of order n, Cn.
25
+
26
+ Examples
27
+ ========
28
+
29
+ >>> from sympy.combinatorics.generators import cyclic
30
+ >>> list(cyclic(5))
31
+ [(4), (0 1 2 3 4), (0 2 4 1 3),
32
+ (0 3 1 4 2), (0 4 3 2 1)]
33
+
34
+ See Also
35
+ ========
36
+
37
+ dihedral
38
+ """
39
+ gen = list(range(n))
40
+ for i in range(n):
41
+ yield Permutation(gen)
42
+ gen = rotate_left(gen, 1)
43
+
44
+
45
+ def alternating(n):
46
+ """
47
+ Generates the alternating group of order n, An.
48
+
49
+ Examples
50
+ ========
51
+
52
+ >>> from sympy.combinatorics.generators import alternating
53
+ >>> list(alternating(3))
54
+ [(2), (0 1 2), (0 2 1)]
55
+ """
56
+ for perm in variations(range(n), n):
57
+ p = Permutation(perm)
58
+ if p.is_even:
59
+ yield p
60
+
61
+
62
+ def dihedral(n):
63
+ """
64
+ Generates the dihedral group of order 2n, Dn.
65
+
66
+ The result is given as a subgroup of Sn, except for the special cases n=1
67
+ (the group S2) and n=2 (the Klein 4-group) where that's not possible
68
+ and embeddings in S2 and S4 respectively are given.
69
+
70
+ Examples
71
+ ========
72
+
73
+ >>> from sympy.combinatorics.generators import dihedral
74
+ >>> list(dihedral(3))
75
+ [(2), (0 2), (0 1 2), (1 2), (0 2 1), (2)(0 1)]
76
+
77
+ See Also
78
+ ========
79
+
80
+ cyclic
81
+ """
82
+ if n == 1:
83
+ yield Permutation([0, 1])
84
+ yield Permutation([1, 0])
85
+ elif n == 2:
86
+ yield Permutation([0, 1, 2, 3])
87
+ yield Permutation([1, 0, 3, 2])
88
+ yield Permutation([2, 3, 0, 1])
89
+ yield Permutation([3, 2, 1, 0])
90
+ else:
91
+ gen = list(range(n))
92
+ for i in range(n):
93
+ yield Permutation(gen)
94
+ yield Permutation(gen[::-1])
95
+ gen = rotate_left(gen, 1)
96
+
97
+
98
+ def rubik_cube_generators():
99
+ """Return the permutations of the 3x3 Rubik's cube, see
100
+ https://www.gap-system.org/Doc/Examples/rubik.html
101
+ """
102
+ a = [
103
+ [(1, 3, 8, 6), (2, 5, 7, 4), (9, 33, 25, 17), (10, 34, 26, 18),
104
+ (11, 35, 27, 19)],
105
+ [(9, 11, 16, 14), (10, 13, 15, 12), (1, 17, 41, 40), (4, 20, 44, 37),
106
+ (6, 22, 46, 35)],
107
+ [(17, 19, 24, 22), (18, 21, 23, 20), (6, 25, 43, 16), (7, 28, 42, 13),
108
+ (8, 30, 41, 11)],
109
+ [(25, 27, 32, 30), (26, 29, 31, 28), (3, 38, 43, 19), (5, 36, 45, 21),
110
+ (8, 33, 48, 24)],
111
+ [(33, 35, 40, 38), (34, 37, 39, 36), (3, 9, 46, 32), (2, 12, 47, 29),
112
+ (1, 14, 48, 27)],
113
+ [(41, 43, 48, 46), (42, 45, 47, 44), (14, 22, 30, 38),
114
+ (15, 23, 31, 39), (16, 24, 32, 40)]
115
+ ]
116
+ return [Permutation([[i - 1 for i in xi] for xi in x], size=48) for x in a]
117
+
118
+
119
+ def rubik(n):
120
+ """Return permutations for an nxn Rubik's cube.
121
+
122
+ Permutations returned are for rotation of each of the slice
123
+ from the face up to the last face for each of the 3 sides (in this order):
124
+ front, right and bottom. Hence, the first n - 1 permutations are for the
125
+ slices from the front.
126
+ """
127
+
128
+ if n < 2:
129
+ raise ValueError('dimension of cube must be > 1')
130
+
131
+ # 1-based reference to rows and columns in Matrix
132
+ def getr(f, i):
133
+ return faces[f].col(n - i)
134
+
135
+ def getl(f, i):
136
+ return faces[f].col(i - 1)
137
+
138
+ def getu(f, i):
139
+ return faces[f].row(i - 1)
140
+
141
+ def getd(f, i):
142
+ return faces[f].row(n - i)
143
+
144
+ def setr(f, i, s):
145
+ faces[f][:, n - i] = Matrix(n, 1, s)
146
+
147
+ def setl(f, i, s):
148
+ faces[f][:, i - 1] = Matrix(n, 1, s)
149
+
150
+ def setu(f, i, s):
151
+ faces[f][i - 1, :] = Matrix(1, n, s)
152
+
153
+ def setd(f, i, s):
154
+ faces[f][n - i, :] = Matrix(1, n, s)
155
+
156
+ # motion of a single face
157
+ def cw(F, r=1):
158
+ for _ in range(r):
159
+ face = faces[F]
160
+ rv = []
161
+ for c in range(n):
162
+ for r in range(n - 1, -1, -1):
163
+ rv.append(face[r, c])
164
+ faces[F] = Matrix(n, n, rv)
165
+
166
+ def ccw(F):
167
+ cw(F, 3)
168
+
169
+ # motion of plane i from the F side;
170
+ # fcw(0) moves the F face, fcw(1) moves the plane
171
+ # just behind the front face, etc...
172
+ def fcw(i, r=1):
173
+ for _ in range(r):
174
+ if i == 0:
175
+ cw(F)
176
+ i += 1
177
+ temp = getr(L, i)
178
+ setr(L, i, list(getu(D, i)))
179
+ setu(D, i, list(reversed(getl(R, i))))
180
+ setl(R, i, list(getd(U, i)))
181
+ setd(U, i, list(reversed(temp)))
182
+ i -= 1
183
+
184
+ def fccw(i):
185
+ fcw(i, 3)
186
+
187
+ # motion of the entire cube from the F side
188
+ def FCW(r=1):
189
+ for _ in range(r):
190
+ cw(F)
191
+ ccw(B)
192
+ cw(U)
193
+ t = faces[U]
194
+ cw(L)
195
+ faces[U] = faces[L]
196
+ cw(D)
197
+ faces[L] = faces[D]
198
+ cw(R)
199
+ faces[D] = faces[R]
200
+ faces[R] = t
201
+
202
+ def FCCW():
203
+ FCW(3)
204
+
205
+ # motion of the entire cube from the U side
206
+ def UCW(r=1):
207
+ for _ in range(r):
208
+ cw(U)
209
+ ccw(D)
210
+ t = faces[F]
211
+ faces[F] = faces[R]
212
+ faces[R] = faces[B]
213
+ faces[B] = faces[L]
214
+ faces[L] = t
215
+
216
+ def UCCW():
217
+ UCW(3)
218
+
219
+ # defining the permutations for the cube
220
+
221
+ U, F, R, B, L, D = names = symbols('U, F, R, B, L, D')
222
+
223
+ # the faces are represented by nxn matrices
224
+ faces = {}
225
+ count = 0
226
+ for fi in range(6):
227
+ f = []
228
+ for a in range(n**2):
229
+ f.append(count)
230
+ count += 1
231
+ faces[names[fi]] = Matrix(n, n, f)
232
+
233
+ # this will either return the value of the current permutation
234
+ # (show != 1) or else append the permutation to the group, g
235
+ def perm(show=0):
236
+ # add perm to the list of perms
237
+ p = []
238
+ for f in names:
239
+ p.extend(faces[f])
240
+ if show:
241
+ return p
242
+ g.append(Permutation(p))
243
+
244
+ g = [] # container for the group's permutations
245
+ I = list(range(6*n**2)) # the identity permutation used for checking
246
+
247
+ # define permutations corresponding to cw rotations of the planes
248
+ # up TO the last plane from that direction; by not including the
249
+ # last plane, the orientation of the cube is maintained.
250
+
251
+ # F slices
252
+ for i in range(n - 1):
253
+ fcw(i)
254
+ perm()
255
+ fccw(i) # restore
256
+ assert perm(1) == I
257
+
258
+ # R slices
259
+ # bring R to front
260
+ UCW()
261
+ for i in range(n - 1):
262
+ fcw(i)
263
+ # put it back in place
264
+ UCCW()
265
+ # record
266
+ perm()
267
+ # restore
268
+ # bring face to front
269
+ UCW()
270
+ fccw(i)
271
+ # restore
272
+ UCCW()
273
+ assert perm(1) == I
274
+
275
+ # D slices
276
+ # bring up bottom
277
+ FCW()
278
+ UCCW()
279
+ FCCW()
280
+ for i in range(n - 1):
281
+ # turn strip
282
+ fcw(i)
283
+ # put bottom back on the bottom
284
+ FCW()
285
+ UCW()
286
+ FCCW()
287
+ # record
288
+ perm()
289
+ # restore
290
+ # bring up bottom
291
+ FCW()
292
+ UCCW()
293
+ FCCW()
294
+ # turn strip
295
+ fccw(i)
296
+ # put bottom back on the bottom
297
+ FCW()
298
+ UCW()
299
+ FCCW()
300
+ assert perm(1) == I
301
+
302
+ return g
venv/lib/python3.10/site-packages/sympy/combinatorics/graycode.py ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Basic, Integer
2
+
3
+ import random
4
+
5
+
6
+ class GrayCode(Basic):
7
+ """
8
+ A Gray code is essentially a Hamiltonian walk on
9
+ a n-dimensional cube with edge length of one.
10
+ The vertices of the cube are represented by vectors
11
+ whose values are binary. The Hamilton walk visits
12
+ each vertex exactly once. The Gray code for a 3d
13
+ cube is ['000','100','110','010','011','111','101',
14
+ '001'].
15
+
16
+ A Gray code solves the problem of sequentially
17
+ generating all possible subsets of n objects in such
18
+ a way that each subset is obtained from the previous
19
+ one by either deleting or adding a single object.
20
+ In the above example, 1 indicates that the object is
21
+ present, and 0 indicates that its absent.
22
+
23
+ Gray codes have applications in statistics as well when
24
+ we want to compute various statistics related to subsets
25
+ in an efficient manner.
26
+
27
+ Examples
28
+ ========
29
+
30
+ >>> from sympy.combinatorics import GrayCode
31
+ >>> a = GrayCode(3)
32
+ >>> list(a.generate_gray())
33
+ ['000', '001', '011', '010', '110', '111', '101', '100']
34
+ >>> a = GrayCode(4)
35
+ >>> list(a.generate_gray())
36
+ ['0000', '0001', '0011', '0010', '0110', '0111', '0101', '0100', \
37
+ '1100', '1101', '1111', '1110', '1010', '1011', '1001', '1000']
38
+
39
+ References
40
+ ==========
41
+
42
+ .. [1] Nijenhuis,A. and Wilf,H.S.(1978).
43
+ Combinatorial Algorithms. Academic Press.
44
+ .. [2] Knuth, D. (2011). The Art of Computer Programming, Vol 4
45
+ Addison Wesley
46
+
47
+
48
+ """
49
+
50
+ _skip = False
51
+ _current = 0
52
+ _rank = None
53
+
54
+ def __new__(cls, n, *args, **kw_args):
55
+ """
56
+ Default constructor.
57
+
58
+ It takes a single argument ``n`` which gives the dimension of the Gray
59
+ code. The starting Gray code string (``start``) or the starting ``rank``
60
+ may also be given; the default is to start at rank = 0 ('0...0').
61
+
62
+ Examples
63
+ ========
64
+
65
+ >>> from sympy.combinatorics import GrayCode
66
+ >>> a = GrayCode(3)
67
+ >>> a
68
+ GrayCode(3)
69
+ >>> a.n
70
+ 3
71
+
72
+ >>> a = GrayCode(3, start='100')
73
+ >>> a.current
74
+ '100'
75
+
76
+ >>> a = GrayCode(4, rank=4)
77
+ >>> a.current
78
+ '0110'
79
+ >>> a.rank
80
+ 4
81
+
82
+ """
83
+ if n < 1 or int(n) != n:
84
+ raise ValueError(
85
+ 'Gray code dimension must be a positive integer, not %i' % n)
86
+ n = Integer(n)
87
+ args = (n,) + args
88
+ obj = Basic.__new__(cls, *args)
89
+ if 'start' in kw_args:
90
+ obj._current = kw_args["start"]
91
+ if len(obj._current) > n:
92
+ raise ValueError('Gray code start has length %i but '
93
+ 'should not be greater than %i' % (len(obj._current), n))
94
+ elif 'rank' in kw_args:
95
+ if int(kw_args["rank"]) != kw_args["rank"]:
96
+ raise ValueError('Gray code rank must be a positive integer, '
97
+ 'not %i' % kw_args["rank"])
98
+ obj._rank = int(kw_args["rank"]) % obj.selections
99
+ obj._current = obj.unrank(n, obj._rank)
100
+ return obj
101
+
102
+ def next(self, delta=1):
103
+ """
104
+ Returns the Gray code a distance ``delta`` (default = 1) from the
105
+ current value in canonical order.
106
+
107
+
108
+ Examples
109
+ ========
110
+
111
+ >>> from sympy.combinatorics import GrayCode
112
+ >>> a = GrayCode(3, start='110')
113
+ >>> a.next().current
114
+ '111'
115
+ >>> a.next(-1).current
116
+ '010'
117
+ """
118
+ return GrayCode(self.n, rank=(self.rank + delta) % self.selections)
119
+
120
+ @property
121
+ def selections(self):
122
+ """
123
+ Returns the number of bit vectors in the Gray code.
124
+
125
+ Examples
126
+ ========
127
+
128
+ >>> from sympy.combinatorics import GrayCode
129
+ >>> a = GrayCode(3)
130
+ >>> a.selections
131
+ 8
132
+ """
133
+ return 2**self.n
134
+
135
+ @property
136
+ def n(self):
137
+ """
138
+ Returns the dimension of the Gray code.
139
+
140
+ Examples
141
+ ========
142
+
143
+ >>> from sympy.combinatorics import GrayCode
144
+ >>> a = GrayCode(5)
145
+ >>> a.n
146
+ 5
147
+ """
148
+ return self.args[0]
149
+
150
+ def generate_gray(self, **hints):
151
+ """
152
+ Generates the sequence of bit vectors of a Gray Code.
153
+
154
+ Examples
155
+ ========
156
+
157
+ >>> from sympy.combinatorics import GrayCode
158
+ >>> a = GrayCode(3)
159
+ >>> list(a.generate_gray())
160
+ ['000', '001', '011', '010', '110', '111', '101', '100']
161
+ >>> list(a.generate_gray(start='011'))
162
+ ['011', '010', '110', '111', '101', '100']
163
+ >>> list(a.generate_gray(rank=4))
164
+ ['110', '111', '101', '100']
165
+
166
+ See Also
167
+ ========
168
+
169
+ skip
170
+
171
+ References
172
+ ==========
173
+
174
+ .. [1] Knuth, D. (2011). The Art of Computer Programming,
175
+ Vol 4, Addison Wesley
176
+
177
+ """
178
+ bits = self.n
179
+ start = None
180
+ if "start" in hints:
181
+ start = hints["start"]
182
+ elif "rank" in hints:
183
+ start = GrayCode.unrank(self.n, hints["rank"])
184
+ if start is not None:
185
+ self._current = start
186
+ current = self.current
187
+ graycode_bin = gray_to_bin(current)
188
+ if len(graycode_bin) > self.n:
189
+ raise ValueError('Gray code start has length %i but should '
190
+ 'not be greater than %i' % (len(graycode_bin), bits))
191
+ self._current = int(current, 2)
192
+ graycode_int = int(''.join(graycode_bin), 2)
193
+ for i in range(graycode_int, 1 << bits):
194
+ if self._skip:
195
+ self._skip = False
196
+ else:
197
+ yield self.current
198
+ bbtc = (i ^ (i + 1))
199
+ gbtc = (bbtc ^ (bbtc >> 1))
200
+ self._current = (self._current ^ gbtc)
201
+ self._current = 0
202
+
203
+ def skip(self):
204
+ """
205
+ Skips the bit generation.
206
+
207
+ Examples
208
+ ========
209
+
210
+ >>> from sympy.combinatorics import GrayCode
211
+ >>> a = GrayCode(3)
212
+ >>> for i in a.generate_gray():
213
+ ... if i == '010':
214
+ ... a.skip()
215
+ ... print(i)
216
+ ...
217
+ 000
218
+ 001
219
+ 011
220
+ 010
221
+ 111
222
+ 101
223
+ 100
224
+
225
+ See Also
226
+ ========
227
+
228
+ generate_gray
229
+ """
230
+ self._skip = True
231
+
232
+ @property
233
+ def rank(self):
234
+ """
235
+ Ranks the Gray code.
236
+
237
+ A ranking algorithm determines the position (or rank)
238
+ of a combinatorial object among all the objects w.r.t.
239
+ a given order. For example, the 4 bit binary reflected
240
+ Gray code (BRGC) '0101' has a rank of 6 as it appears in
241
+ the 6th position in the canonical ordering of the family
242
+ of 4 bit Gray codes.
243
+
244
+ Examples
245
+ ========
246
+
247
+ >>> from sympy.combinatorics import GrayCode
248
+ >>> a = GrayCode(3)
249
+ >>> list(a.generate_gray())
250
+ ['000', '001', '011', '010', '110', '111', '101', '100']
251
+ >>> GrayCode(3, start='100').rank
252
+ 7
253
+ >>> GrayCode(3, rank=7).current
254
+ '100'
255
+
256
+ See Also
257
+ ========
258
+
259
+ unrank
260
+
261
+ References
262
+ ==========
263
+
264
+ .. [1] https://web.archive.org/web/20200224064753/http://statweb.stanford.edu/~susan/courses/s208/node12.html
265
+
266
+ """
267
+ if self._rank is None:
268
+ self._rank = int(gray_to_bin(self.current), 2)
269
+ return self._rank
270
+
271
+ @property
272
+ def current(self):
273
+ """
274
+ Returns the currently referenced Gray code as a bit string.
275
+
276
+ Examples
277
+ ========
278
+
279
+ >>> from sympy.combinatorics import GrayCode
280
+ >>> GrayCode(3, start='100').current
281
+ '100'
282
+ """
283
+ rv = self._current or '0'
284
+ if not isinstance(rv, str):
285
+ rv = bin(rv)[2:]
286
+ return rv.rjust(self.n, '0')
287
+
288
+ @classmethod
289
+ def unrank(self, n, rank):
290
+ """
291
+ Unranks an n-bit sized Gray code of rank k. This method exists
292
+ so that a derivative GrayCode class can define its own code of
293
+ a given rank.
294
+
295
+ The string here is generated in reverse order to allow for tail-call
296
+ optimization.
297
+
298
+ Examples
299
+ ========
300
+
301
+ >>> from sympy.combinatorics import GrayCode
302
+ >>> GrayCode(5, rank=3).current
303
+ '00010'
304
+ >>> GrayCode.unrank(5, 3)
305
+ '00010'
306
+
307
+ See Also
308
+ ========
309
+
310
+ rank
311
+ """
312
+ def _unrank(k, n):
313
+ if n == 1:
314
+ return str(k % 2)
315
+ m = 2**(n - 1)
316
+ if k < m:
317
+ return '0' + _unrank(k, n - 1)
318
+ return '1' + _unrank(m - (k % m) - 1, n - 1)
319
+ return _unrank(rank, n)
320
+
321
+
322
+ def random_bitstring(n):
323
+ """
324
+ Generates a random bitlist of length n.
325
+
326
+ Examples
327
+ ========
328
+
329
+ >>> from sympy.combinatorics.graycode import random_bitstring
330
+ >>> random_bitstring(3) # doctest: +SKIP
331
+ 100
332
+ """
333
+ return ''.join([random.choice('01') for i in range(n)])
334
+
335
+
336
+ def gray_to_bin(bin_list):
337
+ """
338
+ Convert from Gray coding to binary coding.
339
+
340
+ We assume big endian encoding.
341
+
342
+ Examples
343
+ ========
344
+
345
+ >>> from sympy.combinatorics.graycode import gray_to_bin
346
+ >>> gray_to_bin('100')
347
+ '111'
348
+
349
+ See Also
350
+ ========
351
+
352
+ bin_to_gray
353
+ """
354
+ b = [bin_list[0]]
355
+ for i in range(1, len(bin_list)):
356
+ b += str(int(b[i - 1] != bin_list[i]))
357
+ return ''.join(b)
358
+
359
+
360
+ def bin_to_gray(bin_list):
361
+ """
362
+ Convert from binary coding to gray coding.
363
+
364
+ We assume big endian encoding.
365
+
366
+ Examples
367
+ ========
368
+
369
+ >>> from sympy.combinatorics.graycode import bin_to_gray
370
+ >>> bin_to_gray('111')
371
+ '100'
372
+
373
+ See Also
374
+ ========
375
+
376
+ gray_to_bin
377
+ """
378
+ b = [bin_list[0]]
379
+ for i in range(1, len(bin_list)):
380
+ b += str(int(bin_list[i]) ^ int(bin_list[i - 1]))
381
+ return ''.join(b)
382
+
383
+
384
+ def get_subset_from_bitstring(super_set, bitstring):
385
+ """
386
+ Gets the subset defined by the bitstring.
387
+
388
+ Examples
389
+ ========
390
+
391
+ >>> from sympy.combinatorics.graycode import get_subset_from_bitstring
392
+ >>> get_subset_from_bitstring(['a', 'b', 'c', 'd'], '0011')
393
+ ['c', 'd']
394
+ >>> get_subset_from_bitstring(['c', 'a', 'c', 'c'], '1100')
395
+ ['c', 'a']
396
+
397
+ See Also
398
+ ========
399
+
400
+ graycode_subsets
401
+ """
402
+ if len(super_set) != len(bitstring):
403
+ raise ValueError("The sizes of the lists are not equal")
404
+ return [super_set[i] for i, j in enumerate(bitstring)
405
+ if bitstring[i] == '1']
406
+
407
+
408
+ def graycode_subsets(gray_code_set):
409
+ """
410
+ Generates the subsets as enumerated by a Gray code.
411
+
412
+ Examples
413
+ ========
414
+
415
+ >>> from sympy.combinatorics.graycode import graycode_subsets
416
+ >>> list(graycode_subsets(['a', 'b', 'c']))
417
+ [[], ['c'], ['b', 'c'], ['b'], ['a', 'b'], ['a', 'b', 'c'], \
418
+ ['a', 'c'], ['a']]
419
+ >>> list(graycode_subsets(['a', 'b', 'c', 'c']))
420
+ [[], ['c'], ['c', 'c'], ['c'], ['b', 'c'], ['b', 'c', 'c'], \
421
+ ['b', 'c'], ['b'], ['a', 'b'], ['a', 'b', 'c'], ['a', 'b', 'c', 'c'], \
422
+ ['a', 'b', 'c'], ['a', 'c'], ['a', 'c', 'c'], ['a', 'c'], ['a']]
423
+
424
+ See Also
425
+ ========
426
+
427
+ get_subset_from_bitstring
428
+ """
429
+ for bitstring in list(GrayCode(len(gray_code_set)).generate_gray()):
430
+ yield get_subset_from_bitstring(gray_code_set, bitstring)
venv/lib/python3.10/site-packages/sympy/combinatorics/group_constructs.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics.perm_groups import PermutationGroup
2
+ from sympy.combinatorics.permutations import Permutation
3
+ from sympy.utilities.iterables import uniq
4
+
5
+ _af_new = Permutation._af_new
6
+
7
+
8
+ def DirectProduct(*groups):
9
+ """
10
+ Returns the direct product of several groups as a permutation group.
11
+
12
+ Explanation
13
+ ===========
14
+
15
+ This is implemented much like the __mul__ procedure for taking the direct
16
+ product of two permutation groups, but the idea of shifting the
17
+ generators is realized in the case of an arbitrary number of groups.
18
+ A call to DirectProduct(G1, G2, ..., Gn) is generally expected to be faster
19
+ than a call to G1*G2*...*Gn (and thus the need for this algorithm).
20
+
21
+ Examples
22
+ ========
23
+
24
+ >>> from sympy.combinatorics.group_constructs import DirectProduct
25
+ >>> from sympy.combinatorics.named_groups import CyclicGroup
26
+ >>> C = CyclicGroup(4)
27
+ >>> G = DirectProduct(C, C, C)
28
+ >>> G.order()
29
+ 64
30
+
31
+ See Also
32
+ ========
33
+
34
+ sympy.combinatorics.perm_groups.PermutationGroup.__mul__
35
+
36
+ """
37
+ degrees = []
38
+ gens_count = []
39
+ total_degree = 0
40
+ total_gens = 0
41
+ for group in groups:
42
+ current_deg = group.degree
43
+ current_num_gens = len(group.generators)
44
+ degrees.append(current_deg)
45
+ total_degree += current_deg
46
+ gens_count.append(current_num_gens)
47
+ total_gens += current_num_gens
48
+ array_gens = []
49
+ for i in range(total_gens):
50
+ array_gens.append(list(range(total_degree)))
51
+ current_gen = 0
52
+ current_deg = 0
53
+ for i in range(len(gens_count)):
54
+ for j in range(current_gen, current_gen + gens_count[i]):
55
+ gen = ((groups[i].generators)[j - current_gen]).array_form
56
+ array_gens[j][current_deg:current_deg + degrees[i]] = \
57
+ [x + current_deg for x in gen]
58
+ current_gen += gens_count[i]
59
+ current_deg += degrees[i]
60
+ perm_gens = list(uniq([_af_new(list(a)) for a in array_gens]))
61
+ return PermutationGroup(perm_gens, dups=False)
venv/lib/python3.10/site-packages/sympy/combinatorics/group_numbers.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Integer, Pow, Mod
2
+ from sympy import factorint
3
+
4
+
5
+ def is_nilpotent_number(n):
6
+ """
7
+ Check whether `n` is a nilpotent number. A number `n` is said to be
8
+ nilpotent if and only if every finite group of order `n` is nilpotent.
9
+ For more information see [1]_.
10
+
11
+ Examples
12
+ ========
13
+
14
+ >>> from sympy.combinatorics.group_numbers import is_nilpotent_number
15
+ >>> from sympy import randprime
16
+ >>> is_nilpotent_number(21)
17
+ False
18
+ >>> is_nilpotent_number(randprime(1, 30)**12)
19
+ True
20
+
21
+ References
22
+ ==========
23
+
24
+ .. [1] Pakianathan, J., Shankar, K., *Nilpotent Numbers*,
25
+ The American Mathematical Monthly, 107(7), 631-634.
26
+
27
+
28
+ """
29
+ if n <= 0 or int(n) != n:
30
+ raise ValueError("n must be a positive integer, not %i" % n)
31
+
32
+ n = Integer(n)
33
+ prime_factors = list(factorint(n).items())
34
+ is_nilpotent = True
35
+ for p_j, a_j in prime_factors:
36
+ for p_i, a_i in prime_factors:
37
+ if any([Mod(Pow(p_i, k), p_j) == 1 for k in range(1, a_i + 1)]):
38
+ is_nilpotent = False
39
+ break
40
+ if not is_nilpotent:
41
+ break
42
+
43
+ return is_nilpotent
44
+
45
+
46
+ def is_abelian_number(n):
47
+ """
48
+ Check whether `n` is an abelian number. A number `n` is said to be abelian
49
+ if and only if every finite group of order `n` is abelian. For more
50
+ information see [1]_.
51
+
52
+ Examples
53
+ ========
54
+
55
+ >>> from sympy.combinatorics.group_numbers import is_abelian_number
56
+ >>> from sympy import randprime
57
+ >>> is_abelian_number(4)
58
+ True
59
+ >>> is_abelian_number(randprime(1, 2000)**2)
60
+ True
61
+ >>> is_abelian_number(60)
62
+ False
63
+
64
+ References
65
+ ==========
66
+
67
+ .. [1] Pakianathan, J., Shankar, K., *Nilpotent Numbers*,
68
+ The American Mathematical Monthly, 107(7), 631-634.
69
+
70
+
71
+ """
72
+ if n <= 0 or int(n) != n:
73
+ raise ValueError("n must be a positive integer, not %i" % n)
74
+
75
+ n = Integer(n)
76
+ if not is_nilpotent_number(n):
77
+ return False
78
+
79
+ prime_factors = list(factorint(n).items())
80
+ is_abelian = all(a_i < 3 for p_i, a_i in prime_factors)
81
+ return is_abelian
82
+
83
+
84
+ def is_cyclic_number(n):
85
+ """
86
+ Check whether `n` is a cyclic number. A number `n` is said to be cyclic
87
+ if and only if every finite group of order `n` is cyclic. For more
88
+ information see [1]_.
89
+
90
+ Examples
91
+ ========
92
+
93
+ >>> from sympy.combinatorics.group_numbers import is_cyclic_number
94
+ >>> from sympy import randprime
95
+ >>> is_cyclic_number(15)
96
+ True
97
+ >>> is_cyclic_number(randprime(1, 2000)**2)
98
+ False
99
+ >>> is_cyclic_number(4)
100
+ False
101
+
102
+ References
103
+ ==========
104
+
105
+ .. [1] Pakianathan, J., Shankar, K., *Nilpotent Numbers*,
106
+ The American Mathematical Monthly, 107(7), 631-634.
107
+
108
+ """
109
+ if n <= 0 or int(n) != n:
110
+ raise ValueError("n must be a positive integer, not %i" % n)
111
+
112
+ n = Integer(n)
113
+ if not is_nilpotent_number(n):
114
+ return False
115
+
116
+ prime_factors = list(factorint(n).items())
117
+ is_cyclic = all(a_i < 2 for p_i, a_i in prime_factors)
118
+ return is_cyclic
venv/lib/python3.10/site-packages/sympy/combinatorics/homomorphisms.py ADDED
@@ -0,0 +1,549 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ from sympy.combinatorics.fp_groups import FpGroup, FpSubgroup, simplify_presentation
3
+ from sympy.combinatorics.free_groups import FreeGroup
4
+ from sympy.combinatorics.perm_groups import PermutationGroup
5
+ from sympy.core.numbers import igcd
6
+ from sympy.ntheory.factor_ import totient
7
+ from sympy.core.singleton import S
8
+
9
+ class GroupHomomorphism:
10
+ '''
11
+ A class representing group homomorphisms. Instantiate using `homomorphism()`.
12
+
13
+ References
14
+ ==========
15
+
16
+ .. [1] Holt, D., Eick, B. and O'Brien, E. (2005). Handbook of computational group theory.
17
+
18
+ '''
19
+
20
+ def __init__(self, domain, codomain, images):
21
+ self.domain = domain
22
+ self.codomain = codomain
23
+ self.images = images
24
+ self._inverses = None
25
+ self._kernel = None
26
+ self._image = None
27
+
28
+ def _invs(self):
29
+ '''
30
+ Return a dictionary with `{gen: inverse}` where `gen` is a rewriting
31
+ generator of `codomain` (e.g. strong generator for permutation groups)
32
+ and `inverse` is an element of its preimage
33
+
34
+ '''
35
+ image = self.image()
36
+ inverses = {}
37
+ for k in list(self.images.keys()):
38
+ v = self.images[k]
39
+ if not (v in inverses
40
+ or v.is_identity):
41
+ inverses[v] = k
42
+ if isinstance(self.codomain, PermutationGroup):
43
+ gens = image.strong_gens
44
+ else:
45
+ gens = image.generators
46
+ for g in gens:
47
+ if g in inverses or g.is_identity:
48
+ continue
49
+ w = self.domain.identity
50
+ if isinstance(self.codomain, PermutationGroup):
51
+ parts = image._strong_gens_slp[g][::-1]
52
+ else:
53
+ parts = g
54
+ for s in parts:
55
+ if s in inverses:
56
+ w = w*inverses[s]
57
+ else:
58
+ w = w*inverses[s**-1]**-1
59
+ inverses[g] = w
60
+
61
+ return inverses
62
+
63
+ def invert(self, g):
64
+ '''
65
+ Return an element of the preimage of ``g`` or of each element
66
+ of ``g`` if ``g`` is a list.
67
+
68
+ Explanation
69
+ ===========
70
+
71
+ If the codomain is an FpGroup, the inverse for equal
72
+ elements might not always be the same unless the FpGroup's
73
+ rewriting system is confluent. However, making a system
74
+ confluent can be time-consuming. If it's important, try
75
+ `self.codomain.make_confluent()` first.
76
+
77
+ '''
78
+ from sympy.combinatorics import Permutation
79
+ from sympy.combinatorics.free_groups import FreeGroupElement
80
+ if isinstance(g, (Permutation, FreeGroupElement)):
81
+ if isinstance(self.codomain, FpGroup):
82
+ g = self.codomain.reduce(g)
83
+ if self._inverses is None:
84
+ self._inverses = self._invs()
85
+ image = self.image()
86
+ w = self.domain.identity
87
+ if isinstance(self.codomain, PermutationGroup):
88
+ gens = image.generator_product(g)[::-1]
89
+ else:
90
+ gens = g
91
+ # the following can't be "for s in gens:"
92
+ # because that would be equivalent to
93
+ # "for s in gens.array_form:" when g is
94
+ # a FreeGroupElement. On the other hand,
95
+ # when you call gens by index, the generator
96
+ # (or inverse) at position i is returned.
97
+ for i in range(len(gens)):
98
+ s = gens[i]
99
+ if s.is_identity:
100
+ continue
101
+ if s in self._inverses:
102
+ w = w*self._inverses[s]
103
+ else:
104
+ w = w*self._inverses[s**-1]**-1
105
+ return w
106
+ elif isinstance(g, list):
107
+ return [self.invert(e) for e in g]
108
+
109
+ def kernel(self):
110
+ '''
111
+ Compute the kernel of `self`.
112
+
113
+ '''
114
+ if self._kernel is None:
115
+ self._kernel = self._compute_kernel()
116
+ return self._kernel
117
+
118
+ def _compute_kernel(self):
119
+ G = self.domain
120
+ G_order = G.order()
121
+ if G_order is S.Infinity:
122
+ raise NotImplementedError(
123
+ "Kernel computation is not implemented for infinite groups")
124
+ gens = []
125
+ if isinstance(G, PermutationGroup):
126
+ K = PermutationGroup(G.identity)
127
+ else:
128
+ K = FpSubgroup(G, gens, normal=True)
129
+ i = self.image().order()
130
+ while K.order()*i != G_order:
131
+ r = G.random()
132
+ k = r*self.invert(self(r))**-1
133
+ if k not in K:
134
+ gens.append(k)
135
+ if isinstance(G, PermutationGroup):
136
+ K = PermutationGroup(gens)
137
+ else:
138
+ K = FpSubgroup(G, gens, normal=True)
139
+ return K
140
+
141
+ def image(self):
142
+ '''
143
+ Compute the image of `self`.
144
+
145
+ '''
146
+ if self._image is None:
147
+ values = list(set(self.images.values()))
148
+ if isinstance(self.codomain, PermutationGroup):
149
+ self._image = self.codomain.subgroup(values)
150
+ else:
151
+ self._image = FpSubgroup(self.codomain, values)
152
+ return self._image
153
+
154
+ def _apply(self, elem):
155
+ '''
156
+ Apply `self` to `elem`.
157
+
158
+ '''
159
+ if elem not in self.domain:
160
+ if isinstance(elem, (list, tuple)):
161
+ return [self._apply(e) for e in elem]
162
+ raise ValueError("The supplied element does not belong to the domain")
163
+ if elem.is_identity:
164
+ return self.codomain.identity
165
+ else:
166
+ images = self.images
167
+ value = self.codomain.identity
168
+ if isinstance(self.domain, PermutationGroup):
169
+ gens = self.domain.generator_product(elem, original=True)
170
+ for g in gens:
171
+ if g in self.images:
172
+ value = images[g]*value
173
+ else:
174
+ value = images[g**-1]**-1*value
175
+ else:
176
+ i = 0
177
+ for _, p in elem.array_form:
178
+ if p < 0:
179
+ g = elem[i]**-1
180
+ else:
181
+ g = elem[i]
182
+ value = value*images[g]**p
183
+ i += abs(p)
184
+ return value
185
+
186
+ def __call__(self, elem):
187
+ return self._apply(elem)
188
+
189
+ def is_injective(self):
190
+ '''
191
+ Check if the homomorphism is injective
192
+
193
+ '''
194
+ return self.kernel().order() == 1
195
+
196
+ def is_surjective(self):
197
+ '''
198
+ Check if the homomorphism is surjective
199
+
200
+ '''
201
+ im = self.image().order()
202
+ oth = self.codomain.order()
203
+ if im is S.Infinity and oth is S.Infinity:
204
+ return None
205
+ else:
206
+ return im == oth
207
+
208
+ def is_isomorphism(self):
209
+ '''
210
+ Check if `self` is an isomorphism.
211
+
212
+ '''
213
+ return self.is_injective() and self.is_surjective()
214
+
215
+ def is_trivial(self):
216
+ '''
217
+ Check is `self` is a trivial homomorphism, i.e. all elements
218
+ are mapped to the identity.
219
+
220
+ '''
221
+ return self.image().order() == 1
222
+
223
+ def compose(self, other):
224
+ '''
225
+ Return the composition of `self` and `other`, i.e.
226
+ the homomorphism phi such that for all g in the domain
227
+ of `other`, phi(g) = self(other(g))
228
+
229
+ '''
230
+ if not other.image().is_subgroup(self.domain):
231
+ raise ValueError("The image of `other` must be a subgroup of "
232
+ "the domain of `self`")
233
+ images = {g: self(other(g)) for g in other.images}
234
+ return GroupHomomorphism(other.domain, self.codomain, images)
235
+
236
+ def restrict_to(self, H):
237
+ '''
238
+ Return the restriction of the homomorphism to the subgroup `H`
239
+ of the domain.
240
+
241
+ '''
242
+ if not isinstance(H, PermutationGroup) or not H.is_subgroup(self.domain):
243
+ raise ValueError("Given H is not a subgroup of the domain")
244
+ domain = H
245
+ images = {g: self(g) for g in H.generators}
246
+ return GroupHomomorphism(domain, self.codomain, images)
247
+
248
+ def invert_subgroup(self, H):
249
+ '''
250
+ Return the subgroup of the domain that is the inverse image
251
+ of the subgroup ``H`` of the homomorphism image
252
+
253
+ '''
254
+ if not H.is_subgroup(self.image()):
255
+ raise ValueError("Given H is not a subgroup of the image")
256
+ gens = []
257
+ P = PermutationGroup(self.image().identity)
258
+ for h in H.generators:
259
+ h_i = self.invert(h)
260
+ if h_i not in P:
261
+ gens.append(h_i)
262
+ P = PermutationGroup(gens)
263
+ for k in self.kernel().generators:
264
+ if k*h_i not in P:
265
+ gens.append(k*h_i)
266
+ P = PermutationGroup(gens)
267
+ return P
268
+
269
+ def homomorphism(domain, codomain, gens, images=(), check=True):
270
+ '''
271
+ Create (if possible) a group homomorphism from the group ``domain``
272
+ to the group ``codomain`` defined by the images of the domain's
273
+ generators ``gens``. ``gens`` and ``images`` can be either lists or tuples
274
+ of equal sizes. If ``gens`` is a proper subset of the group's generators,
275
+ the unspecified generators will be mapped to the identity. If the
276
+ images are not specified, a trivial homomorphism will be created.
277
+
278
+ If the given images of the generators do not define a homomorphism,
279
+ an exception is raised.
280
+
281
+ If ``check`` is ``False``, do not check whether the given images actually
282
+ define a homomorphism.
283
+
284
+ '''
285
+ if not isinstance(domain, (PermutationGroup, FpGroup, FreeGroup)):
286
+ raise TypeError("The domain must be a group")
287
+ if not isinstance(codomain, (PermutationGroup, FpGroup, FreeGroup)):
288
+ raise TypeError("The codomain must be a group")
289
+
290
+ generators = domain.generators
291
+ if not all(g in generators for g in gens):
292
+ raise ValueError("The supplied generators must be a subset of the domain's generators")
293
+ if not all(g in codomain for g in images):
294
+ raise ValueError("The images must be elements of the codomain")
295
+
296
+ if images and len(images) != len(gens):
297
+ raise ValueError("The number of images must be equal to the number of generators")
298
+
299
+ gens = list(gens)
300
+ images = list(images)
301
+
302
+ images.extend([codomain.identity]*(len(generators)-len(images)))
303
+ gens.extend([g for g in generators if g not in gens])
304
+ images = dict(zip(gens,images))
305
+
306
+ if check and not _check_homomorphism(domain, codomain, images):
307
+ raise ValueError("The given images do not define a homomorphism")
308
+ return GroupHomomorphism(domain, codomain, images)
309
+
310
+ def _check_homomorphism(domain, codomain, images):
311
+ """
312
+ Check that a given mapping of generators to images defines a homomorphism.
313
+
314
+ Parameters
315
+ ==========
316
+ domain : PermutationGroup, FpGroup, FreeGroup
317
+ codomain : PermutationGroup, FpGroup, FreeGroup
318
+ images : dict
319
+ The set of keys must be equal to domain.generators.
320
+ The values must be elements of the codomain.
321
+
322
+ """
323
+ pres = domain if hasattr(domain, 'relators') else domain.presentation()
324
+ rels = pres.relators
325
+ gens = pres.generators
326
+ symbols = [g.ext_rep[0] for g in gens]
327
+ symbols_to_domain_generators = dict(zip(symbols, domain.generators))
328
+ identity = codomain.identity
329
+
330
+ def _image(r):
331
+ w = identity
332
+ for symbol, power in r.array_form:
333
+ g = symbols_to_domain_generators[symbol]
334
+ w *= images[g]**power
335
+ return w
336
+
337
+ for r in rels:
338
+ if isinstance(codomain, FpGroup):
339
+ s = codomain.equals(_image(r), identity)
340
+ if s is None:
341
+ # only try to make the rewriting system
342
+ # confluent when it can't determine the
343
+ # truth of equality otherwise
344
+ success = codomain.make_confluent()
345
+ s = codomain.equals(_image(r), identity)
346
+ if s is None and not success:
347
+ raise RuntimeError("Can't determine if the images "
348
+ "define a homomorphism. Try increasing "
349
+ "the maximum number of rewriting rules "
350
+ "(group._rewriting_system.set_max(new_value); "
351
+ "the current value is stored in group._rewriting"
352
+ "_system.maxeqns)")
353
+ else:
354
+ s = _image(r).is_identity
355
+ if not s:
356
+ return False
357
+ return True
358
+
359
+ def orbit_homomorphism(group, omega):
360
+ '''
361
+ Return the homomorphism induced by the action of the permutation
362
+ group ``group`` on the set ``omega`` that is closed under the action.
363
+
364
+ '''
365
+ from sympy.combinatorics import Permutation
366
+ from sympy.combinatorics.named_groups import SymmetricGroup
367
+ codomain = SymmetricGroup(len(omega))
368
+ identity = codomain.identity
369
+ omega = list(omega)
370
+ images = {g: identity*Permutation([omega.index(o^g) for o in omega]) for g in group.generators}
371
+ group._schreier_sims(base=omega)
372
+ H = GroupHomomorphism(group, codomain, images)
373
+ if len(group.basic_stabilizers) > len(omega):
374
+ H._kernel = group.basic_stabilizers[len(omega)]
375
+ else:
376
+ H._kernel = PermutationGroup([group.identity])
377
+ return H
378
+
379
+ def block_homomorphism(group, blocks):
380
+ '''
381
+ Return the homomorphism induced by the action of the permutation
382
+ group ``group`` on the block system ``blocks``. The latter should be
383
+ of the same form as returned by the ``minimal_block`` method for
384
+ permutation groups, namely a list of length ``group.degree`` where
385
+ the i-th entry is a representative of the block i belongs to.
386
+
387
+ '''
388
+ from sympy.combinatorics import Permutation
389
+ from sympy.combinatorics.named_groups import SymmetricGroup
390
+
391
+ n = len(blocks)
392
+
393
+ # number the blocks; m is the total number,
394
+ # b is such that b[i] is the number of the block i belongs to,
395
+ # p is the list of length m such that p[i] is the representative
396
+ # of the i-th block
397
+ m = 0
398
+ p = []
399
+ b = [None]*n
400
+ for i in range(n):
401
+ if blocks[i] == i:
402
+ p.append(i)
403
+ b[i] = m
404
+ m += 1
405
+ for i in range(n):
406
+ b[i] = b[blocks[i]]
407
+
408
+ codomain = SymmetricGroup(m)
409
+ # the list corresponding to the identity permutation in codomain
410
+ identity = range(m)
411
+ images = {g: Permutation([b[p[i]^g] for i in identity]) for g in group.generators}
412
+ H = GroupHomomorphism(group, codomain, images)
413
+ return H
414
+
415
+ def group_isomorphism(G, H, isomorphism=True):
416
+ '''
417
+ Compute an isomorphism between 2 given groups.
418
+
419
+ Parameters
420
+ ==========
421
+
422
+ G : A finite ``FpGroup`` or a ``PermutationGroup``.
423
+ First group.
424
+
425
+ H : A finite ``FpGroup`` or a ``PermutationGroup``
426
+ Second group.
427
+
428
+ isomorphism : bool
429
+ This is used to avoid the computation of homomorphism
430
+ when the user only wants to check if there exists
431
+ an isomorphism between the groups.
432
+
433
+ Returns
434
+ =======
435
+
436
+ If isomorphism = False -- Returns a boolean.
437
+ If isomorphism = True -- Returns a boolean and an isomorphism between `G` and `H`.
438
+
439
+ Examples
440
+ ========
441
+
442
+ >>> from sympy.combinatorics import free_group, Permutation
443
+ >>> from sympy.combinatorics.perm_groups import PermutationGroup
444
+ >>> from sympy.combinatorics.fp_groups import FpGroup
445
+ >>> from sympy.combinatorics.homomorphisms import group_isomorphism
446
+ >>> from sympy.combinatorics.named_groups import DihedralGroup, AlternatingGroup
447
+
448
+ >>> D = DihedralGroup(8)
449
+ >>> p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
450
+ >>> P = PermutationGroup(p)
451
+ >>> group_isomorphism(D, P)
452
+ (False, None)
453
+
454
+ >>> F, a, b = free_group("a, b")
455
+ >>> G = FpGroup(F, [a**3, b**3, (a*b)**2])
456
+ >>> H = AlternatingGroup(4)
457
+ >>> (check, T) = group_isomorphism(G, H)
458
+ >>> check
459
+ True
460
+ >>> T(b*a*b**-1*a**-1*b**-1)
461
+ (0 2 3)
462
+
463
+ Notes
464
+ =====
465
+
466
+ Uses the approach suggested by Robert Tarjan to compute the isomorphism between two groups.
467
+ First, the generators of ``G`` are mapped to the elements of ``H`` and
468
+ we check if the mapping induces an isomorphism.
469
+
470
+ '''
471
+ if not isinstance(G, (PermutationGroup, FpGroup)):
472
+ raise TypeError("The group must be a PermutationGroup or an FpGroup")
473
+ if not isinstance(H, (PermutationGroup, FpGroup)):
474
+ raise TypeError("The group must be a PermutationGroup or an FpGroup")
475
+
476
+ if isinstance(G, FpGroup) and isinstance(H, FpGroup):
477
+ G = simplify_presentation(G)
478
+ H = simplify_presentation(H)
479
+ # Two infinite FpGroups with the same generators are isomorphic
480
+ # when the relators are same but are ordered differently.
481
+ if G.generators == H.generators and (G.relators).sort() == (H.relators).sort():
482
+ if not isomorphism:
483
+ return True
484
+ return (True, homomorphism(G, H, G.generators, H.generators))
485
+
486
+ # `_H` is the permutation group isomorphic to `H`.
487
+ _H = H
488
+ g_order = G.order()
489
+ h_order = H.order()
490
+
491
+ if g_order is S.Infinity:
492
+ raise NotImplementedError("Isomorphism methods are not implemented for infinite groups.")
493
+
494
+ if isinstance(H, FpGroup):
495
+ if h_order is S.Infinity:
496
+ raise NotImplementedError("Isomorphism methods are not implemented for infinite groups.")
497
+ _H, h_isomorphism = H._to_perm_group()
498
+
499
+ if (g_order != h_order) or (G.is_abelian != H.is_abelian):
500
+ if not isomorphism:
501
+ return False
502
+ return (False, None)
503
+
504
+ if not isomorphism:
505
+ # Two groups of the same cyclic numbered order
506
+ # are isomorphic to each other.
507
+ n = g_order
508
+ if (igcd(n, totient(n))) == 1:
509
+ return True
510
+
511
+ # Match the generators of `G` with subsets of `_H`
512
+ gens = list(G.generators)
513
+ for subset in itertools.permutations(_H, len(gens)):
514
+ images = list(subset)
515
+ images.extend([_H.identity]*(len(G.generators)-len(images)))
516
+ _images = dict(zip(gens,images))
517
+ if _check_homomorphism(G, _H, _images):
518
+ if isinstance(H, FpGroup):
519
+ images = h_isomorphism.invert(images)
520
+ T = homomorphism(G, H, G.generators, images, check=False)
521
+ if T.is_isomorphism():
522
+ # It is a valid isomorphism
523
+ if not isomorphism:
524
+ return True
525
+ return (True, T)
526
+
527
+ if not isomorphism:
528
+ return False
529
+ return (False, None)
530
+
531
+ def is_isomorphic(G, H):
532
+ '''
533
+ Check if the groups are isomorphic to each other
534
+
535
+ Parameters
536
+ ==========
537
+
538
+ G : A finite ``FpGroup`` or a ``PermutationGroup``
539
+ First group.
540
+
541
+ H : A finite ``FpGroup`` or a ``PermutationGroup``
542
+ Second group.
543
+
544
+ Returns
545
+ =======
546
+
547
+ boolean
548
+ '''
549
+ return group_isomorphism(G, H, isomorphism=False)
venv/lib/python3.10/site-packages/sympy/combinatorics/named_groups.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics.group_constructs import DirectProduct
2
+ from sympy.combinatorics.perm_groups import PermutationGroup
3
+ from sympy.combinatorics.permutations import Permutation
4
+
5
+ _af_new = Permutation._af_new
6
+
7
+
8
+ def AbelianGroup(*cyclic_orders):
9
+ """
10
+ Returns the direct product of cyclic groups with the given orders.
11
+
12
+ Explanation
13
+ ===========
14
+
15
+ According to the structure theorem for finite abelian groups ([1]),
16
+ every finite abelian group can be written as the direct product of
17
+ finitely many cyclic groups.
18
+
19
+ Examples
20
+ ========
21
+
22
+ >>> from sympy.combinatorics.named_groups import AbelianGroup
23
+ >>> AbelianGroup(3, 4)
24
+ PermutationGroup([
25
+ (6)(0 1 2),
26
+ (3 4 5 6)])
27
+ >>> _.is_group
28
+ True
29
+
30
+ See Also
31
+ ========
32
+
33
+ DirectProduct
34
+
35
+ References
36
+ ==========
37
+
38
+ .. [1] https://groupprops.subwiki.org/wiki/Structure_theorem_for_finitely_generated_abelian_groups
39
+
40
+ """
41
+ groups = []
42
+ degree = 0
43
+ order = 1
44
+ for size in cyclic_orders:
45
+ degree += size
46
+ order *= size
47
+ groups.append(CyclicGroup(size))
48
+ G = DirectProduct(*groups)
49
+ G._is_abelian = True
50
+ G._degree = degree
51
+ G._order = order
52
+
53
+ return G
54
+
55
+
56
+ def AlternatingGroup(n):
57
+ """
58
+ Generates the alternating group on ``n`` elements as a permutation group.
59
+
60
+ Explanation
61
+ ===========
62
+
63
+ For ``n > 2``, the generators taken are ``(0 1 2), (0 1 2 ... n-1)`` for
64
+ ``n`` odd
65
+ and ``(0 1 2), (1 2 ... n-1)`` for ``n`` even (See [1], p.31, ex.6.9.).
66
+ After the group is generated, some of its basic properties are set.
67
+ The cases ``n = 1, 2`` are handled separately.
68
+
69
+ Examples
70
+ ========
71
+
72
+ >>> from sympy.combinatorics.named_groups import AlternatingGroup
73
+ >>> G = AlternatingGroup(4)
74
+ >>> G.is_group
75
+ True
76
+ >>> a = list(G.generate_dimino())
77
+ >>> len(a)
78
+ 12
79
+ >>> all(perm.is_even for perm in a)
80
+ True
81
+
82
+ See Also
83
+ ========
84
+
85
+ SymmetricGroup, CyclicGroup, DihedralGroup
86
+
87
+ References
88
+ ==========
89
+
90
+ .. [1] Armstrong, M. "Groups and Symmetry"
91
+
92
+ """
93
+ # small cases are special
94
+ if n in (1, 2):
95
+ return PermutationGroup([Permutation([0])])
96
+
97
+ a = list(range(n))
98
+ a[0], a[1], a[2] = a[1], a[2], a[0]
99
+ gen1 = a
100
+ if n % 2:
101
+ a = list(range(1, n))
102
+ a.append(0)
103
+ gen2 = a
104
+ else:
105
+ a = list(range(2, n))
106
+ a.append(1)
107
+ a.insert(0, 0)
108
+ gen2 = a
109
+ gens = [gen1, gen2]
110
+ if gen1 == gen2:
111
+ gens = gens[:1]
112
+ G = PermutationGroup([_af_new(a) for a in gens], dups=False)
113
+
114
+ set_alternating_group_properties(G, n, n)
115
+ G._is_alt = True
116
+ return G
117
+
118
+
119
+ def set_alternating_group_properties(G, n, degree):
120
+ """Set known properties of an alternating group. """
121
+ if n < 4:
122
+ G._is_abelian = True
123
+ G._is_nilpotent = True
124
+ else:
125
+ G._is_abelian = False
126
+ G._is_nilpotent = False
127
+ if n < 5:
128
+ G._is_solvable = True
129
+ else:
130
+ G._is_solvable = False
131
+ G._degree = degree
132
+ G._is_transitive = True
133
+ G._is_dihedral = False
134
+
135
+
136
+ def CyclicGroup(n):
137
+ """
138
+ Generates the cyclic group of order ``n`` as a permutation group.
139
+
140
+ Explanation
141
+ ===========
142
+
143
+ The generator taken is the ``n``-cycle ``(0 1 2 ... n-1)``
144
+ (in cycle notation). After the group is generated, some of its basic
145
+ properties are set.
146
+
147
+ Examples
148
+ ========
149
+
150
+ >>> from sympy.combinatorics.named_groups import CyclicGroup
151
+ >>> G = CyclicGroup(6)
152
+ >>> G.is_group
153
+ True
154
+ >>> G.order()
155
+ 6
156
+ >>> list(G.generate_schreier_sims(af=True))
157
+ [[0, 1, 2, 3, 4, 5], [1, 2, 3, 4, 5, 0], [2, 3, 4, 5, 0, 1],
158
+ [3, 4, 5, 0, 1, 2], [4, 5, 0, 1, 2, 3], [5, 0, 1, 2, 3, 4]]
159
+
160
+ See Also
161
+ ========
162
+
163
+ SymmetricGroup, DihedralGroup, AlternatingGroup
164
+
165
+ """
166
+ a = list(range(1, n))
167
+ a.append(0)
168
+ gen = _af_new(a)
169
+ G = PermutationGroup([gen])
170
+
171
+ G._is_abelian = True
172
+ G._is_nilpotent = True
173
+ G._is_solvable = True
174
+ G._degree = n
175
+ G._is_transitive = True
176
+ G._order = n
177
+ G._is_dihedral = (n == 2)
178
+ return G
179
+
180
+
181
+ def DihedralGroup(n):
182
+ r"""
183
+ Generates the dihedral group `D_n` as a permutation group.
184
+
185
+ Explanation
186
+ ===========
187
+
188
+ The dihedral group `D_n` is the group of symmetries of the regular
189
+ ``n``-gon. The generators taken are the ``n``-cycle ``a = (0 1 2 ... n-1)``
190
+ (a rotation of the ``n``-gon) and ``b = (0 n-1)(1 n-2)...``
191
+ (a reflection of the ``n``-gon) in cycle rotation. It is easy to see that
192
+ these satisfy ``a**n = b**2 = 1`` and ``bab = ~a`` so they indeed generate
193
+ `D_n` (See [1]). After the group is generated, some of its basic properties
194
+ are set.
195
+
196
+ Examples
197
+ ========
198
+
199
+ >>> from sympy.combinatorics.named_groups import DihedralGroup
200
+ >>> G = DihedralGroup(5)
201
+ >>> G.is_group
202
+ True
203
+ >>> a = list(G.generate_dimino())
204
+ >>> [perm.cyclic_form for perm in a]
205
+ [[], [[0, 1, 2, 3, 4]], [[0, 2, 4, 1, 3]],
206
+ [[0, 3, 1, 4, 2]], [[0, 4, 3, 2, 1]], [[0, 4], [1, 3]],
207
+ [[1, 4], [2, 3]], [[0, 1], [2, 4]], [[0, 2], [3, 4]],
208
+ [[0, 3], [1, 2]]]
209
+
210
+ See Also
211
+ ========
212
+
213
+ SymmetricGroup, CyclicGroup, AlternatingGroup
214
+
215
+ References
216
+ ==========
217
+
218
+ .. [1] https://en.wikipedia.org/wiki/Dihedral_group
219
+
220
+ """
221
+ # small cases are special
222
+ if n == 1:
223
+ return PermutationGroup([Permutation([1, 0])])
224
+ if n == 2:
225
+ return PermutationGroup([Permutation([1, 0, 3, 2]),
226
+ Permutation([2, 3, 0, 1]), Permutation([3, 2, 1, 0])])
227
+
228
+ a = list(range(1, n))
229
+ a.append(0)
230
+ gen1 = _af_new(a)
231
+ a = list(range(n))
232
+ a.reverse()
233
+ gen2 = _af_new(a)
234
+ G = PermutationGroup([gen1, gen2])
235
+ # if n is a power of 2, group is nilpotent
236
+ if n & (n-1) == 0:
237
+ G._is_nilpotent = True
238
+ else:
239
+ G._is_nilpotent = False
240
+ G._is_dihedral = True
241
+ G._is_abelian = False
242
+ G._is_solvable = True
243
+ G._degree = n
244
+ G._is_transitive = True
245
+ G._order = 2*n
246
+ return G
247
+
248
+
249
+ def SymmetricGroup(n):
250
+ """
251
+ Generates the symmetric group on ``n`` elements as a permutation group.
252
+
253
+ Explanation
254
+ ===========
255
+
256
+ The generators taken are the ``n``-cycle
257
+ ``(0 1 2 ... n-1)`` and the transposition ``(0 1)`` (in cycle notation).
258
+ (See [1]). After the group is generated, some of its basic properties
259
+ are set.
260
+
261
+ Examples
262
+ ========
263
+
264
+ >>> from sympy.combinatorics.named_groups import SymmetricGroup
265
+ >>> G = SymmetricGroup(4)
266
+ >>> G.is_group
267
+ True
268
+ >>> G.order()
269
+ 24
270
+ >>> list(G.generate_schreier_sims(af=True))
271
+ [[0, 1, 2, 3], [1, 2, 3, 0], [2, 3, 0, 1], [3, 1, 2, 0], [0, 2, 3, 1],
272
+ [1, 3, 0, 2], [2, 0, 1, 3], [3, 2, 0, 1], [0, 3, 1, 2], [1, 0, 2, 3],
273
+ [2, 1, 3, 0], [3, 0, 1, 2], [0, 1, 3, 2], [1, 2, 0, 3], [2, 3, 1, 0],
274
+ [3, 1, 0, 2], [0, 2, 1, 3], [1, 3, 2, 0], [2, 0, 3, 1], [3, 2, 1, 0],
275
+ [0, 3, 2, 1], [1, 0, 3, 2], [2, 1, 0, 3], [3, 0, 2, 1]]
276
+
277
+ See Also
278
+ ========
279
+
280
+ CyclicGroup, DihedralGroup, AlternatingGroup
281
+
282
+ References
283
+ ==========
284
+
285
+ .. [1] https://en.wikipedia.org/wiki/Symmetric_group#Generators_and_relations
286
+
287
+ """
288
+ if n == 1:
289
+ G = PermutationGroup([Permutation([0])])
290
+ elif n == 2:
291
+ G = PermutationGroup([Permutation([1, 0])])
292
+ else:
293
+ a = list(range(1, n))
294
+ a.append(0)
295
+ gen1 = _af_new(a)
296
+ a = list(range(n))
297
+ a[0], a[1] = a[1], a[0]
298
+ gen2 = _af_new(a)
299
+ G = PermutationGroup([gen1, gen2])
300
+ set_symmetric_group_properties(G, n, n)
301
+ G._is_sym = True
302
+ return G
303
+
304
+
305
+ def set_symmetric_group_properties(G, n, degree):
306
+ """Set known properties of a symmetric group. """
307
+ if n < 3:
308
+ G._is_abelian = True
309
+ G._is_nilpotent = True
310
+ else:
311
+ G._is_abelian = False
312
+ G._is_nilpotent = False
313
+ if n < 5:
314
+ G._is_solvable = True
315
+ else:
316
+ G._is_solvable = False
317
+ G._degree = degree
318
+ G._is_transitive = True
319
+ G._is_dihedral = (n in [2, 3]) # cf Landau's func and Stirling's approx
320
+
321
+
322
+ def RubikGroup(n):
323
+ """Return a group of Rubik's cube generators
324
+
325
+ >>> from sympy.combinatorics.named_groups import RubikGroup
326
+ >>> RubikGroup(2).is_group
327
+ True
328
+ """
329
+ from sympy.combinatorics.generators import rubik
330
+ if n <= 1:
331
+ raise ValueError("Invalid cube. n has to be greater than 1")
332
+ return PermutationGroup(rubik(n))
venv/lib/python3.10/site-packages/sympy/combinatorics/partitions.py ADDED
@@ -0,0 +1,745 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Basic, Dict, sympify, Tuple
2
+ from sympy.core.numbers import Integer
3
+ from sympy.core.sorting import default_sort_key
4
+ from sympy.core.sympify import _sympify
5
+ from sympy.functions.combinatorial.numbers import bell
6
+ from sympy.matrices import zeros
7
+ from sympy.sets.sets import FiniteSet, Union
8
+ from sympy.utilities.iterables import flatten, group
9
+ from sympy.utilities.misc import as_int
10
+
11
+
12
+ from collections import defaultdict
13
+
14
+
15
+ class Partition(FiniteSet):
16
+ """
17
+ This class represents an abstract partition.
18
+
19
+ A partition is a set of disjoint sets whose union equals a given set.
20
+
21
+ See Also
22
+ ========
23
+
24
+ sympy.utilities.iterables.partitions,
25
+ sympy.utilities.iterables.multiset_partitions
26
+ """
27
+
28
+ _rank = None
29
+ _partition = None
30
+
31
+ def __new__(cls, *partition):
32
+ """
33
+ Generates a new partition object.
34
+
35
+ This method also verifies if the arguments passed are
36
+ valid and raises a ValueError if they are not.
37
+
38
+ Examples
39
+ ========
40
+
41
+ Creating Partition from Python lists:
42
+
43
+ >>> from sympy.combinatorics import Partition
44
+ >>> a = Partition([1, 2], [3])
45
+ >>> a
46
+ Partition({3}, {1, 2})
47
+ >>> a.partition
48
+ [[1, 2], [3]]
49
+ >>> len(a)
50
+ 2
51
+ >>> a.members
52
+ (1, 2, 3)
53
+
54
+ Creating Partition from Python sets:
55
+
56
+ >>> Partition({1, 2, 3}, {4, 5})
57
+ Partition({4, 5}, {1, 2, 3})
58
+
59
+ Creating Partition from SymPy finite sets:
60
+
61
+ >>> from sympy import FiniteSet
62
+ >>> a = FiniteSet(1, 2, 3)
63
+ >>> b = FiniteSet(4, 5)
64
+ >>> Partition(a, b)
65
+ Partition({4, 5}, {1, 2, 3})
66
+ """
67
+ args = []
68
+ dups = False
69
+ for arg in partition:
70
+ if isinstance(arg, list):
71
+ as_set = set(arg)
72
+ if len(as_set) < len(arg):
73
+ dups = True
74
+ break # error below
75
+ arg = as_set
76
+ args.append(_sympify(arg))
77
+
78
+ if not all(isinstance(part, FiniteSet) for part in args):
79
+ raise ValueError(
80
+ "Each argument to Partition should be " \
81
+ "a list, set, or a FiniteSet")
82
+
83
+ # sort so we have a canonical reference for RGS
84
+ U = Union(*args)
85
+ if dups or len(U) < sum(len(arg) for arg in args):
86
+ raise ValueError("Partition contained duplicate elements.")
87
+
88
+ obj = FiniteSet.__new__(cls, *args)
89
+ obj.members = tuple(U)
90
+ obj.size = len(U)
91
+ return obj
92
+
93
+ def sort_key(self, order=None):
94
+ """Return a canonical key that can be used for sorting.
95
+
96
+ Ordering is based on the size and sorted elements of the partition
97
+ and ties are broken with the rank.
98
+
99
+ Examples
100
+ ========
101
+
102
+ >>> from sympy import default_sort_key
103
+ >>> from sympy.combinatorics import Partition
104
+ >>> from sympy.abc import x
105
+ >>> a = Partition([1, 2])
106
+ >>> b = Partition([3, 4])
107
+ >>> c = Partition([1, x])
108
+ >>> d = Partition(list(range(4)))
109
+ >>> l = [d, b, a + 1, a, c]
110
+ >>> l.sort(key=default_sort_key); l
111
+ [Partition({1, 2}), Partition({1}, {2}), Partition({1, x}), Partition({3, 4}), Partition({0, 1, 2, 3})]
112
+ """
113
+ if order is None:
114
+ members = self.members
115
+ else:
116
+ members = tuple(sorted(self.members,
117
+ key=lambda w: default_sort_key(w, order)))
118
+ return tuple(map(default_sort_key, (self.size, members, self.rank)))
119
+
120
+ @property
121
+ def partition(self):
122
+ """Return partition as a sorted list of lists.
123
+
124
+ Examples
125
+ ========
126
+
127
+ >>> from sympy.combinatorics import Partition
128
+ >>> Partition([1], [2, 3]).partition
129
+ [[1], [2, 3]]
130
+ """
131
+ if self._partition is None:
132
+ self._partition = sorted([sorted(p, key=default_sort_key)
133
+ for p in self.args])
134
+ return self._partition
135
+
136
+ def __add__(self, other):
137
+ """
138
+ Return permutation whose rank is ``other`` greater than current rank,
139
+ (mod the maximum rank for the set).
140
+
141
+ Examples
142
+ ========
143
+
144
+ >>> from sympy.combinatorics import Partition
145
+ >>> a = Partition([1, 2], [3])
146
+ >>> a.rank
147
+ 1
148
+ >>> (a + 1).rank
149
+ 2
150
+ >>> (a + 100).rank
151
+ 1
152
+ """
153
+ other = as_int(other)
154
+ offset = self.rank + other
155
+ result = RGS_unrank((offset) %
156
+ RGS_enum(self.size),
157
+ self.size)
158
+ return Partition.from_rgs(result, self.members)
159
+
160
+ def __sub__(self, other):
161
+ """
162
+ Return permutation whose rank is ``other`` less than current rank,
163
+ (mod the maximum rank for the set).
164
+
165
+ Examples
166
+ ========
167
+
168
+ >>> from sympy.combinatorics import Partition
169
+ >>> a = Partition([1, 2], [3])
170
+ >>> a.rank
171
+ 1
172
+ >>> (a - 1).rank
173
+ 0
174
+ >>> (a - 100).rank
175
+ 1
176
+ """
177
+ return self.__add__(-other)
178
+
179
+ def __le__(self, other):
180
+ """
181
+ Checks if a partition is less than or equal to
182
+ the other based on rank.
183
+
184
+ Examples
185
+ ========
186
+
187
+ >>> from sympy.combinatorics import Partition
188
+ >>> a = Partition([1, 2], [3, 4, 5])
189
+ >>> b = Partition([1], [2, 3], [4], [5])
190
+ >>> a.rank, b.rank
191
+ (9, 34)
192
+ >>> a <= a
193
+ True
194
+ >>> a <= b
195
+ True
196
+ """
197
+ return self.sort_key() <= sympify(other).sort_key()
198
+
199
+ def __lt__(self, other):
200
+ """
201
+ Checks if a partition is less than the other.
202
+
203
+ Examples
204
+ ========
205
+
206
+ >>> from sympy.combinatorics import Partition
207
+ >>> a = Partition([1, 2], [3, 4, 5])
208
+ >>> b = Partition([1], [2, 3], [4], [5])
209
+ >>> a.rank, b.rank
210
+ (9, 34)
211
+ >>> a < b
212
+ True
213
+ """
214
+ return self.sort_key() < sympify(other).sort_key()
215
+
216
+ @property
217
+ def rank(self):
218
+ """
219
+ Gets the rank of a partition.
220
+
221
+ Examples
222
+ ========
223
+
224
+ >>> from sympy.combinatorics import Partition
225
+ >>> a = Partition([1, 2], [3], [4, 5])
226
+ >>> a.rank
227
+ 13
228
+ """
229
+ if self._rank is not None:
230
+ return self._rank
231
+ self._rank = RGS_rank(self.RGS)
232
+ return self._rank
233
+
234
+ @property
235
+ def RGS(self):
236
+ """
237
+ Returns the "restricted growth string" of the partition.
238
+
239
+ Explanation
240
+ ===========
241
+
242
+ The RGS is returned as a list of indices, L, where L[i] indicates
243
+ the block in which element i appears. For example, in a partition
244
+ of 3 elements (a, b, c) into 2 blocks ([c], [a, b]) the RGS is
245
+ [1, 1, 0]: "a" is in block 1, "b" is in block 1 and "c" is in block 0.
246
+
247
+ Examples
248
+ ========
249
+
250
+ >>> from sympy.combinatorics import Partition
251
+ >>> a = Partition([1, 2], [3], [4, 5])
252
+ >>> a.members
253
+ (1, 2, 3, 4, 5)
254
+ >>> a.RGS
255
+ (0, 0, 1, 2, 2)
256
+ >>> a + 1
257
+ Partition({3}, {4}, {5}, {1, 2})
258
+ >>> _.RGS
259
+ (0, 0, 1, 2, 3)
260
+ """
261
+ rgs = {}
262
+ partition = self.partition
263
+ for i, part in enumerate(partition):
264
+ for j in part:
265
+ rgs[j] = i
266
+ return tuple([rgs[i] for i in sorted(
267
+ [i for p in partition for i in p], key=default_sort_key)])
268
+
269
+ @classmethod
270
+ def from_rgs(self, rgs, elements):
271
+ """
272
+ Creates a set partition from a restricted growth string.
273
+
274
+ Explanation
275
+ ===========
276
+
277
+ The indices given in rgs are assumed to be the index
278
+ of the element as given in elements *as provided* (the
279
+ elements are not sorted by this routine). Block numbering
280
+ starts from 0. If any block was not referenced in ``rgs``
281
+ an error will be raised.
282
+
283
+ Examples
284
+ ========
285
+
286
+ >>> from sympy.combinatorics import Partition
287
+ >>> Partition.from_rgs([0, 1, 2, 0, 1], list('abcde'))
288
+ Partition({c}, {a, d}, {b, e})
289
+ >>> Partition.from_rgs([0, 1, 2, 0, 1], list('cbead'))
290
+ Partition({e}, {a, c}, {b, d})
291
+ >>> a = Partition([1, 4], [2], [3, 5])
292
+ >>> Partition.from_rgs(a.RGS, a.members)
293
+ Partition({2}, {1, 4}, {3, 5})
294
+ """
295
+ if len(rgs) != len(elements):
296
+ raise ValueError('mismatch in rgs and element lengths')
297
+ max_elem = max(rgs) + 1
298
+ partition = [[] for i in range(max_elem)]
299
+ j = 0
300
+ for i in rgs:
301
+ partition[i].append(elements[j])
302
+ j += 1
303
+ if not all(p for p in partition):
304
+ raise ValueError('some blocks of the partition were empty.')
305
+ return Partition(*partition)
306
+
307
+
308
+ class IntegerPartition(Basic):
309
+ """
310
+ This class represents an integer partition.
311
+
312
+ Explanation
313
+ ===========
314
+
315
+ In number theory and combinatorics, a partition of a positive integer,
316
+ ``n``, also called an integer partition, is a way of writing ``n`` as a
317
+ list of positive integers that sum to n. Two partitions that differ only
318
+ in the order of summands are considered to be the same partition; if order
319
+ matters then the partitions are referred to as compositions. For example,
320
+ 4 has five partitions: [4], [3, 1], [2, 2], [2, 1, 1], and [1, 1, 1, 1];
321
+ the compositions [1, 2, 1] and [1, 1, 2] are the same as partition
322
+ [2, 1, 1].
323
+
324
+ See Also
325
+ ========
326
+
327
+ sympy.utilities.iterables.partitions,
328
+ sympy.utilities.iterables.multiset_partitions
329
+
330
+ References
331
+ ==========
332
+
333
+ .. [1] https://en.wikipedia.org/wiki/Partition_%28number_theory%29
334
+ """
335
+
336
+ _dict = None
337
+ _keys = None
338
+
339
+ def __new__(cls, partition, integer=None):
340
+ """
341
+ Generates a new IntegerPartition object from a list or dictionary.
342
+
343
+ Explanation
344
+ ===========
345
+
346
+ The partition can be given as a list of positive integers or a
347
+ dictionary of (integer, multiplicity) items. If the partition is
348
+ preceded by an integer an error will be raised if the partition
349
+ does not sum to that given integer.
350
+
351
+ Examples
352
+ ========
353
+
354
+ >>> from sympy.combinatorics.partitions import IntegerPartition
355
+ >>> a = IntegerPartition([5, 4, 3, 1, 1])
356
+ >>> a
357
+ IntegerPartition(14, (5, 4, 3, 1, 1))
358
+ >>> print(a)
359
+ [5, 4, 3, 1, 1]
360
+ >>> IntegerPartition({1:3, 2:1})
361
+ IntegerPartition(5, (2, 1, 1, 1))
362
+
363
+ If the value that the partition should sum to is given first, a check
364
+ will be made to see n error will be raised if there is a discrepancy:
365
+
366
+ >>> IntegerPartition(10, [5, 4, 3, 1])
367
+ Traceback (most recent call last):
368
+ ...
369
+ ValueError: The partition is not valid
370
+
371
+ """
372
+ if integer is not None:
373
+ integer, partition = partition, integer
374
+ if isinstance(partition, (dict, Dict)):
375
+ _ = []
376
+ for k, v in sorted(partition.items(), reverse=True):
377
+ if not v:
378
+ continue
379
+ k, v = as_int(k), as_int(v)
380
+ _.extend([k]*v)
381
+ partition = tuple(_)
382
+ else:
383
+ partition = tuple(sorted(map(as_int, partition), reverse=True))
384
+ sum_ok = False
385
+ if integer is None:
386
+ integer = sum(partition)
387
+ sum_ok = True
388
+ else:
389
+ integer = as_int(integer)
390
+
391
+ if not sum_ok and sum(partition) != integer:
392
+ raise ValueError("Partition did not add to %s" % integer)
393
+ if any(i < 1 for i in partition):
394
+ raise ValueError("All integer summands must be greater than one")
395
+
396
+ obj = Basic.__new__(cls, Integer(integer), Tuple(*partition))
397
+ obj.partition = list(partition)
398
+ obj.integer = integer
399
+ return obj
400
+
401
+ def prev_lex(self):
402
+ """Return the previous partition of the integer, n, in lexical order,
403
+ wrapping around to [1, ..., 1] if the partition is [n].
404
+
405
+ Examples
406
+ ========
407
+
408
+ >>> from sympy.combinatorics.partitions import IntegerPartition
409
+ >>> p = IntegerPartition([4])
410
+ >>> print(p.prev_lex())
411
+ [3, 1]
412
+ >>> p.partition > p.prev_lex().partition
413
+ True
414
+ """
415
+ d = defaultdict(int)
416
+ d.update(self.as_dict())
417
+ keys = self._keys
418
+ if keys == [1]:
419
+ return IntegerPartition({self.integer: 1})
420
+ if keys[-1] != 1:
421
+ d[keys[-1]] -= 1
422
+ if keys[-1] == 2:
423
+ d[1] = 2
424
+ else:
425
+ d[keys[-1] - 1] = d[1] = 1
426
+ else:
427
+ d[keys[-2]] -= 1
428
+ left = d[1] + keys[-2]
429
+ new = keys[-2]
430
+ d[1] = 0
431
+ while left:
432
+ new -= 1
433
+ if left - new >= 0:
434
+ d[new] += left//new
435
+ left -= d[new]*new
436
+ return IntegerPartition(self.integer, d)
437
+
438
+ def next_lex(self):
439
+ """Return the next partition of the integer, n, in lexical order,
440
+ wrapping around to [n] if the partition is [1, ..., 1].
441
+
442
+ Examples
443
+ ========
444
+
445
+ >>> from sympy.combinatorics.partitions import IntegerPartition
446
+ >>> p = IntegerPartition([3, 1])
447
+ >>> print(p.next_lex())
448
+ [4]
449
+ >>> p.partition < p.next_lex().partition
450
+ True
451
+ """
452
+ d = defaultdict(int)
453
+ d.update(self.as_dict())
454
+ key = self._keys
455
+ a = key[-1]
456
+ if a == self.integer:
457
+ d.clear()
458
+ d[1] = self.integer
459
+ elif a == 1:
460
+ if d[a] > 1:
461
+ d[a + 1] += 1
462
+ d[a] -= 2
463
+ else:
464
+ b = key[-2]
465
+ d[b + 1] += 1
466
+ d[1] = (d[b] - 1)*b
467
+ d[b] = 0
468
+ else:
469
+ if d[a] > 1:
470
+ if len(key) == 1:
471
+ d.clear()
472
+ d[a + 1] = 1
473
+ d[1] = self.integer - a - 1
474
+ else:
475
+ a1 = a + 1
476
+ d[a1] += 1
477
+ d[1] = d[a]*a - a1
478
+ d[a] = 0
479
+ else:
480
+ b = key[-2]
481
+ b1 = b + 1
482
+ d[b1] += 1
483
+ need = d[b]*b + d[a]*a - b1
484
+ d[a] = d[b] = 0
485
+ d[1] = need
486
+ return IntegerPartition(self.integer, d)
487
+
488
+ def as_dict(self):
489
+ """Return the partition as a dictionary whose keys are the
490
+ partition integers and the values are the multiplicity of that
491
+ integer.
492
+
493
+ Examples
494
+ ========
495
+
496
+ >>> from sympy.combinatorics.partitions import IntegerPartition
497
+ >>> IntegerPartition([1]*3 + [2] + [3]*4).as_dict()
498
+ {1: 3, 2: 1, 3: 4}
499
+ """
500
+ if self._dict is None:
501
+ groups = group(self.partition, multiple=False)
502
+ self._keys = [g[0] for g in groups]
503
+ self._dict = dict(groups)
504
+ return self._dict
505
+
506
+ @property
507
+ def conjugate(self):
508
+ """
509
+ Computes the conjugate partition of itself.
510
+
511
+ Examples
512
+ ========
513
+
514
+ >>> from sympy.combinatorics.partitions import IntegerPartition
515
+ >>> a = IntegerPartition([6, 3, 3, 2, 1])
516
+ >>> a.conjugate
517
+ [5, 4, 3, 1, 1, 1]
518
+ """
519
+ j = 1
520
+ temp_arr = list(self.partition) + [0]
521
+ k = temp_arr[0]
522
+ b = [0]*k
523
+ while k > 0:
524
+ while k > temp_arr[j]:
525
+ b[k - 1] = j
526
+ k -= 1
527
+ j += 1
528
+ return b
529
+
530
+ def __lt__(self, other):
531
+ """Return True if self is less than other when the partition
532
+ is listed from smallest to biggest.
533
+
534
+ Examples
535
+ ========
536
+
537
+ >>> from sympy.combinatorics.partitions import IntegerPartition
538
+ >>> a = IntegerPartition([3, 1])
539
+ >>> a < a
540
+ False
541
+ >>> b = a.next_lex()
542
+ >>> a < b
543
+ True
544
+ >>> a == b
545
+ False
546
+ """
547
+ return list(reversed(self.partition)) < list(reversed(other.partition))
548
+
549
+ def __le__(self, other):
550
+ """Return True if self is less than other when the partition
551
+ is listed from smallest to biggest.
552
+
553
+ Examples
554
+ ========
555
+
556
+ >>> from sympy.combinatorics.partitions import IntegerPartition
557
+ >>> a = IntegerPartition([4])
558
+ >>> a <= a
559
+ True
560
+ """
561
+ return list(reversed(self.partition)) <= list(reversed(other.partition))
562
+
563
+ def as_ferrers(self, char='#'):
564
+ """
565
+ Prints the ferrer diagram of a partition.
566
+
567
+ Examples
568
+ ========
569
+
570
+ >>> from sympy.combinatorics.partitions import IntegerPartition
571
+ >>> print(IntegerPartition([1, 1, 5]).as_ferrers())
572
+ #####
573
+ #
574
+ #
575
+ """
576
+ return "\n".join([char*i for i in self.partition])
577
+
578
+ def __str__(self):
579
+ return str(list(self.partition))
580
+
581
+
582
+ def random_integer_partition(n, seed=None):
583
+ """
584
+ Generates a random integer partition summing to ``n`` as a list
585
+ of reverse-sorted integers.
586
+
587
+ Examples
588
+ ========
589
+
590
+ >>> from sympy.combinatorics.partitions import random_integer_partition
591
+
592
+ For the following, a seed is given so a known value can be shown; in
593
+ practice, the seed would not be given.
594
+
595
+ >>> random_integer_partition(100, seed=[1, 1, 12, 1, 2, 1, 85, 1])
596
+ [85, 12, 2, 1]
597
+ >>> random_integer_partition(10, seed=[1, 2, 3, 1, 5, 1])
598
+ [5, 3, 1, 1]
599
+ >>> random_integer_partition(1)
600
+ [1]
601
+ """
602
+ from sympy.core.random import _randint
603
+
604
+ n = as_int(n)
605
+ if n < 1:
606
+ raise ValueError('n must be a positive integer')
607
+
608
+ randint = _randint(seed)
609
+
610
+ partition = []
611
+ while (n > 0):
612
+ k = randint(1, n)
613
+ mult = randint(1, n//k)
614
+ partition.append((k, mult))
615
+ n -= k*mult
616
+ partition.sort(reverse=True)
617
+ partition = flatten([[k]*m for k, m in partition])
618
+ return partition
619
+
620
+
621
+ def RGS_generalized(m):
622
+ """
623
+ Computes the m + 1 generalized unrestricted growth strings
624
+ and returns them as rows in matrix.
625
+
626
+ Examples
627
+ ========
628
+
629
+ >>> from sympy.combinatorics.partitions import RGS_generalized
630
+ >>> RGS_generalized(6)
631
+ Matrix([
632
+ [ 1, 1, 1, 1, 1, 1, 1],
633
+ [ 1, 2, 3, 4, 5, 6, 0],
634
+ [ 2, 5, 10, 17, 26, 0, 0],
635
+ [ 5, 15, 37, 77, 0, 0, 0],
636
+ [ 15, 52, 151, 0, 0, 0, 0],
637
+ [ 52, 203, 0, 0, 0, 0, 0],
638
+ [203, 0, 0, 0, 0, 0, 0]])
639
+ """
640
+ d = zeros(m + 1)
641
+ for i in range(m + 1):
642
+ d[0, i] = 1
643
+
644
+ for i in range(1, m + 1):
645
+ for j in range(m):
646
+ if j <= m - i:
647
+ d[i, j] = j * d[i - 1, j] + d[i - 1, j + 1]
648
+ else:
649
+ d[i, j] = 0
650
+ return d
651
+
652
+
653
+ def RGS_enum(m):
654
+ """
655
+ RGS_enum computes the total number of restricted growth strings
656
+ possible for a superset of size m.
657
+
658
+ Examples
659
+ ========
660
+
661
+ >>> from sympy.combinatorics.partitions import RGS_enum
662
+ >>> from sympy.combinatorics import Partition
663
+ >>> RGS_enum(4)
664
+ 15
665
+ >>> RGS_enum(5)
666
+ 52
667
+ >>> RGS_enum(6)
668
+ 203
669
+
670
+ We can check that the enumeration is correct by actually generating
671
+ the partitions. Here, the 15 partitions of 4 items are generated:
672
+
673
+ >>> a = Partition(list(range(4)))
674
+ >>> s = set()
675
+ >>> for i in range(20):
676
+ ... s.add(a)
677
+ ... a += 1
678
+ ...
679
+ >>> assert len(s) == 15
680
+
681
+ """
682
+ if (m < 1):
683
+ return 0
684
+ elif (m == 1):
685
+ return 1
686
+ else:
687
+ return bell(m)
688
+
689
+
690
+ def RGS_unrank(rank, m):
691
+ """
692
+ Gives the unranked restricted growth string for a given
693
+ superset size.
694
+
695
+ Examples
696
+ ========
697
+
698
+ >>> from sympy.combinatorics.partitions import RGS_unrank
699
+ >>> RGS_unrank(14, 4)
700
+ [0, 1, 2, 3]
701
+ >>> RGS_unrank(0, 4)
702
+ [0, 0, 0, 0]
703
+ """
704
+ if m < 1:
705
+ raise ValueError("The superset size must be >= 1")
706
+ if rank < 0 or RGS_enum(m) <= rank:
707
+ raise ValueError("Invalid arguments")
708
+
709
+ L = [1] * (m + 1)
710
+ j = 1
711
+ D = RGS_generalized(m)
712
+ for i in range(2, m + 1):
713
+ v = D[m - i, j]
714
+ cr = j*v
715
+ if cr <= rank:
716
+ L[i] = j + 1
717
+ rank -= cr
718
+ j += 1
719
+ else:
720
+ L[i] = int(rank / v + 1)
721
+ rank %= v
722
+ return [x - 1 for x in L[1:]]
723
+
724
+
725
+ def RGS_rank(rgs):
726
+ """
727
+ Computes the rank of a restricted growth string.
728
+
729
+ Examples
730
+ ========
731
+
732
+ >>> from sympy.combinatorics.partitions import RGS_rank, RGS_unrank
733
+ >>> RGS_rank([0, 1, 2, 1, 3])
734
+ 42
735
+ >>> RGS_rank(RGS_unrank(4, 7))
736
+ 4
737
+ """
738
+ rgs_size = len(rgs)
739
+ rank = 0
740
+ D = RGS_generalized(rgs_size)
741
+ for i in range(1, rgs_size):
742
+ n = len(rgs[(i + 1):])
743
+ m = max(rgs[0:i])
744
+ rank += D[n, m + 1] * rgs[i]
745
+ return rank
venv/lib/python3.10/site-packages/sympy/combinatorics/pc_groups.py ADDED
@@ -0,0 +1,709 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.ntheory.primetest import isprime
2
+ from sympy.combinatorics.perm_groups import PermutationGroup
3
+ from sympy.printing.defaults import DefaultPrinting
4
+ from sympy.combinatorics.free_groups import free_group
5
+
6
+
7
+ class PolycyclicGroup(DefaultPrinting):
8
+
9
+ is_group = True
10
+ is_solvable = True
11
+
12
+ def __init__(self, pc_sequence, pc_series, relative_order, collector=None):
13
+ """
14
+
15
+ Parameters
16
+ ==========
17
+
18
+ pc_sequence : list
19
+ A sequence of elements whose classes generate the cyclic factor
20
+ groups of pc_series.
21
+ pc_series : list
22
+ A subnormal sequence of subgroups where each factor group is cyclic.
23
+ relative_order : list
24
+ The orders of factor groups of pc_series.
25
+ collector : Collector
26
+ By default, it is None. Collector class provides the
27
+ polycyclic presentation with various other functionalities.
28
+
29
+ """
30
+ self.pcgs = pc_sequence
31
+ self.pc_series = pc_series
32
+ self.relative_order = relative_order
33
+ self.collector = Collector(self.pcgs, pc_series, relative_order) if not collector else collector
34
+
35
+ def is_prime_order(self):
36
+ return all(isprime(order) for order in self.relative_order)
37
+
38
+ def length(self):
39
+ return len(self.pcgs)
40
+
41
+
42
+ class Collector(DefaultPrinting):
43
+
44
+ """
45
+ References
46
+ ==========
47
+
48
+ .. [1] Holt, D., Eick, B., O'Brien, E.
49
+ "Handbook of Computational Group Theory"
50
+ Section 8.1.3
51
+ """
52
+
53
+ def __init__(self, pcgs, pc_series, relative_order, free_group_=None, pc_presentation=None):
54
+ """
55
+
56
+ Most of the parameters for the Collector class are the same as for PolycyclicGroup.
57
+ Others are described below.
58
+
59
+ Parameters
60
+ ==========
61
+
62
+ free_group_ : tuple
63
+ free_group_ provides the mapping of polycyclic generating
64
+ sequence with the free group elements.
65
+ pc_presentation : dict
66
+ Provides the presentation of polycyclic groups with the
67
+ help of power and conjugate relators.
68
+
69
+ See Also
70
+ ========
71
+
72
+ PolycyclicGroup
73
+
74
+ """
75
+ self.pcgs = pcgs
76
+ self.pc_series = pc_series
77
+ self.relative_order = relative_order
78
+ self.free_group = free_group('x:{}'.format(len(pcgs)))[0] if not free_group_ else free_group_
79
+ self.index = {s: i for i, s in enumerate(self.free_group.symbols)}
80
+ self.pc_presentation = self.pc_relators()
81
+
82
+ def minimal_uncollected_subword(self, word):
83
+ r"""
84
+ Returns the minimal uncollected subwords.
85
+
86
+ Explanation
87
+ ===========
88
+
89
+ A word ``v`` defined on generators in ``X`` is a minimal
90
+ uncollected subword of the word ``w`` if ``v`` is a subword
91
+ of ``w`` and it has one of the following form
92
+
93
+ * `v = {x_{i+1}}^{a_j}x_i`
94
+
95
+ * `v = {x_{i+1}}^{a_j}{x_i}^{-1}`
96
+
97
+ * `v = {x_i}^{a_j}`
98
+
99
+ for `a_j` not in `\{1, \ldots, s-1\}`. Where, ``s`` is the power
100
+ exponent of the corresponding generator.
101
+
102
+ Examples
103
+ ========
104
+
105
+ >>> from sympy.combinatorics.named_groups import SymmetricGroup
106
+ >>> from sympy.combinatorics import free_group
107
+ >>> G = SymmetricGroup(4)
108
+ >>> PcGroup = G.polycyclic_group()
109
+ >>> collector = PcGroup.collector
110
+ >>> F, x1, x2 = free_group("x1, x2")
111
+ >>> word = x2**2*x1**7
112
+ >>> collector.minimal_uncollected_subword(word)
113
+ ((x2, 2),)
114
+
115
+ """
116
+ # To handle the case word = <identity>
117
+ if not word:
118
+ return None
119
+
120
+ array = word.array_form
121
+ re = self.relative_order
122
+ index = self.index
123
+
124
+ for i in range(len(array)):
125
+ s1, e1 = array[i]
126
+
127
+ if re[index[s1]] and (e1 < 0 or e1 > re[index[s1]]-1):
128
+ return ((s1, e1), )
129
+
130
+ for i in range(len(array)-1):
131
+ s1, e1 = array[i]
132
+ s2, e2 = array[i+1]
133
+
134
+ if index[s1] > index[s2]:
135
+ e = 1 if e2 > 0 else -1
136
+ return ((s1, e1), (s2, e))
137
+
138
+ return None
139
+
140
+ def relations(self):
141
+ """
142
+ Separates the given relators of pc presentation in power and
143
+ conjugate relations.
144
+
145
+ Returns
146
+ =======
147
+
148
+ (power_rel, conj_rel)
149
+ Separates pc presentation into power and conjugate relations.
150
+
151
+ Examples
152
+ ========
153
+
154
+ >>> from sympy.combinatorics.named_groups import SymmetricGroup
155
+ >>> G = SymmetricGroup(3)
156
+ >>> PcGroup = G.polycyclic_group()
157
+ >>> collector = PcGroup.collector
158
+ >>> power_rel, conj_rel = collector.relations()
159
+ >>> power_rel
160
+ {x0**2: (), x1**3: ()}
161
+ >>> conj_rel
162
+ {x0**-1*x1*x0: x1**2}
163
+
164
+ See Also
165
+ ========
166
+
167
+ pc_relators
168
+
169
+ """
170
+ power_relators = {}
171
+ conjugate_relators = {}
172
+ for key, value in self.pc_presentation.items():
173
+ if len(key.array_form) == 1:
174
+ power_relators[key] = value
175
+ else:
176
+ conjugate_relators[key] = value
177
+ return power_relators, conjugate_relators
178
+
179
+ def subword_index(self, word, w):
180
+ """
181
+ Returns the start and ending index of a given
182
+ subword in a word.
183
+
184
+ Parameters
185
+ ==========
186
+
187
+ word : FreeGroupElement
188
+ word defined on free group elements for a
189
+ polycyclic group.
190
+ w : FreeGroupElement
191
+ subword of a given word, whose starting and
192
+ ending index to be computed.
193
+
194
+ Returns
195
+ =======
196
+
197
+ (i, j)
198
+ A tuple containing starting and ending index of ``w``
199
+ in the given word.
200
+
201
+ Examples
202
+ ========
203
+
204
+ >>> from sympy.combinatorics.named_groups import SymmetricGroup
205
+ >>> from sympy.combinatorics import free_group
206
+ >>> G = SymmetricGroup(4)
207
+ >>> PcGroup = G.polycyclic_group()
208
+ >>> collector = PcGroup.collector
209
+ >>> F, x1, x2 = free_group("x1, x2")
210
+ >>> word = x2**2*x1**7
211
+ >>> w = x2**2*x1
212
+ >>> collector.subword_index(word, w)
213
+ (0, 3)
214
+ >>> w = x1**7
215
+ >>> collector.subword_index(word, w)
216
+ (2, 9)
217
+
218
+ """
219
+ low = -1
220
+ high = -1
221
+ for i in range(len(word)-len(w)+1):
222
+ if word.subword(i, i+len(w)) == w:
223
+ low = i
224
+ high = i+len(w)
225
+ break
226
+ if low == high == -1:
227
+ return -1, -1
228
+ return low, high
229
+
230
+ def map_relation(self, w):
231
+ """
232
+ Return a conjugate relation.
233
+
234
+ Explanation
235
+ ===========
236
+
237
+ Given a word formed by two free group elements, the
238
+ corresponding conjugate relation with those free
239
+ group elements is formed and mapped with the collected
240
+ word in the polycyclic presentation.
241
+
242
+ Examples
243
+ ========
244
+
245
+ >>> from sympy.combinatorics.named_groups import SymmetricGroup
246
+ >>> from sympy.combinatorics import free_group
247
+ >>> G = SymmetricGroup(3)
248
+ >>> PcGroup = G.polycyclic_group()
249
+ >>> collector = PcGroup.collector
250
+ >>> F, x0, x1 = free_group("x0, x1")
251
+ >>> w = x1*x0
252
+ >>> collector.map_relation(w)
253
+ x1**2
254
+
255
+ See Also
256
+ ========
257
+
258
+ pc_presentation
259
+
260
+ """
261
+ array = w.array_form
262
+ s1 = array[0][0]
263
+ s2 = array[1][0]
264
+ key = ((s2, -1), (s1, 1), (s2, 1))
265
+ key = self.free_group.dtype(key)
266
+ return self.pc_presentation[key]
267
+
268
+
269
+ def collected_word(self, word):
270
+ r"""
271
+ Return the collected form of a word.
272
+
273
+ Explanation
274
+ ===========
275
+
276
+ A word ``w`` is called collected, if `w = {x_{i_1}}^{a_1} * \ldots *
277
+ {x_{i_r}}^{a_r}` with `i_1 < i_2< \ldots < i_r` and `a_j` is in
278
+ `\{1, \ldots, {s_j}-1\}`.
279
+
280
+ Otherwise w is uncollected.
281
+
282
+ Parameters
283
+ ==========
284
+
285
+ word : FreeGroupElement
286
+ An uncollected word.
287
+
288
+ Returns
289
+ =======
290
+
291
+ word
292
+ A collected word of form `w = {x_{i_1}}^{a_1}, \ldots,
293
+ {x_{i_r}}^{a_r}` with `i_1, i_2, \ldots, i_r` and `a_j \in
294
+ \{1, \ldots, {s_j}-1\}`.
295
+
296
+ Examples
297
+ ========
298
+
299
+ >>> from sympy.combinatorics.named_groups import SymmetricGroup
300
+ >>> from sympy.combinatorics.perm_groups import PermutationGroup
301
+ >>> from sympy.combinatorics import free_group
302
+ >>> G = SymmetricGroup(4)
303
+ >>> PcGroup = G.polycyclic_group()
304
+ >>> collector = PcGroup.collector
305
+ >>> F, x0, x1, x2, x3 = free_group("x0, x1, x2, x3")
306
+ >>> word = x3*x2*x1*x0
307
+ >>> collected_word = collector.collected_word(word)
308
+ >>> free_to_perm = {}
309
+ >>> free_group = collector.free_group
310
+ >>> for sym, gen in zip(free_group.symbols, collector.pcgs):
311
+ ... free_to_perm[sym] = gen
312
+ >>> G1 = PermutationGroup()
313
+ >>> for w in word:
314
+ ... sym = w[0]
315
+ ... perm = free_to_perm[sym]
316
+ ... G1 = PermutationGroup([perm] + G1.generators)
317
+ >>> G2 = PermutationGroup()
318
+ >>> for w in collected_word:
319
+ ... sym = w[0]
320
+ ... perm = free_to_perm[sym]
321
+ ... G2 = PermutationGroup([perm] + G2.generators)
322
+
323
+ The two are not identical, but they are equivalent:
324
+
325
+ >>> G1.equals(G2), G1 == G2
326
+ (True, False)
327
+
328
+ See Also
329
+ ========
330
+
331
+ minimal_uncollected_subword
332
+
333
+ """
334
+ free_group = self.free_group
335
+ while True:
336
+ w = self.minimal_uncollected_subword(word)
337
+ if not w:
338
+ break
339
+
340
+ low, high = self.subword_index(word, free_group.dtype(w))
341
+ if low == -1:
342
+ continue
343
+
344
+ s1, e1 = w[0]
345
+ if len(w) == 1:
346
+ re = self.relative_order[self.index[s1]]
347
+ q = e1 // re
348
+ r = e1-q*re
349
+
350
+ key = ((w[0][0], re), )
351
+ key = free_group.dtype(key)
352
+ if self.pc_presentation[key]:
353
+ presentation = self.pc_presentation[key].array_form
354
+ sym, exp = presentation[0]
355
+ word_ = ((w[0][0], r), (sym, q*exp))
356
+ word_ = free_group.dtype(word_)
357
+ else:
358
+ if r != 0:
359
+ word_ = ((w[0][0], r), )
360
+ word_ = free_group.dtype(word_)
361
+ else:
362
+ word_ = None
363
+ word = word.eliminate_word(free_group.dtype(w), word_)
364
+
365
+ if len(w) == 2 and w[1][1] > 0:
366
+ s2, e2 = w[1]
367
+ s2 = ((s2, 1), )
368
+ s2 = free_group.dtype(s2)
369
+ word_ = self.map_relation(free_group.dtype(w))
370
+ word_ = s2*word_**e1
371
+ word_ = free_group.dtype(word_)
372
+ word = word.substituted_word(low, high, word_)
373
+
374
+ elif len(w) == 2 and w[1][1] < 0:
375
+ s2, e2 = w[1]
376
+ s2 = ((s2, 1), )
377
+ s2 = free_group.dtype(s2)
378
+ word_ = self.map_relation(free_group.dtype(w))
379
+ word_ = s2**-1*word_**e1
380
+ word_ = free_group.dtype(word_)
381
+ word = word.substituted_word(low, high, word_)
382
+
383
+ return word
384
+
385
+
386
+ def pc_relators(self):
387
+ r"""
388
+ Return the polycyclic presentation.
389
+
390
+ Explanation
391
+ ===========
392
+
393
+ There are two types of relations used in polycyclic
394
+ presentation.
395
+
396
+ * Power relations : Power relators are of the form `x_i^{re_i}`,
397
+ where `i \in \{0, \ldots, \mathrm{len(pcgs)}\}`, ``x`` represents polycyclic
398
+ generator and ``re`` is the corresponding relative order.
399
+
400
+ * Conjugate relations : Conjugate relators are of the form `x_j^-1x_ix_j`,
401
+ where `j < i \in \{0, \ldots, \mathrm{len(pcgs)}\}`.
402
+
403
+ Returns
404
+ =======
405
+
406
+ A dictionary with power and conjugate relations as key and
407
+ their collected form as corresponding values.
408
+
409
+ Notes
410
+ =====
411
+
412
+ Identity Permutation is mapped with empty ``()``.
413
+
414
+ Examples
415
+ ========
416
+
417
+ >>> from sympy.combinatorics.named_groups import SymmetricGroup
418
+ >>> from sympy.combinatorics.permutations import Permutation
419
+ >>> S = SymmetricGroup(49).sylow_subgroup(7)
420
+ >>> der = S.derived_series()
421
+ >>> G = der[len(der)-2]
422
+ >>> PcGroup = G.polycyclic_group()
423
+ >>> collector = PcGroup.collector
424
+ >>> pcgs = PcGroup.pcgs
425
+ >>> len(pcgs)
426
+ 6
427
+ >>> free_group = collector.free_group
428
+ >>> pc_resentation = collector.pc_presentation
429
+ >>> free_to_perm = {}
430
+ >>> for s, g in zip(free_group.symbols, pcgs):
431
+ ... free_to_perm[s] = g
432
+
433
+ >>> for k, v in pc_resentation.items():
434
+ ... k_array = k.array_form
435
+ ... if v != ():
436
+ ... v_array = v.array_form
437
+ ... lhs = Permutation()
438
+ ... for gen in k_array:
439
+ ... s = gen[0]
440
+ ... e = gen[1]
441
+ ... lhs = lhs*free_to_perm[s]**e
442
+ ... if v == ():
443
+ ... assert lhs.is_identity
444
+ ... continue
445
+ ... rhs = Permutation()
446
+ ... for gen in v_array:
447
+ ... s = gen[0]
448
+ ... e = gen[1]
449
+ ... rhs = rhs*free_to_perm[s]**e
450
+ ... assert lhs == rhs
451
+
452
+ """
453
+ free_group = self.free_group
454
+ rel_order = self.relative_order
455
+ pc_relators = {}
456
+ perm_to_free = {}
457
+ pcgs = self.pcgs
458
+
459
+ for gen, s in zip(pcgs, free_group.generators):
460
+ perm_to_free[gen**-1] = s**-1
461
+ perm_to_free[gen] = s
462
+
463
+ pcgs = pcgs[::-1]
464
+ series = self.pc_series[::-1]
465
+ rel_order = rel_order[::-1]
466
+ collected_gens = []
467
+
468
+ for i, gen in enumerate(pcgs):
469
+ re = rel_order[i]
470
+ relation = perm_to_free[gen]**re
471
+ G = series[i]
472
+
473
+ l = G.generator_product(gen**re, original = True)
474
+ l.reverse()
475
+
476
+ word = free_group.identity
477
+ for g in l:
478
+ word = word*perm_to_free[g]
479
+
480
+ word = self.collected_word(word)
481
+ pc_relators[relation] = word if word else ()
482
+ self.pc_presentation = pc_relators
483
+
484
+ collected_gens.append(gen)
485
+ if len(collected_gens) > 1:
486
+ conj = collected_gens[len(collected_gens)-1]
487
+ conjugator = perm_to_free[conj]
488
+
489
+ for j in range(len(collected_gens)-1):
490
+ conjugated = perm_to_free[collected_gens[j]]
491
+
492
+ relation = conjugator**-1*conjugated*conjugator
493
+ gens = conj**-1*collected_gens[j]*conj
494
+
495
+ l = G.generator_product(gens, original = True)
496
+ l.reverse()
497
+ word = free_group.identity
498
+ for g in l:
499
+ word = word*perm_to_free[g]
500
+
501
+ word = self.collected_word(word)
502
+ pc_relators[relation] = word if word else ()
503
+ self.pc_presentation = pc_relators
504
+
505
+ return pc_relators
506
+
507
+ def exponent_vector(self, element):
508
+ r"""
509
+ Return the exponent vector of length equal to the
510
+ length of polycyclic generating sequence.
511
+
512
+ Explanation
513
+ ===========
514
+
515
+ For a given generator/element ``g`` of the polycyclic group,
516
+ it can be represented as `g = {x_1}^{e_1}, \ldots, {x_n}^{e_n}`,
517
+ where `x_i` represents polycyclic generators and ``n`` is
518
+ the number of generators in the free_group equal to the length
519
+ of pcgs.
520
+
521
+ Parameters
522
+ ==========
523
+
524
+ element : Permutation
525
+ Generator of a polycyclic group.
526
+
527
+ Examples
528
+ ========
529
+
530
+ >>> from sympy.combinatorics.named_groups import SymmetricGroup
531
+ >>> from sympy.combinatorics.permutations import Permutation
532
+ >>> G = SymmetricGroup(4)
533
+ >>> PcGroup = G.polycyclic_group()
534
+ >>> collector = PcGroup.collector
535
+ >>> pcgs = PcGroup.pcgs
536
+ >>> collector.exponent_vector(G[0])
537
+ [1, 0, 0, 0]
538
+ >>> exp = collector.exponent_vector(G[1])
539
+ >>> g = Permutation()
540
+ >>> for i in range(len(exp)):
541
+ ... g = g*pcgs[i]**exp[i] if exp[i] else g
542
+ >>> assert g == G[1]
543
+
544
+ References
545
+ ==========
546
+
547
+ .. [1] Holt, D., Eick, B., O'Brien, E.
548
+ "Handbook of Computational Group Theory"
549
+ Section 8.1.1, Definition 8.4
550
+
551
+ """
552
+ free_group = self.free_group
553
+ G = PermutationGroup()
554
+ for g in self.pcgs:
555
+ G = PermutationGroup([g] + G.generators)
556
+ gens = G.generator_product(element, original = True)
557
+ gens.reverse()
558
+
559
+ perm_to_free = {}
560
+ for sym, g in zip(free_group.generators, self.pcgs):
561
+ perm_to_free[g**-1] = sym**-1
562
+ perm_to_free[g] = sym
563
+ w = free_group.identity
564
+ for g in gens:
565
+ w = w*perm_to_free[g]
566
+
567
+ word = self.collected_word(w)
568
+
569
+ index = self.index
570
+ exp_vector = [0]*len(free_group)
571
+ word = word.array_form
572
+ for t in word:
573
+ exp_vector[index[t[0]]] = t[1]
574
+ return exp_vector
575
+
576
+ def depth(self, element):
577
+ r"""
578
+ Return the depth of a given element.
579
+
580
+ Explanation
581
+ ===========
582
+
583
+ The depth of a given element ``g`` is defined by
584
+ `\mathrm{dep}[g] = i` if `e_1 = e_2 = \ldots = e_{i-1} = 0`
585
+ and `e_i != 0`, where ``e`` represents the exponent-vector.
586
+
587
+ Examples
588
+ ========
589
+
590
+ >>> from sympy.combinatorics.named_groups import SymmetricGroup
591
+ >>> G = SymmetricGroup(3)
592
+ >>> PcGroup = G.polycyclic_group()
593
+ >>> collector = PcGroup.collector
594
+ >>> collector.depth(G[0])
595
+ 2
596
+ >>> collector.depth(G[1])
597
+ 1
598
+
599
+ References
600
+ ==========
601
+
602
+ .. [1] Holt, D., Eick, B., O'Brien, E.
603
+ "Handbook of Computational Group Theory"
604
+ Section 8.1.1, Definition 8.5
605
+
606
+ """
607
+ exp_vector = self.exponent_vector(element)
608
+ return next((i+1 for i, x in enumerate(exp_vector) if x), len(self.pcgs)+1)
609
+
610
+ def leading_exponent(self, element):
611
+ r"""
612
+ Return the leading non-zero exponent.
613
+
614
+ Explanation
615
+ ===========
616
+
617
+ The leading exponent for a given element `g` is defined
618
+ by `\mathrm{leading\_exponent}[g]` `= e_i`, if `\mathrm{depth}[g] = i`.
619
+
620
+ Examples
621
+ ========
622
+
623
+ >>> from sympy.combinatorics.named_groups import SymmetricGroup
624
+ >>> G = SymmetricGroup(3)
625
+ >>> PcGroup = G.polycyclic_group()
626
+ >>> collector = PcGroup.collector
627
+ >>> collector.leading_exponent(G[1])
628
+ 1
629
+
630
+ """
631
+ exp_vector = self.exponent_vector(element)
632
+ depth = self.depth(element)
633
+ if depth != len(self.pcgs)+1:
634
+ return exp_vector[depth-1]
635
+ return None
636
+
637
+ def _sift(self, z, g):
638
+ h = g
639
+ d = self.depth(h)
640
+ while d < len(self.pcgs) and z[d-1] != 1:
641
+ k = z[d-1]
642
+ e = self.leading_exponent(h)*(self.leading_exponent(k))**-1
643
+ e = e % self.relative_order[d-1]
644
+ h = k**-e*h
645
+ d = self.depth(h)
646
+ return h
647
+
648
+ def induced_pcgs(self, gens):
649
+ """
650
+
651
+ Parameters
652
+ ==========
653
+
654
+ gens : list
655
+ A list of generators on which polycyclic subgroup
656
+ is to be defined.
657
+
658
+ Examples
659
+ ========
660
+
661
+ >>> from sympy.combinatorics.named_groups import SymmetricGroup
662
+ >>> S = SymmetricGroup(8)
663
+ >>> G = S.sylow_subgroup(2)
664
+ >>> PcGroup = G.polycyclic_group()
665
+ >>> collector = PcGroup.collector
666
+ >>> gens = [G[0], G[1]]
667
+ >>> ipcgs = collector.induced_pcgs(gens)
668
+ >>> [gen.order() for gen in ipcgs]
669
+ [2, 2, 2]
670
+ >>> G = S.sylow_subgroup(3)
671
+ >>> PcGroup = G.polycyclic_group()
672
+ >>> collector = PcGroup.collector
673
+ >>> gens = [G[0], G[1]]
674
+ >>> ipcgs = collector.induced_pcgs(gens)
675
+ >>> [gen.order() for gen in ipcgs]
676
+ [3]
677
+
678
+ """
679
+ z = [1]*len(self.pcgs)
680
+ G = gens
681
+ while G:
682
+ g = G.pop(0)
683
+ h = self._sift(z, g)
684
+ d = self.depth(h)
685
+ if d < len(self.pcgs):
686
+ for gen in z:
687
+ if gen != 1:
688
+ G.append(h**-1*gen**-1*h*gen)
689
+ z[d-1] = h;
690
+ z = [gen for gen in z if gen != 1]
691
+ return z
692
+
693
+ def constructive_membership_test(self, ipcgs, g):
694
+ """
695
+ Return the exponent vector for induced pcgs.
696
+ """
697
+ e = [0]*len(ipcgs)
698
+ h = g
699
+ d = self.depth(h)
700
+ for i, gen in enumerate(ipcgs):
701
+ while self.depth(gen) == d:
702
+ f = self.leading_exponent(h)*self.leading_exponent(gen)
703
+ f = f % self.relative_order[d-1]
704
+ h = gen**(-f)*h
705
+ e[i] = f
706
+ d = self.depth(h)
707
+ if h == 1:
708
+ return e
709
+ return False
venv/lib/python3.10/site-packages/sympy/combinatorics/perm_groups.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/sympy/combinatorics/permutations.py ADDED
@@ -0,0 +1,3112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ from collections import defaultdict
3
+ from collections.abc import Iterable
4
+ from functools import reduce
5
+
6
+ from sympy.core.parameters import global_parameters
7
+ from sympy.core.basic import Atom
8
+ from sympy.core.expr import Expr
9
+ from sympy.core.numbers import Integer
10
+ from sympy.core.sympify import _sympify
11
+ from sympy.matrices import zeros
12
+ from sympy.polys.polytools import lcm
13
+ from sympy.printing.repr import srepr
14
+ from sympy.utilities.iterables import (flatten, has_variety, minlex,
15
+ has_dups, runs, is_sequence)
16
+ from sympy.utilities.misc import as_int
17
+ from mpmath.libmp.libintmath import ifac
18
+ from sympy.multipledispatch import dispatch
19
+
20
+ def _af_rmul(a, b):
21
+ """
22
+ Return the product b*a; input and output are array forms. The ith value
23
+ is a[b[i]].
24
+
25
+ Examples
26
+ ========
27
+
28
+ >>> from sympy.combinatorics.permutations import _af_rmul, Permutation
29
+
30
+ >>> a, b = [1, 0, 2], [0, 2, 1]
31
+ >>> _af_rmul(a, b)
32
+ [1, 2, 0]
33
+ >>> [a[b[i]] for i in range(3)]
34
+ [1, 2, 0]
35
+
36
+ This handles the operands in reverse order compared to the ``*`` operator:
37
+
38
+ >>> a = Permutation(a)
39
+ >>> b = Permutation(b)
40
+ >>> list(a*b)
41
+ [2, 0, 1]
42
+ >>> [b(a(i)) for i in range(3)]
43
+ [2, 0, 1]
44
+
45
+ See Also
46
+ ========
47
+
48
+ rmul, _af_rmuln
49
+ """
50
+ return [a[i] for i in b]
51
+
52
+
53
+ def _af_rmuln(*abc):
54
+ """
55
+ Given [a, b, c, ...] return the product of ...*c*b*a using array forms.
56
+ The ith value is a[b[c[i]]].
57
+
58
+ Examples
59
+ ========
60
+
61
+ >>> from sympy.combinatorics.permutations import _af_rmul, Permutation
62
+
63
+ >>> a, b = [1, 0, 2], [0, 2, 1]
64
+ >>> _af_rmul(a, b)
65
+ [1, 2, 0]
66
+ >>> [a[b[i]] for i in range(3)]
67
+ [1, 2, 0]
68
+
69
+ This handles the operands in reverse order compared to the ``*`` operator:
70
+
71
+ >>> a = Permutation(a); b = Permutation(b)
72
+ >>> list(a*b)
73
+ [2, 0, 1]
74
+ >>> [b(a(i)) for i in range(3)]
75
+ [2, 0, 1]
76
+
77
+ See Also
78
+ ========
79
+
80
+ rmul, _af_rmul
81
+ """
82
+ a = abc
83
+ m = len(a)
84
+ if m == 3:
85
+ p0, p1, p2 = a
86
+ return [p0[p1[i]] for i in p2]
87
+ if m == 4:
88
+ p0, p1, p2, p3 = a
89
+ return [p0[p1[p2[i]]] for i in p3]
90
+ if m == 5:
91
+ p0, p1, p2, p3, p4 = a
92
+ return [p0[p1[p2[p3[i]]]] for i in p4]
93
+ if m == 6:
94
+ p0, p1, p2, p3, p4, p5 = a
95
+ return [p0[p1[p2[p3[p4[i]]]]] for i in p5]
96
+ if m == 7:
97
+ p0, p1, p2, p3, p4, p5, p6 = a
98
+ return [p0[p1[p2[p3[p4[p5[i]]]]]] for i in p6]
99
+ if m == 8:
100
+ p0, p1, p2, p3, p4, p5, p6, p7 = a
101
+ return [p0[p1[p2[p3[p4[p5[p6[i]]]]]]] for i in p7]
102
+ if m == 1:
103
+ return a[0][:]
104
+ if m == 2:
105
+ a, b = a
106
+ return [a[i] for i in b]
107
+ if m == 0:
108
+ raise ValueError("String must not be empty")
109
+ p0 = _af_rmuln(*a[:m//2])
110
+ p1 = _af_rmuln(*a[m//2:])
111
+ return [p0[i] for i in p1]
112
+
113
+
114
+ def _af_parity(pi):
115
+ """
116
+ Computes the parity of a permutation in array form.
117
+
118
+ Explanation
119
+ ===========
120
+
121
+ The parity of a permutation reflects the parity of the
122
+ number of inversions in the permutation, i.e., the
123
+ number of pairs of x and y such that x > y but p[x] < p[y].
124
+
125
+ Examples
126
+ ========
127
+
128
+ >>> from sympy.combinatorics.permutations import _af_parity
129
+ >>> _af_parity([0, 1, 2, 3])
130
+ 0
131
+ >>> _af_parity([3, 2, 0, 1])
132
+ 1
133
+
134
+ See Also
135
+ ========
136
+
137
+ Permutation
138
+ """
139
+ n = len(pi)
140
+ a = [0] * n
141
+ c = 0
142
+ for j in range(n):
143
+ if a[j] == 0:
144
+ c += 1
145
+ a[j] = 1
146
+ i = j
147
+ while pi[i] != j:
148
+ i = pi[i]
149
+ a[i] = 1
150
+ return (n - c) % 2
151
+
152
+
153
+ def _af_invert(a):
154
+ """
155
+ Finds the inverse, ~A, of a permutation, A, given in array form.
156
+
157
+ Examples
158
+ ========
159
+
160
+ >>> from sympy.combinatorics.permutations import _af_invert, _af_rmul
161
+ >>> A = [1, 2, 0, 3]
162
+ >>> _af_invert(A)
163
+ [2, 0, 1, 3]
164
+ >>> _af_rmul(_, A)
165
+ [0, 1, 2, 3]
166
+
167
+ See Also
168
+ ========
169
+
170
+ Permutation, __invert__
171
+ """
172
+ inv_form = [0] * len(a)
173
+ for i, ai in enumerate(a):
174
+ inv_form[ai] = i
175
+ return inv_form
176
+
177
+
178
+ def _af_pow(a, n):
179
+ """
180
+ Routine for finding powers of a permutation.
181
+
182
+ Examples
183
+ ========
184
+
185
+ >>> from sympy.combinatorics import Permutation
186
+ >>> from sympy.combinatorics.permutations import _af_pow
187
+ >>> p = Permutation([2, 0, 3, 1])
188
+ >>> p.order()
189
+ 4
190
+ >>> _af_pow(p._array_form, 4)
191
+ [0, 1, 2, 3]
192
+ """
193
+ if n == 0:
194
+ return list(range(len(a)))
195
+ if n < 0:
196
+ return _af_pow(_af_invert(a), -n)
197
+ if n == 1:
198
+ return a[:]
199
+ elif n == 2:
200
+ b = [a[i] for i in a]
201
+ elif n == 3:
202
+ b = [a[a[i]] for i in a]
203
+ elif n == 4:
204
+ b = [a[a[a[i]]] for i in a]
205
+ else:
206
+ # use binary multiplication
207
+ b = list(range(len(a)))
208
+ while 1:
209
+ if n & 1:
210
+ b = [b[i] for i in a]
211
+ n -= 1
212
+ if not n:
213
+ break
214
+ if n % 4 == 0:
215
+ a = [a[a[a[i]]] for i in a]
216
+ n = n // 4
217
+ elif n % 2 == 0:
218
+ a = [a[i] for i in a]
219
+ n = n // 2
220
+ return b
221
+
222
+
223
+ def _af_commutes_with(a, b):
224
+ """
225
+ Checks if the two permutations with array forms
226
+ given by ``a`` and ``b`` commute.
227
+
228
+ Examples
229
+ ========
230
+
231
+ >>> from sympy.combinatorics.permutations import _af_commutes_with
232
+ >>> _af_commutes_with([1, 2, 0], [0, 2, 1])
233
+ False
234
+
235
+ See Also
236
+ ========
237
+
238
+ Permutation, commutes_with
239
+ """
240
+ return not any(a[b[i]] != b[a[i]] for i in range(len(a) - 1))
241
+
242
+
243
+ class Cycle(dict):
244
+ """
245
+ Wrapper around dict which provides the functionality of a disjoint cycle.
246
+
247
+ Explanation
248
+ ===========
249
+
250
+ A cycle shows the rule to use to move subsets of elements to obtain
251
+ a permutation. The Cycle class is more flexible than Permutation in
252
+ that 1) all elements need not be present in order to investigate how
253
+ multiple cycles act in sequence and 2) it can contain singletons:
254
+
255
+ >>> from sympy.combinatorics.permutations import Perm, Cycle
256
+
257
+ A Cycle will automatically parse a cycle given as a tuple on the rhs:
258
+
259
+ >>> Cycle(1, 2)(2, 3)
260
+ (1 3 2)
261
+
262
+ The identity cycle, Cycle(), can be used to start a product:
263
+
264
+ >>> Cycle()(1, 2)(2, 3)
265
+ (1 3 2)
266
+
267
+ The array form of a Cycle can be obtained by calling the list
268
+ method (or passing it to the list function) and all elements from
269
+ 0 will be shown:
270
+
271
+ >>> a = Cycle(1, 2)
272
+ >>> a.list()
273
+ [0, 2, 1]
274
+ >>> list(a)
275
+ [0, 2, 1]
276
+
277
+ If a larger (or smaller) range is desired use the list method and
278
+ provide the desired size -- but the Cycle cannot be truncated to
279
+ a size smaller than the largest element that is out of place:
280
+
281
+ >>> b = Cycle(2, 4)(1, 2)(3, 1, 4)(1, 3)
282
+ >>> b.list()
283
+ [0, 2, 1, 3, 4]
284
+ >>> b.list(b.size + 1)
285
+ [0, 2, 1, 3, 4, 5]
286
+ >>> b.list(-1)
287
+ [0, 2, 1]
288
+
289
+ Singletons are not shown when printing with one exception: the largest
290
+ element is always shown -- as a singleton if necessary:
291
+
292
+ >>> Cycle(1, 4, 10)(4, 5)
293
+ (1 5 4 10)
294
+ >>> Cycle(1, 2)(4)(5)(10)
295
+ (1 2)(10)
296
+
297
+ The array form can be used to instantiate a Permutation so other
298
+ properties of the permutation can be investigated:
299
+
300
+ >>> Perm(Cycle(1, 2)(3, 4).list()).transpositions()
301
+ [(1, 2), (3, 4)]
302
+
303
+ Notes
304
+ =====
305
+
306
+ The underlying structure of the Cycle is a dictionary and although
307
+ the __iter__ method has been redefined to give the array form of the
308
+ cycle, the underlying dictionary items are still available with the
309
+ such methods as items():
310
+
311
+ >>> list(Cycle(1, 2).items())
312
+ [(1, 2), (2, 1)]
313
+
314
+ See Also
315
+ ========
316
+
317
+ Permutation
318
+ """
319
+ def __missing__(self, arg):
320
+ """Enter arg into dictionary and return arg."""
321
+ return as_int(arg)
322
+
323
+ def __iter__(self):
324
+ yield from self.list()
325
+
326
+ def __call__(self, *other):
327
+ """Return product of cycles processed from R to L.
328
+
329
+ Examples
330
+ ========
331
+
332
+ >>> from sympy.combinatorics import Cycle
333
+ >>> Cycle(1, 2)(2, 3)
334
+ (1 3 2)
335
+
336
+ An instance of a Cycle will automatically parse list-like
337
+ objects and Permutations that are on the right. It is more
338
+ flexible than the Permutation in that all elements need not
339
+ be present:
340
+
341
+ >>> a = Cycle(1, 2)
342
+ >>> a(2, 3)
343
+ (1 3 2)
344
+ >>> a(2, 3)(4, 5)
345
+ (1 3 2)(4 5)
346
+
347
+ """
348
+ rv = Cycle(*other)
349
+ for k, v in zip(list(self.keys()), [rv[self[k]] for k in self.keys()]):
350
+ rv[k] = v
351
+ return rv
352
+
353
+ def list(self, size=None):
354
+ """Return the cycles as an explicit list starting from 0 up
355
+ to the greater of the largest value in the cycles and size.
356
+
357
+ Truncation of trailing unmoved items will occur when size
358
+ is less than the maximum element in the cycle; if this is
359
+ desired, setting ``size=-1`` will guarantee such trimming.
360
+
361
+ Examples
362
+ ========
363
+
364
+ >>> from sympy.combinatorics import Cycle
365
+ >>> p = Cycle(2, 3)(4, 5)
366
+ >>> p.list()
367
+ [0, 1, 3, 2, 5, 4]
368
+ >>> p.list(10)
369
+ [0, 1, 3, 2, 5, 4, 6, 7, 8, 9]
370
+
371
+ Passing a length too small will trim trailing, unchanged elements
372
+ in the permutation:
373
+
374
+ >>> Cycle(2, 4)(1, 2, 4).list(-1)
375
+ [0, 2, 1]
376
+ """
377
+ if not self and size is None:
378
+ raise ValueError('must give size for empty Cycle')
379
+ if size is not None:
380
+ big = max([i for i in self.keys() if self[i] != i] + [0])
381
+ size = max(size, big + 1)
382
+ else:
383
+ size = self.size
384
+ return [self[i] for i in range(size)]
385
+
386
+ def __repr__(self):
387
+ """We want it to print as a Cycle, not as a dict.
388
+
389
+ Examples
390
+ ========
391
+
392
+ >>> from sympy.combinatorics import Cycle
393
+ >>> Cycle(1, 2)
394
+ (1 2)
395
+ >>> print(_)
396
+ (1 2)
397
+ >>> list(Cycle(1, 2).items())
398
+ [(1, 2), (2, 1)]
399
+ """
400
+ if not self:
401
+ return 'Cycle()'
402
+ cycles = Permutation(self).cyclic_form
403
+ s = ''.join(str(tuple(c)) for c in cycles)
404
+ big = self.size - 1
405
+ if not any(i == big for c in cycles for i in c):
406
+ s += '(%s)' % big
407
+ return 'Cycle%s' % s
408
+
409
+ def __str__(self):
410
+ """We want it to be printed in a Cycle notation with no
411
+ comma in-between.
412
+
413
+ Examples
414
+ ========
415
+
416
+ >>> from sympy.combinatorics import Cycle
417
+ >>> Cycle(1, 2)
418
+ (1 2)
419
+ >>> Cycle(1, 2, 4)(5, 6)
420
+ (1 2 4)(5 6)
421
+ """
422
+ if not self:
423
+ return '()'
424
+ cycles = Permutation(self).cyclic_form
425
+ s = ''.join(str(tuple(c)) for c in cycles)
426
+ big = self.size - 1
427
+ if not any(i == big for c in cycles for i in c):
428
+ s += '(%s)' % big
429
+ s = s.replace(',', '')
430
+ return s
431
+
432
+ def __init__(self, *args):
433
+ """Load up a Cycle instance with the values for the cycle.
434
+
435
+ Examples
436
+ ========
437
+
438
+ >>> from sympy.combinatorics import Cycle
439
+ >>> Cycle(1, 2, 6)
440
+ (1 2 6)
441
+ """
442
+
443
+ if not args:
444
+ return
445
+ if len(args) == 1:
446
+ if isinstance(args[0], Permutation):
447
+ for c in args[0].cyclic_form:
448
+ self.update(self(*c))
449
+ return
450
+ elif isinstance(args[0], Cycle):
451
+ for k, v in args[0].items():
452
+ self[k] = v
453
+ return
454
+ args = [as_int(a) for a in args]
455
+ if any(i < 0 for i in args):
456
+ raise ValueError('negative integers are not allowed in a cycle.')
457
+ if has_dups(args):
458
+ raise ValueError('All elements must be unique in a cycle.')
459
+ for i in range(-len(args), 0):
460
+ self[args[i]] = args[i + 1]
461
+
462
+ @property
463
+ def size(self):
464
+ if not self:
465
+ return 0
466
+ return max(self.keys()) + 1
467
+
468
+ def copy(self):
469
+ return Cycle(self)
470
+
471
+
472
+ class Permutation(Atom):
473
+ r"""
474
+ A permutation, alternatively known as an 'arrangement number' or 'ordering'
475
+ is an arrangement of the elements of an ordered list into a one-to-one
476
+ mapping with itself. The permutation of a given arrangement is given by
477
+ indicating the positions of the elements after re-arrangement [2]_. For
478
+ example, if one started with elements ``[x, y, a, b]`` (in that order) and
479
+ they were reordered as ``[x, y, b, a]`` then the permutation would be
480
+ ``[0, 1, 3, 2]``. Notice that (in SymPy) the first element is always referred
481
+ to as 0 and the permutation uses the indices of the elements in the
482
+ original ordering, not the elements ``(a, b, ...)`` themselves.
483
+
484
+ >>> from sympy.combinatorics import Permutation
485
+ >>> from sympy import init_printing
486
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
487
+
488
+ Permutations Notation
489
+ =====================
490
+
491
+ Permutations are commonly represented in disjoint cycle or array forms.
492
+
493
+ Array Notation and 2-line Form
494
+ ------------------------------------
495
+
496
+ In the 2-line form, the elements and their final positions are shown
497
+ as a matrix with 2 rows:
498
+
499
+ [0 1 2 ... n-1]
500
+ [p(0) p(1) p(2) ... p(n-1)]
501
+
502
+ Since the first line is always ``range(n)``, where n is the size of p,
503
+ it is sufficient to represent the permutation by the second line,
504
+ referred to as the "array form" of the permutation. This is entered
505
+ in brackets as the argument to the Permutation class:
506
+
507
+ >>> p = Permutation([0, 2, 1]); p
508
+ Permutation([0, 2, 1])
509
+
510
+ Given i in range(p.size), the permutation maps i to i^p
511
+
512
+ >>> [i^p for i in range(p.size)]
513
+ [0, 2, 1]
514
+
515
+ The composite of two permutations p*q means first apply p, then q, so
516
+ i^(p*q) = (i^p)^q which is i^p^q according to Python precedence rules:
517
+
518
+ >>> q = Permutation([2, 1, 0])
519
+ >>> [i^p^q for i in range(3)]
520
+ [2, 0, 1]
521
+ >>> [i^(p*q) for i in range(3)]
522
+ [2, 0, 1]
523
+
524
+ One can use also the notation p(i) = i^p, but then the composition
525
+ rule is (p*q)(i) = q(p(i)), not p(q(i)):
526
+
527
+ >>> [(p*q)(i) for i in range(p.size)]
528
+ [2, 0, 1]
529
+ >>> [q(p(i)) for i in range(p.size)]
530
+ [2, 0, 1]
531
+ >>> [p(q(i)) for i in range(p.size)]
532
+ [1, 2, 0]
533
+
534
+ Disjoint Cycle Notation
535
+ -----------------------
536
+
537
+ In disjoint cycle notation, only the elements that have shifted are
538
+ indicated.
539
+
540
+ For example, [1, 3, 2, 0] can be represented as (0, 1, 3)(2).
541
+ This can be understood from the 2 line format of the given permutation.
542
+ In the 2-line form,
543
+ [0 1 2 3]
544
+ [1 3 2 0]
545
+
546
+ The element in the 0th position is 1, so 0 -> 1. The element in the 1st
547
+ position is three, so 1 -> 3. And the element in the third position is again
548
+ 0, so 3 -> 0. Thus, 0 -> 1 -> 3 -> 0, and 2 -> 2. Thus, this can be represented
549
+ as 2 cycles: (0, 1, 3)(2).
550
+ In common notation, singular cycles are not explicitly written as they can be
551
+ inferred implicitly.
552
+
553
+ Only the relative ordering of elements in a cycle matter:
554
+
555
+ >>> Permutation(1,2,3) == Permutation(2,3,1) == Permutation(3,1,2)
556
+ True
557
+
558
+ The disjoint cycle notation is convenient when representing
559
+ permutations that have several cycles in them:
560
+
561
+ >>> Permutation(1, 2)(3, 5) == Permutation([[1, 2], [3, 5]])
562
+ True
563
+
564
+ It also provides some economy in entry when computing products of
565
+ permutations that are written in disjoint cycle notation:
566
+
567
+ >>> Permutation(1, 2)(1, 3)(2, 3)
568
+ Permutation([0, 3, 2, 1])
569
+ >>> _ == Permutation([[1, 2]])*Permutation([[1, 3]])*Permutation([[2, 3]])
570
+ True
571
+
572
+ Caution: when the cycles have common elements between them then the order
573
+ in which the permutations are applied matters. This module applies
574
+ the permutations from *left to right*.
575
+
576
+ >>> Permutation(1, 2)(2, 3) == Permutation([(1, 2), (2, 3)])
577
+ True
578
+ >>> Permutation(1, 2)(2, 3).list()
579
+ [0, 3, 1, 2]
580
+
581
+ In the above case, (1,2) is computed before (2,3).
582
+ As 0 -> 0, 0 -> 0, element in position 0 is 0.
583
+ As 1 -> 2, 2 -> 3, element in position 1 is 3.
584
+ As 2 -> 1, 1 -> 1, element in position 2 is 1.
585
+ As 3 -> 3, 3 -> 2, element in position 3 is 2.
586
+
587
+ If the first and second elements had been
588
+ swapped first, followed by the swapping of the second
589
+ and third, the result would have been [0, 2, 3, 1].
590
+ If, you want to apply the cycles in the conventional
591
+ right to left order, call the function with arguments in reverse order
592
+ as demonstrated below:
593
+
594
+ >>> Permutation([(1, 2), (2, 3)][::-1]).list()
595
+ [0, 2, 3, 1]
596
+
597
+ Entering a singleton in a permutation is a way to indicate the size of the
598
+ permutation. The ``size`` keyword can also be used.
599
+
600
+ Array-form entry:
601
+
602
+ >>> Permutation([[1, 2], [9]])
603
+ Permutation([0, 2, 1], size=10)
604
+ >>> Permutation([[1, 2]], size=10)
605
+ Permutation([0, 2, 1], size=10)
606
+
607
+ Cyclic-form entry:
608
+
609
+ >>> Permutation(1, 2, size=10)
610
+ Permutation([0, 2, 1], size=10)
611
+ >>> Permutation(9)(1, 2)
612
+ Permutation([0, 2, 1], size=10)
613
+
614
+ Caution: no singleton containing an element larger than the largest
615
+ in any previous cycle can be entered. This is an important difference
616
+ in how Permutation and Cycle handle the ``__call__`` syntax. A singleton
617
+ argument at the start of a Permutation performs instantiation of the
618
+ Permutation and is permitted:
619
+
620
+ >>> Permutation(5)
621
+ Permutation([], size=6)
622
+
623
+ A singleton entered after instantiation is a call to the permutation
624
+ -- a function call -- and if the argument is out of range it will
625
+ trigger an error. For this reason, it is better to start the cycle
626
+ with the singleton:
627
+
628
+ The following fails because there is no element 3:
629
+
630
+ >>> Permutation(1, 2)(3)
631
+ Traceback (most recent call last):
632
+ ...
633
+ IndexError: list index out of range
634
+
635
+ This is ok: only the call to an out of range singleton is prohibited;
636
+ otherwise the permutation autosizes:
637
+
638
+ >>> Permutation(3)(1, 2)
639
+ Permutation([0, 2, 1, 3])
640
+ >>> Permutation(1, 2)(3, 4) == Permutation(3, 4)(1, 2)
641
+ True
642
+
643
+
644
+ Equality testing
645
+ ----------------
646
+
647
+ The array forms must be the same in order for permutations to be equal:
648
+
649
+ >>> Permutation([1, 0, 2, 3]) == Permutation([1, 0])
650
+ False
651
+
652
+
653
+ Identity Permutation
654
+ --------------------
655
+
656
+ The identity permutation is a permutation in which no element is out of
657
+ place. It can be entered in a variety of ways. All the following create
658
+ an identity permutation of size 4:
659
+
660
+ >>> I = Permutation([0, 1, 2, 3])
661
+ >>> all(p == I for p in [
662
+ ... Permutation(3),
663
+ ... Permutation(range(4)),
664
+ ... Permutation([], size=4),
665
+ ... Permutation(size=4)])
666
+ True
667
+
668
+ Watch out for entering the range *inside* a set of brackets (which is
669
+ cycle notation):
670
+
671
+ >>> I == Permutation([range(4)])
672
+ False
673
+
674
+
675
+ Permutation Printing
676
+ ====================
677
+
678
+ There are a few things to note about how Permutations are printed.
679
+
680
+ .. deprecated:: 1.6
681
+
682
+ Configuring Permutation printing by setting
683
+ ``Permutation.print_cyclic`` is deprecated. Users should use the
684
+ ``perm_cyclic`` flag to the printers, as described below.
685
+
686
+ 1) If you prefer one form (array or cycle) over another, you can set
687
+ ``init_printing`` with the ``perm_cyclic`` flag.
688
+
689
+ >>> from sympy import init_printing
690
+ >>> p = Permutation(1, 2)(4, 5)(3, 4)
691
+ >>> p
692
+ Permutation([0, 2, 1, 4, 5, 3])
693
+
694
+ >>> init_printing(perm_cyclic=True, pretty_print=False)
695
+ >>> p
696
+ (1 2)(3 4 5)
697
+
698
+ 2) Regardless of the setting, a list of elements in the array for cyclic
699
+ form can be obtained and either of those can be copied and supplied as
700
+ the argument to Permutation:
701
+
702
+ >>> p.array_form
703
+ [0, 2, 1, 4, 5, 3]
704
+ >>> p.cyclic_form
705
+ [[1, 2], [3, 4, 5]]
706
+ >>> Permutation(_) == p
707
+ True
708
+
709
+ 3) Printing is economical in that as little as possible is printed while
710
+ retaining all information about the size of the permutation:
711
+
712
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
713
+ >>> Permutation([1, 0, 2, 3])
714
+ Permutation([1, 0, 2, 3])
715
+ >>> Permutation([1, 0, 2, 3], size=20)
716
+ Permutation([1, 0], size=20)
717
+ >>> Permutation([1, 0, 2, 4, 3, 5, 6], size=20)
718
+ Permutation([1, 0, 2, 4, 3], size=20)
719
+
720
+ >>> p = Permutation([1, 0, 2, 3])
721
+ >>> init_printing(perm_cyclic=True, pretty_print=False)
722
+ >>> p
723
+ (3)(0 1)
724
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
725
+
726
+ The 2 was not printed but it is still there as can be seen with the
727
+ array_form and size methods:
728
+
729
+ >>> p.array_form
730
+ [1, 0, 2, 3]
731
+ >>> p.size
732
+ 4
733
+
734
+ Short introduction to other methods
735
+ ===================================
736
+
737
+ The permutation can act as a bijective function, telling what element is
738
+ located at a given position
739
+
740
+ >>> q = Permutation([5, 2, 3, 4, 1, 0])
741
+ >>> q.array_form[1] # the hard way
742
+ 2
743
+ >>> q(1) # the easy way
744
+ 2
745
+ >>> {i: q(i) for i in range(q.size)} # showing the bijection
746
+ {0: 5, 1: 2, 2: 3, 3: 4, 4: 1, 5: 0}
747
+
748
+ The full cyclic form (including singletons) can be obtained:
749
+
750
+ >>> p.full_cyclic_form
751
+ [[0, 1], [2], [3]]
752
+
753
+ Any permutation can be factored into transpositions of pairs of elements:
754
+
755
+ >>> Permutation([[1, 2], [3, 4, 5]]).transpositions()
756
+ [(1, 2), (3, 5), (3, 4)]
757
+ >>> Permutation.rmul(*[Permutation([ti], size=6) for ti in _]).cyclic_form
758
+ [[1, 2], [3, 4, 5]]
759
+
760
+ The number of permutations on a set of n elements is given by n! and is
761
+ called the cardinality.
762
+
763
+ >>> p.size
764
+ 4
765
+ >>> p.cardinality
766
+ 24
767
+
768
+ A given permutation has a rank among all the possible permutations of the
769
+ same elements, but what that rank is depends on how the permutations are
770
+ enumerated. (There are a number of different methods of doing so.) The
771
+ lexicographic rank is given by the rank method and this rank is used to
772
+ increment a permutation with addition/subtraction:
773
+
774
+ >>> p.rank()
775
+ 6
776
+ >>> p + 1
777
+ Permutation([1, 0, 3, 2])
778
+ >>> p.next_lex()
779
+ Permutation([1, 0, 3, 2])
780
+ >>> _.rank()
781
+ 7
782
+ >>> p.unrank_lex(p.size, rank=7)
783
+ Permutation([1, 0, 3, 2])
784
+
785
+ The product of two permutations p and q is defined as their composition as
786
+ functions, (p*q)(i) = q(p(i)) [6]_.
787
+
788
+ >>> p = Permutation([1, 0, 2, 3])
789
+ >>> q = Permutation([2, 3, 1, 0])
790
+ >>> list(q*p)
791
+ [2, 3, 0, 1]
792
+ >>> list(p*q)
793
+ [3, 2, 1, 0]
794
+ >>> [q(p(i)) for i in range(p.size)]
795
+ [3, 2, 1, 0]
796
+
797
+ The permutation can be 'applied' to any list-like object, not only
798
+ Permutations:
799
+
800
+ >>> p(['zero', 'one', 'four', 'two'])
801
+ ['one', 'zero', 'four', 'two']
802
+ >>> p('zo42')
803
+ ['o', 'z', '4', '2']
804
+
805
+ If you have a list of arbitrary elements, the corresponding permutation
806
+ can be found with the from_sequence method:
807
+
808
+ >>> Permutation.from_sequence('SymPy')
809
+ Permutation([1, 3, 2, 0, 4])
810
+
811
+ Checking if a Permutation is contained in a Group
812
+ =================================================
813
+
814
+ Generally if you have a group of permutations G on n symbols, and
815
+ you're checking if a permutation on less than n symbols is part
816
+ of that group, the check will fail.
817
+
818
+ Here is an example for n=5 and we check if the cycle
819
+ (1,2,3) is in G:
820
+
821
+ >>> from sympy import init_printing
822
+ >>> init_printing(perm_cyclic=True, pretty_print=False)
823
+ >>> from sympy.combinatorics import Cycle, Permutation
824
+ >>> from sympy.combinatorics.perm_groups import PermutationGroup
825
+ >>> G = PermutationGroup(Cycle(2, 3)(4, 5), Cycle(1, 2, 3, 4, 5))
826
+ >>> p1 = Permutation(Cycle(2, 5, 3))
827
+ >>> p2 = Permutation(Cycle(1, 2, 3))
828
+ >>> a1 = Permutation(Cycle(1, 2, 3).list(6))
829
+ >>> a2 = Permutation(Cycle(1, 2, 3)(5))
830
+ >>> a3 = Permutation(Cycle(1, 2, 3),size=6)
831
+ >>> for p in [p1,p2,a1,a2,a3]: p, G.contains(p)
832
+ ((2 5 3), True)
833
+ ((1 2 3), False)
834
+ ((5)(1 2 3), True)
835
+ ((5)(1 2 3), True)
836
+ ((5)(1 2 3), True)
837
+
838
+ The check for p2 above will fail.
839
+
840
+ Checking if p1 is in G works because SymPy knows
841
+ G is a group on 5 symbols, and p1 is also on 5 symbols
842
+ (its largest element is 5).
843
+
844
+ For ``a1``, the ``.list(6)`` call will extend the permutation to 5
845
+ symbols, so the test will work as well. In the case of ``a2`` the
846
+ permutation is being extended to 5 symbols by using a singleton,
847
+ and in the case of ``a3`` it's extended through the constructor
848
+ argument ``size=6``.
849
+
850
+ There is another way to do this, which is to tell the ``contains``
851
+ method that the number of symbols the group is on does not need to
852
+ match perfectly the number of symbols for the permutation:
853
+
854
+ >>> G.contains(p2,strict=False)
855
+ True
856
+
857
+ This can be via the ``strict`` argument to the ``contains`` method,
858
+ and SymPy will try to extend the permutation on its own and then
859
+ perform the containment check.
860
+
861
+ See Also
862
+ ========
863
+
864
+ Cycle
865
+
866
+ References
867
+ ==========
868
+
869
+ .. [1] Skiena, S. 'Permutations.' 1.1 in Implementing Discrete Mathematics
870
+ Combinatorics and Graph Theory with Mathematica. Reading, MA:
871
+ Addison-Wesley, pp. 3-16, 1990.
872
+
873
+ .. [2] Knuth, D. E. The Art of Computer Programming, Vol. 4: Combinatorial
874
+ Algorithms, 1st ed. Reading, MA: Addison-Wesley, 2011.
875
+
876
+ .. [3] Wendy Myrvold and Frank Ruskey. 2001. Ranking and unranking
877
+ permutations in linear time. Inf. Process. Lett. 79, 6 (September 2001),
878
+ 281-284. DOI=10.1016/S0020-0190(01)00141-7
879
+
880
+ .. [4] D. L. Kreher, D. R. Stinson 'Combinatorial Algorithms'
881
+ CRC Press, 1999
882
+
883
+ .. [5] Graham, R. L.; Knuth, D. E.; and Patashnik, O.
884
+ Concrete Mathematics: A Foundation for Computer Science, 2nd ed.
885
+ Reading, MA: Addison-Wesley, 1994.
886
+
887
+ .. [6] https://en.wikipedia.org/w/index.php?oldid=499948155#Product_and_inverse
888
+
889
+ .. [7] https://en.wikipedia.org/wiki/Lehmer_code
890
+
891
+ """
892
+
893
+ is_Permutation = True
894
+
895
+ _array_form = None
896
+ _cyclic_form = None
897
+ _cycle_structure = None
898
+ _size = None
899
+ _rank = None
900
+
901
+ def __new__(cls, *args, size=None, **kwargs):
902
+ """
903
+ Constructor for the Permutation object from a list or a
904
+ list of lists in which all elements of the permutation may
905
+ appear only once.
906
+
907
+ Examples
908
+ ========
909
+
910
+ >>> from sympy.combinatorics import Permutation
911
+ >>> from sympy import init_printing
912
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
913
+
914
+ Permutations entered in array-form are left unaltered:
915
+
916
+ >>> Permutation([0, 2, 1])
917
+ Permutation([0, 2, 1])
918
+
919
+ Permutations entered in cyclic form are converted to array form;
920
+ singletons need not be entered, but can be entered to indicate the
921
+ largest element:
922
+
923
+ >>> Permutation([[4, 5, 6], [0, 1]])
924
+ Permutation([1, 0, 2, 3, 5, 6, 4])
925
+ >>> Permutation([[4, 5, 6], [0, 1], [19]])
926
+ Permutation([1, 0, 2, 3, 5, 6, 4], size=20)
927
+
928
+ All manipulation of permutations assumes that the smallest element
929
+ is 0 (in keeping with 0-based indexing in Python) so if the 0 is
930
+ missing when entering a permutation in array form, an error will be
931
+ raised:
932
+
933
+ >>> Permutation([2, 1])
934
+ Traceback (most recent call last):
935
+ ...
936
+ ValueError: Integers 0 through 2 must be present.
937
+
938
+ If a permutation is entered in cyclic form, it can be entered without
939
+ singletons and the ``size`` specified so those values can be filled
940
+ in, otherwise the array form will only extend to the maximum value
941
+ in the cycles:
942
+
943
+ >>> Permutation([[1, 4], [3, 5, 2]], size=10)
944
+ Permutation([0, 4, 3, 5, 1, 2], size=10)
945
+ >>> _.array_form
946
+ [0, 4, 3, 5, 1, 2, 6, 7, 8, 9]
947
+ """
948
+ if size is not None:
949
+ size = int(size)
950
+
951
+ #a) ()
952
+ #b) (1) = identity
953
+ #c) (1, 2) = cycle
954
+ #d) ([1, 2, 3]) = array form
955
+ #e) ([[1, 2]]) = cyclic form
956
+ #f) (Cycle) = conversion to permutation
957
+ #g) (Permutation) = adjust size or return copy
958
+ ok = True
959
+ if not args: # a
960
+ return cls._af_new(list(range(size or 0)))
961
+ elif len(args) > 1: # c
962
+ return cls._af_new(Cycle(*args).list(size))
963
+ if len(args) == 1:
964
+ a = args[0]
965
+ if isinstance(a, cls): # g
966
+ if size is None or size == a.size:
967
+ return a
968
+ return cls(a.array_form, size=size)
969
+ if isinstance(a, Cycle): # f
970
+ return cls._af_new(a.list(size))
971
+ if not is_sequence(a): # b
972
+ if size is not None and a + 1 > size:
973
+ raise ValueError('size is too small when max is %s' % a)
974
+ return cls._af_new(list(range(a + 1)))
975
+ if has_variety(is_sequence(ai) for ai in a):
976
+ ok = False
977
+ else:
978
+ ok = False
979
+ if not ok:
980
+ raise ValueError("Permutation argument must be a list of ints, "
981
+ "a list of lists, Permutation or Cycle.")
982
+
983
+ # safe to assume args are valid; this also makes a copy
984
+ # of the args
985
+ args = list(args[0])
986
+
987
+ is_cycle = args and is_sequence(args[0])
988
+ if is_cycle: # e
989
+ args = [[int(i) for i in c] for c in args]
990
+ else: # d
991
+ args = [int(i) for i in args]
992
+
993
+ # if there are n elements present, 0, 1, ..., n-1 should be present
994
+ # unless a cycle notation has been provided. A 0 will be added
995
+ # for convenience in case one wants to enter permutations where
996
+ # counting starts from 1.
997
+
998
+ temp = flatten(args)
999
+ if has_dups(temp) and not is_cycle:
1000
+ raise ValueError('there were repeated elements.')
1001
+ temp = set(temp)
1002
+
1003
+ if not is_cycle:
1004
+ if temp != set(range(len(temp))):
1005
+ raise ValueError('Integers 0 through %s must be present.' %
1006
+ max(temp))
1007
+ if size is not None and temp and max(temp) + 1 > size:
1008
+ raise ValueError('max element should not exceed %s' % (size - 1))
1009
+
1010
+ if is_cycle:
1011
+ # it's not necessarily canonical so we won't store
1012
+ # it -- use the array form instead
1013
+ c = Cycle()
1014
+ for ci in args:
1015
+ c = c(*ci)
1016
+ aform = c.list()
1017
+ else:
1018
+ aform = list(args)
1019
+ if size and size > len(aform):
1020
+ # don't allow for truncation of permutation which
1021
+ # might split a cycle and lead to an invalid aform
1022
+ # but do allow the permutation size to be increased
1023
+ aform.extend(list(range(len(aform), size)))
1024
+
1025
+ return cls._af_new(aform)
1026
+
1027
+ @classmethod
1028
+ def _af_new(cls, perm):
1029
+ """A method to produce a Permutation object from a list;
1030
+ the list is bound to the _array_form attribute, so it must
1031
+ not be modified; this method is meant for internal use only;
1032
+ the list ``a`` is supposed to be generated as a temporary value
1033
+ in a method, so p = Perm._af_new(a) is the only object
1034
+ to hold a reference to ``a``::
1035
+
1036
+ Examples
1037
+ ========
1038
+
1039
+ >>> from sympy.combinatorics.permutations import Perm
1040
+ >>> from sympy import init_printing
1041
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
1042
+ >>> a = [2, 1, 3, 0]
1043
+ >>> p = Perm._af_new(a)
1044
+ >>> p
1045
+ Permutation([2, 1, 3, 0])
1046
+
1047
+ """
1048
+ p = super().__new__(cls)
1049
+ p._array_form = perm
1050
+ p._size = len(perm)
1051
+ return p
1052
+
1053
+ def _hashable_content(self):
1054
+ # the array_form (a list) is the Permutation arg, so we need to
1055
+ # return a tuple, instead
1056
+ return tuple(self.array_form)
1057
+
1058
+ @property
1059
+ def array_form(self):
1060
+ """
1061
+ Return a copy of the attribute _array_form
1062
+ Examples
1063
+ ========
1064
+
1065
+ >>> from sympy.combinatorics import Permutation
1066
+ >>> p = Permutation([[2, 0], [3, 1]])
1067
+ >>> p.array_form
1068
+ [2, 3, 0, 1]
1069
+ >>> Permutation([[2, 0, 3, 1]]).array_form
1070
+ [3, 2, 0, 1]
1071
+ >>> Permutation([2, 0, 3, 1]).array_form
1072
+ [2, 0, 3, 1]
1073
+ >>> Permutation([[1, 2], [4, 5]]).array_form
1074
+ [0, 2, 1, 3, 5, 4]
1075
+ """
1076
+ return self._array_form[:]
1077
+
1078
+ def list(self, size=None):
1079
+ """Return the permutation as an explicit list, possibly
1080
+ trimming unmoved elements if size is less than the maximum
1081
+ element in the permutation; if this is desired, setting
1082
+ ``size=-1`` will guarantee such trimming.
1083
+
1084
+ Examples
1085
+ ========
1086
+
1087
+ >>> from sympy.combinatorics import Permutation
1088
+ >>> p = Permutation(2, 3)(4, 5)
1089
+ >>> p.list()
1090
+ [0, 1, 3, 2, 5, 4]
1091
+ >>> p.list(10)
1092
+ [0, 1, 3, 2, 5, 4, 6, 7, 8, 9]
1093
+
1094
+ Passing a length too small will trim trailing, unchanged elements
1095
+ in the permutation:
1096
+
1097
+ >>> Permutation(2, 4)(1, 2, 4).list(-1)
1098
+ [0, 2, 1]
1099
+ >>> Permutation(3).list(-1)
1100
+ []
1101
+ """
1102
+ if not self and size is None:
1103
+ raise ValueError('must give size for empty Cycle')
1104
+ rv = self.array_form
1105
+ if size is not None:
1106
+ if size > self.size:
1107
+ rv.extend(list(range(self.size, size)))
1108
+ else:
1109
+ # find first value from rhs where rv[i] != i
1110
+ i = self.size - 1
1111
+ while rv:
1112
+ if rv[-1] != i:
1113
+ break
1114
+ rv.pop()
1115
+ i -= 1
1116
+ return rv
1117
+
1118
+ @property
1119
+ def cyclic_form(self):
1120
+ """
1121
+ This is used to convert to the cyclic notation
1122
+ from the canonical notation. Singletons are omitted.
1123
+
1124
+ Examples
1125
+ ========
1126
+
1127
+ >>> from sympy.combinatorics import Permutation
1128
+ >>> p = Permutation([0, 3, 1, 2])
1129
+ >>> p.cyclic_form
1130
+ [[1, 3, 2]]
1131
+ >>> Permutation([1, 0, 2, 4, 3, 5]).cyclic_form
1132
+ [[0, 1], [3, 4]]
1133
+
1134
+ See Also
1135
+ ========
1136
+
1137
+ array_form, full_cyclic_form
1138
+ """
1139
+ if self._cyclic_form is not None:
1140
+ return list(self._cyclic_form)
1141
+ array_form = self.array_form
1142
+ unchecked = [True] * len(array_form)
1143
+ cyclic_form = []
1144
+ for i in range(len(array_form)):
1145
+ if unchecked[i]:
1146
+ cycle = []
1147
+ cycle.append(i)
1148
+ unchecked[i] = False
1149
+ j = i
1150
+ while unchecked[array_form[j]]:
1151
+ j = array_form[j]
1152
+ cycle.append(j)
1153
+ unchecked[j] = False
1154
+ if len(cycle) > 1:
1155
+ cyclic_form.append(cycle)
1156
+ assert cycle == list(minlex(cycle))
1157
+ cyclic_form.sort()
1158
+ self._cyclic_form = cyclic_form[:]
1159
+ return cyclic_form
1160
+
1161
+ @property
1162
+ def full_cyclic_form(self):
1163
+ """Return permutation in cyclic form including singletons.
1164
+
1165
+ Examples
1166
+ ========
1167
+
1168
+ >>> from sympy.combinatorics import Permutation
1169
+ >>> Permutation([0, 2, 1]).full_cyclic_form
1170
+ [[0], [1, 2]]
1171
+ """
1172
+ need = set(range(self.size)) - set(flatten(self.cyclic_form))
1173
+ rv = self.cyclic_form + [[i] for i in need]
1174
+ rv.sort()
1175
+ return rv
1176
+
1177
+ @property
1178
+ def size(self):
1179
+ """
1180
+ Returns the number of elements in the permutation.
1181
+
1182
+ Examples
1183
+ ========
1184
+
1185
+ >>> from sympy.combinatorics import Permutation
1186
+ >>> Permutation([[3, 2], [0, 1]]).size
1187
+ 4
1188
+
1189
+ See Also
1190
+ ========
1191
+
1192
+ cardinality, length, order, rank
1193
+ """
1194
+ return self._size
1195
+
1196
+ def support(self):
1197
+ """Return the elements in permutation, P, for which P[i] != i.
1198
+
1199
+ Examples
1200
+ ========
1201
+
1202
+ >>> from sympy.combinatorics import Permutation
1203
+ >>> p = Permutation([[3, 2], [0, 1], [4]])
1204
+ >>> p.array_form
1205
+ [1, 0, 3, 2, 4]
1206
+ >>> p.support()
1207
+ [0, 1, 2, 3]
1208
+ """
1209
+ a = self.array_form
1210
+ return [i for i, e in enumerate(a) if a[i] != i]
1211
+
1212
+ def __add__(self, other):
1213
+ """Return permutation that is other higher in rank than self.
1214
+
1215
+ The rank is the lexicographical rank, with the identity permutation
1216
+ having rank of 0.
1217
+
1218
+ Examples
1219
+ ========
1220
+
1221
+ >>> from sympy.combinatorics import Permutation
1222
+ >>> I = Permutation([0, 1, 2, 3])
1223
+ >>> a = Permutation([2, 1, 3, 0])
1224
+ >>> I + a.rank() == a
1225
+ True
1226
+
1227
+ See Also
1228
+ ========
1229
+
1230
+ __sub__, inversion_vector
1231
+
1232
+ """
1233
+ rank = (self.rank() + other) % self.cardinality
1234
+ rv = self.unrank_lex(self.size, rank)
1235
+ rv._rank = rank
1236
+ return rv
1237
+
1238
+ def __sub__(self, other):
1239
+ """Return the permutation that is other lower in rank than self.
1240
+
1241
+ See Also
1242
+ ========
1243
+
1244
+ __add__
1245
+ """
1246
+ return self.__add__(-other)
1247
+
1248
+ @staticmethod
1249
+ def rmul(*args):
1250
+ """
1251
+ Return product of Permutations [a, b, c, ...] as the Permutation whose
1252
+ ith value is a(b(c(i))).
1253
+
1254
+ a, b, c, ... can be Permutation objects or tuples.
1255
+
1256
+ Examples
1257
+ ========
1258
+
1259
+ >>> from sympy.combinatorics import Permutation
1260
+
1261
+ >>> a, b = [1, 0, 2], [0, 2, 1]
1262
+ >>> a = Permutation(a); b = Permutation(b)
1263
+ >>> list(Permutation.rmul(a, b))
1264
+ [1, 2, 0]
1265
+ >>> [a(b(i)) for i in range(3)]
1266
+ [1, 2, 0]
1267
+
1268
+ This handles the operands in reverse order compared to the ``*`` operator:
1269
+
1270
+ >>> a = Permutation(a); b = Permutation(b)
1271
+ >>> list(a*b)
1272
+ [2, 0, 1]
1273
+ >>> [b(a(i)) for i in range(3)]
1274
+ [2, 0, 1]
1275
+
1276
+ Notes
1277
+ =====
1278
+
1279
+ All items in the sequence will be parsed by Permutation as
1280
+ necessary as long as the first item is a Permutation:
1281
+
1282
+ >>> Permutation.rmul(a, [0, 2, 1]) == Permutation.rmul(a, b)
1283
+ True
1284
+
1285
+ The reverse order of arguments will raise a TypeError.
1286
+
1287
+ """
1288
+ rv = args[0]
1289
+ for i in range(1, len(args)):
1290
+ rv = args[i]*rv
1291
+ return rv
1292
+
1293
+ @classmethod
1294
+ def rmul_with_af(cls, *args):
1295
+ """
1296
+ same as rmul, but the elements of args are Permutation objects
1297
+ which have _array_form
1298
+ """
1299
+ a = [x._array_form for x in args]
1300
+ rv = cls._af_new(_af_rmuln(*a))
1301
+ return rv
1302
+
1303
+ def mul_inv(self, other):
1304
+ """
1305
+ other*~self, self and other have _array_form
1306
+ """
1307
+ a = _af_invert(self._array_form)
1308
+ b = other._array_form
1309
+ return self._af_new(_af_rmul(a, b))
1310
+
1311
+ def __rmul__(self, other):
1312
+ """This is needed to coerce other to Permutation in rmul."""
1313
+ cls = type(self)
1314
+ return cls(other)*self
1315
+
1316
+ def __mul__(self, other):
1317
+ """
1318
+ Return the product a*b as a Permutation; the ith value is b(a(i)).
1319
+
1320
+ Examples
1321
+ ========
1322
+
1323
+ >>> from sympy.combinatorics.permutations import _af_rmul, Permutation
1324
+
1325
+ >>> a, b = [1, 0, 2], [0, 2, 1]
1326
+ >>> a = Permutation(a); b = Permutation(b)
1327
+ >>> list(a*b)
1328
+ [2, 0, 1]
1329
+ >>> [b(a(i)) for i in range(3)]
1330
+ [2, 0, 1]
1331
+
1332
+ This handles operands in reverse order compared to _af_rmul and rmul:
1333
+
1334
+ >>> al = list(a); bl = list(b)
1335
+ >>> _af_rmul(al, bl)
1336
+ [1, 2, 0]
1337
+ >>> [al[bl[i]] for i in range(3)]
1338
+ [1, 2, 0]
1339
+
1340
+ It is acceptable for the arrays to have different lengths; the shorter
1341
+ one will be padded to match the longer one:
1342
+
1343
+ >>> from sympy import init_printing
1344
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
1345
+ >>> b*Permutation([1, 0])
1346
+ Permutation([1, 2, 0])
1347
+ >>> Permutation([1, 0])*b
1348
+ Permutation([2, 0, 1])
1349
+
1350
+ It is also acceptable to allow coercion to handle conversion of a
1351
+ single list to the left of a Permutation:
1352
+
1353
+ >>> [0, 1]*a # no change: 2-element identity
1354
+ Permutation([1, 0, 2])
1355
+ >>> [[0, 1]]*a # exchange first two elements
1356
+ Permutation([0, 1, 2])
1357
+
1358
+ You cannot use more than 1 cycle notation in a product of cycles
1359
+ since coercion can only handle one argument to the left. To handle
1360
+ multiple cycles it is convenient to use Cycle instead of Permutation:
1361
+
1362
+ >>> [[1, 2]]*[[2, 3]]*Permutation([]) # doctest: +SKIP
1363
+ >>> from sympy.combinatorics.permutations import Cycle
1364
+ >>> Cycle(1, 2)(2, 3)
1365
+ (1 3 2)
1366
+
1367
+ """
1368
+ from sympy.combinatorics.perm_groups import PermutationGroup, Coset
1369
+ if isinstance(other, PermutationGroup):
1370
+ return Coset(self, other, dir='-')
1371
+ a = self.array_form
1372
+ # __rmul__ makes sure the other is a Permutation
1373
+ b = other.array_form
1374
+ if not b:
1375
+ perm = a
1376
+ else:
1377
+ b.extend(list(range(len(b), len(a))))
1378
+ perm = [b[i] for i in a] + b[len(a):]
1379
+ return self._af_new(perm)
1380
+
1381
+ def commutes_with(self, other):
1382
+ """
1383
+ Checks if the elements are commuting.
1384
+
1385
+ Examples
1386
+ ========
1387
+
1388
+ >>> from sympy.combinatorics import Permutation
1389
+ >>> a = Permutation([1, 4, 3, 0, 2, 5])
1390
+ >>> b = Permutation([0, 1, 2, 3, 4, 5])
1391
+ >>> a.commutes_with(b)
1392
+ True
1393
+ >>> b = Permutation([2, 3, 5, 4, 1, 0])
1394
+ >>> a.commutes_with(b)
1395
+ False
1396
+ """
1397
+ a = self.array_form
1398
+ b = other.array_form
1399
+ return _af_commutes_with(a, b)
1400
+
1401
+ def __pow__(self, n):
1402
+ """
1403
+ Routine for finding powers of a permutation.
1404
+
1405
+ Examples
1406
+ ========
1407
+
1408
+ >>> from sympy.combinatorics import Permutation
1409
+ >>> from sympy import init_printing
1410
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
1411
+ >>> p = Permutation([2, 0, 3, 1])
1412
+ >>> p.order()
1413
+ 4
1414
+ >>> p**4
1415
+ Permutation([0, 1, 2, 3])
1416
+ """
1417
+ if isinstance(n, Permutation):
1418
+ raise NotImplementedError(
1419
+ 'p**p is not defined; do you mean p^p (conjugate)?')
1420
+ n = int(n)
1421
+ return self._af_new(_af_pow(self.array_form, n))
1422
+
1423
+ def __rxor__(self, i):
1424
+ """Return self(i) when ``i`` is an int.
1425
+
1426
+ Examples
1427
+ ========
1428
+
1429
+ >>> from sympy.combinatorics import Permutation
1430
+ >>> p = Permutation(1, 2, 9)
1431
+ >>> 2^p == p(2) == 9
1432
+ True
1433
+ """
1434
+ if int(i) == i:
1435
+ return self(i)
1436
+ else:
1437
+ raise NotImplementedError(
1438
+ "i^p = p(i) when i is an integer, not %s." % i)
1439
+
1440
+ def __xor__(self, h):
1441
+ """Return the conjugate permutation ``~h*self*h` `.
1442
+
1443
+ Explanation
1444
+ ===========
1445
+
1446
+ If ``a`` and ``b`` are conjugates, ``a = h*b*~h`` and
1447
+ ``b = ~h*a*h`` and both have the same cycle structure.
1448
+
1449
+ Examples
1450
+ ========
1451
+
1452
+ >>> from sympy.combinatorics import Permutation
1453
+ >>> p = Permutation(1, 2, 9)
1454
+ >>> q = Permutation(6, 9, 8)
1455
+ >>> p*q != q*p
1456
+ True
1457
+
1458
+ Calculate and check properties of the conjugate:
1459
+
1460
+ >>> c = p^q
1461
+ >>> c == ~q*p*q and p == q*c*~q
1462
+ True
1463
+
1464
+ The expression q^p^r is equivalent to q^(p*r):
1465
+
1466
+ >>> r = Permutation(9)(4, 6, 8)
1467
+ >>> q^p^r == q^(p*r)
1468
+ True
1469
+
1470
+ If the term to the left of the conjugate operator, i, is an integer
1471
+ then this is interpreted as selecting the ith element from the
1472
+ permutation to the right:
1473
+
1474
+ >>> all(i^p == p(i) for i in range(p.size))
1475
+ True
1476
+
1477
+ Note that the * operator as higher precedence than the ^ operator:
1478
+
1479
+ >>> q^r*p^r == q^(r*p)^r == Permutation(9)(1, 6, 4)
1480
+ True
1481
+
1482
+ Notes
1483
+ =====
1484
+
1485
+ In Python the precedence rule is p^q^r = (p^q)^r which differs
1486
+ in general from p^(q^r)
1487
+
1488
+ >>> q^p^r
1489
+ (9)(1 4 8)
1490
+ >>> q^(p^r)
1491
+ (9)(1 8 6)
1492
+
1493
+ For a given r and p, both of the following are conjugates of p:
1494
+ ~r*p*r and r*p*~r. But these are not necessarily the same:
1495
+
1496
+ >>> ~r*p*r == r*p*~r
1497
+ True
1498
+
1499
+ >>> p = Permutation(1, 2, 9)(5, 6)
1500
+ >>> ~r*p*r == r*p*~r
1501
+ False
1502
+
1503
+ The conjugate ~r*p*r was chosen so that ``p^q^r`` would be equivalent
1504
+ to ``p^(q*r)`` rather than ``p^(r*q)``. To obtain r*p*~r, pass ~r to
1505
+ this method:
1506
+
1507
+ >>> p^~r == r*p*~r
1508
+ True
1509
+ """
1510
+
1511
+ if self.size != h.size:
1512
+ raise ValueError("The permutations must be of equal size.")
1513
+ a = [None]*self.size
1514
+ h = h._array_form
1515
+ p = self._array_form
1516
+ for i in range(self.size):
1517
+ a[h[i]] = h[p[i]]
1518
+ return self._af_new(a)
1519
+
1520
+ def transpositions(self):
1521
+ """
1522
+ Return the permutation decomposed into a list of transpositions.
1523
+
1524
+ Explanation
1525
+ ===========
1526
+
1527
+ It is always possible to express a permutation as the product of
1528
+ transpositions, see [1]
1529
+
1530
+ Examples
1531
+ ========
1532
+
1533
+ >>> from sympy.combinatorics import Permutation
1534
+ >>> p = Permutation([[1, 2, 3], [0, 4, 5, 6, 7]])
1535
+ >>> t = p.transpositions()
1536
+ >>> t
1537
+ [(0, 7), (0, 6), (0, 5), (0, 4), (1, 3), (1, 2)]
1538
+ >>> print(''.join(str(c) for c in t))
1539
+ (0, 7)(0, 6)(0, 5)(0, 4)(1, 3)(1, 2)
1540
+ >>> Permutation.rmul(*[Permutation([ti], size=p.size) for ti in t]) == p
1541
+ True
1542
+
1543
+ References
1544
+ ==========
1545
+
1546
+ .. [1] https://en.wikipedia.org/wiki/Transposition_%28mathematics%29#Properties
1547
+
1548
+ """
1549
+ a = self.cyclic_form
1550
+ res = []
1551
+ for x in a:
1552
+ nx = len(x)
1553
+ if nx == 2:
1554
+ res.append(tuple(x))
1555
+ elif nx > 2:
1556
+ first = x[0]
1557
+ for y in x[nx - 1:0:-1]:
1558
+ res.append((first, y))
1559
+ return res
1560
+
1561
+ @classmethod
1562
+ def from_sequence(self, i, key=None):
1563
+ """Return the permutation needed to obtain ``i`` from the sorted
1564
+ elements of ``i``. If custom sorting is desired, a key can be given.
1565
+
1566
+ Examples
1567
+ ========
1568
+
1569
+ >>> from sympy.combinatorics import Permutation
1570
+
1571
+ >>> Permutation.from_sequence('SymPy')
1572
+ (4)(0 1 3)
1573
+ >>> _(sorted("SymPy"))
1574
+ ['S', 'y', 'm', 'P', 'y']
1575
+ >>> Permutation.from_sequence('SymPy', key=lambda x: x.lower())
1576
+ (4)(0 2)(1 3)
1577
+ """
1578
+ ic = list(zip(i, list(range(len(i)))))
1579
+ if key:
1580
+ ic.sort(key=lambda x: key(x[0]))
1581
+ else:
1582
+ ic.sort()
1583
+ return ~Permutation([i[1] for i in ic])
1584
+
1585
+ def __invert__(self):
1586
+ """
1587
+ Return the inverse of the permutation.
1588
+
1589
+ A permutation multiplied by its inverse is the identity permutation.
1590
+
1591
+ Examples
1592
+ ========
1593
+
1594
+ >>> from sympy.combinatorics import Permutation
1595
+ >>> from sympy import init_printing
1596
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
1597
+ >>> p = Permutation([[2, 0], [3, 1]])
1598
+ >>> ~p
1599
+ Permutation([2, 3, 0, 1])
1600
+ >>> _ == p**-1
1601
+ True
1602
+ >>> p*~p == ~p*p == Permutation([0, 1, 2, 3])
1603
+ True
1604
+ """
1605
+ return self._af_new(_af_invert(self._array_form))
1606
+
1607
+ def __iter__(self):
1608
+ """Yield elements from array form.
1609
+
1610
+ Examples
1611
+ ========
1612
+
1613
+ >>> from sympy.combinatorics import Permutation
1614
+ >>> list(Permutation(range(3)))
1615
+ [0, 1, 2]
1616
+ """
1617
+ yield from self.array_form
1618
+
1619
+ def __repr__(self):
1620
+ return srepr(self)
1621
+
1622
+ def __call__(self, *i):
1623
+ """
1624
+ Allows applying a permutation instance as a bijective function.
1625
+
1626
+ Examples
1627
+ ========
1628
+
1629
+ >>> from sympy.combinatorics import Permutation
1630
+ >>> p = Permutation([[2, 0], [3, 1]])
1631
+ >>> p.array_form
1632
+ [2, 3, 0, 1]
1633
+ >>> [p(i) for i in range(4)]
1634
+ [2, 3, 0, 1]
1635
+
1636
+ If an array is given then the permutation selects the items
1637
+ from the array (i.e. the permutation is applied to the array):
1638
+
1639
+ >>> from sympy.abc import x
1640
+ >>> p([x, 1, 0, x**2])
1641
+ [0, x**2, x, 1]
1642
+ """
1643
+ # list indices can be Integer or int; leave this
1644
+ # as it is (don't test or convert it) because this
1645
+ # gets called a lot and should be fast
1646
+ if len(i) == 1:
1647
+ i = i[0]
1648
+ if not isinstance(i, Iterable):
1649
+ i = as_int(i)
1650
+ if i < 0 or i > self.size:
1651
+ raise TypeError(
1652
+ "{} should be an integer between 0 and {}"
1653
+ .format(i, self.size-1))
1654
+ return self._array_form[i]
1655
+ # P([a, b, c])
1656
+ if len(i) != self.size:
1657
+ raise TypeError(
1658
+ "{} should have the length {}.".format(i, self.size))
1659
+ return [i[j] for j in self._array_form]
1660
+ # P(1, 2, 3)
1661
+ return self*Permutation(Cycle(*i), size=self.size)
1662
+
1663
+ def atoms(self):
1664
+ """
1665
+ Returns all the elements of a permutation
1666
+
1667
+ Examples
1668
+ ========
1669
+
1670
+ >>> from sympy.combinatorics import Permutation
1671
+ >>> Permutation([0, 1, 2, 3, 4, 5]).atoms()
1672
+ {0, 1, 2, 3, 4, 5}
1673
+ >>> Permutation([[0, 1], [2, 3], [4, 5]]).atoms()
1674
+ {0, 1, 2, 3, 4, 5}
1675
+ """
1676
+ return set(self.array_form)
1677
+
1678
+ def apply(self, i):
1679
+ r"""Apply the permutation to an expression.
1680
+
1681
+ Parameters
1682
+ ==========
1683
+
1684
+ i : Expr
1685
+ It should be an integer between $0$ and $n-1$ where $n$
1686
+ is the size of the permutation.
1687
+
1688
+ If it is a symbol or a symbolic expression that can
1689
+ have integer values, an ``AppliedPermutation`` object
1690
+ will be returned which can represent an unevaluated
1691
+ function.
1692
+
1693
+ Notes
1694
+ =====
1695
+
1696
+ Any permutation can be defined as a bijective function
1697
+ $\sigma : \{ 0, 1, \dots, n-1 \} \rightarrow \{ 0, 1, \dots, n-1 \}$
1698
+ where $n$ denotes the size of the permutation.
1699
+
1700
+ The definition may even be extended for any set with distinctive
1701
+ elements, such that the permutation can even be applied for
1702
+ real numbers or such, however, it is not implemented for now for
1703
+ computational reasons and the integrity with the group theory
1704
+ module.
1705
+
1706
+ This function is similar to the ``__call__`` magic, however,
1707
+ ``__call__`` magic already has some other applications like
1708
+ permuting an array or attaching new cycles, which would
1709
+ not always be mathematically consistent.
1710
+
1711
+ This also guarantees that the return type is a SymPy integer,
1712
+ which guarantees the safety to use assumptions.
1713
+ """
1714
+ i = _sympify(i)
1715
+ if i.is_integer is False:
1716
+ raise NotImplementedError("{} should be an integer.".format(i))
1717
+
1718
+ n = self.size
1719
+ if (i < 0) == True or (i >= n) == True:
1720
+ raise NotImplementedError(
1721
+ "{} should be an integer between 0 and {}".format(i, n-1))
1722
+
1723
+ if i.is_Integer:
1724
+ return Integer(self._array_form[i])
1725
+ return AppliedPermutation(self, i)
1726
+
1727
+ def next_lex(self):
1728
+ """
1729
+ Returns the next permutation in lexicographical order.
1730
+ If self is the last permutation in lexicographical order
1731
+ it returns None.
1732
+ See [4] section 2.4.
1733
+
1734
+
1735
+ Examples
1736
+ ========
1737
+
1738
+ >>> from sympy.combinatorics import Permutation
1739
+ >>> p = Permutation([2, 3, 1, 0])
1740
+ >>> p = Permutation([2, 3, 1, 0]); p.rank()
1741
+ 17
1742
+ >>> p = p.next_lex(); p.rank()
1743
+ 18
1744
+
1745
+ See Also
1746
+ ========
1747
+
1748
+ rank, unrank_lex
1749
+ """
1750
+ perm = self.array_form[:]
1751
+ n = len(perm)
1752
+ i = n - 2
1753
+ while perm[i + 1] < perm[i]:
1754
+ i -= 1
1755
+ if i == -1:
1756
+ return None
1757
+ else:
1758
+ j = n - 1
1759
+ while perm[j] < perm[i]:
1760
+ j -= 1
1761
+ perm[j], perm[i] = perm[i], perm[j]
1762
+ i += 1
1763
+ j = n - 1
1764
+ while i < j:
1765
+ perm[j], perm[i] = perm[i], perm[j]
1766
+ i += 1
1767
+ j -= 1
1768
+ return self._af_new(perm)
1769
+
1770
+ @classmethod
1771
+ def unrank_nonlex(self, n, r):
1772
+ """
1773
+ This is a linear time unranking algorithm that does not
1774
+ respect lexicographic order [3].
1775
+
1776
+ Examples
1777
+ ========
1778
+
1779
+ >>> from sympy.combinatorics import Permutation
1780
+ >>> from sympy import init_printing
1781
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
1782
+ >>> Permutation.unrank_nonlex(4, 5)
1783
+ Permutation([2, 0, 3, 1])
1784
+ >>> Permutation.unrank_nonlex(4, -1)
1785
+ Permutation([0, 1, 2, 3])
1786
+
1787
+ See Also
1788
+ ========
1789
+
1790
+ next_nonlex, rank_nonlex
1791
+ """
1792
+ def _unrank1(n, r, a):
1793
+ if n > 0:
1794
+ a[n - 1], a[r % n] = a[r % n], a[n - 1]
1795
+ _unrank1(n - 1, r//n, a)
1796
+
1797
+ id_perm = list(range(n))
1798
+ n = int(n)
1799
+ r = r % ifac(n)
1800
+ _unrank1(n, r, id_perm)
1801
+ return self._af_new(id_perm)
1802
+
1803
+ def rank_nonlex(self, inv_perm=None):
1804
+ """
1805
+ This is a linear time ranking algorithm that does not
1806
+ enforce lexicographic order [3].
1807
+
1808
+
1809
+ Examples
1810
+ ========
1811
+
1812
+ >>> from sympy.combinatorics import Permutation
1813
+ >>> p = Permutation([0, 1, 2, 3])
1814
+ >>> p.rank_nonlex()
1815
+ 23
1816
+
1817
+ See Also
1818
+ ========
1819
+
1820
+ next_nonlex, unrank_nonlex
1821
+ """
1822
+ def _rank1(n, perm, inv_perm):
1823
+ if n == 1:
1824
+ return 0
1825
+ s = perm[n - 1]
1826
+ t = inv_perm[n - 1]
1827
+ perm[n - 1], perm[t] = perm[t], s
1828
+ inv_perm[n - 1], inv_perm[s] = inv_perm[s], t
1829
+ return s + n*_rank1(n - 1, perm, inv_perm)
1830
+
1831
+ if inv_perm is None:
1832
+ inv_perm = (~self).array_form
1833
+ if not inv_perm:
1834
+ return 0
1835
+ perm = self.array_form[:]
1836
+ r = _rank1(len(perm), perm, inv_perm)
1837
+ return r
1838
+
1839
+ def next_nonlex(self):
1840
+ """
1841
+ Returns the next permutation in nonlex order [3].
1842
+ If self is the last permutation in this order it returns None.
1843
+
1844
+ Examples
1845
+ ========
1846
+
1847
+ >>> from sympy.combinatorics import Permutation
1848
+ >>> from sympy import init_printing
1849
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
1850
+ >>> p = Permutation([2, 0, 3, 1]); p.rank_nonlex()
1851
+ 5
1852
+ >>> p = p.next_nonlex(); p
1853
+ Permutation([3, 0, 1, 2])
1854
+ >>> p.rank_nonlex()
1855
+ 6
1856
+
1857
+ See Also
1858
+ ========
1859
+
1860
+ rank_nonlex, unrank_nonlex
1861
+ """
1862
+ r = self.rank_nonlex()
1863
+ if r == ifac(self.size) - 1:
1864
+ return None
1865
+ return self.unrank_nonlex(self.size, r + 1)
1866
+
1867
+ def rank(self):
1868
+ """
1869
+ Returns the lexicographic rank of the permutation.
1870
+
1871
+ Examples
1872
+ ========
1873
+
1874
+ >>> from sympy.combinatorics import Permutation
1875
+ >>> p = Permutation([0, 1, 2, 3])
1876
+ >>> p.rank()
1877
+ 0
1878
+ >>> p = Permutation([3, 2, 1, 0])
1879
+ >>> p.rank()
1880
+ 23
1881
+
1882
+ See Also
1883
+ ========
1884
+
1885
+ next_lex, unrank_lex, cardinality, length, order, size
1886
+ """
1887
+ if self._rank is not None:
1888
+ return self._rank
1889
+ rank = 0
1890
+ rho = self.array_form[:]
1891
+ n = self.size - 1
1892
+ size = n + 1
1893
+ psize = int(ifac(n))
1894
+ for j in range(size - 1):
1895
+ rank += rho[j]*psize
1896
+ for i in range(j + 1, size):
1897
+ if rho[i] > rho[j]:
1898
+ rho[i] -= 1
1899
+ psize //= n
1900
+ n -= 1
1901
+ self._rank = rank
1902
+ return rank
1903
+
1904
+ @property
1905
+ def cardinality(self):
1906
+ """
1907
+ Returns the number of all possible permutations.
1908
+
1909
+ Examples
1910
+ ========
1911
+
1912
+ >>> from sympy.combinatorics import Permutation
1913
+ >>> p = Permutation([0, 1, 2, 3])
1914
+ >>> p.cardinality
1915
+ 24
1916
+
1917
+ See Also
1918
+ ========
1919
+
1920
+ length, order, rank, size
1921
+ """
1922
+ return int(ifac(self.size))
1923
+
1924
+ def parity(self):
1925
+ """
1926
+ Computes the parity of a permutation.
1927
+
1928
+ Explanation
1929
+ ===========
1930
+
1931
+ The parity of a permutation reflects the parity of the
1932
+ number of inversions in the permutation, i.e., the
1933
+ number of pairs of x and y such that ``x > y`` but ``p[x] < p[y]``.
1934
+
1935
+ Examples
1936
+ ========
1937
+
1938
+ >>> from sympy.combinatorics import Permutation
1939
+ >>> p = Permutation([0, 1, 2, 3])
1940
+ >>> p.parity()
1941
+ 0
1942
+ >>> p = Permutation([3, 2, 0, 1])
1943
+ >>> p.parity()
1944
+ 1
1945
+
1946
+ See Also
1947
+ ========
1948
+
1949
+ _af_parity
1950
+ """
1951
+ if self._cyclic_form is not None:
1952
+ return (self.size - self.cycles) % 2
1953
+
1954
+ return _af_parity(self.array_form)
1955
+
1956
+ @property
1957
+ def is_even(self):
1958
+ """
1959
+ Checks if a permutation is even.
1960
+
1961
+ Examples
1962
+ ========
1963
+
1964
+ >>> from sympy.combinatorics import Permutation
1965
+ >>> p = Permutation([0, 1, 2, 3])
1966
+ >>> p.is_even
1967
+ True
1968
+ >>> p = Permutation([3, 2, 1, 0])
1969
+ >>> p.is_even
1970
+ True
1971
+
1972
+ See Also
1973
+ ========
1974
+
1975
+ is_odd
1976
+ """
1977
+ return not self.is_odd
1978
+
1979
+ @property
1980
+ def is_odd(self):
1981
+ """
1982
+ Checks if a permutation is odd.
1983
+
1984
+ Examples
1985
+ ========
1986
+
1987
+ >>> from sympy.combinatorics import Permutation
1988
+ >>> p = Permutation([0, 1, 2, 3])
1989
+ >>> p.is_odd
1990
+ False
1991
+ >>> p = Permutation([3, 2, 0, 1])
1992
+ >>> p.is_odd
1993
+ True
1994
+
1995
+ See Also
1996
+ ========
1997
+
1998
+ is_even
1999
+ """
2000
+ return bool(self.parity() % 2)
2001
+
2002
+ @property
2003
+ def is_Singleton(self):
2004
+ """
2005
+ Checks to see if the permutation contains only one number and is
2006
+ thus the only possible permutation of this set of numbers
2007
+
2008
+ Examples
2009
+ ========
2010
+
2011
+ >>> from sympy.combinatorics import Permutation
2012
+ >>> Permutation([0]).is_Singleton
2013
+ True
2014
+ >>> Permutation([0, 1]).is_Singleton
2015
+ False
2016
+
2017
+ See Also
2018
+ ========
2019
+
2020
+ is_Empty
2021
+ """
2022
+ return self.size == 1
2023
+
2024
+ @property
2025
+ def is_Empty(self):
2026
+ """
2027
+ Checks to see if the permutation is a set with zero elements
2028
+
2029
+ Examples
2030
+ ========
2031
+
2032
+ >>> from sympy.combinatorics import Permutation
2033
+ >>> Permutation([]).is_Empty
2034
+ True
2035
+ >>> Permutation([0]).is_Empty
2036
+ False
2037
+
2038
+ See Also
2039
+ ========
2040
+
2041
+ is_Singleton
2042
+ """
2043
+ return self.size == 0
2044
+
2045
+ @property
2046
+ def is_identity(self):
2047
+ return self.is_Identity
2048
+
2049
+ @property
2050
+ def is_Identity(self):
2051
+ """
2052
+ Returns True if the Permutation is an identity permutation.
2053
+
2054
+ Examples
2055
+ ========
2056
+
2057
+ >>> from sympy.combinatorics import Permutation
2058
+ >>> p = Permutation([])
2059
+ >>> p.is_Identity
2060
+ True
2061
+ >>> p = Permutation([[0], [1], [2]])
2062
+ >>> p.is_Identity
2063
+ True
2064
+ >>> p = Permutation([0, 1, 2])
2065
+ >>> p.is_Identity
2066
+ True
2067
+ >>> p = Permutation([0, 2, 1])
2068
+ >>> p.is_Identity
2069
+ False
2070
+
2071
+ See Also
2072
+ ========
2073
+
2074
+ order
2075
+ """
2076
+ af = self.array_form
2077
+ return not af or all(i == af[i] for i in range(self.size))
2078
+
2079
+ def ascents(self):
2080
+ """
2081
+ Returns the positions of ascents in a permutation, ie, the location
2082
+ where p[i] < p[i+1]
2083
+
2084
+ Examples
2085
+ ========
2086
+
2087
+ >>> from sympy.combinatorics import Permutation
2088
+ >>> p = Permutation([4, 0, 1, 3, 2])
2089
+ >>> p.ascents()
2090
+ [1, 2]
2091
+
2092
+ See Also
2093
+ ========
2094
+
2095
+ descents, inversions, min, max
2096
+ """
2097
+ a = self.array_form
2098
+ pos = [i for i in range(len(a) - 1) if a[i] < a[i + 1]]
2099
+ return pos
2100
+
2101
+ def descents(self):
2102
+ """
2103
+ Returns the positions of descents in a permutation, ie, the location
2104
+ where p[i] > p[i+1]
2105
+
2106
+ Examples
2107
+ ========
2108
+
2109
+ >>> from sympy.combinatorics import Permutation
2110
+ >>> p = Permutation([4, 0, 1, 3, 2])
2111
+ >>> p.descents()
2112
+ [0, 3]
2113
+
2114
+ See Also
2115
+ ========
2116
+
2117
+ ascents, inversions, min, max
2118
+ """
2119
+ a = self.array_form
2120
+ pos = [i for i in range(len(a) - 1) if a[i] > a[i + 1]]
2121
+ return pos
2122
+
2123
+ def max(self):
2124
+ """
2125
+ The maximum element moved by the permutation.
2126
+
2127
+ Examples
2128
+ ========
2129
+
2130
+ >>> from sympy.combinatorics import Permutation
2131
+ >>> p = Permutation([1, 0, 2, 3, 4])
2132
+ >>> p.max()
2133
+ 1
2134
+
2135
+ See Also
2136
+ ========
2137
+
2138
+ min, descents, ascents, inversions
2139
+ """
2140
+ max = 0
2141
+ a = self.array_form
2142
+ for i in range(len(a)):
2143
+ if a[i] != i and a[i] > max:
2144
+ max = a[i]
2145
+ return max
2146
+
2147
+ def min(self):
2148
+ """
2149
+ The minimum element moved by the permutation.
2150
+
2151
+ Examples
2152
+ ========
2153
+
2154
+ >>> from sympy.combinatorics import Permutation
2155
+ >>> p = Permutation([0, 1, 4, 3, 2])
2156
+ >>> p.min()
2157
+ 2
2158
+
2159
+ See Also
2160
+ ========
2161
+
2162
+ max, descents, ascents, inversions
2163
+ """
2164
+ a = self.array_form
2165
+ min = len(a)
2166
+ for i in range(len(a)):
2167
+ if a[i] != i and a[i] < min:
2168
+ min = a[i]
2169
+ return min
2170
+
2171
+ def inversions(self):
2172
+ """
2173
+ Computes the number of inversions of a permutation.
2174
+
2175
+ Explanation
2176
+ ===========
2177
+
2178
+ An inversion is where i > j but p[i] < p[j].
2179
+
2180
+ For small length of p, it iterates over all i and j
2181
+ values and calculates the number of inversions.
2182
+ For large length of p, it uses a variation of merge
2183
+ sort to calculate the number of inversions.
2184
+
2185
+ Examples
2186
+ ========
2187
+
2188
+ >>> from sympy.combinatorics import Permutation
2189
+ >>> p = Permutation([0, 1, 2, 3, 4, 5])
2190
+ >>> p.inversions()
2191
+ 0
2192
+ >>> Permutation([3, 2, 1, 0]).inversions()
2193
+ 6
2194
+
2195
+ See Also
2196
+ ========
2197
+
2198
+ descents, ascents, min, max
2199
+
2200
+ References
2201
+ ==========
2202
+
2203
+ .. [1] https://www.cp.eng.chula.ac.th/~prabhas//teaching/algo/algo2008/count-inv.htm
2204
+
2205
+ """
2206
+ inversions = 0
2207
+ a = self.array_form
2208
+ n = len(a)
2209
+ if n < 130:
2210
+ for i in range(n - 1):
2211
+ b = a[i]
2212
+ for c in a[i + 1:]:
2213
+ if b > c:
2214
+ inversions += 1
2215
+ else:
2216
+ k = 1
2217
+ right = 0
2218
+ arr = a[:]
2219
+ temp = a[:]
2220
+ while k < n:
2221
+ i = 0
2222
+ while i + k < n:
2223
+ right = i + k * 2 - 1
2224
+ if right >= n:
2225
+ right = n - 1
2226
+ inversions += _merge(arr, temp, i, i + k, right)
2227
+ i = i + k * 2
2228
+ k = k * 2
2229
+ return inversions
2230
+
2231
+ def commutator(self, x):
2232
+ """Return the commutator of ``self`` and ``x``: ``~x*~self*x*self``
2233
+
2234
+ If f and g are part of a group, G, then the commutator of f and g
2235
+ is the group identity iff f and g commute, i.e. fg == gf.
2236
+
2237
+ Examples
2238
+ ========
2239
+
2240
+ >>> from sympy.combinatorics import Permutation
2241
+ >>> from sympy import init_printing
2242
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
2243
+ >>> p = Permutation([0, 2, 3, 1])
2244
+ >>> x = Permutation([2, 0, 3, 1])
2245
+ >>> c = p.commutator(x); c
2246
+ Permutation([2, 1, 3, 0])
2247
+ >>> c == ~x*~p*x*p
2248
+ True
2249
+
2250
+ >>> I = Permutation(3)
2251
+ >>> p = [I + i for i in range(6)]
2252
+ >>> for i in range(len(p)):
2253
+ ... for j in range(len(p)):
2254
+ ... c = p[i].commutator(p[j])
2255
+ ... if p[i]*p[j] == p[j]*p[i]:
2256
+ ... assert c == I
2257
+ ... else:
2258
+ ... assert c != I
2259
+ ...
2260
+
2261
+ References
2262
+ ==========
2263
+
2264
+ .. [1] https://en.wikipedia.org/wiki/Commutator
2265
+ """
2266
+
2267
+ a = self.array_form
2268
+ b = x.array_form
2269
+ n = len(a)
2270
+ if len(b) != n:
2271
+ raise ValueError("The permutations must be of equal size.")
2272
+ inva = [None]*n
2273
+ for i in range(n):
2274
+ inva[a[i]] = i
2275
+ invb = [None]*n
2276
+ for i in range(n):
2277
+ invb[b[i]] = i
2278
+ return self._af_new([a[b[inva[i]]] for i in invb])
2279
+
2280
+ def signature(self):
2281
+ """
2282
+ Gives the signature of the permutation needed to place the
2283
+ elements of the permutation in canonical order.
2284
+
2285
+ The signature is calculated as (-1)^<number of inversions>
2286
+
2287
+ Examples
2288
+ ========
2289
+
2290
+ >>> from sympy.combinatorics import Permutation
2291
+ >>> p = Permutation([0, 1, 2])
2292
+ >>> p.inversions()
2293
+ 0
2294
+ >>> p.signature()
2295
+ 1
2296
+ >>> q = Permutation([0,2,1])
2297
+ >>> q.inversions()
2298
+ 1
2299
+ >>> q.signature()
2300
+ -1
2301
+
2302
+ See Also
2303
+ ========
2304
+
2305
+ inversions
2306
+ """
2307
+ if self.is_even:
2308
+ return 1
2309
+ return -1
2310
+
2311
+ def order(self):
2312
+ """
2313
+ Computes the order of a permutation.
2314
+
2315
+ When the permutation is raised to the power of its
2316
+ order it equals the identity permutation.
2317
+
2318
+ Examples
2319
+ ========
2320
+
2321
+ >>> from sympy.combinatorics import Permutation
2322
+ >>> from sympy import init_printing
2323
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
2324
+ >>> p = Permutation([3, 1, 5, 2, 4, 0])
2325
+ >>> p.order()
2326
+ 4
2327
+ >>> (p**(p.order()))
2328
+ Permutation([], size=6)
2329
+
2330
+ See Also
2331
+ ========
2332
+
2333
+ identity, cardinality, length, rank, size
2334
+ """
2335
+
2336
+ return reduce(lcm, [len(cycle) for cycle in self.cyclic_form], 1)
2337
+
2338
+ def length(self):
2339
+ """
2340
+ Returns the number of integers moved by a permutation.
2341
+
2342
+ Examples
2343
+ ========
2344
+
2345
+ >>> from sympy.combinatorics import Permutation
2346
+ >>> Permutation([0, 3, 2, 1]).length()
2347
+ 2
2348
+ >>> Permutation([[0, 1], [2, 3]]).length()
2349
+ 4
2350
+
2351
+ See Also
2352
+ ========
2353
+
2354
+ min, max, support, cardinality, order, rank, size
2355
+ """
2356
+
2357
+ return len(self.support())
2358
+
2359
+ @property
2360
+ def cycle_structure(self):
2361
+ """Return the cycle structure of the permutation as a dictionary
2362
+ indicating the multiplicity of each cycle length.
2363
+
2364
+ Examples
2365
+ ========
2366
+
2367
+ >>> from sympy.combinatorics import Permutation
2368
+ >>> Permutation(3).cycle_structure
2369
+ {1: 4}
2370
+ >>> Permutation(0, 4, 3)(1, 2)(5, 6).cycle_structure
2371
+ {2: 2, 3: 1}
2372
+ """
2373
+ if self._cycle_structure:
2374
+ rv = self._cycle_structure
2375
+ else:
2376
+ rv = defaultdict(int)
2377
+ singletons = self.size
2378
+ for c in self.cyclic_form:
2379
+ rv[len(c)] += 1
2380
+ singletons -= len(c)
2381
+ if singletons:
2382
+ rv[1] = singletons
2383
+ self._cycle_structure = rv
2384
+ return dict(rv) # make a copy
2385
+
2386
+ @property
2387
+ def cycles(self):
2388
+ """
2389
+ Returns the number of cycles contained in the permutation
2390
+ (including singletons).
2391
+
2392
+ Examples
2393
+ ========
2394
+
2395
+ >>> from sympy.combinatorics import Permutation
2396
+ >>> Permutation([0, 1, 2]).cycles
2397
+ 3
2398
+ >>> Permutation([0, 1, 2]).full_cyclic_form
2399
+ [[0], [1], [2]]
2400
+ >>> Permutation(0, 1)(2, 3).cycles
2401
+ 2
2402
+
2403
+ See Also
2404
+ ========
2405
+ sympy.functions.combinatorial.numbers.stirling
2406
+ """
2407
+ return len(self.full_cyclic_form)
2408
+
2409
+ def index(self):
2410
+ """
2411
+ Returns the index of a permutation.
2412
+
2413
+ The index of a permutation is the sum of all subscripts j such
2414
+ that p[j] is greater than p[j+1].
2415
+
2416
+ Examples
2417
+ ========
2418
+
2419
+ >>> from sympy.combinatorics import Permutation
2420
+ >>> p = Permutation([3, 0, 2, 1, 4])
2421
+ >>> p.index()
2422
+ 2
2423
+ """
2424
+ a = self.array_form
2425
+
2426
+ return sum([j for j in range(len(a) - 1) if a[j] > a[j + 1]])
2427
+
2428
+ def runs(self):
2429
+ """
2430
+ Returns the runs of a permutation.
2431
+
2432
+ An ascending sequence in a permutation is called a run [5].
2433
+
2434
+
2435
+ Examples
2436
+ ========
2437
+
2438
+ >>> from sympy.combinatorics import Permutation
2439
+ >>> p = Permutation([2, 5, 7, 3, 6, 0, 1, 4, 8])
2440
+ >>> p.runs()
2441
+ [[2, 5, 7], [3, 6], [0, 1, 4, 8]]
2442
+ >>> q = Permutation([1,3,2,0])
2443
+ >>> q.runs()
2444
+ [[1, 3], [2], [0]]
2445
+ """
2446
+ return runs(self.array_form)
2447
+
2448
+ def inversion_vector(self):
2449
+ """Return the inversion vector of the permutation.
2450
+
2451
+ The inversion vector consists of elements whose value
2452
+ indicates the number of elements in the permutation
2453
+ that are lesser than it and lie on its right hand side.
2454
+
2455
+ The inversion vector is the same as the Lehmer encoding of a
2456
+ permutation.
2457
+
2458
+ Examples
2459
+ ========
2460
+
2461
+ >>> from sympy.combinatorics import Permutation
2462
+ >>> p = Permutation([4, 8, 0, 7, 1, 5, 3, 6, 2])
2463
+ >>> p.inversion_vector()
2464
+ [4, 7, 0, 5, 0, 2, 1, 1]
2465
+ >>> p = Permutation([3, 2, 1, 0])
2466
+ >>> p.inversion_vector()
2467
+ [3, 2, 1]
2468
+
2469
+ The inversion vector increases lexicographically with the rank
2470
+ of the permutation, the -ith element cycling through 0..i.
2471
+
2472
+ >>> p = Permutation(2)
2473
+ >>> while p:
2474
+ ... print('%s %s %s' % (p, p.inversion_vector(), p.rank()))
2475
+ ... p = p.next_lex()
2476
+ (2) [0, 0] 0
2477
+ (1 2) [0, 1] 1
2478
+ (2)(0 1) [1, 0] 2
2479
+ (0 1 2) [1, 1] 3
2480
+ (0 2 1) [2, 0] 4
2481
+ (0 2) [2, 1] 5
2482
+
2483
+ See Also
2484
+ ========
2485
+
2486
+ from_inversion_vector
2487
+ """
2488
+ self_array_form = self.array_form
2489
+ n = len(self_array_form)
2490
+ inversion_vector = [0] * (n - 1)
2491
+
2492
+ for i in range(n - 1):
2493
+ val = 0
2494
+ for j in range(i + 1, n):
2495
+ if self_array_form[j] < self_array_form[i]:
2496
+ val += 1
2497
+ inversion_vector[i] = val
2498
+ return inversion_vector
2499
+
2500
+ def rank_trotterjohnson(self):
2501
+ """
2502
+ Returns the Trotter Johnson rank, which we get from the minimal
2503
+ change algorithm. See [4] section 2.4.
2504
+
2505
+ Examples
2506
+ ========
2507
+
2508
+ >>> from sympy.combinatorics import Permutation
2509
+ >>> p = Permutation([0, 1, 2, 3])
2510
+ >>> p.rank_trotterjohnson()
2511
+ 0
2512
+ >>> p = Permutation([0, 2, 1, 3])
2513
+ >>> p.rank_trotterjohnson()
2514
+ 7
2515
+
2516
+ See Also
2517
+ ========
2518
+
2519
+ unrank_trotterjohnson, next_trotterjohnson
2520
+ """
2521
+ if self.array_form == [] or self.is_Identity:
2522
+ return 0
2523
+ if self.array_form == [1, 0]:
2524
+ return 1
2525
+ perm = self.array_form
2526
+ n = self.size
2527
+ rank = 0
2528
+ for j in range(1, n):
2529
+ k = 1
2530
+ i = 0
2531
+ while perm[i] != j:
2532
+ if perm[i] < j:
2533
+ k += 1
2534
+ i += 1
2535
+ j1 = j + 1
2536
+ if rank % 2 == 0:
2537
+ rank = j1*rank + j1 - k
2538
+ else:
2539
+ rank = j1*rank + k - 1
2540
+ return rank
2541
+
2542
+ @classmethod
2543
+ def unrank_trotterjohnson(cls, size, rank):
2544
+ """
2545
+ Trotter Johnson permutation unranking. See [4] section 2.4.
2546
+
2547
+ Examples
2548
+ ========
2549
+
2550
+ >>> from sympy.combinatorics import Permutation
2551
+ >>> from sympy import init_printing
2552
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
2553
+ >>> Permutation.unrank_trotterjohnson(5, 10)
2554
+ Permutation([0, 3, 1, 2, 4])
2555
+
2556
+ See Also
2557
+ ========
2558
+
2559
+ rank_trotterjohnson, next_trotterjohnson
2560
+ """
2561
+ perm = [0]*size
2562
+ r2 = 0
2563
+ n = ifac(size)
2564
+ pj = 1
2565
+ for j in range(2, size + 1):
2566
+ pj *= j
2567
+ r1 = (rank * pj) // n
2568
+ k = r1 - j*r2
2569
+ if r2 % 2 == 0:
2570
+ for i in range(j - 1, j - k - 1, -1):
2571
+ perm[i] = perm[i - 1]
2572
+ perm[j - k - 1] = j - 1
2573
+ else:
2574
+ for i in range(j - 1, k, -1):
2575
+ perm[i] = perm[i - 1]
2576
+ perm[k] = j - 1
2577
+ r2 = r1
2578
+ return cls._af_new(perm)
2579
+
2580
+ def next_trotterjohnson(self):
2581
+ """
2582
+ Returns the next permutation in Trotter-Johnson order.
2583
+ If self is the last permutation it returns None.
2584
+ See [4] section 2.4. If it is desired to generate all such
2585
+ permutations, they can be generated in order more quickly
2586
+ with the ``generate_bell`` function.
2587
+
2588
+ Examples
2589
+ ========
2590
+
2591
+ >>> from sympy.combinatorics import Permutation
2592
+ >>> from sympy import init_printing
2593
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
2594
+ >>> p = Permutation([3, 0, 2, 1])
2595
+ >>> p.rank_trotterjohnson()
2596
+ 4
2597
+ >>> p = p.next_trotterjohnson(); p
2598
+ Permutation([0, 3, 2, 1])
2599
+ >>> p.rank_trotterjohnson()
2600
+ 5
2601
+
2602
+ See Also
2603
+ ========
2604
+
2605
+ rank_trotterjohnson, unrank_trotterjohnson, sympy.utilities.iterables.generate_bell
2606
+ """
2607
+ pi = self.array_form[:]
2608
+ n = len(pi)
2609
+ st = 0
2610
+ rho = pi[:]
2611
+ done = False
2612
+ m = n-1
2613
+ while m > 0 and not done:
2614
+ d = rho.index(m)
2615
+ for i in range(d, m):
2616
+ rho[i] = rho[i + 1]
2617
+ par = _af_parity(rho[:m])
2618
+ if par == 1:
2619
+ if d == m:
2620
+ m -= 1
2621
+ else:
2622
+ pi[st + d], pi[st + d + 1] = pi[st + d + 1], pi[st + d]
2623
+ done = True
2624
+ else:
2625
+ if d == 0:
2626
+ m -= 1
2627
+ st += 1
2628
+ else:
2629
+ pi[st + d], pi[st + d - 1] = pi[st + d - 1], pi[st + d]
2630
+ done = True
2631
+ if m == 0:
2632
+ return None
2633
+ return self._af_new(pi)
2634
+
2635
+ def get_precedence_matrix(self):
2636
+ """
2637
+ Gets the precedence matrix. This is used for computing the
2638
+ distance between two permutations.
2639
+
2640
+ Examples
2641
+ ========
2642
+
2643
+ >>> from sympy.combinatorics import Permutation
2644
+ >>> from sympy import init_printing
2645
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
2646
+ >>> p = Permutation.josephus(3, 6, 1)
2647
+ >>> p
2648
+ Permutation([2, 5, 3, 1, 4, 0])
2649
+ >>> p.get_precedence_matrix()
2650
+ Matrix([
2651
+ [0, 0, 0, 0, 0, 0],
2652
+ [1, 0, 0, 0, 1, 0],
2653
+ [1, 1, 0, 1, 1, 1],
2654
+ [1, 1, 0, 0, 1, 0],
2655
+ [1, 0, 0, 0, 0, 0],
2656
+ [1, 1, 0, 1, 1, 0]])
2657
+
2658
+ See Also
2659
+ ========
2660
+
2661
+ get_precedence_distance, get_adjacency_matrix, get_adjacency_distance
2662
+ """
2663
+ m = zeros(self.size)
2664
+ perm = self.array_form
2665
+ for i in range(m.rows):
2666
+ for j in range(i + 1, m.cols):
2667
+ m[perm[i], perm[j]] = 1
2668
+ return m
2669
+
2670
+ def get_precedence_distance(self, other):
2671
+ """
2672
+ Computes the precedence distance between two permutations.
2673
+
2674
+ Explanation
2675
+ ===========
2676
+
2677
+ Suppose p and p' represent n jobs. The precedence metric
2678
+ counts the number of times a job j is preceded by job i
2679
+ in both p and p'. This metric is commutative.
2680
+
2681
+ Examples
2682
+ ========
2683
+
2684
+ >>> from sympy.combinatorics import Permutation
2685
+ >>> p = Permutation([2, 0, 4, 3, 1])
2686
+ >>> q = Permutation([3, 1, 2, 4, 0])
2687
+ >>> p.get_precedence_distance(q)
2688
+ 7
2689
+ >>> q.get_precedence_distance(p)
2690
+ 7
2691
+
2692
+ See Also
2693
+ ========
2694
+
2695
+ get_precedence_matrix, get_adjacency_matrix, get_adjacency_distance
2696
+ """
2697
+ if self.size != other.size:
2698
+ raise ValueError("The permutations must be of equal size.")
2699
+ self_prec_mat = self.get_precedence_matrix()
2700
+ other_prec_mat = other.get_precedence_matrix()
2701
+ n_prec = 0
2702
+ for i in range(self.size):
2703
+ for j in range(self.size):
2704
+ if i == j:
2705
+ continue
2706
+ if self_prec_mat[i, j] * other_prec_mat[i, j] == 1:
2707
+ n_prec += 1
2708
+ d = self.size * (self.size - 1)//2 - n_prec
2709
+ return d
2710
+
2711
+ def get_adjacency_matrix(self):
2712
+ """
2713
+ Computes the adjacency matrix of a permutation.
2714
+
2715
+ Explanation
2716
+ ===========
2717
+
2718
+ If job i is adjacent to job j in a permutation p
2719
+ then we set m[i, j] = 1 where m is the adjacency
2720
+ matrix of p.
2721
+
2722
+ Examples
2723
+ ========
2724
+
2725
+ >>> from sympy.combinatorics import Permutation
2726
+ >>> p = Permutation.josephus(3, 6, 1)
2727
+ >>> p.get_adjacency_matrix()
2728
+ Matrix([
2729
+ [0, 0, 0, 0, 0, 0],
2730
+ [0, 0, 0, 0, 1, 0],
2731
+ [0, 0, 0, 0, 0, 1],
2732
+ [0, 1, 0, 0, 0, 0],
2733
+ [1, 0, 0, 0, 0, 0],
2734
+ [0, 0, 0, 1, 0, 0]])
2735
+ >>> q = Permutation([0, 1, 2, 3])
2736
+ >>> q.get_adjacency_matrix()
2737
+ Matrix([
2738
+ [0, 1, 0, 0],
2739
+ [0, 0, 1, 0],
2740
+ [0, 0, 0, 1],
2741
+ [0, 0, 0, 0]])
2742
+
2743
+ See Also
2744
+ ========
2745
+
2746
+ get_precedence_matrix, get_precedence_distance, get_adjacency_distance
2747
+ """
2748
+ m = zeros(self.size)
2749
+ perm = self.array_form
2750
+ for i in range(self.size - 1):
2751
+ m[perm[i], perm[i + 1]] = 1
2752
+ return m
2753
+
2754
+ def get_adjacency_distance(self, other):
2755
+ """
2756
+ Computes the adjacency distance between two permutations.
2757
+
2758
+ Explanation
2759
+ ===========
2760
+
2761
+ This metric counts the number of times a pair i,j of jobs is
2762
+ adjacent in both p and p'. If n_adj is this quantity then
2763
+ the adjacency distance is n - n_adj - 1 [1]
2764
+
2765
+ [1] Reeves, Colin R. Landscapes, Operators and Heuristic search, Annals
2766
+ of Operational Research, 86, pp 473-490. (1999)
2767
+
2768
+
2769
+ Examples
2770
+ ========
2771
+
2772
+ >>> from sympy.combinatorics import Permutation
2773
+ >>> p = Permutation([0, 3, 1, 2, 4])
2774
+ >>> q = Permutation.josephus(4, 5, 2)
2775
+ >>> p.get_adjacency_distance(q)
2776
+ 3
2777
+ >>> r = Permutation([0, 2, 1, 4, 3])
2778
+ >>> p.get_adjacency_distance(r)
2779
+ 4
2780
+
2781
+ See Also
2782
+ ========
2783
+
2784
+ get_precedence_matrix, get_precedence_distance, get_adjacency_matrix
2785
+ """
2786
+ if self.size != other.size:
2787
+ raise ValueError("The permutations must be of the same size.")
2788
+ self_adj_mat = self.get_adjacency_matrix()
2789
+ other_adj_mat = other.get_adjacency_matrix()
2790
+ n_adj = 0
2791
+ for i in range(self.size):
2792
+ for j in range(self.size):
2793
+ if i == j:
2794
+ continue
2795
+ if self_adj_mat[i, j] * other_adj_mat[i, j] == 1:
2796
+ n_adj += 1
2797
+ d = self.size - n_adj - 1
2798
+ return d
2799
+
2800
+ def get_positional_distance(self, other):
2801
+ """
2802
+ Computes the positional distance between two permutations.
2803
+
2804
+ Examples
2805
+ ========
2806
+
2807
+ >>> from sympy.combinatorics import Permutation
2808
+ >>> p = Permutation([0, 3, 1, 2, 4])
2809
+ >>> q = Permutation.josephus(4, 5, 2)
2810
+ >>> r = Permutation([3, 1, 4, 0, 2])
2811
+ >>> p.get_positional_distance(q)
2812
+ 12
2813
+ >>> p.get_positional_distance(r)
2814
+ 12
2815
+
2816
+ See Also
2817
+ ========
2818
+
2819
+ get_precedence_distance, get_adjacency_distance
2820
+ """
2821
+ a = self.array_form
2822
+ b = other.array_form
2823
+ if len(a) != len(b):
2824
+ raise ValueError("The permutations must be of the same size.")
2825
+ return sum([abs(a[i] - b[i]) for i in range(len(a))])
2826
+
2827
+ @classmethod
2828
+ def josephus(cls, m, n, s=1):
2829
+ """Return as a permutation the shuffling of range(n) using the Josephus
2830
+ scheme in which every m-th item is selected until all have been chosen.
2831
+ The returned permutation has elements listed by the order in which they
2832
+ were selected.
2833
+
2834
+ The parameter ``s`` stops the selection process when there are ``s``
2835
+ items remaining and these are selected by continuing the selection,
2836
+ counting by 1 rather than by ``m``.
2837
+
2838
+ Consider selecting every 3rd item from 6 until only 2 remain::
2839
+
2840
+ choices chosen
2841
+ ======== ======
2842
+ 012345
2843
+ 01 345 2
2844
+ 01 34 25
2845
+ 01 4 253
2846
+ 0 4 2531
2847
+ 0 25314
2848
+ 253140
2849
+
2850
+ Examples
2851
+ ========
2852
+
2853
+ >>> from sympy.combinatorics import Permutation
2854
+ >>> Permutation.josephus(3, 6, 2).array_form
2855
+ [2, 5, 3, 1, 4, 0]
2856
+
2857
+ References
2858
+ ==========
2859
+
2860
+ .. [1] https://en.wikipedia.org/wiki/Flavius_Josephus
2861
+ .. [2] https://en.wikipedia.org/wiki/Josephus_problem
2862
+ .. [3] https://web.archive.org/web/20171008094331/http://www.wou.edu/~burtonl/josephus.html
2863
+
2864
+ """
2865
+ from collections import deque
2866
+ m -= 1
2867
+ Q = deque(list(range(n)))
2868
+ perm = []
2869
+ while len(Q) > max(s, 1):
2870
+ for dp in range(m):
2871
+ Q.append(Q.popleft())
2872
+ perm.append(Q.popleft())
2873
+ perm.extend(list(Q))
2874
+ return cls(perm)
2875
+
2876
+ @classmethod
2877
+ def from_inversion_vector(cls, inversion):
2878
+ """
2879
+ Calculates the permutation from the inversion vector.
2880
+
2881
+ Examples
2882
+ ========
2883
+
2884
+ >>> from sympy.combinatorics import Permutation
2885
+ >>> from sympy import init_printing
2886
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
2887
+ >>> Permutation.from_inversion_vector([3, 2, 1, 0, 0])
2888
+ Permutation([3, 2, 1, 0, 4, 5])
2889
+
2890
+ """
2891
+ size = len(inversion)
2892
+ N = list(range(size + 1))
2893
+ perm = []
2894
+ try:
2895
+ for k in range(size):
2896
+ val = N[inversion[k]]
2897
+ perm.append(val)
2898
+ N.remove(val)
2899
+ except IndexError:
2900
+ raise ValueError("The inversion vector is not valid.")
2901
+ perm.extend(N)
2902
+ return cls._af_new(perm)
2903
+
2904
+ @classmethod
2905
+ def random(cls, n):
2906
+ """
2907
+ Generates a random permutation of length ``n``.
2908
+
2909
+ Uses the underlying Python pseudo-random number generator.
2910
+
2911
+ Examples
2912
+ ========
2913
+
2914
+ >>> from sympy.combinatorics import Permutation
2915
+ >>> Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1]))
2916
+ True
2917
+
2918
+ """
2919
+ perm_array = list(range(n))
2920
+ random.shuffle(perm_array)
2921
+ return cls._af_new(perm_array)
2922
+
2923
+ @classmethod
2924
+ def unrank_lex(cls, size, rank):
2925
+ """
2926
+ Lexicographic permutation unranking.
2927
+
2928
+ Examples
2929
+ ========
2930
+
2931
+ >>> from sympy.combinatorics import Permutation
2932
+ >>> from sympy import init_printing
2933
+ >>> init_printing(perm_cyclic=False, pretty_print=False)
2934
+ >>> a = Permutation.unrank_lex(5, 10)
2935
+ >>> a.rank()
2936
+ 10
2937
+ >>> a
2938
+ Permutation([0, 2, 4, 1, 3])
2939
+
2940
+ See Also
2941
+ ========
2942
+
2943
+ rank, next_lex
2944
+ """
2945
+ perm_array = [0] * size
2946
+ psize = 1
2947
+ for i in range(size):
2948
+ new_psize = psize*(i + 1)
2949
+ d = (rank % new_psize) // psize
2950
+ rank -= d*psize
2951
+ perm_array[size - i - 1] = d
2952
+ for j in range(size - i, size):
2953
+ if perm_array[j] > d - 1:
2954
+ perm_array[j] += 1
2955
+ psize = new_psize
2956
+ return cls._af_new(perm_array)
2957
+
2958
+ def resize(self, n):
2959
+ """Resize the permutation to the new size ``n``.
2960
+
2961
+ Parameters
2962
+ ==========
2963
+
2964
+ n : int
2965
+ The new size of the permutation.
2966
+
2967
+ Raises
2968
+ ======
2969
+
2970
+ ValueError
2971
+ If the permutation cannot be resized to the given size.
2972
+ This may only happen when resized to a smaller size than
2973
+ the original.
2974
+
2975
+ Examples
2976
+ ========
2977
+
2978
+ >>> from sympy.combinatorics import Permutation
2979
+
2980
+ Increasing the size of a permutation:
2981
+
2982
+ >>> p = Permutation(0, 1, 2)
2983
+ >>> p = p.resize(5)
2984
+ >>> p
2985
+ (4)(0 1 2)
2986
+
2987
+ Decreasing the size of the permutation:
2988
+
2989
+ >>> p = p.resize(4)
2990
+ >>> p
2991
+ (3)(0 1 2)
2992
+
2993
+ If resizing to the specific size breaks the cycles:
2994
+
2995
+ >>> p.resize(2)
2996
+ Traceback (most recent call last):
2997
+ ...
2998
+ ValueError: The permutation cannot be resized to 2 because the
2999
+ cycle (0, 1, 2) may break.
3000
+ """
3001
+ aform = self.array_form
3002
+ l = len(aform)
3003
+ if n > l:
3004
+ aform += list(range(l, n))
3005
+ return Permutation._af_new(aform)
3006
+
3007
+ elif n < l:
3008
+ cyclic_form = self.full_cyclic_form
3009
+ new_cyclic_form = []
3010
+ for cycle in cyclic_form:
3011
+ cycle_min = min(cycle)
3012
+ cycle_max = max(cycle)
3013
+ if cycle_min <= n-1:
3014
+ if cycle_max > n-1:
3015
+ raise ValueError(
3016
+ "The permutation cannot be resized to {} "
3017
+ "because the cycle {} may break."
3018
+ .format(n, tuple(cycle)))
3019
+
3020
+ new_cyclic_form.append(cycle)
3021
+ return Permutation(new_cyclic_form)
3022
+
3023
+ return self
3024
+
3025
+ # XXX Deprecated flag
3026
+ print_cyclic = None
3027
+
3028
+
3029
+ def _merge(arr, temp, left, mid, right):
3030
+ """
3031
+ Merges two sorted arrays and calculates the inversion count.
3032
+
3033
+ Helper function for calculating inversions. This method is
3034
+ for internal use only.
3035
+ """
3036
+ i = k = left
3037
+ j = mid
3038
+ inv_count = 0
3039
+ while i < mid and j <= right:
3040
+ if arr[i] < arr[j]:
3041
+ temp[k] = arr[i]
3042
+ k += 1
3043
+ i += 1
3044
+ else:
3045
+ temp[k] = arr[j]
3046
+ k += 1
3047
+ j += 1
3048
+ inv_count += (mid -i)
3049
+ while i < mid:
3050
+ temp[k] = arr[i]
3051
+ k += 1
3052
+ i += 1
3053
+ if j <= right:
3054
+ k += right - j + 1
3055
+ j += right - j + 1
3056
+ arr[left:k + 1] = temp[left:k + 1]
3057
+ else:
3058
+ arr[left:right + 1] = temp[left:right + 1]
3059
+ return inv_count
3060
+
3061
+ Perm = Permutation
3062
+ _af_new = Perm._af_new
3063
+
3064
+
3065
+ class AppliedPermutation(Expr):
3066
+ """A permutation applied to a symbolic variable.
3067
+
3068
+ Parameters
3069
+ ==========
3070
+
3071
+ perm : Permutation
3072
+ x : Expr
3073
+
3074
+ Examples
3075
+ ========
3076
+
3077
+ >>> from sympy import Symbol
3078
+ >>> from sympy.combinatorics import Permutation
3079
+
3080
+ Creating a symbolic permutation function application:
3081
+
3082
+ >>> x = Symbol('x')
3083
+ >>> p = Permutation(0, 1, 2)
3084
+ >>> p.apply(x)
3085
+ AppliedPermutation((0 1 2), x)
3086
+ >>> _.subs(x, 1)
3087
+ 2
3088
+ """
3089
+ def __new__(cls, perm, x, evaluate=None):
3090
+ if evaluate is None:
3091
+ evaluate = global_parameters.evaluate
3092
+
3093
+ perm = _sympify(perm)
3094
+ x = _sympify(x)
3095
+
3096
+ if not isinstance(perm, Permutation):
3097
+ raise ValueError("{} must be a Permutation instance."
3098
+ .format(perm))
3099
+
3100
+ if evaluate:
3101
+ if x.is_Integer:
3102
+ return perm.apply(x)
3103
+
3104
+ obj = super().__new__(cls, perm, x)
3105
+ return obj
3106
+
3107
+
3108
+ @dispatch(Permutation, Permutation)
3109
+ def _eval_is_eq(lhs, rhs):
3110
+ if lhs._size != rhs._size:
3111
+ return None
3112
+ return lhs._array_form == rhs._array_form
venv/lib/python3.10/site-packages/sympy/combinatorics/polyhedron.py ADDED
@@ -0,0 +1,1019 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics import Permutation as Perm
2
+ from sympy.combinatorics.perm_groups import PermutationGroup
3
+ from sympy.core import Basic, Tuple, default_sort_key
4
+ from sympy.sets import FiniteSet
5
+ from sympy.utilities.iterables import (minlex, unflatten, flatten)
6
+ from sympy.utilities.misc import as_int
7
+
8
+ rmul = Perm.rmul
9
+
10
+
11
+ class Polyhedron(Basic):
12
+ """
13
+ Represents the polyhedral symmetry group (PSG).
14
+
15
+ Explanation
16
+ ===========
17
+
18
+ The PSG is one of the symmetry groups of the Platonic solids.
19
+ There are three polyhedral groups: the tetrahedral group
20
+ of order 12, the octahedral group of order 24, and the
21
+ icosahedral group of order 60.
22
+
23
+ All doctests have been given in the docstring of the
24
+ constructor of the object.
25
+
26
+ References
27
+ ==========
28
+
29
+ .. [1] https://mathworld.wolfram.com/PolyhedralGroup.html
30
+
31
+ """
32
+ _edges = None
33
+
34
+ def __new__(cls, corners, faces=(), pgroup=()):
35
+ """
36
+ The constructor of the Polyhedron group object.
37
+
38
+ Explanation
39
+ ===========
40
+
41
+ It takes up to three parameters: the corners, faces, and
42
+ allowed transformations.
43
+
44
+ The corners/vertices are entered as a list of arbitrary
45
+ expressions that are used to identify each vertex.
46
+
47
+ The faces are entered as a list of tuples of indices; a tuple
48
+ of indices identifies the vertices which define the face. They
49
+ should be entered in a cw or ccw order; they will be standardized
50
+ by reversal and rotation to be give the lowest lexical ordering.
51
+ If no faces are given then no edges will be computed.
52
+
53
+ >>> from sympy.combinatorics.polyhedron import Polyhedron
54
+ >>> Polyhedron(list('abc'), [(1, 2, 0)]).faces
55
+ {(0, 1, 2)}
56
+ >>> Polyhedron(list('abc'), [(1, 0, 2)]).faces
57
+ {(0, 1, 2)}
58
+
59
+ The allowed transformations are entered as allowable permutations
60
+ of the vertices for the polyhedron. Instance of Permutations
61
+ (as with faces) should refer to the supplied vertices by index.
62
+ These permutation are stored as a PermutationGroup.
63
+
64
+ Examples
65
+ ========
66
+
67
+ >>> from sympy.combinatorics.permutations import Permutation
68
+ >>> from sympy import init_printing
69
+ >>> from sympy.abc import w, x, y, z
70
+ >>> init_printing(pretty_print=False, perm_cyclic=False)
71
+
72
+ Here we construct the Polyhedron object for a tetrahedron.
73
+
74
+ >>> corners = [w, x, y, z]
75
+ >>> faces = [(0, 1, 2), (0, 2, 3), (0, 3, 1), (1, 2, 3)]
76
+
77
+ Next, allowed transformations of the polyhedron must be given. This
78
+ is given as permutations of vertices.
79
+
80
+ Although the vertices of a tetrahedron can be numbered in 24 (4!)
81
+ different ways, there are only 12 different orientations for a
82
+ physical tetrahedron. The following permutations, applied once or
83
+ twice, will generate all 12 of the orientations. (The identity
84
+ permutation, Permutation(range(4)), is not included since it does
85
+ not change the orientation of the vertices.)
86
+
87
+ >>> pgroup = [Permutation([[0, 1, 2], [3]]), \
88
+ Permutation([[0, 1, 3], [2]]), \
89
+ Permutation([[0, 2, 3], [1]]), \
90
+ Permutation([[1, 2, 3], [0]]), \
91
+ Permutation([[0, 1], [2, 3]]), \
92
+ Permutation([[0, 2], [1, 3]]), \
93
+ Permutation([[0, 3], [1, 2]])]
94
+
95
+ The Polyhedron is now constructed and demonstrated:
96
+
97
+ >>> tetra = Polyhedron(corners, faces, pgroup)
98
+ >>> tetra.size
99
+ 4
100
+ >>> tetra.edges
101
+ {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}
102
+ >>> tetra.corners
103
+ (w, x, y, z)
104
+
105
+ It can be rotated with an arbitrary permutation of vertices, e.g.
106
+ the following permutation is not in the pgroup:
107
+
108
+ >>> tetra.rotate(Permutation([0, 1, 3, 2]))
109
+ >>> tetra.corners
110
+ (w, x, z, y)
111
+
112
+ An allowed permutation of the vertices can be constructed by
113
+ repeatedly applying permutations from the pgroup to the vertices.
114
+ Here is a demonstration that applying p and p**2 for every p in
115
+ pgroup generates all the orientations of a tetrahedron and no others:
116
+
117
+ >>> all = ( (w, x, y, z), \
118
+ (x, y, w, z), \
119
+ (y, w, x, z), \
120
+ (w, z, x, y), \
121
+ (z, w, y, x), \
122
+ (w, y, z, x), \
123
+ (y, z, w, x), \
124
+ (x, z, y, w), \
125
+ (z, y, x, w), \
126
+ (y, x, z, w), \
127
+ (x, w, z, y), \
128
+ (z, x, w, y) )
129
+
130
+ >>> got = []
131
+ >>> for p in (pgroup + [p**2 for p in pgroup]):
132
+ ... h = Polyhedron(corners)
133
+ ... h.rotate(p)
134
+ ... got.append(h.corners)
135
+ ...
136
+ >>> set(got) == set(all)
137
+ True
138
+
139
+ The make_perm method of a PermutationGroup will randomly pick
140
+ permutations, multiply them together, and return the permutation that
141
+ can be applied to the polyhedron to give the orientation produced
142
+ by those individual permutations.
143
+
144
+ Here, 3 permutations are used:
145
+
146
+ >>> tetra.pgroup.make_perm(3) # doctest: +SKIP
147
+ Permutation([0, 3, 1, 2])
148
+
149
+ To select the permutations that should be used, supply a list
150
+ of indices to the permutations in pgroup in the order they should
151
+ be applied:
152
+
153
+ >>> use = [0, 0, 2]
154
+ >>> p002 = tetra.pgroup.make_perm(3, use)
155
+ >>> p002
156
+ Permutation([1, 0, 3, 2])
157
+
158
+
159
+ Apply them one at a time:
160
+
161
+ >>> tetra.reset()
162
+ >>> for i in use:
163
+ ... tetra.rotate(pgroup[i])
164
+ ...
165
+ >>> tetra.vertices
166
+ (x, w, z, y)
167
+ >>> sequentially = tetra.vertices
168
+
169
+ Apply the composite permutation:
170
+
171
+ >>> tetra.reset()
172
+ >>> tetra.rotate(p002)
173
+ >>> tetra.corners
174
+ (x, w, z, y)
175
+ >>> tetra.corners in all and tetra.corners == sequentially
176
+ True
177
+
178
+ Notes
179
+ =====
180
+
181
+ Defining permutation groups
182
+ ---------------------------
183
+
184
+ It is not necessary to enter any permutations, nor is necessary to
185
+ enter a complete set of transformations. In fact, for a polyhedron,
186
+ all configurations can be constructed from just two permutations.
187
+ For example, the orientations of a tetrahedron can be generated from
188
+ an axis passing through a vertex and face and another axis passing
189
+ through a different vertex or from an axis passing through the
190
+ midpoints of two edges opposite of each other.
191
+
192
+ For simplicity of presentation, consider a square --
193
+ not a cube -- with vertices 1, 2, 3, and 4:
194
+
195
+ 1-----2 We could think of axes of rotation being:
196
+ | | 1) through the face
197
+ | | 2) from midpoint 1-2 to 3-4 or 1-3 to 2-4
198
+ 3-----4 3) lines 1-4 or 2-3
199
+
200
+
201
+ To determine how to write the permutations, imagine 4 cameras,
202
+ one at each corner, labeled A-D:
203
+
204
+ A B A B
205
+ 1-----2 1-----3 vertex index:
206
+ | | | | 1 0
207
+ | | | | 2 1
208
+ 3-----4 2-----4 3 2
209
+ C D C D 4 3
210
+
211
+ original after rotation
212
+ along 1-4
213
+
214
+ A diagonal and a face axis will be chosen for the "permutation group"
215
+ from which any orientation can be constructed.
216
+
217
+ >>> pgroup = []
218
+
219
+ Imagine a clockwise rotation when viewing 1-4 from camera A. The new
220
+ orientation is (in camera-order): 1, 3, 2, 4 so the permutation is
221
+ given using the *indices* of the vertices as:
222
+
223
+ >>> pgroup.append(Permutation((0, 2, 1, 3)))
224
+
225
+ Now imagine rotating clockwise when looking down an axis entering the
226
+ center of the square as viewed. The new camera-order would be
227
+ 3, 1, 4, 2 so the permutation is (using indices):
228
+
229
+ >>> pgroup.append(Permutation((2, 0, 3, 1)))
230
+
231
+ The square can now be constructed:
232
+ ** use real-world labels for the vertices, entering them in
233
+ camera order
234
+ ** for the faces we use zero-based indices of the vertices
235
+ in *edge-order* as the face is traversed; neither the
236
+ direction nor the starting point matter -- the faces are
237
+ only used to define edges (if so desired).
238
+
239
+ >>> square = Polyhedron((1, 2, 3, 4), [(0, 1, 3, 2)], pgroup)
240
+
241
+ To rotate the square with a single permutation we can do:
242
+
243
+ >>> square.rotate(square.pgroup[0])
244
+ >>> square.corners
245
+ (1, 3, 2, 4)
246
+
247
+ To use more than one permutation (or to use one permutation more
248
+ than once) it is more convenient to use the make_perm method:
249
+
250
+ >>> p011 = square.pgroup.make_perm([0, 1, 1]) # diag flip + 2 rotations
251
+ >>> square.reset() # return to initial orientation
252
+ >>> square.rotate(p011)
253
+ >>> square.corners
254
+ (4, 2, 3, 1)
255
+
256
+ Thinking outside the box
257
+ ------------------------
258
+
259
+ Although the Polyhedron object has a direct physical meaning, it
260
+ actually has broader application. In the most general sense it is
261
+ just a decorated PermutationGroup, allowing one to connect the
262
+ permutations to something physical. For example, a Rubik's cube is
263
+ not a proper polyhedron, but the Polyhedron class can be used to
264
+ represent it in a way that helps to visualize the Rubik's cube.
265
+
266
+ >>> from sympy import flatten, unflatten, symbols
267
+ >>> from sympy.combinatorics import RubikGroup
268
+ >>> facelets = flatten([symbols(s+'1:5') for s in 'UFRBLD'])
269
+ >>> def show():
270
+ ... pairs = unflatten(r2.corners, 2)
271
+ ... print(pairs[::2])
272
+ ... print(pairs[1::2])
273
+ ...
274
+ >>> r2 = Polyhedron(facelets, pgroup=RubikGroup(2))
275
+ >>> show()
276
+ [(U1, U2), (F1, F2), (R1, R2), (B1, B2), (L1, L2), (D1, D2)]
277
+ [(U3, U4), (F3, F4), (R3, R4), (B3, B4), (L3, L4), (D3, D4)]
278
+ >>> r2.rotate(0) # cw rotation of F
279
+ >>> show()
280
+ [(U1, U2), (F3, F1), (U3, R2), (B1, B2), (L1, D1), (R3, R1)]
281
+ [(L4, L2), (F4, F2), (U4, R4), (B3, B4), (L3, D2), (D3, D4)]
282
+
283
+ Predefined Polyhedra
284
+ ====================
285
+
286
+ For convenience, the vertices and faces are defined for the following
287
+ standard solids along with a permutation group for transformations.
288
+ When the polyhedron is oriented as indicated below, the vertices in
289
+ a given horizontal plane are numbered in ccw direction, starting from
290
+ the vertex that will give the lowest indices in a given face. (In the
291
+ net of the vertices, indices preceded by "-" indicate replication of
292
+ the lhs index in the net.)
293
+
294
+ tetrahedron, tetrahedron_faces
295
+ ------------------------------
296
+
297
+ 4 vertices (vertex up) net:
298
+
299
+ 0 0-0
300
+ 1 2 3-1
301
+
302
+ 4 faces:
303
+
304
+ (0, 1, 2) (0, 2, 3) (0, 3, 1) (1, 2, 3)
305
+
306
+ cube, cube_faces
307
+ ----------------
308
+
309
+ 8 vertices (face up) net:
310
+
311
+ 0 1 2 3-0
312
+ 4 5 6 7-4
313
+
314
+ 6 faces:
315
+
316
+ (0, 1, 2, 3)
317
+ (0, 1, 5, 4) (1, 2, 6, 5) (2, 3, 7, 6) (0, 3, 7, 4)
318
+ (4, 5, 6, 7)
319
+
320
+ octahedron, octahedron_faces
321
+ ----------------------------
322
+
323
+ 6 vertices (vertex up) net:
324
+
325
+ 0 0 0-0
326
+ 1 2 3 4-1
327
+ 5 5 5-5
328
+
329
+ 8 faces:
330
+
331
+ (0, 1, 2) (0, 2, 3) (0, 3, 4) (0, 1, 4)
332
+ (1, 2, 5) (2, 3, 5) (3, 4, 5) (1, 4, 5)
333
+
334
+ dodecahedron, dodecahedron_faces
335
+ --------------------------------
336
+
337
+ 20 vertices (vertex up) net:
338
+
339
+ 0 1 2 3 4 -0
340
+ 5 6 7 8 9 -5
341
+ 14 10 11 12 13-14
342
+ 15 16 17 18 19-15
343
+
344
+ 12 faces:
345
+
346
+ (0, 1, 2, 3, 4) (0, 1, 6, 10, 5) (1, 2, 7, 11, 6)
347
+ (2, 3, 8, 12, 7) (3, 4, 9, 13, 8) (0, 4, 9, 14, 5)
348
+ (5, 10, 16, 15, 14) (6, 10, 16, 17, 11) (7, 11, 17, 18, 12)
349
+ (8, 12, 18, 19, 13) (9, 13, 19, 15, 14)(15, 16, 17, 18, 19)
350
+
351
+ icosahedron, icosahedron_faces
352
+ ------------------------------
353
+
354
+ 12 vertices (face up) net:
355
+
356
+ 0 0 0 0 -0
357
+ 1 2 3 4 5 -1
358
+ 6 7 8 9 10 -6
359
+ 11 11 11 11 -11
360
+
361
+ 20 faces:
362
+
363
+ (0, 1, 2) (0, 2, 3) (0, 3, 4)
364
+ (0, 4, 5) (0, 1, 5) (1, 2, 6)
365
+ (2, 3, 7) (3, 4, 8) (4, 5, 9)
366
+ (1, 5, 10) (2, 6, 7) (3, 7, 8)
367
+ (4, 8, 9) (5, 9, 10) (1, 6, 10)
368
+ (6, 7, 11) (7, 8, 11) (8, 9, 11)
369
+ (9, 10, 11) (6, 10, 11)
370
+
371
+ >>> from sympy.combinatorics.polyhedron import cube
372
+ >>> cube.edges
373
+ {(0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (2, 3), (2, 6), (3, 7), (4, 5), (4, 7), (5, 6), (6, 7)}
374
+
375
+ If you want to use letters or other names for the corners you
376
+ can still use the pre-calculated faces:
377
+
378
+ >>> corners = list('abcdefgh')
379
+ >>> Polyhedron(corners, cube.faces).corners
380
+ (a, b, c, d, e, f, g, h)
381
+
382
+ References
383
+ ==========
384
+
385
+ .. [1] www.ocf.berkeley.edu/~wwu/articles/platonicsolids.pdf
386
+
387
+ """
388
+ faces = [minlex(f, directed=False, key=default_sort_key) for f in faces]
389
+ corners, faces, pgroup = args = \
390
+ [Tuple(*a) for a in (corners, faces, pgroup)]
391
+ obj = Basic.__new__(cls, *args)
392
+ obj._corners = tuple(corners) # in order given
393
+ obj._faces = FiniteSet(*faces)
394
+ if pgroup and pgroup[0].size != len(corners):
395
+ raise ValueError("Permutation size unequal to number of corners.")
396
+ # use the identity permutation if none are given
397
+ obj._pgroup = PermutationGroup(
398
+ pgroup or [Perm(range(len(corners)))] )
399
+ return obj
400
+
401
+ @property
402
+ def corners(self):
403
+ """
404
+ Get the corners of the Polyhedron.
405
+
406
+ The method ``vertices`` is an alias for ``corners``.
407
+
408
+ Examples
409
+ ========
410
+
411
+ >>> from sympy.combinatorics import Polyhedron
412
+ >>> from sympy.abc import a, b, c, d
413
+ >>> p = Polyhedron(list('abcd'))
414
+ >>> p.corners == p.vertices == (a, b, c, d)
415
+ True
416
+
417
+ See Also
418
+ ========
419
+
420
+ array_form, cyclic_form
421
+ """
422
+ return self._corners
423
+ vertices = corners
424
+
425
+ @property
426
+ def array_form(self):
427
+ """Return the indices of the corners.
428
+
429
+ The indices are given relative to the original position of corners.
430
+
431
+ Examples
432
+ ========
433
+
434
+ >>> from sympy.combinatorics.polyhedron import tetrahedron
435
+ >>> tetrahedron = tetrahedron.copy()
436
+ >>> tetrahedron.array_form
437
+ [0, 1, 2, 3]
438
+
439
+ >>> tetrahedron.rotate(0)
440
+ >>> tetrahedron.array_form
441
+ [0, 2, 3, 1]
442
+ >>> tetrahedron.pgroup[0].array_form
443
+ [0, 2, 3, 1]
444
+
445
+ See Also
446
+ ========
447
+
448
+ corners, cyclic_form
449
+ """
450
+ corners = list(self.args[0])
451
+ return [corners.index(c) for c in self.corners]
452
+
453
+ @property
454
+ def cyclic_form(self):
455
+ """Return the indices of the corners in cyclic notation.
456
+
457
+ The indices are given relative to the original position of corners.
458
+
459
+ See Also
460
+ ========
461
+
462
+ corners, array_form
463
+ """
464
+ return Perm._af_new(self.array_form).cyclic_form
465
+
466
+ @property
467
+ def size(self):
468
+ """
469
+ Get the number of corners of the Polyhedron.
470
+ """
471
+ return len(self._corners)
472
+
473
+ @property
474
+ def faces(self):
475
+ """
476
+ Get the faces of the Polyhedron.
477
+ """
478
+ return self._faces
479
+
480
+ @property
481
+ def pgroup(self):
482
+ """
483
+ Get the permutations of the Polyhedron.
484
+ """
485
+ return self._pgroup
486
+
487
+ @property
488
+ def edges(self):
489
+ """
490
+ Given the faces of the polyhedra we can get the edges.
491
+
492
+ Examples
493
+ ========
494
+
495
+ >>> from sympy.combinatorics import Polyhedron
496
+ >>> from sympy.abc import a, b, c
497
+ >>> corners = (a, b, c)
498
+ >>> faces = [(0, 1, 2)]
499
+ >>> Polyhedron(corners, faces).edges
500
+ {(0, 1), (0, 2), (1, 2)}
501
+
502
+ """
503
+ if self._edges is None:
504
+ output = set()
505
+ for face in self.faces:
506
+ for i in range(len(face)):
507
+ edge = tuple(sorted([face[i], face[i - 1]]))
508
+ output.add(edge)
509
+ self._edges = FiniteSet(*output)
510
+ return self._edges
511
+
512
+ def rotate(self, perm):
513
+ """
514
+ Apply a permutation to the polyhedron *in place*. The permutation
515
+ may be given as a Permutation instance or an integer indicating
516
+ which permutation from pgroup of the Polyhedron should be
517
+ applied.
518
+
519
+ This is an operation that is analogous to rotation about
520
+ an axis by a fixed increment.
521
+
522
+ Notes
523
+ =====
524
+
525
+ When a Permutation is applied, no check is done to see if that
526
+ is a valid permutation for the Polyhedron. For example, a cube
527
+ could be given a permutation which effectively swaps only 2
528
+ vertices. A valid permutation (that rotates the object in a
529
+ physical way) will be obtained if one only uses
530
+ permutations from the ``pgroup`` of the Polyhedron. On the other
531
+ hand, allowing arbitrary rotations (applications of permutations)
532
+ gives a way to follow named elements rather than indices since
533
+ Polyhedron allows vertices to be named while Permutation works
534
+ only with indices.
535
+
536
+ Examples
537
+ ========
538
+
539
+ >>> from sympy.combinatorics import Polyhedron, Permutation
540
+ >>> from sympy.combinatorics.polyhedron import cube
541
+ >>> cube = cube.copy()
542
+ >>> cube.corners
543
+ (0, 1, 2, 3, 4, 5, 6, 7)
544
+ >>> cube.rotate(0)
545
+ >>> cube.corners
546
+ (1, 2, 3, 0, 5, 6, 7, 4)
547
+
548
+ A non-physical "rotation" that is not prohibited by this method:
549
+
550
+ >>> cube.reset()
551
+ >>> cube.rotate(Permutation([[1, 2]], size=8))
552
+ >>> cube.corners
553
+ (0, 2, 1, 3, 4, 5, 6, 7)
554
+
555
+ Polyhedron can be used to follow elements of set that are
556
+ identified by letters instead of integers:
557
+
558
+ >>> shadow = h5 = Polyhedron(list('abcde'))
559
+ >>> p = Permutation([3, 0, 1, 2, 4])
560
+ >>> h5.rotate(p)
561
+ >>> h5.corners
562
+ (d, a, b, c, e)
563
+ >>> _ == shadow.corners
564
+ True
565
+ >>> copy = h5.copy()
566
+ >>> h5.rotate(p)
567
+ >>> h5.corners == copy.corners
568
+ False
569
+ """
570
+ if not isinstance(perm, Perm):
571
+ perm = self.pgroup[perm]
572
+ # and we know it's valid
573
+ else:
574
+ if perm.size != self.size:
575
+ raise ValueError('Polyhedron and Permutation sizes differ.')
576
+ a = perm.array_form
577
+ corners = [self.corners[a[i]] for i in range(len(self.corners))]
578
+ self._corners = tuple(corners)
579
+
580
+ def reset(self):
581
+ """Return corners to their original positions.
582
+
583
+ Examples
584
+ ========
585
+
586
+ >>> from sympy.combinatorics.polyhedron import tetrahedron as T
587
+ >>> T = T.copy()
588
+ >>> T.corners
589
+ (0, 1, 2, 3)
590
+ >>> T.rotate(0)
591
+ >>> T.corners
592
+ (0, 2, 3, 1)
593
+ >>> T.reset()
594
+ >>> T.corners
595
+ (0, 1, 2, 3)
596
+ """
597
+ self._corners = self.args[0]
598
+
599
+
600
+ def _pgroup_calcs():
601
+ """Return the permutation groups for each of the polyhedra and the face
602
+ definitions: tetrahedron, cube, octahedron, dodecahedron, icosahedron,
603
+ tetrahedron_faces, cube_faces, octahedron_faces, dodecahedron_faces,
604
+ icosahedron_faces
605
+
606
+ Explanation
607
+ ===========
608
+
609
+ (This author did not find and did not know of a better way to do it though
610
+ there likely is such a way.)
611
+
612
+ Although only 2 permutations are needed for a polyhedron in order to
613
+ generate all the possible orientations, a group of permutations is
614
+ provided instead. A set of permutations is called a "group" if::
615
+
616
+ a*b = c (for any pair of permutations in the group, a and b, their
617
+ product, c, is in the group)
618
+
619
+ a*(b*c) = (a*b)*c (for any 3 permutations in the group associativity holds)
620
+
621
+ there is an identity permutation, I, such that I*a = a*I for all elements
622
+ in the group
623
+
624
+ a*b = I (the inverse of each permutation is also in the group)
625
+
626
+ None of the polyhedron groups defined follow these definitions of a group.
627
+ Instead, they are selected to contain those permutations whose powers
628
+ alone will construct all orientations of the polyhedron, i.e. for
629
+ permutations ``a``, ``b``, etc... in the group, ``a, a**2, ..., a**o_a``,
630
+ ``b, b**2, ..., b**o_b``, etc... (where ``o_i`` is the order of
631
+ permutation ``i``) generate all permutations of the polyhedron instead of
632
+ mixed products like ``a*b``, ``a*b**2``, etc....
633
+
634
+ Note that for a polyhedron with n vertices, the valid permutations of the
635
+ vertices exclude those that do not maintain its faces. e.g. the
636
+ permutation BCDE of a square's four corners, ABCD, is a valid
637
+ permutation while CBDE is not (because this would twist the square).
638
+
639
+ Examples
640
+ ========
641
+
642
+ The is_group checks for: closure, the presence of the Identity permutation,
643
+ and the presence of the inverse for each of the elements in the group. This
644
+ confirms that none of the polyhedra are true groups:
645
+
646
+ >>> from sympy.combinatorics.polyhedron import (
647
+ ... tetrahedron, cube, octahedron, dodecahedron, icosahedron)
648
+ ...
649
+ >>> polyhedra = (tetrahedron, cube, octahedron, dodecahedron, icosahedron)
650
+ >>> [h.pgroup.is_group for h in polyhedra]
651
+ ...
652
+ [True, True, True, True, True]
653
+
654
+ Although tests in polyhedron's test suite check that powers of the
655
+ permutations in the groups generate all permutations of the vertices
656
+ of the polyhedron, here we also demonstrate the powers of the given
657
+ permutations create a complete group for the tetrahedron:
658
+
659
+ >>> from sympy.combinatorics import Permutation, PermutationGroup
660
+ >>> for h in polyhedra[:1]:
661
+ ... G = h.pgroup
662
+ ... perms = set()
663
+ ... for g in G:
664
+ ... for e in range(g.order()):
665
+ ... p = tuple((g**e).array_form)
666
+ ... perms.add(p)
667
+ ...
668
+ ... perms = [Permutation(p) for p in perms]
669
+ ... assert PermutationGroup(perms).is_group
670
+
671
+ In addition to doing the above, the tests in the suite confirm that the
672
+ faces are all present after the application of each permutation.
673
+
674
+ References
675
+ ==========
676
+
677
+ .. [1] https://dogschool.tripod.com/trianglegroup.html
678
+
679
+ """
680
+ def _pgroup_of_double(polyh, ordered_faces, pgroup):
681
+ n = len(ordered_faces[0])
682
+ # the vertices of the double which sits inside a give polyhedron
683
+ # can be found by tracking the faces of the outer polyhedron.
684
+ # A map between face and the vertex of the double is made so that
685
+ # after rotation the position of the vertices can be located
686
+ fmap = dict(zip(ordered_faces,
687
+ range(len(ordered_faces))))
688
+ flat_faces = flatten(ordered_faces)
689
+ new_pgroup = []
690
+ for i, p in enumerate(pgroup):
691
+ h = polyh.copy()
692
+ h.rotate(p)
693
+ c = h.corners
694
+ # reorder corners in the order they should appear when
695
+ # enumerating the faces
696
+ reorder = unflatten([c[j] for j in flat_faces], n)
697
+ # make them canonical
698
+ reorder = [tuple(map(as_int,
699
+ minlex(f, directed=False)))
700
+ for f in reorder]
701
+ # map face to vertex: the resulting list of vertices are the
702
+ # permutation that we seek for the double
703
+ new_pgroup.append(Perm([fmap[f] for f in reorder]))
704
+ return new_pgroup
705
+
706
+ tetrahedron_faces = [
707
+ (0, 1, 2), (0, 2, 3), (0, 3, 1), # upper 3
708
+ (1, 2, 3), # bottom
709
+ ]
710
+
711
+ # cw from top
712
+ #
713
+ _t_pgroup = [
714
+ Perm([[1, 2, 3], [0]]), # cw from top
715
+ Perm([[0, 1, 2], [3]]), # cw from front face
716
+ Perm([[0, 3, 2], [1]]), # cw from back right face
717
+ Perm([[0, 3, 1], [2]]), # cw from back left face
718
+ Perm([[0, 1], [2, 3]]), # through front left edge
719
+ Perm([[0, 2], [1, 3]]), # through front right edge
720
+ Perm([[0, 3], [1, 2]]), # through back edge
721
+ ]
722
+
723
+ tetrahedron = Polyhedron(
724
+ range(4),
725
+ tetrahedron_faces,
726
+ _t_pgroup)
727
+
728
+ cube_faces = [
729
+ (0, 1, 2, 3), # upper
730
+ (0, 1, 5, 4), (1, 2, 6, 5), (2, 3, 7, 6), (0, 3, 7, 4), # middle 4
731
+ (4, 5, 6, 7), # lower
732
+ ]
733
+
734
+ # U, D, F, B, L, R = up, down, front, back, left, right
735
+ _c_pgroup = [Perm(p) for p in
736
+ [
737
+ [1, 2, 3, 0, 5, 6, 7, 4], # cw from top, U
738
+ [4, 0, 3, 7, 5, 1, 2, 6], # cw from F face
739
+ [4, 5, 1, 0, 7, 6, 2, 3], # cw from R face
740
+
741
+ [1, 0, 4, 5, 2, 3, 7, 6], # cw through UF edge
742
+ [6, 2, 1, 5, 7, 3, 0, 4], # cw through UR edge
743
+ [6, 7, 3, 2, 5, 4, 0, 1], # cw through UB edge
744
+ [3, 7, 4, 0, 2, 6, 5, 1], # cw through UL edge
745
+ [4, 7, 6, 5, 0, 3, 2, 1], # cw through FL edge
746
+ [6, 5, 4, 7, 2, 1, 0, 3], # cw through FR edge
747
+
748
+ [0, 3, 7, 4, 1, 2, 6, 5], # cw through UFL vertex
749
+ [5, 1, 0, 4, 6, 2, 3, 7], # cw through UFR vertex
750
+ [5, 6, 2, 1, 4, 7, 3, 0], # cw through UBR vertex
751
+ [7, 4, 0, 3, 6, 5, 1, 2], # cw through UBL
752
+ ]]
753
+
754
+ cube = Polyhedron(
755
+ range(8),
756
+ cube_faces,
757
+ _c_pgroup)
758
+
759
+ octahedron_faces = [
760
+ (0, 1, 2), (0, 2, 3), (0, 3, 4), (0, 1, 4), # top 4
761
+ (1, 2, 5), (2, 3, 5), (3, 4, 5), (1, 4, 5), # bottom 4
762
+ ]
763
+
764
+ octahedron = Polyhedron(
765
+ range(6),
766
+ octahedron_faces,
767
+ _pgroup_of_double(cube, cube_faces, _c_pgroup))
768
+
769
+ dodecahedron_faces = [
770
+ (0, 1, 2, 3, 4), # top
771
+ (0, 1, 6, 10, 5), (1, 2, 7, 11, 6), (2, 3, 8, 12, 7), # upper 5
772
+ (3, 4, 9, 13, 8), (0, 4, 9, 14, 5),
773
+ (5, 10, 16, 15, 14), (6, 10, 16, 17, 11), (7, 11, 17, 18,
774
+ 12), # lower 5
775
+ (8, 12, 18, 19, 13), (9, 13, 19, 15, 14),
776
+ (15, 16, 17, 18, 19) # bottom
777
+ ]
778
+
779
+ def _string_to_perm(s):
780
+ rv = [Perm(range(20))]
781
+ p = None
782
+ for si in s:
783
+ if si not in '01':
784
+ count = int(si) - 1
785
+ else:
786
+ count = 1
787
+ if si == '0':
788
+ p = _f0
789
+ elif si == '1':
790
+ p = _f1
791
+ rv.extend([p]*count)
792
+ return Perm.rmul(*rv)
793
+
794
+ # top face cw
795
+ _f0 = Perm([
796
+ 1, 2, 3, 4, 0, 6, 7, 8, 9, 5, 11,
797
+ 12, 13, 14, 10, 16, 17, 18, 19, 15])
798
+ # front face cw
799
+ _f1 = Perm([
800
+ 5, 0, 4, 9, 14, 10, 1, 3, 13, 15,
801
+ 6, 2, 8, 19, 16, 17, 11, 7, 12, 18])
802
+ # the strings below, like 0104 are shorthand for F0*F1*F0**4 and are
803
+ # the remaining 4 face rotations, 15 edge permutations, and the
804
+ # 10 vertex rotations.
805
+ _dodeca_pgroup = [_f0, _f1] + [_string_to_perm(s) for s in '''
806
+ 0104 140 014 0410
807
+ 010 1403 03104 04103 102
808
+ 120 1304 01303 021302 03130
809
+ 0412041 041204103 04120410 041204104 041204102
810
+ 10 01 1402 0140 04102 0412 1204 1302 0130 03120'''.strip().split()]
811
+
812
+ dodecahedron = Polyhedron(
813
+ range(20),
814
+ dodecahedron_faces,
815
+ _dodeca_pgroup)
816
+
817
+ icosahedron_faces = [
818
+ (0, 1, 2), (0, 2, 3), (0, 3, 4), (0, 4, 5), (0, 1, 5),
819
+ (1, 6, 7), (1, 2, 7), (2, 7, 8), (2, 3, 8), (3, 8, 9),
820
+ (3, 4, 9), (4, 9, 10), (4, 5, 10), (5, 6, 10), (1, 5, 6),
821
+ (6, 7, 11), (7, 8, 11), (8, 9, 11), (9, 10, 11), (6, 10, 11)]
822
+
823
+ icosahedron = Polyhedron(
824
+ range(12),
825
+ icosahedron_faces,
826
+ _pgroup_of_double(
827
+ dodecahedron, dodecahedron_faces, _dodeca_pgroup))
828
+
829
+ return (tetrahedron, cube, octahedron, dodecahedron, icosahedron,
830
+ tetrahedron_faces, cube_faces, octahedron_faces,
831
+ dodecahedron_faces, icosahedron_faces)
832
+
833
+ # -----------------------------------------------------------------------
834
+ # Standard Polyhedron groups
835
+ #
836
+ # These are generated using _pgroup_calcs() above. However to save
837
+ # import time we encode them explicitly here.
838
+ # -----------------------------------------------------------------------
839
+
840
+ tetrahedron = Polyhedron(
841
+ Tuple(0, 1, 2, 3),
842
+ Tuple(
843
+ Tuple(0, 1, 2),
844
+ Tuple(0, 2, 3),
845
+ Tuple(0, 1, 3),
846
+ Tuple(1, 2, 3)),
847
+ Tuple(
848
+ Perm(1, 2, 3),
849
+ Perm(3)(0, 1, 2),
850
+ Perm(0, 3, 2),
851
+ Perm(0, 3, 1),
852
+ Perm(0, 1)(2, 3),
853
+ Perm(0, 2)(1, 3),
854
+ Perm(0, 3)(1, 2)
855
+ ))
856
+
857
+ cube = Polyhedron(
858
+ Tuple(0, 1, 2, 3, 4, 5, 6, 7),
859
+ Tuple(
860
+ Tuple(0, 1, 2, 3),
861
+ Tuple(0, 1, 5, 4),
862
+ Tuple(1, 2, 6, 5),
863
+ Tuple(2, 3, 7, 6),
864
+ Tuple(0, 3, 7, 4),
865
+ Tuple(4, 5, 6, 7)),
866
+ Tuple(
867
+ Perm(0, 1, 2, 3)(4, 5, 6, 7),
868
+ Perm(0, 4, 5, 1)(2, 3, 7, 6),
869
+ Perm(0, 4, 7, 3)(1, 5, 6, 2),
870
+ Perm(0, 1)(2, 4)(3, 5)(6, 7),
871
+ Perm(0, 6)(1, 2)(3, 5)(4, 7),
872
+ Perm(0, 6)(1, 7)(2, 3)(4, 5),
873
+ Perm(0, 3)(1, 7)(2, 4)(5, 6),
874
+ Perm(0, 4)(1, 7)(2, 6)(3, 5),
875
+ Perm(0, 6)(1, 5)(2, 4)(3, 7),
876
+ Perm(1, 3, 4)(2, 7, 5),
877
+ Perm(7)(0, 5, 2)(3, 4, 6),
878
+ Perm(0, 5, 7)(1, 6, 3),
879
+ Perm(0, 7, 2)(1, 4, 6)))
880
+
881
+ octahedron = Polyhedron(
882
+ Tuple(0, 1, 2, 3, 4, 5),
883
+ Tuple(
884
+ Tuple(0, 1, 2),
885
+ Tuple(0, 2, 3),
886
+ Tuple(0, 3, 4),
887
+ Tuple(0, 1, 4),
888
+ Tuple(1, 2, 5),
889
+ Tuple(2, 3, 5),
890
+ Tuple(3, 4, 5),
891
+ Tuple(1, 4, 5)),
892
+ Tuple(
893
+ Perm(5)(1, 2, 3, 4),
894
+ Perm(0, 4, 5, 2),
895
+ Perm(0, 1, 5, 3),
896
+ Perm(0, 1)(2, 4)(3, 5),
897
+ Perm(0, 2)(1, 3)(4, 5),
898
+ Perm(0, 3)(1, 5)(2, 4),
899
+ Perm(0, 4)(1, 3)(2, 5),
900
+ Perm(0, 5)(1, 4)(2, 3),
901
+ Perm(0, 5)(1, 2)(3, 4),
902
+ Perm(0, 4, 1)(2, 3, 5),
903
+ Perm(0, 1, 2)(3, 4, 5),
904
+ Perm(0, 2, 3)(1, 5, 4),
905
+ Perm(0, 4, 3)(1, 5, 2)))
906
+
907
+ dodecahedron = Polyhedron(
908
+ Tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19),
909
+ Tuple(
910
+ Tuple(0, 1, 2, 3, 4),
911
+ Tuple(0, 1, 6, 10, 5),
912
+ Tuple(1, 2, 7, 11, 6),
913
+ Tuple(2, 3, 8, 12, 7),
914
+ Tuple(3, 4, 9, 13, 8),
915
+ Tuple(0, 4, 9, 14, 5),
916
+ Tuple(5, 10, 16, 15, 14),
917
+ Tuple(6, 10, 16, 17, 11),
918
+ Tuple(7, 11, 17, 18, 12),
919
+ Tuple(8, 12, 18, 19, 13),
920
+ Tuple(9, 13, 19, 15, 14),
921
+ Tuple(15, 16, 17, 18, 19)),
922
+ Tuple(
923
+ Perm(0, 1, 2, 3, 4)(5, 6, 7, 8, 9)(10, 11, 12, 13, 14)(15, 16, 17, 18, 19),
924
+ Perm(0, 5, 10, 6, 1)(2, 4, 14, 16, 11)(3, 9, 15, 17, 7)(8, 13, 19, 18, 12),
925
+ Perm(0, 10, 17, 12, 3)(1, 6, 11, 7, 2)(4, 5, 16, 18, 8)(9, 14, 15, 19, 13),
926
+ Perm(0, 6, 17, 19, 9)(1, 11, 18, 13, 4)(2, 7, 12, 8, 3)(5, 10, 16, 15, 14),
927
+ Perm(0, 2, 12, 19, 14)(1, 7, 18, 15, 5)(3, 8, 13, 9, 4)(6, 11, 17, 16, 10),
928
+ Perm(0, 4, 9, 14, 5)(1, 3, 13, 15, 10)(2, 8, 19, 16, 6)(7, 12, 18, 17, 11),
929
+ Perm(0, 1)(2, 5)(3, 10)(4, 6)(7, 14)(8, 16)(9, 11)(12, 15)(13, 17)(18, 19),
930
+ Perm(0, 7)(1, 2)(3, 6)(4, 11)(5, 12)(8, 10)(9, 17)(13, 16)(14, 18)(15, 19),
931
+ Perm(0, 12)(1, 8)(2, 3)(4, 7)(5, 18)(6, 13)(9, 11)(10, 19)(14, 17)(15, 16),
932
+ Perm(0, 8)(1, 13)(2, 9)(3, 4)(5, 12)(6, 19)(7, 14)(10, 18)(11, 15)(16, 17),
933
+ Perm(0, 4)(1, 9)(2, 14)(3, 5)(6, 13)(7, 15)(8, 10)(11, 19)(12, 16)(17, 18),
934
+ Perm(0, 5)(1, 14)(2, 15)(3, 16)(4, 10)(6, 9)(7, 19)(8, 17)(11, 13)(12, 18),
935
+ Perm(0, 11)(1, 6)(2, 10)(3, 16)(4, 17)(5, 7)(8, 15)(9, 18)(12, 14)(13, 19),
936
+ Perm(0, 18)(1, 12)(2, 7)(3, 11)(4, 17)(5, 19)(6, 8)(9, 16)(10, 13)(14, 15),
937
+ Perm(0, 18)(1, 19)(2, 13)(3, 8)(4, 12)(5, 17)(6, 15)(7, 9)(10, 16)(11, 14),
938
+ Perm(0, 13)(1, 19)(2, 15)(3, 14)(4, 9)(5, 8)(6, 18)(7, 16)(10, 12)(11, 17),
939
+ Perm(0, 16)(1, 15)(2, 19)(3, 18)(4, 17)(5, 10)(6, 14)(7, 13)(8, 12)(9, 11),
940
+ Perm(0, 18)(1, 17)(2, 16)(3, 15)(4, 19)(5, 12)(6, 11)(7, 10)(8, 14)(9, 13),
941
+ Perm(0, 15)(1, 19)(2, 18)(3, 17)(4, 16)(5, 14)(6, 13)(7, 12)(8, 11)(9, 10),
942
+ Perm(0, 17)(1, 16)(2, 15)(3, 19)(4, 18)(5, 11)(6, 10)(7, 14)(8, 13)(9, 12),
943
+ Perm(0, 19)(1, 18)(2, 17)(3, 16)(4, 15)(5, 13)(6, 12)(7, 11)(8, 10)(9, 14),
944
+ Perm(1, 4, 5)(2, 9, 10)(3, 14, 6)(7, 13, 16)(8, 15, 11)(12, 19, 17),
945
+ Perm(19)(0, 6, 2)(3, 5, 11)(4, 10, 7)(8, 14, 17)(9, 16, 12)(13, 15, 18),
946
+ Perm(0, 11, 8)(1, 7, 3)(4, 6, 12)(5, 17, 13)(9, 10, 18)(14, 16, 19),
947
+ Perm(0, 7, 13)(1, 12, 9)(2, 8, 4)(5, 11, 19)(6, 18, 14)(10, 17, 15),
948
+ Perm(0, 3, 9)(1, 8, 14)(2, 13, 5)(6, 12, 15)(7, 19, 10)(11, 18, 16),
949
+ Perm(0, 14, 10)(1, 9, 16)(2, 13, 17)(3, 19, 11)(4, 15, 6)(7, 8, 18),
950
+ Perm(0, 16, 7)(1, 10, 11)(2, 5, 17)(3, 14, 18)(4, 15, 12)(8, 9, 19),
951
+ Perm(0, 16, 13)(1, 17, 8)(2, 11, 12)(3, 6, 18)(4, 10, 19)(5, 15, 9),
952
+ Perm(0, 11, 15)(1, 17, 14)(2, 18, 9)(3, 12, 13)(4, 7, 19)(5, 6, 16),
953
+ Perm(0, 8, 15)(1, 12, 16)(2, 18, 10)(3, 19, 5)(4, 13, 14)(6, 7, 17)))
954
+
955
+ icosahedron = Polyhedron(
956
+ Tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
957
+ Tuple(
958
+ Tuple(0, 1, 2),
959
+ Tuple(0, 2, 3),
960
+ Tuple(0, 3, 4),
961
+ Tuple(0, 4, 5),
962
+ Tuple(0, 1, 5),
963
+ Tuple(1, 6, 7),
964
+ Tuple(1, 2, 7),
965
+ Tuple(2, 7, 8),
966
+ Tuple(2, 3, 8),
967
+ Tuple(3, 8, 9),
968
+ Tuple(3, 4, 9),
969
+ Tuple(4, 9, 10),
970
+ Tuple(4, 5, 10),
971
+ Tuple(5, 6, 10),
972
+ Tuple(1, 5, 6),
973
+ Tuple(6, 7, 11),
974
+ Tuple(7, 8, 11),
975
+ Tuple(8, 9, 11),
976
+ Tuple(9, 10, 11),
977
+ Tuple(6, 10, 11)),
978
+ Tuple(
979
+ Perm(11)(1, 2, 3, 4, 5)(6, 7, 8, 9, 10),
980
+ Perm(0, 5, 6, 7, 2)(3, 4, 10, 11, 8),
981
+ Perm(0, 1, 7, 8, 3)(4, 5, 6, 11, 9),
982
+ Perm(0, 2, 8, 9, 4)(1, 7, 11, 10, 5),
983
+ Perm(0, 3, 9, 10, 5)(1, 2, 8, 11, 6),
984
+ Perm(0, 4, 10, 6, 1)(2, 3, 9, 11, 7),
985
+ Perm(0, 1)(2, 5)(3, 6)(4, 7)(8, 10)(9, 11),
986
+ Perm(0, 2)(1, 3)(4, 7)(5, 8)(6, 9)(10, 11),
987
+ Perm(0, 3)(1, 9)(2, 4)(5, 8)(6, 11)(7, 10),
988
+ Perm(0, 4)(1, 9)(2, 10)(3, 5)(6, 8)(7, 11),
989
+ Perm(0, 5)(1, 4)(2, 10)(3, 6)(7, 9)(8, 11),
990
+ Perm(0, 6)(1, 5)(2, 10)(3, 11)(4, 7)(8, 9),
991
+ Perm(0, 7)(1, 2)(3, 6)(4, 11)(5, 8)(9, 10),
992
+ Perm(0, 8)(1, 9)(2, 3)(4, 7)(5, 11)(6, 10),
993
+ Perm(0, 9)(1, 11)(2, 10)(3, 4)(5, 8)(6, 7),
994
+ Perm(0, 10)(1, 9)(2, 11)(3, 6)(4, 5)(7, 8),
995
+ Perm(0, 11)(1, 6)(2, 10)(3, 9)(4, 8)(5, 7),
996
+ Perm(0, 11)(1, 8)(2, 7)(3, 6)(4, 10)(5, 9),
997
+ Perm(0, 11)(1, 10)(2, 9)(3, 8)(4, 7)(5, 6),
998
+ Perm(0, 11)(1, 7)(2, 6)(3, 10)(4, 9)(5, 8),
999
+ Perm(0, 11)(1, 9)(2, 8)(3, 7)(4, 6)(5, 10),
1000
+ Perm(0, 5, 1)(2, 4, 6)(3, 10, 7)(8, 9, 11),
1001
+ Perm(0, 1, 2)(3, 5, 7)(4, 6, 8)(9, 10, 11),
1002
+ Perm(0, 2, 3)(1, 8, 4)(5, 7, 9)(6, 11, 10),
1003
+ Perm(0, 3, 4)(1, 8, 10)(2, 9, 5)(6, 7, 11),
1004
+ Perm(0, 4, 5)(1, 3, 10)(2, 9, 6)(7, 8, 11),
1005
+ Perm(0, 10, 7)(1, 5, 6)(2, 4, 11)(3, 9, 8),
1006
+ Perm(0, 6, 8)(1, 7, 2)(3, 5, 11)(4, 10, 9),
1007
+ Perm(0, 7, 9)(1, 11, 4)(2, 8, 3)(5, 6, 10),
1008
+ Perm(0, 8, 10)(1, 7, 6)(2, 11, 5)(3, 9, 4),
1009
+ Perm(0, 9, 6)(1, 3, 11)(2, 8, 7)(4, 10, 5)))
1010
+
1011
+ tetrahedron_faces = [tuple(arg) for arg in tetrahedron.faces]
1012
+
1013
+ cube_faces = [tuple(arg) for arg in cube.faces]
1014
+
1015
+ octahedron_faces = [tuple(arg) for arg in octahedron.faces]
1016
+
1017
+ dodecahedron_faces = [tuple(arg) for arg in dodecahedron.faces]
1018
+
1019
+ icosahedron_faces = [tuple(arg) for arg in icosahedron.faces]
venv/lib/python3.10/site-packages/sympy/combinatorics/prufer.py ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Basic
2
+ from sympy.core.containers import Tuple
3
+ from sympy.tensor.array import Array
4
+ from sympy.core.sympify import _sympify
5
+ from sympy.utilities.iterables import flatten, iterable
6
+ from sympy.utilities.misc import as_int
7
+
8
+ from collections import defaultdict
9
+
10
+
11
+ class Prufer(Basic):
12
+ """
13
+ The Prufer correspondence is an algorithm that describes the
14
+ bijection between labeled trees and the Prufer code. A Prufer
15
+ code of a labeled tree is unique up to isomorphism and has
16
+ a length of n - 2.
17
+
18
+ Prufer sequences were first used by Heinz Prufer to give a
19
+ proof of Cayley's formula.
20
+
21
+ References
22
+ ==========
23
+
24
+ .. [1] https://mathworld.wolfram.com/LabeledTree.html
25
+
26
+ """
27
+ _prufer_repr = None
28
+ _tree_repr = None
29
+ _nodes = None
30
+ _rank = None
31
+
32
+ @property
33
+ def prufer_repr(self):
34
+ """Returns Prufer sequence for the Prufer object.
35
+
36
+ This sequence is found by removing the highest numbered vertex,
37
+ recording the node it was attached to, and continuing until only
38
+ two vertices remain. The Prufer sequence is the list of recorded nodes.
39
+
40
+ Examples
41
+ ========
42
+
43
+ >>> from sympy.combinatorics.prufer import Prufer
44
+ >>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).prufer_repr
45
+ [3, 3, 3, 4]
46
+ >>> Prufer([1, 0, 0]).prufer_repr
47
+ [1, 0, 0]
48
+
49
+ See Also
50
+ ========
51
+
52
+ to_prufer
53
+
54
+ """
55
+ if self._prufer_repr is None:
56
+ self._prufer_repr = self.to_prufer(self._tree_repr[:], self.nodes)
57
+ return self._prufer_repr
58
+
59
+ @property
60
+ def tree_repr(self):
61
+ """Returns the tree representation of the Prufer object.
62
+
63
+ Examples
64
+ ========
65
+
66
+ >>> from sympy.combinatorics.prufer import Prufer
67
+ >>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).tree_repr
68
+ [[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]
69
+ >>> Prufer([1, 0, 0]).tree_repr
70
+ [[1, 2], [0, 1], [0, 3], [0, 4]]
71
+
72
+ See Also
73
+ ========
74
+
75
+ to_tree
76
+
77
+ """
78
+ if self._tree_repr is None:
79
+ self._tree_repr = self.to_tree(self._prufer_repr[:])
80
+ return self._tree_repr
81
+
82
+ @property
83
+ def nodes(self):
84
+ """Returns the number of nodes in the tree.
85
+
86
+ Examples
87
+ ========
88
+
89
+ >>> from sympy.combinatorics.prufer import Prufer
90
+ >>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).nodes
91
+ 6
92
+ >>> Prufer([1, 0, 0]).nodes
93
+ 5
94
+
95
+ """
96
+ return self._nodes
97
+
98
+ @property
99
+ def rank(self):
100
+ """Returns the rank of the Prufer sequence.
101
+
102
+ Examples
103
+ ========
104
+
105
+ >>> from sympy.combinatorics.prufer import Prufer
106
+ >>> p = Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]])
107
+ >>> p.rank
108
+ 778
109
+ >>> p.next(1).rank
110
+ 779
111
+ >>> p.prev().rank
112
+ 777
113
+
114
+ See Also
115
+ ========
116
+
117
+ prufer_rank, next, prev, size
118
+
119
+ """
120
+ if self._rank is None:
121
+ self._rank = self.prufer_rank()
122
+ return self._rank
123
+
124
+ @property
125
+ def size(self):
126
+ """Return the number of possible trees of this Prufer object.
127
+
128
+ Examples
129
+ ========
130
+
131
+ >>> from sympy.combinatorics.prufer import Prufer
132
+ >>> Prufer([0]*4).size == Prufer([6]*4).size == 1296
133
+ True
134
+
135
+ See Also
136
+ ========
137
+
138
+ prufer_rank, rank, next, prev
139
+
140
+ """
141
+ return self.prev(self.rank).prev().rank + 1
142
+
143
+ @staticmethod
144
+ def to_prufer(tree, n):
145
+ """Return the Prufer sequence for a tree given as a list of edges where
146
+ ``n`` is the number of nodes in the tree.
147
+
148
+ Examples
149
+ ========
150
+
151
+ >>> from sympy.combinatorics.prufer import Prufer
152
+ >>> a = Prufer([[0, 1], [0, 2], [0, 3]])
153
+ >>> a.prufer_repr
154
+ [0, 0]
155
+ >>> Prufer.to_prufer([[0, 1], [0, 2], [0, 3]], 4)
156
+ [0, 0]
157
+
158
+ See Also
159
+ ========
160
+ prufer_repr: returns Prufer sequence of a Prufer object.
161
+
162
+ """
163
+ d = defaultdict(int)
164
+ L = []
165
+ for edge in tree:
166
+ # Increment the value of the corresponding
167
+ # node in the degree list as we encounter an
168
+ # edge involving it.
169
+ d[edge[0]] += 1
170
+ d[edge[1]] += 1
171
+ for i in range(n - 2):
172
+ # find the smallest leaf
173
+ for x in range(n):
174
+ if d[x] == 1:
175
+ break
176
+ # find the node it was connected to
177
+ y = None
178
+ for edge in tree:
179
+ if x == edge[0]:
180
+ y = edge[1]
181
+ elif x == edge[1]:
182
+ y = edge[0]
183
+ if y is not None:
184
+ break
185
+ # record and update
186
+ L.append(y)
187
+ for j in (x, y):
188
+ d[j] -= 1
189
+ if not d[j]:
190
+ d.pop(j)
191
+ tree.remove(edge)
192
+ return L
193
+
194
+ @staticmethod
195
+ def to_tree(prufer):
196
+ """Return the tree (as a list of edges) of the given Prufer sequence.
197
+
198
+ Examples
199
+ ========
200
+
201
+ >>> from sympy.combinatorics.prufer import Prufer
202
+ >>> a = Prufer([0, 2], 4)
203
+ >>> a.tree_repr
204
+ [[0, 1], [0, 2], [2, 3]]
205
+ >>> Prufer.to_tree([0, 2])
206
+ [[0, 1], [0, 2], [2, 3]]
207
+
208
+ References
209
+ ==========
210
+
211
+ .. [1] https://hamberg.no/erlend/posts/2010-11-06-prufer-sequence-compact-tree-representation.html
212
+
213
+ See Also
214
+ ========
215
+ tree_repr: returns tree representation of a Prufer object.
216
+
217
+ """
218
+ tree = []
219
+ last = []
220
+ n = len(prufer) + 2
221
+ d = defaultdict(lambda: 1)
222
+ for p in prufer:
223
+ d[p] += 1
224
+ for i in prufer:
225
+ for j in range(n):
226
+ # find the smallest leaf (degree = 1)
227
+ if d[j] == 1:
228
+ break
229
+ # (i, j) is the new edge that we append to the tree
230
+ # and remove from the degree dictionary
231
+ d[i] -= 1
232
+ d[j] -= 1
233
+ tree.append(sorted([i, j]))
234
+ last = [i for i in range(n) if d[i] == 1] or [0, 1]
235
+ tree.append(last)
236
+
237
+ return tree
238
+
239
+ @staticmethod
240
+ def edges(*runs):
241
+ """Return a list of edges and the number of nodes from the given runs
242
+ that connect nodes in an integer-labelled tree.
243
+
244
+ All node numbers will be shifted so that the minimum node is 0. It is
245
+ not a problem if edges are repeated in the runs; only unique edges are
246
+ returned. There is no assumption made about what the range of the node
247
+ labels should be, but all nodes from the smallest through the largest
248
+ must be present.
249
+
250
+ Examples
251
+ ========
252
+
253
+ >>> from sympy.combinatorics.prufer import Prufer
254
+ >>> Prufer.edges([1, 2, 3], [2, 4, 5]) # a T
255
+ ([[0, 1], [1, 2], [1, 3], [3, 4]], 5)
256
+
257
+ Duplicate edges are removed:
258
+
259
+ >>> Prufer.edges([0, 1, 2, 3], [1, 4, 5], [1, 4, 6]) # a K
260
+ ([[0, 1], [1, 2], [1, 4], [2, 3], [4, 5], [4, 6]], 7)
261
+
262
+ """
263
+ e = set()
264
+ nmin = runs[0][0]
265
+ for r in runs:
266
+ for i in range(len(r) - 1):
267
+ a, b = r[i: i + 2]
268
+ if b < a:
269
+ a, b = b, a
270
+ e.add((a, b))
271
+ rv = []
272
+ got = set()
273
+ nmin = nmax = None
274
+ for ei in e:
275
+ for i in ei:
276
+ got.add(i)
277
+ nmin = min(ei[0], nmin) if nmin is not None else ei[0]
278
+ nmax = max(ei[1], nmax) if nmax is not None else ei[1]
279
+ rv.append(list(ei))
280
+ missing = set(range(nmin, nmax + 1)) - got
281
+ if missing:
282
+ missing = [i + nmin for i in missing]
283
+ if len(missing) == 1:
284
+ msg = 'Node %s is missing.' % missing.pop()
285
+ else:
286
+ msg = 'Nodes %s are missing.' % sorted(missing)
287
+ raise ValueError(msg)
288
+ if nmin != 0:
289
+ for i, ei in enumerate(rv):
290
+ rv[i] = [n - nmin for n in ei]
291
+ nmax -= nmin
292
+ return sorted(rv), nmax + 1
293
+
294
+ def prufer_rank(self):
295
+ """Computes the rank of a Prufer sequence.
296
+
297
+ Examples
298
+ ========
299
+
300
+ >>> from sympy.combinatorics.prufer import Prufer
301
+ >>> a = Prufer([[0, 1], [0, 2], [0, 3]])
302
+ >>> a.prufer_rank()
303
+ 0
304
+
305
+ See Also
306
+ ========
307
+
308
+ rank, next, prev, size
309
+
310
+ """
311
+ r = 0
312
+ p = 1
313
+ for i in range(self.nodes - 3, -1, -1):
314
+ r += p*self.prufer_repr[i]
315
+ p *= self.nodes
316
+ return r
317
+
318
+ @classmethod
319
+ def unrank(self, rank, n):
320
+ """Finds the unranked Prufer sequence.
321
+
322
+ Examples
323
+ ========
324
+
325
+ >>> from sympy.combinatorics.prufer import Prufer
326
+ >>> Prufer.unrank(0, 4)
327
+ Prufer([0, 0])
328
+
329
+ """
330
+ n, rank = as_int(n), as_int(rank)
331
+ L = defaultdict(int)
332
+ for i in range(n - 3, -1, -1):
333
+ L[i] = rank % n
334
+ rank = (rank - L[i])//n
335
+ return Prufer([L[i] for i in range(len(L))])
336
+
337
+ def __new__(cls, *args, **kw_args):
338
+ """The constructor for the Prufer object.
339
+
340
+ Examples
341
+ ========
342
+
343
+ >>> from sympy.combinatorics.prufer import Prufer
344
+
345
+ A Prufer object can be constructed from a list of edges:
346
+
347
+ >>> a = Prufer([[0, 1], [0, 2], [0, 3]])
348
+ >>> a.prufer_repr
349
+ [0, 0]
350
+
351
+ If the number of nodes is given, no checking of the nodes will
352
+ be performed; it will be assumed that nodes 0 through n - 1 are
353
+ present:
354
+
355
+ >>> Prufer([[0, 1], [0, 2], [0, 3]], 4)
356
+ Prufer([[0, 1], [0, 2], [0, 3]], 4)
357
+
358
+ A Prufer object can be constructed from a Prufer sequence:
359
+
360
+ >>> b = Prufer([1, 3])
361
+ >>> b.tree_repr
362
+ [[0, 1], [1, 3], [2, 3]]
363
+
364
+ """
365
+ arg0 = Array(args[0]) if args[0] else Tuple()
366
+ args = (arg0,) + tuple(_sympify(arg) for arg in args[1:])
367
+ ret_obj = Basic.__new__(cls, *args, **kw_args)
368
+ args = [list(args[0])]
369
+ if args[0] and iterable(args[0][0]):
370
+ if not args[0][0]:
371
+ raise ValueError(
372
+ 'Prufer expects at least one edge in the tree.')
373
+ if len(args) > 1:
374
+ nnodes = args[1]
375
+ else:
376
+ nodes = set(flatten(args[0]))
377
+ nnodes = max(nodes) + 1
378
+ if nnodes != len(nodes):
379
+ missing = set(range(nnodes)) - nodes
380
+ if len(missing) == 1:
381
+ msg = 'Node %s is missing.' % missing.pop()
382
+ else:
383
+ msg = 'Nodes %s are missing.' % sorted(missing)
384
+ raise ValueError(msg)
385
+ ret_obj._tree_repr = [list(i) for i in args[0]]
386
+ ret_obj._nodes = nnodes
387
+ else:
388
+ ret_obj._prufer_repr = args[0]
389
+ ret_obj._nodes = len(ret_obj._prufer_repr) + 2
390
+ return ret_obj
391
+
392
+ def next(self, delta=1):
393
+ """Generates the Prufer sequence that is delta beyond the current one.
394
+
395
+ Examples
396
+ ========
397
+
398
+ >>> from sympy.combinatorics.prufer import Prufer
399
+ >>> a = Prufer([[0, 1], [0, 2], [0, 3]])
400
+ >>> b = a.next(1) # == a.next()
401
+ >>> b.tree_repr
402
+ [[0, 2], [0, 1], [1, 3]]
403
+ >>> b.rank
404
+ 1
405
+
406
+ See Also
407
+ ========
408
+
409
+ prufer_rank, rank, prev, size
410
+
411
+ """
412
+ return Prufer.unrank(self.rank + delta, self.nodes)
413
+
414
+ def prev(self, delta=1):
415
+ """Generates the Prufer sequence that is -delta before the current one.
416
+
417
+ Examples
418
+ ========
419
+
420
+ >>> from sympy.combinatorics.prufer import Prufer
421
+ >>> a = Prufer([[0, 1], [1, 2], [2, 3], [1, 4]])
422
+ >>> a.rank
423
+ 36
424
+ >>> b = a.prev()
425
+ >>> b
426
+ Prufer([1, 2, 0])
427
+ >>> b.rank
428
+ 35
429
+
430
+ See Also
431
+ ========
432
+
433
+ prufer_rank, rank, next, size
434
+
435
+ """
436
+ return Prufer.unrank(self.rank -delta, self.nodes)
venv/lib/python3.10/site-packages/sympy/combinatorics/rewritingsystem.py ADDED
@@ -0,0 +1,453 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import deque
2
+ from sympy.combinatorics.rewritingsystem_fsm import StateMachine
3
+
4
+ class RewritingSystem:
5
+ '''
6
+ A class implementing rewriting systems for `FpGroup`s.
7
+
8
+ References
9
+ ==========
10
+ .. [1] Epstein, D., Holt, D. and Rees, S. (1991).
11
+ The use of Knuth-Bendix methods to solve the word problem in automatic groups.
12
+ Journal of Symbolic Computation, 12(4-5), pp.397-414.
13
+
14
+ .. [2] GAP's Manual on its KBMAG package
15
+ https://www.gap-system.org/Manuals/pkg/kbmag-1.5.3/doc/manual.pdf
16
+
17
+ '''
18
+ def __init__(self, group):
19
+ self.group = group
20
+ self.alphabet = group.generators
21
+ self._is_confluent = None
22
+
23
+ # these values are taken from [2]
24
+ self.maxeqns = 32767 # max rules
25
+ self.tidyint = 100 # rules before tidying
26
+
27
+ # _max_exceeded is True if maxeqns is exceeded
28
+ # at any point
29
+ self._max_exceeded = False
30
+
31
+ # Reduction automaton
32
+ self.reduction_automaton = None
33
+ self._new_rules = {}
34
+
35
+ # dictionary of reductions
36
+ self.rules = {}
37
+ self.rules_cache = deque([], 50)
38
+ self._init_rules()
39
+
40
+
41
+ # All the transition symbols in the automaton
42
+ generators = list(self.alphabet)
43
+ generators += [gen**-1 for gen in generators]
44
+ # Create a finite state machine as an instance of the StateMachine object
45
+ self.reduction_automaton = StateMachine('Reduction automaton for '+ repr(self.group), generators)
46
+ self.construct_automaton()
47
+
48
+ def set_max(self, n):
49
+ '''
50
+ Set the maximum number of rules that can be defined
51
+
52
+ '''
53
+ if n > self.maxeqns:
54
+ self._max_exceeded = False
55
+ self.maxeqns = n
56
+ return
57
+
58
+ @property
59
+ def is_confluent(self):
60
+ '''
61
+ Return `True` if the system is confluent
62
+
63
+ '''
64
+ if self._is_confluent is None:
65
+ self._is_confluent = self._check_confluence()
66
+ return self._is_confluent
67
+
68
+ def _init_rules(self):
69
+ identity = self.group.free_group.identity
70
+ for r in self.group.relators:
71
+ self.add_rule(r, identity)
72
+ self._remove_redundancies()
73
+ return
74
+
75
+ def _add_rule(self, r1, r2):
76
+ '''
77
+ Add the rule r1 -> r2 with no checking or further
78
+ deductions
79
+
80
+ '''
81
+ if len(self.rules) + 1 > self.maxeqns:
82
+ self._is_confluent = self._check_confluence()
83
+ self._max_exceeded = True
84
+ raise RuntimeError("Too many rules were defined.")
85
+ self.rules[r1] = r2
86
+ # Add the newly added rule to the `new_rules` dictionary.
87
+ if self.reduction_automaton:
88
+ self._new_rules[r1] = r2
89
+
90
+ def add_rule(self, w1, w2, check=False):
91
+ new_keys = set()
92
+
93
+ if w1 == w2:
94
+ return new_keys
95
+
96
+ if w1 < w2:
97
+ w1, w2 = w2, w1
98
+
99
+ if (w1, w2) in self.rules_cache:
100
+ return new_keys
101
+ self.rules_cache.append((w1, w2))
102
+
103
+ s1, s2 = w1, w2
104
+
105
+ # The following is the equivalent of checking
106
+ # s1 for overlaps with the implicit reductions
107
+ # {g*g**-1 -> <identity>} and {g**-1*g -> <identity>}
108
+ # for any generator g without installing the
109
+ # redundant rules that would result from processing
110
+ # the overlaps. See [1], Section 3 for details.
111
+
112
+ if len(s1) - len(s2) < 3:
113
+ if s1 not in self.rules:
114
+ new_keys.add(s1)
115
+ if not check:
116
+ self._add_rule(s1, s2)
117
+ if s2**-1 > s1**-1 and s2**-1 not in self.rules:
118
+ new_keys.add(s2**-1)
119
+ if not check:
120
+ self._add_rule(s2**-1, s1**-1)
121
+
122
+ # overlaps on the right
123
+ while len(s1) - len(s2) > -1:
124
+ g = s1[len(s1)-1]
125
+ s1 = s1.subword(0, len(s1)-1)
126
+ s2 = s2*g**-1
127
+ if len(s1) - len(s2) < 0:
128
+ if s2 not in self.rules:
129
+ if not check:
130
+ self._add_rule(s2, s1)
131
+ new_keys.add(s2)
132
+ elif len(s1) - len(s2) < 3:
133
+ new = self.add_rule(s1, s2, check)
134
+ new_keys.update(new)
135
+
136
+ # overlaps on the left
137
+ while len(w1) - len(w2) > -1:
138
+ g = w1[0]
139
+ w1 = w1.subword(1, len(w1))
140
+ w2 = g**-1*w2
141
+ if len(w1) - len(w2) < 0:
142
+ if w2 not in self.rules:
143
+ if not check:
144
+ self._add_rule(w2, w1)
145
+ new_keys.add(w2)
146
+ elif len(w1) - len(w2) < 3:
147
+ new = self.add_rule(w1, w2, check)
148
+ new_keys.update(new)
149
+
150
+ return new_keys
151
+
152
+ def _remove_redundancies(self, changes=False):
153
+ '''
154
+ Reduce left- and right-hand sides of reduction rules
155
+ and remove redundant equations (i.e. those for which
156
+ lhs == rhs). If `changes` is `True`, return a set
157
+ containing the removed keys and a set containing the
158
+ added keys
159
+
160
+ '''
161
+ removed = set()
162
+ added = set()
163
+ rules = self.rules.copy()
164
+ for r in rules:
165
+ v = self.reduce(r, exclude=r)
166
+ w = self.reduce(rules[r])
167
+ if v != r:
168
+ del self.rules[r]
169
+ removed.add(r)
170
+ if v > w:
171
+ added.add(v)
172
+ self.rules[v] = w
173
+ elif v < w:
174
+ added.add(w)
175
+ self.rules[w] = v
176
+ else:
177
+ self.rules[v] = w
178
+ if changes:
179
+ return removed, added
180
+ return
181
+
182
+ def make_confluent(self, check=False):
183
+ '''
184
+ Try to make the system confluent using the Knuth-Bendix
185
+ completion algorithm
186
+
187
+ '''
188
+ if self._max_exceeded:
189
+ return self._is_confluent
190
+ lhs = list(self.rules.keys())
191
+
192
+ def _overlaps(r1, r2):
193
+ len1 = len(r1)
194
+ len2 = len(r2)
195
+ result = []
196
+ for j in range(1, len1 + len2):
197
+ if (r1.subword(len1 - j, len1 + len2 - j, strict=False)
198
+ == r2.subword(j - len1, j, strict=False)):
199
+ a = r1.subword(0, len1-j, strict=False)
200
+ a = a*r2.subword(0, j-len1, strict=False)
201
+ b = r2.subword(j-len1, j, strict=False)
202
+ c = r2.subword(j, len2, strict=False)
203
+ c = c*r1.subword(len1 + len2 - j, len1, strict=False)
204
+ result.append(a*b*c)
205
+ return result
206
+
207
+ def _process_overlap(w, r1, r2, check):
208
+ s = w.eliminate_word(r1, self.rules[r1])
209
+ s = self.reduce(s)
210
+ t = w.eliminate_word(r2, self.rules[r2])
211
+ t = self.reduce(t)
212
+ if s != t:
213
+ if check:
214
+ # system not confluent
215
+ return [0]
216
+ try:
217
+ new_keys = self.add_rule(t, s, check)
218
+ return new_keys
219
+ except RuntimeError:
220
+ return False
221
+ return
222
+
223
+ added = 0
224
+ i = 0
225
+ while i < len(lhs):
226
+ r1 = lhs[i]
227
+ i += 1
228
+ # j could be i+1 to not
229
+ # check each pair twice but lhs
230
+ # is extended in the loop and the new
231
+ # elements have to be checked with the
232
+ # preceding ones. there is probably a better way
233
+ # to handle this
234
+ j = 0
235
+ while j < len(lhs):
236
+ r2 = lhs[j]
237
+ j += 1
238
+ if r1 == r2:
239
+ continue
240
+ overlaps = _overlaps(r1, r2)
241
+ overlaps.extend(_overlaps(r1**-1, r2))
242
+ if not overlaps:
243
+ continue
244
+ for w in overlaps:
245
+ new_keys = _process_overlap(w, r1, r2, check)
246
+ if new_keys:
247
+ if check:
248
+ return False
249
+ lhs.extend(new_keys)
250
+ added += len(new_keys)
251
+ elif new_keys == False:
252
+ # too many rules were added so the process
253
+ # couldn't complete
254
+ return self._is_confluent
255
+
256
+ if added > self.tidyint and not check:
257
+ # tidy up
258
+ r, a = self._remove_redundancies(changes=True)
259
+ added = 0
260
+ if r:
261
+ # reset i since some elements were removed
262
+ i = min([lhs.index(s) for s in r])
263
+ lhs = [l for l in lhs if l not in r]
264
+ lhs.extend(a)
265
+ if r1 in r:
266
+ # r1 was removed as redundant
267
+ break
268
+
269
+ self._is_confluent = True
270
+ if not check:
271
+ self._remove_redundancies()
272
+ return True
273
+
274
+ def _check_confluence(self):
275
+ return self.make_confluent(check=True)
276
+
277
+ def reduce(self, word, exclude=None):
278
+ '''
279
+ Apply reduction rules to `word` excluding the reduction rule
280
+ for the lhs equal to `exclude`
281
+
282
+ '''
283
+ rules = {r: self.rules[r] for r in self.rules if r != exclude}
284
+ # the following is essentially `eliminate_words()` code from the
285
+ # `FreeGroupElement` class, the only difference being the first
286
+ # "if" statement
287
+ again = True
288
+ new = word
289
+ while again:
290
+ again = False
291
+ for r in rules:
292
+ prev = new
293
+ if rules[r]**-1 > r**-1:
294
+ new = new.eliminate_word(r, rules[r], _all=True, inverse=False)
295
+ else:
296
+ new = new.eliminate_word(r, rules[r], _all=True)
297
+ if new != prev:
298
+ again = True
299
+ return new
300
+
301
+ def _compute_inverse_rules(self, rules):
302
+ '''
303
+ Compute the inverse rules for a given set of rules.
304
+ The inverse rules are used in the automaton for word reduction.
305
+
306
+ Arguments:
307
+ rules (dictionary): Rules for which the inverse rules are to computed.
308
+
309
+ Returns:
310
+ Dictionary of inverse_rules.
311
+
312
+ '''
313
+ inverse_rules = {}
314
+ for r in rules:
315
+ rule_key_inverse = r**-1
316
+ rule_value_inverse = (rules[r])**-1
317
+ if (rule_value_inverse < rule_key_inverse):
318
+ inverse_rules[rule_key_inverse] = rule_value_inverse
319
+ else:
320
+ inverse_rules[rule_value_inverse] = rule_key_inverse
321
+ return inverse_rules
322
+
323
+ def construct_automaton(self):
324
+ '''
325
+ Construct the automaton based on the set of reduction rules of the system.
326
+
327
+ Automata Design:
328
+ The accept states of the automaton are the proper prefixes of the left hand side of the rules.
329
+ The complete left hand side of the rules are the dead states of the automaton.
330
+
331
+ '''
332
+ self._add_to_automaton(self.rules)
333
+
334
+ def _add_to_automaton(self, rules):
335
+ '''
336
+ Add new states and transitions to the automaton.
337
+
338
+ Summary:
339
+ States corresponding to the new rules added to the system are computed and added to the automaton.
340
+ Transitions in the previously added states are also modified if necessary.
341
+
342
+ Arguments:
343
+ rules (dictionary) -- Dictionary of the newly added rules.
344
+
345
+ '''
346
+ # Automaton variables
347
+ automaton_alphabet = []
348
+ proper_prefixes = {}
349
+
350
+ # compute the inverses of all the new rules added
351
+ all_rules = rules
352
+ inverse_rules = self._compute_inverse_rules(all_rules)
353
+ all_rules.update(inverse_rules)
354
+
355
+ # Keep track of the accept_states.
356
+ accept_states = []
357
+
358
+ for rule in all_rules:
359
+ # The symbols present in the new rules are the symbols to be verified at each state.
360
+ # computes the automaton_alphabet, as the transitions solely depend upon the new states.
361
+ automaton_alphabet += rule.letter_form_elm
362
+ # Compute the proper prefixes for every rule.
363
+ proper_prefixes[rule] = []
364
+ letter_word_array = list(rule.letter_form_elm)
365
+ len_letter_word_array = len(letter_word_array)
366
+ for i in range (1, len_letter_word_array):
367
+ letter_word_array[i] = letter_word_array[i-1]*letter_word_array[i]
368
+ # Add accept states.
369
+ elem = letter_word_array[i-1]
370
+ if elem not in self.reduction_automaton.states:
371
+ self.reduction_automaton.add_state(elem, state_type='a')
372
+ accept_states.append(elem)
373
+ proper_prefixes[rule] = letter_word_array
374
+ # Check for overlaps between dead and accept states.
375
+ if rule in accept_states:
376
+ self.reduction_automaton.states[rule].state_type = 'd'
377
+ self.reduction_automaton.states[rule].rh_rule = all_rules[rule]
378
+ accept_states.remove(rule)
379
+ # Add dead states
380
+ if rule not in self.reduction_automaton.states:
381
+ self.reduction_automaton.add_state(rule, state_type='d', rh_rule=all_rules[rule])
382
+
383
+ automaton_alphabet = set(automaton_alphabet)
384
+
385
+ # Add new transitions for every state.
386
+ for state in self.reduction_automaton.states:
387
+ current_state_name = state
388
+ current_state_type = self.reduction_automaton.states[state].state_type
389
+ # Transitions will be modified only when suffixes of the current_state
390
+ # belongs to the proper_prefixes of the new rules.
391
+ # The rest are ignored if they cannot lead to a dead state after a finite number of transisitons.
392
+ if current_state_type == 's':
393
+ for letter in automaton_alphabet:
394
+ if letter in self.reduction_automaton.states:
395
+ self.reduction_automaton.states[state].add_transition(letter, letter)
396
+ else:
397
+ self.reduction_automaton.states[state].add_transition(letter, current_state_name)
398
+ elif current_state_type == 'a':
399
+ # Check if the transition to any new state in possible.
400
+ for letter in automaton_alphabet:
401
+ _next = current_state_name*letter
402
+ while len(_next) and _next not in self.reduction_automaton.states:
403
+ _next = _next.subword(1, len(_next))
404
+ if not len(_next):
405
+ _next = 'start'
406
+ self.reduction_automaton.states[state].add_transition(letter, _next)
407
+
408
+ # Add transitions for new states. All symbols used in the automaton are considered here.
409
+ # Ignore this if `reduction_automaton.automaton_alphabet` = `automaton_alphabet`.
410
+ if len(self.reduction_automaton.automaton_alphabet) != len(automaton_alphabet):
411
+ for state in accept_states:
412
+ current_state_name = state
413
+ for letter in self.reduction_automaton.automaton_alphabet:
414
+ _next = current_state_name*letter
415
+ while len(_next) and _next not in self.reduction_automaton.states:
416
+ _next = _next.subword(1, len(_next))
417
+ if not len(_next):
418
+ _next = 'start'
419
+ self.reduction_automaton.states[state].add_transition(letter, _next)
420
+
421
+ def reduce_using_automaton(self, word):
422
+ '''
423
+ Reduce a word using an automaton.
424
+
425
+ Summary:
426
+ All the symbols of the word are stored in an array and are given as the input to the automaton.
427
+ If the automaton reaches a dead state that subword is replaced and the automaton is run from the beginning.
428
+ The complete word has to be replaced when the word is read and the automaton reaches a dead state.
429
+ So, this process is repeated until the word is read completely and the automaton reaches the accept state.
430
+
431
+ Arguments:
432
+ word (instance of FreeGroupElement) -- Word that needs to be reduced.
433
+
434
+ '''
435
+ # Modify the automaton if new rules are found.
436
+ if self._new_rules:
437
+ self._add_to_automaton(self._new_rules)
438
+ self._new_rules = {}
439
+
440
+ flag = 1
441
+ while flag:
442
+ flag = 0
443
+ current_state = self.reduction_automaton.states['start']
444
+ for i, s in enumerate(word.letter_form_elm):
445
+ next_state_name = current_state.transitions[s]
446
+ next_state = self.reduction_automaton.states[next_state_name]
447
+ if next_state.state_type == 'd':
448
+ subst = next_state.rh_rule
449
+ word = word.substituted_word(i - len(next_state_name) + 1, i+1, subst)
450
+ flag = 1
451
+ break
452
+ current_state = next_state
453
+ return word
venv/lib/python3.10/site-packages/sympy/combinatorics/rewritingsystem_fsm.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class State:
2
+ '''
3
+ A representation of a state managed by a ``StateMachine``.
4
+
5
+ Attributes:
6
+ name (instance of FreeGroupElement or string) -- State name which is also assigned to the Machine.
7
+ transisitons (OrderedDict) -- Represents all the transitions of the state object.
8
+ state_type (string) -- Denotes the type (accept/start/dead) of the state.
9
+ rh_rule (instance of FreeGroupElement) -- right hand rule for dead state.
10
+ state_machine (instance of StateMachine object) -- The finite state machine that the state belongs to.
11
+ '''
12
+
13
+ def __init__(self, name, state_machine, state_type=None, rh_rule=None):
14
+ self.name = name
15
+ self.transitions = {}
16
+ self.state_machine = state_machine
17
+ self.state_type = state_type[0]
18
+ self.rh_rule = rh_rule
19
+
20
+ def add_transition(self, letter, state):
21
+ '''
22
+ Add a transition from the current state to a new state.
23
+
24
+ Keyword Arguments:
25
+ letter -- The alphabet element the current state reads to make the state transition.
26
+ state -- This will be an instance of the State object which represents a new state after in the transition after the alphabet is read.
27
+
28
+ '''
29
+ self.transitions[letter] = state
30
+
31
+ class StateMachine:
32
+ '''
33
+ Representation of a finite state machine the manages the states and the transitions of the automaton.
34
+
35
+ Attributes:
36
+ states (dictionary) -- Collection of all registered `State` objects.
37
+ name (str) -- Name of the state machine.
38
+ '''
39
+
40
+ def __init__(self, name, automaton_alphabet):
41
+ self.name = name
42
+ self.automaton_alphabet = automaton_alphabet
43
+ self.states = {} # Contains all the states in the machine.
44
+ self.add_state('start', state_type='s')
45
+
46
+ def add_state(self, state_name, state_type=None, rh_rule=None):
47
+ '''
48
+ Instantiate a state object and stores it in the 'states' dictionary.
49
+
50
+ Arguments:
51
+ state_name (instance of FreeGroupElement or string) -- name of the new states.
52
+ state_type (string) -- Denotes the type (accept/start/dead) of the state added.
53
+ rh_rule (instance of FreeGroupElement) -- right hand rule for dead state.
54
+
55
+ '''
56
+ new_state = State(state_name, self, state_type, rh_rule)
57
+ self.states[state_name] = new_state
58
+
59
+ def __repr__(self):
60
+ return "%s" % (self.name)
venv/lib/python3.10/site-packages/sympy/combinatorics/schur_number.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ The Schur number S(k) is the largest integer n for which the interval [1,n]
3
+ can be partitioned into k sum-free sets.(https://mathworld.wolfram.com/SchurNumber.html)
4
+ """
5
+ import math
6
+ from sympy.core import S
7
+ from sympy.core.basic import Basic
8
+ from sympy.core.function import Function
9
+ from sympy.core.numbers import Integer
10
+
11
+
12
+ class SchurNumber(Function):
13
+ r"""
14
+ This function creates a SchurNumber object
15
+ which is evaluated for `k \le 5` otherwise only
16
+ the lower bound information can be retrieved.
17
+
18
+ Examples
19
+ ========
20
+
21
+ >>> from sympy.combinatorics.schur_number import SchurNumber
22
+
23
+ Since S(3) = 13, hence the output is a number
24
+ >>> SchurNumber(3)
25
+ 13
26
+
27
+ We do not know the Schur number for values greater than 5, hence
28
+ only the object is returned
29
+ >>> SchurNumber(6)
30
+ SchurNumber(6)
31
+
32
+ Now, the lower bound information can be retrieved using lower_bound()
33
+ method
34
+ >>> SchurNumber(6).lower_bound()
35
+ 536
36
+
37
+ """
38
+
39
+ @classmethod
40
+ def eval(cls, k):
41
+ if k.is_Number:
42
+ if k is S.Infinity:
43
+ return S.Infinity
44
+ if k.is_zero:
45
+ return S.Zero
46
+ if not k.is_integer or k.is_negative:
47
+ raise ValueError("k should be a positive integer")
48
+ first_known_schur_numbers = {1: 1, 2: 4, 3: 13, 4: 44, 5: 160}
49
+ if k <= 5:
50
+ return Integer(first_known_schur_numbers[k])
51
+
52
+ def lower_bound(self):
53
+ f_ = self.args[0]
54
+ # Improved lower bounds known for S(6) and S(7)
55
+ if f_ == 6:
56
+ return Integer(536)
57
+ if f_ == 7:
58
+ return Integer(1680)
59
+ # For other cases, use general expression
60
+ if f_.is_Integer:
61
+ return 3*self.func(f_ - 1).lower_bound() - 1
62
+ return (3**f_ - 1)/2
63
+
64
+
65
+ def _schur_subsets_number(n):
66
+
67
+ if n is S.Infinity:
68
+ raise ValueError("Input must be finite")
69
+ if n <= 0:
70
+ raise ValueError("n must be a non-zero positive integer.")
71
+ elif n <= 3:
72
+ min_k = 1
73
+ else:
74
+ min_k = math.ceil(math.log(2*n + 1, 3))
75
+
76
+ return Integer(min_k)
77
+
78
+
79
+ def schur_partition(n):
80
+ """
81
+
82
+ This function returns the partition in the minimum number of sum-free subsets
83
+ according to the lower bound given by the Schur Number.
84
+
85
+ Parameters
86
+ ==========
87
+
88
+ n: a number
89
+ n is the upper limit of the range [1, n] for which we need to find and
90
+ return the minimum number of free subsets according to the lower bound
91
+ of schur number
92
+
93
+ Returns
94
+ =======
95
+
96
+ List of lists
97
+ List of the minimum number of sum-free subsets
98
+
99
+ Notes
100
+ =====
101
+
102
+ It is possible for some n to make the partition into less
103
+ subsets since the only known Schur numbers are:
104
+ S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44.
105
+ e.g for n = 44 the lower bound from the function above is 5 subsets but it has been proven
106
+ that can be done with 4 subsets.
107
+
108
+ Examples
109
+ ========
110
+
111
+ For n = 1, 2, 3 the answer is the set itself
112
+
113
+ >>> from sympy.combinatorics.schur_number import schur_partition
114
+ >>> schur_partition(2)
115
+ [[1, 2]]
116
+
117
+ For n > 3, the answer is the minimum number of sum-free subsets:
118
+
119
+ >>> schur_partition(5)
120
+ [[3, 2], [5], [1, 4]]
121
+
122
+ >>> schur_partition(8)
123
+ [[3, 2], [6, 5, 8], [1, 4, 7]]
124
+ """
125
+
126
+ if isinstance(n, Basic) and not n.is_Number:
127
+ raise ValueError("Input value must be a number")
128
+
129
+ number_of_subsets = _schur_subsets_number(n)
130
+ if n == 1:
131
+ sum_free_subsets = [[1]]
132
+ elif n == 2:
133
+ sum_free_subsets = [[1, 2]]
134
+ elif n == 3:
135
+ sum_free_subsets = [[1, 2, 3]]
136
+ else:
137
+ sum_free_subsets = [[1, 4], [2, 3]]
138
+
139
+ while len(sum_free_subsets) < number_of_subsets:
140
+ sum_free_subsets = _generate_next_list(sum_free_subsets, n)
141
+ missed_elements = [3*k + 1 for k in range(len(sum_free_subsets), (n-1)//3 + 1)]
142
+ sum_free_subsets[-1] += missed_elements
143
+
144
+ return sum_free_subsets
145
+
146
+
147
+ def _generate_next_list(current_list, n):
148
+ new_list = []
149
+
150
+ for item in current_list:
151
+ temp_1 = [number*3 for number in item if number*3 <= n]
152
+ temp_2 = [number*3 - 1 for number in item if number*3 - 1 <= n]
153
+ new_item = temp_1 + temp_2
154
+ new_list.append(new_item)
155
+
156
+ last_list = [3*k + 1 for k in range(len(current_list)+1) if 3*k + 1 <= n]
157
+ new_list.append(last_list)
158
+ current_list = new_list
159
+
160
+ return current_list
venv/lib/python3.10/site-packages/sympy/combinatorics/subsets.py ADDED
@@ -0,0 +1,619 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import combinations
2
+
3
+ from sympy.combinatorics.graycode import GrayCode
4
+
5
+
6
+ class Subset():
7
+ """
8
+ Represents a basic subset object.
9
+
10
+ Explanation
11
+ ===========
12
+
13
+ We generate subsets using essentially two techniques,
14
+ binary enumeration and lexicographic enumeration.
15
+ The Subset class takes two arguments, the first one
16
+ describes the initial subset to consider and the second
17
+ describes the superset.
18
+
19
+ Examples
20
+ ========
21
+
22
+ >>> from sympy.combinatorics import Subset
23
+ >>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
24
+ >>> a.next_binary().subset
25
+ ['b']
26
+ >>> a.prev_binary().subset
27
+ ['c']
28
+ """
29
+
30
+ _rank_binary = None
31
+ _rank_lex = None
32
+ _rank_graycode = None
33
+ _subset = None
34
+ _superset = None
35
+
36
+ def __new__(cls, subset, superset):
37
+ """
38
+ Default constructor.
39
+
40
+ It takes the ``subset`` and its ``superset`` as its parameters.
41
+
42
+ Examples
43
+ ========
44
+
45
+ >>> from sympy.combinatorics import Subset
46
+ >>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
47
+ >>> a.subset
48
+ ['c', 'd']
49
+ >>> a.superset
50
+ ['a', 'b', 'c', 'd']
51
+ >>> a.size
52
+ 2
53
+ """
54
+ if len(subset) > len(superset):
55
+ raise ValueError('Invalid arguments have been provided. The '
56
+ 'superset must be larger than the subset.')
57
+ for elem in subset:
58
+ if elem not in superset:
59
+ raise ValueError('The superset provided is invalid as it does '
60
+ 'not contain the element {}'.format(elem))
61
+ obj = object.__new__(cls)
62
+ obj._subset = subset
63
+ obj._superset = superset
64
+ return obj
65
+
66
+ def __eq__(self, other):
67
+ """Return a boolean indicating whether a == b on the basis of
68
+ whether both objects are of the class Subset and if the values
69
+ of the subset and superset attributes are the same.
70
+ """
71
+ if not isinstance(other, Subset):
72
+ return NotImplemented
73
+ return self.subset == other.subset and self.superset == other.superset
74
+
75
+ def iterate_binary(self, k):
76
+ """
77
+ This is a helper function. It iterates over the
78
+ binary subsets by ``k`` steps. This variable can be
79
+ both positive or negative.
80
+
81
+ Examples
82
+ ========
83
+
84
+ >>> from sympy.combinatorics import Subset
85
+ >>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
86
+ >>> a.iterate_binary(-2).subset
87
+ ['d']
88
+ >>> a = Subset(['a', 'b', 'c'], ['a', 'b', 'c', 'd'])
89
+ >>> a.iterate_binary(2).subset
90
+ []
91
+
92
+ See Also
93
+ ========
94
+
95
+ next_binary, prev_binary
96
+ """
97
+ bin_list = Subset.bitlist_from_subset(self.subset, self.superset)
98
+ n = (int(''.join(bin_list), 2) + k) % 2**self.superset_size
99
+ bits = bin(n)[2:].rjust(self.superset_size, '0')
100
+ return Subset.subset_from_bitlist(self.superset, bits)
101
+
102
+ def next_binary(self):
103
+ """
104
+ Generates the next binary ordered subset.
105
+
106
+ Examples
107
+ ========
108
+
109
+ >>> from sympy.combinatorics import Subset
110
+ >>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
111
+ >>> a.next_binary().subset
112
+ ['b']
113
+ >>> a = Subset(['a', 'b', 'c', 'd'], ['a', 'b', 'c', 'd'])
114
+ >>> a.next_binary().subset
115
+ []
116
+
117
+ See Also
118
+ ========
119
+
120
+ prev_binary, iterate_binary
121
+ """
122
+ return self.iterate_binary(1)
123
+
124
+ def prev_binary(self):
125
+ """
126
+ Generates the previous binary ordered subset.
127
+
128
+ Examples
129
+ ========
130
+
131
+ >>> from sympy.combinatorics import Subset
132
+ >>> a = Subset([], ['a', 'b', 'c', 'd'])
133
+ >>> a.prev_binary().subset
134
+ ['a', 'b', 'c', 'd']
135
+ >>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
136
+ >>> a.prev_binary().subset
137
+ ['c']
138
+
139
+ See Also
140
+ ========
141
+
142
+ next_binary, iterate_binary
143
+ """
144
+ return self.iterate_binary(-1)
145
+
146
+ def next_lexicographic(self):
147
+ """
148
+ Generates the next lexicographically ordered subset.
149
+
150
+ Examples
151
+ ========
152
+
153
+ >>> from sympy.combinatorics import Subset
154
+ >>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
155
+ >>> a.next_lexicographic().subset
156
+ ['d']
157
+ >>> a = Subset(['d'], ['a', 'b', 'c', 'd'])
158
+ >>> a.next_lexicographic().subset
159
+ []
160
+
161
+ See Also
162
+ ========
163
+
164
+ prev_lexicographic
165
+ """
166
+ i = self.superset_size - 1
167
+ indices = Subset.subset_indices(self.subset, self.superset)
168
+
169
+ if i in indices:
170
+ if i - 1 in indices:
171
+ indices.remove(i - 1)
172
+ else:
173
+ indices.remove(i)
174
+ i = i - 1
175
+ while i >= 0 and i not in indices:
176
+ i = i - 1
177
+ if i >= 0:
178
+ indices.remove(i)
179
+ indices.append(i+1)
180
+ else:
181
+ while i not in indices and i >= 0:
182
+ i = i - 1
183
+ indices.append(i + 1)
184
+
185
+ ret_set = []
186
+ super_set = self.superset
187
+ for i in indices:
188
+ ret_set.append(super_set[i])
189
+ return Subset(ret_set, super_set)
190
+
191
+ def prev_lexicographic(self):
192
+ """
193
+ Generates the previous lexicographically ordered subset.
194
+
195
+ Examples
196
+ ========
197
+
198
+ >>> from sympy.combinatorics import Subset
199
+ >>> a = Subset([], ['a', 'b', 'c', 'd'])
200
+ >>> a.prev_lexicographic().subset
201
+ ['d']
202
+ >>> a = Subset(['c','d'], ['a', 'b', 'c', 'd'])
203
+ >>> a.prev_lexicographic().subset
204
+ ['c']
205
+
206
+ See Also
207
+ ========
208
+
209
+ next_lexicographic
210
+ """
211
+ i = self.superset_size - 1
212
+ indices = Subset.subset_indices(self.subset, self.superset)
213
+
214
+ while i >= 0 and i not in indices:
215
+ i = i - 1
216
+
217
+ if i == 0 or i - 1 in indices:
218
+ indices.remove(i)
219
+ else:
220
+ if i >= 0:
221
+ indices.remove(i)
222
+ indices.append(i - 1)
223
+ indices.append(self.superset_size - 1)
224
+
225
+ ret_set = []
226
+ super_set = self.superset
227
+ for i in indices:
228
+ ret_set.append(super_set[i])
229
+ return Subset(ret_set, super_set)
230
+
231
+ def iterate_graycode(self, k):
232
+ """
233
+ Helper function used for prev_gray and next_gray.
234
+ It performs ``k`` step overs to get the respective Gray codes.
235
+
236
+ Examples
237
+ ========
238
+
239
+ >>> from sympy.combinatorics import Subset
240
+ >>> a = Subset([1, 2, 3], [1, 2, 3, 4])
241
+ >>> a.iterate_graycode(3).subset
242
+ [1, 4]
243
+ >>> a.iterate_graycode(-2).subset
244
+ [1, 2, 4]
245
+
246
+ See Also
247
+ ========
248
+
249
+ next_gray, prev_gray
250
+ """
251
+ unranked_code = GrayCode.unrank(self.superset_size,
252
+ (self.rank_gray + k) % self.cardinality)
253
+ return Subset.subset_from_bitlist(self.superset,
254
+ unranked_code)
255
+
256
+ def next_gray(self):
257
+ """
258
+ Generates the next Gray code ordered subset.
259
+
260
+ Examples
261
+ ========
262
+
263
+ >>> from sympy.combinatorics import Subset
264
+ >>> a = Subset([1, 2, 3], [1, 2, 3, 4])
265
+ >>> a.next_gray().subset
266
+ [1, 3]
267
+
268
+ See Also
269
+ ========
270
+
271
+ iterate_graycode, prev_gray
272
+ """
273
+ return self.iterate_graycode(1)
274
+
275
+ def prev_gray(self):
276
+ """
277
+ Generates the previous Gray code ordered subset.
278
+
279
+ Examples
280
+ ========
281
+
282
+ >>> from sympy.combinatorics import Subset
283
+ >>> a = Subset([2, 3, 4], [1, 2, 3, 4, 5])
284
+ >>> a.prev_gray().subset
285
+ [2, 3, 4, 5]
286
+
287
+ See Also
288
+ ========
289
+
290
+ iterate_graycode, next_gray
291
+ """
292
+ return self.iterate_graycode(-1)
293
+
294
+ @property
295
+ def rank_binary(self):
296
+ """
297
+ Computes the binary ordered rank.
298
+
299
+ Examples
300
+ ========
301
+
302
+ >>> from sympy.combinatorics import Subset
303
+ >>> a = Subset([], ['a','b','c','d'])
304
+ >>> a.rank_binary
305
+ 0
306
+ >>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
307
+ >>> a.rank_binary
308
+ 3
309
+
310
+ See Also
311
+ ========
312
+
313
+ iterate_binary, unrank_binary
314
+ """
315
+ if self._rank_binary is None:
316
+ self._rank_binary = int("".join(
317
+ Subset.bitlist_from_subset(self.subset,
318
+ self.superset)), 2)
319
+ return self._rank_binary
320
+
321
+ @property
322
+ def rank_lexicographic(self):
323
+ """
324
+ Computes the lexicographic ranking of the subset.
325
+
326
+ Examples
327
+ ========
328
+
329
+ >>> from sympy.combinatorics import Subset
330
+ >>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
331
+ >>> a.rank_lexicographic
332
+ 14
333
+ >>> a = Subset([2, 4, 5], [1, 2, 3, 4, 5, 6])
334
+ >>> a.rank_lexicographic
335
+ 43
336
+ """
337
+ if self._rank_lex is None:
338
+ def _ranklex(self, subset_index, i, n):
339
+ if subset_index == [] or i > n:
340
+ return 0
341
+ if i in subset_index:
342
+ subset_index.remove(i)
343
+ return 1 + _ranklex(self, subset_index, i + 1, n)
344
+ return 2**(n - i - 1) + _ranklex(self, subset_index, i + 1, n)
345
+ indices = Subset.subset_indices(self.subset, self.superset)
346
+ self._rank_lex = _ranklex(self, indices, 0, self.superset_size)
347
+ return self._rank_lex
348
+
349
+ @property
350
+ def rank_gray(self):
351
+ """
352
+ Computes the Gray code ranking of the subset.
353
+
354
+ Examples
355
+ ========
356
+
357
+ >>> from sympy.combinatorics import Subset
358
+ >>> a = Subset(['c','d'], ['a','b','c','d'])
359
+ >>> a.rank_gray
360
+ 2
361
+ >>> a = Subset([2, 4, 5], [1, 2, 3, 4, 5, 6])
362
+ >>> a.rank_gray
363
+ 27
364
+
365
+ See Also
366
+ ========
367
+
368
+ iterate_graycode, unrank_gray
369
+ """
370
+ if self._rank_graycode is None:
371
+ bits = Subset.bitlist_from_subset(self.subset, self.superset)
372
+ self._rank_graycode = GrayCode(len(bits), start=bits).rank
373
+ return self._rank_graycode
374
+
375
+ @property
376
+ def subset(self):
377
+ """
378
+ Gets the subset represented by the current instance.
379
+
380
+ Examples
381
+ ========
382
+
383
+ >>> from sympy.combinatorics import Subset
384
+ >>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
385
+ >>> a.subset
386
+ ['c', 'd']
387
+
388
+ See Also
389
+ ========
390
+
391
+ superset, size, superset_size, cardinality
392
+ """
393
+ return self._subset
394
+
395
+ @property
396
+ def size(self):
397
+ """
398
+ Gets the size of the subset.
399
+
400
+ Examples
401
+ ========
402
+
403
+ >>> from sympy.combinatorics import Subset
404
+ >>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
405
+ >>> a.size
406
+ 2
407
+
408
+ See Also
409
+ ========
410
+
411
+ subset, superset, superset_size, cardinality
412
+ """
413
+ return len(self.subset)
414
+
415
+ @property
416
+ def superset(self):
417
+ """
418
+ Gets the superset of the subset.
419
+
420
+ Examples
421
+ ========
422
+
423
+ >>> from sympy.combinatorics import Subset
424
+ >>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
425
+ >>> a.superset
426
+ ['a', 'b', 'c', 'd']
427
+
428
+ See Also
429
+ ========
430
+
431
+ subset, size, superset_size, cardinality
432
+ """
433
+ return self._superset
434
+
435
+ @property
436
+ def superset_size(self):
437
+ """
438
+ Returns the size of the superset.
439
+
440
+ Examples
441
+ ========
442
+
443
+ >>> from sympy.combinatorics import Subset
444
+ >>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
445
+ >>> a.superset_size
446
+ 4
447
+
448
+ See Also
449
+ ========
450
+
451
+ subset, superset, size, cardinality
452
+ """
453
+ return len(self.superset)
454
+
455
+ @property
456
+ def cardinality(self):
457
+ """
458
+ Returns the number of all possible subsets.
459
+
460
+ Examples
461
+ ========
462
+
463
+ >>> from sympy.combinatorics import Subset
464
+ >>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
465
+ >>> a.cardinality
466
+ 16
467
+
468
+ See Also
469
+ ========
470
+
471
+ subset, superset, size, superset_size
472
+ """
473
+ return 2**(self.superset_size)
474
+
475
+ @classmethod
476
+ def subset_from_bitlist(self, super_set, bitlist):
477
+ """
478
+ Gets the subset defined by the bitlist.
479
+
480
+ Examples
481
+ ========
482
+
483
+ >>> from sympy.combinatorics import Subset
484
+ >>> Subset.subset_from_bitlist(['a', 'b', 'c', 'd'], '0011').subset
485
+ ['c', 'd']
486
+
487
+ See Also
488
+ ========
489
+
490
+ bitlist_from_subset
491
+ """
492
+ if len(super_set) != len(bitlist):
493
+ raise ValueError("The sizes of the lists are not equal")
494
+ ret_set = []
495
+ for i in range(len(bitlist)):
496
+ if bitlist[i] == '1':
497
+ ret_set.append(super_set[i])
498
+ return Subset(ret_set, super_set)
499
+
500
+ @classmethod
501
+ def bitlist_from_subset(self, subset, superset):
502
+ """
503
+ Gets the bitlist corresponding to a subset.
504
+
505
+ Examples
506
+ ========
507
+
508
+ >>> from sympy.combinatorics import Subset
509
+ >>> Subset.bitlist_from_subset(['c', 'd'], ['a', 'b', 'c', 'd'])
510
+ '0011'
511
+
512
+ See Also
513
+ ========
514
+
515
+ subset_from_bitlist
516
+ """
517
+ bitlist = ['0'] * len(superset)
518
+ if isinstance(subset, Subset):
519
+ subset = subset.subset
520
+ for i in Subset.subset_indices(subset, superset):
521
+ bitlist[i] = '1'
522
+ return ''.join(bitlist)
523
+
524
+ @classmethod
525
+ def unrank_binary(self, rank, superset):
526
+ """
527
+ Gets the binary ordered subset of the specified rank.
528
+
529
+ Examples
530
+ ========
531
+
532
+ >>> from sympy.combinatorics import Subset
533
+ >>> Subset.unrank_binary(4, ['a', 'b', 'c', 'd']).subset
534
+ ['b']
535
+
536
+ See Also
537
+ ========
538
+
539
+ iterate_binary, rank_binary
540
+ """
541
+ bits = bin(rank)[2:].rjust(len(superset), '0')
542
+ return Subset.subset_from_bitlist(superset, bits)
543
+
544
+ @classmethod
545
+ def unrank_gray(self, rank, superset):
546
+ """
547
+ Gets the Gray code ordered subset of the specified rank.
548
+
549
+ Examples
550
+ ========
551
+
552
+ >>> from sympy.combinatorics import Subset
553
+ >>> Subset.unrank_gray(4, ['a', 'b', 'c']).subset
554
+ ['a', 'b']
555
+ >>> Subset.unrank_gray(0, ['a', 'b', 'c']).subset
556
+ []
557
+
558
+ See Also
559
+ ========
560
+
561
+ iterate_graycode, rank_gray
562
+ """
563
+ graycode_bitlist = GrayCode.unrank(len(superset), rank)
564
+ return Subset.subset_from_bitlist(superset, graycode_bitlist)
565
+
566
+ @classmethod
567
+ def subset_indices(self, subset, superset):
568
+ """Return indices of subset in superset in a list; the list is empty
569
+ if all elements of ``subset`` are not in ``superset``.
570
+
571
+ Examples
572
+ ========
573
+
574
+ >>> from sympy.combinatorics import Subset
575
+ >>> superset = [1, 3, 2, 5, 4]
576
+ >>> Subset.subset_indices([3, 2, 1], superset)
577
+ [1, 2, 0]
578
+ >>> Subset.subset_indices([1, 6], superset)
579
+ []
580
+ >>> Subset.subset_indices([], superset)
581
+ []
582
+
583
+ """
584
+ a, b = superset, subset
585
+ sb = set(b)
586
+ d = {}
587
+ for i, ai in enumerate(a):
588
+ if ai in sb:
589
+ d[ai] = i
590
+ sb.remove(ai)
591
+ if not sb:
592
+ break
593
+ else:
594
+ return []
595
+ return [d[bi] for bi in b]
596
+
597
+
598
+ def ksubsets(superset, k):
599
+ """
600
+ Finds the subsets of size ``k`` in lexicographic order.
601
+
602
+ This uses the itertools generator.
603
+
604
+ Examples
605
+ ========
606
+
607
+ >>> from sympy.combinatorics.subsets import ksubsets
608
+ >>> list(ksubsets([1, 2, 3], 2))
609
+ [(1, 2), (1, 3), (2, 3)]
610
+ >>> list(ksubsets([1, 2, 3, 4, 5], 2))
611
+ [(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), \
612
+ (2, 5), (3, 4), (3, 5), (4, 5)]
613
+
614
+ See Also
615
+ ========
616
+
617
+ Subset
618
+ """
619
+ return combinations(superset, k)
venv/lib/python3.10/site-packages/sympy/combinatorics/tensor_can.py ADDED
@@ -0,0 +1,1190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics.permutations import Permutation, _af_rmul, \
2
+ _af_invert, _af_new
3
+ from sympy.combinatorics.perm_groups import PermutationGroup, _orbit, \
4
+ _orbit_transversal
5
+ from sympy.combinatorics.util import _distribute_gens_by_base, \
6
+ _orbits_transversals_from_bsgs
7
+
8
+ """
9
+ References for tensor canonicalization:
10
+
11
+ [1] R. Portugal "Algorithmic simplification of tensor expressions",
12
+ J. Phys. A 32 (1999) 7779-7789
13
+
14
+ [2] R. Portugal, B.F. Svaiter "Group-theoretic Approach for Symbolic
15
+ Tensor Manipulation: I. Free Indices"
16
+ arXiv:math-ph/0107031v1
17
+
18
+ [3] L.R.U. Manssur, R. Portugal "Group-theoretic Approach for Symbolic
19
+ Tensor Manipulation: II. Dummy Indices"
20
+ arXiv:math-ph/0107032v1
21
+
22
+ [4] xperm.c part of XPerm written by J. M. Martin-Garcia
23
+ http://www.xact.es/index.html
24
+ """
25
+
26
+
27
+ def dummy_sgs(dummies, sym, n):
28
+ """
29
+ Return the strong generators for dummy indices.
30
+
31
+ Parameters
32
+ ==========
33
+
34
+ dummies : List of dummy indices.
35
+ `dummies[2k], dummies[2k+1]` are paired indices.
36
+ In base form, the dummy indices are always in
37
+ consecutive positions.
38
+ sym : symmetry under interchange of contracted dummies::
39
+ * None no symmetry
40
+ * 0 commuting
41
+ * 1 anticommuting
42
+
43
+ n : number of indices
44
+
45
+ Examples
46
+ ========
47
+
48
+ >>> from sympy.combinatorics.tensor_can import dummy_sgs
49
+ >>> dummy_sgs(list(range(2, 8)), 0, 8)
50
+ [[0, 1, 3, 2, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 5, 4, 6, 7, 8, 9],
51
+ [0, 1, 2, 3, 4, 5, 7, 6, 8, 9], [0, 1, 4, 5, 2, 3, 6, 7, 8, 9],
52
+ [0, 1, 2, 3, 6, 7, 4, 5, 8, 9]]
53
+ """
54
+ if len(dummies) > n:
55
+ raise ValueError("List too large")
56
+ res = []
57
+ # exchange of contravariant and covariant indices
58
+ if sym is not None:
59
+ for j in dummies[::2]:
60
+ a = list(range(n + 2))
61
+ if sym == 1:
62
+ a[n] = n + 1
63
+ a[n + 1] = n
64
+ a[j], a[j + 1] = a[j + 1], a[j]
65
+ res.append(a)
66
+ # rename dummy indices
67
+ for j in dummies[:-3:2]:
68
+ a = list(range(n + 2))
69
+ a[j:j + 4] = a[j + 2], a[j + 3], a[j], a[j + 1]
70
+ res.append(a)
71
+ return res
72
+
73
+
74
+ def _min_dummies(dummies, sym, indices):
75
+ """
76
+ Return list of minima of the orbits of indices in group of dummies.
77
+ See ``double_coset_can_rep`` for the description of ``dummies`` and ``sym``.
78
+ ``indices`` is the initial list of dummy indices.
79
+
80
+ Examples
81
+ ========
82
+
83
+ >>> from sympy.combinatorics.tensor_can import _min_dummies
84
+ >>> _min_dummies([list(range(2, 8))], [0], list(range(10)))
85
+ [0, 1, 2, 2, 2, 2, 2, 2, 8, 9]
86
+ """
87
+ num_types = len(sym)
88
+ m = [min(dx) if dx else None for dx in dummies]
89
+ res = indices[:]
90
+ for i in range(num_types):
91
+ for c, i in enumerate(indices):
92
+ for j in range(num_types):
93
+ if i in dummies[j]:
94
+ res[c] = m[j]
95
+ break
96
+ return res
97
+
98
+
99
+ def _trace_S(s, j, b, S_cosets):
100
+ """
101
+ Return the representative h satisfying s[h[b]] == j
102
+
103
+ If there is not such a representative return None
104
+ """
105
+ for h in S_cosets[b]:
106
+ if s[h[b]] == j:
107
+ return h
108
+ return None
109
+
110
+
111
+ def _trace_D(gj, p_i, Dxtrav):
112
+ """
113
+ Return the representative h satisfying h[gj] == p_i
114
+
115
+ If there is not such a representative return None
116
+ """
117
+ for h in Dxtrav:
118
+ if h[gj] == p_i:
119
+ return h
120
+ return None
121
+
122
+
123
+ def _dumx_remove(dumx, dumx_flat, p0):
124
+ """
125
+ remove p0 from dumx
126
+ """
127
+ res = []
128
+ for dx in dumx:
129
+ if p0 not in dx:
130
+ res.append(dx)
131
+ continue
132
+ k = dx.index(p0)
133
+ if k % 2 == 0:
134
+ p0_paired = dx[k + 1]
135
+ else:
136
+ p0_paired = dx[k - 1]
137
+ dx.remove(p0)
138
+ dx.remove(p0_paired)
139
+ dumx_flat.remove(p0)
140
+ dumx_flat.remove(p0_paired)
141
+ res.append(dx)
142
+
143
+
144
+ def transversal2coset(size, base, transversal):
145
+ a = []
146
+ j = 0
147
+ for i in range(size):
148
+ if i in base:
149
+ a.append(sorted(transversal[j].values()))
150
+ j += 1
151
+ else:
152
+ a.append([list(range(size))])
153
+ j = len(a) - 1
154
+ while a[j] == [list(range(size))]:
155
+ j -= 1
156
+ return a[:j + 1]
157
+
158
+
159
+ def double_coset_can_rep(dummies, sym, b_S, sgens, S_transversals, g):
160
+ r"""
161
+ Butler-Portugal algorithm for tensor canonicalization with dummy indices.
162
+
163
+ Parameters
164
+ ==========
165
+
166
+ dummies
167
+ list of lists of dummy indices,
168
+ one list for each type of index;
169
+ the dummy indices are put in order contravariant, covariant
170
+ [d0, -d0, d1, -d1, ...].
171
+
172
+ sym
173
+ list of the symmetries of the index metric for each type.
174
+
175
+ possible symmetries of the metrics
176
+ * 0 symmetric
177
+ * 1 antisymmetric
178
+ * None no symmetry
179
+
180
+ b_S
181
+ base of a minimal slot symmetry BSGS.
182
+
183
+ sgens
184
+ generators of the slot symmetry BSGS.
185
+
186
+ S_transversals
187
+ transversals for the slot BSGS.
188
+
189
+ g
190
+ permutation representing the tensor.
191
+
192
+ Returns
193
+ =======
194
+
195
+ Return 0 if the tensor is zero, else return the array form of
196
+ the permutation representing the canonical form of the tensor.
197
+
198
+ Notes
199
+ =====
200
+
201
+ A tensor with dummy indices can be represented in a number
202
+ of equivalent ways which typically grows exponentially with
203
+ the number of indices. To be able to establish if two tensors
204
+ with many indices are equal becomes computationally very slow
205
+ in absence of an efficient algorithm.
206
+
207
+ The Butler-Portugal algorithm [3] is an efficient algorithm to
208
+ put tensors in canonical form, solving the above problem.
209
+
210
+ Portugal observed that a tensor can be represented by a permutation,
211
+ and that the class of tensors equivalent to it under slot and dummy
212
+ symmetries is equivalent to the double coset `D*g*S`
213
+ (Note: in this documentation we use the conventions for multiplication
214
+ of permutations p, q with (p*q)(i) = p[q[i]] which is opposite
215
+ to the one used in the Permutation class)
216
+
217
+ Using the algorithm by Butler to find a representative of the
218
+ double coset one can find a canonical form for the tensor.
219
+
220
+ To see this correspondence,
221
+ let `g` be a permutation in array form; a tensor with indices `ind`
222
+ (the indices including both the contravariant and the covariant ones)
223
+ can be written as
224
+
225
+ `t = T(ind[g[0]], \dots, ind[g[n-1]])`,
226
+
227
+ where `n = len(ind)`;
228
+ `g` has size `n + 2`, the last two indices for the sign of the tensor
229
+ (trick introduced in [4]).
230
+
231
+ A slot symmetry transformation `s` is a permutation acting on the slots
232
+ `t \rightarrow T(ind[(g*s)[0]], \dots, ind[(g*s)[n-1]])`
233
+
234
+ A dummy symmetry transformation acts on `ind`
235
+ `t \rightarrow T(ind[(d*g)[0]], \dots, ind[(d*g)[n-1]])`
236
+
237
+ Being interested only in the transformations of the tensor under
238
+ these symmetries, one can represent the tensor by `g`, which transforms
239
+ as
240
+
241
+ `g -> d*g*s`, so it belongs to the coset `D*g*S`, or in other words
242
+ to the set of all permutations allowed by the slot and dummy symmetries.
243
+
244
+ Let us explain the conventions by an example.
245
+
246
+ Given a tensor `T^{d3 d2 d1}{}_{d1 d2 d3}` with the slot symmetries
247
+ `T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`
248
+
249
+ `T^{a0 a1 a2 a3 a4 a5} = -T^{a4 a1 a2 a3 a0 a5}`
250
+
251
+ and symmetric metric, find the tensor equivalent to it which
252
+ is the lowest under the ordering of indices:
253
+ lexicographic ordering `d1, d2, d3` and then contravariant
254
+ before covariant index; that is the canonical form of the tensor.
255
+
256
+ The canonical form is `-T^{d1 d2 d3}{}_{d1 d2 d3}`
257
+ obtained using `T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`.
258
+
259
+ To convert this problem in the input for this function,
260
+ use the following ordering of the index names
261
+ (- for covariant for short) `d1, -d1, d2, -d2, d3, -d3`
262
+
263
+ `T^{d3 d2 d1}{}_{d1 d2 d3}` corresponds to `g = [4, 2, 0, 1, 3, 5, 6, 7]`
264
+ where the last two indices are for the sign
265
+
266
+ `sgens = [Permutation(0, 2)(6, 7), Permutation(0, 4)(6, 7)]`
267
+
268
+ sgens[0] is the slot symmetry `-(0, 2)`
269
+ `T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`
270
+
271
+ sgens[1] is the slot symmetry `-(0, 4)`
272
+ `T^{a0 a1 a2 a3 a4 a5} = -T^{a4 a1 a2 a3 a0 a5}`
273
+
274
+ The dummy symmetry group D is generated by the strong base generators
275
+ `[(0, 1), (2, 3), (4, 5), (0, 2)(1, 3), (0, 4)(1, 5)]`
276
+ where the first three interchange covariant and contravariant
277
+ positions of the same index (d1 <-> -d1) and the last two interchange
278
+ the dummy indices themselves (d1 <-> d2).
279
+
280
+ The dummy symmetry acts from the left
281
+ `d = [1, 0, 2, 3, 4, 5, 6, 7]` exchange `d1 \leftrightarrow -d1`
282
+ `T^{d3 d2 d1}{}_{d1 d2 d3} == T^{d3 d2}{}_{d1}{}^{d1}{}_{d2 d3}`
283
+
284
+ `g=[4, 2, 0, 1, 3, 5, 6, 7] -> [4, 2, 1, 0, 3, 5, 6, 7] = _af_rmul(d, g)`
285
+ which differs from `_af_rmul(g, d)`.
286
+
287
+ The slot symmetry acts from the right
288
+ `s = [2, 1, 0, 3, 4, 5, 7, 6]` exchanges slots 0 and 2 and changes sign
289
+ `T^{d3 d2 d1}{}_{d1 d2 d3} == -T^{d1 d2 d3}{}_{d1 d2 d3}`
290
+
291
+ `g=[4,2,0,1,3,5,6,7] -> [0, 2, 4, 1, 3, 5, 7, 6] = _af_rmul(g, s)`
292
+
293
+ Example in which the tensor is zero, same slot symmetries as above:
294
+ `T^{d2}{}_{d1 d3}{}^{d1 d3}{}_{d2}`
295
+
296
+ `= -T^{d3}{}_{d1 d3}{}^{d1 d2}{}_{d2}` under slot symmetry `-(0,4)`;
297
+
298
+ `= T_{d3 d1}{}^{d3}{}^{d1 d2}{}_{d2}` under slot symmetry `-(0,2)`;
299
+
300
+ `= T^{d3}{}_{d1 d3}{}^{d1 d2}{}_{d2}` symmetric metric;
301
+
302
+ `= 0` since two of these lines have tensors differ only for the sign.
303
+
304
+ The double coset D*g*S consists of permutations `h = d*g*s` corresponding
305
+ to equivalent tensors; if there are two `h` which are the same apart
306
+ from the sign, return zero; otherwise
307
+ choose as representative the tensor with indices
308
+ ordered lexicographically according to `[d1, -d1, d2, -d2, d3, -d3]`
309
+ that is ``rep = min(D*g*S) = min([d*g*s for d in D for s in S])``
310
+
311
+ The indices are fixed one by one; first choose the lowest index
312
+ for slot 0, then the lowest remaining index for slot 1, etc.
313
+ Doing this one obtains a chain of stabilizers
314
+
315
+ `S \rightarrow S_{b0} \rightarrow S_{b0,b1} \rightarrow \dots` and
316
+ `D \rightarrow D_{p0} \rightarrow D_{p0,p1} \rightarrow \dots`
317
+
318
+ where ``[b0, b1, ...] = range(b)`` is a base of the symmetric group;
319
+ the strong base `b_S` of S is an ordered sublist of it;
320
+ therefore it is sufficient to compute once the
321
+ strong base generators of S using the Schreier-Sims algorithm;
322
+ the stabilizers of the strong base generators are the
323
+ strong base generators of the stabilizer subgroup.
324
+
325
+ ``dbase = [p0, p1, ...]`` is not in general in lexicographic order,
326
+ so that one must recompute the strong base generators each time;
327
+ however this is trivial, there is no need to use the Schreier-Sims
328
+ algorithm for D.
329
+
330
+ The algorithm keeps a TAB of elements `(s_i, d_i, h_i)`
331
+ where `h_i = d_i \times g \times s_i` satisfying `h_i[j] = p_j` for `0 \le j < i`
332
+ starting from `s_0 = id, d_0 = id, h_0 = g`.
333
+
334
+ The equations `h_0[0] = p_0, h_1[1] = p_1, \dots` are solved in this order,
335
+ choosing each time the lowest possible value of p_i
336
+
337
+ For `j < i`
338
+ `d_i*g*s_i*S_{b_0, \dots, b_{i-1}}*b_j = D_{p_0, \dots, p_{i-1}}*p_j`
339
+ so that for dx in `D_{p_0,\dots,p_{i-1}}` and sx in
340
+ `S_{base[0], \dots, base[i-1]}` one has `dx*d_i*g*s_i*sx*b_j = p_j`
341
+
342
+ Search for dx, sx such that this equation holds for `j = i`;
343
+ it can be written as `s_i*sx*b_j = J, dx*d_i*g*J = p_j`
344
+ `sx*b_j = s_i**-1*J; sx = trace(s_i**-1, S_{b_0,...,b_{i-1}})`
345
+ `dx**-1*p_j = d_i*g*J; dx = trace(d_i*g*J, D_{p_0,...,p_{i-1}})`
346
+
347
+ `s_{i+1} = s_i*trace(s_i**-1*J, S_{b_0,...,b_{i-1}})`
348
+ `d_{i+1} = trace(d_i*g*J, D_{p_0,...,p_{i-1}})**-1*d_i`
349
+ `h_{i+1}*b_i = d_{i+1}*g*s_{i+1}*b_i = p_i`
350
+
351
+ `h_n*b_j = p_j` for all j, so that `h_n` is the solution.
352
+
353
+ Add the found `(s, d, h)` to TAB1.
354
+
355
+ At the end of the iteration sort TAB1 with respect to the `h`;
356
+ if there are two consecutive `h` in TAB1 which differ only for the
357
+ sign, the tensor is zero, so return 0;
358
+ if there are two consecutive `h` which are equal, keep only one.
359
+
360
+ Then stabilize the slot generators under `i` and the dummy generators
361
+ under `p_i`.
362
+
363
+ Assign `TAB = TAB1` at the end of the iteration step.
364
+
365
+ At the end `TAB` contains a unique `(s, d, h)`, since all the slots
366
+ of the tensor `h` have been fixed to have the minimum value according
367
+ to the symmetries. The algorithm returns `h`.
368
+
369
+ It is important that the slot BSGS has lexicographic minimal base,
370
+ otherwise there is an `i` which does not belong to the slot base
371
+ for which `p_i` is fixed by the dummy symmetry only, while `i`
372
+ is not invariant from the slot stabilizer, so `p_i` is not in
373
+ general the minimal value.
374
+
375
+ This algorithm differs slightly from the original algorithm [3]:
376
+ the canonical form is minimal lexicographically, and
377
+ the BSGS has minimal base under lexicographic order.
378
+ Equal tensors `h` are eliminated from TAB.
379
+
380
+
381
+ Examples
382
+ ========
383
+
384
+ >>> from sympy.combinatorics.permutations import Permutation
385
+ >>> from sympy.combinatorics.tensor_can import double_coset_can_rep, get_transversals
386
+ >>> gens = [Permutation(x) for x in [[2, 1, 0, 3, 4, 5, 7, 6], [4, 1, 2, 3, 0, 5, 7, 6]]]
387
+ >>> base = [0, 2]
388
+ >>> g = Permutation([4, 2, 0, 1, 3, 5, 6, 7])
389
+ >>> transversals = get_transversals(base, gens)
390
+ >>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
391
+ [0, 1, 2, 3, 4, 5, 7, 6]
392
+
393
+ >>> g = Permutation([4, 1, 3, 0, 5, 2, 6, 7])
394
+ >>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
395
+ 0
396
+ """
397
+ size = g.size
398
+ g = g.array_form
399
+ num_dummies = size - 2
400
+ indices = list(range(num_dummies))
401
+ all_metrics_with_sym = not any(_ is None for _ in sym)
402
+ num_types = len(sym)
403
+ dumx = dummies[:]
404
+ dumx_flat = []
405
+ for dx in dumx:
406
+ dumx_flat.extend(dx)
407
+ b_S = b_S[:]
408
+ sgensx = [h._array_form for h in sgens]
409
+ if b_S:
410
+ S_transversals = transversal2coset(size, b_S, S_transversals)
411
+ # strong generating set for D
412
+ dsgsx = []
413
+ for i in range(num_types):
414
+ dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies))
415
+ idn = list(range(size))
416
+ # TAB = list of entries (s, d, h) where h = _af_rmuln(d,g,s)
417
+ # for short, in the following d*g*s means _af_rmuln(d,g,s)
418
+ TAB = [(idn, idn, g)]
419
+ for i in range(size - 2):
420
+ b = i
421
+ testb = b in b_S and sgensx
422
+ if testb:
423
+ sgensx1 = [_af_new(_) for _ in sgensx]
424
+ deltab = _orbit(size, sgensx1, b)
425
+ else:
426
+ deltab = {b}
427
+ # p1 = min(IMAGES) = min(Union D_p*h*deltab for h in TAB)
428
+ if all_metrics_with_sym:
429
+ md = _min_dummies(dumx, sym, indices)
430
+ else:
431
+ md = [min(_orbit(size, [_af_new(
432
+ ddx) for ddx in dsgsx], ii)) for ii in range(size - 2)]
433
+
434
+ p_i = min([min([md[h[x]] for x in deltab]) for s, d, h in TAB])
435
+ dsgsx1 = [_af_new(_) for _ in dsgsx]
436
+ Dxtrav = _orbit_transversal(size, dsgsx1, p_i, False, af=True) \
437
+ if dsgsx else None
438
+ if Dxtrav:
439
+ Dxtrav = [_af_invert(x) for x in Dxtrav]
440
+ # compute the orbit of p_i
441
+ for ii in range(num_types):
442
+ if p_i in dumx[ii]:
443
+ # the orbit is made by all the indices in dum[ii]
444
+ if sym[ii] is not None:
445
+ deltap = dumx[ii]
446
+ else:
447
+ # the orbit is made by all the even indices if p_i
448
+ # is even, by all the odd indices if p_i is odd
449
+ p_i_index = dumx[ii].index(p_i) % 2
450
+ deltap = dumx[ii][p_i_index::2]
451
+ break
452
+ else:
453
+ deltap = [p_i]
454
+ TAB1 = []
455
+ while TAB:
456
+ s, d, h = TAB.pop()
457
+ if min([md[h[x]] for x in deltab]) != p_i:
458
+ continue
459
+ deltab1 = [x for x in deltab if md[h[x]] == p_i]
460
+ # NEXT = s*deltab1 intersection (d*g)**-1*deltap
461
+ dg = _af_rmul(d, g)
462
+ dginv = _af_invert(dg)
463
+ sdeltab = [s[x] for x in deltab1]
464
+ gdeltap = [dginv[x] for x in deltap]
465
+ NEXT = [x for x in sdeltab if x in gdeltap]
466
+ # d, s satisfy
467
+ # d*g*s*base[i-1] = p_{i-1}; using the stabilizers
468
+ # d*g*s*S_{base[0],...,base[i-1]}*base[i-1] =
469
+ # D_{p_0,...,p_{i-1}}*p_{i-1}
470
+ # so that to find d1, s1 satisfying d1*g*s1*b = p_i
471
+ # one can look for dx in D_{p_0,...,p_{i-1}} and
472
+ # sx in S_{base[0],...,base[i-1]}
473
+ # d1 = dx*d; s1 = s*sx
474
+ # d1*g*s1*b = dx*d*g*s*sx*b = p_i
475
+ for j in NEXT:
476
+ if testb:
477
+ # solve s1*b = j with s1 = s*sx for some element sx
478
+ # of the stabilizer of ..., base[i-1]
479
+ # sx*b = s**-1*j; sx = _trace_S(s, j,...)
480
+ # s1 = s*trace_S(s**-1*j,...)
481
+ s1 = _trace_S(s, j, b, S_transversals)
482
+ if not s1:
483
+ continue
484
+ else:
485
+ s1 = [s[ix] for ix in s1]
486
+ else:
487
+ s1 = s
488
+ # assert s1[b] == j # invariant
489
+ # solve d1*g*j = p_i with d1 = dx*d for some element dg
490
+ # of the stabilizer of ..., p_{i-1}
491
+ # dx**-1*p_i = d*g*j; dx**-1 = trace_D(d*g*j,...)
492
+ # d1 = trace_D(d*g*j,...)**-1*d
493
+ # to save an inversion in the inner loop; notice we did
494
+ # Dxtrav = [perm_af_invert(x) for x in Dxtrav] out of the loop
495
+ if Dxtrav:
496
+ d1 = _trace_D(dg[j], p_i, Dxtrav)
497
+ if not d1:
498
+ continue
499
+ else:
500
+ if p_i != dg[j]:
501
+ continue
502
+ d1 = idn
503
+ assert d1[dg[j]] == p_i # invariant
504
+ d1 = [d1[ix] for ix in d]
505
+ h1 = [d1[g[ix]] for ix in s1]
506
+ # assert h1[b] == p_i # invariant
507
+ TAB1.append((s1, d1, h1))
508
+
509
+ # if TAB contains equal permutations, keep only one of them;
510
+ # if TAB contains equal permutations up to the sign, return 0
511
+ TAB1.sort(key=lambda x: x[-1])
512
+ prev = [0] * size
513
+ while TAB1:
514
+ s, d, h = TAB1.pop()
515
+ if h[:-2] == prev[:-2]:
516
+ if h[-1] != prev[-1]:
517
+ return 0
518
+ else:
519
+ TAB.append((s, d, h))
520
+ prev = h
521
+
522
+ # stabilize the SGS
523
+ sgensx = [h for h in sgensx if h[b] == b]
524
+ if b in b_S:
525
+ b_S.remove(b)
526
+ _dumx_remove(dumx, dumx_flat, p_i)
527
+ dsgsx = []
528
+ for i in range(num_types):
529
+ dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies))
530
+ return TAB[0][-1]
531
+
532
+
533
+ def canonical_free(base, gens, g, num_free):
534
+ """
535
+ Canonicalization of a tensor with respect to free indices
536
+ choosing the minimum with respect to lexicographical ordering
537
+ in the free indices.
538
+
539
+ Explanation
540
+ ===========
541
+
542
+ ``base``, ``gens`` BSGS for slot permutation group
543
+ ``g`` permutation representing the tensor
544
+ ``num_free`` number of free indices
545
+ The indices must be ordered with first the free indices
546
+
547
+ See explanation in double_coset_can_rep
548
+ The algorithm is a variation of the one given in [2].
549
+
550
+ Examples
551
+ ========
552
+
553
+ >>> from sympy.combinatorics import Permutation
554
+ >>> from sympy.combinatorics.tensor_can import canonical_free
555
+ >>> gens = [[1, 0, 2, 3, 5, 4], [2, 3, 0, 1, 4, 5],[0, 1, 3, 2, 5, 4]]
556
+ >>> gens = [Permutation(h) for h in gens]
557
+ >>> base = [0, 2]
558
+ >>> g = Permutation([2, 1, 0, 3, 4, 5])
559
+ >>> canonical_free(base, gens, g, 4)
560
+ [0, 3, 1, 2, 5, 4]
561
+
562
+ Consider the product of Riemann tensors
563
+ ``T = R^{a}_{d0}^{d1,d2}*R_{d2,d1}^{d0,b}``
564
+ The order of the indices is ``[a, b, d0, -d0, d1, -d1, d2, -d2]``
565
+ The permutation corresponding to the tensor is
566
+ ``g = [0, 3, 4, 6, 7, 5, 2, 1, 8, 9]``
567
+
568
+ In particular ``a`` is position ``0``, ``b`` is in position ``9``.
569
+ Use the slot symmetries to get `T` is a form which is the minimal
570
+ in lexicographic order in the free indices ``a`` and ``b``, e.g.
571
+ ``-R^{a}_{d0}^{d1,d2}*R^{b,d0}_{d2,d1}`` corresponding to
572
+ ``[0, 3, 4, 6, 1, 2, 7, 5, 9, 8]``
573
+
574
+ >>> from sympy.combinatorics.tensor_can import riemann_bsgs, tensor_gens
575
+ >>> base, gens = riemann_bsgs
576
+ >>> size, sbase, sgens = tensor_gens(base, gens, [[], []], 0)
577
+ >>> g = Permutation([0, 3, 4, 6, 7, 5, 2, 1, 8, 9])
578
+ >>> canonical_free(sbase, [Permutation(h) for h in sgens], g, 2)
579
+ [0, 3, 4, 6, 1, 2, 7, 5, 9, 8]
580
+ """
581
+ g = g.array_form
582
+ size = len(g)
583
+ if not base:
584
+ return g[:]
585
+
586
+ transversals = get_transversals(base, gens)
587
+ for x in sorted(g[:-2]):
588
+ if x not in base:
589
+ base.append(x)
590
+ h = g
591
+ for i, transv in enumerate(transversals):
592
+ h_i = [size]*num_free
593
+ # find the element s in transversals[i] such that
594
+ # _af_rmul(h, s) has its free elements with the lowest position in h
595
+ s = None
596
+ for sk in transv.values():
597
+ h1 = _af_rmul(h, sk)
598
+ hi = [h1.index(ix) for ix in range(num_free)]
599
+ if hi < h_i:
600
+ h_i = hi
601
+ s = sk
602
+ if s:
603
+ h = _af_rmul(h, s)
604
+ return h
605
+
606
+
607
+ def _get_map_slots(size, fixed_slots):
608
+ res = list(range(size))
609
+ pos = 0
610
+ for i in range(size):
611
+ if i in fixed_slots:
612
+ continue
613
+ res[i] = pos
614
+ pos += 1
615
+ return res
616
+
617
+
618
+ def _lift_sgens(size, fixed_slots, free, s):
619
+ a = []
620
+ j = k = 0
621
+ fd = list(zip(fixed_slots, free))
622
+ fd = [y for x, y in sorted(fd)]
623
+ num_free = len(free)
624
+ for i in range(size):
625
+ if i in fixed_slots:
626
+ a.append(fd[k])
627
+ k += 1
628
+ else:
629
+ a.append(s[j] + num_free)
630
+ j += 1
631
+ return a
632
+
633
+
634
+ def canonicalize(g, dummies, msym, *v):
635
+ """
636
+ canonicalize tensor formed by tensors
637
+
638
+ Parameters
639
+ ==========
640
+
641
+ g : permutation representing the tensor
642
+
643
+ dummies : list representing the dummy indices
644
+ it can be a list of dummy indices of the same type
645
+ or a list of lists of dummy indices, one list for each
646
+ type of index;
647
+ the dummy indices must come after the free indices,
648
+ and put in order contravariant, covariant
649
+ [d0, -d0, d1,-d1,...]
650
+
651
+ msym : symmetry of the metric(s)
652
+ it can be an integer or a list;
653
+ in the first case it is the symmetry of the dummy index metric;
654
+ in the second case it is the list of the symmetries of the
655
+ index metric for each type
656
+
657
+ v : list, (base_i, gens_i, n_i, sym_i) for tensors of type `i`
658
+
659
+ base_i, gens_i : BSGS for tensors of this type.
660
+ The BSGS should have minimal base under lexicographic ordering;
661
+ if not, an attempt is made do get the minimal BSGS;
662
+ in case of failure,
663
+ canonicalize_naive is used, which is much slower.
664
+
665
+ n_i : number of tensors of type `i`.
666
+
667
+ sym_i : symmetry under exchange of component tensors of type `i`.
668
+
669
+ Both for msym and sym_i the cases are
670
+ * None no symmetry
671
+ * 0 commuting
672
+ * 1 anticommuting
673
+
674
+ Returns
675
+ =======
676
+
677
+ 0 if the tensor is zero, else return the array form of
678
+ the permutation representing the canonical form of the tensor.
679
+
680
+ Algorithm
681
+ =========
682
+
683
+ First one uses canonical_free to get the minimum tensor under
684
+ lexicographic order, using only the slot symmetries.
685
+ If the component tensors have not minimal BSGS, it is attempted
686
+ to find it; if the attempt fails canonicalize_naive
687
+ is used instead.
688
+
689
+ Compute the residual slot symmetry keeping fixed the free indices
690
+ using tensor_gens(base, gens, list_free_indices, sym).
691
+
692
+ Reduce the problem eliminating the free indices.
693
+
694
+ Then use double_coset_can_rep and lift back the result reintroducing
695
+ the free indices.
696
+
697
+ Examples
698
+ ========
699
+
700
+ one type of index with commuting metric;
701
+
702
+ `A_{a b}` and `B_{a b}` antisymmetric and commuting
703
+
704
+ `T = A_{d0 d1} * B^{d0}{}_{d2} * B^{d2 d1}`
705
+
706
+ `ord = [d0,-d0,d1,-d1,d2,-d2]` order of the indices
707
+
708
+ g = [1, 3, 0, 5, 4, 2, 6, 7]
709
+
710
+ `T_c = 0`
711
+
712
+ >>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize, bsgs_direct_product
713
+ >>> from sympy.combinatorics import Permutation
714
+ >>> base2a, gens2a = get_symmetric_group_sgs(2, 1)
715
+ >>> t0 = (base2a, gens2a, 1, 0)
716
+ >>> t1 = (base2a, gens2a, 2, 0)
717
+ >>> g = Permutation([1, 3, 0, 5, 4, 2, 6, 7])
718
+ >>> canonicalize(g, range(6), 0, t0, t1)
719
+ 0
720
+
721
+ same as above, but with `B_{a b}` anticommuting
722
+
723
+ `T_c = -A^{d0 d1} * B_{d0}{}^{d2} * B_{d1 d2}`
724
+
725
+ can = [0,2,1,4,3,5,7,6]
726
+
727
+ >>> t1 = (base2a, gens2a, 2, 1)
728
+ >>> canonicalize(g, range(6), 0, t0, t1)
729
+ [0, 2, 1, 4, 3, 5, 7, 6]
730
+
731
+ two types of indices `[a,b,c,d,e,f]` and `[m,n]`, in this order,
732
+ both with commuting metric
733
+
734
+ `f^{a b c}` antisymmetric, commuting
735
+
736
+ `A_{m a}` no symmetry, commuting
737
+
738
+ `T = f^c{}_{d a} * f^f{}_{e b} * A_m{}^d * A^{m b} * A_n{}^a * A^{n e}`
739
+
740
+ ord = [c,f,a,-a,b,-b,d,-d,e,-e,m,-m,n,-n]
741
+
742
+ g = [0,7,3, 1,9,5, 11,6, 10,4, 13,2, 12,8, 14,15]
743
+
744
+ The canonical tensor is
745
+ `T_c = -f^{c a b} * f^{f d e} * A^m{}_a * A_{m d} * A^n{}_b * A_{n e}`
746
+
747
+ can = [0,2,4, 1,6,8, 10,3, 11,7, 12,5, 13,9, 15,14]
748
+
749
+ >>> base_f, gens_f = get_symmetric_group_sgs(3, 1)
750
+ >>> base1, gens1 = get_symmetric_group_sgs(1)
751
+ >>> base_A, gens_A = bsgs_direct_product(base1, gens1, base1, gens1)
752
+ >>> t0 = (base_f, gens_f, 2, 0)
753
+ >>> t1 = (base_A, gens_A, 4, 0)
754
+ >>> dummies = [range(2, 10), range(10, 14)]
755
+ >>> g = Permutation([0, 7, 3, 1, 9, 5, 11, 6, 10, 4, 13, 2, 12, 8, 14, 15])
756
+ >>> canonicalize(g, dummies, [0, 0], t0, t1)
757
+ [0, 2, 4, 1, 6, 8, 10, 3, 11, 7, 12, 5, 13, 9, 15, 14]
758
+ """
759
+ from sympy.combinatorics.testutil import canonicalize_naive
760
+ if not isinstance(msym, list):
761
+ if msym not in (0, 1, None):
762
+ raise ValueError('msym must be 0, 1 or None')
763
+ num_types = 1
764
+ else:
765
+ num_types = len(msym)
766
+ if not all(msymx in (0, 1, None) for msymx in msym):
767
+ raise ValueError('msym entries must be 0, 1 or None')
768
+ if len(dummies) != num_types:
769
+ raise ValueError(
770
+ 'dummies and msym must have the same number of elements')
771
+ size = g.size
772
+ num_tensors = 0
773
+ v1 = []
774
+ for base_i, gens_i, n_i, sym_i in v:
775
+ # check that the BSGS is minimal;
776
+ # this property is used in double_coset_can_rep;
777
+ # if it is not minimal use canonicalize_naive
778
+ if not _is_minimal_bsgs(base_i, gens_i):
779
+ mbsgs = get_minimal_bsgs(base_i, gens_i)
780
+ if not mbsgs:
781
+ can = canonicalize_naive(g, dummies, msym, *v)
782
+ return can
783
+ base_i, gens_i = mbsgs
784
+ v1.append((base_i, gens_i, [[]] * n_i, sym_i))
785
+ num_tensors += n_i
786
+
787
+ if num_types == 1 and not isinstance(msym, list):
788
+ dummies = [dummies]
789
+ msym = [msym]
790
+ flat_dummies = []
791
+ for dumx in dummies:
792
+ flat_dummies.extend(dumx)
793
+
794
+ if flat_dummies and flat_dummies != list(range(flat_dummies[0], flat_dummies[-1] + 1)):
795
+ raise ValueError('dummies is not valid')
796
+
797
+ # slot symmetry of the tensor
798
+ size1, sbase, sgens = gens_products(*v1)
799
+ if size != size1:
800
+ raise ValueError(
801
+ 'g has size %d, generators have size %d' % (size, size1))
802
+ free = [i for i in range(size - 2) if i not in flat_dummies]
803
+ num_free = len(free)
804
+
805
+ # g1 minimal tensor under slot symmetry
806
+ g1 = canonical_free(sbase, sgens, g, num_free)
807
+ if not flat_dummies:
808
+ return g1
809
+ # save the sign of g1
810
+ sign = 0 if g1[-1] == size - 1 else 1
811
+
812
+ # the free indices are kept fixed.
813
+ # Determine free_i, the list of slots of tensors which are fixed
814
+ # since they are occupied by free indices, which are fixed.
815
+ start = 0
816
+ for i, (base_i, gens_i, n_i, sym_i) in enumerate(v):
817
+ free_i = []
818
+ len_tens = gens_i[0].size - 2
819
+ # for each component tensor get a list od fixed islots
820
+ for j in range(n_i):
821
+ # get the elements corresponding to the component tensor
822
+ h = g1[start:(start + len_tens)]
823
+ fr = []
824
+ # get the positions of the fixed elements in h
825
+ for k in free:
826
+ if k in h:
827
+ fr.append(h.index(k))
828
+ free_i.append(fr)
829
+ start += len_tens
830
+ v1[i] = (base_i, gens_i, free_i, sym_i)
831
+ # BSGS of the tensor with fixed free indices
832
+ # if tensor_gens fails in gens_product, use canonicalize_naive
833
+ size, sbase, sgens = gens_products(*v1)
834
+
835
+ # reduce the permutations getting rid of the free indices
836
+ pos_free = [g1.index(x) for x in range(num_free)]
837
+ size_red = size - num_free
838
+ g1_red = [x - num_free for x in g1 if x in flat_dummies]
839
+ if sign:
840
+ g1_red.extend([size_red - 1, size_red - 2])
841
+ else:
842
+ g1_red.extend([size_red - 2, size_red - 1])
843
+ map_slots = _get_map_slots(size, pos_free)
844
+ sbase_red = [map_slots[i] for i in sbase if i not in pos_free]
845
+ sgens_red = [_af_new([map_slots[i] for i in y._array_form if i not in pos_free]) for y in sgens]
846
+ dummies_red = [[x - num_free for x in y] for y in dummies]
847
+ transv_red = get_transversals(sbase_red, sgens_red)
848
+ g1_red = _af_new(g1_red)
849
+ g2 = double_coset_can_rep(
850
+ dummies_red, msym, sbase_red, sgens_red, transv_red, g1_red)
851
+ if g2 == 0:
852
+ return 0
853
+ # lift to the case with the free indices
854
+ g3 = _lift_sgens(size, pos_free, free, g2)
855
+ return g3
856
+
857
+
858
+ def perm_af_direct_product(gens1, gens2, signed=True):
859
+ """
860
+ Direct products of the generators gens1 and gens2.
861
+
862
+ Examples
863
+ ========
864
+
865
+ >>> from sympy.combinatorics.tensor_can import perm_af_direct_product
866
+ >>> gens1 = [[1, 0, 2, 3], [0, 1, 3, 2]]
867
+ >>> gens2 = [[1, 0]]
868
+ >>> perm_af_direct_product(gens1, gens2, False)
869
+ [[1, 0, 2, 3, 4, 5], [0, 1, 3, 2, 4, 5], [0, 1, 2, 3, 5, 4]]
870
+ >>> gens1 = [[1, 0, 2, 3, 5, 4], [0, 1, 3, 2, 4, 5]]
871
+ >>> gens2 = [[1, 0, 2, 3]]
872
+ >>> perm_af_direct_product(gens1, gens2, True)
873
+ [[1, 0, 2, 3, 4, 5, 7, 6], [0, 1, 3, 2, 4, 5, 6, 7], [0, 1, 2, 3, 5, 4, 6, 7]]
874
+ """
875
+ gens1 = [list(x) for x in gens1]
876
+ gens2 = [list(x) for x in gens2]
877
+ s = 2 if signed else 0
878
+ n1 = len(gens1[0]) - s
879
+ n2 = len(gens2[0]) - s
880
+ start = list(range(n1))
881
+ end = list(range(n1, n1 + n2))
882
+ if signed:
883
+ gens1 = [gen[:-2] + end + [gen[-2] + n2, gen[-1] + n2]
884
+ for gen in gens1]
885
+ gens2 = [start + [x + n1 for x in gen] for gen in gens2]
886
+ else:
887
+ gens1 = [gen + end for gen in gens1]
888
+ gens2 = [start + [x + n1 for x in gen] for gen in gens2]
889
+
890
+ res = gens1 + gens2
891
+
892
+ return res
893
+
894
+
895
+ def bsgs_direct_product(base1, gens1, base2, gens2, signed=True):
896
+ """
897
+ Direct product of two BSGS.
898
+
899
+ Parameters
900
+ ==========
901
+
902
+ base1 : base of the first BSGS.
903
+
904
+ gens1 : strong generating sequence of the first BSGS.
905
+
906
+ base2, gens2 : similarly for the second BSGS.
907
+
908
+ signed : flag for signed permutations.
909
+
910
+ Examples
911
+ ========
912
+
913
+ >>> from sympy.combinatorics.tensor_can import (get_symmetric_group_sgs, bsgs_direct_product)
914
+ >>> base1, gens1 = get_symmetric_group_sgs(1)
915
+ >>> base2, gens2 = get_symmetric_group_sgs(2)
916
+ >>> bsgs_direct_product(base1, gens1, base2, gens2)
917
+ ([1], [(4)(1 2)])
918
+ """
919
+ s = 2 if signed else 0
920
+ n1 = gens1[0].size - s
921
+ base = list(base1)
922
+ base += [x + n1 for x in base2]
923
+ gens1 = [h._array_form for h in gens1]
924
+ gens2 = [h._array_form for h in gens2]
925
+ gens = perm_af_direct_product(gens1, gens2, signed)
926
+ size = len(gens[0])
927
+ id_af = list(range(size))
928
+ gens = [h for h in gens if h != id_af]
929
+ if not gens:
930
+ gens = [id_af]
931
+ return base, [_af_new(h) for h in gens]
932
+
933
+
934
+ def get_symmetric_group_sgs(n, antisym=False):
935
+ """
936
+ Return base, gens of the minimal BSGS for (anti)symmetric tensor
937
+
938
+ Parameters
939
+ ==========
940
+
941
+ n : rank of the tensor
942
+ antisym : bool
943
+ ``antisym = False`` symmetric tensor
944
+ ``antisym = True`` antisymmetric tensor
945
+
946
+ Examples
947
+ ========
948
+
949
+ >>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs
950
+ >>> get_symmetric_group_sgs(3)
951
+ ([0, 1], [(4)(0 1), (4)(1 2)])
952
+ """
953
+ if n == 1:
954
+ return [], [_af_new(list(range(3)))]
955
+ gens = [Permutation(n - 1)(i, i + 1)._array_form for i in range(n - 1)]
956
+ if antisym == 0:
957
+ gens = [x + [n, n + 1] for x in gens]
958
+ else:
959
+ gens = [x + [n + 1, n] for x in gens]
960
+ base = list(range(n - 1))
961
+ return base, [_af_new(h) for h in gens]
962
+
963
+ riemann_bsgs = [0, 2], [Permutation(0, 1)(4, 5), Permutation(2, 3)(4, 5),
964
+ Permutation(5)(0, 2)(1, 3)]
965
+
966
+
967
+ def get_transversals(base, gens):
968
+ """
969
+ Return transversals for the group with BSGS base, gens
970
+ """
971
+ if not base:
972
+ return []
973
+ stabs = _distribute_gens_by_base(base, gens)
974
+ orbits, transversals = _orbits_transversals_from_bsgs(base, stabs)
975
+ transversals = [{x: h._array_form for x, h in y.items()} for y in
976
+ transversals]
977
+ return transversals
978
+
979
+
980
+ def _is_minimal_bsgs(base, gens):
981
+ """
982
+ Check if the BSGS has minimal base under lexigographic order.
983
+
984
+ base, gens BSGS
985
+
986
+ Examples
987
+ ========
988
+
989
+ >>> from sympy.combinatorics import Permutation
990
+ >>> from sympy.combinatorics.tensor_can import riemann_bsgs, _is_minimal_bsgs
991
+ >>> _is_minimal_bsgs(*riemann_bsgs)
992
+ True
993
+ >>> riemann_bsgs1 = ([2, 0], ([Permutation(5)(0, 1)(4, 5), Permutation(5)(0, 2)(1, 3)]))
994
+ >>> _is_minimal_bsgs(*riemann_bsgs1)
995
+ False
996
+ """
997
+ base1 = []
998
+ sgs1 = gens[:]
999
+ size = gens[0].size
1000
+ for i in range(size):
1001
+ if not all(h._array_form[i] == i for h in sgs1):
1002
+ base1.append(i)
1003
+ sgs1 = [h for h in sgs1 if h._array_form[i] == i]
1004
+ return base1 == base
1005
+
1006
+
1007
+ def get_minimal_bsgs(base, gens):
1008
+ """
1009
+ Compute a minimal GSGS
1010
+
1011
+ base, gens BSGS
1012
+
1013
+ If base, gens is a minimal BSGS return it; else return a minimal BSGS
1014
+ if it fails in finding one, it returns None
1015
+
1016
+ TODO: use baseswap in the case in which if it fails in finding a
1017
+ minimal BSGS
1018
+
1019
+ Examples
1020
+ ========
1021
+
1022
+ >>> from sympy.combinatorics import Permutation
1023
+ >>> from sympy.combinatorics.tensor_can import get_minimal_bsgs
1024
+ >>> riemann_bsgs1 = ([2, 0], ([Permutation(5)(0, 1)(4, 5), Permutation(5)(0, 2)(1, 3)]))
1025
+ >>> get_minimal_bsgs(*riemann_bsgs1)
1026
+ ([0, 2], [(0 1)(4 5), (5)(0 2)(1 3), (2 3)(4 5)])
1027
+ """
1028
+ G = PermutationGroup(gens)
1029
+ base, gens = G.schreier_sims_incremental()
1030
+ if not _is_minimal_bsgs(base, gens):
1031
+ return None
1032
+ return base, gens
1033
+
1034
+
1035
+ def tensor_gens(base, gens, list_free_indices, sym=0):
1036
+ """
1037
+ Returns size, res_base, res_gens BSGS for n tensors of the
1038
+ same type.
1039
+
1040
+ Explanation
1041
+ ===========
1042
+
1043
+ base, gens BSGS for tensors of this type
1044
+ list_free_indices list of the slots occupied by fixed indices
1045
+ for each of the tensors
1046
+
1047
+ sym symmetry under commutation of two tensors
1048
+ sym None no symmetry
1049
+ sym 0 commuting
1050
+ sym 1 anticommuting
1051
+
1052
+ Examples
1053
+ ========
1054
+
1055
+ >>> from sympy.combinatorics.tensor_can import tensor_gens, get_symmetric_group_sgs
1056
+
1057
+ two symmetric tensors with 3 indices without free indices
1058
+
1059
+ >>> base, gens = get_symmetric_group_sgs(3)
1060
+ >>> tensor_gens(base, gens, [[], []])
1061
+ (8, [0, 1, 3, 4], [(7)(0 1), (7)(1 2), (7)(3 4), (7)(4 5), (7)(0 3)(1 4)(2 5)])
1062
+
1063
+ two symmetric tensors with 3 indices with free indices in slot 1 and 0
1064
+
1065
+ >>> tensor_gens(base, gens, [[1], [0]])
1066
+ (8, [0, 4], [(7)(0 2), (7)(4 5)])
1067
+
1068
+ four symmetric tensors with 3 indices, two of which with free indices
1069
+
1070
+ """
1071
+ def _get_bsgs(G, base, gens, free_indices):
1072
+ """
1073
+ return the BSGS for G.pointwise_stabilizer(free_indices)
1074
+ """
1075
+ if not free_indices:
1076
+ return base[:], gens[:]
1077
+ else:
1078
+ H = G.pointwise_stabilizer(free_indices)
1079
+ base, sgs = H.schreier_sims_incremental()
1080
+ return base, sgs
1081
+
1082
+ # if not base there is no slot symmetry for the component tensors
1083
+ # if list_free_indices.count([]) < 2 there is no commutation symmetry
1084
+ # so there is no resulting slot symmetry
1085
+ if not base and list_free_indices.count([]) < 2:
1086
+ n = len(list_free_indices)
1087
+ size = gens[0].size
1088
+ size = n * (size - 2) + 2
1089
+ return size, [], [_af_new(list(range(size)))]
1090
+
1091
+ # if any(list_free_indices) one needs to compute the pointwise
1092
+ # stabilizer, so G is needed
1093
+ if any(list_free_indices):
1094
+ G = PermutationGroup(gens)
1095
+ else:
1096
+ G = None
1097
+
1098
+ # no_free list of lists of indices for component tensors without fixed
1099
+ # indices
1100
+ no_free = []
1101
+ size = gens[0].size
1102
+ id_af = list(range(size))
1103
+ num_indices = size - 2
1104
+ if not list_free_indices[0]:
1105
+ no_free.append(list(range(num_indices)))
1106
+ res_base, res_gens = _get_bsgs(G, base, gens, list_free_indices[0])
1107
+ for i in range(1, len(list_free_indices)):
1108
+ base1, gens1 = _get_bsgs(G, base, gens, list_free_indices[i])
1109
+ res_base, res_gens = bsgs_direct_product(res_base, res_gens,
1110
+ base1, gens1, 1)
1111
+ if not list_free_indices[i]:
1112
+ no_free.append(list(range(size - 2, size - 2 + num_indices)))
1113
+ size += num_indices
1114
+ nr = size - 2
1115
+ res_gens = [h for h in res_gens if h._array_form != id_af]
1116
+ # if sym there are no commuting tensors stop here
1117
+ if sym is None or not no_free:
1118
+ if not res_gens:
1119
+ res_gens = [_af_new(id_af)]
1120
+ return size, res_base, res_gens
1121
+
1122
+ # if the component tensors have moinimal BSGS, so is their direct
1123
+ # product P; the slot symmetry group is S = P*C, where C is the group
1124
+ # to (anti)commute the component tensors with no free indices
1125
+ # a stabilizer has the property S_i = P_i*C_i;
1126
+ # the BSGS of P*C has SGS_P + SGS_C and the base is
1127
+ # the ordered union of the bases of P and C.
1128
+ # If P has minimal BSGS, so has S with this base.
1129
+ base_comm = []
1130
+ for i in range(len(no_free) - 1):
1131
+ ind1 = no_free[i]
1132
+ ind2 = no_free[i + 1]
1133
+ a = list(range(ind1[0]))
1134
+ a.extend(ind2)
1135
+ a.extend(ind1)
1136
+ base_comm.append(ind1[0])
1137
+ a.extend(list(range(ind2[-1] + 1, nr)))
1138
+ if sym == 0:
1139
+ a.extend([nr, nr + 1])
1140
+ else:
1141
+ a.extend([nr + 1, nr])
1142
+ res_gens.append(_af_new(a))
1143
+ res_base = list(res_base)
1144
+ # each base is ordered; order the union of the two bases
1145
+ for i in base_comm:
1146
+ if i not in res_base:
1147
+ res_base.append(i)
1148
+ res_base.sort()
1149
+ if not res_gens:
1150
+ res_gens = [_af_new(id_af)]
1151
+
1152
+ return size, res_base, res_gens
1153
+
1154
+
1155
+ def gens_products(*v):
1156
+ """
1157
+ Returns size, res_base, res_gens BSGS for n tensors of different types.
1158
+
1159
+ Explanation
1160
+ ===========
1161
+
1162
+ v is a sequence of (base_i, gens_i, free_i, sym_i)
1163
+ where
1164
+ base_i, gens_i BSGS of tensor of type `i`
1165
+ free_i list of the fixed slots for each of the tensors
1166
+ of type `i`; if there are `n_i` tensors of type `i`
1167
+ and none of them have fixed slots, `free = [[]]*n_i`
1168
+ sym 0 (1) if the tensors of type `i` (anti)commute among themselves
1169
+
1170
+ Examples
1171
+ ========
1172
+
1173
+ >>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, gens_products
1174
+ >>> base, gens = get_symmetric_group_sgs(2)
1175
+ >>> gens_products((base, gens, [[], []], 0))
1176
+ (6, [0, 2], [(5)(0 1), (5)(2 3), (5)(0 2)(1 3)])
1177
+ >>> gens_products((base, gens, [[1], []], 0))
1178
+ (6, [2], [(5)(2 3)])
1179
+ """
1180
+ res_size, res_base, res_gens = tensor_gens(*v[0])
1181
+ for i in range(1, len(v)):
1182
+ size, base, gens = tensor_gens(*v[i])
1183
+ res_base, res_gens = bsgs_direct_product(res_base, res_gens, base,
1184
+ gens, 1)
1185
+ res_size = res_gens[0].size
1186
+ id_af = list(range(res_size))
1187
+ res_gens = [h for h in res_gens if h != id_af]
1188
+ if not res_gens:
1189
+ res_gens = [id_af]
1190
+ return res_size, res_base, res_gens
venv/lib/python3.10/site-packages/sympy/combinatorics/tests/test_testutil.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics.named_groups import SymmetricGroup, AlternatingGroup,\
2
+ CyclicGroup
3
+ from sympy.combinatorics.testutil import _verify_bsgs, _cmp_perm_lists,\
4
+ _naive_list_centralizer, _verify_centralizer,\
5
+ _verify_normal_closure
6
+ from sympy.combinatorics.permutations import Permutation
7
+ from sympy.combinatorics.perm_groups import PermutationGroup
8
+ from sympy.core.random import shuffle
9
+
10
+
11
+ def test_cmp_perm_lists():
12
+ S = SymmetricGroup(4)
13
+ els = list(S.generate_dimino())
14
+ other = els[:]
15
+ shuffle(other)
16
+ assert _cmp_perm_lists(els, other) is True
17
+
18
+
19
+ def test_naive_list_centralizer():
20
+ # verified by GAP
21
+ S = SymmetricGroup(3)
22
+ A = AlternatingGroup(3)
23
+ assert _naive_list_centralizer(S, S) == [Permutation([0, 1, 2])]
24
+ assert PermutationGroup(_naive_list_centralizer(S, A)).is_subgroup(A)
25
+
26
+
27
+ def test_verify_bsgs():
28
+ S = SymmetricGroup(5)
29
+ S.schreier_sims()
30
+ base = S.base
31
+ strong_gens = S.strong_gens
32
+ assert _verify_bsgs(S, base, strong_gens) is True
33
+ assert _verify_bsgs(S, base[:-1], strong_gens) is False
34
+ assert _verify_bsgs(S, base, S.generators) is False
35
+
36
+
37
+ def test_verify_centralizer():
38
+ # verified by GAP
39
+ S = SymmetricGroup(3)
40
+ A = AlternatingGroup(3)
41
+ triv = PermutationGroup([Permutation([0, 1, 2])])
42
+ assert _verify_centralizer(S, S, centr=triv)
43
+ assert _verify_centralizer(S, A, centr=A)
44
+
45
+
46
+ def test_verify_normal_closure():
47
+ # verified by GAP
48
+ S = SymmetricGroup(3)
49
+ A = AlternatingGroup(3)
50
+ assert _verify_normal_closure(S, A, closure=A)
51
+ S = SymmetricGroup(5)
52
+ A = AlternatingGroup(5)
53
+ C = CyclicGroup(5)
54
+ assert _verify_normal_closure(S, A, closure=A)
55
+ assert _verify_normal_closure(S, C, closure=A)
venv/lib/python3.10/site-packages/sympy/combinatorics/testutil.py ADDED
@@ -0,0 +1,358 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics import Permutation
2
+ from sympy.combinatorics.util import _distribute_gens_by_base
3
+
4
+ rmul = Permutation.rmul
5
+
6
+
7
+ def _cmp_perm_lists(first, second):
8
+ """
9
+ Compare two lists of permutations as sets.
10
+
11
+ Explanation
12
+ ===========
13
+
14
+ This is used for testing purposes. Since the array form of a
15
+ permutation is currently a list, Permutation is not hashable
16
+ and cannot be put into a set.
17
+
18
+ Examples
19
+ ========
20
+
21
+ >>> from sympy.combinatorics.permutations import Permutation
22
+ >>> from sympy.combinatorics.testutil import _cmp_perm_lists
23
+ >>> a = Permutation([0, 2, 3, 4, 1])
24
+ >>> b = Permutation([1, 2, 0, 4, 3])
25
+ >>> c = Permutation([3, 4, 0, 1, 2])
26
+ >>> ls1 = [a, b, c]
27
+ >>> ls2 = [b, c, a]
28
+ >>> _cmp_perm_lists(ls1, ls2)
29
+ True
30
+
31
+ """
32
+ return {tuple(a) for a in first} == \
33
+ {tuple(a) for a in second}
34
+
35
+
36
+ def _naive_list_centralizer(self, other, af=False):
37
+ from sympy.combinatorics.perm_groups import PermutationGroup
38
+ """
39
+ Return a list of elements for the centralizer of a subgroup/set/element.
40
+
41
+ Explanation
42
+ ===========
43
+
44
+ This is a brute force implementation that goes over all elements of the
45
+ group and checks for membership in the centralizer. It is used to
46
+ test ``.centralizer()`` from ``sympy.combinatorics.perm_groups``.
47
+
48
+ Examples
49
+ ========
50
+
51
+ >>> from sympy.combinatorics.testutil import _naive_list_centralizer
52
+ >>> from sympy.combinatorics.named_groups import DihedralGroup
53
+ >>> D = DihedralGroup(4)
54
+ >>> _naive_list_centralizer(D, D)
55
+ [Permutation([0, 1, 2, 3]), Permutation([2, 3, 0, 1])]
56
+
57
+ See Also
58
+ ========
59
+
60
+ sympy.combinatorics.perm_groups.centralizer
61
+
62
+ """
63
+ from sympy.combinatorics.permutations import _af_commutes_with
64
+ if hasattr(other, 'generators'):
65
+ elements = list(self.generate_dimino(af=True))
66
+ gens = [x._array_form for x in other.generators]
67
+ commutes_with_gens = lambda x: all(_af_commutes_with(x, gen) for gen in gens)
68
+ centralizer_list = []
69
+ if not af:
70
+ for element in elements:
71
+ if commutes_with_gens(element):
72
+ centralizer_list.append(Permutation._af_new(element))
73
+ else:
74
+ for element in elements:
75
+ if commutes_with_gens(element):
76
+ centralizer_list.append(element)
77
+ return centralizer_list
78
+ elif hasattr(other, 'getitem'):
79
+ return _naive_list_centralizer(self, PermutationGroup(other), af)
80
+ elif hasattr(other, 'array_form'):
81
+ return _naive_list_centralizer(self, PermutationGroup([other]), af)
82
+
83
+
84
+ def _verify_bsgs(group, base, gens):
85
+ """
86
+ Verify the correctness of a base and strong generating set.
87
+
88
+ Explanation
89
+ ===========
90
+
91
+ This is a naive implementation using the definition of a base and a strong
92
+ generating set relative to it. There are other procedures for
93
+ verifying a base and strong generating set, but this one will
94
+ serve for more robust testing.
95
+
96
+ Examples
97
+ ========
98
+
99
+ >>> from sympy.combinatorics.named_groups import AlternatingGroup
100
+ >>> from sympy.combinatorics.testutil import _verify_bsgs
101
+ >>> A = AlternatingGroup(4)
102
+ >>> A.schreier_sims()
103
+ >>> _verify_bsgs(A, A.base, A.strong_gens)
104
+ True
105
+
106
+ See Also
107
+ ========
108
+
109
+ sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims
110
+
111
+ """
112
+ from sympy.combinatorics.perm_groups import PermutationGroup
113
+ strong_gens_distr = _distribute_gens_by_base(base, gens)
114
+ current_stabilizer = group
115
+ for i in range(len(base)):
116
+ candidate = PermutationGroup(strong_gens_distr[i])
117
+ if current_stabilizer.order() != candidate.order():
118
+ return False
119
+ current_stabilizer = current_stabilizer.stabilizer(base[i])
120
+ if current_stabilizer.order() != 1:
121
+ return False
122
+ return True
123
+
124
+
125
+ def _verify_centralizer(group, arg, centr=None):
126
+ """
127
+ Verify the centralizer of a group/set/element inside another group.
128
+
129
+ This is used for testing ``.centralizer()`` from
130
+ ``sympy.combinatorics.perm_groups``
131
+
132
+ Examples
133
+ ========
134
+
135
+ >>> from sympy.combinatorics.named_groups import (SymmetricGroup,
136
+ ... AlternatingGroup)
137
+ >>> from sympy.combinatorics.perm_groups import PermutationGroup
138
+ >>> from sympy.combinatorics.permutations import Permutation
139
+ >>> from sympy.combinatorics.testutil import _verify_centralizer
140
+ >>> S = SymmetricGroup(5)
141
+ >>> A = AlternatingGroup(5)
142
+ >>> centr = PermutationGroup([Permutation([0, 1, 2, 3, 4])])
143
+ >>> _verify_centralizer(S, A, centr)
144
+ True
145
+
146
+ See Also
147
+ ========
148
+
149
+ _naive_list_centralizer,
150
+ sympy.combinatorics.perm_groups.PermutationGroup.centralizer,
151
+ _cmp_perm_lists
152
+
153
+ """
154
+ if centr is None:
155
+ centr = group.centralizer(arg)
156
+ centr_list = list(centr.generate_dimino(af=True))
157
+ centr_list_naive = _naive_list_centralizer(group, arg, af=True)
158
+ return _cmp_perm_lists(centr_list, centr_list_naive)
159
+
160
+
161
+ def _verify_normal_closure(group, arg, closure=None):
162
+ from sympy.combinatorics.perm_groups import PermutationGroup
163
+ """
164
+ Verify the normal closure of a subgroup/subset/element in a group.
165
+
166
+ This is used to test
167
+ sympy.combinatorics.perm_groups.PermutationGroup.normal_closure
168
+
169
+ Examples
170
+ ========
171
+
172
+ >>> from sympy.combinatorics.named_groups import (SymmetricGroup,
173
+ ... AlternatingGroup)
174
+ >>> from sympy.combinatorics.testutil import _verify_normal_closure
175
+ >>> S = SymmetricGroup(3)
176
+ >>> A = AlternatingGroup(3)
177
+ >>> _verify_normal_closure(S, A, closure=A)
178
+ True
179
+
180
+ See Also
181
+ ========
182
+
183
+ sympy.combinatorics.perm_groups.PermutationGroup.normal_closure
184
+
185
+ """
186
+ if closure is None:
187
+ closure = group.normal_closure(arg)
188
+ conjugates = set()
189
+ if hasattr(arg, 'generators'):
190
+ subgr_gens = arg.generators
191
+ elif hasattr(arg, '__getitem__'):
192
+ subgr_gens = arg
193
+ elif hasattr(arg, 'array_form'):
194
+ subgr_gens = [arg]
195
+ for el in group.generate_dimino():
196
+ for gen in subgr_gens:
197
+ conjugates.add(gen ^ el)
198
+ naive_closure = PermutationGroup(list(conjugates))
199
+ return closure.is_subgroup(naive_closure)
200
+
201
+
202
+ def canonicalize_naive(g, dummies, sym, *v):
203
+ """
204
+ Canonicalize tensor formed by tensors of the different types.
205
+
206
+ Explanation
207
+ ===========
208
+
209
+ sym_i symmetry under exchange of two component tensors of type `i`
210
+ None no symmetry
211
+ 0 commuting
212
+ 1 anticommuting
213
+
214
+ Parameters
215
+ ==========
216
+
217
+ g : Permutation representing the tensor.
218
+ dummies : List of dummy indices.
219
+ msym : Symmetry of the metric.
220
+ v : A list of (base_i, gens_i, n_i, sym_i) for tensors of type `i`.
221
+ base_i, gens_i BSGS for tensors of this type
222
+ n_i number of tensors of type `i`
223
+
224
+ Returns
225
+ =======
226
+
227
+ Returns 0 if the tensor is zero, else returns the array form of
228
+ the permutation representing the canonical form of the tensor.
229
+
230
+ Examples
231
+ ========
232
+
233
+ >>> from sympy.combinatorics.testutil import canonicalize_naive
234
+ >>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs
235
+ >>> from sympy.combinatorics import Permutation
236
+ >>> g = Permutation([1, 3, 2, 0, 4, 5])
237
+ >>> base2, gens2 = get_symmetric_group_sgs(2)
238
+ >>> canonicalize_naive(g, [2, 3], 0, (base2, gens2, 2, 0))
239
+ [0, 2, 1, 3, 4, 5]
240
+ """
241
+ from sympy.combinatorics.perm_groups import PermutationGroup
242
+ from sympy.combinatorics.tensor_can import gens_products, dummy_sgs
243
+ from sympy.combinatorics.permutations import _af_rmul
244
+ v1 = []
245
+ for i in range(len(v)):
246
+ base_i, gens_i, n_i, sym_i = v[i]
247
+ v1.append((base_i, gens_i, [[]]*n_i, sym_i))
248
+ size, sbase, sgens = gens_products(*v1)
249
+ dgens = dummy_sgs(dummies, sym, size-2)
250
+ if isinstance(sym, int):
251
+ num_types = 1
252
+ dummies = [dummies]
253
+ sym = [sym]
254
+ else:
255
+ num_types = len(sym)
256
+ dgens = []
257
+ for i in range(num_types):
258
+ dgens.extend(dummy_sgs(dummies[i], sym[i], size - 2))
259
+ S = PermutationGroup(sgens)
260
+ D = PermutationGroup([Permutation(x) for x in dgens])
261
+ dlist = list(D.generate(af=True))
262
+ g = g.array_form
263
+ st = set()
264
+ for s in S.generate(af=True):
265
+ h = _af_rmul(g, s)
266
+ for d in dlist:
267
+ q = tuple(_af_rmul(d, h))
268
+ st.add(q)
269
+ a = list(st)
270
+ a.sort()
271
+ prev = (0,)*size
272
+ for h in a:
273
+ if h[:-2] == prev[:-2]:
274
+ if h[-1] != prev[-1]:
275
+ return 0
276
+ prev = h
277
+ return list(a[0])
278
+
279
+
280
+ def graph_certificate(gr):
281
+ """
282
+ Return a certificate for the graph
283
+
284
+ Parameters
285
+ ==========
286
+
287
+ gr : adjacency list
288
+
289
+ Explanation
290
+ ===========
291
+
292
+ The graph is assumed to be unoriented and without
293
+ external lines.
294
+
295
+ Associate to each vertex of the graph a symmetric tensor with
296
+ number of indices equal to the degree of the vertex; indices
297
+ are contracted when they correspond to the same line of the graph.
298
+ The canonical form of the tensor gives a certificate for the graph.
299
+
300
+ This is not an efficient algorithm to get the certificate of a graph.
301
+
302
+ Examples
303
+ ========
304
+
305
+ >>> from sympy.combinatorics.testutil import graph_certificate
306
+ >>> gr1 = {0:[1, 2, 3, 5], 1:[0, 2, 4], 2:[0, 1, 3, 4], 3:[0, 2, 4], 4:[1, 2, 3, 5], 5:[0, 4]}
307
+ >>> gr2 = {0:[1, 5], 1:[0, 2, 3, 4], 2:[1, 3, 5], 3:[1, 2, 4, 5], 4:[1, 3, 5], 5:[0, 2, 3, 4]}
308
+ >>> c1 = graph_certificate(gr1)
309
+ >>> c2 = graph_certificate(gr2)
310
+ >>> c1
311
+ [0, 2, 4, 6, 1, 8, 10, 12, 3, 14, 16, 18, 5, 9, 15, 7, 11, 17, 13, 19, 20, 21]
312
+ >>> c1 == c2
313
+ True
314
+ """
315
+ from sympy.combinatorics.permutations import _af_invert
316
+ from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize
317
+ items = list(gr.items())
318
+ items.sort(key=lambda x: len(x[1]), reverse=True)
319
+ pvert = [x[0] for x in items]
320
+ pvert = _af_invert(pvert)
321
+
322
+ # the indices of the tensor are twice the number of lines of the graph
323
+ num_indices = 0
324
+ for v, neigh in items:
325
+ num_indices += len(neigh)
326
+ # associate to each vertex its indices; for each line
327
+ # between two vertices assign the
328
+ # even index to the vertex which comes first in items,
329
+ # the odd index to the other vertex
330
+ vertices = [[] for i in items]
331
+ i = 0
332
+ for v, neigh in items:
333
+ for v2 in neigh:
334
+ if pvert[v] < pvert[v2]:
335
+ vertices[pvert[v]].append(i)
336
+ vertices[pvert[v2]].append(i+1)
337
+ i += 2
338
+ g = []
339
+ for v in vertices:
340
+ g.extend(v)
341
+ assert len(g) == num_indices
342
+ g += [num_indices, num_indices + 1]
343
+ size = num_indices + 2
344
+ assert sorted(g) == list(range(size))
345
+ g = Permutation(g)
346
+ vlen = [0]*(len(vertices[0])+1)
347
+ for neigh in vertices:
348
+ vlen[len(neigh)] += 1
349
+ v = []
350
+ for i in range(len(vlen)):
351
+ n = vlen[i]
352
+ if n:
353
+ base, gens = get_symmetric_group_sgs(i)
354
+ v.append((base, gens, n, 0))
355
+ v.reverse()
356
+ dummies = list(range(num_indices))
357
+ can = canonicalize(g, dummies, 0, *v)
358
+ return can
venv/lib/python3.10/site-packages/sympy/combinatorics/util.py ADDED
@@ -0,0 +1,536 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics.permutations import Permutation, _af_invert, _af_rmul
2
+ from sympy.ntheory import isprime
3
+
4
+ rmul = Permutation.rmul
5
+ _af_new = Permutation._af_new
6
+
7
+ ############################################
8
+ #
9
+ # Utilities for computational group theory
10
+ #
11
+ ############################################
12
+
13
+
14
+ def _base_ordering(base, degree):
15
+ r"""
16
+ Order `\{0, 1, \dots, n-1\}` so that base points come first and in order.
17
+
18
+ Parameters
19
+ ==========
20
+
21
+ base : the base
22
+ degree : the degree of the associated permutation group
23
+
24
+ Returns
25
+ =======
26
+
27
+ A list ``base_ordering`` such that ``base_ordering[point]`` is the
28
+ number of ``point`` in the ordering.
29
+
30
+ Examples
31
+ ========
32
+
33
+ >>> from sympy.combinatorics import SymmetricGroup
34
+ >>> from sympy.combinatorics.util import _base_ordering
35
+ >>> S = SymmetricGroup(4)
36
+ >>> S.schreier_sims()
37
+ >>> _base_ordering(S.base, S.degree)
38
+ [0, 1, 2, 3]
39
+
40
+ Notes
41
+ =====
42
+
43
+ This is used in backtrack searches, when we define a relation `\ll` on
44
+ the underlying set for a permutation group of degree `n`,
45
+ `\{0, 1, \dots, n-1\}`, so that if `(b_1, b_2, \dots, b_k)` is a base we
46
+ have `b_i \ll b_j` whenever `i<j` and `b_i \ll a` for all
47
+ `i\in\{1,2, \dots, k\}` and `a` is not in the base. The idea is developed
48
+ and applied to backtracking algorithms in [1], pp.108-132. The points
49
+ that are not in the base are taken in increasing order.
50
+
51
+ References
52
+ ==========
53
+
54
+ .. [1] Holt, D., Eick, B., O'Brien, E.
55
+ "Handbook of computational group theory"
56
+
57
+ """
58
+ base_len = len(base)
59
+ ordering = [0]*degree
60
+ for i in range(base_len):
61
+ ordering[base[i]] = i
62
+ current = base_len
63
+ for i in range(degree):
64
+ if i not in base:
65
+ ordering[i] = current
66
+ current += 1
67
+ return ordering
68
+
69
+
70
+ def _check_cycles_alt_sym(perm):
71
+ """
72
+ Checks for cycles of prime length p with n/2 < p < n-2.
73
+
74
+ Explanation
75
+ ===========
76
+
77
+ Here `n` is the degree of the permutation. This is a helper function for
78
+ the function is_alt_sym from sympy.combinatorics.perm_groups.
79
+
80
+ Examples
81
+ ========
82
+
83
+ >>> from sympy.combinatorics.util import _check_cycles_alt_sym
84
+ >>> from sympy.combinatorics import Permutation
85
+ >>> a = Permutation([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11, 12]])
86
+ >>> _check_cycles_alt_sym(a)
87
+ False
88
+ >>> b = Permutation([[0, 1, 2, 3, 4, 5, 6], [7, 8, 9, 10]])
89
+ >>> _check_cycles_alt_sym(b)
90
+ True
91
+
92
+ See Also
93
+ ========
94
+
95
+ sympy.combinatorics.perm_groups.PermutationGroup.is_alt_sym
96
+
97
+ """
98
+ n = perm.size
99
+ af = perm.array_form
100
+ current_len = 0
101
+ total_len = 0
102
+ used = set()
103
+ for i in range(n//2):
104
+ if i not in used and i < n//2 - total_len:
105
+ current_len = 1
106
+ used.add(i)
107
+ j = i
108
+ while af[j] != i:
109
+ current_len += 1
110
+ j = af[j]
111
+ used.add(j)
112
+ total_len += current_len
113
+ if current_len > n//2 and current_len < n - 2 and isprime(current_len):
114
+ return True
115
+ return False
116
+
117
+
118
+ def _distribute_gens_by_base(base, gens):
119
+ r"""
120
+ Distribute the group elements ``gens`` by membership in basic stabilizers.
121
+
122
+ Explanation
123
+ ===========
124
+
125
+ Notice that for a base `(b_1, b_2, \dots, b_k)`, the basic stabilizers
126
+ are defined as `G^{(i)} = G_{b_1, \dots, b_{i-1}}` for
127
+ `i \in\{1, 2, \dots, k\}`.
128
+
129
+ Parameters
130
+ ==========
131
+
132
+ base : a sequence of points in `\{0, 1, \dots, n-1\}`
133
+ gens : a list of elements of a permutation group of degree `n`.
134
+
135
+ Returns
136
+ =======
137
+
138
+ List of length `k`, where `k` is
139
+ the length of ``base``. The `i`-th entry contains those elements in
140
+ ``gens`` which fix the first `i` elements of ``base`` (so that the
141
+ `0`-th entry is equal to ``gens`` itself). If no element fixes the first
142
+ `i` elements of ``base``, the `i`-th element is set to a list containing
143
+ the identity element.
144
+
145
+ Examples
146
+ ========
147
+
148
+ >>> from sympy.combinatorics.named_groups import DihedralGroup
149
+ >>> from sympy.combinatorics.util import _distribute_gens_by_base
150
+ >>> D = DihedralGroup(3)
151
+ >>> D.schreier_sims()
152
+ >>> D.strong_gens
153
+ [(0 1 2), (0 2), (1 2)]
154
+ >>> D.base
155
+ [0, 1]
156
+ >>> _distribute_gens_by_base(D.base, D.strong_gens)
157
+ [[(0 1 2), (0 2), (1 2)],
158
+ [(1 2)]]
159
+
160
+ See Also
161
+ ========
162
+
163
+ _strong_gens_from_distr, _orbits_transversals_from_bsgs,
164
+ _handle_precomputed_bsgs
165
+
166
+ """
167
+ base_len = len(base)
168
+ degree = gens[0].size
169
+ stabs = [[] for _ in range(base_len)]
170
+ max_stab_index = 0
171
+ for gen in gens:
172
+ j = 0
173
+ while j < base_len - 1 and gen._array_form[base[j]] == base[j]:
174
+ j += 1
175
+ if j > max_stab_index:
176
+ max_stab_index = j
177
+ for k in range(j + 1):
178
+ stabs[k].append(gen)
179
+ for i in range(max_stab_index + 1, base_len):
180
+ stabs[i].append(_af_new(list(range(degree))))
181
+ return stabs
182
+
183
+
184
+ def _handle_precomputed_bsgs(base, strong_gens, transversals=None,
185
+ basic_orbits=None, strong_gens_distr=None):
186
+ """
187
+ Calculate BSGS-related structures from those present.
188
+
189
+ Explanation
190
+ ===========
191
+
192
+ The base and strong generating set must be provided; if any of the
193
+ transversals, basic orbits or distributed strong generators are not
194
+ provided, they will be calculated from the base and strong generating set.
195
+
196
+ Parameters
197
+ ==========
198
+
199
+ ``base`` - the base
200
+ ``strong_gens`` - the strong generators
201
+ ``transversals`` - basic transversals
202
+ ``basic_orbits`` - basic orbits
203
+ ``strong_gens_distr`` - strong generators distributed by membership in basic
204
+ stabilizers
205
+
206
+ Returns
207
+ =======
208
+
209
+ ``(transversals, basic_orbits, strong_gens_distr)`` where ``transversals``
210
+ are the basic transversals, ``basic_orbits`` are the basic orbits, and
211
+ ``strong_gens_distr`` are the strong generators distributed by membership
212
+ in basic stabilizers.
213
+
214
+ Examples
215
+ ========
216
+
217
+ >>> from sympy.combinatorics.named_groups import DihedralGroup
218
+ >>> from sympy.combinatorics.util import _handle_precomputed_bsgs
219
+ >>> D = DihedralGroup(3)
220
+ >>> D.schreier_sims()
221
+ >>> _handle_precomputed_bsgs(D.base, D.strong_gens,
222
+ ... basic_orbits=D.basic_orbits)
223
+ ([{0: (2), 1: (0 1 2), 2: (0 2)}, {1: (2), 2: (1 2)}], [[0, 1, 2], [1, 2]], [[(0 1 2), (0 2), (1 2)], [(1 2)]])
224
+
225
+ See Also
226
+ ========
227
+
228
+ _orbits_transversals_from_bsgs, _distribute_gens_by_base
229
+
230
+ """
231
+ if strong_gens_distr is None:
232
+ strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
233
+ if transversals is None:
234
+ if basic_orbits is None:
235
+ basic_orbits, transversals = \
236
+ _orbits_transversals_from_bsgs(base, strong_gens_distr)
237
+ else:
238
+ transversals = \
239
+ _orbits_transversals_from_bsgs(base, strong_gens_distr,
240
+ transversals_only=True)
241
+ else:
242
+ if basic_orbits is None:
243
+ base_len = len(base)
244
+ basic_orbits = [None]*base_len
245
+ for i in range(base_len):
246
+ basic_orbits[i] = list(transversals[i].keys())
247
+ return transversals, basic_orbits, strong_gens_distr
248
+
249
+
250
+ def _orbits_transversals_from_bsgs(base, strong_gens_distr,
251
+ transversals_only=False, slp=False):
252
+ """
253
+ Compute basic orbits and transversals from a base and strong generating set.
254
+
255
+ Explanation
256
+ ===========
257
+
258
+ The generators are provided as distributed across the basic stabilizers.
259
+ If the optional argument ``transversals_only`` is set to True, only the
260
+ transversals are returned.
261
+
262
+ Parameters
263
+ ==========
264
+
265
+ ``base`` - The base.
266
+ ``strong_gens_distr`` - Strong generators distributed by membership in basic
267
+ stabilizers.
268
+ ``transversals_only`` - bool
269
+ A flag switching between returning only the
270
+ transversals and both orbits and transversals.
271
+ ``slp`` -
272
+ If ``True``, return a list of dictionaries containing the
273
+ generator presentations of the elements of the transversals,
274
+ i.e. the list of indices of generators from ``strong_gens_distr[i]``
275
+ such that their product is the relevant transversal element.
276
+
277
+ Examples
278
+ ========
279
+
280
+ >>> from sympy.combinatorics import SymmetricGroup
281
+ >>> from sympy.combinatorics.util import _distribute_gens_by_base
282
+ >>> S = SymmetricGroup(3)
283
+ >>> S.schreier_sims()
284
+ >>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)
285
+ >>> (S.base, strong_gens_distr)
286
+ ([0, 1], [[(0 1 2), (2)(0 1), (1 2)], [(1 2)]])
287
+
288
+ See Also
289
+ ========
290
+
291
+ _distribute_gens_by_base, _handle_precomputed_bsgs
292
+
293
+ """
294
+ from sympy.combinatorics.perm_groups import _orbit_transversal
295
+ base_len = len(base)
296
+ degree = strong_gens_distr[0][0].size
297
+ transversals = [None]*base_len
298
+ slps = [None]*base_len
299
+ if transversals_only is False:
300
+ basic_orbits = [None]*base_len
301
+ for i in range(base_len):
302
+ transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i],
303
+ base[i], pairs=True, slp=True)
304
+ transversals[i] = dict(transversals[i])
305
+ if transversals_only is False:
306
+ basic_orbits[i] = list(transversals[i].keys())
307
+ if transversals_only:
308
+ return transversals
309
+ else:
310
+ if not slp:
311
+ return basic_orbits, transversals
312
+ return basic_orbits, transversals, slps
313
+
314
+
315
+ def _remove_gens(base, strong_gens, basic_orbits=None, strong_gens_distr=None):
316
+ """
317
+ Remove redundant generators from a strong generating set.
318
+
319
+ Parameters
320
+ ==========
321
+
322
+ ``base`` - a base
323
+ ``strong_gens`` - a strong generating set relative to ``base``
324
+ ``basic_orbits`` - basic orbits
325
+ ``strong_gens_distr`` - strong generators distributed by membership in basic
326
+ stabilizers
327
+
328
+ Returns
329
+ =======
330
+
331
+ A strong generating set with respect to ``base`` which is a subset of
332
+ ``strong_gens``.
333
+
334
+ Examples
335
+ ========
336
+
337
+ >>> from sympy.combinatorics import SymmetricGroup
338
+ >>> from sympy.combinatorics.util import _remove_gens
339
+ >>> from sympy.combinatorics.testutil import _verify_bsgs
340
+ >>> S = SymmetricGroup(15)
341
+ >>> base, strong_gens = S.schreier_sims_incremental()
342
+ >>> new_gens = _remove_gens(base, strong_gens)
343
+ >>> len(new_gens)
344
+ 14
345
+ >>> _verify_bsgs(S, base, new_gens)
346
+ True
347
+
348
+ Notes
349
+ =====
350
+
351
+ This procedure is outlined in [1],p.95.
352
+
353
+ References
354
+ ==========
355
+
356
+ .. [1] Holt, D., Eick, B., O'Brien, E.
357
+ "Handbook of computational group theory"
358
+
359
+ """
360
+ from sympy.combinatorics.perm_groups import _orbit
361
+ base_len = len(base)
362
+ degree = strong_gens[0].size
363
+ if strong_gens_distr is None:
364
+ strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
365
+ if basic_orbits is None:
366
+ basic_orbits = []
367
+ for i in range(base_len):
368
+ basic_orbit = _orbit(degree, strong_gens_distr[i], base[i])
369
+ basic_orbits.append(basic_orbit)
370
+ strong_gens_distr.append([])
371
+ res = strong_gens[:]
372
+ for i in range(base_len - 1, -1, -1):
373
+ gens_copy = strong_gens_distr[i][:]
374
+ for gen in strong_gens_distr[i]:
375
+ if gen not in strong_gens_distr[i + 1]:
376
+ temp_gens = gens_copy[:]
377
+ temp_gens.remove(gen)
378
+ if temp_gens == []:
379
+ continue
380
+ temp_orbit = _orbit(degree, temp_gens, base[i])
381
+ if temp_orbit == basic_orbits[i]:
382
+ gens_copy.remove(gen)
383
+ res.remove(gen)
384
+ return res
385
+
386
+
387
+ def _strip(g, base, orbits, transversals):
388
+ """
389
+ Attempt to decompose a permutation using a (possibly partial) BSGS
390
+ structure.
391
+
392
+ Explanation
393
+ ===========
394
+
395
+ This is done by treating the sequence ``base`` as an actual base, and
396
+ the orbits ``orbits`` and transversals ``transversals`` as basic orbits and
397
+ transversals relative to it.
398
+
399
+ This process is called "sifting". A sift is unsuccessful when a certain
400
+ orbit element is not found or when after the sift the decomposition
401
+ does not end with the identity element.
402
+
403
+ The argument ``transversals`` is a list of dictionaries that provides
404
+ transversal elements for the orbits ``orbits``.
405
+
406
+ Parameters
407
+ ==========
408
+
409
+ ``g`` - permutation to be decomposed
410
+ ``base`` - sequence of points
411
+ ``orbits`` - a list in which the ``i``-th entry is an orbit of ``base[i]``
412
+ under some subgroup of the pointwise stabilizer of `
413
+ `base[0], base[1], ..., base[i - 1]``. The groups themselves are implicit
414
+ in this function since the only information we need is encoded in the orbits
415
+ and transversals
416
+ ``transversals`` - a list of orbit transversals associated with the orbits
417
+ ``orbits``.
418
+
419
+ Examples
420
+ ========
421
+
422
+ >>> from sympy.combinatorics import Permutation, SymmetricGroup
423
+ >>> from sympy.combinatorics.util import _strip
424
+ >>> S = SymmetricGroup(5)
425
+ >>> S.schreier_sims()
426
+ >>> g = Permutation([0, 2, 3, 1, 4])
427
+ >>> _strip(g, S.base, S.basic_orbits, S.basic_transversals)
428
+ ((4), 5)
429
+
430
+ Notes
431
+ =====
432
+
433
+ The algorithm is described in [1],pp.89-90. The reason for returning
434
+ both the current state of the element being decomposed and the level
435
+ at which the sifting ends is that they provide important information for
436
+ the randomized version of the Schreier-Sims algorithm.
437
+
438
+ References
439
+ ==========
440
+
441
+ .. [1] Holt, D., Eick, B., O'Brien, E."Handbook of computational group theory"
442
+
443
+ See Also
444
+ ========
445
+
446
+ sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims
447
+ sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims_random
448
+
449
+ """
450
+ h = g._array_form
451
+ base_len = len(base)
452
+ for i in range(base_len):
453
+ beta = h[base[i]]
454
+ if beta == base[i]:
455
+ continue
456
+ if beta not in orbits[i]:
457
+ return _af_new(h), i + 1
458
+ u = transversals[i][beta]._array_form
459
+ h = _af_rmul(_af_invert(u), h)
460
+ return _af_new(h), base_len + 1
461
+
462
+
463
+ def _strip_af(h, base, orbits, transversals, j, slp=[], slps={}):
464
+ """
465
+ optimized _strip, with h, transversals and result in array form
466
+ if the stripped elements is the identity, it returns False, base_len + 1
467
+
468
+ j h[base[i]] == base[i] for i <= j
469
+
470
+ """
471
+ base_len = len(base)
472
+ for i in range(j+1, base_len):
473
+ beta = h[base[i]]
474
+ if beta == base[i]:
475
+ continue
476
+ if beta not in orbits[i]:
477
+ if not slp:
478
+ return h, i + 1
479
+ return h, i + 1, slp
480
+ u = transversals[i][beta]
481
+ if h == u:
482
+ if not slp:
483
+ return False, base_len + 1
484
+ return False, base_len + 1, slp
485
+ h = _af_rmul(_af_invert(u), h)
486
+ if slp:
487
+ u_slp = slps[i][beta][:]
488
+ u_slp.reverse()
489
+ u_slp = [(i, (g,)) for g in u_slp]
490
+ slp = u_slp + slp
491
+ if not slp:
492
+ return h, base_len + 1
493
+ return h, base_len + 1, slp
494
+
495
+
496
+ def _strong_gens_from_distr(strong_gens_distr):
497
+ """
498
+ Retrieve strong generating set from generators of basic stabilizers.
499
+
500
+ This is just the union of the generators of the first and second basic
501
+ stabilizers.
502
+
503
+ Parameters
504
+ ==========
505
+
506
+ ``strong_gens_distr`` - strong generators distributed by membership in basic
507
+ stabilizers
508
+
509
+ Examples
510
+ ========
511
+
512
+ >>> from sympy.combinatorics import SymmetricGroup
513
+ >>> from sympy.combinatorics.util import (_strong_gens_from_distr,
514
+ ... _distribute_gens_by_base)
515
+ >>> S = SymmetricGroup(3)
516
+ >>> S.schreier_sims()
517
+ >>> S.strong_gens
518
+ [(0 1 2), (2)(0 1), (1 2)]
519
+ >>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)
520
+ >>> _strong_gens_from_distr(strong_gens_distr)
521
+ [(0 1 2), (2)(0 1), (1 2)]
522
+
523
+ See Also
524
+ ========
525
+
526
+ _distribute_gens_by_base
527
+
528
+ """
529
+ if len(strong_gens_distr) == 1:
530
+ return strong_gens_distr[0][:]
531
+ else:
532
+ result = strong_gens_distr[0]
533
+ for gen in strong_gens_distr[1]:
534
+ if gen not in result:
535
+ result.append(gen)
536
+ return result
venv/lib/python3.10/site-packages/sympy/geometry/__init__.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ A geometry module for the SymPy library. This module contains all of the
3
+ entities and functions needed to construct basic geometrical data and to
4
+ perform simple informational queries.
5
+
6
+ Usage:
7
+ ======
8
+
9
+ Examples
10
+ ========
11
+
12
+ """
13
+ from sympy.geometry.point import Point, Point2D, Point3D
14
+ from sympy.geometry.line import Line, Ray, Segment, Line2D, Segment2D, Ray2D, \
15
+ Line3D, Segment3D, Ray3D
16
+ from sympy.geometry.plane import Plane
17
+ from sympy.geometry.ellipse import Ellipse, Circle
18
+ from sympy.geometry.polygon import Polygon, RegularPolygon, Triangle, rad, deg
19
+ from sympy.geometry.util import are_similar, centroid, convex_hull, idiff, \
20
+ intersection, closest_points, farthest_points
21
+ from sympy.geometry.exceptions import GeometryError
22
+ from sympy.geometry.curve import Curve
23
+ from sympy.geometry.parabola import Parabola
24
+
25
+ __all__ = [
26
+ 'Point', 'Point2D', 'Point3D',
27
+
28
+ 'Line', 'Ray', 'Segment', 'Line2D', 'Segment2D', 'Ray2D', 'Line3D',
29
+ 'Segment3D', 'Ray3D',
30
+
31
+ 'Plane',
32
+
33
+ 'Ellipse', 'Circle',
34
+
35
+ 'Polygon', 'RegularPolygon', 'Triangle', 'rad', 'deg',
36
+
37
+ 'are_similar', 'centroid', 'convex_hull', 'idiff', 'intersection',
38
+ 'closest_points', 'farthest_points',
39
+
40
+ 'GeometryError',
41
+
42
+ 'Curve',
43
+
44
+ 'Parabola',
45
+ ]
venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.46 kB). View file
 
venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/curve.cpython-310.pyc ADDED
Binary file (11.8 kB). View file
 
venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/ellipse.cpython-310.pyc ADDED
Binary file (48.4 kB). View file
 
venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/entity.cpython-310.pyc ADDED
Binary file (21.2 kB). View file
 
venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/exceptions.cpython-310.pyc ADDED
Binary file (455 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/line.cpython-310.pyc ADDED
Binary file (70.2 kB). View file
 
venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/parabola.cpython-310.pyc ADDED
Binary file (11.1 kB). View file
 
venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/plane.cpython-310.pyc ADDED
Binary file (25.8 kB). View file
 
venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/point.cpython-310.pyc ADDED
Binary file (39.3 kB). View file
 
venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/polygon.cpython-310.pyc ADDED
Binary file (78 kB). View file
 
venv/lib/python3.10/site-packages/sympy/geometry/__pycache__/util.cpython-310.pyc ADDED
Binary file (20.2 kB). View file